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Preface

Two sorts of truth: trivialities, where
opposites are obviously absurd, and

profound truths, recognised by the fact
that the opposite is also a profound truth.

Niels H.D. Bohr

The first mathematically interesting, first-order arithmetical example of
incompleteness was given in the late seventies and is know as the Paris-
Harrington principle. It is a strengthened form of the finite Ramsey the-
orem which can not be proved, nor refuted in Peano Arithmetic. In this
dissertation we will investigate several other unprovable statements of Ram-
seyan nature and determine the threshold functions for the related phase
transitions. There are six chapters, followed by an appendix which provides
a Dutch summary.

Chapter 1 sketches out the historical development of unprovability and
phase transitions, and offers a little information on Ramsey theory. In
addition, it introduces the necessary mathematical background by giving
definitions and some useful lemmas.

Chapter 2 deals with the pigeonhole principle, presumably the most
well-known, finite instance of the Ramsey theorem. Although straightfor-
ward in itself, the principle gives rise to unprovable statements. We inves-
tigate the related phase transitions and determine the threshold functions.
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iv Preface

Chapter 3 explores a phase transition related to the so-called infinite
subsequence principle, which is another instance of the Ramsey theorem.

Chapter 4 considers the Ramsey theorem without restrictions on the
dimensions and colours. First, generalisations of results on partitioning α-
large sets are proved, as they are needed later. Second, we show that an
iteration of a finite version of the Ramsey theorem leads to unprovability.

Chapter 5 investigates the template “thin implies Ramsey”, of which
one of the theorems of Nash-Williams is an example. After proving a more
universal instance, we study the strength of the original Nash-Williams
theorem. We conclude this chapter by presenting an unprovable statement
related to Schreier families.

Chapter 6 is intended as a vast introduction to the Atlas of prefixed
polynomial equations. We begin with the necessary definitions, present
some specific members of the Atlas, discuss several issues and give technical
details.

A considerable part of this PhD dissertation consists of published and
unpublished papers and drafts which were written together with Andreas
Weiermann ([DSW08, DSW10a, DSW10b, DSW]) and Andrey Bovykin
([BDS10, BDS]). The author is grateful to them for their permission to
insert those papers.
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Chapter 1

INTRODUCTION

1.1 Historical background

As there have been written plenty of complete and correct pieces about
foundations of mathematics, we will not give many details here and rather
refer to the literature. So for thorough information, one might want to have
a look at e.g. [Kle52, FBHL73, Bar77, HMSS85, Tak87, TvD88a, TvD88b,
Bus98b, AR01, Sim09, Bov09a, BW09, Fri10a], among many other compre-
hensive survey articles and books. However, to give the reader the possibil-
ity of viewing this dissertation in context, we offer a brief account of how
the subject of unprovability emerged. Next we introduce phase transitions
in logic and in the last subsection we touch upon Ramsey theory.

1.1.1 How unprovability theory emerged

It is hard to give a full account of the development of mathematical logic.
So the short survey below does by no means pretend to be complete. It
rather aims at providing some general historical background by touching
upon important events and introducing some of the great contributors.

Intentionally passing over many relevant ideas formulated by thinkers
living as early as Classical Greece, we start our story at the end of the
19th century. By then the first steps towards a rigorous foundation for
mathematics were taken by Georg Cantor, Richard Dedekind and Gottlob
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2 Section 1.1. Historical background

Frege, among others. Such a steady basis became necessary as mathemat-
ical knowledge had increased rapidly and some of the new concepts turned
out problematic. Worries were often related to antinomies, i.e. contra-
dictions obtained by mere logical reasoning. A common example in this
context is Russell’s paradox, i.e.

“Does the set {X : X /∈ X} contain itself?”.

Soon it became clear how difficult it was to get rid of those worries,
which led to the foundational crisis of mathematics at the dawn of the
20th century (Grundlagenkrise der Mathematik, after [Wey21]). This term
denotes the quest for a solid foundation for mathematics, which took place
roughly during the first three decades of that century. Different approaches
were proposed to find a way out of the crisis. An important contribution
was the Principia Mathematica written by Bertrand Russell and Alfred
North Whitehead, which consisted of three parts published between 1910
and 1913.

Out of several different views we mention but two prevailing ones: the
axiomatic approach, forcefully defended by David Hilbert, and the intu-
itionistic way of thinking, as described by Luitzen Egbertus Jan Brouwer
who, crudely speaking, proposed a constructive method to deal with the
foundations. It can be said that the dispute was regularly acrimonious.
Throughout those years Hilbert worked on a new proposal which he hoped
would not be troubled with inconsistencies, as was the case with Cantor’s
set theory. His project, which was first presented in full in the early twen-
ties, became known as Hilbert’s programme. The idea was twofold. First, all
of mathematics had to be formalised in an axiomatic way. That approach
needed to ensure that concrete statements derived by means of abstract
techniques, could be derived without them. Second, a proof of the consis-
tency of this formalisation had to be provided by “finitary” methods. We
are about to see why the programme could not be carried out in its original,
rough form.

Indeed, on 7 September 1930 in a discussion session of a conference
in Königsberg, Kurt Gödel announced the first of his two incomplete-
ness theorems, which was published together with the second one some
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months afterwards in [Göd31]. The first theorem says that if T is a formal
system (theory) containing basic arithmetic, then either T is inconsistent
or there are arithmetical statements that cannot be proved or refuted in
T. The second theorem states that “T is consistent” is such an indepen-
dent statement. It is widely accepted that this second theorem makes
Hilbert’s programme as originally conceived unattainable. However, work
on revised forms of Hilbert’s programme has been fruitful for logic (see
e.g. [Kre58, Sch60, Fef00, Zac06]). Here are some important continuations
of Hilbert’s ideas:

- The search for consistency proofs was an important objective during
the early progress of proof theory. That study was initiated by Ger-
hard Gentzen and later Kurt Schütte as well as Gaisi Takeuti and
resulted in ordinal analysis of theories ([Rat06]) and proof mining
([Koh08]).

- Logicians still investigate the proof-theoretic reduction of systems of
classical mathematics to more restricted systems. Relatitivized Hilbert
programs fit in exactly with those ideas ([Fef88]).

- Reverse Mathematics can be seen as a partial realisation of Hilbert’s
programme ([Sim09]). Stephen Simpson writes in [Sim88]: “Any
mathematical theorem which can be proved in WKL0 is finitistically
reducible in the sense of Hilbert’s Program.”.

Clearly, much more material on these and related topics is available in
the literature. Below we will encounter another branch of logic which is
connected to Hilbert’s original ideas.

The incompleteness theorems have astonishing consequences for logic,
but some people questioned the relevance for those areas of mathematics
not heavily related to pure logic. Gödel’s original independent statement
indeed was constructed by coding the syntax and using logical tricks, which
led some mathematicians to the idea that their subject would not be af-
fected. That situation lasted for almost half a century, until the late sev-
enties, when Laurie Kirby and Jeff Paris studied models of PA ([KP77]).
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Paris, building on their joint work, succeeded in giving the first examples
of mathematical statements which are independent of Peano Arithmetic.
Next Leo Harrington realised Paris’s results could be adapted to a simple
first-order extension of the finite Ramsey theorem, which resulted in the
Paris-Harrington principle, or PH for short ([PH77]). Kirby recalls those
momentous days as follows.

“I was a PhD student of Jeff Paris and we were studying combi-
natorial properties of initial segments of models of PA inspired
by large cardinal properties in set theory e.g. weakly compact
cardinals. Out of this came the notions of strong cut and of in-
dicator as means of obtaining structural properties of cuts e.g. by
modifying the MacDowell-Specker theorem. So our program was
about structural properties of non-standard models and the ap-
plication to independence was a byproduct. But I have a feeling
such an idea was in the back of Jeff’s mind all along. I was
young and innocent and it hadn’t occurred to me. I remember
the day when he showed me how you could get a combinatorial
independent statement (the earliest form involving the iterative
notion of n-denseness) and it was only that night I realised how
remarkable this was – I had to come back the next morning to
say so. Soon he got a letter from Harrington (no emails in those
days) with the simplified version.” (L.A.S. Kirby, personal com-
munication, March 15, 2011)

The Paris-Harrington principle says the following:

“for all numbers e,m and n, there exists a number N , such that for every
colouring f of n-element subsets of {0, 1, . . . , N} into e colours,

there is an H ⊆ {0, 1, . . . , N} of at least size m, such that |H| > minH
and f is constant on the set of n-element subsets of H”.

So neither PH, nor its negation, is provable in PA, and at the same
time the principle is of mathematical, rather than metamathematical, na-
ture. In this context we should mention previous examples of independent
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statements. Indeed, it was shown before by Gödel and Paul Cohen that the
continuum hypothesis and the axiom of choice are independent of ZFC and
ZF, respectively. However, these examples belong to third-order arithmetic
and so are less concrete than the first-order arithmetical statement of Paris
and Harrington.

Notice that PA is a powerful theory which proves most of mathematics
which is encodable in the language of first-order arithmetic produced by
non-logicians so far. Moreover, even a small fragment of it, called Expo-
nential Function Arithmetic, is believed to capture already most of today’s
finitary mathematics (see Subsection 6.1.1). Stronger extensions of PA,
such as full second-order arithmetic Z2, can prove PH.

Since then, many have contributed to the arising subject of unprovabil-
ity by providing natural examples of independent statements. Investigating
those unprovable assertions, one will probably stumble upon one of the fol-
lowing: the arboreal statement by George Mills ([Mil80]), the Hydra battle
and the termination of Goodstein sequences by Kirby and Paris ([KP82]),
the flipping principle of Kirby ([Kir82]), the kiralicity and regality principles
by Peter Clote and Kenneth McAloon ([CM83]), the combinatorial principle
concerning approximations of functions by Pavel Pudlák ([HP87]), combina-
torial principles related to finite trees, and to Higman and Kruskal theorems
by Harvey Friedman ([HMSS85]) and the regressive Ramseyan statement
by Akihiro Kanamori and Kenneth McAloon ([KM87]). Although indepen-
dent of PA (or even stronger theories, for some of the examples above), all
of them are provable in Z2. Moreover, depending on the assertion, specific
subsystems of second order arithmetic will suffice. As the statements them-
selves are provable in some stronger natural theories, we usually ignore their
negation and use the word unprovable, instead of independent. The study
of the mechanisms behind unprovability phenomena is called unprovability
theory.

Nowadays, unprovability theory has expanded substantially and offers
a wide variety of research topics. In the beginning, one of the goals was
finding mathematically interesting sentences which are unprovable in cer-
tain theories, often PA or fragments thereof. That objective turned into
a quest for statements which are unprovable in strong, possibly incompa-
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rable, theories. A major branch is the search for concrete mathematical
incompleteness as undertaken by Friedman in his Boolean Relation Theory
([Fri10a]) and Upper Shift Kernel Theory ([Fri10b]). The central state-
ments in those studies are examples of templates. Also in this dissertation
we will encounter templates, more precisely in Chapter 5 (thin implies Ram-
sey) and Chapter 6 (the Atlas).

From the 21st century on, unprovability theory diversified even more
as Andreas Weiermann started the field of provability phase transitions
for systems of arithmetic. These shifts between provability and unprov-
ability revealed connections between logic and completely different areas of
“concrete” mathematics, such as analytic number theory. This topic will
be introduced in detail in the next subsection. Another part of the study
of unprovability is dedicated to the investigation of (meta)mathematical
reasons for incompleteness phenomena. Clearly, there is a connection with
Reverse Mathematics and also philosophy of mathematics. Yet another new
branch of research is the study of the Atlas of prefixed polynomial equations
(see Chapter 6). Of course it is impossible to describe in just a few lines
all features of this area at the intersection of mathematics and metamath-
ematics. So the interested reader is advised to have a look at up to date
literature.

1.1.2 Phase transitions

A phase transition is a general phenomenon which occurs in mathematics
and several related areas. In particular, it is often clearly noticeable in
physics. Informally, we could describe a phase transition as the behaviour
observed when a small change of a certain parameter of a system causes an
extreme transition in some other property of the system. Usually, one also
detects a specific threshold point .

A common example of a phase transition would be the melting of ice, or
the boiling of water by raising temperature a little. In this case, the related
threshold point would be the ice melting, or water boiling temperature,
respectively. Figure 1.1 gives a sketch of this daily life example from physics,
namely a phase diagram for H2O.
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Figure 1.1: Phase transitions in physics

The same phenomenon happens throughout many mathematical and
computational disciplines. We present a classical example from combina-
torics, originally published in [ER60] where Paul Erdős and Alféd Rényi
study the random graph model. Most of the following definitions are taken
from [Spe01]. Let G(n, p(n)) be the random graph on n vertices with prob-
ability function p(n). For two functions f and g, we write f(x) � g(x)
if for every real number M > 0, there exists a constant x0, such that
|f(x)| ≤ M · |g(x)| for all x > x0. Let B denote a monotone property of
graphs, such as “containing a triangle”, and Prob[G(n, p(n)) |= B] denote
the probability of G(n, p(n)) satisfying B. Then a function p(n) is called
a threshold function for B if the following holds. If p′(n) � p(n), then
Prob[G(n, p′(n)) |= B] → 0 and if p(n) � p′(n), then Prob[G(n, p′(n)) |=
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B] → 1. For example, in case B is the property “containing a triangle”,
then p(n) = 1

n is a threshold function for B. Thus, a small change of a
certain parameter (the probability function) causes a clear transition from
one phase to another completely different one.

Other areas in mathematics where phase transitions occur are statis-
tical physics ([Cha87]), evolutionary graph theory ([Bol01]), percolation
theory ([Gri99]) computational complexity ([CK02]), artificial intelligence
([MZK+99]), etc.. For a mathematical description of phase transitions one
is referred to [Gib60, LY52, YL52].

Here, the situation is as follows. We will investigate the shift from prov-
ability to unprovability of a statement with regard to well-known theories.
This transition will be obtained by slightly varying a parameter or a pa-
rameter function. Let us give an example of such a phase transition in
logic, which in addition is of historical significance. Consider the following
statement A:

“for every natural number K, there is a number N , such that for every
finite sequence T0, . . . , TN of finite trees such that for all i ≤ N the

number of nodes of Ti is at most K + i, there are indices i < j ≤ N such
that Ti is homeomorphically embeddable into Tj”.

As one might have noticed, A is a finite version of Kruskal’s theorem
([Kru60, Sim85]). Friedman showed that the statement A is indepen-
dent of PA, and even of the much stronger second-order theory ATR0 (see
e.g. [Sim85]). We slightly change the original statement A into Ar by re-
placing K + i, by K + r log2(i), where the parameter r is a non-negative
rational number. Martin Loebl and Jǐŕı Matoušek proved in [LM87] that
Ar is independent of PA in case r = 4, and it is provable in PA if r = 1

2 .
Evidently, one could ask whether it is possible to find an exact threshold
point. In other words, does there exist a real number r0 such that Ar is
provable in PA if and only if r < r0? (See Figure 1.2.)

It was Weiermann who solved this problem using analytic combina-
torics ([Wei03]). He succeeded in finding such a particular r0, namely
r0 = ln(2)

ln(α) , where α is the so-called Otter’s tree constant (which has numeri-
cal value 2.95576 . . .). Moreover, he observed that this sort of phenomenon,
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Figure 1.2: Phase transition from provability to unprovability – Type I

a phase transition for an incompleteness result, occurs in several other ar-
eas connecting “real” mathematics with logic. It was a surprise to find
out that incompleteness is related to concrete areas like analytic number
theory, combinatorial probability, Tauberian theory and finite combina-
torics. Weiermann, and collaborators, obtained soon more results, which
led to the research programme phase transitions in logic and combinatorics
(see e.g. [Ara02, Wei03, Wei04, Wei05a, Wei05b, Wei05c, Wei06b, Wei06c,
Wei07, KLOW08, Wei09, CLW11]).

In this dissertation we will deal with parameter functions, instead of
parameter numbers as was the case in the example above. In general, we
will consider a statement Af which depends on a function f : N → N. This
sentence Af will have the property that for certain slow growing functions f ,
it will be provable in a specified theory T, whereas for slightly faster growing
functions Af becomes unprovable in T. In this case, marking the threshold
point becomes determining the threshold region as sharp as possible. This
general pattern is illustrated in Figure 1.3.

Consider the following concrete example which was one of the first of
this type of phase transitions. For a given parameter function f : N → N,
let PHf be the assertion:

“for all numbers e,m and n, there exists a number N , such that for every
colouring F of n-element subsets of {0, 1, . . . , N} into e colours,

there is an H ⊆ {0, 1, . . . , N} of size at least m,
such that |H| > f(minH) and F is constant on H”.

This sentence is almost equal to the original Paris-Harrington statement,
with the difference of changing |H| > minH into |H| > f(minH). Clearly,
if f equals the identity function, then PHf is independent of PA. Weier-
mann showed that if f is a fixed iteration of the binary length function,
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Figure 1.3: Phase transition from provability to unprovability – Type II

then PHf is again unprovable in PA. On the other hand PHlog∗ turns out
to be provable in PA. Moreover, in [Wei04] he improved those bounds sig-
nificantly as follows. Let fα(i) = |i|h−1

α (i) where |i|d denotes the d times
iterated binary length of i and h−1

α denotes the inverse function (see Sub-
section 1.2.3) of the αth member hα of the Hardy hierarchy (see Definition
1.13). Then PHfα is independent of PA (for α ≤ ε0) if and only if α = ε0.
Hence the upper and lower bounds for this phase transition are very pre-
cisely determined.

1.1.3 Ramsey theory

Ramsey theory is a branch of combinatorial analysis named after the British
mathematician Frank Ramsey. He also contributed to philosophy and eco-
nomics, but will presumably be best remembered for his paper “On a prob-
lem of formal logic” ([Ram30]). According to him, the principal goal of the
paper was to solve a problem in logic, but at the same time he recognised
that some theorems proven in the course of that investigation have indepen-
dent interest. One of those theorems is known nowadays as the (infinite)
Ramsey Theorem, which we will denote by RT. Surprisingly, the original
formulation of RT (see [Ram30], Theorem A), would by modern standards
not be labelled as being of “Ramsey type”. Here, we prefer the more recent
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approach. Let n and k be natural numbers. Then RTn
k stands for Ramsey’s

theorem for n dimensions and k colours, i.e.

RTn
k ↔ For every G : [N]n → k there exists an infinite set H

such that G � [H]n is constant.

In this definition we used two specific symbols: if A is a set and F a
function acting on B ⊇ A, then [A]n denotes the set of all n-element subsets
(i.e. subsets of size n) of A, and F � A stands for the restriction of F to
A. Given that notation, RT equals ∀n ∀kRTn

k . Since the time of Johann
Dirichlet, the beginning of the 19th century, several variations of Ramsey’s
theorem have been proved, but it was Ramsey who presented the first
proof of the full version. It is difficult to describe the significance of RT
and related statements in a few lines. It was the base for a whole new
research domain and has many applications throughout mathematics. The
following rather philosophical characterisation of Ramseyan statements by
Harry Burkill and Leonid Mirsky sums it up nicely:

“There are numerous theorems in mathematics which assert,
crudely speaking, that every system of a certain class possesses
a large subsystem with a higher degree of organization than the
original system.” ([BM73])

An classical monograph on Ramsey theory is [GRS90], providing an intro-
duction, related problems, different forms and interpretations.

As mentioned in Subsection 1.1.1 many unprovable statements known
so far are related to Ramsey theory to a greater or lesser extent. In this
dissertation we encounter several more.

1.2 Preliminaries

1.2.1 Theories

Peano Arithmetic (denoted PA) is a first-order theory named after Giuseppe
Peano and first presented in the nineteenth century. Its axioms postulate
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the properties of 0, successor, addition and multiplication. On top of that,
PA contains a scheme of complete induction for all formulas in the language
of arithmetic. When we restrict the induction schema of PA to formulas
with at most n alternations of unbounded quantifiers, we obtain the sub-
system IΣn. The fragment IΣ0 is usually written as I∆0. The axioms of
I∆0 + exp consist of a statement expressing the totality of the exponential
function, in addition to all axioms of I∆0. In chapter 6 we will use another
common variant of I∆0 + exp, namely EFA which stands for Exponential
Function Arithmetic. For rigorous definitions and properties we refer to
[HP98].

Second-order theories we will use are RCA0, WKL0, ACA0, ATR0 and
Π1

1-CA0, which are all subsystems of second-order arithmetic Z2. We do
not go into detail but refer to the detailed survey in [Sim09].

While exploring certain theories, we will deal with consistency and 1-
consistency of a theory. Both are defined below. Let the symbol ⊥ denote
a logical contradiction, e.g. “∃x(x 6= x)”.

1.1 Definition. Let T be a theory. The consistency of T (denoted Con(T))
is the statement

¬PrT(p⊥q),

which one reads as “there is no proof in T of a contradiction”.

For an accurate treatment of the provability predicate PrT for a theory
T we refer to e.g. [Bek05].

1.2 Definition. Let T be a theory. The 1-consistency of T (denoted 1-
Con(T)) is the statement

∀ϕ ∈ Π0
1 (ϕ→ Con(T + ϕ)),

which one reads as “for every Π0
1-statement ϕ, if ϕ holds, then T + ϕ is

consistent”.

Remark that one needs to use the satisfaction predicate for Σ0
1-formulas

in order to write 1-Con(T) rigorously down as a formula. Also note that
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1-Con(T) is a Π0
2-statement, whereas the assertion claiming the consistency

of T is Π0
1.

Perhaps the reader has heard of the uniform reflection principle for
Σ0

1-formulas over T, i.e. the statement

∀ϕ ∈ Σ0
1 (PrT(pϕq) → ϕ),

or RFNΣ0
1
(T) for short. It is not too difficult to see that the 1-consistency

of a theory T is equivalent to RFNΣ0
1
(T). Moreover, their definitions are

sometimes swapped in the literature, which clearly causes no problems as
they are interchangeable. Further information on the reflection principles
can be found in [Smo77, Bek05]. As RFNΣ0

1
(T) (or, equivalently, 1-Con(T))

implies the consistency of T, it is unprovable in T by Gödel’s second in-
completeness theorem.

Many of the mathematically interesting examples of unprovable state-
ments turned out to be equivalent to the 1-consistency of some theory.
The Paris-Harrington principle we discussed above is actually equivalent
to 1-Con(PA), and the finite combinatorial principle introduced by Fried-
man, McAloon and Simpson in [FMS82] is proven to be equivalent to 1-
Con(ATR0).

Two theories can be compared by means of their arithmetical strength.

1.3 Definition. The arithmetical strength of a theory T is defined as the
set of all first-order arithmetical consequences of T.

The arithmetical strengths of two theories are compared by inclusion ⊆.
Unless stated differently, strength will always refer to arithmetical strength.

1.2.2 Ordinals

At the end of the 19th century, Cantor extended natural numbers into the
transfinite by defining ordinal numbers, or ordinals for short. It enabled
him to count into the transfinite and to study the order of such infinite
numbers. Suppose we start counting 0, 1, 2, 3, . . . and let ω denote the
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supremum of this sequence, i.e. the least infinite ordinal. Then Cantor’s
theory allows us to continue counting as follows

ω, ω + 1, ω + 2, . . . ,

and even further

ω + ω, ω + ω + 1, ω + ω + 2, . . . ,

and so on.
A well-order is a pair (X,<) such that the binary relation < acting on

the set X is irreflexive, transitive and linear and such that every non-empty
subset of X has a least element with respect to <.

An order type is an equivalence class of well-orders under the equiva-
lence relation of being order preserving isomorphic. Ordinals are defined
as representatives of order types of well-orders. As we will be working in
second-order arithmetic Z2, it is interesting to mention the next result by
Friedman. He showed that ATR0 is equivalent, over RCA0, to the compa-
rability of countable well-orderings, i.e. the statement which asserts that
for each pair of countable well-orderings, there is an isomorphism of one
onto an initial segment of the other (see e.g. [Fri67, Fri75]).

Since the introduction of ordinals different implementations have been
realised, see e.g. [Hal60, KM76, Poh89]. Studies on ordinal notations and
constructive ordinals are carried out by Alonzo Church and Stephen Kleene
([Chu38, Kle38]). The original definition of an ordinal might give troubles
when used in the framework of an arbitrary set theory, as the equivalence
class of an ordering is not necessarily a set. In ZFC, one avoids this problem
by defining an ordinal as a transitive set which is well-ordered by the rela-
tion ∈. In the literature the reader may find more examples of introducing
ordinals in different theories.

We briefly list some more definitions and properties. There is a least
ordinal which will be denoted by 0. For every ordinal α there is a unique
least ordinal β such that α < β. We call this ordinal the successor of α
and denote it by α+1. An ordinal λ which is neither 0 nor the successor of
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another ordinal is called a limit ordinal, or shortly a limit. If λ is a limit,
then

∀β(β < λ→ β + 1 < λ).

The class of limit ordinals is denoted by Lim. Define N as the smallest set
of ordinals which contains 0 and is such that if α is in the subset then so
is its successor α + 1. Now define ω formally as sup N, which is the least
limit ordinal.

One proceeds by introducing ordinal arithmetic, i.e. defining addition,
multiplication and exponentiation for ordinals (see e.g. [Poh89]). Then it
is possible to show that every ordinal α different from 0, can be written in
Cantor normal form, i.e.

α = ωα0 · a0 + . . .+ ωαs · as, (1.1)

for some α0 > . . . > αs with a0, . . . , as ∈ N \ {0} (see e.g. [Sch77]). This
form is also known as the Cantor normal form expansion. Given the form
(1.1), we say α is written in short Cantor normal form if it is written as
ξ + ωαs (so with ξ = ωα0 · a0 + . . .+ ωαs · (as − 1)).

In this dissertation Greek letters always represent ordinals. Finite or-
dinals can also be denoted by Latin letters. λ is often, but not exclusively,
reserved for representing a limit ordinal. The notation ωk(α) is defined
for ordinals α with α < εω, by ω0(α) = α and ωk+1(α) = ωωk(α). We
abbreviate ωk(1) to ωk.

Define an epsilon number as a fixpoint of the function acting on the class
of ordinals by mapping ξ to ωξ. Then εα denotes the αth epsilon number,
i.e. the αth ordinal ξ such that ξ = ωξ. Remark that ε0 = supn∈ω ωn. In
this dissertation we will work with ordinals less than or equal to εω.

One could verify that the ordinals below ω, the so-called finite ordinals,
together with the corresponding addition and multiplication, satisfy the
axioms of PA. We will identify finite ordinals and natural numbers. In
particular, we will use ω as well as N to denote the set of natural numbers.

Let α ≤ εω be written in Cantor normal form. The smallest (i.e. right-
most) exponent of α is denoted by RM(α). Similarly, we write LM(α) for
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the largest (i.e. leftmost) exponent of α in that particular form. We write1

β � α if either α = 0 or β = 0 or RM(β) ≥ LM(α). The same situation
but with strict inequality, is denoted by β ≫ α. Observe that β � α does
not imply β ≥ α, as one can verify in ω3 � ω3 · 2.

Let us introduce fundamental sequences for ordinals up to εω. Henryk
Kotlarski gave such a treatment for ordinals below Γ0, which we appreciate
and will use here. In particular, the following definitions and several results
can also be found in [Kot], often in a more general form. By a system of
fundamental sequences for ordinals ≤ εω, we mean a function

P : Lim ∩ (≤ εω) → (≤ εω)ω,

such that for every limit λ ≤ εω, P (λ) is an increasing sequence of ordinals
convergent to λ. We shall work with one fixed fundamental system, hence
we shall simply write λ[n], instead of P (λ)(n). Moreover, we let the notion
of α[n] be defined also for non-limit ordinals; we set 0[n] = 0 and (α+1)[n] =
α for all n ∈ ω. The particular fundamental system is determined by the
following three conditions:

1. (additivity) If β � α then (β + α)[n] = β + α[n];

2. (omega base) ω[n] = n, ωα+1[n] = ωα ·n and for λ limit but no epsilon
number, we put ωλ[n] = ωλ[n];

3. (epsilon numbers) ε0[n] = ωn, εm+1[n] = ωn(εm + 1) and εω[n] = εn.

The additivity property yields the following equality

α[n] = ωα0 · a0 + . . .+ ωαs · (as − 1) + ωαs [n],

when α is written in its Cantor normal form (1.1). Using this fundamental
system, we always work with the rightmost term in the Cantor normal
form of the ordinal under consideration. Remark that one can find other
definitions of fundamental sequences in the literature, most of them differing

1Do not confuse this � defined for ordinals with the symbol � defined for functions
(see Subsection 1.1.2).
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only slightly. Apart from being interesting in its own right, the concept
of a fundamental sequence will be used to introduce other notions. The
following small lemma turns out to be useful.

1.4 Lemma. If β � λ then β � λ[n], for all n.

Proof. See [Kot], Lemma 2.1.

1.5 Definition. For α, β ≤ εω we write α ⇒n β if there exists a finite
sequence α0, . . . , αm such that α0 = α, for every j < m, αj+1 = αj [n] and
αm = β.

The original study of ⇒n for ordinals below ε0 has been carried out
by Jussi Ketonen and Robert Solovay in [KS81], even though they use a
slightly different fundamental sequence. The treatment for ordinals up to
εω given below can be found in detail in [Kot]. In particular, the proofs of
the following lemmas are all written down carefully in that paper (Lemma
3.1 – Lemma 3.4).

Let us start by looking more thoroughly at the definition of ⇒n. Given
fixedm, the first two conditions determine the sequence α0, . . .,αm uniquely.
The interesting issue is whether there exists m such that β belongs to that
sequence. It is also easy to see that α⇒n β implies α ≥ β and the sequence
witnessing this relation is strictly decreasing. Clearly, in case this sequence
has length strictly greater than 1 then α > β. In addition, given fixed n,
the relation α ⇒n β is transitive. It is also not too difficult to prove by
transfinite induction that for every α ≤ εω and every n < ω, α⇒n 0. The
following properties of the relation ⇒n will turn out to be handy.

1.6 Lemma. Let α ≤ εω and b, j ∈ N such that b ≥ j > 0. Then α[b] ⇒b

α[j] and hence α⇒b α[j].

1.7 Lemma. If α⇒j β and b ≥ j > 0 then α⇒b β.

1.8 Lemma. For all α, β, if β > α then there exists b ∈ N such that
β ⇒b α.

1.9 Lemma. For all α > 0 and all m > 0, it holds that α⇒m 1.



18 Section 1.2. Preliminaries

1.2.3 Hierarchies of functions

In this dissertation we will need several hierarchies of functions. Some
specific ones will be defined just before they are needed. The more general
ones are introduced below.

Let us start with some general remarks and definitions. Let f : N → N
be an unbounded function. If k is a natural number, then fk denotes the
kth iteration of f , with the agreement that f0(x) = x. The inverse of f is
denoted by f−1 and defined by f−1(x) = min{y : f(y) ≥ x}.

The following definitions can be found in [HP98]. Let L0 be the usual
language of first order arithmetic, L an extension of L0 and T an L-theory
containing I∆0. A formula ϕ(x, y) is a definition of a function f : N → N if
ϕ(x, y) defines the graph of f , that is to say

{(x, y) ∈ N× N : ϕ(x, y)} = {(x, y) ∈ N× N : y = f(x)}.

A formula ϕ(x, y) defines a total function in T if2

T ` (∀x)(∃!y)ϕ(x, y).

We may then extend T by defining a new function symbol f and the axiom
ϕ(x, f(x)). A function f : N → N is T-provably total if it has a definition
ϕ(x, y) which defines a total function in T. The function f is T-provably Σn

if it has a definition which is Σn in T. The function f is a T-provably total
Σn function if it has a definition which is Σn in T and defines a total function
in T. In particular we say f is T-provably recursive if it is T-provably total
Σ1. Using some recursion theory that name can be explained as follows.
Suppose f is T-provably total Σ1, i.e. it is T-provably total and it has a
definition which is Σ1. Then the graph of f , which is a subset of N × N,
is defined by a Σ1-formula. Hence the graph of f is recursive enumerable,
and so f is recursive. Thus T-provably recursive functions can be viewed
as those recursive functions of which the totality is known to the theory T.

2The notation (∃!y) means “there exists a unique y such that...”. This does not belong
to the syntax of first-order logic, but is rather an abbreviation for a more complicated
first-order formula.
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We will freely use other formulations of the above concepts, as for example
“T proves the totality of f”, “f is a provably recursive function of T”, etc..

A theory T can be partially described in a natural way by classifying the
T-provably recursive functions. There is, for instance, the following inter-
esting property of IΣ1 proved by Charles Parsons ([Par70, Par71, Par72]),
and independently by Grigori Mints ([Min71]) and Takeuti ([Tak87]).

1.10 Theorem. The IΣ1-provably recursive functions are exactly the prim-
itive recursive functions.

The definitions of an elementary function and a primitive recursive func-
tion can be found in e.g. [Ros84]. The following fast-growing hierarchy turns
out to be very useful for such investigations.

1.11 Definition. Define the fast-growing hierarchy (Fα)α≤ε0 as follows.
For every x ∈ N,

F0(x) = x+ 1;
Fα+1(x) = Fα(. . . (Fα︸ ︷︷ ︸

x times

(x)) . . .) = F x
α (x);

Fλ(x) = Fλ[x](x),

where α and λ are ordinals below ε0, with λ a limit.

This hierarchy is also known as the Wainer hierarchy, the (transfinitely
extended) Grzegorczyk hierarchy and the extended Ackermann hierarchy.
This last name is not a mere coincidence as the Ackermann hierarchy is
given by (Fα)α<ω, with Fω growing as fast as the Ackermann function Aω.
Moreover, we will usually write Aω instead of Fω. Also, the branches Fd of
the Ackermann function (with d ∈ N) will often be denoted by Ad.

Properties of the fast-growing hierarchy and its relation to provably
recursive functions are studied in [Wai70, Sch71, Wai72, BW87, BCW94,
Wei96, FW98, Bus98a]. We state some of the main results. Proofs are
omitted, but can be found either in the aforementioned references or by
combining results of [Par80, KS81, FS95].
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1.12 Theorem. We consider two similar cases.

1. Let n > 0. Then

(a) IΣn ` (∀x)(∃y)(Fα(x) = y) if and only if α < ωn.

(b) Let f be an IΣn-provably Σ1 function. Then f is IΣn-provably
total if and only if f is primitive recursive in Fα for some α <
ωn.

(c) Fωn eventually dominates all IΣn-provably total functions.

2. (a) PA ` (∀x)(∃y)(Fα(x) = y) if and only if α < ε0.

(b) Let f be a PA-provably Σ1 function. Then f is PA-provably total
if and only if f is primitive recursive in Fα for some α < ε0.

(c) Fε0 eventually dominates all PA-provably total functions.

More on proof-theoretic characterisations of provably total functions can
be found in e.g. [Tak87, Bus94] and [Wei06a] and in references cited therein.
The following hierarchy is the prime example of an inner iteration hierarchy,
which is based on the successor function (see e.g. [CW83, FW92, FW98]
for more information).

1.13 Definition. Define the Hardy hierarchy (hα)α≤εω as follows. For
every x ∈ N,

h0(x) = x;
hα+1(x) = hα(x+ 1);
hλ(x) = hλ[x](x),

where α is an ordinal below εω, and λ a limit ordinal less than or equal to
εω.

In this dissertation we will use slightly different versions of the Hardy
hierarchy, of which one is introduced in the next section.
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1.2.4 α-Largeness

In [KS81] Ketonen and Solovay investigated by purely combinatorial means
the growth rate of a function closely related to the Paris-Harrington princi-
ple. While doing so, they introduced and studied α-largeness. The concept
turned out to be both useful for studying other mathematical objects and
interesting in its own right, as we will see later on.

Let A be a subset of the natural numbers and define hA : A\{maxA} →
A, to be the successor function in the sense of A (i.e., hA associates with
every element in its domain the next element of A). In the next definition,
' means that either both sides are defined and equal or both sides are
undefined. As announced earlier we will need a hierarchy, slightly different
from the Hardy hierarchy.

1.14 Definition. Define the hierarchy of functions (hA
α )α≤εω as follows.

For every x ∈ N,

hA
0 (x) ' x;

hA
α+1(x) ' hA

α (hA(x));

hA
λ (x) ' hA

λ[x](x),

where α is an ordinal below εω, and λ a limit ordinal less than or equal to
εω. (hA

α )α≤εω is called the Hardy hierarchy based on hA.

Remark that in case A equals N, then hA becomes the normal suc-
cessor function and (hA

α )α≤εω is the standard Hardy hierarchy as given by
Definition 1.13.

Now we are ready to give the definition of an α-large set.

1.15 Definition. A set A ⊆ N is called α-large if hA
α (minA) is defined. A

set A ⊆ N is called α-small if it is not α-large.

Whenever it is clear which set A we are working with, we leave out
the superscript and simply write h and hα, instead of hA and hA

α . In the
lemmas below, we will assume all functions hA

α occurring are acting on
their domain, so we can replace ' by =. If not mentioned explicitly, A will
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denote an arbitrary subset of N \ {0}. Notice that the previous definition
is sometimes stated in a different form. Namely, a set A is 0-large if it is
nonempty. A is (α + 1)-large if A \ {minA} is α-large. Finally, with λ a
limit ordinal, A is λ-large if it is λ[minA]-large.

1.16 Definition. A set A ⊆ N is called exactly α-large if it is α-large, but
A \ {maxA} is α-small.

Proofs of the following lemmas can be found in [Kot] (Lemma 5.1 –
Lemma 5.3 and Lemma 5.6).

1.17 Lemma. For every α and every β � α, hβ+α = hβ ◦ hα.

For ordinals below ε0, this result is often ascribed to Stanley Wainer.
We can restate the lemma in the following manner.

1.18 Lemma. Let A be a subset of the natural numbers and β � α. Then
A is (β+α)-large if and only if there exists u ∈ A such that {x ∈ A |x ≤ u}
is α-large and {x ∈ A |u ≤ x} is β-large.

The next lemmas will be convenient later.

1.19 Lemma. For every α ≤ εω:

1. hα is increasing;

2. for every β and b, if α ⇒b β and hα(b) exists then hβ(b) exists and
hα(b) ≥ hβ(b).

Whenever we write A = {a0, a1, . . . , as}, we assume the elements of A
are given in increasing order. In particular, a0 will denote the minimum of
A.

1.20 Lemma. Let A = {a0, . . . , as} and B = {b0, . . . , bt} be finite sets.

1. If |A| = |B| and for every i ≤ s, bi ≤ ai, then for every i ≤ s, if
hA

α (ai) exists, then hB
α (bi) exists and hA

α (ai) ≥ hB
α (bi).

2. If A is α-large, |A| = |B| and for every i ≤ s, bi ≤ ai, then B is
α-large.

3. If A ⊆ B and A is α-large, then B is α-large.
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THE PIGEONHOLE PRINCIPLE

2.1 Introduction

The pigeonhole principle is one of the most well-known combinatorial prin-
ciples, because of both its simplicity and usefulness. The principle is also
known as the chest-of-drawers principle or Schubfachprinzip and is at-
tributed to Dirichlet in 1834. The proof complexity of the propositional for-
mulation of the principle and several variations thereof are studied widely
(see e.g. [Kra95, BP98, MPW00, Raz02]). Although known and studied
for a long time now, it still has interesting properties to reveal. So it is
not surprising the principle gained the attention of several mathematicians
lately. Terence Tao, for example, uses the example of the so called “fini-
tary” infinite pigeonhole principle in an article on his blog ([Tao07]). Jaime
Gaspar and Kohlenbach commented on his ideas and wrote a paper about
it ([GK10]).

The pigeonhole principle is strongly related to Ramsey’s theorem for 1-
tuples, i.e. natural numbers. More precisely, it is a finite instance of RT1

<∞,
which stands for ∀kRT1

k, using the notation introduced in Subsection 1.1.3.
In this chapter we will have a closer look at the statements RT1

<∞ and RT1
2.

Let us start by mentioning but a few results from Reverse Mathematics:
for any natural number k,

RCA0 ` RT1
k,

23
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whereas
WKL0 0 RT1

<∞.

Both results are ascribed to Jeffry Hirst (see [Hir87], Theorem 6.3 and
Theorem 6.5). In addition, it is also proved that RT1

<∞ does not imply
ACA0 over RCA0. As it does not tie in nicely with the programme of
Reverse Mathematics, one might be tempted to think that RT1

<∞ is of little
importance. However, it pops up every now and then in the literature. It is,
for instance, equivalent to Rado’s Lemma over RCA0 (see [Hir87], Theorem
6.6).

Since Paris introduced them in the late seventies ([Par78]), densities
turned out to be fruitful for studying independence results, as they often
generate strength. Motivated by their simplicity and Ramseyan nature we
investigate the combinatorial complexity of two densities which are strongly
related to the pigeonhole principle. More precisely, the aim is to miniaturise
RT1

<∞ and RT1
2 by defining n-PHP-density and (α, 2)-PHP-density. In

addition, both densities depend on a parameter function f : N → N. Then
we define two first-order assertions and study their provability with respect
to IΣ1, the first-order part of RCA0.

We show for which f we obtain Ackermannian growth rate and deter-
mine the exact phase transition. In case of n-PHP-density Ackermannian

growth is obtained for f(i) = i
1

A−1
ω (i) , whereas for f(i) = i

1

A−1
d

(i) with d a
natural number it is not. Here Ad denotes the dth branch of the Ackermann
function Aω (see Definition 1.11).

In the case of (α, 2)-density we restrict ourselves to only two colours and
strength disappears, as expected. However, iterating up to ω2 suffices to
gain strength again. It turns out that f(i) = 1

A−1
d (i)

log(i), with d a natural

number, gives rise to no more than primitive recursive growth, in contrast
to f(i) = 1

A−1
ω (i)

log(i), which leads to Ackermannian growth.

Remark that the n-PHP-density threshold functions are exactly the
same as those for the ISP-density (see Chapter 3) and the parameterised
Kanamori-McAloon principle, whereas the (ω2, 2)-PHP-density functions
equal those for the parameterised Paris-Harrington principle. Finally, the
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study of Ramseyan assertions of the kind considered here may contribute
to the solution of the longstanding open problem of Ramsey’s theorem for
pairs.

2.2 n-PHP-Density

Let X ⊆ N and f : N → N be any function, such that 1 ≤ f(x) ≤ x, for
x ∈ N. Let us define n-PHP-density, the first density notion related to the
pigeonhole principle. In this case the number of colours depends on the
minimum of X and the function f .

2.1 Definition. Let X ⊆ N. Then X is called 0-PHP-dense(f) if |X| ≥
max{f(minX), 3}, and X is called (n+1)-PHP-dense(f) if for all G : X →
f(minX), there exists Y ⊆ X, such that Y is homogeneous for G and Y is
n-PHP-dense(f).

For the rest of this section we will leave out PHP and simply write
n-density, as this will always refer to n-PHP-density.

2.2.1 Lower bound

We show that in case f(i) = bi
1

A−1
d

(i) c for all i ∈ N, with d a natural number,
we obtain a lower bound. Thus, if the expression between the floor symbols
b and c is not a natural number, we consider the greatest integer less than

i
1

A−1
d

(i) , as f needs to be a number-theoretic function. Henceforth we leave
out the floor symbols for the sake of clarity. We will do this for all parameter
functions in this dissertation without mentioning explicitly.

2.2 Theorem. Let d ∈ N and f(i) = i
1

A−1
d

(i) . Then

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let n and a be given. Note that if [a, b] is n-dense(f), then so is
[0, b − a]. Hence without loss of generality, we can assume a > 0. Put
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b = 2Ad(a2n+1)2n+1
. We claim that any Y ⊆ [a, b] with |Y | > 2Ad(a2n+1)2k

is
k-dense(f). To prove the claim we proceed by induction on k.

Assume the claim holds for k − 1, with k > 0, and consider Y ⊆ [a, b]
such that |Y | > 2Ad(a2n+1)2k

. Since 2Ad(a2n+1)2n+1
> Ad(2n+1), we have

f(minY ) ≤ f(b)

= (2Ad(a2n+1)2n+1
)

1

A−1
d

(2Ad(a2n+1)2n+1
)

≤ (2Ad(a2n+1)2n+1
)

1

A−1
d

(Ad(2n+1))

= (2Ad(a2n+1)2n+1
)

1
2n+1

= 2Ad(a2n+1)

≤ 2Ad(a2n+1)2k−1
.

Let c = f(minY ) and G : Y → c be any function. Consider the partition
of Y induced by G, i.e.

Y = ∪0≤i<cYi,

with Yi = {y ∈ Y : G(y) = i}. By contradiction, assume that |Yi| ≤
2Ad(a2n+1)2k−1

for every 0 ≤ i < c. Then

2Ad(a2n+1)2k
< |Y |

≤ c · 2Ad(a2n+1)2k−1

= f(minY ) · 2Ad(a2n+1)2k−1

≤ 2Ad(a2n+1)2k−1 · 2Ad(a2n+1)2k−1

= 2Ad(a2n+1)2k−1+Ad(a2n+1)2k−1

= 2Ad(a2n+1)2k
,

a contradiction. Thus, there exists an index i0 ∈ {0, . . . , c − 1}, such that
|Yi0 | > 2Ad(a2n+1)2k−1

. The induction hypothesis yields that Yi0 is (k − 1)-
dense(f) and by definition Yi0 is homogeneous for G, so Y is k-dense(f).
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If k = 0, then |Y | > 2Ad(a2n+1) ≥ max{f(minY ), 3}, which completes
the induction argument and proves the claim.

Now return to [a, b]. Since

|[a, b]| ≥ 2Ad(a2n+1)2n+1 − a > 2Ad(a2n+1)2n
,

[a, b] is n-dense(f). Remarking that the function E : N × N → N, defined
by E(a, n) = 2Ad(a2n+1)2n+1

is primitive recursive, completes the proof (see
Theorem 1.10).

Let us connect the theorem above with the provably recursive functions
of IΣ1. We define a function naturally related to our density notion.

2.3 Definition. Define PHPf : N → N by PHPf (n) = PHPf (n, n), where
PHPf (n, a) is the least natural number b, such that [a, b] is n-dense(f).

Let f be as above. Examining the statement y = PHPf (x), one sees
that PHPf is IΣ1-provably Σ1. Theorem 2.2 states that PHPf is a provably
total function of IΣ1, and thus IΣ1-provably recursive. Hence, Theorem 1.10
implies that PHPf is primitive recursive.

2.2.2 Upper bound

Investigating an upper bound of the threshold region, we will use a hierarchy
of functions which also depends on the parameter function f : N → N.

2.4 Definition. Define the hierarchy of functions (Ff,k)k<ω and the func-
tion Ff as follows. For every x ∈ N,

Ff,0(x) = x+ 1;

Ff,k+1(x) = Ff,k(. . . (Ff,k︸ ︷︷ ︸
f(x) times

(x)) . . .) = F
f(x)
f,k (x);

Ff (x) = Ff,x(x),

for k ∈ N.
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Strictly speaking, the notation should indicate that Ff,k depends on f ,
in order not to be confused with the fast-growing hiearchy (see Definition
1.11). In this chapter though, we omit stating this dependence to lighten
the notation. So given a number-theoretic function f , we simply write write
Fk and F , instead of Ff,k and Ff respectively. To avoid ambiguity we use
Ad and Aω to denote members of the fast-growing hierarchy.

We start with the following general lemma.

2.5 Lemma. Let n ∈ N and X ⊆ N. If X is n-dense(f), then maxX ≥
Fn(minX).

Proof. Henceforth, let x0 = minX and c = f(x0). The proof goes by
induction on n.

If X is 0-dense(f), then |X| ≥ max{f(x0), 3}. Thus, maxX ≥ x0 +2 ≥
F0(x0).

Secondly, assume the statement is proven for n and X is (n + 1)-
dense(f). Consider the partition ∪0≤i<cYi of X, where Yi is defined by

Yi = {x ∈ X : F i
n(x0) ≤ x < F i+1

n (x0)}

for 0 ≤ i < c − 1 and Yc−1 = {x ∈ X : F c−1
n (x0) ≤ x}. Now, define

G : X → c, as follows. If x ∈ Yi, then G(x) = i. Since X is (n + 1)-
dense(f), there exists a subset Y of X, such that Y is n-dense(f) and
homogeneous for G. By contradiction assume Y ⊆ Yi0 for some i0 with
0 ≤ i0 < c − 1. The induction hypothesis yields maxY ≥ Fn(minY ), and
so

F i0+1
n (x0)− 1 = maxYi0

≥ maxY
≥ Fn(minY )
≥ Fn(minYi0)

= Fn(F i0
n (x0))

= F i0+1
n (x0),
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a contradiction. So Y ⊆ Yc−1, which implies

maxX = maxYc−1

≥ maxY
≥ Fn(minY )
≥ Fn(minYc−1)

= Fn(F c−1
n (x0))

= F c
n(x0)

= F f(x0)
n (x0)

= Fn+1(x0),

by the n-density of Y . This concludes the induction argument.

Suppose f equals the identity function. Then for a given n, the function
Fn would have the same growth rate as the nth branch of the Ackermann
function Aω (see Definition 1.11). In that case the statement

(∀a)(∃b)([a, b] is n-dense(f))

implies the totality of the nth branch of the Ackermann function.

Now, let f(i) = i
1

A−1
ω (i) , for all i ∈ N, and PHPf as given by Definition

2.3. Then F is Ackermannian, because of Theorem 1 in [OW09]. We get
the following unprovability result.

2.6 Theorem. If f(i) = i
1

A−1
ω (i) , then

IΣ1 0 (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. First recall that the provably recursive functions of IΣ1 are exactly
the primitive recursive functions (Theorem 1.10). Assume by contradiction
that

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)) (2.1)
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In other words, assume that PHPf is a provably recursive function of IΣ1,
and thus primitive recursive. Lemma 2.5 yields

PHPf (n) ≥ Fn(n) = F (n),

for every n ∈ N, and thus F is also primitive recursive. This contradicts
the fact that F has Ackermannian growth rate.

Now let PHPf stand for

(∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Then the phase transition is described by Figure 2.1.

-

6

IΣ1 0 PHPf

IΣ1 ` PHPf

f(i) = i

1

A
−1
ω

(i)

threshold region

f(i) = i

1

A
−1
d

(i)

Figure 2.1: Phase transition for PHPf .

2.3 (α, 2)-PHP-Density

Contrary to the first density, here we work with a fixed number of colours,
namely two. Looking for strength, we will allow transfinite iterations. Re-
call the definition of a fundamental sequence for a limit ordinal given in
Subsection 1.2.2.
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2.7 Definition. Let X be a subset of N. Then X is called (0, 2)-PHP-
dense(f) if |X| ≥ max{f(minX), 3}. The set X is called (α + 1, 2)-PHP-
dense(f) if for all G : X → 2 there exists Y ⊆ X, such that Y is (α, 2)-
PHP-dense(f) and Y is homogeneous for G. If λ is a limit ordinal, then X
is called (λ, 2)-PHP-dense(f) if for all G : X → 2 there exists Y ⊆ X, such
that Y is (λ[f(minX)], 2)-PHP-dense(f) and Y is homogeneous for G.

As before, for the rest of this section we will leave out PHP and simply
write (α, 2)-density, since this will always refer to (α, 2)-PHP-density.

2.3.1 Lower bound

Let f(i) = 1
A−1

d (i)
log2(i), where we set log2(0) = 0 and where Ad denotes

the dth branch of the Ackermann function Aω. As the logarithm function
always has basis two in this dissertation, we leave out the subscript 2.

2.8 Theorem. If f(i) = 1
A−1

d (i)
log(i), then

IΣ1 ` (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Assume that a is given. Put b = 2Ad(2a+2)2a+1
. We claim that any

Y ⊆ [a, b], with |Y | > 2Ad(2a+2)2k
is (ω · k, 2)-dense(f). The proof goes by

induction on k.
Let k equal 0. Since 2Ad(2a+2)2a+1

> Ad(2a+2), we have

f(minY ) ≤ f(b)

=
1

A−1
d (2Ad(2a+2)2a+1)

log(2Ad(2a+2)2a+1
)

<
1

2a+2
Ad(2a+2)2a+1

< Ad(2a+2),

and thus, |Y | > 2Ad(2a+2) > max{f(minY ), 3}, i.e. Y is (0, 2)-dense(f).
Assume the assertion holds for k−1, with k > 0, and consider Y ⊆ [a, b]

with |Y | > 2Ad(2a+2)2k
. We claim that if Z ⊆ Y and |Z| > 2Ad(2a+2)2k−1+l,
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then Z is (ω ·(k−1)+l, 2)-dense(f). The proof goes by subsidiary induction
on l.

If l = 0, then the claim follows by the main induction hypothesis. As-
sume the claim holds for l − 1, with l > 0, and |Z| > 2Ad(2a+2)2k−1+l. Let
G : Z → 2 be any function. Consider the partition of Z induced by G, i.e.

Z = Z0 ∪ Z1,

with Zi = {z ∈ Z : G(z) = i}. By contradiction, assume that

|Zi| ≤ 2Ad(2a+2)2k−1+l−1,

for i = 0, 1. Then

2Ad(2a+2)2k−1+l < |Z|

≤ 2 · 2Ad(2a+2)2k−1+l−1

= 2Ad(2a+2)2k−1+l,

a contradiction. Thus, there exists an index i0 ∈ {0, 1}, such that |Zi0 | >
2Ad(2a+2)2k−1+l−1. The induction hypothesis yields Zi0 is (ω·(k−1)+l−1, 2)-
dense(f), and so Z is (ω · (k− 1) + l, 2)-dense(f), since Zi0 is homogeneous
for G. This proves the latter claim.

Now return to Y . Let G : Y → 2 be any function. Consider the partition
of Y induced by G, i.e.

Y = Y0 ∪ Y1,

with Yi = {y ∈ Y : G(y) = i}. In the same way as above, one can prove
by contradiction that there is an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2a+2)2k−1 = 2Ad(2a+2)2k−1+Ad(2a+2)2k−1−1.

Since
Ad(2a+2)2k−1 ≥ Ad(2a+2) ≥ f(minY ) + 1,

we have |Yi0 | > 2Ad(2a+2)2k−1+f(min Y ). The latter claim yields Yi0 is (ω ·
(k−1)+f(minY ), 2)-dense(f), i.e. (ω ·k[f(minY )], 2)-dense(f). Thus Y is
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(ω · k, 2)-dense(f), since Yi0 is homogeneous for G. So also the main claim
is proven.

We finally prove that [a, b] is (ω2, 2)-dense(f). Let G : [a, b] → 2 be any
function and consider the partition of [a, b] induced by G, i.e.

[a, b] = Y0 ∪ Y1,

with Yi = {y ∈ [a, b] : G(y) = i}. Remark that |[a, b]| > 2Ad(2a+2)2a+1−a ≥
2Ad(2a+2)2a+1. Similarly as before, one can proof by contradiction that there
is an index i0 ∈ {0, 1}, such that

|Yi0 | > 2Ad(2a+2)2a ≥ 2Ad(2a+2)2f(a)
.

The main claim yields Yi0 is (ω·f(a), 2)-dense(f), i.e. (ω2[f(a)], 2)-dense(f).
In combination with Yi0 being homogeneous for G, this implies [a, b] is
(ω2, 2)-dense(f). Remarking that the function E : N → N, defined by
E(a) = 2Ad(2a+2)2a+1

is primitive recursive, completes the proof (see Theo-
rem 1.10).

Let us again relate our results above with the provably recursive func-
tions of IΣ1. In the same way as done for the case of n-PHP-density, we
define a function naturally related to our density notion.

2.9 Definition. Define PHP2f : N → N as follows. Given a ∈ N, then
PHP2f (a), is the least natural number b, such that [a, b] is (ω2, 2)-dense(f).

By inspecting the statement y = PHP2f (x), one learns that PHP2f

is IΣ1-provably Σ1. Now let f be as in Theorem 2.8. The same theorem
states that PHP2f is a IΣ1-provably total function, and thus IΣ1-provably
recursive. Hence, Theorem 1.10 implies that PHP2f is primitive recursive.

2.3.2 Upper bound

In this section we will use another hierarchy which we call (Bf,α)α<ε0 and
which turns out to be related to Ff,k (see Definition 2.4).
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2.10 Definition. Define the hierarchy of functions (Bf,α)α<ε0 as follows.
For every x ∈ N,

Bf,0(x) = x+ 1;

Bf,α+1(x) = Bf,α(Bf,α(x)) = B2
f,α(x);

Bf,λ(x) = Bf,λ[f(x)](x),

for all ordinals α and λ, with the latter a limit ordinal.

As for Ff,k, we leave out the subscript f and write Bα if it is clear which
f we are working with. However, in the following lemma, which shows the
relation between the two hierarchies, it is of crucial importance to indicate
which functions are used.

2.11 Lemma. Let k, l and x be natural numbers. Then Bf,ω·k+l(x) =
F 2l

2f ,k
(x).

Proof. We proceed by main induction on k and subsidiary induction on l.
If k equals l equals zero, we have Bf,0(x) = x+ 1 = F2f ,0(x).
Assume the statement is proven for k − 1, with k > 0, we will prove it

for k by subsidiary induction on l.
If l = 0, then the main induction hypothesis yields

Bf,ω·(k−1)(x) = F2f ,k−1(x).

Assume the claim is proven for l − 1, with l > 0. We have

Bf,ω·(k−1)+l(x) = Bf,ω·(k−1)+l−1(Bf,ω·(k−1)+l−1(x))

= F 2l−1

2f ,k−1(F
2l−1

2f ,k−1(x))

= F 2l

2f ,k−1(x),

which concludes the subsidiary induction. In other words, the statement is
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proven for k − 1 and every l. Using this fact, we obtain

Bf,ω·k(x) = Bf,ω·(k−1)+ω[f(x)](x))

= Bf,ω·(k−1)+f(x)(x))

= F 2f(x)

2f ,k−1(x)

= F2f ,k(x),

which concludes the main induction and proves the statement.

In the following lemma we show in which way (α, 2)-density is related
to the function Bf,α.

2.12 Lemma. Let α be an ordinal. If X ⊆ N is (α, 2)-dense(f), then
maxX ≥ Bf,α(minX).

Proof. Being of no concrete importance for the proof itself, we leave out
the subscript f . Henceforth, let x0 = minX. The proof goes by transfinite
induction on α.

If X is (0, 2)-dense(f), then |X| ≥ max{f(x0), 3}. Thus, maxX ≥
x0 + 2 > x0 + 1 = B0(x0).

Assume the statement is proven for α and X is (α + 1, 2)-dense(f).
Define G : X → 2 as follows

G(x) =

{
0 if x0 ≤ x < Bα(x0)
1 if Bα(x0) ≤ x

,

for all x ∈ X. Since X is (α+ 1, 2)-dense(f), there exists a subset Y of X,
such that Y is (α, 2)-dense(f) and Y is homogeneous with respect to G.
By contradiction, assume G takes colour 0 on Y . Then, by the induction
hypothesis,

Bα(x0)− 1 ≥ maxY ≥ Bα(minY ) ≥ Bα(x0),

a contradiction. So, the colour needs to be 1, which implies

Y ⊆ {x ∈ X : Bα(x0) ≤ x}.
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The induction hypothesis yields

maxX ≥ maxY ≥ Bα(minY ) = Bα(Bα(x0)) = Bα+1(x0).

Finally, assume the statement is proven for all α < λ, with λ a limit ordinal,
and X is (λ, 2)-dense(f). There exists a subset Y which is (λ[f(x0)], 2)-
dense(f). We obtain by the induction hypothesis

maxX ≥ maxY ≥ Bλ[f(x0)](minY ) ≥ Bλ[f(x0)](x0) = Bλ(x0).

This completes the proof.

Fix the function f(i) = 1
A−1

ω (i)
log(i) for all i ∈ N for the rest of this

subsection.

2.13 Lemma. PHP2f (2n2
) ≥ F2f (n), for every n ∈ N.

Proof. Let X = [2n2
,PHP2f (2n2

)]. Define G : X → 2 by G(x) = 0 for
every x ∈ X. Since X is (ω2, 2)-dense(f) there exists Y ⊆ X, such that
Y is (ω2[f(minX)], 2)-PHP2-dense(f), i.e. (ω ·f(2n2

), 2)-dense(f). Lemma
2.11 and Lemma 2.12 yield

PHP2(2n2
) ≥ maxY
≥ Bf,ω·f(min Y )(minY )

≥ B
f,ω·f(2n2

)
(2n2

)

= F
2f ,f(2n2 )

(2n2
)

≥ F2f ,n(n)

= F2f (n),

since f(2n2
) = 1

A−1
ω (2n2 )

log(2n2
) ≥ n.

Given the specific f we are working with, we get 2f(i) = i
1

A−1
ω (i) . Then

F2f is Ackermannian because of Theorem 1 in [OW09]. We obtain the
following unprovability result.
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2.14 Theorem. If f(i) = 1
A−1

ω (i)
log(i), then

IΣ1 0 (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Proof. Recall that the provably recursive functions of IΣ1 are exactly the
primitive recursive functions (Theorem 1.10). Assume by contradiction
that

IΣ1 ` (∀a)(∃b)([a, b] is (ω2, 2)-dense(f)). (2.2)

In other words, assume that PHP2f is a provably recursive function of
IΣ1, and thus primitive recursive. Then so is PHP2f (2n2

), as a composi-
tion of two primitive recursive functions. By Lemma 2.13 we know that
PHP2f (2n2

) ≥ F2f (n), for every n ∈ N, which yields that F2f is also primi-
tive recursive. This contradicts the fact that F2f has Ackermannian growth
rate.

Now let PHP2f stand for

(∀a)(∃b)([a, b] is (ω2, 2)-dense(f)).

Then the phase transition is described by Figure 2.2.

-
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d

(i)
log(i)

Figure 2.2: Phase transition for PHP2f .
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Chapter 3

WEAKLY INCREASING

SUBSEQUENCES

3.1 Introduction

It is well-known that every infinite sequence of natural numbers contains
an infinite subsequence which is weakly increasing. Given its Ramseyan
nature, we explore the strength generated from this infinite subsequence
principle, or ISP for short. So given a theory T (one may think of RCA0

for example), we wonder how much strength the theory T + ISP has. In
this chapter we investigate a first-order approximation of ISP. To carry
out such an investigation, we consider a miniaturisation of ISP in terms of
densities, as done in the Chapter 2. The density statement under consid-
eration depends on a parameter function f : N → N and turns out to be
unprovable in IΣ1 for certain f . However, all those different instances can
be proven by applying König’s Lemma to ISP. The independent assertion
will give rise to a phase transition, as explained from a broader perspective
in Subsection 1.1.2.

In order to introduce the unprovable statement related to ISP we need
some extra definitions. Let f be a weakly increasing number-theoretic
function such that 1 ≤ f(x) ≤ x, for x ∈ N.

3.1 Definition. A function G : X → N is called f -regressive if G(x) ≤
f(x), for all x ∈ X.

39
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3.2 Definition. Let X ⊆ N. Then X is called 0-ISP-dense(f) if |X| >
max{f(min(X)), 3}, and X is said to be (n + 1)-ISP-dense(f) if for all
f-regressive G : X → N, there exists Y ⊆ X such that Y is n-ISP-dense(f)
and

y < y′ → G(y) ≤ G(y′),

for all y, y′ ∈ Y , i.e. the restriction of G to Y is weakly increasing.

For the rest of this chapter we will leave out ISP and simply write n-
density, as this will always refer to n-ISP-density. Let us define a function
closely related to the property of being n-dense(f).

3.3 Definition. Define ISPf : N → N by ISPf (n) = ISPf (n, n), where
ISPf (n, a) is the least natural number b, such that [a, b] is n-dense(f).

It is not too difficult to see that for a constant function f the function
ISPf is primitive recursive. Moreover, one could prove that ISPf is Ack-
ermannian for f(i) = i. So in between constant functions and the identity
function there will be a threshold region for f where ISPf switches from
being primitive recursive to being Ackermannian. In this chapter we will

show that for f(i) = i
1

A−1
d

(i) the function ISPf is a primitive recursive for

every fixed d ∈ N, whereas for f(i) = i
1

A−1
ω (i) it becomes Ackermannian.

Figure 3.1 illustrates this phenomenon. Remark that in the figure, abus-
ing notation, ISPf is short for the statement expressing the totality of the
function ISPf , i.e. ∀x∃y (y = ISPf (x)).

As explained below, our results are intended to contribute partly to
the investigation of the strength of RT2

2, a classical problem in Reverse
Mathematics. One can find information on this problem in, for example,
[CJS01] and [Sim09].

We first introduce three infinitary principles which are related to RT2
2:

the Erdős-Szekeres principle (ES), the chain-antichain principle (CAC) and
the Erdős-Moser principle (EM). The first principle is the infinitary coun-
terpart of the finitary Erdős-Szekeres Theorem which states that a given
sequence a0, . . . , an2 of real numbers contains a weakly increasing subse-
quence of length n+ 1 or a strictly decreasing subsequence of length n+ 1
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-

6

IΣ1 0 ISPf

IΣ1 ` ISPf

f(i) = i

1

A
−1
ω

(i)

threshold region

f(i) = i

1

A
−1
d

(i)

Figure 3.1: Phase transition for ISPf .

([ES35]). So, ES states that a given infinite sequence a0, a1, . . . of real
numbers contains an infinite weakly increasing subsequence or an infinite
strictly decreasing subsequence. We will use the Erdős-Szekeres Theorem
in some proofs later on. The principle CAC is the assertion that a given
infinite partial order has either an infinite chain or an infinite antichain. It
is the infinitary counterpart of the finitary Dilworth Theorem which states
that a given partial order with distinct elements a0, . . . , an2 contains a chain
of length n+ 1 or an antichain of length n+ 1 ([Dil50]). Finally, let a tour-
nament be a complete directed simple graph. Then EM says that every
infinite tournament contains an infinite transitive subtournament. Erdős
and Leo Moser studied a finitary version of EM in [EM64].

It is not difficult to see that, over RCA0, RT2
2 yields ISP, ES, CAC and

EM. Well, we also have a reversal, namely RCA0 +EM+CAC proves RT2
2,

which makes EM and CAC particularly interesting for studying RT2
2. Clas-

sifying the strength of EM and CAC may yield progress in the investigation
of the strength of RT2

2. Notice that EM cannot be proved within RCA0,
since there exists a recursive tournament without an infinite recursive tran-
sitive subtournament ([BW05], Theorem 9). It is somewhat surprising that
even ISP generates all primitive recursive functions with its miniaturisa-
tion. However, this should not be seen as an indication that RCA0 + RT2

2

proves the totality of the Ackermann function.
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In the following section we give an upper and a lower bound for the
threshold function. In the third section we improve those results, and give
sharper bounds which were obtained later.

3.2 Classifying the phase transition

3.2.1 Lower bound

Recall that the phase transitions we study, will be triggered by modifying
a parameter function f . We have a look at the notion of n-density in the
case of f(i) = log(i). In the following proof we need the Erdős-Szekeres
Theorem, which is given in the introduction.

3.4 Theorem. If f(i) = log(i), then

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let a and n be given and note that if [a, b] is n-dense(f), then so
is [0, b − a]. Hence without loss of generality, we can assume a > 0. Put
b = 22(n+1)·(n+a+1)

. We claim that any Y ⊆ [a, b] which satisfies |Y | >
22(k+1)·(n+a+1)

is k-dense(log). The proof goes by induction on k. Assume
the assertion holds for k − 1, with k > 0. Assume that G : Y → N with
G(y) ≤ log(y) for every y ∈ Y . Then the Erdős-Szekeres Theorem yields
the existence of a set Z ⊆ Y such that G � Z is weakly increasing or
strictly decreasing and |Z| > 22(k+1−1)·(n+a+1)

. Most of the next inequalities
are straightforward:

G(min(Z)) ≤ log(min(Z))
≤ log(b)

≤ log(22(n+1)·(n+a+1)
)

≤ 2(n+1)·(n+a+1)

≤ 22k·(n+a+1)

< |Z|,
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where the fifth inequality holds because of k > 0 and the inequality

(n+ 1) · (n+ a+ 1) ≤ 2(n+a+1),

for all natural numbers n and a > 0. So in case G is strictly decreasing
on Z, then G(max(Z)) < 0, a contradiction. Thus G is weakly increasing
on Z. Since |Z| > 22(k+1−1)·(n+a+1)

the induction hypothesis yields that Z
is (k − 1)-dense(log), which implies that Y is k-dense(log). If k = 0 then
|Y | > 22(n+a+1) ≥ log(b) ≥ log(min(Y )).

Thus f(i) = log(i) yields a lower bound for the phase transition. We
consider this result with regard to the function ISPf , defined in the in-
troduction (Definition 3.3). Theorem 3.4 states that ISPlog is a provably
total function of IΣ1. Scrutinising the assertion y = ISPlog(x), it becomes
clear ISPlog is IΣ1-provably Σ1. Then Theorem 1.10 implies that ISPlog is
primitive recursive. More precisely, the proof of Theorem 3.4 reveals that
ISPlog is an elementary function.

3.2.2 Upper bound

Investigating the upper bound, we will use the functions Ff,k and Ff in-
troduced in Definition 2.4. As done in Chapter 2 we do not mention the
dependence on f explicitly to lighten the notation. Similarly, we continue
using Ad and Aω to denote members of the fast-growing hierarchy to avoid
ambiguity.

We consider an arbitrary natural number d and the number-theoretic
function f(i) = d

√
i. Using this f , the function Ff , shortly F , is Ackerman-

nian, which is demonstrated in [OW09].
The next two lemmas will be used in the proof of Lemma 3.7.

3.5 Lemma. Let [a, b] be n-dense( d
√ ). Then there exists Y ⊆ [a, b] such

that Y is (n− 1)-dense( d
√ ) and such that for all i with F i

1(a) ≤ b, we have
that Y ∩ [F i

1(a), F
i+1
1 (a)[ contains exactly one element.
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Proof. Define G0 : [a, b] → N as follows. Let x ∈ [a, b] and i, j ∈ N such
that x = F i

1(a) + j and F i
1(a) ≤ F i

1(a) + j < F i+1
1 (a). Then G0 is defined

by

G0(x) = b d

√
F i

1(a)c − j.

In order to be accurate, we will write down the floor symbols of the param-
eter function in the calculation below. Notice that

F i
1(a) + j < F i+1

1 (a)
= F1(F i

1(a))

= F
b d
√

F i
1(a)c

0 (F i
1(a))

= F i
1(a) + b d

√
F i

1(a)c,

which implies j < b d

√
F i

1(a)c, and so G0(x) > 0, for every x ∈ [a, b].
From now on, we leave out the floor symbols again. Then G0(x) ≤ d

√
x

for every x ∈ [a, b]. Since [a, b] is n-dense( d
√ ), there exists Y ⊆ [a, b]

which is (n−1)-dense( d
√ ) and on which G0 is weakly increasing. On every

interval [F i
1(a), F

i+1
1 (a)[∩[a, b] the function G0 is strictly decreasing. Hence

Y ∩ [F i
1(a), F

i+1
1 (a)[ contains at most one element.

In case there are intervals which contain no element of Y , we add to
Y an element of each such interval as follows. Let i be the smallest index
such that

Y ∩ [F i
1(a), F

i+1
1 (a)[= ∅.

We distinguish three different cases depending on the position of F i
1(a). If

i = 0, then add F 1
1 (a) − 1 to Y and consider the next interval without an

element of Y . In case 0 < i and F i+1
1 (a) ≤ b, search for the element in

[F i
1(a), F

i+1
1 (a)[ which has the same value under G0 as Y ∩ [F i−1

1 (a), F i
1(a)[

has. A quick look at G0 shows this element exists. Now add that element
to Y . Continue in this way until all intervals [F i

1(a), F
i+1
1 (a)[ with 0 < i

and F i+1
1 (a) ≤ b contain exactly one element of the enlarged Y . Finally, if

0 < i and F i
1(a) ≤ b < F i+1

1 (a), then add F i
1(a) to Y . The way in which we

extended Y results in G0 being still weakly increasing on Y . Since supersets
of (n− 1)-dense( d

√ ) sets are again (n− 1)-dense( d
√ ), we are done.
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The next lemma, as well as the idea behind its proof, is similar to the
previous one.

3.6 Lemma. Let n and k be natural numbers with n > k > 0. If Y ⊆ [a, b]
is (n− k)-dense( d

√ ) and Y ∩ [F i
k(a), F

i+1
k (a)[ contains exactly one element

for all i with F i
k(a) ≤ b. Then there exists a nonempty Z ⊆ Y such that Z

is (n− k − 1)-dense( d
√ ) and such that for all i with F i

k+1(a) ≤ b, we have
that Z ∩ [F i

k+1(a), F
i+1
k+1(a)[ is a singleton.

Proof. Define Gk : Y → N by Gk(yi
j) = b d

√
F i

k+1(a)c − j for yi
j ∈ Y such

that
yi

j ∈ [F i
k+1(a), F

i+1
k+1(a)[

and
yi

j ∈ [F j
k (F i

k+1(a)), F
j+1
k (F i

k+1(a))[.

As before we will write down the floor symbols of the parameter function
in the calculation below to be accurate. And once again, we will leave them
out afterwards. Remark that

F j
k (F i

k+1(a)) < F i+1
k+1(a)

= Fk+1(F i
k+1(a))

= F
b d

q
F i

k+1(a)c
k (F i

k+1(a)),

which yields j < b d

√
F i

k+1(a)c, and so Gk(y) > 0, for every y ∈ Y . Fur-
thermore, it is obvious that Gk(y) ≤ d

√
y, for every y ∈ Y . Since Y is

(n − k)-dense( d
√ ), there exists a nonempty Z ⊆ Y which is (n − k − 1)-

dense( d
√ ) and on which Gk is weakly increasing. Note that on every in-

terval Y ∩ [F i
k+1(a), F

i+1
k+1(a)[ the function Gk is strictly decreasing. Hence

Z ∩ [F i
k+1(a), F

i+1
k+1(a)[ contains at most one element.

In case there are intervals which contain no element of Z, we add to
Z an element of each such interval as follows. Let i be the smallest index
such that

Z ∩ [F i
k+1(a), F

i+1
k+1(a)[= ∅.
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We distinguish three different cases depending on the position of F i
k+1(a).

If i = 0, then add the maximal element of Y ∩[a, F 1
k+1(a)[ to Z and consider

the next interval without an element of Z. In case 0 < i and F i+1
k+1(a) ≤ b,

search for the element in Y ∩ [F i
k+1(a), F

i+1
k+1(a)[ which has the same value

under Gk as Z ∩ [F i−1
k+1(a), F

i
k+1(a)[ has. A quick look at Gk shows this

element exists. Now add that element to Z. Continue in this way until all
intervals [F i

k+1(a), F
i+1
k+1(a)[ with 0 < i and F i+1

k+1(a) ≤ b contain exactly one
element of the enlarged Z. Finally, if 0 < i and F i

k+1(a) ≤ b < F i+1
k+1(a),

then add the minimal element of Y ∩ [F i
k+1(a), F

i+1
k+1(a)[ to Z. As a result

of the speficic way in which we extended Z, the function Gk is still weakly
increasing on Z. Since supersets of (n−k−1)-dense( d

√ ) sets are (n−k−1)-
dense( d

√ ), we are done.

3.7 Lemma. Let a, b and n be natural numbers, with a ≥ 1. If [a, b] is
n-dense( d

√ ), then b ≥ Fn(a).

Proof. Assume [a, b] is n-dense( d
√ ). Then applying Lemma 3.5 and Lemma

3.6 results in the existence of a nonempty Z ⊆ [a, b] which is 0-dense( d
√ )

and such that [F i
n(a), F i+1

n (a)[∩Z is a singleton for all i with F i
n(a) ≤ b.

Then
|Z| > d

√
minZ ≥ d

√
a ≥ 1,

as a ≥ 1 and Z is 0-dense( d
√ ). Hence Z contains at least two elements and

the second one is greater than Fn(a), so b ≥ Fn(a).

We are now ready to state the unprovability result, which leads to the
upper bound of the phase transition.

3.8 Theorem. Let d ∈ N and f(i) = d
√
i. Then

IΣ1 0 (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. As seen in the introductory chapter (Theorem 1.10), the provably
recursive functions of IΣ1 are exactly the primitive recursive functions.
Assume by contradiction that

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)). (3.1)
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Lemma 3.7, with n = a ≥ 1, implies ISP d
√ (n) ≥ F (n), for every n ∈ N. In

combination with (3.1) this yields that F is a provably recursive function
of IΣ1, and thus primitive recursive. This contradicts the fact that F has
Ackermannian growth rate.

Combining Theorem 3.4 and Theorem 3.8, we can sharpen the range
of the threshold region in comparison with our first estimation. Indeed,
instead of claiming that the phase transition occurs for a function f between
constant functions and the identity function, it is now justified to say that
the threshold region for f is between log and d

√ . In the next section we
will sharpen this region.

3.3 Improved bounds

As announced in the introduction we will improve the bounds for the thresh-
old function we obtained in Section 3.2, and present a more elegant result.

3.3.1 Lower bound

We have a look at the notion of ISP-density(f) in the case of f(i) = i
1

A−1
d

(i) ,
with d a natural number.

3.9 Theorem. Let d ∈ N and f(i) = i
1

A−1
d

(i) . Then

IΣ1 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let a and n be given and note that if [a, b] is n-dense(f), then so
is [0, b − a]. Hence without loss of generality, we can assume a > 0. Put
b = 2Ad(a·2n)·2n

. We claim that any Y ⊆ [a, b] with |Y | > 2Ad(a·2n)·2k
is

k-dense(f). The proof goes by induction on k. Assume the assertion holds
for k−1, with k > 0, and let Y ⊆ [a, b] with |Y | > 2Ad(a·2n)·2k

. Assume that
G : Y → N, such that G(y) ≤ f(y) for every y ∈ Y . Then by the Erdős-
Szekeres Theorem there is a set Z ⊆ Y such that G � Z is weakly increasing
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or strictly decreasing and |Z| > 2Ad(a·2n)·2(k−1)
. Since 2Ad(a·2n)·2n ≥ Ad(2n),

the following holds:

G(min(Z)) ≤ f(min(Z))
≤ f(b)

= (2Ad(a·2n)·2n
)

1

A−1
d

(2Ad(a·2n)·2n
)

≤ (2Ad(a·2n)·2n
)

1
2n

= 2Ad(a·2n)

≤ 2Ad(a·2n)·2(k−1)

< |Z|.

So if G is strictly decreasing on Z, then G(max(Z)) < 0, a contradiction.
Thus F is weakly increasing on Z. Since |Z| > 2Ad(a·2n)·2(k−1)

the induc-
tion hypothesis yields that Z is (k − 1)-dense(f), which implies that Y is
k-dense(f). If k = 0, then |Y | > 2Ad(a·2n) ≥ f(b) ≥ f(min(Y )). Hence, Y
is 0-dense(f), which completes the proof by induction.

The previous theorem shows that f(i) = i
1

A−1
d

(i) yields a lower bound,
for every fixed d ∈ N. If we use the Ackermann function Aω instead of a
dth branch Ad, we will get an upper bound, as demonstrated in the second
part of this section.

3.3.2 Upper bound

We will use the number theoretic function f(i) = i
1

A−1
ω (i) . Once again the

hierarchy of functions (Fn)n<ω as introduced in Definition 2.4 turns out
very useful.

One can prove the following three lemmata in the same way as done in
Section 3.2 (Lemma 3.5 – Lemma 3.7). It suffices to replace the dth root
function d

√
i by f(i).
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3.10 Lemma. Let [a, b] be n-dense(f). Then there exists Y ⊆ [a, b] such
that Y is (n− 1)-dense(f) and such that for all i with F i

1(a) ≤ b, we have
that Y ∩ [F i

1(a), F
i+1
1 (a)[ contains exactly one element.

3.11 Lemma. Let n and k be natural numbers with n > k > 0. If Y ⊆ [a, b]
is (n − k)-dense(f) and Y ∩ [F i

k(a), F
i+1
k (a)[ contains exactly one element

for all i with F i
k(a) ≤ b. Then there exists a nonempty Z ⊆ Y such that Z

is (n − k − 1)-dense(f) and such that for all i with F i
k+1(a) ≤ b, we have

that Z ∩ [F i
k+1(a), F

i+1
k+1(a)[ is a singleton.

3.12 Lemma. Let a, b and n be natural numbers, with a ≥ 1. If [a, b] is
n-dense(f), then b ≥ Fn(a).

Finally, to prove that f(i) = i
1

A−1
ω (i) yields an upper bound for the

density statement, we use the function ISPf , introduced in section 3.1.
Due to Theorem 1 in [OW09], F has Ackermannian growth rate. Lemma
3.12 yields for every n ≥ 1,

ISPf (n) ≥ Fn(n) = F (n),

so ISPf is Ackermannian. Since the provably recursive functions of IΣ1

are exactly the primitive recursive functions, we immediately obtain the
following result.

3.13 Theorem. If f(i) = i
1

A−1
ω (i) , then

IΣ1 0 (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Combining Theorem 3.9 and Theorem 3.13 we have obtained a threshold
for a phase transition related to the ISP principle, illustrated by Figure 3.1.
It is clear that, by regarding Aω as the limit of the dth branches Ad for d
going to infinity, this result is sharp as well as elegant.

We conclude this chapter with some remarks about possible future re-
search. In a similar way as we have done for ISP, we could connect ES and
CAC with their finitary versions via an appropriate density notion. More-
over, one could consider so-called ES-density and CAC-density depending
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on a parameter function f : N → N and carry out a similar study of unprov-
ability and phase transitions. We conjecture that one would obtain results
which are similar to the ones above. The following problem then arises.
Suppose we combine IΣ1 with CAC-density in an appropriate way, do we
obtain the same provably recursive functions as given by RCA0 + CAC?
The idea is again to approximate Ramsey for pairs here and CAC would be
a first step. The case of EM-density has already been studied in [BW05],
which revealed a certain weakness of EM.



Chapter 4

INFINITE RAMSEY THEOREM

4.1 Introduction

4.1.1 Historical background

In 1985 McAloon writes in [McA85]:

It would be interesting to develop proofs of these results with
the “direct” method of α-large sets of Ketonen-Solovay.

The results mentioned in this quote concern concrete examples of incom-
pleteness using finite versions of the Ramsey Theorem. In that paper he
gives a first-order axiomatisation of the first-order consequences of ACA0 +
RT, where RT stands for the infinite version of Ramsey’s theorem, i.e. RT
equals ∀n ∀kRTn

k , using the notation of Subsection 1.1.3.
Ketonen and Solovay used α-largeness in their paper on rapidly growing

Ramsey functions ([KS81]), in which they extended the famous result of
Paris and Harrington. They established sharp upper and lower bounds
on the Ramsey function by purely combinatorial means. In this context
it is appropriate to mention [Kun95] in which Kenneth Kunen uses the
Boyer-Moore Prover, Nqthm, to verify the Paris-Harrington version of the
Ramsey Theorem. Teresa Bigorajska and Kotlarski generalised the ideas of
Ketonen and Solovay to ordinals below ε0 and obtained several results on

51
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partitioning α-large sets (see [BK99, BK02, BK06]). Here, we will generalise
some of their results in order to allow ordinals up to εω.

Since Paris introduced them in the late seventies densities proved to
be of interest for studying independence results (see e.g. [Par78, FMS82,
BW05] and Chapter 2 and Chapter 3). We will define such a density as a
finitary version of the Ramsey Theorem. This time, we consider the full
infinite version with no restrictions on the dimensions or colours (RT). It
turns out that our miniaturisation gives rise to transfinite induction up to
εω. Notice that McAloon proved that ACA0 + RT can be axiomatised by
ACA0 + ∀X∀n (TJ(n,X), the nth Turing jump of X, exists). Analysing
the latter theory one obtains that the proof-theoretic ordinal of ACA0+RT
is exactly εω. For a more recent approach we refer to the PhD dissertation
of Bahareh Afshari ([Afs09]).

We would like to remark that an alternative way to miniaturise RT
has been given by Zygmunt Ratajczyk in [Rat93]. Ratajczyk’s approach is
based on relating iterated Ramseyan principles to iterated reflection prin-
ciples.

4.1.2 Definitions and preliminaries

In this subsection we start by defining the pseudonorm, and proving some
useful properties about it. Afterwards we estimate the number of ordinals
having a specific bound on their size and pseudonorm, and we finish the
preliminaries by giving some lower bounds for Hardy functions.

The pseudonorm of an ordinal α is introduced exactly as done by Kot-
larski in [Kot].

4.1 Definition. We define the pseudonorm psn: (≤ εω) → N by the fol-
lowing conditions:

1. psn(n) = n for n < ω;

2. psn(α) = max{b0, . . . , bs, a0, . . . , as} where α is written in its Cantor
normal form (1.1) and bj = 1+psn(αj) if αj is not an epsilon number
and bj = psn(αj) otherwise.
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3. If α is an epsilon number εβ ≤ εω, then psn(α) = 1+max{1,psn(β)}.

Note that this pseudonorm differs from the one in [BK06] and [KPW07].
In those papers the pseudonorm of α is defined as the greatest natural num-
ber which occurs in its Cantor normal form. That definition is appropriate
for ordinals below ε0, but will lead to difficulties in our case. Therefore we
use a slightly different notion. Roughly, going through the Cantor normal
form we add 1 to the pseudonorm whenever we jump to an exponent. A
close look at the definition, in particular the second item, will make this
clear.

The following properties will be useful. Proofs of the next two lemmas
can be found in [Kot] (Lemma 4.1 and Lemma 4.5).

4.2 Lemma. Let λ ≤ εω be a limit ordinal, α < λ and m ∈ N. If psn(α) <
m, then λ[m] ⇒m α.

4.3 Lemma. For every limit λ ≤ εω, psn(λ[m]) ≥ m.

The pseudonorm of some ordinals having a specific shape is simple.
Moreover, they turn out to be handy to know later on, which is the reason
why we have a look at them in the next two lemma’s. Recall the definition
of ωk in Subsection 1.2.2.

4.4 Lemma. Let k ≥ 1, then psn(ωk) = k + 1.

Proof. Straightforwardly by induction on k.

4.5 Lemma. If k ≥ 2, then

1. psn(ωk(ε0 + 1)) = k + 2;

2. psn(ωk(εm + 1)) = m+ k + 1, for m ≥ 1.

Proof. 1. By induction on k. If k = 0, then

psn(ω0(ε0 + 1)) = psn((ε0 + 1)) = 2.
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Assume the statement for k. Then

psn(ωk+1(ε0 + 1)) = psn(ωωk(ε0+1))
= 1 + psn(ωk(ε0 + 1))
= k + 3.

2. By induction on k. If k = 0, then

psn(ω0(εm + 1)) = psn((εm + 1)) = m+ 1,

since m ≥ 1. Assume the statement for k. Then

psn(ωk+1(εm + 1)) = psn(ωωk(εm+1))
= 1 + psn(ωk(εm + 1))
= m+ k + 2.

Given an ordinal α and a natural number n, we would like to be able
to estimate the number of ordinals below α having a pseudonorm smaller
than n. Therefore, we introduce the following notations:

Nk(a) = |{α < ωk : psn(α) ≤ a}|

and
Mk,m(a) = |{α < ωk(εm + 1) : psn(α) ≤ a}|,

and study those sets. We also need the function town(α) which is defined
for ordinals α with 0 < α < εω, by tow0(α) = 1 and towk+1(α) = αtowk(α).

We will give estimations for Nk(a) and Mk,m(a) for a which are at least
1, as psn(α) ≤ 0 implies the trivial case α = 0.

4.6 Lemma. Let a, k ∈ N, with 1 ≤ a and 1 ≤ k. Then

Nk(a) < towk(a+ 2).
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Proof. By induction on k. If k equals 1, then

N1(a) = |{α < ω : psn(α) ≤ a}|
= |{0, . . . a}|
= a+ 1
< a+ 2.

Assume the inequality for k, we show it for k + 1.

Nk+1(a) = |{α < ωk+1 : psn(α) ≤ a}|
= |{α < ωωk : psn(α) ≤ a}|
≤ (a+ 1)Nk(a−1)

< (a+ 1)Nk(a)

< (a+ 2)towk(a+2)

= towk+1(a+ 2).

Let us explain how we obtained the first inequality. Let {α < ωk : psn(α) ≤
a − 1} = {α0, . . . , αs} such that the elements are presented in decreasing
order. Every ordinal α < ωωk with psn(α) ≤ a can be written in a unique
way as follows:

α = ωα0 · a0 + . . .+ ωαs · as,

where some ai, i ≤ s, could be equal to zero. This form is indeed very
similar to the Cantor normal form (1.1), except for the possibility of having
some coefficients equal to zero. It is easy to see that each such α can be
identified with a sequence of coefficients which has length Nk(a−1). Now it
suffices to notice that the coefficients must be strictly smaller than a+1.

4.7 Lemma. Let a, k,m ∈ N, with 1 ≤ a. Then

Mk,m(a) < tow(m+1)2a+k+1(a+ 2).

Proof. Take any a ∈ N, with 1 ≤ a. The proof proceeds by main induction
on m and subsidiary induction on k.
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1. m = 0.

(a) k = 0. Using the fact that psn(ωn) = n+1 (Lemma 4.4) and the
estimation in Lemma 4.6, we get

M0,0(a) = |{α < ω0(ε0 + 1) : psn(α) ≤ a}|
= |{α < ε0 + 1 : psn(α) ≤ a}|
≤ 1 + |{α < ωa : psn(α) ≤ a}|
< 1 + towa(a+ 2)
< tow2a+1(a+ 2).

(b) k → k + 1. Assume the statement for k. Using the subsidiary
induction hypothesis, we obtain

Mk+1,0(a) = |{α < ωk+1(ε0 + 1) : psn(α) ≤ a}|
= |{α < ωωk(ε0+1) : psn(α) ≤ a}|
≤ (a+ 1)Mk,0(a−1)

< (a+ 2)Mk,0(a)

< (a+ 2)tow2a+k+1(a+2)

< tow2a+k+2(a+ 2).

The first inequality is obtain in a similar way as in Lemma 4.6.

2. m→ m+ 1. Assume the statement for m.

(a) k = 0. Using Lemma 4.5 and the main induction hypothesis, we
obtain

M0,m+1(a) = |{α < ω0(εm+1 + 1) : psn(α) ≤ a}|
= |{α < εm+1 + 1 : psn(α) ≤ a}|
≤ 1 + |{α < ωa(εm + 1) : psn(α) ≤ a}|
< 1 + tow(m+1)2a+a+1(a+ 2)

< tow(m+2)2a+1(a+ 2).
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(b) k → k + 1. Assume the statement for k. Using the subsidiary
induction hypothesis, we obtain

Mk+1,m+1(a) = |{α < ωk+1(εm+1 + 1) : psn(α) ≤ a}|
= |{α < ωωk(εm+1+1) : psn(α) ≤ a}|
≤ (a+ 1)Mk,m+1(a−1)

< (a+ 2)Mk,m+1(a)

< (a+ 2)tow(m+2)2a+k+1(a+2)

= tow(m+2)2a+k+2(a+ 2).

Also in this case we obtained the first inequality by proceeding
as explained in Lemma 4.6.

The following lemmas are about lower bounds for the values of the
functions hα of the Hardy hierarchy (hα)α≤εω (see Definition 1.13).

4.8 Lemma. If m ≥ 1 and a ≥ 1, then we have for all x > 0,

hω2·2am(x) ≥ towa(. . . (towa︸ ︷︷ ︸
m times

(x+ 1)) . . .).

Proof. Fix a ≥ 1. By induction on m ≥ 1.
If m = 1, then hω2·2a(x) ≥ towa(x+ 1), by Lemma 4.5 in [BK06].
Assume the statement is proven for m, we prove it for m+ 1. The case

m = 1 and the induction hypothesis imply

hω2·2a(m+1)(x) ≥ hω2·2am(hω2·2a(x))

≥ hω2·2am(towa(x+ 1))
≥ towa(. . . (towa︸ ︷︷ ︸

m times

(towa(x+ 1) + 1)) . . .)

≥ towa(. . . (towa︸ ︷︷ ︸
m+1 times

(x+ 1)) . . .),

which completes the proof.
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We will need the following small lemma to prove Lemma 4.10.

4.9 Lemma. Let k,m and n be natural numbers with k ≥ 1 and n ≥ 2.
Then ωk(εm + 1) ⇒n εm · 2.

Proof. Because of Lemma 1.7, it suffices to prove the statement for n = 2.
The proof goes by induction on k. If k = 1, then

ωεm+1[2] = ωεm · 2 = εm · 2,

so ω1(εm + 1) ⇒2 εm · 2. Assume the statement for k. We will prove it for
k + 1. First notice that

ωk+1(εm + 1)[2] = ωk(ωεm+1[2]) = ωk(ωεm · 2) = ωk(εm · 2).

Also, εm ⇒2 1 by Lemma 1.9, and thus εm·2 ⇒2 εm+1 because of additivity
of the fundamental system. None of the elements of the sequence witnessing
this last relation is an epsilon number, so we can apply k times Lemma
3.6 of [Kot] to get ωk(εm · 2) ⇒2 ωk(εm + 1). The induction hypothesis
yields ωk(εm + 1) ⇒2 εm · 2. Transitivity of the ⇒2 relation now implies
ωk+1(εm + 1) ⇒2 εm · 2, which concludes the proof.

4.10 Lemma. For all m ≥ 0 and a > 4, we have

hεm(a) > hω2·2a(m+3)(2a).

Proof. By induction on m.
If m = 0, then

hε0(a) = hωa(a)
≥ hω3+ω·3(a)
= hω2·8a(8a)
= hω2·2a(hω2·6a(8a))
> hω2·6a(8a)
≥ hω2·6a(2a),
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where the last inequality holds because hα is an increasing function. Due
to Lemma 4.2, we have ωa ⇒a ω

3 +ω · 3, since psn(ω3 + ω · 3) = 4 < a and
ω3 + ω · 3 < ωa. Then the first inequality is implied by Lemma 1.19.

Assume the statement holds for m, we prove it for m+ 1. We have

hεm+1(a) = hωa(εm+1)(a)

≥ hεm·2(a)
= hεm(hεm(a))
> hεm(hω2·2a(m+3)(2a))

> hω2·2a(m+3)(hω2·2a(m+3)(2a))

= hω2·2a(m+4)(hω2·2a(m+2)(2a))

≥ hω2·2a(m+4)(2a).

The first inequality holds because of Lemma 1.19, as ωa(εm+1) ⇒a εm ·2 by
Lemma 4.9. The second inequality is caused by the induction hypothesis.
The third inequality holds because of the induction hypothesis and the fact
that hα is increasing (Lemma 1.19). The last inequality is because hα is an
increasing function.

4.11 Lemma. For all m ≥ 0 and a > 4, we have

hεm(a) > 2 towa(. . . (towa︸ ︷︷ ︸
m+2 times

(2a+ 1)) . . .).

Proof. Combine Lemma 4.8 and Lemma 4.10 with

towa(. . . (towa︸ ︷︷ ︸
m+3 times

(2a+ 1)) . . .) > 2 towa(. . . (towa︸ ︷︷ ︸
m+2 times

(2a+ 1)) . . .).

4.12 Lemma. Let n,m and x be natural numbers such that n ≥ 2, and
x ≥ max{2,m}. Then

1. hωn·(m+1)(x) ≥ n(m+ 2)x;
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2. hωω ·(m+1)(x) ≥ (m+ 1)2x2.

Proof. 1. By main induction on n and subsidiary induction on m.

(a) n = 2.
m = 0. Then

hω2(x) ≥ hω·x(x)
≥ 2xx

≥ 4x
≥ 2(0 + 2)x.

m→ m+ 1. Then

hω2·(m+2)(x) = hω2·(m+1)(hω2(x))

≥ hω2·(m+1)(2
xx)

≥ 2(m+ 2)2xx

≥ 2(m+ 3)x.

(b) n→ n+ 1.
m = 0. Then, using the main induction hypothesis twice, we
obtain

hωn+1(x) = hωn·x(x)
≥ hωn·(x−1)(hωn(x))

≥ hωn·(x−1)(2nx)

≥ hωn(2nx)
≥ 2n · 2nx
≥ 4n2x

≥ (n+ 1)(0 + 2)x.



Chapter 4. Infinite Ramsey Theorem 61

m → m + 1. Then, using the subsidiary induction hypothesis
and one of the equalities above,

hωn+1·(m+2)(x) = hωn+1·(m+1)(hωn+1(x))

≥ hωn+1·(m+1)(2
xx)

≥ (n+ 1)(m+ 2)2xx

≥ (n+ 1)(m+ 3)x.

2. By induction on m.
m = 0. Then

hωω(x) ≥ hωx(x)
≥ hω2(x)
≥ 2xx

≥ x2.

m→ m+ 1. Then, using the induction hypothesis,

hωω ·(m+2)(x) = hωω ·(m+1)(hωω(x))

≥ hωω ·(m+1)(2
xx)

≥ (m+ 1)2(2xx)2

≥ (m+ 1)222xx2

≥ (m+ 2)2x2,

which completes the proof.

4.2 The Estimation Lemma

As mentioned in the introduction, we will generalise results of Bigorajska
and Kotlarski about partitioning α-large sets. Many of the results below
were already obtained in [BK06] for ordinals below ε0. Some of the lemmas
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and proofs can be generalised to ordinals below εω in a rather straightfor-
ward manner. However, other results need much more reworking, partly as
a result of the slightly different pseudonorm.

Crucial for the study will be generalising the Estimation Lemma, which
we will do in this section. Let us start by defining the natural sum. The
idea remains the same as for ordinals below ε0.

4.13 Definition. If α and β are ordinals below εω, then we define their
natural sum in the following manner. We write both α and β in their
Cantor normal forms, and permute items of both of these expansions so
that we obtain a nonincreasing sequence of exponents. Then we write this
sequence as the Cantor normal form of some ordinal which we denote α⊕
β (to be more precise we join items which have the same exponents by
removing the coefficients behind parentheses).

The natural sum will always be greater than or equal to the usual sum.

4.14 Lemma. If hβ⊕α(a) ↓, then hβ ◦ hα(a) ↓ and hβ ◦ hα(a) ≤ hβ⊕α(a).
In other words, if a set A is β ⊕α-large, then there exists u ∈ A, such that
{a ∈ A : a ≤ u} is α-large and {a ∈ A : u ≤ a} is β-large.

Proof. The proof given in [BK06] (Lemma 3.3) generalises to ordinals below
εω (use Lemma 1.17 and Lemma 1.19).

Given a natural number a and an ordinal α, let us determine the greatest
ordinal below α whose pseudonorm is less than or equal to a. We define
the symbol GO(a, α) for a > 0 and α > 0 by induction on α. We let
GO(a, 1) = 0, GO(a, ω) = a, GO(a, ε0) = GO(a, ωa) and GO(a, εm+1) =
GO(a, ωa(εm + 1)), for m ≥ 0. Other cases are as follows. The successor
step becomes:

GO(a, α+ 1) =

{
α if psn(α) ≤ a,

GO(a, α) if psn(α) > a.

Before giving the limit step we put for ν not an epsilon number:

GO(a, ων) = ωGO(a−1,ν) · a+ GO(a, ωGO(a−1,ν)).
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Finally, if α = ξ + ων in short Cantor normal form, with ξ 6= 0, then

GO(a, α) =

{
ξ + GO(a, ων) if psn(ξ) ≤ a,

GO(a, ξ) if psn(ξ) > a.

We extend Lemma 3.6 of [BK06]. Recall the definition of ≫ given in
Subsection 1.2.2.

4.15 Lemma. For every a > 0 and every α > 0 we have: for all γ if γ < α
and psn(γ) ≤ a, then γ ≤ GO(a, α).

Proof. By induction on α. We consider only those cases which differ sig-
nificantly from the ones proven in [BK06].

For α = ε0 and for α = εm+1 with m ≥ 0 the statement is obvious,
having Lemma 4.4 and Lemma 4.5 in mind. As we changed the definition
of the pseudonorm, we need to reconsider the case α = ων , with ν not an
epsilon number. So, assume the statement holds for each β < α = ων . Let
γ < ων and psn(γ) ≤ a. Write γ = ωξ · g + ψ with ωξ ≫ ψ. Then ξ < ν,
because γ < α, so ξ ≤ GO(a−1, ν) because 1+psn(ξ) ≤ psn(γ) ≤ a, so we
may apply the inductive assumption to ν. Also g ≤ a because psn(γ) ≤ a.
Moreover psn(ψ) ≤ psn(γ) ≤ a and ψ < ωξ, so ψ < ωGO(a−1,ν), so by
the inductive assumption applied to this ordinal, ψ ≤ GO(a, ωGO(a−1,ν))).
Combining those facts we get

γ = ωξ · g + ψ

≤ ωGO(a−1,ν) · a+ GO(a, ωGO(a−1,ν))
= GO(a, ων),

as required.
The case α = ξ + ων , where ξ � ων and ξ 6= 0, is dealt with as in

[BK06].

In the next definition we encounter the new notation (< α) which de-
notes the set of all ordinals strictly below α, for any ordinal α. The set
(≤ α) is defined likewise.
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4.16 Definition. Define F : (< εω) → (< εω) by the following conditions:

1. F (0) = 0;

2. F (α+ 1) = F (α) + 1;

3. β � α⇒ F (β + α) = F (β)⊕ F (α);

4. F (ωn) = ωn + ωn−1 + . . .+ ω0 for n < ω;

5. F (ωα) = ωα · 2 + 1 for α ≥ ω.

Let us write an explicit formula for F . Suppose α is written in Cantor
normal form with the difference that we allow some mi’s to be zero, i.e.

α = ωα0 · a0 + . . .+ ωαs · as + ωn ·mn + . . .+ ω0 ·m0,

where α0 > . . . > αs ≥ ω and n < ω. Then F (α) is equal to

ωα0 · 2a0 + . . .+ ωαs · 2as

+ωn ·mn + ωn−1 · (mn +mn−1) + . . .+ ω0 · (mn + . . .+m0) (4.1)
+(a0 + . . .+ as).

Remark that for ωω ≤ α < εω, F (α) is approximatively equal to α · 2.
Above we defined the natural sum for two ordinals. We will also use the
natural product of an ordinal and a natural number. The aim is similar to
the one for introducing the natural sum, namely, ensuring that no terms
disappear while multiplying.

4.17 Definition. Let α ≤ εω be an ordinal and n a natural number. The
natural product α� n is defined by

α� n = α⊕ . . .⊕ α︸ ︷︷ ︸
n times

.

As one can grasp looking at some simple examples, the natural product
is always greater than or equal to the usual product. We will sometimes
write down ε−1 instead of ω in order to make notation uniform. In the
proof of the next lemma, for example, it will be handy.
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4.18 Lemma. If c and m are natural numbers, with c ≥ 4, and ν > 1 an
ordinal, then

psn(F (GO(c, ων))� (m+ 3)) ≤ c · tow2c2+c(c+ 2) · (m+ 3).

Proof. The statement is a consequence of the explicit formula (4.1) for F .
Suppose ωk(εl+1) ≤ GO(c, ων) < ωk+1(εl+1), with k ∈ N and l ∈ N∪{−1}.
Then clearly k + l < c, because of Lemma 4.5. If GO(c, ων) is written in
its Cantor normal form, then each summand ωρ · c adds c to the coefficient
of ω0, which is the largest coefficient occurring. The number of such terms
in the expansion is no more than |{α < ωk(εl + 1) : psn(α) ≤ c}|, which
at its turn is less than tow(l+1)2c+k+2(c + 2) by Lemma 4.7 in case l ≥ 0,
and by Lemma 4.6 if l = −1 since ωk(ω + 1) < ωk+2. Due to k+ l < c, the
latter number is less than tow2c2+c(c+ 2).

Coefficients of terms ωρ ·c with ρ ≥ ω are multiplied by two, so they be-
come 2c after applying F , which is still below tow2c2+c(c+2). Remark that
exponents of F (GO(c, ων)) will not change the pseudonorm, as they do not
increase. When we take the natural sum of the m+ 3 terms F (GO(c, ων)),
it becomes clear that psn(F (GO(c, ων))� (m+ 3)) is going to be less than
or equal to c · tow2c2+c(c+ 2) · (m+ 3) (the coefficient of ω0 after summa-
tion).

4.19 Lemma. Let k,m ∈ N ∪ {−1}, α and β ordinals with β � α, such
that either ωk(εm + 1) ≤ β + α < ωk+1(εm + 1), or β + α = εm (k is set
−1), or β +α is below ω (k and m are set −1), and A ⊆ N with min(A) ≥
max{k,m + 2, 4,psn(α)}. If G : A → (≤ β + α) is strictly decreasing and
psn(G(a)) ≤ minA+ (m+ 2)a, for all a ∈ A, then {a ∈ A : G(a) ≥ β} is
at most F (α)� (m+ 3)-large.

Proof. The proof has the same structure as the one of Lemma 3.10 in
[BK06], but needs serious adaption to our situation. First remark that
in case β + α < ω, the statement is easily proved. Let T (α) denote the
statement of the lemma without the quantifier ∀α. We prove ∀αT (α) by
induction on α.
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For α = 0 there is nothing to prove, for the set {a ∈ A : G(a) ≥ β}
is either void or has only one element, so is at most 0-large. Note that
F (0)� (m+ 3) = 0.

Assume T (α) for α; we prove it for α + 1. So let β � α + 1 and let
G : A → (≤ β + α + 1) satisfy the assumption. Let A = {a0, . . . , as} with
the elements given in increasing order. Thus, G(a0) ≤ β + α + 1, hence
G(a1) ≤ β + α. We apply the inductive assumption to G � A′, where
A′ = A\{a0}. Hence {a ∈ A′ : G(a) ≥ β} is at most F (α)� (m+3)-large.
It follows that {a ∈ A : G(a) ≥ β} is at most (F (α)� (m+ 3) + 1)-large.
But F (α + 1) = F (α) + 1, so {a ∈ A : G(a) ≥ β} is a fortiori at most
F (α+ 1)� (m+ 3)-large.

Let λ be the limit and assume T (α) for all α < λ. We consider several
cases because the definition of F depends on the form of λ. In each case
let G : A→ (≤ β + λ) satisfy the assumption, let D = {a ∈ A : G(a) ≥ β}
be enumerated in increasing order as {d0, . . . , dr}.

Case 1: λ = ω. So let β � ω and D be as defined above. Suppose
G : A → (≤ β + ω) satisfies the assumption. Then G(d0) ≤ β + ω, so
G(d1) ≤ β + a0 + (m + 2)d1. Let D′ = D \ {d0}. Then for x ∈ D′, G(x)
must be of the form β+kx. The function x 7→ kx, being strictly decreasing,
is one-to-one, so |D′| ≤ a0 + (m + 2)d1 + 1 ≤ (m + 3)d1. Hence, D′ is at
most (m + 3)d1-large, which is a fortiori at most ω � (m + 3)-large. Thus
D is at most (ω � (m+ 3) + 1)-large, so at most F (ω)� (m+ 3)-large, as
F (ω) = ω + 1.

Case 2: λ = ωn for some 1 < n < ω. Then G(a0) ≤ β + ωn, so

G(a1) ≤ GO(c, β + ωn)
≤ β + GO(c, ωn)

≤ β + ωn−1 · c+ . . .+ ω0 · c,

where c stands for a0 + (m+ 2)a1. By the inductive assumption applied to

α = ωn−1 · c+ . . .+ ω0 · c,

the set D \ {a0} is at most F (α)� (m+ 3)-large. Since

F (α) = ωn−1 · c+ ωn−2 · 2c+ . . .+ ω1 · (n− 1)c+ ω0 · nc,
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we get

F (α)�(m+ 3)

= ωn−1 · c(m+ 3) + ωn−2 · 2c(m+ 3) + . . .+ ω0 · nc(m+ 3).

Assume that D is not at most F (ωn) � (m + 3)-large, so the set E =
D \ {maxD} is still F (ωn) � (m + 3)-large. Recall that F (ωn) = ωn +
ωn−1 + . . .+ ω0, so

F (ωn) · (m+ 3) = ωn · (m+ 3) + ωn−1 · (m+ 3) + . . .+ ω0 · (m+ 3).

Let z = hE
ωn·(m+2)+ωn−1·(m+3)+...+ω0·(m+3)(a0). Having in mind that n ≥ 2

and a1 > a0 ≥ m and using Lemma 1.19, Lemma 4.2 and Lemma 4.12, we
obtain the following inequalities

z ≥ hE
ωn·(m+2)+ωn−1·(m+3)+...+ω·(m+3)(a1 +m+ 2)

≥ hE
ωn·(m+2)(2

m+3 · a1)

≥ n(m+ 3)2m+3 · a1

> n(a0 + (m+ 2)a1)(m+ 3)
= nc(m+ 3)
= psn(F (α)� (m+ 3)).

From the inequality above we infer that ωn ⇒z F (α)� (m+ 3) by Lemma
4.2. Now Lemma 1.19 implies that as hE

ωn(z) exists, also hE
F (α)�(m+3)(z)

exists, and so hE
F (α)�(m+3)(a1) exists. This contradicts the fact thatD\{a0}

is at most F (α)� (m+ 3)-large.
Case 3: λ = ωω. As usual, we have G(a0) ≤ β + ωω, so

G(a1) ≤ GO(c, β + ωω)
≤ β + GO(c, ωω)

= β + ωc−1 · c+ ωc−2 · c+ . . .+ ω0 · c,

where c stands for a0 + (m + 2)a1. By the inductive assumption applied
to α = ωc−1 · c + ωc−2 · c + . . . + ω0 · c we infer that D \ {a0} is at most
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F (α)� (m+ 3)-large, where F (α)� (m+ 3) equals

ωc−1 · c(m+ 3) + ωc−2 · 2c(m+ 3) + . . .+ ω0 · c2(m+ 3).

Assume that D is not at most F (ωω) � (m + 3)-large, so D \ {a0} is not
at most (ωω · 2(m + 3) + m + 2)-large. Let E = D \ {a0,maxD} and
z = hE

ωω ·(2m+5)+m+2(a1). Then, by Lemma 4.12,

z ≥ hE
ωω ·(m+3)(h

E
ωω ·(m+2)(a1 +m+ 2))

≥ hE
ωω ·(m+3)((m+ 2)2(a1 +m+ 2)2)

≥ (m+ 3)2((m+ 2)2(a1 +m+ 2)2)2

> c2(m+ 3)
= psn(F (α)� (m+ 3)),

so ωω ⇒z F (α) � (m + 3) by Lemma 4.2. Again Lemma 1.19 implies
the existence of hE

F (α)�(m+3)(z), as hE
ωω(z) exists, and thus hE

F (α)�(m+3)(a1)
exists. Hence D \{a0} is not at most F (α)� (m+3)-large, a contradiction.

Case 4: λ = ων with ν > ω not an epsilon number. Using the same
notation as above we see that G(a1) ≤ β + GO(c, ων), where c stands for
a0 + (m+ 2)a1. We apply the inductive assumption to α = GO(c, ων) and
infer that D\{a0} is at most F (GO(c, ων))�(m+3)-large. Assume that D
is not at most F (ων)�(m+3)-large, so is not at most (ων ·2(m+3)+m+3)-
large. Then D \ {a0} is not at most (ων · 2(m+ 3) +m+ 2)-large, so E =
D \{a0,maxD} is (ων ·2(m+3)+m+2)-large. Let z = hE

ων ·(m+3)+m+2(a1)
and recall that a1 > max{4,m + 2,psn(ων)}. The following inequalities
serve the purpose of showing z > psn(F (GO(c, ων))� (m+ 3)). The basic
idea is to increase the argument in order to safely step down the ordinal
and still end up with a sufficiently large upper bound. While doing so we
apply Lemma 1.19, Lemma 4.2, Lemma 4.8 and Lemma 4.18, and use some
of the inequalities already seen above. We get

z ≥ hE
ων ·(m+3)(a1 +m+ 2)

= hE
ων ·(m+2)(h

E
ων (a1 +m+ 2))

≥ hE
ων ·(m+2)(h

E
ω2·2·(m+2)(a1 +m+ 2))
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≥ hE
ων ·(m+2)(towm+2(a1 +m+ 3))

≥ hE
ων ·(m+1)(h

E
ων (towm+2(a1 +m+ 3)))

≥ hE
ων ·(m+1)(h

E
ω2·2·towm+1(a1+m+3)(towm+2(a1 +m+ 3)))

≥ hE
ων ·(m+1)(towtowm+1(a1+m+3)(towm+2(a1 +m+ 3) + 1))

≥ hE
ων ·(m+1)(towa1+m+3((a1 +m+ 3)(a1+m+3)))

≥ hE
ω2·2·2(a1(m+3))3(towa1+m+3((a1 +m+ 3)(a1+m+3)))

≥ tow2(a1(m+3))3(towa1+m+3((a1 +m+ 3)(a1+m+3)))

> c · tow2c2+c(c+ 2) · (m+ 3)
≥ psn(F (GO(c, ων))� (m+ 3)),

so ων ⇒z F (GO(a1, ω
ν)) � (m + 3) by Lemma 4.2. As hE

ων (z) exists,
Lemma 1.19 entails the existence of hE

F (GO(a1,ων))�(m+3)(z), which implies
that hE

F (GO(a1,ων))�(m+3)(a1) exists. This contradicts the fact that D \ {a0}
is at most F (GO(a1, ω

ν))� (m+ 3)-large.
Case 5: λ = ε0. Remark that GO(c, ε0) = GO(c, ωc), where c stands

for a0 + (m+ 2)a1, and proceed as done in the previous case.
Case 6: λ = εm+1, with m ≥ 0. Remark that

GO(c, εm+1) = GO(c, ωc(εm + 1)),

where c stands for a0 + (m+ 2)a1, and proceed as in case 4.
Case 7: The Cantor normal form of λ is nontrivial, that is, if λ is

written in its Cantor normal form (1.1), then there are at least two sum-
mands or the coefficient is strictly greater than 1. Then λ = γ + δ for
some γ and δ both different from zero with γ � δ. Let β, G and A sat-
isfy the assumptions. Then the set {a ∈ A : G(a) ≥ β + γ} is at most
F (δ) � (m + 3)-large, indeed, every G(x) for x in that set must be of the
form β+γ+ τx, and the function x 7→ τx satisfies the inductive assumption
for δ < λ. Similarly, the set {a ∈ A : β + γ ≥ G(a) ≥ β} is at most
F (γ) � (m + 3)-large. Their union is just {a ∈ A : G(a) ≥ β}. It is at
most (F (γ)� (m+ 3))⊕ (F (δ)� (m+ 3))-large by Lemma 4.14. It suffices
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to note that

(F (γ)� (m+ 3))⊕ (F (δ)� (m+ 3)) = (F (γ)⊕ F (δ))� (m+ 3)
= F (γ + δ)� (m+ 3)

by the definition of F the fact that the natural product distributes over the
natural sum.

Now we are finally ready to give the Estimation Lemma.

4.20 Lemma. Let k,m ∈ N∪{−1}, α an ordinal, such that either ωk(εm+
1) ≤ α < ωk+1(εm +1), or α = εm (k is set −1), or α < ω (k and m are set
−1), and A ⊆ N with min(A) ≥ max{k,m+2, 4,psn(α)}. If G : A→ (≤ α)
is strictly decreasing and psn(G(a)) ≤ minA+(m+2)a, for all a ∈ A, then
A is at most F (α)� (m+ 3)-large.

Proof. Apply the previous lemma with β = 0.

4.3 Partitioning α-large sets

Every ordinal α below εm+1 can be written in Cantor normal form to the
base ωn(εm + 1), i.e.

α = (ωn(εm + 1))α0 · β0 + . . .+ (ωn(εm + 1))αs · βs, (4.2)

for some α > α0 > . . . > αs and β0, . . . , βs < ωn(εm +1). More information
on such expansions to another base can be found in Sections 7.5–7.7 of
[KM76]. As before, ε−1 will denote ω which we will not always mention
explicitly when working with epsilon numbers in this section.

4.21 Lemma. Let n > 0 and α < εm+1. Write α to the base ωn(εm + 1)
(i.e. in the form (4.2) above). Then

psn(α) ≥ max{psn(α0), . . . ,psn(αs),psn(β0), . . . ,psn(βs)}.
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Proof. The proof is similar to the one in [BK06], but with a different
pseudonorm. In case n = 1, then the statement is obvious as a result
of the definition of psn (Definition 4.1). So suppose n ≥ 2 and recall that
ω0 = ω0(1) = 1. To prove the statement it suffices to look at a single, ar-
bitrary summand in the expansion of α. It is of the form (ωn(εm + 1))γ · δ,
which is equal to ωωn−1(εm+1)·γ ·δ. Suppose γ and δ are written in the usual
Cantor normal form to the base ω as follows:

γ = ωγ0 · g0 + . . .+ ωγr · gr

δ = ωδ0 · d0 + . . .+ ωδr · dt.

Then the following equalities hold.

(ωn(εm + 1))γ · δ
= (ωn(εm + 1))ωγ0 ·g0+...+ωγr ·gr · (ωδ0 · d0 + . . .+ ωδr · dt)

= ωωn−1(εm+1)·(ωγ0 ·g0+...+ωγr ·gr) · (ωδ0 · d0 + . . .+ ωδr · dt)

= ωωωn−2(εm+1)+γ0 ·g0+...+ωωn−2(εm+1)+γr ·gr · (ωδ0 · d0 + . . .+ ωδr · dt).

This expression is again a sum. As before, we consider a single summand,
representing the general case. Such a term will be of the form

ωωωn−2(εm+1)+γ0 ·g0+...+ωωn−2(εm+1)+γr ·gr+δj · dj ,

with 0 ≤ j ≤ t. Since the original α is written in the form (4.2), δ <
ωn(εm +1), and thus δj < ωn−1(εm +1). This last inequality, together with
the fact that γ was given in Cantor normal form, yields that none of the
terms on the first level of exponents will be absorbed by the next one. So,
returning to α, we have written the summand (ωn(εm + 1))γ · δ as a sum
of ordinals, all expressed to the base ω, which allows us to determine their
pseudonorm immediately. First, psn(α) ≥ psn((ωn(εm + 1))γ · δ) ≥ psn(γ),
as all exponents and coefficients in the Cantor normal form of γ, also occur
on the first and second level of exponents in the expansion we obtained in
the latest stage. Second, also psn(α) ≥ psn(δj) for all 0 ≤ j ≤ t since each
δj occurs in this expansion on the first level of exponents. Combining that
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inequality with psn(α) ≥ dj , which is seen from the latest expansion, we
get psn(α) ≥ psn(δ), which concludes the proof.

4.22 Definition. Let α be an ordinal below εm+1 written in Cantor normal
form to the base ωn(εm + 1), with n ∈ N and m ∈ N ∪ {−1}. Then de-
fine v(ωn(εm + 1);α, δ) as the coefficient of (ωn(εm + 1))δ (and v(ωn(εm +
1);α, δ) = 0 if (ωn(εm + 1))δ does not occur in the normal form). For
ordinals α and β below εm+1 define LDn,m(α, β) as the maximum of

{δ < εm+1 : v(ωn(εm + 1);α, δ) 6= v(ωn(εm + 1);β, δ)}.

As done in the original paper, we will construct a sequence of partitions
of sets of ordinals. Let us start by looking at LDn,m. The main property
of this partition is given in the following lemma, and will come back in
Lemma 4.26.

4.23 Lemma. Let Γ be a set of ordinals below εm+1, m ∈ N∪{−1}, which is
homogeneous with respect to LDn,m. Then there exists a strictly increasing
function Θ: Γ → (< ωn(εm + 1)) such that for all γ ∈ Γ, psn(Θ(γ)) ≤
psn(γ).

Proof. Let Γ satisfy the assumption. Thus, there exists δ such that for all
α and β in Γ, LDn,m(α, β) = δ. It follows that every α ∈ Γ may be written
as ρ+(ωn(εm+1))δ ·ξα+τα to the base ωn(εm+1), where all exponents in ρ
are strictly greater than δ and all exponents in τα are strictly smaller than
δ. Clearly, ρ does not depend on α and the function Θ(α) = ξα has the
required property about the pseudonorm by Lemma 4.21. The fact that Θ
is strictly increasing is straightforward.

4.24 Definition. Let Γ ⊆ (< εω) and Θ: Γ → (< α). We say that Θ is
an ordinal (or α-ordinal) estimating function if it is strictly increasing and
for all γ ∈ Γ, psn(Θ(γ)) ≤ psn(γ).

We now proceed to the next partition, namely L3,n,m. Let us make the
convention that when working with finite sets of ordinals we write them
down in decreasing order. Hence in the next definition α > β > γ, in
accordance with that convention.
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4.25 Definition. Let α, β, γ < εm+1, m ∈ N ∪ {−1} and n ∈ N. Define

L3,n,m(α, β, γ) =


0 if LDn,m(α, β) < LDn,m(β, γ),
1 if LDn,m(α, β) = LDn,m(β, γ),
2 if LDn,m(α, β) > LDn,m(β, γ).

Strictly speaking, we abuse notation, as brackets are usually used for
tuples. For the rest of the chapter, in case we really mean tuples it will be
mentioned clearly.

4.26 Lemma. Let n, s ∈ N, m ∈ N ∪ {−1} and Γ be a finite subset of
(< εm+1).

1. If L3,n,m colours [Γ]3 by 1, then there exists an ordinal estimating
function Θ defined on Γ with values in (< ωn(εm + 1)).

2. If L3,n,m colours [Γ]3 by 2 and max Γ < ωn+s+1(εm + 1), then there
exists an ordinal estimating function Θ defined on Γ \ {minΓ} with
values in (< ωn+s(εm + 1)).

3. If L3,n,m colours [Γ]3 by 0 and max Γ < ωn+s+1(εm + 1), then

|Γ| ≤ tow(m+1)2a+n+s+2(a+ 2),

where a = psn(max Γ).

Proof. Let Γ = {γ0, . . . , γr} be a decreasing enumeration of Γ.

1. Let γi = ρ + (ωn(εm + 1))δi · ξi + τi, be written in normal form to
the base ωn(εm + 1). In this case neither ρ nor δi depends on i.
Put Θ(γi) = ξi. Then Θ has the required property concerning the
pseudonorm because of Lemma 4.21. That it is strictly increasing is
not difficult to see.

2. Put δi = LDn,m(γi, γi+1) and Θ(γi) = δi. Then Θ has the required
properties (Lemma 4.21 and Definition 4.25). In particular, its values
are smaller than ωn+s(εm + 1).
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3. Put δi = LDn,m(γi, γi+1). We assert that (ωn(εm +1))δi occurs with a
nonzero coefficient in the Cantor normal form to the base (ωn(εm+1))
of γ0 for every i < r. Indeed, fix i < r. We write γi = ρi + (ωn(εm +
1))δi · ξi + τi and compare this with the expansion of γi+1 to the base
ωn(εm + 1). We see that ξi must be greater than the coefficient at
(ωn(εm + 1))δi in the expansion of γi+1. In particular, ξi > 0. By the
same argument as explained in the proof of Lemma 4.6 we obtain

|Γ| = |{δi : i < r}|+ 1
≤ |{α < ωn+s(εm + 1) : psn(α) ≤ a}|+ 1
< tow(m+1)2a+n+s+2(a+ 2) + 1,

with a = psn(γ0), and where the last inequality is justified by Lemma
4.7 in case m ≥ 0 and by Lemma 4.6 if m = −1 (since ωn+s(ω+ 1) <
ωn+s+2). So, |Γ| ≤ tow(m+1)2a+n+s+2(a + 2), which concludes the
proof.

The properties of L3,n,m, proven in the previous lemma, will be partly
used to prove characteristics of the partition Lk,m which is introduced in
the next lemma.

4.27 Lemma. Let k ∈ N, with k ≥ 3, and m ∈ N∪{−1}. Then there existst
a partition Lk,m of [(< εm+1)]k into 3k−2 parts such that for every Γ ⊆ (<
εm+1) homogeneous for Lk,m, if max Γ < ωk−2(εm +1), then letting Γ′ be Γ
without the last (i.e. smallest) (k−2)(k−1)

2 elements we have: there exists an
ordinal estimating function Θ: Γ′ → (≤ εm) or |Γ| ≤ tow(m+1)2a+k−1(a +
k − 1), where a = psn(max Γ).

Proof. By induction on k.
k = 3. Let L3,m equal L3,0,m and apply Lemma 4.26 above with n

replaced by 0.
k → k+1. In the same way as done in [BK06], but again adapted to our

situation. Assume the result for k. We construct the partition for k+1. Let
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α = {α0, . . . , αk} be a (k + 1)-set of ordinals below εm+1 (as usual written
down in decreasing order). We begin by putting G(α) = L3,0,m(α0, α1, α2),
so the image of the set α does not depend on its last k − 2 coordinates.
Thus if Γ is homogeneous for G, then Γ′′ is homogeneous for L3,0,m, where
Γ′′ denotes Γ without its last k − 2 elements.

For α as above we let δi = LD0,m(αi, αi+1). Notice that the k-tuple
(δ0, . . . , δk−1) is not necessarily monotonic. Having that fact in mind, we
define the function W as follows.

W (α) =


Lk,m(δ0, . . . , δk−1) if δ0 > . . . > δk−1,

Lk,m(δk−1, . . . , δ0) if δ0 < . . . < δk−1,

0 in other cases.

Finally we put Lk+1,m(α) = 〈G(α),W (α)〉. We assert that this partition
has the right properties. So suppose Γ is homogeneous for Lk+1,m, where
Γ = {γ0, . . . , γr}, written in decreasing order. Let Γ′ and Γ′′ denote Γ
without its last (i.e. smallest) (k−1)k

2 and k − 2 elements, respectively.
Case 1. G colours [Γ]k+1 by 1. Then L3,0,m colours [Γ′′]3 by 1, so by

part 1. of Lemma 4.26 there exists an ordinal estimating function Θ: Γ′′ →
(≤ εm), where we replaced (< εm + 1) by (≤ εm). The domain of this
function contains the required set Γ′.

Case 2. G colours [Γ]k+1 by 2. Then L3,0,m colours [Γ′′]3 by 2. Let
ζi = LD0,m(γi, γi+1) for i < r − (k − 2). By the assumption of the case,
the set Z = {ζ0, . . . , ζr−k+1} is written in strictly decreasing order. By
homogeneity of Γ with respect to W , the set Z is homogeneous with respect
to Lk,m. The induction hypothesis yields the following two subcases:

(a) The case |Z| ≤ tow(m+1)2a+k−1(a + k − 1), where a = psn(maxZ).
Due to Lemma 4.21, psn(maxZ) ≤ psn(maxΓ′′) = psn(maxΓ), so

|Γ′′| ≤ tow(m+1)2a′+k−1(a
′ + k − 1) + 1,

where a′ = psn(max Γ). Thus

|Γ| ≤ tow(m+1)2a′+k−1(a
′ + k − 1) + 1 + k − 2

≤ tow(m+1)2a′+k(a
′ + k),
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which is the second case in the lemma.

(b) There exists an ordinal estimating function Θ: Z ′ → (≤ εm), where
Z ′ is Z without its last (k−2)(k−1)

2 elements. Consider the function
∆: γi 7→ Θ(ζi). As Θ is strictly increasing and {ζ0, . . . , ζr−k+1}
and {γ0, . . . , γr} are both written in decreasing order, ∆ will also
be strictly increasing. It also holds that

psn(∆(γi)) = psn(Θ(ζi))
≤ psn(ζi)
≤ psn(γi),

where the last inequality holds because of Lemma 4.21. So ∆: Γ′ →
(≤ εm) is an ordinal estimating function, where Γ′ is Γ without its
last (k−2)(k−1)

2 + 1 + k − 2 = (k−1)k
2 elements.

Case 3. G colours [Γ]k+1 by 0 and so L3,0,m colours [Γ′′]3 by 0. It is
given that max Γ < ωk−1(εm + 1). Clearly, maxΓ′′ = maxΓ. Now part 3.
of Lemma 4.26 yields

|Γ′′| ≤ tow(m+1)2a+k(a+ 2),

where a = psn(max Γ) and so

|Γ| ≤ tow(m+1)2a+k(a+ 2) + k − 2

≤ tow(m+1)2a+k(a+ k).

This completes the induction step and consequently the proof.

To proceed our investigation, we will need some more machinery. These
notions are introduced for ordinals below ε0 in e.g. [BK06, KPW07]. First
notice that it can happen that hA

α (a) = hA
β (a) even if α 6= β. Think, for

instance, of hω(a) = ha(a). As one will see later, it is convenient to pick
one specific ordinal out of several such ordinals in a unique way. This can
be done as follows.
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Let a set A be given. Let µ < εω. We define a sequence (µj)j<ω

of ordinals and a sequence (bj)j<ω of natural numbers by the following
induction. We let µ0 = µ and b0 = a0 = minA. Assume that µj and bj
are constructed. If µj = 0, then the construction terminates. If µj > 0
and µj is a limit ordinal, then we let µj+1 = µj [bj ] and bj+1 = bj . If µj is
nonlimit, then the construction terminates if bj = maxA, otherwise we let
µj+1 = µj − 1 and bj+1 = hA(bj), the next element of A. This completes
the definition of the sequences (µj)j<ω and (bj)j<ω.

Observe the following property.

4.28 Lemma. Under the notation introduced above, a subset A is µ-large
if and only if there exists j ∈ N such that µj = 0.

Proof. The proof of Proposition 2.7 in [BK06] immediately generalises to
ordinals below εω.

Finally, this lemma allows us to associate a unique ordinal with every
ordinal µ and every element a ∈ A, with A being at most µ-large. Let
KSA(µ; a) denote the last µj such that a = bj . Observe that if A is not at
most µ-large, then KSA(µ; a) is not defined for all elements of A. We will
need the following two lemmas.

4.29 Lemma. If k,m ∈ N, A ⊆ N, with minA ≥ 2, and a ∈ A, then

1. psn(KSA(ωk(ω + 1); a)) ≤ k + a;

2. psn(KSA(ωk(εm + 1); a)) ≤ k + (m+ 2)a.

Proof. 1. By induction on k.

k = 0. Then

psn(KSA(ω + 1; a)) ≤ max{psn(ω + 1),psn(a)}
= a.
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k → k + 1. Assume the assertion for k, then, using the induction
hypothesis,

psn(KSA(ωk+1(ω + 1); a))

= psn(KSA(ωωk(ω+1); a))

≤ 1 + max{a,psn(KSA(ωk(ω + 1); a))}
≤ 1 + k + a.

2. By main induction on m and subsidiary induction on k.

(a) m = 0.
k = 0. Then

psn(KSA(ε0 + 1; a))
≤ max{psn(ε0 + 1),psn(ωa)}
≤ a+ 1
≤ 2a.

k → k+1. Assume the assertion for k, then, using the subsidiary
induction hypothesis,

psn(KSA(ωk+1(ε0 + 1); a))

= psn(KSA(ωωk(ε0+1); a))

≤ 1 + max{a,psn(KSA(ωk(ε0 + 1); a))}
≤ 1 + k + 2a.

(b) m→ m+ 1.
k = 0. Assume the assertion for m, then, using the main induc-
tion hypothesis,

psn(KSA(εm+1 + 1; a))

≤ max{psn(εm+1 + 1),KSA(ωa(εm + 1); a)}
≤ a+ (m+ 2)a
= (m+ 1 + 2)a.
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k → k+1. Assume the assertion for k, then, using the subsidiary
induction hypothesis,

psn(KSA(ωk+1(εm+1 + 1); a))

= psn(KSA(ωωk(εm+1+1); a))

≤ 1 + max{a,psn(KSA(ωk(εm+1 + 1); a))}
≤ 1 + k + (m+ 1 + 2)a.

4.30 Lemma. For all m ≥ 0 and x ≥ max{m+ 2, 4}, we have

hεm(x) > tow2(m+3)2x((m+ 4)x).

Proof. By induction on m. In both the base and the successor step will
make use of Lemma 1.19, Lemma 4.2, Lemma 4.8, the definition of psn and
the fact that x ≥ max{m+ 2, 4}.

m = 0. Then

hε0(x) ≥ hωω+ω2·2(x)
≥ hωω+ω2(2xx)

≥ hωω(22xx2xx)

≥ hω2·2·22xx2x(22xx2xx)

≥ tow22xx2x(22xx2xx+ 1)
> tow18x(4x),

which concludes the base step.
m → m + 1. Assume the assertion for m. We show it also holds for

m+ 1. By using the induction hypothesis twice, we get

hεm+1(x) ≥ hεm·2(x)
≥ hεm(tow2(m+3)2x((m+ 4)x))

≥ tow2(m+3)2tow2(m+3)2x((m+4)x)((m+ 4)(tow2(m+3)2x((m+ 4)x))

> tow2(m+4)2x((m+ 5)x),
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which concludes the proof.

We are finally ready to introduce the main result of this section, namely
the existence of a certain partition Rk.

4.31 Theorem. Let k ∈ N, with k ≥ 3, and m ∈ N ∪ {−1}. Let A ⊆ N be
at most ωk−2(εm + 1)-large with min(A) ≥ max{k,m + 2, 4}. Then there
exists a partition

Rk : [A]k → 3k−2,

such that every D ⊆ A homogeneous for Rk is at most (F (εm)� (m+ 3) +
(k−2)(k−1)

2 )-large.

Proof. Let A satisfy the assumption. Let Lk,m be a partition of [(< εm+1)]k

with the properties described in Lemma 4.27. For a = {a0, . . . , ak−1} we
let

Rk(a) = Lk,m(KSA(ωk−2(εm + 1); a0), . . . ,KSA(ωk−2(εm + 1); ak−1))

and verify that this partition has the desired properties. So let D be a
subset of A which is homogeneous for Rk. Then

Γ = {KSA(ωk−2(εm + 1); d) : d ∈ D}

is homogeneous for Lk,m. Recall that the elements of Γ = {γ0, . . . , γr} are
written in decreasing order, whereas the elements of D = {d0 . . . , dr} are
given in increasing order. Let Γ′ denote Γ without its last (i.e. smallest)
(k−2)(k−1)

2 elements and let D′ be D without its last (i.e. greatest) (k−2)(k−1)
2

elements.
Case 1. There exists an ordinal estimating function Θ: Γ′ → (≤ εm).

Define G : D′ → (≤ εm) by G(d) = Θ(KSA(ωk−2(εm + 1); d)), for every
d ∈ D′. Then G is strictly decreasing and for every d ∈ D′,

psn(G(d)) = psn(Θ(KSA(ωk−2(εm + 1); d)))

≤ psn(KSA(ωk−2(εm + 1); d))
≤ k − 2 + (m+ 2)d
≤ minA+ (m+ 2)d
≤ minD′ + (m+ 2)d,
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where the second inequality is justified by Lemma 4.29. Also notice that
minD′ ≥ minA ≥ max{m + 2, 4} ≥ psn(εm) (which is also valid in case
m = −1). Then D′ is at most F (εm) � (m + 3)-large by the Estimation
Lemma (Lemma 4.20), and the result follows having Lemma 1.20 in mind.

Case 2. Let a = psn(max Γ). Then

a = psn(KSA(ωk−2(εm + 1); d0))
≤ k − 2 + (m+ 2)d0

≤ (m+ 3)d0

by Lemma 4.29 and d0 = minD′ ≥ min(A) ≥ max{k,m+ 2, 4}. As we are
dealing with the second case, we get

|Γ| ≤ tow(m+1)2a+k−1(a+ k − 1)

≤ tow(m+1)2(m+3)d0+k−1((m+ 3)d0 + k − 1)

≤ tow2(m+3)2d0
((m+ 4)d0)

< hεm(d0),

where the last inequality is because of Lemma 4.30. Since |D| = |Γ|, D is
εm-small, and so a fortiori F (εm)� (m+ 3)-small, as m ≥ 0.

The meaning of the relation A → (α)r
m is as usual in Ramsey theory,

with the slight adaptation that we demand the homogeneous subset to be
α-large. So A→ (α)r

m will denote: for every colouring of r-element subsets
of A into m colours there exists a subset of A which is α-large and is
homogeneous for this colouring.

4.32 Corollary. Let k ∈ N, with 3 ≤ k, m ∈ N ∪ {−1} and α = F (εm)�
(m + 3) + (k−2)(k−1)

2 + 1. Let A be such that A → (α)k
3k−2 and min(A) ≥

max{k,m+ 2, 4}. Then A is ωk−2(εm + 1)-large.

Proof. The proof of the following claim can be found in [BK06]. It goes by
induction on α and is also valid for ordinals up to εω.

Claim: For every B, if B is α-small, then there exists C such that
maxB < minC and B ∪ C is exactly α-large.
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Granted the claim we argue as follows. Assume that A is ωk−2(εm +1)-
small. Let C be as in the claim, so maxA < minC and A ∪ C is exactly
ωk−2(εm + 1)-large. By Theorem 4.31 there exists a partition L of [A ∪
C]k into 3k−2 parts without an (F (εm) � (m + 3) + (k−2)(k−1)

2 + 1)-large
homogeneous set. We restrict L to [A]k and see that this restriction does
not admit an (F (εm)� (m+3)+ (k−2)(k−1)

2 +1)-large homogeneous set.

This last corollary will be useful to prove a miniaturisation of the infinite
Ramsey Theorem, as done in the next section.

4.4 Ramsey density

4.4.1 Introduction

We approximate the strength of the infinite full Ramsey Theorem by it-
erating a finitary version. Recall that by strength we mean arithmetical
strength (see Definition 1.3). This finitary version is a density principle,
which, together with PA will give rise to a first-order theory which achieves
a lot of the strength of ACA0 combined with the original infinitary version.
Bovykin and Weiermann analysed in a similar way the Ramsey Theorem
for pairs and two colours, the Canonical Ramsey Theorem for pairs and
the Regressive Ramsey Theorem for pairs ([BW05]). To prove our result,
we use the generalisation of the results by Bigorajska and Kotlarski about
partitioning α-large sets obtained in the previous section.

Let us recall the infinite form of Ramsey’s theorem (RT):

RT ↔ (∀n)(∀k)RTn
k

↔ (∀n)(∀k)(For every G : [N]n → k there exists an infinite set H
such that G � [H]n is constant),

In this section we will give a miniaturisation of RT using the following
density.
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4.33 Definition. Let A ⊆ N, with minA > 3. Then A is called 0-RT-
dense if |A| > minA. We say A is (n+ 1)-RT-dense, if minA ≥ n+ 1 and
for every colouring

G : [A]min A+2 → 3min A,

there exists a subset B ⊆ A, such that B is homogeneous for G and B is
n-RT-dense.

As done in the previous chapters, we will leave out RT, and simply write
down n-density. We investigate the strength of this density after shortly
considering the original statement.

Let RTn denote1 (∀k)RTn
k . The following is known about the strength

of RTn.

4.34 Lemma. 1. ACA0 ` RT0;

2. ACA0 ` (∀n)(RTn → RTn+1).

Proof. Proofs can be found in [Sim09] (Lemma III.7.4).

Clearly, the previous lemma implies that for each fixed natural number
n, the statement RTn is provable in ACA0. Moreover, it turns out that
over RCA0, RTn is equivalent to ACA0, for any n ≥ 3 (Lemma III.7.6
in [Sim09]). Simpson also remarks that the Π1

2-sentence (∀n)RTn, shortly
RT, is known to be unprovable in ACA0. However, by Lemma 4.34, RT is
provable in ACA0 plus Π1

2-induction.
We started with a theorem (RT) which is unprovable in ACA0. Clearly,

the question rises whether iterating our first-order density will be able to
approximate the strength of RT (over RCA0).

4.4.2 Investigating n-density

We estimate the Hardy functions using the following lemma.

4.35 Lemma. Let k ∈ N, A ⊆ N, with minA > 4, and x ∈ A. Then
1In Chapter 2 the instance RT1 was denoted by RT1

<∞.
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1. hA
ω·3x−1(x) ≥ 23x−1

x;

2. hA
εk·3x−1(x) ≥ 23x−1

x.

Proof. 1. It is easy to see the following inequalities hold.

hA
ω·3x−1(x) = hA

ω·(3x−1−1)+ω(x)

≥ hA
ω·(3x−1−1)(2x)

= hA
ω·(3x−1−2)+ω(2x)

≥ hA
ω·(3x−1−2)(2

2x)

≥ ...

≥ hA
ω (2(3x−1−1)x)

≥ 23x−1
x.

2. Remark that

hεm(x) > 2 towx(. . . (towx︸ ︷︷ ︸
m+2 times

(2x+ 1)) . . .),

for x > 4, as stated in Lemma 4.11. So we get

hA
εk·3x−1(x) = hA

εk·(3x−1−1)+εk
(x)

> hA
εk·(3x−1−1)(2 towx(. . . (towx︸ ︷︷ ︸

k+2 times

(2x+ 1)) . . .))

≥ 23x−1
x,

where we used the induction hypothesis and Lemma 1.19.

Given fixed n, the n-density will not force us to leave the realm of
ACA0 + RT. We prove this in the next theorem via a standard method.
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4.36 Theorem. For every n ∈ N,

ACA0 + RT ` (∀a)(∃b)([a, b] is n-dense).

Proof. Let n ∈ N. By applying König’s lemma and the infinite version of
Ramsey’s theorem (RT), we get the finite version of Ramsey’s theorem.
Then apply the latter n times to obtain a sufficiently large b.

However, once we quantify over n, and thus the dimension of the colour-
ings, we obtain an unprovable statement. Let us start with the following
lemma, which already indicates the power of n-density.

4.37 Lemma. Let n ∈ N and A ⊆ N, such that minA > 4. If A is
2n-dense, then A is εn−1-large.

Proof. By induction on n. Put a0 = minA.
If n equals zero, then A is 0-dense and |A| > a0. Thus hA

a0
(a0) =

hA
ε−1

(a0) exists, so A is ε−1-large.
Assume the statement for n = k and let A be (2k + 2)-dense. Let

G : [A]a0+2 → 3a0 be any function and B a subset of A such that B is
homogeneous for G and B is (2k+1)-dense. To invoke Lemma 4.32 we will
show that B is (F (εk−1)� (k + 2) + a0(a0+1)

2 + 1)-large, with F as defined
by Definition 4.16. Put b0 = minB and

Bi = {b ∈ B : hB
εk−1·(i−1)(b0) ≤ b < hB

εk−1·i(b0)},

for i ∈ {1, . . . , 3b0 − 1}. Define H : [B]b0+2 → 3b0 by

H(x1, . . . , xb0+2) =


1 if x1 ∈ B1

2 if x1 ∈ B2

...
...

3b0 if hB
εk−1·(3b0−1)

(b0) ≤ x1

,

for each (x1, . . . , xb0+2) ∈ [B]b0+2. Since B is (2k + 1)-dense, there must
exist C ⊆ B, such that C is homogeneous for H and C is 2k-dense. The
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induction hypothesis yields that C is εk−1-large. As every Bi is εk−1-small,
C cannot take any colour i with i < 3b0 . Hence C must be a subset of
{b ∈ B : hB

εk−1·(3b0−1)
(b0) ≤ b}. Since C is εk−1-large, hB

εk−1·3b0
(b0) exists

and B is εk−1 · 3b0-large. Remark that, as A is (2k+ 2)-dense, a0 ≥ 2k+ 2,
and so b0 ≥ 2k + 2. Then we obtain

hB
εk−1·3b0

(b0) = hB
εk−1·3b0−1·2+εk−1·3b0−1(b0)

= hB
εk−1·3b0−1·2(h

B
εk−1·3b0−1(b0))

≥ hB
εk−1·3b0−1·2(2

3b0−1
b0)

≥ hB

εk−1·2(k+2)+
b0(b0+1)

2
+k+3

(23b0−1
b0)

≥ hB

F (εk−1)�(k+2)+
b0(b0+1)

2
+1

(23b0−1
b0)

≥ hB

F (εk−1)�(k+2)+
b0(b0+1)

2
+1

(b0)

≥ hB

F (εk−1)�(k+2)+
a0(a0+1)

2
+1

(b0).

The first and fourth inequality are because of Lemma 1.19 and the fact that

hB
εk−1·3b0−1·2(b0) ≥ 23b0−1

b0 >
b0(b0 + 1)

2
+ 3(k + 2) + 1 ≥ b0,

because of lemma 4.35 and b0 ≥ max{2k+ 2, 5}. The second and the third
inequality hold because of Lemma 4.2 and Lemma 1.19 and the last one is
caused by minA ≤ minB. Hence B is (F (εk−1)�(k+2)+ a0(a0+1)

2 +1)-large.
Lemma 4.32 yields A is ωa0(εk−1 + 1)-large, i.e. εk-large.

4.38 Corollary. The following holds:

ACA0 ` (∀n)(∀a)(∃b)([a, b] is n-dense) → (∀a)(∃b)([a, b] is εω-large).

4.39 Theorem. The following holds:

ACA0 + RT 0 (∀n)(∀a)(∃b)([a, b] is n-dense).
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Proof. Assume by contradiction that

ACA0 + RT ` (∀n)(∀a)(∃b)([a, b] is n-dense).

Then, by Corollary 4.38,

ACA0 + RT ` (∀a)(∃b)([a, b] is εω-large),

which states that hεω is a provably total function of ACA0 + RT. This
contradicts the claim that for each provably total function of ACA0 + RT
there exists k ∈ N, such that hεk

eventually dominates this function. The
validity of this last claim can be roughly seen as follows. First look at an
ordinal analysis of ACA0 +RT (see e.g. [McA85] or [Afs09]) and notice that
the proof-theoretic ordinal of this theory is εω. Then combine these results
with one of Buchholz mentioned in the introduction of [Buc97], to deduce
that every arithmetical formula which is provable in ACA0+RT, is provable
in PA plus the scheme of transfinite induction over all ordinals strictly below
εω. Then apply results of Friedman and Sheard on provably total functions
of subsystems of first-order arithmetic (see Section 2 in [FS95]).

Thus iterating the first-order notion of n-density gives rise to certain
strength as it is unprovable in ACA0 + RT. Now one could ask whether it
is possible to weaken the finitary statement in order to really approximate
the strength of RT (over RCA0). To answer this question, we look at the
first-order consequences of the n-density combined with PA. Let us start
with the following result proved by McAloon in [McA85] (Theorem 4).

4.40 Theorem. The theory ACA0 + RT has the same first-order conse-
quences as the theory obtained from PA by iterating the uniform reflection
principle arbitrarily often.

Iterating our n-density, we end up with conservation for Π0
2-statements.

4.41 Theorem. The theories PA + {(∀a)(∃b)([a, b] is n-dense)}n∈N and
ACA0 + RT have the same Π0

2-consequences.
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Proof. First remark that

PA + {(∀a)(∃b)([a, b] is n-dense)}n∈N ⊆ ACA0 + RT,

because for every concrete n ∈ N, Theorem 4.36 implies that

(∀a)(∃b)([a, b] is n-dense)

can be proved in ACA0 + RT.
Now suppose ACA0 +RT proves Φ = ∀x∃yϕ(x, y), where ϕ is a ∆0 for-

mula. This means that the function defined by ϕ, i.e. f(x) = min{y :
ϕ(x, y)}, is provably total in ACA0 + RT. Hence there exists k ∈ N,
such that hεk

eventually dominates this function (see the proof of The-
orem 4.39). Note that ACA0 + RT is closed under primitive recursive
definitions. Due to Lemma 4.37, we can pick n > 2(k + 1), such that
PA + (∀a)(∃b)([a, b] is n-dense) proves the totality of hεk

, and so Φ. This
completes the proof.

Remark that many important mathematical and metamathematical
theorems and conjectures are in Π0

1- or Π0
2-form. Among examples from

the former category we find the quadratic reciprocity law, Fermat’s Last
Theorem, Goldbach’s conjecture, the Riemann hypothesis and Con(T) for
theories T. Examples belonging to the latter group are the twin prime
conjecture, the Paris-Harrington principle, the finite version A of Kruskal’s
theorem which we presented in Subsection 1.1.2, the totality of several well-
known functions (as e.g. the van der Waerden function or the Ackermann
function) and 1-Con(T) for theories T.

4.4.3 Phase Transition

We also conjecture that the unprovability result above will give rise to
a phase transition as described below. Half of the conjecture is proven.
The other half needs a generalisation of Lemma 4.32, which looks plausible
but remains unproven. Let us first introduce the parametrised version
of n-density (see Definition 4.33). As in previous chapters, let f be the
parameter function, such that 1 ≤ f(x) ≤ x, for x ∈ N.
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4.42 Definition. Let A ⊆ N, with minA > 3. Then A is called 0-
RT-dense(f) if |A| > f(minA). We say A is (n + 1)-RT-dense(f), if
f(minA) ≥ n+ 1 and for every colouring

G : [A]f(min A)+2 → 3f(min A),

there exists a subset B ⊆ A, such that B is homogeneous for G and B is
n-RT-dense(f).

As before, we will leave out RT, and simply write down n-density(f).
We need the following fast-growing hierarchy.

4.43 Definition. Define the fast-growing hierarchy (Dk)k<ω as follows.
For every x ∈ N,

D0(x) = 2x;
Dk+1(x) = Dk(. . . (Dk︸ ︷︷ ︸

x times

(x)) . . .) = Dx
k(x),

for all natural numbers k.

Recall that given a function G : N → N, the inverse function G−1 : N →
N is defined by G−1(x) = min{y : G(y) ≥ x}. So D−1

k will denote the
inverse function of Dk, for all k ∈ N. Sometimes brackets are used to avoid
confusion. Let the notation 2x(y) be defined by 20(y) = y and 2x+1(y) =
22x(y), for x and y natural numbers.

4.44 Theorem. If f(x) = D−1
2 (x) for every x ∈ N, then

RCA0 ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof. Let a and n be given and note that if [x, b] is n-dense(f), with x ≥ a,
then so is [a, b]. The case n = 0 is dealt with easily, so suppose n > 0. For
any natural number l, define Gl : N → N by Gl(x) = 24(l+2)(3l ·x). Ketonen
and Solovay showed that with this definition Gl(x) satisfies the following
Ramseyan statement:

Gl(x) → (x)l+2
3l ,
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i.e. for any set X of size at least Gl(x) and any colouring of the (l + 2)-
element subsets of X into 3l colours, there exists Y ⊆ X of size at least x
which is homogeneous for the colouring (see Subsection 3.8 in [KS81]).

Choose d ∈ N large enough such that Dd−1
d (d) ≥ a and

|Dd
1(d)−Dd−1

1 (d)| > Gd(. . . (Gd︸ ︷︷ ︸
n times

(d)) . . .) = Gn
d (d).

We now fix d and write G instead of Gd in order to lighten notation.
Claim: Any X ⊆ [Dd−1

1 (d), Dd
1(d)] with |X| > Gk(d) is k-dense(f).

We will prove the claim by induction k. Then, to conclude the proof of the
theorem it suffices to notice that RCA0 proves the totality of all Dl (l ∈ N)
and allows the simple combinatorial reasoning we use to prove the claim.

First remark that, for x ∈ N

D−1
2 (x) = min{y : D2(y) ≥ x} = min{y : Dy

1(y) ≥ x}.

Hence, for all x in the interval [Dd−1
1 (d), Dd

1(d)],

D−1
2 (x) = min{y : Dy

1(y) ≥ x} = d.

Now suppose X ⊆ [Dd−1
1 (d), Dd

1(d)] with |X| ≥ Gk(d). If k = 0, then

|X| > G0(d) = d = D−1
2 (minX) = f(minX),

since minX ∈ [Dd−1
1 (d), Dd

1(d)]. Hence, X is 0-dense(f).
Now assume the claim for k and let X be a subset of [Dd−1

1 (d), Dd
1(d)]

with |X| > Gk+1(d) = G(Gk(d)). Let

H : [X]f(min X)+2 → 3f(min X),

be any colouring and notice that f(minX) = d, since minX is an element
of [Dd−1

1 (d), Dd
1(d)]. Because of

G(x) → (x)d+2
3d ,

there exists Y ⊆ X homogeneous for H, such that |Y | ≥ Gk(d). The
induction hypothesis yields that Y is k-dense(f), so X is (k+ 1)-dense(f).
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For determining an upper bound, we will use α-f -largeness, which is
a parameterised version of α-largeness. In other words, we want to make
the notion of α-largeness dependent on a function f . Let f : N → N be a
nondecreasing function, such that 1 ≤ f(x) ≤ x, for x ∈ N. We introduce
another hierarchy of functions, which differs slightly from the original Hardy
hierarchy and is handy for introducing α-f -largeness.

4.45 Definition. Define the hierarchy of functions (hA
f,α)α≤εω as follows.

For every x ∈ N,

hA
f,0(x) ' x;

hA
f,α+1(x) ' hA

f,α(hA(x));

hA
f,λ(x) ' hA

f,λ[f(x)](x),

where α is an ordinal below εω, and λ a limit ordinal less than or equal to
εω. The hierarchy (hA

f,α)α≤εω is called the Hardy hierarchy based on hA,
relative to f .

Remark that in case A equals N, then hA becomes the normal successor
function. If in addition f would equal the identity function, then (hA

f,α)α≤εω

is the standard Hardy hierarchy as given by Definition 1.13.
Now we are ready to give the definition of an α-f -large set.

4.46 Definition. A set A ⊆ N is called α-f -large if hA
f,α(minA) is defined.

Whenever it is clear which set A and which function f we are working
with, we leave out the super- and subscript and simply write h and hα,
instead of hA and hA

f,α. As before, in the lemmas below, we will assume
all functions hA

f,α occurring are acting on their domain, so we can replace
' by =. If not mentioned explicitly, A will denote an arbitrary subset of
N \ {0}. The definitions of α-f-small and exactly α-f-large are similar to
Definition 1.15 and Definition 1.16.

The following lemmas are the analogues of Lemma 1.17, Lemma 1.18,
Lemma 1.19 and Lemma 1.20, but with α-f -largeness instead of α-largeness.
As one can see below, the original proofs generalise rather straightforwardly.
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Make sure not to confuse the hierarchy hα which we use in this chapter
(Definition 4.45), with the ones we have seen earlier (Definition 1.13 and
Definition 1.14). Remark that, if not mentioned clearly, all ordinals α and
β in this chapter are smaller than εω.

4.47 Lemma. For every α and every β � α, hβ+α = hβ ◦ hα.

Proof. By induction on α. The base and successor step are exactly the
same as in the original case. So, let λ be limit and assume the lemma for
all α < λ. By Lemma 1.4 we have if β � λ, then β � λ[f(b)] for all b. It
follows by the induction hypothesis that if β � λ, then for all b

hβ+λ(b) = h(β+λ)[f(b)](b) = hβ+λ[f(b)](b) = hβ ◦ hλ[f(b)](b) = hβ ◦ hλ(b),

as required.

We can restate this fact in the following manner.

4.48 Lemma. Let A be a finite set and let β � α. Then A is (β + α)-f-
large if and only if there exists u ∈ A such that {x ∈ A |x ≤ u} is α-f-large
and {x ∈ A |u ≤ x} is β-f-large.

4.49 Lemma. For every α ≤ εω:

1. hα is increasing;

2. for every β < εω and b ∈ N: if α⇒f(b) β and hα(b) exists, then hβ(b)
exists and hα(b) ≥ hβ(b).

Proof. By simultaneous induction on α. The base and successor step are
exactly the same as in the original case. So, assume both claims for each
α < λ, λ limit. We show the second part. Let β and b be such that
λ ⇒f(b) β. If λ = β, then we are done. So suppose λ > β, then also
λ[f(b)] ⇒f(b) β and

hλ(b) = hλ[f(b)](b) ≥ hβ(b),

where the inequality holds because of the induction hypothesis. In par-
ticular the right hand side exists. Let us show the first claim for λ.
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So let x < y be elements of the domain of hλ. Then by Lemma 1.6,
λ[f(y)] ⇒f(y) λ[f(x)], hence, by the second claim for α = λ[f(y)] and
β = λ[f(x)],

hλ(y) = hλ[f(y)](y) ≥ hλ[f(x)](y) ≥ hλ[f(x)](x) = hλ(x),

where the second inequality holds because of the induction hypothesis.

4.50 Lemma. Let A = {a0, a1, . . .} and B = {b0, b1, . . .} be finite sets.

1. If |A| = |B| and for every i < |A|, bi ≤ ai, then for every i < |A|, if
hA

α (ai) exists, then hB
α (bi) exists and hA

α (ai) ≥ hB
α (bi).

2. If A is α-f-large, |A| = |B| and for every i < |A|, bi ≤ ai, then B is
α-f-large.

3. If A ⊆ B and A is α-f-large, then B is α-f-large.

Proof. The first statement is easy to prove by induction on α, having in
mind that f is nondecreasing (so x ≤ y implies f(x) ≤ f(y)). The second
statement is a consequence of the first. The third part follows from the fact
that if A ⊆ B then B has an initial segment of size |A|. Apply the second
statement to A and that initial segment. Clearly, if a set has an α-f -large
initial segment it is α-f -large itself.

The following is the parametrised version of Lemma 4.32. Here
f→ is the

parametrised version →, i.e. one uses α-f -largeness instead of α-largeness.

4.51 Conjecture. Let k ∈ N, with 3 ≤ k, m ∈ N∪{−1} and α = F (εm)�
(m + 3) + (k−2)(k−1)

2 + 1. Let A be such that A
f→ (α)k

3k−2 and min(A) ≥
max{k,m+ 2, 4}. Then A is ωk−2(εm + 1)-f-large.

Given the moderate parameter functions we deal with in this chapter
((Dk

1)−1 and D2), we do not expect troubles proving the conjecture. So far,
we have not carried out the investigation though.
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4.52 Lemma. For all k, x ∈ N, with f(x) ≥ 2k + 2,

hB
εk−1·3f(x)−1(x) ≥ hB

f(x)·3f(x)−1(x).

Proof. As f(x) ≥ 2 and εk−1 ⇒1 ω, Lemma 1.7 implies εk−1 ⇒n ω, for
all k, n ∈ N with n ≥ 1. In particular, εk−1 ⇒f(x) ω. Then the following
holds:

hB
εk−1·3f(x)−1(x) = hB

εk−1
(. . . (hB

εk−1︸ ︷︷ ︸
3f(x)−1 times

(x)) . . .)

= hB
εk−1

(. . . (hB
εk−1︸ ︷︷ ︸

3f(x)−1−1 times

(hB
ω (x))) . . .)

≥ . . .

≥ hB
ω (. . . (hB

ω︸ ︷︷ ︸
3f(x)−1 times

(x)) . . .)

≥ hB
ω (. . . (hB

ω︸ ︷︷ ︸
3f(x)−1−1 times

(hB
f(x)(x))) . . .)

≥ hB
f(x)(. . . (h

B
f(x)︸ ︷︷ ︸

3f(x)−1 times

(x)) . . .)

≥ hB
f(x)·3f(x)−1(x),

using Lemma 4.47 and Lemma 4.49 a couple of times.

The next lemma, is the parameterised version of Lemma 4.37.

4.53 Lemma. Let n ∈ N and A ⊆ N, such that minA > 4, and suppose
Conjecture 4.51 is provable. If A is 2n-dense(f), then A is εn−1-f-large.

Proof. The proof is similar to the one of Lemma 4.37, but adapted to the
situation of α-f -largeness. By induction on n. Put a0 = minA.

If n equals zero, then A is 0-dense(f) and |A| > f(a0). So hA
f(a0)(a0) =

hA
ω (a0) = hA

ε−1
(a0) exists, so A is ε−1-f -large.
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Assume the statement for n = k and let A be (2k + 2)-dense(f). Let
G : [A]f(a0)+2 → 3f(a0) be any function and B a subset of A such that B is
homogeneous for G and B is (2k + 1)-dense(f). To invoke Lemma 4.51 we
will show that B is (F (εk−1)� (k + 2) + f(a0)(f(a0)+1)

2 + 1)-f -large, with F
as defined by Definition 4.16. Put b0 = minB and

Bi = {b ∈ B : hB
εk−1·(i−1)(b0) ≤ b < hB

εk−1·i(b0)},

for i ∈ {1, . . . , 3f(b0) − 1}. Define H : [B]f(b0)+2 → 3f(b0) by

H(x1, . . . , xf(b0)+2) =



1 if x1 ∈ B1

2 if x1 ∈ B2

...
...

3f(b0) if hB
εk−1·(3f(b0)−1)

(b0) ≤ x1

,

for each (x1, . . . , xf(b0)+2) ∈ [B]f(b0)+2. Since B is (2k + 1)-dense(f), there
must exist C ⊆ B, such that C is homogeneous for H and C is 2k-dense(f).
The induction hypothesis yields that C is εk−1-f -large. C cannot take any
colour i with i < 3f(b0), since every Bi is εk−1-f -small. Thus C ⊆ {b ∈ B :
hB

εk−1·(3b0−1)
(b0) ≤ b}. Since C is εk−1-f -large, hB

εk−1·3f(b0)(b0) exists and B

is εk−1 ·3f(b0)-f -large. Remark that, as A is (2k+2)-dense, f(a0) ≥ 2k+2,
and so f(b0) ≥ 2k + 2. Then we obtain

hB
εk−1·3f(b0)(b0) = hB

εk−1·3f(b0)−1·2(hεk−1·3f(b0)−1(b0))

≥ hB
εk−1·3f(b0)−1·2(h

B
f(b0)·3f(b0)−1(b0))

≥ hB
εk−1·3f(b0)−1·2(h

B
f(b0)(f(b0)+1)

2
+k+3

(b0))

≥ hB
εk−1·2(k+2)(h

B
f(b0)(f(b0)+1)

2
+k+3

(b0))

= hB

εk−1·2(k+2)+
f(b0)(f(b0)+1)

2
+k+3

(b0)

= hB

F (εk−1)�(k+2)+
f(b0)(f(b0)+1)

2
+1

(b0)

≥ hB

F (εk−1)�(k+2)+
f(a0)(f(a0)+1)

2
+1

(b0).
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The first inequality holds because of Lemma 4.49 and Lemma 4.52. Notice
that

3f(b0)−1 · f(b0) ≥
f(b0)(f(b0) + 1)

2
+ k + 3,

and
3f(b0)−1 · 2 > f(b0) + 2 = 2(k + 2),

as f(b0) ≥ 2k+ 2 ≥ 2, which results in the second and the third inequality.
The last one is caused by a0 ≤ b0.

Hence B is (F (εk−1)� (k+2)+ f(a0)(f(a0)+1)
2 +1)-f -large. Lemma 4.51

yields A is towf(a0)(εk−1 + 1)-large, i.e. εk-f -large.

Following earlier agreements we write (Dk
1)−1 to denote the inverse of

Dk
1 , where brackets are used to avoid confusion.

4.54 Conjecture. Suppose Conjecture 4.51 is provable in ACA0+RT. Let
k ∈ N. If f(x) = (Dk

1)−1(x) for every x ∈ N, then

ACA0 + RT 0 (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Proof sketch. Assume by contradiction that

ACA0 + RT ` (∀n)(∀a)(∃b)([a, b] is n-dense(f)).

Then
ACA0 + RT ` (∀a)(∃b)([a, b] is εω-f -large),

which states that hf,εω is a provably total function of ACA0 + RT. Notice
that for fixed k ∈ N,

f(x) = (Dk
1)−1(x) ≥ (Dh−1

εω (x)
1 )−1(x),

for x large enough. Proceed as in the proof of Theorem 4.39 to obtain a
contradiction using a generalisation of Theorem 2 in [MW] up to εω.



Chapter 5

NASH-WILLIAMS RAMSEY THEORY

5.1 Original Nash-Williams Theorem and exten-
sions

5.1.1 Introduction

Some of the many results Crispin Nash-William left us, have a clear con-
nection with unprovability theory or related areas. He introduced, for
instance, the minimal bad sequence argument and used it as an elegant,
new approach to prove Higman’s lemma and Kruskal’s theorem ([NW63]).
Both statements generate surprising strength and are classical examples in
unprovability theory. The proofs are short and appealing thanks to the
minimal bad sequence argument, which is a method that possess a lot of
strength. More precisely, Alberto Marcone showed in [Mar96] that the
general version of that argument has the strength of Π1

1-CA0.
Here we will study another result of Nash-Williams, namely a gener-

alisation of Ramsey’s theorem to families of finite subsets of N (Theorem
5.2). It was first presented in [NW65] and has gained quite some attention
ever since (see e.g. [PR82, KT91, Far04, AT05]). The theorem is usu-
ally called Nash-Williams’ partition theorem, but we will simply call it the
Nash-Williams Theorem, or NWT for short.

Make sure not to confuse NWT with the Nash-Williams’ theorem on

97
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transfinite sequences, which was originally presented in [NW68]. This is
a different result of Nash-Williams which strength is conjectured to be
equivalent to ATR0 ([Mar96]).

Our original motivation was the study of unprovable statements on the
level of ATR0. We planned to investigate NWT and related first-order
statements which might lead to unprovability phenomena. Soon other ques-
tions popped up, which also seemed worth having a closer look at. What
is presented here is part of that still ongoing research. Some of the re-
sults are not mentioned, but can be found in [BDS]. In this chapter we
briefly discuss the original NWT and present a generalisation called rela-
tions Nash-Williams Theorem. We also investigate the strength of NWT
and end with an unprovable statement related to Schreier families.

While studying Nash-Williams Ramsey theory the book Ramsey meth-
ods in analysis by Spiros Argyros and Stevo Todorcevic has been very help-
ful. Among other results, we present generalisations of some definitions and
proofs given in [AT05], namely Definition 5.4, Definition 5.6, Theorem 5.9
and Corollary 5.10.

5.1.2 Original Nash-Williams Theorem

Throughout this chapter, F will denote a family of finite structures. De-
pending on which finite structures we are working with, s v t (where
s, t ∈ F) will get its meaning.

Let s = {s0, . . . , sn} and t = {t0, . . . , tm} be finite subsets of N. Unless
stated differently we will assume the elements of sets of natural numbers
are given in increasing order. Then we say that s v t if s is an initial
segment of t, i.e. n ≤ m and si = ti for all i ≤ n. The family F will be a
family of finite subsets of N. For M ⊆ N, F � M will be a shorthand for
F ∩ P(M)1.

The next definitions are given for the specific case of subsets of nat-
ural numbers described above. However, they easily generalise to other
situations, depending on the meaning of F and v.

1Notice that the symbol � has a different meaning here than in Chapters 1–4
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5.1 Definition. 1. A family F of finite subsets of N is called thin if
s 6v t for every pair of distinct members s and t of F .

2. A family F of finite subsets of N is called Ramsey if for every infinite
set M ⊆ N and every finite partition

F = F0 ∪ . . . ∪ Fk

there is an infinite set N ⊆M such that at most one of the restrictions

F0 � N , . . . , Fk � N

is non-empty.

5.2 Theorem (Nash-Williams). Every thin family of finite subsets of N is
Ramsey.

Proof. See [NW65] for the original proof.

Instead of finite sets of natural numbers, one can also look at other
structures as, for example, finite words in a finite alphabet. We elaborate
for a moment on this rather trivial example. Suppose (Σ,≤) is a finite
partial order, called the alphabet, and let Σ∗ be the set of all finite sequences
of elements of Σ, called the finite words. It is possible to order Σ∗ by v as
follows. Let s = s0s1...sm and t = t0t1...tn be finite words, i.e. elements of
Σ∗. Then s v t if there exist k0 < k1 < . . . < km ≤ n such that si ≤ tki

for
all i ≤ m.

Using infinite words, i.e. infinite sequences of elements of Σ, thinness
and Ramseyness are defined for families of words in the same way as above.
Remark that a subsequence of an infinite word, is again a word.

Also in this setup it turns out that thin families are Ramsey. Indeed,
suppose a thin family F of words is given, as well as a finite partition of
F , and an infinite word W . As the alphabet Σ is finite, W contains at
least one element of Σ infinitely many times. Call this element q and define
V = qqqqq . . ., i.e. an infinite word consisting of only the element q. Then
clearly V ⊆W . There are two possible cases.
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Suppose that for every natural number n > 0, the finite word w =
qq . . . q︸ ︷︷ ︸
n times

does not belong to F . Then we are done, as no member of the par-

tition will contain a subsequence of V . Now assume there exists a natural
number n0 > 0 such that the finite word w = qq . . . q︸ ︷︷ ︸

n0 times

belongs to F . Since

F is thin, this n0 is unique and once again we are done, as exactly one
member of the partition will contain a subsequence of V .

It is possible to give similar examples of structures involving sequences
of natural numbers, trees or graphs, such that thin families are Ramsey.

As one could suspect analysing the proof above, the example with finite
words does not possess much strength. The original NWT, on the contrary,
turns out to be much stronger as we will see in Section 5.2.

The examples above are instances of the template2 “thin implies Ram-
sey”. One of the aims of our study is to fully analyse this template, and
the strength it gives rise to. In particular, we will look at another instance
of the template by generalising the original NWT to labelled structures. In
the next subsection we will explore that new setup.

5.1.3 Relational Nash-Williams Theorem

As announced above, we will generalise NWT and work with families of
finite labelled structures instead of finite subsets of natural numbers. We
start by introducing some new concepts.

5.3 Definition. 1. A structure s is a set with relations R1, R2, . . . , Rn,
with n ∈ N, on it. The relations have finite arity and the elements of
the set will be called vertices.

2. A labelled structure s is a structure with natural number labels on the
vertices, such that each label occurs only finitely many times. If the
set of vertices is finite we call s a finite labelled structure. Otherwise
s is called an infinite labelled structure.

2We borrowed the word “template” from Harvey Friedman and his explanations pre-
senting Boolean Relation Theory as the study of a template.
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3. We call two labelled structures s1 and s2 isomorphic if there exists a
bijection between s1 and s2 which is label preserving, relation preserv-
ing and non-relation preserving. We write s1 ' s2.

4. A labelled structure s1 is an initial segment of a labelled structure s2
if there exists s3 ⊆ s2 such that s1 ' s3 and s2 \ s3 has only bigger
labels than s3. We write s1 v s2.

We will use lowercase letters r, s, t, . . . and uppercase letters M,N,P, . . .
to denote finite and infinite labelled structures, respectively. Unless spe-
cially needed, we will not mention the relations and identify a finite or
infinite labelled structure with its set of vertices.

We will work with classes of labelled structures in R1, . . . , Rn which
contain at least one infinite member and such that every subset of a member
of the class is a member of the class, by inheriting labels and restricting
relations. If in a statement several (families of) labelled structures are
considered, it is implicitly assumed that exactly the same relations act on
those structures.

The original idea was that this setup could result in a new model-
theoretic approach for proving unprovability theorems. The relations of a
labelled structure could play the role of formulas, and some new kind of
indiscernibles would emerge. So far, this has not been achieved. So the
reader should not expect many purely logical results in this section.

What is presented here is intended to ensure that the setup works well,
and that the template indeed has instances of more general nature. In
addition, it allows us to introduce in a general context a method called
combinatorial forcing , which has been used by Nash-Williams for proving
his original theorem.

Given a finite labelled structure s and an infinite labelled structure M ,
we define M/s as the set of all vertices in M whose labels are larger than
the maximum label of s. By a previous remark, M/s is an infinite labelled
structure, by inheriting labels and restricting relations from M . Finally we
put

M [<∞] = {s ⊆M : s is finite}.
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Before stating the main theorem of this section, we give some more def-
initions and two lemmas which will be used in the proof. Our approach is
a generalisation of the one employed in Chapter 2 of [AT05], where Todor-
cevic investigates Nash-Williams’ theory of fronts and barriers.

5.4 Definition. Let F be a family of finite labelled structures and M an
infinite labelled structure.

1. Define the extensor EF ,M : M [<∞] → P(M [<∞]) such that for every
s ∈M [<∞],

EF ,M (s) = {t ∈M [<∞] : s v t&(∃u ∈ F)(u v t)}.

2. Let N ⊆M . Then s ∈M [<∞] is called:

- inextensible in N if N [<∞] contains no member of EF ,M (s);

- extensible in N if N [<∞] contains a member of EF ,M (s);

- strongly extensible in N if for every infinite labelled structure
P ⊆ N , s is extensible in P .

If it is clear which family F and which infinite labelled structure M we
are working with, we simply write E(s), instead of EF ,M (s).

5.5 Lemma. Let M be an infinite labelled structure and F a family of
finite labelled structures. Then there exists N ⊆ M , such that every finite
subset of N is either inextensible in N or strongly extensible in N .

Proof. We will define a sequence n1, n2, . . . ∈M in stages.
Stage 1: Let s0 be a finite labelled structure such that the set of vertices

of s0 is empty. If there is an infinite A ⊆M such that s0 is inextensible in
A, put N0

1 = A. Otherwise, put N0
1 = M . Let n1 be a vertex of N0

1 with
the smallest label in N0

1 .
Stage k+1 (k > 0): So far, we have defined {n1, . . . , nk} and the infinite

labelled structure N0
k ⊆ M such that every finite subset of {n1, . . . , nk} is

either inextensible or strongly extensible in N0
k . If possible, consider a finite

labelled structure s0k by taking a subset of {n1, . . . , nk}, in such a way that
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we have not dealt yet before with a finite labelled structure t ⊆ {n1, . . . , nk}
with s0k ' t. If there is an infinite A ⊆ N0

k such that s0k is inextensible in A,
put N1

k = A. Otherwise (i.e. s0k is strongly extensible in N0
k ), put N1

k = N0
k .

As long as there is a finite labelled structure si
k ⊆ {n1, . . . , nk} and we have

not dealt yet previously with a finite labelled structure t ⊆ {n1, . . . , nk}
with si

k ' t, we continue as before in order to define N i+1
k ⊆ N i

k. At a
certain moment we will have considered all possible finite labelled structures
s ⊆ {n1, . . . , nk}, up to isomorphism. Suppose the last infinite labelled
structure we have defined was N l

k. Then define N0
k+1 as N l

k and nk+1 as a
vertex of N0

k+1 \ {n1, . . . , nk} with lowest label. Proceed by moving to the
next stage.

Define N as the infinite labelled structure with set of vertices {ni ∈
M : 1 ≤ i} ⊆ M by inheriting labels and restricting relations. One easily
verifies that N satisfies the conditions mentioned in the statement.

5.6 Definition. Let D be a set of infinite labelled structures.

1. The set D is called open if for all infinite labelled structures N and
M , N ⊆M ∈ D implies N ∈ D.

2. The set D is called dense below M if for every infinite labelled struc-
ture N with N ⊆M there exists P ⊆ N such that P ∈ D.

3. A dense-open-set assignment on M is a family Ds (s ∈M [<∞]) such
that for all s ∈M [<∞], Ds is a set of infinite labelled structures and

Ds is open and dense below M/s.

5.7 Lemma. For every infinite labelled structure M and for every dense-
open-set assignment Ds (s ∈M [<∞]) on M , there exists an infinite labelled
structure N ⊆M , such that N/s ∈ Ds for all s ∈ N [<∞].

Proof. We will define a sequence n1, n2, . . . ∈M in stages.
Stage 1: Let s0 be a finite labelled structure such that the set of vertices

of s0 is empty. Due to density there exists an infinite labelled structure
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N0
1 ⊆M , such that N0

1 /s0 ∈ Ds0 . Define n1 as a vertex in N0
1 with lowest

label in N0
1 . Move to stage 2.

Stage k + 1 (k > 0): So far, the vertices n1, . . . , nk and the infinite
labelled structure N0

k ⊆M have been defined in such a way that N0
k/s ∈ Ds

for every finite labelled structure s ⊆ {n1, . . . , nk}. If possible, consider
a finite labelled structure s0k by taking a subset of {n1, . . . , nk}, in such
a way that we have not dealt yet before with a finite labelled structure
t ⊆ {n1, . . . , nk} with s0k ' t. Since Ds0

k
is dense below M/s0k there exists

an infinite labelled structure N1
k ⊆ N0

k/s
0
k such that N1

k ∈ Ds0
k
. As long

as there is a finite labelled structure si
k ⊆ {n1, . . . , nk} and we have not

dealt yet previously with a finite labelled structure t ⊆ {n1, . . . , nk} with
si
k ' t, we continue as before in order to define N i+1

k ⊆ N i
k. At a certain

moment we will have considered all possible finite labelled structures s ⊆
{n1, . . . , nk}, up to ismorphism. Suppose the last infinite labelled structure
we have defined was N l

k. Then define N0
k+1 as N l

k and nk+1 as a vertex
of N0

k+1 \ {n1, . . . , nk} with lowest label. Proceed by moving to the next
stage.

Define N as the infinite labelled structure with set of vertices {ni ∈
M : 1 ≤ i} ⊆ M by inheriting labels and restricting relations. One easily
verifies that N satisfies the conditions mentioned in the statement.

Thinness and Ramseyness can also be defined in the case of families of
finite labelled structures, which is done in the next definition.

5.8 Definition. 1. A family F of finite labelled structures is called thin
if s 6v t for every pair of distinct members s and t of F .

2. A family F of finite labelled structures is called Ramsey if for every
infinite labelled structure M and every finite partition

F = F0 ∪ . . . ∪ Fk

there is an infinite labelled structure N ⊆M such that at most one of

F0 ∩N [<∞] , . . . , Fk ∩N [<∞]

is non-empty.
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Remark that we relativise the notion of Ramseyness to a certain infinite
labelled structure M in order to avoid trivial cases. If we did not require
N ⊆ M , then it would suffice to take any infinite labelled structure N
which has no vertices in common with previously considered structures.

5.9 Theorem. For any infinite labelled structure M , any thin family F
of finite labelled structures and any partition F = F0 ∪ F1, there is an
infinite labelled structure N ⊆M , such that at most one of F0∩N [<∞] and
F1 ∩N [<∞] is non-empty.

Proof. Whenever a family of finite labelled structures is required in the
proof (e.g. in definitions or for applying lemmas), we will work with F0.
Apply Lemma 5.5 (with F0 as the family of finite labelled structures) to
obtain an infinite labelled structureN ⊆M , such that for any finite labelled
structure s ⊆ N either s is inextensible in N or s is strongly extensible in
N . So, we could as well have shrunk M to have the desired properties. Let
us rename N by M .

For any s ∈ M [<∞], define Ds as the collection of all infinite labelled
structures P of M/s such that either

(1) the finite labelled structure s ∪ {v} ⊆ M is inextensible in M , for
all vertices v ∈ P/s;
or

(2) the finite labelled structure s ∪ {v} ⊆ M is strongly extensible in
M , for all vertices v ∈ P/s.

One can verify that Ds (s ∈M [<∞]) is a dense-open-set assignment on
M , so by Lemma 5.7 (with F0) there exists an infinite labelled structure
N ⊆ M , such that N/s ∈ Ds for all s ∈ N [<∞]. This will be the N we are
looking for.

Let s0 be a finite labelled structure such that the set of vertices of s0 is
empty. We distinguish two cases.

Case 1: s0 is inextensible in M and therefore in N . So N contains
no member of E(s0) = EF0(s0) (recall Definition 5.4 of the extensor EF ).
Since the set of vertices of s0 is empty, F0 ⊆ E(s0). Thus N contains no
member of F0, which settles this case.
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Case 2: s0 is strongly extensible in M and therefore in N . Note that
by the definition of E(s), a finite labelled structure s is extensible in N
if and only if there exists a vertex v ∈ N/s such that the finite labelled
structure s ∪ {v} ⊆ N is extensible in N . So by the choice of N , a finite
labelled structure s is extensible in N if and only if for all vertices v ∈ N/s
the finite labelled structure s ∪ {v} ⊆ N is extensible in N . It follows
that every finite labelled structure s ⊆ N is (strongly) extensible in N .
Combining this statement with the fact that F is thin and the definition
of E(s), one can conclude that N cannot contain a member of F \ F0.

Scrutinising the proof above, one might notice that it is unnecessary to
require to whole family to be thin. It suffices that one of both members of
the partition is thin.

5.10 Corollary. Any thin family F of finite labelled structures is Ramsey.

Proof. It suffices to show that for every pair F and F0 ⊆ F of thin families
of finite labelled structures and for every infinite labelled structureM , there
exists an infinite labelled structure N ⊆M such that either F0∩N [<∞] = ∅,
or F ∩N [<∞] ⊆ F0. This is exactly what Theorem 5.9 says.

Clearly, if we restrict ourselves to families of finite subsets of natural
numbers and define v accordingly, then Corollary 5.10 is exactly NWT. In
[BDS] one can also find a version with labelled graphs. Now why would one
study those generalisations? As explained after Definition 5.3, the original
motivation was its possible relation to new unprovability phenomena. One
could investigate whether this template gives rise to statements having
strengths that differ. In other words, suppose we look for the weakest
theories needed to prove specific instances of “thin implies Ramsey”, will
we encounter different ones while going through all such statements?

In the next section we take a first step towards the answer to that
question by analysing an obvious example of the template, namely NWT.
Clearly, part of that answer also depends on the potential of the relational
NWT to yield a new kind of model-theoretic proofs.

Another benefit is of different nature. Namely, in [KP07] the authors
present a topological view on Ramsey families in the original setup. It
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could be interesting to investigate what would happen in the case of the
relational NWT.

5.2 Strength of the Nash-Williams Theorem

We investigate the strength of Nash-Williams’ theorem by giving an upper
and a lower bound. It will turn out that NWT is equivalent to ATR0 over
RCA0. These results were already known before, so we do not claim to
present new theorems (see e.g. [AT05, Sim09]). Instead, we intend to give
a clear overview of the current knowledge and also provide rigorous proofs,
as some of those seem to be missing from the literature (Theorem 5.15 and
Theorem 5.18). Igor Kř́ıž and Robin Thomas gave an analysis of NWT by
means of ordinal types ([KT91]).

We start by linking NWT to RT, Ramsey’s Theorem, which is investi-
gated in more detail in Chapter 4. We will use RCA0 as a base theory.

5.11 Theorem. NWT implies RT.

Proof. Let n and e be natural numbers and f : [N]n → e a colouring of
n-element subsets of N into e colours. Define F as the set of all n-element
subsets of N, and consider the following partition of F . For every X =
{x1, . . . , xn} in F , put

X ∈ Fi if and only if f(x1, . . . , xn) = i,

where i ∈ {0, . . . , e− 1}. Since F is a thin family of subsets of N, Theorem
5.1 yields the existence of an infinite M ⊆ N, such that at most one of
the restrictions F0 � M , . . . , Fe−1 � M is non-empty. Moreover, since F
equals the set of all n-element subsets of N at least one of the restrictions
F0 � M , . . . , Fe−1 � M is non-empty. Thus, exactly one restriction is non-
empty, say Fi � M , for some i in {0, . . . , e− 1}. Then for every n-element
set {x1, . . . , xn} ⊆M , f(x1, . . . , xn) = i, i.e. M is homogeneous for f .

After reading the previous proof, the reader might have the impression
we only used a fraction of NWT’s actual strength. That feeling is indeed
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justified, as we will show that NWT implies ATR0. In order to do so, let
us introduce some useful definitions. Recall that we use capital letters to
denote infinite structures, and define for M ⊆ N,

M [∞] = {P ⊆M : P is infinite}.

In other words, M [∞] denotes the set of all infinite subsets of M .

5.12 Definition. An open set P ⊆ N[∞] is defined by a family FP ⊆ N[<∞],
such that for every N ⊆ N, N ∈ P if and only if there exists a member of
FP which is an initial segment of N .

Open sets as defined above are exactly the open sets of the Baire space
with the product topology. By taking the minimal elements, it is always
possible to define an open set of N[∞] by a thin family. Open sets are used
to define extensions of RT.

5.13 Definition. The open Ramsey theorem is defined to be the statement
that for every open set P ⊆ N[∞] there exists N ⊆ N such that either for
all M ⊆ N , M ∈ P , or for all M ⊆ N , M /∈ P .

The clopen Ramsey theorem is defined to be the statement that for all
open sets P,Q ⊆ N[∞], if for all L ⊆ N (L ∈ P ↔ L /∈ Q) then there exists
an N ⊆ N such that either for all M ⊆ N , M ∈ P , or for all M ⊆ N ,
M /∈ P .

The next theorem connects both Ramsey theorems introduced above.

5.14 Theorem (Friedman–McAloon–Simpson). The following are pairwise
equivalent over RCA0:

1. ATR0;

2. the open Ramsey theorem;

3. the clopen Ramsey theorem.

Proof. See [Sim09], Theorem V.9.7.
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We will show that NWT is equivalent to ATR0, over RCA0. To do so,
we start by proving that it implies the clopen Ramsey theorem.

5.15 Theorem. NWT implies the clopen Ramsey theorem.

Proof. Let P and Q be open sets in N[∞] such that for all L ⊆ N (L ∈ P ↔
L /∈ Q). Let FP ,FQ ⊆ N[<∞] be the thin families defining P and Q, and
put F = FP ∪ FQ. Suppose F is not thin, then there exist s, t ∈ F such
that s v t. Since FP and FQ are thin, s and t must belong to different
members of the partition, say s ∈ FP and t ∈ FQ. Let L ⊆ N be any set
with initial segment t. Then L ∈ Q. Moreover, also s is an initial segment
of L, so L ∈ P , a contradiction. Hence, F is thin.

Apply NWT to F and obtain N ⊆ N, such that at most one of

FP ∩N [<∞] and FQ ∩N [<∞]

is non-empty. First notice that since for all L ⊆ N (L ∈ P ↔ L /∈ Q), it
is impossible that both intersections are empty at the same time. Suppose
FP ∩N [<∞] is empty. Then whichever M ⊆ N you take, there is no initial
segment of M that belongs to FP . Hence M /∈ P for all M ⊆ N .

Now suppose FQ ∩N [<∞] is empty. Then whichever M ⊆ N you take,
there is no initial segment of M that belongs to FQ. Thus for all M ⊆ N ,
M /∈ Q, which is equivalent to M ∈ P . Combining the two previous cases,
we have found N ⊆ N such that either for all M ⊆ N , M ∈ P , or for
all M ⊆ N , M /∈ P , which concludes the proof of the clopen Ramsey
theorem.

As a result of the two previous theorems, we have found a lower bound
for the strength of NWT, namely ATR0. The next step is to look for upper
bounds. We will give two of them, namely the open Ramsey theorem and
the Σ0

1 Ramsey theorem, which is defined as follows.

5.16 Definition. The Σ0
1 Ramsey theorem, denoted Σ0

1-RT, is the scheme

∃f (∀g ϕ(f ◦ g) ∨ ∀g ¬ϕ(f ◦ g)),
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where ϕ is any Σ0
1 formula. Here f and g range over the Ramsey space,

i.e. the space of all total functions h : N → N such that h is strictly increas-
ing.

It is rather straightforward to see that Σ0
1 Ramsey theorem is equivalent

to the open Ramsey theorem. Nevertheless we will show separately how
each principle implies NWT, as both short proofs have their own flavour.
In both theorems we will consider a slightly different version of NWT than
we used before:

“for every thin family F ⊆ N[<∞] and every partition F = F0 ∪ F1, there
is N ⊆ N such that either F0 ∩N [<∞] = ∅ or F1 ∩N [<∞] = ∅”.

One can verify that the statement above is equivalent to NWT.

5.17 Theorem. Σ0
1-RT implies NWT.

Proof. Let F ⊆ N[<∞] be a thin family and F = F0 ∪ F1 a partition. Let
ϕ(X) be the following Σ0

1 statement:

ϕ(X) ↔ [∃s ∈ F0(s v X) ∧ ∃t ∈ F1(t ⊆ X)],

where X is a set variable. Apply Σ0
1-RT to obtain an N ⊆ N such that

either for all M ⊆ N , ϕ(M) holds, or for all M ⊆ N , ϕ(M) does not hold.
Suppose the former case holds, then there exists t ∈ F1 such that t ⊆ N .
Let Mt be any subset of N such that t v Mt. Since ϕ(Mt) holds, there
must exist s ∈ F0 such that s v Mt. As both s and t are initial segments
of Mt, either s v t or t v s, which contradicts the thinness of F .

Suppose the latter case holds, then for all M ⊆ N , ∀s ∈ F0(s 6vM) or
∀t ∈ F1(t * M). If there exists M ⊆ N , such that the latter one holds,
then we are done, since F1∩M [<∞] = ∅. Otherwise, F0∩N [<∞] = ∅ which
completes the proof.

The next statement can also be found without proof in e.g. [AT05] (Part
2, Corollary II.6.5).

5.18 Theorem. The open Ramsey theorem implies NWT.
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Proof. Let F ⊆ N[<∞] be a thin family and F = FP ∪FQ a partition. Then
FP and FQ define open sets P ⊆ N[∞] and Q ⊆ N[∞], respectively. Remark
that since F is thin and FP and FQ are disjoint no set can belong to both
P and Q. Apply the open Ramsey theorem to P to obtain N ⊆ N such
that either for all M ⊆ N , M ∈ P , or for all M ⊆ N , N /∈ P . In case the
former one holds, then for all M ⊆ N , M /∈ Q, hence FQ ∩N [<∞] = ∅. If
the latter case holds, FP ∩N [<∞] = ∅.

Now, Theorem 5.14 implies that ATR0 is an upper bound for the
strength of NWT. Hence, we have obtained the following result.

5.19 Theorem. The following are equivalent over RCA0:

1. ATR0;

2. NWT.

Proof. Combine Theorem 5.14, Theorem 5.15 and Theorem 5.18.

This concludes the investigation of the strength of one specific instance
of the template “thin implies Ramsey”. So what about other instances?
To our knowledge, the strength of the relational NWT (see Corollary 5.10)
has not been determined so far. Clearly, as it implies NWT, it will be at
least as strong as ATR0. The question arises whether the use of labelled
structures would lead to stronger theories. Future research will hopefully
settle this.

5.3 About Schreier families

While studying Nash-Williams Ramsey theory, or more precisely while look-
ing at fronts and barriers, we also encountered Schreier families. These
families have been used to give transfinite extensions of RT and NWT (see
e.g. Theorem 5.21). As is often the case, the connection with Ramsey theory
gives rise to unprovability phenomena, which explains our interest in those
families. In this section we present a first-order PA-unprovable statement,
called FRO(ω).
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Let us first introduce Schreier systems as done by Vassiliki Farmaki and
Stylianos Negrepontis in [FN08]. The definition and some of the lemmas
below can be given for any countable ordinal, but we will just consider
ordinals below εω.

5.20 Definition. The Schreier system (Aξ)ξ<εω is defined as follows. Let
α, β, ζ, λ and ξ be ordinals below εω. Then

1. A0 = {∅};

2. Aζ+1 = {s ∈ N[<∞] : s = {n} ∪ s1, where n ∈ N, {n} < s1 and
s1 ∈ Aζ};

3. Aωβ+1 = {s ∈ N[<∞] : s = ∪n
i=1si, where n = min s1, s1 < s2 < . . . <

sn and s1, . . . , sn ∈ Aωβ};

4. for a limit ordinal λ, Aωλ = {s ∈ N[<∞] : s ∈ Aωλ[n] with n = min s};

5. for a limit ordinal ξ such that ξ = ωαp + ωα1p1 + . . . + ωαmpm in
Cantor normal form, then Aξ = {s ∈ N[<∞] : s = s0 ∪ (∪m

i=1si) with
sm < . . . < s1 < s0, s0 = s01 ∪ . . . ∪ s0p with s01 < . . . < s0p ∈ Aωα, and
si = si

1 ∪ . . . ∪ si
pi

with si
1 < . . . < si

pi
∈ Aωαi ,∀1 ≤ i ≤ m}.

For any ξ < εω, the member Aξ of the system is called a Schreier family.

Even though the definition above depends on the particular choice of
fundamental sequences, it turns out the complexity of the family, as mea-
sured by its Cantor-Bendixson index, is independent of that choice. See
[FN08] for more information on this. Given the fundamental system de-
fined in Chapter 1, a set s belongs to Aα if and only if s ∪ {max s + 1} is
exactly α-large, for every α < εω.

The next theorem is called the “Ramsey partition theorem extended
to countable ordinals”. In [Far98] Farmaki gave a proof directly from the
definitions involved. Another proof, using the combinatorial theorems of
Nash-Williams in [NW65] is given in [PR82].
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5.21 Theorem. Let M be an infinite subset of N, ξ < εω and F a family
of finite subsets of N. Then there exists an infinite subset L of M such that
either Aξ ∩ L[<∞] ⊆ F , or Aξ ∩ L[<∞] ⊆ N[<∞] \ F .

Proof. See Theorem 2.2 in [Far98].

If we replace ξ by a natural number n, then we obtain the original Ram-
sey Theorem for dimension n and two colours, since An contains exactly all
possible n-tuples of natural numbers. Let us have a look at the case ξ = ω.

Aω = {s ∈ N[<∞] : s = ∪n
i=1si, where n = min s1, s1 < s2 < . . . < sn

and s1, . . . , sn ∈ A1}
= {s ∈ N[<∞] : s = ∪n

i=1{ki}, where n = k1, k1 < k2 < . . . < kn

and k1, . . . , kn ∈ N}
= {s ∈ N[<∞] : min s = |s|}.

A subset s of the natural numbers for which |s| ≥ min s, is called large.
Hence, all elements of Aω are large. There are several examples of inde-
pendent statements (e.g. PH), in which the largeness condition is crucial
for demonstrating the unprovability. So, not surprisingly, Aω is closely
connected to unprovability phenomena, which is also noticed in [FN08] as
follows:

“It is also noteworthy that the hereditary family

(Aω)∗ = {t ∈ N[<∞] | t ⊆ s, for some s ∈ Aω} ∪ {∅},

generated by Aω figures prominently (under the name of the
family of “not large” sets) in questions of mathematical logic
related to concrete realisations of Gödels incompleteness theo-
rem, specifically in the (Ramsey type) Paris-Harrington state-
ments [...] The higher order hereditary Schreier families (Aξ)∗,
and specifically a suitable finitary form of Theorem 1.5 involving
sets in these families, might well be useful in forming and prov-
ing statements true but unprovable in certain systems endowed
with induction stronger than that in Peano arithmetic.”.
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We will show how unprovability indeed arises in this context by modifying
Theorem 5.21. We call elements s and t of N[<∞] successive if min s 6=
min t. Fix any ordinal ξ < εω and let FRO(ξ) (Finite Ramsey partition
theorem extended to countable Ordinals) stand for the following first-order
statement:

“for all m, there exists N , such that for all families F of subsets of [0, 2N ]
and all M ⊆ [0, 2N ], with |M | ≥ N , there exists L ⊆M , such that L

contains max{m,minL} successive elements of Aξ and either
Aξ ∩ L[<∞] ⊆ F , or Aξ ∩ L[<∞] ⊆ [0, 2N ][<∞] \ F”.

Clearly, if for some m such an N exists, then N ≥ m. We start our
investigation of FRO(ξ) by proving the statement for every ξ < εω.

5.22 Theorem. For every ξ < εω, FRO(ξ) holds.

Proof. The proof utilises a typical compactness argument in the shape of
König’s lemma. Let ξ < εω and assume FRO(ξ) fails, for the sake of
contradiction. Then

“there exists m, such that for all N , there exists a family F of subsets of
[0, 2N ] and M ⊆ [0, 2N ], such that |M | ≥ N and for all L ⊆M containing
max{m,minL} successive elements of Aξ, we have Aξ ∩ L[<∞] * F and

Aξ ∩ L[<∞] * [0, 2N ][<∞] \ F”

holds. (Note that Aξ ∩ L[<∞] ⊆ F and Aξ ∩ L[<∞] ⊆ [0, 2N ][<∞] \ F
implies Aξ ∩ L[<∞] = ∅, which is impossible.) Fix such m and consider
the set T containing all triples 〈N,FN ,MN 〉, with N a natural number
and FN ⊆ [0, 2N ][<∞] and MN ⊆ [0, 2N ] such that |M | ≥ N and for
all L ⊆ M containing max{m,minL} successive elements of Aξ, we have
Aξ ∩L[<∞] * F and Aξ ∩L[<∞] * [0, 2N ][<∞] \F . By the statement above
there exists at least one such a triple for every N .

Now define a partial order relation ≺ on T as follows. For every two
elements 〈N1,FN1 ,MN1〉 and 〈N2,FN2 ,MN2〉 in T , we write

〈N1,FN1 ,MN1〉 ≺ 〈N2,FN2 ,MN2〉



Chapter 5. Nash-Williams Ramsey theory 115

if and only if
N1 < N2, FN1 ⊆ FN2 and MN1 ⊆MN2 .

The set T together with ≺ forms a tree, as for every 〈N1,FN1 ,MN1〉 in T ,
the set

{〈N2,FN2 ,MN2〉 ∈ T : 〈N2,FN2 ,MN2〉 ≺ 〈N1,FN1 ,MN1〉}

is well-ordered by ≺, as the standard ordering of the natural numbers is
a well-order. Clearly, since there are only finitely many combinations to
extend FN to FN+1 and MN to MN+1, the tree T is finitely branching.
On the other hand, T is infinite, so we can apply König’s lemma to obtain
an infinite branch B = 〈N,FN,MN〉, where FN will be the union of all FN

on B and MN the union of all MN on B. Now apply Theorem 5.21 with
FN, ξ and MN. Then there exists an infinite L ⊆ MN such that either
Aξ ∩ L[<∞] ⊆ FN, or Aξ ∩ L[<∞] ⊆ N[<∞] \ FN.

Take a finite initial segment L0 = {l0, . . . , ls} of L, such that L0 contains
max{m,minL} successive elements of Aξ. Each l ∈ L0 appeared in MNl

for
for some Nl, thus at some level in the tree T . Put N = max{Nl0 , . . . , Nls}
and look at the vertex 〈N,FN ,MN 〉. L0 will contradict the fact that “...
for all L ⊆ MN containing max{m,minL} successive elements of Aξ, we
have Aξ ∩ L[<∞] * FN and Aξ ∩ L[<∞] * [0, 2N ][<∞] \ FN”.

Notice that the proof of the theorem above can be carried out for any
countable ordinal ξ.

5.23 Theorem. FRO(ω) is unprovable in PA.

Proof. We show that FRO(ω) implies PH for two colours, which yields its
unprovability in PA (see the corollary in [LN92]).

Suppose FRO(ω) holds. Let m and n be two given natural numbers.
Remark that if m ≤ n, it is easy to see that N = 2n − 1 suffices. Indeed,
take any colouring f of n-subsets of [0, 2n − 1] into 2 colours and put
H = [n, 2n − 1]. So we can assume that m ≥ n. Put p = 2m. Apply
FRO(ω) (with m replaced by p) to obtain N . We will show that 2N satisfies
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the conditions of PH2. Therefore, take any f : [0, 2N ][n] → 2 and define
F ⊆ [0, 2N ][<∞] as follows. For any X ∈ Aω ∩ [m, 2N ][<∞],

X ∈ F if and only if f(x1, . . . , xn) = 0,

where x1, . . . , xn are the first n elements of X. Thus for all other X ⊆
[0, 2N ][<∞], X /∈ F . Put M = [m, 2N ]. Remark that M ⊆ [0, 2N ] and
|M | ≥ N , sinceN ≥ m. Both F andM satisfy the conditions of FRO(ω), so
there exists a subset L of M , such that L contains max{p,minL} successive
elements of Aω and either Aω∩L[<∞] ⊆ F , or Aω∩L[<∞] ⊆ [0, 2N ][<∞]\F .
Since p = 2m ≥ 1, L contains at least one element of Aω. So we can define
H as the member of Aω ∩ L[<∞] which has the smallest elements, i.e. H
consists of the first minH = minL elements of L. We show that H satisfies
all necessary conditions in PH2.

First, by definition of H, |H| ≥ minH. Second, H ⊆ L ⊆M = [m, 2N ]
implies |H| ≥ m. Finally, take any n elements x1, . . . , xn in H. Because
L contains max{p,minH} successive elements of Aω, there exists X ∈
Aω ∩ L[<∞], such that x1, . . . , xn are the first n elements of X. Depending
on whether Aω ∩ L[<∞] ⊆ F or Aω ∩ L[<∞] ⊆ [0, 2N ][<∞] \ F is the case,
we have one fixed value f(x1, . . . , xn), either 0 or 1, for all x1, . . . , xn in H.
Hence, H is f -homogeneous.



Chapter 6

THE ATLAS OF PREFIXED

POLYNOMIAL EQUATIONS

This chapter is intended as a rather vast introduction to what we will call
the Atlas of prefixed polynomial equations. It deals with many of the main
issues of this new subject. We will present members of the Atlas and give
explanatory words and some technical details. We believe that this alterna-
tive way for looking at first-order arithmetical statements can produce new
mathematical and metamathematical insights. For a thorough treatment
with more representatives, a wide range of observations and several other
features of the Atlas, we refer to [BDS10].

6.1 Definitions and explanations

6.1.1 Prefixed polynomial equations and the Atlas

We start with the prime definitions.

6.1 Definition. A prefixed polynomial equation is an expression of the
form

Q1x1 Q2x2 . . . Qnxn P (x1, x2, . . . , xn) = 0,

where P is a polynomial with integer coefficients whose variables x1, x2, . . .,
xn range over natural numbers, that is preceded by a block of quantifiers

117
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Q1, Q2,. . . , Qn over its variables x1, x2, . . . , xn.

6.2 Definition. The Atlas is the collection of all prefixed polynomial equa-
tions.

We shall often refer to this Atlas as a template in the sense that it is the
set of all substitution instances of a concrete polynomial P and a quantifier-
block into one fixed pattern. Throughout this chapter we will also use other
names such as “polynomial expression with a quantifier-prefix”, or simply
“polynomial expression” or “polynomial equation”. Let us give a typical
generic example of such a polynomial expression.

∀ m ∃ N ∀ ab ∃ cd A X ∀ xy ∃ BCF ∀ fg ∃ hilnrpq

x·(y+B−x)·(A+m+B−y)·[(((f−A)2+(g−1)2)·((f−B)2+(g−x)2)·((f−C)2+
+(g−y)2)−h−1)·((dgi+i−c+f)2+(f+h−dg)2)+(B+l+1−C)2+(C+n−N)2+
+(F + r − b(B + C2))2 + (bp(B + C2) + p− a+ F )2 + ((F −X)2 − qe)2] = 0.

We will denote this polynomial expression by Φ.
To be able to compare different prefixed polynomial equations, we need a

base theory. In [BDS10] it is explained in detail why we choose Exponential
Function Arithmetic, shortly EFA, instead of possible weaker or stronger
candidates. For a rigorous definition of this theory we refer to [Avi03],
where it is called Elementary Arithmetic (EA). More information on EFA
can also be found in the introduction of [Fri10a]. The theory is a fragment
of PA which cannot prove the totality of the iterated exponential function,
but is surprisingly solid. Exactly that robustness motivated Friedman to
make the following conjecture (see [Avi03], Section 1).

Conjecture. Every theorem published in the Annals of Mathe-
matics whose statement involves only finitary mathematical ob-
jects (i.e., what logicians call an arithmetical statement) can be
proved in elementary arithmetic.

Studying the Atlas, we investigate how prefixed polynomial equations
relate to each other with regard to the equivalence relation of “being EFA-
provably equivalent”. Hence, two polynomial expressions ϕ and ψ are
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equivalent if there exists a proof of ϕ↔ ψ in EFA. The equivalence classes
of the Atlas are partially ordered by the following relation: the class of an
expression A is smaller than the class of an expression B if EFA proves that
B implies A.

We choose to let the variables range over natural numbers. Instead
we could have chosen the integers or rational numbers, which are equally
interesting from a mathematical point of view. Each of those templates
will have advantages and disadvantages. We decide on natural numbers as
it is comfortable and usual for logicians.

Notice that the set of prefixed polynomial equations is arithmetically
complete (i.e. every first-order arithmetical formula is EFA-equivalent to a
prefixed polynomial expression). In this sense, the Atlas is just another way
of talking about first-order arithmetical statements. The polynomial equa-
tion Φ given above, for example, is EFA-equivalent to the 1-consistency
of IΣ1 (see Definition 1.2). We will often somewhat abuse notation by
writing sentences as “the equivalence class of 1-Con(IΣ1)” instead of “the
equivalence class of a polynomial equation which is EFA-equivalent to 1-
Con(IΣ1)”, since 1-Con(IΣ1) is hardly ever presented in the form of a poly-
nomial expression.

6.1.2 Size and seeds

We will compare members of the same or different equivalence classes by
looking at their size. Therefore, we need to fix a way of counting the length
of prefixed polynomial expressions.

6.3 Definition. The size of a prefixed polynomial equation is defined as
the length of the polynomial, which is counted as follows: every occurrence
of a variable or multiplication or addition operation contributes 1 to the
total size, a coefficient n contributes (n − 1) to the total size, +n or −n
both contribute n, and the power n contributes (n− 1) to the total size.

Remark that we ignore the quantifier-prefix and the final “= 0” in
defining the size. Sometimes length is used instead of size. Notice how deep
this prefixed polynomial equations template is: there are relatively short
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members in many non-trivial equivalence classes as we will see later. The
representatives given in this chapter are still very rough, so some polynomial
equations appear to be rather long and complicated at first sight. However,
significant simplifications, leading to shorter, comprehensible polynomial
expressions, are expected in the future.

Given our method for counting the size of a polynomial expression, we
can introduce the following important notion.

6.4 Definition. A seed is a prefixed polynomial equation that is of minimal
length in its EFA-provable equivalence class. If a seed belongs to the EFA-
provable equivalence class of an arithmetical formula ϕ, we shall say it is
a seed of ϕ.

Remark that we speak about “a” instead of “the” seed, because an
EFA-provable equivalence class may have several different seeds. Given an
equivalence class, possibly having a specific member in mind, we face the
quest for a seed of that class. Figure 6.1 on the next page gives an idea of
how the Atlas might look like.

6.2 Some important members

Let us give a few basic representatives of EFA-equivalence classes, to get
the first view of the complexity of the Atlas. Recall Definition 1.2 of the
1-consistency of a theory T.

Unprovability by primitive recursive means

6.5 Theorem. The following polynomial expression is equivalent to 1-
Con(IΣ1) and hence unprovable in IΣ1.

∀ em ∃ N ∀ ab ∃ cd A X ∀ xy ∃ BCF ∀ fg ∃ hilnrpq

x·(y+B−x)·(A+m+B−y)·[(((f−A)2+(g−1)2)·((f−B)2+(g−x)2)·((f−C)2+
+(g−y)2)−h−1)·((dgi+i−c+f)2+(f+h−dg)2)+(B+l+1−C)2+(C+n−N)2+
+(F + r − b(B + C2))2 + (bp(B + C2) + p− a+ F )2 + ((F −X)2 − qe)2] = 0.
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Figure 6.1: Sketch of the Atlas regarding the size of polynomial expressions
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Proof. For a full proof see Section 6.5. The proof goes by demonstrating
equivalence with ∀ePH2

e, the Paris-Harrington principle for pairs, wich is
unprovable in IΣ1.

The prefixed polynomial equation of Theorem 6.5 is exactly the expres-
sion Φ which was presented in the introduction, and is also shown in Figure
6.1.

The polynomial equation Φ seems to have quantifier complexity Π0
8.

However, the last four blocks of quantifiers can be bounded by some ex-
ponential expressions, which can be struggled with and eliminated using
the methods from [Mat93]. So the formula is equivalent to a Π0

2 formula.
We did not do any of it because it would blow up the size of the resulting
polynomial.

With our method of counting length (see Definition 6.3), the polynomial
has size 125. Hence, a seed of the equivalence class of 1-Con(IΣ1) will
have 125 as an upper bound for its size. The reader should be aware
that the expression above is rough and lengthy. It could be reduced and
simplified by reusing variables, applying ingenious coding tricks and using
clever combinatorial equivalences during the proof. So we expect a seed of
this class to be shorter and more simple.

Unprovability in two-quantifier-induction arithmetic

6.6 Theorem. The following polynomial expression is equivalent to 1-
Con(IΣ2), and thus unprovable in IΣ2.

∀ em ∃ N ∀ ab ∃ cd A X ∀ xyz uvw ∃ BCDGH ∀ fg ∃ hijklnpqrst FG

x·(y+B−x)·(z+B−y)·(A+m+B−z)·[[(((f−A)2+(g−1)2)·((f−B)2+(g−x)2)·
·((f−C)2+(g−y)2)·((f−D)2+(g−z)2)−h−1)·((dgi+i−c+f)2+(f+h−dg)2)+
+(D+l−dz)2+(dzn+n−c+D)2+(B+F+1−C)2+(C+p+1−D)2+(D+q−N)2+
+(H + r− bt)2 +(bts+ s−a+H)2 +(B+C2 +D3− t)2 +((X −H)2−Ge)2] = 0.

Proof. For a full proof see Section 6.5. Again, we show that the statement
above is equivalent to ∀ePH3

e, the Paris-Harrington principle for triples,
which is equivalent to 1-Con(IΣ2).
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As before, the statement may look like Π0
8 but is actually EFA-equiv-

alent to a (much longer) Π0
2 formula. With our method of counting, the

polynomial has size 178. Again, this is a somewhat naive first attempt. We
are convinced that by more delicate method we can find an example having
much smaller size.

Unprovability in Peano Arithmetic

6.7 Theorem. Consider the following polynomial equation with a param-
eter n. For every n > 1 the statement is equivalent to 1-Con(IΣn−1). So,
with the quantifier prefix ∀n, this statement is equivalent to 1-Con(PA) and
hence is unprovable in PA.

∀ em ∃ N ∀ ab ∃ cd xy zw ∀ it αβ ∃ fg hklpqruv X ABCDEF ∀ j GI ∃ sH

[i·(n+f+1−i)·((g+f−yi)2+(yih+h−x+g)2+(g+l−wi)2+(wik+k−z+g)2)+
+((p+q−b(x2 +y))2 +(b(x2 +y)r+r−a+p)2 +((b(z2 +w)j+j−a+p)2−s−1)·
·(p−b(z2+w)−1−s))2]·[(z+x−d)2+(yd+y−c+z)2+(t·(z+m+f−t)·((g+l−dt)2+
+(dtk+k− c+g)2 +(h+p−d(t+1))2 +(d(t+1)q+ q− c+h)2 +(g+r+1−h)2+
+(g+s−N)2))+((u+1−X)2+(X+v−n)2+(A+C−βX)2+(βXD+D−α+A)2+
+(B+E−β(X+1))2+(β(X+1)F+F−α+B)2+(((dGI+I−c+A)2−H−1) ·G·
·(A−dG−1−H) ·(z+m+H−G) ·(B+H+1−A))2) ·((b(α2 +β)B+B−a+u)2+
+(u+A− b(α2 + β))2 + ((u− w)2 − ve)2)] = 0.

Proof. For a full proof see Section 6.5. We prove that for all n the expression
above is equivalent to the Paris-Harrington principle in dimension n.

Again this is a somewhat naive theorem, without fine-tuning or clever
tricks, and again we expect much simpler polynomials, to be achieved using
extra tricks. As before, all quantifiers after the first two blocks of quanti-
fiers can be made bounded by some exponential functions, and the famous
battle against the bounded quantifier (Chapter 6 of [Mat93]) can reduce the
statement to its true Π0

2 shape, although at the cost of losing the current
small size. The polynomial expression is of size 353, where n is counted as
a variable.
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Varying the parameter n in the prefixed polynomial expression above
will lead to different strengths, as stated in the theorem. With regard to
seeds we get the following corollary.

6.8 Corollary. For any natural number n > 1, the size of a seed of 1-
Con(IΣn−1) is less than or equal to 351 + 2n.

Proof. There are two free occurrences of the number n in the prefixed
polynomial equation in Theorem 6.7, which results in adding 2n to the
total size of the polynomial.

6.3 More about the Atlas

6.3.1 A plethora of equivalence classes

In Section 6.2 we explicitly wrote down members of different equivalence
classes, namely 1-Con(IΣ1), 1-Con(IΣ2), 1-Con(IΣn) for n ∈ N, and 1-
Con(PA). Of course, this is just a glimpse of the vast range of the Atlas.
The template of prefixed polynomial expressions allows many more different
equivalence classes, as for example:

- theorems of EFA;

- negations of theorems of EFA;

- totality of the fifth branch of the Ackermann function;

- van der Waerden Theorem;

- 3-Con(ZFC);

- 17-Con(IΣ2).

Remark that some of the equivalence classes are not comparable, hence the
partial order we mentioned earlier. The statement 3-Con(ZFC) can, over
EFA, imply only new Π0

4-arithmetical formulas, so not the Π0
18-formula

17-Con(IΣ2). The statement 17-Con(IΣ2) on the other hand implies all
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Π0
18-consequences of IΣ2, but not some simple consequences of ZFC, like

the Paris-Harrington Principle.
We do not divide classes into “true” and “false” ones, but merely study

the Atlas as a mathematical object without any philosophical presump-
tions. So far, we have not yet written down explicitly many members of
equivalence classes with low strength, as we were eager to know whether
we could give polynomial equations of reasonable size with high strength.
It turned out we could. Moreover, other interesting properties emerged.

As it would lead us beyond the scope of this dissertation, we will not
discuss all achieved results in detail. However, we want to give a taste of
the possibilities of the template. So below we present a short overview of
examples, all proved and discussed in [BDS10].

1. A polynomial equation equivalent to the totality of the superexpo-
nential function.

2. A polynomial expression equivalent to the Finite Kruskal Theorem
(see Section 6.4).

3. A polynomial equation which establishes a phase transition between
EFA-provability and predicative unprovability (see Section 6.4).

4. A polynomial equation equivalent to the finite Graph Minor Theorem.
This theorem says that

“for every positive integer n, there is an integer m so large that if
G1, . . . , Gm is a sequence of finite undirected graphs, where each Gi

has size at most n+ i, then Gj is a minor of Gk for some j < k”,

and is unprovable in at least Π1
1-CA0 (see [FRS87]).

5. A polynomial expression that knows values of all polynomials on all
inputs. First we describe a way to code any polynomial by four vari-
ables a, b, c, d, and any input by two variables x, y. We then con-
struct a prefixed polynomial equation ϕ(a, b, c, d, x, y, w) with free
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variables a, b, c, d, x, y, w, such that for any a, b, c, d, x, y, w, the poly-
nomial coded by a, b, c, d assumes the value w on input coded by x, y,
if and only if ϕ(a, b, c, d, x, y, w).

6. A polynomial equation for values of BAF-terms. See Chapter 5 in
[Fri10a] for a rigorous definition of a basic function (BAF). Roughly,
a BAF is a function built by using 0, 1,+,−, ·, exp, log and variables.
A BAF-term is a term defining a basic function.

We start by explaining how a BAF-term can be coded by four vari-
ables a, b, c, d, and an input by two variables x, y. Then we give a
prefixed polynomial equation ψ(a, b, c, d, x, y, w) with free variables
a, b, c, d, x, y, w, such that for any a, b, c, d, x, y, w, the BAF-term cod-
ed by a, b, c, d assumes the value w on input coded by x, y, if and only
if ψ(a, b, c, d, x, y, w).

7. A polynomial equation equivalent to Friedman’s Proposition E (see
[Fri10a], Section 6.1). Friedman showed that Proposition E is ACA′

0-
equivalent1 to 1-Con(ZFC + {there exists an n-Mahlo cardinal}n∈ω).

For a long time people thought it was not feasible to really write down many
of the members above as short, comprehensible polynomial expressions.
There is a sound historical explanation for that opinion. Unprovability
theory, as we know it today, offers a wide range of unprovable first-order
arithmetical statements, which were not available previously. So, when
some people were dreaming in, say, the 1970s of finding a polynomial equa-
tion having considerable strength, they only knew one kind of unprovable
first-order arithmetical statement, namely Con(T), i.e. the statement ex-
pressing the consistency of a theory T. Rigorously writing that assertion
as a prefixed polynomial equation is indeed not really a feasible task, but
luckily we do not have to think in terms of Con(T ) any longer. Nowadays,
with all the sophisticated unprovability machinery available, polynomial

1ACA′
0 is the system ACA0 + ∀n ∈ N ∀X ⊆ N (the nth Turing jump of X exists).

See [Fri10a] for more information.
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equations are ready to spring from different corners of the subject: Ram-
sey theory, well-partial-order theory, Nash-Williams theory and Friedman’s
Boolean Relation Theory.

6.3.2 Additional observations

While studying the Atlas, we discovered several interesting facets, ranging
from down-to-earth algebraic tricks, to metamathematical insights. Some of
those features have been discussed or touched upon already in the previous
sections. In this subsection we present three more observations.

Nuclei of strength

Let us first expand a little on the idea of a seed. Recall that a seed is a
prefixed polynomial equation that is of minimal length in its EFA-provable
equivalence class. The length of the examples of the polynomial equations
presented in this chapter clearly form an upper bound for the length of a
seed of the corresponding equivalence class. So, while generating a list of
all polynomial equations, starting from length 1 and increasing size, one
would encounter a seed of, say, the equivalence class of 1-Con(IΣ1). At the
moment the upper bound for the length of a seed of that class is 125, but
it could turn out to be surprisingly short, such as 27 or 38.

Given such short examples it would become even more clear that seeds
really are nuclei of strength. In other words, seeds are the central parts
which produce strength. By adding 1 and subtracting 1 from some variable,
one could in a trivial way enlarge a seed and obtain a member of the same
equivalence class. Although length would have been increased, the strength
remains the same. Seeds, indeed, already contain all valuable information.
Let us conclude the discussion on seeds by giving two trivial seeds:

1. 0 = 0, the “seed of truth”, the seed of all provable statements;

2. 1 = 0, the “seed of lies”, the seed of all refutable statements.
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Richer language, shorter polynomial

Strictly speaking, our template does not allow the use of exp, log and
other function symbols, apart from polynomials. By doing so we work
with a pure, basic language, which is presumably more appealing to most
readers in comparison with a language containing many, possibly unknown,
function symbols. In addition, the language of polynomials has a universal
flavour because of its simplicity.

However, suppose we allow some specific symbols, say exp, then we
could reduce significantly the size of many polynomial equations. We could
simplify the polynomial equation equivalent to the totality of the superex-
ponential function, for example. In Section 6.4 we will see another polyno-
mial expression which could be reduced notably by making exp part of our
language.

Hopping

There exist prefixed polynomial expressions P (n) having one free natural
number parameter n, such that many different equivalence classes are vis-
ited as n varies. This phenomenon is called hopping . A specific example
is given by James Jones in [Jon78]. He introduces a polynomial equation
F (x, n) which hops between all equivalence classes that contain a member
Con(T) for some recursively axiomatized theory T. In his words:

“Given any of the usual axiomatic theories to which Gödel’s In-
completeness Theorem applies, there exist a value of n, such that
F (n, n) is unprovable and irrefutable. Thus Gödel’s Incomplete-
ness Theorem can be “focused” into the formula F (n, n). Thus
some substitution instance of F (n, n) is undecidable in Peano
artihmetic, ZF set theory, etc.”. ([Jon78], p. 335).

Jones’ polynomial expression F (x, n) is the following.

∃ ab ∀ i ∃ swpq∀ jv ∃ eg

(n+s+1− i) · [((s+w)2 +3w+s−2i)2 +(((j−w)2 +(v−q)2) · ((j−s)2 +(v−p)2·
·((i−n)2+(v−q−x)2))·((j−3i)2+(v−p−q)2)·((j−3i−1)2+(v−pq)2)−e−1)2)·
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·((v + g − jb)2 + (v + e+ ejb− a)2)] = 0.

Another kind of hopping is given by Theorem 6.7. Changing n1 into
n2 causes a jump between the equivalence classes of 1-Con(IΣn1−1) and
1-Con(IΣn2−1).

The previous examples are but two specific instances of hopping. We
expect many more, and of different kind, to be found.

Connecting mathematics

It happens quite often that mathematicians prove each other’s results in
different setups. The results may seem to talk or prove lemmas about p-
adics, or complex numbers or finite groups or about graph theory but after
a certain period of time crucial connections are revealed. In many cases, it
turns out they basically say the same, but are stated in a different language.
What actually happened is that the connection between several members
of the same EFA-provable equivalence class is established.

On the other hand, occasionally mathematicians stumble upon lemmas
with a bit of strength which puzzles them: they sense the difference but
do not know how to explain why Ramsey’s theorem is not the same as
the prime number theorem. Of course, this intuitive reason manifests itself
in the fact that Ramsey’s theorem is not provable in EFA, whereas the
prime number theorem is. In other words, people are looking at statements
belonging to different EFA-provable equivalence classes.

As a thought experiment let us assume it is fairly easy to create a reason-
ably sized polynomial expression equivalent to a given arithmetical state-
ment from mathematical practice. Then many of the existing mathematical
statements could be related to their EFA-provable equivalence class in the
Atlas. More precisely, mathematicans could look for the EFA-provable
equivalence class of their statement. This could help them obtaining better
insights into associated theorems in their own subject, as well as linking
their work to completely different fields of mathematics. The Atlas could
offer a very neat overview of current mathematics.
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6.4 Going beyond predicative mathematics

The reader could have thought for a moment that the three relatively com-
pact polynomial equations in Section 6.2 result from pure luck and that it
is much harder to reach high impredicative equivalence classes. We also
thought that for a while until proving the theorems presented in this sec-
tion. Afterwards, it turned out it is even feasible to write down still stronger
polynomial equations, as explained in Section 6.3.

A coarse polynomial expression equivalent to the Finite Kruskal
Theorem

6.9 Theorem. The following prefixed polynomial equation is equivalent to
Finite Kruskal Theorem and hence is unprovable in predicative mathemat-
ics, for example in the theory ATR0.

∀ K ∃M ∀ ab ∃ ijcdefhk ∀ lmnpq A ∃ grst BFGIJLOPQWXY Z

∀αβγδζηθκλµνξπρστ ∀ uvxyz CDHNT ∃ERS ∀ U ∃ V

[(i−c−1)2+(i+d−M)2+(w+1−t)2+(t+X−q)2+(g+1−s)2+(s+Y +1−r)2+
+(r+Z− q)2 +((p+ l2− bi−1−B) · (l+B−p) · ((biA+A−a+p+ l2)2−B−1)·
·((K+i−q)2−B−1) ·(u−pr−1−E) ·((prC+C− l+u)2−E−1) ·(v−ps−1−E)·
·((psD+D−l+v)2−E−1)·(x−pt−1−E)·((ptH+H−l+x)2−E−1)·(u+E−v)·v·
·(q+E+ 1− z) · (((vN −u)2−E− 1)2 + (vR−x)2 + (uS−x)2) · (y− pz− 1−E)·
·((pzT +T − l+ y)2−E− 1) · ((ER− u)2 + (ES− v)2 + ((EU − y)2−V − 1)2))2]·
·[mni(m−n) · (K+ i+ r+1−m) · (K+ j+ r+1−m) · (j+ r− i) · (M + r+1− j)·
·((f+e2+r−bi)2+(bis+s−a+f+e2)2+(k+h2+t−bj)2+(bjW+W−a+k+h2)2+
+(k+X+1−h)2 +(F +Y −fm)2 +(fmZ+Z−e+F )2 +(F +F 2G2 +g−dm)2+
+(dmB+B− c+F +F 2G2)2 + (kOR+R− h+G)2 + (S+ 1−OIPQ(e− f))2+
+(O+V −K− j)2 +(G+E− kO)2 +(J +α− fn)2 +(dnδ+ δ− c+J +J2L2)2+
+(fnβ+β−e+J)2+(J+J2L2+γ−dn)2+((L−G)2−ζ−1)2+(P+P 2Q2+η−dI)2+
+(dIθ+θ−c+P+P 2Q2)2+(I+κ−K−i)2+(Pλ−F )2+(Pµ−J)2+(P−Fν+Jξ)2+
+(Qπ −G)2 + (Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0.

Proof. For a full proof see Section 6.5.
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A phase transition polynomial between EFA-provability and pred-
icative unprovability

The next example combines the template of prefixed polynomial expressions
with the phenomenon of phase transitions. Let A(m,n) be the polynomial
equation given by

∀ K ∃M ∀ ab ∃ ijcdefhk φχ ∀ lmnpq A Γ∆ ∃ grst BFGIJLOPQWXY Z

∀ αβγδζηθκλµνξπρστϕψω ∀ uvxyz CDHNT Θ

∃ ERS ΛΥΦΨΩ k∗l∗m∗n∗o∗p∗ ∀ U ∃ V

[(((Γ− i)2−ϕ−1) · ((∆−φ)2−ϕ−1))2 +(((Γ− j)2−ψ−1) · ((∆−χ)2−ψ−1))2]·
·[(Γ2 +∆2) · ((ωΦ+Φ−ψ+1)2 +(ω∆Ω+ωΩ+Ω−ψ+ϕ)2 +(ϕ+Ψ−ω∆−ω)2+
+(1+Υ−ω)2+(∆+k∗+1−i)2 ·((2Λ+m∗−ωΘ−ω)2+(ωΘn∗+ωn∗+n∗−ψ+2Λ)2+
+(Λ + k∗−ωΘ)2 + (ωΘl∗ + l∗−ψ+ Λ)2) + (ϕ+ o∗−Γ)2 + (Γ + p∗ + 1− 2ϕ)2))]+
+[(i−c−1)2+(i+d−M)2+(w+1−t)2+(t+X−q)2+(g+1−s)2+(s+Y +1−r)2+
+(r+Z− q)2 +((p+ l2− bi−1−B) · (l+B−p) · ((biA+A−a+p+ l2)2−B−1)·
·(u−pr−1−E)·((mK+nφ−mq)2−B−1)·((prC+C−l+u)2−E−1)·(v−ps−1−E)·
·((psD+D−l+v)2−E−1)·(x−pt−1−E)·((ptH+H−l+x)2−E−1)·(q+E+1−z)·v·
·(u+E−v)·(((vN−u)2−E−1)2+(vR−x)2+(uS−x)2)·((pzT+T−l+y)2−E−1)·
·(y−pz−1−E) · ((ER−u)2 +((EU −y)2−V −1)2 +(ES−v)2))2] · [mni(m−n)·
·(mK +nφ+ r+1−mm) · (mK +nχ+ r+1−mm) · (j+ r− i) · (M + r+1− j)·
·((f+e2+r−bi)2+(bis+s−a+f+e2)2+(k+h2+t−bj)2+(bjW+W−a+k+h2)2+
+(k+X+1−h)2+(fmZ+Z−e+F )2+(F+Y −fm)2+(dmB+B−c+F+F 2G2)2+
+(F+F 2G2+g−dm)2+(kOR+R−h+G)2+(G+E−kO)2+(S+1−OIPQ(e−f))2+
+(mO+V −mK−nχ)2+(J+α−fn)2+(fnβ+β−e+J)2+(dnδ+δ−c+J+J2L2)2+
+(J+J2L2+γ−dn)2+(P+P 2Q2+η−dI)2+((L−G)2−ζ−1)2+(P−Fν+Jξ)2+
+(mI+κ−mK−nφ)2(dIθ+θ−c+P+P 2Q2)2+(Pλ−F )2+(Pµ−J)2+(Qπ−G)2+
+(Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0.

6.10 Theorem. There exists a real number w such that:

1. if n
m ≤ w then EFA proves A(m,n);

2. if n
m > w then ATR0 does not prove A(m,n).
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Proof. Notice that A(m,n) is equivalent to an adapted version of KT n
m

log.
Then use Weierman’s theorem on the phase transition of KTr log ([Wei03]).
Weiermann’s single compression might seem to provide only PA-unprovabil-
ity, but it is easy to see (you can see this argument spelled out in [Bov09b])
that a second compression argument gives full finite Kuskal Theorem, and
hence this statement is unprovable in ATR0.

The number w is the real number introduced by Andreas Weiermann
in [Wei03] and is defined as 1

log(α) , where α is Otter’s tree constant (the
inverse of the radius of convergence of the generating series for unordered
trees), w ≈ 0.6395781750 . . ..

Remark that if we would allow the use of the log symbol, then the size
of the polynomial would shrink.

6.5 Technical details and proofs

In this final section we explain how we obtained the concrete members of
EFA-provable equivalence classes of polynomial expressions. The general
ideas as well as some historical background are given in the first subsection,
which is highly influenced by the introductory sections in [Mat93]. The
other subsections merely intend to ensure the reader of the correctness of
the polynomial equations provided above. Even though they contain some
nice coding tricks and tweaking of polynomials, some parts could be skipped
by readers who are not interested in the technicalities.

6.5.1 Background information and basics

In 1900, at the second International Congress of Mathematicians, Hilbert
presented 23 (groups of) problems which he thought were the most impor-
tant unsolved mathematical problems left by the nineteenth century, to be
solved by the twentieth century. Among other famous problems such as
the Riemann hypothesis and Goldbach’s conjecture, we find Hilbert’s 10th
problem:
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Entscheidung der Lösbarkeit einer diophantischen Glei-
chung. Eine diophantische Gleichung mit irgendwelchen Unbe-
kannten und mit ganzen rationalen Zahlkoefficienten sei vorge-
legt: man soll ein Verfahren angeben, nach welchem sich mittels
einer endlichen Anzahl von Operationen entscheiden läßt, ob die
Gleichung in ganzen rationalen Zahlen lösbar ist.2

A Diophantine equation is an equation of the form

D(x1, . . . , xn) = 0,

where D is a polynomial with integer coefficients. The existence of solutions
of this equation is expressed by

∃ x1 ∃ x2 . . . ∃ xn D(x1, . . . , xn) = 0. (6.1)

The solvability of Diophantine equations has been studied seriously in the
1950s–1970s, which resulted in a negative answer to Hilbert’s 10th prob-
lem. More precisely, as the class of all Diophantine sets is proven to be
identical to the class of all recursively enumerable sets, there cannot exist
an algorithm (“process”) to determine the solvability of a given Diophan-
tine equation. This result is the combined work of Martin Davis, Yuri
Matiyasevich, Hilary Putnam and Julia Robinson (see e.g. [Mat93]).

Solvability of Diophantine equations (the set of all sentences of the form
(6.1)) is a Σ0

1-complete set of sentences. It means that every Σ0
1 formula

in the language of first-order arithmetic is EFA-provably equivalent to a
sentence from this set. However, the restriction of having only one block
of quantifiers makes this template metamathematically boring: so far we
have not encountered interesting, metamathematical phenomena with this
restriction in place.

2Determination of the solvability of a Diophantine equation. Given a Dio-
phantine equation with any number of unknown quantities and with rational integral
numerical coefficients: To devise a process according to which it can be determined by a
finite number of operations whether the equation is solvable in rational integers. (Cited
from [Hil02], which is the English translation of [Hil00].)
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It is not difficult to show that the problem of the existence of integer
solutions is reducible to the problem of the existence of solutions in natu-
ral numbers, and vice versa (see [Mat93], Chapter 1). So after restricting
the range of the variables to natural numbers, expression (6.1) is clearly
an instance of the template of prefixed polynomial equations. Hence, the
original template related to Hilbert’s 10th problem is incorporated in our
approach. Moreover, as the set of prefixed polynomial equations is arith-
metically complete, we are able to do some proper metamathematics.

Throughout this section we use many big and small methods and tricks
developed by the community of people who studied Hilbert’s 10th problem
and related topics in the 1950s–1980s.

We start by showing how our general template can contain basic math-
ematical properties, such as a < b or a | b (a divides b), where a and b
are natural numbers. The following straightforward equivalences are quite
often used.

a 6= b ⇔ ∃x((a− b)2 = x+ 1)
⇔ ∃x((a− b)2 − x− 1 = 0)

a ≤ b ⇔ ∃x(a+ x = b)
⇔ ∃x(a+ x− b = 0)

a < b ⇔ ∃x(a+ x+ 1 = b)
⇔ ∃x(a+ x+ 1− b = 0)

a | b ⇔ ∃x(ax = b)
⇔ ∃x(ax− b = 0)

a - b ⇔ ∀x(ax 6= b)
⇔ ∀x∃y((ax− b)2 = y + 1)
⇔ ∀x∃y((ax− b)2 − y − 1 = 0)
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In the next basic equivalences rem and gcd stand for remainder and
greatest common divisor, respectively.

a = rem(b, c) ⇔ a < c ∧ c | b− a

⇔ ∃x(a+ x+ 1 = c) ∧ ∃x(cx = b− a)
⇔ ∃x(a+ x+ 1− c = 0) ∧ ∃x(cx− b+ a = 0)

a 6= rem(b, c) ⇔ a ≥ c ∨ c - b− a

⇔ ∃x(a = c+ x) ∨ ∀x∃y((cx− b+ a)2 = y + 1)
a = gcd(b, c) ⇔ a | b ∧ a | c ∧ ∃xy(a = bx− cy)

⇔ ∃x(ax = b) ∧ ∃x(ax = c) ∧ ∃xy(a = bx− cy)
⇔ ∃x(ax− b = 0) ∧ ∃x(ax− c = 0) ∧ ∃xy(a− bx+ cy = 0)

a 6= gcd(b, c) ⇔ ∃x(x | b ∧ x | c ∧ x - a)
⇔ ∃x(∃y(xy = b) ∧ ∃y(xy = c) ∧ ∀y∃z((xy − a)2 = z + 1)))
⇔ ∃x(∃y(xy − b = 0) ∧ ∃y(xy − c = 0)

∧ ∀y∃z((xy − a)2 − z − 1 = 0)))

Notice that the expressions on the right-hand side of every last equiva-
lence are not yet prefixed polynomial equations in the strict sense. We still
need to get rid of the conjunctions and disjunctions. We deal with them as
follows. Let Q1(x) P 1(x) = 0, and Q2(y) P 2(y) = 0, be shorthand for the
polynomial equations

Q1
1x1 Q

1
2x2 . . . Q1

nxn P
1(x1, x2, . . . xn) = 0,

and
Q2

1y1 Q
2
2y2 . . . Q2

nyn P
2(y1, y2, . . . yn) = 0,

respectively. Then

Q1(x) P 1(x) = 0 ∧ Q2(y) P 2(y) = 0

⇔ Q1(x) Q2(y) (P 1(x)2 + P 2(y)2 = 0)

and

Q1(x) P 1(x) = 0 ∨ Q2(y) P 2(y) = 0

⇔ Q1(x) Q2(y) (P 1(x) · P 2(y) = 0).
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Also remark that in case of a disjunction, we can reuse variables be-
longing to an existential quantifier, whereas in case of a conjunction, we
will reuse variables belonging to a universal quantifier. The implication is
dealt with as usual (A → B ⇔ ¬A ∨ B). When we apply these rules we
obtain the following equivalences.

a = rem(b, c) ⇔ ∃xy((a+ x+ 1− c)2 + (cy − b+ a)2 = 0)
a 6= rem(b, c) ⇔ ∀x∃y((a− c− y) · ((cx− b+ a)2 − y − 1) = 0)
a = gcd(b, c) ⇔ ∃xyzu((ax− b)2 + (ay − c)2 + (a− bz + cu)2 = 0)
a 6= gcd(b, c) ⇔ ∃xyz∀u∃v((xy − b)2 + (xz − c)2 + ((xu− a)2 − v − 1)2 = 0).

It is well-known that, given the toolbox above, one could start trying
to translate in a naive way known first-order arithmetical statements con-
taining strength. This would give rise to prefixed polynomial expressions
possessing certain strength, although done very rudimentarily. Thanks to
our template, one could give up the restriction of having only one block
of existential quantifiers, which results in already rather short expressions,
in comparison to known examples. Moreover, clever coding and reuse of
variables can shorten such a prefixed polynomial equation even further.

However, pure translation of known unprovable statements soon turns
out to have its limits. As we reached this point, we needed to dig deeper in
order to obtain more compact representatives of EFA-provable equivalence
classes. First of all, we twisted the unprovable statements in such a way
that coding became more neat. Clearly, knowledge of unprovability theory
is very welcome at this stage. Second, we reduced the polynomials using
small algebraic tricks. In the final result, one might not recognise the
original statement, as it has been manipulated so often.

In the subsections below one can find a brief account of how we obtained
the prefixed polynomial equations presented in Section 6.2 and Section
6.4. As explained, getting to the final polynomial is part of a process
which develops in time, so it is impossible to write down every single detail.
Nevertheless, enough detail is provided to consider the explanations below
as proofs, in the traditional sense of the word.
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6.5.2 Exponentiation and logarithm

As a way of demonstrating the possibilities of the toolbox introduced above,
and because we will need parts of the expressions later, we show how to
express the totality of the exponential and logarithm function as prefixed
polynomial equations. Notice that the treatment of the superexponential
function would be very similar to how we dealt with the exponentiation.

Exponentiation

So, we want to be able to express xy = z, for natural numbers x, y and
z. The idea is to construct a sequence (1, x, x2, . . . , xy). We will do so by
defining a sequence (a1, a2, . . . , ay+1), such that a1 = 1 and ai+1 = x · ai,
for 0 < i ≤ y. Using Gödel coding we can code sequences (a1, . . . , an) as
pairs (a, b) of natural numbers in such a way that for i = 1, . . . , n,

ai = rem(a, bi+ 1).

We refer to Section 3.2 in [Mat93] for more information on this type of cod-
ing. Combining the previous information, we obtain the following equiva-
lences.

xy = z ⇔ ∃ ab ∀ i (1 = a1 ∧ z = ay+1 ∧ (0 < i ≤ y → ai+1 = xai))
⇔ ∃ ab ∀ i ∃ c

((0 < i ∧ i ≤ y) → (1 = rem(a, b+ 1) ∧ z = rem(a, b(y + 1) + 1)
∧ c = rem(a, bi+ 1) ∧ xc = rem(a, b(i+ 1) + 1))

⇔ ∃ ab ∀ i ∃ c ∀ rs
((0 < i ∧ i ≤ y ∧ ((r = 1 ∧ s = 1) ∨ (r = z ∧ s = y + 1)
∨ (r = c ∧ s = i) ∨ (r = xc ∧ s = i+ 1))) → (r = rem(a, bs+ 1)).

Using this last expression, we can present the totality of the exponen-
tial function (∀ xy ∃ z (xy = z)), after substituting the relevant prefixed
polynomials, dealing with the implication, merging conjunctions and dis-
junctions, by the following prefixed polynomial equation:

∀ xy ∃ z ab ∀ i ∃ c ∀ rs ∃ ef



138 Section 6.5. Technical details and proofs

i·(y+e+1−i)·(((r−1)2+(s−1)2)·((r−z)2+(s−y−1)2)·((r−c)2+(s−i)2)·((r−xc)2+
+(s− i− 1)2)− e− 1) · ((r + e− bs)2 + (bsf + f − a− r)2) = 0

Let us shortly comment on the general pattern of writing down the poly-
nomial equations. We always start with a line (or several lines) containing
the quantifiers and variables. Next, we begin a new line to write the actual
polynomial. At the end of a line, we never break a term which is inside the
most inner brackets. In case a power is redundant from a number-theoretic
point of view, we leave it out in order to increase readability and reduce
size. Finally, at the beginning of each line we repeat the last operation on
the previous line for the sake of clarity.

Logarithm

Since we are working with natural numbers, we define log(x) as the floor
(integer part) of the usual base-2 logarithm, with log(0) redefined as 0.
Then we get the following.

log(x) = y ⇔ ∃ z ((x = 0 ∧ y = 0) ∨ (z = 2y ∧ z ≤ x ∧ x < 2z)).

To express z = 2y we use the polynomial expression for exponentiation
which is given above. Then we can present the totality of the logarithm
function (∀ x ∃ y (log(x) = y)), after substituting the appropriate pre-
fixed polynomials, merging conjunctions and disjunctions, by the following
prefixed polynomial equation:

∀ x ∃ yz ab ∀ i ∃ c ∀ rs ∃ ef gh

(x2+y2)·((i·(y+e+1−i)·(((r−1)2+(s−1)2)·((r−z)2+(s−y−1)2)·((r−c)2+(s−i)2)·
·((r−2c)2 +(s− i−1)2)−e−1) ·((r+e−bs)2 +(bsf+f−a−r)2))2 +(z+g−x)2+
+(x+ h+ 1− 2z)2) = 0.

6.5.3 Unprovability by primitive recursive means

Let e > 2 be any given natural number and consider the following state-
ment:
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“for every number m, there exists a number N , such that for every
colouring f of 2-element subsets of {0, 1, . . . , N}

into e colours, there is an f -homogeneous H ⊆ {0, 1, . . . , N} of size at
least minH +m− 1”.

The assertion above is very similar to PH2
e, the Paris-Harrington principle

for pairs and e colours. In fact, after quantification over e it is equivalent
to ∀ePH2

e, which is equivalent to 1-Con(IΣ1) (see [Par80]).
Let us first fix notation and rewrite the previous statement using but

mathematical symbols. As before, [A]n denotes the set of all n-element
subsets of A, for every n ≥ 2 and A ⊆ N. If N is a natural number, then
[N ] will denote the set {0, 1, . . . , N − 1}. [[N ]]n will be simplified to [N ]n
and f({x1, . . . , xn}) is shortened to f(x1, . . . , xn), under the assumption
that the xi’s are increasing. We obtain:

∀ m ∃ N ∀ f : [N + 1]2 → [e] ∃ Hc (6.2)

(H ⊆ [N + 1] ∧ |H| ≥ minH +m− 1 ∧ f � [H]2 = {c}).

The main idea is to represent colourings f : [N + 1]2 → e as sequences
(a1, a2, . . . , an) of natural numbers, in such a way that, if k < l ∈ [N + 1]
and k + l2 = i, then

ai ≡ f(k, l) mod e.

Remark that if k < l then the function which associates (k, l) with k+ l2 is
injective. Using Gödel coding we can code sequences (a1, . . . , an) as pairs
(a, b), as done in the previous subsection.

If (a, b) codes a sequence (a1, . . . , an) such that n < N + (N + 1)2, then
not all values of possible 2-element subsets of [N + 1] will be covered. In
that case the sequence is extended in a trivial way by adding a’s at the end
until the length of the sequence is at least N + (N + 1)2. This extended
sequence defines a function f : [N + 1]2 → e, as described above.

Remark that the equalities ai = rem(a, bi + 1) and ai ≡ f(k, l) mod e
now hold for all k < l ∈ [N + 1] and i = k + l2.

We will code the subset H as an increasing sequence (c1, . . . , cp), such
that ci ∈ [N + 1] for i = 1, . . . , p. Using Gödel coding, this latter sequence
is coded as a pair (c, d).
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To avoid ambiguity we use the letter Y instead of H to denote the ho-
mogeneous set. Also, X will denote the constant colour c. The intermediate
statement, equivalent to (6.2) becomes:

∀ m ∃ N ∀ ab ∃ cd A X (a, b) codes f , (c, d) codes Y
∀ xy ∃ BCF more variables to express our needs

((0 < x ∧ x < y x and y are indices of elements of Y
∧ y ≤ A+m− 1) |Y | ≥ minY +m− 1
→ (A = rem(c, d+ 1) A is the first element of Y

∧ B = rem(c, dx+ 1) B is the xth element of Y
∧ C = rem(c, dy + 1) C is the yth element of Y
∧ B < C (c, d) codes elements of Y in

strictly increasing order
∧ C < N + 1 Y ⊆ [N + 1]
∧ F = rem(a, b(B + C2) + 1) F = f(B,C)
∧ F ≡ X mod e)) f(B,C) equals colour X

After substituting the relevant prefixed polynomials, merging conjunc-
tions and disjunctions and tweaking the expressions, we end up with the
following polynomial equation:

∀ m ∃ N ∀ ab ∃ cd A X ∀ xy ∃ BCF ∀ fg ∃ hilnrpq

x·(y+B−x)·(A+m+B−y)·[(((f−A)2+(g−1)2)·((f−B)2+(g−x)2)·((f−C)2+
+(g−y)2)−h−1)·((dgi+i−c+f)2+(f+h−dg)2)+(B+l+1−C)2+(C+n−N)2+
+(F + r − b(B + C2))2 + (bp(B + C2) + p− a+ F )2 + ((F −X)2 − qe)2] = 0.

6.5.4 Unprovability in two-quantifier-induction arithmetic

Let e > 1 be any given natural number and consider the following state-
ment:

“for every number m, there exists a number N , such that for every
colouring f of 3-element subsets of {0, 1, . . . , N}

into e colours, there is an f -homogeneous H ⊆ {0, 1, . . . , N} of size at
least minH +m− 1”.
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The statement above is very similar to PH3
e, the Paris-Harrington principle

for triples and e colours. In fact, after quantification over e it is equiva-
lent to ∀ePH3

e, which is equivalent to 1-Con(IΣ2) (see [Par80]). In purely
mathematical language one would write it down as:

∀ m ∃ N ∀ f : [N + 1]3 → [e] ∃ Hc (6.3)

(H ⊆ [N + 1] ∧ |H| ≥ minH +m− 1 ∧ f � [H]3 = {c}).

The main idea is to represent colourings f : [N + 1]3 → [e] as sequences
(a1, . . . , an) of natural numbers, in such a way that, if j < k < l ∈ [N + 1]
and j + k2 + l3 = i, then

ai ≡ f(j, k, l) mod e.

Remark that if j < k < l then the function which associates (j, k, l) with
j + k2 + l3 is injective. The intermediate translation of the statement (6.3)
becomes (once again we use the letter Y instead of H to denote the homo-
geneous set, and X to denote the constant colour c):

∀ m ∃ N ∀ ab ∃ cd AX (a, b) codes f , (c, d) codes Y
∀ xyz ∃ BCDH more variables are needed

[(0 < x ∧ x < y ∧ y < z x, y, z are indices of elements
∧ z ≤ A+m− 1) |Y | ≥ minY +m− 1
→ (A = rem(c, d+ 1) A is the first element of Y ,

∧ B = rem(c, dx+ 1) B is the xth element of Y
∧ C = rem(c, dy + 1) C is the yth element of Y
∧ D = rem(c, dz + 1) D is the zth element of Y
∧ B < C (c, d) codes elements of Y in

strictly increasing order
∧ C < D (c, d) codes elements of Y in

strictly increasing order
∧ D < N + 1 Y ⊆ [N + 1]
∧ H = rem(a, b(B + C2 +D3) + 1) H = f(B,C,D)
∧ H ≡ X mod e)] f(B,C,D) equals colour X

After substituting the suitable prefixed polynomials, merging conjunc-
tions and disjunctions and tweaking the expressions, we end up with the
following polynomial equation:

∀ m ∃ N ∀ ab ∃ cd A X ∀ xyz uvw ∃ BCDGH ∀ fg ∃ hijklnpqrst FG
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x·(y+B−x)·(z+B−y)·(A+m+B−z)·[(((f−A)2+(g−1)2)·((f−B)2+(g−x)2)·
·((f−C)2+(g−y)2)·((f−D)2+(g−z)2)−h−1)·((dgi+i−c+f)2+(f+h−dg)2)+
+(D+l−dz)2+(dzn+n−c+D)2+(B+F+1−C)2+(C+p+1−D)2+(D+q−N)2+
+(H + r− bt)2 +(bts+ s−a+H)2 +(B+C2 +D3− t)2 +((X −H)2−Ge)2] = 0.

6.5.5 Unprovability in Peano Arithmetic

Let e and n be any given natural numbers and consider the following state-
ment:

“for every number m, there exists a number N , such that for every
colouring f of n-element subsets of {0, 1, . . . , N}

into e colours, there is an f -homogeneous H ⊆ {0, 1, . . . , N} of size at
least minH +m− 1”.

The statement above is very similar to PHn
e , the Paris-Harrington principle

for n dimensions and e colours. In fact, after quantification over n, the
statement above implies ∀nPHn

e , which is equivalent to 1-Con(IΣn) (see
[Par80]).

In purely mathematical language one would write the assertion above
as:

∀ m ∃ N ∀ f : [N + 1]n → [e] ∃ Hc (6.4)
(H ⊆ [N + 1] ∧ |H| ≥ minH +m− 1 ∧ f � [H]n = {c}).

The encoding of f and H will be similar to the previous cases. We need
to express that every n-element subset of H is coloured in the same way.
These n-element subsets will be represented by an increasing sequence of n
elements of H.

The intermediate statement, equivalent to (6.4) becomes (once again
we use the letter Y instead of H to denote the homogeneous set, and X to
denote the constant colour c):



Chapter 6. The Atlas of prefixed polynomial equations 143

∀ m ∃ N ∀ ab ∃ cd A X (a, b) codes f , (c, d) codes Y ,
[∀xy zw i (x, y) and (z, w) code n-sets

((0 < i ∧ i ≤ n) i is an index for elements
→ rem(x, yi+ 1) = rem(z, wi+ 1)) the first n elements of (x, y)

and (z, w) are equal
→ rem(a, b(x2 + y) + 1) the n-sets represented by (x, y) and

= rem(a, b(z2 + w) + 1))] (z, w) are coloured in the same way
→
[∀k αβ j FG ∃ BCD f

(A = rem(c, d+ 1) A is the first element of Y
∧ B = rem(c, dk + 1) B is the kth element of Y
∧ C = rem(c, d(k + 1) + 1) C is the (k + 1)th element of Y
∧ D = rem(a, b(α2 + β) + 1) D is the colour of the n-set (α, β)
∧ F = rem(α, βj + 1) F is the jth element of (α, β)
∧ G = rem(α, β(j + 1) + 1) G is the (j + 1)th element of (α, β)
∧ ((0 < k ∧ k ≤ A+m− 1) k is an index for elements of Y
→ (B < C ∧ C < N + 1)) elements of Y ⊆ [N + 1] are given

in strictly increasing order
∧ ((0 < j ∧ j ≤ n) j is an index for elements of (α, β)

→ (F = rem(c, df + 1) F also belongs to Y
∧ 0 < f ∧ f ≤ A+m− 1
∧ F < G) the elements of (α, β) are given

in strictly increasing order
→ D ≡ X mod e))] the colour of (α, β) equals X

After substituting the relevant prefixed polynomials, merging conjunc-
tions and disjunctions and tweaking the expressions, we end up with the
following polynomial equation. Remark that we reused several variables in
order to reduce size.

∀ m ∃ N ∀ ab ∃ cd xy zw∀ it αβ ∃ fg hklpqruv X ABCDEF ∀j GI ∃ sH

[i·(n+f+1−i)·((g+f−yi)2+(yih+h−x+g)2+(g+l−wi)2+(wik+k−z+g)2)+
+((p+q−b(x2 +y))2 +(b(x2 +y)r+r−a+p)2 +((b(z2 +w)j+j−a+p)2−s−1)·
·(p−b(z2+w)−1−s))2]·[(z+x−d)2+(yd+y−c+z)2+(t·(z+m+f−t)·((g+l−dt)2+
+(dtk+k− c+g)2 +(h+p−d(t+1))2 +(d(t+1)q+ q− c+h)2 +(g+r+1−h)2+
+(g+s−N)2))+((u+1−X)2+(X+v−n)2+(A+C−βX)2+(βXD+D−α+A)2+
+(B+E−β(X+1))2+(β(X+1)F+F−α+B)2+(((dGI+I−c+A)2−H−1) ·G·
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·(A−dG−1−H) ·(z+m+H−G) ·(B+H+1−A))2) ·((b(α2 +β)B+B−a+u)2+
+(u+A− b(α2 + β))2 + ((u− w)2 − ve)2)] = 0

6.5.6 Going beyond predicative mathematics

We start with the following slightly changed version of the finite Kruskal
Theorem (proved ATR0-unprovable by Friedman, see e.g. [Smi85]):

“for all K there is a number M such that whenever T1, . . . , TM are finite
trees such that for all i ≤M , the number of vertices of Ti equals K + i
there are two indices i < j ≤M such that the tree Ti inf-preservingly

embeds into Tj”.

In more mathematical language one could write this down as:

∀ K ∃M ∀ T1, . . . , TM (6.5)
(∀i(|Ti| = K + i) → ∃ij(i < j ∧ Ti embeds inf-preservingly into Tj)).

The idea goes as follows. A tree Ti is coded by a pair (x, y), where x and
y Gödel-code a sequence of (K + i)-many natural numbers, the vertices of
the tree. The set is ordered by divisibility and, to make sure it is a tree,
we demand that for every two natural numbers in the set, one not dividing
another, there is no other number in the set divisible by them both.

So, in a first block first, we state that we are dealing with a sequence
of trees as described above.
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∀ K ∃M ∀ ab
[∀ i ∃ σpq ∀ rst ∃ uvxyz
q = K + i q is the size of the tree Ti

∧ (0 < i ∧ i ≤M i is an index for trees
∧ 0 < t ∧ t ≤ q t is an index for nodes in Ti

∧ 0 < s ∧ s < r ∧ r ≤ q) s and r are indices for nodes in Ti

→ (p+ σ2 = rem(a, bi+ 1) (p, σ) codes the tree Ti

∧ p < σ needed for the coding
∧ u = rem(σ, pr + 1) r is the index of the element u of Ti

∧ v = rem(σ, ps+ 1) s is the index of the element v of Ti

∧ x = rem(σ, pt+ 1) t is the index of the element x of Ti

∧ 0 < v ∧ v < u smaller indices code smaller elements
∧ (v - u→ (v - x ∨ u - x)) two elements not on the same branch,

do not have a common supremum.
∧ z ≤ q y actually is an element of Ti

∧ y = rem(σ, pz + 1) z is the index of the element y of Ti

∧ y = gcd(u, v)))] y is the infimum of u and v

Given this sequence of trees, we will claim the existence of two indices
i and j (i < j), such that there exists an embedding from Ti into Tj . This
embedding is coded by the pair (c, d), which represents a sequence of pairs.
Such a pair consists of a node of Ti and its corresponding node of Tj . So
given the block of formulas above, we get the following implication:

→
[∃ ij cd ef hk ∀ mn (c, d) codes the embedding Ti → Tj

∃ FGp JL PQq
(0 < i ∧ i < j ∧ j ≤M Ti and Tj belong to our sequence
∧ 0 < m ∧ m ≤ K + i m is an index for nodes in Ti

∧ 0 < n ∧ n ≤ K + j ∧ m 6= n) n is an index for nodes in Tj

→ (e+ f2 = rem(a, bi+ 1) (e, f) codes the tree Ti

∧ h+ k2 = rem(a, bj + 1) (h, k) codes the tree Tj

∧ F = rem(e, fm+ 1) F belongs to Ti

∧ F + F 2G2 = rem(c, dm+ 1) (F,G) belongs to the embedding
∧ G = rem(h, kp+ 1) G belongs to Tj
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∧ 0 < p ∧ p ≤ K + j
∧ J = rem(e, fn+ 1) J belongs to Ti

∧ J + J2L2 = rem(c, dn+ 1) (J, L) belongs to the embedding
∧ L 6= G the embedding is injective
∧ P + P 2Q2 = rem(c, dq + 1) (P,Q) belongs to the embedding
∧ 0 < q ∧ q ≤ K + i
∧ 0 < P ∧ 0 < Q pairing function is injective
∧ gcd(F, J) = P embedding preserves the infimum
∧ gcd(G,L) = Q))]

Remark that some of the variables have already been merged, in order
to make it easier to check the correctness of the polynomial afterwards.

Final prefixed polynomial equation for Kruskal’s Theorem

The following prefixed polynomial equation is equivalent to statement (6.5)
above.

∀ K ∃M ∀ ab ∃ ijcdefhk ∀ lmnpq A ∃ grst BFGIJLOPQWXY Z

∀αβγδζηθκλµνξπρστ ∀ uvxyz CDHNT ∃ERS ∀ U ∃ V

[(i−c−1)2+(i+d−M)2+(w+1−t)2+(t+X−q)2+(g+1−s)2+(s+Y +1−r)2+
+(r+Z− q)2 +((p+ l2− bi−1−B) · (l+B−p) · ((biA+A−a+p+ l2)2−B−1)·
·((K+i−q)2−B−1) ·(u−pr−1−E) ·((prC+C− l+u)2−E−1) ·(v−ps−1−E)·
·((psD+D−l+v)2−E−1)·(x−pt−1−E)·((ptH+H−l+x)2−E−1)·(u+E−v)·v·
·(q+E+ 1− z) · (((vN −u)2−E− 1)2 + (vR−x)2 + (uS−x)2) · (y− pz− 1−E)·
·((pzT +T − l+ y)2−E− 1) · ((ER− u)2 + (ES− v)2 + ((EU − y)2−V − 1)2))2]·
·[mni(m−n) · (K+ i+ r+1−m) · (K+ j+ r+1−m) · (j+ r− i) · (M + r+1− j)·
·((f+e2+r−bi)2+(bis+s−a+f+e2)2+(k+h2+t−bj)2+(bjW+W−a+k+h2)2+
+(k+X+1−h)2 +(F +Y −fm)2 +(fmZ+Z−e+F )2 +(F +F 2G2 +g−dm)2+
+(dmB+B− c+F +F 2G2)2 + (kOR+R− h+G)2 + (S+ 1−OIPQ(e− f))2+
+(O+V −K− j)2 +(G+E− kO)2 +(J +α− fn)2 +(dnδ+ δ− c+J +J2L2)2+
+(fnβ+β−e+J)2+(J+J2L2+γ−dn)2+((L−G)2−ζ−1)2+(P+P 2Q2+η−dI)2+
+(dIθ+θ−c+P+P 2Q2)2+(I+κ−K−i)2+(Pλ−F )2+(Pµ−J)2+(P−Fν+Jξ)2+
+(Qπ −G)2 + (Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0
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Final polynomial expression for Weiermann’s phase transition

Studying phase transitions, we parametrise the statement (6.5) above as
follows:

∀ K ∃M ∀ T1, . . . , TM (6.6)
(∀i(|Ti| = K + f(i)) → ∃ij(i < j ∧ Ti embeds inf-preservingly into Tj)).

Now we set, in the expresion (6.6) above, f(i) to be n
m log(i) for every i ∈ N.

We modify the prefixed polynomial equation by introducing φ = log(i)
and χ = log(j) and afterwards substituting it at the right places in our
polynomial. We introduce φ and χ as follows.

∀ Γ∆ ((Γ = i ∧ ∆ = φ) ∨ (Γ = j ∧ ∆ = χ)) → (∆ = log(Γ)).

We use the expression for the logarithm, which one can find above and
modify it to fit the context. Then “log(Γ) = ∆” is equivalent to

∃ ϕ ψω ∀ Θ ∃ Λ ∀ ΨΩ ∃ ΥΦ k∗l∗

(Γ2+∆2)·((Θ·(∆+Υ+1−Θ)·(((r−1)2+(s−1)2)·((r−ϕ)2+(s−∆−1)2)·((r−Λ)2+
+(s−Θ)2)·((r−2Λ)2+(s−Θ−1)2)−Υ−1)·((r+Υ−ωs)2+(ωsΦ+Φ−ψ−r)2))2+
+(ϕ+ k∗ − Γ)2 + (Γ + l∗ + 1− 2ϕ)2) = 0.

So, after substituting the relevant prefixed polynomials, merging con-
junctions and disjunctions and tweaking the expressions, we end up with
the following polynomial equation:

∀ K ∃M ∀ ab ∃ ijcdefhk φχ ∀ lmnpq A Γ∆ ∃ grst BFGIJLOPQWXY Z

∀ αβγδζηθκλµνξπρστ ∃ ϕψω ∀ uvxyz CDHNT Θ

∃ ERS Λ ∀ ΨΩ ∃ ΥΦ k∗l∗ ∀ U ∃ V

(((Γ−i)2+(∆−φ)2) ·((Γ−j)2+(∆−χ)2)−ϕ−1) · [(Γ2+∆2) ·((Θ ·(∆+Υ+1−Θ)·
·(((r−1)2 +(s−1)2) · ((r−ϕ)2 +(s−∆−1)2) · ((r−Λ)2 +(s−Θ)2) · ((s−Θ−1)2+
+(r− 2Λ)2)−Υ− 1) · ((r+Υ−ωs)2 +(ωsΦ+Φ−ψ− r)2))2 +(Γ+ l∗ +1− 2ϕ)2+
+(ϕ+k∗−Γ)2)]+[(i−c−1)2+(i+d−M)2+(w+1−t)2+(t+X−q)2+(s+Y +1−r)2+
+(g+1−s)2+(r+Z−q)2+((p+l2−bi−1−B)·((biA+A−a+p+l2)2−B−1)·(l+B−p)·
·(u−pr−1−E)·((mK+nφ−mq)2−B−1)·((prC+C−l+u)2−E−1)·(v−ps−1−E)·
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·((psD+D−l+v)2−E−1)·(x−pt−1−E)·((ptH+H−l+x)2−E−1)·(q+E+1−z)·v·
·(u+E−v)·(((vN−u)2−E−1)2+(vR−x)2+(uS−x)2)·((pzT+T−l+y)2−E−1)·
·(y−pz−1−E) · ((ER−u)2 +((EU −y)2−V −1)2 +(ES−v)2))2] · [mni(m−n)·
·(mK +nφ+ r+1−mm) · (mK +nχ+ r+1−mm) · (j+ r− i) · (M + r+1− j)·
·((f+e2+r−bi)2+(bis+s−a+f+e2)2+(k+h2+t−bj)2+(bjW+W−a+k+h2)2+
+(k+X+1−h)2+(fmZ+Z−e+F )2+(F+Y −fm)2+(dmB+B−c+F+F 2G2)2+
+(F+F 2G2+g−dm)2+(kOR+R−h+G)2+(G+E−kO)2+(S+1−OIPQ(e−f))2+
+(mO+V −mK−nχ)2+(J+α−fn)2+(fnβ+β−e+J)2+(dnδ+δ−c+J+J2L2)2+
+(J+J2L2+γ−dn)2+(P+P 2Q2+η−dI)2+((L−G)2−ζ−1)2+(P−Fν+Jξ)2+
+(mI+κ−mK−nφ)2(dIθ+θ−c+P+P 2Q2)2+(Pλ−F )2+(Pµ−J)2+(Qπ−G)2+
+(Qρ− L)2 + (Q−Gτ + Lσ)2)] = 0



Appendix A

DUTCH SUMMARY

Nederlandstalige samenvatting

In deze Nederlandstalige samenvatting beschrijven we kort en bondig welke
onderwerpen er in deze doctoraatsthesis behandeld worden. De opbouw van
deze appendix is vergelijkbaar met die van de Engelstalige tekst; we bespre-
ken de zes hoofdstukken in dezelfde volgorde. Voor specifieke informatie
zoals definities, stellingen, bewijzen, extra uitleg, details en verwijzingen
naar de literatuur, verwijzen we naar het Engelstalige gedeelte.

A.1 Inleiding

Het is geen sinecure om een volledig overzicht van de ontwikkeling van
de wiskundige logica te geven. Het zal dan ook geen verrassing zijn dat de
bondige samenvatting hieronder onvolledig is. De bedoeling is veeleer enkele
belangrijke personen te introduceren en betekenisvolle gebeurtenissen weer
te geven.

Na decennia van grote expansie van wiskundige kennis, werd het in
het prille begin van de twintigste eeuw duidelijk dat er dringend nood was
aan stabiele grondslagen voor de wiskunde. Verschillende logici hadden hun
eigen visie op hoe men uit deze grondslagencrisis kon komen. We vermelden
hier slechts twee stromingen: het intüıtionisme met Luitzen Egbertus Jan
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150 Appendix A. Dutch summary

Brouwer als hoofdfiguur en de axiomatische benadering, sterk ontwikkeld
door David Hilbert. Deze laatste stelde een allesomvattende aanpak voor:
het programma van Hilbert. Later zou blijken dat dit programma, zoals
oorspronkelijk geformuleerd, niet kon slagen.

Kurt Gödel presenteerde immers op 7 september 1930 tijdens een confe-
rentie in Königsberg zijn eerste onvolledigheidsstelling, die later samen met
de tweede gepubliceerd werd. Grofweg zeggen deze stellingen het volgende.
Laat T een formeel systeem (theorie) zijn dat de elementaire rekenkunde
bevat. Dan geldt er dat ofwel T inconsistent1 is ofwel er rekenkundige
uitspraken bestaan die bewezen noch ontkend kunnen worden in T. Boven-
dien is “T is consistent” zo’n zin. Omdat die onafhankelijke uitspraken wel
bewezen kunnen worden in sterkere theorieën, zullen we dergelijke zinnen
onbewijsbaar noemen, ten opzichte van een bepaalde (minder krachtige)
theorie.

De onvolledigheidsstellingen hebben diepgaande gevolgen voor de logi-
ca en, zo bleek duidelijk een halve eeuw later, tevens voor andere takken
in de wiskunde. Jeff Paris presenteerde immers in 1977, samen met Leo
Harrington, het eerste voorbeeld van een uitspraak die natuurlijk oogde en
relevant was voor wiskundigen, maar toch onbewijsbaar in Peano Aritme-
tica (dit is een theorie voor elementaire rekenkunde, kortweg PA). Deze
uitspraak kwam uit het gebied van de combinatoriek, meer bepaald uit
de Ramsey theorie. Het was een belangrijke doorbraak omdat de impact
op wiskunde die niet sterk verwant is met logica, voordien ongekend was.
Gödels oorspronkelijke, onafhankelijke uitspraak was immers geconstrueerd
via codering van de syntax en via logische kneepjes.

Sindsdien zijn er verschillende voorbeelden van natuurlijke, onbewijs-
bare uitspraken gevonden en bestudeerd. We denken hierbij aan arborici-
teit (George Mills), het Hydragevecht en het beëindigen van Goodsteinrijen
(Laurie Kirby and Paris), flipbaarheid (Kirby), kiraliciteit en regaliteit (Pe-
ter Clote en Kenneth McAloon), het benaderen van functies (Pavel Pudlák),

1Een theorie is inconsistent als er een uitspraak A bestaat zodat T zowel A, als de
negatie van A bewijst. Uiteraard is het wenselijk dat een theorie consistent (i.e. niet
inconsistent) is.
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principes gerelateerd aan eindige bomen, Higmans stelling en Kruskals stel-
ling (Harvey Friedman), regressieve Ramsey stellingen (Akihiro Kanamori
en McAloon), etc..

Onderzoek van onafhankelijke uitspraken leidde tot een expansie van het
gebied dat vandaag bekend staat als onbewijsbaarheidstheorie en een waaier
aan onderzoeksmogelijkheden aanbiedt. We gaan niet in detail, maar ver-
melden enkele essentiële onderwerpen. De studie van wiskundig relevante,
onbewijsbare uitspraken is nog steeds belangrijk en wordt ondernomen door
onder andere Friedman in zijn “Boolean Relation Theory” en “Upper Shift
Kernel Theory”. Beide domeinen bevatten voorbeelden van een template,
hetgeen ook in deze thesis aan bod komt.

Een ander onderzoeksgebied bestudeert wiskundige redenen voor onbe-
wijsbaarheidsfenomenen. Hier zijn er duidelijke verbanden met het “Rever-
se Mathematics”-programma, maar ook met de filosofie van de wiskunde.
Een recent terrein van onbewijsbaarheidstheorie behandelt de Atlas van
veeltermvergelijkingen met een prefix (zie Sectie A.6). We sluiten deze on-
volledige opsomming af met een onderwerp dat uitermate belangrijk is in
deze doctoraatsverhandeling: faseovergangen.

In het begin van de 21ste eeuw diversifieerde de onbewijsbaarheidsthe-
orie verder toen Andreas Weiermann een nieuw studiedomein ontwikkelde:
overgangen van onbewijsbaarheid naar bewijsbaarheid. Het is immers mo-
gelijk een onbewijsbare zin van een parameter te voorzien, zodat bij een
kleine verandering van de parameter de uitspraak plots bewijsbaar wordt.
Men kan dit vergelijken met het verhogen van de temperatuur tot boven
het smeltpunt van water, waardoor ijs verandert in vloeibaar water. Het
fysisch systeem (of de wiskundige uitspraak) gaat van een bepaalde fase
over in een andere.

Weiermanns eerste resultaten in dit gebied waren gerelateerd aan een
miniaturisatie van Kruskals stelling die we Ar noemen, waarbij de para-
meter r een rationaal getal is. Indien r ≤ r0 dan zal PA de uitspraak Ar

kunnen bewijzen (in symbolen: PA ` Ar). Als echter r > r0, dan wordt Ar

onbewijsbaar ten opzichte van PA (of dus PA 0 Ar). (Zie Figuur A.1.)
De parameter hoeft echter geen getal te zijn, maar kan ook een functie

zijn. Figuur A.2 toont een faseovergang voor een uitspraak Af die afhan-
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-

r00 r

PA 0 ArPA ` Ar

Figuur A.1: Faseovergang van bewijsbaarheid naar onbewijsbaarheid – I

kelijk is van zo’n parameterfunctie f . Zoals men kan zien, zal een theorie
T (bijvoorbeeld PA) de uitspraak Af kunnen bewijzen als f uiterst traag
groeit. Indien f echter een beetje sneller groeit, dan wordt Af onbewijs-
baar ten opzichte van T. In deze doctoraatsverhandeling bestuderen we
faseovergangen van de laatste soort.

-

6

T 0 Af

T ` Af

f groeit traag

overgangsgebied

f groeit heel traag

Figuur A.2: Faseovergang van bewijsbaarheid naar onbewijsbaarheid – II

Zoals hierboven vermeld, behoort het eerste wiskundig natuurlijke voor-
beeld van een onafhankelijke uitspraak (het Paris-Harrington principe) tot
het domein van de Ramsey-theorie. Dit onderzoeksdomein is een tak van de
combinatoriek die genoemd is naar de Britse wiskundige Frank Ramsey en
die nog steeds nuttig is voor onderzoek naar onbewijsbaarheid. Ramsey’s
stelling wordt genoteerd als RT, waarbij RT = ∀n ∀kRTn

k en

RTn
k ↔ Voor elke G : [N]n → k bestaat er een oneindige H

zodat G � [H]n constant is.

De volgende uitspraak beschrijft op een eerder filosofische wijze de dieper
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liggende gedachte achter fenomenen uit de Ramsey theorie:

“There are numerous theorems in mathematics which assert,
crudely speaking, that every system of a certain class possesses
a large subsystem with a higher degree of organization than the
original system.”2 (H. Burkill and L. Mirsky)

In deze dissertatie onderzoeken we onbewijsbare uitspraken, waarvan
de meeste uit het gebied van de Ramsey-theorie komen. We zullen ook de
bijbehorende faseovergangen bepalen. Hiervoor hebben we de nodige wis-
kundige hulpmiddelen nodig. In het laatste deel van de inleiding worden
belangrijke theorieën, ordinaalgetallen en hiërarchieën van functies inge-
voerd. Bovendien worden standaardconcepten gedefinieerd alsook enkele
nuttige eigenschappen vermeld.

A.2 Het duiventilprincipe

Het duiventilprincipe (of ladenprincipe, genoteerd PHP) zegt dat als er n
duiven in een duiventil met m hokjes geplaatst worden met n > m, dat
er dan minstens een hokje is dat meer dan één duif bevat. Dit principe
is voor het eerst neergeschreven door Dirichlet in 1834 en is ondertussen
alom gekend. Het is een specifiek geval van de eindige versie van Ramsey’s
stelling RT1

<∞, hetgeen staat voor ∀kRT1
k, gebruik makende van de notatie

ingevoerd in Sectie A.1.
Gezien het nauwe verband met de Ramsey-theorie die vaak aanleiding

geeft tot onbewijsbaarheid, is het evident zich af te vragen welke de logische
sterkte van deze uitspraak is (gegeven een basistheorie). Met “logische
sterkte” van een theorie T bedoelen we “rekenkundige sterkte”, hetgeen
staat voor de verzameling van alle eerste orde, rekenkundige stellingen die
bewijsbaar zijn in T.

2“Er zijn talrijke stellingen in de wiskunde die poneren dat, grofweg gezegd, elk sys-
teem van een bepaalde klasse een groot subsysteem bevat dat meer structuur bezit dan het
originele systeem.”
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Om die sterkte te bestuderen, introduceren we in dit hoofdstuk twee
eigenschappen van deelverzamelingen van natuurlijke getallen. Deze eigen-
schappen (n-PHP-dichtheid en (α, 2)-PHP-dichtheid) zijn gerelateerd aan
RT1

<∞ en RT1
2 en geven aanleiding tot onbewijsbare uitspraken. Zo’n soort

dichtheden zijn oorspronkelijk ingevoerd door Paris toen hij onbewijsbaar-
heid bestudeerde en deze blijken tot vandaag nog steeds handig.

Voor de onafhankelijke uitspraken die we zo verkrijgen bepalen we de
faseovergangen. De parameterfuncties die de overgang bepalen voor de
eerste PHP-dichtheid zijn dezelfde als deze voor de versie van het Kanamori-
McAloon principe met parameter (zie Figuur 2.1). De functies die horen
bij de tweede PHP-dichtheid zijn gelijk aan deze die de faseovergang bij het
Paris-Harrington principe bepalen (zie Figuur 2.2).

A.3 Zwak stijgende deelrijen

We vertrekken van de volgende stelling die we noteren als ISP:

“elke oneindige rij van natuurlijke getallen bevat
een oneindige, zwak stijgende deelrij”.

Men kan ISP direct afleiden uit een specifiek geval van de Ramsey stelling,
namelijk de versie RT2

2 voor dimensie twee en met twee kleuren. Zoals in
Sectie A.2, doet het verband met de Ramsey-theorie ons vermoeden dat er
logische sterkte kan gevonden worden.

Om die sterkte te bestuderen, introduceren we n-ISP-dichtheid, die
nauw verbonden is met ISP. Eenmaal we dan ISP, dat over oneindige
objecten spreekt, in een eindig vorm (ISP-dichtheid) hebben gegoten, to-
nen we aan dat we uitspraken verkrijgen die onbewijsbaar zijn ten opzichte
van de theorie IΣ1, een fragment van PA.

We bepalen de bijbehorende faseovergang nauwkeurig (zie Figuur 3.1).
Merk op dat de functies die behoren bij deze faseovergang dezelfde zijn als
die voor de n-PHP-dichtheid, beschreven in Sectie A.2.
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A.4 Oneindige Ramsey stelling

In dit hoofdstuk bestuderen we de volledige versie van de Ramsey stelling,
dewelke we noteren als RT. Als we gebruik maken van de notatie zoals
ingevoerd in Sectie A.1, dan is RT gedefinieerd als ∀n ∀kRTn

k . Analoog aan
de werkwijze in Sectie A.2 en Sectie A.3, bestuderen we de logische sterkte
van een eindige versie van RT en dit in de vorm van n-RT-dichtheid. Dit
stelt ons in staat een deel van de sterkte van RCA0 + RT te omvatten,
waarbij RCA0 een deelsysteem van tweede-orde rekenkunde is (waarvan
IΣ1 het eerste-orde deel is).

Om deze resultaten te verkrijgen, maken we gebruik van een veral-
gemening van een stelling van Teresa Bigorajska en Henryk Kotlarski die
partities van α-grote verzamelingen behandelt. Nadat zij eerdere resultaten
van Jussi Ketonen en Robert Solovay generaliseerden tot ordinaalgetallen
kleiner dan ε0, gaan wij verder en laten we ordinaalgetallen tot aan εω toe.
Een groot deel van dit vijfde hoofdstuk is daaraan gewijd.

We vermoeden dat de verkregen onbewijsbare uitspraak leidt tot een
faseovergang. Deze is echter nog niet in detail uitgewerkt, zodat dit een
mogelijk onderwerp is voor toekomstig onderzoek.

A.5 Nash-Williams Ramsey-theorie

Nash-Williams Ramsey-theorie is een tak in de Ramsey-theorie die ontstaan
is rond een aantal stellingen van Nash-Williams, gepubliceerd in de jaren
zestig. We bestuderen hier in detail één van deze stellingen, namelijk Nash-
Williams’ verdelingstelling, of kortweg NWT. Deze zegt het volgende:

“elke dunne familie van eindige verzamelingen
van natuurlijke getallen is Ramsey”.

Vanuit een breder perspectief bekijken we NWT als een template, namelijk
“dun impliceert Ramsey”. In dit hoofdstuk bekijken we instanties van deze
template. In een eerste deel geven we enkele zwakkere versies die vertrouw-
de concepten behandelen (woorden, bomen, grafen, etc.). Nadien veralge-
menen we NWT voor families van eindige, gelabelde structuren. Hiervoor
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passen we een techniek toe die gekend is als “combinatorisch dwingen”,
waarbij het bestaan van een verzameling met zekere eigenschap wordt “af-
gedwongen”. Deze methode werd reeds door Nash-Williams toegepast in
zijn oorspronkelijke publicaties.

In het tweede deel bestuderen we in detail de sterkte van één van de
instanties van de template, namelijk de oorspronkelijke NWT. Resultaten
hieromtrent zijn reeds bekend, maar niet altijd even gemakkelijk terug te
vinden in de literatuur. Daarom bewijzen we uitvoerig dat NWT equivalent
is met ATR0 over RCA0. De sterkte van de veralgemening tot gelabelde
structuren is nog niet gekend en vormt een mogelijk onderwerp voor toe-
komstig onderzoek.

Tenslotte gaan we even dieper in op Schreier families. Deze families
geven aanleiding tot veralgemeningen van RT en NWT. Vanuit dat oogpunt
formuleren we een eerste-orde uitspraak die onbewijsbaar is in PA.

A.6 De Atlas van veeltermvergelijkingen met een
prefix

Dit hoofdstuk is bedoeld als een uitgebreide inleiding tot de studie van
de Atlas van veeltermvergelijkingen met een prefix, hetgeen hierna wordt
gedefinieerd. Een veeltermvergelijking met prefix is een uitdrukking met
als algemene vorm

Q1x1 Q2x2 . . . Qnxn P (x1, x2, . . . , xn) = 0,

waarbij P een veelterm is met gehele getallen als coëfficiënten, die is voor-
afgegaan door een blok van kwantoren Q1, Q2,. . . , Qn met als variabelen
x1, x2, . . . , xn die de natuurlijke getallen bestrijken. Vaak spreken we kort-
weg over een veeltermvergelijking. Deze algemene vorm kunnen we bekijken
als een template, waarvoor we specifieke instanties kunnen bestuderen. De
collectie van alle veeltermvergelijkingen noemen we de Atlas.

Als basistheorie gebruiken we Exponentiële Functie Aritmetica (EFA),
die ons toelaat veeltermvergelijkingen te vergelijken en te verdelen in equi-
valentieklassen, waarbij twee leden equivalent zijn als ze EFA-bewijsbaar
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equivalent zijn. Deze template is rekenkundig compleet. Dit wil zeggen dat
elke eerste-orde, rekenkundige uitspraak equivalent is aan een veelterm-
vergelijking met prefix. Na het definiëren van het begrip lengte van een
veelterm, bestuderen we verschillende instanties uit de Atlas, en bepalen
hun lengte en logische sterkte. We geven drie concrete voorbeelden van
vrij beknopte veeltermvergelijkingen die verrassend genoeg reeds heel wat
sterkte bezitten (aangezien ze onbewijsbaar zijn in IΣ1, IΣ2 en PA).

In het derde deel beschrijven we hoe de template aanleiding geeft tot een
grote verscheidenheid aan mogelijkheden. In het bijzonder geven we uitleg
bij enkele specifieke leden van de Atlas die relatief grote sterkte bezitten,
maar die we hier niet in detail behandelen. Verder staan we even stil bij
veeltermvergelijkingen met minimale lengte in hun equivalentieklasse (zo-
genaamde zaden), bekijken we hoe een uitbreiding van de wiskundige taal
nieuwe mogelijkheden biedt en beschrijven we kort het fenomeen hoppen.
Een laatste bedenking gaat over de Atlas als instrument om stellingen uit
verschillende wiskundige disciplines te vergelijken.

Dat de Atlas ook leden bevat die heel wat logische sterkte implice-
ren, hoewel ze een aanvaardbare lengte hebben, wordt aangetoond in het
voorlaatste deel. We geven hier ook een voorbeeld van een faseovergang
gerelateerd aan een veeltermvergelijking.

Tenslotte geven we technische details en bewijzen.
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Zürich, 2006. (On page 3).

[Raz02] Alexander A. Razborov. Proof complexity of pigeonhole principles.
In Developments in language theory (Vienna, 2001), volume 2295 of
Lecture Notes in Comput. Sci., pages 110–116. Springer, Berlin, 2002.
(On page 23).

[Ros84] Harvey E. Rose. Subrecursion: functions and hierarchies, volume 9 of
Oxford Logic Guides. The Clarendon Press Oxford University Press,
New York, 1984. (On page 19).
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[Wey21] Hermann Weyl. Über die neue Grundlagenkrise der Mathematik.
Mathematische Zeitschrift, 10:39–79, 1921. (On page 2).

[YL52] Chen-Ning F. Yang and Tsung-Dao Lee. Statistical theory of equations
of state and phase transitions. I. Theory of condensation. Physical Rev.
(2), 87:404–409, 1952. (On page 8).

[Zac06] Richard Zach. Hilbert’s program then and now. In Handbook of the
Philosophy of Science. Volume 5: Philosophy of Logic Volume editor:
Dale Jacquette. Handbook editors: Dov M. Gabbay, Paul Thagard and
John Woods. Elsevier BV., 2006. (On page 3).



List of Figures

1.1 Phase transitions in physics . . . . . . . . . . . . . . . . . . 7
1.2 Phase transition from provability to unprovability – Type I . 9
1.3 Phase transition from provability to unprovability – Type II 10

2.1 Phase transition for PHPf . . . . . . . . . . . . . . . . . . . 30
2.2 Phase transition for PHP2f . . . . . . . . . . . . . . . . . . . 37

3.1 Phase transition for ISPf . . . . . . . . . . . . . . . . . . . . 41

6.1 Sketch of the Atlas regarding the size of polynomial expressions121

A.1 Faseovergang van bewijsbaarheid naar onbewijsbaarheid – I 152
A.2 Faseovergang van bewijsbaarheid naar onbewijsbaarheid – II 152

173



174 List of Figures



Index

1-Con(T), 12
2x(y), 89
Aξ, 112
Bf,α, 33
Dk, 89
EF ,M , 102
F , 64
Fα, 19
Ff,k, 27
L3,n,m, 73
Lk,m, 74
M/s, 101
M [<∞], 101
M [∞], 108
Mk,m, 54
Nk, 54
Rk, 80
W , 75
[ ]n, 11
ACA0, 12
ATR0, 12
Con(T), 12
EA, 118
EFA, 12

FRO(ξ), 114
GO, 62
I∆0 + exp, 12
IΣn, 12
ISP, 39
KSA( ; ), 77
LDn,m, 72
Lim, 15
N, 15
PA, 11
Π1

1-CA0, 12
RCA0, 12
RM, 15
RT, 51
RTn, 83
RTn

k , 11
⇒n, 17
Σ0

1-RT, 109
WKL0, 12
⊥, 12
�, 16
≫, 16
�, 64
ωk, 15

175



176 Index

ωk(α), 15
⊕, 62
psn, 52
�

Chapter 5, 98
Chapters 1–4, 11

v, 98
town, 54
ε0, 15
εα, 15
hα, 20
hA

α , 21
hA

f,α, 91
v( ; , ), 72

α-f -large
set, 91

α-large, 21
α-small, 21
arithmetical strength, 13
Atlas, 118

Cantor normal form, 15
to the base ωn(εm + 1), 70

combinatorial forcing, 101
complete

Σ0
1, 133

arithmetically, 119
consistency, 12

1-consistency, 12

dense below M , 103
dense-open-set assignment, 103
density

ISP, 40

PHP, 25
PHP, second version, 31
RT, 83

Diophantine equation, 133

epsilon number, 15
Estimation Lemma, 70
exactly α-large, 22
extensible, 102
extensor, 102

fast-growing hierarchy, 19
fundamental sequences, 16

Hardy hierarchy, 20
based on hA, 21
based on hA, relative to f , 91

Hilbert’s programme, 2
hopping, 128

incompleteness theorems, 2
inextensibble, 102
inverse of a function, 18

length, 119
limit ordinal, 15

minimal bad sequence, 97

n-element set, 11
Nash-Williams Theorem, 97
natural product, 64
natural sum, 62

open, 103
open set, 108



Index 177

order type, 14
ordinal, 13, 14
ordinal analysis, 3
ordinal estimating function, 72

phase transition, 6
pigeonhole principle, 23
prefixed polynomial equation, 117
proof mining, 3
provably

Σn, 18
recursive, 18
total, 18

pseudonorm, 52

Ramsey
labelled structures, 104
subsets, 99

Ramsey space, 110
Ramsey theorem, 11

Σ0
1 Ramsey theorem, 109

clopen Ramsey theorem, 108
open Ramsey theorem, 108

random graph, 7
regressiveness, 39
Relativized Hilbert program, 3
Reverse Mathematics, 3

Schreier family, 112
Schreier system, 112
seed, 120
short Cantor normal form, 15
size, 119
structure, 100

finite, 100

infinite, 100
initial segment, 101
isomorphic, 101
labelled, 100

successive, 114
successor, 14

template, 100
thin

labelled structures, 104
subsets, 99

threshold function, 7
threshold point, 6

uniform reflection principle, 13

vertices, 100

well-order, 14



Created using LATEX.

Copyright © 2011 Michiel De Smet. All Rights Reserved.


	Preface
	Acknowledgements
	Introduction
	Historical background
	Preliminaries

	The pigeonhole principle
	Introduction
	n-PHP-Density
	(alpha,2)-PHP-Density 

	Weakly increasing subsequences
	Introduction
	Classifying the phase transition
	Improved bounds

	Infinite Ramsey Theorem
	Introduction
	The Estimation Lemma
	Partitioning alpha-large sets
	Ramsey density

	Nash-Williams Ramsey theory
	Original Nash-Williams Theorem and extensions
	Strength of the Nash-Williams Theorem
	About Schreier families

	The Atlas of prefixed polynomial equations
	Definitions and explanations
	Some important members
	More about the Atlas
	Going beyond predicative mathematics
	Technical details and proofs

	Dutch summary
	Inleiding
	Het duiventilprincipe
	Zwak stijgende deelrijen
	Oneindige Ramsey stelling
	Nash-Williams Ramsey-theorie
	De Atlas van veeltermvergelijkingen met een prefix

	References
	List of figures
	Index

