
 Eindhoven University of Technology

MASTER

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case
study

Janardhan, J.

Award date:
2018

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/d27729f4-b4da-4f69-8c75-26e7d79a69f9

Methodology for selecting low-cost
AUTOSAR tool-chain and its

evaluation through a case study

EIT Digital Embedded Systems - Master Thesis

Janahvi Janardhan
j.janardhan@student.tue.nl

Systems Architecture and Networking Group
Department of Mathematics and Computer Science

Eindhoven University of Technology

Methodology for selecting low-cost
AUTOSAR tool-chain and its

evaluation through a case study

EIT Digital Embedded Systems - Master Thesis

Janahvi Janardhan
j.janardhan@student.tue.nl

Systems Architecture and Networking Group
Department of Mathematics and Computer Science

Eindhoven University of Technology

Supervisor:

Dr. ir. Reinder J Bril, TU/e

Committee Members:

Dr. ir. Ion Barosan, TU/e
Diederik van Dijk, BRACE Automotive

Geert van der Wal, BRACE Automotive

Version 1.0

Eindhoven, August 2018

Abstract

Automotive embedded systems are going through a rapid paradigm shift in terms of embed-
ded system architectures and software design techniques. The increasing complexities have led
to a shift from using legacy software towards using the AUTomotive Open System Architecture
(AUTOSAR). AUTOSAR is an open and standardized software architecture for the development
of automotive Electronic Control Units (ECUs), jointly initiated by manufacturers, suppliers and
developers. AUTOSAR tools to implement the AUTOSAR architecture have found a great prom-
inence due to the increasing complexity of this standard and hence they are highly priced. This
thesis explores a methodology for selecting AUTOSAR tools by the application of Analytic Hier-
archy Process (AHP). Each tool alternative is ranked based on six main selection criteria viz.,
Functionality, Interoperabiltiy, Usability, Service & Support, Cost & Distribution and Testability.
Further, an emphasis is given to selecting low-cost AUTOSAR tools, exploring the opportunities
for new entrant automotive companies venturing into the AUTOSAR market. Methodology ap-
plied for selecting tools in this thesis led to following result: Performance wise AUTOSAR tools
from Vector, Dassault Systems and ETAS were ranked high. Cost wise, ArcCore’s Arctic Studio
tool, COMASSO and Mathwork’s Embedded Coder got higher ranks. Out of these three, Arc-
tic Studio was used for implementing an AUTOSAR compliant Controller Area Network (CAN)
communication stack. It was further evaluated based on the selection criteria mentioned above.
Based on the experience gained, it could be concluded that, it is crucial that a tool vendor provides
support for the hardware platform selected for development of an AUTOSAR application.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study iii

Acknowledgments

I would like to express my sincere gratitude to my committee chair, Dr. ir. Reinder J Bril and
Dr. ir. Ion Barosan for their immense support, guidance and patience during this entire thesis. I
sincerely thank Mr. Bart Oosthoek, Mr. Diederik van Dijk, Mr. Geert van der Wal and Mr. Ruud
Bogers of BRACE Automotive for the opportunity, their feedback, support and advise. I would
like to also thank Mr. Daniel Versteeg, Mr. Marco Stijn and Mr. Onno Oenema of Orlaco B.V.
for giving me an opportunity to collaborate with them during this thesis. In addition, a thank
you to Mr. Siddharth Nair and Mr. Thomas Winkeler of ArcCore for their gracious support with
Arctic Studio. Last but not the least, I’d like to thank all my colleagues at BRACE Automotive,
family and friends for standing beside me during difficult times.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study v

Contents

Contents vii

List of Figures xi

List of Tables xv

Listings xvii

1 Introduction 1

1.1 Background . 1

1.2 Problem Description . 3

1.3 Objectives . 4

1.4 Research Questions . 4

1.5 Research Methodology . 5

1.6 Thesis Outline . 6

2 Decision Analysis Methods 7

2.1 Model-based Software Development tools . 7

2.2 Decision Making Tools . 8

2.2.1 Analytic Hierarchy Process (AHP) . 9

2.2.2 Analytic Network Process (ANP) . 9

2.2.3 Data Envelopment Analysis (DEA) . 10

2.2.4 ELimination Et Choix Traduisant la REalité (ELECTRE) 10

2.2.5 Fuzzy Set Theory . 10

2.2.6 Goal Programming (GP) . 10

2.2.7 Multi Attribute Utility Theory (MAUT) . 11

2.2.8 Preference Ranking Organization METHod for Enrichment Evaluation (PRO-
METHEE) . 11

2.2.9 Simple Addition Weighting (SAW) . 11

2.2.10 Simple Multi-Attribute Rating Technique (SMART) 11

2.3 Summarizing the comparison of MCDM methods for this application 12

3 Literature on AUTOSAR Architecture and Tools 15

3.1 AUTOSAR Layered Software Architecture . 15

3.1.1 Application Layer . 15

3.1.2 BSW Layer . 18

3.1.3 RTE Layer . 19

3.2 AUTOSAR Interfaces . 20

3.3 AUTOSAR Methodology . 21

3.4 Theoretical knowledge of the required BSW modules 21

3.5 AUTOSAR tools . 23

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study vii

CONTENTS

4 Tools Selection Methodology 33
4.1 Overview . 33
4.2 Stakeholder identification (Users of AUTOSAR tools) 34
4.3 Requirements analysis . 35
4.4 Architectural modeling . 41

4.4.1 Model tools . 41
4.4.2 Application tools . 41
4.4.3 Basic software tools . 42
4.4.4 RTE tools . 42

4.5 Criteria selection . 42
4.6 Analytic Hierarchy Process (AHP) . 44
4.7 Application of Analytic Hierarchy Process(AHP) 47

4.7.1 Goal identification and representation of goals and criteria in a hierarchical
framework . 47

4.7.2 Pair-wise matrix comparisons . 47
4.7.3 Synthesis (relative importance) and Consistency ratio (CR) 49
4.7.4 Overall priority ranking and tool selection 51

4.8 Tool selection . 52
4.9 Trade-offs . 52

5 Demonstrator 53
5.1 Initial design and challenges faced . 53

5.1.1 System requirements . 53
5.1.2 System hardware . 54
5.1.3 System software design . 55
5.1.4 Challenges faced with the initial design and implementation 58

5.2 Updated design of the demonstrator . 60
5.2.1 System hardware . 60
5.2.2 System software . 60

5.3 Other tools used . 62

6 Implementation 63
6.1 Overview . 63
6.2 Application software development . 63

6.2.1 Defining interfaces and data elements . 63
6.2.2 Software Component Description (SWCD) 64

6.3 ECU extract generation . 66
6.4 Developing the application code . 67
6.5 ECU configuration . 67

6.5.1 CAN driver . 68
6.5.2 CAN interface . 68
6.5.3 PduR . 70
6.5.4 COM . 70
6.5.5 AUTOSAR OS . 71
6.5.6 BswM . 71
6.5.7 EcuM . 72
6.5.8 IoHwAb . 72
6.5.9 PORT . 72
6.5.10 DIO . 73
6.5.11 EcuC . 73

6.6 RTE configuration . 74
6.7 Generation of executable . 74
6.8 Flashing on hardware . 75

6.8.1 Results . 75

viii Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CONTENTS

7 Evaluation 77
7.1 Evaluation of the ArcCore Tool-chain . 77
7.2 Evaluation of AHP algorithm for selecting AUTOSAR tools 80

7.2.1 Drawbacks of AHP algorithm . 80

8 Conclusion 81
8.1 Reflection on thesis goals and objectives . 81
8.2 Reflection on research questions . 82
8.3 Reflection on research methodology . 84
8.4 Recommended practices . 84
8.5 Future work . 84

Bibliography 85

Appendix A 91

A Tool selection methodology results 91
A.1 Tool use-case diagrams . 91
A.2 Application of AHP - Results . 95

A.2.1 Overall synthesis results for each tool category 95
A.2.2 Overall synthesis results for each tool criteria

Criteria - Functionality . 97
A.2.3 Criteria - Interoperability . 101
A.2.4 Criteria - Usability . 105
A.2.5 Criteria - Cost and Distribution . 109
A.2.6 Criteria - Service and Support . 113
A.2.7 Criteria - Testability . 117

A.3 Graphs - Based on Performance criteria . 121
A.4 Graphs - Based on Low-cost criteria . 125

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study ix

List of Figures

1.1 Exponential growth of ECU complexity . 1

2.1 Exponential growth of ECU complexity . 10

3.1 Layered software architecture for AUTOSAR . 16
3.2 Classification of BSW layers. (Red - MCAL, Green - ECUAL, Purple - SL) 16
3.3 Port notations . 17
3.4 Application SWC type . 17
3.5 Parameter SWC type . 17
3.6 Sensor Actuator SWC type . 17
3.7 ECU abstraction SWC type . 17
3.8 Composition SWC type . 17
3.9 Complex Device Driver Layer . 19
3.10 Microcontroller Abstraction Layer . 19
3.11 AUTOSAR Interfaces . 20
3.12 AUTOSAR Methodology . 21
3.13 AUTOSAR BSW modules . 22

4.1 Architecture Design in Software Development Cycle 33
4.2 Proposed tool selection methodology work-flow . 34
4.3 Consolidated stakeholder requirements diagram . 36
4.4 Stakeholder requirements diagram for Model Tools 37
4.5 Stakeholder requirements diagram for ASW Tools 38
4.6 Stakeholder requirements diagram for BSW Tools 39
4.7 Stakeholder requirements diagram for RTE Tools 40
4.8 Analytic Hierarchy Process . 44
4.9 Pair-Wise Comparison Matrix . 45
4.10 Model tools - Pair-wise comparisons . 47
4.11 ASW tools pair-wise comparisons . 47
4.12 BSW tools pair-wise comparisons . 47
4.13 RTE tools pair-wise comparisons . 47
4.14 AHP hierarchical framework of goals and criteria 48
4.15 Priority graph w.r.t. Model tools . 49
4.16 Priority graph w.r.t. ASW tools . 49
4.17 Priority graph w.r.t. BSW tools . 49
4.18 Priority graph w.r.t. RTE tools . 50
4.19 Synthesis graph for all the tool alternatives . 51
4.20 Overall tool ranking . 51

5.1 Initial design of the demonstrator . 54
5.2 Topology diagram for the demonstrator . 55
5.3 Software Components . 56

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study xi

LIST OF FIGURES

5.4 Application design . 57
5.5 Initial design of the demonstrator . 59
5.6 Final design of the demonstrator . 60
5.7 Final design of the demonstrator . 61
5.8 Final design of the demonstrator . 62

6.1 Generation of configuration files using BSW Editor tool 68
6.2 BSW Editor tool interface in Arctic Studio . 68
6.3 Configuring CAN Driver in Arctic Studio . 69
6.4 Configuring CAN Driver in Arctic Studio . 69
6.5 Configuring CANIF module - CanIfRxPdu being assigned to CanIfHrhCfg 69
6.6 CanIfHrhCfg being referenced to CanHardwareObjectRx 69
6.7 PDU routing table . 69
6.8 CANIF assigned to be source PDU while CAN message is received 70
6.9 COM module configuration . 70
6.10 Configuration of AUTOSAR OS . 71
6.11 Configuration of BswM module . 72
6.12 Configuration of IoHwAb module . 73
6.13 Configuration of PORT module . 73
6.14 Configuration of DIO module . 73
6.15 Configuration of EcuC module . 74
6.16 Configuration of EcuC module . 74
6.17 RTE configuration . 74
6.18 Flashing the binaries on TI Hercules TMS570LC4357 Launchpad 75
6.19 CAN Transmit and Receive messages . 76
6.20 Activated LED light . 76

7.1 Arctic Studio tool evaluation based on documentation (Before) and practical ex-
perience (After) . 80

A.1 Application Software tool use case diagram . 91
A.2 Modeling tools use case diagram . 92
A.3 Basic software tool use case diagram . 93
A.4 RTE tool use case diagram . 94
A.5 Synthesis graph w.r.t. Model tools . 95
A.6 Synthesis graph w.r.t. ASW tools . 95
A.7 Synthesis graph w.r.t. BSW tools . 96
A.8 Synthesis graph w.r.t. RTE tools . 96
A.9 Pair-wise comparisons for the criteria Functionality of Model Tools 97
A.10 Synthesis w.r.t. criteria - Functionality of Model Tools 97
A.11 Pair-wise comparisons for the criteria Functionality of ASW Tools 98
A.12 Synthesis w.r.t. criteria - Functionality of ASW Tools 98
A.13 Pair-wise comparisons for the criteria Functionality of BSW Tools 99
A.14 Synthesis w.r.t. criteria - Functionality of BSW Tools 99
A.15 Pair-wise comparisons for the criteria Functionality of RTE Tools 100
A.16 Synthesis w.r.t. criteria - Functionality of RTE Tools 100
A.17 Pair-wise comparisons for the criteria Interoperability of Model Tools 101
A.18 Synthesis w.r.t. criteria - Interoperability of Model Tools 101
A.19 Pair-wise comparisons for the criteria Interoperability of ASW Tools 102
A.20 Synthesis w.r.t. criteria - Interoperability of ASW Tools 102
A.21 Pair-wise comparisons for the criteria Interoperability of BSW Tools 103
A.22 Synthesis w.r.t. criteria - Interoperability of BSW Tools 103
A.23 Pair-wise comparisons for the criteria Interoperability of RTE Tools 104
A.24 Synthesis w.r.t. criteria - Interoperability of RTE Tools 104

xii Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

LIST OF FIGURES

A.25 Pair-wise comparisons for the criteria Usability of Model Tools 105
A.26 Synthesis w.r.t. criteria - Usability of Model Tools 105
A.27 Pair-wise comparisons for the criteria Usability of ASW Tools 106
A.28 Synthesis w.r.t. criteria - Usability of ASW Tools 106
A.29 Pair-wise comparisons for the criteria Usability of BSW Tools 107
A.30 Synthesis w.r.t. criteria - Usability of BSW Tools 107
A.31 Pair-wise comparisons for the criteria Usability of RTE Tools 108
A.32 Synthesis w.r.t. criteria - Usability of RTE Tools 108
A.33 Pair-wise comparisons for the criteria Cost and Distribution of Model Tools 109
A.34 Synthesis w.r.t. criteria - Cost and Distribution of Model Tools 109
A.35 Pair-wise comparisons for the criteria Cost and Distribution of ASW Tools 110
A.36 Synthesis w.r.t. criteria - Cost and Distribution of ASW Tools 110
A.37 Pair-wise comparisons for the criteria Cost and Distribution of BSW Tools 111
A.38 Synthesis w.r.t. criteria - Cost and Distribution of BSW Tools 111
A.39 Pair-wise comparisons for the criteria Cost and Distribution of RTE Tools 112
A.40 Synthesis w.r.t. criteria - Cost and Distribution of RTE Tools 112
A.41 Pair-wise comparisons for the criteria Service and Support of Model Tools 113
A.42 Synthesis w.r.t. criteria - Service and Support of Model Tools 113
A.43 Pair-wise comparisons for the criteria Service and Support of ASW Tools 114
A.44 Synthesis w.r.t. criteria - Service and Support of ASW Tools 114
A.45 Pair-wise comparisons for the criteria Service and Support of BSW Tools 115
A.46 Synthesis w.r.t. criteria - Service and Support of BSW Tools 115
A.47 Pair-wise comparisons for the criteria Service and Support of RTE Tools 116
A.48 Synthesis w.r.t. criteria - Service and Support of RTE Tools 116
A.49 Pair-wise comparisons for the criteria Testability of Model Tools 117
A.50 Synthesis w.r.t. criteria - Testability of Model Tools 117
A.51 Pair-wise comparisons for the criteria Testability of ASW Tools 118
A.52 Synthesis w.r.t. criteria - Testability of ASW Tools 118
A.53 Pair-wise comparisons for the criteria Testability of BSW Tools 119
A.54 Synthesis w.r.t. criteria - Testability of BSW Tools 119
A.55 Pair-wise comparisons for the criteria Testability of RTE Tools 120
A.56 Synthesis w.r.t. criteria - Testability of RTE Tools 120
A.57 Ranking of model tools prioritizing performance . 121
A.58 Ranking of ASW tools prioritizing performance . 122
A.59 Ranking of BSW tools prioritizing performance . 123
A.60 Ranking of RTE tools prioritizing performance . 124
A.61 Ranking of model tools prioritizing cost . 125
A.62 Ranking of ASW prioritizing cost . 126
A.63 Ranking of BSW tools prioritizing cost . 127
A.64 Ranking of RTE tools prioritizing cost . 128

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study xiii

List of Tables

2.1 AUTOSAR tool features coverage . 12

3.1 AUTOSAR tool features . 28
3.3 AUTOSAR tool features coverage . 30

4.1 Pairwise Comparison Table . 45
4.3 Random Index of consistency for corresponding order of matrix 46

5.1 Application design . 56
5.3 Communication matrix . 57
5.4 Actuator component accessing I/O . 58
5.5 Application design . 61
5.6 Communication matrix . 61
5.7 Actuator component accessing I/O . 61

A.1 AUTOSAR tool cost analysis . 129

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study xv

Listings

6.1 Interfaces and data mapping SWCD code . 64
6.2 CANDataReaderComponent SWC . 64
6.3 CANDataReaderComponent SWC . 65
6.4 BlinkLEDComponent SWC . 66
6.5 C code implementation for CAN data reader component 67
6.6 C code implementation for CAN data writer component 67
6.7 C code for implementing BlinkLED software component 67
6.8 .elf file execution output . 75

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study xvii

Abbreviations

ADC Analog to Digital Converter
AHP Analytic Hierarchy Process
ALMA Architecture Level Modifiability Analysis
ANP Analytic Network Process
API Application Program Interface
ARXML AUTOSAR Extensible Markup Language
ASW Application Software
AUTOSAR AUTomotive Open System Architecture
BSW Basic Software
BswM Basic Software Manager
CAN Controller Area Network
CANIF Controller Area Network Interface
CCS Code Composer Studio
CDD Complex Device Driver
CI Consistency Index
COM COMmunication
COMET Characteristic Object METhod
COMM COMmunication Manager
CR Consistency Ratio
DIO Digital Input Output
E/E Electric / Electronic
ECU Electronic Control Unit
ECUAL ECU Abstraction Layer
EcuC ECU Configuration
EcuM ECU Manager
EEPROM Electrically Erasable Programmable Read-Only Memory
ETHIF ETHernet Interface
IoHwAb IO Hardware Abstraction
IPdu Information Protocol Data Unit
MCAL Microcontroller Abstraction Layer
MCU Microcontroller Unit
MEMIF MEMory InterFace
OEM Original Equipment Manufacturer
OS Operating System
PduR Protocol Data Unit Router
PWM Pulse Width Modulation
RI Random Index
RTE Run-Time Environment
SAAM Software Architecture Analysis Method
SL Service Layer

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study xix

LISTINGS

SMAA Stochastic Multicriteria Acceptability Analysis
SPI Serial Peripheral Interface
SysML System Modeling Language
VFB Virtual Function Bus

xx Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Chapter 1

Introduction

1.1 Background

Over the past few years, the automotive industry is experiencing a new revolution and is adapting
to new challenges with developments in technology, consumer demands, globalization and collab-
oration strategies. The Electrical and Electronic (E/E) complexity and the amount of software
code within a vehicle has increased tremendously and it continues to grow [1]. The innovative func-
tionalities and software features incorporated within modern cars are a key differentiator between
a high-end and a low-end vehicle [2]. About 80% of the innovative applications in the vehicles
today, like the adaptive cruise control, collision avoidance, parking aid, in-car entertainment, etc.,
are all based on a collection of embedded software and hardware features [3] (Figure 1.1). With
the increase in the amount of these applications, the number of Electronic Control Units (ECUs)
deployed in a car, has also increased exponentially [4]. This leads to an overall increase in the
hardware, software and network complexities [5]. As a result of increasing complexity of ECUs in

Figure 1.1: Exponential growth of ECU complexity

vehicles, an automotive engineer is faced with numerous design challenges across a wide range of
applications.

In a traditional method of designing ECU software architecture, the Original Equipment Man-
ufacturers (OEMs) and the software developers followed an ECU-centric development approach.
In an ECU-centric design approach, adding new software components to the existing software
required the redesign of an entire ECU software architecture [6], which hindered non-functional

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 1

CHAPTER 1. INTRODUCTION

demands like software re-usability and shorter time to market. Moreover, the last generation cars
did not have many applications that were computationally intensive. With the onset of autonom-
ous cars and advanced applications deployed on it, the demand for a high performance hardware
has increased. Factors like lack of scalability, reusability and interoperability across product lines;
need for more flexible solutions and reduced complexity in software development led to a paradigm
shift from ECU-centric approach to focusing on function-centric development. This motivated
the creation of the AUTomotive Open System ARchitecture (AUTOSAR) consortium which was
formed by major automotive OEMs like BMW, Ford, Daimler Chrysler etc. in the year 2003 [8] [9].

AUTOSAR is an open standard which aims to standardize the automotive software archi-
tecture and framework. It is a component based reference architecture for automotive software
applications which also deploys a layered architecture style for developing software layers for auto-
motive ECUs. The layered architecture decouples the above layer from the layers below, thereby
providing abstraction and masking the underlying details. This separates the concerns for software
developers, system designers, system integrators etc. The AUTOSAR architecture, decouples the
Application Software (ASW) layer from the underlying Basic Software (BSW) layer by means of
a standardized middelware called the Run-Time Environment (RTE) layer. The standard also en-
ables non-functional requirements like scalability, transferability, interoperability, to name a few.
Transferability refers to reducing the overhead involved in transferring functions between ECUs
and different platforms, which implies an increased code re-use. Scalability refers to a possibility
to add and remove functions without having to re-configure the underlying code mapped to the
hardware. Interoperability means the ability to integrate the functional modules from multiple
suppliers [7]. It’s also aimed at enhancing the quality and reliability of the E/E systems. The
main goal of the AUTOSAR consortium is to agree upon co-operating on the standards but to
compete on implementation.

AUTOSAR partnership has varied levels of membership [14], Core members, Premium mem-
bers, Development partners, Associate partners and Attendees. The core partners are involved in
the development and management of the AUTOSAR standard and specifications. The premium
members have to contribute 1.5 of a full-time equivalent (FTE) and also contribute e17,500 an-
nually, towards the consortium. The development members are required to contribute 0.5 of an
FTE, while the Associate partners are required to contribute e10,000. However, the attendees do
not have to contribute either in the development time (FTE) or contribute any annual fee. This
means, they are the only group that are not allowed to use AUTOSAR royalty-free for developing
AUTOSAR applications [8]. Therefore, in order to use AUTOSAR products commercially, an
organization must be a member of the AUTOSAR partnership.

Although, AUTOSAR architecture was developed to ease the process of software development
of E/E systems, constant addition of new features and extensions to the standard has made the
standard itself more complex. This implies that, implementing AUTOSAR standard is a complex
task to manage via manual work-flow and requires a sophisticated tool-chain for functions like
modeling, early stage development, verification, validation and testing of the system. Tools are
used in the development of the AUTOSAR architecture right from model design phase to config-
uring the application components, basic software components, run time environment and finally
generating executable files (final product). Furthermore, these tools play an important role in
improving lead time, time to market and deliver cost advantages for the OEMs by enabling the
use of standard interfaces and components based on the AUTOSAR specifications. As a result,
there is a huge demand for using an AUTOSAR tool-chain by major OEMs and tier-1 suppliers
in automotive industry.

In order to deploy the AUTOSAR architecture on automotive ECUs, the AUTOSAR tool-chain
plays a pivoting role. AUTOSAR standard specifications are very extensive and time consuming
to be implemented manually (> 20,000 pages) [15] and keeping up with lead time for product
development is of utmost importance in the automotive industry. Therefore, selecting a right

2 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 1. INTRODUCTION

tool-chain forms an integral part of the development process of an AUTOSAR compliant auto-
motive ECU.

This thesis emphasizes on an increased importance of selecting and using an appropriate tool-
chain to implement AUTOSAR architecture and automate the software development process.

1.2 Problem Description

In the past few years, many tool vendors have incorporated AUTOSAR tooling into their product
list. It was observed that there were mainly two categories of tool vendors that developed these
tools. Some tool vendors enhanced their existing tooling to include certain export and import cap-
abilities of AUTOSAR features within their tools (e.g. Continental). Others used the standard
specifications as an opportunity to create new AUTOSAR tools (e.g. Vector, ArcCore). These
tools either provided functionality covering only a part of the entire design and development phase
(i.e. modeling, deploying, testing), or provided functionality that covered all development phases.
With different combinations of these tools it is inconvenient for OEMs to find the most appropriate
set of tools that support their particular E/E architecture design process. Even with a proper set
of tools, it remains a major challenge to combine them into a consistent and flexible tool-chain,
covering all design and developmental phases. In particular, there is a lack of a systematic ap-
proach (methodology) towards selecting these tools.

Further, selection of requirements for developing tools by prominent tool vendors [11, 12] often
benefits the OEMs and other multi-national tier 1 companies. The tools are made to be highly
sophisticated to handle the growing requirements on E/E architectures and ease the process of
production, thereby increasing the productivity and profit for the OEMs. As a result, the majority
of tools are proprietary and high-priced. Those companies which are below the tier 1 zone (small
OEMs, automotive equipment manufacturers, new entrant companies), find ”initial investmest”
to be one of the major prohibitive factors to procure an appropriate set of tool-chain [10]. For
example, Vector [11], one of the tier 1 companies [14] and one of the major competitors in the
AUTOSAR tool-chain market, provides a set of tools for implementing AUTOSAR architecture on
automotive development platforms. Although these tools are full-fledged and sophisticated, they
are very expensive to procure for a new entrant AUTOSAR company in the automotive market [10].

In order to reduce the initial expenditure, it is important to understand what factors affect the
performance and increased cost of the AUTOSAR tool-chain. There are many aspects that must
be considered before making such a huge investment. Though AUTOSAR standard specifications
provide the necessary requirements for tools [17], tool vendors add special features to increase
their competitiveness. While this is not bad, it might not be a feasible low-cost option. Lack
of a methodology to select an AUTOSAR tool-chain and in particular low-cost tools is the main
motivation for this thesis. The purpose of this thesis is to provide a methodology for selecting an
AUTOSAR tool-chains and in particular, prioritizing cost as the main selection criteria to select
a set of tool-chain to implement the AUTOSAR architecture.

This thesis was conducted at BRACE Automotive B.V., who are a technological solutions pro-
vider in the automotive sector, located in Eindhoven, the Netherlands, partnered with Orlaco B.V.,
who are specialized in providing camera solutions, located in Barneveld, the Netherlands. BRACE
Automotive came up with an idea of finding low-cost tooling options w.r.t. AUTOSAR and to
further understand the AUTOSAR architecture and how it works. Both BRACE Automotive and
Orlaco were interested in understanding the required initial investment for using AUTOSAR and
gaining the AUTOSAR knowledge and trade-offs involved in selecting low-cost tool-chain. To sup-
port the investigation, a case study was performed, that resulted in a demonstrator that implements
a CAN communication stack using a low-cost AUTOSAR tool.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 3

CHAPTER 1. INTRODUCTION

For selecting an appropriate tool-chain, a list of criteria had to be considered and weighted, upon
which the tools could be compared. Therefore, a list of Multi-Criteria Decision Making (MCDM)
methods were investigated in order to select an AUTOSAR tool-chain for a particular criteria,
which is explained in Chapter 2. The selected MCDM algorithm is further evaluated to judge
its performance. The demonstrator, on the other hand, is used to evaluate the selected low-cost
AUTOSAR tool. In the remainder of this chapter, research objectives and research questions are
addressed together with the research methodology and is concluded with an outline for the rest of
the report.

1.3 Objectives

In order to realize the main goal i.e. to develop a methodology to select an AUTOSAR tool-chain
having cost as a key criteria, the following research objectives have been stated. (Here the system
under consideration is the AUTOSAR tool-chain)

1. Identification of the available MCDM tools and selecting the one that works best for this
application (to select AUTOSAR tool-chain).

2. Identification of stakeholders who work with the AUTOSAR tool-chain and discovery of the
key requirements for each of these stakeholders. This also includes identifying the key con-
straints and other bottlenecks involved in requirement analysis.

3. Identification of the key criteria for developing a methodology for selecting an AUTOSAR
tool-chain (which included basic components and/or framework for a specific class of products),
with the help of a decision making tool. The tool-chain selected was used to develop the
demonstrator.

4. Implementation of the demonstrator (artifacts of the demonstrator), evaluation of the tool-
chain used to implement the demonstrator. Further, also evaluating the performance of
MCDM tool used in selecting the AUTOSAR tool-chain.

1.4 Research Questions

To achieve the project objectives listed in Section 1.3, the following research questions were for-
mulated:

• Initially, a research was done on the available Multi-Criteria Decision Making (MCDM) tools.
Required knowledge for each of these methods was gained. Now, it was important to decide
which method to use and why. This led to the first research question which subsequently
answers the first objective.
RQ1.1 Which MCDM method is likely to perform better for this application and why?

• After gaining the required theoretical knowledge about AUTOSAR, key stakeholders in-
volved in the process of developing an automotive ECU and their key concerns were identi-
fied. Normally, a stakeholder is typically involved with the development of a system (demon-
strator) as an end product. But in this context, the goal was to select a tool-chain according
to a certain criteria. As a result, stakeholders considered are typically the ones that make use
of the AUTOSAR tool-chain and requirements are gathered based on what tool features are
important for developing an automotive ECU seamlessly. Hence, ”AUTOSAR tool-chain”
is regarded as ”system” in this context. Next set of research questions are formulated ac-
cordingly (second objective).
RQ2.1 Who are the key stakeholders in development of an automotive ECU using AUTO-
SAR architecture?
RQ2.2 What are their key concerns, requirements and constraints in terms of using AUTO-
SAR tool-chain to develop automotive ECUs seamlessly?

4 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 1. INTRODUCTION

• After having gathered all the stakeholders requirements and fine tuned, next step was to
analyze and come up with key criteria in selecting the tool-chain. To analyze these require-
ments, architectural diagrams and models using SysML were considered. This led to the
next set of research questions (second objective).
RQ3.1 What are the different architectural views and models of the AUTOSAR tool-chain
that addresses the concerns of stakeholders?
RQ3.2 How to derive the key criteria for selecting the tool-chain from these models?
RQ3.3 What are the different criteria that are finally selected in order to opt for an AUTO-
SAR tool-chain?

• After having found what are the key criteria and having made a list of tool vendors available
in the AUTOSAR tool market, the next step was to quantify the criteria. For this purpose,
a Multi-Criteria Decision Making tool was applied. Two sets of results were gathered from
this approach. One, to come up with the tool that outperformed others in terms of per-
formance and hence a big OEM looking for selecting AUTOSAR tool-chain purely based on
performance could opt for this tool. But if a small company that has a certain restriction on
the money that can be spent, then the other result depicted the set of tool-chain with cost
as the key selection criteria over others. Accordingly, these were the third set of research
questions (third objective).
RQ4.1 Which tool outperforms others in terms of performance as the key selection criteria?
RQ4.2 Which tool is better when cost is considered as a key criteria for selecting AUTOSAR
tool-chain?
RQ4.3 What are the trade-offs made in answering the question RQ4.2?

• To achieve the final objective, a demonstrator was implemented which is explained in Chapter
5. This step was the most crucial step to evaluate the tool-chain selected. Further, the de-
cision making method used was also evaluated based on the experience gained. The following
set of research questions were answered in this regard (fourth objective).
RQ5.1 Did the selected low-cost tool-chain perform well when applied to the demonstrator?
RQ5.2 What were the various challenges faced in this regard?
RQ5.3 How did the selected MCDM tool perform? Are there any recommendations to im-
prove the selection criteria or methodology to select the AUTOSAR tool-chain?

1.5 Research Methodology

Research methodology describes the procedure adopted in this work to answer the research ques-
tions in Section 1.5 and to achieve the set of goals and objectives for this thesis.

1. At first, a literature analysis of the available MCDM tools was done. After having understood
the pros and cons of each method (RQ1.1), a suitable method / decision making tool was
selected.

2. Next, a basic knowledge about AUTOSAR architecture standard, methodology and tools
required was acquired by studying the AUTOSAR standard specifications, journals and other
web resources. Then, stakeholders (that develop automotive ECU) who use the AUTOSAR
tool-chain were identified and requirements and concerns were put forth (RQ2.1) (RQ2.2).
Accordingly, constraints in these requirements were identified.

3. Having understood the requirements of the stakeholders, the architectural description and
viewpoints were modeled with the help of architectural diagrams (RQ3.1). The results
obtained in this step helped in understanding how each stakeholder interacts with different
parts of the tool-chain and this eventually helped in identifying the key criteria required to
select an AUTOSAR tool from the list of tool vendors considered (RQ3.2 RQ3.3).

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 5

CHAPTER 1. INTRODUCTION

4. The selected criteria are further quantified using the MCDM tool and the AUTOSAR
tools which outperform others in terms of performance and cost are then selected (RQ4.1,
RQ4.2). In order to select cost over performance, some trade-offs were made (RQ4.3).

5. The selected low-cost tool-chain was then applied to build the demonstrator, and it was
further evaluated using cost-to-performance ratio (RQ5.1). Final conclusions were made
by documenting the challenges faced and recommendations to improve the selection criteria
or the methodology(RQ5.2, RQ5.3).

1.6 Thesis Outline

This section explains the structure of the report. Chapter 2 imparts knowledge on the AUTOSAR
architecture briefly. Chapter 3 presents a list of decision making methods and analysis. Chapter
4 explains the methodology for selecting a tool-chain by considering stakeholders and their re-
quirements. Chapter 5 describes the system design for the demonstrator. Chapter 6 explains the
implementation and testing process in detail. Chapter 7 focuses on evaluating the tool-chain that
was used in the implementation of the demonstrator and the evaluation of MCDM tool chosen.
Chapter 8 presents the challenges faced, lessons learned and conclusions along with future scope.

6 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Chapter 2

Decision Analysis Methods

Section 2.1 briefly describes prior work done with respect to model-based design tools in automot-
ive industry and the transition to AUTOSAR architecture and tools (Chapter 3), which further
motivates the need for adopting decision making algorithms. These algorithms are used for ap-
plications in various fields like research and development, management, strategic planning and
others. After analyzing all the Multi-Criteria Decision Making (MCDM) algorithms, the Analytic
Hierarchy Process (AHP) was selected. The working of AHP and its application in order to select
the AUTOSAR tool-chain is described in Chapter 4.

2.1 Model-based Software Development tools

With an increase in the number of ECUs in a modern car, software complexity has also in-
creased over time. In order to address the growing complexity of software applications and al-
gorithms, automotive engineers have incorporated Model-Based Design (MBD) approach in devel-
oping ECUs. Model-based design, which is a widely used and accepted approach, is a methodology
applied in designing embedded software systems. It’s a mathematical and visual method of ad-
dressing problems associated with designing complex control, signal processing and communication
systems. It imparts automatic verification and validation, dynamic hardware-in-loop simulation,
code generation and many such other benefits, which enables the developer to identify errors at a
very early development stage.

MBD is widely used in the automotive and avionics domain today and hence considered as
one of the best approaches to handle complexities of modern embedded systems which are real-
time and safety critical [19]. This is because, MBD and software development together with tool
integration are getting more agile in development process. This improves an overall consistency
of the system. However, Broy et al., also pointed out that, though MBD is widely accepted, most
engineers still make use of standalone tools and therefore adapt their engineering methods and
processes to available / legacy tools. Moreover, integration of a tool-chain is not seamless and to
overcome the challenges of tool integration [21] a deep, coherent and comprehensive integration of
models and tools were required.

Further, Holtmann et al. [20], mentions about the process and tooling gaps present between
different modeling aspects for the system being developed. The proposed tool-chain in this paper
mentions two important tooling gaps. One, missing links between system level tools and software
development tools. Two, tools that are not inter-operable and require manual synchronization and
hence often inconsistent (rely on redundant information) and due to lack of automation require
redundant manual work.

Here, in order to mitigate the missing links between system architecture and software archi-

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 7

CHAPTER 2. DECISION ANALYSIS METHODS

tecture, Boldt [22] mentions that using Unified Modeling Language (UML) and System Modeling
Language (SysML) is the most powerful and extensible way to bridge the gap. Traceability of re-
quirements and different models can be achieved using UML and SysML, according to the author.
Pagel et al. [23] describes the benefits of using XML schema for data exchange via different tools.

The inception of AUTOSAR architecture along with SysML/UML was intended to bridge
this gap between system architecture description and software architecture description further.
Broy et al. [19] describes how AUTOSAR is one of the major approaches to create an integrated
product model for automotive domain. Although AUTOSAR provides a standardized approach
for software architecture description and data transfer (XML language), the authors also point
out that, due to a missing common tooling platform, the resulting AUTOSAR tools from different
tool vendors are again not fully compatible.

This led to an automotive tool-chain for AUTOSAR as presented by Voget [24] called AR-
TOP which provides a common base functionality for development of AUTOSAR compliant tools.
ARTOP is built on the Eclipse platform serving only as a common base for AUTOSAR tool de-
velopment and is not a tool solution in itself [25]. The available AUTOSAR tool vendors adopting
ARTOP in their developmental platforms are expected to provide interoperability and easy integra-
tion among tool-chains. Further, there are also other important criteria that has to be considered
other than just the two mentioned above. As a result, in order to select an appropriate set of
AUTOSAR tool-chain, determining a right set of criteria and ranking the alternatives required a
more systematic approach. Therefore as a point of reference for this work, decision making tools
were considered, which is further explained in next section.

2.2 Decision Making Tools

Decision making is an effective way of choosing between two or more alternatives for a partic-
ular task. For example, a System Architect of a certain company has to make decisions each
day. Though management takes the final decision, the System Architect is responsible to give
crucial insights and necessary data required to make a correct analysis and arrive at a decision.
According to Hammond et al. [27], a decision making process involves a clear understanding of
problem, goals and objectives. Then, the required information is gathered to support the decision
and different alternatives are identified. If there are multiple conflicting criteria in making such
decisions like cost, quality, usability, interoperability etc., then using a decision making tool takes
into consideration all the criteria and helps in choosing a best alternative.

It is observed that there is no single MCDM method to meet the requirements of every ap-
plication. A most appropriate decision making method for one application may not be a perfect
fit for another application. A feasible way to select an appropriate decision making method is by
assessing the attributes of an application to which it is being applied to, assessing the character-
istics exhibited by various MCDM methods under consideration and finally select an appropriate
method.

In this case, the main purpose was to select an appropriate MCDM method which in turn helps
in ranking tool alternatives for implementing the AUTOSAR architecture. Accordingly, following
objectives were considered before selecting a suitable MCDM method.

1. The selected MCDM method should be able to decouple goals from criteria and alternatives
in order to make the AUTOSAR tool selection methodology applicable to all instances. For
example, the selected MCDM method must allow adding or deleting alternatives and criteria
with little or no modifications to other values. Therefore, a distinct hierarchy makes it
possible to handle all dimensions of the selection criteria dexterously.

2. The selected MCDM method should be able to consolidate weighted criteria for each goal.

8 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 2. DECISION ANALYSIS METHODS

Since implementing an AUTOSAR architecture is an aggregation of more than one AUTO-
SAR tool, a cumulative comparison has to be made between the alternatives for a particular
criteria. As a result, the selected MCDM method should be able to rank the alternatives
based on consolidated weighted criteria. The selected MCDM method should be able to take
uncertainty factors during comparison into account.

3. The total number of tool alternatives being considered for comparison in order to select an
appropriate AUTOSAR tool-chain is not more than 15 tool vendors. It is known that as the
number of alternatives increases, the number of comparisons to be made also increases. As
a result, the selected MCDM method should be feasible to handle upto 15 alternatives and
finish in finite amount of time.

4. The selected MCDM method must be feasible and accessible to be performed in a finite
amount of time. Further, in order to reduce the decision’s makers workload, the selected
MCDM method must be able to completely or partially automate some operations.

Based on above mentioned objectives, the most important criteria considered to select a suitable
MCDM method are as follows:

• Distinct hierarchy

• Effective numerical analysis and core concept of the method

• Size of the application

• Feasibility measure

• Automation

Next section presents a list of suitable MCDM methods and are explained in brief. Further,
all these methods are compared based on the selection criteria mentioned above. Finally, an
appropriate MCDM method is selected which is further applied to select a suitable AUTOSAR
tool-chain in Chapter 4.

2.2.1 Analytic Hierarchy Process (AHP)

The Analytic Hierarchy Process [29], was developed by Thomas L. Saaty in the 1970s as a tool
to allocate resources and planning needs for the military. However, due to its ability to prioritize
multi-criteria requirements efficiently, it has been adopted in various fields like business, govern-
ment, industry, education etc. It is considered to be a structured technique for organizing and
analyzing complex decisions based on mathematics. AHP follows a mathematical approach of
allocating weights to each criteria and evaluating each alternative before arriving at a decision.
AHP tool is usually applied for criteria and alternatives that are mutually exclusive from each
other and the number of alternatives are not too many. As a result, AHP method was considered
to be a close fit for this case.

2.2.2 Analytic Network Process (ANP)

The Analytic Network Process [31], is a more general form of the Analytic Hierarchy Process used
in multi-criteria decision making analysis. AHP structures a decision problem into a hierarchy
with a goal, decision criteria, and alternatives, while the ANP structures it as a network. That
means, AHP considers each element in the hierarchy (criteria and alternatives) to be independent
of each other, while ANP takes into account the interdependence within the hierarchy.

In this case, since each alternative (AUTOSAR tools) and criteria were exclusive, ANP al-
gorithm was not an accurate choice. Exclusivity of criteria and alternatives is because, the AUTO-
SAR standard specifies that all tool vendors should adhere to the standard data exchange formats
while sharing information, thus making them interoperable [17].

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 9

CHAPTER 2. DECISION ANALYSIS METHODS

Figure 2.1: Exponential growth of ECU complexity

2.2.3 Data Envelopment Analysis (DEA)

Data Envelopment Analysis (DEA) is a linear programming based technique for measuring relative
performance of organizational units, which was first developed by Charnes, Cooper and Rhodes in
1978 [36]. It’s mainly used as a benchmarking technique to improve organizational performance
by comparing resources used and services provided by the organization. Further, it also helps in
identifying the most efficient units or best practice units and the inefficient units where efficiency
improvements are possible. This method was not considered in this case as we are only interested
in ranking and selecting the best tool-chain that are already available in the market.

2.2.4 ELimination Et Choix Traduisant la REalité (ELECTRE)

ELimination Et Choix Traduisant la REalité (ELECTRE) in English means Elimination and
Choice Translating Reality, is a well-known MDCM method particularly in Europe. ELECTRE
group of methods was proposed by Bernard Roy of France in 1960s [32]. It is a multi-criteria
decision analysis based on outranking method, consisting of several different models (I, II, III, IV,
A, IS and TRI) which are derived from the original ELECTRE I.
Outranking method based on ELECTRE amounts to validating or invalidating a pair of altern-
atives. ELECTRE’s preference based relations are modeled via a system of binary outranking
relations for each criteria separately. Construction of outranking relations are based on Con-
cordance and Non-discordance concepts. With these concepts, ELECTRE methods build one or
several outranking relations i.e., crispy, fuzzy, embedded. Considering two alternatives ’a’ and ’b’,
in a crispy outranking relation ’a’ is strictly preferred to ’b’ or vice versa. In a fuzzy relation, ’a’ is
indifferent to ’b’ and in an embedded relation ’a’ is incomparable to ’b’. Further, an exploitation
procedure is used to exploit previously obtained results and obtain the desired results for a given
problem.
This method was not considered suitable in this case since a single AUTOSAR tool doesn’t provide
all the required features and it is clear that a tool-chain from more than one tool alternatives must
be considered for ranking.

2.2.5 Fuzzy Set Theory

Fuzzy set theory is an extension of classical set theory where elements have a degree of membership
compared to the boolean logic of classical sets. It was first proposed by Lofti Zadeh and Dieter
Klauma in 1965 [37]. The decision making using fuzzy set theory method is mainly used in fields
like artificial intelligence, traffic monitoring system, human speech recognition, weather forecasting
systems etc. Although, fuzzy set theory has wide range of applications, in this case it was not
suitable to apply.

2.2.6 Goal Programming (GP)

The term Goal Programming (GP) was first coined in a book published by Charnes and Cooper in
1961 [38]. GP is a multi-objective programming technique. It can be thought of as an extension of
linear programming to solve complex decision variable problems where several objectives as well
as many variables and constants are involved. The basic approach of GP is to establish a specific

10 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 2. DECISION ANALYSIS METHODS

numeric goal for each of the objectives, formulate an objective function for each objective and
then seek a solution that minimizes the weighted sum of deviations of these objective functions
from their respective goals. This approach was not suitable for this case since there was a single
and a clear objective set to achieve.

2.2.7 Multi Attribute Utility Theory (MAUT)

Multi Attribute Utility Theory [28] is yet another decision making tool used to make analysis for
a decision problem that focuses on the structure of multi-criteria or multi-attribute alternatives
usually in the presence of risk or uncertainty. It can also be applied on methodologies for assessing
individual’s values and subjective probabilities. It is also based on mathematical theory and
the information obtained from the assessment usually is fed into the parent problem to rank
alternatives and make a suitable choice. Sensitivity analysis is also involved in the assessment
and choice processes. AHP algorithm is a direct competitor to MAUT as an efficient MCDM
technique for ranking the alternatives. However, MAUT is suitably used for solving problems
with a large number of criteria and alternatives, which are subject to constraints. Since the
number of alternatives chosen for this case were not too large, AHP was chosen over MAUT.

2.2.8 Preference Ranking Organization METHod for Enrichment Eval-
uation (PROMETHEE)

PROMETHEE method, like ELECTRE, is yet another family of outranking methods which was
first introduced by Jean-Pierre Brans in 1982 [33]. It includes PROMETHEE models I, II, III,
IV, V, VI, GDSS, TRI and CLUSTER. Partial and complete ranking of alternatives with the
methods of PROMETHEE family is made by calculating a positive outranking flow and a negative
outranking flow for each alternative. This method was not considered for the same reason as
ELECTRE.

2.2.9 Simple Addition Weighting (SAW)

Simple Addition Weighting (SAW) [34] is based on a value function which simply performs addition
of scores that represent the goal achievement under each criterion and are multiplied by particular
weights. It is mainly used in applications like water management, business, financial management
etc. Though it is very simple to use it is not very popular among decision makers.

2.2.10 Simple Multi-Attribute Rating Technique (SMART)

SMART is the simplest version of MAUT which was first introduced by Edwards in 1971. SMART
technique is based on linear additive model where the ratings for alternatives are assigned directly
instead of pair-wise comparison. For example, the criterion ”top speed” for cars would range from
150 to 200 miles per hour. Thus alternatives that satisfy this criteria are selected. Since each
AUTOSAR tool differs qualitatively and it’s not feasible to rate the selection criteria directly,
SMART method is not chosen for this case.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 11

C
H
A
P
T
E
R

2.
D
E
C
IS
IO

N
A
N
A
L
Y
S
IS

M
E
T
H
O
D
S

2.3 Summarizing the comparison of MCDM methods for this application

Table 2.1: AUTOSAR tool features coverage

MCDM
algorithms

Project
Size

Distinct
Hierarchy

Effective
numerical
analysis and
core concept

Feasibility
measure

Automation Selected? / Not Se-
lected?

AHP Suitable for
applications
with less
than 15
alternatives

Yes Pair-wise com-
parisons

Feasible (Ex-
pert Choice,
Excel etc.)

Yes (by spe-
cifying suitable
thresholds for
automatic-
ally deciding
some pair-wise
comparisons)

Selected

ANP < 15 tool al-
ternatives

No. Suitable
for applic-
ations with
hierarchical
dependen-
cies

Pair-wise com-
parisons

Feasible (Excel) Yes Not selected because
of interdependence
between the hierarch-
ies

DEA Can handle
large number
of inputs

No Linear program-
ming, measur-
ing relative per-
formance

Yes (mainly
used by large
organizations to
increase their
productivity)

Yes (use of mac-
ros to automate
the process of
calculating the
efficiency of
each unit)

Not selected, since this
method was not suit-
able for this applica-
tion

ELECTRE < 15 altern-
atives

Yes Outranking
method

Feasible (Excel) Yes (by provid-
ing thresholds
and arriving
at concord-
ance to each
requirement)

Not selected because
outranking method
was not suitable for
this application

12
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

C
H
A
P
T
E
R

2.
D
E
C
IS
IO

N
A
N
A
L
Y
S
IS

M
E
T
H
O
D
S

Fuzzy Can handle
large number
of alternat-
ives

No Comparison of
elements based
on a degree of
membership to
a particular set

Feasible (Excel) Yes Not selected since this
method is not suitable
for this application

GP Can handle
large number
of inputs

No Multi-objective
programming
technique

Feasible (Excel) Yes Not selected since this
application has a clear
objective

MAUT Can handle
large number
of input ele-
ments

Yes Ranking of
multi-criteria or
multi-attributed
alternatives

Feasible (Excel) Yes Not selected because
the number of alternat-
ives considered for this
application was not too
large

PROMETHEE < 15 altern-
atives

Yes Outranking
method

Feasible (Excel) Yes (automated
selection of cer-
tain parameters
like criteria
weights, pref-
erence function
thresholds)

Not selected because
outranking method
was not suitable for
this application

SAW < 10 altern-
atives

No Additive model Feasible (Excel) Yes Not selected

SMART Can be used
for large
number
of input
elements

Yes Additive model Feasible (Excel) Yes Not selected because
additive model is not
suitable for this applic-
ation

Thus, the research question RQ1.1 is answered.

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

13

Chapter 3

Literature on AUTOSAR
Architecture and Tools

This chapter provides a brief overview of the AUTOSAR architecture and the required AUTOSAR
knowledge. It is mainly divided into three sections, Section 3.1 to 3.3 provides a brief overview on
all the three main aspects of the AUTOSAR architecture i.e. software architecture, methodology
and interfaces. Section 3.4 provides a detailed description of the BSW modules that are further
required. Section 3.5 provides more information about the AUTOSAR tools and current scenario
in the AUTOSAR tool market.

3.1 AUTOSAR Layered Software Architecture

The layered architecture style [40] organizes a system into a set of layers each of which provides a
set of services to the layer above. The decoupling mechanism of the layers above from the layers
below hides the unnecessary details and minimizes the complexities of each layer thereby impart-
ing abstraction and encapsulation properties.

In the AUTOSAR architecture, adopting the layered architecture style, enables decoupling
application development process from the underlying hardware. This property allows a software
developer to develop an application for an ECU without being concerned about the hardware
architecture, hence making the whole process function-centric rather than ECU-centric. This ap-
proach also enhances software re-usability for OEMs because of the standardization of software
modules. Figure 3.1 shows the skeletal framework of the AUTOSAR architecture which mainly
includes application layer, Run-Time Environment (RTE) layer, Basic Software (BSW) layer, all
built on top of the underlying micro-controller hardware.

The application layer mainly consists of software components and BSW layer consists of system
software modules as shown in Figure 3.2. There are two ways to classify these modules, viz., vertical
and horizontal. In vertical classification, BSW modules are classified as system stack, memory
stack, communication stack, I/O stack and complex drivers. Horizontal classification (which is
color coded) includes Services Layer (SL) (modules in purple), ECU Abstraction Layer (ECUAL)
(modules in green) and Micro-controller Abstraction Layer (MCAL) (modules in red). RTE layer
conjoins the application layer and the BSW layer and enables communication. Micro-controller is
the hardware board on top of which the AUTOSAR architecture layers are implemented.

3.1.1 Application Layer

Application software component is an atomic piece of software which is interconnected to other
SWCs and BSW modules. Unlike the layered architecture style of an overall AUTOSAR frame-

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 15

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

Figure 3.1: Layered software architecture for AUTOSAR

Figure 3.2: Classification of BSW layers. (Red - MCAL, Green - ECUAL, Purple - SL)

work, the application layer has a component architecture style. Adopting component style archi-
tecture enhances scalability and re-usability of SWCs.
Application SWCs makes use of ports and interfaces for communication. Two main kinds of ports
are used i.e., Provide Port (PPort) and Request Port(RPort). Also, two main interface types are
normally used, which are, client-server interface and sender receiver interfaces. The port notations
are as shown in the Figure 3.3. Port notations depends on the placement of a SWC. A SWC can
be placed in any layer (application layer or BSW layer) depending on the functionality it imparts.
For example, if a SWC has client-server interface and is placed in BSW layer, then the PPort and
RPort are represented accordingly by notations shown in Figure 3.3.

Application SWC can be of multiple types. Few important ones are as listed below.

1. Application SWC - An application SWC is a basic building block of an AUTOSAR applica-
tion, as shown in Figure 3.4. It is used to carry out a particular application task within the
system. It is a part of application layer and has no direct communication with the underlying
BSW layer.

2. Parameter SWC - A parameter SWC is used to store the parameter values like calibration
data, variables, fixed data etc required by the application and BSW. The main purpose of
this SWC is to only provide data when requested and hence has only PPort as shown in
Figure 3.5.

3. Sensor / Actuator SWC - Sensor / Actuator SWC (Figure 3.6) is used to interact with the
ECU abstraction SWC directly in order to read the sensor values and access the actuators.

16 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

Figure 3.3: Port notations

Figure 3.4: Application SWC type
Figure 3.5: Parameter SWC type

Figure 3.6: Sensor Actuator SWC type Figure 3.7: ECU abstraction SWC type

Figure 3.8: Composition SWC type

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 17

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

A sensor component is placed in application layer and has a client port to request sensor
data from the underlying ECU abstraction SWC.

4. ECU abstraction SWC - An ECU abstraction SWC, unlike other SWCs, is present in the
ECU abstraction layer (i.e within the IO hardware abstraction module in Figure 3.2). Port
notations changes accordingly since this component is placed within BSW layer. This com-
ponent can access ECUs I/O directly. It is the only SWC that has a direct access to BSW
modules, as shown in Figure 3.7.

5. Composition SWC - A composition SWC (Figure 3.8) encapsulates one or more SWCs
thereby providing abstraction from multiple applications on the same ECU. It encapsulates
the SWCs of one application thereby providing a separation from SWCs of another applic-
ation present on the same ECU.

Each application component defines an internal behavior for a particular component. An in-
ternal behavior specifies how a software component behaves with the rest of the architecture. It
includes runnables that specifies the functionality of a SWC.

A runnable is a small software block that implements a certain function. This function is
triggered by certain events called RTE Events. An RTE Event activates a runnable entity thereby
addressing timing events, sending and receiving data (sender receiver) events, invoking operations,
client server events, mode switching and other external events. For example, when the data is
received over a port then data received event is generated by RTE that triggers the runnable
entity which is responsible to receive the data. The data within a SWC is mapped to ports and
the RTE layer establishes communication to other components and/or to BSW layer via ports and
interfaces.

3.1.2 BSW Layer

Basic Software Layer provides core system functionality which consists of modules that imparts
specific functionalities for communication, memory, IO etc. Sub-layers within the BSW layer
(Figure 3.2) are explained as follows.

Services Layer (SL)

The Service Layer of basic software provides top level services to application software components.
These services include operating system functionality, communication services, management ser-
vices, memory services, ECU state management, mode management, diagnostic services to name
a few.

ECU Abstraction Layer (ECUAL)

The ECU Abstraction Layer provides abstraction for drivers present in Micro-controller Abstrac-
tion Layer (MCAL). It also contains drivers for the external or on-board devices (off chip drivers).
ECUAL masks the position of drivers (on chip or off chip) and provides an abstraction to the
layers above. It offers an API for accessing the peripherals and devices regardless of their location
and connection to the micro-controller and thus makes higher software layers independent of the
hardware layout. ECUAL also includes the Complex Device Driver (CDD) layer. CDD is used for
deploying functionality that is not available in other modules (e.g. proprietary software). CDD
layer connects to the underlying hardware directly as shown in the Figure 3.9. Hence, applica-
tions that have hard deadlines can also be incorporated in this layer. The drivers implemented in
this layer do not navigate through the AUTOSAR BSW layers and accesses the micro-controller
directly.

18 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

Figure 3.9: Complex Device Driver Layer

Micro-controller Abstraction Layer (MCAL)

Microcontroller Abstraction Layer is the lowest layer of abstraction. It contains internal drivers,
which are driver modules that accesses the underlying micro-controller and internal peripherals
directly, as shown in Figure 3.10. Internal devices are located inside the micro-controller like
the internal Electrically Erasable Programmable Read-Only Memory (EEPROM), internal CAN
driver etc. MCAL provides abstraction to the higher software layers and masks the underlying
hardware details.

Figure 3.10: Microcontroller Abstraction Layer

3.1.3 RTE Layer

The Run-Time Environment (RTE) layer facilitates communication between the SWCs. It also
creates a join between the application software and the underlying BSW layer via standardized
interfaces. The RTE layer decouples the application layer from the hardware architecture. RTE
in the realm of software development phase is known as Virtual Function Bus (VFB). VFB is
the virtual implementation of RTE which provides similar features as a real RTE layer. VFB
aids a developer in early testing of the application software as it provides standard services of
the underlying system. RTE also maps the runnables to Operating System (OS) tasks. These
runnables are triggered by events called the RTE Events. On occurrence of a certain RTE event
(for example, timing event that triggers the runnable every 0.1s), the runnable gets executed and
the necessary function is performed.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 19

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

3.2 AUTOSAR Interfaces

The AUTOSAR interfaces provide standardized APIs between the application layer and BSW
layer and between functional units within the BSW layer. These standardized interfaces facil-
itates software re-usability and interoperability. Three basic types of interfaces constitutes the
AUTOSAR architecture as shown in the Figure 3.11 viz., AUTOSAR Interface, Standardized
AUTOSAR Interface, Standardized Interface [40]. Black arrow indicates standardized interfaces
which are relevant to VFB and RTE, usually required during the development of application layer
and testing (virtual implementation). Yellow arrow indicates the interfaces relevant to RTE and
are mainly used while configuring ECU and green arrows indicate the interfaces relevant to BSW
modules that provides standardized APIs between modules.

Figure 3.11: AUTOSAR Interfaces

1. AUTOSAR Interface
An AUTOSAR interface, as shown in Figure 3.5, defines the information exchanged between
software components and/or BSW layer. Client Server and Sender Receiver are the two
interfaces that are commonly used and is independent of any programming language, ECU
or network technology. AUTOSAR interfaces communicate via ports in SWCs. AUTOSAR
makes it possible to implement this communication between software components and/or
BSW modules either locally or via a network.

2. Standardized AUTOSAR Interface
A Standardized AUTOSAR Interface is an AUTOSAR Interface whose syntax and semantics
are standardized in AUTOSAR. The ”Standardized AUTOSAR Interfaces” are typically used
to define AUTOSAR Services, which are standardized services provided by the AUTOSAR
Basic Software to the application Software-Components.

3. Standardized Interface
A Standardized Interface are APIs which are standardized within AUTOSAR BSW layer.
These Standardized Interfaces are typically defined for a specific programming language
(like ”C”). Because of this, standardized interfaces are typically used between software-
modules which are always on the same ECU. When software modules communicate through
a ”standardized interface”, it is not possible to route the communication between software-
modules through a network.

20 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

3.3 AUTOSAR Methodology

AUTOSAR methodology, describes various steps followed in the process of implementing AUTO-
SAR architecture on an ECU. AUTOSAR adopts a uniform work-flow for the system development.
All steps that are required to implement AUTOSAR architecture from system description to the
generation of binaries are shown in Figure 3.12 [41]. System configuration input constitutes a

Figure 3.12: AUTOSAR Methodology

system level design both for software, hardware and network architecture and other system level
constraints (for example, number of cores, memory capacity etc.). This serves as the first artefact
/ input for developing an AUTOSAR system. Once the system is configured, the output is gen-
erated (System Configuration Description) and this artifact (.XML file) serves as an input to the
next phase in the AUTOSAR methodology.

System Configuration Description contains the information necessary to configure an entire
system. In the next phase, configuration details required for only one ECU is extracted which
is termed as ECU Extract. An ECU extract includes a system configuration description for a
specific ECU. This implies that a one to one mapping of the system configuration description for
a particular ECU is made. It also includes application software configuration description (part
of System Configuration Description). The output of this phase is an XML file (ECU Extract of
System Configuration) and is the input for next phase of development.

Next, the required BSW modules and RTE layer are configured. In this phase, OS tasks are
configured and the runnables are mapped to tasks. The configuration information of all modules
along with RTE are stored in XML files (ECU configuration description). At this stage, the RTE
generator also generates configuration files (.c and .h files).

Finally, the compiler compiles all the artifacts (.c and .h configuration files and source files) to
generate an executable or a binary file. As a result, a .out / .elf file is generated as an executable
that can be flashed on the micro-controller.

For each of these configuration steps, user interacts with the AUTOSAR tools for generating
the corresponding artifacts explained in section 3.5.

3.4 Theoretical knowledge of the required BSW modules

Out of 63 BSW modules only those modules required for this application are configured, in order to
reduce complexity. This section discusses only those required modules within the BSW layer which
are used in implementation of the demonstrator (explained in Chapter 5). The main functionality

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 21

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

of the demonstrator is to establish CAN communication stack. Figure 3.14 shows all the available
modules within the AUTOSAR BSW layer, but only required modules for this application are
explained as follows.

Figure 3.13: AUTOSAR BSW modules

1. COM
COM is the Communication Module (COM) that provides communication services. It pre-
dominantly manages the various signals received by it within the AUTOSAR architecture.
It packs and unpacks the AUTOSAR signals from the RTE layer into Inter-network Pro-
tocol Data Units (I-PDUs) and the IPDUs received from the layers below into signals and
provides those signals to the RTE, respectively. It also performs routing of signals from
received IPDUs to the IPDUs that needs to be transmitted.

2. PduR
Protocol Data Unit Router (PduR) mainly manages the communication matrix/ routing
table. It routes the IPdus to their respective communication stack i.e. if the received IPDU
in the PDUR matches to a CAN-IPdu in the communication matrix, then that IPdu signal
gets routed to the CAN communication stack. This is the most basic functionality of the
Pdu Router module.

3. CANIF
CAN Interface (CANIF) module provides an abstraction to the CAN modules in services
layer from the CAN driver module in the layers below. If its an external CAN device, then
an external CAN driver is present within the ECUAL as shown in Figure 3.7, which then
communicates to the hardware via SPI driver in the MCAL. If its an internal CAN hardware
module then CANIF communicates with CAN driver within the MCAL layer.

4. CAN
CAN driver enables communication with the underlying CAN device. More information on
how CAN communication works is presented in the appendix A1.

5. AUTOSAR OS
The operating system within an AUTOSAR architecture is OSEK compliant. It imparts
basic OS functionality i.e manages the hardware resources like memory, real-time task
scheduling, memory management, manages IO devices, interrupt management to name a
few. AUTOSAR OS has some important entities which are counter, events, tasks, alarms,
applications, interrupts, resources and schedule tables. All these entities perform similar

22 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

task of a traditional OS. Counter keeps the count in the OS module. Events are the entit-
ies that are referred by tasks. Tasks are the entities that are triggered by alarms. Alarm
performs certain actions at a certain time (referenced by the counter). Interrupts are the
special signals that halts the execution of the current task and temporarily executes a differ-
ent task. Resources are the hardware resources and schedule tables which is used to schedule
tasks based on their priorities. Here, application doesn’t mean the application components.
Within the AUTOSAR OS, application acts like a container for counters, tasks, events for
that particular application. Hence, there can be more than one application running on
ECU but within an AUTOSAR OS, the specific counters, tasks, events are bound by the
application entity particular to that application.

6. ECUM
ECU Manager (ECUM), handles the state of an ECU i.e. STARTUP, SHUTDOWN, RUN,
SLEEP, WAKEUP. It acts like an ECU state machine manager which manages the state in
which the ECU is currently in. By configuring ECUM to one or more states for different
conditions an user can manage the control of an ECU. All AUTOSAR applications should
include ECUM which provides ECU management services to the application components.

7. BSWM
Basic Software Mode Manager (BSWM) is a module in the services layer of the AUTO-
SAR architecture. BSWM provides communication between different BSW modules and
the application components. It mainly services the mode switch requests of the application
via the RTE i.e. it takes care of BSW and application component’s mode arbitration and
mode control. Mode arbitration is based on some simple rules that have boolean logic i.e.
a set of actions are determined which needs to be executed as a part of an action list and
which should not be included in that list. The execution of the actions within the action
list after arbitration is completely based on ECU configuration. The ECUM communicates
with BSWM to notify ECU states and also notifies the wakeup source states.

8. MCU
The MCU module is responsible for initialization of the microcontroller, clock other MCU
modes specific to the hardware.

9. PORT
PORT module in AUTOSAR provides drivers for initializing all the ports of the microcon-
troller (e.g. PORT A, PORT B etc.).

10. DIO
The DIO module provides an abstraction to the microcontroller pins. It further allows
grouping of these pins.

3.5 AUTOSAR tools

AUTOSAR tools are software tools that supports one or more tasks in the AUTOSAR meth-
odology. Based on the functionality imparted by the tool-chain and considering the flow of the
AUTOSAR methodology, it is found that four main categories of AUTOSAR tools exist.

1. Tools for modeling the system and application software and generate System Configuration
Description artifact (see Figure 3.12).

2. Tools for coding and generating the Application SWCs (ASW) and generate ECU Extract
of System Configuration.

3. Tools for configuring and generating the BSW layer and generate ECU Configuration De-
scription.

4. Tools for generating the RTE layer and generate RTE files.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 23

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

In Figure 3.12, modeling tool and ASW tool are used for generating system configuration de-
scription and ECU extract. BSW tool is used to configure ECU and generate ECU configuration
description. RTE tool is used to generate RTE and configuration files. A tool vendor either
provides a single tool-suite or multiple tools each performing one or more tasks. The flexibility in
marketing these tools also provides a platform to add unique features that increases the profitab-
ility of these tools.

AUTOSAR tools from 23 vendors were considered initially out of which substantial information
could be gathered for 13 tool-vendors. These vendors were further contacted for more information
about their tool suite, though not all of them could be reached. As a result, some information
were gathered from official tool website and other online resources. The prices for tools that
were not known were extrapolated based on tool features, extent of coverage of the AUTOSAR
methodology and other special features provided within the tool-suite, which are briefly explained:

1. ArcCore
ArcCore’s Arctic Studio provides tool that imparts modeling functionality for AUTOSAR
SWCs [56]. It is based on ARText, a textual modeling language for defining ports, interfaces,
software components, internal behavior and other elements. It is built on Eclipse platform
and AUTOSAR tool platform called ARTOP [25] which imparts a common base functional-
ity for AUTOSAR. It also facilitates the generation of ECU extract and configuration files in
a specialized system language called ARXML. ARXML is an AUTOSAR XML file written
in the standardized format and aids in data exchange. Although, ARText provides all the
required features for modeling SWCs, Graphical User Interface (GUI) based model tools
(model based design tools) works better in large applications and for this purpose ArcCore
recommends using Mathworks’s Embedded Coder and then importing the ECU extract into
Arctic Studio.
Artic Studio’s ASW tool generates the ’C’ code for application software from the ARText
models. It also provides a development environment for editing C-code along with the
required compilers for processing the code. This tool supports Software Component De-
scription files in ARText format.
Arctic Studio also provides BSW tool and RTE generation tool [57] [58]. These tools are
used for ECU configuration and code generation. Arctic Core is ArcCore’s proprietary soft-
ware for BSW core modules which also includes configurations for selected micro-controller
boards. Further, suitable compiler is also provided to generate binaries.
Usability of a tool is evaluated based on intuitive features provided in the tool-suite. Arctic
Studio mainly uses the interfaces provided by Eclipse platform throughout its development
phase [67]. The tool includes a navigator panel to browse through all the elements within
the ARXML packages.
Arctic Studio provides a standard AUTOSAR data exchange formats like ARXML, and also
supports CAN data exchange standards such as Field Bus Exchange (FIBEX), Data Base
Container (DBC). However, nothing could be found on if the tool provides support for the
integration of third party tools. Hence, using artifacts from other tool vendors might not be
a straightforward approach.
The generator tool in Arctic Studio can also validate the module configurations. It supports
Xtend and Xpand framework for model validation. Xpand imparts logic to check if a given
element is referenced by other elements thereby checking the dependencies between these
elements. For example, to find all the signals that are not referenced by a certain PDU.
However, the tool does not provide simulation and debugging features for an early testing
and verification. As a result, its not entirely feasible to test the application using this tool.
The cost for Artic Studio was quoted as e5.550,00 per unit price. The cost of Arctic Core
standard package was quoted as e24.000,00 and the Arctic Core MCAL package as e7.200,00
per unit price. The total cost for the AUTOSAR tool-chain license from ArcCore would range
about e50.000,00 (approx.) All the costs are quoted as of April 04 2017. Tool is distributed
online and is available almost instantly after procuring the license.

24 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

2. COMASSO
COMASSO is a community which contributes towards the development of open source (for
a subscription fee) AUTOSAR BSW modules [48]. Robert Bosch GmbH initiated this com-
munity and also provides first set of BSW-Modules and Acceptance Test Software Compon-
ents (AT-SWC) which is further improved by the members of the COMASSO community.
In addition to the BSW core modules COMASSO also provides a tool for configuration and
code generation. The tool does not provide any features apart from BSW core modules and
configuration tool.
COMASSO’s BSW development tool is also built on Eclipse platform [60]. Apart from Ec-
lipse GUI nothing could be found about the extent of intuitiveness adopted in this tool. Tool
provides AUTOSAR standard data exchange format and also supports CAN data exchange
standards such as FIBEX, DBC. The tool makes use of Xpand framework for model valida-
tion [59].
The cost for becoming a member for this community was quoted as e1.000,00 for 1st year
membership and from 2nd year on-wards e2.500,00 per year.

3. Continental
Continental’s AUTOSAR tool-suite covers all stages of development. It also provides a BSW
and RTE configuration tool called CESSAR-CT. The tool allows modeling a self contained
AUTOSAR architecture. It was also noted by some users that the usability of tool had to
be improved when the tool is applied on a large system [61]. Continental’s website does not
provide much information about their AUTOSAR tool-suite. It might also be the case that
this vendor has other channels to promote their solution and doesn’t provide direct sales of
AUTOSAR tools.
Like ArcCore, CESSAR-CT is based on Eclipse and ARTOP framework. CESSAR-CT
provides a plugin mechanism such that the tool user can extend the tool functionality.
Code generators of different technologies can be integrated and a form editor enables the
extensibility and customization of UI [66]. The tools are interoperable and support standard
data exchange formats.

4. Dassault systems
The AUTOSAR tool provided by Dassault Systems is called the AUTOSAR Builder. It is
a an open authoring and simulation tool that enables rapid modeling, definition, simulation
and deployment of embedded systems to automotive ECUs [62]. Like other tools, this is
also based on Eclipse platform for the design and development of AUTOSAR compliant
systems and software and extensible and customizable based on ARTOP tool platform. The
Builder tool is full-fledged and delivers a set of dedicated development environments that
fully supports all the stages of AUTOSAR development process [63]. AUTOSAR Builder is a
part of the CATIA Systems Engineering solution from Dassault Systems. The tool provides
high level GUI and intuitive features like simulation. Further, the tool provides support
for integration of legacy software and aids in migration to AUTOSAR. Integration of third
party tools enables interoperability between modeling languages and code generation tools.
Also facilitates early testing and verification. The approximate cost of CATIA tool with
AUTOSAR builder is around e60,000 to e65,000.

5. dSPACE
dSPACE’s development tool suite consists of SystemDesk and TargetLink [64] [65]. System-
Desk tool aids in modeling, network architecture design and RTE generation, as per the
AUTOSAR methodology. The RTE generation module is available as an add-on for Sys-
temDesk tool, which generates full-fledged RTE for communication of SWCs with the ECU.
TargetLink is application code generator tool which generates production code from the
graphical representation of the architecture modeled in SystemDesk or a third party graph-
ical environment tool like MATLAB/Simulink. The tool-suite also includes a simulator,
which simulates systems that span across one/more ECUs [62]. However, the tool-suite does

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 25

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

not provide BSW modules. The tool also provides intuitive features and high level GUI.
TargetLink imparts interoperability and early testing.

6. Elektrobit
Elektrobit (EB) tool-suite mainly focuses on providing RTE, BSW and other low level ser-
vices. It’s EB Tresos tool-suite includes EB Tresos designer, EB Tresos Studio, EB Tresos
AutoCore [12]. Apart from these they also provide tool that incorporates functional safety
standard ISO26262 called EB Tresos Safety. EB does not provide tools or services to de-
velop application and modeling part of the AUTOSAR implementation. The designer tool
is mainly used to design the network architecture of the system which can also extract a
communication matrix (part of system configuration input in the AUTOSAR methodology).
EB Tresos Studio is also based on eclipse platform and provides, configuration, validation
and generation of the basic software. The Tresos AutoCore is the system software that
includes BSW modules which are AUTOSAR standard compliant. AutoCore is EBs BSW
core and consists of more than 40+ BSW modules which are configured using EB Tresos
Studio tool. With recent developments in autonomous cars and automated driving, EB also
provides another tool called EB assist which is used to develop driver assistance systems
with increased safety features [68].

7. ETAS
A set of AUTOSAR tool solutions provided by ETAS includes ISOLAR-A, ISOLAR-EVE,
RTA, ASCET and COMASSO [13]. ISOLAR-A tool is used to generate AUTOSAR system
and application design, configure ECU and generate RTE. This tool also facilitates the
integration of third-party tools. ISOLAR-EVE on the other hand provides a virtual ECU
environment facilitating early testing, verification and validation. This is nothing but Virtual
Function Bus (VFB) where early testing of application SWCs can be done without deploying
it on an actual hardware. ASCET-DEVELOPER tool (also known as ASCET 7) is a tool for
developing application software for embedded systems using graphical models and textual
programming notations. It also provides code generation functionality. The RTA family
tool-suite consists of RTA-OS, RTA-RTE and RTA-BSW tools. RTA-OS is the real-time
operating system, RTA-RTE is the AUTOSAR run-time environment generator and RTA-
BSW provides all the AUTOSAR BSW modules in compliance with the functional safety
standard ISO26262. RTA-BSW tool also provides MCAL modules for specific microcontroller
hardware. Since ETAS and COMASSO have same parent organization i.e. Bosch GmbH, the
BSW modules form COMASSO are supported within the ETAS development environment.
ETAS provides rich documentation and knowledge transfer about their AUTOSAR tool-suite
and also enables integration of other third-party tools via standardized interfaces.

8. KPIT
The K-SAR tool-suite from KPIT provides AUTOSAR BSW modules, BSW configura-
tion tool, MCAL for selected microcontrollers, RTE code generation and K-SAR editor for
AUTOSAR v3.X and v4.X compatible ECUs. KPIT does not provide tools that entirely
cover the development of application although it supports the integration of third party
tools at each stage of development [69]. Its main area of expertise is in developing MCAL
drivers as a part of AUTOSAR stack, developing BSW modules and to provide services
around these modules. Other key features of this tool-suite are it provides multi-core sup-
port, end to end communication protection, support for integration of third party tools and
other safety critical features.

9. Mathworks
MATLAB Embedded Coder tool provides AUTOSAR support, using which we can generate
AUTOSAR compliant C / C++ code and export in ARXML format [70]. It also integrates
AUTOSAR support within Matlab/Simulink using which application modeling can be done.
It also serves as a 3rd party modeling tool for other tool vendors. Hence, Mathwork only
provides AUTOSAR application layer features. The price for Embedded Coder tool (as
found on internet) was approximately e6500 as of April 27 2017.

26 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 3. LITERATURE ON AUTOSAR ARCHITECTURE AND TOOLS

10. Mecel
Mecel Picea, which is now a part of Mentor Graphics, provides AUTOSAR tool solutions
called Mecel Picea Suite and Mecel Picea Workbench [72]. Mecel Picea suite includes AUTO-
SAR BSW modules and the workbench includes BSW configuration and RTE generation
tool. These tools are based on the Eclipse and ARTOP platform. Picea and the tools
provided by Mentor Graphics are developed in such a way that they can be integrated with
each other. From the research it seems like Mecel Picea tool-suite provides less coverage
for modeling and application development although support for some features like modeling
network architecture exists. Picea provides minimal support for integration of third party
tool. It meets the requirements for functional safety levels Automotive Safety Integrated
Level (ASIL) from level A to level D, as described in ISO26262.

11. MentorGraphics
The Volcano family tool-suite provided by Mentor Graphics includes Volcano VSTAR, Vol-
cano VSB and Volcano VSI [73]. Volcano VSTAR provides BSW modules, MCAL modules
for specific microcontroller hardware, ECU configuration and RTE generation functionalit-
ies. This tool also meets requirements of the functional safety standard ISO26262. Volcano
Vehicle System Builder (VSB) tool imparts designing of SWCs and integration of SWCs
with basic software. It also provides services like network design, diagnostics and database
management. Volcano Vehicle System Integrator (VSI) enables virtual software integration
and early testing. Mentor Graphics together with Mecel (acquired by Mentor Graphics)
provide full-fledged tool solutions for implementing AUTOSAR methodology.

12. Opensynergy
The COQOS tool from Opensynergy is a hypervisor and runs on Linux platform or other
POSIX operating system. Its central technology is virtualization [71]. COQOS hypervisor
enables the creation of Virtual Machines (VMs) upon which both general purpose operating
system like Linux and real-time operating system like AUTOSAR OS can function simul-
taneously and also communicate with each other. COQOS SDK consists of COQOSAR OS
along with BSW scheduler embedded within a virtual machine. COQOSAR also incorporates
Opernsynergy’s Automotive Communication Framework (ACF) as a part of integration with
the CAN communication stack. COQOS SDK does not provide any other BSW modules
except the OS and scheduler which integrates software components and other third party
BSW modules into on-board network. The security provided by the COQOS tool ensures
that the guest operating system runs independently and thus the partition acts as a firewall
and provides protection against external attacks. The COQOS SDK further consists of tools
for configuring the BSW modules and generating RTE layer [71]. Opensynergy does not
support the application and modeling phases of AUTOSAR development.

13. Vector Informatik GmbH
Vector Informatik provides modeling tool called PREEvision which is used to design SWCs
and network architecture. DaVinci Developer tool along with DaVinci Configurator Pro tools
are used to develop BSW modules, configure ECU and generate RTE. VIRTUAL target tool
enables virtual implementation of SWCs facilitating early verification and testing. All these
tools meet requirements of functional safety standard ISO26262 [11]. For simple ECUs which
are less powerful, Vector provides MICROSAR as an Operating System which acts like a
lightweight AUTOSAR OS. It further provides integration of third-party BSW and MCAL
modules. The prices quoted by Vector were, PREEvision tool ranges from around e55.000,00
upto e200.000,00 (floating license for team collaboration mode). DaVinci Configurator Pro
was quoted as e8.700,00. DaVinci Developer e9.050,00. Both DaVinci Developer and
Configurator tools totally costs about e21.153,44. All the prices were quoted as of date
April 12 2017.

Table 3.1 summarizes all the AUTOSAR tool features discussed above.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 27

C
H
A
P
T
E
R

3.
L
IT

E
R
A
T
U
R
E

O
N

A
U
T
O
S
A
R

A
R
C
H
IT

E
C
T
U
R
E

A
N
D

T
O
O
L
S

Table 3.1: AUTOSAR tool features

Tool
vendors

Tools BSW /
MCAL
code
imple-
menta-
tion

BSW
config-
urator
tool

RTE
gen-
erator
tool

SWC
imple-
ment-
ation
tool

System
and
Soft-
ware
mod-
eling
tool

Other features License

ArcCore Arctic Core,
Arctic Stu-
dio

3 3 3 3 3 Built on Eclipse platform and
AUTOSAR tool platform called
ARTOP

GPL, Com-
mercial,
Evaluation
license

Comasso COMASSO
4.0.2.x,
BSWDT

3 3 7 7 7 Built on Eclipse platform and
ARTOP platform

Community

Continental Continental
AUTOSAR
tool-suite,
CESSAR-
CT

3 3 3 3 3 Built on Eclipse platform and
ARTOP platform

Commercial

Dassault
Systems

AUTOSAR
Builder
tool suite
(AAT, GCE,
RTEG,
ASIM, ART)

7 3 3 3 3 Rapid modeling, Definition and
simulation tool-set, Built on Ec-
lipse platform and ARTOP plat-
form, Enables import of model-
based design legacy descriptions
and generation of AUTOSAR
compliant code, Enables integra-
tion with 3rd party tools to sup-
port interoperability, Early veri-
fication of ECUs

Commercial

28
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

C
H
A
P
T
E
R

3
.

L
IT

E
R
A
T
U
R
E

O
N

A
U
T
O
S
A
R

A
R
C
H
IT

E
C
T
U
R
E

A
N
D

T
O
O
L
S

dSPACE SystemDesk,
TargetLink

7 7 3 3 3 Virtual ECU simulation, Rapid
prototyping, Certification for
ISO 26262, ISO 25119, IEC
61508 and derivative standards,
Validation and verification

Commercial

Elektrobit EB Tresos
AutoCore,
EB tresos
Studio

3 3 3 7 7 Certification for ISO 26262 upto
ASIL D, Enables integration
with 3rd party tools to support
interoperability, Built on Eclipse
platform

Commercial

ETAS ISOLAR-A,
ASCET,
RTA-BSW,
RTA-RTE,
COMASSO

3 3 3 3 3 Certification for IEC 61508, ISO
26262 upto ASIL D, Built on
Eclipse platform and ARTOP
platform, Enables integration of
third-party tools via open and
standardized interfaces

Commercial

KPIT K-SAR
AUTOSAR
Suite

3 3 3 7 7 Built on Eclipse platform and
ARTOP platform, support for
integration of third party tools

Commercial

Mathworks Embedded
Coder

7 7 7 3 3 Serves as a third party tool
for modeling and generating the
code for application layer

Commercial

Mecel
(acquired by

Mentor
Graphics)

Picea 3 3 3 3 3 Built on Eclipse platform and
ARTOP platform

Commercial

Mentor
Graphics

Volcano
System
Architect,
Volcano
VSTAR

3 3 3 3 3 Certification for ISO 26262 upto
ASIL D, Built on Eclipse plat-
form and ARTOP platform

Commercial

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

29

C
H
A
P
T
E
R

3.
L
IT

E
R
A
T
U
R
E

O
N

A
U
T
O
S
A
R

A
R
C
H
IT

E
C
T
U
R
E

A
N
D

T
O
O
L
S

Opensynergy COQOS
suite (SDK,
Hyperviser)

3 3 3 7 7 Provides hardware virtualiza-
tion, COQOS hypervisor creates
Virtual Machines, Provides sup-
port for ISO 26262 standard

Commercial

Vector
Informatik

Gmbh

PREEvision,
DaVinci
Developer,
DaVinci
Configurator
Pro, v VIR-
TUALtarget

3 3 3 3 3 Enables integration with 3rd
party tools to support interop-
erability, ISO 26262 certification,
Virtual development and testing
of AUTOSAR software, Early
verification of ECUs

Commercial

Table 3.2 presents a brief description of each of these tools based on the 6 key criteria that were identified for the application of AHP algorithm.
More on this can be found in Chapter 4. Table 3.3 presents the extent of support provided by each of these tools. Eventhough a tool provides a
certain feature, it might not be full-fledged.

Table 3.1 gives an overview of the tools considered for comparison and what phases of AUTOSAR methodology are covered within each tool.
Table 3.2 presents a brief description of each of these tools based on the 6 key criteria that were identified for the application of AHP algorithm.
More on this can be found in Chapter 4. Table 3.3 presents the extent of support provided by each of these tools. Eventhough a tool provides a
certain feature, it might not be full-fledged.

Table 3.3: AUTOSAR tool features coverage

Tool
vendors

Support for
MCAL layer
modules

Support for
BSW code
generation /
configuration

Support for RTE
generation

Support for
ASW code gen-
eration

Support for
AUTOSAR
modeling

ArcCore

Comasso

Continental

Dassault
Systems

dSPACE

30
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

C
H
A
P
T
E
R

3
.

L
IT

E
R
A
T
U
R
E

O
N

A
U
T
O
S
A
R

A
R
C
H
IT

E
C
T
U
R
E

A
N
D

T
O
O
L
S

Elektrobit

ETAS

KPIT

Mathworks

Mecel

Mentor
Graphics

Opensynergy

Vector
Informatik

Gmbh

Full coverage Partial coverage Not supported

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

31

Chapter 4

Tools Selection Methodology

4.1 Overview

This chapter presents a methodology to select AUTOSAR tool-chain by applying AHP algorithm
which was discussed in Chapter 2. Figure 4.1 gives a better understanding of the AUTOSAR
methodology using V-model and also shows various tools required at each development stage of
the AUTOSAR architecture.

Figure 4.1: Architecture Design in Software Development Cycle

Accordingly, AUTOSAR tools can be classified into four main categories which are:

• Modeling tool

• Application code generation tool

• BSW generation and configuration tool (also includes the MCAL layer)

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 33

CHAPTER 4. TOOLS SELECTION METHODOLOGY

• RTE generation tool

Since the focus was to select a tool-chain for developing AUTOSAR, a tool selection methodology
was put forth as shown in Figure 4.2. Each step in the methodology is applied individually
for different tool categories mentioned above. At first the stakeholders are identified and their
requirements are analyzed. Next, with the help of architecture design models, how each stakeholder
interacts with the system is understood. A list of criteria is generated and the AHP algorithm is
applied to the hierarchical list of criteria. A final AUTOSAR tool-chain selection is then made.

Figure 4.2: Proposed tool selection methodology work-flow

4.2 Stakeholder identification (Users of AUTOSAR tools)

The following stakeholders are considered in perspective of users who use the AUTOSAR tool-
chain, i.e. Figure 4.1 presents different stages where the tool is applied or used to develop an
AUTOSAR ECU. Here, we are analyzing the requirements / concerns of these users. This step
was necessary because, we had to identify what were the minimum requirements that a stakeholder
or an user has while using a tool to develop an automotive ECU based on the AUTOSAR archi-
tecture. As mentioned in Chapter 1, AUTOSAR tool-vendors add multiple features in their tools
to make it profitable and hence each tool has its own share of pros and cons. The idea here was
to eliminate all the unnecessary requirements and gain an insight of the minimum requirements
that qualifies an AUTOSAR tool-chain which is explained in Section 4.3.
Stakeholders in this context were identified upon discussions with Engineers from Brace Automot-
ive and Orlaco. Through these discussions, the most important concerns and requirements of both
Engineers and Management of the companies, with regards to deploying AUTOSAR architecture
in software development, could be identified.

1. Requirement analyst for AUTOSAR tool-chain
A requirement analyst gathers all the requirements from other stakeholders involved in de-

34 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

veloping an ECU and performs an analysis taking into account possible conflicting require-
ments. These requirements must be actionable, measurable, testable, traceable and defined
in a sufficient detail for system design, which is then documented. Requirements can be
documented in various forms, usually in the form of a requirement diagram. Use cases, user
stories, process specifications and variety of other models can be used to further analyze
the use of these requirements. A Requirement Analyst, typically makes use of AUTOSAR
modeling tool in the development of ECUs.

2. System designer (ECU)
The system designer has a big picture of the entire system, who mainly defines the architec-
ture, modules, interfaces, data and network signals for a system (ECU) to satisfy specified
requirements. System designer works closely with the requirement analyst, software design-
ers, application developers, system developers and other stakeholders.

3. Software designer
Software designer designs software application and writes software code. In this case, the
designer works closely with the system designer and requirement analyst to understand the
high level functionality of the application on a given system. A software designer uses both
model tool and application code generation tool for developing AUTOSAR ECUs.

4. Application developer
Very often, there is no difference between a software designer and a developer, but in large
scale applications, application/software developers are involved whose work mainly revolves
around writing software code. An application developer mainly uses application code gen-
eration tool (though its not just that).

5. System developer (the one who writes the code for ECU)
System developer works on system software namely operating system, drivers and other
modules. They often work on low-level languages like C/C++ whose focus lies on creating a
stable and reliable system software that can be used to build an application on. The system
developer mainly uses BSW generation tool and configurator tool in the development of
AUTOSAR ECUs.

6. System engineer
System engineer is responsible for ensuring the system is configured to meet the stakeholders
requirements. In this case, configuration of ECUs along with RTE generation is taken care of
by the system engineer. The system engineer also works closely with the system developer
to be able to configure the system according to the requirements and hence uses BSW
generation and configuration tool along with RTE generator tool.
After development of ECUs, in the testing phase, a tester typically performs unit testing
of each module and integration testing of all the ECUs. Finally the functioning of ECUs
are verified and validated to see if it conforms to the requirements set by OEM as shown
in Figure 4.1. In this work testing tools are not considered, instead the testing capabilities
of the tools used above are taken into account. This is to also quantify the tools in terms
of early testing capabilities which is highly crucial in automotive industry. Thus RQ2.1 is
answered.

4.3 Requirements analysis

In the previous section, stakeholders were identified. Upon discussions with these stakeholders
from Brace and Orlaco, their requirements, concerns and constraints were considered. These re-
quirements were further fine tuned by analyzing the AUTOSAR standard specifications [17]. All
the architectural diagrams are based on System Modeling Language (SysML) and IBM Rhapsody

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 35

CHAPTER 4. TOOLS SELECTION METHODOLOGY

SysML tool was used to create these models. Figure 4.3 shows a consolidated stakeholder require-
ment diagram for all the four tool categories which are further expanded in Figures 4.4 to 4.7.

Figure 4.3: Consolidated stakeholder requirements diagram

<Usage> relation between the model indicates that the output from a specific tool is used as
an input to the next tool (i.e output from ASW code generator tool i.e. C code for the application,
is used by the model tool to generate ECU extract). Likewise, RTE makes use of the output from
the model tool, ASW code generator tool and BSW tool in order to generate a glue between the
application layer and the underlying BSW layer.
In Figure 4.3, RTE tool package has a <Usage> relation directed from all the other tool packages.
This is because RTE generator tool compiles all the source files, configuration files, application
files and other intermediary files in order to generate files configured by RTE.
<include> relation simplifies a large use case by splitting it into several use cases. It is a directed
relationship between two use cases which is used to show the behavior of the included use case
(the addition) is inserted into the behavior of the including (the base) use-case (main requirement
has a number of sub-requirements and the satisfaction of all the sub-requirements automatically
satisfies the main requirement).
<deriveReqt> relationship is used to represent a relationship between requirements at the same
level of the hierarchy but at different levels of abstraction. For example, in Figure 4.4, the system
modeling requirements of the model tools are further analyzed in order to derive more detailed re-
quirements such as implementing SWC, runnables, ports and interfaces etc., that reflect additional
implementation considerations or constraints.

36 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Figure 4.4: Stakeholder requirements diagram for Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 37

C
H
A
P
T
E
R

4.
T
O
O
L
S
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

Figure 4.5: Stakeholder requirements diagram for ASW Tools

38
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

C
H
A
P
T
E
R

4.
T
O
O
L
S
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

Figure 4.6: Stakeholder requirements diagram for BSW Tools

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

39

C
H
A
P
T
E
R

4.
T
O
O
L
S
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

Figure 4.7: Stakeholder requirements diagram for RTE Tools

40
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

CHAPTER 4. TOOLS SELECTION METHODOLOGY

<trace> requirement relationship provides a general-purpose relationship between a require-
ment and any other model element, as shown in Figure 4.4. The <trace> relationship here is
being used for relating requirements to source documentation or for establishing a relationship
between main specifications.

With this, RQ2.2 is answered.

4.4 Architectural modeling

The architecture of a system is the set of fundamental concepts or properties of that system in
its environment embodied in its elements, relationships, and in the principles of its design and
evolution [74]. It serves as a blueprint of the overall system behavior. The significance of an ar-
chitecture is to aid in communication, analysis and construction of the system at hand. A system
has multiple stakeholders who have different concerns, requirements, constraints and expect dif-
ferent outcomes from the system under development. A good architecture is one that successfully
addresses the concerns of its stakeholders and, when those concerns are in conflict, balances them
in a way that is acceptable to the stakeholders.
An architecture is described by a collection of models. Modeling plays a vital role in the devel-
opment of an automotive ECUs, as it provides a higher abstraction level, thereby reducing the
complexity. In this case, models are used to give a better understanding of how each stakeholder
interacts with the system. As such, models are used for understanding, analysis, communication,
construction, documentation and for answering other questions based on the system (for eg. cost
and risk, evaluation of utility etc.). The models here depict logical viewpoint of all the stake-
holders, who are the users of AUTOSAR tool-chain. A logical view focuses on the functionalities
imparted by the system (AUTOSAR tool-chain) to its end users.

4.4.1 Model tools

AUTOSAR modeling tools are mainly used to perform architecture design, requirements man-
agement, network communication design, application design and wiring harness design. They
facilitate early testing via VFB. Using the model tools, an optimal configuration for the applica-
tion use-case can be put together. A Requirement Analyst and a Software Designer works together
in this case (normally such a tool can be used by architects, network designers, development engin-
eers, test engineers, but in this case the scope is minimized for the above mentioned stakeholders
to reduce the complexity in roles).
The main goals of the software designer is to model the ASW and network architecture for an ECU
to be developed. Together with the requirement analyst, most important functionalities which are
desired from an AUTOSAR modeling tool are analyzed using the use-case diagram. Here, only
the most important requirements are considered as per the AUTOSAR methodology.
The main aim of AUTOSAR is to co-operate on standard but compete on implementation. In
this regard, the tool-vendors also incorporate multiple extra tool features in order to increase the
value of their tool-chain. These extra features are considered while the specific tools are ranked
in Section 4.6.

4.4.2 Application tools

The application developer generates C code for the respective application. While the modeling
tools are used to model all the aspects of an application such as ports, interfaces, network connec-
tion, internal behavior etc., ASW code generation tool is used to implement the core functionality
of runnables.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 41

CHAPTER 4. TOOLS SELECTION METHODOLOGY

4.4.3 Basic software tools

The system designer and system developer have the task of generating the BSW code and con-
figuring ECU modules. Accordingly sub requirements (desired tool functionality) are derived and
are traceable to their respective main requirements.

4.4.4 RTE tools

Similarly, RTE tool model has the main task of generating the RTE layer performed by system
engineer. This tool can also be used to further test and validate models.
All use case diagrams can be found in Appendix A1. This completes answering the research
question RQ3.1.

4.5 Criteria selection

The selection criteria is a list of essential and desired tool attributes which is necessary for suc-
cessfully implementing AUTOSAR architecture. All the functional and non-functional aspects
must be considered in this regard. At first, 6 top-level criteria are considered which drives the
decision driver models. They are functionality, usability, interoperability, service and support, cost
and distribution and testability. Out of them, functionality, interoperability and testability are
considered the most essential criteria (also while assigning weights) while some compromises could
be made with the remaining ones.

• Functionality
Functionality is a metric to qualify if a tool alternative comprises of the most essential
requirements described in the Figure 4.3.

• Usability
Usability takes into account the stakeholder requirements like ease of tool usage, graphical
user interface and an overall user experience.

• Interoperability
An interoperable system makes it easier to exchange and reuse information both with the
tool-chain and with a different tool-chain which implies that the selected tool-chain must be
compliant in terms of specific automotive standards (eg., OSEK, MISRA), bus protocols
(eg., CAN, LIN) and data exchange formats (eg., .ARXML) adopted within the tool-chain.
Further, it also supports integration with third party tool-chain.

• Service and support
Service and support refers to the after sales service provided by tool vendors imparting the
knowledge and best practices of using the tool, support in terms of proprietary software
migration to AUTOSAR etc.

• Cost and distribution
Cost and distribution refers to the initial and ongoing investments (cost of entire tool-
suite), types of licenses, distribution cost, time taken to deliver the tool, in what form
(downloadable, dongle) and other considerations that cost money are taken into account.

• Testability
Testability refers to the ability of the tools to support early stage verification of the applic-
ation and BSW models.

Each of these top-level criteria are further divided into sub-criteria based on specific quali-
fying parameters. The use case diagrams and requirement diagrams along with the AUTOSAR
knowledge gathered are used, to derive specific criteria for selecting the tool-chain, as shown below:

1. Functionality

42 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

• System modeling

• Modeling analysis

• Network modeling

• System configuration

• Code generation

• Timing analysis

2. Usability

• High-level GUI (ease-of-use)

• Re-usability

• Modifiability

• Intuitiveness

• Documentation

3. Interoperability

• Data exchange

• Compliance to standard

• AUTOSAR Interfaces

• Standard protocols and libraries

• Integration with third-party tools

4. Service and support

• Migration support

• Workshops / webinars (imparting tool knowledge)

5. Cost and distribution

• Tool-suite cost (license)

• Duration of license

• Format and distribution time

• Market penetration

• Latest release

• Release interval

6. Testability

• Debugging

• Simulation

• Virtual ECU platform for early testing and verification (Virtual Function Bus)

Hence, research questions RQ3.2, 3.3 are answered.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 43

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Figure 4.8: Analytic Hierarchy Process

4.6 Analytic Hierarchy Process (AHP)

This section describes the therory behind the AHP algorithm in detail which is further applied
in the next section. AHP uses a mathematical approach based on metrics algebra [30]. The tool
is used to prioritize each criteria in decision making in order to achieve a certain goal. AHP
applies a qualitative approach to restructure problems into a hierarchy which is more systematic.
On the other hand, based on a quantitative approach, it uses a pair-wise comparison method
to select alternatives for a particular criteria that are more consistent. Fundamentally, AHP
algorithm operates by prioritizing competing alternatives as well as the criteria used to judge
these alternatives. AHP includes 6 main steps. They are:

1. Identify goals and criteria and represent them in a hierarchical framework.
Before implementing the AHP algorithm, it is important to understand the nature of a
problem and collate a list of requirements that are pertinent to the problem. This helps in
identification of the main goal, sub-goals and criteria. Further, the problem is decomposed
into a hierarchy of goals, criteria, sub-criteria and alternatives. A hierarchy decomposes
a problem and indicates a relationship between elements of level with those of the level
immediately below. This is the creative part of decision making which results in an ordered
network. Saaty [29] suggests that a useful way to structure the hierarchy is to work down
from the goal as far as one can and then work up from the alternatives until the levels of the
two processes are linked in such a way as to make comparisons possible. Figure 4.4 shows
a generic hierarchical structure. Root node of a hierarchy is the goal which signifies the
objective of the problem being solved, which is followed by the sub-nodes called criteria and
sub-criteria. It is important to note that when comparing elements at each level a decision
maker has to compare with respect to the contribution of the lower level elements to the
upper-level ones. This local concentration of the decision-maker on a single part of the whole
problem is a powerful feature of AHP.

2. Perform pair-wise matrix comparisons
Next step is to construct pair-wise comparison matrix and to establish priorities by compar-
ing each criterion within the hierarchy. A pair-wise comparison method is used to determine
the importance of each upper level node w.r.t the immediate lower level node, in this way
the decision maker quantifies the relative importance of each single pair-wise comparison at
each comparison. For this, Saaty proposed a qualitative scale as shown in Table 4.1. Experts
can rate the comparisons as equal, marginally strong, very strong and extremely strong. For
example, A is more important than B, B is of the same importance as D, C is less important
than D etc. Accordingly, each decision is quantified with a value between 1 and 9 as shown
in the Table 4.1. If a choice cannot be made within the available choices, for example, if an
opinion falls in between two intermediate judgments i.e. equal importance and moderately

44 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

equal importance, then a value 2 could be chosen and so on. In a matrix of i rows and j
columns, a comparison is made between each alternative w.r.t. criteria K as shown in the
Figure 4.4. If an alternative Aij has one of the non-zero numbers (shown in Table 4.1) when
compared with j, then Aji gets the reciprocal value when compared with i.

Table 4.1: Pairwise Comparison Table

Intensity of
Importance

Definition Explanation

1 Equal importance Two elements contribute equally to the
objective

3 Moderate import-
ance

Experience and judgment slightly favor
one element over another

5 Strong importance Experience and judgment strongly fa-
vor one element over another

7 Very strong import-
ance

One element is favored very strongly
over another, its dominance is demon-
strated in practice

9 Extreme import-
ance

The evidence favoring one element over
another is of the highest possible order
of affirmation

Figure 4.9: Pair-Wise Comparison Matrix

3. Extract the relative importance of previous comparisons (weights)
After having obtained all the pair-wise inputs from the subject matter expert, normalize the
matrix to ensure consistency of values. For a matrix of Pair-wise elements:

Cij =⇒

C11 C12 C13

C21 C22 C23

C31 C32 C33

Summation of each column of pair-wise matrix:

Sumj =
∑n
i=1 Cij , where,

Sumj = summation of each column for each j = 1 to n

Divide each element in the matrix by its column total to generate a normalized pair-wise
matrix.

Xij =⇒

X11 X12 X13

X21 X22 X23

X31 X32 X33

 =
Cij

Sumj

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 45

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Further, the principle eigenvalue and the corresponding normalized right eigenvector of the
comparison matrix gives the relative importance of the various criteria being compared. The
elements of the normalized eigenvector are called weights w.r.t the criteria or the sub-criteria
and comparisons w.r.t the alternatives. This is done by computing the geometric mean of
each row.

~Wi =⇒

W1

W2

W3

 =
∑n

j=1Xij

n , where,

~Wi = priority vector or weighted matrix of each row i

4. Perform consistency analysis
The consistency of the matrix of order ’n’ is given by calculating the Consistency Ratio
(CR). At first, the consistency vector (~Ci)is calculated by computing the product of pair-

wise matrix (Cij) with the priority vector (~Wi). i.e,

~Ci =⇒

 ~C1

~C2

~C3

 =

C11 C12 C13

C21 C22 C23

C31 C32 C33

 ∗
 ~W1

~W2

~W3

, where,

~Ci = consistency vector

The next step is to calculate maximum eigenvalue (λmax), which is further required to
compute the values of Consistency Index (CI) subsequently.

λmax = max(

∑n
i=1(

~Ci
~Wi

)

n), where,
λmax is the maximum eigenvalue of the pair-wise matrix Cij

CI = λmax−n
n−1

The final step is to calculate the value of CR, which is given by the formula:

CR = CI
RI < 10%, where,

RI is the index of a randomly generated pair-wise comparison matrix

The value of RI depends on the number of items being compared and specific RI values are
provided by Saaty based on the order of random matrix (’n’) as shown in the Table 4.3.

Table 4.3: Random Index of consistency for corresponding order of matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.00 0.00 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.48 1.56 1.57 1.59

The upper row indicates an order of random matrix while the lower row indicates the corres-
ponding values of consistency for random judgments. These values are derived by averaging
CIs from a sample of randomly selected reciprocal matrices of AHP method. Saaty sug-
gests the value of CR should be less than 10%, which implies that the adjustment is small
compared to the actual values of the eigenvector entries. If the value of CR fails to reach
the required level (say 90%), then it indicates that the pair-wise judgments are just about
random and cannot be trusted. Therefore, in this case the values entered in matrix Cij has
to be re-examined.

46 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

4.7 Application of Analytic Hierarchy Process(AHP)

In this section, the AHP algorithm which is described above, is applied to the set of criteria and
sub-criteria with the goal to make a selection for AUTOSAR tool-chain. At first, the goal is
explained in detail and a hierarchical structure is presented. Further, pairwise comparisons are
made between each criteria and finally, the tools are compared based on the selection metrics.

4.7.1 Goal identification and representation of goals and criteria in a
hierarchical framework

The main goal was to rank and select an AUTOSAR tool-chain for two different key selection
criteria from the available tool alternatives. These two criteria were:

1. Best performing tool

2. Best low-cost tool (cost is the main criteria while other aspects gets less score)

Each of the these goals has sub-goals which are, selection of Model tool, ASW tool, BSW
tool and RTE tool, which together constitute a tool-chain. To each of these sub-goals, AHP is
applied considering the criteria and sub-criteria mentioned in Section 4.5. A generic hierarchical
framework is as shown in Figure 4.10. The main goal is divided into 4 sub-goals (corresponding
with the four categories of tools), each of which has 6 selection criteria. Each criteria has multiple
sub-criteria. A pairwise comparison is made between each of these criteria in order to select an
alternative, using the Expert Choice AHP tool.

4.7.2 Pair-wise matrix comparisons

In this step, at first, each criteria (e.g. functionality, interoperability etc.,) are weighed within each
sub-goal to determine the hierarchy of importance for each of these criteria and to what extent
can they be compromised without affecting an overall performance of the tool. Figures 4.4 to 4.7
shows pair-wise matrix comparisons for all four tool categories. If any two criteria are equally
important, then they get a score of 1.0 (e.g. boxes highlighted in yellow, i.e. both the bands (red
and blue) corresponding to Interoperability and Functionality are dragged on the same level to
indicate an equal importance for both criteria).

Figure 4.10: Model tools - Pair-wise comparisons Figure 4.11: ASW tools pair-wise comparisons

Figure 4.12: BSW tools pair-wise comparisons Figure 4.13: RTE tools pair-wise comparisons

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 47

C
H
A
P
T
E
R

4.
T
O
O
L
S
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

Figure 4.14: AHP hierarchical framework of goals and criteria

48
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Other specific values in the table are derived by dragging the bands according to the specific
importance of their respective criteria for each sub-goal and thus a pairwise matrix is generated.
Independent criterion are not compared with each other (e.g. system modeling, high-level GUI
etc.,) since all of them are the attributes of a good tool and one cannot be graded over another.
The corresponding priority graphs for all four pair-wise comparison matrices above, are as shown
in Figures 4.11 to 4.14, respectively (alternative representation of Figures 4.6 to 4.9). These graphs
are sorted based on the priority ranking for each criteria of each sub-goal (weights).

Figure 4.15: Priority graph w.r.t. Model tools

Figure 4.16: Priority graph w.r.t. ASW tools

Figure 4.17: Priority graph w.r.t. BSW tools

4.7.3 Synthesis (relative importance) and Consistency ratio (CR)

Consistency Ratio determines an overall inconsistency of all the weights within a pairwise matrix
(for example, if Tool A is weighted greater than Tool B and B is weighted greater than Tool C,
then A should be weighted greater than C). According to AHP algorithm, the value of CR should
be less than 0.1, in order to determine that the weights and calculations are consistent. In Figure
4.15, synthesis w.r.t the main goal is performed and an overall CR is generated, i.e. 0.01 and hence

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 49

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Figure 4.18: Priority graph w.r.t. RTE tools

the weighted values are consistent. In order to avoid any rank reversal between the alternatives,
ideal mode was used while calculating CR.

All pairwise comparison matrix and synthesis graphs for each criteria and sub-goals can be
found under Appendix A3.

In order to rank the 13 tool alternatives within each criteria under each sub-goal, as shown in
Figure 4.10, following procedure was followed:

1. Step 1
Section 3.5 of Chapter 3 gives a brief overview on various features provided by each software
tool vendor. Tables 3.1 and 3.3 further summarizes the capacity of features within each
tool-chain. This enables us to understand what aspect of the AUTOSAR methodology is
covered by a tool-chain and what is lacking. Note: MCAL tool feature is not explicitly
stated since its a part of BSW layer.

2. Step 2
Next, the sub-criteria listed in Figure 4.10 are considered and the tools are evaluated to
see if they conform to all the required attributes. The evaluation of a particular tool (e.g.
Vector Informatik Gmbh) is always in comparison with another tool (e.g. ArcCore).
For example, under the criteria interoperability for model tools (A3 .2 Figure 20), all AUTO-
SAR modeling tools provided by the tool vendors facilitate the creation of ECU Extract in
the standard data exchange format (.ARXML). Further, all tools abide to the standardized
features of AUTOSAR architecture thereby providing standard interfaces, protocols and
libraries. Hence, all the tools under this criteria are graded equal.

3. Step 3
While comparing any two alternatives w.r.t. a particular criteria and sub-goal (e.g. compar-
ison of Vector and ArcCore w.r.t. Functionality of Model Tools), the main question answered
is, which alternative is preferred w.r.t. that criterion for that sub-goal. After performing all
the comparisons for a sub-goal, general preference of alternatives is calculated as a weighted
sum of the criteria’s priorities (Figures 4.6 to 4.9) along with alternative’s priorities (see
appendix A3). At this point, it is also important to ensure that the inconsistency values for
all the comparisons are less than 0.1. Accordingly, all other criteria for each sub-goal are
evaluated and pairwise comparison matrix is generated.
Note: If a particular tool-chain lacks specific features under any of the sub-goal, its overall
rank will be low (e.g. dSPACE does not provide any tool features necessary for modeling or
application development. Eventhough its ranked high under BSW tools and RTE tools (see
Appendix A3), its overall rank is comparatively low (Figure 4.15)).

4. Step 4
After comparing tools for all the criteria and sub-goals, next step is to synthesize these
results (Figure 4.15) and finally generate graphs, which is further explained in next section.

50 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 4. TOOLS SELECTION METHODOLOGY

Figure 4.19: Synthesis graph for all the tool alternatives

4.7.4 Overall priority ranking and tool selection

An overall priority is determined for all sub-goals and criteria, i.e. weights are assigned to rank all
sub-goals and criteria as shown in graphs (Figure 4.15, Appendix A.3). BSW tools and RTE tools
are ranked / prioritized slightly higher than Model tools and ASW tools. The reason is because
configuring BSW and RTE are the most complex parts in implementing AUTOSAR architecture.
Though modeling and application generation is equally important, some compromises can be made
when compared to BSW and RTE tools, mainly with regards to complexity in applying BSW and
RTE tools. Further, the AUTOSAR tool from Vector Infomatik GmbH performed better overall.
AHP results for individual tool categories can be found under Appendix A.2.

Figure 4.20: Overall tool ranking

Finally, a tool-chain is selected each for performance metric and cost metric. This method of
comparing the alternatives gives a better overall perspective of the efficiency of a tool in doing a
certain task i.e., a tool-vendor can have 1 tool performing both modeling and generating ASW code.
But to what extent can it perform better than the other can be assessed using this methodology.
With this approach, if a certain tool-vendor provides 3rd party integration capabilities for the
tools, then instead of buying a whole tool-suite from just one vendor, it might prove cost-effective
for a small company to go for AUTOSAR tooling options from more than one vendor that satisfies

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 51

CHAPTER 4. TOOLS SELECTION METHODOLOGY

the requirements with some trade-offs made. But if cost is not a main bottleneck, then this
methodology still proves efficient as it provides a clear idea of the strengths of the tool-chain and
if that matches the desired requirements.

4.8 Tool selection

After applying AHP to AUTOSAR tool-chain the tools selected for best overall performance are
AUTOSAR tool-chain from Vector Informatik GmbH, Dassault Systems, ETAS, Mentor Graphics
and ArcCore (in that order). The low-cost AUTOSAR tools selected are Mathworks Embedded
Coder for modeling tool, ArcCore for procuring only the Arctic Studio and COMASSO community
membership for the procuring the BSW modules. Matlab Embedded Coder was mainly selected
due to its rich GUI features. If having a GUI is not an essential requirement and if compromises
can be made in terms of usability, then Arctic Studio can be used also as a low-cost modeling tool.
Therefore, RQ4.1, 4.2 are answered.
In this thesis work, only ArcCore’s Arctic Studio and Arctic Core was used in implementing
AUTOSAR architecture and for evaluation of the tool, because of the availability of trial license.

4.9 Trade-offs

While selecting AUTOSAR tool-chain prioritizing cost as the key selection criteria, certain trade-
offs were considered to be made. They are as follows.

1. Least priority was given to usability, service and support and other value added services
that costs extra charges. Instead required knowledge can be derived from available (free)
resources.

2. Some features for testing like efficient debuggers, simulations are compromised. Instead any
third party tools for simulation and testing could be used (if available, not researched in this
work).

3. The files exchanged between the tools (.ARXML) might not be seamlessly interoperable and
compromises had to be made in this regard. This might imply that some changes might be
made within the tool to integrate with other tools, but this could be a complex task prone
to errors. Hence, not recommended.

Keeping all the above trade-offs in mind, weights for attributes functionality, interoperability and
testability are not significantly reduced even-though cost is given the highest priority (graphs can
be found in Appendix A.2 and A.3). Thus research question RQ4.3 is answered.

52 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Chapter 5

Demonstrator

As a part of the case study for this work, a demonstrator using the AUTOSAR architecture was
implemented using the selected AUTOSAR tool. This demonstrator was used as a means to apply
the tool selected in Chapter 4 i.e. Arctic Studio (Release 15.x.x), based on previously selected
criteria. This demonstrator also helps in understanding the prospects and challenges of using low-
cost methods in implementing the AUTOSAR architecture. In the following sections, the system
design for the demonstrator is explained in two phases. The initial design was a failed attempt
due to low-cost constraints of the project and novice understanding of the tool-suite. The many
roadblocks and challenges during the initial design phase led to a better understanding and usage
of tools, as a result, an updated design is presented subsequently. Final section summarizes the
tools required for an implementation of the demonstrator.

5.1 Initial design and challenges faced

5.1.1 System requirements

Initially, stakeholders were identified and a set of requirements were put forth before designing the
demonstrator. Main stakeholders of this project were, Orlaco, as a client that provided EMOS
camera for this project and BRACE Automotive which was the owner of the end product. Other
stakeholders included project manager and project developer, performed by me under the guidance
of BRACE Automotive. The stakeholder requirements that were put forth were as follows:

1. Use of low-cost tools and off-the shelf components
Since the main emphasis of this thesis was to explore the possibilities of using the AUTOSAR
architecture in the realm of a limited budget and resources, there was a high emphasis
on making use of off-the-shelf hardware components along with the selected low-cost tool.
In this regard, Arduino Mega 2560 board was used to implement AUTOSAR. This was
supplemented with Arduino’s CAN and Ethernet shield for implementing CAN and Ethernet
communication.

2. Use of Arctic Studio tool-suite for implementing AUTOSAR
Though the entire ArcCore’s tool solutions were not considered low-cost (as illustrated in
Chapter 4), Arctic Studio along with Arctic Core (release 15.x.x) were made use of due to
their availability and ease of access. However, ArcCore’s Arctic Core did not provide support
for the chosen microcontroller for this project. Hence, most part of the basic software needed
to be implemented manually.

3. Manual implementation of the MCAL layer
Since the only available off-the-shelf component for implementing AUTOSAR was Arduino
Mega 2560, it was decided to be used as an underlying hardware platform for the demon-
strator. But during discussions with ArcCore it was found that ArcCore did not support

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 53

CHAPTER 5. DEMONSTRATOR

the hardware drivers for the ATMega micro-controller family. Hence, it was decided that
the required drivers were to be implemented manually.

4. Manual implementation of compiler-scripts
Though Arctic Studio supports multiple compilers, it does not have support for avr-gcc
compiler. Hence, it was also required to put the avr-gcc compiler script and other libraries
in place in order to support the micro-controller that was being used.

5. Manual implementation of Operating System wrapper
It was also decided that the operating system was going to be implemented manually or a
wrapper around the existing OS is coded which is compatible with Arduino microcontroller.

6. Implementing CAN and Ethernet communication stack
As EMOS camera was an Ethernet device, the idea was to establish a communication between
the Ethernet (EMOS Camera) and the CAN communication channels (CAN Simulator) using
AUTOSAR architecture which was implemented on Arduino. The motive was to keep the
application realistic yet simple.

7. Configuring only the required BSW modules
The BSW layer of AUTOSAR consists of over 63 modules which forms the bulk of an entire
architecture. In order to reduce the complexity only those required modules for implementing
the demonstrator were adopted.

8. Simple application yet realistic
Number of software components were considered to be atleast 3 or more with more than one
type of SWCs (Application SWC, Sensor/Actuator SWC, etc.). Further, it should imple-
ment both interfaces (client server, sender receiver). Communication with other SWCs and
underlying BSW layer had to be established. Accessing I/O interfaces was also a necessary
requirement.

Accordingly a conceptual design was made as shown in Figure 5.1. The topology diagram
shown in Figure 5.2, shows the basic set up of the demonstrator being developed in a real life
scenario.

Figure 5.1: Initial design of the demonstrator

5.1.2 System hardware

The hardware components that were used to implement the demonstrator are briefly explained
below:

1. Arduino Mega 2560
Arduino Mega 2560 is an 8-bit Atmel microcontroller with 8KB SRAM and 256KB flash

54 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 5. DEMONSTRATOR

Figure 5.2: Topology diagram for the demonstrator

memory [76]. It is also compatible with Arduino CAN and Ethernet shield which is used to
establish Ethernet and CAN communication.

2. EMOS Camera
EMOS camera is developed in-house by Orlaco B.V and is mainly used in heavy duty vehicles
like trucks, cranes, mining equipment etc [77]. It is connected to a monitor via an Ethernet
cable and streams images (MJPEG) using RTP stream protocol. The Real-time Transport
Protocol (RTP) is a network protocol for delivering audio and video over IP networks.
Further, it features a latency less than 100ms.

3. PEAK CAN adapter
The PEAK CAN adapter is an USB device which enables simple CAN communication within
the network. This adapter is used to emulate the CAN signal on a laptop (PCAN View)
through which CAN messages can be sent to the Arduino board.

4. Lenovo laptop
The entire implementation was done using a Lenovo thinkpad which runs on Windows op-
erating system.

5.1.3 System software design

As mentioned in the requirements, the application was intended to be simple yet realistic. Ac-
cordingly, three user stories were put forth, with regards to a driver of a truck being the user, of
the demonstrator being implemented.

1. User story 1
As a driver, it is intended that the demonstrator automatically changes the camera display
from front view to rear view by sensing the change in transmission on a reverse gear, so that
manual interaction with the system can be minimized.

2. User story 2
As a driver, it is intended that the demonstrator changes the Region Of Interest (ROI) of
the camera on cross-roads, so that blind spots are easily visible.

3. User story 3
As a driver, it is intended that the demonstrator displays an indicator or an LED light (either
green or red) indicating the status of the data stream, so that the driver can be certain if
the stream is being transferred or if there has been some problem. If then the driver can
view the real mirror instead of the camera display.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 55

CHAPTER 5. DEMONSTRATOR

Functional Requirements

As per the above mentioned user stories, following are the functional requirements for the demon-
strator:

1. The Arduino ECU which implements AUTOSAR architecture, must provide CAN and Eth-
ernet communication interfaces to send and receive CAN and Ethernet messages.

2. Arduino should receive transmission status and steering angle as inputs via CAN in order
to process the data further.

3. In order to satisfy User Story 1, Arduino should monitor the change in transmission signal
received over CAN, periodically. If the transmission signal received is on reverse gear, then
it should send a signal to EMOS camera to change its view from ’front’ to ’rear’ view over
the Ethernet communication channel.

4. In order to satisfy User Story 2, upon receiving the steering angle via CAN, Arduino should
send an appropriate ROI value over Ethernet to the EMOS camera. By altering the value
of ROI, the display can be zoomed thereby detecting any blind spots which the driver can
see clearly.

5. In order to satisfy User Story 3, Arduino should access an on-board LED device and blink
periodically if the data stream has been detected. If the data stream is not detected over
EMOS camera, LED remains switched off.

Application design

Accordingly, application SWCs were designed and connected as shown in Figure 5.3 and 5.4.

Figure 5.3: Software Components

The connections could be summarized as follows:

Table 5.1: Application design

Sender/Client
SWCs

Receiver/
Server
SWCs

RTE Events Interface Data Ele-
ments

EMOSDataComponent
EMOSChange
ROI

dataWriteAccess/da-
taReadAccess

S/R Steering angle

EMOSChange
Transmis-
sion

dataWriteAccess/da-
taReadAccess

S/R Transmission
value

56 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 5. DEMONSTRATOR

StreamIndicator
EMOSStream-
ingData

operationInvoked
Event/serverCall-
Point

C/S Stream status

StreamActua-
tor

dataWriteAccess/da-
taReadAccess

S/R Stream status

Further, the ports that are open in Figure 5.4, receive or send signals to the underlying layers,
which is summarized in Table 5.3.

Figure 5.4: Application design

Table 5.3: Communication matrix

I-Pdu SWCs RTE Events Interface Data Ele-
ments

Rx CAN
Signal

ECUDataComponent dataWriteAccess/da-
taReadAccess

S/R ECUData

Tx Eth Signal
EMOSChangeROI dataWriteAccess/da-

taReadAccess
S/R ROI value

EMOSChangeTrans-
mission

dataWriteAccess/da-
taReadAccess

S/R Change view
status

Tx / Rx Eth
Signal

EMOSStreaming Data timingEvent S/R Stream
status

In Figure 5.4, ECUDataComponent receives two CAN data signals from the underlying COM
module (Figure 5.5). It sends the received data to EMOSChangeROI and EMOSChangeTransmis-
sion SWCs which on further processing, sends the data required i.e., ROI value and change view
status (Y/N), to EMOS camera via Ethernet. Client application SWC StreamIndicator requests
the server to send the stream status periodically upon which the server (SWC EMOSStreaming-
Data) transmits stream status request and receives stream status via Ethernet stack. On receiving
the stream status, it is sent to StreamActuator which further accesses I/O (LEDs) via ECUAbsS-
wComp as summarized in Table 5.4.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 57

CHAPTER 5. DEMONSTRATOR

Table 5.4: Actuator component accessing I/O

Application
Layer SWC

BSW Layer
SWC

RTE Event Interface Data Ele-
ments

StreamActuator ECUAbsSwComp operationInvoked
Event/serverCall-
Point

C/S LEDStatus

SWCs that have following ports have corresponding RTE Events to trigger runnables:

• Provide port - dataWriteAccess

• Receive port - dataReadAccess

• Client port - operationInvokedEvent

• Server port - serverCallPoint

• SWCs that accesses the underlying COM module via RTE gets triggered periodically using
the RTE Event called timing event.

Basic software design

Basic Software was further designed and implemented for the above application as shown in Figure
5.5.

1. Application layer
Application layer includes all the SWCs mentioned above encapsulated within a Composition
SWC. SWCs were coded as per the above design using textual language ARText in Artic
Studio tool. Further, ECU Extract was generated which was used to configure the underlying
RTE and BSW layers.

2. RTE layer
RTE layer was configured in RTE Builder tool of Arctic Studio by mapping runnables to OS
tasks and instantiating the SWCs.

3. BSW layer
BSW layer modules were further implemented and configured using Arctic Studio’s BSW
Builder tool. Although, only CAN part of the application was implemented initially. Since
Arduino’s CAN shield was an external device, an additional SPI driver was needed for
accessing Arduino Mega 2560 CAN controller. As a result, external CAN Driver and SPI
driver were manually implemented for Arduino hardware. Modules like OS, MCU, PORT
and CANIf were partially implemented and configured. Further COM, Pdu Router, EcuM
and DET were configured for Arduino Mega 2560.

This phase of implementation led to many challenges and roadblocks which are further de-
scribed in the next section.

5.1.4 Challenges faced with the initial design and implementation

The challenges that were faced in this thesis are as described below (RQ4.2).

1. Modification of AUTOSAR OS
Modifying the given AUTOSAR OS in Arctic Studio was not feasible because Arduino is
a low-powered MCU which just runs a single program at a time and does not have an OS.
Hence, a wrapper was written to interface FreeRTOS for Arduino and the AUTOSAR OS.
A wrapper function is a layer of code that translates existing interface into a compatible

58 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 5. DEMONSTRATOR

Figure 5.5: Initial design of the demonstrator

interface, in this case, existing AUTOSAR OS to a Arduino compatible FreeRTOS. Once
the OS and other kernel source files were in place, it was time to compile the core AUTOSAR
code.

2. Compiler for Arduino hardware avr-gcc not supported in Arctic Studio
A compiler make file for avr-gcc was coded manually and integrated within the tool. This
required multiple changes in other makefiles, which was cumbersome.

3. Lack of interoperability and integration with manually written code
Since code generators were encrypted, newly created and partially modified modules and
drivers could not be included within the generators to generate code automatically. As a
result, all configuration files were statically modified.

4. Insufficient memory on Arduino hardware
Though this was a concern while choosing the hardware, the initial strategy was to write
our own code and to keep it simple in order to reduce the memory footprint. But as we
progressed, tool offered less support in integrating code for Arduino and also resulted in
memory mapping errors.

All the challenges mentioned above led us to conclude that, the standard AUTOSAR operating
system provided by commercial tool vendors are not suitable for low-level micro-controllers unless

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 59

CHAPTER 5. DEMONSTRATOR

specifically mentioned otherwise (for example MICROSAR from Vector GmBh). Hence, it was
decided to change the hardware to yet another low-cost micro-controller from Texas Instruments
and reduce the scope of application to just implement CAN communication and access I/O drivers.

5.2 Updated design of the demonstrator

Figure 5.6 shows updated conceptual design for the demonstrator.

Figure 5.6: Final design of the demonstrator

5.2.1 System hardware

While PEAK CAN adapter and Lenovo laptop was used as previously decided, the following new
hardware was procured as per the new design.

1. TMS570LC4357
Hercules launchpad from Texas Instruments, TMS570LC4357 micro-controller, has 32-bit
ARM Cortex R-5 dual processors which operates in lockstep clocking at 300MHz frequency.
It has 128KB of data flash memory and 512KB of data RAM. It also has 4 on-chip DCAN
controllers. Other communication channels include Ethernet, FlexRay, I2C, MibSPI and
UART (SCI/LIN).

5.2.2 System software

The new application demonstrates an implementation of CAN communication and accessing the
underlying I/O device. Figure 5.6 shows the new application design.

Functional Requirements

Among the previous set of Functional Requirements mentioned in Section 5.1.3, only CAN com-
munication part of the implementation is being demonstrated in the updated design. As a result,
the updated design has following functional requirements.

1. TMS570 hardware, should provide CAN communication interface based on the AUTOSAR
architecture.

2. TMS570 should receive CAN messages to emulate steering angle and transmission status as
inputs to the system. This also satisfies User Story 1 and User Story 2 (Section 5.1.3) partly.

3. TMS570 should access an on-board LED and blink periodically or stop blinking in order to
emulate the stream signal.

60 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 5. DEMONSTRATOR

Figure 5.7: Final design of the demonstrator

Figures 5.7 and 5.8 shows the updated application and BSW design. CANReader SWC receives
the CAN message from underlying COM module and writes it to CANWriter SWC. CANWriter
SWC then transmits the received message to the hardware. The blinkLED SWC blinks LED
light at a given time delay. Tables 5.5, 5.6 and 5.7 summarizes connections required to establish
CAN communication and access I/O driver. All modules within the BSW layer were manually
configured using Arctic Studio’s BSW builder. Chapter 6 explains the implementation of this
design in detail.

Table 5.5: Application design

Sender/Client
SWCs

Receiver/ Server
SWCs

RTE Events Interface Data Ele-
ments

CANReaderSWC CANWriterSWC operationInvoked
Event/serverCall-
Point

C/S Rx01 / Tx01

Table 5.6: Communication matrix

I-Pdu SWCs RTE Events Interface Data Ele-
ments

Rx CAN signal CANReaderSWC dataWriteAccess/da-
taReadAccess

S/R CANInput

Tx CAN Signal CANWriterSWC dataWriteAccess/da-
taReadAccess

S/R CANOutput

Table 5.7: Actuator component accessing I/O

Application
Layer SWC

BSW Layer
SWC

RTE Event Interface Data Ele-
ments

BlinkLEDSWC ECUAbsSwComp operationInvoked
Event/serverCall-
Point

C/S LEDBlinkSignal

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 61

CHAPTER 5. DEMONSTRATOR

Figure 5.8: Final design of the demonstrator

5.3 Other tools used

Other tools used along with ArcCore’s Arctic Studio include Code Composer Studio (CCS),
AVRDude and IBM Rational Rhapsody. CCS tool from TI is used to flash the executable on
TMS570LC4357 board. It is also used to debug the executable since this feature is not available
within Arctic Studio. AVRDude programmer tool was used to flash the executable for Ardu-
ino Mega 2560 board. Application SWCs were designed using IBM Rational Rhapsody tool for
AUTOSAR modeling.

62 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Chapter 6

Implementation

6.1 Overview

This chapter focuses on realizing the demonstrator using Arctic Studio tool-chain. As discussed
in the previous chapter, the board chosen initially was an Arduino Mega 2560. But due to many
roadblocks and challenges (Section 5.1.4), it was decided that implementing AUTOSAR was not
feasible on Arduino. Moreover the tool selected posed a major bottleneck for implementing AUTO-
SAR on an Arduino platform. With this we concluded that, using tools like Arctic Studio, it is
not feasible to implement AUTOSAR on a low-powered micro-controller device (more on this in
Chapter 8). Hence, a backup board was used to realize the demonstrator at a later stage.
The following chapter presents the implementation of an AUTOSAR compliant CAN communica-
tion stack on the Texas Instruments Hercules Launchpad (TMS570LC4357). The AUTOSAR tool
from ArcCore, Arctic Studio is used to implement application, BSW layers and RTE layers and to
generate an executable. Section 6.2 describes the implementation of application layer, section 6.3
presents the configuration of BSW modules using the BSW Editor tool and section 6.4 provides
the configuration and generation of RTE layer using the RTE Editor tool. After the generation of
all the configuration files (.c, .h), they are compiled together in order to generate the executable
which is then flashed onto the hardware. Section 6.5 and 6.6 discusses the same in detail.

6.2 Application software development

To create the application layer, at first, SWC Description had to be defined. In order to facilitate
the integration of software components, AUTOSAR provides a standard description format called
the SWC Description (i.e. modeling the software components). An AUTOSAR Software Com-
ponent Description (SWCD), describes the external structure and internal behavior of a software
component. It gives an overall picture of the interfaces, ports, data elements, runnables, com-
munication signals, software components definition and its internal behavior. A textual modeling
language called ARText is provided in Arctic Studio to model the SWCs.
The creation of software components can be mainly divided into 3 phases. They are data and inter-
face modeling phase, component modeling phase and writing the actual C code for implementing
the SWC. These are described in the following sections.

6.2.1 Defining interfaces and data elements

In this phase, the interfaces which are being adopted in the application had to be defined along with
the data elements and their types i.e. defining impl and app, as shown in Listing 6.1. Keywords
interface is used. The two interfaces created in this application are i.e CanDataSRInterface which
adopts sender receiver interface type and CanDataCSInterface that adopts client server interface
type. Keywords senderReceiver and clientServer are used respectively, for this purpose.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 63

CHAPTER 6. IMPLEMENTATION

// The impl , app and SR i n t e r f a c e f o r communicating CANReader data
i n t impl CanDataImpl extends uint32
i n t app CanData

//Sender−Rece iver i n t e r f a c e
i n t e r f a c e senderRece ive r CanDataSRInterface {

data CanData r e c e i v e mes sage
data CanData transmit message

}

// Cl ient−Server i n t e r f a c e
i n t e r f a c e c l i e n t S e r v e r CanDataCSInterface {

opera t i on Send {
in CanData data1

}
}

// Data Mappings f o r impl : s , app: s de f ined above
dataTypeMappingSet TypeMappings{

map CanDataImpl CanData
}

Listing 6.1: Interfaces and data mapping SWCD code

Finally data and implementation mapping is done and is specified using dataTypeMappingSet
keyword. Through this mapping, it is possible for ports to identify the intended data for a
particular SWC and disregard other data.

6.2.2 Software Component Description (SWCD)

There are three SWCs implemented in this application (see Figure 5.5) and the software component
descriptions are as specified below.

CANDataReader Component

Creating a SWCD has three important aspects i.e. creating the outer boundary for a SWC
which includes ports and interfaces, defining an internal behavior for a SWC and creating an
implementation for the internal behavior. An application component itself is created using the
component keyword followed by name of the application as shown in the Listing 6.2. Further ports
are created. Every SWC in AUTOSAR communicates via ports and all ports communicate over
an interface (Section 6.2.1). CANDataReader component has a receiver port (RPort) through
which it accepts data from the COM media (CanRxData) and hence requires the sender-receiver
interface and a client port requests data from the server (CanClient) and hence adopts client server
interface.

// Def ine the so f tware components and Ports that use the de f ined i n t e r f a c e s
component app l i c a t i on CanDataReaderComponent {

por t s {
r e c e i v e r CanRxData r e qu i r e s CanDataSRInterface
c l i e n t CanClient r e qu i r e s CanDataCSInterface

}
}
i n t e rna lBehav i o r CanDataReaderBehaviour f o r CanDataReaderComponent {

dataTypeMappings {
TypeMappings

}

runnable CanDataReaderComponentMain [0 . 0] {
symbol ”CanDataReaderComponentMain”

dataReadAccess CanRxData . r e c e i v e mes sage

64 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

s e rv e rCa l lPo in t synchronous CanClient .∗

dataReceivedEvent CanRxData . r e c e i v e mes sage
}

}
implementation CanDataReaderImpl f o r CanDataReaderBehaviour {

language c
codeDesc r ip tor ” s r c ”

}

Listing 6.2: CANDataReaderComponent SWC

Next step is to define the functionality of SWCs and this is done by creating an internal beha-
vior which includes runnables for the CANDataReaderComponent. Internal behavior is created
using internalBehavior keyword for CANDataReaderComponent and runnable is created using the
keyword runnable. All the runnables in this application are instantiated just once, but multiple
instantiation of a single runnable is also possible.
Since a receiver port is implemented within this SWC, the runnable requires data read access and
the syntax for this is dataReadAccess. Hence, CanRxData of the receiver port is mapped to the
receive message data that the SWC is expected to receive. The client port makes a synchronous
call to the server port using the command serverCallPoint. If a runnble has no data access men-
tioned explicitly in order to communicate over a certain port, then an API for communication will
not be generated for such a runnble by RTE. This runnable is triggered by data received event i.e.
when a CAN message is received.
The third part of defining a SWC is to specify an implementation for its runnable which is coded
in C language in a separate .c file. This file will be linked to the SWC during the generation of
RTE.

CANDataWriter Component

CANDataWriter component writes data to the COM media and hence makes use of PPort CAN-
TxData. It uses SR interface for this purpose. This SWC also acts a server for the CANReaderData
component and uses server port CanServer via the CS interface as shown in Listing 6.3.

// Def ine the so f tware components and Ports that use the de f ined i n t e r f a c e s
component app l i c a t i on CanDataWriterComponent {

por t s {

sender CanTxData prov ide s CanDataSRInterface
s e r v e r CanServer prov ide s CanDataCSInterface

}
}
i n t e rna lBehav i o r CanDataWriterBehaviour f o r CanDataWriterComponent {

dataTypeMappings {
TypeMappings

}

runnable CanDataWriterComponentMain [0 . 0] {
symbol ”CanDataWriterComponentMain”

dataWriteAccess CanTxData . t ransmit message

operat ionInvokedEvent CanServer . Send
}

}
implementation CanDataWriterImpl f o r CanDataWriterBehaviour {

language c
codeDesc r ip tor ” s r c ”

}

Listing 6.3: CANDataReaderComponent SWC

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 65

CHAPTER 6. IMPLEMENTATION

The internal behavior includes a runnable that has data write access through which RTE provides
mechanism that allows this component to write data to COM media and operation invoked event
invokes the server when client makes a call. Implementation for the runnable is coded in C as a
separate C file which gets linked during run-time.

BlinkLED component

BlinkLED component acts as an actuator component which is used to access the ECU’s I/O. It
includes a client port that establishes contact directly with the server port of an ECU abstraction
software component. This component is triggered periodically by making use of timing event as
shown in Listing 6.4.

// Def ine the so f tware components and Ports that use the de f ined i n t e r f a c e s
component app l i c a t i on BlinkLEDComponent {

por t s {
c l i e n t LEDDigitalLight r e qu i r e s D i g i t a l S e rv i c eWr i t e

}
}

i n t e rna lBehav i o r BlinkLEDBehaviour f o r BlinkLEDComponent {

dataTypeMappings {
TypeMappings

}

runnable BlinkLEDComponentMain [0 . 0] {
symbol ”BlinkLEDComponentMain”

s e rv e rCa l lPo in t synchronous LEDDigitalLight .∗

timingEvent 0 .1 as blinkLEDMainEvent
}

}

implementation BlinkLEDImpl f o r BlinkLEDBehaviour {
language c
codeDesc r ip tor ” s r c ”

}

Listing 6.4: BlinkLEDComponent SWC

6.3 ECU extract generation

Once all the SWCs are created, an extract (ARXML file) for a single ECU is generated and is
used for configuring the ECU. This extract includes all the information related to the application
components and service components required from the underlying BSW layer i.e. BSWM and
ECUM.
Service components provide access to the SWCs to use functions provided by the BSW modules.
For example, BSWM component allows an application to access PDU groups that needs to be
sent, ECUM provides an access for application components to manage ECU modes (which inturn
communicates with the corresponding service module in BSWM) and also handles the initialization
of ECU. IoHwAb is an ECU Abstraction SWC that provides direct IO access for a SWC to the
DIO driver and is responsible for imparting digital IO services to the application layer. Hence,
this is also vaguely considered as a service component though its not and is part of the ECU
Abstraction Layer.

66 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

6.4 Developing the application code

This section explains the actual C code implementation for the SWCs. During RTE generation
using the RTE Editor tool, SWC implementations are created by RTE by creating a function
called Rte IRead CanDataReaderComponentMain CanRxData receive message(). This function
returns a pointer which points to the received data on the RPort and is stored in rx message.
Further, Rte Call CanClient Send() is used to invoke the server (CANDataWriterComponent) by
passing the received message (rx message) as a parameter, as shown in Listing 6.5.

// Receive CAN message
rx message = Rte IRead CanDataReaderComponentMain CanRxData receive message () ;

// Ca l l s e r v e r
Rte Cal l CanCl ient Send (rx message) ;

Listing 6.5: C code implementation for CAN data reader component

Listing 6.6. shows the implementation for CANDataWriterComponent. RTE generates a
function call Rte IWrite CanDataWriterComponentMain CanTxData transmit message() where
the received message from the client server interface is passed as a parameter to write to COM
media via its PPort.

// Transmit the r e c e i v ed CAN message
Rte IWrite CanDataWriterComponentMain CanTxData transmit message (c l i e n t me s s ag e) ;

Listing 6.6: C code implementation for CAN data writer component

In order to actuate the LED, it generates Rte Call LEDDigitalLight Write() by passing the
level as a parameter. Led on is assigned with a value 1 which is then toggled to make it blink at
each second as shown in Listing 6.7.

void BlinkLEDComponentMain (void) {
Rte Cal l LEDDig i ta lL ight Write (l ed on) ;

l ed on = ! l ed on ;
}

Listing 6.7: C code for implementing BlinkLED software component

6.5 ECU configuration

Configuring an ECU is the most complex process while developing an AUTOSAR application.
Arctic Studio provides BSW Editor tool for this process. As shown in Figure 6.1, this tool takes
ECUExtract.arxml (the ARXML file generated in the previous step as part of an ECU extract).
The generator creates configuration files (* Cfg.h, * Cfg.c, *.mk) by making use of static source
files from Arctic Core (the BSW core project of Arctic Studio).
With the help of BSW Editor tool, required BSW modules for implementing the above applic-
ation, had to be configured. As shown in Figure 6.2 only required BSW modules are added for
configuration.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 67

CHAPTER 6. IMPLEMENTATION

Figure 6.1: Generation of configuration files using BSW Editor tool

Figure 6.2: BSW Editor tool interface in Arctic Studio

6.5.1 CAN driver

A layered architecture style builds from lower layers to upper layers. Moreover, upper layer
modules extends the functionality of lower layer modules. Hence, first the lower layer modules
must be configured followed by the modules in the layer above, i.e. CAN driver is configured
followed by CANIF, CANSM, PduR, COMM and COM module. In order to configure the
CAN driver, CAN controller baud rate and CAN hardware receive and transmit objects must be
configured as shown in the Figure 6.3 and 6.4.

6.5.2 CAN interface

CANIF module requires configuring CANIF Pdus i.e CANRxPduCfg and CANTxPduCfg as shown
in Figure 6.5 (only configurations for Rx is shown in figures). Here it also establishes a reference
to the CAN hardware object created in CAN driver i.e. CAN hardware object receive handle
(CanIfHrhCfg, CanIfHthCfg) is referenced to the CAN hardware receive object as shown in Figure
6.6.

68 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

Figure 6.3: Configuring CAN Driver in Arctic Studio

Figure 6.4: Configuring CAN Driver in Arctic Studio

Figure 6.5: Configuring CANIF module - CanIfRxPdu being assigned to CanIfHrhCfg

Figure 6.6: CanIfHrhCfg being referenced to CanHardwareObjectRx

Figure 6.7: PDU routing table

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 69

CHAPTER 6. IMPLEMENTATION

6.5.3 PduR

For configuring the PduR module, routing table must be configured as shown in Figure 6.7 and
6.8. First, BSW modules used by PduR must be mentioned. In this case PduR communicates with
COM module and CANIF module. Figure 6.7 shows the communication hierarchy i.e. CANIF
being a lower level module to PduR. Similarly COM is configured as upper module. Further,
CANIF is designated to be a SrcPdu (as shown in Figure 6.8) and COM is assigned to be a
destination Pdu, when the message is received from lower layers to upper layers. Likewise, vice
versa i.e. COM is assigned as source Pdu and CANIF is assigned as a destination Pdu when the
message is being transmitted.

Figure 6.8: CANIF assigned to be source PDU while CAN message is received

6.5.4 COM

There were three main configurations that were made within the COM module for this applica-
tion. They are, configuring instruction Pdu (I-Pdu), configuring I-Pdu groups and configuring the
COM signals. An I-Pdu contains the data message that has been either received from one of the
communication modules in the communication stack, or a data message that is to be sent to one
of said modules. An I-PDU also belongs to an I-PDU group i.e ComIpduGroupRx as shown in
Figure 6.9. The data of an I-PDU is divided into signals, depending on bit position in the I-PDU.
For example if you have an I-PDU with 2 bytes of data length and desire to place the first byte to
one signal and second byte to another signal, you set the bit position of each signal accordingly.
The data length used in this case is 4 bytes and hence can be sent over a single COM signal (max
4 bytes). If there are more than 4 bytes that needs to be sent then signal groups can be created
where the IPdus are grouped into signal groups.

Figure 6.9: COM module configuration

70 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

6.5.5 AUTOSAR OS

Further, service layer modules like OS, BswM and EcuM that imparts system services to the ap-
plication were to be configured. The BswM and EcuM modules provide services to the application
components to interact with the BSW modules, which is further explained in the sub sections
below.
In order to configure AUTOSAR OS, five main entities that are configured in this case, they are,
Alarms, Events, Counter, Tasks and OsApplication as shown in Figure 6.9. A counter is an entity

Figure 6.10: Configuration of AUTOSAR OS

that keeps count in the OS module which can be set to be handled either in software, hardware
or according to OS ticks. In this case Os tick frequency is configured to be 100 within OsOs
parameter. An event is an entity which is referred by a task. Event facilitates the triggering of
runnable by the RTE as explained in section 6.2. For this purpose RTE makes use of OS Alarms
which is used to trigger the events at respective time intervals. A task is an entity like events
also triggered by alarms. In this case three tasks are created OsRteTask, OsBswTask and OsStar-
tupTask. The configuration of these tasks are explained in Section 6.6 under RTE configuration.
An OsApplication entity simply acts as a container for counters, tasks and events for a particular
application.

6.5.6 BswM

BswM module is mainly used to access services provided by the BSW modules through application
layer. There are two main parts while configuring BswM module, namely, BswMArbitration and
BswMModeControl as shown in Figure 6.11. BswMArbitration is a container that contains BswM-
LogicalExpressions, BswMModeConditions, BswMModeRequestPorts and BswMRules. BswM
provides three main rules within BswMRules container viz., DisablePduGroup, EnablePduGroup
and StartCommunicationRule. Using these logical expressions viz., ComMFullCommunicational-
Expression, ComMNoCommunicationalExpression, StartCommunicationExpression are evaluated.
Logical expressions are created by chaining together different mode conditions using common lo-
gical operators (AND, NAND, OR, XOR). BswMModeControl container has BswMActions and
BswMActionLists. Actions are grouped in action lists. Action specifies how the I-PDUs are treated
in a specific mode (acts like a group switch).
There are three actions created within the BswMAction container. These are IPduAllDisabled

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 71

CHAPTER 6. IMPLEMENTATION

(both Rx IPdus and Tx IPdus are disabled), IPduAllEnabled (both Rx IPdus and Tx IPdus are
enabled), RequestFullCom (through this parameter a full communication access to the respect-
ive communication channel can be requested). A BswMActionList container is a list of one or
more BswMActionListItems with an addition field specifying how the action list is executed. A
BswmActionListItem allows the configurator to specify the exact position of the items in the list
and even offer the possibility of referencing other ActionLists and even Rules.

Figure 6.11: Configuration of BswM module

6.5.7 EcuM

The main function of EcuM module is to initialize the ECU and manage the ECU states. EcuM
has fixed configurations viz., STARTUP, RUN, SLEEP, WAKEUP, SHUTDOWN which means
that the states of EcuM are fixed and are predefined by AUTOSAR and hence cannot be altered.
AUTOSAR has introduced EcuM flex, where an user can change the states, from AUTOSAR v4.x.
In this case, EcuM flex and BswM are closely coupled and work together.

6.5.8 IoHwAb

Next, I/O modules such as IoHwAb, PORT and DIO modules had to be configured. The IO Hard-
ware Abstraction module abstracts the signal path of the ECU hardware (Layout, Microcontroller
Pins, Microcontroller external devices like IO ASIC). It provides a signal based interface to the
upper software layer. It performs static abstraction and inversion (if needed) of values according to
their physical representation at the inputs/outputs of the ECU hardware. In this case, a channel
reference is established to LED2 so that the SWC in application layer can communicate with the
DIO module directly. Since, LED is considered as an actuator, it is set to digital write, as shown
in Figure 6.12.

6.5.9 PORT

The PORT module configures hardware pins. The DIO module can then perform read and write
operations based on these initial configurations. The configuration involve initializing the values
on the pins, setting a direction and mode for each pins as shown in Figure 6.13. On power-up the
pins in a micro-controller are set to a default value. The port driver initializes all the pins either
as low or high as per the system requirements. In this case, the port pin is pulled up. A pull up
or a pull down resistor is used so that there are no floating connections. Pins can be either input
or output. Sometimes system requirement will make it necessary to change the direction of pins.
Other modules can read to pins configured as input and write to pins configured as output and can
request to change the pin direction only if they are configured for that in the Port module. Based
on the functionality of the pins, their mode is configured. In this case, the mode is configured to
DIO to support LED2 pin.

72 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

Figure 6.12: Configuration of IoHwAb module

Figure 6.13: Configuration of PORT module

6.5.10 DIO

The DIO driver works on pins and ports which are configured by the PORT module. A physical
input or output pin on an MCU device is in PORT module called port pin and in DIO module a
port pin is represented by a DIO channel as shown in Figure 6.14. Port pins need to be initialized
by PORT module before being used in DIO module. They will also have the same ID in both
PORT and DIO modules. IoHwAb references DIO channel by name (Figure 6.12).

Figure 6.14: Configuration of DIO module

6.5.11 EcuC

EcuC module is used to create Pdu objects which is required by the communication stack modules.
As shown in Figure 6.15 and 6.16, each CAN message requires a separate PDU and also needs to
be created in both the directions (receive, transmit) i.e. PduRx and PduTx. The data length is
configured to be 4 bytes.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 73

CHAPTER 6. IMPLEMENTATION

Figure 6.15: Configuration of EcuC module

Figure 6.16: Configuration of EcuC module

6.6 RTE configuration

RTE layer facilitates communication between application SWCs and between SWCs and BSW
modules. The first step in RTE configuration is to instantiate all RTE entities, as shown in Figure
6.17. Next, all runnables are be mapped to OsRteTask which can be triggered by RTE Events
and hence all the SWCs are assigned to OsMainEvent which triggers the runnables based on the
triggered events mentioned in SWC internal behavior. Further, all the service tasks (ECUM,
BSWM, IoHwAb) are mapped to OsBswTask internally. Hence, they are left unmapped while
configuring RTE. Finally, RTE is generated and validated.

Figure 6.17: RTE configuration

6.7 Generation of executable

After configuring all the BSW modules and RTE, each module should be generated and validated.
This is done in Arctic Studio by just clicking on generation and validation tab. Further, the target
is made. After compiling all the configuration files, source files and post-build configuration files,
an .elf binary file is generated.

74 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 6. IMPLEMENTATION

Image s i z e : (decimal)
t e x t : 59496 B 58 .1 kB
data : 1048 B 1 .0 kB
b s s : 11512 B 11 .2 kB
ROM: 60544 B 59 .1 kB
RAM: 12560 B 12 .3 kB

Listing 6.8: .elf file execution output

Listing 6.8 shows that RAM size and ROM size are 12.3kB and 59.1 kB respectively. This looked
a bit surprising initially because in reality an AUTOSAR program consumes more space and is
memory intensive. But it could be found that the tool optimizes the code and hence the above
results.

6.8 Flashing on hardware

The executable generated in previous step (.elf binary file) was flashed on the hardware. Figure
6.17 shows CAN Hi and CAN Lo pins of Peak CAN adapter connected to DCAN2RX, DCAN2TX
controllers of TMS570LC4357.

Figure 6.18: Flashing the binaries on TI Hercules TMS570LC4357 Launchpad

6.8.1 Results

The results demonstrate the implementation of CAN communication interface using the AUTO-
SAR architecture. Accordingly, user stories as specified in Section 5.1.3 have been implemented
and is as shown in Figure 6.19 and 6.20.

1. CAN communication
Figure 6.19 demonstrates the messages being sent and received over the PEAK CAN dongle
using the underlying AUTOSAR architecture. According to User Stories 1 and 2, AUTOSAR
ECU was required to receive CAN messages. This basic functionality has been demonstrated.

2. Activation of LED2
Further, User Story 3 required the demonstrator to access an on-board LED which acts as
an indicator. Accordingly, this requirement has been satisfied and is as shown in Figure
6.20.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 75

Figure 6.19: CAN Transmit and Receive messages

Figure 6.20: Activated LED light

Chapter 7

Evaluation

This chapter provides an evaluation of the ArcCore tool-chain used to implement the demonstrator
in Chapter 6. Further, the efficiency of the AHP algorithm for this application is analyzed.

7.1 Evaluation of the ArcCore Tool-chain

In this section, the Arctic Studio tool-chain (which includes Application Development Tool, BSW
Editor and RTE Editor) along with Arctic Core (which provides BSW modules and MCAL mod-
ules) are evaluated based on the criteria and sub-criteria used for selection of AUTOSAR tools in
Chapter 4 (Figure 4.10). The experience gained in implementing the demonstrator in Chapter 6,
led to the following main observations about this tool-chain from ArcCore.

1. Functionality

• System modeling and modeling analysis
Arctic Studio’s application development tool, adopts ARText, which is a powerful tex-
tual language for modeling the SWCs. Although using ARText framework has many
advantages like auto completion of code, syntax highlighting, integrated validation, ver-
sion control, documentation etc., a graphical interface to modeling has its own benefits.
In order to develop functions with many SWCs, a graphical programming tool helps in
managing the complexity better than textual programming. Since the demonstrator for
this case was fairly simple, modeling functionalities included within Arctic Studio was
sufficient. However, it might not be a suitable option for systems with many SWCs as
the tool does not provide a GUI of it’s own (i.e. if one requires GUI, then they should
also make use of Embedded Coder from Mathworks for instance).

Arctic Studio also does on-the-fly transformation of the model being developed to an
AUTOSAR model. This way it is easy to analyze if the model is in sync with the
ARText file being developed.

• Network modeling and timing analysis
ARText language also supports network modeling and timing analysis. It provides
interfaces for different types of connectors, ports and interfaces between SWCs. As
mentioned above, if the system is complex and has many SWCs, then network connec-
tions become cumbersome to be managed using only textual language and provision for
having a graphical programming environment would save a lot of time.

Further, the ECU Extract file generated by Arctic Studio also includes communication
information of the underlying BSW modules. This information is fully specified as a

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 77

CHAPTER 7. EVALUATION

part of the system design and are represented as communication matrices in the system
description ARXML files. Arctic Studio’s BSW Editor tool then reads the system de-
scription file and automatically includes the data elements which needs to be configured
while configuring ECU. This process is quite easy using this tool and saves a lot of time
when compared to manual implementation as in ECU-centric approach.

• System configuration and code generation
Application code generation is done automatically with the help of proprietary code
generators, although, runnables have to be implemented manually.

As mentioned above, configuring BSW modules is done using BSW Editor tool. If
there are any errors or incompatible values entered during configuration phase, the tool
provides a validator to validate all the configured modules. After configuring and valid-
ating all the required modules, the tool generates code automatically. One drawback to
this approach is, it is not possible to integrate BSW modules that are manually created
into this tool since Arctic Studio does not provide access to source code.

Arctic Studio’s RTE Editor tool provides an interface to instantiate and map the run-
nables to specific OS tasks. This mapping is fairly easy but the whole problem arises
during code compilation since there is no way to debug the code until the end or for
separate modules.

ArcCore’s Arctic Core includes code for specific hardware boards. Although, not all of
the modules are fully developed. For example, not all hardware pins for TMS570 board
were configurable as many were not implemented within BSW Editor tool. But this
was not too much of a hassle in this case, as code for this could easily be added within
the actual source code for that module. But for large projects, support from ArcCore’s
team might be required.

2. Usability

• High-level GUI
Arctic Studio is built on Eclipse IDE and as a result provides all intuitive features like
automatic code completion, syntax highlighting, integrated validation etc. It has a very
familiar look and feel and as a result usability was not a problem.

• Re-usability, Modifiability and Intuitiveness
Arctic Studio includes all the above attributes within its tool. Since the tool is based
on ARTOP platform and Eclipse IDE, it provides many benefits derived from these two
base platforms. Although some parts like modeling can be further improved.

• Documentation
Most of the source files are well documented. User documentation from ArcCore [78]
also provides enough information to get started with the tool. But information for
implementing more advanced software features like integrating MCAL modules, multi-
core implementation could be further improved.

3. Interoperability

• Data exchange and compliance to standard
Arctic Studio complies to AUTOSAR standard and standardized data exchange formats.
But the tool can be further improved in this regard. For example, a dedicated authoring
tool would make it easier to create ARXML, DBC, LDF, CDD files and others.

78 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 7. EVALUATION

• AUTOSAR interfaces, standard protocols and libraries
The tool complies to all the above requirements seamlessly.

• Integration with third-party tools
Integrating Arctic Studio tools with third-party software is not a smooth or a straight-
forward approach. Source code is encrypted at many places and it is not possible to use
the code generators from Arctic Studio and one should build their own code generator
for each module. Although, this could be done, it is time consuming and error prone
and hence not recommended.

4. Testability

• Debugging (Validation)
Arctic Studio tool offers validation feature to validate configured BSW modules in or-
der to determine if the values entered are valid or not. There is no explicit debugger
present in the tool which is another drawback.

• Simulation and Virtual Function Bus
There is no explicit simulation features available yet for early testing of the system.
Although, there are timing extensions like VFB timing events provided by ARTOP
platform but apart from this the tool itself does not provide any other features for
testing the system at an early phase.

5. Service and support

• Migration support
ArcCore provides quick customer service and support required. It also provides mi-
gration support for companies to adopt AUTOSAR architecture within their software
development processes.

• Workshops and customer care
The online user documentation provides a lot of information. Apart from that any
other service could be arranged upon further consultation with the company.

6. Cost and distribution

• Tool-suite cost, duration of license, format and distribution time
ArcCore is one of the very few AUTOSAR companies that offers their tools and services
for a trial period by which AUTOSAR is accessible to universities and students. But
after tool comparisons, it can be concluded that though Arctic Studio and Arctic Core
are full fledged tools, they are still not fully competitive when compared to other tool
vendors like Vector Gmbh, as yet. Distribution of this tool is very simple and pos-
sible via registering on their website for getting the license. Upon obtaining the license
key, the tool can be used for a given period of time and the license is updated each year.

• Market penetration, latest release and release interval
ArcCore is a one of the fastest growing companies in Sweden and one among the com-
petitors in AUTOSAR market.

Figure 7.1 shows a comparison between before and after using Arctic Studio tool evaluated in
terms of the selection criteria for this application. It can be seen that functionality and usability
scores high after using the tool-chain. Although, it did not perform well in terms of interoperability
and testability due to the challenges faced while implementing the demonstrator. Since the tool
was procured on the basis of trial license not much support was provided although this might not
be the case in the usual case.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 79

CHAPTER 7. EVALUATION

Figure 7.1: Arctic Studio tool evaluation based on documentation (Before) and practical experience
(After)

7.2 Evaluation of AHP algorithm for selecting AUTOSAR
tools

1. Performance of AHP algorithm in structuring criteria into appropriate context and differ-
entiating them from the alternatives
Using hierarchical framework of AHP algorithm, it is possible to clearly differentiate goals,
sub-goals, criteria and alternatives from one another.

2. Performance of AHP algorithm under various uncertainty and lack of enough data
AHP tool is used by decision makers to solve problems of choice under uncertainty or as
a tool for prediction. With the help of weighted pairwise comparisons (a value ranging
from 1 - 10), several co-efficients can be determined such as criteria comparison, comparing
multiple alternatives and comparing uncertain events or scenarios in terms of probability
of its realization for these factors. As a result, a prediction using AHP focuses on the
distribution of relative probabilities of future outcomes.

7.2.1 Drawbacks of AHP algorithm

1. Pair-wise comparisons took a considerable amount of time. But this is because of four sub-
goals in this application. As a result, the algorithm works better for a single goal while
having the number of criteria and alternatives not more than 15.

2. The comparisons are based on the subjective opinion of the decision-maker. As a result
adding or deleting alternatives from the list of initial comparisons will give a completely new
result each time. This can be avoided by limiting uncertainty and gathering reliable data
for respective alternatives.

80 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Chapter 8

Conclusion

This chapter reflects on the research questions and objectives that were described in the introduc-
tion. It also reflects on the experiences gained with the tool chain from ArcCore and recommended
practices, through the development of a simple yet illustrative AUTOSAR compliant system. Fi-
nally, this chapter is concluded with the scope for future work.

8.1 Reflection on thesis goals and objectives

The main goal of this thesis was to investigate and devise a tool selection methodology for selecting
AUTOSAR tools based on a certain required criteria. In this case, the key criteria was to select
a suitable ”low-cost” AUTOSAR tool-chain and further evaluate this tool-chain by implementing
AUTOSAR architecture on a hardware platform.

The first objective with regards to this goal was to select a suitable Multi Criteria Decision
Making (MCDM) method which was further used to select an appropriate AUTOSAR tool-chain.
Next, the stakeholders for using the tool-chain were identified and their key concerns and require-
ments were captured with the help of architectural UML / SysML models. Based on this gathered
information, and with the acquired theoretical knowledge about the AUTOSAR architecture, a
list of selection criteria was derived in order to select an AUTOSAR tool-chain. At this stage, the
selected MCDM method called ”AHP”, was applied for each AUTOSAR tool category. Overall,
(i.e. considering the performance metric across all four tool categories), the top five AUTOSAR
tool-chain (in the order of ranking) were from the following tool-vendors: AUTOSAR tool-suite
by Vector GmbH, AUTOSAR Builder by Dassault Systems, ETAS AUTOSAR tool-chain, Mentor
Graphics AUTOSAR tool-suite and tool suite from ArcCore.

When low-cost was considered as the key selection criteria, it resulted in selection of the
following tools:

• Mathwork’s Embedded Coder for modeling the system and the application layer.

• ArcCore’s Arctic Studio tool for code generation purposes of application layer, BSW layer
and RTE layer.

• COMASSO’s BSW modules and configuration tool for configuration of the basic software
modules.

Among the selected low-cost tools, we could only get access to the Arctic Studio tool-chain and
as a result it was finally used to implement the demonstrator and was further evaluated (Chapter
7).

All objectives were met with satisfactory results thereby achieving the main thesis goal. Al-
though, some significant challenges were faced while achieving the last objective (explained fur-
ther), the final thesis goal could be met.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 81

CHAPTER 8. CONCLUSION

8.2 Reflection on research questions

1. RQ1.1 Which MCDM method is likely to perform better for this application and why?
As discussed in Chapter 2, after researching other available MCDM methods, AHP algorithm
was selected and was further put to work in this application to select a suitable AUTOSAR
tool-chain. Main reasons why AHP method stood out from the rest were its distinctive
hierarchical framework, pair-wise comparison concept, feasibility and conformance to the
required project size.

2. RQ2.1 Who are the key stakeholders in development of an automotive ECU using AUTO-
SAR architecture?
In this case, the key stakeholders were identified upon discussions with Engineers from Brace
Automotive and Orlaco. Furthermore, the stakeholders considered were in perspective of
users who use the AUTOSAR tool-chain to develop an AUTOSAR ECU. The key stake-
holders identified were requirement analyst, system designer, software designer, application
developer, system developer and system engineer. Requirement analyst mainly does the
task of gathering the customer requirements of the system and analyzing the requirements
in order to determine the most important ones to get the development process started. This
person works closely with software and system designer. Application developer and system
developer develop the required functionalities of the system while the system engineer integ-
rates the modules. To aid all these development processes, each of the stakeholders make use
of specific AUTOSAR tool-chain and gathering their requirements to select an appropriate
AUTOSAR tool-chain was the main intent. This research question is further explained in
depth in Chapter 4.

3. RQ2.2 What are their key concerns, requirements and constraints in terms of using AUTO-
SAR tool-chain to develop automotive ECUs seamlessly?
The key requirements for each of the development process mentioned above were captured in
Figure 4.3 in Chapter 4. At first, four tool categories were identified based on the AUTOSAR
methodology. Further, requirements were fine tuned with the help of the acquired AUTO-
SAR knowledge and conversations with a team of experienced engineers. The requirements
diagram also helped in understanding the tool dependencies (e.g. RTE tool requires artifacts
/ output from other tools) which further gave a clear picture in understanding the control
flow of the entire process.

4. RQ3.1 What are the different architectural views and models that addresses the concerns
of stakeholders?
Since the main task here was to identify the requirements from the standpoint of stakeholders
who use these tools, logical architecture view was considered. This process gives a clear
picture of how the stakeholders interact with the system (in this case, the term system is
used in the context of AUTOSAR tool-chain). As a result, use-case diagrams, as shown in
Section A.1 (appendix A) was put forth to understand how each stakeholder interacts with
the system. Further, with the help of this diagram, it was also possible to back-trace the
requirements for a particular use-case, which in turn helped in understanding the purpose
of a particular requirement.

5. RQ3.2 How to derive the key criteria for selecting the tool-chain from these models?
With the help of these models, many ambiguities could be addressed. As a result, the
main requirements for each of these tools were clear, to a certain extent. These identified
requirements were categorized into 6 top-level criteria namely functionality, usability, inter-
operability, service & support, cost & distribution and testability. Each of these top-level
criteria were further fine tuned to derive specific qualifying parameters.

6. RQ3.3 What are the different criteria that are finally selected in order to opt for an AUTO-
SAR tool-chain?
The hierarchical framework as shown in Figure 4.10 provides a clear picture of the criteria

82 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

CHAPTER 8. CONCLUSION

and sub-criteria that were finally selected. It also gives a list of AUTOSAR tool alternatives
which were considered for ranking upon the application of AHP algorithm.

7. RQ4.1 Which tool outperforms others in terms of performance as the key selection criteria?
As shown in Figure 4.15, the tool-sutie provided by Vector GmbH, Dassault Systems, ETAS,
Mentor Graphics and ArcCore were selected as the top 5 performing tools, in that order.
More detailed graphs relating to how each tool performs under each criteria can be found in
Section A.2 (Appendix A).

8. RQ4.2 Which tool is better when cost is considered as a key criteria for selecting AUTOSAR
tool-chain?
When cost was considered as a key selection criteria, a tool-suite provided by a single tool
vendor could not be found. As a result, tools were ranked and opted for each tool category.
Embedded Coder from Mathworks outperformed others among modeling tools, ArcCore’s
Arctic Studio was selected as the best low cost tool among BSW and RTE tools. Further,
COMASSO outranked others for obtaining BSW modules and BSW configuration tool, as
shown in the graphs under Section A.3. The only issue in selecting tools from different
vendors is that the tools don’t integrate seamlessly and manual integration might be required
and therefore it is better to minimize the use of tools from different tool vendors.

9. RQ4.3 What are the trade-offs made in answering the question RQ4.2?
In order to rank tools based on low-cost, some compromises had to be made in terms of
usability, testability, interoperability, service & support and other value added services like
virtual ECU, use of functional safety standards etc., that potentially increases the cost of a
tool-chain. As mentioned above, integrating tools from multiple tool vendors could further
increase the overhead.

10. RQ5.1 Did the selected low-cost tool-chain perform well when applied to the demonstrator?
Initial implementation of AUTOSAR architecture using the selected Arctic Studio tool-
suite on an unsupported hardware platform (Arduino Mega 2560) by the tool, led to an
understanding that it is critical for opting an hardware platform which is supported by
the tool being used. The main challenge here is, integrating manual code within the code
generators. During the final implementation, the tool worked seamlessly when opted for an
hardware platform (TMS570LC4357) that was supported by Arctic Studio.

11. RQ5.2 What were the various challenges faced in this regard?
The challenges faced are as listed in Section 5.1.4. Fundamentally, integration of manual
code was the biggest challenge.
Moreover, in this thesis, two different goals were combined in search of a low-cost tool, i.e.
to opt for a tool which is not too expensive and using a low-powered micro-controller unit
for implementation. But in this experience, combining these two goals was not feasible. For
instance, if one prefers to run an AUTOSAR application on a small micro-controller then
Vector GmbH offers Microsar operating system which is specifically devised for implementing
AUTOSAR for low-powered micro-controllers. But the Microsar tool is not a low-cost option.

12. RQ5.3 How did the selected MCDM tool perform? Are there any recommendations to
improve the selection criteria or methodology to select the AUTOSAR tool-chain?
AHP tool performed well for this application, although comparisons took a considerable
amount of time. This was because there were four sub-goals and the number of comparisons
to be made multiplied four times. But this is true for any other decision making method.
By decreasing the number of alternatives to be compared even further (say not more than
10 tools) would further increase the performance of the proposed tool selection methodology
(i.e. optimizes the time taken for each pair-wise comparison made).

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 83

CHAPTER 8. CONCLUSION

8.3 Reflection on research methodology

The main goal of this thesis was to develop a methodology for selecting AUTOSAR tool-chain
having cost as a key criteria. With regards to this, the overall research methodology suited
satisfactorily for this thesis. A literature study on the available MCDM tools and theoretical pre-
study of AUTOSAR formed a solid base for implementing AUTOSAR architecture. Unfortunately,
this approach lacked a practical pre-study and understanding of the use of different AUTOSAR
tools and their bottlenecks. One insight gained during the actual implementation is the dependency
between the selected hardware platform and software tools. The decision to use the Arduino Mega
2560 hardware without assessing the risks involved in using the Arctic Studio tool on a platform
with limited resources and lack of right support at that stage proved challenging. Apart from
this setback, the entire process of implementing AUTOSAR architecture on TMS570 board did
not lead to any significant bottlenecks. From this experience, it is worthwhile to point out that
although AUTOSAR as a standard is supposed to be hardware independent, implementing the
same using a tool is not a straightforward approach and support of AUTOSAR tools for the
underlying hardware platform is highly recommended.

8.4 Recommended practices

1. It is important to select the hardware that the tool supports. Even-though AUTOSAR
standard specifications offer standard APIs, which are implementable on any hardware in
theory, it is not that straight forward in reality. It is not feasible to integrate a new hardware
within an existing tool without a lot of manual modifications which defies the purpose of
using a tool. Besides, for such an integration, it is recommended to invest in workshops and
support from the tool vendors throughout the project life cycle.

2. For low-cost tool alternatives some key insights are:

• Investing in the right tools for implementing AUTOSAR is a crucial step. These tools
are expensive and hence initial investment required for adopting AUTOSAR is huge
but it could be a strategic decision and should be seen as investing in the future.

• Having said that, considering third party integration companies could be another op-
tion. For example, Embitel provides services to integrate 3rd party MCAL modules
and BSW layer from Comasso within the Vector tool-suite. But this option was not
tested in this thesis, hence not much can be commented on reducing the overall cost.

8.5 Future work

This thesis can be further extended to evaluate the Arctic Studio tool by testing it on multicore
ECUs, spanning across more than one hardware unit. Also, graphical modeling of the AUTOSAR
application layer can be explored instead of using the ARText language to model the application
components.

84 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Bibliography

[1] R.N. Charette. IEEE Spectrum: Technology, Engineering, and Science News. (2018). This
Car Runs on Code.
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code [Ac-
cessed: Jan. 20, 2017]. 1

[2] Simon. Fürst, Challenges in the Design of Automotive Software. BMW Group. Munich,
Germany, 2010.
https://www.date-conference.com/proceedings-archive/PAPERS/2010/

DATE10/PDFFILES/03.8 1.PDF. [Accessed: Jan. 20, 2017]. 1

[3] M. Pesce, ”Software Takes On More Tasks in Todays Cars,” in Autopia, WIRED, 2011.
https://www.wired.com/2011/04/the-growing-role-of-software-in-our-cars/. [Feb.
1, 2017]. 1

[4] N. Tracey, U. Lefarth, H. Wolff, U. Freund. ETAS GmbH, Stuttgart. ECU Software Module
Development Process Changes in AUTOSAR.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.8004&rep=rep1&type=pdf. [Ac-
cessed: Jan. 20, 2017]. 1

[5] B. Jungk.
"Automotive Security State of the Art and Future Challenges". Physical Analysis
and Cryptographic Engineering (PACE). Temasek Laboratories at Nayang Technological Uni-
versity, Singapore. 1

[6] N. Tracey. U. Lefarth. H.J. Wolff. U. Freund.
"ECU Software Module Development Process Changes in AUTOSAR ". ETAS GmbH, Ger-
many. 1

[7] N. Navet, F. Simonot-Lion. "Automotive Embedded Systems Handbook", ISBN -13: 978-0-
8493-8026-6, 2009. 2

[8] AUTOSAR, ”AUTOSAR: Background,” 2016.
http://www.autosar.org/about/basics/background/. [Accessed: Jan. 20, 2017.]. 2

[9] AUTOSAR, ”Core Partners”, 2016.
https://www.autosar.org/partners/current-partners/core-partners/. [Accessed:
May. 1, 2017.]. 2

[10] B. Schtz, A. Vallecillo, and P. Clarke, Model driven engineering languages and systems: 16th
international conference, models 2013, Miami, FL, USA, September 29 - October 4, 2013.
Proceedings, A. Moreira, B. Schatz, and J. Gray, Eds. Germany: Springer-Verlag Berlin and
Heidelberg GmbH & Co. K, 2013. In Industrial Adoption of Model-Driven Engineering: Are
the Tools Really the Problem?, page 10, 2013. 3

[11] V. I. GmbH, ”Vector AUTOSAR tools”, 2010.
https://vector.com/vi autosar tools en.html. [Accessed: Jan. 18, 2017]. 3, 27

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 85

BIBLIOGRAPHY

[12] Elektrobit. AUTOSAR - Elektrobit, 2018.
https://www.elektrobit.com/products/ecu/technologies/autosar/. [Accessed: Jan. 5,
2018]. 3, 26

[13] ETAS. ETAS AUTOSAR Solutions, AUTOSAR Applications, ETAS Products.
https://www.etas.com/en/products/applications autosar.php. [Accessed: Jan. 5,
2018]. 26

[14] AUTOSAR, ”Premium Partners”, 2016.
https://www.autosar.org/partners/current-partners/premium-partners/. [Accessed:
May. 1, 2017.]. 2, 3

[15] S. Waldron. "Introduction to AUTOSAR". Vector GB. 2015. 2

[16] Analytic Hierarchy Process & Making Key Business Decisions.
https://www.handshake.com/blog/analytic-hierarchy-process-2/. [Accessed: Jan. 14,
2018.].

[17] AUTOSAR."Interoperability of AUTOSAR". AUTOSAR Release 4.2.2. 2016. 3, 9, 35

[18] Agile Business Consortium. DSDM Atern Handbook.
https://www.agilebusiness.org/content/moscow-prioritisation-0. 2008. [Accessed:
May. 1, 2017.].

[19] M. Broy, M. Feilkas, M. Herrmannsdoerfer, S. Merenda, D. Ratiu.
"Seamless Model-Based Development : From Isolated Tools to Integrated Model

Engineering Environments". IEEE, Vol. 98, No. 4, April 2010. 7, 8

[20] J. Holtmann, J. Meyer, M. Meyer. s-lab Software Quality Lab, Software Engineering Group,
Heinz Nixdorf Institute, University of Paderborn.
"A Seamless Model-Based Development Process for Automotive Systems". 2011. 7

[21] C.V. Ramamoorthy, C. Chandra, H.G. Kim, Y.C. Shim, V. Vij. University of California,
Berkeley.
"Systems Integration: Problems and Approaches". s-lab Software Quality Lab, Soft-
ware Engineering Group, Heinz Nixdorf Institute, University of Paderborn. 7

[22] R.F. Boldt. IBM Software Group.
"Modeling AUTOSAR systems with a UML/SysML profile". Automotive electronics and
software development. White paper. July 2009. 8

[23] M. Pagel, M. Brorkens. BMW AG, Carmeq GmbH.
"Definition and Generation of Data Exchange Formats in AUTOSAR". lNCS 4066,
pages pp. 5265, 2006. 8

[24] S. Voget.
"SAFE RTP: An open source reference tool platform for the safety modeling and

analysis". Embedded Real Time Software and Systems Conference Proceedings, 2014. 8

[25] M. Rudorfer, S. Voget, S. Eberle.
"Artop (AUTOSAR Tool Platform)". Whitepaper. March 2009. 8, 24

[26] G. Sandmann, R. Thompson.
"Development of AUTOSAR Software Components within Model-Based Design". The
MathWorks, Inc. 2008-01-0383.

[27] J.S. Hammond, R.L. Keeney, H. Raiffa.
"Fatta smarta beslut". Forma Books AB, 2001. 8

86 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

BIBLIOGRAPHY

[28] J.S. Dyer, P.C. Fishburn. R.E. Steuer, J. Wallenius, S. Zionts.
"Multiple Criteria Decision Making, Multiattribute Utility Theory: The Next

Ten Years". Management of Science, Vol 38, No. 5. May 1992. 11

[29] T.L. Saaty. Katz Graduate School of Business, University of Pittsburgh.
"Decision making with the analytic hierarchy process ". Int. J. Services Sciences,
Vol. 1, No. 1, 2008. 9, 44

[30] E. Triantaphyllou, S.H. Mann.
"Using The Analytic Hierarchy Process For Decision Making In Engineering

Applications: Some Challenges". Interl Journal of Industrial Engineering: Applica-
tions and Practice. Vol. 2, No. 1, pp. 35-44, 1995. 44

[31] N. Kadoic, N.B.Redep, B. Divjak. Faculty of Organisation and Informatics. Croatia.
"Decision Making With The Analytic Network Process". 9

[32] K. Govindan, M. B. Jepsen.
"ELECTRE: A comprehensive literature review on methodologies and

applications". European Journal of Operational Research 250 (2016) 1-29, ELSEVIER. 10

[33] M. Behzadian, R.B. Kazemzadeh, A. Albadvi, M.Aghdasi.
"PROMETHEE: A comprehensive literature review on methodologies and

applications". European Journal of Operational Research 200 (2010) 198-215, ELSEVIER.
11

[34] X.S. Qin, G.H. Huang, A. Chakma, X.H. Nie, Q.G. Lin.
"A MCDM-based expert system for climate-change impact assessment and

adaptation planning A case study for the Georgia Basin, Canada". European
Journal of Operational Research 200 (2010) 198-215, Expert Systems with Applications,
34(3): 2164-2179. 11

[35] AUTOSAR."Requirements on Interoperability of Autosar Tools". AUTOSAR Re-
lease 4.2.2. 2016.

[36] C.T. Kuah, K.Y. Wong, F. Behrouzi."A Review on Data Envelopment Analysis (DEA)".
Fourth Asia International Conference on Mathematical / Analytical Modelling and Computer
Simulation. 2010. 10

[37] L.A. Zadeh."Fuzzy Sets*". University of California, Berkeley, California. INFORMATION
AND CONTROL 8, 338-353 (1965). 10

[38] M. Tamiz, D.F. Jones, E. El-Darzi."A review of Goal Programming and its

applications". England. Annals of Operations Research 58(1995)39-53. 10

[39] Expert Choice. 1990.
https://expertchoice.com/.[Accessed: Jan. 4, 2018.].

[40] AUTOSAR, ”AUTOSAR: Layered Software Architecture.”, AUTOSAR Release 4.2.2.
http://www.autosar.org/fileadmin/files/standards/classic/

4-2/software-architecture/general/auxiliary/AUTOSAR EXP LayeredSoftwareArchitecture.pdf.

[Accessed: Jan. 24, 2017]. 15, 20

[41] R. Hebig, Hasso Plattner Institut.
Methodology and Templates in AUTOSAR. 21

[42] AUTOSAR, ”AUTOSAR: Partners,” 2017.
https://www.autosar.org/partners/current-partners/. [Accessed: Jan. 20, 2017.].

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 87

BIBLIOGRAPHY

[43] AUTOSAR, ”Basic Software”, 2016.
https://www.autosar.org/about/technical-overview/ecu-software-architecture/autosar-basic-software/.

[Accessed: May. 1, 2017.].

[44] Controller Area Network (CAN) Overview, Controller Area Network (CAN) Overview - Na-
tional Instruments. [Online].
http://www.ni.com/white-paper/2732/en/. [Accessed: May. 1, 2017].

[45] S.M.Fernndez, C.P.Ayala, X.Franch. Universitat Politcnica de Catalunya, Barcelona, Spain.
E.Y.Nakagawa. "A Survey on the Benefits and Drawbacks of AUTOSAR", University of
So Paulo, So Carlos, Brazil. 2015.

[46] ArcCore AB, Gothenburg, Sweden. ”ArcticCore, ArcticStudio”.
https://www.arccore.com/products/. [Accessed: June. 09, 2017.].

[47] IBM Rhapsody, USA. ”Rational Rhapsody Designers for System Engineers”.
http://www-03.ibm.com/software/products/en/ratirhapdesiforsystengi/. [Accessed:
June. 09, 2017.].

[48] Comasso e.V, Germany. ”Comasso”.
https://www.comasso.org/. [Accessed: June. 09, 2017.]. 25

[49] S. Corrigen. "Introduction to the Controller Area Network (CAN)". Texas Instru-
ments, Application Report. May 2016.

[50] ”Introduction to the Controller Area Network (CAN),” Texas Instruments. Application Re-
port, 2002.
http://www.ti.com/lit/an/sloa101a/sloa101a.pdf. [Accessed: Jan. 24, 2017].

[51] N.R. Kandimala, M. Sojka, Czech Technical University, Czech Republic.
Safety and Security Features in AUTOSAR., Thursday 15th November, 2012.

[52] AUTOSAR, ”AUTOSAR: Utilization of Crypto Services.”,
http://www.autosar.org/fileadmin/files/standards/

classic/4-2/software-architecture/safety-and-security/

auxiliary/AUTOSAR EXP UtilizationOfCryptoServices.pdf. [Accessed: Jan. 24, 2017].

[53] R. Kazman, L. Bass, G. Abowd, M. Webb.
"SAAM: A method for analyzing the properties of software architectures". Pro-
ceedings of the 16th International Conference on Software Engineering, pp. 81-90 (IEEE
Computer Society, Sorrento, Italy, 1994).

[54] R. Kazman, M. Klein, P. Clements.
"ATAM: Method for architecture evaluation". CMU/SEI-2000-TR-004. Carnegie Mellon
University, Pittsburgh, Pennsylvania. 2000.

[55] R. Kazman, J. Asundi, M. Klein.
"Quantifying the costs and benefits of architectural decisions". Proceedings of
the 23rd International Conference on Software Engineering, pp. 297-306. IEEE Computer
Society, Toronto, Ontario, Canada. 2001.

[56] ”Arccore - For Application Developers”.
https://www.arccore.com/products/arctic-studio/for-application-developers [Ac-
cessed: Jan. 24, 2017]. 24

[57] ”Arccore - For Platform Developers”.
https://www.arccore.com/products/arctic-studio/for-platform-developers [Ac-
cessed: Jan. 24, 2017]. 24

88 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

BIBLIOGRAPHY

[58] ”Arccore - For Integrators”.
https://www.arccore.com/products/arctic-studio/for-integrators [Accessed: Jan.
24, 2017]. 24

[59] A. Graf. ”Support for vendor specific parameter / module definitions in COMASSO basic
software configuration tool”. 5ise.
http://5ise.quanxinquanyi.de/2013/11/15/support-for-vendor-specific-parameter-module-definitions-in-comasso-basic-software-configuration-tool/

[Accessed: Jan. 24, 2018]. 25

[60] A. Graf. ”COMASSO BSW generation and validation”. 5ise.
http://5ise.quanxinquanyi.de/2013/11/04/comasso-bsw-generation-and-validation/comment-page-1/

[Accessed: Jan. 24, 2018]. 25

[61] S. Anssi. S. Gerard. S. Kuntz. F. Terrier. AUTOSAR vs MARTE for Enabling Timing
Analysis of Automotive Applications. p-272.
SDL 2011: Integrating System and Software Modeling.". 15th International SDL
Forum Toulouse, France. July 5-7, 2011. 25

[62] A. Junghanns. J. Mauss. M. Seibt.
Faster Development of AUTOSAR compliant ECUs through simulation. ERTS - Embed-
ded Real Time Software and Systems, Toulouse. 05 - 07.02.2014. 25

[63] ”Dassault Systemes. AUTOSAR Builder - AUTOSAR Applications and Systemes”.
https://www.3ds.com/products-services/catia/products/autosarbuilder/. [Accessed:
Jan. 24, 2018]. 25

[64] ”dSPACE. System Desk - Modeling system architecture and generating virtual ECUs”.
https://www.dspace.com/en/pub/home/products/sw/system architecture

software/systemdesk.cfm/. [Accessed: Jan. 24, 2018]. 25

[65] ”dSPACE. Target Link - Production code generation for the highest demands”.
https://www.dspace.com/en/pub/home/products/sw/pcgs/targetli.cfm. [Accessed: Jan.
24, 2018]. 25

[66] S. Voget. P. Favrais.
"How the concepts of the Automotive standard "AUTOSAR" are realized in new

seamless tool-chains". Continental Engineering Services GmbH. 25

[67] A. Graf. M. Volter.
"Integrating the AUTOSAR tool chain with Eclipse based model transformations".
Itemis GmbH, Germany. 24

[68] K. Hoffmeister.
"Automated Driving Necessary Infrastructure Shift". Elektrobit, Germany. 26

[69] KPIT.
"AUTOSAR Handbook". KPIT Technologies Ltd. 26

[70] Embedded Coder. ”Generate C and C++ code optimized for embedded systems”. Mathworks.
https://www.mathworks.com/products/embedded-coder.html [Accessed: Jan. 24, 2018]. 26

[71] Product Flyer COQOS SDK.
"https://www.opensynergy.com/fileadmin/user upload/Datenblaetter/Datasheet

COQOS.pdf". Opensynergy. 27

[72] C. Hammerschmidt. ”Mentor Graphics, Mecel offer Autosar 4.x software design solution”.
http://www.eenewseurope.com/news/mentor-graphics-mecel-offer-autosar-4x-software-design-solution.
[Accessed: Jan. 24, 2018]. 27

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 89

BIBLIOGRAPHY

[73] Mentor Graphics. ”Volcano Architecture”.
https://www.mentor.com/embedded-software/volcano-automotive/. [Accessed: Jan. 24,
2018]. 27

[74] Systems and Software Engineering. ”Architecture description”. ISO/IEC/IEEE 42010.
http://www.iso-architecture.org/ieee-1471/defining-architecture.html. [July, 24,
2017]. 41

[75] Arduino, ”ArduinoBoardMega2560,” 2017.
https://www.arduino.cc/en/Main/arduinoBoardMega2560. [Accessed: Jan. 18, 2017].

[76] Atmel Corporation.
Atmel ATmega640/1280/1281/2560/2561 datasheet. 2549QAVR02/2014. 55

[77] Arduino, ”ArduinoBoardMega2560,” 2017.
https://www.orlaco.com/product/orlaco-emos-ethernet-digital-hd-camera. [Ac-
cessed: Jan. 18, 2017]. 55

[78] ArcCore, ”ArcCore’s User Documentation”.
https://www.arccore.com/my-arccore/documentation. [Accessed: Jan. 18, 2017]. 78

90 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

Appendix A

Tool selection methodology results

A.1 Tool use-case diagrams

Figure A.1: Application Software tool use case diagram

<trace> relationship provides a general purpose relationship between a requirement and any
other model element. In this case, trace is used to relate requirements which lead to a specific use
case, hence when the use case (tool functionality) changes then the requirement also gets updated.
This enables the traceability of the requirements via use cases.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 91

A
P
P
E
N
D
IX

A
.
T
O
O
L
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

R
E
S
U
L
T
S

Figure A.2: Modeling tools use case diagram

92
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

A
P
P
E
N
D
IX

A
.
T
O
O
L
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

R
E
S
U
L
T
SFigure A.3: Basic software tool use case diagram

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

93

A
P
P
E
N
D
IX

A
.
T
O
O
L
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

R
E
S
U
L
T
S

Figure A.4: RTE tool use case diagram

94
M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2 Application of AHP - Results

A.2.1 Overall synthesis results for each tool category

The following synthesis graphs are w.r.t sub-goals (refer Figure 4.10 in Chapter 4).

Model Tools

Figure A.5: Synthesis graph w.r.t. Model tools

ASW Tools

Figure A.6: Synthesis graph w.r.t. ASW tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 95

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.7: Synthesis graph w.r.t. BSW tools

RTE Tools

Figure A.8: Synthesis graph w.r.t. RTE tools

96 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.2 Overall synthesis results for each tool criteria
Criteria - Functionality

The following synthesis graphs are w.r.t. specific criteria for each sub-goal (refer Figure 4.10). In
Figure A.10, synthesis graph is w.r.t. the criteria - Functionality for Model Tools.

Model Tools

Figure A.9: Pair-wise comparisons for the criteria Functionality of Model Tools

Figure A.10: Synthesis w.r.t. criteria - Functionality of Model Tools

Each tool alternative is compared with another tool alternative (e.g. Vector Informatik GmbH
(blue band) is first compared with ArcCore (red band) w.r.t. functionality aspect for Model Tools).
Vector’s modeling tool (PREEvision) ranks higher than ArcCore’s modeling tool, when compared
to the features based on Functionality. The blue and red bands are adjusted accordingly. Vec-
tor when compared with COMASSO (which does not provide any modeling features), Vector’s
modeling tool gets the highest rank while COMASSO’s modeling tool is given the least rank (i.e.
the blue band is placed to the extreme right while the red band is placed to extreme left). Tools
that ranked equally (e.g. both COMASSO and Open Synergy does not provide any modeling tool
features) were given a value 1.0, i.e. the blue and red bands were positioned in the middle which
signifies equal importance.

Accordingly, other tool alternatives were compared and assessed based on each tool criteria for
each sub-goal.

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 97

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.11: Pair-wise comparisons for the criteria Functionality of ASW Tools

Figure A.12: Synthesis w.r.t. criteria - Functionality of ASW Tools

98 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.13: Pair-wise comparisons for the criteria Functionality of BSW Tools

Figure A.14: Synthesis w.r.t. criteria - Functionality of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 99

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.15: Pair-wise comparisons for the criteria Functionality of RTE Tools

Figure A.16: Synthesis w.r.t. criteria - Functionality of RTE Tools

100 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.3 Criteria - Interoperability

Model Tools

Figure A.17: Pair-wise comparisons for the criteria Interoperability of Model Tools

Figure A.18: Synthesis w.r.t. criteria - Interoperability of Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 101

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.19: Pair-wise comparisons for the criteria Interoperability of ASW Tools

Figure A.20: Synthesis w.r.t. criteria - Interoperability of ASW Tools

102 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.21: Pair-wise comparisons for the criteria Interoperability of BSW Tools

Figure A.22: Synthesis w.r.t. criteria - Interoperability of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 103

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.23: Pair-wise comparisons for the criteria Interoperability of RTE Tools

Figure A.24: Synthesis w.r.t. criteria - Interoperability of RTE Tools

104 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.4 Criteria - Usability

Model Tools

Figure A.25: Pair-wise comparisons for the criteria Usability of Model Tools

Figure A.26: Synthesis w.r.t. criteria - Usability of Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 105

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.27: Pair-wise comparisons for the criteria Usability of ASW Tools

Figure A.28: Synthesis w.r.t. criteria - Usability of ASW Tools

106 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.29: Pair-wise comparisons for the criteria Usability of BSW Tools

Figure A.30: Synthesis w.r.t. criteria - Usability of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 107

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.31: Pair-wise comparisons for the criteria Usability of RTE Tools

Figure A.32: Synthesis w.r.t. criteria - Usability of RTE Tools

108 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.5 Criteria - Cost and Distribution

Model Tools

Figure A.33: Pair-wise comparisons for the criteria Cost and Distribution of Model Tools

Figure A.34: Synthesis w.r.t. criteria - Cost and Distribution of Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 109

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.35: Pair-wise comparisons for the criteria Cost and Distribution of ASW Tools

Figure A.36: Synthesis w.r.t. criteria - Cost and Distribution of ASW Tools

110 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.37: Pair-wise comparisons for the criteria Cost and Distribution of BSW Tools

Figure A.38: Synthesis w.r.t. criteria - Cost and Distribution of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 111

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.39: Pair-wise comparisons for the criteria Cost and Distribution of RTE Tools

Figure A.40: Synthesis w.r.t. criteria - Cost and Distribution of RTE Tools

112 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.6 Criteria - Service and Support

Model Tools

Figure A.41: Pair-wise comparisons for the criteria Service and Support of Model Tools

Figure A.42: Synthesis w.r.t. criteria - Service and Support of Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 113

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.43: Pair-wise comparisons for the criteria Service and Support of ASW Tools

Figure A.44: Synthesis w.r.t. criteria - Service and Support of ASW Tools

114 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.45: Pair-wise comparisons for the criteria Service and Support of BSW Tools

Figure A.46: Synthesis w.r.t. criteria - Service and Support of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 115

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.47: Pair-wise comparisons for the criteria Service and Support of RTE Tools

Figure A.48: Synthesis w.r.t. criteria - Service and Support of RTE Tools

116 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.2.7 Criteria - Testability

Model Tools

Figure A.49: Pair-wise comparisons for the criteria Testability of Model Tools

Figure A.50: Synthesis w.r.t. criteria - Testability of Model Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 117

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.51: Pair-wise comparisons for the criteria Testability of ASW Tools

Figure A.52: Synthesis w.r.t. criteria - Testability of ASW Tools

118 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.53: Pair-wise comparisons for the criteria Testability of BSW Tools

Figure A.54: Synthesis w.r.t. criteria - Testability of BSW Tools

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 119

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.55: Pair-wise comparisons for the criteria Testability of RTE Tools

Figure A.56: Synthesis w.r.t. criteria - Testability of RTE Tools

120 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.3 Graphs - Based on Performance criteria

While assessing tools based on performance, high weights are placed on Functionality, Interoper-
ability and Testability metrics when compared to other metrics like Usability, Service & Support
and Cost & Distribution.

Model Tools

Figure A.57: Ranking of model tools prioritizing performance

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 121

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.58: Ranking of ASW tools prioritizing performance

122 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.59: Ranking of BSW tools prioritizing performance

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 123

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.60: Ranking of RTE tools prioritizing performance

124 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

A.4 Graphs - Based on Low-cost criteria

While assessing tools based on low-cost aspect, high emphasis is given to Cost & Distribution
compared to all other criteria.

Model Tools

Figure A.61: Ranking of model tools prioritizing cost

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 125

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

ASW Tools

Figure A.62: Ranking of ASW prioritizing cost

126 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

BSW Tools

Figure A.63: Ranking of BSW tools prioritizing cost

Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study 127

APPENDIX A. TOOL SELECTION METHODOLOGY RESULTS

RTE Tools

Figure A.64: Ranking of RTE tools prioritizing cost

128 Methodology for selecting low-cost AUTOSAR tool-chain and its evaluation through a case study

A
P
P
E
N
D
IX

A
.
T
O
O
L
S
E
L
E
C
T
IO

N
M
E
T
H
O
D
O
L
O
G
Y

R
E
S
U
L
T
S

Table A.1: AUTOSAR tool cost analysis

Tool
vendors

Support for
MCAL layer
modules

Support for
BSW code
generation /
configuration

Support for RTE
generation

Support for
ASW code gen-
eration

Support for
AUTOSAR
modeling

ArcCore

Comasso

Continental

Dassault
Systems

dSPACE

Elektrobit

ETAS

KPIT

Mathworks

Mecel

Mentor
Graphics

Opensynergy

Vector
Informatik

Gmbh

Economical Intermediate Expensive Not suppor-
ted

M
eth

o
d
o
lo
g
y
fo
r
selectin

g
low

-co
st

A
U
T
O
S
A
R

to
o
l-ch

a
in

a
n
d
its

eva
lu
a
tio

n
th
ro
u
g
h
a
ca
se

stu
d
y

129

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Background
	Problem Description
	Objectives
	Research Questions
	Research Methodology
	Thesis Outline

	Decision Analysis Methods
	Model-based Software Development tools
	Decision Making Tools
	Analytic Hierarchy Process (AHP)
	Analytic Network Process (ANP)
	Data Envelopment Analysis (DEA)
	ELimination Et Choix Traduisant la REalité (ELECTRE)
	Fuzzy Set Theory
	Goal Programming (GP)
	Multi Attribute Utility Theory (MAUT)
	Preference Ranking Organization METHod for Enrichment Evaluation (PROMETHEE)
	Simple Addition Weighting (SAW)
	Simple Multi-Attribute Rating Technique (SMART)

	Summarizing the comparison of MCDM methods for this application

	Literature on AUTOSAR Architecture and Tools
	AUTOSAR Layered Software Architecture
	Application Layer
	BSW Layer
	RTE Layer

	AUTOSAR Interfaces
	AUTOSAR Methodology
	Theoretical knowledge of the required BSW modules
	AUTOSAR tools

	Tools Selection Methodology
	Overview
	Stakeholder identification (Users of AUTOSAR tools)
	Requirements analysis
	Architectural modeling
	Model tools
	Application tools
	Basic software tools
	RTE tools

	Criteria selection
	Analytic Hierarchy Process (AHP)
	Application of Analytic Hierarchy Process(AHP)
	Goal identification and representation of goals and criteria in a hierarchical framework
	Pair-wise matrix comparisons
	Synthesis (relative importance) and Consistency ratio (CR)
	Overall priority ranking and tool selection

	Tool selection
	Trade-offs

	Demonstrator
	Initial design and challenges faced
	System requirements
	System hardware
	System software design
	Challenges faced with the initial design and implementation

	Updated design of the demonstrator
	System hardware
	System software

	Other tools used

	Implementation
	Overview
	Application software development
	Defining interfaces and data elements
	Software Component Description (SWCD)

	ECU extract generation
	Developing the application code
	ECU configuration
	CAN driver
	CAN interface
	PduR
	COM
	AUTOSAR OS
	BswM
	EcuM
	IoHwAb
	PORT
	DIO
	EcuC

	RTE configuration
	Generation of executable
	Flashing on hardware
	Results

	Evaluation
	Evaluation of the ArcCore Tool-chain
	Evaluation of AHP algorithm for selecting AUTOSAR tools
	Drawbacks of AHP algorithm

	Conclusion
	Reflection on thesis goals and objectives
	Reflection on research questions
	Reflection on research methodology
	Recommended practices
	Future work

	Bibliography
	Appendix A
	Tool selection methodology results
	Tool use-case diagrams
	Application of AHP - Results
	Overall synthesis results for each tool category
	Overall synthesis results for each tool criteriaCriteria - Functionality
	Criteria - Interoperability
	Criteria - Usability
	Criteria - Cost and Distribution
	Criteria - Service and Support
	Criteria - Testability

	Graphs - Based on Performance criteria
	Graphs - Based on Low-cost criteria

