
Computing and Informatics, Vol. 23, 2004, 305–315

PUBLISHING H2O PLUGLETS IN UDDI REGISTRIES

Gunther Stuer, Jan Broeckhove

Department of Math and Computer Science

University of Antwerp, 2020 Antwerp, Belgium

e-mail: {gunther.stuer, jan.broeckhove}@ua.ac.be

Vaidy Sunderam

Department of Math and Computer Science

Emory University, Atlanta, GA 30322, USA

e-mail: vss@mathcs.emory.edu

Manuscript received 24 September 2004

Communicated by Ladislav Hluchý

Abstract. Interoperability and standards, such as Grid Services are a focus of
current Grid research. The intent is to facilitate resource virtualization, and to
accommodate the intrinsic heterogeneity of resources in distributed environments.
It is important that new and emerging metacomputing frameworks conform to these
standards, in order to ensure interoperability with other grid solutions.

In particular, the H2O metacomputing system offers several benefits, including
lightweight operation, user-configurability, and selectable security levels. Its ap-

plicability would be enhanced even further through support for grid services and
OGSA compliance.

Code deployed into the H2O execution containers is referred to as pluglets. These
pluglets constitute the end points of services in H2O, services that are to be made
known through publication in a registry. In this contribution, we discuss a system
pluglet, referred to as OGSAPluglet, that scans H2O execution containers for avail-
able services and publishes them into one or more UDDI registries. We also discuss
in detail the algorithms that manage the publication of the appropriate WSDL and
GSDL documents for the registration process.

Keywords: OGSA, UDDI, H2O, distributed computing, grids



306 G. Stuer, J. Broeckhove, V. Sunderam

1 INTRODUCTION

Generalized metacomputing systems, or grids, have gained tremendous popularity in
recent times because they enable secure, coordinated resource sharing across multiple
administrative domains, networks, and institutions [1].This model has been realized
in several software toolkits, such as Globus [2] and Legion [3]. Extensive overviews
of grid computing can be found in [4, 5].

However, many applications of smaller magnitude do not require explicit coordi-
nation and centralized services for authentication, registration, and resource broker-
ing as is the case in traditional grid-systems. For these applications, a lightweight
and stateless model, in which individuals and organizations share their superfluous
resources on a peer-to-peer basis, is more suitable. Two examples of such lightweight
peer-to-peer distributed computational systems are H2O [6] and JGrid [7].

Recently, grid research has focused on interoperability and standards in order
to facilitate resource virtualization and to accommodate the intrinsic heterogeneity
of resources in distributed environments. To this end, OGSA [8] aims at defining
a new common and standard architecture for grid-based applications based on the
concept of Grid Services, an extension of Web Services [9]. The formal and technical
specification of these concepts can be found in the OGSI [10] specifications and
a reference implementation is provided by the GTK3 [11].

Such standard frameworks, based on XML, are used to describe service specifica-
tions in a universally understood manner, thereby permitting clients to discover and
utilize services across platforms and context domains. The functional description of
a Web Service is written in the Web Services Description Language (WSDL) [9]. It
can be published using various registration and discovery schemas, such as Universal
Description, Discovery and Integration(UDDI) [9].

Grid Services are described using an extension of WSDL known as Grid Services
Description Language (GSDL) [10]. Compliance with these standards is not only
important for heavyweight grid systems such as those based on the Globus Toolkit,
but also for the lightweight solutions referred to above.

However, currenly, in H2O there is no provision for the automated creation
and publication of WSDL and GSDL documents of deployed H2O pluglets. Both
the WSDL and GSDL (from now on referred to as xSDL whenever the context
of the discussion applies to both WSDL/Web Services and GSDL/Grid Services)
description files have to be created manually and need to be published using third
party tools.

This paper outlines an architecture that allows pluglets to be addressed as
Web/Grid services by providing the appropriate SOAP endpoints and by generating
and publishing the corresponding xSDL documents in UDDI registries.

2 THE H2O METACOMPUTING FRAMEWORK

H2O is a framework for cooperative distributed computing [6, 13, 14]. It provides
a lightweight, general-purpose platform for resource sharing, and aims to support



Publishing H2O pluglets in UDDI registries 307

a wide range of application models. Because resource aggregation is a client abstrac-
tion and responsibility, no specific centralized discovery or authentication mecha-
nisms are assumed. This opens up the possibility of diverse deployment scenarios,
each with appropriate discovery and aggregation techniques.

In the H2O architecture, resource providers independently share their raw re-
sources such as CPUs, memory, or storage, via software backplanes called kernels.
Authorized entities can deploy software components, called pluglets, into those ker-
nels. The kernels provide support for lifetime management, communication, and in
particular security. Subsequently, pluglets provide services that can be used by any
client.

The H2O framework is Java-based: kernels and pluglets are Java objects. As
a consequence, H2O kernels may run on virtually any platform, and every pluglet
can be loaded into any H2O kernel. Communication between clients, kernels and
pluglets utilizes a substrate that features multiple, dynamically pluggable protocols
and underlying byte transport customization [15]. This enables non-Java clients to
communicate with H2O pluglets. It allows pluglets to be exported using various
remote bindings such as stub-less JRMP, IIOP and SOAP.

With the latter, the exported pluglets appear as Web Service instances providing
standard SOAP-endpoints. The next step is to describe the Web/Grid service in an
xSDL document and register the service with a UDDI registry. Specifically, we need
to develop the following capabilities :

• Generating the Web/Grid Service Description Language (xSDL) document from
an arbitrary, third-party, pluglet.

• Publishing the generated xSDL-documents to one or multiple UDDI registries.

• Implementing the OGSI-defined container and service features.

Currently, the first two requirements have been fully met. The architecture, design
and implementation will be discussed in the next section. The third requirement is
future work.

3 ARCHITECTURE

We present a framework that consists of three distinct components: a pluglet, a de-
ployment tool and an administration tool, as depicted in Figure 1. Instead of im-
plementing the new OGSA/Web Service centric features into the kernel itself, we
develop a pluglet that provides the necessary functionality. This is in keeping with
the H2O philosophy of making the kernel as lean as possible.

The pluglet, called OGSAPluglet, is the main component of the framework.
It is responsible for the creation of Web and Grid Service endpoints, and for the
generation and publication of WSDL and GSDL documents into multiple UDDI
registries. Furthermore, two command-line tools are provided: one to deploy the
OGSAPluglet into a running H2O-kernel and one to administer it.



308 G. Stuer, J. Broeckhove, V. Sunderam

H2O-Kernel

Client

PlugletContext
Pluglet-X

AdminTool
SEPluglet(s)

Deployer

DeployTool

Fig. 1. The main components of the framework

The pluglet can operate in two modes: manual or automatic mode. In manual
mode, user interaction is required to start or stop exporting a pluglet as a Web/Grid
Service. In automatic mode, the kernel is monitored for deployment events and all
pluglets are automatically exported when they first become active. If they disappear
from the kernel, all relevant xSDL documents will be removed as well.

Figure 2 shows the architecture of the framework. A kernel can contain zero
or more OGSAPluglet instances, which will all have the same name, but different
unique identifiers. Each OGSAPluglet stores an OGSAExportInfo object for every
pluglet it exports. In this contribution, we will denote such a pluglet as pluglet-X.
Each OGSAExportInfo object contains the necessary information and business logic
to create the endpoints and the xSDL documents for the pluglet it represents.

In order to dynamically extend the public interface of third party pluglets with
the methods required by OGSI, for each exported pluglet, a dynamic proxy is created
which acts as a message router between the proxied pluglet and an object which
implements the methods specified by OGSI.

Furthermore, each OGSAPluglet holds a list of UDDI registries. Whenever
a pluglet is exported using a particular instance of OGSAPluglet, this instance’s list
of registries will be queried by the UDDIPublisher component which will perform
the publishing of the associated xSDL documents in the respective registries. Since
UDDI registries do not contain the xSDL documents themselves, but rather store
URLs to them, a minimal HTTP-server, called GSDLServer, is provided.

This design allows for substantial flexibility in the choice of registry that pub-
lishes the xSDL description of the exported pluglets.

For a detailed outline of the pluglet logic associated with automatic generation of
xSDL documents we refer to [12]. The next section will describe the UDDIPublisher
component, covering the UDDI publication process.



Publishing H2O pluglets in UDDI registries 309

Kernel OGSAPluglet UDDIPublisher

OGSAExportInfo Pluglet-X OGSIServices

DynamicProxy

* *

*
* 1

* *

11

creates
proxiesproxies

OGSI-endpoint

SOAP-endpointuses

contains

creates

contains

GSDLServer

creates

Fig. 2. Architecture of the framework

4 UDDIPUBLISHER

4.1 UDDI Registries

UDDI (Universal Description, Discovery& Integration) is a set of standardized speci-
fications for service description and discovery [9]. A UDDI registry allows a business
to publicly list a description of itself and the services it provides. The registry is
structured as a hierarchy of business, service, binding, and technical information,
using four core information types.

The BusinessEntity structure represents a provider of services. Within the
UDDI registry, this structure contains information about the company itself, in-
cluding contact information, industry categories, business identifiers and a list of
services provided.

The BusinessService structure respresents an individual service provided by
the business entity. Its description includes information on how to bind to the
web service, what type of web service it is, and what taxonomical categories it
belongs to.

A BindingTemplate is the technical description of a service represented by
a BusinessService structure. A single business service may have multiple bind-
ing templates. The binding template represents the actual implementation of the
business service.

A TModel is a way of describing the various business, service, and template
structures stored within the UDDI registry. Any abstract concept can be registe-
red within UDDI as a TModel. For instance, if you define a new WSDL port
type (e.g. GridService), you can define a TModel that represents that port type
within UDDI. Then, you can specify that a given business service implements that
port type by associating the TModel with one of the business service’s binding
templates.



310 G. Stuer, J. Broeckhove, V. Sunderam

4.2 Selecting a UDDI Registry

Currently there are two freely available implementations of a UDDI registry. The
first is from the Apache project and is called jUDDI [16]. The biggest advantage
of this implementation is that it is a dedicated UDDI registry, and as such, rather
small and easy to configure. Unfortunately, it is a recent project and at the time of
this writing, no stable builds are available.

The second implementation is from Sun. It is part of their Java Web Services De-
veloper Pack (JWSDP) [17] and is currently at version 1.3. The size of the JWSDP
distribution is considerable but it comes with extensive, well written documentation.
We have chosen to use this UDDI registry implementation.

4.3 Using UDDI in Java

There are three different approaches to interacting with a UDDI registry in Java.
The first one is to explicitly build SOAP messages to communicate with the registry,
the second one is to use some UDDI client API, and the third approach is to use
Java API for XML Registries [18]. The important issues for us are ease of use, and
the number of Java libraries (jar files) that need to be uploaded to the H2O kernel
in order for the OGSApluglet to execute because we want to minimize deployment
overhead.

Explicitly programming the SOAP messages to register a web service with
a UDDI registry requires considerable effort and is error-prone. There is, how-
ever, an important advantage to this approach: it does not require any libraries to
be uploaded.

For the second approach, a number of open source client APIs are available
for accessing UDDI registries. These APIs allow to interact with UDDI registries
without knowing the specifics of SOAP or of the XML messages and data struc-
tures used in UDDI. For example, IBM provides the Service Registry Proxy (SRP)
that is part of the UDDI4J [19] project. Here the uudi4j.jar library needs to be
uploaded.

The Java API for XML Registries (JAXR) specification defines a standardized
way for Java programs to access a registry [18]. JAXR allows developers to write
code that can access several different registries, including UDDI and ebXML. The
trade-off for portability is dealing with the additional layer of abstraction introduced
by JAXR. Also, the use of JAXR requires many jar files, seventeen to be precise [20],
to be uploaded.

After weighing the advantages and disadvantages of each approach, we have
decided to use UDDI4J. UDDI4J supports three SOAP-Transport libraries: Apache
AXIS, Apache SOAP and HP-Soap. Unfortunately AXIS is not applicable in our
work because it requires access to the local filesystem, which is not allowed in an
H2O-kernel (or at least requires specific privileges). HP-SOAP is part of HP’s Web
Services Platform, which is not freely available. This leaves us with Apache SOAP.



Publishing H2O pluglets in UDDI registries 311

This library uses the Java mail library (mail.jar) and bean activation framework
(activation.jar), and both have to be uploaded to the kernel.

4.4 Registering a Service

Registering a pluglet as an Web/Grid-service can be broken down into two steps:

1. The xSDL-documents have to be generated from the interface of the pluglet one
wants to publish.

2. The xSDL-documents must be registered to one or more UDDI registries. The
service’s name and description will be identical to the pluglet’s name. The access
URL will be the Web/Grid-endpoint constructed by OGSA Pluglet.

The UDDI registry stores URL references to the xSDL-documents rather than the
documents themselves. This implies that a basic HTTP server is required in order
to respond to requests from interested third-parties for the xSDL-document. To this
end, the OGSA pluglet contains a minimal HTTP server which is started when the
pluglet is deployed.

4.5 Registration Viewpoints

There are two distinct points of view concerning the registration attributes of plu-
glets in a UDDI registry. In the first point of view, it is the kernel owner that decides
under which BusinessEntity deployed pluglets are published. In the second point of
view it is the pluglet deployer who decides under which BusinessEntity his pluglets
get registered.

To support both viewpoints, OGSAPluglet provides methods to retrieve and
set a default BusinessEntity. The default will be used in automatic mode, and
in manual mode when no BusinessEntity is specified. On the other hand, a plu-
glet deployer can specify a particular BusinessEntity, that is to be used in the
registration process.

4.6 The xSDL Server

Because UDDI registries do not contain the xSDL documents themselves, but rather
URLs to them, a minimal HTTP server is needed. The URL for the xSDL document
combines the address of this server, a port number, the unique identifier of the
pluglet, and a GSDL or WSDL trailer. The HTTP server will listen on the port
referred to in the URL for incoming HTTP GET-requests. If an incorrect identifier
is used, an error is thrown. Depending on whether the URL ends with “?WSDL”
or “?GSDL” the WSDL or GSDL document is returned, respectively. In all other
cases an error is thrown.



312 G. Stuer, J. Broeckhove, V. Sunderam

4.7 Registration Algorithm

First the UDDI registry is queried for BusinessEntities with a given name. If none
exists, a new entry will be created. Otherwise, the unique key of the first match-
ing entry will be retrieved. In the second step, the BusinessEntity’s services are
queried for a service with a given name. If none exists, a new entry will be cre-
ated. Otherwise, the unique key of the first matching service entry will be retrieved.
Thirdly, the access points and URLs of the service’s xSDL documents are retrieved.
Finally, the new access points and the TModels containing the xSDL URLs are
added to the end of the list.

This setup allows for different kernels, each publishing the same pluglet to the
same UDDI registry. When users query the registry, they will receive a list of all
instantiated services. For each registered pluglet a data structure is kept with the
business, service, WSDL and GSDL binding keys. This algorithm is depicted in
Figure 3.

Fig. 3. Registering a service

4.8 Removal Algorithm

Using the service key stored in the data structure mentioned above, the UDDI is
queried for this service’s entry. Using the binding keys, the WSDL and GSDL
bindings created by this instance of the pluglet are searched and removed. If after
this step, there are still bindings left, the updated service entry is stored in the UDDI,
otherwise the service entry is removed. This algorithm is depicted in Figure 4.



Publishing H2O pluglets in UDDI registries 313

Retrieve
BusinessService

Retrieve
Bindings

found?

Y N

Remove
Service

bindings left?

Y N

Remove
Bindings

Fig. 4. Unregistering a service

5 SUMMARY

In this contribution we have presented a framework to export the pluglets of the
H2O computational system as Web/Grid Services and register them with a UDDI
registry. We have thereby enhanced H2O’s Web Service/OGSA compatibility.

The full implementation of all operations defined by the OGSI specifications
have not been implemented yet. Currently, only the proxy and method routing
infrastructure is provided. Other features of OGSA compliance and the impact of
the shift from OGSA to the WS-RF Web Service Resource Framework) are a matter
of future work.

REFERENCES

[1] Foster, I.—Kesselman, C.—Tuecke, S.: The Anatomy of the Grid: Enabling
Scalable Virtual Organizations. The International Journal of Supercomputer Appli-
cations, 153, 2001.

[2] Foster, I.—Kesselman, C.: A Metacomputing Infrastructure Toolkit. The Inter-
national Journal of Supercomputer Applications and High Performance Computing,
Vol. 11, 1997, No. 2, pp. 115–128.



314 G. Stuer, J. Broeckhove, V. Sunderam

[3] Natrajan, A.—Humphrey, M. A.—Grimshaw, A. S.: Grids: Harnessing

Geographically-Seperated Resources in a Multi-Organisationel Context. In 15th An-
nual International Symposium on High Performance Computing Systems and Appli-
cations, 2001.

[4] Grid2: Blueprint for a New Computing Infrastructure. Eds. I. Foster and C. Kessel-
man. Morgan Kaufmann Publishers, 2004.

[5] Grid Computing. Eds. F. Berman, G. C. Fox, A. J. G. Hey., J. Wiley, 2003.

[6] Sunderam, V.—Kurzyniec, D.: Lightweight Self-Organizing Frameworks for
Metacomputing. In 11th International Symposium on High Performance Distributed
Computing, 2002.

[7] Juhasz, Z.—Andics, A.—Pota, S.: JM: A Jini Framework for Global Computing.
IEEE International Symposium on Cluster Computing and the Grid, 2002.

[8] Foster, I.—Kesselman, C.—Nick, J.—Tuecke, S.: The Physiology of the Grid:
An Open Grid Services Architecture for Distributed Systems Integration. Open Grid
Service Infrastructure WG, Global Grid Forum, 2002.

[9] Walsh, A. E.: UDDI, SOAP and WSDL: The Web Services Specification Reference
Book. Prentice Hall, 2002.

[10] Open Grid Service Infrastructure (OGSI): http://www.gridforum.org/ogsi-wg/
drafts/draft-ggf-ogsi-gridservice-29_2003-04-05.pdf.

[11] Globus Toolkit 3: http://www-unix.globus.org/toolkit/download.html.

[12] Stuer, G.—Sunderam, V.—Broeckhove, J.: Towards OGSA Compatibility in
Alternative Metacomputing Frameworks. Lecture Notes in Computer Science 3036,
p. 51–58.

[13] Kurzyniec, D.—Wrzosek, T.—Drzewiecki, D.—Sunderam, V.: Towards
Self-Organizing Distributed Computing Frameworks: The H2O Approach. In Par-
allel Processing Letters, Vol. 13, 2003, No. 2, pp. 273–290.

[14] The H2O Project Home Page: http://www.mathcs.emory.edu/dcl/h2o/.

[15] The RMIX Project Home Page: http://www.mathcs.emory.edu/dcl/rmix/.

[16] Apache UDDI Registry. http://ws.apache.org/juddi/.

[17] Sun’s Java Web Services Developer Pack. http://java.sun.com/webservices/

downloads/webservicespack.html.

[18] The Java API for XML Registries. http://java.sun.com/xml/jaxr/overview.

html.

[19] UDDI4J Project. http://www.uddi4j.org.

[20] Sun’s Java Web Services Developer Pack – Release Notes http://java.sun.com/

webservices/docs/1.3/ReleaseNotes.html

[21] Web Services Resource Framework. http://www.globus.org/wsrf/.



Publishing H2O pluglets in UDDI registries 315

Gunther Stuer is a post-doctoral fellow in the Department of

Mathematics and Computer Science at the University of Ant-
werp (UA), Belgium. His research interests include network
protocol design, Java lightweight grid systems and distributed
computing. In 2003 he received his PhD. in Computer Science,
at the University of Antwerp (UA), Belgium.

Vaidy Sunderam is a professor of computer science at Emory

University. His research interests are in wireless networks and
mobile computing systems, parallel and distributed processing
systems, and infrastructures for collaborative computing. His
prior and current research efforts have focused on system archi-
tectures and implementations for mobile computing middleware,
collaboration tools, and heterogeneous metacomputing, includ-
ing the PVM system and several other frameworks such as IceT,
H2O, and Harness. Professor Sunderam teaches computer sci-
ence at the beginning, advanced, and graduate levels, and ad-
vises graduate theses in the area of computer systems.

Jan Broekhove is a professor in the Department of Math-
ematics and Computer Science at the University of Antwerp
(UA), Belgium. His research interests include computational sci-
ence, quantum physics and distributed computing. In 1982 he
received his PhD. in Physics, at the Free University of Brussels
(VUB), Belgium.


