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Facultat de Matemàtiques i Estad́ıstica

Universitat Politècnica de Catalunya
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University of West Bohemia, Pilsen

Oriol Serra
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On the connectivity and restricted edge-connectivity
of 3-arc graphs
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Miquel Àngel Fiol (invited speaker) 253

Topology of Cayley graphs applied
to inverse additive problems
Yahya Ould Hamidoune (invited speaker) 265

Graphs with equal domination and 2-domination numbers
Adriana Hansberg 285

Radially Moore graphs of radius three and large odd degree
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Foreword

The International Workshop on Optimal Network Topologies (IWONT)
provides researchers interested in theoretical problems arising from the de-
sign and analysis of interconnections networks with the opportunity to meet
and discuss on different topics related to this general subject. The themes
covered by the workshop came mainly from Graph Theory and include the
degree-diameter problem and the associated design of large graphs and di-
graphs; spectral techniques; connectivity and vulnerability; symmetry and
regularity in graphs; Cayley graphs; factors and graph decompositions; ran-
dom graphs and probabilistic methods; permutation networks, and routing
and protocols in communication networks.

The previous two IWONT meetings took place in 2005 at the Univer-
sity of Ballarat, Australia, organized by Prof. Mirka Miller, and in 2007
at the West-Bohemian University in Pilsen, Czech Republic, chaired by
Prof. Zdeněk Ryjáček. This third edition has been held at the Universitat
Politècnica de Catalunya, Barcelona, Spain, and we particularly wish to
thank the previous organizers for this opportunity.

We are very proud to dedicate IWONT 2010 to Prof. Miquel Àngel
Fiol on the occasion of his 60th birthday. Together with Prof. José Lúıs
A. Yebra, he founded in the early 80’s the research group CombGraph,
which is hosting this IWONT edition. He is acknowledged as one of the
founders of the Graph Theory community in Spain and his intense activity
in building a strong research group in Barcelona is very much appreciated
by his numerous students, colleagues and friends. Since then, Miquel Àngel
Fiol has not only been a leading Spanish graph theorist, but has also re-
ceived world-wide recognition. His most influential contributions include
constructions of snarks; the use of the line digraph technique to deal with
the degree-diameter problem in digraphs; the study of maximally connected
and superconnected graphs and digraphs, and the Spectral Excess Theo-
rem, as well as many other results concerning distance-regularity in graphs.
He has published more than one hundred papers in international journals
and several book chapters, many of which have been profusely cited. To
find out how all this work began, we invite you to read the paper “The
Beginnings” by Prof. José Lúıs A. Yebra, which due to its special nature
we have placed at the beginning of these Proceedings.
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A previous book containing the extended abstracts of all the contribu-
tions presented at IWONT 2010 was published prior to the conference. This
volume of Proceedings now brings together the full-length papers of most
of those contributions. We would like to thank the invited speakers and
all the participants for attending the workshop and for the high quality of
their talks, which made the IWONT 2010 conference such a success. More-
over, we are specially indebted to all authors contributing to this volume
for their scientific work and for their efforts in preparing the articles.

On behalf of all members of the Programme and Organizing Committees
we would like to express gratitude to the Spanish Ministerio de Ciencia e In-
novación (“Acciones complementarias”, grant MTM2009-08119-E/MTM);
the Universitat Politècnica de Catalunya (“Ajuts per a l’organització de
congressos 2009”), and the Facultat de Matemàtiques i Estad́ıstica for spon-
soring IWONT 2010, and to the members of the CombGraph group for
running the workshop.

Barcelona, December 2010

Josep M. Brunat, Josep Fàbrega and Jozef Širáň.
Editors, IWON 2010 Organization
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The Beginnings

José Luis A. Yebra (invited speaker)
Universitat Politcnica de Catalunya
Castelldefels

Abstract

The simple title tells many things. Of course, it could tell almost
nothing since a well-known motto says that ‘everything must
have a beginning’. However, another motto is more appropriate
here: ‘A journey of a thousand miles must begin with a single
step’. Yes, we remember here the first steps of a journey of more
than 60/2 years; steps that set the basis for the first group of
people working on Graph Theory not only at Barcelona, but in
the whole of Spain. And all this began when Miguel Angel Fiol
...

1 Once ... in 1975-1979

I was going to say ”Once upon a time...” but I will be much more precise: I
will speak of things that happened in the years 1975-79. This means more
than 60/2 years ago. I am sure that some of you cannot remember this
period and I see that some others were not yet among us. I think that to
better understand the beginnings of the Graph Theory group at Barcelona
we should travel back to those years. We need to become acquainted with
the circumstances under which we worked; it is relevant to be conscious of
the advantages but also the hardships of this period.

It was during the 1975-79 years that the Vietnam War ended and the
Iran revolution took place, while in Spain Franco died and for the first
time in the last forty years we enjoyed democratic elections under a new
Constitution. In Mathematics, it was the age of public-key cryptography
and the RSA encryption algorithm, as well as the appearance of Mandelbrot

3



The Beginnings J. L. A. Yebra

fractals. More generally the scientific world celebrated the appearance of
the first personal computer, the first CD audio and the first human in
vitro fertilization (which, incidentally, assures the older of us of our natural
conception, perhaps one of the few advantages we have over the younger
ones). Of course, there was no cellular phones, no DVD’s and no Internet.
These few sentences compose a very fast review of the 1975-79 period and
are not enough to understand the limitations encountered. So, I will come
back to this issue.

This flash-back is especially important for those under thirty years old,
since they have not lived through this period. As the lyrics of La Bohème,
the Charles Aznavour song goes:

La bohème Very free translation

Je vous parle d’un temps I tell you about a time
que les moins de vingt ans That under-thirties
ne peuvent pas connâıtre cannot know about
Montmartre, en ce temps-là ... At that time, Miguel Angel ...

At that time Miguel Angel was a young student of Telecommunication
Engineering At the UPC and a columnist of the satirical journal “La codor-
niz”, surely unaware that new important activities were about to come. Its
origin should be found in Martin Gardner’s column in Scientific Ameri-
can “Snarks, Boojums and other conjectures related to the four-color-map
theorem” ([2]), together with the providential launch late in 1976 of “Inves-
tigaciòn y Ciencia”, the Spanish translation of the magazine, just in time to
offer in the April 1977 issue the Snark’s article to a broad Spanish speaking
audience that included Miguel Angel.

But let us deviate a little from our theme to pay a small tribute to the
immense figure of Martin Gardner, who has died just three weeks ago. He
has been the most important writer in recreational mathematics. Surely all
of us have enjoyed many of his writings. When we affirm that without him
we would not be here, we can ask how many other mathematicians should
also acknowledge an analogous origin. Thanks a million, Martin, for all the
delightful moments you have given us and for the wonderful world you did
open to us.
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The Beginnings J. L. A. Yebra

2 From the 4-colour problem to Snarks

In those years there was much research on the so-called 4-colour problem:
Can every planar map be coloured using at most four colours in such a way
that regions sharing a common boundary (other than a single point) get
different colours? Fallacious proofs were given independently by Kempe
(1879) and Tait (1880). Kempe’s proof was accepted until 1890 when Hea-
wood showed an error. It is easy to proof that five colours suffice, but
reducing the number of colours to four proved to be very difficult. On
April 1, 1975, Martin Gardner published a map with the claim that it re-
quired five colours if adjacent countries were to receive distinct colours. Of
course, the map could be 4-coloured: It was just an April 1 Fool’s joke.

To any planar map (where at most three countries meet at any boundary
point) can be associated a 3-regular planar graph with boundaries between
countries seen as edges and reciprocally. And it is very easy to proof that
such planar map can be 4-coloured if and only if the edges of its associated
3-regular graph can be properly 3-coloured. Here properly means that the
three edges meeting at every vertex get different colours. As a consequence,
it became interesting to find 3-regular graphs that could not be properly
3-coloured. And if any such graph is planar the 4-colour problem is (nega-
tively) solved. The positive result was finally obtained by Appel and Haken
(1977), who constructed a computer-assisted proof that four colours suf-
ficed. Some mathematicians did not accept it. However, the proof appeared
valid and the result is accepted today as the 4-colour theorem. A shorter
proof has since been constructed by Robertson et al. in [4].

Martin Gardner’s proposed to use the term snarks for nontrivial 3-
regular graphs that are not 3-coloreable. The name comes from Lewis
Carroll’s ‘The hunting of the Snark’ because of its elusive character. Just
a few years before only a handful of snarks were known: The first one was
the ubiquitous Petersen graph on 10 vertices, found in 1898; the next are
two graphs on 18 vertices due to Blanusa (1946); the following one is a
graph on 210 vertices found by B. Tutte, and the last one was a graph on
50 vertices found by G. Szekeres in 1973. Then Martin Gardner’s article
presented the work of Rufus Isaacs who discovered two infinite families of
snarks in 1975, see [3].

As other Martin Gardner articles, it fostered much research on the
subject. Miguel Angel generalized some of Isaacs’s constructions by a quite
new approach based on Boolean Algebra.
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3 Communicating with the scientific community

Once the new constructions were ready, a new problem arose: What can
man do with them? There was a simple answer: Communicate it to the
scientific community. But remember that we were in 1977. There were no
personal computers, nor any of those fancy things we can use with them.
There was no such thing as e-mail. In those years communication meant
to type a letter, to put it inside something called envelope, to stick in the
front side a stamp, to put it in a mailbox and to wait several weeks for
an answer. Perhaps I am exaggerating since every body knows what an
envelope and a stamp are, but for how long? The most practical way of
writing consisted in typing with a writing machine. We should remember
that, since there were no personal computers, there was no such thing as
word processors, style or Grammatik correctors, not even a delete key to
correct the smallest errors, which were corrected by taking the sheet of
paper out of the writing machine, creasing it (avoiding uttering four letter
words) and beginning again with a new sheet.

Besides, at school people learnt some French, but communicating with
the scientific community meant to write in English. Therefore, you can
understand that the first two letters that Miguel Angel addressed to Martin
Gardner were written in Spanish, beginning with

Barcelona, 6.XI.77 Barcelona, 22.XI.77

Sr. D. Martin Gardner Sr. D. Martin Gardner
E.E.U.U. E.E.U.U.

Apreciado Sr.: Apreciado Sr.:
Soy estudiante ... Como continuación ...

Well I do not know what most of us would do when receiving letters
written in an alien language and related to some relatively aged work. But
we know what Martin Gardner and Rufus Isaacs did through the answer
of the latter, dated December 21, 1977:

Dear Sr. Fiol

Martin Gardner has forwarded me your two letters.
Both look very interesting. I regret the delay in re-
plying, but this was mainly due to my unsuccessful
efforts to find a Spanish translator.
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By I think I understand you because of your beautiful
drawings and because you are travelling a road I have
been over myself. For example ...

Very nice from R. Isaacs but, since he has understood only the drawings,
he had missed most of Miguel Angel work. It was imperative to commu-
nicate in English. How? Well, look at the way Miguel Angel did it: First
type the letter in Spanish, double spaced:

Agradezco su carta del 21.XII.77, aśı como también
el folleto

conteniendo su art́ıculo sobre los Snarks. Ambos los
he léıdo

con mucho interés ...

Then look for someone that can translate it into English placing the
handwritten translation between the Spanish lines, so as to obtain:

Agradezco su carta del 21.XII.77, aśı como también
el folleto

I want to thank you for your letter of December 21,

1977 as

conteniendo su art́ıculo sobre los Snarks. Ambos los
he léıdo

well as your paper about the Snarks. I’ve read both

of them

con mucho interés ...

carefully ...

Finally, typeset the English version to achieve some thing like

I want to thank you for your letter of December 21,
1977 as

well as your paper about the Snarks. I’ve read both
of them

carefully ...
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The final result is a long typeset English letter ... without errors! And
remember: without even a delete key to correct a single error.

But this effort pays: The answer from Rufus Isaacs says:

Dear Senor Fiol,

I owe you my deepest apologies on two grounds.

First, ...

Second, for under-estimating the depth of your work.
I see now you have made contributions of insight and
importance. Congratulations!

I am enclosing a paper which I was arranging to pub-
lish in a graph theory journal. With your permission
I should like to write a similar piece on your work.

(...)

I thing you should write a polished paper on your own
about your fine Boolean logic method of generating
snarks.

(...)

And in a letter dated November 29, 1978 Rufus Isaacs offers:

I recently spoke to Professor Gore, telling him my
high opinion of you. He seems interested in your join-
ing the faculty...

An offer to join the Johns Hopkins University that Miguel Angel could
not accept because ... he was still a undergraduate student!

4 Conclusion

Under my light supervision Miguel Angel wrote his graduation thesis about
the construction of snarks using Boolean operators. It is difficult to sum-
marize here its more than two hundred pages. I will just restrict myself
to showing below that the Petersen graph is a snark and refer to Miguel
Angel’s paper [1] for the way Boolean logic enters the snarks’ world. The
Boolean family contains the BDS family of Isaacs and some later addi-
tions by other authors as Loupekhine. But it also contains many more new
snarks.

8
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To see that the Petersen graph is a snark, notice that to properly colour
the edges of a pentagon, any colour can be used at most twice. Thus, three
colours are needed, using two of them twice and the other one just once.
This is the only proper colouring of the pentagon except for permutation
of the colours. As a consequence, the edges adjacent to those vertices
(we will called them semi-edges) must be coloured as in figure . Notice
that one colour appears three times in consecutive semi-edges while the
other two colours appear just once in the remaining semi-edges. Again the
colouring is unique except for permutations of the colours. When we draw
the pentagon as the ‘inside’ pentagon in the usual representation of the
Petersen graph this circular ordering is modified, so that the three semi-
edges equally colored are not consecutive, see Figure 1. As a consequence,
the Petersen graph cannot be properly coloured. It is possible to colour at
most three of the five edges joining the ‘inside’ and the ‘outside’ pentagons,
see Figure 1, where the remaining two edges sholud be coloured 1 at one
end and 3 at the other one.
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Figure 1: The Petersen graph

Today, thirty two years later, all small snarks are known. For instance,
there are exactly 2 snarks on 18 vertices, 6 on 20 vertices, 20 on 22 vertices,
38 on 24 vertices, 280 on 26 vertices and 2900 on 28 vertices.

We could also speak of Miguel Angel’s PhD Thesis (1981); we could
speak of Minimal Connections, Double Loop Networks, Tessellations, Line
Digraphs, the (Δ,D) problem, etc. But this will take us much longer.

Today, Miguel Angel is more than sixty year old. This is a consequence
of the simple addition rule. But the most important thing is that instead
of being alone there are more than 60/2 other people working in Combi-
natorics and Graph Theory at Barcelona, not counting those people that
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work at other places after been initiated here.
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Infinite families of 3-numerical semigroups
with arithmetic-like links

Francesc Aguiló-Gost
Universitat Politècnica de Catalunya
Barcelona

Abstract

Let S = 〈a, b,N 〉 be a numerical semigroup generated by a, b,N ∈
N with 1 < a < b < N and gcd(a, b,N) = 1. The conductor of
S, denoted by c(S) or c(a, b,N), is the minimum element of S
such that c(S) + m ∈ S for all m ∈ N ∪ {0}. Some arithmetic-
like links between 3-numerical semigroups were remarked by V.
Arnold. For instance he gave links of the form

c(13, 32, 52)

c(13, 33, 51)
=

c(9, 43, 45)

c(9, 42, 46)
=

c(5, 35, 37)

c(5, 34, 38)
= 2 or

c(4, 20, 73)

c(4, 19, 74)
= 4.

In this work several infinite families of 3-numerical semigroups
with similar properties are given. These families have been
found using a plane geometrical approach, known as L-shaped
tile, that can be related to a 3-numerical semigroup. This tile
defines a plane tessellation that gives information on the related
semigroup.

1 Introduction and known results

A 3-semigroup S = 〈a, b,N 〉 with a, b,N ∈ N and 1 < a < b < N , is defined
as 〈a, b,N 〉 = {m ∈ N | m = xa + yb + zN ; x, y, z ∈ N}. The values a,
b and N are called the generators of S. The set S = N \ S is called the
set of gaps of S. If the cardinality of S is finite, then S is a 3-numerical

semigroup. It is well known that S is a 3-numerical semigroup if and only
if gcd(a, b,N) = 1. The Frobenius Number of S is the value f(S) = maxS.
The conductor of S is the value c(S) = f(S) + 1. Given m ∈ S \ {0},
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the Apéry set of S with respect to m, Ap(S,m) = {s ∈ S | s − m /∈
S}, contains significant information of S. In particular, it is well known
that f(S) = maxAp(S,m) −m. A 3-numerical semigroup S = 〈a, b,N 〉 is
minimally generated if the semigroups 〈a, b〉, 〈a,N〉 or 〈b,N 〉 are proper
subsets of S. You can find recent results on numerical semigroups in the
book of Rosales and Garćıa-Sánchez [6]. Recent results mainly related on
the Frobenius number can be found in the book of Ramı́rez Alfonśın [4].

The equivalence class of m modulo N will be denoted by [m]N . A
weighted double-loop digraph G(N ; a, b; a, b) is a directed graph with set
of vertices V (G) = {[0]N , ..., [N − 1]N} and set of weighted arcs A(G) =

{[v]N
a→ [v+a]N , [v]N

b→ [v+b]N | [v]N ∈ V (G)}. The idea of using weighted
double-loop digraphs as a tool in the study of the Frobenius number of 3-
numerical semigroups was already used by Selmer [8] in 1977 and Rødseth
[5] in 1978.

Each weighted double-loop digraph G has related several minimum dis-

tance diagrams (MDD for short) that periodically tessellates the squared
plane. Each vertex [ia + jb]N of G is associated with the unit square of
the plane (i, j) ∈ N2, that is the interval [i, i + 1] × [j, j + 1] ∈ R2. An
MDD is composed by N unit squares and has a geometrical shape like the
(capital) letter ’L’ or it is a rectangle (that is considered a degenerated
L-shape), see [5, 3] for more details. Sabariego and Santos [7] gave an alge-
braic characterization of these diagrams in any dimension. Here we include
this characterization in two dimensions.

Definition 1 [Sabariego and Santos, [7]] A minimum distance diagram is
any map D : ZN → N2 with the following two properties:

(a) For every [m]N ∈ ZN , D([m]N ) = (i, j) satisfies ia+ jb ≡ m(mod N)
and ‖D([m]N )‖ is minimum among all the vectors in N2 with that
property (‖(s, t)‖ = sa + tb).

(b) For every [m]N and for every (s, t) ∈ N2 that is coordinate-wise
smaller than D([m]N ), we have (s, t) = D([n]N ) for some [n]N (with
n ≡ sa + tb(mod N)).

An MDD H is denoted by the lengths of his sides, H = L(l, h, w, y),
with 0 ≤ w < l, 0 ≤ y < h, gcd(l, h, w, y) = 1 and lh − wy = N , as it
is depicted in the Figure 1. The vectors u and v define the tessellation of
the plane by the L-shaped tile H. These lengths fulfill the compatibility

12
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l

h w

y

v = (−w, h)

u = (l,−y)

Figure 1: Generic MDD tessellating the plane

equations, stated by Fiol, Yebra, Alegre and Valero [3] in 1987, related to
the tessellation

la− yb ≡ 0 (mod N), −wa + hb ≡ 0 (mod N). (1)

Definition 2 [Tessellation related to S] Let S = 〈a, b,N 〉 be a 3-nu-
merical semigroup. A tessellation related to S is a tessellation of the
plane generated by an L-shaped MDD of the weighted double-loop digraph
G(N ; a, b; a, b).

Let D be the map that appears in Definition 1 associated with G =
G(N ; a, b; a, b), that is a = a and b = b. Then

Ap(S,N) = {D([0]N ), ...,D([N − 1]N )}

and D([m]N ) can be though as the length of a minimum path from [0]N to
[m]N in G. Definition 2 gives a metrical view of some properties of S. A
geometrical characterization of MDD related to S is needed for practical
reasons. This characterization is given in the following result.

Theorem 3 (A., Miralles and Zaragozá, [1]) The L-shaped tile H =
L(l, h, w, y) satisfying (1) with lh − wy = N and gcd(l, h, w, y) = 1 is
related to S = 〈a, b,N 〉 iff la ≥ yb and hb ≥ wa and both equalities are not
satisfied.
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Figure 2: Minimum distance diagram related to G(8; 3, 7; 3, 7)

Example 4 Consider the weighted double-loop digraph G = G(8; 3, 7; 3, 7)
that is depicted in the Figure 2. An L-shaped MDD related to G is H =
L(5, 2, 2, 1). Note that the lengths of H, (l, h, w, y) = (5, 2, 2, 1), fulfill the
conditions gcd(l, h, w, y) = 1 and lh−wy = N , the compatibility equations
(1) and Theorem 3. The left-hand side of Figure 2 shows a piece of the
first quadrant of the squared plane and how H tessellates the plane. It also
shows the periodic distribution of the equivalence classes modulo 8, where
each unit square (i, j) is labelled by the class [3i + 7j]8. The right-hand
side of this figure shows the same piece of the first quadrant, however each
unit square (i, j) is labelled now by ‖D([3i+7j]8)‖ = 3i+7j (D is the map
of Definition 1). Note that the labels inside the grey L-shape (the one that
contains the unit square (0, 0)) form the set Ap(〈3, 7, 8〉, 8). In particular,
we have f(〈3, 7, 8〉) = 13− 8 = 5.

V. Arnold [2] in 2009 commented that his 1999 calculations of Frobenius
numbers provided hundreds of empirical properties. He remarked some
strange arithmetical facts like

c(13, 32, 52)

c(13, 33, 51)
=

c(9, 43, 45)

c(9, 42, 46)
=

c(5, 35, 37)

c(5, 34, 38)
= 2,

c(4, 20, 73)

c(4, 19, 74)
= 4. (2)

It was shown in [1] that if H = L(l, h, w, y) is related to S = 〈a, b,N 〉, then
the Frobenius number is

f(〈a, b,N 〉) = max{(l− 1)a+(h− y− 1)b, (l−w− 1)a+(h− 1)b}−N. (3)

Therefore, from the identities c(S) = f(S)+ 1 and (3), arithmetic-like links
between conductors as those appearing in (2) can be though as geometrical-
like relations between related L-shaped MDD tiles.
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When the semigroup is 2-minimally generated, that is S = 〈a, b〉 with
gcd(a, b) = 1, it is well known that his Frobenius number is

f(〈a, b〉) = ab− a− b. (4)

Although this result was published by Sylvester [9] in 1884, it seems to be
true that (4) was given first by Frobenius in his lectures. Therefore, the
conductor is given by the expression c(a, b) = f(〈a, b〉) + 1 = (a− 1)(b− 1).

In this work, several infinite families of pairs of 3-numerical semigroups
are given such that each pair fulfills a (2)-like relation.

2 Computer assisted numerical remarks

Properties in (2) suggest looking for semigroups like

c(α, n,m)

c(α, n − 1,m + 1)
= k, (5)

where 〈α, n,m〉 and 〈α, n − 1,m + 1〉 are 2 and 3 minimally generated nu-
merical semigroups respectively, for different natural numbers n and m and
fixed values of α and k.

������α
k

1 2 3

4 11 0 0
5 0 109 0
6 4 0 1
7 0 55 6
8 4 0 1
9 5 13 3

10 2 0 1

Table 1: Cardinalities of some sets P (α, k, 100)

Let us consider the set

P (α, k, �) = {〈α, n,m〉 | c(α, n,m)

c(α, n − 1,m + 1)
= k, m ≤ �}
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where 〈α, n,m〉 and 〈α, n − 1,m + 1〉 are 2 and 3 minimally generated. A
computer search reveals the cardinality of some sets P (α, k, 100). These
cardinalities are included in Table 1.

Let us consider now the set Q(α, k, �), defined as P (α, k, �) but now both
semigroups 〈α, n,m〉 and 〈α, n − 1,m + 1〉 are 3-minimally generated. The
cardinalities of Q(α, 1, 100), with α = 4, ..., 10, are 276, 5, 0, 15, 0, 218 and 4,
respectively. We have now Q(α, k, 100) = ∅ for (α, k) ∈ {4, ..., 10} × {2, 3}.
Let us denote the sets

P (α, k) =
⋃

�≥α+2

P (α, k, �) and Q(α, k) =
⋃

�≥α+2

Q(α, k, �).

We use the numerical data of this section to search infinite families of
pairs of semigroups belonging to P (α, k) or Q(α, k), for some values of α
and k.

3 Infinite families

In this section we use the L-shaped tile technique included in Section 1 for
finding infinite families of 3-numerical semigroups that belong to P (4, 1),
P (7, 3) and Q(9, 1).

Theorem 5 Let us consider the 3-numerical semigroups St = 〈4, 4t +
3, 8t + 6〉 for t ≥ 1. Then {St}t≥1 ⊂ P (4, 1).

Proof: Let us consider St and Tt = 〈4, 4t + 2, 8t + 7〉. First, we check that
St and Tt are numerical semigroups for t ≥ 1, that is gcd(4, 4t+3, 8t+6) =
gcd(4, 4t + 2, 8t + 7) = 1,

gcd(4, 4t + 3, 8t + 6) = gcd(4, 3, 6) = gcd(3, 2) = 1,

gcd(4, 4t + 2, 8t + 7) = gcd(4, 2, 7) = gcd(2, 7) = 1.

Second, we have to see that St and Tt are 2 and 3 minimally gener-
ated, respectively. To this end, note that 8t + 6 = 2 × (4t + 3) and so
St = 〈4, 4t + 3, 8t + 6〉 = 〈4, 4t + 3〉, that is a 2-minimally generated semi-
group because 4t + 3 can not be a multiple of 4. Consider now Tt =
〈4, 4t + 2, 8t + 7〉, we have that neither 4t + 2 nor 4t + 7 are multiples of 4;
also 8t+7 is not a multiple of 4t+2. Let us see also that 8t+7 /∈ 〈4, 4t + 2〉,
that is 8t + 7 = ct × 4 + dt × (4t + 2) with ct, dt ∈ N, for t ≥ 1; if so, the
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even number ct × 4 + dt × (4t + 2) would equalize the odd one 8t + 7, a
contradiction.

Third, we have to see the identity c(St) = c(Tt), for all t ≥ 1. The
conductor c(St) is easy to compute because St is 2-generated and we can
apply (4), that is c(a, b) = f(a, b)+1 = (a−1)(b−1). So, c(St) = (4−1)(4t+
3 − 1) = 12t + 6. To compute the conductor c(Tt), we use the expression
(3). To this end, we have to find the related sequence of L-shaped minimum
distance diagrams.

Let us see that Tt has related the L-shaped MDD Ht = L(5t+4, 2, 2t+
1, 1), for all t ≥ 1. Obviously gcd(5t + 4, 2, 2t + 1, 1) = 1. Set Nt = 8t + 7,
at = 4, bt = 4t + 2, lt = 5t + 4, ht = 2, wt = 2t + 1 and yt = 1. It is easily
checked that ltht−wtyt = (5t+4)×2− (2t+1) = Nt and the compatibility
equations (1)

ltat − ytbt ≡ 0 (mod Nt)⇔ 20t + 16− 4t− 2 = 16t + 14 ≡ 0 (mod Nt),

htbt −wtat ≡ 0 (mod Nt)⇔ 8t + 4− 8t− 4 = 0 ≡ 0 (mod Nt).

Ht is also an MDD because Theorem 3 is fulfilled, that is ltat > ytbt and
htbt = wtat, for all t ≥ 1. Therefore Ht is related to Tt and we can use the
expression (3) to compute the conductor c(Tt)

c(Tt) = f(Tt)+1 = max{(5t+3)×4+0, (3t+2)×4+4t+3}−8t−7+1 = 12t+6.

Hence, c(St) = c(Tt) as it is stated. �

Theorem 6 Consider the 3-numerical semigroups St = 〈7, 7t + 7, 14t + 9〉
for t ≥ 1. Then {St}t≥1 ⊂ P (7, 3).

Proof: Consider St and Tt = 〈7, 7t + 6, 14t + 10〉. We have gcd(7, 7t +
7, 14t + 9) = gcd(7, 7t + 6, 14t + 10) = 1, so St and Tt are numerical semi-
groups. The semigroup St is minimally 2-generated and St = 〈7, 14t + 9〉,
so his conductor is c(St) = (7− 1)(14t + 9− 1) = 84t + 48.

Let us see that Tt is 3-minimally generated. We have 7 | 7t+6, 7 | 14t+10
and 7t+6 | 14t+10, for all t ≥ 1. We have to see now 14t+10 /∈ 〈7, 7t + 6〉.
If 7 ×mt + (7t + 6) × nt = 14t + 10 with mt, nt ∈ N, then 0 ≤ nt ≤ 1 (if
nt ≥ 2 then nt × (7t + 6) > 14t + 10). If nt = 0, the identity can not be
satisfied, hence nt = 1. So the equality turns to be 7mt = 7t + 4 that has
no solution for mt ∈ N because 7mt ≡ 0(mod 7) and 7t + 4 ≡ 4(mod 7).
Therefore, the semigroup Tt is 3-minimally generated.
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The semigroup Tt has related the L-shaped MDD Ht = L(5t+4, 4, 2t+
2, 3), that is gcd(5t + 4, 4, 2t + 2, 3) = 1, his area is 14t + 10 and Ht fulfills
the compatibility equations (1) and Theorem 3. Therefore, by using (3),
his conductor is

c(Tt) = max{(5t+3)×7+0, (3t+1)×7+3×(7t+6)}−14t−10+1 = 28t+16.

So c(St) = 3c(Tt) as it is stated. �

Theorem 7 Consider the 3-numerical semigroups St = 〈9, 9t + 7, 9t + 12〉
for t ≥ 1. Then {St}t≥1 ⊂ Q(9, 1).

Proof: Consider St ad Tt = 〈9, 9t + 6, 9t + 13〉. From the identities
gcd(9, 9t + 7, 9t + 12) = gcd(9, 9t + 6, 9t + 13) = 1, the semigroups St

and Tt are numerical semigroups. Let us see that both semigroups are
3-minimally generated.

From 9  | 9t+7, 9t+6, 9t+12, 9t+13 and 9t+7  | 9t+12 and 9t+6  | 9t+13,
we have to see 9t+12 /∈ 〈9, 9t + 7〉 and 9t+13 /∈ 〈9, 9t + 6〉. Let us assume
that 9 ×mt + (9t + 7) × nt = 9t + 12 with mt, nt ∈ N and 0 ≤ nt ≤ 1 (if
nt ≥ 2 then nt× (9t+7) > 9t+12). Then nt = 1 because 9  | 9t+12 and so
we have the identity 9mt = 5 for mt ∈ N, that is a contradiction. A similar
argument proves that 9t + 13 /∈ 〈9, 9t + 6〉.

It can be checked that St and Tt have related the L-shaped minimum
distance diagrams L(3t+4, 3, 2t+1, 0) and L(4t+5, 3, 3t+2, 1), respectively.
Therefore, from (3), we have c(St) = c(Tt) = 36t + 30. �
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[6] Rosales, J. C. and Garćıa-Sánchez, P. A. Numerical semigroups. De-
velopments in Mathematics, 20. Springer, New York, 2009, ISBN 978-
1-4419-0159-0.

[7] Sabariego, P. and Santos, F. Triple-loop networks with arbitrarily
many minimum distance diagrams. Discrete Math., 309(6):1672–1684,
2009.

[8] E.S. Selmer. On the linear diophantine Problem of Frobenius. J. Reine
Angewandte Math., 293/294(1):1–17, 1977.

[9] J. J. Sylvester. Mathematical questions and their solutions. Educa-
tional Times, 41:21, 1884.

19





On identifying codes in partial linear spaces

Gabriela Araujo-Pardo and Luis Montejano
Universidad Nacional Autonóma de México
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Universitat Politècnica de Catalunya
Barcelona

Juan Carlos Valenzuela
Universidad de Cádiz
Cádiz

Abstract

Let (P,L, I) be a partial linear space and X ⊆ P ∪ L. Let
us denote by (X)I =

⋃
x∈X{y : yIx} and by [X] = (X)I ∪X.

With this terminology a partial linear space (P,L, I) is said to
admit a (1,≤ k)-identifying code if the sets [X] are mutually
different for all X ⊆ P ∪L with |X| ≤ k. In this paper we give
a characterization of k-regular partial linear spaces admitting a
(1,≤ k)-identifying code. Equivalently, we give a characteriza-
tion of k-regular bipartite graphs of girth at least six admitting
a (1,≤ k)-identifying code. That is, k-regular bipartite graphs
of girth at least six admitting a set C of vertices such that the
sets N [x]∩C are nonempty and pairwise distinct for all vertex
x ∈ X where X is a subset of vertices of |X| ≤ k. Moreover, we
present a family of k-regular partial linear spaces on 2(k−1)2+k
points and 2(k − 1)2 + k lines whose incidence graphs do not
admit a (1,≤ k)-identifying code. Finally, we show that the
smallest (k; 6)-graphs known up to now for k − 1 not a prime
power admit a (1,≤ k)-identifying code.
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1 Introduction

We only consider undirected simple graphs without loops or multiple edges.
Unless otherwise stated, we follow the book by Godsil and Royle [18] for
terminology and definitions.

Let G be a graph with vertex set V = V (G) and edge set E = E(G).
The distance between two vertices u, v in G, dG(u, v) or simply d(u, v),
is the length of a shortest path joining u and v. The degree of a vertex
v ∈ V , denoted by dG(v) or d(v), is the number of edges incident with
v. The minimum degree of G is denoted by δ(G), and a graph is said to
be k-regular if all its vertices have the same degree k. The neighborhood
N(v) of a vertex v is the set of all vertices that are adjacent to v. The
closed neighborhood of v is defined by N [v] = N(v) ∪ {v}. For a vertex
subset X ⊆ V , the neighborhood of X is defined as N(X) = ∪x∈XN(x),
and N [X] = N(X) ∪X. The girth of a graph G is the length of a shortest
cycle and a (k; g)-graph is a k-regular graph with girth g. A (k; g)-cage is
a smallest (k; g)-graph.

Let C be a nonempty subset of V . For X ⊆ V the set of vertices
I(C) = I(C;X) is defined as follows

I(C) =
⋃

x∈X

N [x] ∩ C.

If all the sets I(C) are different for all subset X ⊆ V where |X| ≤ k,
then C is said to be a (1,≤ k)-identifying code in G. In 1998, Kar-
povsky, Chakrabarty and Levitin [22] introduced (1,≤ k)-identifying codes
in graphs. Identifying codes appear motivated by the problem of deter-
mining faulty processors in a multiprocessor system. We say that a graph
G admits a (1,≤ k)-identifying code if there exists such a code C ⊆ V
in G. Not all graphs admit (1,≤ k)-identifying codes, for instance Laiho-
nen [23] pointed out that a graph formed by a set of independent edges
cannot admit a (1,≤ 1)-identifying code, because clearly for all uv ∈ E,
N [u] = {u, v} = N [v]. It is not difficult to see that if G admits (1,≤ k)-
identifying codes, then C = V is also a (1,≤ k)-identifying code. Hence
a graph admits (1,≤ k)-identifying codes if and only if the sets N [X] are
mutually different for all X ⊆ V with |X| ≤ k. Results on identifying codes
in specific families on graphs as well as results on the smallest cardinality
of an identifying code can be seen in [6, 9, 13, 14].
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Laihonen and Ranto [24] proved that if G is a connected graph with at
least three vertices admitting a (1,≤ k)-identifying code, then the minimum
degree is δ(G) ≥ k. Gravier and Moncel [17] showed the existence of a
graph with minimum degree exactly k admitting a (1,≤ k)-identifying code.
Recently, Laihonen [23] proved the following result.

Theorem 1 [23] Let k ≥ 2 be an integer.

(i) If a k-regular graph has girth g ≥ 7, then it admits a (1,≤ k)-
identifying code.

(ii) If a k-regular graph has girth g ≥ 5, then it admits a (1,≤ k − 1)-
identifying code.

According to item (ii) of Theorem 1, all (k; 6)-graphs admit a (1,≤ k − 1)-
identifying code. The main aim of this paper is to approach the prob-
lem of characterizing bipartite (k; g)-graphs for g ≥ 6 admitting (1,≤ k)-
identifying codes. To do that we consider a bipartite graph as the incidence
graph of a partial linear space (P,L, I) [18]. A point p ∈ P and a line L ∈ L
are said to be incident if (p, L) ∈ I ⊆ P×L and for short this is denoted by
pIL or LIp. A partial linear space is an incidence structure in which any
two points of P are incident with at most one line of L. This implies that
any two lines are incident with at most one point. The incidence graph B
of a partial linear space (P,L, I) is the graph with vertex set V (B) = P ∪L
and edge set E(B) = I, i.e., two vertices are adjacent if and only they are
incident. It is easy to check that B is a bipartite graph of girth at least 6.
A partial linear space (P,L, I) is said to be k-regular if every line is inci-
dent with k points and every point is incident with k lines. Obviously the
incidence graph of a k-regular partial linear space is a k-regular bipartite
graph.

First, we define a partial linear space admitting a (1,≤ k)-identifying
code. In our main theorem we give a characterization of k-regular partial
linear spaces admitting a (1,≤ k)-identifying code. As a consequence of this
result, we show that minimal (k; 6)-cages, which are the incidence graphs
of projective planes of order k − 1, do not admit a (1,≤ k)-identifying
code. Moreover, we present a family of k-regular partial linear space on
2(k − 1)2 + k points and 2(k − 1)2 + k lines whose incidence graphs do
not admit a (1,≤ k)-identifying code. Finally, we show that the smallest
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(k; 6)-graphs known up to now and constructed in [1, 2, 3, 4, 5, 7, 16] for
k − 1 not a prime power admit a (1,≤ k)-identifying code.

The paper is organized as follows. In the next section we present our
main theorem and we give a construction of a family of k-regular partial
linear spaces without (1,≤ k)-identifying codes. In the final section we
apply the theorem to show certain families of small (k; 6)-graphs that have
(1,≤ k)-identifying codes.

2 Main theorem

Let (P,L, I) be a partial linear space and X ⊆ P∪L. Following Dembowski
[10], let us denote by (X)I =

⋃
x∈X{y : yIx} and by [X] = (X)I ∪X. With

this terminology we give the following definition.

Definition 2 A partial linear space (P,L, I) is said to admit a (1,≤ k)-
identifying code if and only if the sets [X] are mutually different for all
X ⊆ P ∪ L with |X| ≤ k.

As an immediate consequence of Theorem 1 we can write the following
corollary.

Corollary 3 Let k ≥ 2 be an integer. A k-regular partial linear space
(P,L, I) admits a (1,≤ k − 1)-identifying code.

Next, we present a characterization of k-regular partial linear spaces
admitting a (1,≤ k)-identifying code as well as some consequences.

Theorem 4 Let k ≥ 2 be an integer. A k-regular partial linear space
(P,L, I) admits a (1,≤ k)-identifying code if and only if the following two
conditions hold:

(i) For every two collinear points u, p ∈ P there exists a point z ∈ P
which is collinear with just one of u, p. Equivalently, for every u, p ∈
P such that |(u)I ∩ (p)I | = 1, there exists z ∈ P such that |(u)I ∩
(z)I |+ |(p)I ∩ (z)I | = 1.

(ii) For every two concurrent lines L,M ∈ L there exists a line Λ ∈ L
which is concurrent with just one of L,M . Equivalently, for every
L,M ∈ L such that |(L)I ∩ (M)I | = 1, there exists Λ ∈ L such that
|(L)I ∩ (Λ)I |+ |(M)I ∩ (Λ)I | = 1.
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Proof: Suppose that (P,L, I) admits a (1,≤ k)-identifying code and that
there exist two concurrent lines M,L ∈ L such that

for every line Λ ∈ L, |(M)I ∩ (Λ)I | = 1 iff |(L)I ∩ (Λ)I | = 1. (1)

Let (M)I ∩(L)I = {p} and consider the sets X = {M}∪((L)I − p) ⊂ P∪L
and Y = {L}∪((M)I − p) ⊂ P∪L. Observe that X = Y and |X| = |Y | = k
because (P,L, I) is k-regular. Then

[X] = [M ] ∪ ((L)I − p) ∪⋃
h∈(L)I−p{Λ ∈ L : ΛIh},

[Y ] = [L] ∪ ((M)I − p) ∪⋃
h∈(M)I−p{Λ ∈ L : ΛIh}.

Clearly [X] ∩ P = (M)I ∪ ((L)I − p) = [Y ] ∩ P; and [X] ∩ L = {M,L} ∪⋃
h∈(L)I−p{Λ ∈ L : ΛIh} and [Y ]∩L = {M,L}∪⋃

h∈(M)I−p{Λ ∈ L : ΛIh}.
Assumption (1) yields to [X] ∩L = [Y ]∩L meaning that [X] = [Y ], which
is a contradiction with the hypothesis that (P,L, I) admits a (1,≤ k)-
identifying code. We may reason analogously to prove that there are no
two collinear points p, q ∈ P such that for every point r ∈ P, |(p)I ∩ (r)I | =
1 iff |(q)I ∩ (r)I | = 1.

Conversely, suppose that (P,L, I) does not admit a (1,≤ k)-identifying
code and let us assume that for every two elements u, v ∈ P ∪ L such that
|(u)I ∩ (v)I | = 1, there exists z ∈ P ∪ L, for which

|(u)I ∩ (z)I |+ |(v)I ∩ (z)I | = 1.

By Corollary 5, (P,L, I) admits (1,≤ k−1)-identifying codes and hence
[X] = [Y ] holds for all X,Y ⊆ P ∪L such that |X|, |Y | ≤ k− 1. According
to our assumption, there must exist two different sets X,Y ⊆ P ∪ L such
that max{|X|, |Y |} = k and [X] = [Y ]. Without loss of generality, we may
assume that X,Y ⊆ P ∪ L, X = Y , |X| = k, |Y | ≤ k and [X] = [Y ].

First, let us see that |Y | = k. Let x ∈ X \ Y , then (x)I ⊂ [X] = [Y ].
Since x /∈ Y it follows that ([w]− x) ∩ Y = ∅ for all w ∈ (x)I . Moreover as
two points are incident with at most one line and two lines are incident with
at most one point, we have ([w]− x) ∩ ([w′]− x) = ∅ for all w,w′ ∈ (x)I ,
w = w′. Therefore |Y | ≥ |(x)I | = k, giving |Y | = k.

Now let us see that each X and Y must contain both points and lines.
Otherwise suppose that X ⊆ P, then [X] ∩ P = X. In this case if Y ⊆ P
then [Y ] ∩ P = Y yielding that X = Y because [X] = [Y ], which is a
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contradiction. Therefore there exists L ∈ Y ∩ L, hence (L)I ⊆ [Y ] ∩ P =
[X] ∩ P = X, which implies (L)I = X because |(L)I | = k, as (P,L, I) is
k-regular, and |X| = k. As two lines have at most one common point and
k ≥ 2 we have Y ∩L = {L}. Further, Y ∩P ⊆ [Y ]∩P = [X]∩P = X, hence
we may assume that Y = {x1, . . . , xk−1, L} and X = {x1, . . . , xk} = (L)I .
As k ≥ 2 we can take L′ = L such that (L′)I ∩(L)I = {xk}, i.e., L′ ∈ Y and
L′ ∈ (xi)I for i = 1, . . . , k − 1, yielding that L′ ∈ [X] \ [Y ], a contradiction
because [X] = [Y ]. Thus X ⊆ P. Analogously, Y ⊆ P, and changing points
for lines we may check that X ⊆ L, and Y ⊆ L.

Henceforth, let us assume that

X ∩ P = {x1, . . . , xs},X ∩ L = {Ls+1, . . . , Lk},

Y ∩ P = {y1, . . . , yr}, Y ∩ L = {Mr+1, . . . ,Mk}
and let us prove the following claim.

Claim 1 (i) (xi)I ∩ {Ls+1, . . . , Lk} = ∅ for all i = 1, . . . , s.

(ii) (yi)I ∩ {Mr+1, . . . ,Mk} = ∅ for all i = 1, . . . , r.

Proof: First, suppose that yj ∈ {x1, . . . , xs} for some j ∈ {1, . . . , r}. As
yj ∈ Y we have

(yj)I ⊆ [Y ] ∩ L = [X] ∩ L = {Ls+1, . . . , Lk} ∪ (x1)I ∪ · · · ∪ (xs)I .

As |(yj)I | = k and |(yj)I ∩ (xi)I | ≤ 1, then {Ls+1, . . . , Lk} ⊂ (yj)I , |(yj)I ∩
(xi)I | = 1 for all i = 1, . . . , s, and (yj)I ∩ (xi)I ∈ {Ls+1, . . . , Lk}. Hence
(xi)I ∩ {Ls+1, . . . , Lk} = ∅, so item (i) of the claim is true in this case.
Second, suppose {y1, . . . , yr} ⊆ {x1, . . . , xs}, then there exists a line Mj ∈
{Ls+1, . . . , Lk} because X = Y. We have (Mj)I ⊆ [X] ∩ P = [Y ] ∩ P.
Therefore changing points for lines and reasoning as before it follows that
{x1, . . . , xs} ⊂ (Mj)I , |(Mj)I ∩ (Li)I | = 1 for all i = s + 1, . . . , k, and
(Mj)I ∩ (Li)I ∈ {x1, . . . , xs}, hence (xi)I ∩ {Ls+1, . . . , Lk} = ∅, so item (i)
of the claim holds. The proof of (ii) is analogous.

Now, suppose that Y ∩L = {Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk}. Without
loss of generality assume that Mj = Lj, j = r + 1, . . . , k. Hence [X] ∩ P =
{x1, . . . , xs}∪(Ls+1)I ∪· · ·∪(Lk)I = [Y ]∩P = {y1, . . . , yr}∪(Lr+1)I ∪· · ·∪
(Lk)I . Claim 1, yields that {x1, . . . , xs} ⊂ {y1, . . . , yr} and {Ls+1, . . . , Lr}∩
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Y = ∅, otherwise X = Y which is a contradiction. Therefore, |(Ls+1)I ∩
{y1, . . . , yr}| ≤ r−s, and as |(Ls+1)I ∩(Lj)I | ≤ 1 for all j = r+1, . . . , k, we
have |(Ls+1)I | ≤ r−s+k−r = k−s < k which is a contradiction. Therefore
{Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk} and in analogous way it is proved that
{Ls+1, . . . , Lk} ⊆ {Mr+1, . . . ,Mk}.

Next, suppose that s ≥ 2 and take M ∈ {Mr+1, . . . ,Mk}\{Ls+1, . . . , Lk}.
We have (M)I ⊂ [Y ] ∩ P = [X] ∩ P = {x1, . . . , xs} ∪ (Ls+1)I ∪ · · · ∪ (Lk)I .
As |(M)I | = k, {x1, . . . , xs} ⊂ (M)I and |(M)I ∩ (Li)I | = 1 for all
i = s + 1, . . . , k; thus M must be unique because s ≥ 2. Therefore
Y ∩ L = {Mr+1, . . . ,Mk} ⊆ {Ls+1, . . . , Lk} ∪ {M}. Without loss of gener-
ality assume that Y ∩ L = {M,Lr+2, . . . , Lk}. Again, (yj)I ⊆ [X] ∩ L =
{Ls+1, . . . , Lk}∪ (x1)I ∪ · · · ∪ (xs)I . By Claim 1, (yj)I ∩{Lr+2, . . . , Lk} = ∅
and as |(yj)I∩

⋃s
i=1(xi)I | ≤ s, then k = |(yj)I | ≤ (r+1−s)+s = r+1, so r ≥

k− 1. Hence Y = {y1, . . . , yk−1}∪ {M}. Now, take L ∈ X ∩L, L = M . As
(L)I ⊆ [Y ]∩P, reasoning as before we obtain that (L)I = {y1, . . . , yk−1} ∪
((L)I ∩(M)I) yielding that L must be unique, so X = {x1, . . . , xk−1}∪{L}.
As [X] ∩ P = [Y ] ∩ P = {x1, . . . , xk−1} ∪ (L)I = {y1, . . . , yk−1} ∪ (M)I , it
follows that (M)I = {x1, . . . , xk−1} ∪ ((L)I ∩ (M)I). Hence L and M are
two concurrent lines such that every line Λ is concurrent with L if and only
if Λ is concurrent with M because [X] ∩ L = [Y ] ∩ L. In other words, L
and M satisfy (1), which is a contradiction with the hypothesis (ii).

It remains to study the case s = 1 so that X = {x1, L2, . . . , Lk}. If
r ≥ 2 reasoning as for the case s ≥ 2 we get that s ≥ k − 1 meaning
that k = 2 which is a contradiction with the fact that 2 ≤ r < k. Thus
we get that r = 1 and so Y = {y1,M2, . . . ,Mk}. By Claim 1, (x1)I =
{M2, . . . ,Mk} ∪ ((x1)I ∩ (y1)I) and (y1)I = {L2, . . . , Lk} ∪ ((x1)I ∩ (y1)I).
Hence x1 and y1 are two collinear points such that every point z is collinear
with x1 if and only if z is collinear with y1, contradicting the hypothesis
(i). �

As an immediate consequence of Theorem 4 we get the following the-
orem which is a characterization of k-regular bipartite graphs of girth at
least 6 admitting a (1,≤ k)-identifying code.

Theorem 5 A k-regular bipartite graph B of girth at least 6 admits a (1,≤
k)-identifying code if and only if for every two vertices u, v ∈ V (B) such
that |N(u) ∩N(v)| = 1, there exists z ∈ V (B) in such a way that |N(u) ∩
N(z)|+ |N(v) ∩N(z)| = 1.
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3 Families of small (k, 6)-graphs without (1,≤ k)-
identifying codes

A projective plane of order k−1 is a k-regular partial linear space such that
any two distinct points are collinear and any two distinct lines are concur-
rent. A minimal (k; 6)-cage is a bipartite graph which can be obtained as
the incidence graph of a projective plane of order k− 1. Using the proper-
ties of projective planes it is not difficult to check that a projective plane
of order k − 1 does not admit a (1,≤ k)-identifying code as a consequence
of Theorem 4. And in the same way it is shown that a minimal (k; 6)-cage
has no (1,≤ k)-identifying code as a consequence of Theorem 5.

Corollary 6 (i) A projective plane of order k−1 does not admit a (1,≤
k)-identifying code.

(ii) A minimal (k; 6)-cage does not admit a (1,≤ k)-identifying code.

Projective planes are not the unique partial linear spaces which do not
admit a (1,≤ k)-identifying code. For instance, Figure 1 depicts on the right
side a partial linear space of 11 points and 11 lines which does not admit
(1,≤ 3)-identifying codes. On the left side we can see the corresponding
(3; 6)-bipartite graph on 22 vertices. It is easy to find two different lines L
and M satisfying condition (1) of the proof of Theorem 4. So this graph
does not admit (1,≤ 3)-identifying codes. In the next theorem we construct
a family of k-regular partial linear spaces without (1,≤ k)-identifying codes.
The partial plane of Figure 1 belongs to this family.

Theorem 7 Let (P,L, I) be a projective plane of order k − 1 ≥ 2 and
consider a point p0 ∈ P and a line L0 ∈ (p0)I ∩ L. Let L0 = L \ (p0)I and
P0 = P \ (L0)I and take L′0, P ′0 disjoint copies of L0 and P0, respectively.
Observe that |L0| = |P0| = (k − 1)2, thus we can consider a bijection

f : P ′0 → L′0. Let us define a new incidence structure
(
P ∪ P ′0,L ∪ L′0, I ′f

)
as follows.

1. For all (z′,M) ∈ (P ∪ P ′0)× (L \ L0), z′I ′fM iff z′ ∈ P and z′IM .

2. For all (z′,M) ∈ (P ∪ P ′0)× L0, z′I ′fM iff{
z′ ∈ P \ P0 and z′IM ;
z′ ∈ P ′0 and zIM, where z ∈ P0 is the copy of z′.
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L
M

Figure 1: A (3,6)-bipartite graph on 22 vertices without (1,≤ 3) codes and its
corresponding partial linear space.

3 For all (z′,M ′) ∈ (P ∪ P ′0)× L′0, z′I ′fM ′ iff{
z′ ∈ P0 and z′IM where M ∈ L0 is the copy of M ′;
z′ ∈ P ′0 and f(z′) = M ′.

Then
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is a k-regular partial linear space on 2(k−1)2+k

points and 2(k − 1)2 + k lines without (1,≤ k)-identifying codes.

Proof: First let us see that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is a partial linear space.

To do that let us show that two distinct lines A′, B′ ∈ L ∪ L′0 have at
most one point in common. Let z′ be a point such that z′I ′fA′ and z′I ′fB′.
Due to the rules given in 1 and 2 and from the fact that (P,L, I) is a
projective plane it follows that z′ is unique if both A′ and B′ are in L. If
both lines A′ and B′ are in L′0, then z′ ∈ P0 because the rule 3, so z′ is
unique. And finally if A′ ∈ L0 and B′ ∈ L′0 the unique possible point in
common is z′ ∈ P ′0 such that f(z′) = B′ and A′Iz (in the projective plane)
where z is the copy of z′. By duality it can be shown that there exists at
most one line through two distinct points. (In Figure 2 it is depicted the

incidence graph corresponding to
(
P ∪ P ′0,L ∪ L′0, I ′f

)
, where (P,L, I) is

the projective plane of order 2. This graph is also depicted in Figure 1.)
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Next let us see that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
is k-regular. It is clear that

(p0)I′f = (p0)I , i.e., every line in the set {M ∈ L ∪ L′0 : MI ′fp0} is incident

with the same k points as in the projective plane (P,L, I). Moreover, a
line M ∈ L0 is incident with one point from P \ P0 and k − 1 points from
P ′0 because the rule 2. And a line M ∈ L′0 is incident with k − 1 points
from P0 and one point from P ′0 due to the rule 3.

Finally observe that
(
P ∪ P ′0,L ∪ L′0, I ′f

)
has no (1,≤ k)-identifying

codes because any two lines from the set {M ∈ L ∪ L′0 : MI ′fp0, M = L0}
satisfy the property (1) given in the proof of Theorem 4. �

p0 L0

P0

L′0

L0

P ′0

Figure 2: The incidence graph of
(
P ∪ P ′

0
,L ∪ L′

0
, I ′f

)
, where (P ,L, I) is the

projective plane of order 2.

4 Families of small (k, 6)-graphs with (1,≤ k)-iden-

tifying codes

Minimal (k; 6)-cages are known to exist when k − 1 is a prime power. The
order of any (k; 6)-cage is denoted by n(k; 6). A new way for constructing
projective planes via its incidence matrices is given in [5]. By removing
some rows and columns from these matrices some new bipartite (k; 6)-
graphs with 2(qk− 1) vertices are obtained for all k ≤ q where q is a prime
power [5]. The same result is also obtained in [3], but finding these graphs
as subgraphs of the incidence graph of a known projective plane. For k = q
the same result is obtained in [1], also using incidence matrices. Moreover
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in [5] the incidence matrix of a (q − 1; 6)-regular balanced bipartite graph
on 2(q(q − 1) − 2) vertices was obtained. When q is a square and is the
smallest prime power greater than or equal to k − 1, (k; 6)-regular graphs
with order 2(kq − (q − k)(

√
q + 1) − √q) have been constructed in [16].

Recently, these results have been improved finding new bipartite (k; 6)-
graphs with 2(qk − 2) vertices for all k ≤ q where q is a prime power [2].
These graphs have the smallest number of vertices known so far among the
regular graphs with girth 6 yielding that n(k; 6) ≤ 2(qk − 2) is the best
upper bound known up to now. More details about constructions of cages
can be found in the survey by Wong [25] or in the survey by Holton and
Sheehan [21] or in the more recent dynamic cage survey by Exoo and Jajcay
[12]. In this later survey some of the above mentioned constructions are
described in a geometric way.

The main aim of this section is to prove that the mentioned new small
bipartite (k; 6)-graphs for all k ≤ q where q is a prime power constructed
in [1, 2, 3, 4, 5, 7, 16] admit a (1,≤ k)-identifying code. With this aim
we shall verify that the corresponding partial k-regular linear space admits
(1,≤ k)-identifying code by means of Theorem 4. We recall some geometric
notions introduced in [2, 16]. A generalized d-gon of order k−1 is a partial
linear space whose incidence graph is a k-regular bipartite graph with girth
2d and diameter d. Finite generalized d-gons exist only for d ∈ {3, 4, 6} (see
[8, 18]). When d = 3, a 3-gon of order k − 1 is a projective plane of order
k − 1 (see [8, 18]). A t-good structure in a generalized d-gon (see [16]) is a
pair (P∗,L∗) consisting of a set of points P∗ and a set of lines L∗ satisfying
the following conditions:

1. Any point not belonging to P∗ is incident with t lines contained in L∗.

2. Any line not belonging to L∗ is incident with t points contained in P∗.

Clearly, by removing the points and lines of a t-good structure from a
(q + 1)-regular generalized d-gon, we obtain a (q + 1 − t)-regular partial
linear space. Its incidence graph is a balanced bipartite (q + 1− t)-regular
graph of girth at least 2d.

Let (P,L, I) be a partial linear space, we say that an incidence pIL
is deleted if the point p is not removed from P, but the line L of L is
replaced with the new line L − p. The point p is said to be separated
from the line L. In [2], (t + 1)-good structures were generalized by defining
(t + 1)-coregular structures using this removal incidence. An ordered triple
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(P0,L0,I0), whose elements are a set of points P0, a set of lines L0 and a set
of incidences I0, is said to be a (t + 1)-coregular structure in a generalized
d-gon (see [2]) if the removal from a (q + 1)-regular d-gon of the points in
P0, the lines in L0 and the incidences in I0 leads to a new (q − t)-regular
partial linear space. Obviously, its incidence graph is a bipartite (q − t)-
regular graph with girth at least 2d. More precisely, in [2] the following
(t+1)-coregular structures in projective planes of order q for t ≤ q−2 were
found.

Theorem 8 [2] Let (P,L, I) be a projective plane of order q and L∗ ∈ L
such that (L∗)I = {p, x1, . . . , xq}. Let (p)I = {L∗, L1

p, . . . , L
q
p} be the set of

lines passing through p. The following structures (P0,L0,I0) are (t + 1)-
coregular for 0 ≤ t ≤ q − 2:

t = 0 : P0 = {x1} ∪ (L1
p)I ; L0 = {L1

p} ∪ (x1)I ; I0 = ∅.

t ≥ 1 : P0 = {x1, x2, . . . , xt+1} ∪ (L1
p)I ∪ (L2

p)I ∪ · · · ∪ (Lt
p)I ∪ (M)I

where M ∈ (xt+2)I − L∗;

L0 = {L1
p, L

2
p, . . . , L

t
p,M} ∪ (x1)I ∪ · · · ∪ (xt)I

∪

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(x2)I if t = 1

(xt+1)I − {A1, . . . , At−1} if t ≥ 2, where Ai ∈ (xt+1)I − L∗

is the line connecting xt+1 and
M ∩ Li

p, i = 1, . . . , t− 1;

I0 = {xjIL : L ∈ (xj)I such that M ∩ Li
p ∈ (L)I for some i ∈ {1, . . . , t},

j = t + 3, . . . , q}
∪{aijILj

p : aij = Ai ∩ Lj
p, j = t + 1, . . . , q, i = 1, . . . , t− 1, t ≥ 2}.

It is not difficult to check that the partial linear spaces whose incidence
graphs are the bipartite graphs constructed in [1, 2, 3, 4, 5, 7, 16] are
obtained by removing (t + 1)-good or (t + 1)-coregular structures from
projective planes. For all the constructions contained in these papers it is
not difficult to verify the following remark:

Remark 9 If Π′ is a partial linear space obtained by removing a t-good
or a t-coregular structure from a projective plane Π and p is a removed or
separated point, then p is incident to either q− t + 1 or to q− t + 2 lines in
Π′. Moreover, in a special construction using Baer Subplanes and t-good
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structures in projective planes of order square prime powers (see [16]), the
removed points are incident with exactly q −√q − t + 1 lines in Π′.

It is worth noting that in all the constructions of k-regular partial linear
spaces contained in [1, 2, 3, 4, 5, 7, 16], the smallest prime power q with
k ≤ q and an integer t ≥ 1 such that k = q + 1 − t are considered. Then,
using the following result concerning with the existence of prime numbers
in short intervals, we prove Theorem 11.

Theorem 10 [11]

(i) If k ≥ 3275 then the interval [k, k(1+ 1
2ln2(k)

)] contains a prime num-

ber.

(ii) If 6 ≤ k ≤ 3276 then the interval [k, 7k
6 ] contains a prime power.

The Bertran’s postulate states (see [19]) that for every k > 2 there
exists a prime q verifying the inequality k < q < 2k. In this work we will
take advantage from Theorem 10, because we only need to check the less
restrictive inequality q < 2k − 2.

Theorem 11 Let q > 2 be a prime power and t < q+1 an integer. Suppose
that 2t < q or if q is a square prime power that t ∈ (q′, q) where q′ is also a
prime power such that there is no prime power in the interval (q′, q). If Π′

is a (q + 1− t)-regular partial plane constructed by removing a t-good or a
t-coregular structure from a projective plane Π of order q, then Π′ admits
a (1,≤ k)-identifying code.

Proof: Assume that Π′ does not admit a (1,≤ k)-identifying code and let
L and M be two concurrent lines in Π′ that satisfy the condition (1) in
the proof of Theorem 4 with {p} = (L)I ∩ (M)I . Let p1 be a removed or
separated point from L− p. Suppose that there are exactly a lines incident
to p1 in Π′ (without considering L). If some of these lines had a common
point with M in Π′, then Π′ would admit a (1,≤ k)–identifying code by
Theorem 4 which is a contradiction with our assumption. Then any of these
lines have in common with M points that are not in Π′ or that have been
separated from M . As M is incident to exactly t points in the projective
plane which are not incident to M in Π′ (they are removed or separated
points), then a must be equal to t.Therefore, by Remark 9, we have the
following three cases:
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• If p1 is incident to q − t + 1 lines in Π′, then a = q − t (the number
of lines in Π′ except L). Hence q − t = t, i.e. q = 2t. This is a
contradiction with the hypothesis 2t < q.

• If p1 is incident to q − t + 1 lines in Π′, then a = q − t + 1 = t, which
is again a contradiction .

• If q is a square prime power, then p1 is incident to q−√q− t+1 lines
in Π′ and 2t = q − √q. Then q = 22α and t = 22α−1 − 2α−1, which
is a contradiction to the hypothesis t ∈ (

√
q, q), because

√
q = 2α is

also a prime power.

Reasoning as above and taking into account the dual of Remark 9 it is
straightforward to prove that there are not two concurrent points p and q in
Π′ such that for any point r in Π′ we have |(p)I∩(r)I | = 1 iff |(q)I∩(r)I | = 1.

Then, we can conclude that Π′ admits a (1,≤ k)-identifying code. �

As an immediate consequence of Theorem 11, we can write the following
corollary.

Corollary 12 (i) The k-regular parcial linear spaces whose incidence
graphs are the (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit
a (1,≤ k)-identifying code.

(ii) The (k; 6)-graphs constructed in [1, 2, 3, 4, 5, 7, 16] admit a (1,≤ k)-
identifying code.

In Figure 3, a 3-regular linear space of 8 points and 8 lines is depicted.
It is obtained by removing from a projective plane of order 3 a 1-coregular
structure, see [2]. On the right side it is shown its corresponding bipartite
graph on 16 vertices.
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Figure 3: A 3-regular partial linear space of 8 points and 8 lines admitting (1,≤ 3)-
identifying code and its corresponding (3,6)-bipartite graph on 16 vertices.
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[16] A. Gács and T. Héger. On geometric constructions of (k, g)-graphs.
Contrib. to Discrete Math., 3(1):63–80,2008.

[17] S. Gravier and J. Moncel. Constructions of codes identifying sets of
vertices. Electron. J. Combin., 12:R13, 2005.

[18] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, New York,
2000.

36



On identifying codes in partial linear spaces G. Araujo-Pardo et al.

[19] G.H. Hardy and E.M. Wright. An introduction on the theory numbers,
5-th ed. Clarendon, Oxford XVI, 1979.

[20] J.W.P Hirschfield. Projective geometries over finite fields, 2nd Ed.
Clarendon, Oxford, 1995.

[21] D.A. Holton and J. Sheehan. The Petersen graph. Australian Math-
ematical Society Lecture Series 7. Cambridge University Press, Cam-
bridge, 1993, Chapter 6: Cages, pp. 183–213.

[22] M. Karpovsky, K. Chakrabarty and L. Levitin. On a new class of
codes for identifying vertices in graphs. IEEE Trans. Inform. Theory,
44:599–611, 1998.

[23] T. Laihonen. On cages admitting identifying codes. European J. Com-
bin., 29:737–741, 2008.

[24] T. Laihonen and S. Ranto. Codes identifying sets of vertices. Lecture
Notes in Comput. Sci., 2227:82–91, 2001.

[25] P. K. Wong. Cages-a survey. J Graph Theory, 6: 1–22, 1982.

37





Subdivisions in a bipartite graph

Camino Balbuena
Universitat Politècnica de Catalunya
Barcelona

Mart́ın Cera and Pedro Garćıa-Vázquez
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Abstract

Given a bipartite graph G with m and n vertices, respectively,
in its vertices classes, and given two integers s, t such that
2 ≤ s ≤ t, 0 ≤ m−s ≤ n−t, and m+n ≤ 2s+t−1, we prove that
if G has at least mn− (2(m− s) + n− t) edges then it contains
a subdivision of the complete bipartite K(s,t) with s vertices
in the m-class and t vertices in the n-class. Furthermore, we
characterize the corresponding extremal bipartite graphs with
mn − (2(m − s) + n − t + 1) edges for this topological Turan
type problem.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or
multiple edges are considered. Unless otherwise stated, we follow [5] for
terminology and definitions.

Two well-known extensions of the Turán problem [19] are the Turán
topological problem and the Zarankiewicz problem. The former one con-
sists of estimating the extremal function ex(n, TKp) which denotes the
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maximum number of edges of a graph on n vertices free of a topologi-
cal minor TKp of a complete graph on p vertices (see Bollobás’ excellent
monograph [4] devoted to this subject and the contributions on this topic
[1, 13, 11, 16, 15, 18]). The second was stated by Zarankiewicz [20] who
studied the maximum size of a bipartite graph on (m,n) vertices, denoted
by z(m,n; s, t) that contains no bipartite complete K(s,t) subgraph with s
vertices in the m-class and t vertices in the n-class. For a survey of this
problem we also refer the reader to Section VI.2 of [4]. Most of the contri-
butions are bounds for the function z(m,n; s, t) when s, t are fixed and m,n
are much larger than s, t (see, for example, [6, 7, 8]). Other contributions
provide exact values of the extremal function [2, 9, 10].

Recent results on some problems involving the contention of a complete
bipartite graph or a subdivision of a complete bipartite graph can be found
in the literature [3, 12, 14, 17]. Böhme et al. [3] studied the size of a
k-connected graph free of either an induced path of a given length or a
subdivision of a complete bipartite graph. Kühn and Osthus [12] proved
that for any graph H and for every integer s there exists a function f =
f(H, s) such that every graph of size at least f contains either a Ks,s as a
subgraph or an induced subdivision of H. Meyer [17] also relates the size
of a graph with the property of containing a minor of Ks,t. Other problems
involving the contention of maximum matching in graphs are considered in
[14].

Combining the topological version of the Turán problem for complete
graphs with the Zarankiewicz problem, we introduce the extremal function
tz(m,n; s, t) as a natural extension. The function tz(m,n; s, t) is defined
as the maximum size of a (m,n)-bipartite graph free of a topological minor
TK(s,t) of a complete bipartite K(s,t) with s vertices in the m-class and t
vertices in the n-class. The objective of this paper is to obtain exact values
for this extremal function tz(m,n; s, t) and to characterize the correspond-
ing extremal bipartite graphs for infinitely many related values of m,n, s, t.
Namely, we determine the exact value of tz(m,n; s, t) and we character-
ize the family TZ(m,n; s, t) of extremal graphs for any values of m,n, s, t
satisfying 2 ≤ m− s ≤ n− t and m + n ≤ 2s + t− 1.

A subdivision of a graph H is a graph TH obtained from H by replacing
the edges of H with internally disjoint paths. The branch vertices of TH are
all those vertices that correspond to vertices of H. The complete bipartite
graph K(s,t) is said to be a topological minor of a bipartite graph G if
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TK(s,t) ⊆ G.
Given two positive integers, m, n, a bipartite graph G with vertex

classes X and Y of cardinalities |X| = m and |Y | = n, is denoted by G =
(X,Y ). The sets of vertices and edges of G are denoted by V (G) = X ∪ Y
and E(G), respectively, whereas v(G) and e(G) stand for the corresponding
cardinalities.

For a bipartite graph H = (X,Y ), the degree of a vertex v in the
graph H is denoted by dH(v) whereas ΔX(H) (resp. ΔY (H)) stand for
the maximum degree among vertices in the first class (resp. second class).
Thus, Δ(H) = max{ΔX(H),ΔY (H)} is the maximum degree of H. Let us
consider two subsets of vertices {x1, x2, . . . , xp} ⊆ X and {y1, y2, . . . , yp} ⊆
Y . Let us denote by H0,0 = H, H1,0 = H − {x1}, H1,1 = H1,0 − {y1},
and for all i = 2, . . . , p, let us denoted by Hi,i−1 = Hi−1,i−1 − {xi} and
Hi,i = Hi,i−1 − {yi} . Next we introduce the notion of decreasing sequence
of vertices in a bipartite graph H = (X,Y ).

Definition 1 Given an integer p ≥ 1 and a bipartite graph H = (X,Y ),
a subset of vertices of H, {x1, y1, x2, y2, . . . , xp, yp}, with {x1, . . . , xp} ⊆ X
and {y1, . . . , yp} ⊆ Y , is called a decreasing sequence of H if the following
assertions hold:

(i) dHi−1,i−1(xi) = ΔX(Hi−1,i−1), for i = 1, . . . , p.

(ii) dHi,i−1(yi) = ΔY (Hi,i−1), for i = 1, . . . , p.

(iii) For each i = 1, . . . , p, either xiyi ∈ E(H) or every vertex y ∈
V (Hi,i−1) ∩ Y with degree dHi,i−1(y) = ΔY (Hi,i−1) is adjacent to
vertex xi in H.

Note that

dH0,0(x1) ≥ dH1,1(x2) ≥ . . . ≥ dHp−1,p−1(xp) ≥ ΔX(Hp,p)

and
dH1,0(y1) ≥ dH2,1(y2) ≥ . . . ≥ dHp,p−1(yp) ≥ ΔY (Hp,p),

and furthermore,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p).

41



Subdivisions in a bipartite graph C. Balbuena et al.

2 Exact values

Let G be a bipartite graph G = (X,Y ) on m and n vertices in X and Y
respectively. We will henceforth use H to denote the bipartite complement
of G, i.e., the bipartite graph H = (X,Y ) = K(m,n) − E(G).

The problem of finding a TK(s,t) in a bipartite graph G can be for-
mulated in terms of its bipartite complement H. Indeed, if G = (X,Y )
contains a TK(s,t) with set of branch vertices S ∪ T , S ⊂ X, T ⊂ Y , then
the edges of the graph H[S ∪T ] are missing in G and thus they must be re-
placed in G with internally disjoint paths passing through vertices of X \S
and vertices of Y \ T . Since each of these paths must have odd length at
least 3, it follows that e (H[S ∪ T ]) ≤ min{|X \ S|, |Y \ T |}. Hence, the
following necessary but not sufficient condition on the induced subgraph
H[S ∪ T ] in order to determine whether K(s,t) is a topological minor of G
is immediate.

Remark 2 Let G = (X,Y ) be with |X| = m and |Y | = n and let H be
the bipartite complement of G. If G contains a TK(s,t), then there exist
S ⊆ X and T ⊆ Y with |S| = s, |T | = t, such that the number of edges of
the subgraph induced by S ∪ T in the bipartite complement of G satisfies

e (H[S ∪ T ]) ≤ min{m− s, n− t}.

By using Remark 2, the following proposition provides a lower bound
on the maximum size of a (m,n)-bipartite graph free of a topological minor
TK(s,t) of K(s,t).

Proposition 3 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 0 ≤ m− s ≤
n− t, and m + n ≤ 2s + t− 1. Then the bipartite graph G = K(m,n) −M ,
where M is any matching of cardinality 2(m − s) + n − t + 1, does not
contain TK(s,t) and therefore,

tz(m,n; s, t) ≥ mn− (2(m− s) + n− t + 1) .

Proof: First, let us see that K(m,n) has a matching of cardinality 2(m −
s) + n− t + 1. This is clear because from 2 ≤ s ≤ t and 0 ≤ m− s ≤ n− t,
it follows that m ≤ n, and from the hypothesis m+n ≤ 2s+ t−1 it follows
that 2(m−s)+n− t+1 = (m+n)+m−2s− t+1 ≤ m ≤ n. Therefore, we
may consider the bipartite graph G = (X,Y ) = K(m,n) −M where M is a
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matching of cardinality 2(m− s)+ n− t + 1 in K(m,n). Next let us see that
K(s,t) is not a topological minor of G. For that, from Remark 2 it is enough
to prove that e (H[S ∪ T ]) > m − s for any subsets S ⊆ X and T ⊆ Y of
cardinalities s and t, respectively, with s ≤ t. Observe that the number of
isolated vertices in the class Y of H is exactly n− (2(m− s) + n− t + 1).
It follows that the number of edges of H[X ∪ T ] is

e(H[X ∪ T ]) ≥ t− (n− (2(m− s) + n− t + 1)) = 2m− 2s + 1.

But since e(H[(X \ S) ∪ T ]) ≤ m− s, then we have

e(H[S ∪ T ]) = e(H[X ∪ T ])− e(H[(X \ S) ∪ T ])

≥ 2m− 2s + 1− (m− s)

= m− s + 1 > m− s.

Thus the result holds. �

Lemma 4 Let p ≥ 1 be an integer and let G = (X,Y ) be a bipartite
graph, with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite
complement of G. Let {x1, y1, x2, y2, . . . , xp, yp} be any decreasing sequence
of H and denote by r = e(Hp,p). If r ≥ 1 and e(H) ≤ 3p, then:

(i) r ≤ p.

(ii) Δ(Hp,p) = 1.

(iii) {xp−(r−1)yp−(r−1), . . . , xpyp} ∩ E(H) = ∅.

(iv) {ayp−(r−1), . . . , ayp} ∩ E(H) = ∅, for each a ∈ X \ {x1, . . . , xp} of
degree dHp,p(a) = 1.

(v) If r ≥ 2, then {xp−(r−2)b, . . . , xpb} ∩ E(H) = ∅, for each b ∈ Y \
{y1, . . . , yp} of degree dHp,p(b) = 1.

Proof: Since e(Hp,p) = r ≥ 1 we deduce ΔX(Hp,p) ≥ 1, ΔY (Hp,p) ≥ 1,
following that dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p, and
therefore

e(Hp,p) = e(H)−
p∑

i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
≤ 3p− 2p = p,
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thus item (i) is proved.

If ΔX(Hp,p) ≥ 2, then dHi−1,i−1(xi) ≥ 2 for each i = 1, . . . , p, hence,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + r > 3p,

which is a contradiction. Analogously, we arrive at a contradiction if
ΔY (Hp,p) ≥ 2. Thus, ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies Δ(Hp,p) =
1, hence item (ii) is shown.

(iii) Let us denote the edges of Hp,p by e1 = a1b1, . . . , er = arbr, ai ∈
X \ {x1, . . . , xp} and bi ∈ Y \ {y1, . . . , yp}, for i = 1, . . . , r. By item
(i) we know that r ≤ p. We reason by way of contradiction supposing
that there exists j ∈ {0, . . . , r − 1} such that xp−jyp−j ∈ E(H). First we
claim that dHp−j,p−j−1(yp−j) = 1. Otherwise, if dHp−j,p−j−1(yp−j) ≥ 2 then
dHi,i−1(yi) ≥ 2, for i = 1, . . . , p− j and therefore, by (ii) we have

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j+1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r

= 3p + (r − j)

> 3p,

the last inequality due to the fact that j ≤ r − 1. Since this is a contra-
diction with the hypothesis, then ΔY (Hp−j,p−j−1) = dHp−j,p−j−1(yp−j) = 1,
yielding to dHi,i−1(yi) = 1, for i = p − j, . . . , p and dHp,p(bi) = 1, for
i = 1, . . . , r. As {x1, y1, x2, y2, . . . , xp, yp} is a decreasing sequence of H,
it follows that xp−j is adjacent in H to each one of the vertices of the
set {yp−j, . . . , yp, b1, . . . , br} because of point (iii) of Definition 1. That is,
dHp−j−1,p−j−1(xp−j) ≥ j+1+r, which means that dHi−1,i−1(xi) ≥ j+1+r ≥
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2, for i = 1, . . . , p− j and therefore,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j+1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p− j) + 2j + r = 3p + (r − j) > 3p,

again a contradiction. Thus xp−jyp−j ∈ E(H) for all j ∈ {0, . . . , r − 1},
hence item (iii) is valid.
(iv) Note that r ≥ 1 implies dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. We reason by way of contradiction supposing that there exists
j ∈ {0, . . . , r−1} such that ayp−j ∈ E(H) for a vertex a ∈ X\{x1, . . . , xp} of
degree dHp,p(a) = 1. Then dHp−j−1,p−j−1(a) ≥ 2 and hence, dHi−1,i−1(xi) ≥
2, for i = 1, . . . , p− j. Thus,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r = 3p + (r − j) > 3p,

because j ≤ r − 1, against the hypothesis.
(v) Since r ≥ 2 then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p.
We reason by way of contradiction supposing that there exists j ∈ {0, . . . , r−
2} such that xp−jb ∈ E(H) for a vertex b ∈ Y \ {y1, . . . , yp} of degree
dHp,p(b) = 1. Then dHp−j−1,p−j−2(b) ≥ 2 and hence, dHi,i−1(yi) ≥ 2, for
i = 1, . . . , p− j − 1. Thus,

e(H) =

p−j−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j − 1) + 2(j + 1) + r = 3p + (r − j − 1) > 3p,

because j ≤ r − 2, again a contradiction. �
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Lemma 5 Let p ≥ 2 be an integer. Let G = (X,Y ) be a bipartite graph
with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite com-
plement of G. Suppose that there exists a decreasing sequence of vertices
U = {x1, y1, x2, y2, . . . , xp, yp} of H such that E(Hp,p) = {ab} with a ∈ X
and b ∈ Y . If e(H) ≤ 3p then there exists an (a, b)-path in G with its
internal vertices belonging to U .

Proof: Since E(Hp,p) = {ab}, then ΔX(Hp,p) = ΔY (Hp,p) = 1, which
implies that dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. If G
contains the path a, yp, xp, b, then we are done. So assume that some of
the edges ayp, xpyp, xpb is an edge of H. We know by Lemma 4 (iii) that
xpyp ∈ E(H). If ayp ∈ E(H), then dHp−1,p−1(a) ≥ 2, because {ayp, ab} ⊂
E(Hp−1,p−1). Then dHi−1,i−1(xi) ≥ 2 and we get

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + 1,

which is a contradiction. Therefore we can suppose that xpb ∈ E(H) and
ayp ∈ E(H). Then {xpb, ab} ⊂ E(Hp−1,p−2), following that dHp−1,p−2(b) ≥
2, which implies that dHi,i−1(yi) ≥ 2, for i = 1, . . . , p−1. Since dHp,p−1(yp) ≥
1 and dHi−1,i−1(xi) ≥ 1 for i = 1, . . . , p, it follows that

e(H) =

p−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

(
dHp−1,p−1(xp) + dHp,p−1(yp)

)
+ e(Hp,p)

≥ 3(p− 1) + 2 + 1 = 3p.

This means that all the above inequalities become equalities, that is,{
dHi,i−1(yi) = 2, for i = 1, . . . , p− 1, and dHp,p−1(yp) = 1;

dHi−1,i−1(xi) = 1, for i = 1, . . . , p.
(1)

Therefore we obtain that:

• xpyp−1 ∈ E(H), because otherwise, {xpb, xpyp−1} ⊂ E(Hp−2,p−2) and
thus, dHp−2,p−2(xp−1) = ΔX(Hp−1,p−1) ≥ 2, contradicting (1).

• xp−1b ∈ E(H), for if not, {xp−1b, xpb, ab} ⊂ E(Hp−2,p−3) and hence,
dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ 3, against (1).
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• xp−1yp−1 ∈ E(H), because otherwise, dHp−2,p−3(yp−1) ≥ 3 and there-
fore, dHp−2,p−3(yp−2) ≥ 3, contradicting (1).

Thus, it follows that {ayp, xpyp, xpyp−1, xp−1yp−1, xp−1b}∩E(H) = ∅. Con-
sequently, there exists in G the path a, yp, xp, yp−1, xp−1, b, hence the result
holds. �

Lemma 6 Let m,n, p be integers such that p ≥ 2, m > p and n > p. Let
G = (X,Y ) be a bipartite graph with |X| = m and |Y | = n, and denote by
H = (X,Y ) the bipartite complement of G. If e(H) ≤ 3p, then K(m−p,n−p)

is a topological minor of G.

Proof: Let U = {x1, y1, x2, y2, . . . , xp, yp} be a decreasing sequence of
H. The graph Hp,p is a bipartite graph with vertex classes X∗ = X \
{x1, . . . , xp} and Y ∗ = Y \ {y1, . . . , yp}, so |X∗| = m− p and |Y ∗| = n− p.
If e(Hp,p) = 0 then the bipartite complement of Hp,p is K(m−p,n−p) and
the result follows. We may henceforth assume that e(Hp,p) > 0, or in
other words ΔX(Hp,p) ≥ 1 and ΔY (Hp,p) ≥ 1, thus dHi−1,i−1(xi) ≥ 1 and
dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. Then by Lemma 4 we have e(Hp,p) = r ≤ p
and Δ(Hp,p) = 1. Let us denote the edges of Hp,p by e1 = a1b1, . . . , er =
arbr, ai ∈ X∗ and bi ∈ Y ∗, for i = 1, . . . , r. In order to prove that G
contains TK(m−p,n−p) with set of branch vertices X∗∪Y ∗, we will show the
existence of vertex disjoint (ai, bi)-paths in G, i = 1, . . . , r, with internal
vertices from U . As e(H) ≤ 3p, if r = 1 then the bipartite complement of
Hp,p is Km−p,n−p − e1. Thus, by Lemma 5, the bipartite graph G contains
TKm−p,n−p and we are done. Hence assume that 2 ≤ r ≤ p, then by Lemma
4 (iii), (iv), (v), for each i = 1, . . . , r and j = 0, . . . , r − 2, there exists in
G the path ai, yp−j, xp−j, bi. Thus, we only must show that there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Otherwise, since xp−(r−1)yp−(r−1) ∈ E(G) and aiyp−(r−1) ∈ E(G) for all
i = 1, . . . , r, because of Lemma 4, we deduce that xp−(r−1)bi ∈ E(H) for all
i = 1, . . . , r, that is, dHp−r,p−r(xp−(r−1)) ≥ r and therefore, dHi−1,i−1(xi) ≥ r
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for i = 1, . . . , p− (r − 1). Then since 2 ≤ r ≤ p it follows that

e(H) =

p−(r−1)∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(r−2)

(
dHi−1,i−1(ik) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ (r + 1)(p − (r − 1)) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r + 1)

> 3p

which is a contradiction. Hence there exists i ∈ {1, . . . , r} such that the
path ai, yp−(r−1), xp−(r−1), bi is contained in G. Without loss of generality
we may assume that i = r. Then there exist in G the vertex-disjoint paths
aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r. Thus, G contains TK(m−p,n−p)

and this finishes the proof. �

The following lemma gives a sufficient condition on the size of a bipartite
graph in order to contain a complete bipartite graph as a topological minor.

Lemma 7 Let m,n, s, t be integers such that 2 ≤ m − s ≤ n − t. Let
G = (X,Y ) be a bipartite graph with |X| = m, |Y | = n. If the bipartite
complement H of G has size e(H) ≤ 2(m − s) + n − t, then K(s,t) is a
topological minor of G.

Proof: Set p = m − s and q = n − t, then 2 ≤ p ≤ q and e(H) ≤ 2p + q.
First, suppose that p = q. Thus the bipartite graph H has size at most
3p, and by Lemma 6, we obtain that K(m−p,n−p) = K(s,t) is a topological
minor of G. Hence, assume that p < q. Without loss of generality, we may
assume that the vertices of the partite set Y are ordered in such a way that
dH(y1) ≥ dH(y2) ≥ · · · ≥ dH(yn). Set Y ′ = {y1, . . . , yq−p} ⊆ Y and let us
consider the bipartite graph H ′ = (X,Y \ Y ′). Observe that |X| = m and
|Y \Y ′| = n−(q−p) = t+p. If e(H ′) = 0 then the bipartite complement G′

of H ′ is the complete bipartite graph K(m,t+p). Since G′ is a subgraph of G
and K(s,t) ⊆ K(m,t+p), then G contains a K(s,t) and we are done. So, we may
assume that e(H ′) > 0, which implies that dH(yi) ≥ 1 for i = 1, . . . , q − p.
Hence, e(H ′) = e(H)−

∑q−p
i=1 dH(yi) ≤ 2p+ q− (q− p) ≤ 3p, and therefore,
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from Lemma 6, it follows that K(m−p,t+p−p) = K(s,t) is a topological minor
of G. �

Combining Proposition 3 and Lemma 7 the following theorem is imme-
diate.

Theorem 8 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 2 ≤ m−s ≤ n−t,
and m + n ≤ 2s + t− 1. Then

tz(m,n; s, t) = mn− (2(m− s) + n− t + 1) .

3 Family of extremal graphs

When an extremal problem is studied, it is not only important to know
the exact value of the extremal function, but also characterize the family
of extremal graphs. In this section we characterize the extremal family
TZ(m,n; s, t) for integers m,n, s, t such that 2 ≤ s ≤ t, 2 ≤ m− s ≤ n− t,
and m + n ≤ 2s + t− 1.

Lemma 9 Let p ≥ 2 be an integer and let G = (X,Y ) be a bipartite
graph with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite
complement of G. Let {x1, y1, x2, y2, . . . , xp, yp} be any decreasing sequence
of H and denote by r = e(Hp,p). If e(H) ≤ 3p + 1 and ΔX(H) ≥ 2 then

(i) r ≤ p.

(ii) Δ(Hp,p) ≤ 1.

(iii) If r = 1 then {xp−(r−1)yp−(r−1), . . . , xpyp} ∩E(H) = ∅.

(iv) If r ≥ 2 then {ayp−(r−2), . . . , ayp} ∩ E(H) = ∅, for each a ∈ X \
{x1, . . . , xp} of degree dHp,p(a) = 1, if any.

(v) If r ≥ 2 then {xp−(r−2)b, . . . , xpb} ∩ E(H) = ∅, for each b ∈ Y \
{y1, . . . , yp} of degree dHp,p(b) = 1, if any.

Proof: If e(Hp,p) = r = 0, then both items (i) and (ii) hold. Hence we
may assume that 0 < r = e(Hp,p) ≤ 3p + 1, which implies ΔX(Hp,p) ≥
1, ΔY (Hp,p) ≥ 1, following that dHi−1,i−1(xi) ≥ 1 for i = 2, . . . , p and
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dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. Moreover, dH0,0(x1) ≥ 2, because ΔX(H) ≥
2. Therefore

e(Hp,p) = e(H)−
(
dH0,0(x1) + dH1,0(y1)

)
−

p∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
≤ 3p + 1− 3− 2(p − 1) = p,

thus item (i) is proved.
If ΔX(Hp,p) ≥ 2, then e(Hp,p) ≥ 2 and dHi−1,i−1(xi) ≥ 2 for each

i = 1, . . . , p, hence,

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3p + e(Hp,p) ≥ 3p + 2 > 3p + 1,

which is a contradiction. Analogously, we arrive at a contradiction if
ΔY (Hp,p) ≥ 2. Thus, ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies Δ(Hp,p) =
1, hence item (ii) is shown.
(iii) From item (i) it follows that r ≤ p. Let us denote the edges of Hp,p by
e1 = a1b1, . . . , er = arbr, ai ∈ X \{x1, . . . , xp} and bi ∈ Y \{y1, . . . , yp}, for
i = 1, . . . , r. Since e(Hp,p) = r ≥ 1, then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥
1 for i = 1, . . . , p. We reason by way of contradiction supposing that there
exists j ∈ {0, . . . , r − 1} such that xp−jyp−j ∈ E(H). Then dHi,i−1(yi) ≥ 2
for i = 1, . . . , p−j−1, because dHp−j,p−j−1(yp−j) ≥ 1 and xp−jyp−j ∈ E(H).
We have two cases:

Case 1. Assume that dHp−j,p−j−1(yp−j) ≥ 2, then dHi,i−1(yi) ≥ 2 for
i = 1, . . . , p− j. Since dH0,0(x1) = ΔX(H) ≥ 2 and j ≤ r− 1 it follows that

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 4 + 3(p − j − 1) + 2j + r

= 3p + 1 + (r − j)

> 3p + 1,
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which is a contradiction.

Case 2. Assume that dHp−j,p−j−1(yp−j) = 1, then dHi,i−1(yi) = 1, for i =
p− j, . . . , p. Moreover, dHp,p(bi) = 1, for i = 1, . . . , r, because Δ(Hp,p) = 1.
As {x1, y1, x2, y2, . . . , xp, yp} is a decreasing sequence of H and xp−jyp−j ∈
E(H), it follows that xp−j is adjacent in H to each one of the vertices of the
set {yp−j, . . . , yp, b1, . . . , br} because of point (iii) of Definition 1. That is,
dHp−j−1,p−j−1(xp−j) ≥ j + 1 + r, which means that dHi−1,i−1(xi) ≥ j + 1 + r
for i = 1, . . . , p− j. If j = 0 then dHi−1,i−1(xi) ≥ 1 + r for i = 1, . . . , p, and
therefore

e(H) =

p−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−1,p−1(xp) + dHp,p−1(yp)) + e(Hp,p)

≥ (3 + r)(p− 1) + (r + 2) + r

= 3p + 1 + r(p + 1)− 2 > 3p + 1,

because r ≥ 1 and p ≥ 2, which is a contradiction. If j = r − 1 then
dHi−1,i−1(xi) ≥ j + 1 + r = 2r for i = 1, . . . , p− (r − 1), and therefore

e(H) =

p−r∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1)))

+

p∑
i=p−(r−2)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ (2r + 2)(p − r) + (2r + 1) + 2(r − 1) + r

= 3p + 1 + (2rp − 2r2 − p + 3r − 2)

≥ 3p + 1 + (p − 1)

> 3p + 1,
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because p ≥ 2, which also contradicts the hypothesis. Finally, if 1 ≤ j ≤
r − 2 then dHi−1,i−1(xi) ≥ j + 1 + r ≥ 3 for i = 1, . . . , p− j, and therefore

e(H) =

p−j−1∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−j−1,p−j−1(xp−j) + dHp−j,p−j−1(yp−j))

+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 5(p − j − 1) + 4 + 2j + r

= 3p + 1 + (2p− 3j − 2 + r)

≥ 3p + 1 + (3r − 3j − 2) > 3p + 1,

because p ≥ r and j ≤ r − 2, again a contradiction.

Thus xp−jyp−j ∈ E(H) for all j ∈ {0, . . . , r − 1}, hence item (iii) is
valid.

(iv) Assume e(Hp,p) = r ≥ 2. Then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. We reason by way of contradiction supposing that there exists
j ∈ {0, . . . , r−2} such that ayp−j ∈ E(H) for a vertex a ∈ X\{x1, . . . , xp} of
degree dHp,p(a) = 1. Then dHp−j−1,p−j−1(a) ≥ 2 and hence, dHi−1,i−1(xi) ≥
2, for i = 1, . . . , p− j. Thus,

e(H) =

p−j∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−(j−1)

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 3(p − j) + 2j + r = 3p + (r − j) > 3p + 1,

because j ≤ r − 2, against the hypothesis.

(v) Assume e(Hp,p) = r ≥ 2. Then dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for
i = 1, . . . , p. Moreover, dH0,0(x1) ≥ 2, due to the fact that ΔX(H) ≥ 2. We
reason by way of contradiction supposing that there exists j ∈ {0, . . . , r −
2} such that xp−jb ∈ E(H) for a vertex b ∈ Y \ {y1, . . . , yp} of degree
dHp,p(b) = 1. Then dHp−j−1,p−j−2(b) ≥ 2 and hence, dHi,i−1(yi) ≥ 2, for
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i = 1, . . . , p− j − 1. Thus,

e(H) = (dH0,0(x1) + dH1,0(y1)) +

p−j−1∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+

p∑
i=p−j

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p)

≥ 4 + 3(p− j − 2) + 2(j + 1) + r = 3p + (r − j) > 3p + 1,

because j ≤ r − 2, again a contradiction. �

Lemma 10 Let p ≥ 4 be an integer. Let G = (X,Y ) be a bipartite graph
with |X| ≥ p and |Y | ≥ p, and denote by H = (X,Y ) the bipartite comple-
ment of G. Suppose that ΔX(H) ≥ 2 and there exists a decreasing sequence
of vertices U = {x1, y1, x2, y2, . . . , xp, yp} of H such that E(Hp,p) = {ab}
with a ∈ X and b ∈ Y . If e(H) ≤ 3p + 1 then there exists an (a, b)-path in
G with its internal vertices belonging to U .

Proof: Assume that e(H) ≤ 3p + 1. Note that dH0,0(x1) = ΔX(H) ≥ 2.
Since E(Hp,p) = {ab}, then ΔX(Hp,p) = ΔY (Hp,p) = 1, which implies that
dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i = 1, . . . , p. If G contains the path
a, yp, xp, b, then we are done. So assume that some of the edges ayp, xpyp,
xpb is an edge of H. We know by Lemma 9 that xpyp ∈ E(H). So, let us
distinguish two cases.

Case 1. Suppose that ayp ∈ E(H). Then dHp−1,p−1(a) ≥ 2, because
ab ∈ E(H). Then dHi−1,i−1(xi) ≥ 2 and we get

e(H) =

p∑
i=1

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ e(Hp,p) ≥ 3p + 1 ≥ e(H).

Thus, all the inequalities become equalities, that is,

dHi−1,i−1(xi) = 2 and dHi,i−1(yi) = 1, for i = 1, . . . , p. (2)

Hence, we obtain that:

• xp−1yp−1 ∈ E(H). Otherwise, since

ΔY (Hp−1,p−2) = dHp−1,p−2(yp−1) = 1

and both yp and b have also degree 1 in Hp−1,p−2, applying point (iii)
of Definition 1, it follows that {xp−1yp−1, xp−1yp, xp−1b} ⊂ E(H) and
therefore, dHp−2,p−2(xp−1) ≥ 3, which contradicts (2).
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• ayp−1 ∈ E(H), because otherwise,

dHp−2,p−2(xp−1) = ΔX(Hp−2,p−2) ≥ dHp−2,p−2(a) ≥ 3,

contradicting (2).

• xp−1b ∈ E(H), for if not,

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(b) ≥ 2,

against (2).

As a consequence, we get that the path a, yp−1, xp−1, b of G connects the
vertices a and b.

Case 2. Suppose that xpb ∈ E(H) and ayp ∈ E(H). Thus,
dHp−1,p−2(yp) ≥ 2, which implies that dHi,i−1(yi) ≥ 2, for i = 1, . . . , p − 1.
Since dHp,p−1(yp) ≥ 1, dH0,0(x1) ≥ 2 and dHi−1,i−1(xi) ≥ 1 for i = 2, . . . , p,
it follows that

e(H) = (dH0,0(x1) + dH1,0(y1)) +

p−1∑
i=2

(
dHi−1,i−1(xi) + dHi,i−1(yi)

)
+ (dHp−1,p−1(xp) + dHp,p−1(yp)) + e(Hp,p)

≥ 4 + 3(p − 2) + 2 + 1 = 3p + 1 = e(H),

which means that all the above inequalities become equalities, that is,{
dH0,0(x1) = 2 and dHi−1,i−1(xi) = 1 for i = 2, . . . , p;

dHi,i−1(yi) = 2 for i = 1, . . . , p− 1, and dHp,p−1(yp) = 1.
(3)

Therefore, we have:

• xp−1b ∈ E(H), because on the contrary,

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(b) ≥ 3

against (3).

• xpyp−1 ∈ E(H), for if not,

dHp−3,p−3(xp−2) = ΔX(Hp−3,p−3) ≥ dp−3,p−3(xp) ≥ 2

and this contradicts (3), since p ≥ 4.
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• xp−1yp−1 ∈ E(H), because otherwise, taking into account that
dHp−1,p−2(yp−1) = 2, we have

dHp−2,p−3(yp−2) = ΔY (Hp−2,p−3) ≥ dHp−2,p−3(yp−1) ≥ 3,

contradicting (3).

Thus, in this case, it follows that {ayp, xpyp, xpyp−1, xp−1yp−1, xp−1b} ∩
E(H) = ∅. Consequently, there exists in G the path a, yp, xp, yp−1, xp−1, b,
and the result also holds in this case. �

Lemma 11 Let m,n, p be integers such that p ≥ 4, m > p and n > p. Let
G = (X,Y ) be a bipartite graph with |X| = m and |Y | = n, and denote by
H = (X,Y ) the bipartite complement of G. If Δ(H) ≥ 2 and e(H) ≤ 3p+1,
then K(m−p,n−p) is a topological minor of G.

Proof: Without loss of generality we may assume that Δ(H) = ΔX(H)
(otherwise it is enough to interchange the classes X with Y ). Let U =
{x1, y1, x2, y2, . . . , xp, yp} be a decreasing sequence of H. The graph Hp,p

is a bipartite graph with vertex classes X∗ = X \ {x1, . . . , xp} and Y ∗ =
Y \ {y1, . . . , yp}, so |X∗| = m− p and |Y ∗| = n− p. If e(Hp,p) = 0 then the
bipartite complement of Hp,p is K(m−p,n−p) and the result follows. So, we
may henceforth assume that e(Hp,p) ≥ 1 or in other words, ΔX(Hp,p) ≥ 1
and ΔY (Hp,p) ≥ 1, thus dHi−1,i−1(xi) ≥ 1 and dHi,i−1(yi) ≥ 1 for i =
1, . . . , p. Then by Lemma 9 we have e(Hp,p) = r ≤ p and Δ(Hp,p) = 1.
Let us denote the edges of Hp,p by e1 = a1b1, . . . , er = arbr, ai ∈ X∗ and
bi ∈ Y ∗, for i = 1, . . . , r. In order to prove that G contains a TK(m−p,n−p)

with set of branch vertices X∗ ∪ Y ∗, we will show the existence of vertex
disjoint (ai, bi)-paths in G, i = 1, . . . , r, with internal vertices in U . As
e(H) ≤ 3p + 1, we are done if r = 1 by applying Lemma 10, hence assume
that 2 ≤ r ≤ p.

First, suppose that 2 ≤ r ≤ p − 1. Then, by Lemma 9 (iii), (iv),
(v), for each i = 1, . . . , r and j = 0, . . . , r − 2, there exists in G the path
ai, yp−j, xp−j, bi. Thus, we only must show that there exists i ∈ {1, . . . , r}
such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G. We rea-
son by way of contradiction supposing that for all i = 1, . . . , r the path
ai, yp−(r−1), xp−(r−1), bi does not exist in G. From Lemma 9 it follows that
xp−(r−1), yp−(r−1) ∈ E(G), thus aiyp−(r−1) ∈ E(H) or xp−(r−1)bi ∈ E(H)
for each i = 1, . . . , r. We will distinguish three possible cases:
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Case 1. Assume that xp−(r−1)bi ∈ E(H) for all i = 1, . . . , r, then
dHp−r,p−r(xp−(r−1)) ≥ r and thus, dHj−1,j−1(xj) ≥ r for j = 1, . . . , p−(r−1).
Moreover, dHp−r,p−(r+1)

(yp−r) = ΔY (Hp−r,p−(r+1)) ≥ dHp−r,p−(r+1)
(bi) ≥ 2,

which means that dHj,j−1(yj) ≥ 2 for j = 1, . . . , p− r. Thus,

e(H) =

p−r∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

(
dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1))
)

+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ (r + 2)(p − r) + (r + 1) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r) + p− 2

> 3p + 1,

since 2 ≤ r < p and p > 2, which is a contradiction.

Case 2. Assume that aiyp−(r−1) ∈ E(H) for all i = 1, . . . , r, then,
reasoning as in Case 1, we have dHj,j−1(yj) ≥ r for j = 1, . . . , p − (r − 1),
and dHj−1,j−1(xj) ≥ 2 for j = 1, . . . , p− (r − 1). Thus,

e(H) =

p−(r−1)∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ (r + 2)(p − (r − 1)) + 2(r − 1) + r

= 3p + 1 + (r − 2)(p − r) + p− 1

> 3p + 1,

since 2 ≤ r < p and p > 1, which is a contradiction.

Case 3. Assume that there exist i0, j0 ∈ {1, . . . , r} such that
xp−(r−1)bi0 ∈ E(H) and aj0yp−(r−1) ∈ E(H). Clearly i0 = j0, because
xp−(r−1)yp−(r−1) ∈ E(H) (by Lemma 9) and by hypothesis, the path
ai, yp−(r−1), xp−(r−1), bi does not exist in G for all i = 1, . . . , r. Since
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xp−(r−1)yp−(r−1) ∈ E(H), it follows that xp−(r−1)bj0 ∈ E(H), for if not,
we find in G the path aj0, yp−(r−1), xp−(r−1), bj0 against our assumption.
Analogously, ai0xp−(r−1) ∈ E(H). Observe that {ai0xp−(r−1), ai0bi0} ⊂
E(Hp−r,p−r) and therefore,

dHp−r,p−r(xp−(r−1)) = ΔX(Hp−r,p−r) ≥ dHp−r,p−r(ai0) ≥ 2

, which implies that dHi−1,i−1(xi) ≥ 2 for i = 1, . . . , p− (r − 1). Moreover,
observe also that {yp−(r−1)bj0, aj0bj0} ⊂ E(Hp−r,p−(r+1)) and therefore,
dHp−r,p−(r+1)

(yp−r) = ΔX(Hp−r,p−(r+1)) ≥ dHp−r,p−(r+1)
(bj0) ≥ 2, which

means that dHi,i−1(yi) ≥ 2 for i = 1, . . . , p− r. Hence,

e(H) =

p−r∑
j=1

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+

(
dHp−r,p−r(xp−(r−1)) + dHp−(r−1),p−r

(yp−(r−1))
)

+

p∑
j=p−(r−2)

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ 4(p − r) + 3 + 2(r − 1) + r

= 4p + 1− r

= 3p + 1 + (p− r)

> 3p + 1,

since r ≤ p−1. Then, if 2 ≤ r ≤ p−1, in all the possible cases, we arrive at
a contradiction with the assumption that the path ai, yp−(r−1), xp−(r−1), bi

does not exist in G for all i = 1, . . . , r. Thus, if 2 ≤ r ≤ p − 1 there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Without loss of generality we may assume that i = r. Then there exist in
G the vertex-disjoint paths aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r.

Second, assume that r = p. Then, from Lemma 9 it follows that⎧⎪⎨⎪⎩
{x1y1, . . . , xpyp} ∩ E(H) = ∅;
{aiy2, . . . , aiyp} ∩ E(H) = ∅ for i = 1, . . . , p;

{x2bi, . . . , xpbi} ∩ E(H) = ∅ for i = 1, . . . , p.

(4)

This means that for each i = 1, . . . , p and j = 0, . . . , p − 2, there exists in
G the path ai, yp−j, xp−j, bi. Thus, we only must show that there exists i ∈

57



Subdivisions in a bipartite graph C. Balbuena et al.

{1, . . . , p} such that the path ai, y1, x1, bi is contained in G. We reason by
way of contradiction supposing that for all i = 1, . . . , p the path ai, y1, x1, bi

does not exist in G. Since x1y1 ∈ E(G) we deduce that for each i = 1, . . . , p,
aiy1 ∈ E(H) or x1bi ∈ E(H). If {aiy1, ai∗y1} ⊂ E(H) for two indices i, i∗ ∈
{1, . . . , p}, with i = i∗, then dH1,0(y1) ≥ 2. Since dH0,0(x1) = ΔX(H) ≥ 2
we have

e(H) =
(
dH0,0(x1) + dH1,0(y1)

)
+

p∑
j=2

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ 4 + 2(p − 1) + p

= 3p + 2

> 3p + 1,

a contradiction. Thus, in the set {a1, . . . , ap} there is at most one vertex
adjacent to y1 in H, which means that x1 must be adjacent in H to at
least p − 1 vertices of the set {b1, . . . , bp}, due to the fact that for each
i = 1, . . . , p, aiy1 ∈ E(H) or x1bi ∈ E(H). Then dH0,0(x1) ≥ p − 1 and
therefore,

e(H) =
(
dH0,0(x1) + dH1,0(y1)

)
+

p∑
j=2

(
dHj−1,j−1(xj) + dHj,j−1(yj)

)
+ e(Hp,p)

≥ p + 2(p − 1) + p

= 3p + 1 + (p − 3)

> 3p + 1,

since p ≥ 4, again a contradiction with the hypothesis. Hence, there exists
i ∈ {1, . . . , r} such that the path ai, yp−(r−1), xp−(r−1), bi is contained in G.
Without loss of generality we may assume that i = r. Then there exist
in G the vertex-disjoint paths aj , yp−(j−1), xp−(j−1), bj for j = 1, . . . , r, and
the result holds. �
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Theorem 12 Let m,n, s, t be integers such that 2 ≤ s ≤ t, 4 ≤ m − s ≤
n − t, and m + n ≤ 2s + t − 1. Then G = (X,Y ) ∈ TZ(m,n; s, t) iff
G = K(m,n)−M where M is any matching of cardinality 2(m−s)+n−t+1.

Proof: By Proposition 3 and Theorem 8, if G = K(m,n) −M where M is
any matching of cardinality 2(m− s) + n− t + 1, then G ∈ TZ(m,n; s, t).
Thus, we only must show that there are no more extremal bipartite graphs.
For that, it is enough to prove that the bipartite complement H = (X,Y ) of
every extremal bipartite graph G = (X,Y ) ∈ TZ(m,n; s, t) has maximum
degree Δ(H) = 1.

Let G = (X,Y ) ∈ TZ(m,n; s, t) satisfy the hypothesis of the theorem
and let us denote by H = (X,Y ) the bipartite complement of G. Set
p = m − s and q = n − t, then 4 ≤ p ≤ q and e(H) = 2p + q + 1. If
p = q then Δ(H) = 1, follows from Lemma 11. Thus, assume that p < q.
Without loss of generality, we may assume that the vertices of the partite
set Y are ordered in such a way that dH(y1) ≥ dH(y2) ≥ · · · ≥ dH(yn).
Set Y ′ = {y1, . . . , yq−p} ⊆ Y and let us consider the bipartite graph H ′ =
(X,Y \ Y ′). Observe that |X| = m and |Y \ Y ′| = n − (q − p) = t + p. If
e(H ′) = 0 then the bipartite complement G′ of H ′ is the complete bipartite
graph K(m,t+p). Since G′ is a subgraph of G and K(s,t) ⊆ K(m,t+p), then
G contains a K(s,t), against the assumption. So, we may assume that
e(H ′) > 0, which means that dH(yi) ≥ 1 for i = 1, . . . , q − p. Hence,

e(H ′) = e(H)−
q−p∑
i=1

dH(yi) ≤ 2p + q + 1− (q − p) ≤ 3p + 1. (5)

Then the following facts can be concluded:

• E(H ′) = 3p + 1. Otherwise if E(H ′) < 3p + 1 then, from Lemma
6, it follows that G′ contains TK(m−p,n−(q−p)+p) = TK(m−p,n−q) =
TK(s,t), but this contradicts the fact that G ∈ TZ(m,n; s, t).

• dH(yi) = 1, for i = 1, . . . , q − p, thus ΔY (H) = 1, because ΔY (H) =
dH(y1). This is directly derived because all the inequalities (5) be-
come equalities since E(H ′) = 3p + 1.

Next let us see that ΔX(H) = 1. Otherwise, there is a vertex x ∈ X having
two distinct neighbors y, y∗ ∈ NH(x). Since ΔY (H) = 1, then NH(y) =
NH(y∗) = {x}, and besides, there are exactly e(H) = 2p+ q +1 > q−p+2
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vertices of degree 1 in the class Y . Let us consider the bipartite graph
G∗ = (X∗, Y ∗) whose bipartite complement H∗ = (X∗, Y ∗) is obtained
from H by removing any q−p vertices of Y \{y, y∗} of degree 1. The graph
H∗ satisfies that |X∗| = |X| = m > p, |Y ∗| = |Y | − (q − p) = t + p > p,
e(H∗) = e(H)−(q−p) = 3p+1. Further, observe that dH∗(x) ≥ 2, because
{y, y∗} ⊂ Y ∗ and {xy, xy∗} ⊂ E(H∗), which means that Δ(H∗) ≥ 2. Then,
by applying Lemma 11, the bipartite complement G∗ of H∗ contains a
TK(m−p,t+p−p) = TK(s,t). Since G∗ is a subgraph of G, we deduce that
G contains TK(s,t), and this contradicts the fact that G ∈ TZ(m,n; s, t).
Hence, Δ(H) = min{ΔX(H),ΔY (H)} = 1 and this proves the result. �
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[6] Z. Furëdi. New asymptotics for Bipartite Turán Numbers. J. Combin.
Theory Ser. A, 75:141–144, 1996.

60



Subdivisions in a bipartite graph C. Balbuena et al.

[7] A.P. Godbole and H.C. Graziano. Contributions to the problem of
Zarankiewicz. J. Statist. Plann. Inference, 95:197–208, 2001.

[8] A.P. Godbole, B. Lamorte and E.J. Sandquist. Threshold functions
for the bipartite Turán property. Electron. J. Combin., 4:R18, 1997.

[9] W. Goddard, M.A. Henning and O.R. Oellermann. Bipartite Ramsey
numbers and Zarankiewicz numbers. Discrete Math., 219:85–95, 2000.

[10] J. Griggs and H. Chih-Chang. On the half-half case of the Zarankiewicz
problem. Discrete Math., 249:95–104, 2002.
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Abstract

For a strongly connected digraph D the restricted arc-connectivity
λ′(D) is defined as the minimum cardinality of an arc-cut over
all arc-cuts S satisfying that D − S has a non trivial strong
component D1 such that D − V (D1) contains an arc. Let S be
a subset of vertices of D. We denote by ω+(S) the set of arcs
uv with u ∈ S and v ∈ S, and by ω−(S) the set of arcs uv with
u ∈ S and v ∈ S. A digraph D = (V,A) is said to be λ′-optimal
if λ′(D) = ξ′(D), where ξ′(D) is the minimum arc-degree of
D defined as ξ(D) = min{ξ′(xy) : xy ∈ A}, and ξ′(xy) =
min{|ω+({x, y})|, |ω−({x, y})|, |ω+(x)∪ω−(y)|, |ω−(x)∪ω+(y)|}.
In this paper a sufficient condition for a s-geodetic strongly con-
nected digraph D to be λ′-optimal is given in terms of its di-
ameter. Further we see that the h-iterated line digraph Lh(D)
of a s-geodetic digraph is λ′-optimal for certain iteration h.

1 Introduction

We consider finite digraphs without loops and multiple edges. Let D =
(V,A) be a strongly connected digraph, with vertex set V = V (D) and arc
set A = A(D). For any pair F , F ′ of proper vertex subsets of a digraph D,
we define [F,F ′] = {xy ∈ A : x ∈ F, y ∈ F ′}. If F ′ = F = V \ F , we write
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ω+(F ) or ω−(F ) instead of [F,F ]. When F = {x} we abbreviate ω+({x})
and ω−({x}) to ω+(x) and ω−(x), respectively. Clearly, d+(x) = |ω+(x)|
and d−(x) = |ω−(x)|.

A subset S ⊆ A of arcs is an arc-cut if D−S is not strongly connected.
Each minimum arc-cut has the form ω+(F ), where F is a proper subset of
V . Thus, the arc-connectivity of a digraph D can be defined as

λ(D) = min{|ω+(F )| : F ⊂ V, F = ∅, F = V }.

It is well-known that for any digraph D, λ(D) ≤ δ(D) [10]. Hence, D is
said to be maximally arc-connected if λ(D) = δ(D). Following Hamidoune
[12, 13], a subset F of vertices of a strongly connected digraph D with arc-
connectivity λ is a positive α-fragment if |ω+(F )| = λ and, similarly, F is a
negative α-fragment if |ω−(F )| = λ. Note that F is a positive α-fragment
if an only if F = V (D) \ F is a negative α-fragment.

When the underlying topology of an interconnection network is modeled
by a connected graph or a strongly connected digraph D, where V (D) is
the set of processors and A(D) is the set of communication links, the edge-
connectivity or arc-connectivity of D are important measurements for fault
tolerance of the network. However, one might be interested in more refined
indices of reliability. Even two graphs or digraphs with the same edge/arc-
connectivity λ may be considered to have different reliabilities, since the
number or type of minimum arc-cuts is different.

The study of fault-tolerance of networks modeled by an undirected
graph has been intense in recent years. By restricting the forbidden fault
set to be the sets of neighboring edges of any spanning subgraph with no
more than k-vertices in the faulty networks, Fàbrega and Fiol [9, 8] in-
troduced the k-extra-edge-connectivity of interconnection networks (where
k is a positive integer) as follows. Given a graph G and a non-negative
integer k, the k-extra-edge-connectivity λk(G) of G is the minimum car-
dinality of a set of edges of G, if any, whose deletion disconnects G and
every remaining component contains at least k vertices. More information
and results on the k-extra-edge-connectivity can be found [3, 6]. The re-
stricted edge-connectivity λ′(G), introduced by Esfahanian and Hakimi [7]
for a graph G, corresponds to the 2-extra-edge-connectivity and it is the
minimum cardinality over all restricted edge-cuts S, i.e., those such that
there are no isolated vertices in G− S. A restricted edge-cut S is called a
λ′-cut if |S| = λ′(G). Obviously for any λ′-cut S, the graph G−S consists
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of exactly two components. A connected graph G is called λ′-connected
if λ′(G) exists. Esfahanian and Hakimi [7] showed that each connected
graph G of order n(G) ≥ 4 except a star, is λ′-connected and satisfies
λ′(G) ≤ ξ(G), where ξ(G) denotes the minimum edge-degree of G defined
as ξ(G) = min{d(u) + d(v)− 2 : uv ∈ E(G)}. More information and recent
results on restricted edge-connectivity of graphs can be found in the survey
by Hellwig and Volkmann, [15]. All these concepts of the extraconnectivity
and restricted connectivity were inspired by the definition of conditional
connectivity introduced by Harary [14] who asked for the minimum cardi-
nality of a set of edges of G, if any, whose deletion disconnects G such that
every remaining component satisfies some prescribed property.

Volkmann [17] extended the notion of restricted edge-connectivity to
digraphs. Given a strongly connected digraph D, an arc set S of D is a
restricted arc-cut of D if D−S has a non-trivial strong component D1 such
that D−V (D1) contains an arc. The restricted arc-connectivity λ′(D) is de-
fined as the minimum cardinality over all restricted arc-cuts S. A strongly
connected digraph D is called λ′-connected if λ′(D) exists. A restricted
arc-cut S is called a λ′-cut if |S| = λ′(D). In the same paper, Volkmann
proved that each strong digraph D of order n ≥ 4 and girth g = 2 or
g = 3 except some families of digraphs is λ′-connected and satisfies λ(D) ≤
λ′(D) ≤ ξ(D), where ξ(D) is defined as follows. If Cg = u1u2 . . . ugu1 is
a shortest cycle of D, then ξ(Cg) = min{|ω+(Cg)|, |ω−(Cg)|}, and ξ(D) =
min{ξ(Cg) : Cg is a shortest cycle of D}.

More recently, Wang and Lin [18] have focused in studying the λ′-
optimal digraphs by considering the notion of arc-degree. For any arc
xy ∈ A(D), the arc-degree of xy is defined as

ξ′(xy) = min{|ω+({x, y})|, |ω−({x, y})|, |ω+(x) ∪ ω−(y)|, |ω−(x) ∪ ω+(y)|}.

The minimum arc-degree of D is ξ′(D) = min{ξ′(xy) : xy ∈ A(D)}. Similar
to the definition of λ′-optimal graphs, in [18] a λ′-connected digraph D is
called λ′-optimal if λ′(D) = ξ′(D). In the aforementioned paper [18], Wang
and Lin proved the following useful theorem.

Theorem A [18] Let D be a strongly connected digraph with δ+(D) ≥ 3 or
δ−(D) ≥ 3. Then D is λ′-connected and λ′(D) ≤ ξ′(D).

Starting from this result, Wang and Lin introduced the notion of λ′-
optimality to denote the digraphs D for which λ′(D) = ξ′(D). Then, they
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provided an example of a digraph having a λ′-cut which can not be written
as ω+(F ) for any proper subset F ⊂ V (D). And further in the same paper
they proved that if D has no minimum restricted arc-cut of the form ω+(F )
where F is a proper subset of V (D), then D is λ′-optimal.

In this paper we prove that every λ′-cut S of a λ′-connected digraph
D with cardinality |S| < ξ′(D) is necessarily of the form S = ω+(F ).
Furthermore, both induced subdigraphs D[F ] and D[F ] of D are shown to
have an arc. These structural results allows us to give a sufficient condition
for a s-geodetic digraph to have λ′(D) = ξ′(D), i.e. to be λ′-optimal. A
digraph D with diameter diam(D) is said to be s-geodetic if for any two
(not necessarily different) vertices x, y ∈ V , there exists at most one x→ y
path of length at most s. Obviously, if d(x, y) ≤ s then there exists exactly
one such path. Note that 1 ≤ s ≤ g − 1 ≤ diam(D), where g ≥ 2 is
the girth of D. Our interest is in the maximum integer s for which D is
s-geodetic. If s = diam(D), the digraph D is called strongly geodetic [16].
In this reference it was proved that all strongly geodetic digraphs are either
complete digraphs or cycles.

Sufficient conditions for a s-geodetic digraph with minimum degree δ
to be maximally arc connected have been given in terms of its diameter
diam(D) and the parameter s. In this regard, the following result is con-
tained in [4]:

λ = δ if diam(D) ≤ 2s.

The k-extra-connectivity was studied for s-geodetic digraphs in [2]. In this
work we prove that λ′(D) = ξ′(D) if diam(D) ≤ 2s − 1, and we also
show that D is λ′-optimal if diam(D) = 2s when D satisfies an additional
hypothesis. Furthermore, we see that the h-iterated line digraph Lh(D) of
a s-geodetic digraph is λ′-optimal for certain iteration h.

2 Results

Following the book by Harary (see [11], pg. 199), each vertex of a digraph
is in exactly one strong component and an arc lies in one strong compo-
nent depending on whether or not it is in some cycle. It follows from the
maximality of strong components that the strong components of a digraph
D can be labeled D1, . . . ,Dk such that there is no arc from Dj to Di unless
j < i. Such an ordering is called an acyclic ordering of the strong com-
ponents of D. In order to obtain our main result we require the following
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lemma.

Lemma 1 Let D = (V,A) be a λ′-connected digraph and S a λ′-cut of D
such that |S| < ξ′(D). Then the set V can be partitioned into two subsets,
F , F such that S = ω+(F ) = ω−(F ) and both induced subdigraphs D[F ]
and D[F ] of D contain an arc.

Proof: Let S be a λ′-cut of D and let D1, . . . ,Dk, k ≥ 2, be an acyclic
ordering of the strong components of D−S. Since S is a restricted arc-cut
some strong component Dj of D − S must be non trivial, i.e. |V (Dj)| ≥ 2
and D− V (Dj) contains an arc. Suppose that Dj is the unique non-trivial
strong component of D − S. As D − V (Dj) contains an arc yz, then
k ≥ 3. If j = 1 then by considering F = ∪k

i=2V (Di) and F = V (D1), it
follows that ω+(F ) is a restricted arc-cut of D. Since ω+(F ) ⊆ S and S
is a λ′-cut, then ω+(F ) = S and clearly both induced subdigraphs D[F ]
and D[F ] of D contain an arc. The prof is analogous if j = k, hence,
assume that 2 ≤ j ≤ k − 1. If {y, z} ⊆ ∪j−1

i=1V (Di) then it is enough

to consider F = ∪k
i=jV (Di) and F = ∪j−1

i=1V (Di) and clearly S = ω+(F )

and both induced subdigraphs D[F ] and D[F ] of D contain an arc. The
prof is also analogous if {y, z} ⊆ ∪k

i=j+1V (Di). Thus, we may assume that

y ∈ ∪j−1
i=1V (Di) and z ∈ ∪k

i=j+1V (Di), yielding that ω+(z) ∪ ω−(y) ⊆ S or
is there the previous situation for another arc. Clearly ω+(z) ∪ ω−(y) is a
restricted arc-cut of D because Dj is a strong component of D − (ω+(z) ∪
ω−(y)) and the arc yz belongs to D −Dj . Then ω+(z) ∪ ω−(y) = S and
hence ξ′(D) ≤ |ω+(z) ∪ ω−(y)| = |S| which is a contradiction with the
hypothesis. Therefore D − S has at least two distinct non-trivial strong
components Dt and Dj , meaning that D[∪j−1

i=1V (Di)] contains an arc or
D[∪k

i=j+1V (Di)] contains an arc. In the former case let F = ∪k
i=jV (Di)

and F = ∪j−1
i=1V (Di). Since there is no arc from F to F in D − S, then

ω+(F ) = S and we are done because clearly both D[F ] and D[F ] contain an
arc. Similarly if D[∪k

i=j+1V (Di)] contains an arc, then F = ∪k
i=j+1V (Di)

and F = ∪j
i=1V (Di) satisfy the lemma. �

We will henceforth denote the set of arcs ω+(F ) by [X,X ], where X ⊆ F
and X ⊆ F are, respectively, the sets of out and in vertices of the arcs of
ω+(F ).

The following remark is immediate from the definition of s-geodetic
digraphs.
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If uv is an arc of a s-geodetic digraph D with s ≥ 2, then N+
i (u) ∩

N+
i (v) = ∅ and N+

i+1(u) ∩N+
i (v) = ∅ for all i = 1, . . . , s− 1.

Some properties on the s-geodetic digraphs not being λ′-optimal are
provided in the following results.

Lemma 2 Let D be a λ′-connected s-geodetic digraph and ω+(F ) = [X,X ]
a λ′-cut. If λ′(D) < ξ′(D) then there exists some vertex u ∈ F such that
d(u,X) ≥ s−1 and there exists some vertex u ∈ F such that d(X,u) ≥ s−1.

Proof: When s = 1 the assertion is obvious, hence assume s ≥ 2. Let us
denote by μ = max{d(u,X) : u ∈ F}. We reason by way of contradiction
by supposing μ ≤ s− 2. First assume that μ = 0. This implies that every
vertex of F is an initial of some arc of [X,X ], that is F = X. By Lemma 1,
we can consider an arc uv in D[F ] and since N+(u) ∩N+(v) = ∅ because
s ≥ 2, then

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[{u, v},X ]|+
∣∣[(N+(u)− v) ∩X,X ]

∣∣
+

∣∣[(N+(v) − u) ∩X,X ]
∣∣

≥ |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

which is a contradiction. Hence, assume that 1 ≤ μ ≤ s− 2, which means
that s ≥ 3.

Case 1: There exists an arc uv in D[F ] such that d(u,X) = d(v,X) = μ.

Let us denote by Au = (N+(u) − v) ∩ N−
μ (X), Av = (N+(v) − u) ∩

N−
μ (X), Bu = N+(u)∩N−

μ−1(X) and Bv = N+(v)∩N−
μ−1(X) and observe

that N+(u) − v = Au ∪ Bu and N+(v) − u = Av ∪ Bv. It is clear by
Remark 1 that N+(u) ∩N+(v) = ∅ because s ≥ 3, and therefore, the sets
Au, Av, Bu, Bv are pairwise disjoint. Let us see that the sets N+

μ (Au)∩X,
N+

μ (Av) ∩X, N+
μ (u) ∩X and N+

μ (v) ∩X are pairwise disjoint. Note that
every vertex x belonging to any of the previous sets is at distance at most
μ + 2 ≤ s from u. Hence, the existence of some vertex x belonging to two
of these sets implies the existence of two paths u → x of length at most s,
which contradicts the hypothesis that D is s-geodetic. The same argument
justifies that |N+

μ (Au) ∩X| ≥ |Au|, |N+
μ (Av) ∩X| ≥ |Av|, |N+

μ (u) ∩X| ≥
|N+(u) ∩N−

μ−1(X)| = |Bu| and |N+
μ (v) ∩X| ≥ |N+(v) ∩N−

μ−1(X)| = |Bv|,
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since D is s-geodetic. Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |X| ≥ |N+
μ (Au) ∩X|+ |N+

μ (Av) ∩X|

+|N+
μ (u) ∩X|+ |N+

μ (v) ∩X|

≥ |Au|+ |Av|+ |Bu|+ |Bv|

= |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D).

Case 2: There is no arc uv in D[F ] such that d(u,X) = d(v,X) = μ.

Let u ∈ N−
μ (X) and take any v ∈ N+(u) ∩N−

μ−1(X). Let us denote by

A = (N+(v)−u)∩N−
μ (X), B = N+(v)∩N−

μ−1(X) and C = (N+(A)− v)∩
N−

μ−1(X). As s ≥ 3 the girth of D is at least 4, and thus it is clear by
Remark 1 that the sets N+(u), B, C are pairwise disjoint. Since s ≥ 3 and
the induced subdigraph D[N−

μ (X)∩F ] contains no arc, then |C| ≥ |A|. Let

us see that the sets N+
μ−1 (N+(u))∩X, N+

μ−1 (B)∩X and N+
μ−1 (C)∩X are

pairwise disjoint. Note that every vertex x belonging to any of these sets is
at distance at most μ+2 ≤ s from u. Hence, the existence of some vertex x
belonging to two of these sets implies the existence of two paths of length at
most s from u to x, which contradicts the hypothesis that D is s-geodetic.
The same argument justifies that |[N+

μ−1(N
+(u))∩X,X ]| ≥ |N+(u)− v|+

(|N+(v)− u| − |B| − |A|), |[N+
μ−1(B) ∩X,X ]| ≥ |N+

μ−1(B) ∩X| ≥ |B| and

|[N+
μ−1(C) ∩ X,X ]| ≥ |N+

μ−1(C) ∩ X| ≥ |C| ≥ |A|, since D is s-geodetic.
Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[N+
μ−1(N

+(u)) ∩X,X ]|+ |[N+
μ−1(B) ∩X,X ]|

+|[N+
μ−1(C) ∩X,X ]|

≥ |N+(u)− v|+ (|N+(v)− u| − |B| − |A|) + |B|+ |A|

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D).
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Thus, μ ≥ s−1. The prof of μ ≥ s−1, being μ = max{d(X,u) : u ∈ F}
is analogous. So the result holds. �

Lemma 3 Let D = (V,A) be a λ′-connected s-geodetic digraph and ω+(F ) =
[X,X ] a λ′-cut such that max{d(u,X) : u ∈ F} = s− 1 and max{d(X,u) :
u ∈ F} = s− 1. If λ′(D) < ξ′(D) then the following assertions hold:

(i) The induced subdigraphs D[N−
s−1(X)∩F ] and D[N+

s−1(X)∩F ] contain
some arc.

(ii) There exist u0 ∈ N−
s−1(X)∩F , u0 ∈ N+

s−1(X)∩F such that |[N+
s−1(u0)∩

X,X ]| = 1 and |[X,N−
s−1(u0) ∩X ]| = 1.

Proof: (i) Clearly, the result holds if s = 1, because of Lemma 1. There-
fore, assume that s ≥ 2 and reason by way of contradiction supposing that
D[N−

s−1(X) ∩ F ] has no arc. Then every vertex u ∈ N−
s−1(X) ∩ F satis-

fies that N+(u) ∩ N−
s−1(X) = ∅ which means that d(u,X) = s − 1, and

|N+
s−1(u) ∩X| ≥ d+(u) because D is s-geodetic. Let us consider a vertex

u ∈ N−
s−1(X) ∩ F such that d+(u) ≤ d+(u′) for all u′ ∈ N−

s−1(X) ∩ F .
Take any vertex v ∈ N+(u) and let us consider the subsets of F , A =
(N+(v) − u) ∩ N−

s−1(X), B = N+(v) ∩ N−
s−2(X). It is clear by Remark

1 and due to s ≥ 2 that the sets N+(u) − v, A, B are pairwise disjoint.
Moreover, since 2 ≤ s ≤ g−1 where g is the girth of D, then there is no sym-
metric arc in D, yielding that v ∈ N+(a) for all a ∈ A. As d+(a) ≥ d+(u)
and D[N−

s−1(X) ∩ F ] has no arc, then |(N+(a) \ N+(u)) ∩ N−
s−2(X)| ≥ 1

for all a ∈ A, hence the set C = (N+ (A) \N+(u))∩N−
s−2(X) satisfies that

|C| ≥ |A|. Let us see that the sets N+
s−2 (N+(u)− v) ∩X, N+

s−2 (B) ∩X,
N+

s−2 (C) ∩X and N+
s−2(v) ∩X are pairwise disjoint. Note that every ver-

tex x belonging to any of these sets is at distance at most s − 2 + 2 = s
from v. Hence, if some vertex x belongs to two of these sets, then two
distinct directed paths of length at most s from v to x exist, which con-
tradicts the hypothesis that D is s-geodetic. The same argument justifies
that |[N+

s−2(N
+(u) − v) ∩ X,X ]| ≥ |N+(u) − v|, |[N+

s−2(B) ∩ X,X ]| ≥
|N+

s−2(B)∩X| ≥ |B|, |[N+
s−2(C)∩X,X ]| ≥ |N+

s−2(C)∩X| ≥ |C| ≥ |A| and

|[N+
s−2(v) ∩X,X ]| ≥ |N+

s−2(v) ∩X| ≥ |N+(v) − u| − |A| − |B|, since D is
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s-geodetic. Hence,

λ′(D) =
∣∣[X,X ]

∣∣ ≥ |[N+
s−2(N

+(u)− v) ∩X,X ]|+ |[N+
s−2(B) ∩X,X ]|

+|[N+
s−2(C) ∩X,X ]|+ |[N+

s−2(v) ∩X,X ]|

≥ |N+(u)− v|+ |B|+ |A|+ |N+(v)− u| − |A| − |B|

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

against the fact that λ′(D) < ξ′(D). Thus, D[N−
s−1(X) ∩ F ] must contain

some arc. Analogously it is proved that D[N+
s−1(X)∩F ] contains some arc.

(ii) First assume that s = 1, which means that F = X. Let uv be an
arc of D[F ] and suppose that |[{z},X ]| ≥ 2 for all z ∈ X. Then

λ′(D) = |[X,X ]|
≥ |[{u},X ]|+ |[{v},X ]|+ |[((N+(u) ∪N+(v)) \ {u, v}) ∩X,X ]|
≥ |[{u},X ]|+ |[{v},X ]|+ 2| ((N+(u) ∪N+(v)) \ {u, v}) ∩X|
≥ |[{u},X ]|+ |[{v},X ]|+ |(N+(u)− v) ∩X|

+ |(N+(v) − u) ∩X|
≥ ξ′(uv) ≥ ξ′(D),

which is a contradiction. Hence assume that s ≥ 2. Let u ∈ F ∩(N−
s−1(X)∪

N−
s−2(X)) be such that |N+(u)∩N−

s−1(X)| ≥ 1 is maximum in F∩(N−
s−1(X)∪

N−
s−2(X)). Two cases need to be distinguished:

Case 1. Assume that u ∈ N−
s−1(X)∩F . Take any v ∈ N+(u)∩N−

s−2(X)
and denote by U = N+(u) ∩N−

s−1(X) and W = (N+(v) − u) ∩ N−
s−1(X).

Since 2 ≤ s ≤ g − 1 then D has no symmetric arc, hence W = N+(v) ∩
N−

s−1(X). Observe that |U | ≥ |W | because the way that vertex u has been

selected. Further notice that |U | + |W | ≥ 1 for if not, λ′(D) = |[X,X ]| ≥
|X| ≥ |N+

s−1(u)∩X|+|N+
s−1(v)∩X| ≥ |N+(u)−v|+|N+(v)−u| ≥ ξ′(uv) ≥

ξ′(D) and this is a contradiction.

Suppose that |[N+
s−1(z) ∩ X,X ]| ≥ 2 for all z ∈ U ∪ W . Since D is

s-geodetic, then the sets N+
s−1(u) ∩X, N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X and

N+
s−1(U) ∩X are pairwise disjoint. Furthermore, the inequalities
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|[N+
s−1(u) ∩X,X ]| ≥ |N+

s−1(u) ∩X|

= |N+
s−2(N

+(u)− v) ∩X|+ |N+
s−2(v) ∩X|

≥ |N+(u)− v| − |U |+ |N+(v)− u|

−|N+(v) ∩N−
s−2(X)| − |W |,

|[N+
s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X,X ]| ≥ |N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X|

≥ |N+(v) ∩N−
s−2(X)|

and
|[N+

s−1(U) ∩X,X ]| ≥ 2|U | ≥ |U |+ |W |
hold. Hence,

λ′(D) ≥ |X|

≥ |[N+
s−1(u) ∩X,X ]|+ |[N+

s−2

(
N+(v) ∩N−

s−2(X)
)
) ∩X,X ]|

+|[N+
s−1(U) ∩X,X ]|

≥ |N+(u)− v| − |U |+ |N+(v)− u| − |N+(v) ∩N−
s−2(X)| − |W |

+|N+(v) ∩N−
s−2(X)| + |U |+ |W |

= |N+(u)− v|+ |N+(v) − u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

a contradiction. Then there must exists a vertex u0 ∈ U ∪ W such that
|[N+

s−1(u0) ∩X,X ]| = 1.
Case 2. Assume that u ∈ N−

s−2(X)∩F . Note that |N+(u)∩N−
s−1(X)| ≥

|N+(v) ∩N−
s−1(X)| + 1 for all v ∈ N−

s−1(X) ∩ F may be assumed because
if for some v ∈ N−

s−1(X) ∩ F , |N+(u) ∩ N−
s−1(X)| = |N+(v) ∩ N−

s−1(X)|
the result follows from Case 1. Take any v ∈ N+(u)∩N−

s−1(X) and denote
by U = (N+(u) − v) ∩ N−

s−1(X) and W = N+(v) ∩N−
s−1(X) and observe

that u ∈ W because u ∈ N−
s−2(X) ∩F . Observe that |U | = |(N+(u)− v)∩

N−
s−1(X)| = |N+(u) ∩ N−

s−1(X)| − 1 ≥ |W | because the way that vertex
u has been selected. Further notice that |U | + |W | ≥ 1 because otherwise
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|N+(u)∩N−
s−1(X)| = 1 and |N+(v)∩N−

s−1(X)| = 0 for all v ∈ N−
s−1(X)∩F

yielding that the subdigraph D[N−
s−1(X)∩F ] has no arc, which contradicts

item (i).

As in the above case suppose that |[N+
s−1(z) ∩ X,X ]| ≥ 2 for all z ∈

U ∪W . The sets N+
s−2(u)∩X, N+

s−2

(
N+(u) ∩N−

s−2(X)
)
∩X, N+

s−1(U)∩X
and N+

s−1(v)∩X are pairwise disjoint, since D is s-geodetic. Furthermore,
the inequalities

|[N+
s−2(u)∩X,X ]| ≥ |N+

s−2(u)∩X| ≥ |N+(u)−v|−|U |−|N+(u)∩N−
s−2(X)|,

|[N+
s−2

(
N+(u) ∩N−

s−2(X)
)
∩X,X ]| ≥ |N+

s−2

(
N+(u) ∩N−

s−2(X)
)
∩X|

≥ |N+(u) ∩N−
s−2(X)|,

|[N+
s−1(U) ∩X,X ]| ≥ 2|U | ≥ |U |+ |W |

and

|[N+
s−1(v) ∩X,X ]| ≥ |N+

s−1(v) ∩X| ≥ |N+(v)− u| − |W |

hold. Hence,

λ′(D) ≥ |X| ≥ |[N+
s−2(u) ∩X,X ]|

+|[N+
s−2

(
N+(u) ∩N−

s−2(X)
)
∩X,X ]|

+|[N+
s−1(U) ∩X,X ]|+ |[N+

s−1(v) ∩X,X ]|

≥ |N+(u)− v| − |U | − |N+(u) ∩N−
s−2(X)|

+|N+(u) ∩N−
s−2(X)|+ |U |+ |W |+ |N+(v)− u| − |W |

= |N+(u)− v|+ |N+(v)− u|

= |ω+({u, v})| ≥ ξ′(uv) ≥ ξ′(D),

again a contradiction. Then there must exists a vertex u0 ∈ U ∪W such
that |[N+

s−1(u0) ∩X,X ]| = 1.

The prof of the existence of a vertex u0 ∈ F such that |[X,N−
s−1(u) ∩

X]| = 1 is analogous. �

As a consequence of all the above previous result, a sufficient condition
for a s-geodetic digraph to be λ′-optimal is given in the following theorem.
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Theorem 4 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3. Then D is λ′-optimal if the diameter is diam(D) ≤ 2s−1.

Proof: From Theorem A it follows that D is λ′-connected and λ′(D) ≤
ξ′(D). Suppose that D is non λ′-optimal and let S be a λ′-cut. Then from
Lemma 1 it follows that S = ω+(F ) = [X,X ]. Moreover, from Lemma
2 there is a vertex u0 ∈ F such that d(u0,X) ≥ s − 1 and there is a
vertex u0 ∈ F such that d(X,u0) ≥ s−1. Hence diam(D) ≥ d(u0,X)+1+
d(X,u0) ≥ 2s−1, which is a contradiction unless diam(D) = 2s−1. In this
case, all the former inequalities become equalities, that is, max{d(u,X) :
u ∈ F} = max{d(X,u) : u ∈ F} = s − 1. Then by Lemma 3 we may
assume that |[N+

s−1(u0) ∩X,X ]| = 1 and |[X,N−
s−1(u0) ∩X ]| = 1. Let us

denote by [N+
s−1(u0) ∩X,X ] = [x0, x0], for some x0 ∈ X, x0 ∈ X; and let

us denote by [X,N−
s−1(u0) ∩X ] = [y0, y0], for some y0 ∈ X, y0 ∈ X .

From d(u0, u0) = 2s − 1, it follows that x0 = y0 and x0 = y0. Notice
also that |N+(u0)∩N−

s−1(X)| ≥ d+(u0)− 1 because |N+(u0)∩N−
s−2(X)| ≤

|N+
s−1(u0) ∩X| = 1; analogously |N−(u0) ∩N+

s−1(X)| ≥ d−(u0)− 1. First,
suppose δ+(D) ≥ 3, then there exists a vertex v ∈ N+(u0) ∩ N−

s−1(X).
Observe that d(v, u0) = 2s − 1, yielding that |[N+

s−1(v) ∩X,x0]| ≥ 1, that
is, x0 ∈ N+

s−1(v) ∩X. Therefore the shortest u0 → x0 path together with
the arc u0v and the shortest v → x0 path are two distinct u0 → x0 directed
paths of length at most s, which is a contradiction. A similar contradiction
is obtained supposing δ−(D) ≥ 3. Hence, D is λ′-optimal. �

Our next goal is to study sufficient conditions for λ′-optimality in s-
geodetic digraphs of diameter diam(D) = 2s.

Theorem 5 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3 and diameter diam(D) = 2s. Then D is λ′-optimal if
|N+

s (u) ∩N−
s (v)| ≥ 3 for all pair u, v of vertices at distance d(u, v) = 2s.

Proof: From Theorem A it follows that D is λ′-connected and λ′(D) ≤
ξ′(D). Let S be a λ′-cut of D and suppose that D is non λ′-optimal, that is,
|S| < ξ′(D). A contradiction will be obtained by proving the existence of
two vertices u, v ∈ V (D) such that d(u, v) = 2s and |N+

s (u) ∩N−
s (v)| < 3.

From Lemma 1 it follows that S = ω+(F ) = [X,X ]. Let us denote by
μ = max{d(u,X) : u ∈ F} and μ = max{d(X,u) : u ∈ F}. From Lemma 2
it follows that μ ≥ s−1 and μ ≥ s−1. If μ+μ ≥ 2s then it is enough to take
two vertices u (at distance μ to X) and u (at distance μ from X), yielding
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that 2s = diam(D) ≥ d(u, u) ≥ d(u,X)+ 1+ d(X,u) = μ + μ+ 1 ≥ 2s + 1,
which is a contradiction, hence, μ = s− 1 or μ = s− 1.

First assume that μ = s − 1 and μ = s. By Lemma 3, there exists
a vertex u0 ∈ N−

s−1(X) ∩ F such that [N+
s−1(u0) ∩ X,X ] = {xx}. Given

any vertex u ∈ F at distance μ = s from X, we have 2s = diam(D) ≥
d(u0, u) ≥ d(u0,X) + 1 + d(X,u) = s − 1 + 1 + s = 2s, following that
d(u0, u) = 2s. Notice that N+

s (u0) ∩ F = {x} whereas F ∩ N−
s (u) = ∅,

since d(X,u) = s. Hence N+
s (u) ∩ N−

s (u) = {x} which contradicts the
hypothesis that |N+

s (u)∩N−
s (v)| ≥ 3 for all pair u, v of vertices at distance

d(u, v) = 2s.
Second assume that μ = s− 1 and μ = s− 1. By Lemma 3, there exists

a vertex u0 ∈ N−
s−1(X) ∩F such that [N+

s−1(u0)∩X,X ] = {xx}, and there

is a vertex u0 ∈ N+
s−1(X) ∩ F such that [X,N−

s−1(u0) ∩X] = {yy}. Notice

that N+
s (u0) ∩ F = {x} and N−

s (u0) ∩ F = {y}. Then

N+
s (u0) ∩N−

s (u0) ⊆
(
N+

s (u0) ∩ F
)
∪
(
N−

s (u0) ∩ F
)

= {x, y}

and therefore, |N+
s (u0) ∩N−

s (u0)| < 3, again a contradiction.
Hence, D is λ′-optimal and the result holds. �

We recall here that in the line digraph L(D) of a digraph D, each
vertex represents an arc of D. Thus, V (L(D)) = {uv : (u, v) ∈ A(D)}; and
a vertex uv is adjacent to a vertex xz if and only if v = x, that is, when the
arc (u, v) is adjacent to the arc (x, z) in D. For any h ≥ 1 the h-iterated
line digraph, Lh(D), is defined recursively by Lh(D) = L(Lh−1(D)). From
the definition it follows that the minimum degrees δ(L(D)) = δ(D) = δ.
Moreover, the diameter of any strongly connected digraph other than a
directed cycle [1] satisfies

diam(Lh(D)) = diam(D) + h. (1)

Moreover, if D is s-geodetic then Lh(D) is s′-geodetic with s′ = min{s +
h, g − 1}, where g denotes the girth of D [5].

Theorem 6 Let D be a strongly connected s-geodetic digraph with δ+(D) ≥
3 or δ−(D) ≥ 3 and girth g ≥ s + 1. Then Lg−1−s(D) is λ′-optimal if
diam(D) ≤ g + s− 2.

Proof: Observe that the iterated line digraph Lg−1−s(D) is s′-geodetic
with s′ = s + g − 1− s = g − 1. From (1) and the hypothesis diam(D) ≤
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g + s− 2 it follows that

diam(Lg−1−s(D)) = diam(D) + g − 1− s ≤ 2(g − 1)− 1 = 2s′ − 1.

Hence the result follows directly from Theorem 4. �
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Abstract

A 3 − arc of a graph G is a 4-tuple (y, a, b, x) of vertices such
that both (y, a, b) and (a, b, x) are paths of length two in G.

Let
←→
G denote the symmetric digraph of a graph G. The 3-arc

graph X(G) of a given graph G is defined to have vertices the

arcs of
←→
G . Two vertices (ay), (bx) are adjacent in X(G) if and

only if (y, a, b, x) is a 3-arc of G. The purpose of this work is
to study the edge-connectivity and restricted edge-connectivity
of 3-arc graphs. We prove that the 3-arc graph X(G) of every
connected graph G of minimum degree δ(G) ≥ 3 has edge-
connectivity λ(X(G)) ≥ (δ(G) − 1)2; and restricted edge- con-
nectivity λ(2)(X(G)) ≥ 2(δ(G) − 1)2 − 2 if κ(G) ≥ 2. We also
provide examples showing that all these bounds are sharp.

1 Introduction

Throughout this paper, only undirected simple graphs without loops or
multiple edges are considered. Unless otherwise stated, we follow [10] for
terminology and definitions.

Let G be a graph with vertex set V (G) and edge set E(G). For every
v ∈ V (G), NG(v) denotes the neighborhood of v, that is, the set of all
vertices adjacent to v. The degree of a vertex v is d(v) = |NG(v)| and the
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minimum degree δ = δ(G) of the graph G is the minimum degree over all
vertices of G.

A graph G is called connected if every pair of vertices is joined by a
path. If S ⊂ V (G) and G − S is not connected, then S is said to be a
cutset. A component of a graph G is a maximal connected subgraph of G.
A (noncomplete) connected graph is called k-connected if every cutset has
cardinality at least k. The connectivity κ(G) of a (noncomplete) connected
graph G is defined as the maximum integer k such that G is k-connected.
The minimum cutsets are those having cardinality κ(G). The connectivity
of a complete graph Kδ+1 on δ + 1 vertices is defined as κ(Kδ+1) = δ.
Analogously, for edge connectivity an edge-cut in a graph G is a set W
of edges of G such that G − W is nonconnected. If W is a minimum
edge-cut of a connected graph G, then G −W contains exactly two com-
ponents. Every connected graph on at least two vertices has an edge-cut.
The edge-connectivity λ(G) of a graph G is the minimum cardinality of an
edge-cut of G. A classic result due to Whitney is that for every graph G,
κ(G) ≤ λ(G) ≤ δ(G). A graph is maximally connected if κ(G) = δ(G), and
maximally edge-connected if λ(G) = δ(G).

Though the parameters κ, λ of connectivities give the minimum cost
to disrupt the network, they do not take into account what remains after
deletion. Even two graphs with the same connectivity κ, λ may be consid-
ered to have different reliabilities, since the number of minimum cutsets or
edge-cuts is different. Superconnectivity is a stronger measure of connec-
tivity, introduced by Boesch and Tindell in [8], whose study has deserved
some attention in the last years, see for instance, [1, 6, 7, 19, 20]. A max-
imally connected [edge-connected] graph is called super-κ [super-λ] if for
every cutset [edge-cut] W of cardinality δ(G) there exists a component C
of G−W of cardinality |V (C)| = 1. The study of super-κ [super-λ] graphs
has a particular significance in the design of reliable networks, mainly due
to the fact that attaining superconnectivity implies minimizing the number
of minimum cutsets [edge-cuts] (see [7, 20]).

In order to measure the super edge-connectivity we use the following
parameter introduced by Esfahanian and Hakimi [11]. The restricted edge-
connectivity λ(2) = λ(2)(G) is the minimum cardinality over all restricted
edge-cuts W , i.e., those such that there are no isolated vertices in G−W .
A restricted edge-cut W is called a λ(2)-cut if |W | = λ(2). Obviously for
any λ(2)-cut W , the graph G − W consists of exactly two components
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C,C and clearly |V (C)| ≥ 2, |V (C)| ≥ 2. A connected graph G is called
λ(2)-connected if λ(2) exists. Esfahanian and Hakimi [11] showed that each
connected graph G of order n(G) ≥ 4 except a star, is λ(2)-connected and
satisfies λ(2) ≤ ξ, where ξ = ξ(G) denotes the minimum edge-degree of G
defined as ξ(G) = min{d(u) + d(v) − 2 : uv ∈ E(G)}. Furthermore, a
λ(2)-connected graph is said to be λ(2)-optimal if λ(2) = ξ. Recent results
on this property are obtained in [2, 5, 12, 13, 18, 21, 23]. Notice that if
λ(2) ≤ δ, then λ(2) = λ. When λ(2) > δ (that is to say, when every edge
cut of order δ isolates a vertex) the graph must be super-λ. Therefore, by
means of this parameter we can say that a graph G is super-λ if and only
if λ(2) > δ. Thus, we can measure the super edge-connectivity of the graph
as the value of the restricted edge-connectivity λ(2).

Let
←→
G denote the symmetric digraph of a graph G. For adjacent

vertices u, v of V (G) we use (u, v) to denote the arc from u to v, and
(v, u)(= (u, v)) to denote the arc from v to u. A 3-arc is a 4-tuple (y, a, b, x)
of vertices such that both (y, a, b) and (a, b, x) are paths of length two in G.
The 3-arc graph X(G) of a given graph G is defined to have vertices the arcs

of
←→
G and they are denoted as (uv). Two vertices (ay), (bx) are adjacent

in X(G) if and only if (y, a, b, x) is a 3-arc of G, see [17, 22]. Equivalently,
two vertices (ax), (by) are adjacent in X(G) if and only if dG(a, b) = 1; that

is, the tails a, b of the arcs (a, x), (b, y) ∈ A(
←→
G ) are at distance one in G.

Thus the number of edges of X(G) is
∑

uv∈E(G)(d(u)− 1)(d(v)− 1) so that

the minimum degree of X(G) is (δ(G) − 1)2. There is a bijection between
the edges of X(G) and those of the 2-path graph P2(G), which is defined to
have vertices the paths of length two in G such that two vertices are adja-
cent if and only if the union of the corresponding paths is a path or a cycle
of length three, see [9]. Since P2(G) is a spanning subgraph of the second
iterated line graph L2(G) = L(L(G)) (see e.g. [14]), we have a relation
between 3-arc graphs and line graphs. Some results on the connectivity of
P2-path graphs are studied e.g. in [3, 4, 15].

The purpose of this paper is to study the edge-connectivity, the re-
stricted edge-connectivity and vertex-connectivity of the 3-arc graph X(G)
of a given graph G. The following theorem gather together the results on
connectivity of 3-arc-graph X(G) obtained by Knor and Zhou [16].

Theorem 1 [16] Let G be a graph with minimum degree δ(G).

(i) X(G) is connected if G is connected and δ(G) ≥ 3.
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(ii) κ(X(G)) ≥ (κ(G) − 1)2 if κ(G) ≥ 3.

The main results contained in this paper are the following:
Let G be a connected graph with minimum degree δ(G) ≥ 3.

(i) λ(X(G)) ≥ (δ(G) − 1)2.

(ii) λ(2)(X(G)) ≥ 2(δ(G) − 1)2 − 2 if κ(G) ≥ 2.

(iii) κ(X(G)) ≥ min{κ(G)(δ(G) − 1), (δ(G) − 1)2}.

(iv) X(G) is super-κ if κ(G) = δ(G) and δ(X(G)) = (δ(G) − 1)2.

2 Results on the edge-connectivity and restricted

edge-connectivity of 3-arc graphs

Let X(G) be the 3-arc graph of a graph G. If (ay) and (bx) are adjacent in
X(G) then the edge (ay)(bx) will be called an ab-edge (or ba-edge). Observe
that (ay)(bx) = (bx)(ay) but (ay) = (ya) and (bx) = (xb). For any edge
ab ∈ E(G) let Va

ab = {(ay) ∈ V (X(G)) : y ∈ NG(a)− b}. Observe that the
induced subgraph of X(G) by the set Va

ab ∪ Vb
ba is the complete bipartite

graph K|Va
ab|,|Vb

ba| = Kd(a)−1,d(b)−1.

If W is a minimal edge cut of a connected graph G, then, G−W nec-
essarily contains exactly two components C and C, so it is usual to denote
an edge cut W as [C,C] where [C,C ] denotes the set of edges between C
and its complement C.

Lemma 2 Let G be a graph and [C,C] an edge-cut of X(G). Let ab ∈
E(G), if [C,C] contains ab-edges, then it contains at least min{d(a) −
1, d(b) − 1} ab-edges.

Proof: Suppose that (ay)(bx) is an edge of [C,C ] such that (ay) ∈ V (C)
and (bx) ∈ V (C). Then Va

ab ∩ V (C) = ∅ and Vb
ba ∩ V (C) = ∅. Let denote

by |Va
ab ∩V (C)| = ra ≥ 1, |Vb

ba∩V (C)| = rb ≥ 0, |Va
ab ∩V (C)| = ra ≥ 0 and

|Vb
ba ∩ V (C)| = rb ≥ 1. Moreover, these numbers must satisfy ra + ra =

d(a) − 1 and rb + rb = d(b) − 1. Furthermore, the number of ab-edges
contained in [C,C] is rarb + rbra, that is,

|[C,C]| ≥ rarb + rbra. (1)
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If rb = 0, then rb = d(b)− 1. As ra ≥ 1, (1) implies |[C,C ]| ≥ d(b)− 1 and
the lemma follows. Similarly, if ra = 0, the result is also true. Therefore, we
can assume that ra, rb, ra, rb ≥ 1. In this case rarb+rbra ≥ ra+ra = d(a)−1,
and rarb + rbra ≥ rb + rb = d(b) − 1, and the result holds. �

Suppose that [C,C ] is an edge-cut of X(G). Let denote by ω(α) = {e ∈
E(G) : e = αβ} and define A = {αβ ∈ E(G) : (αy)(βx) ∈ [C,C ]}. Then,
as a consequence of the above lemma, we have |[C,C ]| ≥ |A|(δ(G) − 1).
Next we prove that |[C,C ]| ≥ (δ(G) − 1)2.

Lemma 3 Let G be a graph and [C,C ] an edge-cut of X(G). Let ab ∈
E(G) and suppose that ab ∈ A. Then |(ω(a) ∪ ω(b)) ∩ A| ≥ (δ − 1)2.

Proof: Suppose that for all y ∈ N(a) − b, ay ∈ A. Then there are at
least δ different ay-edges in [C,C ], and by Lemma 2 the number of ay-
edges in [C,C] is at least δ(δ − 1) > (δ − 1)2. The same occurs if for
every x ∈ N(b) − a, bx ∈ A. Therefore we may assume that there exists
y0 ∈ NG(a) − b such that ay0 ∈ A and there exists x0 ∈ NG(b) − a such
that bx0 ∈ A.

As ab ∈ A, (ay′)(bx′) ∈ [C,C ] for some y′ ∈ N(a)−b and x′ ∈ N(b)−a,
and without loss of generality we may suppose that (ay′) ∈ V (C), (bx′) ∈
V (C). Suppose that (ay0)(bx0) ∈ [C,C]. Without loss of generality we may
assume that (ay0), (bx0) ∈ V (C) in which case (ay′)(bx0) ∈ [C,C ] because
(ay′) ∈ V (C). Then we can continue the proof assuming that there is an
edge (ay)(bx) ∈ [C,C] such that bx ∈ A, i.e., there are no bx-edges in
[C,C].

First suppose that Vx
xb ∩ V (C) = ∅. Let B = {x′ ∈ NG(b) \ {x, a} :

(x′z) ∈ V (C)} and B = {x′ ∈ NG(b) \ {x, a} : (x′z) ∈ V (C)}. Observe
that for all x′ ∈ B ∪ B, (x′z) is adjacent to (bx) ∈ V (C), and (x′z) is
adjacent to (ba). Hence the edge-cut [C,C ] must contain |B| different bx′-
edges. Moreover, since (ba) is adjacent to every (xb′) ∈ Vx

xb and bx ∈ A,
then (ba) ∈ V (C) because our assumption Vx

xb ∩ V (C) = ∅. Hence [C,C]
also contains |B| different bx′-edges yielding that [C,C ] contains at least
|B|+ |B|+ |{ab}| = d(b)− 1 ≥ δ − 1 different bv-edges with v ∈ N(b) and
by Lemma 2, the result holds.

Second suppose that Vx
xb ⊂ V (C). Hence Vb

ba ⊂ V (C) because every
(bx′) ∈ Vb

ba is adjacent to every (xb′) ∈ Vx
xb and [C,C ] does not contain

bx-edges. If ay ∈ A, reasoning for ay in the same way as for bx we get that
Va

ab ⊂ V (C). Thus as Vb
ba ⊂ V (C) it follows that [C,C] contains at least
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(d(a) − 1)(d(b) − 1) ≥ (δ − 1)2 ab-edges and the lemma holds. Therefore,
suppose that ay ∈ A.

We know that there exists v ∈ NG(a) − y such that av ∈ A. As (va′)
is adjacent to (ay) for all (va′) ∈ Vv

va it follows that Vv
va ⊂ V (C) (because

(ay) ∈ V (C) and av ∈ A). Hence Va
av ⊂ V (C) because every (ay′) ∈ Va

av is
adjacent to (va′) ∈ Vv

va. As Vb
ba ⊂ V (C) it follows that [C,C ] contains at

least (d(a)− 2)(d(b)− 1) ab-edges. Further, as ay ∈ A, by Lemma 2, [C,C ]
also contains at least δ − 1 ay-edges, yielding that the number of au-edges
contained |[C,C ]| is at least (δ − 2)(δ − 1) + (δ − 1) = (δ − 1)2, and the
lemma holds. �

Theorem 4 Let G be a connected graph with minimum degree δ ≥ 3. Then

λ(X(G)) ≥ (δ − 1)2.

Proof: Let [C,C ] be a minimum edge-cut of X(G) and A = {ab ∈ E(G) :
(ay)(bx) ∈ [C,C ]}. As G is connected and δ ≥ 3, then X(G) is connected
yielding that |A| ≥ 1. So considering ab ∈ A, and using Lemma 3 we get
|[C,C ]| ≥ (δ − 1)2, following the theorem. �

The following corollary is an immediate consequence from Theorem 4,
and from the fact that if G is a graph of minimum degree δ having an
edge xy such that d(x) = δ and d(y′) = δ for all y′ ∈ NG(x) − y, then the
minimum degree of X(G) is δ(X(G)) = (δ − 1)2.

Corollary 5 Let G be a connected graph of minimum degree δ ≥ 3 having
an edge xy such that d(x) = δ and d(y′) = δ for all y′ ∈ NG(x) − y. Then
the 3-arc graph X(G) of G is maximally edge-connected.

Figure 1 shows a 3-regular graph G with λ(G) = 1 and its 3-arc graph
X(G) which has λ(X(G)) = 4 = δ(X(G)). However X(G) is not super-λ
and hence is not λ(2)-optimal. And Figure 2 shows a 3-regular graph G with
λ(G) = κ(G) = 2, and its 3-arc graph X(G) which has λ(X(G)) = 4 and
λ(2)(X(G)) = 6 = ξ(X(G)), i.e., this graph is λ(2)-optimal. In what follows
we give a lower bound on the restricted edge-connectivity λ(2)(X(G)) where
G is a graph having connectivity κ(G) ≥ 2.

Two edges which are incident with a common vertex are adjacent.
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Figure 1: A 3-regular graph with λ = 1 and its 3-arc graph.

Figure 2: A 3-regular graph with λ = 2 (κ = 2) and its 3-arc graph.

Lemma 6 Let G be a graph with minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2. Let [C,C] be a restricted edge-cut of X(G) and consider
the set A = {ab ∈ E(G) : (ay)(bx) ∈ [C,C]}. Then there are at least two
nonadjacent edges in A.

Proof: Clearly A = ∅, because X(G) is connected. Thus let (ay) ∈ V (C)
and (bx) ∈ V (C) be two adjacent vertices in X(G), which implies that
ab ∈ A. Since [C,C ] is a restricted edge-cut, then there exist (uy′) ∈ V (C)
and (wx′) ∈ V (C) adjacent to (ay) and (bx) in X(G), respectively. Observe
that we may assume that u = w because δ ≥ 3. Since G is 2-connected we
can find a path R : u = r0, r1, . . . , rk = w from u to w in G− a. As δ ≥ 3,
there exists vi ∈ N(ri) \ {ri−1, ri+1} for each i = 1, . . . , k − 1. Moreover
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we may choose v0 = y′ and vk = x′. Then the path R induces in X(G)
the path R∗ : (uy′), (r1v1), . . . , (rk−1vk−1), (wx′) (observe that if k = 1
then R∗ : (uy′), (wx′)). Since (uy′) ∈ V (C) and (wx′) ∈ V (C), it follows
that [C,C ] ∩ E(R∗) = ∅, hence riri+1 ∈ A for some i ∈ {0, . . . , k}. Since
a ∈ V (R) then a ∈ {ri, ri+1}.

Now reasoning analogously, we can find a path S : u = s0, s1, . . . , s� =
w from u to w in G − b that induces a path S∗ from (uy′) ∈ V (C) to
(wx′) ∈ V (C). This implies that [C,C] ∩ E(S∗) = ∅, hence sjsj+1 ∈ A for
some j ∈ {0, . . . , �}. Since b ∈ V (S) then b ∈ {sj, sj+1}.

As ab, riri+1, sjsj+1 ∈ A, a ∈ {ri, ri+1} and b ∈ {sj, sj+1}, it follow that
al least two of the edges of {ab, riri+1, sjsj+1} are nonadjacent. �

Theorem 7 Let G be a graph with minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2. Then X(G) has restricted edge-connectivity λ(2)(X(G)) ≥
2(δ − 1)2 − 2.

Proof: Let [C,C ] be a restricted edge-cut of X(G) and consider the set
A = {ab ∈ E(G) : (ay)(bx) ∈ [C,C]}. From Lemma 6, A contains two
nonadjacent edges ab and cd. By Lemma 3, the number of au-edges and
bv-edges, u, v ∈ N(a) ∪ N(b) contained in [C,C ] is at least (δ − 1)2, and
the number of cu-edges and dv-edges, u, v ∈ N(c) ∪ N(d) contained in
[C,C ] is at least (δ − 1)2. If |[{a, b}, {c, d}] ∩ A| ≤ 2 then |[C,C ]| ≥ 2(δ −
1)2 − |[{a, b}, {c, d}] ∩ A| ≥ 2(δ − 1)2 − 2. If 3 ≤ |[{a, b}, {c, d}] ∩ A| ≤ 4
then we may assume without loss of generality that ac, bd ∈ A, hence, by
applying Lemma 3, the number of au-edges and cv-edges, u, v ∈ N(a)∪N(c)
contained in [C,C ] is at least (δ− 1)2, and the number of bu-edges and dv-
edges, u, v ∈ N(b) ∪N(d) contained in [C,C] is at least (δ − 1)2. Thus,

|[C,C ]| ≥ 2(δ − 1)2 − |[{a, b}, {c, d}] ∩A|+ 2(δ − 1)2 − |[{a, c}, {b, d}] ∩ A|
≥ 4(δ − 1)2 − 8

≥ 2(δ − 1)2 − 2,

since δ ≥ 3. Hence the theorem is valid. �

Figure 3 shows that λ(G) ≥ 2 is not enough to guarantee that λ(2)(X(G)) ≥
2(δ− 1)2− 2. In this example G is a 4-regular graph with λ = 2 and κ = 1,
but λ(2)(X(G)) = 12 < 16.

The following corollary is an immediate consequence from Theorem 7,
and from the fact that if G is graph of minimum degree δ having an edge
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Figure 3: The 3-arc graph of a 4-regular graph with κ = 1 and λ = 2 with
λ(2)(X(G)) = 12.

xy such that d(x) = δ, d(y) = δ and such that every w ∈ (NG(x) − y) ∪
(NG(y) − x) also has degree δ, then the minimum edge degree of X(G) is
ξ(X(G)) = 2(δ − 1)2 − 2.

Corollary 8 Let G be a graph of minimum degree δ ≥ 3 and vertex con-
nectivity κ ≥ 2 having an edge xy such that d(x) = δ, d(y) = δ and such
that every w ∈ (NG(x) − y) ∪ (NG(y) − x) also has degree δ. Then the 3-
arc graph X(G) has restricted edge connectivity λ(2)(X(G)) = ξ(X(G)) =
2(δ − 1)2 − 2.
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Abstract

A graph is said to be edge-superconnected if each minimum
edge-cut consists of all the edges incident with some vertex
of minimum degree. A graph G is said to be a {d, d + 1}-
semiregular graph if all its vertices have degree either d or d+1.
A smallest {d, d+1}-semiregular graph G with girth g is said to
be a ({d, d+1}; g)-cage. We show that every ({d, d+1}; g)-cage
with odd girth g is edge-superconnected.

1 Introduction

We only consider undirected simple graphs without loops or multiple edges.
Unless otherwise stated, we follow [9] for basic terminology and definitions.
Let G stand for a graph with vertex set V = V (G) and edge set E =
E(G). The distance dG(u, v) = d(u, v) between two vertices of the graph
G is the length of a shortest path between u and v, and the diameter
of G denoted by diam(G) is the maximum distance between any pair of
vertices; when G is not connected, then diam(G) = +∞. For w ∈ V and
S ⊂ V , d(w,S) = dG(w,S) = min{d(w, s) : s ∈ S} denotes the distance
between w and S. For every S ⊂ V and every nonnegative integer r ≥ 0,
Nr(S) = {w ∈ V : d(w,S) = r} denotes the neighborhood of S at distance
r. Thus the set of vertices adjacent to a vertex v is N(v) = N1({v}), and
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the degree of a vertex v in G is degG(v) = deg(v) = |N(v)|, whereas the
minimum degree δ = δ(G) is the minimum degree over all vertices of G. A
graph is called r-regular if every vertex of the graph has degree r.

A graph G is called connected if every pair of vertices is joined by a
path. An edge-cut in a graph G is a set W of edges of G such that G−W
is disconnected. A graph is k-edge-connected if every edge-cut contains at
least k edges. If W is a minimal edge-cut of a connected graph G, then
necessarily, G−W contains exactly two components. The edge-connectivity
λ = λ(G) of a graph G is the minimum cardinality of an edge-cut of G.
A classic result is λ ≤ δ for every graph G. A graph is maximally edge-
connected if λ = δ.

One might be interested in more refined indices of reliability. Even
two graphs with the same edge-connectivity λ may be considered to have
different reliabilities. As a more refined index than the edge-connectivity,
edge-superconnectivity is proposed in [6, 7]. A subset of edges W is called
trivial if it contains the set of edges incident with some vertex of the graph.
Clearly, if |W | ≤ δ − 1, then W is nontrivial. A graph is said to be edge-
superconnected if λ = δ and every minimum edge-cut is trivial.

The degree set D of a graph G is the set of distinct degrees of the vertices
of G. The girth g(G) is the length of a shortest cycle in G. A (D; g)-graph is
a graph having degree set D and girth g. Let n(D; g) denote the least order
of a (D; g)-graph. Then a (D; g)-graph with order n(D; g) is called a (D; g)-
cage. If D = {r} then a (D; g)-cage is a (r; g)-cage. When D = {r, r + 1},
we refer to (D; g)-cages as semiregular cages.

The existence of (r; g)-cages was proved by Erdös and Sachs [10] in
the decade of the 60’s, and using this result Chartrand et al. [8] proved
the existence of (D; g)-cages. Some of the structural properties of (r; g)-
cages that have been studied are the vertex and the edge connectivity;
concerning this problem Fu, Huang and Rodger [11] conjectured that every
(r; g)-cage is r-connected, and they proved the statement for r = 3. Other
contributions supporting this conjecture can be seen in [15, 16, 17, 20].
Moreover, some structural properties of (r; g)-cages have been extended for
(D; g)-cages, for example the monotonicity of the order with respect to the
girth (see Theorem 1) and the upper bound for the diameter (see Theorem
2). The edge-superconnectivity of cages was established in [18, 19]. For
semiregular cages, it has been proved in [3] that they are maximally edge
connected. The main objective of this work is to prove that every ({d, d +
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1}; g)-cage with odd girth g ≥ 5 is edge-superconnected. With this aim we
need the following two results.

Theorem 1 [4] Let g1, g2 be two integers such that 3 ≤ g1 < g2. Then
n({d, d + 1}; g1) < n({d, d + 1}; g2).

Theorem 2 [5] The diameter of a ({d, d + 1}; g)-cage is at most g.

2 Main theorem

In order to study the edge-superconnectivity of a graph in terms of its
diameter and its girth, the following results were established [1, 2, 13].

Proposition 3 Let G = (V,E) be a connected graph with minimum
degree δ ≥ 2 and girth g. Let W ⊂ E be a minimum nontrivial edge-cut,
let Hi be a component of G−W , and let Wi ⊂ V (Hi) be the set of vertices
of Hi which are incident with some edge in W , i = 0, 1. Then there exists
some vertex xi ∈ V (Hi) such that

(a) [1, 13] d(xi,Wi) ≥ �(g − 1)/2�, if |Wi| ≤ δ − 1.

(b) [2] d(xi,Wi) ≥ �(g − 3)/2�, if |W | ≤ ξ − 1, where ξ = min{deg(u) +
deg(v) − 2 : uv ∈ E} is the minimum edge-degree of G.

For every minimum edge-cut W of G such that H0,H1 are the two
components of G−W , we will write henceforth W = [W0,W1] with W0 ⊂
V (H0) and W1 ⊂ V (H1) containing all endvertices of the edges in W . Note
that |Wi| ≤ |W |, i = 0, 1. From now on, let

μi = max{d(x,Wi) : x ∈ V (Hi)}, i = 0, 1.

When W is nontrivial and |W | ≤ ξ − 1, it follows from Proposition 3 that
μi ≥ �(g − 3)/2�. Likewise, μ0 and μ1 satisfy some other basic properties
shown in next lemma.

Lemma 4 Let G = (V,E) be a connected graph with minimum degree δ ≥ 3
and odd girth g ≥ 5. Let W = [W0,W1] ⊂ E be a minimum nontrivial edge-
cut with cardinality |W | ≤ δ. Let G −W = H0 ∪H1, where Wi ⊂ V (Hi).
If μi = (g − 3)/2 the following statements hold:
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(i) |Wi| = |W | = δ, and every a ∈ Wi is incident to a unique edge of W .

(ii) Every vertex z ∈ V (Hi) such that d(z,Wi) = μi has deg(z) = δ.

(iii) For every a ∈ Wi there exists a vertex x ∈ V (Hi) such that d(x,Wi) =
d(x, a) = μi and N(g−3)/2(x)∩Wi = {a}. Further, N(x) can be labeled
as {u1, u2, . . . , uδ}, and Wi can be labeled as {a1, a2, . . . , aδ}, where
a1 = a, so that N(g−5)/2(u1)∩Wi = {a1} and N(g−3)/2(uk)∩Wi = {ak}
for every k > 1. Consequently |[N(g−3)/2(x) ∩ Wi,Wi+1]| = 1 and
|[N(g−3)/2(uk) ∩ Wi,Wi+1]| = 1 (with subscripts taken mod 2). See
Figure 2.

uδ aδ

u2

x u1

a2

a1 b

�

�

�

�

�

�

W0N(g−3)/2(W0)

Figure 1: Lemma 4.

Proof: (i) Since μi = (g − 3)/2, d(x,Wi) ≤ μi = (g − 3)/2 < (g − 1)/2
for all x ∈ V (Hi). Hence from Proposition 3 (a), it follows that |Wi| ≥ δ,
yielding |Wi| = δ because |Wi| ≤ |W | ≤ δ. Observe that δ = |Wi| = |W |
means that |N(a)∩Wi+1| = 1 for each vertex a ∈ Wi (taking the subscripts
mod 2).

(ii) First observe that μi = (g− 3)/2 ≥ 1 since g ≥ 5. Let us define the
following partition of N(v) for all v ∈ V (Hi)

S−(v) =

{
{z ∈ N(v) : d(z,Wi) = d(v,Wi)− 1} if v ∈Wi;

Wi+1 ∩N(v) if v ∈Wi.

S+(v) = {z ∈ N(v) : d(z,Wi) = d(v,Wi) + 1}
S=(v) = {z ∈ N(v) : d(z,Wi) = d(v,Wi)}.
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Let z be a vertex of Hi such that d(z,Wi) = μi = (g− 3)/2. Then we have

N(z) = S=(z) ∪ S−(z);
|N(g−3)/2(S

=(z)) ∩Wi| ≥ |S=(z)|;
|N(g−5)/2(S

−(z)) ∩Wi| ≥ |S−(z)|;
N(g−3)/2(S

=(z)) ∩N(g−5)/2(S
−(z))) = ∅,

(1)

because otherwise cycles of length less than the girth g appear. Since

δ ≤ deg(z) = |S=(z)| + |S−(z)|
≤ |N(g−3)/2(S

=(z)) ∩Wi|+ |N(g−5)/2(S
−(z)) ∩Wi|

≤ |Wi| = δ

it follows that δ = deg(z). Therefore item (ii) holds.
(iii) First let us prove that there exists an edge zz′ such that d(z,Wi) =

d(z′,Wi) = (g − 3)/2. Otherwise, S=(z) = ∅ for all z with d(z,Wi) =
(g−3)/2. This implies that for all u ∈ N(z), u ∈ S−(z) and S=(S+(u)) = ∅.
Further, |N(g−5)/2(u) ∩ Wi| = 1 for all u ∈ N(z), because δ = |Wi| =∑
u∈N(z)

|N(g−5)/2(u)∩Wi| ≥ δ. Hence |S−(u)| = 1, and so |S+(u)|+|S=(u)| =

deg(u)−1 ≥ δ−1 ≥ 2. Suppose that |S=(u)| ≥ 1 for some u ∈ N(z). Then
as N(g−3)/2(z) ∩Wi and N(g−5)/2(S

=(u)) ∩Wi are two vertex disjoint sets
we have |W | ≥ |N(g−3)/2(z) ∩Wi| + |N(g−5)/2(S

=(u)) ∩Wi| ≥ δ + 1 which
is a contradiction because |W | = δ. Then we must assume that for all
u ∈ N(z), |S+(u)| = deg(u) − 1 ≥ δ − 1 ≥ 2. Let t ∈ S+(u)− z, according
to our first assumption S=(t) = ∅ meaning that N(t) = S−(t). Since t has
the same behavior as z we have Wi = N(g−3)/2(S

−(z)) = N(g−3)/2(S
−(t)),

and as 2 < δ ≤ deg(z) = deg(t), there exist cycles through {z, u, t, w} for
some w ∈ Wi of length less than g which is a contradiction.

Hence we may assume that there exists an edge zz′ such that d(z,Wi) =
d(z′,Wi) = (g − 3)/2. Since N(g−5)/2(S

−(z)) ∩Wi, N(g−5)/2(S
−(z′)) ∩Wi

and N(g−3)/2(S
=(z′)−z)∩Wi are three pairwise disjoint sets because g ≥ 5,

and taking into account (1) we have

δ = |W | ≥ |N(g−5)/2(S
−(z)) ∩Wi|+ |N(g−5)/2(S

−(z′)) ∩Wi|
+|N(g−3)/2(S

=(z′)− z) ∩Wi|
≥ |S−(z)| + |S−(z′)|+ |S=(z′)− z|
= deg(z) − 1 + |S−(z)| ≥ δ.
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Therefore, all inequalities become equalities, i.e., |S−(z)| = 1 = |N(g−5)/2(S
−(z))∩

Wi|. So S−(z) = {z1} and N(z)− z1 = S=(z) yielding a partition of Wi:

Wi =
(
N(g−5)/2(z1) ∩Wi

)
∪
(
∪z′∈N(z)−z1

N(g−3)/2(z
′) ∩Wi

)
,

because for all z′ ∈ N(z) − z1 the sets N(g−3)/2(z
′) ∩ Wi and the set

N(g−5)/2(z1) ∩ Wi are mutually disjoint. Thus, |N(g−3)/2(z
′) ∩ Wi| = 1

for all z′ ∈ N(z) − z1. Therefore, for every vertex a ∈ Wi there exists a
vertex x ∈ (N(z) − z1) ∪ {z} such that d(x,Wi) = d(x, a) = (g − 3)/2 and
N(g−3)/2(x)∩Wi = {a}. Furthermore, since every vertex z′ ∈ N(z)−z1 has
the same behavior as z, N(x) can be labeled as {u1, u2, . . . , uδ}, and Wi can
be labeled as {a1, a2, . . . , aδ}, where a1 = a, so that N(g−5)/2(u1) ∩Wi =
{a1} and N(g−3)/2(uk) ∩Wi = {ak} for every k > 1. Finally, using (i) we
obtain |[N(g−3)/2(x) ∩Wi,Wi+1]| = 1 and |[N(g−3)/2(uk) ∩Wi,Wi+1]| = 1,
which finishes the proof. �

A semiregular cage is known to be maximally edge-connected [3]. Now,
we are ready to prove that semiregular cages with odd girth are edge-
superconnected. As will be seen, Hall’s Theorem is a key point of this
study. Recall that if S is a set of vertices in a graph G, the set of all
neighbors of the vertices in S is denoted by N(S).

Theorem 5 ([12] Hall’s Theorem) A bipartite graph with bipartition
(X1,X2) has a matching which covers every vertex in X1 if and only if

|N(S)| ≥ |S| for all S ⊂ X1.

Using Hall’s Theorem Jiang [14] proved the following result.

Lemma 6 [14] Let G be a bipartite graph with bipartition (X1,X2) where
|X1| = |X2| = r. If G contains at least r2 − r + 1 edges, then G contains a
perfect matching.

The following lemma is an stronger version of Lemma 6, which is also
proved using Hall’s Theorem.

Lemma 7 Let B be a bipartite graph with bipartition (X1,X2) where |X1| =
|X2| = r. If δ(B) ≥ 1 and |E(B)| ≥ r2−r, then B contains a perfect match-
ing.
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Proof: Let B = (X1,X2) be a bipartite graph with |X1| = |X2| = r,
δ(B) ≥ 1 and |E(B)| ≥ r2 − r. We shall apply Hall’s Theorem to prove
the lemma; we shall show that for a subset S ⊂ X1, |N(S)| ≥ |S|. Notice
that if |S| = 1, then |N(S)| ≥ 1 = |S| because δ(B) ≥ 1; and if S = X1,
N(S) = X2 because δ(B) ≥ 1 implies that each vertex u ∈ X2 must have a
neighbor in S, hence |S| = |N(S)|.

Therefore we continue the proof reasoning by contradiction and so as-
suming that 1 ≤ |N(S)| < |S| = t ≤ r − 1. Then the number of edges in B
is at most

|E(B)| = |[S,N(S)]| + |[X1 \ S,X2]| ≤ t(t− 1) + (r − t)r,

and by hypothesis |E(B)| ≥ r2 − r. Thus r2 − r ≤ t(t − 1) + (r − t)r,
yielding 0 ≤ (t − r)(t − 1), which is an absurdity because 1 < t < r.
Therefore |N(S)| ≥ |S| for all S ⊂ X1, and by Hall’s Theorem the lemma
follows. �

Theorem 8 Let G be a ({d, d+1}; g)-cage with odd girth g ≥ 5, and d ≥ 3.
Then G is edge-superconnected.

Proof: Let us assume that G is a non edge-superconnected ({d, d + 1}; g)-
cage, and we will arrive at a contradiction. To this end, let us take a
minimum nontrivial edge-cut W = [W0,W1] ⊂ E(G) such that |W | ≤ δ.
Let G −W = H0 ∪ H1, and let Wi ⊂ V (Hi) be the set of vertices of Hi

which are incident with some edge in W , i = 0, 1. From Proposition 3 it
follows that μi = max{d(x,Wi) : x ∈ V (Hi)} ≥ (g − 3)/2, i = 0, 1. Let
xi ∈ V (Hi)∩Nμi(Wi). As G is a ({d, d+1}; g)-cage, the diameter is at most
diam(G) ≤ g by Theorem 2, so we get the following chain of inequalities:

g ≥ diam(G) ≥ d(x0, x1) ≥ d(x0,W0)+1+d(x1,W1) = μ0 +1+μ1 ≥ g−2.

If we assume henceforth μ0 ≤ μ1 (without loss of generality), then either
(g − 3)/2 = μ0 ≤ μ1 ≤ (g + 1)/2, or μ0 = μ1 = (g − 1)/2. We proceed to
study each one of these cases.

In what follows, let X0,X1 be two subsets of V (G) such that |X0| =
|X1|. Let BΓ denote the bipartite graph with bipartition (X0,X1) and
E(BΓ) = {uivj : ui ∈ X0, vj ∈ X1, dΓ(ui, vj) ≥ g − 1}, where Γ is a certain
subgraph of G.
Case (a): μ0 = (g − 3)/2.
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From Lemma 4 (i), |W0| = d = |W | so that each vertex of W0 is
incident to a unique edge of W , yielding that every vertex a ∈ W0 has
degH0(a) ∈ {d − 1, d}. Also by Lemma 4 (ii), every vertex x ∈ N(g−3)/2 ∩
V (H0) has deg(x) = d. And by Lemma 4 (iii), for every a ∈ W0 there
exists a vertex x0 ∈ N(g−3)/2 ∩ V (H0) such that N(x0) = {u1, u2, . . . , ud}
and W0 = {a1, a2, . . . , ad}, where a1 = a, in such a way that d(u1, a1) =
d(u1,W0) = (g − 5)/2, d(uj ,W0) = d(uj , aj) = (g − 3)/2, and by (ii),
deg(uj) = d for every j ≥ 2. This implies that dG−x0(u1, aj) ≥ (g − 1)/2
for all j ≥ 2, because the shortest (u1, aj)-path in G − x0, the shortest
(uj , aj)-path in G, and the path ujx0u1 in G of length two, form a closed
walk containing a cycle. Reasoning analogously, dG−x0(uj , a1) ≥ (g + 1)/2
for all j ≥ 2 and dG−x0(uj , ai) ≥ (g − 1)/2 for j = i, j, i ∈ {2, . . . , d}.
Furthermore, [N(g−3)/2(x0) ∩W0,W1] = {a1b1} for some b1 ∈ W1.

Subcase (a.1): μ1 = (g + 1)/2.

Let x1 ∈ V (H1) be any vertex such that d(W1, x1) = (g+1)/2. Let X0 =
{u2, . . . , ud} ∪ {x0} and X1 = {v1, v2, . . . , vd} ⊆ N(x1). As d(ui,W0) =
(g−3)/2 for i ≥ 2 and dG−x1(W1, N(x1)) ≥ (g−1)/2, then dG−x1(X0,X1) ≥
g − 1, so |E(BΓ)| = d2, where Γ = G − x1. Clearly BΓ is a complete
bipartite graph, so there is a perfect matching M which covers every vertex
in X0 and if deg(x1) = d, also covers N(x1). Hence, in this case the
graph G∗ = (G− {x1} − {x0ud}) ∪M has girth at least g and the vertices
u2, . . . , ud−1 have degree d+1 in G∗ as they had degree d in G; for the same
reason x0 and ud have degree d in G∗. The remaining vertices have the same
degree they had in G. As G∗ is a ({d, d+1}; g∗)-graph with girth g∗ ≥ g and
|V (G∗)| < |V (G)|, we get a contradiction to the monotonocity Theorem 1.
If deg(x1) = d + 1, since dG∗(ud, vd+1) ≥ g − 1 where vd+1 ∈ N(x1) \X1,
we can add the new edge udvd+1 to G∗ without decreasing the girth. Then
G∗ ∪ {udvd+1} gives us again a contradiction.

Subcase (a.2): μ1 = (g − 3)/2.

By Lemma 4, given b1 ∈ W1 there exists x1 ∈ V (H1) ∩ N(g−3)/2(W1)
of deg(x1) = d such that N(x1) = {v1, v2, . . . , vd}, W1 = {b1, b2, . . . , bd}
and each vertex of W1 is incident to a unique edge of W , hence W =
{a1b1, a2b2, . . . , adbd}. Also, d(b1, v1) = d(W1, v1) = (g−5)/2, and d(W1, vj) =
d(bj , vj) = (g − 3)/2 for every j ≥ 2 and besides deg(vj) = d. Then
d(x0, x1) = d(x0, a1) + 1 + d(b1, x1) = g − 2, and if g = 5 it is easy to see
that the shortest (x0, x1)-path of length three is unique, clearly x0a1b1x1.
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Now let Γ = G− {x0, x1}. We have

dΓ(u1, N(x1)− v1) = min{dΓ(u1, a1) + 1 + dΓ(b1, N(x1)− v1);

dΓ(u1, aj) + 1 + dΓ(bj, N(x1)− v1), j ≥ 2}

≥ min{g − 5

2
+ 1 +

g + 1

2
;

g − 1

2
+ 1 +

g − 3

2
} = g − 1,

since dΓ(b1, vj) ≥ (g + 1)/2 for all j ≥ 2, because the shortest (b1, vj)-path
in Γ, the shortest (b1, v1)-path in Γ, and the path vjx1v1 in G of length
two, form a closed walk containing a cycle. Reasoning in the same way, it
follows for all j ≥ 2 that

dΓ(uj , N(x1)− vj) =

= min{dΓ(uj , aj) + 1 + dΓ(bj, N(x1)− vj); dΓ(uj , ah) + 1

+dΓ(bh, N(x1)− vj), h = j}

≥ min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
{

g − 3

2
+ 1 +

g − 1

2
;

g − 1

2
+ 1 +

g − 3

2

}
if h ≥ 2, h = j{

g − 3

2
+ 1 +

g − 1

2
;

g + 1

2
+ 1 +

g − 5

2

}
if h = 1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= g − 1.

Analogously, dΓ(N(x0) − u1, v1) ≥ g − 1 and dΓ(N(x0) − uj , vj) ≥ g − 1
for all j ≥ 2. Let X0 = N(x0) and X1 = N(x1). The bipartite graph
BΓ = (X0,X1) has |E(BΓ)| = d2− d and degBΓ

(w) ≥ 1 for all w ∈ X0 ∪X1.
From Lemma 7, there is a perfect matching M between X0 = N(x0) and
X1 = N(x1). Hence G∗ = (G − {x0, x1}) ∪M is a ({d, d + 1}; g∗)-graph
(because every vertex in G∗ has the same degree it had in G and the removed
vertices x0, x1 had degree d, as well as the vertices uj , vk for every j, k ≥ 2)
with g∗ ≥ g and |V (G∗)| ≤ |V (G)|, which contradicts the monotonocity
Theorem 1, and we are done.

Subcase (a.3): μ1 = (g − 1)/2. In this case we distinguish two other
possible subcases.

Subcase (a.3.1): There exists x1 ∈ V (H1) ∩ N(g−1)/2(W1) such that
d(b, v) ≤ (g − 1)/2 for all b ∈ W1 and for all v ∈ N(x1).

Then, every b ∈ W1 has degH1(b) = deg(x1) ∈ {d, d + 1} because
d(b, v) ≤ (g−1)/2 and |N(g−3)/2(v)∩N(b)| ≤ 1 for all v ∈ N(x1) (otherwise
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cycles of length less than g appear). Hence deg(x1) = d and deg(b) =
d + 1 for all b ∈ W1. Thus N(x1) = {v1, . . . , vd} and W = [W0,W1] is
a matching, i.e., W = {a1b1, . . . , adbd}. Therefore the subgraph H1 gives
a contradiction unless H1 is d-regular. In this case let us consider the
graph Ĝ = (G−x1−W )∪{a1v1, . . . , advd} which clearly has girth at least
g. Moreover degĜ(bi) = deg(bi) − 1 = d and every vertex different from

bi has the same degree it had in G. Thus we may suppose that Ĝ is d-
regular because otherwise Ĝ would be a ({d, d + 1}; g∗)-graph with girth
g∗ ≥ g and smaller than G, a contradiction. Moreover, we may assume
that dH1(b1, v1) = (g − 3)/2 and dH1(b1, N(x1)− v1) = (g − 1)/2. Thus we
have

dĜ(b1, u2) ≥ min{dH1(b1, v2) + |{v2a2}|
+dH0(a2, u2); dH1(b1, v1) + |{v1a1}|+ dH0(a1, u2)}

≥ min{g − 1

2
+ 1 +

g − 3

2
;
g − 3

2
+ 1 +

g + 1

2
}

= g − 1,

which implies that we can add to Ĝ the edge u2b1 to obtain a graph without
decreasing the girth g. As this new graph is smaller than G and has degrees
{d, d + 1} we get a contradiction to the monotonicity Theorem 1, and we
are done.

Subcase (a.3.2): For all z ∈ V (H1) ∩ N(g−1)/2(W1) there exists v ∈
N(x1) and b ∈W1 such that d(b, v) ≥ (g + 1)/2.

Let x1 ∈ V (H1) ∩ N(g−1)/2(W1), v1 ∈ N(x1) and b∗ ∈ W1 be such
that d(b∗, v1) ≥ (g + 1)/2. By Lemma 4, there exists a unique edge
a∗b∗ ∈ W to which the vertex a∗ ∈ W0 is incident, and there exists a
vertex x∗ ∈ V (H0) of deg(x∗) = d such that d(x∗,W0) = d(x∗, a∗) =
(g − 3)/2 and N(g−3)/2(x

∗)∩W0 = {a∗}. Further, N(x∗) can be labeled as
{z1, z2, . . . , zd}, and W0 can be labeled as {a1, a2, . . . , ad}, where a1 = a∗,
so that N(g−5)/2(z1)∩Wi = {a1}, N(g−3)/2(zk)∩Wi = {ak} and deg(zk) = d
for every k > 1. Furthermore, [N(g−3)/2(x

∗) ∩W0,W1] = {a1b
∗}

Let Γ = G− {x∗, x1}. We obtain

dΓ(z1, v1)

= min{dΓ(z1, a1) + 1 + dΓ(b∗, v1); dΓ(z1, aj) + 1 + dΓ(b′, v1), j ≥ 2, ajb
′ ∈W}

≥ min{g − 5

2
+ 1 +

g + 1

2
;

g − 1

2
+ 1 +

g − 3

2
} = g − 1.

100



Edge-superconnectivity
of semiregular cages with odd girth C. Balbuena et al.

Moreover, dH0(zk,W0) = (g − 3)/2 for all zk ∈ N(x∗) − z1 and for k > 1
there exists a unique vertex say bk ∈ W1 for which akbk ∈ W . As for
each b ∈ W1, |N(g−3)/2(b) ∩ N(x1)| ≤ 1 (otherwise cycles of length less
than g appear) we may denote by vk the vertex in N(x1) − v1 such that
d(bk, vk) = (g − 3)/2, if any. Thus we obtain

dΓ(zk, N(x1) \ {v1, vk}) = d(zk, ak) + 1 + d(bk, N(x1) \ {v1, vk})
≥ g−3

2 + 1 + g−1
2 = g − 1.

Let us consider X0 = N(x∗)−z1 and X1 ⊆ N(x1)−v1, with |X1| = d−1.
It is clear that |degBΓ

(zk)| ≥ d − 2 ≥ 1 for all zk ∈ N(x∗) − u1 yielding
|E(BΓ)| ≥ (d− 2)(d − 1) = (d− 1)2 − (d− 1).

First, suppose that |degBΓ
(v)| ≥ 1 for all v ∈ N(x1)− v1. From Lemma

7, there is a matching M which covers every vertex in N(x∗)−z1 and every
vertex in N(x1) − v1 if deg(x1) = d. In this case G∗ = (G − {x∗, x1}) ∪
M ∪{z1v1} is a graph with girth g∗ ≥ g and smaller than G whose vertices
have the same degree they had in G; thus G∗ is a ({d, d+1}; g∗)-graph and
we are done. Thus suppose that deg(x1) = d + 1 and that after adding the
matching M ∪ {z1v1} to G− {x∗, x1} the vertex vd+1 ∈ (N(x1)− v1) \X1

remains of degree d − 1. By Lemma 4 every zk, k > 1, has degree d in G,
and we have proved that d(zk, N(x1) \ {v1, vk}) ≥ g − 1. Then we add one
extra edge zkvd+1 to G∗ obtaining a new ({d, d + 1}; g∗)-graph with g∗ ≥ g
and smaller than G, a contradiction to the monotonicity Theorem 1, so we
are done.

Therefore we must suppose that there exists v2 ∈ N(x1)− v1 such that
|degBΓ

(v2)| = 0. This implies that d(v2, b) = (g − 3)/2 for all b ∈ W1 − b∗,
hence d(v,W1 − b∗) = (g − 1)/2 for all v ∈ N(x1)− v2. First suppose that
d(v2, b

∗) ≥ (g + 1)/2; then dΓ(z1, v2) ≥ g − 1, dΓ(zk, N(x1) − v2) = g − 1
for all k ≥ 2, thus we consider the set X1 ⊆ N(x1)− v2 with |X1| = d− 1.
It is clear that |degBΓ

(w)| ≥ d − 1 for all w ∈ X0 ∪ X1. Using Lemma 7
and reasoning as before we get a contradiction. Therefore we must suppose
that d(v2, b

∗) ≤ (g − 1)/2. Since N(x1) − v2 ⊆ N(g−1)/2(W1) ∩ V (H1) we
have by hypothesis that for all v ∈ N(x1) − v2 there exists v̂1 ∈ N(v)
and b̂∗ ∈ W1 such that d(b̂∗, v̂1) ≥ (g + 1)/2. As the behavior of any
v ∈ N(x1) − v2 is the same as vertex x1, reasoning as before we get a
contradiction unless for all v ∈ N(x1)− v2 there exists v̂2 ∈ N(v)− v̂1 such
that |degB

Γ̂
(v̂2)| = 0 satisfying d(v̂2, b) = (g − 3)/2 for all b ∈ W1 − b̂∗ and

d(v̂2, b̂
∗) ≤ (g − 1)/2. Therefore we conclude that every vertex b ∈ W1 has
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degH1(b) = deg(x1) ∈ {d, d + 1}. Now considering the same graph as in
Subcase (a.3.1) we get a contradiction.

Case (b): μ0 = μ1 = (g − 1)/2.

Let x0 ∈ V (H0) and x1 ∈ V (H1) satisfy d(xi,Wi) = (g − 1)/2, i = 0, 1.

First of all note that there must exist a vertex in N(x0) of degree d,
otherwise G − x0 would be either a {d, d + 1}-graph or a d-regular graph.
In the former case we get a contradiction because G − x0 is smaller than
G and has girth at least g. And in the latter case we consider the graph
(G − x0) ∪ {uix1} with ui ∈ N(x0), which gives again a contradiction.
Similarly, note that there must exist a vertex in N(x1) of degree d.

Suppose that deg(x0) = deg(x1) = r with r ∈ {d, d + 1}. Let X0 =
N(x0),X1 = N(x1) and Γ = G−{x0, x1}. Define A = {uivj : ui ∈ X0, vj ∈
X1, dΓ(ui, vj) ≤ g − 2} and consider BΓ = K|X0|,|X1| − A. Note that every
(ui, vj)-path in G goes through an edge of W . Therefore every edge in
W gives rise to at most one element in A, otherwise G would contain a
cycle of length at most 2(g − 3)/2 + 2 = g − 1. Hence |A| ≤ |W | ≤ d and
|E(BΓ)| = |Kr,r| − |A| ≥ r2 − d.

If r = d + 1 then |E(BΓ)| ≥ (d + 1)2 − d = d2 + d + 1 and by Lemma
6, the graph BΓ contains a perfect matching M . Therefore the graph G′ =
G−{x0, x1}∪M has fewer vertices than G and girth at least g producing a
contradiction unless G′ is regular of degree d. In this case we consider the
graph G′′ = G′ ∪ {uv} where u ∈ N(x0) is such that d(u,W0) = (g − 1)/2
(such a vertex must exist because deg(x0) = d + 1 and |W1| ≤ d) and
v ∈ N(x1) such that uv ∈ M . As G′′ is a ({d, d + 1}; g)-graph with fewer
vertices than G and girth g a contradiction is again obtained.

Suppose r = d. If degBΓ
(z) ≥ 1 for all z ∈ BΓ, then by Lemma 7 there

exists a perfect matching M between X0 and X1; reasoning as before we
obtain again a contradiction. Hence, we may assume that degBΓ

(u1) = 0
for some u1 ∈ X0. This implies that dΓ(u1, vj) = g − 2 for all vj ∈ N(x1),
or equivalently dΓ(vj ,W1) = (g − 3)/2 for all vj ∈ N(x1). From this, and
because g ≥ 5, we get |W1| ≥ |N(x1)| = d, yielding |W1| = d (since d =
|W | ≥ |W1|), and also N(g−3)/2(vj)∩W1 = {bj} for all vj ∈ N(x1). That is,
|N(bj)∩W0| = 1 for every bj ∈ W1. Also we have N(g−1)/2(u1)∩W1 = W1,
hence N(g−3)/2(u1) ∩W0 = W0 and thus d(ui,W0) = (g − 1)/2 for i ≥ 2.
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Let uk ∈ N(x0), k ≥ 2, define Γk = G− {uk, x1} and consider the sets

Xk =

{
N(uk) if deg(uk) = d;

N(uk)− x0 if deg(uk) = d + 1;

X1 = N(x1);

Ak = {zivj : zi ∈ Xk, vj ∈ X1, dΓk
(zi, vj) ≤ g − 2}.

Let BΓk
= K|Xk|,|X1| −Ak.

If degBΓk
(z) ≥ 1 for all z ∈ Xk, we get a perfect matching M between

Xk and N(x1) by Lemma 7; if deg(uk) = d the graph Γk ∪ M yields a
contradiction; if deg(uk) = d + 1 the graph Γk ∪M ∪ {x0vj}, where vj is a
vertex of N(x1) with degree d, yields again a contradiction. Therefore we
can suppose that for every uk ∈ N(x0) − u1 there exists ẑk ∈ N(uk) such
that dΓk

(ẑk, vj) = g−2 for all vj ∈ N(x1). Hence, N(g−3)/2(ẑk)∩W0 = W0,
that is dΓk

(ẑk, aj) = (g − 3)/2 for each aj ∈ W0. Therefore degH0(aj) = d,
deg(aj) = d + 1 and [W0,W1] is a matching (recall that |N(bj) ∩W0| = 1
for every bj ∈ W1). We can now use the same graph Ĝ = (G−{x0}−W )∪
{b1u1, . . . , bdud} as used in Case (a.3.2), arriving again at a contradiction.

The only remaining case occurs when x0 and x1 have different degrees.
Let us suppose deg(x0) = d and deg(x1) = d+1. As deg(x1) = d+1 > |W1|,
there exists, say vd+1 ∈ N(x1), such that d(vd+1,W1) = (g − 1)/2. We
proceed as before, with the sets X0 = N(x0) and X1 = N(x1) − vd+1,
finding a graph G′ with fewer vertices and the same girth and degrees as G,
except for the vertex vd+1. Recall that there must exist a vertex y ∈ N(x0)
such that deg(y) = d. Then we construct the graph G∗ = G′ ∪ {yvd+1},
which is a new {d, d + 1}-graph with girth g, arriving at a contradiction.
This ends the proof of the theorem. �
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for distance-regular graphs
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Abstract

We analyze when the Moore–Penrose inverse of the combina-
torial Laplacian of a distance–regular graph is a M–matrix;
that is, it has non–positive off–diagonal elements or, equiv-
alently when the Moore-Penrose inverse of the combinatorial
Laplacian of a distance–regular graph is also the combinatorial
Laplacian of another network. When this occurs we say that
the distance–regular graph has the M–property. We prove that
only distance–regular graphs with diameter up to three can have
the M–property and we give a characterization of the graphs
that satisfy the M -property in terms of their intersection array.
Moreover we exhaustively analyze the strongly regular graphs
having the M -property and we give some families of distance
regular graphs with diameter three that satisfy the M -property.

1 Introduction

Very often problems in biological, physical and social sciences can be re-
duced to problems involving matrices which have some special structure.
One of the most common situation is when the matrix has non–positive
off–diagonal and non–negative diagonal entries; that is L = kI − A, k > 0
and A ≥ 0, where the diagonal entries of A are less or equal than k. These
matrices appear in relation to systems of equations or eigenvalue problems
in a broad variety of areas including finite difference methods for solving
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partial differential equations, input–output production and growth models
in economics or Markov processes in probability and statistics. Of course,
the combinatorial community can recognize within this type of matrices,
the combinatorial Laplacian of a k–regular graph where A is its adjacency
matrix.

If k is at least the spectral radius of A, then L is called a M–matrix. We
remark that M–matrices arise naturally in some discretizations of differ-
ential operators, particularly those with a minimum/maximum principle,
such as the Laplacian, and as such are well–studied in scientific computing.
In fact M–matrices satisfy monotonicity properties that are the discrete
counterpart of the minimum principle, and it makes them suitable for the
resolution of large sparse systems of linear equations by iterative methods.

As well as a symmetric, irreducible and non–singular M–matrix appears
as the discrete counterpart of a Dirichlet problem for a self–adjoint elliptic
operator, its inverse corresponds with the Green operator associated with
the boundary value problem. On the other hand, when the M–matrix is
singular, it can be seen as a discrete analogue of the Poisson equation for
a self–adjoint elliptic operator on a manifold without boundary and then,
its Moore–Penrose inverse corresponds with the Green operator too. A
well–known property of an irreducible non–singular M–matrix is that its
inverse is non–negative, [3]. However, the scenario changes dramatically
when the matrix is an irreducible and singular M–matrix. In this case, it
is known that the matrix has a generalized inverse which is non–negative,
but this is not always true for any generalized inverse. For instance, it may
happen that the Moore–Penrose inverse has some negative entries. We
focus here in studying when the Moore–Penrose inverse of a symmetric,
singular and irreducible M–matrix is itself an M–matrix. In particular,
we study the case of distance–regular graphs and more specifically strongly
regular graphs.

2 Preliminaries

The triple Γ = (V,E, c) denotes a finite network; that is, a finite con-
nected graph without loops nor multiple edges, with vertex set V , whose
cardinality equals n, and edge set E, in which each edge {x, y} has been
assigned a conductance c(x, y) > 0. So, the conductance can be considered
as a symmetric function c : V × V −→ [0,+∞) such that c(x, x) = 0 for
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any x ∈ V and moreover, x ∼ y, that is vertex x is adjacent to vertex
y, iff c(x, y) > 0. We define the degree function k as k(x) =

∑
y∈V

c(x, y),

for each x ∈ V . The usual distance from vertex x to vertex y is denoted
by d(x, y) and D = max{d(x, y) : x, y ∈ V } stands for the diameter of
Γ. We denote as Γi(x) the set of vertices at distance i from vertex x,
Γi(x) = {y : d(x, y) = i} 0 ≤ i ≤ D. The complement of Γ is defined as the
graph Γ on the same vertices such that two vertices are adjacent iff they
are not adjacent in Γ; that is x ∼ y in Γ iff c(x, y) = 0.

The set of real–valued functions on V is denoted by C(V ). When nec-
essary, we identify the functions in C(V ) with vectors in R|V | and the en-
domorphisms of C(V ) with |V |–order square matrices.

The combinatorial Laplacian or simply the Laplacian of the network Γ
is the endomorphism of C(V ) that assigns to each u ∈ C(V ) the function

L(u)(x) =
∑
y∈V

c(x, y)
(
u(x)− u(y)

)
= k(x)u(x) −

∑
y∈V

c(x, y)u(y), x ∈ V.

It is well–known that L is a positive semi–definite self–adjoint oper-
ator and has 0 as its lowest eigenvalue whose associated eigenfunctions
are constant. So, L can be interpreted as an irreducible, symmetric, diago-
nally dominant and singular M–matrix, L. Therefore, the Poisson equation
L(u) = f on V has solution iff

∑
x∈V

f(x) = 0 and, when this happens, there

exists a unique solution u ∈ C(V ) such that
∑

x∈V
u(x) = 0, see [1].

The Green operator is the linear operator G : C(V ) −→ C(V ) that
assigns to any f ∈ C(V ) the unique solution of the Poisson equation with
data f − 1

n

∑
x∈V

f(x) such that
∑

x∈V
u(x) = 0. It is easy to prove that G

is a positive semi–definite self–adjoint operator and has 0 as its lowest
eigenvalue whose associated eigenfunctions are constant. Moreover, if P
denotes the projection on the subspace of constant functions then,

L ◦ G = G ◦ L = I − P.

In addition, we define the Green function as G : V × V −→ R given by
G(x, y) = G(εy)(x), where εy stands for the Dirac function at y. Therefore,
interpreting G, or G, as a matrix it is nothing else but L† the Moore–
Penrose inverse of L, the matrix associated with L. In consequence, L† is
a M–matrix iff G(x, y) ≤ 0 for any x, y ∈ V with x = y and then G can
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be identified with the combinatorial Laplacian of a new connected network
with the same vertex set, that we denote by Γ†.

From now on we will say that a network Γ has the M–property iff L† is
a M–matrix.

Next we obtain a necessary and sufficient condition for a network to
have the M–property. In [1] it was proved that for any x ∈ V , there exists
a unique νx ∈ C(V ) such that νx(x) = 0, νx(y) > 0 for any y = x and
verifying

L(νx) = 1− nεx on V . (1)

We call νx the equilibrium measure of V \ {x} and then we define capacity
as the function cap ∈ C(V ) given by cap(x) =

∑
y∈V

νx(y).

Theorem 1 The network Γ has the M–property iff for any y ∈ V

cap(y) ≤ nνy(x) for any x ∼ y.

In this case, Γ is a subgraph of the subjacent graph of Γ†.

Proof: The Green function is given by

G(x, y) =
1

n2

(
cap(y)− n νy(x)

)
,

see [1]. Therefore, L† is a M–matrix iff

cap(y) ≤ n min
x∈V \{y}

{
νy(x)

}
.

The results follow by keeping in mind that min
x∈V \{y}

{
νy(x)

}
= min

x∼y

{
νy(x)

}
,

since if the minimum is attained at z ∼ y, then

1 = L(νy)(z) =
∑
x∈V

c(z, x)
(
νy(z)− νy(x)

)
≤ 0,

which is a contradiction. �
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3 Distance–regular graphs with the M–property

We aim here at characterizing when the Moore–Penrose inverse of the com-
binatorial Laplacian matrix of a distance–regular graph is a M–matrix.

A connected graph Γ is called distance–regular if there are integers bi, ci,
i = 0, . . . ,D such that for any two vertices x, y ∈ Γ at distance i = d(x, y),
there are exactly ci neighbours of y in Γi−1(x) and bi neighbours of y in
Γi+1(x), where for any vertex x ∈ Γ the set of vertices at distance i from it
is denoted by Γi(x). Moreover, |Γi(x)| will be denoted by ki. In particular,
Γ is regular of degree k = b0. The sequence

ι(Γ) = {b0, b1, . . . , bD−1; c1, . . . , cD},

is called the intersection array of Γ. In addition, ai = k − ci − bi is the
number of neighbours of y in Γi(x), for d(x, y) = i. Clearly, bD = c0 = 0,
c1 = 1 and the diameter of Γ is D. Usually, the parameters a1 and c2

are denoted by λ and μ, respectively. For all the properties related with
distance–regular graphs we refer the reader to [4, 7].

The parameters of a distance–regular graph satisfy many relations,
among them we will make an extensive use of the following:

(i) k0 = 1 and ki =
b0 · · · bi−1

c1 · · · ci
, i = 1, . . . ,D.

(ii) n = 1 + k + k2 + · · · + kD.

(iii) k > b1 ≥ · · · ≥ bD−1 ≥ 1.

(iv) 1 ≤ c2 ≤ · · · ≤ cD ≤ k.

(v) If i + j ≤ D, then ci ≤ bj and ki ≤ kj when, in addition, i ≤ j.

Additional relations between the parameters give more information about
the structure of distance–regular graphs. For instance, Γ is bipartite iff
ai = 0, i = 1, . . . ,D, whereas Γ is antipodal iff bi = cD−i, i = 0, . . . ,D,
i =

⌊
D
2

⌋
and then b�D

2 � = tc�D
2 �, t ≥ 1 and Γ is an antipodal (t + 1)–cover

of its folded graph, see [7, Prop. 4.2.2].

The following lemma shows that the equilibrium measures for a distance–
regular graph, and hence the capacity function, can be expressed in terms
of the parameters of its intersection array, see [1, Prop. 4.1] for the details.
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Lemma 2 Let Γ be a distance–regular graph. Then, for all x, y ∈ V

νx(y) =

d(x,y)−1∑
j=0

1

kjbj

( D∑
i=j+1

ki

)
and cap(x) =

D−1∑
j=0

1

kjbj

( D∑
i=j+1

ki

)2
.

Proposition 3 A distance–regular graph Γ has the M–property iff

D−1∑
j=1

1

kjbj

( D∑
i=j+1

ki

)2
≤ n− 1

k
.

Moreover, the subjacent graph of Γ† is Kn when the above inequality is
strict and Γ otherwise.

Proof: From Theorem 1 and Lemma 2, the Moore–Penrose inverse of L is
a M–matrix iff

D−1∑
j=0

1

kjbj

( D∑
i=j+1

ki

)2
≤ n(n− 1)

k

that is, iff

(n− 1)2

k
+

D−1∑
j=1

1

kjbj

( D∑
i=j+1

ki

)2
≤ n(n− 1)

k
.

Finally, the above inequality is an equality iff G(x, y) = 0 when d(x, y) = 1,
since for any y ∈ V , νy(x) is constant on Γ1(y). Therefore, the subjacent
graph of Γ† is Γ. �

A distance–regular graph of order n has diameter D = 1 iff it is the
complete graph Kn. In this case, the above inequality holds since the left
side term vanishes. Therefore, any complete graph has the M–property. In
fact, L† = 1

n2 L, see [2], and hence, Γ† is also a complete network.

Corollary 4 If Γ has the M–property and D ≥ 2, then

λ ≤ 3k − k2

n− 1
− n.

and hence n < 3k.
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Proof: When D ≥ 2, from the inequality in Proposition 3 we get that

(n − k − 1)2

kb1
≤

D−1∑
j=1

1

kjbj

( D∑
i=j+1

ki

)2
≤ n− 1

k
.

Therefore, (n−1−k)2 ≤ (n−1)b1 = (n−1)(k−1−λ) and the upper bound
for λ follows. In addition, this inequality implies that 0 ≤ λ < 3k − n and
then 3k > n. �

The inequality 3k > n turns out to be a strong restriction for a distance–
regular graph to have the M–property. For instance, if n ≥ 3, the n–cycle,
Cn, is a distance–regular graph with diameter D =

⌊
n
2

⌋
whose intersection

array is

ι(Cn) = {2, 1, . . . , 1; 1, . . . , 1, cD},

where cD = 1 when n is odd and cD = 2 when D is even, see [7]. So, if
Cn has the M–property, necessarily 6 > n and this occurs iff either D = 1;
that is n = 3, or D = 2; that is n = 4, 5. Moreover for n = 4, 5, Cn has the
M–property since

(L†)ij =
1

12n

(
n2 − 1− 6|i− j|(n − |i− j|)

)
, i, j = 1, . . . , n,

see for instance, [2, 10].

In the following result we generalize the above observation, by showing
that only distance–regular graph with small diameter can satisfy the M–
property.

Proposition 5 If Γ is a distance–regular graph with the M–property, then
D ≤ 3.

Proof: If D ≥ 4, then from property (v) of the parameters, k = k1 ≤ ki,
i = 2, 3 and hence,

3k < 1 + 3k ≤ 1 + k + k2 + k3 ≤ n,

and hence Γ has not the M–property. �
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3.1 Strongly regular graphs

A distance–regular graph whose diameter equals 2 is called strongly regular
graph. This kind of distance–regular graph is usually represented through-
out the four parameters (n, k, λ, μ) instead its intersection array, see [7, 9].
Clearly the four parameters of a strongly regular graph are not independent,
since

(n − 1− k)μ = k(k − 1− λ). (2)

For this reason some authors drop the parameter n in the above array, see
for instance [4]. Moreover, Equality (3) implies that 2k − n ≤ λ < k − 1,
since 1 ≤ μ ≤ k and D = 2.

Observe that the only n–cycles satisfying the M–property are precisely
C3, that is the complete graph with 3 vertices, and C4 and C5 that are
strongly regular graphs.

In the following result we characterize those strongly regular graphs
that have the M–property, in terms of their parameters.

Proposition 6 A strongly regular graph with parameters (n, k, λ, μ) has
the M–property iff

μ ≥ k − k2

n− 1
.

Proof: Clearly for D = 2 the inequality in Corollary 4 characterizes the
strongly regular graphs satisfying the M–property. The result follows tak-
ing into account that from Equality (3)

λ ≤ 3k − k2

n− 1
− n ⇐⇒ k(n− 1− k) ≤ μ(n− 1). �

Kirkland et al. in [11, Theorem 2.4] gave another characterization of
strongly regular graphs with the M–property in terms of the combinatorial
Laplacian eigenvalues.

It is straightforward to verify that Petersen graph does not have the
M–property. So, it is natural to ask if there exist many strongly regular
graphs satisfying the above inequality. Prior to answer this question, we
recall that if Γ is a strongly regular graph with parameters (n, k, λ, μ), then
its complement graph is also a strongly regular graph with parameters
(n, n − k − 1, n − 2 − 2k + μ, n − 2k + λ), see for instance [5], which in

114



M -Matrix Inverse problem for distance-regular graphs E. Bendito et al.

particular implies that μ ≥ 2(k + 1) − n. Strongly regular graphs with
the same parameters as their complement are called conference graphs and
then their parameters are (4m + 1, 2m,m − 1,m) where m ≥ 2. Moreover
it is known that such a graph exits iff m = p2 + q(q + 1), where p, q ≥ 1,
see [9].

Now we are ready to answer the raised question.

Corollary 7 If Γ is strongly regular graph, then either Γ or Γ has the M–
property. Moreover, both of them have the M–property iff Γ is a conference
graph.

Proof: If we define k̄ = n− k− 1, λ̄ = n− 2− 2k + μ and μ̄ = n− 2k + λ,
then

k̄ − k̄2

n− 1
= k − k2

n− 1

and hence

μ̄ ≥ k̄ − k̄2

n− 1
⇐⇒ λ ≥ 3k − k2

n− 1
− n⇐⇒ μ ≤ k − k2

n− 1
,

where the equality in the left side holds iff the equality in the right side
holds. Moreover, any of the above inequalities is an equality iff μ̄ = μ and
λ̄ = λ; that is iff Γ is a conference graph. The remaining claims follow from
Proposition 6. �

Many strongly regular graphs appear associated with the so–called par-
tial geometries. A Partial Geometry with parameters s, t, α ≥ 1, pg(s, t, α),
is an incident structure of points and lines such that every line has s + 1
points, every point is on t + 1 lines, two distinct lines meet in at most
one point and given a line and a point not in it, there are exactly α lines
through the point which meet the line. Therefore, the parameters of a
partial geometry satisfy the inequalities 1 ≤ α ≤ min{t + 1, s + 1}. We
refer the reader to the surveys [6, 8, 9] for the main properties of partial
geometries and their relation with strongly regular graphs.

The number of points and lines in pg(s, t, α) are n =
1

α
(s + 1)(st + α)

and � =
1

α
(t + 1)(st + α), respectively. The point graph of pg(s, t, α) has

the points as vertices and two vertices are adjacent iff they are collinear.
Therefore, it is a regular graph with degree k = s(t + 1). Moreover, when
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α = s+1, the partial geometry is called Linear space and its point graph is
the complete graph Kn. When α ≤ s, the point graph is a strongly regular
graph with parameters

(
n, s(t + 1), s − 1 + t(α − 1), α(t + 1)

)
. A strongly

regular graph is called pseudo geometric graph if its associated parameters
are of the former form.

Corollary 8 A pseudo geometric graph with parameters
(
n, s(t + 1), s −

1 + t(α− 1), α(t + 1)
)

has the M–property iff

α(2ts + t + α) ≥ st(s + 1).

Next we study when the point graphs associated with some well–known
families of partial geometries, o more generally when some families of
pseudo geometric graphs, verify the M–property.

1. Dual Linear Spaces: In this case α = t+1 and hence the point graph
has the M–property iff s ≤ 2(t + 1). When, t = 1 and s = m− 2 the
corresponding pseudo geometric graph are the so–called triangular
graph Tm whose parameters are

((m
2

)
, 2(m− 2),m− 2, 4

)
. So, Tm has

the M–property iff m = 4, 5, 6. Notice, that Tm is also the line graph
of the complete graph Km.

2. Transversal Designs: In this case α = s and hence the corresponding
pseudo geometric graph is the complete multipartite graph K(s+1)×(t+1)

whose parameters are
(
(s + 1)(t + 1), s(t + 1), (s− 1)(t + 1), s(t + 1)

)
and it has the M–property. Observe that these graphs are the com-
plement of s + 1 disjoint copies of Kt+1 which are characterized as
the unique graphs such that μ = 0, see [9, Theorem 1.2]. Therefore,
K(s+1)×(t+1) are the unique strongly regular graphs such that μ = k,
that is the only antipodal strongly regular graphs. Finally, note that
the graph K(s+1)×2 is also know as Cocktail party graph.

3. Dual Transversal Designs: In this case α = t, t > 1 and hence the
corresponding pseudo geometric graph is the Pseudo–Latin square
graph PLr(m) whose parameters are (m2, r(m−1), r2−3r+m, r(r−
1)), where r = t + 1 and m = s + 1. It has the M–property iff s ≤ 2t.
For t = 2 it is the line graph of the complete bipartite graph Km,m,
also called squared lattice graph.

4. Generalized quadrangles: In this case α = 1, s > 1 and hence the
parameters of the corresponding pseudo geometric graph are

(
(s +
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1)(st + 1), s(t + 1), s− 1, t + 1
)
. Therefore, it has the M–property iff

ts + t + 1 ≥ s2t and hence iff t = 1 and s = 2. Note that when t = 1
these graphs are the so–called Hamming graph H(2, s+1) or Lattice.
Observe that the complement of H(2, s+1) is the pseudo–latin square
graph PLs(s + 1) that satisfies the M–property.

When 1 < α < min{t, s}, the point graph of pg(s, t, α) is called Proper
pseudo–geometric. An example of this structure are the so–called Kneser

graphs K(m, 2), where m ≥ 6 is even, in which case s =
m

2
− 1, t = m− 4

and α =
m

2
− 2. For arbitrary m ≥ 5, the Kneser graph K(m, 2) is the

graph whose vertices represent the 2–subsets of {1, . . . ,m}, and where two
vertices are connected if and only if they correspond to disjoint subsets. The
parameters of the Kneser graph K(m, 2) are

((m
2

)
,
(m−2

2

)
,
(m−4

2

)
,
(m−3

2

))
,

that coincide with the parameters of the complement of Tm. Therefore, it
has the M–property iff m ≥ 7 as expected. In addition, for m odd K(m, 2)
is an example of strongly regular graph that is not a pseudo geometric
graph, which also implies that the complement of a pseudo geometric graph
is not necessarily a pseudo geometric graph.

3.2 Distance–regular graphs with diameter D = 3

In this section we characterize those distance–regular graphs with diameter
3 that have the M–property. In this case, the intersection array is

ι(Γ) = (k, b1, b2; 1, c2, c3).

Again the parameters are not independent, since

(n− 1− k)c2c3 = kb1(b2 + c3). (3)

The next result follows straightforwardly from Proposition 3.

Proposition 9 A distance–regular graph with D = 3 has the M–property
iff

k2b1

(
b2c2 + (b2 + c3)

2
)
≤ c2

2c
2
3(n− 1).

A simple example verifying the above condition is the 3–cube, Q3. Next
we study when bipartite or antipodal distance–regular graphs have the M–
property. Recall that the first ones are the incidence graph of a symmetric
2–design, whereas the second ones are covers of a complete graph.
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The intersection array of a bipartite distance–regular graph with diam-
eter D = 3 is ι(Γ) =

(
k, k − 1, k − μ; 1, μ, k

)
, where 1 ≤ μ ≤ k − 1. Then,

n− 1 =
1

μ
(2k(k − 1) + μ) and hence Γ has the M–property iff

k(k − 1)(4k − 5μ) ≤ μ2.

Notice that the inequality holds when μ ≥ 4k

5
. For instance, it is true

for μ = k − 1 when k ≥ 5, and it is true for μ = k − 2 when k ≥ 10.
The intersection array of an antipodal distance–regular graph with di-

ameter D = 3 is ι(Γ) =
(
k, tμ, 1; 1, μ, k

)
, where t ≥ 1 and 1 ≤ m < k.

These graphs are the (t + 1)–cover of the complete graph Kk+1. Then,
n = (t + 1)(k + 1) and hence Γ has the M–property iff

t(k + 1)2 ≤ μk(t + 1).

When t = 1, the antipodal distance–regular graphs are known as Taylor
graphs, T (k, μ). Then T (k, μ) has the M–property iff (k + 1)2 ≤ 2kμ.
Moreover, if Γ is a Taylor graph with 1 ≤ m < k − 1, it is well-known that
the graph Γ(2) on the same vertices and such that two vertices of Γ(2) are
adjacent if and only if their distance in Γ is 2 is also a Taylor graph whose
intersection array is

ι(Γ(2)) =
{
k, k − 1−m, 1; 1, k − 1−m,k

}
.

Then, Γ(2) has the M–property iff 2km ≤ (k − 2)2 − 5.

Corollary 10 If Γ is the Taylor graph T (k,m), then either Γ or Γ(2) has

the M–property, except when m =
k

2
− 2,

k

2
− 1,

k

2
,
k

2
+ 1 when k is even

and m =

⌈
k

2

⌉
−2,

⌈
k

2

⌉
−1,

⌈
k

2

⌉
when k is odd, in which case none of them

has the M–property.

Finally, the only bipartite and antipodal distance–regular graphs with
D = 3 have intersection array

ι(Γ) =
{
k, k − 1, 1; 1, k − 1, k

}
and they are called k–crown graphs. Therefore, they are Taylor graphs with
μ = k − 1 and hence they have the M–property for any k ≥ 5.
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and Université de Toulouse
Toulouse

Abstract

Let G be a graph of order n the vertices of which are labeled
from 1 to n and let G1, · · · , Gn be n graphs. The graph com-
position G[G1, · · · , Gn] is the graph obtained by replacing the
vertex i of G by the graph Gi and there is an edge between
u ∈ Gi and v ∈ Gj if and only if there is an edge between i
and j in G. We first consider graph composition G[Kk, · · · ,Kk]
where G is regular and Kk is a complete graph and we estab-
lish some links between the spectral characterisation of G and
the spectral characterisation of G[Kk, · · · ,Kk]. We then prove
that two non isomorphic graphs G[G1, · · ·Gn] where Gi are com-
plete graphs and G is a strict threshold graph or a star are not
Laplacian-cospectral, giving rise to a spectral characterization
of these graphs. We also consider directed graphs, especially the
vertex-critical tournaments without non-trivial acyclic interval

which are tournaments of the shape t[
−→
C k1 , · · · ,

−→
C km], where t

is a tournament and
−→
C ki

is a circulant tournament. We give
conditions to characterise these graphs by their spectrum.

1 Introduction

Some informations about the structure of the graph can be obtained from
the spectrum of a matrix associated to the graph. The most used matrices
are the adjacency matrix A and the Laplacian matrix L = D−A where D
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is the diagonal matrix of degrees. A graph G is determined by its spectrum
(DS for short) if any other graph having the same spectrum as G is isomor-
phic to G; we shall specify the matrix only if there is a risk of confusion
(we recall that a regular graph is DS with respect to A if and only if it is
DS with respect to L). We can focus on a particular family F of graphs: a
graph G is characterised by its spectrum in F if there are no other graphs
in F cospectral non-isomorphic to G.

Let G be a graph of order n the vertices of which are labeled from 1 to
n and let G1, · · · , Gn be n graphs. The graph composition G[G1, · · · , Gn]
is the graph obtained by replacing the vertex i of G by the graph Gi and
there is an edge between u ∈ Gi and v ∈ Gj if and only if there is an edge
between i and j in G. If all the Gi’s are isomorphic to a graph H then the
graph composition G[H, · · · ,H] is the lexicographic product of G and H
and will be noted G[H].

The vertex set of G[H] is the cartesian product V (G)×V (H) and there
is an edge between (u, u′) and (v, v′) if and only if there is an edge between
u and v in G or u = v and there is an edge between u′ and v′ in H.
Throughout this paper, a vertex of a lexicographic product G[H] will be
denoted by (u, u′) where u ∈ V (G) and u′ ∈ V (H).

We first consider simple graphs and the lexicographic product of a graph
with a complete graph (Section 2). Then in Section 3 we develop a spe-
cific example of graph composition G[Kk1 ,Kk2 , · · · ,Kkn ] with G a strict
threshold graph or a star. Finally (Section 4), we deal with digraphs and
in particular compositions of tournaments.

To fix notations, Sp(M) denotes the spectrum of a matrix M ; for a

graph G, Sp(G) denotes the spectrum of its adjacency matrix and μ
(m1)
1 ∈

Sp(M) means that μi is mi times an eigenvalue of M (the multiplicity of
μi is at least mi, we may allow μi = μj for i = j). The Laplacian spectrum
of G is denoted by SpL(G). For a vertex v of a graph G, N(v) denotes the
set of neighbours of v in G. A complete graph on n vertices is denoted by
Kn. The neighbourhood of a vertex v is denoted by N(v) and is the set of
vertices adjacent to v.
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2 Composition of simple graphs with complete
graphs

We consider the graph composition G[Kk, · · · ,Kk] where Kk stands for the
complete graph with k vertices. This kind of graph composition G[H, · · ·H],
often denoted by G[H] is also called the lexicographic product of G and H
and denoted by G.H. Moreover we remark that when H is the complete
graph then G[Kk] is equal to the strong product of G and H: G � H.

Proposition 1 Let λi be the eigenvalues of a graph G on n vertices (1 ≤
i ≤ n). Then the nk eigenvalues of G[Kk] are

Sp(G[Kk]) = {(−1)(nk−n)} ∪ {kλi + k − 1, 1 ≤ i ≤ n}.

Proof: The proof of this proposition is conducted by writing the block
matrix of G[Kk]; the sketch of the proof is the same as that of Theorem 16.
Another to prove this proposition is to remark that the adjacency matrix
of G[Kk] can be written as a Kroneker product of matrices: (A+I)⊗J−I,
where A is the adjacency matrix of G, I is the identity matrix and J is
the all-ones matrix. Then we use classical result of Kronecker products [7].
�

Lemma 2 [8, 9, 10] Two regular graphs G and G′ are isomorphic if and
only if the graphs G[Kk] and G′[Kk] are isomorphic.

The following lemma is a consequence of Proposition 1.

Lemma 3 Let Cr = {G[Kk], G regular , k ∈ N, k ≥ 2}. If H = G[Kk] is a
graph cospectral with H ′ = G′[Kk] ∈ Cr then G is cospectral with G′.

We can state the following theorem:

Theorem 4 Let Cr = {G[Kk], G regular , k ∈ N, k ≥ 2}. If the graph
H = G[Kk] ∈ Cr is characterised by its spectrum in Cr then G is determined
by its spectrum.

Proof: If G is not determined by its spectrum then there is a graph G′

cospectral with G and non isomorphic to G. Then the graphs G[Kk] and
G′[Kk] are cospectral (Proposition 1) and not isomorphic (Lemma 2) and
therefore the graph H is not characterised by its spectrum in C. �
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Corollary 5 If G = G̃[Kk] ∈ Cr is DS then G̃ is DS.

The main problem to prove the converse of this theorem is to prove that
if G[Kk] (G DS) is cospectral with G′[Kk′ ] then these graphs are isomorphic.
Here we consider this problem for some sub-classes of Cr.

Theorem 6 Let B be the family of regular bipartite graph and let CBr =
{G[Kk], G ∈ B, k ∈ N, k ≥ 2}. If G ∈ B is determined by its spectrum then
the graph H = G[Kk] ∈ CBr is characterised by its spectrum in CBr .

Proof: Let G ∈ B be a regular bipartite graph determined by its spectrum
and let H ′ = G′[Kk′ ] ∈ CBr be a graph cospectral with H = G[Kk]; we
have to show that H and H ′ are isomorphic. Let μ (resp. μ′) be the
spectral radius of G (resp. G′); since G and G′ are bipartite, the minimum
eigenvalue of G (resp. G′) is −μ (resp. −μ′). The maximal eigenvalue of H
is k(μ+1) and its minimal eigenvalue is k(−μ+1). The maximal eigenvalue
of H ′ is k′(μ′ + 1) and its minimal eigenvalue is k′(−μ′ + 1). Since H and
H ′ are cospectral, we have k(μ + 1) + k(−μ + 1) = k′(μ′ + 1) + k′(−μ′ + 1)
that is k = k′. Applying Lemma 3 we have that G′ is cospectral with G
and since G is DS, G′ is isomorphic to G and so H ′ is isomorphic to H.
�

Theorem 7 Let CPr = {G[Kk], |G|prime, G regular , k ∈ N, k ≥ 2}. If G is
a regular DS graph on a prime number of vertices then ∀k > 1 the graph
G[Kk] ∈ CPr is characterised by its spectrum in CPr .

Proof: Let G be a regular DS graph on a prime number of vertices deter-
mined by its spectrum and let H ′ = G′[Kk′ ] ∈ CPr be a graph cospectral
with H = G[Kk]; we have to show that H and H ′ are isomorphic. Let
d = gcd(k, k′) and let q, q′ be such that k = dq and k′ = dq′ (q and q′ are
coprime). We have H = (G[Kq ])[Kd] cospectral with H ′ = (G[Kq′ ])[Kd]
and applying Lemma 3 we have that G[Kq] is cospectral with G′[Kq′ ]. Let
n (resp. n′) and r (resp. r′) be the number of vertices and the degree of G
(resp. G′). We have nq = n′q′ and (r + 1)q = (r′ + 1)q′. So q′ divides nq
but q and q′ are coprime, thus q′ divides n and q′ is equal to 1 or n (n is
prime).

• If q′ = 1 then q = 1 (otherwise n′ is not prime) and we have n = n′,
k = k′ and G′[Kk] is cospectral with G[Kk], so (Lemma 3) G′ is
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cospectral with (and therefore isomorphic to) G. So H ′ is isomorphic
to H.

• If q′ = n then n divides r + 1 but n ≥ r + 1 so n = r + 1 and G is a
complete graph. Then H is also a complete graph wich is DS so H ′

is isomorphic to H. �

To end this section, we compute the Laplacian spectrum of a graph
G[Kk1 ,Kk2 , · · · ,Kkn ]. The proof, using block matrices, is a classical way in
this paper to compute eigenvalues of (di)graphs compositions, we describe
it in details.

Theorem 8 The Laplacian spectrum of G[Kk1 ,Kk2 , · · · ,Kkn ] is:

⋃
i=1..n

⎧⎪⎨⎪⎩
⎛⎝ki +

∑
j∈N(i)

kj

⎞⎠(ki−1)
⎫⎪⎬⎪⎭ ∪ Sp(−A(G)D̂ + Δ) ,

where the vertices of G are labelled from 1 to n, A(G) is the adjacency
matrix of G, D̂ is the diagonal matrix of the ki’s and Δ is the diagonal
matrix whose ith entry is

∑
j∈N(i) kj .

Proof: The adjacency matrix of Kki
will be also denoted by Kki

, the
adjacency matrix of G[Kk1 ,Kk2 , ...,Kkn ] will be denoted by A, D is the
diagonal matrix of degrees of G[Kk1 , ...,Kkn ] and L = D−A is the Laplacian
of G[Kk1 , ...,Kkn ]. The vector (1, 1, · · · , 1︸ ︷︷ ︸

p times

)T is denoted by 1p or by 1 if no

confusion can be made. Let u be an eigenvector of Kki
associated to the

eigenvalue −1, since the multiplicity of the eigenvalue −1 is ki− 1, there is
ki− 1 independant eigenvectors u. As 1 is an eigenvector of Kki

associated
ti the eigenvalue ki−1, we have < u,1 >= 0 (where <,> is the usual scalar
product). Let ũ = ( 0, ..., 0︸ ︷︷ ︸

k1+...+ki−1 times

, uT , 0, ..., 0︸ ︷︷ ︸
ki+1+...+kn times

)T , we have Aũ = −ũ

and Dũ = (ki − 1 +
∑

j∈N(i) kj)ũ. So Lũ = (ki +
∑

j∈N(i) kj)ũ. As a result
ki +

∑
j∈N(i) kj is ki − 1 times an eigenvalue of G[Kk1 ,Kk2 , · · · ,Kkn ].

There remains n eigenvalues to find (and n eigenvectors). Let w =⎛⎜⎜⎜⎝
α11k1

α21k2

...
αn1kn

⎞⎟⎟⎟⎠ and v = (α1, α2, ..., αn)T where αi ∈ R for 1 ≤ i ≤ n, we have:
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Aw =

⎛⎜⎜⎜⎜⎜⎜⎝
(k1 − 1)α11k1 + (

∑
j∈N(1) kjαj)1k1

(k2 − 1)α21k2 + (
∑

j∈N(2) kjαj)1k2

(k3 − 1)α31k3 + (
∑

j∈N(3) kjαj)1k3

...
(kn − 1)αn1kn + (

∑
j∈N(n) kjαj)1kn

⎞⎟⎟⎟⎟⎟⎟⎠ ,

Dw =

⎛⎜⎜⎜⎜⎜⎜⎝
(k1 − 1 +

∑
j∈N(1) kj)α11k1

(k2 − 1 +
∑

j∈N(2) kj)α21k2

(k3 − 1 +
∑

j∈N(3) kj)α31k3

...
(kn − 1 +

∑
j∈N(n) kj)αn1kn

⎞⎟⎟⎟⎟⎟⎟⎠
so

Lw =

⎛⎜⎜⎜⎜⎜⎜⎝
((
∑

j∈N(1) kj)α1 −
∑

j∈N(1) kjαj)1k1

((
∑

j∈N(2) kj)α2 −
∑

j∈N(2) kjαj)1k2

((
∑

j∈N(3) kj)α3 −
∑

j∈N(3) kjαj)1k3

...
((
∑

j∈N(n) kj)αn −
∑

j∈N(n) kjαj)1kn

⎞⎟⎟⎟⎟⎟⎟⎠ .

As a consequence w is an eigenvector of L if and only if ∃λ ∈ R, ∀i =
1, · · · , n, (

∑
j∈N(i) kj)αi −

∑
j∈N(i) kjαj = λαi, that is if and only if v =

(α1, · · · , αn)T is an eigenvector of −A(G)D̂ + Δ where D̂ is the diagonal
matrix of the ki’s and Δ is the diagonal matrix whose ith diagonal entry
is equal to

∑
j∈N(i) kj . As a result v = (α1, · · · , αn)T is an eigenvector of

−AD̂ + Δ associated to the eigenvalue λ if and only if w is an eigenvector
of L associated to the eigenvalue λ.
Moreover a vector w is not a linear combination of the vectors ũ previously
defined because the vectors u are orthogonal to 1 so there is no linear
combination of vectors u equals to α1, α ∈ R∗. The w are the n missing
eigenvectors and the n missing eigenvalues are the eigenvalues of −A(G)D̂+
Δ. �
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3 Composition of a threshold graph with
complete graphs

3.1 Starlike threshold graphs: definition and Laplacian
spectrum

In this section we consider a special class of graphs, the characterization
of which cannot be done with theorems stated in the previous section: the
graph is not regular and the composition is made with complete graphs of
various orders. Moreover, showing the characterisation by the spectrum of
a special class of graph is quite frequent in spectral graph theory; indeed,
more the considered family of graphs is large, more the risk to have a pair
of cospectral non-isomorphic graphs within this family is important.

A threshold graph [2] is a graph that can be partitioned into a stable
subgraph S and a maximal complete subgraph K such that S = {i1, · · · , ip}
and N(i1) ⊂ N(i2) ⊂ · · · ⊂ N(ip). If these inclusions are strict then the
threshold graph is called strict threshold graph. A (strict) starlike-threshold
graph is a graph G[Kk1 , · · · ,Kkn ] where G is a (strict) threshold graph.
We can give an alternative definition of a (strict) starlike-threshold graph
[2]:

Definition 9 A starlike-threshold graph is a connected graph where ver-
tices can be partitioned into C,D1,D2, · · · ,Dp such that:

• C is a maximal complete subgraph;

• Di is a complete subgraph and ∀u, v ∈ Di, N(u)∪ {u} = N(v)∪ {v};

• C1 ⊂ C2 ⊂ · · · ⊂ Cp ⊂ C where Ci = (N(u) ∪ {u})\Di with u ∈ Di.

If the latest inclusions are strict the starlike-threshold graph is called strict
starlike-threshold graph

Notations: We set di = |Di|, c = |C|, ci = |Ci|, c′i = |Ci\Ci−1| with
c′1 = c1, c′ = |C\Cp|. The number of vertices of a starlike-threshold graph
is denoted by n and we set ni = n−∑i−1

k=1 dk = c +
∑p

k=i dk for 2 ≤ i ≤ p
(we have n1 = n and np = c+dp). A starlike-threshold graph is determined
by the parameters p, c, (di)1≤i≤p, (ci)1≤i≤p. By analogy with a star, the
parameter p is called the number of branches.

Before dealing with starlike-threshold graphs, we give some general re-
sults on the Laplacian spectrum.
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Theorem 10 [6, 13] Let G be a graph on n vertices whose Laplacian spec-
trum is μ1 ≥ μ2 ≥ ... ≥ μn−1 ≥ μn = 0. Then:

(i) μn−1 ≤ n
n−1 min{d(v), v ∈ V (G)}.

(ii) If G is not a complete graph then μn−1 ≤ min{d(v), v ∈ V (G)}.

(iii) μ1 ≤ max{d(u) + d(v), uv ∈ E(G)}.

(iv) μ1 ≤ n.

(v)
∑

i μi = 2|E(G)|.

(vi) μ1 ≥ n
n−1 max{d(v), v ∈ V (G)} > max{d(v), v ∈ V (G)}.

Theorem 11 [6] Let G be a non-complete graph, κ0 its vertex connectivity,
κ1 its edge connectivity, μn−1 its second smallest Laplacian eigenvalue (also
called algebraic connectivity), dm its minimum degree. Then μn−1 ≤ κ0 ≤
κ1 ≤ dm

Definition 12 Let G be a simple graph on n vertices, a vertex of degree
n− 1 is an universal vertex.

The following lemma uses only basic properties on the Laplacian spec-
trum [13].

Lemma 13 Let G be a graph on n vertices with k universal vertices, then
n(k) ∈ SpL(G) and the Laplacian spectrum of G\{universal vertices} is
(SpL(G)\{n(k), 0} − k) ∪ {0}.

Proposition 14 Let G be a graph with only one non-zero Laplacian-eigen-
value a, then there is r ∈ N∗, p ∈ N such that the Laplacian spectrum of G
is {a(ra−r), 0(r+p)} and G is isomorphic to rKa ∪ pK1.

Proof: Let G be a graph with only one non-zero Laplacian-eigenvalue a
and let H be a connected component of G which is not an isolated vertex;
the graph H has only one non-zero eigenvalue a. If H is not complete,
by Theorem 11 we have a ≤ min{d(v), v ∈ V (H)}, but Theorem 10 gives
a > max{d(v), v ∈ V (H)}, contradiction. So H is the complete graph Ka

with Laplacian spectrum {a(a−1), 0}. �
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Theorem 15 [1] Let G be a graph without isolated vertex. If the Laplacian

spectrum of G is {k(k1−1)
1 , k

(k2−1)
2 , ..., k

(kn−1)
n , 0(n)} with ki ∈ N\{0, 1} then

G is a disjoint union of complete graphs of order k1, ..., kn.

Theorem 16 The Laplacian spectrum of a strict starlike-threshold graph
with parameters p, c, (di)1≤i≤p, (ci)1≤i≤p is the multiset:

p⋃
i=1

⎧⎨⎩n
(c′i)
i , (di +

i∑
j=1

c′j)
(di−1), ci

⎫⎬⎭ ∪ {c(c′−1), 0}.

Proof: The proof is made by induction on p. Induction Hypothesis: the
Laplacian spectrum of a threshold graph of completes with p branches is

p⋃
i=1

⎧⎨⎩n
(c′i)
i , (di +

i∑
j=1

c′j)
(di−1), ci

⎫⎬⎭ ∪ {c(c′−1), 0}.

p = 1: Let n = |G| and let μ1 ≥ μ2 ≥ ... ≥ μn−1 ≥ μn = 0 be the
Laplacian eigenvalues (counted with multiplicity). Since G has c1 universal
vertices we have (Lemma 13) n(c1) ∈ SpL(G). The graph G\C1 is the
disjoint union of two completes with d1 and c′ vertices so SpL(G\C1) =

{d(d1−1)
1 , c′(c′−1), 0(2)}. According to Lemma 13,

SpL(G\{universal vertices}) = (SpL(G)\{n(c1), 0} − c1) ∪ {0}

so
SpL(G\C1) = (SpL(G)\{n(c1), 0} − c1) ∪ {0}

and

SpL(G)\{n(c1), 0} = SpL(G\C1) \ {0}+ c1 = {(d1 + c1)
(d1−1), c(c′−1)}.

Thus
SpL(G) = {n(c1), (d1 + c1)

(d1−1), c(c′−1), 0}.
The induction hypothesis is true for p = 1.

Let us assume that the induction hypothesis is true at rank p and let
G be a strict threshold graph of completes with p + 1 branches and let
μ1 ≥ μ2 ≥ ... ≥ μn−1 ≥ μn = 0 be its Laplacian eigenvalues (counted with
multiplicity).
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According to Lemma 13, the spectrum of G\C1 is {μc1+1−c1, ..., μn−1−
c1, 0}. The graph G\C1 has two connected components: the complete
graph D1 and a strict threshold graph of completes denoted by G1. The
Laplacian of G\C1 has twice the eigenvalue 0, so ∃i such that μi−c1 = 0 i.e.
μi = c1 = c′1. We also have that SpL(G\C1) = SpL(D1) ∪ SpL(G1). Since
the spectrum of a complete graph on k vertices is k with multiplicity k− 1
and 0 with multiplicity 1 we have that d1 is an eigenvalue of G\C1 with
multiplicity d1 − 1. The graph G1 is a strict threshold graph of completes
whose the partitioning of vertices is C\C1, D2,...,Dp+1. Moreover, for u ∈
Di we have (N(u) ∪ {u})\Di = Ci\C1 and so |(N(u) ∪ {u})\Di| = ci − c1.
We also have |G1| = n− c1.

We apply the induction hypothesis to G1 in order to obtain its spectrum:

p⋃
i=1

⎧⎨⎩(ni+1 − c1)
(c′i+1), (di+1 +

i∑
j=1

c′j+1)
(di+1−1), ci+1 − c1

⎫⎬⎭∪{(c−c1)
(c′−1), 0}

i.e.

p+1⋃
i=2

⎧⎨⎩(ni − c1)
(c′i), (di +

i∑
j=2

c′j)
(di−1), ci − c1

⎫⎬⎭ ∪ {(c − c1)
(c′−1), 0}

so the spectrum of G\C1 is

{d(d1−1)
1 , 0}∪

p+1⋃
i=2

⎧⎨⎩(ni − c1)
(c′i), (di +

i∑
j=2

c′j)
(di−1), ci − c1

⎫⎬⎭∪{(c−c1)
(c′−1), 0}

As SpL(G) = {n(c1), 0} ∪ (SpL(G\C1) \ {0} + c1) we have

SpL(G) =

p+1⋃
i=1

⎧⎨⎩n
(c′i)
i , (di +

i∑
j=1

c′j)
(di−1), ci

⎫⎬⎭ ∪ {c(c′−1), 0}.

As a conclusion the induction hyptohesis is true for p + 1. �
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3.2 There are no cospectral non-isomorphic strict starlike-
threshold graphs.

Lemma 17 For a threshold graph of completes with parameters p, c, (di)1≤i≤p,
(ci)1≤i≤p, we have the following inequalities:

n1 > n2 > n3 > ... > np

∀j ≥ i, ni > dj +
i∑

k=1

c′k

∀i, j, ni > cj

∀i, ni > c

c1 ≤ c2 ≤ c3 ≤ ... ≤ cp−1 < c

Lemma 18 For p ≥ 2, if d1 + c1 > n2 and c′2 = 0 then the multiplicity of
d1 + c1 is d1 − 1.

Proof: We already know that the multiplicity of d1 + c1 is greater than or
equal to d1− 1; it remains to show that the other eigenvalues are not equal

to d1 + c1. These eigenvalues are n
(c′i)
i , (di +

∑i
k=1 c′k)

(di−1), ci, c
(c′−1), 0 for

i = 1, ..., p.
• With the first inequalities of the previous lemma and with d1 + c1 > n2

we have d1 + c1 > ni for i ≥ 2. Obviously we have n1 > d1 + c1.
• d1 + c1 > n2 ⇒ d1 + c1 > dj +

∑i
k=1 c′k for j ≥ 2 (second inequality of

the previous lemma).
• d1 + c1 > n2 ⇒ d1 + c1 > cj for all j (third inequality of the previous
lemma).
• d1 + c1 > n2 ⇒ d1 + c1 > c (fourth inquality of the previous lemma).
As a result the remaining eigenvalues are not equal to d1 + c1, thus the
multiplicity of d1 + c1 is d1 − 1. �

Lemma 19 For p ≥ 2, if d1 + c1 < n2 and c′2 = 0 then the multiplicity of
n2 is c′2.

Proof: We already know that the multiplicity of n2 is greater than or equal
to c′2; it remains to show that the other eigenvalues are not equal to n2.

These eigenvalues are n
(c′i)
i , (di +

∑i
k=1 c′k)

(di−1), ci, c
(c′−1), 0 for i = 1, ..., p.
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• ni = n2, ∀i = 2 (Lemma 17).
• n2 > d1 + c1 by hypothesis.
• n2 > dj +

∑i
k=1 c′k pour j ≥ 2 (second inequality of Lemma 17).

• n2 > cj pour tout j (third inequality of Lemma 17).
• n2 > c (fourth inequality of Lemma 17).
As a result the remaining eigenvalues are not equal to n2, thus the multi-
plicity of n2 is c′2. �

Lemma 20 If d1 + c1 = n2 and c′2 = 0 then the multiplicity of n2 (i.e. the
multiplicity of d1 + c1) is c′2 + d1 − 1.

Proof: We already know that the multiplicity of n2 is greater than or equal
to c′2 and that the multiplicity of d1+c1 is greater than or equal to d1−1, so
if d1+c1 = n2 then the multiplicity if n2 (i.e. that of d1+c1) is greater than
or equal to c′2+d1−1. It remains to show that the other eigenvalues are not

equal to n2. These eigenvalues are n
(c′i)
i , (di+

∑i
k=1 c′k)

(di−1), ci, c
(c′−1), 0 for

i = 1, ..., p.
• ni = n2, ∀i = 2 (Lemma 17).
• n2 > dj +

∑i
k=1 c′k pour j ≥ 2 (second inequality of Lemma 17).

•n2 > cj pour tout j (third inequality of Lemma 17).
• n2 > c (fourth inequality of Lemma 17).
As a result the remaining eigenvalues are not equal to n2, thus the multi-
plicity of n2 is c′2 + d1 − 1. �

Lemma 21 Let G be a strict starlike threshold graph with p ≥ 2 and c′2 = 0,
the spectrum of which is μ1 > μ2 > ... > μq > 0, and let m1,m2, ...,mq be
the multiplicities of these eigenvalues. If m2 = μ2−μq−1 then d1 = μ2−μq

otherwise d1 = μ1 − μ2.

Proof: The spectrum of G is

p⋃
i=1

{
n

(c′i)
i , (di +

i∑
k=1

c′k)
(di−1), ci

}
∪ {c(c′−1), 0}

(Theorem 16). According to Lemma 17, the greatest eigenvalue μ1 is equal
to n and the smallest eigenvalue μq is equal to c1. According to Lemma
17, there are two possible values for the second largest eigenvalue μ2: n2
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or d1 + c1. Indeed for j > 2 we have nj < n2, dj +
∑i

k=1 c′k < n2 and for
j ≤ 1 we have cj < c < n2; except n1 and d1 + c1 all the eigenvalues are
strictly loweer than n2.
• If μ2 = n2 = d1 + c1 the we have d1 = μ2 − μq and d1 = μ1 − μ2. The
lemma is true in this case.
• If μ2 = d1 + c1 > n2 then, by Lemma 18, the multiplicity of d1 + c1 is
d1− 1 and we have m2 = μ2−μq − 1 and d1 = μ2−μq. The lemma is true
in this case.
• If μ2 = n2 > d1 + c1 then, by Lemma 19, the multiplicity of n2 is c′2,
we have c′2 < n − d1 − c1 − 1 = n2 − μq − 1 thus m2 = μ2 − μq − 1 and
d1 = μ1 − μ2. The lemma is true in this case. �

Theorem 22 Let G be a strict starlike threshold graph cospectral with a
strict starlike threshold graph F with p = 1. Then G and F are isomorphic.

Proof: Let F be a strict starlike threshold graph with p = 1 and with
parameters d1, c1, c

′. As G is cospectral with F , the spectrum of G is
{n(c1), (d1 + c1)

(d1−1), c1, c
(c′−1), 0} and G has c1 universal vertices. Let

G1 be the graph G1 = G\{universal vertices}, the spectrum of G1 is

{d(d1−1)
1 , c′(c′−1), 0, 0}. The graph G1 has two connected components: a

complete and a complete or a strict starlike threshold graph.
• If SpL(G1) = {0, 0} then G1 consists in two isolated vertices and G is
completely determined.

• If SpL(G1) = {d(d1−1)
1 , 0, 0} then G1 (and consequently G) is completely

determined (Proposition 14).
• If SpL(G1) = {c′(c′−1), 0, 0} then G1 (and consequently G) is completely
determined (Proposition 14).

• Let us assume that SpL(G1) = {d(d1−1)
1 , c′(c′−1), 0, 0}. If G1 has an

isolated vertex, then the spectrum of a connected component of G1 is

{d(d1−1)
1 , c′(c′−1), 0}. This is not the spectrum of a complete nor the spec-

trum of a strict starlike threshold graph because the greatest eigenvalue
is not equal to the number of vertices. As a result G1 does not have an
isolated vertex and (Theorem 15) G1 is the union of two completes with d1

and c′ vertices. �

Theorem 23 There are no cospectral non-isomorphic strict starlike thresh-
old graphs.
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Proof: Let G be a strict starlike-threshold graph cospectral with another
strict starlike-threshold graph G′; we have to show that G is isomorphic
to G′. The proof is made by induction on the number of branches of G′

denoted by p; the induction hypothesis is ‘If G is a strict starlike threshold
graph cospectral with a starlike threshold graph on p branches then these
two graphs are isomorphic’.
• p = 1. It is Theorem 22.
• Let us assume the hyothesis true at rank p − 1 and let G be a strict
starlike threshold graph cospectral with a strict starlike threshold graph
with p branches. We denote by mi the multiplicity of the eigenvalue μi.
We have:

• n is given by the number of eigenvalues or by μ1.

• c1 = m1.

• d1 is given by Lemma 21.

The graph G\C1 is the disjoint union of a complete with d1 vertices and
a strict starlike threshold graph G1. As we know c1 and n, we know the
spectrum of G\C1 (Lemma13); and as we know d1, we know the spectrum
of G1:

p⋃
i=2

⎧⎨⎩(ni − c1)
(c′i), (di +

i∑
j=2

c′j)
(di−1), ci − c1

⎫⎬⎭ ∪ {(c − c1)
(c′−1)} ∪ {0}.

But (Theorem 16) this is the spectrum of a strict starlike threshold graph
with p − 1 branches, n2 − c1 vertices, so the graph G1 is a strict star-
like threshold cospectral with a strict starlike threshold graph with p − 1
branches and therefore isomorphic to this graph by the induction hypoth-
esis. As a result G is isomorphic with G′ and the induction hypothesis is
true at rank p. �

3.3 Star of completes

A star of completes is the graph Sn[Kk0 ,Kk1 , · · · ,Kkn ] where Sn is a star
with n + 1 vertices labeled from 0 to n such that the vertex with degree
greater than 1 is labeled 0. A star can be seen as a particular case of a
threshold graph, a star of completes can be seen as a particular case of a
starlike threshold graph.
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Theorem 24 The Laplacian spectrum of a star Sn[Kk0 , · · · ,Kkn ] of com-
pletes is

{(k0 + · · ·+ kn)(k0)} ∪
n⋃

i=1

{
(k0 + ki)

(ki−1)
}
∪ {k(n−1)

0 } ∪ {0}.

We can now state two theorems of characterizations of stars of com-
pletes:

Theorem 25 There are no Laplacian-cospectral non-isomorphic stars of
completes.

Proof: Two cospectral stars of completes have the same number of univer-
sal vertices, the deletion of which gives a union of complete graphs. Since
there are not two disjoint unions of complete graphs cospectral and non-
isomorphic, it ensues that there are no Laplacian-cospectral non-isomorphic
stars of completes. �

Theorem 26 Let H be the set of graphs with minimum degree strictly
greater than the minimum non-zero eigenvalue of its Laplacian matrix. A
star of completes belonging to H is characterised by its Laplacian spectrum
in H.

Proof: Let G be a graph on N vertices with spectrum {(k0 + ...+kn)(k0)}∪⋃n
i=1{(k0 + ki)

(ki−1)}∪ {k(n−1)
0 }∪ {0(1)} and such that dmin > k0. We have

N = k0 + ... + kn and the spectrum of G is
⋃n

i=1{(N − k0 + ki)
(ki−1)} ∪

{(N − k0)
(n−1)} ∪ {0(k0+1)} so G has k0 + 1 connected components. One

of these components which has the eigenvalue N − k0, has more than N −
k0−1 vertices (Theorem 10). Then the k0 other connected components are
isolated vertices. Let H be the connected component of size N − k0, The
spectrum of H is

⋃n
i=1{(N − k0 + ki)

(ki−1)} ∪ {(N − k0)
(n−1)} ∪ {0(1)} so

the spectrum of H is
⋃n

i=1{(ki)
(ki−1)} ∪ {(0)(n)}.

The graph H have no isolated vertex; indeed the maximum degree of H,
denoted by dH

max, is the maximum degree of G that is dH
max = N − dmin− 1.

The minimum degree of H is |H|−dH
max−1 = (N−k0)−(N−dmin−1)−1 =

dmin − k0 > 0 so H does not have isolated vertices.
By Theorem 15, H is a union of complete graphs of size k1, ..., kn, thus

H is the complete multipartite graph Kk1,...,kn and G is the disjoint union
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of the complete multipartite graph Kk1,...,kn and k0 isolated vertices. As a
result G is a star of completes Sn[Kk0 , ...,Kkn ]. �

Remark 27 For a graph G, let κ0 be its vertex connectivity and κ1 be its
edge connectivity. We have (Theorem 11) μn−1 ≤ κ0 ≤ κ1 ≤ dmin (μn−1 is
the second smallest Laplacian eigenvalue, that is k0). Thus we can obtain
corollaries of the previous theorem by replacing the condition dmin > k0 by
the condition dmin > κ0 or κ0 < κ1.

Remark 28 There exists non-DS star of completes, for instance the star of
completes S6[Kk0 ,K5,K2,K2,K2,K2,K2] is Laplacian-cospectral with and
non-isomorphic to S6[Kk0 , P,K1,K1,K1,K1,K1] where P is the Petersen
graph. Of course, owing to Theorem 26, the cospectral mate is such that
its minimum non-zero eigenvalue equals its minimum degree.

4 Composition of tournaments

In this section we deal with the adjacency spectrum of tournaments (that
is a digraph in which each pair of nodes is joined by an arc). Compared
with simple graphs, few is done to characterise digraphs by their spectrum.

A circulant matrix [5] is a matrix whose kth column is a circulant shift
of the (k − 1)th column. A circulant tournament is a tournament whose

adjacency matrix is circulant. We denote by
−→
C k (k odd) the circulant

tournament, the vertices of which are labeled from 0 to k such that N(0) =
{1, 2, · · · , k−1

2 } and N(i) = (N(0) + i) mod[k].

Proposition 29 [5] The eigenvalues of a circulant matrix are

λr =

n−1∑
j=0

aje
2iπj

n
r, r = 0, ..., n − 1,

where (a0, a1, ...an−1)
′ is the first column of the matrix. In particular, the

eigenvalues of a circulant tournament the vertices of which are labeled from
0 to n are

λr =
∑

j∈N(0)

e
2iπj

n
r, r = 0, ..., n − 1
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and the eigenvalues of
−→
C k (k odd) are

λr =

k−1
2∑

j=1

e
2iπj

k
r, r = 0, ..., k − 1.

This following well-known and straightfoward result is useful to charac-
terise circulant tournament.

Proposition 30 A tournament is a circulant tournament if and only if its
automorphism group contains a full-length cycle.

This section is motivated by obtaining an algebraic characterization
(mainly spectral characterization) of vertex-critical tournament without non-
trivial acyclic interval (see the definition hereafter). Culus and Jouve [3] re-
cently found a characterization of these graphs through a combinatorial and

graph-theoretic approach: these graphs are compositions t[
−→
C k1, · · · ,

−→
C km ].

Definition 31 A subset X of a tournament T is an interval (also called
convex subset) if for all v in V (T ) \V (X) then for all x ∈ X there is a link
from v to x or for all x ∈ X there is a link from x to v. An acyclic interval
is an interval without any cycle, that is a transitive interval. A non-trivial
acyclic interval is an acyclic interval with at least two vertices.

A vertex-critical tournament without non-trivial acyclic interval is a
tournament T such that T is without non-trivial acyclic intervals and, for
every vertex u of T , T \ u has a non-trivial acyclic interval.

Theorem 32 [3] Every vertex-critical tournament without non-trivial acyclic

interval is isomorphic to t[
−→
C k1, · · · ,

−→
C km ] where t is a tournament of order

m and where ki ∈ N \ {0, 1, 2}.

Proposition 33 [5, 11] The eigenvalues of
−→
C k are:

λj =

k−1
2∑

s=1

e
2sjπ

k
i =

⎧⎨⎩ −1
2 + i

2 cot
(

jπ
2k

)
if j odd

−1
2 + i

2 cot
(

(k+j)π
2k

)
if j even

, j < k and λk =
k − 1

2
.

Theorem 34 The spectrum of T = t[
−→
C k1 , ...,

−→
C kn ] is the multiset

n⋃
j=1

(
Sp(

−→
C kj

) \
{

kj − 1

2

})
∪ Sp(AD̂ + Δ),

137



Spectral behavior of some graph and digraph compositions R. Boulet

where A is the adjacency matrix of t, D̂ is the diagonal matrix of the kj ’s

and Δ is the diagonal matrix whose jth entry is
kj−1

2 .

Proof: The proof is conducted in the same manner as that of Theorem 16.
�

We define Tr = {t[−→C k], t regular, k ≥ 3}; it is a subset of the regular
tournaments of T and a subset of the vertex-critical tournaments without
non-trivial acyclic interval.

Theorem 35 The tournament T = t[
−→
C k] ∈ Tr is characterised by its spec-

trum in Tr if and only if t is determined by its spectrum.

Proof: We show the first implication (⇒). Let t be a r-regular tourna-

ment such that t[
−→
C k] is characterised by its spectrum in Tr and let t′ a

tournament cospectral with t. Then tournament t′ is r-regular and t′[
−→
C k]

is cospectral with t[
−→
C k] and so there is an isomorphism ϕ : t[

−→
C k]→ t′[

−→
C k].

Now let assume that u1 and u2 are two distinct vertices of t such that there
exists a vertex u′ of t′ and a, a′, b′ vertices of

−→
C k with ϕ(u1, a) = (u′, a′)

and ϕ(u2, a) = (u′, b′). Since ϕ is an isomorphism, we have that

{ϕ(v, x), v ∈ N(u1), x ∈ V (
−→
C k)} ⊂ N(ϕ(u1, a)) = N(u′, a′)

and

{ϕ(v, x), v ∈ N(u2), x ∈ V (
−→
C k)} ⊂ N(ϕ(u2, a)) = N(u′, b′).

Consequently:

{ϕ(v, x), v ∈ N(u1) ∪N(u2), x ∈ V (
−→
C k)} ⊂ N(u′, a′) ∪N(u′, b′)

Since u1 = u2 we have |N(u1)∪N(u2)| ≥ r +1 and |N(u′, a′)∪N(u′, b′)| ≥
(r + 1)k But N(u′, a′) ∪ N(u′, b′) = {(v′, x), v′ ∈ N(u′), x ∈ V (

−→
C k)} ∪

{(u′, y′), y′ ∈ N(a′)∪N(b′)} and |N(u′, a′)∪N(u′, b′)| ≤ rk+2k−1
2 < (r+1)k

involving a contradiction. As a result if ϕ(u1, a) = (u′, a′) and ϕ(u2, a) =
(u′, b′) then u1 = u2. If we define the following surjective homomorphism

π : t′[
−→
C k] → t′, π(u′, x) = u′, we have that u1 = u2 implies π(ϕ(u1, a)) =

π(ϕ(u2, a)). Now, for a given a ∈ V (
−→
C k) we define the injection ia : t →

t[
−→
C k], i(u) = (u, a) and ψa = π ◦ ϕ ◦ ia is an isomorphism from t to t′. (it
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is easy to see that u1 ∼ u2 ⇒ ψ(u1) ∼ ψ(u2)). As a result t is isomorphic
to t′ and t is DS; the first implication of the theorem is proved.

Now we show the converse (⇐): we assume t DS. Let T = t[
−→
C k] cospec-

tral with T ′ = t′[
−→
C k′ ], that is :

n

(
Sp(
−→
C k) \

{
k − 1

2

})
∪ Sp

(
kAt +

k − 1

2
I

)
︸ ︷︷ ︸

Sp(T )

= n′
(

Sp(
−→
C k′) \

{
k′ − 1

2

})
∪ Sp

(
kAt′ +

k′ − 1

2
I

)
︸ ︷︷ ︸

Sp(T ′)

If n = |t| > |t′| = n′ then k < k′ (because nk = n′k′).
Let λ ∈ Sp(

−→
C k) \

{
k−1

2

}
such that λ ∈ Sp(

−→
C k′) \

{
k′−1

2

}
, so λ ∈

Sp
(
kAt′ + k′−1

2 I
)

which is impossible according to the multiplicity of λ in

Sp(T ). So:

Sp(
−→
C k) \

{
k − 1

2

}
⊂ Sp(

−→
C k′) \

{
k′ − 1

2

}
As Sp(

−→
C r) \ { r−1

2 } = {−1
2 + i

2cot
(
π 2j+1

2r

)
, j ∈ {0...r − 1} \ { r−1

2 }}
we have ∃j′ > 0 : 1

2k = 2j′+1
2k′ wich implies k′ ≥ 3k and as a consequence

n ≥ 3n′.
As the eigenvalues of Sp(

−→
C k′) are simple, we have that each copy of

Sp(
−→
C k′) \

{
k′−1

2

}
can only contain one copy of Sp(

−→
C k) \

{
k−1
2

}
; for that

reason Sp
(
kAt′ + k′−1

2 I
)

contains (n − n′) copies of Sp(
−→
C k) \

{
k−1

2

}
, so

n′ ≥ (n− n′)(k − 1) > n, contradiction !

As a result n = n′, k = k′ and therefore Sp(t) = Sp(t′). Since t is DS, t

and t′ are isomorpic and t[
−→
C k] is isomorphic to t′[

−→
C k′ ]. �

Corollary 37 is an exemple of application of Theorem 35:

Theorem 36 [11] The circulant tournament
−→
C p, p odd, is DS.

Corollary 37 There are no graphs in Tr cospectral non isomorphic to−→
C p[

−→
C k].
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We end this section by giving an algebraic characterization of some
vertex-critical tournament without non-trivial acyclic interval.

Lemma 38 Let p be a prime number, ζp be a primitive root of 1 and let

λ =
∑ p−1

2
j=1 e

2iπj
p . Then we have that the field extentions Q(ζp) and Q(λ) are

equal. As a consequence, the degree of the minimal polynomial in Q of λ is

p− 1 and The conjugates of λ in Q are λr =
∑ p−1

2
j=1 e

2iπj
p

r, r = 1, ..., p− 1.

Proof: We have λ ∈ Q(ζp) and so Q(λ) ⊂ Q(ζp). Let ζp = e
2iπ
p and

k = p−1
2 , then λ = ζp(1 + ζp + ... + ζk−1

p ) and

λ̄ = ζp−1
p (1 + ζp−1

p + ... + ζp−k+1
p )

= ζk+1
p ζk−1

p (1 + ζp−1
p + ... + ζp−k+1

p )

= ζk+1
p (ζk−1

p + ζk−2
p + ... + 1).

So ζk
p = λ−1λ̄ and Q(ζp) ⊂ Q(λ).

Let χ(X) be the characteristic polynomial of
−→
C p, then there is a poly-

nomial P (X) of degree p − 1 and with coefficients in Q such that χ(X) =

(X − p−1
2 )P (X). Since λ is an eigenvalues of

−→
C p, then it is a root of P

and therefore P is the minimal polynomial of λ. The conjugates of λ in

Q are then the eigenvalues of
−→
C p different from p−1

2 and are described in
Proposition 29. �

Theorem 39 Let T be a tournament on n vertices. If the three following
conditions are satisfied
(i) there is an integer m and prime number p1, p2, ...pm such that p1 + .. +
pm = n and m < min{pi};
(ii) the automorphism group of T contains the cycles (0 1 ... p1−1), (p1 p1+
1 ... p2 − 1), ..., (p1 + ... + pm−1 p1 + ... + pm−1 + 1 ... p1 + ... + pm − 1);
(iii) the adjacency spectrum of T contains the following eigenvalues

λ(ps) =

ps−1
2∑

j=1

e
2iπj
ps , s = 1, ...,m;

then T is a vertex-critical tournament without non-trivial acyclic interval

and there exists a tournament t such that T = t[
−→
C p1 , · · · ,

−→
C pm].
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Proof: Condition (ii) implies that there exists tournaments T1, ..., Tm with
respectively p1, ..., pm vertices and a tournament t on m vertices such that
T = t[T1, T2, ..., Tm]. Moreover the automorphism group of Ti contains
a full-length cycle, so Ti are circulant tournaments and consequeltly are
regular of degree pi−1

2 . It remains to show that these tournaments Ti are

isomorphic to
−→
C pi .

Using block-matrices, as done in Theorem 16, or by analogy with The-
orem 34, the spectrum of T = t[T1, T2, ..., Tm] is

n⋃
j=1

(
Sp(Tpj ) \

{
pj − 1

2

})
∪ Sp(AD̂ + Δ)

where A is the adjacency matrix of t, D̂ is the diagonal matrix of the pj’s

and Δ is the diagonal matrix whose jth entry is
pj−1

2 .

Fact 1: an eigenvalue λ(ps) described in condition (iii) cannot be an
eigenvalue of AD̂ + Δ. Indeed, the characteristic polynomial of AD̂ + Δ
has its coefficients in Z and is of degree m and λ(ps) is complex and its
minimal polynomial in Q is of degree ps − 1 (Lemma 38). But m < ps by
condition (i) so m = ps − 1 and the eigenvalues of AD̂ + Δ are λ(ps) and
its conjugates described in Lemma 38. On one hand the trace of AD̂ + Δ
is the trace of Δ (which is positive) and on the other hand the trace of
AD̂ + Δ is the sum of its eigenvalues that is (according to Proposition 33)
−1

2(ps − 1) < 0, involving a contradiction.

Fact 2: an eigenvalue λ(ps) described in condition (iii) cannot be an
eigenvalue of Tr with |Tr| = pr = ps. Indeed, if λ(ps) is an eigenvalue of Tr

then according to Proposition 29 we have λ(ps) ∈ Q(ζpr), but λ(ps) ∈ Q(ζps),
so λ(ps) ∈ Q(ζpr) ∩Q(ζps) = Q, a contradiction.

According to Facts 1 and 2, λ(ps) is an eigenvalue of Ts with |Ts| =

ps. Therefore the ps eigenvalues of |Ts| are λ
(ps)
r =

∑ ps−1
2

j=1 e
2iπj
ps

r
, r =

1, ..., ps−1 and ps−1
2 (Ts is ps−1

2 -regular). The tournament Ts has the same

eigenvalues than
−→
C ps , so Ts is isomorphic to

−→
C ps (Theorem 36).

This ends the proof of this theorem. �

141



Spectral behavior of some graph and digraph compositions R. Boulet

5 Conclusion

As a conclusion, if we focus on the well-known question (but far from being
solved) Which graphs are determined by their spectrum?, we realise that the
spectrum is not sufficient to (easily) determine graphs. An easier problem,
which is often a first step in proving DS graph, consists in showing that some
given graphs are characterised by their spectrum within a smaller family of
graphs. This is what we have done in this paper by giving characterisations
of strict starlike threshold graphs or stars of completes. In this paper we
also established some links between graphs determined by their spectrum
and graph compositions characterised by their spectrum.

Another difficult point is to deal with directed graphs. Indeed the eigen-
values are complex (and as a consequence more difficult to handle) and few
digraphs are proved to be DS; moreover if we compare to undirected graph,
there are less properties linking the spectrum to the structure for digraphs
than for graphs. As we have done with some vertex-critical tournament
without non-trivial acyclic interval (which can be written as a digraph
composition), another way to extend the problem of finding DS graphs is
to consider other algebraic objects related to the graphs: we do not only
consider the spectrum but also the automorphism group for instance. The
new question arising is Which (di)graphs are determined by their spectrum
and their automorphism group? in the sense that if we have these two in-
formations (the spectrum and the automorphism group), we wonder if we
could associate one and only one graph (up to isomorphism).
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On the existence of combinatorial configurations
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Abstract

A (v, b, r, k) combinatorial configuration can be defined as a con-
nected, (r, k)-biregular bipartite graph with v vertices on one
side and b vertices on the other and with no cycle of length
4. Combinatorial configurations have become very important
for some cryptographic applications to sensor networks and to
peer-to-peer communities. Configurable tuples are those tuples
(v, b, r, k) for which a (v, b, r, k) combinatorial configuration ex-
ists. It is proved in this work that the set of configurable tuples
with fixed r and k has the structure of a numerical semigroup.
The semigroup is completely described whenever r = 2 or r = 3.
For the remaining cases some bounds are given on the multiplic-
ity and the conductor of the numerical semigroup. This leads to
some concluding results on the existence of configurable tuples.

1 Introduction

Combinatorial configurations are a particular case of so-called incidence
structures which have been recently used for defining peer-to-peer commu-
nities for preserving privacy of users in front of search engines [2, 3]. Other
applications of configurations related to sensor networks can be found in
[12].

A (v, b, r, k)-configuration is a set of v “points” P = {p1, . . . , pv} and a
set of b “lines” L = {l1, . . . , lb}, such that there are k points on each line,
through each point pass r lines and no two points are joined by more than
one line. There is a natural bijection between combinatorial configurations
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and connected bipartite biregular graphs with girth larger than 5. Observe
that since these graphs are bipartite, the girth is always even and therefore
larger than or equal to 6. In the present work we will treat configurations
as such graphs.

One problem when using configurations is the limited number of known
configurations, specially for large v and b. We refer the reader to [7, 6] for
previously known results on the existence of combinatorial configurations.

In [3] larger configurations are constructed by combining smaller config-
urations; a (v, b, r, k)-configuration is obtained with parameters of the form
b = b′ + b′′ and v = v′ + v′′, from existing configurations with parameters
(v′, b′, r, k) and (v′′, b′′, r, k). In this article we interpret this result as giving
structure to the set of parameters of existing configurations.

A numerical semigroup is a subset of N0 that contains 0, is closed under
addition and has finite complement in N0.

Fix r > 1, k > 1. We will show that the set of all tuples (v, b, r, k) such
that there exists a (v, b, r, k) configuration has the structure of a numerical
semigroup. This semigroup can be explicitly described if r = 2 or r = 3.
For the general case we give bounds on the multiplicity and the conductor of
the numerical semigroup. The new results on the existence of configurable
tuples deduced from this work are summarized in Theorem 30.

2 The semigroup of combinatorial configurations

2.1 Previous results on the existence of configurations

Definition 1 An incidence structure is a triple S = (P,L,I), where P is a
set of “points”, L a set of “lines” and I ⊂ (P×L)∪ (L×P) is a symmetric
incidence relation.

In this article, no geometric meaning is attached to the terms point and
line.

Definition 2 A (v, b, r, k)-configuration is an incidence structure (P,L,I),
which has

• v points,

• b lines,

• r lines through any point,
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• k points on any line,

and in which any two different points are incident with at most one line,
or equivalently, any two different lines are incident with at most one point.

Two general references on geometric and combinatorial configurations
are [7, 6].

In the following we will suppose that v ≤ b. This can be done without
loss of generality, since if v > b we can take the dual configuration.

Proposition 3 The conditions vr = bk and v ≥ r(k− 1)+1 are necessary
for a non-trivial configuration (v, b, r, k) to exist [6].

For some values of r and k, more is known.

Theorem 4 For k = 3 the necessary conditions of Proposition 3 are suffi-
cient [5].

There has not been found any example on parameters v, b, r, such that a
(v, b, r, 4)−configuration fails to exist as long as the parameters satisfy the
necessary conditions. Regarding symmetric configurations, that is, vk−con-
figurations, for which r = k and v = b, it is known that for r = k = 4 they
all exist for v ≥ 13.

The necessary conditions are not always sufficient. One example is
k = 5, since there is no configuration 225.

For symmetric configurations, existence for some parameters are listed
in Table 1, also from [6] and [4]. We see there that also for small values
of k and v the existence of vk−configurations is sometimes unknown, for
example it is not known whether or not there exists a 336−configuration.

Results on non-symmetric configurations, generalizing the symmetric
configurations, are more sparse, at least for large parameters. The state of
the art can be found in [7] which actually treats geometric configurations,
but also covers results on combinatorial configurations.

One interesting result in our context is the next theorem by Gropp. It
guarantees the existence of large configurations and, in fact, the existence
of any configuration satisfying the necessary conditions with sufficiently
large v (and so b). Its limitation is the restriction on the choice of the
parameters r, k.

Theorem 5 For given k and r with r = tk there is a v0 depending on k,
t such that there is a (v, b, r, k)-configuration for all v ≥ v0 satisfying the
necessary conditions from Proposition 3.
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k = 5 215 − 235 245 255 265 275 285 295 305 315

6 316 − ? ? 356 366 376 386 396 406 416

7 − − 457 ? ? 487 497 507 517 527 537

Table 1: Existence of configurations vk for 5 ≤ k ≤ 7 and d ≤ 10. vk

means configuration exists, − means configuration does not exist, ? means
existence is unknown. The notation vk−configuration is used to denote a
(v, v, k, k)−configuration.

2.2 The set of (r, k)−configurable tuples

Definition 6 We say that the tuple (v, b, r, k) is configurable if a (v, b, r, k)-
configuration exists.

As we saw in Proposition 3, if (v, b, r, k) is configurable then vr = bk
and consequently there exists d such that v = d k

gcd(r,k) and b = d r
gcd(r,k) .

So, to each configurable tuple (v, b, r, k) we can assign an integer d. Two
different configurable tuples (v, b, r, k) will have different integers d. Let
us call Dr,k the set of all possible integers d corresponding to configurable
tuples (v, b, r, k). That is,

Dr,k =

{
d ∈ N0 :

(
d

k

gcd(r, k)
, d

r

gcd(r, k)
, r, k

)
is configurable

}
.

Our aim is to study Dr,k. We will consider the empty graph to be
also a configuration and consequently 0 ∈ Dr,k for all pair r, k. Obviously
Dr,k = Dk,r and D1,k = {0, k}. First we will give a complete description of
D2,k and a complete description of D3,k and then we will study the general
case.

2.3 The case r = 2

There is a natural bijection between (v, b, 2, k)-configurations and k-regular
connected graphs with b vertices and v edges. Two vertices in the graph
share an edge if and only if the corresponding nodes in the configuration
share a neighbor and viceversa. The following well-known lemma is the
key result for describing D2,k. We include the proof in order to make the
article more self-contained.
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x8 x9
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Figure 1: Construction of a connected 4-regular graph with 10 vertices

Lemma 7 Let k be an even positive integer. A connected k-regular graph
with b vertices exists if and only if b ≥ k + 1.

Proof: By definition, any k-regular graph must have a number of vertices
at least k + 1.

Conversely, suppose b ≥ k+1. Consider a set of vertices x1, . . . , xb. Put
an edge between xi and xj, with i ≤ j, if j − i ≤ k/2 or i + b − j ≤ k/2.
This gives a connected k-regular graph with b vertices. �

The construction in this last proof is illustrated in Figure 1.
From the natural bijection between (v, b, 2, k)-configurations and k-

regular connected graphs with b vertices and v edges, we get the follow-
ing corollary. We write 〈a1, . . . , an〉 to denote the numerical semigroup
generated by a1, . . . , an.

Corollary 8 If k is an even positive integer then

D2,k = 〈k + 1, k + 2, . . . , 2k + 1〉 .

Lemma 9 Let k be an odd positive integer. A connected k-regular graph
with b vertices exists if and only if b is even and b ≥ k + 1.

Proof: By definition, any k-regular graph must have a number of vertices
at least k + 1. Now, since the number of edges is kb/2 this means that kb
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x8 x9
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Figure 2: Construction of a connected 5-regular graph with 10 vertices

must be even and since k is odd b must be even. Conversely, suppose b
is even and b ≥ k + 1. Consider a set of vertices x1, . . . , xb. Put an edge
between xi and xj, with i ≤ j, if j − i ≤ (k− 1)/2 or i + b− j ≤ (k − 1)/2.
Put also edges between xi and xi+b/2 for i from 1 to b/2. This gives a
connected k-regular graph with b vertices. �

The construction in this last proof is illustrated in Figure 2.

From the natural bijection between (v, b, 2, k)-configurations and k-
regular connected graphs with b vertices and v edges, we now get the
following corollary.

Corollary 10 If k is an odd positive integer then

D2,k =

〈
k + 1

2
,
k + 1

2
+ 1,

k + 1

2
+ 2, . . . , k

〉
.

2.4 The case r = 3

Because of Theorem 4, the case r = 3 is much simpler. It is stated in the
next theorem.
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Theorem 11 Suppose k > 1 then

D3,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{0, 2k + 1, 2k + 2, . . . } if k ≡ 0mod 3

{0, 2k+1
3 , 2k+1

3 + 1, 2k+1
3 + 2, . . . } if k ≡ 1mod 3

{0, 2k+2
3 , 2k+2

3 + 1, 2k+2
3 + 2, . . . } if k ≡ 2mod 3

Proof: By Theorem 4 (by swapping the role of b and v) we know that
any tuple (v, b, 3, k) with b = 0 is configurable if and only if 3v = bk and
b ≥ k(3−1)+1 = 2k+1. In particular, the non-zero values b for which there
exists a configurable tuple (v, b, 3, k) are exactly those integers b ≥ 2k + 1
such that bk

3 is an integer.

If k ≡ 0mod 3 then the only condition is b ≥ 2k + 1 which results in

d =
b gcd(3, k)

3
=

3b

3
= b ≥ 2k + 1

and this proves the result in this case.

Otherwise, we need b ≥ 2k + 1 and b be a multiple of 3. If k ≡ 1mod 3
this is equivalent to b ∈ {2k+1, 2k+4, 2k+7, . . . } and so d = b gcd(3,k)

3 = b
3

is in {
2k + 1

3
,
2k + 1

3
+ 1,

2k + 1

3
+ 2, . . .

}
.

If k ≡ 2mod 3 this is equivalent to b ∈ {2k + 2, 2k + 5, 2k + 8, . . . } and

so d = b gcd(3,k)
3 = b

3 is in{
2k + 2

3
,
2k + 2

3
+ 1,

2k + 2

3
+ 2, . . .

}
. �

2.5 The general case

We want to prove that Dr,k ⊂ N0 is a numerical semigroup. The following
results on semigroups will be helpful.

Proposition 12 A set of integers generate a numerical semigroup if and
only if they are coprime.
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The proof of this proposition can be found in [13].

Proposition 12 says that in order to prove that a set is a numerical
semigroup it is enough to prove that the set is a submonoid of the natural
numbers with coprime elements. This means that we need to prove that

• 0 ∈ Dr,k,

• Dr,k is closed under addition,

• at least two elements (and therefore all of the elements) of Dr,k are
coprime.

The two first conditions ensure that the subset Dr,k of the natural numbers
is a monoid. The operation of the monoid is addition. The last condition
ensures that the monoid is a numerical semigroup. Since the case r ≤ 3
has been proved earlier, in this section we will suppose that r, k > 3.

The set of configurable tuples is a submonoid of the natural num-
bers

We first observe that since we consider the empty configuration a configu-
ration, 0 ∈ Dr,k.

We will now prove that the set Dr,k is closed under addition.

Lemma 13 If (v, b, r, k) and (v′, b′, r, k) are configurable tuples, so is (v +
v′, b + b′, r, k).

Proof: Suppose we have a (v, b, r, k)-configuration with vertices {x1, . . . , xv},
{y1, . . . , yb} and a (v′, b′, r, k)-configuration with vertices {x′1, . . . , x′v′} and
{y′1, . . . , y′b′}. Consider the graph with vertices {x1, . . . , xv}∪ {x′1, . . . , x′v′},
{y1, . . . , yb} ∪ {y′1, . . . , y′b′} and all the edges in the original configurations.
We can assume without loss of generality that the edges x1y1, xvyb,x

′
1y
′
1,

x′v′y
′
b′ belong to the original configurations.

Swap the edges xvyb and x′1y
′
1 for xvy

′
1 and x′1yb. This gives a (v+v′, b+

b′, r, k) configuration [3]. An example of this construction is illustrated in
Figure 3. �

Since

d = v gcd(r, k)/k = b gcd(r, k)/r
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y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

y′1

y′2

y′3

y′4

y′5

y′6

x′1

x′2

x′3

x′4

−→

y1

y2

y3

y4

y5

y6

x1

x2

x3

x4

y′1

y′2

y′3

y′4

y′5

y′6

x′1

x′2

x′3

x′4

Figure 3: Construction of a (v+v′, b+b′, r, k) configuration from a (v, b, r, k)
configuration and a (v′, b′, r, k) configuration.

and

d′ = v′ gcd(r, k)/k = b′ gcd(r, k)/r

there exists a

d′′ = (v + v′) gcd(r, k)/k = (b + b′) gcd(r, k)/r = d + d′.

Hence if d, d′ ∈ Dr,k, then d + d′ ∈ Dr,k, or in other words Dr,k ⊂ N0 is
closed under addition. Together with the fact that 0 ∈ Dr,k we get the
result we were looking for.

Proposition 14 Dr,k is a submonoid of the natural numbers.
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The submonoid contains two coprime elements

We start by proving that given any pair of natural numbers (r, k), there
exists at least one element in Dr,k. We do this by constructing a (v, b, r, k)-
configuration.

For the construction we need a graph of girth at least 5. In [10] a
family of small graphs of girth 5 is constructed, which can be used for our
purposes. The existence of this graph is given in the following theorem.

Theorem 15 Let q ≥ 13 be an odd prime power and let n ≤ q + 3. Then
there exists a n regular graph with girth 5 and with 2(n − 2)(q − 1) ver-
tices [10, Theorem 17].

There are other constructions of small graphs for other (larger) girths, such
as the ones in [1]. For our purposes taking girth at least 5 is enough.

Now we can construct the connected, r, k biregular graph of girth at
least 5 which gives us the (v, b, r, k) configuration we are looking for.

Proposition 16 For any pair of integers r > 1, k > 1, there exists at least
one non-zero integer in Dr,k.

Proof: The cases in which r ≤ 3 or k ≤ 3 have already been proved. We
can therefore suppose that r > 3 and k > 3.

Consider the complete bipartite graph Kr,k, with edge set E and vertex
set V . We consider one spanning tree Tr,k of Kr,k. Then Tr,k has vertex set
V , but edge set E′ ⊂ E with |E′| = r + k − 1.

The number of edges in Kr,k outside Tr,k, that is in E − E′, is n =
rk − r − k + 1. Since r, k > 3 we have n ≥ 3.

From Theorem 15 we know that there exists (at least) a n-regular graph
of girth (at least) 5. We take one of these graphs and call it G.

Now we will construct a bipartite (r, k)−biregular graph of girth at
least 5, using G. Associate to each of the vertices of G a copy of the
complete bipartite graph Kr,k. For all edges ab in G, consider its end
vertices a and b and let A and B be the copies of Kr,k associated to these
vertices. Also let TA and TB be the corresponding spanning trees in A and
B. Now choose one edge xAyA in A, but not in TA and one edge xByB in
B, but not in TB and swap them so that we instead get two edges xAyB

and xByA. Since G is n−regular and n is the number of edges in Kr,k that
are not in its spanning tree, we can choose different edges xAyA and xByB

for every edge in G.
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In this way we get a bipartite, (r, k)−biregular graph of girth at least 5,
from a n−regular graph of girth at least 5, with n = rk − r − k + 1.

The resulting graph may not be connected. If this is the case, we can
proceed in two ways.

• We can choose any of the connected subgraphs, and consider that
graph to be the incidence graph of the configuration we want to con-
struct. If we choose the smallest connected subgraph, then we min-
imize the size of the smallest known (v, b, r, k)-configuration proved
to exist in this manner;

• We can use the ’addition’ law from Lemma 13 to connect all the
connected subgraphs.

In any case we get a connected, bipartite, (r, k)−biregular graph of girth
at least 6, hence the incidence graph of a (v, b, r, k)-configuration. �

We will now construct a second element of Dr,k, also different from 0,
such that the element we already have and the new one are coprime. In
order to do so we need the following lemma.

Lemma 17 Suppose we have a (v, b, r, k)-configuration with r ≥ 3. There
exist three edges in the configuration such that the six ends are all different.

Proof: It is easy to prove, by the property that no cycle of length 4 exists,
that there exists a path with four edges with the five ends being different.
Three of these ends will be in one partition of the graph while the other
two will be in the other partition. Take the vertex at the end of the path.
It must be one of the three in the same partition. Since its degree is at
least 3, then it will have one neighbor not in the path. So, by adding the
edge from the end of the path to this additional vertex, we obtain a new
path with 5 edges with all its vertices being different. By taking the first,
third, and fifth edges of this new path we obtain the result. �

This lemma tells us that the vertices {x1, . . . , xv}, {y1, . . . , yb} in a
(v, b, r, k)-configuration with r ≥ 3 can be arranged in a way such that the
edges x1y1, x2y2 and xvyb belong to the configuration.

We are now ready to prove the existence of two coprime elements of
Dr,k.
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Proposition 18 Dr,k contains two elements m = 0 and sm + 1, with s =
rk/ gcd(r, k), so that the two are coprime.

Proof: Because of the results in the previous sections we can assume that
r and k are larger than 3. By Proposition 16 and since Dr,k ⊆ N0, there is
a minimal non-zero element m in Dr,k. Let us call

v = mk/ gcd(r, k)

and

b = mr/ gcd(r, k).

Select a (v, b, r, k) configuration. Take

s = rk/ gcd(r, k)

copies of this configuration. Let us call the vertices of the ith copy

x
(i)
1 , . . . , x

(i)
v , y

(i)
1 , . . . , y

(i)
b .

By Lemma 17 we can assume that

x
(i)
1 y

(i)
1 , x

(i)
2 y

(i)
2 and x

(i)
v y

(i)
b

belong to the ith copy. Consider k/ gcd(r, k) further vertices

x′1, . . . , x
′
k/ gcd(r,k)

and r/ gcd(r, k) further vertices

y′1, . . . , y
′
r/ gcd(r,k).

Now perform the following changes to the edge set of the graph defined
by the union of all parts previously mentioned. It may be clarifying to
contemplate Figure 4. In the figure the edges to be removed are dashed,
while the edges to add are thick lines.

• For all 2 ≤ i ≤ s replace the edges

x
(i)
v y

(i)
b and x

(i−1)
1 y

(i−1)
1

by
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x
(i)
v y

(i−1)
1 and x

(i−1)
1 y

(i)
b .

• Also, remove the edges x
(i)
2 y

(i)
2 for all 2 ≤ i ≤ s.

• Add the edges

x′1y
(1)
2 , x′1y

(2)
2 , . . . , x′1y

(r)
2 ,

x′2y
(r+1)
2 , x′2y

(r+2)
2 , . . . , x′2y

(2r)
2 ,

...

x′k/ gcd(r,k)y
(s−r+1)
2 , . . . , x′k/ gcd(r,k)y

(s)
2

and

x
(1)
2 y′1, x

(2)
2 y′1, . . . , x

(k)
2 y′1,

x
(k+1)
2 y′2, x

(k+2)
2 y′2, . . . , x

(2k)
2 y′2,

...

x
(s−k+1)
2 y′r/ gcd(r,k), . . . , x

(s)
2 y′r/ gcd(r,k).

As can be verified, the construction gives a new configuration with param-
eters

(v′, b′, r, k) = (sv + k/ gcd(r, k), sb + r/ gcd(r, k), r, k)

= (smk/ gcd(r, k) + k/ gcd(r, k),

smr/ gcd(r, k) + r/ gcd(r, k), r, k)

= ((sm + 1)k/ gcd(r, k), (sm + 1)r/ gcd(r, k), r, k)

and so sm + 1 ∈ Dr,k. �

From Proposition 18 we deduce that Dr,k contains two coprime ele-
ments, so that they generate a numerical semigroup and this semigroup is
contained in Dr,k. So the complement of Dr,k in N0 is finite and Dr,k is a
numerical semigroup.

Theorem 19 For every pair of integers r, k ≥ 2, Dr,k is a numerical semi-
group.
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x
(1)
1

x
(1)
2

...

x
(1)
v

y
(1)
1

y
(1)
2

...

y
(1)
b

x
(2)
1

x
(2)
2

...

x
(2)
v

y
(2)
1

y
(2)
2

...

y
(2)
b

...

x
(s)
1

x
(s)
2

...

x
(s)
v

y
(s)
1

y
(s)
2

...

y
(s)
b

x
′

1

x
′

2

...

x
′

α

y
′

1

y
′

2

...

y
′

β

x
(s)
v y

(s)
b

x
(1)
1 y

(1)
1

Figure 4: Construction of a (sv + k/ gcd(r, k), sb + r/ gcd(r, k), r, k)-
configuration from s (v, b, r, k) configurations and α + β = k/ gcd(r, k) +
r/ gcd(r, k) extra vertices.
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We call an element of the complement of a numerical semigroup a gap.
Observe that D2,k as well as D3,k for k > 1 are ordinary, that is, all their
gaps are in a row. However, there are pairs r, k for which Dr,k is not
ordinary. For example the multiplicity of D5,5 is 21, but 22 is a gap, as
can be deduced from Table 1. Also, while the multiplicity of D6,6 is 31, we
have that 33 ∈ D6,6 (see [11]).

3 Bounds on configurable tuples

3.1 A lower bound on the multiplicity of the numerical semi-
group Dr,k

The multiplicity of a numerical semigroup is its smallest non-zero element.
Observe that bounds on the multiplicity are bounds regarding the size of
the smallest configuration for a given pair of r and k.

For the cases r = 2 and r = 3, since we know the actual structure of
the semigroup we can precise the multiplicity exactly.

Proposition 20 For k > 1 the multiplicity of D2,k is{
k + 1 if k is even
k+1

2 if k is odd

For k > 1 the multiplicity of D3,k is⎧⎨⎩
2k + 1 if k ≡ 0mod 3
2k+1

3 if k ≡ 1mod 3
2k+2

3 if k ≡ 2mod 3

The proof follows from Corollary 8, Corollary 10, and Theorem 11.

In the next lemma we give a lower bound for the multiplicity of Dr,k.
It is a consequence of Proposition 3.

Lemma 21 If d ∈ Dr,k and d = 0 then d ≥ (rk − r + 1)gcd(r,k)
k and, by

symmetry, d ≥ (rk − k + 1)gcd(r,k)
r .

For certain r = k, the bound is tight. An example is seen in the next
proposition.
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Proposition 22 For r = k = q + 1 with q a power of a prime, the multi-
plicity of the numerical semigroup Dr,k is r2 − r + 1.

Proof: There exists a finite projective plane for every power of a prime q.
The projective plane is a (q2 + q + 1, q2 + q + 1, q + 1, q + 1)−configuration.
We have that

q2 + q + 1 = (r − 1)2 + r − 1 + 1 = r2 − r + 1. �

3.2 An upper bound on the multiplicity of the numerical
semigroup Dr,k

In Proposition 16 we proved that Dr,k contains at least one element for every
pair (r, k). Counting the points and lines of the configuration constructed
in the proof of Proposition 16 we get an upper bound on the multiplicity
of Dr,k.

The graph G from the proof of Proposition 16 has 2(n−2)(q−1) vertices,
for an odd prime power q ≥ n−3, q ≥ 13 and n = rk−r−k+1. In the final
graph, constructed from G, every vertex of G is replaced by the vertices of
the r, k−complete graph. Therefore in the final graph, the total number of
vertices is 2(n − 2)(q − 1)(r + k) and the numbers of points and lines in
the corresponding configuration are 2(n − 2)(q − 1)r and 2(n − 2)(q − 1)k
respectively.

A bound on the existence of a prime power

In order to get an exact bound we need a bound on the existence of the
prime power q. However, we will not care about prime powers of higher
exponents and instead use a famous bound on the existence of primes. The
density of prime powers of exponent greater than 1 is small compared with
the density of primes.

Proposition 23 The number of squares, cubes, . . . of primes up to x does
not exceed

x
1
2 + x

1
3 + x

1
4 + · · · = O(x

1
2 ln x).
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When it comes to prime numbers, their density is described in the ’Prime
number theorem’.

Theorem 24 Prime number theorem Let π(x) be the function counting the
number of prime numbers up to x. Then we have

π(x) ∼ x
ln x

The function x
1
2 ln x grows much slower than a function containing x like

the latter, so that the function counting all prime powers, including those of
exponent 1, behaves asymptotically like the prime counting function. For
more details on this see [9].

Therefore, when we look for a power of a prime ≥ n − 3, we are more
likely to find a prime p than a power of a prime pm, and it is enough to
apply the Bertrand’s Postulate in order to get a good bound.

Theorem 25 Bertrand’s Postulate
If m > 3 is an integer, then there always exists at least one prime

number p with m < p < 2m− 2.

Using this, since we want our prime to be greater or equal to n− 3, we get
that there exists at least one prime number in the interval

[n− 3, 2(n − 4)− 3] = [n− 3, 2n − 11].

Therefore we get the following upper bound on the multiplicity of Dr,k.

Proposition 26 For r, k > 3 the multiplicity m of Dr,k satisfies

m ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10) gcd(r, k).

Proof: Since r, k > 3, we have n = rk − r − k + 1 > 7 and so n − 4 > 3.
Because of the construction of the configuration in Proposition 16 and
Bertrand’s postulate, we get the following bound on the number of points
in the configuration.

v = 2(n− 2)(q − 1)k

≤ 2(n− 2)(2n − 11− 1)k

= 2(rk − r − k − 1)(2(rk − r − k)− 10)k
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We have
v = d k

gcd(r,k)

and therefore

d = v gcd(r,k)
k .

This means that in this particular configuration

d = v gcd(r,k)
k

≤ 2(rk − r − k − 1)(2(rk − r − k)− 10) gcd(r, k)

If we had used the bound on the number of lines in the configuration
instead, we would have arrived at the same conclusion, simply replacing k
by r. �

3.3 An upper bound on the conductor of the numerical
semigroup Dr,k

The largest gap of a numerical semigroup S is called the Frobenius number
of S. To Proposition 12 we have associated the following result.

Proposition 27 The numerical semigroup generated by two coprime pos-
itive integers a, b has Frobenius number (a− 1)(b− 1)− 1 [15].

Definition 28 The conductor of a numerical semigroup is the smallest
element such that all subsequent natural numbers belong to the semigroup.

Hence if the Frobenius number is f , then c = f + 1. By bounding the
conductor upwards, we get a value from which all subsequent integers give
configurable tuples. This is equivalent to giving values v0 and b0 such that
all tuples (v, b, r, k) with vr = bk, v ≥ b0 and b ≥ b0 are configurable.

As before, for the cases r = 2 and r = 3 we know exactly the conductor
of Dr,k. Indeed, in these semigroups the conductor is equal to the multi-
plicity (see Corollary 8, Corollary 10, and Theorem 11) and the multiplicity
is given in Proposition 20.

Proposition 29 Suppose r, k > 1 and let t = rk−r−k−1. The conductor
c of the numerical semigroup Dr,k satisfies

c ≤ rk((4t2 − 16t)2 gcd(r, k) − 4t2 + 16t).
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Proof: By Proposition 26 the multiplicity of Dr,k satisfies m ≤ 2(rk −
r − k − 1)(2(rk − r − k) − 10)gcd(r, k). Now, because of Proposition 18,
sm + 1 ∈ Dr,k, with s = rk/gcd(r, k), and sm + 1 and m are coprime.
Therefore Proposition 27 says that (m− 1)sm− 1 is the Frobenius element
of a numerical semigroup contained in Dr,k. We have

(m− 1)sm− 1 ≤ (2(rk− r− k− 1)(2(rk− r− k)− 10) gcd(r, k)− 1)2(rk−
r − k − 1)(2(rk − r − k)− 10)rk − 1

and therefore the conductor is bounded by

c ≤ (2(rk−r−k−1)(2(rk−r−k)−10) gcd(r, k)−1)2(rk−r−k−1)(2(rk−
r − k)− 10)rk.

With t = rk − r − k − 1 we get

c ≤ (2t(2t−8) gcd(r, k)−1)2t(2t−8)rk = rk((4t2−16t)2 gcd(r, k)−4t2+16t).
�

k = 4 5 6 7 8

r = 4 13 17/5 7 25/7 29/2
5 21 13/3 31/7 9/2
6 31 37/7 43/4
7 43 25/4
8 57

Table 2: Lower bounds for the multiplicity of the numerical semigroup Dr,k

k = 4 5 6 7 8

r = 4 336 240 936 768 4560
5 2800 1008 1584 2288
6 10488 2688 7656
7 28560 5760
8 64672

Table 3: Upper bounds for the multiplicity of the numerical semigroup Dr,k
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k = 4 5 6 7 8

r = 4 450240 1147200 10501920 16493568 166312320
5 39186000 30451680 87761520 209306240
6 659925936 303351552 1406560320
7 5709515280 1857623040
8 33459223296

Table 4: Upper bounds for the conductor of the numerical semigroup Dr,k

3.4 Results

The upper bounds on the multiplicity and the conductor of Dr,k are both
huge, while the lower bound on the multiplicity is quite small. In Table 2,
Table 3 and Table 4 one can see some examples of the values the bounds
take for some r and k. We leave it as an open problem to find better
bounds.

3.5 Concluding results

We are ready to collect our results in a final theorem.

Theorem 30 For any pair of integers r, k, both larger than 1,

(i) there exist infinitely many configurable tuples (v, b, r, k);

(ii) there exists at least one configurable tuple (v, b, r, k) with

v ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10)k

and

b ≤ 2(rk − r − k − 1)(2(rk − r − k)− 10)r;

(iii) all tuples (v, b, r, k) with vr = bk,

• v ≥ d0k/ gcd(r, k), and

• b ≥ d0r/ gcd(r, k),
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are configurable for a certain d0;

(iv) if r = 2 then

d0 =

{
k + 1 if k is even
k+1
2 if k is odd

if r = 3 then

d0 =

⎧⎨⎩
2k + 1 if k ≡ 0mod 3
2k+1

3 if k ≡ 1mod 3
2k+2

3 if k ≡ 2mod 3

(v) if r, k > 3 then d0 ≥ rk((4t2 − 16t)2 gcd(r, k) − 4t2 + 16t), where
t = rk − r − k − 1.

Proof:

(i) This is a result of the fact that for any (r, k), Dr,k is a numerical
semigroup,

(ii) This was proven in Proposition 26.

(iii) This is because a numerical semigroup has a conductor d0, so that
every element greater or equal to d0 pertains to Dr,k.

(iv) This is a consequence of Proposition 20 and the fact that for the
semigroups D2,k and D3,k the multiplicity equals the conductor.

(v) This is the bound on the conductor from Proposition 29. �
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Abstract

In this paper we characterize symmetric L-graphs, which are
either Kronecker products of two cycles or Gaussian graphs.
Vertex symmetric networks have the property that the commu-
nication load is uniformly distributed on all the vertices so that
there is no point of congestion. A stronger notion of symmetry,
edge symmetry, requires that every edge in the graph looks the
same. Such property ensures that the communication load is
uniformly distributed over all the communication links, so that
there is no congestion at any link.

1 Introduction

Many interconnection networks have been based on vertex-transitive (or
vertex-symmetric) graphs. This is the case of current parallel computers
from Cray, HP and IBM, among others, that are built around torus net-
works. Tori have displaced meshes that do not use wraparound edges which
simplifies planar design at the price of losing vertex-transitivity. Less work
has been devoted to edge-transitive (or edge-symmetric) networks. Square
tori would be the network of choice as it is symmetric (vertex and edge
symmetric). However, for practical reasons such as packaging, modularity,
cost and scalability, the number of nodes per dimension might be different.
These topologies, are denoted as mixed-radix networks in [3]. Mixed-radix
tori have the drawback of being non-edge-transitive which leads to an imbal-
anced utilization of network links and buffers. For many traffic patterns,
the load on the longer dimension is higher than on the shorter one and,
hence, links in longer dimension become network bottlenecks, [1].
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The present work is devoted to find and characterize the symmetric
members of the two-dimensional family of undirected multidimensional cir-

culant graphs, defined in [5]. These graphs can be informally denoted as
L-graphs, since their set of vertices is a subset of a two-dimensional lat-
tice that can be represented as an L-shaped mesh with wrap-around edges.
These two-dimensional networks can be considered as a generalization of
torus graphs as they have a planar representation when laying them out on
a torus surface. L-shaped graphs have been widely considered, for example
in [2] and [6], with applications to interconnection networks.

We recall now some definitions and results appeared in [5]. Let M ∈
Mn×n(Z) be a n×n matrix of integers. Given two vectors a, b ∈ Zn we say
that a is congruent to b modulo M , which we denote as a ≡ b (mod M),
if a − b ∈ MZn, where MZn stands for the additive group of column n-
vectors with integral coordinates. We will also denote as Zn/MZn, the
group of integral vectors modulo M , which has |det(M)| elements when M
is nonsingular.

Definition 1 Let M ∈ M2×2(Z) be a non-singular matrix. Let A =
{±a1,±a2} be a subset of vectors of Z2 such that {a1, a2} are linearly
independent. The L-graph generated by M and adjacency A, L(M ;A), is
defined as the graph whose vertex set is formed by the elements of Z2/MZ2

and every vertex u is adjacent to u + A (mod M).

In particular, we are interested in those cases whose generating set
of jumps is A = {e1, e2}, where e1 = (1, 0)t and e2 = (0, 1)t form the
orthonormal two-dimensional basis. In general we will assume A = {e1, e2}
and therefore we will just denote L(M ;A) = L(M).

As stated above, in this paper we study the symmetry of L-graphs. We
will proof that the only symmetric L-graphs are either Kronecker products
of two cycles or Gaussian graphs. Perfect codes over L-graphs were char-
acterized in [7]. It was shown that L-graphs include Gaussian graphs [8],
torus, twisted torus, Kronecker products of two cycles, etc. It is straightfor-

ward that any Gaussian graph Ga+bi is isomorphic to L(

(
a −b
b a

)
). Kro-

necker products of cycles have been proposed for interconnection networks
in [11], [10], and codes over them were characterized in [12].

Definition 2 Given a graph G = (V,E), Aut(G) denotes its automor-
phisms group. G is said to be vertex-transitive if, for any pair of vertices

170



Symmetric L-graphs C. Camarero et al.

v1, v2 ∈ V there exists f ∈ Aut(G) such that f(v1) = v2. Similarly, G is
said to be edge-transitive if for any pair of edges e1 = (v1, v2), e2 ∈ E there
exists f ∈ Aut(G) such that f(e1) = (f(v1), f(v2)) = e2. Then, if G is both
vertex and edge transitive, then it is called symmetric.

It is easy to see that all L-graphs are vertex-transitive. Therefore, in
order to characterize symmetric L-graphs we will study those which are
edge-transitive. With this aim, in Section 2 we will consider some properties
of isomorphisms between L-graphs. In Section 3, we determine those L-
graphs which are symmetric. In Subsection 3.1 we will focus on linear
automorphisms (group automorphisms of Z2/MZ2) of L-graphs which act
transitively on the set of edges in order to characterize those which are edge-
transitive (and therefore symmetric) by means of their generator matrix.
Finally, in Subsection 3.2 we analyze some marginal cases of symmetric
L-graphs with non-linear automorphisms.

2 Linear Automorphisms of L-graphs

Two multidimensional circulants are Ádam isomorphic if there exists an
isomorphism between their groups of vertices such that sends the set of
jumps of one into the other one. It is clear that any Ádam isomorphic
multidimensional circulants are isomorphic, but the opposite it is not true.
In [4] it was proved that:

Theorem 3 [4] Any two finite isomorphic connected undirected Cayley
multigraphs of degree 4 coming from abelian groups are Ádam isomorphic,
unless they are obtained with the groups and families Z4n, (1,−1, 2n +
1, 2n − 1) and Z2n × Z2, ((1, 0), (−1, 0), (1, 1), (−1, 1)).

In this Section we obtain a similar result in a different form. We address
the method here since it can be extended to higher dimensions, which is
considered as future work.

Definition 4 We define the neighborhood of a vertex v in the graph G =
(V,E) as N(v) = {w : (v,w) ∈ E}. Then, the common neighborhood of a
list of vertices denoted as v1, . . . , vn as N(v1, . . . , vn) =

⋂n
i=1 N(vi).
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Theorem 5 The neighborhood is preserved in graph isomorphisms. That
is, if f is a graph isomorphism, then

N(f(v1), . . . , f(vn)) = {f(w) : w ∈ N(v1, . . . , vn)}.

Proof: Let f be a graph isomorphism from G = (V,E) into G′ = (V ′, E′).
We have that f(w) ∈ N(f(v1), . . . , f(vn)) if only if ∀i, f(w) ∈ N(f(vi)),
that is ∀i, (f(w), f(vi)) ∈ E′. Since f is an isomorphism we have that this
is equivalent to ∀i, (w, vi) ∈ E so w ∈ N(v1, . . . , vn). �

Next, we analyze which multidimensional circulant graphs isomorphisms
are linear mappings. We need the following:

Definition 6 We say that a, b, c, d ∈ A form a 4-cycle in G(M ;A) if 0 =
a + b + c + d1. Then, we say that G(M ;A) has not nontrivial 4-cycles if
a, b, c, d ∈ A such that 0 = a+b+c+d implies a = −b or a = −c or a = −d.

Theorem 7 If G(M ;A) is a multidimensional circulant graph without non-
trivial 4-cycles, then for all a, b ∈ A with a = b

N(a, b) = {0, a + b}.

Proof: If v ∈ N(a, b) then ∃x, y ∈ A such that v = a + x = b + y. Since
we have a− b + x− y = 0 and G(M ;A) has not nontrivial 4-cycles, it must
be fulfilled one of the following expressions:

• a = b contradicting the hypothesis,

• a = −x and thus v = a− a = 0,

• a = y and thus v = b + y = a + b. �

Lemma 8 Let G(M ;A) and G(M ′;A′) be two isomorphic multidimen-
sional circulant graphs without nontrivial 4-cycles. Then any isomorphism
f between G(M ;A) and G(M ′;A′) with f(0) = 0 is such that f(a + b) =
f(a) + (b) for any a, b ∈ A with a = b.

1each of {(v, v + a, v + a + b, v + a + b + c, v + a + b + c + d) : v ∈ V } is a cycle of
length 4
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Proof: Let a, b ∈ A with a = b. From the previous theorem we get that
N(a, b) = {0, a + b}, hence N(f(a), f(b)) = {f(0), f(a + b)} = {0, f(a) +
f(b)}. As f(0) = 0 we have that f(a + b) = f(a) + f(b). �

Lemma 9 In multidimensional circulant graphs translations are automor-
phisms.

Corollary 10 If f is an automorphism of G(M ;A), then there exists an-
other automorphism f ′ with f ′(0) = 0.

Lemma 11 Let f ∈ Aut
(
G(M ;A)

)
such that f(0) = 0 and G(M ;A) has

not nontrivial 4-cycles. Then, we have that

∀t ∈ G(M ;A),∀a, b ∈ A, f(t + a + b) = f(t + a) + f(t + b)− f(t).

Proof: Let t ∈ G(M ;A) and a, b ∈ A. We can define ft(v) = f(t+v)−f(t),
which is an automorphism with ft(0) = f(t) − f(t) = 0. Now if a = b,
by Lemma 8 ∀t ∈ G(M ;A), ft(a + b) = ft(a) + ft(b), which implies
∀t ∈ G(M ;A), f(t + a + b)− f(t) = f(t + a)− f(t) + f(t + b)− f(t).

If a = b and a = −a then we have f(t+a−a)+f(t) = f(t+a)+f(t−a)
and taking t = t′ + a, f(t′ + a) + f(t′ + a) = f(t′ + a + a) + f(t′).

Finally if a = b = −a then let c = ft(a) and suppose c = −c. We have
f−1

t (c) = a, and because of Lemma 8, 0 = f−1
t (c − c) = f−1

t (c) + f−1
t (−c).

Hence f−1
t (c) = −f−1

t (−c) = a = −a = −f−1
t (c), so f−1

t (−c) = f−1
t (c)

and c = −c, which is a contradiction. Hence ft(a) = c implies c = −c
and as consequence we obtain ft(a) = −ft(a). From this we get that
f(t+a)−f(t) = −f(t+a)+f(t), and taking t = t′+a that f(t′+a+a) =
−f(t′ + 2a) + f(t′ + a) + f(t′ + a) and by 2a = 0 that f(t′ + a + a) =
f(t′ + a) + f(t′ + a)− f(t′). �

Theorem 12 If the connected multidimensional circulant graph G(M ;A)
has not nontrivial 4-cycles then any graph automorphism with f(0) = 0 is
a group automorphism of Zn/MZn.

Proof: We need to prove ∀ni ∈ N, ai ∈ A, f(
∑

i niai) =
∑

i nif(ai), for
which is enough to see that for any v ∈ G(M ;A), a ∈ A, f(a + v) =
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f(a) + f(v). We proceed by induction in the number of summands of v
in terms of elements of A. We have already proved that for 1 summand it
holds. Assuming that it holds for N summands: let v be expressed with
N + 1 summands. There exist b ∈ A, w ∈ G(M ;A) such that v = b + w
with w expressed with only N summands. Now, because of Lemma 11,
f(a + v) = f(w + a + b) = f(w + a) + f(w + b)− f(w). And applying the
induction hypothesis we have that f(a+v) = f(w)+f(a)+f(w+b)−f(w) =
f(a) + f(v). �

3 Edge-transitivity of L-graphs

In this Section we determine those L-graphs which are edge-transitive.
First, in Subsection 3.1 we consider the case where L(M) is an L-graph
without nontrivial 4-cycles, that is, we can consider that any automor-
phism of L(M) is a linear mapping. Later, in Subsection 3.2 we analyze
the special cases in which such cycles exist.

3.1 Edge-transitive of L-graphs by Linear Automorphisms

In this Subsection we will consider those L-graphs such that any automor-
phism is a linear mapping. Some of the following results will be presented
not only for L-graphs but for any multidimensional circulant.

Definition 13 A signed permutation is a composition of a permutation
with sign changing function.

Definition 14 A signed permutation matrix is a matrix with entries in
{−1, 0, 1} which has exactly one ±1 in each row and column.

Note that in Zn×n the signed permutation matrices are exactly the
unitary matrices, this is, the matrices U such UU t = I. They are related
with permutations in the way that for each signed permutation σ we can
find a matrix Pσ such that⎛⎜⎝vσ(1)

...
vσ(n)

⎞⎟⎠ = Pσ

⎛⎜⎝v1
...

vn

⎞⎟⎠
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Theorem 15 Let G(M) be a multidimensional circulant. Then, for each
linear automorphism f there exists a signed permutation matrix P such
that ∀α, f(α) = Pα.

Proof: We define P as:

Pi,j =

⎧⎨⎩
1 f(ej) = ei

−1 f(ej) = −ei

0 otherwise

having f(ei) = Pei. Let α =
∑

niei.

f(α) =
∑

i

nif(ei) =
∑

i

niPei = P
∑

i

niei = Pα. �

Theorem 16 Let G(M) be a multidimensional circulant. Then f(α) = Pα
is a linear automorphism in G(M) if only if there exists a matrix Q such
that PM = MQ.

Proof: We prove first the left to right implication. As f must be well-
defined, for all i, 0 = P0 ≡M PMei. And then exists qi such that PMei =
Mqi, gathering all i’s together

PM = [PMe1, . . . , PMen] = M [q1, . . . , qn] = MQ

Now, we prove the right to left implication. We begin proving f is well-
defined. Let a ≡M b, there is a γ such that a − b = Mγ, so Pa − Pb =
PMγ = MQγ = Mγ′, getting Pa ≡M Pb. Now we prove injectivity.
Let Pa − Pb = Mγ then a − b = P−1Mγ = MQ−1γ = Mγ′. And as
|det(M)| = |det(PM)| the sizes are equal and so we have bijection. And
finally we prove edge preservation. If a and b are connected in G(M) then
we have ei and γ such a−b = ±ei +Mγ, and so Pa−Pb = ±Pei +PMγ =
±ej + Mγ′ thus Pa is connected to Pb in L(M). �

To know if a multidimensional circulant G(M) without nontrivial 4-
cycles is edge-transitive we need to look to the multiplicative group of the
signed permutation matrices P such PM = MQ. It is clear that if a matrix
representing a cycle of length n (even if it changes signs) is in the group
then by composing it with itself, we can map e1 to every ei making the
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(a) Rotation (b) Reflexion

Figure 1: Linear Automorphisms of L-graphs

graph edge-transitive. However, there exist groups which have not such
cycles but get the mapping, like the fourth alternating group.

In dimension 2 this is simply to see that if for M one of

(
0 1
1 0

)
,(

0 −1
1 0

)
is in its group.

Theorem 17 L(M) is edge-transitive if and only if M is right equivalent
to one of the following matrices:

•
(

a b
b a

)
, for P = Q =

(
0 1
1 0

)
.

•
(

a −b
b a

)
, for P = Q =

(
0 −1
1 0

)
.

•
(

a −b
a b

)
, for P =

(
0 −1
1 0

)
, Q =

(
1 0
0 −1

)
.

Proof: The characteristic polynomial of

(
0 1
1 0

)
is λ2 − 1, and the one of(

0 −1
1 0

)
is λ2 + 1. By Theorem III.2 in [9] it must be the characteristic

polynomial of both P and Q in PM = MQ. Therefore, we have two cases:
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• P =

(
0 1
1 0

)
, λ2 − 1 = (λ + 1)(λ − 1), being reducible over Q, Q

must be similar to a matrix Q′ =
(

1 p
0 −1

)
, which is similar to either(

1 0
0 −1

)
or

(
1 1
0 −1

)
S̃

(
0 1
1 0

)

• P =

(
0 −1
1 0

)
, λ2+1 which is irreducible over Q and the class number

of Z[i] is 1, so Q must be similar to P (Theorem III.14, in [9]). �

It was proved in [7] that the Kronecker product of two cycles is always
an L-graph, as next Theorem shows.

Theorem 18 [7] Let a, b ∈ Z. Then, the Kronecker product of the cycles
of lengths a and b, denoted as Ca ×Cb, is isomorphic to:

• L(

(
a+b
2

a−b
2

a−b
2

a+b
2

)
) if a and b are odd integers such that a ≥ b.

• 2 disjoint copies of L(

(
a
2

−b
2

a
2

b
2

)
) if a and b are both even integers

such that a ≥ b.

• L(

(
a
2 −b
a
2 b

)
), if a is an even integer and b is an odd integer.

Therefore, L(M) in the first and third cases of Theorem 17 is a Kro-
necker product of two cycles and in the second one it is a Gaussian graph.

3.2 Edge-transitive L-graphs by Nonlinear Automorphisms

In this Subsection we focus on those L-graphs with nontrivial 4-cycles, that
is, L-graphs which can be isomorphic but not Ádam isomorphic. Clearly,
if there is a nontrivial 4-cycle then there exist a, b ∈ A which fulfill:

1. 4a ≡ 0 (mod M)

2. 3a + b ≡ 0 (mod M)

3. 2a + 2b ≡ 0 (mod M)
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If we consider ma + nb = 0 (mod M) it means that there exists γ ∈ Z2

such that κ =

(
m
n

)
= Mγ. Now, let gcd

(
a1

a2

)
= gcd(a1, a2), γ′ = γ

gcd γ

and κ′ = κ
gcd γ , having κ′ = Mγ′. As gcd γ′ = 1 we can build a unit matrix

U with γ′ as one of its columns, and therefore M ′ = MU has κ′ as a column.

We’ll begin with item (3). In this case we obtain the matrix M =

(
m 2
n 2

)
.

If n = 2k we have that

(
m 2
2k 2

)
is right equivalent to

(
m− n −2

0 2

)
. On

the other hand, if n = 2k + 1 then

(
m 2

2k + 1 2

)
is right equivalent to(

m− n− 1 −2
1 2

)
. Both matrices generate the same graph and the iso-

morphism is not linear in this case.
If we analyze (1) and (2) in detail, we can obtain an equivalent to

Theorem 12 for this case. In fact, we can finally prove that in these cases,
all automorphisms are linear.

Finally, there are a few marginal cases which correspond to those matri-
ces M with both columns being nontrivial 4-cycles or with such a column
and 2ei in the other, that is, those which can be built by selecting two
columns in the set:

C =

{(
4
0

)
,

(
3
1

)
,

(
1
3

)
,

(
0
4

)
,

(
3
−1

)
,

(
1
−3

)
,

(
2
0

)
,

(
0
2

)}
.

A complete study of the following cases, shows as that most of the
combinations are edge-transitive. However, there are cases that lack of a
non-linear automorphism, leading to non-edge-transitive graphs.

Up to isomorphism, the L-graphs with 2 different nontrivial solutions
to the 4-cycles are:

• With nontrivial 4 cycles but without nonlinear automorphisms.(
4 3
0 1

)
,

(
4 1
0 3

)
• With nonlinear automorphism, which makes them edge-transitive,(

4 0
0 2

)
,

(
3 3
1 −1

)
 

(
2 −1
0 3

)
,

(
3 1
1 2

)
with an example in Figure 2.
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Figure 2: A nonlinear automorphism of L(M), where M =

(
2 −1
0 3

)

Figure 3: A nonlinear automorphism of the square torus of side 4
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• With nonlinear automorphism, but its linear automorphisms already
make them edge-transitive,(

4 0
0 4

)
,

(
3 1
1 3

)
,

(
3 −1
1 3

)
with torus as example in Figure 3.
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Universidad de Sevilla
Sevilla

Abstract

The toughness of a noncomplete graph G is defined as τ(G) =
min{|S|/ω(G − S)}, where the minimum is taken over all cut-
sets S of vertices of G and ω(G − S) denotes the number of
components of the resultant graph G − S by deletion of S. In
this paper, we investigate the toughness of the corona of two
connected graphs and obtain the exact value for the corona of
two graphs belonging to some families as paths, cycles, wheels
or complete graphs. We also get an upper and a lower bounds
for the toughness of the cartesian product of the complete graph
K2 with a predetermined graph G.

1 Introduction

Throughout this paper, all the graphs are simple, that is, without loops
and multiple edges. Notations and terminology not explicitly given here
can be found in the book by Chartrand and Lesniak [3].

Let G be a graph with vertex set V (G) and edge set E(G). The graph
G is called connected if every pair of vertices is joined by a path. A cutset
in a graph G is a subset S ⊂ V (G) of vertices of G such that G− S is not
connected.
The existence of a cutset is always guaranteed in every graph different
from a complete graph Kn. The index of connectivity of G, denoted by
κ(G), is defined as the minimum cardinality over all cutsets of G, if G is a
noncomplete graph, or |V (G)| − 1, otherwise.

There are several measures of vulnerability of a network. The vulner-
ability parameters one generally encounters are the indices of connectivity
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and edge-connectivity. These two parameters give the minimum cost to
disrupt the network, but they take no account of what remains after the
destruction. To measure the vulnerability of networks more properly, some
vulnerability parameters have been introduced and studied. Among them
are toughness, integrity, scattering number, tenacity and several variants
of connectivity and edge-connectivity called conditional connectivity, each
of which measures not only the difficulty of breaking down the network but
also the damage caused. In general, for most of the aforementioned param-
eters, the corresponding computational problem is NP -hard. So it is of
interest to give the formulae or algorithms for computing these parameters
for special classes of graphs. For our purpose, we deal with the notion of
toughness, introduced by Chvátal [4], which pays special attention to the
relationship between the cardinality of the rupture set in the network and
the number of components after the rupture. The parameter is defined as

τ(G) = min {|S|/ω(G − S) : S ⊆ J(G)} ,

where

J(G) = {S ⊂ V (G) : S is a cutset of G or G− S is an isolated vertex},

and ω(G − S) denotes the number of components in the resultant graph
G− S by removing S.

Since this parameter was introduced, lots of research has been done,
mainly relating toughness conditions to the existence of cycle structures.
Historically, most of the research was based on a number of conjectures in
[4]. Some of most interesting results are [1, 2, 5]. However, exact values
of τ(G) are known only for a few families of graphs as paths and cycles
[4], the cartesian product of two complete graphs [4] and of paths and/or
cycles [7], and the composition of two graphs, one of them being a path,
a cycle or a complete bipartite graph [7]. In this paper we focus on the
toughness of two families of graphs: the corona G◦H of two graphs [6] and
the cartesian product K2 ×G.

If for each vertex x in a graph G, we introduce a new vertex x′ and join
x and x′ by an edge, the resulting graph is called the corona of G. The
operation of adding one vertex for each vertex of G and connecting them
by an edge can be generalized as follows. The corona of any two graphs G
and H, denoted by G ◦H, is the graph obtained by taking one copy of G
and |V (G)| copies of H, and then joining the ith vertex of G to every vertex
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in the ith copy of H. Observe that the particular case in which H = K1,
the graph G ◦K1 is called the corona of G. The cartesian product K2 ×G
of the complete graph K2 and any graph G is the graph with vertex set
V (K2)×V (G) in which vertex (i, u), for i = 1, 2, is adjacent to vertex (j, v)
whenever i = j and uv ∈ E(G), or i = j and u = v [6].

There exists several kinds of interconnection networks whose structure
can be modeled in terms of the cartesian product or the corona of two
predetermined networks. The cartesian product of graphs seeks to establish
parallel connections between identical structures, minimizing the cost of
such connections. The corona of two predetermined graphs is often present
in electric networks distributed in a big city where each transformer must
guarantee the energy supply of its catchment area. In order to optimize
resources, the distribution of transformers is made by dividing the city in
catchment areas of the same entity. Thus, in terms of Graph Theory, the
structure to be analyzed consists of a network transformers, modeled by
a graph, G where each transformer is connected with its catchment area,
modeled by the graph H. The resultant graph is the corona G ◦ H of
G and H. In the maintenance of electric networks is relevant to avoid
the disruption of the energy supply, but when the failure in some nodes
produces the rupture of the network, the greater the number of fragments in
which the network has been divided, the greater the cost of reconstruction.

The relationship between the cardinality of a cutset of a graph G and
the remaining component after disruption is analyzed by the notion of
toughness, defined above. So our aim in this work is to determine the
toughness of the corona G ◦H of two connected graphs G and H in terms
of known parameters of them. As a consequence, we will deduce the exact
value of the corona of some families of graphs involving stars, paths, cycles,
wheels or complete graphs. We will also find an upper and a lower bounds
for the toughness of K2 ×G, for any arbitrary graph G.

2 The toughness of the corona of two graphs

2.1 Notations and remarks

Let G, H be two connected graphs on m and n vertices, respectively. Let
us set V (G) = {v1, . . . , vm} and denote by Hi the copy of H that is joined
to vertex vi of G in G ◦H. Thus, every cutset S of G ◦H will henceforth
expressed as S = S0 ∪

⋃m
i=1 Si, where S0 ⊆ V (G) and Si ⊆ V (Hi), for
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i = 1, . . . ,m. We denote by ω0 = ω(G−S0), ωi = ω(Hi−Si), i = 1, . . . ,m,
that is, the number of component of G − S0 and Hi − Si, i = 1, . . . ,m,
respectively.

A cutset of G ◦H such that |S|/ω(G ◦H −S) = τ(G ◦H) will be called
a τ -cut of G ◦H. Let us see some remarks on the τ -cut of the corona of
two graphs.

Remark 1 If S = S0 ∪
⋃m

i=1 Si is a cutset of the corona G ◦ H of two
connected graphs G, H, then S0 = ∅.

Proof: If S0 = ∅ then every vertex of G ◦ H − S either is in V (G) or is
adjacent to one vertex of G, hence, G◦H −S is connected, against the fact
that S is a cutset of G ◦H. �

Remark 2 Let S = S0 ∪
⋃m

i=1 Si be a τ -cut of the corona G ◦ H of two
connected graphs G, H. If vj ∈ S0 then either Sj = ∅ or Sj is a cutset of
Hj.

Proof: Let vj ∈ S0 and suppose by way of contradiction that Sj = ∅ is not
a cutset of Hj . Let us consider the set S∗ = S \ Sj . Observe that either
Hj−Sj is a component of G◦H−S or Sj = V (Hj) and Hj is a component
of G ◦H − S∗. Thus, ω(G ◦H − S∗) ≥ ω(G ◦H − S) and therefore,

|S∗|
ω(G ◦H − S∗)

≤ |S| − n

ω(G ◦H − S)
<

|S|
ω(G ◦H − S)

= τ(G ◦H − S),

which contradicts the hypothesis that S is a τ -cut of G ◦H. Then either
Sj = ∅ or Sj is a cutset of Hj. �

Remark 3 Let S = S0 ∪
⋃m

i=1 Si be a τ -cut of the corona G ◦ H of two
connected graphs G, H. If vj ∈ S0 then Sj = ∅.

Proof: Let vj ∈ S0 and suppose by way of contradiction that Sj = ∅. Let
us consider the set S∗ = S \ Sj . Observe that either Hj − Sj belongs to
the component of G ◦ H − S that contains vertex vj or Sj = V (Hj) and
Hj belongs to the component of G ◦H −S∗ that contains vertex vj . Thus,
ω(G ◦H − S∗) = ω(G ◦H − S) and therefore,

|S∗|
ω(G ◦H − S∗)

=
|S| − n

ω(G ◦H − S)
<

|S|
ω(G ◦H − S)

= τ(G ◦H − S),
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which is again a contradiction with the fact that S is a τ -cut of G ◦ H.
Then Sj = ∅. �

Let S = S0∪
⋃m

i=1 Si be a τ -cut of G◦H. From now on, we may assume
without loss of generality that the vertices of the set V (G) = {v1, . . . , vm}
are ordered so that |S1| ≥ · · · ≥ |Sm|. Let k ∈ {1, . . . ,m} be the maximum
integer such that Si = ∅ for all i = 1, . . . , k. Then, as an immediate
consequence of Remark 1, Remark 2 and Remark 3, it follows that |S| =

|S0|+
k∑

i=1

|Si| and ω(G ◦H − S) = ω0 +

k∑
i=1

ωi + |S0| − k.

2.2 Main results

Let G, H be two connected graphs on m and n vertices, respectively. Our
purpose is to determine the toughness of the corona G◦H of G and H. To
begin with, given a τ -cut of G ◦H, the first question that we must answer
is wether every copy of graph H can be disconnected to be disconnected in
the same way. The following lemma provides an answer to this question.

Lemma 4 Let G, H be two connected graphs of order m and n, respec-
tively, and let S = S0∪

⋃m
i=1 Si be a τ -cut of G◦H of minimum cardinality.

If Si = ∅, Sj = ∅, for i, j = 1, . . . ,m with i = j, then |Si| = |Sj| and
ωi = ωj.

Proof: Let us consider the vertex set V (G) = {v1, . . . , vm} ordered so that
|S1| ≥ · · · ≥ |Sm|, and let k ∈ {1, . . . ,m} be the maximum integer such
that Si = ∅ for all i = 1, . . . , k. Thus, |S| = |S0|+

∑k
i=1 |Si|. Since S is a

τ -cut of G ◦H, we have

τ(G ◦H) =

|S0|+
k∑

i=1

|Si|

ω0+

k∑
i=1

ωi + |S0| − k

≤ |S0|+k|S�|
ω0+kω�+|S0|−k ,

for every � = 1, . . . , k,

(1)
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yielding to(
|S0|+

k∑
i=1

|Si|
)

kω� + (ω0 + |S0| − k)
k∑

i=1

|Si|

≤ |S0|
k∑

i=1

ωi +

(
ω0 +

k∑
i=1

ωi + |S0| − k

)
k|S�|, for � = 1, . . . , k.

(2)

By taking summation in (2) we deduce that(
|S0|+

k∑
i=1

|Si|
)

k

k∑
�=1

ω� + k(ω0 + |S0| − k)

k∑
i=1

|Si|

≤ k|S0|
k∑

i=1

ωi +

(
ω0 +

k∑
i=1

ωi + |S0| − k

)
k

k∑
�=1

|S�|

=

(
|S0|+

k∑
�=1

|S�|
)

k
k∑

i=1

ωi + k(ω0 + |S0| − k)
k∑

�=1

|S�|,

which implies that all the inequalities of (2) become equalities, and there-
fore, all the inequalities of (1) become equalities. Thus,

τ(G ◦H) =
|S0|+ k|Si|

ω0 + kωi + |S0| − k
=

|S0|+ k|Sj|
ω0 + kωj + |S0| − k

,

for all i, j = 1, . . . , k,

(3)

which means that the set S∗ = S0 ∪
⋃k

i=1 S∗i , where S∗i = Sk, for all
i = 1, . . . , k, is also a τ -cut. Hence,

|S| = |S0|+
k∑

i=1

|Si| ≥ |S0|+ k|Sk| = |S∗|,

yielding to |S1| = · · · = |Sk| because S has minimum cardinality. Moreover,
given any two subsets Si, Sj , with i, j ∈ {1, . . . , k} and i = j, from (3) it is
clear that ωi = ωj. Then the result holds. �

Given a τ -cut S = S0 ∪
⋃m

i=1 Si of G ◦ H with minimum cardinality,
by Lemma 4 we may assume without loss of generality that for each i =
1, . . . ,m, either Si = ∅ or Si = SH , for some SH ⊂ V (H). Furthermore, it
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follows that either ω(Hi − Si) = 1 (if Si = ∅) or ω(Hi − Si) = ω(H − SH)
(if Si = SH).

To upper bound the index of toughness of G ◦H, it is enough to find a
cutset S of G◦H and compute |S|/ω(G◦H−S). There are some alternatives
in the choice of such a cutset, as the following proposition shows.

Proposition 5 Let G, H be two connected graphs of order m and n, re-
spectively. Let SH ⊂ V (H) be any cutset of H of cardinality |SH | = p and
denote by q = ω(H − SH). Then

τ(G ◦H) ≤ min

{
1

2
,

τ(G)

1 + τ(G)
,
1 + p

1 + q
,

1 + p
1

τ(G) + q

}
.

Proof: First, let vj be any vertex of V (G) and let us consider the set S =
{vj} in G◦H. Then S is a cutset and G◦H−S since vj separates the copy
Hj of H from G◦H − ({vj}∪V (Hj)). Furthermore, G◦H −S has at least
two components, i.e., ω(G ◦H − S) = 1 + ω (G ◦H − ({vj} ∪ V (Hj))) ≥ 2,

yielding to τ(G ◦H) ≤ |S|
ω(G◦H−S) ≤

1
2 .

Second, let S ⊂ V (G) be a τ -cut of G. Then S is a cutset of G ◦H and
ω(G ◦H − S) = ω(G− S) + |S| and therefore,

τ(G◦H) ≤ |S|
ω(G ◦H − S)

≤ |S|
ω(G− S) + |S| =

|S|
ω(G− S)

1 +
|S|

ω(G− S)

=
τ(G)

1 + τ(G)
.

Third, let SH ⊂ V (H) be any cutset of H of cardinality |SH | = p
and denote by q = ω(H − SH). Take any vertex vj ∈ V (G) and set
Sj = SH ⊂ V (Hj). Let us consider the vertex set S = {vj}∪Sj and observe
that S is a cutset of G◦H. Indeed, ω(G◦H−S) = ω(G−vj)+ω(Hj−Sj) ≥
1+ω(Hj−Sj). Thus, if we denote by p = |Sj | and denote by q = ω(H−SH),
it follows that

τ(G ◦H) ≤ |S|
ω(G ◦H − S)

≤ 1 + |Sj|
1 + ω(Hj − Sj)

=
1 + p

1 + q
.

Finally, take any cutset SH ⊂ V (H) of H of cardinality |SH | = p and
denote by q = ω(H − SH). Let S0 = {w1, . . . , w|S0|} ⊂ V (G) be a τ -cut
of G and denote by Hi the copy of H joined to vertex wi in G ◦ H, for
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i = 1, . . . , |S0|. Let us consider the vertex set S = S0 ∪
⋃|S0|

i=1 Si, where
Si = SH , for every i = 1, . . . , |S0|. Clearly S is a cutset of G ◦ H and
ω(G ◦H − S) = ω(G− S0) + |S0|ω(H − SH). Hence,

τ(G ◦H) ≤ |S|
ω(G ◦H − S)

=
|S0|+ |S0||SH |

ω(G− S0) + |S0|ω(H − SH)

=
|S0|(1 + p)

ω(G− S0) + |S0|q

=
τ(G)(1 + p)

1 + τ(G)q

=
1 + p

1/τ(G) + q
.

Thus, τ(G ◦H) ≤ min

{
1
2 , τ(G)

1+τ(G) ,
1+p
1+q , 1+p

1
τ(G)

+q

}
and the result holds. �

The next result gives a necessary condition for a τ -cut of G ◦ H to
contain vertices of some copy Hi.

Lemma 6 Let G, H be two connected graphs of order m and n, respec-
tively, and let S = S0∪

⋃m
i=1 Si be a τ -cut of G◦H of minimum cardinality.

If Sj = ∅ for some j = 1, . . . ,m, then |Sj |/ω(Hj − Sj) < 1/2.

Proof: From Lemma 4 there exists a vertex set SH ⊂ V (H) such that
either Si = ∅ or Si = SH , for every i = 1, . . . ,m. So without loss of
generality we may assume that there is an integer k ∈ {1, . . . ,m} such that
S = S0 ∪

⋃k
i=1 SH ; that is, Si = SH if i ∈ {1, . . . , k} and Si = ∅ otherwise.

Therefore, it is enough to us to prove that |SH |/ω(H − SH) < 1/2. To
clarify expressions, denote by ω0 = ω(G − S0) and ωH = ω(H − SH). By
applying Remark 1, we know that S0 = ∅, and from Remark 2 and Remark
3 it follows that k ≤ |S0|. Thus, |S| = |S0| + k|SH | and ω(G ◦H − S) =
ω0+kωH+|S0|−k. By applying Proposition 5 we know that τ(G◦H) ≤ 1/2,
which implies that

|S|
ω(G ◦H − S)

=
|S0|+ k|SH |

ω0 + kωH + |S0| − k
≤ 1

2
,

yielding to
|SH |
ωH

≤ 1

2
+

ω0 − (|S0|+ k)

2kωH
. (4)
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Since S0 = ∅ because of Remark 1, and k ≥ 1, if S0 is not a cutset of
G then ω0 ≤ 1 (i.e., ω0 = 0 if S0 = V (G), and ω0 = 1 otherwise). Hence,

applying inequality ω0 − (|S0|+ k) < 0 in (4), we have |SH |
ωH

< 1
2 . Thus,

suppose that S0 ⊂ V (G) is a cutset of G.
First assume that |S0|/ω0 ≥ 1. This means that ω0 − (|S0|+ k) <

ω0 − |S0| ≤ 0, yielding in (4) to |SH |
ωH

< 1
2 .

Second assume that |S0|/ω0 < 1. Since S0 is a cutset of G then it is
also a cutset of G ◦H and ω(G ◦H − S0) = ω0 + |S0|. Therefore, by using
that S is a τ -cut of G ◦H, it follows that

|S0|
ω0 + |S0|

≥ τ(G ◦H) =
|S0|+ k|SH |

ω0 + kωH + |S0| − k
>

|S0|+ k|SH |
ω0 + kωH + |S0|

. (5)

Combining the first and the last members of (5) we deduce that

|SH |
ωH

<
|S0|

ω0 + |S0|
=

|S0|
ω0

1 + |S0|
ω0

<
1

2
,

because |S0|/ω0 < 1. This concludes the proof. �

From these previous results it follows the next theorem where the tough-
ness of the corona G ◦H of two connected graphs is determined in terms
os some parameter of G and H.

Theorem 7 Let G, H be two connected graphs of order m and n, respec-
tively. Then the following assertions holds:

(i) If τ(G) ≥ 1 and τ(H) ≥ 1/2, then τ(G ◦H) =
1

2
.

(ii) If τ(G) < 1 and τ(H) ≥ 1/2, then τ(G ◦H) =
τ(G)

1 + τ(G)
.

(iii) If τ(G) ≥ 1 and τ(H) < 1/2, then

τ(G ◦H) = min
SH∈J(H)

{
1 + |SH |

1 + ω(H − SH)

}
.

(iv) If τ(G) < 1 and τ(H) < 1/2, then

τ(G ◦H) = min

{
τ(G)

1 + τ(G)
, min
SH∈J(H)

1 + |SH |
1

τ(G) + ω(H − SH)

}
.
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Proof: Let S = S0∪
⋃m

i=1 Si be a τ -cut of G◦H. Without loos of generality
we may assume that V (G) = {v1, . . . , vm}, where the vertices are numbered
so that |Si| ≥ |Si+1|, for all i = 1, . . . ,m− 1. We also may suppose that S
has minimum cardinality over all the τ -cuts of G ◦H.

First, assume that τ(H) ≥ 1/2. Then by applying Lemma 6 we deduce
that Si = ∅, for all i = 1, . . . ,m, hence, S = S0. This implies that τ(G ◦
H) = |S|

ω(G◦H−S) = |S0|
ω0+|S0| . Note that S0 = V (G), because otherwise, we

have ω(G◦H−S0) = 0 and therefore, τ(G◦H) = 1, which is a contradiction
with Proposition 5, thus, S0 ⊂ V (G), which means that ω(G◦H −S0) ≥ 1.
If S0 is not a cutset of G then ω(G◦H−S0) = 1 and therefore, τ(G◦H) =
|S0|

ω0+|S0| = |S0|
1+|S0| ≥

1
2 . If S0 is a cutset of G then ω(G ◦H − S0) ≥ 2 and

therefore,

τ(G ◦H) =
|S0|

ω0 + |S0|
=

|S0|
ω0

1 + |S0|
ω0

≥ τ(G)

1 + τ(G)
.

Hence, τ(G ◦H) ≥ min
{

1
2 , τ(G)

1+τ(G)

}
. Moreover, by Proposition 5 we have

τ(G ◦H) ≤ min
{

1
2 , τ(G)

1+τ(G)

}
, yielding to

τ(G ◦H) = min

{
1

2
,

τ(G)

1 + τ(G)

}
=

{
1
2 , if τ(G) ≥ 1

τ(G)
1+τ(G) , if τ(G) < 1

,

which proves items (i) and (ii).
Second, assume that τ(H) < 1/2. If S1 = ∅ then Si = ∅ for every

i = 1, . . . ,m, and reasoning as above, we prove that

τ(G ◦H) ≥ min

{
1

2
,

τ(G)

1 + τ(G)

}
=

{
1
2 , if τ(G) ≥ 1

τ(G)
1+τ(G) , if τ(G) < 1

(6)

Thus, suppose that S1 = ∅, then by Lemma 4 we may assume that there
exist an integer k ∈ {1, . . . ,m} and a nonempty vertex set SH ⊂ V (H)
such that Si = SH if i ≤ k, and Si = ∅ otherwise. Further, from Lemma
6, it follows that |SH |/ω(H − SH) < 1/2. Again to clarify expressions,
denote by ωH = ω(H − SH). Notice that k ≤ |S0| because of Remark 2

and Remark 3 and therefore, τ(G ◦H) = |S0|+k|SH |
ω0+kωH+|S0|−k . Since S0 is also a

cutset of G◦H, |S0| > |S| and S is a τ -cut of G◦H of minimum cardinality,
then

|S0|
ω0 + |S0|

> τ(G ◦H) =
|S0|+ k|SH |

ω0 + kωH + |S0| − k
,
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yielding to
|SH |(ω0 + |S0|)− |S0|(ωH − 1) < 0. (7)

The function f(k) = |S0|+k|SH |
ω0+kωH+|S0|−k has derivate

df

dk
=
|SH |(ω0 + |S0|)− |S0|(ωH − 1)

(ω0 + kωH + |S0| − k)2
,

and by (7), we deduce that f(k) is decreasing in k. Hence,

τ(G ◦H) = f(k) ≥ f (|S0|) =
|S0| (1 + |SH |)
ω0 + |S0|ωH

. (8)

If S0 is not a cutset of G then ω0 ≤ 1 (ω0 = 0 if S0 = V (G), and ω0 = 1
otherwise), and from (8) we have

τ(G ◦H) ≥ |S0| (1 + |SH |)
1 + |S0|ωH

=
1 + |SH |

1/|S0|+ ωH

≥ 1 + |SH |
1 + ωH

≥ min
SH∈J(H)

{
1 + |SH |
1 + ωH

}
.

(9)

If S0 is a cutset of G then |S0|/ω0 ≥ τ(G) and therefore, from (8) it follows
that

τ(G ◦H) ≥ |S0| (1 + |SH |)
ω0 + |S0|ωH

=
1 + |SH |

ω0/|S0|+ ωH

≥ 1 + |SH |
1/τ(G) + ωH

≥ min
SH∈J(H)

{
1 + |SH |

1/τ(G) + ωH

}
.

(10)

(iii) Suppose that τ(G) ≥ 1, then combining (6), (9) and (10), we deduce
that

τ(G ◦H) ≥ min

{
1

2
, min
SH∈J(H)

{
1 + |SH |
1 + ωH

}
, min
SH∈J(H)

{
1 + |SH |

1/τ(G) + ωH

}}
= min

{
1

2
, min
SH∈J(H)

{
1 + |SH |
1 + ωH

}}
.

193



On the vulnerability of some families of graphs R. M. Casablanca et al.

Since τ(H) > 1/2 then there exists a cutset SH ⊂ V (H) such that |SH |/ωH <
1/2, which implies that 2|SH |+ 1 ≤ ωH . Then

1 + |SH |
1 + ωH

≤ ωH − |SH |
1 + ωH

=
1 + ωH − (1 + |SH |)

1 + ωH
= 1− 1 + |SH |

1 + ωH
,

which means that
1 + |SH |
1 + ωH

≤ 1/2 and therefore,

τ(G ◦H) = min
SH∈J(H)

{
1 + |SH |
1 + ωH

}
.

(iv) Now suppose that τ(G) < 1, then from (6), (9) and (10) it follows that

τ(G ◦H) ≥ min

{
τ(G)

1 + τ(G)
, min
SH∈J(H)

{
1 + |SH |

1/τ(G) + ωH

}}
. �

◦ Sn Pn Cn W1,n Kn

Sm

{
1
m , si m > n− 2,

2
m+n−2 , si m ≤ n− 2.

1
m

1
m

1
m

1
m

Pm

{
1
3 , si n < 5,

2
n+1 , si n ≥ 5.

1
3

1
3

1
3

1
3

Cm
2
n

1
2

1
2

1
2

1
2

W1,m
2
n

1
2

1
2

1
2

1
2

Km
2
n

1
2

1
2

1
2

1
2

Table 1: The toughness of the corona of some families of graphs.

As a consequence of Theorem 2, the toughness of the corona of some
families of graphs can be derived. Let n ≥ 3 be an integer. Let us denote by
Pn and Cn the path and the cycle with n vertices, respectively; by Sn the
complete bipartite graph K1,n−1; by W1,n the wheel with n+1 vertices; and
by Kn the complete graph of order n. As a consequence of Theorem 2, the

194



On the vulnerability of some families of graphs R. M. Casablanca et al.

toughness of the corona of two graphs, one of them being a complete graph
is deduced. Further, in Table 1 we can find the toughness of the corona of
two graphs belonging to some of these families: stars, paths, cycles, wheels
and complete graphs.

Corollary 8 Let m ≥ 3, n ≥ 3 be two integers and let G, H be two
connected graphs. Then the following assertions hold:

(i) τ(G ◦Kn) =

{ 1
2 , if τ(G) ≥ 1,

τ(G)
1+τ(G) , if τ(G) < 1.

(ii) τ(Km ◦H) =

⎧⎪⎨⎪⎩
1
2 , if τ(H) ≥ 1/2,

min
SH⊂J(H)

{
1 + |SH |

1 + ω(H − SH)

}
, if τ(H) < 1/2.

3 The toughness of the cartesian product K2×G

The main result in this section is the following theorem in which the tough-
ness of K2 ×G is determined in terms of the some invariants of graph G.

Theorem 9 Let G be a connected graph of minimum degree δ and inde-
pendence number β. Then

min

{
τ(G),

|V (G)|
1 + β

}
≤ τ(K2 ×G) ≤ min

{
2τ(G),

δ + 1

2

}
.
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Abstract

We show that the diameter D(Gn) of a random labelled con-
nected planar graph with n vertices is asymptotically almost
surely of order n1/4, in the sense that there exists a constant
c > 0 such that

P (D(Gn) ∈ (n1/4−ε, n1/4+ε)) ≥ 1− exp(−ncε)

for ε small enough and n large enough (n ≥ n0(ε)). We prove
similar statements for rooted 2-connected and 3-connected maps
and planar graphs.

1 Introduction

The diameter of random maps has attracted a lot of attention since the
pioneering work by Chassaing and Schaeffer [4] on the radius r(Qn) of
random quadrangulations with n vertices, where they show that r(Qn)
rescaled by n1/4 converges as n →∞ to an explicit (continuous) distribution
related to the Brownian snake. This suggests that random maps of size
n are to be rescaled by n1/4 in order to converge; precise definitions of
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the convergence can be found in [12, 7], and the (spherical) topology of
the limit is studied in [8, 14]; some general statements about the limiting
profile and radius are obtained in [11, 13]. At the combinatorial level, the
two-point function of random quadrangulations has surprisingly a simple
exact expression, a beautiful result found in [3] that allows one to derive
easily the limit distibution (rescaled by n1/4) of the distance between two
randomly chosen vertices in a random quadrangulation. In contrast, little
is known about the profile of random unembedded connected planar graphs,
even if it is strongly believed that the results should be similar as in the
embedded case.

We have not been able to show a limit distribution for the profile (or
radius, diameter) of a random connected planar graph rescaled by n1/4; in-
stead we have obtained large deviation results on the diameter that strongly
support the belief that n1/4 is the right scaling order. We say that a prop-
erty A, defined for all values n of a parameter, holds asymptotically almost
surely if

P (A) → 1, as n →∞.

In this case we write a.a.s. In this paper we need a certain rate of conver-
gence of the probabilities. Suppose property A depends on a real number
ε > 0 (usually very small). Then we say that A holds a.a.s. with exponen-
tial rate if there is a constant c > 0, such that for every ε small enough
there exist an integer n0(ε) so that

P (not A) ≤ e−ncε
for all n ≥ n0(ε). (1)

The diameter of a graph (or map) G is denoted by D(G). The main
results proved in this paper are the following.

Theorem 1 The diameter of a random connected labelled planar graph
with n vertices is, a.a.s. with exponential rate, in the interval

(n1/4−ε, n1/4+ε).

Theorem 2 Let 1 < μ < 3. The diameter of a random connected labelled
planar graph with n vertices and �μn� edges is in the interval (n1/4−ε, n1/4+ε)
a.a.s. with exponential rate.
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This contrasts with so-called “subcritical” graph families, such as trees,
outerplanar graphs, series-parallel graphs, where the diameter is in the
interval (n1/2−ε, n1/2+ε) a.a.s. with exponential rate. (see the remark just
before the bibliography).

The basis of our proof is the result for planar maps mentioned above.
Then we prove the result for 2-connected maps using the fact that a ran-
dom map has a large 2-connected component a.a.s. A similar argument
allows us to extend the result to 3-connected maps, which proves it also for
3-connected planar graphs, because they have a unique embedding in the
sphere. We then reverse the previous arguments and go first to 2-connected
and then connected planar graphs, but this is not straightforward. One dif-
ficulty is that the largest 3-connected component of a random 2-connected
graph does not have the typical ratio between number of edges and num-
ber of vertices, and this is why we must study maps with a given ratio
between edges and vertices. In addition, we must show that there is a
3-connected component of size n1−ε a.a.s. with exponential rate, and simi-
larly for blocks. Finally, we must show that the height of the tree associated
to the decomposition of a 2-connected graph into 3-connected components
is at most nε, and similarly for the tree of the decomposition of a connected
graph into blocks.

For lack of space, proofs are omitted in this extended abstract.

2 Quadrangulations and maps

We recall here the definitions of maps. A planar map (shortly called a map
here) is a connected unlabelled graph embedded in the plane up to isotopic
deformation. Loops and multiple edges are allowed. A rooted map is a map
where an edge incident to the outer face is marked so as to have the outer
face on its left; the root-vertex is the origin of the root. A quadrangulation
is a map where all faces have degree 4.

We recall Schaeffer’s bijection (itself an adaptation of an earlier bijection
by Cori and Vauquelin [5]) between labelled trees and quadrangulations. A
rooted plane tree is a rooted map with a unique face. A labelled tree is a
rooted plane tree with a integer label �(v) ∈ Z on each vertex v so that the
labels of the extremities of each edge e = (v, v′) satisfy |�(v) − �(v′)| ≤ 1,
and such that the root vertex has label 0. A useful observation is that
labelled trees are in bijection with rooted plane trees where a subset of the
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edges is oriented arbitrarily (for the onto mapping, one orients an edge with
labels (i, i + 1) toward the vertex with label i + 1 and one leaves an edge
of type (i, i) unoriented). Thus the number of labelled trees with n edges
is 3nCn with Cn := (2n)!/n!/(n + 1)! the nth Catalan number. A signed
labelled tree is a pair (τ, σ) where τ is a labelled tree and σ is an element
of {−1,+1}.

Theorem 3 (Schaeffer [15], Chassaing, Schaeffer [4]) Signed labelled
trees with n vertices are in bijection with rooted quadrangulations with n
vertices and a secondary pointed vertex v0. Each vertex v of a labelled tree
corresponds to a non-pointed vertex (= v0) in the associated quadrangula-
tion Q, and �(v)− �min +1 gives the distance from v to v0 in Q, where lmin

is the minimum label in the tree.

From this bijection, it is easy to show large deviation results for the
diameter of a quadrangulation (the basic idea, originating in [4], is that the
typical depth k of a vertex in the tree is n1/2, and the typical discrepancy of
the labels along a branch is k1/2 = n1/4). The main result we use, from [6],
is the property that (under general conditions) the height of a random tree
of size n from a given family has diameter in (n1/2−ε, n1/2+ε) a.a.s. with
exponential rate.

Lemma 4 (Flajolet et al. Theorem 3.1 in [6]) Let T be a family of
rooted trees endowed with a weight-function w(.) so that the corresponding
weighted series y(z) is admissible (in a precise analytic sense not defined
here).

Let ξ be a height-parameter and let Tn be taken at random in Tn under
the weighted distribution in size n. Then ξ(Tn) ∈ (n1/2−ε, n1/2+ε) a.a.s.
with exponential rate.

Proposition 5 The diameter of a random rooted quadrangulation with n
vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε).

We also need a weighted version of the previous theorem. Recall that a
rooted quadrangulation Q has a unique bicoloration of its vertices in black
and white such that the origin of the root is black and each edge connects
a black with a white vertex. Call it the canonical bicoloration of Q. Given
x > 0, a rooted quadrangulation with v black vertices is weighted with
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parameter x if we assign to it weight xv. The next theorem generalizes
Proposition 5 to the weighted case. The analytical part of the proof is
a little more delicate since the system specifying weighted labelled trees
is two-lines, and has to be transformed to a one-line equation in order to
apply Lemma 4.

Theorem 6 Let 0 < a < b. The diameter of a random quadrangulation
weighted by x is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε),
uniformly over x ∈ [a, b].

We recall the classical bijection between rooted quadrangulations with
n faces (and thus n + 2 vertices) and rooted maps with n edges. Starting
from Q endowed with its canonical bicoloration, add in each face a new
edge connecting the two (diagonally opposed) black vertices. Return the
rooted map M formed by the newly added edges and the black vertices,
rooted at the edge corresponding to the root-face of Q, and with same root-
vertex as Q. Conversely, to obtain Q from M , add a new white vertex vf

inside each face f of M (even the outer face) and add new edges from vf to
every corner around f ; then delete all edges from M , and take as root-edge
of Q the one corresponding to the incidence root-vertex/outer-face in M .
Clearly, under this bijection, vertices of a map correspond to black vertices
of the associated quadrangulation, and faces correspond to white vertices.

Map families are here weighted at their vertices, i.e., for a given param-
eter x > 0, a map with v vertices has weight xv.

Theorem 7 Let 0 < a < b. The diameter of a random rooted map with n
edges and weight x at the vertices is in the interval (n1/4−ε, n1/4+ε), uni-
formly over x ∈ [a, b].

Here it is convenient to include the empty map in the families M =
∪nMn of rooted maps and C = ∪nCn of rooted 2-connected maps. As
described by Tutte in [16], a rooted map M is obtained by taking a rooted
2-connected map C, called the core of M , and then inserting in each corner
i of C an arbitrary rooted map Mi. The maps Mi are called the pieces of
M . Denoting by M(x, z) (C(x, z), resp.) the series of rooted connected
(2-connected, resp.) maps according to non-root vertices and edges, this
decomposition yields

M(x, z) = C(x,H(x, z)), where H(x, z) = zM(x, z)2, (2)
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since a core with k edges has 2k corners where to insert rooted maps.
An important property of the composition scheme is to preserve the

uniform distribution, as well as the (vertex-)weighted distribution. Pre-
cisely, let M be a rooted map with n edges and weight x at the vertices.
Let C be the core of M , call k its size, and let M1, . . . ,M2k be the pieces
of M , call n1, . . . , n2k their sizes. Then, conditioned to have size k, C is
a random rooted 2-connected map with k edges and weight x at vertices,
and conditioned to have size ni the ith piece Mi is a random rooted map
with ni edges and weight x at vertices.

Lemma 8 Let 0 < a < b, and let x ∈ [a, b]. Let ρ(x) be the radius of
convergence of z !→M(x, z). Following [1], define

α(x) =
H(x, ρ(x))

ρ(x)Hz(x, ρ(x))
.

Let n ≥ 0, and let M be a random rooted map with n edges and weight x at
vertices. Let Xn = |C| be the size of the core of M , and let M1, . . . ,M2|C|
be the pieces of M . Then

P
(
Xn = �α(x)n�, max(|Mi|) ≤ n3/4

)
= Θ(n−2/3)

uniformly over x ∈ [a, b].

In [1] the authors derive the limit distribution of Xn and they show
that P (Xn = �α(x)n�) = Θ(n−2/3). So Lemma 8 says that the asymptotic
order of P (Xn = �α(x)n�) is the same under the additional condition that
all pieces are of size at most n3/4 (one could actually ask n2/3+δ for any
δ > 0). A closely related result proved in [9] is that, for any fixed δ > 0,
there is a.a.s. no piece of size larger than n2/3+δ provided the core has size
larger than n2/3+δ .

Theorem 9 For 0 < a < b, the diameter of a random rooted 2-connected
map with n edges and weight x at vertices is, a.a.s. with exponential rate,
in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].

In a similar way as when one goes from connected to 2-connected maps,
there is a decomposition of 2-connected maps in terms of 3-connected com-
ponents that allows to transfer the diameter concentration property from
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2-connected to 3-connected maps. In this section it is convenient to exclude
the loop-map from the family of 2-connected maps, so all 2-connected maps
are loopless.

As shown by Tutte [16], a rooted 2-connected map C is either a series
or parallel composition of 2-connected maps, or it is obtained from a rooted
3-connected map T where each non-root edge e is possibly substituted by
a rooted 2-connected map Ce (identifying the extremities of e with the
extremities of the root of Ce). In that case T is called the 3-connected
core of C and the components Ce are called the pieces of C. Call C(x, z)
(Ĉ(x, z)) the series counting rooted 2-connected maps (rooted 2-connected
maps with a 3-connected core, resp.) according to vertices not incident
to the root (variable x) and edges (variable z). Call T (x, z) the series
counting rooted 3-connected maps according to vertices not incident to the
root (variable x) and edges (variable z). Then

Ĉ(x, z) = T (x,C(x, z)). (3)

Accordingly, for a random rooted 2-connected map with n edges, weight x
at vertices, and conditioned to have a 3-connected core T of size k, T is
a random rooted 3-connected map with k edges and weight x at vertices;
and each piece Ce conditioned to have a given size ne is a random rooted
2-connected map with ne edges and weight x at vertices.

Calling fe the degree of the root face of Ce, we have

D(T ) ≤ D(C) ≤ D(T ) ·maxe(fe) + 2maxe(D(Ce)). (4)

The first inequality is trivial. The second one follows from the fact that a
diametral path P in C starts in a piece, ends in a piece, and in between
it passes by adjacent vertices v1, . . . , vk of H such that for 1 ≤ i < k, vi

and vi+1 are connected in H by an edge e and P travels in the piece Ce to
reach vi+1 from vi (since P is geodesic, its length in Ce is bounded by the
distance from vi to vi+1, which is clearly bounded by fe).

Theorem 10 Let 0 < a < b. The diameter of a random 3-connected map
with n edges with weight x at the vertices is, a.a.s. with exponential rate,
in the interval (n1/4−ε, n1/4+ε), uniformly over x ∈ [a, b].
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3 Planar graphs

We need 3-connected graphs labelled at the edges (this is enough to avoid
symmetries). The number of edges is now m, and n is reserved for the num-
ber of vertices. By Whitney’s theorem 3-connected graphs have a unique
embedding on the sphere (up to reflexion). Hence from the last theorem
on 3-connected maps we obtain directly the following:

Theorem 11 Let 0 < a < b. The diameter of a random 3-connected planar
graph with m edges with weight x at the vertices is, a.a.s. with exponential
rate, in the interval (m1/4−ε,m1/4+ε).

Before handling 2-connected planar graphs we treat the closely related
family of (planar) networks. A network is a connected simple planar graph
with two marked vertices called the poles, such that adding an edge between
the poles, called the root-edge, makes the graph 2-connected. At first it is
convenient to consider the networks as labelled at the edges.

Theorem 12 Let 0 < a < b. The diameter of a random network with m
edges with weight x at the vertices is, a.a.s. with exponential rate, in the
interval

(m1/4−ε,m1/4+ε),

uniformly over x ∈ [a, b].

Lemma 13 Let 1 < a < b < 3. For Nn,m a network with n vertices and
m labelled edges taken uniformly at random, D(Nn,m) ∈ (n1/4−ε, n1/4+ε)
a.a.s. with exponential rate, uniformly over m/n ∈ [a, b].

An important remark is that networks with n vertices and m edges can
be labelled either at vertices or at edges, and the uniform distribution in
one case corresponds to the uniform distribution in the second case. Hence
the result of Lemma 13 holds for random networks with n vertices and m
edges and labelled at vertices.

It is proved in [2] that for a random network Nn with n vertices the
ratio r = #edges/#vertices is concentrated around a certain μ ≈ 2.2,
implying that for δ > 0 P (r /∈ [μ− δ, μ + δ]) is exponentially small. Hence
D(Nn) ∈ (n1/4−ε, n1/4+ε) a.a.s. with exponential rate. The same holds
for the diameter of a random 2-connected planar graph Bn with n vertices
(indeed 2-connected planar graphs are a subset of networks, the ratios of
the cardinalities being of order n). We obtain:

204



On the diameter of random planar graphs G. Chapuy et al.

Theorem 14 The diameter of a random 2-connected planar graph with n
vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε).

We prove here from Theorem 14 that a random connected planar graph
with n vertices has diameter in (n1/4−ε, n1/4+ε) a.a.s. with exponential rate.
We use the well known decomposition of a connected planar graph C into
2-connected blocks such that the incidences of the blocks with the vertices
form a tree. An important point is that if C is chosen uniformly at random
among connected planar graphs with n vertices, then each block B of C is
uniformly distributed when conditioned to have a given size. Formulated
on pointed graphs, the block-decomposition ensures that a pointed planar
graph is obtained as follows: take a collection of 2-connected pointed planar
graphs, and merge their pointed vertices into a single vertex; then attach
at each non-marked vertex v in these blocks a pointed connected planar
graph Cv. Calling C(z) (B(z)) the series counting pointed connected (2-
connected, resp.) planar graphs, this yields the equation

F (z) = z exp(B′(F (z))), where F (z) = zC ′(z). (5)

Note that the inverse of F (z) is the function φ(u) = u exp(−g(u)), where
g(u) := B′(u). Call ρ the radius of convergence of C(z) and R the radius
of convergence of B(u).

Lemma 15 A random connected planar graph with n vertices has a block
of size at least n1−ε a.a.s. with exponential rate.

Lemma 15 directly implies that a random connected planar graph with
n vertices has diameter at least n1/4−ε. Indeed it has a block of size k ≥ n1−ε

a.a.s. with exponential rate and since the block is uniformly distributed in
size k, it has diameter at least k1/4−ε a.a.s. with exponential rate.

Let us now prove the upper bound, which relies on the following lemma:

Lemma 16 The block-decomposition tree τ of a random connected planar
graph with n vertices has diameter at most nε a.a.s. with exponential rate.

Lemma 16 easily implies that the diameter of a random connected pla-
nar graph C with n vertices is at most n1/4+ε a.a.s. with exponential rate.
Indeed, calling τ the block-decomposition tree of C and Bi the blocks of
C, one has

D(C) ≤ D(τ) ·maxiD(Bi).
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Lemma 16 ensures that D(τ) ≤ nε a.a.s. with exponential rate. Moreover
Theorem 14 easily implies that a random 2-connected planar graph of size
k ≤ n has diameter at most n1/4+ε a.a.s. with exponential rate, whatever
k ≤ n is (proof by splitting in two cases: k ≤ n1/4 and n1/4 ≤ k ≤ n).
Hence, since each of the blocks has size at most n, maxiD(Bi) ≤ n1/4+ε

a.a.s. with exponential rate. Therefore we have completed the proof of
Theorem 1.

Theorem 17 The diameter of a random connected planar graph with n
vertices is, a.a.s. with exponential rate, in the interval (n1/4−ε, n1/4+ε).

Similarly one shows that a random planar graph with n vertices has
a connected component of size at least n1−ε a.a.s. with exponential rate,
which yields Theorem 1.

To show Theorem 2, one needs to extend the statements of Theorem 14
and Lemmas 15, 16 to the case of a random graph of size n with weight
y > 0 on each edge. Then, one uses the fact (proved in [10]) that for each
μ ∈ (1, 3) there exists y > 0 such that a random planar graph with n edges
and weight y on edges has probability Θ(n−1/2) to have �μn� edges.

We conclude with a remark on so-called “subcritical” graph families,
these are the families where the system

y = z exp(B′(y)) =: F (z, y) (6)

to specify pointed connected from pointed 2-connected graphs in the family
is admissible, i.e., F (z, y) is analytic at (ρ, τ) where ρ is the radius of
convergence of y = y(z) and τ = y(ρ).

Define the block-distance of a vertex v in a vertex-pointed connected
graph G as the minimal number of blocks one can use to travel from the
pointed vertex to v; and define the block-height of G as the maximum of the
block-distance over all vertices of G. With the terminology of Lemma 4, one
easily checks that the block-height is a height-parameter for the system (6).
Hence by Lemma 4, the block-height h of a random pointed connected
graph G with n vertices from a subcritical family is in [n1/2−ε, n1/2+ε] a.a.s.
with exponential rate. Clearly D(G) ≥ h − 1 since the distance between
two vertices is at least the block-distance minus 1. Hence D(G) ≥ n1/2−ε

a.a.s. with exponential rate. For the upper bound, note that D(G) ≤
h·maxi(|Bi|)], where the Bi’s are the blocks of G. Because of the subcritical
condition one easily shows that maxi(|Bi|) ≤ nε a.a.s. with exponential
rate. This implies that D(G) ≤ n1/2+ε a.a.s. with exponential rate.
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Abstract

Generally speaking, ‘almost distance-regular’ graphs are graphs
that share some, but not necessarily all, regularity properties
that characterize distance-regular graphs. In this paper we first
propose two dual concepts of almost distance-regularity. In
some cases, they coincide with concepts introduced before by
other authors, such as partially distance-regular graphs. Our
study focuses on finding out when almost distance-regularity
leads to distance-regularity. In particular, some ‘economic’ (in
the sense of minimizing the number of conditions) old and new
characterizations of distance-regularity are discussed. More-
over, other characterizations based on the average intersection
numbers and the recurrence coefficients are obtained. In some
cases, our results can also be seen as a generalization of the
so-called spectral excess theorem for distance-regular graphs.

1 Preliminaries

Almost distance-regular graphs, recently studied in the literature, are graphs
which share some, but not necessarily all, regularity properties that char-
acterize distance-regular graphs. Two examples of these are the partially
distance-regular graphs [17] and the m-walk-regular graphs [8].
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In this paper we propose two dual concepts of almost distance-regularity,
and study some cases when distance-regularity is attained. As in the theory
of distance-regular graphs [2, 4], the two proposed concepts lead to several
duality results.

To some extent, this paper can be considered as a follow-up of our paper
[7], where other concepts of almost distance-regularity, such as distance-
polynomial graphs and partially walk-regular graphs, were addressed.

Here we are specially interested in the case when almost distance-
regularity leads to distance-regularity. In particular, some ‘economic’ (in
the sense of minimizing the number of conditions) old and new characteri-
zations of distance-regularity are discussed. Moreover, other characteriza-
tions based on the preintersection parameters and the average intersection
numbers are obtained. In some cases, our results can be also seen as a
generalization of the so-called spectral excess theorem for distance-regular
graphs (see [12]; for short proofs, see [9, 13]). This theorem characterizes
distance-regular graphs by the eigenvalues and the average number of ver-
tices at extremal distance. A dual version of this theorem is also derived.

The rest of this section is mainly devoted to introduce the notation
used throughout the paper and discuss some basic results. Let us begin
with some notation for graphs and their spectra.

1.1 Graphs and their spectra

Throughout this paper, G = (V,E) denotes a simple, connected, δ-regular
graph, with order n = |V | and adjacency matrix A. The distance between
two vertices u and v is denoted by ∂(u, v), so that the eccentricity of a
vertex u is ecc(u) = maxv∈V ∂(u, v) and the diameter of the graph is D =
maxu∈V ecc(u). The set of vertices at distance i from a given vertex u ∈ V
is denoted by Γi(u), for i = 0, 1, . . . ,D. The degree of a vertex u is denoted
by δ(u) = |Γ1(u)|. The distance-i graph Gi is the graph with vertex set V
and where two vertices u and v are adjacent if and only if ∂(u, v) = i in
G. Its adjacency matrix Ai is usually referred to as the distance-i matrix
of G. The spectrum of G is denoted by

sp G = spA = {λm0
0 , λm1

1 , . . . , λmd
d },

where the different eigenvalues of G are in decreasing order, λ0 > λ1 >
· · · > λd, and the superscripts stand for their multiplicities mi = m(λi). In
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particular, note that λ0 = δ, m0 = 1 (since G is δ-regular and connected)
and m0 + m1 + · · ·+ md = n.

For a given ordering of the vertices of G, the vector space of linear
combinations (with real coefficients) of the vertices is identified with Rn,
with canonical basis {eu : u ∈ V }. Let Z =

∏d
i=0(x − λi) be the minimal

polynomial of A. The vector space Rd[x] of real polynomials of degree at
most d is isomorphic to R[x]/(Z). For every i = 0, 1, . . . , d, the orthogonal
projection of Rn onto the eigenspace Ei = Ker(A − λiI ) is given by the
Lagrange interpolating polynomial

λ∗i =
1

φi

d∏
j=0

j 
=i

(x− λj) =
(−1)i

πi

d∏
j=0

j 
=i

(x− λj)

of degree d, where φi =
∏d

j=0,j 
=i(λi−λj) and πi = |φi|. These polynomials
satisfy λ∗i (λj) = δij . The matrices E i = λ∗i (A), corresponding to these
orthogonal projections, are the (principal) idempotents of A, and satisfy the
known properties: E iE j = δijE i; AE i = λiE i; and p(A) =

∑d
i=0 p(λi)E i,

for any polynomial p ∈ R[x] (see, for example, [16, p. 28]). The (u-)local
multiplicities of the eigenvalue λi are defined as

mu(λi) = ‖E ieu‖2 = 〈E ieu, eu〉 = (E i)uu, u ∈ V, i = 0, 1, . . . , d,

and satisfy
∑d

i=0 mu(λi) = 1, u ∈ V , and
∑

u∈V mu(λi) = mi, i =
0, 1, . . . , d (see [12]).

1.2 The predistance and preidempotent polynomials

From the spectrum of a given (arbitrary) graph, spG = {λm0
0 , λm1

1 , . . . ,
λmd

d }, one can generalize the distance polynomials of a distance-regular
graph by considering the following scalar product in Rd[x]:

〈f, g〉� =
1

n
tr (f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi). (1)

Then, by using the Gram-Schmidt method and normalizing appropriately,
it is immediate to prove the existence and uniqueness of an orthogonal
system of so-called predistance polynomials {pi}0≤i≤d satisfying degpi = i
and 〈pi, pj〉� = δijpi(λ0), for any i, j = 0, 1, . . . , d. For details, see [12, 11].
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As every sequence of orthogonal polynomials, the predistance polynomials
satisfy a three-term recurrence of the form

xpi = βi−1pi−1 + αipi + γi+1pi+1, i = 0, 1, . . . , d, (2)

where the constants βi−1, αi, and γi+1 are the Fourier coefficients of xpi

in terms of pi−1, pi, and pi+1, respectively (and β−1 = γd+1 = 0), initiated
with p0 = 1. Some basic properties of these coefficients, such as αi+βi+γi =
λ0 for i = 0, 1, . . . , d, and βini = γi+1ni+1 = 0 for i = 0, 1, . . . , d− 1, where
ni = ‖pi‖2� = pi(λ0), can be found in [5].

For any graph the sum of all the predistance polynomials gives the
Hoffman polynomial

H =

d∑
i=0

pi =
n

π0

d∏
i=1

(x− λi) = n λ∗0, (3)

which characterizes regular graphs by the condition H(A) = J , the all-1
matrix [17]. Note that (3) implies that the leading coefficient ωd of H (and
also of pd) is ωd = n/π0.

From the predistance polynomials, we define the so-called preidempotent
polynomials qj, j = 0, 1, . . . , d, by:

qj(λi) =
mj

ni
pi(λj), i = 0, 1, . . . , d,

and they are orthogonal with respect to the scalar product

〈f, g〉� =
1

n
tr (f{A}g{A}) =

1

n

d∑
i=0

nif(λi)g(λi), (4)

where f{A} = 1√
n

∑d
i=0 f(λi)pi(A). From this, it can be proved that the

preidempotent polynomials satisfy sch qj = j (that is, the number of sign-
changes of the sequence qj(λ0), qj(λ1), . . . , qj(λd) equals j ) and 〈qi, qj〉� =
δijqi(λ0) for any i, j = 0, 1, . . . d (see [10, 16]). Moreover, the values of
each preidempotent polynomial qj at the points λ0, λ1, . . . , λd satisfy the
three-term recurrence

λiqj(λi) = γiqj(λi−1) + αiqj(λi) + βiqj(λi+1), i = 0, 1, . . . , d, (5)
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started with qj(λ0) = mj . Note that, since qj(λ0) = mj, the duality be-
tween the two scalar products (1) and (4) and their associated polynomials
is made apparent by writing

〈pi, pj〉� =
1

n

d∑
l=0

mlpi(λl)pj(λl) = δijni, i, j = 0, 1, . . . , d, (6)

〈qi, qj〉� =
1

n

d∑
l=0

nlqi(λl)qj(λl) = δijmi, i, j = 0, 1, . . . , d. (7)

1.3 Vector spaces, algebras and bases

Let G be a graph with diameter D, adjacency matrix A and d + 1 distinct
eigenvalues. We consider the vector spaces A = Rd[A] = span{I ,A,A2,
. . . ,Ad} and D = span{I ,A,A2, . . . ,AD}, with dimensions d + 1 and
D + 1, respectively. Then, A is an algebra with the ordinary product of
matrices, known as the adjacency or Bose-Mesner algebra, with possible
bases Aa = {I ,A,A2, . . . ,Ad}, Ap = {p0(A), p1(A), p2(A), . . . , pd(A)},
and Aλ = {λ∗0(A), λ∗1(A), . . . , λ∗d(A)} = {E0,E1, . . . ,E d}. Notice that Ap

and Aλ are orthogonal bases. From the properties of the idempotents, the
change-of-basis matrix P from Aλ to Ap has entries Pij = pj(λi) and inverse
P−1 = 1

nQ , where Qji = qi(λj). This gives the respective transformations

pi(A) =
∑d

j=0 pi(λj)E j , i = 0, 1, . . . , d, (8)

E j = 1
n

∑d
i=0 qj(λi)pi(A), j = 0, 1, . . . , d. (9)

Besides, since I ,A,A2, . . . ,AD are linearly independent, we have that
dimA = d + 1 ≥ D + 1 and, therefore, we always have D ≤ d [2]. It is
natural to study the case when equality is attained, D = d. In this case, we
say that the graph G has spectrally maximum diameter. Moreover, D forms
an algebra with the entrywise or Hadamard product of matrices, defined by
(X ◦Y )uv = X uvY uv. We call D the distance ◦-algebra, which has orthog-
onal basis Dλ = {λ∗0[A], λ∗1[A], λ∗2[A], . . . , λ∗d[A]} = 1√

n
{I ,A,A2, . . . ,Ad},

where f [A] = 1√
n

∑d
i=0 f(λi)Ai.

From now on, we work with the vector space T = A+D, and relate the
distance-i matrices Ai ∈ D with the matrices pi(A) ∈ A. Note that I , A,
and J are matrices in A∩D since J = H(A) ∈ A. Thus, dim (A∩D) ≥ 3,
if G is not a complete graph (in this exceptional case, J = I + A). Recall
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that A = D if and only if G is distance-regular (see [2, 4]), which is therefore
equivalent to dim (A ∩D) = d + 1.

Note that for any pair of (symmetric) matrices R,S ∈ T , we have

tr (RS) =
∑
u∈V

(RS )uu =
∑
u∈V

∑
v∈V

RuvSvu = sum(R ◦ S).

Thus, we can define a scalar product in T in two equivalent forms:

〈R,S〉 =
1

n
tr (RS) =

1

n
sum (R ◦ S ). (10)

Observe that the factor 1/n assures that ‖I ‖2 = 1, whereas ‖J‖2 = n. Note
also that ‖Ai‖2 = δi (the average degree of Gi), and ‖E j‖2 =

mj

n = mj (the
average multiplicity of λj). According to (1) and (4), this scalar product
of matrices satisfies 〈f(A), g(A)〉 = 〈f, g〉� and 〈f{A}, g{A}〉 = 〈f, g〉�
for A ∈ A. Moreover, for A ∈ D, we have that 〈f [A], g[A]〉 = 〈f, g〉• =
1
n

∑d
l=0 δlf(λl)g(λl).

1.4 Preintersection numbers

Given any triple of integers i, j, k = 0, 1, . . . , d, the preintersection number
ξk
ij is the Fourier coefficient of pipj in terms of pk, that is:

ξk
ij =

〈pipj, pk〉�
‖pk‖2�

=
1

nnk

d∑
l=0

mlpi(λl)pj(λl)pk(λl). (11)

With this notation, notice that the recurrence coefficients in (2) correspond
to the preintersection numbers as follows: αi = ξi

1,i, βi = ξi
1,i+1, and γi =

ξi
1,i−1.

As expected, when G is distance-regular (which implies D = d and ni =
δi for i = 0, 1, . . . , d), the predistance polynomials and the preintersection
numbers become the distance polynomials and the intersection numbers pk

ij

satisfying:

Ai = pi(A), AiAj =

d∑
k=0

pk
ijAk, i, j = 0, 1, . . . , d.

We also define the average intersection numbers pk
ij as the average of the

numbers |Γi(u) ∩ Γj(v)| over all vertices at distance ∂(u, v) = k. Notice
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that

pk
ij =

〈AiAj,Ak〉
‖Ak‖2

=
1

nδk

sum(AiAj ◦Ak), (12)

to be compared with the expression (11) for the preintersection numbers.
In particular, let ai = pi

1,i, bi = pi
1,i+1, and ci = pi

1,i−1.

For an arbitrary graph, we say that the intersection number pk
ij , with

i, j, k = 0, 1, . . . ,D, is well defined if pk
ij(u, v) = (AiAj)uv = |Γi(u) ∩ Γj(v)|

is a constant over all vertices u, v at distance ∂(u, v) = k, and let ai = pi
1,i,

bi = pi
1,i+1, and ci = pi

1,i−1. The matrices

Rij = AiAj −
D∑

k=0

pk
ijAk, (13)

defined for i, j = 0, 1, . . . ,D, allow us to give the following characterization.

Proposition 1 The intersection number pk
ij is well defined if and only if

Rij ◦Ak = O, and then pk
ij = pk

ij.

Proof: Note first, from (13), the orthogonal decomposition of the matrix
AiAj with respect to the subspace D ⊂ T is:

AiAj =

D∑
k=0

〈AiAj ,Ak〉
‖Ak‖2

Ak + Rij =

D∑
k=0

pk
ijAk + Rij , (14)

where Rij ∈ D⊥ and i, j = 0, 1, . . . ,D. From this, assume first that Rij ◦
Ak = O . Then, for every pair of vertices u, v at distance ∂(u, v) = k,

|Γi(u) ∩ Γj(v)| = (AiAj)uv = (AiAj ◦Ak)uv = pk
ij(Ak)uv = pk

ij ,

and pk
ij is well defined and coincides with pk

ij . Conversely, if pk
ij is well

defined, then pk
ij = pk

ij and AiAj ◦Ak = pk
ijAk. Thus, Rij ◦Ak = O , as

claimed. �

Notice that, in particular, (14) yields

AAi = bi−1Ai−1 + aiAi + ci+1Ai+1 + R1i. (15)

Thus, as a by-product, adding up the equalities in (15) for i = 0, 1, . . . ,D,
and taking into account that ai + bi + ci = λ0, we have that

∑D
i=0 R1i = O .
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2 Two dual approaches to almost
distance-regularity

In the context of spectrally maximum diameter D = d, two known char-
acterizations of distance-regularity involving the distance matrices Ai, 0 ≤
i ≤ D, and the idempotents E j , 0 ≤ j ≤ d, are the following:

(C1) G is distance-regular if and only if there exist constants pji such that

AiE j = pjiE j (16)

for every 0 ≤ i ≤ D and 0 ≤ j ≤ d.

(C2) G is distance-regular if and only if there exist constants qij such that

E j ◦Ai = qijAi (17)

for every 0 ≤ j ≤ d and 0 ≤ i ≤ D.

Here it is worth noting that, for general graphs with D ≤ d, the conditions
(16) are a characterization of the so-called distance-polynomial graphs, in-
troduced in [19] (see also [3, 5]). This is equivalent to D ⊂ A (but not
necessarily D = A), that is, every distance matrix Ai is a polynomial in
A. On the other hand, the conditions (17) are equivalent to A ⊂ D and,
hence, to A = D (which implies d = D) as dimA ≥ dimD. Then, in
this general setting, (C2) is ‘stronger’ than (C1) as a characterization of
distance-regularity.

From now on, we limit ourselves to the ‘non-degenerate’ case D = d and,
consequently, we will use indistinctly both symbols depending on what we
are referring to. In this context, notice that in (16) and (17), and using
standard notation in the theory of distance-regular graphs and association
schemes (see, for instance, [4, 16]), we have:

pji = Pji = pi(λj) and qij =
1

n
Qij =

1

n
qj(λi),

where 0 ≤ i, j ≤ d. (In [15, 7], qij is also denoted by mij = muv(λj) since
it is referred to as the uv-crossed local multiplicity of λj for every pair of
vertices u, v at distance ∂(u, v) = i.)

The above suggests the following two definitions of almost distance-
regularity:
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(D1) For a given i, 0 ≤ i ≤ D, a graph G is i-punctually distance-regular
when

AiE j = pjiE j, j = 0, 1, . . . , d, (18)

and G is m-partially distance-regular when it is i-punctually distance-
regular for all i ≤ m.

(D2) For a given j, 0 ≤ j ≤ d, a graph G is j-punctually eigenspace
distance-regular when

E j ◦Ai = qijAi , i = 0, 1, . . . ,D, (19)

and G is m-partially eigenspace distance-regular when it is j-punctual-
ly eigenspace distance-regular for all j ≤ m.

The following theorem summarizes some of the known characterizations
of distance-regularity in terms of the above concepts.

Theorem 2 [7, 10, 11, 12, 14] A graph G with d + 1 distinct eigenvalues
and diameter D = d is distance-regular if and only if any of the following
statements is satisfied:

(a1) G is (d− 1)-partially distance-regular.

(a2) G is (d− 1)-partially eigenspace distance-regular.

(b1) G is d-punctually distance-regular.

(b2) G is j-punctually eigenspace distance-regular for j = 1, d.

Here it is worth emphasizing the duality between characterizations (b1)
and (b2) which can be stated as follows: A graph G as above is distance-
regular if and only if any of the two following conditions is satisfied:

(b1) A0(= I ),A1(= A),AD ∈ A;

(b2) E0(=
1
nJ ),E 1,Ed ∈ D.
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3 Almost distance-regularity (D1)

In this section we study some characterizations of almost distance-regular-
ity, according to definition (D1), and how they give, in the extreme cases,
new versions of the spectral excess theorem characterizing distance-regular
graphs. First, we remark that some basic characterizations of punctual
distance-regularity, in terms of the distance matrices and the idempotents,
were given in [7].

Proposition 3 [7] Let D = d. Then, G is i-punctually distance-regular if
and only if any of the following conditions is satisfied:

(a) Ai ∈ A,

(b) pi(A) ∈ D,

(c) Ai = pi(A).

In order to derive some new characterizations, let Pi(u) denote the
number of shortest paths from a vertex u to the vertices in Γi(u). As
it is well known, in a distance-regular graph Pi(u) does not depend on
u and can be computed from the recurrence coefficients and the number
|Γi(u)| = pi(λ0) = ni as:

Pi(u) = b0b1 · · · bi−1 = nicici−1 · · · c1.

For any (regular) graph G, we consider the average value of Pi(u) over all
vertices of G:

P i =
1

n

∑
u∈V

Pi(u) =
1

n
sum(Ai ◦Ai) = 〈Ai,Ai〉, (20)

which plays a role in the following result.

Proposition 4 For any graph G with predistance polynomials pi having
leading coefficients ωi and recurrence coefficients γi, αi, βi, i = 0, 1, . . . , d,
we have

P i ≤
1

ωi

√
pi(λ0)δi =

√
β0β1 · · · βi−1δiγiγi−1 · · · γ1, (21)

and equality occurs if and only if G is i-punctually distance-regular.
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Proof: From (20) and the Cauchy-Schwarz inequality, we get

ωiP i = ωi〈Ai,Ai〉 = 〈pi(A),Ai〉 ≤ ‖pi(A)‖‖Ai‖ =

√
pi(λ0)δi

=

√
β0β1 · · · βi−1

γ1γ2 · · · γi
δi ,

and (21) follows since ωi = (γ1γ2 · · · γi)
−1. Moreover, equality occurs if and

only if the matrices pi(A) and Ai are proportional, which is equivalent to
G being i-punctually distance-regular by Proposition 3. �

As a corollary, we can prove the following result:

Proposition 5 For one i = 0, 1 . . . , d, let G be a graph having a
(i)
i as the

average number of shortest paths among all pairs of vertices at distance
i, and predistance polynomial pi with leading coefficient ωi. Then, G is
i-punctually distance-regular if and only if

ωia
(i)
i = 1 and δi = pi(λ0). (22)

Proof: Just notice that a
(i)
i = 1

nδi
sum(Ai ◦Ai) = P i

δi
. Hence, from Propo-

sition 4, we have that

ωia
(i)
i ≤

√
pi(λ0)/δi,

with equality if and only if G is i-punctually distance-regular. Thus, if the
conditions (22) hold, G satisfies the claimed property. Conversely, if G is i-
punctually distance-regular, both equalities in (22) are simple consequences
of pi(A) = Ai. Indeed, the first one comes from considering the uv-entries,
with ∂(u, v) = i, in the above matrix equation, whereas the second one is
obtained by taking square norms. �

In particular, when i = d, the first condition in (22) always holds since

a
(d)
d =

1

δd

〈Ad,Ad〉 =
1

δdωd

〈H(A),Ad〉 =
1

δdωd

〈J ,Ad〉 =
1

δdωd

‖Ad‖2 =
1

ωd
.

Then, in this case, δd = pd(λ0) suffices for having (d-punctually) distance-
regularity (see Theorem 2(b1)).

Now, let us consider the more global concept of partial distance-regulari-
ty. In this case, we also have the following new result where, for a given
0 ≤ i ≤ d, si =

∑i
j=0 pj, ti = H − si−1 =

∑d
j=i pj , S i =

∑i
j=0 Ai, and

T i = J − S i−1 =
∑d

j=i Ai.
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Proposition 6 A graph G is m-partially distance-regular if and only any
of the following conditions holds:

(a) G is i-punctually distance-regular for i = m,m− 1, . . . ,max{2, 2m−
d}.

(b) G is m-punctually distance-regular and tm+1(A) ◦ Sm = O.

(c) si(A) = Si for i = m,m− 1.

Proof: In all cases, the necessity is clear since pi(A) = Ai for every 0 ≤ i ≤
m (for (b), note that tm+1(A) = J −sm(A)). Then, let us prove sufficiency.
The result in (a) is basically Proposition 3.7 in [7]. In order to prove (b),
we show by (backward) induction that pi(A) = Ai and ti+1(A) ◦ S i = O
for i = m,m− 1, ..., 0. By assumption, these equations are valid for i = m.
Suppose now that pi(A) = Ai and ti+1(A) ◦ S i = O for some i > 0. Then
ti(A)◦S i = Ai and, multiplying both terms by S i−1 (Hadamard product),
we get ti(A)◦S i−1 = O . So, what remains is to show that pi−1(A) = Ai−1.
To this end, let us consider the following three cases:

(i) For ∂(u, v) > i− 1, we have (pi−1(A))uv = 0.

(ii) For ∂(u, v) = i − 1, we have (ti+1(A))uv = 0, so (pi−1(A))uv =
(si−1(A))uv = (si−1(A))uv + (Ai)uv = (si(A))uv = 1− (ti+1(A))uv =
1.

(iii) For ∂(u, v) < i− 1, we use the recurrence (2) to write:

xti =

d∑
j=i

xpj =

d∑
j=i

(βj−1pj−1 + αjpj + γj+1pj+1)

= βi−1pi−1 − γipi +
d∑

j=i

(αj + βj + γj)pj

= βi−1pi−1 − γipi + δti,

which gives

Ati(A) = βi−1pi−1(A)− γiAi + δti(A).

Then, since (ti(A))uv = (Ai)uv = 0 and βi−1 = 0, we get

(pi−1(A))uv =
1

βi−1
(Ati(A))uv =

1

βi−1

∑
w∈Γ(u)

(ti(A))wv = 0,
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since ∂(v,w) ≤ ∂(v, u) + ∂(u,w) ≤ i− 1 for the relevant w.

From (i), (ii), and (iii), we have that pi−1(A) = Ai−1, so by induction G is
m-partially distance-regular, and the sufficiency of (b) is proven. Finally,
the sufficiency of (c) follows from that of (b) because si(A) = S i for i =
m,m− 1 implies that pm(A) = (sm − sm−1)(A) = Sm − Sm−1 = Am and
tm+1(A) ◦ Sm = (J − sm(A)) ◦ Sm = (J − Sm) ◦ Sm = O . �

In particular, notice that any of the above conditions with m = d im-
plies the known fact that a graph is distance-regular if and only if it is
d-punctually distance-regular, that is, pd(A) = Ad (see Theorems 2(b1)
and 3(c)).

As is well known, (punctually) distance-regular graphs are not charac-
terized by the spectrum when d ≥ 3. However, characterizations of such
graphs are possible if some more additional information, such as the average
degree δd of Γd, is available. In this case, we speak of ‘quasi-spectral’ char-
acterizations. For instance, in our context of having spectrally maximum
diameter, Proposition 4.1 in [7] reads as follows:

Proposition 7 [7] Let i ≤ D = d. Then,

δi ≤
1

n

⎛⎝ d∑
j=0

m2
ij

mj

⎞⎠−1

(23)

with equality if and only if G is i-punctually distance-regular.

In this characterization we have used the average crossed local multiplicities,
which are

mij =
1

nδi

∑
∂(u,v)=i

muv(λj) =
〈E j,Ai〉
‖Ai‖2

, (24)

and where muv(λj) = (E j)uv are the crossed local multiplicities. Propo-
sition 7, together with the above mentioned characterization of distance-
regularity, yields the following theorem.

Theorem 8 [7] Let D = d. Then, G is distance-regular if and only if

δd =
1

n

⎛⎝ d∑
j=0

m2
dj

mj

⎞⎠−1

. (25)
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In our case of spectrally maximum diameter, muv(λj) is a constant over all
pairs of vertices u, v at distance d since

muv(λj) = (λ∗j (A))uv =
(−1)j

πj
(Ad)uv =

(−1)j

πj

π0

n
(H(A))uv =

(−1)j

n

π0

πj
,

which therefore also equals mdj , and Theorem 8 corresponds, in fact, to the
spectral excess theorem.

Given some vertex u and an integer m, 0 ≤ m ≤ ecc(u), we denote
by Nm(u) the m-neighborhood of u, which is the set of vertices that are at
distance at most m from u. The following theorem was proved in [11] by
using results from [12]:

Theorem 9 [11] Let G be a graph with predistance polynomials pi, 0 ≤ i ≤
d, and let sm =

∑m
i=0 pi. Then sm(λ0) is upper bounded by the harmonic

average of the numbers |Nm(u)|, that is,

sm(λ0) ≤
n∑

u∈V |Nm(u)|−1
,

and equality is attained if and only if sm(A) = Sm.

The following theorem is a direct consequence of Proposition 6 and Theorem
9 and can be seen as a generalization of the spectral excess theorem.

Theorem 10 A graph G is m-partially distance-regular if and only if

si(λ0) =
n∑

u∈V |Ni(u)|−1

for i = m− 1,m.

4 Almost eigenspace distance-regularity (D2)

Following the duality between definitions (D1) and (D2), it seems natural
to conjecture the dual of Proposition 3: a graph G is j-punctually eigenspace
distance-regular if and only if any of the following conditions is satisfied:

(a) E j ∈ D,

(b) qj [A] ∈ A,
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(c) E j = 1√
n
qj[A].

However, although (a) is clearly equivalent to definition (D2) and (c) ⇒
(a), (b), until now we have not been able to prove any of the other equiva-
lences and we leave them as conjectures. In this framework, and in view of
the recurrence (5), a partial result could be the following:

Proposition 11 A graph G is j-punctually eigenspace distance-regular if
and only if Ej =

∑d
i=0 qijAi where the constants qij satisfy the recurrence

λjqij = ciqi−1,j + aiqij + biqi+1,j, i = 0, 1, . . . , d, (26)

started with q0j = mj/n.

Proof: We only need to prove necessity. If G is j-punctually eigenspace
distance-regular, then E j ◦Ak = qkjAk holds for some constants qkj, k =
0, 1, . . . , d, and then

E j = E j ◦ J = E j ◦
d∑

k=0

Ak =

d∑
k=0

qkjAk. (27)

Then, using this and (15) we get

λjE j = AE j = A
d∑

k=0

qkjAk

=

d∑
k=0

qkj(bk−1Ak−1 + akAk + ck+1Ak+1) +

d∑
k=0

qkjR1k

=

d∑
k=0

(ckqk−1,j + akqkj + bkqk+1,j)Ak +

d∑
k=0

qkjR1k,

where R1k ∈ D⊥. By taking the scalar product with Ai, i = 0, 1, . . . , d, we
get

λj〈E j ,Ai〉 = λj

d∑
k=0

qkj〈Ak,Ai〉 = λjqijδi = (ciqi−1,j + aiqij + biqi+1,j)δi,

proving (26). Finally, taking traces in (27), we have

mj = trE j =
∑d

k=0 qkjtrAk = nq0j,
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and q0j is as required. �

Notice that the recurrences (26) and (5) are the same, provided that
αi = ai, βi = bi and γi = ci. Then, in this case, we would have qij = 1

nqj(λi)
and, from (27), (a) ⇒ (c), and hence (D2), (a) and (c) would be equivalent.

The following result can be seen as the dual of Proposition 7.

Proposition 12 Let j ≤ d. Then,

mj ≥ n

D∑
i=0

δim
2
ij (28)

with equality if and only if G is j-punctually eigenspace distance-regular.

Proof: From (24), we find that the orthogonal projection of E j on D is

Ê j =
∑D

i=0 mijAi. Now, the inequality (28) comes from ‖Ê j‖2 ≤ ‖E j‖2 =
1
nmj and, in case of equality, definition (C2) applies with qij = mij. �

To emphasize the duality between this result and Proposition 7, notice
that mj =

mj

n is the average of the local multiplicities m0j = mu(λj) over
the n vertices of the graph. Then, using this, (23) and (28) become

1

δi

≥
d∑

j=0

m2
ij

mj
and mj ≥

D∑
i=0

δim
2
ij. (29)

By using Theorem 2(b2) and Proposition 12, we have the following
characterization of distance-regularity.

Theorem 13 Let D = d. Then, G is distance-regular if and only if

m1 =

D∑
i=0

δim
2
i1 and md =

D∑
i=0

δim
2
id. (30)

This result can be seen as the dual of the spectral excess theorem (Theorem
8) with the condition written as

1

δd

=

d∑
j=0

m2
dj

mj
.
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Large Edge-non-vulnerable Graphs

Charles Delorme
Université Paris-Sud
Orsay

Abstract

In this paper we study the graphs such that the deletion of
any edge does not increase the diameter. We give some upper
bounds for the order of such a graph with given maximum de-
gree and diameter. On the other hand construction of graphs
provide lower bounds. As usual, for this kind of problems, there
is often a gap between these two bounds.

1 Introduction

A A graph is said edge-non-vulnerable if its diameter is unchanged after
deletion of any one of its edges.

Such graphs do exist. For example the graph on 4 vertices on the left of
figure 1 has diameter 2, and the removal of an edge gives a graph isomorphic
to one of the other graphs in the picture, both have diameter 2.

Figure 1: A (toy) edge-non-vulnerable graph

An obvious upper bound for these edge-non-vulnerable graphs with
given maximum degree Δ and diameter D is the classical Moore bound,
namely 1 + Δ

∑D−1
k=0 (Δ − 1)k. But this can be easily improved, since the
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condition imposes that between any pair of distinct vertices at least two
paths of length ≤ D exist, and this implies the upper bound

n ≤ n(Δ,D) = 1 +
1

2
Δ

D−1∑
k=0

(Δ − 1)k

Clearly, no graph of diameter 1 (in other words no complete graph) is
edge-non-vulnerable, since the removal of the edge betwen x and y either
disconnects the graph (if its order is 2) or increases its diameter to 2 (if the
order is larger than 2.

2 Diameter 2, upper bound

For diameter 2, we have n(Δ,D) = 1+Δ2/2. This bound obviously cannot
be attained if Δ is odd! So what about (Δ2 + 1)/2? This number is odd,
therefore it is not compatible with a regular graph of degree Δ. Moreover,
if some vertex has degree < Δ, counting paths from that vertex decreases
the bound to 1+(Δ−1)2/2 ≤ (Δ2−1)/2. So, what about (Δ2−1)/2? The
toy graph of figure 1 shows that this bound (Δ2− 1)/2 can be obtained for
Δ = 3. For the next odd degree Δ = 5, the cartesian sum of K3 and K4

has the wanted property and order, namely 12 = (52 − 1)/2.

For even degrees, the bound is attained only if a distance-regular graph
(see [1]) with intersection matrix⎡⎣ 0 1 0

Δ 1 2
0 Δ− 2 Δ− 2

⎤⎦
The techniques of distance-regular graphs lead to the computation of the
eigenvalues: they are Δ and the two roots of X2 + X − +2 −Δ. Such an
eigenvalue λ = Δ has then multiplicity

1 + Δ2/2)

1 + λ2

Δ + (λ+1)2

Δ(Δ−2)/2)

that is also
(2 + Δ2)Δ(Δ− 2)

4(Δ − 1)2 + (4−Δ)λ
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Figure 2: The optimal graph for degree 4 and diameter 2

Since this should be an integer, we should have either Δ = 4 or λ integer,
and in this case, 2(2λ + 1 has to divide (λ2 + 2λ + 3)(λ2 + λ + 2)λ and
therefore 2(2λ + 1 has to divide 63. This allows only the values 2, 4, 14,
22, 112, 994 for Δ.

The case Δ = 2 is not interesting, the case Δ = 4 gives a graph shown
in figure 2 The case Δ = 22, n = 243 is known: it is the Berlekamp, van
Lint and Seidel graph, a Cayley graph on the group (Z/3Z)5 ([1, p. 360]).

The case Δ − 14, n = 99 is unsolved, according to G. Exoo’s list of
unknown strongly regular graphs ([4])

3 Diameter 3, upper bound

The condition of edge-non-vulnerability is then: each edge lies in some cycle
of length at most 4, each path of length 2 not already in a 4-cycle should
be in a 5-cycle, unless each of its edges is in a 3-cycle, and at last, each
path of length 3 should be in a cycle of length at most 6.

This provides the bound n = 1+Δ+Δ2 +Δ3, where Δ2 ≤ Δ(Δ− 1)−
�Δ/2� and Δ3 ≤ �Δ2(Δ− 2)/2�.

For Δ = 3, this improved bound is 10, and the cartesian sum of a 5-cycle
and K2 is convenient.: figure 3

For Δ = 4, the bound is 25. However, to attain this value it is necessary
that the edge set is partitioned into 4-cycles, this is clearly not possible in
a graph with 25 · 4/2 = 50 edges. The same obstruction occurs for all
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Figure 3: Optimal graph for Δ = 3, and D = 3

degrees multiple of 4. For Δ ≡ 7 or 9 (mod 8), the hand-shaking lemma
also indicates that is bound is still too high!

4 Higher diameters, upper bound

It happens that the computation of improved upper bounds becomes more
and more complicated. Just an example: for D = 4 and Δ = 3, one has
between vertices at distance 2 from a vertex v at least two edges. Thus
at most 8 edges connect the sphere at distance 2 to the one at distance 3.
Since the paths of length 2 that are not already in a 5-cycle have to be in
a 6-cycle, the 7 sphere has at most 7 vertices, and the sphere at diatance
4 from v has at most 3. Thus a bound is 20. But the graph should then
have two pentagons through each vertex, this makes at least 8 pentagons.
If a vertex is on 3 pentagons, the bound becomes 19, and even 18 owing
to the hand-shaking lemma. There are 30 edges. If an edge belong to 3
pentagons, its endvertices do. Otherwise there are 10 edges belonging to 2
pentagons, some pentagon has at least two such edges: if these edges are
adjacent, their common vertex in on 3 pentagons, if the 10 edges are not
adjacent they form a matching. The last vertex of a pentagon that has
already 2 edges belonging to 2 pentagons is on 3 pentagons.

Thus the bound is now 18. It is easy to check that if the graph contains
a cycle of length 3 or 4, the bound is only 16. On the other hand one can
build convenient graphs on 16 vertices: figure 4.

Thus the optimal graph has 16 or 18 vertices.
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Figure 4: Graphs for degree 3 and diameter 4

5 Cartesian sums and categorical products

A first general construction is the cartesian sum of graphs,: the vertex
set of G1 � G2 has vertex set the product of the vertex sets, the edges of
GG1 � G2 are the pairs {(x, y), (x′, y)} where {x, x′} is an edge of G1 and
y avertex of G2 and the pairs {(x, y), (x, y′)} where x is a vertex of G1 and
{y, y′} an edge of G2.

The cartesian sum of G1 (diameter D1 , maximum degree Δ1) and G2

(diameter D2 , maximum degree Δ2) has maximum degree Δ1 + Δ2 and
diameter D1 + D2, and is edge-non-vulnerable provided if D1 + D2 > 2,

For example, the cartesian sum of K2 and Petersen graph has n = 20,
D = 3, Δ = 4, no so far from the (unaccessible) 25.

The categorical product of graphs (that may have loops) G1 and G2 has
vertex set the product of the vertex sets, the edges of G1×G2 are the pairs
(or loops) {(x, x′), (y, y′)} wher {x, x′} and {y, y′} are edges or loops of G1

and G2.

The maximum degree of G1×G2 is the product of the maximum degrees
in G1 and in G2. The distance between (x, y) and (x′, y′) is the minimum
between the lengths of paths (elementary or not) of same parity connecting
x, x′ and y, y′.

Figure 5 shows the product of the graph K+
2 made from an edge with

a loop at each end and first a 5-cycle with 3 loops and then with a triangle
(this gives a graph isomorphic to the octahedron).

The graph of figure 2 is the categorical product of two triangles, that is
K3×K3 or K×2

3 . It is also the cartesian sum of two triangles. The distance
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Figure 5: Examples od products with K+
2

between (x, y) and (x, y′) is 2 because there is a non-elementary path of
length 2 from x to itself and a path of length 2 from y to y′; the distance
between (x, y) and (x′, y′) is 1 because there is a path of length 1 from x
to x′ and a path of length 1 from y to y′; and so on.

6 Biplanes

A biplane is a bipartite distance-regular graph with intersection array (d, d−
1, d − 2; 1, 2, d), thus of order 2n = d2 − d + 2 The Bruck-Ryser-Chowla
theorem allows the existence of such graphs only if either n is even and
d−2 is a square or n is odd and x2 = (d−2)y2 +(−1)(n−1)/22z2 has integer
non null solutions ([1, p. 698]).

If a biplane has a polarity, the quotient has degree d (with loops counting
for 1), order (d2 +−d + 2)/2 and diameter at most 2, and each edge either
has a loop at its two endpoints, or lies in a triangle.

For d = 2, we have (with a bit cheating) the 4-cycle and its quotient
K+

2 .

For d = 3,we have the usual cube, and the quotients K4, K2,1,1 (the
toy graph of Figure 1 with loops on the vertices of degree 2, and C4 with a
loop at each vertex.

For degree 4, we have a graph with polarities, its quotient (that has
always 4 loops) is shown in Figure 6.

For degree 5 the quotient also has edges with two ends occupied by
loops (there are always 5 loops)

For degree 6, several quotients are possible, with 0 loops (K4 � K4 or
Shrikhande graph) or 16 loops (Clebsch graph), among other less symmetric
graphs; Eigenvalue considerations impose that the number of loops is a
multiple of 4.
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Figure 6: A quotient of a biplane of degree 4

For degree 9, one has a quotient with 37 vertices labeled with the ele-
ments of the field Z/37Z, and x, y are adjacent if their sum is one of the
non-null 4-th powers in the field, that is 1, 7, 9, 10, 12, 16, 26, 33, 34. Here
the vertices with loops are never adjacent.

For degree 11, there are several biplanes, with qoutients of order 56.
One of them has 56 loops: the Gewirtz graph. Other quotients, have a
number of loops congruent to 2 modulo 6.

The categorical products of these quotients with ErdHos-Rényi graphs
are convenient and for some degrees and diameter 2.

7 Diameter 2: lower bounds

The product of K+
2 with the ErdHos Rényi-graphs of degree d and order

d2− d + 1 (with their loops) has diameter 2, degree 2d, order 2(d2− d+ 1),
that is close to the upper bound ∼ d2/2.

For some degrees we have special constructions

• degree 6, some quotients of a biplane

• degree 8 the categorical product K3 ×K3 ×K3
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• degree 9, some quotients of a biplane.

Let us summarize our results for small degrees in table 1.

Table 1: Some results for diameter 2

Δ 3 4 5 6
n 4 9 12 16

K1,1,2 K3 ×K3 K3 � K4 K4 � K4

Δ 7 8 9 10
n 20 27 37 42

K5 � K4 (K3)
×3 quot. bipl. K+

2 ×ER(5)

Δ 12 14 16
n 63 84 117

K×2
3 × ER(3) K4× ER(5) K×2

3 × ER(4)

Δ 18 20 22
n 146 189 243

K+
2 ×ER(9) (K3)

×2× ER(5) BvLS

8 Twisted products

Since the cartesian sum clearly spills some edges with an excessive number
of 4-cycles, we may improve things here and there.

• product G � C5. The vertex set is the product of the vertex sets of G
and C5, the edges are the pairs {(g, a), g(, a′)} with g vertex of G and {a, a′}
an edge of C5, and then G is endowed with an orientation, and C5 with a
permutation π exchanging the edges and non-edges of C5, and we add the
edges {(g, a), (g′ , π(a))} (in other words, each edge of G is replaced by a
Petersen graph). This gives a graph with diameter D(G) + 1, maximum
degree Δ(G) + 2, that is edge-non-vulnerable provided that D(G) ≥ 3 and
vertices at distance D in G are connected by two internally disjoint paths
of length D.

• product G � P (4t + 1), where P (4t + 1) is the Paley graph on 4t + 1
vertices. The diameter is D(G)+1, and the maximum degree Δ(G)+2t, and
the graph is edge-non-vulnerable provided that D(G) ≥ 3 and vertices at
distance D in G are connected by two internally disjoint paths of length D.

• product G×C13, a similar construction, Δ(G×C13) = Δ(G)+2, and
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4 5

1 2

6
3 The edges of the graph and their images by the

involutive vertex permutation (1)(2)(36)(45)
are all the edges of K6.

Figure 7: The graph A6 to be used in twisted products

D(G × C13) = D(G) + 2 under the same condition. Endowing C13 with
the labels in Z/13Z so that edges are labeled {a, a + 1}, the permutation π
sends the vertex i to the vertex 5i (so that π2 is an isomorphism of C13.

In the same vein, G�A6, a similar construction, Δ(G×A6) = Δ(G)+2,
and D(G × A6) = D(G) + 2 under the same condition. Here A6 and its
permutation π are represented in figure 7.

9 Line graphs

The line-graph L of a bipartite graph of degree d ≥ 3, order n and diameter
D has diameter D, degree 2d − 2 and order dn/2; each edge of L is in a
triangle, and each pair of vertices of L at distance D is connected by 2
paths of length D. Thus the graph is non-edge-vulnerable.

The well-known large cubic bipartite graphs give for diameters 2, 3, 4
and 6 graphs of order 9 (the one we have already seen, from K3,3), 21 (from
Heawood graph), 45 (from Tutte’s 8-cage), 189 (from Tutte’s 12-cage).
Besides the cubic bipartite graph of diameter 5 and order 56 described by
Bond and Delorme [2] provides an edge-non-vulnerable graph on 84 vertices.
having degree 4 and diameter 5. Some of these graphs are represented on
figure 8. For diameters 3, 4 and 6, the line graphs of bipartite Moore graphs
give some results.

10 A small census

We collect some results in the table 2.

This graph on 56 vertices of Figure 10 is the graph 56.2 in the list of M.
Conder. Hea denotes Heawood graph, and TC Tutte-Coxeter graph; the
Ok’s are the so-called odd graphs
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Figure 8: Large bipartite cubic graphs of diameters 2, 3, 4, 5

Figure 9: An edge- non-vulnerable graph on 30 vertices
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Table 2: Some lower bounds

Δ\D 3 4 5 6

3 10 16 30 56
C5 � K2 fig. 4 fig.9 fig. 10

4 21 45 84 189
LG LG LG LG

5 30 70 182 390
Pet.�K3 Hea. �C5 Hea. �C13 TC. �C13.

6 52 175 462 1456
LG O4 � C5 O6 LG

7 72 210 630 1716
24 � K3 O4 � A6 O5 � C5 O7

8 105 425 756 6825
LG LG O5 � A6 LG

Figure 10: An edge- non-vulnerable graph on 56 vertices
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11 Conclusion

We have given some indications on the large graphs with maximum degree
and diameter whose diameter is unchanged after deletion of an edge. In the
related problem with vertex deletion, the sufficient (but not necessary: see
the line graphs of cubic graphs) condition that every path of length � ≥ 1
should be in a cycle of length at most � + D is replaced by the slightly
weaker: every path of length � ≥ 2 should be in a cycle of length at most
� + D. Thus some of our graphs also provide solutions for the vertex-non-
vulnerability, although not always as large as possible. See for example the
survey paper by Fàbraga, Gómez and Yebra [5]
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Abstract

The aim of this paper is to bring together the work done several
years ago by M.A. Fiol and the other authors to formulate a
quite general mathematical model for a kind of permutation
networks known as dynamic memories. A dynamic memory is
constituted by an array of cells, each storing one datum, and
an interconnection network between the cells that allows the
constant circulation of the stored data. The objective is to
design the interconnection network in order to have short access
time and a simple memory control. We review how most of
the proposals of dynamic memories that have appeared in the
literature fit in this general model, and how it can be used to
design new structures with good access properties. Moreover,
using the idea of projecting a digraph onto a de Bruijn digraph,
we propose new structures for dynamic memories with vectorial
capabilities. Some of these new proposals are based on iterated
line digraphs, which have been widely and successfully used by
M.A. Fiol and his coauthors to solve many different problems
in graph theory.

1 Introduction

A dynamic memory is constituted by an array of cells, each storing one
datum, and an interconnection network between the cells that allows the
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movement of the data from a cell to a neighboring one at time-unit inter-
vals. The result of all these data transfers during such an interval is called
a memory transformation and it is a permutation of the contents of the
memory. Because of the network topology (each cell is connected to a re-
duced number of neighboring ones), only a small number of these memory
transformations are available at each time-unit interval.

Therefore, in a dynamic memory we must distinguish between the phys-
ical address of a datum, which is its current physical location, and its logical
address which can be thought of as its initial location. To access a requested
datum, it must be sent (by a suitable sequence of memory transformations)
to a specific cell, called the read/write (r/w) cell, where data can be read
or written. Hence, the control problem in a dynamic memory consists of
the following two steps:

(a) To find the physical address of the requested datum from its logical
address and some additional information about the memory transfor-
mations that have been applied to the memory.

(b) To determine an optimal sequence of memory transformations that
route the datum to the r/w cell.

Stone [20, 21] was the first author to propose a general model for dy-
namic memories. Since then, there have been many different proposals:
Aho and Ullman [1], Iyer and Sinclair [11, 12], Kluge [13], Lenfant [15],
Morris, Valiere III and Wisniewski [16], Wong and Tang [23], and the au-
thors [5, 6, 7, 8, 9, 18, 19, 24].

In our formulation, the interconnection network of the dynamic mem-
ory is modeled by a δ-regular strongly connected digraph D in which the
vertices represent the storing cells and the arcs the links between them.
We refer to [3] for the standard concepts on digraphs. The memory trans-
formations correspond to a decomposition into permutations of D in the
following sense. A decomposition into permutations [5] of a δ-regular di-
graph D is a set {γi; 0 ≤ i ≤ δ − 1} of δ permutations of the vertices of D
that satisfies:

γi(x) is a vertex adjacent from x; γi(x) = γj(x) for i = j. (1)

It is easily shown that any δ-regular digraph can be decomposed (usually in
several ways) into permutations. Note that such a decomposition associates
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a permutation to every arc of D: (x, y) !→ γi if γi(x) = y, which is actually
an (arc-)coloring of D, since different permutations (colors) are associated
to the δ arcs to and from any vertex. Conversely, given a set V together
with a set {γi; 0 ≤ i ≤ δ− 1} of permutations of V that satisfy the second
condition in (1), we can consider the δ-regular digraph (V, {γi}) that has V
as set of vertices and where, in view of the first condition in (1), each vertex
x is adjacent to the vertices γi(x), 0 ≤ i ≤ δ − 1. As it is seen in the next
section, a useful way to obtain a digraph decomposed into permutations
consists in identifying its vertex set V with the set of elements of a group
G.

2 Group of permutations of a decomposition

We recall that given two groups G and H together with an homomorphism
of H into the set of automorphisms of G, Π: H −→ Aut G, Π(h) = πh,
the (external ) semidirect product G � H is the group with set of elements
{(g, h); g ∈ G,h ∈ H} and composition rule

(g1, h1) � (g2, h2) = (g1πh1(g2), h1h2). (2)

It coincides with the direct product G × H if and only if Π = 0, that
is, when Π(h) is always the identity. In this paper H will already be a
subgroup of Aut G so that, with Π the canonical embedding, (2) becomes
(g1, π1) � (g2, π2) = (g1π1(g2), π1π2). See for instance [17] for the standard
concepts on group theory used in this work.

In order to control a dynamic memory we need to know the structure
of the set of its different states. This is the group generated by the memory
transformations. A useful characterization of this group can be obtained
by considering V as the set of elements of a group G, that is, each vertex
of V stands for an element of G. Then, given gi ∈ G and πi ∈ Aut G for
0 ≤ i ≤ δ − 1, we can define the permutations

γi(x) = giπi(x) ∀x ∈ V, 0 ≤ i ≤ δ − 1, (3)

and consider the digraph D = (G, {γi}) that has the decomposition into
permutations {γi; 0 ≤ i ≤ δ−1}. (The elements gi and the automorphisms
πi should be chosen in such a way that D is strongly connected.) Let Σ =
〈γ0, γ1, . . . , γδ−1〉 be the permutation group generated by γ0, γ1, . . . , γδ−1.
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To characterize Σ, let H = 〈π0, π1, . . . , πδ−1〉. We have the following result,
see [8, 9].

Theorem 1 The permutation group Σ is isomorphic to a subgroup of the
semidirect product G � H.

We can identify Σ and its image in G � H, that is, we can identify every
permutation σ ∈ Σ with the pair (g, π) ∈ G � H given by σ(x) = gπ(x).
Since the digraph D is supposed to be strongly connected, the group Σ acts
transitively. Hence, its order satisfies |Σ| = N�, where N = |G| and � is,
for any x ∈ G, the order of the stabilizer StΣ(x) of x in Σ. For x = e, the
identity of G, the subgroup StΣ(e) consists of the elements of Σ of the form
(e, π), since (g, π)(e) = e ⇐⇒ g = e. It follows that the number of right
(or left) cosets of StΣ(e) in Σ equals N .

3 Control of the memory

At every instant, the state of the memory is completely determined by a
permutation or memory address map σ ∈ Σ, such that σ(x) is the physical
address of the datum with logical address x. Since σ(x) = gπ(x), the
memory address map σ is determined in turn by the pair g ∈ G, π ∈ H. To
obtain π we need a simulator of the group H, but g can then be deduced
from the knowledge of the logical address s of the datum which is presently
at the r/w cell w, for σ(s) = gπ(s) = w leads to g = w(π(s))−1 = wπ(s−1).
In other words, the memory acts as a simulator of the group G. Now the
physical address of a datum with logical address x is given by

σ(x) = gπ(x) = wπ(s−1)π(x) = wπ(s−1x). (4)

Reciprocally, with y = σ(x), the memory configuration σ−1 which gives the
logical address of the datum in any cell y is

σ−1(y) = sπ−1(w−1y). (5)

Once the physical address y = σ(x) of the requested datum x is known,
the next problem is how to transfer it to the r/w cell w. From the con-
siderations above there are � different permutations τ = (gτ , πτ ) ∈ Σ such
that (gτ , πτ )(y) = gτπτ (y) = w. This means gτ = w(πτ (y))−1 = wπτ (y−1),
so that they all have the form

(wπ(y−1), π) ∈ Σ (6)
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for � appropriate choices of π ∈ H. In the digraph (G, {γi}) that models
the dynamic memory, the required path from y to w corresponds to any
factorization of one of these � permutations as a product of the γi. Of
course, in order to reduce the access time, the number of factors should be
minimized both by an adequate choice of π in (6) and when factorizing.

Besides sending the datum at y to w, it is often required that the
memory attains a given state. For instance, when accessing a block of
data its ordering should not be modified. When G is the cyclic group ZN ,
this can be accomplished whenever the choice π = ι, the identity of H, is
allowed in (6), for then the permutation applied to the memory is, using
additive notation, x !→ g + x, with g = w − y.

In the next section we review how most of the proposals of dynamic
memories that have appeared in the literature fit in our general model, and
how this model can be used to design structures with optimal access time
or with good properties for sequential access. In Sections 5 and 6, using
the idea of projecting a digraph onto a de Bruijn one, we propose new
structures for dynamic memories with vectorial capabilities. Some of these
new proposals are based on iterated line digraphs.

4 Applications of the model

To illustrate the generality of the model, we now show how several known
proposals of dynamic memories fit into it.

When G is a finite group generated by Δ = {a0, a1, . . . , aδ−1} and we
choose gi = ai, πi = ι, 0 ≤ i ≤ δ − 1, so that γi(x) = aix, 0 ≤ i ≤ δ − 1,
the corresponding digraph, D = (G, {γi}), which is δ-regular and strongly
connected, is the Cayley digraph D(G,Δ). Since H = {ι}, we obtain Σ  G
and so � = 1. Therefore, the corresponding dynamic memory has the least
possible number of states N = |G|, and it can be controlled with just the
information of the contents of the r/w cell w, i.e., (4) and (5) give

σ(x) = ws−1x and σ−1(y) = sw−1y. (7)

A generalization of this simple model is the following. The well-known
de Bruijn digraphs B(δ, n) are set up on the set of N = δn vertices V =
{x = x0x1 . . . xn−1; xi ∈ S}, where S is an alphabet on δ symbols, and
vertex x is adjacent to vertex y if and only if y = x1x2 . . . xn−1xn, xn ∈ S.
Given a finite group Γ of order δ generated by Δ = Γ, we can associate
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to Γ a de Bruijn digraph B(δ, n), with a decomposition into permutations
{γi}, defining V (B(δ, n)) = {x = x0x1 . . . xn−1, xi ∈ Γ} and each vertex x
being adjacent to

γi(x) = x1 . . . xn−1xn, xn = aix0, (8)

through the arc [x, γi(x)] for all ai ∈ Γ. For n = 1, B(δ, 1) is just the
Cayley digraph of Γ when generated by all its elements. Thus, B(δ, n) with
the decomposition into permutations (8) may be called the n-dimensional
Cayley digraph of Γ, see [7].

It is noteworthy that the number of different states |Σ| of a dynamic
memory modelled by these digraphs is at least nδn. Indeed, because of
the loop at vertex 00 . . . 0, there always exists a permutation γ that fixes
it: γ(00 . . . 0) = 00 . . . 0. Then, the n permutations γ, γ2, . . . , γn also fix
this vertex and are necessarily different since γp(00 . . . 01) = γq(00 . . . 01)
for p = q, 1 ≤ p, q ≤ n. Thus � ≥ n and |Σ| ≥ nδn for any decomposition
into permutations of B(δ, n). We next describe a structure that attains this
bound.

In our context we can consider V as the set of elements of the direct
product G = Zδ × · · · × Zδ with n terms. If we now choose for all au-
tomorphisms πi the perfect shuffle permutation πi = S, 0 ≤ i ≤ δ − 1,
S(x0x1 . . . xn−1) = x1 . . . xn−1x0, and gi = 00 . . . 01, 0 ≤ i ≤ δ − 1, we ob-
tain the decomposition into permutations of the digraph (V, {γi}) = B(δ, n)
given in (8). It follows that H = 〈S〉 = Cn is the cyclic group with elements
S, S2, . . ., Sn = ι, so that |G � H| = nδn, and then |Σ| ≤ nδn because
Σ ∼= Σ′ ⊂ G � H. Being a decomposition into permutations of B(δ, n), we
necessarily have |Σ| = nδn as stated. This corresponds to Σ ∼= G � H.

The control of the memory can then be achieved with the knowledge
of the logical address s of the datum in the r/w cell w and the number
p (mod n) of shuffle permutations that have been applied to the memory,
see also [6]. Since each permutation γi includes a shuffle permutation, p
can be obtained from a cyclic register that counts modulo n the number
of permutations applied to the memory. Then (4), with π = Sp, gives
y = σ(x) = w + Sp(x− s), that is (with additive notation),

y0y1 . . . yn−1 = σ(x0x1 . . . xn−1) =

w0 + xp − sp w1 + xp+1 − sp+1 . . . wn−1 + xp+n−1 − sp+n−1 (9)

is the present position of the datum with logical address x. Once we know
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y, we can use the standard shortest path routing algorithm in B(δ, n) to
send x to the r/w cell in at most n time-unit intervals.

For δ = 2 we can write σ(x) = w⊕ Sp(s⊕ x), where ⊕ stands for com-
ponentwise addition modulo 2. This is the structure proposed by Morris,
Valiere III and Wisniewski in [16] for a memory of N = 2n cells, which is
equivalent, except for the numeration of the cells, to the one proposed by
Stone in [20, 22]. More precisely, Stone makes use of the perfect shuffle
(γ0) and the exchange shuffle (γ1) permutations, which correspond in our
formulation to π0 = π1 = S, g0 = 00 . . . 0 and g1 = 00 . . . 010. The general
case (δ = 2) described above has been studied by the authors in [6, 8].

To achieve sequential access to a block of data, Aho and Ullman pro-
posed in [1] an architecture for a dynamic memory of N = δn − 1 cells,
using a pair of transformations, that can bring any datum to the r/w cell
inO(log N) steps. Moreover, once two consecutive data have been accessed,
the rest of the block can be accessed in one step per datum. This structure
corresponds in our formulation to G = ZN , N = δn−1, δ ≥ 2, and permuta-
tions γ0(x) = δx (π0(x) = δx, g0 = 0) and γ1(x) = x− 1 (π1 = ι, g1 = −1).
Then H = Zn is the cyclic group with elements π0, π

2
0 , . . . , π

n
0 = ι, and

Σ  G � H. Therefore, the control of the memory requires, besides the
knowledge of the logical address of the datum in the r/w cell, the number
p (mod n) of permutations π0 applied to the memory. Then, (4) and (5)
give respectively

σ(x) = w + πp
0(x− s) = w + δp(x− s); (10)

σ−1(y) = s + πn−p
0 (y − w) = s + δn−p(y −w). (11)

To transfer the datum at y to w without altering the ordering of the mem-
ory, write y−w in base δ as y−w =

∑n−1
k=0 rkδ

k =
∑n−1

k=0 γk
0 (rk). Therefore,

the required permutation given by (6) with π = ι, (ω−y, ι) = (−(y−w), πn
0 ),

can be obtained as γr0
1 γ0γ

r1
1 γ0 · · · γrn−1

1 γ0. As pointed out before, if only
cyclic permutations of the form (g, ι) are performed on the memory, the
memory address map is given by σ(x) = g + x, and the cyclic structure is
always preserved.

This structure has been slightly improved by Stone in [22] and Wong
and Tang in [23] who replace π0 by πn−c

0 for different values of c.
In [8, 9] it is shown how the mathematical model can also be used to

describe and study other dynamic memories based on de Bruijn digraphs
[5], [6], [16], [20], [22], the variants of the memory of Aho and Ullman
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[22], [23], the memory of Lenfant [15], together with its improved version
studied in [18], the Odd-sized memories proposed by Morris, Valiere III and
Wisniewski in [16], an optimal size memory proposed by the authors, and
other proposals of the authors suitable for sequential access.

5 Dynamic memories based on iterated line

digraphs

As it is well known, de Bruijn digraphs can be obtained by line digraph
iterations. In the iterated line digraph Ln(D) of a digraph D, each vertex
x represents a sequence x0x1 . . . xn of vertices of D such that each xj is
adjacent to xj+1 in D, and each vertex x is adjacent to the vertices of the
form x1 . . . xnxn+1. It is shown in [10] that, if D is a δ-regular digraph on
N vertices with diameter k, its iterated line digraph Ln(D) is also δ-regular
on δnN vertices and has diameter k + n. The de Bruijn digraph B(δ, n) is
just Ln−1(Fδ), where Fδ is the complete symmetric digraph on δ vertices.
Another well-know family of iterated line digraphs is the family of Kautz
digraphs K(δ, n) = Ln−1(F ∗δ ), where F ∗δ is now the complete symmetric
digraph on δ + 1 vertices without loops. The order of K(δ, n) is δn + δn−1.
In [7] a proposal for a dynamic memory based on K(δ, n) is presented.
See also [2] for a mathematical description of the group of permutations
generated by a decomposition into permutations of a Kautz digraph.

Any iterated line digraph Ln(D) of a δ-regular digraph D decomposed
into permutations can be adequately mapped onto the de Bruijn digraph
B(δ, n). Notice first that, if {τi; 0 ≤ i ≤ δ − 1} is a decomposition into
permutations of Fδ = B(δ, 1), the permutations

φi(j0j1 . . . jn−1) = j1 . . . jn−1τi(j0), 0 ≤ i ≤ δ − 1, (12)

where 0 ≤ jk ≤ δ − 1, form a decomposition of B(δ, n) = Ln−1(Fδ). Let
D be a strongly connected δ-regular digraph G′ with a decomposition into
permutations {βi; 0 ≤ i ≤ d − 1}, and consider its iterated line digraph
Ln(D). Every vertex x of Ln(D) corresponds to a sequence of successively
adjacent vertices of D, x0x1 . . . xn. For 0 ≤ i ≤ n− 1 let βji be the permu-
tation belonging to {βi} such that βji(xi) = xi+1. Thus, an alternative way
of representing x is x0; j0j1 . . . jn−1 since βj0(x0) = x1, βj1(x1) = x2 and
so on. Now vertex x is adjacent to the vertices y = βj0(x0); j1 . . . jn−1jn,
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0 ≤ jn ≤ δ − 1, and it is easily verified that the permutations

ψi(x0; j0j1 . . . jn−1) = βj0(x0); j1 . . . jn−1τi(j0) (13)

for 0 ≤ i ≤ δ − 1, form a decomposition into permutations of Ln(D).
Moreover, we obtain as a consequence the following result:

Proposition 2 Let Φ be the mapping of the vertex set of Ln(D) onto the
vertex set of B(δ, n) defined by Φ(x0; j0j1 . . . jn−1) = j0j1 . . . jn−1. Then, Φ
is a digraph homomorphism such that Φ(ψi) = φi for all i.

Proof: If vertex x of Ln(D) is adjacent to vertex y = ψi(x), then vertex
Φ(x) is adjacent to vertex Φ(y) = Φ(ψi(x)) = φi(Φ(x)). �

The case D = B(δ, 1), that is when the mapping Φ is an homomorphism
from B(δ, n+1) onto B(δ, n), has been studied in the context of the design
of feedback shift registers by Lempel [14].

To use Ln(D) as a model for a dynamic memory with vectorial capa-
bilities, select a permutation τi of the decomposition of Fδ that fixes an
element, that is, such that τi(j) = j for some j, 0 ≤ j ≤ δ−1, and consider
a digraph D of order N that has an N -length cycle. In the decomposition
into permutations of D we choose the permutation βj as the one associated
to this cycle. Then, the permutation ψi of (13) is such that

ψi(x0; jj . . . j) = βj(x0); j . . . jτi(j) = x1; jj . . . j. (14)

Let the memory be organized in such a way that it consists of δn blocks
or vectors of N words, each stored at the N cells that are mapped by the
homomorphism Φ onto a common vertex of B(δ, n). If the r/w cell w is at
x0; jj . . . j, with the routing algorithm of B(δ, n) it is possible to send one
of the data of any block to w and then, by (14), the application of ψi allows
the rest of the block to visit the r/w cell at one time-unit interval per word.
Notice also that, according to (13), the application of any permutation ψ
alters the ordering of the N words of each block as it does the permutation
βj0. Therefore, if D has a multiple ring structure with a permutation β
associated to each ring, the initial cyclic ordering of the blocks will be
preserved. Alternatively, if N read/write cells are available and they are
placed at the N cells ∗; jj . . . j, the N words of each block can be accessed
simultaneously.
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6 Vectorial dynamic memories

In this last section we will make better use of the idea of projecting a digraph
onto a de Bruijn one in order to obtain a dynamic memory with vectorial
capabilities. Let D = (V,A) be a strongly connected δ-regular digraph
with a decomposition into permutations {γi; 0 ≤ i ≤ δ − 1} that generate
a group Σ, and consider the digraph D∗ = (V ∗, A∗) where V ∗ = Zm × V
and each vertex (a, x) is adjacent to the vertices (a + 1, y) for [x, y] ∈ A.
Then, the decomposition into permutations of D leads naturally to the
decomposition into permutations of D∗ defined by

γ∗i ((a, x)) = (a + 1, γi(x)), 0 ≤ i ≤ δ − 1. (15)

A consequence of this definition is that the projection

Φ : D∗ −→ D
Φ((a, x)) = x

(16)

is a digraph homomorphism that preserves the coloring, that is, it trans-
forms the permutation γ∗i of D∗ into the permutation γi of D.

Now, let Σ∗ = 〈γ∗0 , γ∗1 , . . . , γ∗d−1〉 and suppose that D∗ is strongly con-
nected. Then, |Σ∗| = |V ∗|�∗ = mN�∗ where �∗ = |StΣ∗((a, x))| and
N = |V |. The following result restricts the possible values of �∗.

Proposition 3 �∗ divides � = |StΣ(x)|.

Proof: The mapping ψ : Σ → Σ∗ defined by α = γi1γi2 · · · γin !→ α∗ =
γ∗i1γ

∗
i2
· · · γ∗in is an isomorphism between the subgroup of StΣ(x) formed by

the permutations that can be expressed as product of n (multiple of m)
permutations γi and StΣ∗((a, x)). Therefore, StΣ∗((a, x)) can be seen as a
subgroup of StΣ(x) and its order �∗ must divide the order � of StΣ(x). �

For D = B(δ, n) with the decomposition into permutations given by
γi(x0x1 . . . xn−1) = x1 . . . xn−1 x0 + i, the above construction results in the
digraph D∗ with vertex set V ∗ = Zm × (Zδ)

n and the decomposition into
permutations {γ∗i , 0 ≤ i ≤ δ − 1} defined by:

γ∗i (a, x0x1 . . . xn−1) = (a + 1, x1 . . . xn−1 x0 + i). (17)
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We call these digraphs Ds(m, δ, n) since they are the directed version of the
graph Cs(m, δ, n) considered by Delorme and Fahri in [4]. The projection
Φ is now

Φ : Ds(m, δ, n) −→ B(δ, n)
Φ((a, x0x1 . . . xn−1)) = x0x1 . . . xn−1.

(18)

The digraphs Ds(m, δ, n) can model a dynamic memory to store δn

vectors of size m. Just assign to the component vj
x, 0 ≤ j ≤ m − 1, of

vector vx, 0 ≤ x ≤ δm − 1, the logical address (j, x0x1 . . . xn−1) if x equals
x0x1 . . . xn−1 in base δ. Using the projection Φ we can consider that each
vector vx is stored in a cell of a n-dimensional Cayley digraph B(δ, n).
Therefore, the control of Ds(m, δ, n) for vectors is equivalent to the control
of B(δ, n) described in Section 4. The use of the permutations γ∗i do not
modify the cyclic order of the components of each vector.

Notice now that when x0 = x1 = · · · = xn−1, all the arcs of the m-
cycle (0, x) → (1, x) → · · · → (m − 1, x) → (0, x) correspond to γ∗0 . As
a consequence, if the r/w cell is at one of these vertices, once we have
attained a component of the vector, the permutation γ∗0 brings at that cell
the m components of the vector in cyclic order. The maximum access time
is n + m − 1, that is, n time-unit intervals to access a component of the
vector, and m− 1 time-unit intervals to access the requested component in
the worst case.

To control the memory, suppose that (b, s0s1 . . . sn−1) is the logical ad-
dress of the datum at the r/w cell, at say w = (a, 00 . . . 0), after q permu-
tations have been applied. Then:

(a) The knowledge of s0s1 . . . sn−1 and p (≡ q modn) gives the position
of each vector—control in B(δ, n);

(b) a− b (≡ q modm) gives the position of its components.

Therefore, the amount of information required to control the memory is
[m,n] δn where [m,n] = lcm(m,n). Since [m,n]δn = mδn(n/(m,n)) (where
(m,n) = gcd (m,n)), besides the knowledge of the logical address of the
datum in the r/w cell, we need to count modulo �∗ = n/(m,n) the number
of permutations applied to the memory. Two interesting particular cases
are:

(1) m divides n. The memory has only |Σ∗| = mδn states and it can be
controlled with just the knowledge of the logical address of the datum
in the r/w cell.

249



A mathematical model for dynamic memory networks J. Fàbrega et al.

(2) m = δ = 2. This case corresponds to a memory of 2n+1 cells and
worst-case access time n + 1 as in B(2, n + 1), but with a smaller
average distance and requiring less amount of information to be con-
trolled ([2, n]2n instead of (n + 1)2n+1).
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[6] J. Fàbrega, M.A. Fiol and J.L.A. Yebra. Dynamic memory networks for
random and block access. Proc. ISMM Int. Conf. MIMI’85, Sant Feliu de
Guixols, Spain, June 1985, 204–207.
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[18] O. Serra, A.S. Lladó and M.A. Fiol. Fast cyclic shift register for dynamic
memories of any size. Proc. V IAESTED Int. Symp. AI’87, Grindelwald,
Switzerland, Feb. 1987, 43–46.

[19] O. Serra, M.A. Fiol. An optimal size network for dynamic memories. Proc.
ISMM Int. Conf. MIMI’88, Sant Feliu de Guixols, Spain, June 1988, 287–291.

[20] H.S. Stone. Dynamic memories with enhanced data access. IEEE Trans.
Comput., C-21:359–366, 1972.

[21] H.S. Stone. Discrete Mathematical Structures and their Applications. Science
Research Associates, 1973.

[22] H.S. Stone. Dynamic memories with fast random and sequential access. IEEE
Trans. Comput., C-24:1167–1174, 1975.

[23] C.K. Wong and D.T. Tang. Dynamic memories with faster random and
sequential access. IBM J. Res. Devel., 21: 281–288, 1977.
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Abstract

Bipartite graphs are combinatorial objects bearing some inter-
esting symmetries. Thus, their spectra—eigenvalues of its adja-
cency matrix—are symmetric about zero, as the corresponding
eigenvectors come into pairs. Moreover, vertices in the same
(respectively, different) independent set are always at even (re-
spectively, odd) distance. Both properties have well-known con-
sequences in most properties and parameters of such graphs.
Roughly speaking, we could say that the conditions for a given
property to hold in a general graph can be somehow relaxed
to guaranty the same property for a bipartite graph. In this
paper we comment upon this phenomenon in the framework
of distance-regular graphs for which several characterizations,
both of combinatorial or algebraic nature, are known. Thus, the
presented characterizations of bipartite distance-regular graphs
involve such parameters as the numbers of walks between ver-
tices (entries of the powers of the adjacency matrix A), the
crossed local multiplicities (entries of the idempotents Ei or
eigenprojectors), the predistance polynomials, etc. For instance,
it is known that a graph G, with eigenvalues λ0 > λ1 > · · · > λd

and diameter D = d, is distance-regular if and only if its idem-
potents E1 and Ed belong to the vector space D spanned by
its distance matrices I,A,A2, . . . Ad. In contrast with this, for
the same result to be true in the case of bipartite graphs, only
E1 ∈ D need to be required.
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1 Preliminaries

Let G = (V,A) be a (simple and connected) graph with adjacency matrix
A, and spectrum

sp G = sp A = {λm0
0 , λm1

1 , . . . , λmd
d }, (1)

where the different eigenvalues of G are in decreasing order, λ0 > λ1 >
· · · > λd, and the superscripts stand for their multiplicities mi = m(λi).
In particular, note that when G is δ-regular, the largest eigenvalue is λ0 =
δ and has multiplicity m0 = 1 (as G is connected). Moreover, all the
multiplicities add up to n = |V |, the number of vertices of G.

Recall also that G is bipartite if and only if it does not contain odd
cycles. Then, its adjacency matrix is of the form

A =

(
O B

B O

)
.

(Here and hereafter, it is assumed that the block matrices have the appro-
priate dimensions.) Moreover, for any polynomial p ∈ Rd[x] with even and
odd parts p0 and p1, we have

p(A) = p0(A) + p1(A) =

(
C O

O D

)
+

(
O M

M O

)
. (2)

Also, the spectrum of G is symmetric about zero: λi = −λd−i and mi =
md−i, i = 0, 1, . . . , d. (In fact, a well-known result states that a connected
graph G is bipartite if and only if λ0 = −λd; see, for instance, Cvetković et
al. [6].) This is due to the fact that, if (u|v) is an eigenvector with eigenvalue
λi, then (u|−v) is an eigenvector for the eigenvalue −λi. As shown below, a
similar symmetry also applies to the entries of the (principal) idempotents
Ei representing the projections onto the eigenspaces Ei, i = 0, 1, . . . , d. To
see this, first recall that, for any graph with eigenvalue λi having multi-
plicity mi, its corresponding idempotent can be computed as Ei = U iU


i ,

where U i is the n × mi matrix whose columns form an orthonormal ba-
sis of Ei. For instance, when G is δ-regular and has n vertices, its largest
eigenvalue λ0 = δ has eigenvector j, the all-1 vector, and corresponding
idempotent E0 = 1

njj = 1
nJ , where J is the all-1 matrix. Alternatively,

we can also compute the idempotents as Ei = λ∗i (A) where λ∗i is the La-
grange interpolating polynomial of degree d satisfying λ∗i (λj) = δij . That
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is,

λ∗i =
1

φi

d∏
j=0
j 
=i

(x− λj) =
(−1)i

πi

d∏
j=0
j 
=i

(x− λj)

where φi =
∏d

j=0,j 
=i(λi − λj) and πi = |φi|. Then, the idempotents of A

satisfy the known properties: EiEj = δijEi; AEi = λiEi; and p(A) =∑d
j=0 p(λj)Ej, for any polynomial p ∈ R[x] (see, for example, Godsil [16,

p. 28]). In particular, taking p = 1 we obtain,
∑d

j=0 Ej = I (as expected),

and for p = x we have the spectral decomposition theorem A =
∑d

j=0 λjEj.
The entries of the idempotents muv(λi) = (Ei)uv has been recently called
crossed uv-local multiplicities and satisfy

a(j)
uv = (Aj)uv =

d∑
i=0

muv(λi)λ
j
i . (3)

(See [15, 8, 7]). In particular, when u = v, mu(λi) = muu(λi) are the so-
called local multiplicities of vertex u, satisfying

∑d
i=0 mu(λi) = 1, u ∈ V ,

and
∑

u∈V mu(λi) = mi, i = 0, 1, . . . , d (see [12]).
From any of the above expressions of Ei we deduce that, when G is

bipartite, such parameters satisfy:

• muv(λi) = muv(λd−i), i = 0, 1, . . . , d, if dist(u, v) is even.

• muv(λi) = −muv(λd−i), i = 0, 1, . . . , d, if dist(u, v) is odd.

In particular, the local multiplicities bear the same symmetry as the stan-
dard multiplicities: mu(λi) = mu(λd−i) for any vertex u ∈ V and eigenvalue
λi, i = 0, 1, . . . , d.

Form the above, notice that, when G is regular and bipartite, we have
E0 = 1

nJ (as mentioned before) and

Ed =
1

n

(
J −J

−J J

)
. (4)

2 Polynomials and regularity

The predistance polynomials p0, p1, . . . , pd, deg pi = i, associated to a given
graph G with spectrum sp G as in (1), are a sequence of orthogonal poly-

255



Algebraic characterizations
of bipartite distance-regular graphs M. A. Fiol

nomials with respect to the scalar product

〈f, g〉 =
1

n
tr(f(A)g(A)) =

1

n

d∑
i=0

mif(λi)g(λi),

normalized in such a way that ‖pi‖2 = pi(λ0) (this makes sense as it is
known that always pi(λ0) > 0). Notice that, in particular, p0 = 1 and, if G
is δ-regular, p1 = x. Indeed,

• 〈1, x〉 = 1
n

∑d
i=0 miλi = 0.

• ‖1‖2 = 1
n

∑d
i=0 mi = 1.

• ‖x‖2 = 1
n

∑d
i=0 miλ

2
i = δ = λ0.

Moreover, if G is bipartite, the symmetry of such a scalar product yields
that pi is even (respectively, odd) for even (respectively, odd) degree i.

In terms of the predistance polynomials, the preHoffman polynomial is
H = p0 + p1 + · · · + pd, and satisfies H(λ0) = n (the order of the graph)
and H(λi) = 0 for i = 1, 2, . . . , d (see Cámara et al. [5]). In [17], Hoffman
proved that a (connected) graph G is regular if and only if H(A) = J , in
which case H becomes the Hoffman polynomial. (In fact, H is the unique
polynomial of degree at most d satisfying this property.) Furthermore,
when G is regular and bipartite, the even and odd parts of H, H0 and H1,
satisfy, by (2):

H0(A) =

(
J O

O J

)
and H1(A) =

(
O J

J O

)
. (5)

As far as we know, the following proposition is new and can be seen as
the biregular counterpart of Hoffman’s result. Recall that a bipartite graph
G = (V1 ∪ V2, E) is called (δ1, δ2)-biregular when all the n1 vertices of V1

has degree δ1, and the n2 vertices of V2 has degree δ2. So, counting in two
ways the number of edges m = |E| we have that n1δ1 = n2δ2.

Proposition 1 Let G be a bipartite graph with n = n1+n2 vertices, predis-
tance polynomials p0, p1, . . . , pd, and consider the odd part of its preHoffman
polynomial; that is, H1 =

∑
i odd pi. Then, G is biregular if and only if

H1(A) = α

(
O J

J O

)
(6)
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with α =
n1 + n2

2
√

n1n2
.

Proof: Assume first that G is biregular with degrees, say, δ1 and δ2.
Then, λ0 = −λd =

√
δ1δ2 with respective (column) eigenvectors u =

(
√

δ1j|√δ2j) and v = (
√

δ1j| − √δ2j), with the j’s being all-1 vec-
tors with appropriate lengths. Therefore, the respective idempotents are

E0 =
1

‖u‖2 uu =
1

n1δ1 + n2δ2

(
δ1J

√
δ1δ2J√

δ1δ2J δ2J

)
,

Ed =
1

‖v‖2 vv =
1

n1δ1 + n2δ2

(
δ1J −√δ1δ2J

−√δ1δ2J δ2J

)
.

As H1(x) = 1
2 [H(x) −H(−x)] and H(λi) = nδ0i, we have that H1(λ0) =

n/2, H1(λi) = 0 for i = 0, d, and H1(λd) = −n/2. Hence, using the
properties and the above expressions of the idempotents,

H1(A) =
d∑

i=0

H1(λi)Ei = H1(λ0)E0 + H1(λd)Ed

=
n

2
(E0 −Ed) =

n
√

δ1δ2

n1δ1 + n2δ2

(
O J

J O

)
.

Thus, the result follows since n1δ1 = n2δ2. Conversely, if (6) holds, and

A =

(
O B

B O

)
, the equality AH1(A) = H1(A)A yields

(
BJ O

O BJ

)
=

(
JB O

O JB

)
.

Thus, (BJ)uv = (JB)uv implies that δ(u) = δ(v) for any two vertices
u, v ∈ V1, whereas (BJ)wz = (JB)wz means that δ(w) = δ(z) for any
two vertices w, z ∈ V2. Thus, G is biregular and the proof is complete.
�

Notice that the constant α is the ratio between the arithmetic and
geometric means of the numbers n1, n2. Hence, (6) holds with α = 1 if and
only if n1 = n2 or, equivalently, G is regular.

In fact, the above result could be reformulated (and proved) by saying
that a (general) bipartite graph is connected and biregular if and only if
there exists a polynomial satisfying (6).
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3 Distance-regular graphs

Let G be a graph with diameter D, adjacency matrix A and d + 1 distinct
eigenvalues. Let Ai, i = 0, 1, . . . ,D, be the distance-i matrix of G, with
entries (Ai)uv = 1 if dist(u, v) = i and (Ai)uv = 0 otherwise. Then,

A = Rd[A] = span{I ,A,A2, . . . ,Ad}

is an algebra, with the ordinary product of matrices and orthogonal ba-
sis {E0,E1, . . . ,Ed} and {p0(A), p1(A), . . . , pd(A)}, called the adjacency
algebra, whereas

D = span{I ,A,A2, . . . ,AD}

forms an algebra with the entrywise or Hadamard product of matrices,
defined by (X ◦Y )uv = X uvY uv. We call D the distance ◦-algebra. Note
that, when G is regular, I,A,J ∈ A ∩ D since J = H(A) =

∑D
i=0 Ai.

Thus, dim (A ∩ D) ≥ 3, if G is not a complete graph (in this exceptional
case, J = I + A). In this algebraic context, an important result is that G
is distance-regular if and only if A = D, which is therefore equivalent to
dim (A∩D) = d+1 (and hence d = D); see, for instance, Biggs [2] or Brower
et al. [4]. This leads to the following definitions of distance-regularity
where, for types (a) and (b), pji and qij, i, j = 0, 1, . . . , d, are constants, pi,
i = 0, 1, . . . , d, are the predistance polynomials, and qj, j = 0, 1, . . . , d, are

the polynomials defined by qj(λi) = mj
pi(λj)
pi(λ0) , i, j = 0, 1, . . . , d:

(a) G distance-regular ⇐⇒ AiEj = pjiEj , i, j = 0, 1, . . . , d(= D),

⇐⇒ Ai =

d∑
j=0

pjiEj , i = 0, 1, . . . , d(= D),

⇐⇒ Ai =

d∑
j=0

pi(λj)Ej , i = 0, 1, . . . , d(= D),

⇐⇒ Ai ∈ A, i = 0, 1, . . . , d(= D).
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(b) G distance-regular ⇐⇒ Ej ◦Ai = qijAi, i, j = 0, 1, . . . , d,

⇐⇒ Ej =

d∑
j=0

qijAi, j = 0, 1, . . . , d,

⇐⇒ Ej =
1

n

d∑
i=0

qj(λi)Ai, j = 0, 1, . . . , d,

⇐⇒ Ej ∈ D, j = 0, 1, . . . , d.

In fact, for general graphs with D ≤ d, the conditions of type (a) are a
characterization of the so-called distance-polynomial graphs, introduced by
Weichsel [19] (see also Beezer [3] and Dalfó et al. [7]). This is equivalent
to D ⊂ A (but not necessarily D = A); that is, every distance matrix Ai

is a polynomial in A. In contrast with that, the conditions of type (b)
are equivalent to A ⊂ D and, hence, to A = D (which implies d = D) as
dimA ≥ dimD.

Note also that in (a) (respectively, in (b)) the second implication is
obtained from the first one by using that

∑d
i=0 Ai = J (respectively,∑d

j=0 Ej = I).

Moreover, with the a
(j)
i , i, j = 0, 1, . . . , d, being constants, we also have:

(c) G distance-regular ⇐⇒ Aj ◦Ai = a
(j)
i Ai, i, j = 0, 1, . . . , d,

⇐⇒ Aj =
d∑

i=0

a
(j)
i Ai, j = 0, 1, . . . , d,

⇐⇒ Aj =
1

n

d∑
i=0

d∑
l=0

qilλ
j
l Ai, j = 0, 1, . . . , d,

⇐⇒ Aj ∈ D, j = 0, 1, . . . , d,

where we have used (3) with auv(j) = a
(j)
i and muv(λl) = qil for vertices

u, v at distance dist(u, v) = i.

4 Characterizing bipartite distance-regular graphs

A general phenomenon is that the above conditions for being distance-
regular can be relaxed giving more ‘economic’ characterizations (see [11]).
Thus, the purpose of the following three theorems is twofold: First to show
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how, for general graphs, such conditions can be relaxed if we assume some
extra natural hypothesis (such as regularity) and, second, to study what
happens in the case of bipartite graphs.

Theorem 2 (i) A graph G with predistance polynomials p0, p1, . . . , pd is
distance-regular if and only if any of the following conditions holds:

(a1) Ai = pi(A) for i = 2, 3, . . . , d.

(a2) G is regular and Ai = pi(A) for i = 2, 3, . . . , d− 1.

(a3) G is regular and Ad = pd(A).

(a4) G is regular and Ai = pi(A) for i = d− 2, d − 1.

(ii) A bipartite graph G with predistance polynomials p0, p1, . . . , pd is dis-
tance-regular if and only if

(a5) G is regular and Ai = pi(A) for i = 3, 4, . . . , d− 2.

Proof: Statement (a1) with i = 0, 1, . . . , d is a well-known result; see, for
example, Bannai and Ito [1]. For our case, just notice that always p0(A) =
A0 = I and, as I + A +

∑d
i=2 pi(A) = J , G is regular and hence p1(A) =

A1 = A; Condition (a2) is a consequence of (a1) taking into account that,
under the hypotheses, Ad = J −∑d−1

i=0 Ai = H(A)−∑d−1
i=0 pi(A) = pd(A)

(see Dalfó et al. [7]); (a3) was first proved by Fiol et al. in [14] (see also van
Dam [9] or Fiol et al. [13] for short proofs); and (a4) is a consequence of a
more general result in [7] characterizing m-partially distance-regularity (G
is called m-partially distance-regular if Ai = pi(A) for any i = 0, 1, . . . ,m).
Thus, we only need to prove (a5). This is a consequence of (a2) since, if
G is δ-regular, A2 = p2(A) = A2 − δI . Moreover, from (5) and assuming
first that d is even,

Ad−1 =

(
O J

J O

)
−

d−3∑
i = 1
i odd

Ai = H1(A)−
d−3∑
i = 1
i odd

pi(A) = pd−1(A)

whereas, if d is odd,

Ad−1 =

(
J O

O J

)
−

d−3∑
i = 0
i even

Ai = H0(A)−
d−3∑
i = 0
i even

pi(A) = pd−1(A),
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and the proof is complete. �

The above results suggest the following question:

Problem 3 Prove or disprove: A regular bipartite graph G with predis-
tance polynomial pd−1 is distance-regular if and only if Ad−1 = pd−1(A).

With respect to the characterizations of type (b), we can state the fol-
lowing result:

Theorem 4 (i) A graph G with idempotents E0,E1, . . . ,Ed is distance-
regular if and only if any of the following conditions holds:

(b1) Ej ∈ D for j = 0, 1, . . . , d.

(b2) Ej ∈ D for j = 0, 1, . . . , d− 1.

(b3) G is regular and Ej ∈ D for j = 1, 2, . . . , d− 1.

(b4) G is regular and Ej ∈ D for j = 1, d.

(ii) A bipartite graph G with idempotent E1 is distance-regular if and only
if

(b5) G is regular and E1 ∈ D.

Proof: Statement (b1) (see also (b) in Section 3) is also well-known and
comes from the fact that G is distance-regular if and only if A = D; Con-
dition (b2) is a consequence of (b1) since, under the hypotheses, Ed =
I −∑d−1

j=0 Ej ∈ D; (b3) comes from (b2) since, if G is regular, then E0 =
1
nJ = 1

nH(A) ∈ D; (b4) was proved by the author in [10] (see also [11]). Fi-
nally, (b5) can be seen as a consequence of (b4) since, under the hypotheses,
(4) yields

Ed =

d∑
i = 0
i even

Ai −
d∑

i = 0
i odd

Ai ∈ D

and the proof is complete. �

Now let us go to the characterizations of type (c) which are given in

terms of the numbers a
(j)
uv = (Aj)uv of walks of length j ≥ 0 between vertices

u, v at distance dist(u, v) = i, i = 0, 1, . . . ,D. When such numbers do not

depend on u, v but only on i and j, we write a
(j)
uv = a

(j)
i . In particular,

notice that always a
(0)
0 = a

(1)
1 = 1 and G is δ-regular if and only if a

(2)
2 = δ.
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Theorem 5 (i) A graph G, with diameter D and d + 1 distinct eigenval-
ues, is distance-regular if and only if, for any two vertices u, v at distance
dist(i, j) = i, any of the following conditions holds:

(c1) a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j ≥ i.

(c2) a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j = i, i + 1, . . . , d.

(c3) D = d, and a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D and j = i, i + 1, . . . , d− 1.

(c4) G is regular, D = d, and a
(j)
uv = a

(j)
i for i = 0, 1, . . . ,D − 1 and

j = i, i + 1.

(ii) A bipartite graph G is distance-regular if and only if

(c5) G is regular, D = d, and a
(j)
uv = a

(j)
i for i = j = 2, 3, . . . ,D − 2.

Proof: Characterization (c1) was first proved by Rowlinson [18]; Statement
(c2) is a straightforward consequence of (b1) since A = span{I,A,A2, . . . ,
Ad}; (c3) comes from (c2) since, if G is regular and D = d, the number of
d-walks between any two vertices u, v at distance d, is a constant:

a(d)
uv = (Ad)uv =

π0

n
[H(A)]uv =

π0

n
(J)uv =

π0

n
= a

(d)
d ;

(c4) derives from a similar result in [10] (not requiring D = d) and the

above reasoning on a
(d)
uv . Finally, (c5) is a consequence of (c4) since, when

G is bipartite, there are no walks of length j = i + 1 between vertices at

distance i and, thus, a
(i+1)
i = 0. Moreover, if G is δ-regular and D = d,

a
(d−1)
d−1 = 1

δa
(d)
d = π0

nδ . �

Problem 6 Give similar characterizations of types (a), (b) and (c) for
distance biregular graphs.

Acknowledgement

Research supported by the Ministerio de Educación y Ciencia (Spain) and
the European Regional Development Fund under project MTM2008-06620-
C03-01, and by the Catalan Research Council under project 2009SGR1387.

262



Algebraic characterizations
of bipartite distance-regular graphs M. A. Fiol

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes.
Benjamin/Cummings, London, 1974, 1984.

[2] N. Biggs. Algebraic Graph Theory. Cambridge University Press, Cam-
bridge, 1974, second edition, 1993.

[3] R.A. Beezer. Distance polynomial graphs, in Proceedings of the Sixth
Caribbean Conference on Combinatorics and Computing, Trinidad,
1991, 51–73.

[4] A.E. Brouwer, A.M. Cohen, and A. Neumaier. Distance-Regular
Graphs. Springer-Verlag, Berlin-New York, 1989.

[5] M. Cámara, J. Fàbrega, M.A. Fiol, and E. Garriga. Some families of
orthogonal polynomials of a discrete variable and their applications to
graphs and codes Electron. J. Combin. 16(1):#R83, 2009.

[6] D. M. Cvetković, M. Doob and H. Sachs. Spectra of Graphs, Theory
and Application. VEB Deutscher Verlag der Wissenschaften, Berlin,
second edition, 1982.
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Abstract

We present the basic isopermetric structure theory, obtaining
some new simplified proofs. Let 1 ≤ r ≤ k be integers. As an
application, we obtain simple descriptions for the subsets S of
an abelian group with |kS| ≤ k|S|−k+1 or |kS−rS|−(k+r)|S|,
where where �S denotes as usual the Minkowski sum of � copies
of S. These results may be applied to several questions in Com-
binatorics and Additive Combinatorics including the Frobenius
Problem, Waring’s problem in finite fields and the structure of
abelian Cayley graphs with a big diameter.

1 Introduction

The connectivity of a graph is just the smallest number of vertices dis-
connecting the graph. In order investigate more sophisticated properties
of graphs, several authors proposed generalizations of connectivity. The
reader may find details on this investigation in the chapter [2]. Investi-
gating the isoperimetric connectivity in Cayley graphs is just one of the
many facets of Additive Combinatorics. It is also one of the many facets of
Network topology. For space limitation, we concentrate on Additive Com-
binatorics, but the reader may find details and a bibliography in the recent
paper [15] concerning the other aspect.

Let Γ = (V,E) be a reflexive graph. The minimum of the objective
function |Γ(X)|−|X|, restricted to subsets X with |X| ≥ k and |V \Γ(X)| ≥
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k, the k-isoperimetric connectivity. Subsets achieving the above minimum
are called k-fragments. k-fragments with smallest cardinality are called
k-atoms. It was proved by the author in [7], that distinct k-atoms of Γ
intersect in at most k − 1 elements, if the size of the k-atom of Γ is not
greater than the size of the k-atom of Γ−1. Let 1 ∈ S be a finite generating
subset of a group G such that the cardinality 1-atom of the Cayley graph
defined by S is not greater than the cardinality 1-atom of the Cayley graph
defined by S−1. Then a 1-atom H containing 1 is a subgroup. The last
result applied to a group with a prime order is just the Cauchy-Davenport
Theorem. It has several other implications and leads to few lines proof
for result having very tedious proof using the classical transformations. In
particular, it was applied recently by the author [14] to a problem of Tao
[19].

In the abelian case, things are much easier. Assume that G is abelian
and let 1 ∈ H be a k-atom of the Cayley graph defined by S. If k = 1,
then H a subgroup (the condition involving S−1 is automatically verified).
In particular, there is a subgroup which is a 1-fragment. A maximal such
a group is called an hyper-atom. Assuming now that k = 2 and that
κ2 ≤ |S|−1. It was proved in [8] that either |H| = 2 or H is a subgroup. It
was proved also in [8] that either S is an arithmetic progression or there is
a non-zero subgroup which is a 1-fragment, if |S| ≤ (|G| + 1)/2. Let Q be
a hyper-atom of S and let φ : G !→ G/Q denotes the canonical morphism.
The author proved in [12] that φ(S) is either an arithmetic progression or
satisfies the sharp Vosper property (to be defined later) if |S| ≤ (|G|+1)/2.

Let G be an abelian group and let A,B be finite non-empty subsets
of G, with |A + B| = |A| + |B| − 1 − μ. Kneser’s Theorem states that
π(A + B) = {0}, where π(A + B) = {x : x + A + B = A + B}. The hard
Kemperman Theorem, which needs around half a page to be formulated,
describes recursively the subsets A and B if μ = 1. Its classical proof
requires around 30 pages. It was applied by Lev [18] to propose a dual
description, that looks easier to implement than Kemperman’s description.

The above structure isoperimetric results were used in [12, 13] to explain
the topological nature of Kemperman Theory and to give a shorter proof of
it. Our method involve few technical steps and use some duality arguments
and the strong isoperimetric property. We suspect that it could be drasti-
cally simplified. In this paper, we shall verify this hypothesis for Minkowski
sums of the form rS − sS, obtaining very simple proofs and tight descrip-
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tions. This case covers almost all the known applications. Also, Modern
Additive Combinatorics deals almost exclusively with rS − sS, c.f. [20].

The organization of the paper is the following:
Section 2 presents the isoperimetric tools, with complete proofs in or-

der to make the paper self-contained. In particular, this section contains
a proof of the fundamental property of k-atoms. In Section 3, we start
by showing the structure of 1-atoms of arbitrary Cayley graphs. We then
restrict ourselves to the abelian case. We give in this section an new sim-
plified proof for the structure theorem of 2-atoms. We deduce from it the
structure of hyper-atoms. In Section 4, we give easy properties of the de-
composition modulo a subgroup which is a fragment. Easy proofs of the
Kneser’s theorem and a Kemperman type result for kA are then presented.

In Section 5, we investigate universal periods for kS introducing a new
object: the sub-atom. It follows from a result by Balandraud [1] that
|TS| ≤ |T | + |S| − 2 implies that T + S + K = T + S, where K is the
final kernel of S (a subgroup contained in the atom of S described in [1]).
We shall prove that the kS + M = kS, if |kS| ≤ k|S| − k, where M is the
sub-atom. Clearly K ⊂ M. The case rS − sS, where r ≥ s ≥ 1, is solved
easily in Section 5, by showing that one of the following holds

• S is an arithmetic progression,

• |sS − rS| ≥ min(|G| − 1, (r + s)|S|),

• |H| ≥ 2 and sS− rS + H = sS− rS, where H is an hyper-atom of S.

Readers familiar with Kemperman Theory could appreciate the sim-
plicity of this result. In Section 6, we obtain the following description:

Let k ≥ 3 be an integer and let 0 ∈ S be a finite generating subset
of an abelian group G such that S is not an arithmetic progression, kS is
aperiodic and |kS| = k|S| − k + 1. Let H be a hyper-atom of S and let
S0 be a smaller H-component of S. Then (S \ S0) + H = (S \ S0) and
|kS0| = k|S0| − k + 1. Moreover φ(S) is an arithmetic progression, where
φ : G !→ G/H denotes the canonical morphism.

Necessarily |H| ≥ 2, since S is not an arithmetic progression.

2 Basic notions

Recall a well known fact:
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Lemma 1 (folklore) Let a, b be elements of a group G and let H be a finite
subgroup of G. Let A,B be subsets of G such that A ⊂ aH and B ⊂ Hb. If
|A|+ |B| > |H|, then AB = aHb.

Let H be a subgroup of an abelian group G. Recall that a H–coset is
a set of the a + H for some a ∈ G. The family {a + H; a ∈ G} induces a
partition of G. The trace of this partition on a subset A will be called an
H–decomposition of A.

By a graph, we shall mean a directed graph, identified with its underly-
ing relation. Undirected graphs are identified with symmetric graphs. We
recall the definitions in this context.

An ordered pair Γ = (V,E), where V is a set and E ⊂ V × V, will be
called a graph or a relation on V. Let Γ = (V,E) be a graph and let X ⊂ V.
The reverse graph of Γ is the graph Γ− = (V,E−), where E− = {(x, y) :
(y, x) ∈ E}. The degree (called also outdegree) of a vertex x is

d(x) = |Γ(x)|.

The graph Γ will be called locally-finite if for all x ∈ V, |Γ(x)| and |Γ−(x)|
are finite. The graph Γ is said to be r-regular if |Γ(x)| = r, for every x ∈ V.
The graph Γ is said to be r-reverse-regular if |Γ−(x)| = r, for every x ∈ V.
The graph Γ is said to be r-bi-regular if it is r-regular and r-reverse-regular.

• The minimal degree of Γ is defined as δ(Γ) = min{|Γ(x)| : x ∈ V }.

• We write δΓ− = δ−(Γ).

• The boundary of X is defined as ∂Γ(X) = Γ(X) \X.

• The exterior of X is defined as ∇Γ(X) = V \ Γ(X).

• We shall write ∂−Γ = ∂Γ− . This subset will be called the reverse-
boundary of X.

• We shall write ∇−Γ = ∇Γ− .

In our approach, Γ(v) is just the image of v by the relation Γ and Γ−(v)
requires no definition since Γ− is defined in Set Theory as the reverse of Γ.

An automorphism of a graph Γ = (V,E) is a permutation f of V such
that f(Γ(v)) = Γ(f(v)), for any vertex v. A graph Γ = (V,E) is said to be
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vertex-transitive if for any ordered pair of vertices there is an automorphism
mapping the first one to the second.

Let A,B be subsets of a group G. The Minkowski product of A with B
is defined as

AB = {xy : x ∈ A and y ∈ B}.
Let S be a subset of G. The subgroup generated by S will be denoted

by 〈S〉. The graph (G,E), where E = {(x, y) : x−1y ∈ S} is called a
Cayley graph. It will be denoted by Cay(G,S). Put Γ = Cay(G,S) and let
F ⊂ G. Clearly Γ(F ) = FS. One may check easily that left-translations
are automorphisms of Cayley graphs. In particular, Cayley graphs are
vertex-transitive.

Let Γ = (V,E) be a reflexive graph. We shall investigate the boundary
operator ∂Γ : 2V → 2V . When the context is clear, the reference to Γ will
be omitted. Since Γ is reflexive, we have in this case |∂(X)| = |Γ(X)|−|X|.

Let A ⊂ 2V be a family of finite subsets of V . We define the connectivity
of A as

κ(A) = min{|∂(X)| : X ∈ A}.
An X ∈ A with κ(A) = |∂(X)| will be called a fragment.
A fragment with a minimal cardinality will be called an atom.
Put

Sk(Γ) = {X : k ≤ |X| < ∞ and |Γ(X)| ≤ |V | − k }.

We shall say that Γ is k-separable if Sk(Γ) = ∅. In this case, we write

κk(Γ) = κ(Sk).

By a k-fragment (resp. k-atom), we shall mean a fragment (resp. atom)
of Sk. A k-fragment of Γ−1 is sometimes called a k-negative) fragment. This
notion was introduced by the author in [7]. A relation Γ will be called k-
faithful if |A| ≤ |V \Γ(A)|, where A is a k-atom of Γ. By a fragment (resp.
atom), we shall mean a 1-fragment (resp. 1- atom).

The following lemma is immediate from the definitions:

Lemma 2 [7] Let k ≥ 2 be an integer. A reflexive locally finite k-separable
graph Γ = (V,E) is a k − 1-separable graph, and moreover κk−1 ≤ κk.

Recall the following easy fact:
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Lemma 3 [7] Let Γ = (V,E) be a locally-finite k-separable graph and let
A be a k-atom with |A| > k. Then Γ−(x) ∩A = {x}, for every x ∈ A.

Proof: We can not have Γ−(x) ∩ A = {x}, otherwise A \ {x} would be a
k-fragment. �

The next lemma contains useful duality relations:

Lemma 4 [9] Let X and Y be k-fragments of a reflexive locally finite k-
separable graph Γ = (V,E). Then

∂−(∇(X)) = ∂(X), (1)

∇−(∇(X)) = X, (2)

Proof: Clearly, ∂(X) ⊂ ∂−(∇(X))

We must have ∂(X) = ∂−(∇(X)), since otherwise there is a y ∈
∂−(∇(X)) \ ∂(X). It follows that |∂(X ∪ {y})| ≤ |∂(X)| − 1, contradicting
the definition of κk. This proves (1).

Thus Γ−(∇(X)) = ∇(X) ∪ ∂−(∇(X)) = ∇(X) ∪ ∂(X) = V \ X, and
hence (2) holds.

Let Γ = (V,E) be a reflexive graph. We shall say that Γ is a Cauchy
graph if Γ is non-1-separable or if κ1(Γ) = δ − 1. h We shall say that Γ is a
reverse-Cauchy graph if Γ− is a Cauchy graph.

Clearly, Γ is a Cauchy graph if and only if for every X ⊂ V with |X| ≥ 1,

|Γ(X)| ≥ min
(
|V |, |X| + δ − 1

)
. �

Lemma 5 [7] Let Γ = (V,E) be a reflexive finite k-separable graph and let
X be a subset of V. Then

κk = κ−k. (3)

Moreover,

(i) X is a k-fragment if and only if ∇(X) is a k-reverse-fragment,

(ii) Γ is a Cauchy graph if and only if it is a reverse-Cauchy graph.
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Proof: Observe that a finite graph is k-separable if and only if its reverse is
k-separable. Take a k-fragment X of Γ. We have clearly ∂−(∇(X)) ⊂ ∂(X).
Therefore

κk(Γ) ≥ |∂(X)| ≥ |∂−(∇(X))| ≥ κ−k.

The reverse inequality of (3) follows similarly or by duality.

Suppose that X is a k-fragment. By (1) and (3), |∂−(∇(X))| = |∂(X)| =
κk = κ−k, and hence ∇(X) is a revere k-fragment. The other implication
of (i) follows easily. Now (ii) follows directly from the definitions. �

Theorem 6 [7] Let Γ = (V,E) be a reflexive locally-finite k-faithful k-
separable graph. Then the intersection of two distinct k-atoms X and Y
has a cardinality less than k. Moreover, any locally-finite k-separable graph
is either k-faithful or reverse k-faithful.

Proof:

∩ Y ∂(Y ) ∇(Y )

X R11 R12 R13

∂(X) R21 R22 R23

∇(X) R31 R32 R33

Assume that |X ∩ Y | ≥ k. By the definition of κk,

|R21|+ |R22|+ |R23| = κk

≤ |∂(X ∩ Y )|
= |R12|+ |R22|+ |R21|,

and hence

|R23| ≤ |R12|. (4)

Thus,

|∇(X) ∩∇(Y )| = |∇(Y )| − |R13| − |R23|
≥ |Y | − |R13| − |R12|
= |X| − |R13| − |R12| = |R11| ≥ k.

Thus,
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|R12|+ |R22|+ |R32| = κk

≤ |∂(X ∪ Y )|
≤ |R22|+ |R23|+ |R32|,

and hence |R12| ≤ |R23|, showing that |R12| = |R23|.
It follows that

κk ≤ |∂(X ∩Y )| ≤ |R12|+ |R22|+ |R21| ≤ |R12| ≤ |R23|+ |R22|+ |R21| = κk,

showing that X ∩ Y is a k-fragment, a contradiction.

The fact that a locally-finite k-separable graph is either k-faithful or
reverse k-faithful follows by Lemma 5. �

3 A structure Theory for atoms

In the sequel, we identify Cay(〈S〉, S) with S, if 0 ∈ S. We shall even
work with subsets not containing 1. By κk(S) we shall mean κk(S − a) =
κk(Cay(〈S−〉, S−a)), for some a ∈ S. As an exercise, the reader may check
that this notion does not depend on a particular choice of a ∈ S.

Theorem 7 [6] Let 1 ∈ S be a finite proper generating subset of a group
G. Let 1 ∈ H be a 1-atom of S.

(i) If S is 1–faithful, then H is a subgroup. Moreover |H| divides κ1(S).

(ii) If G is abelian and if S is k-separable, then S is k-faithful.

(iii) If G is abelian, then H is a subgroup.

Proof: Take an element x ∈ H. Clearly xH is a 1-atom. Since (xH)∩H =
∅, we have by Theorem 6, xH = H. Since H is finite, H is a subgroup.
Now κ1(S) = |HS| − |H|, showing the last part of (i).

If G is abelian, then Cay(G,S) is isomorphic to Cay(G,−S), and hence
S is k-faithful if S is k-separable. Now (iii) follows by combining (i) and
(ii). �
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Theorem 8 [8] Let S be a finite generating 2–separable subset of an abelian
group G with 0 ∈ S and κ2(S) ≤ |S|−1. If 0 ∈ H is a 2–atom with |H| ≥ 3,
then H is a subgroup.

Proof: The proof is by induction. Assume first that H+Q = H, where Q is
a non-zero subgroup. For every, x ∈ H, we have |(H+x)∩H| ≥ |x+Q| ≥ 2.
By Theorems 7 and 6, H +x = H. It follows that H is a subgroup. Assume
now that H is aperiodic. Let us first show that κ1(H) = |H| − 1. Suppose
the contrary and take a 1-atom L of H with 0 ∈ L. By Theorem 7, L
is a subgroup and |L| ≤ κ1(H). Take a nonzero element y ∈ L. We have
|H ∪ (y + H)| ≤ |L + H| = |L| + κ1(H) ≤ 2κ1(H) ≤ 2|H| − 4. Thus,
|H ∩ (y + H)| ≥ 2, and hence y + H = H, by Theorem 6.

Take an N -decomposition S =
⋃

1≤i≤s
Si, with |S1 +H| ≤ · · · ≤ |Ss +H|.

Without loss of generality, we may take 0 ∈ S1. We have necessarily s ≥ 2.
We must have |Si| = |N |, for all i ≥ 2. Suppose the contrary. By the
definition of κ1, we have |S1 +H| ≥ |S1|+κ1(H) = |S1|+ |H|− 1. We have
also, since H generates N, |Si + H| ≥ |S1|+ 1. Thus, |S + H| ≥ |S|+ |H| −
1+1 ≥ |S|+ |H|, a contradiction. Now we have |X +S| = |S \S1|+ |X +S1,
for any subset X of N. In particular, H is a 2-atom of S1. If |S1| < |S|, the
result holds by Induction. It remains to consider the case s = 1.

The relation |H + S| − |H| ≤ |S| − 1 implies that κ2(H) ≤ |H| − 1. By
Lemma 3, for every x ∈ H, there sx ∈ S \ {0}, with x− sx ∈ H. We must
have

|H| ≤ |S| − 1,

otherwise there are distinct elements x, y ∈ H and an element s ∈ S \ {0}
such that x− s, y − s ∈ H. It follows that |(H + s) ∩H| ≥ 2. By Theorem
6, H + s = H, a contradiction.

Let 0 ∈ M be a 2-atom of H. Take a non-zero element a ∈ M. Since
κ2(H) = |M + H| − |M |, |M | divides κ2(H) if M is a subgroup. Thus,
the Induction hypothesis implies that |M | ≤ |H| − 1. Since |M + H| ≤
|M | + κ2(H) ≤ 2|H| − 2, we have |H ∩ (H + a)| ≥ 2. By Theorem 6,
H + a = H, a contradiction. �

Theorem 9 ([8],Theorem 4.6) Let S be a 2–separable finite subset of an
abelian group G such that 0 ∈ S, |S| ≤ (|G| + 1)/2 and κ2(S) ≤ |S| − 1.
If S is not an arithmetic progression, then there is a subgroup which is a
2–fragment of S.
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Proof: Suppose that S is not an arithmetic progression.
Let H be a 2–atom such that 0 ∈ H. If κ2 ≤ |S| − 2, then clearly

κ2 = κ1 and H is also a 1–atom. By Theorem 7, H is a subgroup. Then
we may assume

κ2(S) = |S| − 1.

By Theorem 8, it would be enough to consider the case |H| = 2, say
H = {0, x}. Put N = 〈x〉.

Decompose S = S0 ∪ · · · ∪ Sj modulo N , where |S0 + H| ≤ |S1 + H| ≤
· · · ≤ |Sj + H|. We have |S|+ 1 = |S + H| = ∑

0≤i≤j
|Si + {0, x}|.

Then |Si| = |N |, for all i ≥ 1. We have j ≥ 1, since otherwise S
would be an arithmetic progression. In particular, N is finite. We have
|N + S| < |G|, since otherwise |S| ≥ |G| − |N |+ 1 ≥ |G|+2

2 , a contradiction.
Now

|N |+ |S| − 1 = |N |+ κ2(S)

≤ |S + N | = (j + 1)|N |
≤ |S|+ |N | − 1,

and hence N is a 2-fragment. �

Theorem 9 was used to solve Lewin’s Conjecture on the Frobenius num-
ber [10].

A H–decomposition A =
⋃
i∈I

Ai will be called a H–modular-progression

if it is an arithmetic progression modulo H.
Recall that S is a Vosper subset if and only if S is non 2–separable or

if κ2(S) ≥ |S|.

Theorem 10 [12] Let S be a finite generating subset of an abelian group
G such that 0 ∈ S, |S| ≤ (|G|+1)/2 and κ2(S) ≤ |S|−1. Let H be a hyper-
atom of S. Then φ(S) is either an arithmetic progression or a Vosper
subset, where φ is the canonical morphism from G onto G/H.

Proof: Let us show that

2|φ(S)| − 1 ≤ |G|
|H| . (5)

Clearly we may assume that G is finite.
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Observe that 2|S + H| − 2|H| ≤ 2|S| − 2 < |G|. It follows, since|S + H|
is a multiple of |H|, that 2|S + H| ≤ |G|+ |H|, and hence (5) holds.

Suppose now that φ(S) is not a Vosper subset. By the definition of a
Vosper subset, φ(S) is 2–separable and κ2(φ(S)) ≤ |φ(S)| − 1.

Let us show that φ(S) has no 1–fragment M which is a non-zero sub-
group. Assuming the contrary. We have |φ(φ−1(M) + S)| = |M + φ(S)| ≤
|M | + |φ(S)| − 1. Thus, |φ−1(M) + S| ≤ |φ−1(M)| + |H|(|φ(S)| − 1) =
|φ−1(M)| + κ1(S). It follows that φ−1(M) is a 1-fragment. By the max-
imality of H, we have |M | = 1, a contradiction. By (5) and Theorem 9,
φ(S) is an arithmetic progression. �

4 Decomposition modulo a fragment

Let H be a subgroup of an abelian group G. Recall that a H–coset is a
set of the a + H for some a ∈ G. The family {a + H; a ∈ G} induces a
partition of G. A non-empty set of the form A ∩ (x + H) will be called
a H-component of A. The partition of A into its H-components will be
called a H-decomposition of A. By a smaller component, we shall mean a
component with a smallest cardinality.

Assume now that H is 1-fragment and take a H-decomposition S =
S0 ∪ · · · ∪ Su, with |S0| ≤ · · · ≤ |Su|.

We have |S| − 1 ≥ κ(S) = |H + S| − |H|.
It follows that for i ≥ 1, we have

2|H| − |S0| − |Si| ≤ |H + S| − |S| ≤ |H| − 1,

and hence |S0|+ |Si| ≥ |H|+ 1. In particular,

for all (i, j) = (0, 0), |Si|+ |Sj| ≥ |H|+ 1, hence

Si + Sj + H = Si + Sj,

by Lemma 1.

Thus

(S \ S0) + S = (S \ S0) + H + S.

Similarly

((S \ S0))− S = (S \ S0) + H − S.
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Since S0 − S0 ⊂ S1 − S1 = H, we have

S − S + H = S − S.

In particular, (kS \ kS0) + H = kS \ kS0.

Proposition 11 Let S0 denotes a smaller H-component of S, where H is
a non-zero subgroup fragment. We have S − S + H = S − S. Let 2 ≤ k be
an integer. Then (S \S0)+(k−1)S is H-periodic subset with cardinality at
least min(|G|, k|S + H| − k|H|). If kS + H = kS, then |S1| > |H|/2 ≥ |S0|,
and |kS| ≥ k|S + H| − k|H| + |kS0|. Moreover kS0 is aperiodic if kS is
aperiodic.

Proof: The first part was proved above. By the definition of κ, we have
|(S \ S0) + (k − 1)S| = |(S \ S0)H + (k − 1)S| ≥ u|H| + (k − 1)κ =
k|S + H| − k|H|.

Assume now that kS + H = kS. we have kS0 = kS0 + H, and hence
2S0 = 2S0 + H, since (S \ S0) + (k − 1)S is H-periodic. By Lemma 1,
|H|/2 ≥ |S0|. We have now |S1| ≥ |H|+1−|S0| ≥ |H|/2+1. We must also
have kS0∩((S\S0)+(k−1)S) = ∅. Thus, |kS| ≥ |(S\S0)+(k−1)S|+|kS0| ≥
k|S + H| − k|H|+ |kS0|.

Assume now that kS is aperiodic. Since (S\S0)+(k−1)S is H-periodic
and since the period of kS0 is a subgroup of H, necessarily kS0 is aperiodic.
�

Corollary 12 ( Kneser, [17]) Let k be a non-negative integer and let S
be a finite subset of an abelian group G. If kS is aperiodic, then |kS| ≥
k|S| − k + 1

Proof: Let H be a 1-atom containing 0. By Theorem 7, H is subgroup.
Let S0 denotes a smaller H-component of S. Without loss of generality we
may assume that 0 ∈ S0. We may assume κ(S) ≤ |S| − 2, since otherwise
|kS| ≥ |S|+ (k − 1)κ(S) = k|S| − k + 1, and the result holds.

By Proposition 11, kS0 is aperiodic. By the Induction hypothesis and
Proposition 11, |kS| = |kS0|+(k− 1)(|S +H|− |H|) ≥ k|S0|− k +1+(k−
1)(|S + H| − |H|) ≥ k|S| − k + 1. �

We shall now complete Proposition 11 in order to deal with the critical
pair Theory.

276



Topology of Cayley graphs
applied to inverse additive problems Y. O. Hamidoune

Proposition 13 Let 2 ≤ k be an integer. Let S0 denotes a smaller H-
component of S, where H is a non-zero subgroup fragment kS + H = kS.
Assume moreover that kS is aperiodic and |kS| = k|S| − k + 1. Then

(i) kS0 is aperiodic,

(ii) |kS0| = k|S0| − k + 1,

(iii) (S \ S0) + H = S \ S0 and

(iv) |k(S + H)| = k|S + H| − k|H|+ |H|.

Proof: (i) follows by Proposition 11. By Kneser Theorem and Proposition
11,

k|S| − k + 1 = |kS| ≥ |kS0|+ |(k − 1)S + (S \ S0)|
≥ |kS0|+ k|S + H| − k|H|
≥ k|S0| − k + 1 + k|S + H| − k|H| ≥ k|S| − k + 1.

In particular, the inequalities used are equalities and hence (ii) holds and
|S| = |S + H| − |H| + |S0|, proving (iii). Also, it follows that |kS + H| =
|(k − 1)S + (S \ S0)|+ |H| = k|S + H| − k|H|+ |H|, proving (iii). �

We can deduce now a Kemperman type result for kS.

Corollary 14 Let k ≥ 2 be an integer and let S be a finite subset of an
abelian group G such that kS is aperiodic and |kS| = k|S| − k + 1. There
is a non-zero subgroup H such (S \ S0) + H = (S \ S0), where S0 is an H-
component of S. Also, |kS0| = k|S0| − k + 1 and |kφ(S)| = k|φ(S)| − k + 1,
where φ : G !→ G/H denotes the canonical morphism. Moreover one of the
following holds:

• S0 is an arithmetic progression,

• k = 2 and S0 = x− ((S0 + H) \ S0), for some x.

Proof: Take a non-zero subgroup H with minimal cardinality such k(S +
H) = k|S + H| − k|H| + |H| and (S \ S0) + H = (S \ S0), where S0 is an
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H-component of S. Notice that G is such a group. Since the period of kS0

is a subgroup of H, kS0 is aperiodic and hence

|kS0| = k|S0| − k + 1,

using the relation |kS| = k|S| − k + 1.
Observe that S0 can not have a fragment non-zero subgroup Q. Other-

wise we have by Proposition 11, k(S0 + Q) = k|S0 + Q| − k|Q| + |Q| and
(S0 \T0)+Q = (S0 \T0), where T0 is a Q-component of S0. It would follow
that k(S + Q) = k|S + Q| − k|Q| + |Q| and (S \ T0) + Q = (S \ T0), a
contradiction. Let H0 be the subgroup generated by S0 − S0. By Theorem
9, either (i) holds or one of the following holds:

• S0 is non 2-separable. We have necessarily |2S0| = |H0| − 1. Take
a ∈ S0 and put {b− a} = H0 \ (2(S0− a)). Necessarily b− (S0− a) =
H0 \ (S0 − a), and thus b− S0 = H0 + a \ (S0) = (S0 + H0) \ S0.

• S0 is a 2-separable Vopser subset. We must have k = 2, otherwise
The condition |2S0| ≥ min(|H0|−1, 2|S0|). But |H0| ≥ |kS0| ≥ 2|S0|+
|S0|−1 ≥ 2|S0|+1, observing that S0 is not an arithmetic progression.
By Kneser’s Theorem, |kS0| ≥ k|S0| − k + 2, a contradiction. Since
|2S0| = 2|S0| − 1 and since S0 is a Vosper subset, we have necessarily
|2S0| = |H0| − 1. Take a ∈ S0 and put {b − a} = H0 \ (2(S0 − a)).
Thus, b− (S0 − a) = H0 \ (S0 − a), and hence

b + a− S0 = (H0 + a) \ S0 = (S0 + H0) \ S0. �

In the above result, the structure of S is completely determined by
the structure of S0 and by the structure of φ(S). Unfortunately kφ(S) is
sometimes periodic. In order transform the last result, we investigate the
S, where kS is periodic and where one element has a unique expressible
element. The methods of Kemperman solve very easily this question, as
shown in [12].

The hyper-atomic approach avoids the last difficulty and lead to a sim-
pler description, as we shall see later.

5 Universal periods

Let T and S be finite subsets of an abelian group. It follows from a result
by Balandraud that |TS| ≤ |T |+ |S| − 2 implies that T + S has a universal
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period contained in the atom of S. We shall construct a universal period
for kS which is bigger in general.

We shall first prove that S − S has a universal period containing the
atom if S is not an arithmetic progression and if |S − S| is not very big.

Theorem 15 Let r ≥ s ≥ 1 be integers and let S be a finite subset of
an abelian group G and let H be a hyper-atom of S. One of the following
holds:

(i) S is an arithmetic progression,

(ii) |sS − rS| ≥ min(|G| − 1, (r + s)|S|),

(iii) The hyper-atom H is a non-zero-subgroup and sS−rS+H = sS−rS.

Proof: Assume that (i) and (ii) do not hold. It follows that S is 2-separable
and non-vosperian. Let H be a hyper-atom of S. By Theorem 9, |H| ≥ 2.
By Proposition 11, S −S + H = S −S. Therefore, sS− rS + H = sS− rS.
�

Proposition 11 suggests a very simple method giving another universal
period for kS containing necessarily Balandraud period.

Let H be a subgroup fragment of S. An H-component S0 of S will be
called desertic component if |S0| ≤ |H|/2. By Proposition 11, the desertic
component is unique if it exists. We shall say that S is a desert if it has a
desertic component.

Given a subset A, with κ(A) ≤ |A| − 2. We define a desert sequence
A0, · · · , A�, verifying the following conditions:

• A0 = A,

• Ai+1 is a desert for 0 ≤ i ≤ �− 1,

• A� is not a desert.

Such a sequence exists and is unique, since Proposition 11 asserts that
Ai is unique for 1 ≤ i ≤ �. The sequence must end since Hi is a finite group
with size < |Hi−1|/2. The sub-atom M of A is defied as M = H� if H� is
non-zero. Otherwise M = H�−1. In particular, the sub-atom is a non-zero
subgroup.
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Theorem 16 Let k be a non-negative integer and let S be a finite subset
of an abelian group G. If |kS| ≤ k|S| − k, then

kS + M = kS,

where M is the sub-atom of S.

Proof: We use the last notations. The proof is by induction on �. We have
κ1(S) ≤ |S|−2, and hence |H0| ≥ 2. By Proposition 11, (S\S0)+(k−1)S is
H-periodic. We may assume that kS0∩ ((S \S0)+(k−1)S) = ∅, otherwise
kS is H0-periodic. Proposition 11, |kS| = |kS0| + |(S \ S0) + (k − 1)S| ≥
k|S0| − k + 1 + ku|H| ≥ k|S| − k + 1. In particular, |kS0| ≤ k|S0| − k.
Notice that S and S0 have the same sub-atom. By the induction hypothesis
kS0 + M = kS0. It follows that kS + M = kS. �

6 Hyper-atoms and the critical pair Theory

Applications of hyper-atoms to the critical pair theory where first obtained
in [12]. A more delicate notion of hyper-atoms was introduced in [13].

Theorem 17 Let k ≥ 2 be an integer and let S be a finite subset of an
abelian group G such that S is not an arithmetic progression, kS is aperiodic
and |kS| = k|S| − k + 1. Let H be a hyper-atom of S and let S0 be a
smaller H-component of S. If |2S| = |G| − 1, then |H| ≥ 2. Moreover,
(S \ S0) + H = (S \ S0) and |kS0| = k|S0| − k + 1. Also, either φ(S) is an
arithmetic progression or k = 2 and one of the following holds:

1. S = x− (G \ S), for some x.

2. (φ(S)−φ(S0))∩(φ(S0)−φ(S)) = {φ(0)}, where φ : G !→ G/H denotes
the canonical morphism.

Proof: By Kneser’s Theorem and since 2S is aperiodic, we have |2S| =
2|S| − 1. Take an H-decomposition S = S0 ∪ · · · ∪ Su.

Assume first that S is non-2-separable. This forces |2S| = |G|−1. Then
necessarily k = 2, otherwise 3S = G, by Lemma 1. Put 2S = G \ {x}. We
have clearly (x − S) ∩ S = ∅. Clearly (1) holds. Assume now that S is
2-separable. By Theorem 9, |H| ≥ 2.
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By Proposition 13, (S \ S0) + H = (S \ S0) and |kS0| = k|S0| − k + 1.
Assume now that φ(S) is not an arithmetic progression. By Theorem

10, φ(S) is a Vosper subset.
Thus, |φ(G)|−1 < 2|φ(S)|−1, otherwise |φ((S \S0)+S)| ≥ 2|φ(S)|−1,

and hence |(S \ S0) + S| ≥ 2u|H| + |H| ≥ 2|S|, a contradiction. Thus,
|φ(G)| = 2|φ(S)| − 1. In this case, k = 2 and 2φ(S) = φ(G). Necessarily,
2φ(S0) is uniquely expressible in 2φ(S). In other words (φ(S) − φ(S0)) ∩
(φ(S0)− φ(S)) = {φ(0)}. �

Corollary 18 Let k ≥ 3 be an integer and let S be a finite subset of an
abelian group G such that S is not an arithmetic progression, kS is aperiodic
and |kS| = k|S|−k+1. Let H be a hyper-atom of S and let S0 be a smaller
H-component of S. Then (S \S0)+H = (S \S0) and |kS0| = k|S0|− k +1.
Moreover φ(S) is an arithmetic progression, where φ : G !→ G/H denotes
the canonical morphism.
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Graphs with equal domination
and 2-domination numbers
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Barcelona

Abstract

For a graph G a subset D of the vertex set of G is a k-dominating
set if every vertex not in D has at least k neighbors in D. The
k-domination number γk(G) is the minimum cardinality among
the k-dominating sets of G. Note that the 1-domination number
γ1(G) is the usual domination number γ(G).

Fink and Jacobson showed in 1985 that the inequality γk(G) ≥
γ(G)+k−2 is valid for every connected graph G. In this paper,
we recompile results concerning the case k = 2, where γk can
be equal to γ. In particular, we present the characterization of
different graph classes with equal domination and 2-domination
numbers as are the cactus graphs, the claw-free graphs and the
line graphs.

1 Terminology

We consider finite, undirected, and simple graphs G with vertex set V =
V (G) and edge set E = E(G). The number of vertices |V (G)| of a graph
G is called the order of G and is denoted by n(G). The neighborhood
N(v) = NG(v) of a vertex v consists of the vertices adjacent to v and
d(v) = dG(v) = |N(v)| is the degree of v. By δ(G) and Δ(G), we denote
the minimum degree and the maximum degree of the graph G, respectively.
For a subset S ⊆ V , we define by G[S] the subgraph induced by S. If x and
y are vertices of a connected graph G, then we denote with dG(x, y) the
distance between x and y in G, i.e. the length of a shortest path between
x and y.
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With Kn we denote the complete graph on n vertices and with Cn the
cycle of length n. We refer to the complete bipartite graph with partition
sets of cardinality p and q as the graph Kp,q. A graph G is a block-cactus
graph if every block of G is either a complete graph or a cycle. G is a cactus
graph if every block of G is a cycle or a K2. If we substitute each edge in
a non-trivial tree by two parallel edges and then subdivide each edge, then
we speak of a C4-cactus. Let G and H be two graphs. For a vertex v ∈ V ,
we say that the graph G′ arises by inflating the vertex v to the graph H if
the vertex v is substituted by a set Sv of n(H) new vertices and a set of
edges such that G′[Sv] ∼= H and every vertex in Sv is connected to every
neighbor of v in G by an edge.

The cartesian product of two graphs G1 and G2 is the graph G1×G2 with
vertex set V (G1)× V (G2) and vertices (u1, u2) and (v1, v2) are adjacent if
and only if either u1 = v1 and u2v2 ∈ E(G2) or u2 = v2 and u1v1 ∈ E(G1).
Let u be a vertex of G1 and v a vertex of G2. Then the sets of vertices
{(u, y) | y ∈ V (G2)} and {(x, v) | x ∈ V (G1)} are called a row and,
respectively, a column of G1×G2. A set of vertices in V (G1×G2) is called
a transversal of G1 ×G2 if it contains exactly one vertex on every row and
every column of G1 ×G2.

A set C of vertices in a graph G is called a covering of G if every edge
of G is incident with at least one vertex of C. The minimum cardinality of
a covering of G is denoted with β(G) and is called the covering number of
G. Let k be a positive integer. A subset D ⊆ V is a k-dominating set of
the graph G if |NG(v) ∩D| ≥ k for every v ∈ V − D. The k-domination
number γk(G) is the minimum cardinality among the k-dominating sets
of G. Note that the 1-domination number γ1(G) is the usual domination
number γ(G). A k-dominating set of minimum cardinality of a graph G is
called a γk(G)-set. For a comprehensive treatment of domination in graphs,
see the monographs by Haynes, Hedetniemi, and Slater [12, 13]. More
information on k-domination can be found for example in [3, 4, 5, 6, 7, 8].

2 Introduction

Let G be a graph such that 2 ≤ k ≤ Δ(G) for an integer k and let D
be a k-dominating set of G of minimum cardinality. Then V − D is not
empty and we can take a vertex x ∈ V − D. If X ⊆ NG(x) ∩ D is a set
of neighbors of x in D such that |X| = k − 1, then evidently every vertex
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in V − ((D − X) ∪ {x}) has a neighbor in (D − X) ∪ {x} and thus the
latter is a dominating set of G. This implies the following theorem of Fink
and Jacobson, which establishes a relation between the usual domination
number γ(G) and the k-domination number γk(G).

Theorem 1 (Fink, Jacobson [6], 1985) If k ≥ 2 is an integer and G is a
graph with k ≤ Δ(G), then

γk(G) ≥ γ(G) + k − 2.

The inequality given above is sharp. However, the characterization of
the graphs attaining equality is still an open problem. In [9], Hansberg
analyzed the extremal graphs for general k and gave several properties for
them, among them the next proposition.

Proposition 2 [9] Let G be a connected graph and k an integer with Δ(G) ≥
k ≥ 2. If γk(G) = γ(G) + k − 2 and D is a minimum k-dominating set,
then Δ(G[D]) ≤ k − 2.

In particular, the case k = 2 in Theorem 1 is of special interest since
it is the only possibility where γk can be equal to γ. In this case, Proposi-
tion 2 states that if γ(G) = γ2(G), then every minimum 2-dominating set
is independent. In [11], Hansberg and Volkmann presented some properties
on graphs G with γ2(G) = γ(G), among them the following one.

Theorem 3 [11] If G is a connected non-trivial graph with γ2(G) = γ(G),
then δ(G) ≥ 2.

3 Graphs with γ = γ2

In [11], Hansberg and Volkmann showed that the graphs with minimum
degree at least 2 and equal domination and covering numbers fulfill also
that both the domination and the 2-domination numbers are equal.

Theorem 4 [11] If G is a graph with δ(G) ≥ 2 and γ(G) = β(G), then
γ2(G) = γ(G).
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Note that it has been shown by Randerath and Volkmann in [15] that
the graphs with equal domination and covering numbers have minimum
degree δ ≤ 2. They also characterized this family of graphs.

In [11], Hansberg and Volkmann characterized the cactus graphs with
equal domination and 2-domination numbers.

Theorem 5 [11] Let G be a cactus graph. Then γ2(G) = γ(G) if and only
if G is a C4-cactus.

In [10], Hansberg, Randerath and Volkmann centered their attention
on claw-free graphs and characterized those with equal domination and 2-
domination numbers. A claw-free graph is a graph which does not contain
a K1,3 as an induced subgraph.

Following lemma gives two important structural properties of claw-free
graphs with equal domination and 2-domination numbers.

Lemma 6 [10] Let G be a connected nontrivial claw-free graph. If γ(G) =
γ2(G), then every minimum 2-dominating set D of G fulfills:

(i) Every vertex in V −D has exactly two neighbors in D.

(ii) Every two vertices a, b ∈ D are at distance 2 in G.

Former lemma sets the basis for the characterization of all claw-free
graphs with equal domination and 2-domination numbers. Let H be the
family of graphs such that G ∈ H if and only if either G arises from a
cartesian product Kp×Kp of two complete graphs of order p for an integer
p ≥ 3 by inflating every vertex but the ones on a transversal (we call it
the diagonal) to a clique of arbitrary order, or G is a claw-free graph with
Δ(G) = n(G)− 2 containing two non-adjacent vertices of maximum degree
(see Fig. 1 below).

This family of graphs describes exactly those claw-free graphs with equal
domination and 2-domination numbers, as is given in the theorem below.

Theorem 7 [10] Let G be a connected claw-free graph. Then γ(G) = γ2(G)
if and only if G ∈ H.

If G is a graph, then the line graph of G, denoted by L(G), is obtained
by associating one vertex to each edge of G, and two vertices of L(G)
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Kn1 Kn2

Kn3 Kn4

Kn5 Kn6

a

b

Figure 1: Examples of graphs from the family H
(here, ni ∈ N for 1 ≤ i ≤ 6)

being joined by an edge if and only if the corresponding edges in G are
incident with each other. If for a graph G there is a graph G′ whose line
graph is isomorphic to G, then G is called line graph. In 1968, Beineke
[1] obtained a characterization of line graphs in terms of nine forbidden
induced subgraphs. Since the claw is one of those subgraphs, the set of line
graphs with γ = γ2 is contained in H. Using the characterization of line
graphs of Krausz [14] and Beineke’s forbidden induced subgraphs in line
graphs, Hansberg, Randerath and Volkmann were able to characterize the
line graphs with equal domination and 2-domination numbers.

Theorem 8 [10] Let G be a line graph. Then γ2(G) = γ(G) if and only
if G is either the cartesian product Kp ×Kp of two complete graphs of the
same cardinality p or G is isomorphic to the graph J depicted bellow.

Figure 2: The graph J .

Note that the graphs of the family H, as also the cactus graphs of
Theorem 5, contain many induced cycles of length 4. This is not a par-
ticular property of these both graph families with equal domination and
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2-domination numbers. In fact, this accumulation of induced C4’s can be
found in every graph fulfilling equality in Fink and Jacobson’s bound. The
reason of this particularity lies basically on the assertion of following lemma.

Lemma 9 [9] Let G be a connected graph with γk(G) = γ(G) + k − 2 for
an integer k such that Δ(G) ≥ k ≥ 2. Then, for every vertex u ∈ V −D
and every set Au ⊆ N(u)∩D with |Au| = k, there are non-adjacent vertices
xu, x′u ∈ V −D such that D ∩N(xu) = D ∩N(x′u) = Au.

D V −D

Au

a1

u

xu

x′

u

a2

ap

Figure 3: The vertices a1, xu, ap, x
′

u induce a cycle of length 4.

Using this lemma, Hansberg was able to prove that for any graph fulfill-
ing Fink and Jacobson’s bound, every vertex of G lies on an induced cycle
of length four:

Theorem 10 [9] Let G be a connected graph and k an integer with Δ(G) ≥
k ≥ 2. If γk(G) = γ(G) + k − 2, then every vertex of G lies on an induced
cycle of length 4.

In the same paper, the author presented a sharp lower bound in terms
of the domination number for the number of induced cycles of length 4 in
this family of graphs.

Theorem 11 [9] Let G be a connected graph and k an integer with Δ(G) ≥
k ≥ 2. If γk(G) = γ(G) + k− 2, then G contains at least (γ(G)− 1)(k− 1)
induced cycles of length 4.
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To show that previous bound is tight, let r and k be two positive inte-
gers, where k ≥ 2 and let G be a graph consisting of a complete graph H
on k− 1 vertices and of vertices ui, vi, wi, for 1 ≤ i ≤ r, such that every ui

and wi is adjacent to every vertex of H and to vi (see Figure 4). It is easy
to see that γk(G) = k + r− 1, γ(G) = r +1 and thus γk(G) = γ(G)+ k− 2.
Since G contains exactly r(k − 1) = (γ(G) − 1)(k − 1) induced cycles of
length 4, it follows that the bound in Theorem 10 is sharp.

Kk−1v1

u1

w1

v2

u2

w2

vr

ur

wr

Figure 4: Example of a graph G with γk(G) = γ(G) + k− 2 and exactly (γ(G)−
1)(k− 1) induced cycles of length 4. A double line connecting a vertex ui or wi to

the complete graph Kk−1 in the middle means that it is adjacent to all vertices of

Kk−1.

Using the inequality γk(G) ≥ k
Δ+kn for any n-vertex graph with maxi-

mum degree δ, proved by Fink and Jacobson in [7], the following corollary
arises.

Corollary 12 [9] Let G be a graph and k an integer such that 2 ≤ k ≤
Δ(G). If γk(G) = γ(G) + k − 2, then G contains at least

(
n

Δ(G) + 1
− 1)(k − 1)

induced cycles of length 4.

Note that, if G is a graph with γk(G) = γ(G) + k − 2 for an integer k
with 2 ≤ k ≤ Δ(G), γ(G) is at least 2 and thus Δ(G) ≤ n(G) − 2, which
implies that the factor ( n

Δ(G)+1 − 1) above is always positive.
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Reverting the assertion of the theorem, we gain an improvement of Fink
and Jacobson’s lower bound in Theorem 1 and we obtain, as a corollary, a
theorem of Chellali, Favaron, Hansberg and Volkmann.

Corollary 13 [9] Let G be a graph with Δ(G) ≤ n(G) − 2. If G has less
than (γ(G) − 1)(k − 1) induced cycles of length 4 for an integer k with
Δ(G) ≥ k ≥ 2, then γk(G) ≥ γ(G) + k − 1.

Corollary 14 [2] If G is a graph with at most k−2 induced cycles of length
4 for an integer k with Δ(G) ≥ k ≥ 2, then γk(G) ≥ γ(G) + k − 1.

It remains thus as an open problem the characterization of more graph
families attaining equality in Fink and Jacobson’s bound and specially the
interesting case where γ2 = γ.
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réseaux (Ungarian). Mat. Fiz. Lapok, 50:75–85, 1943.

[15] B. Randerath and L. Volkmann. Characterization of graphs with equal
domination and covering number. Discrete Math., 191:159-169, 1998.

293





Radially Moore graphs
of radius three and large odd degree

Nacho López
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Abstract

Extremal graphs which are close related to Moore graphs have
been defined in different ways. Radially Moore graphs are one
of these examples of extremal graphs. Although it is proved
that radially Moore graphs exist for radius two, the general
problem remains open. Knor, and independently Exoo, gives
some constructions of these extremal graphs for radius three
and small degrees. As far as we know, some few examples have
been found for other small values of the degree and the radius.

Here, we consider the existence problem of radially Moore graphs
of radius three. We use the generalized undirected de Bruijn
graphs to give a general construction of radially Moore graphs
of radius three and large odd degree.

1 Introduction

Given the values of the maximum degree d and the diameter k of a graph,
there is a natural upper bound for its number of vertices n,

n ≤ Md,k = 1 + d + d(d− 1) + · · · + d(d − 1)k−1, (1)
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where Md,k is known as the Moore bound . Graphs attaining such a bound
are referred to as Moore graphs. In the case of diameter k = 2, Hoffman
and Singleton [4] proved that Moore graphs exist for d = 2, 3, 7 (being
unique) and possibly d = 57, but for no other degrees. They also showed
that for diameter k = 3 and degree d > 2 Moore graphs do not exist. The
enumeration of Moore graphs of diameter k > 3 was concluded by Damerell
[3], who used the theory of distance-regularity to prove their nonexistence
unless d = 2, which corresponds to the cycle graph of order 2k + 1 (an
independent proof of it was given by Bannai and Ito [1]).

The fact that there are very few Moore graphs suggested the study of
graphs that are in various senses ‘close’ to being Moore graphs. This ‘close-
ness’ has been usually measured as the difference between the (unattain-
able) Moore bound and the order of the considered graphs. In this sense,
the existence of graphs with small ‘defect’ δ (order n = M(d, k)−δ) has de-
served much attention in the literature (see [8]). Another kind of approach
considers relaxing some of the constraints implied by the Moore bound.
From its definition, all vertices of a Moore graph have the same degree (d)
and the same eccentricity (k). We could relax the condition of the degree
and admit few vertices with degree d + δ, as Tang, Miller and Lin [10] did
for the directed case. Alternatively, we may allow the existence of vertices
with eccentricity just on more than the value k they should have. In this
context, regular graphs of degree d, radius k, diameter k + 1 and order
equal to Md,k are referred to as radially Moore graphs. Figure 1 shows all
(non-isomorphic) cubic radially Moore graphs of radius k = 2.

Figure 1: All cubic radially Moore graphs of radius k = 2. Vertices with
eccentricity k (central vertices) are depicted in white.

It is known that radially Moore graphs of radius k = 2 exist for any
degree (see [2]). Nevertheless, the situation for k ≥ 3 seems to be more
complicated. Knor [7] (and independently Exoo) found radially Moore
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graphs of radius k = 3 and small degrees. So far, no general construction
for radius k ≥ 3 is known. Besides, Captdevila et al. [2] give the complete
enumeration of these extremal graphs for some cases (k = 2 and d =
3, 4; k = 3 and d = 3) and rank them according to their ‘proximity’ to a
theoretical Moore graph.

2 The generalized de Bruijn digraphs

The generalized de Bruijn digraphs appear in the context of the optimiza-
tion problem which tries to minimize the diameter and maximize the con-
nectivity of a digraph with n vertices, each of which has outdegree at most
d. The generalized de Bruijn digraph GB(d, n) (d < n) is the directed graph
with n vertices labeled by the residues modulo n such that an arc from i
to j exists if and only if j ≡ di + k (mod n), for some k = 0, . . . , d − 1.
These digraphs were first defined by Imase and Itoh [5] and independently
by Reddy et al. [9] as a generalization of the well known de Bruijn digraphs.
It is known that each vertex in GB(d, n) has both indegree and outdegree d
and this digraph may contain loops (cycles of length 1) and multiple arcs.
The diameter of GB(d, n) is upper bounded by �logd n� (see [5]). Esentially,
the generalized de Bruijn digraphs retain all the properties of the de Bruijn
digraphs, but have no restriction on the number of vertices. Next, we show
the structure of the subdigraph induced by the set of vertices containing
either a loop or a digon (cycle of length 2).

Proposition 1 The digraph GB(d, n), where gcd(d−1, n)= gcd(d2−1, n)=1,
has d loop vertices and d2 − d vertices belonging to a digon.

Proof: A loop vertex i in GB(d, n) satisfies the following equation

i(d− 1) ≡ −k (mod n) (2)

where k ∈ {0, . . . , d−1}. Since gcd(d−1, n) = 1, there is unique solution of
equation 2 for each value of k. As a consequence, there are d loop vertices
in GB(d, n), each of them of the form

−k(d− 1)−1 (mod n), k ∈ {0, . . . , d− 1}.

Besides, a vertex i contained in a cycle of length ≤ 2 satisfies,

i(d2 − 1) ≡ −dk − k′ (mod n) (3)
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where k, k′ ∈ {0, . . . , d− 1}. Since gcd(d2 − 1, n) = 1, for every pair (k, k′)
there is a unique solution of equation 3. Notice that for k = k′, equation
3 transforms to equation 2 which it means that there are d solutions of
equation 3 corresponding to loop vertices. As a consequence, there are
d2 − d vertices contained in a digon. �

Proposition 2 The subdigraph of GB(d, n), where gcd(d−1, n) = gcd(d2−
1, n) = 1 and n ≥ d3, induced by the set of vertices contained in either a loop
or a digon is isomorphic to the digraph with vertex set V = {(i, j) | i, j ∈
{0, . . . , d−1}} and where there is an arc from (i, j) to (j, i), for all (i, j)∈V .

Proof: From the previous proposition, every vertex in the subdigraph of
GB(d, n), induced by the set of vertices contained in either a loop or a digon
is of the form

(d2 − 1)−1(−di− j) (mod n), i, j ∈ {0, · · · , d− 1}.

So, every vertex of this subdigraph can be indentified by the pair (i, j),
where (i, j) ∈ V . Let us observe that there is an arc from (i, j) to (i′, j′) in
this subdigraph if and only if,

(d2 − 1)−1(−di′ − j′) ≡ d(d2 − 1)−1(−di− j) + k (mod n)

for a suitable k ∈ {0, . . . , d−1}. This is equivalent to the following equation:

d2(k − i) + d(i′ − j) + (j′ − k) ≡ 0 (mod n) (4)

Since n ≥ d3, equation 4 holds if and only if k − i = i′ − j = j′ − k = 0,
that is, k = i, i′ = j and j′ = i. �

Figure 2 shows a representation of the subdigraph of GB(d, n) induced
by the set of vertices contained in either a loop or a digon, for the particular
values d = 6 and n = 1872. A vertex (i, j) in the picture corresponds to
vertex (d2 − 1)−1(−di − j) (mod n) in GB(d, n). As an exemple, vertex
(1, 2) is 1016 in GB(d, n), this vertex has a unique arc to [from] a vertex
belonging to the subdigraph itself. This special vertex is (2, 1) (481 in
GB(d, n)).

298



Radially Moore graphs
of radius three and large odd degree N. López and J. Gómez

(0,0) (0,5)

(5,0) (5,5)

Figure 2: The subdigraph of GB(d, n) induced by the set of vertices con-
tained in either a loop or a digon, for the particular values d = 6 and
n = 1872. Loop vertices are depicted in white and the corresponding loop-
arc has been removed for clarity.

3 The generalized undirected de Bruijn graphs

The generalized undirected de Bruijn graph, denoted by UGB(d, n), is the
undirected graph derived from GB(d, n) by replacing arcs with edges and
omitting loops and multiple edges. The diameter of UGB(d, n) is bounded
above by �logd n� since for any two distinct vertices u and v in UGB(d, n),
the distance from u to v in the corresponding digraph GB(d, n) provides an
upper bound for the distance between u and v in UGB(d, n), as it can be
seen in [6]. From its own definition, UGB(d, n) has order n and each vertex
has maximum out degree 2d. More precisely, whenever gcd(d − 1, n) =
gcd(d2−1, n) = 1, UGB(d, n) has d vertices of degree 2d−2, d2−d vertices
of degree 2d− 1 and the remaining vertices of degree 2d. From proposition
2 we derive the following result:

Corollary 3 The subgraph of UGB(d, n), where gcd(d − 1, n) = gcd(d2 −
1, n) = 1 and n ≥ d3, induced by the set of vertices of degree < 2d is
isomorphic to the graph with vertex set V = {(i, j) | i, j ∈ {0, . . . , d − 1}}
and where vertex (i, j) is adjacent to (j, i), for all i > j.

Whenever d is even, we can add some extra edges to UGB(d, n) in order
to achieve a 2d-regular graph.
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Proposition 4 UGB(d, n), where gcd(d − 1, n)= gcd(d2 − 1, n)=1, n≥d3

and d is even, is a subgraph of a regular graph of degree 2d and order n.

Proof: We add the following adjacency relations to the subgraph of UGB(d, n)
induced by the set of vertices of degree < 2d.{

(i, j) ∼ (i, j + 1) for j even;
(i, i) ∼ (i + 1, i + 1) for i even.

The degree of every loop vertex has been increased by two and the degree
of every vertex contained in a digon has been increased by one (see figure
3). Hence, the resultant graph is regular of degree 2d. �

(0,0) (0,5)

(5,0) (5,5)

(0,0) (0,5)

(5,0) (5,5)

Figure 3: The subdigraph of UGB(d, n) induced by the set of vertices with
degree < 2d, for the particular values d = 6 and n = 1872. This graph
is a subgraph of a 2-regular graph, as it shows the right picture. As a
consequence, UGB(d, n) is a subgraph of a 2d-regular graph.

4 Radially Moore graphs of radius three and large

odd degree

Let us start with the tree Td,k given in Fig. 4, which corresponds to the
distance preserve spanning tree of a radial Moore graph of degree d and
radius k, hanging from a central vertex v (every central vertex in a radial
Moore graph of degree d and radius k must reach any other vertex of the

300



Radially Moore graphs
of radius three and large odd degree N. López and J. Gómez

graph in at most k steps). In particular, this is the same structure that we
observe in a Moore graph hanged from any of its vertices. Let V be the set

· · ·
d−1 · · ·

d−1· · ·

· · · · · ·
d−1 d−1

· · ·
d

v
0

1

2

k−1

k

1

d

d(d−1)

d(d−1)k−2

d(d−1)k−1

...
...

...

Distance

Figure 4: The tree Td,k.

of vertices at maximum distance from v in Td,k. There are N = d(d−1)k−1

of such vertices that we label by the integers modulo d(d− 1)k−1. Now, for
odd d, we build a new graph GM(d, k) taking Td,k as a basis and attaching
to V the undirected de Bruijn graph UGB(Δ, N), where Δ = d−1

2 . That
is, the subgraph of GM(d, k) induced by the set of vertices at distance k of
v is precisely UGB(Δ, N). Obviously GM(d, k) has order Md,k and radius
k, since the eccentricity of the ’root’ vertex v is k. Next, we prove that for
k = 3 and bigger enough d, the graph GM(d, k) has diameter k + 1.

Theorem 5 GM(d, 3) has diameter four for every odd d ≥ 19.

Proof: Let v the root of the spanning tree T = Td,3 of G = GM(d, 3).
Since the eccentricity of v is 3, the maximum distance from an adjacent
vertex to v is at most 4. Now, we prove the following: Let u1 and u2 two
vertices at distance three from v, then dist(u1, u2) ≤ 4 if d ≥ 19. Since
u1 and u2 are at distance three from v, we can consider both vertices in
UGB(Δ, N). Let D be the diameter of UGB(Δ, N). Taking into account
that D ≤ logΔ N , and N = (2Δ)2(2Δ + 1), then:

D ≤ �logΔ(2Δ)2(2Δ + 1)� ≤ �logΔ Δ2(8Δ + 4)� ≤ �2 + logΔ(8Δ + 4)�

Now, since 8Δ + 4 ≤ Δ2 if Δ ≥ 9 then we derive that D ≤ 4 if d ≥ 19.
That is, dist(u1, u2) ≤ 4 whenever d ≥ 19. Now, we prove that when u1

and u2 are two vertices of GM(d, 3) at least one of them at distance < 3
from v, then dist(u1, u2) ≤ 4. We can assume that dist(u1, v) = 2 and
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dist(u2, v) = 3, since otherwise there exist a path from u1 to u2 (through
v) with length at most 4. Let u1 be at distance 2 from v, we will see that
every vertex at distance three from v is at most at distance 4 from u1. The
set of vertices adjacent to u1 which are at distance 3 from v is

Γ1(u1) = {lΔ + s | s = 0, . . . , 2Δ − 1}

for some even 0 ≤ l ≤ 4Δ2 + 2Δ. That is, Γ1(u1) is the set of vertices
of UGB(Δ, N) hanging from u1. Any vertex of UGB(Δ, N) at distance at
most three from a vertex in Γ1(u1) is of the form,

Γ4(u1) = {lΔ4 + Δ3s + Δ2k + Δk′ + k′′ | k, k′, k′′ ∈ {0, . . . ,Δ − 1}}

In particular, any vertex of UGB(Δ, N) belongs to Γ4(u1) whenever Δ ≥ 5,
that is, d ≥ 11. Hence, u2 ∈ Γ4(u1) and, as a consequence, dist(u1, u2) ≤ 4.
Let us observe that the diameter of G cannot be less than four since there
is no Moore graph of radius three. �

Note that GM(d, 3) is not a regular graph, since UGB(Δ, N) contains
vertices with degree 2Δ − 1 and 2Δ − 2. Nevertheless, we observe that
gcd(Δ−1, N) = gcd(Δ2−1, N) = 1 if and only if Δ ≡ 0, 2 (mod 6). Hence,
in these cases we can apply proposition 4 and derive that UGB(Δ, N) is
a subgraph of a 2Δ-regular graph. As a consequence, the regularity of
GM(d, 3) can be completed.

Theorem 6 Radial Moore graphs of radius three and degree d do exist for
d = 2Δ + 1 ≥ 19 and Δ ≡ 0, 2 (mod 6).

For other values of Δ it is not clear how to rearrange the subgraph of
UGB(Δ, N) induced by the set of vertices with degree < 2Δ in order to
complete the regularity. We call the problem of the regularity completeness
at this special situation.

Problem 7 Solve the problem of regularity completeness for other values
of Δ.
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Abstract

This paper presents a multicast algorithm, called MSM-s, for
point-to-multipoint transmissions. The algorithm, which has
complexity O(n2) in respect of the number n of nodes, is easy
to implement and can actually be applied in other point-to-
multipoint systems such as distributed computing. We analyze
the algorithm and we provide some upper and lower bounds for
the multicast time delay.

1 Introduction

Multicast is a point-to-multipoint means of transmitting data in which
multiple nodes can receive the same information from one single source.
The applications of multicast include video conferencing, multiplayer net-
working games and corporate communications. The lack of deployment of
IP Multicast has led to considerable interest in alternative approaches at
the application layer, using peer-to-peer architectures[7]. In an applica-
tion layer multicast approach, also called overlay multicast, participating
peers organize themselves into an overlay topology for data delivery. In
this topology each edge corresponds to an unicast path between two end-
systems or peers (also called nodes) in the underlying IP network. All
multicast-related functionality is implemented by peers instead of routers,
with the goal of depicting an efficient overlay network for multicast data
transmission.

In this work we present an algorithm suitable for peer-to-peer multi-
cast transmissions, although the high degree of abstraction of its definition
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makes it also suitable for its implementation in other layers and in general
message-passing systems. The main contribution of this proposal is that
the operation of our algorithm is simple, with a complexity of O(n2), where
n is the number of peers, and thus it may adapt dynamically to the charac-
teristics of the source and the network in order to improve the multicast
time delay. Algorithm execution may be computed by a single group mem-
ber, usually the one which multicasts the message, or by all the members
after the complete network status has been broadcasted.

2 Single Message Multicast Algorithm

Bar Noi et al. introduced in [1] the Message Passing System Model MPS
which characterizes systems that use packet switching techniques at the
communication network. In this work, we extend the Bar Noi model to
EMPS(n,λ,μ), which consists of a set of n full-duplex nodes {p0, . . . , pn−1}
such that each node can simultaneously send and receive a message. The
term message refers to any atomic piece of data sent by one node to another
using the protocols of the underlying layers. For each node p we define the
transmission time μp as the time that requires p to transmit a single mes-
sage. Moreover, for each pair of nodes p and q in a message-passing system
we define the communication latency λpq between p and q as follows. If
at time t node p starts to send a single message to node q, then node p
sends the message during the time interval [t, t + μp], and node q receives
the message during the time interval [t + λpq − μp, t + λpq]. Thus λpq is
the transmission time μp of node p plus the propagation delay between p
and q, as shown in Figure 1. We denote by μ the vector of all μp’s and by
λ the matrix of all λpq’s in the network. For simplicity sake, we assume
that the communication latency is constant, and we consider multicast as a
broadcast problem, since we can isolate the receiving nodes of a multicast
communication, form with them a complete overlay graph, and then depict
a routing table through a broadcast algorithm.

Let p0 be the source node in EMPS(n,λ,μ) model which has a message
to multicast to the set of receiving nodes R = {p1, p2, . . . , pn−1}, we search
for an algorithm that minimizes the multicast time, that is, the time at
which all nodes in R have received the message. Though the result of
EMPS is a multicast spanning tree, in Figure 2 we show that this problem
is different from the well known minimum spanning tree problem.

306



Application Layer Multicast Algorithm S. Machado and J. Ozón

�

�

p q

λpq

�
�
μp

Figure 1: The Postal Model. The latency λpq is equal to transmission time
μp plus the propagation delay between p and q.
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Figure 2: Example of a network where EMPS(n,λ,μ) model does not
correspond to the MST problem. We show in parenthesis the multicast
delay for each node in the case that transmission time μ is 1 for any node.

The algorithm that we propose, called SMM Single Message Multicast,
operates as follows: at each step SMM algorithm chooses the node which
has not yet received the message and has the lowest cost, that is, the un-
visited node that can be reached at minimum time from the nodes which
have already received the message. Once the message has been received
by this node, the algorithm recalculates the arrival times of the remaining
nodes, searches the next node at which the message must be forwarded, and
so forth. We assume that when a sending node finishes the retransmission
of the message to another node, it begins immediately with another des-
tination node. SMM algorithm is very similar to Dijkstra’s shortest path
algorithm with the difference that in this case the time delay between two
nodes p and q is not constant. Actually, in EMPS(n,λ,μ) this delay is
equal to λpq plus μp multiplied by the number of previous retransmissions
of node p.

The multicast time achieved by the algorithm SMM is minimum when
μp = 0 for all the nodes. In this case, the time delay between two nodes p
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Figure 3: Example of a network where SMM is not optimal. Transmission
time is 1 for all the nodes. On the left we apply SMM and on the right
another multicast transmission order with a better result.

and q is always the weight λpq of the edge which joins them, and thus the
SMM algorithm corresponds to the optimal algorithm Dijkstra of comple-
xity O(n2). In a general case, however, the SMM algorithm is not always
optimal. Figure 3 shows a network where SMM is not optimal.

Proposition 1 Algorithm SMM for EMPS(n,λ,μ) has complexity O(n2).

Proof: At each step SMM searches the node which has not yet received
the message with lowest cost. As the maximum number of unvisited nodes
is n−1 this operation requires at most n−2 comparisons. Moreover, the al-
gorithm executes one step for every node which receives the message. Thus,
we have n− 1 steps and at each step we perform at maximum n− 2 com-
parisons plus some basic and bounded operations resulting in a complexity
of O(n2). �

2.1 Message Stream Multicast Algorithm

The SMM algorithm has been defined for the multicast of a single message.
For a set of messages we can repeat indefinitely the routing table obtained
with the SMM algorithm, multicasting each message independently of the
others. That means that when one message finally arrives at all the nodes,
the message source would proceed to multicast the next message, and so
forth. The total delay multicast time of the stream would be in this case
the total number of messages M multiplied by the multicast SMM delay
for one single message. The main inconvenience of this solution is that
the source can not send the next message until the previous one has been
received by all the group members and this could slow down the rate of
communication.
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Next, we consider a new possibility. Before the first message has arrived
at all nodes, the source could stop sending it and begin with the second
message. With this restriction, the multicast time of the first message will
increase, but we will begin to send before the second message. This saving
of time between the sending of two consecutive messages will be progres-
sively accumulated, and if the number of messages is large enough it will
compensate the increase of the multicast time for one single message. The
modified algorithm, that we call MSM-s Message Stream Multicast, works
as SMM and applies the same multicast scheme for every message with the
particularity that it stops the transmission of any message once a node has
already sent it s times. Then it will begin to send the next message and so
forth. Since the restriction on the number of retransmissions could isolate
some nodes of the network, MSM-s should choose a minimum restriction
number s to guarantee full-connectivity. As SMM, MSM-s algorithm has
complexity O(n2).

In next sections we prove that under certain conditions it is possible
to calculate a minimum number Mσ in such a way that if the number of
messages is equal or larger than Mσ then MSM-σ is better than MSM-
(σ + 1). Moreover, when restricting the number of transmissions for each
node, MSM-s has to take into account the transmission rate of the source.
That is, if the source sends at most s times the first message and then, after
s · μr time units, stops the transmission of the first message to begin with
the second one, we must be able to assume that the source has the second
message ready to forward. Otherwise, the source would stop sending the
first message before having the second one and would remain unnecessarily
idle, with the consequent loss of efficiency.

2.2 Message Stream Multicast Algorithm with Time
Restriction

Let p be a node which forwards the message to node q, and let sp(s), sq(s) ≤
s be the times that p and q forward the message for MSM-s, respectively. In
this case the second message will be received at q with a delay of sp(s) · μp

in respect to the first message, since the second message follows the same
path but with a source delay of sp(s) · μp, as seen in Figure 4. When the
forwarding period sq(s) · μq of node q is higher than the forwarding period
sp(s) · μp of node p, then successive messages may have higher delays than
former messages. In this context, the second message could arrive at node

309



Application Layer Multicast Algorithm S. Machado and J. Ozón

�

�

�

�

M1

M2

M1

M1

M1

�

�

sqμq

spμp

(sp − 1)μp

p q

�
�
μp

�
�
μq

Figure 4: The limit sq of retransmissions of peer q could be different for
every peer q, depending on the transmission times of the peers.

q before it has finished forwarding the first message and then the second
message would have to be buffered, with the consequent time delay. This
buffering delay would be also accumulated by the third message, and so
forth. Nevertheless, this situation may be avoided by limiting the time
period sq(s) ·μq at which each node forwards a message, that is, by assuring
that the forwarding rate 1/(sq(s) ·μq) of any node q is higher than the rate
1/(sp(s) ·μp) of any node p which is in the path from the source to node q,
including the source. Therefore, the delay of the first message will be always
the same as the time delay of any other message, an issue which has great
importance in Section 3. Note also that we do not want 1/(sq(s) · μq) &
1/(sp(s) · μp) since in this case q would stop forwarding the first message
long before receiving the second one, and then the communication would
lose efficiency.

3 Analysis of MSM-s

3.1 Stream Multicast Delay

Let τs be the multicast time delay for a single message when the number
of transmissions of each node is established up to s, M the number of
messages of the stream and μr the transmission time of the source, also
called root. We assume that s is large enough to arrive at all the nodes of
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the network. In this case, the total stream multicast delay τMs for MSM-s
is τMs = (M − 1) · s · μr + τs. That is, the root sends the first message
s times and then, s · μr time units later, it begins with the second and so
forth. At moment (M − 1) · s · μr the root finishes to send the (M − 1)th
message and it begins with the last message, that will arrive at the last
node τs time units later. Remember that, as shown in Section 2.2, under
certain restrictions, the delay τs for the last message is the same as the
delay for any other message.

Equation for τMs is only valid when the root sends each message s times.
When s is large the message may be received by all nodes before the root
has sent it s times. Though in this case the node could remain idle and
wait until s · μr and then begin to send the second message, this would
mean a loss of efficiency. So, for MSM-s, when the message is received for
all nodes before the root has sent it s times, we will allow the root to send
the second message immediately, without an interval of silence. In this
particular case the parameter s should be replaced by the actual number
of times sr(s) ≤ s that the root sends each message for MSM-s, and then
τMs = (M − 1) · sr(s) · μr + τs.

Proposition 2 Given the algorithm MSM-s for EMPS, the delay of a
single message is such that τσ+Δ ≤ τσ ∀σ,Δ > 0.

Proof: By construction of the algorithm. When bounding up to σ +Δ the
transmissions of each node, MSM-(σ+Δ) will depict a better multicast tree
than MSM-(σ+Δ−1) for any message only if there exists a better solution.
Otherwise MSM-(σ + Δ) will depict the same multicast tree depicted by
MSM-(σ + Δ − 1). Thus τσ+Δ ≤ τσ+Δ−1. Repeating the argument for
τσ+Δ−1 and τσ+Δ−2 and so forth, we obtain τσ+Δ ≤ τσ ∀σ,Δ > 0. �

Theorem 3 Given the algorithm MSM-s for EMPS(n,λ,μ), we may ob-
tain the conditions such that MSM-σ is faster than MSM-(σ + 1).

Proof: First we define, in the case that MSM-σ could be better than
MSM-(σ + 1), the minimum number Mσ of messages from which MSM-σ
is better than MSM-(σ + 1). We begin with σ = 1. The value of M1 can
be easily obtained once we have computed τ1, τ2 and sr(2) by executing
MSM-1 and MSM-2. Remember that sr(2) is the number of times that the
root sends each message in MSM-2 and that, by Proposition 2, τ1 ≥ τ2.
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Figure 5: Example of network where sr(σ) ≥ sr(σ + 1). In particular we
have sr(3) = 3 and sr(4) = 2.

Then τM1 = (M − 1) · μr + τ1 and τM2 = (M − 1) · sr(2) · μr + τ2.
In this case sr(2) may be equal to either 1 or 2. In the unusual first case
where sr(2) = 1, since τ1 ≥ τ2, MSM-2 will be equal or better than MSM-1
for any number of messages. In the more usual case where sr(2) = 2 we
establish the restriction τM1 ≤ τM2 and then M ≥ (τ1 − τ2)/μr + 1 = M1.

For a general case, the number Mσ of messages from which the total
stream multicast delay is better for s = σ than for s = σ+1 may be obtained
repeating the arguments for M1. First we obtain by implementing MSM-σ
and MSM-(σ + 1) the following expressions τMσ = (M − 1) · sr(σ) · μr + τσ

and τMσ+1 = (M − 1) · sr(σ + 1) · μr + τσ+1. By Proposition 2 we have
τσ ≥ τσ+1. Thus, in the unusual case that sr(σ) ≥ sr(σ + 1), MSM-(σ + 1)
will be equal or better than MSM-σ for any number of messages. In other
case, when sr(σ) < sr(σ + 1), we establish τMσ ≤ τM(σ+1) and then we
obtain M ≥ (τσ − τσ+1)/((sr(σ + 1)− sr(σ)) · μr) + 1 = Mσ. �

Though it is not a usual case, in Figure 5 we depict a network where
sr(σ) is greater than sr(σ + 1). In particular we have sr(3) > sr(4), and
thus MSM-4 will be faster than MSM-3 for any number of messages. In
order to accomplish the restrictions discussed in section 2.2, we suppose
μr = 2 and μp = 1.

3.2 Analytical Bounds for M1

In this section, we obtain an analytical bound for M1, that is, for the num-
ber of messages from which the total stream multicast delay is better for
s = 1 than for s = 2. As explained in former section we assume sr(2) = 2.
In other case, when sr(2) = 1, MSM-2 will be equal or faster than MSM-1
for any number of messages. Let M be the number of messages; τM1 and
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τM2 the multicast delay for MSM-1 and MSM-2 respectively; μr the trans-
mission time of the root; and λmin and λmax the minimum and maximum
latency between any pair of nodes, respectively. First, we find an upper
bound for τM1 and a lower bound for τM2 which we denote respectively by
T1 and t2. If we force T1 to be lower or equal than t2, then MSM-1 will be
better than MSM-2:

τM1 ≤ T1 ≤ t2 ≤ τM2 (1)

To find T1 and t2, we modify slightly the MSM-s performance. First we
have:

τM1 ≤ (M − 1) · μr + (n− 1)λmax = T1 (2)

Remember that for MSM-1 each node sends each message only once, so
MSM-1 depicts a linear tree with n − 1 links. In this case it is clear that
τM1 ≤ T1 since Equation 2 corresponds to the worst case where a message
has to cross the n− 1 links with the maximum latency λmax.

To find a lower bound for τM2 we consider an algorithm with a lower
delay than MSM-2. First we assume that the latency for any pair of nodes
is the minimum latency λmin. Moreover, in the new algorithm we consider
that a node can send the same message simultaneously to two different
nodes, that is, that μp is equal to 0 for all the nodes. Note that, though
this is physically impossible, the new multicast tree will be faster than the
tree obtained with MSM-2. Let N(t), t ∈ Z+, be the number of nodes that
have received the message at step t according to the new algorithm, then
N(t) = 1 + 2 + 4 + · · ·+ 2t = 2t+1− 1. If we equal N(t) to the number n of
nodes we will obtain the number of steps that we need to arrive at all the
network t = �log2(n + 1) − 1�. In this case the new algorithm could send
the single message to all the other nodes in �log2(n + 1) − 1� · λmin time
units and then for all the messages we have:

τM2 ≥ (M − 1) · 2 · μr + �log2(n + 1)− 1�λmin = t2 (3)

Finally, if according to Equation 1 we force T1 to be lower or equal
than t2 then τM1 will be also lower or equal than τM2 and MSM-1 will
be better than MSM-2. From Equation 2 and Equation 3 it results M ≥
((n−1)λmax−�log2(n+1)−1�λmin)/μr +1. And since we have considered
tighter cases than MSM-1 and MSM-2:
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M1 ≤
(n− 1)λmax − �log2(n + 1)− 1�λmin

μr
+ 1 (4)

Note than when sr(2) = 2 there is always a number of messages from
which MSM-1 is better than MSM-2. From Equation 4 we see that this
minimum number of messages is linear respect to the number n of nodes.
So we can conclude that for the general case that sr(2) = 2, MSM-1 is
in general better than MSM-2, provided that the number of messages is
usually larger than the number of nodes.

The bound obtained in Equation 4 can be improved by recalculating t2,
that is, by comparing MSM-2 to a tighter algorithm and by using the same
lower bound T1 for MSM-1. We assume that sr(2) = 2. First, we define
an algorithm such that, at every step, each node sends the message to one
node and such that each node can send the message only twice. We do not
consider by the moment time delays. We call N(t) the number of nodes
which have received the message at step t. Note that from step t−1 to next
step t, only the N(t−1)−N(t−3) nodes which have not yet forwarded the
message twice can forward it. Thus we have, at step t, the N(t− 1) nodes
of the last step plus the N(t− 1)−N(t− 3) nodes that have just received
the message one or two iterations before:

N(t) = N(t− 1) + (N(t− 1)−N(t− 3)) = 2N(t− 1)−N(t− 3) (5)

In our case we have also N(0) = 1, N(1) = 2 and N(2) = 4. From
Table 1 we see that N(t) = F (t + 3) − 1 where F (t) is the well known
Fibonacci serie for F (0) = 0 and F (1) = 1. Hence, considering φ1 =
(1 +

√
5)/2) and φ2 = (1−

√
5)/2) we have:

N(t) = F (t + 3)− 1 = (φt+3
1 − φt+3

2 )/
√

5− 1 (6)

As we are determining a lower bound, in order to calculate the number
t of steps as a function of the number n of nodes we define N ′(t) which
is a little faster than N(t) as N ′(t) = (φt+3

1 + 1)/
√

5 − 1. Observe that
from Equation 6 we have −1 < φ2 < 0 and then N ′(t) > N(t). Hence, if
we calculate for N ′(t) the number of steps necessary to visit n nodes, we
will obtain a lower bound for N(t). For t & 1 the term φt+3

2 is close to 0
and then we have a very accurate bound. If we equal N ′(t) to n we obtain
t = �logφ1

((n + 1)
√

5 − 1) − 3�. We can also prove from Figure 6 that at
each step t we have a minimum delay of t · (λmin + μmin)/2 and then:
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t 0 1 2 3 4 5 6

N(t) 1 2 4 7 12 20 33

F(t) 0 1 1 2 3 5 8 13 21 34

t 0 1 2 3 4 5 6 7 8 9

Table 1: N(t) vs. Fibonacci Serie.
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Figure 6: The Fibonacci Tree. Each node forwards the message twice.

τM2 ≥ (M − 1) · 2 · μr +
⌈
logφ1

((n + 1)
√

5− 1)− 3
⌉λmin + μmin

2
= t2

Hence, considering the new bound of t2 with φ1 = (1 +
√

5)/2) and
repeating the arguments from the former section with the same value of
T1, we have:

M1 ≤
(n− 1)λmax −

⌈
logφ1

((n + 1)
√

5− 1)− 3
⌉

λmin+μmin
2

μr
+ 1 (7)

This bound is tighter than the bound of Equation 4 depending on the
value of μmin. Actually, if μmin is close to λmin the new bound is better
than the former, whereas if μmin ' λmin then we must consider Equation 4.
In a practical case we can calculate both bounds and consider the best one.
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3.3 An Upper and a Lower Bound for Time Delay in MSM-s

Let τMs be the multicast delay for MSM-s and Ts an upper bound of τMs.
We obtain first a bound for s = 2 and then we generalize the result. With
this purpose we consider again the algorithm N(t). As we determine an
upper bound, in order to calculate the number t of steps as a function of
the number n of nodes we define N ′′(t), which is a little slower than N(t),
as N ′′(t) = (φt+3

1 − 1)/
√

5− 1. From Equation 6 we have −1 < φ2 < 0 and
then N ′′(t) < N(t). If we calculate for N ′′(t) the number of steps that we
need to visit n nodes we will obtain an upper bound for N(t). If we equal
N ′′(t) to n we obtain t = �(logφ1

((n + 1)
√

5 + 1)) − 3�. Considering from
Figure 6 that at each step t the maximum delay is t · λmax, we obtain:

τ2 ≤ �(logφ1
((n + 1)

√
5 + 1)) − 3�λmax (8)

Note that, if we want to guarantee that N ′′(t) < N(t), we have to
suppose that each node cand send the message twice for MSM-2. Remember
also that in section 2.2 we have seen that this is not always possible (in
order to avoid congestion). However, we now assume that for MSM-s every
node can send the message s times (twice for s = 2), even if its rate is lower
than the root rate, and then we force the root to send any message with a
lower rate than the slowliest node in the graph. In this case, we will not
have congestion problems, as referred in section 2.2, and all the messages
will have the same delay. Then, since τs ≤ τ2 ∀s ≥ 2 and the root will
begin to send a message at most s · μs time units later than the previous
one (being μs the maximum transmission time of any node in the graph),
we obtain:

τMs ≤ (M − 1) · s · μs +
⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax = Ts ∀s ≥ 2 (9)

To find a lower bound ts for τMs we consider, as we did for MSM-2 in
section 3.2 but now in a general case, an algorithm such that a node can
forward the same message simultaneously to s different nodes. Moreover,
we assume that the latency for any pair of nodes is the minimum latency
λmin. The new algorithm is therefore better than MSM-s. Let N(t), t ∈ Z+,
be the number of nodes that have received the message at step t, then
N(0) = 1 and N(t) = 1 + s + s2 + · · · + st = (st+1 − 1)/(s − 1) for
t > 0. If we equal N(t) to the number of nodes n we obtain that the
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number of steps that we need to arrive at all the network for s ≥ 2 is
t = �(logs(n(s− 1) + 1)) − 1�. And thus for s ≥ 2 we obtain ts:

τMs ≥ (M − 1) · sr(s) · μr +
⌈
logs(n(s− 1) + 1)− 1

⌉
λmin

≥ (M − 1) · μr +
⌈
logs(n(s − 1) + 1)− 1

⌉
λmin (10)

For s = 2 we obtain the expression in Equation 3 and for s = 1 we have
τM1 ≥ (M − 1) · μr + (n− 1)λmin.

3.4 A General Bound for Mσ

Taking the bounds of the former section and repeating the arguments of
section 3.2 for M1, we obtain a bound for the minimum number Mσ of
messages from which MSM-σ is better than MSM-(σ + 1). As in former
sections, this bound has only sense when sr(σ) < sr(σ + 1). In other case,
MSM-(σ + 1) is always equal or better than MSM-σ. From Equation 9 we
have an upper bound Tσ for s = σ and from Equation 10 we obtain a lower
bound tσ+1 for s = σ + 1. Forcing Tσ ≤ tσ+1 we will have τMσ ≤ Tσ ≤
tσ+1 ≤ τM(σ+1) and then MSM-σ will be better than MSM-(σ + 1). This
results in the next bound for σ ≥ 2:

M ≥

⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax −

⌈
log(σ+1)(nσ + 1)− 1

⌉
λmin

sr(σ + 1) · μr − σ · μs
+ 1

Note that we assume sr(σ + 1) · μr ≥ σ · μs and thus sr(σ + 1) = σ + 1
(since μr ≤ μs). Otherwise, we should find tighter values for Tσ and tσ+1

and then recalculate the bound for M . Finally, since we have a pessimistic
case, we obtain for σ ≥ 2:

Mσ ≤

⌈
logφ1

((n + 1)
√

5 + 1)− 3
⌉
λmax −

⌈
log(σ+1)(nσ + 1)− 1

⌉
λmin

(σ + 1) · μr − σ · μs
+ 1

3.5 Robustness of MSM-s

Frequently, real-time applications use unreliable transport-layer protocols
such as User Datagram Protocol (UDP). That means that it is not always
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Figure 7: Multicast tree for the calculation of MSM-s robustness.

possible to ensure the ordered and complete arrival of the data at the
destination peers. The overlay links of application-layer multicast for real-
time applications could therefore provide some degree of reliability. We
analyze in this section, under the assumption that there is no message
retransmission, the robustness of MSM-s algorithm.

First note that MSM-1 algorithm depicts a linear topology for the mul-
ticast tree, that is, a message arrives at a peer which immediately forwards
it to another peer and so forth, whereas the MSM-s algorithm depicts in
general s divergent paths from each peer of the multicast tree, as shown in
Figure 7. In this case, for MSM-1 the probability that a message arrives at
l peers is always lower than the probability of arriving at l− 1 peers. This
is because for arriving at the lth peer the message will have to arrive first
until the (l− 1)th peer and then cross successfully the edge between them.
This undesirable characteristic does not appears in MSM-s when s > 1 due
to the different multicast tree that depicts the algorithm, with divergent
paths. In MSM-3, for example, the probability of arriving at three peers
is much higher than the probability of arriving at only one, an issue which
does not happen in MSM-1. Then, as we show in this section, MSM-1 will
be less robust than the rest of MSM-s algorithms.

Let Pc(p, q) be the probability that peer q receives correctly a message
sent by peer p. For the sake of simplicity we consider that Pc(p, q) = Pc

for all the peers. Actually, if we consider Pc = max{Pc(p, q)} ∀p, q ∈
EMPS(n,λ,μ), we will get a lower bound of the robustness of the MSM-s
algorithm. We call a peer which has received correctly the message a “visi-
ted peer”. Note that since the results would be the same, we calculate the
robustness only for the transmission of one single message.

We denote by n̄s the average number of peers that receive the message
for MSM-s with a probability Pc for each peer-to-peer communication. To
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calculate n̄s we divide the peers into levels, according to Figure 7. We call
El the average number of peers that receive the message at level l. For the
first level we have s peers and then:

E1 = E(r11 + r21 + · · ·+ rs1) = sE(r11) = s(0 · p(0) + 1 · p(1)) = sPc

By definition rij is 1 if the peer i at level j has received the message
and 0 otherwise (we calculate the average number of visited peers when we
send only one message). Thus r11 + r21 + · · · + rs1 is equal to the number
of peers that have received the message at the first level. For the s2 peers
of the second level we have:

E2 = E(r12 + r22 + · · ·+ rs22) = s2E(r12) = s2(0 · p(0) + 1 · p(1)) = s2P 2
c

And in general for the level l:

El = E(r1l + r2l + · · · + rsll) = slE(r1l) = sl(0 · p(0) + 1 · p(1)) = slP l
c

Finally we calculate n̄s as the sum of the averages of each level, consi-
dering that, since the root always has the message, for level 0 this number
is 1. We denote by L the number of levels:

n̄s = E0 + E1 + · · · + EL

= 1 + sPc + (sPc)
2 + · · · + (sPc)

L

=
(sPc)

L+1 − 1

sPc − 1
(11)

In this case we assume that the number of peers is 1+s+s2 + · · ·+sL =
(sL+1 − 1)/(s − 1) and that we flood the network level by level (this only
would happen on a very regular network with little time transmissions).
For the MSM-1 algorithm the assumptions of Equation 11 are valid. Since
we have L = n− 1 it results:

n̄1 =
1− Pn

c

1− Pc
<

1

1− Pc

Thus if 1/(1 − Pc) is much smaller than the number n of peers, the
average number of visited peers with MSM-1 will be also much smaller
than n. But if, on the contrary, 1/(1 − Pc) is higher than n then the
average number of visited peers may be close to n.
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n Pc = 0.9 Pc = 0.99 Pc = 0.999 Pc = 0.9999

50 9.95 39.50 48.79 49.88

100 10.00 63.40 95.21 99.51

1000 10.00 100.00 632.30 951.67

Table 2: Average of the number of peers that receive the message for MSM-
1, depending on n and Pc.

In Table 2 we see some values of the average for MSM-1 depending on
n and Pc. For Pc = 0.9 we have 1/(1−Pc) = 10 and then the average may
not be greater than 10, no matter how high is n. However, for the usual
values of Pc = 0.999 and n = 50 or n = 100 we have good averages, close to
n. For the other values the average is much smaller than n, which means
that the message is not received by a large percentage of peers. In this
case the algorithm should automatically change from MSM-1 to MSM-2.
For instance, for n ≈ 1000 and Pc = 0.999 we would arrive at only the
63.2% of the peers with MSM-1 whereas for MSM-2 the percentage would
be of 99.1%. In this case the percentage for MSM-3 would be only a little
higher than for MSM-2: 99.4%. Actually, in a general case the robustness
of MSM-2 will be acceptable.

Therefore, when we want to apply MSM-1 to a real network (assuming
that MSM-1 can topologically arrive at all the peers with the restriction
s = 1, that the rate of the source is high enough to provide a new message
every μr time units, and that for the number of messages that we have the
time delay is lower for MSM-1 than for MSM-2), in this case the algorithm
itself should estimate the average number of peers that will receive the
message for MSM-1 and if it would not be high enough then it should
apply MSM-2, consider the new average number and change if necessary to
MSM-3, and so forth.

Nevertheless, the assumption that Pc is equal for all the links has major
implications on MSM-1 than on MSM-s for s ≥ 2. In general, in MSM-
1 there are a larger percentage of short end-to-end transmissions than in
MSM-s for s ≥ 2. This means that in MSM-1 there will be in general more
transmissions than in MSM-s with a probability of success larger than Pc.
Thus, the results of Equation 11 can be more pessimistic for s = 1 than for
s ≥ 2.
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4 Conclusions and Future Work

In this paper we propose an algorithm, called MSM-s, for multicast trans-
missions in application-layer networks. The fundamental parameter of
MSM-s is the value of s, i.e. the maximum number of times that a peer
may forward a single message. This parameter is also the maximum degree
of each node in the resulting multicast tree. We present a theoretical study
of the multicast delay and the robustness of the algorithm.

The practical implementation of the algorithm in real peer-to-peer net-
works will be part of our future work. Though in this paper we have not
considered the possibility of dynamic multicast groups, we plan to define
mechanisms for the actualization of the routing tables which take into ac-
count the joining and leaving of peers without recalculating the whole table.
This could mean a loss of efficiency but would simplify the computation.
We consider the possibility of allowing a maximum number of joinings and
leavings of peers with only partial changes on routing tables. Once this
number is achieved the algorithm would proceed to completely recalcu-
late the tables. This maximum number could be determined by means of
theoretical bounds and network measures.

We also plan to study the benefits of the use of the algorithm for two
real-time applications: multi-player networking games, which can be con-
sidered a static scenario with large restrictions on delay and with multi-
ple points of information, and video-streaming of stored content and live-
events, which are dynamic scenarios where the preservation of messages
rate is of great importance.
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Abstract

A matched sum graph G1MG2 of two graphs G1 and G2 of the
same order n is obtained by adding to the union (or sum) of G1

and G2 a set M of n independent edges which join vertices in
V (G1) to vertices in V (G2). When G1 and G2 are isomorphic,
G1MG2 is just a permutation graph. In this work we derive
bounds for the k-restricted edge connectivity λ(k) of matched
sum graphs G1MG2 for 2 ≤ k ≤ 5, and present some sufficient
conditions for the optimality of λ(k)(G1MG2).

1 Introduction

Georges and Mauro introduced in [11] the concept of matched sum graphs as
follows. Given two graphs G1, G2 of the same order |V (G1)| = |V (G2)| = n
and a set M of n independent edges with one endvertex in V (G1) and the
other one in V (G2) (a matching between V (G1) and V (G2)), the matched
sum graph of G1 and G2 is the graph with vertex set V (G1) ∪ V (G2) and
edge set E(G1) ∪ E(G2) ∪M . Even though these authors denoted such a
graph by G1M

+G2, we will simplify this writing to G1MG2 heretofore for
the sake of simplicity. Matched sum graphs are in fact permutation graphs
—as they were introduced by Chartrand and Harary in [6]— when G1 and
G2 are isomorphic; hence, matched sum graphs generalize the concept of
permutation graphs. Examples of permutation graphs include hypercubes,
prisms and some generalized Petersen graphs; see [12, 15, 17, 18] for results
on permutation graphs.
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This work is devoted to study a particular measure of the connectivity
of matched sum graphs, extending (and somehow improving) some other
related known results. This measure —which can be seen within the frame-
work of conditional connectivities, introduced by Harary in [13]— is the so-
called k-restricted edge connectivity of a graph G, denoted λ(k)(G), which
corresponds to the minimum cardinality of a set of edges of G whose dele-
tion results in a disconnected graph with all its components of cardinality
at least k. We first derive bounds for the k-restricted edge connectivity
of matched sum graphs G = G1MG2 for 2 ≤ k ≤ 5. As a consequence
of this, we can present some sufficient conditions to guarantee optimality
for λ(k)(G), G being a matched sum graph. These new results extend and
improve those obtained in [2, 3] in some senses.

From now on, every graph will be assumed to be simple; that is, with
neither loops nor multiple edges.

1.1 Notation and terminology

Unless otherwise stated we follow [7] for additional terminology and defini-
tions.

Let G be a simple graph with vertex set V (G) and edge set E(G). For
every subset X of V (G), G[X] denotes the subgraph of G induced by X. For
every vertex x ∈ V (G), the neighborhood of x denoted by N(x) = NG(x)
is the set of vertices that are adjacent to x. The degree of a vertex x is
d(x) = dG(x) = |N(x)|, whereas δ = δ(G) is the minimum degree over all
vertices of G. For every two given proper subsets X,Y of V (G) we denote
by [X,Y ] the set of edges with one end in X and the other end in Y ; when
X = {x}, we write [x, Y ] instead of [{x}, Y ]. If X is a proper subset of
V (G), let us denote by w(X) = wG(X) to the set [X,V (G) \ X]. If the
graph G is connected and 1 ≤ k ≤ |V (G)| is an integer, the minimum
k-edge degree of G is defined as

ξ(k)(G) = min{|w(X)| : |X| = k, G[X] is connected}.

Clearly ξ(1)(G) = δ(G) and ξ(2)(G) = min{d(u)+d(v)−2 : uv ∈ E(G)}, the
latter being usually denoted as ξ(G) and called the minimum edge-degree
of G.

Inspired by the definition of conditional connectivity introduced by
Harary [13], Fàbrega and Fiol [9, 10] proposed the concept of k-restricted
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edge connectivity as follows. For an integer k ≥ 1 an edge cut W is called
a k-restricted edge cut if every component of G−W has at least k vertices,
where k ≥ 1 (in the former version due to Fàbrega and Fiol all components
obtained by deleting a k-restricted edge cut W from G should have at least
k+1 vertices, hence k ≥ 0 was taken; nevertheless, in view of recent related
literature we consider in this work cardinality at least k for the components
of G − W ). Assuming that G has k-restricted edge cuts (then G is said
to be λ(k)-connected), the k-restricted edge connectivity of G, denoted by
λ(k)(G), is defined as the minimum cardinality over all k-restricted edge
cuts of G. From the definition, we immediately have that if λ(k)(G) exists,
then λ(i)(G) exists for any i < k and λ(i)(G) ≤ λ(k)(G). Observe that any
edge cut of G is a 1-restricted edge cut and λ(1)(G) is just the standard con-
nectivity λ(G). Furthermore, the restricted edge connectivity λ′(G) defined
in [8] is λ′(G) = λ(2)(G).

As far as the existence of k-restricted edge cuts is concerned, it was
shown in [8] that λ(2)(G) exists and λ(2)(G) ≤ ξ(G) if G is not a star
and its order is at least 4. For k = 3, it was shown [5, 16] that except
for a special class of graphs named flowers, 3-restricted edge cuts exist
and λ(3)(G) ≤ ξ(3)(G) for any connected graph G with order at least 7.
Following Ou [16], a graph F of order n ≥ 2k is called a flower if it contains
a cut-vertex s such that every component of F − s has order at most k− 1.
The following result was given by Zhang and Yuan in [21].

Theorem 1 [21] Let G be a connected graph of minimum degree δ and
order n ≥ 2(δ +1) that is not isomorphic to any G∗m,δ (where G∗m,δ consists
of m disjoint copies of Kδ and a new vertex u adjacent to all the vertices in
those copies). For all k ≤ δ+1, G is λ(k)-connected with λ(k)(G) ≤ ξ(k)(G).

A graph G is said to be λ(k)-optimal if λ(k)(G) = ξ(k)(G). For other
interesting results on the k-restricted edge connectivity of graphs see [1, 3,
4, 14, 19, 20, 22], among others.

2 Main results

Given a matched sum graph G1MG2, it is clear that if B ⊂ V (Gi) is a set
of cardinality k that induces a connected subgraph of Gi then

ξ(k)(G1MG2) ≤ |wG1MG2(B)| = |wGi(B)|+ k,
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which in particular yields to the following remark.

Remark 2 Let k ≥ 1 and let G1, G2 be two graphs of minimum k-edge
degrees ξ(k)(G1), ξ(k)(G2), respectively. Then for every matched sum graph
G1MG2 it follows that

ξ(k)(G1MG2) ≤ min{ξ(k)(G1), ξ(k)(G2)}+ k.

A useful result obtained in [3] is recalled next.

Lemma 3 [3] Let G be a connected graph with minimum degree δ and
minimum k-edge-degree ξ(k)(G) with k ≤ δ + 1. Then for every k ≥ 2 and
for every j ∈ {0, . . . , k} it follows that

ξ(k)(G) ≥ ξ(k−j)(G) + jδ − 2jk + j(j + 1).

The following theorem constitutes the main result of this work.

Theorem 4 Let 2 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs of the same order n and minimum degrees δ(G1) ≥ k,
δ(G2) ≥ k, respectively. Then every matched sum graph G1MG2 is λ(k)-
connected and

min{n, λ(k)(G1) + λ(k)(G2), λ(k)(G1) + δ(G1)− k + 3,

λ(k)(G2) + δ(G2)− k + 3, ξ(k)(G1MG2)}
≤ λ(k)(G1MG2) ≤ ξ(k)(G1MG2).

Proof: Set M = G1MG2 from now on. Observe that n ≥ 2k because
both G1 and G2 are λ(k)-connected. Notice also that M has no cutvertex,
because G1 and G2 are connected.

Consider first G1  G2  Kn. In this case, M is isomorphic to K2×Kn,
and it is easily seen that this graph is λ(k)-connected with

λ(k)(K2 ×Kn) = n < k(n− k + 1) = ξ(k)(K2 ×Kn).

Suppose now that G1 is a noncomplete graph, then n = |V (G1)| ≥
δ(G1) + 2. First, when G2  Kn we get δ(G2) = n− 1 ≥ δ(G1) + 1, hence
δ(M) = δ(G1) + 1 ≤ n− 1. As a consequence,

|V (M)| = 2n ≥ 2(δ(M) + 1),
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and M is λ(k)-connected with λ(k)(M) ≤ ξ(k)(M) following Theorem 1 as
M has no cutvertex. Second, suppose that G2 is also a noncomplete graph,
n = |V (G2)| ≥ δ(G2) + 2. Then δ(M) = min{δ(G1), δ(G2)} + 1 ≤ n − 1
and |V (M)| = 2n ≥ 2(δ(M) + 1) holds. Again from Theorem 1 it follows
that M is λ(k)-connected with λ(k)(M) ≤ ξ(k)(M).

The rest of the proof concerns with the lower bound for λ(k)(M). Let
W ⊂ E(M) be a minimum k-restricted edge cut of M, |W | = λ(k)(M).
Hence M−W consists of exactly two connected components, H, H∗ such
that |V (H)| ≥ k and |V (H∗)| ≥ k. Observe that w(V (H)) = w(V (H∗)) =
W = [V (H), V (H∗)]. If |V (H)| = k, then λ(k)(M) = |W | ≥ ξ(k)(M) and
the result holds. If W = M the result is also true since λ(k)(M) = |M | = n.
Let us next prove the following claim.

Claim A. The inequality λ(k)(M) ≥ ξ(k)(M) holds provided that any of
the following situations occurs:

(i) There exist two sets S1 ⊂ V (G1), S2 ⊂ V (G2), 2 ≤ |S1| = k −
2, |S2| = k − 1, such that the following conditions hold altogether:
S1∪S2 ⊆ V (H); the subgraphs M[Si] are connected, i = 1, 2; M−W
contains no edge cd with c ∈ Si and d ∈ (V (Gi)\Si)∩V (H), i = 1, 2;
there exist two vertices u ∈ S1, u′ ∈ S2 such that uu′ ∈ E(M−W );
M−W contains no edge ab′ ∈ M where a ∈ (V (G1) \ S1) ∩ V (H)
and b′ ∈ S2 − u′.

(ii) There exist two sets S1 ⊂ V (G1), S2 ⊂ V (G2), |S1| = |S2| = k−1 for
3 ≤ k ≤ 4, and |S1| = |S2| ∈ {k − 2, k − 1} for k = 5, such that the
following conditions hold altogether: S1 ∪ S2 = V (H); the subgraphs
M[Si] are connected, i = 1, 2; there exist two vertices u ∈ S1, u′ ∈ S2

such that uu′ ∈ E(M−W ).

(iii) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′, t′} ⊂ V (G2),
S3 = {w′, z′} ⊂ V (G2) (S2 ∩ S3 = ∅), |S1| = |S3| = 2, |S2| = 3,
such that the following conditions hold altogether: S1 ∪ S2 ∪ S3 ⊆
V (H); the subgraphsM[Si] are connected, i = 1, 2, 3; M−W contains
no edge cd with c ∈ Si and d ∈ (V (Gi) \ Si) ∩ V (H), i = 1, 2, 3;
uu′, ww′ ∈ E(M − W ); M− W contains no edge ab′ ∈ M where
a ∈ (V (G1) \ S1) ∩ V (H) and b′ ∈ S2 − u′.

(iv) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′, t′, z′} ⊂
V (G2), |S1| = 2, |S2| = 4, such that the following conditions hold
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altogether: S1 ∪ S2 ⊆ V (H); the subgraphs M[Si] are connected, i =
1, 2; M−W contains no edge cd with c ∈ Si and d ∈ (V (Gi) \ Si) ∩
V (H), i = 1, 2; uu′ ∈ E(M−W ); M−W contains no edge ab′ ∈ M
where a ∈ (V (G1) \ S1) ∩ V (H) and b′ ∈ S2 − u′.

(v) k = 5 and there exist S1 = {u,w} ⊂ V (G1), S2 = {u′, v′} ⊂ V (G2),
S3 = {v, t} ⊂ V (G1) (S1 ∩ S3 = ∅), |S1| = |S2| = |S3| = 2, such that
the following conditions hold altogether: S1 ∪ S2 ∪ S3 ⊆ V (H); the
subgraphs M[Si] are connected, i = 1, 2, 3; M−W contains no edge cd
with c ∈ Si, d ∈ (V (Gi)\Si)∩V (H), i = 1, 2, 3; uu′, vv′ ∈ E(M−W ).

Proof of Claim A. We give the proof for items (i), (ii) and (iii), since (iv)
and (v) are proved similarly.

(i) Considering the set Ω = {u} ∪S2 of cardinality k it is clear that the
subgraph of M induced by Ω is connected. Observe that, for every vertex
v ∈ S1 − u, it may exist an edge in M \ W which connects v and some
vertex in (V (G2) \ S2) ∩ V (H). Then,

λ(k)(M) = |wM(V (H))|
≥ |wM(Ω)|+ ∑

v∈S1−u(dM(v) − 2|[v,Ω]| − 1)− (|S1| − 1)(|S1| − 2)

≥ ξ(k)(M) +
∑

v∈S1−u(k + 1− 2 · 2− 1)− (k − 3)(k − 4)

≥ ξ(k)(M) + (k − 3)(k − 4)− (k − 3)(k − 4) = ξ(k)(M),

after taking into account that |[v,Ω]| ≤ 2 for every v ∈ S1 − u.
(ii) When |S1| = |S2| = k−1 consider again the set Ω = {u}∪S2, which

induces a connected subgraph of M. It follows that:

λ(k)(M) = |wM(V (H))|
≥ |wM(Ω)|+

∑
v∈S1−u(dM(v) − 2|[v,Ω]|) − (|S1| − 1)(|S1| − 2)

≥ ξ(k)(M) +
∑

v∈S1−u(k + 1− 2 · 2)− (k − 2)(k − 3)

≥ ξ(k)(M) + (k − 2)(k − 3)− (k − 2)(k − 3) = ξ(k)(M).

And when |S1| = |S2| = k−2 = 3 (k = 5), take the set L = {u,w}∪S2 with
uw ∈ E(G1), w ∈ S1. This set has cardinality k = 5 and clearly induces a
connected subgraph of M. In this case, if S1 \ {u,w} = {z}:

λ(5)(M) = |wM(V (H))| ≥ |wM(L)|+ dM(z)− 2|[z, L]|
≥ ξ(5)(M) + (6− 2 · 3) ≥ ξ(5)(M),

noticing that |[z, L]| ≤ 3.

328



On the k-restricted edge-connectivity of matched sum graphs X. Marcote

(iii) Take the set of cardinality five Ω = S1 ∪ {u′} ∪ S3, which induces
a connected subgraph of M. Then:

λ(5)(M) = |wM(V (H))|
≥ |wM(Ω)|+ dM(v′) + dM(t′)− 2|[{v′, t′},Ω]| − 2|[v′, t′]| − 1
≥ ξ(5)(M) + 6 + 6− 2 · 2− 2− 1 = ξ(5)(M) + 5 > ξ(5)(M),

because vertices v′, t′ cannot be adjacent in M to any vertex of S1 and
since it may exist one edge in M \W which connects z′ to some vertex in
(V (G1) \ S1) ∩ V (H). �

We continue the proof of the theorem by assuming |V (H)| ≥ k + 1,
|V (H∗)| ≥ k + 1, W = M , and that none of the aforementioned five situ-
ations (i) to (v) of Claim A (or the corresponding ones obtained by inter-
changing the roles of either G1, G2, or H, H∗) occurs. We write heretofore
W = W1 ∪WM ∪W2, with W1 ⊂ E(G1), WM ⊂ M , W2 ⊂ E(G2). Notice
that if Wi = ∅ then Wi is an edge cut of Gi due to the minimality of W .
The following claim needs to be proved at this point.

Claim B. If Wi = ∅, every component of Gi −Wi has at least k vertices.

Proof of Claim B. We use proof by contradiction. Assume that some
component of Gi−Wi has at most k−1 vertices. Let C be such a component
of (G1−W1)∪ (G2−W2) on at most k−1 vertices, chosen so that no other
component of (G1 −W1) ∪ (G2 −W2) has fewer vertices than C, and (in
case two or more components have this minimum order) with the minimum
possible number of components of (G1 −W1) ∪ (G2 −W2) to which these
components are linked by means of an edge (of M) in M−W . Assume
without loss of generality that W1 = ∅ and that C is a component of
G1 − W1, with V (C) ⊂ V (H). As M is λ(k)-connected it follows that
there exist two adjacent vertices u ∈ V (C) ⊂ V (G1 − W1) ∩ V (H) and
u′ ∈ V (G2 −W2) ∩ V (H) such that the edge uu′ ∈ M does not belong to
W . Let us prove now the following assertion:

All components of H − V (C) have at least k vertices. (1)

To this end, let C∗ be a component of G2 −W2 to which C is linked by
means of an edge of M \W , and assume that |V (C)| ≤ |V (C∗)| ≤ k − 1
(otherwise the component of H − V (C) containing C∗ has cardinality at
least k).
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Suppose first that |V (C)| = 1, V (C) = {u}. Then H − u is connected
as vertex u is only adjacent in H to vertex u′ ∈ V (C∗), and |V (H − u)| =
|V (H)| − 1 ≥ k. Thus, assertion (1) is proved when k = 2.

Now, suppose that 2 ≤ |V (C)| ∈ {k − 2, k − 1}, hence 3 ≤ k ≤ 5.
Observe that C∗ must be linked inM−W (by means of an edge of M \W )
to some component C̃ = C of G1 −W1. Indeed, let us see that supposing
otherwise that the only component of G1 −W1 to which C∗ is linked is C
yields to one of the five situations of Claim A, against our assumptions.
When |V (C∗)| > |V (C)| it must be |V (C∗)| = k − 1 and |V (C)| = k − 2,
which corresponds to situation (i) of Claim A; and when |V (C∗)| = |V (C)|,
it follows that the only component of G2 −W2 to which C is linked is C∗

(by the way C has been chosen), that is to say, V (H) = V (C) ∪ V (C∗)
and then |V (C∗)| = |V (C)| = k − 1 for 3 ≤ k ≤ 4 or |V (C∗)| = |V (C)| ∈
{k − 2, k − 1} = {3, 4} for k = 5, because |V (H)| ≥ k + 1; this is situation
(ii) of Claim A.

Hence when 2 ≤ |V (C)| ∈ {k − 2, k − 1} it follows that C∗ is linked
in M−W (by means of an edge of M \W ) to some component C̃ = C
of G1 −W1. In this case, the component of H − V (C) containing C∗ has
cardinality at least

|V (C∗)|+ |V (C̃)| ≥ 2 · 2 = 4, if k = 3,

|V (C∗)|+ |V (C̃)| ≥ 2(k − 2) ≥ k, if k = 4, 5.

Observe that assertion (1) is then proved when k = 3, 4. Hence, to complete
the proof of (1) it must be assumed next that k = 5 and |V (C)| = 2,
V (C) = {u,w}.

First, if C∗ is not linked inM−W (by means of an edge of M\W ) to any
component C̃ = C of G1−W1 (H − V (C∗) is connected), it turns out that
|V (C∗)| ∈ {3, 4}; otherwise |V (C∗)| = 2 and so V (H) = V (C) ∪ V (C∗)
according to the way C has been chosen, which is an absurdity because
|V (H)| ≥ 6 by assumption. When |V (C∗)| = 3, C is necessarily linked
in M−W (by means of an edge of M \W ) to some component Ĉ = C∗

of G2 −W2, because |V (H)| ≥ 6. If |V (Ĉ)| ≥ 3 then |V (H) \ V (C∗)| ≥
|V (C)|+ |V (Ĉ)| ≥ 5; hence the set of edges

W ′ = (W ∪ {uu′}) \ wG2(V (C∗))

is a 5-restricted edge cut of M, of cardinality

|W ′| ≤ |W |+ 1− |V (C∗)|(δ(G2)− 2) ≤ |W | − 8 < |W |,
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an absurdity. As a consequence |V (Ĉ)| = 2, situation (iii) of Claim A. The
case |V (C∗)| = 4 corresponds to situation (iv) of Claim A.

Second, suppose that C∗ is linked in M − W by means of an edge
of M \ W to some component C̃ = C of G1 − W1. When |V (C∗)| ≥ 3
assertion (1) holds, as |V (C∗)| + |V (C̃)| ≥ 3 + 2 = 5. Hence, consider
the case |V (C∗)| = 2. Again, if |V (C̃)| ≥ 3 we are done, then assume
|V (C̃)| = 2, which corresponds to situation (v) of Claim A. At this point,
assertion (1) has been shown to be true for all 2 ≤ k ≤ 5.

Once we have seen that every component of H − V (C) has order at
least k, it follows that the set of edges

W ∗ = (W∪{ww′ : w ∈ V (C), w′ ∈ V (G2), ww′ ∈ E(H)\WM})\wG1(V (C))

is a k-restricted edge cut of M. But W ∗ has cardinality

|W ∗| ≤ |W |+ |V (C)| − |wG1(V (C))| ≤ |W | − |V (C)| ≤ |W | − 1

(because |wG1(V (C))| ≥ 2|V (C)| since δ(G1) ≥ k and |V (C)| ≤ k − 1), an
absurdity. Then the claim has been proved. �

As a consequence of Claim B, if Wi = ∅ then Wi is indeed a k-restricted
edge cut of Gi, hence |Wi| ≥ λ(k)(Gi).

Therefore, when both W1,W2 = ∅, then λ(k)(M) = |W | ≥ |W1|+|W2| ≥
λ(k)(G1)+λ(k)(G2), and the theorem holds. Hence we may assume W1 = ∅
and W2 = ∅, and in this case V (H) ⊂ V (G1) and k + 1 ≤ |V (H)| = |WM |.
It follows that

λ(k)(M) = |W | = |W1|+ |WM | = |W1|+ |V (H)|. (2)

Set r = |V (H)| ≥ k + 1. First observe that if r ≥ δ(G1)− k + 3, then from
(2) and from the fact that |W1| ≥ λ(k)(G1) (because W1 is a k-restricted
edge cut of G1) it follows

λ(k)(M) ≥ λ(k)(G1) + δ(G1)− k + 3,

and the theorem holds. Therefore we assume k + 1 ≤ r ≤ δ(G1) − k + 2.
By Lemma 3 we have

|W1| ≥ ξ(r)(G1) ≥ ξ(k)(G1) + (r − k)(δ(G1)− r − k + 1). (3)
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If r ≤ δ(G1)− k + 1, then (r − k)(δ(G1)− r − k + 1) ≥ 0, hence from (2),
(3), and from Remark 2 it follows that

λ(k)(M) ≥ ξ(k)(G1) + r ≥ ξ(k)(G1) + k + 1 > ξ(k)(M).

Suppose finally that r = |V (H)| = δ(G1) − k + 2. Taking into account
Remark 2 and expressions (2) and (3) yields

λ(k)(M) ≥ ξ(k)(G1)+(2k−δ(G1)−2)+(δ(G1)−k+2) = ξ(k)(G1)+k ≥ ξ(k)(M).

Similarly, under the alternative assumption W2 = ∅ and W1 = ∅ we obtain
either

λ(k)(M) ≥ ξ(k)(M)

or
λ(k)(M) ≥ λ(k)(G2) + δ(G2)− k + 3,

and the proof of the theorem is now complete. �

A very similar expression to that in Theorem 4 was obtained in [2] for
matched sum graphs when k = 2. In fact, the only difference lies on the
terms λ(k)(Gi)+δ(Gi)−k+3 = λ(2)(Gi)+δ(Gi)+1 for i = 1, 2 (in the lower
bound for ξ(2)(G1MG2) in Theorem 4), which are one unit larger than the
corresponding terms in the mentioned result in [2]; in this sense, Theorem
4 (slightly) improves the result in [2] for the case k = 2. When k = 3 and
G1  G2 (then G1MG2 is a permutation graph), Theorem 4 recovers the
main result in [3]. Hence the case k = 3 of Theorem 4 is a natural gen-
eralization for matched sum graphs of the corresponding known result for
permutation graphs. As far as we know, cases k = 4, 5 of Theorem 4 must
be considered as new contributions for the k-restricted edge connectivity of
matched sum graphs (thus, also for permutation graphs).

The following results —consequences of Theorem 4— provide conditions
on G1, G2 to guarantee λ(k)-optimality for matched sum graphs G1MG2

(λ(k)(G1MG2) = ξ(k)(G1MG2)) when 2 ≤ k ≤ 5.

Corollary 5 Let 3 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs of minimum degrees δ(G1) ≥ 2k − 3, δ(G2) ≥ 2k − 3
and order |V (G1)| = |V (G2)| ≥ min{ξ(k)(G1), ξ(k)(G2)}+ k, and such that
λ(k)(Gi) ≥ ξ(k)(Gi)− δ(Gi) + 2k − 3 for both i = 1, 2. Then every matched
sum graph G1MG2 is λ(k)-optimal.
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Corollary 6 Let 3 ≤ k ≤ 5 be an integer and let G1, G2 be two connected
λ(k)-connected graphs such that λ(k)(G1) ≤ λ(k)(G2). Suppose that G1 and
G2 are λ(k)-optimal, with minimum degrees δ(G1) ≥ 2k − 3, δ(G2) ≥ k + 2
and order |V (G1)| = |V (G2)| ≥ ξ(k)(G1) + k. Then every matched sum
graph G1MG2 is λ(k)-optimal.
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[3] C. Balbuena, D. González-Moreno and X. Marcote. On the 3-
restricted edge connectivity of permutation graphs. Discrete Appl.
Math., 157:1586–1591, 2009.

[4] C. Balbuena, X. Marcote and P. Garćıa-Vázquez. On restricted con-
nectivities of permutation graphs. Networks, 45:113–118, 2005.

[5] P. Bonsma, N. Ueffing and L. Volkmann. Edge-cuts leaving compo-
nents of order at least three. Discrete Math., 256(1–2):431–439, 2002.

[6] G. Chartrand and F. Harary. Planar permutation graphs. Ann. Inst.
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Abstract

A well-known fundamental problem in extremal graph theory is
the degree/diameter problem, which is to determine the largest
(in terms of the number of vertices) graphs or digraphs or mixed
graphs of given maximum degree, respectively, maximum out-
degree, respectively, mixed degree; and given diameter. General
upper bounds, called Moore bounds, exist for the largest pos-
sible order of such graphs, digraphs and mixed graphs of given
maximum degree d (respectively, maximum out-degree d, re-
spectively, maximum mixed degree) and diameter k.

In recent years, there have been many interesting new results
in all these three versions of the problem, resulting in improve-
ments in both the lower bounds and the upper bounds on the
largest possible number of vertices. However, quite a number of
questions regarding the degree/diameter problem are still wide
open. In this paper we present an overview of the current state
of the degree/diameter problem, for undirected, directed and
mixed graphs, and we outline several related open problems.

1 Introduction

We are interested in relationships among three graph parameters, namely,
maximun degree (respectively, maximum out-degree, respectively, maxi-
mum mixed degree), diameter and order (i.e., the number of vertices) of
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a graph (respectively, digraph, respectively, mixed graph). Fixing the val-
ues of two of the parameters, we then wish to maximise or minimise the
value of the third parameter. Then there are six possible problems, de-
pending on which parameter we maximise or minimise; however, three of
these problems are trivial and so below we formulate only the three non-
trivial problems. For undirected graphs the problem statements are then
as follows.

• Degree/diameter problem: Given natural numbers d and k, find the
largest possible number of vertices nd,k in a graph of maximum degree
d and diameter ≤ k.

• Order/degree problem: Given natural numbers n and d, find the small-
est possible diameter kn,d in a graph of order n and maximum degree
d.

• Order/diameter problem: Given natural numbers n and k, find the
smallest possible maximum degree dn,k in a graph of order n and
diameter k.

The statements of the directed version of the problems differ only in that
‘degree’ is replaced by ‘out-degree’. The corresponding statements for the
mixed version of the problems use both the (undirected) maximum degree
and the maximum out-degree.

The three problems are related but as far as we know they are not
equivalent. For both undirected and directed cases, most of the attention
has been given to the first problem, some attention has been received by
the second problem but the third problem has been largely overlooked so
far. The mixed version of all three problems was the last to be formulated
and has received only very limitted attention until recently.

In this paper we will consider mainly the degree/diameter problem. For
most fixed values of d and k, this problem is still wide open. In the next sec-
tion we give an overview of the undirected version of the degree/diameter
problem. In Section 3 we consider the degree/diameter problem for di-
rected graphs. In Section 4 we present the status of the degree/diameter
problem for mixed graphs. The paper concludes with some interesting open
problems.
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2 Undirected graphs

There is a natural straightforward upper bound on the largest possible
order nd,k of a graph G of maximum degree d and diameter k. Trivially, if
d = 1 then k = 1 and n1,1 = 2; in what follows we therefore assume that
d ≥ 2. Let v be a vertex of the graph G and let ni, for 0 ≤ i ≤ k, be
the number of vertices at distance i from v. Then ni ≤ d(d − 1)i−1, for
1 ≤ i ≤ k, and so

nd,k =
k∑

i=0

ni ≤ 1 + d + d(d − 1) + · · · + d(d− 1)k−1

= 1 + d(1 + (d− 1) + · · ·+ (d− 1)k−1)

=

{
1 + d (d−1)k−1

d−2 if d > 2

2k + 1 if d = 2
(1)

The right-hand side of (1) is called the Moore bound and is denoted by
Md,k. A graph whose maximum degree is d, diameter k, and order equal to
the Moore bound Md,k is called a Moore graph; such a graph is necessarily
regular of degree d.

Moore graphs do exist: For diameter k = 1 and degree d ≥ 1, they are the
complete graphs Kd+1. For diameter k = 2, Hoffman and Singleton [13]
proved that Moore graphs can exist only for d = 2, 3, 7 and possibly 57; they
are the cycle C5 for degree d = 2, the Petersen graph for degree k = 3, and
the Hoffman-Singleton graph for degree k = 7. The existence of a Moore
graph of degree 57 is still an open problem. Damerell [9] proved that there
are no Moore graphs (other than cycles K2k+2) of diameter k ≥ 3. An
independent proof of this result was also given by Bannai and Ito [1].

Since Moore graphs exist only in a small number of cases, the study of
the existence of large graphs focuses on graphs whose order is ‘close’ to the
Moore bound, that is, graphs of order Md,k− δ, for δ small. The parameter
δ is called the defect, and the most usual understanding of ‘small defect’
is that δ ≤ d. For convenience, by a (d, k)-graph we will understand any
graph of maximum degree d and of diameter at most k; if such a graph has
order M∗

d,k − δ then it will be referred to as a (d, k)-graph of defect δ.
Erdös, Fajtlowitcz and Hoffman [10] proved that, apart from the cycle

C4, there are no graphs of degree d, diameter 2 and defect 1, that is, of
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order one less than the Moore bound. This was subsequently generalized
by Bannai and Ito [2] and also by Kurosawa and Tsujii [15] to all diameters.
Hence, for all d ≥ 3 there are no (d, k)-graphs of defect 1, and for d = 2
the only such graphs are the cycles C2k. It follows that for d ≥ 3 we
have nd,k ≤ Md,k − 2. Only a few values of nd,k are known. Apart from
those already mentioned, we have also n4,2 = 15, n5,2 = 24, n3,3 = 20 and
n3,4 = 38. The general frontier in the study of the upper bound of nd,k is
defect 2.

Miller, Nguyen and Pineda-Villavicencio [17] found several structural
properties of (d, 2)-graphs with defect 2, and showed the nonexistence of
such graphs for infinitely many values of d. Conde and Gimbert [7] used
factorisation of certain polynomials related to the characteristic polynomial
of a graph of diameter 2 and defect 2 to prove the nonexistence of (d, 2)-
graphs with defect 2 for other values of d. Combining these results we
obtain that for degree d, 6 ≤ d ≤ 50, there are no (d, 2)-graphs with defect
2. Moreover, we believe that the following conjecture holds.

Conjecture 1 For degree d ≥ 6, there are no (d, 2)-graphs with defect 2.

Little is known about defects larger than two. Jorgensen [14] proved
that a graph with maximum degree 3 and diameter k ≥ 4 cannot have
defect two. Taking into account the handshaking lemma when defect is
odd, this shows that n3,k ≤ M3,k − 4 if k ≥ 4. In 2008, this was improved
by Pineda-Villavicencio and Miller [18] to n3,k ≤ M3,k − 6 if k ≥ 5. Miller
and Simanjuntak [19] proved that for k ≥ 3, a (4, k)-graph cannot have
defect 2, showing that n4,k ≤ M4,k − 3 if k ≥ 3. Currently, for most values
of d and k, the existence or otherwise of (d, k)-graphs with defect 2 remains
an open problem.

The lower bounds on nd,k and n∗d,k are obtained from constructions
of the corresponding graphs and digraphs. There are many interesting
techniques used in these constructions, including algebraic specifications
(used to produce de Bruijn and Kautz graphs and digraphs), star product,
compounding, and graph lifting - the last three methods all producing
large graphs from suitable smaller “seed” or “base” graphs. Additionally,
many new largest known graphs have been obtained with the assistance of
computers.

In the case of undirected graphs, the gap between the lower bound and
the upper bound on nd,k is in most cases wide, providing a good motivation
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for researchers to race each other for ever larger graphs. Further stimulation
is provided by the current table of largest graphs (for degree up to 16 and
diameter up to 10), kept up to date by Francesc Comellas on the website

http://maite71.upc.es/grup de grafs/grafs/taula delta d.html

A larger table (for degree up to 20 and diameter up to 10) is kept by Eyal
Loz, Hebert Perez-Roses and Guillermo Pineda-Villavicencio; it is available
at

http://combinatoricswiki.org/wiki/

The Degree Diameter Problem for General Graphs

3 Directed graphs

As in the case of undirected graphs, there is a natural upper bound on the
order, denoted by nd,k, of directed graphs (digraphs) of given maximum
out-degree d and diameter k. For any given vertex v of a digraph G, we
can count the number of vertices at a particular distance from that vertex.
Let n∗i , for 0 ≤ i ≤ k, be the number of vertices at distance i from v. Then
n∗i ≤ di, for 0 ≤ i ≤ k, and consequently,

n∗d,k =
k∑

i=0

n∗i ≤ 1 + d + d2 + · · ·+ dk

=

{
dk+1−1

d−1 if d > 1

k + 1 if d = 1
(2)

The right-hand side of (2), denoted by M∗
d,k, is called the Moore bound for

digraphs. If the equality sign holds in (2) then the digraph is called a Moore
digraph.

It is well known that Moore digraphs exist only in the trivial cases
when d = 1 (directed cycles of length k + 1, Ck+1, for any k ≥ 1) or k = 1
(complete digraphs of order d + 1, Kd+1, for any d ≥ 1). This was first
proved by Plesńık and Znám in 1974 [23] and later independently by Bridges
and Toueg [6]. In the directed version, the general frontier in the study of
the upper bound of n∗d,k is defect 1. For diameter k = 2, line digraphs
of complete digraphs are examples of (d, 2)-digraphs of defect 1, for any
d ≥ 2, showing that n∗d,2 = M∗

d,2 − 1. When d = 2 there are two other
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non-isomorphic (2, 2)-digraphs of defect 1 but for d ≥ 3 Gimbert [11, 12]
proved that line digraphs of complete digraphs are the only (d, 2)-digraphs
of defect 1. Moreover, Conde, Gimbert, Gonzalez, Miret and Moreno [8]
proved that there are no (d, 3)-digraphs with defect 1, for any d ≥ 3.

On the other hand, focusing on small out-degree instead of diameter,
Miller and Fris [16] proved that, for maximum out-degree 2, there are no
(2, k)-digraphs of defect 1, for any k ≥ 3. Moreover, Baskoro, Miller, Širáň
and Sutton [3] proved, for maximum out-degree 3, that there are no (3, k)-
digraphs of defect 1, for any diameter greater than or equal to 3. The
following conjecture is likely to hold but unlikely to be proved in a simple
way.

Conjecture 2 For maximum out-degree d ≥ 2 and diameter k ≥ 3, there
are no (d, k)-digraphs with defect 1.

The study of digraphs of defect two has so far concentrated on digraphs
of maximum out-degree d = 2. Miller and Širáň [20] proved, for maximum
out-degree d = 2, that (2, k)-digraphs of defect two do not exist, for all
k ≥ 3. For the remaining values of k ≥ 3 and d ≥ 3, the question of
whether digraphs of defect two exist or not remains completely open.

As in the undirected case, the lower bounds on n∗d,k are obtained from
constructions of the corresponding digraphs. The current situation for the
best lower bounds in the directed case is much simpler than in the undi-
rected case. In the case of directed graphs, the best known values of n∗d,k

are, in almost all cases, given by the corresponding Kautz digraph. One
exception is the case of d = 2, where the best lower bound for k ≥ 4 is
obtained from Alegre digraph and line digraphs of Alegre digraph.

The difference between lower bound and upper bound on the largest
possible order of a digraph of given maximum out-degree and diameter
is much smaller than in the undirected case. Correspondingly, it seems
much more difficult to find constructions of graphs that would improve the
lower bound of n∗d,k, and indeed, there has not been any improvement to
the lower bound during the last 30 years or so, since the discovery of the
Alegre digraph. On the other hand, thanks to the line digraph technique,
finding any digraph larger than currently best known would result in much
higher “payout” than in the undirected case, giving rise to a whole infinite
family of largest known digraphs.
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4 Mixed graphs

In many real-world networks, a mixture of both unidirectional and bidirec-
tional connections may exist (e.g., the World Wide Web network, where
pages are nodes and hyperlinks describe the connections). For such net-
works, mixed graphs provide a perfect modeling framework. The idea of
“mixed” (or “partially directed”) graphs is a generalisation of both undi-
rected and directed graphs.

We start by introducing some definitions which are needed for mixed graphs.
Let v be a vertex of a graph G. Denote by id(v) (respectively, od(v)) the
sum of the number of arcs incident to (respectively, from) v and the number
of edges incident with v. Denote by r(u) the number of edges incident with
v (i.e., the undirected degree of v). A graph G is said to be regular of degree
d if od(v) = id(v) = d, for every vertex v of G. A regular graph G of degree
d is said to be totally regular with mixed degree d, undirected degree r and
directed degree z = d − r if for every pair of vertices {u, v} of G we have
r(u) = r(v) = r. Mixed Moore graphs of diameter 2 were first studied by
Bosák in [4] and [5] who proved that all mixed Moore graphs are totally
regular.

Let G be a mixed graph of diameter k, maximum degree d and maximum
out-degree z. Let r = d− z. Then the order n(z, r, k) of G is bounded by

Mz,r,k = 1+(z+r)+z(z+r)+r(z+r−1)+· · ·+z(z+r)k−1+r(z+r−1)k−1

(3)
We shall call Mz,r,k the mixed Moore bound for mixed graphs of maximum
degree d, maximum out-degree z and diameter k. A mixed graph of max-
imum degree d, maximum out-degree z, diameter k and order Mz,r,k is
called a mixed Moore graph. Note that Mz,r,k = Md,k when z = 0 and
Mz,r,k = M∗

d,k when r = 0 (d = r + z).

A mixed graph G is said to be a proper mixed graph if G contains at
least one arc and at least one edge.. Most of the known proper mixed Moore
graphs of diameter 2, constructed by Bosák, can be considered isomorphic
to Kautz digraphs of the same degree and order (with the exception of order
n = 18). Indeed, they are the Kautz digraphs Ka(d, 2) with all digons (a
digon is a pair of arcs with the same end points and opposite direction)
considered as undirected edges.

Mixed Moore graphs for k ≥ 3 have been categorised in [22]. Suppose

341



An Overview of the Degree/Diameter Problem
for Directed, Undirected and Mixed Graphs M. Miller

d ≥ 1, k ≥ 3. A finite graph G is a mixed Moore graph of degree d and
diameter k if and only if either d = 1 and G is Zk+1 (the directed cycle on
k + 1 vertices), or d = 2 and G is C2k+1 (the undirected cycle on 2k + 1
vertices).

It remains to consider Moore graphs of diameter 2. Mixed Moore graphs
of diameter 2 were studied by Bosák in [5] using matrix and eigenvalue
techniques. Bosák proved that any mixed Moore graph of diameter 2 is
totally regular with undirected degree r and directed degree z, where these
two parameters r and z must satisfy a tight arithmetic condition obtained
by eigenvalue analysis. Thus, apart from the trivial cases z = 1 and r = 0
(graph Z3), z = 0 and r = 2 (graph C5), there must exist a positive odd
integer c such that

c | (4z − 3)(4z + 5) and r =
1

4
(c2 + 3). (4)

Mixed Moore graphs of diameter k = 2 and order n ≤ 100 are sum-
marized in Table 1,where d = z + r and the values of r and z are derived
from (4) (see [5]).

5 Conclusion

In this paper we have given an overview of the degree/diameter problem
and we pointed out some research directions concerning the three param-
eters order, diameter and maximum degree for undirected graphs, resp.,
maximum out-degree for directed graphs, resp., maximum mixed degree
for mixed graphs. More specifically, we have been interested in the ques-
tions of optimising one of these three parameters (the order) given the
values of the other two parameters. We finish by presenting a list of some
related open problems in this area.

1. Does there exist a Moore graph of diameter 2 and degree 57? This is
the best known open problem in this area; it has been open for half
a century.

2. Find graphs (resp. digraphs) which have larger number of vertices
than the currently largest known graphs (resp., digraphs).
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n d z r existence uniqueness

3 1 1 0 Z3
√

5 2 0 2 C5
√

6 2 1 1 Ka(2, 2)
√

10 3 0 3 Petersen graph
√

12 3 2 1 Ka(3, 2) (Figure 1)
√

18 4 1 3 Bosák graph
√

20 4 3 1 Ka(4, 2)
√

30 5 4 1 Ka(5, 2)
√

40 6 3 3 unknown unknown
42 6 5 1 Ka(6, 2)

√

50 7 0 7 Hoffman-Singleton graph
√

54 7 4 3 unknown unknown
56 7 6 1 Ka(7, 2)

√

72 8 7 1 Ka(8, 2)
√

84 9 2 7 unknown unknown
88 9 6 3 unknown unknown
90 9 8 1 Ka(9, 2)

√

Table 1: Mixed Moore graphs of diameter 2 and order ≤ 100.

3. Prove the diregularity or otherwise of digraphs close to Moore bound
for defect greater than one. Clearly, undirected graphs close to the
Moore bound must be regular. It is also easy to see that digraphs
close to the directed Moore bound must be out-regular. However,
even for quite small defect (as little as 2), there exist digraphs which
are in-regular but not out-regular (that is, all vertices have the same
in-degree but not the same out-degrees).

4. Investigate the degree/diameter problem for regular graphs, digraphs
and mixed graphs.

5. Investigate the existence (and uniqueness) of mixed Moore graphs of
diameter k = 2 and orders 40, 54, 88, 90 and when n > 100.

6. Find large proper mixed graphs and construct a Table of the largest
known proper mixed graphs.
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Abstract

Let r(d, 2), C(d, 2), and AC(d, 2) be the largest order of a reg-
ular graph, a Cayley graph, and a Cayley graph of an Abelian
group, respectively, of diameter 2 and degree d. The best cur-
rently known lower bounds on these parameters are r(d, 2) ≥
d2 − d + 1 for d − 1 an odd prime power (with a similar result
for powers of two), C(d, 2) ≥ (d + 1)2/2 for degrees d = 2q − 1
where q is an odd prime power, and AC(d, 2) ≥ (3/8)(d2 − 4)
where d = 4q − 2 for an odd prime power q.

Using a number theory result on distribution of primes we prove,
for all sufficiently large d, lower bounds on r(d, 2), C(d, 2), and
AC(d, 2) of the form c · d2 − O(d1.525) for c = 1, 1/2, and 3/8,
respectively. We also prove results of a similar flavour for vertex-
transitive graphs and Cayley graphs of cyclic groups.

1 Introduction

The degree-diameter problem is to find, or at least give good estimates
on, the largest order of a graph of given maximum degree and diameter.
In a broader scope the problem also includes analysis and classification of
the largest graphs of given degree and diameter that have been discovered.
History and development of this area of research has been summed up in
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the relatively recent survey [16]. Despite numerous deep results there re-
main fundamental problems to be resolved, even for diameter two. We will
concentrate on this case and refer the reader interested in higher diameters
to [16].

For d ≥ 2 let n(d, 2) be the largest order of a graph of maximum degree d
and diameter 2. The diameter requirement localized at a vertex v of degree
d implies that any vertex of such a graph, distinct from v and not adjacent
to v, must be one of the at most d − 1 neighbours of some neighbour of
v. This implies the bound n(d, 2) ≤ 1 + d + d(d − 1) = d2 + 1, known
as the Moore bound for diameter two. By the landmark result of Hoffman
and Singleton [10] who initiated research into the degree-diameter problem,
the equality n(d, 2) = d2 + 1 holds if and only if d = 2, 3, 7, and possibly
57. The corresponding unique extremal graphs, that is, the Moore graphs
of diameter two, are the pentagon, the Petersen graph, and the Hoffman-
Singleton graph; the existence of a Moore graph of degree 57 is still in
doubt. For all the remaining degrees d we have n(d, 2) ≤ d2 − 1 by [7].

The best lower bound on n(d, 2) comes from the graphs constructed
by Brown [3] and reads n(d, 2) ≥ d2 − d + 1 for all degrees d such that
d − 1 is an odd prime power. It was later observed in [5] and [7] that
Brown’s graphs can be extended by one vertex if d − 1 is a power of 2,
giving n(d, 2) ≥ d2 − d + 2 in this special case. Thus, at least for degrees
closely related to prime powers, n(d, 2) is asymptotically d2.

Since Brown’s graphs are not regular while the Moore graphs are, it is
of interest to ask about a ‘regular’ version of the degree-diameter problem.
As there are no regular graphs of odd order and odd degree, we also allow,
but only for odd d, graphs of odd order with a single vertex of degree d− 1
and all the remaining vertices of degree d; such graphs will be referred
to as almost regular of degree d. Let now r(d, 2) denote the largest order
of a regular or an almost regular graph of degree d ≥ 2 and diameter 2.
Obviously n(d, 2) ≥ r(d, 2) but it is not clear at all whether equality holds,
say, for some infinite set of degrees.

Observe that all the known Moore graphs of diameter two are not only
regular but vertex-transitive as well. In contrast with this, a result of
Higman (presented in [4]) says that if a graph of degree d = 57, diameter 2,
and order d2 + 1 = 3250 exists, it is not vertex-transitive. For the interest
of the reader, the currently known best upper bounds on the order of this
hypothetical graph can be found in [13]. This has generated interest in the
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parameter vt(d, 2) defined as the largest order of a vertex-transitive graph of
degree d ≥ 2 and diameter 2. By the above result we have vt(d, 2) = d2 +1
for d ∈ {2, 3, 7} and vt(d, 2) ≤ d2 − 1 for all other degrees, including 57.
The best available lower bound [15] in this case is vt(d, 2) ≥ (8/9)(d+1/2)2

for all degrees of the form d = (3q − 1)/2 where q is a prime power such
that q ≡ 1 mod 4.

A special class of vertex-transitive graphs are Cayley graphs. Given a
finite group G with a unit-free generating set S such that S = S−1, the
Cayley graph Cay(G,S) has vertex set G and a pair of vertices g, h ∈ G
are adjacent if g−1h ∈ S. Since this condition is equivalent to h−1g ∈ S
because of S = S−1, the Cayley graph Cay(G,S) is undirected. Obviously,
the degree of Cay(G,S) is |S|, and the diameter of Cay(G,S) is 2 if and
only if every non-identity element of G\S is a product of two elements from
S. We note that the graphs of [15] giving the lower bound at the end of
the previous paragraph are vertex-transitive but not Cayley.

To further refine the analysis, for an arbitrary integer d ≥ 2 we let
C(d, 2), AC(d, 2), and CC(d, 2) denote the largest order of a Cayley graph
of a group, an Abelian group, and a cyclic group, respectively, of diameter 2
and degree d. For d = 2 the three invariants have value 5, and from results
summed up in [16] one can extract the upper bounds C(d, 2) ≤ d2 − 1 and
CC(d, 2) ≤ AC(d, 2) ≤ 1+d+d2/2 for all d ≥ 3. Our interest, however, will
be in constructions providing lower bounds which, as it appears, are quite
far from the upper bounds. For general Cayley graphs the best lower bound
is C(d, 2) ≥ (d+1)2/2 but we only have it for degrees d = 2q−1 where q is
an odd prime power [18]. In the Abelian case the best available estimate is
AC(d, 2) ≥ (3/8)(d2 − 4) where d = 4q − 2 for an odd prime power q, and
for cyclic groups we have CC(d, 2) ≥ (9/25)(d + 3)(d − 2) for d = 5p − 3
where p is an odd prime such that p ≡ 2 mod 3; both results have been
proved in [14]. By [16] the only known lower bound valid for all degrees
d ≥ 3 is the folklore inequality C(d, 2) ≥ AC(d, 2) ≥ CC(d, 2) > d2/4. The
values of C(d, 2) for d ≤ 20 found with the help of computers can be looked
up in the tables [19].

Our aim is to extend, at least in the asymptotic sense, the above best
bounds on n(d, 2), vt(d, 2), C(d, 2), AC(d, 2), and CC(d, 2) from the very
restricted sets of degrees related to prime powers to arbitrary degrees. The
basis of our considerations is a number theory result of [2] about gaps
between consecutive primes. Details, given in Section 3, are straightfor-
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ward for Cayley graphs, less obvious for regular graphs, and non-trivial for
vertex-transitive non-Cayley graphs.

For completeness we remark that interest in large Cayley graphs and
digraphs of given diameter and degree has also been motivated by problems
in group theory and theoretical computer science. Group theory connec-
tions via the concept of a basis of a group have been outlined in [14] and
for links with design of interconnection networks we refer to [16]. Impor-
tance of Cayley graphs in computer generation of record large graphs of
manageable degree and diameter is well known [16] and emphasized also
by the recent results of [12] which led to rewriting the tables of current
largest graphs kept in [19].

2 A review of two constructions

To make our explanations self-contained we begin with giving some details
about the graphs of Brown [3] and McKay-Miller-Širáň [15].

For any prime power q the graph B(q) of Brown has vertex set all the
q2 + q + 1 points of a finite projective plane over the Galois field GF (q).
In other words, vertices of B(q) are equivalence classes [a, b, c] of triples
(a, b, c) = (0, 0, 0) of elements of GF (q), where two triples are equivalent
if they are a non-zero multiple of each other. Two distinct vertices [a, b, c]
and [a′, b′, c′] are adjacent in B(q) if and only if the triples are orthogonal,
that is, if aa′ + bb′ + cc′ = 0. In the terminology of projective geometry
this means that vertices [a, b, c] and [a′, b′, c′] are adjacent if and only if the
point [a, b, c] lies on the line with homogeneous coordinates [a′, b′, c′]. The
vertex set of B(q) may also be identified with one-dimensional subspaces
of a three-dimensional linear space over GF (q), with adjacency defined
by orthogonality of the subspaces. We remark that Brown’s graphs are
isomorphic to the graphs of [8] and a polarity version of this construction
was given in [1].

The structure of Brown’s graphs is known to a great detail and most of
the few facts we need for our analysis can be easily verified by elementary
linear algebra. Determination of the neighbours of a vertex [a, b, c] of B(q)
amounts to classify solutions (x, y, z) of the linear equation ax+by+cz = 0.
Apart from (0, 0, 0) this equation has q2−1 non-zero solutions representing
(q2 − 1)/(q − 1) = q + 1 distinct projective points, which are different from
[a, b, c] if and only if a2 + b2 + c2 = 0. Thus, a vertex [a, b, c] has q or q + 1
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neighbours according to whether a2 + b2 + c2 is equal to zero or not. The
number of vertices of degree q is then equal to the number of self-orthogonal
projective points (those for which a2 + b2 + c2 = 0), which is known to be
equal to q+1, see e.g. [1]. Further, for any two distinct vertices u = [a, b, c]
and v = [a′, b′, c′] the system ax+by+cz = 0 and a′x+b′y+c′z = 0 consists
of two linearly independent equations and hence has a one-dimensional
solution space which, apart from the zero solution, represents a projective
point, that is, a unique vertex w of B(q). If w ∈ {u, v}, then u and v
are adjacent and exactly one of them is represented by a self-orthogonal
triple (if both u and v were represented by self-orthogonal triples then the
system would have two linearly independent solutions (a, b, c) and (a′, b′, c′),
a contradiction), and if w /∈ {u, v} then w is the unique vertex adjacent to
both u and v in B(q).

This discussion shows that the vertex set of B(q) is a disjoint union of
two sets for which we now reserve the symbols V and W , where vertices in V
and W have degree q+1 and q, respectively, with |V | = q2 and |W | = q+1.
Further, the above arguments imply that the subgraph of B(q) induced by
the set W is edgeless, every pair of distinct vertices of W is connected by
a unique path of length two, every edge joining two vertices of V lies in a
unique triangle, while no edge joining a vertex of V with a vertex of W is
contained in any triangle. In particular, B(q) has diameter 2, and since its
maximum degree is q + 1, we have n(d, 2) ≥ q2 + q + 1 = d2 − d + 1 for
d = q + 1.

Since |W | = q + 1, for any odd q we may extend B(q) by an arbitrary
perfect matching M between the (even number of) vertices in W and form
thus a new graph B∗(q). Since B∗(q) is regular of degree q +1 and still has
diameter 2, we have r(d, 2) ≥ d2 − d + 1 for d = q + 1 where q is an odd
prime power. When q is a power of 2 it turns out that all the q +1 vertices
of degree q in B(q) have the form [a, b, a+b] for a, b ∈ GF (q) and hence are
all joined to the vertex [1, 1, 1] of degree q+1. In this case we use a different
type of extension of B(q) to a regular graph, pointed out in [5, 7]. Namely,
we extend B(q) by a new vertex incident to the q+1 vertices of degree q and
denote the resulting regular graph B∗(q), again. This way of adding the
new vertex does not change the diameter and therefore r(d, 2) ≥ d2− d + 2
for q a power of 2.

Although the extended graphs of Brown lead to very good lower bounds
on r(d, 2) when d− 1 is a prime power, they cannot be used for bounds on
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vt(d, 2) for the same degrees, as we show next.

Proposition 1 The extended Brown’s graphs B∗(q) are not vertex-transitive
for any prime power q.

Proof: The result is straightforward if q is a power of 2, since in this case
it can be checked that B∗(q) contains exactly two distinct vertices with
identical neighbours.

Now, let q be odd. We will borrow the notation introduced earlier
together with the facts about Brown’s graphs derived above. We saw there
that any pair of vertices in W is connected by exactly one path of length
two. Thus, at most (q + 1)q/2 vertices in V are adjacent to at least one
vertex from W (in fact, by a refined argument it can be shown that there
are exactly (q + 1)q/2 such vertices but we will not need this here). This
means that there is at least one vertex in V , say, v, not joined to any vertex
in W . Since every edge joining two vertices of V lies in a unique triangle,
the subgraph of B(q) induced by all the neighbours of v is isomorphic to a
matching of (q+1)/2 edges. Recall also that no edge incident to a vertex in
W is contained in any triangle of B(q). It follows that no matter how B(q)
is extended to B∗(q) by a matching M between vertices of W , the subgraph
of B∗(q) induced by the set of all neighbours of any vertex w ∈W contains
just one edge, namely, the edge w′v′ where w′ ∈ W is the unique vertex for
which ww′ ∈ M and v′ ∈ V is the unique vertex adjacent to both w and
w′. We conclude that the graphs B∗(q) are never vertex-transitive. �

The current largest vertex-transitive graphs of diameter 2, at least for
a certain degrees, are the graphs of McKay-Miller-Širáň [15]; they have
also been described in two different but equivalent ways in [17] and [9].
Keeping to the original description, let q be an arbitrary prime power such
that q ≡ 1 mod 4 and let F = GF (q). Let X be the set of all non-zero
squares in F . Let M(q) be the graph of order 2q2 with vertex set V0 ∪ V1

where, for r ∈ {0, 1}, the set Vr consists of triples (i, k, r) with i, k ∈ F .
Every vertex (i, k, r) is adjacent to the q vertices (j, k + (−1)rij, 1 − r) for
all j ∈ F , as well as to the (q − 1)/2 vertices of the form (i, k + ξrx, r) for
all x ∈ X, with no other adjacency. It was proved in [15] that the graphs
M(q) are vertex-transitive (and non-Cayley) graphs of diameter 2. Since
they have degree d = (3q − 1)/2 and order 2q2, for such degrees d we have
vt(d, 2) ≥ (8/9)(d + 1/2)2.
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The full automorphism group of the graphs M(q) was determined in
[9]. In what follows we will just need information about certain subgroups
of this group, which we collect from [15] and [17]. For any s, t ∈ F the
mapping fs,t given by

fs,t(i, k, r) = (i + s, k + t− (−1)r(is + s2/2), r)

is an automorphism of M(q). It can be checked that the collection of all such
mappings forms a group H isomorphic, via the bijection fs,t !→ (s, t), to the
direct product F+ × F+ where F+ is the additive group of F . Moreover,
H acts regularly on both V0 and V1.

In order to introduce more automorphisms, let n be the largest integer
such that 2n divides q − 1 and let q − 1 = 2n(2� + 1). Letting λ = ξ2�+1

one sees that λ has order 2n in the multiplicative group F ∗ of the field F .
It follows from [15] that the mapping g given by

g(i, k, r) = ((−ξ)�+ri, λk, 1 − r)

is an automorphism of the graph M(q) interchanging V0 and V1. The group
G generated by g and all the fs,t is a group of automorphisms of M(q),
transitive on the vertex set of this graph. We will not need any structural
information about G later on.

3 Results

We are now ready to state and prove our main result.

Theorem 2 We have the following lower bounds:

(1) n(d, 2) ≥ r(d, 2) ≥ q2 + q + 1 for all d ≥ 4, with q being the largest
odd prime power such that q ≤ d− 1,

(2) vt(d, 2) ≥ 2q2 for all odd d ≥ 5, where q is the largest prime power
such that q ≡ 5 mod 8 and (d + 1)/2 < q < (2d + 1)/3,

(3) C(d, 2) ≥ 2q2 for all degrees d ≥ 5, where q is the largest odd prime
power such that q ≤ (d + 1)/2,

(4) AC(d, 2) ≥ 6q(q−1) for all d ≥ 10, with q being the largest odd prime
power such that q ≤ (d + 2)/4, and
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(5) CC(d, 2) ≥ 9p(p − 1) for all degrees d ≥ 12, where p is the largest
prime such that p ≡ 2 mod 3 and d/6 ≤ p ≤ (d + 3)/5.

Proof: The essence of the method is to use the known results summed up
in the previous two sections and extend the corresponding graphs appro-
priately. We assume throughout the proof that d and q (and p in the last
case) satisfy the conditions listed above.

(1) Let q be an odd prime power as in the statement; by Chebyshev’s
theorem we have (d − 1)/2 < q ≤ d − 1. Let L = B∗(q) be an extended
Brown’s graph of degree q + 1, diameter 2, and order q2 + q + 1. The
complement L of L has degree Δ = q2 − 1. Let j = �(d− q − 1)/2�, which
means that d = q + 1 + 2j if d is even, and d = q + 1 + 2j + 1 if d is odd.
Our strategy will be to extend L by j 2-factors of L if d is even, and by j
2-factors and a maximum matching coming from a Hamilton cycle of L if
d is odd, to obtain a regular and an almost regular graph of degree d and
diameter 2, respectively.

Observe that for q ≥ 3 we have Δ > (q2 + q +1)/2. By Dirac’s theorem
[6], the graph L contains a Hamilton cycle, say, C. The graph L\E(C) has
even degree and is therefore 2-factorable by the classical result of Petersen;
let F1, . . . , Fj be a collection of j pairwise edge-disjoint 2-factors of L\E(C).
If d is even, we let L′ be the graph arising from L by putting in all the 2-
factors Fi for 1 ≤ i ≤ j. By our choice of j the graph L′ is regular of
degree d. If d is odd, let L′ be obtained from L by putting in the 2-factors
Fi for 1 ≤ i ≤ j − 1 together with a matching of (q2 + q)/2 edges taken
from the Hamilton cycle C. The resulting graph L′ is obviously almost d-
regular. In both instances, L′ has diameter 2 because (as a consequence of
the inequality from Chebyshev’s theorem) it is not complete and contains
L as a spanning subgraph. This shows that r(d, 2) ≥ q2 + q + 1 if q is the
largest odd prime power not exceeding d− 1, for any d ≥ 4.

(2) We refer to the notation regarding the McKay-Miller-Širáň graph
M(q) introduced before the statement of this theorem. We will extend
the graph M(q) by adding new edges as follows. First, observe that the
assumption q ≡ 5 mod 8 implies that n = 2 and 2� + 1 = (q − 1)/4, that
is, λ is a non-square and λ2 = −1. Let Y ⊂ F be a set of non-squares
closed under inverses, that is, Y = −Y , such that |Y | = d − (3q − 1)/2;
note that our assumptions imply that this number is positive, even, and
smaller than (q − 1)/2. Let us extend the graphs M(q) by adding, at each
vertex (i, k, r), a total of |Y | new edges joining (i, k, r) to the vertices of
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the form (i, k + λry, r) for all y ∈ Y . The resulting graph, denoted MY (q),
is regular of degree d and has diameter 2 because it contains M(q) as a
subgraph. More importantly, by a direct computation one can verify that
the generators fs,t and g of the group G introduced above preserve all the
added edges. This shows that G is transitive on vertices of MY (q), which
completes the proof of (2). As far as the assumption (d + 1)/2 < q <
(2d + 1)/3 is concerned, we note that the value of q = (2d + 1)/3 is taken
care of by the McKay-Miller-Širáň graphs for all q ≡ 1 mod 4, while in the
case q = (d + 1)/2 we obtain the Cayley graphs of [18] which will appear
in the next part of the argument.

(3) Let L be a Cayley graph of degree 2q − 1, diameter 2, and order
2q2, constructed in [18]. An inspection of the construction shows that the
graph L is a Cayley graph Cay(G,X) for a non-Abelian group G of order
2q2 containing q2 involutions, and for an inverse-closed generating set X of
size 2q−1 containing q involutions. It is clearly possible to select additional
inverse-closed set Y ⊂ G disjoint from X such that Y contains d − 2q + 1
generators, including some odd number of involutions if d is even. This
yields a Cayley graph L′ = Cay(G,X ∪ Y ) of degree d, diameter 2, and
order 2q2. Consequently, C(d, 2) ≥ 2q2 for the largest odd prime power
q ≤ (d + 1)/2.

(4) Let L be the Cayley graph Cay(G,X) from [14] of diameter 2 for
an Abelian group G of order 6q(q− 1) that contains precisely 3 elements of
order 2, where X is an inverse-closed generating set of size 4q−2 containing
exactly two elements of order 2. Let us select an additional inverse-closed
set Y ⊂ G disjoint from X such that Y contains d−4q+2 generators, includ-
ing an involution if d is odd. Clearly, the Cayley graph L′ = Cay(G,X∪Y )
has degree d, diameter 2, and order 6q(q − 1).

(5) Let L be a Cayley graph Cay(G,X) for a cyclic group G of order
9p(p− 1), degree 5p− 3 and diameter 2 with the single element of order 2
being outside the generating set X, as given in [14]. Choose an additional
inverse-closed set Y ⊂ G disjoint from X such that Y contains d− 5p + 3
generators, including the involution if d is odd. Clearly, the Cayley graph
L′ = Cay(G,X ∪ Y ) has degree d, diameter 2, and order 9p(p − 1). We
only need to apply this process for primes p such that p ≥ d/6 as otherwise
we have a better bound CC(d, 2) > d2/4 from [16]. �

Using a highly non-trivial number theory result on the distribution of
primes it is possible to eliminate q from some of the bounds appearing in
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Theorem 2. The roots of the result are in a still unresolved conjecture of
Legendre on the existence of a prime between n2 and (n+1)2 for any positive
integer n. Replacing (n + 1)2 with x and allowing any real x ≥ 2 leads to a
stronger form of the conjecture, stipulating that for any real x ≥ 2 there is
a prime p such that x− 2

√
x + 1 < p ≤ x. The first result in this direction

was given by Hoheisel [11] of which we just need a consequence saying that
there exists a real number θ < 1 such that the interval [x− xθ, x] contains
a prime number for any sufficiently large x. Clearly, the stronger form of
Legendre’s conjecture would follow, at least for sufficiently large x, if one
could prove that θ < 1/2 in Hoheisel’s result. This has generated research
towards making the exponent θ as small as possible. The current record is
θ = 0.525, established by Baker, Harman and Pintz [2]. That is, by [2], for
any sufficiently large x there is a prime p such that x− x0.525 ≤ p ≤ x.

We will use this result of [2] to prove lower bounds on the order of
the largest graphs of given degree and diameter 2 for all sufficiently large
degrees.

Corollary 3 For all sufficiently large degrees d we have:

(a) n(d, 2) ≥ r(d, 2) > d2 − 2d1.525,

(b) C(d, 2) > (1/2)d2 − 1.39d1.525,

(c) AC(d, 2) > (3/8)d2 − 1.45d1.525.

Proof: Let d be sufficiently large and let q be the largest odd prime power
such that q ≤ D where D is equal to d−1, (d+1)/2, and (d+2)/4 according
as we are in the case (a), (b), and (c). The result of [2] gives

q ≥ D −D0.525 (1)

and we will use this estimate in all three instances. In the case (a) when
D = d− 1 we invoke the first part of Theorem 2 combined with (1) which,
for all sufficiently large d, gives

r(d, 2) ≥ q2 + q + 1 > (D −D0.525)2 + D −D0.525 > d2 − 2d1.525 .

If D = (d + 1)/2, by the third part of Theorem 2 together with (1) we
obtain

C(d, 2) ≥ 2q2 ≥ 2(D−D0.525)2 > (1/2)d2−20.475d1.525 > (1/2)d2−1.39d1.525
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for all sufficiently large degrees d, which proves (b). In the case (c) when
D = (d + 2)/4 we combine the fourth part of Theorem 2 with (1), which
yields

AC(d, 2) ≥ 6q(q − 1) > 6(D −D0.525 − 1)2 > (3/8)d2 − 3 · 4−0.525d1.525 ,

that is, AC(d, 2) > (3/8)d2 − 1.45d1.525 for all sufficiently large d. �

4 Remarks

The construction of the extended graphs of Brown together with Proposi-
tion 1 leads to the following interesting question. Given a graph G of maxi-
mum degree d, what is the smallest number δ = δG such that there exists a
vertex-transitive graph H of degree d+δ that contains G as a spanning sub-
graph? The problem is equivalent to finding a vertex-transitive spanning
subgraph of largest degree in the complement of G. In this terminology,
Proposition 1 says that δG > 0 if G = B∗(q), and it would be interesting
to determine the value of δG in this case.

Our second remark concerns the number-theoretic approximation bound
of [2]. Unfortunately, there appears to be no result on the existence of a
prime from a given congruence class in the interval [x−xθ, x] for some θ < 1
and all sufficiently large x. If there was such a result, the proof of Corollary
3 would apply also to the cases (2) and (5) of Theorem 2 and we would
obtain bounds on vt(d, 2) and CC(d, 2) of the form (8/9)d2 −O(d1+θ) and
(9/25)d2−O(d1+θ) for all sufficiently large odd degree d and general degree
d, respectively.

In the vertex-transitive case we have stated part (2) of Theorem 2 just
for q ≡ 5 mod 8 and odd degrees d. Recalling that n has been defined as
the largest integer such that 2n divides q − 1, with q − 1 = 2n(2� + 1), our
statement of (2) corresponds to the instance when n = 2. We can extended
(2) to all n ≥ 2 as follows:

(2’) If q is the largest prime power such that q ≡ 2n + 1 mod 2n+1 and

(d + 1)/2 < q < (2d + 1)/3, then vt(d, 2) ≥ 2q2 for all d of the form

d = (3q − 1)/2 + 2n−1m for m ≤ 2�.

Indeed, to establish (2’), the only change required in the proof of (2) is to
take the set Y to be a union of m orbits of the permutation of F ∗ given by
y !→ λ2y consisting of non-squares. Such a more general version, however,
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does not appear as appealing as the simplest form for n = 2 that we have
used in the presentation of part (2) of Theorem 2.

Finally, we remark that an analysis of the orbit structure of the group G
of automorphisms of the McKay-Miller-Širáň graphs M(q), introduced in
the last paragraph of Section 2, shows that it is not possible to add an extra
G-invariant perfect matching to M(q) and hence extend the statement (2)
of Theorem 2 to even degrees.
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Theory Ser. B, 81:205–208, 2001.
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Abstract

We consider the partitioning of m-dimensional lattice graphs
using Fiedler’s approach [1], that requires the determination of
the eigenvector belonging to the second smallest eigenvalue of
the Laplacian. We examine the general m-dimensional lattice
and, in particular, the special cases: the 1-dimensional path
graph PN and the 2-dimensional lattice graph. We determine
the size of the clusters and the number of links, which are cut
by this partitioning as a function of Fiedler’s threshold α.

1 Introduction

There are many methods and approaches for graph partitioning. Here,
we shall focus only on Fiedler’s approach to clustering, which theoretically
determines the relation between the size of the obtained clusters and the
number of links that are cut by this partitioning as a function of a threshold
α and of graph properties such as the number of nodes and links. When ap-
plying Fiedler’s beautiful results [1] to the Laplacian matrix Q of a graph,
the eigenvector belonging to the second smallest eigenvalue, known as the
algebraic connectivity, needs to be computed. We apply Fiedler’s approach
to the m-dimensional lattice graph and determine the cluster size as a func-
tion of the threshold α. Following the notation in [2], a graph G consists
of a set N of N = |N | nodes and a set L of L = |L| links. We denote

by xi =
[

(xi)1 (xi)2 ... (xi)N
]T

the eigenvector of the N × N sym-
metric Laplacian Q belonging to the eigenvalue μi. Since eigenvectors of
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a symmetric matrix are orthogonal, we normalize the eigenvectors of Q by
requiring that

‖xi‖22 = xT
i xi = 1 for each i = 1, ..., N (1)

The last condition ensures that the eigenvector is unique. The eigenval-
ues of the Laplacian are nonnegative with at least one eigenvalue equal to
zero [1] and they can be ordered as 0 = μN ≤ μN−1 ≤ ... ≤ μ1. If the
graph is connected, then μN−1 > 0 and the components of the correspon-
dent eigenvector xN−1 determine the Fiedler partitioning with respect to

the threshold α: the set of nodes M =
{

j ∈ N : (xN−1)j ≥ α
}

defines the

first (connected) cluster and the set N\M determines the second (con-
nected) cluster. Our interest concerns the size (or the number of nodes) of
the obtained clusters and the number of links that will be cut by Fiedler’s
partitioning. The end points of those links are nodes in two separate clus-
ters. We denote by c(G) the number of links in G that will be cut by this
partitioning. Furthermore, we define the “ratio of cut links”

r(G) =
c(G)

L
(2)

where L = |L| is the total number of links in the graph.
Clearly, 0 ≤ r(G) ≤ 1.

2 The path and lattice graphs

In this Section, we examine the effect of Fiedler’s clustering on the lattice
graph. We will start with the 1-dimensional path graph PN on N nodes and
containing (N − 1) links or hops, which we subsequently will generalize to
m dimensions. Finally, we will apply the results to a 2-dimensional lattice.

2.1 A path PN of (N − 1) hops

In [3], the Laplacian eigenvalues (as well as the eigenvectors) of the path
PN are derived as μN−m (PN ) = 2

(
1− cos

(
πm
N

))
for m = 0, 1, 2, ..., N − 1.

The second smallest eigenvalue of the Laplacian is

μN−1 (PN ) = 2
(
1− cos

( π

N

))
= 4 sin2

( π

2N

)
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and the corresponding Laplacian eigenvector components are [3]

(xN−1)j =

√
2

N
cos

π

2N
(2j − 1)

where 1 ≤ j ≤ N . The corresponding Fiedler partitioning rule for the
components of the eigenvector xN−1 with respect to the threshold α is

(xN−1)j ≥ α

Clustering into two separate, non-empty sets of nodes will exist if and only

if |α| ≤
√

2
N . Because cos π

2N (2j − 1) decreases with j, the nodes labeled

by j will belong to the first cluster provided

j ≤
[

1

2
+

N

π
arccos

(
α

√
N

2

)]
(3)

Relation (3) shows for α = 0 that one half of the nodes will belong to both
clusters. In all cases only one link will be cut, thus c(PN ) = 1.

2.2 The general m dimensional lattice

We consider the m-dimensional lattice Cm = La(z1+1)×(z2+1)×...×(zm+1) with
lengths z1, z2, . . . , zm in each dimension, respectively, and where at each lat-
tice point with integer coordinates a node is placed that is connected to its
nearest neighbors whose coordinates only differ by 1 in only 1 components.
The total number of nodes in Cm is N = (z1 +1)× (z2 +1)× . . .× (zm +1).
The lattice graph is a Cartesian product [7] of m path graphs, denoted by
Cm = P(z1+1)�P(z2+1)� . . . �P(zm+1). According to [3, 4, 5, 6], the eigen-
values of Cm can be written as a sum of one combination of eigenvalues of
path graphs and the corresponding eigenvector is the Kronecker product of
the corresponding eigenvectors of the same path graphs,

μi1i2...iN (Cm) =
∑m

j=1 μij

(
P(zj+1)

)
xi1i2...im (Cm) = xi1

(
P(zj+1)

)
⊗ xi2

(
P(z2+1)

)
⊗ . . .⊗ xim

(
P(zm+1)

) (4)

where ij ∈ {1, 2, . . . , zj + 1} for each j ∈ {1, 2, . . . ,m}. Without loss of
generality we can assume that z1 ≤ z2 ≤ . . . ≤ zm. In Section 2.1, we
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obtained the Laplacian eigenvalues of the path on N nodes and for the
second smallest eigenvalues μN−1 of P(z1+1), P(z2+1), . . . , P(zm+1), we have
that

μz1

(
P(zj+1)

)
≥ μz2

(
P(zj+1)

)
≥ . . . ≥ μzm

(
P(zj+1)

)
Substituted into (4), the second smallest Laplacian eigenvalue of Cm is ob-
tained for ij = zj + 1, j ∈ {1, 2, . . . ,m− 1} and im = zm. Since μN = 0 or,

equivalently, μz1+1

(
P(zj+1)

)
= μz2+1

(
P(zj+1)

)
= . . . = μzm−1+1

(
P(zj+1)

)
= 0, we find that

μ(z1+1)(z2+1)...zm
(Cm) = μzm

(
P(zj+1)

)
= 2

(
1− cos

(
π

zm + 1

))
From (4), the corresponding eigenvector is

x(z1+1)(z2+1)...zm
(Cm) = xz1+1

(
P(z1+1)

)
⊗xz2+1

(
P(z2+1)

)
⊗. . .⊗xzm

(
P(zm+1)

)
To shorten the notation, we define s = (z1 + 1) (z2 + 1) . . . (zm−1 + 1) and

t =

[
1

2
+

zm + 1

π
arccos

(
α

√
s (zm + 1)

2

)]

All components of xzi+1

(
P(zi+1)

)
= 1√

zi+1
for i ∈ {1, 2, . . . ,m− 1} are

equal, so their final result is Kronecker product of a vector with all equal
components and y = xzm

(
P(zm+1)

)
. Hence, we have

x(z1+1)(z2+1)...zm
(Cm) = K

⎡⎢⎣ y y ... y︸ ︷︷ ︸
s times

⎤⎥⎦
T

(5)

After proper normalization using (1), we obtain K =
√

2
s(zm+1) (see Ap-

pendix A.1). According to (5), xzm

(
P(zm+1)

)
occurs (z1 + 1) . . . (zm−1 + 1)

times in x(z1+1)(z2+1)...zm
(Cm). This last result illustrates that every compo-

nent of x(z1+1)(z2+1)...zm
(Cm) repeats periodically after (zm + 1) next com-

ponents, such that the Fiedler partitioning condition reads√
2

s (zm + 1)
cos

(2j − 1) π

2 (zm + 1)
≥ α (6)
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only for j = 1, 2, ..., (zm + 1). Thus, clustering of the m-dimensional lattice

Cm into two non-empty subsets exists if and only if |α| ≤
√

2
s(zm+1) in which

case j ≤ t. Because every component periodically repeats after (zm + 1)
components, the final condition for the node labeled by j to belong to the
first cluster is j mod (zm + 1) ∈ {1, 2, . . . , t}. Hence, those nodes are

j ∈ {1, 2, . . . , t,
zm + 2, . . . , zm + 1 + t,
...
(s− 1) (zm + 1) + 1, . . . , (s− 1) (zm + 1) + t}

It could be written in a shorter form

j ∈ {w + v|∀w = 0, . . . (s− 1) (zm + 1) and ∀v = 1, . . . t} (7)

This means that the number of nodes in the first cluster equals s · t and
that in the second clusters equals s · (zm + 1− t). The (m− 1)-dimensional
hyperplane divides the m-dimensional lattice Cm into two clusters. Let us
consider the links that will be cut by this partitioning. Those links are

t↔ (t + 1) ,
(zm + 1) + t↔ (zm + 1) + t + 1,
...
(s− 1) (zm + 1) + t↔ (s− 1) (zm + 1) + t + 1

Shortly those links are

w + t↔ w + (t + 1) , for w = 0, zm + 1, . . . , (s− 1) (zm + 1)

Hence, the number of cut links is

c(Cm) = s =

m−1∏
i=1

(zi + 1) (8)

Finally, the total number of links in the general lattice Cm is specified in

Lemma 1 The number of links in the Cm = La(z1+1)×(z2+1)×...×(zm+1) is

L =

[
m∏

i=1

(zi + 1)

]
m∑

i=1

zi

zi + 1
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Proof: We will prove the lemma by induction. Let the number of links in
the k-dimensional lattice La(z1+1)×(z2+1)×...×(zk+1) be l(z1, z2, . . . , zk).

1) For k = 1, we have a path graph Pz1+1 and its number of links is
L = l(z1) = z1 = (z1 + 1) z1

z1+1 .

2) Let us assume that the lemma holds for k-dimensional lattices. We
consider the (k + 1)-dimensional lattice La(z1+1)×(z2+1)×...×(zk+1+1), that is
constructed from k different k-dimensional lattices (La(zi1

+1)×(zi2
+1)×...×(zik

+1),

where i1, i2, . . . , ik ∈ {1, 2, . . . , (k + 1)}) in the following way. We position
a total of

(
zik+1

+ 1
)

such k-dimensional lattices La(zi1
+1)×(zi2

+1)×...×(zik
+1)

in next to each other in the direction of ik+1 dimension. In this way, every
link is counted k-times in all of the dimensions. Intuitively, this construc-
tion is easier to imagine in two or three dimensions. The 2-dimensional

(a) z1 direction (b) z2 direction (c)
La(z1+1)×(z2+1)

Figure 1: Construction of 2-dimensional lattice

lattice La(z1+1)×(z2+1)(Figure 1(c)) is constructed by positioning (z1 + 1)
consecutive path graphs Pz2+1 vertically(on the Figure 1(a)) and (z2 + 1)
consecutive path graphs Pz1+1 horizontally(on the Figure 1(b)). The 3-
dimensional lattice La(z1+1)×(z2+1)×(z3+1)(Figure 2) is constructed by (z3 +
1) consecutive 2-dimensional La(z1+1)×(z2+1) planes that are positioned next
to each other in the direction of the third dimension(on the Figure 2(a)),
(z2+1) consecutive 2-dimensional La(z1+1)×(z3+1) planes that are positioned
next to each other in the direction of the second dimension(on the Figure
2(b))and, finally, (z1 +1) consecutive 2-dimensional La (z2+1)×(z3+1) planes
that are positioned next to each other in the direction of the first dimen-
sion(on the Figure 2(c)). In the process of constructing of La(z1+1)×(z2+1)×(z3+1)

366



Fiedler’s Clustering
on m-dimensional Lattice Graphs S. Trajanovski and P. Van Mieghem

(on Figure 2(d)) all links in are counted twice. Returning to the k-dimensional

(a) z1 direction (b) z2 direction

(c) z3 direction (d) La(z1+1)×(z2+1)×(z3+1)

Figure 2: Construction of 3-dimensional lattice

case, we deduce that

l(z1, z2, . . . , zk+1) =
1

k

k+1∑
i=1

(zi + 1)l(zj1 , zj2 , . . . , zjk
)

where jw = i for each i = 1, 2, . . . , (k + 1) and w = 1, 2, . . . , k. Introducing
the induction hypothesis for k-dimension lattices, we obtain
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l(z1, z2, . . . , zk+1) =
1

k

k+1∑
i=1

(zi + 1)

k+1∏
j=1,j 
=i

(zj + 1)

k+1∑
j=1,j 
=i

zj

zj + 1

=
1

k

k+1∏
j=1

(zj + 1)
k+1∑
i=1

k+1∑
j=1,j 
=i

zj

zj + 1

=
1

k

k+1∏
j=1

(zj + 1)k
∑
i=1

k + 1
zj

zj + 1

which illustrates that the induction hypothesis is true for (k + 1), and con-
sequently it is true for each dimension m ≥ 1. �

Using (4), the ordering z1 ≤ z2 ≤ . . . ≤ zm and Lemma 1, the “ratio of cut
links” is

r(Cm) =
1

(zm + 1)
∑m

i=1
zi

zi+1

For the most common case of α = 0 in (7), both clusters have almost the
same number of nodes. For a 3-dimensional lattice La(z1+1)×(z2+1)×(z3+1), a
plane divides La(z1+1)×(z2+1)×(z3+1) into two clusters with the same number
of links. Figure 3 is an example for m = 2, in which z1 = 6 and z2 = 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

Figure 3: Partitioning of two-dimensional lattice La7×8 for α = 1
20 .

and Fiedler’s partitioning for α = 0.05. In this case c (La7×8) = 7 and
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L = z1 (z2 + 1)+z2 (z1 + 1) = 97. Hence r (La7×8) = c(La7×8)
L = 7

97 ≈ 7.22%
of all links will be cut by Fiedler’s partitioning. On the Figure 4 are given
partitions of La6×4×5(Figure 4(a)) for different values of α = 0.1(Figure
4(b)), 0.05(Figure 4(c)) and 0(Figure 4(d)).

(a) La6×4×5 (b) α = 0.1

(c) α = 0.05 (d) α = 0

Figure 4: Partitioning of three-dimensional lattice La6×4×5

3 Conclusion

We have applied Fiedler’s partitioning algorithm to an m-dimensional lat-
tice La(z1+1)×(z2+1)×...×(zm+1) and have calculated the size of the two clus-
ters, the number of links that are cut by this partitioning and the percentage
of cut links as a function of the Fiedler threshold α and the characteristic
dimensions of the lattice. In the most common case of α = 0, both clusters
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have equal sizes. The number of cut links does not depend on α.
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Graph Spectra.Addison-Wesley, Cambridge University Press, 2010.

[5] A. Kaveh, H. Rahami. A Unified Method of Eigendecomposition of
Graph Product. Asian journal of Civil Engineering., Vol.7, No.6, 2006.

[6] B. Mohar, The Laplacian Spectra of Graphs. Graph Theory, Combina-
torics, and Applications, Wiley, pp. 871, 1991.

[7] F. Aurenhammer, J. Hagauer, W. Imrich. Cartesian graph factorization
at logarithmic cost per edge. Comput. Complexity, 2:331–349, 1992.

Appendix: The normalization coefficient of Cm

According to (1), we normalize the eigenvector of Cm as

(z1+1)×(z2+1)×...×(zm+1)∑
j=1

(
x(z1+1)×(z2+1)×...×zm

(Cm)
)2

j
= 1

which is equivalent to determining K such that

zm∑
j=0

(
x(z1+1)(z2+1)...zm

(Cm)
)2

j︸ ︷︷ ︸
(z1+1)(z2+1)...(zm−1+1) times

= 1
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zm∑
j=0

K2 cos2 (2j + 1) π

2 (Zm+1)︸ ︷︷ ︸
(z1+1)(z2+1)...(zm−1+1) times

= 1

and, explicitly,

K2 (z1 + 1) (z2 + 1) . . . (zm−1 + 1)

zm∑
j=0

cos2 (2j + 1) π

2 (zm + 1)
= 1

Now, since

zm∑
j=0

cos2 (2j + 1) π

2 (zm + 1)
=

zm∑
j=0

1 + cos
(

(2j+1)π
zm+1

)
2

=
zm + 1

2
+ Re

⎧⎨⎩
zm∑
j=0

(
e

(2j+1)π
zm+1

)j
⎫⎬⎭

=
zm + 1

2
+ Re

⎧⎨⎩e
π

Zm+1
i

zm∑
j=0

(
e

2π
Zm+1

i
)j

⎫⎬⎭
=

zm + 1

2
+ Re

{
e

π
Zm+1

i e
2π·i

Zm+1
(Zm+1) − 1

e
2π·i

Zm+1 − 1

}

=
zm + 1

2
+ Re

{
e

π
Zm+1

i 1− 1

e
2π·i

Zm+1 − 1

}
=

zm + 1

2

We find that

K =

√
2

(z1 + 1) (z2 + 1) . . . (zm−1 + 1) (zm + 1)
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Abstract

We show that a construction of Comellas and Fiol for large
vertex-transitive digraphs of given degree and diameter from
small digraphs preserves the properties of being a Cayley di-
graph and being a regular covering.

1 Introduction

There age numerous ways to construct ‘large’ digraphs of a given in- and
out-degree and a given diameter; we refer to [5] for a fairly recent survey.
The two most prominent contribution for digraphs that, in addition, are
vertex-transitive, are the constructions by Comellas and Fiol [1], Gómez [3],
and Faber, Moore and Chen [2].

Our interest in these constructions has been motivated by the remark in
[5] to the extent that graph coverings appear to be an appropriate language
for presenting a number of constructions in the degree-diameter problem.
Two constructions of Comellas and Fiol have already been studied from this
point of view in [6]. For completeness we note that digraphs and graphs of
Faber, Moore and Chen have been studied in depth in [4].

The underlying idea of all constructions of [1] is to take a ‘small’ digraph
as input and by a kind of ‘composition’, as the operation is called in [1],
produce a ‘large’ output digraph that depends on various parameters. Here
we examine a construction of the paper [1] that has not been considered
in [6], with the aim to show that the construction preserves coverings and
the property of being Cayley in the sense that if the input digraph has the
property, then so does the output digraph.
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2 Constructions

Throughout, we assume that the reader is familiar with the concepts of a
Cayley digraph as well as of regular coverings of digraphs and their descrip-
tion in the language of voltage assignments; we recommend [5] for details
especially in connection with the directed version of the degree-diameter
problem.

We begin with a description of the construction of Comellas and Fiol [1]
which will be considered from now on. Let G be a digraph with vertex set
V and dart set D, the input digraph for the construction. Let m and n ≥ 2
be positive integers such that m is divisible by n. Further, let � be a fixed
element of the cyclic group Zm such that � = 0, 1. The output digraph G′

will have vertex set V ′ and dart set D′ defined as follows. The vertex set
V ′ consists of all ordered (n + 1)-tuples (p0p1 . . . pn−1|j) such that j ∈ Zm

and pi ∈ V for all i, 0 ≤ i ≤ n − 1. The dart set D′ consists precisely of
the darts of the form

(p0p1 . . . pj−1 u pj+1 . . . pn−1|j) →
{

(p0p1 . . . pj−1 v pj+1 . . . pn−1|(j + 1))
(p0p1 . . . pj−1 u pj+1 . . . pn−1|(j + �)),

whenever v is adjacent from u in G.
The role of this construction in the directed version of the degree-

diameter problem is clear from the results of [1] which imply that if the
input digraph G of order, say, c, is vertex-transitive, regular of degree d,
and k-reachable, meaning that any ordered pair of vertices is connected by
a directed walk of length precisely k, then the output digraph G′ is vertex
transitive, regular of degree d+1, of order mcn and diameter at most kn+b
where b is the diameter of the Cayley digraph Cay(Zm, {1, �}).

For our purposes it will be more convenient to work with an isomorphic
image of G′, defined by means of the bijection ϕ : V ′ → V ′ given by

(p0p1 . . . pj−1 u pj+1 . . . pn−1|j) !→ (u pj+1 . . . pn−1p0p1 . . . pj−1|j) .

The isomorphic copy G∗ = ϕ(G′) of G′ thus has the same vertex set
V ∗ = V ′ but all the darts in its dart set D∗ have the form

(p0p1 . . . pn−1|j) →
{

(p1 . . . pn−1q0|(j + 1))
(p�p�+1p�+2 . . . p�−1|(j + �))

where q0 is adjacent from p0 in G and, as before, � is a fixed element of Zm

such that � = 0, 1.
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In order to have a more explicit notation, we denote the digraph G∗ by
writing G∗ = CF (G,n,m, �), where CF stands for Comellas-Fiol and G,
n, m and � are the parameters upon which the construction of G∗ depends.

We note that a similar amendment of the description of this construction
of Comellas and Fiol was suggested by Gómez [3] but the isomorphism
proposed in [3] appears to be inconsistent with the actual graph description
given therein.

3 Preservation of Cayley digraphs

We are now in position to show that the construction described in the
previous section preserves the property of being Cayley in the sense outlined
in the Introduction. We keep to all the notation introduced earlier.

Theorem 1 If G is a Cayley digraph, then G∗ = CF (G,n,m, �) is a Cay-
ley digraphs as well.

Proof: Let G = Cay(H,X) be a Cayley digraph for a group H and a
generating set X. Let H∗ be the semidirect product of Hn = H×H×. . .×H
(n times) by Zm, with elements of the form (a; j) where a = (a0, . . . , an−1) ∈
Hn and j ∈ Zm and with the action j of Zm on Hn defined by

j(a) = (aj , aj+1, . . . , an−1, a0, . . . , aj−1)

for any a = (a0, . . . , an−1) ∈ Hn; at this point we recall that m is a multiple
of n and hence the action is well defined. Multiplication in the semidirect
product H∗ = Hn � Zm is given by

(a; j)(a′; j′) = (j′(a).a′; j + j′) . (1)

Now, for any x ∈ X we let x∗ = (e, e, . . . , e, x) ∈ Hn where e is the
unit element of A; also, let e∗ = (e, . . . , e) ∈ Hn. Finally, define X∗ =
{(x∗; 1), x ∈ X} ∪ {(e∗, �)} where � ∈ Zm is the fixed element different
from 0 and 1. Note that the action of j = 1 ∈ Zm on Hn is given by
j(a) = 1(j0, . . . , jn−1) = (j1, . . . , jn−1, j0).

We show that the Cayley digraph Cay(H∗,X∗) is isomorphic to the
digraph G∗ for G = Cay(H,X). The key is to observe that, for any x ∈ X,

1(a).x∗ = 1(a0, . . . , an−1)(e, . . . , e, x)

= (a1, . . . , an−1, a0x)
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On the other hand, right multiplication by (x∗, 1) ∈ X∗ gives:

(a; j)(x∗; 1) = (1(a).x∗; j + 1)

= ((a1, . . . , an−1, a0).(e, . . . , e, x); j + 1)

= (a1, . . . , an−1, a0x; j + 1).

It follows that for any (x∗, 1) ∈ X∗ the vertex (a; j) is adjacent to the vertex
(a; j)(x∗; 1) = (1(a).x∗; j + 1) in the Cayley digraph Cay(H∗,X∗). This,
however, is precisely the first adjacency rule in the definition of the output
digraph G∗. Similarly, (a; j) is in the Cayley digraph adjacent to the vertex
(a; j)(e∗; �) = (�(a).e∗; j + �), which gives the second adjacency rule for G∗.
Consequently, G∗ is isomorphic to the Cayley digraph Cay(H∗,X∗) if the
input digraph G is a Cayley digraph Cay(H,X), as claimed. �

4 Preservation of coverings

We continue with the result regarding preservation of regular coverings.

Theorem 2 If G regularly covers a digraph of a smaller order, then so
does G∗ = CF (G,n,m, �).

Proof: Let G be a regular covering space of a digraph of order smaller
than the order of G. Equivalently, we assume that G is a lift of a base
digraph J = (VJ ,DJ) by a voltage assignment α in some non-trivial group
A.

We first introduce a new base digraph L = (VL,DL). Its vertex set
VL will be the set {(r0, . . . , rn−1); ri ∈ VJ)}, where i ∈ {0, . . . , n − 1}. If
there exists an arc b from a vertex r′ ∈ VJ to a vertex s′ ∈ VJ in the
digraph J , then incidence in the digraph L is defined by the following
rule. For every arc b ∈ DJ from r′ to s′ in J and for every (n − 1)-tuple
(r1, . . . , rn−1) of vertices in J there will be a dart labeled b̃ ∈ DL from the
vertex r = (r′, r1, . . . , rn−1) ∈ VL to the vertex s = (r1, . . . , rn−1, s

′) ∈ VL.
Furthermore, for each vertex r = (r0, . . . , rn−1) ∈ VL we include a dart c̃r

from r to the vertex r∗ = (r�, r�+1, . . . , r�−1).
Let us now introduce a voltage assignment β on L in the group A∗ =

An � Zm, with the cyclic group Zm acting on the n-fold direct product
An = A × A × . . . × A in the same way as it acted on H in the previous
section.
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Consider a dart b̃ : r −→ s of L that has originally come from a dart
b : r′ −→ s′ in J carrying voltage α(b). The new voltage of b̃ will be
β(b̃) = (e, . . . , e, α(b); 1); moreover, the darts c̃r will receive the voltage
β(c̃r) = (e, . . . , e|�).

Let us denote the lift of L with respect to this voltage assignment by
Lβ. By definition of a lift, vertices and darts of Lβ have the form (r, a) and
(b̃, a), (c̃r, a) where r ∈ VL, b̃ ∈ DL and a ∈ A∗. A dart (b̃, a) emanates from
(r, a) and terminates at (s, a.β(b̃)) while a dart (c̃r, a) emanates from (r, a)
and terminates at (r∗, a.β(c̃)). Note that the last two products evaluate as

a.β(b̃) = (a0, a1, . . . , an−1|j).(e, . . . , e, α(b)|1)
= ((a1, . . . , an−1, a0), (e, . . . , e, α(b))|j + 1))

= (a1, . . . , an−1, a0.α(b)|j + 1).

and

a.β(c̃) = (a0, a1, . . . , an−1)β(c̃)

= (a0, a1, . . . , an−1)(e, . . . , e|�)
= (a�, a�+1, . . . , a�−1).

We prove that the digraphs G∗ and Lβ are isomorphic. Having assumed
that G is a lift of J by the voltage assignment α in the group A, it follows
that the first type of incidence in the definition of the Comellas-Fiol digraph
G∗ can be described in the form

((r0, a0) . . . (rn−1, an−1)|j) −→ ((r1, a1) . . . (rn−1, an−1)(s0, a0.α(b))|j + 1)

for any ai ∈ A, 0 ≤ i ≤ n− 1, whenever b is a dart from r0 to s0 in J . It is
now a matter of routine to check that the mapping

((r0, a0)(r1, a1) . . . (rn−1, an−1)|j) !→ ((r0, . . . , rn−1)(a0, . . . , an−1)|j)

is an isomorphism from G∗ onto Lβ . �

In conclusion, let us note that although it is true that every Cayley
digraph is a regular covering of a one-vertex digraph, our Theorem 2 does
not imply Theorem 1 because, in the proof of Theorem 2, the digraph L∗

need not be a one-vertex digraph even when J is.
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Dalfó, Cristina
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Univ. Politècnica de Catalunya, Spain francisco.javier.marcote@upc.edu

Mart́ınez, Carmen
Univ. de Cantabria, Spain carmen.martinez@unican.es

Maureso, Montserrat
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Univ. Politècnica de Catalunya, Spain luis.pedro.montejano@upc.edu

Moreno, Roćıo
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Staneková, Lubica
Slovak Univ. of Technology, Slovakia ls@math.sk

Stokes, Clara
Univ. Rovira i Virgili, Spain klara.stokes@urv. cat

Trajanovski, Stojan
Delft Univ. of Technology, Netherlands S.Trajanovski@tudelft.nl

Valenzuela, Juan Carlos
Univ. de Cádiz, Spain jcarlos.valenzuela@uca.es

Vilaltella, Joan
Univ. Politècnica de Catalunya, Spain joanvilaltella@farinyes.net

Yebra, Jos Lúıs A.
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Garćıa-Vázquez, P. 39, 63, 79,

183
Garriga, E. 209
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