201 research outputs found

    The omega-inequality problem for concatenation hierarchies of star-free languages

    Get PDF
    The problem considered in this paper is whether an inequality of omega-terms is valid in a given level of a concatenation hierarchy of star-free languages. The main result shows that this problem is decidable for all (integer and half) levels of the Straubing-Th\'erien hierarchy

    Acta Cybernetica : Volume 23. Number 1.

    Get PDF

    DESCRIPTIONAL COMPLEXITY AND PARIKH EQUIVALENCE

    Get PDF
    The thesis deals with some topics in the theory of formal languages and automata. Speci\ufb01cally, the thesis deals with the theory of context-free languages and the study of their descriptional complexity. The descriptional complexity of a formal structure (e.g., grammar, model of automata, etc) is the number of symbols needed to write down its description. While this aspect is extensively treated in regular languages, as evidenced by numerous references, in the case of context-free languages few results are known. An important result in this area is the Parikh\u2019s theorem. The theorem states that for each context-free language there exists a regular language with the same Parikh image. Given an alphabet \u3a3 = {a1, . . . , am}, the Parikh image is a function \u3c8 : \u3a3^ 17\u2192 N^m that associates with each word w 08\u3a3^ 17, the vector \u3c8(w)=(|w|_a1, |w|_a2, . . . , |w|_am), where |w|_ai is the number of occurrences of ai in w. The Parikh image of a language L 86\u3a3^ 17 is the set of Parikh images of its words. For instance, the language {a^nb^n | n 65 0} has the same Parikh image as (ab)^ 17. Roughly speaking, the theorem shows that if the order of the letters in a word is disregarded, retaining only the number of their occurrences, then context-free languages are indistinguishable from regular languages. Due to the interesting theoretical property of the Parikh\u2019s theorem, the goal of this thesis is to study some aspects of descriptional complexity according to Parikh equivalence. In particular, we investigate the conversion of one-way nondeterministic \ufb01nite automata and context-free grammars into Parikh equivalent one-way and two-way deterministic \ufb01nite automata, from a descriptional complexity point of view. We prove that for each one-way nondeterministic automaton with n states there exist Parikh equivalent one-way and two-way deterministic automata with e^O(sqrt(n lnn)) and p(n) states, respectively, where p(n) is a polynomial. Furthermore, these costs are tight. In contrast, if all the words accepted by the given one-way nondeterministic automaton contain at least two different letters, then a Parikh equivalent one-way deterministic automaton with a polynomial number of states can be found. Concerning context-free grammars, we prove that for each grammar in Chomsky normal form with h variables there exist Parikh equivalent one-way and two-way deterministic automata with 2^O(h^2 ) and 2^O(h) states, respectively. Even these bounds are tight. A further investigation is the study under Parikh equivalence of the state complexity of some language operations which preserve regularity. For union, concatenation, Kleene star, complement, intersection, shuffle, and reversal, we obtain a polynomial state complexity over any \ufb01xed alphabet, in contrast to the intrinsic exponential state complexity of some of these operations in the classical version. For projection we prove a superpolynomial state complexity, which is lower than the exponential one of the corresponding classical operation. We also prove that for each two one-way deterministic automata A and B it is possible to obtain a one-way deterministic automaton with a polynomial number of states whose accepted language has as Parikh image the intersection of the Parikh images of the languages accepted by A and B

    Topological Complexity of Sets Defined by Automata and Formulas

    Get PDF
    In this thesis we consider languages of infinite words or trees defined by automata of various types or formulas of various logics. We ask about the highest possible position in the Borel or the projective hierarchy inhabited by sets defined in a given formalism. The answer to this question is called the topological complexity of the formalism.It is shown that the topological complexity of Monadic Second Order Logic extended with the unbounding quantifier (introduced by Bojańczyk to express some asymptotic properties) over ω-words is the whole projective hierarchy. We also give the exact topological complexities of related classes of languages recognized by nondeterministic ωB-, ωS- and ωBS-automata studied by Bojańczyk and Colcombet, and a lower complexity bound for an alternating variant of ωBS-automata.We present the series of results concerning bi-unambiguous languages of infinite trees, i.e. languages recognized by unambiguous parity tree automata whose complements are also recognized by unambiguous parity automata. We give an example of a bi-unambiguous tree language G that is analytic-complete. We present an operation σ on tree languages with the property that σ(L) is topologically harder than any language in the sigma-algebra generated by the languages continuously reducible to L. If the operation is applied to a bi-unambiguous language than the result is also bi-unambiguous. We then show that the application of the operation can be iterated to obtain harder and harder languages. We also define another operation that enables a limit step iteration. Using the operations we are able to construct a sequence of bi-unambiguous languages of increasing topological complexity, of length at least ω square.W niniejszej rozprawie rozważane są języki nieskończonych słów lub drzew definiowane poprzez automaty różnych typów lub formuły różnych logik. Pytamy o najwyższą możliwą pozycję w hierarchii borelowskiej lub rzutowej zajmowaną przez zbiory definiowane w danym formalizmie. Odpowiedź na to pytanie jest nazywana złożonością topologiczną formalizmu.Przedstawiony został dowód, że złożonością topologiczną Logiki Monadycznej Drugiego Rzędu rozszerzonej o kwantyfikator Unbounding (wprowadzony przez Bojańczyka w celu umożliwienia wyrażania własności asymptotycznych) na słowach nieskończonych jest cała hierarchia rzutowa. Obliczone zostały również złożoności topologiczne klas języków rozpoznawanych przez niedeterministyczne ωB-, ωS- i ωBS-automaty rozważane przez Bojańczyka i Colcombet'a, oraz zostało podane dolne ograniczenie złożoności wariantu alternującego ωBS-automatów.Zaprezentowane zostały wyniki dotyczące języków podwójnie jednoznacznych, tzn. języków rozpoznawanych przez jednoznaczne automaty parzystości na drzewach, których dopełnienia również są rozpoznawane przez jednoznaczne automaty parzystości. Podany został przykład podwójnie jednoznacznego języka drzew G, który jest analityczny-zupełny. Została wprowadzona operacja σ na językach drzew taka, że język σ(L) jest topologicznie bardziej złożony niż jakikolwiek język należący do sigma-algebry generowanej przez języki redukujące się w sposób ciągły do języka L. W wyniku zastosowania powyższej operacji do języka podwójnie jednoznacznego otrzymujemy język podwójnie jednoznaczny. Zostało pokazane, że kolejne iteracje aplikacji powyższej operacji dają coraz bardziej złożone języki. Została również wprowadzona druga operacja, która umożliwia krok graniczny iteracji. Używając obydwu powyższych operacji można skonstruować ciąg długości ω kwadrat złożony z języków podwójnie jednoznacznych o coraz większej złożoności

    Context flow architecture

    Get PDF

    Logic and Automata

    Get PDF
    Mathematical logic and automata theory are two scientific disciplines with a fundamentally close relationship. The authors of Logic and Automata take the occasion of the sixtieth birthday of Wolfgang Thomas to present a tour d'horizon of automata theory and logic. The twenty papers in this volume cover many different facets of logic and automata theory, emphasizing the connections to other disciplines such as games, algorithms, and semigroup theory, as well as discussing current challenges in the field

    Efficient abstractions for visualization and interaction

    Get PDF
    Abstractions, such as functions and methods, are an essential tool for any programmer. Abstractions encapsulate the details of a computation: the programmer only needs to know what the abstraction achieves, not how it achieves it. However, using abstractions can come at a cost: the resulting program may be inefficient. This can lead to programmers not using some abstractions, instead writing the entire functionality from the ground up. In this thesis, we present several results that make this situation less likely when programming interactive visualizations. We present results that make abstractions more efficient in the areas of graphics, layout and events

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..
    corecore