
Supporting Early Modeling and End-to-end Timing
Analysis of Vehicular Distributed Real-Time

Applications

Saad Mubeen∗, Mikael Sjödin∗ and Jukka Mäki-Turja∗†
∗ Mälardalen University, Sweden. † Arcticus Systems, Järfälla, Sweden

{saad.mubeen, mikael.sjodin, jukka.maki-turja}@mdh.se

Abstract—The current model- and component-based develop-
ment approaches for automotive distributed real-time systems
have non-existing, or limited, support for modeling network
traffic originating from outside the vehicle, i.e., vehicle-to-
vehicle, vehicle-to-infrastructure, and cloud-based applications.
We present novel modeling and analysis techniques to allow early
end-to-end timing analysis of distributed applications based on
their models and simple models of network traffic that originates
from outside of the model. As a proof of concept, we implement
these techniques in the existing industrial tool suite Rubus- ICE
which is used for the development of software for vehicular
embedded systems by several international companies. We also
conduct an application-case study to validate our techniques.

I. INTRODUCTION

An important class of emerging distributed applications is
novel functionality in road vehicles. These applications realize
novel services based on vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications. Both V2V and V2I
are expected to support novel applications for road-safety,
traffic efficiency, and driver/passenger comfort and entertain-
ment. Already today there are examples of traffic related
cloud-services, e.g., community map and turn-by-turn navi-
gation such as Waze [1] and traffic-congestion information by
Google. However, to be successfully adopted, the development
of these new applications needs to be integrated in contempo-
rary workflow for development of vehicular functions.

Development strategies for automotive, and other vehicular
applications, are to a great extent based on model-based
development. In these approaches detailed models of the be-
havior of each on-board function is developed and successively
refined to reach the implementation of each node. In this
refinement process, the communications needed for each node
are derived and a message set for each on-board network is
defined. Moreover, timing parameters and requirements for
each message are established. In its current form there is
often non-existing, or limited, support to model network traffic
originating from outside the vehicle. That is traffic from V2V,
V2I, and other, e.g., cloud-based applications are not naturally
modeled and analyzed in existing approaches.

A. Goals and Paper Contributions

We present novel modeling and analysis techniques to allow
early end-to-end timing analysis of distributed applications
based on their models and simple models of bus traffic that
originates from outside of the model. This “outside traffic”
could come from the mentioned external services, from legacy
nodes that lack proper behavior models, or from crude prelim-
inary models of nodes that have not been completely modeled

yet. Regardless of source, it is important to, at an early stage be
able to analyze end-to-end timing behavior of vehicle internal
functions, while taking into account the outside generated
traffic. In this context, the term early refers to the stage before
system development where the traffic model can be derived
from the functional models and their planned allocations.

We extend our previous modeling and analysis methods
[2], [3] to support modeling of outside messages and end-to-
end timing analysis of the system containing these messages
at an early stage during the development. As a proof of
concept, we implement the extended method in the existing
industrial tool suite Rubus- ICE [4], [5], [3] which is used for
the development of software for vehicular embedded systems
by several international companies [6], [7], [8], [9]. We also
conduct an application-case study to validate our methods.

B. Paper Layout

In Section II, we discusses the research problem. Section III
presents the background and related work. Section IV dis-
cusses the proposed solution. Section V presents the case
study. Section VI concludes the paper.

II. PROBLEM STATEMENT

Often, the vehicular distributed real-time systems consist
of ECUs which are provided by various suppliers. For each
ECU, the software may be developed either in-house, reused
from the product family or bought as COTS (Commercial Off-
The-Shelf). The problem arises when the requirements dictate
the modeling and end-to-end timing analysis of a component-
based distributed real-time system at an early stage during the
development. At this stage, the models of some ECUs may
not be available. However, the signals and messages which
these missing ECUs are supposed to send and receive have
been decided. In such a system, the network is assumed to
contain messages whose sender nodes are not developed yet.
Similarly, the available ECUs may send messages via network
to the nodes that will be available at a later stage.

Some reasons behind the requirement for early timing
analysis are to support design space exploration, allow fine
tuning of the system with respect to real-time requirements
and detect timing errors as early as possible. Late detection of
timing errors can be very expansive in terms of time and cost.
The detection of timing errors in a real-time system after its
release to the market is a financial and production disaster.

In order to ensure that a distributed real-time system will
behave in a timely manner during its execution, we need
to analyze tasks, messages and event chains in distributed
transactions and predict the end-to-end delays. To perform

REACTION 2012 57

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/29404876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the end-to-end timing analysis of such a system, there are
several problems that need to be solved. One such problem is
to provide a support in the component technology to model
“outside traffic” by means of stand-alone messages. Another
problem is the extraction of timing information from these
systems. There exist timing dependencies among messages and
their sender and receiver tasks (that may not exist at this stage).

A message inherits some timing properties from its sender
task, e.g., transmission type and period. If the sender task
is triggered periodically then the message it sends is also
periodic. Further, the message inherits period from its sender
task. Similarly, if the sender task is activated sporadically
then the corresponding message is sporadic and the message
inherits inhibit time from the sender task. In the case of
mixed transmission mode, the message is mixed [10] and
inherits both period and inhibit time from its sender. When
distributed real-time systems are analyzed, each message is
assumed to inherit the response time of the sender task as
its release jitter (attribute inheritance [11]). For the messages
whose sender tasks are unknown (because the sender ECUs
are not available yet or the network traffic is generated from
outside of the model), these properties must be extracted in
the timing model. Otherwise, the end-to-end timing analysis
cannot be performed.

III. BACKGROUND AND RELATED WORK

A. The Rubus Concept

Rubus is a collection of methods and tools for model- and
component-based development of dependable embedded real-
time systems. Rubus is developed by Arcticus Systems [4] in
close collaboration with several academic and industrial part-
ners. Rubus is today mainly used for development of control
functionality in vehicles by several international companies
[6], [7], [8], [9]. The Rubus concept is based around the Rubus
Component Model (RCM) and its development environment
Rubus-ICE (Integrated Component development Environment)
[4], which includes modeling tools, code generators, analysis
tools and run-time infrastructure. The overall goal of Rubus
is to be aggressively resource efficient and to provide means
for developing predictable and analyzable control functions in
resource-constrained embedded systems.

1) The Rubus Component Model: RCM expresses the in-
frastructure for software functions, i.e., the interaction between
the software functions in terms of data and control flow
separately. The control flow is expressed by triggering objects
such as clocks and events as well as other components. In
RCM, the basic component is called Software Circuit (SWC).
The execution semantics of an SWC are: upon triggering, read
data on data in-ports; execute the function; write data on data
out-ports; and activate the output trigger. RCM separates the
control flow from the data flow among SWCs within a node.
Thus, explicit synchronization and data access are visible at the
modeling level. One important principle in RCM is to separate
functional code and infrastructure implementing the execution
model. RCM facilitates analysis and reuse of components in
different contexts (SWC has no knowledge how it connects to
other components). The component model has the possibility
to encapsulate SWCs into software assemblies enabling the
designer to construct the system at different hierarchical levels.

2) The Rubus Code Generator and Run-Time System:
From the resulting architecture of connected SWCs, functions
are mapped to run-time entities; tasks. Each external event

trigger defines a task and SWCs connected through the chain
of triggered SWCs (trigger chain) are allocated to the cor-
responding task. All clock triggered “chains” are allocated
to an automatically generated static schedule that fulfills the
precedence order and temporal requirements. Within trigger
chains, inter-SWC communication is aggressively optimized
to use the most efficient means of communication possible
for each communication link. Allocation of SWCs to tasks
and construction of schedule can be submitted to different
optimization criterion to minimize, e.g., response times for
different types of tasks, or memory usage. The run-time system
executes all tasks on a shared stack, thus eliminating the need
for static allocation of stack memory to each individual task.

3) The Rubus Analysis Framework: The Rubus model
allows expressing real-time requirements and properties at the
architectural level. For example, it is possible to declare real-
time requirements from a generated event and an arbitrary
output trigger along the trigger chain. For this purpose, the
designer has to express real-time properties of SWCs, such as
Worst Case Execution Times (WCETs) and stack usage. The
scheduler will take these real-time constraints into consider-
ation when producing a schedule. For event-triggered tasks,
response-time calculations are performed and compared to
the requirements. The model supports distributed end-to-end
response time and delay analysis and shared stack analysis.

B. Related Work

There are very few commercial component models for
distributed real-time systems especially in automotive domain.
In our previous work, we carried out a detailed comparison
of RCM with various models for distributed real-time systems
[2]. We briefly highlight a few of them.

AUTOSAR (AUTomotive Open System ARchitecture) [12]
is a standardized software architecture for the development
of software in automotive domain. It can be viewed as a
standardized distributed component model. When AUTOSAR
was being developed, there was no focus placed on its ability
to specify and handle real-time requirements and properties.
On the other hand, such requirements and capabilities were
strictly taken into account right from the beginning during
the development of RCM. AUTOSAR describes embedded
software development at a relatively higher level of abstraction
compared to RCM. A Software Circuit in RCM more resem-
bles to a runnable entity (a schedulable part of AUTOSAR
software component) instead of AUTOSAR software compo-
nent. As compared to AUTOSAR, RCM clearly distinguishes
between control flow and data flow among software compo-
nents in a node. AUTOSAR hides the modeling of execution
environment. On the other hand, RCM explicitly allows the
modeling of execution requirements, e.g., jitter and deadlines,
at an abstraction level close to the functional modeling while
abstracting the implementation details.

TIMMO (TIMing MOdel) [13] is an initiative to provide
AUTOSAR with a timing model. It describes a predictable
methodology and a language, called TADL [14], to express
timing requirements and timing constraints in all design phases
during the development of automotive embedded systems.
Both TIMMO methodology and TADL have been evaluated on
prototype validators. To the best of our knowledge there is no
concrete industrial implementation of TIMMO. In TIMMO-
2-USE project [15], the results of TIMMO will be further
validated and brought to the industry.

REACTION 2012 58

ProCom [16] is a two-layer component model for the
development of distributed embedded systems. ProCom is
inspired by RCM, and there are a number of similarities
between the ProSave modeling layer (a lower layer in ProCom)
and RCM. For example, components in both ProSave and
RCM are passive. Similarly, both models clearly separate data
flow from control flow among their components. Moreover,
the communication mechanism for component interconnection
used in both models is pipe-and-filter. The validation of a com-
plete distributed embedded system, modeled with ProCom, is
yet to be done. Moreover, the development environment and
the tools accompanying ProCom are still evolving.

IV. PROPOSED SOLUTION

A. Previous Approach

We introduced special-purpose components, i.e., Network
Specification (NS), Output Software Circuit (OSWC) and
Input Software Circuit (ISWC) in [2] to support modeling
of real-time network communication in distributed real-time
systems. This approach currently supports Controller Area
Network (CAN) [17] and its high-level protocols. The NS
component is the model of communication in a physical
network. The protocol-independent part of NS defines mes-
sages, data-elements mapped to these messages, message
properties, i.e., a message ID, a unique sender node ID, a
list of receiver nodes IDs and an ordered set of signals. The
protocol-dependent part of NS defines the behavior semantics
of each message according to the protocol used for network
communication. It contains complete information of all the
frames which are sent on the bus. Moreover, it contains a
Signal Mapping object that defines all the rules concerning
the following questions. How are signals packed into the
frames? How many signals a message contains? How are
signals encoded into the frames at the sender node? How
are signals decoded from the received frames and sent to
the respective SWCs at the receiver node? Hence, the linking
information of all distributed transactions (i.e., the transactions
that are distributed over more than one node) in the modeled
distributed real-time application is provided in NS.

The OSWC component is the model representation of
signals in an outgoing message to the network. OSWC has
only one trigger in-port and at least one data in-port. Each
data in-port is associated with one signal in NS. OSWC has
no data and trigger out-ports. It uses protocol-specific rules,
specified in the protocol-specific part of NS, while encoding
data and mapping signals to a frame. In this way, OSWC
provides a clear abstraction to the SWCs that send signals
to one of its data in-ports. Thus, SWCs are kept unaware of
the protocol-specific details such as signal-to-frame mapping,
data type encoding and transmission patterns of frames.

The ISWC component is the model representation of signals
in an incoming message from the network. It has one uncon-
ditional trigger out-port that produces a trigger signal every
time it is executed. There is at least one data out-port which
is associated with one signal in NS. It has no data out-ports.
There is one trigger in-port which is triggered when a frame
arrives from the network. When a frame arrives at a node, the
physical network drivers and protocol-specific implementation
of ISWC extract the signals (zero or more signals per frame).
When the signal (s) is delivered, the data is placed on the data
port which is connected to the data in-port of the destination

component (the linking information is provided in NS), and
the corresponding trigger port is triggered.

In order to link the event chains, pointers (references) are
assigned to the input trigger ports of all OSWCs and the
output trigger ports of all ISWCs along the same distributed
transaction. All such pointers for all event chains in the system
are specified in NS. The model representation of OSWC,
ISWC and NS in a two-node distributed real-time system is
shown in Fig. 1.

!"#$%"&&'%()%'*(+'$,"%-(.!)+/

0*$*(1"%$

2%344'%(
1"%$

56$'%#*&(
57'#$

!&"8-

Ext

0*$*(
9":%8'

0*$*(
93#-

;#<3='($>'
?"='&

@:$<3='($>'
?"='&

A%*B'<

934#*&<

!"#$%&

'&!%

()')*+)

A%*B'<

934#*&<

934#*&<

934#*&<

9C!D

9C!E

OR

@9C!(
)F

'&!%

,)!-

Ext

9C!F 9C!G

Ext

;9C!(
)F

;9C!(
HF

9C!I 9C!J

9C!K

'&!%

()')*+)

@9C!(
HF

'&!%

,)!-

!"#$%.

!,

L(1%"$"8"&M<N'83O38(='$*3&<
L(934#*&(?*N
L(P3#-3#4(;#O"%B*$3"#
L(1"3#$'%<

1FQ1FFR(1FGS
1GQ1GFR(1GGS

Fig. 1. Model of OSWC, ISWC and NS in a distributed real-time system

The model of a message along with the list of user-defined
properties is shown in Fig. 2. The developer (user) 1 specifies
only the name, priority, data size, value and type (in case of
CAN) of identifier of the message. The message automatically
inherits jitter, transmission type and period or inhibit time or
both from the sender OSWC component.

Fig. 2. Model of a message along with the list of user-defined properties

B. Proposed Extensions

One simple solution to the problem (discussed in Section II)
could be using the model of a dummy sender node in place of
the ECU that is not available but decisions on the messages it
sends are already taken. The sole purpose of this node will be
encoding and packing signals into messages and sending them
to the network. Similarly, a dummy receiver node can be used
to receive messages in place of a missing ECU. Such a solution
can be realized with sender and receiver nodes that contain one
OSWC and one ISWC for every message they send and receive
respectively. However, this solution is impractical as it adds
design complexity to the system. Moreover, it forces an extra
modeling and architecture overhead on the developer because
there are several modeling and specification steps involved
when a node is modeled.

The problem can be solved in a better way by introducing
to the component technology a special type of message called
the stand-alone message. This message supports the modeling

1Developer refers to the application developer. We will overload the terms
“developer” and “user” throughout the paper.

REACTION 2012 59

of “outside traffic”. It does not bear any association with the
OSWC component. This means, it does not have any sender
task inside the model of the system. However, there is an
option for the user to associate this message to any number
of ISWC components, i.e., it can be received by any number
of tasks inside the model of the system. Apart from name,
priority, data size, value and type of identifier (user-defined
properties for a regular message), it is also possible for the
user to specify transmission type and corresponding timing
parameters (period, inhibit time or both) for this message.

The transmission type of a message is a very important
parameter because the network analysis is dependent upon it
especially in the case of CAN and its high-level protocols. For
example, if there are only periodic and sporadic messages in
the system then one type of network analysis is used [18]. On
the other hand, if there is at least one mixed message in the
system then another type of analysis (i.e., analysis for mixed
messages) is used [10], [19], [20].

The user can also specify release jitter for the stand-alone
message that may either be equal to the estimated response
time of the sender task (belonging to the node that is not
available) or zero (if it cannot be estimated at this stage).
The extra user-defined information in the case of stand-alone
messages is vital for the end-to-end timing analysis. This is
because it is not possible to conduct the network analysis
without availability of this timing information. The standalone
message introduced in Rubus-ICE along with the list of its
user-defined properties is shown in Fig. 3. The dark vertical
stripes on both ends of the stand-alone message differentiates
it from the regular message in RCM.

!

Fig. 3. Model of a stand-alone message with the list of user-defined properties

The missing timing information (that is required to perform
the holistic or end-to-end timing analysis) is acquired from the
user-defined properties. These messages are treated differently
from the regular messages at the attribute inheritance step by
the holistic response-time analysis algorithm [11], [3].

It should be noted that the list of user-defined properties
of a stand-alone message (see Fig. 3) is more general and
includes user-defined properties of a regular message (see Fig.
2). One may think of using the user-defined properties in Fig.
3 uniformly for all types of messages. However, this is not
practical mainly because of two reasons. First, the timing
information extracted from the modeled application may be
redundant. That is, the transmission type and corresponding
period and inhibit time will be extracted from the user-defined
input as well as from the sender task. This redundancy may
result in the extraction of ambiguous end-to-end timing model.
Consequently, the calculated response times and delays may
be erroneous. Second, it will add extra complexity and burden
on the developer to specify too much information during the

modeling of the system. Our intension is to extract unambigu-
ous timing information for the end-to-end timing analysis and
keep things as simple as possible for the developer.

V. AUTOMOTIVE APPLICATION CASE STUDY

We provide a proof of concept for our extended method that
we implemented in Rubus-ICE by conducting an automotive-
application case study. We model the next-generation Adaptive
Cruise Control system that contains “outside traffic” which is
modeled by means of stand-alone messages. We also analyze
the modeled system using the Holistic Response Time Anal-
ysis (HRTA) plug-in [4], [3] in Rubus-ICE.

A. Next-Generation Adaptive Cruise Control System

The Adaptive Cruise Control (ACC) system is an automo-
tive feature that allows a vehicle to automatically adapt itself to
the traffic environment to maintain a steady speed to the value
that is preset by the driver. Often, it uses a radar to create a
feedback of distance to and velocity of the preceding vehi-
cle. It also communicates (cooperates) with the surrounding
vehicles. Moreover, it receives traffic related cloud-services,
i.e., community map and turn-by-turn navigation services from
outside of the vehicle. Based on the feedback, it either reduces
the vehicle speed to keep a safe distance and time gap from
the preceding vehicle or accelerates the vehicle to match the
preset speed specified by the driver. The ACC system may be
modeled with four nodes, i.e., Cruise Control (CC), Engine
Control (EC), Brake Control (BC) and User Interface (UI)
node [21]. Fig. 4 shows the block diagram of ACC system.
The nodes communicate with each other via a CAN network.

!"#$%"&&'%()%'*(+'$,"%-(.!)+/

01'%(
2#$'%3*4'(
+"5'

6%*-'(
!"#$%"&(
+"5'

!%781'(
!"#$%"&(
+"5'

9#:8#'(
!"#$%"&(
+"5'

)!!;!"#$%"&;<1: ='>84&';!"#$%"&;02;<1:
='>84&';!"#$%"&;<1:

!"#$$%&'"()#*(+'&),-+'.("/%&(.0'(1210'
&,33-4%*5'3#6'#4+'*-"47857*-"4'4#/%2#*%,4

Fig. 4. Block diagram of Adaptive Cruise Control System

Assume that the models of EC and BC nodes are available
while the models of CC and UI nodes will be available at
a later stage. However, the decisions about network commu-
nication have been made. There is one stand-alone message
“ACC Control Msg” in the system that is assumed to be sent
by the CC node (not available yet). This message is received
by the BC node as shown by the broken-line arrow in Fig.
4. Similarly, the BC node sends a message to the UI node
(not available yet) and EC node. It should be noted that the
broken-line arrows represent virtual communication while the
actual message transmission will take place via CAN bus.

1) User Interface Node: The UI node reads driver inputs
and shows status messages and warnings on the display screen.
The inputs are acquired by means of switches and buttons
mounted on the steering wheel. These include Cruise Switch
input that corresponds to ON/OFF, Standby and Resume states
for ACC; Set Speed input (desired cruising speed set by the
driver) and desired clearing distance from the preceding vehi-
cle. This node also receives linear and angular speed, status

REACTION 2012 60

of manual brake sensor, and status messages and warnings to
be displayed on the screen from the BC node via CAN bus.

2) Cruise Control Node: The CC node analyzes the state
of the cruise control switch; if it is in the ON state then it
activates the cruise control functionality. It reads input from
proximity sensor (e.g., radar) and processes it to determine
the presence of a vehicle in front of it. It also receives V2V
communication and navigation information from outside of
the vehicle as shown in Fig. 4. Moreover, it processes the
radar signals along with the other information such as vehicle
speed to determine its distance from the preceding vehicle.
Accordingly, it sends control information as a CAN message
to the BC node to adjust the speed of the vehicle with the
cruising speed or clearing distance from the preceding vehicle.

3) Engine Control Node: It is responsible for controlling
vehicle speed by adjusting engine throttle. It reads sensor
input and accordingly determines engine torque. It receives a
CAN message (from the BC node) that includes information
regarding vehicle speed and status of manual brake sensor.
Based on the received information, it determines whether to
increase or decrease engine throttle. It then sends new throttle
position to the actuators that control engine throttle.

4) Brake Control Node: The BC node receives inputs from
sensor for manual brakes status and linear and angular speed
sensors connected to all wheels. It also receives a CAN
message that includes control information processed by the CC
node. Based on this feedback, it computes new vehicle speed.
Accordingly, it produces control signals and sends them to the
brake actuator and brake light controller. It also sends CAN
messages to EC and UI nodes that carry information regarding
status of manual brake, vehicle speed and RPM.

B. Modeling of the ACC system in Rubus-ICE

The RCM model of ACC system is shown in Fig. 5. Since,
CC and UI nodes are not available at this stage, there are only
two nodes, i.e., CC and EC in the modeled application. The
model of CAN bus is also shown. The selected speed of CAN
bus is 500 kbps. The standard frame format is selected which
means that all frames will use 11-bit identifier [17].

Fig. 5. Adaptive Cruise Control System modeled with RCM

There are three CAN messages in the system, i.e.,
ACC control Msg, Vehicle Control Msg and Vehicle Con-
trol UI Msg as shown in Fig. 6. ACC control Msg is the
only stand-alone message. The senders and receivers of all
messages are shown in Fig. 4. A signal data base that corre-
sponds to NS (see Section IV) contains all the signals sent to
the network is also shown in Fig. 6. Each signal in the signal
database is linked to one or more messages. The user-defined
properties of all messages are also visible in Fig. 6.

The internal architecture of the BC node is shown in
Fig. 7. It is modeled with five SWCs (i.e., SpeedSensorIn-
put, ManualBrakeSensorInput, RMPSensorInput, SetBrakeS-
ignal SWC and SetBrakeLightSignal SWC), one ISWC
component (i.e., ACC control Msg ISWC), two OSWC
components (i.e., Vehicle Control Msg OSWC and Ve-
hicle Control UI Msg OSWC) and one assembly (i.e.,
Brake Control). An assembly in RCM is a container for

various software items. The Brake Control assembly is fur-
ther modeled with two SWCs, i.e., BrakeInputInfoProcess-
ing and BrakeController as shown in Fig. 8. Each com-
ponent is named after its functional behavior, e.g., the
ACC control Msg ISWC component is responsible for send-
ing ACC control Msg to the network.

Fig. 6. CAN messages and signal database modeled with RCM

The internal architecture of EC node is shown in Fig. 9. It
is modeled with two SWCs (i.e., EngineTorqueInput and Set-
ThrottlePosition), one ISWC component (i.e., Vehicle Con-
trol Msg ISWC) and one assembly (i.e., Engine Control)
which is further modeled with two SWCs, i.e., EngineInputIn-
formationProcessing and ThrottleControl as shown in Fig. 10.

Fig. 7. RCM model of the Brake Control node

Fig. 8. Internal model of Brake Control assembly in RCM

Fig. 9. RCM model of the Engine Control node

C. Holistic Response-Time Analysis of the ACC System

The HRTA plug-in in Rubus-ICE [3] is able to compute the
response times of all messages and tasks as well as end-to-end
or holistic response times of Distributed Transactions (DTs),

REACTION 2012 61

Fig. 10. Internal model of Engine Control assembly in RCM

TABLE I
CALCULATED HOLISTIC RESPONSE TIMES OF DTS UNDER ANALYSIS

DT DT1 DT2 DT3 DT4

HRT (us) 520 555 1250 830

i.e., task chains that are distributed over more than one node in
the system. We refer the reader to [3] for the details about the
holistic response-time analysis under consideration. We will
focus on the analysis of the following DTs.

1) DT1: ACC control Msg → ACC control Msg
ISWC → BrakeInputInfoProcessing →

BrakeController → SetBrakeSignal SWC
2) DT2: ACC control Msg → ACC control Msg

ISWC → BrakeInputInfoProcessing →
BrakeController → SetBrakeLightSignal SWC

3) DT3: SpeedSensorInput → BrakeInputInfo
Processing → BrakeController → Vehicle Control
UI Msg OSWC → Vehicle Control UI Msg

4) DT4: SpeedSensorInput → BrakeInputInfo
Processing → BrakeController → Vehicle Control
Msg OSWC → Vehicle Control Msg → Vehicle
Control Msg ISWC → EngineInputInformation
Processing → ThrottleControl → SetThrottlePosition

Both DT1 and DT2 are initiated by the stand-alone message
ACC control Msg. They terminate by producing the control
signals for brake actuators and brake light controllers. DT3

starts with the speed sensor input in the BC node and termi-
nates by sending the message destined for UI node whose
model is not available at this stage. Finally, DT4 initiates
with the speed sensor input in the BC node and terminates
by producing a control signal for engine throttle controller in
the EC node. The worst-case execution times of all SWCs
are selected from the range of (20 − 200)us . The Holistic
Response Times (HRTs) of these DTs are shown in Table I.

VI. CONCLUSION AND FUTURE WORK

The support for early end-to-end timing analysis of vehic-
ular distributed real-time systems is often among industrial
requirements which the tool suppliers are supposed to fulfill.
The models of some subsystems or nodes may not be available
at early stages during the development process and hence, the
system may contain network traffic originating from outside
of the system model. We extended our previous methods to
support modeling and early end-to-end timing analysis of auto-
motive distributed real-time applications that use such “outside
traffic”. As a proof of concept, we implemented our extended
method in the existing industrial tool suite Rubus-ICE which
is used for the model- and component-based development of
software for vehicular embedded systems. We also conducted
automotive application-case study by modeling ACC system
at an early stage where the models of some nodes were
not available. However, stand-alone messages were present
in the system because the design decisions about network
communication were already taken. We also performed end-
to-end timing analysis of the the modeled ACC system.

The analysis results indicate that our extended method is
sound, and it can be used for modeling and timing analysis
of distributed real-time systems at early stages during the
development. Moreover, our approach is equally applicable
to the network traffic received from cloud-based applications.
We believe, this simple yet effective approach may be suitable
for other component models that use pipe-and-filter style for
components interconnection, e.g., ProCom. This approach is
also a step towards models inter-operability such that different
component technologies may be used together for the devel-
opment of complex distributed real-time systems [22].

ACKNOWLEDGEMENT

This work is supported by the Swedish Knowledge Foun-
dation (KKS) within the project FEMMVA. We thank the
industrial partners Arcticus Systems, BAE Systems Hägglunds
and Volvo Construction Equipment (VCE), Sweden.

REFERENCES

[1] “Waze,” http://www.waze.com/.
[2] S. Mubeen, J. Mäki-Turja, M. Sjödin, and J. Carlson, “Analyzable

modeling of legacy communication in component-based distributed
embedded systems,” in 37th Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), Sep. 2011, pp. 229–238.

[3] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Support for Holistic
Response-time Analysis in an Industrial Tool Suite: Implementation
Issues, Experiences and a Case Study,” in 19th IEEE Conference on
Engineering of Computer Based Systems, April 2012, pp. 210 –221.

[4] “Arcticus Systems,” http://www.arcticus-systems.com.
[5] K. Hänninen et.al., “The Rubus Component Model for Resource Con-

strained Real-Time Systems,” in 3rd IEEE International Symposium on
Industrial Embedded Systems, June 2008.

[6] “BAE Systems Hägglunds,” http://www.baesystems.com/hagglunds.
[7] “Volvo Construction Equipment,” http://www.volvoce.com.
[8] “Mecel,” web page, http://www.mecel.se.
[9] “Knorr-bremse,” web page, http://www.knorr-bremse.com.

[10] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Extending schedulability
analysis of controller area network (CAN) for mixed (periodic/sporadic)
messages,” in 16th IEEE Conference on Emerging Technologies and
Factory Automation (ETFA), sept. 2011.

[11] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocess. Microprogram., vol. 40, pp. 117–
134, April 1994.

[12] “AUTOSAR Techincal Overview, Version 2.2.2. AUTOSAR – AU-
Tomotive Open System ARchitecture, Release 3.1, The AUTOSAR
Consortium, Aug., 2008,” http://autosar.org.

[13] “TIMMO Methodology , Version 2,” TIMMO (TIMing MOdel), Deliv-
erable 7, October 2009, The TIMMO Consortium.

[14] “TADL: Timing Augmented Description Language, Version 2,” TIMMO
(TIMing MOdel), Deliverable 6, Oct. 2009, The TIMMO Consortium.

[15] “TIMMO-2-USE,” http://www.timmo-2-use.org/.
[16] S. Sentilles, A. Vulgarakis, T. Bures, J. Carlson, and I. Crnkovic, “A

Component Model for Control-Intensive Distributed Embedded Sys-
tems,” in 11th International Symposium on Component Based Software
Engineering (CBSE2008). Springer, October 2008, pp. 310–317.

[17] ISO 11898-1, “Road Vehicles interchange of digital information
controller area network (CAN) for high-speed communication, ISO
Standard-11898, Nov. 1993.”

[18] K. Tindell, H. Hansson, and A. Wellings, “Analysing real-time com-
munications: controller area network (CAN),” in Real-Time Systems
Symposium (RTSS) 1994, pp. 259 –263.

[19] S. Mubeen, J. Mäki-Turja and M. Sjödin, “Response-Time Analysis
of Mixed Messages in Controller Area Network with Priority- and
FIFO-Queued Nodes,” in 9th IEEE International Workshop on Factory
Communication Systems (WFCS), May 2012.

[20] S. Mubeen, J. Mäki-Turja, and M. Sjödin, “Worst-case response-time
analysis for mixed messages with offsets in controller area network,” in
17th IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA), sept. 2012.

[21] “Adaptive Cruise Control System Overview,” in Workshop of Software
System Safety Working Group, April 2005.

[22] S. Mubeen, M. Sjödin, J. Mäki-Turja, K.-L. Lundbäck, and P. Wallin,
“Automated Model Translations for Vehicular Real-Time Embedded
Systems with Preserved Semantics,” in ACM SIGBED Review: Special
Issue on 33rd IEEE Real-Time Systems Symposium (WIP), Dec. 2012.

REACTION 2012 62

