
Universiteit Gent

Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie

Dimensionerings- en werkverdelingsalgoritmen

voor lambda grids

Dimensioning and Workload Scheduling Algorithms
for Lambda Grids

Pieter Thysebaert

Proefschrift tot het bekomen van de graad van

Doctor in de Ingenieurswetenschappen:

Computerwetenschappen

Academiejaar 2006-2007

Universiteit Gent

Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie

Promotoren: Prof. Dr. Ir. Bart Dhoedt

Prof. Dr. Ir. Filip De Turck

Universiteit Gent

Faculteit Ingenieurswetenschappen

Vakgroep Informatietechnologie

Sint-Pietersnieuwstraat 41, B-9000 Gent

Tel.: +32-9-331.49.19

Fax.: +32-9-331.48.99

Dit werk kwam tot stand in het kader van een mandaat van Aspirant bij het Fonds

voor Wetenschappelijk Onderzoek - Vlaanderen (FWO-V).

Proefschrift tot het behalen van de graad van

Doctor in de Ingenieurswetenschappen:

Computerwetenschappen

Academiejaar 2006-2007

Dankwoord

Ongelooflijk, maar opeens ben je aanbeland waar je jezelf nooit zag geraken: het

afwerken van 4 jaar doctoraatsonderzoek en het schrijven van het bijhorende boek.

Het begon allemaal in 2001, met het aanvragen van een onderzoeksbeurs bij het

Fonds voor Wetenschappelijk Onderzoek onder impuls van mijn toenmalige the-

sisbegeleiders, Stefaan Vanhastel en Filip De Turck, die rond die tijd met het Grid

concept in aanraking gekomen waren. Na goedkeuring van de beursaanvraag was

ik vertrokken voor enkele jaren Gridonderzoek, een begrip waarvan de invulling

gaandeweg evolueerde van een verzameling vage concepten en ideeën naar het

werk en de resultaten beschreven in dit boek.

Hier wil ik dan ook even de tijd en ruimte nemen om de mensen waarmee ik

tijdens deze toffe jaren in contact gekomen een welverdiende “15 characters of

fame” te gunnen, aangezien elk van hen bijgedragen heeft tot het tot stand komen

van dit werk. Vooreerst zou ik prof. Paul Lagasse wensen te bedanken aangezien

dit werk onmogelijk geweest was indien ik geen gebruik had kunnen maken van

de uitgebreide faciliteiten van de vakgroep Informatietechnologie. Uiteraard wil

ik ook prof. Piet Demeester, prof. Bart Dhoedt, prof. Filip De Turck en dr. Stefaan

Vanhastel bedanken om me de kans te geven dit doctoraatsonderzoek uit te voeren

binnen de IBCN onderzoeksgroep alsook voor de talrijke begeleidende follow-ups

en brainstormsessies.

Een speciale vermelding is er zeker voor (intussen dr.) Bruno Volckaert voor

de vele goede samenwerkingsverbanden die we gesmeed hebben aangaande on-

derzoek, programmeren en publiceren - hierbij wens ik hem dan ook officieel aan

te duiden als de belangrijkste medeschuldige voor de inhoud van dit boek. An-

dere Gridmensen die in het kader van dit onderzoek niet vrijuit gaan zijn Marc De

Leenheer, Maria Chtepen en Jürgen Baert.

Mijn geworstel met wereldlijke problemen (zoals reisaanvragen, vliegtuigtick-

ets, SAP, weekstaten en koffiekaarten) werd draaglijker gemaakt door Martine

Buysse, Ilse Van Royen, Davinia Stevens, Marleen Van Duyse, Karien Hemel-

soen, Ilse Meersman en Bernadette Becue.

Ook de mensen die onze IT-infrastructuur draaiende houden wil ik speciaal

bedanken. Op vragen omtrent TwinTech, MPL, RAID, 3Ware, BEGrid en stroom-

pannes hadden dr. Brecht Vermeulen, Bert De Vuyst, Wouter Adem, Pascal Van-

deputte en Stijn De Smet steeds gezwind een antwoord klaar.

ii

Verder zijn er ook nog een resem mensen die mij bureaugewijs getolereerd

hebben doorheen de jaren: Frederik Scholaert, Bart Puype, Thijs Lambrecht (be-

dankt voor de humor), dr. Steven Van den Berghe (bedankt voor de GUIs), Koen

De Proft, Kristof Taveirne, Stijn Eeckhaut, Johannes Deleu.

Hielpen mij streng maar rechtvaardig optreden tijdens de practicumsessies:

Andy Van Maele, Tom Van Leeuwen en Jeroen Hoebeke.

Naast het onderzoeks- en practicumwerk heeft IBCN mij ook de mogelijkheid

geboden om mijn sportieve capaciteiten aan te scherpen. Mijn sterk verbeterde

oog-hand-coördinatie komt dan ook op het conto van Bartman (dr. Bart Duys-

burgh), CraHan (Thomas Bouve), mezelf (Tom Verdickt), JC (dr. Jan Coppens),

Walter Capiau (dr. Erik Van Breusegem) en Pee (dr. Peter Backx). Denksport-

training kreeg ik van Tim Wauters, dr. Jan Cheyns, Filip De Greve, Tim Stevens,

Bruno Vandenbossche en Nico Goeminne. Mijn steile opgang in de badmintonrat-

ings wijt ik terloops aan dr. Chris Develder.

Om de weinige vrije tijd die me restte buiten de werk- en sporturen toch nog

enigszins nuttig op te vullen (m.b.v. de nodige frisdrank en versnaperingen) kon ik

bovendien steeds rekenen op Sofie Van Hoecke, Stefan Bouckaert, Koert Vlaem-

inck, Benoı̂t Latré, Sarah Vullers, Frederic Van Quickenborne en ons eigen wan-

delend evenementenbureau Bart Lannoo.

Tenslotte zou ik graag nog mijn ouders en broer willen bedanken voor de vele

hulp en onvoorwaardelijke steun die ik al die tijd mocht ontvangen en bij wie ik

steeds terecht kon.

Hopelijk ben ik niet teveel mensen vergeten - indien wel wil ik ook u, de niet

bij naam genoemde lezer, bedanken voor de interesse in dit werk.

Gent, augustus 2006

Pieter Thysebaert

Table of Contents

Dankwoord i

Samenvatting xxi

Summary xxv

1 Introduction 1-1

1.1 The Grid Concept . 1-1

1.2 Problems and Challenges . 1-3

1.3 Main Research Contributions . 1-3

1.4 Outline . 1-5

1.5 Publications . 1-5

1.5.1 Publications in international journals 1-5

1.5.2 Chapters in international publications 1-7

1.5.3 Publications in international conferences 1-7

1.5.4 Publications in national conferences 1-9

References . 1-10

2 Research Context 2-1

2.1 Introduction . 2-1

2.2 Grid Middleware . 2-2

2.3 Grid Monitoring . 2-4

2.4 Optical Transport Networks . 2-7

2.5 Optical Transport Network Dimensioning 2-12

2.6 Workload scheduling . 2-14

2.7 Grid Simulation . 2-18

2.8 Conclusions . 2-19

References . 2-21

3 NSGrid Grid Simulation Environment 3-1

3.1 NSGrid Rationale . 3-1

3.2 NSGrid Architecture . 3-2

3.3 NSGrid Models . 3-3

3.3.1 Grid Model . 3-3

3.3.2 Network Model . 3-5

3.3.3 Computational Resource Model 3-5

iv

3.3.4 Storage Resource Model 3-7

3.3.5 Data Replica Resource Model 3-7

3.3.6 Resource Dynamics . 3-8

3.3.7 Middleware . 3-8

3.3.8 Application Model . 3-9

3.4 NSGrid: Mode of Operation . 3-11

3.5 Conclusions . 3-12

References . 3-13

4 Simulating Grid Scheduling Algorithms using NSGrid 4-1

4.1 Introduction . 4-1

4.2 NSGrid Application: Network Aware Scheduling 4-1

4.2.1 Grid Interconnection Topology 4-2

4.2.2 Grid Resource Dimensions 4-2

4.2.2.1 Computational Resources 4-2

4.2.2.2 Storage Resources 4-3

4.2.2.3 Data Replica Resources 4-3

4.2.3 Grid Jobs . 4-3

4.2.4 Scheduling Algorithms 4-4

4.2.4.1 Non-Network Aware 4-4

4.2.4.2 Network Aware 4-4

4.2.4.3 Network Aware Scheduling: Resource Locality

Preference . 4-5

4.2.5 Performance Metric: Response Time 4-5

4.2.6 Comparison for streamed data transfer 4-5

4.2.7 Comparison for pre-staged data 4-6

4.3 NSGrid Application: VPG Resource Partitioning 4-7

4.3.1 VPG Partitioning . 4-8

4.3.2 VPG Partitioning Support in NSGrid 4-9

4.3.3 Partitioning Strategies 4-10

4.3.3.1 Genetic Algorithm 4-10

4.3.3.2 Divisible Load Integer Linear Programming . . 4-11

4.3.4 Grid Topology . 4-14

4.3.5 Performance Metric: Job Response Time 4-15

4.3.6 Job Workload . 4-15

4.3.7 Results . 4-15

4.4 Conclusions . 4-17

References . 4-18

5 Scalable Lambda Grid Dimensioning 5-1

5.1 Introduction . 5-1

5.2 Grid Models and Operational Scenario 5-3

5.2.1 Resources . 5-3

5.2.2 Jobs . 5-4

5.2.3 Excess Load Scenarios 5-4

v

5.3 Lambda Grid Dimensioning Algorithms 5-4

5.3.1 Exact Workload ILP . 5-5

5.3.1.1 Single Scenario Formulation 5-5

5.3.1.2 Global Scenario 5-7

5.3.2 Parallelizing Heuristic 5-7

5.3.3 Incremental Heuristic . 5-8

5.3.4 Equal Job Size Heuristic 5-10

5.3.5 Divisible Load Theory 5-10

5.3.6 Computational Resource Dimensioning 5-11

5.3.7 Network Traffic Demand Derivation 5-12

5.3.8 Lambda Grid Dimensioning Linear Program 5-14

5.4 Results and Discussion . 5-16

5.4.1 ILP Solver . 5-16

5.4.2 Reference Topology . 5-16

5.4.3 Job Parameters . 5-17

5.4.4 Excess Load . 5-18

5.4.5 Computational Complexity 5-18

5.4.6 ILP vs DLT . 5-19

5.4.7 Connectivity . 5-19

5.4.8 Asymmetric Jobs . 5-20

5.4.9 Wavelength granularity 5-20

5.4.10 Scheduling Strategies . 5-23

5.4.11 Applicability of DLT . 5-25

5.5 Extension to Multiple Excess Load Sources 5-26

5.6 Extension to Resource Failure Scenarios 5-31

5.6.1 Computational Resource Failure 5-32

5.6.2 Optical Cross-Connect Failure 5-33

5.6.3 Link Failure . 5-33

5.6.4 Impact on Dimensioning Cost 5-33

5.6.4.1 Job I/O Asymmetry 5-37

5.6.4.2 Wavelength Granularity 5-38

5.6.4.3 Scheduling Strategies 5-39

5.7 Conclusions . 5-39

References . 5-42

6 On-Line Grid Scheduling 6-1

6.1 Introduction . 6-1

6.2 Models . 6-2

6.2.1 Application Model . 6-3

6.2.2 Resource Model . 6-3

6.2.3 Scheduling Policies . 6-3

6.2.4 Performance Metrics . 6-4

6.3 Off-Line Multi-Resource Scheduling 6-5

6.3.1 Off-Line Scheduling Formulation 6-5

6.3.2 RCPSP Model . 6-6

vi

6.3.3 DLT Model . 6-9

6.4 Two-Level On-Line Scheduling Algorithms 6-10

6.4.1 On-Line Scheduling Framework 6-10

6.4.2 Greedy Scheduling Algorithm 6-11

6.4.3 Opportunity Cost based Scheduling Algorithm 6-12

6.4.4 DLT based Scheduling Algorithms 6-12

6.5 Evaluation: Setup . 6-13

6.5.1 Simulated Topologies . 6-14

6.5.2 Simulated Scenarios . 6-15

6.5.3 Simulated Workload . 6-15

6.6 Evaluation: Results and Discussion 6-16

6.6.1 Grid Interconnection Network Dimensioning 6-16

6.6.2 Job Response Time . 6-16

6.6.3 Resource Target Load Difference 6-19

6.6.4 Job Length Distribution 6-20

6.7 Conclusions . 6-21

References . 6-25

7 Conclusions 7-1

A A Performance Oriented Grid Monitoring Architecture A-1

A.1 Introduction . A-1

A.2 Related Work . A-2

A.3 Grid Monitoring Framework Components A-4

A.3.1 Sensor . A-4

A.3.2 Producer . A-4

A.3.3 Directory Service . A-5

A.3.4 Consumer . A-5

A.4 Technology Analysis . A-5

A.5 Results . A-7

A.5.1 Testbed Setup . A-7

A.5.2 Metrics . A-8

A.5.3 Intrusiveness . A-8

A.5.4 Directory Service Scalability A-9

A.5.5 Producer Scalability . A-9

A.6 Future Work . A-10

A.7 Conclusions . A-11

References . A-11

B Network Aspects of Grid Scheduling Algorithms B-1

B.1 Introduction . B-2

B.2 Related Work . B-3

B.3 Simulation Models . B-5

B.3.1 Grid Model . B-5

B.3.2 Network Model . B-6

vii

B.3.3 Computational Resource Model B-6

B.3.4 Information/Storage Resource Model B-7

B.3.5 Job Model . B-7

B.4 Scheduling Algorithms . B-8

B.4.1 Network Awareness . B-9

B.4.1.1 Non-Network Aware Scheduling B-9

B.4.1.2 Network Aware Scheduling B-10

B.4.2 Resource Locality Preference B-11

B.4.2.1 PreferLocal Scheduling B-11

B.4.2.2 Spread Scheduling B-12

B.5 Simulation Results . B-12

B.5.1 Simulation Environment B-12

B.5.2 Simulated Topology . B-12

B.5.3 Job parameters . B-12

B.5.4 Resource dimensions . B-13

B.5.4.1 Computational Resources B-13

B.5.4.2 Storage Resources B-13

B.5.4.3 Information Resources B-14

B.5.5 Performance Metrics . B-14

B.5.5.1 Average Job Response Time B-14

B.5.5.2 Computational Resource Idle Time B-15

B.5.5.3 Influence of sequential data processing B-15

B.5.5.4 Influence of capacitated VPNs B-16

B.6 Future work . B-17

B.7 Conclusions . B-17

References . B-18

C Flexible Grid Service Management through Resource Partitioning C-1

C.1 Introduction . C-2

C.2 Related Work . C-3

C.3 Service Management Concept C-4

C.3.1 Grid/Job Model . C-4

C.3.2 Resource Partitioning . C-7

C.3.3 NSGrid implementation C-8

C.3.3.1 Service Monitor C-9

C.3.3.2 Service Manager C-11

C.3.3.3 Information Service C-11

C.4 Scheduling Strategies . C-12

C.4.1 Non-Network Aware Scheduling C-12

C.4.2 Network Aware Scheduling C-13

C.5 Partitioning Strategies . C-14

C.5.1 DLT based Partitioning C-15

C.5.2 Genetic Algorithm Heuristic C-17

C.5.2.1 Local Service CR Partitioning C-18

C.5.2.2 Global Service CR Partitioning C-20

viii

C.5.2.3 Input Data Locality Penalization C-20

C.5.2.4 Network Partitioning C-22

C.6 Performance Evaluation . C-22

C.6.1 Resource setup . C-22

C.6.2 Job parameters . C-23

C.6.3 Comparison of DLT and GA based Partitioning C-24

C.6.4 Job response time . C-25

C.6.5 Resource Efficiency . C-26

C.6.6 Scheduling . C-28

C.6.7 Priority - Service Class QoS support C-28

C.7 Conclusions . C-29

C.8 Acknowledgment . C-29

References . C-29

List of Figures

1.1 Grid Taxonomy: Classification by Resource Requirements and

number of Users . 1-2

2.1 Grid Middleware: Components and Interfaces 2-2

2.2 Grid Monitoring Architecture: Overview 2-5

2.3 Optical Cross-Connect: Key Structural Components 2-9

2.4 End-to-End Lightpaths in Switched All-Optical Network 2-10

2.5 Data Traffic Protocol Stack: Legacy (a) vs. Ethernet-over-WDM,

TCP/IP compatibility stack (b) and envisioned future stack (c) . . 2-11

3.1 NSGrid layered architecture and relationship to ns-2 3-2

3.2 NSGrid Detailed Grid Site view with Switched Ethernet Intercon-

nection Network . 3-4

3.3 NSGrid High-Level Grid View - Grid Site internals hidden 3-4

3.4 NSGrid Network Resource Management: Connection Manager Role 3-6

3.5 NSGrid Connection Manager: Capacitated VPN mode of opera-

tion for Service Types i and j . 3-6

3.6 Blocking Job Model: Sequential Data Access 3-10

3.7 Non-Blocking Job Model: Sequential Data Access 3-11

3.8 Non-Blocking Job Model: Pre-Staged Data 3-11

4.1 Response Time Comparison: Streamed Data 4-6

4.2 Response Time Comparison: Pre-Staged Data 4-8

4.3 VPG Partitioned Grid . 4-10

4.4 Non-Network Aware Scheduling: Job Response Times after VPG

Partitioning . 4-16

4.5 Network Aware Scheduling: Job Response Times after VPG Par-

titioning . 4-17

5.1 Example load balancing scenario 5-3

5.2 Example 5-node network with dS
Su = dS

uS = 1 and cS
eS = 2. . . . 5-6

5.3 Parallelizing heuristic: overview 5-8

5.4 Incremental heuristic: overview 5-9

5.5 Sample schedule (3 jobs, 2 resources) when using the ILP method

(left) and the DLT method (right) 5-11

x

5.6 Network Dimensioning Cost: Mesh Topology 5-14

5.7 Network Dimensioning Cost: Star Topology 5-14

5.8 Network Dimensioning Cost: Ring Topology 5-15

5.9 Reference Grid Topology: European Core Network (13 nodes, 17

bidirectional links) . 5-17

5.10 Cost vs. number of jobs per period for European network 5-20

5.11 Cost vs. average connectivity for random networks with 13 nodes 5-21

5.12 Cost vs. traffic asymmetry for European network 5-21

5.13 Different Wavelength/Fiber Cost Models vs. Wavelength Granularity5-22

5.14 DLT Cost vs. Wavelength Granularity for European network under

different wavelength/fiber cost models 5-23

5.15 Cost vs. Scheduling Strategy for random networks with 13 nodes,

p = 0.9 . 5-25

5.16 Cost vs. Scheduling Strategy for random networks with 13 nodes,

p = 0.1 . 5-25

5.17 Dual Source Scenario Cost for Random Networks 5-31

5.18 Incremental Heuristic: Sensitivity to Number of Investigated Sce-

nario Orderings . 5-34

5.19 OXC Failure Protection Cost Increase for Random Networks . . . 5-35

5.20 Traffic Asymmetry: OXC Failure Protection Cost for Random

Networks (p = 0.1) . 5-38

5.21 Wavelength Granularity: OXC Failure Protection Cost for Ran-

dom Networks (p = 0.1) . 5-39

5.22 Scheduling Strategy: OXC Failure Protection Cost for Random

Networks (p = 0.1) . 5-40

6.1 Work performed by Time-shared Resource with Capacity C over

time . 6-5

6.2 Grid and Grid Site Conceptual Models 6-7

6.3 13-Node European Network . 6-14

6.4 Resulting Grid Dimensioning Cost 6-17

6.5 Job Response Times: Single-Level vs. Hierarchical Algorithms,

p = 0.1 . 6-18

6.6 Job Response Times: Single-Level vs. Hierarchical Algorithms,

p = 0.9 . 6-18

6.7 Diff Vector Norm at Job Schedule Time: Single-Level vs. Hierar-

chical Algorithms, p = 0.1 . 6-19

6.8 Diff Vector Norm at Job Schedule Time: Single-Level vs. Hierar-

chical Algorithms, p = 0.9 . 6-20

6.9 Resulting Job Response Times: Increased Job Variability, p = 0.1 6-21

6.10 Resulting Job Response Times: Increased Job Variability, p = 0.9 6-22

6.11 Diff Vector Norm at Job Schedule Time: Increased Job Variability,

p = 0.1 . 6-22

6.12 Diff Vector Norm at Job Schedule Time: Increased Job Variability,

p = 0.9 . 6-23

xi

A.1 Grid Monitoring Architecture overview A-3

A.2 Grid Monitoring Framework . A-5

A.3 Real-time Java visualization agent A-6

A.4 Producer vs. MDS GRIS vs. WS-IS Network/CPU Intrusiveness . A-8

A.5 Directory Service vs. MDS GIIS Scalability A-9

A.6 Producer vs. MDS GRIS vs. WS-IS Scalability A-10

B.1 NSGrid architecture . B-5

B.2 Non-blocking job, simultaneous transfer and execution B-8

B.3 Non-blocking job, pre-staged input data B-8

B.4 Job scheduling (Network Aware) B-11

B.5 Average Job Response Time . B-14

B.6 CR Allocations: Idle Time . B-16

B.7 Response Time: pre-staged input B-17

B.8 Response Time: VPN reservations B-18

C.1 Grid Model . C-5

C.2 Non-blocking job, simultaneous transfer and execution C-6

C.3 Non-blocking job, pre-staged input data C-6

C.4 Network Resource Partitioning C-8

C.5 Standard Grid architecture vs. Virtual Private Grid partitioned

Grid architecture . C-9

C.6 VPG partitioning messages . C-9

C.7 NSGrid Service Management Architecture scenario C-10

C.8 NSGrid non-network aware versus network aware scheduling . . . C-14

C.9 Simulated multi-site Grid topology C-23

C.10 Genetic Algorithm measurements C-25

C.11 Job response times . C-26

C.12 Job response times for GA based partitioning heuristics C-27

C.13 Network resource efficiency . C-27

C.14 VPG Service Class priority support C-28

List of Tables

4.1 Job Workload: Key Parameters 4-15

5.1 Algorithm Comparison: Computational Complexity (Reduction

by factor |R| from ILP to parallelizing heuristic, and term |J |
from ILP to DLT) . 5-19

5.2 ILP-DLT Comparison: Computation Time on Single Cluster Node 5-19

5.3 Network cost for different wavelength/fiber cost models and wave-

length granularity . 5-23

6.1 Off-Line Grid Scheduling as an extension of MMRCPSP: linear

program size . 6-8

6.2 Off-Line Grid Scheduling using Divisible Load: linear program size6-10

6.3 Excess Workload Characteristics 6-16

A.1 Communication Technologies A-7

B.1 Relevant job properties . B-13

C.1 Relevant service class properties C-24

List of Acronyms

B

BDP Bandwidth-Delay Product

C

CASTOR CERN Advanced Storage Manager

CBR Constant Bit Rate

CERN Conseil Européen pour la Recherche Nucléaire

CR Computational Resource

CWDM Coarse Wavelength Division Multiplexing

D

DLT Divisible Load Theory

DR Data Replica Resource

DWDM Dense Wavelength Division Multiplexing

E

EGEE Enabling Grids for E-Science in Europe

F

FCFS First-Come, First-Served

xvi

G

GGF Global Grid Forum

GLIF Global Lambda Integrated Facility

GSI Grid Security Infrastructure

GTP Group Transport Protocol

H

HEP High Energy Physics

I

IAT Inter-Arrival Time

ILP Integer Linear Program

IP Internet Protocol

L

LCG Large Hadron Collider Computing Grid

LHC Large Hadron Collider

LP Linear Program

M

MMRCPSP Multi-Modal Resource Constrained Project Schedul-

ing Problem

MTBF Mean Time Between Failures

MTTF Mean Time To Fail

MTTR Mean Time To Repair

N

xvii

ns-2 Network Simulator 2

O

OBS Optical Burst Switching

OCS Optical Circuit Switching

OGSA Open Grid Services Architecture

OGSI Open Grid Services Infrastructure

OPS Optical Packet Switching

OTN Optical Transport Network

OXC Optical Cross Connect

Q

QoS Quality of Service

R

RBUDP Reliable Blast User Datagram Protocol

RCPSP Resource Constrained Project Scheduling Problem

RFIO Remote File Input/Output

S

SABUL Simple Available Bandwidth Utilization Library

SR Storage Resource

T

TCP Transport Control Protocol

TOS Type of Service

U

xviii

UDP User Datagram Protocol

V

VO Virtual Organization

VPG Virtual Private Grid

VPN Virtual Private Network

W

WDM Wavelength Division Multiplexing

WSRF Web Services Resource Framework

X

XSLT eXtensible Stylesheet Language – Transformations

XML eXtensible Markup Language

Samenvatting

De alomtegenwoordigheid van het Internet en van (vaak onderbenutte) rekenkracht

heeft aan het eind van het vorige decennium aanleiding gegeven tot het ontstaan

van de idee van een schier onuitputtelijke bron van rekenkracht, op alle tijdstip-

pen beschikbaar voor haar gebruikers. Naar analogie met de beschikbaarheid en

toegankelijkheid van het lichtnet (Eng.: Power Grid), werd voor dit concept van

onuitputtelijke en op aanvraag verkrijgbare rekenkracht algauw de term Grid in

gebruik genomen.

Een dergelijke Grid wordt gevormd door de verenigde krachten van meerdere

heterogene bronnen die zich mogelijk bevinden op verscheidene geografische lo-

caties, waarbij gespecialiseerde middleware gebruikt wordt om de toegang tot het

geheel en de coördinatie tussen de verschillende bronnen onderling te verzor-

gen. Belangrijke brontypes zijn de computationele elementen (die over proces-

sorkracht beschikken), data-opslagelementen en de netwerkverbindingen die de

overige bronnen in staat stellen te communiceren en zodoende van het geheel ef-

fectief een gedistribueerd computersysteem maken.

Door de verspreiding van de bronnen, en dus door het noodzakelijkerwijs ge-

bruiken van lange-afstandsnetwerkverbindingen vormt zo’n Grid een eerder zwak

gekoppeld gedistribueerd computersysteem. De totale verwerkings- en opslagca-

paciteit ervan kunnen echter moeiteloos die van een sterk gekoppeld multiproces-

sorsyteem overtreffen, waarbij dit laatste type systeem het nadeel vertoont veel

sneller in kostprijs toe te nemen bij stijgende totale verwerkingscapaciteit.

Het succes van een Grid als gedistribueerd computersysteem wordt mede bepaald

door de applicaties die ervan gebruik kunnen maken. In de wetenschappelijke

wereld zijn dergelijke applicaties echter legio; het applicatie-type dat bij uitstek

geschikt is voor uitvoering in een Gridomgeving omvat de zogenaamde parameter

sweep applicaties, aangezien dergelijke applicaties kunnen opgesplitst worden in

een groot aantal quasi-onafhankelijke deeltaken. Bekende Grid-gebruiksscenario’s

zijn o.m. het distribueren en analyseren van de enorme hoeveelheid gegevens

(grootteorde PB/jaar) die jaarlijks gegenereerd worden aan het CERN, het collab-

oratief onderzoek verricht binnen het EScience Grid project en de wijdverspreide

cycle stealing applicaties zoals SETI@Home, waarbij de Grid in feite bestaat uit

de verzameling desktop PC’s (verbonden via het Internet) van eenieder die de be-

treffende applicatie geı̈nstalleerd heeft. Aan de andere kant van het Grid-spectrum

waarbij op grote hoeveelheden data complexe analyses uitgevoerd dienen te wor-

den ontstaat een trend om de verschillende bronnen binnen de Grid te connecteren

via optische (circuitgeschakelde) transportnetwerken die in staat zijn om zeer hoge

xxii SAMENVATTING

bandbreedtes te garanderen.

Waar reeds veel onderzoeksresultaten beschikbaar zijn voor het dimensioneren

van netwerken (uitgaande van een trafiekmatrix) en de bronallocatie en werk-

lastverdeling binnen een clusteromgeving, kunnen deze resultaten niet zomaar

overgenomen worden voor de evaluatie van de werking van een Gridomgeving.

Typerend voor de werking van Grid is de noodzaak om meerdere bronnen tegelijk

te reserveren voor de uitvoering van een applicatie (typisch computationele en

netwerkbronnen), terwijl men in een lokale cluster vaak het interconnectienetwerk

en/of de hoeveelheid trafiek erover niet in beschouwing dient te nemen. De trafiek

op het Grid-interconnectienetwerk hangt bovendien af van de exacte werkverdel-

ingsstrategie die gebruikt wordt; deze strategie heeft dus onmiskenbaar invloed

op de dimensioneringsproblematiek van de Grid en het gebruikte interconnec-

tienetwerk.

Het werk beschreven in dit boek kan opgesplitst worden in de hierna beschreven

onderdelen. Na een korte inleiding wordt vooreerst een overzicht gegeven van

de belangrijkste concepten die relevant zijn voor het werk in dit boek. Naast de

technologische aspecten van Grids gaat het hierbij vooral om technieken en hulp-

middelen die toelaten om werklast te verdelen over de verschillende bronnen in

dergelijke Grids en de betreffende bronnen correct te dimensioneren. Voorts wordt

ook aandacht besteed aan concepten en hulpmiddelen die gebruikt worden om sta-

tusgegevens en prestatiemetrieken uit operationele Grids te extraheren, alsmede

hulpmiddelen om de werking van Grids correct te modelleren en simuleren.

In het kader van dit onderzoekswerk werd zo’n Grid-simulatieomgeving on-

twikkeld. De modellen voor de verschillende Gridentiteiten die in deze omgeving

geı̈mplementeerd werden (deze omvatten zowel modellen voor de Gridapplicaties

als voor de verschillende types systeembronnen) alsook de opbouw en werking

van deze omgeving vormen een hoofdstuk op zich.

Vervolgens worden resultaten in twee verschillende toepassingsdomeinen, verkre-

gen met de voornoemde Grid-simulatieomgeving, voorgesteld. In een eerste toepass-

ing wordt aangetoond hoe het behandelen van netwerkbronnen als volwaardige

systeembronnen bij het verdelen van werklast in een Grid een verbetering mee-

brengt m.b.t. de gemiddelde verwerkingstijd. Een tweede toepassing omhelst het

partitioneren van de systeembronnen binnen een Grid over verschillende applicatie-

types om zodoende een verzameling Virtual Private Grids (VPGs) te creëren. We

vergelijken een tweetal verschillende partitioneringsmethodes, opnieuw aan de

hand van gemiddelde verwerkingstijden voor de Gridapplicaties.

Doordat Gridapplicaties typisch grote hoeveelheden data dienen te verwerken

is er bijzondere interesse binnen de Gridgemeenschap om verschillende Grid-

sites te verbinden met een optisch transportnetwerk waarbij data over verschil-

lende golflengtes verstuurd wordt. Dergelijke netwerken hebben immers het vo-

ordeel grote hoeveelheden data aan hoge snelheid te kunnen transporteren zon-

der overgevoelig te zijn voor storingsinvloeden. Een belangrijk vraagstuk binnen

dergelijke zogenaamde lambda Grids betreft de installatie van de nodige netwerk-

capaciteit in functie van de Gridwerking.

In een volgend hoofdstuk wordt dan ook gekomen tot een modellering van

SAMENVATTING xxiii

het dimensioneringsprobleem van Grids die gebruik maken van circuitgeschakelde

optische transportnetwerken. Dit model neemt de vorm aan van een lineair pro-

gramma waarvan door achtereenvolgende ingrepen de complexiteit sterk vermin-

derd werd vergeleken met de technieken die in het overzichtshoofdstuk bespro-

ken werden. Deze dimensioneringstechniek spitst zich toe op de rekenbronnen en

netwerkelementen in de Grid, en werd geëvalueerd voor verschillende operationele

scenario’s en technologieparameters. Waar eerst wordt uitgegaan van volledig

betrouwbare bronnen en netwerkelementen, worden ook scenario’s bestudeerd

waarin rekening gehouden wordt met mogelijk falende bronnen en netwerkele-

menten. Waar mogelijk worden - door middel van analytische afleiding - de

bekomen resultaten vergeleken met resultaten bekomen voor reguliere netwerk-

topologieën.

In het laatste hoofdstuk wordt het verdelen van werklast in een operationele

Grid bekeken. In tegenstelling tot het voorgaande hoofdstuk ligt de nadruk hier dus

op zgn. on-line technieken, terwijl dimensioneringsmethoden noodzakelijkerwijs

dienen te gebeuren vóór de inbedrijfname van de Grid. De bestudeerde technieken

bouwen echter wel voort op de resultaten van de dimensionering die in het vorige

hoofdstuk gebeurde door de daar berekende off-line werkverdeling te gebruiken

als richtpunt. Verschillende van deze technieken werden bestudeerd waarbij on-

derscheid gemaakt werd in functie van de gebruikte kostfuncties en prestatieme-

trieken, en een vergelijking met standaard werkverdelingsmethoden (niet expliciet

steunend op de oplossing van het dimensioneringsprobleem) werd gemaakt.

Dit boek wordt afgesloten met een overzicht van de belangrijkste bijdragen

geleverd in dit werk en de bijhorende conclusies.

Summary

One decade ago, the Internet’s omnipresence and the large amount of idle process-

ing power it harnesses spawned the vision of a vast and nigh inexhaustible well of

computing power featuring round-the-clock availability. As one cannot help but

note the similarity of this concept to the always available and easy to use Power

Grid, this envisioned computing platform has become known as the Grid.

Such a Grid consists of the conglomeration of multiple heterogeneous re-

sources, possibly geographically dispersed. These different resources are accessed

and managed through specialized Grid middleware. The most important resource

types in a Grid are the computational resources (providing processing power), data

storage resources and the network elements responsible for the interconnection of

all resources, effectively turning the Grid into a distributed computing platform.

As Grid resources may be scattered across the globe, the resulting Grid be-

haves more or less like a loosely coupled distributed computer system in which

long-haul network connections are plenty. The aggregate processing and storage

capacities of this system can, however, easily surpass those of a tightly coupled

multiprocessor system, while this latter type of system typically exhibits a steeper

price/performance ratio with increasing processing capacity.

Ultimately, the Grid’s success as a universally accepted distributed computing

platform is determined to a great extent by the applications it supports. Today, Grid

applications can be found in abundance primarily in the scientific communities.

Many of these applications perform parameter sweeps over some domain; this

kind of application can easily be separated into multiple quasi-independent parts

which can then be distributed over multiple computing resources.

The best-known use cases of a Grid include the distribution and analysis of

data generated at CERN’s LHC (magnitude: several PB/year), the collaborative re-

search environment boasted by the EScience Grid project and the numerous cycle-

stealing applications of which SETI@Home is a prime example (in this case, the

Grid in question consists of a collection of idle desktop PCs connected through the

Internet).

In order to support Grid applications processing large amounts of data (e.g. the

CERN case), optical networking technologies have received a great deal of interest

from the Grid community. These optical transport networks can provide very high

data rates without significant drawbacks in terms of reliability.

Most relevant research regarding the dimensioning of such networks (from

given demand matrices), the resource allocation and the workload scheduling poli-

cies cluster or multiprocessor setups cannot simply be transferred into the Grid

xxvi SUMMARY

realm and applied as such. Indeed, a defining property of a Grid is the need for

simultaneous co-allocation of multiple resources (e.g. both computational and

network resources) to each application, while in a local cluster setting one can reg-

ularly disregard the local interconnecting network’s influence and assume it to be

sufficiently performant, that is, suffering only from a minimal delay and offering

quasi-infinite bandwidth. In addition, in a Grid environment the network traffic

generated is closely tied to the workload distribution policy used. Thus, the Grid

dimensioning problem also differs significantly from the problem of dimensioning

optical transport networks from static demand matrices, as the workload distribu-

tion policy cannot be disregarded when studying the former problem.

The research described in this book consists of the following parts. Starting

with an introductory section, we continue with an overview of the key concepts

relevant to our research. This includes both the technological aspects of Grids as

well as techniques and tools used to distribute workload over the various resources

in a Grid and to dimension these resources accordingly. In addition, we describe

the major tools and concepts used in Grid monitoring (during which performance

metrics and resource status data are gathered), Grid modeling and Grid simulation.

During the course of this research such a Grid simulation environment has

been developed. The Grid application and resource models implemented in this

simulation tool, as well as its structure and mode of operation have been detailed

in a dedicated chapter. We present results from two different applications of our

Grid simulation environment. In a first application, we show how network aware

workload scheduling in Grids can significantly improve application response times

when compared to non-network aware scheduling. In a second application, we fo-

cus on partitioning the Grid’s resources into multiple Virtual Private Grids (VPGs).

We compare two different Grid partitioning approaches, again using the average

application response time as metric.

As Grid applications typically need to process large amounts of data, a lot of

interest has been sparked within the Grid research community to connect different

Grid sites using an optical transport network, in which data is transported over

multiple wavelength paths. These networks are able to transport large amounts of

data at extremely high bitrates while not being excessively prone to interference. In

these so-called lambda Grids, an important problem is the installation of sufficient

network capacity, given the Grid’s mode of operation.

The book’s next chapter features a model of this optical circuit switched lambda

Grid dimensioning problem. This model comes as a linear program, which has

been greatly reduced in complexity by applying multiple improvements over the

techniques mentioned in the overview chapter. We focus primarily on compu-

tational resources and network elements and evaluate our approach for different

Grid scenarios and technology-related parameter variations. We start with scenar-

ios featuring completely dependable resources and extend our approach to sce-

narios featuring possible resource failures. By means of analytical derivation, we

compare our results to results obtained for regular network topologies.

Lastly, we deal with the issue of workload distribution in an operational Grid.

While the previous chapter focusses on off-line dimensioning techniques, the core

SUMMARY xxvii

contribution here concerns on-line scheduling techniques. The algorithms we

present do make use of the results obtained during the off-line dimensioning, how-

ever. In particular, they use the then-calculated optimal off-line workload distri-

bution as a target. Several of these algorithms (differing in their use of cost func-

tions and performance metrics) were evaluated against a suite of standard workload

scheduling algorithms (which do not make use of this off line calculated target).

Finally, we summarize our main research contributions and present the major

conclusions to be drawn.

1
Introduction

1.1 The Grid Concept

Traditionally, supercomputers and clusters have been the platforms of choice for

solving computationally complex problems, implemented as applications featur-

ing multiple parallel (communicating or independent) tasks. However, demands

for computational processing power are only increasing. Unfortunately, supercom-

puters feature a superlinear increase of price with growing processing capacity, and

local clusters are confined to a single room or building.

If it is possible, however, to simultaneously utilize multiple idle resources scat-

tered over different locations, the resulting aggregate computing power can easily

surpass that of any single supercomputer or cluster. Such a construction is coined

“Grid” [1, 2], in an analogy with the electrical power grid, as it is deemed to pro-

vide us with the notion of ubiquitous computing power.

The successful operation of such a Grid faces many challenges, as different

resources are administered and managed using different policies and may join or

leave the Grid in an unpredictable way. Furthermore, interconnecting such re-

sources through a possibly insecure network means that the necessary software

infrastructure must be present to perform authentication and authorization actions

for users participating in a collaborative environment sharing resources among

each other (so-called Virtual Organizations (VOs) [1]). The Globus Toolkit [3]

is a middleware toolkit aimed at solving these and other challenges identified by

the Global Grid Forum [4], the body incorporating individuals from research and

1-2 CHAPTER 1

industrial sectors concerned with Grid standardization efforts.

Computational Grids

Data Grids

Service Grids

Cycle Scavenging GridsRequired Computing Power

Processed Data Size

Expected Number of Users

TeraGrid

EGEE

SETI@Home

Climate Prediction

LCG

Figure 1.1: Grid Taxonomy: Classification by Resource Requirements and number

of Users

Different types of Grids have been identified in [5]. Computational Grids sup-

port applications requiring lots of processing power when compared to the avail-

able bandwidth to storage facilities they need. The US-based TeraGrid [6] is a

famous example in this class. It consists of 8 sites connected through a high-speed

network and, as the project name suggests, each site offers several teraFLOPS of

processing capacity and tens to hundreds of terabytes of storage capacity. Another

notable Grid class contains the Cycle-stealing applications; they make use of idle

desktop PCs and present themselves as screensavers. Notable examples of such

applications include Seti@Home [7], Climate Prediction [8] (both employing the

BOINC [9] cycle-stealing software framework) and the Screensaver-Lifesaver [10]

anti-cancer drug research effort. In Data Grids, not only a large amount of compu-

tational power needed is needed but also large data sets need to be moved around in

a timely fashion as well, increasing the importance of network resources (or, more

accurately, the co-allocation of network and computing resources). The prime ex-

ample in this area is the LCG project [11], in which petabytes of data generated by

CERN’s Large Hadron Collider are distributed for processing following a multi-

tier model.

Service Grids (such as the Enabling Grids for E-Science in Europe (EGEE)

project [12], to which the Belgian BEGrid [13] is hooked up) generally denote any

Grid offering services beyond the capabilities of a single machine. These services

could include collaborative working environments or multimedia processing Grids

and as such include facilities to support real-time application needs.

A possible classification of different Grid types has been visualized in fig-

ure 1.1.

INTRODUCTION 1-3

Initially, Grid research focused mainly on computationally complex problems.

The emergence of Data Grids (such as the LCG [11] project), however, has gen-

erated an increased interest in multi-resource QoS research. This interest is only

emphasized further by the distributed nature of Grids, rendering the interconnect-

ing network between Grid sites a non-negligible resource. In addition, the large

amounts of data processed and transferred in such a Grid have led to the investi-

gation of the suitability of optical transport networks in this Grid context. It is this

type of Grid that is studied in our work in greater detail.

1.2 Problems and Challenges

As the deployment and use of Grids as distributed computing environments di-

verges from the localized high-throughput computing cluster, several new chal-

lenges arise. First of all, due to the large number of resources, users and jobs, a

scalable resource management and allocation infrastructure is required. Secondly,

due to the large number of resources involved and their respective use policies,

(temporary) resource failure or unavailability is bound to happen, giving rise to

the Grid’s typical dynamic nature. Therefore, resilience to these resource failure

scenarios is an important design criterion for Grids. In addition, an important prop-

erty of Grids is their distributed (i.e. geographically dispersed) nature. This implies

that it is important that the network interconnecting the various Grid sites is treated

as a first-class resource i.e. of equal importance when compared to e.g. computa-

tional and storage resources. As resource usage ultimately depends on the Grid’s

workload and the deployed resource selection and allocation policy, it can be con-

cluded that the issues raised here not only impact a Grid’s scheduling and resource

management policies, but also have their influence on each resource’s capacity

decided upon when dimensioning the Grid prior to its deployment. This dimen-

sioning problem is complicated further by the increasing use of optical transport

networks in Grids which enforce additional network constraints. Finally, these

concerns - applicable to Grid deployment and implementation - need to be coped

with when modeling and simulating an operational Grid in advance as well. As

such, it is safe to state that the modeling and solving of the Grid dimensioning and

resource allocation problems differ enough from the localized, computing oriented

cluster case to warrant dedicated research efforts.

1.3 Main Research Contributions

In the first phase of our work, a Grid simulation environment was implemented.

This simulation environment contains detailed Grid application and resource mod-

els (including computational, storage and network resource models) as well as

1-4 CHAPTER 1

the necessary software component models for the Grid middleware, in particu-

lar scheduling, resource management and resource information components. Of

particular interest, and directly related to the work described in this book, is the

fact that the scheduling component is highly extensible in order to allow newly

developed scheduling policies to be “plugged in” easily.

The models mentioned have been re-used to generate a scalable linear pro-

gramming formulation of the steady state Grid dimensioning and scheduling prob-

lems. Special attention has been paid to so-called lambda Grids, where the various

sites are interconnected through an optical transport network. These optical trans-

port networks lead to additional complexity in the linear programming formulation

because they require bandwidth granularity and wavelength continuity constraints.

Because of the dynamic nature of Grids, this formulation has been extended

to cope with single-resource failures in lambda Grids - specifically computational

resource, network link and optical cross-connect failures have been taken into ac-

count.

This linear programming approach has also been used to evaluate partitioning

strategies used to allocate adequate resources to different VOs, as Grid sites may

participate in multiple VOs. The resulting sub-Grids are denoted Virtual Private

Grids. We have compared our linear programming based VO partitioning strat-

egy to an approach using a genetic algorithm by means of simulation in our Grid

simulation environment.

Based on the off-line solution to the steady state Grid dimensioning and schedul-

ing problems, we have devised several on-line workload scheduling algorithms.

These algorithms have been carefully constructed to deal with multiple different

resource types in a sensible way, and have been evaluated in our Grid simulation

environment.

A Grid monitoring architecture has been developed simultaneously. Such a

monitoring architecture is able to gather relevant resource and application data

from an operational Grid, which can then be fed back into the deployed scheduling

algorithms, both in the operational Grid and in its simulated counterpart. Our

implementation of this monitoring framework is geared towards scalability and

performance and has been compared extensively to established Grid monitoring

and information frameworks.

The Grid simulation environment and Grid monitoring architecture mentioned

here have been co-developed with Bruno Volckaert. He has used these software

platforms primarily to study several Grid software architectures. For instance, he

has profiled and evaluated a scalable Grid partitioning architecture (by implement-

ing it in NSGrid), its algorithms and its deployment in service and media Grids.

The results of this evaluation have been described in his PhD thesis titled “Ar-

chitectures and Algorithms for Network and Service Aware Grid Resource Man-

agement”. The NSGrid implementations of the algorithms for Grid dimensioning

INTRODUCTION 1-5

and workload distribution described in this thesis have been carried out by Pieter

Thysebaert.

1.4 Outline

This thesis is structured as follows: chapter 2 presents the relevant Grid research

context and sets the scene for the following chapters. In particular, this chapter

highlights current Grid deployments, available middleware and the growing im-

portance of optical interconnection networks in Grids. Modeling techniques for

dimensioning and scheduling problems in traditional distributed environments are

given; special attention is paid to the requirements imposed by a Grid environment

on these modeling techniques.

Chapter 2 also details the required properties of successful Grid Monitoring

systems and discusses some important examples as well as areas in which these

systems can be improved. Finally, this chapter discusses and compares some im-

portant Grid simulation tools and exposes their merits and limitations.

In chapter 3, the Grid simulation environment developed during the course of

our research and the models it implements are detailed, and we draw attention to

some important features that distinguish our simulation environments from exist-

ing alternatives listed in chapter 2.

Chapter 4 demonstrates the application of NSGrid to two separate use cases.

Chapter 5 specifically deals with the off-line dimensioning of lambda Grids. To

solve this dimensioning problem, we extend the modeling techniques featured in

chapter 2 and adapt them to suitable Grid dimensioning techniques. In particular,

resource allocation interdependencies and scalability are key issues dealt with in

our problem modeling. We present dimensioning results using our model for two-

tier Grids.

Our research on on-line Grid scheduling techniques makes up chapter 6. We

describe several scheduling algorithms designed to distribute workload in a steady

state Grid, using concepts introduced in chapter 5. We evaluate the effectiveness

of these algorithms on Grids dimensioned using the technique developed in chap-

ter 5. The software platform used to evaluate the algorithms is the Grid simulation

environment detailed in chapter 3.

We end this thesis with some concluding remarks in chapter 7.

1.5 Publications

1.5.1 Publications in international journals

• P. Thysebaert, B. Volckaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Scalable Dimensioning of Resilient Lambda Grids, submitted to

1-6 CHAPTER 1

Future Generation Computer Systems - The International Journal of Grid

Computing: Theory, Methods and Applications.

• F. De Turck, J. Decruyenaere, P. Thysebaert, S. Van Hoecke, B. Volckaert,

C. Danneels, K. Colpaert, G. De Moor, Design of a Flexible Platform for

Execution of Medical Decision Support Agents in the Intensive Care Unit,

to appear in Elsevier Journal of Computers in Biology and Medicine, 2006

• P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester, Evalu-

ation of Grid scheduling strategies through NSGrid: a network aware Grid

simulator, published in Neural, Parallel & Scientific Computations, Special

Issue on Grid Computing, Dynamic Publishers Atlanta, Editors H.R. Arab-

nia, G.A. Gravvanis, M.P. Bekakos, 12(3):353-378, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt,

P. Demeester, Grid computing: the next network challenge!, published in

The Journal of The Communications Network, Proceedings of FITCE 2004,

43rd European Telecommunications Congress, 3:159-165, 2004.

• B. Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeester, Application-

specific hints in reconfigurable Grid scheduling algortihms, published in

Lecture Notes in Computer Science, Proceedings of ICCS 2004, Springer-

Verlag Berlin Heidelberg, Krakow, LNCS 3038:149-157, 2004.

• P. Thysebaert, B. Volckaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Resource partitioning algorithms in a programmable service

Grid architecture, published in Lecture Notes in Computer Science, Pro-

ceedings of the 5th Intern. Conf. on Computational Science ICCS 2005,

Atlanta, LNCS 3516:250-258, 2005.

• P. Thysebaert, M. De Leenheer, B. Volckaert, B. Dhoedt, P. Demeester,

Scalable Dimensioning of Optical Transport Networks for Grid Excess Load

Handling, accepted for publication in Photonic Network Communications

(PNC), 2006.

• M. De Leenheer, P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P.

Demeester, D. Simeonidou, R. Nejabati, G. Zervas, D. Klonidis, M. J. OMa-

hony, A View on Enabling Consumer Oriented Grids through Optical Burst

Switching, published in IEEE Communications Magazine, 44(3):124-131,

2006.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Flexible Grid service management through resource partition-

ing, accepted for publication in the Journal of Supercomputing, 2006.

INTRODUCTION 1-7

• P. Thysebaert, B. Volckaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Dimensioning and On-Line Scheduling in Lambda Grids using

Divisible Load Concepts, accepted for publication in the Journal of Super-

computing, 2006.

1.5.2 Chapters in international publications

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Network and Service Aware Grid Resource Assignment, to be

published as a chapter in Grid Technologies: Emerging from Distributed

Architectures to Virtual Organizations, Editors: M.P. Bekakos, G.A. Grav-

vanis and H.R. Arabnia, WIT Press.

1.5.3 Publications in international conferences

• S. Vanhastel, P. Thysebaert, F. De Turck, B. Volckaert, P. Demeester, B.

Dhoedt, Service brokering in an enhanced grid environment, published in

Proceedings of the International Conference on Parallel and Distributed Pro-

cessing Techniques and Applications (PDPTA’02), Las Vegas, 2:712-718,

2002.

• F. De Turck, S. Vanhastel, P. Thysebaert, B. Volckaert, P. Demeester, B.

Dhoedt, Design of a middleware-based cluster management platform with

task management and migration, published in 2002 IEEE International Con-

ference on Cluster Computing and the Grid, Chicago, pages 484-487, 2002.

• B. Volckaert, P. Thysebaert, F. De Turck, P. Demeester, B. Dhoedt, Evalu-

ation of grid scheduling strategies through a network-aware grid simulator,

published in Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications PDPTA’03, Las Vegas,

1:31-35, 2003.

• P. Thysebaert, B. Volckaert, M. De Leenheer, E. Van Breusegem, F. De

Turck, B. Dhoedt, D. Simeonidou, M.J. O’Mahony, R. Nejabati, A. Tzanakai,

I. Tomk, Towards consumer-oriented photonic grids, published and pre-

sented at Workshop on Optical Networking for Grid Services at ECOC2004

- on CD-ROM, Stockholm, 2004.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, On the use of NSGrid for accurate grid schedule evaluation,

published in Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications PDPTA’04, Las Vegas,

1:200-206, 2004.

1-8 CHAPTER 1

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, Network aware scheduling in grids, published in Proceedings of

NOC2004, 9th European Conference on Networks & Optical Communica-

tions, Eindhoven, pages 311-318, 2004.

• P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester, Net-

work aspects of grid scheduling algorithms, published in Proceedings of the

ISCA 17th International Conference on Parallel and Distributed Computing

Systems, San Francisco, pages 91-97, 2004.

• M. De Leenheer, P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P.

Demeester, Evaluation of a job admission algorithm for bandwidth con-

strained grids, published in Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications PDPTA’04,

Las Vegas, 2:591-594, 2004.

• M. De Leenheer, E. Van Breusegem, P. Thysebaert, B. Volckaert, F. De

Turck, B. Dhoedt, P. Demeester, D. Simeonidou, M.J. O’Mahony, R. Neja-

bati, A. Tzanakaki, I. Tomkos An OBS-based grid architecture, published in

2004 IEEE Globecom Telecommunications Conference Workshops, Dallas,

pages 390-394, 2004.

• S. De Smet, P. Thysebaert, B. Volckaert, M. De Leenheer, D. De Winter,

F. De Turck, B. Dhoedt, P. Demeester, A performance oriented grid moni-

toring architecture, published in Proceedings of the 2nd IEEE Workshop on

End-to-End Monitoring Techniques and Services (E2EMON), Monitoring

Emerging Network Services, San Diego, pages 23-28, 2004.

• P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeester, Using Divisible Load

theory to Dimension Optical Transport Networks for Grid Excess Load Han-

dling, published in Proceedings (on CD-ROM) of the 2005 Optical Fiber

Communications Conference and Exposition, Anaheim, 2005.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, A Distributed Resource and Network Partitioning Architecture

for Service Grids, published in Proceedings of (on CD-ROM) the 5th IEEE

International Symposium on Cluster Computing and the Grid (CCGrid05),

Cardiff, 2005.

• F. Farahmand, M. De Leenheer, P. Thysebaert, B. Volckaert, F. De Turck,

B. Dhoedt, P. Demeester, J.P. Jue, A multi-layered approach to optical burst-

switched based grids, published in Proceedings (on CD-ROM) of Workshop

on Optical Burst/packet Switching (WOBS2005), 2nd International Confer-

ence on Broadnet Net, Boston, pages 127-134, 2005.

INTRODUCTION 1-9

• P. Thysebaert, M. De Leenheer, B. Volckaert, F. De Turck, B. Dhoedt, P.

Demeester, Using Divisible Load Theory to Dimension Optical Transport

Networks for Grid Excess Load Handling, published in Proceedings (on CD-

ROM) of the International Conference on Networking and Services (October

2005)

• M. De Leenheer, F. Farahmand, P. Thysebaert, B. Volckaert, F. De Turck,

B. Dhoedt, P. Demeester, J. Jue, Anycast routing in optical burst switched

grid networks, published in Proceedings of ECOC2005, 31st European Con-

ference on Optical Communications, Glasgow, 3:699-702, 2005.

• B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, P.

Demeester, A scalable and performant grid monitoring and information

framework, published in Proceedings of the International Conference on

Parallel and Distributed Processing Techniques and Applications, PDPTA

’05, Las Vegas, 1:224-230, 2005.

• J. Baert, M. De Leenheer, B. Volckaert, T. Wauters, P. Thysebaert, F. De

Turck, B. Dhoedt, P. Demeester, Hybrid optical switching for data-intensive

media grid applications, to be published in Proceedings of the workshop on

Design of Next Generation Optical Networks: from the Physical up to the

Network Level Perspective, Gent, 2006.

1.5.4 Publications in national conferences

• P. Thysebaert, B. Volckaert, F. De Turck, S. Vanhastel, P. Demeester,Man-

agement of Network Resources in a Grid-Computing Environment, pub-

lished in 2nd FTW PHD Symposium, Interactive poster session, Ghent, pa-

per nr. 72, 2001.

• B. Volckaert, P. Thysebaert, F. De Turck, B. Dhoedt, P. Demeester, A

generic grid simulator for evaluating network-aware grid scheduling algo-

rithms, published in 3rd FTW PHD Symposium, Interactive poster session,

Ghent, paper nr. 21, 2002.

• M. De Leenheer, E. Van Breusegem, J. Cheyns, P. Thysebaert, B. Volckaert,

F. De Turck, B. Dhoedt, P. Demeester, Optical burst switching for consumer

grids, published in 5th FTW PHD Symposium, Interactive poster session,

Ghent, paper nr. 102, 2004.

• P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester, Grid

scheduling and dimensioning using divisible load theory, published in 5th

FTW PHD Symposium, Interactive poster session, Ghent, paper nr. 123,

2004.

1-10 CHAPTER 1

References

[1] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann, 1999.

[2] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure 2nd Edition. Morgan Kaufmann, 2003.

[3] I. Foster. Globus Toolkit Version 4: Software for Service-Oriented Systems.

Lecture Notes in Computer Science, 3779:2–13, 2005.

[4] Global Grid Forum. http://www.gridforum.org/.

[5] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid

Resource Management Systems. International Journal of Software: Practice

and Experience (SPE), 32:135–164, 2002.

[6] The TeraGrid project. http://www.teragrid.org/.

[7] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

SETI@home: An Experiment in Public-Resource Computing. Communi-

cations of the ACM, 45:56–61, 2002.

[8] M. Allen. Do it yourself climate prediction. Nature, 401:642, 1999.

[9] Berkeley Open Infrastructure for Network Computing. http://boinc.

berkeley.edu/.

[10] W. Graham Richards. Virtual Screening using Grid Computing: the Screen-

saver Project. Nature Reviews Drug Discovery, 1:551–558, 2002.

[11] LHC Computing Grid project. http://lcg.web.cern.ch/LCG.

[12] Enabling Grids for E-Science in Europe. http://egee-intranet.

web.cern.ch.

[13] Belnet Grid Initiative. http://www.begrid.be/.

2
Research Context

2.1 Introduction

The idea of a Grid is the idea of a dependable, inexpensive and easily accessible

(distributed) computing environment, resembling the way electricity is distributed

over modern power grids. Key to the construction of such an environment is the

coupling of existing building blocks, such as computational clusters, storage so-

lutions and networks. Upon successful deployment, a Grid will feature good uti-

lization of these resources (a great deal of which are idle during a lot of time), and

secure and transparent access to these resources to create the possibility of a truly

collaborative working environment.

In this chapter, we highlight the essential components and concepts that make

up a Grid, give an overview of relevant research activities concerned with each

of these concepts and indicate how these concepts form the starting point for our

research contributions. We start with an overview of vital Grid-enabling software

components in sections 2.2 and 2.3. Next, we focus on the state of optical net-

working technologies and their use in lambda Grids in section 2.4. The modeling

of the optical network dimensioning problem from static demand matrices is cov-

ered in section 2.5; in a lambda Grid setting, this problem must be extended as

demands depend on the workload distribution used. This extended problem is the

basis for our work presented in chapter 5. As the lambda Grid dimensioning prob-

lem depends on the exact workload schedule, the off-line modeling of a workload

scheduling problem is discussed in section 2.6. In particular, that section discusses

2-2 CHAPTER 2

the main differences between workload scheduling in classical parallel environ-

ments (such as multiprocessors and clusters) and Grids. The results of this off-line

scheduling model are then used in on-line scheduling algorithms as described in

chapter 6. Section 2.7 at last highlights the importance of accurate Grid simula-

tion environments allowing for realistic and repeatable experiments on Grids. We

identify key features of existing Grid simulation frameworks, and compare them

to the Grid simulation environment developed in the course of our research. This

environment is thoroughly described later on in chapters 3 and 4.

2.2 Grid Middleware

The glue needed to tie the various building blocks together and to exploit the ag-

gregate power of the resulting Grid is provided by Grid middleware. This mid-

dleware supports authentication, authorization, resource advertisement, resource

management, resource allocation, monitoring and job scheduling operations and

ideally provides standardized interfaces allowing for the construction of Grid user

interfaces enabling transparent and intuitive access to the underlying set of dis-

tributed resources (see figure 2.1). These user interfaces typically generate job

descriptions (capturing application characteristics and resource requirements) in

some job description language, which are then passed on to the appropriate mid-

dleware components.

G

R

I

D

A

P

P

L

I

C

A

T

I

O

N

I

N

T

E

R

F

A

C

E

Resource
Info

Resource
Info

Resource
Discovery

Resource
Advertisement

Resource
Broker

Resource
Requests

Job
Requests

Job Monitoring

Execution Manager

Status
History

Job

Status

PLATFORM/HARDWARE INTERFACE SECURITY INTERFACE ACCOUNTING INTERFACE

Resource
Reservations

Static
Information

Job Queue

Scheduler

Scheduling

Algorithms

Job
Request
Handler

Admission Control

Naming Service

Reservation
Manager

Resource
Monitoring

Policy Manager

Repository

Figure 2.1: Grid Middleware: Components and Interfaces

Several Grid middleware solutions are in use today. Compute-intensive cycle-

stealing applications (typically disguised as screensavers for desktop PCs) can be

deployed using the Berkeley Open Infrastructure for Network Computing (BOINC [1])

or using custom software, as is the case with the World Community Grid [2].

RESEARCH CONTEXT 2-3

Managing clusters as well as idle desktop machines running various operating

systems with the intent of batch scheduling compute-intensive jobs on them is the

goal of Condor [3], the distributed resource management system of the University

of Wisconsin-Madison. Its functionality can be compared to that of Sun Grid

Engine [4].

In the 1990’s, an effort was initiated to enable several German supercomputer

centers to provide secure and intuitive access to their heterogeneous set of comput-

ing resources. The result of this effort is known today as the UNICORE (Uniform

Interface to Computing Resources [5]) Grid Environment.

During the same years work was started on a metacomputing toolkit called

the Globus Toolkit [6], intended to realize the computing vision now called the

Grid. This toolkit has evolved into the basis of a number of Grid projects of sig-

nificant size. One notable example is the Large Hadron Collider Computing Grid

(LCG [7]) which will process data generated by CERN’s Large Hadron Collider

and uses Grid middleware based upon the Globus Toolkit. While the LCG primar-

ily deals with high energy physics (HEP) applications, its underlying Globus-based

middleware has been re-used in the broader (i.e. addressing the entire scientific

community) EGEE service Grid. The specific applications geared towards high

energy physics as deployed in the LCG can be seen as one of the services offered

by the EGEE Grid.

Over the past years, a lot of effort has gone into formalizing and standardizing

Grid protocols and architectures within the Global Grid Forum. More specifi-

cally, a set of services and their corresponding interfaces have been identified in

areas such as resource management, resource virtualization, data management and

security. This has led to the definition of the Open Grid Services Architecture

(OGSA [8]).

The latest incarnation of the Globus toolkit is arguably the most exhaustive

offering of OGSA-compliant Grid services available today.

Important services assist in resource status querying, selection and co-allocation

for job execution as well as in the partitioning of available resources into various

Virtual Private Grids. Resource demands originate from the typical applications

that need to be executed on the Grid. In collaborative data-processing environ-

ments (e.g. the Grid concept as needed by CERN), the need arises to transfer large

amounts of data between distant Grid sites. Untimely delivery of such data may

cause a degradation in application performance. Consequently, in this setup, not

only computing resources are of importance; the nature and careful exploitation of

network resources is critical as well.

In this context, the relevance of using optical technologies to interconnect dis-

persed Grid sites has vastly increased [9]. The use of optical networks as the Grid

resource interconnection technology of choice is discussed in section 2.4.

As shown in figure 2.1, resource monitoring also forms a major Grid middle-

2-4 CHAPTER 2

ware aspect. Monitoring data reveal statistics on Grid resource usage efficiency

and can be fed back to Grid schedulers in order to improve resource allocation

decisions. The importance of resource monitoring has spawned numerous projects

attempting to implement resource monitoring functionality. An overview of some

well-known projects in this area is presented in section 2.3. In that same section,

the rationale behind the development of our own resource monitoring architecture

- developed in parallel with our research work - and its comparison to existing

solutions are presented.

2.3 Grid Monitoring

In order for the Grid middleware to be able to perform informed resource allo-

cations, it needs to have access to up-to-date resource state data. These data are

typically gathered by a monitoring service. Conversely, monitoring data concern-

ing application characteristics, data access patterns and resource usage efficiency

in an operational Grid is not only useful as input into the deployed resource allo-

cation algorithms, but can be used to improve these algorithms.

The governing body for Grid standardization [10], the Global Grid Forum, has

recognized the importance of such Grid monitoring systems. It can be argued

that any successful Grid monitoring system is at least required to be scalable (due

to the large size of Grids), portable (due to the presence of different computing

resources and operating systems), extensible (due to the variety of resource types

connected to a Grid) and efficient (in order to minimize monitoring overhead).

The Global Grid Forum has therefore launched the Grid Monitoring Architecture

(GMA), a reference architecture for feasible Grid monitoring systems adhering

to the aforementioned properties. The overall structure of a GMA compatible

framework is depicted in figure 2.2.

Three major components can be identified in the GMA: producers, consumers

and a directory service. The directory service stores the location and type of in-

formation provided by the different producers, while consumers typically query

the directory to find out which producers can provide their needed event data (af-

ter which they contact the producers directly). Producers in turn can receive their

event data from a variety of providers (software/hardware sensors, applications,

whole monitoring systems, databases, etc.). The GMA does not specify the under-

lying data models or protocols that have to be used.

Multiple monitoring architectures for Grid-like systems have already been suc-

cessfully deployed. Not all of them follow the guidelines set by the GMA (e.g.

Condor’s Hawkeye [11] which does not support a decentralized architecture), and

some are geared towards monitoring one single resource type (e.g. Remos [12],

focussing on network parameters).

The NetLogger toolkit [13, 14] allows for the monitoring of distributed appli-

RESEARCH CONTEXT 2-5

Figure 2.2: Grid Monitoring Architecture: Overview

cations, which must be modified and instrumented by the developers to generate

suitable events. Currently, NetLogger uses a centralized data repository which

does not scale well to Grid-scale environments.

The Network Weather Service [15] is capable of monitoring and predicting

the performance of network and computational resources. Its statistical prediction

capabilities have mainly been used to support dynamic schedulers with Quality

of Service information. Again, however, some components in the architecture

(e.g. the forecaster and name server) are completely centralized.

Nagios [16] offers a set of tools to monitor both resources and network ser-

vices. Sensor data is provided by suitable plugins and can be published on a web

page. Its deployment is limited to Unix-like operating systems.

One major GMA compliant Grid monitoring system is the European Data-

Grid’s Relational Grid Monitoring Architecture R-GMA [17]. R-GMA offers a

combined monitoring and information system using a Relational Database Man-

agement System as directory service and monitoring data repository (this approach

offers the possibility to formulate complex queries on the monitored data i.e. it al-

lows to locate monitoring components and retrieve the data they offer using stan-

dard SQL statements). The implementation is based on Java servlet technology

(using the Tomcat servlet container), trading performance for portability and lim-

ited software dependencies. The complete EU DataGrid monitoring architecture

also includes the Mercury [18] application progress tracer, which is a Grid-enabled

version of the the GRM distributed monitor part of the GRM [19, 20] message-

passing application instrumentation library used in traditional parallel environ-

ments.

Another Grid monitoring system is GridRM [21]. GridRM is an open source

two-layer Grid monitoring framework, the upper layer being structured according

2-6 CHAPTER 2

to the GMA. This upper layer connects the per-site monitoring systems (the lower

layer) in a scalable way. Like R-GMA, GridRM makes use of Java and SQL to

query data producers. Currently, GridRM’s directory service (containing info on

the location of the different resource status providers) has shown to be a possible

bottleneck and single point of failure.

MDS2 is the Globus toolkit (version 2) Monitoring and Discovery Service,

and although MDS development was started before the GMA was conceived, it

can still be regarded as an implementation of the Grid Monitoring Architecture.

MDS2 only supports latest-state queries (as opposed to retrieving resource state

history), making it mandatory for the consumers to actively retrieve status infor-

mation from the GRIS (the MDS2 component offering producer-like functional-

ity). The later versions of the Globus toolkit (version 3 and up) have replaced

MDS2 with a GMA compatible monitoring and information framework imple-

mented using Java and web services technology, the so-called Web Services based

Information Service [22].

JAMM (Java Agents for Monitoring and Management) [23] is a Java based

monitoring architecture, based on the GMA. It offers automatically deployed sen-

sor agents, but most of these agents are actually wrappers around Unix tools and

can therefore not be deployed on other operating systems.

For an extensive comparison of Grid monitoring frameworks, both feature-

wise and performance-wise, we refer to [24]. A detailed classification of the sys-

tems listed in this section based on their compliance with and level of implemen-

tation of the GMA is given in [25].

During the course of our research, an alternative GMA compatible Grid mon-

itoring and information framework has been implemented. The underlying ideas

were to implement a highly performant GMA compatible monitoring framework,

supporting more advanced consumer and producer types such as long-term archiv-

ing consumers and real-time visualization consumers, as these features are not

common, nor are they major focal points, among the alternatives listed above.

We have described the architectural details and implementation decisions con-

cerning our Grid Monitoring Architecture in appendix A.

As far as our implementation’s performance is concerned, a thorough com-

parison to the Globus MDS2 system and its successor has been carried out and

described in [26, 27] and appendix A. Only the Globus monitoring and informa-

tion framework was used as benchmark, as a comprehensive study [24] has already

shown the Globus MDS2 system to outperform (i.e. MDS2 exhibits lower response

times and better scalability) the other major GMA compatible frameworks listed

here.

RESEARCH CONTEXT 2-7

2.4 Optical Transport Networks

Technological advantages of optical transport networks (OTNs) include the ability

to carry high-bit rate data over large distances, without excessive need for am-

plification and without performance-limiting effects such as cross-talk. It is this

ability to reliably transport huge amounts of data in a timely fashion that has drawn

widespread attention from the Grid community.

A major drawback in the design of optical network routers, however, is the

difficulty of providing temporary storage (i.e. memory) for optical data. This

implies that it is non-trivial to operate an optical network in a packet switched [28]

mode of operation, as memory is needed to buffer packets while headers are being

examined.

Another major mode of operation of optical transport networks involves the

use of lightpaths, which provide an end-to-end bandwidth pipe, similar to a POTS

circuit. The end-to-end lightpaths are established by concatenating a number of

wavelengths on a fiber route between the endpoints. Intermediate optical cross-

connects may perform wavelength conversions such that a lightpath need not be

carried on the same wavelength along its entire route.

These circuit switched [29] optical networks establish guaranteed-bandwidth

pipes, but in doing so exploit the network’s capacity less efficiently when com-

pared to the flexibility offered by packet-switching networks.

Because of this, and the implementation difficulties associated with packet

switched optical networks, a third operational mode called burst switching [30]

receives widespread attention. In a burst switching setup, data is sent in bursts,

where a burst has a finite length and occupies a single wavelength. Unlike a packet,

which contains control information in its header, all control information related to

a data burst precedes it in a dedicated control burst. The time offset between the

control burst and the actual data burst is of sufficient magnitude to allow inter-

mediate routers to determine the preferred route for the burst and to allocate the

required resources (wavelength/time window pairs). This construction reduces the

need for optical storage buffers.

For the data-intensive scientific applications mentioned earlier, a long-lived set

of dedicated wavelength paths between sites (thus, a circuit switched optical trans-

port network connecting the Grid sites) forms a natural way of providing the nec-

essary bandwidth in an adequate fashion. For instance, European research and ed-

ucation networks (such as Belnet [31]) are interconnected using multiple 10Gbps

wavelengths by the GÉANT2 [32] network, while Abilene [33] and CA*Net4 [34]

have a similar role in the USA and Canada, respectively. Lambda networking

is heavily promoted by the Global Lambda Integrated Facility (GLIF [35, 36])

virtual organization. GLIF participants jointly make lambdas available as an inte-

grated global facility for use by scientists and projects involved in data-intensive

2-8 CHAPTER 2

scientific research.

The possibilities of a burst switched network, however, can open up the concept

of Grid computing to other classes of applications, which may be highly interactive

and operate on a variety of data sets - examples include multimedia editing and

virtual reality immersion. For these classes of applications, it is infeasible and

inefficient to set up and tear down lightpaths for every individual data transfer. In

contrast, a job and the data it is to operate on can be combined into a burst, which

can then be submitted onto the network without performing tedious lightpath set

up and tear down operations. The resulting burst can then be routed to a suitable

processing destination following an anycast scheme as proposed in [37].

While burst switching is a very promising technology, issues that remain to be

solved satisfactorily include the routing and deflection of bursts in case of network

congestion. The current lambda Grid deployments mainly use circuit switched

optical networks to ensure site interconnections. In what follows, we dissect the

network stack used in these interconnections.

In optical data transmissions, information is carried by propagating light through

a suitable waveguide called an optical fiber. At the transmitter end, the light beam

(mostly in the wavelength range of 1300−1550nm) is injected into the fiber’s core

by a laser. At the receiving end the light hits a detector which emits an electrical

signal. The highest transmission rates (order of 40Gbps) can be obtained with

single-mode fibers. These fibers feature a small core and only allow a single elec-

tromagnetic wave mode to propagate. Single-mode fibers require more expensive

equipment to operate, however, than their multi-mode counterparts. While opti-

cal fibers clearly present an opportunity to transmit data at very high rates, their

capacity has been further expanded by the advent of the wavelength division mul-

tiplexing (WDM) technology. As its name indicates, WDM allows to use multiple

optical signals simultaneously on a single fiber by spacing the signals in the fre-

quency domain. Two different classes of WDM technology are usually considered.

The first class, called coarse WDM (CWDM), denotes those WDM transmission

systems offering limited multiplexing capabilities (4, 8 or 16 wavelengths per fiber,

coarsely spread over the frequency band). As the different signals in these systems

can be widely separated, CWDM systems are cheaper than their DWDM counter-

parts. DWDM (dense WDM) systems can multiplex up to 160 different signals

onto a single fiber. As these signals are placed very close together in the frequency

band, DWDM systems need more expensive equipment to operate.

Because WDM has increased the available network bandwidth, the need arose

to enable faster switching in the network. Initially, only point-to-point WDM sys-

tems were deployed. Nowadays, optically switched networks are made possible by

the introduction of optical cross-connects (OXCs). These optical cross-connects

can switch the signal arriving on a wavelength on an incoming link to the same

wavelength on an outgoing link. This way, an end-to-end wavelength path utilizing

RESEARCH CONTEXT 2-9

the same wavelength on each fiber segment can be set up. If the OXC is equipped

with wavelength converters, the outgoing wavelength of the switched signal can

be different from the incoming wavelength. This latter (more expensive) type of

OXC allows the creation of so-called virtual wavelength paths, in which an end-

to-end lightpath utilizes different wavelengths on its constituent fiber segments.

Figure 2.3 shows the most important elements within such an OXC. Incoming

fibers enter the OXC at the left; demultiplexers retrieve the individual wavelengths

on each fiber. A space-switching matrix connects this incoming wavelength to

an outgoing multiplexer. This wavelength is converted if necessary into a differ-

ent wavelength and multiplexed onto an outgoing fiber. From figure 2.3, which

Space
Switch

Wavelength
ConverterDemultiplexer Multiplexer

λ1 . . . λ4

λ1 . . . λ4

λ1 . . . λ4

λ1 . . . λ4

λ1 . . . λ4

λ1 . . . λ4

Input λ

λ1 . . . λ4

Output λ

λ1 . . . λ4

Figure 2.3: Optical Cross-Connect: Key Structural Components

represents an OXC with F = 4 in- and outgoing fibers each capable of carrying

N = 4 wavelengths, it follows that the OXC’s switching capabilities are deter-

mined by the switching matrix’s complexity (and hence its blocking behavior)

and the wavelength conversion opportunities. The OXC in figure 2.3 provides F

N × N switching blocks, which is clearly more scalable yet less powerful than a

single monolithic NF × NF switching block. When setting up (virtual) wave-

2-10 CHAPTER 2

length paths in this work, we have assumed unlimited switching and wavelength

conversion capabilities in each optical cross-connect, whilst observing wavelength

capacity and flow constraints. Figure 2.4 shows how a switched optical network

allows for the setup of end-to-end lightpaths.

Figure 2.4: End-to-End Lightpaths in Switched All-Optical Network

In legacy transport networks, traffic carried on the fibers is structured using

SDH/SONET, providing standardized data rates and multiplexing schemes for syn-

chronous digital data transmission. Optimized for fixed-bit rate traffic (e.g. voice

traffic), data is piggy-backed in these transport networks. As a result, the network

stack for IP traffic can be quite complex - a sample protocol stack used to deliver IP

traffic is depicted in figure 2.5(a). In this stack, ATM cells are mapped into SDH

containers. In the ATM network, multiple routed protocols can be multiplexed

within a single Virtual Circuit (VC) by using Logical Link Control (LLC) encap-

sulation. An example of such a routed protocol and the one shown in figure 2.5(a)

is IP.

The bulk of the data carried, however, originates and/or ends up in an Ether-

net network [38], the cost-effective dominant LAN solution. This has led to an

increased interest in the Ethernet-over-WDM concept, in which Ethernet frames

are mapped directly onto WDM wavelengths. The Ethernet-over-WDM approach

allows to eliminate the overhead, complexities and expensive equipment involved

with the legacy transport systems [38].

The transportation of Ethernet frames over a WDM system has already been

standardized. For instance, the IEEE 802.3ae standard (10GbE) defines the 10GBASE-

LX4 interface which maps a 10Gbps Ethernet signal onto 4 wavelengths of a

(C)WDM fiber pair. Such 10Gbps Ethernet pipes are already used in e.g. the

TeraGrid project to connect the various Grid sites. For that reason, we will fre-

RESEARCH CONTEXT 2-11

IP

LLC

ATM

WDM

Fiber

SDH/SONET

(a)

Fiber

WDM

Ethernet

IP

(b)

Fiber

WDM

Ethernet

(c)

Figure 2.5: Data Traffic Protocol Stack: Legacy (a) vs. Ethernet-over-WDM,

TCP/IP compatibility stack (b) and envisioned future stack (c)

quently use comparable parameters (i.e. 4 wavelengths per fiber, each wavelength

supporting a 2.5Gbps data rate) throughout this work.

The resulting protocol stack for Ethernet-over-WDM is illustrated in figures 2.5(b)

and 2.5(c). Stack 2.5(b) ensures compatibility with existing TCP/IP applications,

while eliminating the IP layer and using Layer-2 protocols instead of TCP/UDP [38]

as shown in figure 2.5(c) requires application modifications.

As far as the upper layers of the network stack are concerned, it is well known

that standard TCP implementations can misbehave in high bandwidth-delay prod-

uct (BDP) networks [39]. Consequently, there have been significant research ef-

forts to either improve TCP implementations or to create alternative transport pro-

tocols for high BDP networks. While alternatives to TCP such as RBUDP [40],

SABUL [41] and GTP [42] exist and can be deployed in high BDP networks, it has

been shown that TCP itself can be scaled for high BDP networks [39] and that the

problems associated with TCP originate in its implementation and are not intrinsic

to TCP.

In the application layer, a new Grid-oriented file transfer protocol (based on

FTP) allows to transfer data between different storage elements in the Grid. This

GridFTP [43] protocol is geared towards reliable high-profile data movements us-

ing parallel and striped file transfers, and employs direct control over TCP window

sizes to implement these features. Securing such file transfers is another major ele-

ment in the GridFTP specification; to this end, GridFTP seamlessly integrates with

the Grid Security Infrastructure (GSI [44]) and Kerberos [45].

2-12 CHAPTER 2

Further enhancements to the GridFTP protocol (leading up to GridFTP version

2) are currently under investigation and include dynamic bandwidth management,

bidirectional parallel transfers and transparent firewall / NAT traversal.

2.5 Optical Transport Network Dimensioning

As explained in the previous section, communication and data transfer between

different Grid sites in lambda Grids occurs over an optical transport network (OTN).

In currently deployed lambda Grids (e.g. GLIF [35] or TeraGrid [46]), circuit

switching is the most widely used wavelength allocation method. In a circuit

switched network, (virtual) wavelength paths are set up between edge nodes. These

wavelength paths are carried across optical fibers connecting the optical cross con-

nects in the network. As each wavelength path can carry a finite amount of data

and the number of wavelengths that can be activated simultaneously is also finite,

one should decide on the wavelength paths to be activated and their respective

routing in the network before the network becomes operational. Each decision

incurs a certain cost; typical cost components include the number of fiber ducts,

the amount of fiber needed and the number of wavelengths activated on each fiber

segment.

These decisions make up the OTN dimensioning problem aimed at obtaining

network dimensions with expected network traffic in mind. Note that the use of

wavelength paths ensures that OTN dimensioning suffers from a significant ex-

tra complexity when compared to standard network flow problems utilizing con-

tinuous bandwidth values. Indeed, in an OTN dimensioning problem bandwidth

granularity is determined by each wavelength’s capacity. In addition, for each

wavelength path wavelength continuity or conversion constraints must be fulfilled.

While the scheduling of lambda requests in such a OTN has been addressed

in [47] (emphasizing dynamic on-demand lightpath provisioning schemes), we are

primarily interested in the establishment of long-lived pre-established wavelength

paths. A lot of research has been dedicated to this OTN dimensioning problem

featuring static traffic demands between node pairs [48–50]. Static network di-

mensioning starts from a given demand matrix, i.e. a matrix representation of the

traffic demands between each pair of nodes in the network. In the case of optical

circuit switched networks, the network dimensioning problem is called a Rout-

ing and Fiber and Wavelength Assignment (RFWA) problem [49, 50] for obvious

reasons.

This type of problem can be modeled as a multicommodity network flow prob-

lem [48], where every commodity maps to a single source-destination pair of nodes

in the network. These multicommodity network flow problems can be formulated

as integer linear programs as follows.

LetN be a set of nodes and E be a set of directed edges connecting these nodes.

RESEARCH CONTEXT 2-13

Furthermore, assume a demand matrix D (i.e. dij is the number of wavelength

paths required to be set up from node i to node j) is given. Introducing binary

variables f
ij
λkl (with (k, l) ∈ E) denoting whether or not a wavelength path from

node i to node j is being carried on the edge between nodes k and l on physical

wavelength λ ∈ Λ, we have that

∀i ∈ N .∀j ∈ N \ {i}.
∑

l:(i,l)∈E,λ∈Λ

f
ij
λil = dij (2.1)

∀i ∈ N .∀j ∈ N \ {i}.
∑

k:(k,j)∈E,λ∈Λ

f
ij
λkj = dij (2.2)

∀i ∈ N .∀j ∈ N \{i}.∀k ∈ N \{i, j}.
∑

m:(m,k)∈E,λ∈Λ

f
ij
λmk =

∑

n:(k,n)∈E,λ∈Λ

f
ij
λkn

(2.3)

Equations 2.1, 2.2 and 2.3 deal with flow conservation in each flow’s source, des-

tination and intermediate router nodes, respectively. A typical cost function to be

minimized in this type of problem is the aggregate number of wavelengths acti-

vated in the network, given by

∑

(i,j)∈N 2,(k,l)∈E,λ∈Λ

f
ij
λkl (2.4)

In general, such a multicommodity flow problem is NP-complete, meaning that

no algorithm is known to find an optimal solution for each such problem within

a time horizon polynomial in the problem’s dimensions. This is aggravated by

the fact that the given integer linear program as formulated above suffers from

a large amount of integer variables needed to discriminate between the various

commodities (i.e. flows) and the available wavelengths on each fiber.

Note, however, that cost function 2.4 does not depend on e.g. the exact alloca-

tion of wavelengths to lightpaths, nor does it depend on the number of wavelength

translations occurring in each node. For this class of optimization objectives, the

integer linear program modeling the multifiber RFWA problem can be reduced in

complexity by employing the concept of a source routing formulation as intro-

duced in [51].

In such a formulation, variables f
ij
λkl are replaced by variables f i

kl, denoting

the (integer) number of wavelength paths originating at node i carried on the link

between nodes k and l. These variables do not record each wavelength path’s

destination, nor do they assign wavelengths to each section of the path. As shown

in [51] however, this does not prevent the correct modeling of the RFWA problem

as an integer linear program, provided the optimization objective adheres to the

constraints laid out above.

2-14 CHAPTER 2

Using these replacement variables, wavelength path routing constraints 2.1,2.2

and 2.3 become

∀i ∈ N .
∑

l:(i,l)∈E

f i
il =

∑

j∈N\{i}

dij (2.5)

∀i ∈ N .∀j ∈ N \ {i}.
∑

k:(k,j)∈E

f i
kj = dij +

∑

l:(j,l)∈E

f i
jl (2.6)

Cost function 2.4 now reduces to

∑

i∈N ,(k,l)∈E

f i
kl (2.7)

Observe how this alternative set of variables has simplified the modeling of the

OTN dimensioning problem from a static demand matrix.

Of course, in a lambda Grid setting such a given, static demand matrix between

Grid site pairs is nonexistent. Instead, the resulting traffic in the Grid’s intercon-

nection network has its origins in the way workload is distributed and scheduled

across the participating Grid sites. The approach used in our work to combine these

scheduling decisions into the OTN dimensioning problem is detailed in chapter 5.

In that same chapter, we have also extended this combined problem to take into

account possible resource and network element failures. Techniques to improve

this resulting combined scheduling and dimensioning problem’s scalability are de-

tailed in the next section.

2.6 Workload scheduling

In this section, we take a closer look at the problem of scheduling workload on

the different resources in a Grid. In particular, we are interested in the off-line

modeling of such a Grid workload scheduling problem.

In a Grid setting, it is of paramount importance that several Grid resources can

be co-allocated to a single job. Consider a simple data processing job accessing

a remote repository. For such a job, both the CPU time allocated to it as well

as network bandwidth on the path to the repository determine its run time and

progress. This indicates that different types of first-class resources must be handled

(in this case, both computational and network resources), that multiple of these

resources can be allocated to a single job, and that the allocations made for this job

on these resources are interdependent. To illustrate this last statement, consider

the case where available network bandwidth to the remote data repository is low.

If this is the case, then we can increase the CPU share allocated to the job on its

computational resource at will without reducing the resulting job’s finishing time,

as the job will be stalling and waiting for the remote data to arrive.

RESEARCH CONTEXT 2-15

From this example, it follows that the modeling of an off-line Grid workload

scheduling problem differs significantly from the related problem of workload

scheduling in a cluster or multiprocessor environment. In the latter type of envi-

ronment, the off-line workload scheduling is most often the problem of scheduling

individual jobs on a set of processing elements (e.g. the nodes in the cluster or the

processors in the multiprocessor machine). This off-line scheduling of jobs on re-

sources of a single type (i.e. computational resources) has been studied extensively

in literature [52–54]. In these works, the quality of on-line scheduling heuristics

has been analyzed and compared extensively to the optimal solution to the off-line

problem.

The off-line workload scheduling problems in this context are modeled as (in-

teger) linear programs, and can be treated as special instances of Multi-Modal

Resource Constrained Project Scheduling Problems (MMRCPSP) as described

in [55–59]. In this class of problems, a workload with fixed a priori resource

requirements (for different types of resources) is scheduled on a set of such re-

sources. A standard MMRCPSP can be expressed as a linear program as follows:

LetR be a set of renewable resources, and assume that at each moment in time

the capacity of resource k is fixed at Rk. Let there be a set of activities and assume

each activity j can be processed in a number of different modes Mj . Within

mode m, activity j uses rjkm resource units of resource k at all times and runs

for a number of time units pjm. Thus, choosing a mode of execution for activity j

decides upon the resources used for this activity as well as the amount of resource

units needed. For given inputs Rk,Mj , rjkm, pjm a valid non-preemptive project

schedule then consists of

• the assignment of a mode of execution to each activity j

• the scheduling (i.e. decision on the starting time) of each activity j

• the enforcement of resource capacity constraints

• the minimization of some metric (e.g. makespan or average completion time)

while making the above decisions

Introducing binary variables sjmt equalling 1 if and only if activity j is sched-

uled to start in mode m at time t ∈ T , the unique mode assignment and scheduling

of the activities (which combines with the resource capacity constraints) can be ex-

pressed as

∀j ∈ J .
∑

m∈Mj

∑

t∈T

sjmt = 1 (2.8)

∀k ∈ R.∀t ∈ T .
∑

j∈J

∑

m∈Mj

∑

t′∈{t−pjm+1,...,t}

sjmt′rjkm ≤ Rk (2.9)

2-16 CHAPTER 2

To minimize e.g. the schedule’s average completion time, one would have to min-

imize
∑

j∈J

∑

m∈Mj

∑

t∈T

sjmt(t + pjm) (2.10)

It is easy to see that this kind of formulation can be used to model a workload

scheduling problem with rigid resource requirements by simply replacing the terms

“activity” and “mode” by “job” and “allocated resource set”, respectively.

In general, however, solving these integer linear programs is an NP-complete

problem. In practical terms, this means that the process of identifying an optimal

solution to such a problem cannot be bounded (in time) polynomially in terms

of the problem’s dimensions (i.e. the number of jobs, the number of resources

and the number of discrete time instants investigated). In addition, the resource

requirements imposed by the jobs in the above linear program are rigid, that is,

they are fixed and known in advance, are not related to each other and thus cannot

model interdependent resource allocations nor can they model the time-sharing of

a single resource over multiple jobs.

From these restrictions, it follows that the MMRCPSP approach cannot capture

the complexity of the Grid workload scheduling problem (featuring a large number

of jobs and resources and interdependent resource co-allocations) in its entirety.

Therefore, instead of starting with an off-line model to the scheduling prob-

lem and then proposing on-line heuristics to generate “suitable” (when compared

to the off-line solution) workload schedules, many authors have used simulation

tools to study the Grid-specific aspects of the workload scheduling problem. Ran-

ganathan et al. [60] have studied independent CPU-allocation and data set replica-

tion through simulation. In a similar way, replica optimization is the main topic of

the research described in [61]. That work focuses on the location of data sets, but

does not address network resource allocations that may be needed to access the

data within a deterministic time frame.

In [62], the effects of data needing to be transferred across the network is

not expressed using resource allocations but is condensed into a single overhead

parameter describing the slowdown of a job relative to the situation where the data

is locally available. A similar parameter (called slowdown factor) appears in [63,

64], where queueing model analysis is performed to deduce schedule quality in a

purely space-shared multicomputer system.

Market-driven and incentive-based parameter sweep application scheduling on

computational resources has been studied extensively by Buyya et al. [65], where

resource selection policies constrained by the notions of budgets and deadlines are

investigated. Of course, these constraints influence the amount of work that can be

performed by the Grid, while we are interested in effective scheduling of workload

on a correctly dimensioned Grid.

The effects of co-allocating CPU and network resources to a single job have

RESEARCH CONTEXT 2-17

been studied in [66]. Grid sites are connected through a VPN in which fine-grained

bandwidth pipes can be set up. In reality, it is difficult to imagine a scenario in

which such pipes with guarantees concerning delay, jitter and bandwidth avail-

ability can be set up over e.g. the Internet. In contrast, the use of optical transport

networks does offer the reality of high-capacity bandwidth pipes between the var-

ious Grid sites and is therefore a focal point in our work.

To cope with the scalability issue mentioned above, divisible load theory (DLT) [67–

69] has been used successfully in recent years in modeling steady state off-line

Grid scheduling problems. Scheduling decisions concerning both computational

and network resources (not necessarily optical) are derived from a scalable linear

program. The improved scalability is obtained by only considering steady state op-

erational scenarios (in contrast to dealing with discrete time instants) and divisible

workload (in contrast to discrete individual jobs). The net result is that scheduling

constraints in the linear program can now be expressed using real-valued variables

(instead of integer variables), and the affected portions of the off-line scheduling

linear program can now be adapted as follows.

Assume the steady state workload arriving in the Grid for resource type r is

αr. This workload needs to be distributed among all resources k of the relevant

resource type. Assuming αk
r is the amount of workload distributed to resource k

of type r per time unit, equations 2.8 and 2.9 now become

∀r.
∑

k∈Rr

αk
r = αr (2.11)

∀r.∀k ∈ Rr.α
k
r ≤ Rk (2.12)

The assumption of steady state also requires a new optimization objective; a typical

example of such an objective is to balance the load across all resources and thus to

minimize e.g.

max
r,k∈Rr

αk
r

Rk

(2.13)

Clearly, the assumptions on steady state and divisible workload have enabled

a significant reduction in the linear program’s complexity. An off-line scheduling

problem based on this approach and involving both computational and network

resources has been investigated in [69]. In that work, however, network resource

allocations are in fact fixed-bandwidth TCP connections supplemented by a some-

what artificial maximum number of TCP connections allowed per network ele-

ment. In contrast, in this book we primarily focus on lambda Grids. In those

Grids, data is transferred over (virtual) wavelength paths in an optical transport

network (OTN). These wavelength paths directly map onto the concept of a fi-

nite network resource, effectively replacing the artificial network constraints in the

scheduling model of [69] by the required granularity and wavelength path conti-

nuity or conversion constraints. As scheduling workload on a remote site incurs

2-18 CHAPTER 2

network traffic, we focus on the combined off-line scheduling and dimensioning

problem (see also section 2.5) in this book rather than studying the off-line Grid

workload scheduling problem by itself. In chapter 6, we derive and evaluate sev-

eral on-line workload scheduling algorithms based on the solution to the combined

off-line scheduling and dimensioning problem.

2.7 Grid Simulation

Because of the size of Grids (related to the number of resources involved), it is

often impractical to build, operate and monitor Grid testbeds on a realistic scale.

Furthermore, Grid resource management has stringent requirements not commonly

found in more classical cluster setups, as resource allocations can be interdepen-

dent, and their respective sizes can be part of the scheduling problem rather than

being given (see also section 2.6).

These non-trivial requirements make it inherently difficult to evaluate Grid re-

source management and scheduling policies using (tractable) analytical methods

(e.g. queueing network analysis). Therefore, simulation is an important aid in the

evaluation of Grid behaviour and Grid resource management policies. In addition,

simulators allow for repeatable experiments under controlled circumstances.

This section aims to provide a detailed overview of existing Grid simulation

tools, their main focus and, conversely, their possible limitations. In turn, we

discuss the Grid simulators Bricks, MicroGrid, SimGrid, GridSim, OptorSim and

ChicagoSim.

The Bricks Simulator [70, 71] focusses on client/server interaction in global

high performance computing systems. It allows for a single centralized scheduling

strategy, which does not scale well to large Grid systems and does not support the

notion of multiple (competing) schedulers.

MicroGrid [72, 73] is an emulator modeled after Globus, allowing for the exe-

cution of Globus-enabled applications on a virtual Grid system. Research into the

area of Grid scheduling algorithms can be cumbersome with this kind of approach,

since it requires the construction of an actual application to test. Furthermore, the

applications are run and simulated in real-time, contrasting with the approach used

in discrete-event simulators.

SimGrid [74] is designed to simulate task scheduling (centralized or distributed)

on Grids. Version 1 of SimGrid can be regarded as a low-level toolkit (which inter-

faces to the C programming language) from which domain-specific simulators can

be built. The second version of SimGrid is dubbed MetaSimGrid [75] and is es-

sentially a simulator built upon this toolkit to enable the construction of simulated

scenarios featuring multiple schedulers (as C programs). Models for network links

as well as for TCP connections are present in SimGrid. This validated TCP imple-

mentation allows for smaller simulation times when compared to the packet-level

RESEARCH CONTEXT 2-19

TCP simulation performed by network simulators. Of course, simulations using

other transport protocols that are not readily available in SimGrid require that these

protocols are implemented first, whereas using a network simulator ensures easy

access to a wide range of protocols. The simulated application consists of several

tasks, organized into a Directed Acyclic Graph (DAG). MetaSimGrid is focussed

on scheduling this application type in a master-slave environment.

GridSim [76, 77] is a discrete-event Grid simulator based on JavaSim [78]

(which itself has in the meantime been superseded by JSIM [79], featuring a

Tcl/Java dual-language design and interface). This simulator allows to model a

distributed set of Grid schedulers, and specifically focusses on market-driven eco-

nomic resource models. While its computational resource models are flexible and

highly configurable, simulation of Grid site interconnections and underlying net-

work dynamics is not as thorough.

OptorSim [80, 81] is a Java [82] based Grid simulator built with the explicit

goal of evaluating the performance of data access and replica placement opti-

mization algorithms in a Grid. It has been conceived within the EU DataGrid

project [83], and this is reflected in its architecture. OptorSim includes an eco-

nomic model, using a peer-to-peer auction protocol that optimizes both the selec-

tion of replicas for running jobs and the dynamic creation of replicas in Grid sites

using a file revenue prediction function. While OptorSim takes network bandwidth

into account when transferring data between replica sites, it does not actually sim-

ulate any existing network or transport protocols.

The Chicago Simulator [84, 85] is a simulation framework built on top of Par-

sec [86] for studying scheduling and replication strategies in Grids. It provides a

“condensed” view of the Grid’s interconnecting network, as the bandwidth avail-

able to each Grid site’s gateway is the major parameter in the network model it

uses.

The Grid simulation environment we developed is called NSGrid, and is treated

in chapters 3 and 4. This simulation environment encompasses the best features

found in the above Grid simulators. Amongst others, NSGrid provides a dual layer

mixed Tcl/C++ interface and network packet-level simulation by means of being

constructed on top of the existing and widely used network simulator ns-2 [87].

This latter feature gives NSGrid an edge when it comes to network resource and

transport protocol modeling. In addition, NSGrid not only provides models for the

traditional Grid resources (computation, storage, network), but also provides mod-

els for important Grid middleware components such as schedulers and directory

services and the communication between these components.

2-20 CHAPTER 2

2.8 Conclusions

In this chapter, we have identified major concepts and technologies supporting the

notion of lambda Grids. For each of these concepts, we have highlighted relevant

research activities and results and we have indicated how our own research contri-

butions presented in the following chapters build upon the concepts described in

this chapter.

We focussed on the necessary Grid middleware and in particular the schedul-

ing and resource monitoring components. We argued in favor of the use of optical

transport networks in Grids (hence the term lambda Grid) and explained their op-

eration. Furthermore, we gave an overview of modeling techniques used in optical

network dimensioning and workload scheduling problems and pointed out the nec-

essary changes to be made for these models to remain useful in a Grid context.

Lastly, we emphasized the importance of an accurate Grid simulation frame-

work and discussed why we believe the development of a new Grid simulation

framework called NSGrid was preferable.

RESEARCH CONTEXT 2-21

References

[1] Berkeley Open Infrastructure for Network Computing. http://boinc.

berkeley.edu/.

[2] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew,

and A.J.W. Olson. Virtual Screening using Grid Computing: the Screensaver

Project. Journal of Computational Chemistry, 19:1639–1662, 1998.

[3] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the Grid

in Grid Computing: Making The Global Infrastructure a Reality. John Wiley,

2003.

[4] Grid Engine Project Home. http://gridengine.sunsource.net.

[5] A. Streit, D. Erwin, Th. Lippert, D. Mallmann, R. Menday, M. Rambadt,

M. Riedel, M. Romberg, B. Schuller, and Ph. Wieder. UNICORE – from

Project Results to Production Grids. preprint, 2005.

[6] The Globus Alliance. http://www.globus.org/.

[7] LHC Computing Grid project. http://lcg.web.cern.ch/LCG.

[8] I. Foster and al. The Open Grid Services Architecture, Version 1.0. draft-

ggf-OGSA-spec-019 http://forge.gridforum.org/projects/

ogsa-wg.

[9] D. Simeonidou, R. Nejabati, B. St. Arnaud, M. Beck, P. Clarke, D. B.

Hoang, D. Hutchison, G. Karmous-Edwards, T. Lavian, J. Leigh, J. Mam-

bretti, V. Sander, J. Strand, and F. Travostino. Optical Network Infrastructure

for Grid. Global Grid Forum Informational Document, 2004.

[10] Global Grid Forum. http://www.gridforum.org/.

[11] HawkEye: A Monitoring and Management Tool for Distributed Systems.

http://www.cs.wisc.edu/condor/hawkeye/.

[12] Bruce Lowekamp, Nancy Miller, Thomas Gross, Peter Steenkiste, Jaspal

Subhlok, and Dean Sutherland. A resource query interface for network-aware

applications. Cluster Computing, 2(2):139–151, 1999.

[13] B.L. Tierney and D. Gunter. NetLogger: a Toolkit for Distributed System

Performance Tuning and Debugging. LBNL Technical Report LBNL-51276,

1997.

2-22 CHAPTER 2

[14] D. Gunter, B.L. Tierney, C.E. Tull, and V. Virmani. On-Demand Grid Appli-

cation Tuning and Debugging with the NetLogger Activation. In Proceedings

of the 4th International Workshop on Grid Computing (Grid2003), pages 76–

83, 2003.

[15] R. Wolski, N. Spring, and Jim Hayes. The Network Weather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing.

Future Generation Computer Systems, 15(5-6):757–768, 1999.

[16] A. Douitsis. Service Level Monitoring with Nagios. TERENA Networking

Conference 2005, 2005.

[17] A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom,

L. Field, S. Hicks, and J. Leake et al. R-GMA: An Information Integration

System for Grid Monitoring. In Proc. of the 11th International Conference

on Cooperative Information Systems, pages 462–481, 2003.

[18] N. Podhorszki, Z. Balaton, and G. Gombs. Monitoring Message-Passing Par-

allel Applications in the Grid with GRM and Mercury Monitor. In Proceed-

ings of the 2nd European Across Grids Conference (AxGrids 2004), pages

179–181, 2004.

[19] N. Podhorszki and P. Kacsuk. Design and implementation of a distributed

monitor for semi-on-line monitoring of VisualMP applications. In Proceed-

ings of the Third Austrian-Hungarian Workshop on Distributed and Parallel

Systems (DAPSYS), pages 23–32, 2000.

[20] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajdae. From cluster moni-

toring to grid monitoring based on GRM. In Proceedings of the Seventh

International Euro-Par Conference, LNCS vol. 150, pages 874–881, 2001.

[21] M.A. Baker and G. Smith. GridRM: A Resource Monitoring Architecture for

the Grid. In Springer-Verlag, editor, Proc. of the 3rd International Workshop

on Grid Computing, pages 268–273, 2002.

[22] WS Information Services website. http://www-unix.globus.org/

toolkit/docs/3.2/infosvcs/ws/key/index.html.

[23] Brian Tierney, Brian Crowley, Dan Gunter, Mason Holding, Jason Lee, and

Mary Thompson. A Monitoring Sensor Management System for Grid Envi-

ronments. In Proc. of High Performance Distributed Computing’ 00, pages

97–104, 2000.

[24] X. Zhang, J.L. Freschl, and J. Schopf. A Performance Study Of Monitor-

ing and Information Services for Distributed Systems. In Proc. of the 12th

RESEARCH CONTEXT 2-23

IEEE International Symposium on High-Performance Distributed Comput-

ing, pages 270–282, 2003.

[25] Serafeim Zanikolas and Rizos Sakellariou. A taxonomy of grid monitoring

systems. Future Generation Computer systems, 21:163–188, 2005.

[26] B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, and

P. Demeester. A scalable and performant grid monitoring and information

framework. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, volume 1, pages 224–

230, 2005.

[27] S. De Smet, P. Thysebaert, B. Volckaert, M. De Leenheer, D. De Winter,

F. De Turck, B. Dhoedt, and P. Demeester. A Performance Oriented Grid

Monitoring Architecture. In Proceedings of the 2nd IEEE Workshop on End-

to-End Monitoring Techniques and Services (E2EMON), pages 23–28, 2004.

[28] M.J. O’Mahony, D. Simeonidou, D.K. Hunter, and A. Tzanakaki. The appli-

cation of optical packet switching in future communication networks. IEEE

Communications Magazine, 39:128–135, 2001.

[29] B. Mukherjee. Optical WDM Networks. Springer, 2006.

[30] C. Qiao and M. Yoo. Choices, Features, and Issues in Optical Burst Switch-

ing. Optical Networks Magazine, 1:36–44, 2000.

[31] Belnet: A network of knowledge. http://www.belnet.be.

[32] GÉANT2. http://www.geant2.net.

[33] Abilene Backbone Network. http://abilene.internet2.edu/.

[34] CA*net 4. http://www.canarie.ca/canet4/.

[35] GLIF: Global Lambda Integrated Facility. http://www.glif.is.

[36] F. Dijkstra and C. de Laat. Optical Exchanges. In First Workshop on Net-

works for Grid Applications (GridNets) - on CD-ROM, 2004.

[37] M. De Leenheer, F. Farahmand, P. Thysebaert, B. Volckaert, F. De Turck,

B. Dhoedt, P. Demeester, and J. Jue. Anycast routing in optical burst switched

grid networks. In Proceedings of the 31st European Conference on Optical

Communications (ECOC2005), pages 699–702, 2005.

[38] M.A. Ali, A. Hadjiantonis, H. Chamas, W. Bjorkman, and S. Elby. On the

Vision of Implementing a Truly Native Ethernet-Based Global Multi-Service

Architecture. In The 25th IEEE Conference on Computer Communications

(IEEE INFOCOM) - on CD-ROM, 2006.

2-24 CHAPTER 2

[39] A. Antony, J. Blom, C. de Laat, and J. Lee. Exploring practical limitations

of TCP over transatlantic networks. Future Generation Computer Systems,

Special issue: High-speed networks and services for data-intensive grids:

The DataTAG project, 21:489–499, 2005.

[40] E. He, J. Leigh, O. Yu, and T.A. DeFanti. Reliable Blast UDP : Predictable

High Performance Bulk Data Transfer. In The 4th IEEE International Con-

ference on Cluster Computing, pages 317–324, 2002.

[41] Y. Gu, X. Hong, M. Mazzucco, and R.L. Grossman. SABUL: A High Per-

formance Data Transfer Protocol. Journal of Grid Computing, 1:377–386,

2003.

[42] R. Wu and A. Chien. GTP: Group Transport Protocol for Lambda-Grids. In

The 4th IEEE/ACM International Symposium on Cluster Computing and the

Grid, pages 228–238, 2004.

[43] W. Allcock. GridFTP Protocol Specification. Global Grid Forum Recom-

mendation GFD.20, 2003.

[44] Overview of the Grid Security Infrastructure (GSI).

http://www.globus.org/security/overview.html.

[45] B.C. Neuman and T. Ts’o. Kerberos: An Authentication Service for Com-

puter Networks. 32:1994, 33-38.

[46] The TeraGrid project. http://www.teragrid.org/.

[47] U. Farooq, S. Majumdar, and E. Parsons. Dynamic Scheduling of Lightpaths

in Lambda Grids. In 2nd IEEE/Create-Net International Workshop on Net-

works for Grid Applications (GRIDNETS 2005), pages 1463–1472, 2005.

[48] D. Coudert and H. Rivano. Lightpath Assignment for Multifibers WDM Net-

works with Wavelength Translators. In Proceedings of IEEE Globecom’02,

volume 3, pages 2686–2690, 2002.

[49] N. Wauters and P. Demeester. Design of the Optical Path Layer in Multi-

wavelength Cross-Connected Networks. IEEE Journal on Selected Areas in

Communications, 14:881–892, 1996.

[50] D. Banerjee and B. Mukherjee. Wavelength-Routed Optical Networks:

Linear Formulation, Resource Budgeting Tradeoffs, and a Reconfiguration

Study. IEEE/ACM Transactions on Networking, 8:598–607, 2000.

[51] M. Tornatore, G. Maier, and A. Pattavina. WDM network optimization by ILP

based on source formulation. In Proceedings of IEEE Infocom’02, volume 3,

pages 1813–1821, 2002.

RESEARCH CONTEXT 2-25

[52] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein. Scheduling to minimize

Average Completion Time: Off-line and On-line Approximation Algorithms.

Mathematics of Operations Research, 22(3):513–544, 1997.

[53] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and P. Wong.

Theory and Practice in Parallel Job Scheduling, pages 1–34. Springer Verlag,

1997.

[54] J. Sgall. On-Line Scheduling - A Survey. Lecture Notes in Computer Science,

1442:196–231, 1998.

[55] R. Kolisch and R. Padman. An Integrated Survey of Project Schedul-

ing. OMEGA International Journal of Management Science, 29(3):249–272,

2001.

[56] N.P. Dhavale, S. Verma, and A. Bagchi. Scheduling Partially Ordered Jobs

Under Resource Constraints To Optimize Non-Regular Performance Mea-

sures. IIMA Working Papers 2003-07-03, Indian Institute of Management

Ahmedabad, Research and Publication Department, July 2003. available at

http://ideas.repec.org/p/iim/iimawp/2003-07-03.html.

[57] A. Mingozzi and V. Maniezzo. An Exact Algorithm for the Resource Con-

strained Project Scheduling Problem Based on a New Marthematical Formu-

lation. Management Science, 44:714–729, 1998.

[58] R.H. Möhring, A.S. Schulz, F. Stork, and M. Uetz. Solving Project

Scheduling Problems by Minimum Cut Computations. Management Science,

49:330–350, 2003.

[59] P. Brucker. Complex Scheduling Problems. Osnabrücker Schriften zur Math-

ematik, Reihe P, No. 214, 1999.

[60] K. Ranganathan and I. Foster. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1(1):53–

62, 2003.

[61] D.G. Cameron, R. Carvajal-Schiaffino, A.P. Millar, C. Nicholson,

K. Stockinger, and F. Zini. Evaluating Scheduling and Replica Optimisation

Strategies in OptorSim. In 4th International Workshop on Grid Computing

(Grid2003), pages 52–59, 2003.

[62] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. Enhanced Algo-

rithms for Multi-Site Scheduling. In 3rd International Workshop on Grid

Computing (Grid2002), pages 219–231, 2002.

2-26 CHAPTER 2

[63] A.I.D. Bucur and D.H.J. Epema. An Evaluation of Processor Co-Allocation

for Different System Configurations and Job Structures. In 14th IEEE Sym-

posium on Computer Architecture and High Performance Computing, pages

195–203, 2002.

[64] A.I.D. Bucur and D.H.J. Epema. The Influence of the Structure and Sizes of

Jobs on the Performance of Co-Allocation. In 6th Workshop on Job Schedul-

ing Strategies for Parallel Processing, pages 154–173, 2000.

[65] R. Buyya, M. Murshed, and D. Abramson. A Deadline and Budget Con-

strained Cost-Time Optimization Algorithm for Scheduling Task Farming Ap-

plications on Global Grids. In The 2002 International Conference on Paral-

lel and Distributed Processing Techniques and Applications (PDPTA’02) - on

CD-ROM, 2002.

[66] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, and P. Demeester. Net-

work Aspects of Grid Scheduling Algorithms. In 17th International Con-

ference on Parallel and Distributed Computing Systems (PDCS’04), pages

91–97, 2004.

[67] J.T. Hung, H.J. Kim, and T.G. Robertazzi. Scalable Scheduling in Parallel

Processors. In 36th Annual Conference on Information Sciences and Sys-

tems (CISS’02), 2002.

[68] D. Yu and T.G. Robertazzi. Divisible Load Scheduling for Grid Comput-

ing. In 16th International Conference on Parallel and Distributed Computing

Systems (PDCS’03), 2003.

[69] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A Realistic Net-

work/Application Model for Scheduling Divisible Loads on Large-Scale Plat-

forms. In 19th IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS’05), page 48b, 2005.

[70] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, and Francine Berman.

A Study of Deadline Scheduling for Client-Server Systems on the Computa-

tional Grid. In HPDC ’01: Proceedings of the 10th IEEE International Sym-

posium on High Performance Distributed Computing (HPDC-10’01), pages

406–415, 2001.

[71] A. Takefusa, O. Tatebe, S. Matsuoka, and Y. Morita. Performance Analysis

of Scheduling and Replication Algorithms on Grid Datafarm Architecture for

High-Energy Physics Applications. In Proceedings of the 12th IEEE Interna-

tional Symposium on High Performance Distributed Computing (HPDC-12),

pages 34–47, 2003.

RESEARCH CONTEXT 2-27

[72] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, Kenjiro Taura, and

Andrew A. Chien. The MicroGrid: a Scientific Tool for Modeling Computa-

tional Grids. In Proc. of Supercomputing ’00 - on CD-ROM, 2000.

[73] Xin Liu, Huaxia Xia, and Andrew Chien. Validating and Scaling the Micro-

Grid: A Scientific Instrument for Grid Dynamics. Journal of Grid Computing,

2:141–161, 2004.

[74] Arnaud Legrand, Loris Marchal, and Henri Casanova. Scheduling Dis-

tributed Applications: the SimGrid Simulation Framework. In CCGRID ’03:

Proceedings of the 3st International Symposium on Cluster Computing and

the Grid, pages 138–145, 2003.

[75] J. Lerouge and A. Legrand. MetaSimGrid : Towards realistic scheduling

simulation of distributed applications. ENS-LIP Research Report 2002-28,

2002.

[76] R. Buyya and M. Murshed. GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Comput-

ing. The Journal of Concurrency and Computation: Practice and Experience

(CCPE), 14:1175–1220, May 2002.

[77] Anthony Sulistio, Gokul Poduvaly, Rajkumar Buyya, and Chen-Khong

Tham. Constructing A Grid Simulation with Differentiated Network Ser-

vice Using GridSim. In Proc. of the 6th International Conference on Internet

Computing (ICOMP’05), pages 437–444, 2005.

[78] Hung-Ying Tyan and Chao-Ju Hou. JavaSim: A component-based composi-

tional network simulation environment. In Proceedings of Western Simula-

tion Multiconference - Communication Networks And Distributed Systems

Modeling And Simulation, 2001.

[79] John A. Miller, Andrew F. Seila, and Xuewei Xiang. The JSIM Web-Based

Simulation Environment. Future Generation Computer Systems (FGCS),

Special Issue on Web-Based Modeling and Simulation, 17:119–133, 2000.

[80] William H. Bell, David G. Cameron, Luigi Capozza, A. Paul Millar, Kurt

Stockinger, and Floriano Zini. Simulation of Dynamic Grid Replication

Strategies in OptorSim. In GRID ’02: Proceedings of the Third International

Workshop on Grid Computing, pages 46–57, 2002.

[81] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Caitriana

Nicholson, Kurt Stockinger, and Floriano Zini. Evaluating Scheduling and

Replica Optimisation Strategies in OptorSim. In 4th International Workshop

on Grid Computing (Grid2003), pages 52–59, 2003.

2-28 CHAPTER 2

[82] Java. http://java.sun.com/.

[83] The DataGrid Project. http://eu-datagrid.web.cern.ch/

eu-datagrid/.

[84] K. Ranganathan and I. Foster. Identifying Dynamic Replication Strategies for

a High Performance Data Grid. In Proc. of the International Grid Computing

Workshop, pages 75–86, 2001.

[85] K. Ranganathan and I. Foster. Decoupling Computation and Data Scheduling

in Distributed Data-Intensive Applications. In 11th Int. Symposium of High

Performance Distributed Computing (HPDC), pages 352–358, 2002.

[86] Parsec : Parallel Simulation Environment for Complex Systems. http:

//pcl.cs.ucla.edu/projects/parsec.

[87] The Network Simulator - NS2. http://www.isi.edu/nsnam/ns.

3
NSGrid Grid Simulation Environment

3.1 NSGrid Rationale

As stated in section 2.7, simulation tools are a vital aid in assessing the quality

of Grid scheduling and resource allocation policies, as the size of Grids (i.e. the

number of resources, jobs and users involved) makes it very hard to build, operate

and monitor Grid test beds on a realistic scale. In that same section, an overview

was given of some well-known Grid simulation tools.

During the course of our research, significant effort was put into the devel-

opment of a Grid simulation environment, combining the best properties of these

existing simulation tools, and improving upon these solutions where appropriate.

The resulting simulation environment, called NSGrid [1], offers the following ma-

jor features:

• detailed Grid resource models, in particular models for computational re-

sources, storage resources, data repositories and network elements

• generic and flexible Grid application model

• detailed Grid middleware models: software components and their interac-

tion

• possibility of accurate packet-level simulation

• easy Grid simulation through high-level scripting language

3-2 CHAPTER 3

• multiple scheduling and resource allocation algorithms built-in; new algo-

rithms can easily be plugged in.

In this chapter, we give an overview of NSGrid’s architecture, the simulation

models it supports and its mode of operation. In the next chapter we showcase

the use of NSGrid in two different application domains: the influence of network-

awareness in Grid scheduling, and the partitioning of resources over different VOs

or service classes.

3.2 NSGrid Architecture

The NSGrid simulation environment1 is built around (and inherits its name from)

ns-2 [2], the widespread network simulator. While not being the most scalable

and efficient simulation kernel (in contrast to e.g. DaSSF [3, 4], ns-2 is a se-

quential simulation kernel) and being rather monolithic (as opposed to e.g. the

OMNeT++ [5, 6] modular simulation environment), we chose ns-2 because it cur-

rently offers the most extensive range of network resource and transport protocol

models of all publicly available (network) simulation environments today. The

availability of this extensive array of models is partly due to ns-2 being widely

accepted in an active research community and the exchange of such models within

this community.

The relationship between ns-2 and NSGrid can be summarized as follows. Ns-

node
network link

XML

XML

node

network link

Grid portal

Grid portal

information

service

information

service
computational

resource

scheduler

connection

manager

storage

resource

data

resource
data

resourcescheduler

storage

resource
computational

resource

Data

Data

Figure 3.1: NSGrid layered architecture and relationship to ns-2

1NSGrid has been co-developed with Bruno Volckaert. His PhD thesis, titled “Architecturen en

algoritmen voor netwerk- en dienstbewust Grid-resourcebeheer” contains a more detailed chapter on

NSGrid’s internals as well as its application in studying scheduling and VPG partitioning algorithms

in Service Grids

NSGRID GRID SIMULATION ENVIRONMENT 3-3

2 is a discrete-event simulator and comes in a layered design. More accurately,

two layers can be distinguished. On the one hand, we have the resource layer.

In this layer, resource (in ns-2 these are mostly network related elements such as

links, nodes and queues) behavioral models are implemented in C++, resulting

in fast, compiled code. On the other hand, we have the simulation layer. In this

layer, simulations are conceived as Tcl scripts. Resources for which models exist

in the resource layer are exported to this simulation layer in which they can then

be manipulated and configured. Special Tcl-C++ glue code is present to allow

arguments and parameters, specified in a Tcl simulation driver script, to be parsed

by the resource layer. Conversely, glue code also allows the resource models to

return data to the driver script and to manipulate simulation layer objects, such as

the simulation environment itself or the events that drive it.

Orthogonal to the resource/simulation layers, is the ns-2/NSGrid layering shown

in figure 3.1. NSGrid adds models for common physical Grid resources such

as computational resources, storage resources or read-only data repositories and

replicas. These Grid resources, of course, do not float around freely. Instead, each

Grid resource is located at a Grid site, and resources within a single site as well as

the set of Grid sites are connected through a network. When modeling a Grid using

NSGrid, this interconnecting network is created using ns-2 network objects such

as nodes and links. Each NSGrid object (i.e. Grid resource) can then be attached

to one of these nodes. The implied semantics of such an association are that all

traffic destined for the NSGrid object involved (be it middleware control traffic or

application data) is routed (in the network) to the underlying corresponding node.

Data generated and sent out by a Grid resource is treated by ns-2 as if that traffic

originates at the node to which the resource is attached. The ultimate result is that

the simulation of the Grid network links, packet queues in routers and transport

protocols can be performed completely by ns-2 and does not need additional code.

This ns-2/NSGrid layering also allows for an adjustable level of detail when

modeling the Grid’s interconnecting network. Using the lowest possible level of

detail, one can also model each Grid site’s internal network (e.g. a switched Eth-

ernet structure - see figure 3.2). On the other hand, it is possible to hide each Grid

site’s internal networking details (see figure 3.3) by only creating an ns-2 node for

each site’s gateway, and attaching all relevant Grid resources in this site to that

same gateway.

3.3 NSGrid Models

3.3.1 Grid Model

It has already been explained in section 3.2 and shown in figures 3.2 and 3.3 that,

in NSGrid, Grids are modeled as collections of interconnected and geographically

3-4 CHAPTER 3

Ethernet

Ethernet

Ethernet

Grid Site

Client

Data Replica

ResourceComputational
Resource

Client Client

Client
Computational

Resource

Computational
Resource

Computational
Resource

Gateway

Storage

Resource
Storage

Resource

Grid
Portal Information

Service

Scheduler

VPN

Manager

Figure 3.2: NSGrid Detailed Grid Site view with Switched Ethernet Interconnec-

tion Network

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site WAN

Figure 3.3: NSGrid High-Level Grid View - Grid Site internals hidden

dispersed Grid sites. Each Grid site can contain multiple resources of different

types, as well as the necessary Grid middleware components to manage them.

The main types of resources are computational resources, storage resources,

data repositories but also the network connecting the other resources. Resource

managers (able to broker resource allocations with guaranteed QoS levels) are an

important example of Grid middleware components present in NSGrid, as are job

schedulers and information services. Job schedulers obtain a (partial) overview of

the available resources’ state, and allocate suitable resources to incoming jobs by

NSGRID GRID SIMULATION ENVIRONMENT 3-5

contacting the responsible resource managers. Jobs are submitted by clients to a

scheduler using a Grid portal.

While the components representing computational and storage resources in

NSGrid also implement the required resource management functionality, a ded-

icated connection manager is present to perform the analogous functions for a

collection of network resources (as, for instance, a network path with bandwidth

and delay guarantees will usually encompass multiple successive links and inter-

mediate routers that must be allocated in advance).

3.3.2 Network Model

It has been mentioned before that the network connecting the various Grid sites

and resources consists of a collection of ns-2 network elements (nodes and links).

In order for these network to be treated as first-class resources by a scheduler,

properties, a connection manager was added to NSGrid (see figure 3.4). Such

a connection manager is responsible for a network segment, and is able to pro-

vide end-to-end bandwidth pipes to jobs when requested by a scheduler. While

this bandwidth management does not translate to an existing concept in the ns-2

layer, new bandwidth allocations will fail (in the NSGrid layer) when a link on the

proposed end-to-end path does not offer enough residual capacity. This way, the

NSGrid layer view on the network’s status is correct if the connection manager is

informed of the actual capacity on each ns-2 link it manages.

The NSGrid connection manager also supports capacitated VPNs (see fig-

ure 3.5). In this mode of operation, end-to-end bandwidth pipes between Grid site

pairs are set up. If jobs belong to different service classes (characterized by typical

job requirements such as processing requirements, computation to communication

ratios and priority), these bandwidth pipes can be reserved for a specific service

class. Jobs can then only allocate bandwidth within the pipes destined for the

service class they belong to. Network link capacity not allocated to a specific ser-

vice type can be used by jobs from other service types in a first-come, first-served

(FCFS) fashion. This mechanism is similar to the reservation of computational

and/or storage resource capacity for certain service classes.

3.3.3 Computational Resource Model

The main type of computational resource supported by NSGrid is that of a time-

shared processing entity, possibly featuring multiple processors. By this time-

shared nature, we mean that each job can be assigned a slice (as stated in sec-

tion 3.3.1, the management functionality necessary for the correct allocation of

these slices has been incorporated in our NSGrid implementation of the time-

shared computational resource) of the computational resource’s processing power;

such a slice does not change in size over its allocation lifetime.

3-6 CHAPTER 3

computational

resources

computational

resources

data

resource

Grid Portal

Information

Service

storage

resource
data

resource

computational

resources

Grid Portal

MAN/WAN

network
storage

resource

Grid

Scheduler

Connection

Manager

Figure 3.4: NSGrid Network Resource Management: Connection Manager Role

30%: Service Type j Bandwidth Pipe

60%: Service Type i Bandwidth Pipe

Total Network Link Capacity

Connection for ST i Job

10%: Connection for ST k Job

Figure 3.5: NSGrid Connection Manager: Capacitated VPN mode of operation for

Service Types i and j

The main properties attributed to a NSGrid computational resource are its num-

ber of processors and their processing power (relative to the processing power of a

reference processor), the maximal slice of processing power allocatable to a single

job, the available memory and temporary disk space, the software environment in-

stalled on the resource and an optional cost associated with the use of this resource.

This approach allows to model both multiprocessors and clusters in NSGrid,

although the latter case requires that the different cluster nodes are connected

through a high-performance network (i.e. chances that this interconnecting net-

work becomes an operational bottleneck are negligible) for the model to be ac-

NSGRID GRID SIMULATION ENVIRONMENT 3-7

curate. If this assumption is invalidated and the cluster intra-network cannot be

assumed to be sufficiently performant, it is still possible to instantiate a single

computational resource in NSGrid per cluster node and to explicitly model the

interconnecting network.

To avoid inconsistent data to be retrieved by a Grid scheduler, a situation which

can occur in scenarios where multiple schedulers operate simultaneously using a

set of shared resources, resource reservations and allocations requested by a sched-

uler are always treated as atomic “test-and-allocate” operations: a scheduler’s re-

quest to check a resource’s availability either fails or results in an allocation.

Once resource allocations for a job have been made, the NSGrid computational

resource’s logic is responsible for the generation of suitable events to retrieve input

data and store output data.

3.3.4 Storage Resource Model

In NSGrid, storage resources provide read/write disk space to jobs generating large

amounts of output data. Data can remain stored until it is retrieved by the user,

or until it is read by a successive job. The main model parameters describing a

storage resource in NSGrid are its available storage space (possibly as a function

of the class of jobs for which an allocation is requested) and the cost associated

with allocating storage space.

As in the case of computational resources, storage allocations requested by

a scheduler are treated as atomic “test-and-allocate” operations. In an opera-

tional Grid, storage allocations on a dedicated storage device are typically referred

to using logical file names, which act like human readable file set descriptors.

These files can then be retrieved using specialized bulk transfer protocols such as

GridFTP [7] or remote file access schemes such as RFIO, developed for CERN’s

Advanced Storage Manager (CASTOR [8]).

The NSGrid storage resource does not offer computational capabilities; never-

theless, nothing prevents such a storage resource from being attached to the same

ns-2 node as another Grid resource (e.g. a computational resource).

3.3.5 Data Replica Resource Model

Data replica resources provide read-only input data sets to jobs. As the name

suggests, these data sets may be replicated over several such resources. Therefore,

the major property of these resources in NSGrid is the set of data sets currently

replicated at that resource. NSGrid data replica resources keep track of data access

requests; optionally, this access log can be used by a replica manager to delete a

data set from a replica or to create a new copy of a popular data set.

As with storage resources, nothing prevents a data replica resource from being

co-located on the same ns-2 node as another Grid resource.

3-8 CHAPTER 3

3.3.6 Resource Dynamics

Due to the large number of resources comprising a Grid, it is unrealistic to assume

that each resource will be available at all times. Indeed, since resources are not

managed in a centralized fashion, they may leave and join the Grid at unpredictable

moments in time. The NSGrid Grid resource models (computational, storage, data

replica, network) implement features that allow them to mimic periodic unavail-

ability (due to leaving the Grid as well as due to resource failure). Currently, the

NSGrid dynamic resource model is implemented using two stochastic parameters

- MTTF (Mean Time To Fail) and MTTR (Mean Time To Repair) - and a calendar

function used to model scheduled resource maintenance and down periods.

In addition, NSGrid is able to model job checkpointing, a mechanism allowing

to resume killed jobs (e.g. due to failing resources which were allocated to that

job) on a possibly different set of resources, where job state is restored from the

last saved snapshot of the job’s state (the checkpoint).

3.3.7 Middleware

The NSGrid simulation environment not only implements Grid resource models,

but also provides a set of Grid middleware (software) component models. The NS-

Grid middleware components mainly implement resource management, monitor-

ing and allocation functions. For computational and storage resources, allocation

is performed by these resources themselves, while for network resources, alloca-

tions are made through the connection manager. Resource status information is

gathered in a distributed set of information service components.

When attempting to schedule a job, each scheduler first retrieves status infor-

mation for a suitable set of resources. Because multiple information services can

be operational and return information on the same resources, each scheduler filters

down the retrieved info and keeps the most recent/most plausible resource state

information.

The NSGrid scheduler component is highly configurable. It can operate both

in immediate mode (scheduling decisions for each job are made as soon as that job

arrives) and in batch mode (scheduling decisions are made at regular time inter-

vals for all jobs yet unscheduled). Several resource selection algorithms have been

implemented in the NSGrid scheduler component. Most of these are list-based al-

gorithms, meaning that the jobs in the ordered set of currently unscheduled jobs are

scheduled one at a time until each job in this set has been processed. Job ordering

can be based on the jobs’ priority, service class and resource requirements; ab-

sence of ordering before starting a new scheduling operation means that incoming

jobs are scheduled using a first-come, first-served (FCFS) approach. The resource

selection algorithms themselves can mainly be classified based on their ability to

treat network elements as first class resources (as opposed to allowing for uncer-

NSGRID GRID SIMULATION ENVIRONMENT 3-9

tainty regarding available network bandwidth between resources), their treatment

of jobs belonging to different service classes and their resource locality preference.

Users submitting Grid jobs are modeled in NSGrid using client components.

Clients are configured to submit jobs drawing parameters (see section 3.3.8 for a

list of relevant parameters) from a predetermined range using stochastic variables.

Each Grid site’s portal component receives jobs from all local users and conveys

them to the appropriate scheduling component.

Communication between NSGrid middleware components (i.e. job submis-

sion, resource state retrieval, resource allocation requests etc.) uses an RPC model,

in which messages are encapsulated in XML structures. This XML-based ap-

proach allows to model OGSA [9] compliant Grid services (defined using the Web

Services Resource Framework) in NSGrid. In addition to Grid middleware traf-

fic, resource configuration and job description also follow an XML structured ap-

proach in NSGrid.

A detailed analysis of the NSGrid middleware component models, the XML

RPC messages used and message sequence diagrams depicting the components’

communication can be found in Bruno Volckaert’s PhD thesis [10].

3.3.8 Application Model

In this work, we reserve the term job to identify atomic units of work. Thus, these

jobs cannot subdivided any further, nor can they be distributed across multiple

computational resources. Jobs can be constrained by precedence relations, but

do not depend on (and thus, do not communicate directly with) other jobs during

their execution. In this view, an application is then a collection of such jobs and the

precedence relations existing between them. As long as no precedence relations

are violated, jobs can be scheduled independently from each other.

Each job j has a length lj , which is a measure of that job’s running time on

a reference computational resource, in absence of other workload on that element

and in absence of bottlenecks created by other resources. Other important require-

ments a job can put on the computational resource selection process are the amount

of available memory, the operating system and the installed software environment.

Another class of job parameters describes its input and output data sets. Jobs

can process multiple input data sets and can generate multiple output data sets.

These data sets are read and written in a number of equally sized chunks. The

number of chunks into which input data set k for job j is divided is called ni
jk;

similarly, the number of chunks into which output data set k for job j is divided is

called no
jk. We assume these input and output transfers occur in parallel with the

execution of an instruction block. When the necessary input data is not available at

the start of the next computational block, the job’s progress comes to a temporary

halt, only resuming when the data has finally arrived.

3-10 CHAPTER 3

This provides a generic job model supporting both data streaming and pre-

staging. If for some data set k ni
jk is big (or infinite), this data set is almost

continuously streamed to the job during its lifetime. On the other hand, if ni
jk

equals 1 for this data set, the entire data set is pre-staged to the computational

resource executing the job before it is started.

The job model clearly reflects the resource allocation interdependence typical

for Grid jobs: if an input data chunk is delivered late, the job’s processing is sus-

pended until the data chunk has been received. The occurrence of such processing

stalls indicates that computational resource allocation (the time share allocated to

that job) and Network Element allocation (bandwidth allocated to the delivery of

the offending data set) are not in ideal correspondence.

A sample visual interpretation of this job model is presented in figure 3.6. In

this example, job j, executed on the reference computational resource, needs 1

input data set and produces 1 output data set; ni
j1 is 3 while no

j1 is 2. Suspension

of the job’s computational progress is illustrated in case the last input data chunk

is delivered late.

t

concurrent

tasks

input 1

processing

input 2

processing

output 2

processing

input 3

output 1

i

j

j

n

l

1

o

j

j

blocked
n

l
time

1

+

blockedtime

blockedj timel +

Figure 3.6: Blocking Job Model: Sequential Data Access

Note that, in absence of computational stalls, the exact run time for a job can

be predicted given the capacity of the computational resource it is running on, the

CPU share it receives throughout its lifetime, the bandwidth allocated between the

computational resource and the involved storage resources and data repositories

and the burstiness with which these data sets are read and written by the job. This

case is presented in figures 3.7 and 3.8, showing both the data streaming and data

staging .

Additional job properties of interest supported by NSGrid include job prior-

ity and/or service class. These properties enable schedulers to give prioritized

treatment to certain classes of jobs, and to reserve resources for jobs belonging to

different service classes or launched from within different VOs.

NSGRID GRID SIMULATION ENVIRONMENT 3-11

t

concurrent

tasks

input 1

processing

input 2

processing

output 2

processing

input 3

output 1

i

j

j

n

l

1

o

j

j

n

l

1

jl

Figure 3.7: Non-Blocking Job Model: Sequential Data Access

t

concurrent

tasks

input processing output

jl

Figure 3.8: Non-Blocking Job Model: Pre-Staged Data

3.4 NSGrid: Mode of Operation

Simulating a Grid scenario using NSGrid roughly consists of the following steps,

which also determine the overall structure of a typical Tcl Grid simulation driver

script. First, the Grid site interconnection network is constructed using ns-2 node

and link objects. Next, NSGrid Grid resources are instantiated (and their configu-

ration is parsed from XML) and associated with the appropriate ns-2 nodes.

After resources have been instantiated, Grid middleware components are con-

structed and configured - at least one scheduler and one information service are re-

quired. NSGrid resources then register themselves with the information service(s).

In a last step, clients are instantiated and configured and start submitting jobs

to the schedulers. During the simulation, each scheduler logs all of the resource

allocations made. From these logs, it is possible to extract job response times and

resource utilization.

3-12 CHAPTER 3

3.5 Conclusions

In this chapter we have presented NSGrid, a Grid simulator built on top of the

widely-used ns-2 network simulator. The need for a Grid simulation tool as well

as the motivation to use ns-2 as a starting point have been covered extensively. We

have detailed NSGrid’s layered architecture as well as the different time-shared

Grid resource (computational, storage, data replica and network resources) simu-

lation models supported.

An overview of the different Grid job models supported by NSGrid was given,

as well as their relationship to the different resource allocations made by a sched-

uler.

These schedulers are only one of the important Grid middleware components

that have a corresponding NSGrid implementation: schedulers, connection man-

agers, service managers, service monitors, information services and replication

managers all have NSGrid implementations.

We have shown how NSGrid interacts with the underlying ns-2 simulator, and

in a final section we detailed how a typical Grid simulation scenario is constructed

and executed using NSGrid.

NSGRID GRID SIMULATION ENVIRONMENT 3-13

References

[1] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, and P. Demeester. Eval-

uation of grid scheduling strategies through NSGrid: a network-aware grid

simulator. published in Neural, Parallel & Scientific Computations, Special

Issue on Grid Computing, 12:353–378, 2004.

[2] The Network Simulator - NS2. http://www.isi.edu/nsnam/ns.

[3] J. Liu, D.M. Nicol, B.J. Premore, and A.L.Poplawski. Performance Predic-

tion of a Parallel Simulator. In Proc. of the Parallel and Distributed Simula-

tion Conference (PADS’99), pages 156–164, 1999.

[4] Jason Liu, L. Felipe Perrone, David M. Nicol, Michael Liljenstam, Chip El-

liott, and David Pearson. Simulation Modeling of Large-Scale Ad-hoc Sensor

Networks. In European Simulation Interoperability Workshop, 2001.

[5] A. Varga. OMNeT++. IEEE Network Interactive (online), 16(4), 2002.

[6] Andras Varga. The OMNeT++ Discrete Event Simulation System. In Pro-

ceedings of the European Simulation Multiconference (ESM’2001), 2001.

[7] W. Allcock. GridFTP Protocol Specification. Global Grid Forum Recom-

mendation GFD.20, 2003.

[8] O. Bärring, B. Couturier, J.D. Durand, E. Knezo, and S. Ponce. Storage

Resource Sharing with CASTOR. In Proceedings of the 12th NASA God-

dard, 21st IEEE Conference on Mass Storage Systems and Technologies

(MSST2004), pages 345–360, 2004.

[9] I. Foster and al. The Open Grid Services Architecture, Version 1.0. draft-

ggf-OGSA-spec-019 http://forge.gridforum.org/projects/

ogsa-wg.

[10] B. Volckaert. Architecturen en algoritmen voor netwerk- en dienstbewust

Grid-resourcebeheer. PhD thesis, Universiteit Gent - Faculteit Ingenieur-

swetenschappen, 2006.

4
Simulating Grid Scheduling

Algorithms using NSGrid

4.1 Introduction

Chapter 3 has introduced our network aware Grid simulation environment called

NSGrid. In this chapter, we will demonstrate the use of NSGrid in two particular

cases. In the first case, we show how network aware scheduling algorithms offer

an improvement over their non-network aware counterparts by means of simulat-

ing these algorithms on a Grid and comparing job response times in the resulting

schedules. In the second case, we simulate the scheduling of workload on different

subgrids of a partitioned Grid and use the results to evaluate the effectiveness of

various Grid partitioning strategies.

4.2 NSGrid Application: Network Aware Schedul-

ing

In sections 3.3.2, 3.3.7 and 3.3.8, we have mentioned the various network re-

source models supported by NSGrid, the different ways these network resources

are treated by the algorithms implemented in the scheduler components and the

data transfer modes supported by the NSGrid jobs.

In this section, we show how NSGrid has been used to establish the benefits

of treating network elements as first-class resources. We consider the two data

4-2 CHAPTER 4

transfer modes (pre-staged data and streamed data) described in section 3.3.8 as

well as the different network resource allocation schemes detailed in section 3.3.2.

In particular, we focus on the average job response time obtained by scheduling

a set of jobs on a fixed Grid. We compare the results obtained for different schedul-

ing algorithms, and evaluate the set of studied scenarios for varying network link

capacities.

A more thorough description of the scheduling algorithms used in these sim-

ulations, as well as comparisons using metrics differing from the average job re-

sponse time and results concerning the use of capacitated VPNs can be found

in [1, 2] and appendix B.

4.2.1 Grid Interconnection Topology

The results presented here in section 4.2 are obtained using a fixed Grid topology

for all simulations. First, a Wide-Area Network (WAN) topology (each core router

has an average out-degree of 3) has been instantiated using the GridG tool [3, 4].

Along the edges of this WAN topology, 12 Grid sites are instantiated. Each Grid

site contains its own computational and storage resources as well as a data replica

resource, connected in a LAN. This LAN is modeled as a 1Gbps Ethernet network.

Furthermore, we have homogenized the capacities of each WAN link, which

we then treated as a parameter in our simulations. Each site has its own information

service (storing resource properties and status) and local Grid portal through which

users can submit jobs. In our setup, the Gigabit intra-site LAN provides enough

capacity to ensure that no connectivity problems or bottlenecks can arise in this

part of the network.

4.2.2 Grid Resource Dimensions

4.2.2.1 Computational Resources

A single computational resource has been assigned to each Grid site. To reflect

the use of different tiers in existing operational Grids [5], not all computational

resources are equivalent: the least powerful resource has two processors (which

operate at the reference speed). A second class of computational resources has

four processors, and each processor operates at twice the reference speed. The

third - and last - computational resource type contains 6 processors, each of which

operates at three times the reference speed.

Conversely, the least powerful type of computational resource is three times

as common as the most powerful one, and twice as common as the middle one.

It is assumed that all processors can be time-shared between different jobs. As

jobs cannot be subdivided and distributed over multiple processors, the maximal

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-3

amount of computing power that can be allocated to a single job is determined by

the capacity of the processor assigned to it.

4.2.2.2 Storage Resources

For the simulations performed, we have focused on determining the influence of

the use of network resource status on the schedule calculation; therefore, we have

assumed that storage resources offer unlimited disk space that can be read and

written at sufficiently high speed (i.e. higher than the needed data transfer band-

widths). Each site has at its disposal exactly one such storage resource.

4.2.2.3 Data Replica Resources

Each site’s data replica resource contains 6 out of 12 possible data sets. These

data sets are distributed in such a way that 50% of the jobs submitted to a site can

have local access to its needed data set. For each job, the data set it needs is drawn

randomly from all data sets available to that job’s service class using a uniform

distribution.

4.2.3 Grid Jobs

We have used two different classes of job in our simulations; one is more data-

intensive (i.e. higher data sizes involved), while the other is more CPU-intensive.

At each Grid site, two clients have been instantiated, one for each job type. Each

client submits mutually independent jobs to its Grid portal. All jobs need a single

data replica resource (they process a single input data set) and a single storage re-

source. While the average interarrival time for jobs in each class follows the same

distribution, it is assumed that the maximal data sizes and maximal reference run

times differ up to a factor of 100 and 3, respectively. Obviously, the data-intensive

jobs process the larger data set and the CPU-intensive jobs have the longer refer-

ence run time. Both job types make up 50% of the total job load submitted to the

simulated Grid.

The simulations were performed using a batch scheduling approach, with a

fixed time interval between consecutive scheduling rounds. The size of this in-

terval was correlated to the jobs’ average interarrival time in such a way that the

scheduler on average finds 10 jobs in the scheduling queue at the start of each

scheduling round. During the simulations, running jobs could not be pre-empted,

checkpointed or moved onto a different set of resources.

4-4 CHAPTER 4

4.2.4 Scheduling Algorithms

4.2.4.1 Non-Network Aware

When using a non-network aware scheduling algorithm, the Grid scheduler com-

putes Grid job schedules based on the status of the computational, storage and data

replica resources (as provided by the information services) only. Algorithms that

use this kind of approach will not take into account information concerning the

status of resource interconnections. The decision of which resources to use for a

job will be based on the information acquired from the different information ser-

vices (i.e. job execution speed and end time will be calculated based on the status

of the available computational, storage and data replica resources).

It is precisely because non-network aware algorithms can only assume that

residual bandwidth on network links is sufficient, that jobs can block on I/O op-

erations: their computational progress is no longer determined solely by the com-

putational resource’s processor share that has been allocated to it (which, together

with the job’s length and the computational resource’s relative speed determines its

earliest end time if all input and output transfers complete on time, that is, before

the start of the appropriate instruction block), but also by the limited bandwidth

available to its input and output streams. Note that the fact that network infor-

mation is discarded during the scheduling implies that no connection reservations

(providing guaranteed available bandwidths) with a connection manager are made

- these would allow to accurately predict the job’s running time. We have used a

non-network aware scheduling algorithm as a naive heuristic to compare a set of

improved (network aware) algorithms to in our simulations. In our comparisons,

we refer to this non-network aware algorithm as NoNetwork.

4.2.4.2 Network Aware

Network aware scheduling algorithms will not only contact the information ser-

vices to query computational, storage and data replica resource status and avail-

ability (for those resources adhering to the job’s requirements), but will also query

a connection manager for information about the status of the network links inter-

connecting these resources. The connection manager will inform the grid sched-

uler about connections that can be set up between computational/data replica re-

source pairs (necessary for job input retrieval) and computational/storage resource

pairs (needed for job output storing). Based on the answers from the information

services and connection manager, the network aware scheduling algorithm is able

to calculate job execution speed and end time more accurately, taking into account

the speed at which input/output can be delivered to each available computational

resource. For jobs with 1 input stream and 1 output stream, the best computa-

tional/storage/data replica resource triplet is the one that minimizes the expected

completion time of the job. The network aware scheduling algorithms schedule ar-

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-5

riving jobs using a greedy strategy, minimizing the completion time for individual

jobs as they are scheduled. This completion time is determined by the available

processing power to that job on the computational resource (and its relative speed),

the job’s length, the job’s total input and output data size and the network band-

width that can be allocated between the involved data replica, storage and compu-

tational resources. Because network resource availability and resource allocation

interdependence is taken into account, the use of a network aware scheduling al-

gorithm allows the scheduler to calculate an accurate figure of each job’s response

time and to make matched allocations with each of the resources involved.

4.2.4.3 Network Aware Scheduling: Resource Locality Preference

The algorithm mentioned in the previous section only uses individual job response

times as an optimization criterion. An extended algorithm has also been imple-

mented, in an attempt to incorporate a notion of resource cost into the scheduling

process.

From an economic point of view, it makes sense to only use remote (computa-

tional) resources for a job, if no computational resource close or local to the job’s

submission site is available. A network aware scheduling algorithm, preferring to

select local resources if possible, has been implemented in NSGrid and is called

PreferLocal. The network aware algorithm which only optimizes each job’s re-

sponse time, regardless of the location of the selected resources in doing so, is

hereafter simply referred to as Network.

4.2.5 Performance Metric: Response Time

We define the response time of a job as the difference between its end time and

the time it is submitted to the scheduler. This response time mainly consists of the

time spent in the scheduler’s queue and the time needed for the actual execution of

the job. The execution time includes the time spent transferring input and output

data from and to the computational resource allocated to the job. In case network

resources are treated on the same level as computational resources, advance band-

width allocations can be made (e.g. by the network aware scheduling algorithm),

which allow for the deterministic calculation of the job’s exact response time.

4.2.6 Comparison for streamed data transfer

In figure 4.1 we present this average job response time for the three algorithms

we discussed earlier. In this particular simulation, simultaneous execution and

data transfer were allowed; data connections were set up on a FCFS basis with-

out upfront per service class VPN dimensioning. Clearly, for low bandwidths,

not taking into account network status (when computing the schedule) incurs a

4-6 CHAPTER 4

severe penalty; when bandwidth grows, the importance of this network informa-

tion decreases (when the job load is constant) as the network no longer creates a

bottleneck. In fact, for high bandwidths, it is possible for the non-network aware

algorithm to perform slightly better; this is due to the conservative nature of the re-

source allocation policy used by our network aware algorithms. For instance, they

assume that the maximum data transfer rate is only 95% of the available bandwidth

(i.e. 5% protocol overhead) and adjust their allocations and decisions accordingly.

In our simulations, no improvement is obtained from preferring local resources.

Intuitively, we expected this latter strategy to create better schedules for data-

intensive jobs (as intra-site network links have high capacities). However, this

possible improvement is neutralized by the asymmetry of the computational re-

sources: jobs submitted at a site containing a slower computational resource, are

less likely to be executed on a faster one (which is of course the case if the best

resource collection is selected for a job) in such a scenario.

 0

 500

 1000

 1500

 2000

 2500

 3000

155100502510521

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

WAN Link Capacity (Mbps)

NoNetwork
Network

PreferLocal

Figure 4.1: Response Time Comparison: Streamed Data

4.2.7 Comparison for pre-staged data

In figure 4.2, we have replotted the average job response time for the same job

load; in this case however, jobs were not able to start executing while still down-

loading data (i.e. pre-staging of the entire input to the execution site was required).

As the execution/transfer parallelism is lost, average response times for network

aware algorithms increase. However, this loss of parallelism does not influence

the relative behavior of the different algorithms (network aware or not) discussed

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-7

before. In a pre-staged scenario, network and computational resource allocations

are independent. Therefore, bandwidth allocations don’t need to match computa-

tional resource allocations - in contrast to a data streaming scenario, where these

allocations must be matched to avoid blocking due to resource bottlenecks. In turn,

this allows for a speedy data transfer prior to the start of the job processing and

avoids the need for interdependent computational resource and network allocations

of fixed size.

As a result, the network unaware algorithm produces better response times

when pre-staging data when compared to the same algorithm scheduling the same

job load using a streaming data model.

In addition, for sufficiently high bandwidths, the non-network aware schedul-

ing algorithm performs slightly better than the network aware algorithm. This

effect can be attributed to our assumption on bandwidth allocation and protocol

overheads (see section 4.2.6), and it can be concluded that these assumptions are

rather conservative.

The non-network aware algorithm performs a lot better for low bandwidths

when using pre-staged data (when compared to the use of streaming data), which

seems counterintuitive at first. We believe, however, that this is mainly caused by

two NSGrid implementation choices. First of all, data transfer start times for all

data blocks are calculated as the latest possible start times that allow the data to

arrive in time. If these start times are based solely on the size of the computational

resource slice allocated to a job (without matching this slice with the available

network bandwidth), the time needed to transfer data will be underestimated and

the possible execution/data transfer parallelism due to the use of a streaming data

model will be lost to a great extent due to blocking. Furthermore, when using

the streaming data model, the NSGrid scheduler co-allocates network and com-

putational resources. This means that the computational resource is also allocated

while the job is blocking due to limited network bandwidth, a phenomenon that

does not occur when using the pre-staged data model. In turn, this means that

scheduling (in a non-network aware fashion) a data-intensive job to use a remote

data repository using the streaming data model will significantly reduce the Grid’s

available computing power when compared to the same job being scheduled in the

pre-staged data setting.

4.3 NSGrid Application: VPG Resource Partition-

ing

In section 4.2 we demonstrated, using a sample Grid simulation scenario, the ef-

fectiveness of network resource allocation strategies (and, in particular, the added

value of manageable network resources in a Grid setup) by means of NSGrid. In

4-8 CHAPTER 4

 0

 500

 1000

 1500

 2000

 2500

155100502510521

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

WAN Link Capacity (Mbps)

NoNetwork
Network

PreferLocal

Figure 4.2: Response Time Comparison: Pre-Staged Data

addition, we showed results regarding the influence of pre-allocated network band-

width to different job service classes.

In this section, we extend this approach to the entire range of Grid resources:

we pursue and investigate the partitioning of a set of Grid resources (of various

types) to certain job service classes, with the goal to reserve the use of the re-

sources inside a particular element of such a partition exclusively to jobs of the

intended service class. The net result is a collection of so-called Virtual Private

Grids. We study several algorithmic approaches to calculating suitable resource

partitioning schemes and compare their complexity. The partitioning also affects

scheduling decisions, as schedulers need only to investigate a smaller search space

when resources have been partitioned. Therefore, we investigate scheduling per-

formance of several algorithms introduced in section 4.2.4 on a partitioned Grid.

The VPG partitioning algorithms described here, as well as the service man-

agement architecture (responsible for the partitioning) implemented in NSGrid

have been detailed in [6] as well as in Bruno Volckaert’s PhD thesis (see sec-

tion 1.3), and we refer the reader to that paper for extended simulation results and

detailed comparisons of the algorithms mentioned in this section.

4.3.1 VPG Partitioning

As more and more application types are ported to Grid environments, an evolution

is noticed from purely computational and/or data Grid offerings to full-scale ser-

vice Grids [7] (e.g. the EGEE Enabling Grids for E-Science in Europe project [8]).

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-9

Such a service Grid is actually a Grid infrastructure capable of supporting a multi-

tude of application types with varying QoS levels and resource requirements, and

the term should not be mistaken to simply mean a web services enabled Grid -

although architectural standards for service Grids are provided by the Global Grid

Forum’s Open Grid Service Architecture (OGSA) [9] and (to a lesser extent) the

Web Service Resource Framework [10], building on concepts of both Grid and

Web Service communities.

In such a service Grid, user-submitted Grid jobs that exhibit similar resource

requirements (such as processing requirements, I/O data requirements and prior-

ity) can be classified according to these resource requirements and tagged with

a service class. By correctly identifying service classes (based upon monitoring),

Grid resources (computational, storage, data replica and network resources) can be

partitioned into subsets, each subset being allocated exclusively to jobs belonging

to a single service class. The end results is that for each service class a Virtual Pri-

vate Grid (VPG) is established. The partitioning of a Grid into these VPGs is thus

a case of making well-informed advance resource reservations. The use of VPGs

offers a series of benefits: once partitioned, VPGs can be managed individually

and independently, improving resource management scalability, and each VPG’s

management policies can be specifically tuned for the service class they deal with.

In addition, faster scheduling decisions are made possible because fewer resources

need to be examined.

4.3.2 VPG Partitioning Support in NSGrid

In NSGrid, a distributed service management architecture has been implemented

as a set of software components providing resource-to-service partitioning strate-

gies and aiding in the deployment of Virtual Private Grids. Within each VPG,

information services and schedulers can be instantiated as standard NSGrid com-

ponents.

The dynamic VPG partitioning is implemented in NSGrid using two additional

components: a Grid service monitoring component, responsible for acquiring and

extracting service class properties, and a service management component which

executes the actual VPG partitioning algorithms, using the acquired monitoring

data as input. When changes are detected in the service characteristics by the

monitoring component, a new VPG partitioning action may be triggered.

The resulting service management architecture thus closely mimics the OGSA

Service Level Manager concept. Service Level Managers are, according to the

OGSA specification, responsible for setting and adjusting policies, and changing

the behavior of managed resources in response to observed conditions.

A Grid, partitioned into VPGs by the implemented service management archi-

tecture, looks roughly like the one shown in figure 4.3 in NSGrid.

4-10 CHAPTER 4

computational

resources

computational

resources

data replica
resource

Grid portal

storage
resource

data replica

resource

computational

resources

Grid portal

MAN/WAN

network

storage

resource

In
fo

rm
a

tio
n

S
e

rv
ic

e
G

rid
S

c
h

e
d

u
le

r

C
o

n
n

e
c
tio

n
M

a
n

a
g

e
r

VPG service class i
resource pool

VPG
scheduler

VPG
IS

VPG service class j
resource pool

VPG
scheduler

VPG
IS

VPG service class k
resource pool

VPG
scheduler

VPG
IS

Grid Service Monitoring

Grid Service Management

Figure 4.3: VPG Partitioned Grid

4.3.3 Partitioning Strategies

4.3.3.1 Genetic Algorithm

In order to solve the VPG partitioning problem using a genetic algorithm (GA),

note that each possible resource class assignment can easily be represented as an

n-tuple of service class IDs, where n equals the number of resources. These chro-

mosomes can then be fed to a genetic algorithm which evaluates the fitness of each

chromosome (i.e. possible service class assignment) with regard to a cost function

f(x).

A genetic algorithm performs selections, cross-overs and mutations, with the

goal of constructing better resource-to-service assignments (that is, when com-

pared using cost function f(x)). The algorithm starts using a randomly generated

set of such assignments, and stops after a configurable number of iterations has

been reached or when no significant improvement in resource-to-service assign-

ment quality is detected for a number of successive iterations.

Using appropriate cost functions, a number of different assignment strategies

can be explored. One strategy focusses on providing adequate resource capacity

close or local to the site where the bulk of a service class’s workload originates;

it attempts to distribute resource capacity fairly among these local service classes.

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-11

A second strategy allows to weigh the importance of these local service classes

against the importance of other service classes, resulting in the cost function de-

picted in algorithm 4.3.1. To promote the concept of close computational and data

replica resources, cost functions include an adjustable term to penalize scenarios

in which a site’s computational resource is allocated to some service class, while

that same site’s data replica resource does not contain data sets needed by jobs of

that service class.

Algorithm 4.3.1: fCRpartglobal
(x)

result←
ppowerasg0

2

maxAllocover ← 0

maxAllocunder ← 0

for i ∈ SClocal ∪ SCforeign

do







































































































aux← ppowerreqi
− ppowerasgi

if aux < 0

then











if − aux > maxAllocover

then maxAllocover ← −aux

aux← ppowerasgi

else











if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

if i ∈ SCforeign

then aux← aux× ρSCforeign

result
+
← priorityi

(
P

j∈SC priorityj)
× aux

result
−
← maxAllocover + maxAllocunder

return (result)

A first set of partitioning algorithms in NSGrid mainly performs computational

resource partitioning as its core functionality, but extensions have been provisioned

to enable weighted network bandwidth partitioning as well.

4.3.3.2 Divisible Load Integer Linear Programming

When a Grid operates in steady state, the arriving workload can be characterized

(with regard to interarrival times, processing and I/O requirements) using a lim-

ited set of parameters, representing the expected values (in the steady state) of the

4-12 CHAPTER 4

observed variables, commonly represented as the workload (of which the exact

definition depends on the type of resources one is observing) arriving per time

unit. In NSGrid, this characterization is performed by the service monitoring ar-

chitecture. The resulting parameters can then be used to populate an integer linear

program (ILP) designed to calculate a feasible VPG partitioning scheme as well as

the workload distribution in the resulting VPGs. The optimization goal can then be

related to resource cost and utilization, under the constraint that as much arriving

workload as possible must be processed by the partitioned Grid.

By treating the steady state workload as arbitrarily divisible (see chapter 2) -

and thus represent it using continuous parameters - the number of integer variables

in the ILP can be greatly reduced.

Using this approach, values of interest are arrivalsn
s - the computational load

per time unit arriving at site s and belonging to service class n, Setsn and Sizen

- the datasets available to service class n jobs and their respective sizes. It is

assumed that each job reads exactly one input data set and that all data sets for a

single service class are equally probable. The main decision variables in the ILP

are xc,n (binary, assigning service class n exclusive access to CR c) and αc
i,n (real-

valued, amount of service class n computational load per time unit processed at CR

c which arrived at site i). Auxiliary variables needed to fulfill routing constraints

on the input datasets and generated output data have been dubbed inl
n,j (bandwidth

needed on link l for transport of dataset j of service class n) and outls (bandwidth

needed on link l for transport of output data to storage resource s) - note that the

concept of source-based routing [11] was used to formulate the routing constraints.

In the resource-to-service assignation ILP below, the following auxiliary sym-

bols have been used: GW represents the set of Grid site gateways, L+ depicts

the set of links incident from the node specified in subscript, L− depicts the set

of links incident to the node specified in subscript and computational resource and

network link capacities are written Capc and Capl, respectively. The sets of ser-

vice classes, computational resources, storage resources and data replica resources

have been abbreviated as SC, CR, SR and DR. For each resource r in one of

these classes, we will use Siter to denote the Grid site the resource is located at.

Using these symbols, the capacity constraints to be observed for each compu-

tational resource and network link, respectively, are

∀c ∈ CR.
∑

i∈Sites

∑

n∈SC

αc
i,n ≤ Capc (4.1)

∀l ∈ L.
∑

n∈SC

∑

j∈Setsn

inl
n,j +

∑

s∈SR

outls ≤ Capl (4.2)

These constraints ensure that work allocated to a computational resource does not

exceed that resource’s processing capacity, and that total network traffic over each

link does not exceed that link’s capacity. Network traffic is routed according to

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-13

following constraints:

∀n ∈ SC, j ∈ Setsn.
∑

d∈DR:j∈Setsd

∑

l∈L+

d

inl
n,j =

∑

s∈Sites arrivalsn
s × Sizen

#Setsn

(4.3)

∀c ∈ CR,n ∈ SC, j ∈ Setsn.
∑

l∈L
−
c

inl
n,j =

∑

i∈Sites αc
i,n × Sizen

#Setsn

(4.4)

∀c ∈ CR, s ∈ SR.
∑

l∈L+
c

outls =
∑

n∈SC

αc
Sites,n × Sizen (4.5)

∀s ∈ SR.
∑

l∈L
−
s

outls =
∑

n∈SC

arrivalsn
Sites

× Sizen (4.6)

∀g ∈ GW,n ∈ SC, j ∈ Setsn.
∑

l∈L−
g

inl
n,j =

∑

l∈L+
g

inl
n,j (4.7)

∀g ∈ GW, s ∈ SR.
∑

l∈L−
g

outls =
∑

l∈L+
g

outls (4.8)

The first equation in this series describes how much traffic is carried on the net-

work links departing from the data replica resources, given that any job of a given

service class has an equal probability to process any of the data sets available to

that service class. That same amount of network traffic is of course to be retrieved

at the computational resource side, and this is expressed in the second equation.

The next two equations present the analogous observation for output data gen-

erated by the jobs.

The last two equations state that network flow (both for input and output data)

is conserved when crossing intermediate routers.

A feasible schedule is obtained by demanding that the total distributed work-

load equals the size of the arriving workload per time unit:

∀i ∈ sites, n ∈ SC.
∑

c∈CR

αc
i,n = arrivalsn

i (4.9)

To ensure the exclusive reservation of each computational resource, we need to

enforce

∀c ∈ CR.
∑

n∈SC

xc,n ≤ 1 (4.10)

∀c ∈ CR,n ∈ SC.
∑

i∈Sites

αc
i,n ≤ xc,n × Capc (4.11)

where the last equation is used to express that only those computational resources

which have been explicitly assigned to a service class may actually perform work

in that service class.

4-14 CHAPTER 4

The cost function to be minimized can take several forms; for instance, the

total amount of data traveling over network links per unit of time (in the steady

state Grid) can be described in terms of problem variables as

∑

l∈L





∑

n∈SC,j∈Setsn

inl
n,j +

∑

s∈SR

outls



 (4.12)

Using this cost function in the ILP results in a workload schedule and service class

assignation yielding minimal aggregate network load for a given arrival process.

Alternatively, one can choose to minimize the maximal unused computational re-

source fraction, which results in a fair workload distribution across all compu-

tational resources according to their respective capacities. This approach can be

modeled by adding the constraints

∀c ∈ CR,n ∈ SC.cost ≥

(

xc,n × Capc −
∑

i∈Sites αc
i,n

)

Capc

(4.13)

and minimizing the cost. Note that, whatever cost function is used, one is limited

to using linear expressions in the problem variables, yielding less expressive power

when compared to the genetic algorithm approach.

4.3.4 Grid Topology

The modeled Grid on which our VPG partitioning experiments have been per-

formed (using NSGrid) closely resembles the Grid described in section 4.2.1. The

WAN core network interconnecting the Grid sites is the same GridG-generated

network. Again, 12 Grid sites have been instantiated, each featuring its own com-

putational, storage and data replica resources connected through a 1Gbps Ethernet

LAN.

Not all time-shared computational resources are equivalent: we have used the

same three types of computational resources as listed in section 4.2.2.1, where

the least powerful CR has two processors (operating at a reference speed), the

second class of computational resources has four processors (operating at twice the

reference speed) and the third type contains 6 processors, each of which operates at

three times the reference speed. As in the network aware scheduling experiments,

the relative occurrence frequency of the different computational resource types is

1 : 2 : 3, the most powerful resource being the most rare as well.

The assumptions on each site’s storage and data replica resources also remain

valid for these experiments: storage resources offer unlimited disk space, but re-

side on bandwidth-limited nodes. Furthermore, each site’s data resource contains

6 out of 12 possible data sets, distributed as to provide half of the jobs with local

access to their needed data set.

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-15

Specifically for the VPG partitioning, a single global service manager was in-

stantiated; as the service characteristics in a simulation setup are readily available

(and can be fed directly to the service manager), we did not instantiate a monitor-

ing component.

4.3.5 Performance Metric: Job Response Time

For the comparison of the different VPG partitioning strategies, we have first parti-

tioned the Grid based on the workload described below. Then, we have scheduled

this very workload on the partitioned Grid and measured the average job response

time, again defined as the difference between the time the job’s final output block

has been sent and the time it was submitted to the scheduler. We have measured

and plotted this average job response time for the different partitioning algorithms

described here.

4.3.6 Job Workload

As with our experiments described in section 4.2, we have used two different ser-

vice classes of equal priority, each accounting for half of the total job load. One

service class represents data-intensive (i.e. higher data sizes involved) jobs, while

the other represents the more CPU-intensive jobs. At each Grid site, two clients

(one for each job service class) submit mutually independent jobs to its Grid portal.

All of these jobs need a single data replica resource and a single storage resource.

The relevant job parameters used have been listed in table 4.1.

CPU-Job Data-Job

Input(GB) 0.01-0.02 1-2

Output(GB) 0.01-0.02 1-2

IAT(s) 30-40 30-40

Ref. run time(s) 100-200 40-60

Table 4.1: Job Workload: Key Parameters

4.3.7 Results

We have presented the measured average job response time for the different VPG

partitioning strategies and the different job scheduling strategies implemented in

NSGrid in figures 4.4 and 4.5. Figure 4.4 shows the response time obtained by

the non-network aware scheduling algorithm, while figure 4.5 shows the corre-

sponding results obtained by using the network aware job scheduling strategy (see

section 4.2.4). The job scheduling algorithms used schedule jobs in a greedy fash-

ion, minimizing the resulting completion time for each individual job.

4-16 CHAPTER 4

Each bar in the figures points to a different VPG partitioning algorithm used

in that scenario; we have shown the overall average as well as the average re-

sponse times within each individual job service class. The bar titled “No SM” (no

service management) points to the case where we refrained from partitioning the

initial Grid topology. The genetic algorithm computational resource partitioning

approach corresponds to the “GA” bar; its extended counterpart which also par-

titions network resources is referred to in the figures as “GA-CONN”. The same

Grid has also been partitioned using the divisible load integer linear programming

method, using one of the cost functions 4.12 and 4.13. The average job response

times for the workload scheduled on the Grid, partitioned using these approaches,

are shown as “DLT CR” and “DLT Network”, respectively.

From these figures, it follows that in the given Grid scenario average job re-

sponse times can be improved significantly (by 40.44% when non network aware

scheduling is used and by 22.6% when network aware scheduling is employed) by

performing a resource-to-service partitioning prior to scheduling. The main cause

for this behavior is the fact that, once the Grid has been partitioned, resources are

reserved for exclusive use by a single service class. It is this service-exclusivity

that forces the scheduler to not assign jobs to less-than-optimal resources (e.g.

non-local access to input data, low processing power available,. . .), but to keep the

job in the scheduling queue instead until suitable (i.e. assigned to the job’s service

class) resources become available.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

CPU STData STAll

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

No SM
GA

DLT CR
DLT Network

Figure 4.4: Non-Network Aware Scheduling: Job Response Times after VPG Par-

titioning

SIMULATING GRID SCHEDULING ALGORITHMS USING NSGRID 4-17

 40

 50

 60

 70

 80

 90

 100

CPU STData STAll

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

No SM
GA

GA-CONN
DLT CR

DLT Network

Figure 4.5: Network Aware Scheduling: Job Response Times after VPG Partition-

ing

4.4 Conclusions

In this chapter, we have demonstrated our NSGrid simulation tool in two cases.

The first case highlighted the improvement in job response time when using a net-

work aware Grid scheduling algorithm over a non-network aware algorithm, both

when streamed data transfers and pre-staged data setups are used. The importance

of using a network-aware scheduling strategy has been demonstrated in scenarios

where network bandwidth cannot be assumed to be abundant. Furthermore, we in-

troduced a scheduling strategy taking into account data location (based upon eco-

nomic principles), but did not notice improvements to the job response times when

using this strategy on our scenario. In the second case, we simulated workload

scheduling on a partitioned Grid in which resources can be exclusively reserved

for specific job service types. We showed how, for a workload scenario featuring

2 distinct job classes (CPU-intensive and data-intensive), scheduling on a suitably

partitioned Grid reduces job response times. We presented several classes of Grid

partitioning algorithms, one class of algorithms based on genetic algorithms and

another one based on divisible load theory. We showed how there exists a trade-

off between computation time and partitioning quality for these algorithm classes,

and found that the genetic algorithm based approach yields better Grid partitioning

schemes at the expense of increased computation time.

4-18 CHAPTER 4

References

[1] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, and P. Demeester. Net-

work Aspects of Grid Scheduling Algorithms. In Proceedings of PDCS 11,

pages 91–97, 2004.

[2] B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, and

P. Demeester. Network Aware Scheduling in Grids. In Proceedings of 9th Eu-

ropean Conference on Networks & Optical Communications (NOC), pages

311–318, 2004.

[3] D. Lu and P. Dinda. Synthesizing Realistic Computational Grids. In Pro-

ceedings of ACM/IEEE Supercomputing 2003 (SC 2003), page 16, 2003.

[4] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids.

ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003.

[5] The DataGrid Project. http://eu-datagrid.web.cern.ch/

eu-datagrid/.

[6] B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B. Dhoedt, and

P. Demeester. Flexible Grid service management through resource partition-

ing. Journal of Supercomputing, 2006. Accepted for Publication.

[7] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for dis-

tributed system integration. IEEE Computer, 35(6):37–46, 2002.

[8] Enabling Grids for E-Science in Europe. http://egee-intranet.

web.cern.ch.

[9] I. Foster and al. The Open Grid Services Architecture, Version 1.0. draft-

ggf-OGSA-spec-019 http://forge.gridforum.org/projects/

ogsa-wg.

[10] K. Czajkowski and al. The WS-Resource Framework Version 1.0. http:

//www.globus.org/wsrf/specs/ws-wsrf.pdf.

[11] Y. Kitatsuji, K. Kobayashi, Y. Kitamura, and al. Deployment of APAN Tokyo

XP and evaluation of source based routing. Transactions of the Institute of

Electronics, Information and Communication Engineers, J85-B:1164–1171,

2002.

5
Scalable Lambda Grid Dimensioning

5.1 Introduction

In chapter 1, we have introduced the concept of Grids and we have made the case

for the use of optical technologies in the network interconnecting the various Grid

resources.

Prior to Grid deployment, Grid resource locations and capacities must be de-

cided upon. This lambda Grid [1–4] dimensioning problem builds on both the

workload scheduling problem and the network routing and dimensioning problems

introduced in chapter 2.

The lambda Grid dimensioning problem differs from these two related problem

classes, however. First of all, it differs from a traditional (project) scheduling

problem [5–8] because multiple resources of different types must be co-allocated

simultaneously to a single job and because these allocations are not independent

(e.g. computational progress can be limited by lack of network bandwidth in case

two remote resources are allocated to a single job).

Secondly, as we are specifically dealing with lambda Grids (and thus, optical

transport networks), additional network constraints reflecting wavelength continu-

ity and granularity arise when compared to the more simple continuous-bandwidth

network scenarios used in chapter 4. But in addition, the lambda Grid dimension-

ing problem differs from an OCS network dimensioning problem with static de-

mand matrix [9–13] because in a Grid environment, network traffic is generated by

Grid jobs. Thus, the amount of network traffic generated in the Grid and its desti-

5-2 CHAPTER 5

nation fundamentally depend on the way resources are allocated to jobs. Network

traffic then comes into existence because two geographically dispersed resources

have been co-allocated to a single job.

The exact identity of the resources allocated to each job is decided upon by a

scheduler. It follows that the lambda Grid dimensioning problem is inextricably

entangled with the workload scheduling problem in the envisioned Grid.

In this chapter, we start by detailing the Grid and workload models used through-

out this chapter and we identify the operational scenarios that must be supported

by the resulting dimensioned Grid. We explicitly focus our dimensioning efforts

on two types of resources: computational resources and network resources. As

we primarily deal with optical circuit switched networks, the latter resources are

actually entities such as fibers, wavelengths and cross-connects.

Our dimensioning approach consists of two steps; in the first step, we derive

appropriate dimensions for the computational resources based on the expected

workload characteristics. In the second step, the workload for which the Grid

is to be dimensioned is scheduled on these computational resources, and sufficient

network resources are instantiated to support this operation.

This second step, the solving of a combined workload scheduling and network

dimensioning problem, is performed by modeling this problem as an integer lin-

ear program. To reduce this program’s complexity, two techniques described in

chapter 2 are used. The first technique corresponds to the treatment of the Grid’s

workload as an arbitrarily divisible workload [14–16]. The second technique re-

duces the complexity of the network routing problem [13] in case the exact nature

of possible wavelength conversions in the network’s cross-connects does not need

to be determined. The objective of this linear program leading to the Grid’s net-

work resources’ dimensions is to minimize the cost associated with these network

resources, in particular the number of activated fibers and wavelengths in the en-

visioned operational scenarios.

Next, we present some heuristics which can further improve the time needed

to solve the dimensioning problem (i.e. the linear program). We compare all of our

solution methods on a set of Grid interconnection networks for varying parameters

including Grid scheduling policy, wavelength granularity and fiber/wavelength ac-

tivation cost models.

While we start with a set of operational scenarios in which a single Grid site

is overloaded with jobs, we extend our approach to scenarios with multiple over-

loaded sites and scenarios featuring single resource failures afterwards.

Research results presented in this chapter have been published for a great deal

in [17, 18].

SCALABLE LAMBDA GRID DIMENSIONING 5-3

λ1

λ1

λ2

Grid site

load

100%

before load

balancing
after

local

jobs

local

jobs

Grid site

load

100%

before load

balancing
after

local

jobs

local

jobs

remote

jobs

Home

Site

Figure 5.1: Example load balancing scenario

5.2 Grid Models and Operational Scenario

The Grid resource and application models supported by our simulation environ-

ment have been detailed in chapter 3. In this section, we introduce some notations

and mathematical symbols that will allow us to represent these resources and ap-

plications in a linear program describing a lambda Grid dimensioning problem for

the scenarios presented in section 5.2.3.

5.2.1 Resources

We treat a Grid as a collection of different sites R, connected through a trans-

port network. The core network (which is to be dimensioned) is an optical cir-

cuit switched transport network. It consists of core and access optical cross con-

nects (OXC) connected through directed links from the set E . Each link e ∈ E

contains optical fibers; each fiber can carry a (technology-dependent) number of

wavelengths W , and each wavelength supports a (also technology-dependent) data

rate B. All cross connects have unlimited wavelength conversion capabilities (see

section 2.4 for details on OXC switching limitations).

Each Grid site r ∈ R connects to an access router of the optical network and

offers two time-shared resources - a computational resource and a data storage

resource. The computational resource can process locally submitted as well as

“foreign” jobs, and has a residual computational capacity of Pr. It will only send

locally generated jobs to a remote site if it cannot process or store that job locally.

The data storage resource holds input and output data for jobs; it is assumed they

provide sufficient storage space for the jobs submitted at the resource’s site.

5-4 CHAPTER 5

5.2.2 Jobs

At each site, users can submit jobs from a job pool J . The home site of a job

j ∈ J is the site where it has been submitted. Jobs are indivisible work packets,

characterized by their length lj (i.e. processing time on a reference processor), the

size of the input data dI
j they process and the size of the output data dO

j they gen-

erate. It is assumed that all jobs read their input data from their home site and that

they submit any output data to their home site as well, that is, only remotely pro-

cessed jobs produce network traffic (between their processing site and their home

site). Furthermore, jobs are assumed to process data at a constant rate throughout

their lifetime; this way, remotely executed jobs can be treated as Constant Bit Rate

(CBR) sources from a network point of view.

5.2.3 Excess Load Scenarios

In our approach, computational resources are first dimensioned to be able to deal

with a specified steady state load. The exact computational resource dimensions

are derived as described in section 5.3.6. Next, we assume that a single computa-

tional resource suffers from excessive (locally generated) load and that it needs to

invoke remote computational resources to process that load.

We consider the set (parameterized by some integer k) of load-balancing schedul-

ing strategies where the excess load is evenly distributed across k remote compu-

tational resources, a scenario not unlikely given that these remote resources may

also be processing or storing local load. Again, we assume the Grid to converge

into a steady state mode of operation (e.g. periodic with period T). For a given

excess load instance per time-period, we can decide which jobs are to be processed

where (under the constraint of fair distribution across all remote resources), which

determines the amounts of input and output data transferred per period between

Grid sites.

Once traffic demands between each pair of Grid sites have been determined,

solving the optical network dimensioning problem (for this single overloaded Grid

site scenario) means deciding how lightpaths should be set up and routed in order

to accommodate these demands with minimal cost. Here, only activation costs

(fiber and wavelength) are taken into account.

The final network dimensions (i.e., number of installed fibers on each link

and number of wavelengths activated on each fiber) are determined by the global

optimum over all single-site overload problems.

5.3 Lambda Grid Dimensioning Algorithms

In the following, we present several approaches to the lambda Grid dimensioning

problem. More specifically, section 5.3.1 introduces an ILP formulation for the

SCALABLE LAMBDA GRID DIMENSIONING 5-5

exact workload; parallel and incremental reformulations (reducing its complexity)

of the problem are presented in the following section. The complexity of the exact

workload ILP model is reduced for large job counts in section 5.3.4. Finally, the

DLT-based approach is given in section 5.3.5. Each approach results in a linear

program, which is solved as described in section 5.4.1. The common objective of

all linear programs is the minimization of the network cost, which is defined as the

weighted sum of the number of activated fibers and the number of used wavelength

channels.

5.3.1 Exact Workload ILP

5.3.1.1 Single Scenario Formulation

The following ILP formulation allows us to optimally dimension the optical net-

work for a single overloaded resource S. Suppose the excess job load of this

resource is given explicitly by a set of jobs J S , and that a time horizon T is envi-

sioned for the execution of these jobs (for instance, set J S makes up one period

of a periodically recurring job load). We introduce the following integer variables

(see figure 5.2 for an illustration of their physical interpretation):

• fS
e = number of fibers on directed edge e,

• cS
er = number of wavelengths originating from resource r carried by edge

e, with 0 ≤ cS
er ≤

⌈

∑

j∈J S

dI
j

BT

⌉

for r = S and 0 ≤ cS
er ≤

⌈

∑

j∈J S

dO
j

BT

⌉

for r ∈ R\{S},

• yS
jr = 1 iff job j is executed on resource r, 0 otherwise,

• dS
uv = demand (number of required end-to-end wavelengths) between re-

sources u and v, with 0 ≤ dS
uv ≤

⌈

∑

j∈J S

dI
j

BT

⌉

for u = S and v ∈ R\{S},

0 ≤ dS
uv ≤

⌈

∑

j∈J S

dO
j

BT

⌉

for u ∈ R\{S} and v = S, dS
uv = 0 otherwise.

The first set of constraints ensures that all excess jobs are remotely executed,

while protecting each resource from being overloaded:

∀j ∈ J S .
∑

r∈R

yS
jr = 1 (5.1)

∀j ∈ J S .yS
jS = 0 (5.2)

∀r ∈ R.

∑

j∈J S ljy
S
jr

T
≤ Pr (5.3)

5-6 CHAPTER 5

λ1

λ1

λ2

λ2

S

e

u

Figure 5.2: Example 5-node network with dS
Su = dS

uS = 1 and cS
eS = 2.

Next, the demand variables are bound by the CBR traffic generated by each

job:

∀r ∈ R\{S}.dS
Sr ≥

∑

j∈J S dI
jy

S
jr

BT
(5.4)

∀r ∈ R\{S}.dS
rS ≥

∑

j∈J S dO
j yS

jr

BT
(5.5)

The following constraints express the network flow conservation (E+
v is the set

of outgoing directed links from resource v, E−v the set of incoming links):

∀u ∈ R,∀v ∈ R\{u}.
∑

e∈E+
v

cS
eu + dS

uv =
∑

e∈E−
v

cS
eu (5.6)

∀r ∈ R.
∑

u∈R

dS
ru =

∑

e∈E+
r

cS
er (5.7)

Finally, connections carried on an edge force the activation of fibers on that

particular edge:

∀e ∈ E .
∑

r∈R

cS
er ≤WfS

e (5.8)

Our goal is to minimize the network cost, which is given by:

∑

e∈E

(αfS
e + β

∑

r∈R

cS
er)

However, to model the fair distribution of workload over all sites, the actual

objective function to be minimized is:

SCALABLE LAMBDA GRID DIMENSIONING 5-7

∑

e∈E

(αfS
e + β

∑

r∈R

cS
er) + M max

r∈R

∑

j∈J S

ljyjr

In this last expression, M is a penalty factor, large enough to force the fair

workload distribution in the solution without interfering with the network cost.

Unless stated otherwise, the costs presented in this chapter were obtained for α =

β = 1.

5.3.1.2 Global Scenario

In order to dimension the network so it is capable of handling all individual scenar-

ios, we must ensure that there is enough network capacity to handle each overload

scenario (cf. section 5.2.3). We require therefore all constraints from the previ-

ous section for each possible source node S ∈ R. Additionally, we introduce the

following variables:

• Fe = number of fibers on edge e for all scenarios,

• Cer = average number of wavelengths departing from resource r carried by

edge e over all individual scenarios, with

0 ≤
∑

S∈R

∑

j∈J S

dI
j

BT
+(|R|−1)

dO
j

BT

|R| .

These variables adhere to:

∀e ∈ E ,∀S ∈ R.Fe ≥ fS
e (5.9)

∀e ∈ E ,∀r ∈ R.Cer =

∑

S∈R cS
er

|R|
(5.10)

The former constraint ensures sufficient fibers are activated to carry traffic for

all scenarios, while the latter fixes the number of connections to the average over

all scenarios. The network cost becomes in this case:

∑

e∈E

(αFe + β
∑

r∈R

Cer) (5.11)

Again, to enforce fair workload distribution, the use of a penalty factor may be

necessary as explained in the previous section.

5.3.2 Parallelizing Heuristic

The previous section showed how to combine the individual scenarios into a model

that is able to satisfy all individual scenarios at once. However, this approach be-

comes intractable very quickly for an increasing number of variables, in particular

5-8 CHAPTER 5

because of the number of jobs. We therefore propose an alternative technique,

which is able to return solutions within reasonable calculation time and resource

limits, however at increased network cost.

Global Scenario

Single Scenario

S = 1

Single Scenario

S = 2
...

Single Scenario

S ∈ R
∀e ∈ E .Ge = max fS

e

∀e ∈ E .Fe = Ge

∀e ∈ E .fS
e ∀e ∈ E .fS

e ∀e ∈ E .fS
e

S = |R|

Figure 5.3: Parallelizing heuristic: overview

As illustrated in figure 5.3, we start by solving all individual scenarios indepen-

dently. This step can be performed in parallel, and results in a series of fiber counts

on each edge (variables fS
e). These values are used to initialize the parameters Ge:

∀e ∈ E .Ge = max
S∈R

fS
e ,

and then we proceed by solving the problem as defined in section 5.3.1.2, but

replace constraint (5.9) by:

∀e ∈ E .Fe = Ge. (5.12)

5.3.3 Incremental Heuristic

The parallelizing heuristic presented in section 5.3.2 performs a simple maximiza-

tion over the solutions to a set of independently solved problems, instead of solving

a single problem tackling all of these problems simultaneously.

Another heuristic method to solving this complex global problem is shown in

figure 5.4. This incremental approach solves the dimensioning problem for a set

of single excess load scenarios as follows. First, the elementary scenarios are or-

dered. The heuristic then solves the Grid network dimensioning problem for the

SCALABLE LAMBDA GRID DIMENSIONING 5-9

Global Scenario

Single Scenario

S = 1

Single Scenario

S = 2

Single Scenario

...Fixed Scenarios Fixed Scenarios Fixed Scenarios

∀e ∈ E .Fe = f
|R|
e

S = |R|

∅

∀e ∈ E .fS
e ∀e ∈ E .fS

e ∀e ∈ E .fS
e

{1} {1, . . . , |R| − 1}

Figure 5.4: Incremental heuristic: overview

first elemental scenario in the ordered list and saves the resulting network dimen-

sions, in particular the number of installed fibers on each edge and the number of

activated wavelengths on each fiber in the scenario at hand.

Next, the heuristic solves a modified single scenario Grid dimensioning prob-

lem. The single scenario is the second scenario in the ordered list, while the modi-

fications encompass the inclusion of the solution to the first dimensioning problem

as additional constraints. Thus, in this second phase, the problem solved is to

dimension the lambda Grid with minimal network cost, given that two scenar-

ios need to be supported and that workload distribution and network routing for

the first scenario have already been decided upon. The modifications thus add

constraints to a standard single scenario dimensioning problem, but do not add

additional variables.

This process is repeated; the number of iterations needed is the number of

scenarios that needs to be supported. At iteration n, a modified single scenario

dimensioning problem is solved for the nth scenario in the ordered list, given the

solution to the previous n− 1 scenarios.

When the last iteration is finished, we have obtained a solution to the global

dimensioning problem based upon this particular ordering of the elemental sce-

narios. By repeating this whole process for different scenario orderings, we can

select the ordering with the lowest resulting lambda Grid dimensioning cost for

the collection of all single source scenarios.

This incremental heuristic is able to produce better results when compared to

the parallelizing heuristic, as will be demonstrated in section 5.4.10. As it is at the

same time able to tackle large problems, it is our preferred solution method from

section 5.5 onwards.

5-10 CHAPTER 5

5.3.4 Equal Job Size Heuristic

Given workload L is generated by a large number of jobs n. In this case, the

actual probability of a certain number of random jobs totalling a given workload

depends on that number and the distributions associated with the arrival process

and the job lengths. Therefore, we can approximate this set of jobs by substituting

them by n jobs of equal length L
n

. Assume that Lmax is the a-priori maximum

length of a single random job. Then typically, a large set of jobs totalling workload

L ≪ nLmax will contain a relatively large number of “small” jobs (i.e., a length

around L
n

). This means that the total workload can be divided into |R| − 1 parts

of equal size plus some excess jobs of size L
n

. Obviously, the case of n equal-

sized jobs is a special instance of this. In this approximation, jobs are perfectly

interchangeable.

Since we are handling a load balancing scenario, this implies that each resource

must execute at least
⌊

|J S |
|R|−1

⌋

jobs. The assignment of the remaining jobs (at most

|R| − 2) is then limited by the fact that each resource may not receive more than

one job (because of the load balancing constraint).

Clearly, it is not necessary to hold on to the binary variables yS
jr for each job.

Instead, we introduce new binary variables δS
r , which equal 1 iff one of the remain-

ing jobs is executed on resource r, and 0 otherwise. Constraints (5.1) and (5.3) are

replaced by

∑

r∈R

δS
r = |J S | mod (|R| − 1), (5.13)

while constraint (5.2) becomes

δS
S = 0. (5.14)

This effectively reduces the influence of the amount of excess jobs in the sin-

gle scenario model, by elimination of |J S ||R| job decision variables to |R|, and

2|J S | + |R| job-related constraints to only 2. The approximation presented here

has been used in section 5.4.6 for large job count instead of the exact ILP formu-

lation from section 5.3.1.

5.3.5 Divisible Load Theory

In the previous sections, integer linear programming formulations for the com-

bined load distribution and the optical transport network dimensioning problem

were presented. The central concept in these formulations (regarding the load dis-

tribution and thus traffic demand generation) is the use of per-job (integer) deci-

sion variables. These variables ensure that the workload distribution and network

dimensioning (obtained by solving the ILP) is feasible for a given set of jobs.

SCALABLE LAMBDA GRID DIMENSIONING 5-11

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

r1 r2

���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
������
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

���
���
���
���
���

���
���
���
���
���

t t t t

r1 r2

Figure 5.5: Sample schedule (3 jobs, 2 resources) when using the ILP method

(left) and the DLT method (right)

However, as the number of jobs increases, the ILP’s resulting complexity makes it

difficult to obtain an optimal solution in reasonable time.

For steady state analysis of Grid systems processing large amounts of tasks, it

has proven useful [14–16] to treat massively parallel applications as arbitrarily di-

visible. By extension, one can imagine treating the workload generated at a single

Grid site as arbitrarily divisible. That is, one does not consider the individual jobs

(each of which is, in reality, not divisible at all) but only takes into account the

aggregate workload (i.e., sum-of-jobs) generated at each site during some inter-

val T . Using the divisible load approach, the network dimensioning problem (and

the related workload scheduling problem) can be restated as a linear programming

problem without the per-job variables. The load distribution variables in this prob-

lem are now real-valued instead of integer.

As it is common for a workload to be described in terms of stochastic variables

(e.g., interarrival time of the jobs, job length, etc.), we derived appropriate DLT

parameters as described below.

5.3.6 Computational Resource Dimensioning

Our computational resource dimensioning strategy starts as follows. The necessary

input to the Grid dimensioning problem includes the stochastic description of the

jobs arriving at each site - more specifically, the distributions describing the job

lengths and interarrival times. From these distributions, it is possible to calculate

the x%-percentile of the load arriving at each site per unit of time for varying

values of x.

We chose to dimension each Grid site’s computational resource in such a way

that it is able to process a constant load per time unit equalling the x%-percentile

of the arriving workload, for a suitable value of x. An excess load scenario (as

described in the previous section) then occurs when the actual workload arriving

at a single site exceeds this value, and the excess load can be processed by the

aggregation of the other sites.

5-12 CHAPTER 5

5.3.7 Network Traffic Demand Derivation

As explained in section 5.2.2, jobs are submitted at their home site and it is as-

sumed they find all needed input data on that site. In addition, in order to present

job results to the end user, the generated output data is returned to that same home

site. This job model implies that Grid network traffic is generated for a job if and

only if that job is executed at a Grid site different from its home site.

In turn, using known distributions for job input and output data sizes (param-

eters dI
j and dO

j in section 5.2.2) in relation to the job’s run time, the excess load

and its distribution among remote computational resources leads to a probability

distribution for the network traffic demand between Grid site pairs for the excess

load scenario studied. Using a similar approach to the computational resource

dimensioning, we can capture the data size per unit of computational work ratio

using a suitable percentile value of this distribution.

For simple Grid OCS interconnection topologies in which wavelengths be-

tween sites are routed along a shortest path between these sites, the resulting net-

work dimensioning cost for an excess load scenario can be analytically calculated

as a function of the excess load and the used percentiles representing the arriving

workload per time unit and the data size to workload ratio.

Indeed, for a Grid featuring N sites, let us make the following assumptions:

• let αx
k denote the x%-percentile of workload arriving at site k per unit of

time, and thus, the capacity assigned to the computational resource located

at site k

• let each fiber be limited to carrying W wavelengths, each able to transport

data at a rate B

• let D represent the data size to workload ratio for job input as well as for job

output data

• let site i be an overloaded site; that is, the actual workload arriving per time

unit at site i is α
y
i > αx

i

From these assumptions, it follows that the excess load arriving at site i can

only be distributed among the other sites as long as α
y
i − αx

i ≤
∑

k 6=i(α
x
k − α

y
k).

Furthermore, if fair distribution (i.e. proportional to each site’s local processing

capacity) of the excess load among the remote sites is desired it is required that

∀k 6= i.α
y
k ≤ αx

k − (αy
i − αx

i)
αx

k
P

l 6=i αx
l

. In case these conditions are met the bidi-

rectional wavelength demand (i.e. the wavelength demands for input and output

data, which are - under our assumptions - of equal size) between sites i and k 6= i

equals
⌈

D(αy
i − αx

i)
αx

k

B
P

l 6=i αx
l

⌉

.

If, for reasons of brevity, the demand from the excess load site i to a remote site

k is abbreviated dk =
⌈

D(αy
i − αx

i)
αx

k

B
P

l 6=i αx
l

⌉

, the network cost consisting of a

SCALABLE LAMBDA GRID DIMENSIONING 5-13

weighted sum of installed fibers and activated wavelengths in this single excess

load scenario becomes for a full mesh network

Cmesh = 2
∑

k 6=i

(

dk + C

⌈

dk

W

⌉)

(5.15)

where W denotes the number of wavelengths per fiber as before and C represents

the relative weight assigned to installed fibers when compared to the number of

activated wavelengths. In other words, C = α
β

where α and β are used as in the

cost functions presented in section 5.3.1. The above formula then follows easily

knowing that we have equal-sized wavelength demands in both directions and the

number of fibers needed to carry dk wavelengths is given by ⌈dk

W
⌉. Similarly, for

star and ring interconnection topologies, the resulting network cost becomes (by

analyzing the link between the source node and the star point, and two half rings,

respectively)

Cstar = Cmesh + 2
∑

k 6=i

dk + 2C

⌈

∑

k 6=i dk

W

⌉

(5.16)

and

Cring =

⌊N
2 ⌋
∑

k=1







⌊N
2 ⌋
∑

j=k

dj + C









∑⌊N
2 ⌋

j=k dj

W















+

N−1
∑

k=⌊N
2

+1⌋







k
∑

j=⌊N
2

+1⌋

dj + C









∑k

j=⌊N
2

+1⌋ dj

W














(5.17)

In expressions 5.15, 5.16 and 5.17, ⌈x⌉ denotes the smallest integer larger than

or equal to x, and ⌊x⌋ denotes the largest integer smaller than or equal to x. The

behavior of these cost functions (representing the optical network dimensioning

cost obtained by studying a single excess load scenario on the given topology) has

been visualized in figures 5.6, 5.7 and 5.8 for varying values of x and y ≥ x. For

the results in these figures, we have used the values N = 13, W = 4 and C = 1.

The arriving divisible excess load is the load used throughout this chapter which

is described in section 5.4.4. In figures 5.6, 5.7 and 5.8, it is assumed a single

wavelength can carry 2.5 Gbps.

For the results in this chapter, however, we have not limited ourselves to these

regular topologies, nor have we enforced shortest path routing. In these non-trivial

cases, the required Grid dimensions and resulting network costs cannot be derived

analytically and we are required to solve a linear program modeling the dimension-

ing problem. The objective of these programs is the minimization of the network

cost, which takes on a similar structure as in expressions 5.15 through 5.17.

5-14 CHAPTER 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0.58
 0.6
 0.62

 0.64
 0.66

 0.68
 0.7
 0.72

 0.74
 0.76

 0.78
 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

Network Cost

x

y

Network Cost

Figure 5.6: Network Dimensioning Cost: Mesh Topology

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.58
 0.6
 0.62

 0.64
 0.66

 0.68
 0.7
 0.72

 0.74
 0.76

 0.78
 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

Network Cost

x

y

Network Cost

Figure 5.7: Network Dimensioning Cost: Star Topology

5.3.8 Lambda Grid Dimensioning Linear Program

The relevant portions of the linear program modeling the lambda Grid dimension-

ing problem in a scenario of a single overloaded computational resource r can now

SCALABLE LAMBDA GRID DIMENSIONING 5-15

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.58
 0.6
 0.62

 0.64
 0.66

 0.68
 0.7
 0.72

 0.74
 0.76

 0.78
 0.8 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9

 0

 1000

 2000

 3000

 4000

 5000

 6000

Network Cost

x

y

Network Cost

Figure 5.8: Network Dimensioning Cost: Ring Topology

be reformulated (using the DLT-derived parameters) as

∑

r∈R\{S}

αr = α
y
S − αx

S (5.18)

∀r ∈ R\{S}.dSr ≥
αrDI

B
(5.19)

∀r ∈ R\{S}.drS ≥
αrDO

B
(5.20)

∀r ∈ R\{S}.αr + αy
r ≤ αx

r (5.21)

In these equations, αy
r and αx

r represent the y and x-percentiles for site r, calcu-

lated as described above. The amount of excess load (generated at resource S) that

is scheduled for remote execution at resource r is dubbed αr (real-valued). The

value of DI (DO), which represents the average amount of input (output) data per

processing unit, can be calculated from the job interarrival time, job length and job

input (output) data size stochastic variables.

Most results presented in this chapter have been obtained in the case where

DI = DO = D and assuming that the excess load generated is distributed uni-

formly over the remote sites. If we examine the scenario where node 0 is the

overloaded node, we then have that

d0r =

⌈

D(αy
0 − αx

0)

B(|R| − 1)

⌉

(5.22)

5-16 CHAPTER 5

Under these assumptions, equations 5.15-5.17 become

Cmesh = 2
∑

r 6=0

(

d0r + C

⌈

d0r

W

⌉)

, (5.23)

Cstar = Cmesh + 2
∑

r 6=0

d0r + 2C

⌈

∑

r 6=0 d0r

W

⌉

(5.24)

Cring =

⌊ |R|
2 ⌋
∑

k=1







⌊ |R|
2 ⌋
∑

r=k

d0r + C









∑⌊ |R|
2 ⌋

r=k d0r

W















+

|R|−1
∑

k=l

(

k
∑

r=l

d0r + C

⌈

∑k
r=l d0r

W

⌉)

, (5.25)

where l =
⌊

|R|
2 + 1

⌋

.

5.4 Results and Discussion

5.4.1 ILP Solver

All integer linear programs needed to evaluate the different solution methods have

been solved using ILOG CPLEX 8.0, running on an AMD Athlon XP1700+ based

OpenMosix cluster (20 Debian GNU/Linux nodes) with 1 GB RAM per node.

5.4.2 Reference Topology

As a reference topology, we used the European core network depicted in figure 5.9,

which is composed of 13 nodes and 17 bidirectional links. These links constitute

fiber ducts; the exact number of fibers needed on each link follows from the solu-

tion to the dimensioning problem. As each OXC is located in a major European

city, it is conceivable that each such cross connect has a Grid site attached to it.

We therefore assume that each such OXC actually doubles as a Grid site (thus, we

make abstraction of any access networks in place), so that our Grid has as many

cross connects as Grid sites. This topology has a connectivity which resembles

that of a bidirectional ring. Unless stated otherwise, we have solved the dimen-

sioning problem on this European topology assuming each wavelength provides

a data transfer rate of 2.5 Gbps, each fiber carries at most 4 wavelengths and the

workload consisted of 2000 jobs instantiated as described in the following section.

SCALABLE LAMBDA GRID DIMENSIONING 5-17

Figure 5.9: Reference Grid Topology: European Core Network (13 nodes, 17

bidirectional links)

5.4.3 Job Parameters

For the evaluation of the global optimization of the single overloaded source sce-

narios using an exact integer linear program, a heuristic decomposition of the exact

program and the divisible load technique, we chose the following synthetic work-

load:

• job interarrival times are assumed to be independent and identically dis-

tributed, following an exponential distribution (thus, the number of jobs ar-

riving over some interval follows a Poisson distribution),

• job lengths are also chosen to be independent and identically distributed,

following a uniform distribution over [0, Lmax], with Lmax ≪ T ,

• the size of the input data processed by a job is proportional to that job’s

length (factor DI , resulting in size dI
j - see also section 5.3.8),

5-18 CHAPTER 5

• in analogy, the size of the output data generated by a job is proportional to

that job’s length (factor DO, resulting in size dO
j - see also section 5.3.8).

5.4.4 Excess Load

As previously explained, we assume a single computational resource is experi-

encing excessive load. We set the amount of load that can be handled locally

(i.e., the computational resource’s capacity) to be the 60%-percentile of the load

as described by the arrival process and the job length distribution in the previous

section. We assumed that an excessive load is made up by a job set instance whose

aggregate load equals the 90%-percentile of the arriving workload. For our ILP

model simulations featuring discrete jobs, we have generated 10 excess load job

sets (2000 jobs each unless indicated otherwise) with total load equal to the differ-

ence of these percentiles. In particular, we have have kept the average interarrival

time constant at 0.5s. The average excess load per period of time is kept constant at

30 units of work per time unit by reducing Lmax for increasing number of jobs per

period. We have fixed the data size to computational workload ratio for these jobs

while assuming DI = DO, and our choices have led to an average unidirectional

excess load network demand of 220GBps.

Except for the results presented in section 5.4.10, it is always assumed that

excess load (and thus, network demand) is distributed evenly among all remote

sites (i.e. k = |R| − 1).

5.4.5 Computational Complexity

We have compared the computational complexity of the (mixed) integer linear

programs resulting from the application of the ILP, Heuristic and DLT methods in

table 5.1, which lists the (order of magnitude of the) number of variables and con-

straints in each program as functions of network dimensions, number of resources

and number of jobs.

As explained, the main simplification introduced by the DLT method is the

absence of per-job variables, while the computational advantage of the heuristic

over the ILP method lies in the reduced size of the individual subproblems. Note

that e.g. the calculation of distribution percentiles for job length and data sizes is

not contained in any of the complexity metrics in table 5.1.

The relation between the problem sizes listed in table 5.1 and the resulting run

time on a single node of the cluster described in section 5.4.1 is listed in table 5.2,

and clearly demonstrates the intractability of solving the pure ILP for large prob-

lem sizes.

SCALABLE LAMBDA GRID DIMENSIONING 5-19

Algorithm Integer Vars Float Vars Constraints

ILP |R|2 · (|R|+ |E|+ |J |) 0 |R| · (|R|2 + |E|+ |J |)
Par. Heuristic |R| · (|R|+ |E|+ |J |) 0 |R|2 + |E|+ |J |
Inc. Heuristic |R| · (|R|+ |E|+ |J |) 0 |R|2 + |E|+ |J |+ (|R| − 1) · |E|

DLT |R|2 · (|R|+ |E|) |R| · |E| |R| · (|R|2 + |E|)

Table 5.1: Algorithm Comparison: Computational Complexity (Reduction by fac-

tor |R| from ILP to parallelizing heuristic, and term |J | from ILP to DLT)

Algorithm Time to 1st feasible solution Time to good solution

ILP ≥ 24 hours ?

DLT minutes ≈ 1 hour

Table 5.2: ILP-DLT Comparison: Computation Time on Single Cluster Node

5.4.6 ILP vs DLT

In figure 5.10, we have depicted the resulting cost for the dimensioning problem,

applied to the topology from figure 5.9. These results show the cost for increasing

number of jobs under the constraint that the total job load (per period) remains

constant. Each value obtained for the parallelizing heuristic is the result of aver-

aging the cost over ten different job instances. For low values of the job count

(≤ 2000), we used the same approach for the costs obtained with the exact ILP

formulation. The granularity of the job requirements causes the ILP method to per-

form better than the DLT approach in some cases, and worse in others. For higher

number of jobs however, the computational intractability forced us to resort to the

approximation described in section 5.3.4. In this case, each measurement is the av-

erage cost obtained from |R| − 2 evaluations of this approximation for successive

numbers of jobs around the measurement’s corresponding x-value. Obviously, the

cost of the DLT-based method remains constant as by its very nature, only the ag-

gregate load is of importance. From the figure, it is clear that for high number of

jobs (totalling a constant load), the cost for the ILP method converges to the DLT

cost. Furthermore, the DLT-based approximation performs consistently better than

the parallelizing heuristic, which reduces computational complexity by paralleliz-

ing the dimensioning problem into independent subproblems (maximal deviation

from ILP method is about 0.5% in this case, vs. 5% deviation for the heuristic).

5.4.7 Connectivity

In the previous section, results were obtained for a single network topology. Fig-

ure 5.11 shows the resulting cost for the dimensioning problem when solved for a

wider range of network topologies, for 2000 excess jobs per period. We have ran-

domly generated connected networks (with number of nodes equal to the number

of nodes in the reference network) for varying random-link probabilities p. Using

5-20 CHAPTER 5

 6200

 6300

 6400

 6500

 6600

 6700

 500 1000 1500 2000 2500

C
o
s
t

Number of jobs per period

DLT
ILP

Par. Heuristic

Figure 5.10: Cost vs. number of jobs per period for European network

this method, the European reference network is similar to the networks obtained

for p = 0.1. For each value of p (except for p = 1, denoting a full mesh network),

ten topologies have been generated. For all topologies, the DLT-based solution is

very close to the solution obtained from the ILP, the difference staying below 1%

for all values of p. Only in trivial cases (p→ 0, p→ 1) the parallelizing heuristic

approach obtains the quality of the DLT-based solution.

5.4.8 Asymmetric Jobs

So far, symmetry between incoming and outgoing traffic for each job was assumed

(DI = DO). Figure 5.12 shows the cost (for the reference network, again using

2000 excess jobs per period) for varying ratios of DI to DO but constant DI +DO.

Because of input/output symmetry in our global dimensioning problem featuring

input and output data sets of equal size, we expect these results to show symmetry

around s = DI

DO
= 1. In addition, due to the optimization over all individual sce-

narios, the chosen network dimensions are actually determined by max(DI ,DO).

This is also an indicator that minimal cost is expected for s = 1. Clearly, the figure

confirms these expectations.

5.4.9 Wavelength granularity

Results presented so far are obtained using at most 4 wavelengths per fiber, each

wavelength able to carry 2.5 Gbps. Below, we evaluate the dimensioning prob-

SCALABLE LAMBDA GRID DIMENSIONING 5-21

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

 7500

 8000

 8500

 0 0.2 0.4 0.6 0.8 1

C
o
s
t

p

DLT
ILP

Par. Heuristic

Figure 5.11: Cost vs. average connectivity for random networks with 13 nodes

 6200

 6400

 6600

 6800

 7000

 7200

 7400

 7600

 7800

 8000

 8200

 0.01 0.1 1 10 100

C
o
s
t

Job I/O asymmetry factor

DLT
ILP

Par. Heuristic

Figure 5.12: Cost vs. traffic asymmetry for European network

lem for the reference network for different wavelength granularities. In all cases,

fiber capacity was fixed at 10 Gbps. This value and the wavelength granularity

determine the number of wavelengths that can be carried on each fiber. Addi-

tionally, we compare different cost models of the wavelength per fiber parameter

5-22 CHAPTER 5

C = α
β

. Each model is represented by a non-decreasing function, which mirrors

the economic reality of the higher cost for technologies with larger wavelength ca-

pacity (figure 5.13). However, since smaller wavelength capacity implies a larger

number of activated wavelengths, and thus increasing number of line termination

equipment, we introduce three different functions for the parameter C. First, the

constant function is invariant to changes in wavelength granularity. The second

function scales the cost of a wavelength over a fiber linearly with the wavelength’s

bandwidth. Finally, three different geometric functions (factors 1.5, 2.5, and 3.5),

bounded by the constant and linear functions, have been evaluated.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10

β
 /
 α

Bandwidth per wavelength (Gbps)

Linear
Geometric (1.5)
Geometric (2.5)
Geometric (3.5)

Constant

Figure 5.13: Different Wavelength/Fiber Cost Models vs. Wavelength Granularity

Table 5.3 summarizes our results for different wavelength bandwidths and cost

models. For the reference case featuring 2.5Gbps wavelength granularity and

10Gbps fiber capacity, the cost is obtained as in equation 5.11 with α = β = 1

- see also figure 5.13. For all other cases, α has been fixed at 1 (as fiber capacity

remains fixed at 10Gbps) while β (and thus, β
α

) takes on values as shown in fig-

ure 5.13. For all wavelength granularities presented (and thus, maximal number

of wavelengths per fiber), our DLT-based approach outperforms the parallelizing

heuristic and follows the ILP approach closely. This remains the case over all

different cost models.

Figure 5.14 shows the resulting network cost obtained with the DLT approach

for different models of the wavelength per fiber cost. Note that fiber capacity is

fixed at 10Gbps in this figure, which explains the small cost differences for high

wavelength data rates as the network cost is dominated by the fiber cost (which

SCALABLE LAMBDA GRID DIMENSIONING 5-23

B (Gbps) Algorithm Constant Geo (1.5) Geo (2.5) Geo (3.5) Linear

0.155

DLT 58361.1 27602.13 11815.0 7384.46 6241.2

ILP 58241.08 27548.26 11795.06 7373.76 6254.76

Par. Heuristic 58485.23 27755.44 12072.47 7739.88 6648.85

0.622

DLT 16780.2 12147.2 8407.4 6772.856 6241.2

ILP 16760.0 12134.00 8398.68 6766.76 6254.96

Par. Heuristic 16992.92 12395.82 8723.89 7136.62 6650.31

2.5

DLT 6259.54 6259.54 6259.54 6259.54 6259.54

ILP 6259.54 6259.54 6259.54 6259.54 6259.54

Par. Heuristic 6660.23 6660.23 6660.23 6660.23 6665.23

10

DLT 3605.77 4079.58 4986.93 5909.23 6364.6

ILP 3605.77 4066.15 4986.92 5906.54 6364.62

Par. Heuristic 4116.92 4555.38 5432.30 6309.23 6762.69

Table 5.3: Network cost for different wavelength/fiber cost models and wavelength

granularity

grows bigger than the average wavelength cost) in these cases.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 1 2 3 4 5 6 7 8 9 10

C
o
s
t

Bandwidth per wavelength (Gbps)

Linear
Geometric (1.5)
Geometric (2.5)
Geometric (3.5)

Constant

Figure 5.14: DLT Cost vs. Wavelength Granularity for European network under

different wavelength/fiber cost models

5.4.10 Scheduling Strategies

In the previous sections, all results have been obtained for uniform excess load

distribution over all remote sites (i.e., k = 12 for 13-node networks). As our

model supports the combined dimensioning of the network and optimal selection

5-24 CHAPTER 5

of load-balancing sites, figures 5.15 and 5.16 show the results for the DLT, ILP, par-

allelizing and incremental heuristic approaches for different scheduling strategies

(k-values). These results were obtained on the previously used sets of randomly

generated networks (10 networks per set) with average connectivity 0.1 and 0.9,

respectively.

In all cases, the DLT and ILP approaches give similar network costs, outper-

forming both the parallelizing and incremental heuristics. Note though that in

some cases, the DLT approach yields better solutions than the ILP approach, which

can be attributed to the limited computational resources available to the ILP solver

and enforced time constraints. The results for the parallelizing heuristic approach

(as a function of k) can be explained as follows: for each individual excess load

scenario, the heuristic “optimizes” network cost by selecting the k closest (with re-

spect to hop count) remote sites. For high average connectivity values, the amount

of sets resulting in minimal cost is higher than for lower average connectivity val-

ues. This means that the parallelizing heuristic approach (which does not correlate

individual scenarios) is prone to selecting previously unused resources, resulting

(after deciding on global capacities) in high network costs. This effect decreases

for larger values of k, as the number of sets resulting in minimal network costs is

lowered.

On the other hand, for low average connectivity values, the remote sites yield-

ing minimal network cost are more likely to form a unique set. As such, higher

k-values imply higher network costs due to the use of remote sites located further

away (with regard to hop count). In addition, the difference between the network

cost obtained through the heuristics and the network costs obtained by using the

DLT or ILP approaches is smaller in the case of lower average connectivity be-

cause the heuristics are forced into using the same resource set as used by the DLT

and ILP methods.

The same argument explains why the parallelizing heuristic seems to perform

badly for high connectivity and low k-values when compared to the heuristics

operating in the low connectivity, low k-value scenarios. This is because of the

possible existence of multiple optimal solutions to a single overload scenario in

the former case, which implies that a simple maximization (in case the paralleliz-

ing heuristic is used) over all these individual scenarios (without correlation) may

perform erratically, depending on which optimal solution was selected in each in-

dividual scenario.

Better results are obtained using the incremental heuristic, as this heuristic of-

fers the advantage that partial solutions are carried over to the next iteration. This

subproblem correlation approach ultimately yields better results than the paral-

lelizing heuristic. However, because even with the incremental heuristic the opti-

mal solution to previously solved subproblems still remains fixed in all subsequent

iterations, an optimal solution to the global problem is not necessarily obtained.

SCALABLE LAMBDA GRID DIMENSIONING 5-25

 3500

 4000

 4500

 5000

 5500

 6000

129631

C
o
s
t

Number of remote sites executing workload schedule

DLT
ILP

Incremental
Parallelizing

Figure 5.15: Cost vs. Scheduling Strategy for random networks with 13 nodes,

p = 0.9

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 7000

129631

C
o
s
t

Number of remote sites executing workload schedule

DLT
ILP

Incremental
Parallelizing

Figure 5.16: Cost vs. Scheduling Strategy for random networks with 13 nodes,

p = 0.1

5.4.11 Applicability of DLT

The results presented so far show that the DLT approach to modeling and solving

the optical transport network dimensioning problem (in the context of Grid excess

5-26 CHAPTER 5

load handling) approximates the ILP based approach quite well in case this latter

method becomes intractable due to large job numbers. This in turn means that

the DLT approach can be used by network operators to obtain network costs for

different interconnection topologies and compare them (e.g., in order to determine

the most cost effective interconnection topology, given an excess load scenario that

the resulting Grid must support). While we studied several parameter variations,

so far we have limited our discussion to the base scenarios featuring a single excess

load source and 100% dependable resources. In the next part of this chapter, we

systematically study extensions to this base scenario along both axes.

5.5 Extension to Multiple Excess Load Sources

Up till now, the operational scenarios consisted of a single overloaded Grid site

distributing its excess load to a collection of remote sites. In this section, we shed

some light on the implications caused by considering Grid operational scenarios

featuring multiple overloaded sites.

Assume that, in a Grid with N sites, each site’s computational resource has

a constant processing capacity of C. Furthermore, assume k(1 ≤ k ≤ N − 1)

overloaded sites are present and the total aggregate load on these sites is fixed at

T ≤ NC. The amount of excess load generated at each of these k source sites is
T−kC

k
. Assuming that the excess load is distributed uniformly among the N − k

remote sites, let λk denote the total number of demanded wavelengths from all

overloaded sites to each receiving remote site.

Using parameters D and B as in section 5.3.7, this quantity can be expressed

as

λk = k

⌈

Lk

k

⌉

(5.26)

where

Lk = D
T − kC

(N − k)B
(5.27)

Expressing Lk in terms of L1 yields

Lk = L1 +
D(k − 1)(T −NC)

B(N − 1)(N − k)
(5.28)

= L1 − |∆k| (5.29)

Because of

|∆k+1|

|∆k|
=

k(N − k)

(N − k − 1)(k − 1)
(5.30)

≥ 1 (5.31)

SCALABLE LAMBDA GRID DIMENSIONING 5-27

we have that L1 ≥ L2 ≥ . . . ≥ LN−1. From equation 5.26, it follows that

λ1 = ⌈L1⌉ ≥ L1. We can now provide an upper bound on λk:

λk = k

⌈

Lk

k

⌉

(5.32)

≤ Lk + k (5.33)

= L1 + k − |∆k| (5.34)

≤ λ1 + k − |∆k| (5.35)

Since T ≤ NC we can distinguish between two cases:

• Case 1: T = NC. From the definition of |∆k| we can conclude that in this

case |∆k| = 0 and λ1 = λ2 = . . . = λN−1.

• Case 2: T < NC. In this case, we have |∆k| > 0.

Because k and λk are both integers, we can state that in both cases the follow-

ing upper bound is valid for 2 ≤ k ≤ N − 1:

λk ≤ λ1 + k − 1 (5.36)

The above results are valid if excess load from every source is distributed to

all remaining remote sites. An alternative set of multi-source scenarios can be

envisioned, using the concept of partitioning as explained in chapter 4. This way,

the collection of remote sites is partitioned into k (1 ≤ k ≤ N
2) subsets. Each

subset is dedicated to the absorption of excess load from one source only. If all

remote sites are to be engaged in each scenario then in general there will be k − 1

subsets containing
⌊

N−k
k

⌋

remote sites and 1 subset with
⌈

N−k
k

⌉

remote sites in

it.

Assuming a Grid setup where N−k
k

is integer, and denoting the total number

of wavelengths destined for a single remote site λ′
k (obviously, λ′

1 = λ1), we have

λ′
k =

⌈

L′
k

k

⌉

(5.37)

where

L′
k = D

k(T − kC)

(N − k)B
(5.38)

= kLk (5.39)

Because ⌈Lk⌉ ≤ k
⌈

Lk

k

⌉

, it follows that in this case

λ′
k ≤ λk (5.40)

Until now, the total aggregate load T on the collection of sources was assumed

constant. Another set of multi-source scenarios consist of those scenarios where

5-28 CHAPTER 5

the total excess load E generated by the source nodes is constant. For every k-

source scenario, the total excess load is given by E = T−kC. Since schedulability

requires that T ≤ NC, this kind of scenario is only realistic for values of k ≤
NC−E

C
.

When excess load is distributed to all of the N − k remote sites, we now have

that

λk = k

⌈

Lk

k

⌉

(5.41)

where

Lk =
DE

(N − k)B
(5.42)

Because k ≤ NC−E
C

, Lk reaches its maximal value for k = NC−E
C

. Since

λk ≤ Lk + k, it follows that

λk ≤ Lk[k :=
NC −E

C
] + k (5.43)

=
DC

B
+ k (5.44)

If we again consider the approach where the Grid is partitioned into k subgrids,

we can deduce the following bound:

λ′
k ≤

DC

B
+ 1 (5.45)

The above formulas bound the change in wavelength path demand when adding

additional sources to the base scenario. The resulting lambda Grid dimensioning

cost, however, also depends on the number of fibers required to support all elemen-

tary scenarios (see e.g. equation 5.11). To incorporate this factor some knowledge

concerning the optical network’s topology must be present.

For regular topologies with k = 2 sources and constant aggregate excess load,

the exact effects on the cost components can be derived analytically. In a bidirec-

tional ring OTN topology (one of the regular topologies discussed in section 5.3.8),

for example, the base scenarios require a number of fibers on each of the 2N di-

rected links equal to
⌈

⌊

N
2

⌋

λ1

W

⌉

(5.46)

as there exists a link in each scenario that needs to support traffic to ⌊N
2 ⌋ remote

sites. For the two-source partitioning scenarios, this figure is reduced to

⌈

⌈

N
2 − 1

⌉

λ′
2

W

⌉

(5.47)

SCALABLE LAMBDA GRID DIMENSIONING 5-29

which is determined by observing the most loaded link in the ring in case the two

source nodes are neighbors.

To calculate the average wavelength path cost, we continue as follows. Be-

cause of the topology’s symmetry, we can limit our analysis to those scenarios

where one source node is the node labeled 0. If the second source node is node

S and shortest path routing is enforced, we can decide for each node k (different

from 0 and S) which source node it should process excess load from. This is, be-

cause of shortest path routing, the closest source to node k i.e. either node 0 or

node S, depending on

min(dk,0, dk,S) (5.48)

where

dk,0 =

{

k, k ≤
⌊

N
2

⌋

N − k, k >
⌊

N
2

⌋ (5.49)

and similarly

dk,S =

{

(k − S) mod N, k = (S + 1), . . . ,
(

S +
⌊

N
2

⌋)

mod N

(S − k) mod N, k =
(

S +
⌊

N
2

⌋

+ 1
)

, . . . , (S − 1) mod N

(5.50)

Assigning the closest excess load source to each site, the N − 2 remote sites

in the ring can be partitioned into 4 sets. Set SS
1 contains the nodes 1, 2, . . . ,

⌊

S
2

⌋

,

SS
2 contains

⌊

N+S
2

⌋

+ 1, . . . , N − 1, set SS
3 consists of nodes

⌊

S
2

⌋

+ 1, . . . , S− 1

and nodes S + 1, . . . ,
⌊

N+S
2

⌋

make up set SS
4 . Note that, depending on the exact

value of 1 ≤ S ≤ N − 1, some of these sets may prove to be empty. For our

analysis, we only need the size of these sets, given by

|SS
1 | =

{

0, S = 1
⌊

S
2

⌋

, S > 1
(5.51)

|SS
2 | =

{

0, S ≥ N − 2

N − 1−
⌊

N+S
2

⌋

, S < N − 2
(5.52)

|SS
3 | =

{

0, S ≤ 2

S − 1−
⌊

S
2

⌋

, S > 2
(5.53)

|SS
4 | =

{

0, S = N − 1
⌊

N+S
2

⌋

− S, S < N − 1
(5.54)

Using these numbers, the average wavelength path cost over all
N(N−1)

2 sce-

narios in the bidirectional ring dual excess load source case can be written as

1

N − 1

N−1
∑

S=1

4
∑

i=1

|SS
i |
∑

k=0

2kλ′
2 (5.55)

5-30 CHAPTER 5

equalling

λ′
2

N − 1

N−1
∑

S=1

4
∑

i=1

|SS
i |(|S

S
i |+ 1) (5.56)

In contrast, the average number of wavelength paths carried on the links in the

base scenarios (where the links directly connected to the source node carry at worst

traffic for ⌊N
2 ⌋ nodes) is given by

2λ1

(⌊

N

2

⌋)2

(5.57)

Comparing the costs of the dual source partitioning scenario to the base sce-

nario on the bidirectional ring thus yields (for C = 1)

λ′
2

N−1

∑N−1
S=1

∑4
i=1 |S

S
i |(|S

S
i |+ 1) + 2N

⌈

⌈N
2
−1⌉λ′

2

W

⌉

2λ1

(⌊

N
2

⌋)2
+ 2N

⌈

⌊N
2 ⌋λ1

W

⌉ (5.58)

For our reference parameter choices (C = 1, W = 4, N = 13, wavelength

granularity 2.5Gbps and excess load generated as in section 5.4.4) this fraction

equals 0.9.

If we consider a full mesh topology instead, the average wavelength path cost

changes from

2(N − 1)λ1 (5.59)

in the base scenario to

2(N − 2)λ′
2 (5.60)

when two-source partitioning scenarios are being considered.

Each link now requires
⌈

λ′
2

W

⌉

(5.61)

fibers, compared to the
⌈

λ1

W

⌉

(5.62)

fibers required per link in the base scenario.

The change in cost incurred by the two-source partitioning scenario on a full

mesh topology is thus (for C = 1)

2(N − 2)λ′
2 + N(N − 1)

⌈

λ′
2

W

⌉

2(N − 1)λ1 + N(N − 1)
⌈

λ1

W

⌉ (5.63)

which yields 1.03 for the reference parameter settings we used.

SCALABLE LAMBDA GRID DIMENSIONING 5-31

In figure 5.17, we have plotted the dimensioning cost for the random network

dual excess load source scenario problem and compared it to the dimensioning

cost in the base scenario. The excess load is kept constant and has been generated

following the recipe described in section 5.4.4. Again, for each value of p, 10

networks have been taken into account. Note how the cost differences shown in

this figure are in line with the values predicted by equations 5.58 and 5.63, roughly

corresponding to the cases p = 0.1 and p = 1, respectively. As p increases, more

routing opportunities are available in the networks, decreasing the possibility of

badly (i.e. resulting in high network costs) situated sources, as in the bidirectional

ring scenario featuring two neighboring sources. Thus, for high values of p there

is not much to be gained when half of the excess load is generated at a second

“well-placed” source. On the contrary, as the same excess load is now processed

by |R| − 2 remote sites, the cost for the dual source scenario may surpass the cost

of the base scenarios for high p values, as indicated by the numerical evaluation of

expression 5.63.

 3500

 4000

 4500

 5000

 5500

 6000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
s
t

p

Base Scenario
Dual Source Scenario

Figure 5.17: Dual Source Scenario Cost for Random Networks

5.6 Extension to Resource Failure Scenarios

In the initial set of scenarios we have studied only involved a single source node

and assumed reliable Grid resources. In the previous section, we have extended our

notion of scenario to include multiple source nodes, still assuming these resources

do not fail.

5-32 CHAPTER 5

In this section, we extend our base scenarios into another direction, taking

into account possible resource failures. In particular, a single elementary scenario

in this section is described by a (source,failure) pair, denoting the single source

present in each scenario, and the single resource failure (if any) occurring in this

scenario.

We can discern 3 kinds of resource failures, corresponding to the most promi-

nent resource types in our analysis:

• computational resource failures

• optical cross-connect failures

• network link failure, effectively cutting all fibers inside

The effects of a computational resource failure are that the affected resource

cannot handle any excess load from the overloaded source. The wavelength rout-

ing capabilities of the underlying optical cross-connect, however, are deemed to

remain operational. In contrast, in case of an optical cross-connect failure, net-

work traffic can no longer be routed over this cross-connect. This means the failure

scenario can be treated as a base scenario where the affected cross-connect and all

links incident to and from it have been left out of the original network. The last

failure scenario only affects a single link.

Note that an optical cross-connect failure implies the unavailability of the con-

nected computational resource and thus encompasses the computational resource

failure scenario. In addition, the unavailability of an optical cross-connect implies

that the links connected to it remain unused (it is assumed that no jobs are submit-

ted to the OXC’s corresponding computational resource, as there is effectively no

way to route these jobs elsewhere).

Therefore, when representing the cost of protecting the lambda Grid against

different types of resource failures, we will limit ourselves to the additional net-

work dimensioning cost related to the protection against optical cross-connect fail-

ures and compare this cost to the cost associated with the single source scenarios

discussed previously in this chapter.

Thus, the failure scenarios for which numerical results have been obtained are

the optical cross connect failure scenarios, under the condition that such a failure

does not partition the Grid’s interconnecting network.

To accommodate our new definition of the elementary scenario (encompassing

both a source node and failing node), the combined dimensioning and workload

scheduling linear program needs to be adapted as follows.

5.6.1 Computational Resource Failure

The notion of a single failing computational resource at node n can easily be incor-

porated into the combined dimensioning and workload scheduling linear program

SCALABLE LAMBDA GRID DIMENSIONING 5-33

by modifying equation 5.18 to read
∑

r∈R\{S,n}

αr = α
y
S − αx

S (5.64)

This effectively excludes any excess load generated at source node S from being

scheduled on the now-defunct computational resource at node n.

5.6.2 Optical Cross-Connect Failure

To model the failure of an optical cross-connect, note that such an optical cross-

connect will be completely unused if all links incident to and from it are void of

traffic. Therefore, we can model the failure of an optical cross-connect at node

n by modifying network flow equation 5.6 to exclude these links from the flow

conservation constraints as follows:

∀u ∈ R\{n},∀v ∈ R\{u, n}.
∑

e∈E+
v \E−

n

cS
eu + dS

uv =
∑

e∈E−
v \E+

n

cS
eu (5.65)

Indeed, as network cost increases when more fibers and wavelengths are acti-

vated and we are dealing with a cost minimization problem, the net effect of the

exclusion is that the affected cross-connect as well as any links to and from it will

not be used in the observed scenario. After all, suppose that a solution to the net-

work dimensioning problem is obtained in which an affected link is not void of

traffic, we can immediately derive another valid solution which is cheaper.

Note that only those failure scenarios preserving the network’s connectedness

have been studied, as stated in section 5.6.

5.6.3 Link Failure

In a similar way to the approach described in the previous section, we can model

the failure of a single link l by modifying flow equation 5.6. Replacing that equa-

tion with

∀u ∈ R\{n},∀v ∈ R\{u, n}.
∑

e∈E+
v \{l}

cS
eu + dS

uv =
∑

e∈E−
v \{l}

cS
eu (5.66)

ensures that traffic is routed over operational links only. Note that link failure in a

network topology featuring low average connectivity may result in a disconnected

network.

5.6.4 Impact on Dimensioning Cost

In this section, we study the increased dimensioning cost incurred by considering

the possible optical cross-connect failure scenarios and compare it to the dimen-

sioning cost of the base scenario featuring a single source and no failures.

5-34 CHAPTER 5

From our new definition of the elementary scenario, it follows that the number

of possible scenarios greatly increases when adding the concept of single resource

failures. Therefore, from this point on, all dimensioning costs in this chapter have

been obtained using the incremental heuristic described in section 5.3.3. As this

heuristic evaluates the scenarios sequentially, we have repeated each heuristic run

10 times (for different scenario orderings) as to reduce the resulting solution’s

sensitivity to scenario reordering, as demonstrated by the numbers shown in fig-

ure 5.18 which represent sequential improvements in network dimensioning cost

when dimensioning our set of 13-node random networks (with p = 0.1) for the

optical cross-connect failure scenarios using the incremental heuristic. Again, the

excess load used in these scenarios is the one described in section 5.4.4.

0.5

1

1.5

2

2.5

3

3.5

7→ 105→ 73→ 51→ 3

C
o
st

Im
p
ro

v
em

en
t

(%
)

Additional Scenario Orderings

Figure 5.18: Incremental Heuristic: Sensitivity to Number of Investigated Scenario

Orderings

We have performed the lambda Grid dimensioning for the failure scenarios for

different parameter sets including the Grid’s scheduling strategy, the wavelength

granularity and job I/O asymmetry.

Again, for the reference case we assume uniform workload distribution (featur-

ing perfect I/O symmetry) over all operational remote nodes and assume 2.5Gbps

wavelengths. The cost increase for this reference case on our set of random net-

works due to OXC failure protection has been plotted in figure 5.19.

For a regular topology like the bidirectional ring, it is possible to derive analyt-

ical results with regard to the expected additional costs components (both wave-

length path and fiber costs) as follows.

SCALABLE LAMBDA GRID DIMENSIONING 5-35

 3500

 4000

 4500

 5000

 5500

 6000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

C
o
s
t

p

OXC Failure, k=11
Base Scenario, k=12

Figure 5.19: OXC Failure Protection Cost Increase for Random Networks

If the excess source node is node 0 and the OXC at node n − 1 fails, the link

carrying the bulk of the traffic is situated between nodes 0 and 1, as all working

traffic for nodes 1, . . . , ⌊N
2 ⌋ as well as traffic routed on the backup path for nodes

⌊N
2 ⌋+ 1, . . . , N − 2 is routed over this link.

In order to support all node failure scenarios in such a bidirectional ring, each

of the 2N directed links needs to be provisioned with at least an amount of fibers

equal to








(

λ1 +
⌈

λ1

N−2

⌉)

(N − 2)

W









(5.67)

This number is obtained by observing the link between nodes 0 and 1 and assuming

that redistributing λ1 wavelengths from the failing node to the N − 2 remaining

ones increases the wavelength demand for each of those nodes to λ1 +
⌈

λ1

N−2

⌉

.

In contrast, in the single site excess load scenario (without taking into account

possible OXC failures) this number is only

⌈

λ1

⌊

N
2

⌋

W

⌉

(5.68)

In the envisioned bidirectional ring failure scenario, the number of wavelength

paths (originating from node 0, with node F failing) carried on the network links

5-36 CHAPTER 5

equals

2

F−1
∑

k=1

k(λ1 +

⌈

λ1

N − 2

⌉

) + 2

N−1
∑

k=F+1

(N − k)(λ1 +

⌈

λ1

N − 2

⌉

) (5.69)

Thus, averaged over all scenarios we obtain

λ1 +
⌈

λ1

N−2

⌉

N − 1

N−1
∑

F=1

(

2

F−1
∑

k=1

k + 2

N−1
∑

k=F+1

(N − k)

)

(5.70)

which reduces to

2N(N − 2)
(

λ1 +
⌈

λ1

N−2

⌉)

3
(5.71)

For the base scenarios, this average number of wavelength paths carried on the

links is given by

2

⌊N
2 ⌋
∑

k=1

kλ1 + 2
N−1
∑

k=⌊N
2 ⌋+1

(

k −

⌊

N

2

⌋)

λ1 (5.72)

which in turn can be simplified to

2λ1

(⌊

N

2

⌋)2

(5.73)

For a bidirectional ring topology, the cost increase for the OXC failure protec-

tion (compared to the base scenario) is therefore (in case C = 1)

2N(N−2)(λ1+⌈ λ1
N−2⌉)

3 + 2N

⌈

(λ1+⌈ λ1
N−2⌉)(N−2)

W

⌉

2λ1

(⌊

N
2

⌋)2
+ 2N

⌈

λ1⌊N
2 ⌋

W

⌉ (5.74)

which equals 1.60 under our set of assumptions concerning shortest-path routing

and equal-sized input and output data sets, using excess load as described in sec-

tion 5.4.4 and the values C = 1, N = 13, W = 4 and wavelength granularity

2.5Gbps.

From figure 5.19, it follows that in our reference case the cost increase incurred

by providing OXC failure resilience to the base scenarios is no more than 10% for

our set of random networks.

The figures obtained for the bidirectional ring topology are much higher be-

cause that particular topology features a failure scenario in which all traffic is

rerouted over a single network link (regardless of the excess load source under

SCALABLE LAMBDA GRID DIMENSIONING 5-37

observation), thus making the bidirectional ring the worst envisionable topology

with low average connectivity (while being resilient to single node failures).

Furthermore, in the above formulas it has been assumed that network traffic in

the base scenario fills exactly λ1 wavelength paths.

For a full mesh topology in which shortest-path routing is enforced, the average

number of wavelength paths on the links in over all OXC failure scenarios changes

to

2(N − 2)

(

λ1 +

⌈

λ1

N − 2

⌉)

(5.75)

from

2(N − 1)λ1 (5.76)

The total number of fibers needed over all scenarios is then given by

N(N − 1)









(

λ1 +
⌈

λ1

N−2

⌉)

W









(5.77)

and is simply given by

N(N − 1)

⌈

λ1

W

⌉

(5.78)

in absence of OXC failures.

Under our assumptions, the relative cost increase due to OXC failure protection

for full mesh interconnection networks is thus given by (again, C = 1)

2(N − 2)
(

λ1 +
⌈

λ1

N−2

⌉)

+ N(N − 1)

⌈

(λ1+⌈ λ1
N−2⌉)

W

⌉

2(N − 1)λ1 + N(N − 1)
⌈

λ1

W

⌉ (5.79)

which yields 1.06 with our reference parameter settings. Note how this value cor-

responds closely to the cost difference shown in figure 5.19 for highly connected

networks (p = 0.9). As for higher p values more routing opportunities are avail-

able in the networks, protection from single OXC failures comes at lower addi-

tional cost when compared to the networks corresponding to lower values of p.

Of course, the ultimate network dimensioning cost when protecting against single

OXC failures is higher than the costs for the base scenarios, as excess load is now

distributed among only |R| − 2 remote sites.

5.6.4.1 Job I/O Asymmetry

While in the reference case jobs are assumed to produce as much output data as

they need input data, figure 5.20 shows the dimensioning costs for OXC failure

resilient lambda Grids for I/O asymmetric jobs. These results are obtained for our

5-38 CHAPTER 5

set of 10 random networks corresponding to p = 0.1 and excess load generated

following the recipe described in section 5.4.4.

The reasons for the existence of the symmetry and local minimum have been

explained in section 5.4.8. For all asymmetry factors studied, the additional dimen-

sioning cost in case OXC failure protection is incorporated does not exceed 10%.

The cost increase is maximal around the point where input and output data are of

equal size (i.e. DI = DO, see section 5.4.8). In this case, network dimensions

are determined by max(DI ,DO) which is minimal when DI = DO (if DI + DO

is constant). As taking into account possible OXC failures needs extra network

capacity when compared to the base scenario, the network capacity needed to sup-

port possible OXC failures will differ most from the base scenario cost in case

DI = DO as in this case there is minimal room for wavelength and fiber re-use

(and thus, the most extra capacity needs to be installed when DI = DO).

 5500

 6000

 6500

 7000

 7500

 8000

 0.01 0.1 1 10 100

C
o
s
t

Job I/O asymmetry factor

OXC Failure, k=11
Base Scenario, k=12

Figure 5.20: Traffic Asymmetry: OXC Failure Protection Cost for Random Net-

works (p = 0.1)

5.6.4.2 Wavelength Granularity

As in section 5.4.9, we have revisited the resulting network dimensioning costs for

different wavelength granularities (155Mbps, 622Mbps, 2.5Gbps and 10Gbps)

while limiting the number of wavelengths per fiber in such a way that total fiber

capacity remains fixed at 10Gbps. Again, the results are obtained for our set of

10 random networks corresponding to p = 0.1 and excess load generated as de-

scribed in section 5.4.4. We used the linear wavelength/fiber cost model discussed

SCALABLE LAMBDA GRID DIMENSIONING 5-39

in section 5.4.9 - to compare to the values in table 5.3, results in figure 5.21 must

be divided by the correct value of β. For all wavelength granularities examined,

the dimensioning cost for the OXC failure resilient lambda Grid does not exceed

the base scenario dimensioning cost by more than 5%, as is demonstrated in fig-

ure 5.21.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

102.50.6220.155

C
o
s
t

Bandwidth (Gbps)

Base Scenario, k=12
OXC Failure, k=11

Figure 5.21: Wavelength Granularity: OXC Failure Protection Cost for Random

Networks (p = 0.1)

5.6.4.3 Scheduling Strategies

In the previous sections, excess workload in each scenario was distributed among

all remote Grid sites. Figure 5.22 compares the resulting dimensioning cost for the

base scenarios and the OXC failure resilient lambda Grid for varying numbers of

remote sites participating in the excess workload absorption. For this figure, we

used the same set of 10 random networks (for p = 0.1) again, as well as the excess

load from section 5.4.4. We see comparable increases (between 5 and 10%) in

dimensioning cost for all numbers of active remote sites.

5.7 Conclusions

In this chapter, we have studied the dimensioning problem of an optical circuit

switched transport network for Grid applications. The initial operational scenario

considered was that of a single Grid site generating excess load. We presented

5-40 CHAPTER 5

 4000

 4200

 4400

 4600

 4800

 5000

 5200

 5400

 5600

 5800

 6000

 2 4 6 8 10

C
o
s
t

Number of remote sites executing workload schedule

Base Scenario
OXC Failure

Figure 5.22: Scheduling Strategy: OXC Failure Protection Cost for Random Net-

works (p = 0.1)

and discussed a solution for this dimensioning problem using a model based on

divisible load theory (DLT). We compared this model to an integer linear program-

ming formulation using an exact job-level workload description, and proposed ad-

ditional simplifications to solve the problem. These simplifications consist of a

parallelizing heuristic and an incremental heuristic, both attempting to solve the

resulting linear programs in a more timely fashion.

Results show that the global optimization of single overloaded source scenarios

using the exact job-level ILP formulation is possible only for a low number of

jobs. However, we have established the convergence of the DLT-based approach

and this job-level ILP formulation for increasing number of jobs. This indicates

that the DLT formulation is of practical use in cases where the exact ILP becomes

computationally intractable. Additionally, we have presented heuristic methods

based on the job-level ILP model. These heuristics show better scaling behavior

for high number of jobs, although they are consistently outperformed by the DLT-

based method.

We validated these conclusions for a wide range of parameter variations, most

notably network topology (through variation in average link probability), wave-

length granularity and cost model, changes in traffic demand (a)symmetry and

Grid scheduling policy.

In addition, we elaborated on additional types of scenarios, including scenarios

featuring multiple Grid excess load sites and scenarios demonstrating resilience

SCALABLE LAMBDA GRID DIMENSIONING 5-41

against single resource failures. For the topologies and scenarios studied in this

chapter, the additional lambda Grid dimensioning cost incurred by explicitly in-

corporating possible optical cross-connect failures in the dimensioning problem

remained below 10% when compared to the dimensioning cost of our base prob-

lem.

We can conclude that our DLT-based approach is of practical use to network

operators interested in selecting and dimensioning a suitable OCS Grid intercon-

nection topology, including selection of optimal wavelength granularity.

5-42 CHAPTER 5

References

[1] The TeraGrid project. http://www.teragrid.org/.

[2] D. Simeonidou, R. Nejabati, B. St. Arnaud, M. Beck, P. Clarke, D. B.

Hoang, D. Hutchison, G. Karmous-Edwards, T. Lavian, J. Leigh, J. Mam-

bretti, V. Sander, J. Strand, and F. Travostino. Optical Network Infrastructure

for Grid. Global Grid Forum Informational Document, 2004.

[3] L. Smarr, A. Chien, T. DeFanti, J. Leigh, and P. Papadopoulos. The OptI-

Puter. Communications of the ACM, 46:58–67, 2003.

[4] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. Arnaud. TransLight:

A Global-Scale LambdaGrid for e-Science. Communications of the ACM,

46:34–41, 2003.

[5] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,

and Parkson Wong. Theory and Practice in Parallel Job Scheduling. In

Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, pages 1–34. Springer Verlag, 1997.

[6] L. Hall, A. Schulz, D. Shmoys, and J. Wein. Scheduling To Minimize Average

Completion Time: Off-line and On-line Algorithms. In SODA: ACM-SIAM

Symposium on Discrete Algorithms (Conference on Theoretical and Experi-

mental Analysis of Discrete Algorithms), pages 142–151, 1996.

[7] L. Hall, A. Schulz, D. Shmoys, and J. Wein. Scheduling To Minimize Average

Completion Time: Off-line and On-line Algorithms. In SODA: ACM-SIAM

Symposium on Discrete Algorithms (A Conference on Theoretical and Ex-

perimental Analysis of Discrete Algorithms), pages 142–151, 1996.

[8] M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Re-

source Management Systems: Queueing vs. Planning. In Proceedings of the

9th Workshop on Job Scheduling Strategies for Parallel Processing, LNCS

2862/2003, pages 1–20, 2003.

[9] J.S. Choi. A Survey of Routing and Wavelength Assignment Schemes in Wave-

length Routed Optical Networks: Static Case. In Proceedings of Wireless and

Optical Communications (WOC2003), pages 91–108, 2003.

[10] N. Wauters and P. Demeester. Design of the Optical Path Layer in Multi-

wavelength Cross-Connected Networks. IEEE Journal on Selected Areas in

Communications, 14:881–892, 1996.

SCALABLE LAMBDA GRID DIMENSIONING 5-43

[11] D. Banerjee and B. Mukherjee. Wavelength-Routed Optical Networks:

Linear Formulation, Resource Budgeting Tradeoffs, and a Reconfiguration

Study. IEEE/ACM Transactions on Networking, 8:598–607, 2000.

[12] D. Coudert and H. Rivano. Lightpath Assignment for Multifibers WDM Net-

works with Wavelength Translators. In Proceedings of IEEE Globecom’02,

volume 3, pages 2686–2690, 2002.

[13] M. Tornatore, G. Maier, and A. Pattavina. WDM network optimization by ILP

based on source formulation. In Proceedings of IEEE Infocom’02, volume 3,

pages 1813–1821, 2002.

[14] D. Yu and T.G. Robertazzi. Divisible Load Scheduling for Grid Computing.

In Proceedings of the IASTED 2003 International Conference on Parallel and

Distributed Computing and Systems (PDCS), 2003.

[15] J.T. Hung, H.J. Kim, and T.G. Robertazzi. Scalable Scheduling in Parallel

Processors. In Proceedings of the 36th Annual Conference on Information

Sciences and Systems (CISS’02), pages 20–22, 2002.

[16] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic net-

work/application model for scheduling divisible loads on large-scale plat-

forms. Rapport de recherche de l’INRIA-Rhone-Alpes (RR-5197), 2004.

[17] P. Thysebaert, M. De Leenheer, B. Volckaert, F. De Turck, B. Dhoedt, and

P. Demeester. Scalable dimensioning of Optical Transport Networks for Grid

Excess Load Handling. Photonic Network Communications, 2006. Accepted

for Publication.

[18] P. Thysebaert, F. De Turck, B. Dhoedt, and P. Demeester. Using Divisible

Load Theory to Dimension Optical Transport Networks for Computational

Grids. In Proceedings of OFC/NFOEC - on CD-ROM, 2005.

6
On-Line Grid Scheduling

6.1 Introduction

Chapter 1 has provided an overview of Grid [1] environments. These environments

consist of a large number of heterogeneous resources, located at various Grid sites

and connected through a wide area network infrastructure. Arguments - mostly

based on the data-intensive nature of typical Grid applications - have been put

forward in favor of increased adoption of interconnecting networks using optical

technologies in this context [2, 3].

Ultimately, the massive processing power available in a Grid is exploited by

co-allocating multiple resources (of different types e.g. computational resources,

storage resources and network resources) to each job. The selection and allocation

of these resources to jobs is done by a scheduler. As explained in chapter 2, these

resource allocations are interdependent and therefore a scheduling model dealing

with rigid and a priori specified per-job resource demands [4–7] does not capture

the entire complexity of the Grid scheduling problem. In addition, it was shown

that an off-line scheduling model can benefit from treating the workload as arbi-

trarily divisible [8–10].

Such a model was briefly touched upon in chapter 5 in the context of a com-

bined off-line lambda Grid dimensioning and scheduling problem. In this chapter,

we first re-iterate the problem of an off-line Grid scheduling model. Starting with

a rigid project scheduling problem as described in chapter 2, we show how to ex-

tend this model to incorporate the notion of resource allocation interdependence

6-2 CHAPTER 6

(specifically the interdependence between computational resource and network re-

source allocations). As in the previous chapter, we assume the network to be an

optical circuit switched network meaning that our model contains wavelength con-

tinuity and granularity constraints.

Next, we invoke the notion of an arbitrarily divisible workload again to obtain

a more scalable linear program representing the off-line Grid workload scheduling

problem. As has been noted in chapter 5, the Grid dimensioning problem depends

on the workload the Grid is to process and the way this workload is scheduled.

As such, the off-line scheduling model presented in this chapter can be retrieved

(when applied to the workload in question) in the combined lambda Grid dimen-

sioning and excess load scheduling problem from the previous chapter.

While an off-line solution to the Grid workload scheduling problem is of use

to the off-line dimensioning problem, workload is scheduled on an operational

Grid by the scheduler(s) in an on-line fashion. In this chapter, several such on-

line scheduling policies are studied. We specifically focus on steady state Grid

workloads resembling (in size and resource requirements) the workload for which

the Grid has been dimensioned - recall that from our discussion on the combined

lambda Grid dimensioning and scheduling problem, the optimal off-line distribu-

tion of this workload follows from the solution to this problem.

The on-line scheduling policies mentioned here attempt to make use of this off-

line solution when selecting and allocating resources to incoming jobs. In order

to deal with scalability issues arising from the use of a fully centralized schedul-

ing system in an operational Grid, we consider a two-level scheduling approach

where resource selection and the interdependent allocation of multiple resources

are dealt with separately. The algorithms we compare in this chapter specifically

deal with the resource selection process. Our comparison uses various metrics and

cost functions, and we investigate the added value of incorporating the off-line

optimal workload distribution in the on-line scheduling process.

The resource models and lambda Grid interconnection topologies used in our

evaluations are similar to the ones used in previous chapters.

6.2 Models

A complete description of an on-line Grid scheduling framework comprises 4 ma-

jor components [11]:

• the application model

• the resource model

• the scheduling policy

• the performance model

ON-LINE GRID SCHEDULING 6-3

The major properties of these components correspond to the Grid resource

properties outlined in chapter 3, as we have used NSGrid for all simulations pre-

sented in this chapter, and are summarized below.

6.2.1 Application Model

In this chapter, we use the same application and job models as explained in sec-

tion 3.3.8 and figures 3.6 through 3.8, as it clearly reflects the resource allocation

interdependence problem.

When evaluating scheduling policies in this chapter, we limit ourselves to using

jobs requiring a single input data set and emitting a single output data set.

6.2.2 Resource Model

The time-shared resource (computational, storage and data replica) models used

here correspond to the resource models as described in sections 3.3.3 through 3.3.5.

As in the previous chapter, we will be dealing dealing with lambda Grids,

which means the interconnecting network (between the participating Grid sites)

comes in the shape of a circuit switched optical transport network. In order to

transfer data between different sites, so-called lightpaths must be set up between

these sites. The provisioning of an adequate number of lightpaths, the routing of

lightpaths over the different network edges and optical cross connects and the ex-

act wavelengths allocated to a lightpath are decided upon when dimensioning this

network - the type of problem discussed in chapter 5. As this chapter deals with

scheduling on an already deployed Grid infrastructure, it can be assumed that light-

paths have been setup and routed. It is assumed that a fixed-bandwidth window

on these lightpaths can be allocated to the jobs to be scheduled (see section 3.3.2),

much like the computational resource allocation is performed.

6.2.3 Scheduling Policies

The on-line scheduling policies detailed in section 6.4 operate as two-level hier-

archical scheduling algorithms and schedule arriving jobs as soon as possible on

a suitable set of resources (the criteria used to rank resources and assign them a

level of suitability is what the algorithms differ in). The algorithms do not operate

in batch mode (in which scheduling is performed at regular time instants and all

unscheduled jobs are scheduled together), but rather perform resource selections

as soon as a new job arrives.

Jobs cannot be pre-empted: once a job is started on its allocated resources, it

runs on those resources until completion. This means that jobs do not migrate and

cannot be interrupted (checkpointed) and rescheduled at a later time, even if such

action would improve the resulting schedule.

6-4 CHAPTER 6

The first level of the on-line scheduling framework concerns itself with re-

source selection. The metrics used to make this selection are described in the

following section. Once a resource set has been selected, these resources are co-

allocated to the job in order to minimize the job’s response time. This resource

allocation is performed by the local resource managers of the selected resources

without involvement of the resource selection mechanism. The use of two distinct

levels improves scalability of the scheduling infrastructure, as the top level does

not need to concern itself with the exact resource time windows allocated to each

job. This two-level approach makes the scheduling infrastructure more realistic;

this is reflected in the fact that currently deployed Grid scheduling mechanisms

need to interact with local schedulers and resource managers [12].

6.2.4 Performance Metrics

Both the off-line and on-line scheduling algorithms described distribute the Grid’s

load across all participating Grid resources. The load of a resource over some

period of time is taken to be the amount of work performed by that resource during

the observed time period (see figure 6.1) divided by the the resource’s capacity,

resulting in a number of “resource-seconds” - the minimal amount of time the

resource needs to perform all of the work performed in the observed interval. Thus,

the observed load is influenced by the time of observation, and the arrival and

completion of jobs on the observed resource. Unless mentioned otherwise, in this

chapter, the time interval over which a resource’s load has been calculated upon

arrival of a new job starts at that job’s arrival time and ends at the current schedule’s

makespan. Due to the nature of the workloads studied here (with workload sizes

approximating the Grid’s capacity), distributing these workloads may lead to a

near load balancing situation (which would be obtained exactly by minimizing

the maximal load observed on any one resource in the Grid).

When observing the Grid in steady state, the load on a resource can be defined

as the instantaneous amount of work being performed by the resource per time unit

divided by the resource’s capacity. For all resources, this yields a real number in

[0, 1] for its steady state load.

In both cases (i.e. with or without explicit time instants in the observations),

these metrics allow us to compare (the load on) the various resources as these met-

rics are expressed in the same units (either time units or dimensionless numbers)

regardless of the type of resource under investigation.

On-Line scheduling algorithms can be compared using the resource loads ob-

served during the scheduling process and using the response time (the difference

between completion and arrival times) experienced by the scheduled jobs making

up the Grid’s workload.

ON-LINE GRID SCHEDULING 6-5

t

C

Figure 6.1: Work performed by Time-shared Resource with Capacity C over time

6.3 Off-Line Multi-Resource Scheduling

6.3.1 Off-Line Scheduling Formulation

Off-line scheduling problems in which each scheduling decision involves the al-

location of multiple resources have been studied extensively in literature. Most

important classes of multicomputer and multiprocessor scheduling problems can

be described using linear programming as a special instance of a Resource Con-

strained Project Scheduling Problem (see chapter 2). This general case supports

the description of workloads needing allocations with multiple resource types,

where each resource requirements is known a priori.

While supporting multiple resource types is a fundamental requirement for ev-

ery Grid scheduling model (as e.g. computational resources, storage resources and

network links are all to be treated as first class resources in such an environment),

Grid scheduling problems differ from project scheduling problems in a few ways.

First, resource allocations for a single Grid job requiring multiple resources

may not be independent: Grid jobs which have been allocated only a small amount

of CPU time probably cannot make full use of high bandwidth network connec-

tions to storage resources, as they simply do not have time to process data arriving

at full rate.

In addition, the exact instantaneous resource demand of a Grid job is part of

the scheduling process and not fully known in advance, in contrast to its fixed to-

tal resource demand. This is because the jobs can be scheduled on time-shared

resources (the size of the share is determined in the scheduling process), and, be-

cause of the resource allocation interdependence mentioned before, this may affect

all other resource allocations for that particular job as well.

In section 6.3.2, we model the Grid scheduling problem (with resource and ap-

plication models as described in section 6.2) as an extended version of a Resource

Constrained Project Scheduling Problem. The extensions have the explicit goal

of taking into account the resource allocation interdependence and the dynamic

nature of their sizes.

However, while this formulation does completely capture our model of the

off-line Grid Scheduling problem in a linear program, we argue that this pro-

gram quickly becomes intractable even for modest Grid sizes. Therefore, in sec-

6-6 CHAPTER 6

tion 6.3.3, by making additional assumptions, we propose a more scalable version

of this linear program by making use of divisible load theory.

6.3.2 RCPSP Model

The off-line grid scheduling problem involving J jobs can be described as an

extension of a Multi-Modal Resource Constrained Project Scheduling Problem

(MMRCPSP) and thus modeled into an integer linear program, where each mode

in which a job can be executed is the collection of resource allocations assigned to

that job.

For this linear program, assume that each job j (which is submitted on its

home computational resource hj) is executed on a single computational resource

and processes a single data stream, located at the site where this job was submitted.

All output data generated by a job must be returned to its submission site, where it

is presented to the user responsible for launching the job. The job j is launched at

time rj , its computational length is lj , the amount of input data it processes is di
j

bytes, and the amount of output data generated is do
j .

The Grid itself is modeled after figure 6.2 and adheres to the following proper-

ties:

• The Grid is made up of several sites; these sites are interconnected through

an optical circuit switched (OCS) network, in which (virtual) lightpaths be-

tween sites have been established.

• Each site consists of a time-shared computational resource c with processing

capacity Cc and a time-shared storage resource s with total storage capacity

Ss, and is connected to the OCS network through a gateway.

• The intra-site networks are assumed to have sufficient capacity in order not

to create bottlenecks.

• The number of (virtual) wavelength paths that have been setup between the

sites hosting computational resources c and c′ is λcc′ . Each wavelength paths

offers data rate B. The total number of wavelength paths that have been set

up in the network is denoted L.

All of the above numbers are considered given and thus are input constants to

the scheduling problem. The key concept in modeling the complete Grid schedul-

ing problem (as opposed to a standard MMRCPSP) as an integer linear program

is to associate a set of dummy jobs with each job j; the number of dummy jobs

needed equals the number of resource types that need to be allocated by this job.

For instance, focusing on data streaming jobs, 3 dummy jobs are needed for each

real job, all of which are to execute simultaneously: one for the input data trans-

fer, one for the output data transfer and one for the processing (in contrast, for

ON-LINE GRID SCHEDULING 6-7

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site WAN

(a) Grid Model

Grid Portal

Information

Service
Scheduler Connection

Manager

Service

Monitoring

Gateway

Service

Manager
Storage

Resources

Data

Resources

Computational

Resources

Grid Resources Grid Management components

(b) Individual Grid Site Model

Figure 6.2: Grid and Grid Site Conceptual Models

data staging jobs, we would need the same three dummy jobs but with precedence

relations between them).

Directly related to the dummy jobs are the decision variables needed in the

problem: each dummy job needs to be scheduled on an available resource of the

appropriate type (identified by the type of dummy job).

Assuming a discrete time scale, with increasing time instants of interest la-

beled 0, 1, . . . , t, . . . , T (these time instants need not be equidistant but can, for

scalability reasons, as well be (geometrically) increasing in distance - see [6] for

instance), this leads us to introduce binary decision variables ri
jRbe, r

o
jRbe, r

p
jRbe

which equals one if and only if the dummy job of type i,o or p, respectively, for job

j is executed on resource R starting no earlier than time instant b and ending no

later than time instant e. The different resource types i, o, p point to network links

for input data transfer, network links for output data transfer and computational

resources used for the actual job processing. As we are dealing with discrete time

instants, the interval [tb, te[is to be interpreted as being the smallest interval con-

taining the affected job’s life cycle in its entirety, rather than representing accurate

values for the job’s start and completion times.

If we want to obtain a load balancing schedule (we will not consider alternative

factors such as resource usage cost), the following objective function may be used

as a minimization criterium:

Objective = MaxLoad + P ∗Makespan (6.1)

In this expression, “Makespan” refers to the resulting schedule’s makespan, “MaxLoad”

is the maximal load (over all resources) assigned to a resource and “P” is a penalty

factor which, when taken large enough, enforces the selection of a load balancing

schedule among all feasible schedules featuring minimal makespan by eliminat-

ing unnecessary idle time. These auxiliary quantities can be obtained from the

6-8 CHAPTER 6

constraints

∀j.Makespan ≥
C
∑

c=1

T−1
∑

b=0

T
∑

e=b+1

ter
p
jcbe (6.2)

∀c.MaxLoad ≥
J
∑

j=1

T−1
∑

b=0

T
∑

e=b+1

r
p
jcbelj

Cc

(6.3)

∀λ.MaxLoad ≥

∑J
j=1

∑T−1
b=0

∑T
e=b+1 di

jr
i
jλbe + do

jr
o
jλbe

B
(6.4)

Capacity constraints on the various resources are given by

∀c.∀t.
J
∑

j=1

t
∑

b=0

T
∑

e=t+1

ljr
p
jcbe

te − tb
≤ Cc (6.5)

∀λ.∀t.
J
∑

j=1

t
∑

b=0

T
∑

e=t+1

di
jr

i
jλbe + do

jr
o
jλbe

te − tb
≤ B (6.6)

∀s.
∑

j:s∈hj

do
j ≤ Ss (6.7)

Since a job j only arrives at time rj , it cannot be started before that time:

∀j.
C
∑

c=1

∑

b:tb<rj

T
∑

e=b+1

r
p
jcbe = 0 (6.8)

A unique schedule is obtained if

∀j.
C
∑

c=1

T−1
∑

b=0

T
∑

e=b+1

r
p
jcbe = 1 (6.9)

∀j.∀c.∀b.∀e.rp
jcbe =

∑

λ:hj→c

ri
jλbe (6.10)

∀j.∀c.∀b.∀e.rp
jcbe =

∑

λ:c→hj

ro
jλbe (6.11)

The previous linear program’s computational complexity is summarized in ta-

ble 6.3.2.

Variables # Constraints
(C+2L)JT (T+1)

2 3J + C + (T + 1)(C + L + JCT)

Table 6.1: Off-Line Grid Scheduling as an extension of MMRCPSP: linear pro-

gram size

ON-LINE GRID SCHEDULING 6-9

6.3.3 DLT Model

Two obvious causes for the rapid intractability (for increasing Grid sizes) of the

previous linear program are the number of jobs involved and the number of discrete

time instants of interest, as the program’s complexity increases proportionally to

these parameters.

The concept of divisible load [8, 9] explicitly deals with these hurdles in the

context of off-line scheduling problems by making the following assumptions:

• the Grid system, on which workload is to be scheduled, is analyzed in steady

state

• the workload to be scheduled is assumed to be arbitrarily divisible

The first assumption (restricting the scheduling problem’s analysis to steady

state Grids) eliminates the need to investigate discrete time instants. Instead, only

the continuous quantities representing the amount of workload per unit of time

being moved around are of importance.

Assuming that the workload is arbitrarily divisible means that only the ag-

gregate workload arriving over some time window is of importance and not the

individual jobs it is made up of - we will use αc to denote this aggregate workload

arriving per time unit at computational resource c. This ensures that the scheduling

problem can be described by real-valued variables αc
c′ ≥ 0, denoting the amount

of computational workload arriving per time unit at computational resource c (in

that workload’s home site) which is ultimately processed by remote computational

resource c′, and eliminates the need for per-job decision variables.

Again, we will not take into account resource costs, but rather attempt to find a

load balancing schedule. This is equivalent to minimizing the maximal load found

on any one resource, and this maximal resource load (relative to each resource’s

capacity) can be obtained from constraints of the form

∀c.Load ≥

∑

c′ αc′

c

Cc

(6.12)

∀c.∀c′ 6= c.Load ≥
αc

c′d
i
c + αc′

c do
c′

Bλcc′
(6.13)

The resource capacity constraints now become

∀c.
∑

c′

αc′

c ≤ Cc (6.14)

∀c.∀c′ 6= c.αc
c′d

i
c + αc′

c do
c′ ≤ Bλcc′ (6.15)

In the last equation, di
c and do

c represent the average input and output data

set sizes for jobs arriving at Computational Resource c, divided by the average

computational length of these jobs.

6-10 CHAPTER 6

A meaningful schedule is obtained if

∀c.
∑

c′

αc
c′ = αc (6.16)

with αc denoting the total workload arriving at computational resource c per time

unit.

If only the excess load is modeled in the problem as αc, all that needs to change

is that we should avoid the case where c′ = c in the previous constraints. If a single

source excess load scenario is studied, this will be reflected in the fact that only

one of the input constants αc differs from zero.

Modeling the off-line Grid scheduling problem using the divisible load ap-

proach yields a linear program with lower computational complexity, as shown in

table 6.2.

Variables # Constraints

C2 C(2C + 1)

Table 6.2: Off-Line Grid Scheduling using Divisible Load: linear program size

6.4 Two-Level On-Line Scheduling Algorithms

6.4.1 On-Line Scheduling Framework

Off-Line scheduling models like the ones presented in section 6.3 commonly ap-

pear in the scope of a Grid dimensioning problem [13]. In such an off-line di-

mensioning problem, each resource’s capacity is a decision variable rather than an

input constant. The exact computational capacity and (in a lambda Grid) number

of lightpaths to be installed between sites depends on the envisioned job schedule,

as these scheduling decisions directly influence the necessary (remote) processing

power and network bandwidth.

Once a Grid has been deployed, arriving jobs will of course be scheduled on

this infrastructure following an on-line scheduling policy. While on-line schedul-

ing algorithms and heuristics have been studied extensively in literature [4–6],

most concentrate on problems with a single resource type (i.e. CPU time).

Since multiple resource types are a key element in every Grid, scheduling

heuristics taking into account one resource at a time are not the most appropri-

ate for the Grid scheduling problem. Moreover, many of these approaches lack a

sound mathematical foundation as resource usage and cost for different resource

types are incompatible and involve different dimensions.

To tackle this problem, a unified approach to modeling resource assignment

cost was proposed by Keren et al. in [14]. They describe a on-line scheduling

ON-LINE GRID SCHEDULING 6-11

framework which allows for the inclusion of different resource types by using

dimensionless quantities, in particular the work assigned to a resource divided

by that resource’s capacity. In addition, an optimization goal based on economic

principles and marginal cost analysis is proposed as an improvement of a greedy

list scheduling algorithm.

Because of the sheer size of typical Grids, it is unrealistic to envision a fully

centralized scheduling system responsible for managing and co-allocating resources

to every job. Instead, as explained in section 6.2.3, it is more reasonable to assume

a hierarchical two-level scheduling model where a top level scheduling system

makes use of local resource schedulers.

The on-line load-balancing algorithms examined in this section are situated at

this top level scheduling system. First, we will show how the unified on-line frame-

work can be used within the Grid scheduling model described above. In particular,

we describe how the greedy algorithm and the marginal cost based algorithm have

been implemented for our simulations. These algorithms are based purely on cur-

rent resource state: they do not rely on information concerning resource usage

history or future job properties.

The last class of algorithms we present not only uses resource state informa-

tion, but also employs results obtained by solving the off-line Grid scheduling

problem developed in section 6.3.3. These results represent the optimal steady

state Grid workload distribution for the workload for which the scheduling prob-

lem was solved (in the context of a dimensioning problem, this workload would

commonly represent the most stressing load the Grid needs to be able to handle).

This optimal steady state off-line workload distribution is used in the algorithm as

a target load, and the algorithm’s optimization goal is to mimic this target load in

an on-line fashion.

6.4.2 Greedy Scheduling Algorithm

The greedy on-line scheduling algorithm schedules jobs as soon as they arrive;

suitable resources are selected by attempting to minimize the resulting schedule’s

(i.e. the schedule consisting of the newly arrived job and all jobs which have al-

ready been allocated) maximal load on any single resource.

Formally, the greedy algorithm attempts to obtain a load-balancing schedule

by selecting the resource setRj for a newly arriving job j such that the quantity

max
r∈R

lRj
r (6.17)

is minimized, where l
Rj
r denotes the load on resource r given that job j is sched-

uled on the resources contained in the set Rj . If this maximal resulting resource

load is equal for two different resource assignments, the load of the resource hav-

ing the second highest load is compared and so on. This approach can be used

6-12 CHAPTER 6

(and is implemented as such) as a comparison operator for the resource load vec-

tors obtained with each resource assignment.

The load for a single resource is calculated as specified in section 6.2.4, where

the observed time interval is taken to start at the new job’s arrival time and ends at

the schedule’s makespan.

6.4.3 Opportunity Cost based Scheduling Algorithm

The opportunity cost algorithm also schedules jobs as soon as they arrive, but uses

an objective function based on marginal cost analysis [14] to select a suitable re-

source set. The previous algorithm, greedy, essentially tracks the resulting increase

in resource load induced by every possible scheduling decision.

In the opportunity cost algorithm, the quantity to be minimized (the marginal

cost of the resource assignment) is given by

∑

r∈R

(

al
Rj
r − alr

)

(6.18)

where l
Rj
r again denotes the load on resource r after job j has been scheduled on

the resources contained in setRj and lr now denotes the load on resource r before

job j had been scheduled on the same set of resources. The parameter a used in

this formula is a constant > 1.

Note that this cost function is not only sensitive to the increase in resource

load, but also in the size of the increase relative to the current load allocated to the

resource.

6.4.4 DLT based Scheduling Algorithms

The DLT based on-line scheduling algorithms get additional input (the steady state

target load for each resource) from the solution to the off-line scheduling problem

(e.g. performed when the Grid is being dimensioned) as described in section 6.3.3.

The cost function associated with a particular resource assignment for job j

can take on the form

max
r∈R

dRj
r (6.19)

or, using the marginal cost approach,

∑

r∈R

(

ad
Rj
r − adr

)

(6.20)

In the former case, as with the Greedy algorithm, the quantity of interest is

actually a vector rather than a scalar.

ON-LINE GRID SCHEDULING 6-13

In the above expressions, dr is the deviation from the target load observed on

resource r before job j has been scheduled on resource set Rj , and d
Rj
r is the

deviation from resource r’s target load observed on it in the resulting schedule.

Given the target steady state load tr for resource r and currently observed load

lr, we have used the following alternatives to define deviation dr:

dr =
lr

tr
(6.21)

dr = |tr − lr| (6.22)

dr = max (0, lr − tr) (6.23)

Again, the proposed definitions and equations are mathematically sound in the

sense that only dimensionless numbers are used when calculating costs involving

different resource types.

Note that, given the previous definitions of the deviation concept, a resource’s

target load deviation does not necessarily increase when assigning extra load to

this resource - in contrast to the total workload assigned to the resource. There-

fore, for the rest of this chapter, we will not pursue the use of the marginal cost

approach when resource target load deviation is the metric of choice as this ap-

proach requires an increasing cost function.

As with the previously presented algorithms, the scheduling algorithm elects

the resource set yielding minimal cost.

It is worth noting that, although the divisible load based on-line algorithms use

more information when compared to the other algorithms, this does not result in

increased computational complexity as the required information has been calcu-

lated and made available from the off-line combined scheduling and dimensioning

problem.

6.5 Evaluation: Setup

The main experiments performed and described in this chapter pertain to the eval-

uation and comparison of the hierarchical two-level on-line scheduling algorithms

presented in sections 6.4.2-6.4.4 and their comparison to the fully centralized

single-level algorithm which schedules incoming jobs on the resource set yielding

minimal completion time in a greedy fashion. Due to the nature of the divisible

load based algorithms, the experiments consist of two phases:

• Solving an off-line steady state scheduling problem (in the context of a Grid

dimensioning problem)

• Simulating the on-line scheduling of the appropriate workload (approxi-

mated in the first phase) on the Grid used in the first phase

6-14 CHAPTER 6

The last step - the workload scheduling - consists of the resource selection and allo-

cation phases as indicated in section 6.2.3. Our experiments have been performed

for a wide range of parameter variations: for our simulations, we have varied the

Grid interconnection network connectivity, the stochastic workload used during

the dimensioning and scheduling phases and - for the divisible load based algo-

rithms - the definition and implementation of the divisible load cost function and

deviation metric.

6.5.1 Simulated Topologies

Our simulations have been performed for different Grid interconnection (i.e. Op-

tical Transport Network) topologies, inspired by the sample European network

shown in figure 6.3 and introduced in section 5.4.2.

Figure 6.3: 13-Node European Network

We used the sets of random networks as described in section 5.4.7. These ran-

dom networks (all having 13 nodes) were generated by constructing a connected

ON-LINE GRID SCHEDULING 6-15

set of 13 nodes through repeated addition of node-link pairs, and then added in

extra links following a probability p in [0, 1]. This parameter was varied to gener-

ate networks with different average connectivity values. All Grid topologies have

been dimensioned so that excess load generated at one site can be handled by the

aggregation of all remote sites. We have chosen 13 computational resources with

geometrically increasing processing capacity, with a reference capacity of 3 units

of work per time unit and a capacity increase of 5% between successive computa-

tional resources.

6.5.2 Simulated Scenarios

The scheduling scenarios studied are those found in two-tier Grids. In particular,

we study scenarios where excess workload arrives at one site (the top tier) which

must then be distributed to the other, remote sites (the second tier). In case of

uniform workload distribution, these scenarios reduce to the scenarios detailed in

section 5.2.3. The scenarios used in this chapter differ from the scenarios described

in section 5.2.3 in that uniform workload distribution is not enforced. Rather, we

look for the optimal excess workload distribution over the remote sites.

In the dimensioning phase of our experiments, each Grid topology (as de-

scribed in the previous section) has been dimensioned in order to support all possi-

ble two-tier excess load scenarios as described above. This means that the off-line

combined Grid dimensioning and scheduling problem solved describes - in our

case - thirteen workload scenarios. Again, the computational resources have been

dimensioned to handle load up to the 60% percentile of the distribution describing

the arriving workload at that resource’s site. Excess load is then created by having

one site generate more workload than can be handled by its own computational

resource. The simulation results presented below were obtained by scheduling the

same excess workload in these thirteen scenarios on the resulting Grid.

In order to measure the relevant metrics in steady state, transient effects oc-

curring in the start and end phases of each simulation (corresponding to workload

build up and workload draining mechanics in the Grid) have been eliminated from

our calculations.

6.5.3 Simulated Workload

The workload used in the scheduling simulations is chosen in such a way that the

excess load arriving per time unit at the single source site in each scenario equals

90% of the Grid’s residual computational capacity. To process this amount of ex-

cess load, co-operation of all remote Grid sites is required. An on-off distribution

was used to model the intermittent arrival of large and small jobs. The distribu-

tions from which excess job parameters were drawn are shown in table 6.3. We

have used a standard workload and a workload featuring the same average values,

6-16 CHAPTER 6

yet bigger variance for its constituent parameters. This latter workload is mainly

used in section 6.6.4. Distributions are taken to be uniform. For use in our DLT

based dimensioning and scheduling model, the parameters shown in table 6.3 yield

the same average amounts of arriving computational load per time unit as well as

the same average amount of data transferred per unit of processing. Our on-line

workload consisted of 1000 jobs. To eliminate transient scheduling and queue

draining effects, performance metrics such as average job response time have been

measured without taking into account the first and last 100 jobs.

Workload On-period (Jobs) On-Joblength On-Data(MB) Off-Joblength Off-Data(MB)

Standard 3/10 40-50 5000-9000 10-17 5000-9000

Inc. σ
µ

1/10 100-150 5000-9000 10-13.2 5000-9000

Table 6.3: Excess Workload Characteristics

In our scenarios, the average job interarrival time was taken to be 0.5s. Each

job reads its input from and returns it output to its submission site. The Grid’s

network has been dimensioned (see section 6.6) to support the average expected

network load resulting from this.

6.6 Evaluation: Results and Discussion

6.6.1 Grid Interconnection Network Dimensioning

For different average job interarrival times, the resulting Grid network dimension-

ing cost has been shown in figure 6.4 for two different interconnection topology

average connectivities. For larger interarrival times, less workload arrives in the

Grid and thus less network traffic is generated, resulting in smaller (i.e. cheaper)

network capacity to be installed. At the same time, networks with lower connec-

tivity yield longer paths between node pairs, explaining the higher network cost

obtained for the networks with p = 0.1. As stated in section 6.5.3, for our experi-

ments excess job load is generated with an average job interarrival time of 0.5s.

6.6.2 Job Response Time

In figures 6.5 and 6.6 the resulting schedule’s average job response time in steady

state has been plotted for two sets of random networks (ten in each set), having

connectivity parameter p set to 0.1 and 0.9, respectively. Along the x-axis is the

average job interarrival time; as discussed in section 6.5.3, the Grids in this chap-

ter have been dimensioned in such a way that excess workload as described in

table 6.3 and arriving with an average interarrival time of 0.5s equals 90% of the

Grid’s residual computational capacity. We have scheduled the excess load as de-

scribed in section 6.5.3 in 13 different scenarios (each scenario corresponding to

ON-LINE GRID SCHEDULING 6-17

 300

 350

 400

 450

 500

 550

 600

 0.44 0.46 0.48 0.5 0.52 0.54 0.56

G
ri
d
 N

e
tw

o
rk

 D
im

e
n
s
io

n
in

g
 C

o
s
t

Average Job Interarrival Time (s)

p = 0.1
p = 0.9

Figure 6.4: Resulting Grid Dimensioning Cost

a different excess load source node) in all networks and values presented are the

averages over these 13 scenarios. As expected, the fully centralized single-level

algorithm (performing an exhaustive search) does the best job in minimizing the

average job response time, but is closely followed by the hierarchical algorithms.

The terms “DLT Diff”, “DLT Frac” and “DLT Overload” refer to the use of

deviation definitions 6.22, 6.21 and 6.23, respectively. From the figures, it is clear

that no single two-level algorithm outperforms the others by a significant margin

for the workloads of interest (around the average job interarrival time of 0.5s). For

the workload on which the Grid network dimensioning was performed (around an

interarrival time of 0.5s), the greedy, opportunity cost, DLT Diff, DLT Frac and

DLT Overload scheduling algorithms show the same performance. For interarrival

times≪ 0.5, the workload arriving approaches and ultimately exceeds the Grid’s

capacity. Furthermore, in this area it becomes clear that the arriving workload is in

reality not arbitrarily divisible, as response times rise before the workload equals

the total Grid capacity, and the Grid no longer remains in steady state (so in this

area, average response times will continue to rise with increasing simulation time).

For lr ≪ tr, a case which frequently occurs when workload is low (i.e. interarrival

times are high), the DLT-based algorithms behave worse than their non DLT-based

counterparts as for these workloads the target workloads tr no longer provide a

realistic goal. This is especially pronounced when deviation definition 6.22 is

used, as using this definition will (erroneously) assign high deviation values for

those resources where lr ≪ tr impeding correct resource selection.

6-18 CHAPTER 6

 20

 25

 30

 35

 40

 45

 50

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.5: Job Response Times: Single-Level vs. Hierarchical Algorithms, p =
0.1

 20

 25

 30

 35

 40

 45

 50

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.6: Job Response Times: Single-Level vs. Hierarchical Algorithms, p =
0.9

As can be expected because the interconnecting topology is only of importance

during the dimensioning phase (during the scheduling phase, only lightpaths are

of importance, not their routing over the underlying optical transport network), a

ON-LINE GRID SCHEDULING 6-19

similar behavior is observed in both cases (p = 0.1 and p = 0.9) presented.

6.6.3 Resource Target Load Difference

Further comparing the different algorithms, at each job’s arrival we have con-

structed a vector containing, for each resource, the deviation (as defined in equa-

tion 6.22) of the resource’s current load from that resource’s steady state target

load. The average norm of this vector in steady state has been plotted in figures 6.7

and 6.8 for the different algorithms. Note that, according to definition 6.22, both

underloaded and overloaded resources contribute to the deviation, which explains

why the metric is always strictly positive.

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 D

if
f
V

e
c
to

r
N

o
rm

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.7: Diff Vector Norm at Job Schedule Time: Single-Level vs. Hierarchical

Algorithms, p = 0.1

Again, the two-level scheduling algorithms exhibit the same values for this

metric around the main point of interest, which is the workload obtained for an

average interarrival time of 0.5s. The single-level algorithm, which attempts to

minimize each job’s response time will make more use of faster computational re-

sources than prescribed by the off-line target loads, and vice versa for the slower

computational resources. This explains why it generates a schedule deviating more

from the off-line calculated resource target loads than the schedules calculated

with the other algorithms. Around 0.5s, the DLT-based algorithms follow the pre-

scribed target load more closely, which is important for steady state operation, as

the steady state is guaranteed when the prescribed target load is matched exactly.

6-20 CHAPTER 6

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 D

if
f
V

e
c
to

r
N

o
rm

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.8: Diff Vector Norm at Job Schedule Time: Single-Level vs. Hierarchical

Algorithms, p = 0.9

For low workloads (i.e. interarrival times ≫ 0.5), the biggest deviation is

obtained for the “DLT Overload” algorithm which doesn’t care about unused re-

sources who do contribute significantly to equation 6.22.

6.6.4 Job Length Distribution

The above results were obtained for a stochastic job generating process. In this

section, we repeat the simulations performed earlier for a different job generat-

ing process. The resulting job set features the exact same average length, data

sizes and interarrival time, but the distributions used now have a higher standard

deviation than before (see section 6.5.3). As the average values remain constant,

however, there is no need to re-dimension the Grid as the divisible load parameters

remain the same. Again, our workload consisted of 1000 of such jobs of which the

first and last 100 have not contributed to our measurements for reasons explained in

section 6.5.3. We used the same sets of 10 random networks corresponding to val-

ues for p equal to 0.1 and 0.9. The results for these new simulations are shown in

figures 6.9, 6.10, 6.11 and 6.12. As our arriving computational load exhibits more

burstiness than the load used in section 6.6.2, resulting average response times rise

more quickly for higher workloads and it is clearly visible how the operational

Grid now leaves it steady state faster for increasing load. In the workload area

where the Grid can be maintained in steady state, our algorithms exhibit the same

performance relative to one another. Again, the single-level scheduling algorithm

ON-LINE GRID SCHEDULING 6-21

provides the smallest average job turnaround times, but does not necessarily mimic

the calculated target load distribution in doing so. For small workloads (when the

average interarrival time ≫ 0.5, resulting in lr ≪ tr) the algorithms yield aver-

age response times comparable to those shown in figures 6.5 and 6.6. This follows

from the fact that, although the job length used in this section has a higher standard

deviation than the standard workload used throughout section 6.6.2, the average

job length (and thus, for equal average interarrival times, the average amount of

computational load arriving per unit of time) are the same. In figures 6.11 and 6.12,

the resource target load metrics for the different algorithms match best around an

average interarrival time of 0.6, which roughly corresponds to the minimal inter-

arrival time for which the Grid remains in steady state.

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.9: Resulting Job Response Times: Increased Job Variability, p = 0.1

6.7 Conclusions

In this chapter, we have first shown how to extend classical resource project schedul-

ing problems as to incorporate the notion of interdependent resource allocations,

specific to Grid workload scheduling problems. Next, we have proposed to use

the concepts of an arbitrarily divisible workload to reduce the off-line scheduling

problem’s complexity.

The core idea presented in this chapter is to make use of the off-line optimal

workload distribution when scheduling workload in an operational Grid, main-

taining a stable steady state. To this end, we have concentrated on two-level hi-

6-22 CHAPTER 6

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 J

o
b
 R

e
s
p
o
n
s
e
 T

im
e
 (

s
)

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.10: Resulting Job Response Times: Increased Job Variability, p = 0.9

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 D

if
f
V

e
c
to

r
N

o
rm

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.11: Diff Vector Norm at Job Schedule Time: Increased Job Variability,

p = 0.1

erarchical on-line scheduling policies, separating resource selection and resource

allocation, as a fully centralized approach is likely to lack in scalability and is

therefore not suited to be deployed in a Grid environment.

ON-LINE GRID SCHEDULING 6-23

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 0.45 0.5 0.55 0.6 0.65 0.7

A
v
e
ra

g
e
 D

if
f
V

e
c
to

r
N

o
rm

Average Job Interarrival Time (s)

Greedy
Opportunity

DLT Diff
DLT Frac

DLT Overload
Single Level

Figure 6.12: Diff Vector Norm at Job Schedule Time: Increased Job Variability,

p = 0.9

The scenarios studied correspond to that of a lambda Grid featuring a single

excess load source where the workload closely resembles the worst-case workload

used during the Grid dimensioning phase. When scheduling workload in these

scenarios, the off-line calculated workload distribution has been used as resource

load target in the on-line resource selection algorithms we presented.

For different Grid interconnection topologies, job generating processes and

load metrics, we compared these algorithms to other (such as greedy and oppor-

tunity cost based) hierarchical scheduling algorithms (which do not explicitly take

into account the off-line calculated workload distributions) as well as a single-level

scheduling policy, and we have assessed the gain obtained by using the off-line

calculated workload distribution as target load.

We found that, in the studied scenarios, using the off-line calculated workload

distributions in an on-line algorithm in the way we described allows the Grid to

operate close to the design point. In all of our experiments, a standard greedy re-

source selection policy is able to provide a good average job response time (and

thus, keep the Grid operation in steady state) which does not differ much from the

job response times obtained by using a single-level algorithm. However, due to

scalability and computational constraints, this single-level algorithm is unlikely to

be implemented in an operational Grid. Similar observations can be made when

comparing the algorithms using deviation from the off-line calculated steady state

workload distribution as a metric. Our DLT-based algorithms, however, incor-

6-24 CHAPTER 6

porate the additional workload information in the scheduling process without in-

creasing its computational complexity, and offer reasonable performance (when

measured using job response times and target load deviation) when compared to

the optimum delivered by the single-level scheduling algorithm.

ON-LINE GRID SCHEDULING 6-25

References

[1] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure 2nd Edition. Morgan Kaufmann, 2003.

[2] T. DeFanti, C. de Laat, J. Mambretti, K. Neggers, and B. Arnaud. TransLight:

A Global-Scale LambdaGrid for e-Science. Communications of the ACM,

46:34–41, 2003.

[3] L. Smarr, A. Chien, T. DeFanti, J. Leigh, and P. Papadopoulos. The OptI-

Puter. Communications of the ACM, 46:58–67, 2003.

[4] L.A. Hall, A.S. Schulz, D.B. Shmoys, and J. Wein. Scheduling to minimize

Average Completion Time: Off-line and On-line Approximation Algorithms.

Mathematics of Operations Research, 22(3):513–544, 1997.

[5] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and P. Wong.

Theory and Practice in Parallel Job Scheduling, pages 1–34. Springer Verlag,

1997.

[6] J. Sgall. On-Line Scheduling - A Survey. Lecture Notes in Computer Science,

1442:196–231, 1998.

[7] R. Kolisch and R. Padman. An Integrated Survey of Project Schedul-

ing. OMEGA International Journal of Management Science, 29(3):249–272,

2001.

[8] D. Yu and T.G. Robertazzi. Divisible Load Scheduling for Grid Computing.

In Proceedings of the IASTED 2003 International Conference on Parallel and

Distributed Computing and Systems (PDCS), 2003.

[9] J.T. Hung, H.J. Kim, and T.G. Robertazzi. Scalable Scheduling in Parallel

Processors. In Proceedings of the 36th Annual Conference on Information

Sciences and Systems (CISS’02), pages 20–22, 2002.

[10] L. Marchal, Y. Yang, H. Casanova, and Y. Robert. A realistic net-

work/application model for scheduling divisible loads on large-scale plat-

forms. Rapport de recherche de l’INRIA-Rhone-Alpes (RR-5197), 2004.

[11] Y. Zhu. A Survey on Grid Scheduling Systems. PhD Qualifying Exam Sub-

mission, Computer Science Department of Hong Kong University of Science

and Technology, 2003.

[12] K. Ranganathan and I. Foster. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1:53–62,

2003.

6-26 CHAPTER 6

[13] P. Thysebaert, M. De Leenheer, B. Volckaert, F. De Turck, B. Dhoedt, and

P. Demeester. Scalable dimensioning of Optical Transport Networks for Grid

Excess Load Handling. Photonic Network Communications, 2006. Accepted

for Publication.

[14] A. Keren and A. Barak. Opportunity Cost Algorithms for Reduction of I/O

and Interprocess Communication Overhead in a Computing Cluster. IEEE

Transactions on Parallel and Distributed Systems, 14(1):39–50, 2003.

7
Conclusions

In this research work the use of optical circuit switched interconnection networks

in Grids (so-called lambda Grids) has been investigated. In particular, the prob-

lems of dimensioning these Grids as well as suitable algorithms for scheduling and

distributing workload on these Grids have been studied in detail.

In order to perform this study, we have developed the following key concepts:

• a network aware Grid simulator called NSGrid providing accurate Grid re-

source and network models

• a scalable linear model for the combined off-line dimensioning and schedul-

ing problem in these Grids

• a set of on-line workload scheduling algorithms based upon the solution to

the previous off-line problem

When the lack of a Grid simulator providing accurate models for Grid re-

sources, middleware components, network elements and transport protocols was

discovered, work was started on the development of NSGrid, aimed to function

as a performant Grid simulation environment providing all of these models. As

accurate models for network elements and transport protocols are readily available

in the well-known ns-2 network simulator, ns-2 was used as the base platform to

jump start NSGrid’s development.

NSGrid extends ns-2 by providing detailed models for computational, stor-

age and data replica resources. In addition, it features behavioral models for the

7-2 CHAPTER 7

most important Grid middleware components: Grid schedulers, network connec-

tion managers, information resources and monitoring components. We discussed

in great detail the job model (supporting both streaming and pre-staged data mod-

els) assumed throughout our Grid simulations; to complete the Grid simulation

environment, a dedicated component modeling a Grid end user submitting such

jobs was also added to NSGrid.

We demonstrated two cases in which NSGrid was used to obtain quantitative

results on a Grid operational scenario. The first case showed the importance of

using network aware scheduling algorithms in Grid environments where jobs typ-

ically process and transfer large data sets. Whether jobs continuously access data

streams or rather completely separate data transfer and execution, job turnaround

times can be significantly reduced by using network aware scheduling. In addi-

tion, if different job classes with significantly different resource requirements are

present, upfront bandwidth allocation to each class can improve the job response

time by offering guaranteed progress to each of the job classes.

In the second case, we measured - through NSGrid simulation - the impact

of different resource partitioning strategies whose job it is to instantiate several

“Virtual Private Grids” based upon characteristics of different job service classes.

We have shown how exclusively reserving resources for a single job class (by

upfront Grid partitioning) results in better job response times (up to 22.6% when

network aware scheduling is employed).

While NSGrid can simulate an operational Grid, it is of course limited to sim-

ulating on-line workload scheduling algorithms. In order to be able to compare

these algorithms to optimal, off-line behavior we developed such an off-line model

using linear programming. The off-line scheduling problem was embedded into

the problem of deducing adequate Grid resource dimensions. We explained the in-

tricate relation between the workload scheduling and dimensioning problems, but

nevertheless were able to propose a manageable linear program combining both

problems. To achieve this, we applied several simplifications in order to fit the

model into the Grid realm with its large dimensions.

Using this model, we were able to calculate the lambda Grid dimensioning

costs for a whole range of operational Grid scenarios. While the base scenarios

invariably featured a single overloaded Grid site distributing excess workload, we

also paid attention to multi-source scenarios and investigated the additional costs

incurred by requiring resilience to single Grid resource failures. These additional

costs were shown not to exceed 10% when compared to the base scenario, and

these numbers have been verified through an analytical evaluation of regular net-

work topologies with comparable connectivity.

Starting from optimal workload distributions calculated in the off-line com-

bined scheduling and dimensioning problem, we investigated the workload sched-

ules obtained by on-line algorithms using these off-line distributions as resource

CONCLUSIONS 7-3

target loads. We ensured that the algorithms’ complexity did not surpass that of

a standard greedy scheduling algorithm. We compared our on-line algorithms to

such a greedy strategy and found that, for different cost functions and metrics,

the algorithms using the off-line distributions as target show similar results when

compared to this greedy algorithm in the scenarios studied.

Several assumptions have been made in this work which can open up future

research directions. In particular, for the combined off-line dimensioning and

scheduling problem, we have limited ourselves to a single class of jobs (that is,

we have described the jobs’ input and output demands using a single parameter

and have treated these jobs as CBR data sources in our mathematical formula-

tions) while better workload modeling may be possible by distinguishing between

relevant job classes. Indeed, our job models have been heavily inspired by the

requirements of scientific applications. However, as resource sharing and trans-

institute collaboration gain importance in other fields (e.g. broadcasting and me-

dia production companies), job models must be adapted appropriately. In media

production environments, for instance, applications (e.g. non-linear video editors)

have stringent real-time requirements such as low delay, low response times and

high network bandwidth. Another case in which our approach may prove to be

useful (subject to appropriate job model modifications) is the instantiation and

load balancing of software components in component based systems. Such soft-

ware components do not simply operate on a single specified data set, but rather

perform actions on the behalf of multiple concurrent users. As such, these com-

ponents cannot be modeled as CBR data sources. Instead, an analysis based on

queueing theory is necessary to model these components’ behavior as a function

of their load.

Other assumptions made in this work pertain to the network elements used. In

this work, we have assumed optical networks in which cross-connects have unlim-

ited wavelength conversion capabilities. While this fact (combined with our choice

of network cost function which does not depend on the number and nature of the

wavelength conversions) has helped us to reduce the computational complexity of

the combined off-line dimensioning and scheduling problem, a more realistic ap-

proach would include limitations on cross-connect capabilities. This observation

gains even more importance if we extend our lambda provisioning approach (i.e.

a priori setup of long-lived wavelength paths) and move into the realm of schedu-

lable wavelengths, used in application-driven optical networks where applications

can (through a unified API) dynamically request temporary end-to-end wavelength

paths being set up and torn down.

At last, it can be noted that the Grid concept is not only of interest to a select

group of users launching similar applications (as can be the case with research

and media production Grids) but is bound to appeal to the general end user as

well. These so-called consumer Grids give rise to additional complexities and

7-4 CHAPTER 7

questions. Issues that need to be addressed for this kind of Grid include the choice

of a suited optical transport technology, job encoding and encapsulation schemes

and distributed job routing and scheduling schemes.

The issues raised here are the subject of ongoing research at the IBCN research

group, and relevant results will be communicated in future research reports.

A
A Performance Oriented

Grid Monitoring Architecture

S. De Smet, P. Thysebaert, B. Volckaert, M. De Leenheer, D. De
Winter, F. De Turck, B. Dhoedt, P. Demeester

published in the Proceedings of the 2nd IEEE Workshop on End-to-End

Monitoring Techniques and Services (E2EMON), San Diego, 2004, pp. 23-28

Abstract Resource state monitoring is a critical component of any Grid Man-

agement Architecture, providing Grid scheduler, job/execution manager and state

estimation components with accurate information about network, computational

and storage resource status. Without up-to-date monitoring information, intelli-

gent scheduling decision making would be a near-impossible task. In this paper

we describe a scalable, portable and non-intrusive Grid Monitoring Architecture

whose implementation decisions were made with performance in mind. We com-

pare it to well-known Grid monitoring systems, and compare our platform’s per-

formance to the Globus MDS2.2 and the Globus 3.2 Web Services Information

Service (WS-IS) performance.

A.1 Introduction

A Grid provides a uniform interface to a collection of heterogeneous, geographi-

cally distributed resources. These resources are dynamic in nature (i.e. resources

A-2 APPENDIX A

can join/leave the Grid, hardware failures can occur, etc.) and every resource has

its own specific properties and status information. This information can in turn be

used by the Grid scheduling entity; in a distributed computing environment, one

of the key components necessary to be able to perform effective job scheduling

(and thereby improve resource utilization), is a resource monitoring architecture.

The requirements for such a monitoring system are in no specific order: efficiency,

scalability, portability and extensibility.

These requirements have been recognized by the Global Grid Forum (which

acts as the governing body for Grid standardization), and this resulted in the con-

ception of a reference architecture for feasible Grid Monitoring systems, dubbed

‘Grid Monitoring Architecture’ (GMA [1]).

In this paper, we present a feature-rich, highly extensible yet performance ori-

ented Grid monitoring platform, developed according to the GMA specifications.

Important features include configurable caching mechanisms, non-intrusiveness,

support for third party sensor plugins and an intuitive GUI offering one-click vi-

sualization. We discuss the technology decisions that were made when developing

this platform, and compare its performance to the Globus Monitoring and Discov-

ery Service [2].

This paper continues as follows: Section A.2 gives an overview of important

related work and highlights the differences with our monitoring system. A high-

level description of the constituent components is given in section A.3, while tech-

nical decisions made during implementation are discussed in section A.4. Our test

results are presented in section A.5, followed by a brief look at future work in

section A.6 and conclusions in section A.7.

A.2 Related Work

The Grid Monitoring Architecture, as defined by the GGF, consists of three im-

portant components: producers, consumers and a directory service (see figure

A.1). The directory service stores the location and type of information provided

by the different producers, while consumers typically query the directory to find

out which producers can provide their needed event data (after which they con-

tact the producers directly). Producers in turn can receive their event data from

a variety of providers (software/hardware sensors, applications, whole monitoring

systems, databases, etc.). The GMA does not specify the underlying data models

or protocols that have to be used.

Multiple monitoring architectures for distributed computing systems have al-

ready been successfully deployed. Not all of them follow the guidelines set by

the GMA (e.g. Condor’s Hawkeye [3] which does not support a decentralized

architecture), and some are geared towards monitoring one single resource type

(e.g. Remos [4], focusing on network parameters). Below we present some no-

A PERFORMANCE ORIENTED GRID MONITORING ARCHITECTURE A-3

Figure A.1: Grid Monitoring Architecture overview

table Grid monitoring platforms with an architecture similar to our framework, and

point out the architectural or implementation-specific differences with our GMA

implementation. For a complete overview of Grid monitoring tools we refer to [5].

GMA-compliant Grid monitoring systems include the European DataGrid’s

Relational Grid Monitoring Architecture R-GMA [6] and GridRM [7]. R-GMA

offers a combined monitoring and information system using a Relational Database

Management System as directory service and monitoring data repository (this ap-

proach offers the possibility to formulate complex queries on the monitored data

i.e. it allows to locate monitoring components and retrieve the data they offer using

standard SQL statements). The implementation is based on Java servlet technol-

ogy (using the Tomcat servlet container), trading performance for portability and

limited software dependencies.

GridRM is an open source two-layer Grid monitoring framework, the upper

layer being structured according to the GMA. This upper layer connects the per-

site monitoring systems (the lower layer) in a scalable way. Like R-GMA, GridRM

makes use of Java and SQL to query data producers. Currently, GridRM’s di-

rectory service (containing info on the location of the different resource status

providers) can be a bottleneck and/or single point of failure, but work is underway

to remedy this problem.

MDS2 is the Globus Toolkit (version 2) Monitoring and Discovery Service,

and although MDS development was started before the GMA architectural refer-

ence appeared, it can still be seen as a GMA implementation. MDS2 only supports

latest-state queries, making it mandatory for the consumers to actively retrieve sta-

tus information from the GRIS (MDS2 component offering producer-like func-

tionality). In addition, MDS2 does not offer visualization features. In section A.5,

we have compared some performance characteristics of MDS2 and our Grid Mon-

itoring Architecture. An extensive comparison of MDS2 against other monitoring

frameworks has already been carried out and presented in [8]. It was shown that

MDS2 outperforms (i.e. exhibits lower response times and better scalability) the

other frameworks mentioned in most use cases. Therefore, we have only compared

A-4 APPENDIX A

our platform’s performance to that of MDS2 and its successor, the web services

based Information Service [9] from the Globus 3.2 Toolkit. For ease of compari-

son, we have evaluated this performance using similar tests as described in [8].

A.3 Grid Monitoring Framework Components

In figure A.2 a sample setup of our framework featuring its constituent components

is shown. Each component’s function is detailed below.

A.3.1 Sensor

Every resource to be monitored has at least one sensor attached to it. Each sensor

can monitor different load properties of a single resource. For instance, we have

implemented a CPU sensor capable of monitoring CPU load, idle time, frequency

and time spent executing user processes. The actual values are then communicated

to one or more producers. This list of producers (and conversely, the list of sensors

that is allowed to communicate with each producer) and the frequency at which

each producer is contacted are readily found in the directory service. The only

configurable parameters of the sensor are the location and authentication parame-

ters to query the directory service. When a sensor registers itself with a producer,

a permanent data connection (over which load values are pushed) is established,

to avoid connection setup overhead on every update. The currently implemented

sensors can provide detailed status information on CPU, memory, swap, disk and

network usage.

A.3.2 Producer

Producers register themselves with the directory service and publish the type of

information (aggregated from the sensors that report to the producer) they pro-

vide. This data can be queried by authorized consumers (using a request/reply

model) or can be pushed to authorized consumers using a subscription/notification

event-based model. In this way, producers correspond to the producer components

defined in the GMA. Each producer has its own cache, storing a configurable num-

ber of status updates for each registered sensor. Consumers can retrieve either the

last known status update from a specific sensor, or historic data from the producer’s

cache. Furthermore, producers provide a limited number of statistical operations

(average, minimum, maximum, standard deviation, etc.) on cached data. Sensor

failures (e.g. resource went off-line) can be detected and a failure notification will

be sent to consumers who were interested in this sensor’s status.

A PERFORMANCE ORIENTED GRID MONITORING ARCHITECTURE A-5

Figure A.2: Grid Monitoring Framework

A.3.3 Directory Service

The directory service contains information on the registered producers (and their

respective offered status information), the producer-sensor mappings and producer

access control lists. It is queried by producers and sensors to retrieve these map-

pings, and by consumers to find a set of providers matching some criterium. A web

services enabled directory service management component has been implemented.

A.3.4 Consumer

Following the best practices defined by the GMA, consumers query the directory

service to find out about producers capable of delivering the desired monitoring

data. Consumers proceed by directly contacting these producers, either to retrieve

data using a request/reply pattern or to register themselves in order to retrieve

future data using an event-based subscription model. Several useful consumers

have been implemented, the most important being an archiving consumer (storing

data in a relational database and offering a GUI view of historical data), a real-time

Java-based visualization agent (see figure A.3) and a Monitoring Server which

interfaces directly with Grid Schedulers or Information Services to aid in schedule

calculations.

A.4 Technology Analysis

Our GMA-compatible Grid Monitoring Framework was designed to achieve good

performance while maintaining a high level of portability.

Our main requirement has driven us to the use of the C++ language in the im-

plementation of the different components. While natively compiled components

A-6 APPENDIX A

Figure A.3: Real-time Java visualization agent

are known to be more performant than for instance Java bytecode running in a vir-

tual machine, the C++ standard library does not offer cross-platform solutions for

various vital application patterns such as networked communication and multiple

threads of execution.

Therefore, the need arises to use a portable and performant C++ middleware

platform offering elegant implementations of these high-level features. In our

monitoring architecture, we have decided to use the Adaptive Communication

Environment (ACE [10]). It offers cross-platform multi-threading, and its ‘re-

actor’ concept allows for the easy implementation of event-based (including net-

work events) applications. Furthermore, we make use of the ‘Acceptor/Connector’

pattern offered by ACE to open networked communication channels between pro-

ducers and sensors.

Whenever a sensor needs to send statistical data to the producers they are reg-

istered with, the data is sent in CORBA Common Data Representation (CDR)

format, offering a portable, network optimized way of communicating.

The resource monitoring data gathered by the sensors is obtained through the

GTop library [11], a portable C/C++ library offering access to performance values

related to system resources. Each resource is monitored by a sensor plug-in, which

is essentially a shared library. The plug-in approach is enabled by the fact that ACE

features cross-platform dynamic loading of shared libraries.

A PERFORMANCE ORIENTED GRID MONITORING ARCHITECTURE A-7

Our directory service is essentially a decentralized LDAP [12] directory server.

While the expressive power of LDAP queries does not match that of e.g. an SQL

query over a relational database, LDAP allows for performant look-ups in a write-

once, read-many context.

Producers provide a WSDL [13] interface through which they are contacted

by consumers using SOAP. SOAP is an XML-based RPC protocol which can be

transferred over HTTP; as such, the use of SOAP allows for the easy integration

of our monitoring architecture in a web services-based Grid environment. In our

implementation we used gSOAP as reported on in [14].

An overview of the communication methods used between the various compo-

nents of our Grid Monitoring Architecture is given in table A.1. It should be noted

that SSL encryption is possible for both SOAP-over-HTTP and LDAP communi-

cation. This allows access control through the use of user and server certificates.

The data updates between sensors and producers can be secured by enabling an

SSL socket adapter in these components.

Sensor Producer Consumer Dir. Service

Sensor / ACE / LDAP

Producer ACE / SOAP LDAP

Consumer / SOAP / LDAP

Dir. Service LDAP LDAP LDAP /

Table A.1: Communication Technologies

A.5 Results

A.5.1 Testbed Setup

Six machines (AMD Duron 750Mhz, 64MB RAM) have a sensor deployed on

them, and four other machines (Intel P4 3GHz, 1GB RAM) carry one producer

each; two producers have two sensors registered with them, and the other two

have one sensor registered. An OpenLDAP directory server was deployed on a

separate machine featuring dual Xeon processors (2.8GHz, 1GB RAM). Lastly,

the consumers (implemented as concurrent threads) used in the tests are located on

a second dual Xeon machine. All machines are interconnected through a 100Mbps

switched Ethernet LAN; this setup allows us to evaluate intrusiveness and scalabil-

ity of the different components without suffering significant network bottlenecks.

MDS2 was deployed as follows: a GRIS/GIIS pair ran on the Intel P4 machines

(instead of the producers), sensors were replaced with GRIS components whose

monitoring data was cached by the Intel P4 GIIS. Our LDAP directory service

was replaced by a GIIS (on the dual Xeon machines) connected to the lower level

A-8 APPENDIX A

GIISs. Consumers in our MDS tests were spawned from the same machine as our

first tests.

The GT 3.2 WS-IS (web services based Information Services) was deployed on

the AMD Duron and Intel P4; on the AMD Duron machines, the WS-IS was con-

figured to submit its data to a Pentium 4 machine (which used to run a producer).

Again, consumers were spawned from a dual Xeon machine.

A.5.2 Metrics

Two metrics were used to evaluate component performance: throughput and re-

sponse time. During a 10 minute period, “users” submitted blocking queries to

the component under investigation, while waiting for 1 second between successive

queries. The throughput was then taken to be the number of queries handled by the

component per time unit; the response time is the average amount of time taken to

process 1 user query.

A.5.3 Intrusiveness

The intrusiveness of our producer components is shown in figure A.4, and com-

pared to the load generated by the MDS GRIS. The network traffic generated was

monitored using the SCAMPI [15] multi-gigabit monitoring framework (partly

developed at our research institution). The CPU load is the average (over the 600

second interval) one minute CPU load average, as measured by uptime and related

tools.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 100 200 300 400 500 600

N
e
tw

o
rk

 L
o
a
d
 (

b
y
te

s
/s

)

No. of Concurrent Users

Producer
MDS GRIS

WS-IS

 0

 0.5

 1

 1.5

 2

 2.5

 0 100 200 300 400 500 600

C
P

U
 1

 M
in

u
te

 L
o
a
d
 A

v
e
ra

g
e

No. of Concurrent Users

Producer
MDS GRIS

WS-IS

Figure A.4: Producer vs. MDS GRIS vs. WS-IS Network/CPU Intrusiveness

The higher network load generated between our producer and the consumers

stems from the use of the SOAP-over-HTTP XML-based communication mecha-

nism (note that we did not enable zlib compression). Note that the web services

approach used by GT 3.2 imposes a network load comparable to that of our archi-

tecture. However, beyond 100 concurrent users, the GT3.2 Information Services

A PERFORMANCE ORIENTED GRID MONITORING ARCHITECTURE A-9

do not scale well, which explains their apparent low network intrusiveness. In

analogy, the CPU load generated by the WS-IS seems to degrade with increasing

number of concurrent users, but this is slightly deceptive: as the WS-IS does not

scale beyond 100 users, it is no longer able to keep up with an appropriate pace of

query response generation from this point on. It should be noted that the WS-IS

framework is the only monitoring and information framework in these tests which

is completely web services based, trading performance for a standards based inter-

face.

A.5.4 Directory Service Scalability

The throughput and response times for directory service queries were compared

(figure A.5) to those obtained for queries against the MDS GIIS (operating on

cached data). Average response times are lower for our directory service; how-

ever, both our directory service and the MDS GIIS don’t scale well beyond 450

concurrent users in this scenario on the given hardware. It should be noted, how-

ever, that a GIIS typically contains more data (including cached monitoring data)

than our directory service, which only stores configuration data, never monitoring

data (this should be requested straight from a producer or from an archiving con-

sumer). This led to a bigger result set when the GIIS was queried. In addition,

our directory service is a plain OpenLDAP server, without module extensions. We

chose not not to show results for the GT 3.2 because of the absence of a dedicated

component offering functionality which corresponds to our directory service or the

MDS2.2 GIIS.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t
(q

u
e
ri
e
s
/s

)

No. of Concurrent Users

Directory Service
MDS GIIS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

No. of Concurrent Users

Directory Service
MDS GIIS

Figure A.5: Directory Service vs. MDS GIIS Scalability

A.5.5 Producer Scalability

In figure A.6, we have compared producer scalability with increasing number of

concurrent users for both our framework’s producers and MDS GRIS components.

A-10 APPENDIX A

Again, only cached data was requested from the MDS GRIS; due to the use of

a push-model our framework’s producers always contain up-to-date information,

while the GRIS would have to invoke information providers to refresh its data.

We measured only small differences between MDS GRIS and our producer (best

visible on the response time graph). Beyond 550 concurrent users and using the

given machines, MDS GIIS performance started to degrade. We also compared our

producer scalability to the scalability of the GT 3.2 Information Service. Again, it

is clear that our installation of GT3.2 does not scale well beyond 100 concurrent

users (the GT 3.2 results even forced us to use a logarithmic scale in the right part

of figure A.5, which shows that response times differ by as much as a factor of

100).

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

T
h
ro

u
g
h
p
u
t
(q

u
e
ri
e
s
/s

)

No. of Concurrent Users

Producer
MDS GRIS

WS-IS

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

R
e
s
p
o
n
s
e
 T

im
e
 (

s
)

No. of Concurrent Users

Producer
MDS GRIS

WS-IS

Figure A.6: Producer vs. MDS GRIS vs. WS-IS Scalability

A.6 Future Work

Because manually deploying sensor plug-ins on multiple resources is tedious, our

main focus in the near future will be on platform bootstrapping components. The

main idea here is that these bootstrapping components are loaded on a resource as

soon as this resource is brought on-line (“installed” when the resource is a com-

puter). Their main objective is to record this resource’s presence in the directory

service, auto-install suitable (based on the resource’s class) sensor plug-ins and

register with a set of producers (based on the type of monitoring data offered and

the resource’s location).

A second topic of interest is the development of proxy producers (remember

that sensors and producers communicate using ACE socket streams) which allows

to collect sensor data from other monitoring platforms’ “information providers”

and use these data in our framework.

Lastly, an additional effort is required to adapt our implementation (in par-

ticular the interfaces implemented by the various components) in order to comply

A PERFORMANCE ORIENTED GRID MONITORING ARCHITECTURE A-11

with the Web Services Resource Framework [16] (unifying Grid and Web Services

communities) specifications.

A.7 Conclusions

We presented a performant and portable implementation of the GGF Grid Moni-

toring Architecture. Performance was obtained through the use of C++ as base im-

plementation language; portability then dictated the use of appropriate middleware

for which we chose the Adaptive Communication Environment. We compared the

performance of our implementation to that of the Globus MDS2 system and its

successor (the GT 3.2 web services based Information Service using the default

supplied OGSI-compliant container), with good results in terms of throughput and

response time, both for producers and the directory service. Multiple ready-to-use

consumers (including real-time visualization) have been implemented. Within our

implementation, heavy use is made of SOAP for consumer-producer communica-

tion. With the apparent convergence of the web services and grid communities in

mind, we expect this to ease the deployment of our implementation in a services

enabled grid environment.

Acknowledgment

B. Volckaert would like to thank the Institute for the Promotion of Innovation

through Science and Technology in Flanders.

References

[1] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and R. Wol-

ski. A Grid Monitoring Architecture. http://www-didc.lbl.gov/

GGF-PERF/GMA-WG/papers/GWD-GP-16-3.pdf, 2002.

[2] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information

Services for Distributed Resource Sharing. In Proc. of the 10th IEEE In-

ternational Symposium on High-Performance Distributed Computing, pages

181–194, 2001.

[3] HawkEye: A Monitoring and Management Tool for Distributed Systems.

http://www.cs.wisc.edu/condor/hawkeye/.

[4] Bruce Lowekamp, Nancy Miller, Thomas Gross, Peter Steenkiste, Jaspal

Subhlok, and Dean Sutherland. A resource query interface for network-aware

applications. Cluster Computing, 2(2):139–151, 1999.

A-12 APPENDIX A

[5] M. Gerndt, R. Wismuller, Z. Balaton, G. Gombas, P. Kacsuk, Zs. Nemeth,

N. Podhorszki, H. L.Truong, T. Fahringer, M. Bubak, E. Laure, and T. Mar-

galef. Performance Tools for the Grid: State of the Art and Future. Re-

search Report Series, Lehrstuhl fuer Rechnertechnik und Rechnerorganisa-

tion (LRR-TUM) Technische Universitaet Muenchen, 30, 2004.

[6] A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P. Taylor, R. Byrom,

L. Field, S. Hicks, and J. Leake et al. R-GMA: An Information Integration

System for Grid Monitoring. In Proc. of the 11th International Conference

on Cooperative Information Systems, pages 462–481, 2003.

[7] M.A. Baker and G. Smith. GridRM: A Resource Monitoring Architecture for

the Grid. In Springer-Verlag, editor, Proc. of the 3rd International Workshop

on Grid Computing, pages 268–273, 2002.

[8] X. Zhang, J.L. Freschl, and J. Schopf. A Performance Study Of Monitor-

ing and Information Services for Distributed Systems. In Proc. of the 12th

IEEE International Symposium on High-Performance Distributed Comput-

ing, pages 270–282, 2003.

[9] WS Information Services website. http://www-unix.globus.org/

toolkit/docs/3.2/infosvcs/ws/key/index.html.

[10] D.C. Schmidt and S.D. Huston. C++ Network Programming: Mastering

Complexity Using ACE and Patterns. Addison-Wesley Longman, 2002.

[11] LibGTop website. http://www.gnu.org/directory/libs/

LibGTop.html.

[12] Wahl M., T. Howes, and S. Kille. Lightweight Directory Access Protocol

(v3). IETF RFC 2251, 1997.

[13] Web Service Definition Language. http://www.w3.org/TR/wsdl.

[14] R.A. van Engelen and K.A. Gallivan. The gSOAP Toolkit for Web Services

and Peer-To-Peer Computing Networks. In CCGRID ’02: Proceedings of

the 2nd IEEE/ACM International Symposium on Cluster Computing and the

Grid, page 128, 2002.

[15] J. Coppens, S. Van den Berghe, H. Bos, E.P. Markatos, F. De Turck,

A. Oslebo, and S. Ubik. SCAMPI: A Scalable and Programmable Archi-

tecture for Monitoring Gigabit Networks. In Proc. of the 1st Workshop on

End-to-End Monitoring Techniques and Services, LNCS 2839/2003, pages

475–487, 2003.

[16] K. Czajkowski and al. The WS-Resource Framework Version 1.0. http:

//www.globus.org/wsrf/specs/ws-wsrf.pdf.

B
Network Aspects of

Grid Scheduling Algorithms

P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, P. Demeester

published in the Proceedings of the ISCA 17th International Conference on

Parallel and Distributed Computing Systems (PDCS), San Francisco, 2004,

pp. 91-97

Abstract Computational Grids consist of a multitude of geographically dis-

tributed resources. The co-allocation of several of those resources allows for the

execution of highly computing-intensive and data-intensive jobs. In order to obtain

quality schedules (in terms of job response time and resource utilization), different

factors such as resource load (both computational resource load and bandwidth

usage on the interconnecting network) and data location need to be taken into

account. We use a discrete-event simulator to accurately model the network inter-

connecting the different Grid sites, and study the scheduling of both data-intensive

and CPU-intensive jobs (which can use different data transfer strategies over this

network) on a Grid. In particular, the scenarios of interest that we study for dif-

ferent network bandwidths include the use of simultaneous data transfer and job

execution (vs. data pre-staging), and the use of capacitated VPNs to secure up-

front guaranteed resource-to-resource bandwidth availability for certain job types

(vs. the use of a pure FCFS policy for the setup of data connections). Our results

B-2 APPENDIX B

show that average job response time and resource reservation accuracy can be

improved by including network information in traditional scheduling strategies,

and even more by preventing discrimination of certain job types by making upfront

bandwidth reservations (VPN) for those types.

B.1 Introduction

A fairly recent evolution in the domain of distributed computing is the concept

of Computational Grids [1]. Such a grid consists of the aggregation of a dynam-

ically changing set of heterogeneous resources, scattered over several locations.

These include computational resources, storage resources, data generating instru-

ments and the interconnecting network. The aggregate power of a grid is suited to

handling resource-intensive jobs.

Selecting a set of resources and allocating them to a job is the task of the

scheduling mechanism. Due to substantial data sizes involved in job execution,

and limited network bandwidth availability between resources (when compared

to e.g. a local cluster), this resource selection needs to take into account network

load and data locality. Indeed, as input data needs to be present at the execution

site at the time it is needed, available bandwidth (or lack thereof) determines the

actual starting time of a job when all its input data is pre-staged to its allocated

computational resource; if the job accesses its input data in a pure sequential block-

per-block way, job execution may start in parallel with the data transfer. In the

latter case, however, the job’s computational progress rate (which relates to the

idle time left on the computational resource if this were the only job executing) is

also limited by that very bandwidth.

In addition, when dealing with different job or service classes, resources can

be connected in a VPN offering per-service bandwidth guarantees, or all resource-

to-resource connections can be setup on demand without service discrimination.

For both CPU-intensive and data-intensive jobs, we investigate these different

data access and connection setup patterns for different network scenarios. Using

NSGrid [2], our in-house developed Grid simulator built on top of ns-2 [3], we

compare schedules produced by different algorithms (taking into account compu-

tational resource load, network bandwidth and job requirements) in terms of job

response time and resource utilization.

This paper is structured as follows: in section B.2 we give an overview of

related work. Section B.3 details the simulation models that were used: Grid, Net-

work, Computational/Storage/Information Resource and Job models. Section B.4

elaborates on the different Grid scheduling strategies used, while the evaluation

of those strategies (using the NSGrid simulation environment) for different job

classes in a typical Grid topology is detailed in section B.5. We briefly address

future work in section B.6. Finally, section B.7 summarizes the paper and gives

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-3

some concluding remarks.

B.2 Related Work

Our Grid simulation environment (NSGrid) is based on the well-known ns-2 [3]

network simulator. While not providing the most scalable simulation kernel (more

scalable (C++) simulation frameworks are available, such as DaSSF [4] and OM-

NeT++ [5]), ns-2 is an up-to-date network-oriented simulator providing models

for a wide range of protocols in all layers of the network stack.

Notable existing Grid simulators include Bricks, MicroGrid, SimGrid and Grid-

Sim.

The Bricks Simulator [6] focuses on client/server interaction in global high

performance computing systems. It allows for a single centralized scheduling

strategy, which does not scale well to large Grid systems and does not support

the notion of multiple (competing) schedulers.

MicroGrid [7] is an emulator modelled after Globus, allowing for the execution

of Globus-enabled applications on a virtual Grid system. Research into the area of

Grid scheduling algorithms can be cumbersome with this kind of approach, since

it requires the construction of an actual application to test.

SimGrid [8] is designed to simulate task scheduling (centralized or distributed)

on Grids. Version 1 of SimGrid can be regarded as a low-level toolkit (which in-

terfaces to the C programming language) from which domain-specific simulators

can be built. The second version of SimGrid is dubbedMetaSimGrid and is essen-

tially a simulator built upon this toolkit to enable the construction of simulation

with multiple schedulers (as C programs). Models for network links as well as

for TCP connections are present in SimGrid. This validated TCP implementa-

tion allows for smaller simulation times when compared to the packet-level TCP

simulation performed by network simulators. Of course, simulations using other

transport protocols that are not readily available in SimGrid require that these pro-

tocols are implemented first, whereas using a network simulator ensures easy ac-

cess to a wide range of protocols. The simulated application consists of several

tasks, organized into a Directed Acyclic Graph (DAG). MetaSimGrid is focused

on scheduling this application type in a master-slave environment.

GridSim [9] is a discrete-event Grid simulator based on JavaSim. This sim-

ulator allows to simulate of distributed schedulers, and is specifically aimed at

simulating market-driven economic resource models. While its computational re-

source models are highly configurable, only a basic notion of network connectivity

is supported and underlying network dynamics are not accurately simulated.

Scheduling jobs over multiple processing units has been studied extensively

in literature. Machine scheduling [10] [11] is concerned with producing optimal

schedules for tasks on a set of tightly-coupled processors, and provides analytical

B-4 APPENDIX B

results for certain objective functions. Jobs are commonly modelled as task graphs,

or as continuously divisible work entities. As these models do not deal with “net-

work connections” or “data transfers”, they do not capture all the Grid-specific

ingredients described in the previous section.

In [12], multi-site execution of divisible jobs is discussed. Jobs can be split

into (communicating) subjobs which are then executed simultaneously on different

computational resources. The network over which the subjobs communicate is not

modelled directly; rather, it is assumed that the network’s influence (bandwidth,

delay) on the job’s run time can be modelled by a single “overhead” parameter.

A similar job model is used in [13] and [14]. Here, the allocation of proces-

sors to rigid parallel applications on a purely space-shared (multi)cluster system is

studied. Applications consist of a number of possibly communicating jobs, to be

executed in parallel. Each job requires exactly one processor, which it occupies

exclusively during its execution (i.e. no time-shared processors). Figures for the

fraction of idle processors at a given point in time are deduced using statistical

techniques, while the influence of a slow inter-cluster communication network is

incorporated entirely in a slowdown factor α. This contrasts with our approach, as

we study applications consisting of non-communicating jobs, each of which can

be executed on a single time-shared processor. In addition to computational re-

sources (i.e. clusters), we also treat other resources such as data storages explicitly.

The figures relevant to our scheduling scenarios are obtained through simulation

in which network traffic (both inter-cluster and intra-cluster) is simulated to the

packet level.

Simulation of Grid scheduling strategies which take both computational re-

sources and data resources (more specifically, data locality) into account have been

reported upon in [15]. In this work, however, the network connecting different sites

is not simulated, but it is assumed that the different sites are connected through a

VPN-like construction over which TCP communication occurs. Scenarios where

files are pre-staged are considered, but data transfers in parallel with job execution

are not.

Replication optimization on an operational Grid (the EU DataGrid [16]) has

been studied in [17]. Again, only pre-staged data scenarios are considered. The

use of capacitated VPNs for different job classes, as well as live remote data access

are not covered in this work.

Distributing work packets for collaborative computing efforts (e.g. SETI [18],

MCell [19]) to computational elements is discussed in [20]. Because of the appli-

cation’s particular nature, the grid can be modelled as a tree, with all work packets

originating from the root node. In our model, jobs can be submitted by users re-

siding at different sites and may need data not present at their submission site.

The algorithms we study do not discriminate upon a job’s internal characteris-

tics or structure; that is, we do not engage in application-level scheduling such as

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-5

Figure B.1: NSGrid architecture

provided by AppLeS [21] . Using the latter approach, one separate scheduler needs

to be constructed per application type. NSGrid allows the simulation of multiple

scheduling scenarios, including those using a single centralized schedule as well

as those having multiple competing schedulers (not necessarily one per application

type).

B.3 Simulation Models

B.3.1 Grid Model

In our simulation environment, Grids are modelled as a collection of intercon-

nected and geographically dispersed Grid sites. Each Grid Site can contain multi-

ple resources of different kinds (their modelling is explained below in more detail)

such as Computational Resources(CR), Information Resources(IR), Storage Re-

sources(SR) and network resources. A key property of this model is the explicit

treatment of the network as a “resource”, allowing the scheduler to take decisions

based on observed and expected future load of the network interconnecting the

different processing/information/storage elements.

At each Grid Site, resource properties and status information are collected in a

local Information Service. Jobs are submitted through aGrid Portal and are sched-

uled on some collection of resources by a Scheduler. To this end, the scheduler

makes reservations with the Resource Managers; in our environment, a Connec-

tion Manager manages a collection of network links, while the Computational,

Information and Storage Resources double as their own manager. All these enti-

ties are attached to their own ns-2 node in the underlying simulated network (recall

that NSGrid is built on top of ns-2). LAN links interconnect a Grid Site’s local re-

B-6 APPENDIX B

sources, while Grid Sites themselves are interconnected by means of MAN and

WAN links.

B.3.2 Network Model

Interconnections between resources are modelled as a collection of point-to-point

(i.e. between two non-network resources) connections, each offering a guaranteed

total bandwidth available to Grid jobs. Of course, these connections can only be set

up if, in the underlying ns-2 network topology, a route (with sufficient bandwidth

capacity) exists between the nodes to which these resources are attached. Grid

resources can also be interconnected by means of capacitated VPNs: in this case,

a VPN tunnel (with guaranteed bandwidth availability) is set up between two Grid

resources for a particular Grid job service type. This VPN tunnel carries all con-

nections matching the VPN’s endpoints and service type. Such connections can be

setup as long as the VPN’s residual bandwidth can satisfy the connection demands.

VPNs allow for the upfront reservation of bandwidth for a particular (prioritized)

service type. The Grid scheduling component we implemented bases its calcu-

lations on these connections’ bandwidths and makes reservations with resources

in such a way that an average throughput for each connection equal to its “guar-

anteed” bandwidth is obtained. This means that the produced schedules are also

correct w.r.t. network bandwidth usage, even if in reality, a network management

infrastructure allowing the reservation of end-to-end connections with guaranteed

bandwidth is not available.

B.3.3 Computational Resource Model

Each Computational Resource is viewed as a monolithic entity with a certain pro-

cessing power. Its capabilities are defined by the following parameters:

• The number of processors and their respective processing power and mem-

ory

• Load: job load on the Computational Resource

This model can be used to represent both multiprocessors and clusters, provided

that, in the latter case, the internal network connecting the various cluster nodes

performs sufficiently (i.e. the network interconnecting the various processing ele-

ments - which is not modelled - never becomes a performance-limiting bottleneck).

If the Computational Resource is time-shared, rigid portions of a processor’s power

can be allocated to individual jobs.

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-7

B.3.4 Information/Storage Resource Model

Information Resources and Storage Resources serve the purpose of providing input

data for jobs, and providing disk space to store output data respectively. In our

model, Storage Resources are described by

• The total available storage space

• Load: Storage space allocated to jobs

Information Resources on the other hand are described by the data sets (and their

respective size) available as input for a job. While an Information or Storage Re-

source does not perform computational work, it can be attached to the same net-

work node as some Computational Resource.

B.3.5 Job Model

The atomic (i.e. that which cannot be parallelized) unit of work used through-

out this paper is coined with the term job. Dependencies between individual jobs

(described by a Directed Acyclic Graph) can be expressed using the notion of Job-

groups. Each job is characterized by its length (time to execute on a reference

processor), its required input data sets, its need for storage (used for output data),

and (if the jobs processes and/or produces data in sequential blocks) the burstiness

with which these data streams are read or written. During a job’s execution, a cer-

tain minimal computational progress is to be guaranteed at all times (i.e. a deadline

relative to the starting time is to be met).

Knowing the job’s total length and the frequency at which each input (out-

put) stream is read (written), the total execution length of a job can be seen as a

concatenation of instruction “blocks”. The block of input data to be processed in

such an instruction block is to be present before the start of the instruction block;

that data is therefore transferred from the input source at the start of the previous

instruction block. Similarly, the output data produced by each instruction block

is sent out at the beginning of the next instruction block. We assume these input

and output transfers occur in parallel with the execution of an instruction block.

Only when input data is not available at the beginning of an instruction block or

previous output data has not been completely transferred yet, a job is suspended

until the blocking operation completes. A typical job execution cycle (one input

stream and one output stream) is shown in figure B.2. The presented model allows

us to mimic both streaming data (high read or write frequency) and data staging

approaches (read frequency set to 1).

B-8 APPENDIX B

t

concurrent

tasks

input 1

processing

input 2

processing

output 2

fprocessor * (refTimejob / speedprocessor)

processing

input 3

output 1

processtimejob

/ #reads

processtimejob

/ #writes

Figure B.2: Non-blocking job, simultaneous transfer and execution

t

concurrent

tasks

input processing output

fprocessor * (refTimejob / speedprocessor)

Figure B.3: Non-blocking job, pre-staged input data

B.4 Scheduling Algorithms

When jobs are submitted, a Scheduler needs to decide where to place the job for

execution. The scheduling algorithm used in making this selection has a big impact

on Grid performance, and influences overall Grid job throughput, Grid resource ef-

ficiency etc. If the scheduler is unable to allocate the needed resources for a job,

the job gets queued for reschedulement in the next scheduling round. The time

between two scheduling rounds can be fixed, but it is also possible to set a thresh-

old (e.g. time limit or number of unscheduled jobs in the queue) which triggers the

next scheduling round. In what follows we will explain the different scheduling

strategies used in our simulations. During each scheduling round, every algorithm

processes submitted yet unscheduled jobs in a FCFS fashion, and attempts to min-

imize the completion time for each job. Once scheduled, our scheduler does not

attempt to pre-empt jobs.

All jobs run on a single processor; processors can be time-shared (i.e. serve

multiple jobs simultaneously by allocating portions of its processing power to each

such job). Intelligent allocation of these portions to jobs is necessary to prevent

jobs from blocking (i.e. wasting CPU cycles allocated to it) when they depend on

bandwidth-limited remote data access, as described in the previous section. Jobs

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-9

can expose dependencies (described by directed acyclic graphs (DAG)), but are

taken not to communicate with each other.

Below we have presented the algorithms we used in our study; all are queueing

algorithms [22], that is, whenever an algorithm is invoked, it will attempt to sched-

ule the not-yet scheduled jobs in the order of arrival on the time-shared resources.

Jobs that cannot be scheduled will be requeued, preserving the relative order of

arrival. Since the jobs are never pre-empted, the use of queueing algorithms when

scheduling jobs on time-shared resources brings with it the risk to allocate minimal

leftover time shares to certain jobs, introducing long turnaround times. Therefore,

during the simulations we have demanded that a single processor (note that a sin-

gle Computational Resource can contain multiple processors) be time-shared by

no more than 3 concurrent jobs in order to avoid degenerate fragmentation. As the

goal of each algorithm is the minimization of each job’s response time, a natural

metric to benchmark the different algorithms is the average job turnaround time.

This metric is discussed in more detail in subsection B.5.5.

B.4.1 Network Awareness

B.4.1.1 Non-Network Aware Scheduling

Non-Network aware scheduling will compute Grid job schedules based on the sta-

tus of the Computational, Storage and Information Resources (as provided by the

Information Services). Algorithms that use this kind of approach will not take

into account information concerning the status of resource interconnections. The

decision of which resources to use for a job will be based on the information

acquired from the different Information Services (i.e. job execution speed and

end time will be calculated based on the status of CR/IR/SR). It is precisely be-

cause Non-Network aware algorithms assume that residual bandwidth on network

links is “sufficient”, that jobs can block on I/O operations: their computational

progress is no longer determined by the Computational Resource’s processor frac-

tion that has been allocated to it (which, together with the job’s length and the

Computational Resource’s relative speed determines its earliest end time if all in-

put and output transfers complete on time i.e. before the start of the appropriate

instruction block), but rather by the limited bandwidth available to its input and

output streams. Note that the fact that network information is discarded during the

scheduling implies that no connection reservations (providing guaranteed available

bandwidths) are made - these would allow to accurately predict the job’s running

time.

We have used non-network aware scheduling as a naive heuristic to compare

the improved (network-aware) algorithms to in our simulations.

B-10 APPENDIX B

B.4.1.2 Network Aware Scheduling

Network aware scheduling algorithms will not only contact the Information Ser-

vices (for information about resources that adhere to the job’s requirements), but

will also query the Connection Manager for information about the status of the

network links interconnecting these resources (i.e. the Connection Manager will

send the Grid Scheduler information about connections that can be set up between

IR/CR couples (necessary for job input retrieval) and CR/SR couples (needed for

job output storing)). Based on the answers from the Information Services and Con-

nection Manager, the scheduling algorithm is able to calculate job execution speed

and end time more accurately, taking into account the speed at which input/output

can be delivered to each available Computational Resource. For jobs with 1 input

stream and 1 output stream, the best resource (CR/IR/SR) triplet is the one that

minimizes the expected completion time of the job. This value is determined by

the available processing power to that job on the Computational Resource (and its

relative speed), the job’s length, the job’s total input and output data size and the

residual bandwidth on the observed links from IR to CR and from CR to SR:

Durationjob = min
Resources,Conn

(duration(job,Resources,Conn))

As explained, for some (CR,SR,IR) triplet, due to bandwidth constraints, this dura-

tion may be significantly higher than the value calculated from the job’s length and

the CR’s relative speed, even if job execution and data transfer occur simultane-

ously. The scheduler selects the optimal CR/IR/SR triplet and contacts the central

Connection Manager to perform the necessary connection setups (the necessary

bandwidth of these connections is calculated by the scheduler). The job then gets

transferred to the selected CR for processing and input/output is sent from/to the

IR/SR over the reserved connections. If no (local or remote) Resources satisfying

the job’s requirements can be found, or if no connections with sufficient bandwidth

are available, the job will be queued and prepared for reschedulement. The time it

takes for a job to complete since it has been submitted by the client can be broken

up into:

• sending the job to the scheduler

• time spent in the scheduler’s queue

• time needed for the co-allocation of resources (including network resources)

allocated to that job

• transfer time for the first input data block(s)

• time needed to process the job at its allocated execution speed

• transfer time for the last output data block(s).

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-11

Each of these can be found in figure B.4. Note that no job can become blocked

because reservations are made with network resources, excluding the network from

becoming an unexpected bottleneck.

Scheduler
Information

Service

Connection

Manager

Storage

Resource

Computational

Resource

query CR, SR, IR

reserve IR/CR and CR/SR connection

send job to CR

first output block

first input block

query results

job complete
last output block

last input block

reserve CR

reserve SR

release connections

queue time

processing job

CR status update

connection query

connection info

Information

Resource

reserve IR

CR/SR/IR status update

release SR/IR reservation

SR/IR status update

Figure B.4: Job scheduling (Network Aware)

B.4.2 Resource Locality Preference

B.4.2.1 PreferLocal Scheduling

PreferLocal scheduling algorithms attempt to place a job on a site’s local Com-

putational/Storage/Information Resources for processing, as we believe that, from

an economic viewpoint, it can be assumed that remote resources are only used

when necessary. When local processing is impossible (either because the job’s re-

quirements cannot be met locally, because the maximum computational load has

B-12 APPENDIX B

been reached, or because I/O requirements are not met), the scheduler looks at the

status of the remote resources (received from the different Information Services)

and, if possible, selects a Computational/Storage/Information Resource triplet (not

necessarily all residing at one particular Grid site) meeting the job’s requirements

and prefers the triplet which allows for the fastest job end time (this job end time

can be calculated in both a network aware or a non-network aware fashion). The

job is then transferred to this remote Computational Resource for processing and

I/O is sent from/to the selected Information and Storage Resource. If no (local

or remote) resources satisfying the job’s requirements can be found, the job gets

queued for rescheduling during the next scheduling round.

B.4.2.2 Spread Scheduling

Spread algorithms schedule resources the same way as PreferLocal algorithms,

with the exception that they do not prefer resources local to the job’s originating

site.

B.5 Simulation Results

B.5.1 Simulation Environment

All simulations were performed on an OpenMosix cluster with 20 nodes. Each

node contains an AMD Athlon XP1700 processor and 1 GB RAM, and runs De-

bian GNU/Linux (Woody). The average time to complete a single simulation sce-

nario was about 48 hours. The exact inputs to the simulator are described below.

B.5.2 Simulated Topology

A fixed Grid topology was used for all simulations presented here. First, a Wide-

Area Network (WAN) topology (containing 8 core routers with an average out-

degree of 3) was instantiated using the GridG tool [23]. Amongst the edge LANs

of this topology, we have chosen 12 of them to represent a Grid site (each having

its own Computational, Storage and Information Resource). Furthermore, we have

homogenized the capacities of each WAN link, which we then treated as a parame-

ter in our simulations. Each site has its own Information Service (storing Resource

properties and status) and local Grid portal (through which users can submit jobs).

Local resources are connected through 1Gbps LAN links.

B.5.3 Job parameters

We have used two different job types in our simulations; one is more data-intensive

(i.e. higher data sizes involved), while the other is more CPU-intensive. At each

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-13

Grid Site, two “clients” have been instantiated, one for each job type. Each client

submits mutually independent jobs to its Grid Portal using a uniform interarrival

time distribution. All jobs need a single IR and a single SR. The ranges between

which the relevant job parameters vary have been summarized in table B.1. Both

job types make up 50% of the total job load; in each simulation, the job load

consisted of 1200 jobs.

CPU-Job Data-Job

Input(GB) 0.01-0.02 1-2

Output(GB) 0.01-0.02 1-2

IAT(s) 100-200 100-200

Ref. run time(s) 400-1200 200-400

Table B.1: Relevant job properties

For each scheduling algorithm, we have chosen to use a fixed interval of 50s

between consecutive scheduling rounds. From the arrival rates in table B.1 and the

fact that multiple sites submit job simultaneously, it follows that we are likely to

find multiple jobs in the queue at the start of each scheduling round.

B.5.4 Resource dimensions

B.5.4.1 Computational Resources

We have assigned one Computational Resource to each Grid Site. To reflect the

use of different tiers in existing operational Grids [16], not all Computational Re-

sources are equivalent: the least powerful CR has two processors (which operate at

the reference speed). A second class of Computational Resources has four proces-

sors, and each processor operates at twice the reference speed. The third - and last

- Computational Resource type contains 6 processors, each of which operates at

three times the reference speed. Conversely, the least powerful type of CR is three

times as common as the most powerful CR, and twice as common as the middle

one. It is assumed that all processors can be time-shared between different jobs.

B.5.4.2 Storage Resources

For the simulations performed, we have focused on determining the influence of

the use of network resource status on the schedule calculation; therefore, we have

assumed that Storage Resources offer “unlimited” disk space that can be read and

written at “sufficiently high” speed (i.e. higher than the needed data transfer band-

widths). Each site has at its disposal exactly one such Storage Resource.

B-14 APPENDIX B

B.5.4.3 Information Resources

Each site’s Information Resource contains 6 out of 12 possible data sets. These

data sets are distributed in such a way that 50% of the jobs submitted to a site can

have local access to its needed data set.

B.5.5 Performance Metrics

B.5.5.1 Average Job Response Time

We define the response time of a job as the difference between its end time and

the time it is submitted to the scheduler. In figure B.5 we present this average

 0

 500

 1000

 1500

 2000

 2500

 3000

155100502510521

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

WAN Link Capacity (Mbps)

NoNetwork
Network

PreferLocal

Figure B.5: Average Job Response Time

job response time for the three algorithms we discussed earlier. In this particular

simulation, simultaneous execution and data transfer were allowed; data connec-

tions were setup on a FCFS basis without upfront VPN dimensioning. Clearly,

for low bandwidths, not taking into account network status (when computing the

schedule) incurs a severe penalty; when bandwidth grows, the importance of this

network information degrades (when the job load is constant) as the network no

longer creates a bottleneck. In fact, for high bandwidths, it is possible for the non-

network aware algorithm to perform slightly better; this is due to the conservative

nature of our network-aware algorithms. For instance, they take for granted that

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-15

the maximum data transfer rate is only 95% of the available bandwidth (i.e. 5%

protocol overhead) and adjust their allocations accordingly.

In our simulations, no improvement is obtained from preferring local resources.

Intuitively, we expected this latter strategy to create better schedules for data-

intensive jobs (as intra-site network links have high capacities). However, this

improvement is neutralized by the asymmetry of the Computational Resources:

jobs submitted at a site containing a slower Computational Resource, are now less

likely to be executed on a faster one (which is of course the case if the best resource

collection is selected for a job).

B.5.5.2 Computational Resource Idle Time

If job execution and data transfer occur simultaneously, jobs can block (i.e. in-

duce idle time on their time-shared Computational Resource within the process-

ing power fraction allocated to that job) if it needs to wait for input data to arrive.

This scenario is plausible when a non-network aware scheduling algorithm is used:

while available network bandwidth (in particular, between the job’s Computational

Resource and the Information Resource providing it with input data) influences the

minimum duration of a job on that Computational Resource, these algorithms do

not take into account this bandwidth. This results in possible overallocation of

the time-shared Computational Resource: a fraction of the resource is reserved

uniquely for this job, but the job is unable to exploit the computing power allo-

cated to it to its full extent. This means that -within its allocated fraction- a job

induces idle time on the Computational Resource. Again, the incurred penalty

grows with lower bandwidths. Figure B.6 shows the amount of idle time created

by the non-network aware algorithm in such cases.

In contrast, the network-aware scheduling algorithms we discussed will be able

to “tune” their Computational Resource allocations with network bandwidth in

mind, to ensure that no Computational Resource is unnecessarily left idle.

B.5.5.3 Influence of sequential data processing

In figure B.7, we have replotted the average job response time for the same job

load; now, however, jobs were not able to start executing while still downloading

data (i.e. pre-staging of the entire input to the execution site was required). As the

execution/transfer parallelism is lost, average response times for network-aware al-

gorithms increase. However, this loss of parallelism does not influence the relative

behavior of the different algorithms (network aware or not) discussed before. For

low bandwidths, the network-unaware algorithm produces better response times

when pre-staging data, as the jobs cannot block during execution in this case.

B-16 APPENDIX B

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100 120 140 160

A
v
e

ra
g

e
 F

ra
c
ti
o

n
 o

f
C

R
 A

llo
c
a

ti
o

n
 l
e

ft
 i
d

le
 (

%
)

WAN Link Capacity (Mbps)

NoNetwork

Figure B.6: CR Allocations: Idle Time

B.5.5.4 Influence of capacitated VPNs

If data connections are setup on demand using a pure FCFS scheme, it is likely

that data-intensive jobs will quickly use up all of the available bandwidth, causing

CPU-intensive jobs to remain queued for a longer period of time.

The upfront reservation of bandwidth to each job type ensures that these CPU-

intensive jobs will never be excluded from remote execution (i.e. move towards

a faster Computational Resource). We have simulated our job load again, but

this time we have setup VPNs for the two job classes (data-intensive vs. CPU-

intensive). We reserved more bandwidth for the data-intensive jobs (about 20%−

80% ratio). The job response time for the different algorithms in this scenario

is shown in figure B.8. This approach visibly improves the response time: cpu-

intensive jobs do not remain queued for an extraordinary period of time, and as

these jobs have high run times, this has a significant impact on the average job

response time.

We believe further improvement is possible if bandwidth is distributed more

intelligently across the different job classes in a way that takes into account their

respective processed data sizes and run times, but at the time of this writing, we

have not yet pursued this idea any further.

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-17

 0

 500

 1000

 1500

 2000

 2500

155100502510521

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

WAN Link Capacity (Mbps)

NoNetwork
Network

PreferLocal

Figure B.7: Response Time: pre-staged input

B.6 Future work

We plan to investigate the quality of schedules produced by the network aware

algorithms under different Information Resource data set replication strategies. In

addition, the constraint concerning the homogeneity of the inter-site WAN band-

width will be relaxed. Besides evaluating the existing algorithms for more elabo-

rate Grids, we also plan to evaluate more refined network aware algorithms that can

take into account a job’s service class, priority and computation/communication

ratio. Due to service class differences, we believe that the best results can be

obtained by applying algorithms specifically tailored to schedule all jobs in one

particular service class.

B.7 Conclusions

In this paper we have investigated the use of network status information when cal-

culating schedules for a Grid. Whether data is pre-staged or accessed remotely dur-

ing the job’s execution, this information allows to create significantly better sched-

ules in terms of both job response time and Computational Resource idle time.

From our simulations, it follows that upfront reservation of bandwidth (between

B-18 APPENDIX B

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

155100502510521

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

WAN Link Capacity (Mbps)

Network+VPN
Network

PreferLocal+VPN
PreferLocal

Figure B.8: Response Time: VPN reservations

Grid resources) for certain job types can improve the response time by avoiding

that data-intensive jobs monopolize available bandwidth.

References

[1] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-

puting Infrastructure. Morgan Kaufmann, 1999.

[2] B. Volckaert, P. Thysebaert, F. De Turck, P. Demeester, and B. Dhoedt. Eval-

uation of Grid Scheduling Strategies through a Network-aware Grid Simu-

lator. In Proceedings of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications, pages 31–35, 2003.

[3] The Network Simulator - NS2. http://www.isi.edu/nsnam/ns.

[4] J. Liu, D.M. Nicol, B.J. Premore, and A.L.Poplawski. Performance Predic-

tion of a Parallel Simulator. In Proc. of the Parallel and Distributed Simula-

tion Conference (PADS’99), pages 156–164, 1999.

[5] A. Varga. OMNeT++. IEEE Network Interactive (online), 16(4), 2002.

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-19

[6] Atsuko Takefusa, Satoshi Matsuoka, Henri Casanova, and Francine Berman.

A Study of Deadline Scheduling for Client-Server Systems on the Computa-

tional Grid. In HPDC ’01: Proceedings of the 10th IEEE International Sym-

posium on High Performance Distributed Computing (HPDC-10’01), pages

406–415, 2001.

[7] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, Kenjiro Taura, and

Andrew A. Chien. The MicroGrid: a Scientific Tool for Modeling Computa-

tional Grids. In Proc. of Supercomputing ’00 - on CD-ROM, 2000.

[8] Arnaud Legrand, Loris Marchal, and Henri Casanova. Scheduling Dis-

tributed Applications: the SimGrid Simulation Framework. In CCGRID ’03:

Proceedings of the 3st International Symposium on Cluster Computing and

the Grid, pages 138–145, 2003.

[9] R. Buyya and M. Murshed. GridSim: A Toolkit for the Modeling and Simula-

tion of Distributed Resource Management and Scheduling for Grid Comput-

ing. The Journal of Concurrency and Computation: Practice and Experience

(CCPE), 14:1175–1220, May 2002.

[10] Dror G. Feitelson, Larry Rudolph, Uwe Schwiegelshohn, Kenneth C. Sevcik,

and Parkson Wong. Theory and Practice in Parallel Job Scheduling. In

Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies for

Parallel Processing, pages 1–34. Springer Verlag, 1997.

[11] L. Hall, A. Schulz, D. Shmoys, and J. Wein. Scheduling To Minimize Average

Completion Time: Off-line and On-line Algorithms. In SODA: ACM-SIAM

Symposium on Discrete Algorithms (Conference on Theoretical and Experi-

mental Analysis of Discrete Algorithms), pages 142–151, 1996.

[12] C. Ernemann, V. Hamscher, A. Streit, and R. Yahyapour. Enhanced Algo-

rithms for Multi-Site Scheduling. In 3rd International Workshop on Grid

Computing (Grid2002), pages 219–231, 2002.

[13] A.I.D. Bucur and D.H.J. Epema. An Evaluation of Processor Co-Allocation

for Different System Configurations and Job Structures. In Proceedings of the

14th Symposium on Computer Architecture and High Performance Comput-

ing, pages 195–203, 2002.

[14] A.I.D. Bucur and D.H.J. Epema. The Influence of the Structure and Sizes

of Jobs on the Performance of Co-Allocation. In Proceedings of the Sixth

Workshop on Job Scheduling Strategies for Parallel Processing, pages 154–

173, 2000.

B-20 APPENDIX B

[15] K. Ranganathan and I. Foster. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1:53–62,

2003.

[16] The DataGrid Project. http://eu-datagrid.web.cern.ch/

eu-datagrid/.

[17] David G. Cameron, Ruben Carvajal-Schiaffino, A. Paul Millar, Caitriana

Nicholson, Kurt Stockinger, and Floriano Zini. Evaluating Scheduling and

Replica Optimisation Strategies in OptorSim. In 4th International Workshop

on Grid Computing (Grid2003), pages 52–59, 2003.

[18] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

SETI@home: An Experiment in Public-Resource Computing. Communi-

cations of the ACM, 45:56–61, 2002.

[19] H. Casanova, T. Bartol, J. Stiles, and F. Berman. Distributing MCell Simula-

tions on the Grid. The International Journal of High Performance Computing

Applications, pages 243–257, 2001.

[20] O. Beaumont, L. Carter, J. Ferrante, A. Legrand, and Y. Robert. Bandwidth-

centric allocation of independent tasks on heterogeneous platforms. Techni-

cal Report 4210, INRIA, Rhone-Alpes, 2001.

[21] F. Berman et al. Adaptive Computing on the Grid Using AppLeS. IEEE

Transactions on Parallel and Distributed Systems, 14:369–382, 2003.

[22] M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Re-

source Management Systems: Queueing vs. Planning. In Proceedings of the

9th Workshop on Job Scheduling Strategies for Parallel Processing, LNCS

2862/2003, pages 1–20, 2003.

[23] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids.

ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003.

NETWORK ASPECTS OF GRID SCHEDULING ALGORITHMS B-21

Algorithm B.4.1: NETWORK AWARE-PREFERLOCAL(Jobs)

for each j ∈ Jobs

LocalCR← getCR(getHome(j))

LocalSR← getSR(getHome(j))

LocalIR← getIR(getHome(j))

Conn← getConn(LocalCR,LocalSR,LocalIR)

LocalResources← [LocalCR,LocalSR,LocalIR,Conn]

if canSchedule(j, LocalResources)

Time← getT imeSpan(j, LocalResources)

schedule(j, LocalResources, T ime)

updateResourceLoads(j, LocalResources)

else

BestResources← []

LeastT ime← +∞

for each c ∈ CRs(j), s ∈ SRs(j), i ∈ IRs(j)

Conn← getConn(c, s, i)

Resources← [c, s, i, Conn]

if canSchedule(j, Resources)

Time← getT imeSpan(j, Resources)

if Time < LeastT ime

LeastT ime← Time

BestResources← Resources

endif

endif

endfor

if BestResources 6= []

schedule(j, BestResources, LeastT ime)

updateResourceLoads(j, BestResources)

endif

endif

endfor

C
Flexible Grid Service Management

through Resource Partitioning

B. Volckaert, P. Thysebaert, M. De Leenheer, F. De Turck, B.
Dhoedt, P. Demeester

accepted for publication in the Journal of Supercomputing, 2006

Abstract In this paper, a distributed and scalable Grid service management

architecture is presented. The proposed architecture is capable of monitoring

task submission behavior and deriving Grid service class characteristics, for use

in performing automated computational, storage and network resource-to-service

partitioning. This partitioning of Grid resources amongst service classes (each

service class is assigned exclusive usage of a distinct subset of the available Grid

resources), along with the dynamic deployment of Grid management components

dedicated and tuned to the requirements of a particular service class introduces the

concept of Virtual Private Grids. We present two distinct algorithmic approaches

for the resource partitioning problem, the first based on Divisible Load Theory

(DLT) and the second built on Genetic Algorithms (GA). The advantages and

drawbacks of each approach are discussed and their performance is evaluated

on a sample Grid topology using NSGrid, an ns-2 based Grid simulator. Results

show that the use of this Service Management Architecture in combination with

the proposed algorithms improves computational and network resource efficiency,

simplifies schedule making decisions, reduces the overall complexity of managing

C-2 APPENDIX C

the Grid system, and at the same time improves Grid QoS support (with regard

to job response times) by automatically assigning Grid resources to the different

service classes prior to scheduling.

C.1 Introduction

As more and more application types are ported to Grid environments, an evolution

is noticed from purely computational and/or data Grid offerings to full-scale ser-

vice Grids [1] (e.g. the EGEE Enabling Grids for E-Science in Europe project [2]).

In this paper, a ‘service Grid’ denotes a Grid infrastructure capable of supporting

a multitude of application types with varying QoS levels (i.e. our definition of

Service Grid is not limited to web-service enabled Grids). We use the term ‘ser-

vice class’ as a classifier for user-submitted Grid jobs that exhibit similar resource

requirements (processing requirements, I/O data requirements, priority, etc.). The

architectural standards for Service Grids are provided by the Global Grid Forum’s

Open Grid Service Architecture (OGSA) [3], and (to a lesser extent) the Web Ser-

vice Resource Framework [4], building on concepts of both Grid and Web Service

communities.

Widespread Grid adoption also increases the need for automated distributed

management of Grids, as the number of resources offered on these Grids rises

dramatically (hence the scalability of these Grids becomes very important). Auto-

mated self-configuration and self-optimization of Grid resource usage can greatly

reduce the cost of managing a large-scale Grid system, and at the same time

achieve better resource efficiency, scalability and QoS support [5, 6].

The distributed service management architecture proposed in this paper can

be described as a distinct implementation of the OGSA ‘Service Level Manager’

concept. Service Level Managers are, according to the OGSA specification, re-

sponsible for setting and adjusting policies, and changing the behavior of managed

resources in response to observed conditions.

Our main goal is to automatically and intelligently assign Grid resources (both

network, computing and data/storage resources) to a particular service class for

exclusive use during a specified time frame (i.e. partitioning the pool of Grid re-

sources into distinct service class-assigned resource pool subsets). The decision

to assign a resource to one particular service will be based on the resources avail-

able to the Grid and monitored service class resource usage characteristics and

requirements. Once resource partitioning has been performed, dedicated manage-

ment components (i.e. scheduler, information service, etc.) will be associated to a

service class’s assigned resources, effectively constructing multiple self-managing

‘Virtual Private Grids’. These Virtual Private Grids in turn improve Grid manage-

ment scalability, as their management components only need to take into account

the state of their partition-assigned resources along with the state and requirements

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-3

of jobs from the service class they are responsible for.

In order to compare the performance of a service managed Grid with a non-

service managed Grid we use NSGrid (for a detailed discussion see [7]), an ns-

2 based Grid simulator capable of accurately modeling different Grid resources,

management components and network interconnections. More specifically, we

evaluated Grid performance (in terms of average job response time and resource

usage efficiency) when different partitioning strategies are employed, and this both

in case network aware as when network unaware scheduling is used.

This paper is structured as follows: section C.2 summarizes related work in

this area, while section C.3 provides details on the proposed service management

architecture and its interaction with other Grid components. The employed net-

work and non network aware scheduling algorithms are highlighted in section C.4.

Section C.5 elaborates on the different resource partitioning strategies, while the

evaluation of those partitioning strategies in a typical Grid topology is compared

to a non-resource partitioned situation for varying job loads in section C.6. Finally,

section C.7 presents some concluding remarks.

C.2 Related Work

Considerable work has already been done in the area of distributed scheduling for

Grids [8]. Grid scheduling taking into account service specific requirements has

been dubbed application-level scheduling. Most notable application-level research

projects include AppLeS [9] and GrADS [10].

In AppLeS, service-class scheduling agents inter-operable with existing re-

source management systems have been implemented. Essentially, one separate

scheduler needs to be constructed per application type. Our service management

architecture differs from this approach in that it operates completely separated

from the Grid scheduling components, working in on service-exclusivity proper-

ties located at the Information Services (responsible for storing resource properties

and answering resource queries from e.g. the different schedulers).

GrADS on the other hand is a project to provide an end-to-end Grid application

preparation and execution environment. Application run-time specific resource in-

formation comes from the Network Weather Service [11] and MDS2 [12]. For

each application; a performance (i.e. computational, memory and communica-

tion) model needs to be provided by the user. This differs from our Service Mon-

itor approach, which actively monitors application behavior and deduces service

characteristics at run-time (see section C.3.3).

The General purpose Architecture for Reservation and Allocation (GARA)

project [13] provides Globus with end-to-end Quality of Service guarantees for

applications. Both advance and immediate resource reservations are supported.

GARA does not offer dynamic automated resource-to-service partitioning but can

C-4 APPENDIX C

instead be seen as a technology enabling the work proposed in this paper.

IBM’s Tivoli Intelligent Orchestrator (TIO) and Provisioning Manager (TPM) [14]

can improve service response times by monitoring registered resources and re-

quirements for anticipated peak workloads and, if necessary, can automatically

re-allocate resources in accordance with business priorities. TIO and TPM are fo-

cused on automated data center resource-to-service allocations, and require users

to predefine ‘optimal resource utilization’ plans for each supported service class.

Our service management architecture focuses on the needs of generic computa-

tional / data / service Grids, and tries to automatically (i.e. without user inter-

action) deduce optimal resource utilization from monitored Grid job submission

behaviour.

Optimally assigning resources to services has been the subject of research

in [15]. In this study however, resource selection occurs each time a job is sub-

mitted to a Grid Portal (i.e. service aware scheduling). This differs from the work

proposed in this paper in which resources are pre-assigned to service classes based

on service class characteristics (i.e. prior to the job scheduling process).

In contrast to the above mentioned research projects, our contribution focuses

on distributed, automated and intelligent resource-to-service partitioning in a Grid

environment (based on monitored service class characteristics/requirements) along

with the dynamic deployment of service class exclusive management components

(effectively constructing multiple Virtual Private Grids).

C.3 Service Management Concept

In this section we begin by describing the NSGrid models that are employed: Grid

Site (resources, management components, etc.) and job models are discussed,

along with basic job submission / resource assignment protocols. We continue

by discussing the overall concept of resource-to-service partitioning in subsec-

tion C.3.2 and explain in subsection C.3.3 how our resource-to-service partitioning

architecture was implemented in NSGrid.

C.3.1 Grid/Job Model

We regard a Grid as a collection of Grid Sites interconnected by WAN links (see

figure C.1). Each Grid Site has its own resources (computational, storage and data

resources) and a set of management components, all of which are interconnected

by means of LAN links. Management components include a Connection Manager

(capable of offering network QoS by providing bandwidth reservation support, and

responsible for monitoring available link bandwidth and delay), an Information

Service (storing registered resources’ properties and monitoring their status) and

a Scheduler. Every Grid resource in our model is given an associated service

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-5

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site

Grid Site WAN

(a) Grid

Grid Portal

Information

Service
Scheduler Connection

Manager

Service

Monitoring

Gateway

Service

Manager
Storage

Resources

Data

Resources

Computational

Resources

Grid Resources Grid Management components

(b) Grid Site

Figure C.1: Grid Model

class ID property (stored in the Information Service with which the resource is

registered). If no Service Management components are instantiated in the Grid, all

resources’ service class ID equals ‘0’, meaning these resources can be used by any

job (i.e. belonging to any service class).

The basic unit of work in our model is a job, which can roughly be char-

acterized by its length (time it takes to execute on a reference processor), com-

putational requirements (memory, operating system, installed applications, etc.),

the needed input data, the output data size, the burstiness with which these data

streams are read or written, and the service class to which it belongs. A job’s

service class ID can either be assigned by the Grid application from which this

job was spawned (with a unique service class ID per Grid application), or al-

ternatively jobs from different applications but with similar monitored resource

requirements can be given the same service class ID by the service monitor (the

latter approach is useful if one or more Grid applications spawn jobs with widely

differing requirements/characteristics rendering application-based service class ID

assignments less interesting). Knowing the job’s total length and the frequency at

which each input (output) stream is read (written), the total execution length of

a job can be seen as a concatenation of instruction “blocks”. The block of input

data to be processed in such an instruction block is to be present before the start

of the instruction block; that data is therefore transferred from the input source at

the start of the previous instruction block. Similarly, the output data produced by

each instruction block is sent out at the beginning of the next instruction block.

We assume these input and output transfers occur in parallel with the execution of

an instruction block. Only when input data is not available at the beginning of an

instruction block or previous output data has not been completely transferred yet,

a job is suspended until the blocking operation completes. A typical job execu-

tion cycle (one input stream and one output stream) is shown in figure C.2. The

presented model allows us to mimic both streaming data (high read or write fre-

C-6 APPENDIX C

t

concurrent

tasks

input 1

processing

input 2

processing

output 2

processing

processtimejob

/#reads

processtimejob

/#writes

input 3

output 1

executiontimejob,referenceproc / (speedproc*fractionproc)

Figure C.2: Non-blocking job, simultaneous transfer and execution

t

concurrent

tasks

input processing output

executiontimejob,referenceproc / (speedproc*fractionproc)

Figure C.3: Non-blocking job, pre-staged input data

quency) and data staging approaches (number of input/output blocks set to 1 as

can be seen in C.3).

In NSGrid [7], when a simulated client submits jobs, the exact job properties

are generated from pre-configured job distributions. Each Grid Site has one or

more Grid Portals through which clients can submit their jobs. Once submitted, a

job gets queued at the local Scheduler, which in turn queries the Information Ser-

vices (IS) (located both at the local site and at foreign sites) for resources adhering

to the job’s requirements. Once the next scheduling round starts, the Scheduler

applies one of its scheduling algorithms and (if possible) selects one or more data

resources (DR) (for job input data), together with one or more storage resources

(SR) (for storing job output data) and a computational resource (CR) (providing

job processing power), all not necessarily located at one Grid Site (note that DRs

and SRs can reside on the same network node - modeling one data/storage capable

resource).

If the scheduling algorithm is network aware (see figure C.8), the Connection

Manager (CM) is queried for information about available bandwidth on (short-

est route) paths between resources and, once a scheduling decision is made (taking

into account the speed at which I/O data can be fetched/stored to/from the process-

ing job and adjusting computational power that gets reserved for this job to match),

attempts to make connection reservations between the selected resources; connec-

tion reservations provide a guaranteed minimum bandwidth available for that job.

Note that reservations are not physically set up by the Connection Manager: if the

bandwidth requirements of the requested connection reservation are not infringing

previously guaranteed connection reservations’ minimum bandwidth, the request

is granted. If however this is not the case (due to the use of stale resource state

information when assigning resources to jobs in the scheduling round), the con-

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-7

nection reservation request is rejected and the job will be put back in the scheduler

queue until the next scheduling round. The Connection Manager thus operates

by bookkeeping all granted connection reservations and denying new reservations

that would infringe on those previously granted reservations. Once all resource

reservations are successful, the job is sent to the selected computational resource

which takes care of fetching the different input datasets and storing the job’s output

data.

C.3.2 Resource Partitioning

Our goal is to intelligently and automatically assign service class IDs to each re-

source so they can be used exclusively for jobs spawned from that service class.

This classification of Grid resources in a per-service resource pool with its own

dedicated scheduler and information service has multiple benefits:

• resource efficiency and average job response times improve (as will be shown

in section C.6)

• allows for faster scheduling decisions and resource information lookups

• service class priorities can be given by assigning more resources to high-

priority service classes

• locally offered service classes can be prioritized over foreign Grid Site ser-

vice classes,

• reduced infrastructure costs: by allocating job loads to resources more effi-

ciently, the number of resources can be reduced,

• improved scalability with dynamic deployment of dedicated VPG manage-

ment components,

• service class dedicated management components can be fine-tuned to the

needs of their particular service.

As we will see in section C.6, resource efficiency (and average job response times)

can be improved by limiting resource availability to service classes that can make

efficient use of that particular resource (e.g. taking into account service class’ data

locality). In addition, the number of job resource query results returned by the

Information Services to the scheduler will be less than when there is one common

resource pool, allowing for faster scheduling decisions (as we are in fact utilizing

the resources’ service class ID assignation as an advance reservation mechanism).

Of course, one has to be very careful when automatically assigning resources to

service classes, as it creates the risk that certain service classes are (involuntarily)

left starving for resources on which to run, while other resources are assigned to

C-8 APPENDIX C

a service class for which there are no job submissions at that time (and are thus

unnecessarily left idle). One also has to take into account service class necessities

when making resource partitioning decisions, in order to avoid excluding a service

class from access to a critical resource (e.g. prohibiting a service class access to

mandatory data resources).

The same way computational, storage and data resources can be partitioned

amongst different service class resource pools, network resources can also be split

up by performing per-service bandwidth reservations (e.g. VPN technology). This

can prevent data-intensive service classes from monopolizing network bandwidth

usage and thereby hampering the performance of jobs from other service classes

(see figure C.4). Instead, each service class should automatically receive a certain

bandwidth and be able to use this bandwidth without having to worry about the

network usage of other services’ jobs.

2.5 Mbit service type j tunnel

5 Mbit service type i tunnel

1.5 Mbit unallocated service type 0

10 Mbit Network Link

1 Mbit ST i connection

1 Mbit service type 0 connection

Figure C.4: Network Resource Partitioning

With combined network and resource partitioning, a Grid can be modeled as

a dynamic collection of overlay Grids or Virtual Private Grids (VPG), with one

VPG for each service class offered in the Grid. These VPGs (see figure C.5) are

not static structures in that they do not have resources assigned to them in a perma-

nent way, but react to monitored changes in service characteristics (e.g. additional

service offerings can lead to the construction of new VPGs and reallocation of

resources across existing VPGs). Resource reallocation can stem from important

changes in monitored service class characteristics (e.g. higher job submission rates

for a service class), a change in service class priorities or, as already mentioned,

the addition of new service classes.

C.3.3 NSGrid implementation

In NSGrid, a distributed service management architecture was implemented in or-

der to evaluate the effectiveness of different resource-to-service partitioning strate-

gies and Virtual Private Grid deployments. Each Grid Site typically has a local

Service Manager, which interacts with the local Information Service (IS), Con-

nection Manager (CM) and Service Monitor (see figure C.7 for a sample Service

Management setup in NSGrid). All NSGrid resources and management compo-

nents are located at ns-2 nodes, which can be interconnected by means of different

types of network links with configurable bandwidth and delay. This way, all job

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-9

computational

resources

computational

resources

data

resource

Grid Portal

Information

Service

storage

resource
data

resource

computational

resources

Grid Portal

MAN/WAN

network
storage

resource

Grid

Scheduler

Connection

Manager

(a) standard Grid

computational

resources

computational

resources

data

resource

Grid Portal

storage

resource
data

resource

computational

resources

Grid Portal

MAN/WAN

network

storage

resource

In
fo

rm
a

tio
n

S
e

rv
ic

e
G

rid

S
c

h
e

d
u

le
r

C
o

n
n

e
c
tio

n

M
a

n
a

g
e

r

VPG service class i

resource pool

VPG

scheduler

VPG

IS

VPG service class j

resource pool

VPG

scheduler

VPG

IS

VPG service class k

resource pool

VPG

scheduler

VPG

IS

Grid Service Monitoring

Grid Service Management

(b) VPG partitioned Grid

Figure C.5: Standard Grid architecture vs. Virtual Private Grid partitioned Grid

architecture

Scheduler
Grid

Portal

Service

Monitor

Service

Manager

Information

Service
Connection

Manager

collect service class characteristics

monitor job submission

service class info

monitor job submission

query resources

query network resources

resource query result

network resource query result

resource-to-service partitioning

assign service class

service class bandwidth reservations

Notify VPG construction

VPG Management

Components

construction of VPG management components

job passing

monitor job submission

Figure C.6: VPG partitioning messages

I/O data that is sent between the different resources is accurately simulated by ns-

2, allowing us to monitor bandwidth usage, network congestion, etc.. All control

messages are XML-encoded and sent over the underlying ns-2 network.

C.3.3.1 Service Monitor

The Service Monitor inspects job submission behavior at the Grid portals (recall

that a Grid portal acts as a job submission gateway for Grid users): each time a

job is submitted, job requirements (service class, priority, needed input data sets

and sizes, output storage sizes, computational requirements, etc.) are extracted

and overall service class properties (e.g. average job interarrival time, average I/O

C-10 APPENDIX C

WAN

Information

Service

Scheduler

Connection

Manager
Service

Monitor

Service

Manager

Grid Portal

Local ResourcesGrid site Information

Service

Scheduler

Connection

Manager
Service

Monitor

Service

Manager

Grid Portal

Local Resources

Information

Service

Scheduler

Connection

Manager
Service

Monitor

Service

Manager

Grid Portal

Local Resources

Grid site

Grid site

Figure C.7: NSGrid Service Management Architecture scenario

data sizes, average job computational needs, needed input datasets) are adjusted.

When the Service Monitor has gathered adequate service class characteristics (ei-

ther when service class properties remain relatively stable over a fixed period of

time, or when an information dissemination timer has run out), the Service Moni-

tor sends the collected service class’ characteristics to its known (local and foreign

Grid site) Service Managers, so as to allow them to have up-to-date service class

information for use by the resource-to-service partitioning algorithms. The Service

Monitor keeps a record of the info that was submitted to the Service Managers,

and, if substantial changes (w.r.t. a configurable threshold) in service class prop-

erties are monitored (e.g. detection of new service classes, increased service class

job interarrival times, change in priority, higher job response times, etc.), sends

up-to-date service class information to the Service Managers (see figure C.6).

Note that when a job from a newly monitored service class is detected and

all resources have been assigned to existing service classes (i.e. non service class

0 assignations), the job will have to wait for a repartitioning of resources before

being able to be scheduled. The Service Monitor will wait until the newly moni-

tored average service class characteristics have stabilized, or until its information

dissemination timer has run out, after which it will contact the Service Manager

informing it of the existence and characteristics of the newly monitored service

class.

Each Service Monitor has a moving time window (of configurable length),

such that the properties of a job that was submitted at a time before the time win-

dow’s beginning are no longer taken into account when calculating service class’

characteristics. In doing so, service classes that spawn no jobs during a period of

time equal to the time window’s length are discarded: the Service Monitor will

inform the Service Manager of this occurrence, which in turn will free resources

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-11

allocated to that particular service class and (if necessary) repartition.

C.3.3.2 Service Manager

The Service Manager thus periodically receives information regarding local and

foreign Grid site service class characteristics from the different Service Monitors.

When the received information does not differ (with regard to a certain thresh-

old) from the one used to partition the Grid resources in a previous partitioning

run, no resource-to-service repartitioning will occur. If however the difference be-

tween the previous values and currently monitored service characteristics (average

job IAT, processing length, I/O bandwidth necessities, etc.) is too large, or if no

resource partitioning has yet been done, the Service Manager will query the In-

formation Services for the characteristics of the resources in their local Grid site

resource pool. Once the answer to this query has been received, one of the resource

partitioning algorithms (detailed in section C.5) is applied to the resource set, and

the resulting resource partitioning solution is sent back to the Information Ser-

vices, who in turn change the service class property of their registered resources.

If the partitioning algorithm also works in on network resources, the Connection

Manager will be contacted to make service bandwidth reservations (based on as-

signed computational resources, necessary input datasets and monitored service

class’ bandwidth requirements).

Once the partitioning algorithm has finished, resources will be assigned to ser-

vice class resource pools, and (if this was not already done) dedicated Virtual

Private Grid management components will be dynamically constructed and asso-

ciated with the different Virtual Private Grids (in NSGrid these VPG management

components are deployed at the Grid site where jobs from the VPG’s service class

are most common). A VPG Information Service will gather resource property and

status information from all resources assigned to the VPG. This Information Ser-

vice will in turn be queried by a dedicated VPG scheduler when the latter seeks

information on resources adhering to a job’s requirements. Note that the global

(central or distributed) Grid scheduling system continues to receive all jobs sub-

mitted to the different Grid portals, but, upon inspection of the service class of each

arriving job, either tries to schedule the job itself, or, when a VPG is constructed

for the job’s service class, immediately sends it to the dedicated VPG scheduler.

C.3.3.3 Information Service

Much in the same way as the Service Monitors can trigger a repartitioning of re-

sources to services when substantial changes in service class characteristics are

monitored, the Information Services are responsible for signaling changes in re-

source availability. Every time an existing Grid resource becomes unavailable (ei-

ther because of failure or by policy), or conversely, when new resources become

C-12 APPENDIX C

available to the Grid, the Information Services report this change to the Service

Manager. The latter then decides if a resource-to-service repartitioning is neces-

sary.

It is important to note that, while resources are assigned for exclusive use by

a particular service, not one job using a service class reassigned resource will be

interrupted (preventing jobs from being pre-empted when the CR it is running on

is assigned to a different service class). The service assignment will thus only be

effective for new jobs or jobs currently in the scheduler queue. At the time of

scheduling, queries will be sent to the Information Services for resources adhering

to the job’s requirements, and these Information Services will return only those

resources that are assigned to that particular job’s service class.

C.4 Scheduling Strategies

When jobs are submitted, a Scheduler needs to decide where to place the job for

execution. The scheduling algorithm used in making this selection has a big im-

pact on Grid performance, and influences overall Grid job throughput, Grid re-

source efficiency etc. All presented algorithms are queueing algorithms [16], that

is, whenever an algorithm is invoked, it will attempt to schedule the not-yet sched-

uled jobs in the order of arrival on the time-shared resources. Jobs that cannot

be scheduled will be requeued, preserving the relative order of arrival (note that

other requeueing methods are available). The time between two scheduling rounds

can be fixed, but it is also possible to set a threshold (e.g. time limit or number of

unscheduled jobs in the queue) which triggers the next scheduling round. As the

goal of each algorithm is the minimization of each job’s response time, a natural

metric to benchmark the different algorithms is the average job turnaround time.

In what follows we will briefly explain the different scheduling strategies used in

our simulations (for a more detailed discussion see [17]). Once scheduled, our

scheduler does not attempt to pre-empt jobs.

C.4.1 Non-Network Aware Scheduling

Non-Network aware scheduling will compute Grid job schedules based on the

status of the computational, storage and data resources (as provided by the Infor-

mation Services). Algorithms that use this kind of approach will not take into

account information concerning the status of resource interconnections. The deci-

sion of which resources to use for a job will be based on the information acquired

from the different Information Services (i.e. job execution speed and end time

will be calculated based on the status of CR/SR/DR). It is precisely because Non-

Network aware algorithms assume that residual bandwidth on network links is

“sufficient”, that jobs can block on I/O operations: their computational progress

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-13

is no longer only determined by the computational resource’s processor fraction

that has been allocated to it (which, together with the job’s length and the compu-

tational resource’s relative speed determines its earliest end time if all input and

output transfers complete on time i.e. before the start of the appropriate instruction

block), but also by the limited bandwidth available to its input and output streams.

Note that the fact that network information is discarded during the scheduling im-

plies that no connection reservations (providing guaranteed available bandwidths)

are made with the connection manager - these would allow to accurately predict

the job’s running time.

C.4.2 Network Aware Scheduling

Network aware scheduling algorithms will not only contact the Information Ser-

vices (for information about resources that adhere to the job’s requirements), but

will also query the Connection Manager for information about the status of the

network links interconnecting these resources (i.e. the Connection Manager will

send the Grid Scheduler information about connections that can be set up between

DR/CR couples (necessary for job input retrieval) and CR/SR couples (needed for

job output storing)). Based on the answers from the Information Services and Con-

nection Manager, the scheduling algorithm is able to calculate job execution speed

and end time more accurately, taking into account the speed at which input/output

can be delivered to each available computational resource. For jobs with 1 input

stream and 1 output stream, the best resource (CR/SR/DR) triplet is the one that

minimizes the expected completion time of the job. This value is determined by

the available processing power to that job on the computational resource (and its

relative speed), the job’s length, the job’s total input and output data size and the

residual bandwidth on the observed links from DR to CR and from CR to SR.

As explained, for some (CR,SR,DR) triplet, due to bandwidth constraints, this

duration may be significantly higher than the value calculated from the job’s length

and the CR’s relative speed, even if job execution and data transfer occur simul-

taneously. The scheduler selects the optimal CR/DR/SR triplet and contacts the

central Connection Manager to perform the necessary connection setups (the nec-

essary bandwidth of these connections is calculated by the scheduler). The job then

gets transferred to the selected CR for processing and input/output is sent from/to

the DR/SR over the reserved connections. If no (local or remote) resources sat-

isfying the job’s requirements can be found, or if no connections with sufficient

bandwidth are available, the job will be queued and prepared for reschedulement.

The time it takes for a job to complete since it has been submitted by the client can

be broken up into:

• sending the job to the scheduler

• time spent in the scheduler’s queue

C-14 APPENDIX C

Computational

Resource
Scheduler

Information

Service
Storage

Resource

Data

Resource

queue time

query CR,SR,DR

query result

reserve CR

reserve SR

reserve DR

CR status update

SR status update

DR status update

send job to CR

first input block

first output block

last input block

last output block

processing job

job complete

CR status update

release SR reservation

release DR reservation

SR status update

DR status update

(a) Non-network aware job scheduling

Computational

Resource
Scheduler

Information

Service

Connection

Manager
Storage

Resource

Data

Resource

queue time

query CR,SR,DR

query result

connection query

connection query result

reserve DR-CR and CR-SR connections

reserve CR

reserve SR

reserve DR

CR status update

SR status update

DR status update

send job to CR

first input block

first output block

last input block

last output block

processing job

job complete

CR status update

release connections

release SR reservation

release DR reservation

SR status update

DR status update

(b) Network aware job scheduling

Figure C.8: NSGrid non-network aware versus network aware scheduling

• time needed for the co-allocation of resources (including network resources)

allocated to that job

• transfer time for the first input data block(s)

• time needed to process the job at its allocated execution speed

• transfer time for the last output data block(s).

Each of these can be found in figure C.8. Note that no job can become blocked

because reservations are made with network resources, excluding the network from

becoming an unexpected bottleneck (if the resource state information returned by

the Information Services/Connection Managers and employed by the scheduler

was accurate and up-to-date).

C.5 Partitioning Strategies

The problem at hand is trying to partition resources into service class resource

pools. A solution in this case is a mapping from resource to a particular service

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-15

class ID, and this for all resources returned from the Service Manager - Informa-

tion Service queries. A resource can also be assigned service class ID ‘0’, meaning

it can be used by jobs from every service class. Exhaustively searching for an opti-

mal partitioning (by evaluating the fitness of a solution by means of a cost function)

quickly becomes infeasible, as the amount of solutions that needs to be evaluated

is (#serviceclasses + 1)#resources. In our attempts to find a suitable solution in

reasonable time, we have used two distinct approaches: one uses Divisible Load

Theory (DLT) to obtain a tractable Integer Linear Program (ILP) modeling the ser-

vice class assignment problem, while the other uses a Genetic Algorithm to obtain

a resource-to-service mapping.

C.5.1 DLT based Partitioning

Whenever a Grid reaches a steady state (e.g. a Grid processing a periodic load),

stochastic parameters regarding the distributions of job interarrival time, duration

and I/O-needs can be estimated for each service class by the Service Monitoring

Architecture. These parameters can then be used to populate an Integer Linear

Program designed to (by assigning appropriate values for the program’s decision

variables)

1. Assign an exclusive service class ID to each computational resource

2. Determine the optimal schedule of the periodic workload over the Grid’s

resources, taking into account the resource-to-service assignation

An approximation used to limit the number of integer variables in this approach

is to treat the aggregate workload as arbitrarily divisible (hence the name “Divis-

ible Load Theory”) [18, 19]. In this context, values of interest are arrivalsn
s -

the computational load per time unit arriving at site s and belonging to service

class n, Setsn and Sizen - the datasets available to service class n jobs and their

respective sizes. The main decision variables in the problem are xc,n (binary, as-

signing service class n exclusive access to CR c) and αc
i,n (real-valued, amount

of service class n computational load per time unit processed at CR c which ar-

rived at site i). Auxiliary variables needed to fulfill routing constraints on the input

datasets and generated output data have been dubbed inl
n,j (bandwidth needed on

link l for transport of dataset j of service class n) and outls (bandwidth needed on

link l for transport of output data to storage resource s) - note that the concept of

source-based routing [20] was used to formulate the routing constraints.

Using the Divisible Load approach, the resource-to-service assignation can

now be modeled as a cost minimization problem with several classes of con-

straints1.

1Abbreviations used: GW = Gateways, L+ = outgoing links, L− = incoming links,

Capc=computational res. capacity, Capl=link capacity

C-16 APPENDIX C

The capacity constraints to be observed for each computational Resource and

Network Link, respectively, are

∀c ∈ CR.
∑

i∈Sites

∑

n∈SC

αc
i,n ≤ Capc (C.1)

∀l ∈ L.
∑

n∈SC

∑

j∈Setsn

inl
n,j +

∑

s∈SR

outls ≤ Capl (C.2)

These constraints ensure that work allocated to a Computational Resource does

not exceed that resource’s processing capacity, and that total network traffic over

each link does not exceed that link’s capacity. Network traffic is routed according

to following constraints:

∀n ∈ SC, j ∈ Setsn.
∑

d∈DR:j∈Setsd

∑

l∈L+

d

inl
n,j =

∑

s∈Sites arrivalsn
s × Sizen

#Setsn

(C.3)

∀c ∈ CR,n ∈ SC, j ∈ Setsn.
∑

l∈L
−
c

inl
n,j =

∑

i∈Sites αc
i,n × Sizen

#Setsn

(C.4)

∀c ∈ CR, s ∈ SR.
∑

l∈L
+
c

outls =
∑

n∈SC

αc
Sites,n × Sizen (C.5)

∀s ∈ SR.
∑

l∈L
−
s

outls =
∑

n∈SC

arrivalsn
Sites

× Sizen (C.6)

∀g ∈ GW,n ∈ SC, j ∈ Setsn.
∑

l∈L−
g

inl
n,j =

∑

l∈L+
g

inl
n,j (C.7)

∀g ∈ GW, s ∈ SR.
∑

l∈L−
g

outls =
∑

l∈L+
g

outls (C.8)

The first two equations in this series describe how much traffic is carried on the

network links departing from the Data Resources, given that any job of a given

service class has an equal probability to process any of the data sets available to

that service class. That same amount of network traffic is of course to be retrieved

at the Computational Resource side.

The next two equations present the analogous observation for output data gen-

erated by the jobs.

The last two equations state that network flow (both for input and output data)

is conserved when crossing intermediate routers.

A feasible schedule is obtained by demanding that the total distributed work-

load equals the size of the arriving workload per time unit:

∀i ∈ sites, n ∈ SC.
∑

c∈CR

αc
i,n = arrivalsn

i (C.9)

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-17

Constraints concerning the exclusive reservation of each CR:

∀c ∈ CR.
∑

n∈SC

xc,n = 1 (C.10)

∀c ∈ CR,n ∈ SC.
∑

i∈Sites

αc
i,n ≤ xc,n × Capc (C.11)

where the last equation is used to express that only those Computational Resources

which have been explicitly assigned to a service class may actually perform work

in that service class.

The “cost” to be minimized can take on several forms; for instance, the total

amount of data traveling over network links per unit of time (in the steady-state

Grid) can be described in terms of problem variables as

∑

l∈L





∑

n∈SC,j∈Setsn

inl
n,j +

∑

s∈SR

outls



 (C.12)

Using this cost function in the ILP results in a workload schedule and service class

assignation yielding minimal aggregate network load for a given arrival process.

Alternatively, one can choose to minimize the maximal unused computational re-

source fraction, which results in an “even” workload distribution across all com-

putational resources according to their respective capacities. This approach can be

modeled by adding the constraints

∀c ∈ CR,n ∈ SC.cost ≥

(

xc,n × Capc −
∑

i∈Sites αc
i,n

)

Capc

(C.13)

and minimizing the cost.

C.5.2 Genetic Algorithm Heuristic

The resource class assignment can easily be encoded into an n-tuple of service

class IDs, where n equals the number of resources. These chromosomes can then

be fed to a Genetic Algorithm (GA) which evaluates the fitness of each chromo-

some (i.e. possible service class assignment) w.r.t. a cost function f(x) (see al-

gorithm C.5.1). Unlike with an Integer Linear Program, this cost function needs

not be “linear” in the decision variables, giving this partitioning approach more

expressive power than the DLT based partitioning.

Algorithm C.5.1 starts with an initial population size of m randomly gener-

ated tuples (each tuple b consisting of n service class ID slots). While the stop

condition is not fulfilled, the GA applies a proportional selection, after which a

two-point crossover and a mutation step occur. The proportional selection selects

tuples based on their fitness (with fitter solutions more likely to be selected and

C-18 APPENDIX C

carried over to the next generation). In the next step, a two-point crossover op-

eration is applied (for each two consecutive tuples the crossover probability ρC

determines if all service class IDs between the randomly selected pos1 and pos2

are switched). Finally, the mutation operation is performed for each tuple, with

mutation probability ρM determining which of the n service class ID slots needs

to be mutated to a random service class ID.

Depending on how much time is available between partitioning runs (which in

turn depends on the stability of the different service characteristics), parameters of

this GA can be tuned in such a way that feasible search times can be attained (i.e.

search time << time between partitioning runs).

In the next sections we provide details on some implemented partitioning strate-

gies (and accompanying cost functions): section C.5.2.1 and section C.5.2.2 de-

scribe computational resource partitioning based on the processing requirements

of respectively local and global service classes. Taking into account the site lo-

cality of much needed service class’ input datasets is discussed in section C.5.2.3.

Finally, partitioning of network resources based on data requirements of the dif-

ferent service classes is discussed in section C.5.2.4. We assume that the Service

Manager has received both up-to-date local and foreign Grid Site service charac-

teristics from the Service Monitors and resource properties from the Information

Services.

C.5.2.1 Local Service CR Partitioning

The first (and simplest) partitioning strategy only takes into account the compu-

tational processing needs and priority of the different local service classes. The

Service Manager queries the Information Services for all local computational re-

sources and calculates average service class’ requested processing power as the

average processing time of that service class (as measured on a CR running at ref-

erence speed) divided by the average interarrival time of that SC (the higher job

interarrival times, the less processing power will be needed) and multiplied with

the number of sites that submit jobs from this SC. 2:

∀SC · ppowerreqSC
= sitesSC ×

ptimerefSC

IATSC

The relative processing power assigned to a service class (sum of processing power

of computational resources assigned to that SC) can be found from3:

∀SC · ppowerasgSC
=

∑

∀CR∈SC

speedCR

speedCRref

× ptimerefSC

2ptimerefSC
= average processing time of service class SC job on reference CR, sitesSC =

amount of Grid portals launching service class SC’s jobs, IATSC = average service class SC’s job

interarrival time
3speedCR = processing speed of CR, speedCRref

= processing speed of reference CR

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-19

Algorithm C.5.1: GENETIC ALGORITHM(resources)

populationinitial ← (b(1,0), ..., b(m, 0)), t← 0

while stopcondition false

do















































































































































































































comment: proportional selection

for i← 1 to m

do































x← rand[0, 1]

k ← 1

while k < m and x <
∑k

j=1
f(bj,t)

P

m
j=1

f(bj,t)

do k ← k + 1

bi,t+1 ← bk,t

comment: two-point crossover

for i← 1 to m− 1 step i + 2

do



















































if rand[0, 1] ≤ ρC

then







































pos1← rand[1, n]

pos2← rand[1, n]

if pos1 > pos2

then switch(pos1, pos2)

for k ← pos1 to pos2

do switch(bi,t+1[k], bi+1,t+1[k])
comment: mutation

for i← 1 to m

do











for k ← 1 to n

do

{

if rand[0, 1] < ρM

then bi,t+1[k]← rand[0,#SC]

t← t + 1

Once CR query answers have been received, the GA (as shown in algorithm C.5.1)

will be started with cost function f(x) described in algorithm C.5.2.

In this cost function (which is to be maximized), the objective is to donate to

each local service class the same amount of processing power relative to their re-

quested processing power (giving a higher cost function impact factor to service

classes that have a high priority). The maxAllocover and maxAllocunder parame-

ters assure an even spread of processing power to services (both in case insufficient

processing power is available and when sufficient processing power is available),

C-20 APPENDIX C

Algorithm C.5.2: fCRpartlocal
(x)

result←
ppowerasg0

2

maxAllocover ← 0

maxAllocunder ← 0

for i ∈ SClocal

do



















































































aux← ppowerreqi
− ppowerasgi

if aux < 0

then











if − aux > maxAllocover

then maxAllocover ← −aux

aux← ppowerasgi

else











if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

result
+
← priorityi

(
P

j∈SClocal
priorityj)

× aux

result
−
← maxAllocover + maxAllocunder

return (result)

as they keep track of the maximum amount of overallocated/underallocated pro-

cessing power and penalize the cost function result accordingly.

C.5.2.2 Global Service CR Partitioning

The second partitioning strategy adds support for services offered at foreign grid

sites. The cost function impact factor of assigning resources to foreign service

classes can be adjusted by the local Service Manager by tuning the foreign service

policy ρSCforeign
. Support for foreign service classes can range from no impact at

all on the cost function (ρSCforeign
= 0) to an impact equal to that of local service

classes (ρSCforeign
= 1) or any value in between. The resulting cost function is

stated in algorithm 5.3.

C.5.2.3 Input Data Locality Penalization

Resource partitioning based solely on the processing needs of the different ser-

vices can lead to bad performance. In case of data-intensive services in particular,

one wants these services to be processed on computational resources located near

input data that is generally requested by those service classes. In order to provide

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-21

Algorithm C.5.3: fCRpartglobal
(x)

result←
ppowerasg0

2

maxAllocover ← 0

maxAllocunder ← 0

for i ∈ SClocal ∪ SCforeign

do







































































































aux← ppowerreqi
− ppowerasgi

if aux < 0

then











if − aux > maxAllocover

then maxAllocover ← −aux

aux← ppowerasgi

else











if aux
ppowerreqi

> maxAllocunder

then maxAllocunder ←
aux

ppowerreqi

aux← ppowerasgi
− aux

if i ∈ SCforeign

then aux← aux× ρSCforeign

result
+
← priorityi

(
P

j∈SC priorityj)
× aux

result
−
← maxAllocover + maxAllocunder

return (result)

this functionality, the Service Manager queries the Information Services for both

computational and data resources and constructs a list of which CRs have local

access (i.e. accessible from the local Grid Site) to which input sets. We adjust

the cost function to include this notion and penalize assigning a computational re-

source that has no local access to an input dataset much-needed by the assigned

service. The actual penalty depends on the input data intensiveness of the ser-

vice class i (InputReqi

IATi
) when compared to the total input data requirements of all

service classes (
∑

∀j∈SC
InputReqj

IATj
): 4

costCR∈SCi =

InputReqi

IATi
∑

∀j∈SC
InputReqj

IATj

×
ρcost

#CRassignedi

An additional (yet larger) penalty is given when, amongst all computational re-

sources assigned to a particular service, not one of them has access to a needed

4InputReq = avg. service class’s input size requirement, #CRassigned = amount of CRs as-

signed to service class, ρcost = data non-locality penalty factor

C-22 APPENDIX C

dataset, as it can be considered best practice that at least one computational re-

source can access a needed input set locally. This cost is only charged once for

each service class.

cost =

InputReqi

IATi
∑

∀j∈SC
InputReqj

IATj

× ρcost

Both costs can be used as a penalty for the cost function in algorithm C.5.2 and

C.5.3.

C.5.2.4 Network Partitioning

Since the Service Monitor keeps track of I/O data characteristics of each service,

data intensiveness relative to the other services can be calculated. This in turn

can be used to perform per-service network bandwidth reservations. We have im-

plemented a proof-of-concept network partitioning strategy, in which the Service

Manager calculates average data requirement percentages for each service class i
5

bwreqi
=

bwinputi
+bwoutputi

IATi

∑

∀j∈SC

bwinputj
+bwoutputj

IATj

and passes this information to the Connection Manager, who in turn will make

service class bandwidth reservations on all network links for which it is responsi-

ble. Network partitioning can be applied to all previously mentioned partitioning

algorithms.

C.6 Performance Evaluation

C.6.1 Resource setup

A fixed Grid topology (see figure C.9) was used for all simulations (run on an

LCG-2.6.0 Grid [21] comprised of dual Opteron 242 1.6Ghz worknodes with 2 GB

RAM per CPU, and operating under Scientific Linux 3). First, a WAN topology

(containing 9 core routers with an average out-degree of 3) was instantiated using

the GridG tool [22]. Amongst the edge LANs of this topology, we have chosen

12 of them to represent a Grid site. Each site has its own resources, management

components and Grid portal interconnected through 1Gbps LAN links, with Grid

site interconnections consisting of dedicated 10Mbps WAN links. A single Ser-

vice Manager was instantiated, and was given access to the different Grid Sites’

Information Services.

5bwinput = avg. service class’s input bandwidth need:
speedCR

speedCRref

× InputReq

ptimeref
, bwoutput =

avg. service class’s output bandwidth need:
speedCR

speedCRref

× OutputReq

ptimeref

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-23

10 Mbps

WAN

Computational

Resources

Data

Resource

Grid Site

Grid

Site

Grid

Site

Grid

Site

Grid

Site

Grid

Site

Grid

Site
Grid

Site

Grid

Site

Grid

Site

Grid

Site

Grid

Site

1Gbps

LAN

Information

Service

Storage

Resource

Connection

Manager

Grid Portal
Scheduler

Service

Monitor

Service

Manager

Figure C.9: Simulated multi-site Grid topology

We have assigned 3 computational resources to each Grid Site (for a total of 36

CRs). To reflect the use of different tiers in existing operational Grids, not all CRs

are equivalent: the least powerful CR has two processors (which operate at the

reference speed). A second class of CRs has four processors, and each processor

operates at twice the reference speed. The third - and last - CR type contains 6

processors, each of which operates at three times the reference speed. Conversely,

the least powerful type of CR is three times as common as the most powerful

CR, and twice as common as the middle one (for a total of 18 reference CRs, 12

four-processor CRs and 6 of the most powerful CRs deployed in our simulated

topology). It is assumed that all processors can be time-shared between different

jobs.

We have assumed that storage resources offer “unlimited” disk space, but are

limited in terms of access/write speed by the bandwidth of the link connecting the

resource to the Grid Site. Each site has at its disposal exactly one such SR. Each

site’s data resource contains 6 out of 12 possible data sets. These data sets are

distributed in such a way that 50% of the jobs submitted to a site can have local

access to their needed data set.

C.6.2 Job parameters

We have used two different, equal-priority service classes (each accounting for

half of the total job load) in our simulations; one is more data-intensive (i.e. higher

data sizes involved), while the other is more CPU-intensive. At each Grid Site,

two “clients” have been instantiated, one for each job type. Each client submits

mutually independent jobs to its Grid Portal. All jobs need a single data resource

C-24 APPENDIX C

and a single storage resource. The ranges between which the relevant job param-

eters vary have been summarized in table C.1. In each simulation, the job load

consisted of 2784 jobs. For each scheduling algorithm, we chose to use a fixed

interval of 20s between consecutive scheduling rounds. From the arrival rates in

CPU-Job Data-Job

Input(GB) 0.01-0.02 1-2

Output(GB) 0.01-0.02 1-2

IAT(s) 30-40 30-40

Ref. run time(s) 100-200 40-60

Table C.1: Relevant service class properties

table C.1 and the fact that multiple sites submit job simultaneously, we are likely

to find multiple jobs in the queue at the start of each scheduling round.

C.6.3 Comparison of DLT and GA based Partitioning

In general, our GA based partitioning strategy provides more functionality, as it is

able to support different priority schemes, shared resources (service class 0 assig-

nations) and local vs. foreign service differentiation. Its main drawback is the time

needed to complete a GA run (with reasonable results); on our sample scenario, a

naive stop condition of 100 generations takes on average 2632s (26.32s per gen-

eration but it should be noted that this time is not exclusive for GA solution calcu-

lation, but is also spent on all other simulation tasks during partitioning) as can be

seen in Figure C.10(a). More reasonable GA calculation times (with an average of

1123.4s can however be obtained when using a more intelligent stop condition (i.e.

stop when over a period of 15 generations the cost function optimum changes by

less than 0.5%). The DLT based approach on the other hand needs on average only

10s. For the GA approach, we used Grefenstette’s settings [23], with a population

of 30 per generation, ρC = 0.9 and ρM = 0.01. In case faster partitioning times

need to be attained, one can either tune GA parameters (smaller population sizes,

faster stopping condition, etc.) or deploy a Service Monitor/Service Manager at

every Grid Site, who are then responsible for communicating with the foreign site’s

Service Monitor components and partitioning the resources at their assigned site

(as described in section C.3.3).

Figure C.10(b) shows the trend of the cost function optimum for different GA

generations (partitioning occurred on the topology discussed in section C.6.1). The

cost function used is the one discussed in section C.5.2.1 (Local Service CR parti-

tioning) with Input Data Locality penalization. It is important to note that during

the calculation of a resource-to-service partitioning, Grid operation does not stall

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-25

but continues as normal, as the Service Management components do not block any

other management components.

 0

 500

 1000

 1500

 2000

 2500

 3000

36302418126

G
A

 p
a

rt
it
io

n
in

g
 t

im
e

 (
s
)

Computational Resources

100 generations
intelligent stop

(a) solution calculation times

 730000

 740000

 750000

 760000

 770000

 780000

 790000

 0 20 40 60 80 100

f(
x
)

GA generation

(b) optimal fitness trend

Figure C.10: Genetic Algorithm measurements

C.6.4 Job response time

We define the response time of a job as the difference between its end time (time at

which the job’s final output block has been sent to the scheduler-assigned Storage

Resource) and the time it is submitted to the scheduler. In figure C.11 we present

this average job response time for different scenarios, comparing both the (DLT

& GA based) Service Managed versus the non-Service Managed case (DLT CR

attempts to minimize equation C.13 while DLT Network minimizes equation C.12

as explained in section C.5.1) while at the same time evaluating the different par-

titioning strategies discussed in previous sections for both network aware (see fig-

ure C.11(b)) and non network aware (see figure C.11(a)) scheduling algorithms.

The results show that average job response times can be improved significantly

(by 40.44% when non network aware scheduling is used and by 22.6% when net-

work aware scheduling is employed) by employing a resource partitioning algo-

rithm prior to scheduling. This behavior can be explained because resources are

reserved for exclusive use by a service class. It is this service-exclusivity that

forces the scheduler to not assign jobs to less-optimal resources (e.g. non-local

access to needed input data, low processing power available,. . .), but to keep the

job in the scheduling queue until a service-assigned resource becomes available.

It is noteworthy that the DLT based partitioning works best when network un-

aware scheduling algorithms are used (especially for the computationally intensive

service class), as it outperforms the slower GA based partitioning strategies. How-

ever, when network aware scheduling strategies are employed (leading to much

lower overall job response times as the scheduler takes into account the state of the

network links interconnecting the various resources at the moment of scheduling),

C-26 APPENDIX C

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

CPU STData STAll

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

No SM
GA

DLT CR
DLT Network

(a) Non Network Aware scheduling

 40

 50

 60

 70

 80

 90

 100

CPU STData STAll

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

No SM
GA

GA-CONN
DLT CR

DLT Network

(b) Network Aware scheduling

Figure C.11: Job response times

the GA based methods (particularly the GA based computational and GA-CONN

computational/network resource partitioning algorithms) provide the best results.

If we compare the performance of the different GA based partitioning heuris-

tics (see figure C.12) (note that when non network aware scheduling is employed,

no connection partitioning results are shown, due to the fact that the non network

aware scheduling algorithm does not take into account the connection reservation

system) we notice that average job response times always improve when resources

are partitioned amongst service classes. When scheduling non network aware, the

best results are attained when using computational partitioning taking into account

input data locality, as data intensive jobs can be run on computational resources

reserved physically near resources that store much needed I/O data, leading in turn

to less computational stalling, as I/O data suffers from less network bottleneck-

ing. When network aware scheduling is employed, one is best of using a heuristic

that partitions both computational and network resources. Network partitioning as-

sures that service classes with high I/O requirements do not consume all bandwidth

(thereby preventing computationally intensive service classes from retrieving their

I/O), but instead force them to only use a predefined percentage of bandwidth.

C.6.5 Resource Efficiency

Using the same job load, the average hopcount over which data was transferred by

data-intensive jobs (with hopcount equaling the amount of hops between data re-

source and computational resource added to the amount of hops between computa-

tional resource and storage resource) is shown in Figure C.13. We notice that aver-

age hopcount dropped by 4.8% when network unaware scheduling was employed

(computational resource partitioning with data locality versus non-service parti-

tioned resources), and by 5.5% when a network aware scheduling heuristic was

used (network partitioning with data locality compared to the non-service man-

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

Network AwareNon Network Aware

A
v
g

.
J
o

b
 R

e
s
p

o
n

s
e

 T
im

e
 (

s
)

no Serv. Man
global CR Part.

global CR-IDLP Part.
global CR-Network Part.

global CR-Network-IDLP Part.

Figure C.12: Job response times for GA based partitioning heuristics

aged case), due to the fact that input/output data was located at resources closer

to the job’s service class’ assigned CRs. Network resources are thus used most

sparingly when computational and network resource partitioning with input data

locality is employed together with a scheduling algorithm that takes into account

the state of the network links interconnecting the job’s resources.

 4

 5

 6

 7

 8

 9

Network AwareNon Network Aware

H
o

p
c
o

u
n

t

no Serv. Man
global CR Part.

global CR-IDLP Part.
global CR-Network Part.

global CR-Network-IDLP Part.

Figure C.13: Network resource efficiency

Furthermore, we calculated the average computational resource utilization:
∑

j∈JobsCR
Loadj

Makespan× speedCR

The improvement obtained by employing resource-to-service partitioning when

using network unaware scheduling equals 17%, whereas in the case where net-

work aware scheduling is used, it is 14.6%. Indeed, the fastest (and rarest in

our topology) computational resources were automatically reserved for process-

ing computationally complex jobs, disallowing data intensive jobs from cluttering

these resources and using their full processing potential for those computationally

intense jobs. The slower computational resources were then assigned to the data

intensive service classes, who, because of their large I/O needs benefit more from

having fast (i.e. LAN) access to much needed data.

C-28 APPENDIX C

C.6.6 Scheduling

We measured the time it takes to calculate a scheduling decision and noticed a de-

crease in scheduling time of 28.17% when comparing the service managed Grid to

the non-service managed Grid in case network aware scheduling is used (i.e. from

an average 7.88s in the non service managed case to 5.66s in the service managed

Grid). This behaviour can be explained by the fact that a scheduler queries the

Information Services for resources adhering to a job’s requirements and assigned

to either the job’s service class or service class 0. When resources are partitioned

amongst services, less results will be returned to the scheduler, allowing for faster

schedule making decisions.

C.6.7 Priority - Service Class QoS support

In another experiment, we gave the CPU-intensive jobs higher priority than the

data-intensive jobs and let the Service Manager construct a Virtual Private Grid

(dedicated resource pool, scheduler and information service) for each service class.

Due to the high priority of the CPU-intensive class, its cost function impact factor

becomes higher which leads to more (and/or better) resources being assigned to

the prioritized class. Also, during deployment of the VPG schedulers, the Service

Manager configures the dedicated CPU-intensive scheduler to schedule those pri-

oritized jobs as soon as possible, using a network aware scheduling algorithm (the

data intensive jobs were also scheduled using a network aware scheduling algo-

rithm, but were by default queued until the next scheduling round). The results are

shown in figure C.14: the average job response time of the computationally inten-

sive service class is substantially improved (due to more/better resources assigned

to this service class and the ASAP scheduling policy enforced by the VPG sched-

uler), while the data intensive service class’s average response time gets worse

(prioritizing service classes over other service classes can not lead to win-win sit-

uations: the non-prioritized service classes’ performance will deteriorate).

 0

 10

 20

 30

 40

 50

 60

 70

CPUData

A
v
e

ra
g

e
 J

o
b

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
)

No VPG
VPG + priority

Figure C.14: VPG Service Class priority support

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-29

C.7 Conclusions

We proposed the use of a distributed service management architecture, following

the OGSA ‘service level manager’ concept, capable of monitoring service charac-

teristics at run-time and partitioning Grid resources amongst different priority ser-

vice classes. This partitioning, together with the dynamic creation of per-service

management components, lead to the introduction of the Virtual Private Grid con-

cept. A variety of resource-to-service partitioning algorithms (some based on Di-

visible Load Theory and others employing Genetic Algorithm heuristics) were dis-

cussed and we evaluated their performance on a sample topology using NSGrid.

Our results show that the proposed service management architecture improves both

network and computational resource efficiency and job turnaround times, eases the

process of making scheduling decisions, and at the same time offers service class

QoS support. Management complexity and scheduling / information service scal-

ability is improved due to the automated deployment of service class dedicated

management components.

C.8 Acknowledgment

Bruno Volckaert and Marc De Leenheer would like to thank the Institute for the

Promotion and Innovation through Science and Technology in Flanders (IWT-

Vlaanderen). Pieter Thysebaert and Filip De Turck are research assistant and

postdoctoral fellow, respectively, funded by the Research Foundation - Flanders

(FWO-Vlaanderen).

References

[1] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. Grid services for dis-

tributed system integration. IEEE Computer, 35(6):37–46, 2002.

[2] Enabling Grids for E-Science in Europe. http://egee-intranet.

web.cern.ch.

[3] I. Foster and al. The Open Grid Services Architecture, Version 1.0. draft-

ggf-OGSA-spec-019 http://forge.gridforum.org/projects/

ogsa-wg.

[4] K. Czajkowski and al. The WS-Resource Framework Version 1.0. http:

//www.globus.org/wsrf/specs/ws-wsrf.pdf.

[5] J.O. Kephart and D.M. Chess. The Vision of Autonomic Computing. IEEE

Computer, 36(1):41–50, 2003.

C-30 APPENDIX C

[6] A.G. Ganek and T.A. Corbi. The dawning of the autonomic computing era.

IBM Systems Journal, 42:5–18, 2003.

[7] B. Volckaert, P. Thysebaert, F. De Turck, P. Demeester, and B. Dhoedt. Eval-

uation of Grid Scheduling Strategies through a Network-aware Grid Simu-

lator. In Proceedings of the International Conference on Parallel and Dis-

tributed Processing Techniques and Applications, pages 31–35, 2003.

[8] K. Ranganathan and I. Foster. Simulation Studies of Computation and Data

Scheduling Algorithms for Data Grids. Journal of Grid Computing, 1:53–62,

2003.

[9] F. Berman et al. Adaptive Computing on the Grid Using AppLeS. IEEE

Transactions on Parallel and Distributed Systems, 14:369–382, 2003.

[10] H. Casanova H. Dail, F. Berman. A Decoupled Scheduling Aproach for Grid

Application Development Environments. Journal of Parallel and Distributed

Computing, 63-5:505–524, 2003.

[11] R. Wolski, N. Spring, and Jim Hayes. The Network Weather Service: A

Distributed Resource Performance Forecasting Service for Metacomputing.

Future Generation Computer Systems, 15(5-6):757–768, 1999.

[12] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information

Services for Distributed Resource Sharing. In Proc. of the 10th IEEE In-

ternational Symposium on High-Performance Distributed Computing, pages

181–194, 2001.

[13] I. Foster, A. Roy, and V. Sander. A Quality of Service Architecture that

Combines Resource Reservation and Application Adaptation. In Proceed-

ings of the Eighth International Workshop on Quality of Service (IWQoS

2000), pages 181–188, 2000.

[14] A. Rodger. Analyst report: Butler Group Subscription Services: Technol-

ogy Infrastructure - IBM Tivoli Intelligent Orchestrator and IBM Tivoli Pro-

visioning Manager. ftp://ftp.software.ibm.com/software/

tivoli/analystreports/ar-orch-prov-butler.pdf, 2004.

[15] H.L. Lee and al. A Resource Manager for Optimal Resource Selection and

Fault Tolerance Service In Grids. In Proceedings of Cluster Computing and

the Grid (CCGrid 2004), pages 572–579, 2004.

[16] M. Hovestadt, O. Kao, A. Keller, and A. Streit. Scheduling in HPC Re-

source Management Systems: Queueing vs. Planning. In Proceedings of the

9th Workshop on Job Scheduling Strategies for Parallel Processing, LNCS

2862/2003, pages 1–20, 2003.

FLEXIBLE GRID SERVICE MANAGEMENT THROUGH RESOURCE PARTITIONING C-31

[17] P. Thysebaert, B. Volckaert, F. De Turck, B. Dhoedt, and P. Demeester. Net-

work Aspects of Grid Scheduling Algorithms. In 17th International Con-

ference on Parallel and Distributed Computing Systems (PDCS’04), pages

91–97, 2004.

[18] D. Yu and T.G. Robertazzi. Divisible Load Scheduling for Grid Computing.

In Proceedings of the IASTED 2003 International Conference on Parallel and

Distributed Computing and Systems (PDCS), 2003.

[19] P. Thysebaert, F. De Turck, B. Dhoedt, and P. Demeester. Using Divisible

Load Theory to Dimension Optical Transport Networks for Computational

Grids. In Proceedings of OFC/NFOEC - on CD-ROM, 2005.

[20] Y. Kitatsuji, K. Kobayashi, Y. Kitamura, and al. Deployment of APAN Tokyo

XP and evaluation of source based routing. Transactions of the Institute of

Electronics, Information and Communication Engineers, J85-B:1164–1171,

2002.

[21] LHC Computing Grid project. http://lcg.web.cern.ch/LCG.

[22] D. Lu and P. Dinda. GridG: Generating Realistic Computational Grids.

ACM SIGMETRICS Performance Evaluation Review, 40(4), 2003.

[23] J.J. Grefenstette. Optimization of control parameters for genetic algorithms.

IEEE Trans. Systems, Man, and Cybernetics, 16-1:122–128, 1986.

