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Abstract

We propose and evaluate a new set of ensemble methods for the Randomised

Sphere Cover (RSC) classifier. RSC is a classifier using the sphere cover method

that bases classification on distance to spheres rather than distance to instances.

The randomised nature of RSC makes it ideal for use in ensembles. We propose

two ensemble methods tailored to the RSC classifier; αβRSE, an ensemble based

on instance resampling and αRSSE, a subspace ensemble. We compare αβRSE

and αRSSE to tree based ensembles on a set of UCI datasets and demonstrates

that RSC ensembles perform significantly better than some of these ensembles,

and not significantly worse than the others. We demonstrate via a case study

on six gene expression data sets that αRSSE can outperform other subspace

ensemble methods on high dimensional data when used in conjunction with

an attribute filter. Finally, we perform a set of Bias/Variance decomposition

experiments to analyse the source of improvement in comparison to a base

classifier.

Keywords: Sphere Cover, Ensemble, B/V decomposition

1. Introduction

Combining the predictions of a set of randomised classifiers has been very

successful in classification [16]. Bagging and Boosting are two popular com-

bination methods using randomised sampling methods [54]. That is, they are
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used to combine predictions of various classifiers by randomly selecting training

subsets. However, a large family of instance based classifiers (IB) are unable

to use randomisation. We introduce novel algorithms that combines several IB

classifiers based on sphere covers, where each member of the ensemble builds

random data-dependent sphere covers.

The proposed ensemble methods use the Randomised Sphere Cover (RSC)

classifier, first introduced in [53]. RSC creates spheres around a subset of in-

stances from the training data, then bases classification on distance to spheres,

rather than distance to instances. RSC is similar to Nearest neighbour (NN)

based classifiers which are very popular in machine learning for their simplicity

and highly efficient data compression [53]. One of their strength as stand-alone

classifiers lies in the fact that they are robust to changes in the training data.

However, this feature of NN classifiers means that there is less observable benefit

(in terms of error reduction) of using them in conjunction with known ensemble

schemes such as bagging [3] and boosting [14]. RSC aims to overcome this prob-

lem by using a randomised heuristic to select a subset of instances to represent

the spheres used in classification. RSC is powerful data reduction algorithm as

shown in [53]. Data reduction algorithms [51, 27, 24] search the training data

for a subset of cases and/or attributes with which to classify new instances to

achieve the maximum compression with the minimum reduction in accuracy.

The sphere cover classifier can be described by the Compression scheme first

described in Floyd [13]. The Compression scheme has been proposed to explain

the generalisation performance of sparse algorithms. In general, algorithms are

called sparse because they retain a small subset from the training set as part of

their learning process. For example, a Support Vector Machine (SVM) with a

small number of support vectors or a condensed NN classifier could be consid-

ered sparse. Recently, compression scheme was rejuvenated to explore a similar

algorithm to the sphere cover, called set covering machine (SCM), proposed

by Marchand and Shawe-Taylor [43]. The process that creates the spheres for

sphere cover is controlled by two parameters: α, the minimum number of cases

a sphere must contain in order to be retained as part of the classifier; and β,
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the number of misclassified instances a sphere can contain. Younsi [54], ex-

amined the relationships between α, the accuracy and the cardinality of the

sphere cover classifier using existing probabilistic bound based on the compres-

sion scheme. Although it is clear the sphere cover accuracy is synonymous with

covering, compression scheme experiments have shown that degradation is ac-

curacy is only possible by heavily pruning spheres [54]. This suggests that the

randomised sphere cover classifier is indeed a strong candidate for exploring the

accuracy/diversity dilemma found in ensemble design [25, 41, 46, 28].

We propose two ensemble methods tailored to the RSC classifier; αβ RSE, an

ensemble based on resampling and αRSSE, a subspace ensemble. We investigate

how α and β parameters can be optimally used to diversify the ensemble. We

demonstrate that the resulting ensemble classifiers are comparable to, and often

better than, state of the art ensemble techniques. We perform a case study

on six high dimensional gene expression data sets to demonstrate that αRSSE

works well with attribute filters and that it outperforms other subspace ensemble

methods on these data sets. Finally, we perform a set of Bias/Variance (BV)

decomposition experiments to analyse the source of improvement in comparison

to a base classifier.

The structure of the rest of this paper is as follows: In Section 2 we provide

the background motivation for the RSC classifier, an overview of the relevant

ensemble literature and a brief summary of Domingos BV decomposition tech-

nique [10]. In Section 3 we formally describe the RSC classifier and in Section 4

we define our two ensemble schemes. In Section 5 we present the results and in

Section 7 we summarise our conclusions.

2. Background

A classifier constructs a decision rule based on a set of l training examples

D = {(xi, yi)}li=1, where xi represents a vector of observations of m explanatory

variables associated with the ith case, and yi indicates the class to which the

ith example belongs. We call the range of all possible values of the explanatory

variables X and the range of the discrete response variable Y = {C1, C2, . . . , Cr}.
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We assume a dissimilarity measure d is defined on X and is a function d : X×X →

R+ such that ∀x1,x2 ∈ X, d(x1,x1) = 0 and d(x1,x2) = d(x2,x1) ≥ 0. A

classifier f : X → Y, f(x) = ŷ is a function from the attribute space to the

response variable space.

2.1. Sphere Cover Classifiers

The sphere covering mechanism we use stems from the class covering ap-

proach to classification which was first introduced in [6]. A sphere Bi is asso-

ciated with a particular class CBi , and is defined by a centre ci and radius ri.

In practice we also include in the sphere definition all the instances within it’s

boundary. Hence, a sphere is defined by a 4-tuple

Bi =< CBi , ci, ri, XBi >

where XBi = {x ∈ D : d(x, ci) < ri}. The centre of the sphere is the vector

of the means of the attributes of the cases contained within. The radius of the

sphere Bi is defined as the distance from the centre to the closest example from

a class other than CBi that is not in XBi , i.e.

ri = min
xj∈{X\XBi

}∧yj ̸=CBi

d(xj, ci)

where X = {x ∈ D}. A union of spheres is called a cover. A cover that

contains all of the examples in D is called proper and one consisting of spheres

that only contain examples of one class is said to be pure. The class cover

problem (CCP) involves finding a pure and proper cover that has the minimum

number of spheres of all possible pure and proper covers.

The solution to the CCP proposed in [38] involves constructing a Class Cover

Catch Digraph (CCCD), a directed graph based on the proximity of training

cases. However, finding the optimal covering via the CCCD is NP-hard [7].

Hence [33, 32] proposed a number of greedy algorithms to find an approximately

optimal set covering. However, these algorithms are still slow and only find pure

covers.

The constraint of pure and proper covers will tend to lead to a classifier that

overfits the training data. An algorithm that relaxes the requirement of class
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purity was proposed by [38]. This algorithm introduces two parameters to alle-

viate the constraint of requiring a pure proper cover. The parameter α relaxes

the proper requirement by only allowing spheres that contain at least α cases

to be retained in the classifier. The parameter β reduces the purity constraint

by allowing a sphere to contain β cases of the wrong class. The authors ad-

mit the resulting algorithms are infeasible for large data and hence (to the best

of our knowledge) there has been very limited experimental evaluation of this

and other CCP based classifiers. Furthermore, the resulting classifiers are very

sensitive to the parameters. In particular, β, if constant for all spheres, is too

crude a mechanism for relaxing the purity constraint. In Section 3 we describe

an ensemble base classifier derived from CCP algorithm proposed in [34] that is

randomised (rather than constructive) and retains just the single parameter, α.

2.2. Ensemble Methods

An ensemble of classifiers is a set of base classifiers whose individual decisions

are combined through some process of fusion to classify new examples [35, 9].

One key concept in ensemble design is the requirement to inject diversity into

the ensemble [9, 42, 37, 16, 17, 19]. Broadly speaking, diversity can be achieved

in an ensemble by either:

• employing different classification algorithms to train each base classifier

to form a heterogeneous ensemble;

• changing the training data for each base classifier through a sampling

scheme or by directed weighting of instances;

• selecting different attributes to train each classifier;

• modifying each classifier internally, either through re-weighting the train-

ing data or through inherent randomization.

Clearly, these approaches can be combined (see below). In this paper we com-

pare our homogeneous ensemble methods (described in Section 4) with the fol-

lowing related ensembles.
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• Bagging [3] diversifies through sampling the training data by bootstrap-

ping (sampling with replacement) for each member of the ensemble.

• Random Subspace [21] ensembles select a random subset of attributes

for each base classifier.

• AdaBoost (Adaptive Boosting) [14] involves iteratively re-weighting

the sampling distribution over the training data based on the training

accuracy of the base classifiers at each iteration. The weights can then be

either embedded into the classifier algorithm or used as a weighting in a

cost function for classifier selection for inclusion.

• Random Committee is a technique that creates diversity through ran-

domising the base classifiers, which in Weka are a form of random tree.

• Multiboost [49] is a combination of a boosting strategy (similar to Ad-

aBoost) and wagging, a Poisson weighted form of bagging.

• Random Forests [4] combine bootstrap sampling with random attribute

selection to construct a collection of unpruned trees. At each test node the

optimal split is derived by searching a random subset of size K of candidate

attributes selected without replacement from the candidate attributes.

Random forest random combines attribute sampling with bootstrap case

sampling.

• Rotation Forests [41] involve partitioning the attribute space then trans-

forming in to the principal components space. Each classifier is given the

entire data set but trains on a different component space.

In order to maintain consistency across these techniques we use C4.5 decision

trees [39] as the base classifier for all the ensembles.

Forming a final classification from an ensemble requires some sort of fu-

sion. We employ a majority vote fusion [29] with ties resolved randomly. For

alternative fusion schemes see [26].
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Beyond simple accuracy comparison, there are three common approaches to

analyse ensemble performance: diversity measures [30, 46]; margin theory [40,

35]; and BV decomposition [23, 47, 15, 5, 48, 2]. These have all been linked [46,

10].

2.3. Bias/Variance Decomposition

In this section, we briefly describe BV decomposition using Domingos frame-

work [10]. This framework is applicable to any loss function, but for simplicity

sake we restrict ourselves to a two class classification problem with a 0/1 loss

function. We label the two class values {C1 = −1, C2 = 1}. The generalisation

error of a classifier is defined as the expected error for a given loss function

over the entire attribute space. A loss function L(y, ŷ) measures how close the

predicted value is from the actual value for any observation (x, y). The response

variable Y will generally be stochastic, so for a two class problem the expected

loss is defined as

Ey[L(y, ŷ)] = p(Y = −1|x) · L(0, ŷ) + p(Y = 1|x) · L(1, ŷ),

and the optimal prediction y∗ is the prediction that mimimizes the expected

loss. The optimal or Bayes classifier is one that minimizes the expected loss for

all possible values of the attribute space, i.e. f(x) = y∗,∀x ∈ X. The expected

loss over the attribute space of the Bayes classifier,

Ex[Ey[L(y, y∗)]]

, more commonly written Ex,y[L(y, y∗)] is called the Bayes rate and is the lower

bound for the error of any classifier.

In practice, classifiers are constructed with a finite data set, and the expected

loss for any given instance will vary depending on which data set the classifier

is given.

Let D be a set of s training sets, D = {{Di}si=1}. The set of predictions for

any element x is then Ŷ = {ŷi, i = 1 · · · s}, where ŷi is the prediction of the ith

classifier defined on training data Di when given explanatory variables x. We
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then denote the mode of Ŷ as the main prediction, ŷ. If we assume each data

set is equally likely to have been observed, the expected loss over s data sets for

a given instance x is simply the average over the data sets,

ED,y[L(y, ŷ)] =

∑s
i=1 Ey[L(y, ŷi)]

s

The Domingos framework decomposes this expected loss into three terms:

Bias, Variance and Noise. The Bias is defined as the loss of the main prediction

in relation to the optimal prediction.

B(x) = L(y∗, ŷ)

Bias is caused by systemic errors in classification resulting from the algorithm

not capturing the underlying complexity of the true decision boundary (i.e. un-

derfitting). Variance describes the mean variation within the set of predictions

about the main prediction for a given instance, i.e.,

V (x) =

∑s
i=1 L(ŷj , ŷ)

s
,

and is the result of variability of the classification function caused by the finite

training sample size and the hence inevitable variation across training samples

(overfitting). Noise is the unavoidable (and unmeasurable) component of the

loss that is incurred independently of the learning algorithm. The Noise term is

N(x) = E[L(y, y∗)].

So for a single example, we can describe the expected loss as

ED,y[L(y, ŷ)] = N(x) +B(x) + c2 · V (x)

where c2 is +1 if B(x) = 0 and −1 if B(x) = 1.

Bias and variance may be averaged over all examples, in which case Domin-

gos calls them average Bias, B = Ex[B(x)], average (or net variance) V =

Ex[V (x)] and average noise N = Ex(N(x)). The expected loss over all exam-

ples is the expected value of the expected loss over all examples, and can be

decomposed as
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ED,y,x[L(y, ŷ)] = N +B + c2 · V

.

Domingos shows that the net variance can be expressed as

V = Ex[(2B(x)− 1) · V (x)]

and that V can be further deconstructed into the biased variance Vb and the

unbiased variance Vu. Vu is the average variance within the set of classifier

estimates where the main prediction is correct (B(x) = 0), Vb is the variance

when the main prediction is incorrect. The net variance Vn is the difference

between the unbiased and the biased variance, Vn = Vu − Vb. Hence, unbiased

variance increases the net variance (and thus the generalisation error) whereas

biased variance decreases the net variance.

The principle benefit of performing a Bias-Variance (BV) decomposition

for an ensemble algorithm is to address the question of whether an observed

reduction in the expected loss is due to a reduction in bias, a reduction in

unbiased variance, an increase in biased variance or, more usually, a combination

of these factors. Without unlimited data, these statistics are generally estimated

through resampling. In Section 6 we describe our experimental design and

perform a BV decomposition to assess the ensemble algorithms we propose in

Section 4 in conjunction with the base classifier described in Section 3.

3. The Randomised Sphere Cover Classifier (RSC)

The reason for designing the αRSC algorithm was to develop an instance

based classifier to use in ensembles. Hence our design criteria were that it should

be randomised (to allow for diversity), fast (to mitigate against the inevitable

overhead of ensembles) and comprehensible (to help produce meaningful inter-

pretations from the models produced). The αRSC algorithm has a single integer

parameter, α, that specifies the minimum size for any sphere. Informally, αRSC

works as follows.
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• Repeat until all data are covered or discarded

1. Randomly select a data point and add it to the set of covered cases.

2. Create a new sphere centered at this point.

3. Find the closest case in the training set of a different class to the one

selected as a centre.

4. Set the radius of the sphere to be the distance to this case.

5. Find all cases in the training set within the radius of this sphere.

6. If the number of cases in the sphere is greater than α, add all cases

in the sphere to the set of covered cases and save the sphere details

(centre, class and radius).

A more formal algorithmic description is given in Algorithm 1. For all our

experiments we use the Euclidean distance metric, although the algorithm can

work with any distance function. All attributes are normalised onto the range

[0, 1]. The parameter α allows us to smooth the decision boundary, which

Algorithm 1 buildRSC(D,d,α). A Randomised Sphere Cover Classifier
(αRSC)

1: Input: Cases D = {(x1, y1), . . . , (xn, yn)}, distance function d(xi,xj) pa-
rameter α.

2: Output: Set of spheres B
3: Let covered cases be set C = ⊘
4: Let uncovered cases be set U = ⊘
5: while D ̸= C ∪ U do
6: Select a random element (xi, yi) ∈ D\C
7: Copy (xi, yi) to C
8: Find min(xj ,yj)∈D d(xi,xj) such that yi ̸= yj
9: Let ri = d(xi,xj)

10: Create a Bi with a center ci = xi, radius ri
and target class yi

11: Find all the cases in Bi and store in temporary set T
12: if |T | ≥ α then
13: C = C

∪
T

14: Store the sphere Bi in B
15: else
16: U = U ∪ T
17: end if
18: end while
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has been shown to provide better generalisation by mitigating against noise and

outliers, (see, for example [31]). Figure 1 provides an example of the smoothing

effect of removing small spheres on the decision boundary.

(a) A sphere cover with α = 1 (b) The same cover with α = 2

Figure 1: An example of the smoothing effect of removing small spheres

The αRSC algorithm classifies a new case by the following rules:

1. Rule 1. A test example that is covered by a sphere, takes the target class

of the sphere. If there is more than one sphere of different target class

covering the test example, the classifier takes the target class of the sphere

with the closest centre.

2. Rule 2. In the case where a test example is not covered by a sphere, the

classifier selects the closest spherical edge.

This approach is similar to the classification rule from the CCCD, which scales

the distances to the sphere centres by the radii and picks the smallest.

A case covered by Rule 2 will generally be an outlier or at the boundary

of the class distribution. Therefore, it may be preferable not to have spheres

over-covering areas where such cases may occur. These areas are either close

to the decision boundary specifically when the high overlap between classes

exist (an illustration is given in Figure 1 (a)), and areas where noisy cases are
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within dense areas of examples of different target class. The αRSC method

of compressing through sphere covering and smoothing via boundary setting as

first proposed in [53] and has been shown to provides a robust simple classifier

that is competitive with other commonly used classifiers [53]. In this paper we

focus on the best way to use it as a base classifier for an ensemble.

4. Ensemble Methods for αRSC

4.1. A Simple Ensemble: αRSE

One of the basic design criteria for αRSC was to randomise the cover mecha-

nism so that we could create diversity in an ensemble. Hence our first ensemble

algorithm, αRSE, is simply a majority voting ensemble of αRSC classifiers.

With all ensembles we denote the number of classifiers in the ensemble as L.

We fix α for all members of the ensemble. Each classifier is built using Algo-

rithm 1 using the entire training data. The basic question we experimentally

assess is whether the inherent randomness of αRSC provides enough implicit

diversity to make the ensemble robust.

4.2. A Resampling/Re-weighting Ensemble: αβ RSE

The original motivation for RSC is the classifiers derived from the Class

Cover Catch Digraph (CCCD) described in Section 2. These classifiers have

two parameters, α and β. The α parameter (minimum sphere size) is used to

improve generalisation. The β parameter (number of misclassified examples al-

lowed within a sphere) is meant to filter outliers. In the CCCD, both α and β

parameters are chosen in advance. α can be set through cross validation. How-

ever, setting β is problematic; a global value of β is too arbitrary, a local value

for each sphere impractical. We propose an automatic method for implicitly

setting β iteratively.

We define the border case of a sphere to be the closest data with a class

label different to that of the sphere. Border cases are the particular instance

that halts the growth of a sphere and are hence crucial in the construction of

the αRSC classifier. Our design principle for diversification of the ensemble is
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then to iteratively remove some or all of the border cases during the process of

ensemble construction. Informally, the algorithm proceeds as follows:

Figure 2: An illustration showing a cover modification with /beta parameter on a binary class
toy dataset.

1. Initialise the current training set D1 to the whole set D.

2. Build a base αRSC on the entire training set.

3. Find the border cases for the classifier.

4. Find the cases in the current training set that are uncovered by the clas-

sifier.

5. Find the cases in the entire training set that are misclassified by the clas-

sifier.
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6. Set the next training set, D2, equal to D1.

7. Remove border cases from D2.

8. Replace the border cases with a random sample (with replacement) taken

from the list of border, uncovered and misclassified cases and add them

to D2.

9. Repeat the process for each of the L classifiers.

Algorithm 2 A Randomised Sphere Cover Ensemble (αβ RSE)

Input: Cases D = {(x1, y1), . . . , (xn, yn)}, distance function d(xi,xj), parame-
ters α, L.
Output: L random sphere cover classifiers B1, . . . , BL

1: D1 = D
2: for j = 1 to L do
3: Bj =buildRSC(Dj , d, α).
4: E =borderCases(Bj , Dj)
5: F =uncoveredCases(Bj , Dj)
6: G =misclassifiedCases(Bj , D)
7: H = E + F +G
8: Dj+1 = Dj − E
9: for m = 1 to |E| do

10: c =randomSample(H)
11: Dj+1 = Dj+1

∪
c

12: end for
13: end for

A formal description is given in Algorithm 2. New cases are classified by

a majority vote of the L classifiers. The principle idea is that we re-weight

the training data by removing border cases, thus facilitating spheres that are

not pure on the original data, but continue to focus on the harder cases by

inserting possible duplicates of border, uncovered or misclassified cases, thus

implicitly re-weighting the training data. Data previously removed from the

training data can be replaced if misclassified on the current iteration. This data

driven iterative approach has strong analogies to constructive algorithms such

as boosting.
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4.3. A Random Subspace Ensemble: αRSSE

As outlined in Section 2.2, rather than resampling and/or re-weighting for

ensemble members, an alternative approach to diversification is to present each

base classifier with a different set of attributes with which to train. The Random

Subspace Sphere Cover Ensemble (αRSSE) builds base classifiers using random

subsets of attributes by sampling without replacement from the original full

attribute set. Each base classifier has the same number of attributes, κ. The

attributes used by a classifier are also stored, and the same set of attributes are

used to classify a test example. The majority vote is again employed for the

final hypothesis.

Algorithm 3 A Random Subspace Sphere Cover Ensemble (αRSSE)

Input: Cases D = {(x1, y1), . . . , (xn, yn)}, d(xi,xj), parameters α, L, κ.
Output: L random sphere cover classifiers B1, . . . , BL and associated attribute
sets K1, . . . ,KL.

1: for j = 1 to L do
2: Kj = randomAttributes(D,κ)
3: Dj = filterAttributes(D,Kj)
4: Bj =buildRSC(Dj , d, α)
5: end for

5. Accuracy Comparisons

Our base classifier αRSC is a competitive classifier in its own right, achieving

accuracy results comparable to C4.5, Naive Bayes, Naive Bayes Tree, K-Nearest

Neighbour and the Non-Nested Generalised Hyper Rectangle classifiers [50]. We

wish to compare the performance of αRSC based ensembles with equivalent tree

based ensemble techniques. Our experimental aims are:

1. To confirm that ensembling αRSC improves the performance of the base

classifier (Section 5.2).

2. To show that the RSC ensemble αβRSE performs better than tree based

ensembles that utilise the whole feature space (Section 5.3).
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3. To demonstrate that the RSC ensemble αRSSE performs significantly bet-

ter than all the subspace ensembles except rotation forest, which itself is

not significantly better than αRSSE (Section 5.4).

4. To consider, through a cases study, whether αRSC ensembles outperform

other subspace ensemble methods on classification problems with a high

dimensional feature space (Section 5.5).

To assess the relative performance of the classifiers, we adopt the procedure

described in [8], which is based on a two stage rank sum test. The first test,

the Freidman F test is a non-parameteric equivalent to ANOVA and tests the

null hypothesis that the average rank of k classifiers on n data sets is the same

against the alternative that at least one classifier’s mean rank is different. If

the Friedman test results in a rejection of the null hypothesis (i.e. we reject the

hypothesis that all the mean ranks are the same), Demšar recommends a post-

hoc pairwise Nemenyi test to discover where the differences lie. The performance

of two classifiers is significantly different if the corresponding average ranks differ

by at least the critical difference

CD = qa

√
k(k + 1)

6n
,

where k is the number of classifiers, n the number of problems and qa is based on

the studentised range statistic. The results of a post-hoc Nemenyi test are shown

in the critical difference diagrams (as introduced in [8]). These graphs show the

mean rank order of each algorithm on a linear scale, with bars indicating cliques,

within which there is no significant difference in rank (see Figure 4 below for an

example). Alternatively, if one of the classifiers can be considered a control, it

is more powerful to test for difference of mean rank between classifier i and j

based on a Bonferonni adjustment. Under the null hypothesis of no difference

in mean rank between classifier i and j, the statistic

z =
(r̄i − r̄j)√

k(k+1)
6n

follows a standard normal distribution. If we are performing (k − 1) pairwise

comparisons with our control classifier, a Bonferonni adjustment simply divides
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the critical value α by the number of comparisons performed.

5.1. Data Sets

Table 1: Benchmark datasets used for the empirical evaluations
Dataset Examples Attributes Classes
Abalone 4177 8 3
Waveform 5000 40 3
Satimage 6435 36 6
Ringnorm 7400 20 2
Twonorm 7400 20 2
Image 2310 18 2
German 1000 20 2
wdbc 569 30 2
Yeast 1484 8 10
Diabetes 768 8 2
Ionosphere 351 34 2
Sonar 208 60 2
Heart 270 13 2
Cancer 315 13 2
Winsconsin 699 9 2
Ecoli 336 7 8
Breast Cancer 97 24481 2
Prostate 136 12600 2
Lung Cancer 181 12533 2
Ovarian 253 15154 2
Colon Tumor 62 2000 2
Central Nervous 60 7129 2

To evaluate the performance of the ensembles we used sixteen datasets from

both the UCI data repository [11] and six benchmark gene expression datasets

from [44]. These datasets are summarised in Table 1. They were selected be-

cause they vary in the numbers of training examples, classes and attributes and

thus provide a diverse testbed. In addition, they all have only continuous at-

tributes, and this allows us to fix the distance measure for all experiments to

Euclidean distance. All the features are normalised onto a [0, 1] scale. The first

sixteen data are used for all classification experiments in Sections 5.3 and 5.4.

The six gene expression data sets are used for experiments presented in Sec-

tion 5.5 to evaluate how the subspace based ensembles perform in conjunction

with a feature selection filter on a problem with high dimensional feature space.

5.2. Base Classifier vs Ensemble

As a basic sanity check, we start by showing that the ensemble outperforms

the base classifier by comparing αβRSE with 25 base classifiers against the

average of 25 αRSC classifiers. Figure 3 shows the graphs of the classification
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accuracy (measured through 10 fold cross validation) for four different datasets.

The ensemble accuracies are better than those of the 25 averaged classifiers,

and this pattern was consistent across all data sets. In addition, we notice

both curves follow a similar evolution in relation to α. That is, α values that

returned the best classification accuracy for αβ RSE are similar to those of a

single classifier. This is the motivation for the model selection method we adopt

in Section 5.3.
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Figure 3: Accuracy as a function of α on four data sets. Each point is the ten fold
cross validation accuracy of αβ RSE with 25 classifiers and the average of 25 separate
αRSC classifiers

5.3. Full Feature Space Ensembles

Tables 2 and 3 show the classification accuracy of αRSE and αβRSE against

that of Adaboost, Bagging and Multiboost trained with 25 and 100 base classi-
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fiers respectively. Adaboost, Bagging and Multiboost were used with the default

settings for the decision tree and ensemble parameters and were trained on the

full training split.

For αRSE and αβRSE, α was set through a quick form of model selection

by using the optimal training set cross validation values of a single classifier.

This form of quick, off-line model selection is possible because of the fact that

RSC is controlled by just a single parameter and has little impact on the overall

time taken to build the ensemble classifier. As described in Section 4.2, the β

parameter of αβRSE is set implicitly through the sampling scheme.

The average ranks and rank order are given in the final two rows of Table

Tables 2 and 3. The critical difference for a test of difference in average rank

for 5 classifiers and 16 data sets at the 10% level is 1.375.

Table 2: mean classification accuracy (in %) and standard deviation of αβ RSE, α RSE,
Adaboost, Bagging, and Multiboost over 30 different runs on independent train/test
splits with 25 base classifiers.

Data Set α RSE αβ RSE Adaboost Bagging MultiBoost
Abalone 54.25±0.94 54.89±1.02 52.30±1.20 53.98±0.91 53.04±1.47
Waveform 90.40±0.67 90.68±0.65 89.60±0.69 88.71±0.58 89.63±0.56
Satimage 90.90±0.41 90.90±0.41 91.21±0.45 89.82±0.69 90.94±0.57
Ringnorm 96.71±0.38 97.17±0.30 97.26±0.33 95.01±0.50 97.12±0.31
Twonorm 97.32±0.26 97.41±0.26 96.43±0.32 95.58±0.46 96.41±0.37
Image 96.87±0.50 96.87±0.51 97.77±0.64 95.78±0.90 97.32±0.75
German 73.21±1.76 74.00±1.69 74.52±1.76 75.24±1.36 75.09±2.51
wdbc 93.21±1.47 93.86±1.52 96.79±1.26 95.19±1.38 96.61±1.22
Yeast 56.34±2.09 58.22±1.24 58.23±1.59 60.65±1.57 58.65±1.77
Diabetes 74.52±1.78 75.01±1.79 73.54±1.88 75.94±2.00 74.74±2.34
Iono 93.48±2.05 93.39±2.25 92.85±2.20 92.31±2.60 93.25±2.05
Sonar 84.67±4.17 84.43±3.66 81.38±4.21 76.33±5.66 80.76±4.57
Heart 78.85±3.60 80.74±3.26 80.41±3.11 81.26±3.66 81.22±2.87
Cancer 69.46±2.97 70.07±3.62 69.07±4.36 73.44±2.87 69.35±4.71
Winsc 95.53±1.34 95.67±1.33 96.21±0.84 96.01±0.97 96.49±0.71
Ecoli 85.36±2.78 85.51±2.64 83.07±2.75 83.45±3.58 83.45±2.73
Average Ranks 3.31 2.50 3.13 3.28 2.78
Ranking 5 1 3 4 2

We make the following observations from these results:

• Firstly, although αβRSE has the highest rank, we cannot reject the null

hypothesis of no significant difference between the mean ranks of the clas-

sifiers. The performance of the simple majority vote ensemble αRSE is

comparable to bagging with decision trees. This suggests that the base

classifier αRSC inherently diversifies as much as bootstrapping decision
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Table 3: mean classification accuracy (in %) and standard deviation of αβ RSE, α RSE,
Adaboost, Bagging, and Multiboost over 30 different runs on independent train/test
splits with 100 base classifiers.

Data Set α RSE αβ RSE Adaboost Bagging MultiBoost
Abalone 54.36±1.16 54.48±1.23 52.82±0.99 54.1 ±0.91 54.22±1.47
Waveform 90.56±0.70 90.32±0.66 90.27±0.58 89.08±0.84 90.20±0.93
Satimage 90.91±0.38 91.12±0.44 92.00±0.39 90.47±0.55 91.11±0.60
Ringnorm 96.88±0.37 97.54±0.31 97.75±0.29 95.23±0.52 97.05±0.52
Twonorm 97.36±0.28 97.49±0.22 97.13±0.26 96.35±0.38 96.95±0.27
Image 96.77±0.50 96.80±0.56 97.98±0.56 96.23±0.80 96.71±0.34
German 73.23±1.82 74.16±1.58 74.46±1.54 74.91±1.85 74.70±0.64
wdbc 93.39±1.56 93.91±1.57 96.91±1.55 96.33±1.35 96.47±1.07
Yeast 57.26±1.44 58.41±1.36 58.13±1.62 60.08±1.56 59.57±1.22
Diabetes 74.53±1.84 75.04±2.57 73.53±2.20 75.68±2.57 74.54±1.28
Iono 93.56±2.06 93.53±1.96 92.99±2.29 91.20±3.01 92.39±2.25
Sonar 84.86±4.23 85.00±3.72 82.71±5.14 78.57±5.86 82.71±2.21
Heart 79.26±3.40 80.67±3.10 81.19±2.88 81.56±3.59 82.33±4.20
Cancer 69.53±3.29 69.58±3.32 68.82±5.07 73.19±3.34 71.33±3.51
Winsc 95.54±1.33 95.71±1.33 96.48±0.88 96.09±0.94 97.00±4.31
Ecoli 85.54±2.96 85.86±2.65 83.07±2.75 83.45±3.58 84.82±0.75
Average Ranks 3.38 2.38 3.03 3.44 2.78
Ranking 4 1 3 5 2

trees and lends support to using αRSC as a base classifier.

• Secondly, αβRSE outperforms αRSE on 12 out of 16 data sets (with 2

ties) with 25 bases classifiers and 14 out of 16 with 100 base classifiers. If

we were performing a single comparison between these two classifiers, the

difference would be significant. Whilst the multiple classifier comparisons

mean we cannot make this claim, the results do indicate that allowing some

misclassification and guiding the sphere creation process through directed

resampling does improve performance and that a simple ensemble does

not best utilise the base classifier.

• Thirdly, αβRSE has the highest average rank of the five algorithms, from

which we infer that it performs at least comparably to Adaboost, Multi-

boost and performs better than Bagging. These experiments demonstrate

that the re-weighting based ensemble αβRSE is at least comparable to the

widely used tree based sampling and/or re-weighting ensembles.

5.4. Subspace Ensemble Methods

Tables 4 and 5 show the classification accuracy of αRSSE against those of

Rotation Forest, Random Subspace, Random Committee and Random Forest

ensembles of decision trees, based on 25 and 100 classifiers.
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Table 4: Classification accuracy (in %) and standard deviation of αRSSE, Rotation For-
est (RotF), Random SubSpace (RandS), Random Forest (RandF) and Random Com-
mittee (RandC) using average results of 30 different runs on independent train/test
splits with 25 base classifiers.

Data Set αRSSE RotF RandS RandF RandC
Abalone 54.77±1.28 55.56±1.04 54.62 ±1.09 54.05 ±1.16 53.56 ±1.19
Waveform 90.21 ±0.51 90.72±0.77 89.35 ±0.73 89.51 ±0.61 89.32 ±0.61
Satimage 91.71±0.47 91.03 ±0.50 90.79 ±0.54 90.80 ±0.52 90.24 ±0.44
Ringnorm 98.29±0.26 97.57 ±0.23 96.82 ±0.35 95.49 ±0.38 96.6 ±0.30
Twonorm 97.03±0.30 97.42±0.27 95.88 ±0.33 96.02 ±0.37 96.18 ±0.35
Image 97.39±0.65 98.04±0.51 96.42 ±0.73 97.27 ±0.63 96.08 ±0.58
German 74.59 ±1.47 76.26±1.63 72.28 ±1.53 74.85 ±1.46 73.65 ±1.77
wdbc 94.67±1.33 96.40±1.03 95.35 ±1.31 95.30 ±1.42 96.04 ±1.26
Yeast 58.80±1.90 61.06±1.82 57.38 ±2.45 58.96 ±1.69 60.26 ±1.75
Diabetes 76.17 ±2.25 76.25±2.30 74.48 ±1.98 75.43 ±1.92 74.78 ±1.51
Iono 94.53±1.79 93.50 ±1.79 92.68 ±2.40 93.05 ±1.86 93.13 ±2.33
Sonar 84.52 ±4.49 82.86 ±4.50 79.57 ±5.24 81 ±4.68 82.19 ±3.99
Heart 82.74 ±4.02 82.74±3.32 83.30 ±3.55 81.67 ±3.17 81.00 ±3.62
Cancer 76.27 ±2.96 73.87 ±3.29 74.73 ±2.81 71.18 ±3.74 70.93 ±4.29
Winsc 97.21 ±0.95 97.18 ±0.83 96.35 ±1.01 96.48 ±0.72 97.00 ±0.84
Ecoli 85.00 ±2.07 87.41±2.44 84.02 ±3.13 85.33 ±2.76 84.82 ±2.62
Mean Ranks 2.09 1.53 4.00 3.50 3.88
Ranks 2 1 5 3 4

Table 5: Classification accuracy (in %) and standard deviation of αRSSE, Rotation
Forest (RotF), Random SubSpace (RandS), Random Forest (RandF) and Random
Committee RandC) using average results of 30 different runs on independent train/test
splits with 100 base classifiers.

Data Set αRSSE RotF RandS RandF RandC
Abalone 54.91±0.98 56.04±1.04 54.79 ±1.02 54.47 ±0.86 52.83 ±0.95
Waveform 90.73 ±0.53 91.07±0.77 89.68 ±0.62 89.97 ±0.62 90.36 ±0.63
Satimage 91.92±0.54 91.70 ±0.50 91.28 ±0.55 91.59 ±0.46 91.82 ±0.46
Ringnorm 98.43±0.27 97.77 ±0.23 97.22 ±0.35 95.66 ±0.43 97.70 ±0.26
Twonorm 97.39±0.28 97.53±0.27 96.24 ±0.51 96.38 ±0.50 97.22 ±0.27
Image 97.83±0.53 98.16±0.51 96.78 ±0.62 97.45 ±0.62 97.93 ±0.56
German 74.28 ±1.56 75.69±1.63 72.37 ±1.06 75.63 ±0.64 74.79 ±1.86
wdbc 95.00 ±1.44 96.75 ±1.03 96.35 ±1.49 96.95 ±1.17 97.11±1.32
Yeast 59.43 ±1.93 61.65 ± 1.82 58.94 ±1.84 60.03 ±1.31 58.22 ±1.57
Diabetes 76.25±2.21 76.12 ±2.30 74.84 ±2.07 75.14 ±2.04 74.00 ±2.02
Iono 94.76±1.68 94.19 ±1.79 92.74 ±1.80 92.39 ±1.77 93.33 ±1.94
Sonar 85.24±5.39 84.43 ±4.50 79.62 ±5.62 82.05 ±4.44 82.24 ±4.63
Heart 84.00±3.43 83.30 ±3.15 83.41 ±3.92 82.70 ±3.35 81.22 ±4.50
Cancer 76.16±2.75 74.12 ±3.29 75.30 ±2.85 71.36 ±4.41 68.82 ±5.07
Winsc 97.42 ±0.91 97.38 ±0.83 96.60 ±0.98 96.71 ±0.90 96.47 ±0.78
Ecoli 85.71±2.36 87.41±2.44 84.02 ±3.13 85.33 ±2.76 83.45 ±2.73
Mean Ranks 1.94 1.69 4.06 3.50 3.81
Ranks 2 1 5 3 4

As with αβRSE, the αRSSE parameters α and κ were set through cross

validation on one third of the training set. The optimal value of κ was estimated

first, then the best value of α found for that κ. The other ensembles were trained

on the entire training set with default parameters.

Figure 4 shows the Critical Difference diagram for the subspace methods

with 25 base classifiers. There is a significant difference in average rank be-
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tween the classifiers (the F statistic is 14.97, which gives a P value of less than

0.00001). This difference can be described by two clear cliques: Random Sub-

space, Random Committee and Random Forest are significantly outperformed

by the clique αRSSE and Rotation Forest. The fact that αRSSE out performs

Random Forest is particularly impressive in light of recent evidence that it is

highly competitive over a wide range of data [12]. Rotation Forest beats αRSSE

on nine data sets, loses on 6 and ties on one. A pairwise comparison of αRSSE

and Rotation Forest using the Wilcoxon signed rank test, a paired t-test and

a binomial test indicates no significant difference between Rotation Forest and

αRSSE. The p-values are 0.366, 0.24 and 0.301 respectively.

CD

5 4 3 2 1

1.5313 RotFor
2.0938 aRSSE

3.5 RandFor

3.875RandComm

4RandSub

Figure 4: Critical difference diagram for 5 subspace ensembles on 16 data sets. Critical
difference is 1.375.

So whilst rotation forest has a lower average rank than αRSSE on these data

sets, the difference is not significant.

Ensemble schemes such as adaBoost are designed to improve the performance

of weak learner classifiers. However, there is nothing in principle to stop one

using RSC as a base classifier for one of these schemes. Table 6 compares our

results for αRSSE and αβ RSE with adaBoost and random committee using

RSC as a base classifier. αRSSE is significantly better than the RSC versions

of adaBoost and random committee.
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Table 6: Classification accuracy (in %) and standard deviation of αRSSE, αβ RSE
adaBoost with RSC as a base classifier and Random Committee usingRSC as a base
classifier. Results are averaged over 30 different runs on independent train/test splits
with 25 base classifiers. The critical difference is 1.17.

Data Set αRSSE αβ RSE adaBoostRSC RandCommRSC
Abalone 54.77±1.28 54.48±1.23 52.95±1.48 52.06±1.46
Waveform 90.21 ±0.51 90.32±0.66 88.16±0.65 87.68±0.75
Satimage 91.71±0.47 91.12±0.44 90.60±0.73 90.26±0.6
Ringnorm 98.29±0.26 97.54±0.31 96.45±0.46 96.66±0.49
Twonorm 97.03±0.30 97.49±0.22 96.01±0.41 96.24±0.43
Image 97.39±0.65 96.80±0.56 95.76±1.13 95.42±0.77
German 74.59 ±1.47 74.16±1.58 72.50±2.56 72.12±1.9
wdbc 94.67±1.33 93.91±1.57 95.63±1.17 94.37±1.61
Yeast 58.80±1.90 58.41±1.36 54.99±2.46 53.64±2.31
Diabetes 76.17 ±2.25 75.04±2.57 72.73±2.01 72.59±2.26
Iono 94.53±1.79 93.53±1.96 93.48±1.80 93.48±2.78
Sonar 84.52 ±4.49 85.00±3.72 84.00±4.17 78.33±6.41
Heart 82.74 ±4.02 80.67±3.10 79.15±4.80 77.96±4.43
Cancer 76.27 ±2.96 69.58±3.32 68.06±3.96 70.97±3.16
Winsc 97.21 ±0.95 95.71±1.33 96.24±1.12 96.57±1.14
Ecoli 85.00 ±2.07 85.86±2.65 83.01±3.21 81.52±3.22
Mean Ranks 1.31 2.06 3.09 3.53

We further note that the difference in performance between rotation forest

and αRSSE reduces with an increase in the number of base classifiers. Table

7 shows the classification accuracy (calculated through 10CV) of αRSSE for

various sizes of ensemble, varying from 15 to 500 base classifiers. In general,

ensembles perform better when the size of the ensemble is large. However,

with many ensemble methods increasing the ensemble size dramatically results

in over training and hence lower testing accuracy. Table 7 demonstrates that

the performance of αRSSE actually improves with over 100 base classifiers,

indicating αRSSE does not have a tendency to over fit data sets with large

ensemble sizes.

Figure 5 shows the combined critical difference diagram for all 10 ensembles.

The increase in the number of ensembles means a much larger critical difference

is required to detect a significant difference. However, a similar pattern of

ranking is apparent.

The no free lunch theorem [52] convinces us there will not be a single dom-

inant algorithm for all classification problems. Instance based approaches are

still popular in a range of problem domains, particularly in research areas re-

lating to image processing and databases. αβRSE and αRSSE offer instance
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Table 7: αRSSE 10CV accuracy for ensemble sizes of 15 to 500.

Ensemble Size
Dataset (15) (25) (50) (100) (250) (500)

Waveform 89.87 90.38 90.72 90.85 91.21 90.97
Ringnorm 97.97 98.14 98.27 98.31 98.37 98.39
Twonorm 96.79 97.20 97.39 97.49 97.63 97.64
Image 97.44 97.80 97.92 97.87 98.01 98.03
German 74.77 75.43 75.52 75.47 75.52 75.66
wdbc 97.27 97.45 97.75 97.68 97.99 97.98
Yeast 59.02 59.79 59.56 59.58 59.86 59.94
Diabetes 76.89 76.95 76.96 77.03 77.21 76.96
Iono 95.09 95.37 95.23 95.11 95.46 95.43
Sonar 86.85 87.81 88.30 88.69 88.03 88.47
Heart 81.74 84.26 83.85 83.63 83.81 83.96
Cancer 75.54 75.88 76.05 77.06 76.93 77.30
Winsc 97.08 97.34 97.24 97.40 97.38 97.33
Ecoli 86.17 86.45 86.57 86.15 86.62 86.60
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Figure 5: Critical difference diagram for 10 ensembles on 16 data sets. Critical difference is
3.1257.
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based approaches to classification problems that are highly competitive with

the best tree based subspace and non-subspace ensemble techniques. In the

following Section we propose a type of problem domain where we think αRSSE

outperforms the tree based ensembles.

5.5. Gene Expression Classification Case Study: Subspace Ensemble Compari-
son

Gene expression profiling helps to identify a set of genes that are responsible

for cancerous tissue. In the last decade, microarray gene expression cancer

diagnosis showed promising results using various classification algorithm. In

this section we test the performance of αRSSE algorithm on six gene expression

datasets. We choose to use three feature reduction methods that are popular

in bioinformatics [45]. In addition, biologists seek the smallest set possible of

genes to reduce laboratory experimentation cost. Thus, removing redundancy

early on in the process helps reduce the classification running cost in relation

to the size of genes (features).

5.5.1. Gene Expression Datasets

This section gives a brief description of gene expression datasets used in our

empirical evaluation.

1. Breast Cancer

This dataset is made of patients outcome prediction for breast cancer. The

original file is made of a training and testing datasets. The training data con-

tains 78 patient samples, 34 of which are from patients who had developed

distance metastases within 5 years (labelled as relapse), the rest 44 samples are

from patients who remained healthy from the disease after their initial diagnosis

for interval of at least 5 years (labelled as non-relapse). Correspondingly, there

are 12 relapse and 7 non-relapse samples in the testing data set. The number

of genes is 24481.
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2. Central Nervous System

Patients outcome prediction for central nervous system embryonal tumor.

Survivors are patients who are alive after treatment whiles the failures are those

who succumbed to their disease. The data set contains 60 patient samples, 21

are survivors (labelled as ‘Class1’) and 39 are failures (labelled as ‘Class0’).

There are 7129 genes in the dataset.

3. Colon Tumor

The Colon dataset Contains 62 samples collected from colon cancer patients.

Among them, 40 tumor biopsies are from tumors (labelled as ‘positive’) and 22

normal (labelled as ‘Negative’) biopsies are from healthy parts of the colons of

the same patients. Two thousand out of around 6500 genes were selected based

on the confidence in the measured expression levels.

4. Lung Cancer (Dana-Farber Cancer Institute, Harvard Medical School)

A total of 203 snap-frozen lung tumors and normal lung were analysized.

The 203 speciments include 139 samples of lung adenocarcinomas (labelled as

ADEN), 21 samples of squamous cell lung carcinomas (labelled as SQUA), 20

samples of pulmonary carcinoids (labelled as COID), 6 samples of small-cell

lung carcinomas (labelled as SCLC) and 17 normal lung samples (labelled as

NORMAL). Each sample is described by 12600 genes.

5. Ovarian Cancer (NCI PBSII Data)

The proteomic spectra were generated by mass spectroscopy and the data set

provided here is 6-19-02, which includes 91 controls (Normal) and 162 ovarian

cancers. The raw spectral data of each sample contains the relative amplitude

of the intensity at each molecular mass / charge (M/Z) identity. There are
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total 15154 M/Z identities. The intensity values were normalized according to

the formula: NV = (V-Min)/(Max-Min), where NV is the normalized value, V

the raw value, Min the minimum intensity and Max the maximum intensity.

The normalization is done over all the 253 samples for all 15154 M/Z identities.

After the normalization, each intensity value is to fall within the range of 0 to 1.

6. Prostate Cancer

Tumor versus Normal classification: training set contains 52 prostate tumor

samples (labelled as ‘Positive’) and 50 non-tumor (labelled as ‘Normal’) prostate

samples with around 12600 genes. The dataset was given as a training set and

test set. We simply concatenated the training and testing files then use random

train/test splits in the experiments.

Table 8: The best test set accuracy (in %) of αRSSE (αR), Rotation Forest (RotF),
Random Subspace (RandS), Random Forest (RandF), Adaboost (AB), Bagging (Bag)
and MultiBoostAB (Multi) using average results of 30 different runs on χ2. BC=Breast
Cancer, CT=Colon Tumor, LC=Lung Cancer, OV=Ovarian and PR=Prostrate

Dataset αR RotF RandS RandF AB Bag Multi
BC 82.93 79.60 76.26 80.91 79.19 78.99 78.79
CN 77.83 76.83 74.33 80.33 76.33 76.17 76.50
CT 85.87 86.19 83.49 84.13 82.38 83.65 82.86
LC 99.34 99.34 95.03 99.34 97.81 97.21 97.87
OV 99.18 99.80 97.88 98.98 97.73 97.84 97.73
PR 94.13 93.70 91.30 94.57 91.23 91.38 91.09
F-avg 1.75 2.10 5.83 1.92 5.58 5 5.58
F-ranks 1 3 7 2 5.5 4 5.5

Table 9: The best test set accuracy (in %) using average results of 30 different runs on
Information Gain.

Dataset αR RotF RandS RandF AB Bag Multi
BC 85.15 79.39 77.47 83.94 79.49 80.10 79.80
CN 79.17 76.50 73.50 80.00 75.67 76.17 76.00
CT 86.98 84.76 82.54 84.44 82.70 82.54 82.38
LC 99.34 99.34 94.75 99.34 97.76 97.16 97.81
OV 99.25 99.76 98.00 98.86 97.73 97.88 97.73
PR 93.77 93.48 91.74 93.62 91.09 92.32 90.80
F-avg 1.42 2.75 5.92 2.08 5.42 4.58 5.58
F-ranks 1 3 7 2 5 4 6

Broadly speaking, there are three types of approach to problems with a
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Table 10: The best test set accuracy (in %) using average results of 30 different runs
on Relief.

Dataset αR RotF RandS RandF AB Bag Multi
BC 80.20 79.19 72.42 78.18 73.74 74.85 73.23
CN 76.00 75.50 72.17 76.00 74.00 72.00 73.33
CT 83.65 84.76 80.63 83.33 79.37 83.17 79.68
LC 99.34 99.23 94.75 98.91 97.43 96.61 97.49
OV 98.43 99.37 98.04 98.90 97.61 97.69 97.61
PR 89.13 93.33 91.67 93.62 93.41 89.71 93.26
F-avg 2.58 2.00 5.67 2.25 4.92 5.33 5.25
F-ranks 3 1 7 2 4 6 5

Table 11: The best test set accuracy (in %) using the three attribute ranking methods.

Dataset αR RotF RandS RandF Adaboost Bagging Multi
BC 84.04 79.60 77.47 83.94 79.49 80.10 79.80
CN 79.17 76.83 74.33 80.33 76.33 76.17 76.5
CT 86.98 86.19 83.49 84.44 82.70 83.65 82.86
LC 99.34 99.34 95.03 99.34 97.81 97.21 97.87
OV 99.18 99.76 98.00 98.98 97.73 97.88 97.73
PR 94.13 93.70 91.74 94.57 93.41 92.32 93.26
F-avg 1.58 2.58 6.17 1.92 5.58 5.00 4.92
F-ranks 1 3 7 2 6 5 4

large number of attributes [18]: employ a filter that uses a scoring method

to rank the attributes independently of the classifier; use a wrapper to score

subsets of attributes using the classifier to produce the model; or embed the

attribute selection as part of the algorithm to build the classifier [36]. We focus

on three simple, commonly used, filter measures, χ2, Information Gain (IG)

and Relief, which are used to select a fixed number of attributes by ranking

each on how well they split the training data, in terms of the response variable.

We compare αRSSE to Adaboost, Bagging, Random Committee, Multiboost,

Random Subspaces, Random Forest and Rotation Forest. Our methodology is

to filter on k = 5, 10, 20 30, 40 and 50 best ranked attributes for the three

ranking measures. Model selection for αRSSE is conducted as described in

Section 5.3. All the ensembles use 100 classifiers. For Adaboost, Bagging and

the base decision tree classifiers in the ensembles we use the default parameters.

Tables 8, 9 and 10 show the relative performance of the eight ensemble classifiers

on the best attribute filter setting for each of the filter techniques. We note that

αRSSE is ranked highest overall when using χ2 and Information Gain and is

ranked third with Relief. From this we infer that when used in conjunction with
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filtering αRSSE can overcome the inherent problem instance based learners have

with high dimensional attribute spaces to produce results better than the state

of the art tree based ensembles classifiers.

6. Bias Variance Analysis of RSC Ensemble Techniques

The purpose of our bias/variance analysis of the ensembles αβRSE and

αRSSE is to identify whether the reduction in generalisation error in compar-

ison to the base classifier is due to a reduction in bias, unbiased variance or

an increase in biased variance. We followed a similar experimental framework

found in [48]. The standard experimental design for BV decomposition is to es-

timate Bias and Variance using small training sets and large test sets. We used

bootstrapping to sample eight of our datasets. Initially, one third of the data is

removed to constitute the test set. 200 separate training bootstrap samples of

size 200 were taken by uniformly sampling with replacement from the remaining

data. The boostrap training sample is on average less than half the size of the

test data. We then compute the main prediction, bias and both the unbiased

and biased variance, and net-variance (as defined in Section 2.3) over the 200

test sets.

Figure 6 showing both bias and variance in relation to κ (number of at-

tributes used in each classifier for αRSSE) for four of the datasets. We observe

there is a strong relationship between averaged error and bias for small κ, but

that as κ increases variance contributes a larger component to the error. In-

creasing κ seems to have a higher influence on unbiased variance reduction

than biased variance. To compare αRSC, αβRSE and αRSSE, we perform

the bias/variance experiment on the three classifiers with the optimal set of

parameters (determined experimentally).

We conclude from the above results that αβRSE, in most cases, reduces

the net variance in comparison with a single classifier because of a decrease

in unbiased variance. However, it is not straight forward in relation to bias.

It might be that bias reduction depends on the geometrical complexity of the
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sample [22] (complex structures require complex decision boundaries), the cho-

sen values for the pruning parameter α, and the interaction between α and β.

In that case, finding a method that systematically reduces bias while keeping

unbiased variance low will further reduce the ensemble average error.

Table 12 shows the bias/variance decomposition of αRSSE, αβRSE and

αRSC. We make the following observations from these results:

1. The average error of αRSSE and αβRSE is lower than αRSC for all the

problems;

2. For αβRSE, this is more commonly a result of a reduction in net variance

rather than a reduction in bias;

3. For αRSSE, whilst bias is reduced, we also see a more consistent reduction

in variance.

These experiments reinforce our preconception as to the effectiveness of the

ensembles: αβRSE introduces further diversity into the ensemble through al-

lowing misclassified instances within the spheres. The major effect of this is to

reduce the variance of the resulting classifier. On the other hand, the subspace

ensemble reduces the inherent bias commonly observed in instance based classi-

fiers used in conjunction with a Euclidean distance metric: redundant attributes

result in overfitting.

7. Conclusion

We have described an instance based classifier, αRSC, that has several inter-

esting properties that can be used successfully in ensemble design. We described

three different ensemble methods with which it could be used and demonstrated

that the resulting ensembles are competitive with the best tree based ensemble

techniques on a wide range of standard datasets. We further investigated the

reasons for the improvement in performance of the ensembles in relation to the

base classifier using bia/variance decomposition. For the ensemble based on

resampling (αβRSE) accuracy was increased primarily by a reduction in vari-

ance. Hence we conclude the diversity introduced via the proposed technique is
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mostly beneficial and the resulting ensemble classifier is more robust. We also

demonstrated through bia/variance decomposition that the subspace ensemble

αRSSE improves performance primarily by a decrease in bias. An obvious next

step would be to embed the resampling technique within the random subspace

ensemble. However, we found employing the β mechanism in the subspace did

not make a significant difference to the αRSSE ensemble. This implies that

attribute selection is the most important stage in ensembling αRSC, other than

model selection by setting α. This has lead us into investigating embedding at-

tribute selection (rather than randomisation) into the ensemble, with promising

preliminary results. We believe that αRSC is a useful edition to the family of

instance based learners since it is easy to understand, quick to train and test

and can effectively be employed in ensembles to achieve classification accuracy

comparable to the most popular ensemble methods.
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Figure 6: Bias/Variance Decomposition of the αRSSE classifier.
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Table 12: Comparing Bias/variance of αRSC,αβRSE and αRSSE. (Var. unb.) and
(Var. bias.) stand for unbiased and biased variance. (Diff) stands for the percentage
difference between the algorithms. The up arrow ↑ means an increase while a down
arrow ↓ means a decrease.

Dataset Avg Error Bias Net Var Var. Unb. Var. bias.

Waveform
(1)αRSC, α = 11 0.1387 0.0961 0.0426 0.0722 0.0296
(2)αβRSE, α = 10 0.1223 0.0976 0.0247 0.0500 0.0254
(3)αRSSE, α = 2, κ = 11 0.1141 0.0906 0.0235 0.0472 0.0237
Diff (1) vs (2) % ↓ 11.82 ↑ 1.56 ↓ 42.01 ↓ 30.74 ↓ 14.18
Diff (1) vs (3) % ↓ 17.73 ↓ 5.72 ↓ 44.83 ↓ 34.62 ↓ 19.93
Diabetes
(1)αRSC, α = 3 0.2780 0.2367 0.0413 0.1006 0.0594
(2)αβRSE, α = 3 0.2685 0.2359 0.0326 0.0847 0.0521
(3)αRSSE, α = 2, κ = 5 0.2603 0.2332 0.0271 0.0741 0.0469
Diff (1) vs (2) % ↓ 3.41 ↓ 0.33 ↓ 21.06 ↓ 15.80 ↓ 12.29
Diff (1) vs (3) % ↓ 6.37 ↓ 1.48 ↓ 34.38 ↓ 26.34 ↓ 21.04
Heart
(1)αRSC, α = 7 0.2138 0.1667 0.0471 0.0872 0.0400
(2)αβRSE, α = 10 0.1896 0.1756 0.0140 0.0431 0.0290
(3)αRSSE, α = 2, κ = 5 0.1814 0.1533 0.0281 0.0568 0.0287
Diff (1) vs (2) % ↓ 11.31 ↑ 5.33 ↓ 70.27 ↓ 50.57 ↓ 27.5
Diff (1) vs (3) % ↓ 15.15 ↓ 8.04 ↓ 40.34 ↓ 34.86 ↓ 28.25
wdbc
(1)αRSC, α = 8 0.0898 0.0784 0.0114 0.0275 0.0161
(2)αβRSE, α = 2 0.0771 0.0663 0.0108 0.0255 0.0147
(3)αRSSE, α = 0, κ = 13 0.0698 0.0553 0.0145 0.0258 0.0112
Diff (1) vs (2) % ↓ 14.14 ↓ 15.43 ↓ 5.26 ↓ 7.27 ↓ 8.69
Diff (1) vs (3) % ↓ 22.27 ↓ 29.46 ↑ 27.19 ↓ 6.18 ↓ 30.43
Image
(1)αRSC, α = 0 0.1184 0.0650 0.0534 0.0759 0.0225
(2)αβRSE, α = 0 0.1050 0.0665 0.0385 0.0603 0.0218
(3)αRSSE, α = 0, κ = 10 0.0873 0.0495 0.0378 0.0541 0.0163
Diff (1) vs (2) % ↓ 11.31 ↑ 2.30 ↓ 27.90 ↓ 20.55 ↓ 3.11
Diff (1) vs (3) % ↓ 26.26 ↓ 23.84 ↓ 29.21 ↓ 28.72 ↓ 27.55
Twonorm
(1)αRSC, α = 10 0.0515 0.0222 0.0293 0.0366 0.0073
(2)αβRSE, α = 10 0.0345 0.0224 0.0121 0.0179 0.0058
(3)αRSSE, α = 2, κ = 13 0.0328 0.0225 0.0103 0.0159 0.0057
Diff (1) vs (2)% ↓ 33.01 ↑ 0.90 ↓ 58.70 ↓ 51.09 ↓ 20.54
Diff (1) vs (3)% ↓ 36.31 ↑ 1.35 ↓ 64.84 ↓ 56.55 ↓ 21.91
Ringnorm
(1)αRSC, α = 0 0.1183 0.0596 0.0587 0.0783 0.0783
(2)αβRSE, α = 0 0.0527 0.0208 0.0320 0.0377 0.0058
(3)αRSSE α = 0, κ = 10 0.0288 0.0167 0.0121 0.0166 0.0045
Diff (1) vs (2) % ↓ 55.45 ↓ 65.10 ↓ 45.48 ↓ 51.85 ↓ 70.40
Diff (1) vs (3) % ↓ 75.65 ↓ 71.97 ↓ 79.38 ↓ 78.79 ↓ 94.25
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