162 research outputs found

    Toward a theory of input-driven locally parsable languages

    Get PDF
    If a context-free language enjoys the local parsability property then, no matter how the source string is segmented, each segment can be parsed independently, and an efficient parallel parsing algorithm becomes possible. The new class of locally chain parsable languages (LCPLs), included in the deterministic context-free language family, is here defined by means of the chain-driven automaton and characterized by decidable properties of grammar derivations. Such automaton decides whether to reduce or not a substring in a way purely driven by the terminal characters, thus extending the well-known concept of input-driven (ID) alias visibly pushdown machines. The LCPL family extends and improves the practically relevant Floyd's operator-precedence (OP) languages which are known to strictly include the ID languages, and for which a parallel-parser generator exists

    Higher-Order Operator Precedence Languages

    Get PDF
    Floyd's Operator Precedence (OP) languages are a deterministic context-free family having many desirable properties. They are locally and parallely parsable, and languages having a compatible structure are closed under Boolean operations, concatenation and star; they properly include the family of Visibly Pushdown (or Input Driven) languages. OP languages are based on three relations between any two consecutive terminal symbols, which assign syntax structure to words. We extend such relations to k-tuples of consecutive terminal symbols, by using the model of strictly locally testable regular languages of order k at least 3. The new corresponding class of Higher-order Operator Precedence languages (HOP) properly includes the OP languages, and it is still included in the deterministic (also in reverse) context free family. We prove Boolean closure for each subfamily of structurally compatible HOP languages. In each subfamily, the top language is called max-language. We show that such languages are defined by a simple cancellation rule and we prove several properties, in particular that max-languages make an infinite hierarchy ordered by parameter k. HOP languages are a candidate for replacing OP languages in the various applications where they have have been successful though sometimes too restrictive.Comment: In Proceedings AFL 2017, arXiv:1708.0622

    Beyond operator-precedence grammars and languages

    Get PDF
    Operator Precedence Languages (OPL) are deterministic context-free and have desirable properties. OPL are parallely parsable, and, when structurally compatible, are closed under Boolean operations, concatenation and star; they include the Input Driven languages. OPL use three relations between two terminal symbols, to assign syntax structure to words. We extend such relations to k-tuples of consecutive symbols, in agreement with strictly locally testable regular languages. For each k, the new corresponding class of Higher-order Operator Precedence languages properly includes the OPL and enjoy many of their properties. OPL are a strict hierarchy based on k, which contains maximal languages

    Regular Methods for Operator Precedence Languages

    Get PDF
    The operator precedence languages (OPLs) represent the largest known subclass of the context-free languages which enjoys all desirable closure and decidability properties. This includes the decidability of language inclusion, which is the ultimate verification problem. Operator precedence grammars, automata, and logics have been investigated and used, for example, to verify programs with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside the scope of the visibly pushdown languages). In this paper, we complete the picture and give, for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic congruence that has finitely many equivalence classes exactly for the operator precedence languages. This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs. As one of the consequences, we show that universality and language inclusion for nondeterministic operator precedence automata can be solved by an antichain algorithm. Antichain algorithms avoid determinization and complementation through an explicit subset construction, by leveraging a quasi-order on words, which allows the pruning of the search space for counterexample words without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these implementations are today the best-performing algorithms in practice for the inclusion of finite automata. We give a generic construction of the quasi-order needed for antichain algorithms from a finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that solves the ExpTime-hard language inclusion problem for OPLs in exponential time

    A Parallel Data Processing System for Large Text Data based on OPG

    Get PDF
    学位の種別: 修士University of Tokyo(東京大学

    The Computational Analysis of the Syntax and Interpretation of Free Word Order in Turkish

    Get PDF
    In this dissertation, I examine a language with “free” word order, specifically Turkish, in order to develop a formalism that can capture the syntax and the context-dependent interpretation of “free” word order within a computational framework. In “free” word order languages, word order is used to convey distinctions in meaning that are not captured by traditional truth-conditional semantics. The word order indicates the “information structure”, e.g. what is the “topic” and the “focus” of the sentence. The context-appropriate use of “free” word order is of considerable importance in developing practical applications in natural language interpretation, generation, and machine translation. I develop a formalism called Multiset-CCG, an extension of Combinatory Categorial Grammars, CCGs, (Ades/Steedman 1982, Steedman 1985), and demonstrate its advantages in an implementation of a data-base query system that interprets Turkish questions and generates answers with contextually appropriate word orders. Multiset-CCG is a context-sensitive and polynomially parsable grammar that captures the formal and descriptive properties of “free” word order and restrictions on word order in simple and complex sentences (with discontinuous constituents and long distance dependencies). Multiset-CCG captures the context-dependent meaning of word order in Turkish by compositionally deriving the predicate-argument structure and the information structure of a sentence in parallel. The advantages of using such a formalism are that it is computationally attractive and that it provides a compositional and flexible surface structure that allows syntactic constituents to correspond to information structure constituents. A formalism that integrates information structure and syntax such as Multiset-CCG is essential to the computational tasks of interpreting and generating sentences with contextually appropriate word orders in “free” word order languages

    Network and systems medicine: Position paper of the European Collaboration on Science and Technology action on Open Multiscale Systems Medicine

    Get PDF
    Introduction: Network and systems medicine has rapidly evolved over the past decade, thanks to computational and integrative tools, which stem in part from systems biology. However, major challenges and hurdles are still present regarding validation and translation into clinical application and decision making for precision medicine. Methods: In this context, the Collaboration on Science and Technology Action on Open Multiscale Systems Medicine (OpenMultiMed) reviewed the available advanced technologies for multidimensional data generation and integration in an open-science approach as well as key clinical applications of network and systems medicine and the main issues and opportunities for the future. Results: The development of multi-omic approaches as well as new digital tools provides a unique opportunity to explore complex biological systems and networks at different scales. Moreover, the application of findable, applicable, interoperable, and reusable principles and the adoption of standards increases data availability and sharing for multiscale integration and interpretation. These innovations have led to the first clinical applications of network and systems medicine, particularly in the field of personalized therapy and drug dosing. Enlarging network and systems medicine application would now imply to increase patient engagement and health care providers as well as to educate the novel generations of medical doctors and biomedical researchers to shift the current organ- and symptom-based medical concepts toward network- and systems-based ones for more precise diagnoses, interventions, and ideally prevention. Conclusion: In this dynamic setting, the health care system will also have to evolve, if not revolutionize, in terms of organization and management
    corecore