404 research outputs found

    Specifying timing requirements in domain specific languages for modeling

    Get PDF
    Complex Real-Time Embedded Systems (RTESs) can be developed using model-based engineering. The problem is choosing a modeling language that has capabilities to model the most important characteristic of RTESs: timing. This paper shows an analysis of the most popular modeling languages and their capabilities to model timing constraints in RTESs. It includes UML, SysML, AADL, MARTE and EAST-ADL. A brief comparison between MARTE and EAST-ADL, based on the case study from the automotive industry, is also included

    Contracts for Systems Design: Methodology and Application cases

    Get PDF
    Recently, contract based design has been proposed as an ”orthogonal” approach that can beapplied to all methodologies proposed so far to cope with the complexity of system design. Contract baseddesign provides a rigorous scaffolding for verification, analysis and abstraction/refinement. Companionreport RR-8759 proposes a unified treatment of the topic that can help in putting contract-based design in perspective.This paper complements RR-8759 by further discussing methodological aspects of system design withcontracts in perspective and presenting two application cases.The first application case illustrates the use of contracts in requirement engineering, an area of system designwhere formal methods were scarcely considered, yet are stringently needed. We focus in particular to thecritical design step by which sub-contracts are generated for suppliers from a set of different viewpoints(specified as contracts) on the global system. We also discuss important issues regarding certification inrequirement engineering, such as consistency, compatibility, and completeness of requirements.The second example is developed in the context of the Autosar methodology now widely advocated inthe automotive sector. We propose a contract framework to support schedulability analysis, a key step inAutosar methodology. Our aim differs from the many proposals for compositional schedulability analysisin that we aim at defining sub-contracts for suppliers, not just performing the analysis by parts—we knowfrom companion paper RR-8759 that sub-contracting to suppliers differs from a compositional analysis entirelyperformed by the OEM. We observe that the methodology advocated by Autosar is in contradiction withcontract based design in that some recommended design steps cannot be refinements. We show how tocircumvent this difficulty by precisely bounding the risk at system integration phase. Another feature ofthis application case is the combination of manual reasoning for local properties and use of the formalcontract algebra to lift a collection of local checks to a system wide analysis

    Formal verification of automotive embedded UML designs

    Get PDF
    Software applications are increasingly dominating safety critical domains. Safety critical domains are domains where the failure of any application could impact human lives. Software application safety has been overlooked for quite some time but more focus and attention is currently directed to this area due to the exponential growth of software embedded applications. Software systems have continuously faced challenges in managing complexity associated with functional growth, flexibility of systems so that they can be easily modified, scalability of solutions across several product lines, quality and reliability of systems, and finally the ability to detect defects early in design phases. AUTOSAR was established to develop open standards to address these challenges. ISO-26262, automotive functional safety standard, aims to ensure functional safety of automotive systems by providing requirements and processes to govern software lifecycle to ensure safety. Each functional system needs to be classified in terms of safety goals, risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D denoting the most stringent safety level. As risk of the system increases, ASIL level increases and the standard mandates more stringent methods to ensure safety. ISO-26262 mandates that ASILs C and D classified systems utilize walkthrough, semi-formal verification, inspection, control flow analysis, data flow analysis, static code analysis and semantic code analysis techniques to verify software unit design and implementation. Ensuring software specification compliance via formal methods has remained an academic endeavor for quite some time. Several factors discourage formal methods adoption in the industry. One major factor is the complexity of using formal methods. Software specification compliance in automotive remains in the bulk heavily dependent on traceability matrix, human based reviews, and testing activities conducted on either actual production software level or simulation level. ISO26262 automotive safety standard recommends, although not strongly, using formal notations in automotive systems that exhibit high risk in case of failure yet the industry still heavily relies on semi-formal notations such as UML. The use of semi-formal notations makes specification compliance still heavily dependent on manual processes and testing efforts. In this research, we propose a framework where UML finite state machines are compiled into formal notations, specification requirements are mapped into formal model theorems and SAT/SMT solvers are utilized to validate implementation compliance to specification. The framework will allow semi-formal verification of AUTOSAR UML designs via an automated formal framework backbone. This semi-formal verification framework will allow automotive software to comply with ISO-26262 ASIL C and D unit design and implementation formal verification guideline. Semi-formal UML finite state machines are automatically compiled into formal notations based on Symbolic Analysis Laboratory formal notation. Requirements are captured in the UML design and compiled automatically into theorems. Model Checkers are run against the compiled formal model and theorems to detect counterexamples that violate the requirements in the UML model. Semi-formal verification of the design allows us to uncover issues that were previously detected in testing and production stages. The methodology is applied on several automotive systems to show how the framework automates the verification of UML based designs, the de-facto standard for automotive systems design, based on an implicit formal methodology while hiding the cons that discouraged the industry from using it. Additionally, the framework automates ISO-26262 system design verification guideline which would otherwise be verified via human error prone approaches

    Supporting Early Modeling and End-to-end Timing Analysis of Vehicular Distributed Real-Time Applications

    Get PDF
    REACTION 2012. 1st International workshop on Real-time and distributed computing in emerging applications. December 4th, 2012, San Juan, Puerto Rico.The current model- and component-based development approaches for automotive distributed real-time systems have non-existing, or limited, support for modeling network traffic originating from outside the vehicle, i.e., vehicle-tovehicle, vehicle-to-infrastructure, and cloud-based applications. We present novel modeling and analysis techniques to allow early end-to-end timing analysis of distributed applications based on their models and simple models of network traffic that originates from outside of the model. As a proof of concept, we implement these techniques in the existing industrial tool suite Rubus- ICE which is used for the development of software for vehicular embedded systems by several international companies. We also conduct an application-case study to validate our techniques.This work is supported by the Swedish Knowledge Foundation (KKS) within the project FEMMVA. We thank the industrial partners Arcticus Systems, BAE Systems HĂ€gglunds and Volvo Construction Equipment (VCE), Sweden

    Virtual Node - To Achieve Temporal Isolation and Predictable Integration of Real-Time Components

    Get PDF
    We present an approach of two-level deployment process for component models used in distributed real-time embedded systems to achieve predictable integration of real-time components. Our main emphasis is on the new concept of virtual node with the use of a hierarchical scheduling technique. Virtual nodes are used as means to achieve predictable integration of software components with real-time requirements. The hierarchical scheduling framework is used to achieve temporal isolation between components (or sets of components). Our approach permits detailed analysis, e.g., with respect to timing, of virtual nodes and this analysis is also reusable with the reuse of virtual nodes. Hence virtual node preserves real-time properties across reuse and integration in different contexts

    Model-based engineering in real-time embedded systems: specifying timing constraints

    Get PDF
    This paper presents the results from a research project on development of Real-Time Embedded Systems (RTESs) using a Model-Based Engineering (MBE) approach. A review of the state-of-the-art modelling languageswas done in order to assess their capabilities to model time. A chosen case study,a Brake-By-Wire (BBW) system, was taken from the automotive industry.The case study focuses on the use of EAST-ADL to model the RTES and TADL to specify timing constraints. A different approach using MARTE to model the BBW system was developed within our project. This approach is used to compare MARTE (and OCL) with EAST-ADL (and TADL). The results show that MARTE can be used to model an RTES from the automotive industry but lacks some important semantic expressions for the timing constraints which are present in TADL
    • 

    corecore