70 research outputs found

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    Oscillatory dynamics as a mechanism of integration in complex networks of neurons

    No full text
    The large-scale integrative mechanisms of the brain, the means by which the activity of functionally segregated neuronal regions are combined, are not well understood. There is growing agreement that a flexible mechanism of integration must be present in order to support the myriad changing cognitive demands under which we are placed. Neuronal communication through phase-coherent oscillation stands as the prominent theory of cognitive integration. The work presented in this thesis explores the role of oscillation and synchronisation in the transfer and integration of information in the brain. It is first shown that complex metastable dynamics suitable for modelling phase-coherent neuronal synchronisation emerge from modularity in networks of delay and pulse-coupled oscillators. Within a restricted parameter regime these networks display a constantly changing set of partially synchronised states where some modules remain highly synchronised while others desynchronise. An examination of network phase dynamics shows increasing coherence with increasing connectivity between modules. The metastable chimera states that emerge from the activity of modular oscillator networks are demonstrated to be synchronous with a constant phase relationship as would be required of a mechanism of large-scale neural integration. A specific example of functional phase-coherent synchronisation within a spiking neural system is then developed. Competitive stimulus selection between converging population encoded stimuli is demonstrated through entrainment of oscillation in receiving neurons. The behaviour of the model is shown to be analogous to well-known competitive processes of stimulus selection such as binocular rivalry, matching key experimentally observed properties for the distribution and correlation of periods of entrainment under differing stimuli strength. Finally two new measures of network centrality, knotty-centrality and set betweenness centrality, are developed and applied to empirically derived human structural brain connectivity data. It is shown that human brain organisation exhibits a topologically central core network within a modular structure consistent with the generation of synchronous oscillation with functional phase dynamics

    Modelling human choices: MADeM and decision‑making

    Get PDF
    Research supported by FAPESP 2015/50122-0 and DFG-GRTK 1740/2. RP and AR are also part of the Research, Innovation and Dissemination Center for Neuromathematics FAPESP grant (2013/07699-0). RP is supported by a FAPESP scholarship (2013/25667-8). ACR is partially supported by a CNPq fellowship (grant 306251/2014-0)
    corecore