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Abstract

If a context-free language enjoys the local parsability property then, no matter how the

source string is segmented, each segment can be parsed independently, and an efficient

parallel parsing algorithm becomes possible. The new class of locally chain parsable

languages (LCPLs), included in the deterministic context-free language family, is here

defined by means of the chain-driven automaton and characterized by decidable prop-

erties of grammar derivations. Such automaton decides whether to reduce or not a

substring in a way purely driven by the terminal characters, thus extending the well-

known concept of input-driven (ID) alias visibly pushdown machines. The LCPL fam-

ily extends and improves the practically relevant Floyd’s operator-precedence (OP) lan-

guages which are known to strictly include the ID languages, and for which a parallel-

parser generator exists.

Keywords: Operator Precedence languages, Input-driven languages, Visibly

Pushdown languages, Parallel Parsing

1. Introduction

Syntax analysis or parsing of context-free languages (CFLs) is a mature research

area, and good parsing algorithms are available for the whole CFL family and for the

deterministic (DCFL) subfamily that is of concern here. Yet the classical parsers are

strictly serial and cannot profit from the parallelism of current computers. An exception

is the parallel deterministic parser [4, 3] based on Floyd’s [13] operator-precedence

grammars (OPGs) and their languages (OPLs), which are included in the DCFL family.

This is a data-parallel algorithm that is based on a theoretical property of OPGs, called

local parsability: any arbitrary substring of a sentence can be deterministically parsed,

returning the unique partial syntax-tree whose frontier matches the input string.
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LL(k) and LR(k) grammars do not have this property, and their parsers must scan

the input left-to-right to build leftmost derivations (or reversed-rightmost ones). On the

contrary, the abstract recognizer of a locally parsable language, called a local parser,

repeatedly looks in some arbitrary position inside the input string for a rule right-hand

side (r.h.s.) and reduces it. The local parsability property ensures the correctness of the

syntax tree thus obtained, no matter where and in which order reductions are applied.

The informal idea of local parsability is occasionally mentioned in old research

on parallel parsing, and has been formalized for OPGs in [4]. Our contribution is the

definition of a new and more general class of locally parsable languages: the family

of languages to be called Locally Chain Parsable (LCPLs), which gains in genera-

tive capacity and bypasses some inconveniences of OPGs. We remark that OPLs in

turn are a generalization of the well-known family of input-driven (alias visibly push-

down) languages (IDLs) [23, 2, 9], which are characterized by pushdown machines that

choose to perform a push/pop/stay operation depending on the alphabetic class (open-

ing/closing/internal) of the current input character, without a need to check the top of

stack symbol.

To understand in what sense our LCPLs are input-driven, we first recall that IDLs

generalize parenthesis languages, by taking the opening/closing characters as parenthe-

ses to be balanced, while the internal characters are handled by a finite-state automaton.

It suffices a little thought to see that IDLs have the local parsability property, which also

stems from the fact that IDLs are included in the OPL family. Yet, the rigid alphabetic

3-partition severely reduces their generative capacity. If we allow the parser decision

whether to push, pop, or stay, to be based on a pair of adjacent terminal characters

(more precisely on the precedence relation ⋖,⋗, =̇ between them), instead of just one

as in the IDLs, we obtain the OPL family, which has essentially the same closure and

decidability properties [9, 18]. Loosely speaking, we may say that the input that drives

the automaton for OPLs is a terminal string of length two.

With the LCPL definition, we move further: the automaton bases its decision

whether to reduce or not a substring (which may contain nonterminals) on the purely

terminal string orderly containing: the preceding terminal, the terminals of the sub-

string, and the following terminal. Such triplet will be called a chain and the machine

a chain-driven automaton (CDA).

The main results of this paper are presented along the following organization. Af-

ter the Preliminaries, Section 3 introduces the chain-driven machine as a recognizer for

all context-free languages. Section 4 defines local chain parsability for chain-driven

automata and for grammars, and proves the two notions to be equivalent. Section 5 ex-

tends the definition of chains from embracing a single r.h.s. to representing portions of

a whole derivation, and formulates a decidability condition for local chain parsability

based on the absence of conflicts between chain sets. Section 6 proves structural prop-

erties of LCPLs, the strict inclusion thereof in the DCFL family, and investigates the

behavior of the class with respect to classical language operations; precisely, it shows

that, under suitable hypotheses of structural compatibility, the application of Boolean

operations, but in general not concatenation and Kleene *, to two LCPLs produces

a new LCPL; as a corollary, the inclusion problem between structurally compatible

LCPLs is decidable, a key property for possible application of model checking tech-

niques. Section 7 establishes the strict inclusion of the OPL (and hence also IDL)
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family within LCPLs, and claims through practical examples that LCPGs are more

suitable than OPG for specifying real programming languages. Section 8 compares

our new family of languages with similar families introduced in previous literature. Fi-

nally, Section 9 draws some conclusions and outlines several goals for future research.

2. Preliminaries

For terms not defined here, we refer to any textbook on formal languages, e.g. [16].

The terminal alphabet is denoted by Σ; it includes the letter # used as start and end

of text. Let ∆ be an alphabet disjoint from Σ. A string β ∈ (Σ ∪ ∆)∗ Σ (Σ ∪ ∆)∗ \

(Σ ∪ ∆)∗ ∆∆ (Σ ∪ ∆)∗ is in operator form; in words, β contains at least one terminal and

does not contain adjacent symbols from ∆. OF(∆) denotes the set of all operator form

strings over Σ ∪ ∆.

The following naming conventions are adopted for letters and strings, unless oth-

erwise specified: lowercase Latin letters a, b, . . . denote terminal characters; uppercase

Latin letters A, B, . . . denote characters in ∆; lowercase Latin letters x, y, z . . . denote

terminal strings; and Greek lowercase letters α, . . . , ω denote strings over Σ ∪ ∆.

Within the preceding convention, symbols in bold denote strings over an alpha-

bet that includes, as extra symbols, the square brackets, e.g. x ∈ (Σ ∪ {[, ]})∗ ,α ∈

(Σ ∪ ∆ ∪ { [, ] })∗.

We introduce the following short notation for frequently used operations based on

alphabetic projections:

• for erasing all nonterminal symbols in a string α, we write α̂;

• for erasing all square brackets, we write α̃;

• moreover, α =̂ β stands for α̂ = β̂ and α =̃ β stands for α̃ = β̃.

A context-free grammar is a 4-tuple G = (VN ,Σ, P, S ), where VN is the nonterminal

alphabet, P the set of rules, and S ⊆ VN is the set of axioms. V denotes the set VN ∪ Σ.

For a rule A→ α ∈ P, A ∈ VN is the left-hand side (l.h.s.) and α ∈ V∗ is the right-hand

side (r.h.s.).

Let H be a new symbol, H < V , and σ : V → {H} be the homomorphism that maps

every nonterminal to H: for every X ∈ VN , σ(X) = H, otherwise σ(a) = a. The stencil

of a rule A→ α is the rule H → σ(α).

The derivation relation for a grammar G is denoted as usual by⇒G and its reflexive

and transitive closure by
∗
⇒G. A sentential form generated by G is any string #α# ∈ V∗

such that T
∗
⇒G α with T ∈ S , and the language generated by G is the set L(G) of

strings x ∈ Σ∗ such that #x# is a sentential form.

A grammar is invertible if any two rules differ in their r.h.s. A grammar is an

operator grammar (OG) if all r.h.s.’s are in the operator form OF(VN); clearly, every

sentential form of an OP grammar is in OF(VN). Any context-free grammar that does

not generate ε admits an equivalent OG (Theorem 4.8.1 of [16]). In this paper we deal

only with OG, and assume them to be reduced, i.e., such that every rule is used in at

least one derivation of a string belonging to its language.
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For a context-free grammar G, the associated parenthesis grammar, denoted by

[G], is obtained by bracketing with ‘[’ and ‘]’ each r.h.s. of a rule of G. A grammar

G is structurally ambiguous if there exists x1 , x2 ∈ L([G]) such that x1 =̃ x2. Two

grammars G,G′ are structurally equivalent if L([G]) = L([G′]).

3. Chain-driven automata

In this section, we present the core formalism of this paper, i.e., the chain-driven au-

tomaton (CDA), that can be seen as an abstract parser for context-free languages. Un-

like traditional parsers which operate left-to-right and build leftmost grammar deriva-

tions or reverse-rightmost ones, CDAs may proceed bottom-up starting from any po-

sition of the input string and building (in the reverse order) any derivation thereof: a

CDA repeatedly and nondeterministically looks inside the input string for a grammar’s

r.h.s. and proceeds with a reduction.

As stated in the introduction such type of abstract parser is particularly well-suited

to support parallel implementation: these automata, in fact, have no memory of the

portion of string at the left (and right) of their current position; thus, it is easy to realize

parallel parsers that consist of several “instances” of such automata. We have already

proved in [3] for a less powerful class of languages, that this approach becomes ex-

tremely effective when such a type of bottom-up parsing can be done deterministically.

Next we formally define chain-driven automata and illustrate them by means of

a few examples, then we prove the equivalence between chain-driven automata and

context-free grammars.

The key driver in the search for a string to be reduced is the concept of chain –

therefrom the name of the automaton. In accordance with the general philosophy of

IDLs and OPLs, where the parsing actions by the recognizing automata are determined

exclusively on the basis of terminal characters, the chains driving our automata con-

tain only terminal characters: intuitively, a chain is the terminal projection of a string,

enclosed within a suitable context, candidate to be reduced by the automaton.

Definition 1. A chain is a triple a〈y〉b with a, b ∈ Σ and y ∈ Σ+; (a, b) is the context

and y the body of the chain.

A CDA works by reducing the input string through a sequence of reductions driven

by a given set of chains; the automaton finds a given chain within the input string and

replaces its body with a state; then the mechanism is applied recursively to the obtained

string. Hence during the reduction steps the input string is shortened and simultane-

ously enriched by the computed states; chains being defined over the input alphabet, the

portion of the input substring to be reduced is detected depending on terminal symbols

only; enriching states are used then to (nondeterministically) determine which state

will replace the detected substring but do not affect the choice of the chain on which to

operate.

Definition 2. A chain-driven automaton (CDA)A is a tuple (Σ,Q, δ, F) where

• Σ is the input alphabet;
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• Q is a finite set of states;

• δ : Σ × OF(Q) × Σ→ P(Q) is the reduce function;

• F ⊆ Q is the set of final states.

If δ(a, γ, b) , ∅ implies |δ(a, γ, b)| = 1, for all a, b ∈ Σ, γ ∈ OF(Q), then A is called

single valued.

For expressiveness, we also say that automatonA is driven by the set of chains C(A) :=

{a〈̂γ〉b | δ(a, γ, b) , ∅}.

A configuration of the automaton is a string κ ∈ OF(Q). The initial configuration

on input x ∈ Σ∗ is defined as #x#; a configuration #q# with q ∈ F is called an accepting

configuration.

The elementary operation of the automaton, named reduction move and denoted by
a〈y〉b
p−−−, where a〈y〉b is a chain in C(A), is defined for two configurations κ1, κ2, as:

κ1
a〈y〉b
p−−− κ2 if, and only if, κ1 = α aγb β, κ2 = α aqb β, where γ̂ = y and q ∈ δ(a, γ, b).

We say that the string γ is reduced in such move. When not relevant, we omit the

chain and write simply κ1 p−−− κ2. In words, a move deletes a substring in OF(Q)

(corresponding to the body y of the chain, possibly enriched with states in Q) and

replaces it with a state.

A computation is a sequence of reduction moves κ0
c1
p−−− κ1

c2
p−−− · · ·

cn

p−−− κn where

κi are configurations and ci are chains. As usual
∗
p−−− denotes the reflexive and transitive

closure of p−−−. The language accepted by the automaton is defined as L(A) = {x ∈

Σ∗ | #x#
∗
p−−− #q# with q ∈ F}.

In the sequel we assume, without loss of generality, that, for all chain-driven au-

tomata considered, every chain in C(A) is used in some accepting computation.

Example 1. Consider the language Lab = {a
nbn | n ≥ 1}. Lab can be recognized by the

CDAAab with one state q, the set of chains

{#〈ab〉#, a〈ab〉b},

and the reduction function defined by setting

δ(#, ab, #) = δ(#, aqb, #) = δ(a, ab, b) = δ(a, aqb, b) = {q}.

The (only) accepting computation on input string a3b3 is the following:

#aaabbb#
a〈ab〉b
p−−− #aaqbb#

a〈ab〉b
p−−− #aqb#

#〈ab〉#
p−−− #q#.

Similarly, the language Labb = {a
nb2n | n ≥ 1} can be recognized by a chain

driven automatonAabb by simply changing the set of chains to {#〈abb〉#, a〈abb〉b} and

modifying the reduction function accordingly.
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Then, the language Lab ∪ Labb, is recognized by the “union” of automata Aab and

Aabb which is built in a fairly natural way, i.e., by using the union of the two chain sets

and two states {q1, q2}; the reduction function is also naturally defined as follows:

δ(a, ab, b) = δ(a, aq1b, b) = δ(#, ab, #) = δ(#, aq1b, #) = {q1}

δ(a, abb, b) = δ(a, aq2bb, b) = δ(#, abb, #) = δ(#, aq2bb, #) = {q2}.

Example 2. Consider now the language of arithmetic expressions on {e,+, ∗} with the

obvious meaning of symbols. A CDA A recognizing such expressions is defined as

follows: C(A) contains chains #〈+〉#, #〈+〉+, #〈∗〉#, #〈∗〉+, +〈∗〉#, +〈∗〉+, +〈∗〉∗, #〈∗〉∗,

and all chains a〈e〉b with a, b ∈ {#, ∗,+}; Q = {qe, q+, q∗}, F = Q, and δ is given in the

following table, where the first column collects the contexts (a, b), and the second row

specifies the strings in OF(Q) gathered according to their projection.

context γ̂ = ∗ γ̂ = + γ̂ = e

qe∗qe q∗∗qe
qe+qe q∗+qe q++qe

qe+q∗ q∗+q∗ q++q∗
e

(#, #) (#,+) q∗ q+ qe

(+, #) (+,+) (+, ∗) (#, ∗) q∗ qe

(∗, #) (∗, ∗) (∗,+) qe

(1)

For instance, the bottom row specifies, among others, δ(∗, e,+) = qe.

Two accepting computations for e + e ∗ e are:

#e+e∗e#
#〈e〉+
p−−− #qe+e∗e#

+〈e〉∗
p−−− #qe+qe∗e#

∗〈e〉#
p−−− #qe+qe∗qe#

+〈∗〉#
p−−− #qe+q∗#

#〈+〉#
p−−− #q+#;

#e+e∗e#
+〈e〉∗
p−−− #e+qe∗e#

∗〈e〉#
p−−− #e+qe∗qe#

#〈e〉+
p−−− #qe+qe∗qe#

+〈∗〉#
p−−− #qe+q∗#

#〈+〉#
p−−− #q+#.

Both computations are forced to reduce the ∗ operator before the +, in agreement

with the usual syntactic structure of arithmetic expressions that gives precedence to ∗

over +. The intuitive reason for this behavior is to be found in the fact that a body with

+ cannot be reduced in a context containing ∗; on the other hand, a body with ∗ can be

reduced in a context with +.

Intuitively, the automata of the above examples provide a unique syntactic structure

to their accepted input strings, despite the fact that several computations may recognize

the same string. In general, however, different computations may associate different

structures with the same accepted string.

As for the classical parenthesis grammars, therefore, we next formalize the notion

of structure and structural ambiguity by introducing parenthesis automata.

Definition 3. For a CDA A = (Σ,Q, δ, F), the associated parenthesis CDA is [A] =

(Σ ∪ {[, ]},Q, δ′, F) where δ′ is defined by setting δ′(a, [γ], b) = δ(a, γ, b). A CDA A is

structurally ambiguous if L([A]) contains two strings x1 , x2 such that x1 =̃ x2.

For instance, consider a variant of the automaton of Example 2, where in (1) the

context (+, #) is moved up one row, and qe + q+ is added to the column for γ̂ = +. This

automaton performs two structurally different computations for the same input:

#e + e + e#
∗
p−−− #qe + qe + qe#

#〈+〉+
p−−− #q+ + qe#

#〈+〉#
p−−− #q+#,
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which on the parenthesis CDA corresponds to the computation #[[[e]+ [e]]+ [e]]#
∗
p−−−

#q+#, and

#e + e + e#
∗
p−−− #qe + qe + qe#

+〈+〉#
p−−− #qe + q+#

#〈+〉#
p−−− #q+#,

where the structure is [[e] + [[e] + [e]]].

Not surprisingly, we are going to see that CDAs recognize exactly context-free

languages, acting as parsers for their grammars: states of the automaton correspond to

nonterminals of the grammar; any string reduced by the automaton corresponds to the

r.h.s. of some grammar rules, and the set of states computed by the reduction function

corresponds to the set of the l.h.s., i.e., nonterminals of those rules.

Definition 4. The chain a〈y〉b is a grammatical chain associated with a context-free

grammar G if there exists a derivation

#T#
∗
=⇒

G
α aAb β =⇒

G
α aγb β

with T ∈ S , γ̂ = y. The set of grammatical chains associated with G is written CG.

Example 3. Consider the grammar with one nonterminal and axiom T and rules T →

aTb | ab; the grammar generates the language Lab defined in Example 1. The gram-

matical chains are #〈ab〉# and a〈ab〉b. The latter is defined, e.g., by the derivation

#T#⇒ #aTb#⇒ #aabb#.

Theorem 1. Chain-driven automata recognize the family of context-free languages.

Proof. We prove that the language recognized by any CDA can be generated by an

OG, and vice versa. We first need the concept of a labeled transition system (LTS),

which is a triple (S ,Λ, τ) where S is an infinite set of LTS states, Λ is a set of labels,

and τ is a set of labeled state transitions (i.e., τ ⊆ S × Λ × S ).

Notice that both grammars and chain-driven automata can be seen as LTS. For-

mally, a grammar can be seen as the LTS (OF(VN),C,⇐=) where the LTS states are

all strings in operator forms, the labels are all the possible chains over Σ, and ⇐= is

defined by setting αaγbβ
c
⇐= αaAbβ where c = a〈y〉b, A→ γ is a rule of G and γ̂ = y.

A CDA can be seen as the LTS (OF(Q),C, p−−−) where labels are the chains that drive

the automaton, and p−−− is the relation defined by the reduction moves.

Let G = (VN ,Σ, P, S ), and CG be the set of grammatical chains associated with G.

Define the CDA AG = (Σ,Q, δ, F) where: Q = VN ; F = S is the set of axioms; δ is

defined by setting B ∈ δ(a, γ, b) for each rule B → γ such that a〈γ̂〉b ∈ CG. Notice

that C(AG) = CG. Both G and AG define the same LTS. In particular, this means that

the derivations #T#
∗
⇒ #x# of G with T ∈ S are in bijection with the computations

#x#
∗
p−−− #T# and this implies that L(AG) = L(G).

Conversely, let A = (Σ,Q, δ, F). Define the grammar GA = (VN ,Σ, P, S ) where:

VN = Σ × Q × Σ, S = {(#, q, #) | q ∈ F}, and P is the set of rules (a0, q, an+1) → γ

where q ∈ δ(a0, γ, an+1). Notice that the set of GA’s chains coincides with C(A). Both

A and GA define the same LTS, except that for A the LTS states are configurations
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a0q0a1q1a2 . . . anqnan+1 (any qi may be missing), whereas for GA the LTS states are

written in the form a0(a0, q0, a1)a1(a1, q1, a2)a2 . . . an−1(an, qn, an+1)an+1. In particular,

this means that the computations #x#
∗
p−−− #q# of A with q ∈ F are in bijection with

the derivations #(#, q, #)#
∗
⇒ #x# of G and this implies that L(GA) = L(A). �

In summary, whereas traditional pushdown automata and context-free parsers al-

ways proceed left to right and produce a unique representation of the syntax trees

associated with the input string, our chain-driven automata may nondeterministically

produce any bottom-up possible traversal of the grammar’s trees, as it is illustrated by

the automaton of Example 2 and by its structurally ambiguous modification.

Clearly, A is structurally unambiguous if, and only if, the equivalent grammar GA
defined in the proof of Theorem 1 is structurally unambiguous, and vice versa. Also,

A is single valued if, and only if, the equivalent grammar GA is invertible, and vice

versa.

4. Locally chain-parsable languages

In this section we introduce the key notion of local chain parsability (LCP) and

define it as a property of both chain-driven automata and context-free grammars. Intu-

itively, a local chain-driven automaton, once it has found a chain while parsing a valid

string, can reduce it with the certainty that the reduction is part of an accepting com-

putation; thus, the risk of roll-back, typical of nondeterministic parsing, is avoided for

these automata. To be more precise, a certain level of nondeterminism remains em-

bedded in the reduce function when the chain-driven automaton is not single valued,

but we will see at the end of the section that this choice too can be removed from the

automaton definition.

Definition 5. A CDA is a local chain parser (LCPA) if, for every chain a〈y〉b, the fol-

lowing condition holds: if γ̂ = y, then every computation α aγb β
∗
p−−− #qF# with qF ∈

F can be written as

α aγb β
∗
p−−− α′ aγb β′ p−−− α′ aqb β′

∗
p−−− #qF#

for some state q and strings α′, β′, such that α
∗
p−−− α′, β

∗
p−−− β′.

Informally, for a CDA to be an LCPA, we require that, if a〈y〉b is a chain, then

every γ, with γ̂ = y, appearing in a context (a, b), must be reduced with a single move.

Example 4. Consider the languages and corresponding automata defined in Exam-

ple 1. It is easy to verify that bothAab andAabb are local chain parsers.

The automaton recognizing Lab ∪ Labb, instead, is not an LCPA. For instance, con-

sider the chain a〈abb〉b and the accepting computation (on an input in Lab)

#aaabbb#
a〈ab〉b
p−−− #aaq1bb#

a〈ab〉b
p−−− #aq1b#

#〈ab〉#
p−−− #q1#

We can identify portions α = #a, γ = abb, and β = # that do not satisfy the condition

of Definition 5, since γ is not reduced in a single move: first the prefix ab is reduced by

applying δ(a, ab, b) ∋ q1, and then the suffix b is reduced, together with another a, by

applying δ(a, aq1b, b) ∋ q1.
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Similarly, one can verify that the automaton described in Example 2 is an LCPA

but its subsequent variant is not.

Example 5. Consider now the language Laba = {a
nban | n ≥ 1}. Laba can be recog-

nized by a chain driven automaton with one state q, the set of chains

{a〈b〉a, #〈aa〉#, a〈aa〉a},

and the reduction function defined by setting

δ(a, b, a) = δ(a, aqa, a) = δ(#, aqa, #) = {q}.

Perhaps surprisingly, this automaton is not an LCPA. For instance, consider the

chain a〈aa〉a and the accepting computation

#aaabaaa#
a〈b〉a
p−−− #aa︸︷︷︸

α

a qaa︸︷︷︸
γ

a #︸︷︷︸
β

a〈aa〉a
p−−− #aaqaa#

a〈aa〉a
p−−− #aqa#

#〈aa〉#
p−−− #q#.

The evidenced substrings α, γ, and β do not satisfy the condition of Definition 5, since

γ is not reduced in a single move: first the prefix qa is reduced, together with the

preceding a, by applying δ(a, aqa, a) ∋ q, and then the suffix a is reduced, together with

the aq to its left, by reapplying the same reduction rule.

The previous example illustrates the fact that Definition 5 is based on a purely

input-driven condition for local parsability. Indeed, the presence of state q would allow

to locally recognize the right portion of string to reduce (aqa and not aaq, qaa, nor

aa); however, this cannot be done considering only terminals. To stress this fact, in

the definition we qualified our parser as “local” and driven by “chains” (which are

composed only by terminals).

Thus, our Definition 5 is conceptually different from other formalizations of the in-

tuitive notion of local parsability, in particular, Floyd’s bounded-context parsing based

on full r.h.s. including terminals and nonterminals [14], discussed in Section 8; the

unavoidable loss in terms of generative power is, in our opinion, compensated by the

more complete algebraic properties typical of input-driven languages as we will show

in Section 6.

Definition 6. A grammar is locally chain parsable (LCPG) if, for every grammatical

chain a〈y〉b, the following condition holds: if γ̂ = y, then each derivation #T#
∗
=⇒

αaγbβ with T ∈ S consists of steps #T#
∗
=⇒ α′aAb β′ =⇒ α′aγb β′

∗
=⇒ α aγb β,

where α′
∗
=⇒ α, and β′

∗
=⇒ β. A language L is locally chain parsable (LCPL) if it is

generated by an LCPG.

In other terms, for a grammar to be an LCPG, we require what follows: for every γ

appearing with context (a, b) in some derivation starting from #T#, γ has to be gener-

ated with a single rule A → γ and such a rule has to be applied to a string where the

nonterminal A has (a, b) as context.

9



Example 6. The following grammar G1, which generates the same arithmetic expres-

sions recognized by the CDA of Example 2, is an LCPG.

E → E + T | T ∗ F | e F → e

T → T ∗ F | e S = {E,T, F}

The set of grammatical chains associated with this grammar is exactly C(A) as defined

in Example 2. Consider a derivation such as

#E#⇒ #E+T#⇒ #E+T +T#⇒ #E+T ∗F+T#
∗
⇒ #e+e∗F+e#⇒ #e+e∗e+e#.

The result of any derivation step is such that each terminal character is enclosed within

a context of a pair of terminals which univocally determines the stencil of the last step

of the derivation that produced it, independently on the non-terminals involved in the

derivation: e.g., every e can only be produced by a rule with stencil H → e; the only

∗ in the context (+,+) can only be produced through a rule with stencil H → H ∗ H;

the first + is produced by the rule E → E + T in the context (#,+) but there is no way

to produce the second + within any of the contexts (+, #), (∗, #), (∗, e), and (e, e), by

means of an immediate derivation with stencil H → H + H.

Thus, a bottom-up parser can always decide which terminal part of any r.h.s. to

reduce by only inspecting the terminal parts of any sentential form of length 3 plus its

context: if it finds the terminal part α̂ of a rule A → α within a context where G can

generate any β with β =̂ α through an immediate step of derivation B⇒ β, then it can

reduce the r.h.s. to the corresponding l.h.s. with the certainty that the same α̂ cannot

be obtained as part of a more complex derivation that does not produce it in a single

step; notice also that the reduction is unique if G is invertible.

On the contrary, the following grammar G2, generating only additive expressions,

is not LCP.
X → E + X | E + E E → e

Y → Y + E | E + E S = {X,Y}

The associated grammatical chains are: #〈+〉#, #〈+〉+, #〈e〉+, +〈e〉+, +〈e〉#, +〈+〉#.

For instance, chain +〈+〉# is obtained by applying rule X → E + E in the last step of

the derivation: #X#
∗
⇒ #E + E + X#⇒ #E + E + E + E#. But in the derivation:

#Y#⇒ #Y + E#⇒ #Y + E + E#⇒ #E + E + E + E#

the substring γ = E + E occurs in context (+, #) but it is not produced in any step of

the derivation. Hence, G2 is not locally parsable. As a consequence, a possible parser,

after having reduced all terminals e to E, would be confronted with the sentential form

#E + E + E + E# and left without an indication whether to apply X → E + E reducing

the last +, or to apply Y → E + E reducing the leftmost +.

Theorem 2. A language is locally chain parsable if, and only if, it is recognized by a

local chain parser.

Proof. The statement is a consequence of the fact the both constructions in the proof

of Theorem 1 preserve locality properties. �
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Remark 1. If A is a local chain parser, then it admits an equivalent single valued

LCPA; this fact can be proved with the usual power set construction, since it pre-

serves the LCP property. Analogously, if G is locally chain parsable, then it admits

an equivalent invertible LCPG, since the construction that transforms a grammar into

a structurally equivalent invertible one [16] also preserves the LCP property. These

facts are not surprising, and can be seen as a direct generalization of the analogous

McNaughton property for structured languages [21]. Notice the difference w.r.t. the

case of DCFLs: whereas building a deterministic pushdown automaton from an LR

grammar and conversely are fairly intricate constructions, the same constructions from

chain-driven automata to CF grammars and conversely apply as well to LCPAs and

LCPGs.

5. Extended chains, conflicts and decidability of the LCP property

Both an LCPA and an LCPG assign a unique structure to each accepted string. To

formalize this point we first introduce the notion of extended chain that generalizes

Definition 1. To avoid clashes, we use different notations, so that chains and extended

chains are disjoint.

Definition 7. Structured strings are special well-parenthesized strings over Σ ∪ {[, ]},

defined recursively as follows:

• y ∈ Σ+ are structured strings;

• if ai ∈ Σ and yi = ε or yi = [vi] for some structured strings vi, excluding that all

yi are empty, then y0a1y1a2 . . . anyn is a structured string.

An extended chain (briefly xchain) is a string #[y]# where y is a structured string which

is called the body of the xchain.

Any grammar/chain-driven automaton determines a set of xchains, which have an

important role to assess the LCP property.

Definition 8. Let A be a chain-driven automaton and G a grammar. An xchain #[y]#

is anA-xchain, or a G-xchain, if there exist γ such that γ̂ = y and, respectively,

#[γ]#
∗
p−−−
[A]

#qF# with qF ∈ F or #T#
∗
=⇒
[G]

#[γ]# with T ∈ S .

The sets ofA-xchains and G-xchains are denoted respectively by XA and XG.

Remark 2. The proof of Theorem 1 defines the CDA equivalent to a given grammar,

and, conversely, the grammar equivalent to a given CDA. In both cases, the CDA and

the grammar have identical xchains, i.e., XAG
= XG and XGA = XA.

Example 7. Consider grammar G1 of Example 6. The sentential form #[E+[[e]∗[e]]]#

is generated by parenthesis grammar [G1] with the following derivation

#E#⇒ #[E + T ]#⇒ #[E + [T ∗ F]]#⇒ #[E + [T ∗ [e]]]#⇒ #[E + [[e] ∗ [e]]]#
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hence #[+[[e] ∗ [e]]]# is a G1-xchain. Other G1-xchains are #[[+] + [∗[e]]]# , #[[[e] ∗

[e]] ∗ [e]]# , #[+[[∗[e]]∗]]#.

Similarly, let A be the CDA of Example 2; both computations for the string e + e ∗ e

presented in the same example define the xchain #[[e] + [[e] ∗ [e]]]#. One can easily

guess that A-xchains are the same as G1’s ones. Notice also that both G1 and A are

such that, for each valid string y, there is only one G1/A-xchain y such that ỹ = y.

The next definition introduces the concept of conflict between an xchain and a

chain. Intuitively, an xchain c conflicts with a chain s = a〈y〉b if c̃ contains the string

ayb but such occurrence of y does not correspond to the body of a “subchain” that

occurs in s.

Definition 9. An xchain conflicts with a chain a〈y〉b if, and only if, it can be decom-

posed as xaybz where ỹ = y and y < [+y]+. A set X of xchains and a set C of chains

are conflictual if there is an xchain in X that conflicts with some chain in C.

Example 8. The xchain #[+[+[+[+]]]]# conflicts with the chain #〈+〉+ since the prefix

#[+[+ of the xchain projects onto # + +, but the first occurrence of symbol + in the

xchain is not bracketed; formally, the definition is satisfied with x = ε, y = [+[, and

z = [+[+]]]]#. This implies that the sets XG2
and CG2

associated with the grammar G2

defined in Example 6 are conflictual.

On the contrary, with a little patience it can be verified that, for the grammar G1

in the same example, the set of G1-xchains does not exhibit any conflict with CG1
. For

instance, #[[[+]+]+]+]# does not conflict with #〈+〉+ since, whenever # + + occurs in

the xchain (only once, as a prefix), the first occurrence of symbol + is bracketed.

Also, G1 is LCP, whereas G2 is not. These remarks lead to the main property stated

in Theorem 4.

The next lemma, which easily follows from Definition 9, illustrates all the cases where

a conflict may occur.

Lemma 1. If an xchain c conflicts with a chain a〈y〉b, then there are four possibilities,

represented in the table:

Conflict type x a y b z conditions

Left conflict x1[x2 a y1 ] y2 b z

Right conflict x a y1 [ y2 b z1] z2

Inner conflict x a y1[y2]y3 b z ỹ1y3 , ε

Outer conflict x1[x2 a y b z1] z2

These cases are not mutually exclusive: an xchain may exhibit more that one conflict

with the same chain.

We next show that the property of having nonconflictual XG and CG is decidable

for any grammar G (and is computed by an automatic tool1).

1https://github.com/bzoto/chainsaw.
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Theorem 3. For every grammar G and automatonA, it is decidable whether the pairs

of sets, respectively, XG, CG, and XA, C(A) are nonconflictual.

Proof. Let G be (VN ,Σ, P, S ). We first introduce a grammar G′ = (VN ∪ {T
′},Σ ∪

{[, ]}, P′, {T ′}), such that T ′ < VN and

P′ =

{
A→ [α′]

∣∣∣∣∣∣
A→ α ∈ P, where α′ = α or α′ is obtained from α

by erasing some (or every) nonterminals

}

∪ {T ′ → #[T ]# | T ∈ S }.

It is easy to see that G′ defines the language of all the G-xchains, because its rules

have the same structure as those of G and are marked by explicit brackets. Nonter-

minals have to be erased to take into account that G-xchains are defined on sentential

forms, by discarding all nonterminals.

For a grammatical chain c = a〈y〉b, we define the regular language

R(c) = (Σ ∪ {[, ]})∗ · a ·
{
y ∈ ¬

(
[+·y·]+

)
| ỹ = y

}
· b · (Σ ∪ {[, ]})∗

that is the language of all the words having a substring which conflicts with c. Clearly,

R′ :=
⋃

c∈CG
R(c) is also a regular language. G is conflictual if, and only if, L(G′)∩R′ ,

∅; since L(G′) ∩ R′ is CF, its emptiness problem is decidable.

The statement for CDAs follows from Theorem 1 and Remark 2. �

Theorem 4. A chain-driven automatonA is a local chain parser (respectively, a gram-

mar G is locally chain parsable) if, and only if, XA and C(A) (respectively, XG and

CG) are nonconflictual.

Proof. We prove the statement concerning automata; the analogous statement for gram-

mars follows from Theorem 2 and Remark 2.

First, we prove that if XA and C(A) are not conflictual, then A is a local chain

parser. By contradiction we assume that A is not a local parser. Then, there exist a

chain a〈y〉b ∈ C(A), a string γ such that y is the projection of γ onto Σ, a final state qF ,

and a computation

α aγb β
∗
p−−−
[A]

#qF#

where γ is not reduced in a move driven by a〈y〉b. Then we show that there exists an

A-xchain conflicting with a〈y〉b.

We may assume that the first move of the computation involves γ (otherwise we

can ignore the previous moves not involving γ and consider the remaining part of the

computation). Then there are only four possibilities.

1. The computation can be decomposed as

α1 [α2aγ1] γ2bβ p−−−
[A]
α1 q γ2bβ

∗
p−−−
[A]

#qF#

where γ = γ1]γ2 and α = α1[α2. Then α̂1[α̂2aγ̂1]γ̂2bβ̂ is an A-xchain that

conflicts with a〈y〉b: it is a left conflict, since Lemma 1 is satisfied with y =

γ̂1]γ̂2.
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2. The computation can be symmetrically decomposed with γ = γ1[γ2 and β =

β1] β2. Then one obtains a right conflict.

3. The computation can be decomposed as

αaγ1 [γ2] γ3bβ p−−−
[A]
αaγ1 q γ3bβ

∗
p−−−
[A]

#qF#

where γ = γ1[γ2]γ3, with γ1γ3 ,̃ ε and γ2 , ε. Then α̂aγ̂1[γ̂2]γ̂3bβ̂ is an A-

xchain that conflicts with a〈y〉b: it is an inner conflict, since Lemma 1 is satisfied

with y = γ̂1[γ̂2]γ̂3.

4. The computation can be decomposed as

α1 [α2aγbβ1] β2 p−−−
[A]
α1 q β2

∗
p−−−
[A]

#qF#

where α = α1[α2, β = β1] β2. Then α̂1[α̂2âγbβ̂1]β̂2 is anA-xchain that conflicts

with a〈y〉b: it is an outer conflict, since Lemma 1 is satisfied with y = γ̂.

Vice versa, we prove that ifA is a local chain parser, thenXA and C(A) are noncon-

flictual. Again, we reason by contradiction and assume that there exists an A-xchain

that conflicts with a chain a〈y〉b. The xchain can be decomposed as xaybz with ỹ = y

and one of the four cases in Lemma 1 holds.

One can verify that, in each case, there exists a computation

α aγb β
∗
p−−−
A

#qF#

with qF final and γ̂ = y, where γ is not reduced in a single move, thus contradicting the

hypothesis. We only discuss one case since the others are similar. Consider the case of

left conflict, where the conflicting xchain can be decomposed as x1[x2ay1]y2bz. Then

by definition ofA-xchain, there exist α1 =̂ x1, α2 =̂ x2, γ1 =̂ y1 γ2 =̂ y2, and β =̂ z such

that

α1 [α2aγ1] γ2bβ p−−−
[A]
α1 q γ2bβ

∗
p−−−
[A]

#qF#

is a computation of [A]; in the corresponding computation of A, the substring γ =

γ1γ̃2 is not reduced in any move driven by a〈y〉b (notice that γ̃2 cannot be deleted

independently of q also when γ1 = ε). �

Theorems 4 and 3 imply the following result.

Corollary 1. It is decidable whether a grammar is locally chain parsable and whether

a chain-driven automaton is a local chain parser.

6. Basic properties of local chain parsable languages

In this section we prove the strict inclusion of LCPLs within the DCFL family, and

we investigate their closure under the fundamental language operations; we point out
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similarities and differences w.r.t. other input-driven language families: we show that

several closure properties enjoyed by other families do not extend to LCPLs; never-

theless, under suitable hypotheses of chain compatibility, Boolean operations between

LCPLs preserve local parsability, so that e.g. the containment problem is decidable for

pair of languages satisfying such hypothesis. As a preliminary step, we briefly discuss

structural non-ambiguity.

Remark 3. Every LCPG and LCPA assigns to each valid string x a unique structure

represented by an xchain #[x]# where x̃ = x. In other words, LCPGs and LCPAs

are structurally unambiguous. Both properties can be proved similarly reasoning by

contradiction and building an xchain that necessarily conflicts with a chain.

Moreover, if an LCPA is single valued (or, equivalently, an LCPG is invertible) then

it is unambiguous, in that also the labels of the syntactic trees are uniquely determined.

Finally, independent moves of an LCPA (i.e., moves that reduce non-overlapping

substrings of the input) can be applied in any order, without altering the result.

Example 9. As a counterexample, grammar G2 of Example 6 is not an LCPG; in fact

it produces non-homomorphic syntactic trees for the same sentence #e + e + e + e#,

namely those corresponding to xchains

#[[e] + [[e] + [[e] + [[e] + [e]]]]]# and #[[[[[e] + [e]] + [e]] + [e]] + [e]]#.

Next, we move to a hardly surprising inclusion property, where right-to-left deter-

ministic context-free languages are those defined by deterministic pushdown automata

that work reading their input going from right to left. Then, we show that the LCPL

family is incomparable with another classical subfamily of DCFLs, namely the LL one.

Theorem 5. The LCPL family is strictly included in the DCFL family and in the right-

to-left deterministic context-free language family.

Proof. By Remark 1 we know that any LCPL can be recognized by a single valued

LCPA. Then, considering only the set of computations of a single valued LCPA that

correspond to the reverse of the rightmost visit of syntax trees, one obtains a traditional

deterministic pushdown automaton. Thus, LCPLs are DCFLs.

The inclusion is strict:

L = {0anbn | n ≥ 1} ∪ {1anb2n | n ≥ 1} (2)

is a deterministic context-free language that cannot be generated by an LCPG; we prove

that, for any grammar G recognizing L, the set XG and CG must be conflictual. First

notice that if x ∈ XG and x contains a substring a[+y]+b with y ∈ Σ+, then a〈y〉b ∈ CG.

To generate strings like anbn, it is necessary to have derivations of the type A
∗
⇒

akAbk for some k > 0, which implies thatXG contains an xchain xa[y]bz with ỹ = akbk.

Splittings like B
∗
⇒ ahC, C

∗
⇒ Bbh would lead to conflicts, since we have one of the

following cases.
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• If B
∗
⇒ ahC contains both right linear and left linear steps, then it produces

xchains containing x1[[a j1 ]ak1 ]z1 with x̃1, z̃1 ∈ a+, and x2[ak2 [a j2 ]]z2 with x̃2, z̃2 ∈

a+ that conflict with its chains a〈a j2〉a and a〈a j1〉a, respectively; similarly for

derivation C
∗
⇒ Bbh.

• Otherwise, if B
∗
⇒ ahC is right linear and C

∗
⇒ Bbh is left linear, then they

produce xchains containing x[a j]z and x′[bi]z′ for some i, j > 0, x̃, x̃′ ∈ a+,

z̃, z̃′ ∈ b+, and hence the chains a〈a j〉b and a〈bi〉b. Thus, x[a j]z (with long

enough z) conflicts with a〈bi〉b, and x′[bi]z′ (with long enough x) conflicts with

a〈a j〉b.

Similarly, and more generally, we must exclude splittings like B
∗
⇒ ahb jC, C

∗
⇒ Bbh− j

(or the symmetric ones). Hence, all steps in derivation A
∗
⇒ akAbk are balanced and

we must have a chain a〈ahbh〉b for some h.

Analogously, considering strings like 1anb2n,XG must contain an xchain x′a[y′]bz′

with ỹ′ = aib2i for some i. Since this xchain conflicts with a〈ahbh〉b, G is not a locally

chain parsable grammar. �

Theorem 6. The LCPL family is incomparable with the family of languages generated

by LL(k) grammars.

Proof. The witness that proves LL(1) * LCPL is the language in Eq. (2). The relation

LL(1) + LCPL is proved by the OPL language {anbn | n ≥ 1} ∪ {ancn | n ≥ 1} which

is easily generated by an LCPG but is not in LL(k) [24]. �

Remark 4. Although Theorem 5 does not say anything about the parsing complexity

of a local parser, its proof shows that an LCPA can be used to recognize any string in

linear time: this result can be achieved considering only the computations of a single

valued LCPA that correspond to rightmost visits of syntax trees.

Closure properties

When dealing with closure properties, we notice that they change dramatically

whether we refer to unstructured context-free languages or to structured ones; for in-

stance both DCFLs and general CFLs enjoy (differently from each other) some closure

properties but not all of them. On the other hand, the languages generated by paren-

thesis grammars are structured in the sense that their strings immediately and uniquely

represent the syntax tree associated with them. They enjoy closure under all Boolean

operations and make a Boolean algebra where the top or universal element is the lan-

guage generated by the stencil grammar obtained from the original ones. The various

language families that may be considered input-driven are naturally structured too;

for instance the original IDLs (alias visibly pushdown languages) generalize parenthe-

sis languages in that the so named call/return terminals play the role of open/closed

parentheses. Operator precedence languages, to be reconsidered in Section 7, too are

structured, although their structure is less perspicuous in the terminal strings [9]. For

such language families, the investigation of closure properties has always been more

profitable when referred to the sentence structures rather than simply to the strings; for
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instance, IDL closure properties assume that the partitioning of the alphabet into calls,

returns, and internal is fixed a priori.

Since LCPLs too are input-driven and have a structure determined by their chains, it

seems appropriate to investigate their closure properties with reference to the languages

that share a predefined structure. Chains, however, unlike the alphabet partitioning of

IDLs and the operator precedence matrices of OPLs, defined in Section 7, are not

enough by themselves to give a unique structure to all languages sharing them: it may

even happen that of two grammars with identical chains one is LCP and the other is

not. For instance the two grammars below

G1 : A→ bBa B→ ab S = {A}

G2 : C → bDa D→ Dab | ab S = {C}

have the chains #〈ba〉#, b〈ab〉a, but, whereas G1 clearly has no conflicts, G2 does, e.g.,

b〈ab〉a vs. #[b[[[ab]ab]ab]a]#. Thus, rather than referring to a whole family qualified

by a unique set of chains, we restrict our investigation to pairs of automata or grammars

exhibiting sets of compatible xchains and chains, as defined next.

Definition 10. Two LCPAs A1 = (Σ,Q1, δ1, F1) and A2 = (Σ,Q2, δ2, F2) are struc-

turally compatible –briefly, compatible– if the union of their xchains, XA1
∪ XA2

, and

the union of their chains, C(A1) ∪ C(A2), are not conflictual. Two LCPLs L1 and L2

are compatible if they are recognized by two compatible LCPAs.

The Boolean closure properties under union, intersection and difference are next

proved for any pair of compatible LCPLs.

Theorem 7. Let L1 and L2 be compatible LCPLs. Then L1 ∪ L2, L1 ∩ L2, and L1 \ L2

are LCP, and are still compatible with L1 and L2.

Proof. LetA1 = (Σ,Q1, δ1, F1) andA2 = (Σ,Q2, δ2, F2) be compatible LCPAs recog-

nizing respectively L1 and L2.

We may safely assume that the set of states Q1 and Q2 are disjoint. Let Q =

(Q1∪{⊥, qerr})× (Q2∪{⊥, qerr}), with ⊥, qerr < Q1∪Q2. For each string γ ∈ OF(Q), say

γ = q0a1q1a2q2 · · · anqn with qi ∈ Q ∪ {ε}, define γ1 = p0a1 p1a2 p2 · · · an pn where pi is

empty whenever qi is empty or has ⊥ as first component, and pi is the first component

of qi in the other cases; γ2 is defined symmetrically. Then δ(a, γ, b) is as follows:

• δ(a, γ, b) is the set of all pairs (q1, q2) with q1 ∈ δ1(a, γ1, b) and q2 ∈ δ2(a, γ2, b),

if both δ1(a, γ1, b) and δ2(a, γ2, b) are nonempty;

• δ(a, γ, b) = ∅, if both δ1(a, γ1, b) and δ2(a, γ2, b) are undefined or empty;

• δ(a, γ, b) is the set of all pairs (qerr, q2) with q2 ∈ δ2(a, γ2, b), if only δ1(a, γ1, b)

is undefined or empty, and similarly for the symmetric case.

For ⋄ ∈ {∩,∪, \}, the automaton for L1 ⋄ L2 is given by (Σ,Q, δ, F⋄), where: F∩ =

F1 × F2, F∪ = F1 × (Q2 ∪ {qerr}) ∪ (Q1 ∪ {qerr}) × F2), F\ = F1 × (Q \ F2 ∪ {qerr}).

Notice that the above construction does not produce new xchains besides XA1
∪ XA2

.

�

Corollary 2. The inclusion problem between compatible LCPLs is decidable.
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Proof. The statement is a direct consequence of the decidability of the emptiness prob-

lem for CFLs and the closure between compatible LCPLs under set difference. �

These properties make locally chain parsable languages suitable for devising auto-

matic verification techniques, most notably model checking.

The neutrality of LCPA computations with respect to the direction of moves leads

to the next property, stating that a language L is an LCPL if, and only if, its reversal is

an LCPL. Notice that LR and L need not to be compatible.

Theorem 8. Let L be an LCPL. Then its reversal LR is an LCPL.

Proof. Consider a local chain parser A = (Σ,Q, δ, F) such that L(A) = L. A local

chain parser for LR isAR = (Σ,Q, δR, F), with δR(a, γ, b) = δ(b, γR, a), for every a, b, γ

such that δ(a, γR, b) , ∅. It is easy to see that AR’s xchains are like those of A, but

reversed. �

On the contrary, we are going to prove that the hypothesis of structural compatibil-

ity assumed in Theorem 7 does not suffice to ensure the closure under the operations

of concatenation and star. This is to be expected: in fact, concatenation necessarily

alters any chain of any grammar generating L1 that has the form a〈y〉#, because the #

marking the end of L1 disappears; the alteration may in some cases cause a conflict. We

also show that homomorphism does not preserve local parsability, which is a constant

property of all families of input-driven languages.

Theorem 9. There exist compatible locally chain parsable languages L1 and L2 such

that L1 · L2 is not LCPLs.

Proof. Consider L1 = a+ ∪
{
a2n+1b2n+1 | n ≥ 0

}
and L2 = c+ ∪

{
b2n+1c2n+1 | n ≥ 0

}
. It

is easy to see that they are LCPL and compatible.

We prove that

L1 · L2 = a+c+ ∪ a+
{
b2n+1c2n+1 | n ≥ 0

}
∪
{
a2n+1b2n+1 | n ≥ 0

}
c+ ∪

{
a2n+1b2n+1 | n ≥ 0

} {
b2n+1c2n+1 | n ≥ 0

}

is not deterministic, hence cannot be an LCPL because of Theorem 5.

Let R be a(aa)∗b(bb)∗c(cc)∗. The language

LR := (L1 · L2) ∩ R = a(aa)∗
{
b2n+1c2n+1 | n ≥ 0

}
∪
{
a2n+1b2n+1 | n ≥ 0

}
c(cc)∗

is inherently ambiguous, hence not deterministic: the classical proof (e.g., see Theo-

rem 5.31 in [15]) that language a+bncn∪anbnc+ is inherently ambiguous carries over to

this case. Indeed, let N be the pumping number for the grammar as in Ogden’s lemma.

If N is odd, the proof of Theorem 5.31 in [15] is based on the two strings aNbNcN+N!,

aN+N!bNcN and still holds. If N is even, the only difference is that the considered strings

must be aN+1bN+1cN+1+N! and aN+1+N!bN+1cN+1.

Since deterministic languages are closed under intersection with regular sets, it follows

that also L1 · L2 is not deterministic. �
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Theorem 10. The LCPL family is not closed under Kleene star and under letter-to-

letter homomorphism.

Proof. The non-closure under Kleene star is a corollary of the preceding argumenta-

tion. Consider the language (L1 ∪ L2)∗; its intersection with R is exactly LR. Notice

that (L1 ∪ L2) is an LCPL because of Theorem 7. Since deterministic languages are

closed under intersection with regular ones, if (L1 ∪ L2)∗ were deterministic, so would

be LR, that has just been proven to be inherently ambiguous.

For homomorphism, as proved in Theorem 5, language L = {0anbn | n ≥ 1} ∪{
1anb2n | n ≥ 1

}
is not an LCPL, yet it is the image of the LCPL {0anbn | n ≥ 1} ∪{

1anc2n | n ≥ 1
}

under the homomorphism that maps c to b and leaves all the other

characters unchanged. �

7. LCPL versus Operator-Precedence and Input-Driven languages

It is worthwhile to examine the LCPL family as an outgrowth of the classical OPL

family [13], whose knowledge, both theoretically ([9, 18] and for application to parallel

parsing [4]), has much progressed in recent years.

R. Floyd took inspiration from the traditional notion of precedence between arith-

metic operators in order to define a broad class of languages, such that the shape of

the parse tree is solely determined by a binary relation between terminals that are con-

secutive, or become consecutive after a bottom-up reduction step. Thus, the parsing of

such languages is driven by the terminal alphabet only, as it happens for IDLs and our

LCPLs. Recent and much less recent work has subsequently proved interesting alge-

braic properties of OPLs, e.g., qualifying the OPL family as the largest known (to us)

language family structurally closed under all basic language operations (the Boolean

ones, concatenation, Kleene *, ...) and characterized in terms of monadic second or-

der logic [9, 18]; we also showed that OPLs enjoy the local parsability property and

exploited it to build an efficient parallel parser therefor.

In this section we show that LCPLs are a further generalization of OPLs and pre-

serve several but not all of the above properties: precisely, the LCPL family strictly

contains the OPL family; on the other hand we have seen in Section 6 that, e.g., with

the structural compatibility hypothesis they are closed under Boolean operations, but

not under concatenation and Kleene *. After resuming the basic definitions and prop-

erties of OPLs for the sake of self-completeness, we formally prove that OPLs are

LCPLs and provide examples of LCPLs that are not OPLs; we also show that the in-

creased generative power of LCPLs allows us to capture intricate syntactic features of

some programming languages that are not expressible in terms of OPLs.

The following definitions for operator precedence grammars [13], are from [9].

Definition 11. For an OG G and a nonterminal A, the left and right terminal sets are

LG(A) = {a ∈ Σ | A
∗
⇒ Baα} RG(A) = {a ∈ Σ | A

∗
⇒ αaB}

where B ∈ VN ∪ {ε}, D is a new nonterminal, and G′ is the same as G except for the

addition of the rule D→ β. Notice that LG(ε) = ∅.
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Three binary operator precedence (OP) relations are defined:

equal in precedence: a � b ⇐⇒ ∃A→ αaBbβ, B ∈ VN ∪ {ε}

takes precedence: a ⋗ b ⇐⇒ ∃A→ αDbβ,D ∈ VN and a ∈ RG(D)

yields precedence: a ⋖ b ⇐⇒ ∃A→ αaDβ,D ∈ VN and b ∈ LG(D)

The operator precedence matrix (OPM) M = OPM(G) is a |Σ| × |Σ| array that to each

ordered pair (a, b) associates the set Mab of OP relations holding between a and b. For

two OPMs M1 and M2, we define set union M1 ∪ M2 if ∀a, b : Mab = M1,ab ∪ M2,ab.

Definition 12. G is an operator precedence grammar (OPG) if M = OPM(G) is a

conflict-free matrix, i.e., ∀a, b : |Mab| ≤ 1. L is an operator precedence language (OPL)

if it is generated by an OPG. Two OPMs are compatible if their union is conflict-free.

Intuitively, the OPM of an OPG drives the parsing algorithm in that the terminal

part of a grammar r.h.s. is enclosed, in a unique way, within a pair yields precedence,

takes precedence and equal in precedence holds between the consecutive terminals

in between. This property is exploited in the following Theorem 11 which asserts the

strict containment of the OPL family within the LCPL family.

OPLs having compatible OPM are closed with respect to Boolean operations, con-

catenation, Kleene *, reversal, prefix, suffix, homomorphism preserving precedence

relations, intersection with regular languages2 [10, 9]. Every IDL is an OPL having

very restricted precedence relations induced by the partition of the terminal alphabet

into opening, closing, and internal symbols; e.g., {anbn | n ≥ 1} is an IDL where

a and b, are, respectively, opening and closing symbols [9]. Therefore, IDL closure

properties can be derived as a special case of the closure properties of OPL.

Theorem 11. Every OPG is locally chain-parsable. The OPL family is strictly con-

tained within the LCPL family.

Proof. The grammatical chains CG are determined by the precedence relations of G, as

follows: a〈c1 · · · ck〉b ∈ CG if, and only if, a⋖c1, ci � ci+1 for every 1 ≤ i < k, and ck⋗b.

Consider now any derivation #T#
∗
⇒ αaγbβwith γ̂ = y, a〈y〉b ∈ CG; since for each pair

of terminals at most one precedence relation holds, necessarily a yields precedence to

the first terminal symbol of γ, the last terminal symbol of γ takes precedence over b,

and � holds between any pair of consecutive terminals in y. Thus, the above derivation

must be decomposed into #T#⇒∗ α′aAbβ′ ⇒∗ α′aγbβ′ ⇒∗ αaγbβ: in fact deriving γ

in separate steps (e.g., #T# ⇒∗ α′aγ1δ ⇒
∗ α′aγ1γ2bβ′ ⇒∗ αaγbβ, with γ1γ2 = γ, γ1

and γ2 , ε) would imply the existence of a ⋖ or of a ⋗ relation within γ in conflict with

the � relation (in this example the last terminal symbol of γ1 takes precedence over the

first terminal symbol of γ2).

2To be precise, this last closure is an immediate consequence of Corollary 17 in [9], though not explicitly

listed in the paper. Also notice that closure under reversal is obtained by applying a “symmetric” OPM

which reverses yield and take precedence relations in exactly the same way as it is obtained in Theorem 8 by

reversing the chains.
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The strict inclusion is witnessed by the language, L = {anbn | n ≥ 1} ∪ {bnan |

n ≥ 1}, which is recognized by the obviously local automaton driven by the chains:

#〈ab〉#, #〈ba〉#, a〈ab〉b, b〈ba〉a. However, any grammar generating {anbn | n ≥ 1}

(respectively {bnan | n ≥ 1}) necessarily exhibits the a ⋖ a relation (respectively the

a ⋗ a relation); this, in turn, is an immediate consequence of the fact pointed out in

the proof of Theorem 5, that, to generate strings like anbn, it is necessary to have

derivations of the type A
∗
⇒ akAbk for some k > 0. �

The generative capacity of LCPGs in the field of programming languages

The increased generative power of LCPGs with respect to OPGs is potentially ex-

ploitable beyond the mathematical realm of formal languages. For instance, OPLs have

been proved effective in the definition of programming language syntax and in compiler

construction, but they notoriously suffer from a few minor weaknesses which required

some ad-hoc trick in their parsers. A first “historical” example is the case of operator

“unary minus” already pointed out and treated ad-hoc in the original Floyd’s paper; in

the more recent work the unary minus has been disambiguated from the binary one by

means of a preprocessing during the lexical analysis [3] .

In this section we offer two examples that show how some limitations of OPGs

can be overtaken by LCPGs. Precisely, Example 10 deals with a typical case of OPM

conflict of several C-like languages produced by conditional expressions; Example 11

describes a grammar fragment suitable to express the syntax of arithmetic expressions

that include the unary minus operator.

Example 10. The following grammars describe a typical syntactic feature of several

C-like languages where expressions can be used as statements; since expressions can

be embraced by parentheses, the closed parenthesis of the expression defining, e.g., the

condition of an if-statement can be immediately followed by the open parenthesis of the

expression defining the “then-branch” of the conditional statement. For simplicity we

limit the grammars to formalize parenthetic expressions containing only one additive

and one multiplicative operator, then Σ = {if, (, ),+, ∗, e}.

The first grammar is in Figure 1 (a), where a syntax tree is shown for illustra-

tion; the axiom set is the singleton {I}. It is easy to verify that this grammar is nei-

ther an OPG nor a LCPG: for instance the chain )〈+〉#, which requires to reduce a

r.h.s. T + E before reducing the r.h.s. that includes the ), conflicts with the xchain

#[if ()[+[[([()])]+]]]# which imposes to reduce the last ) before the last +. However,

by applying a technique (not an algorithm!) that, roughly speaking, consists in “raising

the level” of some r.h.s. without altering the semantic precedence between the two op-

erators, we obtain the equivalent grammar in Figure 1 (b), which is an LCPG (proven

through our tool) but still not an OPG.

In this case the adopted technique simply consisted in replacing some nonterminals

that were the source of conflicts with the corresponding r.h.s.; not surprisingly the

procedure had to be iterated but “fortunately” without producing non-terminating self

loops. The example also offers an intuitive explanation of why the same procedure did

not transform the original grammar into an OPG: in that case the effect would have

been to replace a conflict between ⋗ and ⋖ into one between ⋖ and �. The apparent
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I → if (E)E
E → T + E | e | (E)
T → e ∗ T | e | (E) | (E) ∗ T

I

if ( E

T

e

+ E

e

) E

( E

T

e

+ E

e

)

(a)

I → if(E)(E) | if(E)e + E | if(E)e + T |
if(E)e ∗ T | if(E)e | if(E)(E) + T |
if(E)(E) + E | if(E)(E) ∗ T

E → T + E | e | (E)
T → e ∗ T | e | (E) | (E) ∗ T

I

i f ( E

T

e

+ E

e

) ( E

T

e

+ E

e

)

(b)

Figure 1: Part (a): the original non-locally chain parsable grammar for the “if” construct and syntax tree of

if(e + e)(e + e). Part (b): the equivalent LCPG and the corresponding syntax tree.

drawback of the applied technique is the considerable increase in the number and

length of the grammar rules; we will shortly comment thereon in the conclusions.

Example 11. Consider now the grammar in Figure 2 (a) which defines a simplified

syntax for arithmetic expressions that include binary and unary operators. To keep the

example small, the grammar features only one subtraction and one multiplication op-

erator and e as operand, but other operators and parentheses would be straightforward

to add. E is the only axiom.

It is easy to verify that the above grammar too is not an OPG: there is an obvious

conflict − � − and − ⋖ −. Indeed the grammar is not even an LCPG: for instance, the

xchain #[[[[− − e] − [−e]]∗]∗]# conflicts with the chain −〈e〉−. In this case too we can

transform the original grammar into the equivalent one in Figure 2 (b) (proven free

from conflicts and therefore LCPG by means of our automatic tool.)

The adopted technique is similar to the previous one though, at a first glance the

transformation may appear unnatural and rather tricky: in fact, in this case rather

than raising a whole r.h.s. to an upper level we have “split” it by replacing its original

l.h.s. with a new nonterminal (Y replaced X) and we attached it where its original

r.h.s. could occur; as a consequence we see new r.h.s. that begin with the ∗ operator;

observe, however, that the transformation keeps the key syntactic feature of giving the

multiplication operator its usual semantic precedence over the subtraction one as it

is illustrated in Figure 2 which shows that the “essential structure” of the grammar’s

syntax trees is not affected. On the other hand, that the unary minus remains, as it was
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E → e | −e | E ∗ X | E − X | E − e | E − −e
X → e | −e | X ∗ −e | X ∗ e | E

E

e

− X

X

e

∗ − e

(a)

E → e | −e | eY | −eY | E − e |
E − −e | E − eY | E − −eY

Y → ∗ e | ∗ − e | ∗ eY | ∗ − eY
E

E

e

− e Y

∗ − e
(b)

Figure 2: Part (a): original non-locally chain parsable grammar for the expressions with unary and binary

minus operators, and syntax tree of e − e ∗ −e. Part (b): the equivalent LCPG and the corresponding syntax

tree.

originally, at the same level of both ∗ and the binary −; since we do not admit nested

unary minuses, however, this does not prevent the semantic analysis from processing

the unary operator before the preceding binary one.

The above examples can be further generalized: for instance we have built an LCPG

that describe conditional expressions involving both the above parenthesization typical

of C-like languages and all arithmetic and assignment operators, including the unary

minus; we have also been able to deal with the fairly tricky Javascript’s syntax which

allows to write conditional expressions containing an unbounded sequence of paren-

thesized sub-expressions such as if(E)(E)(E)...(E). As we already admitted, however,

the systematic application of the techniques exemplified in the above examples to re-

move conflicts from the original BNF considerably increases the grammar size; for

this reason we do not include in this paper such more complex examples, which are

however reported in https://github.com/bzoto/chainsaw.

8. Related work

Having previously clarified the close relationship of our work with the input-driven

languages, we first enlarge the comparison to some other language families that, sim-

ilarly to ours, strictly include the input-driven family. Then we briefly mention some

interesting analogies with other language families, which have somewhat influenced

our ideas.

The language family recognized by one-way real-time cellular automata (also known

as trellis automata) coincides with the family of linear conjunctive languages denoted

LinConj (see [24] where other relevant references are available). Such family strictly

contains the input-driven family and is incomparable with the CF family and also with

the family defined by LL(k) CF grammars and denoted CFLL. The same paper shows,
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by means of witness languages, that CFLL is incomparable with the input-driven fam-

ily. Clearly LinConj * LCPL. The question whether LCPL is strictly included into

LinConj remains open. With respect to the parsing algorithms, trellis automata are a

sort of parallel machine which analyzes the substrings, starting from the single char-

acters, and then gradually combines the partial analysis of adjacent substrings until

the entire analysis is obtained; the time complexity is quadratic. In contrast, an LCPL

chain-driven parser is a linear-time algorithm that can be executed either serially or in

parallel, as explained for the similar OPL case in [3].

We mention another family strictly including the input-driven languages, the so

called tinput-driven family [17], where letter “t” indicates that a deterministic finite-

state transducer is used to translate the input string to another string, which is then

parsed by an input-driven pushdown machine. Such finite-state preprocessing is, for

instance, able to translate a string from language {anban | n ≥ 1}, which is not input-

driven (and is not LCPL either), to a string of the form anbcn, which is clearly accepted

by an input-driven machine. From this example it follows that OPL + tinput-driven.

On the other hand, since [17] the tinput-driven family is a strict subset of the real-time

deterministic CF family, and the OPL family includes also non-real-time languages [9],

it follows that OPL * tinput-driven, and by Theorem 11, the same holds for family

LCPL. Actually, the use of finite-state preprocessing for taming a recalcitrant language

is a time-honored technique used by some compilers that preprocess the source text at

lexical analysis time, and is extensively described for the case of OPG in [3].

It would be too long to examine all language families that have extended in recent

years the idea of input driven languages, such as, e.g., the languages recognized by

the synchronized pushdown automata of [7], which have similar Boolean closure prop-

erties but, unlike the LCPL, are included into the real-time deterministic context-free

languages.

Next we focus on other approaches. The NTS grammars and languages [6] are

defined by the so called non-terminal separation property. They enjoy a sort of local

parsability property in the following sense: if a substring (with terminals and non-

terminals) occurs in a sentence as a constituent, i.e., is generated by a nonterminal

symbol, then, for every sentence, the same substring can be reduced to the same non-

terminal symbol. NTS languages, however, are not input-driven, because they rely on

the presence of nonterminals for localizing the position of a reduction. To increase

the practically insufficient generative capacity of NTS grammars, researchers working

on grammatical inference [19] have recently incorporated into the model the idea of

checking the terminal context (of length one or greater than one but still bounded) that

surrounds the substring to be reduced; this is similar to our notion of context in a chain.

Actually, the idea of making grammatical reductions more selective by checking

a bounded context is much older: we already mentioned Floyd’s bounded-context

contex-free grammars [14], theoretically studied in [20]. They are not input-driven

(unlike Floyd’s OPG model) because they admit nonterminal symbols in the context

that surrounds a string, also possibly containing nonterminal symbols, which is can-

didate to reduction. In this way bounded-context grammars are able to generate also

languages which are not in the LCPL family: an example is {anban | n ≥ 1} of Exam-

ple 5.

Moving to another research area, the conditions for local parsability, as expressed
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in Lemma 1, are remindful of the confluence property of Church-Rosser languages

(also called McNaughton languages), which are defined by string-rewriting rules [22,

5]. Such systems, under the length-reducing hypothesis that ensures that the length

of reduction chains is not infinite, bear some similarity to our approach. But they

are more powerful than ours, because they define also deterministic context-sensitive

languages. Moreover, they are not input-driven in any sense, since the rules contain

also nonterminal symbols.

On the other hand, nonterminal symbols are not used at all in the string-rewriting

rules of the Church-Rosser congruential languages [12], a restricted family where each

rewriting rule is specified by a pair of terminal strings; in particular, the already men-

tioned NTS languages are congruential. Congruential languages include all regular

languages, are incomparable with the DCFLs (they may be context-sensitive), and, in

our opinion, are too weak in generative capacity, to be useful for defining practically

relevant languages.

To sum up, to our knowledge, the input-driven locally chain parsable automata

and grammars differ from all existing, somewhat related, models, either, or both, with

respect to the local parsability property and to the input-driven aspects.

9. Conclusion

The LCPL family properly extends the known input-driven families, and, under

suitable, decidable hypotheses, maintains the decidability of the containment problem.

This represents a new step in the long term research effort towards a general theory of

local deterministic parsing. Much remains to be done to better understand the proper-

ties of LCPLs, and we just mention two questions left for investigation: closure under

intersection with regular languages and iterative pumping properties.

Another research direction is to examine whether some lattice-theoretical proper-

ties of OP grammars and languages [10] can be extended to the LCPL family; such

algebraic properties motivated the early use of OPGs for grammatical inference [11].

Concerning closure properties, it is not difficult to find compatible LCPLs such that,

say, their concatenation preserves the local parsing property: for instance {anbn | n ≥ 1}

and {bncn | n ≥ 1}. We observe that the known closure under concatenation result of

operator-precedence languages does not apply to this case because the two languages

have conflicting precedence relations. It remains for investigation to discover a suffi-

cient, yet not overly restrictive, condition for the closure of LCPLs under concatenation

and star.

It would also be interesting to study the possible gain in generative capacity that

may be obtained by extending the width of the terminal context of chains, from one

to larger integers, in a way similar to Floyd bounded-context grammars, but purely

input-driven.

From the application point of view we envisage two major objectives. The most

natural application of LCPLs is for parallel deterministic language parsing. As said,

the serial deterministic parsers (LL(1) and LR(1)) are not suitable for parallelization

because they cannot exploit a local parsing property. In our opinion, the best existing

grammar model for parallel deterministic parsing is the OPG, which has been used in
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a practical parallel parser generator [3] named PAPAGENO. The increased generative

power of LCPGs versus OPGs can be exploited to define realistic language constructs,

such as those exemplified in Section 7, which exceed the capacity of OPGs.

We are confident that the noticeable results obtained by PAPAGENO by paralleliz-

ing the parsing of OPLs can be extended to LCPLs; we must point out, however, that

in this paper we deliberately defined our CDAs and LCPAs by abstracting away from

the search for chain and the r.h.s. to be reduced; converting such a nondeterministic

choice into an efficient deterministic algorithm certainly appears as a more cumber-

some job than the simple search for ⋖ and ⋗ exploited in OPG parsing; furthermore,

the examples given in Section 7 show that the increased generative power with respect

to OPGs is obtained in general at the price of longer and more numerous r.h.s.’s; this

will probably affect the efficiency of pattern matching algorithms looking for chains

to be reduced. Thus, converting the abstract model of LCPA into an efficient parallel

parser raises new challenges of practical flavor.

Finally, a totally different application of our new family of languages may be found

in the field of automatic verification. In fact Corollary 2 states the decidability of

the inclusion problem for compatible LCPLs, a key property to apply model checking

techniques which is not enjoyed by most deterministic language families (by looking

at previous similar results it seems that being input-driven plays a major role to obtain

this property). Of course, fully exploiting this basic property to obtain practical auto-

matic verification techniques is a long intriguing research path which possibly involves

providing suitable logical characterization(s) of the language family as it has been done

historically in the pioneering case of the finite state formalism, and subsequently ex-

tended to a few infinite state ones [2, 1, 18].
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