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Abstract—Real-time object detection has many computer vision
applications. Since Viola and Jones [1] proposed the first real-time
AdaBoost based face detection system, much effort has been spent
on improving the boosting method. In this work, we first show that
feature selection methods other than boosting can also be used
for training an efficient object detector. In particular, we intro-
duce greedy sparse linear discriminant analysis (GSLDA) [2] for
its conceptual simplicity and computational efficiency; and slightly
better detection performance is achieved compared with [1]. More-
over, we propose a new technique, termed boosted greedy sparse
linear discriminant analysis (BGSLDA), to efficiently train a detec-
tion cascade. BGSLDA exploits the sample reweighting property
of boosting and the class-separability criterion of GSLDA. Experi-
ments in the domain of highly skewed data distributions (e.g., face
detection) demonstrate that classifiers trained with the proposed
BGSLDA outperforms AdaBoost and its variants. This finding pro-
vides a significant opportunity to argue that AdaBoost and similar
approaches are not the only methods that can achieve high detec-
tion results for real-time object detection.

Index Terms—AdaBoost, asymmetry, cascade classifier, feature
selection, greedy sparse linear discriminant analysis (GSLDA), ob-
ject detection.

1. INTRODUCTION

EAL-TIME objection detection such as face detection

has numerous computer vision applications, e.g., intel-
ligent video surveillance, vision based teleconference systems
and human motion analysis [3], [4]. Various detectors have been
proposed in the literature [1], [5]-[8]. Object detection is chal-
lenging due to large variations of the visual appearances, poses
and illumination conditions. Furthermore, object detection is a
highly imbalanced classification task. A typical natural image
contains many more negative background patterns than object
patterns. The number of background patterns can be 100 000
times larger than the number of object patterns. That means, if
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Fig. 1. Cascade classifier with multiple nodes. Here a circle represents a node
classifier. An input patch is classified as a target only when it passes tests at each
node classifier.

one wants to achieve a high detection rate, together with a low
false detection rate, one needs to design a specific and sensitive
classifier that takes the imbalanced data distribution into con-
sideration [9].

Viola and Jones [1] proposed the first real-time AdaBoost
based face detector. They introduced a framework for selecting
discriminative features and training classifiers in a cascaded
manner as shown in Fig. 1. The cascade framework allows
most nonface patches to be rejected quickly before reaching the
final node, resulting in fast performances. A test image patch
is reported as a face only if it passes tests in all nodes. This
way, most nonface patches are rejected by these early nodes.
Cascade detectors have led to very fast detection speed and high
detection rates. Due to their tremendous success, numerous
further work have been proposed. Most of them focused on
improving the underlying boosting method or accelerating the
training process. For example, AsymBoost was introduced in
[9] to alleviate the limitation of AdaBoost in the context of
highly skewed example distributions. Li et al. [10] proposed
FloatBoost for a better detection accuracy by introducing a
backward feature elimination step into the AdaBoost training
procedure. Wu et al. [11] used forward feature selection for
fast training by ignoring the reweighting scheme in AdaBoost.
Another technique based upon the statistics of the weighted
input data was used in [12] for even faster training. KLBoost
was proposed in Liu and Shum [13] to train a strong classifier.
The weak classifiers of KLBoost are based upon histogram
divergence of linear features. Notice that in KLBoost, the
classifier design is separated from the feature selection process.
Bourdev and Brandt [14] developed the soft cascade to reduce
the complexity of cascade design and training. The idea was
further improved in multiexit boosted classifiers [15]. Cascade
classifiers were applied not only to boosting based classifiers,
but also to support vector machines (SVMs) [5]. In this work,
we propose an improved learning algorithm for face detection,
dubbed boosted greedy sparse linear discriminant analysis
(BGSLDA). A preliminary version of this work appeared in
Paisitkriangkrai et al. [16]. In this paper, we have included
more discussion and experimental results with various features
on both faces and humans.

1057-7149/$26.00 © 2010 IEEE
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One issue that contributes to the efficacy of the system comes
from the use of AdaBoost for training cascade nodes. AdaBoost
is a forward stage-wise additive modeling with the weighted ex-
ponential loss function [17]-[19]. The algorithm combines an
ensemble of weak classifiers to produce a final strong classi-
fier with high classification accuracy. AdaBoost chooses a small
subset of weak classifiers and assigns them with proper coeffi-
cients. The linear combination of weak classifiers can be inter-
preted as a decision hyper-plane in the weak classifier space.
The proposed BGSLDA differs from the original AdaBoost in
the following aspects. Instead of selecting decision stumps with
minimal weighted error as in AdaBoost, the proposed algorithm
finds a new weak learner that maximizes the class-separability
criterion. As a result, the coefficients of selected weak classifiers
are updated repetitively during the learning process according
to this criterion. It seems that the class-separability criterion
better considers the asymmetric characteristic of the detection
problem.

Our technique differs from [11] in the following aspects. Wu
et al. [11] proposed the concept of linear asymmetric classi-
fier (LAC) by addressing the asymmetric node learning goal
in the cascade framework. Unlike our work where the features
are selected based upon the linear discriminant analysis (LDA)
criterion, Wu et al. select features using the AdaBoost/Asym-
Boost algorithm [11]. Given the selected features, Wu et al. then
build an optimal linear classifier for the node learning goal using
LAC or LDA. Note that similar techniques have also been ap-
plied in neural networks. In [20], a nonlinear adaptive feed-for-
ward layered network with linear output units has been intro-
duced. The input data is nonlinearly transformed into a space
in which classes can be separated more easily. As our experi-
ments demonstrate, in terms of feature selection, the proposed
BGSLDA method is superior than AdaBoost and AsymBoost
for object detection.

The key contributions of this work are as follows.

1) We introduce GSLDA as an alternative approach for
training face detectors. Similar results are obtained com-
pared with Viola and Jones’ approach.

2) We propose a new algorithm, BGSLDA, which com-
bines the sample reweighting schemes typically used in
boosting into GSLDA. Experiments show that BGSLDA
can achieve better detection performances.

3) Wu et al. [11] showed that feature selection and classi-
fier training techniques can have different objective func-
tions (in other words, the two processes can be separated)
in the context of training a visual detector. Our proposed
GSLDA based approach provides new evidence to confirm
this observation.

4) Our results confirm that it is beneficial to consider the
highly skewed data distribution when training a detector.
LDA’s learning criterion already incorporates this imbal-
anced data information. Hence, it is better than standard
AdaBoost’s exponential loss for training an object detector.

The remaining parts of the paper are structured as follows. In
Section II-A, the GSLDA algorithm is introduced as an alterna-
tive learning technique to object detection problems. We then
discuss how LDA incorporates imbalanced data information
when training a classifier in Section II-B. Then, in Sections II-C

and II-D, the proposed BGSLDA algorithm is described and the
training time complexity is discussed. Experimental results are
shown in Section III and the paper is concluded in Section I'V.

II. ALGORITHMS

In this section, we present alternative techniques to AdaBoost
for object detection. We start with a short explanation of the
concept of GSLDA [21]. Next, we show that like AsymBoost
[9], LDA is better at handling asymmetric data than AdaBoost.
We also propose a new algorithm that makes use of sample
reweighting schemes commonly used in AdaBoost to select a
subset of relevant features for training the GSLDA classifier. Fi-
nally, we analyze the training time complexity of the proposed
methods.

A. GSLDA

LDA can be cast as a generalized eigenvalue decomposition.
Given a pair of symmetric matrices corresponding to the be-
tween-class (.S,) and within-class covariance matrices (S, ),
one maximizes a class-separability criterion defined by the gen-
eralized Rayleigh quotient

w' Syw

max )
w w'S,w

ey

The optimal solution of a generalized Rayleigh quotient is
the eigenvector corresponding to the maximal eigenvalue. The
sparse version of LDA is to solve (1) with an additional sparsity
constraint

card(w) = k 2)

where card(-) counts the number of nonzero components,
a.k.a. the £o norm. k € 77 is an integer set by the user. Due to
this sparsity constraint, the problem becomes nonconvex and
NP-hard. In [21], Moghaddam er al. presented a technique to
compute optimal sparse linear discriminants using the branch
and bound approach. Nevertheless, finding the exact globally
optimal solution for high-dimensional data is computationally
infeasible. The algorithm was extended in [2], with new sparsity
bounds and efficient matrix inverse techniques to speed up the
computation time by 1000 fold. The technique works by se-
quentially adding the new variable which yields the maximum
eigenvalue (forward selection) until the maximum number of
elements are selected or some predefined condition is met. As
shown in [2], for two-class problems, the computation can be
made very efficient as the only finite eigenvalue Ayax(Sp, Sw)
can be computed in closed-form as bTS; 1p with S, = bb" be-
cause in this case Sj is a rank-one matrix. b is a column vector.
Therefore, the computation is mainly determined by the inverse
of S,,. When a greedy approach is adopted to sequentially find
the suboptimal w, a simple rank-one update for computing
St significantly reduces the computation complexity [2].
We have mainly used forward greedy search in this work. For
forward greedy search, if [ is the current subset of k indices and
m = [ U1 for candidate 7 which is not in /. The new augmented
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inverse (S™)~! can be calculated in a fast way by recycling the
last step’s result (S!)~?

)l = (SL,)7' + aiuiu!  —au;
—a;U; a;

(S

3)

where u; = (S!,) 1S, 1; with (/i) indexing the [th rows and ith
column of Sy, and a; = 1/(Sy.i; — ST ,u;) [21, [22].

Note that we have experimented with other sparse linear
regression and classification algorithms, e.g., £;-norm linear
SVMs, /;-norm regularized log-linear models, etc. However,
the major drawback of these techniques is that they do not have
an explicit parameter that controls the number of features to
be selected. The tradeoff parameter (regularization parameter)
only controls the degree of sparseness. One has to tune this pa-
rameter using tedious trial-and-error. Hence, we have decided
to apply GSLDA, which makes use of greedy feature selection
and the number of features can be predefined. It would be of
interest to compare our method with ¢;-norm induced sparse
models [23].

The following paragraph explains how we apply the GSLDA
classifier [2], [21] as an alternative feature selection method to
classical Viola and Jones’ framework [1].

Due to space limit, we omit the explanation of cascade clas-
sifiers. Interested readers should refer to [1] and [11] for details.
The proposed GSLDA based detection framework is summa-
rized in Algorithm 1. The algorithm operates as follows. The
set of selected features is initialized to an empty set. The first
step (lines 4-5 in Algorithm 1) is to train weak classifiers, for
example, decision stumps on Haar features.! For each Haar-like
rectangle feature, the threshold that gives the minimal classifi-
cation error is precomputed and stored in memory. In order to
achieve maximum class separation, the output of each decision
stump is examined and the decision stump whose output yields
the maximum eigenvalue is sequentially added to the list [line 7,
step (1)]. The process continues until the predefined condition
is met (line 6).

B. LDA on Asymmetric Data

In cascade classifiers, we would prefer to have a classifier
that yields high detection rates without introducing many false
positives. In the Bayes sense, linear discriminant classifiers are
optimum for normal distributions with equal covariance ma-
trices. However, due to its simplicity and robustness, linear dis-
criminant classifiers have shown to perform well not only for
normal distributions with unequal covariance matrices but also
nonnormal distributions. A linear discriminant classifier can be
written as

+1. lf Zn_ wtht(z) + H Z 0
F(x) = ’ t=1 4
(=) { —1, otherwise @

'We introduce nonlinearity into our system by applying decision stumps to
raw Haar feature values. By nonlinearly transforming the data, the input can
now be separated more easily using simple linear classifiers [20].

Note that any classifiers can be applied here. We also use LDA on covariance
features for human detection as described in [8]. For the time being, we focus
on decision stumps on Haar-like features. We will give details about covariance
features later.
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where h( - ) defines a function which returns a binary output, =
is the input image features and 6 is an optimal threshold such
that the minimum number of examples are misclassified.

The asymmetric goal for training cascade classifiers can be
written as a tradeoff between false acceptance rate €; and false
rejection rate €5 as

(&)

where 1 is a tradeoff parameter, representing an acceptable false
rejection rate at the cost of higher false acceptance rate. Various
approaches have been proposed to determine this tradeoff [1],
[11], [14], [24]. The objective of LDA is to maximize the pro-
jected between-class covariance matrix (the distance between
the mean of two classes) and minimize the within-class covari-
ance matrix. The choice of weight coefficients, w, which satis-
fies the LDA objective is guaranteed to achieve this goal. Having
large projected mean difference and small projected class vari-
ance indicates that the data can be separated more easily and,
hence, the asymmetric goal can also be achieved more easily.
On the other hand, AdaBoost minimizes the symmetric expo-
nential loss function that does not guarantee high detection rates
with few false positives [9]. The selected features are, therefore,
no longer optimal for the task of rejecting negative samples.

Another way to think of this is that AdaBoost sets initial
positive and negative sample weights to 0.5/N,, and 0.5/N,,
(N, and N,, are the number of positive samples and negative
samples). The prior information about the number of samples
in each class is encoded only in the initial distribution of
sample weights. The information gradually phased out during
subsequent weak learners’ training. In contrast, LDA takes
the number of samples in each class into consideration when
solving the optimization problem, i.e., the number of samples
is used in calculating the between-class covariance matrix (.Sy).
Hence, Sy is the weighted difference between class mean and
sample mean, which writes

So = Ne,(tte, = %) (pte, = 2)"

T =¢€1+ pe2

(6)

where p., = N;! e, Tii T = N1 >, Tj; Ne, is the
number of samples in class ¢; and N is the total number of sam-
ples. This extra information minimizes the effect of imbalanced
data set.

In order to demonstrate this, we generate an artificial data set
similar to the one used in [9]. We learn a classifier consisting of
four linear classifiers and the results are shown in Fig. 2. From
the figure, we see that the first weak classifier (#1) selected by
both algorithms are the same since it is the only linear classifier
with minimal error. AdaBoost then reweights the samples and
selects the next classifier (#2) which has the smallest weighted
error. From the figure, the second weak classifier (#2) introduces
more false positives to the final classifier. Since most positive
samples are correctly classified, the positive samples’ weights
are close to zero. AdaBoost selects the next classifier (#3) which
classifies all samples as negative. Therefore, it is clear that all but
the first weak classifier learned by AdaBoost are poor because
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Algorithm 1 The training procedure for building a cascade of GSLDA object detector.

Input:

o A positive training set and a negative training set;

o A set of Haar-like rectangle features hq, ho, - - -

s

e D.iy: minimum acceptable detection rate per cascade level;

o Fiax: maximum acceptable false positive rate per cascade level;

o Fiarget: target overall false positive rate;
1 Inmitialize: : = 0; D; = 1; F; = 1,
2 while Fiagec < F; do
3 it=i+1; fi=1,

4 foreach feature do

5 Train a weak classifier (e.g., a decision stump parameterized by a threshold €) with the smallest error

| on the training set;

6 while f7 > Enax do

7 1. Add the best weak classifier (e.g., decision stump) that yields A\pax(Sh, Sw);

8 2. Lower a linear classifier threshold, 6 in (4), such that D,,;, holds;

9 3. Update f; using this classifier threshold;

10 D;y1 = D; X Dyin; Fiy1 = F; x f;; and remove correctly classified negative samples from the training
set;

11 if Ftarget < Fl then

"L

O_utput:

negative training set;

Evaluate the current cascade classifier on the negative images and add misclassified samples into the

e A cascade of classifiers for each cascade level i =1,---;

« Final training accuracy: F; and D;;

it tries to balance positive and negative errors. The final com-
bination of these classifiers are not able to produce high detec-
tion rates without introducing many false positives. In contrast
to AdaBoost, GSLDA selects the second and third weak classi-
fier (#2, #3) based upon the maximum class separation criterion.
Only the linear classifier whose outputs yield the maximum dis-
tance between two classes is selected. As a result, the selected
linear classifiers introduce much less number of false positives
(Fig. 2).

Viola and Jones [9] pointed out the limitation of AdaBoost
in the context of highly skewed data distribution and proposed
a new variant of AdaBoost called AsymBoost which is experi-
mentally shown to give a performance improvement over con-
ventional boosting. In brief, the sample weights are updated
before each round of boosting with the extra exponential term
which causes the algorithm to gradually pay more attention to
positive samples in each round of boosting. Our scheme based
upon LDA’s class-separability can be considered as an alterna-
tive classifier to AsymBoost that also takes asymmetry informa-
tion into consideration.

C. BGSLDA

Before we introduce the concept of BGSLDA, we present a
brief explanation of boosting algorithms. Boosting is one of the
most popular learning algorithms. It was originally designed for
classification problems. It combines the output of many weak
classifiers to produce a single strong learner. A weak classifier is
defined as a classifier with classification accuracy on the training
set greater than random guessing. There exist many variants of
boosting algorithms, e.g., AdaBoost (minimizing the exponen-
tial loss), GentleBoost (fitting regression function by weighted
least square methods), LogitBoost (minimizing the logistic re-
gression cost function) [25], LPBoost (minimizing the hinge
loss) [26], [27], etc. All of them rely on sample reweighting and
weighted majority voting. One of the widely used boosting al-
gorithm is AdaBoost [28]. AdaBoost is a greedy algorithm that
constructs an additive combination of weak classifiers such that
the exponential loss

Ly, F(z)) = exp(—yF ()

is minimized. Here « is the labeled training examples and y is its
label y € {—1,+1}; F'(z) is the final decision function where
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its sign predicts the class label. Each training sample receives a
weight w; that determines its significance for training the next
weak classifier. In each boosting iteration, the value of weak
classifier’s weight coefficients, «;, is computed and the sample
weights are updated according to the exponential rule (7). Ad-
aBoost then selects a new hypothesis A( - ) that best classifies
updated training samples with minimal weighted classification
error e. The final decision rule H( - ) is a sign of the linear com-
bination of the selected weak classifiers weighted by their coef-
ficients ;. The classifier decision is given by

H(z) = sign(F(z)) = sign (zu: atht(z))
t=1

where «; is a weight coefficient; h;( - ) is a weak learner and
N, is the number of weak classifiers.

In the previous section, we have introduced the concept of
GSLDA in the domain of object detection. However, decision
stumps used in GSLDA algorithm are learned only once to save
computation time. In other words, once learned, an optimal
threshold, which gives smallest classification error on the
training set, remains unchanged during GSLDA training. This
speeds up the training process as also shown in forward feature
selection of [11]. However, it limits the number of decision
stumps available for the GSLDA classifier to choose from. As a
result, the GSLDA algorithm fails to perform at its best. In order
to achieve the best performance from the GSLDA classifier,
we propose to extend decision stumps used in GSLDA training
with sample reweighting techniques used in boosting methods.
In other words, each training sample receives a weight and
the new set of decision stumps are trained according to these
sample weights. We call the new classifier Boosted GSLDA (in
short, BGSLDA). The BGSLDA cascade learning algorithm
is shown in Algorithm 2. Since the BGSLDA based object
detection framework has the same input/output as GSLDA
based detection framework (Algorithm 1), we replace lines
2-10 in Algorithm 1 with Algorithm 2.

In Algorithm 2, the criterion used to select the best decision
stump is similar to the one applied in step (1) in Algorithm
1. Step (3) in Algorithm 2 is introduced in order to speed up
the GSLDA training process. By saying that, we remove de-
cision stumps with a weighted error larger than e; + ¢ where
er = (1)/(2) = (1)/(2)Bk, € is an arbitrarily small constant,
Br = max (Zfil u;yihi(x;)), N is the number of samples, y;
is the class label of sample z; and h(z;) is the prediction of
the training data x; using weak classifier h;. The condition used
here has connection with the dual constraint of the soft margin
LPBoost [26]. The dual objective of LPBoost minimizes § sub-
ject to the constraints

]\T
Zuzyzht<xz) S /87 Vt7
i=1
and
]\T
Zui =1,0 < u; <const, Vi.
=1

As a result, the sample weights u; is the most pessimistic one.
We choose decision stumps with a weighted error smaller than
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er + €. These decision stumps are the ones that perform best
under the most pessimistic condition.

Given the set of decision stumps, GSLDA selects the stump
that results in maximum class separation [step (4)]. The sample
weights can be updated using different boosting algorithms
[step (5)]. In our experiments, we use AdaBoost [1] reweighting
scheme (BGSLDA - scheme 1)

(t+1) ugt) exp(_atyiht(-'”i))
- Z(t+1)

N

U
with

Z0H = Z Ugt) exp(—ayyihi(z;)).

Here a; = 0.5log((1 — e4)/(et)), es is the weighted error,
Z(+1) is a normalization factor chosen such that w; will
be a probability distribution. We also use AsymBoost [9]
reweighting scheme (BGSLDA—scheme 2)

(t+1) _ ut”) exp(—agyihi(w;)) exp(y; log V)

i Z/(t+1) ®)

u
with

A G N Z ugt) exp(—auyihe () exp(yi log V).

7

D. Training Time Complexity of BGSLDA

In order to analyze the complexity of the proposed system,
we need to analyze the complexity of boosting and GSLDA
training. Let the number of training samples in each cascade
layer be N. For boosting, finding the optimal threshold of each
feature needs O (NN log N). Assume that the size of the feature
set is M and the number of weak classifiers to be selected
is T'. The time complexity for training boosting classifier is
O(MTN log N). The time complexity for GSLDA forward
pass is O(NMT + MT?3). O(N) is the time complexity
for finding mean and variance of each features. O(T?) is the
time complexity for calculating correlation for each feature.
Since, we have M features and the number of weak classifiers
to be selected is 7', the total time complexity for GSLDA
is O(ONMT + MT?). Hence, the total time complexity is
O(MTNlog N + NMT + MT?). When N > T, most of

~~

weak classifier GSLDA o )
the computation is spent on training weak classifiers. On the

other hand, when T is large, most of the computation time is
spent on GSLDA calculation (finding the feature that maxi-
mizes class-separability criterion). For cascaded structure, The
value of 1" can be set to be small, i.e., the maximum number of
weak classifiers in each cascade node. For face detection using
Haar-like features with cascade classifiers [1], IV is 4916, M is
160 000 (24 x 24 pixels patch) and T is usually less than 200.

For fast AdaBoost training of Haar-like rectangle features, we
apply the precomputing technique similar to [11].

III. EXPERIMENTS

This section is organized as follows. The data sets used in
this experiment, including how the performance is analyzed, are
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selected weak classifiers (AdaBoost)

(a)

selected weak classifiers (GSLDA)

(b)

Fig. 2. Two examples on a toy data set. (a) AdaBoost. (b) GSLDA (forward pass). X’s and O’s represent positive and negative samples, respectively. Weak
classifiers are plotted as lines. The number on the line indicates the order in which weak classifiers are selected. AdaBoost selects weak classifiers for attempting to
balance weighted positive and negative error. Notice that AdaBoost’s third weak classifier classifies all samples as negative due to the very small positive sample
weights. In contrast, GSLDA selects weak classifiers based upon the maximum class separation criterion. We see that four weak classifiers of GSLDA model the

positives well and most of the negative are rejected.

Algorithm 2 The training algorithm for building a cascade of BGSLDA object detector.

1 while Fi,.t < F; do

2 =1+ 1;

3 fi=1

4 while f; > Fi,.x do

5 1. Normalize sample weights u;

6 2. Train a weak classifier (e.g., a decision stump parameterized by a threshold 6) with the smallest

weighted error on the training set;

7 3. Remove those weak classifiers with weighted error larger than ej + ¢ (section II-C);

8 4. Add the best weak classifier (e.g., decision stump) that yields Amax(Sp, Sw )3

9 5. Update sample weights w in the AdaBoost manner (Eq. (7)) or AsymBoost manner (Eq. (8));
10 6. Lower a linear classifier threshold, # in (4), such that D,,;, holds;

1 7. Update f; using this classifier threshold;

12 D1 = D; X Duin;

13 F; 41 = F; x f;; and and remove correctly classified negative samples from the training set;

14 if Fiarger < I then

15 Evaluate the current cascade classifier on the negative images and add misclassified samples into the

negative training set;

described. Experiments and the parameters used are then dis-
cussed. Finally, experimental results and analysis of different
techniques are presented.

A. Face Detection With the GSLDA Classifier

Due to its efficiency, Haar-like rectangle features [1] have
become a popular choice as image features in the context of
face detection. Similar to the work in [1], the weak learning
algorithm known as decision stumps and Haar-like rectangle
features are used here due to their simplicity and efficiency.

The following experiments compare AdaBoost, FloatBoost
(AdaBoost with backtrack mechanism) [10] and GSLDA
learning algorithms in their performances in the domain of face
detection.

1) Performances on Single-Node Classifiers: This experi-
ment compares single strong classifier learned using AdaBoost,
FloatBoost and GSLDA algorithms in their classification perfor-
mance. The data sets consist of three training sets and two test
sets. Each training set contains 2000 face examples and 2000
nonface examples (Table I). The data set consists of 10 000
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Fig. 3. See test for details (best viewed in color). (a) Comparison of test error rates between GSLDA, AdaBoost, and FloatBoost. (b) Comparison of false alarm
rates on the test data set between GSLDA, AdaBoost, and FloatBoost. The detection rate on the validation face set is fixed at 99%. (c) Comparison of train and test
error rates between BGSLDA (scheme 1) and FloatBoost. (d) Comparison of false alarm rates on the test set between BGSLDA (scheme 1) and FloatBoost.

TABLE I
SIZE OF TRAINING AND TEST SETS USED ON THE
SINGLE NODE CLASSIFIER

# data splits  faces/split  non-faces/split
Train 3 2000 2000
Test 2 2000 2000

mirrored faces. The faces were cropped and rescaled to images
of size 24 x 24 pixels. For nonface examples, we randomly se-
lected 10 000 random nonface patches from nonface images ob-
tained from the internet.

For each experiment, three different classifiers are generated,
each by selecting two out of the three training sets and the re-
maining training set for validation. The performance is mea-
sured by two different curves: the test error rate and the clas-
sifier learning goal (the false alarm error rate on test set given
that the detection rate on the validation set is fixed at 99%). A
95% confidence interval of the true mean error rate is given by
the ¢-distribution. In this experiment, we test two different ap-

proaches of GSLDA: forward-pass GSLDA and dual-pass (for-
ward+backward) GSLDA.2

The results are shown in Fig. 3. The following observations
can be made from these curves. Having the same number
of learned Haar-like rectangle features, GSLDA achieves a
comparable error rate to AdaBoost or FloatBoost on test sets
[Fig. 3(a)]. GSLDA seems to perform slightly better with less
number of Haar-like features (less than 100) while AdaBoost
and FloatBoost seems to perform slightly better with more
Haar-like features (more than 100). However, all classifiers
perform almost similarly within 95% confidence interval of
the true error rate. This indicates that features selected using
GSLDA classifiers are as meaningful as features selected using
the AdaBoost and FloatBoost classifiers. From the curve,
GSLDA with bidirectional search yields better results than
GSLDA with forward search only. Fig. 3(b) shows the false
positive error rate on the test set. From the figure, GSLDA,
AdaBoost and FloatBoost achieve a comparable false positive

2Dual-pass GSLDA performs a backward elimination after the latest weak
classifier is added by forward-pass GSLDA. The process removes those previ-
ously added weak classifiers which have little help in separating positive class
from negative class.
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Fig. 4. Comparison of ROC curves on the MIT+CMU face test set. (a) With the same number of weak classifiers in each cascade stage on AdaBoost and its
variants. (b) With 99.5% detection rate and 50% false positive rate in each cascade stage on AdaBoost and its variants. BGSLDA (scheme 1) corresponds to the
GSLDA classifier with decision stumps being reweighted using the AdaBoost scheme.

error rate on the test set. Similar to [10], FloatBoost has a
slightly lower error rate than AdaBoost.

2) Performances on Cascades of Strong Classifiers: In
this experiment, we used 5000 mirrored faces from previous
experiments. The nonface samples used in each cascade layer
are collected from false positives of the previous stages of the
cascade (bootstrapping). The cascade training algorithm termi-
nates when there are not enough negative samples to bootstrap.
For fair evaluation, we trained both techniques with the same
number of weak classifiers in each cascade. Note that since
dual-pass GSLDA (forward+backward search) yields better
solutions than the forward search in the previous experiment,
we use the dual-pass GSLDA classifier to train a cascade of
face detectors.

We tested our face detectors on the low resolution faces data
set, MIT4+CMU frontal face test set. The complete set contains
130 images with 507 frontal faces. In this experiment, we set
the scaling factor to 1.2 and window shifting step to 1 pixel.
The technique used for merging overlapping windows is similar
to [1]. Detections are considered true or false positives based
upon the area of overlap with ground truth bounding boxes. To
be considered a correct detection, there must be at least a 50%
overlap between the predicted bounding box and ground truth
bounding box. Multiple detections of the same face in an image
are considered false detections.

Fig. 4(a) and (b) shows a comparison between the receiver op-
erating characteristic (ROC) curves produced by GSLDA, Ad-
aBoost and FloatBoost. In Fig. 4(a), the number of weak classi-
fiers in each cascade stage is predetermined while in Fig. 4(b),
weak classifiers are added to the cascade until the predefined
objective is met.

The ROC curves show that the GSLDA method outperforms
AdaBoost at all false positive rates. The observation is that by
lowering AdaBoost’s threshold (in order to achieve high detec-
tion rates with moderate false positive rates), the classification
performance of AdaBoost is no longer optimal. Our findings in
this work are consistent with the experimental results presented
in [9]-[11].

Wu et al. [11] used LDA weights instead of weak classifiers’
weights provided by the AdaBoost algorithm. [10] introduced
a backtrack mechanism to remove unfavorable weak classifiers
(FloatBoost learning). We found the performance of AdaBoost
plus LDA, FloatBoost and GSLDA to be similar. Since, we also
use Haar-like features and the cascade structure introduced in
[1], we can infer that the evaluation time of our GSLDA face
detector is similar to that of AdaBoost face detector.

Fig. 5(a) compares the performance of LDA-based classifiers
against asymmetric boosting-based classifiers [9], [29]. For [9],
we set the asymmetric parameter to be 1.1 using cross-valida-
tion. For [29], we trained the classifier in an offline mode and
set the asymmetric parameter to be 2 using cross-validation. The
number of weak classifiers in each node was set to be the same in
all classifiers. Based upon our results, the detection performance
of GSLDA is similar to asymmetric AdaBoost. Since, we train
each cascade node with equal number of faces and nonfaces,
in our experiments, the performance of [29] is very similar to
[9]. Training each node with different ratio of training faces and
training nonfaces might produce different performance results
between the two versions of asymmetric boosting of [29] and
[9].

Our next experiment compares the performance of our clas-
sifiers on correlation coefficient features. We first calculate re-
gion covariance from several image statistics. In this experi-
ment, we used seven statistics; namely pixel location z, pixel
location y, image intensity I(x,y), first-order partial deriva-
tive of the intensity in horizontal and vertical direction, |L,|
and [T, |, second-order partial derivative of the intensity in hor-
izontal and vertical direction |I,| and [I,,|. We then calculate
correlation coefficient between any two random variables and
use them to replace Haar-like features. We train weak classi-
fiers using decision stumps and learn a cascade classifier. We
set the asymmetric parameter for [9] to be 1.1 and for [29] to be
2. The experimental results are shown in Fig. 5(b). As we can
see, the performance of GSLDA is similar to AsymBoost [9]
when the number of false positives is less than 50. Because we
only extract one statistic (correlation between a pair of random
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Fig. 5. Comparison of ROC curves on the MIT+CMU face test set. (a) Using Haar-like features. (b) Using correlation coefficient features.
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Fig. 6. First seven Haar-like rectangle features selected from the first layer of the cascade. The value below each Haar-like rectangle features indicates the
normalized feature weight. AdaBoost and GSLDA have the same Haar-like rectangle features in the first layer. For AdaBoost, the value corresponds to the
normalized o where o is computed from log((1 —e;)/e;) and e, is the weighted error. For LDA, the value corresponds to the normalized w such that for
input vector x and a class label y, w! z leads to maximum separation between two classes.

variables) from each image region, the performance is slightly
inferior to Haar-like features.

Note that GSLDA not only performs better than AdaBoost
but it is also much simpler. The weak classifier learning (deci-
sion stumps) is performed only once for the given set of samples
(unlike AdaBoost or FloatBoost where weak classifiers have to
be retrained in each boosting iteration). GSLDA sequentially
selects the decision stump whose output yields the maximum
eigenvalue. The process continues until the stopping criteria are
met. Note that given the decision stumps selected by GSLDA,
any linear classifiers can be used to calculate the weight coeffi-
cients. Based upon our experiments, using linear SVM (maxi-
mizing the minimum margin) instead of LDA also gives a very
similar result to our GSLDA detector. We believe that using one
objective criterion for feature selection and another criterion for
classifier construction would provide a classifier with more flex-
ibility than using the same criterion to select features and train
weight coefficients. This finding was originally advocated in Wu
et al. [11]. Our results are consistent with the experimental re-
sults reported in [11]. This finding opens up many more possi-
bilities in combining various feature selection techniques with
many existing classification techniques. We believe that a better
and faster object detector can be built with careful design and
experiments.

Haar-like rectangle features selected in the first cascade layer
of different classifiers are shown in Fig. 6. Note that all classi-
fiers select Haar-like features that cover the area around the eyes
and forehead. Table II compares the two cascade classifiers in
terms of the number of weak classifiers and the average number

of Haar-like rectangle features evaluated per detection window.
Comparing GSLDA with AdaBoost, GSLDA has more weak
classifiers and takes longer time to evaluate than AdaBoost.

Unlike in AdaBoost, where training samples are reweighed
in each boosting iteration, GSLDA does not update sample
weights. In our algorithm, we only learn weak classifiers (e.g.,
decision stumps) with the smallest error on the training set
once, i.e., for decision stump, the threshold is learned once
in the beginning. Once learned, the threshold parameter re-
mains unchanged. This is different from AdaBoost where the
threshold parameter is relearned so that the weak classifier
would yield minimal weighted misclassification error. Hence,
the number of decision stumps available for training GSLDA
is much smaller than the number of decision stumps used in
training AdaBoost classifiers. In other words, AdaBoost can
choose a more powerful/meaningful decision stump during
each boosting iteration. Interestingly, GSLDA outperforms
AdaBoost. This indicates that the classifier trained to maximize
class separation might be more suitable in the domain where the
distribution of positive and negative samples is highly skewed.
In the next section, we conduct experiments on BGSLDA.

B. Face Detection With BGSLDA Classifiers

The following experiments compare BGSLDA and different
boosting learning algorithms for face detection. BGSLDA
(weight scheme 1) corresponds to GSLDA classifier with
decision stumps being reweighted using the AdaBoost scheme
while BGSLDA (weight scheme 2) corresponds to GSLDA
with decision stumps being reweighted using the AsymBoost



SHEN et al.: EFFICIENTLY LEARNING A DETECTION CASCADE WITH SPARSE EIGENVECTORS 31

TABLE 11
COMPARISON OF NUMBER OF WEAK CLASSIFIERS. THE NUMBER OF CASCADE STAGES AND TOTAL WEAK CLASSIFIERS WERE OBTAINED FROM THE CLASSIFIERS
TRAINED TO ACHIEVE A DETECTION RATE OF 99.5% AND THE MAXIMUM FALSE POSITIVE RATE OF 50% IN EACH CASCADE LAYER. THE AVERAGE NUMBER OF
HAAR-LIKE RECTANGLES EVALUATED WAS OBTAINED FROM EVALUATING THE TRAINED CLASSIFIERS ON MIT+CMU FACE TEST SET. DUAL-PASS CLASSIFIERS
(FORWARD+BACKWARD) E.G. FLOATBOOST, GSLDA (DUAL-PASS) TAKE LONGER TIME TO TRAIN THAN ONE-PASS CLASSIFIERS

Number of weak classifiers

Average number of Haar features evaluated

Method Training time | Number of stages
AdaBoost [1] 3 hours 22
FloatBoost [10] 3+ hours 22
AdaBoost+LDA [11] 3 hours 22
GSLDA 16+ hours 24
BGSLDA (scheme 1) 16+ hours 23
AsymBoost [9] 3 hours 22
AsymBoost+LDA [11] 3 hours 22
BGSLDA (scheme 2) 164 hours 23

1771 23.9
1532 23.3
1436 22.3
2985 36.0
1696 24.2
1650 22.6
1542 21.5
1621 24.9

Wy Li1YVE

AND LEARN

1 § HE PERFECY

i

am.

a5 o R
SUMMERTIME ATTITUDE.,

s AN

Fig. 7. Face detection examples using the BGSLDA (scheme 1) detector on the MIT+CMU test data set. We set the scaling factor to 1.2 and window shifting
step to 1 pixel. The technique used for merging overlapping windows is similar to [1].

scheme (for highly skewed sample distributions). AsymBoost
used in this experiment is from [9]. However, any asymmetric
boosting approach can be applied here, e.g., [27], [30].

1) Performances on Single Node Classifiers: The experi-
mental setup is similar to the one described in previous section.
The results are shown in Fig. 3. The following conclusions can
be made from Fig. 3(c). Given the same number of weak clas-
sifiers, BGSLDA always achieves a lower generalization error
rate than FloatBoost. However, in terms of training error, Float-
Boost achieves a lower training error rate than BGSLDA. This
may be explained as FloatBoost has a faster convergence rate
than BGSLDA. From the figure, FloatBoost only achieves lower
training error rate than BGSLDA when the number of Haar-like
rectangle features is larger than 50. Fig. 3(d) shows the false
alarm error rate. The false positive error rates of both classifiers
are very similar.

2) Performances on Cascades of Strong Classifiers: The ex-
perimental setup and evaluation techniques used here are similar
to the one described in Section III-A.1. The results are shown in
Fig. 4. Fig. 4(a) shows a comparison between the ROC curves
produced by BGSLDA (scheme 1) and FloatBoost trained with
the same number of weak classifiers in each cascade. Both ROC
curves show that the BGSLDA classifier outperforms both Ad-
aBoost, FloatBoost [10] and AdaBoost plus LDA [11]. Fig. 4(b)
shows a comparison between the ROC curves of different clas-
sifiers when the number of weak classifiers in each cascade
stage is no longer predetermined. At each stage, weak clas-
sifiers are added until the predefined objective is met. Again,
BGSLDA significantly outperforms other evaluated classifiers.
Fig. 7 demonstrates some face detection results on our BGSLDA
(scheme 1) detector.
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Fig. 8. Comparison of ROC curves on the MIT+CMU face test set. (a) With the same number of weak classifiers in each cascade stage on AsymBoost and its
variants. (b) With 99.5% detection rate and 50 false positive rate in each cascade stage on AsymBoost and its variants. BGSLDA (scheme 2) corresponds to GSLDA

with decision stumps being reweighted using the AsymBoost scheme.

TABLE III
BREAKDOWN OF CPU TIME USED IN TRAINING A GSLDA CASCADE
CLASSIFIER ON A STANDARD DESKTOP PC

Process Time

Weak classifier training 1h 20m
GSLDA feature selection | 12h 40m
Bootstrapping 1h 50m

In the next experiment, we compare the performance of
BGSLDA (scheme 2) with other classifiers using the asym-
metric weight updating rule [9]. In other words, the asymmetric
multiplier exp(%yi log \/E) is applied to every sample before
each round of weak classifier training. The results are shown
in Fig. 8. Fig. 8(a) shows a comparison between the ROC
curves trained with the same number of weak classifiers in each
cascade stage. Fig. 8(b) shows the ROC curves trained with
99.5% detection rate and 50% false positive rate criteria. From
both figures, the BGSLDA (scheme 2) classifier outperforms
other classifiers evaluated. BGSLDA (scheme 2) also outper-
forms BGSLDA (scheme 1). This indicates that an asymmetric
loss might give a better detection accuracy in object detection
where the distributions of positive examples and negative ex-
amples are highly imbalanced. Note that the performance gain
between BGSLDA (scheme 1) and BGSLDA (scheme 2) is
small compared with the performance gain between AdaBoost
and AsymBoost. Since, LDA takes the number of samples of
each class into consideration when solving the optimization
problem, we believe that this reduces the performance gap
between BGSLDA (scheme 1) and BGSLDA (scheme 2).

Table II indicates that our BGSLDA (scheme 1) classifier
evaluates at a speed comparable to the AdaBoost classifier.
However, compared with AdaBoost plus LDA, the performance
gain of BGSLDA comes at the slightly higher cost in evaluation
time. In terms of cascade training time, on a desktop with an
Intel Core™ 2 Duo CPU T7300 with 4GB RAM, the total

99.5% detection rates and 50% false positive rates for each layer
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Fig. 9. Comparison of ROC curves with different values of 7 in (9).

training time is less than one day. A breakdown of GSLDA
training time is given in Table III.

As mentioned in [31], a more general technique for gener-
ating discriminating hyper-planes is to define the total within-
class covariance matrix as

+v Z (@i = po)(wi — p2)",  (9)

z; €Cy

where 1 is the mean of class 1 and po is the mean of
class 2. The weighting parameter v controls the weighted
classification error. We have conducted an experiment on
BGSLDA (scheme 1) with different value of -, namely
v € {0.1,0.5,1.0,2.0,10.0}. All the other experiment settings
remain the same as described in the previous section. The
results are shown in Fig. 9. Based upon ROC curves, it can be
seen that all configurations of BGSLDA classifiers outperform
AdaBoost at all false positive rates. Setting v = 1 gives the
highest detection rates when the number of false positives
is larger than 200. Setting v = 0.5 performs best when the
number of false positives is very small.
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Algorithm 3 The algorithm for training multi-dimensional features.

1 foreach multi-dimensional feature do

2 1. Calculate the projection vector with LDA and project the multi-dimensional feature to 1D space;

3 2. Train decision stump classifiers to find an optimal threshold 6 using positive and negative training set;
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Fig. 10. Pedestrian detection performance comparison on the Daimler-
Chrysler pedestrian data sets [32].

C. Pedestrian Detection With GSLDA and BGSLDA Classifiers

In this section, we apply the proposed algorithm to pedes-
trian detection, which is considered a more difficult problem
than face detection.

1) Pedestrian Detection on the Daimler-Chrsyler Data Set
With Haar-Like Features: In this experiment, we evaluate the
performance of our techniques on Daimler-Chrsyler pedestrian
data sets [32]. The data sets contain a set of extracted pedestrian
and nonpedestrian samples which are scaled to size 18 x 36
pixels. The data sets consist of three training sets and two test
sets. Each training set contains 4800 pedestrian examples and
5000 nonpedestrian examples. Performance on the test sets is
analyzed similarly to the techniques described in [32]. For each
experiment, three different classifiers are generated. Testing
all three classifiers on two test sets yields six different ROC
curves. A 95% confidence interval of the true mean detection
rate is given by the t-distribution. We conducted three exper-
iments using Haar-like features trained with three different
classifiers: AdaBoost, GSLDA and BGSLDA (scheme 1). The
experimental setup is similar to the previous experiments.

Fig. 10 shows detection results of different classifiers. Again,
the ROC curves show that LDA outperforms AdaBoost at all
false positive rates. Clearly these curves are consistent with
those on face data sets.

2) Pedestrian Detection on the Inria Data Sets With Covari-
ance Features: We also conduct experiments on INRIA pedes-
trian data sets. We compare the performance of our method with
other state-of-the-art results. The INRIA data set [33] consists
of one training set and one test set. The training set contains
2416 mirrored pedestrian examples and 1200 nonpedestrian im-
ages. The pedestrian samples were obtained from manually la-
beling images taken at various time of the days and various loca-
tions. The pedestrian samples are mostly in standing position. A
border of eight pixels is added to the sample in order to preserve
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Miss rate
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—6— GSLDA on projected COV
—#— Boosted COV [Paisitkriangkrai et al.]

107" 10°
False positive per image

Fig. 11. Pedestrian detection performance comparison of 1-D covariance fea-
tures (projected covariance) trained using AdaBoost and GSLDA on the INRIA
data sets [33].

contour information. All samples are scaled to size 64 x 128
pixels. The test set contains 1176 mirrored pedestrian examples
extracted from 288 images and 453 nonpedestrian test images.

Because Haar-like features perform poorly on theses data
sets, we apply covariance features instead of Haar-like features
[8], [34]. Note that decision stumps may not be a ideal choice for
weak classifiers. To apply decision stumps to multidimensional
data, one can usually select one dimension and then train a deci-
sion stump on this dimension—the information of other dimen-
sions is totally ignored. To overcome this problem, we apply
LDA that projects a multidimensional data onto a 1-D space
first. In brief, we stack covariance features and project them
onto 1-D space. Decision stumps are then applied as weak clas-
sifiers. Our training technique is different from [8]. [8] applied
AdaBoost with weighted linear discriminant analysis (WLDA)
as weak classifiers. The major drawback of [8] is a slow training
time. Since, each training sample is assigned a weight, weak
classifiers (WLDA) need to be trained 1" times, where I is the
number of boosting iterations. In this experiment, we only train
weak classifiers (LDA) once and store their projected result into
a table. Because most of the training time in [8] is used to train
WLDA, the new technique requires only (1/7") training time
as that of [8]. After we project the multidimensional covariance
features onto a 1-D space using LDA, we train decision stumps
on these 1-D features. In other words, we replace lines 4 and 5
in Algorithm 1 with Algorithm 3.

In this experiment, we generate a set of over-complete rect-
angular covariance filters and subsample the over-complete set
in order to keep a manageable set for the training phase. The set
contains approximately 45 675 covariance filters. In each stage,
weak classifiers are added until the predefined objective is met.
We set the minimum detection rate to be 99.5% and the max-
imum false positive rate to be 35% in each stage. The cascade
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Fig. 12. Pedestrian detection examples on the INRIA test data sets. The classifier is trained on the INRIA training data sets.

threshold value is then adjusted such that the cascade rejects
50% negative samples on the training sets. Each stage is trained
with 2416 pedestrian samples and 2500 nonpedestrian samples.
The negative samples used in each stage of the cascades are col-
lected from false positives of the previous stages of the cascades.

Fig. 11 shows a comparison of our experimental results on
learning 1-D covariance features using AdaBoost and GSLDA.
The ROC curve is generated by thresholding the minimum
number of neighbor rectangles that makes up a single pedes-
trian. From the curve, GSLDA performs slightly better than
AdaBoost classifiers. The results seem to be consistent with
our results reported earlier on face detection. Some detection
results on INRIA test data sets are shown in Fig. 12. Note
that multiple scanning windows are merged using the simple
technique similar to [8].

IV. CONCLUSION

In this work, we have proposed an alternative approach in the
context of visual object detection. The core of the new frame-
work is GSLDA [2], which aims to maximize the class-sep-
aration criterion. On various data sets for face detection and
pedestrian detection, we have shown that this technique outper-
forms AdaBoost when the distribution of positive and negative
samples is highly skewed. To further improve the detection re-
sult, we have proposed a boosted version GSLDA, which com-
bines boosting reweighting scheme with decision stumps used
for training the GSLDA algorithm. Our extensive experimental
results indicate that the performance of BGSLDA is better than
that of AdaBoost and AsymmBoost at a similar computation
cost.

Future work will focus on the search for more efficient weak
classifiers and online updating the learned model.
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