44 research outputs found

    Publishing H2O pluglets in UDDI registries

    Get PDF
    Interoperability and standards, such as Grid Services are a focus of current Grid research. The intent is to facilitate resource virtualization, and to accommodate the intrinsic heterogeneity of resources in distributed environments. It is important that new and emerging metacomputing frameworks conform to these standards, in order to ensure interoperability with other grid solutions. In particular, the H2O metacomputing system offers several benefits, including lightweight operation, user-configurability, and selectable security levels. Its applicability would be enhanced even further through support for grid services and OGSA compliance. Code deployed into the H2O execution containers is referred to as pluglets. These pluglets constitute the end points of services in H2O, services that are to be made known through publication in a registry. In this contribution, we discuss a system pluglet, referred to as OGSAPluglet, that scans H2O execution containers for available services and publishes them into one or more UDDI registries. We also discuss in detail the algorithms that manage the publication of the appropriate WSDL and GSDL documents for the registration process

    Cooperative fault-tolerant distributed computing U.S. Department of Energy Grant DE-FG02-02ER25537 Final Report

    Full text link

    Automated tools and techniques for distributed Grid Software: Development of the testbed infrastructure

    Get PDF
    Grid technology is becoming more and more important as the new paradigm for sharing computational resources across different organizations in a secure way. The great powerfulness of this solution, requires the definition of a generic stack of services and protocols and this is the scope of the different Grid initiatives. As a result of international collaborations for its development, the Open Grid Forum created the Open Grid Services Architecture (OGSA) which aims to define the common set of services that will enable interoperability across the different implementations. This master thesis has been developed in this framework, as part of the two European-funded projects ETICS and OMII-Europe. The main objective is to contribute to the design and maintenance of large distributed development projects with the automated tool that enables to implement Software Engineering techniques oriented to achieve an acceptable level of quality at the release process. Specifically, this thesis develops the testbed concept as the virtual production-like scenario where to perform compliance tests. As proof of concept, the OGSA Basic Execution Service has been chosen in order to implement and execute conformance tests within the ETICS automated testbed framework

    Designing and Handling Failure issues in a Structured Overlay Network Based Grid

    Get PDF
    Grid computing is the computing paradigm that is concerned with coordinated resource sharing and problem solving in dynamic, autonomous multi-institutional virtual organizations. Data exchange and service allocation between virtual organizations are challenging problems in the field of Grid computing, due to the decentralization of Grid systems. The resource management in a Grid system ensures efficiency and usability. The required efficiency and usability of Grid systems can be achieved by building a decentralized multi-virtual Grid system. In this thesis we present a decentralized multi-virtual resource management framework in which the system is divided into virtual organizations, each controlled by a broker. An overlay network of brokers is responsible for global resource management and managing the allocation of services. We address two main issues for both local and global resource management: 1) decentralized allocation of tasks to suitable nodes to achieve both local and global load balancing; and 2) handling of both regular and broker failures. Experimental results verify that the system achieves dependable performance with various loads of services and broker failures

    LHCb distributed data analysis on the computing grid

    Get PDF
    LHCb is one of the four Large Hadron Collider (LHC) experiments based at CERN, the European Organisation for Nuclear Research. The LHC experiments will start taking an unprecedented amount of data when they come online in 2007. Since no single institute has the compute resources to handle this data, resources must be pooled to form the Grid. Where the Internet has made it possible to share information stored on computers across the world, Grid computing aims to provide access to computing power and storage capacity on geographically distributed systems. LHCb software applications must work seamlessly on the Grid allowing users to efficiently access distributed compute resources. It is essential to the success of the LHCb experiment that physicists can access data from the detector, stored in many heterogeneous systems, to perform distributed data analysis. This thesis describes the work performed to enable distributed data analysis for the LHCb experiment on the LHC Computing Grid

    Dimensionerings- en werkverdelingsalgoritmen voor lambda grids

    Get PDF
    Grids bestaan uit een verzameling reken- en opslagelementen die geografisch verspreid kunnen zijn, maar waarvan men de gezamenlijke capaciteit wenst te benutten. Daartoe dienen deze elementen verbonden te worden met een netwerk. Vermits veel wetenschappelijke applicaties gebruik maken van een Grid, en deze applicaties doorgaans grote hoeveelheden data verwerken, is het noodzakelijk om een netwerk te voorzien dat dergelijke grote datastromen op betrouwbare wijze kan transporteren. Optische transportnetwerken lenen zich hier uitstekend toe. Grids die gebruik maken van dergelijk netwerk noemt men lambda Grids. Deze thesis beschrijft een kader waarin het ontwerp en dimensionering van optische netwerken voor lambda Grids kunnen beschreven worden. Ook wordt besproken hoe werklast kan verdeeld worden op een Grid eens die gedimensioneerd is. Een groot deel van de resultaten werd bekomen door simulatie, waarbij gebruik gemaakt wordt van een eigen Grid simulatiepakket dat precies focust op netwerk- en Gridelementen. Het ontwerp van deze simulator, en de daarbijhorende implementatiekeuzes worden dan ook uitvoerig toegelicht in dit werk

    Grid computing as an integrating force in virtual enterprises

    Get PDF
    Thesis (M.Eng.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2003.Includes bibliographical references (leaves 78-80).by Hongfei Tian.M.Eng

    A holistic approach to network security in OGSA-based grid systems

    Get PDF
    Grid computing technologies facilitate complex scientific collaborations between globally dispersed parties, which make use of heterogeneous technologies and computing systems. However, in recent years the commercial sector has developed a growing interest in Grid technologies. Prominent Grid researchers have predicted Grids will grow into the commercial mainstream, even though its origins were in scientific research. This is much the same way as the Internet started as a vehicle for research collaboration between universities and government institutions, and grew into a technology with large commercial applications. Grids facilitate complex trust relationships between globally dispersed business partners, research groups, and non-profit organizations. Almost any dispersed “virtual organization” willing to share computing resources can make use of Grid technologies. Grid computing facilitates the networking of shared services; the inter-connection of a potentially unlimited number of computing resources within a “Grid” is possible. Grid technologies leverage a range of open standards and technologies to provide interoperability between heterogeneous computing systems. Newer Grids build on key capabilities of Web-Service technologies to provide easy and dynamic publishing and discovery of Grid resources. Due to the inter-organisational nature of Grid systems, there is a need to provide adequate security to Grid users and to Grid resources. This research proposes a framework, using a specific brokered pattern, which addresses several common Grid security challenges, which include: Providing secure and consistent cross-site Authentication and Authorization; Single-sign on capabilities to Grid users; Abstract iii; Underlying platform and runtime security, and; Grid network communications and messaging security. These Grid security challenges can be viewed as comprising two (proposed) logical layers of a Grid. These layers are: a Common Grid Layer (higher level Grid interactions), and a Local Resource Layer (Lower level technology security concerns). This research is concerned with providing a generic and holistic security framework to secure both layers. This research makes extensive use of STRIDE - an acronym for Microsoft approach to addressing security threats - as part of a holistic Grid security framework. STRIDE and key Grid related standards, such as Open Grid Service Architecture (OGSA), Web-Service Resource Framework (WS-RF), and the Globus Toolkit are used to formulate the proposed framework

    Development of a grid service for multi-objective design optimisation

    Get PDF
    The emerging grid technology is receiving great attention from researchers and applications that need computational and data capabilities to enhance performance and efficiency. Multi-Objective Design Optimisation (MODO) is computationally and data challenging. The challenges become even more with the emergence of evolutionary computing (EC) techniques which produce multiple solutions in a single simulation run. Other challenges are the complexity in mathematical models and multidisciplinary involvement of experts, thus making MODO collaborative and interactive in nature. These challenges call for a problem solving environment (P SE) that can provide computational and optimisation resources to MODO experts as services. Current PSEs provide only the technical specifications of the services which is used by programmers and do not have service specifications for designers that use the system to support design optimisation as services. There is need for PSEs to have service specification document that describes how the services are provided to the end users. Additionally, providing MODO resources as services enabled designers to share resources that they do not have through service subscription. The aim of this research is to develop specifications and architecture of a grid service for MODO. The specifications provide the service use cases that are used to build MODO services. A service specification document is proposed and this enables service providers to follow a process for providing services to end users. In this research, literature was reviewed and industry survey conducted. This was followed by the design, development, case study and validation. The research studied related PSEs in literature and industry to come up with a service specification document that captures the process for grid service definition. This specification was used to develop a framework for MODO applications. An architecture based on this framework was proposed and implemented as DECGrid (Decision Engineering Centre Grid) prototype. Three real-life case studies were used to validate the prototype. The results obtained compared favourably with the results in literature. Different scenarios for using the services among distributed design experts demonstrated the computational synergy and efficiency in collaboration. The mathematical model building service and optimisation service enabled designers to collaboratively build models using the collaboration service. This helps designers without optimisation knowledge to perform optimisation. The key contributions in this research are the service specifications that support MODO, the framework developed which provides the process for definining the services and the architecture used to implement the framework. The key limitations of the research are the use of only engineering design optimisation case studies and the prototype is not tested in industry.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore