1,200 research outputs found

    Comb-calibrated solar spectroscopy through a multiplexed single-mode fiber channel

    Get PDF
    We investigate a new scheme for astronomical spectrograph calibration using the laser frequency comb at the Solar Vacuum Tower Telescope on Tenerife. Our concept is based upon a single-mode fiber channel, that simultaneously feeds the spectrograph with comb light and sunlight. This yields nearly perfect spatial mode matching between the two sources. In combination with the absolute calibration provided by the frequency comb, this method enables extremely robust and accurate spectroscopic measurements. The performance of this scheme is compared to a sequence of alternating comb and sunlight, and to absorption lines from Earth's atmosphere. We also show how the method can be used for radial-velocity detection by measuring the well-explored 5-minute oscillations averaged over the full solar disk. Our method is currently restricted to solar spectroscopy, but with further evolving fiber-injection techniques it could become an option even for faint astronomical targets.Comment: 21 pages, 11 figures. A video abstract for this paper is available on youtube. For watching the video, please follow https://www.youtube.com/watch?v=oshdZgrt89I . The video abstract is also available for streaming and download on the related article website of New Journal of Physic

    Multiplexing of encrypted data using fractal masks

    Full text link
    This paper was published in OPTICS LETTERS and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://dx.doi.org/10.1364/OL.37.002895. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under lawIn this Letter, we present to the best of our knowledge a new all-optical technique for multiple-image encryption and multiplexing, based on fractal encrypting masks. The optical architecture is a joint transform correlator. The multiplexed encrypted data are stored in a photorefractive crystal. The fractal parameters of the key can be easily tuned to lead to a multiplexing operation without cross talk effects. Experimental results that support the potential of the method are presented.This research was performed under grants TWAS-UNESCO Associateship Scheme at Centres of Excellence in the South, CONICET No. 0863 (Argentina), ANCYT PICT 1167 (Argentina), and Facultad de Ingenieria, Universidad Nacional de La Plata No. 11/I125 (Argentina), Sostenibilidad 2011-2012, and CODI (Universidad de Antioquia-Colombia). W. D. Furlan and J. A. Monsoriua acknowledge financial support from Ministerio de Economia y Competitividad (grant FIS2011-23175), Generalitat Valenciana (grant PROMETEO2009-077), and Universitat Politecnica de Valencia (grants PAID-05-11 and PAID-02-11), Spain.Barrera, J.; Tebaldi, M.; Amaya, D.; Furlan, W.; Monsoriu Serra, JA.; Bolognini, NA.; Torroba, RD.... (2012). Multiplexing of encrypted data using fractal masks. Optics Letters. 37(14):2895-2897. doi:10.1364/OL.37.002895S289528973714Refregier, P., & Javidi, B. (1995). Optical image encryption based on input plane and Fourier plane random encoding. Optics Letters, 20(7), 767. doi:10.1364/ol.20.000767Matoba, O., & Javidi, B. (1999). Encrypted optical memory system using three-dimensional keys in the Fresnel domain. Optics Letters, 24(11), 762. doi:10.1364/ol.24.000762Unnikrishnan, G., Joseph, J., & Singh, K. (2000). Optical encryption by double-random phase encoding in the fractional Fourier domain. Optics Letters, 25(12), 887. doi:10.1364/ol.25.000887Nomura, T. (2000). Polarization encoding for optical security systems. Optical Engineering, 39(9), 2439. doi:10.1117/1.1288369Tebaldi, M., Furlan, W. D., Torroba, R., & Bolognini, N. (2009). Optical-data storage-readout technique based on fractal encrypting masks. Optics Letters, 34(3), 316. doi:10.1364/ol.34.000316Situ, G., & Zhang, J. (2005). Multiple-image encryption by wavelength multiplexing. Optics Letters, 30(11), 1306. doi:10.1364/ol.30.001306Liu, Z., & Liu, S. (2007). Double image encryption based on iterative fractional Fourier transform. Optics Communications, 275(2), 324-329. doi:10.1016/j.optcom.2007.03.039Hwang, H.-E., Chang, H. T., & Lie, W.-N. (2009). Multiple-image encryption and multiplexing using a modified Gerchberg-Saxton algorithm and phase modulation in Fresnel-transform domain. Optics Letters, 34(24), 3917. doi:10.1364/ol.34.003917Matoba, O., & Javidi, B. (1999). Encrypted optical storage with angular multiplexing. Applied Optics, 38(35), 7288. doi:10.1364/ao.38.007288Fredy Barrera, J., Henao, R., Tebaldi, M., Torroba, R., & Bolognini, N. (2006). Multiplexing encryption–decryption via lateral shifting of a random phase mask. Optics Communications, 259(2), 532-536. doi:10.1016/j.optcom.2005.09.027Henao, R., Rueda, E., Barrera, J. F., & Torroba, R. (2010). Noise-free recovery of optodigital encrypted and multiplexed images. Optics Letters, 35(3), 333. doi:10.1364/ol.35.000333Barrera, J. F., Henao, R., Tebaldi, M., Torroba, R., & Bolognini, N. (2006). Multiple image encryption using an aperture-modulated optical system. Optics Communications, 261(1), 29-33. doi:10.1016/j.optcom.2005.11.055Mosso, F., Barrera, J. F., Tebaldi, M., Bolognini, N., & Torroba, R. (2011). All-optical encrypted movie. Optics Express, 19(6), 5706. doi:10.1364/oe.19.005706Monsoriu, J. A., Saavedra, G., & Furlan, W. D. (2004). Fractal zone plates with variable lacunarity. Optics Express, 12(18), 4227. doi:10.1364/opex.12.00422

    Optical shutter switching matrix

    Get PDF
    The interface switching systems are discussed which are related to those used in the Space Shuttle ground control system, transmission systems, communications systems, and airborne radar electronic countermeasure systems. The main goal is to identify a need that exists throughout the comprehensive information processing and communications disciplines supporting the Space Shuttle and Space Station programs, and introduce one viable approach to satisfy that need. The proposed device, described in NASA patent entitled 'Optical Shutter Switch Matrix', is discussed

    HOLOGRAPHICS: Combining Holograms with Interactive Computer Graphics

    Get PDF
    Among all imaging techniques that have been invented throughout the last decades, computer graphics is one of the most successful tools today. Many areas in science, entertainment, education, and engineering would be unimaginable without the aid of 2D or 3D computer graphics. The reason for this success story might be its interactivity, which is an important property that is still not provided efficiently by competing technologies – such as holography. While optical holography and digital holography are limited to presenting a non-interactive content, electroholography or computer generated holograms (CGH) facilitate the computer-based generation and display of holograms at interactive rates [2,3,29,30]. Holographic fringes can be computed by either rendering multiple perspective images, then combining them into a stereogram [4], or simulating the optical interference and calculating the interference pattern [5]. Once computed, such a system dynamically visualizes the fringes with a holographic display. Since creating an electrohologram requires processing, transmitting, and storing a massive amount of data, today’s computer technology still sets the limits for electroholography. To overcome some of these performance issues, advanced reduction and compression methods have been developed that create truly interactive electroholograms. Unfortunately, most of these holograms are relatively small, low resolution, and cover only a small color spectrum. However, recent advances in consumer graphics hardware may reveal potential acceleration possibilities that can overcome these limitations [6]. In parallel to the development of computer graphics and despite their non-interactivity, optical and digital holography have created new fields, including interferometry, copy protection, data storage, holographic optical elements, and display holograms. Especially display holography has conquered several application domains. Museum exhibits often use optical holograms because they can present 3D objects with almost no loss in visual quality. In contrast to most stereoscopic or autostereoscopic graphics displays, holographic images can provide all depth cues—perspective, binocular disparity, motion parallax, convergence, and accommodation—and theoretically can be viewed simultaneously from an unlimited number of positions. Displaying artifacts virtually removes the need to build physical replicas of the original objects. In addition, optical holograms can be used to make engineering, medical, dental, archaeological, and other recordings—for teaching, training, experimentation and documentation. Archaeologists, for example, use optical holograms to archive and investigate ancient artifacts [7,8]. Scientists can use hologram copies to perform their research without having access to the original artifacts or settling for inaccurate replicas. Optical holograms can store a massive amount of information on a thin holographic emulsion. This technology can record and reconstruct a 3D scene with almost no loss in quality. Natural color holographic silver halide emulsion with grain sizes of 8nm is today’s state-of-the-art [14]. Today, computer graphics and raster displays offer a megapixel resolution and the interactive rendering of megabytes of data. Optical holograms, however, provide a terapixel resolution and are able to present an information content in the range of terabytes in real-time. Both are dimensions that will not be reached by computer graphics and conventional displays within the next years – even if Moore’s law proves to hold in future. Obviously, one has to make a decision between interactivity and quality when choosing a display technology for a particular application. While some applications require high visual realism and real-time presentation (that cannot be provided by computer graphics), others depend on user interaction (which is not possible with optical and digital holograms). Consequently, holography and computer graphics are being used as tools to solve individual research, engineering, and presentation problems within several domains. Up until today, however, these tools have been applied separately. The intention of the project which is summarized in this chapter is to combine both technologies to create a powerful tool for science, industry and education. This has been referred to as HoloGraphics. Several possibilities have been investigated that allow merging computer generated graphics and holograms [1]. The goal is to combine the advantages of conventional holograms (i.e. extremely high visual quality and realism, support for all depth queues and for multiple observers at no computational cost, space efficiency, etc.) with the advantages of today’s computer graphics capabilities (i.e. interactivity, real-time rendering, simulation and animation, stereoscopic and autostereoscopic presentation, etc.). The results of these investigations are presented in this chapter

    The Maunakea Spectroscopic Explorer Book 2018

    Full text link
    (Abridged) This is the Maunakea Spectroscopic Explorer 2018 book. It is intended as a concise reference guide to all aspects of the scientific and technical design of MSE, for the international astronomy and engineering communities, and related agencies. The current version is a status report of MSE's science goals and their practical implementation, following the System Conceptual Design Review, held in January 2018. MSE is a planned 10-m class, wide-field, optical and near-infrared facility, designed to enable transformative science, while filling a critical missing gap in the emerging international network of large-scale astronomical facilities. MSE is completely dedicated to multi-object spectroscopy of samples of between thousands and millions of astrophysical objects. It will lead the world in this arena, due to its unique design capabilities: it will boast a large (11.25 m) aperture and wide (1.52 sq. degree) field of view; it will have the capabilities to observe at a wide range of spectral resolutions, from R2500 to R40,000, with massive multiplexing (4332 spectra per exposure, with all spectral resolutions available at all times), and an on-target observing efficiency of more than 80%. MSE will unveil the composition and dynamics of the faint Universe and is designed to excel at precision studies of faint astrophysical phenomena. It will also provide critical follow-up for multi-wavelength imaging surveys, such as those of the Large Synoptic Survey Telescope, Gaia, Euclid, the Wide Field Infrared Survey Telescope, the Square Kilometre Array, and the Next Generation Very Large Array.Comment: 5 chapters, 160 pages, 107 figure

    Perceived Depth Control in Stereoscopic Cinematography

    Get PDF
    Despite the recent explosion of interest in the stereoscopic 3D (S3D) technology, the ultimate prevailing of the S3D medium is still significantly hindered by adverse effects regarding the S3D viewing discomfort. This thesis attempts to improve the S3D viewing experience by investigating perceived depth control methods in stereoscopic cinematography on desktop 3D displays. The main contributions of this work are: (1) A new method was developed to carry out human factors studies on identifying the practical limits of the 3D Comfort Zone on a given 3D display. Our results suggest that it is necessary for cinematographers to identify the specific limits of 3D Comfort Zone on the target 3D display as different 3D systems have different ranges for the 3D Comfort Zone. (2) A new dynamic depth mapping approach was proposed to improve the depth perception in stereoscopic cinematography. The results of a human-based experiment confirmed its advantages in controlling the perceived depth in viewing 3D motion pictures over the existing depth mapping methods. (3) The practicability of employing the Depth of Field (DoF) blur technique in S3D was also investigated. Our results indicate that applying the DoF blur simulation on stereoscopic content may not improve the S3D viewing experience without the real time information about what the viewer is looking at. Finally, a basic guideline for stereoscopic cinematography was introduced to summarise the new findings of this thesis alongside several well-known key factors in 3D cinematography. It is our assumption that this guideline will be of particular interest not only to 3D filmmaking but also to 3D gaming, sports broadcasting, and TV production

    Stereoscopic 3D Technologies for Accurate Depth Tasks: A Theoretical and Empirical Study

    Get PDF
    In the last decade an increasing number of application fields, including medicine, geoscience and bio-chemistry, have expressed a need to visualise and interact with data that are inherently three-dimensional. Stereoscopic 3D technologies can offer a valid support for these operations thanks to the enhanced depth representation they can provide. However, there is still little understanding of how such technologies can be used effectively to support the performance of visual tasks based on accurate depth judgements. Existing studies do not provide a sound and complete explanation of the impact of different visual and technical factors on depth perception in stereoscopic 3D environments. This thesis presents a new interpretative and contextualised analysis of the vision science literature to clarify the role of di®erent visual cues on human depth perception in such environments. The analysis identifies luminance contrast, spatial frequency, colour, blur, transparency and depth constancies as influential visual factors for depth perception and provides the theoretical foundation for guidelines to support the performance of accurate stereoscopic depth tasks. A novel assessment framework is proposed and used to conduct an empirical study to evaluate the performance of four distinct classes of 3D display technologies. The results suggest that 3D displays are not interchangeable and that the depth representation provided can vary even between displays belonging to the same class. The study also shows that interleaved displays may suffer from a number of aliasing artifacts, which in turn may affect the amount of perceived depth. The outcomes of the analysis of the influential visual factors for depth perception and the empirical comparartive study are used to propose a novel universal 3D cursor prototype suitable to support depth-based tasks in stereoscopic 3D environments. The contribution includes a number of both qualitative and quantitative guidelines that aim to guarantee a correct perception of depth in stereoscopic 3D environments and that should be observed when designing a stereoscopic 3D cursor

    높은 공간 대역폭을 위한 복소 진폭 이미징 및 디스플레이 시스템

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·정보공학부, 2021. 2. 이병호.빛을 파동으로 이해하면 간섭과 회절을 포함한 다양한 광학 현상을 해석 할 수 있다. 미래 기술이라 불리는 홀로그램, 3차원 이미징 및 3차원 디스플레이 시스템들은 파동의 복소진폭을 이해하고 변조함으로써 구현될 수 있다. 현존하는 광공학 장치를 넘어서는 파동 광학에 기반한 광공학 장치들을 상용화 및 발전시키기 위해 많은 연구가 진행되어왔지만, 지금껏 구현된 장치들은 공간 대역폭 (space-bandwidth product)의 제한으로 인해 그 성능이 대중의 기대에 부합하기 어려움을 겪고있다. 본 논문은 복소 진폭 이미징 및 디스플레이 시스템에서 공간 대역폭을 향상 시키는 방법을 제안한다. 복소 진폭 변조 시스템의 성능은 광학 시스템의 정보량을 나타내는 공간 대역폭에 의해 제한된다. 이 공간 대역폭을 향상시키기 위하여 저자는 다양한 다중화 기술을 적용하며, 동시에 다중화된 정보를 분리하는 알고리즘과 장치를 고안한다. 첫번째로 디지털 홀로그래피 기술에 공간 주파수를 다중화해 대역폭을 효율적으로 활용하는 방법을 고안하여 획득된 홀로그램의 촬영 영역을 증가시킨다. 두번째로, 단일 촬영 푸리에 타이코그래피 (single-shot Fourier ptychography) 기술에서는 광 조사 다중화를 사용하여 이미지 센서에 기록되는 정보의 양을 확장시킨다. 다중화 된 정보를 분해하고 복소 진폭을 획득하기 위하여 새로운 광학 시스템과 전산 알고리즘을 고안하여 해상도가 향상된 복소 진폭을 획득한다. 세번째로, 저자는 홀로그램 디스플레이에 조명 다중화 및 시분할 기술을 적용한다. 다중화 된 정보는 인간의 인지적 시간 대역폭과 제안된 시스템의 공간 필터링의 결합으로 분해된다. 구현된 홀로그래픽 디스플레이는 공간 대역폭이 확장되어 더 넓은 시야각에 삼차원 홀로그램을 제공한다. 본 논문은 작은 공간대역폭이라는 공통된 문제를 공유하는 이미징 및 디스플레이 분야의 발전에 기여할 것으로 기대된다. 저자는 본 연구에서 제안된 방법이 다양한 복소 진폭 변조 시스템의 성능 향상에 영감을 주며, 나아가 삼차원 계측, 홀로그래피, 가상 및 증강현실을 포함한 다양한 미래 산업에 발전에 기여할 수 있기를 기대한다.Understanding light as a wave makes it possible to interpret a variety of phenomena, including interference and diffraction. By modulating the complex amplitude of the wave, hologram, three-dimensional imaging, and three-dimensional display system, called future technologies, can be implemented that surpass the currently commercialized optical engineering devices. Although a lot of research has been conducted to develop and commercialize the wave optical system, state-of-the-art devices are still far from the performance expected by the public due to the limited space-bandwidth product (SBP). This dissertation presents the studies on high SBP for complex amplitude imaging and display systems. The performance of a complex amplitude modulating system is limited by the SBP, which represents the amount of information in the optical system. To improve the SBP of the complex amplitude in a limited amount of information, the author applies various multiplexing techniques suitable for the implemented system. In practice, the spatial frequency multiplexed digital holography is devised by efficiently allocating frequency bandwidth with dual-wavelength light sources. The author also applies illumination multiplexing to the single-shot Fourier ptychography to expand the amount of information recorded in the image sensor. Computational reconstruction algorithm combined with novel optical design allows the acquired multiplexed information to be decomposed in the imaging system, leading to improvement of size of the image or resolution. Furthermore, the author applied illumination multiplexing and temporal multiplexing techniques to holographic displays. The multiplexed information is decomposed by a combination of human perceptual temporal bandwidth and spatial filtering. The SBP enhanced holographic display is implemented, providing a more wide viewing angle. It is expected that this thesis will contribute to the development of the imaging and display fields, which share a common problem of small SBP. The author hopes that the proposed methods will inspire various researchers to approach the implementation of complex amplitude modulating systems, and various future industries, including 3-D inspection, holography, virtual reality, and augmented reality will be realized with high-performance.Abstract i Contents iii List of Tables vi List of Figures vii 1 Introduction 1 1.1 Complex Amplitude of Wave 1 1.2 Complex Amplitude Optical System 3 1.3 Motivation and Purpose of the Dissertation 5 1.4 Scope and Organization 8 2 Space-Bandwidth Product 10 2.1 Overview of Space-Bandwidth Product 10 2.2 Space-Bandwidth Product of Complex Amplitude Imaging Systems 11 2.3 Space-Bandwidth Product of Complex Amplitude Display Systems 13 3 Double Size Complex Amplitude Imaging via Digital Holography 15 3.1 Introduction 15 3.1.1 Digital Holography 16 3.1.2 Frequency Multiplexed Digital Holography 22 3.1.3 Adaptation of Diffractive Grating for Simple Interferometer 24 3.2 Principle 26 3.2.1 Single Diffraction Grating Off-Axis Digital Holography 26 3.2.2 Double Size Implementation with Multiplexed Illumination 29 3.3 Implementation 32 3.4 Experimental Results 34 3.4.1 Resolution Assessment 34 3.4.2 Imaging Result 36 3.4.3 Quantitative 3-D Measurement 38 3.5 Conclusion 42 4 High-Resolution Complex Amplitude Imaging via Fourier Ptychographic Microscopy 43 4.1 Introduction 43 4.1.1 Phase Retrieval 45 4.1.2 Fourier Ptychographic Microscopy 47 4.2 Principle 52 4.2.1 Imaging System for Single-Shot Fourier Ptychographic Microscopy 52 4.2.2 Multiplexed Illumination 55 4.2.3 Reconstruction Algorithm 58 4.3 Implementation 60 4.3.1 Numerical Simulation 60 4.3.2 System Design 64 4.4 Results and Assessment 65 4.4.1 Resolution 65 4.4.2 Phase Retrieval of Biological Specimen 68 4.5 Discussion 71 4.6 Conclusion 73 5 Viewing Angle Enhancement for Holographic Display 74 5.1 Introduction 74 5.1.1 Complex Amplitude Representation 76 5.1.2 DMD Holographic Displays 79 5.2 Principle 81 5.2.1 Structured Illumination 81 5.2.2 TM with Array System 83 5.2.3 Time Domain Design 84 5.3 Implementation 85 5.3.1 Hardware Design 85 5.3.2 Frequency Domain Design 85 5.3.3 Aberration Correction 87 5.4 Results 88 5.5 Discussion 92 5.5.1 Speckle 92 5.5.2 Applications for Near-eye Displays 94 5.6 Conclusion 99 6 Conclusion 100 Appendix 116 Abstract (In Korean) 117Docto
    corecore