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Abstract: 

Network and systems medicine has rapidly evolved over the last decade, thanks to computational and 
integrative tools, which stem in part from systems biology. However, major challenges and hurdles are 
still present concerning validation and translation into clinical application and decision-making for 
precision medicine. In this context, the Collaboration on Science and Technology (COST) action on Open 
Multiscale Systems Medicine (OpenMultiMed) reviewed the available advanced technologies for 
multidimensional data generation and integration in an open-science approach as well as key clinical 
applications of network and systems medicine and the main issues and opportunities for the future. The 
development of multi-omic approaches as well as new digital tools provides a unique opportunity to 
explore complex biological systems and networks at different scales. Moreover, the application of FAIR 
(Findable, Applicable, Interoperable and Reusable) principles and adoption of standards increases data 
availability and sharing for multiscale integration and interpretation. These innovations have led to first 
clinical applications of network and systems medicine particularly in the field of personalized therapy and 
drug dosing.  Enlarging network and systems medicine application would now imply to increase patient 
engagement and healthcare providers as well as to educate the novel generations of medical doctors and 
biomedical researchers to shift the current organ- and symptom-based medical concepts towards 
network- and systems-based ones for more precise diagnoses, interventions and ideally prevention. In 
this dynamic, the healthcare system will also have to evolve if not revolutionize in terms of organization 
and management.  
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Introduction 

  

Why we need new medicine 

About 70% of all medical interventions pertain to the prescription of a drug. However, for several drugs 
that are on the market, population-based studies fail to show patient-relevant benefits.1,2 Research 
covering drug approval since the 1970s suggests only a limited number of new drugs provide real advances 
over existing ones; most studies place the proportion of true innovation at under 15%.3 For every person 
they do help, the 10 highest-grossing drugs in the USA fail to improve the conditions of most other 
patients, leading to so-called high ‘numbers needed to treat’ (NNT, Fig 1c).4 Since the 1950s, the efficacy 
of translating biomedical research into successful drug discovery is on a constant decline.4,5 Two key 
factors have contributed to this innovation roadblock. One is the irreproducibility of pre-clinical and basic 
research data6 to which, besides data manipulation/fabrication, poor study quality, such as lack of 
statistical power and positive publication bias by scientific journals, are the main contributors.7,8 The 
second reason is the conceptual medical knowledge gap about many of our current, in particular chronic, 
disease definitions. Except for infectious and rare diseases, most disease definitions are based on signs 
and reported symptoms, pointing to organ-centric mechanisms (see Fig. 1b), and not on causal molecular 
mechanisms which for many diseases are not even known. Consequently, there is a disease-based care 
system, where the focus is put on treating and monitoring the symptoms (see Fig. 1a), rather than true 
health care that treats the causes by helping to implement lifestyle decisions for a healthier life. 

A drug can only be effectively developed and applied in a precise manner if the molecular disease 
mechanism is known. Not knowing a disease mechanism also affects basic and pre-clinical (animal) 
research, where often cellular or animal models that mimic symptoms of human disease are used, but 
neither the underlying mechanism of the animal model nor that of the human disease is known.9–14 
Noteworthy exceptions to these limitations and shortcomings are again infectious or rare diseases, where 
a precise - often monogenetic - mechanism is known. Many common and complex clinical disease 
phenotypes, once they are fully endo-phenotyped and mechanistically understood, will segregate into 
several distinct mechanotypes.15 Many common diseases appear complex because we combine several 
molecular diseases under one umbrella term based on shared prominent signs and symptoms. For 
example, high blood pressure is in 95% of the cases diagnosed as Essential Hypertension, meaning that 
the blood pressure is elevated, but we do not know why. These patients are then treated with different 
blood vessel-dilating drugs and the clinical sign, elevated blood pressure, disappears, yet the cause is not 
known and remains untreated. Once mechanistically understood, chronic diseases can be cured or even 
prevented and no longer just treated (see Fig. 1d). The UK National Institute for Health and Care Excellence 
(NICE) published a list of the absolute benefits of treatments of common conditions in terms of their NNT. 
For example, for every thousand low-risk patients prescribed statins for primary prevention, only a single 

https://paperpile.com/c/dIrifM/zvUh+rDJG
https://paperpile.com/c/dIrifM/bebU
https://paperpile.com/c/dIrifM/Croy
https://paperpile.com/c/dIrifM/Croy+bp8o
https://paperpile.com/c/dIrifM/ip0j
https://paperpile.com/c/dIrifM/qjY0+jpqZ
https://paperpile.com/c/dIrifM/bNi9+WPoo+rNjA+6OyK+JtQL+5aYo
https://paperpile.com/c/dIrifM/8rSt
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stroke is prevented per year; one needs to treat more than a thousand patients with antihypertensives 
per year to prevent one death; and over 800, to prevent one heart attack; nearly 600, to prevent one 
stroke. In high-risk patients, the NNTs are smaller, but the problem persists.16 Thus, a move towards a 
more precise ideally curative therapy that works for almost every patient is of utmost importance. 

 

Applied biomedical research and drug discovery 

This efficacy problem also pertains to basic research and its translation into applications such as drug 
discovery. Of 25,190 articles published from 1979 to 1983 in the six basic science journals, Nature, Cell, 
the Journal of Experimental Medicine, and the Journal of Clinical Investigation, which had the highest 
impact factors in 2000, and the Journal of Biological Chemistry, which received the most citations, only a 
single claim of relevance may have led to actual application follow-up.17 Concerning the discovery of new 
drugs, for three decades, costs have increased exponentially and are now stable at an extremely high 
level. Since the 1950s, however, the efficacy of drug discovery is on a constant logarithmic decline 
indicating a fundamental and conceptual problem of how we define and approach disease.5 For drug 
discovery, recently, systematic drug repurposing is being increasingly explored and represents a 
conceptual change to a mechanism-based disease definition allowing for a mechanism-based patient 
stratification, which increases the precision for any subsequent mechanism-based drug intervention. This 
will massively de-risk drug development, yet at the downside that in the future, drugs will be developed 
for much smaller patient numbers. 

 

From single targets to validated, causal networks 

In the diseasome, disease clusters are mechanistically defined by several genes and proteins forming a 
signaling network.18 This has been most extensively hypothesized for 3 distinct networks for macular 
degeneration18,19 and cancer.20 The validity of these networks is essential because both the diagnostic and 
therapeutic strategies reside on it. Defining the causal signaling network is not trivial and not at all 
obvious. It is state-of-the-art to rely on highly curated signaling pathway databases such as the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) or WikiPathways, a collection of manually drawn pathway 
maps representing our apparent knowledge on molecular interactions, reactions and relation networks, 
or review articles. KEGG, however, shows 29 cyclic GMP and 12 reactive oxygen pathways, none of which 
is comprehensive and all of which fail to cover a recently discovered functional and molecular link 
between the two,21 uniting both in fact to one network. Moreover, subcellular compartmentalization and 
transition over time also matter in defining disease modules,18,21 contributing to further deviation from 
static pathway concepts. 

https://paperpile.com/c/dIrifM/LDwF
https://paperpile.com/c/dIrifM/nVPd
https://paperpile.com/c/dIrifM/bp8o
https://paperpile.com/c/dIrifM/Ttdg
https://paperpile.com/c/dIrifM/Ttdg+OY3r
https://paperpile.com/c/dIrifM/3D4E
https://paperpile.com/c/dIrifM/oIHM
https://paperpile.com/c/dIrifM/oIHM+Ttdg
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Mechanism-based diagnostics 

Biomarkers are increasingly hypothesized as important for precision medicine,22–24 although the term is 
ambiguous and used for several applications such as screening, stratification, efficacy, differentiation, 
toxicity and prognosis. In place of validated causal disease mechanisms, the state-of-the-art biomarkers 
used for these purposes are mostly correlative surrogate and omic markers, rarely established risk factors 
and never a full functional analysis of a patient’s activity state of a causal disease mechanism.22 The limited 
availability of predictive and precise biomarkers represents a key bottleneck in the progress from 
mechanism-based disease definition to clinical validation by mechanism-based therapeutic intervention. 
This causes inefficient drug therapy and clinical trials with a high failure rate (see above). 

 

From single or combination therapy to network pharmacology 

The first line of treatment for many diseases involves the administration of a single drug, assuming a single 
relevant target. If the therapeutic effect is insufficient, drugs are combined. Sometimes, such combination 
therapies can get out of control when so-called poly-pharmacy results in ten or more drugs being 
prescribed to a patient with unwanted drug-drug interactions and side effects. Network pharmacology 
may be easily confused with such combination therapies. The important difference, however, is that in 
combination therapy symptomatically acting drugs on unrelated targets are combined and act in an 
additive manner, while in network pharmacology, all drugs act on the same and causal network, and are 
thereby highly synergistic. This allows for a substantial reduction in the dose of each drug whilst still 
achieving the same therapeutic effect. This will in all likelihood reduce any side effect of each drug or 
possible unwanted drug-drug interactions.21,25 

 

Definition and goals of network and systems medicine 

Major socio-economic innovations are not only triggered by unmet needs as above, but also by critical 
technological advances. Insofar, network and systems medicine would not have emerged without decades 
of development of its antecedent discipline, i.e., systems biology as defined by pioneers in the field.26,27 
Therefore, it is impossible to discuss systems medicine alone without first talking about systems biology. 
Systems biology emphasizes analyzing interactions within complex biological systems using holistic and 
integrative high-throughput experimental and computational approaches. One of the hallmarks in the 
complex systems, such as multicellular organisms and multi-organ organisms (e.g., animals and humans) 
is that several components (different cell types, tissues or organs) interact with each other as a local 
subnetwork or global network to generate emergent effects.28,29 The challenges behind this hallmark 

https://paperpile.com/c/dIrifM/KQOk+91ZR+0KZe
https://paperpile.com/c/dIrifM/KQOk
https://paperpile.com/c/dIrifM/oIHM+QrHA
https://paperpile.com/c/dIrifM/zoL5+hceQ
https://paperpile.com/c/dIrifM/dLz8+IiWQ
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cannot be solved per se by the reductionist paradigm that decomposes the complex systems into smaller 
and simpler components and understands their functions and roles one by one. Thus, the emergence of 
systems biology is to tackle the essential limits of the reductionist approaches.30 

While systems biology focuses on basic mechanisms and principles in biology or at most translational 
preclinical research, systems medicine aims to directly handle the challenges related to health and 
diseases.31–33 In a way, it can also be considered as a modern advancement of physiology. So far, there is 
no consensus on the definition of systems medicine, an emergent and fast evolving field. Our perception 
about systems medicine is the application systems biology approaches to the clinical settings of individuals 
by the combination of large-scale multi-layer, high-throughput quantitative molecular and image 
measurements at different spatial scales (from molecules, through cells and tissues, to organs), over 
various time scales, with different types of clinical information.34 The aims of systems medicine are also 
multi-dimensional, i.e. from the understanding of disease mechanisms to accurate diagnosis, prediction 
and eventual prevention using accessible biopsies, tissues and samples, to patient subgroup stratification 
of complex diseases, to the development of novel approaches in drug discoveries, to more precision 
treatment based on tailored measurements of distinct patients.35 Systems medicine is based on a holistic 
approach to medicine in opposition to the current symptom/organ-based view. As proposed by Leroy 
Hood, systems medicine should eventually enable predictive, preventive, personalized and participatory 
(P4) medicine to improve the wellness of our society.36 Network and systems medicine is at the crossroad 
of pure and applied sciences, wet and dry labs, life, and computer sciences. Main scientific and 
technological components of this new field have therefore yet to emerge and evolve into a well-
established process. 

Network and systems medicine is built similarly to a modern knowledge discovery flow. To implement 
systems medicine, as the name “systems” indicated, the first required technology should be the 
development of system-level multidimensional technologies. In this context, the present review on 
systems medicine first introduces the intended outcomes and definitions. It discusses in a first section the 
required technologies for multi-dimensional data generation, the current data availability, as well as the 
computational tools for data integration and interpretation. In a second section, it illustrates its 
potentiality through some clinical applications. Finally, it discusses the current remaining issues and 
prospects of this large domain. 

  

Basic science and data for network and systems medicine 

Network and systems medicine is built similarly to a modern knowledge discovery flow. In particular, 
multidimensional omics data generation and integration are key elements in the big data analytics era. 

https://paperpile.com/c/dIrifM/6lip
https://paperpile.com/c/dIrifM/A5bv+IbGF+LzaK
https://paperpile.com/c/dIrifM/Sq3U
https://paperpile.com/c/dIrifM/Nb1N
https://paperpile.com/c/dIrifM/58wJ
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Multidimensional omics 

The importance of taking into account the complexity of biological systems has been recognized as the 
basis of systems approaches. Indeed, it appears that in individuals, a different combination of genetic and 
environmental factors defines the pathology progress, which accumulates with age. We face co-
occurrence of pathologies in the ever-aging population. In addition to cardiovascular complications, there 
is a rise in neurodegenerative pathologies and metabolic pathologies, where diabetes mellitus and non-
alcoholic fatty liver disease are among key components. It is important to note that metabolic diseases 
(metabolic syndrome, type 2 diabetes, osteoporosis, etc.) show strong comorbidities or co-occurrence 
with other diseases, such as cardiovascular diseases, cancers and even neurodegenerative diseases, all 
major health problems of today’s societies.37–39 There is a challenging situation where, on one hand there 
is a large progress in understanding the molecular players of disease stages and overlap with other 
diseases, while on the other hand, the inconsistencies from different studies and different populations 
leave the impression that we are indeed at the start. In this context, the objective of omics research within 
systems medicine is to study and understand regulatory mechanisms, identify corresponding specific 
biomarkers, and characterize their interaction within and between systems,40 with the analysis of large 
sets of biological molecules, including genomics, epigenomics, proteomics, metabolomics and much 
more, in combination with methodologies from the computer and mathematical science. 

Genome-wide association studies (GWASs) have shown their importance in the discovery of single-
nucleotide polymorphisms (SNPs) as markers associated with disease-specific clinical phenotypes or their 
risk factors. As an example, in liver diseases, the genome wide association studies, transcriptome analyses, 
meta analyses and other clinical studies in different populations and ethnic backgrounds are until 2019 
concordant in polymorphisms of a single gene PNPLA3.41 However, liver pathologies remain a major health 
burden of modern societies where sex dimorphism remains crucial, yet a neglected factor.42,43 Generally 
speaking, complex disease phenotypes can rarely be explained by a single gene, and genomic analysis 
integrated with protein-protein interaction networks have evidenced the role of groups of genes and 
variants, and new pathways in multiple diseases.44 Therefore, the need for new disease risk models has 
emerged, including not only genetic factors, transcripts and proteins but also elements such as 
metabolites, the metabolome being closer to the phenotype. Metabolomics, described as a global analysis 
of small molecules present in a biofluid (blood, urine, saliva…), produced or modified as a result of stimuli 
(intervention, drug, genetic perturbations, etc.),45,46 is giving an integrated view of metabolism. Among 
different approaches, the untargeted strategy is a data-driven approach dedicated to biomarker 
discovery. Based on the use of multiple analytical platforms, such as mass spectrometry, it allows the 
detection of thousands of features and offers the possibility of characterizing global alterations associated 
with disease conditions.47 It has been widely applied in epidemiology for metabolic disease diagnosis and 
candidate biomarker discovery, pathophysiological exploration of underlying mechanisms and for 
diagnosis and prognosis.48,49 It is now recognized as a powerful phenotyping tool to better understand not 
only the biological mechanisms involved in pathophysiological processes but also the complexity of 

https://paperpile.com/c/dIrifM/oW6x+rEpA+Ul2l
https://paperpile.com/c/dIrifM/DbVp
https://paperpile.com/c/dIrifM/CNpI
https://paperpile.com/c/dIrifM/YqUi+IcoH
https://paperpile.com/c/dIrifM/fmVz
https://paperpile.com/c/dIrifM/Crt1+U8Hy
https://paperpile.com/c/dIrifM/6IAO
https://paperpile.com/c/dIrifM/QWh9+oCCu
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regulations in interaction with environmental factors. The concept of the exposome was defined to 
characterize the environmental exposure in a broad sense of ‘non-genetic’ factor, considering internal, 
specific external and general external exposure.50 In particular, important advances have also been done 
for the identification of the contribution of the microbiome to the human metabolome and to study their 
interactions.51–53 Associations between nutrition, microbiota, and immune system are being actively 
studied as contributors to chronic metabolic diseases.54 

The application of the multi-omics approach has been shown of great interest to better characterize the 
complexity of phenotypes in human cohorts, but its translation to the clinical setting remains to be 
developed. Technical advances in biomarkers and personal monitoring devices open the door to translate 
the concept to utility and increase the completeness of the human system. Integrating communication 
tools and the exposome as a full part of systems in medicine is now under development, as are analytics 
that can make full use of the complexity of multidimensional omics data (see the section about data 
integration). 

Big data availability and information systems 

The emergence of powerful approaches allowed large datasets to be produced and analyzed, in the 
perspective of developing decision-making tools for health management. One of the challenges is the 
security of personal and private health data.55 Moreover, the generation of high volumes of big omics 
data, combined with healthcare provider’s high rate of data generation (also known as data velocity) 
constitute a critical challenge for supporting research and practical implementation of system medicine 
and tools. Securing personal and private health data is an additional crucial challenge for managing 
systems. Therefore, the future development of systems medicine requires advanced informatics tools for 
merging different nature of data to be shared among different communities. 

FAIR, Privacy and federated machine learning 

Big data also harbors risks to the safety of sensitive clinical data, in particular, when such data needs to 
be copied to clouds to provide software for learning statistical models with the required large-volume, 
high-quality data. The barrier for secure health data exchange over the internet is perceived to be 
insurmountable, thus posing a massive bottleneck hampering big data and prohibiting progress in 
computational systems medicine. Therefore, it makes the development of medical artificial intelligence 
(AI) tools for prognosis, response prediction or treatment optimization de facto impossible, as sharing and 
cloud-based storage of health data is ethically problematic and often legally prohibited. Modern omics 
technologies have paved the way for large-scale quantitative profiling of all kinds of biomolecules 
(genome, mRNAs, proteins, small molecules). With such data for many patients, we can build 
computational models that can predict medically relevant features (biomarkers). The PAM50 gene 
signature and the MammaPrint panel are such biomarker models,56,57 helping clinicians to determine 
whether a breast cancer patient will benefit from chemotherapy, and from what kind of chemotherapy. 

https://paperpile.com/c/dIrifM/B4ps
https://paperpile.com/c/dIrifM/4Prs+9ooo+XbE3
https://paperpile.com/c/dIrifM/dysQ
https://paperpile.com/c/dIrifM/aJWM
https://paperpile.com/c/dIrifM/EDfpe+9RP7n
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However, recent results raise concerns regarding their predictive clinical value.58,59 The major problem is 
the selection of biomarkers due to the small number of samples compared to a very high number of 
features. The Cancer Genome Atlas (TCGA60 and the International Cancer Genome Consortium data portal 
(ICGC)61 are by far the most comprehensive repositories for clinical cancer omics data worldwide. For 
breast cancer, gene expression data for less than 2,000 patients are available. These few thousand 
samples, however, stand against more than 20,000 genes that artificial intelligence may combine to 
predict the outcome. Even when following best practice in machine learning (ML), the consequence is 
model overfitting and a significantly reduced impact of such kind of AI-based medical diagnostics tools. 
Big data is clearly in its infancy, even in oncology (the most advanced research area of precision and 
systems medicine). At the same time, one in eight women (ca. 12%) will develop breast cancer. In the EU, 
there are over 350,000 new cases per year.62 How come that we need to train ultra-high-dimensional AI 
models with >20,000 features (genes) on <2,000 breast cancer samples, while in the EU alone >350,000 
new cases occur every year that are often investigated using gene expression (PAM50, MammaPrint)? 
Even if only 20% of them were analyzed computationally, and even if only 50% of the samples would be 
of sufficient quality to be used for AI learning, over the last five years we could have accumulated >300,000 
samples - in contrast to the abovementioned 2,000 samples, exemplifying how far we are away from big 
data analytics in precision and systems medicine. Legal and ethical considerations dictate these 
circumstances. Patient data may not be shared, in particular neither the molecular data and nor the 
electronic health records, and most certainly not over the internet. In contrast, conventional AI tools 
require access to all data locally for training, resulting in the need to aggregate available data in a 
centralized cloud repository. But data protection legislation usually prohibits depositing sensitive medical 
patient data in central storage outside the hospital, with massive consequences. For example, the EU’s 
laudable attention to privacy and respective national legislation is further feeding this problem and 
creating contradicting requirements: The General Data Protection Regulation (GDPR) and its national 
implementations, as well as the criminal laws on confidential medical communication and the restrictions 
in terms of data “ownership” prohibit the exchange of sensitive patient data,63 while at the same time the 
FAIR principles are enforced e.g., in the H2020 programme, where projects are required to make research 
data publicly available.64 One potential way out of this dilemma is federated machine learning. However, 
many challenges are to be overcome until client-sided ML becomes ubiquitous;65 but recent experiments 
on deep learning demonstrated that it can be made practical and that there are many intriguing 
opportunities.66 Europe has dedicated research projects to this task, e.g., FeatureCloud 
(https://featurecloud.eu), but no applications for federated systems medicine (e.g., for federated network 
enrichment, federated composite biomarker extraction, or federated mechanotyping) exist yet, but would 
be necessary to make systems medicine big-data-ready. 

From a Healthcare Services perspective, data availability is a sensitive matter.  For example, in the United 
Kingdom, the National Health Services (NHS) is financed by the government but healthcare customers' 
data are not centralized. In contrast, in some countries, such as Denmark67,68 and Israel although the 
healthcare system is also financed and regulated by the government, healthcare customers' data is 
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centralized. In Israel, these data are centralized by the Healthcare Management Organizations (HMO) 
while some of the data reside at hospitals and the Healthcare ministry. The data available to the HMO 
include, among others, socio-demographic data, and information on biological tests, clinical examinations, 
pharmacological treatments and communication channels. These data have been continuously collected 
and stored at the healthcare customer level for the last 25 years69 In Israel, the healthcare data de facto 
fit the FAIR standards.70,71 

Standardization 
Large data sets are often generated at great cost, consuming significant time and resources. Critical to 
realizing their full value is that we can quickly and easily deploy a diverse and well-developed set of 
software tools for analysis. This is best achieved when the data sets are made available following a 
common set of data standards used by a wide range of software tools. Conversely, the incentive for 
developing software tools is invariably stronger when a rich landscape of suitable data already exists that 
is easily accessible via data standards. Hence, data standards are vital to realizing the potential in large 
data sets. The adoption of BAM and VCF file formats, for example, has underpinned the explosive growth 
in the availability of genome data and the software tools for analysis. As we move into the era of systems 
medicine, data standards will be central to maximizing the value we derive from systems-level data sets. 

Larger and more complex data sets require more sophisticated analysis and, as analysis grows in 
sophistication, it becomes increasingly challenging to reproduce. This is in part due to the network of 
software dependencies associated with the analytical tools and in part due to the array of design choices 
that form part of the analytical workflow. Hence, we not only need standards to optimize data availability, 
but we also need standards that make analyses reproducible and verifiable. 

Amongst the key current standards that will support the growth of systems medicine are the Systems 
Biology Graphical Notation (SBGN), a set of symbols and usage rules that have been developed through 
open community action, as tools for mapping out the network of molecular interactions between genes, 
proteins and small molecules.72 Although many mapping systems exist, SBGNs strength lies in its lack of 
ambiguity and its machine-parsable structure, which means that maps can be translated straight to 
mathematical models. Three different flavors of SBGN have been created with the Process Diagram 
(SBGN-PD) providing the most detail and the highest level of parsability while the activity Flow (SBGN-AF) 
and Entity Relationship (SBGN-ER) provide greater levels of abstraction and lower levels of parsability (for 
details see https://sbgn.github.io/). Such models typically require great effort to develop73,74 and to 
facilitate their reuse, expansion and refinement, they can be made available using the SBGN-ML file 
format that captures the structure of the maps and encodes the biological meaning of the symbols.75 It is 
based on coded use of plain text and therefore it can be edited not only in SBGN-ML compliant software 
but also manually in any text editor. The mathematical model that facilitates simulation of the pathways 
can be encoded and disseminated using the Systems Biology Markup Language (SBML). Similar to SBGN-
ML, it makes use of a coded plain text file format that can be edited either by SBML compliant software 
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or manually in any text editor.76 However, SBML captures the system of Ordinary Differential Equations 
that describe the kinetics of all the interactions between genes, proteins and small molecules in a machine 
parsable form along with their structure and meaning (for details see http://sbml.org/). 

Ensuring the reproducibility of simulations and computational experiments requires the adoption of the 
above standards for the maps and models as well as a further set of standards to describe how they were 
used. In particular, the Minimum Information About a Simulation Experiment (MIASE) standard requires 
users to (i) specify and make available the exact model used, (ii) specify exactly how the model is 
simulated, and (iii) specify how the outputs are calculated from the model.77 

The MIASE standard is descriptive and therefore exposed to the subjectivity of the author. A more 
comprehensive approach is to capture (i) all the code that has been used to analyze the maps/models, (ii) 
all the outputs from the code, and (iii) a copy of the software used to run the code all in one place, so that 
this collection can be disseminated and other users can rerun the analysis and edit to experiment with 
the map or model. This is now possible with the advent of interactive scripting. Amongst the most 
prominent examples is the Jupyter Notebook in which authors can create word processor standard 
documents with code and code outputs embedded in the document along with a programming 
environment that enables the code to be executed.78 Jupyter Notebooks originally supported the Python, 
R, Haskell and Ruby programming languages, but the list of supported languages has since grown 
considerably. MATLAB supports similar scripting with its Live scripts, though they only support MATLAB’s 
scripting language (https://www.mathworks.com). 

The ultimate approach to disseminating maps, models and how they have been analyzed is to take a 
snapshot of the computer on which they have been run and to transmit this snapshot. The snapshot 
contains a copy of the code and software needed to run the code, all the relevant files from the hard disk 
of the computer and all the relevant parts of the operating system needed to run the software. The Docker 
platform achieves this by creating minimal virtual machines called containers that hold everything needed 
to run the analysis.79 These container files can be distributed to other users who can run them on their 
computer using the Docker engine. Because the containers hold everything needed to run the analysis, 
other users do not need any compatible software beyond the engine.  This not only reduces the challenge 
of rerunning the analysis, but also eliminates the challenges of cross-compatibility between platforms and 
operating systems. 

Therefore, one of the most important points in systems medicine is to develop conceptual models for 
their integration.80 Once a computational model of the disease pathophysiology is available, a systems 
medicine model allows the setting of experiments that would not otherwise be possible for logistical or 
ethical reasons, especially around the iterative development and refinement of new mono- or multi-drug 
therapies. 
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Embracing the challenge of data integration and validation 

Several discussion articles and reviews exist on omics data integration, from the perspective of model 
organisms,81,82 including microbes82 and bacteria,83 or from the perspective of humans,84–86 and host-
microbe interactions.87  The available tools and methods of integrative omics analytics are not sufficient, 
and they even fail to successfully integrate, let alone analyze, different levels and sources of omics data. 
Important lessons can be learned from smaller-scaled analysis efforts. For instance, only adding one level 
of complexity to GWAS, namely multiple marker interaction analysis, has been a sobering lesson.88 It has 
pointed towards problems that need to be tackled in omics integration efforts as well, as they are 
expected to be elevated when dealing with multiple non-independent, possibly interacting, dimensions. 
These problems include significance assessment, heterogeneity modelling in meta-analysis to increase 
power, replication, validation and replication88,89 and are widely applicable to systems medicine modelling 
in general. 

Traditionally, integrative analysis techniques have focused on combining evidence derived from real data 
combined with public database knowledge.90,91 The field then moved on, from exploiting the combination 
of private and publicly available knowledge to accelerate drug discovery,92 to combining multi-
dimensional views in, for instance, gene mapping.93 Method developers are only gradually pacing up with 
the vast amount of heterogeneous data sources that become available and with introducing the necessary 
complexities into the models.94,95 With omics data increasingly being collected on the same set of 
individuals, it becomes theoretically possible to connect different layers of cellular or molecular 
information (for instance in causal models96), while combining analytics to available expert knowledge. 
Integrative tools for Big Data ideally combine kernel theory (to bring in notions of non-linearity), 
components theory (to reduce dimensionality), and graph theory (to handle dependencies and 
interactions in systems). From a practical point of view, it remains essential to understand the minimum 
requirements each analytic tool for omics integration should have for it to be able to distinguish “noise” 
from “signal” and to compensate for the intrinsic power deficits resulting from having relatively small 
numbers of individuals with huge numbers of omics measurements. The metabolomics community has 
recently published viewpoints and recommendations for the development of multi-omics integration in 
the context of systems biology.97 “Special Issues” on omics integration (e.g., Genin and Devoto),94 highlight 
remaining challenges including the integration of dependent and independent omics data sets in meta-
analyses,98 and the integration of omics with non-omics data.99   

Once omics data have been curated, Hamid et al have identified three general roads to travel.84 Either the 
data are fused before modelling (Fig. 2-A), or the representation of each omics data sources is altered to 
make it more digestible before deriving an integrative solution to the problem of interest (Fig. 2-B), or 
each omics data set is modelled separately and results are integrated (Fig. 2-C). Although these stages of 
integration are often discussed in the framework of association analyses, they also apply to prediction 
and profiling (pattern recognition) contexts.  Notably, most of the novel analytic approaches to integrate 
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multiple omics dimensions do not concern analysis on fused data (Fig. 2-A). The main reason is that such 
analyses imply quite many information technology (IT)-infrastructure and computational challenges as 
well as analytic challenges in that any model is believed to be a too severe over-simplification of the rich 
information the inter-related data potentially entails. There are different omics levels of informativity and 
errors to account for, as well as for different measurement types and patterns of missingness. Regardless, 
fusing data before analysis seems to be the only natural way to fully account for non-independence 
between omics data records and to analyze data according to the spirits of systems biology. Does this 
mean that omics integrative analysis will be hopeless for many years to come? We do not think so… let us 
be creative! 

Out-of-the-box thinking 

One of the ways to overcome the computational burden and analytic complexities described above is to 
re-define the boundaries of the system we wish to elucidate. Taking the example of gene mapping, we 
can take a “gene” as a mini-system (Fig. 3) and combine principles of data fusion (Fig. 2-A) with ideas to 
change omics data representation (Fig. 2-B). In particular, we first capture the relationship between a 
meaningful set of omics features (Fig. 3-A) and then change the representation of that set (Fig. 3-B) while 
converting it into a single aggregated feature (i.e., a multidimensional module). Structure within each set 
can be modelled via prior knowledge or analytically on the observed data, such as via partial least square 
(PLS)-based path modelling that offers more possibilities than classic principal components analysis.100 
Such a strategy can be applied to any meaningful “unit of analysis” with characterizing features that can 
be represented as a network. From our perspective, the most promising strategies within an omics 
integration process are based on components-based association modeling,101 diffusion kernels on graphs 
for prediction,102,103 and similarity network fusion profiling.104,105   

Validation 
One critical step of modelling approaches is validation, as fitting a model to data does not prove that it 
will accurately capture the clinical outcome. In particular, the high dimensionality of datasets is a major 
challenge in data analysis, especially for model reliability, as it is prone to overfitting. Therefore, there is 
a special need to develop dedicated protocols for validation of integrative (systemic) analyses. This effort 
requires tools that enable simulating realistic and sufficiently complex data. Consequently, simulation-
oriented approaches have been increasingly applied over the past 5 years. Different alternatives exist in 
terms of validation strategy: 

- In silico data generation: As an example, a multi-omics data simulator for complex disease studies 
was developed and applied to evaluate multi-omics data analysis methods for disease classification.106 
Another tool, iOmicsPASS, allowing network-based integration of multi-omics data for predictive 
subnetwork discovery was recently published.107 

- Validation protocols and the interpretation of validation studies: In contrast to replication, validation 
in other samples does not require sampling from the same populations as the discovery study. This 
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poses particular challenges towards interpreting the results from a validation study due to sample 
heterogeneity. Especially when thousands of features from heterogeneous data types are being 
collected, the problem of heterogeneity between individuals - assessed via the collected data - may 
become more pronounced. 
- Preclinical validation suffers from the limited interpretability of in vitro cellular or in vivo animal 
models. Currently, we do not know for most diseases the underlying mechanism, which makes it close 
to impossible to decide whether the animal model that mimics a human disease symptom is due to 
the same mechanism. Once we know the human mechanism, there will be almost no need for an 
animal experiment, alas a drug repurposing study requires this, e.g. for regulatory reasons. 
- Clinical trials have to be viewed as ultimate validation and with the shift from imprecise symptom-
based disease definitions and symptom-based therapies, we will be able to design much smaller highly 
precise mechanism-based interventions with small numbers needed to treat, up to n-1-trials. 

 

Defining the network and systems medicine framework is now allowing us to disclose some current and 
future clinical applications. In the following section, we elaborate on how systems medicine is being 
implemented on the field and in the real world. 

 

Clinical applications (on the horizon) 

Systems medicine is starting to be greatly used in the context of cancer but also in pharmacology. It has 
opened the door to advanced personalized medicine in these areas, improving the clinical approaches. 

Cancer pathways and personalized therapy  

Recent personalized therapeutic approaches in oncology target multiple pathways within a 
mechanistically defined cancer type by combining several drugs with the aim to cure or at least 
significantly improve survival and quality of life beyond current symptomatic or cytotoxic approaches. In 
this context, the increasing availability of pathway knowledge relevant for human systems modelling, for 
instance from databases including Signor108 and Reactome109, provides quite extensive information for 
building cellular signaling networks that allow the analysis of cancer cell function. The conversion of such 
a cell fate decision Prior Knowledge Network to a Boolean model is in practice a relatively trivial task, 
starting with the use of the causal interaction information to generate the logical rules that define 
mathematically the interactions of the network as a whole. An accurately designed logical model of a cell 
will follow these rules to arrive at a stable state in which the activities of the model components will quite 
accurately represent the activities of their biological counterparts in the cell that is represented. Logical 
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models built using Signor data, complemented with some additional ad hoc literature curation, has 
allowed for instance the assembly of several versions of a colorectal cancer model that have quite 
significant predictive power in assessing the effect of combinations of targeted drugs (109,110, 
https://github.com/druglogics/cascade) on cellular states, and can be used to identify potential 
synergistic drugs that together are more effective for inhibiting cell proliferation than separately. The 
procedure to do this is: a general logical model is configured to represent a specific cancer cell line using 
baseline biomarker data that informs the logical model about the activity states of Boolean network nodes 
(Active = 1, Non-Active = 0), and the resulting cell line specific model can be used to filter out in silico the 
combinations that are least likely to display synergy. The remaining potential synergistic drug pairs can 
subsequently be tested in cancer cell line cultures to validate the synergy predictions.111 From this proven 
system the next challenge is to implement it in a clinical setting, and develop patient-specific logical 
models using biomarker data from tumor biopsies obtained from a cancer patient, use these to select 
potential synergistic drug pairs and test these on in vitro cultured spheroids or organoids derived from 
the same tumor material (Fig. 4, see also).112,113 The timeline needed to perform such an analysis would 
be a matter of weeks, during which the patient would receive standard postoperative chemotherapy.108,109 

Personalized drug therapy  

Drug Dosing 

Precision medicine will also be oriented to personalized drug dosing to improve their efficacy and safety. 
In this roadmap, two important problems need to be addressed. On one hand, it is necessary to design 
personalized drugs for each disease and patient. New opportunities are arising with the arrival of 
technologies that allow the printing of 3D drugs. Thus, new improvements such as personalized dosages, 
chewable pills, multi-active pills and fast-dissolving tablets have been proposed. The second problem in 
the improvement of treatment efficiency is related to the administration of drugs to the patient. In 
general, very low differentiation in dosage is done for the same disease in similar patients. However, even 
individuals that share similar characteristics have different responses to drug administration (inter-patient 
variability). Also, for the same patient, the response to drug administration can vary with time (intra-
patient variability). This can occur due to changes in the patient condition during the treatment. 

Systems medicine arises as an approach that can help in the personalization of drug dosing. One of the 
key ideas in the development of personalized drug dosing mechanisms is the concept of closed-loop or 
feedback control. This concept plays an important role both in engineering applications and in natural 
systems. The main idea behind it is the observation of the output variable (variable of interest) to decide 
how to modify the input that is applied, to change the value of the output variable. 

One of the most relevant medicine areas where feedback control systems are being applied is 
anesthesiology. Three main variables are involved in general anesthesia: hypnosis, analgesia and 
neuromuscular blockade. For each of these variables, a different drug is applied. The anesthesiologist 
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needs to estimate the correct dose for each of these variables. In traditional clinical practice drug dosing 
is according to patient characteristics (body mass index, age, gender and height). During the process, 
anesthesiologist corrects the drug dose according to the patient response to drugs. 

If more accurate and safer drug dosing is desired, closed-loop control appears as the best option to be 
considered. The design of advanced control systems in anesthesiology involves methodologies included 
in systems medicine approach. In particular, three main challenges need to be addressed: 

• Effect assessment: The first step towards personalizing drug infusion is the availability of an index 
that correlates well with the variable of interest. For general anesthesia, different measures have 
been proposed to measure the unconscious level of the patient:114,115 Bispectral index 
(Medtronic), Spectral Entropy (Datex-Ohmeda), Narcotrend index (Monitortechnik), Patient 
State Index (Masimo) or Auditory Evoked Potentials index (Danmeter). For neuromuscular 
blockade monitoring there are also reliable techniques, most of them based on Train-of-four 
stimulation.116 However, one of the current challenging issues is the proposal of a reliable index 
to assess analgesia level in patients. This is a much-complicated problem due to the complexity of 
the involved mechanisms and the disturbances affecting the process. Current monitoring devices 
for analgesia focus only on one or two variables (Electroencephalogram signal, Electrocardiogram 
signal, respiratory frequency, pupil diameter, mean arterial pressure, photoplethysmographic 
signal, etc.) to generate a pain measurement for the patient.116,117 It seems that a more general 
focus should be considered at this point. Thus, systems medicine proposes new approaches based 
on the development of new indexes for drug effect assessment based on the integration of 
multiple sources of information. This could lead to more reliable indexes that can be used to 
implement efficient and safe feedback control systems. 

• Modelling of patient response: the improvement in the design and personalized titration for drugs 
greatly depends on the availability of reliable models. The aim is to be able to predict patient 
response and use this information to design personalized drugs and to administer them. Different 
methodologies can be used to model patient response. Thus, main methods for this are 
physiological models (built in the basis of physiology, anatomy and biochemistry of the body), 
compartmental models (based on the assumption that the body can be represented as a set of 
interconnected compartments118 and black box models (representations of the functional 
relationships between system inputs and system outputs). Compartmental models are much 
simpler than physiological ones and have been intensively used in practice. In last year’s many 
studies have been done using black box models, based mainly on neural networks, fuzzy logic, 
evolutionary computation and ML119,120 

• Drug infusion control systems: the third great challenge for personalized drug dosing is the design 
of efficient controllers to decide the correct drug dose that the patient needs. In the field of 
general anesthesia, three main possibilities can be found. The first option is the signal-based 
controllers. These strategies are mostly based on proportional integral derivative controllers. The 
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algorithm decides the drug dose according to the measured errors observed. The performance of 
these methods is satisfactory although they have the inherent limitation of using only information 
of the history of the patient. Alternatively, model-based controllers predict the response of the 
patient (using any of the methods described above) and compute the solution that optimizes the 
response of the patient.121 These controllers, also known as predictive controllers, greatly depend 
on the reliability of the prediction model. A third option is intelligent controllers that include all 
those methods based on artificial intelligence techniques. It is common to find applications using 
fuzzy logic control that are based on heuristic rules.121,122 These methods allow translating directly 
the expertise of the anesthesiologist to the computer. Besides, applications based on neural 
networks can be found.123 ML techniques are also being used for the design of computer aided 
decision system for the anesthesiologists.124 

Current research in anesthesia control systems is focused on three main issues. The first is the design of 
a control system with robust capabilities to reject disturbances occurring in the operating room. This is of 
great importance as the patient is affected by many stimuli that are changing during the surgery. The 
second important issue is the study of the interaction effect of different drugs. If an optimal drug dose is 
desired, it is necessary to study the whole patient system and his response to the different drugs that are 
being administered. A third important problem during surgery is related to the changes in the response 
to drug infusion between different patients (inter-patient variability). This means that the controller must 
be able to offer a satisfactory response regardless of the patient profile. The problem also occurs for a 
given patient during the surgery, as his/her response to drug infusion changes with time (intra-patient 
variability). The solution is the inclusion of adaptive systems in the closed-loop system. The controller 
should be able to adapt to the observed patient response. The complexity of this problem makes it 
necessary to use systems medicine approaches to help not only in the description and prediction of 
patient responses but also concerning the design of robust and efficient controllers. 

This discussion about key issues in anesthesiology and the need for new approaches based on systems 
medicine opens up new perspectives for future research. It is important to note that most of the concepts 
explained for general anesthesia drug infusion can be extended to any other discipline in medicine. 

2D- and 3D drug printing 

Network and systems medicine will not only enable individual and genetic diagnoses but also precisely 
designed therapies - currently mainly pharmacotherapy. Individual pharmacotherapy is not entirely new, 
e.g., has always been individual in infusion therapy. Patients suffering from a tumor, for example, receive 
a therapy tailored to their needs, in which the strength or dose is precisely matched to the patient. Type 
1 diabetics inject exactly as much insulin as they need in the respective situation. In drug therapy with 
tablets or capsules, individualization stops. Patients receive the active ingredient or combinations of active 
ingredients available on the market, each in a standardized strength or dose. These active strengths and 
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doses are determined in phase I-III studies that do not represent the collective in which they will later be 
used. The one-size-fits-all philosophy dominates therapy with oral drugs and thus prevents possible 
individual pharmacotherapy. This is particularly problematic in patients with impaired organ function 
(e.g., kidneys) or with active substances with a narrow therapeutic window. In addition, various drugs are 
metabolized hepatically. This varies greatly between individuals and to a clinically relevant extent (e.g., 
Clopidogrel, Tamoxifen). Even the introduction and elimination of therapies is currently only sub-optimally 
possible. With the help of digital printing technology, it is now possible to print the active substances 
required by a patient in exactly the strength or dose and in the needed combination. Patients, in particular 
those who have to take several tablets, will benefit because they will no longer have to take several tablets 
but only one in the future, which will contain all the active ingredients in the corresponding strength and 
release kinetics. 3D printing technology125 uses digitally controlled devices for formulating active 
pharmaceutical ingredient (API) and excipients in a layer-by-layer pattern for developing a suitable 
personalized drug delivery system as per the need of the patient. It includes various techniques like inkjet 
printing (2D printing), fused deposition modelling (3D printing), which can further be classified into 
continuous inkjet system and drop on demand. To formulate such dosage forms, scientists have used 
various polymers to enhance their acceptance as well as therapeutic efficacy. Polymers like polyvinyl 
alcohol, poly (lactic acid), poly (caprolactone) etc. can be used during manufacturing. A varying number 
of dosage forms can be produced using 3D printing technology including immediate-release tablets, 
pulsatile release tablets, and transdermal dosage forms etc. Thus, it is foreseeable that in a few years, 
patients will not only receive highly individualized diagnoses but also personalized, precision therapies, 
which by combining APIs into one printed tablet will also increase compliance. With the help of digital 
printing technology, it will be possible to perform compounding with oral drug therapy. Ultimately, this 
technology will lead to higher efficiency and effectiveness and consequently significantly reduce overall 
therapy costs. 

Drug repurposing 

To have an impact and induce the necessary changes in our approach to medicine, network and systems 
medicine needs to provide clinical evidence. If this would involve new targets and depend on drug 
discovery and drug development, the proof-of-concept for network and systems medicine would take at 
least another 15-20 years. This gap can, however, be overcome by drug repurposing, i.e. the reuse of a 
registered drug for a new indication. By repurposing a registered (set of) drug(s) for a new indication, 
nearly the complete lead optimization and most or all of the clinical phase I is eliminated. Ideally, 
immediate phase II clinical trialing is ethically possible and medically justified, provided solid pre-clinical 
evidence on the target and drug can be provided. Compared to having to start from lead discovery, the 
net gain in time is at least 9 years on average. Depending on the indication (acute or chronic) and resulting 
trial length, the gain maybe even more. This process is not new but has so far rather been serendipitous 
and projects like the EU funded Horizon 2020 project REPO-TRIAL (repo-trial.eu) takes this to another level 
and makes it more predictable and precise. REPO-TRIAL, a 5-year project, focuses on indications that allow 

https://paperpile.com/c/dIrifM/6rtl
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short-duration trials, either because the patient-relevant outcomes can be observed within days or weeks 
(stroke, myocardial infarction, resistant hypertension) or predictive biomarkers are available (diastolic 
heart failure, gout). Ultra-short or short trials are increasingly common and acceptable from a regulatory 
point-of-view, in particular for the most likely initial phase II, safety phase, with efficacy parameters rather 
being secondary outcomes. In REPO-TRIAL, a cluster of comorbid disease phenotypes has been associated 
with dysregulated reactive oxygen and cyclic guanosine monophosphate signaling. Patients are stratified 
based on biomarkers indicating this dysregulation and then treated with repurposed registered drugs that 
target these signaling pathways. The first trials on stroke (REPO-STROKE) and heart failure with preserved 
ejection fraction (REPO-HFPEF) are expected to be finalized in 2021 and 2022 respectively. With 2,538 
approved small molecule drugs (Drugbank), the likelihood is high that for any given causal network at least 
one drug would be available. Indeed, this is the case for most targets. A fascinating recent observation, 
based on the PISCES dataset, is that registered drugs bind with high affinity to conserved binding pockets 
of, on average, 39 proteins.126,127 Thus, small molecule drugs are highly promiscuous and, in all likelihood, 
can be repurposed from one to many other target proteins with similar binding pockets. Repurposing 
registered drugs with known safety profiles may be so powerful that it may rapidly address therapeutic 
needs in many other causal disease pathways and thus outcompete classical drug discovery. Moreover, 
drug repurposing has occurred before, but mostly in a serendipitous manner; with network medicine this 
will become highly predictable, pathway by pathway. 

 

Enlarging network and systems medicine applications 

Improving patient engagement and treatment adherence 

Network and systems medicine applications are further enlarged by improving patient engagement and 
treating adherence. Day-to-day healthcare services are not based on genotyping but rather on 
phenotyping. How to treat a patient is generally based on a physical examination and understanding a 
patient's behavior. Accordingly, improving patient engagement and treatment adherence strongly relates 
to the concept of the exposome, which, among others, deals with the complexity of patient-caregivers’ 
interactions and other environmental such as the sociological and economic factors. 

In recent years, the number of channels allowing healthcare customers and practitioners (a.k.a. providers) 
to communicate has grown dramatically. These channels are one dimension of the exposome, allowing 
measuring the strength of the interactions between the healthcare systems actors.  Historically, patients 
and providers used face-to-face meetings as a standard means of communication. When phones were 
added to the healthcare organization arsenal, they were used for scheduling appointments or asking for 
services such as prescription renewals or medical recommendations.128–137 Since the beginning of the 
2010’s, the advent of the Internet, and the popularization of smartphones and Social Media, the rules of 

https://paperpile.com/c/dIrifM/d6uM+kxBY
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communication between healthcare customers and healthcare providers have profoundly changed.138,139 
This digital revolution is also allowing the healthcare system to integrate new tools supporting 
teleconsultation and tele-diagnostic systems, and to continuously develop and integrate innovating tools 
for both patients and healthcare providers.140,141 The main purpose of a large number of communication 
channels available today is to provide new ways to search, get, and share health-related information and 
knowledge. Nevertheless, the level by which healthcare customers and practitioners used these channels 
depends on numerous environmental factors such as economics, culture and regulations. The interactions 
between healthcare customers and practitioners must, therefore, be tracked and integrated as part of 
the system medicine data, as exposed-generated data, to provide an overall understanding of the patient 
so that the treatment and the educational and therapeutic messages are delivered to each patient in the 
most suitable way.142 Consider the following real-life example: HMOs record medical data and their 
interactions with their insured healthcare customers. One way by which patients’ engagement and 
treatment adherence can be improved is based on the identification of subpopulations of patients by 
considering their communication usages and then characterizing each one with socio-demographic and 
bio-clinical data for improving treatment effectiveness and treatment adherence. This approach has been 
implemented, in 2015, on 309,460 patients with diabetes and 7 dominant profiles have been discovered 
and characterized to help healthcare decision-makers to improve follow-up policies and tools. 
Personalized services focusing on patients’ needs and preferences were implemented based on this 
analysis.140,141 

Altogether, to increase the frequency of successful translational stories, the research enterprise needs to 
re-design research studies by considering the complexity and variability of human physiology, and by 
collecting high-dimensional datasets that will allow researchers to identify confounding variables and to 
stratify populations at early phases of biomarker discovery. As the “omics” term is expanding to wider 
systems, all of these have to be interrelated. 

  

One of the remaining challenges of healthcare systems is patient accessibility. One way to improve this is 
to find the most suitable communication channel(s) to interact with a patient based on his/her profile, 
which combines socio-demographics, clinical, biological, and therapeutics data over time. This approach 
induces, at least for part of the population, proactive behavior and engagement in follow-up and 
treatment when relevant.140,141 HMOs around the world are developing digital services, such as online 
counselling services, which integrate video-call to physicians when the clinics are closed. This kind of 
consultation is based on the overall patient’s data shared over the electronic medical record, thus allowing 
any healthcare practitioner to have a clear view of the patient anamnesis and therefore delivering low 
biased recommendations and treatment. Sharing data is an essential part of developing and delivering 
personalized medicine. As an example, when searching for patterns of interactions of patients with 
diabetes an Israeli HMO allowed pointing-out the need to tune its communication tools and messages to 

https://paperpile.com/c/dIrifM/pSgZ+1z3j
https://paperpile.com/c/dIrifM/PEJn+f47c
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patients, more particularly to those with special needs, such as elderly people, immigrants and minorities, 
who are not fluent in the local language, and those with low socioeconomic status. Matching a 
communication tool and message to the patient will improve patient’s accessibility to HMO services, 
generate a better patient engagement and responsiveness to treatment, and improve the quality of 
treatment and treatment experience within existing budgetary constraints. Particularly, for patients with 
diabetes communication is a key dimension of systems medicine, which will provide an opportunity, for 
example, to collect more Patient-Reported Outcome Measures143 for some basic follow-up measurements 
such as glycaemia values, weight (for computing body mass index), and smoking status. 

Training 
There is a consensus that systems medicine-specific training is a need, recognized by trainers, students, 
but also by the authorities. A major challenge of today’s medicine is the ability to integrate the 
technological revolution, expansion of data collection which comes in multiple formats and is stored in 
different computers at different clinical sites, into the coordinated everyday clinical practice. Many of us 
believe that one, or even two generations of new medical doctors (MDs) and researchers might be needed 
for this to be achieved. We also believe that a society must educate their new generations on the data 
and technology revolution in medicine. The younger generations are already sensitized to comprehend 
and adapt to these changes due to their experience dealing with new technologies (smartphones and 
other gadgets, social media, etc.)144 While the medical community is becoming increasingly aware of these 
educational needs, the how (and when) to introduce these new subjects is not so obvious. One view is to 
apply systems biology approaches and tools to biomedical problems, and to start educating biomedical 
students in an interdisciplinary manner as early as possible. In addition, these educational efforts have to 
take into account ethical concerns as well as economic circumstances and specific aspects of the different 
health care systems. Therefore, a joint effort of all (bio-)medical education and health care delivery 
stakeholders is key in this process. It seems evident that systems medicine training of future physicians 
cannot include a deep education in programming, mathematical modelling or computational sciences - 
given the wealth of medical information that has to be tackled in the course of medical studies. Instead, 
medical students need to learn the skills of using professional software solutions that have been 
developed by specialists in an interdisciplinary manner, together with practicing doctors. To state it 
simply: a car driver does not need to know and understand in detail how the engine of a modern car works 
but has to know how to drive the car. Similarly, future MDs have to know how to apply systems medicine 
solutions that have been developed by specialists in their daily medical routine. 

Undergraduate education   

Despite the recognized need to change and adapt the education programs of (bio)medicine studies, there 
is no agreement on the best practices and ways to achieve this goal. 

The reason lies in the generally fragmented approach in the European higher education system, where 

https://paperpile.com/c/dIrifM/4HJZ
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even within a single country, Universities teach similar subjects by different principles and keep the 
decision autonomy. Universities are independent in offering novel courses; accreditation for these is 
requested in countries that follow the Bologna process. Some steps towards the implementation of a 
systems medicine education have already been tested within the FP7 CASyM Coordinated Actions Systems 
Medicine and later within EASyM (European Association for Systems Medicine, https://easym.eu/). 
Similarly, the International Network and Systems Medicine Association (https://insma.net) provides such 
resources at an international level and is a direct spin-off of the COST action OpenMultiMed. Several 
medical schools in Europe teach subjects that are relevant to systems medicine. What is missing is the 
combination of relevant subjects into modules that would receive the formal name of “systems medicine”. 
If such modules are provided mostly into elective courses, we should ensure that students receive the 
proper information regarding the systems medicine subjects. For example, at the Faculty of Medicine, 
University of Ljubljana, systems medicine topics are currently covered within computational and 
practical/research elective courses in (bio)informatics, mathematics and computer-supported 
approaches, and e-learning, while in senior years interdisciplinary courses are given in functional 
genomics and pharmacogenetics. At Maastricht University, the Netherlands, medical students can choose 
for a Network and Systems Medicine elective. 

 

Doctoral education 

Similar to the undergraduate situation, doctoral education is also dispersed in Europe. Three possibilities 
appear feasible in the future: 

- Introducing (accredited or non-accredited) systems medicine concepts or subjects into the existing 
biomedical doctoral programmes. 

- Introducing a novel interdisciplinary systems medicine research training networks for doctoral 
students within the ITV Marie Curie or similar programmes. 

- Establishing a formal systems medicine doctoral programme at individual Universities. This option 
has not yet been tested in Europe but is active in the USA. The Georgetown University MS degree in 
Systems Medicine is designed for students interested in bringing systems medicine into biomedical 
science and clinical practice and setting the stage for bridging research and clinical care 
(https://systemsmedicine.georgetown.edu/). The MD/MS dual program is designed for students 
already accepted to medical school, and who will take an additional year beyond the four required for 
the traditional MD to complete the MS. Students will be accepted into the program after completion 
of their second year in medical school. The program educates physicians to understand and apply new 
approaches to diagnose, prevent or delay disease manifestation and improve clinical outcomes for 
patients. The MS and MD/MS Dual Degree programs in Systems Medicine teach students to use 

https://easym.eu/
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cutting-edge technology to train the next generation of physicians and biomedical scientists. Students 
learn a new language, which is the application of -omics technology and Big Data to patient care. In 
addition to credits gained by courses, students carry out a semester-long Capstone internship where 
they gain hands-on work experience in renowned institutions and are matched with a mentor based 
on their career goals and interests. The Capstone project culminates in presentations or even journal 
articles. This model could be used as an example for future implementation in institutions across 
Europe and North America. 
 

Education of medical specialists 

We also need to develop training opportunities for established MDs, medical specialists, to promote 
timely integration of systems medicine topics into the clinical practice. This is a more demanding 
task, since MDs have limited time available for education and training. However, experience 
shows that they want to gain this knowledge once they see the benefits for their patients, such 
as better diagnostics and treatments. To reach this target group, a variety of lifelong education 
possibilities has to be offered, such as systems medicine meetings, expert guided workshops and 
summer schools, targeted lecture series, etc. MDs could better be attracted if the courses are 
accredited with the Continuous Medical Education (CME) credits, which are required for 
maintaining the practitioner license in several European countries. 

 

SWOT analysis 

To outline the different important issues for network and systems medicine, a SWOT analysis (Fig. 5, for 
Strengths, Weaknesses, Opportunities and Threats) was performed. This thorough analysis is key for the 
design and development of a strategic plan that would contribute to the implementation of systems 
medicine in a wide spectrum of clinical applications within precision healthcare. In terms of strengths, i.e. 
the innate advantages of systems medicine, the availability of multidimensional data and computational 
tools are important and solid elements for the field, as well as the input of the big pharma industry for 
applications. However, the lack of standardization in methods and data storage, as well as inter-individual 
variability and populations limit hypothesis generations and clinical applications. Nonetheless, major 
opportunities were identified: the development of multidisciplinary communities and collaborations will 
result in a rapid advance in knowledge and translation that should be strengthened with education, which 
will finally lead to a truly personalized healthcare system. Lastly, prompt actions will be necessary to 
overcome the tradition and way of thinking in medicine in order to reinforce participation of stakeholders 
and funding agencies. 
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Concluding remarks and outlook 

A considerable number of obstacles still need to be overcome for more profitable and successful 
implementation of practical systems medicine in the clinical setting. 

Among these issues, with no claim of completeness, we include the fact that a high number of scientific 
hypotheses can be generated via systems medicine methods, and that corresponding reliable testing and 
solid validations - essential before safe clinical practice - are still lacking. This is mainly due to the limitation 
of resources to test many of such hypotheses. A comprehensive validation practice should ultimately steer 
towards the adoption of certified, harmonized and partly machine-operated workflows and protocols, 
finally capable and designed to function in dynamical clinical contexts. 

Another problem concerns the vast imbalance of systems biology studies that still focus on smaller 
biological systems, over the systems medicine ones, targeting larger systems/whole organisms. Along with 
this, there is also the interrelated difficulty to scale up to the whole organism tier, clearly necessary in the 
clinical practice, due to the intrinsic limits of the conclusions related to the narrow experimental/biological 
context (e.g., gene regulatory networks acting in cellular processes, signaling pathways analysis, etc., 
whose analyses often provide views too limited to be relevant in the clinic). 

Several issues occur when collecting supporting, comprehensible, and secured (another ‘buzzword’ itself, 
nowadays) datasets in clinical settings. Indeed, the type, arrangement and nature of medical and clinical 
data have their peculiar production methods, schemas, ontologies, standards, complexity and access 
limits, which often conflict with the requirement and the complications to tie unambiguously such clinical 
data with the clinical samples. 

An often-overlooked consideration resides in the circumstance that in silico methods, models and 
research outcomes should not be excessively complicated or abstruse to medical doctors, personnel and 
policymakers. About this point, it may be relevant to refer here to the problem of AI, i.e. machine and 
deep learning approaches, used to perform predictive analyses in the clinical practice. It is well known 
that AI algorithms often work and produce results as “black box”, i.e. for its nature, it conceals the 
relationship and the importance of a set of data features from the output, which should finally represent 
the biological/medical interpretation. This is mainly because such correlations are multi-dimensional and 
not reducible enough to be easily grasped by the human mind (which is exactly why AI is used). This 
peculiarity of AI methods can often hamper or delay the deployment of predictive models because 
humans simply do not understand, and thus trust them.145 Relevant efforts are being made to overcome 
this issue by providing interpretable ML methodologies capable of balancing accuracy, human 
interpretability and, last but not least, computational viability.146,147 

https://paperpile.com/c/dIrifM/N7lh
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As a final consideration, it is now clear that the structure of the healthcare system will have to adjust 
radically to be able to run with highly interdisciplinary crews, operating daily with multi-omics, multi-
source data, large-scale databases and storage facilities, complex analytical processes, and -clearly- 
effective managerial and organizational frameworks. Such practices call for tailored education programs 
and continuous, complimentary training for hospital personnel as well as for systemic scientists.36,148,149 
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Figure legends 

  

Figure 1. Medical knowledge gaps and the ground-breaking nature of Network and Systems Medicine. 
(a) Time-course of most chronic diseases without knowing the causal mechanism. Diagnosis relies on signs 
and symptoms pointing to (b) specific organs. Therapy focuses on achieving patient-relevant outcomes 
only in (c) a small fraction (green) of patients.5 (d) Network and Systems Medicine aim to define and 
diagnose a disease mechanistically, and treat it with higher precision, based on (e) mechanism-based 
diagnostics and therapeutics (i.e., theranostics). 

  
Figure 2. Traditional choices to handle different omics data sources before deriving an integrated 
solution. Different colors and symbols represent different data origins. A – Data fusion, which allows 
accounting for structure between omics data. Evidence for such structural relationships may be derived 
from biological knowledge or analytically (full lines), or maybe deduced from the latter (dashed lines). B – 
Changing the representation of each data source. This may be based on principals of dimensionality 
reduction or the identification of communities (cf. corresponding data corresponding symbols with 
gradient fill). C – Obtaining a data-specific solution, hereby ignoring detailed inter-relationships between 
data sources as part of obtaining an integrative solution. Once data are represented as in B, cross-data 
source relationships may be accounted for (A) or specific within-data source solutions may be targeted 
first (C), before to obtaining an integrative solution. This is indicated by the arrows connecting panel B 
with respectively A and C. 
  

Figure 3. Fully acknowledging inter-relationships between omics data on reduced genomic sets when 
deriving integrative solutions. A – Per meaningful genomic concept, such as a gene, create a network of 
inter-relationships between omics elements “mapped” to that concept. B – Represents the concept-based 
integrated data by using kernel-based principal components, where the kernel is chosen in such a way 
that the structure of the data is optimally captured. This leads to a new integrated concept-related 
signature for each individual in the sample. Each concept, therefore, gives rise to a new variable. The 
combined set of concepts (new variables) is submitted to subsequent analyses to obtain an integrated 
solution to the problem of interest. 
  

Figure 4. The proposed implementation of logical model predictions and patient-derived spheroid 
testing of drug therapies. An individual patient’s tumor material (top row) is used to produce spheroid 
cultures for small scale drug combination screening. In parallel, biomarkers are produced from these 
spheroids (bottom row) and used to configure a generic logical model so that it optimally represents the 
tumor of the patient. This model is used for a large scale in silico screening of the complete available drug 
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combination space, resulting in a limited set of potential synergistic drugs that are tested in the spheroids. 
This whole procedure can be completed in a couple of weeks. Validated drug combinations can be 
considered by a clinician for therapy decision. 

  

Figure 5. SWOT analysis (Strengths, Weaknesses, Opportunities and Threats) for network and systems 
medicine.150 
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