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Abstract

We study motion planning problems, finding trajectories that connect two configura-

tions of a system, from two different perspectives: optimality and survivability. For

the problem of finding optimal trajectories, we provide a model in which the existence

of optimal trajectories is guaranteed, and design an algorithm to find approximately

optimal trajectories for a kinematic planar robot within this model. We also design

an algorithm to build data structures to represent the configuration space, support-

ing optimal trajectory queries for any given pair of configurations in an obstructed

environment.

We are also interested in planning paths for expendable robots moving in a threat

environment. Since robots are expendable, our goal is to ensure a certain number

of robots reaching the goal. We consider a new motion planning problem, maximum

k-survivability: given two points in a stochastic threat environment, find n paths

connecting two given points while maximizing the probability that at least k paths

reach the goal. Intuitively, a good solution should be diverse to avoid several paths

being blocked simultaneously, and paths should be short so that robots can quickly

pass through dangerous areas. Finding sets of paths with maximum k-survivability

is NP-hard. We design two algorithms: an algorithm that is guaranteed to find

an optimal list of paths, and a set of heuristic methods that finds paths with high
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k-survivability.
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Chapter 1

Introduction

One goal of robotics research is to build intelligent robots that are able to accomplish

tasks described at a high level while subject to some motion constraints. For example,

for a mobile robot, one common task is to move from the current location to another

location without colliding with obstacles. After receiving the order, we expect the

mobile robot to autonomously send a sequence of commands to its wheels so that the

robot reaches the desired location after executing these commands.

Typically, there are many ways for a robot to accomplish one task. When multiple

choices are available, picking a “good” solution with respect to some objectives is

desirable. For example, in order to save energy, mobile robots may prefer to follow

shorter paths, assuming that the path length is proportional to the fuel consumption.

Another example is that in order to avoid excessively wearing out the mechanical

system, robots may prefer shorter sequences of commands, assuming that the length

of the command sequence is proportional to the damage to the mechanical system.

Although defining an objective for the robot is easy in the above examples, it is

sometimes unclear how to define a good objective for the robots. For example, for

1



Introduction

a set of robots moving in a threat environment, is it better for the robots to travel

together, or should the robots split up? Within a dangerous environment, how can

we define a meaningful objective for a set of robots?

In this thesis, we focus on the problem of finding a feasible path or finding a set

of feasible paths while optimizing some objective functions.

We first consider the problem of finding time-optimal trajectories. The time-

optimal trajectory problem has been studied extensively, and several general algo-

rithms for finding optimal trajectories with a provable guarantee do exist (Karaman

and Frazzoli 2011; Arslan and Tsiotras 2013; Salzman and Halperin 2014; Janson

et al. 2015; Otte and Frazzoli 2016). However, these algorithms typically are ran-

domized and are only guaranteed to find an optimal solution as the running time

approaches infinity.

On the other hand, for some simple systems, time-optimal trajectories can be

found in constant time deterministically based on the properties of the systems (Du-

bins 1957; Reeds and Shepp 1990; Balkcom and Mason 2002b; Balkcom, Kavathekar,

and Mason 2006). This hints that finding an optimal trajectory may be easier when

the properties of systems are known. How can we exploit the knowledge about sys-

tems to help us design an efficient algorithm for finding optimal trajectories?

We are also interested in multi-robot motion planning problems in a threat envi-

ronment. When a set of robots are delivering supplies in a threat environment, we can

send out more robots than necessary to ensure that a certain amount of supplies is

delivered. How can we find paths to ensure that enough robots survive? We consider

a novel multi-robot motion planning problem in which the goal is to ensure that a

certain number of robots reach the goal.

2
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Researchers have tried to solve problems of finding one safe trajectory for a single

robot (Zabarankin, Uryasev, and Murphey 2006; Miller et al. 2011; Boidot, Marzuoli,

and Feron 2015; Babel and Zimmermann 2015). However, finding paths for multiple

robots in a threat environment is more complicated, since the potential threats may

be correlated in some manner. Since the threats may be correlated, what are the

safest trajectories for these robots? Is it better for the robots to travel together, or

should the robots split up?

Here is a brief summary of the results in the thesis.

Single query for optimal trajectories. We consider the problem of finding op-

timal trajectories for kinematic planar robots in an unobstructed environment. Al-

though kinematic planar robots are simple, and properties of optimal trajectories are

known (Furtuna and Balkcom 2010; Furtuna et al. 2011; Furtuna 2011), no efficient

algorithm for finding optimal trajectories exists for kinematic planar robots. More-

over, for some kinematic planar robots and some configurations, optimal trajectories

may not exist.

We use a model, the costly-switch model, in which a switching cost is charged for

each switch of controls. Under the costly-switch model, the existence of optimal tra-

jectories is guaranteed. We characterize necessary conditions for optimal trajectories

with switching costs for all kinematic planar robots. Finally, we design an efficient

algorithm to find approximately optimal trajectories for all kinematic planar robots

within arbitrarily small error tolerance under this model. The details are described in

Chapter 4, and this work has been published in ICRA 2014, WAFR 2014, and IJRR

(Furtuna et al. 2013; Lyu et al. 2014; Lyu and Balkcom 2014; Lyu and Balkcom

2016).

3
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Multi-query for near-optimal trajectories. For many applications, such as

computer games (Botea et al. 2013) and route planning (Delling et al. 2009), users

want to find trajectories in an obstructed environment repeatedly, Since the envi-

ronment will not change over time, it is sometimes beneficial to preprocess the envi-

ronment and build data structures to represent the configuration space first so that

optimal trajectories between any two configurations can be found efficiently. Thus,

we consider the problem of finding near-optimal trajectories between different pairs

of configurations within the same obstructed environment.

Most known algorithms for finding near-optimal trajectories are sampling-based,

and these algorithms are guaranteed to find a near-optimal trajectory as the running

time approaches infinity. Since executing a program forever is impractical, we would

like to design a deterministic algorithm with a provable guarantee for finding near-

optimal trajectories.

Moreover, most known algorithms for finding near-optimal trajectories are very

general without using any special property of the systems. However, in order to de-

sign an efficient algorithm, exploiting special properties of the system is necessary.

For example, for some systems, finding an optimal trajectory connecting two con-

figurations in an unobstructed environment can be solved efficiently (Dubins 1957;

Reeds and Shepp 1990; Balkcom and Mason 2002b; Balkcom, Kavathekar, and Ma-

son 2006). For a system with an optimal steering method, an algorithm that finds

an optimal trajectory connecting two configurations in an unobstructed environment,

since the special properties of the system is exploited in the optimal steering method,

we would like to treat the optimal steering methods as a black box, and design a

generic algorithm for finding near-optimal trajectories assuming an optimal steering

4
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method for the system is available.

Based on the idea of the cell-decomposition method, we design an algorithm for

decomposing the free configuration space into cells. Within each cell, an optimal

steering method can be used to find a collision-free trajectory connecting two config-

urations in the same cell. We store all cells in a data structure and search this data

structure for good paths. The details are described in Chapter 4, and this work has

been published in IROS 2015 (Balkcom et al. 2015).

Maximum k-survivability. We consider a new motion planning problem: given

two points in a 2D environment with a distribution of obstacles, find n trajectories

connecting two given points while maximizing the probability that at least k tra-

jectories reach the goal. Intuitively, we not only need a set of short trajectories so

that robots can quickly pass through the dangerous environment, but also a set of di-

verse trajectories so that trajectories will not be blocked simultaneously by the same

obstacle.

This problem is partially motivated by the work of Erickson and LaValle (Erickson

and LaValle 2009), in which they proposed the concept of survivability. The surviv-

ability of a set of trajectories can be considered as the correlation of damage caused

by the same obstacle. Moreover, the survivability can be considered as a measure of

the diversity for a set of trajectories, since if trajectories are likely to be blocked by

the same obstacle, these trajectories have low diversity intuitively. However, surviv-

ability does not capture the intuition that longer trajectories are vulnerable, and this

motivates us to propose a new definition.

We define k-survivability to be the probability that at least k trajectories reach

the goal for n robots moving along n trajectories in a threat environment. We formal-

5
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ize the maximum k-survivability problem, and show that maximum k-survivability

problem is not only NP-hard but also hard to find approximately optimal solutions.

We design a set of heuristic algorithms to find good solutions for the maximum k-

survivability problem. The details are described in Chapter 5, and this work has been

accepted by RAL (Lyu, Chen, and Balkcom 2016a; Lyu, Chen, and Balkcom 2016b).

6



Chapter 2

Related work

In this chapter, we briefly summarize related work in motion planning.

2.1 Complete motion planning

Motion planning problems usually have the following form: given a system and an

environment, find a valid trajectory connecting two given configurations. A motion

planning algorithm is called complete if the algorithm is guaranteed to terminate

within a finite time and find a valid trajectory whenever a trajectory exists. Although

the motion planning problem was proved to be PSPACE-hard in general, several

complete motion planning algorithms have been developed (Collins 1975; Schwartz

and Sharir 1983; Ó’Dúnlaing 1987; Canny 1988; Canny, Rege, and Reif 1991; Chazelle

et al. 1991; Canny 1993; Halperin and Sharir 1996; Basu, Pollack, and Roy 2000;

Trinkle and Milgram 2002; Varadhan et al. 2006; Basu, Pollack, and Roy 2006; Shvalb

et al. 2007; Basu et al. 2014; Basu and Roy 2014). Since these method are based on

analytical representation of the configuration space, due to the curse of dimensionality,

7



2.2 Resolution complete motion planning

Figure 2.1: Illustration of the cell-decomposition method. Black objects are obstacles.
The configuration space is divided into several cells with varied sizes. Each cell is
either free or obstructed.

these methods can only solve problems in a low dimensional configuration space within

reasonable time. LaValle gives a comprehensive survey of motion planning algorithms

(LaValle 2006).

2.2 Resolution complete motion planning

Since finding a complete algorithm is inherently difficult, researchers have tried to

relax the definition of completeness. A motion planning algorithm is called resolution

complete if the algorithm is guaranteed to terminate within a finite time and finds

a valid trajectory when the resolution is fine enough. Many resolution complete

algorithms are based on cell-decomposition method: partition the configuration space

8



2.3 Probabilistically complete motion planning

Figure 2.2: Illustration of the probabilistic roadmap method. Random samples are
generated in the configuration space and connections between samples are created.

into several cells and search for a path among them; see Figure 2.1. Yershov and

LaValle give sufficient conditions for the existence of resolution complete algorithms

(Yershov and LaValle 2010). Although cell-decomposition method works well for

some problems (Brooks and Lozano-Pérez 1985; Zhu and Latombe 1991; Barraquand,

Langlois, and Latombe 1992; Chen and Hwang 1998; Porta et al. 2007; Zhang, Kim,

and Manocha 2007), cell-decomposition algorithms are still suffer from the curse of

dimensionality.

9



2.3 Probabilistically complete motion planning

2.3 Probabilistically complete motion planning

Another way to relax the definition of completeness is to exploit the power of random-

ness. A randomized motion planning algorithm is called probabilistically complete if

the algorithm is guaranteed to find a valid trajectory with probability one as the run-

ning time approaches infinity, if a valid trajectory exists. There are two major classes

of randomized motion planning algorithms: probabilistic roadmaps (PRM, Kavraki et

al. 1996) and rapidly exploring random trees (RRT, LaValle and J. Kuffner Jr. 2001);

both are probabilistically complete. The idea of the probabilistic roadmap method

is to generate a set of random samples and build a graph structure over them; see

Figure 2.2. Then, a trajectory between two configurations can be found by searching

the graph. There are many studies and extensions for PRM and RRT (Barraquand

et al. 1997; Svestka and Overmars 1997; Hsu, Latombe, and Motwani 1999; Siméon,

Laumond, and Nissoux 2000; Hsu et al. 2002; Hsu, Latombe, and Kurniawati 2006).

Combining sampling-based algorithms with cell-decomposition approaches has also

been explored (Lingelbach 2004; Rosell and Iñiguez 2005).

2.3.1 Asymptotically optimal motion planning

In practice, users may not be satisfied with a valid trajectory, but seek an optimal

trajectory connecting configurations. Recently, Karaman and Frazzoli proposed two

sampling-based algorithms that are guaranteed to find an approximately optimal

trajectory as the running time approaches infinity (Karaman and Frazzoli 2011).

There are several variants of Karaman and Frazzoli’s algorithm (Arslan and Tsiotras

2013; Salzman and Halperin 2014; Janson et al. 2015; Otte and Frazzoli 2016).
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2.4 Topological analysis in motion planning

Analyzing topological properties of configuration space plays an important role in

robotics research (Farber 2003; Farber and Grant 2008; Farber 2008; Pokorny, Hawasly,

and Ramamoorthy 2016), and several motion planning algorithms are based on the

topological properties of configuration spaces (Bhattacharya, Likhachev, and Kumar

2012; McCarthy, Bretl, and Hutchinson 2012; Kim et al. 2012; Bhattacharya et al.

2013; Kim et al. 2013; Kim, Bhattacharya, and Kumar 2014; Kuderer et al. 2014;

Hernández, Carreras, and Ridao 2015). Since the number of distinct homotopy classes

of trajectories can be used as a definition of the diversity of trajectories, Schmitzberger

et al. studied the homotopy classes of roadmaps (Schmitzberger et al. 2002). How-

ever, Nieuwenhuisen and Overmars pointed out that since two homotopic trajectories

in higher dimension may be hard to deform, it may be too coarse to classify trajec-

tories by homotopy classes in motion planning (Nieuwenhuisen and Overmars 2004).

Thus, instead of using homotopy classes, Jaillet and Simeon proposed the concept of

first-order deformation to classify trajectories (Jaillet and Siméon 2008).

2.5 Nonholonomic motion planning

A system is called nonholonomic if the differential constraints of the system cannot

be described by configuration space variables (Bloch et al. 2007). Nonholonomic

systems have been studied from the differential geometry perspective and from the

control theory perspectives.

11
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2.5.1 Differential geometry

Due to nonholonomic constraints, a trajectory connecting initial and goal configura-

tions may not exist even when there are no obstacles. Fortunately, for some systems,

the existence of trajectory from any initial configuration to all connected configura-

tions can be proven by the Chow-Rashevsky theorem (Calin and Chang 2009). A

connected configuration space with the metric induced by shortest trajectories forms

a sub-Riemannian manifold, and geometric properties have been studied (Bellaïche

and Risler 1996; Montgomery 2002). Jean gives a comprehensive discussion of the

relationship between sub-Riemannian geometry and motion planning (Jean 2014).

2.5.2 Control theory

Nonholonomic motion planning has also been studied in control theory and robotics

(Lafferriere and Sussmann 1991; Lafferriere and Sussmann 1993; Li and Canny 1993;

Barraquand and Latombe 1993; Murray and Sastry 1993; Laumond et al. 1994; Bush-

nell, Tilbury, and Sastry 1995; Laumond and Risler 1996; Zefran and Kumar 1997;

Sekhavat et al. 1998). Due to nonholonomic constraints, optimal trajectories con-

necting two given configurations may not exist, even when there are no obstacles.

Fortunately, for some systems, the existence of optimal trajectories can be proven by

the Filippov theorem (Laumond 1998).

In cases where the Filippov theorem does not apply, there exist no optimal tra-

jectories, since for any trajectory with finite number of switches, there exists a faster

trajectory with more number of switches; this phenomenon is called chattering in

control theory. When chattering occurs, although the infimum of the cost of all feasi-

ble trajectories exist, there is no trajectory can achieve the infimum; but the infimum
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2.5 Nonholonomic motion planning

can be approximated arbitrarily by a trajectory with finite number of switches under

some assumptions (Berkovitz and Medhin 2012). Zelikin and Borisov give a compre-

hensive discussion about the chattering phenomenon in control theory (Zelikin and

Borisov 1994).
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Chapter 3

Single query for optimal trajectories

3.1 Introduction

In order to reach the goal efficiently, one natural objective for motion planning is to

find a time-optimal trajectory between two given configurations. However, for some

systems and some configurations, an optimal trajectory may not exist. The non-

existence of solutions becomes one difficulty of finding optimal trajectories. In this

chapter, we provide a model in which the existence of optimal trajectory is guaranteed

and an algorithm to find approximately optimal trajectories under this model.

Consider a toy problem for demonstration the non-existence of optimal trajecto-

ries. One mover wants to move a bench (modeled as a line segment) from one location

and orientation to another, as efficiently as possible. Since the bench is too heavy,

the bench can only be moved by lifting one end and rotating the bench around the

end that is still on the ground, with rotational velocity of ±1. The mover wishes

to find a sequence of durations and directions of rotations that brings the bench to

the final configuration, while minimizing the sum of the absolute values of the angles
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3.1 Introduction

(a) Costly-switch model with switching cost 1. (b) Chattering.

Figure 3.1: Trajectories for a bench starting at (-4, 0, 0). When the switch costing
is one, the optimal trajectory takes 5 actions; see Figure 3.1a. However, if there is
no switching cost, by increasing number of actions, it is always possible to create a
faster trajectory; see Figure 3.1b.

rotated through. This problem is related to the Reeds-Shepp problem (Reeds and

Shepp 1990) of finding a shortest path for a steered car, but with only four discrete

controls, none of which is a pure translation.

No optimal trajectory with a finite number of actions exists when the mover wants

to move the bench in a straight line: for any trajectory with finitely many switches,

a faster trajectory with more switches always exists, a phenomenon called chattering.

When chattering occurs, the bench mover is required to run back and forth between

ends of the bench infinitely many times, rotating the bench by an infinitely small

angle; see Figure 3.1.

The chattering phenomenon is a fundamental problem in robot motion planning.

Sussmann shows that an extension of the well-known Dubins car (Dubins 1957) to in-

clude bounds on angular acceleration leads to chattering (Sussmann 1997). Moreover,

Desaulniers shows that chattering may occur if there are obstacles in the environment,

even for Reeds-Shepp car (Reeds and Shepp 1990) that are well-behaved without ob-

stacles (Desaulniers 1996).

Since optimal trajectories may not exist, no algorithm can be guaranteed to find
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3.1 Introduction

optimal solutions. One remedy is to require motion planners to find a “good enough”

trajectory when no optimal solution exists. However, systems that chatter also tend

to expose weaknesses in the model that may not have been immediately apparent. A

trajectory with very many turns is in fact quite bad for the bench mover, even if it is

“short" in configuration space.

A natural, although certainly imperfect, approach to avoid having a very large

number of discontinuous switches between discrete controls is to charge a fixed cost for

switches; this approach has been used in practice at least as far back as (Barraquand

and Latombe 1991; Stewart 1992). Choosing a finite set of primitive controls is a

required first step for many general-purpose approaches to non-holonomic motion

planning, including, for example, RRT-type motion planners (LaValle and J. Kuffner

Jr. 2001). Moreover, picking a set of primitives not only makes it easier to model

the switching cost, but also makes it easier to explain the system and implement

trajectories, since a trajectory can be represented by a sequence of controls and a

sequence of durations.

We limit the choice of controls to certain motion primitives. With this set of

primitives, we associate each pair of switch of controls with a predetermined fixed

cost, which is a positive real number. This predetermined cost may be suggested

naturally by the design of the robot (for example, time cost of running between

ends of a bench), or may be selected more arbitrarily to indicate a user preference for

trajectories with fewer switches. This fixed cost both avoids chattering, and penalizes

otherwise un-modeled costs like the cost of wearing out a switching mechanism.

In order to make the consideration of switching costs more concrete, we focus on

finding time-optimal trajectories for kinematic planar rigid bodies. Rigid bodies are
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building blocks for many models of robotic locomotion or manipulation systems, and

the time-optimal trajectories for the case of zero switching costs have been already

studied (Furtuna 2011).

Given a set of primitives, a trajectory is defined by a start configuration, and

a sequence of motion primitives, each executed for some particular duration. We

can view the optimal control problem as having two parts: selecting a sequence of

primitives (the discrete structure of the trajectory), and choosing each duration (from

a continuous interval).

Solution approach. We first characterized a set of necessary conditions of optimal

trajectories for kinematic planar rigid bodies under the costly-switch model by us-

ing Blatt’s Indifference Principle (BIP, Blatt 1976). In comparison to our necessary

conditions with the necessary conditions of optimal trajectories for kinematic planar

rigid bodies under the cost-free-switch model (Furtuna 2011) derived by using Pon-

tryagin’s Maximum Principle (PMP, Pontryagin et al. 1962), the necessary conditions

derived by using BIP are weaker than those given by PMP. Although the necessary

conditions tell us much about the continuous durations along trajectories, they do

not constrain the discrete structures as strongly.

After deriving necessary conditions using BIP, we work through an example of

applying necessary conditions directly to analyze time-optimal trajectories for the

relatively simple bench-mover’s problem described above. However, due to the lack

of constraints on trajectory structures, it appears very difficult to find similarly strong

analytical results for more complicated systems, including other kinematic planar rigid

bodies.

To attack the problem of finding optimal trajectories for kinematic planar rigid
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bodies with a specified set of primitives, we use BIP to classify trajectories into several

types, which will be described later. For all but one of these classes, durations can be

computed exactly, and we can use an A* search to search over trajectory structures.

For the last remaining class, we show that Lipschitzian optimization techniques can

be used to find provably good numerical approximations for the durations, while

applying a different A* search over trajectory structures.

Limitations. Although we believe that this work represents an interesting new

exploration the connection between motion planning and optimal control, we admit

that the algorithmic techniques presented here suffer from some limitations. Many of

these limitations do suggest rich problems for future study.

The focus on kinematic planar rigid bodies with a time metric is limiting. Extend-

ing work on cost-free-switch models beyond simple systems or simple metrics using

PMP has proved challenging, because optimal trajectories for more complex systems

may not be described analytically in an easy way. However, choosing discrete (perhaps

piecewise-constant) controls with a cost of switching ensures that optimal trajectories

are describable by recognizable functions, and we believe that the current techniques

(particularly including application of Karush-Kuhn-Tucker conditions, which do not

require integration of an adjoint vector) could be extended to more interesting sys-

tems.

The unobstructed environment is limiting, but we do not believe this is a fun-

damental limitation. Although optimal trajectories may not exist in an obstructed

environment under the cost-free-switch model, optimal trajectories certainly exist for

strictly positive switching costs even in the presence of obstacles (Furtuna 2011).

Moreover, we believe that the result of BIP could be extended to allow for state
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constraints.

Perhaps the main limitation of the algorithms in this work is computational cost.

Due to the relative weakness of BIP w.r.t. PMP, the length of sequences of primitives

generated in the algorithm may be exponential in the number of primitives, while

they are only polynomial under the cost-free-switch model. Furthermore, the length

of sequences of primitives generated in the algorithm increases when the cost of switch

decreases. Hence, finding approximately optimal trajectories with many primitives

is computationally infeasible by this method, and we only use simple systems to

demonstrate our technique. We believe that good heuristics for the A* search over

discrete trajectory structures may ameliorate this issue.

3.1.1 Model and notation

We use q to denote a configuration of the system and use u to denote a control in the

control space U , which contains finite number of primitives.

At a configuration q, if we apply a control u, the instantaneous configuration space

velocity, q̇, can be expressed as a function f , such that q̇ = f(q, u). A trajectory can

be represented as a pair of sequences (u, t) with the start configuration qs, where

u ∈ Un is a sequence of controls, t ∈ Rn
+ is a sequence of durations, and n is the

length of the sequence. When the start configuration is clear from the text, we use

(u, t) to denote a trajectory.

We model the cost of switching between controls as a function C : U × U → R+

that depends on the control applied before and the control applied after. Furthermore,

we assume that for any three controls ua, ub, and uc, the cost of switching between

controls satisfies the triangle inequality, C(ua, ub)+C(ub,+uc) ≥ C(ua, uc), to ensure
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that switching from ua to uc directly is always faster than switching to uc through

other intermediate controls. The cost of a trajectory is the summation of all durations

and all switching costs of the trajectory.

Problem statement: given a start configuration qs, a final configuration qf , a

finite control set U , and a cost function C, find a trajectory (u, t) with minimum

cost, connecting qs to qf .

3.1.2 Related work

We briefly summarize related work in optimal control.

Optimal control

Finding optimal trajectories connecting start and goal configurations has been studied

in optimal control theory (Schättler and Ledzewicz 2012). There are two major meth-

ods to obtain analytical solutions: the direct method and the indirect method. Since

finding optimal trajectories analytically is extremely difficult, only a few systems’

optimal trajectories are fully characterized. In practice, we would like to develop an

efficient numerical method to find approximately optimal trajectories with provable

guarantees. In this section, we survey results in both optimal control theory and

numerical optimal control theory.

Direct. The direct method is to use dynamic programming (Bellman 2010) tech-

niques to set up a partial differential equation, Hamilton-Jacobi-Bellman (HJB) equa-

tion, whose solution is an optimal trajectory. However, classical solutions for the HJB

equation usually do not exist. Thus, Lions and Crandall introduced the concept of

a viscosity solution, which is a generalization of the classical solution (Evans 2010).
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Nonetheless, for many systems, analytical solutions are still hard to obtain, even

though viscosity solutions exist (Bardi and Capuzzo-Dolcetta 1997).

Indirect. The indirect method is to characterize necessary conditions for optimal

trajectories first and then find the best trajectory among all trajectories that satisfy

necessary conditions. First-order necessary conditions are usually characterized by

using Pontryagin’s Maximum Principle (PMP, Pontryagin et al. 1962), one of the

most powerful tools in optimal control theory. Higher-order necessary conditions

for optimal trajectories have been studied as well (Krener 1977; Osmolovskii and

Maurer 2012). PMP can also deal with optimal control problems with state con-

straints (Hartl, Sethi, and Vickson 1995; Milyutin and Osmolovskii 1998), problems

in infinite-dimensional spaces (Krastanov, Ribarska, and Tsachev 2011), or optimal

control problems for hybrid systems (Sussmann 2000; Garavello and Piccoli 2005;

Dmitruk and Kaganovich 2008). Liberzon gives one simplified proof of PMP (Liber-

zon 2012). Although PMP provides fruitful information about optimal trajectories

and many simple systems’ optimal trajectories are analyzed in this manner, obtaining

analytical solution for complex systems is still intractable. Clarke gives a compre-

hensive discussion about the relationship between PMP and dynamic programming

(Clarke 2013).

Kinematic planar robot. For some kinematic planar robots, optimal trajectories

can be found analytically. Usually, researchers characterized optimal trajectories for a

specific system in the following way. First, a sufficient family of optimal trajectories is

characterized. When a necessary family of optimal trajectories is found, an analytical

solver could enumerate all trajectories in this family and then determine an optimal
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trajectory among them. The efficiency of the analytical solver depends on the size

of the family, and the size of the family may be large, since the family may not be

necessary.

Second, a sufficient and necessary family of optimal trajectories is characterized

and this directly leads to a better analytical solver. Finally, assuming the goal is in

the origin, the configuration space can be partitioned into parts such that the all op-

timal trajectories for all configurations in one part have an identical first control with

possibly different durations. This partition of the configuration space is called the

optimal trajectory synthesis of the system. Based on the optimal trajectory synthesis,

an efficient and analytical solver can possibly be developed.

We briefly summarize known results for kinematic planar robots.

(a) Dubins car: Dubins firstly characterized optimal trajectories for a car that

can only drive forward (Dubins 1957). The optimal trajectory synthesis for

Dubins car has also been fully studied (Bui et al. 1994). Based on this optimal

trajectory synthesis, a real-time optimal trajectories solver has developed (Shkel

and Lumelsky 2001). The problem of Dubins car with acceleration has also been

studied (Sussmann 1997). Finding optimal trajectories for Dubins car among

obstacles has been shown to be NP-hard (Reif and Wang 1998) and several

algorithms has been proposed (Agarwal and Wang 2001; Agarwal et al. 2002;

Boissonnat and Lazard 2003; Ny, Feron, and Frazzoli 2012; Goaoc, Kim, and

Lazard 2013).

(b) Reeds-Shepp car: Reeds and Shepp characterized a sufficient family of optimal

trajectories for a car that can drive forward and backward (Reeds and Shepp

1990). A sufficient and necessary family of optimal trajectories has been found
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(Sussmann and Tang 1991; Boissonnat, Cérézo, and Leblond 1994), and the op-

timal trajectories synthesis of Reeds-Shepp car has also been determined (De-

saulniers and Soumis 1995; Souères and Laumond 1996; Souères and Boissonnat

1998; Souères 2007). Based on this optimal trajectory synthesis, an efficient op-

timal trajectories solver has been developed (Wang, Chen, and Souères 2009).

Finding optimal trajectories for Reeds-Shepp car among obstacles has also been

studied (Desaulniers 1996; Desaulniers, Soumis, and Laurent 1998).

(c) differential-drive: a sufficient and necessary family of optimal trajectories has

been characterized (Balkcom and Mason 2000a). The optimal trajectories syn-

thesis has been characterized as well (Balkcom and Mason 2000c; Balkcom and

Mason 2000b; Balkcom and Mason 2002b), which directly leads to an efficient

analytical solver.

(d) omni-directional vehicle: a sufficient family of optimal trajectories has been

characterized (Balkcom, Kavathekar, and Mason 2006), and an analytical solver

has been developed (Wang and Balkcom 2012a).

We and many other researchers have tried to generalize techniques, typically based

on Pontryagin’s Maximum Principle (Pontryagin et al. 1962), aiming to gain a greater

understanding of optimal motion for mobile robots (Cockayne and Hall 1975; Reister

and Pin 1994; Moutarlier, Mirtich, and Canny 1996; Renaud and Fourquet 1997;

Chyba and Sekhavat 1999; Vendittelli, Laumond, and Nissoux 1999; Balkcom and

Mason 2002a; Chyba and Haberkorn 2006; Giordano et al. 2006; Chitsaz et al. 2009;

Chitsaz 2008; Giordano and Vendittelli 2009; Furtuna and Balkcom 2010; Furtuna

et al. 2011; Furtuna 2011; Wang and Balkcom 2012a; Wang and Balkcom 2012b; Lyu
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et al. 2014; Lyu and Balkcom 2014; Lyu and Balkcom 2016). Boscain and Piccoli

gives more examples for control systems on 2-d manifolds (Boscain and Piccoli 2004).

Numerical optimal control

Since obtaining optimal trajectories analytically is difficult, many numerical methods

of finding optimal trajectories have been proposed. Here, we are more interested

in complete and exact numerical solvers, that is, solvers that find an approximately

optimal trajectory within a given error tolerance in finite time assuming no floating-

point error. Based on the underlying principle used in the numerical solvers, numerical

optimal control solvers can be categorized into three classes: direct, indirect, and

spectral.

Direct. The direct solvers use discretize-then-optimize approach that discretizes the

optimal control problem in a sufficient resolution and then find an optimal solution for

the discretized problem (LaValle and Konkimalla 2001; Yershov and Frazzoli 2016).

For example, optimal trajectories for Dubins car and Reeds-Shepp can be obtained

by solving corresponding HJB equations numerically (Takei and Tsai 2013). The re-

sult of the direct approach is usually a optimal control policy that maps from free

configurations to a control that should be applied in order to reach the goal opti-

mally. Hence, the direct approach may spend much time computing the policy for

configurations that are unnecessary for the given start configuration.

Indirect. On the other hand, the indirect solvers use optimize-then-discretize ap-

proach that discretizes the optimal control problem subject to necessary conditions in

a sufficient resolution and then find an optimal solution for the discretized problem.
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For example, we developed a numerical solver for kinematic planar rigid body (Lyu

and Balkcom 2016) based on necessary conditions for optimal trajectories (Furtuna

and Balkcom 2010; Furtuna et al. 2011; Furtuna 2011). In order to design an indirect

method, the solver designers must carefully analyze the system to obtain necessary

conditions. However, there exist singular trajectories about which the indirect meth-

ods cannot obtain useful information during the search procedure, and this is the

major difficulty for applying indirect method. Bonnard and Chyba give a compre-

hensive discussion about singular trajectories in control theory (Bonnard and Chyba

2003).

Pseudospectral method. Usually, the direct approach leads to a straightforward

formulation, but the solution may not satisfy necessary conditions for optimal tra-

jectories. On the contrary, the indirect approach searches for a solution satisfying

necessary conditions, but the necessary conditions are usually hard to deal with and

introduce numerical instability issues during the search. Besides direct and indirect

approaches, there is one alternative method, the pseudospectral method, using the

covector mapping principle, which is a connection between the direct method and the

indirect method. Ross and Karpenko give a good review of pseudospectral method

(Ross and Karpenko 2012).

Costly-switch model

The problem of costly switches has been studied in the optimal control community

with results dating back as far as the 1970s. However, we are aware of little work in

the robotics community providing strong results on optimal trajectories with a cost

of switches; a notable exception is Stewart’s work that uses a dynamic-programming
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approach to find optimal trajectories under the costly-switch model (Stewart 1992).

One of the most powerful tools for solving optimal control problems, Pontryagin’s

Maximum Principle (PMP, Pontryagin et al. 1962), does not appear to be the right

tool to characterize optimal trajectories under the costly-switch model due to the

discontinuity with respect to time in the control function and cost function. Blatt

proposed a model in which the control set contains certain primitives (a discrete set

of actions), and there is some fixed cost associated with switching between controls

(Blatt 1976).

Blatt characterized a set of necessary conditions for optimal trajectories under

the costly-switch model; these necessary conditions are known as Blatt’s Indifference

Principle (BIP). Blatt showed that optimal trajectories always exist and the number

of actions must be finite. Blatt’s necessary conditions are similar to, but weaker

than, those provided by PMP; using BIP to solve an optimal control problem is more

challenging than using PMP under the cost-free-switch model. In Blatt’s model, the

control set is a discrete set, but other models have been proposed as well (Noussair

1977; Kibalczyc and Walczak 1984; Matula 1987). As it turns out, Blatt’s Indifference

Principle can be considered as a special case of PMP for hybrid systems (Sussmann

2000).

Although the costly-switch model was proposed in the ’70s, no algorithms for

finding optimal trajectories under the costly-switch model were proposed until the

’90s (Teo and Jennings 1991; Stewart 1992); several algorithms have been developed

recently (Loxton, Lin, and Teo 2013; Yu et al. 2013). These recent approaches are

based on approximating the control function as a piecewise-constant functions, and

applying global optimization techniques to find optimal solutions. These algorithms
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converge to optimal solutions as the number of iterations approaches infinity, but

cannot guarantee a bound of error within finite time.

3.2 Mathematical background

In this section, we review two mathematical tools for optimal control and non-linear

programming: Blatt’s Indifference Principle (Blatt 1976) and Karuhn-Kush-Tucker

conditions (Bazaraa, Sherali, and Shetty 2006).

For the rigid-body system studied in this work, the Indifference Principle is suffi-

cient. However, it is interesting that once a particular sequence of discrete, constant

controls have been selected for a trajectory, the problem of selecting durations for each

control is simply a finite constrained non-linear optimization problem for which KKT

may be applied. Although we have used both approaches to derive similar results,

the KKT approach is simpler in that it does not require the analytical integration of

an adjoint vector – it is for this reason that we present both approaches.

3.2.1 Blatt’s indifference principle

Under the costly-switch model, BIP provides a set of necessary conditions for optimal

trajectories for any finite dimension configuration space with a finite control set (Blatt

1976). The configuration and control over time of an optimal trajectory (u∗, t∗) from

a start configuration qs can be represented as two functions q∗(t) and u∗(t), where

q∗(t) and u∗(t) are the configuration of the robot and the control at time t respectively.

BIP states that:

(a) There exists a continuous adjoint function λ(t), which is non-trivial.
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(b) The adjoint function satisfies

dλ

dt
=

∂

∂q
H(λ(t), q∗(t), u∗(t))

where H is the Hamiltonian, which is the product of the velocity in the world

frame and the adjoint function.

(c) At the time t̂ of switching control u to u′, the Hamiltonian is indifferent to both

u and u′:

H(λ(t̂), q∗(t̂), u) = H(λ(t̂), q∗(t̂), u′), (3.1)

and the Hamiltonian function is a positive constant along the trajectory.

Comparing with Pontryagin’s maximum principle. Under the cost-free-switch

model, PMP (Pontryagin et al. 1962) provides a set of necessary conditions on optimal

trajectories, that the first two conditions are the same as BIP, but the third condition

is different: the control u∗(t) maximizes the Hamiltonian along the trajectory.

(c) The control u∗(t) maximizes the Hamiltonian along the trajectory:

u∗(t) = argmax
u∈U

H(λ(t), q∗(t), u), (3.2)

and the Hamiltonian function is a positive constant along the trajectory.

That is, PMP requires that the control maximizes Hamiltonian along the trajectory,

but BIP only requires that the Hamiltonians of controls are the same at the time of

switch. Hence, PMP provides the constraint on the controls of optimal trajectories

can use, but BIP only provides the conditions on the duration for a control can apply.
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3.2.2 Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions (Bazaraa, Sherali, and Shetty 2006) provide a

set of necessary conditions for optimal solutions of constrained non-linear optimization

problems. Consider a non-linear optimization problem as follows:

minimize f(x)

subject to q(x) = 0

g(x) ≤ 0

x ∈ Rn,with differentiable f : Rn → R,

q : Rn → Rm, and g : Rn → Rp .

The Karush-Kuhn-Tucker conditions are: If x̂ is a local minimum and satisfies

constraint qualification conditions, then there exists λ ∈ Rm and µ ∈ Rp, such that

(a) ∇f(x̂) + λ · ∇q(x̂) + µ · ∇g(x̂) = 0.

(b) µ ≥ 0.

(c) µ · g(x̂) = 0.

In order for these conditions to hold, certain constraint qualification conditions

must be satisfied; since the primary focus of this work is BIP, we omit discussion

of constraint qualification.
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u2
u4

(a) Trajectory in cost-free-switch model.

u2

(b) Trajectory in costly-switch model.

Figure 3.2: Trajectories for an omni-directional vehicle starting at (-3, -1, π). For the
cost-free-switch model, the optimal trajectory takes 5 actions. For the costly-switch
model, the (approximately) optimal trajectory takes 3 actions. Thick lines are control
lines.

3.3 Necessary conditions for optimal trajectories

In this section, we derive necessary conditions for optimal trajectories for kinematic

planar rigid bodies under the costly-switch model. Based on these necessary con-

ditions, we classify optimal trajectories into several classes and we also show that

in order to find optimal trajectories, it suffices to find optimal trajectories in some

trajectories classes. Since we focus on kinematic planar rigid-body robot, the con-

figuration space is SE(2) and we use u = (vx, vy, ω) ∈ R3 to denote a control: x

and y velocities in a frame attached to the body (robot frame), and angular velocity.

Let U be the control space containing a finite number of primitives: constant-control

actions. For example, one action might be (vx, vy, ω) = (1, 0, 0), corresponding to

driving in a straight line.
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3.3 Necessary conditions for optimal trajectories

Due to the similarity between BIP and PMP, several results under the cost-free-

switch model (Furtuna 2011) can be extended to the costly-switch model by similar

mechanisms.

Theorem 3.1. For any kinematic planar rigid body under the costly-switch model,

any optimal trajectory (u∗, t∗) with n actions satisfies the following property: there

exist four constants H > 0, kx, ky, and kθ, such that for any control u∗i , 1 ≤ i ≤ n,

with the instantaneous velocity (vx, vy, ω) in the world frame when ui is applied at a

configuration (x, y, θ), we have

kxvx + kyvy + ω(kxy − kyx+ kθ) = H,where k2x + k2y ∈ {0, 1}. (3.3)

We also can derive the same result by applying KKT conditions (assuming con-

straint qualification holds), by fixing the sequence of controls in a trajectory, and

showing that because the sequence is arbitrary, the result holds across all trajectory

structures. The variables kx, ky, and kθ are Lagrange multipliers from the KKT

conditions; in Blatt’s indifference principle, they arise as constants of integration.

A trajectory (u, t) is called extremal if there exist four constants H > 0, kx, ky,

and kθ, such that Equation 3.3 is satisfied.

Equation 3.3 is virtually identical to the necessary conditions derived by using

PMP under the cost-free-switch model (Furtuna 2011), except that controls do not

necessarily maximize the Hamiltonian. Instead, under the costly-switch model, the

Hamiltonian needs only to be a constant throughout the trajectory. Due to this

similarity, a geometric structure, similar to the geometric structure under the cost-

free-switch model, exists under the costly-switch model.
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3.3 Necessary conditions for optimal trajectories

Geometric structure. If k2x + k2y = 1, then the expression kxy − kyx + kθ in

Equation 3.3 can be interpreted as computing the distance of a point (x, y) from

some line described by constants kx, ky, and kθ. We therefore call such a trajectory

a control line trajectory. An extremal trajectory with k2x + k2y = 0 is called a whirl

trajectory because the angular velocity of the rigid body is constant and non-zero

over the trajectory.

3.3.1 Control line trajectories

Under the costly-switch model, a nice geometric interpretation for Theorem 3.1 when

k2x + k2y = 1 is available, similar to the control line interpretation under the cost-

free-switch model (Furtuna 2011). For a control line trajectory (u, t), we define its

corresponding control line, represented as (kx, ky, kθ) as a directed line in the plane

with heading (kx, ky) and distance |kθ| from the origin. Now, consider Equation 3.3.

The term kxvx + kyvy becomes the translational velocity along the vector (kx, ky)

and the term kxy − kyx + kθ becomes the signed distance from the reference point

of the robot to the control line. By Corollary 1 in Furtuna’s Ph.D. thesis (Furtuna

2011), when a rotation is applied, the signed distance from the rotation center to the

control line is always H/ω. Similarly, when a translation is applied, the dot product

between (kx, ky) and (vx, vy) must be the Hamiltonian value H. See Figure 3.2 for

an (approximately) optimal trajectory for an omni-directional vehicle with control

lines under the cost-free-switch model and under the costly-switch model. When

the switching cost is introduced, optimal trajectories tend to use fewer number of

switches.
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v a

v b

v
c

vay

vby vcy

Figure 3.3: Illustration of proof of theorem 3.2: a trajectory containing three actions
of translations, va, vb, and vc. The sign of vay and vby are the same.

Necessary conditions for control line trajectories

We prove a further necessary condition for a control line trajectory to be optimal.

Theorem 3.2. For any kinematic planar rigid body under the costly-switch model,

any optimal control line trajectory has either zero translation actions, one translation

action, or two non-parallel translation actions.

Proof. Let g = (u, t) be a control line trajectory. Suppose that g is an optimal

trajectory for some initial and goal configurations. We first show that g cannot have

more than 1 parallel translation actions. Then, we show that g cannot have more

than two non-parallel translation actions.

Suppose that g has two parallel translation actions. Let va and vb be the velocity

vectors in the world frame of two non-parallel translation actions of g. We can remove

the action of vb from g and increase the duration of va to ta + tb. The resulting

trajectory still reaches the goal but has one fewer control and hence has smaller cost.

This contradicts the optimality of g.

Suppose that g has more than two non-parallel translation actions Let va, vb, and

vc be the velocity vectors in the world frame of three translation actions of g. By

Equation 3.3, we know that the projection of va, vb, and vc onto the control line must

be the Hamiltonian value H. Let vay , vby , and vcy be the projection of va, vb, and vc
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3.3 Necessary conditions for optimal trajectories

onto the norm of the control line. By the Pigeonhole Principle, we know that at least

two of vay , vby , and vcy have the same sign.

Without loss of generality, assume that vay and vby have the same sign; let their

durations be ta and tb respectively; see Figure 3.3. If vay = vby , then the velocity

vectors va and vb are identical. This contradicts the assumption that va and vb are

non-parallel. If vay 6= vby , then without loss of generality, we assume |vay | > |vby |.

Since the projections of va and vb onto the control line are the same, we can remove

the actions of vb from g and increase the duration of va to ta +
tb|vby |
|vay |

. The resulting

strategy still reaches the goal.

Now, we analyze the cost of the resulting trajectory. Let u be the control cor-

responding to the translation vector vb. Let up and uq be the controls before and

after u in the trajectory. The resulting trajectory has a cost smaller than g’s cost by
tb|vby |
|vay |

− tb−C(up, u)−C(u, uq) +C(up, uq), which is strictly larger than zero. Hence,

the resulting trajectory has smaller cost and contradicts the optimality of g.

Singular, TGT, and regular trajectories

Same as the classification under the cost-free-switch model (Furtuna 2011), we classify

control line trajectories into four classes: singular, TGT, generic, and regular.

A control line trajectory is called singular if there exists a non-zero measure

interval along the trajectory that multiple controls have the same Hamiltonian value

within the interval.

As an extension of a result under the cost-free-switch model (Furtuna 2011), any

singular trajectory under the costly-switch model contains exactly one translation

with velocity vector parallel to the control line, or contains exactly one switch from
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3.3 Necessary conditions for optimal trajectories

one translation to another translation. Hence, by Equation 3.3, the Hamiltonian value

is either equal to the velocity of the only translation, or can be computed from the

pair of consecutive translations. Since the control set U is a given finite set, the set

of all possible Hamiltonian values for singular trajectories is finite.

A control line trajectory is called generic if the trajectory is not singular. For

generic trajectories, switching between two translations can not occur, since switching

between two translations only happens for singular trajectories. A generic trajectory

is further called TGT if both the first control and the last control are translations,

and regular otherwise. For a TGT trajectory, when the start configuration and goal

configuration are given, we can obtain the Hamiltonian value analytically, using meth-

ods similar to the method used under the cost-free-switch model (Furtuna 2011). For

regular trajectories, since we cannot determine the Hamiltonian value analytically,

we use a numerical method to find an approximately optimal trajectory.

3.3.2 Whirl trajectories

For whirl trajectories, Equation 3.3 only implies that all angular velocities are equal.

We also extend the result under the cost-free-switch model (Furtuna 2011) to the

costly-switch model.

First, we show that in order to compute an optimal whirl trajectory, it suffices to

consider a smaller subclass, called two-stage whirl trajectories :

(a) Move the last rotation center to the correct position in the goal configuration

using the minimum cost.

(b) Rotate around the last rotation center until the goal configuration is achieved.
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3.3 Necessary conditions for optimal trajectories

Then, we extend the results under the cost-free-switch model (Furtuna 2011) to

obtain the following two theorems.

Theorem 3.3. For any kinematic planar rigid body under the costly-switch model,

among all whirl trajectories, there exists one two-stage trajectory with the minimum

cost.

Proof. Let T1 and T2 be the durations corresponding to the first and the second stage

respectively. Let Tf be the duration of an optimal trajectory. Since Tf is the duration

of an optimal trajectory, Tf ≤ T1+T2. Moreover, since an optimal trajectory needs to

place the last rotation center in the correct position, Tf ≥ T1. Since T2 is strictly less

than 2π, we have Tf ≤ T1 + T2 < Tf + 2π. For any two admissible whirl trajectories,

the difference of total durations must be a multiple of 2π. Therefore, Tf must equal

T1 + T2.

Theorem 3.4. Any two-stage trajectory must satisfy the following property: there

exist three constants Hω > 0, kα, and kβ, such that for any control ui with the

instantaneous velocity (vx, vy, ω) in the world frame when ui,1 ≤ i < n, is applied at

configuration (x, y, θ), we have

kαvx + kβvy = Hω,where k2α + k2β = 1. (3.4)

Control direction interpretation for two-stage trajectories.

For a two-stage trajectory, we define its control direction as a line heading (kα, kβ)

through the rotation center of the first control. By Equation 3.4, all rotation centers

except the last one should have the same signed distance to this line. Since the first
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3.3 Necessary conditions for optimal trajectories
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Figure 3.4: Illustration of proof of Theorem 3.5. The thick line is the control direction
where all rotations except the last one are on this line.

rotation is on the control direction, all rotation centers except the last one are on a

line that is parallel to the control direction.

We extend the result under the cost-free-switch model (Furtuna 2011) to obtain

the following theorem.

Theorem 3.5. For the costly switch model, consider a two-stage trajectory (u, t) with

us = u1, ..., un−1 = uk, un = uf . Let cs, ck, and cn be the rotation centers of u1, un−1,

and un respectively. Let dsf be the distance between cs and cf . Let dkf be the distance

between the rotation centers of uk and uf in the robot frame. Let li be the distance

between the rotation centers of ui and ui+1 in the robot frame. Let dsk =
∑n−2

i=1 li. We

have

dsk ∈ [|dsf − dkf |, dsf + dkf ]. (3.5)

Proof. By the geometric interpretation of Theorem 3.4, since all rotation centers from

u1 to un−1 are on the same line, we know that dsf , dkf , and dsk form a triangle; see

Figure 3.4. Moreover, any sequence of controls u that all controls have the same

angular velocity and satisfy Equation 3.5 can form a two-stage trajectory.

3.3.3 Taxonomy of optimal trajectories

We summarize the taxonomy of optimal trajectories as Figure 3.5.

Since the Hamiltonian values for whirl, TGT, and singular trajectories can be
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3.4 The bench mover’s problem

Extremal trajectories

Whirl trajectories

Two stage trajectoriesOther whirl

Control line trajectories

Singular trajectories Generic trajectories Other control line trajectories

TGT trajectoriesRegular trajectories

Figure 3.5: Taxonomy of optimal trajectories. Each node corresponds to a type of
optimal trajectories; each leaf node without border is not necessary for optimality.
All leaf nodes with single border can be solved exactly. For the leaf node with double
border, regular trajectories, we provide a search algorithm that can find a trajectory
with cost arbitrarily close to the cost of optimal trajectories.

determined, the problems of finding optimal trajectories in these three classes is

equivalent to finding an optimal sequence of controls, a discrete search problem. For

these three classes, we have designed three different A* search algorithms to find

candidate optimal trajectories by searching over discrete trajectory structures.

The problem of finding optimal regular trajectories has two ingredients: one is

finding the Hamiltonian value H, which is a continuous variable, and another one is

finding the sequence of controls, chosen from a finite set.

3.4 The bench mover’s problem

In this section, as a working example, we demonstrate how to use necessary conditions

of optimal trajectories to solve the bench mover’s problem exactly.

3.4.1 Model and trajectory types

Consider a park bench with length 2. Let qs be the start configuration and (0, 0, 0)

be the goal configuration. Figure 3.6 gives an example with start configuration
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Figure 3.6: Optimal trajectory for start configuration (−3,−3, π/4) with switching
cost 1, where arrow represents the orientation of the bench. Thick line denotes the
control line for this trajectory.

(−3,−3, π/4). Let the reference point be the center of the bench, (0, 0) in the robot

frame. There are two rotation centers: the left rotation center, (0, 1) in the robot

frame, and the right rotation center, (0,−1) in the robot frame.

Let l+ = (1, 0, 1) and l− = (−1, 0,−1) be the controls rotating around the left

rotation center with different angular velocities. Similarly, let r+ = (−1, 0, 1) and

r− = (1, 0,−1) be the controls rotating around the right rotation center with different

angular velocities. The control set can be denoted as U = L ∪R, where L = {l+, l−}

and R = {r+, r−}. For two controls u, u′ ∈ U , the cost of switching from u to u′ is a

constant c.

Since we can determine optimal durations for a control sequence with length

smaller than three easily, we focus on the case where the length of the control se-

quence is at least three.
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3.4 The bench mover’s problem

Based on the taxonomy of optimal trajectories, there are three broad types of

trajectories:

(a) Whirl: trajectories for which kx = ky = 0. All controls in the trajectory must

have the same angular velocity.

(b) Alternating sign: the control sequence contains controls alternating between l+

and r− or alternating between l− and r+.

(c) Mixed: the control sequence contains controls alternating between L and R but

not strictly alternating signs.

Our basic approach, given a start configuration, is to compute an optimal tra-

jectory of each of the three types, and then to compare to find the minimum. The

following sections will demonstrate how to find an optimal trajectory for each type.

For computing optimal trajectories of types b and c, an upper bound on the number of

control actions in the trajectory is required; this bound may be found by considering

the cost of an optimal whirl trajectory.

3.4.2 Whirl trajectories

For whirl trajectories, all rotation centers except possibly the last one are on the same

line; see Figure 3.7. This section will show how this fact can be used to identify a

minimum-cost whirl trajectory.

When the first control and the last control are fixed, the distance between their

rotation centers is determined. Since the length of the bench is two and controls

alternate between L and R, for any two consecutive controls, the distance between

their rotation centers is two. Thus, in order to reach the goal, there is only one choice
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Figure 3.7: Whirl trajectory with start configuration (−0.5, 0, π/2). All rotation
centers except the last one are on the same line. This is the optimal trajectory for
this start configuration with switching cost 1.

of the length of the control sequence; see Figure 3.8. Hence, if we fix the first control

and the last control, only two whirl trajectories exist. Since there are only four choices

for the first control and each has two choices for the last control, we can enumerate

all possible pairs of first and last controls for whirl trajectories; see Figure 3.8.

Now, we show how to determine the durations of the all controls in a whirl tra-

jectory. Fix the first control u1 and the last control un, with rotation centers r1 and

rn respectively. Since the last control is fixed, the second to the last control un−1 is

also fixed and its rotation center rn−1 should be on a circle Cn centered at rn with a

radius of two.

Since rotation centers ri, 1 ≤ i < n, are on the same line, the distance P from

r1 to rn−1 is determined in the following way. Let D be the distance between the

first and the last rotation centers. If u1 = un (u1 6= un−1), then P is multiple of
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r1 rn
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rn−1

D
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Figure 3.8: When the first control and the last control are fixed, the rotation centers
r1 and rn are fixed as well. The distance between r1 and rn is D. Since all rotation
centers except for the last one is on the same line and distance between two consecutive
rotation centers is two, the distance between r1 and rn−1, L, is a multiple of two.
Since the distance between rn−1 and rn is two, there is only one choice of P and two
symmetric choices of locations of rn−1

four plus two. Otherwise, P is multiple of four. Since the diameter of C is four and

the difference between any choices is multiple of four, P = 4d(D − 4)/4e + 2 when

u1 = un, otherwise P = 4d(D − 2)/4e.

After we determine P , we can find a circle C1 centered at r1 with radius P . The

circle C1 intersects with Cn at most two points and these points are possible locations

of rn−1. When the location of rn−1 is fixed, the durations for all controls can be

determined easily.

3.4.3 Alternating sign trajectories

Since all angular velocities have the same absolute value, all rotation centers must

have equal distance to the control line; see Figure 3.6. We will show that in order

to find the best alternating sign trajectory, it suffices to enumerate a finite set of

alternating sign trajectories.

The idea is as follows:

(a) There are only four choices of first control u1 in U .
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3.4 The bench mover’s problem

(b) When the first control is fixed, there are only two choices for the last control:

un = u1 if n is odd, or un has a different rotation center with a different angular

velocity from u1.

(c) When the first control and the last control are fixed, we show that there are at

most two possible values of the Hamiltonian.

(d) When the first control and the last control are fixed, and a Hamiltonian value

is given, we show that there are at most two control lines.

(e) When the first control and the last control are fixed, a control line and the

length of the control sequence are given, we show that that there are at most

two choices of durations of the alternating sign trajectory.

Since the length of the control sequence is bounded by the cost of a feasible trajectory,

we can determine the best alternating trajectory by enumerating all possible first

control, last control, Hamiltonian values, control lines, length of control sequence,

and durations of controls in finite time. We show (c), (d), and (e) in the following

sections.

Determining the Hamiltonian value H

Let r1 and rn be the first rotation center and the last rotation center, separated by

distance D. If n is odd, we have D = (2n − 2)
√
1−H2 and H =

√
1− D2

4(n−1)2 . In

this case, when 0 < D2 ≤ 4(n− 1)2, control lines exist and we obtain a positive value

of H ≤ 1. When n is even, let X be (2n− 4)
√
1−H2, D2 will be X2 +

√
1−H2 +4.

Consequently, we have D2 = 4n(n − 2)(1 −H2) + 4 and H =
√

1− D2−4
4n(n−2) . In this
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3.4 The bench mover’s problem

case, when 4 < D2 ≤ 4n(n− 2)+ 4, control lines exist and we obtain a positive value

of H ≤ 1.

Determining control lines

After we determine the Hamiltonian value H, we determine control lines, and each

control is represented by a tuple (kx, ky, kθ). Since k2x+k2y = 1, we can use (cosϕ, sinϕ)

to represent (kx, ky). For one Hamiltonian value, H, there are two possible control

lines. We determine (ϕ, kθ) in a similar way as the way used under the cost-free-

switch model (Furtuna 2011). Let r′1x = r1xu1ω , r
′
1y = r1yu1ω , r

′
nx = rnxunω , and

r′ny = rnyunω . Let dx = r′1x − r
′
nx and dy = r′1y − r

′
ny . Let (α, β) be (atan(dx, dy), π/2)

if the first control and the last control have the same angular velocity; otherwise

(atan(d′x, d
′
y), acos(

H√
d′x

2+d′y
2
)), where d′x = r′nx + dx/2 and d′y = r′ny + dy/2. Then,

ϕ = −α± β and kθ =
H+r′nx sinϕ−r′ny cosϕ

unω
.

Determining durations

For a given control line L = (kx, ky, kθ) with a Hamiltonian value H, we can determine

the durations of all controls as follows. By Theorem 3.1, all rotation centers have the

same distance H to L. This strongly constraints the duration of the first control,

since we must apply the first control until the rotation center of the second control

has distance H to L. When the first control is applied, the motion of the rotation

center of the second control is a circle, so there are only two locations for the second

rotation center. And we can determine the duration for all other controls in the same

manner and the details are described below.

We determine the location of r2 for u2 as follows. By Theorem 3.1, all rotation
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3.4 The bench mover’s problem

centers have the same distance H to L. For two consecutive rotation centers, their

distance must be 2, the length of the bench. Hence, the angle β between the vector

r2− r1 and L can only have two possible values: asin(H) and π− asin(H) if u1ω > 0,

otherwise π + asin(H) and 2π − asin(H). For a fixed β, we can determine t1.

For u2, since we switch to u2 at angle β with respect to L and u3 = u1, we also

can switch to u3 immediately with t2 = 0. Since this null control will be examined

by another control sequence, we ignore this choice. Consequently, we have only one

choice of t2. Similarly, all controls u2 to un−1 have the same duration. This duration

will be either 2acos(H) (if β ∈ [π/2, π/2]) or 2π− 2acosH (otherwise). The duration

tn can be determined based on t1 to tn−1 based on the constraint of reaching the goal

configuration.

3.4.4 Mixed trajectories

In this section, we will show that in order to find the best mixed trajectory, it suffices

to enumerate a finite set of mixed trajectories. The argument is similar to the previous

section: when the first control and the last control are determined, there are at most

finite choices of Hamiltonian values, control lines, length of the control sequences,

and durations of all controls. The difference is that when the first control and the

last control are fixed, there may be more than two possible values of the Hamiltonian,

but the number of choices is still finite.

First, we show that for any mixed trajectory, we can rearrange the controls without

changing the cost, such that the controls can be divided into two parts: the prefix of

the control sequence has controls with the same angular velocity and the suffix has

controls with alternating angular velocity. Consider a mixed trajectory that contains
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Figure 3.9: Mixed trajectory with start configuration (−2.8, 3.05, π/4). First two
controls have the same angular velocity and hence they are collinear and parallel
to the control line. This is the optimal trajectory for this start configuration with
switching cost 1.

two consecutive controls, u and u′, with the same angular velocity. By Theorem 3.1,

these two controls’ rotation centers, r and r′, have equal distance to the control line,

L, and are on the same side of the control line. Hence, the line through r and r′ is

parallel to L; see Figure 3.9. Consequently, if there are three consecutive controls

with the same angular velocity, then the duration of the second one must be π.

For a mixed trajectory, subsequences of controls with the same angular velocity

may appear anywhere in the control sequence. However, it is always possible to

rearrange the controls in the control sequence without changing the cost, such that

the prefix of the control sequence has controls with the same angular velocity and the

suffix has controls with alternating angular velocity. Hence, we only consider control

sequences that can be decomposed into two parts in this way.

Now, we show that there are only finite choices of Hamiltonian values. Let n
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3.5 Outline of an algorithm for finding optimal trajectories for kinematic
planar rigid-body systems

be the length of the control sequence, nw < n be the number of controls with the

same sign, and m be n − nw. Let D be the distance between the first rotation

center and the last rotation center. When m is even, H satisfies |D − 2(nw − 1)| =

2m
√
1−H2 or D + 2(nw − 1) = 2m

√
1−H2. Hence, H =

√
1− (D−2(nw−1))2

4m2 or

H =
√

1− (D+2(nw−1))2
4m2 . We can obtain at most two possible positive H ≤ 1 values.

When m is odd, H satisfies D2/4 = (m2−1)(1−H2)+2m(nw−1)
√
1−H2+n2

w−

2nw + 2 or D2/4 = (m2 − 1)(1−H2)− 2m(nw − 1)
√
1−H2 + n2

w − 2nw + 2. Hence,

1−H2 = |−b±
√
b2−4ac
2a

|, where a = m2− 1, b = 2m(nw− 1), and c = n2
w− 2nw+2. We

can obtain at most two possible positive Hamiltonian values H ≤ 1 values. Since the

ranges of n, nw, and m are finite sets, the number of possible Hamiltonian values is

also finite.

3.5 Outline of an algorithm for finding optimal tra-

jectories for kinematic planar rigid-body systems

In the previous section, we showed how to find optimal trajectories for a specific

system, the bench mover’s problem, exactly. However, for more complex systems,

deriving an analytical result is challenging, since we not only need to determine the

optimal Hamiltonian value but also the optimal control sequence. In this section, we

design an algorithm to find (approximately) optimal trajectories for all rigid-body

systems.

First, we want to find an upper bound of number of switches for optimal trajecto-

ries. The upper bound limits the length of control sequence that the algorithm needs

to enumerate. We use the general planner for kinematic planar rigid-body robot (Fur-
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planar rigid-body systems

Algorithm 1: Outline of the algorithm
Algorithm CostlySwitchOptimalMotionPlanner()

C ← feasible trajectories found by any planner.
B ← upper bound of number switches.
// Find best two-stage trajectories; see Section 3.6
foreach 3-tuple of controls (us, uk, uf ) with the same angular velocity. do

C = C∪ best two-stage trajectory (u, t) with u1 = us, un−1 = uk,
un = uf .

end
// Find best TGT trajectories; see Section 3.8
foreach 2-tuple of translation controls (us, uf ) do

C = C∪ best TGT trajectory (u, t) with u1 = us and un = uf .
end
// Find best singular trajectories; see Section 3.9
foreach 2-tuple of controls (us, uf ) do

foreach singular value H do
C = C∪ best singular trajectory (u, t) with u1 = us, un = uf and
Hamiltonian value H.

end
end
// Find best regular trajectories; see Section 3.10
foreach 2-tuple of controls (us, uf ) do

foreach interval I of Hamiltonian values not including singular values
do
C = C∪ approximately best regular trajectory (u, t) with u1 = us
and un = uf in the interval I.

end
end
return the optimal trajectory in C
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3.6 Finding best two-stage whirl trajectories

tuna 2011) to obtain a feasible trajectory from qs to qf with cost M . Then, we can

get an upper bound of number switches as B = dM/cmine, where cmin is the minimum

switching cost.

By the taxonomy of optimal trajectories, we know that it is sufficient to find best

two-stage, TGT, singular, and regular trajectories. For each of these four classes, we

design algorithms separately in Section 3.6 to Section 3.10.

Since two-stage trajectories are whirl trajectories and all other three classes are

control line trajectories, we explain how to find best two-stage trajectories first in

Section 3.6. Then, we introduce several properties for control line trajectories in

Section 3.11. Finally, we show how to find best TGT trajectories in Section 3.8,

singular trajectories in Section 3.9, and regular trajectories in Section 3.10.

The idea of finding best trajectories within each class is quite similar: decompose

the problem into several sub-problems by enumerating the first control, the last con-

trol, and possibly the second to the last control (for two-stage trajectories only). For

two-stage, TGT, and singular trajectories, the sub-problems are discrete optimiza-

tion problems so that we use an A* search algorithm to find best trajectories exactly.

For regular trajectories, the sub-problem is a mixed non-linear optimization problem;

we combine Lipschitzian optimization techniques with an A* search algorithm over

discrete trajectory structures to determine approximately best trajectories. We give

the outline of the algorithm in Algorithm 1.

3.6 Finding best two-stage whirl trajectories

Recall that a two-stage trajectory is a trajectory such that all controls have the same

angular velocity and all rotation centers except the last one are on the same line. Our

49



3.6 Finding best two-stage whirl trajectories

approach is to enumerate all 3-tuple of controls (us, uk, uf ) with the same angular

velocity. For each (us, uk, uf ) ∈ U3, we determine a best two-stage trajectory (u, t),

subject to u1 = us, un−1 = uk, and un = uf , where the number of controls, n, can

be determined during the search. Then, we pick the best trajectory among all best

two-stage trajectories with respect to all 3-tuples of controls.

Fix a 3-tuple of controls (us, uk, uf ) with the same angular velocities. Let U ′ be

the reduced control set that all controls in U ′ have the same angular velocity as us.

We want to find a best two-stage trajectory (u, t), subject to us = u1, ..., un−1 =

uk, un = uf and ui ∈ U ′ for all i.

Our method is to incrementally build sequences of controls that could possibly

satisfy Equation 3.5 by using A* search. Each state is a sequence of controls g =

(u1 = us, . . . , uh−1 = uk, uh = uf ), where all controls have the same angular velocity.

For a state g = (u1, . . . , uh), the duration of each control ui, 1 < i < h − 1 is fully

determined, since all rotation centers except the last one are on the same line. Hence,

we use the summation of the switching costs and the durations for each control ui,

1 < i < h − 1 as path cost. The neighbors of a state g = (u1, . . . , uh) form a set

{(u1 = us, . . . , uh−1, u
′, uh = uk, uh+1 = uf ) | u′ ∈ U ′}.

A state g = (u1, . . . , uh) reaches the goal if (u1, . . . , uh, uk, uf ) satisfies Equa-

tion 3.5. When a state reaches the goal, we can solve for the duration of u1 and uh

exactly with at most two solutions.

In order to speed up the A* search, we need an admissible heuristic. Let dsf

be the distance between the rotation center of us at qs and uf at qf . For a state

g = (u1, . . . , uh), let lg =
∑h−2

i=1 D(ui, ui+1), where D(u, u′) is the distance between

the rotation centers of u and u′ in the robot frame. That is, lg is the possible value
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3.7 Properties of control line trajectories

of dsk for the state in Equation 3.5. In order to satisfy Equation 3.5, we know that Ig

must be at least |dsf−D(uk, uf )|. Hence, we use |dsf−D(uk, uf )|−lg as an admissible

heuristic.

3.7 Properties of control line trajectories

In this section, we briefly describe several properties of control line trajectories; ad-

ditional details are in Section 3.11 and Section 3.12.

Recall that a control line trajectory is an extremal trajectory with constants

H, kx, ky, and kθ such that k2x + k2y = 1. When the start configuration qs, the first

control us, the final configuration qf , the last control uf , and the Hamiltonian value

H are given, the control line can be constructed explicitly:

Theorem 3.6. For a given start configuration qs, given goal configuration qf , first

control us, and the last control uf , we can determine an interval of Hamiltonian values

I = (0, Hu), such that there exists mappings, L1(H) and L2(H), from Hamiltonian

values in I to control lines.

A singular interval is an interval of time within which at every time more than one

control gives the same value for the Hamiltonian. Except within singular intervals,

knowing the configuration of the rigid body, the location of the control line, and the

current and next controls, essentially tells when the next switch will be.

Theorem 3.7. Given a control line L and a non-singular interval, the duration of

applying a control u from a configuration q until switching to another control u′ has at

most two possibilities such that the resulting motion can be a subtrajectory of a control
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3.7 Properties of control line trajectories

line trajectory corresponding to the control line L. Moreover, these two possibilities

can be determined analytically.

Singular trajectories can only occur at particular critical values of the Hamilto-

nian. Except at these critical values, knowing the Hamiltonian value H and three

consecutive controls is sufficient to compute the duration of the middle control. The

following theorem will be proved in Section 3.12:

Theorem 3.8. Let u, u′, and u′′ be three consecutive controls in a control line tra-

jectory. Given kx, ky, and a non-critical Hamiltonian value H, the duration of u′

has at most two possibilities and can be determined analytically without knowing the

configuration.

Finally, for a given sequence of controls and a control line L, there is a way to

determine the duration of each control when we are given the start configuration qs

and the final configuration qf :

Theorem 3.9. Let u ∈ Un be a sequence of controls. Let b ∈ {1, 2}n−1 be a sequence

of numbers. For a given control line L with a non-critical Hamiltonian value H,

start configuration qs, and final configuration qf , the duration of each control is fully

determined by u and b.

By Theorem 3.6, the control line can be parametrized by the Hamiltonian value

H. Suppose that the mapping from the Hamiltonian values to control lines is fixed.

Given a sequence of control u and selectors, since the duration is fully determined by

the control line L, the durations can also be parametrized by the Hamiltonian value

H.
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In order to find best trajectories corresponding to a control line L of known loca-

tion, with given initial and final configurations of the rigid body, it suffices to search

over only a finite set of trajectories. Since for a control line L, the number of corre-

sponding trajectories is finite, if there is only a finite number of control lines as well,

then we can possibly find best trajectories exactly by enumerating all possible control

lines and corresponding trajectories. As it turns out, the number of control lines for

TGT and singular trajectories are finite and we also can enumerate them. Hence,

for TGT and singular trajectories, we can find best trajectories exactly. However, for

regular trajectories, we do not have a method to reduce the number of control lines

to a finite set and that’s why we only find approximately best regular trajectories.

3.8 Finding best TGT trajectories

Remember that a TGT trajectory is a control line trajectory for which both the

first control and the last control are non-parallel translations. Our approach is to

enumerate all pairs of controls (us, uf ) ∈ U2, where both us and uf are translations.

For each (us, uf ), we determine a best TGT trajectory (u, t), subject to u1 = us, and

un = uf . Finally, we pick the best TGT trajectory among all best TGT trajectories

with respect to all pairs of controls.

Fix a pair of translation controls (us, uf ). Since the start configuration qs and

the final configuration qf are given, we can compute the velocity vectors vs and vf

for applying us at qs and uf at qf respectively. Then, we substitute vs and vf in

Equation 3.3 and we get a system of linear equations. Since we know k2x+k
2
y = 1 and

H > 0, we can solve kx, ky, and the Hamiltonian value H exactly.

Our method is to incrementally build sequences of controls that could possibly
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3.8 Finding best TGT trajectories

satisfy Equation 3.3 by using A* search. Each state g = (u, t) is a pair of se-

quences of controls and durations, where |u| = |t| = h, u1 = us, and uh = uf .

Each state also satisfies that each ti, 1 < i < h, is computed according to The-

orem 3.7, but t1 and th are undefined. We use the summation of the switching

costs and the durations ti, 1 < i < h as path cost. The neighbors of a state

g = (u, t) form a set {((u1, . . . , uh−1, u′, uh+1 = uf ), (t1, . . . , th−1, t
′, th+1)) | u′ ∈ U

and t′ is computed according to Theorem 3.8}.

We can test whether a state g = (u, t) reaches the goal as follows: For a state g,

since all ti, 1 < i < h, are determined, the displacement, (δx, δy, δθ), in the configu-

ration space of the sub-trajectory u2, . . . , uh−1 can be computed. If qs,θ + δθ 6= qf,θ,

then since us and uf are translations, g cannot reach the goal. Otherwise, since we

know the velocity vs and vf at the start configuration and the final configuration

respectively, we solve the following system of linear equations to get durations t1 = ts

and th = tf for us and uf .

qs,x + vs,xts + δx + vf,xtf = qf,x (3.6)

qs,y + vs,yts + δy + vf,ytf = qf,y (3.7)

In order to speed up A* search, we need to design an admissible heuristic. A

state g = (u, t) can reach the goal if and only if the change of orientation, δθ, equals

qf,θ− qs,θ. Hence, we can use the difference |qf,θ− qs,θ− δθ| as an admissible heuristic.
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3.9 Finding best singular trajectories

3.9 Finding best singular trajectories

Remember that a control line trajectory is called singular if there exists a non-zero

measure interval along the trajectory that multiple controls have the same Hamil-

tonian value within this interval. Furthermore, the number of singular Hamiltonian

value is a finite set when U is given. Our approach is to enumerate all pairs of con-

trols (us, uf ) ∈ U2 and singular Hamiltonian values, H, where one of us and uf is

a rotation. For each (us, uf ) and H, we determine a best singular trajectory (u, t),

subject to u1 = us, un = uf and the Hamiltonian value is H. Finally, we pick the

best singular trajectory among all best singular trajectories with respect to all pairs

of controls and singular Hamiltonian values.

Fix a pair of controls (us, uf ) and a singular Hamiltonian value H, where one of

us and uf is a rotation. Based on us, uf , and H, we can construct two control lines

according to Theorem 3.6. Fix a control line L. Our method is to incrementally build

sequences of controls that could possibly satisfy Equation 3.3 by using a bidirectional

A* search.

In the bidirectional A* search, there are two different states, S and F , denoting

the state grow from qs and qf (in reverse) respectively. Each state, g = (u, t), is a

pair of sequences of controls and durations, where |u| = |t| = h. If g ∈ S, then

u1 = us and each ti, 1 ≤ i < h, is computed according to Theorem 3.7 assuming the

trajectory starts at qs. If g ∈ F , then uh = uf and each ti, 1 < i ≤ h, is computed

according to Theorem 3.7 assuming the trajectory is built from qf backwards. In this

way, each state has exactly one undefined duration and we use the summation of the

switching cost and the defined durations as path cost.

The neighbors of a state g = (u, t) ∈ S form a set {((u1, . . . , uh, u′), (t1, . . . , th, t′)) |
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3.10 Finding best regular trajectories

where u′ ∈ U , and th is computed according to Theorem 3.7}. We define the neigh-

bors of a state g ∈ F symmetrically.

For a pair of states g = (u, t) ∈ S and g′ = (u′, t′) ∈ F , where |u| = h and

|u′| = h′, if both uh and u′1 are translations, then we can combine the two states

to construct a feasible singular trajectory by solving a system of linear equations

similar to Equation 3.6 and Equation 3.7. In order to speed up the search by using

bidirectional A*, we design an admissible heuristic as follows. For a state g = (u, t) ∈

S, let qg be the configuration that start from qs and apply all ui with duration ti in

order for all 1 ≤ i < h. The distance between qg and qf is the lower bound of

the length of the trajectory from the state to the goal. Hence, we use the Euclidean

distance between qg and qf divide by the maximum velocity as an admissible heuristic.

For a state g ∈ F , we design a similar heuristic.

3.10 Finding best regular trajectories

Remember that a regular trajectory is a generic trajectory either starting or ending

with a rotation. Our approach is to enumerate all pairs of controls (us, uf ) ∈ U2,

where one us of uf is a rotation. Unlike TGT and singular trajectories, the number of

potential control lines for regular trajectories is uncountably infinite. Hence, we use

Lipschitzian optimization techniques to determine the best Hamiltonian value and its

corresponding control line.

In order to use Lipschitzian optimization techniques, we need to define a Lips-

chitzian optimization problem. However, even when we fix a pair of controls (us, uf ),

the trajectories may behave differently with respect to the Hamiltonian value H. For

some Hamiltonian values H, control u can switch to another control u′, but the switch
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3.10 Finding best regular trajectories

cannot happen for some other Hamiltonian values H ′, and this may destroy Lipschitz

continuity. Therefore, for each (us, uf ), we partition the Hamiltonian values into sev-

eral disjoint open intervals so that within each interval the change of trajectories with

respect to the Hamiltonian value is Lipschitz continuous.

For each interval I, we use Lipschtzian optimization techniques to determine a

best regular trajectory (u, t), subject to u1 = us, un = uf , and the corresponding

Hamiltonian value H ∈ I. During this step, we need a method to determine a regular

trajectory corresponding to a fixed control line L that approximately minimizes error

and time. Similar to the idea we used for finding best TGT and singular trajectories,

we use A* search to find a regular trajectory that approximately minimizes error and

time. Finally, we pick the best regular trajectory among all best regular trajectories

with respect to all pairs of controls and all intervals of the Hamiltonian values.

In the following sections, we will explain how to partition the Hamiltonian values,

reduce the problem to a Lipschtzian optimization problem, and determine best regular

trajectories corresponding to a fixed control line.

3.10.1 Partitioning the Hamiltonian values

Fix a pair of controls (us, uf ), where one of us and uf is a rotation. We show how

to partition the Hamiltonian values into several disjoint open intervals so that within

each interval I, if u, u′, and u′′ are three consecutive controls in a control line trajec-

tory for a Hamiltonian value H ∈ I, then u, u′, and u′′ will also be well-defined for

another Hamiltonian value H ′ ∈ I.

According to Theorem 3.6, we have two continuous functions mapping from the

Hamiltonian value to a control line. Consider one fixed mapping L(H) of these two

57
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mappings. According to Theorem 3.8, for any three controls u, u′, and u′, if these

three controls are consecutive in a regular trajectory, then the duration of u′ can be

determined by the Hamiltonian value H. Based on the calculation, we can figure out

the range of the Hamiltonian values that the duration of u′ is well defined and must

be an interval. That is, for each triple e = (u, u′, u′′) ∈ U3, we can determine the

range of the Hamiltonian values Ie that the duration of u′ is well-defined.

We collect the intervals Ie for all triple e = (u, u′, u′′) ∈ U3 that the duration of u′

is well-defined for all Hamiltonian values in Ie. Let S be the set of numbers containing

all endpoints for all intervals Ie.

The set S partitions the domain of L(H), determined by the parametrization and

the control set, into several disjoint open intervals. We have the following theorem.

Theorem 3.10. There exists a finite set of critical values of R that partition the

Hamiltonian values into a finite set of open intervals, such that for each interval

I, if u, u′, and u′′ are three consecutive controls in a control line trajectory for a

Hamiltonian value H ∈ I, then u, u′, and u′′ will also be well defined for another

Hamiltonian value H ′ ∈ I.

3.10.2 Reduction to a Lipschitzian optimization problem

Fix a pair of controls (us, uf ), an interval I of Hamiltonian values constructed in

Theorem 3.10, and a mapping L(H) from Hamiltonian values to control lines, we

pose a Lipschitzian optimization problem to solve for the Hamiltonian value H with

time and position error at most ε, for any desired ε > 0. Here, we briefly introduce

Lipschitzian optimization.

The goal of global optimization is to find optimal solutions of constrained optimiza-
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tion problem even for non-linear, non-continuous problems. A function f : R → R

is called Lipschitz continuous if there exists a constant L ≥ 0, such that for all pairs

x, y in the domain we have |f(x) − f(y)| ≤ L|x − y|, where L is called the Lips-

chitz constant. Given a Lipschitz continuous function f(x), the problem of finding

a global minimum, minx f(x), is called a Lipschitzian optimization problem. For

Lipschitzian optimization problems, there exist efficient algorithms to find globally

(approximately) optimal solutions with arbitrarily small error in finite time(Pintér

1996).

One efficient algorithm for solving Lipschitzian optimization problem is Piyavskii’s

algorithm (Piyavskii 1967). The idea of Piyavskii’s algorithm is to iteratively sub-

divide a domain I into several intervals. For each interval, Piyavskii’s algorithm

determines the lower bound of the objective function based on Lipschitz constant,

and decides whether to further subdivide this interval or disregard this interval based

on the lower bound information. For any error bound ε > 0, Piyavskii’s algorithm is

guaranteed to find a solution with additive an error at most ε within a finite number

of iterations.

The Lipschitizian optimization for finding best regular trajectories is formulated

as follows:

min c(L,u, t)

d(L,u, t) = 0

L = L(H) for some H ∈ I, and (u, t) is a regular trajectory. (3.8)

The function c is the cost function that we want to minimize, which is the cost

of the trajectory (u, t). The function d is the constraint that we want to satisfy,
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which should be the minimum distance from the trajectory (u, t) to the goal. We let

c(L(H),u, t) = d(L(H),u, t) =∞ if the trajectory (u, t) does not correspond to the

control line L(H).

In order to apply Lipschitzian optimization techniques, we need to show that func-

tions c and d are Lipschitz continuous with respect to the change of the Hamiltonian

value H. That is, we want to show that when the Hamiltonian values changes, the

resulting distance and cost functions are Lipschitz continuous with respect to the

Hamiltonian values. This differs from TGT and singular trajectories that we ignore

all trajectories not reaching the goal exactly. We will prove the following theorem in

Section 3.12.

Theorem 3.11. Let I = (a, b) be an open interval of the partition of the Hamiltonian

values. Let u be a fixed sequence of n controls. Let ti(H) be the duration for the ui

and di(H) be the length of projection of the sub-trajectory corresponding to ui onto the

control line. For any δ > 0, both functions ti(H) and di(H) are Lipschitz continuous

with respect to the Hamiltonian values H ∈ (a, b− δ) for all 1 ≤ i ≤ n.

Moreover, we need a method to find best regular trajectory corresponding to a

control line L that approximately minimizes error and time, which will be explained

in the next section.

3.10.3 Finding optimal trajectories for a fixed control line L

Fix a pair of controls (us, uf ) and a control line L, we use A* search to find an best

regular trajectory corresponding to the control line L approximately minimizing error.

If it is possible to reach the goal with error at most ε, the result will be a regular

trajectory approximately reaching the goal with approximately minimum cost. If
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it is impossible to reach the goal with error at most ε, the result will be a regular

trajectory approximately minimizing the distance to the goal.

Our method is to incrementally build sequences of controls and durations that

could possibly satisfy Equation 3.3 by using A* search. Each state g = (u, t) is a pair

of sequences of controls and durations, where |u| = |t| = h and u1 = us and uh = uf .

Each state also satisfies that each ti, 1 ≤ i ≤ h, is computed according to Theorem 3.8

with an additional constraint that
∑

i ti is capped by M , the cost of a feasible tra-

jectory. The neighbors of a state g = (u, t) form a set {((u1, . . . , uh−1, u′, uh+1 =

uf ), (t1, . . . , th−1, t
′, th+1)) | u′ ∈ U and t′ is computed according to Theorem 3.8}.

We use the summation of the switching cost and the duration ti, 1 ≤ i < h as

path cost. Note that we did not use th as part of the path cost; since the duration of

uh = uf depends on uh−1, the sum of the durations of a state g may be larger than

the sum of the durations of a g’s neighbor.

For a state g = (u, t), we define the distance as follows: Let qg be the final

configuration of applying controls u with durations t. If uf is a translation, the

distance from the state g to the goal is the distance between qg and qf . If uf is a

rotation, then let rf be the rotation center of applying uf at qf and rg be the rotation

center of applying uf at qg, and the distance from the state g to the goal is the

distance between rf and rg.

When the distance from the state g to the goal is zero, then the state g is at the

goal. The distance divided by the maximum velocity can therefore also serve as an

admissible heuristic for A* search.

There is one difficulty here: for a state g = (u, t), the switch from uh−1 to uh may

be impossible due to the constraint on the Hamiltonian values. In this case, we just
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u1

Start

u2

u3 Goal

Figure 3.10: An approximately optimal trajectory derived using the described ap-
proximation algorithm for a refrigerator robot starting at (-2, 0, 0), with unit cost for
switching between any pair of controls. The green line is the control line, and the ui
labels show the sequence of rotation centers.

pick the largest index i such that ui can switch to ui+1 and let qg be the configuration

at which ui switches to ui+1. Then, use the Euclidean distance between qg to qf as the

distance from the state g to the goal. In this case, we only use the distance to guide

the search but will not use the trajectory in state g as a result, since the trajectory

is infeasible.

3.11 Further properties of control line trajectories

In this section, we show several properties of control line trajectories. Remember

that a trajectory (u, t) is called extremal, if there exist four constants H > 0, kx,

ky, and kθ, such that Equation 3.3 is satisfied. When the start configuration qs, the

first control us, the final configuration qf , the last control uf , and the Hamiltonian

value H are given, the control line can be constructed explicitly. Furthermore, when

a control line L is fixed, we can show that the trajectory along the control line has

only finite number of possibilities.
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3.11.1 Notation

For a given configuration q = (x, y, θ), there is a corresponding transformation matrix

representation:

T (q) =


cos θ − sin θ x

sin θ cos θ y

0 0 1


For a given configuration q, if we apply a control (vx, vy, ω), we define the homogeneous

representation of the rotation center of u at q to be T (q)u.

For a given control line L = (kx, ky, kθ), there is a corresponding transformation

matrix TL that transform a configuration in the world frame to the control line frame:

TL =


kx ky 0

ky kx kθ

0 0 1


For a configuration q in the world frame, we use qL = TLq to denote its representation

in the control line frame whenever the control line L is clear from the text.

A nice property of the control line frame is that, for a given control line L, a given

configuration q in the world frame, and a control u, we can compute the corresponding

Hamiltonian value of applying u at q along the control line L as H = (TLT (q)u)
T ·

(0, 1, 0). We will show how to construct the control line for a given Hamiltonian value

in the next section. The Hamiltonian value of applying u at q along the control line

L may be different from the Hamiltonian value used to construct the control line. If

so, this shows that applying u at q will not satisfy necessary conditions for optimal

trajectories.
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L(H)

L(H ′)Rs

Rf

C

Figure 3.11: Illustration of proof of Theorem 3.6 in the case that g 6= 0. The rotation
centers at qs and qf are denoted by Rs and Rf respectively. The construction of the
control line is only based on algebra. The geometrical meaning is that the control
line will pass through a point C = (a′, b′) and for any rotation with angular velocity
ω, the distance from the rotation center to the control line is H/ω.

In order to determine the duration of applying a control u before switch to another

control u′, it is convenient to define switch points. For two controls u = (vx, vy, ω)

and u′ = (v′x, v
′
y, ω

′), we define the switch point from u to u′ be p(u, u′) = (vy−v′y, v′x−

vx, ω
′ − ω).

3.11.2 Parametrization of the control lines

In this section, we show that when the start configuration qs, the first control us, the

final configuration qf , the last control uf , where one of us and uf is a rotation, we can

construct at most two mappings from the Hamiltonian values to control lines: L1(H)

and L2(H). When both us and uf are translations, the control line trajectories are

TGT trajectories. Since we treat TGT trajectories separately, we do not deal with

TGT trajectories in this section.

Theorem 3.6. For a given start configuration qs, given goal configuration qf , first

control us, and the last control uf , we can determine an interval of Hamiltonian values

I = (0, Hu), such that there exists mappings, L1(H) and L2(H), from Hamiltonian

values in I to control lines.
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Proof. Since k2x+k2y = 1, we can represent the control line as (kx, ky, kθ) = (cosϕ, sinϕ, kθ).

Let Rs = (as, bs, gs) be the homogeneous representation of the rotation center of us

at qs. Let Rf = (af , bf , gf ) be the homogeneous representation of the rotation center

of uf at qf . Let a = as − af , b = bs − bf , and g = gs − gf . By Equation 3.3, we have:

−kyas + kxbs + kθgs = H (3.9)

−kyaf + kxbf + kθgf = H (3.10)

−kya+ kxb+ kθg = 0 (3.11)

There are two cases: us,ω 6= uf,ω and us,ω = uf,ω.

The case of us,ω 6= uf,ω (g 6= 0).

By Equation 3.11, we have kθ = (kya− kxb)/g. By substitute back in Equation 3.10,

we have

−kyaf + kxbf + (kya− kxb)gf/g = H (3.12)

Combing with Equation 3.9, we have,

−ky(af − (agf )/g) + kx(bf − (bgf )/g) = H (3.13)

By setting a′ = af−(agf )/g and b′ = bf−(bgf )/g, we express Equation 3.13 differently

as follows.

−a′ sinϕ+ b′ cosϕ = H (3.14)
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The geometrical meaning is that the control line will pass through a point C = (a′, b′)

and for any rotation with angular velocity ω, the distance from the rotation center

to the control line is H/ω.

Let r2 = a′2 + b′2, α = atan(a′, b′). We have a′ = r sinα and b′ = r cosα. By

trigonometric identities, we have

r cos(ϕ+ α) = H

Since cos(ϕ+ α) = H/r, sin(ϕ+ α) = ±
√

1−H2/r2 = ±
√
r2 −H2/r.

kx = cosϕ = cos(ϕ+α−α) = cos(ϕ+α) cos(α)+sin(ϕ+α) sinα =
b′H ± a′

√
r2 −H2

r2

ky = sinϕ = sin(ϕ+α−α) = sin(ϕ+α) cos(α)−cos(ϕ+α) sinα =
±b′
√
r2 −H2 − a′H

r2

kθ =
H + afky − bfkx

gf
=
aky − bkx

g

Thus, we have two control lines:

L1(H) = (
b′H + a′

√
r2 −H2

r2
,
b′
√
r2 −H2 − a′H

r2
,
aky − bkx

g
) and

L2(H) = (
b′H − a′

√
r2 −H2

r2
,
−b′
√
r2 −H2 − a′H

r2
,
aky − bkx

g
).

The case of us,ω = uf,ω (g = 0).

Let r = a2 + b2, α = atan(a, b). We have

r cos(ϕ+ α) = 0
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3.11 Further properties of control line trajectories

Since cos(ϕ+ α) = 0, then sin(ϕ+ α) = ±1.

kx = cosϕ = cos(ϕ+ α− α) = cos(ϕ+ α) cos(α) + sin(ϕ+ α) sinα = ±a/r

ky = sinϕ = sin(ϕ+ α− α) = sin(ϕ+ α) cos(α)− cos(ϕ+ α) sinα = ±b/r

kθ =
H + afky − bfkx

gf

Thus, we have two control lines

L1(H) = (a/r, b/r,
H + afky − bfkx

gf
) and L2(H) = (−a/r,−b/r, H + afky − bfkx

gf
).

For a given control set, there exists an upper bound Hu of the Hamiltonian values

that will correspond to non-trivial control line trajectories. Thus, we limit the range

of L1(H) and L2(H) to be smaller than Hu.

The parametrization we present here has different form from the parametriza-

tion under cost-free-switch model (Furtuna 2011), which is based on trigonometric

functions. Our parametrization is easier to analyze, but Furtuna’s parametrization is

more numerically stable, and hence we use Furtuna’s parametrization in the imple-

mentation.

3.11.3 Durations of controls

In this section, we show that given a control line L, a configuration q, and two different

controls u and u′, the duration of applying u at a configuration q until switching to

control u′ can have at most two possibilities.

Theorem 3.7. Given a control line L and a non-singular interval, the duration of
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3.11 Further properties of control line trajectories

applying a control u from a configuration q until switching to another control u′ has

at most two possibilities such that the resulting motion can be a subtrajectory of

a control line trajectory corresponding to the control line L. Moreover, these two

possibilities can be determined analytically.

Proof. Suppose that a control line trajectory applies u at qL = TLq and then switches

to control u′ at a configuration q̂L in the control line frame. By BIP, at the moment

of switching control at configuration q̂L, the Hamiltonian values for u and u′ must be

the same. Based on Furtuna’s analysis (Furtuna 2011), this implies (T (q̂L)p(u, u′))T ·

[0, 1, 0] = 0. That is, when we attach p(u, u′) to the robot, p(u, u′) will lie on the

control line when the robot is at q̂L. Hence, we can solve for q̂L as follows:

Let pL = TLT (q)p(u, u
′) = (xp, yp, wp) be the switching point in the control line

frame when the robot is at q in the world frame. Let rL = TLT (q)u = (xr, yr, ω)

be the homogeneous representation of the rotation center of u at qL in the control

line frame. If u is a translation and wp 6= 0, then the duration t = yp/xr. If u is a

rotation, then t must satisfy

b1 sin(ωt) + b2 cos(ωt) + b3 = 0

where

b1 = xp − wpxr/ω

b2 = yp − wpyr/ω

b3 = wpyr/ω
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3.11 Further properties of control line trajectories

The solution of Equation 3.11.3 is

ωt = atan(b1 ±
√
b21 + b22 − b23, b2 − b3) + 2πn,∀n ∈ Z

Since we are only interested in the solution with t > 0 and |ωt| < 2π, there are at

most two solutions.

3.11.4 Durations for a sequence of controls

By the method described above, for a sequence of controls u, |u| = n, we can de-

termine all possible durations t, each ti, 1 ≤ i < n, has at most two solutions, but

the duration of the last control is still undetermined. When we are given the last

configuration qf , we can determine the duration of the last control as follows: If uf

is a rotation, we apply uf until the configuration has the same orientation as qf . If

uf is a translation, then we consider the control un−1. There are only two possible

configuration of switch from un−1 to uf , such that applying uf will reach qf , and each

configuration has different durations for uf . Thus, there are two possible durations

of uf and we can choose the one which is closer to qf .

Consequently, given a control line L and a sequence of control u, |u| = n, there

are at most 2n−1 possible durations t so that the trajectory (u, t) corresponds to the

control line L. Furthermore, if we fix the way to determine the duration according

to selectors b1, . . . , bn−1, bi ∈ {1, 2} so that the duration ti is the bi-th solution, then

the duration is fully determined by the control line L. Thus, we have the following

theorem.

Theorem 3.9. Let u ∈ Un be a sequence of controls. Let b ∈ {1, 2}n−1 be a sequence
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of selectors. For a given control line L with a non-critical Hamiltonian value H,

start configuration qs, and final configuration qf , the duration of each control is fully

determined by u and b.

3.11.5 Finiteness of trajectories corresponding to a control

line L

Since we have an upper bound for B for any optimal trajectories, we can limit our-

selves to at most |U |B possible control sequences for optimal trajectories. When a

control line L and a fixed control sequence u are given, since the duration for each

control can be determined with at most two possibilities, there are at most 2B pos-

sible corresponding durations for this control sequence with respect to the control

line L. Thus, we can limit ourselves to these at most (2|U |)B possible trajectories

corresponding to the control line L.

3.12 Lipschitz continuity

Fix a pair of controls (us, uf ), an interval of Hamiltonian values I constructed in

Theorem 3.10, and a mapping L(H) from the Hamiltonian values to control lines, we

show that the distance function computed in Section 3.10.3 is Lipschitz continuous

with respect to the change of the Hamiltonian value H.

First consider the cost function c, which is the summation of the switching cost

and the time cost of the trajectory. Consider a fixed sequence of controls u and we

analyze the dependency of its duration t on the Hamiltonian value. By Theorem 3.9,

when we fix a sequence of controls and selectors, the duration is fully determined by
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3.12 Lipschitz continuity

L(H). Since Lipschitz continuity is closed under the minimum operation, it suffices to

prove that for any sequence of controls u and selectors, the cost is Lipschitz continuous

with respect to the change of the Hamiltonian value H ∈ I. Since the sequence is

unchanged, the switching cost stays the same for any Hamiltonian value H ∈ I. Thus,

it suffices to prove that for any sequence of controls u and selectors, the durations t

is Lipschitz continuous with respect to the change of the Hamiltonian value H ∈ I.

Similarly, we prove that for any sequence of controls u and selectors, the distance

from the trajectory to the goal is Lipschitz continuous with respect to the change of

the Hamiltonian value H ∈ I.

In order to simplify the analysis, in the remaining part of this section, we consider

fixed selectors so that t is a function of the Hamiltonian value H directly without

ambiguity.

3.12.1 Lipschitz continuity of d(L(H),u, t) and c(L(H),u, t)

Let (u, t), |u| = n be a regular trajectory corresponding to the control line L(H).

We first consider the cost function c(L(H),u, t), which depends on the durations of

each control and the switching cost. Since the sequence is unchanged, the switching

cost will not change and hence we focus on durations. Let ti(H) be the duration for

the i-th control ui with respect to H. Since c(L(H),u, t) is the summation of all ti,

it suffices to prove that each ti(H) is Lipschitz continuous.

Second, we consider the distance function d(L(H),u, t). For control ui and its

corresponding sub-trajectory, we use di to denote the length of the sub-trajectory

projection onto the control line. The distance function d(L(H),u, t) can be rewritten

as |qLs,x +
∑n

i=1 di − qLf,x|. It suffices to show that each di(H) and the mapping TL is
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3.12 Lipschitz continuity

Lipschitz continuous.

Durations ti(H) and projections di(H), 1 < i < n are easier to analyze, since

they depend on H directly. However, durations t1(H) and tn(H) depend on H, start

configuration qLs , and final configuration qLf in the control line frame, which depends

on H. Hence, t1(H) and tn(H) depend on H not only directly but also indirectly

through qLs and qLf . Similarly, d1(H) and dn(H) also depend on H directly and

indirectly. The analysis of t1(H), tn(H), d1(H), and dn(H) should be separated from

the analysis of ti(H) and di(H), 1 < i < n. Thus, we analyze ti(H) and di(H),

1 < i < n first and then show the mapping TL is Lipschitz continuous. Finally, we

give the analysis of t1(H), tn(H), d1(H), and dn(H).

3.12.2 Analysis of ti(H) and di(H), 1 < i < n

Theorem 3.12. Let I = (a, b) be an open interval of the partition of the Hamiltonian

values. Let u be a fixed sequence of n controls. Let ti(H) be the duration for the ui

and di(H) be the length of projection of the sub-trajectory corresponding to ui onto the

control line. For any δ > 0, both functions ti(H) and di(H) are Lipschitz continuous

with respect to the Hamiltonian values H ∈ (a, b− δ) for all 1 < i < n.

Proof. The duration ti(H) and length di(H) are fully determined by ui−1, ui, ui+1,

and H. Let qLi be the configuration in the control line frame at which the trajectory

switches control from ui−1 to ui. Let qLi+1 be the configuration in the control line

frame at which the trajectory switches control from ui to ui+1. Here, we use a result

from Furtuna’s Thesis (Furtuna 2011) that there exists a point pi = p(ui−1, ui) rigidly

attached to the robot, such that pi will lie on the control line when the robot is at
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RL

ZL

lR
Z

SL

l S
Z

ŜL

θ
θ1

Figure 3.12: Illustration of proof of Theorem 3.11 in the case that ui is a translation.
Initially, the switch point is located at SL. A control line trajectory must apply ui
until the switch point collides with the control line at ŜL.

qLi . Similarly, when the robot is at qLi+1 and switches from ui to ui+1, there exists a

point pi+1 = p(ui, ui+1) attached to the robot such that pi+1 is on the control line.

We introduce some notation for the remainder of the proof. Let ZL = (ZL
x , 0)

be the location of pi attached to the robot at qLi , which is on the control line. Let

SL = (SLx , S
L
y ) be the location of pi+1 attached to the robot at qLi . Let ŜL = (ŜLx , 0)

be the location of pi+1 attached to the robot at qLi+1. By considering the position of

SL we can determine the ti(H) and di(H).

Depending on whether ui is a translation or not, there are two cases:

The case in which ui is a translation.

Let vi be the velocity of ui. By Theorem 3.1, the magnitude of the projection of

the velocity onto the control line is H. Consequently, the magnitude of velocity in

the y-coordinate in the control line frame is vLy =
√
v2i −H2. The duration of ti can

be computed as SLy /vLy . Consequently, the length of the projection of the trajectory

onto the control line, di(H), can be computed as tiH. Hence, it suffices to prove ti is

Lipschitz continuous.
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3.12 Lipschitz continuity

The control ui−1 must be a rotation, since if ui−1 is a translation, then ui and

ui−1 have the same Hamiltonian value along the sub-trajectory corresponding to ui

and the trajectory is a singular trajectory. Let RL = (RL
x , R

L
y ) be the location of the

rotation center of control ui−1. Let lSZ be the distance between SL and ZL. Let lRZ

be the distance between RL and ZL. Let θ be the angle rotating from vector ZLSL

to vector ZLRL counterclockwise. Since the the mutual distance among SL, RL and

ZL is independent from H, lRZ and θ are independent from H.

Let θ1 be the angle between segment SLŜL and the control line; the value of θ1

is acos(H/vi). Furthermore, it can be shown that the line ZLRL is perpendicular

to the line SLŜL (Furtuna 2011). By geometric reasoning, SLy can be computed

as lSZ cos(θ − acos(H/vi)) = (lSZ/vi)(H cos θ +
√
v2i −H2 sin θ). Remember all the

durations is capped by M , the cost of a feasible trajectory. Hence, we have

ti(H) = min(M,
SLy
vLy

=
lSZ
vi

(
sin θ +

H cos θ√
v2i −H2

)
).

Since the second term is monotonically increasing in H, there exists a threshold

γ that for all H ≥ γ, ti = M . Thus, within the interval [γ, b), ti(H) is a constant.

Hence, we only focus on the part (a, γ) that the minimum is taken from the second

term.

A differentiable function is Lipschitz continuous if this function has a bounded

first derivative.
∂ti(H)

∂H
=

(
vilSZ cos θ

(v2i −H2)1.5

)
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RL

RL
⊥ZL

lR
Z

SL lRS

ŜL

lR
S

θ
θ1 θ2

Figure 3.13: Illustration of proof of Theorem 3.11 in the case that ui is a rotation,
ωi−1 > ωi, and ωi+1 > ωi. Initially, the switch point is located at SL. A control line
trajectory must apply ui, a rotation around RL counterclockwisely, until the switch
point collides with the control line at ŜL.

Since di = tiH, we have

∂di(H)

∂H
= H

∂ti
∂H

+ ti =

(
vilSZ cos θ

(v2i −H2)1.5

)
+
lSZ
vi

(
sin θ +

H cos θ√
v2i −H2

)
.

For all H ∈ (a, γ) and H < vi, the derivatives of ti(H) and di(H) are bounded.

The case in which ui is a rotation.

Let RL = (RL
x , R

L
y ) be the location of the rotation center of control ui and let RL

⊥ =

(RL
x , 0) be the projection of RL on the control line. We want to compute the angle, ϕ0,

between the control line to the vector RLSL, and the angle ϕ1, between the control line

to the vector RLŜL; these angles are measured in counterclockwise direction. The

duration ti(H) can be computed as (ϕ1 − ϕ0)/ωi, where the subtraction wrapping

around 2π and the result has the same sign as ωi. Let r be the distance between

the reference point of the robot and RL when robot is at qLi . The projection of the

trajectory on the control line, di(H), can be computed as r(cosϕ1− cosϕ0). Thus, it

suffices to show that ϕ0 and ϕ1 are Lipschitz continuous with respect to H.

Let lRZ be the distance between RL and ZL and let lRS be the distance between

75



3.12 Lipschitz continuity

RL and SL. Let θ be the angle rotating from vector RLZL to RLSL counterclockwise.

Note that θ, lRZ , and lRS are independent from H.

Let θ1 be the angle between the segmentRLZL andRLRL
⊥, which equals acos(H/(lRZωi)).

Let θ2 be the angle between the segmentRLŜL andRLRL
⊥, which equals acos(H/(lRSωi)).

Let ωi−1 and ωi+1 be the angular velocity of ui−1 and ui+1 respectively. Based on θ1

and θ2, we can compute ϕ0 and ϕ1 as follows:

ϕ0 ϕ1

ωi > 0 ZL
x ≤ RL

x 3π/2− θ1 + θ ŜLx ≥ RL
x 3π/2 + θ2

ωi > 0 ZL
x > RL

x 3π/2 + θ1 + θ ŜLx < RL
x 3π/2− θ2

ωi < 0 ZL
x > RL

x π/2− θ1 + θ ŜLx < RL
x π/2 + θ2

ωi < 0 ZL
x ≤ RL

x π/2 + θ1 + θ ŜLx ≥ RL
x π/2− θ2

Thus, we have

∣∣∣∣∂ϕ0(H)

∂H

∣∣∣∣ ≤ ((lRZωi)
2 −H2)−0.5 and

∣∣∣∣∂ϕ1(H)

∂H

∣∣∣∣ ≤ ((lRSωi)
2 −H2)−0.5.

Consequently,

∣∣∣∣∂ti(H)

∂H

∣∣∣∣ ≤ ((lRZωi)
2 −H2)−0.5 + ((lRSωi)

2 −H2)−0.5

|ωi|
.

∣∣∣∣∂di(H)

∂H

∣∣∣∣ ≤ r

lRZ |ωi|

(
| sin θ1|+

∣∣∣∣∣ H cos θ1√
(lRZωi)2 −H2

∣∣∣∣∣
)

+
r

lRS|ωi|

(
| sin θ2|+

∣∣∣∣∣ H cos θ2√
(lRSωi)2 −H2

∣∣∣∣∣
)

By the construction of the partition of the Hamiltonian values, b ≤ |lRZωi| and

b ≤ |lRSωi| so that the switch of controls is feasible. For any δ > 0, whenH ∈ (a, b−δ),
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H is smaller than |lRZωi| and |lRSωi|, and the derivatives of ti(H) and di(H) are

bounded.

During the analysis, we also fully analyze the duration for three consecutive con-

trols u, u′, and u′′ in a control line trajectory with respect to a given H value.

Theorem 3.8. Let u, u′, and u′′ be three consecutive controls in a control line trajec-

tory. Given kx, ky, and a non-critical Hamiltonian value H, the duration of u′ has

at most two possibilities and can be determined analytically without knowing the

configuration.

Before we analyze d1, t1, dn, and tn, since they depend on the mapping TL(q) = qL,

they indirectly depend on kx, ky, and kθ. Hence, we show the analysis of kx, ky, kθ

first and then analyze qL before we analyze d1, t1, dn, and tn.

3.12.3 Analysis of kx, ky, kθ, and atan(ky, kx)

Since the mapping TL depends on kx, ky, and kθ, we analyze the dependency of kx,

ky, and kθ on the Hamiltonian value H. Furthermore, we also analyze atan(ky, kx),

since we will need it in the following sections.

Theorem 3.13. For a mapping L(H) = (kx(H), ky(H), kθ(H)) from the Hamiltonian

values to control lines with a domain (0, Hu). The mapping L(H) and atan(ky(H), kx(H))

are Lipschitz continuous with respect to the Hamiltonian values in (0, Hu− δ) for any

δ > 0.

Proof. Since kθ(H) =
H+afky−bfkx

gf
, we have

∂kθ(H)

∂H
=

1 + af
∂ky(H)

∂H
− bf ∂kx(H)

∂H

gf
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By using the notation in Section 3.11.2, there are two cases.

The case of us,ω = uf,ω (g = 0)

In this case, kx and ky will not change with respect to H. Hence, ∂kx(H)
∂H

= ∂ky(H)

∂H
=

∂atan(ky ,kx)

∂H
= 0 and ∂kθ(H)

∂H
= 1/gf .

The case of us,ω 6= uf,ω (g 6= 0)

∂kx(H)

∂H
≤
|b′|+ | a′H√

r2−H2 |
r2

∂ky(H)

∂H
≤
|a′|+ | b′H√

r2−H2 |
r2
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∂atan(ky(H), kx(H))

∂H

=
1

1 + k2y/k
2
x

∂ ky(H)

kx(H)

∂H

= k2x

∂kx(H)
∂H

ky − kx ∂ky(H)

∂H

k2x

=
∂kx(H)

∂H
ky − kx

∂ky(H)

∂H

=
b′ + a′H√

r2−H2

r2
b′
√
r2 −H2 − a′H

r2
− b′H + a′

√
r2 −H2

r2

−a′ + b′H√
r2−H2

r2

=
1

r4

(
(b′ +

a′H√
r2 −H2

)(b′
√
r2 −H2 − a′H)− (b′H + a′

√
r2 −H2)(−a′ + b′H√

r2 −H2
))

)
=

1

r4

(
b′2
√
r2 −H2 − a′b′H + a′b′H − a′2H2

√
r2 −H2

+ a′b′H − b′2H2

√
r2 −H2

+ a′2
√
r2 −H2 − a′b′H

)
=

1

r4

(
(a′2 + b′2)(

√
r2 −H2)− (a′2 + b′2)H2

√
r2 −H2

)
=

1

r4
(a′2 + b′2)(

√
r2 −H2 − H2

√
r2 −H2

)

=
r2 − 2H2

r2
√
r2 −H2

≤ 1√
r2 −H2

For any δ > 0, since r ≥ Hu, when H ∈ (0, Hu − δ), we have H < r. Thus, for any

δ > 0, kx(H), ky(H), kθ(H), and atan(ky(H), kx(H)) are Lipschitz continuous with

respect to the Hamiltonian value H ∈ (0, Hu − δ).

3.12.4 Analysis of qL

For different Hamiltonian values, the mapping from qs and qf to the control line frame

may be different. However, we can show that qL is Lipschitz continuous with respect
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to the Hamiltonian value H.

Theorem 3.14. For a mapping L(H) = (kx(H), ky(H), kθ(H)) from the Hamiltonian

values to control lines with a domain (0, Hu). The control line transformation TL(q)

is Lipschitz continuous with respect to the Hamiltonian values in (0, Hu − δ) for any

δ > 0.

Proof. For a configuration q = (x, y, cos θ, sin θ) and a control line parametrized by

H, (kx(H), ky(H), kθ(H)), the mapping from q to the control line frame is

qL(H) =



kx(H)x+ ky(H)y

−ky(H)x+ kx(H)y + kθ

kx(H) cos θ − ky(H) sin θ

kx(H) sin θ + ky(H) cos θ


Hence,

∂qL(H)

∂H
=



∂kx(H)
∂H

x+ ∂ky(H)

∂H
y

−∂ky(H)

∂H
x+ ∂kx(H)

∂H
y + ∂kθ(H)

∂H

∂kx(H)
∂H

cos θ − ∂ky(H)

∂H
sin θ

∂kx(H)
∂H

sin θ + ∂ky(H)

∂H
cos θ


For any δ > 0, since kx(H), ky(H), and kθ(H) are Lipschitz continuous with respect

to the Hamiltonian value H ∈ (0, Hu − δ), qL is Lipschitz continuous with respect to

the Hamiltonian value H ∈ (0, Hu − δ) as well.
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3.12.5 Analysis of d1, t1, dn, and tn

In this section, we show that d1, t1, dn, and tn is Lipschitz continuous with respect

to the change of the Hamiltonian value H.

Theorem 3.15. Let I = (a, b) be an open interval of the partition of the Hamiltonian

values. Let u be a fixed sequence of n controls. Let ti(H) be the duration for the ui

and di(H) be the length of projection of the sub-trajectory corresponding to ui onto the

control line. For any δ > 0, d1, t1, dn, and tn are Lipschitz continuous with respect

to the Hamiltonian values H ∈ (a, b− δ).

Proof. Let (0, Hu) be the domain of the mapping L(H) = (kx(H), ky(H), kθ(H)). For

any δ > 0, since b ≤ Hu, kx, ky, kθ, atan(ky, kx), and qL are Lipschitz continuous with

respect to the Hamiltonian values in (a, b− δ) by Theorems 3.13 and 3.14

Since the cases for t1 and tn are symmetric, we only analyze t1 and similarly we

only analyze d1. Let the start configuration be q = (x, y, cos θ, sin θ) in the world

frame. Fix a pair of controls (u, u′). Let t(H) be the duration of applying u until

switching to u′. Let q̂L(H) be the configuration of the robot when the control switch

from u to u′. Let d(H) = q̂Lx − qLx be the projection of the motion on to the control

line. There are two cases depending on whether u is a translation or a rotation.

The case in which u is a translation.

Let S = (px, py) be the switch point of between u and u′ in the world frame. Let

v = (vx, vy, 0) be the velocity in the world frame.
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L(H)

L(H ′)

q
S

ŜL(H)

ŜL(H ′)

Figure 3.14: Illustration of proof of Theorem 3.15 in the case that ui is a translation.
The reference point of the robot is at q and the switch point is at p in the world
frame. When the Hamiltonian value H changes, the control line changes from L(H)
to L(H ′). Hence, the endpoint of the translation changes from ŜL(H) to ŜL(H ′)
accordingly.

The representation of S in the control line frame SL is

SL(H) =

 kx(H)px + ky(H)py

−ky(H)px + kx(H)py + kθ(H)


We have

∂SLy (H)

∂H
= −∂ky(H)

∂H
px +

∂kx(H)

∂H
py +

∂kθ(H)

∂H

The velocity vL in the control line frame is

vL(H) =


kx ky 0

−ky kx 0

0 0 1




cos θ sin θ x

− sin θ cos θ y

0 0 1



vx

vy

0



=


kx(cos θvx + sin θvy) + ky(− sin θvx + cos θvy)

−ky(cos θvx + sin θvy) + kx(− sin θvx + cos θvy)

0


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L(H)

L(H ′)

q

R

S

ŜL(H)

ŜL(H ′)

q̂L(H)

q̂L(H ′)

d
p
cr

φ

Figure 3.15: Illustration of proof of Theorem 3.15 in the case that ui is a rotation.
The reference point of the robot is at q and the switch point is at p in the world frame.
When the Hamiltonian valueH changes, the control line changes from L(H) to L(H ′).
Hence, the endpoint of the rotation changes from p̂(H) to p̂(H ′) accordingly.

Let v′ = (v′x, v
′
y) = (cos θvx + sin θvy,− sin θvx + cos θvy). We have

∂vLx (H)

∂H
=
∂kx(H)

∂H
v′x +

∂ky(H)

∂H
v′y and

∂vLy
∂H

= −∂ky(H)

∂H
v′x +

∂kx(H)

∂H
v′y

The time is

t(H) = −SLy /vLy =
−ky(H)px + kx(H)py + kθ(H)

−ky(H)(cos θvx + sin θvy) + kx(H)(− sin θvx + cos θvy)

Since q̂Lx (H) = qLx (H) + vLx t(H), d(H) = qLx (H) + vLx t(H) − qLx (H) = vLx t(H).

Consequently,
∂d(H)

∂H
=
∂vLx (H)

∂H
t(H) + vLx (H)

∂t(H)

∂H

For any δ > 0, since vLy and SLy are Lipschitz continuous with respect to the Hamilto-

nian values in (a, b− δ), d(H) and t(H) are Lipschitz continuous with respect to the

Hamiltonian values in (a, b− δ) as well.

The case in which u is a rotation.

Let S = (px, py) be the switch point of between u and u′ in the world frame. Let R

be the rotation center of u in the world frame. Let r be the radius of rotation. Let
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dpc be the distance between p and c. Let ϕ be the angle between the vector from c to

p and the vector from c to q. Note that S, R, r, dpc, q, and ϕ are independent from

the change of the Hamiltonian value.

Let ŜL(H) be the position of the switch point when the robot is at q̂L(H), where

ŜL(H) should be on the control line. Let α(H) be the angle between the vector from

R to ŜL(H) and the control line.

sinα =
H

ωdpc
, cosα = ±

√
ω2d2pc −H2

ωdpc

The time t(H) = (ϕ(H)− α(H))/ω. Thus,

|∂t(H)

∂H
| ≤

(
|∂atan(ky, kx)(H)

∂H
|+ 1√

1− (H2)/(ωdpc)2

)
/|ω|

=

(
|∂atan(ky, kx)(H)

∂H
|+ |ω|dpc√

(ωdpc)2 −H2

)
/|ω|

By the construction of the partition of Hamiltonian values, b ≤ ωdpc so that the switch

of controls is feasible. For any δ > 0, when H ∈ (a, b − δ), H is smaller than ωdpc.

Since atan(ky, kx) is Lipschitz continuous with respect to the Hamiltonian values in

(a, b − δ), d(H) is Lipschitz continuous with respect to the Hamiltonian values in

(a, b− δ) as well.
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Remember that d(H) = qLx − q̂Lx . We analyze q̂Lx first.

q̂Lx −RL
x = r cos(ϕ+ α)

= r(cosϕ cosα− sinϕ sinα)

= r

(
cosϕ

√
ω2d2pc −H2

ωdpc
− sinϕ

H

ωdpc

)

=
r

ωdpc
(cosϕ

√
ω2d2pc −H2 − sinϕH)

Thus,

|∂q̂
L
x (H)

∂H
| ≤ |∂R

L
x (H)

∂H
|+ r

|ω|dpc
(| sinϕ|+ | cosϕ| H√

(ωdpc)2 −H2
)

Hence,

|∂d(H)

∂H
| ≤ |∂q

L
x

∂H
|+ |∂R

L
x

∂H
|+ r

|ω|dpc
(| sinϕ|+ | cosϕ| H√

ω2d2pc −H2
)

For any δ > 0, since qLx (H) and RL
x (H) are Lipschitz continuous with respect to the

Hamiltonian values in (a, b − δ), d(H) is Lipschitz continuous with respect to the

Hamiltonian values in (a, b− δ) as well.

By Theorem 3.12 and 3.15, we have the following theorem.

Theorem 3.11. Let I = (a, b) be an open interval of the partition of the Hamiltonian

values. Let u be a fixed sequence of n controls. Let ti(H) be the duration for the

ui and di(H) be the length of projection of the sub-trajectory corresponding to ui

onto the control line. For any δ > 0, both functions ti(H) and di(H) are Lipschitz

continuous with respect to the Hamiltonian values H ∈ (a, b− δ) for all 1 ≤ i ≤ n.
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3.13 Implementation

We implemented the algorithm in C++. Our testing environment is a desktop system

with an Intel Xeon W3550 3.07 GHz CPU.

For the costly-switch model, we used three test cases. First, we used the bench

mover’s problem (Lyu et al. 2014) as one test case. We compared our program’s result

with the results of the analytical solver. Except for some cases in which the Hamil-

tonian value is close to the upper bound (for which numerical instability becomes a

problem), the results coincide with the results from the exact solver.

We used the refrigerator-mover’s problem as the second test case. The refrigerator-

mover’s problem is an extension of bench mover’s problem, inspired by a problem in

Mechanics of Robotic Manipulation (Mason 2001): a mover wants to move a refrig-

erator from one location and orientation to another. The refrigerator is too heavy to

move by lifting or pushing, but it can be lifted onto any of the four legs at the corners

of the square base and rotated. One approximately optimal trajectory is shown in

Figure 3.10. Third, we used omni-directional vehicle as a test case; one approximately

optimal trajectory is show in Figure 3.2b.

The solver described can also be used as a general-purpose solver for finding

time-optimal trajectories of a kinematic planar rigid body under the cost-free-switch

model. In this case, we additionally constrain the structure of the trajectories using

the maximization condition of PMP, and apply the Lipschitz optimizer to find best

trajectories for each possible structure. We applied this approach to the problem

of finding optimal trajectories for the omnidirectional robot (Wang and Balkcom

2012a), and found that the approach was only about one order of magnitude slower

(on the order of 0.03 seconds per configuration) than the special-purpose analytical
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solver (Wang and Balkcom 2012a). One approximately optimal trajectory is show in

Figure 3.2a.

3.14 Conclusion and future work

By adding a cost for switching between controls, we ensure existence of solutions

for optimal control problems, and evade the problem of chattering. By applying

Blatt’s Indifference Principle and Lipschitzian optimization approach, we can find

approximately optimal trajectories, and the error can be forced to be arbitrarily

small.

The implemented approach does have some limitations, and these limitations do

suggest rich problems for future study. One of the limitations is that when applying

Lipschitzian optimization techniques, the algorithm reduces the search domain by a

user controlled parameter in order to make the optimization problem behave smoothly.

Although the controlled parameter can set to any arbitrarily small number, this algo-

rithm may not find optimal trajectories for some scenarios if the controlled parameter

is not small enough. We believe this that issue can be resolved by reformulating the

Lipschitzian optimization problem with other parametrization.

Moreover, the potential number of optimal trajectory structures can be very very

large under the costly-switch model. For the costly-switch model, an algorithm might

potentially need to explore a number of structures that is exponential in the number

of controls in order to find solutions. For example, in order to find approximately

optimal trajectories for omni-directional vehicle, whose control set contains fourteen

controls, it takes about an hour to find an high-precision approximately optimal

trajectory for a start configuration and goal configuration. We believe that better
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Lipschitz constants, use of the derivative of the objective function together with more

sophisticated approaches to Lipschitzian optimization (Lera and Sergeyev 2013), and

a more directed A* search could dramatically reduce these costs.

Finally, in this work, we assume that there are no obstacles. Under the cost-free-

switch model, Pontryagin’s Maximum Principle can be extended to systems with state

constraints (Maurer 1977; Maurer and Osmolovskii 2013). However, to the best of our

knowledge, extending Blatt’s Indifference Principle to systems with state constraints

is still an unsolved task. Extending Blatt’s Indifference Principle to systems with

state constraints (or making use of the KKT approach) will be an interesting future

direction of research.
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Chapter 4

Multi-query for near-optimal

trajectories

4.1 Introduction

This chapter examines how an optimal steering method, which finds optimal trajec-

tories if there are no obstacles, may be used to build a good approximate cell-based

representation of a configuration space with obstacles. We also present algorithms

that make use of this representation to find good, although not necessarily optimal,

paths.

Approaches to finding optimal paths among obstacles can be loosely classified into

two types: cell decomposition (for example, early work by Barraquand and Latombe

(Barraquand and Latombe 1993) and Xavier and Donald (Donald and Xavier 1995)),

and sampling methods, such as PRM* (Karaman and Frazzoli 2011). Cell-based

methods have the advantage that it can be easier to prove results about path quality

after finite computation time, but typically require division of the space into a number
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θ1

θ2

Figure 4.1: Initial and final positions are represented by thick lines, while others are
intermediate positions of the arm.

of cells that is explicitly exponential in the dimensionality of the space. Sampling

methods, on the other hand, can quickly return reasonable paths if there are large

open spaces in the environment, even in high dimensions.

This work begins to explore the idea that some easy spaces (with large open

regions, or large obstacle regions) can be represented easily, without giving up opti-

mality, using a variable-sized cell decomposition approach. Figures 4.1 and 4.2 show

an example of such a decomposition for the configuration space for a serial planar

arm with two revolute joints, as well as a path obtained by a simple A* search across

points on the boundaries of the cells. Note that because optimal trajectories are not

unique for the chosen metric (Section 4.3.1) some “wiggle" can occur even in optimal

trajectories.

Variable-sized cell-decomposition methods are hardly new. There are already some

motion planners based on cell-decomposition (Wang, Chiang, and Yap 2015). The
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θ1

θ2

Figure 4.2: Decomposition of C-space and the corresponding trajectory in C-space.
Shaded cubes are explored by the search algorithm.

unique contribution of this work is an exploration of the implications of optimality

under some metric, for systems with and without non-holonomic constraints.

The key idea is to exploit convexity of regions in configuration space. Intuitively,

between any pair of boundary points of a convex region, there should exist a path

that does not leave the region. So, paths within the region need not be sampled or

stored.

In this chapter, we show that a form of convexity can be defined (Section 4.2) that

is suitable for configuration spaces with optimal steering methods and corresponding

shortest-path metrics, and that a variant on this form of convexity, subconvexity, is

available locally everywhere there is a reachable ball in the free configuration space.

We consider some example systems, including a planar arm and a Reeds-Shepp car

(Reeds and Shepp 1990), and present an algorithm for decomposing the free config-
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uration space into cells (Section 4.4). We search this data structure for good paths

(Section 4.6), and show some results for a few simple systems.

The work in this chapter is quite preliminary, but we believe that the theoretical

framework hints at new ways to tackle issues such as ensuring good path quality after

finite computation time (vs. weaker guarantees such as asymptotic optimality), topo-

logical analysis of configuration spaces, and compact representations of configuration

spaces. Concretely, the current work suggests some bounds on how densely a space

may need to be sampled to capture optimality over “most of" the configuration space.

We believe that this is an important step to begin to understand the behavior of

sampling-based planners near obstacles (a primary focus of, for example, variations

such as obstacle-based PRM (Yeh et al. 2012) and Toggle PRM (Denny and Amato

2012)), after finite computation time.

4.1.1 Related work

We briefly summarize related work in kinodynamic motion planning and multi-query

motion planning.

Kinodynamic motion planning

For a particle among obstacles in R3, shortest paths subject to kinodynamic con-

straints can be provably approximated (Donald et al. 1993; Reif and Tate 1994;

Donald and Xavier 1995; Reif and Wang 2000); by growing the obstacles slightly, a

lower bound on the required size of cells used to represent configuration space can be

computed.

Recently, Bialkowski et al. have reduced the time cost of collision detection with
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RRT*, by building balls in free (Euclidean) space in which collision detection needs to

be performed only once (Bialkowski et al. 2012). Recent sampling-based algorithms

by Li, Littlefield, and Bekris (Li, Littlefield, and Bekris 2016) achieve asymptotic

optimality of path length in parameter space without the need for a steering method.

Deits shows a numerical optimization approach to computing large convex regions,

also in a Euclidean space (Deits and Tedrake 2014);

Multi-query motion planning

For multi-query motion planning, PRM was the first multi-query motion planner

(Kavraki et al. 1996). One variant of PRM, PRM* (Karaman and Frazzoli 2011),

is guaranteed to find optimal trajectories as the running time approaches infinity.

However, in order to obtain optimal trajectories, the roadmap tends to have huge

number of vertices and edges. Many motion planning algorithms that are guaranteed

to find approximately optimal trajectories while maintaining sparse roadmaps are

developed (Littlefield, Li, and Bekris 2013; Marble and Bekris 2013; Dobson and

Bekris 2014; Salzman et al. 2014; Wang, Balkcom, and Chakrabarti 2015).

Shortest path query on graphs

Finding shortest paths on graphs has been studied extensively and Sommer gives a

comprehensive survey (Sommer 2014).

4.2 Path convexity and subconvexity

In this work, we assume that an optimal steering method is available, together with

a shortest-path local metric, d, that would describe the minimum cost of traveling
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4.2 Path convexity and subconvexity

between two configurations if there were no obstacles. The steering method and metric

might be known exactly, or in practice, might be computed approximately using

numerical techniques. Metrics are typically only available for symmetric systems.

The central idea is to cover most of the obstacle-free portion of the configuration

space, Cf , with some convex closed cells, so that optimal paths cross through boundary

points of the cells, and are well-behaved within the cells. However, for systems with

a given metric, or subject to non-holonomic constraints, the straight lines used to

define convexity in the usual sense might not be geodesics or even feasible.

It is natural to define convexity in terms of the steering method for the system. Let

a steering method S of a metric space be a family of continuous curves (parametrized

by arc length) such that for each ordered pair of points (a, b) in the metric space there

is a corresponding curve in S from a to b.

We say that a set X of a metric space with steering method S is path convex

if between any two points in X, the corresponding path from S is contained entirely

within X. This definition is somewhat related to definitions of geodesic convexity

proposed by Whitehead (Whitehead 1932).

As a simple example, let the metric space be the surface of a solid globe that has

been cut in half through the equator, with the metric defined by the shortest path

along the surface, measured using the Euclidean distance in R3. Consider an optimal

steering method S that contains one shortest path on the surface for each pair of

points.

First consider the set F , the flat disc where the globe was cut. The shortest paths

between points in F are straight lines, and they do not leave the disc, so F is path

convex (under S). Now consider P , consisting of all points on the surface within 15
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X

Y
Z

p q

Figure 4.3: Subconvexity of set X with respect to set Y , under an optimal steering
method. The path between p and q does not leave Y .

degrees of the pole. The shortest paths between points in P are arcs of great circles

on the sphere and those arcs do not leave P , so P is path convex.

Finally, consider the set H, the entire curved hemisphere within 90 degrees of the

pole. For some pairs of points in H, the connecting shortest path is an arc of a circle

contained in H. But for other points (along the equator, for example), the connecting

shortest path takes a shortcut through F , leaving H. So H is not a path convex set.

For the purpose of motion planning, we would like to be able to place a convex

cell almost anywhere in the space, but for many systems, path convexity is too strong

a requirement. We cannot cover H with path convex cells contained within H under

an optimal steering method, so if there are obstacles in F , motion planning requires

knowledge of F even if we care only about planning paths between points in H.

Given sets X and Y of a metric space, under a steering method S, we say that X is

path subconvex to Y under S if between any two points in X, the corresponding

path in S is contained within Y . For the purpose of motion planning, Y may be an

obstacle-free region large enough to allow optimal maneuvering of the system between

points of X.

A closed metric ball of radius c at a point x in a metric space Z under metric

d, defined in the usual way as Bd
c [x] = {z ∈ Z : d(x, z) ≤ c}, represents the set
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of points reachable from x with cost no greater than c. Although we might like to

sample some points using closed metric balls at those points to cover some part of

the free configuration space, we can see from the half-globe example (H is a closed

metric ball centered at the pole) that a closed metric ball is not necessarily path

convex with respect to an optimal steering method; the shortest path between points

on the boundary might leave the ball, into regions we don’t necessarily know anything

about.

Although a closed metric ball (reachable set) at a sampled point might not be path

convex, we can find a pair of balls at any point in Cf such that the inner, smaller ball

is subconvex to the outer:

Theorem 4.1. Given an optimal steering method S, a corresponding metric d over

a metric space Z, a point x ∈ Z, and a positive constant r, the closed metric ball

Bd
r/2[x] is path subconvex to Bd

r [x] under S.

Proof. Consider two arbitrary points p and q in Bd
r/2[x], and a postulated shortest

path between them. Let m be an arbitrary point along this shortest path. We will

show that d(x,m) is no larger than r, implying that the entire path is contained

within the larger ball. By the triangle inequality,

d(x,m) ≤ d(x, p) + d(p,m) (4.1)

d(x,m) ≤ d(x, q) + d(q,m). (4.2)

Summing 4.1 and 4.2,

2d(x,m) ≤ d(x, p) + d(x, q) + d(p,m) + d(m, q). (4.3)
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Since d(x, p) and d(x, q) are each less than or equal to r/2,

2d(x,m) ≤ r + d(p,m) + d(m, q). (4.4)

Since the path from p to q through m is a shortest path, d(p,m) + d(m, q) must

be less than or equal to the length of the path from p to q through x. Therefore,

d(p,m) + d(m, q) ≤ r. Combining with Inequality 4.4, d(x,m) ≤ r.

4.3 Computing reachable balls

From a particular configuration, how far, under a given metric, can the robot or

system travel before hitting an obstacle? We expect this question to be hard to

answer in the configuration space, since we do not typically know the shapes of

configuration-space obstacles, and since we do not necessarily expect to even know

the shapes of metric balls in configuration space. However, it is perhaps good enough

to find a conservative estimate of the size of the safely-reachable ball, and this section

will show that computing such an estimate might not be too difficult.

Many robotic systems of interest are embedded in two- or three-dimensional Eu-

clidean workspaces, where geometric quantities like distance are much easier to mea-

sure. Recall a few classical definitions related to configuration space (Mason 2001).

A system is a collection of particles embedded in a space, perhaps R2 or R3. We as-

sume that the system is divided into two closed sets: the robot(s), which we control,

and obstacles, which we don’t. A configuration gives the locations of all particles.

There are typically constraints on the possible configurations of the particles; the

configuration space is the space of configurations satisfying the constraints.
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In general, assume we have a configuration space parametrized by a vector q ∈ Rn

(or by an overlapping set of such parametrizations, an atlas), where n is the dimension

of the configuration space. We will further assume that the parameters are bounded;

let Cf be a bounded subset of Rn, or a finite collection of such subsets representing

possible values of the parameters for which there is no collision.

In order to compute a lower bound on how much the configuration can change

before a collision, we relax constraints on how particles can move. At a particular

configuration, there is some minimum Euclidean distance from the obstacles, over all

particles, e(q). We also expect that, over all particles, and over all possible configura-

tions, there is some maximum rate of change of location of any particle (measured by

Euclidean distance), vmax, with respect to a unit rate of change of the metric. Then

define

dsafe(q) = e(q)/vmax, (4.5)

the lower bound on the change in the metric before a collision; different sizes of cells

are show in Figure 4.4.

4.3.1 Example: 2R planar arm

As a concrete example, consider a planar, serial robot arm with a fixed base, and

two links that are each line segments of length one, shown in Figure 4.2. Let the

configuration space be parametrized by q = (θ1, θ2), and for simplicity, place joint

limits such that each parameter falls in the range [0, π].

We need a locally accurate metric d, which will describe distances in the con-

figuration space with obstacles removed, together with an optimal steering method.

Motivated by the observation that if each joint has the same constant upper bound
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Figure 4.4: Different size cells at various configurations in the configuration space of
the 2R arm.

on velocity, the time cost of moving from one configuration to another is determined

by the joint that needs to move the farthest, define

d(q, q′) = max(|θ′1 − θ1|, |θ′2 − θ2|). (4.6)

For this simple example, we know the shape of a metric ball: a square in the

parameter space (θ1, θ2), possibly cut by the joint limits. One simple optimal steering

method would be to move the joint that has farther to travel at maximum velocity

towards the goal angle, and the other joint at a scaled rate, so that both joints reach

their final angles at the same time: a line segment in the parameter space. The metric

ball is path convex with respect to this steering method.

If we sample a point in the parameter space (θ1, θ2), how big of a ball can we

place? We can compute the minimum Euclidean distance of points in the arm from
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the obstacles, e(q), easily. We can also compute vmax, the maximum rate of change of

e(q) over all trajectories in the configuration space, if configuration-space trajectories

are parametrized by arc length measured by the metric. Notice that the “fastest"

particle, over all particles, over all configurations, and over all unit-metric velocities

of the joints is the point at the far tip of the arm, when the arm is fully extended,

as the two joints move in the same direction at equal velocity. Simple differential

kinematics indicate that the maximum speed of this particle is 3. So for this arm,

dsafe(q) = e(q)/3.

4.3.2 Reachable balls for systems with Lipschitz continuity

In general, in order to ensure that a vmax exists that gives an upper bound on the rate

of change of distances in the workspace with respect to the metric, we can verify that

two properties hold for the system, metric, and steering method. First, that there

exists a Lipschitz constant that bounds the workspace velocity (over all particles) with

respect to change in configuration-space coordinates. Second, there exists a Lipschitz

constant that bounds the rate of change of each of the configuration-space coordinates

with respect to the metric along any path returned by the steering method. The upper

bound vmax can then be computed as the product of the Lipschitz constants.

4.4 Safe covers of free configuration space

There are two structures of interest: the free configuration space Cf , which we are

trying to approximate, and which will contain the union of “outer balls" described in

Theorem 4.1, and a slightly smaller subset Cε, all configurations that have distance
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at least ε > 0 to obstacles in workspace, which we will actually cover with cells that

are subconvex with respect to Cf . We will call this collection of cells a safe cover,

since paths from the steering method between boundary points of the cells remain

safely within Cf .

The shape of a metric ball in the configuration space is typically hard to obtain

(although this was easy for the toy example of the serial arm), and it can be hard

to understand how metric balls overlap and connect. We would also like to sample

the configuration space efficiently, and not place new samples inside cells that have

already been explored. Thus, in this section, we show how to construct a cover of Cε

by a set of hypercubes that only overlap along their boundaries; each hypercube is

path subconvex with respect to a subset of Cf .

4.4.1 Reachable hypercubes

Given the maximum velocity, vmax, of the robot over all configurations, at any con-

figuration q not in contact with a workspace obstacle (e(q) > 0), we can compute

a safe metric ball centered at q by Equation 4.5, and by Theorem 4.1, a subconvex

inner ball with half the radius. We would like to place a hypercube entirely within

this subconvex ball.

In general, given a ball of radius r centered at a configuration q, how large a

hypercube (also centered at q) can we place within the ball? Let ch = {p ∈ Cf : pi ∈

[qi − h, qi + h], ∀1 ≤ i ≤ n} be a hypercube with side length 2h. We need to choose

h so that every point of ch is reachable in time (or more generally, metric cost) r.

For some systems, there may be particularly good methods for computing such

an h. Here is a method which is perhaps more conservative than we might like, but

101



4.4 Safe covers of free configuration space

which is a fairly general approach.

Let a coordinate-steering function Si be a steering method that provides a path

between a configuration q and a configuration q + (0, 0, . . . , x, 0, 0), such that the

result of the motion is a change only in the ith parameter. (In the simplest case,

each Si might simply be the optimal steering method that we assume is available for

the system, S.) Let di(x) be the cost of applying steering method Si in coordinate

direction i to move a coordinate-distance x. For a symmetric system, if h satisfies

n∑
i=1

di(h) ≤ r, (4.7)

and each di(x) is non-decreasing in x, then ch ⊂ Br. We can find a suitable h value

by binary search on h, recomputing costs of coordinate steering methods and adding

them, and checking if 4.7 is satisfied.

For many systems, including systems without non-holonomic constraints, the

Reeds-Shepp car, and kinematic differential-drive models, each di(x) is non-decreasing.

We must note that for non-STLC systems, such as the Dubins car, this is not the

case.

4.4.2 Uniform grid cover

A simple approach to covering the space is to divide the space into cells of equal

size placed on a uniform grid. We want the cells to cover Cε, while being completely

contained within (and at least subconvex to) Cf . The following observation indicates

that small enough cubes, at configurations for which the workspace distance from

obstacles is small enough, are not part of Cε, and may be safely ignored.
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4.4 Safe covers of free configuration space

Bouter

BinnerQ

Cε
Cε/2

Cobs

Figure 4.5: Illustration of proof of Theorem 4.2.

Theorem 4.2. Let e(q) be the minimum Euclidean distance to obstacles and 2h(e(q))

be the side length of a subconvex hypercube inside the metric ball Bd
e(q)/vmax

[q] computed

in Section 4.4.1. For any ε > 0, and any hypercube Q centered at q with side length

2s, if e(q) < ε/2 and s < h(ε/2), then Q ∩ Cε = ∅.

Proof. Since e(q) < ε/2, the ball Bouter = Bd
ε/(2vmax)

[q] is in Cf . Consequently, the

ball Binner = Bd
ε/(4vmax)

[q] does not intersect with Cε and is subconvex with respect

to Bouter. If Q’s side length is at most h(ε/2), then Q must lie in the ball Binner by

construction and hence Q ∩ Cε = ∅; see Figure 4.5.

Theorem 4.2 suggests a naïve algorithm: partition the configuration space by a set

of hypercubes with side length h(ε/2) and discard all hypercubes with centers with

Euclidean distance less than ε/2 to obstacles in the workspace. Although this naïve

algorithm creates a safe cover of Cε, the algorithm is not efficient, since the algorithm

generates hypercubes with a uniform size.

4.4.3 Cube subdivision cover

In order to obtain some larger hypercubes, we use a recursive approach: for a hyper-

cube Q, if Q is subconvex with respect to Cf , then we keep this hypercube. Otherwise,

subdivide Q into 2n sub-hypercubes and find a cover recursively. By Theorem 4.2, we
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4.4 Safe covers of free configuration space

Algorithm 2: cubeCover
input : Configuration space C, error parameter ε
output: A cover of Cε by a set of hypercubes.
Let q be the center of C and 2s be the side length of C.
if C passed subconvexity test then

return a hypercube of C.
else if e(q) < ε/2 and s < h(ε/2) then

return ∅.
else

Divide C into 2n hypercubes and recurse.
return the union of all results.

can stop subdivision when the center has Euclidean distance less than ε/2 and has

a size smaller than h(ε/2). The result is a quadtree-like structure in n dimensions;

Figure 4.2 shows a simple example for the 2R arm.

The crucial part is to test if some cell is subconvex with respect to Cf , without

false positives. One way to test if a cell is subconvex is to compute a reachable ball

centered at the center of the cell. Then divide the radius of this ball in half, to get

a subconvex ball. Finally, compute the size h of a hypercube that fits in the smaller

ball, and compare h to the size of the cell.

Algorithm 2 shows the approach, which builds the cell cover in depth-first order.

Alternatively, one could explore the cover in a breadth-first order, so that large cells

would be explored first, and the space could be constructed in an on-line fashion.

We use the 2R planar arm as an example. Since any hypercube in the free space

of the arm is convex, testing the subconvexity of a hypercube only requires check-

ing whether the hypercube is collision-free. Because reachable balls are themselves

hypercubes for this simple example, if the side length of Q is smaller than dsafe(q),

then Q must be collision-free. Thus, the decomposition algorithm can be applied very

simply to the 2R planar arm system; see Figure 4.2.
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4.4 Safe covers of free configuration space

4.4.4 Covering collision space

Even if sampling a hypercube center results in an actual collision, Algorithm 2 subdi-

vides that cube, since the hypercube may contain smaller hypercubes that are collision

free and convex, or subconvex to Cf , with respect to the steering method. This is

problematic, since the effect is that all of collision space, the part of C inside ob-

stacles, is divided into hypercubes of size that may be as small as h(ε/2), typically

dominating computational and space costs for the algorithm.

Fortunately, there is a relatively easy solution. For each sampled hypercube center

that results in a collision, we may compute a conservative bound on penetration depth:

the minimum distance (as measured by d in the configuration space) required to escape

the collision space. We use a technique similar to that used to compute bounds

on distances to obstacles in configuration space. First, for a given configuration,

we compute the maximum Euclidean distance, over all points on the robot, to the

surface of the obstacle in the workspace, eescape, a quantity analogous to e(q). Then

the penetration distance is at least equal to descape = eescape(q)/vmax.

If the current hypercube fits inside a ball of size descape, then the hypercube need

not be subdivided. The hypercube may be discarded if we are interested only in

the free space; in fact, we may add ε/2 to eescape(q), allowing many of the smallest

hypercubes along the boundary be to discarded. Or, we may store these hypercubes

if we are interested in problems that require information about topological properties

of the obstacle space, such as proving non-existence of paths (McCarthy, Bretl, and

Hutchinson 2012).

105



4.4 Safe covers of free configuration space

4.4.5 Larger cells, and cell merging

The computations of dsafe and of descape based on workspace information, as described

above, are simple, fast, and too conservative. There are several ways in which the

estimates may be improved, allowing larger cells.

First, e(q) is the distance of the closest point on the robot to the obstacle, but

the fastest point (with respect to the metric) may be some other point. So at some

configuration, consider each point on the robot individually. For a given point p,

compute the distance to the obstacles in workspace, e(q, p). Now also compute the

maximum speed for that point, vmax(p), over all configurations. For example, for the

2R arm, a point at the end of the first link would have a maximum workspace speed

of one, not three. Divide to compute dsafe(p), and choose dsafe as the minimum of

dsafe(p) over all points p on the robot.

Since we expect the robot to contain a continuum of points, finding this minimum

can be difficult. We may, however, divide the robot up into pieces (for example,

links on the arm), and for each piece, compute a shortest distance and highest speed.

In our implementation of the hypercube cover algorithm for the arm, we took this

approach, dividing the arm into links, computing dsafe for each link, and taking the

minimum.

Second, computing vmax over all configurations is too conservative, since we are

only interested in whether configurations near the current sample, q, may collide. For

example, if the arm is folded back on itself (θ2 = π), then the maximum speed of

any point should be much less than three in the local region. It is not clear how to

directly compute a dsafe value taking this into account, since the maximum speed over

the dsafe interval depends on the change in the configuration, and the change in the
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4.5 Existence of optimal paths in the cover

configuration depends on the speed and the length of the interval.

However, we can conduct an exponential search (Bentley and Yao 1976) for dsafe.

First, assume that we’re given some interval d̂ and an initial configuration q. We can

construct an oracle that will tell us whether d̂ is either definitely safe, or possibly

unsafe. For example, for the arm, we might choose motions that move the maximally

extend the arm within the permitted interval, use the farthest point of extension to

compute vmax, and check if d̂vmax > e(q). If so, the interval d̂ is possibly unsafe;

divide d̂, and repeat until a satisfactory (but conservative) approximation of dsafe

value has been found. We used such an exponential search in the example hypercube

decompositions for the nR arms below.

Finally, it should be noted that adjacent free convex cells may be merged into a

single cell, and we used this fact to merge some cells for planar arms. Interestingly,

adjacent subconvex cells cannot necessarily be merged; we do not merge adjacent

cells for the Reeds-Shepp car example, but would like to understand better how

compression of groups of such adjacent cells might be done.

4.5 Existence of optimal paths in the cover

Sometimes, optimal trajectories do not exist in the free configuration space; for exam-

ple, Desaulniers showed that for the Reeds-Shepp car among simple polygonal obsta-

cles, there can exist pairs of configurations such that given any connecting trajectory

with a finite number of control switches, there is a shorter connecting trajectory:

chattering (Desaulniers 1996). However, optimal trajectories exist in finite sets of

subconvex cells and chattering does not occur:
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4.5 Existence of optimal paths in the cover

Theorem 4.3. Given a pair of points contained within a finite, connected set of cells

subconvex to the free configuration space, with corresponding metric that is contin-

uous along the boundaries of each cell, there exists an optimal trajectory that can

be described by a non-repeating sequence of cells c1, . . . , cm, together with one point

pi ∈ ci for each cell except the last, such that this optimal trajectory consists of opti-

mal trajectories connecting the start to p1, p1 to p2, etc, and finally from pm−1 to the

goal.

Proof. Since the cells are connected, there is a set of curves that connect the given

points; let these curves be parameterized by arc length under the given metric. Any

such connecting curve will enter a cell for a first time, and exit each cell (except

the last) for a last time, sl. If we replace this section of the curve with an optimal

trajectory within the cell, the new curve will certainly be no longer than the original.

Thus, to find an optimal curve, it is sufficient to consider the set of curves connect-

ing the start and goal, with one locally optimal section per cell. Each such curve can

be described by the discrete structure of the curve (the non-repeating sequence of cell

indices, sorted by increasing order of sl values), together with parameters describing

the configurations at which the curve leaves each cell for the last time. Since there

are finitely many structures (upper bounded by the cardinality of the power set over

the set of cells), we need only show that for each structure, an optimal trajectory

exists.

The problem of finding the minimum cost for a particular structure is a finite-

dimensional optimization (there are finitely many parameters describing final exits

from cells) over a compact set (the boundaries of the cells) of a continuous function

(the finite sum of metric functions over the cells); an optimal solution therefore exists,
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4.6 Case study: planar arms

(a) 3R planar arm (b) 4R planar arm

Figure 4.6: Example trajectories of 3R and 4R planar arms.

as does a corresponding optimal trajectory.

We expect Theorem 4.3 to be useful for designing motion planning algorithms: no

cell ever needs to be visited twice, although both the sequence of cells and the final

exit points from each need to be determined.

4.6 Case study: planar arms

To find a trajectory connecting an initial configuration q0 and a goal configuration

qg, we create samples along the boundary of all hypercubes at some resolution. We

use the steering method to compute the distance between every pair of samples in

the same hypercube. Then, we find the shortest path in the graph induced by these

samples, using a straightforward A* search.

The heuristic function we used is a lower bound on the distance between the

sample represented by the state to the goal, which can be easily computed based
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4.7 Case study: Reeds-Shepp car

scenario ε number of cells running time in seconds
Figure 4.6a 0.2 1350697 148
Figure 4.6b 0.3 4630896 332

Table 4.1: Performance for robot arm system.

on the Euclidean distance in the workspace and the maximum velocity. For specific

systems, we expect designing a more accurate heuristic function to be possible.

We take the 3R planar arm 4R planar arm as test cases for the planning algo-

rithm; two example resulting trajectories are shown in Figure 4.6. We implement the

algorithm in C++ and conducted tests on a modern desktop machine (iMac) with

an Intel Core i5 2.7 GHz CPU and 16GB RAM. Table 4.1 shows the running times,

memory, and number of cells generated while constructing representations of c-space

for the figures shown. Most of time is spent in the collision detection, since we only

use an elementary method to check collision.

4.7 Case study: Reeds-Shepp car

In this section, we show how to apply the decomposition algorithm to other systems,

in which metric balls are hard to compute, including non-holonomic systems, using the

Reeds-Shepp car as an example. Remember that the crucial part of the decomposition

algorithm is to test a given hypercube Q is subconvex with respect to Cf without false

positive. We gave a general approach based on Lipschitz continuity of the steering

method in Section 4.4. However, the resulting hypercubes tend to be smaller than

we would like.

Here, we give another (numerical) procedure for testing the subconvexity of a

hypercube. Compute the swept volume in the workspace for all trajectories connecting
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4.7 Case study: Reeds-Shepp car

(a) (b)

Figure 4.7: Several example trajectories in different environments of the Reeds-Shepp
car. Orange triangles indicate common goal configurations. Shaded polygons are
obstacles in workspace. Solid curves around obstacles are the boundary Cε in work
space. Subconvex hypercubes are projected into workspace as cubes. Dark green
boundaries show the grown obstacles in the workspace.

all pairs of configurations in the hypercube. If the swept volume is collision free, then

this hypercube is subconvex by definition.

Computing this swept volume analytically is difficult for most systems. Thus,

instead of computing swept volume analytically, we approximated the swept volume

numerically in the following way: first, densely sample configurations within the

hypercube and use the steering method to compute trajectories between all pairs of

configurations. Second, compute an approximate bounding volume for all trajectories

in the workspace. If the bounding volume is collision free, then this hypercube can

be considered subconvex. By using this numerical testing procedure, the size of the

subconvex hypercube found by the decomposition algorithm can be greatly increased.

Optimal trajectories for the Reeds-Shepp car can be found analytically, and we
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4.8 Conclusions and future work

scenario ε number of cells running time in seconds
Figure 4.7a 0.2 24216563 312
Figure 4.7b 0.15 25218358 66

Table 4.2: Performance for Reeds-Shepp car.

use the optimal trajectory solver as the steering method (Laumond 1998). The con-

figuration space to be [−π, π]3 and the car is represented as an isosceles triangle with

base length 0.25 and height 0.25. The resulting trajectories are shown in Figure 4.7

and the performance of Algorithm 2 for 4R planar arm system is in Table 4.2.

4.8 Conclusions and future work

We have presented a definition of convexity that we believe is useful for understand-

ing the interplay between local, optimal steering methods and the global structure

of the configuration space. This is our first work on this problem, and we have not

yet conducted exhaustive experimental exploration of the properties of the cell de-

compositions described. Initial results are promising, however, in that for low-DOF

systems, we are able to construct apparently very good trajectories from constructed

cell-decompositions, and cells corresponding to large open spaces in the workspace

are quite large.

It may not be too surprising that a very large number of cells is needed to represent

the area of the configuration space near obstacles, or that we do not escape the curse

of dimensionality. We intend to explore methods, perhaps exploiting properties such

as visibility, that allow sparser representations near obstacles while still allowing some

approximation guarantees about optimality to be maintained. We would also like to

explore topological properties of configuration spaces using these cell decompositions,
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4.8 Conclusions and future work

along the lines of recent work by Bhattacharya et al. (Bhattacharya et al. 2013).
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Chapter 5

Maximum k-survivability

5.1 Introduction

How should a set of robots move through a dangerous environment to accomplish

objectives? Is it better for the robots to travel together, or should the robots split

up? What is the relationship between survival and diversity of actions?

As an example, consider the following whimsical planning problem: n ants must

migrate from one nest to another through a field containing both obstacles and

antlions, which make disc-shaped traps. If we assume a uniform distribution of trap

locations, which n paths should the ants follow, if the ants must decide their paths

before moving and cannot reroute during movement?

One idea might be to maximize the expected number of surviving ants. However,

the best strategy for this problem turns out to be uninteresting and unwise: find the

safest path for a single ant (for simplicity, assume there is a unique safest path), and

have all ants follow that path. This solution is not robust – a single trap could destroy

the entire colony. Therefore, we consider a problem that is more suitable if ants are
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Figure 5.1: Toy example of a high 1-survivability set of three paths from Department
of Computer Science (Sudikoff) to food court (1953 Commons) on Dartmouth College
campus, where gray circles represent the discretization of the environment.1

expendable: maximize the probability that at least some k (with k ≤ n) ants survive.

If the number of traps is unknown, the solution may contain up to n unique paths.

Figure 5.1 shows an example problem for which paths have been selected to achieve

high survivability of routes across a college campus. The paths are short, interestingly

diverse, and may be of practical interest if there is actual danger, traffic congestion,

or surveillance to be avoided.

We believe this to be the first work that explicitly studies the theoretical impli-

cations of robot expendability. Path diversity has been explored in several settings,

with applications including motion planning (Branicky, Knepper, and Kuffner 2008;

Knepper and Mason 2009; Green and Kelly 2011; Knepper 2011; Knepper, Srinivasa,

and Mason 2012; Quispe, Kunz, and Stilman 2013; Voss, Moll, and Kavraki 2015),

115
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robust routing in computer networks (Xu et al. 2006), and dissimilar paths in trans-

portation (Dell’Olmo, Gentili, and Scozzari 2005). Approaches to finding diversity

typically involve defining an arbitrary distance metric that describes separation of

paths, and finding solutions that balance distance between paths against length of

paths, using linear or non-linear weights, constrained optimization, or by analyzing

the Pareto frontier.

Instead of defining an arbitrary pairwise path diversity metric or choosing arbi-

trary tradeoffs between path lengths and diversity metrics, our approach proceeds

directly from the threat model, since we believe that diversity should be considered

as a means rather than an end.

We define k-survivability to measure the quality of paths in a stochastic threat

environment. Sets of paths with high k-survivability naturally balance length and

diversity. Although choosing sets of paths to maximize k-survivability is NP-hard,

we design a complete algorithm. Since the maximization algorithm is computationally

infeasible except for k = 1 and n = 2, we also design a practically faster heuristic

method that finds paths with high k-survivability.

5.1.1 Model

We focus on the discrete problem in which the environment is represented by a point

set D and the free space is represented by a graph G = (V,E), where V ⊆ D.

Unknown stochastic dangers are called traps. Several models of traps will be discussed

in the next section.
1The campus map is from Dartmouth College website and the street data is from OpenStreetMap.

Since the data from OpenStreetMap is inconsistent with the campus map, some grids are inside
buildings on the map.
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5.1 Introduction

Start

End

Figure 5.2: Eight paths with high 1-survivability. Small gray circles are vertices of G
(4-connected). Squares are obstacles; diamonds are example fixed traps.

Our problem is to find paths for n point robots such that the i-th path connects the

designated start vertex si ∈ V and the designated goal vertex gi ∈ V ; see Figure 5.2.

Robots cannot communicate, do not have sensors, and cannot reroute; both obstacles

and traps are time-independent.

We define k-survivability to be the probability that at least k paths successfully

connect their (perhaps different) starts to goals. The k-survivability problem (kSP)

is formalized as:

Input = (G,M, {(si, gi)}ni=1, k), where

(a) G = (V,E) denotes the free space.

(b) M is a trap model (see next section).
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(c) n point robots have start locations si ∈ V and goal locations gi ∈ V

for all 1 ≤ i ≤ n.

(d) survivability parameter k, with 1 ≤ k ≤ n.

Output = P , a list of n paths maximizing k-survivability such that for

all 1 ≤ i ≤ n, Pi ∈ P connects si and gi.

Trap models

We now discuss two trap models: fixed traps, which have known shapes, and variable

traps, for which the shape is unknown but drawn from some known distribution. Even

under the fixed trap model, a different trap shape (or even multiple traps) may be

placed at each vertex.

Fixed traps. A fixed trap F is a subset of D. When a fixed trap F is in effect,

all paths passing through F are blocked. A fixed trap model M = {(Fi, pi)}|M |i=1 is

a collection of fixed traps and their corresponding, independent probabilities. If all

probabilities are equal, then the model is a uniform fixed trap model.

For example, under a uniform fixed r-disc trap model, each vertex has equal and

independent probability to be the center of a disc trap of radius r. Figures 5.3a

and 5.3b show examples.

Variable traps. A variable trap A is represented by a distribution over a set of

fixed traps. A variable trap model M is represented by a collection of variable traps

and corresponding probabilities: M = {(Ai, pi)}|M |i=1. For example, under a variable

r-disc trap model, each vertex has identical and independent probability to be the

center of a disc trap, whose radius follows a geometric distribution with mean r. Two

118



5.2 Related work

(a) Paths with the highest 1-
survivability under the fixed
1-disc trap model.

(b) Paths with high 1-
survivability under the fixed
3-disc trap model.

(c) Paths with high 1-
survivability under the
variable 5-disc trap model.

Figure 5.3: Example paths for two robots in different environments and parameters.
In Figure 5.3a, since r = 1, the optimal solution has parallel subpaths with distance
two to avoid being destroyed by one 1-disc easily.

paths with high 1-survivability under the variable 5-disc trap model are shown in

Figure 5.3c.

5.2 Related work

We briefly summarize related work in location theory, motion planning, graph theory,

computer networks, and transportation.

The maximum diversity problem in location theory

In location theory, the maximum diversity problem is to find m points maximizing

diversity among given points in a metric space. Although location theory researchers

are more interested in finding diverse points, their methods can be adapted to find

diverse paths as long as a metric space on paths can be defined. Formulations include

119



5.2 Related work

(a) Remote-edge: distance of
the closest-pair.

(b) Remote pseudoforest: sum
of the distances to nearest
neighbors.

(c) Remote-clique: sum of mu-
tual distances.

Figure 5.4: Illustration of maximum diversity problems. Each point in the circle
represents a trajectory. Maximum diversity problem is to choose k trajectories so
that the objective function is maximized.

(Chandra and Halldórsson 2001):

(a) remote-edge problem: find a set of points maximizing the minimum mutual dis-

tance (also called p-dispersion problem, Kuby 1987). There is a 2-approximation

algorithm for remote-edge problem (Tamir 1991; White 1991) and finding a bet-

ter approximation algorithm will imply P = NP (Ravi, Rosenkrantz, and Tayi

1994).

(b) remote-pseudoforest problem: find a set of points maximizing the sum of the

distance to the nearest neighbors (also called p-defense problem, Moon and

Chaudhry 1984). There is an O(lg n)-approximation algorithm for remote-

pseudoforest problem (Chandra and Halldórsson 2001) and finding an approxi-

mation algorithm with approximation ratio smaller than 2 will imply P = NP

(Halldórsson et al. 1999).
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(c) remote-clique problem: find a set of points maximizing the sum of mutual

distances (also called max-avg facility dispersion problem, Ravi, Rosenkrantz,

and Tayi 1994; or maximum dispersion problem, Kuby 1987). There is a 2-

approximation algorithm for remote-clique problem (Hassin, Rubinstein, and

Tamir 1997).

Since the maximum diversity problem is difficult, several heuristics have been

proposed; Martí et al. give a comprehensive survey for heuristics and metaheuristics

for the maximum diversity problem (Martí et al. 2013).

Diverse trajectories generation in motion planning

Increasing the diversity of trajectories in motion planning has been studied by several

researchers (Branicky, Knepper, and Kuffner 2008; Knepper and Mason 2009; Green

and Kelly 2011; Knepper 2011; Knepper, Srinivasa, and Mason 2012; Quispe, Kunz,

and Stilman 2013; Voss, Moll, and Kavraki 2015). Green’s and Kelly’s approach is

to consider a distance semi-metric space (X, δ) of trajectories and they define the

diversity of trajectories as the minimum distance between trajectories (Green and

Kelly 2011). On the other hand, Knepper and Mason define path space to be a metric

space of trajectories (Knepper, Srinivasa, and Mason 2012).

Our work is most related to Erickson’s and LaValle’s work (Erickson and LaValle

2009). They propose a definition of survivability that measures the correlation of

damage on paths when a random disc obstacle is placed on a path. Whereas sur-

vivability favors separated paths, k-survivability is a direct probabilistic measure of

survival that in some cases can be maximized by allowing robots to follow overlapping

short paths.
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Trajectory diversity in the Euclidean plane. In the Euclidean plane, finding a

trajectory connecting two points among polygonal obstacles can be solved efficiently

(Hershberger and Suri 1999). One possible definition for the diversity of trajectories in

the Euclidean plane is the number of distinct homotopy classes of trajectories (Bhat-

tacharya, Likhachev, and Kumar 2012). Finding shortest paths subject to topological

constraints has been studied (Hershberger and Snoeyink 1994; Bespamyatnikh 2003;

Efrat, Kobourov, and Lubiw 2006; Verdière and Erickson 2010). Eriksson-Bique et al.

studied the problem of finding k shortest trajectories with distinct homotopy classes

(Eriksson-Bique et al. 2015).

Single trajectory in a threat environment. Finding trajectories in a threat en-

vironment has been studied for aircrafts (Zabarankin, Uryasev, and Murphey 2006),

UAVs (Miller et al. 2011), vehicles (Boidot, Marzuoli, and Feron 2015), and ships (Ba-

bel and Zimmermann 2015). Our work differs in that the threat model is probabilistic,

and in the search for multiple trajectories.

Path diversity on graphs

Finding a shortest path from one vertex to another on a graph is a fundamental

problem in combinatorial optimization. One possible definition for the diversity of

paths on graphs is the number of different paths. The problem of finding k-shortest

paths on a graph has also been well-studied (Yen 1971; Eppstein 1998; Hershberger,

Maxel, and Suri 2007; Gotthilf and Lewenstein 2009; Roditty 2010; Aljazzar and Leue

2011; Frieder and Roditty 2014).

Since paths sharing an edge may be vulnerable, researchers tried to find (ver-

tex/edge) disjoint paths. The problem of finding shortest disjoint paths has been
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considered (Suurballe 1974; Fortune, Hopcroft, and Wyllie 1980; Suurballe and Tarjan

1984; Li, McCormick, and Simchi-Levi 1990; Li, McCormick, and Simchi-Levi 1992;

Eilam-Tzoreff 1998; Bhatia, Kodialam, and Lakshman 2006). Disjointness seems a

strong constraint since path length may increase significantly, so several relaxations

of disjoint paths problem have been studied. For example, the problem of finding k

paths minimizing shared edge (Omran, Sack, and Zarrabi-Zadeh 2013), the problem

of finding k shortest paths without sharing more than r edges (Assadi et al. 2014), and

the problem of finding the minimum set of paths to ensure shortest path is available

under any k edges failure (Zhang, Xu, and Wen 2015) have been studied recently.

When each vertex/edge has a failure probability, short and reliable paths are de-

sirable. Finding a shortest path subject to reliability constraints can be considered

as resource-constrained shortest-path problems (Joksch 1966). One problem that is

related to maximum arrivability problem is the reliable two-path problem with arc

sharing (RTP-S, Andreas and Smith 2008). The difference between maximum k-

survivability problem and RTP-S is that the maximum k-survivability problem treats

both length and survivability in the objective function but RPT-S treat the surviv-

ability, which they called reliability, as a constraint.

Path diversity in network

One goal of network design is robustness and one way to improve the robustness of a

network is to increase the path diversity between end-points (Bhandari 1999). Diverse

routing problems has been studied for more than a decade using graph theory (Cidon,

Rom, and Shavitt 1999; Brumbaugh-Smith and Shier 2002; Ho, Tapolcai, and Cinkler

2004; Xu et al. 2006; Stefanakos 2008; Zotkiewicz, Ben-Ameur, and Pióro 2010; Zheng
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et al. 2010; Lee, Modiano, and Lee 2010; Yuan and Wang 2011; Gomes and Zotkiewicz

2014). Rohrer et al. define the diversity of paths by using the distance on graphs

and geographic distances (Rohrer, Jabbar, and Sterbenz 2014), which is similar to

the idea of path space (Knepper, Srinivasa, and Mason 2012).

Dissimilar paths in transportation

The problem of finding dissimilar paths has been studied in transportation, since

dissimilar paths are beneficial for hazardous waste transportation for safety reasons

(Akgün, Erkut, and Batta 2000; Dell’Olmo, Gentili, and Scozzari 2005).

5.3 Computing k-survivability

Since k-survivability is independent of the order of vertices along paths, paths are

represented as sets of vertices.

5.3.1 Computing k-survivability under the fixed trap model

Given a fixed trap modelM = {(Fi, pi)}|M |i=1 and a path P on a graph G, the forbidden

index set of P is Forbid(P ) = {i | P ∩Fi 6= ∅}. The probability that P is not blocked

equals Pr(P ) =
∏

i∈Forbid(P )(1 − pi). Similarly, for a set of paths P = {P1, . . . , Ph},

the forbidden index set of P is Forbid(P) = ∪P∈P Forbid(P ). The probability that

all paths in P are not blocked equals Pr(P) =
∏

i∈Forbid(P)(1− pi).

Given a set of paths P , 1-survivability can be computed by using the inclusion-
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exclusion principle as follows:

Survive1(P) =
∑

S⊆P,S6=∅

(−1)|S|+1 Pr(S)

The computation of k-survivability is similar but more time-consuming. For a set of

paths P and a positive integer k, we define comb(P , k) = {S | S ⊆ P , |S| = k}; that

is, comb(P , k) contains all k-subsets of P . Given a set of paths P , k-survivability can

be computed by using the inclusion-exclusion principle:

Survivek(P) =
∑

R⊆comb(P,k),R6=∅

(−1)|R|+1 Pr(∪S∈RS)

5.3.2 Computing k-survivability under the variable trap model

Let M = {(Ai, pi)}|M |i=1 be a variable trap model. Each variable trap Ai can be rep-

resented as a collection of fixed traps and their probabilities: Ai = {(Fi,j, pi,j)}|Ai|j=1.

Given a path P on a graph G, the forbidden index set of P with respect to the i-th

variable trap is Forbid(P, i) = {j | P ∩ Fi,j 6= ∅}. The probability that P is not

blocked equals Pr(P ) =
∏

i(1 −
∑

j∈Forbid(P,i) pi,j). The calculation of k-survivability

can be derived in the same manner as under the fixed trap model.

5.4 Theoretical results

In this section, we show that kSP is NP-hard. We also show that maximizing k-

survivability leads to diversity in the sense that at most k robots will follow the same

path, if other paths are available.
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5.4.1 NP-hardness of kSP

We show that kSP under the uniform fixed trap model is NP-hard with n = k = 1.

Since the fixed trap model is a special case of the variable trap model, kSP under the

variable trap model is also NP-hard.

Our proof, similar to the NP-completeness proof of the minimum color path prob-

lem (Yuan, Varma, and Jue 2005), is a reduction from the minimum set cover problem

(MSCP), defined below, to kSP.

Input = (S, C), where

(a) S = {1, . . . , a} is a set of positive integers from 1 to a.

(b) C = {C1, . . . , Cb} is a collection of subsets of S.

Output = C ′ ⊆ C a minimum cardinality collection of subsets whose

union is S.

Theorem 5.1. kSP under the uniform fixed trap model with n = k = 1 is NP-hard.

Proof. Let (S, C) be an instance of MSCP. We construct an instance (G,M, {(s, g)}, 1)

of kSP in polynomial time such that an optimal solution in kSP can be transformed

into a minimum set cover of (S, C) and vice versa.

We construct G = (V,E), which is a subgraph of a grid graph, as follows. First,

for each element i ∈ S, we create three vertices v0,0i = (4i, 0), v1,0i = (4i + 1, 0), and

v3,0i = (4i + 3, 0). We create edges (v0,0i , v1,0i ) for all 1 ≤ i ≤ a and edges (v3,0i , v0,0i+1)

for all 1 ≤ i < a. Our idea is to design a gadget for each element i ∈ S such that i

can be covered by a set in C if and only if a solution of kSP, which is a path, passes

through v0,0i and v3,0i .
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v0,0i v1,0i v3,0i v0,0i+1

v1,1i v2,1i v3,1i

v1,2i v3,2i

v1,3i v2,3i v3,3i

Figure 5.5: Gadget used in the proof of Theorem 5.1.

Second, for each j ∈ {1, . . . , b}, we create vertices v1,ji = (4i + 1, j) and v3,ji =

(4i + 3, j) for all 1 ≤ i ≤ a. Then, we create edges (v1,ji , v1,j+1
i ) and (v3,ji , v3,j+1

i ) for

all 0 ≤ j < b. Intuitively, the j-th row represent the j-th set in C.

Finally, we create vertices v2,ji = (4i+ 2, j), edges (v1,ji , v2,ji ), and edges (v2,ji , v3,ji )

for each i ∈ Cj. We use these vertices to model the constraint that every element in

S is covered by a set in C; see Figure 5.5.

The uniform fixed trap model isM = {(Fj, p)}bj=1 for an arbitrary choice p ∈ (0, 1),

where Fj = {v2,ji | i ∈ Cj}. The start vertex is v0,01 and the goal vertex is v3,0a .

Let P be an optimal solution of the instance (G,M, {(v0,01 , v3,0a )}, 1) of kSP. By

the construction of the graph, P passes every vertex v3,0i for all 1 ≤ i ≤ a. Moreover,

for each 1 ≤ i ≤ a, the only way to get v3,0i is to pass through a vertex v2,ji for some

1 ≤ j ≤ b. Since v2,ji exists if and only if i ∈ Cj, the set C ′ = {Cj | ∃1≤i≤aP passes v2,ji }

is a set cover of S.

Moreover, since all traps have the same probability, maximizing 1-survivability

is the same as minimizing {j | ∃1≤i≤aP passes v2,ji }. Hence, C ′ is also an optimal

solution of MSCP.
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Transforming an optimal solution of MSCP to an optimal solution of kSP can be

done similarly.

Note that this reduction relies on the fact that individual fixed traps might be

formed from disconnected sets of vertices. However, even if we restrict individual

fixed traps to be contiguous, the problem still appears to be hard, since kSP under

the uniform fixed trap model with n = k = 1 can be used to solve the barrier re-

silience problem (Chan and Kirkpatrick 2014). The complexity of the barrier resilience

problem is still open and currently no polynomial time algorithm exists.

Even approximating an optimal solution is hard:

Theorem 5.2. No polynomial time algorithm with constant approximation ratio for

kSP with n = k = 1 under the uniform fixed trap model exists unless P = NP .

Proof. We show that if a r-approximation polynomial time algorithm for kSP exists

for some constant r, then we can solve MSCP in polynomial time.

Let (S, C) be an instance of MSCP and c be the size of a minimum set cover.

By using the same reduction as in the proof of Theorem 5.1, we obtain an instance

(G,M, {(s, g)}, 1) of kSP. Since c is the size of a minimum set cover, the optimal

solution of (G,M, {(s, g)}, 1) has value (1− p)c.

Suppose that a r-approximation algorithm for kSP exists, 0 < r < 1, and this

approximation algorithm is guaranteed to find a solution with 1-survivability at least

r(1−p)c. Since the choice of probability p in the reduction is arbitrary, we set p to be

a value satisfying r > (1−p). Because r(1−p)c > (1−p)c+1 and a path can only pass

through an integral number of fixed traps, the approximation algorithm must return

a solution with value (1− p)c, which is an optimal solution of (G,M, {(s, g)}, 1) and

can be transformed into an optimal solution of (S, C) in polynomial time.
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5.4.2 Properties of kSP

We now show that k-survivability leads to diverse paths.

Observation 5.3. For kSP under the fixed trap model with k = 1, if n paths with

different forbidden index sets exist, then any optimal solution does not have duplicate

paths.

Proof. Since paths with the same forbidden index sets are either all-safe or all-blocked,

using paths with different forbidden index sets improves 1-survivability.

Observation 5.4. For kSP under the fixed trap model, if at least dn/ke paths with

different forbidden index sets exist, then at most k robots follow the same path in an

optimal solution.

Proof. If more than k robots follow the same path, moving one robot to another path

always improves k-survivability.

Note that when k increases, the number of different paths in optimal solutions

may decrease. See figure 5.6, which shows some high-survivability paths for different

values of k.

5.5 Algorithms

In this section, we first describe a complete algorithm to find optimal solutions. Then,

we describe a typically faster heuristic method to find good solutions. For simplic-

ity, we assume that all robots have the same start s and the same goal g, but this

assumption may be easily lifted.
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(a) k = 1. All robots take dif-
ferent paths.

(b) k = 2. Robots form two
groups.

(c) k = 4. All robots take the
same path.

Figure 5.6: Example paths with high k-survivability for different values of k under
the fixed 5-disc trap model.

5.5.1 Complete algorithm

In this section, we design a complete state space search algorithm for kSP under the

uniform fixed trap model with n = 2 and k = 1. Although it is easy to extend this

algorithm for larger k and n, solving even small problems becomes computationally

infeasible with this approach.

We need several definitions. A path P is an ordered list of vertices. A path P ′

extends another path P , if P is a prefix of P ′. A path P ′ is a feasible extension of P

if either P ends at g and P ′ = P , or P does not end at g and P ′ extends P by one

vertex. Let Ext(P ) denote the set of all paths that end at g and are extensions of

path P .

The complete algorithm is a state space search algorithm. Each state t consists

of two simple paths (P1, P2) starting from s. A state (P ′1, P ′2) is a successor of a state

(P1, P2) if P ′1 and P ′2 are feasible extensions of P1 and P2 respectively.
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The initial state is (〈s〉, 〈s〉) and the goal states are all states (P1, P2) that both

P1 and P2 end at g. We will find one goal state with maximum 1-survivability.

Since the state space is a tree, we can use a brute-force approach to traverse the

tree to find an optimal solution. In order to speed up the brute-force approach, we

design a heuristic function h of states, where h(t) is an upper-bound of 1-survivability

of all goal states that are reachable by state t. As long as h(t) is optimistic, then

the tree search will find an optimal solution. Using the heuristic function, we can

prune unnecessary branches and stop search when the algorithm reaches one of the

goal states for the first time.

We construct a heuristic function h as follows. Remember that when n = 2, 1-

survivability of two paths P1 and P2 is Pr({P1}) +Pr({P2})−Pr({P1, P2}). Suppose

that there is a function ĥ for paths that ĥ(P ) is an upper bound of Pr({P ′}) for all

P ′ ∈ Ext(P ). Then, we obtain a heuristic function h((P1, P2)) = ĥ(P1) + ĥ(P2) −

Pr({P1, P2}).

Now, we show how to construct a function ĥ. Let M be the uniform fixed trap

model. For any path P , 1-survivability of P is (1−p)|Forbid(P )|, which only depends on

the size of Forbid(P ). Let LB(P ) be the minimum number of additional fixed traps

that any extension of path P must pass through to reach the goal. Formally,

LB(P ) = min
P ′∈Ext(P )

|Forbid(P ′) \ Forbid(P )|.

Then, (1−p)|Forbid(P )+LB(P )| is the least upper bound of Pr({P ′}) for all P ′ ∈ Ext(P ).

Note that computing LB(P ) exactly is the same as solving kSP under the uniform

fixed trap model with n = k = 1, which is a NP-hard problem by Theorem 5.1. In

order to get an upper bound of all Pr({P ′}), where P ′ is in Ext(P ), it suffices to
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Algorithm 3: Heuristic algorithm for kSP
input : (G,M, {(si, gi)}ni=1, k, w, T ), where (G,M, {(si, gi)}ni=1, k) is an

instance of kSP, w is a parameter of the path generation, and
T is a parameter of the path improvement.

output: n paths connecting (si, gi) respectively.
R = path_generation(w)
S = path_selection(R)
S = path_replacement(S,R)
Q = ∅
while |Q| < T do
S = path_shortening(S)
Q = Q ∪ {S}
S = escape(S)

return the best solution in Q.

obtain a lower bound of LB(P ).

Our idea of obtaining a lower bound of LB(P ) is as follows. Let Fi be a fixed trap

that i does not belong to Forbid(P ). If an extension P ′ of P passes through one vertex

of Fi, then charge P ′ by 1/|Fi ∩V |. Thus, if an extension P ′ of P passes through one

v ∈ V , then we charge P ′ by
∑

i/∈Forbid(P ),v∈Fi 1/|Fi ∩V |. The minimum charge of any

extension of P that reaches the goal, LB′(P ), can be computed efficiently by using a

shortest path algorithm.

It is easy to see that LB′(P ) is a lower bound of LB(P ) and we know

LB′(P ) ≤ LB(P ) ≤ max
i
|Fi| · LB′(P ).

Thus, we can use ĥ(P ) = (1− p)|Forbid(P )+LB′(P )| to obtain a heuristic function h.

132



5.5 Algorithms

5.5.2 Heuristic algorithm

The previous algorithm uses a heuristic function for pruning, but is guaranteed to find

optimal solutions. The heuristic algorithm described in this section does not provide

this guarantee. There are three phases: path generation, path selection, and path

improvement. Due to the high-dimensional search space of kSP, we first generate a

set of candidate paths with size w � n to reduce the search space to these w paths.

Then, we heuristically find n paths among the set of candidate paths as an initial

solution. Finally, we use local search to improve the solution until the process is

stabilized. Algorithm 3 outlines the approach.

Since computation of k-survivability is potentially expensive, we only use the

computation of k-survivability in the last phase. Moreover, this heuristic algorithm

only needs a black box to compute k-survivability, and the same algorithm can be

used for both fixed trap and variable trap models.

Path generation

The purpose of this phase is to generate a set R of w � n paths. We design two

methods: random generation, and an iterative penalty approach.

Random generation method. To generate one random path, we generate a ran-

dom spanning tree first and then pick the unique path between s and g on the tree.

We repeat this process until w paths are generated.

Iterative penalty method. Another way to generate w paths is repeatedly apply

a shortest path algorithm. After a shortest path P is found, we increase the edge

weights of all edges in P and repeat. Akgün et al. discuss several variants of iterative
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penalty methods that have different ways to penalize the path (Akgün, Erkut, and

Batta 2000).

Path selection

The purpose of this phase is to generate a set n paths among w candidate paths

generated in the path generation phase. Although we can design an algorithm to

find n paths that maximize k-survivability, since the computation of k-survivability

is exponential in n, this approach would be expensive. Thus, our strategy is to use

different heuristics to obtain an initial solution without evaluating k-survivability.

Then, improve the initial solution based on k-survivability in the next phase.

We find an initial solution by solving a different but related optimization problem.

Distance-based heuristic. We use dG(P, P ′) to denote the distance between two

paths P and P ′ on a graph G. One candidate of the distance function is discrete

Fréchet distance (Voss, Moll, and Kavraki 2015) and other candidates of distance

function can be found in Knepper’s thesis (Knepper 2011).

Based on the distance function, we can set up several optimization problems.

(a) remote-clique problem: find

S = arg max
S⊆R,|S|=n

∑
P,P ′∈S

dG(P, P
′).

(b) remote-edge problem: find

S = arg max
S⊆R,|S|=n

min
P,P ′∈S,P 6=P ′

dG(P, P
′).
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(c) remote-pseudoforest problem: find

S = arg max
S⊆R,|S|=n

∑
P∈S

min
P ′∈S,P 6=P ′

dG(P, P
′).

The remote-edge problem is sensitive to the closest-pair of paths, since two solu-

tions with the same closest pair of paths will have the same minimum distance, even

if one solution is much longer than the other (Voss, Moll, and Kavraki 2015). Since

all these maximum diversity problems are NP-hard, we use heuristic methods to find

a good solution (Martí et al. 2013).

Survivability-based heuristic. We also can use Erickson’s and LaValle’s notion

of survivability (Erickson and LaValle 2009) in our heuristic. We heuristically find n

paths with high survivability and use this set as an initial solution.

Path improvement

The purpose of this phase is to improve k-survivability of an initial solution S by using

local operations: path replacement and path shortening. Path replacement iteratively

replaces one path to improve k-survivability. Path shortening iteratively replaces a

subpath of one path to improve k-survivability.

We first apply path replacement to improve k-survivability and then apply path

shortening. Since path improvement is a local search method, the search process may

be trapped in a local maximum. Thus, when the search reaches a local maximum,

we use a randomized method to escape from the local maximum and then apply path

shortening again.
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Path replacement. Replace one path in the current solution by another path in R

giving the maximum k-survivability for the set; repeat until no further improvement

can be made.

Path shortening. Find the maximum improvement of k-survivability that can be

made by replacing one subpath of a path in the current solution by a shortest path

on G connecting the endpoints of the subpath. Repeat shortening until no further

improvement can be made.

Although path shortening is very effective under the fixed r-disc trap model, path

shortening may not be useful in general models. Moreover, for kSP with k > 1,

shortening just one path at a time may lead to getting trapped in local maxima

easily. For example, Figure 5.6c shows such a case; all four overlapping paths would

need to be shortened simultaneously and in the same way to allow the four robots to

follow a better route.

Escape from local maxima Since path shortening is a local search method, path

shortening may get trapped by local maxima. When no path shortening can be made,

we randomly pick a path in the current solution and reroute a subpath randomly.

Then, run the path shortening method again to reach another local maximum. We

repeat this process until T local maxima are found for a threshold value T , and choose

the best.

136



5.6 Experimental results

5.6 Experimental results

In this section, we describe several experiments (in simulation) on different heuristic

methods, and compare them in terms of computation time and k-survivability. Re-

member that our heuristic method consists of three phases. We suggest two choices

in the path generation phase: random generation (RG) and iterative penalty (IP)

methods. We suggest four choices in the path selection phase: remote-clique (RC),

remote-edge (RE), remote-pseudoforest (RF), and survivability (SU). Finally, we test

two additional methods in the path selection phase:

(a) random (R): pick n paths in R uniformly at random.

(b) first n paths (FN): if the paths are generated by the iterative penalty method,

we pick the first n generated paths.

5.6.1 Experiment setup

We used an environment containing 2500 vertices and 80 rectangular obstacles under

the fixed r-disc trap model, where r = 5 and p = 0.002. The environment is shown

in Figure 5.6. We used the heuristic algorithm to find n = 5 paths with high k-

survivability, for k = 1 . . . 4. We generated w = 50 paths in the path generation

phase and found T = 3 local maxima in the path improvement phase.

The heuristic algorithm is implemented in Java and all tests were conducted on a

laptop (2010 MacBook Pro) with an Intel Core i5 2.4 GHz CPU and 8GB RAM. We

repeated the experiments ten times and took the average of the results.
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Figure 5.7: All methods’ k-survivability at the end of path selection phase, path
improvement phase and path shortening phase. All methods that are using random
generation method are represented by solid lines and all methods that are using
iterative penalty method are represented by dotted lines. Different methods in the
second phase are represented by different colors.

5.6.2 Results

We first show k-survivability of each phase for each method in Figure 5.7. When

k is small, path shortening effectively improves the k-survivability and the iterative

penalty method tends to perform better. However, when k = 4, path shortening is

not effective, since our algorithm only tries to shorten one path at a time but escaping
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Path generation method Path selection method Path generation Path selection Path replacement Path improvement Total time

Random generation method

Random 37.3 0.0 2124.3 17360.9 19533.3
Remote-clique 31.0 2894.6 1577.1 17329.0 21841
Remote-edge 29.3 2505.0 1788.5 16791.9 21125.8

Remote-pseudoforect 28.6 2649.5 1854.2 16441.6 20986.7
Survivability 27.2 48686.9 1613.3 18391.3 68733.7

Iterative penalty method

Random 430.0 0.0 2475.7 15752.9 18676.3
Remote-clique 381.9 4344.8 3300.1 18795.2 26841.3
Remote-edge 384.7 3550.3 3017.6 17998.5 24972.5

Remote-pseudoforest 379.9 4112.4 2673.5 18782.7 25970.8
Survivability 380.0 56769.0 1991.2 15978.2 75144.8

First-n 375.3 0.0 2968.9 18934.4 22305.3

Table 5.1: Running times measured in milliseconds for k = 1.

Path generation method Path selection method Path generation Path selection Path replacement Path improvement Total time

Random generation method

Random 32.5 0.0 82467.6 164975.6 247629
Remote-clique 32.6 2996.8 141197.7 161304.4 305704.5
Remote-edge 30.4 2501.5 94436.1 173701.5 270834.6

Remote-pseudoforect 31.7 2541.7 120313.1 148490.6 271552.4
Survivability 30.9 43867.7 92570.7 173222.5 309874.5

Iterative penalty method

Random 450.6 0.0 157176.9 134173.1 292029.6
Remote-clique 391.6 4567.0 121918.6 171172.5 298295.6
Remote-edge 395.1 3942.3 141077.8 137397.3 283055.5

Remote-pseudoforest 395.3 4289.3 145943.7 148716.3 299595.0
Survivability 386.1 61717.0 152336.0 139777.2 354452.3

First-n 401.1 0.0 93838.4 110945.8 205379.2

Table 5.2: Running times measured in milliseconds for k = 2.

from a local maxima may require shortening several paths at the same time.

We measured the running time for all methods maximizing k-survivability; the

running times for each method for k = 1 ∼ 4 are shown in Tables 5.1, 5.2, 5.3,

and 5.4. When k = 1, the most efficient algorithm is IP + R, while IP + FN becomes

the most efficient algorithm when k > 1. Note that IP + FN is the second fastest

method when k = 1 and produce high quality results when k = 1, 3, 4. This may hint

that although kSP is hard in general, kSP under the fixed r-disc trap model may be

tractable.

When k increases, since evaluating k-survivability takes more time, the running

time for our algorithm is increasing as well. However, when k = 4, since the greedy

approach is trapped in local maxima easily when k is large, our algorithm takes fewer

iterations and the running time decreases dramatically.
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Path generation method Path selection method Path generation Path selection Path replacement Path improvement Total time

Random generation method

Random 38.0 0.0 91833.0 131298.2 223307.1
Remote-clique 30.7 2814.6 111247.5 159241.1 273482.3
Remote-edge 32.1 2341.6 90187.8 147532.2 240240.6

Remote-pseudoforect 32.8 2546.7 97935.0 157753.6 258433.5
Survivability 28.1 42983.5 101884.9 122851.2 267926.2

Iterative penalty method

Random 478.2 0.0 99059.3 129456.2 229169.4
Remote-clique 402.6 4326.8 147504.6 86207.7 238664.7
Remote-edge 406.3 3932.5 123417.1 108172.1 236117.3

Remote-pseudoforest 406.6 4068.0 119607.4 120956.7 245250.0
Survivability 407.3 50149.1 113635.4 99078.2 263541.5

First-n 408.9 0.0 72034.4 147989.8 220590.8

Table 5.3: Running times measured in milliseconds for k = 3.

Path generation method Path selection method Path generation Path selection Path replacement Path improvement Total time

Random generation method

Random 31.8 0.0 1947.1 9342.4 11331.9
Remote-clique 31.8 3196.1 2625.1 5852.5 11716.7
Remote-edge 34.0 2779.2 2397.3 8340.0 13563.0

Remote-pseudoforect 30.9 2849.7 2380.8 6360.0 11635.0
Survivability 31.8 50428.3 2548.6 7262.6 60287.2

Iterative penalty method

Random 428.6 0.0 2410.7 8758.6 11615.5
Remote-clique 392.7 4428.6 4017.4 6890.7 15751.0
Remote-edge 395.6 3859.3 3507.8 7006.7 14790.8

Remote-pseudoforest 391.2 3954.8 3586.8 6146.4 14103.3
Survivability 388.6 59955.6 3464.7 7223.7 71058.8

First-n 396.1 0.0 2153.5 5660.9 8235.7

Table 5.4: Running times measured in milliseconds for k = 4.

5.7 Conclusion and future work

This work is preliminary, and considers only simple k-survivability problems; how-

ever, we believe that k-survivability motivates a wealth of interesting practical and

theoretical problems. For example, the problem of k-survivability might be reversed

to plan defenses against infiltration or attack. Not all applications of k-survivability

need be violent. For example, k-survivability can be considered in the context of visi-

bility or stealth, as has turned out to be central in multi-robot pursuit-evasion games

(Chung, Hollinger, and Isler 2011; Murphy 2014; Acar and Choset 2002) for search-

and-rescue operations. With a model of feedback or communication, we imagine that

k-survivability might also provide some insights into collaboration and cooperation

problems such as those that arise in sports (Biswas et al. 2014) or control of large

robot swarms (Rubenstein et al. 2014).
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Several future directions of theoretical research are possible. Continuous-space

models might be approached using variational calculus or optimal control techniques

(Zabarankin, Uryasev, and Murphey 2006; Miller et al. 2011). Obstacles such that

the risk of a path depends on the distance between the robot and the obstacle, as for

paths in mined water (Babel and Zimmermann 2015) are a potential future direction,

as are time-dependent obstacles.

5.7.1 A heuristic for escaping from local maxima for n > k > 1

We note that when n > k > 1, path shortening may not be effective, since Algorithm 3

shortens only one path at a time, but escaping from a local maxima may require

shortening several paths at the same time. In particular, in order to escape from a

local maxima, simultaneously shortening several paths that share the same sub-path

may be necessary. Thus, we would like to design a better heuristic for escaping from

local maxima when n > k > 1.

Let’s consider a small example. Suppose that we want to find paths for four

robots, R1, R2, R3, and R4, with good 2-survivability. We can divide four robots into

two groups: G1 = {R1, R2} and G2 = {R3, R4}. Then, we use Algorithm 3 to find

two paths, P1 and P2, with good 1-survivability for G1 and G2 respectively. That is,

robots in G1 follow P1 and robots in G2 follow P2

Since the paths P1 and P2 are locally maxima for 1-survivability, each group

cannot improve 2-survivability by shortening its path. However, a robot may improve

2-survivability by deviating from its group. Thus, we can apply path shortening again

for these four robots, since path shortening only modifies one path at a time.

This idea can be generalized: in order to solve a problem for n > k > 1, we
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2-survivability Total running time

Algorithm 3 0.631770 20736
Algorithm 3 with grouping heuristic 0.698003 19664

Table 5.5: Running times measured in milliseconds for n = 4 and k = 2.

2-survivability Total running time

Algorithm 3 0.684203 279015
Algorithm 3 with grouping heuristic 0.693588 108594

Table 5.6: Running times measured in milliseconds for n = 5 and k = 2.

firstly find n′ = dn
k
e paths with good 1-survivability. Then, duplicate each path k

or k − 1 times to obtain n paths. Finally, use the adjusted solution as the initial

solution in the path shortening phase for solving the original n > k > 1 problem. We

call this heuristic as grouping heuristic. In our example, we use two paths with good

1-survivability as an initial solution for finding four paths with good 2-survivability.

We conducted an experiment in the same environment as the environment in

the experiment in Section 5.6. For path generation, we used the random generation

method. For path selection, we used the random selection method. We first test the

heuristic for finding four paths with good 2-survivability. The result is in Table 5.5.

The new method obtains paths with higher 2-survivability.

Then, we tested the new method for finding five paths with good 2-survivability.

The result is in Table 5.6. The new method obtains paths with higher 2-survivability

in less time!
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