27,020 research outputs found

    Practical Theory Extension in Event-B

    No full text
    Abstract. The Rodin tool for Event-B supports formal modelling and proof using a mathematical language that is based on predicate logic and set theory. Although Rodin has in-built support for a rich set of operators and proof rules, for some application areas there may be a need to extend the set of operators and proof rules supported by the tool. This paper outlines a new feature of the Rodin tool, the theory component, that allows users to extend the mathematical language supported by the tool. Using theories, Rodin users may define new data types and polymorphic operators in a systematic and practical way. Theories also allow users to extend the proof capabilities of Rodin by defining new proof rules that get incorporated into the proof mechanisms. Soundness of new definitions and rules is provided through validity proof obligations.

    Philosophy and the practice of Bayesian statistics

    Full text link
    A substantial school in the philosophy of science identifies Bayesian inference with inductive inference and even rationality as such, and seems to be strengthened by the rise and practical success of Bayesian statistics. We argue that the most successful forms of Bayesian statistics do not actually support that particular philosophy but rather accord much better with sophisticated forms of hypothetico-deductivism. We examine the actual role played by prior distributions in Bayesian models, and the crucial aspects of model checking and model revision, which fall outside the scope of Bayesian confirmation theory. We draw on the literature on the consistency of Bayesian updating and also on our experience of applied work in social science. Clarity about these matters should benefit not just philosophy of science, but also statistical practice. At best, the inductivist view has encouraged researchers to fit and compare models without checking them; at worst, theorists have actively discouraged practitioners from performing model checking because it does not fit into their framework.Comment: 36 pages, 5 figures. v2: Fixed typo in caption of figure 1. v3: Further typo fixes. v4: Revised in response to referee

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Where do statistical models come from? Revisiting the problem of specification

    Full text link
    R. A. Fisher founded modern statistical inference in 1922 and identified its fundamental problems to be: specification, estimation and distribution. Since then the problem of statistical model specification has received scant attention in the statistics literature. The paper traces the history of statistical model specification, focusing primarily on pioneers like Fisher, Neyman, and more recently Lehmann and Cox, and attempts a synthesis of their views in the context of the Probabilistic Reduction (PR) approach. As argued by Lehmann [11], a major stumbling block for a general approach to statistical model specification has been the delineation of the appropriate role for substantive subject matter information. The PR approach demarcates the interrelated but complemenatry roles of substantive and statistical information summarized ab initio in the form of a structural and a statistical model, respectively. In an attempt to preserve the integrity of both sources of information, as well as to ensure the reliability of their fusing, a purely probabilistic construal of statistical models is advocated. This probabilistic construal is then used to shed light on a number of issues relating to specification, including the role of preliminary data analysis, structural vs. statistical models, model specification vs. model selection, statistical vs. substantive adequacy and model validation.Comment: Published at http://dx.doi.org/10.1214/074921706000000419 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    Re-reading Jevons's Principles of Science - Induction Redux

    Get PDF
    In this paper I try to substantiate the thesis that Jevons may have been too harsh on the vices of induction and generously optimistic about the virtues of deduction, as discussed, primarily, in his magnum opus, The Principles of Science [6]. With this aim in mind the paper attempts to suggest (modern), recursion theoretic, theoretical technologies that could reduce and, under conditions that I claim would be acceptable to Jevons, even eliminate the inductive indeterminacies that he had emphasised.Jevons, Inductiion, Inductive Inference, Bayes's Rule

    Keynes and the logic of econometric method

    Get PDF
    This paper analyzes the controversy between Keynes and Tinbergen on econometric testing of business cycle theories. In his writings, Keynes repeatedly emphasizes a logical objection to Tinbergen s work. It is clarified what exactly this logical objection is, and why it matters for a statistical analysis of investment. Keynes arguments can be traced back to his Treatise on Probability, where the principle of limited independent variety is introduced as the basic requirement for probabilistic inference. This requirement is not satisfied in case of investment, where expectations are complex determinants. Multiple correlation, sometimes thought to take care of required ceteris paribus clauses, does not help to counter Keynes critiqueBusiness Cycles;Econometrics;Testing;business cycle
    corecore