31 research outputs found

    Positive Semidefinite Metric Learning with Boosting

    Full text link
    The learning of appropriate distance metrics is a critical problem in image classification and retrieval. In this work, we propose a boosting-based technique, termed \BoostMetric, for learning a Mahalanobis distance metric. One of the primary difficulties in learning such a metric is to ensure that the Mahalanobis matrix remains positive semidefinite. Semidefinite programming is sometimes used to enforce this constraint, but does not scale well. \BoostMetric is instead based on a key observation that any positive semidefinite matrix can be decomposed into a linear positive combination of trace-one rank-one matrices. \BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting method is easy to implement, does not require tuning, and can accommodate various types of constraints. Experiments on various datasets show that the proposed algorithm compares favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 11 pages, Twenty-Third Annual Conference on Neural Information Processing Systems (NIPS 2009), Vancouver, Canad

    Asymmetric Pruning for Learning Cascade Detectors

    Full text link
    Cascade classifiers are one of the most important contributions to real-time object detection. Nonetheless, there are many challenging problems arising in training cascade detectors. One common issue is that the node classifier is trained with a symmetric classifier. Having a low misclassification error rate does not guarantee an optimal node learning goal in cascade classifiers, i.e., an extremely high detection rate with a moderate false positive rate. In this work, we present a new approach to train an effective node classifier in a cascade detector. The algorithm is based on two key observations: 1) Redundant weak classifiers can be safely discarded; 2) The final detector should satisfy the asymmetric learning objective of the cascade architecture. To achieve this, we separate the classifier training into two steps: finding a pool of discriminative weak classifiers/features and training the final classifier by pruning weak classifiers which contribute little to the asymmetric learning criterion (asymmetric classifier construction). Our model reduction approach helps accelerate the learning time while achieving the pre-determined learning objective. Experimental results on both face and car data sets verify the effectiveness of the proposed algorithm. On the FDDB face data sets, our approach achieves the state-of-the-art performance, which demonstrates the advantage of our approach.Comment: 14 page

    Positive Semidefinite Metric Learning Using Boosting-like Algorithms

    Get PDF
    The success of many machine learning and pattern recognition methods relies heavily upon the identification of an appropriate distance metric on the input data. It is often beneficial to learn such a metric from the input training data, instead of using a default one such as the Euclidean distance. In this work, we propose a boosting-based technique, termed BoostMetric, for learning a quadratic Mahalanobis distance metric. Learning a valid Mahalanobis distance metric requires enforcing the constraint that the matrix parameter to the metric remains positive definite. Semidefinite programming is often used to enforce this constraint, but does not scale well and easy to implement. BoostMetric is instead based on the observation that any positive semidefinite matrix can be decomposed into a linear combination of trace-one rank-one matrices. BoostMetric thus uses rank-one positive semidefinite matrices as weak learners within an efficient and scalable boosting-based learning process. The resulting methods are easy to implement, efficient, and can accommodate various types of constraints. We extend traditional boosting algorithms in that its weak learner is a positive semidefinite matrix with trace and rank being one rather than a classifier or regressor. Experiments on various datasets demonstrate that the proposed algorithms compare favorably to those state-of-the-art methods in terms of classification accuracy and running time.Comment: 30 pages, appearing in Journal of Machine Learning Researc

    Efficiently learning a detection cascade with sparse eigenvectors

    Get PDF
    Real-time object detection has many computer vision applications. Since Viola and Jones proposed the first real-time AdaBoost based face detection system, much effort has been spent on improving the boosting method. In this work, we first show that feature selection methods other than boosting can also be used for training an efficient object detector. In particular, we introduce greedy sparse linear discriminant analysis (GSLDA) for its conceptual simplicity and computational efficiency; and slightly better detection performance is achieved compared with. Moreover, we propose a new technique, termed boosted greedy sparse linear discriminant analysis (BGSLDA), to efficiently train a detection cascade. BGSLDA exploits the sample reweighting property of boosting and the class-separability criterion of GSLDA. Experiments in the domain of highly skewed data distributions (e.g., face detection) demonstrate that classifiers trained with the proposed BGSLDA outperforms AdaBoost and its variants. This finding provides a significant opportunity to argue that AdaBoost and similar approaches are not the only methods that can achieve high detection results for real-time object detection

    Ensembles of random sphere cover classifiers

    Get PDF
    We propose and evaluate a new set of ensemble methods for the Randomised Sphere Cover (RSC) classifier. RSC is a classifier using the sphere cover method that bases classification on distance to spheres rather than distance to instances. The randomised nature of RSC makes it ideal for use in ensembles. We propose two ensemble methods tailored to the RSC classifier; RSE, an ensemble based on instance resampling and RSSE, a subspace ensemble. We compare RSE and RSSE to tree based ensembles on a set of UCI datasets and demonstrates that RSC ensembles perform significantly better than some of these ensembles, and not significantly worse than the others. We demonstrate via a case study on six gene expression data sets that RSSE can outperform other subspace ensemble methods on high dimensional data when used in conjunction with an attribute filter. Finally, we perform a set of Bias/Variance decomposition experiments to analyse the source of improvement in comparison to a base classifier
    corecore