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A B S T R A C T

Critical infrastructure (CI) typically refers to the essential physical and virtual systems, assets,
and services that are vital for the functioning and well-being of a society, economy, or
nation. However, the rapid proliferation and dynamism of today’s cyber threats in digital
environments may disrupt CI functionalities, which would have a debilitating impact on
public safety, economic stability, and national security. This has led to much interest in
effective cybersecurity solutions regarding automation and intelligent decision-making, where AI-
based modeling is potentially significant. In this paper, we take into account ‘‘Rule-based AI’’
rather than other black-box solutions since model transparency, i.e., human interpretation,
explainability, and trustworthiness in decision-making, is an essential factor, particularly in
cybersecurity application areas. This article provides an in-depth study on multi-aspect rule
based AI modeling considering human interpretable decisions as well as security automation
and intelligence for CI. We also provide a taxonomy of rule generation methods by taking into
account not only knowledge-driven approaches based on human expertise but also data-driven
approaches, i.e., extracting insights or useful knowledge from data, and their hybridization.
This understanding can help security analysts and professionals comprehend how systems
work, identify potential threats and anomalies, and make better decisions in various real-
world application areas. We also cover how these techniques can address diverse cybersecurity
concerns such as threat detection, mitigation, prediction, diagnosis for root cause findings, and
so on in different CI sectors, such as energy, defence, transport, health, water, agriculture, etc.
We conclude this paper with a list of identified issues and opportunities for future research, as
well as their potential solution directions for how researchers and professionals might tackle
future generation cybersecurity modeling in this emerging area of study.

1. Introduction

Critical infrastructure refers to the physical and virtual systems, services, and assets that are essential for the functioning of a
society, economy, or organization. According to the Australian Cyber and Infrastructure Security Centre [1], Critical infrastructure is
defined as: ‘‘those physical facilities, systems, assets, supply chains, information technologies, and communication networks which,
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Fig. 1. An illustration of the key aspects — Automation (A), Intelligence (I), and Transparency (T) of rule-based AI (RuleAIT) for CI Security Modeling, where
IF-THEN decisions are taken into account for human understanding and decision explanation.

if destroyed, degraded, compromised or rendered unavailable for an extended period, would significantly impact the social or
economic wellbeing of Australia as a nation or its states or territories, or affect Australia’s ability to conduct national defense
and ensure national security’’. Thus, cybersecurity for critical infrastructure should be a nation’s top concern because the disruption
and destruction of these infrastructures would have a debilitating impact on public safety, economic stability, and national security.
However, cyber security is a growing challenge in the digital age as cyber threats evolve and become more sophisticated. Thus,
traditional security measures are often insufficient to defend against today’s dynamic and persistent threats [2,3]. Therefore, it is
crucial to take into account automation and intelligence in decision-making, as well as model transparency for human interpretation
with explainability that can meet today’s needs in this area of CI security.

Recent advances in artificial intelligence (AI) such as data science (DS) modeling and machine learning (ML) techniques, have
drastically changed how we analyze data and use the extracted knowledge for automation and intelligent decision-making in
various real-world application domains, including cybersecurity applications [4,5]. Although several black-box approaches like
deep neural network learning, large language modeling have strong computing capabilities, human-understandable explanations,
and trustworthiness are essential in deploying responsible AI-based models to solve CI security issues [6]. Thus, developing more
transparent and human interpretable AI models, particularly for cyber analysts, could be more effective for cybersecurity solutions. To
support this statement, in this paper, we explore rule-based AI modeling in the broad area of ‘‘cybersecurity and AI" where patterns,
dependencies, or interpretable knowledge are discovered from data, which could be useful not only for model building but also
resolving the black-box issues of traditional AI modeling in many application areas.

1.1. Why knowledge discovery and rule-based AI modeling?

In cybersecurity, knowledge discovery and rule mining-based AI modeling typically involves analyzing security data to uncover
hidden patterns and relationships, helping to identify potential security threats that may not be covered by manual or traditional
approaches. By extracting insights into patterns and anomalies that may not be apparent using manual solutions, previously unknown
threats and vulnerabilities can be discovered. These models are also capable of adapting to new and emerging threats by continuously
analyzing recent data and learning from patterns, which makes them more resilient to dynamic cybersecurity trends. With a better
understanding of context and relationships within data, these models can reduce false positives and negatives, which eventually
helps to build a more powerful model according to today’s needs. Knowledge and rules discovered from relevant data can therefore
play an important role in detecting, mitigating, and predicting the potential threats with outcome explanation. Cyber threats can also
be diagnosed transparently by examining the dependencies and relationships between entities in rules derived from data. Thus, the
discovered knowledge and rule-based AI modeling facilitates key features like automation, intelligence, and transparency according
to today’s need for cybersecurity modeling. These are defined below and can be represented by the acronym ‘‘RuleAIT’’, as shown
in Fig. 1.

• Automation - the capability to perform tasks without manual intervention or reduce the need for human intervention through
executing the generated rules.

• Intelligence - the capability of rule-based modeling for informed decision-making based on the discovered knowledge and
automatic learning patterns and useful insights extracted from security data.

• Transparency and Trust - transparency typically refers to model visibility such as rule structure and understanding of how the
model makes decisions through the generated rules. Today’s cybersecurity relies heavily on this transparency to build trust,
facilitate human oversight, and ensure accountability, which is the foundation of explainable and responsible AI development.

To make a decision in a certain situation, a rule is typically structured and generated as ‘‘𝐼𝐹 [‘𝑎𝑛𝑡𝑒𝑐𝑒𝑑𝑒𝑛𝑡’] => 𝑇𝐻𝐸𝑁[‘𝑐𝑜𝑛𝑠𝑒𝑞𝑢𝑒𝑛𝑡’]’’
statement, where ‘‘antecedent’’ represents necessary security attributes, conditions or contextual situations, and ‘‘consequent’’
represents the corresponding action. Various techniques including machine learning and data science processes to discover this
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Fig. 2. A motivational scenario highlighting Rule-based AI modeling vs Black-Box solutions from the perspective of a CI cyber analyst.

knowledge and relationships are discussed briefly in Fig. 3. Thus, it is much easier for human analysts to understand the logic
behind a decision in a particular situation. This can help analysts and security professionals comprehend how the system functions,
identify potential vulnerabilities and threats and ultimately make the best actionable decisions to address them in the CI environment
successfully.

Another significant advantage of rule-based modeling is its flexibility in modeling such as rule addition, i.e., incorporating new
knowledge, rule removal, i.e., deleting outdated rules, and rule updating, i.e., ensuring recent data patterns known as recency or
data freshness to keep the knowledge up to date. Eventually, managing the whole system at the application level is easier and
more transparent, which facilitates explaining the outcome. We also illustrate a motivating scenario highlighting the potential of
RuleAIT from the perspective of a cyber analyst at the application level in Fig. 2. This paper aims to explore an in-depth study
on multi-aspect rule-based AI modeling, where we take into account both the knowledge-driven approaches, i.e., based on human
domain knowledge and expertise, and data-driven approaches, i.e., discovering useful knowledge or insights from data, as well as
their hybridization for effective CI security solutions, discussed briefly in Section 4.

1.2. Related surveys and our contributions

Throughout the last few years, surveys focusing on CI security have typically been conducted emphasizing cybersecurity attacks,
risks, and SCADA systems. For instance, Touhiduzzaman et al. [7] conducted a review of cybersecurity risk for CI. Stellios et al. [8]
explore IoT-enabled attacks and mitigation in CI. Kayan et al. [9] explored ICPS security including IT and OT. A study on privacy-
oriented attacks for CI has been conducted by Husnoo et al. [10]. Bhamare et al. [11] present a study on SCADA cyber security. These
surveys provide important insights and valuable lessons for the academic and industrial realms, particularly in cyber attacks for CI.
However, AI-based solutions, particularly knowledge discovery and rule-based AI modeling for CI security, are still under-addressed
in this area. Recently, Koay et al. [12] presented a study on ML methods in ICS security. More related works are summarized in
Table 2. However, an in-depth study and analysis of rule-based AI modeling with their transparency and explainable capabilities,
taking into account ‘‘RuleAIT’’ is needed to comprehend its potential uses in cybersecurity modeling for CI.

To gain a deeper understanding of the cyber community and to explore the main focus of this article, we formulate the following
five important questions:

(i) Are automation, intelligence, and transparent modeling necessary for next-generation cybersecurity solutions for critical
infrastructure?

(ii) Which characteristics and structural advantages do rule-based AI modeling have that help to simplify the end product and
are eventually beneficial to human users?

(iii) How to generate multi-aspect rules, such as knowledge-driven, data-driven, and their hybridization with the capability to
address the wide range of threats?

(iv) Is the discovered knowledge and rule-based AI modeling applicable to resolve diverse cyber issues in different CI sectors like
energy, water, health, agriculture, etc.? Also, how can rule-based AI methods lead to?

(v) What are the biggest challenges that knowledge discovery and rule-based methods face when addressing cyber issues, and
how can scientists and researchers overcome those challenges in this particular CI area of study?

To establish the foundation for our contribution, we intend to explore these crucial topics from the perspective of knowledge
discovery and rule-based AI modeling and their applicability in diverse real-world application areas of CI. To the best of our
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Table 1
List of key acronyms.

Acronyms Meaning

AI Artificial Intelligence
XAI Explainable Artificial Intelligence
AIT Automation, Intelligence and Transparency
ML Machine learning
DL Deep learning
DNN Deep Neural Network
KDD Knowledge Discovery from Data
DDR Data-Driven Rules
DDDM Data-Driven Decision Making
NLP Natural Language Processing
LLM Large Language Model
CIA Confidentiality, Integrity and Availability
CPS Cyber–Physical Systems
CI Critical Infrastructure
DDoS Distributed Denial-of-service
DoS Denial-of-service
IDS Intrusion Detection System
IoT Internet-of-Things
SIEM Security Information and Event Management
SOC Security Operation Centre
QoS Quality-of-Services
IT Information Technology
OT Operational Technology
SCADA Supervisory Control and Data Acquisition
PLC Programmable Logic Controllers
DCS Distributed Control System
IIoT Industrial Internet of Things
ICPS Industrial Cyber-Physical System
ICS Industrial Control System

knowledge, this study represents the first attempt to present an in-depth analysis and discussion for CI security modeling by
considering multi-aspect of rule-based AI, such as knowledge-driven, data-driven, and their hybridization for future enhancements
of CI cyberspace.

Overall, our specific contributions are as follows:

• We review and compare the existing literature to determine the focus of our article on automation, intelligence, and transparent
modeling from the perspective of CI security.

• We highlight and discuss the possible threats and anomalies in the context of critical infrastructure that are needed to mitigate.
• We present a taxonomy of multi-aspect rule-based AI methods that can contribute to cybersecurity modeling and discuss their

computing capabilities and potentiality accordingly. We also highlight and explore diverse aspects of these methods in the
context of cybersecurity.

• We explore real-world CI usage scopes of rule-based AI modeling in various application areas ranging from anomaly detection
to mitigation and response. We also discuss how these methods can play a key role in solving diverse cyber issues in different
CI sectors such as energy, water, transportation, agriculture, defense, etc.

• We identify and summarize several key challenges and research issues that need to be addressed for further enhancement
in this emerging study area. We also provide possible research directions for next-generation cybersecurity modeling in the
critical infrastructure environment.

1.3. Paper structure

The remainder of this article is structured as follows. Section 2 provides an overview of the related technology background,
including critical infrastructure, cybersecurity, and rule-based AI, as well as existing literature and the scope of this paper. Section 3
highlights and discusses possible threats and anomalies of CI. An in-depth analysis of rule-based AI methods for cybersecurity
modeling and their taxonomy has been presented in Section 4. Section 5 discusses various CI sectors and how these methods can
contribute. Several research challenges and prospects highlighting potential solution directions have been outlined in Section 6.
Section 7 summarizes some key points of our study, and finally, Section 8 concludes this paper. In addition, Table 1 listed the
acronyms and their definitions used throughout this article.
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Table 2
Previous survey comparison by taking into account ten key aspects relevant to this paper.
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Touhiduzzaman et al. [7], 2019 x ✓* x x x x x x * x A review of cybersecurity risk for CI
Stellios et al. [8], 2018 x ✓* x x x x x x ✓ ✓ Exploring IoT-enabled attacks and mitigation in CI
Kayan et al. [9], 2022 x ✓* x x x x x x ✓ ✓ Exploring ICPS security including IT and OT
Husnoo et al. [10], 2021 x ✓* x x x x x x ✓ ✓ Exploring privacy-oriented attacks for CI
Nazir et al. [13], 2017 x ✓* x * x x x * ✓ ✓ A Study on SCADA cyber security
Bhamare et al. [11], 2020 x * x ✓ x x x * ✓ ✓ A study on SCADA cyber security
Das et al. [14], 2020 x ✓ x x x x x x ✓ ✓ A study on smart grid resilience
Wells et al. [15], 2022 x ✓ x x x x x x ✓ ✓ Review on CI resilience under compounding threats
Liu et al. [15], 2020 x ✓ x x x x x x ✓ ✓ Study on urban CI networks resilience
Ten et al. [16], 2010 x ✓ ✓ x x x x * ✓ ✓ Study on CI attack and defense modeling
Liu et al. [17], 2019 x ✓ x x x x x x * ✓ Study on IoT-based smart-world CI
Yadav et al. [18], 2021 x ✓ * * x x x * * ✓ Study on security of SCADA systems
Koay et al. [12], 2023 x ✓ * ✓ x x x * ✓ ✓ Study on ML methods in ICS security
Liu et al. [19], 2021 x * * ✓ x ✓ x * * * Study on rule-based IDS in smart grids

This paper (Sarker et al.) ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓* ✓*

An in-depth study on rule-based CI Security modeling
focusing diverse cyber issues in CI, taxonomies,

cyber usage scopes of different CI sectors, challenges,
research directions from the perspective of RuleAIT

(Automation-Intelligence-Transparency).

[Symbol Used: High Coverage (✓*), Mid Coverage (✓), Low Coverage (*) and No Coverage (x)].

2. State-of-the-art

In this section, we first explore the background that includes critical infrastructure (Section 2.1), cybersecurity in CI (Section 2.2),
and rule-based AI-enhanced cybersecurity in CI (Section 2.3). We then review the related surveys within the scope of our study and
discuss the key differences between our paper and the existing survey papers (Section 2.4) to identify the study gap in this area.

2.1. Critical infrastructure

The term ‘‘critical infrastructure’’ refers to the physical and virtual systems, networks, and assets essential for a society’s and the
economy’s functioning. IT (Information Technology) and OT (Operational Technology) are crucial for CI. The term ‘‘IT’’ typically
refers to the standard computing systems used for data processing, storage, and communication within organizations. Examples
include servers, desktop computers, laptops, network devices, and software applications. On the other hand, the term ‘‘OT’’ typically
refers to the hardware and software systems used for monitoring and controlling physical operations in various CI sectors, including
energy, manufacturing, transportation, water, and so on. Some examples of OT systems include Supervisory Control and Data
Acquisition (SCADA) systems, Distributed Control Systems (DCS), Industrial Control Systems (ICS), Programmable Logic Controllers
(PLCs), etc. [9,16]. These infrastructures provide vital services and support to ensure the smooth operation of various sectors and
the well-being of a nation’s population. Energy, Transportation, Communication, Water, Defence, etc., are examples under this area,
discussed briefly in Section 5. These critical infrastructure sectors are interconnected and rely on each other to function correctly.
However, CI is also vulnerable to disasters or threats, as it can have a direct impact on society [20,21]. They are critical because
their disruption or destruction can severely affect public safety, national security, economic stability, and public health. While IT
systems are responsible for data management and communication, OT systems control the physical processes that manage essential
services. Thus, protecting and securing these infrastructures from physical and cyber threats is crucial for maintaining a nation’s
overall well-being and stability.

2.2. Cybersecurity and critical infrastructure

Cybersecurity typically involves a wide range of measures and technologies designed to protect digital assets, prevent cyber
threats, and ensure data confidentiality, integrity, and availability [4,22]. In the real world digital space, cybercriminals have become
more sophisticated, making it insufficient to defend the systems and react to real-time attacks. The evolution of computer crime
towards the use of ICT and AI technologies can be defined below.
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• Computer crime - generally refers to any illegal activity that involves the use of a computer or a computing device.
• Cyber crime - a more specific term that focuses on criminal activities conducted over the internet or other computer networks.
• AI crime - criminal activities that involve the use of AI. Cybercriminals can also use AI and machine learning to find new

and innovative ways for malicious purposes, i.e., to automate attacks, evade detection by security systems, and similar
others [23,24].

Thus, cybersecurity is crucial for protecting CI from cyber threats and ensuring its reliable and secure operation. As more CI
systems become interconnected and digitized, they become potential targets for malicious actors seeking to disrupt or damage
essential services. The consequences of successful cyberattacks on critical infrastructure can be significant, including financial losses,
public safety risks, and national security implications, and thus essential to ensure the security of CI to protect against cyber threats,
discussed briefly in Section 3.

2.3. Rule-based AI-enhanced cybersecurity in critical infrastructures

Rule-based AI-enhanced cybersecurity for critical infrastructure typically aims to protect this infrastructure from cyber threats
according to the discovered knowledge from CI data and the rules generated and selected for execution. Thus, this approach
may combine the advantages of traditional rule-based systems with AI capabilities, including data science and machine learning
methods [5] to detect and respond to cyber threats more effectively. In addition, the rule-based models are updated to incorporate
new knowledge and enhance their functionality based on feedback and evaluation outcomes. This can involve various strategies,
including:

• Rule Addition: To capture recently discovered threats, novel attack patterns, or anomalies that have not been observed before,
new rules can be introduced to the existing rule set. Based on the knowledge discovered from the updated information analysis,
several new rules can be created.

• Rule Updating: Existing rules may need to be updated or refined based on feedback or changes in the cybersecurity landscape.
This can involve adjusting rule conditions, weights, and thresholds or incorporating new features to enhance the accuracy and
relevance of the rules.

• Rule Removal: In some cases, rules no longer practical or relevant may need to be removed from the rule set to prevent false
positives or improve system efficiency. Regular evaluation and feedback help identify rules that are outdated or have become
obsolete.

Thus, rule-based AI-enhanced cybersecurity is crucial not only in protecting CI environments from cyber threats through its
adaptive capability but also in making the systems automated, intelligent, and transparent, as defined in Section 1. In this context,
‘‘Adaptive’’ can be defined as the characteristics of rule-based AI modeling in terms of incorporating new knowledge, outdated
removal, and recency-based updating or data freshness in modeling, which helps to make the model up-to-date and more effective. In
our context of the study, the term ‘‘transparency’’ typically refers to visibility and understanding of how the model makes decisions,
e.g., IF-THEN structure of rules, which is easier to interpret. Thus this element of rule-based AI modeling helps to build trust,
facilitate human oversight, and ensure accountability, which is the foundation of explainable and responsible AI development.
Researchers often use the words ‘‘explainable’’, ‘‘interpretable’’, ‘‘trustable’’, ‘‘reliable’’, ‘‘accountable’’, ‘‘responsible’’ or similar others
interchangeably in different contexts of AI development, where rule-based transparent AI modeling could be the key. Various types
of rule-based AI techniques for cybersecurity modeling within the context of our study are discussed in Section 4.

2.4. Related surveys, comparison, and study scope

A comparison of related surveys is presented in Table 2. For this, we first consider ten relevant key aspects, as shown in Table 2,
to make the position of this paper. We then compare with previous surveys from the perspective of these key aspects to highlight the
study scope and contributions of our article. Three main attributes are used in this survey, i.e., critical infrastructure, cybersecurity,
and rule-based AI modeling. Thus we mainly use a combination of these search keywords ‘‘Cybersecurity’’, ‘‘Critical Infrastructure’’,
‘‘Artificial Intelligence’’, ‘‘AI’’, ‘‘Rule-based AI’’, ‘‘Machine Learning’’, ‘‘Knowledge Discovery’’, ‘‘Data Science Modeling’’, ‘‘Critical
infrastructure Resilience’’ etc. while searching relevant papers. We consider scientific journals, conferences, and books peer-reviewed
through several databases like Google Scholar, Science Direct, Springer Nature, Scopus, ACM, and IEEE Explore, published during the
period of 2010 to 2023. We take into account the relevance of the research topic through the content of the abstract, introduction,
discussion, and conclusion of the papers. Overall, we list 130 papers within the scope of our study 14 of which are survey
papers comparing our paper listed in Table 2. Some surveys concentrate on CI threats and risks but have nothing to do with
AI-enhanced cybersecurity [7,9,10]. For instance, Touhiduzzaman et al. [7] review of cybersecurity risk for CI. Kayan et al. [9]
explore ICPS security, including IT and OT. Husnoo et al. [10] explore privacy-oriented attacks for CI. Similar to this, some surveys
concentrate on SCADA security [11,13,18]. Some studies explore defense modeling [16], ML-based security [12] and resilience
under threats [14,15,15]. More related works with their key objectives are summarized in Table 2 (see Refs. [17,19]). However, an
extensive study on rule-based AI modeling in the context of cybersecurity and CI is still not explored, which motivates us to conduct
this survey. Thus, our paper first focuses on various security issues in CI. We then present an in-depth review of different rule-based
AI methods for cybersecurity modeling through a taxonomy with their explainable capabilities. This can assist analysts and security
experts in figuring out how the system works, uncovering potential threats and anomalies, and finally deciding how best to deal with
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them. We also discuss the potentiality of rule-based AI methods in diverse cyber application areas in a CI environment. Eventually,
we highlight the identified research issues with their potential solution directions for future cyber research and development in CI.
Overall, we cover all the ten critical aspects, including RuleAIT (Rule-based AI taking into account Automation, Intelligence, and
Transparency) shown in Table 2, which makes our survey unique compared with existing surveys in this emerging area of study.

2.5. Scope and target audience

Our paper focuses on bridging the gap between scientific research and the practical application of rule-based AI in the context of
cybersecurity and critical infrastructure. We achieve this by compiling all of AI’s advantages, drawbacks, and upcoming challenges
across the broad cybersecurity sector in the CI environment into this single document. Similar to the ML study in [25], any reader
interested in rule-based AI technologies and how they relate to cybersecurity and CI should be capable of comprehending our
study. In addition, our rule-based AI methods and taxonomy presented in Section 4, might also be helpful for the audience of other
application domains. We specifically address the following four groups of target readers:

• Top-level Decision-makers: Those who comprehend the state of the art to make decisions in the CI environment. This paper
should make it easier to make wiser decisions concerning the use of rule-based AI and its integration into current systems to
increase the efficiency of security operation centers.

• Scientists and Research scholars: Those interested in focusing on rule-based AI methods for cybersecurity modeling with
innovative methods, enhancing current cyber systems in CI, or minimizing some drawbacks. These can be done through the
research issues and prospects outlined, particularly in Section 6 in this paper.

• Industry Professionals and Practitioners: Who should know the potentiality of rule-based AI for cyber modeling towards
automation, intelligence, and transparent modeling, i.e., trustworthiness in decision-making. This could be more effective
in practice and commercial AI-based cyber solutions in a CI environment.

• knowledge Seeker: Who is seeking knowledge regarding the significance of rule-based AI, including knowledge-driven, data-
driven, and their hybridization, mainly focused in Section 4, as well as their potentiality for real-world use cases discussed in
this emerging area of study.

The key ideas from this paper use the input from all the reader groups indicated above and consider their perspectives.
Experienced engineers or researchers, for instance, might be aware of the challenges of rule-based AI in real-world application
scenarios. Still, they might not know how decision-makers react to such concerns. Security experts may be familiar with rule-based
AI applications in CI. However, they would still benefit from being aware of the most important breakthroughs in this emerging
area.

3. Threats to critical infrastructures

Critical infrastructures face a wide range of physical and cyber threats that can potentially disrupt essential services and
compromise their security, resilience, and the well-being of society. Attackers can target both the information technology (IT)
and operational technology (OT) systems to disrupt services, steal sensitive data, cause physical damage, or manipulate critical
processes [26]. Thus, protecting both IT and OT networks is crucial for critical infrastructure security [7], which is a challenging task.
While IT relates to information/data processing and management, OT focuses on monitoring and controlling physical phenomena
via physical devices and processes [9], discussed below.

3.1. IT threats examples

Attackers may penetrate IT systems to steal sensitive data, such as customer data, financial records, or intellectual property,
resulting in legal penalties and reputational harm. For instance, a financial institution’s IT systems being compromised could result
in fraud or the loss of consumer information. DoS and DDoS attacks are common threats against IT systems, overwhelming networks
and causing service unavailability, impacting critical services [27,28]. Ransomware is regarded as one of the biggest threats facing
organizations today, regardless of the industry they operate in [29]. Ransomware attacks can lead to operational disruptions,
financial losses, and compromised data integrity. To acquire unauthorized access to IT systems, attackers may utilize social
engineering strategies like phishing emails to deceive employees into disclosing login information or downloading malware [30].
SQL injection and code injection attacks can exploit web application and database flaws to obtain unauthorized access or change
data [31].

3.2. OT threats examples

As the world depends increasingly on networked systems, cyber-attacks on critical OT infrastructures are becoming significant.
Unlike attacks on IT systems, cyber-attacks on OT systems can have direct physical consequences. Attackers who target OT systems
intend to disrupt business operations, manipulate control systems, and potentially cause physical harm. For instance, compromising
with a transportation system’s control systems could result in accidents or disrupt traffic control. Critical services can be disrupted
by direct attacks on control processes against OT systems, such as SCADA, ICS, PLCs, etc. [32]. For instance, a DoS attack on SCADA
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Fig. 3. A taxonomy of multi-aspects rule-based AI methods by taking into account both the knowledge-driven and data-driven approaches as well as their hybrid
methods for the purpose of effective cybersecurity modeling according to today’s diverse needs.

systems can have potentially disastrous consequences because of the fallout of the controlled process getting out of control [13,33].
Malware or malicious software poses a serious threat to a critical infrastructure scenario [34] as well as SCADA systems [35]. PLCs
are also vulnerable to several attacks, including memory corruption and control-flow hijacking [36,37]. Spenneberg et al. [38]
demonstrated ransomware worms could infect Internet-connected PLCs and be used as a backdoor to spread in a SCADA network.
The sophistication of new malware attacking control systems, such as zero-day attacks, could be another possible disruption at the
ICS component level [11]. Similarly, attackers attempted to exploit HMIs through typical Web attacks like SQL injection, CSRF
(cross-site request forgery) and dictionary attacks [8]. Kayan et al. have also presented an attack taxonomy for ICPSs [9]. Maglaras
et al. [39] highlighted different threats and attacks to CI, including the lifecycle of cybersecurity, such as prediction, protection,
and detection, as well as incident notification and management, where rule-based modeling can play a crucial role.

4. Rule-based AI methods and taxonomy

In this section, we explore multi-aspect rule-based AI methods for cybersecurity modeling in CI and build a taxonomy accordingly,
as shown in Fig. 3. To achieve this goal, we first divide the methods into three broad categories - (i) knowledge-driven approach,
(ii) data-driven approach, and (iii) their hybridization approach, and discussed briefly in the following subsections. Some popular
AI methods with their potential cybersecurity applications are also summarized in Table 3.
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Table 3
Summary of various AI-based methods used in the context of cybersecurity applications in critical infrastructures.

Reference Cyber applications Methods used Main contributions

Otoum et al. [40] Intrusion detection system Machine and Deep Learning, Feature
selection

To recognize intrusive behavior in the
collected traffic of critical infrastructure

Zeadally et al. [41] Cybersecurity solutions Machine and Deep learning Harnessing AI capabilities to improve
cybersecurity in Critical Infrastructures

Yu et al. [42] Threat Detection Deep learning, BERT Exploring a DL-based proactive APT
detection scheme in industrial IoT

Iwendi et al. [43] Detecting cyber-attacks Deep learning, LSTM Exploring sustainable security for the
IoT using AI architectures

Zhu et al. [44] Cyberattack’s impact assessment Hierarchical knowledge Impact assessment of cyberattacks for
critical infrastructures

Wang et al. [45] Cyber-attacks detection Machine and Deep learning XGBoost,
RF, Bagging, SVM, etc.

Exploring AI-based methods for cyber
attack detection in industrial systems

Sheng et al. [46] Intrusion detection Correlating communication patterns,
Modeling states of ICS devices

To detect intrusions from the SCADA
network and assessing risk levels

Shin et al. [47] cyber intelligence, surveillance, and
reconnaissance

Incremental learning, Machine Learning To propose method for cyber ISR in
closed military network

Shin et al. [48] cyber intelligence, surveillance, and
reconnaissance

Feature Selection Method, Machine
Learning

Towards efficient decision-making for
cyber ISR through optimal features

Mcdonnell et al. [49] Cyber threat recognition Deep Learning, BERT Towards a recommender system for
malware recognition and classification to
protect aviation and aerospace
applications

Maleh et al. [50] IoT intrusions detection Feature selection Machine learning Towards IoT intrusions detection in
aerospace cyber–physical systems

Ferrag et al. [51] Cybersecurity IDS Feature extraction Machine learning Towards machine learning-based
solutions for intrusion detection for
agriculture

Radanliev et al. [52] Healthcare cybersecurity Self-optimizing, self-adaptative AI Towards designing a self-optimizing
AutoAI capable of forecasting cyber risks
in the health systems

Mohammad et al. [53] Attack detection Systems Machine Learning, Concept drift, PCA,
k-NN

Towards ensuring cybersecurity of smart
grid against data integrity attacks under
concept drift

Bakalos et al. [54] Protecting water infrastructure Multimodal data fusion, deep learning,
CNN

Monitoring critical systems to protect
water infrastructure from cyber and
physical threats

Kiss et al. [55] Anomaly Detection Systems Machine Learning, Clustering, K-means Towards detecting cyber-attacks that
cause anomalies in industrial control
systems

Vavra et al. [56] Anomaly Detection Systems Machine Learning, ANN, OCSVM,
Isolation Forest

Towards adaptive anomaly detection
system in an industrial control
environment

Elnour et al. [57] Attack detection Systems Machine Learning, Isolation Forest Towards attack detection framework for
industrial control systems

4.1. Knowledge-driven approach

When generating rules for cybersecurity modeling, a knowledge-driven approach typically uses multiple aspects, such as
knowledge from experts, domain knowledge, and well-defined security principles. In other words, it focuses on integrating
established best practices and human expertise into the rule-generating process. A rule-based AI model can incorporate this
knowledge, which might be useful in many circumstances, particularly if human expertise or feedback is correlated with rules.
In the following, we discuss how these rules can be formulated.

4.1.1. Human expert defined
Human experts can define rules based on their knowledge of cybersecurity best practices and common attack patterns. Known

patterns or signatures of malware, viruses, or other malicious activities can be used to identify and block familiar threats. For
instance, Narayanan et al. [58] use broad patterns or rules defined by security experts for the early detection of cybersecurity threats.
It is, however, difficult to continually update and refine these security rules manually due to the dynamic nature and characteristics
of today’s threats and the lack of human knowledge to ensure optimal solutions in broad-scale scenarios.
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4.1.2. Knowledge-representation
The use of formal knowledge representation techniques in cybersecurity modeling allows the capture and expression of domain-

specific knowledge, which becomes the basis for generating rules for cybersecurity systems [59]. These methods typically focus on
structuring and interpreting knowledge, thus facilitating rules aligned with domain expertise. These are:

• Ontology-Based Rule Generation: Cybersecurity ontologies can represent entities, threats, vulnerabilities, attack patterns, and
defense mechanisms specific to a domain. For instance, Syed et al. [60] present Cybersecurity Vulnerability Ontology
(CVO) to manage the vulnerabilities. Ontologies can also facilitate integrating data from various structured and unstructured
sources [61]. Rules can be generated based on the relationships and constraints defined in the ontology, which may facilitate
reasoning capabilities.

• Knowledge-graph- Based Rule Generation: In cybersecurity tasks, knowledge graphs could play a significant role in representing
real-world knowledge more interconnectedly, making it simpler to navigate and comprehend the relationships between
various pieces of information. For instance, Jia et al. [59] present an approach to construct a cybersecurity knowledge
graph considering different entities like vulnerability, assets, and attacks, where the extracted rules are used to deduce new
relationships and attribute values. By capturing the complex relationships and dependencies between cybersecurity elements
in a graph format it enables a more flexible and comprehensive representation of knowledge and rule generation. The rules
can then be used to classify, predict, or derive insights from new data. This powerful technique could be combining knowledge
representation, graph theory, and machine learning [5].

4.1.3. Knowledge refinement
The process of refinement is ongoing and iterative. Rules are updated when new knowledge is continuously acquired, incor-

porated, and improved into the knowledge base. The expert-stakeholder feedback cycle ensures that the rules are still relevant,
up-to-date, and effective in combating evolving cybersecurity threats.

Overall, ontologies and knowledge graphs can be valuable tools for rule-based cybersecurity modeling. However, scalability and
manually maintaining these resources up to date is a challenging issue as the cyber threat landscape is constantly evolving. Thus,
integrating with data science and machine learning-based methodologies [5] leveraging the strengths of each strategy to better
threat identification and response could be a potential solution.

4.2. Data-driven approach

A data-driven approach typically produces rules based on analyzing and extracting patterns, insights, and knowledge from
data [6]. This process uses the power of algorithms to automatically discover valuable rules from the data itself instead of manually
creating rules based on expert knowledge or domain-specific ontologies. In the following, we discuss the potential approaches that
can contribute to generating rules and corresponding cybersecurity solutions.

4.2.1. Machine learning
Machine learning techniques can automatically learn and extract patterns, correlations, and rules from data [5]. This method is

particularly beneficial where manually crafting rules is challenging or time-consuming, especially when dealing with large-scale CI
datasets. For example -

• Association rule learning: Association rule learning is a popular method for identifying significant relationships and dependencies
between various events, activities, or features. Thus, in the context of cybersecurity, association analysis can help discover
attack chains and correlation analysis [62]. For example, the Apriori algorithm [63] can analyze logs, network traffic, or system
event data to identify recurring behavior patterns or actions that might indicate security breaches or anomalies. FP-Growth
(Frequent Pattern-Growth), Eclat (Equivalence Class Transformation), RARM (Rule Association Rule Mining), etc., are some
other techniques with the capability of generating rules from data. However, these may generate redundant rules leading to
complex decision-making processes [5]. By leveraging the potential of association analysis, organizations can enhance their
understanding of security threats and attack chains and discover the root cause of the incidents, which eventually helps with
advanced security modeling.

• Sequential rule learning: Sequential rule mining in the context of cybersecurity is beneficial in identifying complicated attack
scenarios that involve a series of events occurring over time. This method focuses more on comprehending the temporal
order in which events occur to find hidden patterns that might not be observed through conventional association analysis. For
instance, Husak et al. [64] presented a sequential rule mining approach to predict cyber situational awareness and personalized
blacklisting. Kim et al. [65] used sequential rule mining in their attack graph-based predictive model to reflect the order of
events.

• Classification rule learning: It is a form of supervised learning where the algorithm learns from labeled data to generate rules
automatically. In the context of cybersecurity, Decision trees [66], random forests [67], and other rule-based classifiers [5]
can be used to categorize data instances into different classes, particularly differentiating between legitimate and malicious
behavior. For instance, Domb et al. [68] presented a random forest rule generation model consisting of multiple decision
trees for anomaly detection. However, selecting the optimal number of trees could be crucial in terms of better decision
accuracy [68]. Thus, security experts can create systems by considering an optimal set of rules that automatically categorize
and detect security threats.



Internet of Things 25 (2024) 101110

11

I.H. Sarker et al.

• Clustering-Based Rule Learning: In many cases, clustering can be used in detecting cyber threats as they can identify sim-
ilarities [69,70]. Clustering has also the potential for representative feature selection [71]. Developing rules based on
captured common characteristics in data, i.e., clustering, could be beneficial for identifying groups of related security
events or behaviors. Distance, density, statistical, and hierarchical clustering are well-known approaches for cyber security
applications [5,72]. Security experts can identify emerging threats, gain insight into common attack patterns, and aggregate
similar occurrences for more effective analysis and response through cluster analysis. For instance, Kiss et al. [55] present a
K-means clustering-based approach to detect and classify the potential cyber-attacks in industrial control systems. Thus rule
mining based on clustering offers significant advantages in the detection of patterns and anomalies in cybersecurity data.
However, to ensure the effectiveness of the approach, the selection of features, scalability issues, and interpretability of results
are needed to be taken into account.

• Anomaly-Based Rule Learning: Anomaly is defined as highly unusual behaviors or differences from others; this is not a normal
occurrence [73]. One traditional example of this would be spam detection, where a mail server has to determine if an
incoming email is spam (unwanted email) or not. Similarly, an unusual pattern of computer network traffic may indicate
unauthorized access [74]. Rules can be generated describing these deviations or anomalies. Statistical techniques, machine
learning algorithms such as One-Class SVM, Isolation Forest, etc., or unsupervised learning strategies can be the foundation
for anomaly detection [73]. Security systems can detect and respond proactively to unusual or suspicious activities, such as
network intrusions, unauthorized access attempts, or compromises of system data, by learning the rules that define anomalies.
For instance, Barbado et al. [75] present a OneClass SVM-based rule extraction method in unsupervised anomaly detection.
An Isolation Forest-based ICS attack detection framework has been presented in [57].

Overall, traditional rule-based systems rely on rules defined manually, while machine learning [5] can enhance such systems
by discovering knowledge and learning rules from data, making them more powerful for cybersecurity solutions. A machine
learning-based solution typically provides the benefits of automatically discovering complex and hidden patterns, relationships, and
dependencies within cybersecurity data, reducing the need for manual rule formulation. However, we need to take into account a
transparent model rather than a black-box solution to build trust, facilitate human oversight, and ensure accountability.

4.2.2. Feature engineering
A key component of rule extraction is feature engineering, which can be divided into two broad categories: (i) handcrafted

feature-based mining, and (ii) data science feature-based mining discussed below:

• Handcrafted Feature-based Mining: This process is manual and typically based on human expertise. Thus security analysts have
direct control over feature selection as it leverages the skills and experience of cybersecurity professionals with in-depth
knowledge of the threat landscape. Although handcrafted features are generally simple to understand and explain, manually
constructing features for mining rules is time-consuming and may not scale effectively for large, dynamic data sets. In some
circumstances, this could end up in potential bias or missed patterns, emphasizing the importance of data science-based
features.

• Data Science Feature-based Mining: This is a dynamic process and can automatically learn essential features from raw data,
which is particularly beneficial when dealing with large and diverse data sets. This typically involves selecting and creating
pertinent features, transforming or discretization, as well as domain knowledge integration that dynamically captures the
essential characteristics of the data as discussed below:

– Feature Selection: Feature selection is crucial, particularly for high-dimensional data analysis [71], since irrelevant features
in the data might reduce the model’s accuracy and increase model complexity as well as training period [76]. This can
be done based on domain knowledge or feature selection algorithms, e.g., recursive feature elimination, clustering, or
using statistical methods, e.g., correlation analysis, feature importance [71,77]. For instance, Zhou et al. [78] presented
correlation-based feature selection for building an efficient intrusion detection system. In certain situations, it may help
an intrusion detection system increase detection rates while decreasing false positive rates [79].

– Feature Creation and Component Analysis: In many real-world cases, the existing features might not be sufficient to generate
effective rules. Thus, creating new features based on existing ones is necessary, which could enhance the representation of
the data and model effectiveness. This can involve mathematical operations, e.g., aggregations, extracting domain-specific
information, or some other data preprocessing techniques, including clustering methods, depending on the nature of the
data. For instance, Cai et al. [71] present representative features using clustering methods. Coulter et al. [80] showed
the increased detection rate with the new features in their traffic analysis study. Principal Component Analysis (PCA),
which can minimize the dimension of the original dataset while preserving the most important information, may also
play a crucial role in solving real-world problems [53,81]. For instance, Manimurugan et al. [82] extract features for
anomaly detection based on PCA analysis.

– Discretization: Another crucial data pre-processing method utilized in the broader field of data science is discretization,
which primarily focuses on converting continuous attributes into discrete ones. Thus, it can simplify the rule mining
process and make the generated rules more interpretable. Various methods, such as static, dynamic, supervised,
unsupervised, splitting, merging, etc., can be used through the discretization process [83]. For example, unsupervised
discretizers like EFB and EWB and supervised discretizers such as MDLP and ChiMerge are used by Tsai et al. [83] in their
machine learning-based empirical study. Panda et al. [84] presented discretization-based solutions for secure machine
learning against adversarial attacks.
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– Domain Knowledge Integration: Incorporating domain knowledge into the feature engineering process can strengthen
understanding the real-world scenario. For instance, Maxwell et al. [85] highlighted the importance of adequate feature
engineering combining cybersecurity domain knowledge to prevent information loss. Domain experts can provide
valuable guidance on relevant features, potential interactions, or transformations that align with the specific needs of
feature engineering, which may lead to the rule mining task.

Overall, feature engineering provides benefits for improving model performance and interpretability by tailoring features to
cybersecurity data characteristics. An effective feature engineering can contribute to generating applicable rules from raw security
data, which eventually can improve the accuracy, interpretability, and generalizability of the ultimate rule-based models. In some
real-world applications, a hybrid approach could be beneficial depending on human expertise and the nature of available data sets.
However, it is important to take into account the challenges associated with resource intensity, overfitting, subjectivity, and data
quality dependency when considering this strategy.

4.2.3. Uncertainty-based rule mining
This discusses how uncertainty measures or probabilistic information are included in rule-based modeling. Thus, we aim to

measure the degree of uncertainty of various models discussed below.

• Probabilistic Rule Mining: Instead of generating deterministic rules, probabilistic rule mining techniques assign probabilities
or confidence scores to rules to capture uncertainty. For example, Husak et al. [64] generated sequential rules to predict
cyber situational awareness, using the confidence scores as probability values. These probabilities can represent the likelihood
of a rule being accurate or the confidence level in its predictions. Bayesian network is a typical modeling strategy for
probability inference [86]. For example, Zhang et al. [87] presented a multimodel-based incident prediction and risk
assessment model for ICS, where an attack model, function model, and incident model are combined to form multilevel
networks for probability inference. A probabilistic-based rule mining approach offers significant advantages for handling
uncertainty and risk assessment in cybersecurity data. However, it is important to consider challenges related to complexity
and data requirements when choosing and implementing probabilistic models.

• Fuzzy Rule Mining: Fuzzy logic extends traditional rule mining approaches by allowing rules to have degrees of membership or
truth values and can be used for cybersecurity modeling. Various techniques like fuzzy decision trees [88] or fuzzy association
rule mining [89,90] can be used for fuzzy rule-based cybersecurity modeling reflecting the uncertainty in the data. For instance,
Alali et al. [91] presented a cyber security risk assessment model using a fuzzy logic inference system. Fuzzy rule mining
is advantageous for handling uncertainty and presenting cybersecurity data in a linguistically flexible manner. However, it
becomes complex to interpret and maintain fuzzy rule systems as more linguistic terms and rules are added. It is important
to take into account the challenges in computational complexity of fuzzy systems, subjectivity in rule definition, as well as
overfitting risks and interpretation before implementing this approach.

• Belief Rule Base: It leverages belief, evidence, or Dempster–Shafer theory to manage and reason with uncertain information.
These rules are typically derived from expert knowledge, historical data, or a combination of both and can be used for
cybersecurity analysis. Ul et al. [92] presented an anomaly detection model based on belief rules to handle uncertainty utilizing
sensor data. He et al. [93] present a belief-rule-based method for fault diagnosis of wireless sensor networks. A belief-rule-
based approach to ensure the trustworthiness of interpreted time-series decisions has been presented in [94]. A belief rule-based
cybersecurity model provides advantages in handling uncertainty, flexible representation, and decision fusion. However, when
dealing with many variables, rules, and evidence sources, belief rule-based models can become complex, making them difficult
to interpret and manage. It is thus essential to carefully consider the complexity, the challenges of interpretation, and the
potential risks of subjectivity and overfitting that may arise from the implementation of belief rule systems.

In summary, uncertainty-based cybersecurity models provide a realistic representation of uncertainties and enable adaptive
decision-making. Cyber analysts can create rules incorporating the degrees of uncertainty, leading to more reliable security models
depending on the nature of data and target solutions. However, implementation of these approaches needs to take into account
challenges such as computational complexity, model complexity, subjectivity, and potential overfitting risks.

4.2.4. Data augmentation based techniques
Data augmentation could benefit cybersecurity, as its primary goal is to increase the volume, quality, and diversity of training

data used for rule mining. Both data transformation and synthesis techniques [95] can enhance cybersecurity data, discussed below,
which can eventually lead to better identification of security threats and anomalies, particularly when the available real-world data
is limited or insufficient.

• Data Transformation: Data transformation can occur in both the input and feature space [95]. Feature space involves altering the
features or attributes of the data, while input space refers to training samples. In cybersecurity, data transformation techniques
apply a variety of operations to security-related data to enhance its quality, usefulness, and impact on security measures. For
instance, incorporating new features based on existing ones that provide further information to distinguish between legitimate
and malicious activity could eventually help to generate more effective rules. Sophisticated methods like convolutional neural
networks could be useful for feature space transformation [95]. The input space can also be enhanced by sampling techniques
to address data imbalance issues or by introducing simulated noise or anomalies to the input. For instance, the SMOTE sampling
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technique has been used for phishing analysis [96] and fraud analysis [97]. Bagui et al. [98] used sampling techniques for
network intrusion detection datasets. Although efficient transformation can produce a variety of insightful data that improves
generalization in rule mining, unnecessary transformation may harm model performance.

• Data Synthesis: In certain scenarios, we can produce synthetic data that closely reflects to the regular data distribution using
generative models. Various techniques, like generative adversarial networks, variational autoencoders, and data interpolation,
as domain-specific methods, can be used. For instance, Li et al. [99] used GAN for data augmentation to detect anomalies
effectively. A comprehensive survey of GAN cybersecurity intrusion detection usage has been presented in [100]. However, in
the case of augmented data, overfitting can occur, specifically if patterns introduced by the augmentation techniques do not
reflect real-world cybersecurity scenarios.

In summary, data-augmentation-based rule mining offers advantages in cybersecurity modeling in terms of improving robustness,
generalization, and performance. Cybersecurity models can be trained to detect and effectively handle a variety of threats by creating
synthetic attack scenarios and variations. Thus, data augmentation helps to capture a broader range of patterns and behaviors,
resulting in more precise and effective rules for cybersecurity solutions. However, it is important to take into account the overfitting
risks, representativeness of augmented data challenges, interpretability issues, and privacy concerns when utilizing augmented data.

4.2.5. Concept drift and rule updating techniques
The effectiveness of the current rules and models may be compromised by concept drift, i.e., to describe changes, which would

increase the number of false positives and negatives and lower the detection accuracy. Rule updating techniques in cybersecurity
modeling involve mechanisms to adapt and refine rule-based models based on new information, emerging threats, or system behavior
changes. Here are some commonly used techniques for rule updating in cybersecurity modeling:

• Incremental Learning: Through incremental learning techniques, rule-based models can adapt to new data by adding it to
the existing model rather than retraining it from scratch. This method enables efficient updates as it allows the relevant
portions of the model to change. For instance, Kianmehr et al. [101] presented an incremental semi-rule-based learning
model for cybersecurity in cyberinfrastructures. To keep the model up-to-date, incremental learning algorithms might modify
rule weights, thresholds, or conditions in response to newly acquired information. Thus, in a dynamic and ever-changing
cybersecurity environment, incremental learning enables the model to adapt to new and emerging threats over time.

• Data freshness and recency-based mining: The concept of freshness and recency-based rule mining in cybersecurity involves
prioritizing the most recent data when creating and updating cybersecurity rules. This method takes time-stamped data into
account and creates rules that consider the temporal dynamics of cyber threats. For instance, Sarker et al. [102] presented a
recency-based rule mining technique to highlight the significance of recent patterns in user behavioral rules. It may incorporate
approaches like sliding windows, time-based segmentation, or decay functions to add weight or value to recent data points
during the rule-mining process. Whenever the model is updated or generated based on fresh data, new insights are generated,
ensuring its effectiveness and relevance as the context of cybersecurity rapidly changes. However, it is important to balance
the benefits and challenges such as the risk of overfitting, loss of historical context, and increased sensitivity to noisy data.

• Feedback-Driven Updates: The rule-based models are improved through feedback-driven updates that consider user input,
performance feedback from the system, and feedback from domain experts. This input can point out misclassifications, false
positives, or areas where the model needs to be improved. Based on the feedback, rule weights, thresholds, or conditions can
be modified to mitigate issues, improve accuracy, or assign some rules priority over others. For instance, the expert can remove
some rules that might not make sense in practice or add some interesting rules to the existing rule set [101].

In summary, rule updating in cybersecurity modeling offers advantages in adaptability and real-time threat response. The
implementation of rules ensures that rule-based systems remain relevant and effective by keeping them current and adapting to
changing circumstances. However, effective rule updating in cybersecurity requires careful consideration of potential challenges,
such as overfitting, increased noise sensitivity, complexity, and resource requirements.

4.3. Hybrid approach

To generate robust and flexible rules for threat detection and cybersecurity analysis, hybrid strategies for rule generation in
cybersecurity modeling incorporate many methodologies, such as data-driven approaches, knowledge-driven methods, and expert
knowledge. These are:

4.3.1. Knowledge-driven ensemble
This typically combines multiple sources of knowledge and expertise to produce an extensive collection of rules for threat

detection and cybersecurity solutions. Ontologies and knowledge graphs, for instance, can be used to enhance the rule generation
process and increase the model’s capacity to identify complex and dynamic cyber threats [59]. The ontology defines concepts,
relationships, and properties, while the knowledge graph captures complicated interactions between numerous entities. This
ensemble method seeks to improve the rule generation process and provide more accurate and understandable models by leveraging
the benefits of multiple knowledge-driven techniques such as formalized knowledge representations and human expertise.

4.3.2. Data-driven ensemble
Combining various data-driven methodologies to provide a comprehensive and robust collection of rules for threat detection and

cybersecurity analysis is the basis of a data-driven ensemble for rule generation in cybersecurity modeling. For instance, Kianmehr
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Fig. 4. Major CI sectors according to Australian Government Critical Infrastructure Centre [1].

et al. [101] used feature selection and incremental approach to build an effective rule-based model. To identify patterns, correlations,
and anomalies in cybersecurity data, the data-driven ensemble approach typically uses the advantages of multiple machine learning
and data mining techniques. Different methods such as voting, weighted combination, stacking, or rule prioritization could be useful
to combine the rules produced by multiple data-driven strategies discussed earlier.

4.3.3. Multi-aspects ensemble
This involves integrating the strength of data-driven methodologies with domain-specific knowledge to construct a resilient and

adaptable collection of rules for threat identification and cybersecurity analysis. For instance, Jia et al. [59] built a knowledge graph
using a machine learning technique to extract entities to obtain a cybersecurity knowledge base. Similarly, a data-driven technique
like deep learning is used to extract the relationship between entities for creating cybersecurity knowledge graphs [103,104]. Thus,
the combination of both data-driven insights and structured domain knowledge ensures a more extensive coverage of cybersecurity
concepts and interactions.

Overall, hybrid rule-based modeling in cybersecurity offers advantages in adaptability, accuracy, and the use of expert knowledge.
However, it is important to consider trade-offs, increased complexity, and integration challenges when designing, and implementing
such models.

4.4. Performance analysis and discussion

As discussed earlier, different methods can potentially build a rule-based model in the context of cybersecurity, depending on
the problem’s nature and data characteristics. In Table 4, we summarize the performance of various methods to solve diverse
cybersecurity issues. Although accuracy on unseen test cases is one of the popular metrics, different other metrics such as detection
rate, false positive rate, false negative rate, error calculation, etc. [105], can be used to evaluate the effectiveness of a model.

According to the performance comparison of different rule-based models as shown in Table 4, it may differ depending on data
preprocessing, intended solution, and other relevant factors. For instance, Sindhu et al. [106] have shown that the detection rate
varies depending on the selected features while doing their experimental analysis on the KDD Cup dataset. Sarker et al. [107] have
demonstrated that accuracy can vary depending on the features selected and the kind of categorization, such as binary or multi-class
problems. In certain scenarios, one approach can be utilized as a foundation for another method; thus, the ultimate outcome depends
on the integration of multiple methods. Furthermore, Sarker et al. [102] emphasized in their study that, in addition to accuracy,
rule redundancy, number of rules, and even rule type, such as general or more specific, are crucial factors when model complexity
and decision-making are taken into account. Barbado [75] et al. highlighted several factors such as rule completeness, the impact
of the number of rules and length, etc. in their rule-based model. Based on our study we can conclude that several key factors such
as: (i) model accuracy — a general measure of a model’s overall correctness; (ii) rule completeness or representativeness — how
well the rules capture all relevant patterns; (iii) model complexity — to reduce the number of rules it contains and the length of
each rule; (iv) non-redundancy — do not contain unnecessary or overlapping information; and (v) rule generalization — broadly
applicable rules in addition to specific conditional rules are needed to take into account. These factors may differ depending on the
problem, the ultimate solution viewpoint, data characteristics, and the available resources. Thus, to build a successful rule-based
cybersecurity model, domain knowledge, human expertise, AI, and data science knowledge need to be integrated.

5. Real-world usage scopes

This section discusses the potential usage scopes of rule-based cybersecurity modeling in various real-world CI sectors. Towards
this, we first summarize major sectors of critical infrastructure (CI) in Fig. 4, defined by Australian Government CI Centre [1]. These
are as follows:
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Table 4
Performance of various rule-based methods used in the context of cybersecurity applications.

Methods used Objective Dataset used Performance Reference

Decision tree
classification

Intrusion detection KDD Cup 99 Classification rate = 98.38%
Error rate = 1.62%

Sindhu et al. [106]

Decision tree
classification

Detecting multi-attacks NSL-KDD,
UNSW-NB15

Accuracy = 99%,
Accuracy = 81%

Sarker et al. [107]

Random forest
classification

Detecting multi-attacks NSL-KDD,
UNSW-NB15

Accuracy = 99%,
Accuracy = 83%

Sarker et al. [107]

Association rule mining Cyber intrusion detection KDD’99 Precision = 0.934,
Recall = 0.842,
F-Score = 0.897

Lou et al. [108]

Fuzzy association rule
mining

Cyber intrusion detection DARPA98 Detection rate = 98.7%,
Positive false rate = 0.53%,
Negative false rate = 3.75%

Mabu et al. [89]

Sequential pattern
mining

Intrusion detection of
power system

Testbed simulation
log data

Detection rate = 73.43% Pan et al. [109]

Data-clustering
based approach

Detecting anomalies in
industrial control systems

Simulated data RMS error = 0.108 Kiss et al. [55]

Anomaly detection
based approach

Application to OneClass SVM
for detecting anomalies

Public and real data P@1 rule;
Precision min = 1.0,
Recall min = 0.0

Barbado et al. [75]

Feature selection based
voting approach

To build an efficient
intrusion detection system

CIC-IDS2017 Accuracy = 99.89%,
Attack Detection Rate = 99.9%,
False Alarm Rate = 0.12%

Zhou et al. [78]

Belief rule based
approach

Detecting anomalies from
Custom sensor data

Sensor data Area under curve = 0.979,
Confidence interval =
0.967–0.991

Ul et al. [92]

Knowledge graph based
approach

To detect and predict
dynamic types of attacks

Information security
website, Enterprise’s
self-built information
response center

Precision = 0.739,
Recall = 0.735,
F1 Score = 0.737

Jia et al. [59]

5.1. Energy

Employing AI techniques in the context of the energy sector is popular, mainly to protect power plants, electrical grids, and other
energy infrastructure against cyber threats. For instance, Yu et al. [42] present a deep-learning-based proactive advanced persistent
threats (APTs) detection scheme in IIoT, using labeled data from a private power grid. Yang et al. [110] present a deep-learning-
based intrusion detection system for SCADA networks using the traffic data collected from two SCADA cyber-security test beds for
energy-delivery systems. Khaw et al. [111] present a deep learning-based cyberattack detection system for transmission protective
relays. A comprehensive review-based study on machine learning methods and solutions for cybersecurity in smart grids has been
presented in [112]. In addition to these AI models, Das et al. [36] present a rule-based model that could be beneficial for detecting
anomalies. Similarly, an ML-based firewall with appropriate preventive rules for power grid security has been presented by Haghighi
et al. [113]. Rule-based AI modeling can also be used to monitor user activity and access patterns to identify insider threats or other
suspicious activities, preventing unauthorized access or data theft in this CI sector. Overall, organizations can enhance their ability to
detect and mitigate cybersecurity threats with explainability analysis by implementing rule mining based transparent AI modeling.

5.2. Communications

Communication is another sector of CI, and several researchers are exploring AI modeling for cyber solutions in this area.
For instance, Zeadally et al. [41] explore AI’s potential to improve cybersecurity solutions by considering various communication
networks in critical infrastructure. Simola et al. [114] develop cybersecurity considering IT/ICT and OT/ICS networks and threats by
using a testbed in an industrial environment. Pinto et al. [115] explore various network intrusion detection systems based on machine
learning techniques to protect critical infrastructure. Otoum et al. [40] explore AI-based intrusion detection solutions, considering
both machine learning and deep-learning-based IDS for critical infrastructure monitoring WSNs. Rule-based AI modeling can assist
in protecting communications networks and thwart attacks on critical communications infrastructure according to the extracted
rules from data. According to the rule structure, these models can detect malicious activity, network intrusions, etc., and can take
appropriate action to protect communication services.

5.3. Financial services and markets

Financial service is another crucial area of critical infrastructure where cybersecurity solutions must improve. Kotsias et al. [116]
discuss how commercial organizations can adopt and integrate cyber-threat intelligence to routinely defend their information
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systems and resources from increasingly advanced cyber-attacks. Al et al. [117] explore how AI-powered technology can enhance
cybersecurity in the banking industry in Qatar. Using rule-based AI models, financial institutions and payment systems can improve
their cybersecurity based on human interpretable rules of action. These models can identify fraudulent activity, prevent unauthorized
access to financial systems, reduce the risk of data breaches, and identify financial crime by tracking transactions, network traffic,
and user behavior.

5.4. Water and sewerage

Smart water systems are now crucial to any modern city’s infrastructure. Cyber threats can affect these infrastructure systems
responsible for controlling water supply and wastewater treatment. Bello et al. [118] highlight cybersecurity challenges in Australian
water infrastructure management. Bakalos et al. [54] present an attack detection framework for critical water infrastructure
protection based on multimodal data fusion and adaptive deep learning (CNN model). Sobien et al. [119] explore AI for cybersecurity
in water systems, highlighting several water supply testbeds, secure water treatment, and distribution datasets. Multi-aspects rule-
based AI modeling could be highly beneficial in securing these systems by detecting potential breaches, ensuring water quality
integrity, and preventing unauthorized access to crucial infrastructure components. For instance, Das et al. [36] extract rules
to design an anomaly detection system using the sensor measurements of a water treatment system. Machine learning and data
mining-based techniques are used to generate invariant rules for anomaly detection in ICS [120].

5.5. Health care and medical

The health sector is a vital part of a country. Thus, cybersecurity becomes crucial to ensure the accessibility of crucial medical
services, avoid potentially catastrophic disruptions, and protect patient privacy. Radanliev et al. [52] explore advancing the
cybersecurity of the healthcare system with self-optimizing and self-adaptative AI that can use edge health devices with real-time
data. He et al. [121] present AI-based directory discovery attack and prevention of the medical systems. As the health sector needs
to handle enormous volumes of sensitive patient data, such as personal information and medical records, this becomes a prime
target for data breaches. Thus, AI models consisting of a set of valuable and relevant rules can detect and respond to online threats
according to rule structure and unauthorized access attempts protecting patient privacy.

5.6. Food and grocery

This industry is becoming more networked and dependent on digital technologies, making it more vulnerable to cyber-attacks.
Alim et al. [122] describe a SCADA system testbed for cybersecurity research in critical infrastructure in the food and agricultural
sector. Ferrag et al. [51] present machine learning-based solutions for cyber security intrusion detection for agriculture. Sontowski
et al. [123] highlight various cyber issues on smart farming infrastructure. The authors demonstrate a Denial of Service (DoS) attack
that can hinder the functionality of a smart farm by disrupting deployed on-field sensors. Similarly, a holistic study on security and
privacy in a smart farming ecosystem highlighting challenges and opportunities has been presented by Gupta et al. [124]. As this
sector increasingly depends on digital technologies with a complicated supply chain with several stakeholders, it becomes vulnerable
to cyber threats from suppliers, vendors, and partners. Thus, a feasible solution could be implementing strong security standards
based on rules for all supply chain partners.

5.7. Transport

The transportation industry is another vital component of a country’s critical infrastructure for the smooth operation of societies
and economics. However, Internet of Things (IoT) devices and connected vehicles in the transportation industry may be vulnerable
to compromises, posing a risk to public safety and even causing accidents. For instance, cyberattacks on traffic control systems
may alter traffic patterns, causing congestion and possible safety risks. Lehto et al. [125] discuss the cybersecurity issues for critical
transportation sectors, including aviation, maritime and automotive. Argyropoulos et al. [126] highlight the role of AI/ML techniques
in identifying and mitigating cybersecurity and privacy threats in different aspects of the next-generation mobility ecosystem. A rule-
based proactive approach can assist in protecting the transportation industry’s critical infrastructure from escalating cyber threats.
For example, extracting a set of sophisticated rules and setting up intrusion detection systems accordingly can be used to detect and
block suspicious activities in real-time. ML techniques can extract rules through anomaly detection and behavioral analysis.

5.8. Defence industry

Cyberattacks in defence systems might have catastrophic consequences, ranging from disrupting military operations to com-
promising national security. Thus, defense needs to incorporate cyber resiliency into every phase of the capability lifecycle and
relevant policy development [127], where AI can contribute. For instance, Shin et al. [47] present a method to efficiently operate
cyber ISR (intelligence, surveillance, and reconnaissance) in a closed military network using machine learning, especially incremental
learning methods. Shin et al. [48] also consider the cyber ISR process focusing on efficient decision-making based on feature selection
methods. Similarly, a robust and operational cyber military strategy for cyberspace superiority in cyber warfare has been presented
by Eom et al. [128]. Extracting a set of security rules and corresponding AI models could play a crucial role in defending the
critical defense industry. For example, implementing email filtering rules can assist in blocking known phishing domains and prevent
malicious attachments from reaching users, which could be a potential solution for phishing attacks.
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5.9. Others

Rule-based modeling can also contribute to other CI sectors like space technology, data storage and processing, education
and research, or other additional systems and cyber application areas, particularly, where model transparency, explainability and
trustworthiness are important. Garcia et al. [129] explore how AI and machine learning techniques can increase aviation security,
aid decision-making scenarios, find patterns to determine risk and detect faulty components in the systems. Maleh et al. [50] explore
different machine-learning techniques for IoT intrusion detection in aerospace cyber–physical systems. Mcdonnell et al. [49] present
a deep learning-based CyberBERT solution to protect aviation and aerospace applications from prospective third-party applications
and malware. Vavra et al. [56] focuses on cybersecurity research for industrial control systems widely used in critical information
infrastructure. Their approach presents an adaptive anomaly detection system based on machine learning algorithms in an industrial
control environment, considering the dataset consists of recorded ICS communication under cyber-attacks. Cybercriminals may
seek unauthorized access to crucial data stored in databases or processing systems, causing data breaches and disclosing private
information. Similarly, data manipulation or tampering could produce inaccurate outcomes or decisions. Access control rules that
enforce robust authentication processes and role-based access defining who has access to particular data and under what conditions
could be a potential solution.

6. Challenges and future prospects with potential research directions

Numerous research challenges and opportunities exist in rule-based AI modeling for critical infrastructure cybersecurity. Based
on our studies, we have identified these and present the potential solution directions in this section. These are as follows:

i Innovative Rule Generation Method: Critical infrastructure systems often involve many connected components and dependen-
cies, making them complicated. It is quite challenging to find the most appropriate methods that adequately capture the
intricate interactions and relationships between these components. Existing rule mining methods discussed briefly in Section 4
might not be appropriate in particular circumstances, which motivated innovative rule generation techniques to be developed.
For instance, proposing novel algorithms, or improving existing methods or even integrating data-driven machine intelligence
with human expertise could be a feasible solution. Thus, research is needed to explore and develop innovative methods for
managing rule complexity for CI security, which could be a promising direction in this emerging study area.

ii Adaptive and Dynamic Rule-based Modeling: Rule-based AI models often respond to predefined rules at the application level.
Critical infrastructure, however, functions in dynamic environments with evolving threats and circumstances. Thus, static
and predetermined rules may no longer be sufficient to adequately protect critical systems as the threat landscape continues
to change. To protect critical infrastructure and ensure the continuity of essential services, it is crucial to have the ability
to adapt and modify rule sets depending on new data dynamically. Therefore, research should focus on developing adaptive
rule-learning techniques that can learn from new data and dynamically adjust rule sets to combat new and emerging cyber
threats.

iii Anomaly Detection and Rule Learning: Methods for detecting anomalies, especially unsupervised machine learning algorithms,
can potentially analyze suspicious or unusual behavioral activities in critical infrastructures. Specific rules can be created
to address possible security issues when behavior deviates from regular patterns. These algorithms can create a baseline of
expected behavior from historical data, allowing them to identify anomalies dynamically. Therefore, one of the key areas of
future research will be the creation of methods to effectively detect anomalies in user activity, system behavior, and network
traffic in the CI environment and generate security rules accordingly.

iv Integration with Other AI Techniques: Rule-based AI models are typically effective at capturing well-known patterns and
established regulations. Combining rule-based models with other AI approaches like machine learning, NLP and semantic
technologies [4] can improve system efficacy considering their computational capabilities. For instance, NLP can assist in
comprehending and extracting contextual information from unstructured data sources like text, which can contribute in
recognizing the intent and impact of possible threats. Even rule based AI combining with LLM modeling can contribute
to explain the model decisions according to their dependencies and correlation. This integration provides a robust defense
system for critical infrastructure, from threat detection to automated response. Therefore, how to effectively combine these
AI techniques with rule-based modeling could be another research direction towards a trustable and responsible defense
mechanism for critical infrastructure.

v Human Factors and Applicability: It is essential to keep human operators, particularly cybersecurity analysts, in mind, as they
play a central role in interpreting and acting upon the insights provided by data-driven intelligent models [130]. To detect
threats and make decisions, cybersecurity analysts must comprehend the rationale behind the rules that the model triggers.
A motivational scenario has also been shown in Fig. 2. Human analysts can trust an AI model and make more informed
decisions when it is transparently explained. For instance, analysts can quickly understand complex patterns and anomalies
with visual representations. The ultimate goal is to establish an integrated relationship between humans and technology,
where AI models support analysts’ decision-making rather than taking control of it. Research is required to make rule-based
AI systems more understandable and practical for cybersecurity analysts to promote greater human–machine collaboration.
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vi Conflict Resolution and Optimization: In complex systems, rule conflicts can be a significant issue, especially in the context
of CI security. It is crucial to resolve conflicts and optimize rule execution as the number of rules increases and overlaps
may happen. Thus, to investigate methods for consolidating and simplifying decision-making rules is important [102]. This
might include rule optimization by eliminating duplicate or redundant rules, merging similar rules, and streamlining the
decision-making process to minimize conflicts. In addition, specific rules might have higher priority than others; thus, creating
a hierarchy might assist in resolving conflicts more effectively. Research is needed to develop rule prioritization, conflict
resolution, and optimization methodologies to provide efficient and productive rule-based AI modeling for CI security.

vii Adversarial Attacks and Robust Defense Modeling: Malicious actors can intentionally manipulate inputs to exploit vulnerabilities
or bypass the rules, potentially leading to significant disruptions or breaches. Developing a robust defense model, including
anomaly detection tools, rule validation mechanisms, and model strengthening strategies integrating ensemble methods,
feature engineering, or data augmentation, could be beneficial to increase the system’s resistance to adversarial attacks. For
instance, developing anomaly detection technologies that identify unusual input patterns could indicate suspicious attacks and
thus generate alerts for further investigation. Moreover, employing data augmentation techniques that increase the diversity
of the training data could support building a robust model and eventually improve the model’s ability to handle variations
introduced by adversaries. Therefore, focusing on robust cyber solutions accordingly could be one of the top priorities of
research in the context of CI security.

viii Context-Aware Modeling: Rules might have variable applicability and relevance under particular circumstances, and thus,
prioritization of contextual rules provides effective resource allocation and response. When generating and applying security
rules, context awareness typically considers the specific operational context, system state, and other external factors.
Therefore, developing algorithms to produce context-aware rules dynamically could be another potential research direction,
where the eventual model can better adapt to dynamic environments according to the current situation. Research needs to
focus on combining data from numerous sources, such as sensor data, logs, network traffic, and external threat intelligence
in the context of CI to produce security rules and corresponding context-aware modeling.

ix Privacy and Data Protection: Critical infrastructure systems might have to deal with sensitive and private data. To prevent
unauthorized access to sensitive data, privacy-preserving techniques such as data anonymization or secure computing can
contribute [10]. For instance, data anonymization techniques like differential privacy can be used to preserve individual
identities and sensitive information while preserving the utility of the data for modeling. Exploring federated learning in
rule-based AI modeling could be another potential direction, as it allows multiple entities to build a model collaboratively.
Therefore, maintaining the reliability and confidentiality of the infrastructure requires a strong focus on developing innovative
methods of privacy-preserving modeling.

x Designing Rule-based Security Framework: Establishing a solid foundation that supports automation, intelligence, and trustwor-
thy decisions is the most important challenge for developing a rule-based cybersecurity system. For instance, incorporating
intelligence into the model enables it to effectively analyze and interpret data, discover meaningful patterns, and identify and
respond to potential threats. Extracting a set of valuable rules employing suitable techniques discussed briefly in Section 4
could be the basis of this intelligence, as the system’s behavior and how it reacts to different threats and events are controlled
by rules. Therefore, designing a practical rule-based framework for security modeling and experimental evaluation with CI
data could be a potential direction by considering transparency, rule interpretation, and control over the system’s behavior.

Our study has identified several challenges and promising research directions for protecting critical infrastructure. First,
additional study is required on the properties of CI data, such as involved features, data characteristics and distribution patterns,
and associated contexts. Second, CI data needs to be used to evaluate the scalability and efficacy of current rule-based analytics
approaches. Thirdly, it is necessary to design innovative methods and algorithms to address the underlying issues. Fourth, a
wide range of empirical assessments, considering diverse factors as summarized in Section 4 are required to measure the overall
effectiveness of the model. Fifth, further work is needed to deploy the ultimate rule-based security models in a way that will assist in
necessary automation, intelligence, and trustworthiness in the pertinent application domains. Overall, the issues highlighted above
and the possible solution directions discussed could aid the community of critical infrastructure in realizing the full potential of
rule-based modeling in the broad area of AI and cybersecurity.

7. Discussion

The paper provides an in-depth discussion of knowledge discovery and rule-based AI modeling in tackling cybersecurity issues
within critical infrastructure. In particular, we answered the questions formulated in Section 1 throughout the paper. The most
important observations and findings from the study are highlighted in this section, which might benefit the CI community and
decision-makers.

Our study finds that rule-based AI modeling holds much promise for enhancing CI security solutions, mainly when considering
automation, intelligence, and transparency, i.e., trustworthiness in decision-making. Rule-based models can efficiently recognize
and respond to various cyber threats, such as network intrusions, malware attacks, unauthorized access attempts, and so on, by
utilizing a set of relevant rules. While rule-based solutions predefined by human expertise could be beneficial in some cases in
various sectors mentioned above, it is worth noting that cybersecurity is an ever-evolving field, and relying solely on such rule-based
approaches may not be sufficient. Thus, we need to take into account more powerful rules combined with AI techniques like data
science process, machine learning, anomaly detection, and behavior analysis to create a robust and adaptive cybersecurity system
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for critical infrastructure. These rules are adaptable and scalable across various critical infrastructure systems such as energy, water,
defence, communication, and so on discussed briefly in Section 5 since rules are developed by considering data-driven insights and
human expert knowledge in the domain.

One of the primary benefits of rule-based AI models is their capability to provide transparent and explicit decisions through
their IF-THEN rule structure. Thus, it becomes human-interpreted compared to other sophisticated AI techniques, as shown in
Fig. 2. The key reason is rules are typically generated based on known attack signatures, abnormal behavior patterns, other relevant
indicators, or even hidden patterns extracted from data. When specific threats or behavior patterns are detected, a set of rules
defining relevant conditions and actions are taken. This could include blocking malicious IP addresses, restricting affected systems,
or alerting security professionals. This interpretability enables cybersecurity professionals to understand and verify the rationale for
the model’s behaviors, promoting trust and facilitating cooperation between human operators and AI systems. Adding, deleting, and
updating rules to reflect new knowledge is a key benefit of rule-based modeling, making it simpler to manage the entire system at
the application level [102].

Rule-based AI models also offer the ability for quick responses. These models can identify anomalies by continually observing
network traffic and system behavior. They can then prompt rapid responses like blocking suspicious activity or producing alerts
for further investigation. In critical infrastructure, where even minor security breaches can have serious repercussions, real-time
responsiveness and human understanding are of the utmost significance. Thus, rule-based modeling can assist accordingly rather
than other black box modeling in the broad AI area. The reason is that it provides transparency, human interpretation, and control
over the system’s behavior according to the rule structure. In the following, we summarize the potentiality and key usages of
knowledge discovery and rule-based AI modeling for the broader audience in the context of cybersecurity.

• Explainable detection, classification and prioritization: Using vast datasets of historical attack patterns, rule mining algorithms
identify recurring sequences of events and patterns that indicate potential security threats. By discovering hidden relationships
and dependencies in data, such knowledge or rule-based modeling can formulate rules that can detect and classify emerging
threats more accurately. According to these rules, threats are prioritized based on their severity and potential impact on
an organization’s digital assets. An automated or efficient threat detection or prioritization system typically relies on this
discovered knowledge. Thus integrating interpretable rules into detection systems provides cybersecurity professionals with
insights into the decision-making process, enabling better threat analysis.

• Explainable mitigation and response: With the mitigation rules derived from rule mining-based modeling, cybersecurity profes-
sionals can better understand the logic behind mitigation recommendations, allowing them to make more informed decisions.
The discovered knowledge can also be used in response modeling. While mitigation aims to prevent or reduce the impact of
cybersecurity threats beforehand, response deals with addressing and managing incidents that have already occurred. Thus
both mitigation and response strategy with actionalble rules allow for a clear understanding of why each action is being taken
and promoting a more adaptive and accountable cybersecurity model.

• Explainable prediction: With the knowledge or rules derived from data, cybersecurity professionals can predict emerging threats
and identify them, providing a clear understanding of what influences predictions. This increases the trustworthiness of
predictive models, facilitating informed decisions when addressing vulnerabilities and strengthening digital defenses.

• Explainable diagnosis or root cause findings: Cyber threats can be diagnosed transparently by examining the dependencies
and relationships between entities in rules derived from data. A detailed understanding of the factors and indicators that
contribute to the detection of anomalies or malicious activities is provided by derived rules or patterns, enabling cybersecurity
professionals to diagnose anomalies and malicious activities more accurately.

• Empowering cyber teams and strengthening the overall resilience: Through the transparent and interpretable rules generated by
the model, humans can better understand the underlying factors responsible for potential threats, allowing them to make
more informed and effective decisions. Furthermore, the model is able to suggest mitigation actions based on the extracted
rules, enabling cybersecurity teams to respond quickly and appropriately to emerging threats. By collaborating between this
knowledge or rule mining and human expertise, organizations can enhance their resilience against evolving cyber risks through
more efficient and adaptive cybersecurity practices.

Although rule-based AI modeling has lots of potential, this paper also identified specific issues that need to be considered for
further research and investigation. A well-designed rule-based framework considering the relevant issues identified in Section 6, is
important to get its full potential at the application level. A well-balanced relationship between data-driven technology and human
expert knowledge could be beneficial for this. Overall, we can say that further research on identified areas and development and
collaboration between cybersecurity professionals, AI experts, and CI communities is necessary for next-generation cybersecurity in
a critical infrastructure environment.

8. Conclusion

In this article, we have provided an in-depth study on multi-aspect rule-based AI modeling on a broad scale towards critical
infrastructure security. We also provided a taxonomy of rule-generation methods by taking into account both the knowledge-driven
and data-driven approaches as well as their hybridization. We covered the potentiality of these approaches and how these techniques
can address diverse cybersecurity concerns such as threat detection, mitigation, prediction, diagnosis for root cause findings, and so
on. We also highlighted the power of rule-based AI modeling in terms of automation, intelligence, and transparent modeling through
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discovering knowledge, patterns and relationships from data. Our study on CI security can help security analysts and professionals
comprehend how rule-based modeling can be applicable in addressing cybersecurity concerns in different CI sectors, such as energy,
defence, finance, health, etc. We also identified and discussed the issues and potential solution directions for future research and
development. Overall, our study on knowledge discovery and rule-based AI modeling opens a promising path for next-generation
CI security modeling and can be used as a reference guide for CI researchers, professionals, and policy makers.
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