
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

2-1-2018

Formal verification of automotive embedded UML designs Formal verification of automotive embedded UML designs

Ghada Bahig

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Bahig, G. (2018).Formal verification of automotive embedded UML designs [Master’s thesis, the American
University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/5

MLA Citation
Bahig, Ghada. Formal verification of automotive embedded UML designs. 2018. American University in
Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/5

This Dissertation is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/5?utm_source=fount.aucegypt.edu%2Fetds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/5?utm_source=fount.aucegypt.edu%2Fetds%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

Formal Verification of Automotive Embedded UML Designs

By

Ghada Moussa Bahig

Department of Computer Science

The American University in Cairo

Thesis Dissertation

In Partial Fulfillment of the Requirements of Doctor of Philosophy in Applied Sciences

Thesis Advisor: Dr. Amr El-Kadi

July 2017

ii

Dissertation written by

Ghada Moussa Bahig

M.S., American University in Cairo, Egypt, 2000

B.S., American University in Cairo, Egypt, 1997

Approved by

___________________________________ , Chair, Doctoral Dissertation Committee

___________________________________ , Members, Doctoral Dissertation Committee

Accepted by

___________________________________ , Chair, Department of Computer Science

___________________________________ , Dean, College of Sciences

TABLE OF CONTENTS

FORMAL VERIFICATION OF AUTOMOTIVE EMBEDDED UML DESIGNS I

LIST OF FIGURES .. VII

LIST OF TABLES ... X

ACKNOWLEDGEMENTS ... XI

ABSTRACT .. XIII

CHAPTER 1. INTRODUCTION ... 1

1.1 Existing Approaches ... 2

1.2 Dissertation Organization .. 5

CHAPTER 2. RESEARCH MOTIVATION ... 6

2.1 Automotive - Fueling Change Factors .. 9

2.2 What is AUTOSAR? ... 10

2.2.1 AUTOSAR Layered Architecture ... 12

2.2.2 AUTOSAR Structure .. 14

2.3 ISO-26262 ... 15

2.3.1 Tool Qualification ... 19

2.3.2 ISO26262 Architectural Design level Guidance ... 22

CHAPTER 3. LITERATURE SURVEY ... 25

3.1 Software Defects ... 25

3.2 Software Verification and Validation Techniques .. 30

3.2.1 Process Based Approaches .. 31

3.2.2 Static Techniques .. 34

3.2.3 Dynamic Techniques ... 41

3.2.4 Comparative Analysis of Existing V&V Methods .. 69

iv

CHAPTER 4. PROPOSED APPROACH .. 73

4.1 Design Flow .. 74

4.2 Input Model – xtUML ... 77

4.3 UML Satisfiability Conditions .. 82

4.3.1 State Level Conditions .. 83

4.3.2 Transition Level Conditions .. 84

4.3.3 Variable Level Condition .. 85

4.4 UML to SAL Model Compiler .. 86

4.4.1 SAL ... 87

4.4.2 AUTOSAR in UML .. 88

4.4.3 UML to SAL Mapping Rules .. 94

4.5 Model Checking .. 101

4.5.1 Model Checkers Technologies .. 101

4.5.2 SAL Model Checkers .. 103

CHAPTER 5. CASE STUDY MODULES ... 104

5.1 AUTOSAR FlexRay State Manager ... 104

5.1.1 Requirements to be verified .. 105

5.2 AUTOSAR WatchDog Manager... 107

5.2.1 Alive Supervision .. 109

5.2.2 Deadline Supervision .. 109

5.2.3 Logical Supervision... 109

5.2.4 Local Supervision State Machine .. 109

5.2.5 Requirements to be verified .. 110

5.3 Automatic Transmission Controller - ATC ... 116

v

5.3.1 Requirements to be verified .. 117

5.4 Industrial Challenges – Commercial Watchdog Manager Implementation 117

5.4.1 Verification challenges .. 118

5.4.2 Defects beyond Design Stage .. 119

5.4.3 Defects ... 120

CHAPTER 6. CASE STUDY RESULTS AND COMPARATIVE ANALYSIS 122

6.1 AUTOSAR FlexRay State Manager Results .. 122

6.1.1 xtUML Design... 123

6.1.2 Model Checking Results ... 131

6.2 Automatic Transmission Controller .. 148

6.2.1 xtUML Design... 149

6.2.2 Model Checking Results ... 152

6.3 WatchDog State Manager Results ... 161

6.3.1 xtUML Design... 162

6.3.2 Model Checking Results ... 168

6.4 Mentor Graphics’ WatchDog Manager Results .. 181

6.5 Evaluation of the approach .. 183

CHAPTER 7. CONCLUSION, CONTRIBUTIONS AND FUTURE WORK ... 186

CHAPTER 8. REFERENCES .. 189

APPENDIX A SAL LANGUAGE ... 199

Types ... 199

Expressions ... 200

Transition Language ... 201

Module Language ... 202

vi

SAL Contexts .. 206

APPENDIX B SAL GENERATED MODEL SNIPPETS ... 207

APPENDIX C SAL MODEL COMPILER .. 229

vii

LIST OF FIGURES

Figure 1 Modern Car systems and Networks ... 7

Figure 2 Cost Of Late Testing ... 9

Figure 3 AUTOSAR Interfaces ... 13

Figure 4 AUTOSAR Layered Architecture ... 14

Figure 5 Software Certification using Formal Methods .. 61

Figure 6 Proposed Framework Workflow ... 75

Figure 7 AUTOSAR Watchdog Manager Informal State Details – 1 83

Figure 8 AUTOSAR Watchdog Manager Informal State Details – 2 84

Figure 9 AUTOSAR Watchdog Manager Informal Transition Description 85

Figure 10 Specification Level Boundary Value Requirements 86

Figure 11 xtUML Expressions ... 94

Figure 12 State Machine of FlexRay State Manager ... 105

Figure 13 Requirements 73 and 74 in FlexRay State Manager Module 106

Figure 14 Watchdog Manager Local Supervision Status .. 110

Figure 15 Requirement 202 - Watchdog Manager Module 111

Figure 16 Requirement 203 - Watchdog Manager .. 111

Figure 17 Requirement 204 - Watchdog Manager .. 112

Figure 18 Requirement 300 - Watchdog Manager Module 112

Figure 19 Requirement 205 - Watchdog Manager Module 113

Figure 20 Requirement 206 - Watchdog Manager Module 113

Figure 21 Requirement 207 - Watchdog Manager Module 114

Figure 22 Requirement 291 - Watchdog Manager Module 114

viii

Figure 23 Requirement 208 - Watchdog Manager Module 115

Figure 24 Requirement 209- Watchdog Manager Module .. 115

Figure 25 Requirement 327 - Parameter range - Watchdog Manager 116

Figure 26 ATC State Machine ... 116

Figure 27 FlexRay xtUML Design .. 123

Figure 28 FlexRay States ... 124

Figure 29 FlexRay Variables ... 125

Figure 30 FlexRay Conditions ... 126

Figure 31 FlexRay Functions ... 126

Figure 32 ComM_ModeType User Defined Type... 127

Figure 33 Variable Definition .. 127

Figure 34 FlexRay xtUML State Machine... 128

Figure 35 xtUML Implementation of FrSm072... 129

Figure 36 FrSM Initialization in xtUML ... 130

Figure 37 Generated SAL Model ... 130

Figure 38 SAL Generation ... 131

Figure 39 Un-initialized Data Member .. 132

Figure 40 FrSM Requirement 073 in xtUML .. 143

Figure 41 ATC xtUML Design .. 149

Figure 42 Gear Controller State Machine in xtUML ... 150

Figure 43 Gear Position State Machine in xtUML .. 150

Figure 44 Steady State Action in xtUML .. 151

Figure 45 ATC SAL Model Generation .. 151

Figure 46 ATC Generation Console Output .. 152

ix

Figure 47 WatchDog Manager xtUML Design ... 162

Figure 48 WdgM_SupervisedEntityId Type Definition .. 163

Figure 49 WdgM_Init Function ... 163

Figure 50 WdgMMode User Defined Type ... 164

Figure 51 WdgMSupervisionCycleCounter Variable Definition 164

Figure 52 Watchdog Local xtUML State Machine.. 165

Figure 53 xtUML Implementation of WdgM201, WdgM203 and WdgM202 166

Figure 54 WdgM setMode function in xtUML .. 167

Figure 55 Generated WdgM SAL Model .. 167

Figure 56 WdgM SAL Generation .. 168

Figure 57 Un-initialized Data Member .. 169

Figure 58 WdgM Requirement 202 in xtUML .. 175

Figure 59 Types in SAL Grammar .. 199

Figure 60 SAL Expressions ... 200

Figure 61 SAL Expressions – Detailed .. 201

Figure 62 Rhs/Lhs Definitions ... 202

Figure 63 SAL Module .. 203

Figure 64 Module Grammar .. 205

Figure 65 Module Grammar 2 ... 206

Figure 66 SAL Context .. 206

LIST OF TABLES

Table 1 ISO26262 Recommended Design Abstraction Notation 23

Table 2 Methods for the verification of the software architectural design 24

Table 3 Fault Classification in Spacecraft's Project .. 27

Table 4 Summary of V&V Techniques .. 69

Table 5 Methods for Deriving Test Cases for Software Unit Testing in ISO-26262 77

Table 6 UML Model Diagrams ... 80

Table 7 xtUML Operators ... 94

Table 8 UML/SAL Mapping Rules .. 95

Table 9 Categorization of identified Defects .. 119

Table 10 Watchdog Manager Defects Classification .. 183

ACKNOWLEDGEMENTS

I would like to express the deepest appreciation to my advisor, Professor Amr El-Kadi

who has the attitude and the substance of a genius: he continually and convincingly conveyed

a spirit of adventure about research and scholarship, and an excitement about teaching.

Without his guidance and persistent help and support, this dissertation would not have been

possible.

I would like to thank my committee members, Professor Ashraf Salem, Professor

Sherif Hammad, Professor Mohamed Shalan and Professor Sherif Gamal Aly who supported

and guided me to defend my dissertation. Their constructive comments opened my eyes to

challenges and paved a way for me to work more on a research area that I adore. Dr. Sherif

Hammad, you have helped shape who I am today. Dr. Ashraf, you were my driving force at

Mentor to focus and finish my PhD. Thanks for your guidance and support.

I would also like to thank my parents who gave me confidence and support. They

always encouraged me to finish and wanted to help in any way they can so that I can finish

my dissertation. I would not be who I am if it were not for their support. I have learned and

continue to learn so many from them and I love them to death.

I would also like to thank my lovely daughter Nada who was trying to encourage me

via challenging my directions to her and comparing the completion of this work to how she

will complete stages in her life. I was not happy when she did that but it was a way to enforce

my persistence to finish this so that I can be a role model for her.

I would also like to thank my husband who always emphasized that I need to finish

my PhD.

Finally, I would like to thank God almighty for answering my prayers to keep going

and not to give up.

xii

.

ABSTRACT

American University in Cairo

Formal Verification of Automotive Embedded UML Designs

By

Ghada Moussa Bahig

Thesis Advisor: Dr. Amr El-Kadi

Software applications are increasingly dominating safety critical domains. Safety critical

domains are domains where the failure of any application could impact human lives.

Software application safety has been overlooked for quite some time but more focus and

attention is currently directed to this area due to the exponential growth of software

embedded applications. Software systems have continuously faced challenges in

managing complexity associated with functional growth, flexibility of systems so that

they can be easily modified, scalability of solutions across several product lines, quality

and reliability of systems, and finally the ability to detect defects early in design phases.

AUTOSAR was established to develop open standards to address these challenges. ISO-

26262, automotive functional safety standard, aims to ensure functional safety of

automotive systems by providing requirements and processes to govern software lifecycle

to ensure safety. Each functional system needs to be classified in terms of safety goals,

risks and Automotive Safety Integrity Level (ASIL: A, B, C and D) with ASIL D

denoting the most stringent safety level. As risk of the system increases, ASIL level

increases and the standard mandates more stringent methods to ensure safety. ISO-26262

mandates that ASILs C and D classified systems utilize walkthrough, semi-formal

verification, inspection, control flow analysis, data flow analysis, static code analysis and

semantic code analysis techniques to verify software unit design and implementation.

Ensuring software specification compliance via formal methods has remained an

academic endeavor for quite some time. Several factors discourage formal methods

xiv

adoption in the industry. One major factor is the complexity of using formal methods.

Software specification compliance in automotive remains in the bulk heavily dependent

on traceability matrix, human based reviews, and testing activities conducted on either

actual production software level or simulation level. ISO26262 automotive safety

standard recommends, although not strongly, using formal notations in automotive

systems that exhibit high risk in case of failure yet the industry still heavily relies on

semi-formal notations such as UML. The use of semi-formal notations makes

specification compliance still heavily dependent on manual processes and testing efforts.

In this research, we propose a framework where UML finite state machines are compiled

into formal notations, specification requirements are mapped into formal model theorems

and SAT/SMT solvers are utilized to validate implementation compliance to

specification. The framework will allow semi-formal verification of AUTOSAR UML

designs via an automated formal framework backbone. This semi-formal verification

framework will allow automotive software to comply with ISO-26262 ASIL C and D unit

design and implementation formal verification guideline. Semi-formal UML finite state

machines are automatically compiled into formal notations based on Symbolic Analysis

Laboratory formal notation. Requirements are captured in the UML design and compiled

automatically into theorems. Model Checkers are run against the compiled formal model

and theorems to detect counterexamples that violate the requirements in the UML model.

Semi-formal verification of the design allows us to uncover issues that were previously

detected in testing and production stages. The methodology is applied on several

automotive systems to show how the framework automates the verification of UML

based designs, the de-facto standard for automotive systems design, based on an implicit

formal methodology while hiding the cons that discouraged the industry from using it.

Additionally, the framework automates ISO-26262 system design verification guideline

which would otherwise be verified via human error prone approaches.

1

Chapter 1. Introduction

Software plays a major role in almost all industries nowadays from cooking in our

kitchens, to driving our cars, to working in our offices. Some of these systems are safety

critical which means that failure of the software could cause hazardous consequences on

human life. Safety Critical Computing (SCC) aims to optimize system safety in the

design, development, use, and maintenance of software systems and their integrations

with safety critical hardware systems in an operational environment. In fact, one of the

very first seen ambiguities of SCC is the way it is viewed across industries and regulatory

bodies. Some ongoing research efforts address safety based on measuring how well the

system does exactly what it is intended to do while others view safety as designing a

system that is able to handle cases when a system does not work as expected. In the later

context, safety engineers assume that any system will fail and then they work through the

consequences to ensure that they are well handled through inductive and deductive

techniques.

Attention to safety software engineering started when failures in embedded critical

systems led to critical failures. In March 2008, a Medtronic heart pacer device was

reported to be vulnerable to remote attacks [1]. In 2003, an electrical blackout took place

in North America for hours and it was reported that key phase 1 events started with a

software system failure [2]. In the 1980s, a bug in the code controlling a radiation therapy

machine was found to be the reason why at least 5 patients died due to administering

incorrect volume of the radiation during treatment sessions [3]. A good number of such

failures are also attributed to incompliance to specification, a glitch in an automaker‘s

software design and testing approach in airbags design resulted in the recall of 47,401

vehicles in the US and a further 3,099 in Canada and Mexico [4]. Other reported

incidents took place in space exploration, medical, electric power transmission, financial,

telecommunications, military, media, and automotive domains.

2

In automotive systems, it is crucial to ensure design correctness from compliance to

specification perspective as early as possible. Safety standards put strict processes that

involve manual reviews and requirements traceability in all software life cycle to ensure

specification compliance. Industry still heavily relies on manual reviews and processes

which is impractical since specification is still captured in informal and semi-formal

notations which open the door for requirement specification ambiguity. In recent years,

software costs increased exponentially due to the increasing number of software enabled

features in a car. A modern car can contain up to 90 Electronic Control Units (ECUS), 11

networks and might host one million lines of code (LOC) [85]. This increases software

complexity and with it, the probability of failures. The task of verifying software to detect

failures is becoming more and more difficult, time consuming and critical. A good

number of failures are attributed to incompliance to specification.

1.1 Existing Approaches

Existing approaches that target software/system safety include:

1. Dependency on standards and processes enforced by regulatory committees to

ensure software safety. Regulatory agencies such as ISO publish software safety

standards. ISO-26262 is the automotive standard that is based on IEC 61508. This

is the functional safety standard across electrical and electronic E/E systems.

Several regulatory entities, such as German law, hold car producers liable for

damage to a person because of malfunction of a product. If it was not possible for

the malfunction to be detected via the current technical state, the liability is

omitted. In this context and within the automotive software and hardware

domains, ISO 26262 is considered the technical state of the art. Standards rely on

a system of steps to govern and manage functional safety and govern product

development on a system, hardware and software level.

2. Code level approaches, such as, static analysis and unit testing coverage. Static

analysis is a way of examining a code without executing it. The process depends

on analyzing code structure and ensuring the code adheres to industry coding

standards such as MISRA-C. Unit testing is also done on the code level. Several

3

metrics are generated to ensure that unit testing addresses potential issues in the

code. Some utilized metrics are: code coverage, cyclomatic complexity and

maintainability index.

3. Extensive testing at different levels including white box testing, black box testing,

system and integration testing based on a variety of algorithms, such as, random

test generation, path oriented, goal oriented, and expert based adhoc test designs.

Testing is iterative, incremental and includes several stages beginning with

module test, simulation testing, hardware in the loop testing and finally

integration testing when all system components (Hardware and Software) are

ready.

4. Model driven approaches which rely on modeling a system abstraction and being

able to simulate these abstractions manually or automatically based on designing

test cases and finally formal methods but on a very small scale [5][6][7]. Model-

driven approach in software engineering is gaining wide ground in both industry

and academia. Legacy approaches still focus on implementation unlike model

driven approaches, which depends on models in all levels of the software

development process. The outcome of this shift has triggered quite a big change in

the approach to software development in design, implementation and testing

stages. Model based development utilizing the Unified Modeling Language

(UML) has driven many researchers to use UML diagrams like state machine

diagrams, use-case diagrams, sequence diagrams, etc. to generate test cases and

even code. Model-based testing approaches come with a big edge which is

increasing productivity as well as quality by changing the focus away from testing

to much earlier stage of the software development process. Additionally,

generating test cases are becoming more independent of any implementation of

the design

5. Formal methods which had traditionally not been widely adopted due to several

barriers. To name some, entry cost is high (education, legacy methods migration),

problem space scalability shortcomings, and insufficient tool support for formal

4

methods since most of the existing tools originated from academia as opposed to

industrial endeavors and finally lack of expertise/training to formal methods. In

truth, it is very hard and unrealistic to assume that an ABS (Anti brake locking

system) application engineer will be able to define safety attributes in formal

notation to ensure that the system function is safe from a design perspective.

An automotive functional safety standard, ISO-26262 [13], has been published in 2011 to

ensure software functional safety. ISO-26262 is a functional safety standard that declares

its objectives as: providing an entire automotive safety lifecycle from management,

development, production, operation, service, and decommissioning of the product and

supports adapting the needed activities during the different lifecycle phases depending on

an automotive specific risk-based approach for determining risk classes (Automotive

Safety Integrity Levels, ASILs). The standard highly recommends capturing the design in

semi-formal notation and also highly recommends the use of semi-formal verification

methods to ensure design correctness in ASILs C and D. The use of formal method is

only recommended for ASIL D software. In this research, we will present a framework

that allows software designers to formally verify a specified software in a semi-formal

notation (UML). This complies with ISO-26262 design verification guidelines for ASILs

C and D which highly recommends semi-formal verification of the design for ASILs C

and D. Several automotive modules were used as case studies. An industrial ASIL B

compliant implementation and reported testing/production level defects is used to

conduct a comparative analysis and evaluation of the proposed framework. The

production level and late testing defects in the industrial use-case can be discovered via

our framework at the design stage. The aim of this research is to show that defects

identified on the code level during testing and release stages could be identified on the

design level via our proposed framework.

Our intent in this research is to address software verification in the early stage of the

software lifecycle, namely, the design stage. The research was motivated by the steep

5

growth of critical software functions in embedded systems, the fact that 50% of defects

are introduced by the design stage, cost of finding a defect during testing is much higher

than finding it during design, late defects are mostly due to specification incompliance

defects, and the birth of AUTOSAR Automotive standard and ISO-26262.

We will present how existing V&V techniques still heavily depend on testing and little

effort focuses on pushing the verification to the design stage. Our research aims to

address the motivations while addressing the current shortcoming that have discouraged

the industry from using formal methods in the design stage of automotive software

development. Formal methods have not been widely adopted due to complexity of

notations, lack of support and lack of support tools. Automotive suppliers are also

looking for non-disruptive techniques that integrate with their used models and design

environments so that they do not have to re-invent the wheel for their software

development lifecycle.

1.2 Dissertation Organization

The dissertation is organized as follows: chapter 2 explains why the problem is hard or

why a solution is needed, chapter 3 discusses state of the art, chapter 4 defines all basic

blocks of the framework followed by a description of the framework flow, chapter 5

introduces the case study modules, chapter 6 details the case study results and the

comparative analysis with industrial flow for an automotive module and chapter 7

summarizes the conclusion and future work.

6

Chapter 2. Research Motivation

The surge of electronic systems has led to major ramifications in vehicle engineering.

Today’s vehicle can have up to 4 kilometers of wiring in comparison to 45 meters in

manufactured vehicles in the 50s. Apollo 11 utilized nearly 150 Kbytes of onboard

memory in the late 60s to go to the moon and back. Nowadays, a moderate family car can

use up to 500 Kbytes in infotainment computer in order to keep the CD player from

skipping tracks.

The industry change had its toll on power demands as well as design, which led to major

innovative changes in electronic networks for automobiles. Researchers have shifted

focus to try to ensure that developed systems are safe, efficient and reliable and could

replace entire mechanical and hydraulic applications. Control networks connect

electronic equipment in a car just as LANs connect computers. The networks allow

communication between the different computers in the vehicle to transfer and share data.

The vehicle is now a LAN of connected computers that need to talk to each other to make

smart and critical decisions. Traditionally, networks connectivity depended on wiring.

However, currently, due to the surge in communication within the vehicle, the use of

wiring hit a technological wall. Several protocols are now the backbone of existing

control and communications networks to accommodate the wall of using discrete wiring.

Centralized followed by distributed networks have replaced point-to-point wiring. Figure

1 shows an example of the electronic surge, which triggered the number of systems and

applications contained in a modern car network architecture to increase drastically.

Nowadays, car electronics represent more than 30% of the total cost of a car [87]. In a

2008 BMW 5 series, it is estimated that there are up to 80 electronic modules

communicating together that is made up of nearly 10 million lines of software code. As

car electronic architectures become more and more complex, carmakers outsource the

design of electronic modules to automotive electronic suppliers. The design of an

7

automotive electronic module (hardware, software and mechanical skills) typically

consumes 24 months of development and involves tens of team members, both technical

and managerial. The attributed software defects of such a project is more than 80% of the

total number of defects although software testing takes up to 50% of the time spent on

project management and technical activities.

In automotive industry, the engineering processes of the software development life cycle

are performed according to the standard V-model. The main engineering processes are:

Requirements specification and management, global design, component development,

integration, and validation. These processes are carried out before each carmaker delivery

of the software product. In fact, an incremental-type design process is initiated between

the carmakers and their suppliers in order to take the carmaker constraints and

requirements priorities into account.

Figure 1 Modern Car systems and Networks

The number of iterations is defined based on the project’s complexity and adjusted

according to the carmaker inputs and project constraints. Considering a fairly complex

8

project, the number of iterations between supplier and manufacturer can reach ten. Each

iteration (delivery) follows Verification and Validation (V&V) activities imposed by the

supplier and ends with a substantial number of software defects. This number depends on

the size (in terms of lines of codes), complexity and maturity of the delivered software.

In automotive industry, both static and dynamic software V&V techniques [88] are

practiced in order to ensure that the resulting software product implementation is

compliant to the specification and customer needs. Although static techniques are

necessary to detect defects earlier in the development process, testing techniques are

considered the ultimate techniques in the detection of software bugs. Testing represent up

to 90% of the time spent in V&V of an automotive software product. Many automotive

industries have invested on automating test execution; however, the test design activity is

still manual and completely based on the test engineers’ experience.

As the software products become more and more complex, it is impossible to be able to

check that the software product responds correctly to all possible test input data. In

[89,90], the authors demonstrate that software testing is a NP-Complete (complex)

problem and therefore impossible to achieve full coverage of test input data on any

software. Moreover, each engineer could have a different perception of the possible and

critical test input data based on experience. In automotive industry, a software product is

always tested against predefined objectives such as code and specification coverage.

Meanwhile, for time and budget reasons, managers could decide to stop testing a

software product even if the target coverage rate is not reached due to project timing

constraints.

Facing this growing software complexity, carmakers and automotive electronic suppliers

are looking for efficient methods to verify and validate software. As the automotive

market becomes more competitive, development time reduction and early software

defects detection become major drives in the domain. Figure 2 [92] shows how the cost

per fault multiplies by 5 in functional testing stage, 10 times in system testing and 50

times in production. The study also shows how the design organization introduces 40% of

9

the defects introduced in the software and that currently fault discovery during design is

only limited to 6%. Additionally, defects introduced in the design stage leaks to the

development, testing, UAT, and Production stages. Any introduced solution needs to

ensure that defects leakage/slippage from Design to Development stage is minimal and

this should be a metric to evaluate design verification approach.

Figure 2 Cost Of Late Testing

2.1 Automotive - Fueling Change Factors

The birth of AUTOSAR and ISO-26262 automotive functional safety standard is a strong

proof of how automotive suppliers are committed to enhancing their software to meet

these challenges and it is one of the motivations behind the work presented in this

dissertation as detailed in next sections. In [91], the author shows that bugs are mainly

introduced during the first stage of the software development life cycle and reports that

around 90% is introduced in requirements analysis, design and implementation activities.

The cost of correcting a bug in the late stages of the software development lifecycle

becomes dramatic in comparison to early detection of the defect. It is inevitable to

propose methodologies that target early detection of defects in the first stages of the

software lifecycle. The overall goal of electronic embedded system design is to balance

production costs with development time and cost in view of performance and

functionality considerations. In other words, engineers are encouraged to shorten the

10

overall design and validation cycle without compromising quality, reliability, and cost

targets.

According to a released study commissioned by the Department of Commerce's National

Institute of Standards and Technology (NIST 2002), software bugs adds a cost overhead

on the U.S. economy of about $59.5 billion annually(0.6 percent of the gross domestic

product). The study also confirms that a third of these bugs could be improved via an

improved Validation and Verification activities that allow the early detection of defects.

An estimated 22.2 billion dollars could be saved via finding a higher rate of bugs in the

same development activity that introduced them. Currently, over half of all defects are

not found until the last testing activity in the development process (validation test) or

during post-sale software use (operational life). The current automotive software growth,

the need to decrease cost while enhancing quality and the explicit target of discovering

faults in the early design stage as opposed to late testing stage are several motivations

behind the research introduced in this dissertation.

2.2 What is AUTOSAR?

AUTOSAR (AUTomotive Open System ARchitecture) is an open and standardized

automotive software architecture, jointly developed by automobile manufacturers,

suppliers and tool developers. AUTOSAR’s birth is motivated by the following goals:

1. Management of E/E complexity associated with growth in functional scope

2. Flexibility of product modification, upgrade and update

3. Scalability of solutions within and across product lines

4. Improved quality and reliability of E/E systems

Our research is aligned with objectives 3 and 4 where we focus on improving quality of

design and implementation via addressing the current shortcoming of formal methods

that discouraged the automotive industry from using them[81].

11

AUTOSAR-standard relies on component based software design model in the design

stage of the vehicular system. Software components are used in the design model and are

linked through abstract component named the virtual function bus [86].

The basic unit in the application in the software development life cycle is a software

component. The automotive application is now a structure of components that have

different types of interfaces to talk to each other. The components can be re-usable within

some applications. AUTOSAR standards describes standardized interfaces for all the

application software components that are needed to build any automotive application.

This ensures that there is still freedom in the functionality that is contained within the

component as long as the component has standardized interfaces and could be plugged

in/out of existing systems[81].

VFB or virtual function bus is the bridge that aims to connect the different software

components in the AUTOSAR design model. This special component is responsible for

connecting the application software components as well as handling the data flow

between them. The virtual function bus is AUTOSAR’s approach to model all hardware

and system within a vehicular system. The approach allows the focus to be on the

application as opposed to the structure of the software via the designers[81].

The presence of the virtual function bus has allowed the software components to not be

aware about the other components that they communicate with. The output of every

software component is given to the VFB, which dispatches the information via ports of

the input of the software components that require this data which is feasible due to

standardized interfaces of the software components which defines the input and output

ports as well as the data format of the information that will be exchanged via the

components [81].

12

This approach makes it possible to validate the interaction of all components and

interfaces before software implementation. This is also a fast way to make changes in the

system design and check whether the system will still function[83].

To support the Autosar-methodology, the consortium developed a metamodel to allow

designers to describe their systems based on this metamodel. A formal description of

methodology related information, which is modeled in UML was given. The benefit

below are a result of this definition:

o The structure of the information can be clearly visualized

o The consistency of the information is guaranteed

o Using XML, a data exchange format can be generated automatically out of the

meta-model and be used as input for the methodology.

o Easy maintenance of the entire vehicular system

2.2.1 AUTOSAR Layered Architecture

Figure 3 depicts the AUTOSAR Interfaces[80].

13

Figure 3 AUTOSAR Interfaces

Classification of Interfaces:

There are three different types of interfaces in Autosar Layered Architecture [80].

1. Standardized Autosar Interfaces:

A Standardized AUTOSAR Interface is an AUTOSAR Interface standardized

within the AUTOSAR project.

2. Standardized Interfaces:

A software interface is called Standardized Interface if a concrete standardized

API exists (e.g. OSEK COM Interface Com_ReceiveSignal &

Com_TransmitSignal which are called by RTE module)

3. Autosar Interfaces:

An AUTOSAR Interface describes the data and services required or provided by a

component and is specified and implemented according to the AUTOSAR

Interface Definition Language. An AUTOSAR Interface is partly standardized

https://automotivetechis.wordpress.com/autosar-concepts/autosar-interfaces/

14

within AUTOSAR, e.g. it may include OEM specific aspects. The use of

AUTOSAR Interfaces allows software components to be distributed among

several ECUs. The RTEs on the ECUs will take care of making the distribution

transparent to the software components.

2.2.2 AUTOSAR Structure

Figure 4 shows the AUTOSAR layers while explaining the aim of each layer [80].

Figure 4 AUTOSAR Layered Architecture

Microcontroller Abstraction layer aims to free the software from the processor, ECU

abstraction layer frees the software from the physical ECU properties, is the lowest

software layer, and it contains internal drivers which are modules that have direct access

to peripherals and microcontroller. ECU Abstraction layer interfaces the drivers. It also

contains external drivers. It offers interfaces for access to peripherals regardless of their

location in the microcontroller (Internal or external) and their connections (port pins,

interfaces) and mainly makes higher software layers independent of the ECU hardware

layout. Services layer is the highest layer of the Basic Software and offers operating

system functionality, network communication and management services, memory

services, diagnostic services, ECU state management, mode management, logical and

https://automotivetechis.files.wordpress.com/2012/05/untitled1.jpg

15

temporal program flow monitoring. The RTE is a layer that provides communication

services to the application software. The software communication with each other via

services in the RTE[80].

2.3 ISO-26262

ISO-26262 is a functional safety standard that publishes its objectives as [13]:

o Provides an automotive safety lifecycle (management, development, production,

operation, service, decommissioning) and supports tailoring the necessary

activities during these lifecycle phases;

o Provides an automotive specific risk-based approach for determining risk classes

(Automotive Safety Integrity Levels, ASILs);

o Uses ASILs for specifying the item's necessary safety requirements for achieving

an acceptable residual risk; and

o Provides requirements for validation and confirmation measures to ensure a

sufficient and acceptable level of safety being achieved.

Our research fulfils recommendations made by the standard in the validation and

verification activities of the design recommendation. The steps recommended by the

standard include semi-formal verification of the design and formal verification of the

design. Our proposed framework support these guidelines. Test derivation guidelines

recommend checks to be based on requirement of analysis, boundary conditions and

equivalence partitioning. We will show that our formal framework support these

guidelines while checking the model to report any violation.

The standards has been published in 10 sections, namely, vocabulary, management of

functional safety, concept phase, product development at the system level, product

development at the hardware level, product development at the software level, production

and operation, supporting processes, ASIL oriented and safety oriented analysis and

finally guidelines on ISO 26262.

16

ISO 26262 automotive safety lifecycle envelopes the entire lifecycle all the way to

production. This incorporates the necessity of having a safety manager who manages the

evolution of a safety plan and develops a set of measures inclusive of a safety review,

audit, and assessment. These measures are intended to be the framework for developing

any E/E system [13].

ASIL is a primary element in ISO 26262 compliance. The ASIL is determined at the

beginning of the development process. The expected functions of any system are

specified and analyzed in comparison with potential hazards. The ASIL asks the question,

“If a failure arises, what is the side-effect on human lives, whether it be the driver or

pedestrians?" The risk estimation is established based on several probabilities, including

the probability of exposure, the possible controllability by a driver, and the possible

outcome’s severity if a critical event occurs, leads to the ASIL. The ASIL is not related in

any way to the technologies utilized within the system. It only focuses on any potential

harm that may come to the driver or road users in case the system fails. [13].

Every safety requirement has to be assigned an ASIL value, which can be A, B, C, or D,

with D having the most stringent safety critical processes and strictest testing regulations.

ISO 26262 standard related all guidelines and recommendations based on the ASIL level

and identified the least set of testing requirements based on ASIL level as well. This

governs the approaches that should be utilized for test once the ASIL level is determined

based on a system level safety goal, which describes what the system should do to ensure

safety [13].

In the example of a windshield wiper system, the analysis of the safety of the system will

render that the potential loss of wiper function can impair the visibility of the driver and

thus lead to a critical injury to the driver or a potential pedestrian. In this case, a high

ASIL level is assigned to the system. The system development will have to follow all the

guidelines in the standard that are applicable to this ASIL level. This guidance is meant to

be in addition to existing safety practices. Existing measures to manufacture automobiles

17

could already be utilizing a good number of the approaches recommended by ISO-26262.

The publishing of the standard just aims to standardize the practices across the industry.

[13].

Hardware qualification is also part of the standard and it lists two main objectives in this

area. The first is to show how the individual parts are part of the big system and to define

failure modes and asses them. Regular existing qualification can be done for elementary

hardware components. Complex hardware components has to go through the analysis

phase and the ASIL level assignment phase and testing based on assigned ASIL level.

The hardware qualification is done via testing the part as a unit in different environmental

and operational conditions. Numerical methods are then used to analyze the results and

grouped into a qualification report that also documents the testing process, any

assumptions and different input categories. [13].

The activities to qualify a component is documented in ISO26262. It can be summarized

as defining functional requirements, the utilization of resources, and analyzing software

behavior in case of failure or overload situations. Whenever an existing software

component is qualified, the process to integrate it to an existing system or re-use it

becomes much simpler. The re-use aspect is really encouraged in AUTOSAR and

simplified via ISO 26262. AUTOSAR encourages the use of well-established entities that

have been used in several projects and ISO 26262 describes how to easily qualify such

entities for re-use. Example of such entities can include operating systems, libraries,

databases or even driver software. [13].

The qualification via the standard for these entities would be to check their behavior

under normal conditions and abnormal ones (inducing faults to see system reaction). Any

Software defects are analyzed from a data path and runtime perspective as well and

addressed throughout the design process [13].

Existing components whether they are hardware or software components can also comply

with ISO 26262 via “proven in use” argument. This is a special clause in the ISO where it

18

describes means to comply a component via proving that it has been used long enough by

other components with no reported failure. This was included in ISO 26262 to ensure that

existing systems that have been in production with no incidents for a long time does not

have to comply with the guidelines for safety in development life cycle. It makes no

sense to ask a module that has been deployed in several cars for years to apply standard

guidelines. The compliance of such components is established by proving that they have

been utilized in real world and can be shown to be defect free and reliable. Combining

components that are certified based on the new standard guidelines with those that have

been deployed for a long time is believed to reduce the overall complexity of the system.

[13].

A major challenge in any adoption of a new standard such as ISO 26262 is how to apply

the standard to existing processes. Usually, this is initiated via a pilot project to evaluate

the delta and the effect of the process on existing processes. Existing pilots tend to show

that ISO-26262 is similar to existing processes as the industry was already safety

oriented. Industry already saw the advantages of evaluating risks and doing program

safety analysis throughout a project and starting with the early phases of the project

definition to account for hazard analysis [13].

In summary, ISO 26262 could be seen as a standard that pushes for early understanding

of program goals and impacts, analyzing these goals and impacts from the start of the

project, linking the program to a correct ASIL accordingly and finally fulfilling these

requirements through ASIL guidelines all the way to production. [13].

Testing is critical in the development life cycle as described in ISO 26262. It is crucial

that systems react reliably towards testing scenarios. It must be shown that system

behavior always stay within a safe limit that is identified during the analysis phase of the

system even when exposed to expected and unexpected human or environmental inputs.

It is expected that increasing the test quality of the system will increase the performance

of the product, its quality as well as its reliability and recall rate. It is well known that the

19

cost of finding an issue in production is far less than finding it in the field. The best

scenario would be to find the issue in the design stage where the cost is much less. [13].

The standard includes understanding of the fact that the above can be accomplished via

software tools. The tools could be used to automate a guideline or task within the

development lifecycle of the component. The standard describes a complete section on

tool qualification where a tool is evaluated based on a Tool Confidence Level Metric

[13].

The inputs and outputs of any tool decide the use-cases that will be used to test the tool.

Once the tool is put under test, the output is used to determine the Tool Confidence Level

(TCL). The TCL and ASIL determine the level of qualification required for the software

tool. Two specific parts are used to determine the confidence level:

 The possibility of a malfunctioning software tool and its erroneous output can

lead to the violation of any safety requirement allocated to the safety-related item

or element to be developed

 The probability of preventing or detecting such defects in its output

The Tool Confidence Level can be TCL1, TCL2, TCL3, or TCL4, with TCL4 being the

highest level of confidence and TCL1 being the lowest level of confidence [13].

2.3.1 Tool Qualification

ISO 26262 puts in place requirements to qualify tools that help in the product

development lifecycle or that adopt technologies that are recommended via the standard.

Requirements include the necessity to define an ASIL level and the tool must have a user

manual, unique Id, version number, some installation guide document, the needed

installation environment and details of the features of the tool. ISO 26262 requires the

following tool qualification work products:

o Software Tool Qualification Plan

o Software Tool Documentation

20

o Software Tool Classification Analysis

o Software Tool Qualification Report

STQP or software tool qualification plan needs to be put in place in the early

development of any element or item that is impacted via the safety plan. It mainly targets

two areas, namely, showing that there is a plan in place to qualify the tool and

enumerating the use-cases that show that the tool has been categorized with a correct

ASIL with a good degree of confidence. STQP plan needs to include a unique tool

identifier, a version number, predefined ASIL level, use-cases, features, user manual as

well as the needed environment to run the tool.

In order to define Tool Confidence Level (TCL), a Software Tool Classification Analysis

(STCA) was put in place to guide the assignment of the TCL factor. Two main aspects

define the TCL, the first is the Tool Impact (TI) and the second is the Tool Error

Detection (TD). TCL is defined based on these two values as described in the ISO-26262

standard.

Tool impact can either be classified as TI0 or TI1. If the tool supplier can provide details

of why the tool mal-function can never affect a safety requirement, then the tool impact

can be assigned TI0. If no such argument can be given then the tool impact is assigned as

TI1.

In the case where a tool generates documentation and the documentation has a typing

defect, then this mild issue does not trigger or cause a safety requirement incompliance in

any way. It would be safe to assign such a tool an impact factor of TI0. In the case where

a tool can potential effect the behavior of a system in any way based on its output, then

an impact factor of TI1 is assigned.

On the other hand, Tool error detection can be assigned a range between TD1 and TD4.

The assignment is based on the confidence level of the tool. A high confidence level tool

is assigned TD1. TD2 is assigned for tools with moderate confidence level, and TD3 is

assigned for tools with low confidence level. If the tool could potentially mal-function

21

and this can be detected via random cases as opposed to systematic ones, then TD4 is the

assigned value.

In static analysis tools case, a TD2 (moderate confidence degree) is assigned to the tools.

This is because static analysis tools detect a subset of defects that can exist in the

model/design. The tools cannot report all violations in a design model. As a result, TD2

indicates that additional testing or tools are needed to ensure that the model is correct

which is interpreted into a TD2 or a moderate confidence level in the tool.

A TCL factor can be assigned once a tool has already been evaluated from an Impact (TI)

and error detection (TD) levels. TCL can range from 1 to 4. It is possible that a tool can

be assigned different TCLs depending on different exercised use-cases. In which case, the

highest TCL value is the one used for the tool. The above classification needs to be done

for every tool. [13].

Finally, a qualification report that contains the outcome of the qualification activities and

the proofs showing that the assignments were done properly and the all qualification

guidelines have been met. Any unexpected outcome should also be well captured in the

report.

The standard also supports tool qualification based on the usage history of a tool. If the

tool has been used extensively then a high confidence factor could be assigned in the

qualification endeavor. This definitely will help existing suppliers from a cost and time

perspective in tool qualification since their tools have been used extensively in projects.

With that said, the tool must show that qualification is done for every safety requirement

before being used in developing any safety item. In such case, the tool must show that:

o It was historically used for a similar objective and similar use-cases

o The tool has not gone through major specification updates

o The tool has not caused a previous safety violation in previous safety

requirements.

22

If Tool X was used to validate Car A ABS (Anti Brake System) system. Tool X has not

violated any safety requirement for this module in car A. In this case, the standard allows

using Tool A for ABS system in Car B given that it is a similar Car and the ABS system

will be used in that car with a similar manner. [13].

2.3.2 ISO26262 Architectural Design level Guidance

The first objective of this subphase is to develop a software architectural design that

realizes the software safety requirements. The second objective of this subphase is to

verify the software architectural design.

The software architectural design represents all software components and their

interactions with one another in a hierarchical structure. Static aspects, such as interfaces

and data paths of all software components, as well as dynamic aspects, such as process

sequences, state machines and timing behavior, need to be described.

In order to develop a single software architectural design both software safety

requirements as well as all non-safety-related requirements have to be fulfilled. Hence in

this subphase safety-related and non-safety-related requirements are handled within one

development process.

The software architectural design has to provide the means to implement the software

safety requirements and to manage the complexity of the technical safety concept [13].

Inputs to this phase are:

1. Software safety requirements specification

2. Safety plan

3. Verification Plan

4. Other supporting documents/resources include [13]:

 Technical safety concept

23

 System design specification

 Design and coding guidelines for modelling and programming languages

 Guidelines for the application of methods (from external source)

 Software tool application guidelines

 Qualified software components available

To ensure that the software architectural design captures the information necessary to

allow the subsequent development activities to be performed correctly and effectively,

the software architectural design shall be described with appropriate levels of abstraction

by using the notations for software architectural design listed in Table 1 [13].

Table 1 ISO26262 Recommended Design Abstraction Notation

Methods
ASIL

A B C D

1a Informal notations ++ ++ + +

1b Semi-formal notations + ++ ++ ++

1c Formal notations + + + +

Adherence to design guidelines through verification methods is shown in Table 2. Our

research aims to empower the ISO-26262 guidelines with tools to achieve semi-formal

and formal verification of the design.

24

Table 2 Methods for the verification of the software architectural design

Methods

ASIL

A B C D

1a Informal verification by walkthrough of the design-a ++ + o o

1b Informal verification by inspection of the design-a + ++ ++ ++

1c Semi-formal verification by simulating dynamic parts of the design-b + + + +

1d Semi-formal verification by prototype generation / animation o o + +

1e Formal verification o o + +

1f Control flow analysis-c, -d + + ++ ++

1g Data flow analysis-c, -d + + ++ ++

a Informal verification is used to assess whether the software requirements are completely

and correctly refined and realized in the software architectural design. In the case of model-based

development this method can be applied to the model.

b Method 1c requires the usage of executable models for the dynamic parts of the software

architecture.

c Control and data flow analysis can be carried out informally, semi-formally or formally.

d Control and data flow analysis may be limited to safety-related components and their

interfaces.

25

Chapter 3. Literature Survey

This chapter introduces the research’s state of the art. The existing software

defects as well as the existing verification and validation techniques used in the software

engineering cycle.

3.1 Software Defects

In order to claim there is an attempted solution that targets improvements in embedded

automotive software safety, it is imperative to capture problems that this solution need to

address and the software defects that any solution needs to target. IEEE defines software

defect to be a software related discrepancy between a computed, observed, or measured

value and condition and the true, specified, or theoretically correct value or condition [8].

To guide the measures for software defects corrective actions in some industries,

software defects in more than one domain / standard gets classified as negligible,

significant and catastrophic defects. Measures to identify problems in a typical software

program that is millions of lines of code are crucial. It is reported that the average

embedded device has 1 million line of code and doubling each year [9], a modern

passenger jet, such as Boeing 777 depends on 4 million lines of code[10], cars average

400 million lines of code so far[9]. Researchers have attempted to classify software

defects that should be addressed to guarantee software reliability and deterministic

behavior in more than one way.

Lutz classified defects based on existing identified defects in software safety critical

embedded projects as shown below [11]:

1. Program Faults

o Internal Faults (Syntax programming and language’s semantics). These are coding

defects that happen internally in the software. Not many of these internal software

defects appear during system testing and concludes that existing process flows

26

discover most of these defects and that there should be no focus on these defect

categories.

o Interface Faults (Interactions with other systems components)

o Functional Faults (operating faults; omission or unnecessary operations;

conditional faults; incorrect conditions or limit value). These usually happen due

to behavior not satisfying the functional requirements. These defects are the most

frequently occurring software ones and could be easily detected via formal

approaches and verification approaches.

o Behavioral faults (incorrect behavior that does not conform to requirements).

These usually present half of the faults uncovered during system testing and could

be easily detected via formal approaches and verification approaches.

As classified above, functional and behavioral faults represent the bulk of the defects and

it is recommended that they be addressed via formal methods.

Analysis of program faults categories in Voyager and Galileo spacecraft projects

conclude the following software defects root causes [11]:

 Interface defects are mainly driven by communication errors between the

members in the development team or communication errors between the

development team and other teams. Additionally a primary defect reason for

interface defects is misunderstood hardware and software interface specifications.

A typical identified use-case was the misconception of the initial state of relays or

unexpected timing patterns that were not explicitly indicated in the specifications.

 Functional faults were observed to be mainly due to defects in identifying

requirements or implementing them. An example of this was reported as being

assumed condition or limit values that were not explicitly identified as

requirements and were incorrectly assumed.

Conclusion was that program faults category of defects is mainly caused by problems

with understanding/mapping requirements within the software [11].

2. Human Errors

27

o Coding or editing errors

o Communication errors within a development team

o Errors in recognizing requirements

o Errors in deploying requirements

3. Process Flaws

o Utilized methods are old (Inspections and ad-hoc based testing approaches)

o Inaccurate or incomplete specifications that results from lack of communication

between programmers and designers.

o Incomplete or missing interface specifications between software and hardware

engineers.

o Inadequate requirements documentation that lacks complete description, which

lead to misunderstanding those requirements. Requirements not

identified/understood (Inadequate design)

The above classification was based on existing two spacecraft’s projects and identified

387 software defects in their software development, namely Voyager (18,000 lines of

code) and Galileo (22,000 lines of code). Table 3 lists a summary of program faults

classification in both projects:

Table 3 Fault Classification in Spacecraft's Project

 Program Faults Safety related program faults

Faults Types Voyager

(134)

Galileo

(253)

Voyager

(75)

Galileo

(122)

Internal Faults 1% (1) 3%(7) 0%(0) 2%(3)

Interface Faults 34%(46) 18%(47) 36%(27) 19%(23)

Function and 65%(87) 79%(199) 64%(48) 79%(96)

28

 Program Faults Safety related program faults

behavior Faults

The above numbers show us that the focus should be on Interface, functional and

behavioral faults, as they are mainly the bulk percentage for the defects identified in both

projects.

Other existing research efforts focused on software design, implementation, and testing

problems [11] which they enumerated as follows:

1- Omission: The failure of a system to generate an output to an input.

2- Value: The failure of a system to produce the correct output to a given input although

the output was generated in the correct time requirement.

3- Timing: The failure of a system to generate the correct output towards an input in the

required time interval/constraint

4- Byzantine: Any failure that causes an invalid input-output combination.

Edward A. Lee focuses on the problems with embedded software and identifies them as

follows [12]:

1. Resource limitations (limited memory, small data word sizes, and relatively slow

clocks). Although there has been huge progress in semiconductor industry in the past,

embedded industries fall short of utilizing designs that utilize the new artifacts. Examples

include,

o Rarely see embedded development utilizing object oriented techniques, such

as inheritance and polymorphism.

o Processors used for embedded systems rarely use memory hierarchy

techniques that make use of virtual memory spaces to deliver faster execution

using caches.

o Automated memory management (Allocation, de-allocation and garbage

collection) is rarely utilized in embedded system.

29

2. Most software systems abstract away time via ordering within the software system

development. In embedded software systems, integrations of software and hardware takes

place. Physical systems are concurrent and temporal. Actions and reactions happen all the

time simultaneously and concurrently thus temporal properties are crucial to embedded

safety systems. To the contrary, time is abstracted away and replaced by ordering.

Languages such as C/C++ and Java allow definition of the order of actions but not the

timing. The lack of timing in the core abstraction is a flaw in embedded systems.

Embedded frameworks such as Simulink (Mathworks), TinyOS(Berekley) and SCADE

(Esterel Technologies) have no threads or processes.

3. Developers find it extremely difficult to debug communication between threads. As a

result the behavior of concurrent systems is always not fully comprehended or defined

which puts their reliability to question. The only attempt to control the interaction is

based on mutex and semaphore technologies to try to control parallel access, which are

methods that have been defined in the 60s. Most of the time, there are race conditions in

the software that are manifested in production as opposed to in testing phase of the

software which causes a system to be non-deterministic.

Bugs introduced because of misusing sempahores or mutex are very difficult to

troubleshoot and almost impossible to be identified during testing. It is possible that a

program can be running correctly for years and then a flaw that is introduced at design

time is uncovered. Current concurrent development shortcomings are due to lack of

proper concurrent software engineering processes (Good reviews or specifications, proper

testing, and proper planning of concurrent systems design

). It is possible to improve this via formal methods although it is believed that the

program itself in such cases will be difficult to understand which impacts the reliability

factor of the software.

The main dilemma is to be able to capture concurrent systems abstractions while

retaining understandability of the programs and design. In such case, these abstractions

need not be much more difficult compared to general non concurrent system. [12].

30

Software V&V helps the product designers and test engineers to confirm that a right

product is build right way throughout the development process and improve the quality of

the software product. It makes sure that, certain rules are followed when developing a

software product and also makes sure that the developed product fulfills the required

specifications. This reduces the risk associated with any software project up to certain

level by helping in detection and correction of faults, which are unknowingly done during

the development process.

The standard definition of verification is: "Are we building the product RIGHT?"

e.g. verification is makes sure that the software product is developed the right way. The

software must confirm to its predefined specifications, as the product development goes

through different stages, an analysis is performed to ensure that all required specifications

are met.

The verification part of V&V comes before validation and incorporates software

inspections, reviews, audits, etc. During the verification, the work product (the ready part

of the software being developed and various documentations) is reviewed / examined by

one or more persons in order to find and point out the bugs in it. The verification helps in

prevention of potential bugs.

The standard definition of validation is: "Are we building the RIGHT product?"

e.g. a software product must do what the customer expects it to do. The software product

must functionally do what it is supposed to, it must comply with any functional

requirement set by the customer. Validation occurs at the end of the development process

in order to determine whether the product complies with specified requirements.

Validation starts after verification ends (after coding of the product is completed). Testing

methods are basically carried out during the validation.

3.2 Software Verification and Validation Techniques

Whatever the size of project, software V&V greatly affects software quality. Software that

has not been verified has little chance of working. Defects could lead to an operational

failure (bug) or non-compliance with a requirement. The objective of software V&V is to

31

reduce software Defects to an acceptable level. The V&V techniques must be applied at

each stage in the software process. It has two major objectives

1) Discovery of bugs in a product and

2) Assessment of whether or not the product is useful and useable in an

operational situation.

V&V must establish confidence that the software is fit and safe. Confidence is certainly

subjective and depends on many factors such as software criticality which is very high in

automotive domain. The V&V consists of numerous techniques and tools, often used in

combination with one another. Processes such as ISO-26262 wrap the software

development process and utilize all existing V&V techniques via recommendations and

guidelines.

Software V&V both use static and dynamic techniques of product checking to ensure that

the resulting software product matches with its specifications and that the software

product as implemented meets the expectations of the customer. In fact, dynamic

techniques involve the execution of the software product under test, whereas static

techniques do not.

Static techniques (Review and Proof) are concerned with analysis of the static product

representation to discover defects throughout all stages of the software life cycle. It may

be complemented by tool-based document and code analysis.

Dynamic techniques (Testing) are concerned with exercising and observing product

behavior. The product is executed with test data and its operational behavior is observed.

3.2.1 Process Based Approaches

Domain specific regulatory bodies put down process measures to guide any industry in its

software engineering process in order to govern software under development and put

strict measures in different software engineering cycles that aim to minimize software

defects that are caused by process flaws as a result of miscommunications, ambiguities,

or misunderstandings. There are over 250 standards and the list below shows some of the

existing software engineering standards that are available [14]:

32

1. AECL CE-1001-STD REV.2: Standard for Software Engineering of Safety

Critical Software

2. ANSI/AAMI/ISO 14971: Risk Management - Part 1: Application of Risk

Management to Medical Devices

3. ANSI/AAMI/IEC 62366:2007: Medical devices - Application of usability

engineering to medical devices

4. ANSI/IEEE 7-4.3.2: Application Criteria for Programmable Digital Computer

Systems in Safety Systems of Nuclear Power Generating Stations

5. ANSI/ UL 1998: Software in Programmable Components

6. BS EN 50128:2001: Software in Programmable Components

7. EIA SEB6A: System Safety Engineering in Software Development.

8. IEC 60880: Software for Computers in the Safety Systems of Nuclear Power

Stations

9. IEC60950-1 Amd.1 Ed 2.0: Information technology equipment

10. IEC 61508-1/2/3/5/6: Functional Safety of electrical/electronic/Programmable

electronic safety related systems

11. IEC 62304: Medical device software

12. IEEE 1228: Software Safety Plans

13. ISO IEC TR 15026: Systems and software engineering. Systems and software

assurance/

14. ISO / IEC 27002:2005: Information technology – Security management

15. MIL-STD-882D: System Safety Program Requirements

16. RTCA DO-178B: Software considerations in Airborne Systems and Equipment

certifications

17. SAE AS9006: Aerospace Software Supplement for AS9100A

18. ISO26262: Road Vehicles Functional Safety

There have been several attempts to evaluate standards and argue for/against their

effectiveness in software engineering. One of these attempts was the SMARTIE (

Standards and Methods Assessment Using Rigorous Techniques in Industrial

Environment) which was a collaboration aiming to provide an objective assessment of an

33

existing standard since it argues that there is currently more than 250 standards in the

market. [14]

The study reports that many standards are not really standards at all. Many “standards”

are reference or subjective requirements, suggesting that they are really guidelines (since

degree of compliance cannot be evaluated) and recommend that organizations with such

standards should revisit their goals and revise the standards to address the goals in a more

objective way. More generally, they found that standards lack objective assessment

criteria, involve more process than product, and are not always based on rigorous

experimental results. Thus, their recommendation was that software engineering

standards be reviewed and revised. The resulting standards should be cohesive collections

of requirements to which conformance can be established objectively. Moreover, there

should be a clearly stated benefit to each standard and a reference to the set of

experiments or case studies demonstrating that benefit. Finally, software engineering

standards should be better balanced, with more product requirements in relation to

process and resource requirements [14]. In summary, SMARTIE project findings were:

 Standards define a best practice; however there is no consensus about what is best

practice.

 Standards heavily over-emphasize a process rather than a product.

 Software standards try to assure product quality through a good development

process.

 The standards outline a set of mandatory requirements. However these

requirements are not clear or precise, leading to the standards becoming ‘codes of

practice’ or ‘guidelines’.

 Standards prescribe, recommend or mandate the use of technologies that have not

been objectively validated.

Standards are too big, usually extremely large documents that address the complete

system development life-cycle. This makes them hard to apply.

34

3.2.2 Static Techniques

The main aims of static analysis is to find improper practices in the code without

executing it. The improper practices are based on historic findings or practices that have

led to bugs in existing systems. Static analysis is very popular and used through the

automotive industry and recommended by ISO-26262 in all ASIL levels. They do

uncover issues in the model structure, data or control flow as well as ensuring syntax

accuracy. There are several techniques that can be categorized as static analysis ones.

Sections below give a brief on each.

3.2.2.1 Review

Some product output is presented to other project members, managers, technical

engineers, customers or end-users to review the output and provide feedback based on

experience. The review usually ends with an approval conditional some feedback to be

implemented or a rejection. If the product in the review is rejected, then another review

involving the same attendees shall be organized. A review can be utilized to check any

work product during the project lifecycle including requirements or specifications. Four

types of reviews have been introduced via IEEE (IEEE Std. 610-1990) to conduct

software verification, namely, technical review, inspection, audit and walkthrough.

These reviews are all “formal reviews” in the sense that all have specific objectives and

explicit rules of procedures. They expect to identify defects and discrepancies of the

software regarding the original specifications, plans and standards.

3.2.2.2 Technical review

A technical review is intended to assess a review item, which could be source code or a

document, to ensure that the item in review conforms to specifications, complies with

standards or procedures, any previous required change was properly included, no new

issues were introduced as a result of any requested change.

35

3.2.2.3 Walkthrough

A Walkthrough is usually the first attempt to evaluate a project element such as a

document, design, some model or even source code. The objectives of the walkthrough

includes early identification of potential defects and proposing solutions towards these

defects. It is also possible to consider the walkthrough endeavor as an educational one for

team members and to avoid future defects of similar nature via different team members.

3.2.2.4 Inspection

Inspection can be used for the detection of defects in detailed designs before coding and

during the coding stage. Inspection may also be used to verify test cases. A study done by

Fagan (Fagan 1986) has shown that inspection could detect over 50% of the total number

of defects introduced in development stages. IEEE (IEEE Std. 610-1990) considers that

inspection is a more rigorous alternative to walkthrough, and is strongly recommended

for software with stringent reliability, security and safety requirements.

3.2.2.5 Audit

In order to ensure that requirements, standards, procedurers, coding guidelines, licensing

and contractrual agreement compliance is adhered to, an audit is conducted in an

independent fashion. The audit is usually done via members that are not part of the

development team.

3.2.2.6 Proof

A proof is a logical expression ensuring that software is correct. Testing on the other

hand only shows that a specific input can generate a specific output. Alternatively, proof

shows that inputs given a set of pre-conditions will result in defined post-conditions

being met. Proof is usually based on formal techniques that is based on mathematical

equations being solved. Any requirement is mapped to a mathematical equation and

checkers are launched to check if given a set of values and pre conditions happen, this

equation can never violate post conditions. Another name for this approach is formal

verification. Proof techniques are usually shown to ensure specification compliance in

comparison to actual design or code.

36

Proof techniques are often used on critical software products. They often have precise

and logical specifications with no loopholes and they require being highly reliable, since

failures in this kind of products may lead to deathly consequences. Some areas where

proof techniques which have been successful are for the specification and verification of

safe and critical products such as aircraft avionics, nuclear power plant control and

patient monitoring. Automotive engineers are not familiar with proof techniques contrary

to aeronautic or defense engineers. Software testing is a widespread V&V technique in

automotive industry. Proof techniques are not widely used in automotive industry. In fact,

the difficulty of expressing software requirements in the mathematical form necessary for

formal proof has restricted a wider application of this technique.

3.2.2.7 Tools

As part of existing attempts to address safety in software, researchers / industry and

conformance bodies started identifying best or to be avoided practices that every

programmer should abide by. MISRA, the Motor Industry Software Reliability

Association was started in the early 1990 and was primarily concerned with safety

aspects of electronic systems. Initially, the project was expected to develop guidelines for

vehicle based software. One of the major outputs of this effort was MISRA-C which was

an attempt to develop an embedded C programming standard/guideline that addresses

shortcomings in C language or practices that could lead to a software failing and thus

impacting or influencing safety.

Software tool vendors take such guidelines and attempt to automate the rules validation

across the software under development. Such tools are called static analysis tools since

the analysis of source code takes place without execution. Because static analysis does

not require execution of the code, analysis for defects and vulnerabilities is done

throughout the software development process, and analysis conducted across all code

paths.

37

Static analysis is simply looking for signatures of defects or patterns that have caused

defects historically in already developed programs. Sometimes, these patterns are vague.

Static Analysis main flaw is that it can give a good number of false positives where it

reports many violations that are false or meaningless. Static analysis also looks for

patterns that are already known. So, any new defect cannot be identified via static

analysis tools. Research is ongoing on static analysis to extend its scope and make it a

reliable step in the software development cycle [20].

Static analysis tools started emerging in the late 70’s. The first generation of such tools

started with the Lint tool. Lint was well perceived by developers and project managers

when it was first released. Developers were able to run a tool that automatically detects

software defects in the early stages of implementation and as a result, it was very easy

form them to correct such defects. This gave developers confidence in their code quality

before release. Lint was utilizing SAT or Boolean satisfiability as well as path simulation.

It also used compilers to be able to detect defects. Lint is seen to be the first usable static

tool. [15]

As with the rest of the tools conducting static analysis, Lint tool was never designed to

detect issues that can lead to run-time problems. Its main objective was to indicate code

constructs that could potentially be problematic or code constructs that could lead to

portability issues so that developers can fix them in the code. Problematic code or non-

portable code could be viewed as code that is correct from a semantics and syntax

perspective but could potentially behave in a way that was not intended by the developer

due to its structure or composition. The dispute about marking problematic code is that

most of the time the code would work without changing it, the same for compiler

warnings. As a result, this tends to be ignored and the analysis capabilities of the tool’s

reported output would not be efficient due to high noise rate where only one issue out of

10 is a real defect. [15]

38

As a result, developers ended up wasting time trying to analyze which of the reported

violations are real and which are not. Developers were asked to do manual review to

analyze the output of the static tool analysis. The overhead of doing output analysis

manually was exactly why static tools was introduced in the first place. As a result, Lint

was never deployed and trusted on a massive scale in the industry and it only survived

some success in a few organizations. Some of the initial Lint tool releases are still in use

by product development in some organizations until today. [15]

Static analysis remained for almost 20 years as a myth in identifying defects as opposed

to an actual dependable tool. A new generation of static analysis tool were released in

early 2000, Stanford Checker, which was seen to offer good value to make it a reliable

tool for defect detection. Unlike first generation tools which were only looking for

matching patterns, this tool utilized path coverage and was able to reveal more defects

that had run time failure indications. The tools ran on entire project code bases as

opposed to individual files. This switched the focus from, problematic code constructs to

defects that had run-time implications. The main theme of the new tool developers was to

understand the code composition, use complex technologies, namely, path analysis, and

inter procedural analysis to comprehend the program flow between functions in a

complete system. [18][19]

Although second generation tools were adopted by organizations, they still failed to strike

a balance between reliability and scalability. Some tools were accurate when it comes to

a subset of defect types but failed to work with systems that had millions of lines of code.

Other systems ran faster but ended up with output like Lint Tool where many false

positives were reported. The tools did show defects at a reasonable ration but only when

you restrict the input parameters during the execution of the tool. The dilemma of trying

to balance between accuracy and scalability to avoid false positives remained. This was

the problem that caused first generation tools not to be widely adopted and they remained

in second-generation tools, which also reduced the rate of their adoption. So, in a

nutshell, the technologies used in second generation tools were more advanced, the

39

results were still far from what developers can claim as an accurate output. Second

generation tools also endured many issues due to the heterogeneous build and

development environment. The development and build environments are not standard and

are different in every organization which led to great pains, time and cost to integrate any

tool to existing build and development environments.[15][16]

Most recently, a new generation of tools emerged that are based on SAT solvers and path

analysis technologies. SAT is described as defining if variables of some formula can be

assigned in a way to make the formula end up being evaluated to true. It also tried to find

if no assignment exists that could lead the formula evaluation to be true. This would

imply that a function, which would be represented via the formula, is false given all input

parameters and variable assignment. In such case, the formula is declared as

unsatisfiable; else, it is satisfiable. The conclusion was that such static analysis tools were

able to find real defects and minimize the false positives. There was also a claim that the

underlying used technology can allow for further enhancements in static analysis [17].

Furthermore, some further programming language specific static analysis concepts were

introduced. In automobile design, the UK-based Motor Industry Software Reliability

Association (MISRA) mapped their concerns of safety in software into a set of

documentation limitations. Knowing that most automotive development happens in C,

they collected the pitfalls of C language and published guidelines in order to make

automotive programming in C safer.[21]

The result of UK’s MISRA association endeavor was a guidelines document to aid any

developer in using the C language. The guidelines, which was published in 1998, were

later given the acronym, MISRA C. It was a 70-page document that described all C

language pitfalls based on existing systems failures. [21]

MISRA C is comprised of 127 rules, 93 are mandatory and must be satisfied by any

automotive software developer and the remaining are recommendations. In order for any

40

developer to confirm to MISRA C, they must show that they do not violate any of the 93

mandatory rules. Developers should also make every attempt to confirm to the advisory

rules as well. Therefore, briefly, either you are MISRA C compliant fan or you are not. [

21] The guidelines do not deal with issues related to invalid algorithms. It has no impact

on programming style and no constraints that can stop a developer form writing stupid

code. It will just ensure that your code has avoided known pitfalls of C language. [21]

Other tools out there also help in identifying code anomalies in different categories via

static tools. There are tools to ensure that code is compliant to standards, not redundant,

does not contain any division by zero, does not have constructs that can cause run-time

exceptions, does not cause memory leaks and finally does not mis-use variables in any

way. [22]. Such tools parse the source code and tries to find any of the above categories

error patterns in the code. Static analysis now include control and data flow analysis,

interface analysis, information flow analysis, and path analysis of software code.

Nowadays, static analysis tools can identify a good number of development defects but

there remains a good number of defects that cannot be detected via static analysis tools.

[22].

There exists a wide range of tools for code written in C or C++. FlexeLint2 is a Unix

based tool that checks C/C++ source code to find bugs, constructs that are not portable,

inconsistent code constructs or redundant code. inconsistencies, non-portable constructs,

and redundant code. Reasoning3’s Illuma is a static tool that detects bugs in applications

written in C/C++. Development teams send their code base to Reasoning3, which

conducts the static analysis, analyses the tool output to filter away false positives and

generates a report to be sent back to the development team. Illuma The tool focused on

detecting bugs that can cause applications crashes or corruption in data such as NULL

pointer dereferencing; out of bounds array access; memory leaks; bad de-allocation; and

uninitialized variables.

41

Two static analysis tools provided by Klocwork4 are also in use by several organizations.

InForce conducts automated inspection of source code to provide code metrics that can

be used to identify defects, opportunities for code optimizations or security flaws.

GateKeeper inspects the source code architecture and provides an assessment report that

shows the cons and pros of the architecture, which reveals en evaluation of the code. The

evaluations address the quality of the code, defects that are hidden, and code that is hard

to maintain. Metrics also shows interdependency between modules, cyclic relationships

within modules, code files that exhibit high risk, potential logical defects, and areas for

improvement [22].

PREfix [22] analyzed the code to establish a call graph of the program. PREfast [22] tool

is a “quick” version of the PREfix tool where specific PREfast analyses revolves on

trying to identify matches in an abstract syntax tree representation of the C/C++ program

in order to identify programming defects. PREfix/PREfast are used in the industry to

detect defects, such as dereferencing of a NULL pointer, variables that are not initialized,

using uninitialized memory, and freeing memory or resources twice.

3.2.3 Dynamic Techniques

Require model execution where they evaluate the model based on its execution behavior.

Most dynamic V&V techniques require model instrumentation, the insertion of additional

code (probes or stubs) into the executable model to collect information about model

behavior during execution.

Software testing, a V&V dynamic technique is a widespread technique in automotive

industry. In Johnson Controls, software testing represents up to 90% of the total time

spent in verifying and validation a software product [93]. Moreover, in the academic

research, the traditional focus of software V&V techniques has been the software testing.

In fact, testing approaches are widely studied in academic research and deployed in

software industry.

42

3.2.3.1 Testing

Testing is involved in every stage of software life cycle, but the testing done at each level

of software development is different in nature and has different objectives. Unit Testing

is done at the lowest level. It tests the basic unit of software, which is the smallest

testable piece of software, and is often called “unit”, “module”, or “component”

interchangeably. When more than one unit is combined together in a test, integration

testing is performed. The test is conducted on external interfaces to the individual units as

well as interfaces between these units. The test is often done on both the interfaces

between the components as long as it can assessed from the unit under test.

System Testing focuses on end-to-end testing of an entire system rather than focus on

internal components of the system. System testing makes a statement on the overall

quality of the software. It is usually based on functional requirements in specifications of

a system. System testing also can cover nonfunctional requirements such as

maintainability, reliability and security of the system.

Finally, acceptance testing is conducted when a complete system is handed over to

customers or users and aims to ensure that the system is functioning as opposed to trying

to find defects.[23]

Currently there are two major activities to ensure quality in systems. The first is static

analysis, which targets non-execution defects using several discussed techniques such as:

inspection of the code, analysis of the program, symbolic analysis, or model checking.

Dynamic analysis on the other hand focuses on methods to ensure system software

quality during actual executions using actual and under real or simulated conditions.

Inputs Synthesis, testing procedures and automating the generation of test environments

are examples of some techniques used in dynamic analysis. Static and Dynamic

techniques complement each other as one involves execution of a system and one does

not. [23]

43

Input test cases and test results analysis depend on the testing strategy in question. The

testing strategy is decided based on testing data flow. Every testing technique reveal

different quality aspects of a system. Functional and Structural testing are two main

categories of testing techniques.

Functional Testing is conducted when the system under test or software to be tested is

seen as a black box with no concerns regarding its internals or interactions amongst its

components. Test cases in functional testing are primarily based on specifications of

requirements or design of the system under test. Results are sometimes called oracles or

gold models. The results usually include the original requirement that is tested, the

desired output in accordance to the specification, and the actual results. In functional

testing, the emphasis is on the external behavior of the system.

Structural based testing of a software system means viewing the system as white box

(transparent) where you see all the internal system details and need to test all internals of

that system. Test cases are based on how the software got implementation or on the

implementation itself. The main objective is to know specific constructs in the system

and aim to test them to verify that they operate as planned by the implementation.

Example include specific statements, specific program path or branch. The results of any

test are compared with the planned expected results of the implementation. Evaluation of

the tests are based on metrics such as coverage percentage of the statements within the

system being tested. There are several metrics used in structural testing such as coverage

of branches, coverage of data-flow, and coverage of paths in the system. Briefly,

structural coverage is concerned with the internal composition of the system as opposed

to its external behavior.

Traditionally, testing has been performed using adhoc and intuitive techniques. Testing

still remains the biggest part of software development life cycle. Testers utilized both

structural and functional techniques based on intuition in their testing cycles. There were

no techniques, methods or theory to design testing in an efficient, automated and

44

structured way. Goodenough and Gerhart founded the main theorem of testing in a paper

to propose a Theory of Test Data Selection. This was the first work that got published

that tried to lay a theoretical foundation for testing. It categorized test data for test cases

as effective if it uncovers program defects. If the selected test data does not uncover

defects then this test data selection is not effective. They emphasized on statement

coverage in their work. Their foundation led to various successful research on testing

methods theory. Later, Huang added in his research the importance of having every

statement in the program executed at least once during the testing cycle. He also

emphasized that statement coverage does not guarantee that all defects will be detected.

He described a term, “edge strategy”, which aims to exercise every edge in a diagraph of

the program at least once.

Subsequent research introduced probe insertion technique and path coverage, which

appeared in 1976. Howden explained that test data needs to be selected to ensure that

every unique path of a program is visited at least once. He elaborated in his work that the

total number of paths in a program could be infinite and suggested that in practice a

subset of program paths (or a superset) needs to be tested. Several studies were later

made to evaluate the efficiency of path testing and to define an upper bound that limits

the value of the subset of test cases to ensure reliable path coverage testing.

Functional testing also lacked any solid theory behind it although it was widely used in

industry and academia. In the first research that tried to lay a theoretical foundation

behind functional testing, Howden introduced the term design functions, which is code

surrounded by comments which describe the intent of the function. He described how

systematic design techniques could be utilized to design functional tests.

Further research addressed theories behind structural testing via introducing the term,

domain defect. Domain defect was described as a subset input to a program that triggers

an invalid path to be taken. Domain defects were described to be potentially triggered via

branch statements that have incorrect predicates or invalid computations that have an

45

impact on predicates that are used within a branch statement. White and Cohen defined

some guidance on the selection of test data to uncover domain defects. Their work

described general reasons whey testing could be successful or not and proposed research

direction [56].

In 1985, Rapps and Weyuker introduced data flow analysis for structural testing in their

published research. They proposed guidelines on the test data selection to achieve data

flow analysis. They argued that path coverage criteria could let defects go uncovered.

They proposed new path selection criteria based on data flow analysis and discussed

relationships between the criteria. Their work laid the foundation to select test data based

on dataflow analysis techniques.

Richardson and others recommended an approach that revolves around test case selection

based on specifications. Generally, functional testing that is based on specification was

focused on manual hand selecting test cases rendering functional testing as simply based

on selective criteria. Automation of test cases for structural testing was possible which

led to the advantage of having a reliable and complete functional testing as opposed to

heuristics based. Their research started using formal methods via utilizing formal

specifications to empower a testing methodology that blends specification and

implementation methods. Their work was the first attempt to merge structural and

functional testing with formal specifications.

Boolean algebra appeared as a backbone for a testing method in the 90s. The intent was

to use it to simplify, convert and analyze specifications. Boolean algebra was used to

ensure that specification is consistent and complete which can definitely have a great

impact on testability of the specification. Functional requirements were represented using

decision tables, which makes it easier to design tests and to implement programs as well.

The proposed approach was based on using both Karnaugh-Veitch charts and decision

tables’ Boolean algebra based techniques to capture functional requirements. This was

the initial attempt to select data for test cases based on boolean algebra.

46

Other research that focused on improving the testing theory revolved around defining

metrics that can be put in place to ensure software reliability. Traditionally, reliability

was based on failure cases during the test cycle. . This of course required a big amount of

data collection, post analysis of data, experience to interpret the analyze data and

computations to translate the results. In the late 90s, a new method was introduced to

calculate reliability based on coverage during testing. The program was mapped into a

graph and every function is a node in the graph. The reliability was calculated for every

node in the graph based on the number of times the node got executed during system

testing. The higher this number, the more the reliability factor for this node. The node

reliability value is then used to compute an overall reliability value for the entire system.

Since existing research was concerned with coverage analysis, it was concluded that

extending such methods with reliability analysis will increase the overall reliability of the

entire system.

In 1997, a framework was proposed for functional and structural testing based on

probability. Bernot and others concluded that they could ensure a high level of

confidence on the correctness of a system and provide a reliability metric via selecting

input test cases data based on generating data distributions that are domain specific. They

proposed using techniques such as integer intervals, Cartesian products, unions, and sets

that are defined inductively. Other research in the same year proposed using formal

notations to describe system architecture in order to automate tests for complex systems.

[56]

Another interesting research in 1997 used formal architectural description for rigorous,

automatable method for integration test of complicated systems. The authors described

CHAM formal language to capture the behavior of the system. The system interesting

use-cases or behavior was mapped into graphs to capture all the possible behaviors of the

system. The graphs were then shrunk after determining communications between entities

in the system. The reduced set of graphs were then used to generate integration tests with

47

the coverage metric in mind or as an input parameter. The baseline of generation is

assumed to be a set of reduced graphs that capture architectural features of a system.

Later research started focusing on ‘off the shelf’ software entities. Briefly, re-usable

components that have already been design, verified and proven reliable. The work started

to be based on UML (Unified Modeling Language) which gained huge momentum in the

industry. Hartmann and others at Siemens worked on testing UML components via

combining generation and execution of a test in a UML modeling tool (e.g. Rational

Rose). A system is modeled into UML components and interactions. Test cases are then

generated and run against the model to ensure correct behavior. They also proposed

generating test cases from state charts and prototyped an environment, TnT, to evaluate

their approach based on use-cases [25].

Component based testing approach was introduced as well. Beydeda and others suggested

mapping component into a graphical representation. Testing was described as complex

when a component lacks its source code in UML. The research suggested a way to merge

structural and functional testing. Component is represented graphically, component-based

software flow graph (CBSFG), to simplify the specification and implementation details

captured in the component. The graphical representation was then used to generate test

cases. Existing structural testing approaches were described to be possible on this

graphical representation to classify test cases based on data flow analysis. The main

components are still tested with functional techniques. [23]

A multitude of techniques were proposed in testing theory for test case generation.

Examples include random generation, generation based on identified paths, generation

based on identified goals, and intelligent approaches. Fault distribution is used in random

test case generation to aid the generation of test cases. Control flow and data flow

analysis are utilized to generated test cases in path-based approaches. Some of these

methods are static while others are dynamic. Goal-oriented methods define test cases to

ensure that a specific goal is taken. A goal could be a statement, a condition or even a

48

branch. Complex computations are used in intelligent techniques to generate test cases.

[24]

3.2.3.2 Model Based Techniques

Model Driven Engineering, MDE for short, aims to raise the level of abstraction in

program specification and increase automation in program development. The idea

promoted by MDE is to use models at different levels of abstraction for developing

systems, thereby raising the level of abstraction in program specification. An increase of

automation in program development is reached by using executable model

transformations. Higher-level models are transformed into lower level models until the

model can be made executable using either code generation or model interpretation.

A model is specified in some model notation. Some model languages are tailored to a

certain domain, such a language is often called a Domain Specific Language. A DSL can

be visual or textual[68].

As in each software engineering approach quality is an important aspect of MDE. Quality

in MDE can be checked, or ensured, with three different techniques: model

validation, model checking, and model-based testing.

MDE is often confused with Model Driven Architecture (MDA). MDA can be seen as

OMG's vision on MDE [42]. The MDA focuses on the technical variability in software,

i.e. how to specify software in a platform independent way.

In a nutshell, MDE is a software engineering paradigm that focuses on creating and

exploiting models, aka, abstract representations of the knowledge and activities that

govern a particular application) rather than on the computing (or algorithmic) concepts,

or platform setup/dependencies.

The MDE approach was driven by the need to increase productivity by maximizing

compatibility between systems (via reuse of standardized models), simplifying the

49

process of design, and promoting communication between individuals and teams working

on the system (via a standardization of the terminology and the best practices).

A modeling paradigm for MDE is considered effective if its models make sense from the

point of view of a user that is familiar with the domain, and if they can serve as a basis

for implementing systems. The models are developed through extensive communication

among product managers, designers, developers and users of the application domain. As

the models approach completion, they enable the development of software and systems.

Main components of MDE paradigm involve the following:

 Standardized or domain specific modeling languages to formalize the application

structure, behavior and requirements of an application in a specific domain.

 Executable model: The ability to execute the application at the model level to

identify problems/issues in the application structure and behavior before worrying

about platform and programming languages dependencies.

 Transformation rules: These map the application model into language/specific and

platform specific variant of the application model

 Transformation engine: Accepts as input the model and the transformation rules

and generates language/platform specific variance of the application.

Using Formal Methods (FMs), which have rigorous mathematical foundations, for system

development is extremely needed in the current era, especially for safety critical systems

where formal proving is needed for safety or security requirements. On the other hand,

Model-driven Engineering (MDE) is considered to be developing as a new model in

software engineering. MDE is based on meta-modeling and model mappings in software

development, and adds means to build links between domains that are similar or

different[34]. It is now essential to use formal methods in system engineering,

particularly in the early phases of the development process. An abstract representation of

the system as a model can be utilized to ensure that the system under development fulfils

the specified requirements (via simulation and model-based testing), and ensures specific

properties using formal analysis (validation & verification). Indeed, there are several

cases to prove the relevancy and importance of formal methods in industrial applications

50

and yielding very good results, many professionals and industry engineers are still

hesitant to adopt formal methods. Formal methods still suffer from lack of training,

which is mainly due to complex and mathematical notations that formal techniques use

rather than abstract graphical notation which is more lightweight and natural for an

application for a system engineer such as the Unified Modeling Language (UML) [42].

The absence of support tools for the development during the life cycle activities and the

lack of integration among existing formal methods techniques and languages is also a

major reason why industry has been discouraged to use formal methods.

MDE technologies with a bigger attention on automation and architecture render higher

degrees of abstraction in system development by advocating models as first-step artifacts

to support, analyze, verify, and eventually compile into code or into other models. Meta-

modeling is a crucial concept of the MDE architecture and it is designed as a way to

empower a language or formalism with an abstract notation, so as to separate the abstract

syntax and semantics of the language from its alternate concrete notations.

Although the basic elements of the MDE are still expanding, some MDE fundamentals

are part of the meta- modeling/programming frameworks such as Model-integrated

Computing (MIC) [34], OMG MDA (Model Driven Architecture) [34], Microsoft

Domain-Specific Languages (DSLs) tools (as part of the Visual Studio SDK) [34], and

Eclipse/EMF [43].

Modeling languages that are metamodel based are being specified and accepted for

different domains [64]. The languages address the lack by third-generation languages to

ease the platforms complexities and be able to capture domain notions efficiently [34].

Inspite of the fact that meta-model based definition of a language abstract syntax is well

grasped and utilized by many meta-modeling environments (GME/MetaGME,

EMF/Ecore , XMFMosaic/ Xcore , AMMA/KM3, etc.), the definition of semantics for

this languages class is a crucial and pending issue. Metamodeling environments are

capable of coping with the most complex syntax and mapping to other models issues.

51

They still lack standardization and accurate support in order to give the (possibly

executable) semantics of metamodels[71]73[], which is usually given in natural language.

This entails that the majority of the currently employed metamodel-based languages

(such as the UML) are still not sufficient for efficient analysis of models due to their

strong semantics lack, which is vital for formal models analysis aided by tools. [34]

Software languages became a basic pillar in system development. Processes of Language

engineering have been taken into consideration in many facets of software engineering

[44]. Regarding the metamodeling paradigm of MDE for (software) language

engineering, many designs have been given, which focuses on the fact that language

descriptions have unique forms in different technical domains (e.g. metamodels, schemas,

ontologies and grammars). Ideally, multiple languages (from a variety of technical

domains) need to be integrated together on a system level approach in most software

development endeavors. The engineering of a language needs to address several angles of

a language: constraints, structure, textual representation, graphical representation, parser,

compiler, mapper to other notations and the ability to capture dynamic behavior via

executability features. Research tends to address only one of these aspects [34].

It is only recent that communities for formal methods have started to use metamodels and

MDE platforms for their tools. Examples of these efforts include but are not limited to:

An Event-B based metamodel and an Event B EMF based framework [34] which give a

frontend that is EMF based to Rodin platform. Rodin platform is an Event-B Eclipse-

based IDE that enables refinement and mathematical proof of models based on Event-B.

Maude Formal Tool Environment [45] is a logic language that is executable and is

suitable for object oriented systems. It delivers tool support in order to reason about

specifications and a connector that is an Eclipse plug-in which allows the Maude

environment to connect to other metamodeling frameworks such as KM3 which uses

ATL (the ATLAS Transformation Language) transformations [46].

52

A transformation language GReAT (Graph Rewriting And Transformation language)

which utilized the graph transformations based concepts and metamodeling within graph

communities [47] has been designed with the model transformation area of Model

Integrated Computing in mind. Several tools support it which aims to grant rapid

prototyping and transformation tools. ITU language utilized this metamodel [48] where

the authors put forward a methodology that is semi-automatic and reverse engineering

based which support the derivation of a metamodel from a formal syntax definition of an

existing language.

A comparable method which aims to arch model and grammer was developed by other

authors in [49] and in [50]. A forward engineering process approach that aims to derive a

a concrete textual notation from an abstract metamodel [34] was also developed. More

recently, work in [51] shows how to apply metamodel-based technologies for the creation

of a language description for the Sudoku game. Notations and tools have been developed

within the ASM community to enable specification and analysis [52].

Foundation Software Engineering Group developed an Abstract State Machine Language

(AsmL) at Microsoft. The aim was to develop an executable specification that is rich and

based on Abstract State Machines theory, integrates with .NET framework and object

oriented but AsmL does not offer a semantic structure to target the ASM method [53].

ASM popular tools also include CoreASM, TASM (Timed ASMs), extensible execution

engine developed in Java, a simulator-model checker for reactive real-time ASMs , an

encoding of Timed Automata in ASMs[54] , and ability to specify and verify properties

based on First Order Timed Logic (FOTL) on ASM models. Several model-to-text tools

are available for this flow[72].

Other endeavors allow the derivation of a language metamodel from language grammar.

Examples include Ecore metamodel EMFText [55], KM3 and TEF (Textual Editing

Framework) metamodel using TCS [46][58] (Textual Concrete Syntax) and Xtext [57].

Textual grammar and metamodel overview is given in [63]. Other more sophisticated

53

model-to-text tools that can generate text grammars from MOF specific based

repositories also exist [59][60]. Such tools render the MOF- based repository content

(known as a MOFlet) in text format while complying to syntactic rules (grammar). The

tools are designed to be automatic and work with any MOF model in order to produce

their target grammar based on a set of defined patterns so as they do not allow detailed

customization of the generated language.

Work in [35] shows how object oriented software engineering flow can be on top of

graphical notation and formal methods using algebra and object-Z as specification

language. The flow uses UML as a modeling framework and Java as an implementation

language. The work in [75] shows an approach where formal notations are introduced in

safety critical software systems. Additionally, [61] introduces a transformation technique

that is based on a metamodel. The technique is based on structural mapping between

UML and B formal specifications in order to generate formal B specifications from UML

diagrams. Most of the approaches revolve around translating graphical models into

formal specifications. Work in [36] proposed an MDE-based approach to integrate

several formal techniques. In the work presented by [34], formal models are introduced

into MDE as domain specific languages based on constructing their meta-models. A set

of transformation rules are then constructed and finally model to text rules are developed

so that the models can be compiled into code. MARTE to LOTOS case study was applied

on the framework with a main goal of showing different formal notations and how they

can be translated into software in the software development life cycle but the approach

fails to framework semantics.

The work presented in [62] discusses the broad challenges of integrating tools and

interoperability of tools within a framework that is based on MDE principles. Further

research focuses on the semantics specification of languages based on meta-model so that

it is possible to have executability of the model within current meta-modeling

frameworks such as Kermeta[74]. Similar effort with the same aim is presented in [65]

54

where the authors describe a framework called M3Actions framework which targets the

support of EMF models operational semantics.

The work presented in [66] specified semantics of modeling languages that are visual

based on Maude Formalism. A translation approach is discussed in [67] regarding the

application of ASMs in order to specify MDE style execution semantics and a translation

approach as well [69]. The research proposed semantic bridging to reputable formal

models of computation (such as data flow , FSMs, and discrete event systems) built upon

AsmL. This is done via the use of a transformation language, namely, GME/GReAT. The

approach that is proposed presents sets of semantic units that are pre and well defined for

potential translation/mapping endeavors. There are two cons to this approach [34]: the

first being that the user needs to be aware of language semantics from scratch and based

on a set of notations that are still new and did not exist previously. Secondly, in

heterogeneous systems, defining language semantics as composition of some selected

primary semantic units for basic behavioral categories is not always achievable. This can

be due to complex behaviors, which might not be possibly reduced to existing set of

combination [70].

In MDE, Automatic code generation or program synthesis techniques have been viewed

in recent research endeavors to help solve the predicament of ensuring software safety by

completely automating the coding phase. A code generator takes as input a domain-

specific high-level description of a task (e.g.,a set of differential equations) and produces

optimized and documented low-level code (e.g., C or C++) that is based on algorithms

appropriate for the task (e.g., the extended Kalman filter).

This automation is claimed to increase developer productivity and is claimed to prevent

the introduction of human based coding defects. Ultimately, however, the correctness of

the generated code depends on the correct-ness of the generator itself. This dependency

has led several monitory agencies to require that development tools be qualified to the

same level of criticality as the developed software. [76]

55

Model-based design and automated code generation have become popular, but substantial

obstacles remain to their widespread adoption in safety-critical domains: since code

generators are typically not qualified, there is no guarantee that their output is safe, and

consequently the generated code still needs to be fully tested and certified. Formal

methods such as formal software safety certification can be used to demonstrate safety of

the generated code (i.e., that the execution of the code does not violate a specified

property) by providing formal proofs as explicit evidence or certificates for the assurance

claims. However, several problems remain. For automatically generated code it is

particularly difficult to relate the proofs to the code; moreover, the proofs are the final

stage of a complex process and typically contain many details. This complicates an

intuitive understanding of the assurance claims provided by the proofs. Hence, it is

important to make explicit which claims are actually proven, and on which assumptions

and reasoning principles both the claims and the proofs rest. Moreover, the complexity of

the tools used can lead to unforeseen interactions and thus causes additional concerns

about the trustworthiness of the assurance claims.

Recent research to address the previously mentioned dilemma (traceability between code

and proof) focus on showing that traceability between the proofs on one side and the

certified program and the used tools on the other side is important to gain confidence in

the formal certification process. Approaches are currently under development to

systematically derive safety cases from information collected during the formal software

safety certification phase, in particular the construction of the necessary logical

annotations. The purpose of these safety cases is to provide a “structured reading guide”

for the program and the safety proofs that will allow users to understand the safety claims

without having to understand all the technical details of the formal machinery.

Fault tree analysis is an example of usage to identify possible risks to the program safety

and the certification process, as well as their interaction logic, and thus to derive the

structure of the safety cases. Generic, multi-tiered argument then gets used that is

56

instantiated with respect to a given safety property and program. Its three tiers together

constitute a single safety case that justifies the safety of the program. The upper tier

simply instantiates the notion of safety and the formal definitions for the given safety

property while the two lower tiers argue the safety of the program as governed by the

property. The lower tiers are constructed individually to reflect the program structure.

This can be done systematically because their structure directly follows the course the

annotation construction takes through the program. Model driven engineering champions

allege that MDE principles and technologies mixed with formal methods drastically

increase the existing level of automation within system development and cater for needed

and demanded support for formal analysis. [34]

Because of its ability to address software complexity and productivity challenges, Model-

based design has become the preferred software engineering paradigm for the

development of application software components in central automotive domains such as

chassis and powertrain. The core idea is that an initial executable graphical model

representing the application software component to be developed serves as the primary

representation throughout multiple phases of software development. The executable

model is refined and augmented until it becomes a blueprint for the final implementation

through production code generation. In addition, executable models can be utilized for

various quality assurance activities.

The Simulink product family is a popular tool chain for Model-Based Design. Simulink

and Stateflow support graphical modeling with time-based block diagrams and event-

based state machines, and Real-Time Workshop Embedded Coder supports embedded

code generation. In the recent past, Model-Based Design with code generation has been

successfully employed to produce software for safety-critical applications. Examples

include application software components of the electromechanical APA steering system

[77] for the Volkswagen Tiguan, an urban SUV. Stringent software development

methods and techniques are already required to satisfy customer expectations and ensure

the essential quality and reliability of any in-vehicle software. [77] However, given the

57

safety-related nature of some advanced automotive systems, application of techniques

above and beyond existing software development practices must be considered for these

applications [77]. The requirements imposed by safety standards also have to be met, and

the objectives and recommendations outlined therein need to be mapped onto Model-

Based Design.

The software development activities for a driver assistance system at Carmeq were

evaluated to allow rationalizing such a mapping. In practice, the evaluation of this recent

project using Model-Based Design led to consolidated findings that became best practice

and will be introduced into guidelines for future projects. In their research, the authors

combine these project experiences with more general ideas on using Model-Based Design

with Simulink and Stateflow for safety-related automotive applications. The safety

standard currently relevant to automotive in vehicle applications is IEC 61508. Part 3 of

this international standard, IEC 61508-3 [77], is concerned with software development. In

IEC 61508, software failures are viewed as the result of faults systematically introduced

during software development. In recognition of this, IEC 61508-3 defines requirements

and constraints for the software development and quality assurance processes [77]. The

degree of rigor required in these processes depends on the criticality of the software

component within the embedded application and is expressed in terms of safety integrity

level (SIL) [77].

3.2.3.3 Formal Approaches

Formal methods are perceived differently by industry and engineers, and there are many

types of formal methods in software development. Formal technique involves the use of

mathematically precise specification and design notations. In its native form, formal

development is based on proof refinement to ensure software correctness at each stage in

the software development life cycle. [26] Formal methods use mathematical models for

analysis and verification at any part of the program life cycle. [27]

Formal methods are mathematical techniques that should be heavily supported by tools

for developing software and hardware systems. Mathematical rigor enables users to

58

analyze and verify these models at any part of the program life-cycle: requirements

engineering, specification, architecture, design, implementation, testing, maintenance,

and evolution. The vital first step in a high-quality software development process is

requirements engineering. Formal methods can be useful in extracting, clarifying, and

defining requirements. Tools can provide automated support needed for checking

completeness, traceability, verifiability, and reusability, and for supporting requirements

evolution, different viewpoints, and inconsistency of management. Formal methods are

used in specifying software: developing a precise statement of what the software will do,

while avoiding constraints on how it is to be achieved. Examples of these methods

include ASM[72], B, and VDM [27].

Formal methods differ from other design systems through the use of formal verification

schemes, the basic principles of the system must be proven correct before they are

accepted [27]. Traditional system design has used extensive testing to verify behavior,

but testing is capable of only finite conclusions. Dijkstra and others have demonstrated

that tests can only show the situations where a system won't fail, but cannot say anything

about the behavior of the system outside of the testing scenarios [27]. In contrast, in

formal methods, once a theorem is proven true it remains true.

It is very important to note that formal verification does not cancel the need for testing

[28]. Formal verification cannot resolve invalid assumptions within the design, but it can

aid in identifying defects and in reasoning which would otherwise be left unverified. In

several cases, engineers have reported finding flaws in systems once they reviewed their

designs formally [28]. Roughly speaking, formal design can be seen as a three step

process, following the outline given here [29][30]:

1. Formal Specification: The engineer defines the system using a modeling

language. The language has some fixed grammar that allows modeling

complicated structures of defined types within the specification.

2. Verification: As previously mentioned, formal methods contrast other

specification systems through detailed focus on provability and correctness. By

59

building a system using a formal specification, the designer is actually developing

a set of theorems about his system and proving these theorems are correct. The

formal verification is not an easy process since mapping your system into a set of

theorems that each has to be proved is complex and ends up resulting a huge

number of theorems for small systems. Even a traditional mathematical proof is a

complex matter. Given the demands of complexity and Moore's law, almost all

formal systems use an automated theorem-proving tool of some form. These tools

can prove simple theorems, verify the semantics of theorems, and provide

assistance for verifying proofs that are more complicated.

3. Implementation: Once the model has been specified and verified, it is

implemented by converting the specification into code. Many tools automatically

map formal specifications into code. As the difference between software and

hardware design grows narrower, formal methods for developing embedded

systems have been developed

Formal methods are viewed with a certain degree of suspicion. While formal methods

research has been progressing since 1960's, formal methods are only being slowly

accepted by engineers. There are several reasons for this. Most formal systems are

extremely descriptive and extensive / thorough, modeling languages have generally been

judged by their capacity to model anything. Unfortunately, these same qualities make

formal methods very difficult to use, especially for engineers that are not used to

modeling a system in formal notations or trained on type theory which is needed for most

formal systems[31]. Ultimately, formal methods will acquire some form of acceptance,

but compromises will be made in both directions: formal methods will become simpler

and formal methods training will become more common.

Formal methods are distinguished from other specification systems by their emphasis on

correctness and proof, which is ultimately another measure of system integrity. Proof is a

complement, not a replacement, for testing. Testing still remain a crucial part of

guaranteeing any system's operability, but it is finite. Testing cannot show that a system

operates properly; it can only show that the system works for some tested cases. Because

60

testing cannot demonstrate that the system should work outside the tested cases, formal

proof is necessary [32].

Formally proving computer systems is not a new idea. Knuth and Dijkstra have written

extensively on the topic, but their methods of proof still remains to be heavily based on

the traditional mathematical methods. In pure sciences, proofs are verified through

extensive peer review before publication. Such techniques are time-intensive and less

than perfect; it is not unusual for a published proof to contain a flaw. Given the cost and

time requirements of systems engineering, traditional proving techniques are not really

applicable. [33] Because of the costs of hand verification, most formal methods use

automated theorem proving systems to verify their designs.

There has been recent focus on using formal methods in the specifications stage.

Specification is a technical agreement in writing between a software engineer and a client

to ensure that both have a common understanding of the objectives of the software. The

client uses the specification to guide application of the software; the software engineer

uses it to guide its implementation. A complex specification may be broken down into

sub-specifications, each describing a sub-component of the system, which may then be

assigned to other programmers, so that a programmer at one level becomes a client at

another [27]. Complex software systems require careful organization of the architectural

structure of their components: a model of the system that hides implementation detail,

allowing the architect to focus on the analyses and decisions that are most critical to

structuring the system to satisfy its requirements [27]. Wright is an example of an

architectural description language based on the formalization of the abstract behavior of

architectural components and connectors [27].

The purpose of software safety certification is to show that a program complies with its

high-level requirements and is safe in the presence of potential hazards. Formal software

safety certification is based on formal techniques, which are based on program logics to

show that the program does not violate certain constraints during its execution. Most

61

endeavors depend on creating a safety property, which is an exact characterization of

these conditions, based on the operational semantics of the programming language. Each

safety property thus describes a class of hazards. A safety policy is a set of first order

logic rules (Could be using Hoare logic or other formal notations) designed to show that

safe programs satisfy the safety property of interest. A safety predicate that is added to

the computed verification conditions (VCs). However, the focus is on the information

provided by constructing the annotations, and the details of constructing is left out (i.e.,

applying the Hoare rules) and proving (i.e., calling the theorem prover) the VCs to the

complementary system-wide safety case. Formal software safety certification follows the

same technical approach as program verification. A VC generator (VCG) traverses the

code backwards and applies the Hoare rules to produce VCs, starting with any safety

requirements on output variables [33].

It is required that all VCs are proven by an automated theorem prover (ATP). The figure

below details the flow of software certification using formal methods and tags the

trusted/untrusted components.[29]

Figure 5 Software Certification using Formal Methods

62

Formal methods are heavily employed in software design. Data refinement is established

based on state machine specification, abstraction functions, and simulation proofs, as its

central role in methods like VDM [27], and in program refinement calculi [27]. At the

implementation level. Formal methods are also utilized for code verification. Every

program-specification pair implicitly asserts a correctness theorem that, if certain

conditions are satisfied, the program will achieve the effect described by its specification.

Code verification is the attempt to prove this theorem, or at least to find out why the

theorem fails to hold. The inductive assertion method of program verification was

invented by Floyd and Hoare [29], and involves annotating the program with

mathematical assertions, which are relations that hold between the program variables and

the initial input values, each time control reaches a particular point in the program. Code

can also be generated automatically from formal models; examples include the B-method

[27] and SCADE [27]. Formal methods are used in software maintenance [27] and

evolution [27]. Perhaps the widest application of formal methods is in the maintenance of

legacy code: in some of Microsoft's most successful products, every tenth line is an

assertion.

A Formal method has to have a formal notation, semantics based on mathematics, and

formal deductive system. Given those requirements, no existing method is truly a formal

method. But there are many that are close. Some have mathematical semantics

(sometimes partial) but almost no deductive system, such as Z and State charts which are

named as conceptual techniques. Others have logic but almost no semantics, such as

VDM and Unity; these get labeled as deductive techniques. Still others are defined by an

evaluation mechanism (operational semantics or evaluation rules) and are executable

specifications. However, executability is not the main drive of formal methods and in

some cases gets in the way of their use. Researchers tend to distinguish between state-

oriented (e.g. Z and VDM) and behavior-oriented (e.g. Lotos, Unity, RSL) techniques. So

it is clear that all formal methods are not created equal, and it is misleading to group all

such methods together to decide if formal methods make a positive difference to a

software project.[26]

63

For some organizations, the changes in software development practices needed to support

such techniques can be revolutionary. That is, there is not always a simple migration path

from current practice to migrate to the use of formal methods, because the effective use

of formal methods can require a drastic change right at the beginning of the traditional

software lifecycle: how we capture and record customer requirements. Thus, the stakes in

this area can be particularly high. For this reason, strong evidence of the effectiveness of

formal methods is highly desirable.[26]

Unfortunately, past evaluations of the use of formal methods were not conclusive. The

few serious industrial uses of formal methods focused on formal specification alone, with

no widespread attempt at formal deduction, refinement or proof [26].

Some researchers report that the use of formal notations does not lead inevitably to

improving the quality of specifications, even when used by the most mathematically

sophisticated minds. In experiments, the use of a formal notation are claimed to lead to a

greater number of defects, rather than fewer. [26]

Meanwhile, evidence of the positive effects of formal methods continues to grow. Some

researchers described several instances of their use for safety-critical systems in early

1994 on a joint project between IBM Hursley and the Programming Research Group at

Oxford University. A serious attempt was made to quantify the benefits of using Z on the

CICS re-specification project, and a proceedings paper provides sanitized graphs and

general information. As a result, CICS provided a very good quantitative evidence to

support the efficacy of formal methods. However, the public announcements of success

have never been accompanied by a complete set of data and analysis, so independent

assessment is difficult. [26]

As unscientific support for formal methods has grown, industry has been more willing to

use formal methods on projects where the software is safety-critical. Formal methods are

64

being incorporated into standards and imposed on developers. For instance, the interim

UK defense standard for such systems, DefStd 00-55, makes mandatory the use of formal

methods. ISO-26262, standard for automotive reliability, also imposes the use of formal

methods for software that could lead to safety hazards. Researchers believe such

standards formulation without a solid basis of empirical evidence can be dangerous and

costly as there is still no hard evidence to show that:

1. Formal methods usage is cost effective and has been used on a real safety project

complex project.

2. Using Formal methods increases the reliability and makes the project more cost-

effective compared to traditional structured methods with enhanced testing

3. Either developers or users can ever be trained in sufficient numbers to make

proper use of formal methods

Moreover, it must be understood how to choose among the many competing formal

methods, which may not be equally effective in a given situation [26].

3.2.3.3.1 Formal Methods in Architectural design

As shown in previous sections, formal methods are proposed is ISO26262 and is

potentially the only available methodology that could really help in architectural design

level safety certification. Formal methods for software development receives much

attention in research centers, but are rarely used in industry for the development of (large)

software systems. Several reasons contribute to this state:

1- Entry cost to FM is huge (Education, legacy methods migration … etc)

2- Insufficient tool support for FM based rules as most of them are academic based

tools as oppose to industrial ones

3- Lack of expertise/training to FM

4- FM notations and flow are hard to understand/adopt by non-mathematicians.

On the other hand, Semi formal methods are widely used in the industry due to many

reasons mainly due to MDE (Model Driven Engineering) approaches which encourages:

1- Focus on creating models of a system at each stage in the development lifecycle

65

2- Automatic model transformations (e.g. to code)

3- Intuitive, and abstract graphical notations

4- Good at abstracting away detail

With the above said, the usage of semi-formal methods (informally defined semantics)

cause:

1- Ambiguity

2- Inconsistency

3- Imprecision

4- Unable to be formally reasoned about methodologies

Formal methods can be used in conjunction with informal or semi-formal modeling

techniques in software development. In such integrated approaches, formal techniques

provide an effective means to check the validity of semi-formal models, thus providing

increased quality for both models and implementation. Despite its potential, application

of the integrated approach to large scale systems has been limited.

3.2.3.3.2 Benefits of Formal Methods

Formal methods offer additional benefits outside of provability, and these benefits do

deserve some mention. However, most of these benefits are available from other systems,

and usually without the steep learning curve that formal methods require.

Discipline: By virtue of their rigor, formal systems require an engineer to think out his

design in a more thorough fashion. In particular, a formal proof of correctness is going to

require a rigorous specification of goals, not just operation. This thorough approach can

help identify faulty reasoning far earlier than in traditional design[32][33]

The discipline involved in formal specification has proved useful even on already

existing systems.[35]

Precision: Traditionally, disciplines have moved into jargons and formal notation as the

weaknesses of natural language descriptions become more glaringly obvious. There is no

66

reason that systems engineering should differ, and there are several formal methods

which are used almost exclusively for notation.[28]

For engineers designing safety-critical systems, the benefits of formal methods lie in their

clarity. Unlike many other design approaches, the formal verification requires very

clearly defined goals and approaches. In a safety critical system, ambiguity can be

extremely dangerous, and one of the primary benefits of the formal approach is the

elimination of ambiguity [32].

3.2.3.3.3 Weaknesses of Formal Methods

Bowen points out that formal method is generally viewed with suspicion by the

professional engineering community, and the propensity of tentative case studies and

advocacy papers for the formal approach would seem to support his thesis [28]. There are

several reasons why formal methods are not used as much as they might be, most

stemming from overreaching on the part of formal methods advocates.

Expense: Because of the rigor involved, formal methods are always going to be more

expensive than traditional approaches to engineering. However, given that software cost

estimation is more of an art than a science, it is debatable exactly how much more

expensive formal verification is. In general, formal methods involve a large initial cost

followed by less consumption as the project progresses; this is a reverse from the normal

cost model for software development [31].

Limits of Computational Models: While not a universal problem, most formal methods

introduce some form of computational model, usually hamstringing the operations

allowed in order to make the notation elegant and the system provable. Unfortunately,

these design limitations are usually considered intolerable from a developer's perspective.

Usability: Traditionally, formal methods have been judged on the richness of their

descriptive model. That is, 'good' formal methods have described a wide variety of

systems, and 'bad' formal methods have been limited in their descriptive capacities. While

an all-encompassing formal description is attractive from a theoretical perspective, it

67

invariably involved developing an incredibly complex and nuanced description language,

which returns to the difficulties of natural language. Case studies of full formal methods

often acknowledge the need for a less all-encompassing approach [29].

Arguably, many of these failures can be attributed to overreaching on the part of formal

methods advocates. This reasoning has led to the lightweight approach to formal

specification.

While formal systems are attractive in theory, their practical implementations are

somewhat wanting. By attempting to describe all of any system, formal methods have

overreached, and generally failed.

3.2.3.3.4 Formal Model Checking of UML State chart Diagrams

UML has become a defacto standard for software industries. AUTOSAR specifications

are primarily depending on UML diagrams in its specifications. This, among others, was

the main reason why several research endeavors focused on model checking of UML

diagrams, namely state charts and sequence diagrams[84].

In [39], a UML state chart system based model is translated into π-calculus. The

intermediate π-calculus model is then translated into NuSMV input language based on

defined translation rules. NuSMV model checking is then run to evaluate any

incompliances or problems in the model. This is a 2 step translation process and it does

not show how the UML model developer will interpret the feedback in UML domain.

In [37], the authors translate UML state charts into FSMs (Finite State Machines), FSMs

are then transformed into NuSMV input model and NuSMV model checking is finally

run on the 2nd level translated model.

In [40], the authors translate UML models to an input language in a self-developed model

checker called PAT in such a way that is transparent to users. In particular this approach

68

utilized PAT as the back end for verification capabilities. PAT is claimed to support

several modeling languages including CSP#. The authors tool flow is based on parsing

UML XMI (XML metadata Interchange), the object management group standard of

exchanging UML diagrams. The authors claim that PAT can address deadlock,

reachability, trace refinement relationship. The paper presents the framework but fails to

apply the theory to any industrial use-case. It also fails to show how the UML user will

get the model checking feedback to reason with it in UML domain.

Similar to [37], authors in [38] translate abstracted UML state chart railway interlocking

system model into FSM which is then translated into NuSMV input language and utilized

NuSMV checker. Again the work does not show how any counterexamples can be

expressed back in UML domain. It also lacks any documentation on how the safety

properties are constructed and translated into LTL formulas.

Similarly, [41], transforms UML verification model to PROMELA model which uses

hierarchical automata to describe the state machine and its formal semantics and then

verifies the correctness of the model using SPIN since SPIN accepts PROMELA based

models. The same drawbacks discussed in previous endeavors are also applicable to this

effort.

In [98], an approach to formalize UML is shown via transforming UML to Event-B. The

transformation only covers UML activity diagram to Event-B models and does not cover

state flow diagrams.

In [99], an approach is presented that semi-automatically generates formal specifications

from state machine and activity diagrams. The model is translated to text using MERL

language amd MetaEdit tool. State machine is transformed into SMV model description

and activity diagrams into LTL formulas. NuSMV model checker is then used to verify

the specification.

69

In[100], a method is proposed to map UML state chart to BIR language, which is

designed for BOGOR model checking in order to only evaluate the deadlock property.

In [101], Echo verification is employed where the system under test has to be captured

with a PVS based formal specification including low level specification capturing pre and

post conditions. Additionally, the proof is semi-automated where the complete proof

needs to be done under human guidance.

Earlier attempts did not consider minimizing transformation steps due to ISO 26262 tool

qualifications recommendations and they address limited category of defects. They also

either propose a new low level specification language, limited to architecture as opposed

to functional mapping or lack showing how the model checker result can be interpreted

via a UML designer. Additionally, the existing endeavors were not evaluated based on an

industrial specification that was compared to an industrial implementation of the case

study module. Our proposed framework attempts to address these shortcomings

3.2.4 Comparative Analysis of Existing V&V Methods

Table 4 summarizes the existing V&V methods.

Table 4 Summary of V&V Techniques

Static Dynamic Formal

 Cause-Effect Graph

 Control Analysis

 Data Analysis

 Interface Analysis

 Semantic Analysis

 Structural Analysis

 Symbolic Evaluation

 Syntax Analysis

 Traceability Assessment

 Acceptance Testing

 Bottom-up testing

 Comparison

Testing

 Compliance testing

 Debugging

 Execution Testing

 Fault insertion

testing

 Induction

 Inference

 Logical Deduction

 Proof of correctness

.

.

70

Static Dynamic Formal

.

.

 Functional black

box testing

 Interface Testing

 Boundary Value

 Equivalence

partitioning

 Structural Testing –

White box

Static Analysis in general, aims to identify programming defects and is limited in

identifying these category of defects. Existing standards (e.g. ISO26262) mandate the use

of static analysis tools as part of the software development life cycle [13]. It is commonly

known that static analysis covers only a subset of software programming defects, is

usually language and domain specific, and usually produces false defects and sometimes

coding limitations that could introduce an implementation maneuver to conform to a

defined static rule. Safety standards mandate the use of these tools on all software that

needs to be safe. The reason being that all approaches that identify defects or good

practices should be integrated into one approach (Standard) to ensure safety. It is certain

that static analysis tools do not cover all software defects presented in section 3.1, for

example, timing and interface defects and static analysis is not capable to address such

category of defects since they are manifested as a run-time behavior defects while static

analysis focuses on defects that are outside program execution. In conclusion, static

analysis helps in identifying defects in a timely fashion (if compared to manual code

inspections) but no software safety could be concluded on software if it claims that it is

100% static analysis bug free software.

Even if static techniques are necessary to detect defects earlier in the development

process, they are not sufficient. In fact, these techniques focus on analyzing the static

product representation and do not test the product in its real life (dynamic).

71

Testing implies executing the program on (valued) inputs. Since static techniques

(review, inspection …) are useful to evaluate the internal correctness of a software

product, testing is the used technique allowing the assessment of its behavior. Even for

simple programs, so many test cases are theoretically possible that exhaustive testing

would require years to execute. Dijkstra (Dijkstra 1972) calculated that the exhaustive

testing of a multiplier of two 27-bit integers taking “only” some tens of microseconds for

a single multiplication would require more than 10000 years to be completely tested.

Exhaustive testing is a NP-Complete problem from a computational viewpoint.

Generally, the whole test set can be considered infinite. In contrast, the number of

executions that can realistically be observed must obviously be finite (and affordable).

Clearly, “enough” testing to get reasonable assurance of acceptable behavior is a basic

need. This basic need points to 2 well-known issues of testing, both technical in nature

(criteria for deciding to stop testing) and managerial in nature (estimating the effort to put

in testing). Testing always implies a trade-off between limited resources and schedules,

and inherently unlimited test requirements.

Formal methods are rarely used in automotive industry, contrary to medical, avionics and

railways industries. The main argument of automotive industry managers was the high

cost of deploying and using formal methods. As automotive electronic products becomes

more and more complex, automotive industry is required to start adapting existing formal

methods to their context or developing new ones. Actually, the cost of non-quality

(warranty and customer dissatisfaction) exceeds the cost of using formal methods. Now,

in automotive industry, semi-formal and formal methods are highly recommended via

standards (ISO-26262) to ensure software reliability. Incompleteness and ambiguity are

the main characteristics of informal and semi-formal methods. The use of formal

specification methods is expected to lead to increased software quality and reliability.

A variety of advantages has been attributed to the use of formal software specifications.

These advantages include understanding of specifications, help in the verification of

72

specifications and automatic generation of the source code and test cases. Management is

generally conservative and unwilling to use new techniques whose benefits are not yet

established. Given these difficulties in using formal methods, challenges remain in

integrating formal methods with the system development existing paths.

73

Chapter 4. Proposed Approach

The main theme of the proposed framework is to introduce a solution that allows early

detection of design bugs via formal verification. Such a framework needs to address

existing challenges that discouraged the industry from moving to utilize formal

verification and still heavily relying on testing. In order for the framework to address

existing shortcomings or challenges, it needs to meet the below criteria:

1- The ability to capture detailed design using xtUML (Executable UML)

AUTOSAR specifications are based on informal notation (English text) and

Unified Modelling Language (UML) diagrams (state machine, sequence

diagrams ...). The use of informal notation to capture specification has caused

ambiguities in the specification that led up to several releases of AUTOSAR

standard to clarify such ambiguities. The framework should support capturing

conditions in the model that serve as a foundation for generating theorems in

formal domain which forces the model designer to question any ambiguities in

the specification. Additionally, ISO-26262 guidelines highly recommend

using semi-formal notation for capturing the design as shown in Table 1. Based

on the above, the framework supports modelling the software in UML

extended with behavior to ensure the possibility of exhaustive design

verification.

2- Automatic mapping of UML to formal notations

Once the software is modeled in UML, the framework supports automatic

translation from UML to formal notation and theorems in formal domain. The

objective is to ensure that the framework addresses formal complexities that

discouraged the industry from using them as discussed in 3.2.3.3.3.

3- Extend xtUML with Satisfiability conditions

The framework supports capturing specification requirements in UML model

so that it serves as the baseline for generating formal theorems, forces the

model designer to question any specification ambiguities and adds a separation

74

between the design elements and requirements to ensure that theorem

generation is separate from deign implementation.

4- Formal verification of semi-formal model

Framework supports model checkers that ensure the design is correct and

incompliances to specification are detected. The ability of the framework to

check the model formally will allow software suppliers to be ISO-26262

compliant with unit design and implementation verification guidelines as

presented in Table 2. Additionally, formal model checking will ensure design

requirements are mathematically exhaustively proven as opposed to depending

on test cases to verify compliance to specification.

5- Integrate the flow in a well-established xtUML tool.

The framework integrates to existing UML model IDE which allows rapid

proof of concept and integration to existing verification activities.

Our proposed framework is based on several components, namely, a formal

framework called SAL (Symbolic Analysis Laboratory)78] , BridgePoint which is an

executable UML (Unified Modelling language) integrated development environment

(IDE) [96], UML to SAL model compiler to compile UML model and requirements to

formal SAL notation, and finally model checkers that validate the generated SAL

model against generated theorems. In this chapter, we will introduce the framework

flow followed by a brief introduction on SAL, UML and BridgePoint IDE. The

framework allows software designers to formally verify a specified software in a

semi-formal notation (UML). This complies with ISO 26262 design verification

guidelines for ASILs (Automotive Safety Integrity Level) C and D which highly

recommend semi-formal verification of the design for ASILs C and D.

4.1 Design Flow

Design flow is initiated by a designer that starts with informal/semi-formal

specification document. The designer maps the specification to a UML design

augmented with action language to capture behavior. EXecutable UML - xtUML

model augmented with satisfiability conditions (Requirements) is the framework

starting input. Satisfiability conditions represent requirements that the design should

satisfy as captured in a requirement specification. Satisfiability conditions are the

75

foundation for generating the formal theorems which are used to verify the design.

Satisfiability conditions can be captured on variable, state, and transition levels in

UML.

xtUML input model which includes satisfiability conditions is fed into a model

compiler which parses the UML model elements presented in XML format and

constructs object instances of all elements. The objects are traversed and mapped into

a SAL formal model based on transformation rules. SAL objects are also stored and

linked to their UML counterparts. Executable UML - xtUML model is mapped into a

formal SAL model and the UML satisfiability conditions are mapped into SAL formal

theorems.

SAL checkers get launched and any generated counterexample is mapped back into

UML domain so that the UML designer could fix the detected specification

incompliance in UML domain. Figure 6 summarizes the proposed flow. The process

is iterative until all theorems can be properly proved.

Figure 6 Proposed Framework Workflow

As shown in Figure 6, xtUML (eXecutable Translatable UML) model implementation

is initially done based on the software specification in BridgePoint xtUML IDE[96].

76

The xtUML model contains the de-facto UML standard diagrams and elements

including but not limited to component(s), classes(s), state machine(s), transition(s),

states, abstract object language to capture behavior within the model, data type(s),

operation(s), attribute(s) etc.

The model also encapsulates the requirements captured as satisfiability conditions to

trace existing design elements to the original requirements in the software

specification. Once the model is complete, a manual build command is triggered from

the IDE which automatically triggers the model compiler. BridgePoint enables the

creation of a custom model compiler that traverses all UML model elements and

generates new model based on extendable implementation.

We have created a custom model compiler that generates SAL model from the

xtUML model. The model compiler developed component compiles the xtUML

model to generate a formal SAL model and LTL (Linear Temporal Logic) based

theorems. Model checkers are manually executed to identify model violations.

Examples of checkers include but are not limited to deadlock checker to detect any

deadlock in the model. Model checkers are manually triggered on the generated SAL

model for each generated theorem. The execution reports any model violation

(counter example). Any reported counter example can be analyzed by the designer to

trigger xtUML model fix/refinement to address the generated counter example.

Our UML model extensions – satisfiability conditions aim to address the ISO-26262

test case derivation basis as shown in Table 5. (‘++’ indicates that the method is

highly recommended for the identified ASIL, ‘+’ indicates that the method is

recommended for identified ASIL, ‘o’ means no recommendation)

77

Table 5 Methods for Deriving Test Cases for Software Unit Testing in ISO-26262

Methods ASIL

A B C D

1a Analysis of Requirements ++ ++ ++ ++

1b Generation and analysis of

equivalence classes

+ ++ ++ ++

1c Analysis of boundary values + ++ ++ ++

1d Error Guessing + + + +

Satisfiability conditions are captured in xtUML to enable generation of theorems to

address the above methods. Variable satisfiability conditions (Upper and Lower limit)

generate theorems to cover boundary value analysis and equivalence classes. State

satisfiability conditions capture conditions to ensure requirement compliance of

variables in a given state in the state machine. Transition satisfiability conditions

capture conditions to ensure requirement compliance of variables in a given transition

in the state machine. Our work / research supports the above methods yet the

framework can be extended to cover other methods to verify the design.

4.2 Input Model – xtUML

Requirement Specification document is initially mapped to an xtUML model design

implementation. The requirements are mapped into UML packages, components,

classes (attributes and operations), and state machines. All defined data types,

attributes, functions are defined in the UML model. Once UML model is complete,

the model captures architectural design of the specification. OAL(Object Action

Language) is now embedded in states, transitions, operations (Instance or class

78

based), ports, mathematically derived attributes, and functions to capture the

specification behavior.

79

Table 6 shows xtUML diagrams, purpose and usage of each as used within our

framework and case study modules.

80

Table 6 UML Model Diagrams

UML Diagram Purpose Usage

Class Diagram A UML class diagram is

not only used to describe

the object and information

structures in an

application, but also show

the communication with

its users. It provides a

wide range of usages; from

modeling the static view of

an application to

describing responsibilities

for a system. Composition

is a special type of

aggregation that denotes a

strong ownership.

In a UML class diagram,

classes represent an

abstraction of entities with

common characteristics.

Associations represent

static relationships

between classes.

Aggregation is a special

type of association in

which objects are

assembled or configured

together to create a more

complex object.

Generalization is a

relationship in which one

model element (the child)

is based on another model

element (the parent).

Dependency relationship

is a relationship in which

one element, the client,

uses or depends on another

element, the supplier.

Component Diagram It allows application

designers to verify that a

system's required

functionality is being

implemented by

The UML component

diagram doesn't require

many notations, thus very

easy to draw and requires

only two symbols:

81

UML Diagram Purpose Usage

components, thus ensuring

that the final system will

be acceptable. Component

diagram is a useful

communication tool

among stakeholders to

discuss, analyze or

improve a system design.

component and

dependency.

State Chart Statechart diagrams are

used to model dynamic

nature of a system. They

describe all of the possible

states of an object as

events occur. So the most

important purpose of

Statechart diagram is to

model life time of an

object from creation to

termination.

A state is a condition

during the life of an object

during which it satisfies

some condition, performs

some activity, or waits for

some external event. A

start state is the state that a

new object will be in

immediately following its

creation. An end state is a

state that represents the

object going out of

existence. A transition is a

relationship between two

states indicating that an

object in the first state will

perform certain actions

and enter the second state,

when a specified set of

events and conditions are

satisfied.

82

UML Diagram Purpose Usage

Package Diagram Package diagrams are used

to organize the elements of

a model. They are

typically used to depict the

high-level organization of

a software project.

Package diagram can show

both structure and

dependencies between

sub-systems or modules.

They can be used to group

any construct in the UML

such as classes, actors, and

use cases.

The package element in

UML is represented by a

folder icon. Each package

represents a namespace.

Packages can also be

members of other

packages, providing for a

hierarchic structure in

which top-level packages

are broken down into sub-

packages.

4.3 UML Satisfiability Conditions

We have extended the xtUML model to capture satisfiability conditions on the state,

transition, operations and variables in UML model. The Software specification

requirements from specification documents are mapped into satisfiability conditions

in the UML design. Currently, the conditions are captured as descriptions on the UML

element (State, transition, class operation, class attribute etc.). The description

captures the conditions that should be satisfied as a function of attributes, states,

and/or values given a state, transition or operation.

These conditions map to requirements and serve as the baseline for formal theorem

generation via the model compiler. The model compiler maps the condition to a LTL

(Linear temporal Logic) rule in SAL Language.

83

4.3.1 State Level Conditions

A state models a situation during which some invariant condition holds. State is the

main entity of a state machine where state changes are driven by events. A state is a

condition of being at a certain time. It is also a point in the lifecycle of a model

element that satisfies some condition, where some particular action is being

performed or where some event is being monitored. States can trigger actions.

Every state in a UML state chart can have optional entry actions, which are executed

upon entry to a state, as well as optional exit actions, which are executed upon exit

from a state. Entry and exit actions are associated with states, not transitions.

Regardless of how a state is entered or exited, all its entry and exit actions will be

executed. Because of this characteristic, state charts behave like Moore automata.

Because entry actions are executed automatically whenever an associated state is

entered, they often determine the conditions of operation or the identity of the state.

Specifications always include state entry conditions, exist conditions and state actions

in informal notation or semi-formal notation. Informal text to define state conditions

from AUTOSAR specification of WatchDog Manager are shown in Figure 7 and

Figure 8.

Figure 7 AUTOSAR Watchdog Manager Informal State Details – 1

84

Figure 8 AUTOSAR Watchdog Manager Informal State Details – 2

Figure 7 and Figure 8 show how informal text in specification document can represent

the state entry conditions and exit conditions. In our research, we count on mapping

the above informal text into state level satisfiability conditions. For example, a

satisfiability condition on state ‘WDGM_LOCAL_STATUS_EXPIRED’ could be

defined as: at least one alive supervision entity (in UML design notation) is incorrect,

a zero fault tolerance OR at least one deadline supervision of a supervised entity is

incorrect OR at least one logical supervision entity of a supervised entity is incorrect.

This will ensure that any design defect that leads to being in

‘WDGM_LOCAL_STATUS_EXPIRED’ while the informal conditions (that are

mapped in UML) are not true as a result of a design bug can be detected in the design

verification as opposed to the code level stage.

Table 5 Methods for Deriving Test Cases for Software Unit Testing in ISO-26262,

include Analysis of requirements. We consider that state level conditions is based on

deriving a test case (theorem) to ensure that requirement 202 in Figure 8 is being

adhered to in the design based on analysis of requirements guidelines in ISO-26262.

4.3.2 Transition Level Conditions

A transition is a relationship between a source state and a target state. It may be part

of a compound transition, which takes the state machine from one state configuration

to another, representing the complete response of the state machine to an occurrence

of an event of a particular type. A Transition is the movement from one state to

another state. Transitions between states occur as follows:

85

1. An element is in a source state

2. An event occurs

3. An action is performed

4. The element enters a target state

Figure 9 AUTOSAR Watchdog Manager Informal Transition Description

Figure 9 shows how informal text in AUTOSAR Watchdog specification document

can represent transition conditions. In our research, we count on mapping the above

informal text into transition conditions. For example, a satisfiability condition on

transition 5 could be defined to match the specification transition conditions. This

condition shall ensure that the transition goes to the correct target state and all

transition action outcomes are correctly set (e.g. failed supervision reference cycle is

decremented) (in UML design notation). This will ensure that any design defect that

leads to violations against the requirement in transition can be detected in the design

verification as opposed to the code level stage. Table 5 Methods for Deriving Test

Cases for Software Unit Testing in ISO-26262 include analysis of requirements. We

consider that transition level conditions is based on deriving a test case (theorem) to

ensure that requirement 205 in Figure 9 is being adhered to in the design based on

analysis of requirements guidelines in ISO-26262.

4.3.3 Variable Level Condition

Table 5 Methods for Deriving Test Cases for Software Unit Testing in ISO-26262

include boundary analysis and equivalence partitioning in deriving test cases.

Variable level conditions aim to make sure that the design complies with any

86

requirements in this category. The variable level condition can capture low bound,

high bound or that a certain value can only happen given a set of possible values in

other variables.

Figure 10 Specification Level Boundary Value Requirements

Figure 10 shows how the specification mandates upper/lower range limit for variables

in the system. This is captured in our proposed framework via defining variable level

conditions to ensure that at no point in the system, the requirement of range for

variables is violated. Any such violation shall be detected by the model checker.

4.4 UML to SAL Model Compiler

Once software is modelled in UML and specification requirements are captured as

satisfiability conditions, the next step is to launch the model compiler. The model

compiler is based on mapping UML notation to SAL notation automatically. This

section includes SAL notation subsection, UML notation subsection and finally

mapping rules to map SAL to UML subsection.

87

4.4.1 SAL

SAL (Symbolic Analysis Laboratory) is a framework for combining different tools for

abstraction, program analysis, theorem proving, and model checking toward the

calculation of properties (symbolic analysis) of transition systems. A key part of the

SAL framework is an intermediate language for describing transition systems. This

language is intended to serve as the target for translators that extract the transition

system description for other modeling and programming languages, and as a

common source for driving different analysis tools [78].

The SAL intermediate language is a basic transition system language. SAL describes

transition systems in terms of initialization and transition commands. The current

generation of SAL tools comprises a collection of state of the art LTL model checkers

and auxiliary tools based on them.

4.4.1.1 SAL Language

As discussed previously, SAL is a framework for combining different tools for

abstraction, program analysis, theorem proving, and model checking toward the

calculation of properties (symbolic analysis) of transition systems. A key part of the

SAL framework is a language for describing transition systems. This language serves

as a specification language and as the target for translators that extract the transition

system description for popular programming languages. The language also serves as a

common source for driving different analysis tools through translators from the SAL

language to the input format for the tools, and from the output of these tools back to

the SAL language. The basic high-level requirements on the SAL language are :

1. Generality: It supports capturing the transition semantics of a wide variety of

source languages.

2. Minimality: The language does not have redundant or extraneous features that add

complexity to the analysis. The language captures transition system behavior without

any complicated control structures.

88

3. Semantic Regularity: The semantics of the language is straightforward so that it is

easy to verify the correctness of the various translations with respect to linear and

branching time semantics. The semantics is definable in a formal logic.

4. Language Modularity: The language is parametric with respect to orthogonal

features such as the type/expression sublanguage, the transition sublanguage, and the

module sublanguage.

5. Compositionality: The language has a way of defining transition system modules

that can be composed in a meaningful way. Properties of systems composed from

modules can then be derived from the individual module properties.

• Synchronous composition: In this form of composition, modules react to inputs

synchronously or in zero time, as with combinational circuitry in hardware. In order

to achieve semantic hygiene, causal loops arising in such synchronous interactions get

eliminated. The constraints on the language for the elimination of causal loops is not

onerous as to rule out sensible specifications.

• Asynchronous composition: Modules that are driven by independent clocks are

modeled by means of interleaving the atomic transitions of the individual modules.

SAL language is divided into type system, expression language, transition language,

modules, synchronous and asynchronous composition of modules and the

specification of systems. Language syntax details are elaborated in APPENDIX A.

4.4.2 AUTOSAR in UML

Object oriented system design method has been widely adopted, and the Unified

Modeling Language (UML) has been recognized as standard modeling tool in object

oriented design [95]. UML provides schematic modeling diagrams to describe the

structure and behavior of target applications. There are nine modeling diagrams, five

of them for system behavior description, and another four of them for system structure

description.

Behavior modeling diagrams are use-case diagram, sequence diagram, collaboration

diagram, state chart diagram and activity diagram. Structural diagrams are class

diagram, object diagram, component diagram and deployment diagram. An additional

89

package diagram provides a general mechanism to organize system elements into

groups. Use case diagram describe the scenario in the usage of system from a specific

aspect. Sequence diagram focuses on time ordered messages that passed among

related objects in a system to accomplish specific system function requirement.

Collaboration diagram is another presentation of system scenario of object

interactions that show the objects interconnection through messages. State chart

depicts the system states and the state transitions. Vehicles are integrating more and

more electronics parts to cope with stringent control and safety regulations, to

increase the system performance and driving comfort [95].

It is worth highlighting that ISO26262 highly recommends using semi-formal notation

to capture design in high ASIL levels since it forces the designer to address informal

notation ambiguities that ends up generating design level bugs and incompliance to

requirements.

AUTOSAR as an emerging architectural modeling standard in the automotive domain

is increasingly spreading into the broad industrial practice. It is a great chance to

establish explicit specifications of software systems' architectures with various

benefits such as distributed development and in particular a completely model based

development process, reaching even to the final source code. AUTOSAR architecture

models are lacking information of interest (behavioral aspects), and AUTOSAR does

neither address nor guarantee a transition from architecture into detailed design or

implementation.

AUTOSAR architectures are currently augmented with UML to add currently missing

expressiveness (interaction behavior) and how a seamless transition from

AUTOSAR/UML architectural models to detailed design and succeeding

implementation can be achieved [94].

As demonstrated by AUTOSAR itself (in terms of the Basic Software), UML could

also be used to document the behavior of components, using state charts, sequence

diagrams and other means. As UML defines behavior on top of structure, structural

90

concepts must however exist in order to achieve this. Most of the required structural

AUTOSAR concepts are directly representable in UML (components, ports,

connectors, interfaces).

In a model-based setting, the idea is to use models to semi-formally specify the

detailed design, which can then in turn be used as a means for documentation, similar

to as it was outlined for the Basic Software modules. However, there is a major

difference between Basic Software modules and software components with respect to

the level of abstraction that is used, which is higher for the latter. As such, in order to

use documentation models for the detailed design of software components, these

models must suit the respective level of abstraction. The relation between all

employed detailed design constructs and those elements that are directly derived from

the AUTOSAR architecture has to remain traceable.

UML can help to achieve this. If the architectural information of a software

component is already available in UML, then both, structural and behavioral diagrams

can be used for the specification of its detailed design. However, this detailed design

model will not be able to correspond so closely to code structures as the Basic

Software UML model, because for all architectural level elements the abstraction

level needs to be preserved in order to achieve above mentioned traceability. That is,

while the data elements of a sender/receiver interface will be ultimately mapped to

corresponding macros/functions in the application header of the software component,

using this representation in the detailed design model would clutter the model and

make it hard to read.

Performing such a transition manually would furthermore be an error-prone and

tedious task. Instead, as the mapping of these architectural concepts to the source code

constructs is well defined, this transition can be left to code generators. Dependent on

the completeness of the model, large parts or even the entire implementation may be

generated from the detailed design model. In the end, the concrete modeling

conventions therefore depend on what is to be generated and what code generator is

being used. Behavior diagrams could be used in addition to specify the behavior of

91

the modeled functions, so that a code generator could also generate function

definitions with implementation bodies corresponding to the modeled behavior.

We have selected BridgePoint as UML IDE [96] that is used in our framework. In

BridgePoint, the architectural design can evolve into detailed design using the action

language which captures behavior. Once the UML model is detailed with behavior

and action, the model compiler/code generator steps can be used to generate target

models or source code. Next section presents BridgePoint.

4.4.2.1 BridgePoint xtUML

Executable Translatable Unified Modeling Language [96] is a modeling dialect that

employs standard UML notation to express executable models following the Shlaer

Mellor Method of Object Oriented Analysis and Design [97]. The method is well-

defined and documented and carries a substantial base of research, education and

industry usage through the last two decades. xtUML community is expanding and is

expected to gain a lot of grounds. Eclipse, Papyrus and open source community are

among the players of xtUML. It is observed that a fully open source governance and

ecosystem around xtUML has dramatically increased the pace of advancements in the

tooling and facilitated collaboration among users, suppliers and academics. This is

because openness, transparency and elimination of exclusive ownership fosters an

environment of security.

The order of modeling encourages as much information as reasonable to be captured

in data with the exposure of abstractions at the highest possible level. The method is

considered object-oriented due to its emphasis on data modeling. This object concept

emphasizes relations between the data abstractions. UML class diagrams provide the

notational richness required to capture clear abstractions of conceptual entities with

classes, attributes and various forms of associations relating them. UML state

machine diagrams formalize the lifecycles of individual UML classes. Concurrent

sequential processing is captured in a plurality of relatively simple, communicating

instance-based state machines. Finally, activity semantics are modeled in class

92

operations, state machine states and transitions, and function bodies using an abstract

action language that is Turing Complete but platform independent.

Models are partitioned along subject matter boundaries and deployed as compositions

using UML component diagrams. xtUML models are interpretively executable

following a set of rules. These rules enforce the semantics of the model artifacts and

establish a basis to govern time, order and priority. Execution can be performed in

simulations run by humans enforcing the rules or by an xtUML interpreter that

automates the execution for model testing purposes. A corollary set of semantics

governs the transformation of xtUML from one representation into semantically

equivalent forms represented in lower-level target deployment languages such as Ada,

SPARK, Java, C, C++, MISRA-C, AUTOSAR, SystemC, or VHDL. The process of

translating xtUML into other forms is called model compilation and is performed by a

model compiler.

A model compiler is a refinement of code generation in its complete and strict

mapping of the semantic rules of the language. A model compiler must guarantee

adherence to semantics to preserve execution behavior between forms. Model

compilers can translate only from a higher level of abstraction to a lower level (or the

same level). Model compilers can insert additional platform-specific detail into the

transformation output. Shlaer Mellor xtUML model compilers translate PIMs

(Platform Independent Models) to PSMs (Platform Specific Models).

The purpose of xtUML is to capture executable models and not just diagrams. This

enables testing the application design before coding it which ensures a verified

executable specification. The execution is captured using OAL (Object Action

Language) which supports:

1. Create/Delete instances

2. Read/write attributes

3. Read parameter values

4. Relate/unrelated instances

93

5. Invoke operations/set parameter values

6. Send events/set parameter values

7. Find instances

8. Computation

9. Create/read/write local variables

10. Control: iterate, loop, decision(if elif else endif)

OAL is used to define execution in several UML elements, namely:

1. States

2. Transitions

3. Operations (Instance or class based)

4. Ports

5. Mathematically derived attributes

6. Bridge operations

7. Functions

The completeness of the executable model allows the generation of complete target

models as opposed to just skeleton that can be used to generate headers. Table 7

shows supported operators.

94

Table 7 xtUML Operators

Type Operators

Arithmetic +, -, *, /. %, unary -

Boolean AND, OR, unary NOT

Relational ==, !=, <, <=, >, >=

Assignment Assign x=1

Instance Handles ==, !=, empty, not_empty, cardinality

Figure 11 shows an example of some expression in OAL [96]

Figure 11 xtUML Expressions

4.4.3 UML to SAL Mapping Rules

Table 8 UML/SAL Mapping Rules list model compiler mapping rules used to

generate UML to SAL.

95

Table 8 UML/SAL Mapping Rules

UML

Element

SAL Mapping

Component Translate into the entire context in SAL

Ex: WatchdogM: CONTEXT

BEGIN

END

System Combines all defined SAL modules (UML state machines)

system: MODULE = MOD_1[] MOD_2;

State

Machine

The state machine is represented as a module in SAL.

Ex: SM_1: MODULE

BEGIN

<used instances>

INITIALIZATION

TRANSITION

END;

Initial State INITIALIZATION block within the SAL module will contain the initial state

in the state machine

96

UML

Element

SAL Mapping

INITIALIZATION

 State = ST_STEADY;

Transition Specified in TRANSITION block. The transition is specified as follows (the

first part is a Boolean statement): statemachine_status = SM_current_State

AND statemachine_action = SM_EVT_FIRED --> statemachine_status’ =

SM_Destination_state

<Set of actions>

(State = ST_DOWNSHIFTING AND CONT.timerStarted = TRUE AND EVT

= EVT_SPEEDLESSDOWNTHROTTLE) -->

 EVT' = IF CONT.timerStarted = TRUE THEN

EVT_TIMEELASPEGEARUP ELSE EVT_SPEEDLESSDOWNTHROTTLE

ENDIF;

 CONT'.timerStarted = FALSE;

Event (

trigger for a

transition)

Define new TYPE in system which contains all possible state machines

events, then use as a global or input in the <used instances> block of the

module.

EVT_WdgM: TYPE = {

 EVT_WDGM268,

97

UML

Element

SAL Mapping

 EVT_WDGM269,

 EVT_WDGM201,

 EVT_WDGM202,

 EVT_WDGM203,

 EVT_WDGM204,

 EVT_WDGM300,

 EVT_WDGM205,

 EVT_WDGM206,

 EVT_WDGM207,

 EVT_WDGM291,

 EVT_WDGM208,

 EVT_WDGM209,

 EVT_Startup

};

MOD_WdgM : MODULE =

BEGIN

%% Global Section

98

UML

Element

SAL Mapping

GLOBAL EVT: EVT_WdgM

State Define new TYPE in system which contains all possible states, then use as

local or input. Same exact way as EVT

ST_WdgM : TYPE = {

ST_STATUS_OK,

ST_STATUS_DEACTIVATED,

ST_STATUS_FAILED,

};

MOD_WdgM : MODULE =

BEGIN

%% Global Section

 GLOBAL WdgM_State: ST_WdgM

State

Actions

Specified in a TRANSITION block to self. The transition is specified as

follows (the first part is a Boolean statement): statemachine_status =

SM_Origin_State AND variableInspect = 255 --> statemachine_status’ =

SM_Origin_State;

startupCounter' = 1;

Class

Attributes

Define bounded range for the variable:

99

UML

Element

SAL Mapping

Extended to

include max

limit

vehicleSpeed_idx: INTEGER = 240;

Define bounded type:

vehicleSpeed_type: TYPE = [0..vehicleSpeed_idx];

Define within class attributes structure in SAL

REC_GEARCONTROLLER: TYPE = [#

vehicleSpeed: vehicleSpeed_type,

#];

Define in Module as an instance to be used globally:

GLOBAL CONT: REC_GEARCONTROLLER

Class

Operations

Statements mapped to SAL and inlined in a state action when called inside

state or transition

Satisfiability

conditions

(UML

Model)

Th<id>: THEOREM <module name> |- G((preconditions) => F(expected

outcome));

Ex:

100

UML

Element

SAL Mapping

Satisfiability

conditions

are mapped

to theorems)

WDGM205: THEOREM system |- G(WdgM.WdgmAliveSupervisionStatus =

0 AND WdgM.WdgmDeadlineSupervisionStatus = 0 AND

WdgM.WdgmLogicalSupervisionStatus=0 =>

G(WdgM_State = ST_STATUS_OK));

Th<id>: THEOREM <module name> |- G(Upper bound check) AND (Lower

bound check);

Safe_WdgM_WDGM327:

THEOREM system |- G(FailedAliveSupervisionRefCycleTol <= 255 AND

 FailedAliveSupervisionRefCycleTol >= 0);

The transformation mapping model compiler is composed of several functions. Each

function is responsible for UML to SAL mapping. A list of functions implemented in

the model compiler is summarized below:

1. FilePro: responsible for generating SAL file prologue. It takes UML components

and generates <ComponentName>.sal file component. It additionally declares the

context of the .sal using the components name as the context’s name followed by

‘BEGIN’ keyword which is mandatory in SAL semantics.

2. FileStates: Given a UML class, creates the declaration of the different states,

events, input states and input events in an enumerated form in SAL notation. The

data type name format is <class name>_<State or InputState>.

3. FileModules: This function creates the SAL module for each state machine. It

takes component as a parameter and searches the component for all its classes’

state machines. For each class state machine instance, a module is created.

101

‘MODULE=BEGIN’ preceded by the class’s generated name are written to the

SAL file. CreateDecls function is then called with a component and a class name

to define all modules relevant declarations. All SAL transitions in this class’s state

machine are then written to the SAL file. CreateBody function is then called with

a state/transition, class, and component arguments to traverse any state/transition

preconditions/post conditions to generate the transition/State actual body.

4. CreateDecls: As previously mentioned, this function takes the class and

component names. It creates declarations within each class’s respective module,

namely, declare an instance of the class’s states and input states, local to the

module as well as class’s events and input events global to the module. It will also

initialize the instance of the class’s status to the initial state in the UML state

machine.

5. CreateObjectSAL: Invokes previously described functions in the correct order to

generate the SAL representation of the state machine.

6. CreateBody: Parses the preconditions and post conditions checks and generates

state transition actions/checks and/or state actions.

7. CreateTheroems: Traverses all UML model satisfiability conditions to generate

theorem mapping in SAL notation.

4.5 Model Checking

Model checking is based on SAL model checkers. SAL model checkers are based on

several technologies. The below subsection introduces the technologies that SAL

model checkers are based on followed by a brief list of SAL model checkers.

4.5.1 Model Checkers Technologies

4.5.1.1 SAT Based Model Checking

Also Called Boolean satisfiability. SAT(Satisfiability) based checking is to determine

if there exists an interpretation that satisfies a given Boolean formula. In other words,

it establishes if the variables of a given Boolean formula can be assigned in such a

way as to make the formula evaluate to TRUE. If no such assignments exist, the

function expressed by the formula is identically FALSE for all possible variable

assignments. In this latter case, it is called unsatisfiable, otherwise satisfiable. For

102

example, the formula "a AND NOT b" is satisfiable because one can find the values a

= TRUE and b = FALSE, which make (a AND NOT b) = TRUE. In contrast, "a AND

NOT a" is unsatisfiable. To emphasize the binary nature of this problem, it is

frequently referred to as Boolean or propositional satisfiability.

4.5.1.2 SMT (Satisfiability Modulo Theories).

 The SMT problem is a decision problem for logical formulas with respect to

combinations of background theories expressed in classical first-order logic with

equality. Examples of theories typically used in computer science are the theory of

real numbers, the theory of integers, and the theories of various data structures such as

lists, arrays, bit vectors and so on. SMT can be thought of as a form of the constraint

satisfaction problem and thus a certain formalized approach to constraint

programming.

4.5.1.3 BDD - Binary Decision Diagram

A binary decision diagram (BDD) is a data structure that is used to represent a

Boolean function. On a more abstract level, BDDs can be considered as a compressed

representation of sets or relations. Unlike other compressed representations,

operations are performed directly on the compressed representation, i.e. without

decompression.

Bounded model checking algorithms unroll the FSM for a fixed number of steps K

and check whether a property violation can occur in K or fewer steps. The process can

be repeated with larger and larger values of k until all possible violations have been

ruled out

4.5.1.4 Model Solver dependencies/ Techniques

Correctness properties are expressed in SAL by means of LTL (Linear Temporal

Logic) or CTL (Computational Tree Logic) formulas. [Appendix A includes SAL

examples of correctness properties]. In SAL, verification of the models relies mostly

on the infinite-state bounded model checker. The model checker is used as a

refutation tool. It searches for counter examples to a given property. It is used as a

verification tool and applied to the models using two techniques: proof by induction

and proof by abstraction.

103

Proof by induction (k-induction) assumes that a system S satisfies an invariant P in

two steps. The first step shows that all states that are reachable from initial state of S

in at most k steps satisfy P. In the inductive step, one shows that for any trajectory of

length k+1, if the first k states satisfy P then the last state also satisfies P. This

technique is not always scalable to industrial-size use cases.

Proof by Abstraction which amounts to finding a disjunctive variant that implies a

safety property under consideration which can be proven using induction at depth 1.

Proof by induction and abstraction is claimed to be a robust technique that is

applicable to a wide class of communication protocols. The method of discovering

suitable abstractions is claimed to be reusable across protocols.

4.5.2 SAL Model Checkers

SAL comes with a lot of model checkers based on technologies discussed in 4.5.1.

sal-wfc is a well-formedness checker or SAL syntax compiler. Sal-smc is a

symbolic model checker which is BDD-based for finite state systems [78]. Sal-

deadlock-checker is an auxiliary tool, based on the symbolic model checker, for

detecting deadlocks in finite state systems [78]. Sal-bmc is a bounded model checker

for finite state systems based on SAT(Satisfiability) solving. In addition to refutation

(i.e., bug detection and counterexample generation), the SAL bounded model checker

can perform verification by k-induction. SAL can use several SAT solvers, but

defaults to Yices [78]. Sal-inf-bmc is an infinite bounded model checker for infinite

state systems based on SMT solving. In addition to refutation (i.e., bug detection and

counterexample generation), the SAL infinite bounded model checker can perform

verification by k-induction. SAL can use several SMT solvers, but defaults to Yices

[78]. Sal-atg is an automated test generator which uses the symbolic, bounded, and

infinite bounded model checkers to perform automated generation of input sequences

[78].

104

Chapter 5. Case Study Modules

We have evaluated our proposed approach using three automotive modules. Two

modules are part of the AUTOSAR standard basic software module stack, namely,

FlexRay state manager and Watchdog Manager and the third module is an application

layer module, namely, automatic transmission controller. We present the background

of these case study modules in this chapter and the requirements that has been mapped

into the design based on informal specifications of all three modules in our

framework. These requirements will form the foundation for evaluating our

framework. We will implement these requirements in the UML design, introduce

design defects on the UML model and report the SAL model checkers response

towards these introduced defects.

Additionally, we used a commercial implementation from an AUTOSAR BSW

supplier of Watchdog Manager. The details of this commercial implementation

includes challenges faced during design verification of the module, ISO26262

compliance challenges, and defects that were uncovered beyond the design phase that

could have been detected in the design phase. We will present this implementation in

this chapter and use it for a comparative analysis against our approach in results and

discussions chapter. Our plan is to introduce these defects in our watchdog manager

implementation design and verify that the model checkers are able to detect the design

issues at the design stage.

5.1 AUTOSAR FlexRay State Manager

In the AUTOSAR Layered Software Architecture, the FlexRay State Manager belongs to

the ECU Abstraction Layer, or more precisely, to the Communication Hardware

Abstraction as depicted in Figure 4. AUTOSAR modules specification are uniform. We

managed to verify two modules but our framework can be extended to any AUTOSAR

module since all specifications are similar. The FlexRay State Manager shall provide an

abstract interface to the AUTOSAR Communication Manager to startup or shutdown the

105

communication on a FlexRay cluster. The FlexRay State Manager does not directly

access the FlexRay hardware (FlexRay Communication Controller and FlexRay

Transceiver), but by means of the FlexRay Interface. The FlexRay Interface redirects the

request to the appropriate driver module [103]. The FlexRay State Manager shall have

one state machine for each FlexRay cluster. Figure 12 shows the FlexRay State Manager

state machine as documented in the AUTOSAR FlexRay state manager AUTOSAR

specification.

Figure 12 State Machine of FlexRay State Manager

5.1.1 Requirements to be verified

5.1.1.1 FRSM073 and FRSM074

Figure 13 depicts requirements FrSm073 and FrSm074 that govern transitions 2a, 2b,

3a, 3b, 3c, 3d and 3e as documented in the AUTOSAR FlexRay State manager

specification. It shows the conditions that drive a transition and the actions to take

once the transition is made. In the results and discussions chapter, we will verify that

the below requirement hold in the design, introduce bugs and show how our

framework can detect the bugs on the design level via the formal model checkers

based on the automatically compiled UML design to SAL formal notation. All

requirements are retrieved from AUTOSAR software specification document [103].

106

Figure 13 Requirements 73 and 74 in FlexRay State Manager Module

The requirements govern the conditions that should be satisfied for a transition/state

to be valid. These requirements shall be the basis for the theorems as well to ensure

that at no time, the conditions will be satisfied while in a wrong state or invalid

transition.

5.1.1.2 FRSM033

Verify range values are compliant to specifications for parameters [103]:

startupCounter: uint8 [0-255]

wakeupCounter:uint8[0-255]

107

5.2 AUTOSAR WatchDog Manager

Most embedded systems need to be self-reliant. It is not usually possible to wait for

someone to reboot them if the software hangs. Some embedded designs, such as space

probes, are simply not accessible to human operators. If their software ever hangs,

such systems are permanently disabled. In other cases, the speed with which a human

operator might reset the system would be too slow to meet the uptime requirements of

the product. Watchdog module is used to automatically detect software anomalies and

take corrective actions such as a reset the processor.

The Watchdog Manager is a basic software module at the service layer of the

standardized basic software architecture of AUTOSAR as shown in Figure 4. It is able

to supervise the program execution abstracting from the triggering of hardware

watchdog entities. It supervises the execution of a configurable number of Supervised

Entities. When it detects a violation of the configured temporal and/or logical

constraints on program execution, it takes a number of configurable actions to recover

from this failure. The watchdog Manager provides three mechanisms [102]:

1. Alive supervision – for supervision of timing of periodic software

2. Deadline monitoring – for aperiodic software

3. Logical monitoring – for supervision of the correctness of the execution

sequence.

The Watchdog Manager supervises the execution of software. The logical units of

supervision are Supervised Entities. There is no fixed relationship between

Supervised Entities and the architectural building blocks in AUTOSAR, i.e., SW-Cs,

CDDs, RTE, BSW modules, but typically a Supervised Entity may represent one SW-

Cs or a Runnable within an SW-C, a BSW module or CDD depending on the choice

of the developer. Important places in a Supervised Entity are defined as Checkpoints.

The code of Supervised Entities is interlaced with the calls of Watchdog Manager that

report to the Watchdog Manager when they have reached a Checkpoint [102].

Each Supervised Entity has one or more Checkpoints. The Checkpoints and

Transitions between the Checkpoints of a Supervised Entity form a Graph. This

108

Graph is called Internal Graph. Moreover, checkpoints from different Supervised

Entities may also be connected by External Transition, forming an External Graph.

There can be several External Graphs in each Watchdog Manager mode [102].

A Graph may have one or more initial Checkpoints and one or more final

Checkpoints. Any sequence of starting with any initial checkpoint and finishing with

any final checkpoint is correct (assuming that the checkpoints belong to the same

Graph). After the final Checkpoint, any initial Checkpoint can be reported. Within the

Watchdog Manager settings, it is possible to configure the required timing of

Checkpoints as well as the allowed External and Internal Graphs [102].

At runtime, Watchdog Manager verifies if the configured Graphs are executed. This is

called Logical Supervision. Watchdog Manager verifies also the timing of

Checkpoints and Transitions. The mechanism for periodic Checkpoints is called Alive

Supervision and for aperiodic Checkpoints it is called Deadline Supervision. The

granularity of Checkpoints is not fixed by the Watchdog Manager. Few coarse-

grained Checkpoints limit the detection abilities of the Watchdog Manager. For

example, if an application SW-C only has one Checkpoint that indicates that a cyclic

Runnable has been started, then the Watchdog Manager is only capable of detecting

that this Runnable is re-started and check the timing constraints. In contrast, if that

SW-C has Checkpoints at each block and branch in the Runnable the Watchdog

Manager may also detect failures in the control flow of that SW-C. High granularity

of Checkpoints causes a complex and large configuration of the Watchdog Manager

[102].

The three supervision mechanisms supervise each supervised entity. A Supervised

Entity may have one, two or three mechanisms enabled. Based on the results from

each of enabled mechanisms, the status of the Supervised Entity (called Local Status)

is computed. When the status of each Supervised Entity is determined, then based on

each Local Supervision Status, the status of the whole MCU is determined (called

Global Supervision Status). Watchdog has three types of supervision: Alive

supervision, deadline supervision and Logical supervision [102].

109

5.2.1 Alive Supervision

Periodic Supervised Entities have constraints on the number of times they are

executed within a given time span. By means of Alive Supervision, Watchdog

Manager checks periodically if the Checkpoints of a Supervised Entity have been

reached within the given limits. This means that Watchdog Manger checks if a

Supervised Entity is run not too frequently or not too rarely [102].

5.2.2 Deadline Supervision

Aperiodic or episodical Supervised Entities have individual constraints on the timing

between two Checkpoints. By means of Deadline Supervision, Watchdog Manager

checks the timing of transitions between two Checkpoints of a Supervised Entity. This

means that Watchodog Manager checks if some steps in a Supervised Entity take a

time that is within the configured minimum and maximum [102].

5.2.3 Logical Supervision

Logical supervision is a fundamental technique for checking the correct execution of

embedded system software. Please refer to the safety standards (IEC 61508 or

ISO26262) when logical supervision is required. Logical supervision focuses on

control flow defects, which cause a divergence from the valid (i.e. coded/compiled)

program sequence during the error-free execution of the application. An incorrect

control flow occurs if one or more program instructions are processed either in the

incorrect sequence or are not even processed at all. Control flow errors can lead to

data corruption, microcontroller resets, or fail-silence violations. For the control flow

graph this implies that every time the Supervised Entity reports a new Checkpoint, it

must be verified that there is a Transition configured between the previous

Checkpoint and the reported one [102].

5.2.4 Local Supervision State Machine

The local supervision status state machine determines the status of the Supervised

Entity. This is done based on the following:

1- Previous value of the Local Supervision Status

2- Current values of alive supervision, deadline supervision and logical

supervision.

110

Figure 14 shows the Watchdog Manager state machine. The states and transitions are

detailed in AUTOSAR Watchdog Manager published Software Specification

document [79] [102].

Figure 14 Watchdog Manager Local Supervision Status

5.2.5 Requirements to be verified

In this section, we present selected requirements that we plan to verify using our

framework. In the results and discussions chapter, we will verify that the below

requirements hold in the design, introduce bugs and show how our framework can

detect the bugs on the design levels via the formal model checkers based on the

automatically compiled UML design to SAL formal notation. All requirements are

retrieved from AUTOSAR software specification document [102].

WDGM202

WDGM202 describes transition 2 in the local state machine as depicted in Figure

15[102]. The requirement specifies the conditions that should be satisfied in order for

a transition from OK to expired states to take place in the local state machine. We will

use our framework to verify that at no time, the below conditions will be met and the

transition will not fire or that we are in a state other than expired while the transition

conditions satisfying expired state are true.

111

Figure 15 Requirement 202 - Watchdog Manager Module

WDGM203

WDGM203 describes transition 3 in the local state machine as depicted in Figure 16

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a transition from OK to failed states to take place in the local state machine.

We will use our framework to verify that at no time, the below conditions will be met

and the transition will not fire or that we are in a state other than failed while the

transition conditions satisfying failed state are true.

Figure 16 Requirement 203 - Watchdog Manager

WDGM204

WDGM204 describes transition 4 in the local state machine as depicted in Figure 17

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a stay in FAILED transition in the local state machine. We will use our

112

framework to verify that at no time, the below conditions will be met the state

machine is in a state other than failed.

Figure 17 Requirement 204 - Watchdog Manager

WDGM300

WDGM300 describes transition 4 in the local state machine as depicted in Figure 18

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a stay in FAILED transition in the local state machine. We will use our

framework to verify that at no time, the below conditions will be met the state

machine is in a state other than failed.

Figure 18 Requirement 300 - Watchdog Manager Module

WDGM205

WDGM205 describes transition 5 in the local state machine as depicted in Figure 19

[102]. The requirement basically specifies the conditions that should be satisfied in

113

order for a transition from failed to OK states to take place in the local state machine.

We will use our framework to verify that at no time, the below conditions will be met

and the transition will not fire or that we are in a state other than OK while the

transition conditions satisfying OK state are true.

Figure 19 Requirement 205 - Watchdog Manager Module

WDGM206

WDGM206 describes transition 6 in the local state machine as depicted in Figure 20

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a transition from failed to expired states to take place in the local state

machine. We will use our framework to verify that at no time, the below conditions

will be met and the transition will not fire or that we are in a state other than expired

while the transition conditions satisfying expired state are true.

Figure 20 Requirement 206 - Watchdog Manager Module

114

WDGM207

WDGM207 describes transition 7 in the local state machine as depicted in Figure 21

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a transition from OK to deactivated state to take place in the local state

machine. We will use our framework to verify that at no time, the below condition

will be met and the transition will not fire or that we are in a state other than

deactivated while the setMode function is called with a deactivated state.

Figure 21 Requirement 207 - Watchdog Manager Module

WDGM291

WDGM291 describes transition 12 in the local state machine as depicted in Figure 22

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a transition from Failed to deactivated state to take place in the local state

machine. We will use our framework to verify that at no time, the below condition

will be met and the transition will not fire or that we are in a state other than

deactivated while the transition condition is met. We will also verify that the design

does not allow the transition from expired to deactivated as described in the

requirement.

Figure 22 Requirement 291 - Watchdog Manager Module

115

WDGM208

WDGM208 describes transition 8 in the local state machine as depicted in Figure 23

[102]. The requirement basically specifies the conditions that should be satisfied in

order for the state machine to stay in deactivated state in local state machine of the

Watchdog Manager Specification[102]. Verification of this requirement will ensure

that the state is correct given the conditions and that no supervision functions are

performed while in the state.

Figure 23 Requirement 208 - Watchdog Manager Module

WDGM209

WDGM209 describes transition 9 in the local state machine as depicted in Figure 24

[102]. The requirement basically specifies the conditions that should be satisfied in

order for a transition from deactivated to OK state to take place in the local state

machine. We will use our framework to verify that at no time, the below condition

will be met and the transition will not fire or that we are in a state other than OK

while the transition condition is met.

Figure 24 Requirement 209- Watchdog Manager Module

WDGM327

WDGM327 describes boundary conditions for a configuration parameter within the

module as shown in Figure 25 [102]. We will verify that it is not possible at any point

in the design for the failed alive supervision reference cycle tolerance to exceed the

specification range.

116

Figure 25 Requirement 327 - Parameter range - Watchdog Manager

5.3 Automatic Transmission Controller - ATC

A transmission control entity is a device that controls transmission electronically to

achieve better fuel economy, reduced engine emissions, greater shift system

reliability, improved shift feel and improved shift speed. It uses sensors from the

vehicle and data provided by engine control unit to calculate how and when to change

gears in the vehicle. Figure 26 shows a state machine of the ATC [104]. The inputs

are throttle and vehicle speed and the output is the desired gear number.

Figure 26 ATC State Machine

The model computes the upshift and downshift speed thresholds as a function of the

instantaneous values of gear and throttle. While in steady_state, the model compares

117

these values to the present vehicle speed to determine if a shift is required. If so, it

enters one of the confirm states (upshifting or downshifting). If the vehicle speed no

longer satisfies the shift condition, while in the confirm state, the model ignores the

shift and it transitions back to steady_state. This prevents extraneous shifts due to

noise conditions. If the shift condition remains valid for a duration, the model

transitions through the lower junction and, depending on the current gear, it

broadcasts one of the shift events. Subsequently, the model again

activates steady_state after a transition through one of the central junctions. The shift

event, which is broadcast to the gear_selection state, activates a transition to the

appropriate new gear [104].

5.3.1 Requirements to be verified

In this application module, we will assume application level requirements or safety

assumptions.

If the vehicle is in a second gear vehicle speed range and throttle while in first gear

position, the state second should be active in gear_state and steady_state is active in

selection state [104].

If the vehicle speed exceeds 21 km/h given the previous condition, transition to up-

shift should happen, stabilize in up-shift and gear_state should be in second

state[104].

5.4 Industrial Challenges – Commercial Watchdog Manager Implementation

In order to evaluate the existing challenges faced by embedded automotive suppliers,

we got data regarding the hardships that currently face automotive embedded

suppliers as well as an analysis of the bugs they identify and interpretation of cons in

the process/flow that lead up to these bugs. This evaluation needed to be based on an

industrial partner that can benefit from our proposed flow and is willing to provide

data regarding the current flaws as well as defects that are still identified in the late

testing cycle or even after release. Mentor Graphics shared their challenges in

developing AUTOSAR Watchdog Manager implementation in compliance to ASIL B

ISO 26262 level as well as the defects that were uncovered during testing/production

releases.

118

5.4.1 Verification challenges

BSW supplier reports that one of the major challenges faced during their verification

cycle of BSW modules while attempting to be ISO26262 complaint was the inability

to follow the design verification guidelines.

Formal and semi-formal verification methods generally apply when working with

model-based software but not with embedded C code, or with embedded software

designs. So, when working with embedded C software, static analysis, and control

flow/data flow analysis were considered as acceptable alternatives by the supplier and

an argument was made against performing semi-formal or formal verification against

ISO-26262 recommendations as shown in Table 2 Methods for the verification of the

software architectural design. This forced the supplier to drop to ASIL B compliance

since they were unable to comply with highly recommended requirement of design

semi-formal verification in ASILs C and D.

The supplier utilized methods that apply on the source code itself using manual

methods. Control flow/data flow analysis were done via manually analyzing the

control statements inside source code and creating control flow/data flow graphs for

control statements and variables. This was possible since the modules under

verification were small, however with larger scale modules, this will not be feasible

and has to be automated.

From the supplier perspective, control flow and data flow analysis execution on the

source code don’t really provide additional value over static analysis and code

coverage tools since most of the detectable bugs via control/data flow analysis can be

detected by static analysis tools and code coverage tools during unit testing, or by

manual code review. In a nut shell, verification is always assumed to be on the code

as opposed to the design level due to the lack of an automated verification flow on the

design level.

The supplier reports that design reviews were primarily based on several review

iterations and re-writes of the design since it lacked needed details and guidance to be

119

a comprehensive design. Adding control/data flow in the design helped address this

design lack of details which primarily impacts the implementation and the

identification of design level bugs. The current flow basically pushes design bugs to

the implementation cycle and allows the detection of the bugs introduced in both

stages only after the code is written and is in a testable state.

The supplier also perceives semi-formal verification as means to automatically derive

test cases in accordance with ISO 26262 test case derivation guidelines on the design

as shown in Table 5. The recommendations show that in order to achieve at least

ASIL B, boundary value analysis and generation and analysis of equivalence classes

should be used in test case derivation.

5.4.2 Defects beyond Design Stage

Seventy one defects were raised during ASIL B compliancy endeavor of the

WatchDog Manager module. Additionally, some of the reported defects were

uncovered after production and during customer module integration endeavors. The

table below summarizes the raised defects number and classification.

Table 9 Categorization of identified Defects

Defect Count Classification

16 Logic Bugs

35 Non-compliance to Specification

20 Traceability

Defects under logic bugs category include but are not limited to, bugs such as array

bound issues, incorrect array index, invalid mathematical operator, and last array

index not getting initialized properly. Defects under non-compliance to specification

includes defects such as WDGM triggers watchdog Interface to be in

WDGIF_OFF_MODE while in WDGM_G_STATUS_STOPPED state (non-

120

compliance to WDGM122) and WdgMExpectedAliveIndications, which is a defined

parameter in the specification holding the amount of expected alive indications, range

does not match AUTOSAR watchdog manager specification. The remaining defects

were related to traceability (Missing text cases, missing relations between requirement

and design/code/test elements). 5.4.3 details sampled defects that will be verified in

our results and discussions chapter.

71 defects were introduced in the design stage of this project. All of them slipped into

the testing stage and were not properly detected in the design stage. Part of our

approach evaluation is to decrease the 100% slippage factor between design and

implementation stages.

5.4.3 Defects

WdgMExpectedAliveIndications Range

This defect was reported after delivering the software to the customer. In the

customer’s attempt to define the alive indications to be 65535, which is valid

assignment since the specification indicates a range between 0-65535, the software

returned an error that only 0-255 is allowed for this parameter. Bug report is 17655.

We will introduce the same defect in our design and verify that model checkers will

identify the defect at the design stage via model checkers.

SetMode function Defect

This defect was reported in the integration testing stage. The specification indicates

that function SetMode should return E_NOT_OK while the state machine is in

FAILED or OK states. The requirement indicates that changing mode successfully

should trigger the function to return E_OK and failing should trigger the function to

return E_NOT_OK. In this defect, the function returned E_OK while state machine

was in state OK which is in direct violation to requirement 154. Bug report is 17988.

We will introduce the same defect in our design and verify that model checkers will

identify the defect at the design stage via model checkers.

121

Improper Initialization

This defect was reported in system testing stage. The specification indicates that all

module variables shall be initialized in WdgM_Init call – WDGM018. The defect

elaborates on a non-initialized index of an array in the module. Bug report is 17907.

We will introduce the same defect in our design and verify that model checkers will

identify the defect at the design stage via model checkers.

Out of Bound array index

This defect was reported during integration testing. An array within the wdgM

module was accessed with out of bound index. Bug report 17971. We will introduce

the same defect in our design and verify that model checkers will identify the defect at

the design stage via model checkers.

Incomplete boundary testing

This boundary testing defect was reported during system testing stage. A bug was

raised that not all module parameters were boundary tested. The defect was intended

to show lack of testing to ensure compliance to ISO-26262. Bug report 18149. We

will introduce the same defect in our design and verify that model checkers will

identify the defect at the design stage via model checkers.

122

Chapter 6. Case Study results and Comparative analysis

6.1 AUTOSAR FlexRay State Manager Results

AUTOSAR FlexRay State Manager SWS served as a baseline for implementation of

the design in BridgePoint xtUML. It is a critical module in the AUTOSAR BSW

communication stack that is used by all ECUs connected via a FlexRay bus. FlexRay

supports high data rates, up to 10Mbits/s and supports both star and party line bus

topologies and has two independent data channels for fault tolerance. The first usage

was in BMW x5 2006 damping system. It is now used in several cars including Audi,

Bentley, BMW, Lamborghini, Mercedes Benz, Rolls-Royce, Land Rover and Volvo.

It is mainly used in bandwidth intensive safety critical applications. FlexRay state

Manager module is responsible for managing the state machine of a FlexRay cluster

impacting all modules running on top of ECUs depending on data being sent/coming

over the FlexRay communication channel. Any Failure in the state machine module

would affect all applications on ECUs that depend on data utilizing the bus. Similar to

FlexRay State manager, there is CAN (bus protocol) state manager, LIN (Bus

protocol) state manager and Ethernet (communication protocol) state manager

among others. Therefore, verifying this module is crucial in automotive and shows

that all state managers could be verified at the design stage in a similar manner.

The xtUML project consisted of a root package called FRSM. The root package

contained all data types as documented in the specification and a component named

FrSM_Comp. The component consisted of another package, Manager that contained a

class definition FrSM. The class contains attributes, functions and state machine

design as documented in the FlexRay state manager specification. Figure 27 shows a

summary of the xtUML design elements of FlexRay state manager module. Section

6.1.1 details the mapping of the specification into the xtUML design. The figure

shows a FlexRaySM xtUML project that has a FRSM package. The package hosts

user defined data types (comM_ModType, FrSM_BswM_StateType,

Std_ReturnType, wakeup_Type, WUReason_Type, FrSm_ConfigType,

123

Std_VersionInfoType) and a FrSM_Comp component. The FrSM_Comp contains a

package that hosts the FrSM class. THe xtUML class defines all attributes, operations,

and state machine as defined in the specification.

Figure 27 FlexRay xtUML Design

6.1.1 xtUML Design

FlexRay State Manager AUTOSAR specification [82] describes the module in the

following order:

1- Defines all states in the state machine (READY, WAKEUP, STARTUP,

HALT_REQ, ONLINE, ONLINE_PASSIVE) as shown in Figure 28.

2- Defines all variables used in the state machine and their type. Some

examples are shown in Figure 29 where specification indicates that a

variable reqComMode needs to be defined of type ComM_ModType,

startupCounter of type integer, wakeupType of type Enumeration and

others.

3- Condition variables that are evaluated at runtime that control transitions in

the state machine as shown in Figure 30.

4- A table that describes the transition, conditions for the transition to take

place and actions that should be executed once the transition happens as

shown in Figure 13.

5- Function definitions and actions to be taken inside functions. An example

is shown in Figure 31 where specification indicates that a function

124

FrSM_Init needs to be defined that returns void and accepts a

configuration parameter of type pointer to FrSm_ConfigType. The intent

of this function is to initialize the state manager and set the configuration

parameters in the channel configuration.

Figure 28 FlexRay States

125

Figure 29 FlexRay Variables

126

Figure 30 FlexRay Conditions

Figure 31 FlexRay Functions

The module specification was mapped into xtUML design. All defined types were

mapped into user defined types in xtUML. FrSm033 requirement indicates how

several variables should be defined. An example is reqComMode variable of type

ComM_ModType enum that should be defined with the following enum values:

127

NoCom, SilentCom, FullCom. Figure 32 shows the mapping of this user defined type

in xtUML.

Figure 32 ComM_ModeType User Defined Type

Additionally, variables documented in the specification were mapped into class

attributes of the FrSM class definition in xtUML as shown in Figure 33. xtUML has

been extended to record the default value and max value for each variable so that it

can be used to generate boundary conditions theorems in SAL notation.

Figure 33 Variable Definition

128

FlexRay Manager States, state machine and transitions were also implemented in

xtUML in accordance to FlexRay State Manager specification document. Figure 34

shows the xtUML implementation of the state machine. Each FlexRay State machine

state checks for the conditions and triggers actions as documented in the AUTOSAR

FlexRay State Manager specification.

Figure 34 FlexRay xtUML State Machine

The xtUML state machine as shown in Figure 34 implements the states INIT,

READY, HALT_REQ, WAKEUP, STARTUP, ONLINE and ONLINE_Passive as

documented in the AUTOSAR FlexRay State manager specification. All specification

transitions are implemented in xtUML to match the specification. Each state/transition

actions in the specification are also mapped to xtUML action language to manipulate

the variables in accordance to the specification as shown in Figure 13.

State hosts action language that checks conditions and takes actions in accordance to

the specification. Figure 35 shows the OAL (Object Action Language) in the

FRSM_READY state that checks variables and triggers transitions T01a, T01b, T01c

and required actions once the conditions are satisfied. In xtUML, the state change is

triggered via events that trigger the specified transition.

129

Figure 35 xtUML Implementation of FrSm072

Functions are mapped to operations in the FrSM class. Each operation manipulates

the state variables and takes the actions specified in the specification. Figure 36 shows

an example of FrSM_Init implementation in xtUML as documented in the

specification where the configuration parameters are stored and accessible via other

functions and a transition is made to FRSM_READY once the initialization has taken

place.

130

Figure 36 FrSM Initialization in xtUML

Once the design is complete in xtUML, a build is triggered in C/C++ perspective to

launch the model compiler and generate SAL model counterpart. Figure 37 Shows

generated output after a successful build. Figure 38 shows the console output during

SAL generation/build.

At this point in the flow, xtUML model of the design under test has been

automatically compiled into a formal SAL model and theorems. Sample SAL output

is documented in APPENDIX B.

Figure 37 Generated SAL Model

131

Figure 38 SAL Generation

6.1.2 Model Checking Results

This section details the results of running the model checkers on the generated SAL

model. The intention is to show sample design defects that can be uncovered via the

model checkers in the early design stage. FlexRay SAL model shall be checked via a

SAL compiler to validate syntax, SAL deadlock checker to validate that the state

machine has no deadlock state, and finally a BDD checker to verify theorems

(Boundary check and requirement compliance).

6.1.2.1 SAL Model Compilation

The SAL compiler is triggered on the generated SAL model to verify that the

generated SAL syntax is correct and that the formal model is complete. This step will

fail if there are non-bounded variables, non-initialized variables or syntax defects. We

have left an uninitialized variable in the xtUML model to check that the SAL model

compiler will report any un-initialized variable. In the FlexRay State manager xtUML

model, we left the configuration class member as un-initialized as shown in Figure 39

132

Figure 39 Un-initialized Data Member

The output below shows the result of the compilation which basically can be

summarized as mismatch between the defined FrSM_Comp type and the initiation

instance of REC_FrSM as elements in the structure are not initialized. In the case

below, the variable FrSM_Config was not part of the initialization in xtUML and thus

the SAL compiler generated the error below.

$ sal-wfc FrSM_Comp.sal --verbose=3

importing context "FrSM_Comp"...

parsing SAL file "FrSM_Comp.sal"...

creating abstract syntax tree for context "FrSM_Comp"...

 ast generation time: 0.0 secs

type checking context "FrSM_Comp"...

Error: [Context: FrSM_Comp, line(173), column(2)]:

Incompatible types in assignment.

The following types are incompatible:

FrSM_Comp!REC_FrSM

[# AllChannelIsAwake: bool,

 FrSMCheckWakeupReason: bool,

 FrSMDelayStartupWithoutWakeup: bool,

 FrSMIsColdstartEcu: bool,

 FrSMIsDualChannelNode: bool,

 FrSMIsWakeupEcu: bool,

 FrSMNumWakeupPatterns: nat,

 FrSMStartupRepetitions: nat,

 FrSMStartupRepetitionsWithWakeup: nat,

 WUReason: FrSM_Comp!WUReason_type,

133

 busTrafficDetected: bool,

 reqComMode: FrSM_Comp!ComM_ModType,

 startupCounter: nat,

 t1: bool,

 t1_IsActive: bool,

 t2: bool,

 t3: bool,

 t3_IsNotActive: bool,

 t_TrcvStdby_Delay_IsActive: bool,

 t_Trcv_StdbyDelay: nat,

 wakeupCounter: nat,

 wakeupTransmitted: bool,wakeupType: FrSM_Comp!wakeup_Type

#]

Once the issue was corrected in xtUML, the SAL compiler compiled the file

successfully and gave the below generated output.

$ sal-wfc FrSM_Comp.sal --verbose=3

importing context "FrSM_Comp"...

parsing SAL file "FrSM_Comp.sal"...

creating abstract syntax tree for context "FrSM_Comp"...

 ast generation time: 0.0 secs

type checking context "FrSM_Comp"...

 type-checker time: 0.0 secs

Ok.

total execution time: 0.0 secs

6.1.2.2 SAL Deadlock Checker

The SAL deadlock checker is triggered on the generated SAL model to verify that the

state machine has no deadlock state. The deadlock checker shall be executed before

the SAL model checker as the theorems cannot be verified if a tree can only be built

with a deadlock state. Our first run of the deadlock checker against the FlexRay State

Manager SAL model revealed a set of variable assignments that lead up to a deadlock

state in our state machine. The Deadlock checker output below shows the set of

assignments that lead up to being stuck in FRSM_INIT State in the FlexRay State

manager state machine. In summary, the model compiler reports a set of variable

134

assignments that lead to being in FRSM_INIT state and deadlocking there given the

reported set of variable assignments.

135

$ sal-deadlock-checker FrSM_Comp MOD_FrSM --verbose=3

detecting deadlock states...

 computing set of reachable states...

 iteration: 1

 frontier lower bound: 90 nodes, upper bound: 90 nodes

 using frontier with 90 nodes

 total bdd node count: 876

 iteration: 2

 frontier lower bound: 87 nodes, upper bound: 93 nodes

 using frontier with 87 nodes

 total bdd node count: 978

 number of visited states: 19.0

 time to compute set of reachable states: 0.0 secs

 deadlock state detection time: 0.0 secs

Total number of deadlock states: 18.0

Deadlock states:

State 1

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = false

FrSM.FrSMIsWakeupEcu = false

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

136

FrSM.busTrafficDetected = false

FrSM.reqComMode = NoCom

FrSM.startupCounter = 2

FrSM.t1 = false

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T06

FrSM_State = ST_FRSM_INIT

total execution time: 0.281 secs

6.1.2.3 SAL Model Checker

In this run, the experiments will aim to verify that any violation to the specification

boundary conditions are detected and any incompliance to specification in the state

machine is detected as well. Initially, we introduced a defect in the design where

startupCounter is incremented infinitely in the FRSM_READY state machine.

According to the specification (Requirement FrSm033 as shown in 5.1.1.2), the value

should not exceed 255. We launched the model checker against the SAL model and

the automatically generated SAL LTL (Linear Temporal Logic) theorem below to

validate the requirement.

THEOREM system |- G(FrSM.startupCounter <= 255 AND FrSM.startupCounter >= 0);

The above theorem map textually to,

Globally, it is always true that startupCounter

is less or equal to 255 and greater than or equal to 0.

We also embedded an invalid statement in FRSM_READY state that increments the

startup counter. The model checker captured the violation and indicated all the

137

variable assignments/state paths that lead up to the violation. A snapshot of the

violation is shown below:

$ sal-smc FrSM_Comp Safe_FrSM_033

Counterexample:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = false

FrSM.FrSMIsWakeupEcu = false

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

138

FrSM.busTrafficDetected = false

FrSM.reqComMode = NoCom

FrSM.startupCounter = 0

FrSM.t1 = false

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T00

FrSM_State = ST_FRSM_INIT

Transition Information:

(module instance at [Context: FrSM_Comp, line(416), column(8)]

 (module instance at [Context: FrSM_Comp, line(409),

column(17)]

 transition at [Context: FrSM_Comp, line(396),

column(10)]))

Step 1:

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = true

FrSM.FrSMIsWakeupEcu = true

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 0

139

FrSM.t1 = false

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T01

FrSM_State = ST_FRSM_READY

Transition Information:

(module instance at [Context: FrSM_Comp, line(416), column(8)]

 (module instance at [Context: FrSM_Comp, line(409),

column(17)]

 transition at [Context: FrSM_Comp, line(334),

column(10)]))

Step 2:

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = true

FrSM.FrSMIsWakeupEcu = true

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 1

FrSM.t1 = true

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = true

140

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = DualChannelWakeup

EVT = EVT_T01

FrSM_State = ST_FRSM_READY

Transition Information:(module instance at [Context:

FrSM_Comp, line(416), column(8)]

 (module instance at [Context: FrSM_Comp, line(409),

column(17)]

 transition at [Context: FrSM_Comp, line(334),

column(10)]))

Step 3:

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = true

FrSM.FrSMIsWakeupEcu = true

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 2

FrSM.t1 = true

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = true

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

141

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = DualChannelWakeup

EVT = EVT_T01

FrSM_State = ST_FRSM_READY

.

.

Transition Information:

(module instance at [Context: FrSM_Comp, line(416), column(8)]

 (module instance at [Context: FrSM_Comp, line(409),

column(17)]

 transition at [Context: FrSM_Comp, line(334),

column(10)]))

Step 257:

--- System Variables (assignments) ---

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = true

FrSM.FrSMIsWakeupEcu = true

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 256

FrSM.t1 = true

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = true

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = DualChannelWakeup

142

EVT = EVT_T01

FrSM_State = ST_FRSM_READY

Once the defect was removed from xtUML and Model compiler was launched to

regenerate the fixed SAL model, the model checker reported that the theorem is

proven as shown below:

$ sal-smc FrSM_Comp Safe_FrSM_033 --verbose=1

importing context "FrSM_Comp"...

parsing SAL file "FrSM_Comp.sal"...

creating abstract syntax tree for context "FrSM_Comp"...

type checking context "FrSM_Comp"...

number of system variables: 86, number of auxiliary variables:

5

converting flat module to BDD representation (initial states,

and transition relation)...

proving invariant or producing counterexample using BDDs...

 using forward search

proved.

total execution time: 0.328 secs

The second experiment was to validate that conditions that should take place for the

state machine to be in FRSM_READY state are correct in the design. The

requirement is captured on the xtUML model in the state as per the specification as

shown in Figure 40 FrSM Requirement 073 in xtUML.

143

Figure 40 FrSM Requirement 073 in xtUML

The model compiler generated an LTL theorem in the SAL model that maps to the

captured state level requirement expressed in xtUML as shown below:

THEOREM system |- G(FrSM.reqComMode = FullCom AND ((FrSM.WUReason =

ALL_WU_BY_BUS) OR (FrSM.FrSMIsWakeupEcu = FALSE)) AND

(FrSM.FrSMDelayStartupWithoutWakeup = FALSE) => G(FrSM_State =

ST_FRSM_READY));

The model compiler generated an LTL theorem in the SAL model that maps to the

captured state level requirement expressed in xtUML as shown below:

Globally, it is always true that when communication mode = ‘FullCom’ AND (WUReason=

‘ALL_WU_BY_BUS’ OR is Wakeup ECU flag is false) AND Delay startup with wakeup

flag is false then globally, FlexRay State should be FRSM_READY.

144

The BDD (Binary Decision Diagram) based model checker initially proved the above

theorem as shown below:

$ sal-smc FrSM_Comp Safe_FrSM_073 --verbose=1

importing context "FrSM_Comp"...

parsing SAL file "FrSM_Comp.sal"...

creating abstract syntax tree for context "FrSM_Comp"...

type checking context "FrSM_Comp"...

number of system variables: 88, number of auxiliary variables:

5

converting flat module to BDD representation

proving invariant or producing counterexample using BDDs...

proved.

total execution time: 0.437 secs

We introduced a defect in the xtUML model where the initialization state sets the

same conditions and transitions to FRSM_WAKEUP state in violation to the

specification, which mandates that the FlexRay Manager state machine should be in

READY State given these conditions/assignments. We ran the model checker that

reported successfully the counter example/violation shown below which clearly

shows a violation against the above theorem as the conditions lead up to being in both

the Wakeup followed by the startup states:

$ sal-smc FrSM_Comp Safe_FrSM_073

Counterexample:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

145

ba-pc!1 = 2

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = false

FrSM.FrSMIsWakeupEcu = false

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = NoCom

FrSM.startupCounter = 0

FrSM.t1 = false

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T00

FrSM_State = ST_FRSM_INIT

Transition Information:

(module instance at [Context: FrSM_Comp, line(408), column(8)]

 (module instance at [Context: FrSM_Comp, line(403),

column(17)]

 transition at [Context: FrSM_Comp, line(388),

column(10)]))

Step 1:

--- System Variables (assignments) ---

ba-pc!1 = 2

FrSM.AllChannelIsAwake = false

146

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = false

FrSM.FrSMIsWakeupEcu = false

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 0

FrSM.t1 = false

FrSM.t1_IsActive = false

147

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T03

FrSM_State = ST_FRSM_WAKEUP

Transition Information:

(module instance at [Context: FrSM_Comp, line(408), column(8)]

 (module instance at [Context: FrSM_Comp, line(403),

column(17)]

 transition at [Context: FrSM_Comp, line(234),

column(10)]))

Step 2:

--- System Variables (assignments) ---

ba-pc!1 = 1

FrSM.AllChannelIsAwake = false

FrSM.FrSMCheckWakeupReason = false

FrSM.FrSMDelayStartupWithoutWakeup = false

FrSM.FrSMIsColdstartEcu = false

FrSM.FrSMIsDualChannelNode = false

FrSM.FrSMIsWakeupEcu = false

FrSM.FrSMNumWakeupPatterns = 0

FrSM.FrSMStartupRepetitions = 0

FrSM.FrSMStartupRepetitionsWithWakeup = 0

FrSM.WUReason = NO_WU_BY_BUS

FrSM.busTrafficDetected = false

FrSM.reqComMode = FullCom

FrSM.startupCounter = 0

FrSM.t1 = false

FrSM.t1_IsActive = false

FrSM.t2 = false

FrSM.t3 = false

FrSM.t3_IsNotActive = false

148

FrSM.t_TrcvStdby_Delay_IsActive = false

FrSM.t_Trcv_StdbyDelay = 0

FrSM.wakeupCounter = 0

FrSM.wakeupTransmitted = false

FrSM.wakeupType = NoWakeup

EVT = EVT_T03

FrSM_State = ST_FRSM_STARTUP

total execution time: 0.405 secs

6.2 Automatic Transmission Controller

The Automatic Transmission controller is responsible for automatically

changing gears in the vehicle. It is inevitable that engaging the right gear at right

speed is a defined and reliable behavior as any failure could lead to damage in the

transmission, which could introduce undefined behavior of the car while speeding.

Several automotive recalls were done historically due to faulty automatic

transmission. It has been reported that Honda recalled 2.5 million 2005-2010 4

cylinder Accord to update the software that controls the automatic transmission as a

sudden shift could lead to damaged shaft bearing. The update was intended to handle

sudden gear change transitions to reduce possibility of damage. General Motors also

recalled their 2013 Cadillac due to a software defect in the ATC module that

introduce a 3-4 second lag in acceleration.

Automatic Transmission Controller specification [104] served as a baseline for

implementation of the design in BridgePoint xtUML. The xtUML project consisted of

a root package called ATC. The root package contained a component named ATC.

The component consisted of another package, Shift Gear that contained two classes,

gearController and gearPosition. The classes contain attributes and state machine

design as documented in the ATC specification. Figure 41 shows a summary of the

xtUML design elements of ATC module. 6.2.1 details the mapping of the

specification into the xtUML design.

149

Figure 41 ATC xtUML Design

6.2.1 xtUML Design

The input to the shift logic block as stated in the specification [104] is a vehicle speed

and the output is the desired gear number. There are two state machines to keep track

of the gear state and the state of the gear selection process.

In gear process selection state machine, while in steady_state, the model compares up

threshold and down threshold values to the present vehicle speed to determine if a

shift is required. If so, it enters one of the confirm states (upshifting or downshifting),

which records the time of entry.

If the vehicle speed no longer satisfies the shift condition, while in the confirm state,

the model ignores the shift and it transitions back to steady_state. This prevents

extraneous shifts due to noise conditions. If the shift condition remains valid for a

duration, the model transitions through the lower junction and, depending on the

current gear, it broadcasts one of the shift events. Subsequently, the model again

activates steady_state after a transition through one of the central junctions. The shift

event, which is broadcast to the gear_selection state, activates a transition to the

appropriate new gear [104].

150

The ATC module specification was mapped into xtUML design. Variables

documented in the ATC specification were mapped into class attributes of

gearController and GearPosition classes’ definition in xtUML. xtUML has been

extended to record the default value and max value for each variable so that it can be

used to generate boundary conditions theorems in SAL notation.

ATC state machine, transitions and states were also implemented in xtUML in

accordance to ATC specification. Figure 42 and Figure 43 show the xtUML

implementation of the ATC state machines. Each state checks for the conditions

(vehicle speed against current gear position) and triggers actions (switch to proper

gear) as documented in the specification.

Figure 42 Gear Controller State Machine in xtUML

Figure 43 Gear Position State Machine in xtUML

Every ATC state machine state hosts action language that checks conditions and takes

actions in accordance to the specification [104]. Figure 44 shows the OAL (Object

Action Language) in the Steady State that checks vehicle speed against the threshold

to take an action to either transition to down shifting, up shifting or stay at steady

151

state. In xtUML, the state change is triggered via events that trigger the specified

transition.

Figure 44 Steady State Action in xtUML

Once the ATC design is complete in xtUML, a build is triggered in C/C++

perspective to launch the model compiler and generate ATC SAL model counterpart.

Figure 45 shows generated output after a successful build. Figure 46 shows the

console output during SAL generation/build of the SAL ATC model.

Figure 45 ATC SAL Model Generation

152

Figure 46 ATC Generation Console Output

At this point in the flow, xtUML model of the design under test has been

automatically compiled into a formal SAL model and theorems. ATC SAL model

output is documented in APPENDIX B.

6.2.2 Model Checking Results

This section details the results of running the model checkers on the generated ATC

SAL model. The intention is to show sample design defects that can be uncovered via

the model checkers in the early design stage. ATC model shall be checked via a SAL

compiler to validate syntax, SAL deadlock checker to validate that the ATC state

machine has no deadlock state, and finally a BDD (Binary Decision Diagram) based

checker to verify generated theorems (Boundary check and requirement compliance).

6.2.2.1 SAL Model Compilation

The SAL compiler is triggered on the generated ATC SAL model to verify that the

generated SAL syntax is correct and that the ATC formal model is complete. This

step will fail if there are non-bounded variables, non-initialized variables or syntax

153

defects as shown in previous section. The output below shows the result of successful

compilation on the generated ATC file.

$ sal-wfc ATC.sal --verbose=1

importing context "ATC"...

parsing SAL file "ATC.sal"...

creating abstract syntax tree for context "ATC"...

type checking context "ATC"...

Ok.

total execution time: 0.0 secs

6.2.2.2 SAL Deadlock Checker

The SAL deadlock checker is triggered on the generated SAL model to verify that the

ATC state machine has no deadlock states. The deadlock checker shall be executed

before the BDD model checker as the theorems cannot be verified if a BDD tree can

only be built with a deadlock state. Our first run of the deadlock checker against the

ATC SAL model revealed a set of variable assignments that lead up to a deadlock

state in our state machine. The Deadlock checker output below shows the set of

assignments that lead up to being stuck in ST_UPSHIFTING in the gear controller

state machine given a specific assignments as shown below.

$ sal-deadlock-checker ATC.sal system --verbose==1

Total number of deadlock states: 1.0

Deadlock states:

State 1

--- System Variables (assignments) ---

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 240

EVT = EVT_UP

PState = ST_POSITION4

Position.downThreshold = 71

Position.upThreshold = 100

State = ST_UPSHIFTING

154

6.2.2.3 SAL Model Checker

In this run, the experiments will aim to verify that any violation to the specification

boundary conditions are detected and any incompliance against ATC specification in

the ATC state machine is detected as well. Initially, we introduced a defect in the

design where it is possible to be in Position1 in the gear position state machine while

vehicle speed is 22 while setting up an xtUML requirement that gear position can only

be in Position 1 if vehicle speed is between 0 and 21. We launched the model checker

against the SAL model and the automatically generated SAL LTL (Linear Temporal

Logic) theorem below to validate the requirement.

 Req1_Th1: THEOREM system |- AG(PState = ST_POSITION1 =>

AF(CONT.vehicleSpeed > 0 AND CONT.vehicleSpeed <= 21));

The above theorem map textually to,

Globally, it is always true that Gear Position is in Position 1

For all paths when vehicle speed is greater than 0 and less or equal to 21

We introduced a bug whereby it is possible to be in Position1 while vehicle speed is

22 in xtUML ATC model. The model checker captured the violation and indicated all

the variable assignments/state paths that lead up to the violation. A snapshot of the

violation is shown below:

$ sal-smc ATC Req1_Th1 --verbose=1

importing context "ATC"...

parsing SAL file "ATC.sal"...

creating abstract syntax tree for context "ATC"...

type checking context "ATC"...

number of system variables: 44, number of auxiliary variables:

8

converting flat module to BDD representation (initial states,

and transition relation)...

proving or producing counterexample using BDDs...

Counterexample:

========================

Path

155

========================

Step 0:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = false

CONT.vehicleSpeed = 20

EVT = EVT_CHECKINPUT

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 else transition at [Context: ATC, line(138), column(9)]))

Step 1:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = false

CONT.vehicleSpeed = 21

EVT = EVT_CHECKINPUT

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(116), column(7)]))

156

Step 2:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = false

CONT.vehicleSpeed = 21

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(119), column(7)]))

Step 3:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = false

CONT.vehicleSpeed = 21

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(122), column(7)]))

Step 4:

--- System Variables (assignments) ---

ba-pc!1 = 1

157

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 21

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(125), column(7)]))

Step 5:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = false

CONT.vehicleSpeed = 21

EVT = EVT_TIMEELASPEGEARUP

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(129), column(7)]))

Step 6:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

158

CONT.timerStarted = false

CONT.vehicleSpeed = 21

EVT = EVT_UP

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(122), column(7)]))

Step 7:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 21

EVT = EVT_UP

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 else transition at [Context: ATC, line(138), column(9)]))

Step 8:

--- System Variables (assignments) ---

ba-pc!1 = 1

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 22

159

EVT = EVT_CHECKINPUT

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_UPSHIFTING

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(132), column(7)]))

Step 9:

--- System Variables (assignments) ---

ba-pc!1 = 0

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 22

EVT = EVT_CHECKINPUT

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(116), column(7)]))

Step 10:

--- System Variables (assignments) ---

ba-pc!1 = 0

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 22

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

160

Position.upThreshold = 20

State = ST_STEADY

========================

Begin of Cycle

========================

Step 10:

--- System Variables (assignments) ---

ba-pc!1 = 0

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 22

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

Transition Information:

(module instance at [Context: ATC, line(222), column(20)]

 (module instance at [Context: ATC, line(207), column(19)]

 transition at [Context: ATC, line(116), column(7)]))

Step 11:

--- System Variables (assignments) ---

ba-pc!1 = 0

CONT.gearTimeTHreshold = 10

CONT.gearTimer = 20

CONT.timerStarted = true

CONT.vehicleSpeed = 22

EVT = EVT_SPEEDMOREUPTHROTTLE

PState = ST_POSITION1

Position.downThreshold = 0

Position.upThreshold = 20

State = ST_STEADY

total execution time: 1.482 secs

161

Once the defect was removed from xtUML and Model compiler was launched to

regenerate the fixed SAL model, the model checker reported that the theorem is

proven as shown below:

$ sal-smc ATC Req1_Th1 --verbose=1

importing context "ATC"...

parsing SAL file "ATC.sal"...

creating abstract syntax tree for context "ATC"...

type checking context "ATC"...

number of system variables: 44, number of auxiliary variables:

8

converting flat module to BDD representation (initial states,

and transition relation)...

proving or producing counterexample using BDDs...

proved.

total execution time: 0.124 secs

6.3 WatchDog State Manager Results

AUTOSAR WatchDog Manager SWS served as a baseline for implementation of the

design in BridgePoint xtUML. It is a critical module in the AUTOSAR BSW Services

stack that provide services for monitoring the timing and the correctness of execution

of an entity in the application or basic software of AUTOSAR stack. It avoids crash of

the system via detecting anomalies during supervision and taking configurable actions

when the anomalies happen. Therefore, verifying this module is crucial in automotive

and shows that all managers in the services layer could be verified at the design stage

in a similar manner.

The xtUML project consisted of a root package called WdgM. The root package

containes a WdgM component. The root component has a Manager package which

hosts all data types as documented in the specification and a class named WdgM. The

class contains attributes, functions and state machine designs as documented in the

Watchdog manager specification. Figure 47 shows a summary of the xtUML design

elements of Watchdog manager module. Section 6.3.1 details the mapping of the

specification into the xtUML design.

162

Figure 47 WatchDog Manager xtUML Design

6.3.1 xtUML Design

WatchDog Manager AUTOSAR specification [102] describes the module in the

following order:

1- Defines all states in the Watchdog Local state machine (DEACTIVATED,

OK, FAILED, EXPIRED) as shown in Figure 14.

2- Defines all transition preconditions and actions in the state machine. An

example is shown in Figure 15 where specification mandates that a

transition from OK to Expired shall be triggered if at least one supervised

entity alive flag is incorrect and a fault tolerance of zero is configured OR

at least one deadline /logical supervision value of supervised entity is

incorrect.

3- DataTypes are specified. An example is shown in Figure 48 where

SupervisedEntityIdType is a uint16 or uint8 in the specification.

4- Function definitions and actions to be taken inside functions. An example

is shown in Figure 49 where specification indicates that a function

WdgM_Init needs to be defined that returns void and accepts a

configuration parameter of type pointer to WdgM_ConfigType. The intent

163

of this function is to initialize the manager and set the configuration

parameters.

Figure 48 WdgM_SupervisedEntityId Type Definition

Figure 49 WdgM_Init Function

The module specification was mapped into xtUML design. All defined types were

mapped into user defined types in xtUML. An example is WdgMMode user defined

type enum that should be defined with the following enum values:

SUPERVISION_OK, SUPERVISION_FAILED, SUPERVISION_EXPIRED,

SUPERVISION_STOPPED, SUPERVISION_DEACTIVATED. Figure 50 shows the

mapping of this user defined type in xtUML.

164

Figure 50 WdgMMode User Defined Type

Additionally, variables documented in the specification were mapped into class

attributes of the WdgM class definition in xtUML as shown in Figure 51. xtUML has

been extended to record the default value and max value for each variable so that it

can be used to generate boundary conditions theorems in SAL notation.

Figure 51 WdgMSupervisionCycleCounter Variable Definition

Watchdog Manager States, state machine and transitions were also implemented in

xtUML in accordance to Watchdog local state machine specification document.

Figure 52 shows the xtUML implementation of the state machine.

165

Figure 52 Watchdog Local xtUML State Machine

The xtUML state machine as shown in Figure 34 implements the states INIT, OK,

DEACTIVATED, FAILED, and EXPIRED as documented in the AUTOSAR

Watchdog manager specification. All specification transitions are implemented in

xtUML to match the specification. Each state/transition actions in the specification are

also mapped to xtUML action language to manipulate the variables in accordance to

the specification as shown in Figure 53.

State hosts action language that checks conditions and takes actions in accordance to

the specification. Figure 53 shows the OAL (Object Action Language) in the WdgM

Local Status Ok state that checks variables and triggers transitions in accordance to

requirements WdgM 201(Stay in State OK given variable set values), WdgM

202(transition to State Expired given variable set values) and WdgM 203(transition to

State Failed given variable set values) and required actions once the conditions are

satisfied. In xtUML, the state change is triggered via events that trigger the specified

transition.

166

Figure 53 xtUML Implementation of WdgM201, WdgM203 and WdgM202

Functions are mapped to operations in the WdgM class. Each operation manipulates

the state variables and takes the actions specified in the specification. Figure 54 shows

an example of WdgM_SetMode implementation in xtUML as documented in the

specification where SetMode is accepted when in deactivated state and it is requested

to be in OK state and rejected if it is in FAILED state and a request is made to

deactivate it.

167

Figure 54 WdgM setMode function in xtUML

Once the design is complete in xtUML, a build is triggered in C/C++ perspective to

launch the model compiler and generate SAL model counterpart. Figure 55 Shows

generated output after a successful build. Figure 55 shows the console output during

SAL generation/build.

At this point in the flow, xtUML model of the design under test has been

automatically compiled into a formal SAL model and theorems. Sample SAL output

is documented in APPENDIX B.

Figure 55 Generated WdgM SAL Model

168

Figure 56 WdgM SAL Generation

6.3.2 Model Checking Results

This section details the results of running the model checkers on the generated SAL

model. The intention is to show sample design errors that can be uncovered via the

model checkers in the early design stage. Watchdog SAL model shall be checked via

a SAL compiler to validate syntax, SAL deadlock checker to validate that the state

machine has no deadlock state, and finally a BDD (Binary Decision Diagram) based

checker to verify theorems (Boundary check and requirement compliance).

6.3.2.1 SAL Model Compilation

The SAL compiler is triggered on the generated SAL model to verify that the

generated SAL syntax is correct and that the formal model is complete. This step will

fail if there are non-bounded variables, non-initialized variables or syntax defects. We

have left an uninitialized variable in the xtUML model to check that the SAL model

compiler will report any un-initialized variable. In the Watchdog manager xtUML

model, we left the WdgMFailedAliveSupervisionRefCycleTol class member as un-

initialized as shown in Figure 57

169

Figure 57 Un-initialized Data Member

The output below shows the result of the compilation which basically can be

summarized as mismatch between the defined WdgM type and the initiation instance

of REC_WdgM as WdgMFailedAliveSupervisionRefCycleTol in the structure is not

initialized which triggered the SAL compiler to generate the error below.

$ sal-wfc WdgM.sal --verbose=2

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

 ast generation time: 0.0 secs

type checking context "WdgM"...

Error: [Context: WdgM, line(80), column(2)]: Incompatible

types in assignment.

The following types are incompatible:

WdgM!REC_WdgM

[# WdgMExpectedAliveIndications: nat,

 WdgMInitialMode: nat,

 WdgMSupervisionCycleCounter: nat,

 WdgmAliveSupervisionStatus: nat,

 WdgmDeadlineSupervisionStatus: nat,

 WdgmLogicalSupervisionStatus: nat #]

Once the issue was corrected in xtUML, the SAL compiler compiled the file

successfully and gave the below generated output.

$ sal-wfc WdgM.sal --verbose=2

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

170

 ast generation time: 0.0 secs

type checking context "WdgM"...

 type-checker time: 0.0 secs

Ok.

total execution time: 0.0 secs

6.3.2.2 SAL Deadlock Checker

The SAL deadlock checker is triggered on the generated SAL model to verify that the

state machine has no deadlock state. The deadlock checker shall be executed before

the SAL model checker as the theorems cannot be verified if a tree can only be built

with a deadlock state. Our first run of the deadlock checker against the Watchdog

local State SAL model revealed a set of variable assignments that lead up to a

deadlock state in our state machine. The Deadlock checker output below shows the set

of assignments that lead up to being stuck in WdgM_EXPIRED State in the WdgM

local State machine. In summary, the model compiler reports a set of variable

assignments that lead to being in WDGM_LOCAL_STATUS_EXPIRED state and

deadlocking there given the reported set of variable assignments.

$ sal-deadlock-checker WdgM MOD_WdgM --verbose=3

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

 ast generation time: 0.0 secs

type checking context "WdgM"...

 type-checker time: 0.0 secs

flattening module at [Context: scratch, line(1), column(1)]

converting flat module to BDD representation (initial states,

and transition relation)...

 creating BDD variables...

 computing static variable ordering (minimizing support)...

 collecting state variables dependencies...

 static order time: 0.015 secs

 number of BDD variables: 182

 creating definition section BDDs...

 creating valid state predicate BDDs...

 creating BDD: set of initial states...

 creating BDD: transition relation...

 rearranging clusters...

171

 reordering BDD variables...

 transition relation - size: 805 (nodes), number of clusters:

1

 flat-module -> BDD conversion time: 0.187 secs

detecting deadlock states...

 computing set of reachable states...

 iteration: 1

 frontier lower bound: 92 nodes, upper bound: 92 nodes

 using frontier with 92 nodes

 total bdd node count: 1270

 iteration: 2

 frontier lower bound: 92 nodes, upper bound: 95 nodes

 using frontier with 92 nodes

 total bdd node count: 1465

 iteration: 3

 frontier lower bound: 92 nodes, upper bound: 99 nodes

 using frontier with 92 nodes

 total bdd node count: 1620

 iteration: 4

 frontier lower bound: 92 nodes, upper bound: 99 nodes

 using frontier with 92 nodes

 total bdd node count: 1776

 iteration: 5

 frontier lower bound: 92 nodes, upper bound: 99 nodes

 using frontier with 92 nodes

 total bdd node count: 1984

 iteration: 6

 frontier lower bound: 92 nodes, upper bound: 104 nodes

 using frontier with 92 nodes

 total bdd node count: 2194

 number of visited states: 6.0

 time to compute set of reachable states: 0.0 secs

 deadlock state detection time: 0.0 secs

172

Total number of deadlock states: 1.0

Deadlock states:

State 1

--- System Variables (assignments) ---

WdgM.WdgMExpectedAliveIndications = 1

WdgM.WdgMFailedAliveSupervisionRefCycleTol = 0

WdgM.WdgMInitialMode = 0

WdgM.WdgMSupervisionCycleCounter = 0

WdgM.WdgmAliveSupervisionStatus = 0

WdgM.WdgmDeadlineSupervisionStatus = 0

WdgM.WdgmLogicalSupervisionStatus = 0

EVT = EVT_WDGM202

WdgM_State = ST_WDGM_LOCAL_STATUS_EXPIRED

total execution time: 0.187 secs

6.3.2.3 SAL Model Checker

In this run, experiments will aim to verify that any violation to the specification

boundary conditions are detected and any incompliance to specification in the state

machine is detected as well. We will aim to reproduce a design defect that matches

the defect identified post production in deployed ASIL B compliant WdgM. We

introduced a defect in the design where WdgMFailedAliveSupervisionRefCycleTol is

assigned a value outside the specified range as per the specification. According to the

specification (Requirement WdgM327 as shown in Figure 25, WdgM327), the value

should not exceed 255. We launched the model checker against the SAL model and

the automatically generated SAL LTL (Linear Temporal Logic) theorem below to

validate the requirement.

Safe_WdgM_WDGM327: THEOREM system |-

G(WdgM.WdgMFailedAliveSupervisionRefCycleTol <= 255 AND

WdgM.WdgMFailedAliveSupervisionRefCycleTol >= 0);

The above theorem map textually to,

Globally, it is always true that WdgMFailedAliveSupervisionRefCycleTol

is less or equal to 255 and greater than or equal to 0.

173

We updated the logic to initialize the variable to a value outside the specified range.

The model checker captured the violation and indicated all the variable

assignments/state paths that lead up to the violation. A snapshot of the violation is

shown below:

$ sal-smc WdgM Safe_WdgM_WDGM327 --verbose=1

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

type checking context "WdgM"...

flattening modules in the assertion located at [Context:

scratch, line(1), column(1)]

simplifying abstract syntax tree...

expanding function applications...

eliminating common subexpressions in an assertion...

eliminating common subexpressions in a flat module...

converting flat module to boolean flat module...

converting property to boolean property...

number of system variables: 92, number of auxiliary variables:

5

converting flat module to BDD representation (initial states,

and transition relation)...

proving invariant or producing counterexample using BDDs...

 using forward search

Counterexample:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

WdgM.WdgMExpectedAliveIndications = 1

WdgM.WdgMFailedAliveSupervisionRefCycleTol = 256

WdgM.WdgMInitialMode = 0

WdgM.WdgMSupervisionCycleCounter = 0

WdgM.WdgmAliveSupervisionStatus = 0

WdgM.WdgmDeadlineSupervisionStatus = 0

WdgM.WdgmLogicalSupervisionStatus = 0

EVT = EVT_Startup

174

WdgM_State = ST_WDGM_InitState

total execution time: 0.203 secs

Once the defect was removed from xtUML and Model compiler was launched to

regenerate the fixed SAL model, the model checker reported that the theorem is

proven as shown below:

$ sal-smc WdgM Safe_WdgM_WDGM327 --verbose=1

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

type checking context "WdgM"...

flattening modules in the assertion located at [Context:

scratch, line(1), column(1)]

simplifying abstract syntax tree...

expanding function applications...

eliminating common subexpressions in an assertion...

eliminating common subexpressions in a flat module...

converting flat module to boolean flat module...

converting property to boolean property...

number of system variables: 91, number of auxiliary variables:

5

converting flat module to BDD representation (initial states,

and transition relation)...

proving invariant or producing counterexample using BDDs...

 using forward search

proved.

total execution time: 0.218 secs

The second experiment set was to validate compliance to the state machine as

documented in the Watchdog Manager local state machine. Our experiments aimed to

verify that the design is compliant to requirements 202, 203, 204, 300, 205, 206, 207,

291, 208 and 209 as discussed in section 5.2.5. Our generated SAL theorems aim to

identify any matching conditions that lead to an incorrect state in the state machine

thus in violation to the local Watchdog Manager AUTOSAR specification. Figure 58

shows an example of WDG requirement 201 as captured in xtUML as satisfiability

conditions for the state to be active on the state level. Given the set of conditions, the

175

state machine needs to be at LOCAL_STATUS_OK state as per the Watchdog

manager Specification document.

Figure 58 WdgM Requirement 202 in xtUML

The model compiler generated an LTL theorem in the SAL model that maps to the

captured state level requirement expressed in xtUML as shown below:

Safe_WdgM_WDGM201: THEOREM system |- G(WdgM.WdgmAliveSupervisionStatus = 0

AND WdgM.WdgmDeadlineSupervisionStatus = 0 AND

WdgM.WdgmLogicalSupervisionStatus=0 AND WdgM.WdgMSupervisionCycleCounter=1

=> G(WdgM_State = ST_WDGM_LOCAL_STATUS_OK));

The LTL theorem map textually to the below description:

Globally, it is always true that when Alive supervision status = No error AND Deadline

supervision status = No Error AND Logical Supervision Status = No Error and supervision

cycle counter = 1 then globally, Watchdog local State should be

WDGM_LOCAL_STATUS_OK.

The BDD (Binary Decision Diagram) based model checker initially proved the above

theorem as shown below:

$ sal-smc WdgM Safe_WdgM_WDGM205 --verbose=2

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

 ast generation time: 0.0 secs

type checking context "WdgM"...

 type-checker time: 0.0 secs

176

flattening modules in the assertion located at [Context:

scratch, line(1), column(1)]

calculating implicit assignments of base module at [Context:

WdgM, line(70), column(0)]...

 assertion flattening time: 0.0 secs

simplifying abstract syntax tree...

 simplification time: 0.0 secs

 LTL -> VWAA (very weak alternating automata)...

 VWAA -> GBA (generalized buchi automata)...

 simplifying GBA...

 GBA -> BA (buchi automata)...

 simplifying BA...

 number of states in the BA: 3

 eliminating common subexpressions...

 monitor generation time: 0.0 secs

converting flat module to boolean flat module...

 flat module -> boolean flat module conversion time: 0.015

secs

converting property to boolean property...

 property -> boolean property conversion time: 0.0 secs

number of system variables: 93, number of auxiliary variables:

5

converting flat module to BDD representation (initial states,

and transition relation)...

 creating BDD variables...

 computing static variable ordering (minimizing support)...

 static order time: 0.016 secs

 number of BDD variables: 196

 creating definition section BDDs...

 creating valid state predicate BDDs...

 creating BDD: set of initial states...

 creating BDD: transition relation...

 rearranging clusters...

 reordering BDD variables...

 compressing BDD clusters...

 rearranging clusters...

 flat-module -> BDD conversion time: 0.375 secs

proving invariant or producing counterexample using BDDs...

 using forward search

177

 iteration: 2

 iteration: 2

 iteration: 3

iteration: 4

 verification time: 0.0 secs

proved.

total execution time: 0.39 secs

We introduced a defect in the xtUML model where an additional setup initialization

state was introduced which sets the same conditions in violation to the specification,

moreover, the state machine no longer transition to STATUS_OK state correctly in

violation to requirement WdgM201 which explains that the set of variables value map

to the state machine being in LOCAL_STATE_OK. We ran the model checker that

reported successfully the counter example/violation shown below which clearly

shows a violation against the above theorem as the conditions lead up to being in

Init_State instead of STATUS_OK state:

$ sal-smc WdgM Safe_WdgM_WDGM205_2 --verbose=2

importing context "WdgM"...

parsing SAL file "WdgM.sal"...

creating abstract syntax tree for context "WdgM"...

 ast generation time: 0.0 secs

type checking context "WdgM"...

 type-checker time: 0.0 secs

flattening modules in the assertion located at [Context:

scratch, line(1), column(1)]

calculating implicit assignments of base module at [Context:

WdgM, line(70), column(0)]...

 assertion flattening time: 0.0 secs

simplifying abstract syntax tree...

 simplification time: 0.0 secs

converting flat module to boolean flat module...

 flat module -> boolean flat module conversion time: 0.016

secs

converting property to boolean property...

 property -> boolean property conversion time: 0.015 secs

178

number of system variables: 91, number of auxiliary variables:

5

converting flat module to BDD representation (initial states,

and transition relation)...

 creating BDD variables...

 computing static variable ordering (minimizing support)...

 static order time: 0.0 secs

 number of BDD variables: 192

 creating definition section BDDs...

 creating valid state predicate BDDs...

 creating BDD: set of initial states...

 creating BDD: transition relation...

 rearranging clusters...

 reordering BDD variables...

 compressing BDD clusters...

 rearranging clusters...

 flat-module -> BDD conversion time: 0.203 secs

proving invariant or producing counterexample using BDDs...

 using forward search

Counterexample:

========================

Path

========================

Step 0:

--- System Variables (assignments) ---

WdgM.WdgMExpectedAliveIndications = 1

WdgM.WdgMFailedAliveSupervisionRefCycleTol = 1

WdgM.WdgMInitialMode = 0

WdgM.WdgMSupervisionCycleCounter = 0

WdgM.WdgmAliveSupervisionStatus = 0

WdgM.WdgmDeadlineSupervisionStatus = 0

WdgM.WdgmLogicalSupervisionStatus = 0

EVT = EVT_Startup

WdgM_State = ST_WDGM_InitState

total execution time: 0.234 secs

Similarly, we have generated LTL theorems for requirements 202, 203, 204, 300, 205,

206, 207, 291, 208 and 209 as shown below based on xtUML satisfiability conditions.

179

Safe_WdgM_WDGM202: THEOREM system |- G((

NOT(WdgM.WdgmAliveSupervisionStatus = 0) AND

NOT(WdgM.WdgMFailedAliveSupervisionRefCycleTol = 0)) OR (NOT

(WdgM.WdgmDeadlineSupervisionStatus = 0) OR

NOT(WdgM.WdgmLogicalSupervisionStatus = 0)) => G(WdgM_State =

ST_WDGM_LOCAL_STATUS_EXPIRED));

Safe_WdgM_WDGM203: THEOREM system |- G(NOT

(WdgM.WdgmAliveSupervisionStatus = 0) AND

NOT(WdgM.WdgMFailedAliveSupervisionRefCycleTol = 0) AND

WdgM.WdgmDeadlineSupervisionStatus = 0 AND WdgM.WdgmLogicalSupervisionStatus

= 0) => G(WdgM_State = ST_WDGM_LOCAL_STATUS_FAILED);

Safe_WdgM_WDGM204: THEOREM system |- G(NOT

(WdgM.WdgmAliveSupervisionStatus = 0) AND

WdgM.WdgMFailedAliveSupervisionRefCycleTol <

WdgM.WdgMSupervisionCycleCounter AND WdgM.WdgmDeadlineSupervisionStatus = 0

AND WdgM.WdgmLogicalSupervisionStatus = 0) => G(WdgM_State =

ST_WDGM_LOCAL_STATUS_FAILED);

Safe_WdgM_WDGM300: THEOREM system |- G(

WdgM.WdgmAliveSupervisionStatus = 0 AND

WdgM.WdgMSupervisionCycleCounter > 1 AND

WdgM.WdgmDeadlineSupervisionStatus = 0 AND

WdgM.WdgmLogicalSupervisionStatus = 0) => G(WdgM_State =

ST_WDGM_LOCAL_STATUS_FAILED);

180

Safe_WdgM_WDGM205: THEOREM system |-

G(WdgM.WdgmAliveSupervisionStatus=0 AND WdgM .

WdgmDeadlineSupervisionStatus=0 AND WdgM.WdgmLogicalSupervisionStatus=0

AND WdgM.WdgMSupervisionCycleCounter=1 =>

G(WdgM_State = ST_WDGM_LOCAL_STATUS_OK));

Safe_WdgM_WDGM206: THEOREM system |- G((NOT

(WdgM.WdgmAliveSupervisionStatus = 0) AND

WdgM.WdgMFailedAliveSupervisionRefCycleTol <

WdgM.WdgMSupervisionCycleCounter) OR

(NOT(WdgM.WdgmDeadlineSupervisionStatus = 0) OR

NOT(WdgM.WdgmLogicalSupervisionStatus = 0))) => G(WdgM_State =

ST_WDGM_LOCAL_STATUS_EXPIRED);

Safe_WdgM_WDGM207: THEOREM system |- G(Function= SET_MODE AND

WdgM_State = ST_WDGM_LOCAL_STATUS_OK) => G(State =

ST_WDGM_LOCAL_STATUS_DEACTIVATED AND Response=E_OK);

Safe_WdgM_WDGM291_1: THEOREM system |- G(Function= SET_MODE AND

WdgM_State = ST_WDGM_LOCAL_STATUS_FAILED) =>

 G(State =

ST_WDGM_LOCAL_STATUS_DEACTIVATED AND Response=E_OK);

Safe_WdgM_WDGM291_2: THEOREM system |- G(Function= SET_MODE AND

WdgM_State = ST_WDGM_LOCAL_STATUS_EXPIRED) =>

 G(State =

ST_WDGM_LOCAL_STATUS_EXPIRED AND Response=E_NOT_OK);

Safe_WdgM_WDGM209: THEOREM system |- G(Function= SET_MODE AND

WdgM_State = ST_WDGM_LOCAL_STATUS_DEACTIVATED) =>

181

 G(State =

ST_WDGM_LOCAL_STATUS_OK AND Response=E_OK);

We have successfully proved all the above theorems. We have also induced defects in

the design and attempted to verify the theorems and were successfully able to get via

the model checker the counter example that shows the violation in xtUML.

6.4 Mentor Graphics’ WatchDog Manager Results

In order to evaluate our approach, we needed to conduct a comparative analysis

between our proposal and an existing module that was developed in compliance to

ISO 26262 via a BSW supplier. In this section, we present an analysis of defects and

challenges faced while complying with ISO 26262 guidelines in a BSW watchdog

Manager Module development.

Development team faced several challenges in their endeavor to comply several

AUTOSAR BSW implementations with ISO 26262 ASIL B level1. Initially, the team

focused on ASIL B compliancy since they were unable to conduct highly

recommended guidelines in ASILs C and D, namely, semi-formal and formal

verification of the design. Our aim is to present the challenges faced during trying to

comply Watchdog Manager Implementation with ASIL B and try to overcome these

challenges to pave the way for module suppliers to comply with verification design

guidelines as recommended in ASILs C and D.

The first challenge faced was the ability to apply required verification methods. ISO

26262 formal and semi-formal verification guidelines were not feasible when working

with embedded C software. Static analysis, and control/data flow analysis were

considered as acceptable alternatives. Arguments for not performing semi-formal or

formal verifications were made. The alternative approaches apply on the source code

itself and are mainly manually driven. Control flow/data flow analysis were done by

1 Feedback based on Mentor Graphics safety team ASIL B compliance challenges for

AUTOSAR WatchDog Manager module

182

manually analyzing the control statements inside source code and creating control

flow/data flow graphs for control statements and variables. This was feasible as the

modules that were required to be ASIL B compliant were small which rendered this

manual effort feasible. It is expected that this is not going to be possible with larger

modules. From a safety team perspective aiming to reach ASIL C compliancy for

developed modules, it is inevitable that the software be verified in early phases using

semi-formal and formal verification as recommended by ISO 26262 design

verification guidelines.

The second challenge faced was establishing traceability between requirements,

design, and code and test elements in an automated fashion. Manual trace and label of

the requirements were employed. Supporting traceability in an automated fashion

between requirements, design, code and test elements would decrease the number of

review/update iterations of sequence diagrams, control and data flow diagrams and

traceability to software requirements.

The third challenge was related to the test case derivation. Table 5 shows the

recommended methods for deriving test cases for software unit testing according to

ISO 26262-6 Table 11. Automation methods that help in identifying decision

points/variables to automatically generate test cases would definitely save time and

ensure compliance to ISO 26262 guidelines.

In conclusion, all safety team verification and test case derivation methods were based

on manual inspection, as recommended for ASIL B compliant modules. This will not

be feasible for ASIL C compliant modules as semi-formal verification is highly

recommended for levels greater than B.

Seventy-one defects were raised during ASIL B compliancy endeavor of the

WatchDog Manager module. Additionally, some of the reported defects were

uncovered after production and during customer module integration endeavors

although they were introduced in the design stage. The table below summarizes the

183

raised defects number and classification. A defect leakage/slippage of 100% is visible

in the current approach from design to testing stage.

Table 10 Watchdog Manager Defects Classification

Defect Count Classification

16 Logic Bugs

35 Non-compliance to Specification

20 Traceability

Defects under logic bugs category include but are not limited to, bugs such as array

bound issues, incorrect array index, invalid mathematical operator, and last array

index not being initialized properly. Defects under non-compliance to specification

includes defects such as WDGM triggers watchdog Interface to be in

WDGIF_OFF_MODE while in WDGM_G_STATUS_STOPPED state (non-

compliance to WDGM122) and WdgMExpectedAliveIndications, which is a defined

parameter in the specification holding the amount of expected alive indications, range

does not match AUTOSAR watchdog manager specification. The remaining defects

were related to traceability (Missing text cases, missing relations between requirement

and design/code/test elements).

6.5 Evaluation of the approach

Our aim in this research was to be able to verify design in an automated and reliable

fashion to empower ASIL compliance to design verification guidelines as discussed in

Table 2. Our framework enables formal verification of a semi-formal xtUML design.

The design does not just capture architecture but also behavior via the action language

inside states, transitions and functions. The framework addresses the complexities that

discouraged the industry form moving to formal notation. The designer does not need

to write formal notations or complex mathematical theorems, as this is done

automatically via a model compiler that maps xtUML design and constraints into a

formal model and set of specification compliance theorems[105,106,107,108].

The framework allows early detection of specification incompliances, and boundary

analysis defects that was shown to be a major contributor to defects in software

184

systems. ISO 26262 design verification guidelines highly recommends using semi-

formal verification for critical software in automotive as shown in Table 2 and highly

recommends using analysis of requirements, equivalence classes, and boundary

values to derive test cases to verify the design as discussed in Table 5. We have

shown how our framework can be used to capture requirements in xtUML model that

maps to specification requirements, equivalence classes and boundary values theorem

to uphold while formally verifying the design.

We have extended the xtUML model to capture satisfiability conditions as follows:

 Variable satisfiability conditions (Upper and Lower limit): Generate theorems

to cover boundary value analysis and equivalence classes

 State satisfiability conditions: capture conditions to ensure requirement

compliance of variables in a given state in the state machine

 Transition satisfiability conditions: capture conditions to ensure requirement

compliance of variables in a given transition in the state machine

We showed how our framework was able to detect all introduced defects, whether

they are logic, or specification compliance defects in the design level via running SAL

model checkers against our LTL generated theorems to detect model violation against

the satisfiability conditions that is captured in our model. All requirement non-

compliance defects that were previously detected on the testing/production level were

detected via our framework on the design level. Our approach allows non-compliance

to be detected on the design as opposed to the coding level in an automated way. The

reported counterexamples are using the same UML notations and states allowing the

UML designer to understand the faulty sequence and resolve the issue in UML

domain. Counterexamples are additionally reported against the specification

requirement Id ensuring traceability and ease of resolution via the application

designer.

We have verified the framework on three industrial software modules, namely,

FlexRay State Manager AUTOSAR module, Watchdog Manager AUTOSAR module,

and Automatic transmission controller. We have shown how our framework detects

software incompliances and boundary violations to variables as well as logic bugs (

185

out of bound counter increment) on the use-case modules. We have introduced defects

in Watchdog Manager Module that has been found after release of a software to

customers. Our framework was able to detect all defects on the design as opposed to

post production level.

In comparison to the industrial module developed without applying our framework,

the defects slippage/leakage percentage from design to testing has decreased from

100% to 28% (51 out of the 71 defects were identified in the design stage as opposed

to the testing stage).

186

Chapter 7. Conclusion, contributions and Future work

Our intent in this research was to address software verification in the early stage of

the software lifecycle, namely, the design stage. The research was motivated by the

steep growth of critical software functions in embedded systems, the fact that 50% of

defects are introduced by the design stage, cost of finding a defect during testing is

much higher than finding it during design, late defects are mostly due to specification

incompliance defects, and the birth of AUTOSAR Automotive standard and ISO-

26262.

We have reported that current V&V techniques utilized still heavily depend on testing

and little effort focuses on pushing the verification to the design stage. Our research

aimed to address the motivations while addressing the current shortcoming that have

discouraged the industry from using formal methods in the design stage of automotive

software development. Formal methods have not been widely adopted due to

complexity of notations, lack of support and lack of support tools. Automotive

suppliers are also looking for non-disruptive techniques that integrate with their used

models and design environments so that they do not have to re-invent the wheel for

their software development lifecycle.

With the above said, our aim was to propose a framework that addresses the above

motivations and challenges and fulfills the main objective of being able to identify

defects in the design stage via extensive thorough methods as opposed to a method

that is based on some selection criteria. We proposed a framework where any UML

finite state machine based model could be transformed to a formal transition model

augmented with complex data types in SAL notation. The mapping is based on a 1-1

UML to SAL mapping. We showed how we were able to formally verify several

semi-formal models via augmenting the UML model with satisfiability conditions.

We have constructed theorems that represent specification requirements in UML. A

model compiler was developed to map the UML model into SAL formal model and

LTL based theorems automatically shielding the application designer from having to

187

create a formal model. A SAL solver was utilized so that formal verification can be

accomplished on the SAL model. We demonstrated how the solver through the

asserted counterexamples detected specification non-compliances. We have shown

how our framework can detect requirement non-compliances as well as support tests

of boundary conditions in an automated fashion. The application model engineer

could fix the model violations at a very early stage based on the formal verification of

the semi-formal model using the proposed approach.

We have tested the framework on three industrial modules, namely, AUTOSAR

FlexRay manager, Automatic Transmission Controller, and Watchdog Manager. We

mapped the specification requirements into UML design elements and satisfiability

conditions. We showed how the model (with behavior) was transformed from

specification to UML design to a SAL formal model. We have also shown how the

requirements were mapped into UML satisfiability conditions, which were mapped

into formal assertions (theorems). We executed several formal checkers on the formal

model with assertions to show that specification incompliances (state, transition, and

boundary conditions), static properties, logic defects and deadlock detection can

happen early in the design stage. We verified 51 requirements and introduced several

defects in the design model to show how the framework is able to detect the

incompliance. The validity of the mapping / SAL generation was established through

the correct assertions that show violations of satisfiability conditions in the UML

design. All introduced defects were properly detected and reported via the model

checker. In comparison to the industrial module developed without applying our

framework, the defects slippage/leakage percentage from design to testing has

decreased from 100% to 28% (51 out of the 71 defects were identified in the design

stage as opposed to the testing stage)

The proposed approach makes emerging ISO 26262 standard ASIL C and D test case

derivation and software unit design and implementation verification guidelines,

namely, semi-formal and formal verification guidelines possible in an automated

fashion. Our work also addresses one of AUTOSAR’s major drives, which is early

188

design defects detection. Problems such as the complexity of the formal notations,

theorem construction and checkers execution and analysis have been shielded via the

use-case yet the benefits of using formal verification on a semi-formal notation are

retained.

Our research focused on UML state machine diagram. The work can be extended to

cover other behavioral UML diagrams (sequence or use-cases). We have also not

tested the framework against complex state machines to ensure reasonable execution

time via the formal model checkers. We currently support one level requirement in

UML model that is mapped into SAL model theorem. The framework can be

extended to support multi-level requirement that can be generated into several

theorems. We also need to qualify the model compiler in accordance with ISO 26262

tool qualification guidelines to ensure the safety of the tool and the generated SAL

intermediate language in preparation for industrial utilization of the tool

The research could be extended in the future to automatically generate software

implementation based on the verified design. Once the design is verified, the same

framework could be extended to generate AUTOSAR compliant C code. This will

ensure that defects uncovered and fixed in the design are not later re-introduced in the

implementation stage. We also propose work to integrate our flow to AUTOSAR

XML metamodel language that defines a system. The aim will be to interact with

existing AUTOSAR xml tools to automatically map the AUTOSAR model

architecture into starting UML structure. This proposes a system level flow where the

automotive OEM can start with a system level model in AUTOSAR XML, which

automatically can be compiled into UML modules with requirements. This output

would then become the starting point to our flow and will ensure that formally

verified design can be used to generate implementation.

189

Chapter 8. References

1. Feder, Barnaby J. "A Heart Device Is Found Vulnerable to Hacker Attacks".

The New York Times, 2008-09-28.

2. US-Canada Power System Outage Task Forcem “Final Report on August

14th, 2003 Blackout in the United States and Canada. Causes and

Recommendations.”, April 2004. https://reports.energy.gov/BlackoutFinal-

Web.pdf.

3. Nancy Leveson, Clark S Turner, “An Investigation of the Therac-25

Accidents.” IEEE Computer, Vol. 26, No. 7, July 1993, pp. 18-41.

4. http://spectrum.ieee.org/riskfactor/green-tech/advanced-cars/gm-recalls-

50500-2011-cadillac-srxs-over-airbagrelated-software-glitch

5. Bahig, G.M., El-Kadi, A.,” Ensuring software safety in safety critical

domains”, Internet Technology And Secured Transactions, 2012 International

Conference for Internet Technology and Secured Transactions, Dec. 2012.

6. Gwangmin Park ; Daehyun Ku ; Seonghun Lee ; Woong-Jae Won, Test

methods of the AUTOSAR application software components, ICCAS-SICE,

2009.

7. Mews, M. ; Svacina, J. ; Weissleder, S. ,From AUTOSAR Models to Co-

simulation for MiL-Testing in the Automotive Domain, Software Testing,

Verification and Validation (ICST), 2012 IEEE.

8. ANSI/IEEE. Standard Glossary of Software Engineering Terminology. New

York: IEEE, 1983.

9. http://www.coverity.com/library/pdf/ControllingSoftwareComplexity.pdf

10. V. Wiels, R. Delmas, D. Doose, P.-L. Garoche, J. Cazin, G. Durrieu, “ Formal

Verification of Critical Aerospace Software.”, AerospaceLab Journal, Issue 4,

May 2012.

https://reports.energy.gov/BlackoutFinal-Web.pdf
https://reports.energy.gov/BlackoutFinal-Web.pdf
http://spectrum.ieee.org/riskfactor/green-tech/advanced-cars/gm-recalls-50500-2011-cadillac-srxs-over-airbagrelated-software-glitch
http://spectrum.ieee.org/riskfactor/green-tech/advanced-cars/gm-recalls-50500-2011-cadillac-srxs-over-airbagrelated-software-glitch

190

11. Lutz RR. Software engineering for safety: a roadmap. In: Proceedings of the

Conference on The Future of Software Engineering.Vol 1. ACM; 2000:213–

226. Available at: http://portal.acm.org/citation.cfm?id=336512.336556

12. Edward A. Lee, ” Key challenges in Embedded Software”, System Design

Frontier, Volume 2, Number 1, January 2005

13. http://www.iso.org/iso/catalogue_detail?csnumber=43464

14. Pfleeger, S.L., Fenton, N. , Page, S. “ Evaluating software engineering

standards.”, Computer, Volume 27, Issue 9, Pages 71-79, 2002.

15. http://www.coverity.com/library/pdf/Coverity_White_Paper-SAT-

Next_Generation_Static_Analysis.pdf

16. Beyer D, Henzinger T. Shape refinement through explicit heap analysis.

Approaches to Software. 2010:263-277.

17. Beyer D, Henzinger T, Théoduloz G. Lazy shape analysis. In: Computer

Aided Verification. Springer; 2006:532–546.

18. Beyer D, Henzinger TA, Jhala R, Majumdar R. Checking memory safety with

Blast. Fundamental Approaches to Software Engineering. 2005:2–18.

19. Beyer D, Henzinger T a, Majumdar R, Rybalchenko A. Path invariants. ACM

SIGPLAN Notices. 2007;42(6):300.

20. Beyer D, Henzinger T a, Theoduloz G. Program Analysis with Dynamic

Precision Adjustment. 2008 23rd IEEE/ACM International Conference on

Automated Software Engineering. 2008:29-38.

21. Jones N, “Introduction to MISRA C”, EE Times, 2002

22. Zheng, Jiang ; Williams, Laurie ; Nagappan, Nachiappan ; Snipes, Will ;

Hudepohl, John ; Vouk, Mladen “A Study of Static Analysis for Fault

Detection in Software”, Technical Report, NC State University, 2005

23. Lu Luo, “Software Testing Techniques: Technology Maturation and Research

Strategy. “, Technical Report.

24. M. Prasanna, S.N. Sivanandam, R. Venkastesan, R. Sundarrajan, “ A Survey

On Automatic Test Case Generation, “, acadjournal, Volume 15, 2005.

25. Clay E. Williams, November 1999, "Software testing and the UML",

International Symposium on Software Reliability Engineering (ISSRE’99),

Boca, Raton.

http://portal.acm.org/citation.cfm?id=336512.336556
http://www.iso.org/iso/catalogue_detail?csnumber=43464
http://www.coverity.com/library/pdf/Coverity_White_Paper-SAT-Next_Generation_Static_Analysis.pdf
http://www.coverity.com/library/pdf/Coverity_White_Paper-SAT-Next_Generation_Static_Analysis.pdf

191

26. Pfleeger SL, Hatton L. Do Formal Methods Improve Code Quality?

leshatton.org.1-21. http://www.leshatton.org/Documents/IEEEComputer1-

97.pdf

27. Woodcock J, Larsen P. G, Bicarregui J, Fitzgerald J, “Formal Methods:

Practice and Experience”, ACM Computing Surveys, 2009

28. Bowen JP. The Ethics of Safety-Critical Systems. Communications of the

ACM. 2000;43(4):91-9.

29. Basir N, Denney E, Fischer B. Constructing a safety case for automatically

generated code from formal program verification information. Computer

Safety, Reliability, and Security. 2008:249–262. Available at:

http://www.springerlink.com/index/d21658255100p251.pdf.

30. Basir N, Denney E, Fischer B. Deriving Safety Cases for the Formal Safety

Certification of Automatically Generated Code. Electronic Notes in

Theoretical Computer Science. 2009;238(4):19-26.

31. Basir N, Denney E, Fischer B. Constructing a safety case for automatically

generated code from formal program verification information. Computer

Safety, Reliability, and Security. 2008:249–262.

32. Denney E. Correctness of source-level safety policies. FME 2003: Formal

Methods. 2003.

33. Denney E, Fischer B. Extending Source Code Generators for Evidence-Based

Software Certification. Second International Symposium on Leveraging

Applications of Formal Methods, Verification and Validation (isola 2006).

2006:138-145.

34. Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra, “ Combining

Formal Methods and MDE Techniques for Model-Driven System Design and

Analysis.”, International Journal on Advances in Software, 2010 vol. 3 nr. 1 &

2.

35. M. Möller, E.-R. Olderog, H. Rasch, and H. Wehrheim, “Integrating a formal

method into a software engineering process with UML and Java,” Form. Asp.

Comput., vol. 20, no. 2, pp. 161–204, 2008.

36. T. Zhang, F. Jouault, J. Bézivin, and J. Zhao, “A MDE Based Approach

for Bridging Formal Models,” in TASE ’08. IEEE Computer Society,

http://www.springerlink.com/index/d21658255100p251.pdf

192

2008, pp. 113–116.

37. Thomas Koltz, Eva Fordoran, Bernd Straube, and Jurgen Haufe, “Formal

Verification of UML-modeled Machine Controls.”, IEEE 2009

38. Wei-gang Ma, Xin-hong Hei, “An Approach for Design and Formal

Verification of Safety-Critical Software.”, 2010 International Conference on

Computer Application and System Modeling (ICCASM 2010)

39. Vitus S.W. Lam and Julian Padget, “Symbolic Model Checking of UML

Statchart Diagrams with an Integrated Approach.”, Proceedings of the 11th

IEEE International Conference and Workshop on the Engineering of

Computer-Based Systems (ECBS’04)

40. Shao Jie Zhang, Yang Liu, “An Automatic Approach to Model Checking

UML State Machines.”, 2010 Fourth IEEE International Conference on Secure

Software Integration and Reliability Improvement Companion.

41. Lixia JI, Jianhong, Zhuowei Shan, “Research on Model Checking Technology

of UML.”, 2012 International Conference on Computer Science and Service

System, IEEE.

42. “OMG. The Unified Modeling Language (UML), v2.1.2,” http://

www.uml.org, 2007.

43. “Eclipse Modeling Framework (EMF),” http://www.eclipse.org/emf/.

44. D. Gasevic, R. Lämmel, and E. V. Wyk, Eds., Software Language

Engineering, First International Conference, SLE 2008, Toulouse, France,

September 29-30, 2008.

45. “The Maude System,” http://maude.cs.uiuc.edu/.

46. F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, and P. Valduriez, “ATL: a QVT-

like transformation language,” in Proc. OOPSLA’06. ACM, 2006, pp. 719–

720.

47. A. Agrawal, G. Karsai, S. Neema, F. Shi, and A. Vizhanyo, “The design of a

language for model transformations,” Software and System Modeling, vol. 5,

no. 3, pp. 261–288, 2006.

48. J. Fischer, M. Piefel, and M. Scheidgen, “A Metamodel for SDL-2000 in the

Context of Metamodelling ULF,” in Proc. SAM’04, 2004, pp. 208–223.

http://www.eclipse.org/emf/
http://maude.cs.uiuc.edu/

193

49. M. Alanen and I. Porres, “A Relation Between Context-Free Grammars and

Meta Object Facility Metamodels,” Turku Centre for Computer Science, Tech.

Rep., 2003.

50. M. Wimmer and G. Kramler, “Bridging grammarware and modelware,” in

Proc. of the 4th Workshop in Software Model Engineering (WiSME’05),

Montego Bay, Jamaica, 2005.

51. T. Gjøsæter, I. F. Isfeldt, and A. Prinz, “Sudoku - a language description case

study,” in Proc. SLE’08, 2008, pp. 305–321.

52. “Abstract State Machines tools,” http://www.eecs.umich.edu/gasm/tools.html.

53. Y. Gurevich and B. Rossman and W. Schulte, “Semantic Essence of AsmL,”

Microsoft Research Technical Report MSR-TR-2004-27, March 2004 .

54. A. Slissenko and P. Vasilyev, “Simulation of timed abstract state machines

with predicate logic model-checking,” J. UCS, vol. 14, no. 12, pp. 1984–2006,

2008.

55. F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and C. Wende, “Derivation

and refinement of textual syntax for models,” in ECMDAFA, 2009.

56. F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a DSL for the specification of

textual concrete syntaxes in model engineering.” in Proceedings of the fifth

international conference on Generative programming and Component

Engineering (GPCE’06), 2006

57. S. Efftinge, “oAW xText - A framework for textual DSLs,” in Workshop on

Modeling Symposium at Eclipse Summit, 2006.

58. P.-A. Muller, F. Fondement, F. Fleurey, M. Hassenforder, R.

Schneckenburger, S. Gérard, and J.-M. Jézéquel, “Model-driven analysis and

synthesis of textual concrete syntax,” Software and System Modeling, vol. 7,

no. 4, pp. 423–441, 2008.

59. “OMG, Human-Usable Textual Notation, v1.0. Document formal/04-08- 01,”

http://www.uml.org/.

60. D. Hearnden, K. Raymond, and J. Steel, “Anti-Yacc: MOF-to-text,” in Proc.

of EDOC, 2002, pp. 200–211.

http://www.eecs.umich.edu/gasm/tools.html

194

61. . A. Idani, J.-L. Boulanger, and L. P. 0002, “A generic process and its tool

support towards combining uml and b for safety critical systems,” in Proc.

CAINE, 2007, pp. 185–192.

62. Y. Sun, Z. Demirezen, F. Jouault, R. Tairas, and J. Gray, “A model

engineering approach to tool interoperability,” in SLE, 2008, pp. 178–187.

63. P.-A. Muller, F. Fleurey, and J.-M. Jezequel, “Weaving Executability into

64. Object-Oriented Meta-Languages,” in Proc. MODELS, 2005.

65. M. Soden and H. Eichler, “Towards a model execution framework for

Eclipse,” in Proc. of the 1st Workshop on Behavior Modeling in Model-

Driven Architecture. ACM, 2009

66. J. E. Rivera, E. Guerra, J. de Lara, and A. Vallecillo, “Analyzing rulebased

behavioral semantics of visual modeling languages with maude,” in SLE, ser.

Lecture Notes in Computer Science, D. Gasevic, R. Lämmel, and E. V. Wyk,

Eds., vol. 5452. Springer, 2008, pp. 54–73.

67. K. Chen, J. Sztipanovits, and S. Neema, “Toward a semantic anchoring

infrastructure for domain-specific modeling languages,” in EMSOFT, 2005,

pp. 35–43.

68. D. Di Ruscio, F. Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio,

“Extending AMMA for Supporting Dynamic Semantics Specifications of

DSLs,” LINA, Tech. Rep. 06.02, 2006.

69. M. Anlauff, “XASM - An Extensible, Component-Based ASM Language,” in

Proc. of Abstract State Machines, 2000, pp. 69–90.

70. D. A. Sadilek and G. Wachsmuth, “Using grammarware languages to define

operational semantics of modelled languages,” in TOOLS (47), 2009, pp. 348–

356.

71. A. Gargantini, E. Riccobene, and P. Scandurra, “A semantic framework for

metamodel-based languages,” Journal of Automated Software Engineering,

vol. 16, no. 3-4, pp. 415–454, 2009.

72. A. Carioni, A. Gargantini, E. Riccobene, and P. Scandurra, “Exploiting the

ASM method for Validation & Verification of Embedded Systems,” in Proc.

of ABZ’08, LNCS 5238. Springer, 2008, pp. 71–84.

195

73. E. Riccobene and P. Scandurra, “An executable semantics of the SystemC

UML profile,” in ABZ 2010, ser. LNCS, M. F. et al., Ed., vol. 5977, 2010, pp.

75–90.

74. E. Riccobene, P. Scandurra, S. Bocchio, A. Rosti, L. Lavazza, and L.

Mantellini, “SystemC/C-based model-driven design for embedded systems,”

ACM Trans. Embedded Comput. Syst., vol. 8, no. 4, 2009.

75. J. Armstrong, “Industrial integration of graphical and formal specifications,” J.

of Systems and Software, vol. 40, no. 3, pp. 211–225, 1998.

76. Denney E, Fischer B, Schumann J, Richardson J. Automatic Certification of

Kalman Filters for Reliable Code Generation. 2005 IEEE Aerospace

Conference. 2005;(1207):1-1.

77. Fey-Safety I. Model-Based Design for Safety-Related Applications. Society.

2008. Available at: http://papers.sae.org/2008-21-0033.

78. http://sal.csl.sri.com/introduction.shtml.

79. http://www.autosar.org/

80. http://www.autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareAr

chitecture.pdf

81. http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf

82. http://www.autosar.org/download/R3.1/AUTOSAR_SWS_FlexRay_StateManager.pd

f

83. Gwangmin Park ; Daehyun Ku ; Seonghun Lee ; Woong-Jae Won, Test

methods of the AUTOSAR application software components, ICCAS-SICE,

2009.

84. Mews, M. ; Svacina, J. ; Weissleder, S. ,From AUTOSAR Models to Co-

simulation for MiL-Testing in the Automotive Domain, Software Testing,

Verification and Validation (ICST), 2012 IEEE.

85. H. Altinger; Y. Dajsuren; S. Siegl; J. Vinju; F. Wotawa. “On Error-class

Distribution in Automotive Model-Based Software,” International Conference

on Software Analysis, Evolution and Reengineering, 2016 IEEE

86. https://automotivetechis.wordpress.com/autosar-concepts/

http://papers.sae.org/2008-21-0033
http://sal.csl.sri.com/introduction.shtml
http://www.autosar.org/
http://www.autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/R4.0/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
http://www.autosar.org/download/AUTOSAR_TechnicalOverview.pdf
http://www.autosar.org/download/R3.1/AUTOSAR_SWS_FlexRay_StateManager.pdf
http://www.autosar.org/download/R3.1/AUTOSAR_SWS_FlexRay_StateManager.pdf
https://automotivetechis.wordpress.com/autosar-concepts/

196

87. Alberto Sangiovanni-Vincentelli, 2003, “Electronic-System Design in the

Automobile Industry.” IEEE Micro, vol. 23, no. 3, pp. 8-18.

88. Beizer B. Software Testing Techniques. Van Nostrand Reinhold, 2nd edition,

1990.

89. C. Cheng, A. Dumitrescu, P. Schroeder, 2003, “Generating Small

Combinatorial Test Suites to Cover Input-Output Relationships.” Proceedings

of 3rd Quality Software International Conference (QSIC '03) pp. 76-82.

90. Anders Hessel and Paul Pettersson, “A Global Algorithm for Model-Based

Test Suite Generation.” Third Workshop on Model-Based Testing, Braga,

Portugal, Satellite workshop of ETAPS 2007.

91. P. Liggesmeyer, M. Rothfelder, M. Rettelbach, and T. Ackermann, 1998,

“Qualitatssicherung Software-basierter Technischer Systeme--

Problembereiche und Lösungs-ansätze.” Informatik Spektrum, 21(5):249--

258.

92. Software Engineering Institute; Carnegie Mellon University; Handbook

CMU/SEI-96-HB-002; page 56-58

93. Roy Awedikian. Quality of the design of test cases for automotive software:

design platform and testing process. Business administration. Ecole Centrale

Paris, 2009. English.

94. A. NyBen, P. Konemann. “Model-based Automotive Software Development

using Autosar, UML, and Domain-Specific Languages,” Embedded World

Conference 2013, Nurnberg, Germany.

95. Win-Bin See, "UML-based modeling approach for automotive system

development," 2005 IEEE International Conference on Industrial Technology,

Hong Kong, 2005, pp. 448-452.

doi: 10.1109/ICIT.2005.1600680

96. https://xtuml.org/

97. Stephen Mellor, Sally Shlaer - Modeling the World in Data, ISBN 978-

0136290230. Stephen Mellor, Sally Shlaer - Object Lifecycles, ISBN 978-

0136299400.

https://xtuml.org/

197

98. H. Siyuan and Z. Hong, "Towards Transformation from UML to Event-

B," 2015 IEEE International Conference on Software Quality, Reliability and

Security - Companion, Vancouver, BC, 2015, pp. 188-189.

99. M. Sharbaf, B. Zamani and B. T. Ladani, "Towards automatic generation of

formal specifications for UML consistency verification," 2015 2nd

International Conference on Knowledge-Based Engineering and Innovation

(KBEI), Tehran, 2015, pp. 860-865.

100. S. Neysian and S. M. Babamir, "Automatic verification of uml state

chart by bogor model checking tool: Automatic formal verification of network

and distributed systems," 2015 2nd International Conference on Knowledge-

Based Engineering and Innovation (KBEI), Tehran, 2015, pp. 797-802.

101. A. B. Hocking, J. Knight, M. A. Aiello and S. Shiraishi, "Arguing

Software Compliance with ISO 26262," Software Reliability Engineering

Workshops (ISSREW), 2014 IEEE International Symposium on, Naples,

2014, pp. 226-231.doi: 10.1109/ISSREW.2014.88.

102. http://www.autosar.org/standards/classic-platform/release-40/software-

architecture/communication-stack/

103. http://www.autosar.org/standards/classic-platform/release-32/software-

architecture/communication-stack/

104. https://www.mathworks.com/help/simulink/examples/modeling-an-

automatic-transmission

controller.html?requestedDomain=www.mathworks.com

105. G. Bahig, A. El-Kadi and A. Salem, "Formal verification of

AUTOSAR FlexRay state manager," 2014 9th IEEE International Design and

Test Symposium (IDT), Algiers, 2014, pp. 193-198.

doi: 10.1109/IDT.2014.7038612

106. G. Bahig and A. El-Kadi, "Formal Verification Framework for

Automotive UML Designs," 2016 2nd ACM Africa and Middle East

Conference on Software Engineering (AMECSE), Egypt, 2016, pp. 21-27.

doi: 10.1145/2944165.2944169

https://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission
https://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission

198

107. G. Bahig, A. El-Kadi, A. El-Hamedy and A. Salem, "Safety Analysis

of AUTOSAR WatchDog Manager: A Case Study," 2016 1st IEEE Automotive

Reliability and Test Workshop (ART), International Test Conference, Fort-

Worth, Texas, 2016

108. G. Bahig and A. El-Kadi, "Formal Verification of Automotive Design

in Compliance With ISO 26262 Design Verification Guidelines," in IEEE

Access, vol. 5, no. , pp. 4505-4516, 2017.

doi: 10.1109/ACCESS.2017.2683508

199

APPENDIX A

SAL Language

Types

The SAL language supports the built-in basic types for booleans, natural numbers,

integers, and reals. New basic types may be introduced using uninterpreted type

declarations. Types may be used in type constructions to create subtype, sub range,

array, function, tuple, and record types. Function, tuple, and record types may be

dependent. In addition to uninterpreted type declarations, that introduce a name

without a defining form, type declarations may be used to introduce names for

existing types, as well as scalars and data types. The grammar for types is given by

Figure 59 Types in SAL Grammar

200

Expressions

Expressions in the SAL language have to be type-correct with respect to the types in

the type language. The expressions consist of constants, variables, applications with

Boolean, arithmetic, and bit-vector operations, and array, function, tuple, and record

selection and updates. Conditional (if-then-else) expressions are also part of the

expression language as shown in Figure 60 and Figure 61.

Figure 60 SAL Expressions

201

Figure 61 SAL Expressions – Detailed

Transition Language

A transition system module consists of a state type, an invariant definition on this

state type, an initialization condition on this state type, and a binary transition relation

of a specific form on the state type. The state type is defined by four pairwise disjoint

sets of input, output, global, and local variables. The input and global variables are the

observed variables of a module and the output, global, and local variables are the

controlled variables of the module. The transition rules are constraints on the current

and next states of the transition. The current variables are written as X whereas the

next state variables are written as X’

Definitions are the basic constructs used to build up the invariants, initializations, and

transitions of a module. Definitions are used to specify the trajectory of variables in a

computation by providing constraints on the controlled variables in a transition

system. For variables ranging over aggregate data structures like records or arrays, it

is possible to define each component separately. For example,

202

x’ = x + 1 simply increments the state variable x, where x’ is the newstate of the

variable,

y’[i] = 3 sets the new state of the array y to be 3 at index i, and to remain unchanged

on all other indices,

z.foo.1[0] = y constrains state variable z, which is a record whose foo component is a

tuple, whose first component in turn is an array of the same type as y.

The left-hand side of a definition is given by the nonterminal Lhs. For an

RhsExpression, the Lhs is simply assigned the corresponding value.

Figure 62 Rhs/Lhs Definitions

Module Language

A module is a self-contained specification of a transition system in SAL. Modules can

be independently analyzed for properties and composed synchronously or

asynchronously. Here is a fairly simple module declaration. Figure 63 shows an

example of a SAL module

203

Figure 63 SAL Module

m is a BaseModule, that is intended to monitor the temperature and indicate a

problem if the temperature stays high for too long. It declares the input variable temp,

local variables high and ctr, and output variable danger. Initially danger is FALSE and

ctr is 0, and when this module is activated it sets danger to TRUE if temp exceeds 100

more than 3 times in a row. Once base modules are declared, they may be composed

synchronously or asynchronously to yield new modules. Figure 64 and Figure 65

show the grammar of module expressions.

A BaseModule identifies the pairwise distinct sets of input, output, global, and local

variables. This characterizes the state of the module. Base modules also may consist

of several sections. The grammar allows variables and sections to be given in any

order, and there may, for example, be 3 distinct TRANSITION sections. In every

case, it is the same as if there was a prescribed order, with each class of variable and

section being the union of the individual declarations.

Definitions appearing in the DEFINITION section(s) are treated as invariants for the

system. When composed with other modules, the definitions remain true even during

the transitions of the other modules. For this reason, proof obligations may be

generated for a composition where definition sections are involved. This section is

usually used to define controlled variables whose values ultimately depend on the

204

inputs, for example, a Boolean variable that becomes true when the temperature goes

above a specified value.

The INITIALIZATION section(s) constrain the possible initial values for the local,

global, and output declarations. Input variables may not be initialized. The

INITIALIZATION section(s) determine a state predicate that holds of the initial state

of the base module.

The TRANSITION section(s) constrain the possible next states for the local, global,

and output declarations. As this is generally defined relative to the previous state of

the module, the transition section(s) determine a state relation. Input variables may

not appear on the Lhs of any assignments.

Modules can be combined by either synchronous or asynchronous composition. Let

module Mi consists of input variables Ii , output variables Oi , global variables Gi ,

and local variables Li . The module M1||M2 and M1[]M2 respectively represent the

synchronous and asynchronous composition of M1 and M2.

It is good pragmatics to name a module. This name can be used to index the local

variables so that they need not be renamed during composition. Also, the properties of

the module can be indexed on the name for quick look-up. Parametric modules allow

the use of logical (state-independent) and type parameterization in the definition of

modules.

205

Figure 64 Module Grammar

206

Figure 65 Module Grammar 2

SAL Contexts

The SAL context language provides the framework for declaring types, constants,

modules, and module properties. Figure 66 show the syntax for contexts containing

declarations for constants, types, modules, assertions, and other (imported) contexts.

SAL contexts are read from left to right, top to bottom, and an entity must be declared

before it is referenced.

Figure 66 SAL Context

207

APPENDIX B

SAL Generated Model Snippets

SAL Context

FrSM_Comp: CONTEXT =

BEGIN

END

Bounded Variables

%% Max Limits

 FrSMDelayStartupWithoutWakeup_idx: INTEGER = 255;

 FrSMNumWakeupPatterns_idx: INTEGER = 255;

 FrSMStartupRepetitions_idx: INTEGER = 255;

 FrSMStartupRepetitionsWithWakeup_idx: INTEGER = 255;

 FrSMIsDualChannelNode_idx: INTEGER = 2;

 FrSMIsColdstartEcu_idx: INTEGER = 2;

 FrSMCheckWakeupReason_idx: INTEGER = 2;

 FrSMIsWakeupEcu_idx: INTEGER = 2;

 wakeupCounter_idx: INTEGER = 255;

 t_Trcv_StdbyDelay_idx: INTEGER = 65536;

 t3_idx: INTEGER = 2;

 t2_idx: INTEGER = 2;

 t1_idx: INTEGER = 2;

 t_TrcvStdby_Delay_IsActive_idx: INTEGER = 2;

 t3_IsNotActive_idx: INTEGER = 2;

 t1_IsActive_idx: INTEGER = 2;

 AllChannelIsAwake_idx: INTEGER = 2;

 WUReason_idx: INTEGER = 3;

 busTrafficDetected_idx: INTEGER = 2;

 wakeupTransmitted_idx: INTEGER = 3;

208

 startupCounter_idx: INTEGER = 255;

 reqComMode_idx: INTEGER = 3;

Bounded Types

t_Trcv_StdbyDelay_type: TYPE = [0..t_Trcv_StdbyDelay_idx];

t_TrcvStdby_Delay_IsActive_type: TYPE =

[0..t_TrcvStdby_Delay_IsActive_idx];

AllChannelIsAwake_type: TYPE = [0..AllChannelIsAwake_idx];

FrSMDelayStartupWithoutWakeup_type: TYPE =

[0..FrSMDelayStartupWithoutWakeup_idx];

FrSMNumWakeupPatterns_type: TYPE = [0..FrSMNumWakeupPatterns_idx];

FrSMStartupRepetitions_type: TYPE = [0..FrSMStartupRepetitions_idx];

FrSMStartupRepetitionsWithWakeup_type: TYPE =

[0..FrSMStartupRepetitionsWithWakeup_idx];

FrSMIsDualChannelNode_type: TYPE = [0..FrSMIsDualChannelNode_idx];

FrSMIsColdstartEcu_type: TYPE = [0..FrSMIsColdstartEcu_idx];

FrSMCheckWakeupReason_type: TYPE = [0..FrSMCheckWakeupReason_idx];

FrSMIsWakeupEcu_type: TYPE = [0..FrSMIsWakeupEcu_idx];

wakeupCounter_type: TYPE = [0..wakeupCounter_idx];

startupCounter_type: TYPE = [0..startupCounter_idx];

Defined States

%% States:

 ST_FrSM : TYPE = {

 ST_FRSM_ONLINE,

 ST_FRSM_ONLINE_PASSIVE,

 ST_FRSM_WAKEUP,

 ST_FRSM_STARTUP,

 ST_FRSM_HALT_REQ,

 ST_FRSM_READY,

 ST_FRSM_INIT

209

 };

Defined Types

%% Types:

wakeup_Type : TYPE = {

 SingleChannelWakeup,

 DualChannelWakeup,

 DualChannelWakeupForward,

 DualChannelEchoWakeup,

 NoWakeup

};

WUReason_type : TYPE = {

 NO_WU_BY_BUS,

 PARTIAL_WU_BY_BUS,

 ALL_WU_BY_BUS

};

ComM_ModType : TYPE = {

 NoCom,

 SilentCom,

 FullCom

};

REC_FrSM_Config : TYPE = [#

 wakeupType : wakeup_Type,

 FrSMDelayStartupWithoutWakeup : BOOLEAN,

 FrSMNumWakeupPatterns : FrSMNumWakeupPatterns_type,

 FrSMStartupRepetitions : FrSMStartupRepetitions_type,

210

 FrSMStartupRepetitionsWithWakeup :

FrSMStartupRepetitionsWithWakeup_type,

 FrSMDurationT1 :FrSMDurationT1_type,

 FrSMDurationT2 :FrSMDurationT2_type,

 FrSMDurationT3 :FrSMDurationT3_type

#];

REC_FrSM : TYPE = [#

 FrSm_Config : REC_FrSM_Config,

 t_Trcv_StdbyDelay : t_Trcv_StdbyDelay_type,

 t3 : BOOLEAN,

 t2 : BOOLEAN,

 t1 : BOOLEAN,

 t_TrcvStdby_Delay_IsActive : BOOLEAN,

 t3_IsNotActive : BOOLEAN,

 t1_IsActive : BOOLEAN,

 AllChannelIsAwake : BOOLEAN,

 WUReason : WUReason_type,

 FrSMDelayStartupWithoutWakeup : BOOLEAN,

 FrSMNumWakeupPatterns : FrSMNumWakeupPatterns_type,

 FrSMStartupRepetitions : FrSMStartupRepetitions_type,

 FrSMStartupRepetitionsWithWakeup :

FrSMStartupRepetitionsWithWakeup_type,

 FrSMIsDualChannelNode : BOOLEAN,

 FrSMIsColdstartEcu : BOOLEAN,

 FrSMCheckWakeupReason : BOOLEAN,

 FrSMIsWakeupEcu : BOOLEAN,

 wakeupCounter : wakeupCounter_type,

 busTrafficDetected : BOOLEAN,

211

 wakeupTransmitted : BOOLEAN,

 wakeupType : wakeup_Type,

 startupCounter : startupCounter_type,

 reqComMode : ComM_ModType

#];

Events

%% Events

EVT_FrSM_Comp: TYPE = {

 EVT_T09,

 EVT_T31,

 EVT_T03,

 EVT_T05,

 EVT_T14,

 EVT_T33,

 EVT_T17,

 EVT_T10,

 EVT_T08,

 EVT_T32,

 EVT_T06,

 EVT_T04,

 EVT_T02,

 EVT_T12,

 EVT_T13,

 EVT_T01,

 EVT_T11,

 EVT_T00

};

Module Definitions

MOD_FrSM : MODULE =

212

BEGIN

%% Global Section

 GLOBAL FrSM: REC_FrSM

 GLOBAL EVT: EVT_FrSM_Comp

 GLOBAL FrSM_State: ST_FrSM

INITIALIZATION

FrSM_State = ST_FRSM_INIT;

FrSM = (# t_Trcv_StdbyDelay := 0, t3 := FALSE, t2 := FALSE, t1 := FALSE,

t_TrcvStdby_Delay_IsActive := FALSE, t3_IsNotActive := FALSE, t1_IsActive :=

FALSE, AllChannelIsAwake := FALSE, WUReason := NO_WU_BY_BUS,

FrSMDelayStartupWithoutWakeup := FALSE, FrSMNumWakeupPatterns := 0,

FrSMStartupRepetitions := 0, FrSMStartupRepetitionsWithWakeup := 0,

FrSMIsDualChannelNode := FALSE, FrSMIsColdstartEcu := FALSE,

FrSMCheckWakeupReason := FALSE, FrSMIsWakeupEcu := FALSE, wakeupCounter

:= 0, busTrafficDetected := FALSE, wakeupTransmitted := FALSE, wakeupType :=

NoWakeup , startupCounter := 2, reqComMode := NoCom #);

TRANSITION

[

 %% stateName = ST_FRSM_ONLINE

 %% event = EVT_T09

 (FrSM_State = ST_FRSM_ONLINE) AND (EVT = EVT_T09) -->

 FrSM_State' = ST_FRSM_HALT_REQ;

213

 %% event = EVT_T10

 []

 (FrSM_State = ST_FRSM_ONLINE) AND (EVT = EVT_T10) -->

 FrSM_State' = ST_FRSM_STARTUP;

 %% stateName = ST_FRSM_ONLINE_PASSIVE

 %% event = EVT_T14

 []

 (FrSM_State = ST_FRSM_ONLINE_PASSIVE) AND (EVT =

EVT_T14) -->

 FrSM_State' = ST_FRSM_HALT_REQ;

 %% event = EVT_T33

 []

(FrSM_State = ST_FRSM_ONLINE_PASSIVE) AND (EVT =

EVT_T33) -->

 FrSM_State' = ST_FRSM_ONLINE_PASSIVE;

 %% event = EVT_T17

[]

 (FrSM_State = ST_FRSM_ONLINE_PASSIVE) AND (EVT =

EVT_T17) -->

 FrSM_State' = ST_FRSM_STARTUP;

%% stateName = ST_FRSM_WAKEUP

 %% event = EVT_T31

 []

 (FrSM_State = ST_FRSM_WAKEUP) AND (EVT = EVT_T31) -->

 FrSM_State' = ST_FRSM_WAKEUP;

 %% event = EVT_T03

 []

 (FrSM_State = ST_FRSM_WAKEUP) AND (EVT = EVT_T03) -->

 FrSM_State' = ST_FRSM_STARTUP;

214

 %% event = EVT_T13

 []

 (FrSM_State = ST_FRSM_WAKEUP) AND (EVT = EVT_T13) -->

FrSM_State' = ST_FRSM_READY;

%% stateName = ST_FRSM_STARTUP

 %% event = EVT_T05

 []

 (FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T05) -->

 FrSM_State' = ST_FRSM_WAKEUP;

 %% event = EVT_T08

 []

 (FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T08) -->

 FrSM_State' = ST_FRSM_ONLINE;

 %% event = EVT_T32

 []

(FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T32) -->

 FrSM_State' = ST_FRSM_STARTUP;

 %% event = EVT_T06

 []

 (FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T06) -->

 FrSM_State' = ST_FRSM_STARTUP;

 %% event = EVT_T04

 []

 (FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T04) -->

 FrSM_State' = ST_FRSM_STARTUP;

%% event = EVT_T12

 []

 (FrSM_State = ST_FRSM_STARTUP) AND (EVT = EVT_T12) -->

 FrSM_State' = ST_FRSM_READY;

215

%% stateName = ST_FRSM_HALT_REQ

 %% event = EVT_T11

 []

 (FrSM_State = ST_FRSM_HALT_REQ) AND (EVT = EVT_T11) -->

 FrSM_State' = ST_FRSM_READY;

%% stateName = ST_FRSM_READY

 %% event = EVT_T02

 []

 (FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T02) -->

 FrSM_State' = ST_FRSM_STARTUP;

 %% event = EVT_T01

 []

 (FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T01) AND

(FrSM.reqComMode = FullCom) AND (FrSM.WUReason = NO_WU_BY_BUS) AND

(FrSM.FrSMIsWakeupEcu = TRUE) AND (FrSM.FrSMIsDualChannelNode = FALSE) -

->

 FrSM_State' = ST_FRSM_WAKEUP;

FrSM'.startupCounter = 1;

 FrSM'.wakeupType = SingleChannelWakeup;

 FrSM'.wakeupTransmitted = FALSE;

 FrSM'.t1 = TRUE;

 FrSM'.t3 = TRUE;

%% stateName = ST_FRSM_INIT

 %% event = EVT_T00

 []

216

(FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T01) AND

(FrSM.reqComMode = FullCom) AND (FrSM.WUReason = NO_WU_BY_BUS) AND

(FrSM.FrSMIsWakeupEcu = TRUE) AND (FrSM.FrSMIsDualChannelNode = TRUE) --

>

 FrSM_State' = ST_FRSM_WAKEUP;

 FrSM'.startupCounter = 1;

 FrSM'.wakeupType = DualChannelWakeup;

 FrSM'.wakeupTransmitted = FALSE;

 FrSM'.t1 = TRUE;

 FrSM'.t3 = TRUE;

 []

(FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T01) AND

(FrSM.reqComMode = FullCom) AND (FrSM.WUReason = PARTIAL_WU_BY_BUS)

AND (FrSM.FrSMIsWakeupEcu = TRUE) -->

 FrSM_State' = ST_FRSM_WAKEUP;

 FrSM'.startupCounter = 1;

 FrSM'.wakeupType = DualChannelWakeupForward;

 FrSM'.wakeupTransmitted = FALSE;

 FrSM'.t3 = TRUE;

%% stateName = ST_FRSM_INIT

 %% event = EVT_T00

 []

217

(FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T01) AND

(FrSM.reqComMode = FullCom) AND (FrSM.WUReason = ALL_WU_BY_BUS OR

FrSM.FrSMIsWakeupEcu = FALSE) AND (FrSM.FrSMDelayStartupWithoutWakeup =

FALSE) -->

 FrSM_State' = ST_FRSM_WAKEUP;

 FrSM'.startupCounter = 1;

FrSM'.wakeupType = NoWakeup;

 FrSM'.t2 = TRUE;

 FrSM'.t3 = TRUE;

%% stateName = ST_FRSM_INIT

%% event = EVT_T00

[]

(FrSM_State = ST_FRSM_READY) AND (EVT = EVT_T01) AND

(FrSM.reqComMode = FullCom) AND (FrSM.WUReason = ALL_WU_BY_BUS OR

FrSM.FrSMIsWakeupEcu = FALSE) AND (FrSM.FrSMDelayStartupWithoutWakeup =

TRUE) -->

 FrSM_State' = ST_FRSM_WAKEUP;

 FrSM'.startupCounter = 1;

 FrSM'.wakeupType = NoWakeup;

 FrSM'.t1 = TRUE;

 FrSM'.t2 = TRUE;

 FrSM'.t3 = TRUE;

%% stateName = ST_FRSM_INIT

%% event = EVT_T00

[]

218

(FrSM_State = ST_FRSM_INIT) AND (EVT = EVT_T00) -->

 FrSM_State' = ST_FRSM_READY;

]

END;

Sample Theorems

Safe: THEOREM SYS_TwoTraffics |- G(NOT(ARR_ST_TrafficLight[1] =

ST_TrafficLight_Green AND ARR_ST_TrafficLight[2] =

ST_TrafficLight_Green));

Safe_FrSM_6: THEOREM system |- G(FrSM.reqComMode = FullCom AND

((FrSM.WUReason = ALL_WU_BY_BUS) OR (FrSM.FrSMIsWakeupEcu =

FALSE)) AND (FrSM.FrSMDelayStartupWithoutWakeup = FALSE) AND

FrSM_State = ST_FRSM_READY);

Safe_FrSM_7:

THEOREM system |- G(FrSM.startupCounter <= 255 AND

FrSM.startupCounter >= 0);

SAL ATC Model

ATC: CONTEXT =

BEGIN

 % -------------------------

 % Max Limits

 vehicleSpeed_idx: INTEGER = 240;

 upThreshold_idx: INTEGER = 240;

 downThreshold_idx: INTEGER = 240;

 gearTimeTHreshold_idx: INTEGER = 20;

 timerStarted_idx: INTEGER =1;

 gearTimer_idx: INTEGER = 20;

219

 turn_idx: INTEGER = 2;

 % Bounded Ranges

 vehicleSpeed_type: TYPE = [0..vehicleSpeed_idx];

 upThreshold_type: TYPE = [0..upThreshold_idx];

 downThreshold_type: TYPE = [0..downThreshold_idx];

 gearTimeTHreshold_type: TYPE = [0..gearTimeTHreshold_idx];

 gearTimer_type: TYPE = [0..gearTimer_idx];

 turn_type: TYPE = [0..turn_idx];

 %% States:

 ST_GEARPOSITION: TYPE = {

 ST_POSITION1,

 ST_POSITION2,

 ST_POSITION3,

 ST_POSITION4

 };

 ST_GEARCONTROLLER: TYPE = {

 ST_STEADY,

 ST_UPSHIFTING,

 ST_DOWNSHIFTING

 };

 %% Events:

 EVT_ATC: TYPE = {

220

 EVT_CHECKINPUT,

 EVT_SPEEDLESSDOWNTHROTTLE,

 EVT_SPEEDMOREDOWNTHROTTLE,

 EVT_TIMEELASPEGEARDOWN,

 EVT_SPEEDMOREUPTHROTTLE,

 EVT_SPEEDLESSUPTHROTTLE,

 EVT_TIMEELASPEGEARUP,

 EVT_UP,

 EVT_DOWN

 };

 % -------------------------

 %% Class Records:

 REC_GEARCONTROLLER: TYPE = [#

 vehicleSpeed: vehicleSpeed_type,

 gearTimeTHreshold: gearTimeTHreshold_type,

 timerStarted:BOOLEAN,

 gearTimer: gearTimer_type

 #];

 REC_GEARPOSITION: TYPE = [#

 upThreshold: upThreshold_type,

 downThreshold: downThreshold_type

 #];

221

 % -------------------------

 %% System Records:

 Global_EVT: TYPE = [#

 ATC_System_EVT: EVT_ATC

 #];

 % -------------------------

 MOD_GearController : MODULE =

 BEGIN

 GLOBAL CONT: REC_GEARCONTROLLER

 INPUT Position: REC_GEARPOSITION

 GLOBAL EVT: EVT_ATC

 GLOBAL State: ST_GEARCONTROLLER

 INITIALIZATION

 CONT = (# vehicleSpeed := 20, gearTimeTHreshold := 10,

timerStarted := FALSE, gearTimer := 20 #);

 EVT = EVT_CHECKINPUT;

 State = ST_STEADY;

 TRANSITION

 [

 (State= ST_STEADY) AND (CONT.vehicleSpeed <

Position.downThreshold) -->

 EVT'= EVT_SPEEDLESSDOWNTHROTTLE;

 []

222

 (State = ST_STEADY) AND (EVT =

EVT_SPEEDLESSDOWNTHROTTLE) -->

 State' = ST_DOWNSHIFTING;

 []

 (State = ST_DOWNSHIFTING AND CONT.timerStarted

= FALSE) -->

 CONT'.timerStarted = TRUE;

 []

 (State = ST_DOWNSHIFTING AND CONT.timerStarted

= TRUE AND EVT = EVT_SPEEDLESSDOWNTHROTTLE) -->

 EVT' = IF CONT.timerStarted = TRUE THEN

EVT_TIMEELASPEGEARUP ELSE EVT_SPEEDLESSDOWNTHROTTLE ENDIF;

 CONT'.timerStarted = FALSE;

 []

 (State = ST_DOWNSHIFTING) AND (EVT =

EVT_TIMEELASPEGEARDOWN) -->

 EVT' = IF (CONT.vehicleSpeed <=

Position.downThreshold) THEN EVT_DOWN ELSE

EVT_SPEEDMOREDOWNTHROTTLE ENDIF;

 []

 (State = ST_DOWNSHIFTING) AND (EVT =

EVT_CHECKINPUT) -->

 State' = ST_STEADY;

 []

 (State = ST_DOWNSHIFTING) AND (EVT =

EVT_SPEEDMOREDOWNTHROTTLE) -->

 State' = ST_STEADY;

 EVT' = EVT_CHECKINPUT;

223

 []

 (State= ST_STEADY) AND (CONT.vehicleSpeed >

Position.upThreshold) -->

 EVT' = EVT_SPEEDMOREUPTHROTTLE;

 []

 (State = ST_STEADY) AND (EVT =

EVT_SPEEDMOREUPTHROTTLE) -->

 State' = ST_UPSHIFTING;

 []

 (State = ST_UPSHIFTING AND CONT.timerStarted =

FALSE) -->

 CONT'.timerStarted = TRUE;

 []

 (State = ST_UPSHIFTING AND CONT.timerStarted =

TRUE AND EVT = EVT_SPEEDMOREUPTHROTTLE) -->

 EVT' = IF CONT.timerStarted = TRUE THEN

EVT_TIMEELASPEGEARUP ELSE EVT_SPEEDMOREUPTHROTTLE ENDIF;

 CONT'.timerStarted = FALSE;

 []

 (State = ST_UPSHIFTING) AND (EVT=

EVT_TIMEELASPEGEARUP)-->

 EVT' = IF CONT.vehicleSpeed > Position.upThreshold

THEN EVT_UP ELSE EVT_SPEEDLESSUPTHROTTLE ENDIF;

 []

 (State = ST_UPSHIFTING) AND (EVT =

EVT_CHECKINPUT) -->

 State' = ST_STEADY;

 []

224

 (State = ST_UPSHIFTING) AND (EVT =

EVT_SPEEDLESSUPTHROTTLE) -->

 State' = ST_STEADY;

 EVT' = EVT_CHECKINPUT;

 [] ELSE --> EVT' = EVT_CHECKINPUT;

CONT'.vehicleSpeed = CONT.vehicleSpeed +1;

]

 END;

 MOD_GearPosition: MODULE =

 BEGIN

 GLOBAL Position: REC_GEARPOSITION

 GLOBAL PState: ST_GEARPOSITION

 GLOBAL EVT: EVT_ATC

 INITIALIZATION

 PState = ST_POSITION1;

 Position = (# upThreshold := 21, downThreshold := 0

 #) ;

 TRANSITION [

 (PState = ST_POSITION1) AND (EVT = EVT_UP) -->

 PState' = ST_POSITION2;

 Position'.upThreshold = 50;

 Position'.downThreshold = 21;

 EVT' = EVT_CHECKINPUT;

225

 []

 (PState = ST_POSITION2) AND (EVT = EVT_UP) -->

 PState' = ST_POSITION3;

 Position'.upThreshold = 70;

 Position'.downThreshold = 50;

 EVT' = EVT_CHECKINPUT;

 []

 (PState = ST_POSITION3) AND (EVT = EVT_UP) -->

 PState' = ST_POSITION4;

 Position'.upThreshold = 100;

 Position'.downThreshold = 71;

 EVT' = EVT_CHECKINPUT;

 []

 (PState = ST_POSITION4) AND (EVT = EVT_DOWN) --

>

 PState' = ST_POSITION3;

 Position'.upThreshold = 70;

 Position'.downThreshold = 51;

 EVT' = EVT_CHECKINPUT;

 []

 (PState = ST_POSITION3) AND (EVT = EVT_DOWN) -

->

 PState' = ST_POSITION2;

226

 Position'.upThreshold = 50;

 Position'.downThreshold = 21;

 EVT' = EVT_CHECKINPUT;

 []

 (PState = ST_POSITION2) AND (EVT = EVT_DOWN) --

>

 PState' = ST_POSITION1;

 Position'.upThreshold = 21;

 Position'.downThreshold = 1;

 EVT'= EVT_CHECKINPUT;

]

 END;

 %% System Module:

 system: MODULE = MOD_GearController [] MOD_GearPosition;

 %% Boundary Conditions

 Safe_Boundary_Th1: THEOREM system |- G(Position.upThreshold <

235);

 Safe_Boundary_Th2: THEOREM system |- G(Position.downThreshold <

235);

227

 Safe_Boundary_Th3: THEOREM system |- G(Position.upThreshold <

255);

 %% Requirement Mapping

 %% AG : p is globally true AF - For all paths ps is true

 Req1_Th1: THEOREM system |- AG(PState = ST_POSITION1 =>

AF(CONT.vehicleSpeed > 0 AND CONT.vehicleSpeed <= 21));

 Req1_Th2: THEOREM system |- AG(NOT (PState = ST_POSITION2)

OR (CONT.vehicleSpeed > 21 AND CONT.vehicleSpeed <= 50));

 Req1_Th3: THEOREM system |- G((PState = ST_POSITION2) <=>

F(CONT.vehicleSpeed > 21 AND CONT.vehicleSpeed < 50));

 %%Logic Bugs

 %% Cannot be in downthreshold unless vehcile speed is less than down

threshold

 %% G p is always true while F that p will eventuually be true

 Logic_Th1: THEOREM system |- G(State = ST_DOWNSHIFTING =>

F(CONT.vehicleSpeed < Position.downThreshold));

 %% Timer check

 %% Has to be off in steady state

 Timer_Th1: THEOREM system |- G(State = ST_STEADY =>

F(CONT.timerStarted = FALSE));

 Timer_Th2: THEOREM system |- G(State = ST_DOWNSHIFTING =>

F(CONT.timerStarted = TRUE AND CONT.gearTimeTHreshold<20));

 %% Cannot exceed timer thresold in downshifting or upshifting state

END

228

229

APPENDIX C

SAL Model Compiler

State Machine Marking

.//

.include "${te_file.arc_path}/t.sm_sm.c"

.select one sm_sm related by o_obj->SM_ISM[R518]->SM_SM[R517]

.select many instance_sm_states related by sm_sm->SM_STATE[R501]

.for each sm_state in instance_sm_states

 .select one te_state related by sm_state->TE_STATE[R2037]

 .select any sm_crtxn related by sm_state->SM_TXN[R506]->SM_CRTXN[R507]

where (selected.SMspd_ID == sm_state.SMspd_ID)

 .select one sm_act related by sm_state->SM_MOAH[R511]->SM_AH[R513]-

>SM_ACT[R514]

 .select one te_act related by sm_act->TE_ACT[R2022]

 .if (not_empty te_act)

 .select one te_aba related by te_act->TE_ABA[R2010]

 .// CDS relaxed same data needed

 .select any sm_txn related by sm_state->SM_TXN[R506]

 .invoke red = TE_EVT_ReceivedEventDataDeclaration(sm_txn, sm_act)

 .assign received_event_declaration = red.body

 .include "${te_file.arc_path}/t.class.sm_act.c"

 .end if

.end for

.select any sm_crtxn from instances of SM_CRTXN where (false)

.select any te_state from instances of TE_STATE where (false)

.//

.select many instance_sm_txns related by sm_sm->SM_TXN[R505]

230

.for each sm_txn in instance_sm_txns

 .select one sm_act related by sm_txn->SM_TAH[R530]->SM_AH[R513]-

>SM_ACT[R514]

 .select one te_act related by sm_act->TE_ACT[R2022]

 .if (not_empty te_act)

 .select one te_aba related by te_act->TE_ABA[R2010]

 .invoke red = TE_EVT_ReceivedEventDataDeclaration(sm_txn, sm_act)

 .assign received_event_declaration = red.body

 .include "${te_file.arc_path}/t.class.sm_act.c"

 .end if

.end for

.//

.select one sm_sm related by o_obj->SM_ASM[R519]->SM_SM[R517]

.select many class_sm_states related by sm_sm->SM_STATE[R501]

.for each sm_state in class_sm_states

 .select one te_state related by sm_state->TE_STATE[R2037]

 .select one sm_act related by sm_state->SM_MOAH[R511]->SM_AH[R513]-

>SM_ACT[R514]

 .select one te_act related by sm_act->TE_ACT[R2022]

 .if (not_empty te_act)

 .select one te_aba related by te_act->TE_ABA[R2010]

 .// CDS relaxed same data needed

 .select any sm_txn related by sm_state->SM_TXN[R506]

 .invoke red = TE_EVT_ReceivedEventDataDeclaration(sm_txn, sm_act)

 .assign received_event_declaration = red.body

 .include "${te_file.arc_path}/t.class.sm_act.c"

 .end if

.end for

.select any te_state from instances of TE_STATE where (false)

231

.//

.select many class_sm_txns related by sm_sm->SM_TXN[R505]

.for each sm_txn in class_sm_txns

 .select one sm_act related by sm_txn->SM_TAH[R530]->SM_AH[R513]-

>SM_ACT[R514]

 .select one te_act related by sm_act->TE_ACT[R2022]

 .if (not_empty te_act)

 .select one te_aba related by te_act->TE_ABA[R2010]

 .invoke red = TE_EVT_ReceivedEventDataDeclaration(sm_txn, sm_act)

 .assign received_event_declaration = red.body

 .include "${te_file.arc_path}/t.class.sm_act.c"

 .end if

.end for

.//

.if (((empty instance_sm_states) and (empty class_sm_states)) and ((empty

instance_sm_txns) and (empty class_sm_txns)))

/*

 * This class is modeled as having a state chart, but it has no states.

 * This makes good sense in a supertype class receiving polymorphic events.

 * If this is not the intention, add states to the model or unmark the

 * instance or class state chart setting.

 */

static void empty_state_chart_action(void);

static void empty_state_chart_action(void) {}

.end if

.//

232

Classes Marking

.select many te_classes related by te_c->TE_CLASS[R2064] where (not

selected.ExcludeFromGen)

.// Prepare the Instance subsystem for translation.

.select any i_ins from instances of I_INS

.if (not_empty i_ins)

 .select many o_objs related by te_classes->O_OBJ[R2019]

 .invoke PEIInstanceSubsystemInit(o_objs)

.end if

.for each te_class in te_classes

 .// Generate declaration implementation file.

 .invoke implementation = CreateObjectImplementation(te_class, te_c, true)

 ${implementation.body}

 .emit to file

"${te_file.domain_include_path}/${te_class.class_file}.${te_file.hdr_file_ext}"

 .//

 .// Generate definition implementation.

 .invoke implementation = CreateObjectImplementation(te_class, te_c, false)

${implementation.body}

 .emit to file

"${te_file.domain_source_path}/${te_class.class_file}.${te_file.src_file_ext}"

.end for

.//

DataTypes Marking

.//==

==============

.function GetBaseTypeForUDT .// s_dt

 .param inst_ref s_udt

 .select one s_dt related by s_udt->S_DT[R18]

233

 .select one s_udt related by s_dt->S_UDT[R17]

 .if (not_empty s_udt)

 .invoke r = GetBaseTypeForUDT(s_udt)

 .assign s_dt = r.result

 .end if

 .assign attr_result = s_dt

.end function

.//

.//==

==============

.// Get the S_DT and S_CDT object references for a given attribute

.// (O_ATTR) instance.

.//==

==============

.function GetAttributeCodeGenType .// te_dt

 .param inst_ref o_attr

 .//

 .select one s_dt related by o_attr->S_DT[R114]

 .select one s_udt related by s_dt->S_UDT[R17]

 .if (not_empty s_udt)

 .invoke r = GetBaseTypeForUDT(s_udt)

 .assign s_dt = r.result

 .end if

 .select one te_dt related by s_dt->TE_DT[R2021]

 .select one s_cdt related by s_dt->S_CDT[R17]

 .//

 .if (empty s_cdt)

 .select one s_edt related by s_dt->S_EDT[R17]

 .if (empty s_edt)

234

 .select one s_sdt related by s_dt->S_SDT[R17]

 .if (empty s_sdt)

 .select one s_irdt related by s_dt->S_IRDT[R17]

 .if (empty s_irdt)

 .print "Error in attribute ${o_attr.Name}"

 .print "with data type ${s_dt.Name}"

 .exit 100

 .end if

 .end if

 .else

 .// Enum, use integer type.

 .// CDS Some day we should pass along the enumeration type.

 .select any s_cdt from instances of S_CDT where (selected.Core_Typ == 2)

 .end if

 .end if

 .//

 .if (not_empty s_cdt)

 .if (7 == s_cdt.Core_Typ)

 .// s_cdt.Core_Typ is "same_as<Base_Attribute>"

 .select one base_o_attr related by o_attr->O_RATTR[R106]->O_BATTR[R113]-

>O_ATTR[R106]

 .if (empty base_o_attr)

 .select one o_obj related by o_attr->O_OBJ[R102]

 .print "\nCould not find O_BATTR for object ${o_obj.Name} (${o_obj.Key_Lett})

attribute ${o_attr.Name} !"

 .print "\nDid you combine a referential and then rename the combined attribute?"

 .exit 101

 .end if

 .// Note: the following is a recursive call to this function

235

 .invoke r = GetAttributeCodeGenType(base_o_attr)

 .assign te_dt = r.result

 .end if

 .end if

 .assign attr_result = te_dt

.end function

.//

.//==

==============

.// Map a user defined data types precision into its corresponding instance

.// of Data Type (S_DT).

.// Note: Might prefer POSIX type support here, but doubt we can count

.// on most embedded targets thinking this way. Thus brute force the types.

.//==

==============

.function MapUserSpecifiedDataTypePrecision .// boolean

 .param inst_ref te_dt

 .param string mapping

 .assign error = false

 .assign type = mapping

 .if ((type == "uchar_t") or ((type == "u_char") or (type == "unsignedchar")))

 .assign te_dt.ExtName = "unsigned char"

 .elif ((type == "char_t") or (type == "char"))

 .assign te_dt.ExtName = "char"

 .elif (type == "signedchar")

 .assign te_dt.ExtName = "signed char"

 .elif ((type == "ushort_t") or ((type == "u_short") or (type == "unsignedshort")))

 .assign te_dt.ExtName = "unsigned short"

 .elif ((type == "short_t") or (type == "short"))

236

 .assign te_dt.ExtName = "short"

 .elif (type == "signedshort")

 .assign te_dt.ExtName = "signed short"

 .elif ((type == "uint_t") or ((type == "u_int") or (type == "unsignedint")))

 .assign te_dt.ExtName = "unsigned int"

 .elif (type == "s1_t")

 .assign te_dt.ExtName = "s1_t"

 .elif (type == "u1_t")

 .assign te_dt.ExtName = "u1_t"

 .elif (type == "s2_t")

 .assign te_dt.ExtName = "s2_t"

 .elif (type == "u2_t")

 .assign te_dt.ExtName = "u2_t"

 .elif (type == "s4_t")

 .assign te_dt.ExtName = "s4_t"

 .elif (type == "u4_t")

 .assign te_dt.ExtName = "u4_t"

 .elif (type == "i_t")

 .assign te_dt.ExtName = "i_t"

 .elif ((type == "int_t") or (type == "int"))

 .assign te_dt.ExtName = "int"

 .elif (type == "signedint")

 .assign te_dt.ExtName = "signed int"

 .elif ((type == "ulong_t") or ((type == "u_long") or (type == "unsignedlong")))

 .assign te_dt.ExtName = "unsigned long"

 .elif ((type == "long_t") or (type == "long"))

 .assign te_dt.ExtName = "long"

 .elif (type == "signedlong")

 .assign te_dt.ExtName = "signed long"

237

 .elif ((type == "u_longlong_t") or ((type == "u_longlong_t") or (type ==

"unsignedlonglong")))

 .assign te_dt.ExtName = "unsigned long long"

 .elif ((type == "longlong_t") or ((type == "longlong") or (type == "signedlonglong")))

 .assign te_dt.ExtName = "long long"

 .//

 .elif (type == "float")

 .assign te_dt.ExtName = "float"

 .elif (type == "r4_t")

 .assign te_dt.ExtName = "r4_t"

 .elif (type == "double")

 .assign te_dt.ExtName = "double"

 .elif (type == "r8_t")

 .assign te_dt.ExtName = "r8_t"

 .//

 .elif (type == "size_t")

 .assign te_dt.ExtName = "size_t"

 .elif (type == "ssize_t")

 .assign te_dt.ExtName = "ssize_t"

 .elif (type == "time_t")

 .assign te_dt.ExtName = "time_t"

 .elif (type == "clock_t")

 .assign te_dt.ExtName = "clock_t"

 .elif (type == "volatile_clock_t")

 .assign te_dt.ExtName = "volatile unsigned long"

 .//

 .else

 .assign error = true

 .end if

238

 .assign attr_result = error

.end function

.//

.// Return the structure type for persistent links.

.function UserSuppliedDataTypeIncludes .// string

 .select any te_file from instances of TE_FILE

 .assign sys_types_file_name = (te_file.types + ".") + te_file.hdr_file_ext

 .select many special_te_dts from instances of TE_DT where ((selected.Include_File !=

"") and (selected.Include_File != sys_types_file_name))

 .assign s = ""

 .for each special_te_dt in special_te_dts

 .assign s = (s + "#include """) + (special_te_dt.Include_File + """\n")

 .invoke oal("s = Escher_strcpy(s, Escher_stradd(Escher_stradd(s, #include),

Escher_stradd(special_te_dt->Include_File, \n))); // Ccode")

 .end for

 .assign attr_result = s

.end function

.//

Action Language Marking

.//

.function TE_ABA_rollup

 .invoke oal("char b[1000000]; // Ccode")

 .assign parseSuccessful = (1) .COMMENT ParseStatus::parseSuccessful

 .select any empty_act_blk from instances of ACT_BLK where (false)

 .select many te_cs from instances of TE_C where (selected.included_in_build)

 .for each te_c in te_cs

 .select many te_abas related by te_c->TE_ABA[R2088]

 .for each te_aba in te_abas

 .select one te_blk related by te_aba->TE_BLK[R2011]

239

 .if (not_empty te_blk)

 .invoke oal("te_aba->code = &b[0]; *te_aba->code = 0; // Ccode")

 .invoke blck_xlate(te_c.StmtTrace, te_blk, te_aba)

 .invoke oal("te_aba->code = Escher_strcpy(te_aba->code, &b[0]); // Ccode")

 .else

 .assign te_aba.code = ("\n /" + "* WARNING! Skipping unsuccessful or unparsed

action. *") + "/\n"

 .end if

 .end for

 .end for

 .// Process EEs outside of components.

 .select many te_ees from instances of TE_EE where ((selected.RegisteredName !=

"TIM") and selected.Included)

 .for each te_ee in te_ees

 .select one te_c related by te_ee->TE_C[R2085]

 .if (empty te_c)

 .select many s_brgs related by te_ee->S_EE[R2020]->S_BRG[R19]

 .for each s_brg in s_brgs

 .select one act_blk related by s_brg->ACT_BRB[R697]->ACT_ACT[R698]-

>ACT_BLK[R666]

 .select one te_aba related by s_brg->TE_BRG[R2025]->TE_ABA[R2010]

 .if (not_empty act_blk)

 .select one te_blk related by act_blk->TE_BLK[R2016]

 .invoke oal("te_aba->code = &b[0]; *te_aba->code = 0; // Ccode")

 .invoke blck_xlate(false, te_blk, te_aba)

 .invoke oal("te_aba->code = Escher_strcpy(te_aba->code, &b[0]); // Ccode")

 .end if

 .end for

 .end if

240

 .end for

.end function

SAL File Generation

.select any s_sys from instances of S_SYS

.select any c_cs from instances of C_C

%--

% File: ${c_cs.Name}.sal

% SAL Generated Model

% Component/Module Name: ${c_cs.Name}

%

% Copyright - AUC 2017

% --

${c_cs.Name}: CONTEXT =

.print "Starting the generation of ${c_cs.Name} SAL Model"

BEGIN

.print "Generating SAL Bounded Values"

%% Max Limits

.select many o_ob from instances of O_OBJ

.for each o_obj in o_ob

.if (o_obj.Name != "Test")

 .select many o_attr related by o_obj->O_ATTR[R102]

 .for each attribute in o_attr

 .select one datatype related by attribute->S_DT[R114]

 .if (datatype.Name != "state<State_Model>")

 ${attribute.Name}_idx: INTEGER = ${attribute.Descrip};

 .end if

241

 .end for

.end if

.end for

%% Bounded Ranges

.select many o_ob from instances of O_OBJ

.for each o_obj in o_ob

.if (o_obj.Name != "Test")

 .select many o_attr related by o_obj->O_ATTR[R102]

 .for each attribute in o_attr

 .select one datatype related by attribute->S_DT[R114]

 .if (datatype.Name != "state<State_Model>")

 ${attribute.Name}_type: TYPE = [0..${attribute.Name}_idx];

 .end if

 .end for

.end if

.end for

.print "Generating SAL States Structures"

%% States:

.select many o_ob from instances of O_OBJ

.for each o_obj in o_ob

 .if (o_obj.Name != "Test")

 ST_${o_obj.Name} : TYPE = {

 .select one sm_ism related by o_obj->SM_ISM[R518]

 .if (not_empty sm_ism)

 .select one sm_sm related by sm_ism-

>SM_SM[R517]

242

 .select many sm_states related by sm_sm-

>SM_STATE[R501]

 .assign objCount = cardinality sm_states

 .assign count = 1

 .for each sm_state in sm_states

 .if (count < objCount)

 ST_${sm_state.Name},

 .else

 ST_${sm_state.Name}

 .end if

 .assign count = count + 1

 .end for

 .end if

 };

 .end if

.end for

.print "Generating SAL Events mapping"

%% Events

EVT_${c_cs.Name}: TYPE = {

.assign obCount2 = 1

.select many o_ob from instances of O_OBJ

.assign objCount2 = cardinality o_ob

.for each o_obj in o_ob

 .select one sm_ism related by o_obj->SM_ISM[R518]

 .if (not_empty sm_ism)

 .select one sm_sm related by sm_ism->SM_SM[R517]

 .select many sm_evt related by sm_sm->SM_EVT[R502]

 .assign objCount = cardinality sm_evt

243

 .assign count = 1

 .for each smevt in sm_evt

 .if ((count < objCount) AND (obCount2 != objCount2))

 EVT_${smevt.Mning},

 .else

 .if ((count == objCount) AND (obCount2 == objCount2))

 EVT_${smevt.Mning}

 .else

 EVT_${smevt.Mning},

 .end if

 .end if

 .assign count = count + 1

 .end for

 .end if

 .assign obCount2 = obCount2 + 1

.end for

};

.print "Generating SAL Class Mapping"

.select many o_ob from instances of O_OBJ

.for each o_obj in o_ob

.if (o_obj.Name != "Test")

REC_${o_obj.Name} : TYPE = [#

 .select many o_attr related by o_obj->O_ATTR[R102]

 .assign objCount = cardinality o_attr

 .assign count = 1

 .for each attribute in o_attr

 .select one datatype related by attribute->S_DT[R114]

 .assign comma = 1

244

 .if (count < objCount)

 .assign comma = 1

 .else

 .assign comma = 0

 .end if

 .if ((datatype.Name == "integer") AND (comma == 1))

 ${attribute.Name} : ${attribute.Name}_type,

 .elif ((datatype.Name == "integer") AND (comma == 0))

 ${attribute.Name} : ${attribute.Name}_type

 .elif ((datatype.Name == "boolean") AND (comma == 1))

 ${attribute.Name} : BOOLEAN,

 .elif ((datatype.Name == "boolean") AND (comma == 0))

 ${attribute.Name} : BOOLEAN

 .//elif ((datatype.Name == "state<State_Model>") AND (comma == 1))

 .//${attribute.Name} : ST_${o_obj.Name},

 .//elif ((datatype.Name == "state<State_Model>") AND (comma == 0))

 .//${attribute.Name} : ST_${o_obj.Name}

 .elif ((datatype.Name == "inst_ref<Timer>") AND (comma == 1))

 ${attribute.Name} : ${attribute.Name}_type,

 .elif ((datatype.Name == "inst_ref<Timer>") AND (comma == 0))

 ${attribute.Name} : ${attribute.Name}_type

 .elif ((comma == 1) AND (datatype.Name != "state<State_Model>"))

 ${attribute.Name} : ${datatype.Name},

 .elif ((comma == 0) AND (datatype.Name != "state<State_Model>"))

 ${attribute.Name} : ${datatype.Name}

 .end if

 .assign count = count + 1

 .end for

#];

245

.end if

.end for

.print "Generating SAL Modules"

.select many o_ob from instances of O_OBJ

.for each o_obj in o_ob

.if (o_obj.Name != "Test")

MOD_${o_obj.Name} : MODULE =

BEGIN

.print "Generating Module Global Section"

%% Global Section

 GLOBAL ${o_obj.Name}: REC_${o_obj.Name}

 GLOBAL EVT: EVT_${c_cs.Name}

 GLOBAL ${o_obj.Name}_State: ST_${o_obj.Name}

 .select many o_ob2 from instances of O_OBJ

 .for each o_obj2 in o_ob2

 .if (o_obj.Name != o_obj2.Name)

 .if (o_obj2.Name != "Test")

 INPUT ${o_obj2.Name}: REC_${o_obj2.Name}

 .end if

 .end if

 .end for

.print "Generating SAL Initialization Section"

INITIALIZATION

.select many o_attr related by o_obj->O_ATTR[R102]

 .assign objCount = cardinality o_attr

246

 .assign count = 1

 .assign classInit = ""

 .assign initState = ""

 .for each attribute in o_attr

 .select one datatype related by attribute->S_DT[R114]

 .if (datatype.Name == "state<State_Model>")

 .assign initState = attribute.DefaultValue

 .else

 .if (objCount == count)

 .assign classInit = classInit + " ${attribute.Name} :=

${attribute.DefaultValue} #); "

 .else

 .assign classInit = classInit + " ${attribute.Name} :=

${attribute.DefaultValue}, "

 .end if

 .end if

 .assign count = count + 1

 .end for

 ${o_obj.Name}_State = ST_${initState};

 ${o_obj.Name} = (# ${classInit}

.print "Generating SAL Transitions"

TRANSITION

[

.assign firstEntry = 0

.select any sm_instance related by o_obj->SM_ISM[R518]

.if (not_empty sm_instance)

 .select one sm_sm related by sm_instance->SM_SM[R517]

 .select many states related by sm_sm->SM_STATE[R501]

247

 .for each state in states

 %% stateName = ST_${state.Name}

 .select many MatrixEntrys related by state->SM_SEME[R503]

 .select many salStat from instances of ACT_SR

 .if (not_empty salStat)

 .assign nehadStat = cardinality salStat

 all state count = ${nehadStat}

 .else

 .//no statement found at all xxssss

 .end if

 .for each MatrixEntry in MatrixEntrys

 .select one event related by MatrixEntry->SM_SEVT[R503]-

>SM_EVT[R525]

 .select one newState related by MatrixEntry-

>SM_NSTXN[R504]

 .if (not_empty newState)

 %% event = EVT_${event.Mning}

 .select one tranSition related by newState-

>SM_TXN[R507]

 .select one destStateX related by tranSition-

>SM_STATE[R506]

 .select any block1 related by state->SM_MOAH[R511]-

>SM_AH[R513]->SM_ACT[R514]->ACT_SAB[R691]->ACT_ACT[R698]-

>ACT_BLK[R666]

 .select many block2 related by state->SM_MOAH[R511]-

>SM_AH[R513]->SM_ACT[R514]->ACT_SAB[R691]->ACT_ACT[R698]-

>ACT_BLK[R601]

248

 .select any block3 related by state->SM_MOAH[R511]-

>SM_AH[R513]->SM_ACT[R514]->ACT_SAB[R691]->ACT_ACT[R698]-

>ACT_BLK[R650]

 .select many block4 related by state->SM_MOAH[R511]-

>SM_AH[R513]->SM_ACT[R514]->ACT_SAB[R691]->ACT_ACT[R698]-

>ACT_BLK[R612]

 .select any block5 related by state->SM_MOAH[R511]-

>SM_AH[R513]->SM_ACT[R514]->ACT_SAB[R691]->ACT_ACT[R698]-

>ACT_BLK[R699]

 .assign blkCount2 = cardinality block2

 .assign blkCount4 = cardinality block4

 .if (not_empty block1)

 .//block 1 is not empty

 .end if

 .if (not_empty block3)

 .//block 3 is not empty

 .end if

 .if (not_empty block5)

 .//block 5 is not empty

 .end if

 .if (firstEntry == 0)

 .assign firstEntry = 1

 .else

 []

 .end if

 (${o_obj.Name}_State = ST_${state.Name}) AND (EVT

= EVT_${event.Mning}) -->

 ${o_obj.Name}_State' = ST_${destStateX.Name};

249

 .end if

 .end for

 .end for

.end if

]

END;

.end if

.end for

.print "Generating System Module"

.assign output = ""

.select many o_ob from instances of O_OBJ

.assign objCount = cardinality o_ob

.assign count = 1

.for each o_obj in o_ob

.assign count = count + 1

.if (o_obj.Name != "Test")

 .assign output = output + "MOD"

 .assign output = output + "_${o_obj.Name}"

 .if (count < objCount)

 .assign output = output + " [] "

 .end if

.end if

.end for

%% System Module:

system: MODULE = ${output};

END

250

.print "Generating THEOREMS"

%%Generate Theroems

.select many o_ob from instances of O_OBJ

.assign objCount = cardinality o_ob

.assign count = 1

.for each o_obj in o_ob

.assign count = count + 1

.if (o_obj.Name != "Test")

.select any sm_instance related by o_obj->SM_ISM[R518]

.if (not_empty sm_instance)

 .select one sm_sm related by sm_instance->SM_SM[R517]

 .select many states related by sm_sm->SM_STATE[R501]

 .assign count=0

 .for each state in states

 .assign count = count +1

 .select one action related by state->SM_MOAH[R511]->SM_AH[R513]-

>SM_ACT[R514]

 .if (not_empty action)

 .if (action.Descrip != "")

%% stateName = ST_${state.Name}

Safe_${o_obj.Name}_${count}: THEOREM system |- G(${action.Descrip} AND

${o_obj.Name}_State = ST_${state.Name})

 .end if

 .end if

 .//Safe_${o_obj.Name}_${count}: THEOREM system |-

G(${o_obj.Name}_State)

 .end for

.end if

.end if

251

.end for

.//select any sm_instance related by o_obj->SM_ISM[R518]

.//if (not_empty sm_instance)

 .//select one sm_sm related by sm_instance->SM_SM[R517]

 .//select many states related by sm_sm->SM_STATE[R501]

 .//for each state in states

 .//%% stateName = ST_${state.Name}

 .//select one action related by state->SM_MOAH[R511]->SM_AH[R513]-

>SM_ACT[R514]

 .//if

 .//end for

.//end if

.emit to file "${c_cs.Name}.sal"

	Formal verification of automotive embedded UML designs
	Recommended Citation
	APA Citation
	MLA Citation

	Dissertation

