
Proyecto Fin de Carrera

T́ıtulo Automated tools and techniques

for distributed Grid software

Subt́ıtulo Development of the testbed infrastructure

Autor Carlos Aguado Sánchez

Tutor D. Alberto Di Meglio

Ponente D. David Fernández Cambronero

Tribunal

Presidente D. Ángel Fernández del Campo

Vocal D. David Fernández Cambronero

Secretario D. Francisco Javier Ruiz Piñar

Suplente D. Luis Bellido Triana

Fecha

Calificación

C
E

R
N

-T
H

E
SI

S-
20

07
-0

76
12

/
11

/
20

07

Automated tools and techniques
for distributed Grid software

Development of the testbed infrastructure

Carlos Aguado Sánchez

D. Alberto Di Meglio
IT Department - Grid Deployment
CERN European Organization for Nuclear Research

D. David Fernández Cambronero
Escuela Técnica Superior de Ingenieros de Telecomunicación
Universidad Politécnica de Madrid

Resumen

En los últimos tiempos, el Grid está cobrando cierta importancia como
nuevo paradigma para la compartición y uso eficiente de recursos en todo el
mundo. Su propósito a largo plazo es convertirse en el sistema automatizado
de distribución de recursos computacionales que permita a organismos e
instituciones aunar esfuerzos en la consecución de un objetivo común.

Sin embargo, la gran potencialidad de esta solución hace que su diseño
requiera un alto grado de abstracción, definiendo una pila de protocolos
distribúıda que proporciona servicios y meta-servicios deslocalizados. Aśı
pues, frente al planteamiento teórico inicial, han surgido distintas alternativas
centradas en satisfacer distintos requisitos y cuya interconexión no es siempre
posible.

Como parte de los esfuerzos en su desarrollo, diversas comunidades in-
ternacionales han percibido la necesidad de estándares que permitan la in-
teroperabilidad entre estos sistemas de una forma nativa. Este es el caso del
Open Grid Forum y sus diversas iniciativas (p.e. OGSA).

Asimismo, el desarrollo de cualquier distribución Grid se debe enfrentar a
los clásicos problemas a los que se enfrenta el desarrollo de cualquier software
distribúıdo (fiabilidad, disponibilidad, calidad de servicio, gestión, etc.). No
obstante, en el caso del Grid, la masiva proliferación de distintos servi-
cios como forma de provisión de caracteŕısticas básicas hace que aparezcan
mútiples relaciones entre ellos, lo que aumenta la complejidad del proceso de
desarrollo.

Este proyecto fin de carrera se desarrolla en este entorno bajo la acción
de los proyectos europeos ETICS y OMII-Europe. Trata de dar respuesta a
la pregunta de qué mecanismos establecer para que el desarrollo de software
para Grid integre de forma automática en el mismo proceso de release las ac-
tividades conducentes a asegurar la interoperabilidad con otras distribuciones
y por tanto ciertos niveles de calidad. Y para ello, se ha realizado como
prueba de concepto el test automático de la recomendación del OGF para
env́ıo de trabajos a entornos Grid (OGSA-BES) sobre la implementación de
este servicio en la distribución Grid gLite (CREAM-BES).

La realización de dicho test se ha realizado sobre la plataforma ETICS,
diseñada para gestionar y facilitar el proceso de desarrollo de cualquier pro-
ducto software en general. Dicha plataforma incluye los elementos necesarios
para almacenar toda la información correspondiente a componentes y sus
relaciones, repositorios de código, plataformas soportadas, tests y elementos
de validación que permiten implementar un proceso integral de calidad.

Los resultados muestran que aún es pronto para hablar de compatibilidad
con la recomendación y por tanto asegurar la interoperabilidad. Sin embargo,

vi

a pesar de los estados tempranos de los desarrollos, también muestran que la
integración de la validación automática es viable. Ello ofrece una importante
capacidad de análisis en el momento de comprobar el estado del desarrollo,
lo que redunda en la mejora de la calidad final.

Keywords

Grid, SE, software engineering, Test, QA, quality assurance, compliance
testing, functional testing, conformance, validation, job submission, testbed,
automatic testing, virtualization, coscheduling, OGSA-BES, ETICS, OMII-
Europe, gLite, CREAM, UNICORE.

Acknowledgements

To accomplish successfully the objectives stated in this master thesis I have
needed the help of many people to cover many of the different aspects of its
development.

Firstly, I would like to thank D. Alberto Di Meglio for his support during
my stage at CERN and his big efforts to make me understand the current
Grid environment, works, trends and international efforts. Due to him, I
have travelled a lot and known a lot of exciting people around Europe, what
will be interesting for the nearest future.

Secondly, I would like to thank for the support of the whole ETICS team
based at CERN: Meb, Marian, Lorenzo, Tomek and Danica at the last part.
We have shared many good moments and I have learned many things from
all of them. I really enjoyed.

I am specially grateful to Guillermo and Rosa. With them, this year has
been much more easy. They have taught me not only how to accomplish some
technical tasks but the most important, how to face up with the changing
environment we were working. Without question, it has had a big impact on
these results.

I will be always grateful to all the people have aided me with specific but
important issues at CERN and INFN: Maŕıa, Maarten, Omer, Joachim and
Paolo.

Another special mention must be made to my thesis tutor, D. David
Fernández Cambronero. I thank him for his support during last years and
his willingness to fill the paperwork during these years in the University.

Finally, but not the least I cannot stop thanking the affection and support
of my parents, José Luis and Mercedes; my sister, Gloria and all my friends.
Despite they do not know it, they are also responsible in some way of the
completion of the work I present here.

Carlos Aguado Sánchez

Contents

Introduction xix

1 The Grid 1
1.1 Computing grids . 2

1.1.1 The power grid . 4
1.1.2 The Grid era . 5

1.2 Design principles . 10
1.2.1 Core principles . 10
1.2.2 Architecture . 13

1.3 Results: Grid potential . 17
1.3.1 Distributed supercomputing applications 17
1.3.2 Real-time distributed instrumentation 19
1.3.3 Data intensive computing 19

1.4 Implementations . 20
1.4.1 The Globus Toolkit . 20
1.4.2 gLite Middleware . 24
1.4.3 UNICORE . 29
1.4.4 OGSA initiative . 31

1.5 Summary . 34

2 State of the Art 35
2.1 The software quality process 36

2.1.1 Quality metrics . 37
2.1.2 Software testing . 38

2.2 Description of a testbed . 48
2.2.1 Distributed testing . 49

2.3 Existing solutions . 50
2.3.1 The Apache Software Foundation 51
2.3.2 Sourceforge . 52
2.3.3 Metronome . 53
2.3.4 Others . 55

x CONTENTS

2.4 Summary . 57

3 The ETICS system 59
3.1 What is ETICS? . 59

3.1.1 Objectives . 60
3.1.2 Features . 61

3.2 ETICS architecture . 62
3.2.1 Data model . 63
3.2.2 Service architecture . 71

3.3 The ETICS facility . 78
3.4 Summary . 80

4 Test use case: OGSA-BES compliance 83
4.1 OGSA-BES description . 84

4.1.1 Data model . 85
4.1.2 Port-types . 88

4.2 Test objectives . 92
4.3 Summary . 94

5 Test use case: design, implementation and results 95
5.1 Test design . 96

5.1.1 The client . 96
5.1.2 The testbed . 99

5.2 Test implementation . 102
5.2.1 Compliance test code 102
5.2.2 Deployment of the scenario 103
5.2.3 Modelization in ETICS 106

5.3 Test deployment and results 109
5.4 Summary . 113

6 Conclusions 115

A Test implementation 121
A.1 ETICS commands . 121
A.2 Testsuite design . 122

B Screenshots 127
B.1 Modelization in ETICS . 127
B.2 Results . 127

Bibliography 138

List of Tables

3.1 Module parameters . 65
3.2 Project parameters . 65
3.3 Subsystem parameters . 65
3.4 Component parameters . 67
3.5 Configuration parameters . 67
3.6 Inherited module parameters 68
3.7 VCS Command parameters 70
3.8 Build Command targets . 70
3.9 Test Command parameters . 72
3.10 Roles . 72

4.1 BES Factory attributes . 89
4.2 BES Activity attributes . 91

5.1 Test methods results . 111

A.1 Test methods description . 123

List of Figures

1.1 Globus toolkit . 22
1.2 gLite architecture . 26
1.3 UNICORE architecture . 30

2.1 V Model . 39

3.1 ETICS Architecture . 74
3.2 The ETICS facility . 78

4.1 BES state model . 86

5.1 Compliance test results . 110

B.1 Compliance test tree . 128
B.2 ETICS job submission . 129
B.3 Compliance tests execution . 130
B.4 Repository deployment . 131
B.5 Worker node deployment . 132
B.6 CE deployment . 133

List of Acronyms

AFS Andrew File System

AuthN Authentication

AuthZ Authorization

CA Certification Authority

CE Computing Element

CERN European Organization for Nuclear Research

CREAM Computing Resource Execution And Management

CRM Customer Relationship Management

CSS Cascading Style Sheet

CVS Concurrent Versions System

EAI Enterprise Application Integration

EGEE Enabling Grids for E-SciencE

EPR Endpoint Reference

ERA European Research Area

ERP Enterprise Resource Planning

ETICS e-Infrastructure for Testing, Integration and Configuration
of Software

EuGridPMA . European Grid Policy Management Authority

GGF Global Grid Forum

xvi LIST OF ACRONYMS

GSI Globus Security Infrastructure

GUID Grid User Identifier

HEP High energy Physics

ICT Information and Communication Technologies

IEEE Institute of Electrical and Electronical Engineers

INFN Istituto Nazionale di Fisica Nucleare

INI Initialization file

ISO International Standards Organization

IUT Implementation Under Test

JCR Java Content Repository

JSDL Job Submission Description Language

LFN Logical File Name

LHC Large Hadron Collider

LRMS Local Resource Management System

LSF Load Sharing Facility

MCDC MultiConditional Decision Coverage

MTBF Mean Time Between Failure

MTTR Mean Time To Repair

NSF National Science Foundation

OASIS Organization for the Advancement of Structured Informa-
tion Standards

OGF Open Grid Forum

OGSA Open Grid Services Architecture

OGSA-BES . . OGSA Basic Execution Service

OGSA-DAI . . . OGSA Data Access and Integration

LIST OF ACRONYMS xvii

OMII Open Middleware Infrastructure Institute

OOP Object Oriented Programming

PBS Portable Batch System

PKCS Public Key Cryptographic System

PKI Public Key Infrastructure

POSIX Portable Operating System Interface

QA Quality Assurance

RBAC Role-Based Access Control

RDBMS Relational Database Management System

RSS Rich Site Summary/RDF Site Summary/Really Simple Syn-
dication

SAML Security Assertion Markup Language

SCM Supply Chain Management

SE Storage Element

SLA Service Level Agreement

SOA Service Oriented Architecture

SOAP Simple Object Access Protocol

SSO Single Sign On

SVN Subversion

TSL Task Sequencing Language

UDDI Universal Description, Discovery and Integration

UNICORE . . . Uniform Interface to Computer Resources

UoW University of Wisconsin-Madison

VCS Version Control System

VO Virtual Organization

xviii LIST OF ACRONYMS

VOMS Virtual Organization Membership Service

WA Web Application

WN Worker Node

WS Web Service

WSDL Web Service Description Language

WS-GRAM . . . Web Service Grid Resource Allocation and Management

WS-RF Web Service Resource Framework

WSRP Web Services for Remote Portlets

XACML eXtensible Access Control Markup Language

XML eXtensible Markup Language

XSL Extensible Stylesheet Language

ZSI Zolera SOAP Infrastructure

Introduction

Grid computing is becoming more and more important in the current days
as a possible solution for the increasing needs of resources in terms of power
computing and storage capacity for the current research challenges in the
world.

This new paradigm offers very amazing views for the ways in which the
new generation information networks will be established and managed as
well as the new highest performances ever seen. However, its difficulties are
also higher than before because this new perspective needs very abstract
and complex tasks to perform high-end, general and extensible results. This
new environment is mainly based on the wide distribution of services. Ser-
vices that provide high-end features to a global infrastructure and delivered
through different partners and different sets of non-homogeneous resources.

The development of this kind of software is a very complex task. The
different components of the services will run under different platforms, en-
vironments and, the most important, will be implementations from different
teams or companies so here appears the main difficulty to this challenge:
how to ensure the perfect understanding among all the peers? or in other
words, how to integrate all the different software developments for achieving
a acceptable global quality?

The development process of this kind of software consists on the following
phases:

• development: producing pieces of software

• test: checking the software against different quality patterns

• integration: joining to other components

• release: producing public artifacts

• configuration: customizing the component for particular usage

In the case of Grid software, the current approach consists on satisfying all
the previous requirements by defining sets of compliance rules, so the different

xx Introduction

software parts should understand by itself the own definition. However,
the great amount of different combinations of hardware/software (so called
platforms) makes impossible to manage the whole release process in an
extensible, reproducible and high-quality way unless automatic tools exist.
So it is clear that new tools are needed for automating all the process of
release a distributed software in the Grid.

These new tools include not only procedures for building automatically
the software components but also mechanisms for making this process based
on software engineering techniques that guarantee the proper continuous
integration and testing based on different kind of schemas.

The main objective of this work is to provide a clear idea about the
interoperability issues to be concerned when developing distributed software
for Grid infrastructures and show how some existing works can help providing
automated tools for achieving reasonable quality results at the end of the
process. The main question stands as how can be guaranteed that several
implementations of the same concept to be interoperable, apart from the
specific details of each one.

This is not a trivial issue since until now, there are plenty of Grid distribu-
tions, not always ready to perform common tasks among them. Right now,
the development process for these scenarios is quite complex and requires
efforts that could need to be repeated to extend those characteristics to
others. Hence, from this point of view, the definition of a common input
interface (API) is something valuable for providing future interoperability.
However this API exists (just now being under construction OGSA-BES), its
definition by itself does not guarantee the desired goal and will be necessary
to implement ways to check the compliance on real scenarios, checking so the
real interoperability. If the interoperability can be achieved by this mean,
anyone could write a simple and generic client to connect to any computing
service in order to send jobs and getting artifacts under different platforms.

The study will start analyzing the origin of all the trouble: the de-
velopment of software for Grid infrastructures. In this section, the use
cases of the Grid solution like the new concept of parallel services based
on the co-scheduling of tasks and the new paradigm of sharing resources in
a efficient and controlled way will be deeply explained. The consequences
in the distributed software development will raise: the use of methodologies,
metrics for quality assurance and its changes due to the new paradigm. Also,
some existing tools with their pros and cons will be introduced.

As part of the description of the environment, the state of the art in
software engineering techniques and tools for distributed Grid development
will be presented (2). Within it, the common approaches, current trends and
open source tools will show why is quality assurance important to achieve

xxi

successful results and the mechanisms oriented to that.
Once understood the underlying trouble and the current challenges, the

ETICS project is depicted as a way to address these new issues in an auto-
matic way (chapter 3). This project aims to provide a build and test service
over a pool of several platforms, generating reports and publishing the results
in a central repository for later integration in other projects.

The work exposed in this thesis covers automatic deployment of virtual
scenarios to verify interoperability between services based on standard com-
pliance testing. Therefore, chapter 4 describes the recommendation used in
the test, drawing the main objectives of the test.

Finally, after the description of the global environment and trends, the
current initiatives and once focused on the field of study, the chapter 5
explains procedure and actions accomplished to achieve the previous results.
It covers the design and implementation phases of not only the test but also
the testbed where it has place. It also shows how the test (i.e. its development
and deployment) is modeled within the ETICS facility. Chapter 6 shows the
conclusions of the tests, as well as found issues during the process. It is also
shown the natural path of activities to be performed after this work.

a ella

Chapter 1

The Grid

The term ’the Grid’ was coined in the early 1990s as an advance distributed
computing infrastructure, sharing multiple computing resources along Inter-
net. But despite previous initiatives for defining new ways of distributed
computing, it was in these moments when Ian Foster, Carl Kesselman and
Steven Tuecke brought together the concept of Grid in the modern term.
The main idea was to establish the proper infrastructure that allowed access
to computing resources as easy as the access to the energy in the electricity
distribution. And not only purely computing resources but also storage and
network resources within the proper security framework.

This new kind of technologies has allowed not only that new range of
scientific and engineering problems could be addressed (like data intensive
computing, distributed supercomputing or high throughput computing) but
also new business models could be exploited. However, this new perspective
represents a complex challenge: to define the set of technologies which allows
to abstract the underlying specific ones (platforms, networks, etc.) in a
completely transparent and scalable way for developing Grid-wide applica-
tions. As in the power grid, every device which needs energy connection
must be compliant with a set of rules specified in the contract, the use of
computing grids establishes some constraints in its design in order to get the
same scale of flexibility and scalability as in the electrical model. With this
new approach of computing resources usage, new troubles appear concerning
the design respect the classical software development model: very high level
of abstraction, need of clarifying the services provided by each entity and
development of the proper tests (distributed along all the framework).

So along this chapter, grid computing will be presented covering the
following aspects: the starting point and its analogy with power grids, the
initial proposal (the core design principles and underlying architecture to
achieve them), consequent results and its potential and finally the current

2 The Grid

initiatives and implementations of such theoretical model.

1.1 Computing grids

During the History, it is proven the big development of societal structures
is bound up with the deployment of supporting infrastructures. Most of
the trade thriving cities in the world emerged out of the rise of their infras-
tructure. Usually, the improvement of these ones allows to get profit of the
natural resources and opportunities, getting a competitive advantage. That
advantage enables to point new challenges and risks that others cannot afford
and therefore make progress into its knowledge field.

In case of information technologies and computer science, this has hap-
pened in the same way. The use of first computers let face automation of
information, in a faster way than before. This new information management
allowed to design new techniques for taking advantage of faster calculations
made by computers and to deploy a completely new way of thinking, abstract-
ing implementation issues (relying on the infrastructure) and being centred
in the specific topic.

The networks appearance involved the possibility of making that infor-
mation world-wide available, therefore enabling new ways of information
management, communication and business. This improvement made possible
teams to joint and work as communities, pointing to the establishment of new
collaboration relationships, what, again, allowed to deal with more and more
complex problems. Now, Internet works as a big social network which is
useful not only for science and engineering tasks, as in these first moments,
but also as the place where getting in contact, making businesses, distributing
media content or simply as entertainment source.

The current technological development has favoured very successful re-
sults in many knowledge fields (cultural, economical, social, etc.) until now,
but the crucial fact is that these technology improvements are so deeply-
rooted into the society that new challenges have been discovered and can
be theoretically addressed. For example, market modeling and simulation,
marketing data mining (or data warehousing), weather analysis and simu-
lation, protein synthesis modeling (proteomics), genomics (genoma analysis
and sequentiation), etc. are new cases in which theoretical models have
been developed thanks to all the new range of information technologies.
However, these new skills need very strong capabilities, not only compu-
tational resources but also storage or high quality network resources, which
are not always available. Therefore, something that was a tool to manage the
complexity of some tasks has been obsoleted in a very short period of time.

1.1 Computing grids 3

The new techniques discovered with these tools demand now more powerful
computing elements to achieve the desired goals.

Therefore, next step consists on searching new perspectives in science and
engineering that allow to increase the efficiency in use of current resources,
enlarging the global systems capacity. During this past experience, two
phenomenon showed that this new perspective should be centred into col-
laborative efforts: the establishment of the computer science market and the
proliferation of scientific communities with common objectives that Internet
puts together.

Computer market evolution during the last decades is characterized by the
remarkable growth of computing and storage capabilities for the same prices
(or even less). In this way, what was common computing equipment during
the 1980s in the main scientific and public research laboratories computer
centres now is comparable to computing equipment for domestic use. This
important fact has made that now it is quite common to find different kind of
service providers, offering services based on this commodity hardware and at
very competitive prices. This means that the potential capability of tools that
allow to use aggregation of resources grows exponential with the available
number of users1.

Also, another important fact is that great science and technical devel-
opments have been always linked to public initiatives for research and in-
novation in the different knowledge fields. Nevertheless, many times these
research jobs were accomplished in isolated teams, with no mutual or so often
connections. Internet appearance with its new revolutionary characteristics
(ubiquity, speed and versatility) made possible the idea of joining research
teams, improving multidisciplinary collaborations and global growth.

Under this context, in the early 1990s, Ian Foster, Carl Kesselman and
Steven Tuecke proposed a new architectural model based on distribution of
services. Distributing computing was proposed some time before and was
already being used (e.g. Distributed Computing System [1]). Their new idea
was developed on the basis of some new infrastructure that enables full and
dynamic management of resources across and multiple organizations. This
concept was based on the same one used since many years before in electrical
power suppliers: the power grid.

Power Grid concept consists on defining the proper system architecture
which is designed to provide computational resources in the moment they
are needed for problem solving. But this concept is slightly different from
classical distributed computing. It relies on the same principles than have

1Conclusion stated in the Metcalfe’s Law: the value of a telecommunications network
is proportional to the square of the number of users of the system.

4 The Grid

been successfully implemented in the power grid, predisposing to the success
of this new approach.

1.1.1 The power grid

The widely use of electrical energy and consequently the electricity distribu-
tion network expansion (formerly known as power grid) is one of the most
important elements that have determined the human development during
the 20th century. Mainly, its model has been the responsible of this success,
allowing this energetic source to have one of the biggest penetration rates
among all potential users in the world. The success of its model lies in two
elements:

• Clear producer-consumer abstraction and separation from resources

• Standardization in network access and service supply

Electrical energy is a kind of energy that can be obtained from chemical,
mechanical, thermal or another electromagnetic sources. The choice of one or
another source depends on economic, ecologic, raw material availability, etc.
reasons. However, whatever source is chosen, it provides the same final result:
electric energy. In addition, the great versatility, easy use and economy of
scale characteristics have made this model one of the most common ones
for power supply in the world. It is based on three main actors: producers,
consumers and suppliers. These last ones, play the key role in the model
because they provide the resources from different kind of producers to a very
big community of users across a very wide area under the desired quantity
and quality.

One of the troubles suppliers have to solve is to put in contact high
heterogeneous producer systems (managed by different companies) with a
huge consumer market in which quantity, quality and affordable price are
very different. In this environment, the second distinguishing character-
istic of power grids appears: virtualization of interfaces (standardization
of technologies), generalisation in the access and pricing policies. Again,
this one has appeared as a very important point in the model because if
some customer needs the power grid services, it is only needed apply for
service provision under the specified contract. After, the client will be
able to connect to the power line any compliant device with the arranged
interface and will be charged depending on his consumption. So power
supplier manages automatically production and consumption issues in terms
of quality, quantity and billing (accounting).

1.1 Computing grids 5

Therefore, resource virtualization (producers abstraction) and informa-
tion virtualization (service supply standardization) are the main principles
to reach in order to define the computational systems architecture which
allows the flexibility, versatility and potential offered through power grids.

1.1.2 The Grid era

Like at the beginning of 20th century, when the electric power grid and
the associated technologies represented a revolution2, now Grid computing
is a clear evidence of another revolution as part of the Information Society.
The dramatic increase of computer and network capabilities and the years of
research in metacomputing have created the required basis for the next step
in the evolution of information technologies.

The Computational Grid is defined as the hardware and software in-
frastructure that enables the management of large-scale pool of resources,
providing dependable, consistent, pervasive and inexpensive access to high-
end computational facilities:

dependable because for using applications above the Grid it is fundamental
that performance issues will be solved in terms of predictability and
sustainability. Grid must provide high-end levels of quality of service
including network bandwidth, latency, jitter, computer power, security
and reliability.

consistent because for service provisioning it is a fundamental concern to
provide standard services, being accessed through standard interfaces
and with standard parameters. The challenge is to abstract the under-
lying heterogeneity of systems without compromising high-performance
execution.

pervasive because it is necessary to count on services always available within
the specified environment. This requirement supposes that grid re-
sources will be available under the environmental conditions have been
settled.

inexpensive to facilitate wide access and broad distribution at competitive
prices.

Under this conditions, Grid can find its opportunity for success because
it will be able to:

2The biggest revolution after the industrial one. It provided reliable, low-cost access
to a standardized service, making electrical resources universally accessible.

6 The Grid

• seize the technological improvements in terms of computational capa-
bilities

• increase demand-driven access to computational power, using high-end
virtual dedicated resources for specific and demanding purposes

• increase utilization of idle capacity

• improve sharing of computational results, making results available to
big interested communities in an easy way (e.g. weather forecasting)

• enable new problem-solving techniques and tools like network-enabled
solvers or teleimmersion techniques

But despite these strengths, the real powerfulness of Grid lies on its
synergistic ability for using high performance computing, networking and
advanced software in order to provide universal access to advanced compu-
tational facilities, in the secure way that allows not to consider the location
of users and resources3.

Grids usage

The use of distributed systems for metacomputing purposes has shown so far
that applications development lacks of important characteristics as costs, reli-
ability, security or scalability. Grid will achieve its potential and usefulness if
the proper models and techniques are developed within its deployment. It is
necessary to design the programming models (APIs), tools and standards for
applications which allow to put the same abstraction layer used in standalone
computing4 into practice.

This perspective establishes the following role-based hierarchy for the
deployment and usage of Grid technologies with software engineering quality:

Grid developer is responsible for implementing the basic services which
provide simplicity, connectivity and security using local system services.

Tool developer is concerned about developing tools, compilers and libraries
in order to implement the Grid services where application developers
will develop the grid-enabled applications. He is responsible for pro-
viding efficient implementations of after-used programming languages.

3What has an important analogy with the globalization concept.
4Abstraction from assembly language to high level languages or from one-off libraries

to application toolkits.

1.1 Computing grids 7

Application developer will write grid-enabled applications using the un-
derlying grid technology. He will use supported programming models
(languages, libraries and tools) and services (for security, resource dis-
covery and brokering, data access, etc.) to design complex algorithms
and high-end applications.

End user will make use of all these grid-enabled applications for making
use of grid resources and services in chemistry, engineering, biomed-
ical sciences, etc. They will require the applications to be reliable,
predictable, confidential and usable.

System administrator must manage the infrastructure on which grids op-
erate. This is a complicated task because in order to get grid usefulness,
locally managed resources have to be available in the global community.
So this political issue must be solved delocalizing administration and
automating multisite issues.

Communities using Grid

Usefulness of the Grid makes it adequate for different scenarios. Not all
of them have the same objectives and requirements (in term of resources),
but the following examples are clear target environments under which Grid
technology may supply great improvements in case of adoption.

For computational scientists and engineers, Grid technologies may sup-
pose the proper tool to simulate and visualize in real time their applications
(steering and controlling the resources). Without it, any error only will be
detected after the collection of results, which is not acceptable for long time-
consuming simulations.

Experimental and environmental sciences need new control resources tech-
nologies like Grid to manage and use remotely large devices which are not
under their physical control. Use of big instruments like telescopes, dis-
tributed weather stations or particle accelerators is not possible unless it is
done under automatic systems that control the whole process and enable con-
current access to results like Grid. Also, the other side of these collaborative
studies is the management of results produced with these instruments and
the knowledge base generated. The multidisciplinary, dynamic, nonlinear
and multitime-scale nature of some problems implies that shared-enabled
tools like Grid are the only way to gather all the experts for studying the
problem.

Nature associations (scientific, business, research, etc.) are another target
group that could be interested on Grid technologies because sometimes not
all the members have the same capability and accessibility to resources. So

8 The Grid

Grid appears as the manner to enable controlled access based on the policies
settled inside the association.

All global companies, specially ICT related ones, could make the most
of Grid, using it for improving their corporate tools like intranets or even
their Enterprise Application Integration (ERP, CRM, SCM, etc.). Use of
such technology could make easier the whole integration in the value chain
improving the global management and consequently, the global results.

One of the more amazing applications could be development of teleim-
mersive applications which would enable full remote training and education.
In this case, the implications in the current educational models would be
huge because of the possibility of giving access to the previously unaffordable
resources (in terms of time and location).

Governments are another important target for the Grid implementation.
Many times, they are responsible for disaster response, national defense
or long-term research. Using grids, national resources occupation would
improve the strategic response reserves and nationwide collaborations, given
any threat or concern.

All these use cases share the same technical objective: use high-end
computational resources for problem solving. However, the differences in
the overall results and the Grid availability to afford them make the Grid to
be the most versatile and powerful tool that can contribute to the growth of
every field.

Architectural entities

To support the Grid concept, definition of the proper architecture is some-
thing fundamental. The new architecture of services must provide answer to
the following questions: how to support high platforms heterogeneity? how to
cover all different specification requirements? if the current computer science
perspective points to fractal definition of services, which are the implications
of this approach for the service provision and the relationships between all
provider elements?

For addressing these questions, the architecture model can be split in
three different semantic abstractions: functional, structural and process-
oriented abstraction [2].

Functional abstraction comprises the way in which system relates with
the environment providing useful results. The way to achieve this goal is ex-
tending the basic services provided by the conventional computing during last
decades to Grid computing environments. The main services to implement
are: process management, authentication and authorization, communication,
naming and addressing, data storage, security and accounting.

1.1 Computing grids 9

Structural abstraction refers to subsystems and relationships between
the elements inside the Grid. Within this model, Grid articulates four
different entities which are supposed to provide different kind of services,
not overlapped and in increasing order of abstraction. From the lowest level
in this stack, the end-systems level (providing platform access based on OS
functionality), cluster level (set of resources providing integrated resources
access with enhanced capabilities), intranet level (entity which summarizes
the whole pool of resources of a specific organization and provides unified
access to high-end organizational resources) and Internet level (provide in-
ternetworking computing resources spanning across multiple intranets and
solving localization, control and internationalization issues).

Finally, process-oriented abstraction refers to the inner dynamic activity
inside whole Grid infrastructure. For that, a set of interfaces has been
defined. Services and protocols that allow to implement the global computer-
based infrastructure seamlessly. The main set of services that need to be
implemented consists of control and signaling processes, scheduling for allo-
cation and use of resources (process-based access), shared space addressing,
resource allocation policies and brokering mechanisms (enforcing policy de-
cisions points).

Challenges

As shown before, the main objective of Grid computing is quite ambitious:
enable global access to resources satisfying owner or local requirements.
However, the start-up of this infrastructure depends strongly on several levels
of computing resources and techniques that are currently under research.

Several topics involve new challenges in computer sciences. Others aim to
change the current perspective of technology, evolving to new ways in which
computers are used.

1. Information Society contribution: nature of applications, algorithms
and problem-solving methods or instrumentation and performance anal-
ysis.

2. Technical challenges: system architecture, network protocols and in-
frastructure, resource management or end systems.

3. Knowledge challenges: programming models and tools or security mod-
els.

These ones are some examples of what current Grid requirements will
involve in the development and deployment of computer science in particular

10 The Grid

and Information Society in general. In the next sections, the principles and
core elements that will enable the evolution towards these objectives are
explained in more detail.

1.2 Design principles

In the previous section, the main idea behind the Grid is outlined. This
presentation has made emphasis mainly in the social and scientific origins,
showing the motivation for such tendency in the current research and the
desirable results. In this section, Grid is presented in a more technical way,
its principles and core features. These basic principles consist a small set
of concepts that being extended properly, provide analogous functionality,
in abstraction terms, to design features in power grids: virtualization and
provisioning.

1.2.1 Core principles

Term virtualization refers to the abstract capability of underlying infras-
tructure to separate functionality generation from resource management and
so, support a broad range of resources, providing the same usefulness. In
Grid environments, this feature provides the essential capability for pooling
together individual resources into the big platform available to consumers.
The proper design of the abstract stack is the main goal in Grid development
in order to render the particular needs without showing how the accom-
plishment takes place. Therefore the virtualization techniques will supply
the general low-level user requirements, taking advantage of the resources
heterogeneousness but avoiding constraints imposed by specific implemen-
tations. This concept explains what Grid environments provide in terms of
infrastructure and capabilities. However it is also needed to know how this
resources can be used, what introduces the second key concept, the provision
of services.

Provisioning means the set of services and available mechanisms which de-
fine the behaviour of resources in terms of policies of access and use, resource
allocation and life cycle management (resource monitoring and control).

Both, virtualization and provisioning are covered under the global concept
of Virtual Organization. This one is the entity which constitutes the entry
point to resources and is responsible for granting rights to consumers upon
fulfillment of corresponding policies. In one hand Virtual Organizations
summarize available resources showing them to final customer as set of
services. So the same physical infrastructure can perform several operations

1.2 Design principles 11

transparently to the user, providing different quality of service patterns simul-
taneously. In the other hand, they provide secure mechanisms for enabling
dynamic access to low-level resources enforcing the predefined policies which
control the use of resources.

Until now, resources have been introduced as a general computer support-
ing unit, but in Grid environments, these ones are classified according to their
abstraction level and their functionality in the stack of features. Therefore,
in Grid there are three type of resources:

information constitutes the main assets which will be exploited using grid
tools. Information comprises all the models and metadata which make
the data meaningful. The way in which this information is stored or its
source is not as important as to know the semantic relationships among
them that show the state of that information and allow to exploit it.
Within information models, another key point is the appearance of
machine-readable standards which make possible introduction of appli-
cations to be used not only directly by humans but also by computers.

applications are the specific resources which provide the intelligence or
business logic to perform operations over the data. Applications are
provided as services or set of ones reflecting any level of complexity
and invoking different relationships. One important aspect of deploy-
ing Grid-enabled applications5 is the reusability and flexibility, what
appears as a result of the proper information models and relationships
among entities and that allows the applications to be orchestrated in
higher-end services.

infrastructures are the physical entity which delivers the computing, stor-
age and networking capabilities. Infrastructures and related services
supply the low-level features needed for upper layers inside the services
stack. They comprise computing elements, communication elements,
storage elements but also software components and protocols in order
to get efficiency, reliability, low latency or encapsulation. Despite
the high abstraction level provided by Grid technologies, the network
infrastructure is still the key point to successfully deploy it, due to the
required high quality of service.

But under the perspective of virtual organizations providing the features
mentioned, interoperability and portability appear as the main issues to
be addressed. In networking terms, interoperability involves to define the

5Term commonly used to refer to applications aware of the underlying scenario and
hence, Grid capabilities

12 The Grid

set of protocols and portability involves definition of standard application
programming interfaces (APIs) which specify the standard behavior and
speak the defined protocols. This model matches exactly with what in last
decades has been called Service-Oriented Architectures.

SOA could be defined as an application architecture within which all
functions are defined as independent services with well-defined invokable in-
terfaces which can be called in defined sequences to form business processes.
Its main goal is to achieve the so-called loosely coupled property. Loose
coupling is the attribute of systems which, assuming modular design, reduces
the dependencies across system components increasing flexibility by focusing
on design of interfaces6.

Usually, the SOA paradigm can be explained as the composition of four
entities which interact in the whole architecture:

services are well-defined and self-contained functions that do not depend
on the state of other services and which also provide the semantic
and the state management to capabilities offered. They constitute the
gateway to applications and expose message-based interfaces suitable
to be accessible across different networks.

messages represent the final definition of service requirements and results.
They establish explicitly the contract between the producer and the
consumer abstracting completely inner implementation details (improv-
ing the transparency).

policies are the set of instructions which govern the service provision. They
are used to negotiate the quality of service, security and management
issues related with the applications and utilisation of underlying re-
sources.

states are the piece of information that enable requests chaining. Services
are able to manage states ensuring their consistency and accurateness
even in a durable way. The proper definition of state management can
improve reliability of services and scalability of the global architecture.

The currently most extended approach to the SOA paradigm is based on
the so-called Web Services. Web services are technically a software system
designed to support interoperable machine-to-machine interaction over a net-
work. There is a collection of technologies which implement the SOA model
stated before. Most of them are implemented using XML-based technologies.
The current core specification is compounded of the main components:

6The interface concept aims to reduce the risk that changes within one component
create unanticipated changes within other components.

1.2 Design principles 13

SOAP (Simple Object Access Protocol) is the protocol used for exchanging
messages between services. It allows the use of several underlying
implementations (called bindings) as for example, HTTP, HTTPS,
SMTP, etc.

WSDL (Web Services Definition Language) is the protocol used to describe
how to perform the communication with the web services in terms of
input arguments and results obtained but in the abstract way that
allows reusability.

UDDI (Universal Description Discovery and Integration) is the protocol to
access a registry for Web services which allows to manage the infor-
mation about the services provided by Service Providers, the service
implementation (WSDL specification file) and related metadata.

This Web services framework presents two advantages for Grid develop-
ment based on OSA which are:

1. fully support of dynamic discovery and service composition in very het-
erogeneous environments (introducing interface definitions, endpoint
implementations and the mechanisms for registering and discovering
them)

2. widespread adoption in current business and research environments
what promotes existing services and tools can be exploited in order
to facilitate the starting point for Grid applications

Once seen the concepts became important in Grid development, next
section presents the real architecture that provides these features. The next
description is not a detailed description of specific software implementations,
but the general structure of resources (the protocol stack) which is intended
to enable previous concepts.

1.2.2 Architecture

Grid architecture definition starts from the Virtual Organizations point of
view because is the main entity for providing the desired virtualization and
provisioning characteristics. From this view, the main task is automation
and management of relationships from any potential user. So interoperability
appears as the main goal to address and therefore the protocol stack.

Interoperability is the key point in order to guarantee the proper ro-
bustness and flexibility which allow relationships to be established among
arbitrary entities. Otherwise, users or applications (on behalf of users) are

14 The Grid

forced to enter into bilateral arrangements, what does not ensure extensibility
to third parties. The way of achieving interoperability is across definition of
standard protocols. These ones specify how distributed system elements
interact with others and the information exchanged during this interaction,
but focusing on external requirements and giving internal implementation
details up. This also preserves control over local resources so individual
organizations control still their own resources and user policies.

Another important point to design the proper stack of protocols is to
consider its role in service provision. Services are defined by the protocol they
speak and the functionality they implement. The way to design applications
that use services is with APIs and SDKs. So if the stack of protocols is
not properly designed, there are only two mechanisms to achieve interoper-
ability: using a single implementation everywhere or knowing the details of
every implementation. Both of them prevent the extensibility, portability or
versatility provided by Grid applications.

Consequently, the open architecture for Grid computing to address those
issues has been defined in [3] [4]. It is based on a conical model whose vertex
is composed of the core protocols (a small number itself), different underlying
technologies are under it and the high-end applications are mapped onto it.
It is important to denote the analogy with current Internet model, where
Internet Protocol is in the core, over it a broad range of different protocols
for different purposes and under it the set of protocols that enable access to
different physical resources. As this model has brought Internet expansion
successfully, the same Grid approach should get the same success.

Fabric layer

The fabric layer is the lowest one in the Grid protocols stack so this one is the
main responsible to provide access to the capabilities offered by resources. In
this case, resources comprise physical ones (computational, storage, network,
etc.) or logical sets of these ones (clusters, distributed file systems, etc.).

Of the two main characteristics of Grid, this layer mainly provides the
virtualization property for higher level protocols so it must deal with the de-
tails of implementations of every resource. Thus, there is a subtle dependency
between sharing operations that can happen at higher levels and the functions
implemented at fabric one. Features provided by resources (i.e. the fabric
layer) should be prepared for enquiry and management mechanisms. The
first ones allow to browse the resources structure and eventually know their
status and the second ones use of their capabilities under some controlled
way to provide quality of service over demand.

Finally, some capabilities that should be provided at this layer are:

1.2 Design principles 15

1. computational resources: monitor and control of processes, allocation,
reservation, status, characteristics browsing, etc.

2. storage resources: global and performance transferring, capabilities
management or enquiry mechanisms.

3. network resources: control over resources for enabling QoS, enquiry
mechanisms, etc.

4. code repositories: software configuration management capabilities for
source and object code.

5. catalogs: datasets for browsing and discovering of resources, configura-
tion information for operations and management, etc.

Connectivity layer

The connectivity layer establishes the communication and authentication
protocols which enable data exchange among different fabric resources. It
is built upon fabric layer in order to provide the abstraction to resource layer
which enable seamlessly accesses to fabric resources.

Communication requirements comprise transport, routing and naming
capabilities. In most of the cases, this will be mapped to equivalent protocols
in IP stack, but general use of resources, specially networks, involves the
development of some mechanisms for adding extensibility and abstraction to
that approach.

Regarding authentication requirements, this layer should provide the next
features:

1. single sign on (SSO): ability to get authenticated only once (just enter-
ing into Grid services).

2. delegation: ability to endow a program to access services under user’s
behalf. This one together with SSO enable the integral security model
required in Grid environments.

3. Integration with local security: seamless integration with local security
solutions already deployed into some organization (such us Kerberos,
Active Directory, Java Enterprise System, etc.)

4. User-based trust relationships: mechanisms for centralizing usage grant-
ing when services are provided among different providers. This avoids
interactions between them as a prerequisite of use.

16 The Grid

Resource layer

Resource layer protocols enable secure initiation, monitoring and control of
operations over individual resources. Like in the analogy with IP stack,
this layer establishes the constraints upon which upper layer protocols will
interact with resources. So, this level performs its actions entirely over
individual resources. This distinction is the key oppositeness to collective
layer in terms of, for example, atomic issues (like the reliability property
provided only by TCP in TCP/IP model).

Two classes of protocols can be considered:

1. information protocols: for enquiring about structure details or statuses
like load or policy issues.

2. management protocols: for accessing and processes creation, monitor-
ing and control. The important aspect is this layer serve as policy
application point (so called policy enforcing point) in order to en-
sure consistency with the policy definition under which the resource
is shared.

Collective layer

The collective layer is built upon the resource layer to extend its individual ca-
pabilities and provide global aware interactions across collection of resources
hosted in different locations. Again, like in the TCP/IP stack equivalent
(transport level), this layer can be considered the first end-to-end layer.

As a result of this design, provisioning properties mentioned before 7 are
supplied by this layer. Some of these services are the following ones:

1. Directory services: discovering and enquiring of VOs properties or
statuses.

2. Co-allocation, scheduling and brokering services: to request and estab-
lish distributed allocation of jobs.

3. Monitoring and diagnostic services: for supporting failure tolerance and
improve delivered QoS.

4. Data replication services: for maximizing performance data transfers
in term of latency, reliability and cost.

7The second key set of features in Grid environments after the virtualization of
resources.

1.3 Results: Grid potential 17

5. Grid-enabled programming services: for enabling high abstract pro-
gramming languages to use global Grid services seamlessly.

6. Software discovery services: to discover best software implementations
in term of platform requirements and user requirements.

7. Authorization services: acting as the policy definition point inside each
VO (implementing RBAC security model).

8. Collaborative services: for coordinated exchange of information be-
tween large user communities.

Application layer

Application layer is the last level in the Grid protocols stack and comprises
all the end-to-end user applications which interact with collective layer (also
with lower layers) in order to provide all desired features. Applications are
based on high level languages and frameworks that implement the mentioned
services within every layer. So that is the mean for achieving interoperability
and portability at user level.

1.3 Results: Grid potential

After presenting this overview about Grid technology, the adjoining question
could be like ‘what is the scope of this new computing revolution? why
do we need something like Grid technology?’. Further than philosophical
implications or new cross integration of systems along different fields or
sciences, Grid computing aims to improve global use of resources enabling the
full integration of different powers in a seamlessly way [5]. The next sections
are examples of target applications that Grid can improve significantly and
thus, deploy all its powerfulness.

1.3.1 Distributed supercomputing applications

Distributed supercomputing applications represent the class of applications
that require so high level of demands that they can be achieved only by
joining multiple resources, becoming formally a virtual supercomputer. The
main topics covered by this kind of applications are simulations (physical,
medical, weather), real-time analysis (image rendering or signal processing)
or complex analysis from very data-dense sources like telescopes or accelera-
tors.

18 The Grid

Supercomputing applications can be classified by the scale of their re-
source requirements in terms of peak or throughput speed, memory or data
volume. And despite all of them share basically the same requirements, the
method or model may vary from one to another. In some cases, heterogeneity
can be considered as some added value because allows to integrate different
solutions available to different platforms in a sole and unique way, avoiding
additional efforts of, for instance, porting the applications to the available
resources.

One kind of constraints supercomputing applications have to face up with
is network issues, such us bandwidth or latency. Grid can contribute to
improve the performance with the following characteristics:

Pipeline decomposition in applications that process from sequences of
complex operations to series of data elements. It is just needed to
identify and separate the pipeline stages to bind them to the proper
resources.

Functional decomposition for applications in which functions can be de-
coupled and distributed across different resources with some minimum
interactions.

Data-parallel decomposition for applications which apply the same al-
gorithm to every data element, which is already loose decoupled with
the rest.

Using these decompositions in the proper way for every case, applications
can be developed for cases where performance depends exclusively on the
underlying technology. Therefore, those problems like bandwidth or latency
will evolve with the Grid and will be solved under the specific environments.

Another constraint is the ability to schedule the different components
of a distributed supercomputer. This issue becomes crucial in order to
obtain the desired peak performance in the application because with the
proper scheduler, simultaneous access to the collection of resources in the
right moment and using the right networks (which reduces again network
bottlenecks) can be achieved. For these cases, the key functionality provided
by Grid, currently unsupported in the supercomputer applications is the
reservation mechanism, which allows this perfect orchestration to happen on
time and during the needed time.

The last fundamental point offered by Grid technologies in supercom-
puting applications is the implicit fault recovery scenario. In traditional
supercomputer applications, the time required to perform some job is quite
long. To avoid having to rerun the entire job in case of failures, the check-
pointing mechanism was invented to recover the application to some known

1.3 Results: Grid potential 19

state (checkpoint). However, due to Grid distributed nature, usage of fault
tolerant computational algorithms together with communication protocols
allows either eliminate completely or reduce significantly the need to check-
point in this kind of applications.

1.3.2 Real-time distributed instrumentation

Real-time distributed applications are the kind of distributed applications
which have special requirements in term of response time to some event or
data calculation. These applications are important in research environments
because are used to control many of the precision instruments, which cannot
be controlled by simply human interaction.

Usually, this time restriction comes from the management of high-speed
data streams which provides the control information of the underlying in-
strument (e.g. health care systems, high-energy physics experiments or
remote microscopy control are a few examples). Their management involves
remote operation of the functions using a middleware supporting infrastruc-
ture (i.e. automated cataloging, storage interfaces, automated monitoring,
policy-based access control, security, integrity, automated brokering or rich
media capabilities) and of systems and communication services (like different
transport schemas, reliable and unreliable multicast, reservation or network-
level security).

Again, the nature of Grid computing enables exactly that behavior. The
current design of Grid allows to implement every aspect of remote opera-
tion (locality, brokerage or time decoupled) using standard mechanisms for
resource cataloging, reservation, allocation/brokering and security access.

1.3.3 Data intensive computing

The term data-intensive computing describes applications which evolve great
amount of I/O operations, that is, an important part of execution time is
devoted to movement of data. One criteria to identify such applications is by
evaluating the total amount of data processed per CPU operation. However,
computer memory usually acts as a cache for the real data source. So, another
way of identifying this applications is comparing the required access rate to
data stores.

But due to the great amount of data to get, these data stores show another
important requirement: the data availability relies on mechanisms to identify
and publish the proper data sets. In data intensive applications, if the data
source is not high quality the results are suspect and it is possible good data
sets will never be used.

20 The Grid

Hence, these important requirements are fulfilled by Grid computing. It
has all the key elements to provide these features by design:

data-handling are digital libraries which enable categorized access to data
sets and data caching systems to provide access to different copies of
the data without overloading the network capabilities.

information discovery performs data publication based on quality assur-
ance mechanisms or information discovery interfaces which enable ac-
cess to the specific data-handlers to get the right information source in
every time, place, target (different metadata associated) and quantity.

knowledge networks represent multiple sets of expertise, information and
knowledge that, aggregated, are able to analyze global problems (in
terms of predictions or interpretations of existing data). This supposes
to have published semantics and schemas and interoperability mecha-
nisms.

Therefore, the Grid approach to data-intensive applications requirements
provides systems to hold data (data storage system), systems to discover data
sets (data naming system), mechanisms to retrieve and operate with the data
(data-handling and data service systems) and high-quality data repositories
(data publication and data presentation services).

1.4 Implementations

The computing Grids concept is a very abstract way of systems intercon-
nection to some common purpose. As seen, the main goal is to design
a versatile Service Oriented Architecture which enables richer interaction
between own resources and contributed resources. However, the way in
which this connection becomes, that is, the real systems architecture, can
be optimized to focus on the different specific requirements or features from
the seen in previous sections.

Currently there are many different Grid implementations, so this sec-
tion introduces the most representative middleware in terms of architectural
model, provided services and widely adoption.

1.4.1 The Globus Toolkit

The Globus toolkit is the first and most extended Grid-enabling technology.
It was conceived at 1998 [3] as the way of sharing computing power, databases
and other infrastructures across corporate, institutional and geographical

1.4 Implementations 21

borders without sacrificing local control and autonomy. It was designed fol-
lowing the mentioned Grid principles: enable seamless collaboration between
organizations by accessing remote resources as locally but preserving fully
local control over its usage.

Specifically, Globus is a Service-Oriented Architecture which provides
access to computing infrastructures based on web services referred as Globus
containers [6]. These ones are application containers designed following inter-
national standards from OGF/GGF or OASIS when available and prepared
to run Java, C or Python web applications. This one constitutes the general
framework that enables the developers to browse, access and monitor the
execution and storage environments, always covering security considerations.

The Globus toolkit is packaged as a set of independent components which
provide the starting point to develop applications across the different layers
(figure 1.1).

Common runtime components The common runtime components
are the set of components intended to hide the complexity of dealing with
service-oriented applications and service-oriented infrastructures. Specific
details like message encoding, securing message exchange, service interface
description, service discovering, etc. are implemented using the current
standard technologies such as SOAP, WSDL, WS-Security, WS-Addressing,
WS-Resource Framework, WS-Notification, WS-Interoperability, etc. In this
way, developer has to care only about developing the service which performs
the desired logic in one of the three supported programming languages.

This package provides C common libraries, C WS Core, Java WS Core,
Python WS Core and the eXtended I/O 8.

Security The security component is known as Globus Security Inter-
face. This component is based on the Public Key Infrastructures and SSL to
provide the following features:

1. single and mutual authentication: relying on some set of trusted CAs,
GSI can prove the identity of each part involve in some communication
using the certificate mechanism.

2. encryption: by default GSI does not encrypt the communication be-
tween parties, but once the authentication is performed, it can be used
to establish an encrypted communication using symmetric cryptogra-
phy.

8C-written library for data transfer which supports multiple protocols as drivers.

22 The Grid

Figure 1.1: The Globus toolkit components

1.4 Implementations 23

3. securing private keys: instead of storing the user private key in plain
text, GSI enables the use of special containers (e.g. PKCS format)
which require a passphrase to access the key before every new connec-
tion.

4. delegation and SSO: GSI enables temporary grants of personal rights
to third parties to perform long time operations in the resources. This
is known as proxy delegation and with this SSL extension, the user
generates a short life-time certificate authorizing the system to act on
his behalf during that time. As a consequence, once created, the user
can use it to perform new mutual authentication without using his
private key again.

As well as this common service, another services provided by this com-
ponent are credential services like MyProxy9 and GSI-OpenSSH, the GSI-
enabled version of the common OpenSSH.

Information services The Globus Information Services consist basi-
cally of the Monitoring and Discovering System (MDS). This is a suite of web
services to discover what resources belongs to some Virtual Organization and
monitor them.

MDS services provide mechanisms to retrieve detailed resource data from
several sources and a trigger interface to perform specific actions when some
condition is met. It includes two services:

1. Index services: collect data from different sources via query or subscrip-
tion interfaces. Is based on WS-RF so the information is published as
resource properties.

2. Trigger services: collect data and compare against set of predefined
conditions in order to perform the required actions when there is any
match.

Both of this services are based on an aggregator framework which unifies
the data collection by defining common aggregation sources such as queries,
subscription to services or calling external information providers like Hawk-
eye, Ganglia, WS-GRAM, RTF, etc.

9Usage of central security proxies has been discovered as the best way to ensure the
integrity in the stored credentials under non-reliable scenarios.

24 The Grid

Execution management The Globus Execution management provide
a suite of services and web-services to submit, control and monitor processes
in Grid computing resources. The execution management involves several
aspects of the job execution: the job definition, the input operations for
arguments or the output operations for results.

The execution management engine of Globus is called Grid Resource
Allocation and Management (GRAM). It is intended to address the job
management in terms of monitoring and control the overall job life cycle, the
file transfer, staging in and out of computing resources and the credential
management. In any case, GRAM is not a resource scheduler but the service
which connects the local resource managers between them and any central
load manager using a standard and interoperable message format.

Data management The data management tools are concerned with
the location, transfer and management of the distributed data used during
Grid computations. Globus Toolkit includes several tools and services to
deliver high-performance and reliable data transport (GridFTP), to man-
age multiple data transfers (RFT), for maintaining location information for
replicated files (RLS), and for accessing integrated structured and partially
structured data (OGSA-DAI).

About data movement, the GridFTP covers the secureness, robustness
and fastness in a transfer of bulk data. On the other hand, the Reliable
File Transfer covers the fault tolerant aspect of the transfer implementing
a WS-RF compliant web service that persists the transfer state in reliable
storage, making the file transfer reliable itself.

Data replication services provide the ability to keep track of copies of
files in the Grid. The Replica Location Service is a distributed registry that
keeps track of where copies exist on physical storage systems (distinguishing
between global logical filename and physical filename). The Data Replication
Service provides a pull-based replication mechanism to ensure that some
specified file exists on a storage site.

Finally, the Open Grid Services Architecture Data Access and Integration
(OGSA-DAI) provides a way of querying, updating and delivering data via
web services integrating different types of data resources (relational data,
XML and files) without exposing them.

1.4.2 gLite Middleware

gLite is the service-based middleware architecture designed by the European-
funded project EGEE. As a Grid architecture gLite is based on the SOA
paradigm in order to provide the required abstraction layer among resources

1.4 Implementations 25

and applications, aiming to facilitate interoperability between services by
conformance to upcoming standards. It is influenced by the current require-
ments for Grid applications promoted by international forums like OGF and
OGSA and by previous experiences like EU DataGrid (EDG), LHC Com-
puting Grid (LCG), Virtual Data Toolkit (VDT), Globus Toolkit, Condor,
NorduGrid and AliEn.

gLite has been specifically designed focused on the following set of re-
quirements, some of them initially drawn by the OGSA: heterogeneous en-
vironment support, resource sharing across organizations, optimal resource
utilisation, global job execution, efficient data services, security, low admin-
istrative cost, scalability, availability, application specific requirements for
EGEE itself10.

In order to achieve this purpose, the middleware is structured in six main
independent components [7] [8]. However the most important issue addressed
by gLite covers the definition of scopes within the provision of the services,
known as: user, site, VO and global. These scopes and the corresponding
set of enforcing policies define the mechanism that allows virtualization of
resources by user or communities, providing tools to guarantee the QoS
subscribed by each one.

Security services provide mechanisms for authentication (based on
trusted domains, revocation methods, credential storage and privacy preser-
vation), authorization (based on Policy Enforcing Points such as the VO
Membership Service and the Community Authorization Service and Policy
Decision Points), auditing (for traceability of security operations and later
analysis), delegation (usage of proxy certificates to grant set of privileges
inside several entities to third parties and SSO identification) and sandboxing
(isolation of applications to ensure user privacy and resource integrity).

Information and monitoring services provide the mechanisms to
publish and consume information about resources or services in order to use
it for monitoring, reservation or brokering purposes. The basic information
services provide a low-level service to publish information about the status
of specific resources. Upon this basic service, there are two specialised ones
to perform richer operations decoupling the source of information from the
consumer (i.e. the Job Monitoring Service and the Network Performance
Monitoring).

10Inside the EGEE consortium, there are several partners representing different scientific
communities such as biomedical, HEP or chemical ones.

26 The Grid

Figure 1.2: The gLite architecture

1.4 Implementations 27

The security implications of this information service such as poisoning of
caches or access to privileged information are solved using the scopes defined
in the security component and enabling the control of published information
only to the publisher.

Job management services provide all the functionality required to
manage the whole life of any job. This task requires the following services:

• accounting: accumulates information about the usage of resources,
enabling generation of reports and publishing information to track user
activity. This information is intended to provide fine-grained usage
reports and implement submission policies.

• computing element: represents the computing resource and its main
functionality is to provide the service which control the job execution
on each moment. This control involves several aspects of the job life
cycle as the matchmaking process, the job description, the job control
and the stage of input arguments, results and errors.

• workload management: is the responsible for the distribution and man-
agement of task across the Grid resources in terms of conveniency and
efficiency. There are two main services, the Workload Manager System
(scheduling and queuing) and the Logging and Bookkeeping Service
(tracking the events of the job during its life cycle).

• job provenance: keeps a snapshot of the complete definition of the job,
its environmental conditions and checkpoints to use this information
later for debugging, post-mortem analysis, comparison on different
scenarios or assisted re-execution purposes. But all data of completed
jobs is stored.

• package management: automates the maintenance of software packages
in a shared area. Operates in the context of a VO understanding and
resolving possible dependencies between packages needed for the job
execution. It constitutes an extension of the traditional Unix package
management systems like RPM, deb, ports, etc.

Data management services provide the required elements to deal
with the bulk of data information the resources use. The minimum granular-
ity is on the file level so in this case, object-based access is not implemented.

In some way, the data services behave like conventional file systems. They
provide logical file names in a hierarchical namespace (accessible from any

28 The Grid

point in the Grid), unique identifiers (GUID like inodes in local file systems
with mapping 1:1 with LFN), directories and symbolic links (no hard link
concept).

Three basic categories classify the services offered:

• storage elements: are the last element where data is stored and the
motivation of this component is to abstract the large variety of de-
vices (with their QoS). Thus, the capabilities supplied are the next
ones: storage space, resource management interface, space manage-
ment, POSIX-like I/O access, file transfer requests.

• catalog services: store and deliver information about the data and
metadata operated by the SE. This service is responsible for providing
the file system appearance and resolving the physical location of the
files. All the features are offered using several interfaces such as:
authorization, metadata, replica, file cataloging, file authorization and
indexes.

• data movement services: provide reliable and scalable capabilities to
move data between Grid sites. The internal service decomposition
is organized to schedule the transfers (Data Scheduler), arrange the
transfer details (File Transfer/Placement Service), queue the request
to get persistence (Transfer Queue) and finally perform the request
between SE (Transfer Agent).

Helper services are intended to provide higher level abstraction in
the management of the global Grid infrastructure and get better quality of
service. The helper services are namely:

• Bandwidth Allocation and Reservation Service: is an end-to-end service
to allow the fair usage of the network, balancing and shaping traffic and
get the desired QoS delivered to the user.

• Configuration and Instrumentation Service: is the service that rep-
resents the set of operations and metadata related to set the state
of applications in the desired state, that is, the mechanism which
allows some central service to monitor and change the status of every
application in the Grid.

• Agreement Service: implements the communication protocol used to
exchange information about Service Level Agreements. This schema
requires three main actors: Agreement Initiators (they trigger the
negotiation to get the SLA desired), Agreement Service (enforce the

1.4 Implementations 29

SLA guaranteed by the RASP) and the Reservation and Allocation
Service Provider (performs the admission control of the resource under
its control).

Grid access are the set of technologies which allow use of Grid re-
sources. Grid access technologies constitute the final user which desires to
perform some computing task, access to some information source, monitor
the status of some job, administrate some features of the resources under his
control, etc.

There are two ways of using the Grid. The former is using the available
libraries which implement the interfaces defined by the services (APIs). This
allows developers access to any layer in the protocol stack, depending on the
level of performance or abstraction they need. The latter is using the Com-
mand Line Interface, which is usually an already developed tool wrapping
the mentioned libraries.

1.4.3 UNICORE

UNICORE stands for Uniform Interface to Computer Resources. The initial
goal was to develop the platform which enables seamless, secure and intuitive
access to heterogeneous computing resources of German supercomputing
centres. The first version was designed in 1997, parallelly to the becoming
of Grid concept the new paradigm for distributed computing [9].

Despite being designed parallel to Grid, it can be considered other kind of
Grid infrastructure because both share the same abstraction and provisioning
concepts using a Service Oriented Architecture [10] [11]. In the case of
UNICORE, its design principles are resource virtualization, security, site
autonomy, ease of use and ease of installation. They are achieved with a
three tier architecture (figure 1.3): user tier, server tier and target system
tier. The current implementation of each level is made using Java as the
programming language and following the Grid standards proposed by OGSA.

User tier is represented by the client interface. It is a pure Java GUI
which exploits all the features provided by the underlying infrastructure. It
consists on several modules to guide the user through the authentication
mechanism (X.509 PKI based); the definition, submission and monitoring of
tasks; the configuration of the sites with whom interact and contains also a
plug-in framework to simplify the extensibility.

The connection with the server tier is performed sending Abstract Job
Objects (AJOs). An AJO is a Java object that contains the full description of

30 The Grid

Figure 1.3: The UNICORE architecture

the task to perform in terms of computational and data resources, workflow
process and security information but following a standard format that ensures
platform and site independence.

Once an instance AJO is created, the client sends it to the server tier
via the UNICORE Protocol Layer (UPL) tunneled over the SSL protocol.
The information sent contains the object serialized, signed with the user
credentials and some optional user data required during the execution.

Server tier is represented by two components: the Gateway and the
Network Job Supervisor (NJS). The former is the entry point to the UNI-
CORE service. It identifies by itself the hosted site (Usite), enabling to
attach it to multiple Grids, authenticates the user and forward the incoming
requests to the NJS of a virtual site (Vsite).

A Vsite groups a particular set of resources and is controlled by one NJS.
Therefore the NJS acts as user mapper between global and local users (check-
ing rights in the (UNICORE User Database - UUDB). It maps abstract jobs
on specific target systems (process called incarnation) using the Incarnation
Database (IDB) and finally perform the stage of input and output files.

1.4 Implementations 31

Target System Tier represents the interface to the underlying su-
percomputer infrastructure. It is just a stateless daemon which acts as the
interface between the NJS and the Local Resource Manager System (typically
PBS, LSF, Condor or Globus GRAM).

1.4.4 OGSA initiative

The Open Grid Services Architecture is the service-oriented architecture
proposed by the Global Grid Forum (GGF) whose main purpose is to address
the need of standardization so that Grid environments are able to speak to-
gether sharing interoperable, portable and reusable components and systems.
The resulting architecture is based on the analysis of current requirements,
challenges, use cases, previous experiences and the state of the art in related
work.

The requirements stated by OGSA for standard Grid environments are
based on a set of non-functional requirements that do not constitute the for-
mal set of requirements but cover infrastructure and applications in scientific
and commercial areas (i.e. service-based distributed queue processing, Grid
workflow, Grid resource reseller, interactive Grids, etc.). The requirements
enunciated are: interoperability and support for dynamic and heterogeneous
environments, resource sharing across organizations, resource optimization,
quality of service assurance, job execution, data services, security, adminis-
trative cost reduction, scalability, availability, extensibility and ease of use
[12] [13].

According to this, the OGSA uses a building block approach to implement
the services, their interfaces, the individual and collective state of resources
belonging to these services and their interaction among them. The specific
software implementation is outside OGSA efforts. Next, a brief explanation
about each one of the capabilities proposed:

Infrastructure services are the set of common implementations, standards
and knowledge that will be used across the rest of the infrastructure,
some of them broadly used and others under design. This approach
is based on the use of web services technology (XML, SOAP, WSDL,
WS-I), naming schemes and policies, security mechanisms and policies
(WS-Security, WS-Agreement, TLS, SAML, XACML), state represen-
tation (WS-RF, WS-Management family), notification and subscrip-
tion (WS-Notification, WS-Eventing), atomic transactions (WS-TX,
WS-Composite Application Framework), orchestration, OGSA profiles
(defining the use of specifications for some specific purpose and ensure
interoperability).

32 The Grid

Execution management services are concerned with the issues of cre-
ating and managing units of work until completion. Some of the
problems must be addressed are finding execution candidate locations
and selecting them, preparing the execution environment, initiating
and managing the execution, retrieval of results and decisions about
interrupted operations. The solution adopted is to split the service
into different classes: resources management services (model process-
ing, storage, executables, etc.), job management services and resource
selection services (to perform the matchmaking).

Data services focus on the management of, access to and update of data
resources and the transfer among the sources. The specific requirements
such as data movement, management of replicated copies, run queries
and updates or federation of data sources are satisfied with a set of
services which deal with different kind of data oriented to such different
scenarios11.

The functional capabilities provided by these services cover the next
aspects: data transfer among various entities, storage management,
simple access, query mechanisms, federation across sources, location
management, update of contents, replica management, transformation
(e.g. formats), security mapping extensions, resource and service con-
figuration, metadata catalogues, data discovery, data provenance and
global system properties (i.e. scalability, performance and availability).

Resource management services perform the management of resources in
Grid. This management could involve the physical and logical re-
sources by themselves, the OGSA Grid resources (using the service
interfaces) or the OGSA Grid infrastructure (using the management
interfaces). At the lowest level, the management demands to monitor,
setup and control the resource and the native interfaces are used. The
infrastructure level introduces a manageability model and interface
which lets manipulation using web services. Finally, at the OGSA level
two interfaces are defined: the functional one corresponds to services
that perform already some kind of management by themselves and
the manageability one is associated to each OGSA capability for its
management.

Security services are intended to facilitate the enforcement of the security-
related policy within a virtual organization. Its components must

11The services are designed to deal with simple files, streams, DBMS, catalogues,
derivations (intermediate result of any operation) or the own data services.

1.4 Implementations 33

integrate and unify current security mechanisms, be decoupled from the
implementation, easy to integrate and extensible to new approaches.
The functional capabilities are: authentication (using several schemas),
identity mapping (from the user authenticated credential to the suitable
local one), authorization (using the proper mechanisms to attach the
user request to the specific set of rights granted), credential conversion
(i.e. between Kerberos systems and PKI-based systems), audit and
secure logging (tracking all the relevant security events to later check
compliance with access-control and authentication policies) and privacy
(related with the policy-driven classification of personally identifiable
information).

Self-management services perform the tasks related with self-configuring,
self-healing and self-optimizing the IT infrastructures upon which Grid
works. These processes are triggered in situations the service can detect
by itself. The main objective of this kind of services is to support
service-level attainment for a set of services so that the behavioral
aspects of the component that cannot be determined a priori by the
service developer can be achieved by a self-managing system using some
set of business policies (Service Level Manager).

Those functional capabilities includes automatic adaption to changes
in the environment, mechanisms that detect improper operations an
initiate policy-based corrective actions or mechanisms able to tune
themselves to achieve better efficiency according to business needs.

This comprises activities like service level management (monitoring,
analysis and protection), policy and model-based management, resource
entitlement, planning or provisioning in a security, highly available and
high-performance environment.

Information services provide the ability to manipulate dynamic data and
events used for monitoring, data used for discovering or data just logged
about applications, resources and services. Typically, these services will
produce information for execution management, accounting, resource
reservation, resource usage or monitoring services.

The functional capabilities provided by these services are: service and
resource discovery (involving directories or registries, indexes, peer-to-
peer discovery or multicast), message delivery infrastructure (using a
message broker and providing reliability), logging and monitoring.

34 The Grid

1.5 Summary

Starting from the previous status and pointing the new challenges, this
chapter presents the Grid paradigm as the future proposal that aims to give
answer to the upcoming requirements of larger computing power.

Regarding the energy power grid, the first authors outlined the way of
applying the same concept to the computing resources, envisioning a new way
of producing and consuming infrastructures along all the world. This new
approach requires to fix the issues that arise from a very abstract and versatile
structure where two main principles shape the proposal: virtualization and
service provisioning.

Currently, the theoretical effort has been followed by the efforts from
different communities to adapt this generic solution to several scientific dis-
ciplines. After several years of development and proofs of concept, it has
been demonstrated that the approach is feasible so the first distributions
appear. There are many different versions but the first one, the Globus
toolkit, depicts the basic building blocks that could be used to create more
complex designs.

In any case, this spread of efforts to achieve physical results needs to
be concreted in software components that, delivering adequate quality lev-
els, can be used universally. There are several initiatives, like the OGSA,
to put together efforts towards these objectives and only upon successful
accomplishment of their activities, the Grid will become what expected.

Next chapters will cover a specific subset of these tasks, the job submission
standardization through the OGSA-BES recommendation.

Chapter 2

State of the Art

During more than thirty years, the computer scientific community is con-
tributing to the software engineering development and its quality process
in many different ways. One of the efforts is oriented to fully understand
the complex environment which surrounds the software creation process (i.e.
its difficulties and its common troubles) trying to identify techniques and
common patterns to give answer to it. Concretely, this complexity is devised
having a look on the great amount of activities where any software component
is used, from common information systems to specific drivers to control
critical installations or biological activities. Moreover, apart from the implicit
difficulty of problems to be solved, it can be said that other component of
the complexity is identified as the extensive range of software applications.

In average, there are 20 to 50 errors per 1000 lines of code during the
development phase and 1.5 to 4 per 1000 during the maintenance phase [14].
This shows that testing procedures are very important, not only to reduce
the number of errors but also to improve the efficiency in such task.

The first part of the chapter will cover precisely this, which ones are the
processes involved in the delivering of a good quality software, the trends,
standards, phases, and methodologies. In a second part, the system testing
phase will be presented in more detail, showing its common challenges and its
crucial role in distributed environments in general and in Grid in particular.
This will introduce the concept of testbed as the most extended approach
to address the troubles drawn. Finally, the third part presents some of the
existing initiatives trying to cover the topic.

36 State of the Art

2.1 The software quality process

In software engineering literature, there are many efforts to set what quality
means. This great diversity mostly resides in the trials to fully understand the
quite recent, very complex and full of implications task of designing working
software. But despite all this variety, there is a common agreement in what
can be considered as a quality software. IEEE states that quality is the degree
to which a system, component or process meets (1) specified requirements or
(2) customer or user needs or expectations[15]. This definition covers the
two most common perspectives of software as a project, that is, systems
that satisfy consumer perception and systems that satisfy the three producer
constraints, namely: time, budged and specifications.

The great amount of research performed on this topic has identified the
establishment of the standards-based mechanism common in the general
industry as the way of guarantee to the user that the product is of a certain
quality. But in opposite to these environments, in software industry, the
abstract nature of the object under development makes quite difficult the
definition of an universal standard to achieve quality in the final release.
Currently, there are several standards to cover almost all the phases involved
in the software development process. Some of them overlaps or contain what
appears to be contradictory requirements, but they agree in the next set of
principles:

1. the whole development process is driven by plans defined according to
standards

2. conformance with standards quality requirements needs to be measured

3. verification and validation are integral part of the software quality
assurance

The first principle concerns about the project infrastructure, how it is
managed, how the plans are designed, how standards are implemented, which
activities are carried out and how (software development, documentation,
testing), policies in case of failure, etc. [16]. The second principle focuses on
defining the set of general parameters that allow to get a quantitative state
of the software, the meaningful values for such parameters and the way of
measure them. The third principle refers to the processes designed and per-
formed to check the software against the specification requirements and the
user requirements. These tasks consist of technical reviews, walkthroughs,
software inspections, checking user and software requirements traceability
[17] and testing.

2.1 The software quality process 37

The complexity and human expertise requirements of the first principle
make it to be out of the reach of this thesis. More information can be
found on [18]. For the rest of principles, the central topic is software testing,
but metrics are closely related to it so next a brief introduction to them is
presented.

2.1.1 Quality metrics

Quality requirements of software products are often described in vague and
general terms. This means that is quite difficult for test engineers to evaluate
the quality of such products because there is no unambiguous or quantitative
reference. Such problem is not only present in software engineering world,
but also in any industrial process that deals with manufacture of products.

Aiming to address all those issues, several organizations have developed
their own guidelines for quality assurance. The most important and rec-
ognized ones are the family of standards for quality assurance developed
by the International Organization for Standardization (ISO) and the In-
stitute of Electrical and Electronic Engineers (IEEE). The former defines
the ISO 9126 for Software Engineering - Product Quality, which customizes
the recommendations from the general ISO 9000 for Quality management
and quality assurance standards (focused any industrial process) to software
development. The latter defines the IEEE 730 Standard for Software Quality
Assurance Plans and the IEEE 1012 Standard for Software Verification and
Validation.

The quality model defined by ISO 9126 allows to measure the quality
of software products by classifying quality properties into six categories,
namely: functionality, reliability, usability, efficiency, maintainability and
portability. Although not all these characteristics are of equal importance to
a software product, this schema provides the base coordinate system where
to check the evolution of a product in a quantitative manner. Usually, this
constitutes the starting point to the quality management plan needed to filter
and deduce the list of important parameters that apply to the underlying
product. Creating a quality profile enables to get focused on the specific
requirements and allows to define the metrics that will be used. The standard
also proposes two kind of metrics called external and internal ones.

The definition of a metric implies to define the procedures and tests that
generate numeric data but also to define the reference units that will be
used to compare with the obtained data. This is the most difficult task
because defining the processes may be as difficult as defining the value that
provides and acceptable quality. Also, the analysis of such values should be
interpreted with great care since the weight of some characteristics must be

38 State of the Art

taken into account. Hence, this shows that an experienced based quantitative
evaluation is required.

Therefore, despite the completion criteria are not met and the tension
between time-to-market and product quality always remains, the final goal
of metrics is to provide a method that supplies a major input for management
to identify risks and support the release decision process.

2.1.2 Software testing

Software testing is the task in software engineering that covers the verification
and validation activities, that is, checks the software against its designing
specifications and the user requirements.

IEEE defines verification as the process of evaluating a system or compo-
nent to determine whether the products of a given development phase satisfy
the conditions imposed at the start of that phase. IEEE also defines validation
as the process of evaluating a system or component during or at the end of the
development process to determine whether it satisfies specified requirements.
Consequently, both activities establish the purpose of testing by covering two
different but related scopes: on one side, to check that the code resulting from
the software development process performs in the way it was designed and
on the other side, that the design itself resolves the user problem1.

Demonstration that a product fully meets its specification is a mechanical
activity driven by different specification requirement documents and is effi-
cient for demonstrating conformance to functional requirements. In contrast,
demonstration of no defects is a non-trivial task that usually requires expert
knowledge of what the system must do and the technology used. Neverthe-
less, both aspects are automatable using the wide knowledge on this field
taking different available tools.

Validation is a more complex task. The proper operation of the software
has already been checked so success depends on the final user perception,
which is not so easily automatable. This requires most of the times inter-
action between experts and the users themselves. Consequently, the rest of
this chapter will focus on testing from the verification point of view, showing
the most common methodologies, phases and existing tools.

Phases

The V-model (figure 2.1) is one of the most common approaches to the
development life cycle. Its structure incorporates testing phases to the tra-
ditional Waterfall development process. Its structure is also an agreed way

1As an idiom says: ‘Do the system right and do the right system’.

2.1 The software quality process 39

Figure 2.1: The V model of software development

40 State of the Art

of building software for any kind of project where several development teams
are involved, specially in distributed environments because it easily decouple
roles in the release process.

The V-model defines four testing phases covering the testing of results
produced by every design phase. These four stages group different kind of
software testing methodologies, each one applying to the specific concerns of
the design phase.

Unit testing refers to the process of testing modules against the detailed
design. Its inputs are successfully compiled modules from code and
are assembled during the process to obtain larger units. The test is
designed to check the low level functionality provided by the component
and may be aware of the internal implementation (white-box unit
tests) or unaware (black-box unit tests). There are also two different
strategies when executing the test. Considering the module to test has
several components, the bottom-up approach checks first the indepen-
dent components using drivers to simulate the higher-level components
and the top-down approach checks first the dependent components
using stubs to simulate the lower-level components.

Integration testing refers to the process of testing subsystems (compounded
of components) considering their contribution to the global architec-
ture. The objective of this phase is to expose defects in the interfaces
and the interactions between the components or systems considered.

System testing refers to the process of testing the full system against its
software requirements, thus, the input must be the successfully inte-
grated system. The scope of system testing is to verify compliance with
the system objectives. Its designs must consider details of the software
requirements and identify the test use cases and proper procedures to
performed it. Possible approaches are function tests:

• functional tests: to check functional requirements

• performance tests: to check quantitatively the system performance

• interface tests: to verify conformance to external interface require-
ments

• operations tests: all the tests that check user interface, man-
machine interface or human computer interaction requirements
(e.g. learning curve, usability, response time)

• resource tests: to check that system requirements such as CPU
time, storage space or memory are accomplished and not more
resources are used

2.1 The software quality process 41

• security tests: to check that security mechanisms are in place to
avoid confidentiality, integrity or availability voids

• portability tests: to discover coding defects or platform specific
dependencies that avoid to run the software in different platforms

• reliability tests: to check the Mean Time Between Failure (MTBF)
of the software, considering different degrees of failure (e.g. criti-
cal, non-critical)

• maintainability tests: to define the Mean Time To Repair (MTTR)
of the software (i.e. the time between reporting of a software
problem and retrieving the repair)

• safety tests: to detect software failures that may cause a critical
or catastrophic hazard and that must be avoided at any price

• regression tests: to retest a system or a component to verify that
newer modifications have not caused unintended effects (impor-
tant before every release to prove that the capabilities of earlier
releases are unchanged)

• stress tests: to evaluate a system or software component beyond
the limits of its requirements (i.e. maximum concurrent requests
of data processed simultaneously)

Acceptance testing Acceptance testing is the last process of the testing
in the V-model and corresponds to the validation part against user
requirements before mentioned. Its input is the software successfully
tested at the system level.

In some practical cases, the V-model is considered a theoretical approach
because does not fit properly with specific industry requirement. However,
most of the alternatives perform the same steps but in a different order or at a
different rate, what makes it to keep its validity. Some of these software devel-
opment processes are: spiral model, chaos model, formal methods, iterative
and incremental development, clean room, rapid application development or
agile processes.

Methods

It has been presented the test phases that are usually performed in some
or other way during the life cycle of many project. The importance of test
planning is as large as the test execution itself, but it is not always imple-
mented in the proper way because of lack of time or resources. Planning the
testing is even the first test of the specifications and lets to solve development

42 State of the Art

problems before they appear. So in order to accomplish this task, there are
several different methods, focusing on various scopes of the test phases. Next,
some of them are described [19].

Category-partitioning helps converting the natural software specification
to a formal test specification. This method is carried out in five steps:

1. Identification of the minimum functional units that cannot be split
into smaller ones.

2. Creation of a set of categories that represent high-level attributes
of the inputs.

3. Partition the categories into specific values or value-ranges that
can be assigned to the input (e.g. choices that force a default
setting or behavior to occur or choices in the boundaries).

4. Constraints determination among the choices of different cate-
gories (e.g. setting impossible combinations or mandatory ones).

5. Generation of test frames from test specifications (i.e. combina-
tion of categories, choices and rules) that are considered general
test cases. From here, real test cases are just obtained by cus-
tomizing these test frames with real values.

This method has some advantages like to make a test specification
instead of test cases, which is more flexible; test cases are reduced, so
it is less probable to leave out important cases; to know what test cases
are left out, having a clear idea about the quality; or the learning curve
is reduced.

Syntax testing is a black-box data-drive testing technique for applications
where input data can be formally described. It is based upon analysis of
the component input syntax in order to model its behavior via its input.
Using a context-free language, sentences are generated and injected
into the component to check if it accepts, rejects or fails. Therefore,
the implicit advantage is the possibility of automation.

Some domains where this technique can be applied are: GUI appli-
cations, markup languages parsers, CLI commands, database query
languages or compilers.

Equivalence partitioning is a technique that classifies all the possible
input and output values of a component in equivalence partitions. This
compression of values cuts down the number of test cases used to test
the system reasonably. The disadvantage is that being heuristic-based,

2.1 The software quality process 43

not all the inputs are tested. Also, the definition of the equivalence
class may be not that simple.

Boundary value analysis is commonly used together with equivalence par-
titioning and consists in the selection of the values at the extreme ends
of and just outside the ends of the input domain when testing any
functionality. Both limits, upper and lower, must be derived from the
specification of the component. It has the advantage of revealing easily
interface input problems generating a small set of test cases. However,
neither all possible inputs nor dependencies between them are tested.

Error guessing is often linked to equivalence partitioning and boundary
value analysis. It is a test design technique bound to the experience
of the tester. It involves making list of errors that are expected to
occur and then designing the test cases to check them. The great
disadvantage of this technique is that is hardly repeatable.

Cause effect graphing is used to derive test cases from a given natural
language specification to validate its corresponding implementation. It
models causes as conditions and the effects as actions to be performed.
The boolean graph generated relates inputs and outputs with boolean
operators. It was used to point out ambiguities or incompleteness but
difficulties on its maintenance make it old fashioned.

State transition diagrams models the component behavior defining states,
their transitions, the events which cause them and the actions that
result. Thus, this technique involves analysis of the transitions between
application states, the events that trigger them and the results. The
better the model captures the specification, the most effectiveness is
achieved. Once this is reached, the recommended approach is to test
every state-transition combination at least once.

Random testing consists in generating test cases randomly over the entire
input domain, according to a predefined distribution (e.g. normal,
uniform). Such distribution is based on the expected operational inputs
range and when no clue about it, the uniform distribution shall be used.
Despite being able to be automatable, the quality of the test set may
be poor.

Fuzz input testing generates test inputs randomly by applying a huge
character string containing both valid and invalid characters. De-
pending on the kind of application (event driven, character driven or
database), the input data will consist of a queue of data structures,

44 State of the Art

streams of random data or random data filling the standard database
schema. Consequently, the purpose of this technique is to demonstrate
that a software component handles exceptions without crashing, rather
than behaving correctly.

Smoke testing is a non-exhaustive software testing technique that check
the proper behavior of the most critical functions but without getting
into finer details. It is intended to be performed after build tasks and
just before the system tests to confirm changes do not break the build.

Equivalence testing is a technique that checks the correctness of a soft-
ware implementation by comparing the output with another standard
implementation for the same input. The disadvantage is that two pieces
of equivalent software are needed.

Tools

The panorama depicted until now shows what kind of concepts and strategies
are involved in the verification and validation of software. Because of its
abstraction, some of them are arduous or simply expensive to implement
in a tool. Next, some of the contributions to this topic from the global
community are described.

CatGen is a tool for automating the generation of test frames from formal
test specifications according to the category partition technique. The
input is a test specification, written in scripting language, and the
output consists of the test frames together with the extended informa-
tion of generation. It may also be used to create a test hierarchy, by
comparing different specification versions of some test.

The benefits of using CatGen are the automation of non-intelligent
part of category-partition technique, flexibility of test frames, usable in
almost every type of software or testing phase.

Mercury TestDirector is a web-based application for managing the whole
testing process. It gathers requirements, plans and schedules tests,
analyses results and manages defects and issues. It consists of five
major components:

1. Requirements management: links test cases to application func-
tional requirements (ensuring traceability)

2. Test plan management: is the base to design the test plan and
build test cases and centrally stores the information enabling shar-
ing across projects

2.1 The software quality process 45

3. Test lab management: schedules all the test to run unattended and
enables dependencies among tests to simulate business processes

4. Defects/issues management: controls the entire defects life cycle,
covering all the steps passed on their resolution and avoiding
duplicates

5. Reporting: collects all the information generated during any of
the mentioned testing processes

Log4J is an open source framework for logging Java applications. It is
intended as a first aid to developers, speeding up the debug process.
By itself is not a testing tool rather than a supporting tool for tests,
complementing the information provided during some test execution.

It defines hierarchical levels of logging (i.e. fatal, error, warning, info
and debug) and log statements which are returned at arbitrarily fine
granularity, using the mentioned hierarchy and inheritance of loggers.
Hence, it allows control over which logging statements are enabled
(using loggers), manage the output destinations (using appenders) and
the format of such output (using layouts). The only drawback is the
lack of asynchronous logging.

xUnit is a unit and regression testing framework architecture for several
programming languages. Its objective is to provide a framework where
developers can produce their own tests while the development process
happens. Another goal is to create set of tests that retain in the
time and that can be integrated across different developments without
interference.

Essentially, xUnit provide the mechanism to execute tests or suites of
them automatically, setting the testing scenario and disabling it after
the test. There are a few reporting options to generate XML/HTML
outputs. The most common variants of this unit testing architecture
are: JUnit (Java), PyUnit (Python), accessUnit (MS Access), AS2Unit
(Action Script 2), CFUnit (ColdFusion), MinUnit (Minimal C), CUnit
(C), cppUnit (C++), dyUnit (Dylan), lUnit (Lua), dotUnit (.NET).

GJTester is an implementation of the Computer-Aided Software Testing
(CAST) paradigm for unit and component testing in Java. It is com-
prised of two major components TestEngine and TestEditor. TestEngine
executes the functions and procedures defined in the test scripts. TestE-
ditor is the script editor, provided by a friendly GUI. Its basic role is
to enable fast input test creation by showing all the possible options to

46 State of the Art

add the script instead of writing source code or using difficult syntaxes.
Another role of the editor is to monitor the execution and report the
results in a comprehensible format.

The basic units of the test script are TestCall and InstanceCreator that
can be grouped together into a test case and a set of these ones in a
test suite. The subject of a TestCall is a concrete instance of a class
which contains the function under test.

JTest is a unit testing and code analyzer tool for Java. It checks whether
the code complies with more than 500 Java development rules and code
conventions. Rules can also be customized without coding. JTest can
examine classes to expose reliability problems, achieve high coverage
and expose uncaught run time exceptions. It also includes a Test Case
Sniffer to monitor running applications and generate JUnit test cases
which capture the application behavior.

Indus is a framework for static analysis and slicing of concurrent Java
applications. Slicing uses program statement dependence information
to identify parts of a program that influence or are influenced by some
set of program of interest. It consists of three major components,
Indus, StaticAnalyses and JavaProgramSlicer. The former contains the
common interface definition to perform analysis and transformations
on the system components. The second one collects the different static
analysis and provides the framework to check value and object flows,
thread escaping and dependencies.

JavaCov is a coverage tool for Java whose purpose is to measure the effec-
tiveness of unit test cases. It supports two types of coverage, branch
and multi-conditional decision coverage (MC/DC).

Branch coverage is a test method to ensure that each possible branch
at some decision point is executed at least once, therefore ensuring that
all reachable code is executed. It can detect all the Java control flow
statements and also the throw statement (although not included in the
statistics). MD/DC is a refined version of the branch coverage whose
criteria is to require that each condition must be shown to affect the
outcome of such decision independently.

It supports two test case types, as Java application and as JUnit, but
in any case it does not support the design of test cases, only gauge
of the coverage of such tests. Also, the monitored program must be
instrumented before running the test cases (what is automatically done
using the tool itself).

2.1 The software quality process 47

Mercury WinRunner is a functional and regression testing tool which
captures verifies and replays user interactions automatically seeking
for defects. It runs test cases written in TSL language. These test
cases use to be macros that represent the set of operations to perform.
It can use checkpoints to compare expected and actual outcomes from
the execution. Another option is to group atomic test cases into test
scenarios, useful for regression testing.

Some of the key features are the test recording capability, grouping test
into scenarios and the possibility to test GUI, web or database-based
applications.

vTest is a functional and testing framework made to verify and validate
web applications in a variety of environments. It supports test creation
by recording interactions with web applications. When recording is
finished, a script is generated which can be edited, compiled and run
again. During the new execution, a detailed HTML report is generated
containing elapsed times, the iterations performed, statuses, the pages
visited with the loading times and different checkpoints. As can be
seen, the great benefit resides on the lack of programming, generating
data-driven tests.

ITP is a test tool for functional, regression and smoke tests of web appli-
cations. I can be used for test-scripting linking building blocks and
generating the corresponding script in XML format.

Apache JMeter is a Java load and performance testing tool. It can be used
to test performance both on static and dynamic resources by simulating
heavy load on a server or network elements. The execution procedure is
based on a test plan describing the steps to be executed (i.e. generating
controllers, listeners, timers, assertions or configuration elements).

Despite it can be used to perform distributed testing, there are some
drawbacks like no subnetting support, is easy to overload the control-
ling console because of the extensive amount of results and is a quite
resource-consuming tool.

WSRP is a test kit that allows to check conformance with the OASIS WSRP
specification. It includes a monitor for collecting web service messages
and an analyzer to process the log files, determine conformance and
generate the corresponding reports in XML format.

PushToTest’s TestMaker is a web application and web service testing
tool designed to perform functional and stress tests. It provides a GUI

48 State of the Art

to generate tests from a WSDL interface and in scripting language, a
test object-oriented library for the creation of web services tests (using
different protocol handlers). It also provides a network console for
distributed testing and a wizard to write scripts (Agent Recorder).

2.2 Description of a testbed

Until now, theoretical aspects of testing as part of software engineering
have been introduced, describing why of their origin, their requirements and
most common techniques as well as guidelines to integrate them into the
whole development process. Nevertheless, nothing has been said about the
environment that surrounds such process, the main actor which orchestrates
the activity and how all such methodologies influence in the development of
any product since the beginning. This one is precisely the concept covered
by testbeds.

An important part of references to testbeds in technical literature [5] [20]
mention it as the virtual scenario used to model the desired set of features
from some future project (i.e. new technology or product). Moreover, this
model represents not only the use cases definition of the product but also the
proof of concept in terms of feasibility, inherent troubles, further implications
or even trials for creating an additional interest in form of community around
the new concept.

Particularly, the IEEE stand will be used here again which defines a
testbed as the environment containing the hardware, instrumentation, sim-
ulators, software tools and other support elements needed to conduct a test.
In this definition the key point is the environment context in which the tests
will be performed. Defining an environment means to set the elements that
create a fully-controlled reproduction of a real scenario. This one isolates the
test from production constraints, dependencies and risks when running it on
a production one, but keeping the features required like in one of them.

Therefore, added to this definition, three important aspects of a testbed
are the next:

• hardware: the set of platforms or physical infrastructures that provide
the computing, storage and network capabilities that enable any kind
of work and interaction between the components of an hypothetical
software development under test.

• software: the set of supporting software applications that interface the
hardware infrastructure with the global functionality provided by the
testbed (i.e. configuring, monitoring and control tools). In this context,

2.2 Description of a testbed 49

it provides the control and instrumentation interface to the underlying
resources.

• simulators: the set of specific applications that exploit the powerfulness
of the virtual infrastructure and deploy and run the software and test
cases under consideration.

As can be noticed, this testbed description shows an important analogy
with the description of the Grid infrastructure made in the section 1.2. In
fact, it uses the same virtualization and provisioning principles stated in the
Grid solution for the different purpose of controlled and reproducible test
making. This coincidence naturally suggests that the Grid ability to perform
some tasks under certain conditions could be used to extend the functionality
and capabilities offered by conventional testbeds technologies in case of being
Grid-based.

A particular case of interest for using testbeds is the possibility of re-
producing under a controlled and systematically way (i.e. programmati-
cally) some complex or rich-interactive scenario where the distribution of
components, their integration itself or the interoperability between different
implementations of services are the target of the test. This is usually covered
by the system testing phase of the V-model but it deserves a special mention
to know exactly what it involves.

2.2.1 Distributed testing

Despite it depends on the specific purpose, distributed systems are basically
designed to satisfy a common specific range of features such as reliability,
availability or performance. This high-end capabilities involve problems such
as service discovering, synchronization, data consistency and data replication,
concurrency issues, fault tolerance, security, etc. So, in addition to the usual
testing procedures to check the validity of software, specific tests that check
the functionality under actual conditions are needed.

Distributed testing refers to this exercise of verifying and validating the
features of some application which implements the distribution paradigm
[21]. Thus, this exercise usually covers deployment of software in a remote
scenario and check the simultaneity and synchronization among processes by
checking how the interactions happen.

As mentioned before, distributed testing is close to system testing in
terms of scope and target systems. The methodologies applied to the latter
are still valid for the former, but this new scenario involves the necessity of
new techniques to cover special concerns of distributed testing like portability
or interoperability.

50 State of the Art

In general, the execution of a batch of test cases in a distributed system
will involve:

• definition: detailed information about the structure of the services
participating in the test (i.e. scope, functionality and dependencies),
the information they will exchange and the method in which it will be
performed

• orchestration: definition of how the distributed system is going to
be launched, defining the timeline of the service deployment and the
intermediate results needed by other parts or components

• deployment: sequence of steps which enables the automatic installa-
tion, configuration and running of every service involved in the test

• synchronization: mechanisms that avoid races or blocks between com-
ponents based on the information of the system definition, orchestration
and deployment

• execution: ability to launch, monitor and reset the set of test cases upon
the underlying system, acting as main actor who set the environment
(using the previous stages) run the tests and collect the results

2.3 Existing solutions

The panorama shown until now has described the concepts about testing
in general and distributed testing in particular, illustrating which are the
principles, the approaches and some tools. The broadness of these activities is
not so easy to implement in the day-to-day management and usually requires
many efforts that not all the companies can afford. In big corporations,
this issue is often addressed either developing their own infrastructure or
outsourcing the service provision to specialized suppliers.

In addition, the increasing complexity of the projects developed by the
open source community forces to implement some kind of distributed orga-
nization that leverages the available resources, keeps the flexibility of such
structures but also includes the powerfulness of standards and recognized
best practices.

In order to cover this void of developing and testing tools for big project,
some initiatives have appeared trying to address the common troubles and
improve the quality delivered by such communities. This section shows the
state of the art in terms of tools for distributed testing and user target.

2.3 Existing solutions 51

2.3.1 The Apache Software Foundation

The Apache Software Foundation has sponsored a number of projects to
develop common tools and standards for software construction. It specifically
provides different tools to assist the developer during the development pro-
cess. However, these projects are often referred to as social experiments, since
they try to address not only purely technical problems related to the software
development management, but also the issues that arise when software is
developed by different communities in geographically apart locations. It
promotes many different projects for software developments but next two
ones have special interest for the purpose of this document.

Gump

Apache Gump is a Python application aimed to serve as continuous inte-
gration tool. It supports natively Apache Ant, Apache Maven and other
building tools to build and compile software against the latest versions of
projects. Therefore, the main goal is to perform build and tests every few
hours to detect possible incompatibility issues between different versions of
project components. In this case, according to the previous description about
software testing, it can be regarded as a building and testing tool because it
integrates the continuously developed code seeking build-time errors.

It works by defining the project structure in XML format. This file
contains all the information required to build the project in terms of sources
of code, dependencies with other projects and external tools needed. With
this information, Gump analyzes the dependencies, uses the proper VCS
command to checkout the code and run then compilation, piping the output
of the dependencies to the requirements to the next project component.

The results are brought together in a HTML-format page, showing suc-
cessful operations, failures and the environment variables like program ver-
sions used during the whole process. It is also able to send build reports to
group of users via e-mail.

Maven

Apache Maven is designed to provide a clear definition of what a Java project
consists of, a standard way to build it and an easy way to publish such
information as well as resulting libraries across different projects2.

Since the primary goal is to enable fast comprehension of the state of
a development, Maven provides an easy and uniform build system, quality

2It defines itself as a software project management and comprehension tool.

52 State of the Art

project information, guidelines for best practices development and transpar-
ent migration for new features. For instance, the quality project information
is delivered by generating change log documents directly from the source
control, cross reference sources, mailing lists, dependency list or unit test
reports. The best practices are taken into account by setting the specification,
execution and unit test reporting as part of the normal build cycle. It also
maintains the test source code in a separate but parallel source tree, uses
test cases naming conventions, etc.

Hence, as a project management tool, it features simple project setup
following recognized best practices, consistent usage across projects, depen-
dency management including automatic updating or dependency closures,
extensibility, release management and distribution publication among others.

2.3.2 Sourceforge

SouceForge.net is the world’s largest open source software development site.
It provides free hosting services to about 100.000 open source projects fo-
cusing on easing the creation of solutions within collaborative environments.
The tools provided by SourceForge.net are oriented in two directions, on one
side to improve the communications within development teams and between
developers and user. On the other side, managing the tools and services that
make possible the development and release processes.

The Collaborative Development System (CDS) is the main tool which
allows project administrators to fully manage the project (i.e. select and
configure services, manage lists of team members and their roles, manage the
release and publicity system, etc.). The most important services provided by
SourceForge.net are:

• VCS services: CVS and SVN repositories are enabled to store the code
generated by the projects

• Communication tools: web-based trackers (for easy management of
bugs reports, support requests, features requests and user-submitted
source code patches), web-based forums (to host discussions between
developers and between developers and users about development or
usage issues) and mailing lists (to provide subscription mechanisms for
information updates to different parts).

• File release tools: to make available ready-to-use software packages
to the end user. These tools provide the full procedure to release a
software component without concern about the maintenance of the

2.3 Existing solutions 53

middleware infrastructure (i.e. the globally distributed network of
download mirrors).

• Publicity: to increase the visibility of the project in the global SourceForge-
net repository. This includes tools like keyword-based searches; specific
details about concerns, scope or family of products; monthly publicity
in the selected Project of the month; higher positions in the top page
based on the project statistics (downloads, last activity, etc.); project
announcements via syndication feeds (e.g. RSS) and shown in the
SourceForge.net front page; screenshot system to provide software pre-
views to potential users.

• Management: facilities for managing the available storage, access to a
shell to enable the generation and maintenance of project web content,
web capabilities (based on different programming languages such as
PHP, Perl or Python), manage the DNS name space for the project
providing different 3rd level domains.

• Donations: tools to channel the supporting action of the user commu-
nity in terms of economic contributions or hardware resources.

2.3.3 Metronome

Metronome is the framework developed by the University of Wisconsin-
Madison for building and testing software in a heterogeneous, multi-user,
distributed computing environment. It is part of the NSF Middleware Ini-
tiative for creating the build-and-test facility that can be comprised of a few
computing resources in a single location or a large heterogeneous collection
of machines spread geographically.

Its main motivation is precisely to abstract the underlying infrastructure
and processes in order to encapsulate them in separate and fully automated
tasks. Thus, users can migrate their existing tools to the new facility without
compromising the already deployed procedures. In the abstraction process,
the system is able to safely execute routines on resources outside the local
administrative domain (therefore not assuming systems configured exactly
the same). Due to dealing with this heterogeneous environment, the sys-
tem also provides resilience by allowing to restart any running activity in
other resource when the former eventually becomes unavailable. Moreover,
to achieve this, Metronome uses mechanisms to describe the capabilities,
constraints and properties of the resources in the pool it manages. The
system schedules the routines to be performed on the resources that match

54 State of the Art

the user requirements, deferring such execution until the machines become
ready.

The design principles of the tools are the next:

Tool independence The tool does not requires any specific build or testing
tools. Users are provided with a general interface that allows them to
encapsulate their own application-specific scripts in well-defined build-
ing blocks processed by the framework.

Lightweight The framework and its related tools are designed to be small
and portable. This provides easiness for all the set of operations (ad-
ministrator and user sides) and access to external resources without
need of installing complex additional packages. It runs on the top of
Condor, using its workload management and distributed computing
features.

Fully controlled environment All the external dependencies and resource
requirements must be explicitly defined (either already present on the
target machine or installed by the framework). This ensures pre-
dictability, reproducibility and reliability of results. This sets the pre-
requirement to create and isolate the proper execution environment on
demand.

Central results repository All information data generated by the tasks
(execution results, logs and program outputs) is automatically gathered
in a central repository. This information can be used later for statistical
analysis of the builds or tests.

Fault tolerance The framework is resilient to error and faults of the under-
lying components by using the capabilities provided by Condor. If the
worker node cannot contact with the submitter node, the results are
collected locally to be sent back when the communication is restored.
On the other side, if the submitter node cannot contact with the worker
node after some defined lease, the task is restarted in other different
resource.

Platform independence Despite the system is designed to perform tasks
only on the matched resources, in case of multi-platform applications
there is also the possibility to define platform-independent tasks that
will be run only once.

Build and test separation The output of any task can be used as the
input of another one. When needed, the system will recover from the

2.3 Existing solutions 55

central repository and deploy on the target machine such results. This
allows the user to decouple targets clearly by their scope and compose
them according to the workflow requirements.

Furthermore this design principles, the main Metronome characteristic
is the ability to provide the additional logic on the top of a heterogeneous
environment (the Condor batch system) to run safely simple jobs in a Grid-
alike scenario and control the whole workflow (i.e. fetch, pre-processing,
platform and post-processing phases).

2.3.4 Others

CruiseControl

CruiseControl is an open source framework for managing the continuous
integration build process. It consists of three main components:

• the build loop is the core module. It triggers the build cycles and
notifies various listeners using different mechanisms (extensible via plu-
gin framework). The trigger can be internal (changes in the software
configuration manager) or external (via predefined configurations).

• the legacy reporting is the publishing component. It enables users to
access the log outputs and artifacts resulting from the build task. This
results are generated in XML format and presented to the user in
HTML format by applying the user-defined XSL transformation and
CSS style.

• the dashboard is the information tool which enables visualization of the
current project status. It also shows the relevant information using
a color code for the success and time of the performed jobs. In this
manner, the user can get easily a fast overview of the project.

Mozilla Tinderbox

Tinderbox is another open source project to quickly check the current status
of some development project. It cover specifically four mains aspects of the
development:

1. automatic build and test: it performs the tasks to launch and monitor
the continuously compilations and automatic unit test and code cover-
age metrics. It also monitors which commitments in the code cause it
to fail and the logs of the process to check where the build breaks.

56 State of the Art

2. last changes: it shows the history of recent changes stored in the version
control system. The idea is to show easily which parts of the code are
being changed and who is making such changes. It offers the possibility
to lock code trees in such way that later breaking commits to the VCS
will be traced to the responsible.

3. ticket tracking: it shows the recent changes in the code tree as a result
of bug fixing or new user requests.

4. communication: it improves the communication between developers
and managers by setting the channels to announce changes, operations
or simply information about the project status.

ElectricCloud

ElectricCloud is a commercial company focused on development of software
production management. Its main branch of products is oriented to create
the build and test facility which allows the user to control the full release
process.

ElectricCommander is its most basic product which is focused on au-
tomating the software production process by automating the building, pack-
aging, testing, and deploying aspects of the development. Some features of
this product are ability to manage any kind if project without regarding
its size; sharing and reuse of project assets, splitting the complex project
structure in different related building blocks; making processes transparent
and repeatable and easiness of learn and adapt to changing environments,
allowing to reuse the already deployed structure without re-engineering.

ElectricAccelerator is a solution intended to reduce the bottleneck present
in the most of build jobs by parallelizing builds across scalable sets of re-
sources. It analyzes jobs and their dependencies to spread out the build task
over a pool of inexpensive machines and monitor the different processes to
avoid broken builds.

ElectricInsight is an add-on to the ElectricAccelerator tool that visualize
the build structure for error detection and showing performance troubles
during the parallelization. It keeps track the information generated by Elec-
tricAccelerator to present a full description of the build in terms of which
jobs are executed, when and which ones are the relationships between the
different parts.

2.4 Summary 57

BuildForge

IBM Rational Build Forge is the IBM product for automatic build and test.
The main features are:

• automation of the build process by organizing repetitive tasks and
enabling consistent processes

• fully compatible with existing procedures such as build scripts or de-
ployment tools, what leverage the existing resources

• enabling multi-threading processing of jobs across a pool of servers and
dynamic management with multiple scheduling options

• customizable monitors and loggers for the output processing

• audit trails to trace the full build activities

• exporting options to ensure reproducibility across different scenarios

• reporting and metrics capabilities to execute and display the tests
performed

• web-based management and integration with the most leading IDEs
(IBM Rational Application Developer, Microsoft Visual Studio and
Eclipse)

• supporting many different platforms (distributed resources or main-
frames) and OSs

• extensible by using public APIs for Java and Perl

2.4 Summary

Software engineering is the branch within computer science that cares about
the creation and maintenance of computer programs to be efficient and
accurate to their needs. One important part of it deals with the development
of techniques and procedures to apply the conventional processes used in the
rest of industrial sector to the software in order to assure the final quality
of the developments. As part of it, testing is the specific phase that aims to
ensure that developments fulfill the requirements in terms of correctness and
accuracy, processes called verification and validation.

In order to verify that a piece of software is properly designed, it can
be analyzed and measured according several standard guidelines publicly

58 State of the Art

recognized as good-practices. For that there are many different techniques
and tools that aim to address smaller parts of the picture. Tools like Cat-
Gen, xUnit or Cobertura implement different parts but always focused on
analysis of the code (lowest part of the V-Model), but not on analysis of the
functionality.

However, the quality assurance process also requires procedures related
with the quality perceived by the end user, conformance to formal specifi-
cations and sustainability plans. But this topic is not so easy to manage,
specially inside big projects where lot of developers contribute to the final
artefact. In this cases, topics like distributed testing or the release manage-
ment broadly determine the success of the final result.

In the community, specially the open source one. There are several
alternatives available to aid the project to manage such complexity. The
Apache Software Foundation with Gump and Maven, public organizations
like the NSF with Metronome and private companies like ElectricCloud offer
complete frameworks to arrange in several ways the build and test process.
Despite none of them cover every requirement, all depict the desired features
and experience in way of different approaches that a general solution must
provide. This scenario sets the background where the ETICS project will
develop its activity.

Chapter 3

The ETICS system

The ETICS project (eInfrastructure for Testing, Integration and Configu-
ration of Software) is a European-funded project chaired by CERN whose
main purpose is to support collaborative efforts in research and development
initiatives. Such efforts are usually oriented to produce large-scale systems
where a lot of different resources are implied. For this purpose, ETICS
integrates existing procedures and tools in a coherent infrastructure in order
to create the facility that enables the mentioned research projects to integrate
their code, validate it against standard guidelines, test it extensively and run
benchmarks and produce output artifacts and reports. The final outcome
is a software component which satisfies the current standards in terms of
interoperability and quality assurance.

Along this chapter, ETICS design principles, features and architecture are
described, drawing the set of capabilities that will be used in the compliance
test use case later on.

3.1 What is ETICS?

In many open source projects there is a common background problem, how
to set up the software life cycle management to guarantee quality, interoper-
ability and maintainability in the final artifact. This affects to the resource
capability, human resources management or time and budged constraints in
such way that the unsuitable management becomes in a low quality software
(i.e. difficult to deploy, integrate and maintain). In large-scale projects,
the risks are even larger because some factors such as developers spread
geographically, with different programming languages and different platforms
(and so tools) lead to a difficult environment to manage.

In the case of Grid developments, there are so many different services,

60 The ETICS system

developed in collaborations between different teams, that the lack of some
tool to deal with the software development cycle makes the final goal hard
to accomplish.

The vision of ETICS is precisely to leverage the power of the Grid infras-
tructure already deployed today and help addressing the software develop-
ment and maintenance challenges mentioned so far. ETICS aims to collect
and settle all the information, tools and processes required and already in
place usually in the projects resources in order to set up a reference common
infrastructure. This will simplify the infrastructural, technical and cost
problems of projects developing software for the Grid or other distributed
environments and therefore, will improve the overall quality of the output.

3.1.1 Objectives

To fulfill this vision, the ETICS project aims to achieve the following sets of
objectives:

Management support sums the efforts driven to create the powerful dis-
tributed facility that leverages the Grid capabilities developed by many
of the projects to whom ETICS is primarily intended and lets to de-
couple the daily project management from the purely project base
infrastructure management. In order to achieve this, ETICS purposes
are the next ones:

1. To identify a number of existing pools of resources with adequate
computing and networking capabilities which are susceptible to
be federated in to a Grid way that will comprise the ETICS
infrastructure.

2. Based on the analysis of a suitable number of successful software
development projects, to identify their requirements in terms of
supported platforms, programming languages, libraries and tools
that will provide versatileness to the intended ETICS infrastruc-
ture.

3. To identify the minimum project metadata and current build and
test tools that included in ETICS will satisfy the identified re-
quirements for distributed developments.

Quality Certification process sums the initiatives leaded to formulate
and implement a common software engineering practices which let
ETICS users to be automatically compliant with them, avoiding the
setting up process. The final goal is to establish the mechanism and

3.1 What is ETICS? 61

tools to assure software quality, making possible the conformance with
the certification process out-of-the-box. Specific objectives are the
following ones:

1. To promote the definition and adoption of common configuration
management and quality assurance guidelines which foster soft-
ware reliability and interoperability.

2. To collect software configuration information and test suites used
in successful projects and integrate them uniformly producing
build, test and quality reports.

Promotion and dissemination of results sums the efforts driven to cre-
ate the reference point which allows to store the status of the project
and its results in order to improve the collaboration among different
projects, industrial applications, extension to other communities, etc.
Specifically, there are two objectives to achieve this:

1. To create the repository of software configuration information,
documentation, benchmarking data and reference test cases used
to generate some kind of software component.

2. To create the dissemination channels that connected to the repos-
itory allow to know to any developer or potential user a fully
detailed description of the process followed by some software prod-
uct. Elements such as test use cases passed, quality metrics,
compliance matrices, trend analysis, etc. will be susceptible to
be published by these means.

3.1.2 Features

According to the objectives outlined before, the ETICS system is designed to
integrate seamlessly the information describing the project to be used during
build and test stages.

Management support features

• Out-of-the-box automatic build and test system

• Multiplatform support: Windows, Unix/Linux

• Designed to support the current implementations for Version Control
Systems

62 The ETICS system

• Flexible automatic dependency management (based on internal and
external dependencies)

• Possible to build from sources or use pre-build binary packages

• Extensible by a plugin framework mechanism to increase the build
functionality

Quality certification process

• Trigger coding convention checks, unit tests, metrics generation, docu-
mentation-harvesting tools and publish the results

• Ability to virtualize real scenarios during testing by deploying auto-
matically the different services on different machines

• Designed to guarantee reproducibility of results

• Production of different package formats

• Extensible by a plugin framework mechanism to extend the test capa-
bilities

Dissemination of results

• Publishes rich build and test reports

• Automatic collection of information about results such as run-time
information, run-time dependencies, etc. and publication in the repos-
itory

• Possible to register the artifacts in the repository in several ways

• Customization of the access to artifacts, enabling several package dis-
tribution systems (e.g. apt or yum).

3.2 ETICS architecture

Until now, ETICS has been introduced from the point of view of the user,
showing the design principles, objectives and advantages that a potential user
will experience since the first use. In this section, a deeper view of ETICS
will show how those requirements are met: how the project information
flows inside the system and which are the ETICS components that using
such information reach the outlined features.

3.2 ETICS architecture 63

As mentioned before, ETICS is not a development project, that is, it is
not intended to design any new tool to, for instance, to build or test software
in a certain way. However, it establishes in a programmatically way, the
abstract structure where to define procedures or dataflows that are common
to many distributed software engineering projects and which use already
existent tools to perform the real tasks in the project.

Thus, the description of the ETICS architecture is split in two major
concepts: the data model which defines how the user data is gathered and
the service architecture which defines the elements involved in the processing
of such data.

3.2.1 Data model

For any tool which aims to deliver high-end automation levels or to behave as
an intelligent system, the key point is what information the system holds and
how structures it, that is, which kind of relationships can be inferred from
data to allow the system exploit it and get the desired behavior. Discover
the proper set of relationships as well as the latter classification in a generic
hierarchy created ad hoc is what determines the degree of robustness, easiness
or suitableness to different nature projects the system can provide.

In terms of software development projects, ETICS identifies two main
entities which structure any project: project modules and project configu-
rations. Project modules gives anatomical structure to the project. This
concept comes from OOP and represents the software elements that provide
certain functionality, e.g. some authentication library, a web service, a
system test, etc. However, these modules do not contain information about
any specific version, repository of sources or dependencies. This specific
information is related with some concrete version of the module considered.
So here appears naturally the second concept entitled by ETICS as project
configuration: the entity which provides physiological structure, defining the
specific details of the module considered (such as source code repository and
version, dependencies with other modules or configurations, etc.).

These ones are the key concepts in the ETICS data model and both are
used to provide the build and test facilities. Next, each one is explained in
more detail.

Modules

As mentioned, a ETICS module represents the generic container that stores
information about some software element and relates it to the rest of project
elements. Considering an analogy between ETICS and Concurrent Versions

64 The ETICS system

Systems (e.g. CVS), ETICS modules have the same entity as CVS modules.
The table 3.1 shows the minimum piece of information the user must intro-
duce in the system in order to define the module. It is easy to see those fields
do not provide any kind of information about which version of the element
is being considered, how can it be built or tested.

For ETICS, any project can be settled defining its structure as a hier-
archical tree of modules. However, the module concept is an abstraction of
information container. Actually, ETICS distinguishes three kind of modules
depending on their scope, namely: project, subsystem and component.

project is the top of the hierarchy and represent the software development
project itself. As the root of the tree, all the parameters defined
on it are automatically inherited by every element under it. It is
compounded of subsystems and components. The project contains the
information shown in the table 3.2.

subsystem is a container of software components where to apply specific
properties and policies. The subsystem can also be a software com-
ponent in its own to be used, for instance, as meta-package producer.
One subsystem belongs to one and only one project and contains the
information shown in the table 3.3.

component represent the smallest unit of functionality in the project ar-
chitecture. The component belongs to one and only one project or
individual subsystem and normally is used to generate software pack-
ages. It contains the information referred in the table 3.4.

deployment represents a deployment test to be used in the testbed envi-
ronment1.

node represents a service node to be used in the testbed environment1.

service represents a service deployment module to be linked to a node1.

test represent a test module to be executed as part of the distributed test1.

All this information defines the skeleton of the project: general descrip-
tion, owner, corporate web site, components structure or even the default
place from where either checkout the source code, either get the binaries
without performing any additional operation. However, it is possible to see
that there is no information about how to perform specific operations like for
instance, build any component, bind the operations to some specific platform

1A more detailed explanation can be found in section 5.1.2.

3.2 ETICS architecture 65

Parameter Description Mandatory
name The name of the module considered

(must be unique in ETICS)
yes

displayName The friendly name of the module no
description A description about the module no
repository The default URL of the repository stor-

ing the packages of this module
no

vcsroot The default root folder of the version
control system storing source code for
this module

no

vendor The module owner no
modifyDate The date of last modification no
createDate The date of the creation no

Table 3.1: Module parameters

Parameter Description Mandatory
module parameters of table 3.1
homepage The home page of the project no
logo The URL of the project logo (usable in

a web environment)
no

Table 3.2: Project parameters

Parameter Description Mandatory
module parameters of table 3.1

Table 3.3: Subsystem parameters

66 The ETICS system

or launch a test scenario to execute some specific test. This other kind of
information is more specific for the current status of the development and
fully addressed in the second entity mentioned before: the configuration.

Configurations

An ETICS configuration groups the set of parameters that identify a com-
plete and unique status of an ETICS module, that is, one module version.
Considering again the CVS analogy, the homologous entity of an ETICS
configuration is the CVS tag or the CVS branch. Both identify a concrete
state in the software development process.

In the ETICS system, configurations are the objects on which the build
and test operations are performed. When a module configuration is build,
by default all child configurations on its tree are automatically built.

Each ETICS configuration can only be attached to one ETICS module,
but each module can have more than one configuration attached. This forces
to establish the relationships between configurations explicitly (instead of
implicitly as with the modules) using the concept of subconfiguration. With
this one, it is possible to get a complete snapshot of the project in terms of
the versions used for each one of its components.

Any configuration, either project one, subsystem one or component one,
behaves as a container of the same kind of information which is classified
according to its scope as:

general parameters present in any configuration and listed in the table
3.5. In addition any configuration inherits the parameters listed in the
table 3.6 from its corresponding module.

platforms define the environment under which this information is applica-
ble.

specific commands refers to the fields needed to perform the specific build
and test actions in one or several platforms.

dependencies refers to the resolution of the module dependencies. These
dependencies can be either internal dependencies (i.e. dependency with
another component of the same project) either external dependencies
(i.e. dependency with other component belonging to some external
project).

3.2 ETICS architecture 67

Parameter Description Mandatory
module parameters of table 3.1
packageName The name of the package produced by

this component if different from the
component name

no

homepage The home page of the project no
download The URL of the download page for this

component if taken directly in binary
format from the vendor

no

licenseType The license agreement to which the
component is bound

no

Table 3.4: Component parameters

Parameter Description Mandatory
name The name of the configuration (must be

unique in ETICS)
yes

dispayName The friendly name of the configuration no
description A description about the configuration no
age The configuration age number no
majorVersion The configuration major version num-

ber
no

minorVersion The configuration minor version num-
ber

no

revisionVersion The configuration revision version
number

no

path The path where the package file can
be downloaded from (relative to the
repository)

no

profile A comma-separated list of predefined
profiles to apply to the configuration

no

status The configuration status (alpha, beta,
RC, etc.)

no

tag The tag string of this configuration in
the Version Control System

no

modifyDate The date of last modification no
createDate The date of the creation no

Table 3.5: Configuration parameters

68 The ETICS system

Parameter Description
moduleName The name of the parent module
moduleDescription The description of the parent module
licenseType The license agreement of the parent

module
projectName The name of the project to which the

parent module belongs

Table 3.6: Inherited module parameters

Platforms

Software development projects may have a strong dependency on the en-
vironment they are built. This dependency comes from the programming
language, the available libraries or the specific features provided by some
hardware architecture that makes the software more suitable for such envi-
ronment. In addition, other projects can be platform independent because
the technology used is like that (i.e. Java applications). ETICS supports
this heterogeneity by introducing an abstraction layer which uniforms the
management of the underlying infrastructure and covers these differences.
The concept of platform represent exactly this idea, the tuple consisting
of hardware architecture, operating system and native compiler (i.e. the
C compiler version). This structure creates an unique identifier for every
development platform class.

Thus, the platform concept is the glue between the configuration defini-
tion and the specific commands that govern the available component oper-
ations. So every configuration consists of one or more platform definitions,
each one defining the specific commands to be used under such platform. For
the cases where there is no specific platform, a default platform defines the
commands that will be valid for any ot them. The platform matchmaking
will be resolved by the client in execution time and depending on the user
preferences.

Specific commands

In order to perform any build or test task, any automatic tool needs to know
about how to get the code, how to use it and what to do with the results.
In the case of ETICS, this questions are addressed filling specific data sets
organized depending on the state they are used. In this manner, to tell
the system about the commands to get the code to perform the task (build

3.2 ETICS architecture 69

or test), ETICS defines the VCS commands detailed in the table 3.7. The
manner ETICS will use this code depends whether it is a build or test task.
In the first case, the user must set the Build Commands (detailed in the
table 3.8) to show the system how to build his code from the beginning to
the packaging. In the second one, the Test Commands (table 3.9) define the
steps required to launch the test in the Implementation Under Test (IUT).

In addition to these set of commands, ETICS provide two mechanisms to
set additional information that may simplify the definition process. The first
one is setting information as properties. These ones are key/value pairs that
once established in some configuration, are automatically inherited by any
subconfiguration. ETICS also defines a set of built-in properties according
to the data contained in the module definition.

The second mechanism is based on environment variables. These ones
are key/value pairs that are available in the execution environment while
processing the task2.

Dependencies

Normally, software projects and specially open source ones do not develop all
the desired functionality from scratch but they reuse code provided by third
parties. This behavior facilitates the development of new capabilities but
creates dependencies between components that must be properly managed.
ETICS aims to provide this management in a versatile way and for that it
defines two categories of dependencies:

static are fixed dependencies between two configurations. They are specified
by name and are not affected by properties or policies.

dynamic are defined between an specific configuration and a module. The
specific configuration of the module is dynamically resolved at checkout
time using properties and may change if the same parent configuration
is used in different configuration trees.

In addition, both kind of dependencies have scope, depending on the task
considered:

built-time are used during build operations but are not added as depen-
dencies in the distribution package (i.e. need in compilation time).

run-time are used to define dependencies in the distribution package ex-
plicitly (i.e. must be present in final installation).

2Available in environments that support this mechanism (Unix, Windows, etc.).

70 The ETICS system

Command name Description Mandatory
description The command set description no
tag Command to tag code no
commit Command to commit code no
checkout Command to check out code no
branch Command to branch no

Table 3.7: VCS Command parameters

Command name Description Mandatory
description The command set description no
checkstyle Command to perform code checking

operations
no

clean Command to clean no
init Command to perform initialization op-

erations that depend on the build sys-
tem structure

no

configure Command perform initialization oper-
ations that do not depend on the build
system structure

no

compile Command to compile code no
doc Command to generate documentation no
test Command to perform static tests in the

code
no

install Command to install the package no
packaging Command to generate distribution

packages
no

prepublish Commands to be executed before pub-
lishing the build artifacts

no

publish Command to publish build artifacts to
standard distribution formats

no

postpublish Commands to be executed after pub-
lishing the build artifacts

no

Table 3.8: Build Command targets

3.2 ETICS architecture 71

Security model

The great amount of sensible information stored in ETICS and the big impact
in case of abuse make ETICS to implement a strong authentication and
authorization schema. The security model is based on two extended and
well-known technologies such as Public Key Infrastructures (PKIs) for the
authentication and the Role-Based Access Control (RBAC) for the autho-
rization.

A PKI is the set of entities and procedures that allows to rely on the
identity of some subject by checking the credentials provided (Certificate)
against a third trusted party (Certification Authority). This technology
is based on asymmetric cryptography so once the credentials are accepted,
there is absolute certainty that such credentials belong to the individual
(have not been tampered) and that the identity contained matches with
the issuer’s one so the subject is authenticated. The great advantage of
this mechanism is that there is no prior and explicit action required by the
user to be authenticated, the system trusts on every credential signed by
the recognised CAs. In this case, ETICS trusts the European Grid Policy
Management Authority (EUGridPMA).

The RBAC is the set of user roles and policies that allows to describe
what every user can do. Instead of granting specific rights to every user, these
ones are grouped into roles so the rights are granted to group of individuals.
This mechanism eases significantly the user management and the security
constraints enforcement. In the ETICS system, read-only operations are
publicly accessible, but editing operations require the users to have one or
more roles (detailed in table 3.10).

3.2.2 Service architecture

The data model presented until now shows how ETICS understands the
structure and the relationships of a software development project. The
fact this information can be established is a milestone itself in the project
definition because eases and clarifies the objectives and relationships among
all the parties involved during the development. But for ETICS, to achieve
this definition means that it is possible to keep track of the evolution of the
states since the beginning. The service architecture of the ETICS system
is precisely oriented to that: once there is a project definition seed, this
leverages the use of the system logic to initialize the environment, saving
costs and allowing the developer to focus on the development.

One of the objectives ETICS aims to provide is the reproducibility of
results as a mechanism to achieve and keep a good quality level of the

72 The ETICS system

Command name Description Mandatory
description The command set description no
clean Command to clean no
init Command to perform initialization op-

erations
no

test Command to execute the tests no

Table 3.9: Test Command parameters

Role name Allowed operations
Administrator All operations on all projects (used by

ETICS service managers)
Module administrator Module edition and security manage-

ment
Developer Configuration edition and remote build

submission
Integrator Configuration edition, remote build

submission and build artifact register-
ing in repository

Tester Remote test submission and test arti-
fact registering in repository

Release Manager Lock configuration, remote submission
and artifact registering in repository

Guest Read-only operations

Table 3.10: Roles

3.2 ETICS architecture 73

software. Using the previous data model, reproducibility means that once the
project is defined, if the relationships among components (i.e. dependencies)
are properly set the same results must be achieved across the time and in
any supported platform. The first constraint requires some long term locking
mechanism for the data so relies on the business logic. But the second one
defines how the access from every platform to the service shall be performed,
drawing therefore the service architecture itself.

Another important aspect considered in the design of the ETICS service
architecture is the quantity of different tools used during the development
process (i.e. building artifacts, unit testing, integration testing, system
testing and acceptance testing) and the different scenarios where are used.
The system not only must be able to provide the logical structure for the
data management but also must give access easily to this data and integrate
it seamlessly with the infrastructure. In this sense, ETICS considers two
scenarios: local and remote scenario.

The former represents the operations that are performed locally under the
direct supervision of the user. Operations such as build, unit testing, debug-
ging or initial configuration setup are inside its scope and are associated with
a primitive state in the development. In the other side, the remote scenario
represents wider operations in the project such us the integration tests (i.e.
white/black box testing, performance testing), system tests (i.e. security
testing, portability testing, regression testing, etc.) and the acceptance test,
covering the full quality assurance process. But despite of these scenarios,
the steps needed in every one are essentially the same: fetch some code,
deploy it and evaluate some function over it.

Thus the reproducibility of results mentioned before can be extended to
the reproducibility of tasks. And this is what the ETICS service architecture
basically provides: the mechanism to use the project data and the available
resources to perform the tasks corresponding to each state in the software
development process in a seamless and programmatically manner.

The ETICS service is designed as a 4-tier architecture (figure 3.1). The
decomposition in layers splits the functionality of every application and ser-
vice and also improves the scalability, manageability and resource allocation
that the system provides globally. Having four levels makes possible to isolate
clearly the functions provided and also abstracts the provider and consumer.
Something that makes the system flexible to future extensions.

It is important to notice the important duality present in the figure 3.1
between the two different scenarios. In both of them the architecture is
essentially the same: the user through the application layer connects with
business tier to perform some task. This tier provides the business logic
and access to the physical resources through the access tier. The difference

74 The ETICS system

Figure 3.1: The ETICS Architecture

3.2 ETICS architecture 75

is in the way the computational resource is accessed. In the local scenario,
the user through the command line interface accesses directly to the platform
capabilities (i.e. running java compilations or pyUnit tests). There is no more
logic in between that system libraries. However, in the remote scenario, the
user delegates his role to the business logic. This one accesses to the resources
using the underlying Grid technology (which selects the target platform)
but, and here is the key point, in exactly the same way as the user would
do: running the local scenario in the remote environment and getting the
results back. This structure guarantee that what the user get locally, will be
obtained remotely, but saving the management time.

Next, the functionality of each tier is explained with greater detail.

Application tier

The application layer is the semantic interface between the user and the
ETICS system. Its mission is to be the exchange point between them,
providing the mechanisms and logic to make the interaction rich but simple
and translating the knowledge between both parts.

The application tier consists of three elements, namely the command line
interface (CLI), the web portal and the application programming interface
(API) and is mainly executed on the user side.

The CLI is the main user tool to interact with the system. It allows to
perform the full set of features ETICS provides: create and manage
modules and configurations, perform local and remote build and test
operations, perform local and remote distributed tests (coscheduled
tests in ETICS terminology), check the status of remote tasks and
manage output artifacts and releases. Its behavior slightly changes
from the local scenario to the remote one. The creation and edition
of information is performed in the same way in both scenarios. The
difference comes from the build and test operations. In the local
scenario, the CLI is responsible for executing the sequence of tasks in
the local machine where it runs, but in the remote scenario delegates
such execution to other CLI launched in the target platform selected
by the ETICS system.

The Portal is the graphical user tool to work exclusively in a remote sce-
nario without requiring a local machine where to execute the CLI. It
consists of three components: the Build and Test Web Application, the
Administration WA and the Repository WA.

76 The ETICS system

The Build and Test WA allows the user to create and manage the
information related with modules and configurations as well as launch
remote jobs on target machines.

The Administration WA allows the project administrators to grant
rights to the people related in the project already registered in order
to perform the specific operations drawn in the table 3.10.

The Repository WA allows access to the output artifacts from the
system such as build reports, test reports and the packages generated.

The API is the set of libraries and utilities used by the client interface
(CLI or Portal) to connect to the central service. For instance the stub
generated from the WSDL file to connect to the Web Service.

Business tier

The business tier is the core layer of the ETICS system. It provides the
business logic to gather the user information, to store it and to retrieve it
answering incoming requests. To implement this layer, ETICS uses the Web
Service paradigm. It allows to decouple the application tier implementation
from the service implementation, what gives enough flexibility in the service
provision.

As said before, the Web Service makes the core operations for the re-
source management. These operations cover the security enforcing point,
the creation, modification and deletion of modules and configurations, the
linkage between those ones, retrieval of the full or partial project information
tree and also the registration and access to build and test artifacts in the
information systems. The operations rely on the data provided by the
information systems in lower layer and which give access to the physical
resources.

The service announce its set of operations using the standard mechanism
for Web Services, via the Web Services Description Language (WSDL). This
document is publicly accessible to any potential user and is also implemented
by the API in the application tier to create the client libraries.

Access tier

The access layer is the intermediate logic between the business logic and the
physical resources. Its mission is to provide the interface to access generic
resources, decoupling the real implementation of those ones. Specifically, the
abstraction is made over two different kind of resources, data sources and
computing resources.

3.2 ETICS architecture 77

Because in terms of data model there are two different types of data,
raw data and the metadata, the access to each one will be slightly different.
In this sense, the access tier has two components, the repository logic and
the data access layer. The first one groups the set of technologies to store
and retrieve the metadata gathered by the ETICS system during the whole
configuration, build and test processes. The second one provides access to
the raw data independently of the technology used for its storage.

In terms of computing resources, ETICS performs the build and test op-
erations in the platforms describer earlier, but running on the final platform
depends on the selected scenario. In case of local operations, the own CLI
uses the system library to access the machine capabilities.

But in case of remote operations, the ETICS system adopts the user’s role
and uses Grid technology to select the target machine, execute the tasks and
get the results back. As mentioned in the first chapter, Grid technology has
basically the same entities in all the different distributions, but the interfaces
change so in order to use a major part of them, this layer also provides the
way to send jobs to any supported Grid and to retrieve the results.

Resource tier

The resource tier is the lower level in the service architecture supporting
the set of services of the business layer. It is responsible for providing
data services to store data and metadata in a persistent way and access to
computing services. In this layer, the technologies used in the current release
of ETICS are grouped, but the previous design is precisely intended to make
the system flexible to such changes without affecting the final service.

In terms of data services, this tier provides database service to store
the project information and its corresponding metadata. Because of the
nature of the data, it also provides more efficient storage capabilities for the
metadata produced from the build and test tasks such as database systems
or distributed filesystems.

In terms of computing resources, this layer encapsulates the platforms
used during the build and test jobs either locally or remotely. In case of
local scenario, the platform is the user machine so no additional action is
needed. But in remote scenarios, the different requirements specified by the
user make necessary to have the infrastructure able to analyze and select the
target according to them (process known as matchmaking). In this case, the
use of Grid technology appears naturally as the solution to manage the pool
of available machines and the workload among all of them.

78 The ETICS system

3.3 The ETICS facility

According to the description of the problem stated in previous chapters, the
picture of the system given so far shows the ETICS proposal in terms of de-
sired features and design principles. The data model, the service architecture
or the test framework describe the information, mechanisms or good practices
that are intended to transmit to the potential user and in a quite precise way.
Hence, this is a very theoretical picture that needs to be validated building
a real architecture, the proof of concept that the ETICS facility represents.

The ETICS facility is the actual infrastructure deployed by the ETICS
project. It consists of a set of hardware and software resources that imple-
ment the data model and service architecture described above and that is
shown in the figure 3.2.

Figure 3.2: The ETICS facility

This figure depicts the entities involved in the service provision. It can
be noticed that exactly matches the service architecture using a service
distribution paradigm.

The core element of the system is the web service. This one performs the
business logic and allows the user client to retrieve information to accomplish
tasks. The web service is purely written in Java and is hosted within a
Tomcat Application Container.

3.3 The ETICS facility 79

Towards the resource layer, the web service uses several abstraction layers
in order to access such resources. Considering access to data sources, as
already mentioned, the web service connects to data services. On one side,
it stores directly the metadata gathered from the project definition into
a RDBMS. This access must be RDBMS-independent, consequently, it is
carried out using the Java ODBC library (JDBC). On the other side, the
data and associated metadata coming from the build and test results is
stored using Apache Jackrabbit as specific software for data libraries. Apache
Jackrabbit is the fully conforming implementation of the Content Repository
for Java Technology API (JCR) developed by the Apache Software Founda-
tion.

Considering access to computing resources, in the remote scenario, the
web service completely manage the access to these resources. The access
to them is defined by mean of a generic interface to Grid Services. So
the implementation of such interface will depend on the actual Grid infras-
tructure used. In the local scenario, the user client has access to the local
infrastructure in user space using the native system libraries.

In terms of resources, the service architecture groups them in two main
families: data and computing resources. Considering the first one, ETICS
stores the information in two different services, depending on the nature of
it. The metadata is stored in a Relational Database Management System,
using MySQL Server for this purpose. This one allows to exploit the nature
of the metadata as enables querying, chaining, etc. The use of an external
service allows to control efficiently the data management and to get high
performance. The data itself (artifacts) is stored in the distributed Andrew
File System (AFS). This one has very good features by design like Kerberos
security model, high availability (using data replication) or backup facility.
The drawbacks are the variable level of performance, but despite of this,
performed measures indicate that is still quite suitable considering its other
advantages.

About computing resources, ETICS is designed to perform the final tasks
(build and test) regardless if the target machine is the user’s one or some
remote platform in a Grid environment3. Therefore, the local scenario is the
same as the remote one once the allocation has happened.

The current implementation of the ETICS system uses the tuple Con-
dor/Metronome as the Grid enabler technology. This set of technologies de-
fines a simple Grid environment where a central scheduler (Condor scheduler)
receives jobs from submitter nodes (Metronome submitter node), locates the
machine available that matches the some requirements (WN), sends the job

3What enforces one of the long term objectives: the reproducibility of results.

80 The ETICS system

to it and retrieves the results giving them back to the submitter. In the WN,
the Metronome job executes a sequence of stages where one of them is install
the ETICS client to perform the build or test task.

Once the job lands on the target machine, the behavior is exactly the same
as in a local machine. But the important difference is that the ETICS facility
provides a fully managed set of platforms. The facility operates a set of more
than 200 machines spread out of three of the consortium partners in the
project (CERN, INFN, UoW), covering several architectures and operating
systems. Specifically, the infrastructure managed by CERN is automatically
managed using different software suites (automatic installation procedure
with Quattor and AIMS, continuous monitoring with Lemon and SLS and
daily backup of critical machines with IBM Tivoli Software).

Finally, the application layer consists of the three elements mentioned in
the service architecture. In terms of CLI, both scenarios local and remote use
the same user client. This one is implemented in Python and uses WSDL-
generated libraries to access the WS (ZSI). It also allows to perform local
operations to be committed later as well as data exportation in INI format.

In terms of web access, ETICS provides a web application to operate over
project data, job submission, security administration or view information
about results. This portal is implemented in Java and is also hosted in a
Tomcat Application Container.

3.4 Summary

The ETICS project puts together different efforts and initiatives to setup a
unified process for software development that ensures good levels of quality.
As part of this effort, it aims to define the final structure that models any
software development project in a modular and versatile way and to set up
the mechanisms and channels to promote the broad dissemination of results
for long-term analysis or storage.

Modules and configurations are the basic building blocks which allow to
model the projects from the structural and dynamic point of view. The for-
mer ones provide an anatomical shape of the project itself, listing the software
components and groups. The latter ones give physiological structure shaping
the real structure, dependencies, relationships with platforms, procedural
knowledge for build and test and keeping track of the whole history of the
development.

This theoretical definition is implemented as a Service Oriented Architec-
ture, taking advantage of the Grid paradigm to solve problems of resource
dependency, allocation, security constraints and transparency in the service

3.4 Summary 81

provision. The four tier architecture (application tier, business tier, access
tier and resource tier) decouples the metadata required in the project model
from the physical resources required to implement it in the build or test
phases.

The current ETICS infrastructure defines the set of services that perform
the business logic for such task and that can be deployed upon any Grid
distribution harnessing the already present technology to provide an added
value service. Within this framework, an specific use case for distributed
testing is designed as a proof of concept of the potential: the OGSA-BES.

Chapter 4

Test use case: OGSA-BES
compliance

As seen in the section 2.1.2, software development projects define uses cases
to fully describe the set of expectable behaviors of the system under devel-
opment. Later, these use cases serve as a base for specifying the functional
features of the software to be developed. The definition of use cases is also
the starting point for testing activities because once defined, each scenario
addresses a set of features that the system must provide and which must be
validated according the user needs.

As a tool oriented to manage the full development process, the ETICS
system provides an extensive set of features based on the definition of good
practices (use cases) in the industry. As shown, these capabilities range from
pure development process support (i.e. dependency resolution for building
every component) to intensive testing (i.e. covering multiple testing targets
and phases). Considering the testing functionality, a major feature provided
by the ETICS system is the ability to reproduce actual scenarios where to
perform production-alike tests. This one is a very complex task that can be
splited into five separated stages:

1. To describe the components (i.e. their required inputs and outputs)
and their relationships

2. To define the automatic procedure which installs and configures the
software components, leaving them ready to use

3. Following the initial timeline drawn by the dependency relationships,
define and set up the mechanisms to coordinate the passing of config-
uration information between dependencies (messaging service)

4. To create the test cases and deploy them into the virtual environment

84 Test use case: OGSA-BES compliance

This chapter describes the distributed testing process using the ETICS
system in a practical way. A priori, an interoperability testing scenario seems
as the best kind of environment to demonstrate the powerfulness the ETICS
systems aims to provide. This interoperability test case selected is also based
on a Grid standard currently under development. Hence, the opportunity
to exhibit the versatility of the system to build and test some part of its
infrastructure itself confirms the choice.

In the next section, the selected proposal of standard is explained in more
detail. Its motivation, its purpose and its technical aspects are also depicted
to justify its election. Once this standard is presented, the specific objectives
of the test case will be stated before proceeding to its development in the
next chapter.

4.1 OGSA-BES description

In section 1.2, the technology fundamentals about Grid computing have been
explained. It has been shown that computing services are one important
component in any kind of Grid (i.e. services which provide access to compu-
tational resources). However, as it has also been drawn, every Grid has its
own computing resource manager, with its own set of features, capabilities
and access interfaces, showing that having different Grids, involves having
different ways of sending jobs to each one. This diversity becomes a problem
when Grid-enabled tools are developed because most of the times, they must
be Grid-specific tools, allowing sharing of resources across the same virtual
organizations but not allowing across different Grid schemas. This issue
is clearly a problem with the own philosophy of Grid because the resource
sharing is not really enabled for any kind of Grid-capable tool. Current
circumventions are based on interoperation between components rather than
the real interoperability between them that should happen by default.

In a trial to face up with this problem, the OGF has created a specific
group to analyze the generic computing environment common to any Grid
(OGSA-BES-WG). The goal of this group is to identify the common set of
properties and operations performed in any Grid computing resource in order
to define the common interface that guarantee minimum interoperability
between users and resources, apart from specific functionalities provided by
each implementation. The resulting common reference service is called Basic
Execution Service (BES).

The BES is based on a common specification which defines the Web
Services interfaces for creating, monitoring and controlling computational
entities. Thus, this generic definition is not bound to any specific Grid

4.1 OGSA-BES description 85

implementation, even to Grid technology. Clients define activities using
the Job Submission Description Language1[22]. The BES implementation
will execute the job if it is acceptable in terms of requirements and usage
policies, what depends on the underlying infrastructure. Consequently, the
most important fact is that the BES web service is unaware of the specific
implementation upon it works but characterizes it by publishing set of at-
tributes.

To achieve the goals of creation, control and monitoring, BES defines
three port-types, namely: BES-Factory, BES-Management and BES-Activity
and a full data model, composed of state model, information model and
resource model. Usage of all port-types will provide access to different
implementations in a standard way while allowing exposure of platform-
dependent differences possibly interesting to them. The implementation of
the data model will ensure that data is managed in a consistent way and all
the implementations will refer to the same entities and states.

4.1.1 Data model

The BES is part of the OGSA specification for modeling basic execution
environments, that is, collections of resources in which a task can execute.
The underlying environment, a queuing service, Unix host or any other
specific resource is not shown to the user directly but through a set of generic
operations and properties. The main objective is to provide the common
framework to access such environments but keeping the implementations
to expose their differences. For that, the BES model is designed to allow
extensibility in the three main areas any computational environment covers:
states, information and resources.

State model

IEEE defines state as the set of values assumed at a given instant by the
variables that define the characteristics of a system. The state model repre-
sents the set of states, allowed transitions and trigger events of any dynamic
system. The BES perspective perfectly fits into this definition since the
standard proposes a detailed set of states, transitions and trigger events, and
also specifies in which cases this model can be extended.

The main goal of this state model is to draw the schema followed in any
execution task. The basic model fulfils this objective by defining the states
shown in figure 4.1.

1The language for describing the requirements of computational jobs for submission to
resources developed by another working group inside OGF.

86 Test use case: OGSA-BES compliance

Figure 4.1: The PBSA-BES state model

• Initial states (pending): the service has created an entry in the system
but not instantiated it on any computational resource yet.

• Intermediate states (running): the job is currently being executed in a
suitable resource.

• Terminal states: the job has been terminated due to some of the
following reasons:

– finished: the activity is terminated successfully, where successfully
means that was accomplished by the BES system not having any
failure either in the BES system itself or in the underlying LRMS.

– terminated: the activity is ended because of some external event
such as user interaction.

– failed: the activity is ended because of some error/failure event in
any component of the BES system.

The transitions between this states are also fixed so:

• initial to intermediate: shows when the BES system initiate the pro-
cessing of the activity and must always happen (even in cases of empty
jobs).

4.1 OGSA-BES description 87

• initial to terminal: shows the system aborts because of presence of
errors or not supported operations in the incoming request to the BES
system (not to the LRMS).

• intermediate to terminal: shows the completion of the jobs either suc-
cessfully or unsuccessfully because of internal failures, bad requests or
unmatched requirements.

Possible trigger events have been already pointed out. The most impor-
tant is to notice that whatever the job is, all of them must pass through all
the states (initial, intermediate and terminal) so the BES must detect the
changes in the LRMS as well as the input events from the user interface to
conduct the job and raise a failure in case of invalid request.

The BES specification also allows to implement custom extension mecha-
nisms within the specific implementations. These extensions enrich the basic
state model by adding internal sub-states that can mock up more accurately
the behavior of the underlying resource. The inclusion of new sub-states is
made via profiles2.

However, the implementation of such profiles must satisfy certain condi-
tions to ensure compatibility with standard user clients. Exactly three rules
must be satisfied:

1. The sub-states defined in a new profile must not define transitions
between states that are not already defined in the basic model.

2. The implementation of several profiles (composition) must not interfere
with user clients which do not support any if the single profiles.

3. In case of composition of profiles, the elements defined in any of the
profiles must be independent of the rest of elements defined in others.
In other words, profiles must be concise in its scope.

Information model

The information model represents the data management required by the
user to interact with a specific implementation of BES. It holds sets of
different properties that map with LRMS properties, making available static
and dynamic information like OS versions, types of executable files allowed,
policies, QoS, etc.

2The Profile extension mechanism is a common way to extend a generic WSDL
descriptor document in Web Services. Using profiles, specific implementations may
extend the standard recommendation showing outside concrete additional details about
the services they offer.

88 Test use case: OGSA-BES compliance

Its main objective is to serve as the abstraction layer that accommodates
the differences mentioned in a single BES specification. Hence, it defines
a set of attributes that any BES-capable implementation must support,
establishing some of them as optional not to force very restrictive behaviors.
It also allows to define additional attributes in a transparent manner for
other non-compatible user clients.

The set of attributes defined by the basic implementation is part of the
BES-Factory port-type are shown in the tables 4.14.2.

Resource model

The BES resource model represents the specific information that allows richer
interaction with the LRMS. It is based on a profile mechanism to provide
access to some concrete functionality. The only constraint precluded by the
BES specification is that all BES implementations must support a simple
operation for retrieving all attributes in a single document.

Some proposed extensions are related with idempotent execution seman-
tics, subscription to notification events (e.g. WSRF, WS-Notification, WS-
Eventing) or lifetime management (e.g. WS-ResourceLifetime).

4.1.2 Port-types

A port-type is a named set of operations and associated attributes offered
by a Web Service. The BES specification defines three different ones, each
one related with the sort of services provided: job processing, job monitoring
and system management.

BES Factory

The BES Factory port-type sorts out operations that support the creation,
monitoring and modification of collections of jobs. It also provides operations
for retrieving attribute information from the BES itself. This last part might
come into conflict with the BES Management port-type, but the original
idea is to bind this set of operations to normal users and the actual BES
management operations to administrator users since the former ones may
need some information about the environment.

The attributes contained in this port-type must cover a wide range of
resources or configurations so it adopts a flexible and extensible structure to
describe the generics case. Hence, attributes are classified into two categories:
basic resources and BES specific ones. A brief description about them can
be found on table 4.1.

4.1 OGSA-BES description 89

Name Type Multiplicity Description
isAcceptingNew-
Activities

BES 1 Availability status

CommonName BES [0..1] Short human-readable name for BES
LongDescription BES [0..1] Long human-readable description
TotalNumberOf-
Activities

BES 1 Current number of activities

ActivityReference BES [0..n] EPR to currently managed activities
TotalNumberOf-
ContainedResources

BES 1 Number of accessible resources

ContainedResource BES [0..n] Document listing available resources
NamingProfile BES [1..n] URIs of Naming profiles used by BES
BESExtension BES [0..n] URIs of supported BES extensions
LocalResource-
ManagerType

BES 1 Resource’s LRMS type

ResourceName BR [0..1] Resource’s name
OperatingSystem BR [0..1] Resource’s OS type
CPUArchitecture BR [0..1] Resource’s architecture type
CPUCount BR [0..1] Number of resource’s CPU
CPUSpeed BR [0..1] Speed of resource’s CPU (Hz)
PhysicalMemory BR [0..1] Resource’s physical memory size (B)
VirtualMemory BR [0..1] Resource’s virtual memory size (B)

Table 4.1: BES Factory attributes

90 Test use case: OGSA-BES compliance

Appart from the attributes, this port-type also has three built-in opera-
tions:

CreateActivity is used to request a new execution. The input of the
activity consists of an XML document in JSDL format describing the activity
and its requirements. On success, the output consists of the EPR reference
for further reference to the activity. The method should raise and exception
(i.e. SOAP fault message) in any of the following cases:

1. NotAuthorizedFault if the user does not have the proper rights to
perform the operation.

2. NotAcceptingNewActivities if the BES is not accepting job requests.

3. UnupportedFeatureFault if the JSDL document in the request is not
well-formed or contains a non-supported element.

4. InvalidRequestMessageFault if the request specifies a non-recognized
element.

GetActivityStatuses retrieves the current status for the activities
already created and listed in the input EPR. The output contains an activity
status document describing the status or an error message in case the request
could not be accomplished. The method should raise an UnknownActivity-
IdentifierFault if any EPR provided cannot be mapped to any activity.

TerminateActivities requests a set of activities identified by their
EPR to be terminated. The execution of this operation does not ensure that
will be accomplished in such specific moment. The eventual success will be
reported by consecutive GetActivityStatuses operations or by subscription
and notification events. The output contains a set of responses, one per
requested EPR, notifying the successfulness of the operation. If any EPR
is not recognized or the operation cannot be executed, BES will raise an
UnknownActivityIdentifierFault.

GetActivityDocuments retrieves the activity document sent during
its creation. This document may be different from the initial one reflecting
policies or internal processes executed. Therefore, it shows the activity being
run rather than the activity asked to be run. The output contains the
referred EPR and either the activity document corresponding to such EPR
or the stack of faults raised during the retrieval. It may also contain an

4.1 OGSA-BES description 91

Name Multiplicity Description
Status 1 Status of the activity
ActivityDocument 1 JSDL document containing the actual

running activity
FactoryReference 1 EPR to the BES Factory resource re-

sponsible for the activity

Table 4.2: BES Activity attributes

UnknownActivityIdentifierFault if any EPR provided cannot be mapped to
any activity.

GetAttibutesDocument is used to retrieve the document with the
list of BES Management attributes of this BES implementation.

BES Management

The BES Management port-type defines operations oriented to system ad-
ministrators on their activity of managing the BES system. Currently, there
are two operations to control the availability for incoming requests. Both
perform their target operation without requiring input arguments and not
giving back details about the success, which can be checked by the content
of IsAcceptingNewActivities attribute.

StartAcceptingNewActivities to request that the BES starts ac-
cepting incoming request.

StopAcceptingNewActivities to request that the BES stops accept-
ing incoming requests as soon as possible.

BES Activity

The BES Activity port-type is intended to define operations for monitor and
manage individual activities. However, no operations are currently defined
because most of the relevant information can be obtained from the BES
Factory and no generic management infrastructure has been specified for
OGSA services.

Nevertheless, there is a set of attributes that apply to individual activities.
It is detailed in figure 4.2

92 Test use case: OGSA-BES compliance

4.2 Test objectives

As shown, the OGSA-BES recommendation establishes the general descrip-
tion of a Grid submission engine, defining the access to the common set of
features that any of them implements and allowing additional mechanisms
to extend the basic behavior. The use of a three-views data model is a
clear example of the level of granularity intended in the performance and
comprehension of the LRMS. In addition, it provides an objective description
of the expected features that can be used as an interface with the systems
during black-box tests.

Moreover, the OGSA-BES recommendation is a service description. This
means that it does not come alone but requires the integration into a bigger
environment with additional interactions with other parts or even other
services. Hence, its testing will be performed firstly as part of the system tests
for the services deployment of the Grid and secondly as conformance tests
with the interoperability-oriented recommendation for the job submission
Grid service.

Consequently, the previous description draws two general objectives closely
related. Both focuses on different parts of the same certification process
for the Grid development, that is, the testing of components according to
standard recommendation and the fully automation of the process.

Interoperability testing based on standard compliance represents the
conformance testing in the V-model for software development. In this
case, the compliance testing refers to the ability of some component to
provide the generic features stated in a general recommendation as a
subset of its own functionalities.

The purpose of this kind of testing is to ensure native interoperability
among different implementations of the same Grid concepts by checking
the accuracy of such systems to the implementation of agreed common
methods, shaped in the OGSA-BES. Therefore, the purpose is not to
check the adequate definition of the recommendation itself in order to
achieve interoperability but to trust the existing definition and evaluate
the correctness of the implementations. This top objective requires to
reach the following set of subobjectives:

• To develop a generic client used to perform all the service calls
which the test is based on.

• To analyze the OGF recommendation for BES [23] in order to
classify requirements and optional behaviors and develop the test.

4.2 Test objectives 93

The interpretation of the statements must be done according to
the referred RFC [24].

• To select the programming language and framework that better
suits to the case under consideration in terms of integration, per-
formance and complexity.

Automatic deployment of Grid scenarios for testing covers the set of
principles and required technologies to simulate production environ-
ments during the execution of tests over complete services. These kind
of tests range from functional to stability or suitability tests. The final
goal is to create the structure that, using the metadata already present
in the ETICS system, is able to recreate automatically such scenario on
demand, integrating the development of system tests of the developed
services in the global QA process provided by the tool.

To address this general target, the next subobjectives need to be ac-
complished:

• To develop the pieces of software that will manage the deployment
of the set of components involved in the service provision (formally
called deployment modules).

• To design the structure based on metainformation that allows the
execution of a test on a service by deploying its dependencies in
an ordered way and that also allows the reutilization of common
structures already present in other parts of the system.

• To ensure the quality of results by establishing the mechanisms
to create the virtual environment where the tests can be executed
achieving enough generality, with the required resources and soft-
ware components and without compromising the execution (in
terms of security and shared access to resources) of other tests
running simultaneously.

• To harvest all the information produced during the tests and
present it in a unified report form which can be stored in a repos-
itory for further analysis or comparison with latter results.

Although these objectives are clearly disjoined by themselves, the fulfill-
ment of both provide the framework that integrates seamlessly an important
part of the QA process stated in previous chapters. Upon completion of
this proof of concept, the latest release of some Grid service shall be tested
automatically against the public recommendation for such service, and hence,

94 Test use case: OGSA-BES compliance

two important benefits will arise: firstly, on successfully tests, the interop-
erability among compliant services will be qualified with empirical results
and secondly, the whole QA process will be improved by accomplishing well-
defined guidelines after using the ETICS facility out-of-the-box.

4.3 Summary

The ETICS system features the ability to deploy automatically virtual sce-
narios for fully controlled distributed tests. This power of this capability
aims to be demonstrated with the implementation and deployment of the
compliance testing of the OGSA recommendation for job submission services
called Basic Execution Service.

This recommendation defines the basic functionality that must be offered
by any compliant service in order to normalize the interface that connect
to the underlying LRMS. For that, the recommendation sets a three-view
data model comprised of state model (i.e. states definition and transitions),
information model (i.e. generic information to access any resource) and
resource model (i.e. extension to the generic functionalities to use specific
options of the underlying resources).

According to the data model, the port-types are defined (bound to the
kind of services offered). The BES-Factory port-type interfaces to control
the creation, monitoring and modification of sets of activities. The BES-
Management port-type operates the local LRMS and is intended for admin-
istration purposes. Finally, the BES-Activity port-type defines the attributes
that describe the state of the engine and activities being performed.

This description shows a service interface whose implementations will be
supposed to be interoperable by default. Therefore, the main purpose of the
integration into ETICS is to check interoperability between services verifying
their accuracy to the common definition, the OGSA-BES. But also, as part
of the integration into the ETICS system, the testing process will be fully au-
tomated using the current facility for virtual testbed deployment. Success on
such task will improve the QA process by testing implementations of services
under development exactly against their final specification documents.

Chapter 5

Test use case: design,
implementation and results

Starting from the Grid as the new paradigm for distributed computing and
efficient sharing of resources, previous chapters have depicted the current
difficulties found in its development and deployment. The appearance of
different communities around the world focusing of several aspects of this
theoretical model has produced great results but they have not always been
able to work together.

Also in previous chapters, the software engineering techniques have been
shown, describing their advantages in order to produce the predictable and
high-end results that can be observed in other science disciplines. Neverthe-
less, this is not an easy task and currently there are many efforts in order
to automate these processes across any software development project, and
therefore the Grid development as well. Considering the latter one, several
initiatives have targeted the objective of defining and enforcing the guidelines
that ensure minimum quality levels in final releases.

Regarding this environment, this chapter describes the concrete set of
activities accomplished to reach the objectives stated in the previous section,
namely, to ensure interoperability among services by performing automated
tests for standards compliance. Across the next sections, design consider-
ations, implementation details and final integration will be described. In
addition, last part will cover results and preliminary conclusions, prior to
the final dissertation made in the last chapter.

96 Test use case: design, implementation and results

5.1 Test design

The test design phase must cover every aspect of the test, from what to test
and how to where to perform and how to schedule every action. Each one
of these questions is answered by different entities which represent different
tasks of the test. The test environment presented consists of two independent
actors that perform a well-known set of activities. These ones are classified
according to the purpose and scope of their contribution to the final result.
These two entities exactly matches the two main objectives described previ-
ously: on one side, the deployment of the services to be tested automatically
(i.e. the testbed) and on the other side, the deployment of the test against
such selected services (i.e. the client).

The ETICS system will be responsible of launching and coordinating the
execution of both entities by providing the mechanisms that enable automatic
deployment and communication among activities (messaging services). The
structure provided by ETICS allows to specify by mean of configurations
and dependencies the whole test structure in order to select dynamically
(runtime) the proper service to be tested on each moment. This behavior
also involves some assumptions in the way the code is structured allowing
better reuse of parts and modularity.

5.1.1 The client

The client is the entity of the test whose objective is to connect to the service
under test (IUT) and make the calls according to the predefined schema.
Hence, it is responsible of what to test and how to do it.

From a theoretical point of view, in order to use any service and perform
remote calls four elements are required to be known: the description of the
functions implemented (i.e. the interface), the way these ones can be accessed
(i.e. the set of messages allowed), the description of the expectable states
or workflow of operations (to keep track of the order and sequence of tasks)
and the policies of usage (e.g. authentication and authorization).

With the upcoming of the WS paradigm, the two first elements can be
addressed by the usage of the WSDL. This one simplifies the process of
discovering all the functions, their arguments and results and the format of
the messages to be exchanged. Depending on the programming language
selected, there are different alternatives to deal in an automatic way with
these documents and the generation of the exchanged messages. In such
cases, the WSDL document can act as a source definition document in order
to generate the language-specific code (i.e. libraries) that implements the
interface declared in the document from both the client and server sides.

5.1 Test design 97

As can be guessed, this option greatly facilitates the dealing with WS in a
programmatically way, simplifying the remote calls like local ones (the un-
derlying framework will translate those calls to the proper messages invoking
the corresponding remote functions).

In the case of OGSA-BES service, the recommendation [23] defines a nor-
mative WSDL document for each port-type. Because of being normative, its
usage must be compliant with any OGSA-BES implementation and therefore,
it can be used as the first requirement for a successful test. So, instead of
discovering the functions offered by the target service, the client will use its
own version of the WSDL, the normative one, to make the calls.

The third characteristic element of a service is the allowed set of states
and triggering events. By itself, it helps to perform new activities coming
from the same client with better allocation of resources and simplifying the
call. Some of the key points during the definition of some protocol are the
establishment of the states, the transitions and the synchronization between
entities talking the protocol. In addition, WS technology is not session-
oriented by default. Consequently, several mechanisms have been pointed
out to address this problem, like WS-Session or the session management
from the server side. In terms of clients, this issue usually requires no more
effort than keeping track of some session identifier provided by the server.
However, the management of such information and its life cycle plays an
important role in the whole process.

The OGSA-BES recommendation defines a complete data model which
precisely aims to cover all these aspects of the job submission. This state
model will be one of the targets to be tested by the client, checking the proper
definitions and transitions between states. Nonetheless, as it is based on WS
there are no sessions formally. The only reference to previous calls managed
by the client is returned as an EPR1. Therefore, the client will have to keep
such information and manage it properly during the execution of the test.

Finally, and closely related with the state management, there are the
authentication and authorization mechanisms. The absence of state in WS
by default has the consequences of either requiring authentication on every
query or develop the proper tools and processes for security management.

The OGSA-BES does not cover any specific security policy schema more
than the required messages to be exchanged in case of security violations.
Therefore, the execution of remote calls within BES-capable endpoints will
depend on the implementation. Again, this decision involves that the client

1An EPR is a unique identifier that points univocally to an activity. It is defined
by WS-Addressing and its format depends on the specific implementation but generally
consists of the URL of the service and the internal identifier or session id.

98 Test use case: design, implementation and results

must be able to deal with different security schemas and services in order to
be able to perform the test. Specifically inside Grid environment, it must
be ready to interact with the common schemas such as SSL, WS-S, proxy
certificates or against VOMS or Kerberos services.

Tests

The client previously described embeds the required logic to connect and
perform operations against any OGSA-BES WS. Although the ability to
connect using the normative WSDL is part of the test, the test is formally
performed by a compliance testsuite.

As explained in section 2.1.2, a compliance testsuite is a composition of
simpler tests that check the compatibility of some implementation against
the standard document. This recommendation is usually written using a
combination of natural and formal languages. The natural language is ordi-
nary language used to describe the behavior and models in a conceptual way.
The formal language uses mathematical or machine readable notations and
is used to describe explicitly the actions, processes and expected results. In
the case of the OGSA-BES recommendation this mixture effectively happens.
Natural language is used to describe the state model and formal language
is used for the information and resource models (pseudocode and normative
XML-format documents).

In order to code this specification into executable code, two considerations
must be taken:

• use of the RFC2119 [24] to interpret univocally the meaning of common
keywords (must, should, may, etc.)

• use of programming language and tools to translate to machine pro-
cessable language the formal specifications

Keeping this in mind, and considering the service nature of the IUT, the
more reasonable way to perform the compliance test is by doing functional
testing against the selected endpoint. Testing the functionality of some
service according to its specification means to test boundaries, unsupported
options, privileged behaviors, incomplete queries and finally normal or ex-
pectable requests.

Because every test checks one concrete aspect of the functionality of the
service, each one must be self-contained. The more uncorrelated with other
tests the clearer and more accurate the results will be. This concept of testing
is very close to the basic idea under unit testing: performing some operation
and asserting the results. Hence, the usage of unit testing frameworks

5.1 Test design 99

appears as the best option to create a simple testsuite as a collection of
unit tests, but understood as functional tests and to present the results in a
uniformed way.

Once the client and the test are designed, they will be integrated in the
testing structure that launches the service, execute the test and retrieves the
results: the testbed.

5.1.2 The testbed

The testbed is the other entity of the test. Its objective is to setup completely
the scenario where to run the IUT, the service, and the test client to generate
the compliance reports.

In order to achieve this goal (already specified in previous sections 4.2),
the system must be able to:

• select and reserve the resources that match the service requirements

• analyze and resolve dependencies between service components in terms
of packages and metainformation for runtime operations

• deploy the service and launch the test and scratch it once the test is
finished (whatever the final status is)

• harvest the results and archive them

Currently, the ETICS facility is able to select target machines that sat-
isfy some requirement. Some of this requirements can be specific platform
(architecture and OS), specific configuration (presence of concrete software
components), root access, private use, etc. The ability to provide this feature
is usually bound to scheduling capabilities because in case of finite number of
resources, the queuing mechanism is a good way to get results by introducing
some delay. While this is useful for build activities, for distributed testing is
not the best approach since the reservation of some resources and the wait
of others for being attended is unstable and may cause resource starvation.
Therefore, the system must include another working mode for tests, the
central scheduler must provide bundle of resources on demand for the test
requirements. If there are not enough resources, the whole query must be
either hold on until the availability of the busy ones or completely discarded.

The dependency resolution feature is already present in ETICS. With it,
the system can analyze the full tree of dependencies and associated informa-
tion with them such as version numbers or installation paths. In the case
of test jobs, the system must be able to provide the packages to install the

100 Test use case: design, implementation and results

service on some target machine and deploy the specific repository technology
usable by the OS (APT, YUM, etc.). Therefore, something to add is such
automatic deployment containing the packages resolved from the dependency
resolution.

The service deployment is the key point of the testbed. Once the sys-
tem knows the packages that will be used in the test, it must launch the
installation of the participating services but following the order established
by the dependencies. In other words, following the dependency resolution,
the ETICS system must launch a process on separate machines for those
services that cannot run on the same one and act as a messaging gateway to
communicate the configuration information.

As ETICS aims to enhance the modularity and reusability of software,
in case of testing this desire requires the definition of the suitable structure.
For this, the following set of new modules and configuration entities has been
defined:

deployments are the description of a top-level service like a web application
or a computing element for the Grid. They consist of nodes or other
deployments.

nodes are modules that contains simpler services that make part of a bigger
one like the database for a web application or the scheduler in a Grid CE
environment. Nodes also represent entities that perform tests against
services (in a deployment or node contexts).

services are modules that represent a concrete instance of a single service.
These ones contain the information and procedures to deploy the un-
derlying service on a target machine. They exactly match the concept
of ETICS configuration in a build context.

tests correspond to the analogous entity as the service module but regarding
the testing scope. While the service is the IUT and runs in a daemon
manner, the test represents the client using the service and generator
of results.

Accordingly to this structure, the implementation of the OGSA-BES
compliance test must be automated by developing the suitable deployment
modules for the service under consideration and by modeling the deployment
in the ETICS system.

Harvesting of results will be done by the ETICS client and sent back to
the central repository as in the build context. The difference is that such
report must merge the results of the different test modules and include log
information from the rest of modules.

5.1 Test design 101

Deployment modules

In the case of the OGSA-BES compliance testing, the deployment of four
nodes is required. Three of them contain different parts elements of the
global service and the other one execute the test itself. Next, those services
(grouped by their scope) and their deployment are described:

repository contains the specific services that allow to act as a repository for
the selected package management system (as mentioned, APT, YUM,
etc.). Its deployment requires to access the ETICS system, download
the set of packages used during the test, create the folder structure
and metadata understandable by the package management system and
finally launch a web server that provides access to all this data.

worker node represents a computing power resource, the place where jobs
will be run. In order to deploy it, access to the previously launched
repository is needed, and later on, the installation and configuration
of the daemon which will be connected from the dispatcher to execute
jobs.

computing element represents the entry point to the computing power re-
sources, queuing and dispatching jobs over the pool of attached worker
nodes. Depending on the Grid implementation, it will require access to
different services, but basic services are information and AuthN/AuthZ
services. Because of registration of resources, the information services
must be deployed within the testbed, but others are out of the scope
of the test and can be used from external sources.

The forth node will contain the compliance test. It must wait for the rest
of services (the CE endpoint) to be ready before launching the test. Once
done and the test executed, this node is responsible for launching the removal
process to retrieve the results and remove the services.

When a software component requires some other for its normal working,
it is possible to define dependency relationships on it. But when a service
depends on several software components to provide its functionality, although
any of the components are able to work independently, the way of link such
packages is through the metapackage mechanism. The ETICS system models
these metapackages as an empty package whose dependencies are the different
components required for the global service provision.

From this design, several issues arise as a matter of security risks and
race conditions. These ones depends on the implementation and the tech-
nologies used and can be relieved using the different techniques detailed in
the following section.

102 Test use case: design, implementation and results

5.2 Test implementation

Relying on the design phase, the implementation of the test uses its design
principles in order to create software structure and components that finally
allows the execution of the OGSA-BES compliance test.

According to the structure designed, the implementation will consists of
three stages: the development of the client and the test code, the develop-
ment of the deployment modules to launch the services under test and the
adaptation of the ETICS system to integrate these new features of automated
distributed testing.

5.2.1 Compliance test code

As stated in the previous section, the test consists of two components, the
generic client and the test itself, performed by such client. Both must be
easy to deploy and integrate since minimizing the complexity will maximize
the performance of the test.

From the client side, the use of WS technology is intended to simplify
and enhance the communication between clients and services. As seen, the
service is defined by its interface, described through a WSDL document.
This document is taken as the contract between the two parts, client and
server so the internal code of both (i.e. signature of methods and types
of arguments used) can be automatically generated with different tools.
Despite WS are designed to be loosely coupled to the transport technology,
common practices includes usage of the SOAP protocol over HTTP channels
to exchange messages between parts. Therefore, the utilization of the proper
tools and frameworks simplifies even more this communication.

This is the case of Apache Axis. It is an implementation of the SOAP
protocol that offers a complete framework to develop WS from both sides,
abstracting concrete details of the protocol implementation. It also offers a
code generator to, starting from the WSDL document, generate the skeleton
of classes that perform the functionality in the server side as a library of
functions that, used in the client side, provide access to the service function-
ality like a local library (formally called stub). It is purely written in Java so
using it, will involve to use Java as a programming language for the client.
Consequently, the first component of the client is the stub generated with
Axis.

Although, the ETICS integration will be explained later, to become in-
tegrated, any component must be completely operational from the CLI.
Regarding Java applications, Apache Ant is the common utility (like GNU
Make) that allows to create scripts that automate frequent processes of

5.2 Test implementation 103

some component by the definition of variables and targets. The Axis code
generator includes an Ant extension to generate code from a WSDL document
as a target. So merging both tools, the stub can be completely generated on
demand.

Once the remote functionality of the WS is locally accessible, the next
step is to develop the collection of utilities surrounding it and which pro-
vide added value. Such utilities are possibility of different authentication
schemas (HTTPS, WS-S and GSI), parametrization of the behavior using
configuration files, logging facility and wrapping the WS methods putting all
together. With this, the generic client is ready to connect to the available set
of OGSA-BES services and the last step is to develop the compliance test.

The test is designed to test boundaries, unexpected input values, etc. of
the two available port-types of the OGSA-BES service: BES-Factory and
BES-Management2. For each port type several test are defined to test every
method. The table A.1 in appendix A.2 lists all the tests of the testsuite and
gives a brief description of each one.

As mentioned in the design, all these tests are intended to verify the
minimum functionality that any OGSA-BES implementation must provide.
Nevertheless, they are implemented as a suite of unit tests using the unit
testing framework for Java, JUnit. This one is a simple tool easy to deploy,
fast to develop and whose integration in other technologies like Ant or ETICS
is available through extensions. The unit tests are grouped in a suite which
executes all of them sequentially. The final report is a javadoc-style document
parsed to HTML using the JUnit Report module. Like the generation of the
stub, this test execution can be launched from the CLI using Ant, what
enhances the integration within ETICS.

Once the test is in place, the next step before executing it is to develop
the deployment modules and utilities to automate the process of deploying
it on demand an a clean dedicated set of machines.

5.2.2 Deployment of the scenario

The final goal of the test is not only to validate the implementation of
any OGSA-BES service under development but also doing it automatically.
Automate the deployment of any service faces up with two major issues:
automatic installation and automatic configuration of the software.

Automatic installation of software means to know exactly which compo-
nents are needed and where they must be installed. Currently, use of package

2The BES-Activity provides attributes included in the other two port-types but does
not offer an endpoint to which connect

104 Test use case: design, implementation and results

management systems solve this issue because the package contains all the
information. However the trouble that arise is the security requirements
imposed to perform such task. In most of the systems, system folders are
protected and although the install directory could be changed, the services
still need privileged access to some resources. The usage of virtualization
techniques appears as a natural solution to address this issue.

Currently, several software products provide virtualization utilizing differ-
ent techniques (emulation, hardware virtualization, paravirtualization, etc.).
The final features are similar, distinguishing on the internal behavior. Choos-
ing one or another can impact on the global performance of the test or on
the complexity of the deployment. The lightness, easiness, wide support and
availability of the open source alternative, Xen, and the portal vGrid for its
management, make it quite appropriate for this case.

The second issue, configure automatically software components, requires
to know the interactions between components and their dependencies, what
means the information needed by ones must be available to use the function-
ality provided by others. The procedure of configuring some component can
be fixed, not the information used. This parametrization gives simplicity and
provides modularity to use the same configurator with different components
just changing some parameter.

The OGSA-BES service consists of three simpler services that are de-
ployed using their corresponding deployment modules. Any of them control
the life cycle of the component, therefore they may receive startup and
shutdown values as input arguments. Next, a more detailed explanation
is given for each one:

repository is mounted using a Python program to fetch the metapackages
and the lists of packages required during the installation. ETICS can
generate empty packages whose purpose is to link to others in order to
define the set of programs that make a service. Therefore, installing
one metapackage, all the related packages are installed.

This module runs the repository generator, RepoJanitor, that creates
an APT/YUM repository (suitable for the Linux distributions used
in the test). It also installs an Apache Web Server to be run on the
specified directory (i.e. in the user home directory not the default path)
and launches it. When the service is up and running, it publishes the
location of the idle repository in URL form using the ETICS messaging
service.

Finally, upon completion of the test, the module stops the server and
delete the repository.

5.2 Test implementation 105

worker node is launched using a Bash script which installs the software and
configures it to be attached to the dispatcher node where the OGSA-
BES application is targeted to run. For installing the software, the
module reads from the ETICS messaging service the location of the
repository. It also needs to read the target machine where the dis-
patcher is being installed. The configuration in the dispatcher requires
to know where are the worker nodes so it also publishes its location.

As in the case of the repository, the service is stopped when the test is
finished and the used space is scratched.

computing element groups the LRMS and the OGSA-BES service under
test. It is installed once the repository is available (getting the infor-
mation from ETICS) and configured when the worker node is ready.
Upon completion, it publishes the URL to the test where the WS is
accessible.

The reception of the removal signal is acknowledged stopping the ser-
vice and releasing the resources.

compliance test is not a service itself so there is no installation stage. The
configuration required is minimal and only requires to know the OGSA-
BES endpoint enabled to perform the compliance test.

Depending on the Grid distribution, the client may require to publish
some information before accomplishing the task because some opera-
tions need to be performed on the service side3. In such case, the deploy
of the service waits for the client and its information to be published.

When the test finishes, the client saves the results and ends. The
ETICS client notices the exit and sends the results back to the central
repository. After, it sends the removal signal. The rest of nodes
participating the test catch it and start the removal process mentioned
before.

Prior to execute the test, the ETICS system deploys adapted Xen virtual
images for every required node via vGrid commands. The virtual machines
are completely manageable from CLI so their life cycle centrally managed.
In case of failure (i.e. on the test or on the synchronization), the timeout
running on the head node runs out and the physical machine is ordered to
stop the virtual one. This behavior runs as part of the timeout mechanisms

3To use some privileged operations, gLite CREAM-BES requires the client DN during
the configuration stage.

106 Test use case: design, implementation and results

for the tests implemented by ETICS and is completely transparent to the
user.

The manner of running jobs on these nodes follows the push model.
Once the nodes are loaded, in final step of the boot process consists on
communicate with the central service in order to get the description of the
activity to perform. The information passed to the machine contains the
messaging session identifier, the project and modules to checkout and test
and the remote place where copying back the output upon receiving the
termination signal. With that information, the habitual ETICS process is
launched, that is: setup of the workspace and project, checkout of the code
required for the test and execution of it (appendix A.1).

Within it, deployment scripts are executed for each service and they
get synchronized sending information to the others using ETICS commands
(listing A.3).

In order to recreate this scenario and use these sources, the ETICS system
must be set up with the metainformation that describes the procedures to
execute. Such information models the behavior of the project and is detailed
in the next section.

5.2.3 Modelization in ETICS

The utilization of the ETICS facility in the performance of the OGSA-BES
compliance testbed covers two aspects of the work: the build and packaging
of the client and the test (using the build facility) and the execution of
it (using the test facility). The information required in both cases for the
description of each activity is stored in the project Grid testbed compliance. It
contains the subsystems and components that model the activities to do and,
in the current version of the system, contains configurations as the smallest
information bricks.

The testing client is represented by eu.omii.bes subsystem which consists
of four ETICS components: stub, utils, clients and compliance. A more
detailed description is presented in the next paragraph.

eu.omii.bes.stub generates the stub which connects to every BES end-
point. It builds for any platform the bes-stub package and has dynamic
build dependencies on the axis and ant packages.

eu.omii.bes.utils contains additional utilities such as security handlers or
parsers to perform the tests. It generates the bes-utils package and
depends on the following components: axis, ant, bouncycastle, log4j,
wss4j, xml-security, glite-security-trustmanager (GSI), glite-security-
util-java and eu.omii.bes.stub.

5.2 Test implementation 107

eu.omii.bes.clients represents the generic OGSA-BES client based on the
normative specification ([23]). It builds the bes-generic-clients package
and depends on axis, log4j, ant, eu.omii.bes.util and eu.omii.bes.stub.

eu.omii.bes.compliance contains the suite of compliance tests for the OGSA-
BES service. It also contains the executable part of the tests and
depends on the previous packages. It also depends on axis, log4j,
ant, junit, jdk and eu.omii.bes.clients. The package it builds is bes-
compliance-tests.

Apart from this description, any of the components mentioned contains
the same commands to indicate the system how to checkout the code (i.e.
VCS Commands) and the instructions to build the package (i.e. Build
Commands).

For the deployment of the testbed, the subsystem eu.omii.compliance
groups the components and configurations that correspond to the deploy-
ments, nodes, services and test described in the section 5.1.2. Despite such
structure is not available in ETICS as described, because of being developed
parallel to the develop of this test, the current structure is functionally equal
and behaves in exactly the same intended way as the new one. Hence,
the subsystem eu.omii.compliance acts as the deployment; the components
eu.omii.compliance.repo, eu.omii.compliance.wn, eu.omii.compliance.ce and
eu.omii.compliance.client are the nodes; and their configuration dependencies
are the services and tests that participate on the distributed test.

This structure is perfectly suitable for the requirement of being able to
test different OGSA-BES services. By creating several configurations for
each component, one per service, and linking all of them in a subsystem
configuration, the system replicates the test structure for the target service.

For instance, for the OGSA-BES implementation of gLite (CREAM-
BES), the eu.omii.compliance.glite configuration is created. This one has
four subconfigurations, one per component, each one of them depends on
each one of the components of the deployment modules for the gLite services
(the subsystem eu.omii.compliance.glite):

eu.omii.compliance.repo.glite holds the instructions and parameters to
deploy a repository service that delivers the packages required in a gLite
installation. It lists the metapackages to be downloaded from ETICS
when running the repository and depends on the apt-deployment cream
component from the Externals ETICS project to create the repository.

eu.omii.compliance.wn.glite includes instructions about how to checkout
the deployment module for the gLite CREAM CE worker node. It does

108 Test use case: design, implementation and results

not depend on any external package because its deployment module
just needs to download the pbs-mom metapackage from the ad-hoc
repository and configure it.

eu.omii.compliance.ce.glite contains checkout instructions to retrieve the
deployment module for the gLite CREAM BES service. Like in the case
of the worker node, the deployment module is self-contained and does
not need any external dependency.

eu.omii.compliance.client.glite comprises checkout instructions to deploy
the compliance test on the gLite CREAM-BES service (essentially
the same for any other OGSA-BES service), so there is no external
dependencies.

During this explanation, use of metapackages has been mentioned as
a way of grouping closely-related packages. The used ones for the gLite
CREAM-BES compliance test are:

• eu.omii.metapackages.testsuite groups the test client packages

• org.glite.metapackages.CREAM-BES groups the components of the CREAM
service (CREAM, CREAM-BES, BDII, TORQUE-server, etc.)

• org.glite.metapackages.TORQUE-server groups the components for the
PBS scheduler service

• org.glite.metapackages.TORQUE-client groups the packages for the PBS
scheduler service client

Consequently, regarding the model presented for the distributed testing
within ETICS, a configuration is used with two different meanings: on one
side, for the build part, as a version control mechanism of the resulting
package of the component (like the usual version mechanism in any VCS
source) and on the other side, for the testing part, as a branch from the
central concept of OGSA-BES compliance testing, focusing on the specific
distributions under test (like in the branch concept of VCS sources).

This one has been the explanation of the implementation of the compli-
ance test, from the points of view of the test development and the testbed
compliance. Next, the results of its execution for the gLite CREAM-BES
service are detailed.

5.3 Test deployment and results 109

5.3 Test deployment and results

After designing and implementing the compliance test and the testbed with
ETICS the next and final step is to execute it and get the results.

The OGSA-BES compliance testing can be executed from the ETICS WA
or from the ETICS CLI. The concrete commands used for its execution are
shown in the appendix A.14. Under such scenario, table 5.1 presents a short
list of the results of the test.

Although these results are specific for a single Grid distribution, they are
a good indicator of the surrounding circumstances of a standard implemen-
tation in a Grid environment. The alpha status of these releases suggests
that the implementation is still under development and also in this case, it
implies that the recommendation itself is under public comment phase.

As it can be seen in the figure 5.1 and appendix B.2, the test has been
successfully deployed. The system has managed to schedule several jobs,
deploy the corresponding virtual machines for each of them, launch the
individual jobs, act as a messaging gateway communicating them and retrieve
the results archiving them in the ETICS repository.

Therefore, despite of the errors in the test performance, the final results
is that the compliance test itself has been successfully accomplished. Using
the ETICS facility, it has been able to execute compliance tests against latest
releases of several services under development (gLite CREAM and CREAM-
BES) and also setup the scenario for the test. Nevertheless, the specific
consequences of these unsuccessful compliance test results as well as issues
during the execution and possible future works are covered in the next chapter
across the conclusions of the work.

4The reader shall notice that because of availability of the releases, the test has been
executed only with the gLite CREAM-BES service.

110 Test use case: design, implementation and results

Figure 5.1: Compliance tests results page

T
ab

le
5.

1:
T
es

t
m

et
h
o
d
s

re
su

lt
s

fo
r

gL
it

e
C

R
E

A
M

-B
E

S

N
am

e
S
ta

tu
s

D
es

cr
ip

ti
on

B
ad

F
or

m
at

te
d
J
S
D

L
A

ct
iv

it
y
D

o
cu

m
en

t
E

rr
or

U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
-

U
n
s
u
p
p
o
r
t
e
d
F
e
a
t
u
r
e
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
e
u
.
o
m
i
i
.
b
e
s
.
-

e
x
c
e
p
t
i
o
n
.
S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
>

E
rr

or
p
ro

d
u
ce

d
b
ec

au
se

th
e

A
x
is

im
p
le

m
en

ta
ti

on
of

th
e

S
O

A
P

m
es

sa
ge

s
d
o
es

n
ot

al
lo

w
n
u
ll

m
es

sa
ge

s
(i

n
h
er

it
ed

fr
om

th
e

W
S
D

L
fi
le

).

U
n
su

p
p
or

te
d
J
S
D

L
A

ct
iv

it
y
D

o
cu

m
en

t
E

rr
or

U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
-

U
n
s
u
p
p
o
r
t
e
d
F
e
a
t
u
r
e
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
j
a
v
a
.
l
a
n
g
.
N
u
l
l
-

P
o
i
n
t
e
r
E
x
c
e
p
t
i
o
n
>

E
rr

or
p
ro

d
u
ce

d
b
ec

au
se

of
u
sa

ge
of

th
e

J
S
D

L
P
os

ix
p
ro

fi
le

w
h
ic

h
is

n
ot

su
p
p
or

te
d

in
th

e
W

S
D

L
d
o
cu

m
en

t
of

th
e

te
st

cl
ie

n
t.

U
n
su

p
p
or

te
d
F
ea

tu
re

A
ct

iv
it
y
D

o
cu

m
en

t
E

rr
or

U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
-

U
n
s
u
p
p
o
r
t
e
d
F
e
a
t
u
r
e
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
j
a
v
a
.
l
a
n
g
.
N
u
l
l
-

P
o
i
n
t
e
r
E
x
c
e
p
t
i
o
n
>

E
rr

or
w

h
en

re
q
u
es

ti
n
g

an
ac

ti
v
it
y

w
h
os

e
re

q
u
ir

em
en

ts
ar

e
p
ro

p
er

ly
fo

rm
at

te
d

b
u
t

n
o

se
n
se

w
it
h

th
e

re
q
u
es

t.

P
ri

v
il
eg

ed
A

ct
iv

it
y

E
rr

or
U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
-

N
o
t
A
u
t
h
o
r
i
z
e
d
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
e
u
.
o
m
i
i
.
b
e
s
.
e
x
c
e
p
t
i
o
n
.
-

S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
>

E
rr

or
tr

y
in

g
to

p
er

fo
rm

an
ac

ti
v
it
y

w
h
ic

h
re

q
u
ir
es

sp
ec

ia
l
p
ri

v
il
eg

es
to

b
e

ru
n

on
an

y
O

S
.

C
on

ti
n
u
ed

on
n
ex

t
pa

ge
..

.

T
ab

le
5.

1
–

C
on

ti
n
u
ed

S
to

p
p
ed

S
er

v
ic

e
E

rr
or

U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
N
o
t
-

A
c
c
e
p
t
i
n
g
N
e
w
A
c
t
i
v
i
t
i
e
s
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
e
u
.
o
m
i
i
.
b
e
s
.
-

e
x
c
e
p
t
i
o
n
.
S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
>

E
rr

or
st

op
p
in

g
th

e
se

rv
ic

e
an

d
ch

ec
k
in

g
if

n
ew

jo
b
s

ar
e

ac
ce

p
te

d
(t

h
e

st
op

ca
ll

is
n
ot

im
p
le

m
en

te
d
).

In
va

li
d
R

eq
u
es

t
E

rr
or

U
n
e
x
p
e
c
t
e
d

e
x
c
e
p
t
i
o
n
,

e
x
p
e
c
t
e
d

<
o
r
g
.
o
g
f
.
b
e
s
.
f
a
c
t
o
r
y
.
-

I
n
v
a
l
i
d
R
e
q
u
e
s
t
M
e
s
s
a
g
e
F
a
u
l
t
T
y
p
e
>

b
u
t

w
a
s

<
e
u
.
o
m
i
i
.
b
e
s
.
-

e
x
c
e
p
t
i
o
n
.
S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
>

E
rr

or
su

b
m

it
ti

n
g

a
jo

b
th

at
la

u
n
ch

es
an

in
ex

is
te

n
t

p
ro

gr
am

.

N
or

m
al

A
ct

iv
it
y

E
rr

or
e
u
.
o
m
i
i
.
b
e
s
.
e
x
c
e
p
t
i
o
n
.
S
e
r
v
i
c
e
I
n
v
o
c
a
t
i
o
n
E
x
c
e
p
t
i
o
n
;

n
e
s
t
e
d

e
x
c
e
p
t
i
o
n

i
s
:

o
r
g
.
x
m
l
.
s
a
x
.
S
A
X
P
a
r
s
e
E
x
c
e
p
t
i
o
n
:

P
r
e
m
a
t
u
r
e

e
n
d

o
f

f
i
l
e
.

In
te

rn
al

se
rv

er
er

ro
r

w
h
en

p
er

fo
rm

in
g

a
n
or

m
al

op
er

at
io

n
.

It
is

p
ro

b
ab

ly
d
u
e

to
a

co
n
fi
gu

ra
ti

on
is

su
e.

5.4 Summary 113

5.4 Summary

The implementation of the OGSA-BES test use case presented in previous
chapters has as main objectives to perform interoperability tests verifying
the compliance to the recommendation automatically. All the process is lead
inside ETICS but two different activities happen for that.

Firstly, the OGSA-BES compliance tests is designed according to the
statements of the recommendation and the WSDL descriptor document.
Therefore, this test verifies as a suite of unit/functional tests, that the
methods and attributes are accessible as specified and returning results as
specified for certain conditions. As well as testing the exceptional behaviors,
the test runs the usual requests.

Secondly, the test must take place in a fully operational service. This
is accomplished by setting up the target service on demand, previously
to the test execution and in a completely automated way. For that, the
ETICS system is used, modelling the components that build the service and
preparing the clean machines on which they are installed.

Exactly, the test is executed over the gLite implementation of OGSA-
BES, the CREAM-BES service. For that, the testbed is execute with four
nodes consisting of a repository, a worker node, the computing element and
the test client. The ETICS system is properly configured to identify the
services to be run on each node. The test is successfully executed getting the
results shown in the table 5.1.

Chapter 6

Conclusions

As seen across the first chapters, software development is not so easy task.
Part of the reason is the big complexity of settling and defining all the
possible states allows to happen under some circumstances, but another
important part is the difficulty to code that in a formal language and check
the correctness of such implementation. In addition, in the case of the
Grid paradigm, software development inherits the typical issues but it also
adds the great troubles of designing the stack of protocols and services that
talk together seamlessly no matter the provider, location or computational
requirements.

Regarding this scenario, two specific initiatives appear to address separate
parts of the puzzle: on one side, the ETICS project contributes to enhance
the Grid software development process by creating the unified tool that
implements recognised standards and best practices in order to guide the
developer across a well-defined quality assurance process; on the other side,
the OMII-Europe project, as part of the OGF initiative, aims to deliver pro-
duction quality middleware relevant to large-scale and smaller collaborative
Grids across the ERA by re-engineering key components to adapt them to
interoperability standards: the OGSA-BES recommendation for Grid job
submission. These two projects define the scope where the results obtained
and presented across this document are focused.

As stated before (section 4.2), the general purpose of the work is to
provide automatically interoperability testing based on standard compliance
testing. And to face up the issue, two different goals have been successfully
achieved: development of the compliance tests for the OGSA-BES recom-
mendation and development of the testbed infrastructure where putting all
together and performing the test.

The development of the compliance tests has required the analysis and
design of the suite of unit and functional tests to ensure the compatibility

116 Conclusions

with the corresponding OGF recommendation [23]. This development has
been integrated into the ETICS build tool what has greatly helped to under-
stand the underlying complexity of the solution and to abstract the release
process for different platforms. It has also been useful to facilitate the later
integration of the tests execution in the testbed, managed by the ETICS
facility.

The development of the testbed has been focused on the current status of
the ETICS development and on the target services to be considered for the
test. The integration of virtualization techniques (based on paravirtualiza-
tion) has solved the big problem of installing normal services, that is, services
prepared to be run on a normal machine in terms of, for instance, ports, paths
in the file system, etc. With virtualization, the process of installing the IUT
has been simplified merely to the installation itself of the services. From the
point of view of the developer this is not so important because it must be
something transparent, provided by the infrastructure. But from the point
of view of the infrastructure maintainer, there is huge difference in deploying
the IUT in a normal machine and deploying it under a virtual one. In the
second case, the machine is not lost in case of failure, because the image
can be easily removed and the space scratched using some monitoring tool
(i.e. a watchdog). Regarding the performance, usage of virtual machines
only penalizes the global performance when the target performance of the
test is comparable to such penalty. For OGSA-BES tests, this aspect is out
of scope.

Another important improvement is the integration in the ETICS infor-
mation tree. While this tree contains all the information during the build
part, extending such information for the test part provide an uniform view
of the project, helping to see the global structure and status of it. In this
sense, the design of general deployment modules for the OGSA-BES tests
using the concepts of node and deployment enables the reutilization of the
structure when the tests target on different distributions, for instance, gLite
or UNICORE.

Despite the specific results of the test shown in the table 5.1 are all
unsuccessful, just the ability to perform such test fulfills widely the initial
objectives because it can be demonstrated that the IUT (gLite CREAM-BES
development in that case) is still incomplete. It must be noticed that the fact
that results of the compliance tests are all negative does not strictly mean
the implementation is not compliant with the specification. In such cases,
like in the current release of gLite CREAM-BES, the accuracy of the results
is null because the service is not stable enough to be validated.

Therefore, besides direct results from this test execution, an important
conclusion demonstrated within this work is that the quality in the devel-

117

opment process of some service does not rely only on its conformance with
the underlying standards, its suitability to its purpose. Together with its
correctness appears its stability, maintainability and final integration into
the target structure. This concrete case has shown that to have compliance
testing in place for the OGSA-BES service is not enough to assure the produc-
tion quality stage of the software for final release. It has been its integration
in a real use case (i.e. its installation, configuration and deployment) what
has allowed to detect the weakness of the component: is not designed to be
automatically or unattendedly deployed.

To know this kind of information in earlier stages of the deployment and
keeping track of it is one of the key points to achieve successful results in
complex distributed development projects like Grid ones. Usage of techniques
like continuous integration in short life cycles enables to detect troubles,
wrong designs, bottlenecks or incompatibility issues. As stated during the
whole text and demonstrated in the last part, the ETICS project, in the
design of its facility, exactly focuses on these topics and aids the whole range
of users involved in the process to achieve the final goal: perceivable quality
in the software.

Issues

The work described on this document has been performed in a high-end
research environment. The cutting-edge state of the technologies used (e.g.
the Grid, WS or virtualization) usually involves instability in the software
components and unavailability in the features that delays and makes more
difficult to reach the goals. The two major issues found concerns the Grid
development and the evolution of current technologies.

Although the Grid paradigm is not so new and many investments have
been done around the world, many questions still raise considering the best
approach. As a result, the Grid community tries to understand all the
consequences and has given many different answers. In addition, the large
expectations created around it as the future solution for improve the efficiency
of the current computing resources has driven to the current situation where
many institutes develop its own solution. The community has identified
this weakness and several international forums appeared to integrate existing
solutions and promote standards or common practices that sum efforts.

In the case of the OGSA-BES recommendation, the distributed develop-
ment of the service is a not so easy task to coordinate in order to follow
a quality assurance process. To depend on the work of separate and far
teams supposes to be in contact almost every moment and it is easy to

118 Conclusions

find misunderstandings or discrepancies between teams what at the end is
translated into bad designs and delays.

On the side of the new technologies, the constant evolution of those ones
makes very difficult to follow them properly. Sometimes, the life cycle of
some technologies is shorter than their implementation. It is the case of
WS. Initially, they were oriented as a mechanism to loosely couple services
to their physical implementation, abstracting the specific details. This has
been shown very powerful and extensible so now they are expanding so fast
that a huge amount of recommendations has been produced. The definition of
standards for WS interoperability, security, auditing, sessions, eventing, etc.
improves its global functionality but also includes a dynamic component
difficult to manage with when designing a service that interoperates with
others.

Again, this is the case of the OGSA-BES in some way. By itself, it only
defines the interface to communicate with a LRMS, but the evolution of other
services in the Grid, like the security mechanisms, imposes additional features
to the services that implements the recommendation. Dealing properly with
this volatility is very important in order to achieve success in time and
needs to define adequate development plans, considering the evolution of
the technology in medium term.

What is the next?

The proof of concept developed across this document settles the basis where
to establish the mechanisms to enforce usability, maintainability and inter-
operability in the development of distributed services.

After creating the facility to reproduce easily production scenarios where
perform different kind of end-to-end tests, the next step is to improve it to
make it more usable, intuitive and flexible, allowing the development of not
only Grid services but any kind of software that requires to distribute the
work across different teams.

Specifically, the OGSA-BES compliance tests must be extended to other
implementations and check effectively their interoperability (based on design
and not on interoperation), generating interoperability matrices between
clients and services.

Based on this model, other recommendations may be implemented as
a compliance test and integrated in the facility to increase the number of
services that can be automatically tested for their final usage. The final
objective would be to integrate this facility in the Grid, harnessing the
experience and richness of its design to provide more intelligence to the

119

process, saving time and efforts. Some day the powerfulness of the Grid
will be so accessible that it will be able to manage, maybe self manage, its
own development.

Appendix A

Test implementation

A.1 ETICS commands

Listing A.1 shows the sequence of commands must be executed to launch the
ETICS build for the compliance suite package.

Listing A.2 lists the set of commands that start a test activity. In
this case, the listing shows the execution of the compliance test (process
performed by the user).

Listing A.3 exemplifies the ETICS messaging service. The typed com-
mands create the common session for all the parts involved in the test and
show the usage of such session, publishing and consuming information.

Listing A.1: ETICS build sequence

e t i c s−workspace−setup
e t i c s−get−p r o j e c t g r i d t e s tb ed
e t i c s−checkout −c eu . omii . bes . compl iance R 0 2 0 \

eu . omii . bes . compliance
e t i c s−test −c eu . omii . bes . compl iance R 0 2 0 \

eu . omii . bes . compliance

Listing A.2: ETICS test sequence

e t i c s−workspace−setup
e t i c s−get−p r o j e c t g r i d t e s tb ed
e t i c s−checkout −c eu . omii . compliance . g l i t e \

eu . omii . compliance
e t i c s−test −c eu . omii . compliance . g l i t e \

eu . omii . compliance

122 Test implementation

Listing A.3: ETICS messaging service

e t i c s−workspace−setup
e t i c s−coschedule−local−setup −o /tmp/ e t i c s . uuid 4
7974 cbf4−8677−4262−995e−e3365e f 68 f 8 c
e t i c s−set −−uuid ‘ cat /tmp/ e t i c s . uuid ‘ \

hostname e t i c s . cern . ch
Done !
e t i c s−get −b −−uuid ‘ cat /tmp/ e t i c s . uuid ‘ \

hostname
e t i c s . cern . ch

A.2 Testsuite design

Table A.1 details the full list of performed tests to verify the compliance of
a service with the OGSA-BES recommendation.

T
ab

le
A

.1
:

T
es

t
m

et
h
o
d
s

d
es

cr
ip

ti
on

N
am

e
D

es
cr

ip
ti

on
B

E
S
-F

a
ct

o
ry

C
re

at
eA

ct
iv

it
y

1
B

ad
F
or

m
at

te
d
J
S
D

L
A

ct
iv

it
y
D

o
cu

m
en

t
S
en

d
in

g
a

jo
b

w
h
ic

h
d
o
es

n
’t

co
n
ta

in
th

e
J
ob

D
efi

n
it

io
n

ta
g

2
U

n
su

p
p
or

te
d
J
S
D

L
A

ct
iv

it
y
D

o
cu

m
en

t
S
en

d
in

g
a

jo
b

w
h
ic

h
co

n
ta

in
s

to
o

m
u
ch

in
fo

rm
at

io
n

(i
.e

.
fe

at
u
re

s
cu

rr
en

tl
y

n
ot

su
p
p
or

te
d
)

3
U

n
su

p
p
or

te
d
F
ea

tu
re

A
ct

iv
it
y
-

D
o
cu

m
en

t
S
en

d
in

g
a

jo
b

w
h
ic

h
ap

p
en

d
s

an
ad

d
it

io
n
al

d
es

ir
ed

d
es

cr
ip

ti
on

of
th

e
jo

b
n
ot

su
p
p
or

te
d

b
y

th
e

cu
rr

en
t

B
E

S
im

p
le

m
en

ta
ti

on
4

P
ri
v
il
eg

ed
A

ct
iv

it
y

S
en

d
in

g
a

jo
b

w
h
ic

h
re

q
u
ir

es
ad

d
it

io
n
al

p
ri
v
il
eg

es
to

ru
n

5
S
to

p
p
ed

S
er

v
ic

e
S
en

d
in

g
a

jo
b

w
h
il
e

th
e

se
rv

ic
e

is
fo

rm
al

ly
st

op
p
ed

6
In

va
li
d
R

eq
u
es

t
S
en

d
in

g
a

jo
b

w
it

h
in

co
n
si

st
en

t
in

fo
rm

at
io

n
7

N
or

m
al

A
ct

iv
it
y

S
en

d
in

g
a

fu
ll

jo
b

fu
lfi

ll
in

g
al

l
n
or

m
al

re
q
u
ir

em
en

ts
8

A
ct

iv
it
y
D

o
cu

m
en

tI
n
R

es
p
on

se
C

h
ec

k
in

g
th

e
p
re

se
n
ce

of
ad

d
it

io
n
al

A
ct

iv
it
y
D

o
cu

m
en

t
in

th
e

re
-

sp
on

se
G

et
A

ct
iv

it
y
S
ta

tu
se

s
9

Z
er

oE
P

R
A

ct
iv

it
y
Id

en
ti
fi
er

S
en

d
in

g
a

ze
ro

-s
iz

ed
ve

ct
or

of
E

n
d
P
oi

n
tR

ef
er

en
ce

s
to

ge
t

th
e

st
at

u
s

of
th

e
jo

b
10

H
u
n
d
re

d
E

P
R

A
ct

iv
it
y
Id

en
ti
fi
er

S
en

d
in

g
on

e
h
u
n
d
re

d
E

n
d
P
oi

n
tR

ef
er

en
ce

s
to

ch
ec

k
co

h
er

en
ce

in
th

e
re

su
lt

s
ob

ta
in

ed
11

S
in

gl
eR

es
p
on

se
D

es
cr

ip
ti

on
S
en

d
in

g
on

e
p
ro

p
er

ly
co

n
fi
gu

re
d

jo
b

an
d

ge
tt

in
g

ei
th

er
d
es

cr
ip

ti
on

or
th

e
co

rr
es

p
on

d
in

g
fa

u
lt

12
S
in

gl
eR

es
p
on

se
F
au

lt
S
en

d
in

g
on

e
jo

b
w

it
h

sp
ec

ia
l
p
ri

v
il
eg

e
re

q
u
ir

em
en

ts
in

or
d
er

to
ge

t
a

fa
u
lt
y

d
es

cr
ip

ti
on

.
L
o
ok

in
g

fo
r

N
ot

A
u
th

or
iz

ed
F
au

lt
C
on

ti
n
u
ed

on
n
ex

t
pa

ge
..

.

T
ab

le
A

.1
–

C
on

ti
n
u
ed

13
U

n
k
n
ow

n
E

P
R

A
ct

iv
it
y
Id

en
ti

fi
er

S
en

d
in

g
on

e
ra

n
d
om

ac
ti

v
it
y

id
en

ti
fi
er

to
ge

t
n
ot

an
ex

ce
p
ti

on
b
u
t

a
er

ro
r

fa
u
lt

in
si

d
e

th
e

an
sw

er
.

L
o
ok

in
g

fo
r

In
va

li
d
A

ct
iv

it
y
Id

en
ti
fi
er

-
F
au

lt
14

In
va

li
d
R

eq
u
es

t
S
en

d
in

g
a

re
q
u
es

t
w

it
h

in
co

n
si

st
en

t
in

fo
rm

at
io

n
15

S
ta

tu
sT

ra
n
si

ti
on

in
g

S
en

d
in

g
an

em
p
ty

jo
b

an
d

ch
ec

k
in

g
th

at
al

ls
ta

tu
s
fl
ow

is
im

p
le

m
en

te
d

16
N

or
m

al
S
ta

tu
s

S
en

d
in

g
a

n
or

m
al

jo
b

17
S
u
b
st

at
eP

re
se

n
ce

S
en

d
in

g
a

n
or

m
al

jo
b

an
d

ge
tt

in
g

su
b
-s

ta
te

s
T
er

m
in

at
eA

ct
iv

it
ie

s
18

In
va

li
d
R

eq
u
es

t
S
en

d
in

g
in

co
n
si

st
en

t
in

fo
rm

at
io

n
in

th
e

re
q
u
es

t
19

Z
er

oE
P

R
A

ct
iv

it
y
Id

en
ti
fi
er

S
en

d
in

g
a

ze
ro

-s
iz

ed
ve

ct
or

of
E

n
d
P
oi

n
tR

ef
er

en
ce

20
H

u
n
d
re

d
E

P
R

A
ct

iv
it
y
Id

en
ti
fi
er

S
en

d
in

g
a

h
u
n
d
re

d
-s

iz
ed

ve
ct

or
of

E
n
d
P
oi

n
tR

ef
er

en
ce

s
21

U
n
k
n
ow

n
A

ct
iv

it
y
Id

en
ti

fi
er

S
en

d
in

g
a

w
el

l-
fo

rm
at

te
d

E
n
d
P
oi

n
tR

ef
er

en
ce

b
u
t

p
oi

n
ti

n
g

to
n
on

-
ex

is
te

n
t

ac
ti

v
it
y

22
U

n
p
ri

v
il
eg

ed
R

eq
u
es

t
S
en

d
in

g
a

re
q
u
es

t
to

p
er

fo
rm

th
e

te
rm

in
at

e
ac

ti
on

ov
er

a
jo

b
fo

r
w

h
ic

h
ad

d
it

io
n
al

p
ri

v
il
eg

es
ar

e
n
ee

d
ed

23
In

T
er

m
in

at
ed

S
ta

te
S
en

d
in

g
a

n
or

m
al

re
q
u
es

t
an

d
ch

ec
k
in

g
th

at
th

e
sy

st
em

m
ov

es
to

T
er

m
in

at
ed

S
ta

te
in

ca
se

of
su

cc
es

sf
u
l
re

q
u
es

t
24

Id
em

p
ot

en
tP

ro
p
er

ty
S
en

d
in

g
tw

o
te

rm
in

at
io

n
re

q
u
es

ts
co

n
se

cu
ti

ve
an

d
ch

ec
k
in

g
th

at
th

e
se

co
n
d

on
e

h
as

n
o

eff
ec

t
(e

ff
ec

t
m

ea
n
s

ch
an

ge
th

e
st

at
u
s

or
th

ro
w

an
y

er
ro

r)
25

N
on

C
h
an

ge
sW

h
en

F
au

lt
R

u
n
n
in

g
p
re

v
io

u
sl

y
b
ot

h
m

et
h
o
d
s

(E
P

R
n
ot

fo
u
n
d

an
d

N
on

st
op

-
p
ab

le
)

an
d

ch
ec

k
in

g
th

at
th

er
e

is
n
o

ch
an

ge
in

th
e

st
at

u
s

of
th

e
jo

b
26

N
on

S
to

p
p
ab

le
A

ct
iv

it
y

S
en

d
in

g
a

te
rm

in
at

e
re

q
u
es

t
fo

r
a

jo
b

th
at

cu
rr

en
tl
y

ca
n
n
ot

b
e

st
op

p
ed

C
on

ti
n
u
ed

on
n
ex

t
pa

ge
..

.

T
ab

le
A

.1
–

C
on

ti
n
u
ed

G
et

A
ct

iv
it
y
D

o
cu

m
en

ts
27

In
va

li
d
R

eq
u
es

t
S
en

d
in

g
in

co
n
si

st
en

t
in

fo
rm

at
io

n
in

th
e

re
q
u
es

t
28

Z
er

oA
ct

iv
it
y
Id

en
ti
fi
er

S
en

d
in

g
a

ze
ro

-s
iz

ed
ve

ct
or

of
E

n
d
P
oi

n
tR

ef
er

en
ce

29
H

u
n
d
re

d
A

ct
iv

it
y
Id

en
ti
fi
er

S
en

d
in

g
a

h
u
n
d
re

d
-s

iz
ed

ve
ct

or
of

E
n
d
P
oi

n
tR

ef
er

en
ce

s
30

U
n
k
n
ow

n
A

ct
iv

it
y
Id

en
ti

fi
er

S
en

d
in

g
a

w
el

l-
fo

rm
at

te
d

E
n
d
P
oi

n
tR

ef
er

en
ce

b
u
t

p
oi

n
ti

n
g

to
n
on

-
ex

is
te

n
t

ac
ti

v
it
y

31
U

n
p
ri

v
il
eg

ed
R

eq
u
es

t
S
en

d
in

g
a

re
q
u
es

t
to

p
er

fo
rm

th
e

te
rm

in
at

e
ac

ti
on

ov
er

a
jo

b
fo

r
w

h
ic

h
ad

d
it

io
n
al

p
ri

v
il
eg

es
ar

e
n
ee

d
ed

32
N

or
m

al
R

eq
u
es

t
S
en

d
in

g
a

d
o
cu

m
en

t
re

q
u
es

t
an

d
ge

tt
in

g
so

m
et

h
in

g
th

at
co

u
ld

b
e

d
iff

er
en

t
fr

om
w

h
at

it
w

as
se

n
t

G
et

F
ac

to
ry

A
tt

ri
b
u
te

sD
o
cu

m
en

t
33

In
va

li
d
R

eq
u
es

t
S
en

d
in

g
in

co
n
si

st
en

t
in

fo
rm

at
io

n
in

th
e

re
q
u
es

t
34

N
or

m
al

S
er

v
ic

e
S
en

d
in

g
a

n
or

m
al

re
q
u
es

t
an

d
ch

ec
k
in

g
th

e
p
ro

p
er

re
su

lt
:

fi
rs

t
an

d
on

ly
on

e
en

ti
ty

in
th

e
re

sp
on

se
,
F
ac

to
ry

A
tt

ri
b
u
te

sR
es

ou
rc

eD
o
cu

m
en

t
B

E
S
-M

a
n
a
g
e
m

e
n
t

S
ta

rt
A

cc
ep

ti
n
gN

ew
A

ct
iv

it
ie

s
35

S
ta

rt
A

cc
ep

ti
n
gN

ew
A

ct
iv

it
ie

s
T
ry

to
in

vo
ke

th
e

st
ar

ti
n
g

co
m

m
an

d
S
to

p
A

cc
ep

ti
n
gN

ew
A

ct
iv

it
ie

s
36

S
to

p
A

cc
ep

ti
n
gN

ew
A

ct
iv

it
ie

s
T
ry

to
in

vo
ke

th
e

st
op

p
in

g
co

m
m

an
d

Appendix B

Screenshots

B.1 Modelization in ETICS

Figure B.1 shows the module tree designed for the compliance test (build
and test parts) within ETICS. It shows the build modules (eu.omii.bes), the
deployment module ()eu.omii.compliance), the nodes (eu.omii.compliance.-
ce, eu.omii.compliance.client, etc.) and the services and tests (eu.omii.-
compliance.glite.ce and eu.omii.compliance.glite.client).

As mentioned, ETICS allows to send jobs through the CLI (listings ?? and
A.2) or the WA. Figure B.2 shows precisely a resume of the web application
interface for submitting test jobs.

B.2 Results

The following pictures show the results of deploying the OGSA-BES compli-
ance test for the gLite CREAM-BES service within the ETICS facility.

128 Screenshots

Figure B.1: Compliance test tree within ETICS

B.2 Results 129

Figure B.2: ETICS job submission

130 Screenshots

Figure B.3: Compliance tests execution results page

B.2 Results 131

Figure B.4: Repository deployment results page

132 Screenshots

Figure B.5: Worker node deployment results page

B.2 Results 133

Figure B.6: CE deployment results page

Bibliography

[1] D. Farber and K. Larson. The Architecture of a Distributed Computer
Systems Informal Description. University of California, Irvine, CA,
1970.

[2] G. Fernandez. Curso de ordenadores. Conceptos básicos de arquitectura
y sistemas operativos. ETSIT Publication Service, Madrid, Spain, 2004.

[3] K. Kesselman I. Foster and S. Tuecke. The Anatomy of the Grid.
Technical report, Argonne National Laboratoty, University of Chicago,
University of Southern California, 1999.

[4] J. Nick I. Foster, K. Kesselman and S. Tuecke. The physiology of the
Grid. Technical report, Argonne National Laboratoty, University of
Chicago, University of Southern California, IBM Corporation, 1999.

[5] K. Kesselman I. Foster, editor. The Grid: Blueprint for a new Comput-
ing Infrastructure. Morgan Kaufmann Publishers, San Francisco, CA,
1999.

[6] I. Foster. A globus primer. Technical report, Globus Alliance,
2007. http://www.globus.org/toolkit/docs/4.0/key/GT4 Primer

0.6.pdf.

[7] EGEE JRA1. EU Deliverable DJRA1.4: EGEE Middleware Architec-
ture. Technical report, EGEE Project, 2005. https://edms.cern.ch/

document/594698/.

[8] A. Delgado Peris F. Donno P. Méndez Lorenzo R. Santinelli A. Sciabà
S. Burke, S. Campana. gLite 3 User Guide. Technical report, LCG
Project, 2007. https://edms.cern.ch/document/722398/.

[9] M. Romberg. UNICORE: Beyond web-based job submission. Technical
report, Central Institute for Applied Mathematics, Research Center
Jülich, 2000.

http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf
http://www.globus.org/toolkit/docs/4.0/key/GT4_Primer_0.6.pdf
https://edms.cern.ch/document/594698/
https://edms.cern.ch/document/594698/
https://edms.cern.ch/document/722398/

[10] S. van den Berghe. UNICORE architecture and server components.
Technical report, Grid Summer School, 2004.

[11] Th. Lippert D. Mallmann R. Menday M. Rambadt M. Riedel M.
Romberg B. Schuller Ph. Wieder A. Streit, D. Erwin. UNICORE:
From Project Results to Production Grids. Technical report, John
von Neumann-Institute for Computing (NIC), Forschungszentrum Jülich
(FZJ), 2005.

[12] A. Savva D. Berry A.Djaoui A. Grimshaw B. Horn F. Maciel F. Sieben-
list R. Subramaniam J. Treadwell J. Von Reich I. Foster, H. Kishimoto.
GFD.030: Open Grid Services Architecture. Technical report, Open
Grid Forum, 2005.

[13] H. Kishimoto J. Von Reich I. Foster, D. Gannon. GFD-I.029: Open Grid
Services Architecture Use Cases. Technical report, Open Grid Forum,
2004.

[14] R. Gibson. Managing Computer Projects. Prentice-Hall, 1992.

[15] Institute of Electrical and Electronics Engineers. IEEE Standard
Glossary of Software Engineering Terminology. IEEE, 1990.

[16] B. Melton D. De Pablo A. Scheffer R. Stevens C. Mazza, J. Fairclough.
Software Engineering Standards. Prentice Hall, 1994.

[17] B. Beizer. Software Testing Techniques. International Thompson
Computer Press, Boston, MA, 2nd edition edition, 1990.

[18] E. van Veenendaal. The testing practitioner. UTN Publishers, 2002.

[19] ETICS WP4. EU Deliverable D4.1: Requirements and specifications for
unit, functional and regression testing. Technical report, ETICS Project,
2007. https://edms.cern.ch/document/753643.

[20] Akogrimo WP2. Testbed description. Technical report, University of
Honenheim, 2005.

[21] F. Douglas C. Loosley. High-performance client-server. A guide to
building and managing robust distributed systems. Wiley Computer
Publishing, 1998.

[22] M. Drescher D. Fellows A. Ly S. McGough D. Pulsipher A. Savva
A. Anjomshoaa, F. Brisard. Job Submission Description Language
(JSDL). Technical report, Open Grid Forum, 2005.

https://edms.cern.ch/document/753643

[23] P. Lane W. Lee S. Newhouse S. Pickles D. Pulsipher C. Smith
M. Theimer I. Foster, A. Grimshaw. OGSA Basic Execution Service.
Technical report, Open Grid Forum, 2007.

[24] S. Bradner. RFC2119: Key words for use in RFCs to Indicate
Requirement Levels. Technical report, IETF: Network Working Group,
1997.

[25] P. Wieder R. Yahyapour. GFD-I.064: Grid scheduling use cases.
Technical report, Open Grid Forum, 2006.

[26] I. Foster J. Frey S. Graham I. Sedukhin D. Snelling S. Tuecke W. Vam-
benepe K. Czajkowski, D. Ferguson. The WS-Resource Framework.
Technical report, Globus Alliance, 2004.

[27] R. Monzillo A. Nadalin P. Hallam-Baker, C. Kaler. WS-
Security: X.509 Certificate Token Profile. Technical report,
OASIS, 2007. http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-x509-token-profile-1.0.

[28] Institute of Electrical and Electronics Engineers. IEEE Computer Dic-
tionary - Compilation of IEEE Standard Computer Glossaries. IEEE,
1991.

[29] Ting-Kau Leung D. Sidhu. Formal methods for protocol testing:
A detailed study. In IEEE Transactions on Software Engineering,
volume 15. IEEE, 1989.

[30] A. Khodabandeh. Quality through Software Metrics. Technical report,
Information and Programming Technology Group, CERN, 1998.

[31] D. Johnson B. Jacobsen. Configuration management. Technical report,
University of California, Berkeley, University of Colorado, Boulder,
1999.

[32] M. Theimer G. Wasson M. Humphrey, C. Smith. JSDL HPC Profile
Application Extension. Technical report, Open Grid Forum, 2006.

[33] E. Stokes. Execution Environment and Basic Execution Service Model
in OGSA Grids. Technical report, Open Grid Forum, 2007.

[34] ETICS. ETICS overview: the ETICS build and test service. Technical
report, ETICS Project, 2007.

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0

[35] ETICS WP5. ETICS User Manual. Technical report, ETICS Project,
2007. https://edms.cern.ch/file/795312/1.0.

[36] ETICS WP3. EU Deliverable D3.2: Interoperability reports specifica-
tions, configuration, build and integration system. Technical report,
ETICS Project, 2007. https://edms.cern.ch/document/807014.

[37] ETICS WP4. EU Deliverable D4.5: Distributed test
execution system. Technical report, ETICS Project, 2007.
https://edms.cern.ch/document/855714.

https://edms.cern.ch/file/795312/1.0
https://edms.cern.ch/document/807014

