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Supervisory Control and Data Acquisition (SCADA) systems monitor and control 

industrial control systems in many industrials and economic sectors which are considered 

critical infrastructure. In the past, most SCADA systems were isolated from all other 

networks, but recently connections to corporate enterprise networks and the Internet have 

increased. Security concerns have risen from this new found connectivity. This thesis 

makes one primary contribution to researchers and industry. Two datasets have been 

introduced to support intrusion detection system research for SCADA systems. The 

datasets include network traffic captured on a gas pipeline SCADA system in Mississippi 

State University’s SCADA lab. IDS researchers lack a common framework to train and 

test proposed algorithms. This leads to an inability to properly compare IDS presented in 

literature and limits research progress. The datasets created for this thesis are available to 

be used to aid researchers in assessing the performance of SCADA IDS systems. 
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INTRODUCTION 

1.1 Background 

Supervisory Control and Data Acquisition (SCADA) systems monitor and control 

highly critical infrastructure related utilities. These SCADA controlled systems are gas 

pipelines, power plants, railroads, water treatment facilities, and even some HVAC 

systems. In the past, most of these systems were isolated from all other networks, but 

recently they many been integrated with the Internet and corporate enterprise networks. 

By interconnecting these systems with other networks, control has increased for the 

operators, and savings have increased for companies. With this newfound connectivity, 

however, there are also many security concerns for these once isolated and remote 

systems. If a vulnerability exists in one of these systems, it will now allow attackers to 

remotely exploit and take control of these SCADA systems; this could cause failure in the 

hardware and harm to people’s lives.  

SCADA systems provide control and visualization of critical infrastructure 

systems. These systems are generally made up of four components [1]. The first level 

consists of sensors and actuators [1]. The sensors which collect data about the system are 

pressure monitors, water level gauges, and laser sensors. The actuators control the 

system’s state: pumps, motors, etc. The second level is the programmable logic 

controllers (PLCs).  These components control and collect information that determine the 
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system’s state. The controllers are generally referred to as remote terminal units (RTUs). 

The RTU interfaces with the first level of the SCADA system, i.e. stores the sensor data 

in predetermined registers. The third level of a SCADA system is supervisory controls 

[1]. The supervisory controls are usually handled by the master terminal unit (MTU). The 

MTU is the unit which communicates with the RTU. For example, in a gas pump system 

the MTU can send a command to the RTU to turn on the pump. The MTU can also send a 

read query to read from the RTU registers that contain the current pressure measurement. 

There are many protocols which allow for this communication such as Profibus, Fieldbus, 

Modbus, and Distributed Network Protocol Version 3 (DNP3). The fourth level, the 

human-machine interface (HMI), is used by an operator to display the sensor data 

collected by the MTU. The HMI usually contains a visual representation of the system 

and the operation of the subsystems. It is also used to change parameters and states within 

the SCADA system with communication through the MTU. A simple SCADA system is 

shown in the diagram below. 

 

Figure 1.1 Simple SCADA system [29] 
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According to "Security Aspects of SCADA and Corporate Network 

Interconnection: An Overview", SCADA systems “were designed to be open, robust, and 

easily operated and repaired, but not necessarily secure” [1]. This architecture suffers 

from three key security factors. The first factor is the lack of authentication of the 

communication protocols used by these SCADA systems [1]. This can lead to spoofing of 

data transmitted by both the MTU and the RTU. This type of attack occurs at the protocol 

level and is hard for an Intrusion Detection System (IDS) to detect. The second factor is 

the idea that these systems are “secure through obscurity” [1]. This means that the 

operators of these systems believe their specialized equipment and protocols cannot be 

understood by anyone outside of their knowledge group [1]. The last factor is the notion 

that the system cannot be harmed by an intruder because it is physically secure [1]. These 

flawed ideas have made critical infrastructure systems vulnerable and in need of 

improved cyber security protections.  

There are many researchers examining the security in today’s SCADA systems to 

help bring to light possible vulnerabilities and provide security solutions. A recent attack 

in 2010, named Stuxnet, was able to compromise uranium-enrichment plants in Iran by 

targeting the Siemens Step7 software [2]. The Siemen’s software was used to program 

PLCs, the digital devices that control the industrial systems. Stuxnet was introduced into 

the Windows environment and began searching for the Siemen’s software [2]. According 

to “How Stuxnet Is Rewriting the Cyberterrorism Playbook,” once the software was 

detected, Stuxnet was able to collect surveillance data, place the system into a critical 

state, and even falsely respond to prevent alarms [2]. It was able to accomplish this by 
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overwriting the ladder logic and firmware on the PLC, allowing for the attacker to force 

the PLC to report false responses [3].  

Another attack known to have targeted SCADA systems is Flame which collected 

surveillance data. Flame is similar to Stuxnet in that it infects Windows based systems. 

The difference is that Flame does not want to cause harm to the system, but rather it 

gathers and streams data to the command and control server [4]. The server would then 

filter through the large amount of data being sent from the victim’s system and display 

the results to an operator [4]. This attack was mostly exploited on systems in Iran to 

collect data for some unknown nation state [4]. 

Another recent event, Aurora, was presented to the government by Idaho National 

Laboratory as a demonstration to express the seriousness of these types of attacks. The 

Aurora exploit was used on an experimental platform which replicated the controls of a 

power system [5]. The attack specifically targeted the control system of a power system 

and attempted to open and close circuit breakers [5]. The end goal was to cause a 

generator to be physically damaged due to a change in the operation cycle causing a fatal 

phase condition [5]. Although this attack was not exploited in a real system, the goal of 

grabbing the attention of the government was accomplished, and research and 

development in industrial control system (ICS) security has increased.  

With the use of an intrusion detection systems (IDS), attacks such as these can be 

detected, and an operator can be alerted to anomalous activity to help prevent further 

damage. IDSs are an important layer of security which can be implemented in any 

communication based system to monitor and analyze a system’s status. IDSs in SCADA 

systems are improved by training them with data logs that represent real SCADA 
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network traffic. The need for a dataset which can be used to validate and improve IDS 

systems is in high demand. The next sections will describe the research contributions and 

provide an overview of this thesis. 

1.2 Research Contributions 

This thesis makes one primary contribution to researchers and industry. The 

contribution is that of two datasets which have been introduced to replace a previous 

dataset [6], hence the Gao dataset, that was deemed unsuitable for IDS research. The 

information gathered in the dataset is network transactions between a Remote Terminal 

Unit (RTU) and a Master Control Unit (MTU) in Mississippi State University’s in-house 

SCADA gas pipeline. The new datasets were collected using a novel framework for 

simulating real attacks and operator activity on a gas pipeline. Comparison to the 

previous dataset validated that all problems which effected that dataset have been 

resolved.  

The datasets contain three separate categories of features: network information, 

payload information, and labels. The network information provides a pattern of 

communication for intrusion detection systems to train against. Unlike Information 

Technology (IT) networks, SCADA systems have network topologies which are fixed 

and the transactions between the nodes are repetitive and regular. This static behavior is 

conducive to IDSs to detect anomalous activity. The second category of features is that of 

payload information. The payload information provides information about the gas 

pipeline’s state, settings, and parameters. These values are vital to understanding how the 

system is performing and detecting if the system is in an out-of-bounds or critical state. 
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The last category of features is the network transaction label. The label is appended to 

each line in the dataset to detail if the transaction is normal system activity or an attack. 

It is postulated that the datasets can be used to aid researchers in assessing the 

performance of SCADA IDS systems through the use of real SCADA attack patterns and 

simulated operator operation of the HMI. Since SCADA systems are designed to last 

several years [7], the network topologies are predetermined and communication patterns 

remain fixed. Therefore these datasets can be used to assess SCADA IDS systems in 

general, by providing these common characteristics. 

1.3 Organization 

The remainder of this thesis is arranged as follows. The next chapter, provides 

recent research in the areas of SCADA system threats, IDSs for critical infrastructure 

systems, and an analysis of other SCADA datasets and test beds. This chapter analyzes 

exactly why this dataset is needed in the research community and what purpose it will 

serve to other researchers. Chapter III discusses the gas pipeline system that was used to 

create this dataset along with the methodologies and framework that were implemented. 

The next two sections in Chapter III detail the two datasets which were created. The first 

is the raw network transaction data which was captured, while the second preprocesses 

the data given from the first. There is also a section which validates that the current 

dataset has improved from the previous iteration. The last chapter provides conclusions 

which were made from this research. 
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LITERATURE REVIEW 

2.1 SCADA System Threats 

Many researchers are studying and creating IDS systems using SCADA network 

traffic. SCADA systems are becoming increasingly vulnerable to outside attackers and 

have plagued the minds of security professionals. In “Security for Process Control, An 

Overview,” Brundle and Naedele [8] discuss the importance of securing industrial control 

systems by listing the challenges of SCADA security, providing reactions from the 

industry to these challenges, and highlighting what security threats remain. There are 

several security threats which remain in SCADA systems as shown in [8][9][10]. In 

“Challenges and Direction toward Secure Communication in the SCADA System,” Hong 

and Lee discuss the inherent security issues in SCADA and smart grid communication 

technologies [9]. They provide details on how these open standard communication 

protocols are becoming more vulnerable to cyber-attacks as they are connected to larger 

networks. Since these protocols were made to be on isolated networks there are security 

vulnerabilities not addressed in these protocols which do not account for being connected 

to larger networks. Hong and Lee also discuss some of the problems with intrusion 

detection systems. They state that SCADA IDSs require network traffic patterns to 

determine if there is any anomalous activity occurring within the system  [9]. The need 

for a dataset which represents a real SCADA system and contains the “peculiar” traffic is 
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in high need to create IDSs tailored for SCADA applications. In “Analysis on Cyber 

Threats to SCADA Systems” by Kang et al. also discusses many problems in current 

SCADA systems [10]. The table below details the many attacks that effect these systems. 

Table 2.1 Common SCADA System Threats[10] 

Common RT  Computer System Threats 

1. Authorization 
Violation 

9. Information 
Leakage 

17. Sabotage 25. Traffic Analysis 

2. Bombs (Logic or 
Time) 

10. Intercept/Alter 18. Scavenging 26. Trap Door/ Back 
Door 

3. Browsing 11. Interference 
Database Query 
Analysis 

19. Spying 27. Trojan Horse 

4. Bypassing Controls 12. Masquerade 20. Service Spoofing 28. Tunneling 
5. Data Modification 13. Physical Intrusion 21. Sniffers 29. Unauthorized 

Access Violations of 
Permission 

6. Denial of Service 14. Replay 22. Substitution 30. Unauthorized 
Access 

7. Eavesdropping 15. Repudiation 23. Terrorism 31. Virus 
8. Illegitimate Use 16. Resource 

Exhaustion 
24. Theft 32. Worm 

Many of these attacks are included in the proposed dataset and can be used to effectively 
train IDSs to detect attacks similar to these.  

There are many other reports which detail security vulnerabilities in SCADA 

systems [11][12]. In a report published by Dell on SCADA attack patterns, the authors 

identified the most common threats common to SCADA systems [11]. The diagram 

below shows their results. 
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Figure 2.1 SCADA Attack Patterns [1] 

 

These attacks are executed to gain access to servers which control the SCADA 

systems. Once these servers are compromised, an attacker has access to the workstations 

which operate the physical process. “Software security: Application-level vulnerabilities 

in SCADA systems” by Valentine et al. addresses what can happen when these 

workstations are compromised. They discuss how ladder logic used in the PLCs of 

SCADA systems do not provide protection against many common errors [10]. They 

provide many examples of intentional and unintentional errors at the application level. 

Their conclusions showed that verification and validation tools should be added to 

provide another layer of protection for the PLCs.  Similar to Hong and Lee’s work, 

Dzung et al. outlines in “Security for Industrial Communication Systems” the many 

issues found in communication networks for industrial applications [13]. Dzung provides 
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a list of attacks that are common to this application domain. These attacks are a subset of 

the ones found in Table 2.1. In conclusion Dzung states that it is possible to secure 

industrial control systems using many emerging and conventional technologies. One of 

Dzung’s security technologies that is recommended is intrusion detection systems. These 

systems are crucial to providing real time information of anomalous or malicious activity. 

The next section will discuss intrusion detection systems. 

2.2 Intrusion Detection 

Intrusion detection systems are used to collect and analyze system activity data to 

monitor a system’s status. They also provide examination of a system’s state and perform 

integrity checks on files within the system. Many IDSs use machine learning algorithms 

for pattern recognition to detect threat activity which is anomalous for a certain system. 

There are other IDSs which use a signature-based system to compare activity to a 

database of known threats [14].  These functionalities can be combined together for a 

robust detection system and will provide a sufficient layer of protection for various 

attacks.  

An IDS consists of three main components. The first component is the “Network 

Intrusion Detection system (NIDS)” [14]. The NIDS uses a signature-based system to 

determine if the activity in the entire system is normal or if it can be found in the database 

of known attacks [14]. If the NIDS finds a match of a signature, the activity is reported to 

the operator or system administrator [14]. The NIDS does not prevent the traffic from 

going through, but only provides a warning. The second component is the “Network 

Node Intrusion detection system (NNIDS)” [14]. The NNIDS is more specific to the 

communication between the control station and a single subsystem. It performs similar 
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functions as the NIDS, but it also provides some pattern recognition and behavior 

analysis. Each subsystem requires an algorithm that is tailored toward its functions; this is 

the reason for pattern recognition to be on this level. The specialization is needed to 

provide the highest level of security and detection. The last level of security is found on 

the subsystem itself. It is referred to as the “Host Intrusion Detection System (HIDS)” 

[14]. This is the system that analyzes system state and performs integrity checks on the 

systems data to determine if there is anomalous activity. Many SCADA systems have low 

variability in states, and changes from normal behavior are easily detected with a proper 

IDS installed.  

There are many limitations to the IDS solutions discussed above, such as a high 

false positive rate from noise generated in normal activity. The noise is introduced from 

the system in the form of a bad packet or a hardware malfunction, but it would be 

detected as anomalous and reported to the operator as a possible threat [16]. This high 

number of false positives can reduce the effectiveness of the IDS, as the false positives 

will overshadow the actual threats often causing real warnings to be ignored [16]. 

Another problem with IDS solutions, specifically the signature-based solutions, is the 

constant need to upgrade signatures [16]. Although most systems require updating, this 

can sometimes be overlooked by operators and can cause the systems to be vulnerable to 

the most recent exploits. The next limitation is that the IDS cannot secure a system that 

has poor authentication and identification protocols [16]. This is because of spoofing, the 

introduction of normal behavior into the system that is identical to the traffic of the real 

control station. For example spoofing, can be a problem with a system which records 

pressure data, as it can allow false reports of the actual pressure measurement and cause 
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the operator to correct a system that is not actually in need of a control action, possibly 

over-pressurizing the system. The above example is similar to the Aurora attack that was 

designed for a power system and caused a generator to be in a critical condition. The 

attack was able to use legitimate requests to place the generator into an out-of-phase state 

that would cause harm to the system [5]. The last limitation that will be discussed is the 

problem with analyzing encrypted traffic. An IDS is not able to inspect packets deeply if 

the traffic is encrypted; therefore, traffic must be unencrypted before any attempts to 

analyze it occur. The problem lies in processing times and may inhibit the IDS from 

performing in real time. Although there are some limitations of an IDS, it still performs 

an important role in securing networks. 

IDSs are commonly used in computer networks (firewalls, etc.) and virus 

software, but they are emerging in the industrial control system world. These systems 

have been important in protecting web servers and personal computers and are now a 

field of research for ICS professionals. Many reasons to implement an IDS in SCADA 

systems have been discussed above. For example, highly critical infrastructure is 

dependent on many specialized protocols that are designed with ease of use and 

reparability in mind, rather than security [15].  These systems are highly reliant on the 

operators and are in need of an automated approach to monitoring the system’s normal 

activity. There are many studies to provide a broad approach which can be easily 

distributed to system operators to improve security. 

 A recent approach for an IDS to be implemented on SCADA systems was 

demonstrated in “An unsupervised anomaly-based detections approach for integrity 

attacks on SCADA systems”, by Abdulmohsen Almalawi et. al [17]. Almalawi proposed 
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that an unsupervised learning algorithm (pattern recognition) approach would perform 

best on SCADA network traffic [17]. He tested the theory by using data from a real world 

industrial system, a water plant, and experimented with two different types of algorithms 

[17]. Almalawi used many pre-processing techniques, massaging the input to improve 

results in an algorithm while preserving the integrity of the data, to control noise that was 

within the dataset from the water plant [17]. Almalawi then processed the dataset through 

his clustering algorithm, a behavior analysis technique [17]. He concluded that his type of 

behavioral approach shows promise and can accomplish high detection results within this 

field [17]. With the fixed-width algorithm, Almalawi was able to achieve a detection rate 

of over 90% with less than .01% false-negatives. The only concern was the processing 

time, and complexity of the algorithms, and the data set contained no examples of attack 

behavior and should be researched further to improve the efficiency of the process [17].  

Another example of this automated approach is outlined in “Improving Security for 

SCADA Sensor Networks with Reputation Systems and Self-Organizing Maps”, by Jose 

M. Moya et. al [18]. Moya also used unsupervised learning algorithms, but he took into 

account the severe processing power that is required to use these techniques. Moya first 

trained the algorithm with a dataset of only normal activity [18]. This built clusters, 

which he can then use to classify anything outside of these normal activity clusters as 

anomalous. By creating the clusters before operation, Moya reduced the processing that is 

required during normal operation of the IDS. He combined this with a quantization error 

which can decipher attack traffic that is similar to normal traffic [18]. The quantization 

error is calculated from the distance of that specific packet to the centroid of the cluster 

[18]. If the distance is beyond a threshold, it is considered anomalous. Attack traffic 
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similar to normal is a common problem when spoofing is involved, as it can create 

legitimate requests that are identical in structure to normal traffic. The quantization error 

is able to place many spoofed packets in the anomalous clusters rather than cause a false-

negative [18].  

There are some products which are already used in many real life systems and do 

not use the novelty approach above. Many of these solutions require signature databases 

or rules generated by the operator. The Snort IDS is an example of one of these products. 

Snort IDS is a NIDS that is able to log and analyze real time SCADA network traffic 

[19]. Snort has the capability of examining network packets and also deep packet 

inspection, the ability to explore information within the payload of a packet. This type of 

product is dependent upon a ruleset defined by the operator of a system [19]. The ruleset 

is either a database of signatures or rules created by a professional in the field [19]. 

“Snort is, by far, the gold standard among open source NIDS systems, with over 100,000 

users and 3 million downloads to date” [19]. The Snort IDS is also free, which allows any 

company to install this type of system to increase the number of security layers within 

their systems [19]. This type of IDS is effective for known attacks, but struggles with 

attacks that are similar to normal traffic and places the system in states that are defined.   

Another product that is used for IDS is Bro. Bro is not commonly used in 

commercial systems, but rather for research. Bro can be adjusted to work with almost any 

computer based communication protocol. In “Adapting Bro into SCADA: Building a 

Specification-based Intrusion Detection System for the DNP3 Protocol”, by Hui Lin et al. 

is able to use Bro in a SCADA system that uses the DNP3 protocol [20]. DNP3 is a 

commonly used communication protocol in SCADA type systems. Bro uses a similar 
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detection scheme as Snort, but instead of using a ruleset, it uses known signatures of 

attacks. Lin uses Bro to recognize semantics and provide validation of the DNP3 protocol 

in the SCADA traffic [20]. Bro provides detection on attacks that replay previous packets 

for denial of service [20]. Protection is also provided for created cyclic redundancy check 

errors and attacks that cause unstable system states [20]. The denial of service attacks can 

be detected just from observing the patterns that these attacks exhibit [20]. Recognition of 

unstable state attacks requires knowledge about the system. Bro and Snort both require 

databases for signatures. Almalawi and Moya both use machine learning algorithms 

which do not require a database to understand the difference between normal and 

anomalous behavior. Their approaches train MLAs against a dataset which automatically 

categorizes or clusters the data into these categories. Both of these approaches use 

completely independent datasets to test their methods which makes comparison of the 

two approaches difficult. The next section will discuss many of the datasets and test beds 

that are available for researchers to use and why the proposed dataset is needed. 

2.3 SCADA Datasets and Test Beds 

SCADA datasets and test beds can be used to analyze the performance of IDSs. 

IDS researchers lack a common framework to train and test proposed algorithms. This 

leads to an inability to properly compare proposed IDSs and limits research progress. 

Many of the datasets used by researchers do not contain all types of attacks and gauging 

the performance of the IDS is hard when all patterns of attack are not considered. In 

[17][18], Almawali and Moya use separate datasets to test the performance of their IDS. 

In the case of Almawali, the dataset used in his research was from a water treatment 

plant. Although his dataset was from a real world system, it was not possible for him to 
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run attacks or simulate a fault against a system which is providing services to the world. 

These unknowns make it difficult to gauge the effectiveness of his IDS. Similarly, Moya 

did not provide an in depth discussion of the data used in his research. He states the data 

is from a simulated sensor network and it contains attack patterns within. There are 

several other researchers providing IDSs to the community by using their individual 

dataset [22][23][24]. In “Building a SCADA Security Testbed” by Mahmood et al 

describes his testbed which is meant to provide a simulation of a real SCADA system and 

is able to connect to multiple real world systems [22]. This test bed allows researchers to 

run attacks against his model and test IDSs against attacks. The problem with the test bed 

is that it is not able to provide a dataset that is from a real system and the attacks run 

against the system may not be comprehensive. In [23] “Using Model-based Intrusion 

Detection for SCADA Networks” by Cheung et al, the researchers used a dataset 

collected on a SCADA test bed located at Sandia National Laboratories. This dataset is 

said to only contain reconnaissance type attacks on the Modbus TCP protocol. There IDS 

is not being tested against other categories of attacks including injection and denial of 

service (DoS). In [24] “Anomaly-Based Intrusion Detection for SCADA Systems” Yang 

et al use a dataset which was collected on an Idaho National Lab’s simulation of a 

SCADA system. The dataset contains both DoS and injection type attacks, but does not 

include the reconnaissance attacks. A common dataset is needed to provide third-party 

validation of IDS solutions. The dataset from this research has been created to fill the 

void in this area. The next chapter will provide a detailed description of the dataset 

created. 
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GAS PIPELINE DATASET 

3.1 Introduction 

The 1999 DARPA dataset produced by MIT’s Lincoln Labs [25] was created with 

the intent for researchers to test viable Intrusion Detection Systems (IDS) for 

effectiveness. The dataset has been a vital part in furthering research for evaluating 

computer network IDSs and provides a benchmark for other researchers to compare and 

validate results. The dataset was collected from a simulated Air Force base network 

connected to the Internet. The simulated network produced a dataset that contained 

network traffic in the form of a tcpdump. The information within the dataset includes the 

sniffed network packets, Sun BSM data, file system information, and process information 

for the purpose of identifying anomalous behavior contained within the collected 

timeframe.  

The various attacks which were carried out on the system are thoroughly 

explained in the thesis of Kendal [25], but a brief explanation will be provided below. 

The attacks are categorized into five groups: Data Attacks, User to Remote (U2R), 

Remote to Local (R2L), Denial of Service (DoS), and Probe. The data attacks were used 

to extract files in which the security policy states that the files should remain on the host 

computer. This means that files that were secret or confidential were allowed to leave the 

computer which was accessed by a legitimate user. The U2R attacks allowed a local user 
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to elevate privileges to communicate to a remote location. The R2L attacks allowed an 

attacker to gain access to a victim’s machine and extract files or modify data in transit 

from the victim’s machine. DoS attacks were designed to disrupt transmission of data 

from network services. The last category of attacks included in the DARPA dataset are 

probing attacks. This category of attacks aimed to collect information about the specific 

system, such as IP addresses of local machines, open ports, and local operating systems. 

By including attacks and normal activity within the dataset, researchers are able to create 

IDSs tailored towards these applications. The same holds true for SCADA systems, but 

currently a dataset does not exist which is accessible to all researchers and includes 

various types of attacks. 

3.2 Previous Work 

The dataset proposed and created for this research is a second iteration of a 

previous dataset from a gas pipeline system to fill the void in IDS research for SCADA 

applications. The first iteration of the dataset was created by Wei Gao [7]. Gao’s dataset 

was found to contain obvious patterns, which caused algorithms to appear to have 

extremely high detection rates, up to 100%.  The paper by Thornton et al. was initially 

written to determine if machine learning algorithms could be used for anomaly detection 

in SCADA systems.  They also wanted to determine how effective these machine 

learning algorithm by testing them with the Gao dataset. but instead, found the datasets 

contained many serious issues [26]. The conclusions of the paper showed that the dataset 

was unsuitable for IDS research due to obvious correlations between particular 

parameters and the result to be predicted by the algorithms. These correlations are 
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unrealistic in real SCADA transactions and renders the datasets unsuitable in their current 

form [26].  

Many of these unrealistic transactions were caused by the system being placed 

into only three different state configurations. To rid the dataset of these obvious patterns, 

a new process was created to place the system into all possible state configurations that 

represent normal operation of the gas pipeline. The states were chosen in random order to 

reduce the chance of unintended patterns. Another factor that caused obvious patterns 

within the dataset was the invariable attacks that were run against the system. The attacks 

were static and did not contain dynamically changing parameters. The new process of 

collecting the dataset also addressed this problem by parameterizing and randomizing the 

order in which the attacks were executed. New attacks were also created in conjunction 

with the existing attacks created by Gao [7]. The gas pipeline system which was used in 

the creation of these datasets is discussed below. 

3.3 Gas Pipeline System 

The gas pipeline system used to collect the datasets was provided by Mississippi 

State University’s in-house SCADA lab. The system consists of three major components: 

sensors and actuators, a communication network, and supervisory control. Below is a 

picture of the physical system along with the iFIX HMI. 
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Figure 3.1 Gas Pipeline System and HMI 

 

At the lowest level, the gas pipeline contains two actuators along with a pressure 

sensor. The actuators, a pump and a solenoid, are used to control the physical process of 

the system, to maintain the pressure set by the supervisory controls. The gas pipeline has 

three main system modes: automatic, manual, off. When the system is in automatic mode, 

there are two schemes to maintain the pressure which are decided by the supervisory 

controls. The first scheme is pump mode, which turns the pump on and off to keep the 

pressure in the pipe at the set point. This scheme was created to simulate a constant load 

on the system. The second scheme is solenoid mode, in which a relief valve controlled by 

a solenoid is opened and closed to regulate pressure. Both the pump and solenoid modes 

used a Proportional-Integral-Derivative (PID) control scheme. The system mode can also 

be in manual mode which allows the operator to manually control the pump and solenoid.  

The next component is the communication network in which the protocol used is 

serial Modbus RTU. Modbus packets include a header and a payload. For Modbus over a 

Serial Line, a packet includes a device address, function code, payload, and a cyclic 
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redundancy code (CRC) or linear redundancy code (LRC). Modbus/TCP packets include 

a Modbus Application Protocol (MBAP) header, function code, and payload.  The MBAP 

header includes a transaction identifier, protocol identifier, length, and device identifier. 

The device identifier is similar to the Modbus over Serial Line address.  The data sets 

described in this work are taken from a Modbus over Serial Line; however, they can be 

safely used as a proxy for Modbus/TCP data with the exception there is no transaction 

identifier, protocol identifier, and length field. The diagram below provides a visual 

representation of a Modbus TCP and RTU packet. 

 

Figure 3.2 Modbus RTU and TCP packet [21] 

 

The transaction identifier is generally a count of transaction numbers. The 

protocol identifier is always 0 for legal Modbus/TCP packets, and the length is the 

number of bytes in the payload plus 1 byte for the function code.  

Inside, the payload Modbus/TCP and Modbus over Serial Line packets are 

identical. Modbus read and write commands are the most common command types. Read 

and write payloads include additional packet attributes such as coil or register addresses, 

quantities of requested or returned coils or registers, coil or register contents, error codes, 
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and exception codes.  Some exceptional commands, such as the Diagnostic, file record 

access, mask write, and read FIFO commands include sub function codes, and other 

attributes to describe specific queries and responses.  

The last component in the gas pipeline is the supervisory controls. These include 

the MTU and the iFIX HMI. The MTU is set up in a one-to-many configuration, meaning 

that all slave devices (RTUs) receive their controls from the one MTU, and the many 

RTUs respond back to the MTU. The HMI connects to the MTU and provides an 

interface for a human operator to monitor the system and provide supervisory controls 

when needed.  

In the next sections of this chapter the process in which the dataset was collected, 

along with a detailed description of the dataset, are provided. The chapter will also 

include a discussion to show that unintentional trends have been eradicated from the 

dataset. 

3.4 Dataset Collection Methodology 

A new method of providing stimulus and collecting data logs was used to create 

the dataset. The first step for improving the dataset was to parameterize and randomize 

the order in which the attacks were executed. The execution was done by taking all 

attacks from [7] and implementing them in a man-in-the-middle fashion. The purpose of 

the man-in-the-middle method is to include all types of attacks as shown in the diagram 

below. 
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Figure 3.3 Types of Cyber Threats[27] 

 

Interception refers to attacks which are sent both to the attacker and to the initial 

receiver. These types of attacks allow attackers to gain information about the each node’s 

protocols, normal operation, and even the brand and model of the RTUs that the system is 

utilizing. Interruption attacks are used to block all communication between two nodes in 

a system. This type of attack would be a Denial of Service (DoS) between the MTU and 

the RTU slave device in the gas pipeline. The modification attacks allow an attacker to 

modify parameters or states in a system. In terms of the gas pipeline, an attacker could 

modify the set point parameter exclusively and leave all other parameters untouched. 

Similarly, the fabrication attacks allow for execution by completely creating a new packet 

to be sent between the MTU and RTU. The attacks in the gas pipeline dataset fit into 

these categories, but are broken down even further. The categories of attacks contained in 

the dataset are shown in the table below.  
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Table 3.1 Attack Categorization 

Type of Attacks Abbreviation Threat Type 

Normal Normal(0) N/A 

Naïve Malicious Response Injection NMRI(1) Modification/Fabrication 

Complex Malicious Response Injection CMRI(2) Modification/Fabrication 

Malicious State Command Injection MSCI(3) Modification/Fabrication 

Malicious Parameter Command Injection MPCI(4) Modification/Fabrication 

Malicious Function Code Injection MFCI(5) Modification/Fabrication 

Denial of Service DoS(6) Interruption 

Reconnaissance Recon(7) Interception 

 

The parameterization was accomplished by establishing ranges for which each 

attack operates. These ranges are created to provide a coverage of all possible attacks that 

could be executed on a specific parameter. For example, the set point manipulation attack 

modifies the set point parameter that controls the pressure level in the gas pipeline. This 

attack ranges from extreme levels to ranges that are within normal operations. Once the 

parameterization of each attack was accomplished, an algorithm to execute the attacks in 

a random order was designed.  

The algorithm’s intent is to allow for all attacks to execute an equal number of 

times and to reduce the unintended patterns that were found in the first iteration of the 

dataset. This does not necessarily mean the same number of attack packets will be created 

or modified for all attacks, as some attacks require fewer packets to execute while others 

require more to execute. For example, the function code scan attack is intended to scan 

all function codes which exist in the Modbus framework. The number of packets required 

for this attack will be significantly higher than the number to manipulate the set point 
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parameter. Once randomization of the attack patterns was implemented, the states that 

were considered normal are also randomized. To accomplish the randomization of normal 

states, an Auto IT script was coded to allow direct interaction with the iFIX HMI. Auto 

IT is a Windows scripting language which allows programmers to automate interaction 

with GUI’s, in this case a HMI. It is able to simulate mouse movements and keyboard 

inputs of a process control network operation. The HMI controls and displays 

information regarding the gas pipeline. It provides a visual representation of the current 

state and operation of the gas pipeline. The Auto IT script simulates an operator changing 

the system state and the PID parameters. During testing of the system, there are physical 

constraints which prevent the pump from constantly being turned on. Therefore, the script 

must allow the pump to have a cool down time of twenty minutes and a running time of 

seven minutes. The script in turn runs the system at a 25.9% duty cycle. 

A datalogger was also implemented to record only the packets which are received 

by either the MTU or the RTU. The data logger sits on the man-in-the-middle PC and 

was directly integrated into the attack framework through the use of C file input and 

output. Figure 3.3 below illustrates the entire process. 
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3.5 Dataset Description 

The datasets provided from this work are in two forms. The first form is a comma 

separated value (CSV) text file. The second form is an Attribute Relationship File Format 

(ARFF). The ARFF dataset was created to be used with WEKA. Waikato Environment 

for Knowledge Analysis, WEKA, is a tool which has a comprehensive list of machine 

learning algorithms [28]. WEKA has been used by many researchers in the IDS field for 

testing the performance of specific algorithms. The organization of the dataset provided 

represents one packet being delivered to either the MTU or to the RTU. Each instance in 

the dataset contains network traffic information along with payload information. The 

network information provides a pattern of communication for intrusion detection systems 

to train against. Unlike Information Technology (IT) networks, SCADA systems have 

network topologies which are fixed and the transactions between the nodes are repetitive 

and regular. This static behavior is conducive to IDSs to detect anomalous activity. The 

second category of features is that of payload information. The payload information 

provides information about the gas pipeline’s state, settings, and parameters. These 

values are vital to understanding how the system is performing and detecting if the 

system is in an out-of-bounds or critical state.  There are a total of 274,627 instances in 

each dataset. Each row in the dataset contains multiple columns, which are commonly 

referred to as features. These features will be discussed further in detail below. The 

consequence of representing each Modbus frame as a row in the dataset is that not all 

frames contain the same information, and many features are unknown for some instances. 
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3.5.1 Raw Dataset 

A raw unprocessed dataset is provided. The dataset contains raw network traffic 

data. The purpose of providing the raw data is to provide a way of validating the 

legitimacy of the preprocessed, ARFF dataset, and to allow for researchers to preprocess 

with their own specialized methods. There are six features for each instance in the raw 

dataset. The first feature contains the Modbus frame that was received by either the 

master or slave device. The Modbus frame contains all information from the network, 

state, and parameters of the gas pipeline. The frame can be processed by determining the 

function code which the system is using and utilizing the memory mapping provided in 

Appendix A. The diagram in Appendix A contains the register values for both the master 

and slave side PLCs. The memory mapping also provides the information that is 

contained within each register such as set point, PID parameters, and state information. 

The frame can be preprocessed into separate features for each register on the PLC. The 

diagram below details an example Modbus frame for a write command from the MTU to 

the RTU. 

 

Figure 3.5 Modbus Frame 
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The register that is being written to in this write command is register 40002. In the 

Modbus protocol, read and write register values start at 40000. These registers contain 

the state and parameter information for the entire gas pipeline system. The ARFF dataset 

provides some features that have been extracted from these register locations.   

The second and third feature in a raw dataset row represent the category of attack 

and specific attack that was executed. The specific category values are described in 

Tables 3.5, 3.6, 3.7, and 3.8. The second feature is the major category (Table 3.5) and the 

third feature is the specific attack (Tables 3.6, 3.7, and 3.8). In the case of a normal 

operation Modbus frame, both of these features will report a zero. Both of these features 

are necessary to train a supervised learning algorithm, as they allow the algorithm to 

learn the behavior of these attack patterns. The diagram later in the section will provide a 

one to one representation of the label and description to the categories and specific 

attacks.  

The fourth and fifth features in a raw dataset row represent the source and 

destination of the frame. There are only three possible values for the source and 

destination feature. The value can be a ‘1,’ which represents the master device sent the 

packet, a ‘2,’ meaning the man-in-the-middle computer sent the packet, or a ‘3,’ which 

means the slave device sent the packet. The purpose for this field is to provide a label to 

explain the origin of the packet and to aid in the preprocessing of the raw dataset. The last 

feature in the raw dataset contains a time stamp.  The time stamp can be used to calculate 

a time interval which could be used to help with an IDS. In normal operation of the 

system, the time interval may only marginally change, but malicious command injection 
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or modification may lead to a larger time interval change. The figure below provides an 

example row from the raw dataset. 

 

Figure 3.6 Instance within Raw Dataset 

 

3.5.2 ARFF Dataset 

The ARFF dataset was created to be used with WEKA. It contains twenty 

features, some of which are the same as in the raw dataset. The table below lists all 

twenty features. 
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Table 3.2 Feature List 

Features  

 address  control scheme 

 function  pump 

 length  solenoid 

 setpoint  pressure measurement 

 gain  crc rate 

 reset rate  command response 

 deadband  time 

 cycle time  binary result 

 rate  categorized result 

 system mode  specific result 

 

The first feature contains the station address of the slave device. The station 

address is a unique eight bit value that is assigned to each master and slave device. The 

address is used to identify the slave that the master is transmitting commands to and the 

slave which is responding. The Modbus protocol is configured so that all slave devices 

receive all master transactions. The slave device must check the station address field to 

determine if the message is intended for itself or for a different slave device. This feature 

is used to enhance detection of device scan attacks, which broadcast commands to all 

possible station addresses to determine which addresses are operable. The second feature 

contains the function code. The function codes primarily used in the gas pipeline are read 

(0x03) and write commands (0x16), but a possibility of 256 different function codes 

exist. Some of these function codes can be used for malicious purposes, such as function 

code ‘0x08’. The ‘0x08’ function code is generally used for diagnostics purposes, but it 
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can be used to force a slave device into a listen only mode. An attack like this would 

cause a denial of service using a valid function code. IDSs can utilize this feature to 

detect function codes which are out of the ordinary. The third feature contains the 

Modbus frame length. Similar to the function code, the length of the Modbus frame is 

fixed for each command or response query. In the gas pipeline system, a set of write and 

read commands are used to repeatedly perform block writes and block reads from 

specific registers. In detection of attacks, frames which are not of a specific length are 

easily detected as anomalous.  

The fourth feature contains the set point value that controls the pressure in the gas 

pipeline. The set point feature is utilized when the gas pipeline system mode is set to 

‘automatic’. The slave ladder logic attempts to maintain the set point value provided by 

either opening a solenoid valve or turning on and off the pump. The set point feature 

effects the physical system drastically and would be a common point of malicious intent 

for an attacker. The next five features represent the PID controller values. Gain, reset 

rate, dead band, cycle time, and rate are all values which are used to tune the PID 

controller. An error is calculated based on these five parameters and allows the PID 

controller to open and close the relief valve or turn on and off the pump to minimize the 

error.  

The tenth feature contains the value which controls the system’s duty cycle. There 

are only three possible values which are valid and are shown in the table below. 
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Table 3.3 System mode features 

System Mode Feature 

0 Off 

1 Manual 

2 Automatic 

 

Since the gas pipeline is configured to have a 25.9% duty cycle, the system mode 

feature is generally set to ‘0’ unless the system is active. The eleventh feature in the 

dataset is the control scheme feature. The control scheme in the gas pipeline determines 

whether the system will be controlled by the pump or by the solenoid. If the control 

scheme is set to pump, ‘0’, the solenoid will remain opened and the pump is cycled to 

maintain gas pressure at the set point. The pump will continue to pump against the 

opened solenoid which simulates a load in a real gas pipeline. If the pump is set to 

solenoid, ‘1’, the pump is constantly on and the pressure is controlled by opening and 

closing a solenoid valve to allow pressure to escape.  

The twelfth feature controls the pump state only if system mode is set to manual. 

The feature can only be two values off, ‘0’, or on, ‘1’. The system can be put into a 

critical state if an attacker were able to change the system mode to manual and turn the 

pump on. This type of attack could over pressurize the system and cause serious physical 

damage. The thirteenth feature controls the state of the solenoid valve when the system is 

also in manual mode. There are only two possibilities for this feature ‘0’, closed, and ‘1’, 

opened. Similar attacks to that of the pump feature could cause serious damage to the 

system by over or under pressurizing the system. The fourteenth feature contains the 
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current pressure measurement from the gas pipeline. The measurement is being provided 

by a pressure gauge attached to the pipeline and the data is stored in a register. The 

register is read by the master device and displayed on the HMI. This feature can be used 

in many attacks to provide a false measurement to imitate behavior that is not actually 

occurring in the system. The fifteenth feature contains the cyclic redundancy check 

(CRC). The cyclic redundancy check allows the system to check for errors within a frame 

that is being provided to either the master or the slave device. An attacker could 

constantly transmit a bad CRC to cause a DoS style attack. In Modbus-TCP, the CRC 

feature does not exist, the CRC is provided by the TCP frame. The sixteenth feature is 

provided to allow an IDS to learn the difference between commands and responses. The 

value can either be a ‘0’ for response or ‘1’ for command. This information is not parsed 

from the Modbus frame itself, but rather is provided to aid in the preprocessing step. The 

last four features, time stamp, specific attack, category attack, and binary attack, were 

also provided in the raw dataset.  Tables 3.5 -3.6 detail all of the features with their 

respective type that are provided in the dataset. 
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Table 3.4 Feature list 

Feature Type 

 address  Network 

 function   Command Payload 

 length  Network 

 setpoint  Command Payload 

 gain  Command Payload 

 reset rate  Command Payload 

 deadband  Command Payload 

 cycle time  Command Payload 

 rate  Command Payload 

 system mode  Command Payload 

 control scheme  Command Payload 

 pump  Command Payload 

 solenoid  Command Payload 

 pressure measurement  Response Payload 

 crc rate  Network 

 command response  Network 

 time  Network 

 binary attack  Label 

 categorized attack  Label 

 specific attack  Label 

 

As discussed in the introduction, Flame, Stuxnet, and Aurora have caused 

tremendous worry and have called in to question the security of current SCADA systems. 

Cyber threat and vulnerability research show the security challenges that SCADA 
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systems face and demonstrate many different approaches. As discussed in Chapter II 

researchers analyzed many different attack vectors and showed the security challenges 

that face the SCADA systems. In these papers, the researchers demonstrated several 

categories of attacks such as command injection, reconnaissance, and denial of service on 

current SCADA protocols. Since these protocols are open standards it allows everyone to 

study all angles of attack and provide security solutions. In order to provide a dataset for 

SCADA IDS research many of these types of attacks must be executed against the 

SCADA system. The attacks that are used in this data were found in Gao’s [7] research. 

Gao developed seven categories of attacks. A table of these categories is provided below. 

Table 3.5 Categories of attacks [7] 

Type of Attacks Abbreviation 

 Normal  Normal(0) 

 Naïve Malicious Response Injection   NMRI(1) 

 Complex Malicious Response Injection   CMRI(2) 

 Malicious State Command Injection  MSCI(3) 

 Malicious Parameter Command Injection  MPCI(4) 

 Malicious Function Code Injection  MFCI(5) 

 Denial of Service  DoS(6) 

 Reconnaissance  Recon(7) 

 

The seven categories of attacks are split into four overall categories: command 

injection, response injection, denial of service (DoS), and reconnaissance. The 

description of the attacks was found in Gao’s work and is summarized below [30]. All 

attacks have been slightly modified in this work, but are similar in behavior. The 
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command injection attacks contain malicious state command injection (MSCI), malicious 

parameter command injection (MPCI), and malicious function code injection attacks 

(MFCI). The response injection attacks provide two types of behaviors. The first is naïve 

malicious response injection (NMRI) which has sporadic and out of bounds behavior that 

would not be present in normal operation. These attacks generally occur when the 

malicious attacker lack information about the physical system process. The second type 

of response injection is complex malicious response injection (CMRI). These attacks 

leverage the state and physical process information to design attacks which mimic certain 

normal behaviors.  

Table 3.6 Cyber attacks 1-12 

Attack Name Number Type Description 

Setpoint Attacks 1-2 MPCI Changes the pressure set point outside 
and inside of the range of normal 
operation.  

PID Gain 
Attacks 

3-4 MPCI Changes the gain outside and inside 
of the range of normal operation. 

PID Reset Rate 
Attacks 

5-6 MPCI Changes the reset rate outside and 
inside of the range of normal 
operation. 

PID Rate 
Attacks 

7-8 MPCI Changes the rate outside and inside of 
the range of normal operation. 

PID Deadband 
Attacks 

9-10 MPCI Changes the dead band outside and 
inside of the range of normal 
operation. 

PID Cycle Time 
Attacks 

11-12 MPCI Changes the cycle time outside and 
inside of the range of normal 
operation. 
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The next category of attacks are reconnaissance attacks. Reconnaissance attacks 

are designed to collect information about the system through some passive gathering, or 

by forcing information from a device. The information can include network information 

(state address, length, crc, etc.), or device characteristics (model number, communication 

protocol, manufacturer, supported function codes). 

 CMRI attacks provide a level of sophistication over that of NMRI attacks. They 

mimic certain behaviors which occur within normal bounds. These injected states are 

leveraged to cause the system to lose efficiency, or cause loss of product and money. 

These attacks can be used to hide state changes which can occur in command injection 

attacks. Since these attacks inject states which display normal operation they become 

more difficult to detect. 
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Table 3.7 Cyber attacks 13-23 

Attack Name Number Type Description 
Pump Attack 13 MSCI Randomly changes the state 

of the pump. 
Solenoid Attack 14 MSCI Randomly changes the state 

of the solenoid. 
System Mode 
Attack 

15 MSCI Randomly changes the 
system mode. 

Critical Condition 
Attacks 

16-17 MSCI Places the system in a 
Critical Condition. This 
condition is not included in 
normal activity. 

Bad CRC Attack 18 DoS Sends Modbus packets with 
incorrect CRC values. This 
can cause denial of service. 

Clean Registers 
Attack  

19 MFCI Cleans registers in the slave 
device. 

Device Scan Attack 20 Recon Scan for all possible devices 
controlled by the master. 

Force Listen Attack 21 MFCI Forces the slave to only 
listen. 

Restart Attack 22 MFCI Restart communication on 
the device. 

Read Id Attack 23 Recon Read ID of slave device. The 
data about the device is not 
recorded, but is performed as 
if it were being recorded. 

 

MSCI, MPCI, and MFCI attacks inject control configuration commands to modify 

the system state and behavior. There are several impacts command injection attacks can 

cause such as “loss of process control, interruption of device communications, 

unauthorized modification of device configurations, and unauthorized modification of 

process set points” [30]. MSCI attacks are designed to modify the state of the current 

physical process. These types of attacks can place the system into a critical state which 

can cause harm to the system and even the lives of the operators. MPCI attacks modify 
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parameters which determine set point and PID configurations. MFCI attacks inject 

commands which exploit network protocol commands to change the behavior of the 

network. Denial of Service (DoS) attacks attempt to disrupt communications between the 

control and the process. This can be done through interruption of wireless networks, or 

network protocol exploits.  

Table 3.8 Cyber attacks 24-35 

Attack Name Number Type Description 

Function Code 
Scan Attack 

24 Recon Scans for possible functions that are 
being used on the system. The data 
about the device is not recorded, but is 
performed as if it were being recorded. 

Rise/Fall 
Attacks 

25-26 CMRI Sends back pressure readings which 
create trends on the pressure reading’s 
graph. 

Slope Attacks 27-28 CMRI Randomly increases/decreases 
pressure reading by a random slope 

Random Value 
Attacks 

29-31 NMRI Random pressure measurements are 
sent to the master. 

Negative 
Pressure 
Attack 

32 NMRI Sends back a negative pressure reading 
from the slave. 

Fast Attacks 33-34 CMRI Sends back a high set point then a low 
setpoint which changes “fast” 

Slow Attack 35 CMRI Sends back a high setpoint then a low 
setpoint which changes “slow” 

 

Tables 3.6-3.8 provide a list and description for each of the 35 attacks within the 

dataset. Many of the specific types of attacks run on this system are general and can be 

applied to almost all types of systems. Therefore, this dataset can be used for research 

inside and outside of the industrial control system area. The next section will discuss why 

the proposed dataset is more suitable for IDS research than Gao’s dataset. 
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3.6 Dataset Validation 

This section provides a detailed validation of why the new dataset has improved 

from the previous dataset. The validation is provide by calculations comparing the two 

datasets. 

The dataset was run through a subset of the tests that are found in [26] to 

determine if the patterns from Gao’s dataset have been eradicated. This paper was written 

by Zac Thornton, Jeff Hsu, and David Mudd to determine if machine learning algorithms 

could be used for anomaly detection in SCADA systems.  They also wanted to determine 

how effective these machine learning algorithm by testing them with the Gao dataset.  

[26]. The end results showed that the Gao’s gas pipeline dataset contained unintended 

patterns. This same procedure was followed to determine if the new dataset contained 

similar patterns. Since the dataset contains 275,000 instances, the algorithms required a 

significant amount of time and memory to execute. This was also expressed in Thornton 

et al.’s paper and was addressed by using a 10% subset of Gao’s dataset. The process 

used to acquire the 10% from the 100% was not conveyed in the paper, as such the 

algorithms used were chosen to reduce time and memory constraints. 

Table 3.9 List of Algorithms 

Algorithms   Category 

 Naïve Bayesian Network  Bayes 

 PART  Rule-Based 

 Random Tree  Decision Tree 

 Multilayer Perceptron  Neural Network 
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Step one in comparison of the old and new datasets was to use the datasets with 

the machine learning algorithms listed in Table 3.9. Classification accuracy results from 

the algorithms were collected and compared to that of Thornton et al.’s results. Table 

3.10 below illustrates the differences between the two datasets. 

Table 3.10 Results of Algorithms 

Algorithm New Dataset 
Classification Accuracy 

Gao’s Dataset 
Classification Accuracy 

 Naïve Bayesian Network  80.39%  98.5% 

 PART  94.14%  99.32% 

 Random Tree  99.7%  99.9% 

 Multilayer Perceptron  85.22%  100% 

 

Table 3.10 shows the algorithms have become less accurate at detecting 

anomalies using the new datasets and this is the direct result of the new methodology that 

was used to create the dataset. Classification accuracy cannot be the only statistic 

analyzed when determining the effectiveness of algorithms. False positive (FP) rates, 

precision, and recall are equally as important. False positive is an important statistic, as it 

can reveal discrepancies when it comes to the percentage of normal activity vs attack 

activity. For example, if system A has 99% of all traffic being normal while only 1% of 

the traffic being considered anomalous, then an IDS could consider all traffic to be 

normal and achieve a true positive rate of 99% which may sound good, but in reality it 

did not detect any of the 1% of anomalous traffic. The table below shows the percentage 

of attack and normal traffic in each dataset. 
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Table 3.11 Percentage of attacks in dataset 

Dataset Percentage of Attack Instances Percentage of Normal Instances 

New Dataset 21.9% 78.1% 

Gao’s Dataset 37.1% 62.8% 

 

The discrepancy between normal and attack scenarios is shown through the kappa 

statistic. The kappa statistic provides a metric to quantitatively show the agreement 

between two observers. The statistic shows the percentage of agreements between two 

observers who randomly assign each instance in the dataset a label. The kappa statistic 

for the dataset is 83.1%. This means that 83.1% of all randomly assigned instances by the 

observers (knowing the percentage of attack vs normal traffic) match-up.  

Further analysis was conducted using the PART algorithm. The PART algorithm was 

chosen as it is a rule-based algorithm which is well suited for a fixed-network topology 

that has regular communication patterns. It was used because it highlighted the many 

differences which show the benefits of the proposed dataset. It also provides results 

which detail exactly which categories of attacks have reduced patterns. Further analysis 

was also conducted using the three other algorithms, but is not provided in this research. 

The results from the other algorithms support the results of the PART algorithm. Tables 

3.12-3.14 show exactly which categories of attacks were not detected using the PART 

algorithm. 
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Table 3.12 Comparison of False Positive Rates 

Category New Dataset FP (%) Gao’s Dataset FP (%) 
 Normal 20.7% 1.1% 
 NMRI .8% 0% 
 CMRI .5% .1% 
 MSCI 0% 0% 
 MPCI 0% .2% 
 MFCI 0% 0% 
 DoS 0% 0% 
 Recon 0% 0% 

 

Table 3.12 shows that 20.7 % of attack traffic is falsely reported as normal and 

not as a category of attack compared to that of 1.1 % in the Gao dataset. This result 

shows an improvement from the Gao dataset because the attacks are harder to decipher 

from normal without further preprocessing or feature selection techniques. Inspection of 

precision and recall reveals the exact attack categories in the new dataset which are being 

classified incorrectly. Precision is the ratio of the number of instances classified correctly 

as a category of attack and the total number of instances classified as that category of 

attack. The equation below shows how precision was calculated for NMRI attacks.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠 𝑁𝑀𝑅𝐼

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑒𝑑 𝑎𝑠 𝑁𝑀𝑅𝐼
  (3.1) 

 

Precision will provide a metric to determine the instances classified into a category of 

attack against how many are actually of that category. 

Recall is the ratio of the number of instances that are classified correctly as a 

category of attack and the total number of instance in that category of attack. In the case 

of NMRI attacks, the calculated recall is shown below. 
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 𝑅𝑒𝑐𝑎𝑙𝑙 =
# 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑎𝑠 𝑁𝑀𝑅𝐼

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑁𝑀𝑅𝐼 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
   (3.2) 

 

Recall provides a metric to determine the true positive ratio in a category of attack. The 

table below provides the values for recall and precision for both datasets. 

Table 3.13 Precision and Recall for Datasets 

 New Dataset Gao’s Dataset 

Category Precision Recall Precision  Recall 

 Normal 94.5% 99.9% 99.4% 99.5% 

 NMRI 74.2% 82.4% 99.5% 94.4% 

 CMRI 89.3% 82.1% 99.4% 99.9% 

 MSCI 99.3% 54.9% 97.4% 95.1% 

 MPCI 99.8% 63.9% 97.5% 98.0% 

 MFCI 98.6% 100.0% 100.0% 95.8% 

 DoS 99.6% 48.3% 99.8% 97.9% 

 Recon 100.0% 97.1% 100.0% 100.0% 

 

Table 3.13 shows that the precision and recall for all attack categories in the Gao 

dataset are high. Thus, there were very few instances where the PART algorithm was 

unable to provide the correct classification and only 1.1% of the attack instances were 

reported as normal conditions shown in Table 3.12.  Table 3.13 also shows that the 

precision in the new dataset is the lowest for the response injection attacks. The low 

precision lies in the PART algorithms fault in differentiating between NMRI and CMRI 
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attacks. The confusion matrix below shows the misclassification of NMRI and CMRI 

attacks. 

Table 3.14 Confusion Matrix for NMRI and CMRI attacks 

Category Predicted NMRI Predicted CMRI 

Actual NMRI 6389 1148 

Actual CMRI 2156 10703 

 

The confusion matrix provides a look into exactly how the PART algorithm 

categorized the two categories of attacks. The misclassification is due in part to the 

randomness of NMRI attacks, which has the possibility of overlapping in values with the 

CMRI attacks.  

Table 3.12 also shows that the recall rates for DoS, MPCI, and MSCI are around 

50%, but have high precision. This means that the instances considered to be these 

categories of attacks were indeed from these categories, but suffered in discovering all 

instances which were from each category of attack. In the case of the DoS attacks, only 

48.3% of instances were classified correctly. The reason for the low recall was because of 

the Bad CRC attack. The Bad CRC attack injected an incorrect CRC value in a write 

multiple register function command, which would cause the RTU to ignore the command 

and in turn cause a DoS. The PART algorithm was able to correctly classify the write 

command with the incorrect CRC value as an attack, but failed to classify the response 

from the RTU as an attack. Therefore, the misclassification led to some skewing of the 

results, and in reality, the detection of these attacks is greater than 98%. The 

approximation was calculated by taking the precision into account and realizing that 
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99.6% of the commands that were thought to be DoS attacks were actually categorized as 

DoS attacks. These result shows that the precision and recall for both the Gao dataset and 

the new dataset are similar for the DoS attacks. The PART algorithm was still able to 

detect the behavior of DoS attacks successfully and the new attack framework did not 

change this fact, which is expected.  

The low recall rates found in the MPCI and MSCI categories of attacks are a 

direct result of the new attack framework. Since the system is now placed into all 

possible normal conditions, the algorithms are forced to differentiate between multiple 

normal conditions instead of just three that were provided in the old dataset.  

In the case of the MPCI attacks, the set point and PID parameter coverage is greater in 

the new dataset.  Figure 3.7 highlights the differences in how the coverage of set point 

values is different from the previous iteration of the dataset. 
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Figure 3.7 Differences between Setpoint Values 

 

The bars labeled blue are normal behavior and the bars labeled red represent a 

packet that contains an attack. The previous iteration of the dataset only allowed the 

system to be in one normal configuration which was at 20 PSI. If the RTU did not receive 
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20 PSI as the set point value, then it was blatantly obvious that the system was being 

attacked. Thornton et al. expressed this in the future work section of their report, 

“Setpoint only has unique 4 values: 20, 70, 80, and 90” [26]. Since the attacks were easily 

detected, the high detection rates seen in Table 3.10 are unrealistic. This static behavior is 

not only found in this feature of the dataset, but in most of the PID parameters as well. 

Figure 3.8 illustrates the behavior in the gain PID parameter. 

 

 

Figure 3.8 Gain Parameter Coverage 

 

The new iteration provides more coverage by providing a range of values for each 

parameter and is the direct cause to the lower detection rate.  

The MSCI attacks were also effected in a similar way. The system was not being 

placed into all system control modes and schemes which was causing easily detectable 

patterns in the Gao dataset. This problem was mentioned in [26]. Figure 3.9 shows how 

the system is now placed into all control modes. 
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Figure 3.9 Differences between Control Modes 

 

Now that the system is placed into all system modes, the measurement values are 

more reflective of real behavior and have more variance. This also limits the number of 

obvious attacks that were prevalent in the previous iteration of the dataset. Table 3.15 is 

from Thornton et al.’s work and describes all the problems that were found in the 

previous dataset. 

Table 3.15 Identified Problems in the Feature list of Gao’s Dataset [26] 

command_address  setpoint  control_mode 

 Always 4, unless DoS attack  always 20 unless MPCI attack  only 1 when MSCI 

 reponse_address  resp_read_fun  control scheme 

 always 19 unless Recon 
attack 

 only 1 when normal or CMRI 
attack 

 only 0 when MSCI 

 comm_read_function  subfunction  measurement 

 always 3 unless DoS attack  always 0 unless MFCI attack  All CMRIs in range 6-11 
All NMRIs grossly out of 
bounds 
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Table 3.15 describes many of the obvious correlations between the features and 

the attack patterns. The setpoint, res_read_fun, control_mode, control scheme, 

subfunction, and measurement have been addressed by using the framework that was 

described in the previous section and have shown to reduce the ease of detection. Some 

of correlations are inherent to the system because of the repetitiveness of its interaction 

with the slave device. These correlations should be embraced by the machine learning 

algorithms to aid in detecting the anomalous behavior.   
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CONCLUSIONS 

SCADA systems are becoming more vulnerable to outsider threats with increased 

network connectivity. The need for industrial control system IDS research is increasing.  

This thesis provides a set of labeled network data logs captured while a laboratory scale 

gas pipeline was in normal states and under cyber-attacks as described. A new 

methodology for implementing the attacks and a simulated operator have been 

implemented to create these data logs. The data logs include artifacts of 35 cyber-attacks 

and can be used to train and test classifiers u sed by IDSs. Comparison to a previous 

iteration of the dataset was conducted to provide validation that the dataset has improved. 

This was done by showing that obvious correlations between features and attack patterns 

have been removed. The datasets will facilitate comparison of different IDS 

implementations and provide third-party validation of results. 

 



 

53 

REFERENCES 

[1] M. Pires; P.S. Oliveira, L.A.H.G., "Security Aspects of SCADA and Corporate 
Network Interconnection: An Overview," Dependability of Computer Systems, 
2006. DepCos-RELCOMEX '06. International Conference on , vol., no., 
pp.127,134, 25-27 May 2006 doi: 10.1109/DEPCOS-RELCOMEX.2006.46 

[2] S. Cherry, How Stuxnet Is Rewriting the Cyberterrorism Playbook. 2010. Available 
at: http://spectrum.ieee.org/podcast/telecom/security/how-stuxnet-is-rewriting-
the-cyberterrorism- playbook accessed on 09.05.2014. 

[3] W. Jones, "Flame: Cyberwarfare's Latest, Greatest Weapon." - IEEE Spectrum. IEEE, 
May 2012. Web. 27 Oct. 2014. 

[4] J. Meserve, "Sources: Staged Cyber Attack Reveals Vulnerability in Power Grid." 
CNN. Cable News Network, Sept. 2007. Web. 27 Oct. 2014.  

[5] J. Weiss, "Misconceptions about Aurora: Why Isn't More Being Done." InfoSec 
Island. N.p., 13 Apr. 2012. Web. 27 Oct. 2014.  

[6] "Introduction to Industrial Control Networks" (PDF). IEEE Communications Surveys 
and Tutorials. 2012. 

[7] T. Morris; W. Gao, Industrial Control System Network Traffic Data Sets to Facilitate 
Intrusion Detection System Research, Mississippi State University. 

[8] M. Brundle; M. Naedele "Security for process control systems: An overview", IEEE 
Security Privacy, vol. 6, no. 6, pp.24 -29 2008 

[9] H. Sugwon; L., Myongho; , "Challenges and Direction toward Secure Communication 
in the SCADA System," Communication Networks and Services Research 
Conference (CNSR), 2010 Eighth Annual , vol., no., pp.381-386, 11-14 May 
2010 

[10] D. Kang; J. Lee; S. Kim; J. Park; "Analysis on cyber threats to SCADA systems," 
Transmission & Distribution Conference & Exposition: Asia and Pacific, 2009 , 
vol., no., pp.1-4, 26-30 Oct. 2009 

[11] "Dell Security Annual Threat Report." Boom: A Journal of California 5.1 (2015): 
12-13.  Dell. Dell, 2015. Web. 5 May 2015. 



 

54 

[12] S. Valentine and C. Farkas "Software security: Application-level vulnerabilities in 
SCADA  systems," Information Reuse and Integration (IRI), 2011 IEEE 
International Conference on , vol., no., pp.498-499, 3-5 Aug. 2011 

[13] D. Dzung; M. Naedele.; V. Hoff, T.P.; Crevatin, M.; "Security for Industrial 
Communication Systems," Proceedings of the IEEE , vol.93, no.6, pp.1152-1177, 
June 2005 

[14] "Understanding Intrusion Detection." Sans.org. SANS Institute, 2001. Web. 27 Oct. 
2014. 

[15] M. Pires, P.S.; Oliveira, L.A.H.G., "Security Aspects of SCADA and Corporate 
Network Interconnection: An Overview," Dependability of Computer Systems, 
2006. DepCos-RELCOMEX '06. International Conference on , vol., no., 
pp.127,134, 25-27 May 2006 doi: 10.1109/DEPCOS-RELCOMEX.2006.46  

[16] R. Anderson (2001). Security Engineering: A Guide to Building Dependable 
Distributed Systems. New York: John Wiley & Sons. pp. 660-667. 

[17] A. Almalawi, X. Yu, Z. Tari, A. Fahad, I. Khalil, “An unsupervised anomaly-based 
detection approach for integrity attacks on SCADA systems”, Computers & 
Security, Volume 46, October 2014, Pages 94-110, ISSN 0167-4048,  

[18] J.M. Moya; Á. Araujo; Z. Banković; J.-M.De Goyeneche.; J.C. Vallejo; Malagón, 
P.; D. Villanueva; D. Fraga; E. Romero; J. Blesa, Improving Security for SCADA 
Sensor Networks with Reputation Systems and Self-Organizing Maps. Sensors 
2009, 9,  9380-9397. 

[19] J. Carr. "Snort: Open Source Network Intrusion Prevention." ESecurity Planet. 
ESecurity Planet, 5 June 2007. Web. 02 Nov. 2014. 

[20] H. Lin , A. Slagell , C. Di Martino , Z. Kalbarczyk , R.K. Iyer, Adapting Bro into 
SCADA: building a specification-based intrusion detection system for the DNP3 
protocol, Proceedings of the Eighth Annual Cyber Security and Information 
Intelligence Research Workshop, January 08-10, 2013, Oak Ridge, TN 

[21] "Simply Modbus - About Modbus TCP." Simply Modbus - About Modbus TCP. 
N.p., n.d. Web. 03 June 2015. <http://www.simplymodbus.ca/TCP.htm>. 

[22] A. Mahmood; H. Jianku; Z. Tari,;Y. Xinghuo; , "Building a SCADA Security 
Testbed," Network and System Security, 2009. NSS '09. Third International 
Conference on , vol., no., pp.357-364, 19-21 Oct. 2009 

[23] S. Cheung et al. "Using model-based intrusion detection for SCADA networks." 
Proceedings of the SCADA security scientific symposium. Vol. 46. 2007. 



 

55 

[24] D. Yang, A. Usynin, and J. Wesley Hines. "Anomaly-based intrusion detection for 
SCADA systems." 5th intl. topical meeting on nuclear plant instrumentation, 
control and human machine interface technologies (npic&hmit 05). 2006. 

[25] K. Da 2000. Attack development for intrusion detection. Master’s Thesis. 
Massachusetts Institute of Technology, Cambridge, MA. 

[26] Z. Thornton, J. Hsu, and D. Mudd. SCADA ANOMALY DETECTION. Rep. 
Mississippi State University, n.d. Web. 
<http://www.ece.msstate.edu/~morris/icsdatasets/MSU_SCADA_Final_Report.pd
f>. 

[27] "Cryptography and Security in Computing." (2012): n. pag. Tech Target. Web. 

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I. H. Witten (2009); 
The WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 
11, Issue 1. 

[29] Boyer, Stuart. "Collecting Data from Distant Facilities." ISA. International Society 
of Automation, 27 Oct. 2014. Web. Oct. 2007. 

[30] Gao, W., Morris, T., Reaves, B., Richey, D. On SCADA Control System Command 
and Response Injection and Intrusion Detection, in the Proceedings of 2010 IEEE 
eCrime Researchers Summit. Dallas, TX. Oct 18-20, 2010. Best Paper Award 
Winner! 



 

56 

 

REGISTER MAPPING FOR GAS PIPELINE RTU 
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Figure A.1 Register Mapping Sheet 
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