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Abstract

Operator Precedence Languages (OPL) are deterministic context-free and have desir-

able properties. OPL are parallely parsable, and, when structurally compatible, are

closed under Boolean operations, concatenation and star; they include the Input Driven

languages. OPL use three relations between two terminal symbols, to assign syntax

structure to words. We extend such relations to k-tuples of consecutive symbols, in

agreement with strictly locally testable regular languages. For each k, the new corre-

sponding class of Higher-order Operator Precedence languages properly includes the

OPL and enjoy many of their properties. OPL are a strict hierarchy based on k, which

contains maximal languages.

Keywords Operator Precedence Languages, Input-Driven Languages, Visibly Push-

down languages, Deterministic Context-Free Languages, Syntactic Tags, Boolean Clo-

sure, Locally Testable Languages, Local Parsability, Grammar Inference.

1. Introduction

We improve on the classic language family of operator-precedence (OP) languages

(OPL), originally invented by R. Floyd [2] for efficient parsing and still used for fast

compilation (e.g., [3]). Shortly after invention and more so in recent years, their math-

ematical and algorithmic properties have been investigated with quite a variety of mo-

tivations and results that are worth mentioning (chronologically), before we introduce

our current research.

OP languages have been found suitable for grammar inference [4, 5] thanks to their

lattice-theoretical properties [6]. Years later, the focus of formal language research on

Input-Driven (ID) [7, 8] (or “Visibly Push-down” [9]) languages has prompted reex-

amination of OP languages, resulting [10] in the awareness that OP closure properties

imply ID closure properties and that the ID languages are a class of OP languages

characterized by restricted OP relations. Motivated by the progress of parallel comput-

ers, the local parsability property of OP languages has been exploited to generate fast
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parallel parsers [11]. OP languages offer promise for model-checking of infinite-state

systems due to the Boolean closure, ω-languages, logic and automata characterizations,

and the ensuing decidability of relevant problems [12].

But, in spite of such remarkable properties, OP languages are less widely refer-

enced than other deterministic families, which is perhaps due to some of their expres-

sive limitations, in particular the operator form required for productions. A recent

survey of the theory of OP languages is in [13].

To introduce the present development, we need to recall the essential idea of OPL,

by examining how its bottom-up deterministic parser operates. Such parser localizes

the left/right edge of the handle (i.e., a factor to be reduced by a grammar rule) by

means of three precedence relations, represented by the tags ⋖,⋗, =̇. Such OP rela-

tions are defined between two consecutive terminals, possibly separated by a nonter-

minal. E.g., the yield precedence relation a ⋖ b says that b is the leftmost terminal of

the handle and a is the last terminal of the left context. The no-conflict condition of

OP grammars permits to find the handle positions by means of a local inspection of

terminals, and ensures unambiguity. An OP parser configuration is essentially a word

consisting of alternated terminals and tags, i.e., a tagged word; notice that nonterminal

symbols, although available in the configuration, play no role in determining the han-

dle positions, but are of course necessary for checking syntactic correctness. In general,

any language having the property that handles can be localized by a local test is called

locally parsable and its parser is amenable to parallelization [14].

If the parser is modeled as a push-down automaton, each pair of terminals asso-

ciated to a left or to a right edge of a handle, respectively triggers a push or a pop

move; i.e., the move choice is driven by two consecutive input symbols. From this

viewpoint, the well-known model of input-driven languages is a special case of the

OP model, since just one terminal suffices to choose the move. This is shown in [10],

where the OP relations characterizing the input-driven languages are studied and called

partitioned since their structure mirrors the alphabet threefold partition. The syntax

structures compatible with such partitioned relations are often too restrictive for the

constructs of computer languages (besides LISP), making the ID model unsuitable for

defining technical languages, e.g., a markup language like HTML5 has special rules

that allow dropping some closing tags.

On the other hand, OP grammars have been used in many compilers though they

are less expressive than LR(1) grammars; in practice (e.g., in [11]) grammar adjustment

and lexical transformations are sometimes needed in order to obtain an OP grammar

for languages having complex syntax. From this a natural question: can we improve

the generative capacity and structural adequacy of OP grammars, without jeopardizing

their nice properties, by letting the parser examine more than two consecutive terminals

to determine the handle position? Quite surprisingly, to our knowledge the question

remained unanswered until now, but in the Section 5 we mention some related research.

Next, we intuitively present the new family of languages and grammars called

Higher-order Operator Precedence (HOP), which is the union of subfamilies identified

by an integer parameter k = 3, 5, . . ., which is an odd integer specifying the number of

consecutive terminals and intervening tags, to be examined for localizing handles of re-

ductions. As said, the value k = 3 is for OP languages, which therefore are almost the

same as the HOP(3) subfamily, apart the permission to use regular expressions in the

2



HOP grammar rules. Now, the set of OP relations traditionally visualized in a |Σ|×|Σ|
matrix, is represented by a set of tagged words of length k.

This article develops the theory of HOP grammars and languages to a degree com-

parable with the theory of OP grammars. Our main contributions are: a definition

of HOP(k) grammars and their parsing algorithm, a decidable condition for testing

whether a grammar has the HOP(k) property, the proof that the OP family is prop-

erly included into the HOP(3) one, and that parameter k induces a strict hierarchy of

language families. We show that most formal properties of OPL carry over to HOP

languages: closure under intersection with regular languages, under reversal and, for

structurally compatible grammars, also under Boolean operations. Another preserved

OPL property is that, within each HOP(k) subfamily, the class of languages having

the same set of tagged words of length k has a unique maximal element, called max-

language. Interestingly, max-languages can be defined by a simple cancellation rule

that applies to tagged words, and iteratively cancels innermost handles by a process

called a reduction. Before each cancellation, the word, completed with tags, has to

pass local tests, defined by means of a strictly locally testable [15] regular language of

order k. We mention several properties of the max-language family, in particular that

they form a strict infinite hierarchy ordered by parameter k. Open questions concerning

HOP languages are discussed in the conclusion.

For applications, we view the HOP model as a possible upgrade of the OP model,

whenever the latter lacks the expressiveness needed for defining a technical language;

we show a realistic toy language that has a straightforward HOP grammar whereas

an equivalent OP grammar is less convenient. In particular, HOP grammars have the

advantage of permitting regular expressions in the right parts of rules. Moreover, it

would be straightforward to adapt to HOP the parallel OP parsing algorithm [11]. But

of course ours is a theoretical contribution, and further engineering and experimental

work is needed to assess practicality of the HOP model.

Paper organization. Section 2, after the basic notation and definitions, defines the

OP grammars, the strictly locally testable languages, the tagged words and their con-

flicts. Section 3 introduces the HOP(k) languages, compares that OP and HOP(3)
languages, and presents a deterministic PDA for such languages. Section 4 proves

some closure properties of the families of conflict-free HOP(k) languages, defines the

max-language for each family, and proves two hierarchy results. Section 5 compares

HOP with some related existing models, and mentions open problems and future re-

search directions. Appendix 1 lists a grammar for a Pascal-like language having OP

conflicts resolvable in HOP. Appendix 2 proves Boolean closure for extended context-

free parenthesis languages.

2. Basic Definitions

For terms not defined here, we refer to any textbook on formal languages, e.g. [16].

The alphabets that we consider include the terminal symbols, denoted by Σ, and some

special symbols: the symbols “[”, “]”, and ⊙ called tags and denoted by ∆. We also

include into Σ the special symbol # to mark the start and end of a word. Since we will

need to refer to different terminal alphabets in automata and grammars depending on

their usage, e.g. Σ or Σ∪∆, we use in the following definitions the neutral symbol Υ to
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denote a generic alphabet. The empty word is ε; unless stated otherwise, all languages

considered are free from the empty word.

For any k ≥ 1, for a word w, |w| ≥ k, let ik(w) and tk(w) be the prefix and,

respectively, the suffix of w of length k. If a word w has length at least k, fk(w)
denotes the set of factors of w of length k, otherwise the empty set. The notations ik,

tk and fk can be applied in the obvious way to languages. The i-th character of w is

denoted by w(i), 1 ≤ i ≤ |w|.
A (nondeterministic) finite automaton (FA) is a 5-tuple M = (Υ, Q, δ, I, T ), where

I, T ⊆ Q are respectively the initial and final states and δ is a relation (or its graph)

over Q×Υ×Q. A (labeled) path is a sequence q1
a1→ q2

a2→ · · ·
an−1

→ qn, such that, for

each 1 ≤ i < n, (qi, a, qi+1) ∈ δ. The path states are the sequence q1q2 . . . qn, the path

label is the word w = a1a2 . . . an−1. Word w is recognized by M , i.e., w ∈ L(M) if

q1 ∈ I and qn ∈ T for some path. An FA is unambiguous if each word in language

L(M) is the label of exactly one path, i.e., it is recognized by just one computation.

Now we move to context-free grammars. Since the new models to be introduced

are directly related to grammar rules having regular languages in their right hand sides,

we start from the definition of such grammars, recalling that they are diffusely applied

in language reference manuals and in compilers (e.g., see [17]).

Definition 2.1 (Extended and non-extended CF grammars). An extended context-free

(ECF) grammar is a 4-tuple G = (VN ,Υ, P, S), where Υ is the terminal alphabet, VN

is the nonterminal alphabet, P is the set of rules, and S ⊆ VN is the set of axioms.

Each rule has the form X → RX , where X ∈ VN and RX is a regular language

over the alphabet V = Υ ∪ VN . Language RX will be defined by means of an FA,

MX = (V,QX , δX , IX , TX), that we safely assume to be unambiguous. Without loss

of generality, each nonterminal X has exactly one rule, to be written as X → MX or

X → RX , understanding that RX = L(MX).
We say that a rule X → RX includes a copy rule if language RX includes a word

made by just one nonterminal symbol, i.e., there exists Y ∈ VN such that Y ∈ RX ; we

can w.l.o.g. assume that the grammar does not include any such copy rules.

Without loss of generality, we can also assume that for any two rules X → RX ,

Y → RY the regular languages are disjoint, i.e., RX ∩RY = ∅.

A (non-extended) context-free (CF) grammar is an ECF grammar such that for each

rule X → RX , RX is a finite language over V . For a CF grammar, with an abuse of

notation we also say that X → x is in P if x ∈ RX .

The derivation relation ⇒⊆ (V + × V ∗) is defined as follows u ⇒ v if u =
u′Xu′′, v = u′wu′′, X → RX ∈ P , and w ∈ RX . The reflexive and transitive closure

of ⇒ is denoted by
∗
⇒.

A word is X-grammatical if it derives from a nonterminal symbol X . If X is an axiom,

the word is sentential. The language generated by G starting from a nonterminal X is

denoted by L(G,X) ⊆ Υ+ and L(G) =
⋃

X∈S L(G,X).

The usual assumption that all parts of a CF grammar are productive can be refor-

mulated for ECF grammars by combining the following two assumptions: (i) for each

rule X → MX the FA MX is trim (i.e. without unreachable states and unusable transi-

tions), and (ii) for each nonterminal X there exists a sentential word containing X and

there exists an X-grammatical word w ∈ Υ∗.
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To linearly represent syntactic structures and to define ambiguity and structural

equivalence, it is convenient to use parenthesis grammars [18]. We need the following

(alphabetic) projections: ν : Υ ∪ VN → Υ, and π : Υ ∪ {(, )} → Υ, where we assume

that Υ does not contain the round parentheses “(” and “)”.

Let G = (VN ,Υ, P, S) be a grammar. The corresponding parenthesis grammar,

denoted by G( ), is defined by the 4-tuple (VN ,Υ ∪ {(, )}, P ′, S) where P ′ = {X →
(RX) | X → RX ∈ P}. A grammar G is structurally ambiguous if there exist w, z ∈
L(G()), w 6= z, such that π(w) = π(z). Two grammars G′ and G′′ are structurally

equivalent if L(G′
( )) = L(G′′

( )).

Operator grammars and precedences. A well-known normal form for ECF and CF

grammars is the operator normal form, which we use throughout the paper. A word w
over VN ∪Υ is in operator form if it contains at least one element of Υ and it does not

contain two adjacent nonterminals, i.e., if f2(w) ∩ VNVN = ∅. An ECF grammar is in

operator form if, for all rules X → RX and for each word x ∈ RX , x is in operator

form.

The operator precedence (OP) grammars, introduced by Floyd [2], define a family

of deterministic languages that have a very efficient and widely used parsing algorithm,

see [3] for a practical presentation. Later studies [19, 6, 10, 20] have focused in particu-

lar on structural and closure properties, on partial ordering and lattices of OP languages,

on decidability and complexity of classical problems, and on logic and automata char-

acterizations.

Definition 2.2 (Operator precedence grammars). Let G be a (non-extended) CF gram-

mar. The characters {⋖, ⋗, =̇}, called precedence tags, are assumed to be distinct

from all others. They are used to represent three precedence relations over the terminal

alphabet Σ × Σ, respectively called: yield precedence, take precedence, and equal in

precedence. Let u, v, x be, possibly empty, words over Σ ∪ VN , A,B,C ∈ VN and

a, b ∈ Σ.

yields precedence: a⋖ b ⇐⇒ A → uaBv ∈ P and
(

B
∗
⇒ bx or B

∗
⇒ Cbx

)

takes precedence: a⋗ b ⇐⇒ A → uBbv ∈ P and
(

B
∗
⇒ xa or B

∗
⇒ xaC

)

equal in precedence: a=̇b ⇐⇒ A → uaBbv ∈ P or A → uabv ∈ P

The operator precedence matrix M is a |Σ| × |Σ| array that to each ordered pair (a, b)
associates the (possibly empty) set, denoted by Mab, of the precedence relations hold-

ing between a and b.
Grammar G has the operator precedence property (OP) if, for each pair of terminal

characters a, b, at most one precedence relation holds, i.e., |Mab| ≤ 1. In that case we

say that matrix M is conflict-free. Two OP grammars G′ and G′′ are compatible if the

union, case by case, of their matrices is conflict-free.

Example 2.3. The following grammar G1 generates L(G1) = {an (cb+)
n
| n ≥ 1}
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and has the precedence relations shown in the conflict-free OP matrix M :

G1 = {S → aScB | acB , B → bB | b} M =

a b c #
a ⋖ =̇
b ⋖ ⋗ ⋗
c ⋖ ⋗ ⋗
# ⋖ =̇

Notice that conventionally character # is used to delimit any input word. The prece-

dence relations involving # can be defined as those arising from the special grammar

rules S0 → #X# for each X ∈ S, where S0 is a new nonterminal.

Driven by the precedence relations, the classical bottom-up parsing algorithm [3]

executes a series of reductions (i.e. of derivations in reverse), shown in Figure 1 (i)

for the input aacbbcb together with the resulting tree. Sentential forms are interspersed

with the appropriate precedence relation between the corresponding terminal symbols,

to show how precedences in a sense “represent” the syntactic structure of a sentence.

At each step, an innermost substring ⋖ . . .⋗ which may only contain
.
= as tag, reduces

#⋖ a⋖ a
.
= c⋖ b⋖ b⋗ c⋖ b⋗# ⇐=G1

#⋖ a⋖ a
.
= c⋖ bB ⋗ c⋖ b⋗# ⇐=G1

#⋖ a⋖ a
.
= cB ⋗ c⋖ b⋗# ⇐=G1

#⋖ aS
.
= c⋖ b⋗# ⇐=G1

#⋖ aS
.
= cB ⋗# ⇐=G1

#S
.
= #

S

a S

a c B

b B

b

c B

b

(i)

#[a[a⊙ c[b[b]c[b]#,
#[a[a⊙ c[b]c[b]#,
#[a[a⊙ c]c[b]#,
#[a⊙ c[b]#,
#[a⊙ c]#,
#⊙#

(ii)

Figure 1: OP parsing: (i) Reductions and syntax tree for grammar G1 of Example 2.3; (ii) Tagged forms

corresponding to the reductions (discussed later).

to a nonterminal symbol, and a precedence relation between terminal characters is

inserted into the sentential form. Notice that such algorithm not necessarily operates

from left to right, but it may perform reductions in any order and also in parallel.

OP languages having compatible matrices are closed with respect to Boolean oper-

ations, concatenation, Kleene star, reversal, prefix, suffix, homomorphisms preserving

the OP property, intersection with regular sets [6, 10]. The partial orders and lattices
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[6] of certain subfamilies of OP languages having the non-counting property [21, 22]

have been exploited for grammatical inference algorithms.

The classical definition of OP does not deal with ECF grammars, but it will be

reformulated for that case. Such extension and especially a more substantial one that

uses precedence relations between more than two characters, are presented in Sect. 3

as the main contribution of this paper.

Strict local testability and tagged languages. To extend the OP property, we will move

from a binary relation such as c ⋖ b encoded by a word of length 3, to higher order

relations encoded by longer words such as a⋖ a
.
= c⋖ b, which has length 7, for short

called a 7-word. We have chosen to encode the latter relation with different tags, as

a[a ⊙ c[b, for no other reason but to avoid confusion between the existing OP theory

and the new more general higher order theory.

Observing in Figure 1 how a given input text is parsed, we see that the 3-words

encoding precedence relations occur as factors within a text obtained by applying re-

ductions, i.e., they are the content of a window of width 3 which slides over the text.

Such texts alternate terminals and tags, and are called tagged words or, more specifi-

cally, tagged forms of a given grammar. An example of tagged forms is in Figure 1 (ii).

The idea of defining a language by listing the permitted contents of a sliding window

of fixed width is the foundation of the classical family of strictly locally testable lan-

guages [15]. Next, we list their essential definitions as in [23], with minor differences.

We assume that any input word x ∈ Υ+ is enclosed between two special words of

sufficient length, called end-words and both denoted by the same symbol #©, as their

difference is always clear from the context.

Let # be a character, tacitly assumed to be in Υ and used only in the end-words. We

actually use two different end-words, without or with tags, depending on circumstances:

#© ∈ #+ (e.g. in Definition 2.4) or #© ∈ (#⊙)∗#, (e.g. in Definition 2.5).

Definition 2.4. Let k ≥ 2 be an integer, called width. A language L is k-strictly locally

testable, if there exists a k-word set F ⊆ Υk such that L = {x ∈ Υ∗ | fk ( #©x #©) ⊆
F}; then we write L = SLT(F ). A language is strictly locally testable (SLT) if it is

k-strictly locally testable for some k.

We need to define the words that contain tags and alternate tags and terminals, in

order to apply the SLT definition to such words.

Definition 2.5 (tagged word and tagged language). Let here and throughout the paper

k ≥ 3 be an odd integer. Let Σ be the terminal alphabet. A tagged word is a word w
in the set Σ(∆Σ)∗, denoted by Σ�. A tagged sub-word of w is a factor of w that is

a tagged word. A tagged language is a set of tagged words. Let Σ�k = {w ∈ Σ� |
|w| = k}. We call tagged k-word any word in Σ�k. The set of all tagged k-words that

occur as sub-word in w is denoted by ϕk(w).
A language L ⊆ Σ� is a k-strictly locally testable tagged language if there exists

a set of tagged k-words Φ ⊆ Σ�k such that L =
{

w ∈ Σ� | ϕk ( #© [ w ] #©) ⊆ Φ
}

.
In that case we write L = SLT(Φ). The k-word set F ⊆ (Σ ∪∆)k derived from Φ is

F =
⋃

x∈SLT(Φ) fk(x).
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The projection σ : Σ∪∆ → Σ erases all the tags and preserves any other character.

A tagged k-word set Φ is conflictual if ∃x, y ∈ Φ, x 6= y, such that σ(x) = σ(y),
otherwise it is conflict-free.

For a conflict-free set Φ, we define the partial tagging function τ : Σ+ → Σ� as

τ(w) = σ−1(w) ∩ SLT(Φ), and we call τ(w) the tagged word corresponding to w.

We illustrate the previous definitions and some straightforward consequences.

Example 2.6. Let k = 3 and Φ = {#[a, a⊙ b, b⊙ a, a]#}. Then the 3-SLT

language is SLT(Φ) = (a⊙ b⊙)∗a.

We observe that, for each tagged word w ∈ Σ�, the set ϕk(w) is included in the

set fk(w). For instance ϕ3(a⊙ b⊙ a⊙ c) ⊂ f3(a⊙ b⊙ a⊙ c), since f3 contains also

the 3-words ⊙b⊙,⊙a⊙. In particular, the 3-word set derived from Φ is

F = Φ ∪ {[a⊙, [a], ⊙b⊙, ⊙a⊙, ⊙a]} .

Yet, although Φ ⊂ F , the languages defined by strict local testing coincide: SLT(F ) =
SLT(Φ).

In what follows all tagged word sets considered are conflict-free, unless stated oth-

erwise. The next technical lemma and its corollary are used in later proofs.

Lemma 2.7. Let w ∈ Σ�k; let s′, s′′ ∈ ∆ be two distinct tags. Then, for every

3 ≤ h ≤ k + 2, the tagged word set ϕh(ws
′ws′′w) is conflictual.

Proof. Let w = a1s2a3 . . . sk−1ak. It suffices to observe that the conflicting tagged

h-words th(a1s2a3 . . . sk−1 aks
′a1) and th(a1s2a3 . . . sk−1aks

′′a1) are contained in

ϕh(ws
′ws′′w).

Corollary: when w = a ∈ Σ, for any sufficiently long word z ∈ a(∆a)∗, if z
contains two distinct tags, the set ϕk(z) is conflictual.

3. Higher order operator precedence

We introduce the new concept of higher order operator precedence (HOP) gram-

mar, first intuitively, then formally. Then we show that OP grammars are a subcase

of the lowest subfamily HOP(3) ⊂ HOP, within the infinite hierarchy induced by the

width parameter k ∈ 3, 5, 7, . . .; value 3 corresponds to the information contained in

each entry of an OP matrix. The section then continues with the presentation of a deter-

ministic push-down machine for parsing (more precisely recognizing) HOP languages.

3.1. Intuitive presentation

For a given grammar, each one of the OP relations yield, take and equal of Defi-

nition 2.2 essentially summarizes some patterns that may occur in a syntax tree. For

instance the relation c ⋖ b for the grammar G1 of Example 2.3 says that the (partial)

trees
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S

a c B

b B

S

a c B

b

may occur in the language. Using the parenthesis grammar, S → (aScB) | (acB),
B → (bB) | (b), the same trees are represented by the words

(ac(bB)) (ac(b))

which occur as factors of some sentential forms. Thus, it is immediate to see that the

factor c(b represents the relation c ⋖ b. Similarly, relation b ⋖ b would be represented

by factor b(b, which occurs in a parenthesized word such as (ac(b(b))). Notice that

the relation b⋗# is represented by a longer factor b)))# occurring in #(ac(b(b)))#;

and, for longer words of the form #acbb . . . b#, by a factor b)) . . .)#. Clearly, as in

this case, a run of two or more closed parentheses is represented by a single ⋗ tag; and

the same is true for open parentheses and the ⋖ tag. Therefore, when converting from

parenthesized words to OP relations, we have to condense a run of identical parentheses

into a single OP tag.

To avoid confusion, in our formal definition we use the syntactical tags “[” and “]”

instead of ⋖ and ⋗.

Next we examine how the relation of equal precedence appears in parenthesized

sentential forms. Clearly, the relation a=̇c is represented in certain parenthesized sen-

tential forms by the factor ac or by the factor aSc where the two terminals are separated

by a nonterminal. We decide to represent the =̇ tag by ⊙. Altogether, our syntactical

tags are denoted by ∆ = {[, ],⊙}.

We shift now from CF to ECF grammars. To see how the concept of OP relations

continues to work for ECF grammars, we define the same language of Example 2.3 by

means of the equivalent ECF grammar G1E and we show the corresponding new OP

matrix:

G1E = {S → aScb+ ∪ acb+} M1E =

a b c #
a [ ⊙
b ⊙ ] ]
c ⊙
# [ ⊙

For brevity, in the rule S → RS , language RS is specified by a regular expression.

To explain the change of entries of the OP matrix M1E (apart from the use of ∆
symbols instead of OP tags) with respect to matrix M of Example 2.3, we examine for

word aacbbcb the syntax tree, the parenthesized word, and the parenthesized sentential

forms:

S

a S

a c b b

c b

(a(acbb)cb) , (aScb)
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By converting as explained from parenthesized sentential forms to OP relations, we see

that factor a(a expresses the relation a[a, (i.e., a⋖a); factors aSc, cb, bb and ac express

the relations a⊙c, c⊙b, b⊙b; factor b)c expresses relation b]c. It is important to notice

that all such factors contain exactly two terminal characters. Since each factor encodes

an OP relation, which is a 3-tuple of the form 〈a, s, b〉, where a, b ∈ Σ and s ∈ ∆, the

OP model for ECF grammars will be called a higher order precedence relation model

of order 3, HOP(3) for short.

So far we have simply shown how OP relations also for ECF grammars are visible

in parenthesized sentential forms. The next fundamental step considers factors that

contain more than two terminal characters, and thus permits to overcome many OP

conflicts. We introduce the idea informally on the next example.

Example 3.1. We list a grammar G2, with L(G2) = {an
(

ba2c
)n

| n ≥ 1}, and its

conflictual precedence relations:

G2 = {S → aSbaac | abaac} M2 =

a b c #
a [,⊙ ⊙ ⊙
b ⊙
c ] ]
# [ ⊙

The conflict a[a vs a ⊙ a in matrix M2 is due to the factors a(a and aa that occur in

both the parenthesized sentential forms: (a(a(aSbaac) baac) baac) and (a(a(abaac)
baac) baac). Such conflict is remedied if we look at the syntactical tags that occur in

longer factors, containing 3 terminal characters. We list all such factors:

Factors of parenthesis grammar Tagged k-factors (k = 5)

a(a(a a[a[a
a(ab and a(aSb a[a⊙ b
aac a⊙ a⊙ c
baa b⊙ a⊙ a

The tagged 5-word in the right column are conflict-free, because their projections on

Σ are all different: aaa, aab, aac, baa. Completing the example, we list all tagged

5-words that may occur for grammar G2, denoted by ϕ5(G2):

ϕ5(G2) =

{

a⊙ c]#, #⊙#[a, c]b⊙ a, #[a⊙ b, b⊙ a⊙ a, a[a⊙ b,
a⊙ b⊙ a, a⊙ c]b, #[a[a, #⊙#⊙#, a⊙ a⊙ c, a[a[a, c]#⊙#

}

Since no conflict occurs in ϕ5(G2), we say that grammar G2 has the higher OP property

of order 5, in short HOP(5).

We are now ready to formalize the above concepts.

3.2. Definition of higher order operator-precedence grammar

Instead of passing through the intermediate step of the parenthesis grammar as

we did in the intuitive presentation, we directly define a new grammar generating the
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q0

q1

q2

q3

a/[a

B/B ∪ [ a/a]

a/⊙ a]

B/B ∪ ]

a/⊙ a

B/B ∪ ⊙a/a

a/[a]

Figure 2: Transducer for the finite-state translation f : V + → 2(V ∪∆)+ used in Definition 3.2 to construct

the tagged grammar rules.

tagged language, whose sentential forms contain exactly all the tagged words of the

original grammar. Informally, the main idea is to insert the tags ⊙ as separators be-

tween terminal symbols in rules r.h.s., and to insert the brackets, to make structure

visible, at the beginning and end of a rule, only when strictly needed.

Definition 3.2 (Tagged grammar). Let G = (VN ,Σ, P, S) be an ECF grammar in

operator form. The tagged grammar associated to G, denoted by G, is defined as

G = (VN ,Σ ∪ ∆, P , S) where each rule X → RX ∈ P is replaced in P by the

rule X → RX such that the regular language RX ⊆ (V ∪ ∆)∗ is defined as RX =

f (RX) and f : V + → 2(V ∪∆)+ is the multi-valued finite-state translation, specified

in Figure 2.

A word of the language #©L(G) #© is called a tagged form generated by grammar G.

Notice in Figure 2 that each nonterminal in the input can be left unchanged or

replaced by a tag, in accordance with the following criterion. The tag is “[” if first char-

acter, “]” if last character, otherwise ⊙. We notice that an output word must start with

“[” or a nonterminal; and it must end with “]” or a nonterminal. The input terminals are

left unchanged and are separated by ⊙ in the output. Clearly, no word in RX may con-

tain adjacent terminals, adjacent tags, or adjacent nonterminals. Therefore, grammar

G is in operator form.

Tagged grammars are akin to the classical parenthesis grammars [24], yet their

representation of nested structures is more parsimonious, since a single “[” tag (analo-

gously a “]”) can represent a run of many open (resp. closed) parentheses.

11



We extend the operator ϕk of Definition 2.5 to ECF grammars in the following

definition.

Definition 3.3. Let k ≥ 3. The set of tagged k-words of grammar G is denoted by

ϕk(G) ⊆ Σ�k and defined as ϕk(G) = ϕk

(

#©L(G) #©
)

.
Thus, each word of ϕk(G) is obtained by considering the k-tagged words occurring

in the tagged forms of G.

The set ϕk(G) plays the role the OP matrix had for OP grammars, in the next

central definition.

Definition 3.4. Let k ≥ 3. Grammar G and its language L(G) have the higher op-

erator precedence property of order k, in short HOP(k), if the tagged k-word set of

grammar G, ϕk(G), is conflict-free, i.e.

∄u, v ∈ ϕk (G) such that u 6= v and σ(u) = σ(v). (1)

The union, for all finite k, of the families HOP(k) is denoted by HOP. The family of

grammars in HOP(k) having the same set Φ of tagged k-words is denoted by HOP(Φ).
Identical notations denote the corresponding language families, when no confusion

arises.

Clearly, if a grammar has the HOP property of order k, then it has the same property

for any larger odd value of the parameter.

The decidability of Condition (1) for any given grammar G and for a fixed value of

k, is an immediate consequence of the following question, which is a special case of a

well-known decidable question for context-free grammars [25]. Let w ∈ Σ�k and X

be a nonterminal of the tagged grammar G; ∃u and ∃v, such that X
∗

=⇒G uwv, where

u and v are possibly empty terminal words?

However, it is not known whether for a given grammar it is decidable if there exists

a value k such that G has the HOP(k) property.

Grammar G1 Tagged grammar G1

S

X

b

b X

S

X

[

b X

]

X

a
a

X

[a
⊙a

]

ϕ3(G1) = {a⊙ a, a[b, b]a, #[a, a]#, #⊙#, #[b, b]#}

Figure 3: Top: grammar and tagged grammar of Example 3.5. Bottom: set of tagged 3-words.
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Example 3.5. We show in Figure 3 a grammar G1 and the associated tagged grammar

G1, where for conciseness we permit transitions reading more than one symbol, with

the obvious meaning. Notice that in general σ(L(G1)) ⊇ L(G1), since extra terminal

words may be generated by tagged grammar rules where a tag replaces a nonterminal.

In the example, the word [b] is grammatical for G1, while σ([b]) = b /∈ L(G1).
It is easy to check that the set ϕ3(G1) defined in Definition 3.3, listed at the bottom

of Figure 3, coincides with the set of tagged subwords of length 3 that occur in the

words of #©L(G1) #©. Since such set is conflict-free, G1 is a HOP(3) grammar.

We have argued that the precedence relations of OP grammars can be represented

by tagged 3-words, therefore such grammars have the HOP(3) property. Then, a more

subtle question comes: is the family of OP languages strictly included within the family

of HOP(3) languages? Since HOP(3) grammars only differ from OP grammars by

having ECF instead of CF rules, the question is whether there exists an ECF grammar

in HOP(3) that does not have an equivalent CF grammar in OP. Surprisingly, the answer

is affirmative, in contrast to what happens with the deterministic CF grammar families

LR(1) and LL(1), where ECF rules may be used for convenience but do not enlarge the

class of languages (see, e.g., [26]).

Theorem 3.6 (Inclusion of OP). Every operator precedence (OP) grammar has the

HOP(3) property. The family of OP languages is strictly included within the family

HOP(3).1

Proof. Having already shown that the OP grammar family coincides with the family

of (not extended) CF grammars having the HOP(3) property, it remains to prove the

second proposition. Let Lloop = L1 ∪ L2 ∪ L3 ∪ L4 where L1 = {an(bc)n | n > 0},

L2 = {bn(ca)n | n > 0}, L3 = {cn(ab)n | n > 0}, L4 = (abc)+. First, we prove

that any CF grammar for Lloop necessarily has OP conflicts,2 then we show an ECF

grammar with the HOP(3) property

For each language Li, i ∈ 1 . . . 4, we apply the pumping lemma to determine all

valid factorizations of sentences. Then, for each factorization we compute the corre-

sponding OP relations. From the pumping lemma, the words of L1 can be factorized

in two ways: an(bc)n or anb(cb)mc for suitable values of m and n. The syntax trees

corresponding to the two factorizations impose the OP relations shown in rows L1 of

Table 1. For the similar cases L2, L3, Table 1 lists the OP relations.

Case L4 is a regular language that admits only three factorizations having a Chom-

sky type 3 structure: (abc)n, (bca)n, (cab)n. Different OP relations are imposed by

each factorization depending on whether left-linear or right-linear structure is chosen.

The possible cases are listed in the table.

Notice that other factorizations are possible which contain as iterated factors two

different circular permutations of abc; an example is (abc)ma(bca)nbc. By Lemma 2.7,

1The proof of this proposition is based on an idea by Dino Mandrioli.
2We observe that this is not in contrast with the closure properties of OP grammars under union, concate-

nation and Kleene star, because the latter closure (Theorem 16 of [10]) requires that the equal in precedence

relation be acyclic, whereas language Lloop in our proof necessarily has a cycle in the ⊙ relation.
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Table 1: OP relations imposed by factorizations compatible with pumping lemma.

L1

an(bc)n a[a and c]b or

anb(cb)mc a[a and b]c
L2 b[b and ( c]a or a]c )
L3 c[c and ( a]b or b]a )
L4

(abc)n a⊙ b and b⊙ c and ( c]a or c[a )
(bca)n b⊙ c and c⊙ a and ( a]b or a[b )
(cab)n c⊙ a and a⊙ b and ( b]c or b[c )

all such factorizations present OP conflicts and can be excluded. Since all possibilities

displayed in Table 1 are conflictual, no OP grammar for Lloop exists.

On the other hand, it can be checked that the following ECF grammar generates

Lloop and has the set of tagged 3-words of matrix (2):

X1 → aX1bc | abc, X2 → bX2ca | bca, X3 → cX3ab | cab, X4 → (abc)+

a b c
a [ ⊙ ]
b ] [ ⊙
c ⊙ ] [

(2)

This theorem has practical import for the definition of technical languages by means

of OP grammars: it says that permitting regular expressions in their rules may increase

generative capacity not just expressiveness or conciseness.

Suitability for practical use. We spend a few words on the potential advantage of using

HOP grammars instead of OP grammars for defining and parsing technical languages.

OP grammars have been and are still preferred to LR(1)/LL(1) grammars in compilers

that require very fast parsing. But adapting a CF, or worse an Extended CF, grammar

for OP has some cost. Quite often, the reference grammars of technical languages,

even when already in operator form, have OP conflicts. In most cases it is possible to

eliminate conflicts by manual grammar transformations, which however may damage

grammar terseness and structural adequacy. In such cases, if the original grammar

meets the HOP(k) condition for a value k > 3, it can be used without change. We

show an example of such situation in Appendix 1 for a toy language including some

typical constructs of a programming language.

3.3. Parsing algorithm

To extend to HOP the traditional parsing algorithm for OP languages, we define

here a model of deterministic push-down automaton (DPDA) and we prove that it is

able to recognize any HOP language.
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Consider a HOP(Φ) ECF grammar G = (Σ, VN , P, S), with rules X → MX ,

equivalently written as X → RX where RX is the language recognized by MX . We

assume, without loss of generality, that each automaton MX = (V,QX , δX , q0,X , TX)
is deterministic, with δX total. We also recall the assumptions that, for any two rules

X → RX and Y → RY , RX ∩RY = ∅ and VN ∩RX = ∅.

We loosely describe the DPDA, before entering the formal definition. The states

of the push-down automaton are of two kinds, which respectively correspond to input

reading moves, and to ε-moves. A state of the former kind remembers the last ⌊k/2⌋
input symbols read by the automaton. A state of the latter kind is entered right after a

pop move, and contains two pieces of information, (X,w): the name X of the recog-

nized nonterminal, and a string w of ⌈k/2⌉ terminal symbols, that will be used to select

the next move.

Each stack symbol carries two pieces of information: the first piece is made of

⌈k/2⌉ terminal symbols and stores the state at the push, while the second component is

a state of a deterministic FA (defined below) called driver, which is used to recognize

a handle.

The idea is that, in each input reading move, the DPDA checks its state w, reads a

terminal a, then performs a move depending on the tagging imposed on string wa by the

HOP grammar G, i.e., τ(wa). More precisely, the last tag decides the move as follows:

“[” for a pushing move, ⊙ for a move just changing the driver state stored on the stack,

“]” for a popping move. On a ε-move, i.e. a move from a state (X,w), the DPDA uses

the driver to check the found nonterminal X , and performs a push/pop/internal move

depending on the last tag of τ(w), like in reading moves. The string w represents the

state at the last push move, together with the last read symbol; informally, w stores the

“context” in which X was found.

The driver automaton is formally defined next.

Definition 3.7. The driver automaton D = (V,QD, δD, qD,0, TD) is the classical prod-

uct machine that accepts the language
⋃

X∈VN
L(MX). More precisely, QD, and TD,

are, respectively, the Cartesian product, for all X ∈ VN , of the sets QX , and of the sets

TX . The transition function δD is defined in the obvious way.

To properly handle reductions, we also introduce a labeling function λ : TD → VN ,

which associates to each final state of the driver the (unique thanks to the previous

assumptions) nonterminal X of the right part RX recognized.

For simplicity, in the next definition we present only the language recognizer; of

course, it can be extended as usual to compute parse trees.

Definition 3.8 (parser DPDA). We build a DPDA PG = (Σ, Q,Γ, Z0, δ, q0, F ). We

assume that the stack grows from left to right. For convenience, we set h = ⌊k/2⌋.

Here it is how PG is constructed:

• set of states Q = Σh ∪ (TD × Σh+1); notice that states are identified either

by a terminal h-word, or by a final state of the driver coupled with a terminal

(h+ 1)-word;

• stack alphabet Γ = Σh × VN ∪ {Z0};
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qD,0 qD,1 qD,3

qD,4

qD,5 qD,6

qD,2

a b X

a S b

c

Figure 4: Driver automaton of Example 3.9; where λ(qD,2) = X , and λ(qD,6) = S.

• initial stack symbol Z0;

• initial state q0 = #h;

• δ : Q×Σ∪ {ε}×Γ → Q×Γ∗, with the following constraints, for some a ∈ Σ,

C ∈ Γ, w,w′ ∈ Σh, qD,i, qD,j ∈ QD, qD,j ∈ FD, Z, Y ∈ VN , w1 ∈ Σ�k−2:

1. δ(w, a, C) = (th(wa), C (w, δD(qD,0, a))),
when τ(wa) = w1[a;

2. δ(w, a, (w′, qD,i)) = (th(wa), (w
′, δD(qD,i, a))),

when τ(wa) = w1 ⊙ a;

3. δ(w, a, (w′, qD,j)) = ((λ(qD,j), w
′a), ε),

when τ(wa) = w1]a;

4. δ((Y,wa), ε, C) = (th(wa), C (th(wa), δ
∗
D(qD,0, Y a))),

when τ(wa) = w1[a;

5. δ((Y,wa), ε, (w′, qD,i)) = (th(wa), (w
′, δ∗D(qD,i, Y a))),

when τ(wa) = w1 ⊙ a;

6. δ((Z,wa), ε, (w′, qD,j)) = ((λ(qD,j), w
′a), ε),

when τ(wa) = w1]a;

• F = {(qD,j ,#
h+1) | λ(qD,j) ∈ S}.

Acceptance is by final state and empty stack; in addition, for convenience, the language

accepted by PG is end-marked, i.e., it is L(G) · {#}.

Example 3.9. Consider a variant of G2 of Example 3.1, slightly enriched to illustrate

more features:

G′
2 = {S → aSbXc | abXc,X → aa} .

The resulting tagged word set is the following:

ϕ5(G
′
2) =







b⊙ c]b, #⊙#[a, a]c]b, c]b[a, #[a⊙ b, c]b⊙ c,
a[a⊙ b, a⊙ b[a, b[a⊙ a, a⊙ a]c, a]c]#, b⊙ c]#,
#[a[a, #⊙#⊙#, a[a[a, c]#⊙#, a⊙ b⊙ c







The driver automaton is reported in Figure 4. We now illustrate the behavior of

DPDA PG′

2
, by tracing the steps for input aabaacbaac#.
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State Input Stack contents Tagged word

## aabaacbaac# Z0 #⊙#[a
#a abaacbaac# Z0 (##, qD,1) #[a[a
aa baacbaac# Z0 (##, qD,1)(#a, qD,1) a[a⊙ b
ab aacbaac# Z0 (##, qD,1)(#a, qD,3) a⊙ b[a
ba acbaac# Z0 (##, qD,1)(#a, qD,3)(ab, qD,1) b[a⊙ a
aa cbaac# Z0 (##, qD,1)(#a, qD,3)(ab, qD,2) a⊙ a]c

(X, abc) cbaac# Z0 (##, qD,1)(#a, qD,3) a⊙ b⊙ c
bc baac# Z0 (##, qD,1)(#a, qD,6) b⊙ c]b

(S,#ab) aac# Z0 (##, qD,1) #[a⊙ b
ab aac# Z0 (##, qD,3) a⊙ b[a
ba ac# Z0 (##, qD,3)(ab, qD,1) b[a⊙ a
aa c# Z0 (##, qD,3)(ab, qD,2) a⊙ a]c

(X, abc) c# Z0 (##, qD,3) a⊙ b⊙ c
bc # Z0 (##, qD,6) b⊙ c]#

(S,###) ε Z0 accept

Theorem 3.10. For any k, for any grammar G in HOP(k), let PG be the DPDA of

Definition 3.8. Then L(PG) = L(G) · {#}.

Proof. The proof is by induction on derivation steps of the grammar. Without loss of

generality, only rightmost derivations are assumed. We also use a modified version of

G with the new axiom S′ and a rule S′ → S# to take the ending symbol into account.

Base case:

x = w1waw2 ⇐=G w1Waw2,

w1, w2 ∈ Σ∗, w ∈ Σ+, for some rule W → MW and w ∈ L(MW ) iff

〈#h, w1waw2, Z0〉
+

⊢PG
〈(W, th(w1)a), w2, γ(th(w

′
1), δ

∗
D(qD,0, w

′′
1 ))〉,

where γ ∈ Γ+, for w1 = w′
1w

′′
1 , such that τ(w1) = τ(w′

1)[ τ(w
′′
1 ), and τ(w′′

1 ) does not

contain [.
Being the grammar HOP(k), it is τ(w1wa) = τ(w1)[τ(w)]a, where no tag in τ(w1)

is ], and all tags in τ(w) are ⊙. Hence, PG reads w1 and performs either moves in which

a new symbol is pushed on the stack (whenever a [ tag with the next read symbol is

encountered), or moves in which the top stack symbol is updated (for a tag ⊙). By

reading w, PG follows the driver automaton (which has a state component encoding

MW ) to update its stack’s top-most right symbol, with a left component storing the

state (i.e. the look-back of h symbols) in which PG was when the [ corresponding to

the handle for w was found.

It is easy to see that also the vice versa holds, since those PG moves correspond to the

structure in which w is the first handle found.

Induction case:

w1waw2 ⇐=G w1Waw2,

w1, w2 ∈ V ∗, w ∈ V +, for some rule W → MW and w ∈ L(MW ) iff

〈q1, waw2, γ(q2, q
′
D)〉

+

⊢PG
〈(W, q1a), w2, γ(q2, q

′
D)〉,
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where γ ∈ Γ+.

There are two cases: either q1 ∈ Σh, or q1 = (X, q3b), for some q3 ∈ Σh, b ∈ Σ.

Case 1: Being G HOP(k), it is τ(q1w) = τ(q1)[τ(w); hence, if w = bw3,

〈q1, waw2, γ(q2, q
′
D)〉 ⊢PG

〈th(q1b), w3aw2, γ(q2, q
′
D)(q1, δD(qD,0, b))〉.

Case 2: Being q1 = (X, q3b), there will be an ε-move depending on the last tag in

τ(q3b): for [ and ⊙ we go back to Case 1; for ] we continue the reductions (i.e., Case

2), until we reach Case 1.

Next, PG reads w3 following the tags in τ(w3): by inductive hypothesis, all the

handles found in there are reduced, recognizing the correct nonterminals, and then

read, updating the right component in the top of the stack:

〈th(q1b), w3aw2, γ(q2, q
′
D)(q1, δD(qD,0, b))〉

+

⊢PG
〈q′1, aw2, γ(q2, q

′
D)(q1, qD,i)〉,

for some q′1, qD,i. Hence, PG read w by following D, which encodes the rule W →
MW . The reached state qD,i must be accepting, with λ(qD,i) = W . Next, from the

HOP(k) property, it follows τ(wa) = τ(w)]a. This means that the next step for PG is

the following: 〈q′1, aw2, γ(q2, q
′
D)(q1, qD,i)〉 ⊢PG

〈(W, q1a), w2, γ(q2, q
′
D)〉.

The vice versa is simpler, since every move of PG reading w is done according to

the tags in τ(w), and by the induction hypothesis, every handle found in w is reduced

to the correct nonterminal.

Theorem 3.11. The family of HOP languages is strictly contained in the family DET

of deterministic context-free languages and in the family {L | LR ∈ DET} of determin-

istic in reverse languages.

Proof. Consider the language L = {anban | n ≥ 1}, which is deterministic and

deterministic in reverse, and assume that L = L(G) for some G in HOP(k). By the

pumping lemma, it is clear that, for any value of k, both the tagging a[a and a]a must

be present in some tagged k-words of G. Clearly, we can find a sufficiently long word

w ∈ L such that both a[a and a]a occur in the corresponding tagged word τ(w). From

Lemma 2.7 it follows that ϕk(G) is conflictual.

4. Closure properties, maximality and hierarchies

It is natural to ask whether the rich closure properties of OP languages continue to

hold for HOP languages. We prove that the answer is positive in all but one of the cases

investigated, which remains open in some sense. We start from the reversal operation.

Theorem 4.1. For every k, HOP(k) is closed under reversal.

Proof. Given an HOP(k) grammar G, we construct G′ such that L(G′) = L(G)R. For

every rule of G, X → RX , G′ contains rule X → R′
X , where R′

X is the reversal of

RX . It is easy to see that all the factors of L(G) are reversed in L(G′). Consider the

homomorphism ρ : Σ ∪∆ → Σ ∪∆, ρ([) = ], ρ(]) = [, ρ(a) = a otherwise. Clearly,

ρ(ϕk(G
′)) = ρ(ϕk(G)R). Hence, ϕk(G

′) is conflict-free, and G′ is in HOP(k).
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4.1. Boolean closure

To prove the Boolean closure of HOP(Φ) for each conflict-free set Φ of order k,

we need the following lemma which extends Theorem 5 of Knuth [18] from CF to

Extended CF grammars.

Lemma 4.2. Let G( ),1 and G( ),2 be ECF parenthesis grammars. Then there exists an

ECF parenthesis grammar G( ) such that L(G( )) = L(G( ),1)− L(G( ),2).

The proof differs from the one in [18] just in some details and is in Appendix 2.

Theorem 4.3. For every k and for every conflict-free set Φ ⊂ Σ�k, the language

family HOP(Φ) is closed under union, intersection and set difference.

Proof. Let Li = L(Gi) where for i = 1, 2 grammar Gi = (VNi
,Σ, Pi, Si) is in

HOP(Φ) and without loss of generality we assume that VN1
and VN2

are disjoint.

Union Define the grammar G = (VN1
∪ VN2

,Σ, P1 ∪ P2, S1 ∪ S2). Clearly, G
generates L(G1) ∪ L(G2) and belongs to family HOP(Φ) since its set of tagged k
words is Φ.

Set Difference Let G( ),i be the parenthesis grammar of Gi, i = 1, 2, and by

Lemma 4.2 let G( ) = (VN ,Σ, P, S) be the parenthesis grammar such that L(G( )) =
L(G( ),1) − L(G( ),2). Preliminarily, we observe that, for each structurally unambigu-

ous grammar G and for the associated parenthesis grammar G( ), the correspondence

between their respective sentences x and y induced by the identity x = π(y) is bijec-

tive.

Define the grammar G = (VN ,Σ, P, S) obtained by erasing the parentheses from each

rule of G( ). We prove that L(G) = L(G1)− L(G2).

First, if x ∈ L(G) then there exists a word y ∈ L(G( )) = L
(

G( ),1

)

−L
(

G( ),2

)

such

that π(y) = x. From the bijective correspondence between the sentences of a grammar

and of the corresponding parenthesis grammar, it follows that x ∈ L(G1)− L(G2).
Second, let x ∈ L(G1) − L(G2) and let y be the word of L(G( ),1) such that

x = σ(y). Since x /∈ L(G2), there is no word y in L(G( ),2) such that x = π(y′).
Therefore y is in L(G( )) and x = σ(y) ∈ L(G).

Intersection From the equality A ∩B = A− (A−B).

The preceding proof is analogous to the proof in [6] that each family of OP lan-

guages having the same set of operator precedences is closed under the three Boolean

operations. Both the new and the old proofs exploit the property of structural unam-

biguity and the fact that the family of parentheses languages is closed under the same

operations. Thus, the only difference is that here we have dealt with ECF grammars.

4.2. Maximal language

Refining the preceding theorem, we proceed to show that each language family

HOP(Φ) has a unique maximal element with respect to set inclusion, to be called max-

language. To prove this and other properties we need a new nondeterministic version

of the finite-state machine that recognizes an SLT language.
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⊙
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⊙
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]([a, [a, b], c⊙)
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([a, [a)

(a[, a⊙)

([a,⊙c)

(a⊙, c⊙)

(b⊙, b⊙) (⊙b,⊙b)

(c⊙, b⊙)

(⊙c,⊙b)
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(⊙b, ]c)
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a ⊙ ([a, [a, b], c⊙)

c

⊙

b

⊙

⊙

b

⊙

b

]

b

(iii)

Figure 5: (i) Symmetrical FA AΦ of Example 4.6. (ii) Automaton of the rule X → [a(⊙∪Y )c⊙ (b⊙)∗b]
of Example 4.10. (iii) Automaton of the rule Y → [a(⊙ ∪ Y )c⊙ (b⊙)∗b] of Example 4.10.
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4.2.1. Symmetric recognizer of SLT languages

To recognize an arbitrary SLT language (Definition 2.4), we define a nondetermin-

istic FA which is symmetrical w.r.t. the scanning direction. This property differentiates

such FA from the standard sliding-window DFA commonly used to recognize SLT lan-

guages (see, e.g., [23]).

Definition 4.4 (symmetrical FA). Let Υ be a generic alphabet and F ⊆ Υk be a k-word

set, k ≥ 2. The symmetrical automaton A associated to F is obtained by trimming the

FA A0 defined as follows:

• A0 = (Υ, Q, δ, I, T ), where:

• Q =
{

(β, α) ∈ Υk−1 ×Υk−1 | β, α ∈ fk−1(F )
}

• (β, α)
a
→ (β′, α′) ∈ δ if, and only if, β′ = tk−1(β a) and α = ik−1(aα

′)

• I = {(tk−1( #©), α) ∈ Q}, T = {(β, ik−1( #©)) ∈ Q}.

Thus, each state is identified by two (k − 1)-words β and α, which respectively

represent the look-back and look-ahead of the state, i.e., the last k−1 characters already

read or the next k− 1 characters to be read by the computation traversing the state. We

show that the symmetrical FA is correct and unambiguous.

Lemma 4.5 (correctness and unambiguity). Let F be a k-word set, and A = (Υ, Q, δ,
I, T ) be the symmetrical FA associated to F . Then A recognizes SLT(F ) and is

unambiguous.

Proof. First, the identity L(A) = SLT(F ) is immediate since, on each accepting path,

the k-factors are by construction those of F .

To prove unambiguity, consider a word x = uyv ∈ Υ+, where u and v may be empty,

and assume by contradiction that two computation paths accept x, respectively travers-

ing the state sequences πuπyπv and πuπ
′
yπv , with πu and πv possibly empty. By

construction of A, paths πy and π′
y have equal length. Moreover, if πy = q1q2 . . . qt

and π′
y = q′1q

′
2 . . . q

′
t, then q1 = (tk−1(u), ik−1(y)) and also q′1 = (tk−1(u), ik−1(y))

and the two states coincide. Then, such identity holds for every subsequent step, hence

π′
y = πy and the two paths are identical, a contradiction.

To illustrate, we present the symmetrical FA associated to a set Φk ⊆ Σ�k of k-

words that are tagged, since that is what we need later. We recall from Definition 2.5

that, given Φ, the k-strictly locally testable tagged language defined by Φ coincides

with the SLT language defined by the set F ⊂ (Σ ∪∆)
k

such that Φ ⊂ F and σ(Φ) =
σ(F ), in formula SLT(F ) = SLT(Φ). Therefore, the construction of Definition 4.4

holds also for a tagged k-word set.

Example 4.6. Figure 5 (i) shows the symmetrical FA AΦ recognizing the language

SLT(Φ) defined by the conflict-free set

Φ = {#⊙#, #[a, b]#, b]c, c⊙ b, b⊙ b, a⊙ c, a[a}.
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It is easy to see that AΦ is unambiguous since, from any state q, any two computations

of length 3 respectively reading the words a1a2a3 and b1b2b3 such that δ(q, a1) 6=
δ(q, b1) and δ∗(q, a1a2) 6= δ∗(q, b1b2), necessarily differ in their third character, i.e.,

a3 6= b3. E.g., observe the computations:

([a, [a)
[a[
−→ (a[, a[), and ([a, [a)

[a⊙
−→ (a⊙, c⊙).

4.2.2. Reductions and maximal grammar

We show that a language of tagged words, SLT (Φ), defined by a set of conflict-

free k-words, can be interpreted as defining another language over terminal alphabet

Σ; such language is context-free but not necessarily regular, and is called a maximal

language or max-language, denoted by L(Φ). We anticipate the reason of the name

“max-language”: such language belongs to family HOP(Φ) and includes any other

language in the same family.

First we present the intuition, then we formally define max-languages. A word w
is in L(Φ) if its corresponding tagged word y = τ(w) can be reduced to the tag ⊙
by applying a series of canceling operations called reductions. A reduction cancels a

substring of the form [a1⊙. . .⊙am] and replace it by a single tag s, under the condition

that the resulting tagged word is in the regular language SLT(Φ). We formalize such

reduction process.

Definition 4.7 (reduction and max-language). Let Φ ⊆ Σ�k be a conflict-free set. A

handle is a word of the form [u] = [a1 ⊙ . . . ⊙ am] where ai ∈ (Σ− {#}). Notice

that u is a tagged word not containing [, ],#.

Let [u] be a handle, and s ∈ ∆ be a tag. A reduction is a binary relation Φ⊆ Σ�×Σ�,

defined as:

w[u]z  Φ wsz if, and only if, w[u]z ∈ SLT(Φ) and wsz ∈ SLT(Φ). (3)

A reduction is leftmost if no handle occurs in w. Subscript Φ may be dropped from

 Φ when clear from context. The reflexive and transitive closure of is denoted by
∗
 .

The tagged max-language and the max-language defined by Φ are respectively:

L̄(Φ) =
{

w ∈ Σ� | #© [w] #©
∗
 Φ #©⊙ #©

}

and L(Φ) = σ
(

L̄(Φ)
)

.

It is important to observe that at most one tag s may occur in relation (3) since Φ is

conflict-free. Clearly, the max-language does not depend on the order of application of

reductions, and we may choose the leftmost order.

Example 4.8. The Dyck language (without ε) over the alphabet {a, a′, b, b′} is the max-

language L(Φ) defined by the tagged 3-word set: Φ = {#⊙#, a⊙ a′, b⊙ b′} ∪
{#[B, W ]Z, B[C, W [B, W ]# | B,C ∈ {a, b}, W,Z ∈ {a′, b′}} .
Word aaa′a′aa′ is recognized by the following leftmost reduction:

#©[a[a⊙ a′]a′[a⊙ a′] #© #©[a⊙ a′[a⊙ a′] #© #©[a⊙ a′] #© #©⊙ #©.
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4.2.3. Max-grammar construction

Given a set Φ of tagged k-words, we present a novel3 construction of an HOP(k)
grammar, denoted by G(Φ), that generates the max-language L(Φ).

Definition 4.9 (max-grammar construction). Given a set of tagged words Φ ⊆ Σ�k

and the symmetrical FA AΦ = (Σ ∪∆, Q, δ, I, T ) recognizing SLT(Φ), we construct

two grammars, respectively called tagged max-grammar and just max-grammar, de-

noted by GΦ and GΦ. We first construct a temporary grammar G
′

Φ = (V ′
N ,Σ ∪

∆, P̄ ′, S′), which may contain useless parts. By reducing the temporary grammar we

then obtain the tagged max-grammar GΦ = (VN ,Σ ∪∆, P̄ , S).
The temporary grammar is constructed as follows.

• The nonterminal alphabet V ′
N is a subset of Q×Q such that

(q1, q2) ∈ V ′
N if q1 = (β1, [γ1) and q2 = (γ2], α2), for some β1, γ1, γ2, α2.

Notice that each nonterminal is identified by a pair of states such that the look-

ahead of q1 starts with “[“ and the look-back of q2 ends with “]”. Equivalently,

the same nonterminal is identified by the 4-tuple of (k−1)-words: (β1, [γ1, γ2], α2).

• The axiom set is S′ = I × T .

• For each nonterminal X = (βX , αX , β′
X , α′

X), there is a rule X → R̄X ∈
P̄ ′, such that R̄X is the regular language recognized by the FA M̄X defined as

follows:

– M̄X = (V ∪∆, QX , δX , {pI}, {pT })

– state set: QX = Q (useless states will be trimmed)

– initial state pI = (βX , αX); final state pT = (β′
X , α′

X)

– the transition relation δX is computed in three steps: (i) add to the relation δ
of the symmetric automaton AΦ a set δ′ of edges labeled with nonterminals,

(ii) delete a set δ′′ of edges labeled with “[” or “]” that are not initial or final,

respectively, (iii) delete the set δ′′′ of edges that enter the initial state or that

exit from the final state. Thus δX = δ ∪ δ′ − δ′′ − δ′′′ (sets δ′, δ′′, δ′′′ are

disjoint). The sets are:

3Although the notion of max-grammar originates from the theory of OP languages in [6], the approach

there used cannot be easily extended to the HOP case; the following construction and proofs are completely

new.
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δ′ =























(β1, α3)
(β1,α1,β2,α2)

−→ (β3, α2)

(β1, α1, β2, α2) ∈ VN ,

(β1, α3)
⊙
−→ (β3, α2) ∈ δ ∨

(β1, α3) = pI ∧ (β1, α3)
[

−→ (β3, α2) ∈ δ ∨

(β3, α2) = pT ∧ (β1, α3)
]

−→ (β3, α2) ∈ δ























δ′′ =

{

q′
[

−→ q′′ ∈ δ q′ 6= pI

}

∪

{

q′
]

−→ q′′ ∈ δ q′′ 6= pT

}

δ′′′ =
{

q′
x∈Σ
−→ pI ∈ δ

}

∪
{

pT
x∈Σ
−→ q′ ∈ δ

}

.

Notice that each M̄X may contain useless states, which disappear when the temporary

grammar G
′

Φ is reduced to obtain the tagged grammar GΦ.

Given the tagged max-grammar GΦ = (VN ,Σ∪∆, P̄ , S), the max-grammar is defined

as:

GΦ =
(

VN ,Σ,
{

X → σ(R̄X) | X → R̄X ∈ P̄
}

, S
)

.

Explanations. In the tagged max-grammar each rule right part is a subgraph start-

ing with an edge labeled “[”, ending with a label “]”, and containing as labels only

terminals, nonterminals and ⊙ tags; the rule left part is the nonterminal denoted by the

pair of initial and final states of the subgraph. Thus, each word in language RX has the

format of a potential handle for parsing.

Intuitively, set δ′ adds transitions with nonterminal labels between any two states al-

ready linked by a tag-labeled edge, provided such transitions are “compatible” with the

nonterminal name, in the sense of having the same look-back and look-ahead.

Set δ′′ acts as a filter to remove the edges of δ labeled by tags “[” or “]” that are not

initial or final. Acting also as filter, set δ′′′ removes the edges of δ that reenter the initial

state or exit from the final state.

We observe that, although each M̄X has a unique final state pT = (β′
X , α′

X), this does

not reduce generality since such FA is used to specify the right part of a grammar rule;

an FA with two or more final states would be represented by as many separate rules.

By construction, for each rule X → M̄X of a tagged max-grammar GΦ, the lan-

guage R̄X is included into R̄X ⊆ (VN ∪ {[}) · Σ · ((VN ∪ {⊙}) · Σ)∗ · (VN ∪ {]}),
implying that grammars GΦ and GΦ are in operator form.

For convenience, we also define the grammar graph, denoted by Γ(GΦ), associated

to the tagged grammar GΦ. The grammar graph includes as subgraph the graph of

the symmetrical automaton AΦ, and in addition includes all the edges labeled with

nonterminals, resulting from the above definition of set δ′. The grammar graph is just

a synthetic representation of all the rules of the max-grammar GΦ and will help in the

proof of the next lemma.

We illustrate the construction with an example.

Example 4.10. We show the construction of the max-grammar for the set Φ = {#⊙#,
#[a, b]#, b]c, c⊙b, b⊙b, a⊙c, a[a} of Example 4.6. Its symmetrical automaton AΦ

is shown in Figure 5 (i). The nonterminal alphabet V ′
N of the temporary grammar G

′

Φ

is included in the Cartesian product {(⊙#, [a), ([a, [a)} × {(b], c⊙), (b],#⊙)}. But

the nonterminals (⊙#, [a, b], c⊙) and ([a, [a, b], #⊙) are useless, more precisely
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unreachable, because they are neither axioms nor they are transition labels in the gram-

mar graph. Therefore, after reducing the temporary grammar, only two nonterminals

are left in the tagged grammar:

the axiom X = (⊙#, [a, b], #⊙) and nonterminal Y = ([a, [a, b], c⊙)

which occurs on the edge from ([a,⊙c) to (a⊙, c⊙). The tagged max-grammar rules

are
X → [a (⊙ ∪ Y ) c⊙ (b⊙)

∗
b]

Y → [a (⊙ ∪ Y ) c⊙ (b⊙)
∗
b]

and their FAs are shown in Figure 5 (ii) and (iii), respectively.

Now we state and prove that the language defined by a max-grammar coincides

with the one defined by means of iterated reductions in Definition 4.7.

Lemma 4.11. Let Φ ⊆ Σ�k, and let GΦ and GΦ be the max-grammars of Defini-

tion 4.9. Then the language identities hold: L(GΦ) = L(Φ) and L(GΦ) = L(Φ).
Moreover, grammar GΦ has the HOP(k) property.

Proof. Preliminarily, we notice that the symmetrical FA AΦ and the grammar graph

Γ(GΦ) have the same set of nodes (states), and that AΦ is a sub-graph of the grammar

graph, since it only differs by the absence of nonterminally-labeled edges.

We say that two words w and w′ are equivalent on a sequence of states ν = q1, q2, . . . , qn
(or path equivalent), written w ≡ν w′, if and only if in Γ(GΦ) two paths exist, both

with the state sequence ν, such that w and w′ are their labels.

Claim L(GΦ) = L(Φ). We start from a string w(0) ∈ SLT(Φ) and we prove by

induction on the reduction steps that, for some m > 0 and for some axiom W ∈ S:

w(0)
 Φ w(1)

 Φ . . . Φ w(m) = #©⊙ #© if and only if

w̃(0) ⇐=GΦ
w̃(1) ⇐=GΦ

. . . ⇐=GΦ
w̃(m) = W, where

w̃(0) = w(0), and ∀i, ∃νi : w̃
(i) ≡νi

w(i).

Base case: Consider w̃(0): it is by definition w̃(0) = w(0), hence ∃ν : w̃(0) ≡ν w(0).

Induction case: First, we prove that w(t)
 Φ w(t+1) implies w̃(t) ⇐=GΦ

w̃(t+1) with

w̃(t+1) ≡νt+1
w(t+1). To perform the reduction, we need a handle, let it be called x,

such that w(t) = uxv  w(t+1) = usv, s ∈ ∆. By induction hypothesis, we know

that w̃(t) ≡νt
w(t) = uxv, therefore w̃(t) = ũx̃ṽ with ũ ≡ν′

t
u, x̃ ≡ν′′

t
x, and ṽ ≡ν′′′

t
v,

with νt = ν′tν
′′
t ν

′′′
t . The equivalence x̃ ≡ν′′

t
x, with x handle, implies that there is a

right part of a rule X → MX ∈ P , such that x̃ ∈ RX . Hence, w̃(t) ⇐=GΦ
w̃(t+1) =

ũXṽ and X = (tk−1( #©u), ik−1(xv #©), tk−1( #©ux), ik−1(v #©)).
The reduction relation implies that in AΦ (and therefore also in Γ(GΦ)) there is a path

with states νt+1 and labels w(t+1). Call ν′t+1 the states of the path prefix having u as

label, and call ν′′t+1 those of the path suffix with label v. Let us call qu the last state of

ν′t+1 and qv the first state of ν′′t+1.

By construction of GΦ, in Γ(GΦ) there is a transition qu
X
−→ qv , while in AΦ there is

a reduction qu
s

−→ qv . From this it follows w̃(t+1) ≡ν′

t+1
ν′′

t+1
w(t+1).
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We now prove that

w̃(t) ⇐=GΦ
w̃(t+1) implies w(t)

 Φ w(t+1), with w(t+1) ≡νt+1
w̃(t+1).

By definition of derivation, it is w̃(t) = ũx̃ṽ ⇐=GΦ
w̃(t+1) = ũXṽ for some X ∈ VN .

By induction hypothesis, we know that ũx̃ṽ = w̃(t) ≡νt
w(t), hence w(t) = uxv with

ũ ≡ν′

t
u, x̃ ≡ν′′

t
x, and ṽ ≡ν′′′

t
v, with νt = ν′tν

′′
t ν

′′′
t . From this it follows that

X = (tk−1( #©u), ik−1(xv #©), tk−1( #©ux), ik−1(v #©)), and x must be an handle.

Therefore, w(t) = uxv  w(t+1) = usv, s ∈ ∆, and in AΦ (and in Γ(GΦ)) there is

a path with states νt+1 and labels w(t+1): call ν′t+1 the states of its prefix with label u,

and ν′′t+1 those of its suffix with label v. Let us call qu the last state of ν′t+1 and qv the

first state of ν′′t+1. By construction of GΦ, in Γ(GΦ) there is a transition (qu, X, qv),

while in AΦ there is (qu, s, qv). Hence w̃(t+1) ≡ν′

t+1
ν′′

t+1
w(t+1).

Claim L(GΦ) = L(Φ) and GΦ is HOP(k). In the previous part of the proof, we

showed that there is a bijection between all GΦ’s sentential forms and the reductions

defining L(Φ). Hence, ϕk( #©L(GΦ) #©) = Φ.

By construction, GΦ and GΦ share the same structure: the rules of GΦ are de-

fined on those of GΦ, by deleting tags. It is immediate to see that, if we apply the

construction of Definition 3.2 to GΦ we obtain GΦ. Therefore, ϕk( #©L(GΦ) #©) =
ϕk( #©L(GΦ) #©) = Φ, which means that GΦ is HOP(k).

Also, for each derivation W
+
=⇒GΦ

w there is a derivation W
+
=⇒GΦ

σ(w). From

the bijection from GΦ’s sentential forms to the reductions defining L(Φ), it follows

that L(GΦ) = L(Φ).

We are ready to prove that each max-language is indeed maximal.

Theorem 4.12. Let G be any grammar in the family HOP(Φ) and L(Φ) be the max-

language. Then the language inclusion holds L(G) ⊆ L(Φ).

Proof. (hint) Let G = (VN ,Σ, P, S) with G = (VN ,Σ∪∆, P , S) the tagged grammar.

Let GΦ = (V ′
N ,Σ, P ′, S′) and GΦ = (V ′

N ,Σ ∪ ∆, P
′
, S′) be, respectively, the max-

grammar and the tagged max-grammar.

First, we establish language inclusion for tagged grammars by proving the following:

if, for X ∈ S,X
+
=⇒G w then, for some Y ′ ∈ S′, Y ′ +

=⇒GΦ
w. (4)

We safely assume that both derivations are leftmost. If X
+
=⇒G uX1v =⇒G uw1v =

w then w1 is the leftmost handle in w, and by definition of max-grammar, there ex-

ists a derivation uZ ′v =⇒G uw1v where nonterminal Z ′ is identified by the 4-tuple

(tk( #©u), ik(w1v #©), tk( #©uw1), ik(v #©)).
Therefore, after the reduction (corresponding to the derivation step), the positions of

the leftmost handle in uX1v and in uZ ′v coincide, and we omit the simple inductive

argument that completes the proof of the inclusion L(G) ⊆ L(Φ).
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Second, consider grammars G and GΦ. Clearly, the two derivations (4) for G and

for GΦ have the same length and create isomorphic trees, which only differ in the

nonterminal names. By applying projection σ to both derivations, the thesis follows.

As a corollary, for any subset Φ′ ⊂ Φ and G′ ∈ HOP(Φ′) the inclusions L(G
′
) ⊆

L(Φ) and L(G′) ⊆ L(Φ) hold.

We observe that the concept of max-language can be naturally used to define the

complement of a language. More precisely, given a grammar G which is in family

HOP(Φ), for some Φ, the complement of language L(G) is defined as L(GΦ)−L(G).

Corollary 4.13. For every k and for every conflict-free set Φ ⊂ Σ�k, the language

family HOP(Φ) is closed under complement.

Verification and Model Checking. The next statement is a direct consequence of the de-

cidability of the emptiness problem for CFLs and of the closure of HOP(Φ) languages

under set difference.

Corollary 4.14. For every Φ, the inclusion problem between languages in HOP(Φ) is

decidable.

These properties, possibly paired with automata and logic characterizations such

as those for OP [12], make HOP languages suitable for devising automatic verification

techniques, most notably model checking.

4.3. Intersection with regular languages

Building on preceding results, the closure property of HOP languages under inter-

section with regular languages is next established.

Theorem 4.15. For every k and tagged set Φ ∈ Σ�k, the language family HOP(Φ) is

closed under intersection with regular languages.

Proof. Consider a language L = L(G) where grammar G = (VN ,Σ, P, S) is in

HOP(Φ). For each rule X → RX of P , we may safely assume that the recognizer

MX of RX is deterministic. Moreover we assume that MX has a single final state; if

not we can split the rule X → RX into as many nonterminals and rules, as there are

final states in MX . Then, let MX = (Σ ∪ VN , QX , δX , q0,X , {qt,X}).
Let R ⊆ Σ+ be recognized by the deterministic FA M = (Σ, Q, δ, p0, T ) where

the set T ⊆ Q of final states is for now a singleton T = {pt}. At the end of the proof

we deal with the case of multiple final states.

We construct a grammar Ĝ = (V̂N ,Σ, P̂ , Ŝ), then we prove that L(Ĝ) = L(G) ∩R.
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The nonterminals of Ĝ are 3-tuples in V̂N ⊆ Q× VN ×Q. The axiom set Ŝ contains,

for all X ∈ S, the nonterminal 〈p0, X, pt〉. The rules of Ĝ are constructed as follows.

∀p, p′ ∈ Q, ∀X → MX ∈ P :

create all the rules 〈p′, X, p′′〉 → M〈p′,X,p′′〉 such that

M〈p′,X,p′′〉 =
(

Σ ∪ V̂N , Q〈p′,X,p′′〉, δ〈p′,X,p′′〉, 〈q0,X , p′〉, 〈qt,X , p′′〉
)

the states are Q〈p′,X,p′′〉 ⊆ QX ×Q, and the transitions are:

δ〈p′,X,p′′〉 (〈q, p〉, a) = 〈δX(q, a), δ(p, a)〉 with a ∈ Σ,

δ〈p′,X,p′′〉 (〈q, p〉, 〈r
′, Y, r′′〉) = 〈δX(q, Y ), r′′〉 where Y ∈ VN , r′, r′′ ∈ Q, and r′ = p.

Clearly, grammar Ĝ may contain useless nonterminals and some FA may be not trim.

Then for each left derivation X
m

=⇒G w where w ∈ L(G) ∩R there is an obvious left

derivation (p0, X, pt)
m

=⇒Ĝ w, and the two derivations have identical structure, i.e.,

their syntax trees are isomorphic.

It remains to show that Ĝ is in HOP(Φ). Since for each w ∈ L(G) ∩ R the syntax

trees of the derivations for G and Ĝ are isomorphic, the set of tagged k-words Φ(Ĝ) is

included in Φ(G).
At last, consider the general case that machine M has multiple final states, therefore

R is the disjoint union of the languages recognized by each final state. Since for each

final state, the resulting grammar Ĝ, computed above, is in family HOP(Φ), from the

closure under union (Theorem 4.3) of language family HOP(Φ), we have that the union

of all such grammars is in HOP(Φ).

4.4. Strict infinite hierarchy

We already know that, if a grammar has the HOP(k) property, it also has it for any

larger value of the parameter. Next, we show that the HOP(k) language family is a

strict infinite hierarchy under set inclusion.

As a witness of the infinite hierarchy, we introduce the following language series:

L(h) = {an(bahc)n | n ≥ 1} where h ≥ 1.

Lemma 4.16. For every h ≥ 1 there exists k such that L(h) ∈ HOP(k).

Proof. It is easy to verify that each grammar G(h) with rules S → abahc | aSbahc is

in HOP(2h+ 1). E.g., for h = 2 we obtain the following conflict-free tagged 5-words

set: Φ = {a⊙ c]#, #⊙#[a, c]b⊙ a, #[a⊙ b, b⊙ a⊙ a, a[a⊙ b, a⊙ b⊙ a, a⊙
c]b, #[a[a, #⊙#⊙#, a⊙ a⊙ c, a[a[a, c]#⊙#}.

On the other hand any value k smaller than the value in the preceding proof does

not suffice.

Lemma 4.17. L(h) 6∈ HOP(k), for k < 2h+ 1.

Proof. Consider k < 2h+ 1. Let us suppose that there exists a grammar G ∈ HOP(k)
such that L(G) = L(h), let Φ be its associated set of tagged k-words.
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First, by looking at all possible factors of size k′ = ⌈k/2⌉, we notice that by

Lemma 2.7, the only factor w such that σ(w) = ak
′

, must be w = (as)k
′

a, s ∈
{[, ],⊙}, with a unique tag s. Moreover, the need to count an means that s must be [.

For simplicity and without loss of generality, we consider now only elements of Φ
not containing borders, to analyze the main structure of G’s sentences. There are only

three possible cases:

1. (a[)k
′

a

2. (a[)ias1bs2(a[)
ja, i+ j + 2 = k′.

3. (a[)ias3cs4bs2(a[)
ja, i+ j + 3 = k′.

Let us now consider all the possible combinations for s1, s2, s3, s4 ∈ ∆. We know

that s1 = s2 = s3 = s4 = [ or s1 = s2 = s3 = s4 = ⊙, or in general cases

where there are no si = ] are impossible, since the resulting word structure would be

right-linear (hence L(G) regular).

The next point analyzes where to put ] tags. First, we can exclude s1 = ], since handles

would arise such that the factor an would be reduced alone, ruling out auto-inclusive

rules including parts of the factor (bahc)n.

Then, we are going to consider, in turn, s2 = ], s3 = ], and s4 = ], starting from the

phrase structure

. . . a[a . . . a[as1bs2a[a . . . a[as3cs4bs2a[a . . . a[as3cs4bs2a . . .

Case s2 = ]. Since s1 can be either ⊙ or [, the first handle to be found is, respectively,

[a⊙ b] or [b]. In both cases, after the handle reduction, the resulting structure is:

. . . a[a . . . a[as3cs4b]a[a . . . a[as3cs4b]a . . .

and we consider all the possible s3, s4 ∈ ∆.

When s3 = [, s4 = [, we obtain . . . a[a . . . a[a[c[b]a[a . . . a[a[c[b]a . . . . After

reducing all the [b] handles, we need a tag, say s, between c and a. If s ∈ {⊙, [},

the resulting structure is right-linear, hence without auto-inclusive rules. If s = ], [c]
handles arise, but after their reduction we reach again a right-linear structure.

When s3 = [, s4 = ⊙, we obtain . . . a[a . . . a[a[c ⊙ b]a[a . . . a[a[c ⊙ b]a . . ., and

after reducing the [c⊙ b] handles, we reach a right-linear structure as well.

When s3 = [, s4 = ], we obtain . . . a[a . . . a[a[c]b]a[a . . . a[a[c]b]a . . ., and, after

reducing the [c] handles, . . . a[a . . . a[as1b]a[a . . . a[as1b]a . . .. Being s1 ∈ {⊙, [}, the

handles are either [a⊙ b] or [b], but the resulting structure is in both cases right-linear:

. . . a[a . . . a[a . . ..
When s3 = ⊙, s4 = [, we obtain . . . a[a . . . a[a⊙ c[b]a[a . . . a[a⊙ c[b]a . . ., which

is analogous to the previous s3 = [, s4 = [ case.

When s3 = ⊙, s4 = ⊙, we obtain . . . a[a . . . a[a ⊙ c ⊙ b]a[a . . . a[a ⊙ c ⊙ b]a . . .,
which, after the [a⊙ c⊙ b] reductions, is again a right-linear structure.

When s3 = ⊙, s4 = ], we obtain . . . a[a . . . a[a⊙ c]b]a[a . . . a[a⊙ c]b]a . . ., which,

after the [a ⊙ c] reductions, becomes . . . a[a . . . a[as1b]a[a . . . a[as1b]a . . .. Then, the

handles are either [a⊙ b] or [b], but the resulting structure is in both cases right-linear:

. . . a[a . . . a[a . . ..
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When s3 = ], we obtain . . . a[a . . . a[a]cs4b]a[a . . . a[a]cs4b]a . . ., and the value of

s4 is not important, since the structure is such that all the a symbols in the an prefix

can be reduced.

Case s3 = ]. We have the structure

. . . a[a . . . a[as1bs2a[a . . . a[a]cs4bs2a[a . . . a[a]cs4bs2a . . . ,

where s1, s2 ∈ {⊙, [}. In both cases, all the right part of the structure, immediately

precedingthe first c, can be reduced, losing the an prefix.

Case s4 = ]. We have the structure

. . . a[a . . . a[as1bs2a[a . . . a[as3c]bs2a[a . . . a[as3c]bs2a . . . ,

where s1, s2, s3 ∈ {⊙, [}. Like in the previous case, all the right part of the structure,

immediately preceding the second b, can be reduced, losing the an prefix.

An immediate consequence of the previous two lemmata is the following.

Theorem 4.18. For every k ≥ 5 there exists a language L such that L ∈ HOP(k) and

L 6∈ HOP(k − 2).

It is interesting to observe that language L(h) is input-driven for h = 0, and it is

OP for h = 1; if we take all possible values for h, i.e., L(+) = {an(ba+c)n | n ≥ 1},

the resulting language is not in HOP(k) for any k, but it is deterministic context-free.

4.5. Concatenation and star operations

Although the effect of concatenation on HOP languages is not completely under-

stood, we report a partial negative result and we discuss an example suggestive of

possible developments. It is known that the OP language family is closed under con-

catenation [10] (but it is not known whether the same property holds also for HOP(3)).
However the proof in [10] involves transformations of OP grammars which are not

easily extended to HOP(k) for k > 3.

Moving to larger k values, we exhibit a language in HOP(7) such that its self-

concatenation is not in HOP(7) but it is in HOP for a much larger value. Such example

raises the open question whether the concatenation of any two HOP(k) languages in

the same HOP(Φ) family may always belong to a HOP(k′) family, for some k′ > k.

Since the same language is such that its concatenation closure, though not in HOP(7),
is in HOP for a larger value, the same question arises for the star operation.

Example 4.19. The language L = {an(baab)n | n ≥ 1} is generated by the following

HOP(7) grammar G: S → aSbaab | abaab. It can be proved, by an analysis similar to

the proof of the family hierarchy Lemma 4.17, that the concatenation language L ·L is

not in HOP(7). On the other hand the grammar G2

S2 → aSbaabS | abaabS, S → aSbaab | abaab

generates L · L and has the HOP property for k = 17 but not for k = 15.
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4.6. Further properties of max-languages

For completeness, we briefly report from [1] certain results on the subfamily of

max-languages, but their systematic study, which would extend to HOP languages the

algebraic and lattice-theoretical properties of OP max-languages [6], is out of scope for

this paper.

Max-languages versus regular languages. A natural question is whether every regular

language can be generated by a max-grammar. Not surprisingly, every strictly locally

testable k-SLT language defined by a k-word set F is also the max-language defined by

a tagged k-word set Φ, which can be easily derived from F . It follows that the family

of max-languages includes the SLT family. A witness that such inclusion is strict is

the non-SLT language L = a∗ba∗ ∪ a+, which is the max-language defined by the set

Φ = {#[b, a]b,#⊙#,#[a, b]#, a⊙ a, b[a, a]#}.

On the other hand, there exist very simple regular languages which are not max-

languages. An example is R = (aa)+. Assume by contradiction that R is defined by a

tagged k-word set Φ. By Lemma 2.7, any conflict-free set Φ defining R may only use

one tag, but it is easy to prove that all choices of the tag lead to contradiction.

Since there are obvious examples of non-regular max-languages, e.g., the Dyck

languages of Example 4.8, we conclude that the family of max-languages and of regular

languages are incomparable.

Hierarchy of max-languages. The max-languages can be classified into families, each

family corresponding to all (conflict-free) sets of tagged k-words. Such families can be

totally ordered by the value of k and the result is a strict infinite hierarchy. We illustrate

by means of the following family of regular languages: L(h) = (ahb)+, h ≥ 1. It can

be verified that language L(h) is a max-language with parameter k = 2h+ 1, e.g.,

L(2) = L

({

#⊙#[a, b]#⊙#, b]a⊙ a, a⊙ b]a,
a⊙ a⊙ b, #[a⊙ a, a⊙ b]#, #⊙#⊙#

})

On the other hand, it is proved in [1] that L(h) cannot be defined as max-language if

k < 2h+ 1.

Non-closure of max-languages. The max-language family is not closed under any of

the basic language operations, as proved by witnesses:

Intersection: the intersection of the following max-languages is not context-free.

{anbnc∗ | n > 0} = L(Φ′),
with Φ′ = {b[c, c]#, a⊙ b, c⊙ c, #⊙#, #[a, b]#, b]b, a[a }
{a∗bncn | n > 0} = L(Φ′′),
with Φ′′ = {#[b, a]b, c]#, c]c, #⊙#, b[b, #[a, a⊙ a, b⊙ c}.

Notice that the union of Φ′ and Φ′′ has conflicts.

Set difference: (a∗ba∗ ∪ a+) − a+. The first language is a max-language in HOP(3)
and requires the 3-tagged words #©[a and a] #© (because words may begin and

end with a). Since unlimited runs of a are possible, Lemma 2.7 imposes the

same tag between any pair of a’s, hence the resulting max-language necessarily

contains a+, a contradiction.
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Concatenation: the witness is the concatenation of language

a∗b = L ({#[b, a⊙ b, #⊙#, #[a, b]#, a⊙ a})

and language a+. The proof is similar to the one for set difference.

Intersection with regular sets: the witness is {a, b}+∩ (aa)+, see above the reason-

ing for proving that (aa)+ is not a max-language.

5. Conclusions

5.1. Related work

Very few attempts have been made in the past to improve the applicability of the

operator precedence (OP) model, especially in the direction of definition and parsing

of programming languages. Such paucity of efforts is easily understood if you con-

sider that, shortly after the invention of OP grammars, two major advances on formal

grammars and deterministic parsing took place, namely the LR(k) and LL(k) meth-

ods that we do not have to discuss; their widespread adoption shifted attention away

from OPL for some years, until the different motivations mentioned in the Introduc-

tion, revived research. In the time span between [2] and such advances, two proposals

are worth mentioning, the simple-precedence grammars of Wirth and Weber [27] and

the bounded-context grammars [14] by Floyd himself. Each of them uses a different

definition of the relations that, like OP relations, permit to find a reducible handle; in

particular, such relations involve also nonterminal symbols. In both cases the opera-

tor normal form is not required, and neither model is a formal mathematical extension

of OP grammars. Both language families strictly include the OPL family, but they

do not have any of the characteristic closure properties of the latter. Some compar-

isons of generative capacity are in Fischer [19], but, what is more important, neither

simple-precedence or bounded-context grammars (unless suitably restricted to avoid

ambiguity), nor the LL(k) and LR(k) grammars, are locally parsable.

Very recently, we defined a class of deterministic grammars and automata, called

locally chain parsable [28] (LCP) which is locally parsable and preserves the closure

properties of OPL, except for concatenation and Kleene star. Moreover, any locally

chain-parsable grammar is in operator form but it may have conflictual OP relations;

notice that the Extended CF form has not been considered for LCP. The LCP family is

not comparable with the HOP one; the LCP language {anbn | n ≥ 1}∪{bnan | n ≥ 1}
is obviously not in HOP, on the other hand, the language Lloop of Theorem 3.6 is in

HOP(3) but the same arguments that show it not to be OP can be easily applied to

LCP. A limitation of the LCP approach is that the theory has been formulated only for

contexts consisting of one character, and it would be complicated to deal with larger

contexts, as we do here in the HOP(k) approach. A closer comparison of the parsing

algorithms and automata for the two families remains to be done.

It is customary in deterministic parsing studies to consider grammar families in-

dexed by an integer expressing the length of the look-ahead, i.e., the right context,

needed by the parser to find the handle: e.g., LR(k) and LL(k) are such families, and,

in a different sense, also the HOP(k) and the bounded-context grammars [14] already
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mentioned, which use also a look-back. To be precise, LR(k) and LL(k) parsers are

driven by a finite-state machine and supplement the state information by looking at

the next k look-ahead characters. On the other hand, in our HOP(k) model no finite-

state information is carried from left to right (since it would be incompatible with local

parsability) and the parser uses a sliding window of length (k − 1)/2 characters.

Since HOP extends the OP language family, which in turn includes the input-driven

(or visibly pushdown) language [10] family, it is interesting to compare the HOP

family with the recent extension of VP languages, recognized by tinput-driven push-

down automata (TDPDA) [29], which enjoy similar closure properties. The families

HOP and TDPDA are incomparable. On one hand, the language {anban | n ≥ 1}
is in TDPDA − HOP. On the other hand, TDPDA automata only recognize real-

time languages, and thus fail on the non real-time language {ambncndm | n,m ≥
1} ∪ {amb+edm | m ≥ 1} which is in HOP(3). Such ability to cope with non-real-

time languages comes from the possibility to locally re-calculate syntax tags between

terminals after each reduction, a flexibility not available for tinput-driven automata.

Moreover, the tinput-driven parser is not suitable for local parsing, because it must

operate from left to right, starting from the first input character.

We recall that OP grammars have been applied in early grammar inference stud-

ies [4, 5], which exploited the lattice-theoretical properties of the subfamily of so-

called free OP languages. We did not introduce in this article the lattices associated

to HOP(k) families, but it suffices to say that max-grammars and max-languages (Def-

inition 4.9) are the top elements of such lattices. We mention two language classes

loosely related to the HOP(k) hierarchy, which have been proposed by recent grammar

inference research, which strives to discover expressive grammar types having good

learnability properties. Within the so-called distributional approach, several authors

have introduced various grammar types based on a common idea: that the syntax class

of a word v is determined by the left and right contexts of occurrence, the context

lengths being finite integers k and ℓ. Two examples are: the (k, ℓ) substitutable CF

languages [30] characterized by the implication x1vy1uz1, x1vy2uz1, x2vy1uz2 ∈ L
implies x2vy2uz2 ∈ L where |v| = k and |u| = ℓ; and the related hierarchies of lan-

guages studied in [31]. A closer comparison of HOP and language classes motivated

by grammar inference would be interesting.

5.2. Future developments

Since HOP is a new language model not all of its properties have been examined.

In particular, it remains to be seen whether other known properties of OP languages

(such as the closure under concatenation and star) continue to hold for HOP.

Another peculiar property is the invariance of the OP family with respect to the

context-free non-counting property [21, 22]. This means that an OP grammar has such

property if, and only if, all equivalent OP grammars have the same property.

We finish by discussing the potential for applications. First, the enhanced gen-

erative capacity of higher degree HOP grammars together with the ease of extended

context-free grammar rules may in principle simplify the task of writing syntactic def-

initions, with respect to OP grammars. But, of course, this statement needs to be

supported by future practical experiments.
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Then HOP(k) parsers should be experimented to measure how efficient they are,

both for serial and parallel implementations. In principle the tool PAPAGENO for gen-

erating efficient parallel OP parsers [11] can be naturally extended to HOP(k) gram-

mars, but some performance degradation has to be expected for larger values of k.

In a different area, it would be interesting to consider HOP languages for model-

checking. For that, the model has to be extended to ω-languages and logically charac-

terized, as recently done for OP languages in [12].

Last, for grammar inference: we observe that it would be possible to define a partial

order based on language inclusion, within each subfamily of HOP(k) closed under

Boolean operation, i.e., containing structurally compatible languages. Such a partially

ordered set of grammars and languages, having the max-grammar as top element, is

already known for the OP case, and its lattice-theoretical properties have been exploited

for inferring grammars using just positive information sequences [5]. The availability

of the k-ordered hierarchy may then enrich the learnable grammar space.
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Appendix 1: a Pascal-like toy language

Quite often the official grammars of technical languages, also when already in op-

erator form, have OP conflicts. In most cases it is possible to eliminate conflicts by

manual grammar transformations, which however may damage grammar terseness and

adequacy of syntax to semantic. In such cases, if the original grammar meets the HOP

condition, it can be used without change. We show an example of such situation for a

toy language including some typical constructs of a programming language.

〈program〉 → 〈type declaration〉; 〈program〉 | 〈statement〉; 〈program〉 |
〈labeled statement〉; 〈program〉 |
〈type declaration〉; | 〈statement〉; | 〈labeled statement〉;

〈type declaration〉 → id : id
〈labeled statement〉 → int : 〈statement〉
〈statement〉 → id := 〈expression〉 | if 〈expression〉 then 〈statement〉 |

while 〈expression〉 do 〈statement〉
〈expression〉 → id+ id | id | (〈expression〉)

This grammar is not HOP(3) because of this conflict: : ⊙ id, : [ id. It would

be possible but annoying to transform the grammar to an equivalent (conflict-free) OP

grammar.
On the other hand, the original grammar meets the HOP(5), as shown by the tagged

5-word set:


































































































while⊙ do⊙ if, := ] end ] #, #⊙# [ id, # [ end [ if, if [ id ⊙+, : [ id ⊙ :=,

id ⊙ := ] end, int ⊙ : [ if, : ] end⊙ end, # [ if ⊙ then, # [ end [ int, while⊙ do⊙ while,

) ] then ] end, : [ while⊙ do, id ⊙+⊙ id, (⊙) ] do, id ] do ] end, (⊙) ] end,
end⊙ end⊙ end, end ] #⊙#, while [ (⊙), if ⊙ then ] end, int ⊙ : [ id, while⊙ do⊙ id,

end⊙ end ] #, +⊙ id ] then, #⊙# [ end, := [ id ] end, do ] end ] #, # [ if [ id,
#⊙# [ while, := [ id ⊙+, end [ id ⊙ :=, #⊙# [ if, id ⊙ : ⊙id, do⊙ while⊙ do,

then⊙ if ⊙ then, +⊙ id ] end, id ] end⊙ end, # [ end [ while, := ] end⊙ end,

then⊙ while⊙ do, int ⊙ : ] end, # [ end ] #, : ⊙id ] end, do ] end⊙ end, then ] end⊙ end,

int ⊙ : [ while, := [ (⊙), id ⊙ := [ id, ) ] do ] end, (⊙) ] then, while [ id ] do,
# [ while [ id, end [ if ⊙ then, then⊙ id ⊙ :=, : [ if ⊙ then, end [ id ⊙ :, : ] end ] #,

# [ id ⊙ :=, # [ while [ (, # [ while⊙ do, while [ id ⊙+, # [ id ⊙ :, end [ int ⊙ :,
+⊙ id ] do, if ⊙ then⊙ while, if [ (⊙), #⊙# [ int, do⊙ if ⊙ then, if ⊙ then⊙ id,

# [ int ⊙ :, end [ while⊙ do, id ⊙ := [ (, do⊙ id ⊙ :=, # [ end⊙ end, if ⊙ then⊙ if,

id ] then ] end, #⊙#⊙#, # [ if [ (, if [ id ] then, while⊙ do ] end, # [ end [ id,
id ] end ] #, ) ] end ] #, then ] end ] #



































































































Notice that just a few positions require value k = 5 to remove conflict. Therefore, a

clever practical parser should use the locally minimal value of k which suffices to make

handle positioning unique.

Appendix 2: Proof of Lemma 4.2

Theorem 5 of Knuth [18] addressed non-extended CF grammars, here we extend its

proof to the ECF case, mostly adhering for convenience to his notation. Let G( ),1 =
(VN1

,Σ ∪ {(, )}, P1, S1) and G( ),2 = (VN2
,Σ ∪ {(, )}, P2, S2) be ECF parenthesis

grammars. We assume that VN1
and VN2

are disjoint sets. Let V be Σ plus the set

of all pairs [a,B] where A ∈ VN1
and B ⊆ VN2

. For any pair of words θ1, θ2 over
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(Σ ∪ VN1
∪ VN2

∪ V ), let θ1 ∼ θ2 mean θ1 and θ2 are of the same length and agree at

all terminals, i.e., θ1 = x1 . . . xn, θ2 = y1 . . . yn where xi = yi whenever either xi or

yi is in Σ.

Now define the set α−̇β for words α ∈ V ∗, β ∈ V ∗
N2

as follows when α = x1 . . . xn

and β = y1 . . . ym :

α−̇β =

{

{x1 . . . xk−1 [A,B ∪ {yk}] xk+1 . . . xn | 1 ≤ k ≤ n ∧ xk = [A,B]} , if α ∼ β;
{α}, if α ≁ β.

(5)

This “difference” operation has the associative property and may be extended to sets as

follows:

{α1, . . . , αm}−̇β =
⋃

1≤j≤m(αm−̇β);

{α1, . . . , αm}−̇∅ = {α1, . . . , αm};
{α1, . . . , αm} −̇{β, . . . , βn} =

(

{α1, . . . , αm} −̇{β, . . . , βn−1}
)

−̇βn, n ≥ 1.
(6)

We construct grammar G( ) = (Σ, V, P, S). Let the homomorphism τ : Σ ∪ VN1
→ V

be :

τ(a) = a, for a ∈ Σ, and τ(A) = [A, ∅] for A ∈ VN1

Then S = τ(S1)−̇S2 and

P =
{

[A,B] → R | R = τ (ρ(A)) −̇ρ(B)
}

where

ρ(A) = RA such that A → RA ∈ P1

ρ(B) =
⋃

B∈B (RB such that B → RB ∈ P2)
(7)

Notice that the definition of ρ has been adjusted from the one in [18] to account for the

fact that the right part of a rule A → . . . is a language RA. This is the only change

with respect to [18]. We show that R = τ (ρ(A)) −̇ρ(B) is a regular language over

Σ∪V , with all words starting with ”(“ and ending with “)”. Clearly ρ(A) and ρ(B) are

parenthesized regular languages over Σ ∪ V , and the “difference” operation is defined

on sets of words. It remains to prove that the result of such operation is a parenthesized

regular language over Σ∪V . First, it is obvious from Eq. (5) that α−̇β is parenthesized.

Consider now the case α ∼ β in Eq. (5), the other case being obvious. Each word in

α−̇β may differ from word α only in the k-th position, where symbol xk ∈ V is

replaced by the symbol [A,B∪{yk}], here denoted zk, which thus only depends on the

k-th letter of words α and β. We define a nondeterministic finite transducer with two

input tapes, containing x1 . . . xk and y1 . . . yk, and an output tape. The machine can

be in two states: the todo state and the done state, with the following transitions (the

second component being the output):

δ(todo, xj , yj) = {(todo, xj), (done, zj)}
δ(done, xj , yj) = {(done, xj)}

The initial state is todo and the final state is done. Clearly the translation is the set

(x1 . . . xk)−̇(y1 . . . yk) and is a regular language. Therefore, we may assume that,

when the domain of the “difference” is extended to a pair of sets (Eq. (6)), both sets

are regular languages, and the application of a regularity preserving operation to each
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pair of words produces a regular set. It follows that the rules created at lines (7) are in

ECF form.

Grammar G( ) may contain useless nonterminals and rules, which are removed as usual.

To show that L(G( )) = L(G( ),1)−L(G( ),2) it suffices to reproduce the proof in [18],

p. 285-6, with the understanding that all derivations are taken now for ECF grammars.
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