30 research outputs found

    Properties and algorithms of the hyper-star graph and its related graphs

    Get PDF
    The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant

    Hypercube-Based Topologies With Incremental Link Redundancy.

    Get PDF
    Hypercube structures have received a great deal of attention due to the attractive properties inherent to their topology. Parallel algorithms targeted at this topology can be partitioned into many tasks, each of which running on one node processor. A high degree of performance is achievable by running every task individually and concurrently on each node processor available in the hypercube. Nevertheless, the performance can be greatly degraded if the node processors spend much time just communicating with one another. The goal in designing hypercubes is, therefore, to achieve a high ratio of computation time to communication time. The dissertation addresses primarily ways to enhance system performance by minimizing the communication time among processors. The need for improving the performance of hypercube networks is clearly explained. Three novel topologies related to hypercubes with improved performance are proposed and analyzed. Firstly, the Bridged Hypercube (BHC) is introduced. It is shown that this design is remarkably more efficient and cost-effective than the standard hypercube due to its low diameter. Basic routing algorithms such as one to one and broadcasting are developed for the BHC and proven optimal. Shortcomings of the BHC such as its asymmetry and limited application are clearly discussed. The Folded Hypercube (FHC), a symmetric network with low diameter and low degree of the node, is introduced. This new topology is shown to support highly efficient communications among the processors. For the FHC, optimal routing algorithms are developed and proven to be remarkably more efficient than those of the conventional hypercube. For both BHC and FHC, network parameters such as average distance, message traffic density, and communication delay are derived and comparatively analyzed. Lastly, to enhance the fault tolerance of the hypercube, a new design called Fault Tolerant Hypercube (FTH) is proposed. The FTH is shown to exhibit a graceful degradation in performance with the existence of faults. Probabilistic models based on Markov chain are employed to characterize the fault tolerance of the FTH. The results are verified by Monte Carlo simulation. The most attractive feature of all new topologies is the asymptotically zero overhead associated with them. The designs are simple and implementable. These designs can lead themselves to many parallel processing applications requiring high degree of performance

    Implications of Motion Planning: Optimality and k-survivability

    Get PDF
    We study motion planning problems, finding trajectories that connect two configurations of a system, from two different perspectives: optimality and survivability. For the problem of finding optimal trajectories, we provide a model in which the existence of optimal trajectories is guaranteed, and design an algorithm to find approximately optimal trajectories for a kinematic planar robot within this model. We also design an algorithm to build data structures to represent the configuration space, supporting optimal trajectory queries for any given pair of configurations in an obstructed environment. We are also interested in planning paths for expendable robots moving in a threat environment. Since robots are expendable, our goal is to ensure a certain number of robots reaching the goal. We consider a new motion planning problem, maximum k-survivability: given two points in a stochastic threat environment, find n paths connecting two given points while maximizing the probability that at least k paths reach the goal. Intuitively, a good solution should be diverse to avoid several paths being blocked simultaneously, and paths should be short so that robots can quickly pass through dangerous areas. Finding sets of paths with maximum k-survivability is NP-hard. We design two algorithms: an algorithm that is guaranteed to find an optimal list of paths, and a set of heuristic methods that finds paths with high k-survivability

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Computational methods and software systems for dynamics and control of large space structures

    Get PDF
    Two key areas of crucial importance to the computer-based simulation of large space structures are discussed. The first area involves multibody dynamics (MBD) of flexible space structures, with applications directed to deployment, construction, and maneuvering. The second area deals with advanced software systems, with emphasis on parallel processing. The latest research thrust in the second area involves massively parallel computers

    The Design of Cube Calculus Machine Using Sram-Based Fpga Reconfigurable Hardware Dec’s Perle-1 Board

    Get PDF
    Presented in this thesis are new approaches to column compatibility checking and column-based input/output encoding for Curtis decompositions of switching functions. These approaches can be used in Curtis-type functional decomposition programs for applications in several scientific disciplines. Examples of applications are: minimization of combinational and sequential logic) mapping of logic functions to programmable logic devices such as CPLDs, MPGAs, and FPGAs, data encryption, data compression, pattern recognition) and image refinement. Presently, Curtis-type functional decomposition programs are used primarily for experimental purposes due to performance, quality, and compatibility issues. However) in the past few years a renewal of interest in the area of functional decomposition has resulted in significant improvements in performance and quality of multi-level decomposition programs. The goal of this thesis is to introduce algorithms that can significantly improve the performance and quality of Curtis-type decomposition programs. In doing so, it is hoped that a Curtis-type decomposition program, complete with efficient, high quality algorithms for decomposition, will be a feasible tool for use in one or more practical applications. Various testing and analyses were performed in order to evaluate the potential of algorithms presented in this thesis for use in a high quality Curtis-type decomposition program. Testing was done using a binary input, binary output Curtis-type decomposition program MULTIS/GUD. This program was implemented here at Portland State University by the Portland Oregon Logic Optimization Group

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Proceedings of the 3rd International Workshop on Optimal Networks Topologies IWONT 2010

    Get PDF
    Peer Reviewe

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition
    corecore