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ABSTRACT 

An abstract of the thesis of Michael A. Burns for the Master of Science in Electrical 

and Computer Engineering presented October 30) 1997. 

Title: New Approaches to Column Compatibility Checking and Column-Based 

Input/Output Encoding for Curtis decompositions of completely or incompletely 

specified switching functions 

Presented in this thesis are new approaches to column compatibility checking 

and column-based input/output encoding for Curtis decompositions of switching 

functions. These approaches can be used in Curtis-type functional decomposition 

programs for applications in several scientific disciplines. Examples of applications 

are: minimization of combinational and sequential logic) mapping of logic functions 

to programmable logic devices such as CPLDs, MPGAs, and FPGAs, data en

cryption, data compression, pattern recognition) and image refinement. Presently, 

Curtis-type functional decomposition programs are used primarily for experimen

tal purposes due to performance, quality, and compatibility issues. However) in 

the past few years a renewal of interest in the area of functional decomposition 

has resulted in significant improvements in performance and quality of multi-level 

decomposition programs. 

The goal of this thesis is to introduce algorithms that can significantly improve 



2 

the performance and quality of Curtis-type decomposition programs. In doing so, 

it is hoped that a Curtis-type decomposition program, complete with efficient, high 

quality algorithms for decomposition, will be a feasible tool for use in one or more 

practical applications. 

Various testing and analyses were performed in order to evaluate the potential 

of algorithms presented in this thesis for use in a high quality Curtis-type decompo

sition program. Testing was done using a binary input, binary output Curtis-type 

decomposition program MULTIS/GUD. This program was implemented here at 

Portland State University by the Portland Oregon Logic Optimization Group. 
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CHAPTER I 

INTRODUCTION 

The new approaches to column compatibility checking and column encoding 

presented in this thesis were designed to be part of a Curtis-style functional de

composition program. Because these two approaches are the highlights of this 

thesis, they are give!! the greatest coverage. However, before introducing these 

new approaches some basic information about fu:wctional decomposition shodd be 

mentioned. 

Functional decomposition, first introduced in 1854 by Boole(6], has since been 

researched extensively for its potential applications to circuit minimization as well 

as a diverse variety of other interesting applications. One of the fascinating as

pects of research in functional decomposition techniques is this variety of potential 

applications which cover a broad spectrum of scientific disciplines. The two pri

mary areas of application in functional decomposition are in machine learning and 

circuit design. 

In the machine learning area, there has been an increasing amount of research 

performed in order to determine the effectiveness of various decomposition meth

ods for identification and classification of cancer cells and other harmful organisms, 
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identification of distant objects such as foreign aircraft, ships, tanks, etc., genetic 

code deciphering, pattern matching, automatic knowledge acquisition, theory for-

mation and the development of various learning paradigms [12][23][35][48][64]. 

In circuit design, there are applications for functional decomposition in the 

minimization of combinatorial logic( switching functions) and state machines as 

well as applications in the mapping of logic to programmable logic devices such as 

PLAs, PALs, GALs, CPLDs, MPGAs, and FPGAs [15][18][33][36][50]. 

Though interesting as these applications are, specific details relating to each 

3.pplication will not be covered as they are beyond the sc:ope of this thesis. However, 

interested readers may find out more about specific applications by consulting the 

corresponding references listed. 

The following is a brief description of what is meant by functional decomposi

ticn so readers unfamiliar with functional decomposition may have a better idea 

of how it might be used in each application. In the most general sense, functional 

decomposition is the process of breaking down an initial problem description into 

a set of smaller sub-problem descriptions( according to some set of rules) which, 

composed back together are functionally equivalent to the initial description of the 

problem. For example, if an initial circuit description, having 100 inputs and 50 

outputs, was to be implemented in a logic array where all gates in the array had 2 

inputs and 1 output, a functional decomposition program could be used to break 

down the initial circuit description into a set of smaller sub-circuits(gates each with 
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2 inputs and 1 output). The resulting circuit description could then be mapped to 

the target device(provided, of course, that the device had the capacity to handle 

the number and type of gates obtained by the decomposition program). In Curtis

style decompositions, there are several steps( or phases) of execution. A few of the 

main steps, in the decomposition process are: input variable partitioning, column 

compatibility checking, column minimization, and column encoding. 

One of the new approaches presented in this thesis addresses one of the main 

steps in the decomposition process referred to as column compatibility checking. 

The primary purpose of column compatibility checking is to build a compatibility 

or incompatibility graph which is used in the following step( column minimization) 

of a Curtis-style decomposition program. The nodes of the graph correspond to 

columns of the Karnaugh Map and the edges between the nodes indicate whether 

the nodes are compatible or incompatible. In the compatibility graph, edges be

tween nodes indicate that they are compatible. In the incompatibility graph, edges 

between nodes indicate that they are incompatible. 

In previous research of partition based methods, the column compatibility 

checking in Curtis-style decompositions was performed via an approach involv

ing checking compatibility of columns in a pairwise fashion( one pair at a time 

for all pairs of columns). This approach is referred to as the "pair compatibility 

approach". An example of this method is described in Section 3.3. Additional ex

amples of this approach approach can be found in a paper by Luba[31]. Presented 
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in this thesis is a new approach to column compatibility checking which can result 

in tremendous savings in execution time by simultaneously checking the compat

ibility of groups of columns at a time, rather than pairs of columns. This new 

approach is referred to as the "group compatibility approach". The approximate 

complexity of these two approaches are 0( n 2
) and 0( n) respectively. Perhaps the 

greatest strength of this new approach is the ability to create, in a feasible way, 

large graphs which would otherwise be infeasible with the pair compatibility ap

proach. Thereby, the ability to search areas of the solution space previously not 

possible using Curtis-style decompositions is greatly improved. It should be em

phasized that the primary contribution of the new approach is to create the same 

data, but in a way which requires much less execution time. 

Another significant advantage of the group compatibility approach is that it 

can also be used in a modified graph coloring approach for column minimization in 

order to greatly improve the time required to check for Ashenhurst( single output) 

decompositions when the number of nodes in the graph is large. In cases where the 

number of nodes in the graph is small, there is little or no gain by using this new 

approach. However, when the number of nodes in the graph is small, there is only 

a little need for fast column minimization techniques, because the execution time 

for this step is small in terms of the overall execution time of the decomposition. 

The second new approach introduced in this thesis is the encoding of columns 

in a Curtis-style decomposition. The minimum necessary requirement of encoding 
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in a Curtis-style decomposition is to assign newly created intermediate variables 

so that an equivalence relation is maintained between the parent function and the 

decomposed sub-functions. The choice of encodings for these intermediate vari

ables becomes increasingly important as the number of bits required for encoding 

increases. Proposed in this thesis is a new encoding approach which is intended 

to greatly improve decomposability of functions when the number of variables in 

the bound set is larger than the number of variables in the free set and when the 

function is at least 25% unspecified. While there is little or no advantage to this 

approach when functions are highly specified, this new approach can significantly 

improve decomposability of functions when they are highly unspecified. One may 

a3k - "do such unspecified functions exist in real life ?" One answer to this question 

is yes, many functions in machine learning are very highly unspecified. Another 

ansv,er to the same question is that any function can be made partially unspecified 

by simply performing a non-disjoint decomposition(i.e. adding at least one shared 

variable to both the bound set and the free set). The basis of this new approach is 

to increase the number of don't cares introduced into the predecessor function by 

encoding certain columns with the codes of multiple output classes( or symbols). 

For example, a certain column that is compatible with two of three output classes 

00 and 01, may be given the codes 00, 01, or the combined code 0-. These don't 

cares can significantly reduce the minimum column multiplicity in the next level 

of decomposition by allowing a freedom to choose what values to assign, once it 
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has been determined what values will work best. Though this is not frequently 

possible with most columns, even a few extra don't cares can make the difference 

between a sub-function which is easy to decompose and one which is very difficult 

to decompose. A function which is more difficult to decompose may take a very 

long time to decompose and/or may result in a higher Decomposed Function Car

dinality(DFC). DFC is one of the metrics used to provide a measure of the quality 

of a decomposition(where lower DFC is desired). In reference to the decomposition 

of a function representing a circuit, a high DFC indicates a complex circuit while 

a low DFC indicates a simpler circuit. 

The format of this thesis is as follows: In Chapter 2 reference is made to the 

work of a few of the many researchers that have contributed significantly to the area 

of functional decomposition. Also, in Chapter 2, a brief overview of the bn.sics of 

Curtis-type functional decomposition is given as well as some basic definitions and 

terminology that will be helpful to understand the following chapters. Chapters 

3, 4, and 5 are the primary focal points of this thesis. These chapters introduce 

the three main algorithms in this thesis. Chapter 3 introduces a new approach 

to the column compatibility checking problem(GCA approach), followed by a 

comparison of this new approach with the classical approach. Presented in Chapter 

4 is another significant algorithm which is an extension of the GCA approach 

presented in Chapters 3. This extension of the GCA approach is for improving 

efficiency in checking for Ashenhurst type decompositions. In Chapter 5, a new 
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approach to encoding(DC_ENC) is presented in detail(no results are presented 

for this algorithm as it has not been implemented yet). Introduced in Chapter 6 is 

the Curtis style functional decomposition program MU LT IS which was designed 

here at Portland State University by the Portland Oregon Logic Optimization 

Group. Chapter 7 presents various experimental results for the program MU LT IS. 

Finally, in Chapter 8 conclusions and future work are discussed. 
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CHAPTER 2 

PREVIOUS APPROACHES TO FUNCTIONAL DECOMPOSITION 

2.1 Definitions, Notations, and Terminology 

Definition 2.1.1 A Karnaugh Map is a rectangular array of cells which repre

sents a truth table. There are 2n cells in the map, where n is the number of input 

variables. The headings of the columns are the input variables corresponding to 

the bound set. The headings of the rows are the input variables corresponding to 

the free set. The values in each cell corresponds to the output value of the function 

for the corresponding set of input variables. For an example of a Karnaugh map) 

see Figure 2.1. The truth table for the function represented by the Karnaugh map 

is shown in Table 2.1. Note that in Table 2.1, cube number 1 has an unspecified 

output value. Typically, cubes are not shown in Truth Tables when all their output 

values are unspecified. However, it is shown in the table and in the Karnaugh map 

to ·illustrate what is referred to as a Don'tGareMinterm. 

Definition 2.1.2 A Cell of a Karnaugh map is an individual square of the 

Karnaugh map corresponding to a product of input variables. 

Definition 2.1.3 Minterms are product terms of function F for which all vari

ables in the product term have specified values(i.e., 0 or 1 for binary functions). 
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Figure 2.1: Illustration of relevant terms used to reference the different parts of a 
Karnaugh Map 

Definition 2.1.4 Don't Care Outputs are output variables which are unspec

ified for a given product of input variables. These output variables are commonly 

shown as a dash "-" in a Truth table or Karnaugh map. 

Definition 2.1.5 Don't Care Inputs are input variables which are unspecified 

for a given product of input variables. These input variables are commonly shown 

as a dash " - " in a truth table. 

Definition 2.1.6 Cares refer to products of input variables for which at least one 

output variable is specified. 

Definition 2.1. 7 Cubes correspond to the products of arbitrary literals. 

Definition 2.1.8 Free set variables are the subset of the input variables which 

correspond to the rows of the Karnaugh map. 
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cube a b C d e F 
0 0 0 0 0 1 1 
1 0 0 0 1 1 -
2 0 0 0 1 0 0 
3 0 0 1 - 1 1 
4 - 1 0 1 0 1 
5 - 1 1 1 1 0 
6 - 1 1 0 0 1 
7 1 1 1 - 1 0 
8 1 0 0 0 - 1 
9 1 0 1 1 1 0 

Table 2.1: Truth table corresponding to the Karnaugh map in Figure 2.1 

Definition 2.1.9 Bound set variables are the subset of the input variables 

which correspond to the columns of the Karnaugh map. 

Definition 2. 1. 10 Output set variables are the variables whir.h specify the out-

put values for each cube or minterm in a f',1,nction. 

Definition 2. 1. 11 Partition II on a set S is a collection of disjoint subsets whose 

set union is S. The disjoint subsets are called the blocks of II. 

Definition 2.1.12 Rough partition II on a set S is a collection of nondisjoint 

subsets whose set union is S. The nondisjoint subsets are called the blocks of II. 

Partition Blocks: There are different types of partition blocks(i.e., blocks of the 

free set, bound set, output set, cover set, etc.). Also, the type of elements within 

these blocks can be different. For example, a block of the cover set can be com-

posed of cubes or columns. 
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Product of partitions denoted by X • Y, results in a new partition where each 

block in the new partition is formed from the intersection of the each of the blocks 

in X with each of the blocks in Y. 

Intersection of partition blocks denoted by X,: n Y;, results in a partition block 

having all elements which are common to both Xi and Y;. 

Union of partition blocks, denoted by X,: U r'j, results in a partition block having 

all elements which are in either X,: or 'Yj. 

Definition 2. 1.13 Let B be a subset of the set of inputs X. An inp1.1.t partition 

generated by set B -is denoted as: 

P(B) = IT P(x) (2.1) 
:z:EB 

where [1 denotes the product of partitions. P( x) is a partition for variable x. 

P(B) Rough partition on the bound set variables, where Bis the set of variables 

for the bound set. Individual partition blocks are composed of cubes. 

P(A) Rough partition on the free set variables, where A is the set of variables 

for the free set. Individual partition blocks are composed of cubes. 

P(F) = Rough partition on the output set variables, where F is the output set of 

variables. Individual partition blocks are composed of cubes. 

Definition 2.1.14 Blocks of the bound set are the subsets of the rough par

tition P(B). These blocks of cubes represent sets of one or more columns which 
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have at least one cube in common with a specific column X. No column in the 

same block as column X contains any cubes which are not contained in column X. 

Stated formally: Let X denote the set of cubes which are contained in column X 

and let Y be some other set of cubes which are contained in column Y. Then, any 

column Y may be contained in the same block of the bound set as column X iff 

Y~X. 

Definition 2.1.15 Blocks of the free set are the subsets of the rough partition 

P( A). These blocks of cubes represent sets of one or more rows which have at least 

one cube in common with a specific row X. No row in the same block as row X 

contains any cubes which are not contained in row X. Stated formally: Let X 

denote the set of cubes which are contained in row X and lei Y be some other set 

of cubes which are contained in row Y. Then, any row Y may be contained in the 

same block of the bound set as row X if f Y ~ X. 

Definition 2.1.16 Blocks of the output set are the subsets of the rough par

tition P(F). 

Definition 2.1.17 Blocks of cubes are subsets of cubes within a rough partition. 

Definition 2.1.18 A Compatible Class (CC) is a set of elements which are 

mutually compatible. A CC of columns is a set of columns which are mutually 

compatible. 
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Definition 2.1.19 A Maximum CC (MCC) is a CC that cannot be covered by 

any other CG(i.e. a MCC is a CG that is not contained in any other CC). 

Definition 2.1.20 Cofactor: A submap of the Karnaugh map corresponding to 

some combination of input variables is refer-red to as a cofactor. If this is a 

combination of free variables, it will also be called a row - referring to a Kmap. If 

this is a combination of bound variables, it will also be called a column. 

Definition 2.1.21 Compatible Cubes: Two cubes are said to be compatible if 

they belong to the same block of the partition on the free set being considered and 

the same two cubes belong to the same bloch in the outpnt partition. Two cubes 

are said to be incornpatible if they belong to the same block of the partition on the 

free set being considered and the same two cubes do not belong to the same block 

in the output partition. 

Definition 2.1.22 Compatible Columns: Two columns of a Kamaugh Map 

are said to be compatible columns if every pair of outputs in corresponding cells 

(i.e., outputs corresponding to the same combination of input variables in the free 

set) are compatible. In a binary single-output function, two outputs are compatible 

as long as they are not complements of each other. 

Definition 2.1.23 A Cover Set is a set of CGs such that the union of all GGs 

in the set is equal to the set of all cubes( or columns) in the function. 
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Definition 2.1.24 Column Multiplicity is a number representing the number 

of CCs in a cover set. 

2.2 Fundamentals Of Curtis Decomposition 

The purpose of the following subsections is to introduce the fundamentals of 

Curtis decomposition which are necessary for understanding the main algorithms 

presented in Chapters 3, 4, and 5. In Section 2.2.1, a brief introduction to Curtis 

decomposition is presented. In Section 2.2.2, partition calculus for Curtis decom-

po3ition is presented. 

2.2.1 Introduction 

Shown in Figure 2.2g is a block diagram representation of a Curtis decomposi

tion of the function F shown in Figure 2.2f. The sub-function G is referre<l to as 

the predecessor sub-function and the sub-function H is referred to as the successor 

sub-function. In a Curtis decomposition, the number of outputs from the sub

function G is required to be less than the number of inputs to the sub-function G. 

H(A, G(B, C)) represents the decomposed function such that F = H(A, G(B, C)). 

The sets A and B are the free set variables and bound set variables, respectively 

where AUE = X, and AnB = 0. The set C is some subset of A and is referred 

to as the shared set of variables. When set C is an empty set, the decomposition 

is called a disjoint decomposition. If set C is not an empty set, the decomposition 
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Figure 2.2: Curtis Decomposition of function Fl corresponding to Table 2.2 

is called a nondisjoint decomposition. 
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The following is a brief explanation of the decomposition process in a Curtis 

style decomposition: 

Shown in Figure 2.2a 1s the Karnaugh map of Function Fl with the given free 
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set and bound set shown. Cube numbers are shown for each cube represented in 

the Karnaugh map. The primary objective, in a Curtis style decomposition, is to 

break up a function Finto two smaller sub-functions G and H. Block diagrams of 

these sub-functions are shown in Figure 2.2g. The decomposition of one function 

into two smaller functions is considered one loop in the decomposition process. In 

a complete decomposition of functions with many input variables, many loops in 

the decomposition process may be executed before the sub-functions created are 

of acceptable size(i.e., less than or equal to a user specified size). 

The function Fl is broken up into two smaller sub-functions by finding reduced 

sets(CCs or MCCs) of compatible columns from the columns found in function 

.Fl. Ideally, it is desired to find the minimum or near minimum number of CCs as 

the cover set. For now, assume the goal is to find the minimum number of CCs. 

For this simple function, it is easy to see that column B1 is compatible with B3 and 

column B2 is compatible with B4 . There are no other combinations of columns 

which are compatible and therefore there are only two column types(CCs). These 

are shown in Figure 2.2c with the labels of columns that are compatible with 

each column type shown below each column. This is the successor sub-function H 

sometimes simply referred to as the H block for brevity. 

The compatibility relationship between these columns is represented in a com

patibility graph as in Figure 2.2d. Here, the nodes correspond to the columns and 

the edges between the nodes indicate that the columns are compatible. The groups 
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that are enclosed by the dotted lines correspond to the two column types( or CC s 

of columns) found in Figure 2.2c. Shown for completeness is the incompatibility 

graph in Figure 2.2e which is simply the complement of the compatibility graph. In 

the incompatibility graph, nodes represent columns as in the compatibility graph, 

but the edges between the nodes indicate that columns are incompatible. 

The inputs to the H block are the free set variables, X 0 in this case, and the 

encoded outputs from the G block, variable g in this case. The outputs of the 

II block are the outputs Y0 Yi_ from function FL The encoded outputs of the G 

block are the encodings assigned to the column types in the original function. For 

simplicity, random codes are assigned to the column types in the original function. 

Th~se encodings are shown below each of the columns shown in Figure 2.2a and 

in the cells of the Karnaugh map in Figure 2.2b. The inputs to the G block are 

the bound set variables which correspond to each of the columns in the original 

fo:nction(Function Fl). Once the encoding of CCs in the cover set has been 

completed, then the current loop in the decomposition process is finished. Shown 

in Figure 2.2h is a circuit representing the logic in the decomposed function. 

2.2.2 Partition Calculus Formalism For Decomposition 

In the following subsections, an example decomposition is illustrated in detail 

using partition calculus. The function Fl, used in the following subsections, is the 

same as used previously in Section 2.2.1. The next example is illustrated using par-
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titian calculus because the main algorithms presented in this thesis are partition-

based. Example 2.2.1 is split up into three parts. Section 2.2.2. l illustrates the 

formation of the free set, bound set, and output set partitions. Section 2.2.2.2 il

lustrates the formation of the cover set Il0 . Section 2.2.2.3 illustrates the encoding 

of classes in the cover set. 

2.2.2.1 Forming Partitions For The Input and Output Variables 

Example 2.2.1 

Xo X1 X2 Yo Yi 
0 1 0 0 0 1 
1 1 1 1 0 1 
2 - 0 1 0 
3 1 0 0 0 
4 0 0 0 1 0 
5 0 1 1 1 0 

Table 2.2: Truth table for function Fl 

Given is the truth table(Table 2.2) corresponding to the Karnaugh map in Fig

ure 2.2a. The numbers of rows(cubes) in the table are shown for each cube of the 

Kmap. 

In partition-based Curtis decompositions, partitions are formed for the bound 

set, the free set, and the output set of variables. In order to obtain the partitions 

for the bound set, the free set, and the output set, partitions are first formed for 

each of the input variables and output variables. The blocks of each partition are 
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formed by grouping together all cubes which have the same input values for the 

variable under consideration. Don't cares are considered to be the same value as 

both the on-set and the off-set. Semicolons are used to separate individual blocks 

of each partition. The following are the rough partitions for the input variables 

describing the function represented in the table. 

P(Xo) 

P(X1) 

P(X2) 

(Xo = 0; Xo = 1) 

(X1 = 0;X1 = 1) 

(X2 = 0; X2 = 1) 

And for output variables: 

P(Yo) 

P(Yi.) 

(Yo = 0; Yo = 1) 

(Yi = 0; Yi = 1) 

(2, 3, 4, 5; 0, 1, 2, 3); 

(0,2,4; 1,3,5); 

(0,3,4; 1,2,5); 

(0, 1, 2, 3; 4, 5); 

(2, 3, 4, 5; 0, 1, 2); 

For a given bound set B = {X1 , X 2 } and free set A = {X0 }, the partitions of the 

bound set, free set, and output set of variables are as follows: 

P(A) = P(Xo) = (Xo = 0; X 0 = 1) = (2: 3, 4, 5; 0, 1, 2, 3); 

P(B) = P(X1X2) = (X1X 2 = 00; X 1X 2 = 01; X 1X2 = 10; ..,\\X2 11) 

= (0, 4; 2; 1, 5; 3); 



P(F) = P(YoYi) = (YoY1 = 00; YoYi = 01; YoY1 = 10; Yo Yi = 11) 

= (2, 3; 0, 1, 2; 4, 5; 0); 

2.2.2.2 Forming The Cover Set Ila 
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Theorem 2.2.1 Functions G and H represent a :;erial decomposition of function 

F, i.e., F = H(A, G(B, C)) if there exists a partition IIG 2 P(B UC) such that 

P( A)· IIG ~ P( F), where all the partitions are over the set of cubes and the number 

of two-valued output variables of component IIG is equal tog = [log2 L(IIG)], here 

L(II) denotes the number of blocks of partition II, and [x] denotes the smallest 

integer equal to or larger than x. 

Here [log2 L(IIG)] gives us the number of output signals from function G. For 

Curtis type decompositions, there is an additional requirement that the number of 

outputs of G must be less than the number of inputs of G. 

To find a cover set IIG, it is necessary to find a set of CCs which covers all the 

blocks in P(B U C) that also satisfies Theorem 2.2.1 (i.e., P(A) · IIG ~ P(F)). 

To solve this problem, consider a subset of primary inputs, B U C, and the q

block partition P(B UC) = (Bi, B2 , ••• , Bq) generated by this subset. Then use a 

relation of compatibility of partition blocks to form CC s. 

Definition 2.2.1 Compatibility relation: Two blocks Bi and B; E P(B UC) 

are compatible iff merging blocks Bi and B; into a single block satisfies 
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For example, from Table 2.2: 

P(A) = P(Xo) = (2, 3, 4, 5; 0, 1, 2, 3); 

P(B) = P(X1X2) (0, 4; 2; 1, 5; 3) = (B1, B2, B3, B4); 

Merging B1 and B2 together results in: 

P(A) · (B1 u B2 ) = (2, 4; 0, 2) <l_ P(F) = (2, 3; 0, 1, 2; 4, 5; 0); 

therefore B1 and B2 are incompatible, denoted as B1 ,f B2 • 

In the same way, the compatibility relation can be used to check other pairs of 

blocks in P(B). The result is: B1 ,f B2 , B1 ~ B3 , B1 ,f B4 , B2 ,f B3, and 

B2 ~ B4. 

From the set of pair-wise compatible blocks, form compatible classes. Thus 

MCCl = {B1 , B3}, MCC2 {B2 , B4 }. Note that in general, these classes do not 

need to be MCCs. However, in this simple case, the CCs are also MCCs. From 

these MCCs, the minimal cover set can be found: 
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Now check to see if the conditions in Theorem 2.2. l are satisfied. 

Because 

(2.2) 

and 

P(A) ·Ile= (4,5; 0, 1; 2,3; 2,3) < P(F) (2,3; 0, 1,2; 4,5; 0); (2.3) 

then this is a feasible decomposition with bound set B - {X1 , X2 } and set 

A {X0 }. Therefore, F H(X0 , G(X1 , X2 )). Notice also that Ile corresponds to 

a single output function G because there are two biocks in IIc(i.e., [Iog2 L(Ilc)] 

[log2 2] = 1 ). 

2.2.2.3 Encoding of Compatible Classes 

The process of encoding compatible classes in the cover set allows a given func

tion to be split up into two smaller subfunctions which are equivalent to the original 

function. Put simply, encoding in Curtis style decomposition is the process of as

signing codes to columns such that there is a mapping of columns from the original 

function to a reduced set of columns which form the successor subfunction H. The 

mapping of columns from the original function to the successor subfunction is done 
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via the output codes assigned to the predecessor subfunction G. Encoding of com

patible classes can be very important when the number of bits in the encodings 

is greater than one. However, when there is only one bit required for encoding, 

then encoding becomes trivial. In this example, encoding is trivial because only 

one bit is required to encode the classes in IIG. Therefore, class MCCl(color A) is 

arbitrarily assigned to binary code "O" and MCC2( color B) is assigned to binary 

code "l". Next, all columns are given the code assigned to the MCC they belong 

to. The codes assigned to columns are shown in Figure 2.2c. 

Next it is very easy to find functions g, Ya, and Yi from the Karnaugh maps G 

and H shown in Figure 2.2b and Figure 2.2c. Hence, 

The circuit represented by these functions is shown in Figure 2.2h. The following 

is a definition of a metric(DFC) which is used to evaluate the quality of a decom-

position. 

Definition 2.2.2 Decomposition Function Cardinality (DFC) is sometimes 

used as a measure to evaluate the quality or effectiveness of a decomposition {where 

a lower DFC is desired). More specifically, it is an integer value which is equal to 

DFC 
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where Ii and Oi are the number of inputs and outputs to each logic block i, and n 

is the total number of blocks. 

Stated simply, the total DFC of a function is equal to the sum of the DFCs of the 

individual logic blocks in the function. It should be noted that the blocks referred 

to in the definition for DFC are logic blocks corresponding to a block diagram(i.e., 

not partition blocks). To accurately assess the quality of decompositions, one needs 

to know specific requirements of the problem such as power, timing, delay, area, etc. 

Better metrics for assessing the quality of decompositions have been proposed [54]. 

However, for simplicity and didactic purposes, DFC as defined here is used as the 

primary metric for the quality of decompositions. 

We can compare the DFC of the original function Fl to the DFC of the de

composed set of logic blocks G and H by applying the formula to the logic blocks 

shown in Figure 2.2f and Figure 2.2g. 

DFCa+H 
2 

1 

L 211 
X 01 = 24 

X 2 = 32. 
i=l 

I: 21
i x oi = (22 x 1) + (22 x 2) = 4 + s = 12. 

i=l 

Therefore, in this example, the DFC of the decomposed function is much lower 

than that of the original function. More often than not, the DFC of a decom-
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posed function will be lower than the undecomposed function. More meaningful 

applications of DFC are in comparisons of alternative decompositions of the same 

function, where the decomposition resulting in lower DFC are considered to be 

better quality decompositions. 

2.3 Basic Functional Decomposition Types 

In the following subsections, the primary decomposition types are introduced 

along with mention of some of the researchers who have been credited with signif

icant contributions to each of the decomposition types. 

2.3.1 Serial Decomposition 

Basically, a serial decompositioll is a. decomposition of function F into two 

sub-functions, a predecessor sub-function G, and a successor sub-function H. The 

outputs of the sub-function Gare inputs to the sub-function H. In Figure 2.3, the 

basic forms of serial decompositions for disjoint and nondisjoint cases are shown. 

These forms apply for each of the serial decomposition approaches mentioned in 

the following sections. 

2.3.1.1 Ashenhurst-Curtis Approach 

The approach by Curtis is a serial type decomposition approach with the pre

decessor sub-function having b + c inputs and g outputs where g is not more than 
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Figure 2.3: Ashenhurst-Curtis type Decompositions: a) Disjoint Decomposition b) 
Non-Disjoint Decomposition. 

(b+c-1). The successor sub-function has a+c+g inputs and f outputs where f is 

the same number of outputs as the original function before it is decomposed. For 

disjoint decompositions, the shared set of input variables C is empty and the de-

composition appears as in Figure 2.3a. For nondisjoint decompositions, the shared 

set of input variables C is common to the set of input variables to both G and 

H sub-functions. An example of this type of serial decomposition is shown in 

Figure 2.3b. 

An Ashenhurst decomposition is a special case of the Curtis type decompo-

sition. In the Ashenhurst decomposition, there exists exactly one output from 

the predecessor sub-function, provided of course that a decomposition exists. A 

decomposition is said to exist for an Ashenhurst decomposition if the column mul-

tiplicity is equal to two. This requires only one bit( output) to encode the two 
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column types. 

Ashenhurst and Curtis are two of the early researchers which contributed sig

nificantly to the research in the area of functional decomposition. Ashenhurst 

introduced the single output serial decomposition in 1959[3]. This was followed 

soon after by the introduction of the more general Curtis style decomposition[13). 

These researchers are responsible for much of the basic formalisms for functional 

decomposition and many of the proofs for the existence theorems. 

2.3.1.2 Roth-Karp Approach 

The approach by Roth and Karp is another example of the Ashenhurst-Curtis 

style decomposition. Their approach differs very little from the basics of the 

Ashenhurst-Curtis decomposition. However, one important distinction is that the 

approach by Roth and Karp restricts decomposed sub-functions to a set of pre

characterized sub-functions and simple gates. Also, they use cube calculus to 

represent functions instead of Karnaugh maps. More emphasis is given to algo

rithm development that would be practically efficient. Those interested may read 

more about the Roth-Karp approach in the following papers [25][26]. 

2.3.1.3 Lai-Pedram-Vrudhula Approach 

The Lai-Pedram-Vrudhula approach[34] is basically an Ashenhurst-Curtis ap

proach applied to a BDD data structure. Their results presented at DAC '93 
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revealed the most efficient approach so far to Ashenhurst-Curtis decompositions 

for very large functions. The program was able to quickly decompose functions 

which were previously not possible by other Ashenhurst-Curtis decomposers due 

to excessive running times. Though the Lai-Pedram-Vrudhula approach is very ef

ficient at decomposing very large functions, it may result in poor quality solutions 

in terms of number of gates or logic blocks. It would be interesting to compare the 

quality of their solutions with other approaches. Unfortunately, no results were 

given on small functions and no results for number of logic blocks or gates were 

given on large functions. Therefore, it is not easy to compare the quality of their 

solutions with the solutions of others. 

In the Lai-Pedram-Vrudhula approach, completely specified functions are rep

resented using a single BDD while incompletely specified functions are represented 

using an ON-BDD and an OFF-BDD. Partitioning of variables to bound and free 

sets is done by ordering variables in the BDD(s) and then checking the column 

multiplicity using a min-cut method. The cut-set yielding the minimum cut(i.e., 

minimum column multiplicity) is used to divide the input variables into free and 

bound sets. The BDD is then split into two BDDs, one BDD from the top half 

above the cut and the other from below the cut. After a random encoding scheme 

is used to encode the predecessor sub-function, these new BDDs represent the de

composed function as a combination of a predecessor sub-function and a successor 

sub-function. 
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2.3.1.4 Luba Approach 

The serial decomposition approach by Luba [30][31 ][33] is another example of an 

Ashenhurst-Curtis style decomposition. Unlike the BDD-based approach by Lai

Pedram, Luba uses a partition-based representation with corresponding partition

based operations. The basic steps involved in Luba's serial decomposition approach 

are summarized below. The algorithm first uses heuristic criterion to partition the 

input variables to bound and free sets A and B, where the set B is the set of input 

variables to the sub-function G and the set A is the set of input variables to the 

sub-function H. Next, for an assumed set of shared variables C, it calculates the 

maximum compatible classes for the blocks of partition P(B UC) and a minimal 

cover of compatible classes. If the column multiplicity(number of blocks in that 

cover) is determined to be acceptable by the program user, then the next phase in 

the decomposition process is executed. If the column multiplicity is not determined 

to be acceptable by the user, then the program re-partitions the input variables to 

new bound and free sets A and B. In the first run of the decomposer, the program 

checks the existence of a disjoint decomposition by assuming C = 0. If such a 

decomposition does not exist, then they add additional input variables to the set 

C until the decomposition existence criterion is satisfied. 
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' d ' 

a) PUB Decomposition b) Block Diagram Representation 

Figure 2.4: Example of PUB Decomposition 

2.3.1.5 PUB Approach 

The approach of Perkowski-Uong-Brown(PUB) [38][43], in contrast to previous 

approaches, is not a variant of the Ashenhurst-Curtis style decomposition. Unlike 

the other serial type approaches, the PUB approach uses a conceptual multiplexor

based decomposition scheme. The only similarity between the PUB approach and 

other serial type approaches is the use of partitioning of variables to free and 

bound sets. In Curtis decomposition the multiplicity index is for cofactors of bound 

variables, whereas in PUB decomposition the multiplicity index is for cofactors of 

free variables. This approach has potential for significant savings of area in cases 

where many inputs to the multiplexors share common sub-functions. Observe that 

the sharing of sub-function outputs in the multiplexor scheme shown in Figure 2.4. 

Savings can be quite significant when applied to functions of many variables. 
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2.3.2 Parallel Decomposition 

In simple terms, a parallel decomposition involve!< splitting up a multi-output 

function into two or more functions each having a subset of the output variables 

of the original function. More about specific parallel decompositions is mentioned 

in the following sections. 

It is important to note that most of the literature published in the area of 

functional decomposition has concentrated on the serial type as opposed to par

allel type decompositions. This is perhaps because most decompositions c,:1,n be 

performed exclusively using a serial type de com poser. However, the reverse is 

not true. Therefore, the serial decomposition is considered more important in the 

overall decomposition scheme. However, parallel decompositions can be of great 

importance when partitioning subsets of outputs to be later decomposed together 

serially. By selecting subsets of output variables which are partially symmetric, 

successive serial decompositions on the subsets of outputs may result in simpler 

circuit descriptions. The simpler circuit descriptions result as a consequence of 

sharing part of the overall logic between one or more functions. 

2.3.2.1 N_TO_ONE Approach 

The most basic of parallel decomposition approaches is to split an n-output 

function into n single output functions. This type of decomposition is straight 

forward and therefore requires no further explanation. The general form of this 
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Fl 

F2 
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F4 

x-/- F3 
F5 

Figure 2.5: N .. TO_QNE Parallel Decomposition 

type of decomposition is shown in Figure 2.5. 

2.3.2.2 Luba Approach 

This approach splits up a given n-output function into 2 sub-functions, one 

sub-function having r outputs and the other sub-function having n r outputs. 

Each of the pa.rallel sub-functions may have different sets of input variables. For 

example, given an original function which has input variables O thru 8 and output 

variables Fl, F2, F3, F4, and F5. Then parallel sub-function Pl might have input 

variables 0,2,3,4,5,8 with output variables Fl and F2. Similarly, sub-function P2 

might have input variables 0,1,2,3,4,6,7 with output variables F3, F4, and F5. This 
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Figure 2.6: Luba Parallel Decomposition 

is shown in Figure 2.6. Note that not all input variables are required for each of 

the parallel sub-functions. This means that certain outputs are only dependent 

on a subset of the full set of input variables. The subset of input variables that a 

function is dependent on is referred to as the support set for that function. The 

basis of Luba's parallel approach[33] is to partition functions into two sets such 

that those functions which are grouped together have as similar support sets as 

possible. 
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2.3.3 Serial-Parallel Decomposition 

2.3.3.1 Perkowski Approach 

Fl 
F2 
F4 
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The result of this type of approach on a hypothetical function F is shown in 

Figure 2. 7. The basic idea of this approach is the following: An incompatibility 

graph is created for a multi-output function(Fl,F2,F3,F4,F5), with edges labeled 

by output function names. A subset of labels, F3 and F5, are removed to decrease 

the multiplicity index of the graph. Based on the new incompatibility graph for 

labels Fl, F2, and F4, the decomposition from Figure 2.7a is found. The result 

of the decomposition for labels Fl, F2, and F4, is shown in Figure 2.7b. Now the 

vacuous input variables are removed from functions F3 and F5 which leads to the 
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Though this approach may be the most complicated, it may find better combi-

nations of functions to be decomposed by serial decompositions thereby resulting 

in better overall decompositions. Moreover, this approach combines the parallel 

and serial decompositions. Parallel decomposition is not assumed here, it results 

from general analysis of function partitioning based on graph coloring[55]. 

2.3.4 Gate Decomposition 

2.3.4.1 Steinbach-Bochmann Approach 

The Steinbach-Bochmann decomposition approach is not an Ashenhurst-Curtis 

type of decomposition. It is a distinctly different type of decomposition which de-
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composes functions into a set of 2-input sub-functions( or gates). Similar to the 

PUB decomposition, the Steinbach-Bachmann decomposition borrows the concept 

of variable partitioning to free and bound sets from Ashenhurst-Curtis. Only four 

types of gates are allowed(AND, OR, EXOR and NOT). Unlike the Ashenhurst-

Curtis type of decomposers which decompose functions into two sub-functions(l 

predecessor and 1 successor) for each loop in the decomposition process, the 

Steinbach-Bachmann decomposer decomposes functions into three sub-functions 

for each loop in the decomposition process(2 predecessors and 1 successor). In 

their approach, the successor sub-function is always one of the gate types men

tioned above. Another important distinction is that their approach does not re

quire column compatibility checking, column minimization or encoding like the 

Ashenhurst-Curtis decomposers. However, their approach requires partitioning to 

a free set, a bound set, and a shared set as does the Ashenhurst-Curtis approaches. 
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Readers interested in details of the gate type decomposition can refer to papers by 

Steinbach-Bachmann [62]. 

2.4 Conclusions On Previous Work 

Presented in previous sections were several different approaches to functional 

decomposition. Which approach performs better in the greatest number of per

formance categories is not known due to the variety of applicat1ons. Examples of 

categories are: lowest power consumption, fewest levels, fewest rows, minimum de-

lay, minimum number of 2-input gates, minimum DFC, minimum area, minimum 

number of logic blocks which can be mapped to specific programmable devices, 

minimum execution times, and the ability to decompose functions of many input 

and output variables(lO0 inputs and 100 outputs) without runniug out of memory. 

Ideally, it is desired to have a single decomposition program which performs 

better in the greatest number of categories and is easily modified to enhance per

formance in one or more specific categories of interest. Though it has not been 

proven, it has been speculated that a Curtis type decomposer can be used to obtain 

any form of decomposed function found using other decomposition approaches. If 

this was known to be true, then this would be very valuable information because 

then it would be theoretically possible to find decomposition solutions, with a 

Curtis type decomposer, at least as optimal as other approaches for many of the 

performance categories. A formal proof that a Curtis type decomposer has the 
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potential to obtain better results than other decomposition approaches would be 

very time consuming to formulate, regardless whether it is true or not. However, 

results already obtained show that in some instances, even a very basic implemen-

tation of a Curtis type decomposer MULTIS/GUD[52] was able to perform better 

than a program implemented using the Steinbach-Bachmann approach. 

In Chapter 7, results are presented which compare the Steinbach-Bachmann ap

proach with MISII and Ashenhurst-Curtis programs GUD, GUD_MV, and TRADE. 

Programs GUD and TRADE were implemented by the POLO(Portland Oregon 

Logic Optimization) group at at Portland State University. Program GUD....l\i1V was 

implemented by Stanislaw Grygiel at Portland State University. Unlike the other 

decomposition programs compared, the program GUDJ'vIV is a decomposition pro

gram which outputs results in a multi-valued format. consistently, the multi-valued 

program GUD..MV performed better than the other decomposers compared in 

terms of DFC. The Steinbach-Bachmann approach performed better than the bi

nary decomposers compared(second only to the multi-valued program GUD..MV). 

However, excluding the results for the multi-valued program GUD..MV, the pro

gram MULTIS/GUD was able to perform the best in a few instances in terms of 

DFC. It should be noted that the results for program GUD were obtained using 

pseudo random partitioning and encoding schemes. Also, the general strategy of 

GUD was very simple and was not developed extensively due to the large amount of 

time spent programming and debugging the basic framework of the program and 
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conversions of input/output formats of other decomposers for the main testbed 

program MULTIS. With better quality decomposition strategy, partitioning, and 

encoding schemes, results for program CUD would probably result in much better 

solutions, perhaps even better than the other approaches compared. It should be 

noted however, that until better quality schemes are implemented, only speculation 

can be made about possible improvements in results from program CUD. Future 

work is concerned with the following issues: 

o General Decomposition Strategy 

• Variable Partitioning To Bound and Free Sets 

• Column Compatibility Checking 

• Column Based Input/Output Encoding 

While algorithms for general decomposition strategies and variable partitioning 

are of great importance to the quality of decompositions, they are not the primary 

topics of this thesis and therefore are not covered in any detail. The primary top

ics of this thesis address the issues of column compatibility checking and column 

based input/output encoding for Ashenhurst-Curtis type decompositions. One of 

the algorithms presented in this thesis was designed to speed up a part of the 

decomposition process( column compatibility checking) which accounts for a sig

nificant portion of the overall program execution time. Results obtained from the 
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implemented algorithm show that it does speed up column compatibility check

ing in the decomposition process and by a significant margin. Hence, this new 

algorithm allows the program to obtain solutions to decompositions more quickly. 

This algorithm is presented in Chapter 3. The other main algorithm presented 

in this thesis is a column based input/output encoding approach. This algorithm 

was not implemented because of time spent on other parts of the decomposition 

program(MULTIS/GUD) and on additional research. However, examples done by 

hand indicate significant potential in simplifying sub-functions in the decomposi

tion process by assigning multiple codes to columns. This algorithm is presented 

in Chapter 5. 



CHAPTER 3 

COLUMN COMPATIBILITY CHECKING IN CURTIS-STYLE 
DECOMPOSITIONS 

3.1 Introduction 
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Column compatibility checking is the process of constructing a compatibility 

or incompatibility graph to be used in a Curtis-style decomposition. The nodes 

in the graph represent columns( or groups of columns) and edges represent the 

compatibility relationship between the columns. The graph, once constructed, is 

used in the next major step in the decomposition process( column minimization). 

This chapter presents a new approach which can significantly decrease the time 

required for column compatibility checking over classical approaches in Curtis-style 

decompositions in cases where large graphs are constructed. Reducing execution 

time is the primary contribution of the new approach presented in this chapter(i.e., 

the same data is obtained, but much faster). Large graphs may be created for 

certain technologies such as in PLA partitioning for CPLDs or FPGAs. Large 

graphs may be used in other applications as well. Few applications for Curtis-style 

decompositions absolutely require large graphs to be constructed. However, some 

of the highest quality decompositions may require large graphs to be constructed. 

Typically, the greater the number of variables in the bound set, the more nodes 
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there will be in a compatibility or incompatibility graph. Unfortunately, little is 

published about the use of large bound sets in Curtis-style decompositions. This 

is most likely due to the increased computation time required for partitioning, 

column compatibility checking, column minimization and encoding when bound 

sets are large. 

In addition to saving time when the bound sets are large, this new approach 

can be used to search a significant part of the search space on large functions 

previously not feasible using previom approaches due to the large computational 

requirements. Yet another advantage of the new approach is that it can be inte

grated into a modified graph coloring algorithm to speed up column minimization 

as well. 

Previously, column compatibility checking was done in a pairwise fashion re

ferred to here as the Pair Compatibility Approach(PCA). Classical examples of 

this type of approach are found in papers by Luba[30][31]. The basic idea behind 

the PCA approach is to check the compatibility relationship of each column with 

every other column(one pair at a time). 

The new approach presented in this chapter is referred to as the Group Compat

ibility Approach(GCA). The basic idea behind the GCA approach is to check the 

compatibility relationship between pairs of groups of columns instead of checking 

the compatibility between each pair of columns(one pair at a time). 

Note that columns and the blocks of the bound set are usually referred to in this 
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chapter simply as columns. Similarly, rows and blocks of the free set are usually 

referred to in this chapter simply as the rows. This is done for two main reasons. 

One reason is that blocks of the bound set and blocks of the free set are treated 

the same way in the algorithms as with rows and columns. The second reason is 

to provide an aid to the graphical explanation of the approaches(i.e., it is much 

simpler to visualize rows and columns in a Karnaugh map than it is to visualize 

blocks of the free set and blocks of the bound set. 

The format of this chapter is as follows: In Section 3.3, the algorithm for the 

classical approach(PCA) to the column compatibility checking problem is intro

duced. In Section 3.4, the algorithms for the new approach(GCA) to the column 

compatibility checking problem are introduced. Also presented in Sections 3.3 

and 3.4, are two examples illustrating the differences in the PCA approach and 

the GCA approach. In Section 3.5, an analysis is presented which compares the 

PCA approach vs. the GCA approach. In Section 3.6 a comparisons of results 

are given. Finally, in Section 3. 7 concluding remarks are presented. 

3.2 Definitions, Notations, and Terminology 

The following are relevant definitions, terminology, and notations used in the 

algorithms presented in this chapter. Certain definitions and notations may re

quire additional explanation in order to fully understand what they represent and 

what they are used for. Additional explanations are presented in relevant sections 
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in this chapter. 

Definition 3.2.1 Classes of cubes are groups of cubes that have compatible out

put values. 

Definition 3.2.2 Classes of columns are groups of columns which have com

patible outputs within some subset of rows of the Karnaugh map. However, unless 

otherwise specified, this does not imply that the all columns in a class are compatible 

with each other u:ithin all rows of the Karnaugh map. 

Definition 3.2.3 Incompatible classes are classes which are incompatible with 

some other class. 

Definition 3.2.4 Incompatible classes of cubes are classes in which some or 

all of the cubes in one class are incompatible with some or all of the cubes in some 

other class. 

Definition 3.2.5 Incompatible classes of columns are classes in which all of 

the columns in one class are incompatible with all of the columns in some other 

class. 

Definition 3.2.6 Pairs of incompatible classes of cubes are two specific classes 

of cubes in which some or all of the cubes in one class are incompatible with some 
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or all of the cubes in the other class. Unless otherwise specified, the pairs of in

compatible classes of cubes are rough partitions of cubes which are elements of the 

same row but not of the same output class. 

Definition 3.2. 7 Pairs of incompatible classes of columns are two specific 

classes of columns in which all of the columns in one class are incompatible with 

all of the columns in the other class. 

Definition 3.2.8 Output classes are the individual partition blocks within the 

o·utput partition. The cubes which belong to each output class have compatible 

output values. 

Ai= ith partition block in P(A). In simpler terms, A, is a set of cubes correspond

ing to a row(or rows) in the Karnaugh map. 

Bi = ith partition block in P(B). In simpler terms, B; is a set of cubes correspond

ing to a column( or columns) in the Karnaugh map. 

Fi = ith partition block in P(F). In simpler terms, Fi is a set of cubes which have 

compatible output values. 

Bij denotes an edge between columns Bi and Bj when referring to a compatibility 

graph or an incompatibility graph. 

ABijk = ABijk = (Bi U Bj) n Ak = The set of all cubes that are elements of block 

Bi or Bj that are also elements of the same block of the free set Ak. 

ICij denotes the class of cubes from row A; that are elements of the same output 
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class F1. Cubes are elements of the same output clas.:, F1 if they have compatible 

output values. For single output binary functions, one of the classes will have 

output value O while the other will have output value 1. 

IC is the set of pairs of incompatible classes of cubes of the form ( [Cij, ICik)- All 

classes f Cij are incompatible with all classes f Cik for all pairs in row i, and for all 

rows i. 

1Rir is the class of cubes that are incompatible with repeated cube r in row i. 

IR is the set of pairs of incompatible classes of cubes of the form (r, I Rr)-

IB is the set of pairs of incompatible classes of columns of the form (I Bij, !Bik)-

All classes I Bi:; are incompatible with all classe;; I B;k for all pairs. 

IBu denotes the set of columns( En) which have at least one cube in common 

with the class of cubes IC;1. Expressed in simpler terms, I B,1 denotes a set of 

columns which have the same output values for a particular cofactor( or row) of 

the Karnaugh map. 

Definition 3.2.9 Repeated cubes 1 as defined here, are care cubes which are 

elements of more than one output class. 

Example: 

1 0111 00 
2 0001 01 
3 0110 0-
4 1010 10 
5 0010 11 
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There are four output classes corresponding to output vectors 00, 01, 10, and 11. 

From these output vectors, cubes may be classified as follows: 

P(F) = {(1,3);(2,3);( 4);(5)}. 

Since cube number 3 is an element of more than one output class, it is referred to 

as a repeated cube. 

SRi denotes the set of repeated cu bes that are found in row i of the Karnaugh 

map. 

Rir is the set of cubes which belong to at least one class IC;j which cube r also 

belongs to. (R11" r-=presents the set of all "care" cl!bes which are compatible with 

cuber in row i). 

3.3 Classical Approach To Column Compatibility Checking: PCA 

3.3.1 Application To Single Output Functions 

The following is a brief explanation of the PCA approach to column compat

ibility checking. The goal of this algorithm is to obtain either an incompatibility 

graph or a compatibility graph. Recall that a compatibility graph is simply the 

complement of the incompatibility graph. Figure 3.la shows the Karnaugh map 

used to illustrate the PCA algorithm. In general, this algorithm checks the com

patibility of each pair of columns and if compatible, then assigns an edge in the 

compatibility graph between the two nodes corresponding to the two columns. The 

method used for checking the compatibility of two columns is straight forward and 
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requires little explanation. 

To determine if two columns are compatible, the output values of the columns 

are checked to see if they are compatible for each and every combination of the 

free set variables(i.e., each row). The order that each pair of columns are checked 

for compatibility is arbitrary. Begin by arbitrarily selecting the two columns high

lighted in Figure 3.la (columns B1 and B6 ). Figure 3.lb shows the output partition 

P(F) with cubes classified according to their output values. In Figure 3.lc-f are 

shown the compatibility checks within each row necessary to determine if the two 

columns are compatible. Columns B 1 and B6 ,1re compatible within rows l thru 3, 

but are incompatible in row 4. Therefore, column B1 is incompatible with column 

B6 . The remaining pairs of columns shown in Figure 3.2a are checked in the same 

manner. This results in the compatibility graph shown in Figure 3.2b with edges 

between nodes in the graph indicating that two columns are compatible. 

3.3.1.1 Algorithm PCA For Single Output Functions 

This algorithm is based on the pair compatibility approach by Luba[30]. 

Algorithm parameters defined: 

a = Number of blocks in the free partition P(A). 

b = Number of blocks in the bound partition P(B). 

f = Number of blocks in the output partition P(F). 
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Figure 3.1: Diagram illustrating PCA approach to Column Compatibility Check
ing for Single Output Functions: # 1 



s, B2 s, B3 s, B~ s, B51~1 B 1 B7 s, 

B2 B3 ~ B2 B5 ~B2 B7 B2 Bg 

B3 B4 B3 B5 B3 B6 B3 8 1 I B3 Bg 

B4 B5 B4 B6 ~ ~ 
B5 B6 B5 B7 B5 Bg 

~ ~ I 
B7 Bg ' ! 

i 

a) Build the compatibility graph by adding edges between each pair of 

nodes(columns) that ar~ compatible. Listed above are the pairs of 

columns to be checked. Shown circled are the pairs of columns that 

are incompatible 

50 

Bg 

b) Compatibility Graph 

Figure 3.2: Diagram illustrating PCA approach to Column Compatibility Check
ing for Single Output Functions: # 2 

Algorithm 3.3.1 

Begin 

II For all pairs of blocks{columns) i and j, check if they are compatible blocks. 

for (i=l; i< b ; i++) 

{ 

for (j=(i+l); jSb; j++) 

{ 

Return_ Value = CHECK_PAJR_COMPATIBLE(i1 j); 

if (Return_ Value = True) 

Record block i as compatible with block j. 

else 

Record block i as incompatible with block j. 
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} 

} 

end. 

Function CHECK_PAJR_COMPATIBILITY(i, j); 

CHECK_PAJR_COMPATIBILITY{i, j); 

{ 

I I Combine the cubes contained in two blocks( or columns) to be checked 

I I for compatibility . . 

for {k=l; k'S_a; k++) 

{ 

I I For each row k do the following: 

I I Initialize variable "Compatible" for each new row to check. 

Compatible = False; 

I I Find the set of cubes within row k which are elements of 

I I either block Bi or B1. 

ABijk = Bij n Ak; 

I I Check if all cubes in ABijk are contained in one of the output classes. 

I I If all cubes in a set( or class) are elements of the same output class, 



/ / then they are mutually compatible. If so, then columns i and j are 

/ / compatible in row k. 

for (l=l; l~f; l++) 

{ 

if ( ABijk ~ F1) 

{ 

} 

I I Bi and B1 have compatible outputs for row k. 

Compatible = True; 

Goto check_nexLrow; 

} 

if (Compatible = False) 

Return False; 

check_nexLrow: 

} 

Return True; 

} 
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3.3.1.2 Illustration Of The PCA Approach On Function F2 
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Here function F2 is decomposed using the PCA approach. The same function 

is again decomposed using the GCA approach in Section 3.4.1.2. In each case, the 

example decomposition problem is completed using the same column minimization 

method(set covering) in order to illustrate how the results of column compatibility 

checking are used in a Curtis-style decomposition. The set covering method is not 

covered in detail as it is not one of the central topics of this thesis. 

Problem Description For Function F2 

Given is the function described by the Karnaugh map in Figure 3.1 and repeated 

again in Figure 3.3, with the bound and free sets {c,d,e} and {a,b}, respectively. 

The following are the rough partitions for the bound set, free set, and output set 
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respectively. Commas separate min term numbers( or cube numbers) within each 

rough partition and semicolons separate partition blocks. Don't cares are not 

enumerated in the partitions(i.e., they are not used in the partition operations) 

and 0( empty set) indicates no specified values in a particular partition. Construct 

the compatibility graph and perform column minimization to obtain a cover set 

Ile. 

P(B) (25; 2,26; 0; 4,12,20; 0; 6, 14,22,30; 7,23; 16,24) 

P(A) (2, 4, 6, 7; 12, 14, 16; 20, 22, 23, 24; 25, 26, 30) 

(A1, A2, A3, A4); 

P(F) (4,6,12,14,23,24,30; 2, 7,16,20, 22,25,26) 

Decomposition Of Function F2 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

There are four steps shown in this example. Step one illustrates the PCA ap

proach. The remaining steps illustrate the column minimization phase of the 

decomposition process. The steps for the decomposition are as follows: 

Step 1: This step illustrates the PCA approach. 
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Execution of PCA Algorithm. 

Find all compatible pairs of columns which represent the compatibility graph. 

Compatible pairs of columns are those which have the same output values 

in corresponding positions of every row. Any one of the following pairs of 

cells classifies as having the same values: (1,1),(1,X),(0,0),(0,X),(X,X). For 

simplicity, let Bij denote the compatible pair of columns Bi and B1, also 

denoted by (Bi, B1). 

The condition for compatibility between each pair of columns can be ex

pressed as follows: 

If 

(3.5) 

Then Bi and B1 are compatible, denoted as Bi ~ B1. Using this condition 

for compatibility find the set of all pairs of compatible columns. 

Begin by arbitrarily selecting two columns(B1 and B2 ) to check if they are 

compatible. Merging B1 and B2 together, produces: 

B12 = (B1 U B2) = ((25) U (2, 26)) = (2, 25, 26); (3.6) 

Now the check of the condition for compatibility is performed: 
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(2, 4, 6, 7) n (2, 25, 26) = (2) ~ ( 4, 6, 12, 14, 23, 24, 30) ? 

Not satisfied! 

(2, 4, 6, 7) n (2, 25, 26) = (2) ~ (2, 7, 16, 20, 22, 25, 26) ? 

Satisfied! Therefore B1 is compatible with B2 in row 1. 

Row 2) A2 n (B1 U B2) ~ F1 ? 

(12, 14, 16) n (2, 25, 26) = (0) ~ ( 4, 6, 12, 14, 23, 24, 30) ? 

Satisfied! Therefore B 1 is compatible with B2 in row 2. 

Row 3) A3 n (B1 U B2) ~ F1 ? 

(20, 22, 23, 24) n (2, 25, 26) = (0) ~ ( 4, 6, 12, 14, 23, 24, 30) ? 

Satisfied! Therefore B1 is compatible with B2 in row 3. 

Row 4) A4 n (B1 U B2) ~ F1 ? 

(25, 26, 30) n (2, 25, 26) = (25, 26) ~ ( 4, 6, 12, 14, 23, 24, 30) ? 

Not satisfied! 

A4n(B1UB2)~F2? 

(25, 26, 30) n (2, 25, 26) = (25, 26) ~ (2, 7, 16, 20, 22, 25, 26) ? 

Satisfied! Therefore B1 is compatible with B2 in row 4. 
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Shown circled with dashed lines are the classes chosen for the final cover set. 

a) Compatibility Graph b) Incompatibility Graph 

Figure 3.4: Compatibility and Incompatibility graphs for Function F2 

Therefore since the compatibility relation above was satisfied for each of 

the four rows(A), then B 1 ~ B 2 . 

In the same way the compatibility relation is checked for all other pairs of 

blocks in P( B). 

This results in the set CB of pairwise compatible blocks: 

Based on set CB, the compatibility graph from Figure 3.4 is created. It has 

nodes corresponding to the columns in the Karnaugh map and the edges 

between them indicating that the columns are compatible( edges correspond 

to elements of CB)-

The next stage of the decomposition process( column minimization) is not 

part of the algorithm for column compatibility checking. However, it is shown 



58 

here to illustrate how the results from column compatibility checking are used 

in the next stage of the decomposition process. This next stage is shown in 

steps 2 thru 4. 

Step 2: Incrementally construct CCs from the set of compatible pairs of columns 

found in step 1 until each column is present in at least one CC. For each 

iteration, add the next column to be considered to each CC provided that 

the new column is compatible with all other columns in the class. If a new 

column is not compatible with any of the existing classes, then add a new 

class containing all previously assigned columns that are mutually compati

ble with each other and with the new column. For simplicity, the block index 

number is used to denote each block (i.e., block Bi is simply shown as index i). 

I terationl = ( 1) 

Next, combine column 2 with the CCs of the previous incremental step. 

Iteration2 = (1,2) 

Next, combine column 3 with the CCs of the previous incremental step. 

Iteration3 = (1,2,3) 

Next, combine column 4 with the CCs of the previous incremental step. 

It is found that column 4 is not compatible with column 2 and therefore a 

new CC must be introduced which includes column 4 and not column 2. 
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Iteration4 = { (1,2,3), (1,3,4)} 

Similarly, complete the CCs until all columns are included in at least one CC. 

Iteration5 = { (1,2,3,5), (1,3,4,5) } 

Iteration6 = { (1,2,3,5), (1,3,4,5), (3,4,5,6)} 

Iteration?= { (1,2,3,5,7), (1,3,4,5), (3,4,5,6) } 

Iteration8 = { (1,2,3,5,7,8), (1,3,4,5), (3,4,5,6)} 

Step 3: Find the mi:iimum number of CCs which will completely cover all of the 

columns. The CCs in the last row of the previous step (Iteration8) form the 

CCs for this function on the given bound set. 

CC2 = (1,3,4,5) = (B1,B3,B4,Bs) 

CC3 = (3, 4, 5, 6) = (B3, B4, Bs, Bs) 

From these CCs, the minimal cover set Ila can be formed: 

Step 4: This step in the decomposition process is optional. Whether or not this step 

should be executed depends on the type of encoding method used(i.e., some 
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encoding methods require disjoint cover sets). However, this step is exe

cuted here to illustrate the difference between disjoint and non-disjoint cover 

sets. To form the disjoint cover set Ile, remove redundant blocks from all 

CCs of the minimal cover found in the previous step (i.e., ((B1 , B2, B1, Bs); 

(B3, B4 , B 5 , B6 )). This results in the disjoint cover set Ile: 

where Ile = ((B1 ,B2,B7 ,B8 ); (B3 ,B4 ,B5,B6 )) This completes the illus

tration of this example. 

3.3.2 Application To Multiple Output Functions 

3.3.2.1 Algorithm PCA For Multiple Output Functions 

Unlike the GCA approach which has a separnte algorithm for single output 

functions and multiple output functions, the PCA approach has one algorithm for 

both single output functions and multiple output functions. This algorithm was 

presented in Section 3.3.1.1 and therefore will not be repeated here. 

3.3.2.2 Illustration Of The PCA Approach On Function F3 

Problem Description For Function F3 

Table 3.1 describes the next example, function F3. The first column is the 

enumeration of cubes. The input variables are denoted X 1 thru X 4 and the out

put variables are Yi and Y2 • The multiple valued map corresponding to Table 3.1 
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Cube X1 X2 X3 x4 Yi ½ 
1 0 0 2 0 1 1 
2 3 0 - 1 0 0 
3 3 1 0 - - 0 
4 2 1 3 0 0 1 
5 - 1 1 1 1 -
6 1 0 3 0 0 -
7 2 - 3 1 0 1 
8 3 1 1 0 1 0 
g 1 1 - 1 - 0 
10 3 0 2 0 1 -
11 1 1 3 1 0 0 

Table 3.1: Table for Example Function F3 

XXX I B1 I B,I I B. I 85 IBo!B;IB,! [i"J ~· B, 
X 

000 I Oil 021 031 IOI ll I 121 I'll 100 l lO 120 no 
A, 0 (ill 1-

A, l 

A, 2 

00 00 00 

JU 6 7 5 9 • 11 

Figure 3.5: Multi-valued Map for Function F3 

is shown in Figure 3.5. Find the decomposition H(A, G(B)) given the specified 

bound and free sets. For this example, variable X 1 was chosen for the free set and 

variables X 2 , X 3 , and X 4 were chosen for the bound set variables. The following 

are the corresponding bound, free, and output partitions. 

(1,5; 5,6,9,11; 4,5, 7; 2,3,5,8,10) 



P(B) = P(X2 ) · P(X3) · P(X4) 

(B1, ... ,B8 ) 

(1,10; 6; 2, 7; 3,9; 5,9; 7,9,11; 8; 4) 

P(F) = (1,5,10; 2,3,6,9,11; 3,5,8,9,10; 4,6,7) 

(Fi, ... , F4) 

Thus: 

A4 = (2, 3, 5, 8, 10) 

B1 = (1, 10); B2 = (6); B3 (2, 7); B4 = (3, 9); 

Bs (5, 9); B6 = (7, 9, 11); B1 (8); Bs = (4) 

F2 (2, 3, 6, 9, 11 ); F3 (3, 5, 8, 9, 10); 

Decomposition Of Function F3 
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Step 1: This step illustrates the use of the PCA approach to column compatibility 

checking. 

Execution of PCA Algorithm. 

Find all compatible pairs of columns. Begin by arbitrarily selecting two 
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columns( B3 and B5 ) to check if they are compatible. Merging B3 and B5 

together, the following set of cubes are produced: 

(3.9) 

Now the check of the condition for compatibility is performed: 

Rowl)A1n(B3UBs)~F1 ? 

(1)5) n (2)5, 7)9) (5) ~ (1,5,10)? 

Satisfied! Therefore B3 is compatible with B5 in row 1. 

Row 2) A2 n (B3 U B5) ~ F1 ? 

(5,6)9, 11) n (2,5, 7,9) = (5,9) ~ (1,5, 10)? 

Not satisfied! 

A2n(B3UBs)~F2 ? 

(5,6,9,11) n (2,5, 7,9) = (5,9) ~ (2,3,6,9,11)? 

Not satisfied! 

A2 n (B3 U Bs) ~ F3 ? 

(5, 6, 9, 11) n (2, 5, 7, 9) = (5, 9) ~ (3, 5, 8, 9, 10) ? 

Satisfied! Therefore B3 is compatible with B5 in row 2. 
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(4, 5, 7) n (2, 5, 7, 9) = (5, 7) ~ (1, 5, 10) ? 

Not satisfied! 

(4, 5, 7) n (2, 5, 7, 9) = (5, 7) ~ (2, 3, 6, 9, 11) ? 

Not satisfied! 

( 4, 5, 7) n (2, 5, 7, 9) = (5, 7) ~ (3, 5, s, 9, 10) ? 

Not satisfied! 

(4,5, 7) n (2,5, 7,9) = (5, 7) ~ (4,6, 7)? 

Not satisfied! 

Since the condition for compatibility was not satisfied for row 3(A3 ), it is 

known that columns(blocks) 3 and 5 are not compatible. Checking for com

patibility of row 4(A4 ) is not necessary, since it has already been determined 

that these two blocks are incompatible. 

Therefore since the compatibility expression above was not satisfied for all 

rows, then B4 ,f Bs. 
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Compatibility Graph Incompatibility Graph 

I:,,;:_;~- - - ' 

:~ ®:J0v__jB3: 
! I t I 

' ' I 
B5 B7 , : B 8 B6 : 

I I 
--- , __ ----✓ 

Shown circled with dashed lines are the classes chosen for the final cover set 

Figure 3.6: Compatibility and Incompatibility graphs for Function F3 

In the same way check the compatibility relation on all other pairs of blocks 

in P(B). This results in the set of pairwise compatible blocks Cs: 

This set of compatible pairs forms the compatibility graph from Figure 3.6 

with the nodes corresponding to the blocks( of the bound set) in the Karnaugh 

map and the edges between them indicating that the blocks are compatible. 

Also shown in this figure is the incompatibility graph which is the comple

ment of the compatibility graph. 

The next stage of the decomposition process(column minimization) is not 

part of the algorithm for column compatibility checking. However, it is shown 

here to illustrate how the results from column compatibility checking are used 

in the next stage of the decomposition process. This next stage is shown in 
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steps 2 thru 4. 

Step 2: Find the largest CCs from the set of compatible pairs found in step 1. For 

simplicity, only the block numbers are used(i.e block B1 is denoted by index 

1 ). 

Iteration! = (1) 

Next, combine column 2 with the CCs of the previous incremental step. 

Jteration2 = (1,2) 

Next, combine column 3 with the CCs of the previous incremental step. 

It is found that column 3 is not compatible with column 1 and therefore a 

new CC must be introduced which includes column 3 and not column 1. 

Iteration3 = (1,2),(2,3) 

Next, combine column 4 with the CCs of the previous incremental step. 

Iteration4 = (1,2,4),(2,3,4) Similarly, complete the CCs until all columns 

are included in at least one CC. 

Iteration5 = (1,2,4),(1,4,5),(2,3,4) 

Iteration6 = (1,2,4,6),(1,4,5),(2,3,4,6) 

Iteration?= (l,2,4,6,7),(1,4,5,7),(2,3,4,6) · 

Iteration8 = ( 1,2,4,6, 7,8),(1,4,5, 7),(2,3,4,6,8) 
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Step 3: Find the set of CCs from the last iteration which together will cover P(B) 

completely. A set of CCs is said to cover P(B) completely if each block in 

P(B) is an element of at least one CC. The CCs from Iteration8 form the 

CCs for this function on the given bound set. 

CC2 = (B1 , B4, Bs, B1) 

CC3 = (B2, B3, B4, Bs, Bs) 

Therefore the one of the possible minimal covers is: 

Step 4: This step is optional. To form Ile, remove redundant blocks from all CCs 

of the minimal cover ( ( B1 , B4, B5 , B7 ); ( B2, B3, B6 , B8 )) found in the pre

vious step. This results in the partition Ile which satisfies the requirement 

P(A) · Ile ~ P(F). 

Ile (1,4,5,7; 2,3,6,8) 

Since only two classes were required to form the cover set, then the resulting 

function is F = H(x 1 ,G(x2 ,x3 ,x4 )) where G is a single output function. 

This completes the illustration of this example. 
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3.4 New Approach To Column Compatibility Checking: GCA 

The new algorithms presented in the following sections can greatly reduce 

the number of calculations required to create the compatibility or incompatibility 

graph when there is a large number of blocks in the bound set. 

The basic idea of this algorithm is to find pairs of incompatible classes of 

minterms for each row and then replace these incompatible classes of minterms with 

incompatible classes of columns(blocks of P( B)) which contain those min terms. 

These incompatible classes of columns are used to form the set of pairs of incom

patible columns. Each pair of incompatible columns are represented by an edge in 

the incompatibility graph. 

There are two GCA algorithms, one for single output functions (Algorithm 3.4.1) 

and one for multiple output functions (Algorithm 3.4.2). These algorithms share 

many of the same steps. However, unlike Algorithm 3.4.2, Algorithm 3.4.1 is not 

sufficient to handle multiple output functions(i.e. some columns may be incor

rectly classified as compatible or incompatible). For this reason, Algorithm 3.4.2 

has additional steps so that all columns are correctly classified for multiple output 

functions. An explanation of this difference is deferred until after the reader has 

been introduced to the algorithm for single output functions. A detailed explana

tion is given in Section 3.4.2 as to why the extra steps are necessary. 



Kamaugh Map 

Row 1 

Row 2 

Row 3 

Row4 

a) Karnaugh map showing cubes in each row classified 

according to their output values. 

Row 1 

Row 2 

Row 3 

Row 4 

Incompatible 
classes of columns 
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bl For each class of cubes, form a class of colurrms 

by including all colurnns which contain at least one 

cube from the class of cubes. Note that each column 

from one cllss(within each row) is incompatible 

with every column in the other class. For example. 

For row I. B2 is incompatible with B4 &B6 
Also, B7 is incompatible with B4 & B6 

Shown circled with dashed lines are the classes chosen for the final cover set. 

c) Incompatibility Graph 
d) Compatibility Graph 

Figure 3. 7: Diagram illustrating GCA approach to Column Compatibility Check
ing for Single Output Functions 
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3.4.1 Application To Single Output Functions 

The following is a brief explanation of the GCA approach to column compat

ibility checking for single output functions: 

The desired result of this algorithm is either an incompatibility graph or a 

compatibility graph. Figure 3. 7a shows the result of the first step in the algorithm. 

Here the cubes which are elements of each row are separated into classes based on 

the output value of the cubes. For single output functions, there are two output 

classes(0 and 1 ). For row 1, find two cubes which are elements of each output 

class(i.e., cubes 2 and 7 both have output value 1 and cubes 4 and 6 both have 

output value 0). Similarly, separate cubes in other rows into classes based on their 

output values. From these classes of cubes within each row, the observation can 

be made that columns which contain cubes in one class are incompatible with the 

columns that contain cubes in the opposite class. 

Therefore, with this observation in mind, perform the next step in the algorithm 

by forming a class of columns for each class of cubes. This is accomplished by 

including all columns which have at least one cube in common with a specific class 

of cubes to a new class of columns. The result of this step is shown in Figure 3.7b. 

As shown in Figure 3.7b, for classes within each row, all columns in one class are 

mutually incompatible with all columns in the opposite class. From these pairs 

of incompatible classes of columns, construct either an incompatibility graph or a 
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compatibility graph. 

For simplicity, first construct the incompatibility graph by adding an edge 

between nodes( columns) in the graph which are incompatible, This is done for 

each row as follows: for each column in one class, add an edge between the node 

that corresponds to that column, to every node corresponding to the columns in the 

other class. This results in the incompatibility graph shown in Figure 3.7c). The 

complement of the incompatibility graph is shown in Figure 3.7d. That concludes 

the general description of the GC A approach for single output functions. 

3.4.1.1 Algorithm GCA For Single Output Functions 

Algorithm parameters defined: 

GRAPH = Set of pairs of incompatible columns representing the incompatibility 

graph or alternatively, the set of pairs of compatible columns 

representing the compatibility graph. 

i = number of rows(or blocks in the free partition). 

j = number of output classes(or blocks in the output partition). 

n = number of columns(or blocks in the bound partition). 

Algorithm 3.4.1 

Begin 

a) IC= FORM_SET_QF_PAIRS_JC(A,F,i,j); 
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II This function forms pairs of classes of cubes for each row in the Karnaugh 

II map. Cubes in each class are elements of the same row and output class. 

I I Within a pair of classes, all cubes in one class are incompatible with all 

II cubes in the other class(with the exception of repeated cubes). 

e) IE= FORM_SET_QF_PAIRS_JB(IC,B,i,n); 

I I This function forms pairs of classes of columns such that, within a pair of 

// classes, all columns in one class are incompatible with all columns in the 

I I other class. 

f) GRAPH= FORM_GRAPH_FR011LIB(IB,i:B,n)i 

I I This function forms the incompatibility( or compatibility) graph. 

end. 

Detailed explanation of functions used in Algorithm 3.4. 1. 

Not.e that only three out of six function calls in the multiple output Algorithm 3.4.2 

are executed by the single output algorithm. Therefore, the parts of this algorithm 

which differ from the multiple output algorithm, are indicated in the corresponding 

parts below. 

a) Part a of GCA Algorithms 3.4.1 and 3.4.2 basically involves obtaining the 
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quotient of partitions(P(A)IP(F)) as previously done by Luba[31]. How-

ever, the quotient of partitions is used here for column compatibility check

ing, whereas Luba used quotient partitions to partition variables to free and 

bound sets. 

Function FORM _SET _OF _p AI RS_JC(A, F, i,j); 

This function forms the set of pairs of incompatible classes of cubes IC. 

The pairs of incompatible classes of cubes are of the form (ICij, ICik) E JC. 

To find each pair (ICi1 , f Cik), classify cubes which are elements of row Ai 

according to the output classes they belong to. 

The classes ICij and ICik obtained from each row Ai are incompatible with 

one another and therefore constitute the set of pairs of incompatible classes 

of cubes referred to as IC above. 

Function FORM _SET _OF _PAI RS_JC(A, F, i,j) returns set IC. 

b) Part b in the multiple output algorithm is not executed in the single output 
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algorithm. 

c) Part c in the multiple output algorithm is not executed in the single output 

algorithm. 

d) Part d in the multiple output algorithm is not executed in the single output 

algorithm. 

e) Function FORM _SET _OF _PAI RS_J B(IC, B, IC..LENGT H, n); 

This function forms the set of pairs of incompatible classes of columns I B. 

The pairs of incompatible classes of columns are of the form (I Bij, I B,1c) E 

I B. To find each class I B,j, find all columns which contain at least one cube 

that is contained in class /Cij, and put them together in class I Bij• This is 

done as follows: 

where n is simply an index for blocks of the bound set. 

The pairs of classes I B;.; and / B;.k obtained from each row i are incompati

ble with each other and therefore constitute the set of pairs of incompatible 

classes of columns referred to above as I B. 
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Function FORM _SET _OF _PAI RS_J B(IC, B, IC ..LENGTH, n) returns 

the set I Band I B_LENGT H. 

f) Function FORM _GRAPH _FROM _J B(I B, IC ..LENGTH, B, n); 

This step simply changes the way the compatibility /incompatibility infor

mation is stored. This step is not required for column minimization algo

rithms that are able to work directly with the incompatible classes of columns 

formed in the previous step. However, if the column minimization algorithm 

requires a graph with nodes representing individual blocks of the bound set, 

then the data stored in the previous step is converted from pairs of incom

patible classes of columns to pairs of columns which are incompatible. To 

convert to pairs of columns which are incompatible, perform the following: 

For each row i, assign every column in class J B,j as pairwise incompatible 

with every column in class I B,k-

The above conversion can create the data which corresponds to both the 

compatibility and incompatibility graphs simultaneously. This can be done 

by simply using a two dimensional array with a bit set indicating that 
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a pair is compatible, and if it is not set, then the pair is incompatible. 

Function FORM_GRAPH_FROM_JB(IB,JC_LENGTH,B,n) returns a 

pointer( GRAPH) to the data representing the desired graph. 

3.4.1.2 Illustration Of The GCA Approach On Function F2 

Problem Description For Function F2 

Repeated here for completeness is the following information: Given is the func

tion described by the Karna ugh map in Figure 3. 7 and repeated again in Figure 3.8, 

with the bound and free sets { c,d,e} and { a,b }, respectively. The following are 

the rough partitions for the bound set, free set, and output set respectively. Com

mas separate min term numbers( or cu be numbers) within each rough partition and 

semicolons separate partition blocks. Don't cares are not enumerated in the parti

tions(i.e., they are not used in the partition operations) and 0(empty set) indicates 

no specified values in a particular partition. Construct the compatibility graph and 

perform column minimization to obtain a cover set Ile. 

P(B) (25; 2,26; 0; 4,12,20; 0; 6,14,22,30; 7,23; 16,24) 

(B1, B2, B3, B4, Bs, Bs, B1, Ba); 

P(A) (2, 4, 6, 7; 12, 14, 16; 20, 22, 23, 24; 25, 26, 30) 

(A1, A2, A3, A4); 

P(F) (4,6,12,14,23,24,30; 2, 7,16,20,22,25,26) 

(3.11) 

(3.12) 
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i32 

4 6 

Incompatibk: • 
classes 

i 2526 ~ ~ B6 

---=====---
Figure 3.8: Karnaugh Map for function F2 showing incompatible classes of columns 

(3.13) 

Decomposition Of Function F2 

Step 1: This step of the decomposition illustrates the GCA approach. 

Execution of GCA Algorithm 3.4.1. 

a) Generate set IC using function 

FORM_SET_QF_PAIRS_JC(A,F,i 4,j = 2). This function per-

forms the following calculations: 
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The first class to be formed is / 0 11 . It is formed as follows: 

IC11 = (A1 n F1) ((2,4,6, 7) n (4,6,12,14,23,24,30)) = (4,6). 

Similarly, the remaining I Cij are found. This results in the follow

ing classes of cubes. 

/Cll = (4,6), 

IC21 - (12, 14), 

/031 = (23, 24), 

/041 = (30), 

1012 = (2,7), 

1022 (16), 

JC32 = (20,22), 

JC42 = (25,26), 

The following is IC expressed as the set of pairs of incompatible classes 

of the form(J0.;.1, ICi2): 

IC= 

((( 4,6), (2,7)), 

((12,14), (16)), 

((23,24), (20,22)), 

((30), (25,26))). 
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b) Skip part b) since this is a single output function. 

c) Skip part c) since this is a single output function. 

d) Skip part d) since this is a single output function. 

e) Generate I B using function 

FORM -8ET_OF_PAIRS_J B(IC, B, i 4, n = 8). I B is found ac-

cordingly: 

I B,1 = { n I ViV j I C,1 n En c/ 0 } 

For simplicity, only the column number is used to denote each column 

(i.e., Bi is shown as number i). The first class in I B to generate is I Bu. 

I B11 is found incrementally as follows(initially I B11 = (0)): 

i) IC 11 n B 1 = ( 4' 6) n ( 25) = 0 ... 

therefore I B11 remains unchanged, 

ii) IC11 n B2 (4, 6) n (2, 26) = 0 ... 

therefore I Bu remains unchanged, 



iii) IC11 n B3 = (4, 6) n (0) = 0 ... 

therefore I B11 remains unchanged, 

iv) JC11 n B4 = (4,6) n (4,12,20) = (4) ... 

therefore I B11 = (4), 

v) IC11 n Bs = (4,6) n (0) = 0 ... 

therefore I B11 remains unchanged, 

vi) JC11 n B6 = (4,6) n (6,14,22,30) = (6) ... 

therefore I B11 = ( 4, 6), 

vii) IC11 n B1 = (4,6) n (7,23) = 0 ... 

therefore I B 11 remains unchanged, 

viii) IC11 n Bs = (4, 6) n (16, 24) = 0 ... 

therefore the resulting class for I B 11 = (4, 6). 
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Similarly, the remaining I Bij classes are found. This results in the fol

lowing classes of columns. 

/Bu=(4,6), 

/B21=(4,6), 

I B31 = (7, 8), 

I B41 = (6), 

IB12 = (2,7), 

IB22 = (8), 

I B32 = ( 4,6), 

I B42 = (1,2), 



Therefore I B 

(((4,6), (2,7)), 

((4,6), (8)), 

((7,8), ( 4,6)), 

((6), (1,2))). 
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Note: Each column in a pair of classes is incompatible with all columns 

in the opposite class. Each of these pairs represents the sets of columns 

which have a conflicting output in a particular row and therefore cannot 

be combined in the column minimization step. 

f) Construct the desired graph using function 

FORM_GRAPH_FROM_JB(IB,i 4,B,n = 8). This function per

forms the following calculations: 

For each row index i, assign all columns in class I B11 as pairwise in

compatible with all columns in class I Bi2 . 

For row 1: 
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(/B11 = (4,6)) i (!B12 = (2, 7)). Therefore columns 4 and 6 are in

compatible with columns 2 and 7. This forms the incompatible pairs 

B24 , B26, B41, and B61-

For row 2: 

(/B21 = (4,6)) f (/B22 (8)). Therefore columns 4 and 6 are incom

patible with column 8. This forms the incompatible pairs B48 and B68 . 

For row 3: 

(7, 8)) i (I B32 ( 4, 6) ). Therefore columns 4 and 6 are in-

compatible with columns 7 and 8. This forms the incompatible pairs 

B41, B48, Bs1, and BsB• 

For row 4: 

(/B41 = (6)) f (JB42 = (1,2)). Therefore column 6 is incompatible 

with columns 1 and 2. This forms the incompatible pairs B16 and B26 • 

The sets of incompatible pairs for rows results in the set of pairwise 

incompatible columns IB: 
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The set I B of pairwise incompatible columns is used to form the incom

patibility graph in Figure 3.7c. The set of pairwise compatible columns 

CB can be obtained simply by removing set IB from the set of all pairs 

of columns: 

CB = (B12, B13, B14, B15, B17, Bis, B23, B25, B21, B2s, B34, 

B35, B35, B31, B3s, B45, B46, B56, B51, B5s, B1s) 

This set of pairwise compatible columns forms the compatibility graph 

shown previously in Figure 3. 7d. This completes the illustration of the 

GCA approach for this example. 

Steps 2-4: The remaining steps(steps 2-4) in the decomposition of this function are 

carried out in the same exact way as was done in the previous example 

decomposition of Function F2 and are therefore not repeated here. 

3.4.2 Application To Multiple Output Functions 

The fundamental distinction between GCA algorithms for single output vs. 

multiple output functions is that cubes may be compatible with more than one 

output class( output partition block) in multiple output functions. These c\1bes are 

referred to as repeated cubes. In single output functions, disjoint subsets of cubes 
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are classified in each row according to output classes they belong to. When this is 

done, then pairs of classes of cubes are formed(ICij; ICik). In each of these pairs 

of classes, all cubes in one class are incompatible with all cubes in the other class. 

However, in multiple output functions, cubes classified in the same manner may 

result in pairs of classes of cubes which are not disjoint. When this occurs, then all 

cubes in one class are not incompatible with all cubes in the other class. To solve 

this problem, the set of pairs of classes of incompatible cubes are formed first for 

the set of repeated cubes only. This set is denoted IR. Then the repeated cubes 

are removed from all classes within set IC to form the new set IC of non-repeated 

cubes. The set IR is appended to IC and the remainder of the algorithm is iden

tical to the single output algorithm. The following is a brief explanation of the 

GCA approach for multiple output functions: 

Begin by classifying cubes within each row according to the output classes 

they are compatible with. The output classes are 00, 01, 10, and 11. The resulting 

classes formed are shown in Figure 3.9a. 

From the classes ICi,, the set of repeated cubes S~ are found for each row i. 

In row 1, cube 5 is compatible with more than one class and is therefore classified 

as a repeated cube. Because there are no other repeated cubes in row 1, then S R1 

contains only one cube(cube 5). Similarly, the repeated cubes are found for the 

remaining rows. The resulting classes S~ are shown in Figure 3.9b. 



XXX 
2 4 3 

x1 I Bl I B2 I B, I B41 B5 I B61 B41 B1 I [iJ 
000 0IO 020 030 001 011 021 031 IOI 111 121 131 100 1IO 120 130 

A 1 o ill) 1· 
t----t--iF---t?~--t---t--t--t::::~l:l=::w===l::;;=;:t--1""-t---t----1 

A2 l 

A 2 
) 

IO 6 

Output Classes -- 11 

IC 11 
Row I I 5 

00 00 00 

7 

00 

IC1z 
j) 

5 9 8 

10 01 

IC 13 IC14 

Ci:J ( f) ) 

Row 2 0 difu I [ii] 9 CT] 
IC31 IC 32 IC 33 IC 34 

Row 3 5 f) 5 4 7 

IC 

Row4 ~ 
IC42 

~ 
IC44 

2 3 0 f) 

a) Multi-valued map showing cubes in each row classified 

according to their output values. 

b) Set of repeated cubes for each row. 

Repeated cubes are cubes that appear 

in more than one output class for a 

particular row. 

SR1 = (5) 

SR2 = (5,6,9) 

SR3 = (5) 

SR4 = (3,5,10) 

4 
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II 

Figure 3.9: Diagram illustrating GCA approach to Column Compatibility Check
ing for Multiple Output Functions: # 1 



Repeated 

~b 
cue 

ow 3 5 6 9 10 

I - R15= { 1 I - - -
2 - R25= {9} R26 = {9,11 l R29 = {5,6,11 I -
3 - R35= 16) - - -
4 R4:,= {2,5,8, 10 l R45 = {3,8,10) - - R410 = {3,5,8) 

a) Sets of cubes which are compatible with repeated cubes corresponding to each row. 

Dashes indicate that the repeated cube does not appear in that row of the Kamaugh 

map and therefore does not need to be considered for that row. 

Repeated 

~b 
cue 

I w 3 5 6 9 JO 
~ 

l - 15 µ'I' } - - ! -I 

2 - 12s= { 6,11 l l26= {5} 129= {£f} -
3 - I 35= {4.7) - - -
4 143= WI I 45"' {2} - - I 4IO= {2} I 

b) Sets of cubes which are incompatible with repeated cubes corresponding to each row. 

Dashes indicate that the repeated cube does not appear in that row of the Kamaugh 

map and therefore does not need to be considered for that row. 

c) Set of pairs of incompatible classes of the IR 
form {r, Iir }, obtained using the repeated cubes. 

(5, l25) = (5, { 6,11 }), 

(5, 135) = (5, {4,7}), 

(5,145) = (5, {2}), 

(6, 12& = (6, (5 }), 

(10, I4 HY = (10, {2}). 
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Figure 3.10: Diagram illustrating GCA approach to Column Compatibility Check
ing for Multiple Output Functions: # 2 



Row 1 

Row2 

Row 3 

Row4 

Output Classes 

11 00 10 

IC11 IC12 IC13 

( ) ( ,ff ) ( o7 

CT] GJ 1 CTI 
IC 31 IC32 IC33 

,ff ,ff ) ,ff ) 

cb IC42 cf] ( 2 ) 

a) Set of classes ICij after repeated 

cubes have been removed. 

b) Set of pairs of incompatible classes of the form 

{lij, ljk}, obtained using the non-repeated cubes. 

Pairs of incompatible classes which contain an 

empty set are not considered. 
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01 

IC14 

( ,ff ) 

IT] 
IC34 

( 4 7 

IC44 
,ff ) 

Figure 3.11: Diagram illustrating GCA approach to Column Compatibility Check
ing for Multiple Output Functions: # 3 



IC+ IR = 
( IC42 ; IC43 ) = ( { 2}; { 8} ), 

(5,1 25 ) = (5, {6,11 }). 

(5, !35 ) = (5, {4.7}), 

(5, 145) = (5, { 2} ), 

(6, 12()=(6, {5}). 

(10, I41d = (10, {2}). 

IB = 
(IB11; IB12)=({B3}; {B7}), 

(IB21; IB22)=({B5}; [B2 BJ), 

(IB31; IB32)=({B5}; { B3 Bo Bg}), 

( IB 41 ; IB 42) = ( { B5}; { B3} ), 

( IB 5 I ; IB 52) = ( { B2}; { B5} ), 

(IB6J; IB62)=-=({B1}; {B3}). 

a) IC + IR is the complete set of pairs of incompatible classes of cubes. IB is 

the set of pairs of incompatible classes of columns obtained from IC and IR. 

Shown circled with dashed lines are the classes chosen for the final cover set. 

b) Incompatibility Graph c) Compatibility Graph 
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Figure 3.12: Diagram illustrating GCA approach to Column Compatibility Check
ing for Multiple Output Functions: # 4 
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Next, for each repeated cuber, determine the set of cubes which are compatible 

with that cube in each row that it is contained in. These sets are denoted ~r· In 

row 1, there is only one repeated cube(SR1 = 5). Therefore, the set of cubes that 

are compatible with cube 5 in row 1 is ~r 1. The remaining compatible 

sets ~r for each repeated cube are shown in Figure 3.10a. 

Next, sets are formed from the cubes in each row that are incompatible with 

each repeated cube. This is done by simply adding all cubes to the incompatible 

set I ~r, which are elements of row A,, that are not elements of the compatible set 

Rir· Results for all J R.r are shown in Figure 3.10b. 

From each repeated cube r and the corresponding class of cubes I ~r that 

are incompatible with cube r, form a pair of incompatible classes of cubes of the 

form ( t, I Ri.r). The set of all such pairs is the set IR. The set IR is shown in 

Figure 3.1 Oc. 

Now that the pairs of incompatible classes of cubes are formed from the re

peated cubes, the repeated cubes can be removed from all classes /Ci;, so that 

only the non-repeated cubes remain. The new set of classes /Ci; is shown in Fig

ure 3.lla. From these classes, the set of pairs(/Ci;i ICik) E JC is formed. The set 

IC is shown in Figure 3.llb. 

Next, the set IR is appended to set IC to form the complete set of pairs of 

incompatible classes of cubes. The complete set of pairs of incompatible classes of 

cubes(JC +IR) is shown in Figure 3.12a. 
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From the complete set IC + IR, the set of pairs of incompatible classes of 

columns is formed(! B). This is done by adding all columns to a class such that 

each column in the class has at least one cube in common with the corresponding 

class of cubes in IC+ IR. Set I B is shown in Figure 3.12a. Finally, create the 

incompatibility graph or the compatibility graph from the set I B. 

Finally, to create the incompatibility graph, note that all columns within each 

class I Bi; are incompatible with all columns in l Bik· For each pair of columns 

which are incompatible, an edge is added to the incompatibility graph. Shown in 

Figure 3.12b is the resulting incompatibility graph. Shmvn in Figure 3.12c is the 

corresponding compatibility graph. 

3A.2.1 Algorithm GCA For Multiple Output Functions 

Additional algorithm parameters defined: 

IC_LENGTH = number of pairs of classes in IC. 

IR.LENGTH = number of pairs of classes in IR. 

IB_LENGTH = number of pairs of classes in l B. 

Algorithm 3.4.2 

Note: Steps in this multiple output algorithm which are the same as the single 

output algorithm, Algorithm 3.4.1, are marked with an asterisk. 

Begin 
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a)* IC= FORM_SET_QF_PAIRS_JC(A,i>,i,j); 

// This function forms pairs of classes of cubes for each row in the Karnaugh 

// map. Cubes in each class are elements of the same row and output class. 

// Within a pair of classes, all cubes in one class are incompatible with all 

// cubes in the other class{with the exception of repeated cubes). 

b) IR,JR_LENGTH = FORM_SET_QF_PAIRS_JR(IC,A,i,j); 

// This function forms pairs of classes of cubes for each row in the Karnaugh 

/ / map. In each pairs of classes produced, one element is a repeated cube and 

// the other element in the pair is a set of cubes(repeated and/or non-repeated 

// cubes) which are incompatible with the repeated cube element. 

c) IC, JC__LENGT H = REMOV E_REP EAT ED_CU BES(IC, SR, i,j); 

// This function deletes the repeated cubes from the set JC produced in part a 

// and returns the new set IC composed of non-repeated cubes. 

d) IC,ICJ.,ENGTH = 

APPEND_JR_TQ_JC(IC, IR, JC_LENGTH, JR_LENGTH); 

// This function appends two lists(or sets) together and returns the result. 

e)* I B, I BJ.,ENGT H = 
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FORM_SET_QF_PAIRS_/B(IC, BJ JC_LENGTH1 n}; 

I I This function forms pairs of classes of columns such that, within a pair of 

I I classes, all columns in one class are incompatible with all columns in the 

I I other class. 

f)* GRAPH= FORM_GRAPH_FROIVLIB(IB, IBLENGTH,n); 

I I This function forms the incompatibility( or compatibility) graph. 

end. 

Detailed explanation of functions used in Algorithm 3.4.2. 

a) Function FORM_SET_OF_PAIRS_JC(A, F,i,.i); 

Form the set of pairs of incompatible classes of cubes IC. The pairs of 

incompatible classes of cubes are of the form (/Ci.;, IC1.k) E JC. To find each 

pair (!Ci.;, ICi.k), classify cubes which are elements of row Ai. according to 

the output classes they belong to. 
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The classes ICij and ICik obtained from each row A are incompatible with 

one another and therefore constitute the set of pairs of incompatible classes 

of cu bes referred to as IC above. 

The function returns set IC. 

b) Function FORM _SET _Q F _p AI RS _I R(I C, A, i, j); 

Find all pairs of incompatible classes of the form ((r),(I~r)) where I~r 

denotes the class of cubes which are incompatible with the repeate<l cuber. 

This is accomplished as follows: 

i) For each row i find all r ES~. 

S ~ is found as follows: 

For all pairs of classes(JC;,, ICik), 

If (lei, n ICik =I= 0) 

thens~ s~ u (!Cij n ICik), 

(S~ is initially empty). 
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ii) Find all R.r(Rir is a set of cubes that are compatible with repeated cube 

r in row i). For each row i do the following: 

If r E SR;, then Vj: if r E ICi1, then R.r = R.r U ICi1 

( R., is initially empty). 

iii) For each row i, find all J R,fr. 

I R,r denotes the class of cubes which are incompatible with repeated 

cube r in row i. For each repeated c'..lbe r E SR. do the following: 

The operator "8" is used to imply the symmetrical difference between two 

sets. The set of all such pairs(r, I R.r) is denoted IR. 

This function returns set IR and J R_LENGT H, 

c) Function REMOV E_REP EAT ED_CU BES(IC, SR, i,j); 

The purpose of this function is to remove repeated cubes from set IC. This 
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function is called to remove repeated cubes that are no longer needed(the 

repeated cubes were used previously by function 

FORM _SET _OF _PAI RS_I R(IC, A, i,j)). Not only are the repeated cubes 

no longer needed, they must be removed from set IC so that the remaining 

classification of columns using set IC is done correctly. The resulting set 

IC, will contain pairs of classes of cubes containing only the non-repeated 

cubes. Any pair of incompatible classes(ICij, ICik), that has one or both 

classes which are empty sets, are removed from the set of pairs of classes in 

IC. This reduces the number of pairs in IC. 

This function returns set IC and IC _LENGTH. 

d) Function APPEND_IR_TO_IC(IC, IR, IC-LENGTH, IR_LENGTH); 

This function simply appends set IR to set IC. Figure 3.13 shows an il

lustration of sets IR and IC for an arbitrary function having the classes 

shown. In Figure 3.13a, the relationship between the indexes of IC and the 

rows of the Karnaugh map and the output classes are shown. Shown in Fig

ure 3.13b and 3.13c are arbitrary sets IC and IR. Note that the sets IC 

and JR have the same basic format. Both sets contain pairs of incompatible 

classes of cubes. The primary difference is the labeling scheme. Pairs in 
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IC IC= 
OC#l OC#2 OC#3 

~ I 2 3 
( IC II ; IC 12 ), 

( IC II ; IC 13 ), 
row] I IC 11 IC 12 IC 13 ( IC 12 ; IC 13 ), 

row 2 2 IC21 IC22 IC23 
( IC21 ; IC22 ), 

( IC21 ; IC23 ), 

( IC22 ; IC23 ). 
OC = Output Class 

a) b) 

IC+ IR= 

(IC11 ; IC 12 ), 
IR= 

( IC II ; IC13 ), 
( 1 I 1 ), ( IC 12 ; IC 13 ), 

( 3 I3 ), ( IC21 ; IC22 ), 

( 7 I 7 ), ( IC21 ; IC23 ), 

( IC22 ; IC23 ), 

SR={ 1,3,7} ( 1 I 1 ), 

S R = Repeated cubes ( 3 l3 ), 

( 7 l7 ), 
c) 

d) 

Figure 3.13: Diagram showing labeling of IC and IR and the combined set 
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IC are of the form (ICi1,IC;k) while pairs in IR are of the form (r,IRir). 

Therefore, combine sets IC and / R to obtain the complete set of incompat

ible classes of cubes. The new combined set IC appears in Figure 3.13d. 

This function returns the new set IC and IC J,,ENGT H. 

e) Function FORM_SET_OF _PAI RS_/ B(IC, B,ICJ,,ENGT H,n); 

This function forms the set of pairs of incompatible classes of columns I B. 

The pairs of incompatible classes of columns are of the form (/ B;1, I B,k) E 

I B. To find each class / Bij, find all columns which contain at least one cube 

that is contained in class /Cij, and put them together in class I Bij• This is 

done as follows: 

The pairs of classes I B;,j and J B;.k obtained from each row i are incompati

ble with each other and therefore constitute the set of pairs of incompatible 

classes of columns, denoted above as I B. 
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This function returns the set I B and I B-LENGT H. 

f) Function FORM _GRAPH _FROM _J B(I B, IC _LENGTH, n); 

This step simply changes the way the compatibility /incompatibility informa

tion is stored. This step is not required for column minimization algorithms 

that are able to work directly with the incompatible classes of columns formed 

in the previous step. However, if the column minimization algorithm requires 

a graph with nodes that represent individual blocks of the bound set, then 

the data stored in the previous step is converted from the pairs of incompat

ible classes of columns to pairs of columns which are incompatible( or pairs 

of columns which are compatible). To convert to the pairs of columns which 

are incompatible, perform the following: 

For each row ii assign every column in class I Bij as pairwise incompatible 

with every column in class I Bik• 

The above conversion can create the data which corresponds to both the 

compatibility and incompatibility graphs simultaneously. This is done by 

simply using a two dimensional array with a bit set indicating that a pair is 

compatible, and if it is not set, then the pair is incompatible. The function 
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returns a pointer( GRAP JI) to data representing the desired graph. 

3.4.2.2 Illustration Of The GCA Approach On Function F3 

Problem Description For Function F3 

Repeated here for completeness is the problem description for function F3. 

Cube X1 X2 X3 X4 Y1 Y2 
1 0 0 2 0 1 1 
2 3 0 - 1 0 0 
3 3 1 0 - - 0 
4 2 1 3 0 0 1 
5 - 1 1 1 1 -

6 1 0 3 0 0 
7 2 - .3 1 0 1 
8 3 1 1 0 1 0 
9 1 1 - 1 0 
10 3 0 2 0 1 -

I 11 1 1 3 1 0 0 

Table 3.2: Table for Example Function F3 

Table 3.2 describes the next example, function F3. The first column is the enu

meration of cubes. The input variables are denoted X 1 thru X 4 and the output 

variables are Y1 and Y2 • The multiple valued map corresponding to Table 3.2 is 

shown in Figure 3.14. Find the decomposition H(A, G(B)) given the specified 

bound and free sets. For this example, variable X 1 was chosen for the free set and 

variables X2, X3 , and X 4 were chosen for the bound set variables. The following 

are the corresponding bound, free, and output partitions. 
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x, 
000 010 020 030 001 Ol l 021 

A, 0 

A, l 

A3 2 

A. 3 00 00 00 

lO 6 7 5 4 11 

Figure 3.14: Multi-valued Map for Function F3 

P(A) (1,5; 5,6,9,11; 4,5, 7; 2,3,5,8,10) 

(1,10; 6; 2, 7; 3,9; 5,9; 7,9, 11; 8; 4) 

(Bi, ... , Ba) 

P(F) = (1, 5, 10; 2, 3, 6, 9, 11; 3, 5, 8, 9, 10; 4, 6, 7) 

Thus: 

Ai = (1, 5); A4 = (2, 3, 5, 8, 10) 

Bs = (5, 9); Bs = (7, 9, 11); B1 (8); Ba= (4) 

F2 = (2, 3, 6, 9, 11); F3 = (3, 5, 8, 9, 10); 
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Decomposition Of Function F3 

Step 1: This step of the decomposition illustrates the GCA approach. 

Execution of GCA Algorithm 3.4.2. 

a) Generate set IC using function 

FORM_SET_QF_PAIRS_JC(A,F,i 4,j = 2). This function per-

forms the foll.oyving calculations: 

The first class to be formed is I C11 . It is formed as follows: 

Similarly, the remaining I Cii are found. This results in the follow

ing classes of cubes. 

ICu - (1, 5), JC12 0, JC13 - (5), /C14 0. 
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(5), IC22 - (6, 9, 11 ), JC23 (5, 9), JC24 (6). 

(4, 7). 

(5, 10), JC42 - (2, 3), JC43 = (3, 5, 8, 10), JC44 0. 

Function returns JC. 

b) Generate set IR using function 

FORM_SET_QF_PAIRS_JR(JC,A,i 4,j = 4). This function is 

executed in three parts as follows: 

i) Find the set of repeated cubes S~ for each row i. For all pairs of 

classes(JCij, ICik), check the following: 

If (1Ci1 n 1cik ¥ 0) 

then S~ S~ U (1Ci1 n IC;k)

(S~ is initially empty). 
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/C23) LJ (/C22 n /C24) LJ (IC23 n lC24). 

= ((5) n(6, 9, 11)) u ((5) n (5, 9)) u ((5) n (6)) u ((6, 9, 11) n (5, 9)) u 

((6, 9, 11) n (6)) u ((5, 9) n (6)) (5, 6, 9). 

Similarly, the remaining sets S ~ are found for each row i. This 

results in the following sets. 

S R1 (5), 

S R2 (5, 6, 9), 

SR3 (5), 

S R4 ( 3, 5, 10), 

ii) Find all ~r(set of cubes in row i compatible with cuber). 

For each row i do the following: 

If r E S~, then Vj : if r E /Ci;, then ~r = ~r U /Ci; (~r 

is initially empty). 

For row 1, there is only one repeated cube(i.e., SR1 = (5)). There

fore, begin by generating the set R15 (row 1 and cube 5). Ignore 

empty sets. 
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Since r 5 is an element of IC11 and /C13, then 

R1s !Cu U IC13 = (1, 5) u (5) (1, 5). 

Similarly, the remaining sets ~r are found for each cube r. Re

peated cu be 3 is contained only in row 4. Therefore: 

R43 (2, 3, 5, 8, 10). 

Repeated cube 5 is contained in all rows. Therefore: 

R1s (1, 5), 

R2s (5, 9), 

R3s (5), 

R4s (3, 5, 8, 10). 

Repeated cu be 6 is contained only in row 2. Therefore: 

R26 = (1, 6, 5). 

Repeated cube 9 is contained only in row 2. Therefore: 

R29 = (5, 6, 9, 11). 

Repeated cube 10 is contained only in row 4. Therefore: 



R410 (3, 5, 8, 10). 

Hence, the following are all the sets of ~r: 

R43 (2, 3, 5, 8, 10), 

R1s = (1, 5), 

R2s = (5, 9), 

R3s (5), 

R4s = (3, 5, 8, 10), 

R2s = (1,5,6), 

R29 (5, 6, 9, 11 ), 

R,uo (3, 5, 8, 10). 
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iii) Find all / ~r and form the set of pairs of classes ( r, I ~r) E / R. 

For each repeated cube r E S ~ do the following: 

Examples: 

IR1s A1 Ef:l R1s = (1,5) EB (1,5) 0. 

IR2s = A2 R2s = (5,6,9,11) (5,9) (6,11). 
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Remaining I R;r are determined in the same way. Results for all 

I R;r are shown below. 

JR43 (0), 

I R1s (0), 

I R2s (6, 11), 

/R3s (4, 7), 

I R4s = (2), 

I R26 = (5), 

JR29 (0), 

I R410 (2). 

From these classes J R;r, the desired set IR is formed. 

IR 

(3, I R43) (3,(0)), 

(5, I R1s) (5,(0)), 

(5, I R2s) (5,(6,11 )), 

(5,I R3s) (5,(4,7)), 

(5, I R4s) (5,(2)), 
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(6,/ R2s) (6i(5)), 

( 9, I R29) ( 9, ( 0)), 

(10, I R410) (10,(2) ). 

Pairs which contain an empty set are discarded. Also, the pairs 

(r, I ~r) obtained using the same repeated cube r, are combined. 

For example, (5, I R25 ), (5, I R35 ), and (5, J R45 ) can be combined to 

(5, (I R25 U J R35 U J R45 )) = (5, (2, 4, 6, 11)). A new label is arbitrar

ily chosen for the new combined class(! R55). 

IR= 

(5,/ Rss) 

(6,/ R2s) 

(10, I R410) 

(5,(2,4,6,7,11)), 

(6,(5)), 

(10,(2)). 

Since there are 3 pairs in the set, assign J R_LENGT H = 3. 

Function returns JR and J R_LENGT H. 

c) Generate new JC using function 

REMOV E_REPEATED_CUBES(IC,SR,i = 4,j = 4); 
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Remove repeated cubes from all classes /Cij E JC. 

Therefore, the following is the set of incompatible classes !Cij produced 

in part a) after the repeated cubes ( cubes 3,5,6,9, and 10) were removed. 

Pair all combinations of incompatible classes ( I Cij, I C;,k) within each 

row. Ignore pairs containing an empty set as one of its two classes. Af

ter pairing all the classes(ICij, ICik), which do not include 0, only one 

pair((2),(8)) is found. Therefore, this results in the following set IC=: 
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IC= 

Function returns JC and JC _LENGTH. 

d) A pp end set IR to JC using function 

APPEND_JR_TQ_JC(IC,IR, IC.LENGTH = 1,JR_LENGTH = 

3)· 
, ' 

IC= 

(I 042, I 043) ( (2) ,( 8)), 

(5, I R55 ) = (5,(2,4,6,7,11)), 

(6, I R2e) (6,(5)), 

(10, I R410) (10,(2)). 

Function returns combined set JC and new length IC ..LENGTH. 

e) Generate set I B using function 

FORM_SET_OF_PAJRSJB(IC,B,IC.LENGTH = 4,n 8). 

I B is found accordingly: 
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For simplicity, only the column number is used to denote each column 

( e.g. B; is shown as index i). The first class in I B to generate is I B11 . 

IB11 is found incrementally as follows(initially JB11 = (0)): 

i) IC11 n B1 = (2) n (1, 10) = 0 ... 

therefore I B 11 remains unchanged, 

ii) IC11 n B2 = (2) n (6) = 0 ... 

therefore I B11 remains unchanged, 

iii) IC11 n B3 = (2) n (2, 7) = (2) ... 

therefore I B 11 = (3), 

iv) IC11 n B4 = (2) n (3,9) = 0 ... 

therefore I B11 remains unchanged, 

v) IC11 n Bs = (2) n (5, 9) = 0 ... 

therefore I B11 remains unchanged, 

vi) IC11 n Bs = (2) n (7, 9, 11) = 0 ... 

therefore I B11 remains unchanged, 

vii) IC11 n B1 = (2) n (8) = 0 ... 

therefore I B11 remains unchanged, 
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viii)IC11 n Bs = (2) n ( 4) = 0 ... 

therefore the resulting class for I B 11 = (3). 

Similarly, the remaining I Bij are found. This results in the following 

incompatible classes of columns. 

IB = 

(I Bu, I B12) = ((3),(7)), 

(I B21 , I B22) = (5,(2,3,6,8)), 

(I B31, I B32) = (2,(5)), 

(I B41, I B42) = (1,(3)). 

Note that each block( or column) in a pair of classes is incompatible with 

all columns in the opposite class. 

Function returns I Band I B_LENGT H. 

f) Construct the desired graph using function 

FORM _GRAPH _FROM _J B(I B, I B_LENGT H 4,n 8). This 

function performs the following calculations: 

For each index i, assign all columns in class I Bii as pairwise incom-
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patible with all columns in class I B;2 . 

For pair 1: 

(I B11 ,f I B12) = ((3) ,f (7)). Therefore column 3 is incompatible with 

column 7. This forms the incompatible pair B37 . 

For pair 2: 

(/ B21 ,f I B22) = (5 ,f (2,3,6,8) ). Therefore column 5 is incompat

ible with columns 2,3,6, and 8. This forms the incompatible pairs 

For pair 3: 

(I B31 ,f I B32) = (2 ,f (5)). Therefore column 2 is incompatible with 

column 5. This forms the incompatible pairs B25 . 

For pair 4: 

(I B4 1 ,f I B42 ) = (1 ,f (3)). Therefore column 1 is incompatible with 

column 3. This forms the incompatible pairs B13 . 

This results in the set of pairwise incompatible blocks /B: 
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Figure 3.15: Compatibility and Incompatibility graphs for Function F3 

This set of pairwise incompatible blocks forms the incompatibility graph 

in Figure 3.15. 

The set of pairwise compatible blocks CB is obtained simply by remov

ing the incompatible pairs from the set of all pairs of blocks: 

This set of pairwise compatible columns forms the compatibility graph 

in Figure 3.15. This completes the illustration of the GCA approach 

to create the compatibility graph. 

Steps 2-4: The remammg steps m the decomposition(steps 2 thru 4) are completed 
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in the same way as in the example illustrating the PCA approach in Sec

tion 3.3.2.2. Therefore, they are not repeated here. 

3.5 Analysis Of The New Approach Versus The Classical Approach 

In this section an analysis of the new approach( GCA) introduced in Section 3.4 

versus the classical approach(PCA) introduced in Section 3.3 is presented. 

Note: The following analysis is done only for single output funtions. The reasons 

for this are: 

1) because any multiple output function are replaced by multiple single output 

functions 

and 

2) because the formula for single output functions for the new approach is much 

simpler to express mathematically. 

The following are the formulas used to determine the number of calculations 

( intersection and union operations) required by each approach. 

For the PCA approach of Luba et al[31], the expression for finding pair-wise col

umn compatibility is: 
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or more specifically, 

and the number of required calculations is: 

PCA Rx Ox (f) 

where (;) n! 
r! (n-r)! 

For the new approach( GCA), the expression for finding pairs of incompatible 

classes of columns is: 

P(A) · P(F) · P(B) 

or more specifically, 

and the number of calculations required is: 



GCA RxOxC 

Variables defined: 

PCA = "Pair Compatibility Approach", 

GCA = "Group Compatibility Approach", 

Ak individual blocks of the free set P(A), 

Bn = individual blocks of the bound set P( B), 

IA I 

I B I 

individual blocks of the output set PF, 

number of variables in the free set, 

number of variables in the bound set, 

number of columns in the bound set, 

number of rows in the free set, 

Y number of output variables, 

number of blocks in the output partition. 
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Figure 3.16 presents plots of the two approaches represented by the formulas 

PCA and GCA for a constant total number of variables ( N) with varying numbers 
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Figure 3.16: Plots of the two approaches represented by the formulas PCA and 
GCA for a constant total number of variables(N) and varying numbers of variables 
in the free set(A) and bound set(B). 

of variables in the bound and free sets. Note that when the number of variables 

in the bound set is much larger than the number of variables in the free set, 

there exists several orders of magnitude difference in the number of calculations 

( intersections and unions) required. 

Similarly in Figure 3.17, one can observe several orders of magnitude difference 

in the number of calculations when the number of variables in the bound set are 

much greater than the number of variables in the free set. 

The analysis of the two approaches compared illustrates dramatic differences 

in the number of calculations required by each of the approaches when the number 
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Figure 3.17: Plots of the two approaches represented by the formulas PCA and 
GCA when the number of variables in the bound set are much greater than the 
number of variables in the free set 

of variables in the bound set is large. 

However, it can be expected that actual results for computation time required 

for each approach would not differ in the number of calculations, as dramatically as 

indicated by the analysis. The comparisons made do however suggest a potential 

for significant savings using the new approach. 
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3.6 Experimental Results 

The following tables show the comparisons of execution times for the imple

mented algorithms which were presented in this chapter. In Section 3.6.1, results 

are shown for the comparisons between the PCA and GCA algorithms in complete 

decompositions of MCNC benchmarks. In Section 3.6.2, results are shown for the 

comparisons between the PCA and GCA algorithms in partial decompositions of 

FLASH benchmarks with bound set sizes specified. The following is some general 

information explaining the versions of program GUD used in the comparisons: 

GUD(GCA): Version of program GUD using a new algorithm to calculate col

umn compatibility. This algorithm is based on checking compatibility of columns 

by classifying groups of columns as compatible or incompatible. 

GUD(PCA): Version of program GUD using a commonly used algorithm to cal

culate column compatibility. This algorithm is based on checking compatibility 

of columns one pair of columns at a time. This method of calculating column 

compatibility is the same as used in program the program(DEMAIN) by Luba et. 

al. 
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Table 3.3; User time spent calculating column compatibility on MCNC benchmarks 
using different approaches(PCA vs GCA) with varying sizes of bound sets. 

Program GUD(GCA) GUD(PCA) 
Benchmarks inputs outputs input cubes time(s) time(s) 
5xpl 7 10 143 15 72 
Z5xpl 7 10 141 19 75 
adr2 4 3 24 0 0 
b12 15 9 72 51 321 
bw 5 28 97 6 17 
c8 28 18 166 9 10 
cc 21 20 ! 96 i 18 3 
conl 7 2 18 2 3 
ex5 8 63 214 210 2303 
f51m 8 8 154 38 165 
misexl 8 7 40 10 18 
rd53 5 3 63 1 2 
rd73 7 3 274 20 120 
rd84 8 4 515 229 787 
root 8 5 256 121 803 

! squar5 5 8 56 1 I 2 
xor5 5 i 1 32 1! 0 0 

3.6.1 Comparison Between PCA and GCA Algorithms in General De

compostions of MCNC Benchmarks 

From the results in Tables 3.3 and 3.4, it can be observed that the GCA 

approach clearly out performs the PCA approach, in terms of execution time, on 

nearly every benchmark example. Recall that a reduction in execution time is the 

primary contribution of the new approach. For clarification, it should be noted 

what these execution times represent. The execution times for each approach are 

the sum total of user time spent in calculating column compatibility throughout the 
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decomposition process on each benchmark. For example, one benchmark may have 

several subfunctions to decompose in the decomposition process. Each subfunction 

may require many graphs to be constructed by either approach before a bound set 

is selected which yields an acceptable decomposition. It is important to note that 

each approach constructs the same identical graphs on each benchmark. The only 

difference in the decomposition process is which approach is used to construct the 

graphs. Another important point to make is that the basic partitioning strategy 

used always tries small bound sets first and then if no decomposition is found then 

the number of variables in the bound set is increased by one. The bound set size 

was limited to a maximum of twelve. However, the size of most of the bound sets 

which resulted in an acceptable decomposition were either two or three variables. 

This is a significant point to make in the comparison of the different approaches 

because the new approach( GCA) was expected to have a significant advantage 

when bound sets are large and no advantage when small. These results show that 

the new approach is faster even when bound sets are small. 

If most of the high quality decompositions result when small bound sets are 

used, then why would you ever want to use large bound sets? An answer to this 

question is that future programs which have effective variable partitioning and 

encoding methods for large bound sets may result in the highest quality decompo

sitions. At least a couple decomposition examples resulted in the highest quality 

decomposition when bound sets were large despite the fact that random partition-
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ing and random encoding methods were used. Therefore, while the GCA approach 

requires less execution time even when bound sets are small, it also provides the 

capability to check large bound sets which can't be checked feasibly by the PCA 

approach. 

Table 3.4: Summary of Results for Table 3.3 

Category 
Program A(sec) B(sec) C(sec) D E F 
GUD(GCA) 750 44 229 15 88% 1 
GUD(PCA) 4,701 277 2,303 1 6% 0 

Explantion of the Categories listed in the Summmary of Results table. 

Categories: 

A-Total Time(all benchmarks). 
B-Average Time per benchmark. 
C-Maximum Time for any benchmark. 
D-Number of times an algorithm had the lowest user time(including 
ties). 
E-% of times when an algorithm had the lowest user time(including 
ties). 
F-Number of times an algorithm had a user time which was at least 

one order of magnitude(x10) faster than the competing algorithm. 
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Table 3.5: Time spent calculating column compatibility on FLASH benchmarks 
using two different methods(PCA vs GCA) with two variables in the bound set. 

Program GUD(PCA) GUD(GCA) 
Benchmarks inputs outputs cubes time(s) time(s) 
psu_add0_90 12 1 410 0 0 
ps u _add2_90 12 1 410 1 1 
psu_add4_90 12 1 410 2 0 
psu _contains_ 4_ones_90 12 1 410 1 0 
psu...greater _than-90 12 1 410 1 1 
psuJntervalL90 12 1 410 1 0 
psuJnterval2_90 12 1 410 1 0 
psu..majority ...gate_90 12 1 410 1 1 
psu_paL90 12 1 410 1 0 
psu_parity _90 12 1 410 1 1 
psu...siml2_90 12 1 410 1 0 
psu...su bstrL90 12 1 410 1 0 
psu ...subtraction 1 _go 12 1 410 0 1 
psu...subtraction3_90 12 1 410 1 0 

Table 3.6: Summary of Results for Table 3.5 

Category 
Program A(sec) B(sec) C(sec) D E F G 
GUD(GCA) 5 0.3 1 13 93% 0 0 
GUD(PCA) 13 0.9 2 6 43% 0 0 

Explantion of the Categories listed in the Summmary of Results table. 

Categories: 

A-Total Time(all benchmarks). 
B-Average Time per benchmark. 
C-Maximum Time for any benchmark. 
D-Number of times an algorithm had the lowest user time(including 
ties). 
E-% of times when an algorithm had the lowest user time(including 
ties). 



124 

F-Number of times an algorithm had a user time which was at least 
one order of magnitude(x10) faster than the competing algorithm. 

G-Number of times an algorithm had a user time which was at least 
two orders of magnitude(x100) faster than the competing algorithm. 

3.6.2 Comparison Between PCA and GCA Algorithms on FLASH 

Benchmarks with Specified Bound Set Sizes 

In this section, comparisons of results are shown for the PCA and GCA algo-

rithms when the number of variables in the bound set is specified. For example, 

if the number of variables in the bound set is specified to be 10, then only bound 

sets of size 10 are used in the comparisons. This is unlike the comparisons in 

Section 3.6.1, where the number of variables in the bound set varied in size during 

the decomposition. In Tables 3.5 thru 3.9, only two graphs were constructed for 

each benchmark. The purpose of this was to control the decompositions so that 

comparisons could be made, not only between the each algorithm used, but also 

between execution times when the bound set size is varied. 
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Table 3. 7: Time spent calculating column compatibility on FLASH benchmarks 
using two different methods(PCA vs GCA) with five variables in the bound set. 

Program GUD(PCA) GUD(GCA) 
Benchmarks inputs outputs cubes time(s) time(s) 
psu_add0_90 12 1 410 31 3 
psu_add2_90 12 1 410 29 2 
psu_add4_90 12 1 410 28 3 
psu_contains-4_ones_90 12 1 410 31 1 
psu_greater _than_go 12 1 410 33 2 
psuJntervall _go 12 1 410 37 0 
psuJnterval2_go 12 1 410 35 1 
psu_majority _gate_go 12 1 410 33 2 
psu_paL90 12 1 410 38 0 
psu_parity _go 12 1 410 31 2 
psu_siml2_90 12 1 410 32 1 
psu_substr 1_go 12 1 410 46 1 
psu_subtractionl _go 12 1 410 35 2 
psu_subtraction3_9Q 12 1 410 36 2 
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Table 3.8: Summary of Results for Table 3. 7 

Category 
Program A(sec) B(sec) C(sec) D E F G 
GUD(GCA) 22 1.6 3 14 100% 14 0 
GUD(PCA) 475 33.9 46 0 0% 0 0 

Explantion of the Categories listed in the Summmary of Results table. 

Categories: 

A-Total Time(all benchmarks). 
B-Average Time per benchmark. 
C-Maximum Time for any benchmark. 
D-Number of times an algorithm had the lowest user time(including 
ties). 
E-% of times when an algorithm had the lowest user time(including 
ties). 
F-Number of times an algorithm had a user time which was at least 

one order of magnitude(x10) faster than the competing algorithm. 
G-Number of times an algorithm had a user time which was at least 

two orders of magnitude(x100) faster than the competing algorithm. 

In Table 3.5, observe that there is very little difference in execution times when 

the number of variables in the bound set is 2. However, in Table 3. 7, there is 

a substantial difference in execution times. The GCA approach consistently out 

performs the PCA approach when the number of variables in the bound set is 

5. In fact, the GCA approach out performs the PCA approach by more than 

an order of magnitude in execution time on every benchmark. In Table 3.9, an 

even more dramatic difference can be observed between the execution times of 

the two approaches. When the number of variables in the bound set equal to 10, 
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the GCA approach out performs the PCA approach by more than two orders 

of magnitude in execution time on every benchmark! For additional information 

on the comparisons made, the reader is directed to the corresponding Summary 

of Results tables for each comparison made. The Summary of Results for each 

comparison are shown in Tables 3.6, 3.8, and 3.10. 

Table 3.9: Time spent calculating column compatibility on FLASH benchmarks 
using two different methods(PCA vs GCA) with ten variables in the bound set. 

Program GUD(PCA) GUD(GCA) 
Benchmarks inputs outputs cubes time(s) time(s) 
psu_add0_90 12 1 410 358 1 
psu_add2_90 12 1 410 202 1 
psu_add4_90 12 1 410 141 1 
psu_contains_4_ones_90 12 1 410 147 1 
psu_greater _than_90 12 1 410 148 1 
psuJntervalL90 12 1 410 142 0 
psuJnterval2_9Q 12 1 410 163 1 
psu...majority ...gate_90 12 1 410 115 1 
psu_paL90 12 1 410 114 1 
psu_parity _90 12 1 410 130 2 
psu_siml2_90 12 1 410 115 1 
psu_substr 1 _go 12 1 410 122 1 
psu_su btractionl _90 12 1 410 119 1 
psu_subtraction3_90 12 1 410 127 1 



Table 3.10: Summary of Results for Table 3.9 

Category 
Program A(sec) B(sec) C(sec) D E F G 
GUD(GCA) 14 1 2 14 100% 14 14 
GUD(PCA) 2143 153 358 0 0% 0 0 

Explantion of the Categories listed in the Summmary of Results table. 

Categories: 

A-Total Time(all benchmarks). 
B-Average Time per benchmark. 
C-Maximum Time for any benchmark. 
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D-Number of times an algorithm had the lowest user time(including 
ties), 
E-% of times when an algorithm had the lowest user time(including 
ties). 
F-Number of times an algorithm had a user time which was at least 

one order of magnitude(xlO) faster than the competing algorithm. 
G-Number of times an algorithm had a user time which was at least 

two orders of magnitude(xlOO) faster than the competing algorithm. 

3. 7 Concluding Remarks 

In Tables 3.5-3.10, the results showed that the GCA approach clearly out 

performs the PCA approach in execution time by a substantial margin. From 

these comparisons, it was verified that the GCA algorithm does in fact perform 

much more efficiently than the PCA algorithm when larger bound sets are used 

in the decomposition process. In fact, it was demonstrated that when the bound 

set is large enough(five variables or more), the GCA approach out performs the 
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PCA approach by orders of magnitude in execution time. 

It was expected that the actual results of the GCA algorithm to be better 

than the PCA algorithm when larger bound sets were used. However, it was 

not expected that the actual results would demonstrate such dramatic differences. 

Also, it was not expected that the results would be as consistent with the relative 

differences suggested by the pre-testing analysis. The importance of these results is 

that a partition based approach to Curtis style decompositions can now be used to 

perform column compatibility checking more efficiently. More importantly, these 

results show that the GCA algorithm can be used with larger bound sets to 

create the compatibility graph with little or no increase in the execution time. By 

being able to use larger bound sets, the search space of feasible decompositions is 

increased, thereby making it possible to find better decompositions. 



CHAPTER 4 

IMPROVING EFFICIENCY FOR ASHENHURST 
DECOMPOSITIONS USING THE GCA APPROACH 

4.1 Introduction 
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This chapter is primarily concerned with a special case of the column mini-

mization problem. The special case is referred to as an Ashenhurst decomposition. 

Recall, in Section 2.3.1.1 that an Ashenhurst decomposition is a special case of a 

Curtis style decomposition, where there is only one output from the predecessor 

block. It is important to note that the subject of column minimization is not a 

primary topic of this thesis. The only reason a column minimization approach is 

introduced here is to further illustrate yet another very significant application of 

the Group Compatibility Approach(GCA) presented in Chapter 3. 

In addition to performing column compatibility checking very efficiently, in

termediate data created using the GCA approach can be used with a modified 

column minimization algorithm(MGCA) to efficiently check for Ashenhurst de-

compositions when the number columns is greater than the number of rows or 

when the number of columns is sufficiently large. This condition can be expressed 

simply as (IBI/IAI 2 1), where IBI is the number of columns(or blocks in the 

bound set) and IAI is the number of rows( or blocks in the free set). An analysis is 
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presented in Section 4.5 which illustrates how this condition was arrived at. When 

the number of blocks in the bound set is not sufficiently large then there may be 

little or no advantage to the MGCA approach. What is sufficiently large? The 

answer to this question depends on the particular function in question. This is be

cause each function has its own distribution of minterms which affects the size and 

number of partitions blocks created for the bound set, the free set and the output 

set. The variations in functions make it difficult, if not impossible, to set a specific 

bound such that, above that specific bound, one approach will always perform 

more efficiently than another. However, it can be stated that for graph coloring 

approaches which operate directly on graphs with nodes representing columns, 

there is typically more calculations required to find the column multiplicity when 

there are many nodes and edges as opposed to when there are very few nodes and 

edges . Therefore, as the number of nodes( or columns) and edges increases, there 

is typically an increase in the number of calculations required for graph coloring, 

clique covering, or set covering. However, if the modified graph coloring approach 

can make use of a graph composed of the incompatibility classes of columns found 

using the GCA approach presented in Section 3.4, then the number of nodes and 

edges may be greatly reduced. It is the use of a reduced set of nodes and edges 

which is the primary basis for improved efficiency of the new approach(MGCA) 

presented in the following sections. 

In this chapter, an incompatibility graph with nodes representing columns( or 
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Figure 4.1: Illustration of number of nodes in a Conventional Incompatibility 
Graph and a new Modified Incompatibility Graph on the same Function 

blocks in the bound set) will be referred to as a conventional incompatibility 

graph(CIG). Similarly, the incompatibility graph with nodes representing the in

compatibility classes of columns( I Bij) found using the GCA approach will be 

referred to as a modified incompatibility graph(MIG). 

The following is an example presented to illustrate how the number of nodes 

that must be colored can be reduced by using the incompatibility classes of columns 

to represent nodes as in a MIG graph instead of using columns to represent nodes 

as in the CIG graph. More specifics about the MIG graph are presented in 

Section 4.2.1. In Figure 4.la is shown a Karnaugh map used to illustrate the 
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difference in the number of nodes in a CIG graph and a MIG graph generated 

using the GCA approach. Observe from the graphs in Figure 4.1 band Figure 4.lc 

that there are significantly fewer nodes and edges in the modified incompatibility 

graph. Clearly, an algorithm which can take advantage of the MIG graph should 

require fewer calculations to color the graph as it has fewer nodes and edges. 

The format of this chapter is as follows: In Section 4.2.1, a brief overview of 

the modified graph coloring approach(MGCA) is presented. Presented in Sec

tion 4.2.2 is the algorithm for the MGCA approach to column minimization. De

tailed examples illustrating the the MGCA approach are presented in Sections 4.3 

and 4.4. In Section 4.5, an analysis is presented which compares the number of 

nodes in CIG graphs vs. MIG graphs. Finally, in Section 4.6, some concluding 

remarks are presented. 

4.2 Modified Graph Coloring Approach: MGCA 

Before presenting an overview of the MGCA approach to column minimiza

tion, I would like to briefly re-summarize what constitutes an Ashenhurst decom

position and illustrate what the input to the MGCA approach is. 

Recall from Section 2.2, that an Ashenhurst decomposition, unlike a Curtis de

composition, is a decomposition with only one output from the predecessor block. 

This one output corresponds to a cover set Ile having exactly 2 compatible classes 

of columns. The most important point is that in order to obtain an Ashenhurst de-
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composition, one all columns must be combined into two classes of columns, where 

all columns within each class are mutually compatible. This is the minimum nee-

essary criterium for the existence of an Ashenhurst decomposition. Therefore if 

not all columns within each class of a candidate cover set are mutually compati-

ble, then that candidate cover set does not satisfy the criterium necessary for an 

Ashenhurst decomposition. 

The second most important piece of information to understand is what the 

input to the MGCA approach is. The input to the MGCA approach is a set of 

pairs of incompatibility classes referred to as the set I B. Recall that the set I Bis 

generated by the GCA approach in the process of column compatibility checking. 

Also, recall that within a pair of classes in the set I B, all columns within one 

class are incompatible with all columns within the other class. A MIG graph is 

simply the graphical representation of the set I B. Each pair of nodes connected 

by an edge in a MIG graph corresponds to a pair of classes ( I B;1 , I B;2 ) E I B. 
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Shown in Figure 4.2 is an illustration of the relationship between the set I B and 

the corresponding MIG graph. 

4.2.1 Brief Overview Of The MGCA Approach 

Step 1: In Figure 4.3a is shown an arbitrary input MIG graph with nodes 

labeled for referencing purposes. Contained in the nodes of the MIG graph are 

columns 1 thru 81 which for this example is the complete set of columns. No Kar

naugh map is shown as it is not used in the explanation. Step 1 of the MGCA 

approach is to combine all nodes( I B,j) which have at least one column in common 

into supernodes(combined nodes). In the remainder of this chapter, the require

ment that nodes, which have at least one column in common, must be combined 

into a supernode will be referred to as Requirement 1. Also, all nodes, which are 

connected by an edge with any nodes that have been combined to a particular 

supernode, must be combined together to a different supernode. In the remainder 

of this chapter, this additional requirement will be referred to as Requirement 2. 

Requirements 1 and 2 are necessary requirements to determine if an Ashenhurst 

decomposition exists for a given bound set. The reason that they are necessary is 

because no column may be an element of both classes in the cover set unless they 

are compatible with all other columns. If Requirements 1 and 2 are complied with, 

then no column will be combined to both supernodes connected by an edge unless 

they are compatible with all other columns. Hence, because supernodes and classes 
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are synonymous, this implies that no column will be combined to both classes in 

the cover set unless they are compatible with all other columns. This, of course, is 

assuming that an Ashenhurst decomposition exists for the given bound set. If an 

Ashenhurst decomposition doesn't exist for the given bound set, then there will be 

columns added to both classes. If this happens, then the algorithm would return 

no Ashenhurst decomposition exists and terminate. If a column is compatible with 

all other columns, then it will not be an element of any of the classes I Bii( or nodes 

in the MIG graph) because all columns which are elements of the classes I Bii are 

incompatible with at least one other column. Columns which are compatible with 

all other columns are added to either or both classes in the cover set in the last 

step of the MGCA algorithm. 

In Figure 4.3b, observe that columns 3 and 5 are elements of more than one 

node(i.e., I B22 and I B12 ). Therefore, these nodes must be combined in order to 

comply with Requirement 1. Similarly, nodes I B 11 and I B21 must be combined 

in accordance with Requirement 2. Shown in Figure 4.3c is the reduced graph 

showing the resulting supernodes for the first step of the MGCA approach. For 

this simple example there were only two pairs of nodes that were combined into 

supernodes in accordance with Requirements 1 and 2. However, when there are 

many more nodes in the MIG graph(many rows), there will be many pairs of 

nodes combined into supernodes in accordance with Requirements 1 and 2. 

Each time a pair of nodes have been combined with a supernode pair, then a 
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check is made to determine if an Ashenhurst decomposition is not possible for the 

given bound set as a result of the combination. This is done by simply checking if 

any columns are contained in both supernodes that are connected by an edge. From 

Figure 4.3c, observe that there are no columns contained in any two supernodes 

connected by an edge. Therefore, in this example, an Ashenhurst decomposition 

exists. 

Step 2: After Step 1 has been completed and it has been determined that an 

Ashenhurst decomposition exists, then the reduced graph must be further reduced 

to two nodes to satisfy the minimum requirement of an Ashenhurst decomposi

tion(i.e., two classes). If there were only two nodes in the reduced graph to begin 

this step, then no combining would be necessary. However, in this example there 

are four nodes remaining. This means that there is more than one "optional" 

combination of nodes to combine together and hence more than one "optional" 

cover set to select from. The method for selecting which combination of nodes to 

combine may be heuristic or random. For simplicity, a random selection method 

is used for the examples presented in this chapter. One such approach would be 

to randomly select two nodes to combine into a supernode. Then combine into a 

different supernode all nodes which are connected to the nodes combined in the 

previous supernode. For this example, there are 2 optional cover sets as shown in 

Figure 4.3d and Figure 4.3e. The cover set that is selected in this step is referred 
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to as the initial cover set because there may be other columns which have not been 

covered yet ( added to at least one class in the cover set). 

Step 3: The final step is to add, to both nodes, all columns that are com

patible with all columns. These columns are columns which are not elements of 

the input MIG graph. In this example, there are no columns which are compatible 

with all columns. Therefore, either of the cover sets shown in Figure 4.3 would 

be acceptable as a final cover set. This concludes the overview of the MGCA 

approach to column minimization. 

4.2.2 Algorithm For The MGCA Approach 

The following is an algorithm for efficiently checking the existence of an Ashen

hurst decomposition(i.e., which means, the incompatibility graph which can be 

reduced to 2 colors). The input to this algorithm is the set of incompatibility 

classes(IB) formed using the GCA algorithm from Section 3.4. 

Algorithm parameters defined: 

IB_LENGTH = Number of class pairs in J B. 

IG_LENGTH = Number of class pairs in JG. 

IB..REMAIN = List of columns that are compatible with all other columns. 

ASH...EXISTS = Return value that indicates whether an Ashenhurst Decomposi-



tion exists. 

II~ = The initial cover set. 

Ila = The final cover set. 

Algorithm 4.2.1 

Begin 

Step 1: I I Form pairs of supemodes(set JG} from the MIG graph(set I B} and 
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II determine if an Ashenhurst decomposition exists for the given bound set. 

(ASH_EXISTS, JG, JGJ,ENGTH) = 

FORM _SET _OF _PAI RS_JG(I B, I BJ,ENGT H); 

If (ASH_EXISTS = FALSE} 

Return No Ashenhurst Decomposition Exists. 

Step 2: I I Combine pairs of supernodes in set JG until only one pair remains. 

II~= JG= COMBINE_PAIRS_JN_JG(IG, JG_LENGTH); 

Step 3: I I Add all columns which are compatible with all other columns(i.e. 1 

end. 

II columns which do not appear in the MIG graph} to both classes in II~. 

Ila= ADD_REMAINING_COLUMNS(II~, JB_REMAIN); 
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Detailed explanation for functions used in algorithm 4.2.1. 

Step 1: The basic idea of this step is to combine all nodes in the MIG graph(set 

I B), which have columns in common, to supernodes. More specifically, a 

pair of supernodes (IGi 1 ,IGi2 ) are initialized by setting them equal to the 

first pairs of nodes(/ B 11 ,I B12) in the MIG graph. Remaining pairs of nodes 

(I Bkl,I Bk2 ) are combined with the pair of supernodes if they have at least 

one column in common. After each pair (I Bki,I Bk2 ) is combined with a 

supernode, it is removed from the set of remaining pairs in set I B. Also, 

after each pair (I Bk1 ,I Bk2 ) is combined with a supernode, a check is made 

to determine if there are any columns in IGii that are also in IGi2 • If so, 

then no Ashenhurst decomposition exists and the function returns immedi

ately. If not, then the process of combining pairs of nodes continues until 

all pairs in J B have been checked for common columns. After all pairs in 

I B, which have columns in common with supernode pair (IGii,IGi2 ), have 

been combined with (IG;, 1 ,IGi2 ), then a new supernode pair is initialized 

and the process is repeated. Once all pairs in J B have been included in a 

supernode, the function returns the set of supernodes(J G) and the return 

value ASH_EXISTS. The following are the pseudo code for the functions 

which perform Step 1 of this algorithm. 



Pseudo code for Function FORM _SET _OF _p AI RS _f G(): 

FORM _SET_QF _PAI RS_JG(I B, I B..LENGT H) 

{ 

k = 1; 

While(therearemorepairsofclassesinsetIB, dothefollowing) 

{ 

/I Initialize pair of classes(or supernodes) (IG,,.1, IGi.1)-

II Remove (IBk1,IBk2) from the set IB. 

IB = REMOVE_pAJR(IB,(IBk1,IBk2)); 

I I Complete the formation of the pair of supernodes (IGi1, IGii) from the 

I I remaining set of pairs (I Bk1 , I Bk2) E I B as follows. 

(ASH .EXISTS, (IGi1,lGi2)) = 

MAKE _p AI R_Q F _sup ERNO DE s (I B, (!Gil' I Gi2)); 

If(ASH.EXISTS FALSE) 

Goto END..FUNCTION; 

I I Add the new pair to the set of pairs of supernodes I G. 
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JG= ADD_FAJR_TOJG(IG, (JG,1, JGi2)); 

i++; 

k = 1; 

} /I End While. 

ENDYUNCTION: 

Return ASH_EXISTS, JG, and JG-LENGTH; 

} 

Pseudo code for Function MAKE_FAJR_QF_SUPERNODES(): 

M AKE_PAJR_QF_SUPERNODES(IB, (IGi1, IGi2)) 

{ 

NQT_COMPLETE_YET: 

k = l; 

NEW _p AIR.ADDED F ALBE; 

I I The following pseudo code does the following: 

I I Add pairs (I Bu, I Bk2) E I B to the pair of supernodes (IG,1 ,IG;.2) if 

I I there is at least one column in common. Then check if an Ashenhurst 

I I decomposition is not possible. If no Ashenhurst decomposition is possible, 

II then return ASH_EXJSTS FALSE. While ASH_EXISTS 

I IT RUE, continue until all pairs in I B have been checked. 

While(((IBk1,IBk2) GET_NEXT_PAIR(IB,k)) =/=- NULL) 

143 



{ 

If(IGi1 n IBk1 # NULL) 

{!Gil !Gil U f Bkl i IGi2 = JGi2 U J Bk2i } 

Else! f(IGi1 n I Bk2 #NULL) 

{IGi1 = !Gil LJ JBk2i IGi2 = JGi2 U IBk1i } 

Elself(IGi2nIBk1 # NULL) 

{IGi2 = IGi2 U IBkli !Gil= !Gil U IBk2; } 

Elself(IGi2nIBk2 # NULL) 

{IGi2 = IGi2 U IBk2; !Gil !Gil U IBkl; } 

Else 

II There are no common columns in this pair of classes. 

I I Therefore, get the next pair to check. 

{ k + +; Continue;} 

ASH _EXISTS= CHECKJF _ASH_EXISTS(IGi1, JGi2); 

If(ASH...EXISTS= FALSE) 

Goto ENDYUNCTION; 

ELSE 

{ 

IB = REMOVE_P AIR(IB, (IBk1, IBk2)); 

NEW_PAJR_ADDED TRUE; 

} 

} I I End While. 
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If(NEW_PAJR_ADDED TRUE) 

{ 

I I Make another pass to see if any more classes left in I B have any 

I I columns in common with either supernode in the supernode pair. 

Goto NOT_CQMPLETE_YET; 

} 

END...FUNCTION: 

Return ASH _EXISTS and (IGi1JGi2). 

} 

Pseudo code for Function CHECK J F _ASH ..EX I ST S (): 

CH ECK JF _ASH _EX ISTS(IGi1, IGi2) 

{ 

I f(IGi1 n /Gi2 i= 0) 

I I No Ashenhurst decomposition exists for the bound set tried. 

Return ASH..EXISTS = FALSE 

Else 

Return ASH..EXISTS TRUE 

} 
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No pseudo code is given for the functions listed below as they are trivial: 

(IBk1,IBk2) = GET_NEXT_PAIR(IB,k), 

IB REMOVE_FAIR(IB, (IBk1, IBk2)) 1 

JG= ADD_FAJR_TQ_JG(IG, (IGi1, IGi2)) 
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A clarification should be made regarding removal of pairs from set / B. The 

set I B may be thought of as either an array of pairs or a list of pairs. For 

convenience, I B is expressed as an array in the pseudo code. When a pair 

is removed from set / B at index k, the empty slot at index k is replaced by 

the last pair in the array. This is stated in order to avoid confusion about 

how the pseudo code deals with empty slots in the array. The last element 

in the array is followed by a NULL pointer. 

Step 2: Let CA denote the set of columns given color A. 

Let CB denote the set of columns given color B. 

Function COM BIN E_P AI RS_/ N _JG{/G, /G_LENGT H); 

If there is only one pair(/Gi1 , /Gi2 ) in the set JG, then this pair forms the 

initial cover set II~ = (C~, C~) where II~ may or may not cover(include) 

all columns. Columns which are not included in the initial cover set II~(i.e., 
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columns which are compatible with all other columns) are dealt with in the 

final step. Go to step 3. 

If there is more than one pair(IGi1,/G;.2) in the set JG, then there is more 

than one combination of nodes(IG;.;) which can be given the same color. 

The selection of which combination to choose may be heuristic or random. 

However, if IG;.1 is assigned to color A, then IG,2 must be assigned to color 

B. Combine all groups assigned with the same color to one group( or supern

ode). This will result in II~= (C~, C~) 

Function COMBINE_PAIRS_IN_IG(IG,IG.LENGTH) returns II~. 

Step 3: Function ADD_REMAINING_COLUMNS(II~,IB_REMAIN); 

Add remaining columns not included in the initial cover set II~( columns 

which are compatible with all columns) to either or both groups in II~ to 

complete the final cover set Ila = (CA, CB). 

Function ADD_REM AINI NG_COLU MN S(II~, I B_REM AI N) returns 

Ila. 
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Figure 4.4: Multi-valued Map for function F3. 

4.3 Example Of The MGCA Approach On Function F3 
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The following is an illustration of the MGCA approach to check for an Ashen

hurst decomposition on function F3. Shown in Figure 4.4 is the multi-valued map 

for Function F3. Repeated here is the set of pairs of incompatibility classes formed 

previously in part d of the same example function presented in section 3.4.2.2. 

IB = 

(((3), (7)), 

((5), (2,3,6,8)), 

((2), (5)), 

((1), (3))). 

These pairs of incompatibility classes(/ B) are used as the input to the Modi

fied Graph Coloring Approach. These pairs of incompatibility classes are shown 
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Compatibility Graph Incompatibility Graph 

Shown circled with dashed lines are the classes chosen for the final cover set. 

Figure 4.6: Compatibility and Incompatibility graphs for Function F3 

in Figure 4.5a. Shown in Figure 4.6 is the conventional compatibility graph and 

conventional incompatibility graph for function F3. These two graphs are not used 

in the MGCA approach, but are shown to illustrate differences in types of graphs 

that can be used for column minimization. The algorithm is executed as follows: 

Step 1: Start by initializing the first pair of supernodes(/G11 ,IG12 ) to be equal 

to the first pair of nodes(! B11 ,I B12) in the MIG graph. The assignment 

of I B11 and I B12 to either of the supernodes may be arbitrary. For this 

example, the assignments are as follows: IG11 = I B12 and IG12 = I B11 • 

These assignments are done so that they were consistent with Figure 4.5b. 

Once a pair of nodes(/ Bi;,I Bik) from the MIG graph are added to a pair 

of supernodes, they are removed from the set of nodes which must still be 

combined to a supernode. 
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Next, other nodes in the MIG graph are checked to see if there are any 

columns in common with either of the supernodes(I G11 ,I G12 ). It is found 

that I B22 and JG12 have column 3 in common(i.e., JG12 n J B22 3). There

fore, I B22 is added to supernode JG12 in accordance with Requirement 1. 

Similarly, I B21 is added to supernode JG11 in accordance with Requirement 

2. 

Now a check is made to determine if the addition of the last pair of nodes 

with the supernodes(IG11 ,IG12 ) violates the requirement necessary for an 

Ashenhurst decomposition. 

If JG11 n JG12 -/- 0, then the graph results in a column multiplicity greater 

than 2(Return no Ashenhurst decomposition exists). Otherwise continue. 

Checking this condition for the pair(IG11 ,IG12): 

(/Gun IG12) ((5,7)n(2,3,6,8)) 0 

This process of combining nodes and checking the requirement necessary 

for an Ashenhurst decomposition is repeated until all pairs of nodes in the 

MIG graph have been added to supernodes which there are at least one 

column in common. 



Step 2: 

Step 3: 
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After checking the remaining pairs, it is found that nodes/ B11 , I B22, I B31, 

and I B42 must be combined in accordance with Requirement 1. Similarly, 

nodes I B 12 , I B 21 , I B 32 , and / B 41 must be combined in accordance with 

Requirement 2. After combining these nodes to the supernodes in accordance 

with Requirements 1 and 2, it is found that all nodes in the MIG graph 

were able to be combined into just two supernodes(/G11 and /G12 ). These 

are shown in Figure 4.5c. 

Checking the requirement necessary for an Ashenhurst decomposition for 

the last pair of nodes combined with the supernodes results in the following: 

(!Gun IG12) = ((1,5, 7) n (2,3,6,8)) = 0 

The requirement necessary for an Ashenhurst decomposition is satisfied for 

all pairs of supernodes(in this case, there was only one pair). Therefore, 

return Ashenhurst decomposition exists. Go to step 2. 

Since there is only one pair(/G11 , /G12 ) E JG, then no combining of pairs 

is necessary. Therefore, this pair forms the initial cover set II~ (C~, C~). 

Go to step 3. 

Add columns not contained in any of the incompatible classes( columns 

which are compatible with all columns) to either or both groups in II~ to 
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complete the resulting cover set Ila = (CA, CB)- Only column 4 has not 

been included in any of the incompatible classes. Therefore, column 4 is 

arbitrarily assigned to both classes in the initial cover set. Assigning a column 

to both classes in the cover set has the same meaning as assigning a column 

with both colors(i.e., colors A and B). This results in the final cover set 

Ila = ( (1, 4, 5, 7), (2, 3, 4, 6, 8)) as shown in Figure 4.5d. This completes the 

illustration of the MGCA approach on Function F3. 

4.4 Example Of The MGCA Approach On Function F4 

Shown in Figure 4.7 is function F4 which is used in this example. Using the 

proceedure outlined in the GCA algorithm in section 3.4.2.1, the set of incompat

ible classes(! B) for function F4 is obtained: 

IB = 

(((7), (2)), 

( (5,6, 7), (3) ), 

( ( 1), ( 4 ,8))). 

These pairs of incompatibility classes of columns are shown in Figure 4.8a. Shown 

in Figure 4.9 is the conventional compatibility graph and conventional incompat

ibility graph for function F4. These two graphs are not used in the MGCA 
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Figure 4.8: Illustration of steps in the MGCA Approach on Function F4 
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Compatibility Graph Incompatibility Graph 

Shown circled with dashed lines are the classes chosen for the final cover set. 

Figure 4.9: Compatibility and Incompatibility graph for Function F4 

approach, but are shown to illustrate differences in types of graphs that can be 

used for column minimization. The algorithm is executed as follows: 

Step 1: Start by initializing the first pair of supernodes( IG 11 ,IG12 ) to be equal 

to the first pair of nodes(/ B 11 ,I B12 ) in the MIG graph. For this example, 

the assignments are as follows: /G11 = I B11 and IG12 = I B12-

Next, other nodes in the MIG graph are checked to see if there are any 

columns in common with either of the supernodes(JG11 ,IG12 ). It is found 

that I B22 and JG12 have column 7 in common(i.e. JG12 n J B22 = 7). There

fore, I B22 is added to supernode JG12 in accordance with Requirement 1. 

Similarly, I B21 is added to supernode IG11 in accordance with Requirement 

2. The supernodes that are formed are shown circled in Figure 4.8b. 

Now a check is made to determine if combining the last pair of nodes 

with the supernodes(JG11 ,IG12 ) violates the requirement necessary for an 
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Ashenhurst decomposition. 

If JG11 n JG12 =/ 0, then the graph results in a column multiplicity greater 

than 2(Return no Ashenhurst decomposition exists). Otherwise continue. 

Checking this condition for the pair(JG11 ,/G12): 

(/Gun IG12) ((2, 3) n (5, 6, 7)) = 0 

Because the requirement is not violated, the process of adding nodes to 

supernodes continues. This process is repeated until all pairs of nodes in 

the MIG graph are added to supernodes which there are at least one col

umn in common. After checking the remaining pairs, it is found that there 

are no other nodes which have any columns in common with either of the 

supernodes(JG11 ,JG12). Therefore, the pair of supernodes(JG11 ,JG12 ) are 

complete(i.e. no more nodes will be added to either supernode in this step). 

The same process is repeated for a new pair of supernodes(JG21 ,JG22) 

using the remaining nodes in the MIG graph. However, after removing all 

nodes in the MIG graph which are added to a supernode, only one pair of 

nodes remain(i.e., (I Ba1,l B32)). Therefore, the new pair of supernodes 

(JG21,/G22) is simply assigned as the remaining pair of nodes(/ B31 ,I B32). 



Step 2: 
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The requirement necessary for an Ashenhurst decomposition is not vi-

olated for supernodes(IG21 ,IG22)(i.e., (IG21 n IG22) = ((1) n ( 4, 8)) = 0). 

Therefore, because the requirement necessary for an Ashenhurst decompo

sition was not violated for any of the supernode pairs, then an Ashenhurst 

decomposition exists for the given bound set. The complete set(IG) of pairs 

of supernodes is as follows: 

IG= 

((IG11,IG12), 

(IG21,lG22)). 

(((2, 3), (5, 6, 7)), 

((1), (4, 8))). 

This is shown in Figure 4.8c. 

Since there is more than one pair(IGi1,IGi2) E JG, then there is more 

than one combination of classes(IGij) which can be given the same color. 

Shown in Figure 4.8d and Figure 4.8e are the optional assignments. For sim

plicity, a random selection is made for the combination of groups to add to 

color A as follows: CA= (!Gu U IG22), Therefore CB = (IG12 U IG21). This 

results in II~= (CA,CB) = ((2,3,4,8),(1,5,6, 7)). 



Step 3: 
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Because there are no remaining columns( columns compatible with all 

other columns) which must be included in the initial cover set, then the fi

nal cover set is equal to the initial cover set II~. Therefore, Ila = II~ = 

((2,3,4,8),(1,5,6, 7)). 

4.5 Analysis of CIG graphs vs. MIG graphs 

In this section, comparisons are made between the number of nodes and the 

number of edges in MIG graphs vs. CIG graphs. Recall that the primary basis 

for the improved efficiency of the MGCA algorithm is that it can make use of a 

graph with fewer nodes when the number of blocks in the bound set is greater than 

the number of blocks in the free set(i.e., when IBI/IAI 2: 1). When the number 

of blocks in the bound set is NOT greater than the number of blocks in the free 

set, then the MGCA algorithm may be less efficient than an algorithm which 

uses a CIG graph or something similar. A more suitable algorithm for use when 

IBI/IAI 2: 1 can be found in [49]. For simplicity, all comparisons were made for 

single output functions. 
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a) Table for comparison of number of nodes 

in MIG graphs vs. CIG graphs. This comparison 
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Figure 4.10: Comparison between number of nodes in a CIG Graph and a MIG 
Graph 

4.5.1 Comparison of number of nodes in MIG graphs vs. CIG graphs 

The number of nodes in a CIG graph is equal to the number of blocks in the 

bound set(denoted IBI). Therefore, no calculations are necessary to determine the 

number of nodes in a CIG graph. 

CIG(nodes) = IBI 

The number of nodes in a MIG graph is equal to: 

MIG(nodes) = IAI x IYI 

IAI is equal to the number of blocks in the free set and IYI is equal to the num

ber of blocks in the output partition( or output class). For single output binary 
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functions, !YI = 2 = constant. Recall, the nodes in in the MIG graph represent 

the incompatibility classes of columns I Bij obtained in the previous phase of the 

decomposition process( column compatibility checking) using the GCA approach. 

In order to clarify how the above formula was obtained for the number of nodes in 

a MIG graph, the following explanation is given: The classes I Bij are obtained 

from the classes I Cii in such a way that the number of classes I Bij is equal to the 

number of classes ICij for single output binary functions(i.e., there is a one to one 

correspondence). Repeated here is the formula for creating the classes ICij• 

ViVj: ICij A-nF-• 1 

From this formula, the number of classes ICij is equal to !Ail x IFjl, where IAil is 

the number of blocks in the free set and IFjl is the number of blocks in the output 

set. 

Presented in Figure 4.10 is a comparison of the number of nodes in MIG graphs 

vs. CIG graphs when the number of blocks in the bound set are varied. Observe 

from this figure that there are many more nodes in a CIG graph than a MIG 

graph when the number of blocks in the bound set is much greater than the number 

of blocks in the free set. 

Similarly, in Figure 4.11 observe that there are many more nodes in a CIG 

graph than a MIG graph when the number of blocks in the bound set is much 
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a I 0000000000 l 00 20000000000 100 
b I 00000000 I 0000 200000000 10000 
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d I 0000 I 00000000 20000 I 00000000 
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a) Table for comparison of number of nodes 

in MIG graphs vs. CIG graphs. This comparison 

is for single output functions with varying 

number of blocks in the free set and varying 

numbers of blocks in the bound set. 
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b) Graphical illustration for the comparison. 

Figure 4.11: Another comparison between number of nodes in a CIG Graph and 
a MIG Graph 

greater than the number of blocks in the free set. Another observation from this 

figure, is the cross-over point occurs approximately where jBJ/IAJ = 1. From the 

cross-over point, we can conclude, the MIG graph has fewer nodes than the CIG 

graph when IBI/IAI ~ 1. 

4.5.2 Comparison of number of edges in MIG graphs vs. CIG graphs 

Because it is not possible to formulate an exact expression for the average 

number of edges in CIG graphs without knowledge about specific functions, an 

assumption was made so that meaningful comparisons could be made between the 

number of edges in MIG graphs vs. CIG graphs. The assumption made was 

that the number of edges in CIG graphs is equal to 1 /2 the number of edges in 

a complete graph(i.e., nx(~-I) ). Therefore, to calculate an approximate number of 

edges in a CIG graph, we simply need to know how many nodes are in the CIG 
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100 10 100 22 

100 100 100 2475 

100 1000 100 249750 
100 10000 JOO 24997500 

JOO 100000 100 2499975000 
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b) Graphical illustration for the comparison. 

Figure 4.12: Comparison between number of edges in a CIG Graph and a MIG 
Graph 

graph and then divide the number of edges in a complete graph by two. 

CIG(edges) = IBlx(1Bl-l) 

The number of edges in a MIG graph is equal to: 

MIG(edges) IAlxlYI 
2 

For single output binary functions, !YI = 2 constant. Recall, in MIG graphs, 

there is exactly one edge for every two nodes. Presented in Figure 4.12 is a compar-

ison of the number of edges when the number of blocks in the bound set are varied. 
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b) Graphical illustration for the comparison. 

Figure 4.13: Another comparison between number of edges in a CIG Graph and 
a MIG Graph 

Observe from this figure that there are many more edges in a CIG graph than a 

MIG graph when the number of blocks in the bound set is much greater than the 

number of blocks in the free set. This of course is under the assumption that the 

average CIG graph has 1/2 the edges that are in a corresponding complete graph. 

Similarly, in Figure 4.13 observe that there are many more edges in a CIG 

graph than a MIG graph when the number of blocks in the bound set is much 

greater than the number of blocks in the free set. Another observation from this 

figure, is the cross-over point occurs approximately where IBI/IAI = 1. From the 

cross-over point, we can conclude, the MIG graph has fewer edges than the CIG 

graph roughly when IBI/IAI :2.: 1. 
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4.6 Concluding Remarks 

It is known that execution time for graph coloring approaches generally in

creases with increases in the number of nodes and edges in a graph[65). Therefore, 

if the comparisons illustrated in Figure 4.10 thru Figure 4.13 are representative 

of relative execution times required to color CIG graphs and MIG graphs, then 

it could be stated, using MIG graphs should require less execution time when 

IBI/IAI ~ 1 because MIG graphs would have fewer nodes and edges. Likewise, 

when IBI/IAI is significantly less than one, then CIG graphs should require less 

execution time. 

While the comparisons illustrated in Figure 4.10 thru Figure 4.13 showed that 

there can be significant advantages to using MIG graphs over CIG graphs when 

IBI/IAI ~ 1, it should not be over-looked that without an algorithm which is 

able to take advantage of MIG graphs, MIG graphs would be of no use. Exam

ples in Sections 4.3 and 4.4 demonstrated that the MGCA algorithm is able to 

take advantage of MIG type graphs and therefore is able to efficiently check for 

Ashenhurst decompositions when IBI/IAI ~ 1. 



CHAPTER 5 

NEW APPROACH FOR COLUMN BASED INPUT/OUTPUT 
ENCODING 

5.1 Introduction 

165 

Encoding in Curtis-style decompositions is the process of assigning codes to 

columns so that there is a mapping of output values from the predecessor sub

function to the successor sub-function. In doing so, the sub-functions created are 

functionally equivalent to the set of care values specified in the original function. 

Presented in the following sections is an input/ output encoding approach designed 

to encode columns in such a manner as to achieve a more simplified total of the 

predecessor and the successor sub-functions. 

For those unfamiliar with the basic difference between input and output en

coding, a brief explanation is given as it applies to Curtis-style decompositions. 

Input encoding is the process of selecting codes for classes of the cover set IIG so 

that the complexity of the successor sub-function is minimized. Examples of input 

encoding approaches are found in Iliev[24], Wan[65], Murgai[37], and Brayton[9]. 

Output encoding is the process of selecting codes for classes of the cover set IIG 

so that the complexity of the predecessor sub-function is minimized. Examples 

of output encoding approaches can be found in Almeria[l] and Saldanha[57]. In 
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addition to input encoding approaches and output encoding approaches, other en

coding approaches are designed to achieve a more simplified total of the predecessor 

and successor sub-functions concurrently. Encoding approaches of this type are re

ferred to as combined input/output encoders. Examples of combined input/output 

encoding approaches can be found in Almeria[!], Devadas[l6], Saldanha[57], and 

Selvaraj[58]. Of the different types of encoders mentioned, the input/output en

coding approaches are typically more difficult to design but have the potential for 

a much simpler combination of the predecessor and successor functions. 

There are many similarities between F SM minimization and Curtis type de

compositions of switching functions. For example, state reduction in F SM mini

mization is very similar to column minimization in Curtis decompositions. Also, 

state assignment in F SM minimization is very similar to column encoding in Cur

tis decompositions. 

However, there are significant differences between F SM minimization and Cur

tis type decompositions of switching functions. Most of the differences can be 

attributed to the fact that state machines have multiple states and switching func

tions do not(i.e., a switching function may be thought of as a state machine with 

only one state). Because the outputs of switching functions are not dependent on 

a state variable as in the case of state machines, the encoding problem is much 

simpler for the case of switching functions than for state machines. An impor

tant distinction between F SM minimization and Curtis type decompositions is 
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that states are reduced and encoded in F SM minimization whereas columns are 

reduced and encoded in Curtis decompositions. Consequently, the encoding con

straints for state assignment are different from encoding constraints for Curtis 

decompositions. Constraints are groups of symbols that it is desired to assign 

codes to each of the symbols in the constraint such that the number of bits that 

differ in the codes is a minimum. Symbols in Curtis decomposition are multi

value labels corresponding to each partition block in a cover set. Symbols in state 

assignment are multi-value labels corresponding to each of the states in a state 

machine. Another important distinction between F SM minimization and Cur

tis type decompositions is that the primary goals are different. In typical F SM 

minimization problems, the primary goal is to minimize the number of product 

terms required to implement a state machine in a two-level P LA. However, in 

Curtis decompositions, the primary goal is typically to minimize the number of 

logic blocks(or DFC) required to implement a multi-level description of a given 

function. 

Not surprisingly, it is difficult to make direct comparisons between encoding for 

state assignment and encoding for Curtis decompositions of switching functions. 

Because these significant differences, comparisons between encoding algorithms 

for state assignment and encoding algorithms for Curtis type decompositions are 

not presented except where subproblems are nearly identical. Two subproblems 

which are very similar in state assignment and encoding for Curtis decompositions 
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are: (1) creation of an edge-weighted connection graph and (2) embedding the 

the edge-weighted connection graph to the hypercube. The algorithms for these 

subproblems and relavent comparisons to state assignment are presented in Sec

tion 5.5.2.2. Additional reference to similarities and differences between F SM 

minimization and Curtis type decompositions can be found in [50]. 

Perhaps the most important criterion for determining what type of encoding 

program is best to use in Curtis decompositions, is the ratio of relative complexities 

of the predecessor and successor sub-functions. Unfortunately, it is difficult to 

assess the relative complexities of sub-functions especially when they are nearly 

the same size(in terms of the numbers of inputs and outputs). However, when the 

predecessor sub-function is much larger than the successor sub-function, one can 

reason that the predecessor will have a greater potential for further simplifications. 

For example, if the predecessor sub-function has 20 inputs and 3 outputs and the 

successor sub-function has 4 inputs and 3 outputs, then it would be obvious that 

the predecessor would have a greater potential for further simplification in terms 

of DFC(i.e. DFC=(220 * 3) vs. DFC=(24 * 3)) . Conversely, if the successor 

was much larger than the predecessor, then there would be greater potential for 

further simplification of the successor sub-function. Therefore, when the successor 

is much larger than the predecessor, then an input encoding approach should be 

used. Likewise, when the predecessor is much larger than the successor, then an 

output encoding approach should be used. And finally, when they are roughly 
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equal in size, then a combined input/output encoding approach should be used. 

An interesting characteristic of the new approach presented(DC_ENC) is that it 

will behave at times like each of the three types of encoders based on a heuristic 

cost function. This is explained in more detail in the algorithm presented. 

Different applications of decomposition have different sets of objectives to be 

optimized. However, only three primary objectives are used in the proposed 

DC_ENC encoding approach presented in this chapter. These three primary 

encoding objectives are used to achieve the overall desired goal. The overall de

sired goal is to obtain a multi-level decomposition which has the minimum number 

of logic blocks( or D FC). One of the three encoding objectives is to minimize the 

Hamming distances between the columns in the Karnaugh map of the successor 

sub-function for the given bound and free sets. The second objective is to mini

mize the Hamming distances between the codes assigned to adjacent cells in the 

Karnaugh map of the predecessor sub-function. The third objective is to optimize 

the number of don't cares produced in the predecessor sub-function. The order of 

importance of these objectives varies depending on the sizes of the sub-functions. 

If the successor sub-function is much larger than the predecessor sub-function, 

then the first objective is the most important. If the reverse is true, then the 

last two objectives are most important. If the predecessor sub-function is much 

larger than the successor sub-function, then optimizing a combination of the last 

two objectives will most likely lead to an overall decomposition resulting in a lower 
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D FC. Each of the three objectives mentioned constitute a separate set of encoding 

constraints. 

The following is the formulation of the encoding problem that is solved by the 

proposed DC_ENC encoding approach presented in this chapter. Given a set of 

various encoding constraints, use the minimum number of encoding bits to encode 

all columns in a Karnaugh map, such that at least 75% of the encoding constraints 

are satisfied. The optimal percentage and types of constraints to satisfy to achieve 

the overall goal of minimum DFC is different from function to function. Therefore, 

future work should include designing an algorithm which would give the exact or 

near exact percentage of constraints to satisfy on a function by function basis. 

However, the value of 75% was arrived at based on the following rationale. Each 

symbol receives a unique code. The size of a constraint is simply the number of 

symbols in the constraint. Therefore, if the number of bits that differ in the symbol 

codes is kept to a minimum, then more bits are required to assign codes to symbols 

in large constraints than in small constraints. An observation was made on several 

example decompositions that in every case there were very few large constraints 

compared to the number of small constraints. From these observations, 75% was 

chosen as a heuristic cut-off value. 

Perhaps the most important characteristic of the DC_ENC approach is the 

ability to take advantage of overlap in compatible classes of columns to "produce" 

don't cares in the predecessor sub-function. Often times these don't cares produced 
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can greatly simplify the complexity of the predecessor sub-function. Techniques 

used in the DC_ENC encoding approach presented involve: (1) selection of suit

able cover sets, (2) heuristics to optimize the quality of encoding at low computa

tional cost, (3) multiple constraint satisfaction using an edge-weighted connection 

graph, and ( 4) use of Hamming distances to aid in assigning codes which results 

in simpler functions. 

The format of this chapter is as follows: In Section 5.2, fundamentals of column

based encoding are presented. In Section 5.3, some of the basic definitions a.re in

troduced. In Section 5.4, a general encoding strategy is presented. In Section 5.5, 

a detailed description of the DC_ENC encoding approach is presented. In Sec

tion 5.6, a detailed example is presented to illustrate the DC_ENC encoding 

approach. Finally, in Section 5 7, conclusions are presented. 

5.2 Definitions, Notations, and Terminology 

Unless otherwise stated, a set which contains column indexes is the same as a 

set which contains columns(i.e., column is short for column index). Similarly, for 

sets containing cubes, symbols, classes, and etc., the word index is not included. 

The purpose for this is to avoid over use of the word index. However, where it is 

deemed necessary to distinguish between an element index and the contents of an 

element, then clarification is ma.de. 
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Definition 5.2.1 A disjoint cover set is a cover set which contains subsets of 

columns where no column is an element of more than one subset. 

Definition 5.2.2 A nondisjoint cover set is a cover set which contains subsets 

of columns where at least one column is an element of more than one subset. 

Definition 5.2.3 Hamming Distance between two code words( or vectors of vari

ables) is defined as the number of digits in which these code words differ. 

Definition 5.2.4 A Symbol is a multi-value label representing a set of mutually 

compatible elements. The elements in each set are either cubes or columns. More 

specifically, symbols are used to denote the individual sets( or classes) within a given 

cover set. A set of columns corresponding to a particular symbol may be referred 

to as a symbol set or symbol class or symbol group. For simplicity, a symbol set 

within the cover set is simply referred to as a symbol. 

Definition 5.2.5 A Hypercube of dimension n is a set of 2n vertices1 where 

each vertex has exactly n edges connected between itself and n other vertices. No 

vertex in the hypercube is connected to the same set of edges as any other vertex 

in the hypercube. 

Definition 5.2.6 A Supercube of a set of cubes is defined as the smallest cube 

containing all the minterms contained in the set of cubes. 

Example: Given cubes 000, 001, and 011. The supercube is 0 - --
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Definition 5.2. 7 A k-cube is a supercube of 2k bit vectors where the number k 

indicates the number of don't cares in the cube. 

Example: Given the bit vectors 00, 01, 11, and 10, the resulting k-cube is"--". 

Definition 5.2.8 A Face is a k-cube in a binary n-dimensional space, where k :::; 

n. Typically, a face refers to a sub-cube of an n-dimensional cube. A face in a 

hypercube can be thought of as a subhypercube. 

Definition 5.2.9 A Column Constraint, as defined here, is a set(or group) of 

symbols in the cover set that a particular column is compatible with. 

Example: 

The form of a constraint for column C; is (S1 , 53, S1). 

Definition 5.2.10 A Face Embedding Constraint is a constraint which spec

ifies that a set of symbols is to be assigned to one face of a binary n-dimensional 

cube, without any other symbol sharing the same face. A face embedding constraint 

is said to be satisfied if all the codes assigned to the symbols in the constraint oc

cupy a single face in an n-dimensional cube. When a face embedding constraint is 

satisfied, it is possible that some of the codes in the face are unused. 

Example: Given is a three dimensional cube and the face embedding constraint for 

column C, ( S1 , S3, S4 ). If symbol S1 is given code 000, symbol S3 is given code 

001, symbol S4 is given code 011 and no symbol is assigned to code 0lO(unused 
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code), then the set of symbols in the constraint of column C; are said to satisfy 

the face embedding constraint because the codes assigned to each of the symbols 

are contained in a single face(i.e., 0 - -) of the given three dimensional cube. 

Definition 5.2.11 A Hypercube Embedding Constraint is a special face em

bedding constraint containing exactly 2k symbols. Like a face embedding constraint, 

a hypercube embedding constraint is said to be satisfied if all the codes assigned to 

the symbols in the constraint occupy a single face in an n-dimensional cube. How-

ever, when a hypercube embedding constraint is satisfied, then none of the codes in 

the face are unused. 

Example 1: 

Given the hypercube embedding constraint for column C; 

the following code assignments: 

000 S1 

001 s3 
Oll S4 
010 S1 

0 - - Supercube of the codes in the constraint. 

Remaining symbols not in the constraint. 

110 S2 

111 Ss 
101 s6 
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The hypercube embedding constraint 1s satisfied because the supercube contains 

only codes contained in the constraint. 

Example 2: 

Given the hypercube embedding constraint for column Ci = (S1 , S4 , S3 , S1), and 

the following code assignments: 

000 S1 

101 S3 
011 S4 
010 S1 

Supercube of the codes in the constramt. 

Remaining symbols not in the constramt. 

110 S2 

111 Ss 
001 s6 

The hypercube embedding constraint is not satisfied because the supercube of the 

codes assigned to the symbols contains codes of symbols which are not contained 

in the constraint. 

Definition 5.2.12 The Cost Function Ratio (CFR) is an approximate mea-

sure of the relative sizes of the predecessor and successor functions in a Curtis-style 

decomposition. It is defined as follows: 

CFR = Costl = GoFc/HoFc 
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GoFc is the DFC of predecessor sub-function G. 

Ho Fe is the DFC of successor sub-function H. 

Definition 5.2.13 Overlap Ratio Ro is a measure of "overlap" of columns in 

symbols(or classes} of Ila. Columns are said to "overlap" if they are compatible 

with more than one symbols in the cover set Ila. Ro is defined as follows: 

Co = Number of columns which are compatible with more than one symbols in IIG, 

CT Total number of columns{excluding columns of all don't cares). 

5.3 Fundamentals Of Column-Based Encoding 

The purpose of this section is to illustrate the fundamentals of column-based 

encoding. The following is a brief description of the general process of encoding 

columns in a Curtis style decomposition: 

In a Curtis style decomposition, the encoding process follows the column minimiza

tion phase of the decomposition process. The primary input data to the encoding 
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Sets 

program are: the function to be decomposed, the cover set Ila, and the column 

multiplicity. In column based encoding, the cover set Ile is a set of subsets(CCs) 

containing columns. Though encoding approaches can be diverse and quite com-

plicated, most column-based encoding approaches share two primary steps in the 

encoding process. The first step is to assign codes to the symbols( or classes) in the 

cover set Ila. The second step is to assign codes to each column from among the 

symbol codes corresponding to the symbols that each column is compatible with. 

Shown in Figure 5.1 is the Karnaugh map of an example function and an input 

cover set used to illustrate column based encoding of disjoint and nondisjoint cover 

sets. Below each column, in the Karnaugh map of function F, is a list of symbols 

that each column is compatible with. What is the primary advantage of encoding 

nondisjoint cover sets over disjoint cover sets? The primary advantage is that there 

are additional optional codes which may be assigned to columns when encoding 
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nondisjoint cover sets. If there are more codes to choose from using nondisjoint 

cover sets, why ever use disjoint cover sets? The answer is that many encoding 

approaches assume the input cover set is disjoint and therefore are not designed 

to handle the overlap in nondisjoint cover sets. Presented in Section 5.3.1 is an 

example of column based encoding of disjoint cover sets. Presented in Section 5.3.2 

is an example of column based encoding of nondisjoint cover sets. 

5.3.1 Encoding of Disjoint Cover Sets 

If the choice is made to encode a disjoint cover set rather than a nondisjoint 

cover set, then it is necessary to remove all instances of each column from every 

subset(symbol) of ITG except for one of them. There may be many optional cover 

sets which result from removing columns from the symbols of IlG to make it a 

disjoint cover set. For the input cover set shown in Figure 5.2a, there are only two 

columns that are elements of more than one symbol. Column 0 5 can be assigned 

to one of three symbols in IIG. Column Os can be assigned to two of the symbols 

in IIG. In total, there are six optional disjoint cover sets to choose from(i.e., there 

are six combinations of cover sets which can be produced by removing columns Os 

and Os from all but one symbol that each column is an element of). For simplicity, 

columns Os and Os are arbitrarily removed from all symbols except for one. Shown 

in Figure 5.2b, is the disjoint cover set produced by removing columns Os and Os 

from all but one symbol of the input cover set. 
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The cover set produced( or selected) determines what the column types will be 

in the sub-function H. Each of the column types in the sub-function Hare obtained 

by performing the union on all columns contained in each of the symbols. Shown 

in Figure 5.2c, are the different column types in the sub-function H corresponding 

to the disjoint cover set selected. The actual position of the column types in the 

Karnaugh map of sub-function H are not known until the codes(glg2) have been 

assigned to each of the symbols. 

Shown in Figure 5.2d are the cells of the sub-function G with column labels 

corresponding to each vector of input variables of the bound set in function F. 

Shown in Figure 5.2e are the cells of the sub-function G containing the symbols in 

Ila that each column in function F is compatible with. Observe that, by making 

the input cover set disjoint, column C5 may only be assigned to symbol Sl(shown 

circled) because it is no longer an element of the subsets corresponding to symbols 

S2 and S4. Similarly, column C8 may only be assigned to symbol S1 because it is 

no longer an element of the subset corresponding to symbol S4. 

Finally, codes for each symbol are assigned. Because the column multiplicity 

1s four, then two bits are required to encode each of the four symbols in Ila. 

Ideally, the codes should be assigned to simplify both sub-functions simultaneously. 

However, because the purpose of this section is merely to show the basics of column

based encoding, codes for each symbol are chosen arbitrarily. The codes assigned to 

each symbol are shown in Figure 5.2c as variables glg2 at the top of each column. 
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The assignment of codes to columns in the function F is done by assigning 

the code of each symbol as the code of every column that is an element of that 

symbol. Shown in the cells of the Karnaugh map in Figure 5.2f are the codes that 

each column is assigned with. This completes the encoding process for disjoint 

cover sets. Shown in Figure 5.lc and Figure 5.ld are block diagrams of the original 

function F and the decomposed set of sub-functions G and H. Note that the codes 

glg2 assigned to columns correspond to outputs of sub-functions G and inputs to 

sub-functions H. 

5.3.2 Encoding of Nondisjoint Cover Sets 

The primary difference between the encoding of disjoint vs. nondisjoint cover 

sets is that the columns may be assigned with combined symbol codes(supercube 

of codes) in some instances. For example, if the codes assigned to the symbols are 

the same as they were in the disjoint case(i.e., Sl=00, S2=01, S3=11, and S4=10), 

then column C5 could be assigned codes 0- or -0, as well as 00, 01, or 10. 

A column can only be assigned a combined symbol code if the supercube of 

the symbol codes does not contain any codes of symbols which the column is not 

compatible with. For example, column C5 can't use the optional code 0- unless it 

is an element of the two symbols with symbol codes 00 and 01. Similarly, column 

Cs can't use the optional code -0 unless it is an element of the two symbols with 

symbol codes 00 and 10. Also, we can't assign Cs with the combined symbol codes 
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of symbols S2 01 and S4 = 10 because they differ by more than one bit. The 

combined code of symbols S2 and S4 results in code '1- -". This code also includes 

the code of symbols SI = 00 and S3 11. Symbol S3 is not among the acceptable 

code assignments for column C5 • 

Shown in Figure 5.2g is a nondisjoint cover set selected which allows columns 

Cs and C8 to receive don 1t cares in their codes. Shown circled in Figure 5.2j, 

are combinations of symbols that columns Cs and C8 were assigned to. Assigning 

columns Cs and C8 to the combined codes of symbols Sl(i.e., 00) and S4(i.e., 

10) results in the combined code -0. The resulting column codes are shown in 

Figure 5.2k. Why not give column Cs the combined code of symbols Sl=0O, 

S2=01, and S4=10? The combined code of symbols SI, S2, and S4 is "- -". 

This code includes the code of symbol S3 which is not among the acceptable code 

assignments for column Cs. For this reason, column Cs was removed from symbol 

S2 in the initial cover to form the final cover set shown in Figure 5.2g. This 

completes the encoding process for the given example of nondisjoint cover sets. 

The block diagram for the decomposed set of sub-functions G and H is the same 

as for the disjoint case. 

Using the same input function, it was shown how columns can be encoded 

using disjoint and nondisjoint cover sets. Also, it was shown in this example how 

don't cares can be introduced into the codes of the predecessor sub-function when 

an encoding method utilizes the overlap in nondisjoint cover sets. Often times 
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the added don't cares can greatly reduce the complexity of the predecessor sub

function. 

5.4 General Strategy For The New Encoding Approach 

Shown in Figure 5.3 is a flow diagram of a general encoding strategy which 

includes the flow of control in the DC_ENC encoding approach presented. Flow 

diagrams for other encoding approaches are very diverse and are therefore not 

discussed here. Though there are many different general strategies possible, the 

general encoding strategy referred to in this chapter is a simple strategy that I rec

ommend for use with the DC_ENC encoding approach presented. The primarily 

purpose of the general encoding strategy described here is to evaluate whether 

conditions are appropriate for the DC_ENC encoding approach to be effective. 

If so, the DC_ENC encoding program would be called. Otherwise, a different 

encoding program would be called. 

The criterion used by the general encoding strategy to determine whether the 

DC_ENC encoding approach is used or not, is based on the values of a Cost Func

tion Ratio(CFR) and a overlap ratio(R0 ). The following is a proposed heuristic, 

IF-THEN-ELSE statement, which determines if the DC_ENC encoding approach 

is used. 
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If (Ro> 1/5 and CFR ~ 1/2) 
Then use the DC_ENC encoding approach. 

Else 
Use an alternative encoding approach. 

For referencing purposes) let the IF-THEN-ELSE statement be referred to 

as Rule#l. Basically, Rule#l states two conditions to be satisfied before the 

DC_ENC encoding approach is used. The first condition specifies that there 

must be sufficient overlap of columns in the symbols of Ila. Why ? Because if 

there is no overlap, then the DC_ENC encoding approach can 1t utilize overlap 

to produce don't cares in the codewords. The second condition specifies that the 

predecessor sub-function must be roughly equal to or larger than the successor sub-

function in terms of inputs and outputs(DFC). Why ? Because the DC_ENC 

encoding approach(DC_ENC) tends to simplify the predecessor sub-function more 

than the successor sub-function. For some functions, DC_ENC may actually sim-

plify the predecessor sub-function at the cost of making a more complex successor 

sub-function(i.e., DC_ENC produces don't cares in the G block in such a way 

that Hamming distances may increase in the H block). However, when the two 

conditions are satisfied which are necessary before using the DC_ENC encoding 

approach, then the DC_ENC approach is selected. Otherwise, an alternative en-

coding method is selected. When the two conditions above are satisfied, then the 

DC_ENC approach can greatly simplify the complexity of the predecessor block 

by introducing don't cares in the codes assigned to columns. 
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One of these conditions requires that there exists sufficient overlap in the cover 

set before using the DC_ENC encoding approach. Unfortunately, due to the 

differences in each decomposition, it is not known exactly when the overlap is 

sufficient for the DC_ENC encoding approach to be effective. However, based on 

the experience I acquired solving numerous examples by hand, I recommend that a 

different encoder be used if Ro < 1/5. This cutoff value I arrived at after analyzing 

example encodings for different functions and their corresponding graphs. Future 

work may include testing to refine this value, and/or to find other criterion to 

determine if and when the DC_ENC approach is effective. 

The cost function ratio (CF R) provides a very rough estimate of the ratio of 

complexity and/or size of sub-function G relative to sub-function H. Ranges of the 

CF R ratio are used to make decisions in the general encoding strategy proposed. 

The following are ranges set for the CF R ratio: 

Range 1: 
Range 2: 
Range 3: 
Range 4: 
Range 5: 

CFR5:_l/6 
1/6 < CFR '5:. 1/2 
l/2<CFR5:_2 
2<CFR5:_6 
CFR> 6 

These ranges are used for two primary purposes. The first purpose is to deter

mine whether or not one of the two conditions necessary for using the DC_ENC 

encoding approach is satisfied(IF-THEN-ELSE statement above). The second pur-

pose is to determine values to assign to two parameters, X and U, used in the cover 
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set selection process. The values assigned to X and U are used heuristically to 

determine how a cover set should be selected in order to provide more efficient 

encoding for the larger of the two sub-functions in a decomposition. How CFR is 

used to determine values for these parameters and how the parameters affect the 

cover set selection process is outlined in Section 5.5.1. 

Once the DC_ENC encoding approach has been selected, then the next stage 

m the flow diagram, cover set selection, is performed. Basically, the cover set 

selection step is a heuristic process of forming an enhanced cover set which is 

designed to facilitate satisfaction of the encoding objectives in a prioritized manner 

according to the value of the cost function ration CF R. 

The next stage in the flow diagram of Figure 5.3 is the construction of the 

Edge Weighted Connection Graph( EWCG). A detailed explanation of this step 

is given in Section 5.5.2.1. Briefly, the EWCG is constructed in such a way as 

to obtain a set of weighted constraints which will maximize the number of don't 

cares produced in the G sub-function, minimize the Hamming distances between 

cofactors in the H sub-function, and minimize the Hamming distances between 

the codes assigned to the cells of the Karnaugh map in the G sub-function. When 

there are conflicts in the process of trying to satisfy certain sets of constraints 

concurrently, then evaluations are made using a cost function to determine what 

action should be taken to resolve each conflict. Notice the question "More Bits 

Required?" in the flow diagram. If less than 75% of all constraints can be satisfied 
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together in the EWCG once it has been constructed, then an additional code bit 

is added to the length of codes to be assigned and the process of constructing the 

EWCG is repeated. 

Once the EWCG is constructed and an acceptable percentage of constraints 

are satisfied in it, then the next stage in the flow diagram is performed which is to 

map the EWCG to a hypercube of dimension n, where n is the number of bits in 

the code words to be assigned to each column. A detailed explanation of how the 

EWCG is mapped to a hypercube is given in Section 5.5.2.2. 

Finally, shown in the flow diagram is the assignment of the supercubes of the 

symbol codes to the columns in the input function. Basically, each column is as

signed to the largest combination of 2k symbol codes that the column is compatible 

with. For example, if column Cl is compatible with codes 00, 01, and 11, then it 

could be assigned either 00, 01, 11, 0-, or -1. The algorithm would select either 

column code 0- or -1. However, it could not be assigned the code "- -" because 

that code includes a symbol code which Cl is not compatible with(i.e., code 10). 

Once these steps in the DC_ENC encoding approach have been followed, then 

the encoding process is finished. 
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5.5 Detailed Description Of The New Encoding Approach: DC_ENC 

5.5.1 PHASE I: Selection Of A Suitable Cover Set(Optional) 

The purpose of this section is to outline the proposed heuristic procedure 

that is used to give higher priority to the encoding of the sub-function which is 

larger(and/or more complex) than its counterpart sub-function. It is believed that 

giving a higher priority to the encoding of the larger sub-function will ultimately 

result in a lower overall DFC of the decomposition, as well as to a reduction in 

the algorithm computation time. For selecting cover sets from a set of optional 

cover sets, I recommend different sets of procedures based on the type of encoding 

program that is used. Presented in Section 5.5.1.1, is the set of procedures I 

recommend when the DC_ENC encoding approach is used. Presented in Section 

5.5.1.2, is the set of procedures I recommend when other encoding approaches are 

used. 

5.5.1.1 Cover Set Selection For The New Encoding Approach 

This section outlines a set of heuristic procedures used to create cover sets to 

increase overlap in classes of the cover set so that the DC_ENC encoding approach 

can produce encodings of columns with a greater number of don't cares. Ideally, the 

input to the cover set selection program would be the minimum column multiplicity 

and a minimum cover of maximum compatible classes of columns(MCCs) which 

form the cover set Ila. For highly unspecified functions, these MCCs would have 
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columns which are elements of more than one MCC. Also, it would be desirable 

to have numerous additional MCCs which are different from those in the cover set 

IIG, These additional MCC scan be used as optional classes in a cover set selection 

process to improve the quality of encoding. More optional classes to select from 

would increase the number of optional encodings possible. 

Based on the range of CPR for a particular decomposition, values are assigned 

to parameters X and U. The parameter X corresponds to a percentage of highly 

specified columns in the cover set, and U is the parameter to be used to determine 

how many extra classes to add to the minimum cover set. The parameter X is 

used in two different ways. First, it is used to order classes of the minimum cover 

in descending order according to how many highly specified columns are in each 

class. Second, it is used to determine which columns should not be included in 

extra classes that are added. The parameter U is used to determine what fraction 

of unused codes should be used to increase the overlap in classes, so that additional 

don't cares may be introduced in the predecessor block. The following are heuristic 

assignments to parameters X and U based on the ranges established for CPR. 

For CPR in Range 2, X 7 5 U = . 25 
For CPR in Range 3, X = 55 U = .5 
For CPR in Range 4, X = 35 U = .75 
For CPR in Range 5, X 15 U = 1.0 

For CF R in Range 1, the proposed encoding approach is not used because the 

DFC of the successor sub-function is much larger than the DFC of the predecessor 
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sub-function. It is not recommended to use the proposed encoding approach when 

CF R is in Range 1 because the proposed encoding approach tends to produce 

encodings which simplify the predecessor sub-function more than the successor 

sub-function. 

Different ranges are intended to give different priorities to predecessor and 

successor blocks according to the ratio of their sizes. Notice from the ranges es

tablished, as the value of CFR increases, the value of X assigned decreases and 

the value of U assigned increases. Likewise, as CFR decreases, the value of X 

increases and the value of U decreases. In simple terms, what do these changes in 

X and U correspond to? Larger X values will ,,tend" to preserve more don't cares 

in the successor block by not allowing the highly specified columns to be given 

more than one code. Larger U values will "tend" to introduce more don't cares in 

the predecessor block by creating more overlap in the cover set. Presented below 

is the algorithm to select(or form) the final cover set Ila from the input cover set. 

Algorithm 5.5.1 

Begin 

1. Find the top X % of highly specified columns. Columns are considered highly 

specified if they are among the X % of columns which have the greatest number 

of specified output values. 
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2. Order classes of the minimum cover in descending order according to how 

many highly specified columns are in each class. 

3. From the minimal cover of symbols(groups of compatible columns), remove 

from the symbols all the redundant occurrences of the columns found in Step 

1. 1 Redundant occurrences of columns found in Step 1 should be removed 

from all symbols except the first symbol(in descending order) which they are 

elements of. All redundant occurrences of other columns should remain in 

the symbols. 

4. Add the number of ROU N D(U x number _of _unused_codes) classes to the 

minimal cover from Step 3 to form the new cover. The function ROUND 

End. 

simply returns a value rounded to the nearest integer. Selection of these ad

ditional classes (symbols) is performed as follows: From the original minimal 

cover set, select the symbol(s) which have the greatest number of columns that 

are compatible with 2k -1 symbols(k=11 2, .. .). Add these new symbols to the 

cover set resulting from Step 3. 

Adding additional classes to the cover set will, in many instances, allow the 

encoding program to use additional codes to give combined codes or optional codes 

1The number of symbols in the minimal cover is equal to the minimum column multiplicity, 
and the symbols or classes do not necessarily correspond to MCC's. 
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to certain columns. For example, let there be three classes in a minimal cover set) 

Sl, S2, and S3. Suppose that the codes assigned to S1, S2, and S3 are 00) 01, and 

10 respectively. Now suppose an additional class S4 is added to the minimal cover 

set and given the unused code 11. Also, let column C2 be an element of classes S3 

and S4 . Then) there would be 3 codes which could be assigned to column C2 , that 

is, codes 10, 11, or the combined code 1-. It can be observed that by adding an 

additional class and assigning to it the unused code 11, the column C2 was able 

to receive a combined code which results in a don't care for one of the code bits. 

For large classes of columns, there may be many columns which may receive don)t 

cares in their code assignments. By assigning don)t cares to the codes of columns) 

the complexity of the predecessor sub-function in a decomposition can be greatly 

reduced. 

5.5.1.2 Cover Set Selection For Other Encoding Approaches 

While the DC_ENC encoding approach requires cover sets with significant 

overlap) other encoding approaches may require cover sets with no overlap( disjoint 

cover sets). For encoders of this type, there may be no benefit from adding ad

ditional classes. Selection of suitable cover sets for other encoding approaches 

is probably done best with specific knowledge of individual encoder's character

istics. However, if specialized selection algorithms are not available, then using 

a simple algorithm which minimizes Hamming distances may be a good way of 
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selecting cover sets. Using minimum Hamming distances should lead to simpler 

sub-functions than if a random selection approach were used. 

5.5.2 PHASE II: Primary Encoding Phase 

In this section, the essential algorithms and procedures necessary for the new 

encoding approach(DC_ENC) are presented. While the algorithm for cover set 

selection can greatly enhance encoding results using the DC_ENC encoding ap

proach, they are not required for the encoding process(i.e., the primary encoding 

phase can be used as a stand alone encoding approach whereas the cover set se

lection algorithm is merely an enhancement to the encoding approach). In the 

following three sections, the major steps in the DC_ENC encoding approach are 

presented. These major steps are: {1) construction of the edge-weighted connec

tion graph, {2) embedding the graph to the hypercube, and (3) assignment of the 

supercube of symbol codes to corresponding columns. 

5.5.2.1 Constructing the Edge-Weighted Connection Graph 

What exactly is the edge-weighted connection graph(EWCG)? 

The EWCG, as defined here, is an undirected connection graph with nodes corre

sponding to symbols and edges between any two nodes signifying that there exists 

at least one column which is compatible with both symbols connected by the edge. 
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Each edge has an associated weight which is equal to the combined total of sub

weights. These sub-weights are explained in more detail later in this section along 

with the formulas used to evaluate edge weights and the procedure for constructing 

the EWCG. 

What is the purpose of using an EWCG? 

There are two main reasons why an EVVCG is used in this encoding approach. The 

first reason is to enable multiple types of constraints to be satisfied together in a 

systematic and controlled manner which might not otherwise be feasible to satisfy 

in a reasonable amount of time. The other major reason is that once the graph has 

been constructed following the set of three rules, then the nodes(symbols) and edges 

in the EWCG can be mapped directly to vertices and edges of a hypercube(i.e., 

relationships between all nodes and edges in the EWCG will be maintained in the 

hypercube). Therefore, all nodes(symbols) connected by an edge in the EWCG 

may be given code words which differ by only one bit. 

The classical problem of graph embedding is to embed( or map) the nodes and 

edges in an edge weighted connection graph to the vertices and edges in a hy

percube in such a way that the sum of the edge weights that are embedded to 

the hypercube is maximized. This is the goal of the heuristics employed in the 

DC_ENC encoding approach to create the EWCG. Therefore, the rationale be-
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hind the way in which the EWCG is created in the DC_ENC encoding approach 

has two primary objectives. One objective is to create a graph which can be em

bedded in a hypercube so that all relationships between nodes and edges in the 

EWCG are maintained in the hypercube(i.e., create a graph which is embeddable). 

The other objective is to assign the subset of edges to this EWCG which will result 

in the maximum sum of edge weights that are embedded to the hypercube. This 

is a new approach. More specifics about comparisons between the new methods 

presented here and other methods for graph creation and embedding are presented 

in Section 5.5.2.2. Shown in Figure 5.4 are hypercubes of dimension 1, 2, 3, and 4, 

and an example of an edge weighted connection graph. From the figure, one can 

clearly see the similarity between the structure of the EWCG and the hypercubes 

shown. The EWCG shown is an example of the type of structure created in the 

graphs by the graph creation algorithm in the DC_ENC encoding approach. Also, 

observe that the EWCG shown in the figure can be embedded in the hypercube 

of dimension 4 in such a way that all the relationships between nodes and edges 

in the EWCG can be maintained in the hypercube. 

How is the EWCG constructed? 

A general description of how the EWCG graph is constructed is as follows: The 

graph is constructed by incrementally adding edges between nodes (symbols) in 
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Figure 5.4: Illustration of an EWCG created by the DC_ENC encoding approach 
and its relationship to hypercubes. 
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the graph, and systematically checking whether any of the specified graph con

structing rules are violated. The rules specified for constructing the graph and 

the procedure for resolving rule violations are explained later in this section. If 

no rules are violated, an edge with an associated edge weight is assigned between 

the corresponding two nodes in the graph. If adding an edge between two nodes 

causes a rule violation, then a procedure is followed which determines what action 

to take in order to resolve the rule violation. The process of adding edges, check

ing for rule violations, and resolving rule violations is repeated until all edges have 

been checked which are in the list of edges to be considered. When this process is 

completed, then the EWCG has been constructed and is ready to be mapped to 

a hypercube. 

When rule violations are encountered in the process of constructing the EWCG, 

then a cost function( C ost2) is evaluated. Based on the value of this cost function, 

a decision is made whether to a), add the new edge(N) under consideration and 

remove a previously placed edge(P) from the EWCG, orb), not to add the new 

edge to the EWCG. The cost function is not called unless a certain rule is vio

lated in the process of constructing the EWCG. The cost function is formulated 

as follows: 

Cost2 

N 

N - p (5.1) 

(5.2) 



Variables defined: 

m 

Wxy = Lfxy; X Wi 
i=4 
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(5.3) 

(5.4) 

(5.5) 

(5.6) 

N is a weighted value given to the new edge being considered to be added to 

the EWCG. 

P 1s a weighted value given to one of the edges previously assigned to the 

EWCG which is being considered for removal from the graph. 

m is the size of the largest column constraint(i.e., group of symbols compatible 

with any column). 

EWxy is the edge weight for the edge between symbols Sx and Sy. 

w:Y is a weight given to the pair of symbols Sx and Sy corresponding to placed 

hypercube embedding constraints. Placed hypercube embedding constraints 

are defined as the hypercube embedding constraints which have already been 

satisfied in the EWCG. Once the EWCG has been constructed, each sym

bol( node), in a satisfied hypercube embedding constraint will be connected 

by an edge to at least one other symbol in the constraint. Each pair of sym-
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bols connected by an edge will receive a code word which differs by only one 

bit . 

. 5W;Y is a temporary weight given to the pair of symbols Sx and Sy corresponding 

to unsatisfied hypercube embedding constraints. Unsatisfied hypercube em

bedding constraints correspond to hypercube embedding constraints which 

have not been satisfied in the EWCG yet(i.e., some unsatisfied constraints 

may be satisfied later in the construction of of the EW CG). 

fxy (frequency) is the number of columns that are compatible with constraints( of 

size 2 or 3) and which include symbols Sx and Sy, 

fxyi is the number of columns compatible with constraints of size i which contain 

symbols Sx and Sy, 

w; is a weight associated with constraints of size i and is equal to the number 

of don't cares that a resulting column code will have if 2(wi) symbols in a 

constraint of size i are satisfied in a single hypercube embedding constraint. 

Example: Given the constraint of column Cz, equal to (S0 ,S3 ,S5 ,S6 ,S7 ) and 

corresponding symbol codes equal to 000, 001, 011, 010, and 110 respectively. 

If symbols So,S3 ,S5 , and S6 are satisfied in a single face constraint, then col

umn Cz may be given the supercube of four symbol codes(i.e., 0 - -). Observe 

that the value of w; is equal to two which is the number of don't cares in the 

column code. 
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In the process of constructing the EWCG, three sets of edges are considered to be 

added to the EWCG. The union of the three sets is equal to the complete set of 

edges to be considered to be added to the EWCG. Initially, the EWCG consists 

of as many nodes as there are symbols in the cover set and no edges. Each edge to 

be considered to be added to the EWCG corresponds to at least one constraint. 

For example, given three constraints((S1 ,S2), (S1 ,S3 ,S4 ), and (S1 ,S2,S6)), the edge 

between symbols S 1 and S2 corresponds to two constraints(i.e., those constraints 

containing symbols S 1 and S 2 ). 

The first set of edges to be considered for assignment to the graph is the set S ETl 

of the symbol pairs Sij containing the top 1/3 of symbol pairs that are compatible 

with the greatest number of columns. The order that edges are considered to be 

added to the EWCG is in descending order, based on the frequencies fxYtotai for 

each pair of symbols which are not assigned yet. Where fxYtotai is the total number 

of columns which are compatible with symbols Sx and Sy. 

The second set S ET2 of edges to be considered for assignment to the graph are 

the edges corresponding to symbol pairs that are contained in groups of symbols 

of size four or larger(i.e., constraints containing at least four symbols). The order 

of consideration of these edges is in descending order based on the weights W;'} 
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Hence, the first edge in this set to be considered is the edge with the largest weight 

The last set S ET3 of edges to be considered for assignment are all remammg 

pairs of symbols not considered yet. The order of consideration is in descending 

order of f X!Jtota.1 • 

Algorithm for Incrementally Constructing the EWCG Graph 

Ideally, it is desired to satisfy all constraints simultaneously without any conflicts 

between constraints. If a constraint can't be satisfied, then it means that one or 

more of the symbols in a constraint can't be assigned codes in the same face. If 

all constraints are able to be satisfied, then every edge to be considered for addi

tion to the EvVCG is added without any rule violations(conflicts). However, it is 

more likely that there are some constraints which can't be satisfied simultaneously. 

Whenever there is a constraint which can't be satisfied in the EWCG, then there 

is at least one rule violation. The set of graph construction rules and the procedure 

for resolving rule violations are presented following the algorithm for constructing 

the EWCG. The following is the algorithm for incrementally constructing the 

EWCG: 



203 

Algorithm 5.5.2 

Begin 

Step i) Form the lists LCC and U HG. LCC is the list of column constraints and 

U HG is the list of unsatisfied hypercube embedding constraints. Each con

straint in LCC is found by simply forming a set of symbolic values corre

sponding to the symbols in the cover set which a column is compatible with. 

The list U HG can be formed by adding all combinations of sets of 2k symbols 

in each constraint from the list LC C) where k takes on integer values greater 

than or equal to two. Using the list LCC, calculate the values for fry and 

Wij. Using the cover set1 calculate the value for fxYtota.l. 

Step ii) From the first set(SETl) of edges to be considered, check the edge Sxy having 

the greatest f XYtota.i for rule violations. If there are rule violations, Go to Step 

iv. Otherwise continue. 

Step iii) If there are no rule violations1 then assign an edge between symbols(nodes) 

Sx and Sy in the EiVCG with an associated edge weight EWxy· Move the 

hypercube embedding constraints, which are satisfied as a result of the new 

edge added, from the list UH C to the list SH C. Also, update the edge 

weights(EWxy) for symbol pairs which are contained in any of the hyper

cube embedding constraints which are added to the list SH C. Remove Sxy 

from the first set of edges to be considered for assignment to the graph. Go 
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to Step vii. 

Step iv) If there are rule violations, follow the procedure outlined for resolving rule 

violations. If the rule violations are able to be resolved, then Go to Step vi. 

Otherwise continue. 

Step v) If the rule violations were not able to be resolved, then remove edge Sxy from 

the first set of edges to be considered for assignment to the graph. Go to Step 

vii. 

Step vi) If the rule violations are able to be resolved1 then it means that it was de

termined by the cost function G ost2 that it is worth the cost to remove a 

previously assigned edge(Sjk) and assign the new edge(Sxy)- Therefore, unas

sign edge Sjk from the EvVGG. Move any hypercube embedding constraints 

from the list SHG back to the list U HG which contains both symbols Sj and 

Sk (this is to unassign previously assigned constraints that are dependent on 

the previously assigned edge Sjk)- Update edge weights(EWwz) in the EWGG 

for any hypercube embedding constraints moved from the list S HG. Now that 

the rule violation has been resolved by removing the previously assigned edge, 

complete Step iii as if there had been no rule violations. 

Step vii) Repeat Step ii until there are no more pairs of symbols Sxy in the first set to 

be considered. 

Step viii) Repeat Step ii for the second set(S ET2) of edges to be considered for assign-
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ment to the graph. 

Step ix) Repeat Step ii for the third set(SET3} of edges to be considered for assign

ment to the graph. 

Step x) Now that the graph has been constructed, check each of the unsatisfied con

straints to see if removing the necessary edge(s) from the graph and adding 

the unsatisfied constraint is worth the cost (i.e., Cost2 < OJ. If so, then 

update the graph accordingly. 

Step xi) Finally, assign any of the Optional Constraints that can be satisfied without 

removing any edges from the graph. 

end. 

"Optional Constraints" are constraints that if satisfied will not yield more 

don't cares in a particular code word1 but will provide an optional encoding 

for certain columns. This can be used to reduce Hamming distances between 

the outputs in subfunction G or Hamming distances between columns in the 

sub function H. 

There are three rules that must be satisfied in the process of constructing the 

EWCG. These rules are necessary to ensure that the EWCG can be embedded in 

a hypercube in such a way that the connectivity relationships between nodes and 

edges in the EWCG are maintained in the hypercube embedding. Given below 
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are the rules that must be satisfied before each new edge is added to the EW CG: 

Rule 1: No node may have more edges than the number of bits in the code word. 

Observation: In a hypercube of dimension n, each vertex is connected by 

edges to exactly n other vertices. 

Rule 2: No cycles of odd length. Observation: In a hypercube, there are no cycles of 

odd length. 

Rule 3: Each pair of intersecting faces(face A and face B) of size four(i.e., four sym

bols) must have exactly two symbols in common. Observation: In a hyper

cube of dimension n > 2, every two intersecting subhypercubes of dimension 

2(i.e., hypercubes with four vertices) have exactly two vertices in common. 

In the following procedure, steps are presented that decribe what actions to take 

if one of the three rules are violated as a consequence of adding a new edge to 

the EWCG. If any of the three rules are not satisfied, then at least one edge in 

the graph(EWCG) can,t be mapped to a hypercube of dimension n where n is 

the number of bits in the column code words. Therefore, a heuristic cost function 

Cost2 is used to determine whether to add the new edge(N) and remove one or 

more of the previously placed edges(P) or to make no changes to the graph. The 

purpose of removing one or more of the previously placed edges is to maintain a 
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graph which satisfies all three rules. 

Procedure for resolving rule violations: 

Begin 

1. If there is a violation in Rule 1, then a determination is made as to whether 

the value of the new edge is worth the cost of removing a previously placed 

edge(s). 

2. If it is not worth the cost ( C ost2 =:; 0), then no changes are made and the 

edge in question is removed from the list of edges yet to be considered. 

3. If so, then Rule 2 is checked. 

4. If Rule 2 is violated then a similar determination is made as to whether the 

removal of another edge( s) is worth the cost of assigning the new edge being 

considered. 

5. If it is not worth the cost ( C ost2 =:; 0), then no changes are made and the 

edge in question is removed from the list of edges yet to be considered. 

6. If so, then Rule 3 is checked. 

7. If Rule 3 is violated, then no changes are made and the edge in question is 

removed from the list of edges yet to be considered. 

8. If there is not a violation in Rule 1, then Rule 2 is checked. 
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9. If Rule 2 is violated then a determination is made as to whether the removal 

of an edge( s) is worth the cost of assigning the new edge being considered. 

10. If it is not worth the cost ( C ost2 ::;; 0) 1 then no changes are made and the 

edge in question is removed from the list of edges yet to be considered. 

11. If so 1 then Rule 3 is checked. 

12. If Rule 3 is violated, then no changes are made and the edge in question is 

removed from the list of edges yet to be considered. 

13. If there is not a violation in Rule l or Rule 2, but there is a violation in 

Rule 3, then a determination is made as to whether the removal of a different 

edge( s) is worth the cost of assigning the new edge being considered. 

14. If it is not worth the cost( C ost2 ::;; 0), then no changes are made and the 

edge in question is removed from the list of edges yet to be considered. 

15. If the cost function determines that the new edge should be added to the 

graph and one or more of the previously placed edges should be removed, 

then a final check must be done for any rule violations which have not been 

checked after the previously placed edges have been removed. 

end. 
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5.5.2.2 Embedding The Graph To The Hypercube 

This step simply involves embedding nodes in the graph( EW CG) to vertices in 

the hypercube in such a way that nodes connected by an edge in the graph(EWCG) 

will be assigned to vertices connected by an edge in the hypercube. This is a 

classical combinatorial optimization problem called graph embedding. Embedding 

the graph to the hypercube can be done by any one of several of the known methods 

for hypercube embedding. One of the known methods for hypercube embedding 

is implemented in MU ST ANG[l 7]. An improved approach named JEDI was 

later mtroduced[27]. Yet another approach, MUS E[18], produced slightly better 

results than either MUSTANG or JEDI. However, in lieu of the known methods 

for hypercube embedding, a new algorithm is proposed here for embedding the 

EWCG to the hypercube. The previously known methods and the new approach 

presented here have the same basic goal. This goal is to assign a subset of edges 

from a graph to a hypercube in such a way that the sum of the edges weights 

assigned in the hypercube is maximized. The algorithm presented here might 

actually be a more efficient algorithm for embedding the proposed EW CG than the 

known methods mentioned. Unlike the know methods mentioned, the algorithm 

presented here makes use of the detailed structure created in the EWCG in order 

to efficiently embed the EWCG to the hypercube. The methods MUST ANG, 

JED I and MUSE start with one or more complete graphs, then add edge weights 

to each of the edges in the graph. Then the graphs are combined together into 
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Fanin-Oriented Graph Fanout-Oriented Graph 

Combined Graph 

Figure 5.5: Illustration of the graph creation process used in the graph embedding 
approach of MUSTANG. 
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one complete graph. The weights of each of the edges then becomes the sum of 

the weights from the corresponding edges in each of the graphs used. This is 

illustrated in Figure 5.5. Once the edge weights have been assigned to the graph, 

then a subset of the edges in the graph are embedded directly to a hypercube 

using the largest edge weights to select which edges to assign to the hypercube. 

By contrast, in the DC_ENC encoding approach, edge weights are only used to 

create the structure in the graph that can be easily embedded in the hypercube 

and which will result in the maximum sum of edge weights assigned. The detailed 

structure created in the EW CG consists of a record of the satisfied hypercube 

embedding constraints. These hypercube embedding constraints are essentially 

subhypercubes which are linked together. Once the graph has been constructed 

using the DC_ENC encoding approach, then the graph is embedded directly to a 

hypercube. Shown in Figure 5.6 is an illustration of the primary difference between 

typical embedding methods and the embedding method proposed here. Typical 

embedding methods embed a subset of edges from a complete graph directly to a 

hypercube whereas the new method proposed here first creates a graph which is 

easily embedded in a hypercube and then embeds the graph. 

Without extensive formal proofs or experimental results, one can only specu

late at the effectiveness of the DC_ENC encoding approach. Therefore, future 

work should include testing to evaluate the effectiveness of the graph creation and 

graph embedding algorithms in the DC_ENC encoding approach. Tests should 
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Figure 5.6: Illustration of differences in the direct embedding approach used in 
MUSTANG vs. the approach used in DC_ENC. 
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include comparisons of these algorithms for use in two-level and multi-level state 

assignment. Also, tests should include comparisons of these algorithms for use in 

two-level and multi-level decompositions of switching functions. The algorithm for 

embedding the EWCG to the hypercube is as follows: 

Algorithm 5.5.3 

Begin 

1) Start with the largest satisfied hypercube embedding constraint(satisfied con

straint containing 2k symbols) and assign the symbols to 2k codes such that 

the supercube of these codes does not contain any of the codes of symbols not 

in the constraint. 

2) Find the largest satisfied hypercube embedding constraint which has the largest 

intersection with the constraint assigned in Step 1. Assign codes to symbols 

in this constraint which are not already assigned, such that the supercube of 

these codes does not contain any of the codes of symbols not in the constraint. 

3) Find the largest satisfied hypercube embedding constraint which has the largest 

intersection with more than one of the previously assigned constraints(if one 

exists). Assign codes to symbols in the constraintas done in Step 2. 

4) Repeat Step 3 until no more constraints intersect more than one of the pre

viously placed( assigned) constraints. 
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5) Repeat Step 2 until all constraints which intersect with the constraint assigned 

in Step 1 have been placed. 

6} If there exist any constraints which have not been assigned yet, then repeat 

Step 1 for the largest of the remaining constraints. 

7) If there exist any nodes(symbols} in the graph that do not have any edges1 

then they are assigned to any of the remaining codes. 

end. 

A symbol in the graph will not have any edges is one if none of the constraints 

that contain the symbol were satisfied or if all columns in the symbol are incom

patible with all other symbols. For symbols in the graph which do not have any 

edges, use of Hamming distances can greatly improve the selection from among 

the remaining codes. 

Two subproblems which are very similar in state assignment and encoding for 

Curtis decompositions are: ( 1) the creation of an edge-weighted connection graph 

and (2) embedding the the edge-weighted connection graph to the hypercube. 

However, there are important distinctions in the approaches used to solve these 

problems. Basically, these differences in the approaches used for state assignment 

and encoding for Curtis decompositions are as follows: In state assignment, weights 

are assigned incrementally to edges in a complete graph, followed by embedding 
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the nodes and edges in the graph to a hypercube. The embedding of nodes and 

edges to the hypercube is done based on edge weights. This is contrasted with 

the encoding approach DC_ENC which starts with a graph containing nodes and 

no edges, and incrementally assigns edges and edge weights to the graph. After 

the graph has been constructed, then the graph is embedded in the hypercube 

using the structure, created in the graph, to guide the embedding process. In the 

DC_ENC approach, edge weights are not used in the graph embedding process. 

More specific differences will become clear after a more complete description 

is given for the two-step approach used commonly for state assignment. The two

step approach used for state assignment is followed by the corresponding two-step 

approach used in the DC_ENC encoding approach. In state assignment, creation 

of the edge-weighted connection graph and embedding the graph to the hypercube 

is typically done in a two step process as follows: 

1. Creating the edge-weighted connection graph: Start with a complete graph, 

or nearly complete graph(i.e., graph with edges between each node and every 

other node), having as many nodes as there are symbols. Incrementally add 

weights to edges for each of the encoding constraints. For specifics on how 

the edge weights are calculated, refer to the algorithms in [17][27][18). 

2. Next, embed the edge-weighted connection graph to a hypercube of dimen

sion n, where n is the number of bits to be assigned in the symbol codes: 

This is done by assigning nodes and edges in the graph to vertices and edges 
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in the hypercube. There are two primary formulations of the embedding 

problem for state assignment. These are: ( 1) Assign all edges in the graph 

to edges in the hypercube, maintaining the same connectivity relationships 

that exist between nodes and edges in the graph. If this is not possible for 

the given n dimensional hypercube, then increase the size of the dimension 

by one. Increasing the size of the dimension by one means doubling the 

number of vertices in the hypercube. This also means that the symbol codes 

will increase in length by one bit. Continue increasing the dimension of the 

hypercube until all the edges( or a very high percentage) can be embedded 

in the hypercube. (2) Instead of attempting to assign all the edges in the 

hypercube without limiting the number of bits in the symbol codes, limit the 

number of encoding bits to some maximum number. Then assign as many 

edges as possible to the hypercube in such a way that the sum of the edge 

weights assigned to the hypercube is maximized. 

In this second formulation of the embedding problem, there are two reasons 

why only a subset of the edges can be assigned to the hypercube. One 

reason is that each vertice in a hypercube is limited to the number of other 

vertices that it is connected to. This number is equal to the dimension of the 

hypercube(i.e., for an "n" dimensional hypercube, each vertice is connected 

by an edge to exactly ))n" other vertices). For example, the dimension of 
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a given hypercube may be eight, but the graph may have some nodes with 

many more edges than eight. In such cases, choices must be made to add some 

edges and to discard others. The second reason that some edges in the graph 

can't be assigned in the hypercube is because there may be conflicts as to 

what nodes should be adjacent to what other nodes(i.e., if nodes connected by 

an edges in the graph are not assigned to adjacent vertices in the hypercube, 

then the edges in the graph can't be assigned in the hypercube). 

The following is the two step process in the DC_ENC encoding approach for creat

ing the edge-weighted connection graph and embedding the graph to a hypercube 

as presented in Algorithms 5.5.2 and 5.5.3: 

1. Creating the edge-weighted connection graph: Start with a graph having as 

many nodes as there are symbols and no edges. Incrementally add edges be

tween nodes along with corresponding edges weights following a set of three 

graph construction rules. Only a subset of the edges in a complete graph are 

considered. The edges considered to add to the graph are those which con

nect a pair of symbols that are both elements(i.e., together) of at least one 

column constraint. The graph construction rules are specifically designed to 

maintain structure in the graph which can be easily embedded in the hyper

cube. Basically, the graph construction rules restrict assignments of edges in 

the graph to a set of edges which conform to subgraphs of the hypercube. 

In the process of constructing the graph, a record is kept of the number of 
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constraints which could not be satisfied as a result of the restrictions im-

posed by the graph construction rules. If a large percentage(75%) of the 

constraints were not able to be satisfied for the given number of encoding 

bits specified(i.e., the number of encoding bits determines how many edges 

that are connected to each vertice in a hypercube), then increase the num

ber of encoding bits by one. Increasing the number of encoding bits by one, 

allows an additional edge to be connected to each of the nodes in the graph. 

If additional bits were added, then repeat the graph construction process. If 

the graph construction process is repeated, then the graph begins again with 

all the nodes but with no edges. 

2. Next, embed the edge-weighted connection graph to a hypercube: The goal 

is to assign nodes and edges in such a way that every edge connected be

tween two nodes in the graph will be asssigned between two vertices in the 

hypercube. Once the graph has been constructed, begin embedding specific 

subgraphs(i.e., subhypercubes that correspond to hypercube embedding con

straints assigned to the graph) of the edge-weighted connection graph to sets 

of vertices in the hypercube. This is done in such a way that the connec

tivity relationships in the graph are preserved in the hypercube. To begin 

this process, the largest subgraph corresponding to the largest hypercube 

embedding constraint is embedded first. Basically, after the first subgraph 

has been embedded, then the remaining subgraphs are embedded one by one 
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in descending order according to the greatest number of nodes that each sub

graph has in common with the previously embedded subgraphs. This process 

is repeated until all subgraphs have been embedded in the hypercube. 

By analyzing each of these two-step approaches, one can note the following differ

ences: In state assignment, construction of the edge-weighted graph is reduced to a 

problem of assigning weights to edges in a complete or nearly complete graph. By 

contrast, in the DC_ENC approach, the construction of the edge-weighted graph 

begins with a graph with no edges. The addition of edges to the graph follows a 

strict set of graph construction rules. The rules are designed to restrict the graph 

to a structure that can be easily embedded( or folded) into the hypercube. 

Also, observe that very different schemes are used for embedding the graph 

to the hypercube. In the state assignment approaches, the problem is reduced to 

embedding as many edges as possible in the hypercube such that the sum of the 

edge weights assigned to the hypercube is maximized. This is contrasted with the 

scheme used in the DC_ENC approach which does not use edge weights in the 

embedding process(i.e.) edge weights are only used to create the structure in the 

graph). The problem of embedding in the DC_ENC approach is reduced to simply 

"folding)) the specially created graph structure into the hypercube. The specially 

created graph structure can be thought of as various sizes of subhypercubes linked 

together. 
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5.5.2.3 Assignment Of Supercube Of Symbol Codes To Corresponding 

Columns 

For many of the columns, the task of assigning codes to them is trivial once the 

symbol codes have been established. However, certain columns can't be assigned to 

2k symbol codes (where k is an integer) or certain combinations of 2k symbol codes 

are not allowed. Basically, a trivial encoding is when there is only one obvious 

code to choose from. Encoding of columns which are not considered trivial are 

considered non-trivial. Encoding of columns which are considered non-trivial is 

slightly more complicated than encoding the columns that are considered trivial. 

There are two conditions that must be checked for each column in order to 

determine if the encoding of a column will be trivial or not. The following are the 

two conditions required for trivial encodings: 

1) The number of symbols that a column is compatible with is equal to 2k( where 

k is an integer). Stated another way, the number of symbols in a column 

constraint is 2k. 

2) The supercube of 2k symbol codes, which column Ci is compatible with, does 

not include any of the codes not in the columns' constraint. 

If both of these conditions are satisfied, then the column is considered to be a 

trivial case. If either condition is not satified then the column is treated as a non

trivial case. The following is the algorithm for assigning codes to columns. 
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Algorithm 5.5.4 

Begin 

1. For each column to be encoded, determine if the encoding of the column is 

considered trivial or non-trivial. 

2. For each of the trivial cases1 encode the column with the supercube of the 

symbol codes in the columns constraint. 

3. For non-trivial cases) the assignment of codes to columns is as follows: Find 

all combinations of 2k symbols which column Ci is compatible with(where 

2k < m < 2k+ 1 and m is the total number of symbols that Ci is compatible 

with). Store the supercube of each combination in a temporary assignment 

list T AL. Remove any codes from this list which violate a hypercube embed

ding constraint. Then from the remaining candidate codes determine which 

code results in the smallest Hamming distances between adjacent codes in 

sub function G using the cost function C ost3. Assign the code found to the 

column under consideration. 

End. 

For the trivial cases, the supercube of 2k symbol codes are assigned as the col-

umn's code word. 



Example: 

Given the column constraint for column C; 

symbol codes. 

100 S3 
110 S4 
101 S6 
111 S9 

1 = Supercupe of the codes in the constraint. 

The supercube can be assigned as the column code. 

Examples for non-trivial cases: 

Given is the column constraint for column C, 
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sponding symbol codes for all symbols in a cover set. The column constraint and 

the following symbol codes are used in the next two examples. 



000 SI 
001 S2 
010 S3 
110 S4 

100 S5 
101 S6 
011 S7 
111 S8 

Example 1: 

000 Sl 
001 S2 
010 S3 
100 S5 

Supercupe of the codes in the constraint. 
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This is an example of an encoding that is not allowed. The supercube of the codes 

contains codes of symbols not in the constraint of column Ci(i.e., 101,110, and 

111). Therefore the supercube can't be assigned as the code of column C,. 

Example 2: 

000 SI 
001 S2 
010 S3 
011 S7 

0 - - Supercupe of the codes in the constraint. 

This is an example of an encoding that is allowed. The supercube of the codes 

contains only codes of symbols in the constraint of column C;. Therefore the su

percube can be assigned as the code of column C;. 
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When a non-trivial case has more than one supercube code to choose from, 

then a cost function is called to determine which of the optional codes to select. 

This is done using the cost function C ost3 which determines the sum of the Ham

ming distances between all codes in subfunction G which are adjacent to the code 

of column Ci. The candidate code with the lowest cost is assigned as the column 

code. The cost function is as follows: 

Cost3 = Lj=l HAM_DJST(CODE(Ci), CODE(Ci)) 

where Ci is the column which is being considered for an encoding and Cj is a col

umn which has its corresponding code in G adjacent to the code of Ci. The value n 

is the total number of codes in G which are adjacent to the code of Ci. CODE(Ci) 

and CODE(Cj} are the corresponding codes of the two adjacent columns. 

The HAM _DI ST function returns the number of bits in two code words which 

are not compatible (i.e., a O in one code word where there is a 1 in the other code 

word-don't cares are considered compatible with any bit value). 

5.6 Encoding Example Solved Step-by-Step 

Shown in Figure 5. 7 is the function F5 which is being decomposed in this ex

ample. Refer back to algorithms and procedures in Section 5.5.2.1 thru Section 

5.5.2.3 as needed for further clarification of the encoding process. In order to avoid 
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Figure 5. 7: Function F5 for Encoding Example 
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confusion, it should be noted that the steps shown in this example do not corre

spond to the steps in algorithms and procedures because the steps in algorithms 

and procedures are not executed in sequential order. Rather, steps shown in the 

example correspond to major phases in the encoding process and not to steps in 

algorithms and procedures. 

5.6.1 Constructing the Edge-Weighted Connection Graph 

Execution of Algorithm 5.5.2 on Function F5: 

Step 1) In this step, the lists LCC and U HG are generated and values of pa

rameters used in the algorithms and procedures are calculated. The parameters 

calculated are fxy, fxY,otai, and W/J. It can be observed, that generating these lists 

and parameter values can be done simply by applying the corresponding definitions 

and formulas. Because these lists and parameters are trivial to generate, only the 

resulting lists and formulas are shown here(Figure 5.8). 

Step 2) In this step, the first set(SETl) of edges is considered to be added to 

EWCG using the algorithms and procedures in Section 5.5.2.1. The first set of 

edges are the symbol pairs shown in Figure 5.8c marked with asterisks. Begin 

assigning edges to the graph starting with the edge corresponding to the symbol 

pair denoted Sij ( S; and Sj) that has the greatest frequency fiitotai. fiitota.i 1s the 
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Figure 5.8: Tables showing the primary lists and parameters used in the Example 
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total number of columns which are compatible with symbols Si and Sj. Initially 

the graph appears as in Figure 5.9a. 

Therefore the first edge to be considered is S34 . Since there are no other edges 

in the graph, no rules are violated and the edge and it's corresponding edge weight 

are assigned to the graph. Using the formula for calculating edge weights, the edge 

weight for edge S34 is calculated as follows: 

VVf4 = 0 because no constraints of size four or greater(i.e., hypercube embedding 

constraints), which contain symbols S3 and S4 , have been satisfied. The graph 

now appears as in Figure 5.9b. 

The next edge assigned is the one with the next largest value of hitot,.i · It 

turns out that there is a three-way tie between edges S14, S23 , and S4s for the next 

largest frequency. Use the following criterion for breaking ties: 

For each lii,ota.l ( corresponding to sij) that are tied( equal), find the symbol sk E 

{ S,j} which has the most edges. Then compare these values and select the pair 

which has the lowest number of edges from these(i.e., select the least from the 

greatest). If there is still a tie, select randomly. 
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In this case there is still a tie so S14 is chosen randomly and checked for rule 

violations. Since there are no violations, it is assigned to the graph. 

Similarly for the next two edges which had the next largest f;Jtota.i. No rules were 

violated so the edges S23 and S45 are assigned to the graph. 

EW23 = f23 + Wf3 + 1 = 1 + 0 + 1 = 2 

EW4s = f4s + w:s + 1 = 2 + 0 + 1 = 3 

This concludes the assignment of the first set of edges. The graph now appears as 

in Figure 5.9c. 

Step 3) 

In this step, the second set(SET2) of edges is considered to be added EWCG. The 

second set of edges to be considered can be found under the column heading Wij 

in Figure 5.8c which are not equal to zero. The second set of edges are assigned in 

descending order according to the values of W/J. An example of how one of these 
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Figure 5.9: Construction of the Edge Weighted Connection Graph. 

weights is caiculated is as follows: 

5 

Lf14, x w; 
i=4 

Tn 

Lfxy, X w; 
i=4 

(3 X 2) + (1 X 2) 
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(5.7) 

8 (5.8) 

Recall from the definition, that fxy, is the number of columns compatible with 

groups of symbols( constraints) of size i which contain symbols Sx and Sy 

The first edge to be considered is either S23 or S14 since they tie for the greatest 
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Wi} However) since both have already been placed, simply remove S23 and S14 

from the second set of edges to be considered. Next, find the next largest W/i• 

There is a three way tie for the next edge to be considered(S12 ,S13 and S24 ). 

Use the same criterion for breaking ties as done for the first set of edges. The tie 

is broken and S12 is selected next. The following is the tie breaking criterion used: 

Max edges from S12 is S1 S2 = 1. 

Max edges from S13 is S3 2. 

Max edges from S24 is S4 3 

MIN(l,2,3) = 1. 

Because there are no rule violations for edge S12 , it is assigned to the EWCG 

along with its corresponding edge weight. This satisfies the first group constraint( or 

hypercube embedding constraint) of size 4 where the set of symbols in the group 

constraint is (1,2,3,4). Once edge weights have been updated, the graph will ap

pear as in Figure 5.9d. Note that 3 columns are compatible with the group of 

symbols(l,2,3,4). For each edge in the group constraint, an additional weight of 

2( for 2 don't cares) is added to each edge weight for each column that is compatible 

with the group constraint(i.e., Wf2 3 x 2 = 6). Using the formula for assigning 

edge weights, the edges are updated as follows: 
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0+6+1 7 (5.9) 

Wf2 is calculated as follows: 

5 

L li2, X Wi (2 X 2) + (1 X 2) = 6 (5.10) 
i=4 

Similarly, the other edges in the group constraint are updated. 

0+6+1 7 (5.11) 

8 (5.12) 

9 (5.13) 

The next edge selected is S13 . Rule 1 is not violated, but Rule 2 is violated, 

because a cycle of odd length is identified (S12 , S23 , S13 ). Therefore the cost func

tion C ost2 must be evaluated to determine whether adding the new edge(N) to 

the graph and removing one of the other edges in the cycle is worth the cost. 

Calculate the weights of the new edge as though the new edge had already been 

added to the graph(i.e., the value of El¥13 should not be zero). The following are 
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two evaluations of C ost2 if either edge S12 or edge S23 are to be removed: 

For S12, Cost2 = N - P (EW13 + .5W13) - (EW12 + .5W12) = (1 + .5(6)) -

(7 + .5(0)) = 4 - 7 = -3 

Because Cost2 :s; 0, this change is not worth the cost and edge S12 remains in 

the graph. 

For S23, Cost2 = N - P (EWn + .5W;'3 ) - (EW23 + .5W;3 ) 

(1 + .5(6)) - (8 + .5(0)) 4 8 = -4 

Again, because Cost2 :s; 0, this change is not worth the cost. Therefore no changes 

are made and edge S13 is removed from the list of edges to be considered. 

The next edge selected is S24 . Again Rule 1 is not violated, but Rule 2 is vio

lated, because a cycle of odd length is identified (S12 , S24 , S14 ). The cost function 

C ost2 is evaluated again for each edge that can break the cycle. 

For S 12 , Cost2 = 4 - 7 -3 

Since C ost2 :s; 0, this change is not worth the cost. 
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For S14, Cost2 = 4 - 8 -4 

Since Cost2 s; 0, this change is not worth the cost. Therefore no changes are 

made and edge S24 is removed from the list to be considered. 

The next edge considered is S15 . Again, a cycle of odd length is identified 

(Sis, S4s, S14). 

For S14 , Cost2 = 3 - 8 

For S45 , Cost2 = 3 - 5 = 

Since Cost2 s; 0, no changes are made and edge S15 1s removed from the list 

to be considered. 

For the next largest VV;'i there is a five-way tie between edges S16 , S25 , S35 , S46, 

and S56 . Using the procedure outlined for breaking ties, the following results are 

obtained: 

Max edges from S1 or S6 2 

Max edges from S2 or Ss 2 

Max edges from S3 or Ss 2 

Max edges from S4 or S6 3 

Max edges from S5 or S6 1 



MIN(MAX(l,6),MAX(2,5),MAX(3,5),MAX(4,6),MAX(5,6)) 

= MIN(2,2,2,3,1) = 1. 
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Therefore S56 is the next edge to be considered. No rules are violated so edge 

S56 is added to the graph. The corresponding edge weight is EWss 

graph now appears as in Figure 5.9e. 

3. The 

Next, there is a four-way tie. Randomly, S25 was selected from those above 

which had 2 as the maximum number of edges connected to one of its symbols. 

Rule l and Rule 2 are satisfied, but Rule 3 is violated because this edge cre

ated a new face of size 4 which intersects a different face with more than 2 nodes 

(symbols) in common. Select edges to be evaluated with S25 which are not m 

the same face(i.e., S12 and S14 are edges in face(S12, S23, S34, S14) but not in face 

(S2s, S4s, S34, S23)). If Cost2 > 0, make changes to the graph accordingly(add the 

new edge and remove the other). 

For S12 , Cost2 = 3 - 7 = -4 

For S14, Cost2 = 3 - 8 -5 

Since Cost2 j 0, no changes are made and edge S25 1s removed from the list 

to be considered. 
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The next edge considered is 535 . Rule 2 Is violated because a cycle of odd 

length is identified(535, 545,534). 

For 534, Cost2 = 2 - 9 = -7 

For 545 , Cost2 = 2 - 4 = -2 

Since Cost2 :::; 0, no changes are made and edge 5 35 IS removed from the list 

to be considered. 

The next edge considered is 5 16 . There are no rule violations therefore 5 16 is 

assigned to the graph with its corresponding edge weight. Update the edge weights 

of those pairs which are elements of the group. Edges updated are: 

EW16 = 116 + Wf6 + 1 = O + 2 + 1 = 3 

E w56 = J 56 + vFf6 + 1 = 2 + 2 + 1 = 5 

EW45 = f45 + w:5 + 1 = 2 + 2 + 1 = 5 

EWI4 = fi4 + Wf4 + 1 = O + 8 + 1 = 9 

The graph now appears as in Figure 5.9f. 

This completes the second set of edges to be considered for assignment to the 

graph. As it turns out, this is the last set of edges for consideration because 
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S2 S3 
000 001 

SI 
010 

110 

S6 S5 

Figure 5.10: Assignment of codes resulting from the mapping of the Edge-Weighted 
Connection Graph to the Hypercube. 

there are no remaining edges which have not been considered yet. Therefore this 

completes the construction of the EWCG graph. 

5.6.2 Embedding The Graph To The Hypercube 

The next step is to embed the graph directly to a hypercube. The following 

mapping of symbols to codes was found using the procedure outlined in Alga-

rithm 5.5.3 in Section 5.5.2.2 

First, select the largest group(hypercube embedding constraint) of 2k symbols and 

assign it to 2k codes such that the supercube does not contain any of the codes 

not in the constraint. This can be ensured by maintaining the connectivity rela-

tionship in the hypercube that is found in the graph(EWCG). It turns out that 
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there is a tie for the size of the largest constraint. The two groups in the graph 

which are largest are (S1, S2, S3, S4) and (S1, S4 , S5, S6). Select the group which is 

compatible with the greatest number of columns. Therefore group (S1 , S2, S3, S4) 

is selected. Arbitrarily four codes which differ only in one bit are chosen for the 

constraint 

000, 001, 011, and 010. 

Now the supercube of these codes is calculated. This results m the supercube 

"0- -" which does not contain any codes not in the constraint. 

These codes are assigned so that the connectiyity relationship m the graph 1s 

maintained in the hypercube. 

000 S2 
001 s3 
011 S4 
010 S1 

Next find the largest group (constraint) of 2k symbols which has the largest 

intersection with the group already assigned. Assign this group. The group found 

is (S1, S4 , S5 , S6). Since S1 and S4 are already assigned, only Ss and S6 need to 

receive codes. The remaining codes available are: 



239 

100, 101, 111, and 110. 

S5 is adjacent to S4 in the graph and therefore must receive a code which dif

fers by only one bit from the code of S4 • From the available codes, the only one 

which differs from code 011 by one bit is code 111. Therefore S5 is assigned to code 

111. Next, S6 must be assigned a code which is adjacent to S1 and S5 . Therefore, 

it must be given a code from the available codes which differs by only one bit from 

010 and 111. Therefore S6 is coded with 110. 

111 Ss 
110 s6 

These code assignments and the relationships between the groups in the graph can 

be seen in the hypercube of Figure 5.10. 

5.6.3 Assignment Of Supercube Of Codes To Corresponding Columns 

Finally, the last part of the primary encoding phase is to assign the largest 

supercube of symbol codes possible to the corresponding columns. Using the pro

cedure outlined in Section 5.5.2.3, begin by assigning codes to columns for cases 

considered trivial. At first, all columns which are compatible with 2k symbols are 

considered trivial to encode. The supercube is checked to see if any codes are 

included which are not in the constraint. If so, that column is placed in the list of 
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Columns Symbols Symhol Codes Supercubes Acceptable Encodings 

0 S~.S:l 1:,11) IHlJ f!ff_ 000 OOJ~ 

1 S5.S(r 111 IJ\1 11- 111 110W 

2 S1.S2.S:1.S4 Ult1 \Ii!( Pl I 010 001 01- 0-IG:) /)ill' U-~ OJ! 00- 0-0 0--000 

3 s, ! I( Hi (It)() ~ 

4 S l,S4.S5.S6 010 l ll 11- -10 u_) OIU 11]1 Ill J Ill 
-1- Oil !JO 01- -II 

5 S2 tJ!JO (>J(I ( 000 ) 

6 S3,S4 {)i_Jj OJ I O~l 001 Oil 0 
7 S5.S6 111 Iii! II- Ill 110E) 

8 S6 11<1 llll @ 
9 S4 ill l 011 GG) 

* 10 S:1.S4.S' !IU] t,jj I Ii --l l)(!J 011 111 0-1 GJ 
* ] 1 I l;l 111 01(1 001 11; 01- 0-Ig!l s i .sun.s4.S:'\ (J1!• p, ~, (l!)j 

O[KI 011 00- 0-0 0--

12 SI 1,11, ;qn 0 
13 S; .S~_S!',S4 Ojl 111)\1 !HI) :111 01(• 001 (I\- 0-lG::J 1;... 

000 OU ()(1. ll-0 

14 s~ ll\ Ill (iii) 

15 S4.S:'\ ,;Jj Ill -11 Ull JI! G:iJ 

Circled codes indicate the column codes determined by the algorithm presented in this thesis. 

Figure 5.11: Application of Supercube Operation in Encoding. 
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non-trivial cases LNTC to be coded after all trivial cases. If not, then the column 

is assigned to the supercube of all codes in the constraint. 

For trivial cases, the order of assignment of codes does not matter. Therefore, 

these columns are assigned in binary counting order. The first column to be en

coded is column 0 which is compatible with symbols S2 and S3 . Since there are 2k 

symbols compatible with column C0 (where k = I in this case), proceed to check 

the second condition required for a trivial encoding. 

00- The supercube of codes. 

Since the supercube does not contain any codes that are not in the constraint 

of column C0 , then C0 is encoded with "00-". Similarly, the remaining columns 

are coded which do not fall into the category of non-trivial. It turns out that all 

columns except for C10 and C11 are encoded as trivial cases (they receive the su

percube of all symbols they are compatible with). These can be seen in the Table 

from Figure 5.11. 
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For non-trivial cases, encode columns starting with the largest number of sym

bols that any one column is compatible with. Therefore column G11 is encoded 

first. The largest group of 2k symbols that G11 is compatible with is 4. There 

are 5 possible groups of 4 symbols ((1,2,3,4), (l,3,4,5),(1,2,4,5),(1,2,3,5),(2,3,4,5)). 

Of these, only one is possible because the supercubes of the others include codes 

which are not in the constraint. For example, the supercube of symbols (1,2,3,5) 

is " - ". This includes the code of symbol S6 which is not in the constraint. 

Therefore G11 is encoded with the supercube of symbols (1,2,3,4) resulting in the 

code "0 - - ". 

For the only other non-trivial case( G10 ), there are 3 possible groups of 2k sym-

bol codes that G10 may be encoded with(k 1 in this case). The 3 groups are 

((3,4),(3,5),(4,5)). Group (3,5) is not allowed since its supercube (- - 1) includes 

the code of an unused code ( 1 0 1). More is discussed later in this section regarding 

unused codes. But first, the assignment of codes to columns is completed. For the 

remaining groups (3,4) and (4,5) we apply the cost function Gost3 to determine 

which codes((0 - 1) or (- 1 1)) to select. The following are the columns that are 

adjacent to column G10 in G: 

0010 ( column G2 ) 

1000 ( column G8 ) 



1011 ( column 011) 

1110 ( column 014) 

Cost3 = HAM_DJST(CODE(Cw),CODE(C2 )) + 

HAM_DJST(CODE(C10 ), CODE(Cs)) + 

H A!vLDI ST(CODE(C10 ), CODE(C11 )) + 

HAM_DJST(CODE(C10 ), CODE(C1 4 )) 

For Cw encoded with "O 1" the cost is: 

Cost3(C10 ) = 0 + 2 + 0 + 1 = 3 

For Cw encoded with" 1 1" the cost is: 

Cost3(C10) = 0 + 1 + 0 + 0 = 1 
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The code resulting in the lowest cost is chosen. Therefore column Cw is assigned 
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b) G ,md H resulting from the new encoding approach presented. It can be 

observed that m:my don· t cares ha vc been introduced into the G subfunction 

by encoding with nondisjoint column codes. 

Figure 5.12: Resulting Sub-functions G and H for the Example. 
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the code" - 1 1". That completes the encoding process for this example. The final 

results of the encoding process for DC_ENC are shown in Figure 5.12b. Observe 

that many don't cares have been introduced into the G sub-function. Also, observe 

that the Hamming distances between columns in the H sub-function have been 

minimized. Shown for comparison in Figure 5.12a is an arbitrary encoding using 

disjoint column codes. 

Note that the use of the unused codes can improve the quality of the encod-

ing in some cases. The encoding approach presented in this chapter does use the 

unused codes when the heuristics in the cover set selection algorithm determines 

that they should be used. However, there is a trade-off and complicated heuristics 

may be required to ensure that there is a benefit from particular uses of the un-

used codes. In the example presented, one would not benefit "overall" if he would 

encode 0 10 with the supercube of the three symbols it is compatible with plus an 

unused code. If one would use the unused code( 1 0 1) then the code " - - 1" 

can be given to column 0 10 . But this makes it necessary to assign one of the 

don't care columns in H to either symbol S3 , S4 or S5 . If S5 is chosen, since 

it has the fewest care bits, then column "1 0 1" in the successor function H will 

be changed from all don't cares to a partially specified column, as illustrated below: 

From To 
1 

0 
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This results in adding one don't care to the predecessor function G and remov

ing two don't cares from the successor function H. In some cases it may be a good 

trade-off, but in other cases it may happen that many more don't cares would be 

removed from H ( changed to specified values) than would be introduced into G. 

5. 7 Conclusions 

Unlike some approaches which optimize only the input encoding or only the 

output encoding, the approach presented in this section allows to satisfy multiple 

constraints and objectives for input and output encodings concurrently, and in a 

relatively systematic manner. A description of a method for cover set selection 

was outlined which may be used to satisfy the objective to increase the number of 

don't cares in the sub-function G while minimizing the loss of don't cares in the 

sub-function H by preselecting compatible classes with large overlap for the cover 

set. 

The encoding approach presented in this chapter can significantly reduce the 

resulting complexity of the predecessor logic when IBI/IAI 2 1 and when functions 

are highly unspecified. The expression \BI/IAI 2 1 simply implies that the number 

of blocks in the bound set(IBI) is greater than the number of blocks in the free 

set(IAI). How is the complexity of the predecessor logic reduced by using the 

proposed encoding approach DC_ENC ? The complexity of the predecessor logic 
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is reduced by utilizing overlap of classes in the cover set to produce don't cares in 

the outputs(codes) of the predecessor sub-function. VVhy the condition IBI/IAI ~ 1 

? This is by no means an exact cut-off value for all functions. Rather this condition 

is given to indicate when the potential for utilizing overlap of classes in the cover 

set is greatest. The potential for overlap of classes in the cover set increases as the 

ratio IBI/IAI increases. The potential for utilizing overlap of classes in the cover 

set is greatest when there are many columns which are compatible with multiple 

classes in the cover set. Why the additional condition that functions must be highly 

unspecified ? If functions are not at least partially unspecified then there will not 

be any overlap in the cover set. No overlap in the cover set means no potential 

for assigning don't cares in codes of columns without increasing the number of 

encoding bits. 

For functions which are highly specified or when IBI/IAI < < 1 this encod

ing approach may result in little or no benefit over existing encoding approaches. 

However, it should be noted that any highly specified function can be made highly 

unspecified by simply performing nondisjoint decompositions. Therefore, the pri

mary criterion for determining whether conditions are appropriate for this encoding 

approach is whether or not IBI/IAI ~ l. 

The example of the DC_ENC encoding approach illustrated how a substan

tial number of don't cares can be introduced into sub-function G as a result of 

encoding columns with codes of multiple symbols. Also demonstrated was how 
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multiple constraint satisfaction can be accomplished through a relatively simple 

set of heuristics applied to an edge-weighted connection graph. Use of minimum 

Hamming distances between the optional codes and the adjacent codes assigned 

illustrated how the complexity of the resulting function could be further simplified. 

Though the results from small examples calculated by hand are very promising, 

numerous tests on the implemented algorithm would need to be performed in 

order to get an accurate assessment of the algorithms' potential. Also, it should 

be emphasized that if a decomposition program is designed only for small bound 

sets, then it would be better to use a much simpler encoding approach(input-only 

encoder) which would be specifically designed for small bound sets. 
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CHAPTER 6 

FUNCTIONAL DECOMPOSITION PROGRAM MULTIS 

6.1 Introduction To Program MULTIS 

MULTIS(MULTI-Strategy decomposer) is the main calling program. of a bi

nary input, binary output Curtis-style functional decomposition program. It was 

implemented at Portland State University by the Portland Oregon Logic Optimiza

tion group(POLO) as a testbed to compare various decomposition algorithms. The 

program was written in C and C++ programming languages. Shown in Figure 6.1 

is a block diagram representation of the program MULTIS and the subprograms 

which are called from it. 

The main program MULTIS is primarily responsible for general strategy and file 

management. The general strategy consists of specifying the number of variables 

in the bound set and free set, selection of partitioning algorithms, and selection of 

serial or parallel decomposers. 

After each level of a decomposition, MULTIS checks whether a block( or sub

function) needs to be decomposed further. A block doesn't need to be decomposed 

further if it is less than or equal to the final block size specified. The final block 
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Partitioning 0 Parallel-DEMAIN 

Partitioning I Parallel-TRADE 

Partitioning 2 Serial-DEMAIN 

Serial-GUI) 

Figure 6.1: MULTI-Strategy decomposer(MULTIS) 

size is specified on the command line, by the user, as the maximum number of 

block inputs and outputs allowed to any logic block in the resulting multi-level 

decomposition. 

Input to the program is a file in Espresso format which typically represents 

a truth table for a circuit. Output of the program consists of a blif result file, 

a set of all intermediate result files in Espresso format, and a brief summary of 

results to standard I/0. The blif result file is a description of the final circuit after 

it has been decomposed into a set of gates(or subfunctions). The brief summary 

of results to standard I/0 lists the total DFC, total number of blocks, number of 

literals and rows in the blif result file, and the total user time spent in the de

composition. The "number of ones" is a total of the number of non-negated input 

literals in all subfunctions of the decomposition. The "number of zeros" is a to

tal of the number of negated input literals in all subfunctions of the decomposition. 
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An example of the output summary of results is as follows: 

• DFC 512 

• number of ones = 372 

• number of zeros 228 

• number of rows = 205 

• number of CLBs = 128 

Decomposition subprograms DEMAIN and GUD shown in Figure 6.1 are in

troduced in Sections 6.2 and 6.3. For details on partitioning subprogram #0, 

refer to the paper by Gatlin[22]. For details on partitioning subprograms #1 and 

#2, refer to the paper by Wan[65]. Details on parallel decomposition subprogram 

N_TO_ONE are not repeated here as they were presented in Section 2.3.2.1. 

6.2 Decomposition Program DEMAIN 

DEMAIN is a multi-level functional decomposition program. The theoretical 

basis of DEMAIN is based on a number of papers by Luba[28](30][31]. DEMAIN 

was modified by the POLO group so that it can be incorporated into a larger 

testing program(MULTIS) with additional decomposers and additional options. 

There are two primary components in DEMAIN. These are serial and parallel 

decomposition. 
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6.2.1 Serial Decomposition: 

The serial decomposition of DEMAIN can be characterized as a Curtis like 

serial decomposition Recall that in a Curtis like decomposition the number of 

outputs of the predecessor block( also referred to as the G block) is less than the 

number of inputs to that block. The serial decomposition consists of four main 

sub-components: 

1. partitioning of variables into the free and bound set 

2. column compatibility checking to create compatibility graph 

3. column minimization to create a cover set 

4. encoding of compatible classes in the cover set 

The partitioning of variables into the free and bound set is done by starting 

with a seed partition, having the number of variables equal to the number of inputs 

for the predecessor block, and exchanging one variable for each new partition 

tried. This is continued until a decomposition is found or until all partitions of the 

specified number of inputs have been exhausted. A decomposition is found for a 

given partition if the encoding is possible for the number of outputs specified by 

the user. 

The compatibility graph is constucted by checking the compatibility of pairs of 

columns(or blocks). If a pair of columns are compatible, then an edge is added to 
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the graph between the nodes corresponding to the two columns. All combinations 

of pairs of columns are checked. 

Once the compatibility graph has been constructed, a process of building max

imum cliques is performed. Once complete, the minimum number of maximum 

cliques are chosen which cover all the blocks in the bound set(i.e. partition IlB ). 

This minimum number of maximum cliques forms the cover set Pia which is passed 

on to be encoder. 

6.2.2 Parallel Decomposition: 

The Parallel Decomposition of DEMAIN splits a multi-output function into two 

new functions. Unlike the parallel decomposition approach N_TO_ONE, DEMAIN 

does not split up all outputs so that each new function has only one output. Also 

different is that the new functions created by DEMAIN do not typically share all 

the same inputs(i.e. one of the two new functions may have inputs Xi, X 3 , X4 , X5 

while the other function may have inputs X 1 , X2 , X5 ). None of the outputs of one 

of the new functions is also an output of the other. 

For a detailed description of the parallel decomposition algorithm used in DE-

MAIN, refer to [58][31]. 
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6.3 Decomposition Program GUD 

The General Universal Decomposer(GUD-binary version) is a functional de

composition program which is capable of decomposing binary single output and 

multi-output functions. The program was written in C and C++. Another version 

of GUD(GUD_MV), is capable of decomposing multi-valued as well as binary single 

output and multi-output functions. It should be noted that, unlike program GUD, 

which was written by several programmers, GUD_MV was written/(rewritten) 

exclusively by Stanislaw Grygiel. Version GUD is capable of working as a decom

poser by itself. However, it has been modified to be incorporated into a larger 

testing program with additional decomposers and additional options(MULTIS). 

GUD uses two types of data structures, BDDs and cube arrays. The input data 

is read into BDDs and cube arrays. The BDDs are used for various steps in the 

decomposition. The arrays of cubes are used for encoding purposes. An output 

blif file is used to verify that the resulting decomposed function is equivalent to 

the ON-set and OFF-set of the original function. Verification was done using the 

verifier SIS(Berkley software package) program. The following are itemized lists of 

algorithms implemented in the program GUD: 

GUD has two algorithms for partitioning variables to free and bound sets: 

• Pseudo Random Partitioning 
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• Sequential Binary Partitioning 

GUD has two algorithms for column compatibility checking: 

• Pair Compatibilty Approach 

• Group Compatibilty Approach 

GUD has three algorithms for column minimization: 

• Clique Covering. 

• Graph Coloring. 

• Graph Coloring using domination. 

GUD has one algorithm for Cover Set Selection: 

• Cover Set Selection 

GUD also has two encoding algorithms: 

• Dichotomy Encoding 

• Sequential Binary Encoding 

The implementation of the partitioning algorithms was done by Paul Burkey[52]. 

The implementation of the Pair Compatibilty Approach was done by Jinsong 

Zhang, Zhi Wang, and Roger Shipman[52]. The implementation of the Group 

Compatibilty Approach was done by myself[lO]. The implementation of the Clique 
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Covering algorithm was done by Jinsong Zhang, Zhi Wang, and Roger Shipman[52]. 

Graph Coloring algorithms were implemented by Roger Shipman[59]. The imple

mentation of Cover Set Selection was done by myself[l 1] [52]. Dichotomy Encoding 

was implemented by Nick Iliev[24]. Sequential Binary Encoding was implemented 

by Rahul Malvi[52]. For a general understanding of the flow of control in the pro

gram GUD, see the flow diagram in Figure 6.2. It should be noted that a function 

call to program GUD(subprogram to MULTIS) is only one step of a multi-level 

hierarchical decomposition. 
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Start GUD 

Read input file 

tried or limit Yes ( 
>-------------► Return No Decomposition ) 

No 

Alternative Partitioning 

Column Compatibility Checking ______ _._ ___________ --' 

Yes 
Yes 

Clique covering 

Yes. 

Graph coloring l 
Sequential encoding 

Yes Print G block to file 

Print H block to file 

Return Decomposition Exists 

Figure 6.2: Flow Diagram for program GUD 



CHAPTER 7 

VARIOUS EXPERIMENTAL RESULTS OF PROGRAM 
MULTIS/GUD 

7.1 Introduction 
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In this chapter, results from various tests on different decomposition programs 

are presented. Unless otherwise specified, all results were obtained from subpro-

grams called from the main program MULTIS. For example, decomposition pro

grams DEMAIN and GUD were called from the main program MULTIS. For each 

of the various comparisons made, there is a corresponding Summary of Results 

table which summarizes details relavent to each comparison. For each set of ta-

bles, corresponding to a particular comparison, there is a brief explanation of the 

comparison and a discussion of the results obtained. In Section 7.2, comparisons 

are made between different serial decomposition programs and between results 

on fully specified vs. highly unspecified functions. In Section 7.3, comparisons 

are made between different encoding approaches and between results on functions 

with 70% don't cares vs. 90% don't cares. In Section 7.4, comparisons are made 

between different partitioning approaches. In Section 7.5, some additional compar-

isons are made between several decomposition programs on MCNC benchmarks. 

These additional comparisons were made with the most recent version of program 
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GUD(binary version). 

The following are descriptions for categories and labeling used in Table 7.1 through 

Table 7.12. The reader may wish to skip past these descriptions and refer back 

only as needed. 

Strategy Code Labeling for program GUD: 

The number "1" after a program name, such as GUD(l-a), designates the 

general strategy used for selecting bound sets. The "dash a" is explained be

low. The number "1" signifies that the strategy used al ways started by trying 

Ashenhurst(single output) decompositions first. If none exist or the limit has been 

reached(maximum of 100 partitions have been checked) then Curtis like decompo

sitions are searched for next. In the comparisons of program DEMAIN and GUD, 

the general strategy option "1" is the same for both programs. This is controlled 

by the calling program MULTIS. 

An "a" signifies the following options selected for the program GUD: 

1) GUD partitioning method 1 

2) column compatibility method 1 (set covering) 

3) encoding method 3 (dichotomy encoding w/ set cover selection) 
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A "b" signifies the following options selected for the program GUD: 

1) G UD partitioning method 2 ( all bound sets of a specified size) 

2) column compatibility method 1 (set covering) 

3) encoding method 1 (binary encoding) 

A "c" signifies the following options selected for the program GUD: 

1) G UD partitioning method 2 ( all bound sets of a specified size) 

2) column compatibility method 1 (set covering) 

3) encoding method 2 (dichotomy encoding) 

A "d" signifies the following options selected for the program GUD: 

1) GUD partitioning method 2 (all bound sets of a specified size) 

2) column compatibility method 1 (set covering) 

3) encoding method 3 ( dichotomy encoding w / set cover selection) 

Strategy Code Labeling for program DEMAIN: 

Unlike program GUD, which has several combinations of algorithm options, 

the program DEMAIN does not have optional algorithms to call for each phase 
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of the decomposition process(i.e., there is only one algorithm for partitioning, one 

algorithm for clique covering and one algorithm for encoding). To indicate there 

are no optional algorithms to select, the code "z" is given. Therefore, in the com-

parisons between DEMAIN and GUD, the strategy code for DEMAIN is always 

(1-z). 

For more details on algorithms used in program GUD, see the documentation 

for program MULTIS/GUD[52]. For more details on algorithms used in program 

DEMAIN, see papers by Luba[28] and Selvaraj[58]. 

7.2 Comparisons Between Decomposition Programs On Fully Specified 

vs. Highly Unspecified Functions 

The first set of results is for a comparison between programs DEMAIN and 

two versions of GUD. In Table 7.1 and Table 7.2 are the multi-level decompo

sition results for each of these programs ran on a suite of benchmark functions 

referred to as the FLASH functions. In this comparison, the functions are only 

30% specified(70% don't cares). These functions were generated from the original 

set of fully specified FLASH functions. All partially unspecified FLASH functions 

were generated using the program FLASH. FLASH is the Pattern Theory group's 

program at Wright Patterson Air Force Base. The purpose of comparing results 

from fully specified and highly unspecified functions was to see how dramatically 
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DFC values were affected and to see how similar the decomposed functions were. 

The primary criteria used in these comparisons is DFC. Time is also shown for 

additional comparison. 

A convenient way to compare the results of each of these programs is by an

alyzing the Summary of Results in Table 7.3. However, for specific information 

relating to specific benchmarks, one can refer to the previous two tables. From 

categories A, B, C, F and Gin the Summary of Results table, one can see that both 

versions of GUD performed better than DEMAIN in terms of lower DFC values. 

However, these versions of GUD had a major drawback in terms of execution time 

as shown in categories D and E. 

Because the times are listed in real time, there is not an accurate comparison 

between the programs in terms of user time. However, the program DEMAIN 

always completes decompositions in much less time than either version of GUD. 

It should be noted that the results in Table 7.1 through Table 7.15 were obtained 

with early versions of GUD. In later versions of GUD, execution time became a 

higher priority and therefore subsequent results were obtained in terms of user 

time. Why use real time in the first place? Because statistics were already output 

in real time and because time was not the primary issue of comparison when these 

results were obtained. 
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Table 7.1: Comparison of DEMAIN and Variations of GUD(70% don't cares) 

Program DEMAIN GUD 
Strategy 1-z Strategy 1-a Strategy 1-d 

Benchmark DFC time(s) DFC time(s) DFC time(s) 
psu_add0-70 28 1.1 64 209.3 28 9.1 
psu_and_or _chain8_ 70 28 1.2 24 23.6 32 21.6 
psu_chl 76£0-70 28 0.9 24 3.8 24 3.9 
psu_chl 77£0-70 20 0.7 20 3.3 20 3.9 
psu_ch22f0_70 52 1.4 40 30.1 44 10.2 
psu_ch30f0-70 40 1.3 44 43.3 44 15.5 
psu_ch47f0-70 56 2.7 64 140.6 44 48.6 
psu_ch52f4-70 68 2.3 64 172.1 68 456.9 
psu_ch70f3-70 68 2.6 52 386.8 28 7.1 
psu_ch74fL70 64 2.5 76 227.0 40 42.5 
psu_check_faiL70 56 2.2 56 170.4 60 57.4 
psu_containsA_ones-70 80 24.4 76 688.1 76 2118.2 
psu_greater_than-70 28 1.6 44 954.5 44 19.7 
psu.intervalL70 56 2.5 52 325.2 56 108.0 
psu.interval2_ 70 124 2.6 76 785.3 120 2814.3 
psu_kddL70 28 1.1 16 4.5 16 6.2 
psu_kdd2-70 28 0.8 28 3.7 24 4.7 
psu_kdd3-70 28 1.2 28 23.3 24 5.7 
psu_kdd4-70 12 0.7 28 10.3 12 3.9 
psu_kdd5-70 44 1.7 40 15.9 40 11.4 
psu_kdd6-70 28 1.0 28 3.9 28 5.1 
psu_kdd7-70 64 2.3 28 3.9 28 4.7 
psu_kddS-70 28 1.0 24 20.2 24 5.6 
psu_kdd9-70 28 0.9 28 25.5 28 5.4 
psu_kddl0-70 28 0.9 28 23.9 24 5.8 
psu_majority _gate-70 60 2.7 56 220.3 56 68.3 
psu_modulus2_70 60 2.2 72 182.2 56 423.2 
psu_monkishL70 28 1.0 28 7.8 24 4.8 
psu_monkish2_70 40 1.9 40 71.3 40 47.3 
psu_monkish3_ 70 40 1.4 28 10.9 28 5.1 
psu_muxS-70 28 1.8 52 54.7 48 128.2 
psu_nnrL70 40 2.5 40 48.5 40 55.1 
psu_nnr2-70 40 1.4 28 31.8 32 10.5 
psu_nnr3-70 68 1.8 68 716.2 68 460.4 
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Table 7.2: Continuation of Table 7.1 

Program DEMAIN GUD 
Strategy 1-z Strategy 1-a Strategy 1-d 

Benchmark DFC time(s) DFC time(s) DFC time(s) 
psu_or _and_chain8-70 32 0.9 28 4.5 28 4.8 
psu_paL70 28 0.9 28 4.1 28 3.8 
psu_paLdbLoutpuL70 132 2.2 104 371.6 92 522.6 
ps11-parity-70 28 0.9 28 3.8 28 3.5 
psu_primes8-70 92 20.3 80 741.5 56 367.5 
psu_remainder2-70 84 1.9 80 164.2 60 372.5 
psu_rndL70 140 31.3 140 1447.5 176 2789.4 
psu_rnd2-70 148 12.4 132 1306.6 172 3565.0 
psu_rnd3-70 144 6.4 112 960.5 160 2702.3 
psu_rnd_mL70 28 1.3 28 3.4 28 3.7 
psu_rnd_m5-70 28 1.6 28 8.1 28 4.7 
psu_rnd_ml0-70 28 1.7 28 8.4 28 5.5 
psu_rnd_m25-70 64 4.6 64 187.4 68 393.0 
psu_rnd_m50-70 100 23.1 92 661.8 116 2453.5 
psu_rndvv36-70 88 3.5 88 257.1 92 80.4 
psu...substrL70 92 6.9 92 292.4 92 461.4 
psu...su bstr2-70 144 6.0 80 232.4 92 2363.7 
psu...subtractionL70 128 9.7 128 392.8 140 723.3 
psu...su btraction3-70 12 0.8 20 3.6 20 3.6 
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Table 7.3: Summary of Results for tables 7.1 and 7.2 for FLASH functions with 
70% don't cares 

Category 
Program Strategy A B C D(sec) E(sec) F G 
DEMAIN 1-z 4 19 43% 6 31.3 3056 57 
GUD 1-a 10 26 68% 220 1447.0 2844 53 
GUD 1-d 11 23 64% 420 3565.0 2872 53 

Categories for Summary of Results table: 

A: Total number times when DFC was the lowest(not a tie) 

B: Total number times when the lowest DFC was a tie 

C: percentage of tests when DFC was the 

lowest(i.e., (A+B)/(total # functions) * 100) 

D: Average execution tirr.e per function(seconds) 

E: Longest execution time( seconds) 

F: Cumulative DFC 

G: Average DFC 
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Table 7.4: Comparison of DEMAIN and GUD on Fully Specified FLASH 
Benchmarks 

Program GUD DEMAIN 
Strategy 1-d Strategy 1-z 

Benchmarks in out cubes DFC time(s) DFC time(s) 
psu_add0 8 1 256 28 53 28 12 
psu_and_or __chain8 8 1 256 28 50 28 14 
psu_chl 76f0 8 1 256 24 18 28 4 
psu_chl 77f0 8 1 256 20 15 20 3 
psu_ch22f0 8 1 256 28 21 28 4 
psu_ch30f0 8 1 256 44 62 52 7 
psu_ch47f0 8 1 256 76 92 80 10 
psu_ch52f4 8 1 256 224 14107 220 331 
psu_ch70f3 8 1 256 56 557 56 21 
psu_ch74fl 8 1 256 112 6239 112 197 
psu _con tains-4_ones 8 1 256 76 4511 76 220 
psu_greater _than 8 1 256 28 40 28 12 
psu Jntervall 8 1 256 152 7838 136 317 
ps u Jn terval2 8 1 256 120 368 
psu_kddl 8 1 256 16 10 28 4 
psu_kdd2 8 1 256 24 11 28 4 
psu_kdd3 8 1 256 24 12 28 5 
psu_kdd4 8 1 256 12 8 20 4 
psu_kdd5 8 1 256 64 434 68 21 
psu_kdd6 8 1 256 28 12 28 4 
psu_kdd7 8 1 256 28 11 28 5 
psu_kdd8 8 1 256 24 11 28 5 
psu_kdd9 8 1 256 28 12 28 5 
psu_kddl0 8 1 256 24 14 28 5 
psu_majority ...gate 8 1 256 76 4807 80 216 
psu_modulus2 8 1 256 76 517 68 21 
psu_monkishl 8 1 256 24 10 28 4 
psu_monkish2 8 1 256 56 60 56 11 
psu_monkish3 8 1 256 32 9 32 4 
psu_mux8 8 1 256 52 55 32 5 
psu_nnrl 8 1 256 36 338 36 25 
psu_nnr2 8 1 256 32 17 32 5 
psu_nnr3 8 1 256 240 8614 244 365 
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Table 7.5: Continuation of Table 7.4 

Program GUD DEMAIN 
Strategy 1-d Strategy 1-z 

Benchmarks in out cubes DFC time(s) DFC time(s) 
psu_or _and_chain8 8 1 256 28 64 28 13 
psu_pal 8 1 256 28 18 28 7 
psu_pal_d bLoutpu t 8 1 256 188 679 180 50 
psu_parity 8 1 256 28 11 28 4 
psu_primes8 8 1 256 256 7024 212 326 
psu_remainder2 8 1 256 256 7070 180 316 
psu_rndl 8 1 256 256 438 
psu_rnd2 8 1 256 256 6713 256 902 
psu_rnd3 8 1 256 256 5824 256 926 
psu_rnd_ml 8 1 256 28 12 28 5 
psu_rnd_m5 8 1 256 80 6450 80 137 
psu_rnd_mlO 8 1 256 108 6708 108 185 
psu_rnd_m25 8 1 256 256 301 
psu_rnd_m50 8 1 256 256 6233 256 778 
psu_rndvv36 8 1 256 92 86 92 14 
psu_substrl 8 1 256 80 3839 80 536 
psu_substr2 8 1 256 112 3916 92 512 
ps u _su btraction3 8 1 256 20 10 20 3 
psu_add2 8 1 256 28 15 28 4 
psu_add4 8 1 256 20 14 20 3 
psu_ch15f0 8 1 256 84 107 80 11 
psu_ch83f2 8 1 256 168 213 
psu_ch8f0 8 1 256 52 85 44 7 
psu_pa.Loutput 8 1 256 256 5528 256 431 



Table 7.6: Summary of Results for tables 7.4 and 7.5. 

Category 
Program Strategy A B C D(sec) E(sec) 
GUD 1-d 13 30 81 % 2056.0 14107 
DEMAIN 1-z 10 30 75 % 132.83 926 

Categories for Summary of Results table: 

A: Total number times when DFC was the lowest(not a tie) 

B: Total number times when the lowest DFC was a tie 

C: percentage of tests when DFC was the 

lowest(i.e., (A+B)/(total functions) * 100) 

D: Average execution time per function(seconds) 

E: Longest execution time( seconds) 

F: Cumulative DFC 

G: Average DFC 

F 
4304 
4164 
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G 
81 
79 

In Table 7.4 and Table 7.5 are the multi-level decomposition results for pro

grams DEMAIN and GUD ran on the fully specified versions of the FLASH bench

marks. By comparing the results in the Summary of Results Table 7.3 with the 

results in Summary of Results Table 7.6, the following observations are made: 

1) Average DFC was again lower for GUD(l-d) than it was for DEMAIN. 
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2) Execution time was again higher for GUD(l-d) than it was for DEMAIN. 

3) Average D FCs for G UD and D EMAIN were higher for the set of fully spec

ified functions than they were for the highly unspecified functions. 

4) Average execution times for GUD and DEMAIN were higher for the set of 

fully specified functions than they were for the highly unspecified functions. 

An important observation to make, is that in several instances, the same decom

position result was obtained for the fully specified and highly unspecified version 

of particular benchmarks. For example, benchmark "psu_chl 77f0_70" was decom

posed into the same identical set of logic blocks by programs DEMAIN and GUD 

when the benchmark was fully specified and when it was highly unspecified. This 

is important from the perspective of the Pattern Theory group at Wright Labs. 

It indicates, at least in certain instances, that some patterns are easily recognized 

despite having a significant amount of noise( or missing information). Here, the 

noise( or missing information) is represented by the don't care min terms in a given 

function. 
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7.3 Encoding Results 

In this section, three different encoding schemes are compared. Each of these 

encoding schemes were tested as optional versions of the program GUD. For 

specifics on the differences between encoding options, see the description of cate

gories and labeling in Section 7 .1. In Table 7. 7 through Table 7 .12 are the com

parison of results between the different encoding schemes ran on the versions of 

the FLASH benchmarks vvith 70% don't cares and 90% don't cares respectively. 

By comparing the results in the Summary of Results Table 7.9 with the results in 

Summary of Results Table 7.12, the following observations is made: 

1) The difference in results for the different encoding approaches is not dra

matic. However, the results indicate that either encoding scheme #1 or #3 yields 

the best overall results in terms of DFC. 

2) Average DFCs for all encoding schemes were higher for the functions which 

were more highly specified(i.e., between versions of FLASH functions with 70% vs. 

90% don't cares). 

3) Average execution times for all encoding schemes were higher for the func

tions which were more highly specified(i.e., between versions of FLASH functions 

with 70% vs. 90% don't cares). 
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Table 7.7: Comparison of Different Encoding Approaches Used on FLASH Func
tions with 70% don't cares 

Program GUD 
ENCODING METHOD #1(1-b) #2(1-c) #3(1-d) 
Benchmarks DFC time(s) DFC time(s) DFC time(s) 
psu_add0-70 28 13 28 16 28 14 
psu_add2-70 28 8 28 9 28 9 
psu_add4-70 20 5 20 7 20 9 
psu_and_or _chain8-70 32 20 48 101 32 22 
psu_ch15f0-70 80 93 88 133 80 84 
psu_chl 76f0-70 24 9 24 8 24 8 
psu_chl 77f0-70 20 8 20 7 20 8 
psu_ch22f0-70 40 18 40 21 40 14 
psu_ch30f0-70 40 44 40 30 44 18 
psu_ch47f0-70 40 59 44 91 44 52 
psu_ch52f4-70 68 341 68 878 68 330 
psu_ch70f3-70 28 11 28 17 28 11 
psu_ch74fL70 56 55 56 157 40 51 
psu_ch83f2-70 76 389 92 939 68 367 
psu_ch8f0-70 44 18 44 31 44 19 
psu_contains_4_ones_70 76 2298 76 5266 76 2172 
psu_greater _than-70 44 23 44 38 44 23 
psuJntervalL 70 56 62 56 110 56 58 
psuJnterval2-70 116 2511 176 6358 120 2386 
psu_kddL70 16 7 16 8 16 7 
psu_kddl0-70 24 7 24 10 24 9 
psu_kdd2-70 24 7 24 9 24 8 
psu_kdd3-70 24 7 24 11 24 8 
psu_kdd4-70 12 5 12 7 12 6 
psu_kdd5-70 44 13 40 21 40 14 
psu_kdd6-70 28 7 28 9 28 8 
psu_kdd7-70 44 46 28 9 28 8 
psu_kdd8_70 24 7 24 10 24 8 
psu_kdd9-70 28 8 28 11 28 10 

psu..majority ..gate-70 56 58 56 112 56 56 

psu_modulus2-70 56 351 88 763 56 335 

psu_monkishL70 24 6 24 9 24 7 

psu_monkish2-70 40 21 40 36 40 22 

psu_monkish3-70 28 7 28 9 28 8 



272 

Table 7.8: Continuation of Table 7.7 

Program GUD 
ENCODING METHOD #1(1-b) #2(1-c) #3(1-d) 
Benchmarks DFC time(s) DFC time(s) DFC time(s) 
psu_mux8-70 48 63 48 114 48 59 
psu_nnrL70 40 53 40 82 40 45 
psu_nnr2-70 32 9 32 13 32 9 
psu_nnr3-70 68 388 68 810 68 368 
psu_or _and_chain8-70 28 8 28 11 28 9 
psu_paL70 28 7 28 11 28 8 
psu_paLdbLoutpuL70 88 466 164 1546 92 444 
psu_paLoutpuL70 0 0 0 1 0 1 
psu_parity -70 28 8 28 9 28 8 
psu_primes8-70 56 355 88 704 56 317 
psu_remainder2_ 70 64 392 92 870 64 336 
psu_rndL70 144 2795 180 6280 176 2726 
psu_rnd2-70 152 2701 180 7473 172 2746 
psu_rnd3-70 116 2468 152 6291 160 2734 
psu_rnd_mL70 28 6 28 8 28 8 
psu_rnd_ml0_70 28 8 28 11 28 10 
psu_rnd_m25-70 64 396 68 972 68 399 
psu_rnd_m5-70 28 8 28 10 28 8 
psu_rnd_m50-70 108 2428 80 6244 80 2404 
psu_rndvv36-70 96 91 92 144 92 93 · 
psu_substrL70 92 435 100 820 92 448 
psu_substr2-70 100 2399 104 7499 92 2399 
psu_su btractionL70 124 624 176 2276 140 668 
psu_su btraction3-70 20 6 20 6 20 9 



Table 7.9: Summary of Results for tables 7. 7 and 7.8. 

Category 
Program Encoding A B C D(sec) E(sec) 
GUD #1 8 43 88 % 390.6 2795 
GUD #2 0 41 71% 990.6 7499 
GUD #7J 3 46 84 % 386.6 2746 

Categories for Summary of Results table: 

A: Total number times when DFC was the lowest(not a tie) 

B: Total number times when the lowest DFC was a tie 

C: percentage of tests when DFC was the 

lowest(i.e. 1 (A+B)/(total # functions) * 100) 

D: Average execution time per function( seconds) 

E: Longest execution time( seconds) 

F: Cumulative DFC 

G: Average DFC 

F 
2968 
3356 
3016 

273 

G 
51 
58 
52 
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Table 7.10: Comparison of Different Encoding Approaches Used on FLASH Func
tions with 90% don't cares 

Program GUD 
ENCODING METHOD #1(1-b) #2(1-c) #3(1-d) 
Benchmarks DFC tirne(s) DFC time(s) DFC tirne(s) 
psu_addo_go 24 6 32 6 24 7 
psu_add2_go 56 30 44 10 52 28 
psu_add4_90 20 4 20 5 20 9 
psu_and_or _chain8--90 40 9 24 5 24 6 
psu_ch15f0_90 44 11 32 9 32 12 
psu_chl 76f0--90 40 g 28 5 40 12 
psu_ch126f0...90 20 4 20 5 20 8 
psu_ch22fO_go 20 4 20 4 20 7 
psu_ch30fO_go 28 6 20 5 20 7 
psu_ch4 7fO_go 28 7 28 5 28 7 
psu_ch52f4_go 24 5 28 5 28 9 
psu_ch70f3_90 20 5 24 5 20 7 
psu_ch74fL90 24 5 28 6 28 8 
psu_ch83f2_go 56 27 40 9 56 27 
psu_ch8f0_90 0 1 0 0 0 1 
psu_contains_4_ones_90 28 8 40 9 28 7 
psu _greater_than _go 28 7 28 5 28 8 
psuJntervalL90 32 5 32 4 32 5 
psuJnterval2_90 28 5 44 g 28 7 
psu_kddL90 24 4 56 29 24 8 
psu_kddl0_90 24 5 44 9 24 8 
psu_kdd2_90 24 3 24 4 24 7 
psu_kdd3_90 24 5 28 6 24 6 
psu_kdd4_90 12 4 12 4 12 4 
psu_kdd5_9Q 32 9 28 5 28 6 
psu_kdd6_90 24 5 24 5 24 5 
psu_kdd7 _go 28 6 28 6 28 5 
psu_kdd8_90 44 10 28 5 32 5 
psu_kdd9_90 44 8 32 5 44 9 
psuJnajority ...gate_go 44 8 44 9 40 11 
psu_rnod ulus2_9Q 28 5 28 5 28 8 
psu_monkishl_go 0 1 0 0 0 1 
psu _monkish2_go 44 8 44 10 44 11 
psu_monkish3_go 24 4 24 4 24 7 
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Table 7.11: Continuation of Table 7.10 

Program GUD 
ENCODING METHOD #1(1-b) #2(1-c) #3(1-d) 
Benchmarks DFC time(s) DFC time(s) DFC time(s) 
psu_mux8_90 24 5 24 5 24 7 
psu_nnrL90 44 11 40 10 40 12 
psu_nnr2_90 32 5 32 5 32 7 
psu_nnr3_90 28 5 24 5 24 7 
psu_or _and_chain8_90 28 5 32 8 28 7 
psu_paL90 0 3 0 3 0 4 
psu_paLdbLoutpuL90 56 30 44 24 52 32 
psu_paLoutpuL90 32 4 40 9 32 6 
psu_parity _90 44 11 28 6 44 11 
psu_primes8_90 24 5 28 5 24 5 
psu_remainder2_90 32 8 56 26 32 8 
psu_rndL90 32 5 44 9 44 11 
psu_rnd2_90 40 9 40 10 40 11 
psu_rnd3_90 44 10 32 5 44 12 
psu_rnd_mL90 0 2 0 3 0 3 
psu_rnd_ml0...90 0 3 0 4 0 3 
psu_rnd_m25...90 24 5 24 5 24 5 
psu_rnd_m5_90 0 3 0 3 0 3 
psu_rnd_m50...90 28 4 28 5 28 6 
psu_rndvv36_90 44 10 44 9 44 12 
ps11-.substrL90 40 11 40 10 40 12 
psu..substr2_90 24 7 36 9 24 8 
psu..subtractionL90 44 9 44 10 44 13 
psu..subtraction3_90 20 7 20 4 20 7 



Table 7.12: Summary of Results for tables 7.10 and 7.11. 

Category 
Program Encoding A B C D(sec) E(sec) 
GUD #1 3 40 74 % 7.2 30 
GUD #2 8 34 72 % 7.0 29 
GUD #3 1 46 81 % 8.5 32 

Categories for Summary of Results table: 

A: Total number times when DFC was the lowest(not a tie) 

B: Total number times when the lowest DFC was a tie 

C: percentage of tests when DFC was the 

lowest(i.e., (A+B)/(total # functions) * 100) 

D: Average execution time per function(seconds) 

E: Longest execution time( seconds) 

F: Cumulative DFC 

G: Average DFC 

7.4 Variable Partitioning Results 

F G 
1664 28.7 
1676 28.9 
1612 27.8 
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Table 7.13 through Table 7.15 shows results comparing three separate par-

titioning approaches. These tests were ran in order to determine the relative 

effectiveness of the different approaches in finding disjoint Ashenhurst decom-
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positions(single output). RGP is a partitioning method programmed by Robert 

Gatlin[22]. GUD(l-b) is a partitioning method programmed by Paul Burkey[52]. 

DEMAIN is a partitioning method programmed by Luba[28]. 

The following are descrip;.ions for categories used in Table 7.13 and Table 7.14. 

Categories: 

N: Number of Partitions tried 

F: Ashenhurst decomposition was found using one of the partitions selected(yes or 

no). 
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Table 7.13: Comparison of Partitioning Approaches Used with FLASH Functions 
Having 70% don't cares 

Partitioning Method RGP DEMAIN GUD(l-b) 
Benchmarks N F t(sec) N F t(sec) N F t(sec) 
psu_add0-70 1 y 0.2 2 y 0.4 5 y 2.9 
psu_and_or _chain8_ 70 1 y 0.3 4 y 0.2 5 y 2.9 
psu_chl 76f0-70 1 y 0.3 1 y 0.3 1 y 1.1 
psu_chl 77f0-70 1 y 0.2 1 y 0.1 1 y 0.1 
psu_ch22f0-70 2 y 0.2 1 y 0.2 1 y 1.1 
psu_ch30f0-70 3 y 0.4 2 y 0.3 6 y 3.3 
psu_ch47f0-70 4 y 0.3 2 y 0.2 4 y 2.2 
psu_ch52f4-70 4 n 0.3 1 y 0.3 1 y 1.0 
psu_ch70f3-70 1 y 0.2 2 y 0.2 3 y 1.9 
psu_ch74fL70 1 y 0.4 2 y 0.3 2 y 1.5 
psu_checkJaiL70 3 y 0.4 1 y 0.2 4 y 2.5 
psu_containsA_ones-70 · none exist 
psu__greater _than-70 3 n 0.3 16 y 0.5 13 y 6.8 
psujntervalL70 3 n 0.3 5 y 0.3 15 y 8.0 
psujnterval2-70 none exist 
psu...kddL70 1 y 0.2 2 y 0.3 2 y 1.5 
psu...kdd2-70 1 y 0.2 1 y 0.2 1 y 1.1 
psu...kdd3-70 2 y 0.3 2 y 0.2 2 y 1.4 
psu_majority __gate-70 2 y 0.3 7 y 0.4 7 y 3.9 
psu_modulus2-70 2 y 0.3 2 y 0.3 1 y 1.0 
psu_monkishL70 2 y 0.3 1 y 0.3 1 y 1.1 
psu_monkish2-70 2 y 0.3 18 y 0.6 10 y 4.9 
psu_monkish3-70 2 y 0.3 1 y 0.3 1 y 1.0 
psu_mux8-70 1 y 0.1 1 y 0.1 1 y 1.1 
psuJ1nrL70 3 n 0.3 27 y 0.7 26 y 13.2 

psuJ1nr2-70 1 y 0.4 2 y 0.2 4 y 2.4 
pSUJlnr3_70 4 n 0.3 20 y 0.5 24 y 12.2 
psu_or _and_chain8_ 70 1 y 0.2 2 y 0.2 3 y 1.8 

psu_paL70 1 y 0.2 1 y 0.2 1 y 1.1 

psu_paLdbLoutpuL70 1 y 0.2 1 y 0.3 1 y 1.1 



279 

Table 7.14: Continuation of Table 7.13 

Partitioning Method RGP DEMAIN GUD(l-b) 
Benchmarks N F t(sec) N F t(sec) N F t(sec) 
psu_parity _70 1 y 0.2 1 y 0.2 1 y 1.1 
psu_primes8-70 none exist 
psu_remainder2-70 3 n 0.3 4 y 0.3 25 y 12.2 
psu_rndL70 none exist 
psu_rnd2-70 none exist 
psu_rnd3-70 none exist 
psu_rnd_ml0-70 1 y 0.3 2 y 0.2 3 y 2.0 
psu_rnd_mL70 1 y 0.2 1 y 0.2 1 y 1.0 
psu_rnd_m25-70 4 y 0.3 2 y 0.3 23 y 11.9 
psu_rnd_m50-70 none exist 
psu_rnd_m5-70 1 y 0.2 2 y 0.2 3 y 1.9 
psu_rndvv36-70 2 y 0.3 3 y 0.3 2 y 1.4 
psu...substrL70 1 y 0.4 1 y 0.2 1 y 1.2 
psu...substr2-70 none exist 
psu...subtractionL70 3 n 0.3 2 y 0.2 4 y 2.3 
psu...su btraction3_ 70 1 y 0.3 1 y 0.1 1 y 1.1 

Categories for Summary of Results: 

A: Number of times a partition resulted in an Ashenhurst decomposition. 

B: Number of times a partitions did not result in an Ashenhurst decomposition. 

C: Hit/Miss ratio defined as A/B. 

Table 7.15: Summary of Results for tables 7.13 and 7.14 

CATEGORY 
Partitioning Method A B C D E F G H I(sec) 

RGP 31 41 0.76 82% 2.3 31 41 76% 0.2 

DEMAIN 38 108 0.35 100% 3.8 32 40 80% 0.2 

GUD(l-b) 38 172 0.22 100% 5.5 27 68 40% 3.1 
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D: Percentage of benchmarks that a partitioning approach yielded an Ashenhurst 

decomposition, defined as (A *100)/38(38 being the total number of benchmarks 

where an Ashenhurst decomposition exists). 

E: Average number of partitions that must be tried to get an Ashenhurst decom

position(provided one exists), defined as (A+B)/A. 

F: Same as category A except that only the first 4 partitions tried are considered. 

G: Same as category B except that only the first 4 partitions tried are considered. 

This category is defined to be F /38. 

H: Hit/Miss ratio defined as F /G. 

I: Average execution time per partition selected( seconds). 

From the results in Summary of Results Table 7.15, the following observations 

were made: 

1) The approaches RGP and DEMAIN performed much better than GUD(l-b) 

in category H. This indicates that these heuristic approaches significantly improve 

the probability of finding Ashenhurst decompositions over random or pseudo ran

dom partitioning. 

2) Another observation that is made is that for the given set of benchmarks, 

both RGP and DEMAIN approaches were able to find an Ashenhurst decomposi

tion within the first four partitions tried in about 80% of the cases. 

For more details on partitioning algorithm RGP, see paper by Gatlin[22). For more 
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details on partitioning algorithm in program DEMAIN, see paper by Luba[28] and 

Selvaraj [58]. For more details on partitioning algorithms in program GUD, see 

documentation for program MULTIS/GUD[52]. 

7 .5 Additional Comparisons Between Decomposition Programs 

In this section, more recent results of program GUD(binary version) are com

pared with several other programs. With the exception of program GUD, all pro

grams compared in Table 7.16 and Table 7.17 are separate programs which are not 

called from within program MULTIS. Results for programs MISII and DSGNl 74 

were obtained from a publication by Steinbach[62]. Other results were obtained 

using PSU programs. 
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Table 7.16: Results for DFC on MCNC Benchmarks 

PROGRAM GUD TRADE MISII DSGN174 GUD...MV 
File in out cubes DFC DFC DFC DFC DFC 

5xpl 7 10 143 296 496 384 292 202 
9sym 9 1 158 176 640 984 400 112 
b12 15 9 72 300 412 [1] [1] 248 
bw 5 28 97 752 1148 [1] [1 l 570 
conl 7 2 18 68 80 68 60 76 
duke2 22 29 406 [3] 6516 2428 2200 2970 
ex5p 8 63 214 2172 [4] 3720 1560 2068 
misexl 8 7 40 284 472 208 224 256 
misex2 25 18 101 600 548 464 436 484 
misex3c 14 14 837 [2] 19816 4204 3028 1588 
rd53 5 3 63 84 120 96 84 56 
rd73 7 3 274 164 320 352 256 120 
rd84 8 4 515 260 508 672 320 176 
sao2 10 4 133 792 1848 516 468 436 
squar5 5 8 56 160 228 [1] [1] 152 
xor5 5 1 32 16 16 [1] [1 l 16 
Z5xpl 7 10 111 320 540 [1] [1 l [1] 
9symml 9 1 159 176 644 908 796 [1] 
adr2 4 3 24 32 36 [1] [1) [1] 
c8 28 18 166 408 552 [1] [1] [1] 
cc 21 20 96 284 256 [1] [1] (1] 
f51m 8 8 154 268 372 392 240 [1] 
root 8 5 256 572 1000 [1] [1] [1] 

From the results shown in these tables, it is clear that GUD_MV outperforms 

all the other decomposers in terms of DFC. Times shown are user times. While the 

results for program GUD have improved since early testing in terms of DFC and 

time, the performance of GUD still falls short of all other decomposers in terms of 

execution times. In terms of DFC, GUD and DSGNl 74 are roughly equal among 

the decomposers compared, second only to GUD_MV. As noted in the introduc-
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tion to program MULTIS/GUD, program GUD does not use any sophisticated 

approaches to partitioning and encoding. The results for GUD in Table 7.16 and 

Table 7.16 were obtained using partitioning and encoding approaches which are, 

for all practical purposes, pseudo random. 

The following is relevant information corresponding to Table 7.16 and Table 7.17. 

Benchmarks run on SPARC-10 workstations. Times listed are user times. 

[1]-Results not available for this benchmark 
[2]-0ut of Memory 
[3]-Program still running after 10,000 seconds 
[4]-Program limited to 32 input and 32 output variables 

GUD - Program designed at PSU by the POLO group 
TRADE - Program designed at PSU by Wei Wan 
MISII - Program designed at UC Berkeley 
DSGN174 - Program designed by B. Steinbach 
GUD MV - Program designed at PSU by Stan Grygiel 
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Table 7.17: Results for user time on MCNC Benchmarks 

Program GUD TRADE MISII DSGN174 GUD...MV 
File m out cuLes time time time time time 

[s] [s] [s] [s] [s] 
5xpl 7 10 143 56.4 2.3 4.2 2.7 10.6 
9sym 9 1 158 289.0 29.9 17.8 8.7 31.2 
b12 15 9 72 53.2 3.6 [1] [1] 10.9 
bw 5 28 97 63.8 9.5 [1] [1] 18.2 
conl 7 2 18 5.0 0.8 0.3 0.4 2.5 
duke2 22 29 406 [3] 301.8 36.9 113.2 3134.0 
ex5p 8 63 214 780.7 [4] 18.1 4126.7 183.3 
misexl 8 7 40 26.9 4.1 1.4 1.9 8.5 
misex2 25 18 101 839.5 11.0 2.4 14.4 905.0 
misex3c 14 14 837 [2] 7361.6 5499.7 196.6 1482.3 
rd53 5 3 63 8.0 1.2 1.3 0.5 1.8 
rd73 7 3 274 85.7 2.5 14.1 3.5 12.1 
rd84 8 4 515 280.7 32.6 119.7 7.3 30.6 
sao2 10 4 133 663.5 31.5 9.6 13.9 48.6 
squar5 5 8 56 10.9 2.1 [1 l [1] 4.5 
xor5 5 1 32 0.6 0.1 [1] [1] 0.4 
Z5xpl 7 10 141 57.6 2.4 [1] [1] [1] 
9symml 9 1 Hi9 300.6 29.5 9.5 19.0 [1] 
adr2 4 3 24 0.4 0.2 [1] [1] [1] 
c8 28 18 166 140.4 4.5 [1] [1] (1 l 
cc 21 20 96 35.6 3.0 [1] [1] [1] 
f51m 8 8 154 49.0 3.2 4.4 1.9 [1] 
root 8 5 256 242.2 21.7 [1] [1] [1] 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

Presented in this thesis were three algorithms designed to improve different 

phases in the decomposition process of an Ashenhurst-Curtis style functional de

composition program. These algorithms were designed for column compatibility 

checking, column minimization for Ashenhurst type decompositions, and column

based input/output encoding. 

The primary objective of the GCA algorithm was targeted at improving effi

ciency of column compatibility checking. The GCA algorithm creates the same 

data as the classical approach(PCA ), but more efficiently in terms of execution 

time. Results for the GCA algorithm demonstrated a reduction in the execu

tion time by an impressive margin over the classical approach. In some cases, the 

execution time was reduced by more than two orders of magnitude(xl00 or 99% 

reduction). In addition to reducing execution time, the GCA approach, unlike the 

PCA approach, is able to create the compatibility graph for large bound sets in 

about the same amount of time as for small bound sets. By allowing large bound 

sets to be checked very efficiently, the GCA approach allows a larger portion of 

the search space to be checked in a reasonable amount of time. It is not known 
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for sure whether this added capability will lead to higher quality decompositions. 

However, this added capability provides the potential for improvement in DFC. Fu

ture work should include :esting the GCA approach to determine how often lower 

DFC values are obtained by using large bound sets as opposed to small bound 

sets. Knowing this information may lead to more effective general decomposition 

strategies. 

In addition to improving the efficiency of column compatibility checking, the 

large data sets created in the process of column compatibility checking by the GCA 

approach may be used by a modified graph coloring algorithm to efficiently check 

for Ashenhurst decompositions. Though the modified graph coloring algorithm 

presented(MGCA) was not implemented or tested, there are indications that it 

has potential for significant savings in execution time when bound sets are larger 

than the free sets. There are two indicators of this potential. The first indicator 

comes from examples done by hand. The other indicator is the fact that, by using 

the large data sets(sets of columns) created by the GCA approach, the number of 

nodes and edges in the newly created MIG graph are much fewer than are found 

in the corresponding CIG graph. Future work should include testing to determine 

if and when there is a savings in execution time using the MGCA approach. 

Yet another algorithm presented in this thesis was a high quality column-based 

input/output encoding approach(DC_ENC). This approach is a heuristic encod

ing approach, designed to provide high quality encoding and still be very fast. 
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Examples shown, illustrated that Don't Cares are introduced into the codes of the 

predecessor sub-function without changing the successor sub-function in a Curtis 

style decomposition. This in itself was a proof that using combined class codes 

can reduce the complexity of the predecessor sub-function in some cases. Stated 

another way, if you have a fully specified sub-function and you are able to change 

specified values to Don't Cares without changing anything else, then the resulting 

sub-function is at least as simple as the fully specified sub-function with no Don't 

Cares. Future work sho·.1ld include testing to determine how often lower DFC 

values are obtained by using the DC_ENC encoding approach and under what 

conditions. The primary conditions to consider are the overlap ratio and the size 

of bound sets relative to the size of the free sets. Knowing these conditions would 

give a better indication of when DC_ENC is effective and when it is not effective. 

The overall goal of this thesis was to present algorithms which can be used to 

improve the efficiency and quality of multi-level decompositions. In doing so, it is 

hoped that a Curtis style functional decomposition program is a viable candidate 

for use in the synthesis of a variety of technologies. While Curtis style functional 

decomposition can be used in several applications, it has not yet met the require

ments of industry and is therefore not considered seriously as an alternative to 

existing methods in the synthesis of circuits to various technologies. Circuit appli

cations where it has been used, at least experimentally, are FPGAs and CPLDs. 

Up to and including the present, there has been little interest in Curtis style func-
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tional decomposition programs because they have either produced poor quality 

solutions, been too slow, used too much memory, and/or were not easily modified 

to meet industry specifications. However, new advances in research are steadily 

chipping away at these obstacles. In fact, all but the last problem were improved 

to a level of acceptability for most cases tested and from results available for com

parison. Unfortunately, application specific requirements vary widely and access 

to such requirements is not readily attainable unless working directly with or for 

a vendor. Also, there is the problem of different CAD development packages and 

development packages which may have been customized to meet particular ven

dor requirements. For instance, a vendor may choose to customize a development 

package, for in-house use, by providing additional feedback mechanisms in differ

ent stages of a design process. This would create additional compatibility issues 

to be resolved if a new method were to be practical to be introduced for one or 

more technologies. However, these kinds of issues are expected when new software 

is considered as an add-on or a for replacement of existing software modules. Re

gardless whether or not a synthesis approach using some variant of Curtis style 

functional decomposition is acceptable for any of the existing technologies, there 

may be emerging technologies ideally suited for its use. 

Already, Curtis style functional decomposition is used experimentally by Wright 

Patterson Air Force Base and by AbTech corporation for the purpose of pattern 

recognition. Unfortunately, specific details of their application is not readily ob-
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tained. More investigation into specific technologies is required to determine ex

actly what other technologies that functional decomposition are applicable for. 

Therefore, one of the highest priorities for future research is to determine a ben

eficial and cost effective application for a Curtis style functional decomposition 

program. This may involve analyzing numerous technologies and comparing ac

tual results from currently existing methods of decomposition against the best 

Curtis style functional decomposition program available. 
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