149 research outputs found

    Feasibly constructive proofs of succinct weak circuit lower bounds

    Get PDF
    We ask for feasibly constructive proofs of known circuit lower bounds for explicit functions on bit strings of length n. In 1995 Razborov showed that many can be proved in PV1, a bounded arithmetic formalizing polynomial time reasoning. He formalized circuit lower bound statements for small n of doubly logarithmic order. It is open whether PV1 proves known lower bounds in succinct formalizations for n of logarithmic order. We give such proofs in APC1, an extension of PV1 formalizing probabilistic polynomial time reasoning: for parity and AC0, for mod q and AC0[p] (only for n slightly smaller than logarithmic), and for k-clique and monotone circuits. We also formalize Razborov and Rudich’s natural proof barrier. We ask for short propositional proofs of circuit lower bounds expressed succinctly by propositional formulas of size nO(1) or at least much smaller than the 2O(n) size of the common “truth table” formula. We discuss two such expressions: one via feasible functions witnessing errors of circuits, and one via the anticheckers of Lipton and Young 1994. Our APC1 formalizations yield conditional upper bounds for the succinct formulas obtained by witnessing: we get short Extended Frege proofs from general circuit lower bounds expressed by the common “truth-table” formulas. We also show how to construct in quasipolynomial time propositional proofs of quasipolynomial size tautologies expressing AC0[p] quasipolynomial size lower bounds; these proofs are in Jerábek’s system WF.Peer ReviewedPostprint (author's final draft

    On the complexity of resolution-based proof systems

    Get PDF
    Propositional Proof Complexity is the area of Computational Complexity that studies the length of proofs in propositional logic. One of its main questions is to determine which particular propositional formulas have short proofs in a given propositional proof system. In this thesis we present several results related to this question, all on proof systems that are extensions of the well-known resolution proof system. The first result of this thesis is that TQBF, the problem of determining if a fully-quantified propositional CNF-formula is true, is PSPACE-complete even when restricted to instances of bounded tree-width, i.e. a parameter of structures that measures their similarity to a tree. Instances of bounded tree-width of many NP-complete problems are tractable, e.g. SAT, the boolean satisfiability problem. We show that this does not scale up to TQBF. We also consider Q-resolution, a quantifier-aware version of resolution. On the negative side, our first result implies that, unless NP = PSPACE, the class of fully-quantified CNF-formulas of bounded tree-width does not have short proofs in any proof system (and in particular in Q-resolution). On the positive side, we show that instances with bounded respectful tree-width, a more restrictive condition, do have short proofs in Q-resolution. We also give a natural family of formulas with this property that have real-world applications. The second result concerns interpretability. Informally, we say that a first-order formula can be interpreted in another if the first one can be expressed using the vocabulary of the second, plus some extra features. We show that first-order formulas whose propositional translations have short R(const)-proofs, i.e. a generalized version of resolution with DNF-formulas of constant-size terms, are closed under a weaker form of interpretability (that with no extra features), called definability. Our main result is a similar result on interpretability. Also, we show some examples of interpretations and show a systematic technique to transform some Sigma_1-definitions into quantifier-free interpretations. The third and final result is about a relativized weak pigeonhole principle. This says that if at least 2n out of n^2 pigeons decide to fly into n holes, then some hole must be doubly occupied. We prove that the CNF encoding of this principle does not have polynomial-size DNF-refutations, i.e. refutations in the generalized version of resolution with unbounded DNF-formulas. For this proof we discuss the existence of unbalanced low-degree bipartite expanders satisfying a certain robustness condition

    Unprovability and phase transitions in Ramsey theory

    Get PDF
    The first mathematically interesting, first-order arithmetical example of incompleteness was given in the late seventies and is know as the Paris-Harrington principle. It is a strengthened form of the finite Ramsey theorem which can not be proved, nor refuted in Peano Arithmetic. In this dissertation we investigate several other unprovable statements of Ramseyan nature and determine the threshold functions for the related phase transitions. Chapter 1 sketches out the historical development of unprovability and phase transitions, and offers a little information on Ramsey theory. In addition, it introduces the necessary mathematical background by giving definitions and some useful lemmas. Chapter 2 deals with the pigeonhole principle, presumably the most well-known, finite instance of the Ramsey theorem. Although straightforward in itself, the principle gives rise to unprovable statements. We investigate the related phase transitions and determine the threshold functions. Chapter 3 explores a phase transition related to the so-called infinite subsequence principle, which is another instance of Ramsey’s theorem. Chapter 4 considers the Ramsey theorem without restrictions on the dimensions and colours. First, generalisations of results on partitioning α-large sets are proved, as they are needed later. Second, we show that an iteration of a finite version of the Ramsey theorem leads to unprovability. Chapter 5 investigates the template “thin implies Ramsey”, of which one of the theorems of Nash-Williams is an example. After proving a more universal instance, we study the strength of the original Nash-Williams theorem. We conclude this chapter by presenting an unprovable statement related to Schreier families. Chapter 6 is intended as a vast introduction to the Atlas of prefixed polynomial equations. We begin with the necessary definitions, present some specific members of the Atlas, discuss several issues and give technical details

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Equivalence of infinite-state systems with silent steps

    Get PDF
    This dissertation contributes to analysis methods for infinite-state systems. The dissertation focuses on equivalence testing for two relevant classes of infinite-state systems: commutative context-free processes, and one-counter automata. As for equivalence notions, we investigate the classical bisimulation and simulation equivalences. The important point is that we allow for silent steps in the model, abstracting away from internal, unobservable actions. Very few decidability results have been known so far for bisimulation or simulation equivalence for infinite-state systems with silent steps, as presence of silent steps makes the equivalence problem arguably harder to solve. A standard technique for bisimulation or simulation equivalence testing is to use the hierarchy of approximants. For an effective decision procedure the hierarchy must stabilize (converge) at level omega, the first limit ordinal, which is not the case for the models investigated in this thesis. However, according to a long-standing conjecture, the community believed that the convergence actually takes place at level omega+ omega in the class of commutative context free processes. We disprove the conjecture and provide a lower bound of omega * omega for the convergence level. We also show that all previously known positive decidability results for BPPs can be re-proven uniformly using the improved approximants techniques. Moreover dissertation contains an unsuccesfull attack on one of the main open problems in the area: decidability of weak bisimulation equivalence for commutative context-free processes. Our technical development of this section is not sufficient to solve the problem, but we believe it is a serious step towards a solution. Furtermore, we are able to show decidability of branching (stuttering) bisimulation equivalence, a slightly more discriminating variant of bisimulation equivalence. It is worth emphesizing that, until today, our result is the only known decidability result for bisimulation equivalence in a class of inifinite-state systems with silent steps that is not known to admit convergence of (some variant of) standard approximants at level omega. Finally we consider weak simulation equivalence over one-counter automata without zero tests (allowing zero tests implies undecidability). While weak bisimulation equivalence is known to be undecidable in this class, we prove a surprising result that weak simulation equivalence is actually decidable. Thus we provide a first example going against a trend, widely-believed by the community, that simulation equivalence tends to be computationally harder than bisimulation equivalence. In short words, the dissertation contains three new results, each of them solving a non-trivial open problem about equivalence testing of infinite-state systems with silent steps
    corecore