2,845 research outputs found

    Coherent Diffractive Imaging Using Randomly Coded Masks

    Full text link
    Coherent diffractive imaging (CDI) provides new opportunities for high resolution X-ray imaging with simultaneous amplitude and phase contrast. Extensions to CDI broaden the scope of the technique for use in a wide variety of experimental geometries and physical systems. Here, we experimentally demonstrate a new extension to CDI that encodes additional information through the use of a series of randomly coded masks. The information gained from the few additional diffraction measurements removes the need for typical object-domain constraints; the algorithm uses prior information about the masks instead. The experiment is performed using a laser diode at 532.2 nm, enabling rapid prototyping for future X-ray synchrotron and even free electron laser experiments. Diffraction patterns are collected with up to 15 different masks placed between a CCD detector and a single sample. Phase retrieval is performed using a convex relaxation routine known as "PhaseCut" followed by a variation on Fienup's input-output algorithm. The reconstruction quality is judged via calculation of phase retrieval transfer functions as well as by an object-space comparison between reconstructions and a lens-based image of the sample. The results of this analysis indicate that with enough masks (in this case 3 or 4) the diffraction phases converge reliably, implying stability and uniqueness of the retrieved solution

    Electrodynamics and radiofrequency antenna concepts for human magnetic resonance at 23.5 T (1 GHz) and beyond

    Get PDF
    Objective: This work investigates electrodynamic constraints, explores RF antenna concepts and examines the transmission fields (B 1 + ) and RF power deposition of dipole antenna arrays for 1H magnetic resonance of the human brain at 1 GHz (23.5 T). Materials and methods: Electromagnetic field (EMF) simulations are performed in phantoms with average tissue simulants for dipole antennae using discrete frequencies [300 MHz (7.0 T) to 3 GHz (70.0 T)]. To advance to a human setup EMF simulations are conducted in anatomical human voxel models of the human head using a 20-element dipole array operating at 1 GHz. Results: Our results demonstrate that transmission fields suitable for 1H MR of the human brain can be achieved at 1 GHz. An increase in transmit channel density around the human head helps to enhance B 1 + in the center of the brain. The calculated relative increase in specific absorption rate at 23.5 versus 7.0 T was below 1.4 (in-phase phase setting) and 2.7 (circular polarized phase setting) for the dipole antennae array. Conclusion: The benefits of multi-channel dipole antennae at higher frequencies render MR at 23.5 T feasible from an electrodynamic standpoint. This very preliminary finding opens the door on further explorations that might be catalyzed into a 20-T class human MR system

    Skin sodium measured with (23)Na MRI at 7.0 T

    Get PDF
    Skin sodium (Na(+)) storage, as a physiologically important regulatory mechanism for blood pressure, volume regulation and, indeed, survival, has recently been rediscovered. This has prompted the development of MRI methods to assess Na(+) storage in humans ((23)Na MRI) at 3.0 T. This work examines the feasibility of high in-plane spatial resolution 23 Na MRI in skin at 7.0 T. A two-channel transceiver radiofrequency (RF) coil array tailored for skin MRI at 7.0 T (f = 78.5 MHz) is proposed. Specific absorption rate (SAR) simulations and a thorough assessment of RF power deposition were performed to meet the safety requirements. Human skin was examined in an in vivo feasibility study using two-dimensional gradient echo imaging. Normal male adult volunteers (n = 17; mean ± standard deviation, 46 ± 18 years; range, 20-79 years) were investigated. Transverse slices of the calf were imaged with 23 Na MRI using a high in-plane resolution of 0.9 x 0.9 mm2 . Skin Na(+) content was determined using external agarose standards covering a physiological range of Na+ concentrations. To assess the intra-subject reproducibility, each volunteer was examined three to five times with each session including a 5-min walk and repositioning/preparation of the subject. The age dependence of skin Na(+) content was investigated. The (23)Na RF coil provides improved sensitivity within a range of 1 cm from its surface versus a volume RF coil which facilitates high in-plane spatial resolution imaging of human skin. Intra-subject variability of human skin Na(+) content in the volunteer population was <10.3%. An age-dependent increase in skin Na+ content was observed (r = 0.78). The assignment of Na+ stores with (23)Na MRI techniques could be improved at 7.0 T compared with current 3.0 T technology. The benefits of such improvements may have the potential to aid basic research and clinical applications designed to unlock questions regarding the Na+ balance and Na(+) storage function of skin

    Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging

    Get PDF
    OBJECTIVE: The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. METHODS: MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. RESULTS: The consistency with which individual reed sensors would activate at the same field strength was found to be 100% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. CONCLUSIONS: MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur

    Eight-channel transceiver RF coil array tailored for (1)H/(19)F MR of the human knee and fluorinated drugs at 7.0 T

    Get PDF
    The purpose of this study was to evaluate the feasibility of an eight-channel dual-tuned transceiver surface RF coil array for combined (1) H/(19) F MR of the human knee at 7.0 T following application of (19) F-containing drugs. The (1) H/(19) F RF coil array includes a posterior module with two (1) H loop elements and two anterior modules, each consisting of one (1) H and two (19) F elements. The decoupling of neighbor elements is achieved by a shared capacitor. Electromagnetic field simulations were performed to afford uniform transmission fields and to be in accordance with RF safety guidelines. Localized (19) F MRS was conducted with 47 and 101 mmol/L of flufenamic acid (FA) - a (19) F-containing non-steroidal anti-inflammatory drug - to determine T1 and T2 and to study the (19) F signal-to-dose relationship. The suitability of the proposed approach for (1) H/(19) F MR was examined in healthy subjects. Reflection coefficients of each channel were less than -17 dB and coupling between channels was less than -11 dB. QL /QU was less than 0.5 for all elements. MRS results demonstrated signal stability with 1% variation. T1 and T2 relaxation times changed with concentration of FA: T1 /T2 = 673/31 ms at 101 mmol/L and T1 /T2 = 616/26 ms at 47 mmol/L. A uniform signal and contrast across the patella could be observed in proton imaging. The sensitivity of the RF coil enabled localization of FA ointment administrated to the knee with an in-plane spatial resolution of (1.5 × 1.5) mm(2) achieved in a total scan time of approximately three minutes, which is well suited for translational human studies. This study shows the feasibility of combined (1) H/(19) F MRI of the knee at 7.0 T and proposes T1 and T2 mapping methods for quantifying fluorinated drugs in vivo. Further technological developments are necessary to promote real-time bioavailability studies and quantification of (19) F-containing medicinal compounds in vivo

    Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons

    Full text link
    In modern integrated circuits and wireless communication systems/devices, three key features need to be solved simultaneously to reach higher performance and more compact size: signal integrity, interference suppression, and miniaturization. However, the above-mentioned requests are almost contradictory using the traditional techniques. To overcome this challenge, here we propose time-domain spoof surface plasmon polaritons (SPPs) as the carrier of signals. By designing a special plasmonic waveguide constructed by printing two narrow corrugated metallic strips on the top and bottom surfaces of a dielectric substrate with mirror symmetry, we show that spoof SPPs are supported from very low frequency to the cutoff frequency with strong subwavelength effects, which can be converted to the time-domain SPPs. When two such plasmonic waveguides are tightly packed with deep-subwavelength separation, which commonly happens in the integrated circuits and wireless communications due to limited space, we demonstrate theoretically and experimentally that SPP signals on such two plasmonic waveguides have better propagation performance and much less mutual coupling than the conventional signals on two traditional microstrip lines with the same size and separation. Hence the proposed method can achieve significant interference suppression in very compact space, providing a potential solution to break the challenge of signal integrity

    Optical Coherence Tomography in Dentistry

    Get PDF
    • …
    corecore