1 research outputs found

    높은 곡간 λŒ€μ—­ν­μ„ μœ„ν•œ λ³΅μ†Œ 진폭 이미징 및 λ””μŠ€ν”Œλ ˆμ΄ μ‹œμŠ€ν…œ

    Get PDF
    ν•™μœ„λ…Όλ¬Έ (박사) -- μ„œμšΈλŒ€ν•™κ΅ λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2021. 2. μ΄λ³‘ν˜Έ.빛을 νŒŒλ™μœΌλ‘œ μ΄ν•΄ν•˜λ©΄ κ°„μ„­κ³Ό νšŒμ ˆμ„ ν¬ν•¨ν•œ λ‹€μ–‘ν•œ κ΄‘ν•™ ν˜„μƒμ„ 해석 ν•  수 μžˆλ‹€. 미래 기술이라 λΆˆλ¦¬λŠ” ν™€λ‘œκ·Έλž¨, 3차원 이미징 및 3차원 λ””μŠ€ν”Œλ ˆμ΄ μ‹œμŠ€ν…œλ“€μ€ νŒŒλ™μ˜ λ³΅μ†Œμ§„ν­μ„ μ΄ν•΄ν•˜κ³  λ³€μ‘°ν•¨μœΌλ‘œμ¨ κ΅¬ν˜„λ  수 μžˆλ‹€. ν˜„μ‘΄ν•˜λŠ” 광곡학 μž₯치λ₯Ό λ„˜μ–΄μ„œλŠ” νŒŒλ™ 광학에 κΈ°λ°˜ν•œ 광곡학 μž₯μΉ˜λ“€μ„ μƒμš©ν™” 및 λ°œμ „μ‹œν‚€κΈ° μœ„ν•΄ λ§Žμ€ 연ꡬ가 μ§„ν–‰λ˜μ–΄μ™”μ§€λ§Œ, μ§€κΈˆκ» κ΅¬ν˜„λœ μž₯μΉ˜λ“€μ€ 곡간 λŒ€μ—­ν­ (space-bandwidth product)의 μ œν•œμœΌλ‘œ 인해 κ·Έ μ„±λŠ₯이 λŒ€μ€‘μ˜ κΈ°λŒ€μ— λΆ€ν•©ν•˜κΈ° 어렀움을 κ²ͺκ³ μžˆλ‹€. λ³Έ 논문은 λ³΅μ†Œ 진폭 이미징 및 λ””μŠ€ν”Œλ ˆμ΄ μ‹œμŠ€ν…œμ—μ„œ 곡간 λŒ€μ—­ν­μ„ ν–₯상 μ‹œν‚€λŠ” 방법을 μ œμ•ˆν•œλ‹€. λ³΅μ†Œ 진폭 λ³€μ‘° μ‹œμŠ€ν…œμ˜ μ„±λŠ₯은 κ΄‘ν•™ μ‹œμŠ€ν…œμ˜ μ •λ³΄λŸ‰μ„ λ‚˜νƒ€λ‚΄λŠ” 곡간 λŒ€μ—­ν­μ— μ˜ν•΄ μ œν•œλœλ‹€. 이 곡간 λŒ€μ—­ν­μ„ ν–₯μƒμ‹œν‚€κΈ° μœ„ν•˜μ—¬ μ €μžλŠ” λ‹€μ–‘ν•œ 닀쀑화 κΈ°μˆ μ„ μ μš©ν•˜λ©°, λ™μ‹œμ— λ‹€μ€‘ν™”λœ 정보λ₯Ό λΆ„λ¦¬ν•˜λŠ” μ•Œκ³ λ¦¬μ¦˜κ³Ό μž₯치λ₯Ό κ³ μ•ˆν•œλ‹€. 첫번째둜 디지털 ν™€λ‘œκ·Έλž˜ν”Ό κΈ°μˆ μ— 곡간 주파수λ₯Ό 닀쀑화해 λŒ€μ—­ν­μ„ 효율적으둜 ν™œμš©ν•˜λŠ” 방법을 κ³ μ•ˆν•˜μ—¬ νšλ“λœ ν™€λ‘œκ·Έλž¨μ˜ 촬영 μ˜μ—­μ„ μ¦κ°€μ‹œν‚¨λ‹€. λ‘λ²ˆμ§Έλ‘œ, 단일 촬영 푸리에 νƒ€μ΄μ½”κ·Έλž˜ν”Ό (single-shot Fourier ptychography) κΈ°μˆ μ—μ„œλŠ” κ΄‘ 쑰사 닀쀑화λ₯Ό μ‚¬μš©ν•˜μ—¬ 이미지 μ„Όμ„œμ— κΈ°λ‘λ˜λŠ” μ •λ³΄μ˜ 양을 ν™•μž₯μ‹œν‚¨λ‹€. 닀쀑화 된 정보λ₯Ό λΆ„ν•΄ν•˜κ³  λ³΅μ†Œ 진폭을 νšλ“ν•˜κΈ° μœ„ν•˜μ—¬ μƒˆλ‘œμš΄ κ΄‘ν•™ μ‹œμŠ€ν…œκ³Ό μ „μ‚° μ•Œκ³ λ¦¬μ¦˜μ„ κ³ μ•ˆν•˜μ—¬ 해상도가 ν–₯μƒλœ λ³΅μ†Œ 진폭을 νšλ“ν•œλ‹€. μ„Έλ²ˆμ§Έλ‘œ, μ €μžλŠ” ν™€λ‘œκ·Έλž¨ λ””μŠ€ν”Œλ ˆμ΄μ— μ‘°λͺ… 닀쀑화 및 μ‹œλΆ„ν•  κΈ°μˆ μ„ μ μš©ν•œλ‹€. 닀쀑화 된 μ •λ³΄λŠ” μΈκ°„μ˜ 인지적 μ‹œκ°„ λŒ€μ—­ν­κ³Ό μ œμ•ˆλœ μ‹œμŠ€ν…œμ˜ 곡간 ν•„ν„°λ§μ˜ κ²°ν•©μœΌλ‘œ λΆ„ν•΄λœλ‹€. κ΅¬ν˜„λœ ν™€λ‘œκ·Έλž˜ν”½ λ””μŠ€ν”Œλ ˆμ΄λŠ” 곡간 λŒ€μ—­ν­μ΄ ν™•μž₯λ˜μ–΄ 더 넓은 μ‹œμ•Όκ°μ— 삼차원 ν™€λ‘œκ·Έλž¨μ„ μ œκ³΅ν•œλ‹€. λ³Έ 논문은 μž‘μ€ κ³΅κ°„λŒ€μ—­ν­μ΄λΌλŠ” κ³΅ν†΅λœ 문제λ₯Ό κ³΅μœ ν•˜λŠ” 이미징 및 λ””μŠ€ν”Œλ ˆμ΄ λΆ„μ•Όμ˜ λ°œμ „μ— κΈ°μ—¬ν•  κ²ƒμœΌλ‘œ κΈ°λŒ€λœλ‹€. μ €μžλŠ” λ³Έ μ—°κ΅¬μ—μ„œ μ œμ•ˆλœ 방법이 λ‹€μ–‘ν•œ λ³΅μ†Œ 진폭 λ³€μ‘° μ‹œμŠ€ν…œμ˜ μ„±λŠ₯ ν–₯상에 μ˜κ°μ„ μ£Όλ©°, λ‚˜μ•„κ°€ 삼차원 계츑, ν™€λ‘œκ·Έλž˜ν”Ό, 가상 및 μ¦κ°•ν˜„μ‹€μ„ ν¬ν•¨ν•œ λ‹€μ–‘ν•œ 미래 산업에 λ°œμ „μ— κΈ°μ—¬ν•  수 있기λ₯Ό κΈ°λŒ€ν•œλ‹€.Understanding light as a wave makes it possible to interpret a variety of phenomena, including interference and diffraction. By modulating the complex amplitude of the wave, hologram, three-dimensional imaging, and three-dimensional display system, called future technologies, can be implemented that surpass the currently commercialized optical engineering devices. Although a lot of research has been conducted to develop and commercialize the wave optical system, state-of-the-art devices are still far from the performance expected by the public due to the limited space-bandwidth product (SBP). This dissertation presents the studies on high SBP for complex amplitude imaging and display systems. The performance of a complex amplitude modulating system is limited by the SBP, which represents the amount of information in the optical system. To improve the SBP of the complex amplitude in a limited amount of information, the author applies various multiplexing techniques suitable for the implemented system. In practice, the spatial frequency multiplexed digital holography is devised by efficiently allocating frequency bandwidth with dual-wavelength light sources. The author also applies illumination multiplexing to the single-shot Fourier ptychography to expand the amount of information recorded in the image sensor. Computational reconstruction algorithm combined with novel optical design allows the acquired multiplexed information to be decomposed in the imaging system, leading to improvement of size of the image or resolution. Furthermore, the author applied illumination multiplexing and temporal multiplexing techniques to holographic displays. The multiplexed information is decomposed by a combination of human perceptual temporal bandwidth and spatial filtering. The SBP enhanced holographic display is implemented, providing a more wide viewing angle. It is expected that this thesis will contribute to the development of the imaging and display fields, which share a common problem of small SBP. The author hopes that the proposed methods will inspire various researchers to approach the implementation of complex amplitude modulating systems, and various future industries, including 3-D inspection, holography, virtual reality, and augmented reality will be realized with high-performance.Abstract i Contents iii List of Tables vi List of Figures vii 1 Introduction 1 1.1 Complex Amplitude of Wave 1 1.2 Complex Amplitude Optical System 3 1.3 Motivation and Purpose of the Dissertation 5 1.4 Scope and Organization 8 2 Space-Bandwidth Product 10 2.1 Overview of Space-Bandwidth Product 10 2.2 Space-Bandwidth Product of Complex Amplitude Imaging Systems 11 2.3 Space-Bandwidth Product of Complex Amplitude Display Systems 13 3 Double Size Complex Amplitude Imaging via Digital Holography 15 3.1 Introduction 15 3.1.1 Digital Holography 16 3.1.2 Frequency Multiplexed Digital Holography 22 3.1.3 Adaptation of Diffractive Grating for Simple Interferometer 24 3.2 Principle 26 3.2.1 Single Diffraction Grating Off-Axis Digital Holography 26 3.2.2 Double Size Implementation with Multiplexed Illumination 29 3.3 Implementation 32 3.4 Experimental Results 34 3.4.1 Resolution Assessment 34 3.4.2 Imaging Result 36 3.4.3 Quantitative 3-D Measurement 38 3.5 Conclusion 42 4 High-Resolution Complex Amplitude Imaging via Fourier Ptychographic Microscopy 43 4.1 Introduction 43 4.1.1 Phase Retrieval 45 4.1.2 Fourier Ptychographic Microscopy 47 4.2 Principle 52 4.2.1 Imaging System for Single-Shot Fourier Ptychographic Microscopy 52 4.2.2 Multiplexed Illumination 55 4.2.3 Reconstruction Algorithm 58 4.3 Implementation 60 4.3.1 Numerical Simulation 60 4.3.2 System Design 64 4.4 Results and Assessment 65 4.4.1 Resolution 65 4.4.2 Phase Retrieval of Biological Specimen 68 4.5 Discussion 71 4.6 Conclusion 73 5 Viewing Angle Enhancement for Holographic Display 74 5.1 Introduction 74 5.1.1 Complex Amplitude Representation 76 5.1.2 DMD Holographic Displays 79 5.2 Principle 81 5.2.1 Structured Illumination 81 5.2.2 TM with Array System 83 5.2.3 Time Domain Design 84 5.3 Implementation 85 5.3.1 Hardware Design 85 5.3.2 Frequency Domain Design 85 5.3.3 Aberration Correction 87 5.4 Results 88 5.5 Discussion 92 5.5.1 Speckle 92 5.5.2 Applications for Near-eye Displays 94 5.6 Conclusion 99 6 Conclusion 100 Appendix 116 Abstract (In Korean) 117Docto
    corecore