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Abstract 

 

 

Objective: The purpose of this study is to (i) design a small and mobile Magnetic field ALert 

SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of 

activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the 

applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments.  

Methods: MALSE comprises a set of reed sensors, which activate in response to their 

exposure to a magnetic field. The activation/deactivation of reed sensors was examined by 

moving them in/out of the fringe field generated by 7TMR.  

Results: The consistency with which individual reed sensors would activate at the same field 

strength was found to be 100% for the setup used. All of the reed switches investigated 

required a substantial drop in ambient magnetic field strength before they deactivated.  

Conclusions: MALSE is a simple concept for alerting MRI staff to a ferromagnetic object 

being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. 

MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus 

creating a barrier for hazardous situations induced by ferromagnetic parts which should not 

enter the vicinity of a MR-system to occur.  
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Introduction 

Magnetic forces of fringe magnetic fields of MR systems on ferromagnetic components can 

impose a severe patient, occupational health and safety hazard. MRI accidents are listed as 

number 9 of the top 10 risks in modern medicine [1-2]. With the advent of (ultra)high field 

MR systems [3-14] this risk, which is commonly known as the missile or projectile effect is 

even more pronounced. These projectiles usually consist of common office and hospital items 

that contain a fair amount of ferromagnetic metal including for example hospital beds, intra 

venous poles, oxygen tanks, and conventional ECG devices used for patient monitoring, 

computer displays, ventilator etc. [15]. Most MRI accidents occur when non-MRI personnel 

(or careless MRI workers) introduce ferromagnetic objects into the magnetic environment. It 

is estimated that the reported incidents only account for about 10% of the actual number of 

such incidents, and even in this case, the number of incidents has jumped approximately 

300% from 2004 to 2008 [16-17], ranging from mechanical damage to patient death [15,18]. 

There have been at least 33 such accidents reported in the last 5 years [18-19], as well as at 

least 4 reported deaths over the last 10 years [19]. These casualties are probably most widely 

known through television documentaries and printed media [20-22] but still present the tip of 

the iceberg of MR safety violations.  

 Various policies [23-26] have been implemented to safeguard healthcare workers, 

volunteers and patients with the ultimate goal of avoiding unforeseen disasters and injuries 

due to ferromagnetic objects. These measures safety initiatives and awareness campaigns 

spearheaded by scientific organizations and other bodies and include safety training, risk 

reduction strategies, occupational health instructions, safety guidelines and warning signs. 

These safety procedures are commonly supplemented by metal or ferromagnetic detectors 

which are positioned at the entrance of the MR scanner room for example, as well as hall 

sensors [27] and other magnetic field sensing devices. The costs of traditional metal or 
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ferromagnetic detectors are significant. Stand alone detector configurations and handheld 

scanners are frequently not properly used due to the heavy work load as well as busy 

environment experienced by hospital staff. Furthermore, some detectors used in current 

clinical practice do not distinguish between ferromagnetic and non ferromagnetic objects, thus 

making it difficult for hospital staff to maintain MR safety. Warning labels on the doors, walls 

or on the ground denoting the 5 G and 10 G are likely to be overlooked in a fast paced 

hospital environment. Thus auditory or visual warning of ferromagnetic objects being brought 

into the MR environment is necessary. 

 Recent designs have typically been laid out as strip line elements on rigid or semi-

flexible frames [7]. A strategy employing small magnetic field alert sensors which can be 

attached to ferromagnetic objects that are commonly used in a clinical environment is 

conceptually appealing for the pursuit of reducing the risk of ferromagnetic projectile 

accidents. Hence, the first aim of this study is to design a simple, cost-effective and mobile 

magneto alert sensor (MALSE) which provides alarm in the presence of static magnetic fields 

and which can be used in various configurations. Next we evaluate reed contacts which are 

activated by magnetic fields as to their consistency of activation/deactivation and sensitivity 

to magnetic fields, given that MALSE makes use of such components. Lastly we examine the 

applicability of MALSE in 1.5 T, 3.0 T and 7.0 T whole body MR fringe field environments.  
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Materials and Methods 

This study was approved by the local institutional ethics committee in order to be in full 

compliance with local requirements. Informed written consent was obtained from each subject 

(healthy volunteers, n=10) prior to the study.  

MALSE comprises three main components as illustrated in Fig. 1: 

Power supply: The current MALSE implementation is powered by a (e.g. lithium) battery. 

The device does not consume battery power if not activated. Consequently the battery power 

will not run out as the battery itself is not drained unless the MALSE sensor is active. 

Therefore the battery lifetime is only limited by the usual idle battery lifetime (up to 10 years 

for lithium batteries). The sensors should be exchanged before the batteries lifespan expires. 

Signal unit: An acoustical (buzzer) signal unit is used to generate an alert. The use of piezo 

signal generators is preferred because of their small dimensions and slim geometry. Piezo 

devices also come with the benefit of being suitable for ultrahigh magnetic fields. 

Alternatively, optical (e.g. LED) signals can be used to generate an alert. 

Magnetic field alert sensor: The sensor uses seven magnetic switches. These "reed contacts" 

are set on equal angles from each other as indicated in Fig. 1b. The reason for using seven is 

that a reed contact is most susceptible to being activated by a magnetic field when its long 

axis is aligned with magnetic field lines. By having the reed contacts placed in the 

orientations described above there can be no more than 27.4 degrees between any one reed 

contact and the magnetic field lines before the field lines move to a smaller angle than this to 

one of the other reed contacts. In this way it is ensured that the device will generate an alarm 

no matter in what orientation it is. 
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The unit of magnetic strength used to describe reed contacts is Ampere-Turn (AT). The 

relationship between magnetic field strength, distance from the magnet at activation and the 

sensitivity of the reed switches is complex, and is determined by the size and shape of the 

magnet, as well as the shape and position of the reed contacts involved. Reed contacts are 

manufactured to within a certain range of AT values. Typically reed contacts cover broad 

ranges of AT values such as 10 to 30 AT (Stock #: 503800-62, Conrad Electronic SE 

Klaus-Conrad-Str.1 92240 Hirschau, Germany) and 5 to 15 AT (Stock #: 118-7120, RS 

Components Ltd. Birchington Road, Corby, Northants, NN17 9RS, UK) used here. It is 

essential to examine whether or not each individual reed contact is consistently activated at a 

specific magnetic field strength when it is aligned with the magnetic field lines. Hence we 

scrutinized the consistency of activation and sensitivity to magnetic fields of individual reed 

contacts. For this purpose three sets of experiments were performed: First, it was measured 

that each reed contact would yield reproducible results in that it would close at a consistent 

field strength. Second, it was examined whether the reed contact is sensitive enough to be 

activated in magnetic fields (B0(act)) slightly greater than the 5 G threshold. Finally, the 

activation/deactivation (ΔB0(act-deact)) behavior was assessed to make sure that once a reed 

contact is closed it will have to be moved a significant distance away from the activation area 

to be re-opened, thus ensuring that MALSE must be taken outside of the activation zone 

before it deactivates. 

The magnetic field strength was mapped along the main axis of a fringe field generated by a 

7 T whole body MR system (Magnetom, Siemens, Erlangen, Germany) using a Sypris 5180 

gauss meter. For each of the two cohorts of reed contact types used (n=35 of the 10 to 30 AT 

type and n=30 of the 5 to 15 AT type) the reed contact activation/deactivation points were 

measured using a customized pulley system attached to an electric motor and controlled by a 

microcontroller The reed contact under test (RUT) was moved across the magnetic field lines 
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until it was activated. This was recorded by a processing unit connected to the microcontroller 

using an RS232 interface. At this point, the direction of motion was inverted to record the 

deactivation point. For this purpose the motors' polarity and therefore the travel direction of 

RUT was also controlled by the processing unit. Subsequently, RUT was moved to the home 

position which was used as a reference. To examine the reproducibility and to exclude any 

hysteresis effect, each RUT was moved back and forth 5 times. 
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Results 

The number of reed contacts that activated in a given 0.25 G range is shown in Fig. 2. The 

portfolio of reed contacts included in this study showed activation at magnetic field strengths 

ranging from 7 G to 16.5 G as illustrated in Fig. 2. Reed contacts with a 5 to 15 AT 

specification showed activation for magnetic fields strengths of 7 G to 16.5 G. Out of 30, only 

one activated in the range of 7 G. The 10 to 30 AT contacts' activation range was much more 

condensed. Reed contacts with a 10 to 30 AT specification got activated for magnetic field 

strengths ranging from 8 to 12 G. Even though the average field strength at activation of the 

10 to 30 AT contacts (ΔB0(act)=9.5 ±1.1 G) was slightly less than that of the 5 to 15 AT 

contacts (ΔB0(act)=10.8±3.1 G), the 5 to 15 AT contacts had 6 in the 7 G to 8 G range as well 

as 5 in the 8 G to 9 G range, whereas the 10 to 30 AT contacts had only 10 in the 8 G to 9 G 

range. 

The activation/deactivation behavior of each reed contact is surveyed in Fig. 3. The 

deactivation magnetic field strengths of the reed contact, in conjunction with the activation 

magnetic field strengths were used to create a graph of the activation magnetic field strength 

vs. the difference between the activation and deactivation magnetic field strengths. The 

average change in magnetic field strength is greater for the 5 to 15 AT reed contacts (ΔB0(act-

deact)=5.7±3.2 G) than for the 10 to 30 AT reed contacts (ΔB0(act-deact)=1.3 ±0.8G). This means 

that any magnetic field alert sensor built with them will have to be taken at least this far away 

from the field that activates it before it will deactivate.  

The consistency with which individual reed contacts would activate at the same field strength 

was tested by selecting 3 reed contacts from each type to be tested 35 times, and by testing all 

remaining reed contacts 5 times. The variance in activation field strength for all of these tests 

was too small to be relevant for the setup used, indicating that the consistency in the 

activation field strength of all the reed contacts is very high. Five of each category of reed 
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contacts were also tested at 27.4 degrees with respect to the B0 vector. In all cases this 

resulted in the reed contact being 5 to 10% more sensitive to the magnetic field. This means 

that activation was reached at magnetic field strengths 5% to 10% smaller than that obtained 

for parallel alignment of the reed contact with the magnetic field so that MALSE will be more 

sensitive to an ambient magnetic field if it is moved into the ambient magnetic field in said 

orientation vs. a straight parallel alignment. Five of each type of reed contacts were tested 6 

months after the initial experiments, during which time they had been present in the fringe 

field of a 7T MR system. The sensitivity of the 10 to 30 AT reed contacts changed by no more 

than 3.2%. The sensitivity of the 5 to 15 AT reed contacts changed by no more than 1.9%.For 

proof of concept a prototype made of standard electronic components was realized (Fig. 4). 

Of course, even more miniaturized versions are possible, in particular when using a reduced 

buzzer size. The proposed MALSE approach was examined in a clinical environment using a 

more sophisticated implementation (Fig. 4). For this purpose only selected reed contacts with 

activation at 7 to 8 G only were included. MALSE's applicability and efficacy was tested in a 

clinical environment using the fringe field of our local 1.5 T, 3.0 T and 7.0 T whole body MR 

systems (Fig. 5). Fig. 5 demonstrates that MALSE was sensitive and powerful enough to 

generate a visual alert using the built-in LED for positions placed at the 10 G iso-contour lines 

of the magnetic field. For the 1.5 T installation used, MALSE was activated inside of the 

scanner room in a location very close to the scanner rooms door (Fig. 5). For the 3.0 T 

installation used, MALSE was activated 1.5 m away from the front end of the patient table 

(Fig. 5). For the 7.0 T installation used MALSE was activated in the operator room (Fig. 5).  
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Discussion 

The feasibility and efficacy of a magneto alert sensor MALSE which uses reed contacts to 

provide alarm in the presence of a given static magnetic field have been shown for 1.5 T, 3.0 T 

and 7.0 T MR systems. The assessment of 5 to 15 AT and 10 to 30 AT reed contacts 

demonstrated that it is quite possible to build magneto alert sensor using reed contacts 

commercially available. Of course, reed contacts would have to be screened for their 

effectiveness and only those that activate under 10 G would be selected for use in a MALSE 

device. Although many of the 10 to 30 AT contacts have deactivation distances that are quite 

short, there is a large enough number of reed contacts in the sample which have relatively 

long deactivation distances. One would thus have to select reed contacts that provide long 

activation to deactivation distance and activate at a relatively low magnetic field strength for 

use in MALSE.  

The magnetic field strength of 8 G, is well outside the scanner room of a 7.0 T scanner 

installation. Even for an actively shielded 3.0 T scanner, the 8 G line is approximately 2-3 m 

from the magnets iso-center. In fact, a field strength of 8 G is definitely far too weak to create 

a noticeable force on a ferromagnetic object in that area. It is thus quite possible to mass 

produce MALSE devices and attach them to every ferromagnetic object in the vicinity of an 

MRI scanner at a hospital or research facility using adhesives because MALSE is easy and 

cheap to build. 

The design of MALSE can also be refined with the addition of magnetic or ferromagnetic 

components which would allow to increase as well as to precisely control the activation and 

deactivation field strengths. Also, an extension of the MALSE design can be anticipated to 

evolve towards a warning device which provides alerts for dB/dt levels which exceed the 

thresholds defined by the IEC and other regulatory/governmental bodies.  
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There are other devices which have been designed to help keep ferromagnetic equipment 

outside of the MRI exclusion zone including stand alone and mountable configurations. The 

costs of traditional stand alone ferromagnetic detectors are significant. Stand alone detector 

configurations are frequently not properly used due to a busy clinical environment.  The 

physical size and weight of current mobile magnetic field strength alarm systems [28] render 

it unsuitable -  if not prohibitive - to be mounted to mid size ferromagnetic objects such as 

notebooks or medical trays, let alone small size ferromagnetic objects such as scissors. 

As the size of MRI rooms decrease and magnetic field strengths increase, it will become 

increasingly important to keep ferromagnetic objects in areas only where they do not exhibit 

any safety hazards. To this end, the MALSE sensor is a simple and effective concept for 

alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which 

are larger than MALSEs activation magnetic field. This will help to prevent accidents due to 

the ferromagnetic missile effect if implemented correctly. It should be emphasized that 

MALSE devices are meant to provide a supplemental level of safety in the MR environment 

and are in no way meant to replace, bypass or modify any of the accepted MR safety 

procedures for safeguarding health care workers, patients and volunteers.  
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Figure Captions:  
 

Figure 1: 

Basic diagram of the proposed magneto alert sensor (a). The principal circuit contains three 

main components: A battery, reed contacts and a signal unit. The current implementation of 

MALSE utilizes 7 reed contacts set at evenly spaced angles in 3 dimensions. This diagram (b) 

shows the 7 orientations the reed contacts are in from the points of view of 2 different planes. 

When combined, they offer a formation of 7 reed contacts all converging on one point, which 

is attached to the circuit. The outward pointing ends of the reed contacts are also attached to 

the circuit. When a magnetic field causes one of the reed contacts to close, the circuit will be 

completed and the alarm will sound. The circuit does not consume any power and the battery 

life time is only limited by self-discharge.  

 

Figure 2: 

Synopsis of the frequency of reed contacts of the 10-30 AT type (blue) and the 5-15 AT type 

(black) being activated in a given quarter gauss interval. The portfolio of reed contacts 

included in this study showed activation at magnetic field strengths ranging from 7-16.5 G. 

 
Figure 3:  

Scatter plot of the magnetic field strength at activation (X axis) vs. the change in field strength 

from activation to deactivation (Y axis) for the 10-30 AT reed contacts (Black) and the 5-

15 AT reed contacts (Orange). The average change in magnetic field strength is greater for the 

5-15 AT reed contacts than for the 10-30 AT reed contacts. 

 

Figure 4: 
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Picture photographs of an early MALSE prototype (a) made from standard electronic 

components together with a MALSE implementation (b) used for examining the MALSEs 

efficacy in clinical MR environments.  

 

Figure 5: 

 right) Schematics of the 10 Gauss locations where the practical operation of the MALSE 

device in the fringe field of a 1.5 T (top), 3.0 T (center) and 7.0 T (bottom) MR system 

respectively, was photographed. The position at which MALSE got activated is marked in red 

while the camera position is marked in blue. The 10 G, 5 G and 1 G lines are marked in green, 

red, black , starting from the magnet's iso-center.. left) Photographs of the practical operation 

of the MALSE device using a visual signal and an acoustic alert signal in said locations.  
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