
38th IARCS Annual Conference
on Foundations of Software
Technology and Theoretical
Computer Science

FSTTCS 2018, December 11–13, 2018, Ahmedabad, India

Edited by

Sumit Ganguly
Paritosh Pandya

LIPIcs – Vo l . 122 – FSTTCS 2018 www.dagstuh l .de/ l ip i c s



Editors
Sumit Ganguly Paritosh Pandya
Department of Computer Science and Engineering Tata Institute of Fundamental Research
Indian Institute of Technology, Kanpur, India Mumbai, India
sganguly@cse.iitk.ac.in pandya@tifr.res.in

ACM Classification 2012
Theory of Computation

ISBN 978-3-95977-093-4

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-093-4.

Publication date
December, 2018

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2018.0

ISBN 978-3-95977-093-4 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-093-4
http://www.dagstuhl.de/dagpub/978-3-95977-093-4
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2018.0
http://www.dagstuhl.de/dagpub/978-3-95977-093-4
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Gran Sasso Science Institute and Reykjavik University)
Susanne Albers (TU München)
Christel Baier (TU Dresden)
Javier Esparza (TU München)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

FSTTCS 2018

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics




Contents

Preface
Sumit Ganguly and Paritosh Pandya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Invited Papers

Random Testing for Distributed Systems with Theoretical Guarantees
Rupak Majumdar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:1

Model Checking Randomized Security Protocols
A. Prasad Sistla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:1

Algorithms for the Asymmetric Traveling Salesman Problem
Ola Svensson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:1

Continuous Algorithms
Santosh Vempala . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:1

Regular Papers

On the Probabilistic Degree of OR over the Reals
Siddharth Bhandari, Prahladh Harsha, Tulasimohan Molli, and Srikanth Srinivasan 5:1–5:12

Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees
Ramprasad Saptharishi and Anamay Tengse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:19

Univariate Ideal Membership Parameterized by Rank, Degree, and Number of
Generators

V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay . . . . . . . . . . 7:1–7:18

Verification of Timed Asynchronous Programs
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Shankara Narayanan Krishna, and
Shaan Vaidya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:16

The Cayley-Graph of the Queue Monoid: Logic and Decidability
Faried Abu Zaid and Chris Köcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:17

Uniformly Automatic Classes of Finite Structures
Faried Abu Zaid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:21

Towards a General Direct Product Testing Theorem
Elazar Goldenberg and Karthik C. S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11:1–11:17

Space Complexity of Two Adaptive Bitprobe Schemes Storing Three Elements
Deepanjan Kesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:12

New Constructions with Quadratic Separation between Sensitivity and Block
Sensitivity

Siddhesh Chaubal and Anna Gál . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13:1–13:16

Lambda-Definable Order-3 Tree Functions are Well-Quasi-Ordered
Kazuyuki Asada and Naoki Kobayashi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:15

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


0:vi Contents

A Hypersequent Calculus with Clusters for Tense Logic over Ordinals
David Baelde, Anthony Lick, and Sylvain Schmitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:19

Büchi Good-for-Games Automata Are Efficiently Recognizable
Marc Bagnol and Denis Kuperberg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16:1–16:14

Popular Matchings in Complete Graphs
Ágnes Cseh and Telikepalli Kavitha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:14

Graph Pattern Polynomials
Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah . . . . . . . . . . . . . . . . . 18:1–18:13

Shortest k-Disjoint Paths via Determinants
Samir Datta, Siddharth Iyer, Raghav Kulkarni, and Anish Mukherjee . . . . . . . . . . . . . 19:1–19:21

Hyper Partial Order Logic
Béatrice Bérard, Stefan Haar, and Loic Hélouët . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:21

On the Way to Alternating Weak Automata
Udi Boker and Karoliina Lehtinen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:22

Origin-Equivalence of Two-Way Word Transducers Is in PSPACE
Sougata Bose, Anca Muscholl, Vincent Penelle, and Gabriele Puppis . . . . . . . . . . . . . 22:1–22:18

Constant Factor Approximation Algorithm for Uniform Hard Capacitated
Knapsack Median Problem

Sapna Grover, Neelima Gupta, Samir Khuller, and Aditya Pancholi . . . . . . . . . . . . . . 23:1–23:22

A 5-Approximation for Universal Facility Location
Manisha Bansal, Naveen Garg, and Neelima Gupta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:12

On Fair Division for Indivisible Items
Bhaskar Ray Chaudhury, Yun Kuen Cheung, Jugal Garg, Naveen Garg,
Martin Hoefer, and Kurt Mehlhorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25:1–25:17

Combinatorial Algorithms for General Linear Arrow-Debreu Markets
Bhaskar Ray Chaudhury and Kurt Mehlhorn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26:1–26:16

On the Welfare of Cardinal Voting Mechanisms
Umang Bhaskar and Abheek Ghosh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27:1–27:22

Symbolic Approximation of Weighted Timed Games
Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier . . . . . . . . . 28:1–28:16

A Symbolic Framework to Analyse Physical Proximity in Security Protocols
Alexandre Debant, Stéphanie Delaune, and Cyrille Wiedling . . . . . . . . . . . . . . . . . . . . . 29:1–29:20

On Canonical Models for Rational Functions over Infinite Words
Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, and Anca Muscholl . . . . . . . . . . . . 30:1–30:17

Reachability for Two-Counter Machines with One Test and One Reset
Alain Finkel, Jérôme Leroux, and Grégoire Sutre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31:1–31:14

The Parikh Property for Weighted Context-Free Grammars
Pierre Ganty and Elena Gutiérrez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32:1–32:20



Contents 0:vii

Characterizing Demand Graphs for (Fixed-Parameter) Shallow-Light Steiner
Network

Amy Babay, Michael Dinitz, and Zeyu Zhang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33:1–33:22

On the Parameterized Complexity of [1, j]-Domination Problems
Mohsen Alambardar Meybodi, Fedor Fomin, Amer E. Mouawad, and Fahad Panolan 34:1–34:14

Sub-Exponential Time Parameterized Algorithms for Graph Layout Problems on
Digraphs with Bounded Independence Number

Pranabendu Misra, Saket Saurabh, Roohani Sharma, and Meirav Zehavi . . . . . . . . . . 35:1–35:19

Safe and Optimal Scheduling for Hard and Soft Tasks
Gilles Geeraerts, Shibashis Guha, and Jean-François Raskin . . . . . . . . . . . . . . . . . . . . . . 36:1–36:22

The ∆-Framework
Furio Honsell, Luigi Liquori, Claude Stolze, and Ivan Scagnetto . . . . . . . . . . . . . . . . . . 37:1–37:21

Extending Finite-Memory Determinacy by Boolean Combination of Winning
Conditions

Stéphane Le Roux, Arno Pauly, and Mickael Randour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38:1–38:20

Deterministic Algorithms for Maximum Matching on General Graphs in the
Semi-Streaming Model

Sumedh Tirodkar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39:1–39:16

Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS
Karl Bringmann and Bhaskar Ray Chaudhury . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40:1–40:16

On the Inner Product Predicate and a Generalization of Matching Vector Families
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Preface

This volume constitutes the proceedings of the 38th IARCS Annual Conference on Found-
ations of Software Technology and Theoretical Computer Science (FSTTCS 2018) held
at Ahmedabad University, Ahmedabad, India from December 10 to December 14, 2017.
The FSTTCS conferences are organized annually by the Indian Association for Research in
Computing Science (IARCS). The proceedings of FSTTCS 2018 is published as a volume in
the LIPIcs series under a Creative Commons license, with free online access to all.

The conference comprised of 4 invited talks and 44 contributed papers. This volume
contains the contributed papers and abstracts of invited talks presented at the conference.
The contributed papers were selected from a total of 123 submissions. We are grateful to
the programme committee for its efforts in the evaluation of the submissions and selection
of papers. We also thank the external reviewers for sending their informative and timely
reviews. Further, we thank all authors who submitted their work to FSTTCS 2018. We
are especially thankful to the invited speakers: Rupak Majumdar (MPI-SWS, Saarbrucken,
Germany), A. Prasad Sistla (University of Illinois, Chicago, USA), Ola Svensson (EPFL,
Lausanne, Switzerland) and Santosh Vempala (Georgia Tech., Atlanta, USA).

The conference had a pre-conference workshop on Trends in Transformations organized
by Paul Gastin (ENS de Cachan, France) and S.N. Krishna (IIT Bombay, India). We thank
the organizers of the workshop and the speakers in it.

The organizing committee of the conference from Ahmedabad University were responsible
for the local and technical arrangements that led to the smooth running of the conference. We
thank them for their invaluable efforts. We thank Easychair for the conference management
tool used for the submission and review process. Finally, we thank Dagstuhl publications for
the publication of these proceedings.
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Random Testing for Distributed Systems with
Theoretical Guarantees
Rupak Majumdar
Max Planck Institute for Software Systems, Kaiserslautern, Germany
rupak@mpi-sws.org

Abstract
Random testing has proven to be an effective way to catch bugs in concurrent and distributed
systems. This is surprising, as the space of executions is enormous and conventional formal
methods intuition would suggest that bad behaviors would only be found by extremely unlikely
coincidences.

Empirically, many bugs in distributed systems can be explained by interactions among only
a small number of features. Thus, one can attempt to explain the effectiveness of random testing
under various “small depth” hypotheses. In particular, it may be possible to test all interactions of
k features for a small constant k by executing a family of tests that is exponentially or even doubly-
exponentially smaller than the family of all tests. Moreover, under certain conditions, a randomly
chosen small set of tests is sufficient to cover all k-wise interactions with high probability.

I will describe two concrete scenarios. First, I will describe bugs in distributed systems caused
by network partition faults. In many practical instances, these bugs occur due to two or three
key nodes, such as leaders or replicas, not being able to communicate, or because the leading
node finds itself in a block of the partition without quorum. In this case, I will show using the
probabilistic method that a small set of randomly chosen tests will cover all “small partition”
scenarios with high probability.

Second, I will consider bugs that arise due to unexpected schedules (interleavings) of concur-
rent events. Again, many bugs depend only on the relative ordering of a small number of events
(the “bug depth” of the bug). In this case, I will show a testing algorithm that prioritizes low
depth interleavings and a randomized testing algorithm that bounds the probability of sampling
any behavior of bug depth k for a fixed k. The testing algorithm is based on combinatorial
insights from the theory of partial orders, such as the notion of dimension and its generalization
to d-hitting families as well as results on online chain partitioning.

Beyond the potential for designing or explaining random testing procedures, the technical
arguments show the potential of combining “Theory A” and “Theory B” results to the important
domain of software testing.

This is joint work primarily with Filip Niksic [1], and with Dmitry Chistikov, Simin Oraee,
Burcu Kulahcioglu Özkan, Mitra Tabaei Befrouei, and Georg Weissenbacher. This work was
partially funded by an ERC Synergy Award (ImPACT).

2012 ACM Subject Classification Theory of computation → Generating random combinatorial
structures, Software and its engineering → Software testing and debugging

Keywords and phrases Random testing, Hitting families
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Model Checking Randomized Security Protocols
A. Prasad Sistla
University of Illinois at Chicago, USA
sistla@uic.edu

Abstract
The design of security protocols is extremely subtle and is prone to serious faults. Many tools
for automatic analysis of such protocols have been developed. However, none of them have
the ability to model protocols that use explicit randomization. Such randomized protocols are
being increasingly used in systems to provide privacy and anonymity guarantees. In this talk
we consider the problem of automatic verification of randomized security protocols. We consider
verification of secrecy and indistinguishability properties under a powerful threat model of Dolev-
Yao adversary. We present some complexity bounds on verification of these properties. We
also describe practical algorithms for checking indistinguishability. These algorithms have been
implemented in the tool SPAN and have been experimentally evaluated. The talk concludes with
future challenges.

(Joint work with: Matt Bauer, Rohit Chadha and Mahesh Viswanathan)

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Randomized Protocols, Verification

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.2
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Abstract
The traveling salesman problem is one of the most fundamental optimization problems. Given n

cities and pairwise distances, it is the problem of finding a tour of minimum total distance that
visits each city once. In spite of significant research efforts, current techniques seem insufficient
for settling the approximability of the traveling salesman problem. The gap in our understanding
is especially large in the general asymmetric setting where the distance from city i to j is not
assumed to equal the distance from j to i.

Indeed, until recently, it remained an open problem to design an algorithm with any constant
approximation guarantee. This status is particularly intriguing as the standard linear program-
ming relaxation is believed to give a constant-factor approximation algorithm, where the constant
may in fact be as small as 2.

In this talk, we will give an overview of old and new approaches for settling this question.
We shall, in particular, talk about our new approach that gives the first constant-factor approxi-
mation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee
is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjec-
tured constant integrality gap of that relaxation. The main idea of our approach is to first give
a generic reduction to structured instances and on those instances we then solve an easier prob-
lem (but equivalent in terms of constant-factor approximation) obtained by relaxing the general
connectivity requirements into local connectivity conditions.

This is based on joint work with Jakub Tarnawski and László A. Végh.
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Continuous Algorithms
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Abstract
While the design of algorithms is traditionally a discrete endeavour, in recent years many ad-
vances have come from continuous perspectives. Typically, a continuous process, deterministic or
randomized, is designed and shown to have desirable properties, such as approaching an optimal
solution or a target distribution, and an algorithm is derived from this by appropriate discretiza-
tion. We will discuss examples of this for optimization (gradient descent, interior-point method)
and sampling (Brownian motion, Hamiltonian Monte Carlo), with applications to learning. In
some interesting and rather general settings, the current fastest methods have been obtained via
this approach.
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Abstract
We study the probabilistic degree over R of the OR function on n variables. For ε ∈ (0, 1/3),
the ε-error probabilistic degree of any Boolean function f : {0, 1}n → {0, 1} over R is the
smallest non-negative integer d such that the following holds: there exists a distribution of
polynomials P ∈ R[x1, . . . , xn] entirely supported on polynomials of degree at most d such that
for all z ∈ {0, 1}n, we have PrP∼P[P (z) = f(z)] ≥ 1 − ε. It is known from the works of
Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc. 6th CCC 1991),
that the ε-error probabilistic degree of the OR function is at most O(log n · log(1/ε)). Our first
observation is that this can be improved to O

(
log
(

n
≤log(1/ε)

))
, which is better for small values

of ε.
In all known constructions of probabilistic polynomials for the OR function (including the

above improvement), the polynomials P in the support of the distribution P have the following
special structure:

P (x1, . . . , xn) = 1−
∏
i∈[t]

(1− Li(x1, . . . , xn)) ,

where each Li(x1, . . . , xn) is a linear form in the variables x1, . . . , xn, i.e., the polynomial 1−P (x̄)
is a product of affine forms. We show that the ε-error probabilistic degree of OR when restricted
to polynomials of the above form is Ω

(
log
(

n
≤log(1/ε)

)
/ log2

(
log
(

n
≤log(1/ε))

)))
, thus matching the

above upper bound (up to polylogarithmic factors).
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5:2 On the Probabilistic Degree of OR over the Reals

1 Introduction

Low-degree polynomial approximations of Boolean functions were introduced by Razborov in
his celebrated work [11] on proving lower bounds for the class of Boolean functions computed
by low-depth circuits. We begin by recalling this notion of approximation over R.

I Definition 1.1 (probabilistic degree). Given a Boolean function f : {0, 1}n → {0, 1} and
ε ∈ (0, 1/3), an ε-error probabilistic polynomial over R1 for f is a distribution of polynomials
P(x1, . . . , xn) ∈ R[x1, . . . , xn] such that for any z ∈ {0, 1}n, we have PrP∼P[P (z) 6= f(z)] ≤ ε.
The ε-error Probabilistic degree of f , denoted by P-degε(f), is the smallest non-negative
integer d such that the following holds: there exists an ε-error probabilistic polynomial P
over R such that P is entirely supported on polynomials of degree at most d.

Classical results in polynomial approximation of Boolean functions [15, 14, 3] show that
the OR function over n variables, denoted by ORn, has ε-error probabilistic degree at most
O (log n · log(1/ε)). This basic construction for the OR function is then recursively used
to show that any function computed by an AC0 circuit of size s and depth d has ε-error
probabilistic degree at most (log s)O(d) · log(1/ε) (see work by the second and last author [6]
for recent improvements). These results can then be used to prove, eg. [12], a (slightly weaker)
version of Håstad’s celebrated theorem [7] that parity does not have subexponential-sized
AC0 circuits. These results were employed more recently by Braverman [4] to prove that
polylog-wise independence fools AC0 functions.

Despite the fact that probabilistic polynomials for the OR function are such a basic
primitive, it is surprising that we do not yet have a complete understanding of P-degε(ORn).
As mentioned above, it is known from the works of Beigel, Reingold and Spielman [3] and
Tarui [14] that P-degε(ORn) = O (log n · log(1/ε)). It can be easily checked via a simple
application of the Schwartz-Zippel lemma that a dependence of Ω (log(1/ε)) is necessary
in the above bound. However, till not long ago, it was unclear if any dependence on n is
required over the reals 2. In recent papers of Meka, Nguyen and Vu [10] and the second
and last author [6], it was shown using anti-concentration of low-degree polynomials that
the P-deg1/4(ORn) = Ω̃(

√
log n). The main objective of this paper is to obtain a better

understanding of the ε-error probabilistic degree of ORn, P-degε(ORn). Besides being
interesting in its own right, this question has bearing on the amount of independence needed
to fool AC0 circuits. Recent improvements due to Tal [13] and [6] of Braverman’s result
demonstrate that (log s)2.5d+O(1) · log(1/ε)-wise independence fools functions computed by
AC0 circuits of size s and depth d. An improvement of the upper bound on P-degε(ORn) to
O (log n) + log(1/ε)) could potentially strengthen this result to (log s)d+O(1) · log(1/ε), nearly
matching the lower bound of (log s)d−1 · log(1/ε) due to Mansour [9].

The above discussion demonstrates that the current bounds on P-degε(ORn) fall short of
being tight in two aspects: one, the dependence on n in the lower bound is Ω̃

(√
log n

)
while

in the upper bound it is O (log n) and two, the joint dependence on ε and n in the upper
bound is multiplicative, i.e., O (log n · log(1/ε)) while the current lower bounds can only show
an additive Ω̃

(√
log n

)
+ Ω (log(1/ε)) bound.

Which of these bounds is tight? A casual observer might suspect that the upper bound
is, given the relatively neat expression. However, a closer look tells us that it cannot be,
at least when ε is quite small. For example, setting ε = 1/2Ω(n), the upper bound yields a

1 Similar notions over other fields are also studied. Unless otherwise specified, we will be considering
probabilistic polynomials over the reals in this paper.

2 For finite fields of constant size, Razborov [11] showed that the ε-error probabilistic degree of ORn is
O (log(1/ε)), independent of n, the number of the input bits.
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degree of O(n log n), but it is a standard fact that any Boolean function on n variables can
be represented exactly (i.e. with no error) as a polynomial of degree n. Hence the upper
bound is not tight in this regime.

Our first observation is that the upper bound of Tarui and Beigel et al. [3] can indeed
be slightly improved to O

(
log
(

n
≤log(1/ε))

))
;3 note that this is asymptotically better than

O (log n · log(1/ε)) for very small ε. This interpolates smoothly between the construction of
Tarui [14] and Beigel et al. [3] and the exact representation of degree n mentioned above.
(See Section 2 for details on this upper-bound construction.)

Given this observation, one might hope to prove a matching lower bound on the ε-error
probabilistic degree of ORn. We can indeed show such a bound (upto polylogarithmic
factors) if we suitably restrict the class of polynomials being considered. While restricted,
this subclass of polynomials nevertheless includes all polynomials that were used in previous
upper bound constructions, including our own. Moreover, this result generalizes a result of
Alon, Bar-Noy, Linial and Peleg [1], who prove such a result for a further restricted class of
polynomials (mentioned at the end of this section) and for log(1/ε) = O(log n).4 A careful
reworking of their analysis shows that their lower bound extends to even smaller ε to show a
lower bound of Ω(log

(
n

≤log(1/ε)
)
) for this smaller class of polynomials.

To state our result, we first need to describe the class of polynomials for which our
bounds hold. To this end, we note that all known upper-bound constructions of probabilistic
polynomials for the OR function have the following structure:

P (x1, . . . , xn) = 1−
∏
i∈[t]

(1− Li(x1, . . . , xn)) ,

where each Li(x1, . . . , xn) = ai1x1 + ai2x2 + · · · + ainxn is a linear form in the variables
x1, . . . , xn (here, aij ∈ R).

This includes the improved upper-bound construction that achieves an ε-probabilistic
degree of O(log

(
n

≤log(1/ε)
)
) mentioned in the preceding paragraph. This motivates the

following definition.

I Definition 1.2 (hyperplane covering polynomials). A polynomial P ∈ R[x1, . . . , xn] is said
to be a hyperplane covering polynomial of degree t if there exist t linear forms L1, . . . , Lt
over the reals such that

P (x1, . . . , xn) = 1−
∏
i∈[t]

(1− Li(x1, . . . , xn)) .

For ε ∈ (0, 1/2), the ε-error hyperplane covering probabilistic degree of f , denoted by
hcP-degε(f), is the smallest non-negative integer d such that the following holds: there exists
an ε-error probabilistic polynomial P over R such that P is supported on hyperplane covering
polynomials of degree at most d.

We call these polynomials hyperplane covering polynomials as these polynomials have the
property that the one’s of the polynomials in the Boolean hypercube (i.e, the set {z ∈
{0, 1}n | P (z) = 1}) are a union of hyperplanes not passing through the origin. We further
note that all these polynomials satisfy the property that P (0̄) = 0. Clearly, hcP-degε(f) ≥

3 Here,
(
N

≤α

)
denotes

∑
i≤α

(
N
i

)
.

4 The result of [1] is stated in a slightly different language, but is essentially equivalent to a probabilistic
degree lower bound for ORn for a suitable class of polynomials.

FSTTCS 2018



5:4 On the Probabilistic Degree of OR over the Reals

P-degε(f). Also, since all upper-bound constructions for the OR polynomials are hyperplane
covering polynomials, we not only have that P-degε(ORn) = O

(
log
(

n
≤log(1/ε)

))
but also that

hcP-degε(ORn) = O
(

log
(

n
≤log(1/ε)

))
. For this class of polynomials, we prove the following

(almost) tight result on the ε-error hyperplane covering probabilistic degree of the OR
function.

I Theorem 1.3 (hyperplane covering degree of ORn). For any any positive integer n and
ε ∈ (0, 1/3),

hcP-degε(ORn) = Ω

 log
(

n
≤log(1/ε)

)
log2

(
log
(

n
≤log(1/ε)

))
 .

It is open if this result can be extended to prove a tighter lower bound on the ε-error
probabilistic degree of the ORn function. The special class of hyperplane covering polynomials
for which Alon, Bar-Noy, Peleg and Linial [1] proved a similar bound is the class of hyperplane
covering polynomials where the linear forms are sums of variables (i.e., Li(z̄) =

∑
j∈Si zj

for some Si ⊆ [n]). Ideally, one would have liked to extend their lower bound result
for hyperplace covering polynomials where the linear forms are sums of variables to all
polynomials. Theorem 1.3, is a step in this direction, in that, it shows that their result can
be extended to a slightly larger class, the set of all hyperplane covering polynomials (modulo
polylogarithmic factors). We remark that though our lower bound works for a larger class of
polynomials, our proof technique is nevertheless inspired by their proof.

2 Upper bounds on probabilistic degree of OR

In this section, we describe the construction of a probabilistic polynomial which shows
that the hcP-degε(ORn) = O

(
log
(

n
≤log(1/ε)

))
. To begin with, we observe that the following

“trivial” hyperplane covering polynomial of degree n exactly computes ORn everywhere on
the Boolean hypercube:

POR(x) := 1−
n∏
i=1

1− 1
i

∑
j∈[n]

xj

 .

This is a polynomial which covers each Hamming slice of the hypercube with a different
hyperplane. We now recall the construction of Beigel, Reingold and Spielman [3] and
Tarui [14].

I Claim 2.1. For every non-negative integer `, there exists a distribution of linear forms
L` such that if the Hamming weight of x = (x1, . . . , xn) lies in the interval [2`, 2`+1], then
PrL∼L [L(x) = 1] = Ω (1).

Proof. L is defined as follows: pick a random set S ⊆ [n] by picking each element of [n]
independently with probability 1

2` and construct the linear polynomial

LS(x) :=
∑
i∈S

xi .
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For a non-zero input x = (x1, . . . , xn) such that the Hamming weight of x, denoted as |x|, is
in [2`, 2`+1], we have

Pr
S

[LS(x) = 1] = |x|
(

1
2`

)(
1− 1

2`

)|x|−1
[where 00 = 1]

= |x|2` exp (−O(1)) [∵ (1− a)b ≥ exp (−ab/1− a)]

≥ Ω(1) . J

In the above proof we could have set LS(x) =
∑
i∈S αixi where each αi ∈ ±1 u.a.r. and

independently. Clearly, even with the new definition PrS [LS(x) = 1] ≥ Ω(1). The idea
behind introducing the α’s is that even when

∑
i∈S xi > 1, it could be that

∑
i∈S αixi = 1.

However, this does not lead to improvements beyond possibly changing the constant hidden
in the Ω(·) notation.

The preceding claim is then used to construct ε-error probabilistic polynomials for ORn as
follows. Divide the set of one’s of the OR function in the Boolean hypercube, ie., {0, 1}n \{0̄},
into log n epochs [20, 21], [21, 22], . . . , [2logn−1, 2logn] where each epoch [2`, 2`+1] includes all
strings whose Hamming weight is in that range. For each such epoch [2`, 2`+1], sample
t := O(log(1/ε)) independent linear forms L(`)

i , i ∈ [t] from L` and consider the randomized
polynomial P`(x) := 1−

∏
i∈[t](1− L

(`)
i (x)). Clearly, for x in the epoch [2`, 2`+1], we have

Pr[P`(x) = 1] ≥ 1− ε. Now, the randomized polynomial

P (x) := 1−
∏

`∈[logn]

(1− P`(x)) = 1−
∏

`∈[logn]

∏
i∈[t]

(1− L(`)
i ) ,

satisfies for all x ∈ {0, 1}n\{0̄}, Pr[P (x) = 1] ≥ 1−ε. Also, clearly any such P satisfies P (0̄) =
0. This polynomial is a hyperplane covering polynomial of degree at most O(log n · log(1/ε)).

Now, suppose ε is very small, eg., ε = 2−n/10, then this construction is wasteful over
the trivial construction POR since O(log n · log(1/ε)) = O(n log n). The improved bound
of O(log

(
n

≤log(1/ε))
)
is obtained by “interpolating” between the trivial construction POR

and the above construction. Since we know that the P-degε(ORn) is at least log(1/ε),
one might as well exactly compute ORn for the first O(log(1/ε)) Hamming slices of the
hypercube and use the above randomized construction to cover the remaining slices using
only (log n− log log(1/ε)) epochs, [log(1/ε), 2 log(1/ε)], . . . , [2logn−1, 2logn]. Another way to
view this is that when we focus on the epoch [2`, 2`+1] and draw t = O(log(1/ε)) samples
from L`, the trivial polynomial

∏2`+1

i=2`

(
1− 1

i

∑
j∈[n] xj

)
has degree smaller than O(log(1/ε))

when 2` < log(1/ε) or ` < log log(1/ε).
Formally, we construct the polynomial (where P`(x) and L(`) are as defined above)

P (x) := 1−

 ∏
`∈[log log(1/ε),logn]

(1− P`(x))

× log(1/ε)∏
i=1

1− 1
i

∑
j∈[n]

xj


= 1−

 ∏
`∈[log log(1/ε),logn]

∏
i∈[t]

(
1− L(`)

i

)× log(1/ε)∏
i=1

1− 1
i

∑
j∈[n]

xj

 .

Clearly, P is a hyperplane covering polynomial. For an input x such that |x| ≤ log(1/ε),
P (x) = 1 as

∏log(1/ε)
i=1

(
1− 1

i

∑
j∈[n] xj

)
= 0. If |x| ∈ [2`, 2`+1] where ` ≥ log log(1/ε), then

from our previous argument we have Pr[Pl(x) = 1] ≥ 1− ε and hence Pr[P (x) = 1] ≥ 1− ε.
Hence, we have an ε-error probabilistic polynomial of degree O(log(1/ε)+(log n−log log(1/ε))·
log(1/ε)) which is at most O(log

(
n

≤log(1/ε)
)
).
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5:6 On the Probabilistic Degree of OR over the Reals

3 Lower bound on hyperplane covering degree of OR

We now turn to the lower bound. To prove a lower bound of dε := Ω̃(log
(

n
≤log(1/ε)

)
), by Yao’s

minmax theorem (duality arguments) it suffices (and is neccesary) to demonstrate a “hard”
distribution Dε under which it is hard to approximate the ORn function by any hyperplane
covering polynomial of degree at most dε.

Similar to previous works [10, 6], our choice of hard distribution is motivated by the
polynomial constructions in the upper bound. We first need the following definitions to
define the hard distribution Dε.

I Definition 3.1 ((0, 1)-restriction µp). The µ[n]
p distribution on {0, 1}n is obtained by setting

each variable xi independently to 1 with probability p and 0 otherwise.

I Definition 3.2 ((0, ∗)-restriction ρp). The ρ[n]
p distribution on {0, ∗}n is obtained by setting

each variable to 0 independently with probability (1−p) and leaving it unset with probability p.

If the number of variables is n, we will drop the superscript and refer to the corresponding
restrictions as just µp and ρp respectively.

It will be convenient to view the distribution µp as applying a (0, ∗) restriction ρ2p

followed by a {0, 1} restriction µ1/2 to the unset variables. In short, µ[n]
p = µ

ρ−1
2p (∗)

1/2 ◦ ρ[n]
2p .

I Definition 3.3 (hard distribution). Consider the distribution Dε on the input set {0, 1}n
defined as follows:

pick an integer ` ∈ Iε := [1, log n− log log(1/ε)] ∩ Z uniformly at random.
pick x ∈ {0, 1}n according to µ1/2` , i.e., for each i ∈ [n], independently sets xi ← 1 with
probability 1/2` and 0 otherwise.

The hard distribution Dε is a convex combination of the distributions µ1/2` for ` ∈ Iε. In
other words, Dε := 1

|Iε|
∑
`∈Iε µ1/2` . Each of the distributions µ1/2` roughly correspond to the

epochs used in the upper-bound construction.
Theorem 1.3 follows from the following “distributional” version of the theorem.

I Theorem 3.4. Let Dε be the hard distribution defined in Definition 3.3 and P = 1 −∏
i∈[t] (1− Li) be a hyperplane covering polynomial of degree t such that

Pr
x∼Dε

[P (x) 6= ORn(x)] ≤ ε

then, t ≥ Ω
(

log ( n
≤log(1/ε))

log2
(

log ( n
≤log(1/ε))

)).
We now introduce some notations that will be useful. For a set S, |S| denotes the

cardinality of S, and for an input x ∈ 0, 1n, |x| denotes the Hamming weight of x.

I Definition 3.5 (support of a linear form). For a linear form L(x1, . . . , xn) = a1x1 + a2x2 +
· · ·+ anxn, we define the support of L, denoted as supp(L), to be the set of non-zero ai’s,
i.e., |{i ∈ [n] | ai 6= 0}|.

The proof of Theorem 3.4 requires the following variant of the Schwartz-Zippel Lemma
(due to Alon and Füredi [2]) and Littlewood-Offord-Erdös’ anti-concentration lemma of linear
forms over the reals, which we state below.
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I Lemma 3.6 ([2, Theorem 5]). Let P ∈ R[x1, . . . , xn] be a polynomial of degree at most d
polynomial over R computing a non-zero function over {0, 1}n. Then for x chosen uniformly
from {0, 1}n,

Pr
x∈{0,1}n

[P (x) 6= 0] ≥ 1
2d .

I Lemma 3.7 (anti-concentration of linear forms over R [8, 5]). Let L(x1, . . . , xk) =
∑
aixi

be a linear form which is supported on exactly k variables (i.e., ai 6= 0, i = 1, . . . , k. Then,
for all a ∈ R and x chosen uniformly from {0, 1}n,

Pr
x∈{0,1}n

[Li(x) = a] ≤ 1√
k
.

The rest of this section is devoted to proving Theorem 3.4. We begin with a proof outline
in Section 3.1 followed by the proof in Section 3.2.

3.1 Proof outline
We would like to show that hyperplane covering polynomial P that approximates ORn w.r.t
distribution Dε (as in Theorem 3.4) must have large degree. Let L denote the set of linear
forms that appear in P , i.e., L := {Li | i ∈ [t]}.

Let us see how P behaves on the distribution µ1/2` or equivalently µ1/2 ◦ ρ1/2`−1 . Let us
see what happens to the linear forms {Li, i ∈ [t]} when the restriction ρ := ρ1/2`−1 is first
applied. We first consider two extreme cases.
Very few linear forms survive: Suppose all but log(1/2ε) linear forms trivialize on the re-

striction ρ (i.e. the corresponding linear form Li|ρ becomes 0). Then, (1 − P )|ρ is a
polynomial of degree at most log(1/2ε) computing a non-zero function (since 1−P (0̄) = 1).
Hence, by Lemma 3.6, it is not equal to 0 with probability at least 2ε. This implies that
the polynomial P errs with probability at least 2ε on the distribution µ1/2` .

All linear forms that survive have large support: Suppose all the linear forms that survive
post restriction ρ have large support, say 4t2. Then, by the anti-concentration of linear
forms over reals (Lemma 3.7), we have that each linear form is 1 with probability at most
1/
√

4t2 = 1/2t. Since there are most t linear forms, the probability that any of them is 1 is
at most t/2t = 1/2. Thus, P errs with probability 1/2 on the distribution µ1/2` .
Note that the actual situation for each distribution µ1/2` will most likely be a combination

of the above two. We can then show that a combination of the above two arguments will
still work if the surviving linear forms have the following nice structure. Let Lρ be the set
of surviving linear forms subsequent to the restiction ρ, i.e., Lρ := {Li|ρ | i ∈ [t], Li|ρ 6= 0}.
Suppose Lρ can be partitioned into 2 sets L′ρ ∪̇ L′′ρ such that the number of linear forms in
L′ρ is small (less than O(log(1/ε))) and each of the linear forms in L′′ρ have large support
even after subtracting ∪L∈L′ρ supp(L) from their support. How does one then show that a
constant faction of ρ’s satisfy that the corresponding linear forms Lρ have this nice structure?
For this, we draw inspiration from the proof of Alon, Bar-Noy, Linial and Peleg [1], where
they prove similar bounds for hyperplane covering polynomials supported entirely on linear
forms arising as sums of variables. They construct an appropriate potential function that
guarantees a similar property in their lower-bound argument.

We use a slightly different potential function, which has the following nice property.
If the total number of linear forms is t, then E` [Φ`(L)] = O(t/(log n − log log(1/ε))) and
furthermore, whenever Φ`(L) is small then the corresponding set L` of surviving linear forms
post restriction ρ1/2`−1 can be partitioned as indicated above. This shows that for most `, P
errs on computing the ORn function unless t is large.
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3.2 Proof of Theorem 3.4
We now turn to defining the potential function Φ`(L), indicated in the proof outline.

I Definition 3.8 (potential function). The weight of a linear form L, denoted by w(L), is
defined as follows:

w(L) :=
{

0 if supp(L) = ∅,
1

log2 (2| supp(L)|) otherwise.

Given a collection L = {L1, . . . , Lt} of linear forms and ` a positive integer, the potential
function Φ`(L) is defined as follows

Φ`(L) :=
t∑
i=1

E
ρ1/2`−1

[
w
(
Li|ρ1/2`−1

)]
,

where ρ1/2`−1 is a (0, ∗)-restriction as defined in Definition 3.2.

The potential function Φ`(L) satisfies the following two properties, given by Proposi-
tions 3.9 and 3.10.

I Proposition 3.9. There exists a universal constant C such that the following holds. Let
L = {L1, . . . , Lt} be any collection of t linear forms, then

E
`∈Iε

[Φ`(L)] ≤ Ct

|Iε|
.

I Proposition 3.10 (partition of linear forms). Let L = {L1, . . . , Lt} be a collection of t
non-zero linear forms and K,R be two positive integers such that

t∑
i=1

w(Li) <
R

log2(2RK)
.

Then, there exists a partition L = L′ ∪̇ L′′ of the set of linear forms L such that
|L′| ≤ R,
For all L ∈ L′′, | supp(L) \ ∪L′∈L′ supp(L′)| ≥ K.

Before proving these two propositions, we first show how they imply Theorem 3.4.

Proof of Theorem 3.4. Let

t := log (1/8ε) · (log n− log log(1/ε))
2C log2

(
1/C2 · log4 (1/8ε) · (log n− log log(1/ε))3

) ,

where C is the universal constant in Proposition 3.9. Clearly, t = Ω
(

log ( n
≤log(1/ε))

log2
(

log ( n
≤log(1/ε))

)).
Let P = 1 −

∏
i∈[t](1 − Li) be any hyperplane covering polynomial of degree t. To prove

the theorem, it suffices if we show that Prx∼Dε [P (x) 6= ORn(x)] > ε. To this end, we first
note that Prx∼Dε [x = 0̄] < ε (since for all ` ∈ Iε, we have ` ≤ log n− log log(1/ε)). Hence, to
prove the theorem it suffices to show that Prx∼Dε [P (x) 6= 1] ≥ 2ε.

Since Dε = 1
|Iε|
∑
`∈Iε µ1/2` and µ

[n]
p = µ1/2 ◦ ρ

[n]
2p , this is equivalent to showing

E
`∈Iε

[
E

ρ∼ρ1/2`−1

[
Pr

x∼µ1/2
[P |ρ (x) 6= 1]

]]
≥ 2ε . (1)
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To this end, we first apply Proposition 3.9 to the set L of t linear forms in the polynomial
P to obtain that

E
`∈Iε

 E
ρ∼ρ1/2`−1

∑
i∈[t]

w(Li|ρ)

 = E
`∈Iε

[Φ`(L)] ≤ Ct

|Iε|
.

Applying Markov to the above inequality, we have

Pr
`, ρ

∑
i∈[t]

w(Li|ρ) ≤
2Ct
|Iε|

 ≥ 1
2 .

We call an(`, ρ) pair good if the above event holds, i.e.,
∑t
i=1 w(Li|ρ) ≤ 2Ct/|Iε|. Thus,

Pr
`, ρ

[(`, ρ) is good ] ≥ 1/2 . (2)

Now given a good (`, ρ)-pair, let Lρ be the set of surviving linear forms subsequent to the
restiction ρ, i.e., Lρ := {Li|ρ | i ∈ [t], Li|ρ 6= 0}. We thus have

∑
L∈Lρ w(L) ≤ 2Ct/|Iε|. Let

K := 4t2 and R := log(1/8ε). It can be checked that for this choice of parameters we have
2Ct/|Iε| < R/log2(2RK). We can now apply Proposition 3.10 to obtain a partition Lρ = L′ρ ∪̇L′′ρ
such that
|L′ρ| ≤ R = log(1/8ε),
for all L ∈ L′′ρ , we have | supp(L) \ ∪L′∈L′ρ supp(L′)| ≥ K = 4t2.

Consider the polynomial P |ρ = 1−
∏
i∈[t](1− Li|ρ) = 1−

∏
L∈L|ρ(1− L) subsequent to the

restriction ρ. We will rewrite this polynomial as P |ρ = 1−Q′ρ ·Q′′ρ where the polynomials
Q′ρ and Q′′ρ are defined as follows (using the sets L′ρ and L′′ρ respectively).

Q′ρ(x) :=
∏
L∈L′ρ

(1− L(x)),

Q′′ρ(x) :=
∏
L∈L′′ρ

(1− L(x)).

Clearly, P |ρ = 1−Q′ρ ·Q′′ρ .
Since |L′ρ| ≤ log(1/8ε), we have that the degree of Q′ρ is at most log(1/8ε). Furthermore

Q′ρ(x) 6≡ 0 (since Q′ρ(0̄) = 1). Thus applying Lemma 3.6, we have

Pr
x∼µ1/2

[
Q′ρ(x) 6= 0

]
≥ 8ε.

Consider any setting of variables in ∪L∈L′ρ supp(L) such that Q′ρ(x) 6= 0. Even conditioned
on setting all these variables, we know that each L ∈ L′′ρ still has surviving support of size at
least 4t2. Thus, by Lemma 3.7, we have for each L ∈ L′′ρ ,

Pr
x∼µ1/2

[
L(x) = 1 | Q′ρ(x) 6= 0

]
≤ 1√

4t2
= 1

2t .

By a union bound, we have

Pr
x∼µ1/2

[
Q′′ρ(x) = 0 | Q′ρ(x) 6= 0

]
= Pr
x∼µ1/2

[
∃L ∈ L′′ρ , L(x) = 1 | Q′ρ(x) 6= 0

]
≤ t

2t = 1
2 .

Hence,

Pr
x∼µ1/2

[P |ρ(x) 6= 1] = Pr
[
Q′ρ(x) 6= 0

]
· Pr

[
Q′′ρ(x) = 0 | Q′ρ(x) 6= 0

]
≥ 8ε · 1

2 = 4ε.

FSTTCS 2018
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Finally averaging over all (`, ρ) we have from above and (2)

Pr
x∼Dε

[P (x) 6= 1] ≥ Pr
`,ρ

[(`, ρ) is good ] · Pr [P |ρ(x) 6= 1 | (`, ρ) is good ] ≥ 1
2 · 4ε = 2ε.

This proves (1) and thus completes the proof of Theorem 3.4. J

We are now left with the proofs of Propositions 3.9 and 3.10. We begin with the proof of
Proposition 3.10.

Proof of Proposition 3.10. Consider the following algorithm to obtain the partition L =
L′ ∪̇ L′′.
1. Initialize L′ ← ∅ and L′′ ← L.
2. While there exists an L ∈ L′′ such that | supp(L) \ ∪L′∈L′ supp(L′)| ≤ K,

Move such an L from L′′ to L′ (i.e., L′ ← L′ ∪ {L} and L′′ ← L′′ \ {L}).
Clearly, when the algorithm terminates, we have | supp(L) \ supp(L′)| ≥ K for all L ∈ L′′.

We now argue that |L′| ≤ R. Each iteration of the while loop adds a linear form L to
L′ with at most K new variables. If the while loop is performed for T iterations, then the
support of each L added to L′ is at most TK. We now argue that T < R. If not, then after
exactly R iterations of the while loop, we have that∑

L∈L
w(L) ≥

∑
L∈L′

w(L) ≥ R

log2(2RK)
,

contradicting the hypothesis of the proposition. Hence T < R. The size of L′ is the number
of iterations of the while loop and is thus bounded above by R. This completes the proof of
the proposition. J

Proof of Proposition 3.9.

E
`∈Iε

[Φ`(L)] = E
`∈Iε

 E
ρ∼ρ1/2`−1

∑
i∈[t]

w(Li|ρ)


= 1
|Iε|

∑
i∈[t]

∑
`∈Iε

E
ρ

[w(Li|ρ)]

≤ 1
|Iε|

∑
i∈[t]


∑

`>log | supp(Li)|
E
ρ

[w(Li|ρ)]︸ ︷︷ ︸
T1

+
∑

`≤log | supp(Li)|
E
ρ

[w(Li|ρ)]︸ ︷︷ ︸
T2

 .

T1 and T2 are bound using Claim 3.11 and Claim 3.12 respectively. Hence,

E
`∈Iε

[Φ`(L)] ≤ 1
|Iε|

t∑
i=1

(
2 + π2

6 + e

e− 1

)
≤ t

|Iε|
·
(

3 + π2

6

)
. J

I Claim 3.11. Let L be a linear form such that | supp(L)| = k. Then∑
`:`>log k

E
ρ∼ρ1/2`−1

[w(L|ρ)] ≤ 2.
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Proof.∑
`:`>log k

E
ρ∼ρ1/2`−1

[w(L|ρ)]

≤
∑

`:`>log k

(
Pr
ρ

[| supp(L|ρ)| = 0] · 0 + Pr
ρ

[| supp(L|ρ)| ≥ 1] · 1
)

≤
∑

`:`>log k

(
1−

(
1− 1

2`−1

)k)

≤
∑

`:`>log k

k

2`−1 [∵ (1− x)n ≥ 1− nx, ∀ 0 < x ≤ 1]

≤ 2. J

I Claim 3.12. Let L be a linear form such that | supp(L)| = k. Then

∑
`≤log k

E
ρ∼ρ1/2`−1

[w(L|ρ)] ≤
π2

6 + e

e− 1

Proof.

E
ρ

[w(L|ρ)] ≤ Pr
ρ

[
| supp(L|ρ)| ≥

k

2`

]
1

log2 (k/2`)
+ Pr

ρ

[
| supp(L|ρ)| ≤

1
2 ·

k

2`−1

]
≤ 1

(log (k)− `)2 + exp
(
−1

4 ·
k

2`−1

)
[by chernoff bound]

∑
`≤log k

E
ρ∼R`

[w(L|ρ)] ≤
∑

`≤log (k)

1
(log (k)− `)2 +

∑
`≤log (k)

exp
(
− k

2`+1

)

≤ π2

6 + e

e− 1 . J
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We study the class of non-commutative Unambiguous circuits or Unique-Parse-Tree (UPT) cir-
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by Lagarde, Malod and Perifel [18] and Lagarde, Limaye and Srinivasan [17]) and give the fol-
lowing constructions:

An explicit hitting set of quasipolynomial size for UPT circuits,
An explicit hitting set of quasipolynomial size for FewPT circuits (circuits with constantly
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An explicit hitting set of polynomial size for UPT circuits (of known parse tree shape), when
a parameter of preimage-width is bounded by a constant.

The above three results are extensions of the results of [2], [10] and [9] to the setting of UPT
circuits, and hence also generalize their results in the commutative world from read-once oblivious
algebraic branching programs (ROABPs) to UPT-set-multilinear circuits.

The main idea is to study shufflings of non-commutative polynomials, which can then be used
to prove suitable depth reduction results for UPT circuits and thereby allow a careful translation
of the ideas in [2], [10] and [9].
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6:2 Quasipolynomial Hitting Sets for Circuits with Restricted Parse Trees

1 Introduction

The field of algebraic complexity deals with classifying multivariate polynomials based on
their hardness. Typically, the complexity of a polynomial is measured by the size of the
smallest circuit computing it (an arithmetic circuit is a directed acyclic graph made up of
internal nodes that are labeled with + or × and leaves labelled with variables or constants
from the field; size of the circuit is the number of nodes). The central question in this field is
to construct an explicit family of polynomials ({Permn} is the top candidate) that requires
large arithmetic circuits to compute it. This is also called the “VP vs VNP” question (named
after Valiant [26]), and thought of as an algebraic analogue of the “P vs NP” question.

So far, the best lower bound we have for general arithmetic circuits computing an n-
variate degree d polynomial is a barely super-linear Ω(n log d) lower bound by Baur and
Strassen [6]. Recent research has focused on proving lower bounds for restricted classes of
circuits, either by bounding the depth of such circuits or by focusing on other syntactic
restrictions. One such syntactic restriction is to consider non-commutative circuits, where we
assume that the underlying variables x1, . . . , xn do not commute. In the non-commutative
model, there is an inherent order in which elements are multiplied and this adds restrictions
on the way monomials can be computed (xy 6= yx here and hence x2 + 2xy+ y2 6= (x+ y)2 =
x2 + xy + yx+ y2). It is therefore natural to expect that it should be easier to prove lower
bounds in this model.

Nisan [20] introduced the non-commutative model, specifically the non-commutative
algebraic branching programs (ABP). In his seminal paper, he showed exponential lower
bounds against non-commutative ABPs for the non-commutative versions of the determinant
and permanent polynomials (among others). In fact, using his technique, one could even
reconstruct the smallest non-commutative ABP given just oracle access to that polynomial
(cf. [16])! Although we have exponential lower bounds for non-commutative ABPs, we do
not have any non-trivial lower bounds for non-commutative circuits. Hrubeš, Wigderson and
Yehudayoff [12] presented an approach via sum-of-squares lower bounds but we do not have
any non-trivial lower bounds for the class of general non-commutative circuits.

Limaye, Malod and Srinivasan [19] extended Nisan’s lower bound to non-commutative
skew circuits, which are circuits where every multiplication gate has at most one child that is a
non-leaf. Lagarde, Malod and Perifel [18] initiated the study of non-commutative unambiguous
circuits, or Unique Parse Tree (UPT) circuits. These circuits and their generalizations are
the main models of study in this paper.

Arvind and Raja [5] also studied lower bounds for various subclasses of commutative
set-multilinear circuits. Some of the models they studied include analogues of UPT and
FewPT circuits. They proved lower bounds for UPT and FewPT set-multilinear circuits, and
also for other subclasses of set-multilinear circuits called narrow set-multilinear circuits and
interval set-multilinear circuits, the latter of which assumes the sum-of-squares conjecture of
Hrubeš, Wigderson and Yehudayoff [12].

1.1 The model of study
A parse tree of a circuit is obtained by starting at the root, and at every + gate choosing exactly
one child, and at every × gate choosing all its children (formally defined in Theorem 2.1).
Informally, a parse tree of a circuit is basically a certificate of computation of a monomial
in a circuit. Lagarde, Malod and Perifel [18] introduced a subclass of non-commutative
circuits called Unique Parse Tree (UPT) circuits or unambiguous circuits where all parse
trees of the circuit have the same shape (formally defined in Theorem 2.2). The class of
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non-commutative UPT circuits subsumes the class of non-commutative ABPs as any ABP
can be expressed as a left-skew circuit. A related model of set-depth-∆ formulas was studied
by Agrawal, Saha and Saxena [3] that is a subclass of UPT circuits where the underlying
parse trees are extremely regular3.

Lagarde, Malod and Perifel [18] extended the techniques of Nisan [20] to give exponential
lower bounds for UPT circuits. Subsequently, Lagarde, Limaye and Srinivasan [17] extended
the lower bounds to the class of circuits with parse trees of not-too-many shapes (at most
2o(n) shapes).

1.2 Polynomial identity testing

A Polynomial Identity Test (PIT) is an algorithm that, given a circuit as input, checks if
the circuit is computing the zero polynomial or not. The standard Ore-DeMillo-Lipton-
Schwartz-Zippel lemma [22, 7, 24, 28] provides a simple randomized algorithm but the goal
is to construct an efficient deterministic PIT. A stronger test is what is called a black-box
PIT where we are only provided evaluation access to the circuit. Hence, a black-box PIT is
essentially equivalent to constructing a hitting set, i.e., a set of points (or matrices, in the
non-commutative case) H such that every non-zero polynomial from the class of interest
is guaranteed to evaluate to a nonzero value on some element a ∈ H. PITs that use the
structure of the circuit are called white-box PITs.

The task of constructing efficient PITs is intimately connected to the task of proving
lower bounds [11, 15, 1]. Once we have a lower bound for a class C, it is natural to ask
if we can also construct efficient PITs for that class. Raz and Shpilka [23] gave the first
deterministic polynomial time white-box PIT for the class of non-commutative ABPs. Forbes
and Shpilka [8] gave a quasipolynomial (nO(logn)) size hitting set for non-commutative ABPs.
This was achieved by studying a natural commutative analogue of non-commutative ABPs,
and this was the class of Read-Once Oblivious Algebraic Branching Programs (ROABPs)
where the variables are read in a “known order”.

The class of ROABPs is interesting in its own right owing to the connection with the
“RL vs L” question. In fact, much of the hitting set constructions for ROABPs has been
inspired by Nisan’s [21] pseudorandom generator for RL (which has seed length O(log2 n)).
As mentioned earlier, Forbes and Shpilka gave a hitting set of size nO(logn) for polynomial
sized ROABPs when the order in which variables are read was known. Agrawal, Gurjar,
Korwar and Saxena [2] presented a different hitting set for the class of commutative ROABPs
that did not need the knowledge of the order in which the variables were read. Subsequently,
Gurjar, Korwar, Saxena and Thierauf [10] studied polynomials that can be computed as a
sum of constantly many ROABPs (of possibly different orders) and presented a polynomial
time white-box PIT, and also a quasipolynomial time black-box PIT for this class.

Lagarde, Malod and Perifel [18], besides presenting lower bounds for non-commutative
UPT circuits, also gave a polynomial time white-box PIT for this class. This was extended by
Lagarde, Limaye and Srinivasan [17] to a white-box algorithm for non-commutative circuits
with constantly many parse tree shapes (analogous to the result of [10]). The question of
constructing black-box PITs was left open by them, and we answer this in our paper.

3 the formula is levelled, and all nodes at a level have the same fan-in
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1.3 Our results
Polynomial Identity Testing
Our main results are hitting sets for the class of polynomials computed by UPT circuits and
related classes.

I Theorem 1.1 (Hitting sets for UPT circuits). There is an explicit hitting set Hd,n,s of
at most (snd)O(log d) size for the class of degree d n-variate homogeneous non-commutative
polynomials in F 〈x1, . . . , xn〉 that are computed by UPT circuits of size at most s.

This result builds on the technique of basis isolating weight assignments introduced by
[2] for constructing hitting sets for ROABPs. Furthermore, we can also extend the hitting
set to the class of non-commutative circuits that have few shapes (analogous to [10]’s hitting
set for sums of few ROABPs).

I Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting
set Hd,n,s,k of size at most (s2knd)O(log d) for the class of n-variate degree d homogeneous
non-commutative polynomials in F 〈x1, . . . , xn〉 that are computed by non-commutative circuits
of size at most s consisting of parse trees of at most k shapes.

Both the above theorems are fully black-box in the sense that it is not required to
know the underlying shape(s). For the case of non-commutative ABPs (and more generally,
ROABPs in a known order), Gurjar, Korwar and Saxena [9] presented a more efficient hitting
set when the width of the ABP is small. For UPT circuits, there is a natural notion of
preimage-width of a UPT circuit (formally defined in Theorem 2.3) that corresponds to the
notion of width of an ABP. We show an analogue of the hitting set of Gurjar, Korwar and
Saxena for the class of UPT circuits of small preimage-width if the underlying shape of the
parse trees is known.

I Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the
class of n-variate degree d non-commutative polynomials that are computable by UPT circuits
of preimage-width at most w and underlying parse-tree shape as T . Over any field of zero
or large characteristic, there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for
Cn,d,T,w.

These hitting sets also translate to the natural commutative analogues of UPT set-
multilinear circuits etc. (formally defined in Theorem 5.1).

Structural results
If f is a non-commutative polynomial of degree d and if σ ∈ Sd is a permutation on d letters,
we define the shuffling of f by σ (denoted by ∆σ(f)) as the natural operation of permuting
each word of f according to σ.

The three PIT statements stated above begin with the following depth reduction statement
about UPT circuits.

I Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial
that is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such
that ∆σ(f) can be computed by a UPT circuit of O(log d) depth and preimage-width O(w2).

The above theorem implies that ∆σ(f) is computable by an ABP of quasipolynomial size.
We also show that this blow-up of quasipolynomial size is tight.



R. Saptharishi and A. Tengse 6:5

I Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit
n-variate degree d non-commutative polynomial f that is computable by UPT circuits of
preimage-width w = poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires
non-commutative ABPs of size (nd)Ω(lognd) to compute it.

We also extend the lower bound of [18] to give a polynomial computed by a skew circuit
that requires exponential sized UPT circuits under any shuffling. Details can be found in the
full version.

1.4 Proof ideas
As mentioned, the starting point of all these results is the depth reduction. From a result
of Nisan [20], the palindrome polynomial Pald is known to require ABPs of size 2Ω(d) even
though it can be computed by a polynomial sized UPT circuit. Therefore, Pald cannot be
computed by a circuit of depth o(d/ log d). The key insight here is that even though Pald
cannot be computed by small depth non-commutative circuits, a shuffling of the palindrome
is ∑

w1,...,wd∈[n]

xw1xw1xw2xw2 · · ·xwdxwd =
d∏
i=1

(x1x1 + · · ·+ xnxn) ,

which is of course computable by an O(log d) depth UPT formula even. Hence we attempt
to reduce the depth under a suitable shuffling.

In order to establish the depth reduction (Theorem 1.4) we follow the strategy of Valiant,
Skyum, Berkowitz and Rackoff [27] and Allender, Jiao, Mahajan and Vinay [4] but make use
of the UPT structure (work with different frontier nodes and gate quotients) based on the
underlying shape of the parse trees. It was pointed out to us that the key ideas in our proof
of depth reduction were used by Arvind and Raja ([5]) for a commutative analogue of UPT
circuits.

This depth reduction immediately yields that there is a quasipolynomial sized ABP
computing a shuffling of f . We show that this blow-up is tight (Theorem 1.5) by essentially
following the proof of Hrubeš and Yehudayoff [13] to separate monotone ABPs and monotone
circuits in the commutative world.

In order to obtain hitting sets for UPT circuits, one could potentially just use the fact
that there is a quasipolynomial sized ABP computing a shuffling of f and just use the
known hitting sets for non-commutative ABPs [8] to obtain a hitting set of poly(ndw)O(log2 d).
However, we directly work with the UPT circuit and lift the technique of basis isolating
weight assignments of Agrawal, Gurjar, Korwar and Saxena [2] to this more general setting
to obtain Theorem 1.1. Theorem 1.3 is an easy generalization of the ideas of Gurjar, Korwar
and Saxena [9] once we observe that the depth reduction keeps the preimage-width small.

Theorem 1.2 essentially follows the same ideas of Gurjar, Korwar, Saxena and Thierauf [10].
The techniques of [10] are general enough that once a circuit class has a characterizing set of
dependencies and a basis isolating weight assignment, there is a natural method to lift the
techniques to work with the sum of few elements from this class. [10] use this for ROABPs
and we use this for UPT circuits.

To summarize, once we obtain the depth reduction, much of the results in this paper is
a careful translation of prior work of [13], [2], [10], [9] to the setting of UPT (or FewPT)
circuits. Consequently, this also generalizes the hitting sets of [2, 10, 9] from ROABPs to
UPT (or FewPT) set-multilinear circuits. Such a generalization was unknown prior to this
work.
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2 Preliminaries

2.1 Notation
We use F 〈x1, . . . , xn〉 to refer to the ring of polynomials in non-commuting variables
{x1, . . . , xn}. For a parameter d, we use F 〈x1, . . . , xn〉deg=d to refer to the set of poly-
nomials in F 〈x1, . . . , xn〉 that are homogeneous and of degree d. Similarly, the set of
polynomials of degree at most d will be denoted by F 〈x1, . . . , xn〉deg≤d.
We use boldface letters x and y to denote sets of variables (the number of variables would
be clear from context). We shall also use [d] to refer to the set {1, 2, . . . , d}.
The paper will sometimes shift between the commutative and the non-commutative
domains. We use x whenever we are talking about non-commutative variables, and y, z
for variables in the commutative domain.

2.2 Basic definitions
UPT and FewPT circuits
I Definition 2.1 (Parse trees). A parse tree T of a circuit C is a tree obtained as follows:

the root of C is the root of T ,
if v ∈ T is a × gate, then all the children of v in C are the children of v in T in the same
order,
if v ∈ T is a + gate, then exactly one child of v in C is a child of v in T .

Gates are replicated to ensure that T is a tree. The value of the parse tree T , denoted by
[T ], is just the product of the leaf labels in T .

Intuitively, a parse tree is a certificate that a monomial was produced in the computation
of C (though it could potentially be canceled by other parse trees computing the same
monomial). Therefore, if f is the polynomial computed by C, then

f =
∑

T is a parse tree
[T ].

I Definition 2.2. (UPT and FewPT circuits) A circuit C computing a homogeneous poly-
nomial is said to be a Unique Parse Tree (UPT) circuit if all parse trees of C have the same
shape (that is, they are identical except perhaps for the gate names).

A circuit C that computes a homogeneous polynomial is said to be a FewPT(k) circuit if
the parse trees of C have at most k distinct shapes.

I Definition 2.3 (Preimage-width). Suppose C is a UPT circuit and say T is the shape of
the underlying parse trees. For a node τ ∈ T and a gate g ∈ C, we shall say that g is a
preimage of τ , denoted by g ∼ τ , if and only if there is some parse tree T ′ of C where the
gate g appears in position τ .

The preimage-width of a UPT circuit C is the largest size of preimages of any node τ ∈ T .
That is,

preimage-width(C) = max
τ∈T
|{g ∈ C : g ∼ τ}| .

It is clear that if C is a UPT circuit of preimage-width w computing a homogeneous
degree d polynomial, then the size of C is at most dw. The preimage-width of a UPT circuit
is a more useful measure to study than the size of the circuit. A simple concrete example
of this is that the standard conversion of homogeneous ABPs to homogeneous circuits in
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fact yields UPT circuits. Furthermore, the width of the ABP is directly related to the
preimage-width of the resulting UPT circuit.

I Observation 2.4. If f is computable by a width w homogeneous algebraic branching
program, then f can be equivalently computed by UPT circuits of preimage-width w2.

×p-products
I Definition 2.5 (×p-products). For any d1, d2 ≥ 0 and p satisfying 0 ≤ p ≤ d2, define a
map ×p : F 〈x1, . . . , xn〉deg=d1

×F 〈x1, . . . , xn〉deg=d2
→ F 〈x1, . . . , xn〉deg=d1+d2

as the unique
bilinear that satisfies

xw1 · · ·xwd1
×p xv1 · · ·xvd2

= xv1 · · ·xvpxw1 · · ·xwd1
xvp+1 · · ·xvd2

.

For instance, the usual multiplication (or concatenation) operation is just ×0.

Shuffling of a polynomial
I Definition 2.6 (Shuffling of a non-commutative polynomial). Let Pd(x1, . . . , xn) be a ho-
mogeneous degree d non-commutative polynomial from F 〈x1, . . . , xn〉deg=d. Given any
permutation σ ∈ Sd over d-letters, we can define the shuffling of Pd via σ as the unique linear
map ∆σ : F 〈x1, . . . , xn〉deg=d → F 〈x1, . . . , xn〉deg=d that is obtained by linearly extending

∆σ(xw1 · · ·xwd) = xwσ(1) · · ·xwσ(d) .

2.3 Basic lemmas
Canonical UPT circuits, and types of gates
We shall say that a UPT circuit C with underlying parse tree shape T is canonical if for
every gate g ∈ C there is some node τ ∈ T such that every parse tree of C involving g has g
only in position τ . That is, every gate of the circuit has a unique type associated with it.

I Lemma 2.7 ([18]). Suppose if f ∈ F 〈x1, . . . , xn〉 is a homogeneous, degree d, non-
commutative polynomial computed by a non-commutative UPT circuit of preimage-width w.
Then, f can be equivalently computed by a canonical UPT circuit of preimage-width w as
well.

For a canonical UPT circuit where the parse trees have shape T , we shall say that g has
type τ if τ ∈ T is the unique node in T such that g ∼ τ .

Fix a τ ∈ T and let i be the number of leaves of the subtree rooted at τ , and let p be the
number of leaves to the left of τ in the inorder traversal of T . We shall then say that τ (or a
gate g ∈ C of type τ) has position-type (i, p). The following lemma allows us to write the
polynomial computed by the circuit as a small sum of ×p-products.

I Lemma 2.8 ([18]). Let f be a polynomial computed by a canonical UPT circuit C of
preimage-width w and say T is the shape of the underlying parse trees. If τ ∈ T with
position-type (i, p), then we can write f as

f(x) =
w∑
r=1

gr(x)×p hr(x),

where deg gr = i and deg hr = deg(f)− i for all r = 1, . . . , w.
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3 Depth reduction for UPT circuits

This section shall address Theorem 1.4, which we recall below.

I Theorem 1.4 (Depth reduction for UPT circuits). Let f be an n-variate degree d polynomial
that is computable by a UPT circuit of preimage-width w. Then, there is some σ ∈ Sd such
that ∆σ(f) can be computed by a UPT circuit of O(log d) depth and preimage-width O(w2).

It was pointed out to us that a similar depth reduction was also proved by Arvind and
Raja [5]. They showed that a commutative UPT set-multilinear circuit can be depth-reduced
to a corresponding quasipolynomial sized O(log d) depth UPT set-multilinar formula via
Hyafil’s [14] depth reduction. Using techniques similar to [27], one can directly obtain a
polynomial sized UPT circuit of depth O(log d). Though this can be inferred from the results
in [5], we state and prove it in the form needed for the non-commutative setting.

3.1 UPT ⊗-circuits

To prove the depth reduction, we will move to an intermediate model of UPT ⊗-circuits.

I Definition 3.1 (UPT ⊗-circuits). The class of UPT ⊗-circuits is a generalization of
homogeneous non-commutative circuits in that the internal gates are + gates and ×p gates
instead of the usual + and × gates. We shall also say that the circuit is semi-unbounded if
all ×p gates have fan-in bounded by 2 (with no restriction on + gates).

A parse tree for an ⊗-circuit is similar to parse trees in a general non-commutative circuit
but the internal nodes of the parse tree are labelled by + and ×p (with the p specified at
each gate).

We shall say that an ⊗-circuit C is UPT if every parse tree is of the same shape, i.e. two
parse trees in C can differ only in the gate names.

To prove Theorem 1.4, we begin by depth reducing the circuit to get an ⊗-circuit computing
f of O(log d) depth. We then convert that to a UPT circuit computing a shuffling of f .

I Lemma 3.2 (Depth reducing to ⊗-circuits). Let f ∈ F 〈x1, . . . , xn〉 be a homogeneous degree
d polynomial that is computable by a UPT circuit of size s. Then, f can equivalently be
computed by a semi-unbounded UPT ⊗-circuit of size O(s2) and depth O(log d).

The rough sketch is to follow a similar process as in [27] by defining a suitable notion of
a gate quotient [u : v] for this setting. The set of frontier nodes is different from the previous
depth reduction results but Theorem 2.8 allows us to essentially follow the same strategy to
obtain the above depth-reduced UPT circuit.

Proof. Let C be the UPT circuit computing f(x1, . . . , xn) and say T is the shape of the
parse trees of C. For any node τ ∈ T , let Fτ be the set of all gates in C whose position in T
is τ . For two gates u, v ∈ C, we shall say that u � v if the place of u in T is an ancestor of
the place of v in T . We shall abuse notation and use u � τ to mean that u’s position in T is
an ancestor of τ ∈ T . For a gate u ∈ C, let [u] refer to the polynomial computed at that
gate. Similar to [27, 4], we define inductively the following notion of a gate quotient for any
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pair of gates u, v ∈ C:

[u : v] =



0 if u � v,

1 if u = v,

[u1 : v] + [u2 : v] if u = u1 + u2,

[u1 : v] · [u2] if u = u1 × u2 and u1 � v,
[u1] · [u2 : v] if u = u1 × u2 and u2 � v.

I Claim 3.3. For any u ∈ C, if τ ∈ T such that u � τ , then

[u] =
∑
w∈C
w∼τ

[w]×p [u : w] (3.1)

for a suitable p depending just on τ and the type of u. Furthermore, suppose u, v ∈ C with v
being a multiplication gate and if τ ∈ T such that u � τ � v then

[u : v] =
∑
w∈C
w∼τ

[w : v]×p [u : w]. (3.2)

for a suitable p depending just on τ and the type of u and v.

We’ll defer this proof to later and first finish the proof of Theorem 3.2. With (3.1) and (3.2),
we can construct the ⊗-circuit C ′ for f just as in [27, 4]. The circuit C ′ would have gates
computing each [u] and [u : v] for nodes u, v ∈ C with u � v and v being a multiplication
gate. The wirings in C ′ is built by appropriate applications of (3.1) and (3.2).

Let u ∈ C and say deg[u] = du. The plan would be to set up the computation in C ′ so
that using an O(1) depth computation, we can compute [u] using gates whose degrees are
a constant factor smaller than du. Consider any parse tree rooted at u, and starting from
u follow the higher degree child. Let τ be the last point on the path with degree ≥ du/2
(degree of its children will be < du/2). Applying (3.1),

[u] =
∑
w∼τ

[w]×p [u : w]

=
∑
w∼τ

([w1]× [w2])×p [u : w] where w = w1 × w2.

Now observe that each of the terms on the RHS, [u : w], [w1], [w2] have degree at most du/2,
as we wanted. Furthermore, each coordinate of tuple ([u : w], [w1], [w2]) are all of the same
type as we run over all w ∼ τ .

We now need to show how to compute [u : v] for a pair u � v. Say deg[u] = du and
deg[v] = dv. For this, start with some parse tree rooted at u and walk down the path leading
to the place of v, and let τ be the last point on this path such that deg τ ≥ du+dv

2 . Using
(3.2),

[u : v] =
∑
w∼τ

[w : v]×p [u : w]

=
∑
w∼τ

([w1]× [w2 : v])×p [u : w]

where w = w1 × w2 and w2 � v (the other possibility is identical). By the choice of τ ,
we have deg[u : w], deg[w2 : v] ≤ du−dv

2 . However, the best bound we can give on deg[w1]
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is du − dv. Nevertheless, we can apply (3.1) again on [w1] by finding a suitable τ ′ ≺ w1
satisfying deg τ ′ ≥ degw1

2 and write

[u : v] =
∑
w∼τ

([w1]× [w2 : v])×p [u : w]

=
∑
w∼τ

(( ∑
w′∼τ ′

[w′]×p′ [w1 : w′]
)
× [w2 : v]

)
×p [u : w]

=
∑
w∼τ

∑
w′∼τ ′

((([w′1]× [w′2])×p′ [w1 : w′])× [w2 : v])×p [u : w]

By the choice of τ and τ ′, each of the factors on the RHS have degree at most (du−dv)
2 as we

wanted. Furthermore, once again, all of the summands consists of similarly typed factors.
This naturally yields an ⊗-circuit computing f of depth O(log d) and size O(s2). Since

all summands consist of similarly typed factors, it follows that the circuit is UPT as well. J

Proof of Claim 3.3. The proof is by induction. As a base case, suppose u ∼ τ . Then, [u]
is just the sum of the values of parse trees. Some of the parse trees use u. Of all nodes
w ∈ C such that w ∼ τ , only [u : u] = 1 and every other [u : w] = 0. Therefore, clearly
[u] =

∑
w∼τ [w] · [u : w].

Now suppose u � τ and say we already know that [u′] =
∑
w∼τ [w]×p [u′ : w] for every

u � u′ � τ . If u = u1 + u2, then

[u] = [u1] + [u2]

=
(∑
w∼τ

[w]×p [u1 : w]
)

+
(∑
w∼τ

[w]×p [u2 : w]
)

=
∑
w∼τ

[w]×p ([u1 : w] + [u2 : w])

=
∑
w∼τ

[w]×p [u : w].

Similarly, suppose [u] = [u1] × [u2]. We have two cases depending on whether u1 � τ or
u2 � τ .

If u1 � τ , then

[u] = [u1]× [u2]

=
(∑
w∼τ

[w]×p [u1 : w]
)
× [u2]

=
∑
w∼τ

[w]×p ([u1 : w]× [u2])

=
∑
w∼τ

[w]×p [u : w].

If u2 � τ , then

[u] = [u1]× [u2]

= [u1]×
(∑
w∼τ

[w]×p [u2 : w]
)

=
∑
w∼τ

[w]×p+degu1 ([u1]× [u2 : w])

=
∑
w∼τ

[w]×p+d1 [u : w].

Essentially the same proof works for (3.2) as well. J

I Lemma 3.4 (⊗-circuits to circuits for a shuffling). Let f ∈ F 〈x1, . . . , xn〉 be a homogeneous
degree d polynomial that is computable by a UPT ⊗-circuit C ′ of size s. Consider the circuit
C ′′ obtained by replacing all ⊗ gates in C ′ by × gates. Then, C ′′ computes ∆σ(f) for some
σ ∈ Sd.
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Proof. We shall prove this by induction. We need a slightly stronger inductive hypothesis
which is that the choice of permutation σ depends only on the shape of the parse trees in C ′.

Say u is the root of C ′. Suppose u is a + gate and say u = u1 + u2 + · · · + ur. If
u′ = u′1 + · · ·+ u′r is the resulting computation in C ′′ then by the inductive hypothesis, we
know that there is a σ ∈ Sd such that [u′i] = ∆σ([ui]). Therefore,

[u′] =
r∑
i=1

∆σ([ui]) = ∆σ([u]).

Suppose u = u1 ×p u2 with deg[u1] = d1 and deg[u2] = d2. Say u1 =
∑
α∈[n]d1 aαxα and∑

β∈[n]d2 bβxβ . Then, [u] =
∑
α,β aαbβ ·xα×pxβ . If u′, u′1 and u′2 is the resulting computation

in C ′′, then

[u′] = [u′1]× [u′2]
= ∆σ1([u1])×∆σ2([u2]) for some σ1 ∈ Sd1 , σ2 ∈ Sd2 ,

=
∑
α,β

aαbβ · (∆σ1(xα)×∆σ2(xβ))

=
∑
α,β

aαbβ ·∆σ(xα ×p xβ) for some σ ∈ Sd,

= ∆σ([u]) J

The following corollary is immediate from the fact that any circuit of depth d and size s
can be computed by a formula of size sO(d) and hence an ABP of size sO(d).

I Corollary 3.5. If f ∈ F 〈x1, . . . , xn〉 is a homogeneous degree d polynomial that is computable
by a UPT circuit of size s, then there is some σ ∈ Sd such that ∆σ(f) is computable by a
non-commutative algebraic branching program of size sO(log d).

Furthermore, the shuffling σ that permits this can also be efficiently computed given the
underlying shape for the circuit computing f .

3.2 UPT circuits of constant width
For a UPT circuit C, recall that we say that its preimage-width is w if for every node τ in
the shape T , there are at most w gates of C that have type τ . The following observation is
evident from the proof of the above depth reduction.

I Observation 3.6. If C is a UPT circuit of width w, then the depth reduced circuit C ′ as
obtained in Theorem 1.4 has width O(w2).

This observation would allow us to yield a more efficient hitting set for the class of small
width known shape UPT circuits. Details are present in the full version.

4 Separating ROABPs and UPT circuits

I Theorem 1.5 (Separating UPT circuits and ABPs, under shuffling). There is an explicit
n-variate degree d non-commutative polynomial f that is computable by UPT circuits of
preimage-width w = poly(n, d) such that for every σ ∈ Sd, the polynomial ∆σ(f) requires
non-commutative ABPs of size (nd)Ω(lognd) to compute it.

The polynomial and the proof technique described here were introduced by Hrubeš and
Yehudayoff [13] to separate monotone circuits and monotone ABPs in the commutative
regime. The polynomial used here is a non-commutative analogue of the polynomial used by
[13]. Much of the proof is the argument of [13] tailored to the non-commutative setting.
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4.1 The polynomial
Let Td denote the complete binary tree of depth d (with 2d leaves) and let D = 2d+1 − 1
refer to the number of nodes in Td. We shall say that a colouring γ : Td → Zm is legal if for
every node u ∈ T , if v and w are the children of u then γ(u) = γ(v) + γ(w) mod m.

Let v1, . . . , vD be the vertices of Td listed in an in-order manner (left-subtree listed
inductively, then the root, and then the right-subtree listed inductively). We now define the
non-commutative polynomial Pd(x1, . . . , xm) ∈ F 〈x1, . . . , xm〉 of degree D = 2d+1 − 1 as

Pd(x1, . . . , xm) =
∑

γ∈[m]D
γ is legal

xγ(v1)xγ(v2) · · ·xγ(vD). (4.1)

I Lemma 4.1 (Upper bound). For every m, d > 0, the polynomial Pd(y1, . . . , ym) can be
computed by a non-commutative UPT circuit of size O(m2d).

(Refer to the full version for a proof.)

I Theorem 4.2 (Lower bound). For every permutation σ ∈ SD, any non-commutative ABP
computing the polynomial ∆σ(Pd) has width mΩ(d).

Hence for d = logm, we have that Pd(x1, . . . , xm) is computable by a UPT circuit of size
O(m2 logm) but for every σ ∈ SD the above theorem tells us that ∆σ(Pd) requires ABPs of
width mΩ(logm) to compute it. The lower bound follows on exactly same lines as the [13]. A
proof is present in the full version.

5 Hitting sets for non-commutative models

Commutative brethren of non-commutative models
This reduction to an appropriate commutative case was used by Forbes and Shpilka [8] to
reduce constructing hitting sets for non-commutative ABPs to hitting sets for commutative
ROABPs (more precisely, to set-multilinear ABPs). They studied the image of the non-
commutative polynomial under the map Ψ : F 〈x1, . . . , xn〉deg=d → F[y1,1, . . . , yd,n] which is
the unique F-linear map given by Ψ : xw1 · · ·xwd 7→ y1,w1 · · · yd,wd .

For the model of non-commutative UPT circuits, the appropriate commutative model is
a restriction of set-multilinear circuits that we call UPT set-multilinear (UPT-SML) circuits.

I Definition 5.1 (Set-multilinear circuits). Let y = y1t· · ·tyd be a partition of the variables.
A circuit C computing a polynomial f ∈ F[y] is said to be a set-multilinear circuit with
respect to the above partition if:

each gate g ∈ C is labelled by a subset Sg ⊆ [d] and g computes a polynomial over
variables

⋃
i∈Sg yi where every monomial of [g] is divisible by exactly one variable in yi

for each i ∈ Sg,
if g is a + gate, then the subset that labels g also labels each of its children,
if g is a × gate with g1 and g2 being its children, then the subsets Sg1 and Sg2 labelling
g1 and g2 respectively is a partition of Sg, i.e. Sg = Sg1 t Sg2 .

We shall say the circuit C is UPT set-multilinear if every parse tree of C is of the same
shape and identically labelled. That is, if g and g′ are × gates labelled by a set S ⊆ [d], and
if g = g1 × g2 with S1 and S2 labelling g1 and g2, then the children of g′ are also labelled by
S1 and S2 respectively.

We shall say the set-multilinear circuit C is FewPT(k) set-multilinear if the circuit consists
of parse trees of at most k different shapes.
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A natural generalization that will be useful later is a multi-output UPT set-multilinear circuit,
which is a UPT set-multilinear circuit that potentially has multiple output gates, which are
all labelled with the same subset.

Forbes and Shpilka [8] showed that constructing hitting sets for these commutative models
suffices for the non-commutative models by a simple reduction (details in the full version).
We shall therefore focus on these commutative models for the hitting set constructions. And
since we have already seen that such circuits can be depth reduced4 to O(log d) depth, it
suffices to construct a hitting set for O(log d)-depth UPT and FewPT set-multilinear circuits.

5.1 Hitting sets for UPT set-multilinear circuits
I Theorem 5.2 (Hitting sets for UPT set-multilinear circuits). Let C be the class of n-variate
degree d set-multilinear polynomials (with respect to y = y1 t · · · tyd) that are computable by
UPT set-multlinear circuits of preimage-width w and depth r. Then, for M =

((
w
2
)
n2d+ 1

)2,
the set

H =
{

(b11, . . . , bdn) : p ∈ [M ]r , ak ∈ A , bij =
r+1∏
k=1

a2(i−1)n+(j−1) mod pi
k

}

is a hitting set for C of size poly(ndw)r.

The proof of this theorem is obtained by constructing what is called a basis isolating
weight assignment for polynomials simultaneously computed by a multi-output UPT-SML
circuit, heavily borrowing from the ideas in [2]. The details of the hitting set construction
are present in the full version.

5.2 Poly-sized hitting sets for constant width UPT circuits
I Theorem 1.3 (Hitting sets for known-shape low-width UPT circuits). Let Cn,d,T,w be the
class of n-variate degree d non-commutative polynomials that are computable by UPT circuits
of preimage-width at most w and underlying parse-tree shape as T . Over any field of zero
or large characteristic, there is an explicit hitting set Hn,d,T,w of size wO(log d) poly(nd) for
Cn,d,T,w.

This is an easy extension of the ideas from [9], a proof can be found in the full version.

6 FewPT circuits

In this section we describe the black-box identity test for FewPT(k) circuits. The following
lemma from [17] shows that this class is equivalent to polynomials computed by sum of k
UPT circuits (of possibly different shapes).

6.1 Preliminaries
I Lemma 6.1 ([17], Lemma 16). Let f(x) be a polynomial computed by FewPT(k) circuit
of preimage-width w. Then f can be equivalently computed by a sum of k UPT circuits of
preimage-width w each.

4 the shuffling just reorders the partition of the set-multilinear circuit
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Like in [17], we will refer to this class by Σk -UPT. We shall further qualify this notation
to use Σk -UPT(w) to denote the class of circuits that is a sum of k UPT circuits of
preimage-width w.

From this lemma, we can focus on constructing hitting sets for Σk -UPT-SML circuits.
The proof largely follows the ideas of Gurjar, Korwar, Saxena and Thierauf [10]5.

Notation
Let y = y1t· · ·tyd be a partition of the variables and let S = {s1, . . . , sp} be a subset of [d].
Define the set of variables yS = ys1 ∪ · · · ∪ysp and the set of monomials yS = ys1 ×· · ·×ysp .
Also, define y−S = y \ yS and y−S = y[d]\S .

IDefinition 6.2 (Coefficient operator). Let f =
∑
m∈y[d] αmm be a set-multilinear polynomial

of degree d, for S ⊆ [d] and a monomial m ∈ yS , define coeffm : F [y] → F [y−S ] to be as
follows.

coeffm(f) =
∑

m′∈y−S
α(m·m′)m

′

where α(m·m′) is the coefficient of mm′ in f .

I Lemma 6.3. Let y = y1 t . . . t yd be a partition and f(y) be a set-multilinear polynomial
(with respect to the above partition) computed by a UPT-SML circuit of preimage-width w
and underlying parse-tree shape T . Suppose g(y) is another set-multilinear polynomial (under
the same partition) that cannot be computed by a UPT-SML circuit of preimage-width w
with the same shape T .

Then, there exists S ⊆ [d] and R ∈ F[yS ]1×w′ , and P,Q ∈ F[y−S ]w′×1 satisfying f = RP ,
g = RQ with w′ ≤ w2 such that:

For each i ∈ [w′], there is a monomial mi ∈ yS such that the i-th element of P and Q is
coeffmi(f) and coeffmi(g) respectively,
there is a vector Γ ∈ F1×w′ of support size at most w + 1 such that ΓP = 0 and ΓQ 6= 0,
the coefficient space of R is full-rank, i.e. if we interpret R as a matrix over F by
listing each of its w′ entries as a column vector of coefficients, then this matrix has full
column-rank.
the vector of polynomials R is simultaneously computable by a UPT-SML circuit of
preimage-width at most w′.

This lemma is a fairly natural and straightforward generalization of [10, Lemma 4.5] and
a proof of this is provided in the full version.

I Lemma 6.4. Suppose f(y) is a non-zero polynomial computed by a Σk -UPT-SML(w)
circuit. Suppose wt : y→Mr is a weight assignment that satisfies the following properties:

wt is a BIWA for spaces of polynomials simultaneously computed by UPT-SML circuits
of preimage-width at most w(w + 1),
For any g in Σk−1 -UPT-SML(w(w + 1)), the polynomial g(y + twt) ∈ F(t)[y] has a
monomial with non-zero coefficient that depends on at most ` distinct variables in y.

5 [10] constructed hitting sets for sums of ROABPs and we use similar techniques for sums of UPT circuits.
Roughly speaking, if we have a class C that has a characterizing set of dependencies for which we know
how to construct BIWAs, then we can also construct hitting sets for ΣkC.

https://arxiv.org/abs/1709.03068
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Then, the polynomial f(y + twt) has a monomial, depending on at most log(w(w + 1)) + `

distinct variables in y, with a non-zero coefficient.

This is essentially a restatement of [10, Lemma 4.6, Lemma 4.8] and follows from their
proof. Unravelling the recursion, we get the following corollary.

I Corollary 6.5. Let f(y) be a non-zero polynomial that can computed by a Σk -UPT-SML(w)
circuit. Suppose wt : y → Mr is a BIWA for the class of polynomials simultaneously
computed by UPT-SML circuits of preimage-width at most w2O(k) . Then, the polynomial
f(y + twt) ∈ F(t)[y] has a monomial with a non-zero coefficient that depends on at most
2O(k) logw variables in y.

Once we are guaranteed to retain a monomial of small-support, we can construct a hitting
set by enumerating over all possible supports and applying the Schwartz-Zippel lemma
[22, 7, 24, 28] (or apply standard generators such as the Shpilka-Volkovich generator [25]).
This completes the proof of Theorem 1.2, which we restate below for convenience.

I Theorem 1.2 (Hitting sets for circuits with few parse tree shapes). There is an explicit hitting
set Hd,n,s,k of size at most (s2knd)O(log d) for the class of n-variate degree d homogeneous
non-commutative polynomials in F 〈x1, . . . , xn〉 that are computed by non-commutative circuits
of size at most s consisting of parse trees of at most k shapes.

7 Open problems

An interesting open problem (at least to us) is whether we can give non-trivial hitting sets
for the class of non-commutative skew circuits. Lagarde, Limaye and Srinivasan [17] provide
a white-box PIT in some restricted settings when the skew circuits are somewhat closer to
UPT (with some restriction on what sort of parse trees they can have) but removing this
restriction would be a great step forward.

Another issue is that the current construction of hitting sets for FewPT circuits (which
build on [10]) incurs quasipolynomial losses at two different places. The first is in the
construction of the basis isolating weight assignment (BIWA), and we only know to construct
that using quasipolynomially large weights. The other is in a brute-force enumeration of all
monomials of support O(log s). As a result, even if at a later date we have a construction of a
BIWA with polynomially large weights, this proof would still only yield a quasipolynomially
large hitting set for FewPT circuits. It would be interesting to see if this brute-force
enumeration could be circumvented.
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A Relative computational power of restricted parse tree models

In this section we discuss the relative computational power of the models studied in the
paper and their algebraic branching program counterparts.

We begin by recalling that Lagarde, Malod and Perifel [18] show that the computational
power of non-commutative UPT circuits lies strictly between that of ABPs and circuits. In
other words their work refines the strict separation between ABPs and circuits given by the
seminal work of Nisan [20]. Each of these results use a generalization of the notion of partial
derivative matrix which was first introduced by Nisan. We skip defining the generalized
partial derivative matrix formally for brevity. A formal definition can be found in the proof
of Theorem 1.5 in the full version. The following statements will help in understanding the
rest of this section.

Nisan [20] showed that for any homogeneous non-commutative polynomial f the width of
a (homogeneous) ABP computing it, in the layer i, is exactly equal to the rank of the
partial derivative matrix of f for degree i.
Lagarde et al. [18] show that in the smallest UPT circuit of shape T computing a
polynomial f , the number of gates of a type τ ∈ T is equal to the rank of the generalized
partial derivative matrix for the type τ .
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Thus, the ranks of the appropriate generalized partial derivative matrices for f characterize
the ABP complexity and the UPT complexity of f . As discussed in section 1.3, we have
strict separations between ABPs, UPT circuits and general circuits, even under shufflings.
We now provide an informal discussion about constant width (or preimage-width) models for
the sake of completeness.

A.1 Constant width models
For ease of exposition, we will use the term width to refer to both the width of an ABP and
the preimage-width of a UPT circuit. The intended meaning will be clear from the context.

We can obtain a strict separation between constant width ABPs and constant width UPT
circuits using the proof of Theorem 1.5. This is done by working with a constant variate
version of the polynomial described in the proof. We skip the details to avoid repeating the
proof. A more interesting comparison is that of ABPs of unrestricted (poly(n)) width and
constant width UPT circuits, which we discuss now.

A.1.1 ABPs vs constant width UPT circuits
Let fn be the following non-commutative variant of the elementary symmetric polynomial
on n-variables of degree d = n/2.

fn :=
∑

1≤i1<···<id≤n
xi1xi2 · · ·xid

Note that the generalized partial derivative matrix of fn for any interval of positions I ⊂ [d]
will have rank ≥ n− d = Ω(n). Moreover, any shuffling of fn has the same property, since
the rank does not depend on how we “order” the indices in [n]. Hence, any UPT circuit
computing fn or even a shuffling of fn, requires poly(n) width. However, it is easy to see
that fn has a poly(n) sized ABP.

I Fact A.1. (Informal) There is a polynomial fn that is computable by a poly(n) sized ABP,
but any shuffling of fn requires UPT circuits of width Ω(n).

Consider the bivariate palindrome polynomial of degree 2n, for a growing parameter n.

Pn(x1, x2) =
∑

(i1,...,in)∈[2]n
(xi1xi2 · · ·xin) · (xin · · ·xi2xi1)

It is easy to verify that the rank of the partial derivative matrix of Pn(x1, x2) for degree n, is
exactly 2n. Also note that the polynomial has a UPT circuit of constant width. However, as
remarked before in the paper, there is a shuffling of the palindrome polynomial that makes it
simple for ABPs. Therefore we get the following fact, when shufflings are not allowed.

I Fact A.2. (Informal) The classes of constant width UPT circuits and ABPs are incom-
parable.

Let us now look at the case when shufflings are allowed.

Say fn(x) is an n-variate homogeneous polynomial of degree poly(n). If f has a UPT circuit
C of width w, then Theorem 1.4 gives us that a shuffling of fn, say f ′n, has a UPT circuit C ′
of depth O(log n) and width O(w2). Let T be the shape of C ′ and let g ∈ C ′ be a gate with
type τ ∈ T . Note that any path in C ′, from g to the root of C ′, goes through O(log n) gates,
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each of which is one out of the O(w2) gates of its type. Therefore even a trivial conversion
of C ′ to a formula replicates any gate g ∈ C ′ at most wO(logn) times. We therefore have the
following.

I Fact A.3. (Informal) If fn(x) is computable by a constant width UPT circuit of size
poly(n), then a shuffling of fn is computable by an ABP of size poly(n).
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Abstract
Let F[X] be the polynomial ring over the variables X = {x1, x2, . . . , xn}. An ideal I =
〈p1(x1), . . . , pn(xn)〉 generated by univariate polynomials {pi(xi)}ni=1 is a univariate ideal. We
study the ideal membership problem for the univariate ideals and show the following results.

Let f(X) ∈ F[`1, . . . , `r] be a (low rank) polynomial given by an arithmetic circuit where
`i : 1 ≤ i ≤ r are linear forms, and I = 〈p1(x1), . . . , pn(xn)〉 be a univariate ideal. Given
~α ∈ Fn, the (unique) remainder f(X) (mod I) can be evaluated at ~α in deterministic time
dO(r) · poly(n), where d = max{deg(f), deg(p1) . . . , deg(pn)}. This yields a randomized nO(r)

algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields
an nO(r) algorithm for evaluating the permanent of a n × n matrix of rank r, over any field
F. Over Q, an algorithm of similar run time for low rank permanent is due to Barvinok [5]
via a different technique.
Let f(X) ∈ F[X] be given by an arithmetic circuit of degree k (k treated as fixed parameter)
and I = 〈p1(x1), . . . , pn(xn)〉. We show that in the special case when I = 〈xe1

1 , . . . , x
en
n 〉, we

obtain a randomized O∗(4.08k) algorithm that uses poly(n, k) space.
Given f(X) ∈ F[X] by an arithmetic circuit and I = 〈p1(x1), . . . , pk(xk)〉, membership testing
is W[1]-hard, parameterized by k. The problem is MINI[1]-hard in the special case when
I = 〈xe1

1 , . . . , x
ek

k 〉.
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7:2 Univariate Ideal Membership

1 Introduction

Let R = F[x1, x2, . . . , xn]1 be the ring of polynomials over the variables X = {x1, x2, . . . , xn}.
A subring I ⊆ R is an ideal if IR ⊆ I. Computationally, an ideal I is often given by
generators: I = 〈f1, f2, . . . , f`〉. Given f ∈ R and I = 〈f1, . . . , f`〉, the Ideal Membership
problem is to decide whether f ∈ I or not. In general, this is computationally highly
intractable. In fact, it is EXPSPACE-complete even if f and the generators fi, i ∈ [`] are
given explicitly by sum of monomials [21]. Nevertheless, special cases of ideal membership
problem have played important roles in several results in arithmetic complexity. For example,
the polynomial identity testing algorithm for depth three ΣΠΣ circuits with bounded top
fan-in; the structure theorem for ΣΠΣ(k, d) identities use ideal membership very crucially
[4, 13, 24].

In this paper, our study of ideal membership is motivated by a basic result in algebraic
complexity: the Combinatorial Nullstellensatz of Alon [1], and we recall a basic result in
that paper.

I Theorem 1. Let F be any field, and f(X) ∈ F[X]. Define polynomials gi(xi) =
∏
s∈Si

(xi−s)
for non-empty subsets Si, 1 ≤ i ≤ n of F. If f vanishes on all the common zeros of
g1, . . . , gn, then there are polynomials h1, . . . , hn satisfying deg(hi) ≤ deg(f)− deg(gi) such
that f =

∑n
i=1 higi.

The theorem can be restated in terms of ideal membership: Let f(X) ∈ F[X] be a
given polynomial, and I = 〈g1(x1), g2(x2), . . . , gn(xn)〉 be an ideal generated by univariate
polynomials gi without repeated roots. Let Z(gi) denote the zero set of gi, 1 ≤ i ≤ n. By
Theorem 1, if f 6∈ I then there is a ~α = (α1, . . . , αn) ∈ Z(g1)×· · ·×Z(gn) such that f(~α) 6= 0.
Of course, if f ∈ I then f |Z(g1)×···×Z(gn) = 0.

Ideals I generated by univariate polynomials are called univariate ideals. For any
univariate ideal I and any polynomial f , by repeated application of the division algorithm,
we can write f(X) =

∑n
i=1 hi(X)gi(xi) + R(X) where R is unique and for each i ∈ [n] :

degxi
(R) < deg(gi(xi)). Since the remainder is unique, it is convenient to write R = f

mod I. By Alon’s theorem, if f 6∈ I then there is a ~α ∈ Z(g1) × · · · × Z(gn) such that
R(~α) 6= 0.

As an application of the theorem, Alon and Tarsi showed that checking k-colorability
of a graph G is polynomial-time equivalent to testing whether the graph polynomial fG is
in the ideal 〈xk1 − 1, . . . , xkn − 1〉 [1]. It follows that univariate ideal membership problem
coNP-hard.

Univariate ideal membership is further motivated by its connection with two well-studied
problems. Computing the permanent of a n × n matrix over any field F can be cast in
terms of univariate ideal membership. Given a matrix A = (ai,j)1≤i,j≤n ∈ Fn×n, consider
the product of linear forms PA(X) =

∏n
i=1(

∑n
j=1 aijxj). The following observation is well

known.

I Fact 2. The permanent of the matrix A is given by the coefficient of the monomial
x1x2 · · ·xn in PA.

It follows immediately that PA(X) (mod 〈x2
1, . . . , x

2
n〉) = Perm(A) x1x2 · · ·xn. I.e., the

remainder PA (mod 〈x2
1, . . . , x

2
n〉) evaluates to Perm(A) at the point ~1 ∈ Fn.

1 We often use the shorthand notation F[X].
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Next, we briefly mention the connection of univariate ideal membership with the multi-
linear monomial detection problem, a benchmark problem that is useful in designing fast
parameterized algorithms for a host of problems [16, 17, 18, 28].

Notice that, given an arithmetic circuit C computing a polynomial f ∈ F[X] of degree k,
checking if f has a non-zero multilinear monomial of degree k is equivalent to checking if
f (mod 〈x2

1, . . . , x
2
n〉) is non-zero. Moreover, the constrained multilinear detection problem

studied in [6, 17] can also be viewed as a problem of deciding membership in a univariate
ideal.

Our Results. A contribution of this paper is to consider several parameterized problems
in arithmetic complexity as instances of univariate ideal membership. One parameter of
interest is the rank of a multivariate polynomial: We say f ∈ F[X] is a rank r polynomial if
f ∈ F[`1, `2, . . . , `r] for linear forms `j : 1 ≤ j ≤ r. This concept has found application in
algorithms for depth-3 polynomial identity testing [24]. Given a univariate ideal I, a point
~α ∈ Fn, and an arithmetic circuit computing a polynomial f of rank r, we obtain an efficient
algorithm to compute f (mod I) at ~α.

I Theorem 3. Let F be an arbitrary field where the field arithmetic can be done efficiently, and
C be a polynomial-size arithmetic circuit computing a polynomial f in F[`1, `2, . . . , `r], where
`1, `2, . . . , `r are given linear forms in {x1, x2, . . . , xn}. Let I = 〈p1, . . . , pn〉 be a univariate
ideal generated by pi(xi) ∈ F[xi], 1 ≤ i ≤ n. Given ~α ∈ Fn, we can evaluate the remainder f
(mod I) at the point ~α in time dO(r)poly(n), where d = max{deg(f), deg(pi) : 1 ≤ i ≤ n}.

This also allows us to check whether f ∈ I by picking a point ~α at random and checking
whether f (mod I) evaluated at ~α is zero or not. The intuitive idea behind the proof
of Theorem 3 is as follows. Given a polynomial f(X) ∈ F[`1, . . . , `r], a univariate ideal
I = 〈p1(x1), . . . , pn(xn)〉, and a point ~α ∈ Fn, we first find an invertible linear transformation
T such that the polynomial T (f) becomes a polynomial over at most 2r variables. Additionally
T has the property that T fixes the variables x1, . . . , xr. Then we recover the polynomial
(call it f̃) over at most 2r variables explicitly and perform division algorithm with respect to
the ideal I[r] = 〈p1(x1), . . . , pr(xr)〉. For notational convenience, call f̃ be the polynomial
obtained over at most 2r variables. It turns out T−1(f̃) is the true remainder f (mod I[r]).
Since the variables x1, . . . , xr do not play role in the subsequent stages of division, we can
eliminate them by substituting xi ← αi for each 1 ≤ i ≤ r. Then we apply the division
algorithm on T−1(f̃)|xi←αi:1≤i≤r recursively with respect to the ideal I[n]\[r] to compute the
final remainder at the point ~α.

Our next result is an efficient algorithm to detect vertex cover in low rank graphs. A
graph G is said to be of rank r if the rank of the adjacency matrix AG is of rank r. Graphs
of low rank were studied by Lovasz and Kotlov [2, 15] in the context of graph coloring. Our
idea is to construct a low rank polynomial from the graph and check its membership in an
appropriate univariate ideal.

I Theorem 4. Given a graph G = (V,E) on n vertices such that the rank of the adjacency
matrix AG is at most r, and a parameter k, there is a randomized nO(r) algorithm to decide
if the graph G has vertex cover of size k or not.

Theorem 3 also yields an nO(r) algorithm to compute the permanent of rank-r matrices
over any field. Barvinok had given [5] an algorithm of same running time for the permanent
of low rank matrices (over Q) using apolar bilinear forms. By Fact 2, if matrix A is rank
r then PA is a rank-r polynomial, and for the univariate ideal I = 〈x2

1, . . . , x
2
n〉 computing
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7:4 Univariate Ideal Membership

PA (mod I) at the point ~1 yields the permanent. Theorem 3 works more generally for
all univariate ideals. In particular, the ideal in the proof of Theorem 4 is generated by
polynomials that are not powers of variables. Thus, Theorem 3 can potentially have more
algorithmic consequences than the technique in [5].

If k is the degree of the input polynomial and the ideal is given by the powers of variables
as generators, we have a randomized FPT algorithm for the problem.

I Theorem 5. Given an arithmetic circuit C computing a polynomial f(X) ∈ Z[X] of
degree k and integers e1, e2, . . . , en, there is a randomized algorithm to decide whether
f ∈ 〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 in O∗(4.08k) time.

Note that this generalizes the well-known problem of multilinear monomial detection
for which the ideal of interest would be I = 〈x2

1, x
2
2, . . . , x

2
n〉. Surprisingly, the run time

of the algorithm in Theorem 5 is independent of the ei. Brand et al. have given the first
FPT algorithm for multilinear monomial detection in the case of general circuit with run
time randomized O∗(4.32k) [7]. Recently, this problem has also been studied using the
Hadamard product [3] of the given polynomial with the elementary symmetric polynomial
(and differently using apolar bilinear forms [22]). When the number of generators in the ideal
is treated as the fixed parameter, the problem is W[1]-hard.

I Theorem 6. Given a polynomial f(X) ∈ F[X] by an arithmetic circuit C and univariate
polynomials p1(x1), p2(x2), . . . , pk(xk), checking if f 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 is W[1]-
hard with k as the parameter.

Theorem 6 is shown by a suitable reduction from independent set problem to ideal
membership. To find an independent set of size k, the reduction produces an ideal with k
univariates and the polynomial created from the graph has k variables. Unlike Theorem 5,
the above parameterization of the problem remains MINI[1]-hard even if the ideal is generated
by powers of variables. More precisely, we show the following result.

I Theorem 7. Let C be a polynomial-size arithmetic circuit computing a polynomial f ∈ F[X].
Let I = 〈x1

e1 , x2
e2 , . . . , xk

ek〉 be the given ideal where e1, . . . , ek are given in unary, checking
if f 6∈ I is MINI[1]-hard with k as parameter.

It turns out that the complement of the ideal membership problem can be easily reduced
from k-Lin-Eq problem which asks if there is a ~x ∈ {0, 1}n satisfying A~x = ~b, where A ∈ Fk×n
and ~b ∈ Fk.

We can show k-Lin-Eq is hard for the parameterized complexity class MINI[1] by reducing
the miniature version of 1-in-3 POSITIVE 3-SAT to it.

As already mentioned, the result of Alon and Tarsi [1] shows that the membership of fG
in 〈xk1 − 1, . . . , xkn − 1〉 is coNP-hard and the proof crucially uses the fact that the roots of
the generator polynomials are all distinct. This naturally raises the question if univariate
ideal membership is in coNP when each generator polynomial has distinct roots. We show
membership in coNP.

I Theorem 8. Let f ∈ Q[X] be a polynomial of degree at most d given by a black-box.
Let I = 〈p1(x1), . . . , pn(xn)〉 be an ideal given explicitly by a set of univariate polynomials
p1, p2, . . . , pn as generators of maximum degree bounded by d. Let L be the bit-size upper
bound for any coefficient in f, p1, p2, . . . , pn. Moreover, assume that pis have distinct roots
over C. Then there is a non-deterministic algorithm running in time poly(n, d, L) that decides
the non-membership of f in the ideal I.
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I Remark. The distinct roots case discussed in Theorem 8 is in stark contrast to the
complexity of testing membership of PA(X) in the ideal 〈x2

1, . . . , x
2
n〉. That problem is

equivalent to checking if Perm(A) is nonzero for a rational matrix A, which is hard for the
exact counting class C=P. Hence it cannot be in coNP unless the polynomial-time hierarchy
collapses.

Recall from Alon’s Nullstellensatz that if f 6∈ I, then there is always a point ~α ∈
Z(p1)× . . .× Z(pn) such that f(~α) 6= 0. Notice that in general the roots αi ∈ C and in the
standard Turing Machine model the NP machine can not guess the roots directly with only
finite precision. But we are able to prove that the NP machine can guess the tuple of roots
~̃α ∈ Qn using only polynomial bits of precision and still can decide the non-membership. The
main technical idea is to compute efficiently a parameter M only from the input parameters
such that |f(~̃α)| ≤ M if f ∈ I, and |f(~̃α)| ≥ 2M if f 6∈ I. The NP machine decides
the non-membership according to the final value of |f(~̃α)|. We remark that Koiran has
considered the weak version of Hilbert Nullstellensatz (HN) problem [14]. The input is a
set of multivariate polynomials f1, f2, . . . , fm ∈ Z[X] and the problem is to decide whether
1 ∈ 〈f1, . . . , fm〉. The result of Koiran shows that HN ∈ AM (under GRH), and it is an
outstanding open problem problem to decide whether HN ∈ NP.

Organization. In Section 2 we give some background results. We prove Theorem 3 and
Theorem 4 in Section 3. In Section 4, we explore the parameterized complexity of univariate
ideal membership. In the first subsection, we prove 5, and in the second subsection we prove
Theorems 6 and 7. Finally, in Section 5, we prove Theorem 8.

2 Preliminaries

Basics of Ideal Membership. Let F[X] be the ring of polynomials F[x1, x2, . . . , xn]. Let
I ⊆ F[X] be an ideal given by a set of generators I = 〈g1, . . . , g`〉. Then for any polynomial
f ∈ F[X], it is a member of the ideal if and only if f =

∑`
i=1 higi where ∀i : hi ∈ F[X].

Dividing f by the gi by applying the standard division algorithm does not work in general to
check if f ∈ I. Indeed, the remainder is not even uniquely defined. However, if the leading
monomials of the generators are already pairwise relatively prime, then we can apply the
division algorithm to compute the unique remainder.

I Theorem 9 (See[9], Theorem 3, proposition 4, pp.101). Let I be a polynomial ideal given
by a basis G = {g1, g2, · · · , gs} such that all pairs i 6= j LM(gi) and LM(gj) are relatively
prime. Then G is a Gröbner basis for I.

In particular, if the ideal I is a univariate ideal given by I = 〈p1(x1), . . . , pn(xn)〉, we can
apply the division algorithm to compute the unique remainder f (mod I). To bound the run
time of this procedure we note the following: Let p̄ denote the ordered list {p1, p2, . . . , pn}.
Let Divide(f ; p̄) be the procedure that divides f by p1 to obtain remainder f1, then divides
f1 by p2 to obtain remainder f2, and so on to obtain the final remainder fn after dividing by
pn. We note the following time bound for Divide(f ; p̄).

I Fact 10 (See [27], Section 6, pp.5-12). Let f ∈ F[X] be given by a size s arithmetic circuit
and pi(xi) ∈ F[xi] be given univariate polynomials. The running time of Divide(f ; p̄) is
bounded by O(s ·

∏n
i=1(di + 1)O(1)), where di = max{degxi

(f), deg(pi(xi))}.
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7:6 Univariate Ideal Membership

On Roots of Univariate Polynomials. The following lemma shows that the absolute value
of any root of a univariate polynomial can be bounded in terms of the degree and the
coefficients. The result is folklore.

I Lemma 11. Let f(x) =
∑d
i=0 aix

i ∈ Q[x] be a univariate polynomial and α be a root of f .
Then, either |a0|∑d

i=1
|ai|
≤ |α| < 1 or 1 ≤ |α| ≤ d · maxi |ai|

|ad| .

Proof. Since α is a root of f , we have that, 0 = f(α) =
∑d
i=0 aiα

i = 0, and
∑d
i=1 aiα

i = −a0.
Then by an application of triangle inequality, we get that

∑d
i=1 |ai||α|i ≥ |a0|. Now we analyse

two different cases. In the first case assume that |α| < 1. Observe that |α| · (
∑d
i=1 |ai|) ≥ |a0|,

and hence |α| ≥ |a0|∑d

i=1
|ai|

. In the second case |α| ≥ 1. Observe that −adαd =
∑d−1
i=0 aiα

i.

Then use triangle inequality to get that |ad||α|d ≤ |α|d−1 · (
∑d−1
i=0 |ai|). Now we get the

following, |α| ≤
∑d−1

i=0
|ai|

|ad| ≤ d · maxi |ai|
|ad| . The lemma follows by combining the two cases. J

The next lemma shows that the separation between two distinct roots of any univariate
polynomial can be lower bounded in terms of degree and the size of the coefficients. This
was shown by Mahler [20].

I Lemma 12. Let g(x) =
∑d
i=0 aix

i ∈ Q[x] and 2−L ≤ |ai| ≤ 2L (if ai 6= 0). Let α, β are
two distinct roots of g. Then |α− β| ≥ 1

2O(dL) .

The following lemma states that any univariate polynomial can not get a very small value
(in absolute sense) on any point which is far from every root.

I Lemma 13. Let f =
∑d
i=1 aix

i be a univariate polynomial with 2−L ≤ |ai| ≤ 2L (if
ai 6= 0). Let α̃ be a point such that |α̃− βi| ≥ δ for every root βi of f then |f(α̃)| ≥ 2−Lδd.

Proof. We observe that, f(α̃) = c
∏d
i=1(α̃ − βi). Since |α̃ − βi| ≥ δ we get, |f(α̃)| =

|c|
∏d
i=1 |α̃− βi| ≥ 2−Lδd. This completes the proof. J

Parameterized Complexity Classes. We recall some standard definitions in parameterized
Complexity [10, ch.1,pp. 7-14]. We only state them informally. For a parameterized input
problem (x, k) with k be the parameter of interest, we say that the problem is in FPT if it has
an algorithm with run time f(k)|(x, k)|O(1) for some computable function f . A parameterized
reduction [10, def. 13.1] between two problems should be computable in time f(k)|(x, k)|O(1),
and if the reduction outputs (x′, k′) then k′ ≤ f(k).

The complexity class MINI[1] consists of parameterized problems that are miniature
versions of NP problems: For L ∈ NP, its miniature version mini(L) has instances of the
form (0n, x), where |x| ≤ k log n, k is the fixed parameter, and x is an instance of L. Showing
mini(L) to be MINI[1]-hard under parameterized reductions is evidence of its parameterized
intractability, for it cannot be in FPT assuming the Exponential Time Hypothesis [12].

Hadamard Product. We recall the definition of Hadamard product of two polynomials.

I Definition 14. Given two polynomials f, g ∈ F[X], the Hadamard product f ◦ g is defined
as f ◦ g =

∑
m[m]f · [m]g ·m.

In this paper we adapt the notion of Hadamard product suitably and define a scaled
version of Hadamard Product of two polynomials.
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I Definition 15. Given two polynomials f, g ∈ F[X], their scaled Hadamard Product f ◦s g,
is defined as f ◦s g =

∑
mm! · [m]f · [m]g ·m, where m = xe1

i1
xe2
i2
. . . xer

ir
and m! = e1! ·e2! · · · er!

abusing the notation.

I Remark. Given two polynomials f ∈ F[X] and g ∈ F[X], if one of these two is a multilinear
polynomial then scaled Hadamard product f ◦s g is same as Hadamard product f ◦ g.

Symmetric Polynomial and Weakly Equivalence of Polynomials. The symmetric polyno-
mial of degree k over n variables {x1, x2, . . . , xn}, denoted by Sn,k, is defined as follows:

Sn,k(x1, x2, . . . , xn) =
∑

T⊆[n],|T |=k

∏
i∈T

xi.

Notice that, Sn,k contains all the degree k multillinear terms. A recent result of Lee gives
the following homogeneous diagonal circuit for Sn,k [19].

I Lemma 16. The symmetric polynomial Sn,k can be computed by a homogenous Σ[s] ∧[k] Σ
circuit where s ≤

∑k/2
i=0
(
n
i

)
.

A polynomial f ∈ F[X] is said to be weakly equivalent to a polynomial g ∈ F[X], if the
following is true. For each monomial m, [m]f = 0 if and only if [m]g = 0. In this paper, we
will use polynomials weakly equivalent to Sn,k.

3 Ideal Membership for Low Rank Polynomials

In this section we prove Theorem 3. Given a r-rank polynomial f by an arithmetic circuit,
a univariate ideal I, and a point ~α ∈ Fn, we give an dO(r) time algorithm to evaluate
the remainder polynomial f (mod I) at ~α where d is the degree of the polynomial f . As
mentioned in Section 1, an application of our result yields an nO(r) time algorithm for
computing the permanent of rank-r matrices over any field. Barvinok [5], via a different
method, had obtained an nO(r) time algorithm for this problem over Q. We also obtain a
randomized nO(r) time algorithm for minimum vertex cover of low rank graphs. We first
define the notion rank of a polynomial in F[X].

I Definition 17. A polynomial f(X) ∈ F[X] is a rank-r polynomial if there are linear forms
`1, `2, . . . , `r such that f(X) is in the sub-algebra F[`1, . . . , `r].

For an unspecified fixed parameter r, we refer to rank-r polynomials as low rank polyno-
mials.

Given ~α ∈ Fn, a univariate ideal I = 〈p1(x1), . . . , pn(xn)〉, and a rank r polynomial
f(`1, . . . , `r) we show how to compute f(`1, . . . , `r) (mod I) at ~α using a recursive procedure
REM(f(`1, . . . , `r), I, ~α) efficiently. We introduce the following notation. For S ⊆ [n], the
ideal IS = 〈pi(xi) : i ∈ [S]〉.

We first observe the following lemma which shows how to remove the redundant variables
from a low rank polynomial.

I Lemma 18. Given a polynomial f(`1, . . . , `r) where `1, . . . , `r are linear forms in F[X],
there is an invertible linear transform T : Fn 7→ Fn that fixes x1, . . . , xr and the transformed
polynomial T (f) is over at most 2r variables.

Proof. Write each linear form `i in two parts: `i = `i,1 + `i,2, where `i,1 is the part over
variables x1, . . . , xr and `i,2 is over variables xr+1, . . . , xn. W.l.o.g, assume that {`i,2}r

′

i=1 is
a maximum linearly independent subset of linear forms in {`i,2}ri=1. Let T : Fn → Fn be the
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7:8 Univariate Ideal Membership

invertible linear map that fixes x1, . . . , xr, maps the independent linear forms {`i,2}r
′

i=1 to
variables xr+1, . . . , xr+r′ , and suitably extends T to an invertible map. This completes the
proof. J

The following lemma shows that the univariate division and evaluating the remainder at
the end can be achieved by division and evaluation partially.

I Lemma 19. Let f(X) ∈ F[X] and I = 〈p1(x1), . . . , pn(xn)〉 be a univariate ideal. Let R(X)
be the unique remainder f (mod I). Let ~α ∈ Fr, r ≤ n and Rr(X) = f (mod I[r]). Then
R(α1, . . . , αr, xr+1, . . . , xn) = Rr(α1, . . . , αr, xr+1, . . . , xn) (mod I[n]\[r]).

Proof. From the uniqueness of the remainder for the univariate ideals, we get that R(X) =
Rr(X) (mod I[n]\[r]). Now we write explicitly the polynomial Rr(X) as Rr =

∑
ū rū ·

xu1
r+1 . . . , x

un−r
n where ru ∈ F[X[r]]. So we get that,

Rr (mod I[n]\[r]) =
∑
ū

rū

n−r∏
j=1

q(xr+j)

where q(xr+j) = x
uj

r+j (mod p(xr+j)). Then the lemma follows by substituting x1 =
α1, . . . , xr = αr in the relation R = Rr (mod I[n]\[r]). J

We require the following lemma in the proof of the main result of this section.

I Lemma 20. Let f ∈ F[X], and T : Fn → Fn be an invertible linear transformation fixing
x1, . . . , xr and mapping xr+1, . . . , xn to linearly independent linear forms over xr+1, . . . , xn.
Write R = f (mod I[r]) and R′ = T (f) (mod I[r]). Then R′ = T (R).

Proof. Let f =
∑r
i=1 hi(X) ·pi(xi)+R(X) and T (f) =

∑r
i=1 h

′
i(X) ·pi(xi)+R′(X). Note that

degxi
R, degxi

R′ < deg(pi(xi)) for 1 ≤ i ≤ r. Since T is invertible and also fixes x1, . . . , xr,
we can write f =

∑r
i=1 T

−1(h′i(X)) · pi(xi) + T−1(R′(X)). By the property of T it is clear
that degxi

(T−1(R′(X))) < deg(pi(xi)) for 1 ≤ i ≤ r. Combining two expression for f , we
immediately conclude that (R−T−1(R′)) = 0 (mod I[r]) which forces that R = T−1(R′). J

3.1 Proof of Theorem 3

Proof. We now describe a recursive procedure REM to solve the problem. The initial call to
it is REM(f(`1, . . . , `r), I[n], ~α). We apply the invertible linear transformation obtained in
Lemma 18 to get the polynomial T (f) over the variables x1, . . . , xr, xr+1, . . . , xr+r′ where
r′ ≤ r.2 The polynomial T (f) can be explicitly computed in time poly(L, s, n, dO(r)). Then
we compute the remainder polynomial f ′(x1, . . . , xr+r′) = T (f) (mod I[r]) by applying the
division algorithm which runs in time poly(L, s, n, dO(r)). Next we compute the polynomial
g = f ′(α1, . . . , αr, xr+1, . . . , xr+r′). Notice from Lemma 18 that T−1(xr+i) = `i,2 for 1 ≤ i ≤
r′, thus we are interested in the polynomial g(`1,2, . . . , `r′,2). Now we recursively compute
REM(g(`1,2, . . . , `r′,2), I[n]\[r], ~α

′) where ~α′ = (αr+1, . . . , αn).

2 We use f to denote f(`1, . . . , `r).
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Correctness of the algorithm. Let R(X) = f (mod I[n]) be the unique remainder poly-
nomial. Let Rr(X) = f (mod I[r]) and we know that Rr (mod I[n]\[r]) = R. So
by Lemma 19, to show the correctness of the algorithm, it is enough to show that
g(`1,2, . . . , `r′,2) = Rr(α1, . . . , αr, xr+1, . . . , xn).

Following Lemma 20, write R′ = f ′(x1, . . . , xr, xr+1, . . . , xn) = T (f) (mod I[r]). Then,
by Lemma 20 we conclude that R′ = T (Rr). It immediately follows that Rr = T−1(R′) =
f ′(x1, . . . , xr, T

−1(xr+1), . . . , T−1(xn)). Now by definition the polynomial g(`1,2, . . . , `r′,2)
is f ′(α1, . . . , αr, T

−1(xr+1), . . . , T−1(xr+r′)) which is simply Rr(α1, . . . , αr, xr+1, . . . , xn).

Time complexity. First, suppose that the field arithmetic over F can be implemented using
polynomial bits and L be the bit-size upper bound for any coefficient in f, p1, . . . , pn. This
covers all the finite fields where the field is given by an explicit irreducible polynomial. Also,
over any such field the polynomial T (f) can be explicitly computed from the input arithmetic
circuit deterministically in time poly(L, s, n, dO(r)).

Notice that in each recursive application the number of generators in the ideal is reduced
by at least one. Furthermore, in each recursive step we need time poly(L, s, n, dO(r)) to run
the division algorithm. This gives us a recurrence of t(n) ≤ t(n − 1) + poly(L, s, n, dO(r))
which solves to t(n) ≤ poly(L, s, n, dO(r)).

Bit-size growth over Q : Over Q, we only need to argue that the intermediate bit-size
complexity growth is only polynomial in the input size.Let L̃ be the maximum bit size of
any coefficient appearing in f(z1, . . . , zr), and let L be an upper bound on the bit sizes of
the other inputs, i.e. bit sizes of coefficients of `1, . . . , `r, p1, . . . , pn and α1, . . . , αn. We will
show that the circuit that we use in the next recursive step has coefficients of bit size at most
L̃+ poly(n, d, L).

Let |c(h)| denote the maximum coefficient (in absolute value) appearing in any polynomial
h. Then by direct expansion we can see that |c(f(`1, . . . , `r))| ≤ 2L̃+poly(n,d,L). Also the
linear transformation from lemma 18 can be implemented using poly-bit size entries. Together,
we get that that c(T (f(`1, . . . , `r)) ≤ 2L̃+poly(n,d,L). At this point, we expand the circuit and
obtain T (f) explicitly as a sum of dO(r) monomials. Then divide T (f) by p1(x1), . . . , pr(xr)
one-by-one, and substitute x1 = α1, . . . , xr = αr giving us the remainder g(xr+1, . . . , xr+r′).
We note that |c(g)| ≤ 2L̃+poly(n,d,L) 3. Now the algorithm passes the dO(r) size ΣΠΣ
circuit g(`1,2, . . . , `r′,2) (We note that T−1(xr+1) = `1,2, . . . , T

−1(xr+r′) = `r′,2), univariates
pr+1(xr+1), . . . , pn(xn) and the point (αr+1, . . . , αn) for the next recursive call. We note
that the bit-size upper bound L does not change for the input linear forms, and the
coefficient bit-size of f grows from L̃ to L̃+ poly(n, d, L) in one step of the recursion. This
gives us the recurrence S(n) ≤ S(n − 1) + poly(n, d, L) with S(1) = L̃, which solves to
S(n) = O(L̃+ poly(n, d, L)). J

I Remark. Given a rank r polynomial f(`1, . . . , `r) and a univariate ideal I =
〈p1(x1), . . . , pn(xn)〉, we can decide the membership of f in I by testing identity of f (mod I)
i.e. by evaluating f (mod I) at some α ∈ Fn chosen randomly [11, 29, 26]. Hence, the mem-
bership can be decided in randomized dO(r) · poly(n) time where d = max{deg(f), deg(pi) :
1 ≤ i ≤ n} using Theorem 3.

3 We tackle a similar situation in Section 5, and Lemma 33 gives further explanation on the bit-complexity
growth when we divide by univariate polynomials.
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3.2 Vertex Cover Detection in Low Rank Graphs
In the Vertex Cover problem, we are given a graph G = (V,E) on n vertices and an integer k
and the question is to decide whether there is a vertex cover of size k in G. This is a classical
NP-complete problem. In this section we show an efficient algorithm to detect vertex cover
in a graph whose adjacency matrix is of low rank.

Proof of Theorem 4. We present a reduction from Vertex Cover problem to Univariate
Ideal Membership problem that produces a polynomial whose rank is almost same as the
rank of AG. Consider the ideal I = 〈x2

1 − x1, x
2
2 − x2, . . . , x

2
n − xn〉 and the polynomial

f =
(n

2)∏
s=1

(~xAG~xT − s) ·
n−k−1∏
t=0

(
n∑
i=1

xi − t

)
,

where AG is the adjacency matrix of the graph G and ~x = (x1, x2, . . . , xn) is row-vector.

I Lemma 21. The rank of the polynomial f is at most r + 1.

Proof. We note that AG is symmetric since it encodes an undirected graph. Let Q be an
invertible n×n matrix that diagonalizes AG. So we have QAGQT = D where D is a diagonal
matrix with only the first r diagonal elements being non-zero. Let ~y = (y1, y2, . . . , yn) be
another row-vector of variables. Now, we show the effect of the transform ~x 7→ ~yQ on
the polynomial ~xAG~xT . Clearly, ~yQAGQT~yT = ~yD~yT and since there are only r non-zero
entries on the diagonal, the polynomial ~yD~yT is over the variables y1, y2, . . . , yr. Thus
g =

∏(n
2)
s=1(~xAG~xT − s) is a rank r polynomial. Also h =

∏n−k−1
t=0 (

∑n
i=1 xi − t) is a rank 1

polynomial as there is only one linear form
∑n
i=1 xi. Since f = gh, we conclude that f is a

rank r + 1 polynomial. J

Now the proof of Theorem 4 follows from the next claim.

I Claim 22. The graph G has a Vertex Cover of size k if and only if f 6∈ I.

Proof. First, observe that the set of common zeroes of the generators of the ideal I is the set
{0, 1}n. Let S be a vertex cover in G such that |S| ≤ k. We will exhibit a point ~α ∈ {0, 1}n
such that f(~α) 6= 0. This will imply that f 6∈ I. Identify the vertices of G with {1, 2, . . . , n}.
Define ~α(i) = 0 if and only if i ∈ S. Since ~xAG~xT =

∑
(i,j)∈EG

xixj and S is a vertex cover
for G, it is clear that ~xAG~xT (~α) = 0. Also (

∑n
i=1 xi)(~α) ≥ n− k. Then clearly f(~α) 6= 0.

For the other direction, suppose that f 6∈ I. Then by Theorem 1, there exists ~α ∈ {0, 1}n
such that f(~α) 6= 0. Define the set S ⊆ [n] as follows. Include i ∈ S if and only if ~α(i) = 0.
Since f(~α) 6= 0, and the range of values that ~xAG~xT can take is {0, 1, . . . , |E|}, it must be
the case that ~xAG~xT (~α) = 0. It implies that the set S is a vertex cover for G. Moreover,∏n−k−1
t=0 (

∑n
i=1 xi − t)(~α) 6= 0 implies that |S| ≤ k. J

The degree of the polynomial f is bounded by n2 + n and from Claim 22 we know
that f (mod I) is a non-zero polynomial if and only if G has a vertex cover of size k. By
Schwartz-Zippel-Demillo-Lipton [11, 29, 26] lemma (f (mod I))(~β) is non-zero with high
probability when ~β is chosen randomly from a small domain. Now, we need to just compute
(f (mod I))(~β) where f is a rank r+ 1 polynomial with `i = (~xQ−1)i for each 1 ≤ i ≤ r and
`r+1 =

∑n
i=1 xi which can be performed in (n, k)O(r) time using Theorem 3. J
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4 Parameterized Complexity of Univariate Ideals

We have already mentioned in Fact 2, that checking if the integer permanent is zero is
reducible to testing membership of a polynomial f(X) in the ideal 〈x2

1, . . . , x
2
n〉. So univariate

ideal membership is hard for the complexity class C=P even when the ideal is generated by
powers of variables [23]. In this section we study the univariate ideal membership with the
lens of parametrized complexity. The parameters we consider are either polynomial degree
or number of the generators for the ideal.

4.1 Parameterized by the Degree of the Polynomial
We consider the following: Let I be a univarite ideal given by generators and f ∈ F[X] a
degree k polynomial. Is checking whether f is in I fixed parameter tractable (with k as the
fixed parameter)?

We show that it admits an FPT algorithm for the special case when I = 〈xe1
1 , x

e2
2 , . . . , x

en
n 〉

and we work over either Z or any finite field of large characteristic.

4.1.1 Proof of Theorem 5
Proof. The proof consists of following three lemmas. Firstly, given an input instance a degree-
k f(X) and ideal I = 〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 of ideal membership, we reduce it to computing the

(scaled) Hadamard product of f(X) and a polynomial g(X), where g(X) is a weighted sum of
all degree k monomials that are not in I. Then we show that we can evaluate Hadamard
product(defined in Section 2) of any two polynomials at a point in time roughly linear in the
product of the size of the circuits when one of the polynomials is given by a diagonal circuit
as input. Finally the last part of the proof is a randomized construction of a homogeneous
degree k diagonal circuit of top fain-in roughly O∗(4.08k) that computes a polynomial weakly
equivalent to the polynomial g with constant probability. Recall that, two polynomials f
and g are said to be weakly equivalent if they share same set of monomials.

To define the polynomial g(X), let Sm,k be the elementary symmetric polynomial of
degree k over m variables. Set m =

∑n
i=1(ei − 1). Let Sm,k is defined over the variable set

{z1,1, . . . , z1,e1−1, . . . , zn,1, . . . , zn,en−1}. We define g(X) as the polynomial obtained from
Sm,k replacing each zi,j by xi.

I Lemma 23. Given integers e1, e2, . . . , en, and a polynomial f(X) of degree k, f ∈
〈xe1

1 , x
e2
2 , . . . , x

en
n 〉 if and only if f ◦s g ≡ 0.

Proof. Suppose, f 6∈ 〈xe1
1 , x

e2
2 , . . . , x

en
n 〉, then f must contain a degree k monomial M =

xf1
1 x

f2
2 . . . xfn

n such that fi < ei for each 1 ≤ i ≤ n. From the construction, it is clear that
g(X) contains M . Therefore, the polynomial f ◦s g is not identically zero. The converse is
also true for the similar reason. J

I Lemma 24. Given a circuit C of size s computing a polynomial g ∈ F[X] and a homogeneous
degree k diagonal circuit Σ[s′]∧[k] Σ circuit D of top fan-in s′ computing f ∈ Q[X] and ~a ∈ Qn,
we can evaluate (f ◦s g)(~a) in deterministic ss′ · poly(n, k) time using poly(n, k) space.

Proof. Let M be a degree d monomial over X in f and M = xe1
1 · · ·xen

n , it follows from the
definition that(
M ◦s (b1x1 + . . .+ bnxn)d

)
(~a) =

(
M ! · d!

M ! · b
e1
1 · · · ben

n ·M
)

(~a) = d! ·M(a1b1, . . . , anbn).
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Recall that, M ! is used for e1! · · · en!. As ◦s distributes over addition, we can writef ◦s s′∑
i=1

(bi1x1 + . . .+ binxn)d
 (~a) = d! ·

s′∑
i=1

f(a1bi1, . . . , anbin).

The computation can be done in deterministic ss′ · poly(n, k) time using poly(n, k) space. J

I Lemma 25. There is an efficient randomized algorithm that constructs with constant
probability a homogeneous degree k diagonal circuit D of top fan-in O∗(4.08k) which computes
a polynomial weakly equivalent to the polynomial g (defined before Lemma 23).

Proof. To construct such a diagonal circuit D, we use the idea of [22]. We pick a collection
of colourings {ζ : [m]→ [1.5 · k]} of size roughly O∗(( e√

3 )k) uniformly at random. For each
such colouring ζi, we define a Π[1.5·k]Σ formula Pi =

∏1.5k
j=1 (Lj + 1), where Lj =

∑
`:ζi(`)=j x`.

We say that a monomial is covered by a coloring ζi if the monomial is in Pi. It is easy to see
that, given any multilinear monomial of degree k, the probability that a random coloring will
cover the monomial is roughly (

√
3
e )k. Hence, going over such a collection of colorings of size

O∗(( e√
3 )k) chosen uniformly at random, with a constant probability all the multilinear terms

of degree k will be covered. To take the Hadamard product with a polynomial of degree
k, we need to extract out the degree k homogeneous part (say P ′i ) from each Pi. Notice
that, using elementary symmetric polynomial over 1.5k many variables S1.5k,k, we can write
P ′i = S1.5k,k(L1, . . . , L1.5k). Now we use Lemma 16 to get a diagonal Σ ∧[k] Σ circuit of top

fan-in roughly
(1.5k

0.5k
)
for each P ′i . Define D =

∑O∗(( e√
3

)k)
i=1 P ′i . By a direct calculation, one

can obtain a diagonal circuit D of top fan-in O∗(4.08k) which is weakly equivalent to the
polynomial Sm,k. The construction of the polynomial g(X) from Sm,k is already explained
before Lemma 23. J

Now, given a circuit C computing f ∈ Z[X] and integers e1, . . . , en, to decide the
membership of f in the ideal I = 〈xe1

1 , . . . , x
en
n 〉, we construct a diagonal circuit D from

Lemma 25. Following Lemma 23, we can decide the membership of f in the ideal checking
the polynomial C ◦sD is identically zero or not which can be performed by randomly picking
~a ∈ Zn using Schwartz-Zippel-Demillo-Lipton Lemma [26, 29, 11] and evaluating (C ◦sD)(~a)
using Lemma 24. Over Z the given circuit can compute numbers as large as 22nO(1)

. To
handle this, a standard idea is to evaluate the circuit modulo a random polynomial bit
prime. J

4.2 Parameterized by Number of Generators
In this section, we consider the univariate ideal membership parameterized on the number
of generators of the ideal. More precisely, given a polynomial f(X), can we obtain an FPT
algorithm for testing membership in the univariate ideal 〈p1(x1), . . . , pk(xk)〉 parameterized
by k? We show that the problem is W[1]-hard. Moreover, in contrast to the previous case,
we obtain MINI[1]-hardness for a special case of the problem when the univariate generators
are just power of variables.

Proof of Theorem 6. We show a reduction from k-independent set, a well known W[1]-hard
problem [10], to this problem. Let G = (V,E) be a graph on n vertices and k be the size of
the independent set. We identify its vertex set with the numbers {1, 2, . . . , n} and the edges
are tuples over [n]× [n]. Define the univariate ideal I = 〈p1(x1), . . . , pk(xk)〉 where for each
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1 ≤ i ≤ k, we define pi(xi) =
∏n
j=1(xi − j). Now we are going to define a polynomial f that

uses only k variables which will be used for the ideal membership problem. First consider
the polynomial D =

∏
1≤i6=j≤k(xi − xj).

Now we define the polynomial,

f =
∏

1≤i6=j≤k

∏
(u,v)∈E⊆[n]×[n]

[(xi − u)2 + (xj − v)2] · [(xj − u)2 + (xi − v)2].

The proof follows from the following claim.

I Claim 26. f ·D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 if and only if G has an independent set of
size k.

Proof. We use Theorem 1 to prove the claim. Let {j1, j2, . . . , jk} be an independent set in
G. Notice that (j1, . . . , jk) is a common zero of the generators p1, . . . , pk. Now notice that
f · D does not vanish at the point (j1, . . . , jk) as all the edges (j`, j`′) : 1 ≤ `, `′ ≤ k are
absent in the edge set E. Thus there is a common root of the ideal on which f ·D does not
vanish and hence f ·D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉.

Now if f · D 6∈ 〈p1(x1), p2(x2), . . . , pk(xk)〉 then there is a common zero (j1, . . . , jk) of
the ideal on which f ·D does not vanish. Using the same argument one can easily see that
{j1, . . . , jk} is an independent set in G. J

J

4.2.1 Proof of Theorem 7
We first relate our univariate ideal membership problem with a linear algebraic problem
k-Lin-Eq. It turns that k-Lin-Eq problem is more amenable to the MINI[1]-hardness proof.
Finally we show a reduction from MINI-1-in-3 POSITIVE 3-SAT to k-Lin-Eq to complete the
proof.

I Definition 27. k-Lin-Eq
Input: Integers k, n in unary, a k × n matrix A with all the entries given in unary and a k
dimensional vector ~b with all entries in unary.
Parameter: k.
Question: Does there exist an ~x ∈ {0, 1}n such that A~x = ~b?

I Lemma 28. There is a parameterized reduction from k-Lin-Eq to the univariate ideal
membership problem when the ideal is given by the powers of variables as generators.

Proof. We introduce 2k variables x1, x2, . . . , xk, y1, y2, . . . , yk where two variables will be
used for each row. For each i ∈ [n], let µi =

∑n
j=1 aij . For each column ci = (a1i, a2i, . . . , aki)

we construct the polynomial Pi = (y1
a1iy2

a2i . . . yk
aki + x1

a1ix2
a2i . . . xk

aki). We let PA =∏n
i=1 Pi and we choose the ideal to be 〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
1 〉. Notice that

PA has a small arithmetic circuit which is polynomial time computable.

I Claim 29. An instance (A,~b) is an YES instance for k-Lin-Eq iff PA 6∈
〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉.

Proof of Claim. Suppose (A,~b) is an YES instance. Then there is an ~x ∈ {0, 1}n such that
A~x = ~b. Define S := {i ∈ [n] : ~xi = 1} where xi is the ith co-ordinate of ~x. Think of the
monomial where x1

a1ix2
a2i . . . xk

aki is picked from Pi for each i ∈ S and y1
a1iy2

a2i . . . yk
aki
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is picked from reaming Pj ’s where j ∈ S̄. This gives us the monomial xb1
1 y

µ1−b1
1 . . . xbk

k y
µk−bk

1
in the polynomial PA. Thus PA 6∈ 〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉.

Now we show the other direction. Now suppose PA 6∈
〈xb1+1

1 , yµ1−b1+1
1 , . . . , xbk+1

k , yµk−bk+1
k 〉. Let S := {i ∈ [n] : x1

a1ix2
a2i . . . xk

aki is picked from
Pi}. There must be a monomial x1

c1x2
c2 . . . xk

cky1
d1y2

d2 . . . yk
dk in PA such that for each

i,
∑
j∈S aij = ci ≤ bi ,

∑
j 6∈S aij = di ≤ (µi − bi). As, µi =

∑
j∈S aij +

∑
i6∈S aij , we get

bi ≤
∑
j∈S aij . Hence,

∑
j∈S aij = bi for each i. Define ~x ∈ {0, 1}n where ~xi = 1 if i ∈ S

else ~xi = 0. This shows (A,~b) is an YES instance. J

J

Before we prove the MINI[1]-hardness of k-Lin-Eq, we show that the following problem is
MINI[1]-hard.

I Definition 30. MINI-1-in-3 POSITIVE 3-SAT
Input: Integers k, n in unary, a 3-SAT instance E consisting of only positive literals where E
has at most k log n variables and atmost k log n clauses.
Parameter: k.
Question: Does there exist a satisfiable assignment for E such that every clause has exactly
one TRUE literal?

I Claim 31. MINI-1-in-3 POSITIVE 3-SAT is MINI[1]-hard.

To prove the claim we only need to observe that the standard Schaefer Reduction [25] from
3-SAT to 1-in-3 POSITIVE 3-SAT is in fact a linear size reduction, that directly gives us an
FPT reduction from MINI-3SAT to MINI-1-in-3 POSITIVE 3-SAT.

Proof of Theorem 7. Given a MINI-1-in-3 POSITIVE 3-SAT instance E , order the variables
v1, . . . , vk logn and the clauses C1, . . . , Ck logn. Construct the following k log n×k log n matrix
M where the rows are indexed by the clauses and the columns are indexed by the variables.
M [i][j] is set to 1 if vj appears in Ci, otherwise set it to 0. Make M a 2k log n× n matrix by
adding an all zero row between every rows and appending all zero columns at the end. Now,
define ~e as a 2k log n dimensional vector where ith co-ordinate of e, ei = 1 when i is odd and
ei = 0 when i is even. We want to find ~y ∈ {0, 1}n such that M~y = ~e.

However this is not an instance of k-Lin-Eq. To make it so, we observe that M is a
bit matrix and ~e is a bit vector, hence we can modify them to a k × n matrix A and k

dimensional vector ~b in the following way. For each column j, think of the ith consecutive
2 log n bits as the binary expansion of a single entry, call it N and set A[i][j] to N . Similarly,
we modify ~e to a k dimensional vector ~b by considering 2 log n bits as a binary expansion of
a single entry. Now the proof follows from the following claim.

I Claim 32. E is an YES instance for MINI-1-in-3 POSITIVE 3-SAT if and only if there
exists an ~x ∈ {0, 1}n such that A~x = ~b.

Proof. Suppose there is such a satisfiable assignment for E . Define S := {j ∈ [k log n] |
vj = TRUE}. Define ~z ∈ {0, 1}n such that zj = 1 where j ∈ S else zj = 0. For each i,
as Ci contains exactly one TRUE literal, hence e2i+1 =

∑n
j=1M [i][j] · zj = 1 and e2i = 0.

Therefore ~z is a solution for M~y = ~e. As every integer has a unique binary expansion, hence
~z is also a solution for A~x = ~b.

Now we prove the other direction. Suppose A~z = ~b for some ~z ∈ {0, 1}n. From the
construction of the matrix M , it is sufficient to show that ~z is a satisfying assignment
for M~y = ~e. First we note that the numbers A[i][j], b[i] in their binary expansion have
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bits 1 in the odd location and 0 in the even locations. Let A[i][j] =
∑2 logn
t=1 aijt2t−1 and

b[i] =
∑2 logn
t=1 et2t−1. Since A~z = ~b we have

∑n
j=1A[i][j] · zj = b[i]. This shows that

n∑
j=1

A[i][j] · zj =
n∑
j=1

(2 logn∑
t=1

aijt2t−1

)
· zj =

2 logn∑
t=1

 n∑
j=1

aijt · zj

 2t−1.

Since E is a 3-CNF formula we have (
∑n
j=1 aijt ·zj) ∈ {0, 1, 2, 3}. Now we compare (

∑n
j=1 aijt ·

zj) with the binary expansion of b[i]. When t is odd the bit et is 1 and so there must be a 1
in the corresponding bit of (

∑n
j=1 aijt · zj). This shows that (

∑n
j=1 aijt · zj) 6= 0 when t is

odd. Now if (
∑n
j=1 aijt · zj) ∈ {2, 3} for any odd t then the term 2t+1 will be produced and

this will not match the expansion of b[i] as the et+1 = 0. Thus by the uniqueness of binary
expansion we conclude that (

∑n
j=1 aijt · zj) = 1 if t is odd and 0 otherwise. Thus M~y = ~e

has a solution with yi = zi. J

J

5 Non-deterministic Algorithm for Univariate Ideal Membership

In this section we prove Theorem 8. Given a polynomial f(X) ∈ Q[X] and a univariate ideal
I = 〈p1(x1), . . . , pn(xn)〉 where the generators are p1, . . . , pn, we show a non-deterministic
algorithm to decide the (non)-membership of f in I. By Theorem 1, it suffices to show that
there is a common zero ~α of the generators p1, p2, . . . , pn such that f(α) 6= 0. Since in general
~α ∈ Cn, it is not immediately clear how to guess such a common zero by a NP machine.
However, we are able to show that for the NP machine it suffices to guess such an ~α upto
polynomially many bits of approximation.

We begin by proving a few technical facts which are useful for the main proof. Write
f(X) =

∑n
i=1 hi(X) pi(xi) + R(X) where for all i ∈ [n], degxi

(R) < deg(pi). For any
polynomial g, let |c(g)| be the maximum coefficient (in absolute value) appearing in g. The
following lemma gives an estimate for the coefficients of the polynomials h1, . . . , hn, R.

I Lemma 33. Let 2−L ≤ |c(f)|, |c(pi)| ≤ 2L. Then there is L′ = poly(L, d, n) such that
2−L′ ≤ |c(hi)|, |c(R)| ≤ 2L′ where d is the degree upper bound for f , and {pi : 1 ≤ i ≤ n}.

Proof. The estimate on L′ follows implicitly from the known results [8]. It can be also seen
by direct computation. Write f(X) =

∑
i fi(x2, . . . , xn) xi1 and then divide xi1 (mod p1(x1))

for each i. The modulo computation can be done by writing xi1 = q1(x1)p(x1) + r1(x1) with
the coefficients of q1 and r1 are unknown. We can then solve it using standard linear algebra.
In particular, one can use the Cramer’s rule for system of linear equation solution. The
growth of the bit-size is only poly(L, d). More precisely, if cmax is the maximum among
|c(f)|, |c(p1)|, any final coefficient is at most cmax · 2poly(L,d). We repeat the procedure for
the other univariate polynomials one by one. The final growth on the coefficients size is at
most poly(n,L, d). J

Let ~α = (α1, . . . , αn) ∈ Cn be such that pi(αi) = 0, 1 ≤ i ≤ n. From Lemma 11, we get
that 1

2L̂
≤ |αi| ≤ 2L̂ where L̂ = poly(L, d). Let α̃i ∈ Q[i] be an ε-approximation of αi, e.g.

|αi − α̃i| ≤ ε. Then we show that the absolute value of pi(α̃i) is not too far from zero.

I Observation 34. For 1 ≤ i ≤ n we have that |pi(α̃i)| ≤ ε · 2(dL)O(1) .

Proof. Let pi(xi) = c ·
∏d
j=1(xi−βi,j) and w.l.o.g assume that α̃i is the approximation of the

root βi,1. Then |pi(α̃i)| ≤ ε · |c| ·
∏d
j=2 |α̃i−βi,j | ≤ ε · |c| ·

∏d
j=2(|βi,1−βi,j |+ ε) ≤ ε ·2poly(d,L).

The final bound follows from the bound on the roots given in Lemma 11. J

FSTTCS 2018
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Since we have an upper bound on the coefficients of the polynomials {hi : 1 ≤ i ≤ n}
from Lemma 33, it follows that for 1 ≤ i ≤ n we have that |hi(α̃)| ≤ 2(ndL)O(1) . Here we use
the fact that the approximate root αi can be trivially bounded by 2L̂+1.

5.1 Proof of Theorem 8
Proof. If f is not in the ideal I, by Alon’s Nullstellensatz, we know that there exists a tuple
~α = (α1, . . . , αn) ∈ Z(p1)× . . .× Z(pn) such that R(~α) 6= 0. Suppose that the NP Machine
guess the tuple ~̃α = (α̃1, . . . , α̃n) which is the ε-approximation of the tuple ~α = (α1, . . . , αn)
4. Using the black-box for f , obtain the value for f(~̃α). Next, we show that the value |f(~̃α)|
distinguishes between the cases f ∈ I and f 6∈ I.

Case 1: f ∈ I. |f(~̃α)| = |
∑n
i=1 hi(~̃α)pi(α̃i)| ≤ (

∑n
i=1 |hi(~̃α)|)·ε·2(dL)c1 ≤ ε·2(ndL)c2 . where

the constant c2 is fixed by Observation 34 and the bounds on |hi(~̃α)|.
Case 2: f 6∈ I. Recall the inequality for complex numbers : |Z1 + Z2| ≥ |Z2| − |Z1|. Using

this write |f(~̃α)| ≥ |R(~̃α)| −
∑n
i=1 |hi(~̃α)| |pi(~̃α)|. Notice that |R(~̃α)| ≥ |R(~α)| − |R(~̃α)−

R(~α)|. Combining we get the following : |f(~̃α) ≥ |R(~α)| − |R(~̃α)−R(~α)| − ε · 2(ndL)c2
.

Now to complete the proof, we show a lower bound on |R(~α)| and an upper bound for
|R(~̃α)−R(~α)|.

I Claim 35. |R(~α)| ≥ 1
2(ndL)c3 for some constant c3.

Proof. Define the polynomial R̂(xn) = R(α1, . . . , αn−1, xn) = c ·
∏d′

j=1(xn − βj) where c is
some constant and d′ ≤ d. Note that αn is not a zero for R̂(xn). Consider the polynomial
Q(xn) = pn(xn)R̂(xn). The set {αn, β1, . . . , βd′} ⊆ Z(Q) and αn 6= βj : 1 ≤ j ≤ d′. Using
the root separation bound for |αn − βj | obtained in Lemma 12, we can easily lower bound
that |R̂(αn)| ≥ 1

2(ndL)c3 . J

I Claim 36. |R(~̃α)−R(~α)| ≤ 2(ndL)c4 for some constant c4.

Proof. Define R0(~̃α) = R(~α) and Ri(~̃α) = R(α̃1, . . . , α̃i, αi+1, . . . , αn). Then we use triangle
inequality to notice that |R(~α)−R(~̃α)| ≤

∑n
i=1 |Ri−1(~̃α)−Ri(~̃α)|. Write explicitly Ri−1(~̃α)−

Ri(~̃α) =
∑
~e c~eα̃

e1
1 . . . α̃

ei−1
i−1 (αei

i − α̃ei
i )αei+1

i . . . αen
n . Notice the upper bounds on |αi| ≤

2(ndL)O(1) , and |αi − α̃i| ≤ ε. We apply these bounds and use triangle inequality to get that
|R(~̃α)−R(~α)| ≤ ε · 2(ndL)c4 . J

Combining Claim 35, and Claim 36, we get the lower bound |f(~̃α)| ≥ 1
2(ndL)c3 − ε ·

(2(ndL)c4 + 2(ndL)c2 ). To make the calculation precise, let 3M = 1
2(ndL)c3 and choose ε such

that ε · (2(ndL)c4 + 2(ndL)c2 ) ≤M .
The final implication will be |f(~̃α)| ≤M when f ∈ I and |f(~̃α)| ≥ 2M when f 6∈ I. It is

important to note that the parameter M can be pre-computed from the input parameters
efficiently.

Now we show how to verify that the guessed point ~̃α is a good approximation of the
roots for the univariate polynomials. We need to only verify that for each i, α̃i is a good
approximation for some root of the univariate polynomial pi(xi). The fact that it is also a
good approximation for the non-zero of R is already verified above. The NP machine, given

4 Later we fix ε suitably and use Lemma 13 to verify in polynomial time that ~̃α is indeed ε-approximation
of ~α.
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p1, . . . , pn guesses α̃i using b bits and verifies that |pi(α̃i)| < 2−Lεd which, by lemma 13,
shows that the guessed α̃i is ε-close to some root of pi.

We note that such a guess always exists. Indeed, invoking Observation 34 with |αi−α̃i| ≤ δ
we can conclude that |pi(α̃i)| ≤ δ · 2(dL)O(1) . Now, the NP machine can guess b bits such that
|αi − α̃i| ≤ 2−b. We require 2−b · 2(dL)O(1)

< 2−Lεd, simplifying we get, 2−b < 2−(dL)O(1) · εd.
Hence b > (dL)O(1) log 1

ε . Thus using poly(d, L, log 1
ε ) bits there is always a guess α̃i for

which |pi(α̃i)| < 2−Lεd. J
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Abstract
In this paper, we address the verification problem for timed asynchronous programs. We associ-
ate to each task, a deadline for its execution. We first show that the control state reachability
problem for such class of systems is decidable while the configuration reachability problem is
undecidable. Then, we consider the subclass of timed asynchronous programs where tasks are
always being executed from the same state. For this subclass, we show that the control state
reachability problem is PSPACE-complete. Furthermore, we show the decidability for the config-
uration reachability problem for the subclass.
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1 Introduction

One of the well-known design paradigms in concurrent programs is to break a problem into
smaller subproblems which are solved asynchronously and concurrently. Each process or
thread in the program can then dispatch tasks to other processes, expecting them to be
completed by a certain deadline. Each process has a potentially unbounded bag where
its pending tasks are stored. In the asynchronous paradigm, one need not wait for time-
consuming tasks to be completed to proceed; asynchronous procedure calls are stored in a
task buffer, which are executed later, rather than right away. The tasks which are posted
asynchronously have deadlines attached to them, and the process or thread, in whose bag the
task has been posted, must execute the task within the deadline. In addition to asynchronous
procedure calls, one can also make use of synchronous procedure calls where the caller of the
procedure blocks until the callee returns. To summarize, an asynchronous program is one
that contains procedure calls which are not immediately executed from the calling site, but
stored and dispatched in a non-deterministic order by some scheduler(s) at a later point.
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8:2 Verification of Timed Asynchronous Programs

As an example for timed asynchronous programs, we look at SwingWorker, an abstract
class developed for the Swing library of Java, and is used to perform lengthy GUI interaction
tasks in a background thread. While developing applications, sometimes the GUI hangs when
it is trying to do some lengthy task. For such purposes, the SwingWorker class schedules the
execution of this lengthy task on a different thread while the GUI still remains responsive.
There are deadlines associated with the background tasks, and if the worker thread which
is handling the background task does not finish by the given deadline, then an interrupt
is created. To update the user (and GUI) regarding the progress of background tasks,
inter-thread communication is allowed.

Writing correct asynchronous programs and reasoning about their correctness is very
difficult, since the creation and execution of tasks within deadlines leads to unpredictable
behaviours. The verification of asynchronous programs is hence a very challenging topic.
A formal model of mutiset pushdown systems for asynchronous recursive programs was
presented in [16]. This model consists of a pushdown automaton equipped with a multiset
or bag. The automaton adds pending asynchronous method calls to the bag, and the stack
executes synchronous recursive method calls. A task can be taken from the bag for execution
when the stack is empty. The control state reachability problem was shown to be decidable
with an EXPSPACE lower bound under this model. This shows that the case of single-
thread asynchronous programs, the reachability problem is very difficult. Subsequently, [8]
showed that control state reachability for single-thread asynchronous recursive programs is
EXPSPACE-complete. In all these models, time constraints do not play a role in the execution
of the asynchronous methods. In the timed setting, [7] considers asynchronous calls of the
form future(p, t) posted to the task buffer, where p is a handler and t ∈ N. The idea is that
the handler p will execute the task in t time units from now. The execution of the program
is controlled by logical ticks of a clock. The model proposed in [7] is a generalization of the
models in [16] and [11]. [7] shows that safety checking for such programs is undecidable.

The goal of this paper is to investigate the decidability and complexity of the reachability
problem for asynchronous non-recursive programs under dense time. We propose a formalism
called multiset timed automata (MTA) where each process is modeled as a timed automaton [2].
Each timed automaton is equipped with a bag or multiset. To handle asynchronous method
calls, each timed automaton can post a task to the bag of another automaton. These tasks
have deadlines attached to them. The deadline is either a natural number d ∈ N or∞. When
a task is posted to a bag, its age is considered to be 0, and with elapse of time, the age
also grows. A task can be executed by the process in whose bag it lies, before the age of
the task exceeds the deadline; tasks whose ages have exceeded the deadline will be forever
pending. While a main process picks up pending tasks depending on their ages in [7], in
our model, a process can execute a pending task in its bag at its will. There are 2 sources
of infinity in our model: one coming from dense-time, and the second coming from the
unbounded size of the bags of each process. We investigate control state reachability as
well as configuration reachability of this model, and show that control state reachability is
decidable and EXPSPACE-hard, while configuration reachability is undecidable. We then
identify a practically relevant class of MTA where the task execution happens from the
same state in each process, and give a PSPACE-complete decision procedure for control state
reachability. The configuration reachability also turns out to be decidable for this class.

Related Work

Most of the existing work (e.g., [3,4,6,8,11,13,14,16]) on the formal verification of asynchron-
ous programs considers the untimed version. In [7], the authors consider timed constraints
on tasks; however, this model is different from the formal model studied in this paper. In
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fact, in [7], the authors assume that a task should always be executed by its deadline and
the execution of each task is done in logical zero time. In our model, a task whose age has
exceeded the deadline will be forever pending. Furthermore, the control state reachability
for the model presented in [7] is undecidable while it is decidable for our model. In [5], the
authors consider a model similar to the one considered in this paper and show that the
coverability problem is decidable using a different technique than ours.

2 Preliminaries

In this section, we introduce some notations and definitions that will be used throughout the
paper.

Notations

We use standard notation N for the set of naturals, along with ∞. R represents the set
of non-negative real numbers. Let X be a finite set of variables called clocks, taking val-
ues from R. A valuation on X is a function ν : X → R. We assume an arbitrary but
fixed ordering on the clocks and write xi for the i-th clock. This allows us to treat a
valuation ν as a vector (ν(x1), ν(x2), . . . , ν(xn)) in R|X |. For a subset of clocks X ∈ 2X
and valuation ν ∈ R|X |, we write ν[X:=0] for the valuation where ν[X:=0](x) = 0 if
x ∈ X, and ν[X:=0](x) = ν(x) otherwise. For t ∈ R, write ν + t for the valuation
defined by ν(x) + t for all x ∈ X . The valuation 0 ∈ R|X | is a special valuation such that
0(x) = 0 for all x ∈ X . For a, b ∈ N and a < b, the set I of time intervals is defined
by I := [a, b] | [a, a] | (a, b] | [a, b) | (a, b) | [a,∞) | (a,∞). The set of clock constraints,
denoted ϕ(X ), is the set of Boolean formulae over {x ∈ I | x ∈ X , I ∈ I}. For a constraint
g ∈ ϕ(X ), and a valuation ν ∈ R|X |, we write ν |= g to represent the fact that valuation ν
satisfies the constraint g. For example, (1.1, 0, 10) |= (x1 ∈ (0, 2))∧(x2 ∈ [0, 0])∧(x3 ∈ (1,∞)).

Timed Automata

Let Act denote a finite set called actions. A timed automaton (TA) [2] is a tuple A =
(L,L0, Act,X , E) such that (i) L is a finite set of locations, (ii) X is a finite set of clocks, (iii)
Act is a finite alphabet called an action set, (iv) E ⊆ L×ϕ(X )×Act× 2X ×L is a finite set
of transitions, and (v) L0 ⊆ L is the set of initial locations. A state s of a timed automaton is
a pair s = (`, ν) ∈ L× R|X |. A time elapse transition from s = (`, ν) to s′ = (`′, ν′) denoted
s

t→ s′ is defined iff `′ = ` and ν′ = ν + t. Given e = (`, g, a, Y, `′) ∈ E, a discrete transition
from s to s′ on e is written as s e→ s′, such that ν |= g and ν′ = ν[Y :=0]. A run is a finite
sequence ρ = s0

t1→ s′0
e1→ s1

t2→ s′1
e2→ s2 . . . sn−1

tn→ s′n−1
en→ sn of states with alternating time

elapse transitions and discrete transitions.

Multisets or Bags

A multiset or bag over an alphabet Σ is a mapping M : Σ 7→ N. For an element a ∈ Σ, we
use a ∈ M to denote that M(a) ≥ 1. We use ∅ to denote the empty multiset. Given two
multisets M1,M2 over Σ, we write M1 ≤ M2 iff M1(a) ≤ M2(a) for all a ∈ Σ. M1 + M2
denotes the multiset M such that M(a) = M1(a) +M2(a) for all a ∈ Σ. Likewise, M1 −M2
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8:4 Verification of Timed Asynchronous Programs

denotes, when it is defined (i.e., M1 ≥M2), the multiset M such that M(a) = M1(a)−M2(a)
for all a ∈ Σ. The notation M1 + a denotes a multiset M2 such that M2(a) = M1(a) + 1 and
M2(b) = M1(b) for all b 6= a. Likewise, M1 − a denotes, when it is defined (i.e. M1(a) ≥ 1),
a multiset M2 such that M2(a) = M1(a)− 1 and M2(b) = M1(b) for all b 6= a. The terms
multiset and bag will be used interchangeably.

Timed Petri Nets

A Timed Petri Net (TPN) [17] is a tuple N = (P, T, F, c) where P is a finite set of places,
T is a finite set of transitions, T ∩ P = ∅ and F ⊆ (P × T ) ∪ (T × P ) is a flow relation,
c : F ∩ (P × T )→ I is a time constraint relation assigning a time interval to every arc from
a place to a transition. A marking M of N is a mapping that associates to each place p a
multiset over R. A marked TPN is a pair (N ,M0) where M0 is an initial marking, which
assigns to each place in P , an initial multiset of tokens annotated with 0 (the initial age).
The dynamics of a TPN consists of two types of transitions rules: firing of a transition and
time elapsing. Given N , along with a marking M , (denoted (N ,M)) a transition t is enabled
at M iff for all places p such that (p, t) ∈ F , there exists some x ∈M(p), and x ∈ c(p, t). If
t is enabled by M , then it can be fired, producing a marking M ′ obtained from M by (i)
removing a token from M(p) for all places p such that (p, t) ∈ F and whose age satisfies
c(p, t), and (ii) adding a token with age 0 to M(q) for all places q such that (t, q) ∈ F . In a
time elapse transition, with an elapsing time r ∈ R, the age of all tokens increases by r. A
marked TPN (N ,M0) induces a transition system with states are the markings of N , and
the transition relation consists of time elapsing and firing transitions.

A read arc in a TPN facilitates firing a transition without removing the token. We use
F∗ ⊆ P × T to denote the set of read arcs and c∗ : F∗ → I to denote a function that
assigns a time interval to each read arc. A transition t is enabled iff for all places p such that
(p, t)∗ ∈ F∗, there exists some x ∈ M(p) and x ∈ c∗(p, t). The transition system induced
by a marked TPN with read arcs can be defined in a similar manner as for marked TPN.
A 1-safe marking is one where |M(p)| ≤ 1 for all p ∈ P . A 1-safe TPN is a marked TPN
(N ,M0), with F ∩ F∗ = ∅, where all markings which are reachable from M0 are 1-safe.

Coverability problem. For markings M1 and M2 in a TPN N , define M1 ≤M2 iff for all
p ∈ P, M1(p) ≤M2(p). The coverability problem for N asks whether, given a marking M ,
it is possible to reach a marking M ′ in N from the initial marking M0 such that M ≤M ′.

3 Multiset Timed Automata

Let T ={T1, . . . , TN} be a set consisting of N≥1 timed automata Ti=(Li, L0
i , Acti,Xi, Ei).

A Multiset Timed Automata (MTA) is defined as M = (Σ, T ,X , St), where Σ is a finite
alphabet called tasks, X =

⊎N
i=1 Xi is the finite disjoint union of clocks in Ti, St is a function

that assigns a finite multiset St(i) over Σ (possibly empty) to the timed automaton Ti. This
is the initial set of tasks assigned to Ti. The actions Acti are defined as Acti = {i!j(a[d]), i?a |
a ∈ Σ, j ∈ {1, . . . , N}, d ∈ N ∪ {∞}} ∪ {nopi}. The number d is the deadline for the task a.
The action i!j(a[d]) represents Ti adding the task a to the bag of automaton Tj , and the task
a has an associated deadline d. Likewise, the action i?a represents automaton Ti picking
up the task a from its bag, provided its age has not exceeded the deadline. For readability
reasons, we assume that any outgoing transition from any initial location is labeled by an
action of the form i?a. We use the notation N -MTA whenever we need to clarify the number
of timed automata Ti which are used in the definition.
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`1 `2 `3 `4
1?β1

{x1}

1!2(κ2[2])

x1∈[0, 1)

1!3(β3)

1!1(β1)

`5 `6 `7 `8

nop2

2?κ2

{x2}2?ζ2

{x2} 2!3(ζ3[2])

2!2(ζ2)

{x2}

`9 `10 `11 `12
3!3(ζ3[1])

3?β3

{x3}

3?ζ3

{x3}

3!2(ζ2)

{x3}

Figure 1 A stateless and time independent 3-MTA consisting of timed automata T1, T2, T3 from
left to right. When the deadline of a task is ∞, we do not mention it.

Let q = (q1, . . . , qN ) be a tuple of states, where qi = (si, νi) is the current state of
Ti. Let m = (M1, . . . ,MN ) be a tuple of multisets. Each element in Mi has the form
α = (a, r, d) ∈ Σ× R× N consisting of – pending tasks, their ages, and their deadlines in Ti.
The age of a task in a bag is the time elapse since it has been added to the bag. For t ∈ R, let
q+ t represent the tuple (q′1, . . . , q′n) where q′i = (si, νi+ t). For an element α = (a, r, d) ∈Mi,
α + t = (a, r + t, d); Mi + t is the multiset obtained by replacing each α ∈ Mi with α + t.
We define m+ t as the tuple (M1 + t, . . . ,MN + t).

A configuration c of an N -MTA is the tuple (q,m) consisting of the current states of all
the N timed automata, along with the multisets of pending tasks corresponding to each Ti.
An initial configuration is defined as c0 = (q0,m0), where q0 is the tuple ((`0

1,0), . . . , (`0
N ,0))

of initial states of all Ti (`0
i ∈ L0

i ) and m0 = (M1, . . . ,MN ) where Mi((a, r, d)) = St(i)(a),
for all a ∈ Σ, r = 0 and d =∞, and Mi((a, r, d)) = 0 otherwise. Given two configurations
c = (q,m), and c′ = (q′,m′), we have:

For t ∈ R, c t→ c′ is a time elapse transition iff q′ = q + t,m′ = m+ t.
Let ei = (`i, gi, acti, Yi, `′i) ∈ Ei. Then, c

ei→ c′ iff
qi = (`i, νi), νi |= gi, q′i = (`′i, ν′i), ν′i = νi[Yi := 0], and for all k 6= i, q′k = qk, and,
If acti = i!j(a[d]), then M ′j = Mj + (a, 0, d), and M ′k = Mk for all k 6= j,
If acti = i?a, then ∃c, d, such that (a, c, d) ∈ Mi, M ′i = Mi − (a, c, d), and c ≤ d (i.e.
the age of the task has not yet exceeded the deadline) and M ′k = Mk for all k 6= i,
If acti = nopi, then M ′k = Mk for all 1 ≤ k ≤ N .

Starting with an initial configuration c0, a run ρ is defined as a finite sequence of
alternating time elapse and discrete transitions of the form c0

t0→ c′0
e1→ c1

t1→ c′1
e2→ c2 · · ·

ej→ cj

or c0
t0→ c′0

e1→ c1
t1→ c′1

e2→ c2 · · ·
tj→ c′j . In that case we say the configuration cj is reachable

from the initial configuration c0 by the run ρ.
In this paper, we consider the following problems. Let s = (s1, . . . , sN ) ∈ L1 × · · · × LN .

P1 Control State Reachability. Given a particular tuple of locations s = (s1, . . . , sN )
of an N -MTA M, the control state reachability problem asks if starting from the initial
configuration c0 of M, there is a run reaching a configuration c = (q,m) such that
qi = (si, νi) for some m, and for some νi, for all 1 ≤ i ≤ N .

P2 Configuration Reachability. Given a particular tuple of locations s = (s1, . . . , sN ) of
an N -MTA M, the configuration reachability problem asks if starting from the initial
configuration c0 of M, there is a run reaching a configuration c = (q,m) such that
m = (∅, . . . , ∅) and qi = (si,0), for all 1 ≤ i ≤ N .

Stateless and Time-Independent MTA

An N -MTA is said to be stateless if Ei ∩ (Li\{`0
i } × ϕ(Xi)× {i?a|a∈Σ} × 2Xi × Li)=∅ for

all 1 ≤ i ≤ N , and some `i0 ∈ Li0. The stateless condition ensures that a new task can
be picked by an automaton only from a unique initial location. An N -MTA is said to be
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8:6 Verification of Timed Asynchronous Programs

time-independent iff, in each Ti, all clocks are reset on picking a task from the multiset, and
no clock constraints are checked (i.e. Ei ∩ (Li × ϕ(Xi)× {i?a|a∈Σ} × (2Xi \ {Xi})× Li)=∅
and Ei ∩ (Li × (ϕ(Xi) \ {true})× {i?a|a∈Σ} × 2Xi × Li)=∅ for all 1 ≤ i ≤ N).

Figure 1 describes a stateless and time-independent MTA M consisting of 3 timed
automata T1, T2, T3. The following is a run in M. The initial configuration c0 = (q0,m0)
where q0 = ((`1, 0), (`6, 0), (`10, 0)) andm0 = (M1,M2,M3) with multisetsM1 = {(β1, 0,∞)},
M2 = {(β2, 0,∞)}, and M3 = {(β3, 0,∞)}. Let ei,j denote the transition from location `i to
`j (in the example, we have at most one transition between any pair of locations `i, `j). For
example, e23 = (`2, x1∈[0, 1), 1!2(κ2[2]), ∅, `3). Consider the run σ c0

0.5→ c′0
e1,2→ c1

0.3→ c′1
e2,3→

c2
0.5→ c′2

e6,7→ c3
0.2→ c′3

e7,8→ c4
0→ c′4

e10,9→ c5
0.4→ c′5

e3,4→ c6
0.1→ c′6

e4,1→ c7
0.1→ c′7

e1,2→ c8
0.1→ c′8

e8,6→ c9
0.2→

c′9
e9,10→ c10

0.6→ c′10
e6,5→ c11

0.5→ c′11
e10,11→ c12

0.9→ c′12
e11,12→ c13 which reaches locations (`2, `5, `12)

in T1, T2, T3 respectively.

4 Control State Reachability

In the following, we first prove that the control reachability is decidable with a non-primitive
complexity (at the level Fωωω in the fast growing hierarchy [9]). Then, we show that the
control state reachability for stateless and time independent MTA is PSPACE-complete.

I Theorem 1. The control state reachability problem for N -MTA is reducible to the coverab-
ility problem for timed Petri nets with read-arcs.

Proof. We give a translation from an N -MTA M to a TPN with read arcs N such that the
control state reachability ofM reduces to the coverability of N .

Let M = (Σ, T ,X , St) be an N -MTA. Without loss of generality, assume that we are
interested in reaching f = (f1, . . . , fN ) ∈ L1× · · · ×LN . Given the N -MTAM, we construct
a timed Petri net N as follows. There is a place p` in the net corresponding to each location
` ∈ Li in Ti for each i ∈ {1, . . . , N}. For each Ti, there is one and only one marked place p`
such that ` ∈ Li, to denote that the control of Ti is at a certain location `. For each clock
x in X , we have a place px in the net. Next, we model the multisets Mi of each Ti. Let
dmax ∈ N be the maximal value used for any deadline in M. The possible task, deadline
combinations are in the set Σ × {0, 1, . . . , dmax,∞}. Therefore, corresponding to each Ti,
we have |Σ| × (dmax + 2) places in the net. We need to have these many places so as to
distinguish between the tokens. Thus, for each pair (a, d) ∈ Σ×{0, 1, . . . , dmax,∞}, we have
the places p1

(a,d), . . . , p
N
(a,d).

A transition of the form (`, g, i?a, Y, `′) in automaton Ti is simulated by a transition in
N as follows. A token from the place p` corresponding to the location `, and a token from
one of the places pi(a,d), d ∈ {0, 1, . . . , dmax,∞} are removed. The deadline is checked on the
arc via a constraint [0, z] from the place pi(a,z) containing the token. A token is added to
the place p`′ corresponding to `′. A transition of the form (`, g, i!j(a[d]), Y, `′) in automaton
Ti is simulated in a similar way. The tokens corresponding to locations are removed and
added as in the previous case and a token is added to the place pj(a,d). The clock constraints
corresponding to any transition are checked using read arcs from the places simulating the
clocks. Clock resets are simulated by removing a token and putting back a token in the place
corresponding to the clock.

The details of the formal construction of N and the correctness proof can be found in
the extended version of the paper [1]. J

As a corollary of Theorem 1, we get:

I Corollary 2. The control state reachability problem for (time-independent) N -MTA is
decidable.
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Observe that we can easily show that the coverability of Petri nets is reducible to the
control state reachability problem for time-independent (resp. stateless) N -MTA (in the
same way as the proof of EXPSPACE lower bound for the model multiset pushdown systems
presented in [16]). Therefore, the control state reachability problem for time-independent
(resp. stateless) N -MTA is EXPSPACE-hard.

In the rest of this section, we consider the case of stateless and time-independent N -MTA.

I Theorem 3. The control state reachability problem for stateless and time-independent
N -MTA is PSPACE-complete (for N ≥ 1).

Proof. Since MTA subsume timed automata [2], the PSPACE-hardness of the control state
reachability of MTA follows directly from the PSPACE-hardness of reachability of timed
automata. The rest of the proof is devoted to proving the PSPACE-membership of the
problem.

LetM = (Σ, T ,X , St) be a stateless, time-independent N -MTA, with T = {T1, . . . , TN}
X =

⊎N
i=1 Xi and St, the function that assigns an initial multiset St(i) to each timed

automaton Ti. Incurring a polynomial blowup in the size, we give a reduction from the
control state reachability ofM to the coverability in 1-safe timed Petri net with read arcs.
The coverability of 1-safe timed Petri nets with read arcs is known to be PSPACE-complete [17]
and our result follows from this.

Without loss of generality, assume that we are interested in reaching f = (f1, . . . , fN ) ∈
L1 × · · · × LN . Let σ be any run from the initial configuration c0 ofM which leads into a
configuration with locations f . Let c = (q,m) be any configuration that appears in σ. Our
proof is divided into two parts.
1. We show that the number of relevant task tuples along σ is bounded by N . Intuitively, A

task tuple (a, r, d) ∈ Σ×R×N is relevant for an automaton Ti if (a, r, d) ∈Mj , for some
j, (r ≤ d) and the task (a, r, d) must be executed by Tj in order to reach the location fi.
The irrelevant task tuples can hence be ignored from each Mi, as they do not affect the
control state reachability.

2. The bound on the number of relevant task tuples obtained in the previous step is used in
constructing a reachability preserving 1-safe timed Petri net with read arcs.

Bounding the number of relevant task tuples

Consider the run σ as described above. Starting from c0, let σi denote the sequence of
transitions (in the order they appear in σ), pertaining only to Ti. In the run σ pertaining to
the example in figure 1, σ1 consists of all the violet discrete transitions separated by time
elapses: c0

0.5→ c′0
e1,2→ c1

0.3→ c′1
e2,3→ c2

1.1→ c′5
e3,4→ c6

0.1→ c′6
e4,1→ c7

0.1→ c′7
e1,2→ c8. We now define a

block.
A block in σi begins with a discrete transition of the form i?a→ (for some task a) and

extends until the next transition of the form i?b→ (for some task b) is encountered. Thus, a
block is a sequence of transitions between two executions of tasks by some Ti, and begins
with some task execution. σ1 has two blocks: the sequence of transitions from c′0 till c′7
forms a block, and the second block is the transition from c′7 to c8. Omitting the time elapse
transitions in σi, let us label each transition in σi with a unique name. Doing this for all σi
gives us a unique label for each discrete transition in σ. Let L = {α1, . . . , αm} be the set of
block labels occurring in σ. In our running example, using labels {α1, . . . , α6}, we can label
the blocks in σ as c0

0.5→ c′0
e1,2,α1→ c1

0.3→ c′1
e2,3,α1→ c2

0.5→ c′2
e6,7,α2→ c3

0.2→ c′3
e7,8,α2→ c4

0→ c′4
e10,9,α3→

c5
0.4→ c′5

e3,4,α1→ c6
0.1→ c′6

e4,1,α1→ c7
0.1→ c′7

e1,2,α4→ c8
0.1→ c′8

e8,6,α2→ c9
0.2→ c′9

e9,10,α3→ c10
0.6→ c′10

e6,5,α5→
c11

0.5→ c′11
e10,11,α6→ c12

0.9→ c′12
e11,12,α6→ c13. From here on, we refer to the blocks using the block

labels.
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(α6, {3})

(α5, {2})

(α4, {1})

(α1, ∅)

(α3, ∅)

(α2, ∅)

G0(M)

(α3, ∅)

(α1, {1})

(α6, {3}) (α5, {2})

(α2, {2, 3})

ζ3 ζ2

(α4, {1})

β1

G1(M)

(α3, ∅)

(α1, {1, 2, 3})

(α6, {3}) (α5, {2})

(α2, {2, 3})

ζ3 ζ2

κ2

(α4, {1})

β1

G(M) = G2(M)

Figure 2 The dependency graph in stages. G0(M) is the initial graph with no edges. Gi+1(M)
is obtained from Gi(M) by changing the color of all the red vertices in Gi(M). The graph stabilizes
when there are no red vertices.

For each timed automaton Ti, we now analyze the blocks which contribute in reaching
the desired location fi. The last block α of σi, which contains the last task tuple (a, r, d)
executed by Ti definitely contributes to Ti reaching fi. Likewise, the block α′ which added
this last task a to the bag of Ti also contributes to Ti reaching fi (note that block α′ may
start with a task b which is executed by Tj , j 6= i). We can continue backwards in this
manner and say that the block α′′ which added the task b to the bag of Tj also contributes to
Ti reaching fi and so on. Given a block label α, let dep(α) denote the set of timed automata
Ti such that α contributes to Ti reaching fi. Thus, if α is the last block in Ti, then i ∈ dep(α)
(we just write the indices i rather than Ti). Likewise, if i ∈ dep(α) and if α′ is the block
which added the task a which was executed at the beginning of α, then i ∈ dep(α′), and so
on. dep(α) is called the dependency set of α. In our running example above, 3 ∈ dep(α6)
since α6 is the last block for T3; however the task ζ3 which was executed in block α6 was
added in block α2 (e7,8), and the task κ2 executed in block α2 was added in block α1. Thus,
3 ∈ dep(α6), dep(α2), dep(α1).

We construct a dependency graph G(M) which keeps track of the dependencies between
blocks. Define a function g : L → (Σ× {1, . . . , N} ×L)∪ {⊥} which maps a block label α to
the triple (a, i, α′) if block α begins with (i?a) the execution of task a, which was added to
the bag of Ti by block α′. If a is part of the initial multiset (a ∈ St(i)) then g(α) = ⊥. The
vertex set of G(M) is the set of pairs (α, dep(α)) where α is a block label and dep(α) is its
dependency set. G(M) is a graph with colored vertices, and is built inductively. To begin,
there are no edges, and we have the following vertices.

Vertices (α, {i}) and α is the last block of Ti. To begin, we are sure of i ∈ dep(α). We
color these vertices red.
Vertices (α, ∅), and α is not the last block for any Ti. To begin, we have not yet discovered
whether α contributes to any Ti, so we keep dep(α) = ∅. The information with respect to
dep(α) will be updated when we discover that α contributed to some Ti. We color these
vertices white.

To add the edges, we repeat the following procedure until no red vertices remain. In each
step, we choose a red vertex (α, dep(α)) and do the following.
1. If g(α) = ⊥, then color (α, dep(α)) blue,
2. If g(α) = (a, i, α′) and (α′, dep(α′)) is white, then color (α, dep(α)) blue and color

(α′, dep(α′)) red. Update dep(α′) to be dep(α′) ∪ dep(α), and add an edge a→ from
(α′, dep(α′)) to (α, dep(α)).

3. If g(α) = (a, i, α′) and (α′, dep(α′)) is not white, then color (α, dep(α)) blue, update
dep(α′) to be dep(α′) ∪ dep(α), and add an edge a→ from (α′, dep(α′)) to (α, dep(α)).
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Finally, we update the dependency relation dep of the vertices as follows: If (α, dep(α))
and (α′, dep(α′)) are blue with g(α) = (a, i, α′), then update dep(α′) to be dep(α′) ∪ dep(α).
Note that the above procedure terminates, since the number of blue vertices in each step
increases. The final graph obtained as result is G(M). Figure 2 describes constructing G(M)
for the run ρ discussed above. Consider any vertex (α, dep(α)) colored blue in G(M). Clearly,
this vertex contributes to all Ti such that i ∈ dep(α). Consider any path in G(M) from a
vertex with no incoming edges to a vertex with no outgoing edges. There is at least one such
path since the last task executed along σ corresponds to the last block of some Ti which has
not contributed to any Tj . A path v1 . . . vs in G(M) is a dependency path for automaton Ti
if the vertex vs = (α, dep(α)), and α is the last block for Ti. Let us go back to our running
example run σ using Figure 2. The tasks appearing on the edges of G(M) are the relevant
tasks. From G(M), the relevant task in the bags when the second block α2 started is κ2.
κ2 is executed at the beginning of block α2. Relevant tasks ζ2, ζ3 are added to the bag in
block α2, and α1 adds β1. β1 is executed in block α4 while ζ2, ζ3 respectively are executed in
blocks α5, α6. The relevant tasks along run σ are β1, κ2, ζ2, ζ3, of which at most 3 are stored
across bags at any point of time. Thus, we can obtain another run σ′ which is reachability
equivalent to σ as follows. The block α3 is useless as it is not contributing to any of the
automata. Each block begins at a unique initial location of some automaton, and, on the
transition which executes the task, it does not check any constraints, and resets all clocks on
the transition. Due to this, we can “prune away” a block from a run, and reconnect the run
at a later block if we maintain the time elapse in the interim. Hence, removing a useless block
of some automaton Ti does not affect the control reachability, since the next useful block of
Ti again starts from the same initial location of Ti. Accounting for the time elapse in the
useless block is sufficient to ensure that the ages of the pending tasks are accurate. σ′ can
be constructed with the rest of the blocks, using only the relevant tasks: c0

0.5→ c′0
e1,2,α1→ c1

0.3→
c′1

e2,3,α1→ c2
0.5→ c′2

e6,7,α2→ c3
0.2→ c′3

e7,8,α2→ c4
0→ c′4

0.4→ c′5
e3,4,α1→ c6

0.1→ c′6
e4,1,α1→ c7

0.1→ c′7
e1,2,α4→

c8
0.1→ c′8

e8,6,α2→ c9
0.2→ c′9

0.6→ c′10
e6,5,α5→ c11

0.5→ c′11
e10,11,α6→ c12

0.9→ c′12
e11,12,α6→ c13.

We want to prove that in any configuration c = (q,m) appearing in the run σ, the number
of pending tasks maintained in m = (M1, . . . ,MN ) which contribute, in reaching the desired
control states, in σ is ≤ N . These are the relevant tasks, and each one is part of a block α,
and the corresponding vertex (α, dep(α)) in G(M) is colored blue. If we attach the color of
the vertex (α, dep(α)) to the task a in g(α), then we want to prove that in any configuration
appearing in σ, the number of blue tasks is ≤ N . Assume that there is some configuration
c = (q,m) in σ such that the number of blue tasks in m is p > N . Let a1, . . . , ap be the tasks
in m, and let α1, . . . , αp be the blocks where these are executed. Since p > N , and there are
only N multisets in m, there are at least two tasks ai, aj such that dep(αi) ∩ dep(αj) 6= ∅.
Observe that, by definition, we have dep(αk) 6= ∅ for all k ∈ {1, . . . , p}. Let us assume that
k ∈ dep(αi) ∩ dep(αj). Since both are blue, both get executed in σ, and both lie in the
dependency path of the last block of the automaton Tk. Clearly, one must come before
the other, and the earlier block has contributed to the creation of the later block. Hence,
they cannot be pending at the same time. Thus, the number of blue pending tasks in any
configuration is bounded above by N .

Construction of 1-safe TPN with read arcs

Now, we are ready to propose a 1-safe timed Petri net (with read-arcs) whose coverability
problem is equivalent to the control state reachability problem of the given N -MTA.

FSTTCS 2018



8:10 Verification of Timed Asynchronous Programs

Given the N -MTA M consisting of timed automata T1, . . . , TN , we construct a 1-safe
TPN N . There is a place p` corresponding to each location ` ∈ Li in Ti. For each Ti, there is
one and only one marked place p` at any point in the execution, such that ` ∈ Li, to denote
that the control of Ti is at a certain location `. For each clock x in X, there is a place px.
Next, we model the multisets Mi of each Ti. Let dmax ∈ N be the maximal value used for any
deadline inM. For each task a ∈ Σ, we have |Σ| × (2 + dmax) possible combinations of tasks
and associated deadlines. The bound established above tells us that there are at most N
pending tasks in any configuration i.e. at any point we will have to keep track of N tasks but
they can be distributed in any of the multisets. There are |Σ| × (dmax + 2) possibilities for
task, deadline pairs. Tasks will be modeled as tokens in the net. So to be able to distinguish
between them, for each Ti, we need N ×|Σ|× (dmax+ 2) places (N , because 1-safe). For each
Ti and for each pair (a, d) ∈ Σ× {0, 1, . . . , dmax,∞}, we have N places pi(a,d,1), . . . , p

i
(a,d,N).

A transition of the form (`0
i , g, i?a, Y, `′) in automaton Ti is simulated by N × (dmax + 2)

transitions in N as follows. For each (z, j) ∈ {0, 1, . . . , dmax,∞}× {1, . . . , N}, a transition
removes a token from the place p`0

i
corresponding to the unique initial location `0

i , a token
from pi(a,z,j) and adds a token to the place p`′ corresponding to `′. The deadline is checked
on the arc from the place pi(a,z,j) by a constraint which checks the age of the token to be in
the interval [0, z]. As any deadline value is possible, and any of the N places can be filled,
one of the N × (dmax + 2) transitions is non-deterministically chosen.

A transition of the form (`, g, i!j(a[d]), Y, `′) in automaton Ti is simulated in a similar
way by N + 1 transitions. In each of the N of these transitions, tokens for control locations
are added and removed as in the previous case. For each k ∈ {1, . . . , N}, one of the N
transitions adds a token to the place pja,d,k if it is empty. The (N + 1)-th transition simulates
the possibility that the task a is not relevant (only N are relevant at any point) and so it
simulates only the change in control location and adds no other tokens. One of these N + 1
transitions is chosen non-deterministically. Observe that the first N transitions add a token
only to an empty place pja,d,k by definition of an 1-safe Petri net.

Clock resets are simulated by adding and removing a token from the corresponding place
px for the clock. Clock constraints are simulated by read arcs. These arcs are connected
with the corresponding transitions that are described above.

The formal construction is in [1]. Thus, the control state reachability in M to reach
(f1, . . . , fN ) ∈ L1 × · · · × LN reduces to the coverability problem of the marking M given by
M(pfi

) = 1 for all 1 ≤ i ≤ N (and hence M(p`) = 0 for all ` /∈ {f1 . . . , fN}). The control
state reachability of M thus reduces to the coverability of the constructed 1-safe timed
Petri net with read arcs. Since the coverability of 1-safe timed Petri nets with read arcs is
PSPACE-complete [17], the control state reachability ofM is also PSPACE-complete. J

5 Configuration Reachability

In this section, we explore the general question of the configuration reachability problem for
N -MTA. We first show (theorem 4) that the configuration reachability problem for N -MTA
is undecidable.

I Theorem 4. The configuration reachability problem for N -MTA is undecidable. This
undecidability holds even in the case of time-independent N -MTA.

Proof. The proof is done by a reduction from the reachability problem for a 2-counter
machine (which is known to be undecidable [15]). The main idea is to construct an 1-MTA
whose set of states contains the states of the two counter machine plus some auxiliary states
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that are used to simulate the zero tests as we will see later on. The 1-MTA has two types of
tasks a and b. The number of pending tasks of type a (resp. b) corresponds to the value
of the counter c1 (resp. c2). Furthermore, the 1-MTA has one clock x that is used to check
that no time elapsed when simulating some transitions of the two counter machine.

To simulate an increment transition of the form (q, c1++, q′) (resp.(q, c2++, q′)) of the
two counter machine, the 1-MTA proceeds as follows: first it checks that the value of the
clock x = 0, then it will change its state from q to q′ and finally adds a pending task of type
a (resp. b) with zero as its deadline. Observe that we need only one transition to perform
all these steps of the simulation of an increment operation.

To simulate a decrement transition of the form (q, c1−−, q′) (resp. (q, c2−−, q′)) of the
two counter machine, the 1-MTA proceeds as follows: first it checks that the value of the
clock x = 0, then it will change its state from q to q′ and finally consumes a pending task of
type a (resp. b). Observe that we need only one transition to perform all these steps of the
simulation of an increment operation.

To simulate a zero test transition of the form (q, c1 == 0, q′) (resp. (q, c2 == 0, q′)) of
the two counter machine, the 1-MTA proceeds as follows: (i) it checks that the value of the
clock x = 0, (ii) it enters to a loop where it consumes a task of type b (resp. a) and creates
a task of the same type but its deadline is now set to one time unit, (iii) it will change its
state from q to q′, (iv) it checks that the value of the clock x is still zero, (v) it checks that
one time unit has elapsed (ie., checking whether x ∈ [1, 1]) and resets the clock x, (vi) it
enters to a loop where it consumes a task of type b (resp. a) and creates a task of the same
type but its deadline is now set to zero, and (vii) it checks that the value of x = 0. Here the
auxiliary states are needed in the simulation of these steps.

Observe that if the 1-MTA reaches the final state with empty set of pending tasks, then
all the simulation of the zero tests are performed correctly. Finally, note that the constructed
1-MTA is time independent. J

We now focus on the class of stateless and time-independent N -MTA.

I Theorem 5. The configuration reachability problem for stateless and time-independent
N -MTA is decidable.

We begin by setting up some notations for the proof.

Well-quasi-orders and Higman’s Lemma

Given a set Q, a quasi-order on Q is a reflexive and transitive relation �⊆ Q × Q. An
infinite sequence (q1, q2 . . . ) in Q is said to be saturating if there exists indices i < j such
that qi � qj . A quasi-order � is a well-quasi-order (wqo) [12] on Q if every infinite sequence
in Q is saturating. Let v be a quasi-order on Q. The induced monotone domination order
� on Q∗, (i.e., the set of finite words over Q) is defined as follows: a1a2 . . . am � b1b2 . . . bn
if there exists a strictly increasing function g : {1, 2, . . . ,m} → {1, 2, . . . , n} such that, for all
1 ≤ i ≤ m, ai v bg(i). It is well-known by Higman’s Lemma [10] that if v is a wqo on Q, then
the induced domination order � is also a wqo on Q∗. As an example, let Σ = {1, 2, . . . , 12}
and let Q be the power set of Σ. Define v on Q to be the set inclusion relation. v is clearly
a wqo since Q is finite. The induced monotone domination order � on Q∗ is the subword
order: for example, {1, 2}{3}{5, 6, 7} � {1, 2, 9}{1}{3, 11}{12}{4, 5, 6, 7}.
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Encoding Configurations

We have seen in section 3 that a configuration of an N -MTA M is a tuple (q,m) where q is
the sequence of states in each Ti, 1 ≤ i ≤ N , and m is the tuple of multisets (M1, . . . ,MN )
corresponding to each Ti. Given (`1, . . . , `N ) ∈ L1 × · · · × LN , we are interested in finding
whether the configuration cgoal = (q,m) is reachable, where q = (q1, . . . , qN ), qi = (`i,0) and
m = (∅, . . . , ∅). A configuration c is called good if cgoal is reachable from c. A configuration is
bad if it is not good. Clearly, cgoal is reachable inM iff some initial configuration c0 is good.

We now construct an equivalence relation onM by encoding the configurations ofM as
words over a certain alphabet. This will enable us to define a wqo on the resulting transition
system. Let K be the maximal constant used in the clock constraints and deadlines in M.
Let [K] = {0, 1, . . . ,K,∞}. Let reg = {r0, r1, . . . , r2K} be a finite set of regions, where for
0 ≤ i ≤ K, r2i is defined as the singleton {i}, while r2i+1 is defined as the interval (i, i+ 1)
for 0 ≤ i ≤ K − 1. We also define the region r2K+1 as (K,∞). Let Γ1 be the set X × reg,
and let Γ2 be a multiset over {(a, r, j)i | a ∈ Σ, r ∈ reg, j ∈ [K], 1 ≤ i ≤ N}. Let Γ3 be the
set X × r2K+1, and let Γ4 be a multiset over {(a, r2K+1, j)i | a ∈ Σ, 1 ≤ i ≤ N, j ∈ [K]}.

Let Υ,∆ respectively be the power sets of Γ1∪Γ2 and Γ3∪Γ4. Let L=L1 × · · · × LN . We
consider words of the form αw(P + ε) where α ∈ L, w ∈ Υ∗ and P ∈ ∆. Since Υ,∆,L
are finite, they are all clearly well-quasi-ordered by set inclusion, and the set of words of
the form αw(P + ε) is well-quasi-ordered by the induced monotone domination order � :
α1ρ1 . . . ρmP1 � α2γ1 . . . γnP2 if α1 = α2, P1 ⊆ P2, and there exists a strictly increasing
function g : {1, 2 . . . ,m} → {1, 2, . . . , n} such that for all 1 ≤ i ≤ m, ρi ⊆ γg(i).

We next associate to any configuration c ofM, a canonical word W(c) ∈ L ·Υ∗ · (∆ +
ε). Let yi,1, . . . , yi,|Xi| be the set of clocks in Ti. Given a configuration c = (q,m) with
q = ((`1, ν1), . . . , (`N , νN )) and m = (M1, . . . ,MN ), q is completely specified by describing
for each 1 ≤ i ≤ N , (i) the locations `i, (ii) the tuples (αi,j , frac(yi,j)) (resp, αij) if
αij=((yi,j , reg(ν(yi,j))) is in Γ1 (resp. Γ3) and 1 ≤ j ≤ |Xi|. Observe that here we use
frac(yi,j) (resp. reg(ν(yi,j))) to denote the fractional part (resp. the corresponding region) of
ν(yi,j)). The former case keeps track of clocks, their regions as well as the fractional parts
of the clock valuations, while in the latter, the value of clock yi,j is more than K, (iii) the
multi set consisting of tuples (βi, frac(age(a))) (resp. βi) if βi = (a, reg(age(a)), d) is in Γ2
(resp. Γ4). The former keeps track of tasks, the region of their ages, and their deadlines,
along with the fractional parts of the ages, while in the latter, the age of the task is more
than K. Observe that age(a) returns the age of the task a.

Next, we group together the symbols αh ∈ Γ1, βg ∈ Γ2 having the same fractional parts.
Notice that the fractional parts are retained only for clocks (tasks) whose value (age) has
not yet exceeded K. This yields a new set of Γ1 ∪ Γ2 letters paired with their fractional
parts {(ζi, fraci) | 1 ≤ i ≤ p} where ζi is a (multi)set of symbols from Γ1 ∪ Γ2 and fraci is
the fractional part of those symbols. p is the number of distinct fractional parts in c. We
then form the word w = ρiz1

. . . ρizp
∈ Υ+ where z1 . . . zp is a permutation of 1 . . . p that

puts fracz1 . . . fraczp
in ascending order. Let P ∈ ∆ be the set obtained (if any) by grouping

all the symbols αh ∈ Γ3 and βg ∈ Γ4. We then define W(c) = α.w.P ∈ L.Υ∗(∆ + ε) as the
canonical word encoding c.

I Example 6. Consider a 2-MTA M. Let x1, x2 be the clocks of T1 and y1, y2 be the
clocks of T2. Let K = 3 be the maximal constant used inM. Consider the configurations
c1=((s1, 0.5, 2.1), (s2, 1.7, 2.5), ({(a, 1.1, 2), (b, 2.3,∞), (c, 3.5,∞)}, {(d, 1.9, 2), (e, 0.7, 1)}))
and
c2=((s1, 0.5, 2.4), (s2, 1.9, 2.5), ({(a, 1.4, 2), (b, 2.45,∞), (c, 3.9,∞)}, {(d, 1.99, 2), (e, 0.9, 1)})).
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Then W(c1) = W(c2) = αwP where α = (s1, s2), P = {(c, r7,∞)1}, and
w = {(x2, r5), (a, r3, 2)1}{(b, r5,∞)1}{(x1, r1), (y2, r5)}{(y1, r3), (e, r1, 1)2}{(d, r3, 2)2}.

Two configurations c1, c2 are equivalent (c ∼ c′) if W(c1) = W(c2). A configuration c1 is
dominated by a configuration c2 (written c1 � c2) if writing c2 = (q2,m2), there exists q1,m1
such that and m1 = (M ′1, . . . ,M ′N ) with M ′i ⊆ Mi for all i, and c1 ∼ (q1,m1). It can be
easily seen that c1 � c2 iff W(c1) �W(c2). In fact, the following lemma shows that ∼ is a
bisimulation relation.

I Lemma 7. Let c1, c2 be two configurations of an N -MTA. Let e ∈ Ei be a transition,
1 ≤ i ≤ N , and let t ∈ R. If c1 ∼ c2, then
(1) If c1

e→ c′1, there exists c′2 such that c2
e→ c′2 and c′1 ∼ c′2. If c2

e→ c′2, there exists c′1 such
that c1

e→ c′1 and c′1 ∼ c′2.
(2) If c1

t→ c′1, there exists c′2 and t′ ∈ R such that c2
t′→ c′2 and c′1 ∼ c′2. If c2

t→ c′2, there
exists c′1 and t′ ∈ R such that c1

t′→ c′1 and c′1 ∼ c′2.

As an easy corollary of the above, we see that ∼ preserves goodness and badness: For any
configurations c ∼ c′, c is good iff c′ is good. The proof follows from the definition of goodness
and Lemma 7, whose proof can be found in the extended version of the paper [1].

It is hence sufficient to only consider configurations upto ∼-equivalence, and we define
the quotient labeled transition system M/∼ to consist of all the words W(c) whenever c

is a configuration of M. Call M/∼ as W. W = {W(c) | c is a configuration in M}. For
W1,W2 ∈ W, and a transition e ∈ Ei for 1 ≤ i ≤ N , we define a transition W1

e→ W2 if
for all c1 ∈ W−1(W1), there is some configuration c2 ∈ W−1(W2) such that c1

e→ c2. The
timed transition is defined similarly. Corresponding to each initial configuration c0 inM,
we consider W0 = W(c0) to be an initial word in W. Let W0 be the set of initial words
corresponding to initial configurations c0. It can be seen that for any W1,W2 ∈ W, and a
transition e ∈ Ei or t ∈ R, W1

α→W2 (α ∈ {e, t}) iff there exist configurations c1 ∈ W−1(W1)
and c2 ∈ W−1(W2) such that c1

α→ c2. Given a word W ∈ W, and α∈{e, t} for some
transition e and time t ∈ R, let succ(W )={W ′∈W |W α→W ′} denote the successors of W
in W.

I Lemma 8. For any word W , the set succ(W ) is finite and effectively computable.

Let W0 be the set of initial words corresponding to W(c0) for initial configurations c0.
Let W∅ = W(cgoal). Algorithm 1 decides whether the configuration cgoal can be reached. In
this algorithm, the function Minimize(R) is used, where R ⊆ W is a set of words. It does the
following: it chooses a word W1 ∈ R and removes W1 from R if there exists a word W2 ∈ R
such that W2 � W1, and then repeats the procedure until all words in R are processed.
Overall, the algorithm works as follows. Till the set Next of words waiting to be processed is
non-empty, the algorithm chooses one word from Next, and moves it to the Processed set. It
also generates all successors of the chosen word, minimizes them, and adds them to Next
unless there is already some �-smaller word in Next or Processed. If a new word is added
to Next, the algorithm removes at the same time all �-bigger words from both Next and
Processed. The correctness of the algorithm is discussed next.

A set of words R is good (denoted Good(R)) iff there exists some word W ∈ R which is
good. A word W is good iff there exists a good configuration c such that W(c) = W . If W is
a good word, and if i ∈ N is the length of the shortest path (excluding time elapse transitions)
from W to W∅, then we say that dist(W ) is i. Given a set R of words, dist(R) ∈ N ∪ {∞} is
defined as the length of the shortest path (excluding time elapse transitions) from someW ∈ R
to W∅. More precisely, if R = ∅, then dist(R) =∞, otherwise, dist(R) = minW∈Rdist(W ).
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Algorithm 1 Reach Empty.
Input: A stateless, time-independent N -MTA, and configuration cgoal = (q,m) as above.
Output: TRUE if cgoal is reachable. Otherwise, FALSE.
if W∅ ∈ W0, then return TRUE;
Processed = ∅;
Next = Minimize(W0);
while Next 6= ∅ do

leftmirgin=0.5in Pick and remove a word W from Next and move it to Processed,
leftmiirgiin=0.5iin foreach U ∈ Minimize(succ(W ))

leftmirgin=0.5in if U = W∅, then return TRUE,
leftmiirgiin=0.5iin else if @V ∈ Processed ∪ Next s.t. V � U ,

then
leftmiiirgiiin=0.5iiin Remove all V from Processed∪Next s.t U � V
leftmivrgivn=0.5ivn Add U to Next

return FALSE

`1 `2 `3 `4
?β1 ?β2 ?β3

`5

`6

`7

?ζ
!β1, !β2, !β3, nop

nop

2-MTA which is not stateless

s1

s2

s3

s4

?β3

x∈(0, 1)

?β1

x = 0
x∈[1, 1]

?β2 x∈[1,∞){x}

s6 s5
?ζ

!β1, !β2!, !β3, nop

2-MTA which is not time independent

Figure 3

I Lemma 9.
1. Good(Processed ∪ Next)→ Good(W0)
2. Good(W0)→ dist(Processed) > dist(Next)
To prove the invariants, we use the following lemma.

I Lemma 10. If W �W ′ and dist(W ′) = i, then dist(W ) = j for some j ≤ i.

Due to the well-quasi ordering, the algorithm terminates: if not, over a period of time, there
will be an infinite sequence of words in Next, each new word added having the property that
it does not dominate any of its predecessors. This would constitute an infinite non saturating
sequence, directly contradicting Higman’s Lemma. The algorithm returns FALSE only when
Next is empty. Then, dist(Processed) > dist(Next) is not true. Therefore, by invariant 2 in
lemma 9, W0 is not good. The algorithm returns TRUE only if either W∅ is already in W0,
or if W∅ is a member of Minimize(succ(W )) for some W ∈ Next. In either case, Next is good.
Then, by invariant 1 of lemma 9, W0 is good. This gives the following lemma.

I Lemma 11. Algorithm Reach Empty terminates and returns true iff starting from the
initial configuration c0 inM, cgoal is reachable.

This concludes the proof of theorem 5. A detailed discussion with proofs for the lemmas can
be found in the extended version of the paper [1].

Notice that the stateless, and time-independent properties ofM are crucial in Lemma 10.
The example below shows that relaxing either condition violates Lemma 10.
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To the left is a 2-MTA which is not stateless. It can be seen that c1=(`1, `6, {β1, β3}, ∅) �
(`1, `6, {β1, β2, β3}, ∅)=c2. Hence, W(c1) � W(c2). Indeed from c2, one can reach (`4, `6, ∅, ∅),
but not from c1. To the right is a 2-MTA which is not time independent. It can be seen that
c1=(((s1, 0), s6), {(β1, 0,∞), (β3, 0,∞)}, ∅) � (((s1, 0), s6), {(β1, 0,∞), (β2, 0,∞), (β3, 0,∞)},
∅)=c2. However, (((s1, 0), s6), ∅, ∅) is reachable from c2 but not from c1.

6 Conclusion

We proposed a model to address the verification problem for timed asynchronous programs.
We identified a special subclass (stateless and time-independent) for which the reachability
problem is decidable and control reachability is PSPACE-complete. There are multiple
avenues for further work. The first question is to check the tightness of the EXPSPACE lower
bound provided. Another question would be to consider the model where we use priority
bags instead of bags. In a priority bag, tasks have associated deadlines and priorities. The
process, while picking up a task for execution, is expected to pick up a task with the highest
priority. Queues are yet another interesting data structure in place of bags: in this set up,
the tasks which require a processor’s attention are picked up in the order in which they were
assigned by various processes. One can also look at mutiset timed pushdown systems, which
extend the model of [16] with time, and multiple processes. Finally, we can move from the
one player setting to two players, where the environment chooses a task for the process to
execute. Under this two player setting, the question would be if the system has a strategy to
execute all the pending tasks.
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Abstract
We investigate the decidability of logical aspects of graphs that arise as Cayley-graphs of the so-
called queue monoids. These monoids model the behavior of the classical (reliable) fifo-queues.
We answer a question raised by Huschenbett, Kuske, and Zetzsche and prove the decidability of
the first-order theory of these graphs with the help of an – at least for the authors – new com-
bination of the well-known method from Ferrante and Rackoff and an automata-based approach.
On the other hand, we prove that the monadic second-order of the queue monoid’s Cayley-graph
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1 Introduction

Data structures are one of the most important concepts in nearly all areas of computer
science. Important data structures are, e.g., finite memories, counters, and (theoretically)
infinite Turing-tapes. But the most fundamental ones are stacks and queues. And although
these two data structures look very similar as they have got the same set of operations on
them (i.e. writing and reading of a letter), they differ from the computability’s point of view:
if we equip finite automata with both data structures, then the ones with stacks compute
exactly the context-free languages (these are the well-known pushdown automata). But
if we equip a finite automaton with queues (in literature they are called queue automata,
communicating automata, or channel systems) then we obtain a Turing-complete computation
model (cf. [2, 3]). This strong model can be weakened with various extensions, e.g., if the
queue is allowed to forget some of its contents (cf. [1, 5, 22]) or if letters of low priority can
be superseded by letters with higher priority (cf. [12]).

One possible approach to analyze the difference of the behavior of the data structures is
to model them as a monoid of transformations. Then, finite memories induce finite monoids,
counters induce the integers with addition, stacks induce the polycyclic monoids (cf. [14,27]),
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and queues induce the so-called queue monoids which were first introduced in [13]. And
while the transformation monoids of the other data structures are very well-understood, we
still do not know much about the queue monoid. Further results on the queue monoid (with
and without lossiness) can be found in [17, 18]. Here, we only consider the reliable queue
monoids. Concretely, we study the Cayley-graph of this monoid.

Cayley-graphs are a natural translation of finitely generated groups and monoids into
graph theory and is a fundamental tool to handle these algebraic constructs in combinatorics,
topology, and automata theory. Concretely, these are labeled, directed graphs with labels
from a fixed generating set Γ of the monoid M. Thereby, the elements from M are the
graph’s nodes and there is an a-labeled edge (where a P Γ ) from x P M to y P M iff xa “ y

holds in M. For groups, we already know many results on their Cayley-graphs. For example,
the group’s Cayley-graph has decidable first-order theory if, and only if, its existential
first-order theory is decidable and if, and only if, the group’s word problem is decidable [19].
Moreover, a group’s Cayley-graph has decidable monadic second-order theory if, and only if,
the group is context-free (that is, if the group’s word problem is context-free) [19,23]. Besides
these results, Kharlampovich et al. considered in [15] so-called Cayley-graph automatic
groups (these are the groups having an automatic Cayley-graph in the sense of [16]) which
links to the rich theory of automatic structures.

Unfortunately, there are not that many studies on Cayley-graphs of monoids. In particular,
there are monoids with decidable word problem but undecidable existential first-order theory
of their Cayley-graph [20, 24]. For finite monoids the Cayley-graphs are finite and, hence,
the first- and second-order theories are complete for polynomial space and exponential space,
respectively [10]. For polycyclic monoids the Cayley-graphs are automatic, complete |A|-ary
trees (where A is the underlying alphabet) with an additional node every other node is
connected with (this is the zero element resp. error state). Therefore, due to [6, 20] the
Cayley-graphs monadic second-order theory is decidable (the first-order theory is even in
2EXPSPACE by [21]).

In this paper we want to consider logics on the Cayley-graph of the queue monoid.
Concretely, we will see that this graph’s first-order theory is decidable by giving a primitive
recursive (but non-elementary) algorithm which combines two well-known methods from
model theory in a (at least for the authors) new way: the method of Ferrante and Rackoff [8]
and an automata-based approach. This gives an answer on a question raised by Huschenbett,
Kuske, and Zetzsche [13]. There, they conjectured the undecidability of its first-order logic
implying that the graph is not automatic in the sense of [16]. Moreover, we will prove the
undecidability of the monadic second-order theory with the help of a well-known result from
Seese [28].

2 Preliminaries

Let A be an alphabet. We use ĺ to denote the prefix-relation and Ď for the suffix-relation
on A˚. If u “ vw we write v´1u “ w and uw´1 “ v. Thereby, v is the complementary prefix
of w wrt. u and w the complementary suffix of v wrt. u. For u, v P A˚ let u[ v denote the
largest suffix of u that is also a prefix of v.

For m,n, r P N we write m “r n iff m “ n or m,n ą r. The function exprpnq is
inductively defined by exp0pnq “ n and expr`1pnq “ 2exprpnq.
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Logic on Graphs and Words

Let A be a finite set of labels. An edge-labeled graph is a tuple G “ pV G, pEGa qaPAq where V is
the set of vertices and EGa Ď V ˆV is the set of a-labeled edges. A word-structure over A is a
tuple W “ pt0, . . . , n´1u,ďW , pPWa qaPAq where ďW is the usual order on t0, . . . , n´1u, and
pPWa qaPA is a partition of t0, . . . , n´ 1u (some of the sets PWa may be empty). Whenever we
use logic to describe properties of a word w then the formula is evaluated on the corresponding
word structure W .

Let τ “ tR1, . . . , Rm, c1, . . . , cnu where Ri is a relation symbol of arity ri and cj is a
constant symbol. First-order formulas (over the vocabulary τ) are build up from variables
and constant symbols txi | i P NuYtc1, . . . , cnu, the edge relation symbols tR1, . . . , Rmu, the
equality symbol “, the Boolean connectives t ,_,^,Ñu, quantifiers t@, Du, and the bracket
symbols tp, qu. We write G |ù ϕ to denote that the formula ϕ is satisfied by the structure G.
The quantifier rank qrpϕq of a formula ϕ is the maximal nesting depth of quantifiers within ϕ.
Two structures G and H are r-equivalent (denoted G ”r H) if they cannot be distinguished
by any formula of quantifier rank ď r. For a structure G and two tuples ~p, ~q P pV Gqm we
write ~p ”Gr ~q or say that ~p and ~q are r-equivalent in G whenever G |ù ϕp~pq ô G |ù ϕp~qq for
all first-order formulas ϕ with m free variables and quantifier rank at most r. For all the
above notations we adopt the convention that we omit superscripts whenever this should not
lead to any confusion. For instance we write ~p ”r ~q when the underlying structure G is clear
from the context.

The r-type of a structure G is the set of all first-order sentences ϕ of quantifier rank at
most r such that G |ù ϕ. It is well known that there are up to equivalence only finitely many
sentences of quantifier rank at most r. Hence the r-type of a structure can be characterized
by a sentence, which has also quantifier rank r.

Ehrenfeucht-Fraïssé-relations (resp. EF-relations) for a graph G “ pV, pEaqaPAq are a
system pErmqr,mPN where Erm is an equivalence relation on V m and the following is true for
all r,m P N and ~p, ~q P V m:

If pp1, . . . , pmqE0
mpq1, . . . , qmq then the mapping pi ÞÑ qi is a partial isomorphism, that is

pi “ pj ô qi “ qj and ppi, pjq P Ea ô pqi, qjq P Ea for all 1 ď i, j ď m and all a P A.
If ~pEr`1

m ~q then for every p P V there exists a q P V such that p~p, pqErm`1p~q, qq.

Ehrenfeucht-Fraïssé-relations are useful to identify r-equivalent tuples in a graph. This is
formalized in the following theorem.

I Theorem 2.1 ([7, 9]). Let G be a graph, pErmqr,mPN Ehrenfeucht-Fraïssé-relations for G,
and ~p, ~q m-tuples of nodes from G. If ~pErm~q then ~p ”r ~q.

3 Queue Monoid and its Cayley-Graph

Definition of the Monoid

The queue monoid models the behavior of a (reliable) fifo-queue whose entries come from
an alphabet A. Consequently, the state of a queue is a word from A˚. The basic actions
of our queue are writing of the symbol a P A of the queue (denoted by a) and reading the
symbol a P A from the queue (denoted by a). Thereby, A is a disjoint copy of A containing
all reading actions a and Σ :“ AZA is the set of all basic actions. To simplify notation, for
a word u “ a1a2 . . . an P A

˚ we write u for the word a1 a2 . . . an.
Formally, the action a P A appends the letter a to the state of the queue and the action

a P A tries to cancel the letter a from the beginning of the current state of the queue.
Thereby, if the state does not start with this symbol, the queue will end up in an error state

FSTTCS 2018
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which we denote by K. Note that in contrast to (partially) lossy queues which we considered
in [17,18], these queues cannot forget any part of their content. Hence, these ideas lead to
the following definition:

I Definition 3.1. Let K R A˚. The function ˝ : pA˚ Y tKuq ˆΣ˚ Ñ pA˚ Y tKuq is defined
for each s P A˚, a, b P A, and u P Σ˚ as follows:
(1) s ˝ ε “ s

(2) s ˝ au “ sa ˝ u

(3) bs ˝ au “
#

s ˝ u if a “ b

K otherwise
(4) ε ˝ au “ K ˝ u “ K

With the help of this function we may now identify sequences of actions that are acting
equally. This is finally used to define the monoid of queue actions.

I Definition 3.2. Let u, v P Σ˚. Then u and v act equally (denoted by u ” v) if s˝ u “ s˝ v

holds for each s P A˚. Since s ˝ uv “ ps ˝ uq ˝ v, the resulting relation ” is a congruence on
the free monoid Σ. Hence, the quotient QpAq :“ Σ˚{” is a monoid which we call the monoid
of queue actions or for short queue monoid. The neutral element of QpAq is rεs” “ tεu,
which we will denote simply by ε.

Note that the queue monoids QpAq for alphabets A of different size are not isomorphic.
Though, all of the following results hold for any alphabet A with |A| ě 2. Hence, we may fix
an arbitrary alphabet A from now on and write Q instead of QpAq.
I Remark. Let A “ tau be a singleton. Then a queue on this alphabet acts like a partially
blind counter since an ˝ a “ an`1 and an`1 ˝ a “ an. In other words, Qptauq is the bicyclic
semigroup.

Basic Properties

Now, we want to recall some basic properties considering the equivalence relation ”. The
first important fact expresses the equivalence in terms of some commutations of write and
read actions under certain contexts.

I Theorem 3.3 ([13, Theorem 4.3]). The equivalence relation ” is the least congruence on
the free monoid Σ˚ satisfying the following equations for all a, b P A:
(1) ab ” ba if a ‰ b

(2) aab ” aab

(3) baa ” baa J

A very frequently used notation is the following: the projections to write and read actions,
resp., are defined as wrt, rd : Σ˚ Ñ A˚ by wrtpaq “ rdpaq “ a and wrtpaq “ rdpaq “ ε for
all a P A. In other words, wrtpuq can be derived from u by deletion of all read actions and
rdpuq can be obtained from u by deletion of all the write actions and by suppression of the
overlines. Due to Theorem 3.3 all words contained in a single equivalence class of ” have
the same projections. Hence we use them for equivalence classes as well. Though, equality
of these projections of two words does not imply equivalence of these words. For example,
u “ aa and v “ aa have the same projections wrtpuq “ rdpuq “ a “ wrtpvq “ rdpvq but are
not equivalent since we have

ε ˝ aa “ ε ‰ K “ ε ˝ aa .
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The non-equivalence of the two words above is very easy to prove. Also (non-)equivalence
of two arbitrary words is decidable in polynomial time: for this purpose we compute normal
forms of the equivalence classes of ”. We do this by ordering the equations from Theorem 3.3
from left to right resulting in a terminating and confluent semi-Thue system R [13, Lemma 4.1].
Then, for any word u P Σ˚ there is a unique, irreducible word nf puq with uÑ˚ nf puq, the
so-called normal form of u resp. of its equivalence class rus” . In this word nf puq the read
actions from u are moved to the left as far as the equations from above allow.

I Example 3.4. Let a, b P A with a ‰ b and u “ abbab. Then we have

abbab
p1q
ÝÝÑ ababb

p1q
ÝÝÑ aabbb

p3q
ÝÝÑ aabbb .

Since we cannot apply any rule from Theorem 3.3 anymore, we have nf puq “ aabbb.

From the definition of R we obtain that a word is in normal form if it starts with a
sequence of read operations followed by an alternating sequence of write and read actions,
where all of the read actions a appear straight behind the write action a. Finally, the normal
form ends with a sequence of write actions. Concretely, the set of all normal forms is

NF :“ tnf puq |u P Σ˚u “ A
˚
taa | a P Au˚A˚ .

Let u P Σ˚. Then the normal form nf puq is uniquely defined by three words u1, u2, u3 P A
˚

such that nf puq “ u1a1a1 . . . ananu3 where u2 “ a1 . . . an. Thereby, we denote the word u1
by λpuq, the word u2 by µpuq, and u3 by %puq. Hence, we can define the characteristics of u
(rus” , resp.) by the triple χpuq :“ pλpuq, µpuq, %puqq. Hence, from these characteristics χpuq
we can obtain the projections of u on its write and read actions as well: wrtpuq “ µpuq%puq

and rdpuq “ λpuqµpuq.
From now on, we will use these characteristics to represent the elements of Q. In

other words, we may understand Q as a triple of words (i.e., pA˚q3) with a special type
of concatenation. The concatenation of any transformation u P Σ˚ with a single letter is
described in the lemma below.

I Lemma 3.5. Let u P Σ˚ and a P A. Then we have

χpuaq “ pλpuq, µpuq, %puqaq and χpuaq “ prdpuqas´1, s, s´1wrtpuqq

where s “ µpuqa[ wrtpuq.

Iterating Lemma 3.5 we obtain the following Theorem:

I Theorem 3.6 ([13, Theorem 5.3]). Let u, v P Σ˚. Then χpuvq “ prdpuvqs´1, s, s´1wrtpuvqq
where s “ µpuqrdpvq [ wrtpuqµpvq. J

In other words, the multiplication of two words u, v P Σ˚ can be understood as follows:
at first we move the read actions from rdpvq to the left such that each of its letters is directly
preceded by exactly one write action. If this is not possible (because λpvq is longer than
%puq) we move the letters from µpuqλpvq to the left until there is an alternating word of
write and read actions. Now, if there is an infix ab with a ‰ b all of these read actions move
one position to the left. We iterate this last step until there is no such infix. It is easy to
see, that the new alternating word contains equal subsequences of write and read actions,
respectively. Thereby, the read actions are the longest suffix of µpuqrdpvq and the write
actions the longest prefix of wrtpuqµpvq such that the equality of these subsequences holds
(this is µpuqrdpvq [ wrtpuqµpvq).

FSTTCS 2018
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The Monoid’s Cayley-Graph

In this subsection we first recall the definition of Cayley-graphs for arbitrary, finitely generated
monoids. Afterwards, we give some common properties as well as some special characteristics
of the queue monoid’s Cayley-graph.

I Definition 3.7. Let M be a monoid generated by a finite set Γ Ď M. The (right)
Cayley-graph of M is the edge-labeled, directed graph CpM, Γ q :“ pM, pEaqaPΓ q with
Ea “ tpx, yq P M | y “ xau for each a P Γ .

Similar to the right Cayley-graph, we may define the left Cayley-graph of M as the
edge-labeled, directed graph LCpM, Γ q “ pM, pFaqaPΓ q with Fa “ tpx, yq P M | y “ axu for
all a P Γ .
I Remark. There is a strong relation between left and right Cayley-graphs of a monoid
and Green’s relations which are first introduced and studied in [11]. Recall that xRy iff
xM “ yM for every x, y P M and, similarly, xLy iff Mx “ My. Then by [25, Proposition
V.1.1] we have xRy (xLy) if, and only if, x is strongly connected to y in CpM, Γ q (LCpM, Γ q,
resp.).

The concrete shape of the Cayley-graph of a monoid heavily depends on the chosen
set of generators. For example, t´1, 1u and t´2, 3u are generating sets of pZ,`q, but the
resulting Cayley-graphs are not isomorphic (even if we remove the labels). Though, the
chosen generating set has no influence on decidability and complexity of the FO and MSO
theory of the Cayley-graph since the both problems are logspace reducible on each other
(which we denote by «log):

I Proposition 3.8 ([20, Proposition 3.1]). Let Γ1 and Γ2 be two finite generating sets of the
monoid M. Then
(1) FOThpCpM, Γ1qq «log FOThpCpM, Γ2qq and
(2) MSOThpCpM, Γ1qq «log MSOThpCpM, Γ2qq. J

From now on we only consider the Cayley-graph of the queue monoid Q. To simplify
notation we write C instead of CpQ, Σq and LC instead of LCpQ, Σq. First we prove some
properties of C and LC.

I Proposition 3.9. The following statements hold:
(1) FOThpCq «log FOThpLCq and MSOThpCq «log MSOThpLCq.
(2) C is an acyclic graph with root ε.
(3) C has unbounded (in-)degree.

Proof. At first, we prove (1). Let the duality function δ : Σ˚ Ñ Σ˚ be defined as follows:

δpεq “ ε, δpauq “ δpuqa , and δpauq “ δpuqa

for all u P Σ˚ and a P A. In other words, δ reverses the order of the actions and inverts writing
and reading of a letter a. From [13, Proposition 3.4] we know u ” v iff δpuq ” δpvq. Hence,
δ is an anti-morphism on Q and pp, qq P Eα iff pδppq, δpqqq P Fδpαq for all p, q P Q and α P Σ.
Let ϕ P FOrpEαqαPΣs (ϕ P MSOrpEαqαPΣs, resp.). We construct ϕ1 by replacing any atom
“Eαpx, yq” in ϕ by “Fδpαqpx, yq”. Then C |ù ϕpq1, . . . , qkq ðñ LC |ù ϕ1pδpq1q, . . . , δpqkqq for
any q1, . . . , qk P Q. In particular, ϕ P FOThpCq iff ϕ1 P FOThpLCq (resp. ϕ P MSOThpCq iff
ϕ1 P MSOThpLCq). Finally, the converse reduction is symmetric to the one described above.

Now, we prove (2). Due to [13, Corollary 4.7] we have pRq iff p “ q for all p, q P Q. Then,
by the remark above p, q P Q are strongly connected iff p “ q, i.e., there are no cycles in C.
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Figure 1 C restricted to the nodes reachable by a- and b-edges, only.

Next, to prove (3) let n P N and a, b P A with a ‰ b. Set wk “ akpaaqn´kak for any
0 ď k ď n. Then wk ” w` (i.e. rwks “ rw`s) iff k “ ` for any 0 ď k, ` ď n. By Theorem 3.6
we have χpwkbq “ panb, ε, anq, i.e. wkb ” w`b for any 0 ď k, ` ď n. Hence, we have
prwks, ranba

nsq P Eb for all 0 ď k ď n, i.e., the node ranbans has in-degree ą n. J

By Gn we denote the nˆ n-grid for n P N. This is an undirected graph with n2 many
nodes which we denote by vi,j for any 1 ď i, j ď n. Thereby, we have an edge between vi,j
and vk,` if, and only if, |j ´ `| ` |i ´ k| “ 1 holds. Additionally, for a Γ -labeled, directed
graph G “ pV, pEaqaPΓ q we denote the unlabeled and undirected version by udpGq “ pV,Eq.
Here, we have an edge pv, wq P E if, and only if, there is an a P Γ such that pv, wq P Ea or
pw, vq P Ea. Then, in udpCq we can find Gn for any n P N:

I Proposition 3.10. Gn is an induced subgraph of udpCq for any n P N.

Proof. Let a, b P A be distinct. Then the submonoid M of Q generated by a and b is the free
commutative monoid on ta, bu by Theorem 3.3(1). Its Cayley-graph CpM, ta, buq is an infinite
grid with labeled, directed edges. Then, Gn is an induced subgraph of udpCpM, ta, buqq.
Since in C there are no edges with labels other than a or b between the nodes from M,
udpCpM, ta, buqq is an induced subgraph of udpCq as well implying our claim. J

With the help of a famous result from Seese (cf. [28]), we may now prove the undecidability
of the monadic second-order theory of the queue monoid’s Cayley-graph.

I Corollary 3.11. MSOThpCq is undecidable.

Proof. Due to [26] each planar graph is a minor of some grid Gn. Since each Gn is an
induced subgraph of udpCq by Proposition 3.10, each planar graph is minor of an induced
subgraph of udpCq. Hence, by [28, Theorem 5] MSOThpudpCqq is undecidable. Since udpCq is
first-order interpretable in C, MSOThpCq is undecidable as well. J

4 Combinatorics on Words

Before diving into the proof of the Cayley-graph’s first-order theory we have to prove some
combinatorial statements concerning words.

Let prefrpuq denote the maximal prefix of u of length at most r. In a first lemma we
prove that the complementary prefix and suffix of u resp. v wrt. u[ v can be shortened to
words of length at most 2r having the same prefixes and suffixes. In terms of C’s first-order
theory we only have to consider words u P Σ˚ having “short” λpuq and %puq.
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I Lemma 4.1. Let r P N and u, v, w P A˚ with uw [ wv “ w. Then there are words u1, v1
of length ď 2r such that

sufrpuwq “ sufrpu1wq,
sufrpwvq “ sufrpwv1q,
prefrpwvq “ prefrpwv1q, and
u1w [ wv1 “ w.

Proof. Set u1 “ sufrpuq. Additionally, if |v| ď 2r set v1 :“ v, and otherwise, set v1 :“
prefrpvq sufrpvq. Then the first three equations are obviously satisfied. Now assume u1w [
wv1 ‰ w, i.e., there is w1 P A˚ with |w1| ą |w|, w1 ĺ wv1, and w1 Ď u1w. Since |u1w| ď r`|w|

we have w1 ĺ w prefrpvq ĺ wv. Additionally, we have w1 Ď u1w Ď uw implying |uw [ wv| ě
|w1| ą |w|. This is a contradiction to the definition of w. J

I Remark. The condition uw[wv “ w in Lemma 4.1 cannot be simplified to u[ v “ ε. For
example, let u “ v “ a and w “ baa. Then only the first equation is satisfied.

A period of a word u is a word v such that u ĺ vω. Obviously every word u has a unique
smallest period, which we denote by

?
u. The left-exponent of u ‰ ε in v is the largest number

n such that v “ unw, and it is denoted by lexppu, vq. The right-remainder, v mod u, of v
with respect to u is defined as pulexppu,vqq´1v, that is the unique w such that v “ ulexppu,vqw.
In particular we have v “

?
v

lexpp
?
v,vq
pv mod

?
vq for every v P A˚. A word u is primitive

if there is no v with |v| ă |u| and u “ vn for some n P N. For v, w P A˚ let v∆w “ py, zq,
where y, z are minimal such that there exists an x with v “ xy and w “ xz. For ~v, ~w P pA˚qk
let ~v∆~w “ pv1∆w1, . . . , vk∆wkq P ppA˚q2qk and |~w|–

řk
i“1 |wi|.

I Definition 4.2. Let u P A˚ be a word. A word v P A˚ is a border of u (denoted by vă
Ďu) if

v ĺ u and v Ď u. A border-decomposition of u is a sequence of words ε “ u0, u1, . . . , un “ u

such that for all 0 ď i ă n it holds that ui ă
Ĺ ui`1. A border-decomposition u0, u1, . . . , un is

complete if there is no 1 ď i ă n and v P A˚ with ui ă
Ĺ v

ă
Ĺ ui`1.

Hence, a complete border-decomposition of u P A˚ is the sequence of all borders of u
ordered by word length. So, it is easy to observe that each word u P A˚ has exactly one
complete border-decomposition.

I Example 4.3. The complete border-decomposition of ababa is pε, a, aba, ababaq.

Let u P Σ˚ be any element from the C and pu0, . . . , unq be the complete border-
decomposition of rdpuq [ wrtpuq. Then the characteristics prdpuqu´1

i , ui, u
´1
i wrtpuqq describe

all the words having the same projections to write and read actions, resp., as u. In the
decidability proof of FOThpCq we consider these words since these are all close to each other
in C.

From the complete border-decomposition of a word w we derive the so called skeleton
of w containing the inner words v of all bordered words uvu in w.

I Definition 4.4. Let w P A˚ and ~w “ pw0, . . . , wnq be the complete border-decomposition
of w. The r-skeleton of w, denoted by Srpwq, is the word of length n over the alphabet
Γ “ Aďr with Srpwqris “ prefrpw´1

i wq for each 0 ď i ď n ´ 1. Note that w´1
i w is always

defined since wi ĺ w.

Note that it is convenient for our purpose to consider Srpwq to be a word over an alphabet,
which in itself consists of words of bounded length rather than to consider Srpwq as a sequence
of words.
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rwi

wi Srpwqris
w “

“ w

Figure 2 Definition of Srpwq.

I Example 4.5. Let u “ bababa and v “ ababab. Then u [ v “ ababa and the complete
border-decomposition of u[v is pε, a, aba, ababaq. The 2-skeleton of u[v is the word depicted
below.

ab ba ba

Skeletons will play a crucial role in Section 5. We will prove the decidability of the
Cayley-graph of a queue-monoid by translating back and forth between an Ehrenfeucht-
Fraïssé game played on the Cayley-graph (presented as EF-relations) and games played on
certain skeletons which are derived from the game played on the Cayley-graph.

I Lemma 4.6. Let r P N, w P A˚ and n P N be the length of Srpwq. Then a word v P A˚
can be constructed from w such that |v| “ Op2nrq and Srpwq “ Srpvq.

Proof. Let ~w “ pw0, . . . , wnq be the complete border-decomposition of w. At first, assume
|Srpwqrn´ 1s| ă r (i.e., the last component is small). Then there are two possibilities: on
the one hand w “ wn´1xwn´1 and |xwn´1| ă r. In this case we have |w| ă 2r “ Op2nrq.
On the other hand we have w “ xwn´1 “ wn´1y where |x| “ |y| ă mint|wn´1|, ru, i.e., the
prefix and the suffix wn´1 overlap in wn. Then it is easy to see that x is a period of wn´1
and of wn. Concretely, there is a prefix p of x and a number k P N such that w “ xkp and
wn´1 “ xk´1p. In particular, all word xip with 1 ď i ď k are borders of w which implies
k ď n. Hence we have |w| ď |x| ¨ pk ` 1q ď r ¨ pn` 1q “ Op2nrq. Therefore, in both cases we
are ready and we can assume |Srpwqrn´ 1s| from now on.

We construct v inductively as follows: We set v0 :“ ε. Now let a, b P A be distinct
with Srpwqr0s P aA˚. Then x ă

Ĺ Srpwqr0sb2n`r implies x “ ε. Hence, we set, for 0 ď i ă n,
vi`1 :“ vixivi where xi “ Srpwqris bn´iaibn`r. Finally, we set v :“ vn.

Before we can prove Srpwq “ Srpvq we need to prove the following two properties of
pv0, . . . , vnq:
(a) For each 0 ď i ď n

?
vi`1 “ vixi and

(b) ~v “ pv0, . . . , vnq is a complete border-decomposition of v.
Proof of (a). We observe that vixi is a period of vi`1 and we prove by induction on 0 ď i ď n

that this period is minimal. For i “ 0 this is trivial since v1 P aA
r´1b2n`r and a ‰ b. So

now let i ą 0. We suppose that there is a period p of vi`1 with |p| ă |vixi|. Then, for
yj :“ xjpb

n`rq´1 for 0 ď j ď i, the word vi`1 is an alternation of words yj and br`n which
are all of length r ` n. Note that by construction we have yj ‰ bn`r (since each yj contains
at least one a) as well as yj ‰ yk if j ‰ k for each 0 ď j, k ď i. Additionally, each second
occurrence of a yj-block is y1. We now consider two cases:

First, assume that |p| is not a divisor of n` r. If |p| ă n` r then the distance between
each two occurrences of a in pω is at most |p| ă n`r but vi`1 contains at least one bn`r-block.
Hence, we have |p| ą n` r. If t |p|n`r u is odd (cf. Fig. 3a), p starts with a and ends in a block
of the form bn`r, but does not contain all of these n ` r many b’s. Since p start with an
a, a first repetition of p this first a is different from the b at this position in vi`1, i.e., p is
not a period of vi`1. Otherwise, if t |p|n`r u is even (cf. Fig. 3b), then the prefix of p´1vi`1 of
length |p| contains at most one y1-block and this overlaps with a bn`r-block. Hence, there
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y1 bn`r y2 bn`r y1 bn`rba

a a

‰

p p

(a) Case
Y

|p|
n`r

]

is odd.

y1 bn`r y2 bn`r y1 bn`r

p y1 bn`r

a a

b

‰

(b) Case
Y

|p|
n`r

]

is even.

Figure 3

vi`1 “

u “

u “

xi

y

x

vi vi

m

Figure 4

is a position in the first repetition of p containing a b which is different from the a at this
position in vi`1.

Now, assume |p| is a divisor of n ` r. Then we can understand the blocks of length
n ` r as letters of the alphabet tbn`r, y1, . . . , yiu. Since there is no yi-block in vi we have
|p| ě |viyi|. Since p starts with y1 and yi is followed by bn`r, p has length at least |vixi|.

Proof of (b). By construction, it is easy to see that ~v “ pv0, . . . , vnq is a border-
decomposition of v “ vn. We prove now by induction on 0 ď i ă n that pv0, . . . , vi`1q is a
complete border-decomposition of vi. The case i “ 0 is easy to verify since v1 P aA

r´1b2n`r.
So, let i ě 1. Assume there is u P A˚ with vi ă

Ĺu
ă
Ĺ vi`1. Let u be of minimal length satisfying

this inequality. Then there are two possible cases:
First, suppose |u| ě |vixi| holds, i.e., the prefix and suffix u overlap in vi and the overlap

contains at most xi (cf. Fig. 4). Let x, y P A˚ such that u “ xxivi “ y. Then we have
|x| “ |y| and m :“ xxiy

ă
Ĺ u. Hence, by minimality of u we have |m| ď |vi| and therefore, by

induction hypothesis, m “ vk for some 0 ă k ď i. This implies

vk´1xk´1vk´1 “ vk “ m “ xxiy .

Since |x| “ |y| and |xi| “ |xk´1| we have xi “ xk´1, which is a contradiction to the
construction of the xi’s.

Now, suppose |u| ă |vixi|. If |u| ě |vi`1|
2 (i.e., the prefix and suffix u in vi overlap) then

there is a word m P A˚ such that m ă
Ĺ u holds. Hence, by minimality of u and by induction

hypothesis we have m “ vk for some 0 ď k ď i. Since |m| ă |xi| “ |x1| we have m “ ε, i.e.,
we have |u| “ |vi`1|

2 .
Suppose |u| ď |vi`1|

2 (i.e., the prefix and suffix u in vi do not overlap). Then there is a
word p P A˚ such that vi`1 “ pu. Since u is a prefix of vi`1 and |p| ą |vi`1|

2 , u also is a
prefix of p. Hence, p is a period of vi`1 and we have

|p| “ |vi`1| ´ |u| ă |vi`1| ´ |vi| “ |vixi| .



F. Abu Zaid and C. Köcher 9:11

This is a contradiction to property a stating that vixi is the minimal period of vi`1.
So, in both cases we have seen that there is no vi

ă
Ĺ u ă

Ĺ vi`1, i.e., pv0, . . . , vi`1q is a
complete border-decomposition.

Finally, let 0 ď i ă n. Then we have

Srpvqris “ prefrpv´1
i vq “ prefrpSrpwqris sq “ Srpwqris

for some s P A˚, i.e., Srpvq “ Srpwq. Additionally, we have |vi| “ 2|vi´1 ` 2n ` 2r for
1 ď i ď n and |v0| “ 0 which results in |v| “ |vn| “ p2n ´ 1qp2n` 2rq “ Op2nrq. J

Let V P pAďrq˚ be the r-skeleton of some word w P A˚. We call the word v P A˚

constructed in the proof of Lemma 4.6 the r-instantiation of V .

5 Decidability of the FO-Theory

Recall that the Cayley-graph of the queue monoid Q induced by A is denoted by C “

pQ, pEαqαPΣq. In order to ease the notation we let elements of C inherit some properties
from their projections to the read and write actions. For p, q P Q let |p| “ |prdppq,wrtppqq|,
p∆q “ prdppq,wrtppqq∆prdpqq,wrtpqqq, and we call |p∆q| the (∆-)distance of p and q. Note
that ∆ defines a metric on C. Further for ~p “ pp1, . . . , pkq P Qk let Nrp~pq “ tq P Q | D1 ď
i ď k : |pi∆q| ď r _ |q| ď ru be the (∆-)neighborhood of ~p of radius r (r-neighborhood). Note
that we implicitly add the origin of C to ~p when we compute the neighborhood. Moreover
we define the notion of a border-decomposition and an r-skeleton for an element p P Q as
the border-decomposition and the r-skeleton of rdppq [ wrtppq.

Let us first give an intuitive outline of our decidability proof. We follow a classical proof
strategy due to Ferrante and Rackoff [8]. Roughly speaking we show that there is some fixed
primitive recursive function f : N Ñ N such that for every two pr ` 1q-equivalent tuples
~p, ~q P Qn and every p P Q there is a q in the fpr ` 1q-neighborhood of the tuple ~q such
that p~p, pq ”r p~q, qq. This implies that in order to evaluate a formula Qxϕp~pq where ϕ has
quantifier rank r and Q P tD,@u we can restrict the quantification of x to the fpr ` 1q-
neighborhood of ~p. Since the r-neighborhood of each element p P Q is finite and effectively
computable for every radius r, we can use the above observation to implement a decision
procedure for the theory of C. In order to achieve this goal we exploit the fact that first-order
logic cannot measure distances between two nodes that are more than exponentially far away
in the quantifier rank. Therefore our task for a given quantifier rank r ą 0 is to find for
every p that is far away from a tuple ~p an element p1 that is closer (but not yet too close) to
~p such that the neighborhoods of p and p1 of a suitably chosen radius are not distinguishable
with the remaining quantifier rank r ´ 1. What makes this task more complex than for most
other examples of Cayley-graphs with decidable first-order theory that can be found in the
literature is that the Cayley-graph of the queue monoid is in some sense less local. In fact,
the neighborhood-structure of an element p does not only depend on suffixes of bounded
length of rdppq and wrtppq (as it would be the case for instance for the direct product of two
free monoids). We solve this problem via the notion of skeletons. Our proof reveals that the
r-type of the 2r`1-neighborhood of an element p is basically determined by the pr ` 1q-type
of the 3 ¨ 2r`1-skeleton of rdppq [ wrtppq. This will be the core of our proof.

Let us start off by making some technical preparations in order to formulate the core
idea precisely.

I Definition 5.1. Let V be an r-skeleton. We say that q P Q is compatible with V if V has
an instantiation v such that rdpqq [ wrtpqq “ vx for some x P Aďr and |wrtpqq∆v| ď r.
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Intuitively, q being compatible to an r-skeleton V means that we can obtain an element q1
with r-skeleton V by deleting up to r many read actions and modifying the write actions
arbitrarily up to distance r. We use this notion in order to translate elements of the Cayley-
graph into positions of an r-skeleton. Next we describe how we translate back and forth
between elements of the Cayley-graph and positions in a skeleton. However we can not
guarantee that every element in close proximity to a given element p can be associated
with a position in the r-skeleton of p because small changes to the read and write actions
might change the border-decomposition dramatically. But we can modify r and p slightly to
circumvent this problem.

I Definition 5.2. For q P Q with |rdpqq| ě r let rcrpqq be the element q1 with wrtpq1q “ wrtpqq,
rdpq1q “ rdpqq sufrprdpqqq´1, and µpq1q “ rdpq1q [ wrtpq1q. In other words, rcr just cuts the
last r read actions and pushes read and write actions as far together as possible.

I Definition 5.3. Let p, q P Q and let U and V be the 3r-skeletons of rc2rppq and rc2rpqq,
respectively. If we suppose that pm1, . . . ,mkq are positions in V and pn1, . . . , nkq are
positions in U such that pU,m1, . . . ,mkq ”` pV, n1, . . . , nkq for some ` ě 1. For p1 P Q
with |p1∆p| ď r and |µpp1q| ě 2r we associate a position mk`1 in U as follows: Let
pu1, . . . , umq be the complete border-decomposition of rdprc2rppqq and pv1, . . . , vnq be the
complete border-decomposition of rdprc2rpqqq. As p1 has distance at most r from p we
have that rdpp1q “ rdprc2rppqqx for some x P Aď2r. Therefore there is an i ď m such that
µpp1q “ uix. Then i is the position that is associated with p1.

Now let nk`1 be such that pU,m1, . . . ,mk`1q ”`´1 pV, n1, . . . , nk`1q we associate an
element q1 with nk`1 as follows: Let q1 be the element with rdpq1q “ rdprc2rpqqqu

´1
mk`1

µpp1q,
wrtpq1q∆wrtprcrpqqq “ wrtpp1q∆wrtprc2rppqq, and µpq1q “ vmk`1u

´1
nk`1

µpp1q. Note that q1 is
well defined since V rjs is labeled by pref2r`2pu´1

i µppqq. Therefore vj pref2r`1pv´1
i µppqq is a

prefix of wrtpq1q by construction.

Another important ingredient of our proof is to construct “small” r-equivalent words
from a given word w. This is routine since it can be achieved by a simple automata-theoretic
approach.

I Lemma 5.4 ([29]). From a given alphabet Γ , a word v P Γ˚, and r P N one can compute
an automaton A in time expr`1pfprqq with LpAq “ tw P Γ˚ | w ”r vu for some primitive
recursive function f .

Proof sketch. Construct a first-order formula ϕ that characterizes the r-type of v. From ϕ

compute an automaton Aϕ with LpAϕq “ tw P Γ
˚ | w ”r vu. One easily show via induction

on r that the size of the automaton A is at most expr`1p2, fprqq where fprq is an upper
bound for the size of the formula ϕ (which can be chosen to be primitive recursive). J

We use this idea to define a family of equivalence relations pErmqr,mPN. For r,m P N and
~p, ~q P Qm let ~pErm~q iff
(1) If |pi∆ε| ď 4 expr`2p2, fprqq then pi “ qi where f is the function from Lemma 5.4.
(2) |pi∆pj | “2r |qi∆qj | for all 1 ď i, j ď m and if |pi∆pj | ď 2r then also pi∆pj “ qi∆qj .
(3) There is a partition X1, . . . , Xk of t1, . . . ,mu such that for X ‰ X 1 P tX1, . . . , Xku it

holds that with min “ minX:
(a) If i P X, j P X 1 it holds that |pi∆pj | ą 2r (and therefore |qi∆qj | ą 2r).
(b) suf2r`m`2prdppiqq “ suf2r`m`2prdpqiqq and

suf2r`m`2pwrtppiqq “ suf2r`m`2pwrtpqiqq for all i P X.
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(c) For all j P X it holds that |pmin∆pj | ď
řr`m
s“r 2s (and therefore also |qmin∆qj | ď

řr`m
s“r 2s).

(d) Let U be the 3 ¨ 2r`m`1-skeleton of rc2r`m`2ppminq and V be the 3 ¨ 2r`m`1-skeleton
rc2r`m`2pqminq. Then for all j P X we have that either µppjq “ µpqjq or |µppjq| ě
2r`m`2 and pj is compatible with U and qj is compatible with V . Further if
m1, . . . ,mk are the positions in U that are associated with tpj | j P Xu and n1, . . . , nk
are the positions in U that are associated with tqj | j P Xu then pV,m1, . . . ,mkq ”r`1
pU, n1, . . . , nkq.

We show that pErmqr,mPN are indeed EF-relations for C.

I Lemma 5.5. For all m P Ną0 and all ~p, ~q P Qm: If ~pE0
m~q then the mapping pi ÞÑ qi is a

partial isomorphism.

Proof. We need to show that ppi, pjq P Ea ñ pqi, qjq P Ea for all i, j ď m and all a P Σ.
Let ~p, ~q P Qm with ~pE0

m~q. Suppose ppi, pjq P Ea for some a P Σ. Then |pi∆pj | “ 1. Hence
pi∆pj “ qi∆qj by (2). Let X1, . . . , Xk be the partition from Property 3. Since the distance
between pi and pj and between qi and qj is 1 we derive from Property (3a) that i and j
belong to the same X P tX1, . . . , Xku. Let ` “ minX. If |µppiq| ă 2m`2 then, by Property
(3d) and (3b), µppiq “ µpqiq. In this case ppi, pjq P Ea ô pqi, qjq P Ea obviously holds.
Otherwise there are 3 ¨ 2m`1-skeletons U, V such that pi and pj can be translated into
positions m1,m2 in U and qi and qj can be translated into position n1, n2 in V such that
pU,m1,m2q ”1 pV, n1, n2q. There are two possible types of configurations for pi and pj such
that they can be connected by an edge. First, it might be the case that rdppiq “ rdppjq,
wrtppiqa “ wrtppjq, and µppiq “ µppjq. In this case m1 “ m2 and therefore n1 “ n2, which
implies that rdpqiq “ rdpqjq, wrtpqiqa “ wrtpqjq, and µpqiq “ µpqjq. Therefore pqi, qjq P Ea.

Second, it might be that rdppiqa “ rdppjq (where a “ b), wrtppiq “ wrtppjq, and µppjqa´1

is the largest suffix w of µppiq such that wa is a prefix of wrtppiq. This property can be
translated into the formula of quantifier rank 1. Let pw0, . . . , wnq be the complete border-
decomposition of rc2m`2pp`q and v :“ w´1

m1
µppiq P A

ď3¨2m`1 . Then

ϕpx1, x2q

– x2 ď x1 ^
ł

sPAď3¨2m`1 :pvaqĺs

Pspx2q ^ @y :

¨

˝x2 ă y ă x1 Ñ
ľ

sPAď3¨2m`1 :vaĺs

 Pspyq

˛

‚.

Hence U |ù ϕpm1,m2q and since pU,m1,m2q ”1 pV, n1, n2q also V |ù ϕpn1, n2q and therefore
pqi, qjq P Ea. J

I Lemma 5.6. For all m, r P N and all ~p, ~q P Qm:

~pEr`1
m ~q ñ @p P QDq P Nexpr`3pgpr`mqq

p~qq : p~p, pqErm`1p~q, qq

for some primitive recursive function g.

Proof. Let f be the primitive recursive function from Lemma 5.4. Let ~p, ~q P Qm with
p~p, ~qq P Er`1

m and let X1, . . . , Xk be a partition of t1, . . . ,mu with the properties described in
(3). Consider p P Q. We distinguish three cases. If p has distance ď 4 expr`2p2, fprqq from ε

then we choose q “ p.
From now on suppose p has distance ą 4 expr`2p2, fprqq from ε. We consider the case that

p has distance ą 2r from every pi. Since the distance from ε is exactly |π1ppq|`2|µppq|`|%ppq|
it follows that |π1ppq| ą expr`2pfprqq or |µppq| ą expr`2pfprqq or |%ppq| ą expr`2pfprqq. Let

FSTTCS 2018
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pj qj
2r`1 2r`1

p q

U “ u1 ¨ ¨ ¨ um``1 ¨ ¨ ¨ u|U | “ Vv1 ¨ ¨ ¨ vn``1 ¨ ¨ ¨ v|V |

pU,m1, . . . ,m`q ”r`2 pV, n1, . . . , n`q

Figure 5 Construction of q from p using U and V .

p1 “ rc2r`m`2ppq. Consider the 3 ¨ 2r`m`1-skeleton V “ S3¨2r`m`1pp1q. By Lemma 5.4 we can
find a 3 ¨ 2r`m`1-skeleton W of length at most pm` 1q expr`2pfpr` 1qq with V ”r`1 W and
3 ¨ 2r`m`1-instantiation w with |w| ď c ¨ 2pm`1q expr`2pfpr`1qq¨3¨2r`m`1

ď expr`3pgpr `mqq

(for a suitable primitive recursive function g). Using Lemma 4.1, words u, v of length at most
pm` 1q2r`m`3 such that
1. suf2r`m`2puwq “ suf2r`m`2prdppq suf2r`m`2prdppqq´1q

2. suf2r`m`2pwvq “ suf2r`m`2pwrtppqq
3. pref2r`m`2pwvq “ pref2r`m`2pwrtppqq
4. uw [ wv “ w

such that every element x with rdpxq “ uw and wrtpxq “ wv has distance ą 2r from every qi.
We choose to q to be such an element x. It remains to specify µpxq. if |µppq| ď 2r`m`2 then
choose µpqq “ µppq. Otherwise let pv0, v1, . . . , vmq be the complete border-decomposition of
p1 and let pw0, w1, . . . , wnq be the complete border-decomposition of w. Let i be the index
of µpp1q in pv0, v1, . . . , vmq. Because S3¨2r`m`1pp1q ”r`1 W there is a j P t0, . . . , nu such
that pS3¨2r`m`1pp1q, iq ”r pW, jq. Now choose µpqq “ wj . Finally extend the partition by
Xk`1 “ tm` 1u.

If p has distance ď 2r from some pi then let Y P tX1, . . . , Xku be such that i P Y and
let j “ min Y . Let U be the 3 ¨ 2r`m`1-skeleton of rc2r`m`2ppjq and V be the 3 ¨ 2r`m`1-
skeleton of rc2r`m`2pqjq. Since |pi∆pj | ď

řr`m
s“r`1 2s and |p∆pi| ď 2r we conclude that

|p∆pj | ď
řr`m
s“r 2s ď 2r`m`1. Hence, p is compatible with U . Let m1, . . . ,m` be the

positions in U that are associated with the elements tqs | s P Y u, m``1 the position in U
that is associated with p, and n1, . . . , n` be the positions associated with tqs | s P Y u in
V . Since pU,m1, . . . ,m`q ”r`2 pV, n1, . . . , n`q by Property (3d) there exists a n``1 with
pU,m1, . . . ,m``1q ”r`1 pV, n1, . . . , n``1q. From n``1 we compute the associated element q
in the p

řr
s“r`m 2sq-neighborhood of qj . The construction of q ensures that Properties (3b)

to (3) are fulfilled for p~p, pq and p~q, qq by adding `` 1 to Y . Hence p~p, pqErmp~q, qq. J

The Lemmata 5.5 and 5.6 ensure that Erm-equivalent tuples are also r-equivalent.

I Corollary 5.7. For all ~p P Qm, p P Q, and r P N there exists an element
q P Nexpr`3pgpr`mqq

p~pq with pC, ~p, pq ”r pC, ~p, qq for some polynomial f .

I Lemma 5.8. For every p P Q and every r there are at most |A|4rpmint|rdppq|, |wrtppq|u`rq
many elements in the r-neighborhood of a node p P Q.

Proof. Every element q in the r-neighborhood of p can be characterized by the tuple
p∆q “ pu, v, w, xq P pAďrq4 and µpqq. Once we have fixed p∆q P pAďrq4 (and therefore fixed
rdpqq and wrtpqq) there are at most mint|rdpqq|, |wrtpqq|u ď mint|rdppq|, |wrtppq|u ` r possible
values for µpqq. J

With this lemma we obtain our main result.
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Table 1 Comparison of the decidability of logics on Cayley-graphs of fundamental data structures.

Data Structure Transformation Monoid M FOThpCpM, Γ qq MSOThpCpM, Γ qq

finite monoid finite monoid PSPACE [10] PSPACE [10]
counter pZ,`q 2EXPSPACE [21] decidable [20]
stack polycyclic monoid 2EXPSPACE [21] decidable [6, 20]
queue queue monoid primitive recursive undecidable

I Theorem 5.9. FOThpCq is primitive recursive.

Proof. We use the standard model-checking algorithm for first-order logic but restrict
quantification to the expr`1p2, fprqq-neighborhood of the current variable assignment. The
correctness of this procedure is guaranteed by Corollary 5.7. We see that the values |rdppq|
and |wrtppq| are bounded by expr`3pgpr `mqq Hence, by Lemma 5.8 the algorithm needs to
consider at most |A|4rpexpr`3pgpr `mqq ` 1q many Elements, which leads to a runtime of
|ϕ| ¨ p|A|4rpexpr`3pgpr `mqq ` 1qqr, which is obviously a primitive recursive function. J

6 Conclusion and Open Problems

We studied the Cayley-graph of the queue monoid and the logics of these graphs. Concretely,
we have shown the decidability of the Cayley-graph’s first order theory and the undecidability
of the monadic second-order theory. This answers a question from Huschenbett et al. in [13].

In Table 1 is a comparison of our results compared to other fundamental data structures.
There are still some questions open relating to the queue monoid: in this paper we

have given a primitive recursive but non-elementary upper bound on the complexity of the
first-order theory of the queue monoid’s Cayley-graph. So, one may ask for tight upper and
lower bounds. Another open question concern the automaticity of the queue monoid. While
it is neither automatic in the sense of Khoussainov and Nerode [16] nor automatic in the
sense of Thurston et al. [4] due to [13], we still do not know whether the Cayley-graph of
the queue monoid is automatic. Finally, the decidability of the first-order theory of the
(partially) lossy queue monoid’s (cf. [17, 18]) Cayley-graph is left open as well and is worth
to be studied.

References
1 Parosh A. Abdulla and Bengt Jonsson. Verifying Programs with Unreliable Channels.

Information and Computation, 127(2):91–101, 1996. doi:10.1006/inco.1996.0053.
2 Benedikt Bollig. Formal Models of Communicating Systems: Languages, Automata, and

Monadic Second-Order Logic. Springer, 2006. doi:10.1007/3-540-32923-4.
3 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. Journal of

the ACM, 30(2), 1983. doi:10.1145/322374.322380.
4 James W Cannon, David BA Epstein, Derek F Holt, Silvio VF Levy, Michael S Paterson,

and William P Thurston. Word Processing in Groups. Jones and Barlett Publ., Boston,
MA, 1992.

5 Gérard Cécé, Alain Finkel, and S. Purushotaman Iyer. Unreliable Channels Are Easier
to Verify than Perfect Channels. Information and Computation, 124(1):20–31, 1996. doi:
10.1006/inco.1996.0003.

6 Christian Delhommé, Teodor Knapik, and D. Gnanaraj Thomas. Using Transitive–Closure
Logic for Deciding Linear Properties of Monoids. In Mathematical Foundations of Computer

FSTTCS 2018

http://dx.doi.org/10.1006/inco.1996.0053
http://dx.doi.org/10.1007/3-540-32923-4
http://dx.doi.org/10.1145/322374.322380
http://dx.doi.org/10.1006/inco.1996.0003
http://dx.doi.org/10.1006/inco.1996.0003


9:16 The Cayley-Graph of the Queue Monoid: Logic and Decidability

Science 2003, volume 2747 of Lecture Notes in Computer Science, pages 378–387. Springer,
2003. doi:10.1007/978-3-540-45138-9_32.

7 Andrzej Ehrenfeucht. An Application of Games to the Completeness Problem for Formal-
ized Theories. Fundamenta Mathematicae, 49(129-141):13, 1961.

8 Jeanne Ferrante and Charles W. Rackoff. The Computational Complexity of Logical The-
ories. Number 718 in Lecture Notes in Mathematics. Springer, 1979. doi:10.1007/
BFb0062837.

9 Roland Fraïssé. Sur Quelques Classifications Des Systèmes de Relations. Université d’Alger,
Publications Scientifiques, Série A, 1:35–182, 1954.

10 Erich Grädel. Finite Model Theory and Descriptive Complexity. In Finite Model Theory
and Its Applications, Texts in Theoretical Computer Science an EATCS Series, pages 125–
230. Springer, 2007. doi:10.1007/3-540-68804-8_3.

11 James A. Green. On the Structure of Semigroups. Annals of Mathematics, pages 163–172,
1951.

12 Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen. The Power of Priority
Channel Systems. Logical Methods in Computer Science, 10(4:4), 2014. doi:10.2168/
LMCS-10(4:4)2014.

13 Martin Huschenbett, Dietrich Kuske, and Georg Zetzsche. The Monoid of Queue Actions.
Semigroup forum, 95(3):475–508, 2017. doi:10.1007/s00233-016-9835-4.

14 Mark Kambites. Formal Languages and Groups as Memory. Communications in Algebra,
37(1):193–208, 2009. doi:10.1080/00927870802243580.

15 Olga Kharlampovich, Bakhadyr Khoussainov, and Alexei Miasnikov. From Automatic
Structures to Automatic Groups. Groups, Geometry, and Dynamics, 8(1):157–198, 2014.
doi:10.4171/GGD/221.

16 Bakhadyr Khoussainov and Anil Nerode. Automatic Presentations of Structures. In Logic
and Computational Complexity, volume 960 of Lecture Notes in Computer Science, pages
367–392. Springer, 1995. doi:10.1007/3-540-60178-3_93.

17 Chris Köcher. Rational, Recognizable, and Aperiodic Sets in the Partially Lossy Queue
Monoid. In STACS’18, volume 96 of LIPIcs, pages 45:1–45:14. Dagstuhl Publishing, 2018.
doi:10.4230/LIPIcs.STACS.2018.45.

18 Chris Köcher, Dietrich Kuske, and Olena Prianychnykova. The Inclusion Structure of Par-
tially Lossy Queue Monoids and Their Trace Submonoids. RAIRO - Theoretical Informatics
and Applications, 52(1):55–86, 2018. doi:10.1051/ita/2018003.

19 Dietrich Kuske and Markus Lohrey. Logical Aspects of Cayley-Graphs: The Group Case.
Annals of Pure and Applied Logic, 131(1):263–286, 2005. doi:10.1016/j.apal.2004.06.
002.

20 Dietrich Kuske and Markus Lohrey. Logical Aspects of Cayley-Graphs: The Monoid Case.
International Journal of Algebra and Computation, 16(02):307–340, 2006. doi:10.1142/
S0218196706003001.

21 Dietrich Kuske and Markus Lohrey. Automatic Structures of Bounded Degree Revisited.
The Journal of Symbolic Logic, 76(4):1352–1380, 2011. doi:10.2178/jsl/1318338854.

22 Benoît Masson and Philippe Schnoebelen. On Verifying Fair Lossy Channel Systems. In
MFCS’02, volume 2420 of Lecture Notes in Computer Science, pages 543–555. Springer,
2002. doi:10.1007/3-540-45687-2_45.

23 David E. Muller and Paul E. Schupp. The Theory of Ends, Pushdown Automata, and
Second-Order Logic. Theoretical Computer Science, 37:51–75, January 1985. doi:10.1016/
0304-3975(85)90087-8.

24 Paliath Narendran and Friedrich Otto. Some Results on Equational Unification. In 10th In-
ternational Conference on Automated Deduction, volume 449 of Lecture Notes in Computer
Science, pages 276–291. Springer, 1990. doi:10.1007/3-540-52885-7_94.

http://dx.doi.org/10.1007/978-3-540-45138-9_32
http://dx.doi.org/10.1007/BFb0062837
http://dx.doi.org/10.1007/BFb0062837
http://dx.doi.org/10.1007/3-540-68804-8_3
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.2168/LMCS-10(4:4)2014
http://dx.doi.org/10.1007/s00233-016-9835-4
http://dx.doi.org/10.1080/00927870802243580
http://dx.doi.org/10.4171/GGD/221
http://dx.doi.org/10.1007/3-540-60178-3_93
http://dx.doi.org/10.4230/LIPIcs.STACS.2018.45
http://dx.doi.org/10.1051/ita/2018003
http://dx.doi.org/10.1016/j.apal.2004.06.002
http://dx.doi.org/10.1016/j.apal.2004.06.002
http://dx.doi.org/10.1142/S0218196706003001
http://dx.doi.org/10.1142/S0218196706003001
http://dx.doi.org/10.2178/jsl/1318338854
http://dx.doi.org/10.1007/3-540-45687-2_45
http://dx.doi.org/10.1016/0304-3975(85)90087-8
http://dx.doi.org/10.1016/0304-3975(85)90087-8
http://dx.doi.org/10.1007/3-540-52885-7_94


F. Abu Zaid and C. Köcher 9:17

25 Jean-Éric Pin. Mathematical Foundations of Automata Theory. Lecture notes LIAFA,
Université Paris, 7, 2010.

26 Neil Robertson and Paul D. Seymour. Graph Minors, Part III: Planar Tree-Width. Jour-
nal of Combinatorial Theory, Series B, 36(1):49–64, 1984. doi:10.1016/0095-8956(84)
90013-3.

27 Jacques Sakarovitch. Kleene’s Theorem Revisited. In Trends, Techniques, and Problems
in Theoretical Computer Science, volume 281 of Lecture Notes in Computer Science, pages
39–50. Springer, 1986. doi:10.1007/3540185356_29.

28 D. Seese. The Structure of the Models of Decidable Monadic Theories of Graphs. Annals
of Pure and Applied Logic, 53(2):169–195, 1991. doi:10.1016/0168-0072(91)90054-P.

29 Wolfgang Thomas. Languages, Automata, and Logic. In Grzegorz Rozenberg and Arto
Salomaa, editors, Beyond Words, volume 3 of Handbook of Formal Languages, pages 389–
455. Springer, 1997. doi:10.1007/978-3-642-59126-6_7.

FSTTCS 2018

http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1016/0095-8956(84)90013-3
http://dx.doi.org/10.1007/3540185356_29
http://dx.doi.org/10.1016/0168-0072(91)90054-P
http://dx.doi.org/10.1007/978-3-642-59126-6_7




Uniformly Automatic Classes of Finite Structures
Faried Abu Zaid1

Camelot Management Consultants, CoE Artificial Intellegence for Information Management,
Munich, Germany
faza@camelot-mc.com

Abstract
We investigate the recently introduced concept of uniformly tree-automatic classes in the realm
of parameterized complexity theory. Roughly speaking, a class of finite structures is uniformly
tree-automatic if it can be presented by a set of finite trees and a tuple of automata. A tree t
encodes a structure and an element of this structure is encoded by a labeling of t. The automata
are used to present the relations of the structure. We use this formalism to obtain algorithmic
meta-theorems for first-order logic and in some cases also monadic second-order logic on classes of
finite Boolean algebras, finite groups, and graphs of bounded tree-depth. Our main concern is the
efficiency of this approach with respect to the hidden parameter dependence (size of the formula).
We develop a method to analyze the complexity of uniformly tree-automatic presentations, which
allows us to give upper bounds for the runtime of the automata-based model checking algorithm
on the presented class. It turns out that the parameter dependence is elementary for all the
above mentioned classes. Additionally we show that one can lift the FPT results, which are
obtained by our method, from a class C to the closure of C under direct products with only a
singly exponential blow-up in the parameter dependence.

2012 ACM Subject Classification Theory of computation → Finite Model Theory, Theory of
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Keywords and phrases Automatic Structures, Model Checking, Fixed-Parameter Tractability,
Algorithmic Meta Theorems

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.10

1 Introduction

In this paper we investigate the use of automata in algorithmic meta-theorems. Algorithmic
meta-theorems are general algorithmic results stating that a class of problems P can be
efficiently solved on a class of instances C. In many cases P is the class of problems definable
in a certain logic L. Parameterised complexity theory provides one of the key notions to
establish algorithmic meta-theorems: we say that the model checking problem for a logic L
on a class of structures C is fixed-parameter tractable (FPT) (in the size of the formula) if
there is a computable function f and a constant c such that we can decide for every ϕ ∈ L
and every A ∈ C in time f(|ϕ|) · |A|c whether A |= ϕ.

Prototypical examples of automata-based algorithmic meta-theorems are the theorem
of Courcelle [5] for MSO-definable problems (actually MSO2, which has the additional
capability to quantify over subsets of the edge relation) on graphs of bounded treewidth and
the result of Courcelle, Makowsky, and Rotics [4] for MSO-definable problems on graphs of
bounded cliquewidth. The basic idea is in both cases to compute from a graph G a tree-like
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© Faried Abu Zaid;
licensed under Creative Commons License CC-BY

38th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2018).
Editors: Sumit Ganguly and Paritosh Pandya; Article No. 10; pp. 10:1–10:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:faza@camelot-mc.com
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


10:2 Uniformly Automatic Classes of Finite Structures

decomposition tG and from an MSO-formula ϕ a tree-automaton Aϕ that accepts exactly
the tree-like decompositions of graphs that model ϕ. Since the construction of tG from G

can be performed efficiently, we can efficiently check if G |= ϕ by checking if Aϕ accepts tG.
Note that many NP-complete problems, such as 3-Colourability, are definable in MSO and
hence efficiently solvable on the above mentioned classes.

The idea to present structures by automata is also the basis for the field of automatic
structures. Roughly speaking, a structure is called automatic if its domain can be represented
as a regular set in such a way that its relations become recognisable by synchronous multi-tape
automata. However, it is not very interesting to study automatic presentations on the class of
all finite structures since every finite structure has an automatic presentation (since all finite
languages are regular). Recently the concept of uniformly automatic classes was introduced
in [1]. In this setting the automata obtain an aditional input (called advice) which encodes
the structure that should be presented. Therefore it is possible to present a whole class
of structures by a single presentation and a set of advices. Contrary to the classical case
without advice it is indeed very interesting to ask which classes of finite structures have a
uniformly automatic presentation and which algorithmic consequences can be derived from
the existence of such a presentation for a given class.

From a logical point of view it is worthwhile to mention that the presentations which build
the core of the FPT algorithms for bounded treewidth and bounded cliquewidth graphs are
obtained from MSO-interpretations on trees. Uniformly automatic presentations, however,
correspond to so called set-interpretations, which are strictly more powerful than MSO-
interpretations. In fact, it is not hard to construct even uniformly word-automatic classes of
graphs which have unbounded tree- and cliquewidth. The power to present more complex
classes of structures comes with the trade-off that we have to restrict our consideration to FO
model checking instead of MSO model checking. Still havening a fixed parameter tractable
model checking problem for a class of structures directly leads to FPT results for many other
interesting algorithmic problems. For instance, if FO model checking is FPT on a class of
graphs C then Independent Set is FPT on C in the size of the independent set because for every
k ∈ N and every graph G it holds that G |= ∃x1, . . . , xk(

∧
1≤i<j≤k xi 6= xj ∧

∧
i<j ¬Exixj)

if and only if G contains an independent set of size k.
Meta-theorems for first-order logic have been studied extensively on classes of sparse

graphs. The first result in this direction is due to Seese for graphs of bounded degree [23].
Over the past decades larger and larger classes of sparse graphs have been identified for
which FO model checking is FPT. This development has recently found its climax in the
result of Grohe, Kreutzer, and Siebertz for nowhere dense graphs [15]. They proved that
under certain complexity theoretic assumptions this is the largest possible subgraph-closed
class of graphs where FO model checking is FPT.

We investigate automaticity as a generic notion of simplicity which might bring up
new and interesting classes of structures for which FO model checking is FPT. Towards
the theory, we are concerned with the efficiency of this approach. The concept of fixed
parameter tractability is often criticized since there are no constraints on the complexity of
the parameter. Note that in general the non-elementary worst-case runtime of the automaton
construction process leads to a non-elementary parameter dependence in the algorithmic
meta-theorems. Frick and Grohe [12] showed, unless PTIME = NP, there is no algorithm
that solves the model checking problem for MSO on words or trees in time f(|ϕ|) · poly(|t|)
for any elementary function f : N → N. A similar statement holds for FO on words. As
trees have treewidth one, this renders Courcelle’s approach to model checking of graphs with
bounded treewidth optimal. Moreover, the efficiency of the automata theoretic approach has
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also been confirmed in practice. For instance, Langer et al. [20] implemented Courcelle’s
technique and found that their implementation can compete with other approaches for
specific problems such as Dominating Set.

Even more interestingly, the automata-based approach also tends to behave tamely when
applied to interpretations of structures whose theory is elementary. Eisinger [8] gave a
triply-exponential upper bound on the size of the minimal automaton for formulae of integer
and mixed-real addition. In [6] Durand-Gasselin and Habermehl showed for word-automatic
structures that the runtime of the generic algorithm can be bounded by a function which
estimates how well the presentation goes along with the Ehrenfeucht-Fraïssé relations of
the structure and gave runtime bounds for integer addition matching Eisinger’s bound.
Additionally they gave a triply-exponential bound for automatic graphs of bounded degree
complementing a result by Kuske and Lohrey who proved, using a specialised algorithm, that
model checking for automatic graphs of bounded degree is solvable in doubly-exponential
space [19].

We adopt Durand-Gasselin’s and Habermehl’s technique and generalise their result to
uniformly tree-automatic presentations. We apply this technique to the presentations that
arise as the presentations of the direct product closures of uniformly tree-automatic classes.
We prove that the bound of the runtime of the model checking algorithm is at most exponential
in the bound of the runtime for the primal classes. Further we apply these findings in the
context of FPT model checking for first order logic. We demonstrate the efficiency of the
automata-theoretic approach by analysing the runtime in terms of the parameter dependence
on structurally rather simple classes. Our results are as follows:

FO model checking is FPT on the class of all finite Boolean algebras that are succinctly
encoded by the number of atoms and can be performed in exp2(poly(|ϕ|)) · log |B|. Unless
NEXP =

⋃
c∈N STA(∗, 2cn, n), this parameter dependence is optimal.

FO model checking is FPT on the class of all finite abelian groups that are suc-
cinctly encoded by the orders of the direct product factors and can be performed in
exp4(poly(|ϕ|)) · log |G|. We generalise this result to finite groups of bounded non-abelian
decomposition width, that is groups whose non-abelian direct product factors are of
bounded size. We obtain the same asymptotic runtime on these classes.
This provides some first results towards Grohe’s question on which classes of algebraic
structures FO model checking is FPT [14]. The mere FPT result for FO model checking
on abelian groups was independently also discovered by Bova and Martin [2]. Their
algorithm assumes that the groups are encoded by their multiplication tables and yields
a non-elementary parameter dependence. Therefore our approach has the two advantages
that it works for succinct encodings and yields an elementary parameter dependence.
MSO model checking is FPT on every class of graphs with tree-depth at most h and
can be performed in exph+2(poly(|ϕ|)) · poly(|G|). This matches the runtime of the best
known algorithm for these classes, which is due to Gajarsky and Hliněný [13]. Their
algorithm uses a kernelisation procedure. Our proof makes use of their analysis.

2 Preliminaries

For natural numbers `,m, n we write m =` n if m = n or m,n ≥ `. We assume that the
reader is familiar with first-order logic (FO) as well as with the connection between monadic
second-order logic (MSO) and tree-automata. Therefore we use this section mainly to fix
our notation.

FSTTCS 2018



10:4 Uniformly Automatic Classes of Finite Structures

A signature is a finite set of relation symbols τ = {R1, . . . , Rk}, where every symbol
Ri ∈ τ has an assigned arity ri. A τ -structure is a tuple A = (A,RA

1 , . . . , R
A
k ), where A

is a set and RA
i ⊆ Ari for all i ∈ {1, . . . , k}. From now on we will tacitly assume that all

structures under consideration are finite. The class of all finite τ -structures is denoted by
Str(τ).

Let Σ,Γ be alphabets. A (labeled binary) tree is a function t : domt → Σ, where
domt ⊆ {0, 1}∗ is a finite prefix-closed set. The set of all trees with labels from Σ is denoted
by TΣ. Let t1 ∈ TΣ, t2 ∈ TΓ with domt1 = domt2 =: dom. The convolution t1 ⊗ t2 ∈ TΣ×Γ
is defined by (t1 ⊗ t2)(w) = (t1(w), t2(w)) for all w ∈ dom. When we apply the convolution
to several trees at once we will often write 〈t1, t2, . . . , tk〉 instead of t1⊗ t2⊗· · ·⊗ tk. A reader
that is familiar with automatic presentations might notice that we define the convolution
only for trees with the same domain. This allows us to circumvent the introduction of a
padding symbol. For trees t, t1, . . . , tn and pairwise distinct w1, . . . , wn ∈ domt we define
t[w1/t1, . . . , wn/tn] to be the tree which is obtained by replacing the subtree rooted in wi by
ti for all i ≤ n.

A Σ-context is a tree c ∈ TΣ]{x} such that all nodes except for exactly one leaf w are
labeled with letters from Σ and c(w) = x. The unique leaf w with label x is denoted by
c−1(x). For a Σ-context c and a tree t ∈ TΣ the composition (c ◦ t) ∈ TΣ is defined as
c[c−1(x)/t].

Let us now introduce tree-automata with advice. Formally, these are just ordinary
tree-automata which read letters from a composed alphabet. But since our automatic
presentations will assign special semantics to the first component of such a letter it makes
sense to handle these components differently in our notation.

I Definition 2.1. A (deterministic bottom-up) tree-automaton with advice is a
finite state tree-automaton A = (Q,Σ×Γ, δ, F ). The language that A recognizes with advice
α ∈ TΣ is L(A[α]) = {t ∈ TΓ | domt = domα ∧ α ⊗ t ∈ L(A)}. A tree-language T is called
regular with advice α if there is a tree-automaton A with advice such that T = L(A[α]).

For the sake of brevity we usually just speak of an automaton instead of a tree-automaton
with advice. The complement automaton of A is denoted by A = (Q,Σ×Γ, δ, Q\F ). Finally
we define uniformly tree-automatic presentations.

I Definition 2.2. Let τ = {R1, . . . , Rk} be a finite relational signature. A uniformly
tree-automatic presentation of a class of τ -structures is a tuple c = (A,AR1 , . . . ,ARk)
of tree-automata with advice such that L(A[α]) ⊆ T{0,1} and L(ARi [α]) ⊆ {〈t1, . . . , tri〉 |
t1, . . . , tri ∈ L(A[α])} for all α ∈ TΣ and all i ∈ {1, . . . , k}. Each α ∈ TΣ with L(A[α]) 6= ∅

presents (the isomorphism type of) a structure S(c[α]) :=
(
L(A[α]),

(
R
S(c[α])
i

)
1≤i≤k

)
, where

Ri := {(t1, . . . , tri) | 〈t1, . . . , tri〉 ∈ L(ARi [α])}. The set {α ∈ TΣ | L(α) 6= ∅} of all advices
that present a structure with respect to c is denoted by P c. The class that is presented by c

is {S(c[α]) | α ∈ P c}.

3 Model Checking Revisited

Since the class of all words is uniformly tree-automatic it is clear by the previously mentioned
result of Frick and Grohe [12] that every algorithm that solves the model checking problem
for structures given by a uniformly tree-automatic presentation has an unavoidable non-
elementary worst-case runtime behaviour. On the other hand, for many important examples
of automatic structures the situation is much better. For instance it is known that the
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Algorithm 1 Model Checking on Uniformly Tree-Automatic Classes.
Input: Tree-automatic presentation c = (A, (AR)R∈τ ), FO-formula ϕ(x1, . . . , xm)
Output: Tree-automaton Aϕ
1: procedure Compose(c, ϕ)
2: if ϕ(x1, . . . , xm) = R(xi1 , . . . , xik), R ∈ τ ∪ {=} then
3: A′R ← Extend(AR,m, i1, . . . , ik)
4: AD ← Domain(A, m)
5: Aϕ ← Intersect(A′R, AD)
6: minimise Aϕ
7: return Aϕ
8: else if ϕ(x1, . . . , xm) = ψ(x1, . . . , xm) ∧ θ(x1, . . . , xm) then
9: Aψ ← Compose((A, (AR)R∈τ ), ψ)

10: Aθ ← Compose((A, (AR)R∈τ ), θ)
11: return Intersect(Aψ, Aθ)
12: else if ϕ(x1, . . . , xm) = ¬ψ(x1, . . . , xm) then
13: Aψ ← Compose((A, (AR)R∈τ ), ψ(x1, . . . , xm))
14: AD ← Domain(A, r)
15: return Intersect(Aψ, AD)
16: else if ϕ(x1, . . . , xm) = ∃xm+1 : ψ(x1, . . . , xm+1) then
17: Aψ ← Compose((A, (AR)R∈τ ), ψ(x1, . . . , xm))
18: A′ϕ ← Project(Aψ)
19: Aϕ ← Determinize(A′ϕ)
20: return Aϕ
21: end if
22: end procedure

first-order theory of Presburger Arithmetic can be decided in three-fold exponential time
[21]. It is therefore very natural to analyse the runtime of a given model checking algorithm
for automatic structures with respect to some fixed presentation.

In [6] Durand-Gasselin and Habermehl proposed a method to estimate the time that the
generic automata based model checking algorithm for structures given by a word-automatic
presentation needs when it is used to solve the first order theory of a single structure. They
showed that for certain presentations of (Z,+) the running time of the algorithm is only triply
exponential in the formula. Similar bounds where established for arbitrary word-automatic
presentations of structures of bounded degree.

In the following we want to extend their method to uniformly tree-automatic presentations
of classes of structures. Fortunately this generalization goes through very well because of the
nice analogue of the Myhill-Nerode congruence for regular tree-languages.

We start with a detailed description of the model checking algorithm on structures given
by an advice α from a uniform tree-automatic presentation c. Up to small optimizations it
resembles the standard algorithm that constructs from c, α, and ϕ(x1, . . . , xm) an automaton
Aϕ with L(Aϕ) = {〈α, t1, . . . , tm〉 | S(c[α]) |= ϕ(t1, . . . , tm)} by recursion over the structure
of ϕ. The exact procedure is given by Algorithm 1.

The subroutine Extend(AR,m, i1, . . . , ik) computes the minimal automaton that checks
on input 〈α, t1, . . . , tm〉 if 〈α, ti1 , . . . , tik〉 ∈ L(AR), that is if (ti1 , . . . , tik) ∈ RS(c[α]). The
subroutine Domain constructs the minimal tree-automaton that recognises exactly those trees
in TΣ×Γm that are convolutions of trees t0 ∈ TΣ and t1, . . . , tm ∈ TΓ such that t1, . . . , tm ∈
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10:6 Uniformly Automatic Classes of Finite Structures

S(c[t0]). The subroutine Intersect(A1,A2) uses the standard product construction to
obtain an automaton A∩ with L(A∩) = L(A1)∩L(A2). Note that it is crucial for the runtime
analysis in the following section that we only construct the reachable states of the product
automaton. Finally Project(A) applies the projection (σ, γ1, . . . , γm+1) 7→ (σ, γ1, . . . , γm)
to the input alphabet of A, which yields a non-deterministic automaton, and Determinize(A)
uses the standart determinization preocedure for tree-automata (again omitting non-reachable
states).

4 A Presentation Aware Runtime Analysis

The main ingredient for the runtime analysis of Algorithm 1 is the marriage of the Ehrenfeucht-
Fraïssé relations (EF-relations) on the presented class of structures and the Myhill-Nerode
congruences on the languages which form the presentation. Ehrenfeucht-Fraïssé relations
were introduced by Fraïssé in his seminal work [11] as a purely combinatorial characterisation
of elementary equivalence. His ideas were later popularised by the appealing game-theoretic
presentation given by Ehrenfeucht in [7]. Even the possibility to bound the complexity of
certain logical theories using EF-relations was already present in these early works. This
technique was later systematically studied by Ferrante and Rackoff (see [9]). They used
EF-relations to give upper bounds on the complexity of first-order theories like Presburger
Arithmetic or the theory of one-to-one functions.

Klaetke used in [18] the ideas of Ferrante and Rackoff to bound the size of the automata
for linear arithmetic (R,+, <). Eisinger picked up the techniques and showed in [8] similar
bounds for a certain automata based presentation of mixed integer and mixed real addition,
respectively (we remark here that his way of presenting the structures by automata differs
slightly from our definition of an automatic presentation). Durand-Gasselin and Habermehl
recently showed that if a refinement of the EF-relations for a structure A is compatible with
an automatic presentation of A in the sense that these relations are congruences on the
encodings of the elements (with respect to concatenation) then the runtime of the standard
algorithm for solving the theory of an automatic structure can be bounded in terms of the
index of these relations. In this section we build upon their work and generalise their result
to classes with a uniform tree-automatic presentation. Therefore it is necessary to develop
a suitable notion of EF-congruences for our purposes. Besides switching from automatic
presentations to uniform tree-automatic presentations, there are a few subtle differences to
the definition in [6] in order to make the technique applicable for more presentations.

Let Σ be an advice alphabet and Γ be an input alphabet. In the following we write Σ̂m
for Σ× Γm

I Definition 4.1. Let c = (A, (AR)R∈τ ) be a uniformly tree-automatic presentation of a
class C ⊆ Str(τ). An Ehrenfeucht-Fraïssé congruence (EF-congruence) for c is a collection of
equivalence relations (Erm)r,m∈N, where Erm ⊆ TΣ̂m × TΣ̂m and for all r,m ∈ N:
1. The relation Erm separates the trees in TΣ̂m that are a convolution of a tuple (α, t1, . . . , tm)

such that (t1, . . . , tm) represents a tuple of elements in S(c[α]) from those trees in TΣ̂m
that are not the convolution of such a tuple.

2. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉E0
m〈β, t

′〉 then (t1, . . . , tm) and
(t′1, . . . , t′m) satisfy the same atomic formulas in S(c[α]) and S(c[β]), respectively.

3. If sEr+1
m s′ for some s, s′ ∈ TΣ̂m then for all t ∈ TΓ there exists a t′ ∈ TΓ such that

〈s, t〉Erm+1〈s′, t′〉.
4. The relation Erm respects contexts, i.e. if tErmt′ for some t, t′ ∈ TΣ̂m then for all Σ̂m-

contexts c the trees c ◦ t and c ◦ t′ are also related by Erm.
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For a function f : N→ N we say that an EF-congruence (Erm)r,m∈N is f(r +m) bounded if
the index of Erm is bounded by f(r +m) for all r,m ∈ N.

The EF-congruence (Erm)r,m∈N for a presentation c refines the first-order indistinguishably
relations (≡r)r∈N on the presented class C (recall that ≡r means indistinguishable by formulas
up to quantifier rank r). This can be shown using standard game theoretic arguments.

I Lemma 4.2. Let c be a uniform tree-automatic presentation of a class C and (Erm)r,m∈N
an EF-congruence with respect to c. Then for all α, α′ ∈ P c and t1, t

′
1 . . . , tm, t

′
m with

t1, . . . , tm ∈ S(c[α]) and t′1, . . . , t′m ∈ S(c[α′]) the following is true:

〈α, t1, . . . , tm〉Erm〈α′, t′1, . . . , t′m〉 ⇒ (S(c[α]), t1, . . . , tm) ≡r (S(c[α′]), t′1, . . . , t′m).

As mentioned before, an EF-congruence with respect to some parametrized tree-automatic
presentation connects the Myhill-Nerode-congruences of the languages involved in the present-
ation with the EF-relations on the presented class. We want to show that the runtime of
Algorithm 1 largely depends on how well these relations play along with each other.

I Theorem 4.3. Let c = (A, (AR)R∈τ ) be a uniformly tree-automatic presentation of a class
of τ -structures. Suppose there is an f(r+m) bounded EF-congruence (Erm)r,m∈N for c. Then
for every ϕ(x1, . . . , xm) ∈ FO of quantifier rank r Algorithm 2 computes the automaton Aϕ
in time O(|ϕ|(|c|m+r · f(m+ r))c) for some constant c.

The proof is similar to [6]. We omit it here due to space constraints. In the following
section we will be concerned with classes of finite structures that arise as the closure under
direct products of a certain prime class. It ist not hard to see that if a class C is uniformly
tree-automatic then the same holds for the closure of C under direct products (see also [1]).
We close this section by showing that also the EF-congruences can (with a certain blow up
of the index) be lifted from the original presentation to a certain presentation of the direct
product closure.

I Definition 4.4. Let C be a class of τ -structures. Then C× denotes the closure of C under
direct products That is C× = {A1 × · · · × An | n ≥ 1,A1, . . . ,An ∈ C}.

I Lemma 4.5 (Abu Zaid, Grädel, Reinhardt [1]). Let C be a uniformly tree-automatic class
of structures. From a given tree-automatic presentation c of C one can effectively construct
tree-automatic presentations c× of C×.

Proof. Construction of (P×, c×): Suppose C is presented by the uniform tree-automatic
presentation c over the advice set P . As the construction is rather straightforward we only
give the parameter set for the presentation and the idea for the encoding. The parameter set
consists of all trees where the right child of every node in the left-most branch induces a
subtree which is in P . This is depicted in Figure 1. Such an advice presents the structure
S(c[α1]) × S(c[α2]) × · · · × S(c[αn]). Let t1, . . . , tn be elements of S(c[α1]), . . . ,S(c[αn]),
respectively. Then the element (t1, . . . , tn) is put together in the same way as the advices. J

In order to ease the process of analyzing the complexity of these presentations, we
introduce some notations. Let Γ be an alphabet with # 6∈ Γ. The n-context-tree t#n is the
tree with domain dom(t#n ) = {0k | k < n} ∪ {0k1 | k + 1 < n} and labeling

t#n (w) =


# ; if w ∈ {0}<n

ci+1 ; if w = 0i1, with 0 ≤ i < n− 1
cn ; if w = 0n−1.
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10:8 Uniformly Automatic Classes of Finite Structures

· ·
·

α1

...α2

...α3

...

Figure 1 The Parameters for the class C×.

With T#,n
Γ we denote the set of all trees that are obtained from t#n by replacing all contexts

with trees from TΓ, that is T#,n
Γ = {t#n [c1/t1, . . . , cn/tn] | t1, . . . , tn ∈ TΓ}. Finally let T#

Γ be
the union of all sets T#,n

Γ with n ≥ 1.

I Theorem 4.6. Let c be a uniformly tree-automatic presentation of a class C with associated
f(r + m) bounded EF-congruences (Erm)r,m∈N. Then there is a uniformly tree-automatic
presentation of C× with associated 2O((r+m)f(r+m) log(f(r+m))) bounded EF-congruences.

Proof. Let c× be the presentation of C× that is derived from c by the construction from
Lemma 4.5. Recall that if P is the set of advice trees for the presentation c and α1, . . . , αn ∈ P ,
then the structure S(c[α1])×· · ·×S(c[αn]) is presented by the advice t#n [c1/α1, . . . , cn/αn] and
an element (t1, . . . , tn) ∈ S(c[α1])×· · ·×S(c[αn]) is represented by the tree t#n [c1/t1, . . . , cn/tn],
where # is a newly introduced letter.

For all r,m ∈ N we define a relation ∼rm on T(Σ∪{#})×(Γ∪{#})m , where t ∼rm t′ if, and
only if, one of the following conditions is true:
1. There are no n, n′ such t and t′ are the convolution of well-formed trees α ∈ T#,n

Σ , t1, . . . , tm

∈ T#,n
Γ and α′ ∈ T#,n′

Σ , t′1, . . . , t
′
m ∈ T

#,n′
Γ , respectively.

2. There are n, n′ such t and t′ are the convolution of well-formed trees α ∈ T#,n
Σ , t1, . . . , tm ∈

T#,n
Γ and α′ ∈ T#,n′

Σ , t′1, . . . , t
′
m ∈ T#,n′

Γ , respectively. That is we can write t =
〈t#n [c1/α1, . . . , cn/αn], t#n c1/t1,1, . . . , cn/t1,n], . . . . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉 and also
t′ = 〈t#n′ [c1/α′1, . . . , cn′/α′n′ ], t

#
n′ [c1/t′1,1, . . . , cn′/t′1,n′ ], . . . . . . , t

#
n′ [c1/t′m,1, . . . , cn′/t′m,n′ ]〉.

Then t ∼rm t′ if for all Erm equivalence classes κ: |{i | 1 ≤ i ≤ n, [〈αi, t1,i, . . . , tm,i〉]Erm =
κ}| =f(r+m)r |{i | 1 ≤ i ≤ n,′ [〈α′i, t′1,i, . . . , tm,i〉′]Erm = κ}|.

One easily checks that ∼rm is an equivalence relation with index bounded by

(f(r +m)r+m + 1)f(r+m) + 1 ∈ 2O((r+m)f(r+m) log f(r+m))

for all r,m ∈ N. What is left is to verify is that (∼rm)r,m∈N is indeed an EF-congruence of
c×. Therefore we check that the collection (∼rm)r,m∈N has the Properties 1 - 4 described in
Definition 4.1. This is done in the lemmata below.

I Lemma 4.7. The relation ∼rm separates the trees that are the convolution of a tuple
(α, t1, . . . , tn) such that (t1, . . . , tm) represents a tuple of elements in S(c×[α]) from those
trees that are not the convolution of such a tuple.

Proof. Suppose t = 〈α, t1, . . . , tm〉 is a convolution of a tuple with α ∈ P c× and (t1, . . . , tm) ∈
S(c×[α]) and suppose t′ is not the convolution of such a tuple. If t′ is not a convolution, then
none of the two conditions holds for t and t′ and they are not equivalent. Otherwise there are n,
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n′ ≥ 1 with t = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉
and t′=〈t#n′ [c1/α′1,. . . , cn′/α′n′ ],t

#
n′ [c1/t′1,1, . . . , cn′/t′1,n′ ], . . . ,t

#
n′ [c1/t′m,1, . . . , cn′/t′m,n′ ]〉.

From our assumption about t and t′ we know that αi ∈ P c and t1,i, . . . tm,i ∈ S(c[αi]) for
all 1 ≤ i ≤ n and there is a 1 ≤ j ≤ n′ with α′j 6∈ P c or α′j ∈ P c but t′`,j 6∈ S(c[αi]) for some
1 ≤ ` ≤ m.

But then 〈αi, t1,i, . . . , tm,i〉 6Erm〈α′j , t′1,j , . . . , t′m,j〉, since the relation Erm fulfils Property 1
of Definition 4.1. Hence t and t′ do not fulfil condition 2 and therefore t 6∼rm t′. J

I Lemma 4.8. If t1, . . . , tm ∈ S(c[α]), t′1, . . . , t′m ∈ S(c[β]), and 〈α, t〉 ∼0
m 〈β, t

′〉 then
(t1, . . . , tm) and (t′1, . . . , t′m) satisfy the same atomic formulas in S(c[α]) and S(c[β]), respect-
ively.

Proof. Suppose
α = t#n [c1/α1, . . . , cn/αn], β = t#k [c1/β1, . . . , ck/βk] ∈ P c× ,
ti = t#n [c1/ti,1, . . . , cn/ti,n] ∈ S(c×[α]) for i ∈ {1, . . . ,m}, and
t′i = t#k [c1/t′i,1, . . . , ck/t′i,k] ∈ S(c×[β]) for i ∈ {1, . . . ,m}.

We show that if (t1, . . . , tm) and (t1, . . . , t′m) do not fulfil the same atomic propositions in
S(c×[α]) and S(c×[β]), respectively, then they are not ∼0

m-equivalent. Consider an arbitrary
atomic formula Rxi1 . . . xir and suppose S(c×[α]) |= Rti1 . . . , tir and S(c×[α′]) 6|= Rt′i1 . . . , t

′
ir
.

Then by definition S(c[αj ]) |= Rtj,i1 . . . tj,ir for all 1 ≤ j ≤ n but S(c[β`]) 6|= Rt′`,i1 . . . t
′
`,ir

for some 1 ≤ ` ≤ k. Consequently 〈αj , tj,1, . . . , tj,m〉 6E0
m〈β`, t`,1, . . . , t`,m〉 for all 1 ≤ j ≤ n

and therefore 〈α, t1, . . . , tm〉 6∼0
m 〈β, t′1, . . . , t′m〉. J

I Lemma 4.9. If s ∼r+1
m s′ then for all t ∈ T(Γ∪{#}) there exists a t′ ∈ T(Γ∪{#}) such that

〈s, t〉 ∼rm+1 〈s′, t′〉.

Proof. Let s, s′ be two trees from T(Σ∪{#})×(Γ∪{#})m such that s ∼r+1
m s′ and t ∈ T(Γ∪{#}).

Then s = 〈t#n [c1/α1, · · · , cn/αn], t#n [c1/t1,1, · · · , cn/t1,n], . . . , t#n [c1/tm,1, · · · , cn/tm,n]〉 and
s′ = 〈t#k [c1/α′1, · · · , ck/α′k], t#k [c1/t′1,1, · · · , ck/t′1,k], . . . , t#k [c1/t′m,1, · · · , ck/t′m,k]〉 for some
n, k ≥ 1 and trees αi, α′j ∈ TΣ and ti,j , t′s,t ∈ TΓ. Let tm+1 be an arbitrary tree from T(Γ∪{#}).
If tm+1 6∈ T#,n

Γ take some tree t′m+1 that is not in T#,k
Γ . Then 〈s, tm+1〉 ∼rm 〈s′,′ t′m+1〉

because of Condition 1. Otherwise tm+1 = t#n [c1/tm+1,1, . . . cn/tm+1,n]. For every Erm
equivalence class κ let κ(s) = {i ∈ {1, . . . , n} | [〈αi, si,1, . . . , si,m〉]Erm = κ}.

Let Xκ
1 , . . . , X

κ
`κ

be the partition of κ(s) with respect to the Erm+1 equivalence classes
of {〈α, t1,i, . . . , tm+1,i〉 | i ∈ κ(t)}. Because s ∼r+1

m s′ it is ensured that |κ(s)| =f(m+r+1)r+1

|κ(s′)| and therefore we can find a partition Y κ1 , . . . , Y κ`κ of κ(s′) with |Xκ
i | =f(r+m+1)r |Y κi |

(if |κ(s)| < f(m + r + 1)r+1 partition κ(s′) according to some bijection between κ(s) and
κ(s′). Otherwise, because `κ < f(m+r+1) there is at least one Xκ

i with |Xκ
i | ≥ f(m+r+1)

which also ensures that we can find such a partition).
By construction, 〈α, t1,i, . . . , tm,i〉Er+1

m 〈α′, t′1,j , . . . , t′m,j〉 whenever i ∈ Xκ
k and j ∈ Y κk .

Thus 〈α, t1,i, . . . , tm+1,i〉Erm+1〈α′, t′1,j , . . . , t′m+1,j〉 for some appropriate t′m+1,j . Now choose
t′m+1 = t#k [c1/t′m+1,1, . . . , ck/t

′
m+1,k]. By construction 〈s, tm+1〉 ∼rm+1 〈s′, t′m+1〉 due to

Condition 2. J

In order to show that Property 4 is fulfilled, it is convenient to define a special kind
of convolution for contexts. For i ∈ {1, . . . , n} let ci be an Γi-context such such that
domc1 = · · · = domcn =: dom and c−1

1 (x) = · · · = c−1
n (x) =: wx. Then 〈c1, . . . , cn〉c is the

(Γ1 × · · · × Γn)-context with dom(〈c1, . . . , cn〉c) = dom and

〈c1, . . . , cn〉c(w) =
{

(γ1, . . . , γn) if w 6= wx,

x otherwise.
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I Lemma 4.10. The relations (∼rm)r,m∈N respect contexts.

Proof. Suppose s ∼rm s′ and let c be a ((Σ ∪ {#})× (Γ ∪ {#})m)-context. We can assume
that s and s′ are equivalent due to Condition 2 and that

c = 〈t#n [c1/α1, . . . , cn/αn], t#n [c1/t1,1, . . . , cn/t1,n], . . . , t#n [c1/tm,1, . . . , cn/tm,n]〉c

for some n ≥ 1 and 〈αi, t1,i, . . . tm,i〉c is a (Σ × Γm)-context for exactly one 1 ≤ i ≤ n

(because in any other case c ◦ t and c ◦ t′ are equivalent by Condition 1). Fix this i and let
c′ := 〈αi, t1,i, . . . tm,i〉. There two cases that we need to consider. First if s, s′ are elements of
T#,1

Σ ⊗ (T#,1
Γ )⊗m (= TΣ ⊗ (TΓ)⊗m). Then the requirement of Condition 2 reduces to sErms′.

But then c′ ◦ tErmc′ ◦ s′ and hence c ◦ s ∼rm c ◦ s′. Otherwise we can even assume that

c = 〈t#n [c1/α1, . . . , cn/x], t#n [c1/t1,1, . . . , cn/x], . . . , t#n [c1/tm,1, . . . , cn/x]〉c

(again otherwise we would get equivalence by Condition 1). But then

c ◦ s = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β1, . . . , cn+k−1/βk],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s1,1, . . . , cn+k−1/s1,k],
...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/sm,1, . . . , cn+k−1/sm,k]〉

and

c ◦ s′ = 〈t#n+k−1[c1/α1, . . . , cn−1/αn−1, cn/β
′
1, . . . , cn+k−1/β

′
k′ ],

t#n+k−1[c1/t1,1, . . . , cn−1/t1,n−1, cn/s
′
1,1, . . . , cn+k−1/s

′
1,k′ ],

...

t#n+k−1[c1/tm,1, . . . , cn−1/tm,n−1, cn/s
′
m,1, . . . , cn+k−1/s

′
m,k′ ]〉

Using that s and s′ are equivalent by Condition 2, it is easy to see that also c ◦ t and c ◦ t′
are equivalent. J

The preceding lemmata show that (∼rm)r,m∈N is an EF-congruence for c×, which completes
the proof of Theorem 4.6. J

Another important class of operations under which uniform tree-automatic presentations
are closed are parametrised first-order interpretations. Also in this case the complexity of
the EF-congruence grows rather tamely under these operations.

I Lemma 4.11. Let c be a uniformly tree-automatic presentation of a class C of τ -structures
and I be a parametrised τ -to-σ-interpretation of width ` that interprets for every A ∈ C a
structure I(A). Further let c be the maximal quantifier rank of any of the formulas in I. If
there is an f(r + m) bounded EF-congruence for c then there is a uniform tree-automatic
presentation Ic of the class IC = {IA(a) | A ∈ C, a ∈ A} with g(r+m) := f((`+c)(r+m)+c)
bounded EF-congruence.
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5 FPT Model Checking With Elementary Parameter Dependence

The runtime analysis from Section 3 not only enables us to show that first-order model
checking is fixed parameter tractable on several classes of finite structures, but also gives us
elementary bounds on the parameter dependence. In the following we write expk(x) for the
k-fold tower of twos function applied to x, that is exp0(x) = x and expk+1(x) = 2expk(x).

I Theorem 5.1. Let c be a uniformly tree-automatic presentation such that Algorithm 2
computes in time T (|ϕ|) from c the corresponding automaton Aϕ. Suppose for a class of
finite structures C there is a function f : code(C) → Γ∗ that computes in time F (|w|) for
every w ∈ code(A) with A ∈ C a tree α with A ∼= S(c[α]). Then FO model checking on C is
decidable in time O(T (|ϕ|) · |f(w)|+ F (|w|)).

Proof. The runtime is achieved by the straight forward method of checking whether Aϕ
accepts f(w). J

5.1 Boolean Algebras
Our simplest application of Theorem 4.6 and Theorem 5.1 is for the class of all finite Boolean
algebras. It is well known that every finite Boolean algebra is isomorphic to a finite direct
power of the two element Boolean algebra. Especially, every finite Boolean algebra contains
exactly 2n elements for some n ≥ 1 and every finite Boolean algebra is uniquely determined
by the number of elements. Because of this simple structure it is natural to consider succinct
encodings of Boolean algebras as inputs. In the following we will assume that a Boolean
algebra is given by the number of atoms, encoded in unary. In other words, a finite Boolean
algebra B = (B,∩,∪, ,0,1) is encoded by the string 1log |B|.

I Theorem 5.2. First-order model checking is fixed parameter tractable on the class of all
finite Boolean algebras. Given a Boolean algebra B and an FO sentence ϕ one can decide in
time exp2(poly(|ϕ|)) log |B| whether B |= ϕ.

Proof. The class that contains just the Boolean algebra B2 = ({0,1},∩,∪, ,0,1) has the
trivial automatic presentation c over the advice alphabet Σ = {a} and the alphabet Γ = {0, 1}.
The advice a (the tree of height 0 where the root is labeled with a) represents B2 and the
elements 0 and 1 are represented by 0 and 1, respectively. One checks that the relations
(Erm)r,m∈N where Erm is simply the identity relation on TΣ̂m are an EF-congruence with
respect to c and the index of Erm is bounded by f(r +m) = 2r+m + 2 for all r,m ∈ N .

As mentioned before, every finite Boolean algebra is a finite direct product of B2 and hence
c× is a uniform presentation of the class of all finite Boolean algebras. According to Theorem
4.6, c× has an EF-congruence bounded by f ′(r + m) ∈ 2O((r+m+1)(2r+m+2) log(2r+m+2)) ⊆
22poly(|ϕ|) . Using Theorem 5.1, we conclude that for a sentence ϕ of quantifier-rank r Algorithm
1 constructs the corresponding automaton Aϕ in time O

(
|ϕ|
(
|c×|m+r · 22poly(|ϕ|)

)c)
⊆

22poly(|ϕ|) (because |c×| is constant). Note that the Boolean algebra with n atoms is represented
by the tree t#n [c1/a, . . . , cn/a] in c×. We can therefore transform the encoding of the Boolean
algebra into the tree-representation in linear time. Finally the claim follows from Theorem
5.1. J

With respect to the height of the tower of twos in the parameter dependence this result
is probably optimal, as stated by the following theorem.

I Theorem 5.3. Unless
⋃
c∈N STA(∗, 2cn, n) = EXP there is no algorithm that solves the

model checking problem for finite Boolean algebras in time 2poly(|ϕ|) · log |B|.

FSTTCS 2018
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Proof. It is known that the theory of all finite Boolean algebras is complete for the complexity
class

⋃
c∈N STA(∗, 2cn, n). Further, using Lemma 4.2 and the computations of Theorem 5.2,

we see that there is a constant c such that if B and B′ are two Boolean algebras with at
least 2rc many atoms then B ≡r B′. To check that a sentence ϕ of quantifier rank r belongs
to the theory of finite Boolean algebras it is sufficient to check whether every finite Boolean
algebra with at most 2rc many atoms models ϕ. If we could perform model-checking in
time O(2poly |ϕ| · log |B|) we could hence solve the theory of finite Boolean algebras in time
O
(

2poly(|ϕ|) ·
∑2r

c

i=1 i
)
⊆ 2poly(|ϕ|), which implies

⋃
c∈N STA(∗, 2cn, n) = EXP. J

I Remark. Needless to say than an analogue of Theorem 5.2 also holds if the Boolean algebra
is encoded traditionally by the multiplication tables of the operators. Obviously one can
compute the succinct encoding from the traditional encoding efficiently by simply counting
the number of atoms.

However, one could also argue that our encoding for the Boolean algebras is not optimal.
Indeed a finite Boolean algebra B can be encoded by a word of length dlog log |B|e when we
encode the number of atoms by its binary expansion. In this case our algorithm would not
have a polynomial runtime in the size of the encoding of the structure because the advice
would be of exponential size. However we could slot in a kernelisation procedure ahead. As
we already explained in the proof of Theorem 5.3, there is a fixed polynomial p such that all
finite Boolean algebras with at least 2p(k) atoms are indistinguishable by a first-order Formula
of quantifier rank at most k. In turn we can compute for a given finite Boolean Algebra B

and a natural number k an advice α of size O
(

22p(k)
)
such that S(c[α]) ≡k B (where c is

the presentation of the finite Boolean algebras constructed in Theorem 5.2). Because we are
more interested in the application of automata based presentations than on encoding issues
we will not work out the details here.

5.2 Finite Groups
Probably a bit more interesting is the class of all finite groups. In [10], Grohe posed the
question on which classes of finite groups first-order model checking is fixed parameter
tractable. In order to tackle this question we propose a structural parameter on finite groups.
The Remak-Krull-Schmidt Theorem [16] states that a factorization of G = G1⊗G2⊗· · ·⊗Gn
into indecomposable subgroups Gi is unique up to permutation and isomorphism of the
occurring subgroups for any finite group G. Therefore the size of the largest non-abelian
subgroup in such a factorisation is uniquely determined. This leads to the following parameter.

I Definition 5.4. Let G be a finite group. The non-abelian decomposition width of G is
dw(G) = max({|G′| | G′ is non-abelian, indecomposable, and G ∼= G′ ⊕ G′′}) the size of a
maximal non-abelian indecomposable factor of G.

Note that the finite abelian groups are exactly the groups with non-abelian decomposition
width one. As for the case of Boolean algebras, finite abelian groups have a quite simple
structure. By the classification of finitely generated abelian groups every finite abelian group
G is isomorphic to a finite sum of finite cyclic groups. That is G ∼= Zn1 ⊕ · · · ⊕ Znk for
some k ≥ 1 and n1, . . . , nk ≥ 1. Hence, a finite abelian group can be encoded by a sequence
of natural numbers (n1, . . . , nk). Bova and Martin have independently shown in [2] that
first-order model-checking is FPT on the class of all finite abelian groups. Their algorithm
uses a quantifier elimination procedure. However, their analysis of the algorithm only yields
a non-elementary parameter dependence. We will show that the automata based approach
yields an algorithm with elementary parameter dependence.
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Algorithm 2 Decomposing a Finite Abelian Group into Cyclic Factors.
Input: Finite abelian group G

Output: String bin(n1)# · · ·# bin(nk) such that G ∼= Zn1 ⊕ · · · ⊕ Znk
procedure Decompose(G)

Compute g with |g| maximal in G

if 〈g〉 = G then
return bin(|g|)

else
w ← Decompose(G/〈g〉)
return bin(|g|)#w

end if
end procedure

I Theorem 5.5. FO-model-checking is FPT on the class of all finite abelian groups. More
precisely one can decide given a finite abelian group G and a formula ϕ ∈ FO in time
O (exp4(poly(|ϕ|)) · log |G|)) whether G |= ϕ.

Proof. Durand-Gasselin and Habermehl gave in an automatic presentation d of Presburger
arithmetic and proved that there is a f(m+ r) = exp3(c(m+ r)) bounded EF-congruence
with respect to d for some c ∈ N [6, Lemma 15].

We construct a uniform presentation of all finite cyclic groups from d by a parametrised
first-order interpretation I = (δ(n, x), ϕ◦(n, x, y, z)) in Presburger Arithmetic. It is a well
known fact that such an interpretation exists. Then I(N,+)(n) ∼= Zn for all n ∈ N and
therefore Id is a uniform presentation of the class of all finite cyclic groups. By Lemma
4.11 there is a constant c′ such that Id has a g(r + m) = exp3(c′(r + m)) bounded EF-
congruence. Further (Id)× is a uniform presentation of the class of all finite abelian groups
and Theorem 4.6 tells us that it has a (g(r + m)r)g(r+m) ∈ exp4(poly(|ϕ|)) bounded EF-
congruence. Note that in (Id)× a group G ∼= Zn1 ⊕ · · · ⊕ Znk is represented by the tree
t#k [c1/ binR(n1), . . . , ck/ binR(nk)] (The presentation in [6] uses binary encoding). Of course
this tree can trivially be computed in linear time from the encoding (n1, . . . , nk) of G. By
applying Theorem 5.1 we conclude that our algorithm solves the model-checking problem for
finite abelian groups in time O (exp4(poly(|ϕ)) · log |G|). J

I Remark. Although the encoding of an abelian group by the orders of its cyclic factors makes
it trivial to compute the tree-presentation because it makes the relevant structural properties
of the group explicit, it is still true that an analog of Theorem 5.5 holds if the group is encoded
by its multiplication table. Indeed Algorithm 2 provides a simple procedure to compute the
cyclic factors of the group in linear time. To see this, note that if g is an element of maximal
order in a finite abelian group G then G ∼= 〈g〉⊕G/〈g〉. The Algorithm 2 therefore computes
a representant of a decomposition of G into cyclic factors. The computation of an element
with maximal order can be done in time O(|G|2) by computing the order of every element.
The group G/〈g〉 can also be computed in time O(|G|2) by computing the multiplication
table on the cosets of 〈g〉. Finally the procedure Decompose(G) is called at most log2(|G|)
times because |G/〈g〉| = |G|/|g|. Together this gives a running time of O(|G|2 · log(|G|)),
which is linear in the size of the multiplication table.

Finally, we turn our attention to encoding issues. As it was the case for Boolean algebras,
there is an encoding of finite abelian groups, which in some cases allows for a considerably
more succinct presentation. More precisely an abelian group G ∼= (Zn1)k1 × · · · × (Zn`)k`
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can be encoded by the tuple of pairs ((n1, k1), . . . , (n`, k`)). Again, using this encoding we
would not directly obtain an FPT-algorithm from our method. However, using the same
argument as for the Boolean algebras, for some fixed polynomial p we can truncate the second
components of each pair to exp3(p(r)) in a preprocessing step, where r is the quantifier rank
of the formula under consideration. Again we will leave the details of this approach to the
reader.

We extend our ideas from abelian groups to groups of bounded non-abelian decomposition
width.

I Theorem 5.6. First-order model checking is FPT on the class of all finite groups with
bounded non-abelian decomposition width. More precisely there exists a constant c such that
we can decide in time O(exp4(poly(|ϕ|)) · log |G|+ |G|c) whether G |= ϕ.

5.3 Graphs of bounded Tree-Depth and MSO Model Checking

Algorithmic meta-theorems for MSO are particularly interesting because MSO is capable of
defining many NP-complete problems such as 3-colourability. The most famous result of this
kind is probably the theorem of Courcelle that every MSO-definable query can be decided in
linear time on the class of all graphs with treewidth at most c for any given constant c ∈ N
[5]. Because trees have treewidth one, it is immediately clear that the parameter dependence
in Courcelle’s Theorem must be non-elementary. Tree-depth is another parameter on graphs
that has recently drawn quite some attention. Tree-depth is a more restrictive parameter than
treewidth. Indeed, every class of graphs of bounded tree-depth has also bounded treewidth
but there are classes of graphs of bounded treewidth that have unbounded tree-depth. It was
shown by Gajarský and Hliněný that, in terms of the parameter dependence, MSO-model-
checking can be performed significantly faster on graphs of bounded tree-depth [13]. Their
algorithm relies on kernelisation to perform fast MSO-model-checking on trees of bounded
depth. However, transferring their arguments into our framework reveals that no specialised
algorithm is needed to achieve this runtime.

I Definition 5.7. The tree-depth of a graph G = (V,E) is recursively defined as

td(G) :=


1, if |V | = 1
min{td(G � V \ {v}) | v ∈ V }+ 1 if G is connected and |V | > 1
max1≤i≤n td(Gi) G has components G1, . . . , Gn

An equivalent characterisation is the minimal height of a rooted forest such that G is
isomorphic to a subgraph of the symmetric closure of the ancestor-descendant graph of that
forest.

Again a straight forward encoding yields for every h > 0 a uniformly automatic presentation
of the class of all graphs of tree-depth at most h. Translating the ideas of [13] into our
framework shows that our generic algorithm performs just as good as the best known
specialized algorithms.

I Theorem 5.8. The MSO model checking problem for graphs of tree-depth at most h is
fixed parameter tractable. Given an MSO sentence ϕ and a graph G of tree-depth at most h
one can decide in time O

(
exp(h+2)(poly(|ϕ|)) · poly(|G|)

)
whether G |= ϕ.
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I Theorem 4.3. Let c = (A, (AR)R∈τ ) be a uniformly tree-automatic presentation of a class
of τ -structures. Suppose there is an f(r+m) bounded EF-congruence (Erm)r,m∈N for c. Then
for every ϕ(x1, . . . , xm) ∈ FO of quantifier rank r Algorithm 2 computes the automaton Aϕ
in time O(|ϕ|(|c|m+r · f(m+ r))c) for some constant c.

Proof. We prove the claim by induction over the structure of ϕ. Actually we prove an
extended claim, namely that the procedure computes the automaton Aϕ in the given time
and Aϕ has the property δ∗Aϕ(t) = δ∗Aϕ(t′) for all t, t′ ∈ TΣ̂m with tErmt′.

Case ϕ = R(xi1 , . . . , xik): Obviously |Aϕ| ≤ |c|m and therefore there is a fixed polynomial
p such that Aϕ is constructed in time p(|c|m). Further, by construction, the automata
A′R and AD, from which Aϕ is build up, are minimal. Let s, s′ be two trees from TΣ̂m
with sE0

ms
′. Then by Property 4 also (c ◦ s)E0

m(c ◦ s′) for all Σ̂m-contexts. If c ◦ s is not
a convolution of a tuple (α, t̄) with t̄ ∈ S(c[α]) then because of the first property of E0

m

the same holds for c ◦ s′. Hence c ◦ s 6∈ L(Aϕ) and c ◦ s 6∈ L(Aϕ). Otherwise c ◦ s = 〈α, t̄〉
and c ◦ s′ = 〈β, t̄′〉 and Property 2 yields 〈α, t̄〉 ∈ L(Aϕ) ⇔ 〈β, t̄′〉 ∈ L(Aϕ). We obtain
from Myhill-Nerode Theorem for tree-languages that δ∗Aϕ(s) = δ∗Aϕ(s′).

Case ϕ = ψ(x1, . . . , xm) ∧ γ(x1, . . . , xm): Let Aψ and Aγ be the automata constructed
by Compose in the recursion step. By the induction hypothesis, we know that all pairs
of tuples t, t′ that are related by Erm the computation of Aψ and Aγ reach the same
state. Lemma A.3 tells us that the number of reachable states in Aϕ ×Aψ is bounded by
f(m+ r). The automata Aψ and Aγ are computed in at most d|ψ|(|c|m+r · f(m+ r))c +
d|γ|(|c|m+r · f(m+ r))c many steps and, according to Lemma A.1, the computation of Aϕ
takes at most d′|Σ̂m|f(m+ r)2. But |c|m+r is an upper bound for |Σ̂m|. Hence the overall
runtime is bounded by d(|ψ|+ |γ|+ 1)(|c|m+r · f(m+ r))c = d|ϕ|(|c|m+r · f(m+ r))c. The
property tErmt′ ⇒ δ∗Aϕ(t) = δ∗Aϕ(t′) follows directly from the induction hypothesis and
the fact that δ∗(t) = (δ∗Aψ (t), δ∗Aγ (t)).

Case ϕ = ¬ψ(x1, . . . , xm): By the induction hypothesis the automaton Aψ is constructed
in time d|ψ|(|c|m+r · f(m + r))c. The automaton AD is the minimal automaton that
recognises exactly the words of the form 〈α, t1, . . . , tm〉, where α ∈ P c and t1, . . . , tm are
elements of S(c[α]). Using the properties 1 and 4 of Definition 4.1, we see that for all
t, t′ ∈ TΣ̂m with tErmt′ and all Σ̂m-contexts c it is the case that c ◦ t ∈ L(AD)⇔ c ◦ t′ ∈
L(AD). Therefore we can once again apply the lemmata A.3 and A.1 to establish that
also Aϕ is constructed in the right amount of time and has the proclaimed property
(recall that Aϕ is the product automaton of Aψ and AD).

Case ϕ = ∃xm+1ψ(x1, . . . , xm, xm+1): Let Aψ be the automaton that is constructed in
the recursion step. Then Aϕ is essentially the reachable part of the power-set automaton
of the projection automaton derived from Aψ under the projection (σ, γ1, . . . , γm+1) 7→
(σ, γ1, . . . , γm). Now suppose sEr+1

m s′ for some s, s′ ∈ TΣ̂m . Then q ∈ δ
∗
Aϕ(s) if and only

if there is a t ∈ TΓ such that δ∗Aψ (〈s, t〉) = q. But then, by Property 3 of Definition 4.1,
there is also a t′ ∈ TΓ with 〈s, t〉Erm〈s′, t′〉. By the induction hypothesis δ∗Aψ(s′, t′) = q

and thus q ∈ δ∗Aϕ(s′). This shows that sErms′ implies δ∗Aϕ(s) = δ∗Aϕ(s′). Consequently
the number of reachable states in the aforementioned power set automaton is bounded
by f(m+ r). We can now apply the induction hypothesis and Lemma A.2 to conclude
that the algorithm takes at most d|ϕ|(cm+rf(m+ r))c many steps to compute Aϕ. J
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B Proofs Omitted from Section 5

I Theorem 5.6. First-order model checking is FPT on the class of all finite groups with
bounded non-abelian decomposition width. More precisely there exists a constant c such that
we can decide in time O(exp4(poly(|ϕ|)) · log |G|+ |G|c) whether G |= ϕ.

Proof. First we build a trivial presentation d for the groups of order at most d. Let G1, . . . ,Gn
be an enumeration of the non-abelian groups of size at most d (up to isomorphism). The
advice alphabet is Σ = {g1, . . . , gn}. The input alphabet Γ is extended by new letters
a1, . . . , ad. For every 1 ≤ i ≤ n we choose a bijection πi : {a1, . . . , a|Gi|} → Gi and
construct the automata that recognise the languages {〈gi, aj〉 | 1 ≤ i ≤ n, j ≤ |Gi|} and
{〈gi, ax, ay, az〉 | 1 ≤ i ≤ n, 1 ≤ x, y, z ≤ |Gi|, πi(ax) ◦Gi πi(y) = πi(az)}. Note that the
trivial EF-congruence for d is g(m+ r) = G(d)dr+m bounded, where G(d) is the number of
groups of size at most d.

Let c be the uniform presentation of the cyclic groups as described previously. We build
automata that recognize the alphabet-disjoint union of the languages in d and corresponding
languages from c and obtain a presentation e of all cyclic groups and groups of order at most
d. It is not hard to see that this presentation is also exp3(poly(|ϕ|)) bounded. Basically
the union of the EF-congruences for d and c (where the “is not a tuple of the presentation”
equivalence class of d is merged with the “is not a convolution” equivalence class of c) is an
EF-congruence for e. Then e× is a presentation of the class of all finite groups with bounded
abelian decomposition width at most d. By Theorem 4.6, e× is exp4(poly(|ϕ|)) bounded.

A decomposition of G = G1⊕· · ·⊕Gk⊕Zn1 ⊕· · ·⊕Zn` with non-abelian indecomposable
factors G1, . . . ,Gk can be computed in polynomial time [17]. From the decomposition we can
compute in linear time an advice that represents G. Note that such an advice has logarithmic
size in |G|. Applying Theorem 5.1 completes the proof. J

In order to handle MSO model-checking on graphs of bounded tree-depth we need to
enrich the structure by the powerset of the universe in order to simulate quantification over
sets.

I Definition B.1 ([3]). Let A = (A,R1, . . . , Rn) be a τ -structure. The power set structure
P(A) is the (τ]{⊆})-structure (P(A), RP(A)

1 , . . . , R
P(A)
n ,⊆), where (P(A),⊆) is the powerset

lattice on A and R
P(A)
i = {({a1}, . . . , {ari}) ∈ P(A)ri | (ai, . . . , ari) ∈ Ri} for all i ∈

{1, . . . , n}.

Clearly the MSO-theory of A is reducible to the FO-theory of P(A) and vice versa. In the
following we also need to make a distinction between trees that serve as an input to a tree
automaton and an unordered rooted tree in the graph theoretic sense. A finite unordered
labeled tree-structure T is a tuple (V,E, P1, . . . , Pn, r) where

V is a finite set of nodes,
E ⊆

(
V
2
)
such that (V,E) is connected and acyclic,

Pi ⊆ V for all 1 ≤ i ≤ n, and
r ∈ V is the root of the tree.

There are standard techniques to encode a finite unordered tree-structures of unbounded
degree by trees of bounded degree.

I Definition B.2. For a finite unordered tree-structure T = (V,E, P1, . . . , Pn, r) the set of
tilts of T, tilt(T) ⊆ TP({1,...,n}), is inductively defined by the following rules.

if T = ({v}, P1, . . . , Pn, v) then tilt(T) = {t}, where dom(t) = {ε} and
t(ε) = {i | v ∈ Pi}
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if T = (V, P1, . . . , Pn, r) is of depth h > 1 then t ∈ tilt(T) if, and only if, there is an
enumeration T0, . . . ,Tk of the subtrees induced by the children of the root r of T such
that there are trees t0, . . . , tk with
ti is a tilt of Ti,
dom(t) =

⋃
0≤i≤k{1i0}dom(ti),

t(w) =


{i | w ∈ Pi} w = ε

X w ∈ {1}i, 1 ≤ i ≤ k
ti(w′) w = 1i0w′, 0 ≤ i ≤ k

Note that if t is a tilt of a tree-structure T and v ∈ dom(t) with t(v) 6= X then v corresponds
to a node of depth |v|0 + 1 in T.

I Lemma B.3. Let h ∈ N be some fixed number. Then the class Ch of all power set structures
of graphs of tree-depth at most h is uniformly tree-automatic.

Proof. The advice set consists of all tilts of tree-structures (V,E, P1, . . . , Ph−1) of depth at
most h + 1 such that every node of depth ` appears only in sets Pi with i + 1 < `. This
is obviously a regular set. Such a tree α presents (the isomorphism type of) the graph
G = (V,E) with V = dom(α) ∩ ({0, 1}∗{0}) and E = {{v, w} | v � w and |v|0 ∈ α(w)}.
If α is a tilt of an optimal decomposition of G then the subtrees induced by the nodes
in domα ∩ {1}∗{0} correspond to the connected components of G. Building a uniformly
tree-automatic presentation c = (A,AE ,A⊆) is then straight forward. The automaton A is
chosen such that L(A[α]) = {t ∈ T{0,1,X} | dom(t) = dom(α) ∧ ∀w ∈ dom(α) : α(w) = X →
t(w) = X}. A tree t ∈ L(A[α]) represents the set {v ∈ dom(α) | t(v) = 1}. Then the relation
⊆ is trivially regular and the relation E can also be recognised with the advice α, because
the prefix relation is regular on the domain of a tree and |w|0 ≤ h for every w ∈ dom(t) and
every t ∈ L(A[α]), so an automaton can check whether w is the first ancestor with |w|0 = i

of a node v with i ∈ t(v). J

For a tree t ∈ TΣ, w ∈ domt, and a ∈ Σ we write t[w → a] for the tree that is obtained
by replacing the label of the node w by a.

I Theorem 5.8. The MSO model checking problem for graphs of tree-depth at most h is
fixed parameter tractable. Given an MSO sentence ϕ and a graph G of tree-depth at most h
one can decide in time O

(
exp(h+2)(poly(|ϕ|)) · poly(|G|)

)
whether G |= ϕ.

Proof. We define the EF-congruence on the basis of equivalence relations (∼hr,k)r,k∈N on
(P1, . . . , Pk)-labeled tree-structures of depth h:

For tree-structures S,T of depth 1 we define S ∼1
r,k T :⇔ S ∼= T.

Let S,T be trees of depth h+ 1 and let Si
1, . . . ,S

i
ni be the subtrees of depth i rooted in

a child node of the root in S for all i ≤ h and let Ti1, . . . ,Tin′
i
be the corresponding trees

with respect to T. Then S and T are ∼h+1
r,k -equivalent if, and only if, the roots of T and

S share the same labels and for all i < h and all ∼ir,k-equivalence classes κ

|{j ∈ N | j ≤ ni,Si
j ∈ κ}| =index(∼i

r,k
)r+1 |{j ∈ N | j ≤ n′i,Tij ∈ κ}|

The proof of [13, Theorem 3.1] can be easily adapted to show that no FO-formula with
r quantifiers can distinguish between two power set structures of two ∼hr,(r+k)-equivalent
(P1, . . . , Pk)-labeled tree-structures of depth h.

Moreover, a straightforward induction shows that whenever two such tree-structures
S,T of depth h are ∼h0,k-equivalent then the following two observations hold for every path
v0v1 . . . vn in S starting from the root:
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1. There is a path w0w1 . . . wn in T starting from the root of T such that for all 0 ≤ i ≤ n
the nodes vi and wi share the same labels, that is vi ∈ PS

j ⇔ wi ∈ PT
j for all 1 ≤ j ≤ k.

2. If for some subsets I ⊆ {1, . . . , n}, J ⊆ {1, . . . , k} the nodes vi with i ∈ I are unique in
the sense that for every path v′0v′1 . . . v′n with vi ∈ PS

j ⇔ v′i ∈ PS
j for all i ∈ I and j ∈ J

implies vi = v′i for all 1 ≤ i ≤ n then there is also a unique path w0w1 . . . wn T with
wi ∈ PT

j ⇔ vi ∈ PS
j for all i ∈ I, j ∈ J .

Let ∼≤hr,k :=
⋃

1≤i≤h ∼ir,k. We define an EF-congruence for the presentation in Lemma
B.3 from ∼≤hr,k . Let h be fixed.

In a first step, we partition the set of all (P({1, . . . , h+m− 1})] {X})-labeled trees into
2h+ 1 classes Tm1 , . . . , Tmh , Q

m
1 , . . . , Q

m
h , F .

A tree t is in Tmi if, and only if, t is a tilt of a tree of depth i.
A tree t is in Qmi if, and only if, t is not a tilt of a tree of depth i but t[ε→ ∅] is a tilt
of a tree of depth i (this is exactly the case if t = t′[ε→ X] for some tilt t′ of a tree of
depth i).
All other trees are in F .

The EF-congruence is then defined by

tErmt
′ :⇔∃0 ≤ i ≤ h : (t ∈ Tmi ∧ t′ ∈ Tmi ∧

∃S,S′ : t ∈ tilt(S) ∧ t′ ∈ tilt(S′) ∧S ∼ir,(r+m+k) S
′)

∨ ∃0 ≤ i ≤ h : (t ∈ Qmi ∧ t′ ∈ Qmi ∧
∃S,S′ : t[ε→ ∅] ∈ tilt(S) ∧ t′[ε→ ∅] ∈ tilt(S′′) ∧S ∼ir,(r+m+k) S

′)

∨ t, t′ ∈ F

For Property 1 let us consider under which circumstances a tree t does not present a
graph of tree-depth at most h. First of all t might not be a tilt of a tree-structure of depth at
most h+ 1. In this case t ∈ F or t ∈ Qi for some i ≤ h+ 1. In this case Erm seperates t from
all trees that represent a graph from Ch. Otherwise t might be the tilt of a tree-structure T

of depth at most h+ 1 but there is a note v ∈ T of depth i with v ∈ PT
i and i+ 1 ≥ j. But

then by Observation 1 every Erm-equivalent tree-structure contains also a node of depth j
which is contained in Pi and therefore does also not present a graph from Ch.

We use Observation 2 to show that Property 2 is fulfilled. Let s and t be (P({1, . . . , h+
m − 1}) ∪ {X})-labeled trees that present Structures in c with sErmt. Let S,T be the
tree-structures with s ∈ tilt(S) and t ∈ tilt(T), let (Gs, V1, . . . , Vm) be the tuple presented
by s, and (Gt,W1, . . . ,Wm) be the tuple presented by t. If Gs |= E(Vi, Vj) for some i, j ≤ m
then Vi and Vj are singletons and therefore there are unique nodes vi, vj with vi ∈ PS

h+i−1
and vj ∈ PS

h+j−1. Further vi and vj are ordered by the ancestor-relationship. Without loss
generality assume that vi is an ancestor of vj and let d be the depth of vi inS. Then vj ∈ PS

d−1.
By Observation 2 there must be unique nodes wi, wj with wi ∈ PT

h+i−1 and wj ∈ PT
h+j−1.

Further wi has depth d, is an ancestor of wj , and wj ∈ PT
d−1. Hence Gt |= E(Wi,Wj). If

Gs 6|= Vi ⊆ Vj then there is node v ∈ doms such that i ∈ s(v) but j 6∈ s(v). Using similar
arguments as in the previous case we can follow that there is also a w ∈ domt with i ∈ s(v)
and j 6∈ s(v). Hence Gt 6|= Wi ⊆Wj . The case of Gs 6|= Vi = Vj is analogous.

In order to establish Property 3 suppose sEr+1
m t. Let s′ be any tree that can be derived

from s by adding the label (h+m) to some nodes w ∈ dom(s) ∩ {0, 1}∗{0}. We distinguish
three cases.
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Case s, t ∈ F : then t′ ∈ F and we can extend the labeling of t in an arbitrary way to obtain
an Erm+1-equivalent t′.

Case s, t ∈ Tm
i for some 1 ≤ i ≤ h: then there is a (P1, . . . , Ph+m−1)-labeled tree-

structures S,T of depth i with s ∈ tilt(S) and t ∈ tilt(T). Further there is a set
XS ⊆ S such that s′ is a tilt of (S, XS). Because S ∼h(r+1),((r+1)+h+m) T there must be
a set XT ⊆ T such that (S, XS) ∼hr,(r+h+(m+1)) (T, XT). Finally choose the extension t′
of the labeling of t such that t′ ∈ tilt((T, XT)). Then t′Erm+1s

′.
Case s, t ∈ Qm

i for some 1 ≤ i ≤ h: the case follows analogously to the previous one by
considering s[ε→ ∅] and t[ε→ ∅].

At last, we see that Property 4 holds. Indeed, if t ∈ F then (c ◦ t) ∈ F for every context
c. For the case s, t ∈ Tmi for some 1 ≤ i ≤ h one can distinguish two cases based on the
structure of the context c.

Case c−1(x) ∈ {0, 1}∗{1} ∪ ({1}∗{0})>(h−i): then (c◦s) and (c◦t) do not present trees
of depth at most h and hence s, t ∈ F .

Case c−1(x) ∈ ({1}∗{0})≤(h−i): there are three subcases that might occur.
It might be that (c ◦ t) ∈ F and (c ◦ s) ∈ F (because c is a “template” of a tree of
depth larger than h or c contains an inconsistent labeling). in this case equivalence is
guaranteed by definition.
It is also possible that (c ◦ t) ∈ Tmj and (c ◦ s) ∈ Tmj for some i ≤ j ≤ h. Then let
S,T be trees of depth j such that (c ◦ t) ∈ tilt(S) and (c ◦ s) ∈ tilt(T). By induction
over j − i one shows that S ∼jr,r+h+m T. For j − i = 0 this is the case by definition.
For j − i = k + 1 let S1, . . . ,S` and T1, . . . ,T` be the subtrees of S and T that are
rooted in the children of the roots S and T, respectively. Without loss of generality
assume that S1 and T1 are the subtrees which resulted from adding s and t into the
context c. Then by the induction hypothesis S1 ∼hr,r+h+m T1 and also Sn

∼= Tn for all
1 < n ≤ `. But then for all n < j and all ∼nr,r+h+m-equivalence classes τ the number
of τ -children of the root in S is equal to the number in T, hence S ∼jr,r+h+m T and
therefore (c ◦ s)Erm(c ◦ t).
The last case that might happen is (c ◦ t) ∈ Qmj and (c ◦ s) ∈ Qmj for some i ≤ j ≤ h.
In this case we might again argue analogously to the previous cases by considering
(c ◦ t)[ε→ ∅] and (c ◦ s)[ε→ ∅].

Next, let us estimate the index of Erm. By the definition of Erm, index(Erm) ≤ 1 +
2
∑h+1
i=0 index(∼ir,r+m+h+1). An inductive analysis of index(∼ir,r+m+h+1) (see [13, Lemma

3.1 c)]) shows index(∼ir,r+m+h+1) ∈ exp(i+1)(poly(r + m + h + 1)). Applying this to the
above estimation yields index(Erm) ∈ exp(h+2)(poly(r +m)).

In order to fulfil the prerequisites of Theorem 5.1 we can apply textbook methods to
compute the decomposition of a graph of fixed tree-depth (see for instance [22]). From
the decomposition the construction of an advice for the presentation in Lemma B.3 can be
performed efficiently. J
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Abstract

The Direct Product encoding of a string a ∈ {0, 1}n on an underlying domain V ⊆
([n]
k

)
, is a

function DPV (a) which gets as input a set S ∈ V and outputs a restricted to S. In the Direct
Product Testing Problem, we are given a function F : V → {0, 1}k, and our goal is to test
whether F is close to a direct product encoding, i.e., whether there exists some a ∈ {0, 1}n such
that on most sets S, we have F (S) = DPV (a)(S). A natural test is as follows: select a pair
(S, S′) ∈ V according to some underlying distribution over V × V , query F on this pair, and
check for consistency on their intersection. Note that the above distribution may be viewed as a
weighted graph over the vertex set V and is referred to as a test graph.

The testability of direct products was studied over various domains and test graphs: Dinur
and Steurer (CCC ’14) analyzed it when V equals the k-th slice of the Boolean hypercube and the
test graph is a member of the Johnson graph family. Dinur and Kaufman (FOCS ’17) analyzed
it for the case where V is the set of faces of a Ramanujan complex, where in this case V = Ok(n).
In this paper, we study the testability of direct products in a general setting, addressing the
question: what properties of the domain and the test graph allow one to prove a direct product
testing theorem?

Towards this goal we introduce the notion of coordinate expansion of a test graph. Roughly
speaking a test graph is a coordinate expander if it has global and local expansion, and has
certain nice intersection properties on sampling. We show that whenever the test graph has
coordinate expansion then it admits a direct product testing theorem. Additionally, for every k
and n we provide a direct product domain V ⊆

(
n
k

)
of size n, called the Sliding Window domain

for which we prove direct product testability.
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1 Introduction

The direct product encoding of a function is a way to aggregate multiple values of the input
function using a single query. Justifying the vague intuition that it is much harder to compute
multiple values of a function rather then a single value of it, the direct product encoding has
been successfully used in several contexts of hardness amplification. The hardness can either
measure the fraction of inputs on which every reasonable-time algorithm fails to compute
the input function, or the fraction of unsatisfied assignments of a given CNF-formula or the
communication complexity of the function.

In most of the PCP constructions an assignment to the given input is broken into many
tiny pieces. Each small piece is encoded individually and then one should be able to test
whether these tiny pieces could be stitched together into a global assignment. This testability
task is referred to as an agreement test, and instantiations of it include low degree tests such
as the plane vs. plane [12], the line vs. line test [1] and the cube vs. cube test [2], and the
direct product test used in [8].

More concretely, we associate the direct product encoding of strings of size n, with some
underlying domain2 V which is a collection of subsets of [n] of cardinality k. Given a string
a ∈ {0, 1}n its direct product encoding on the domain V , denoted by DPV (a), is defined as
follows: For every set S ∈ V we define DPV (a)(S) = a|S (where a|S is the restriction of a
to the coordinates in S). In this paper we study the testability of this encoding, namely:
Given F : V → {0, 1}k we want to decide whether F agrees with some DPV (a) on most sets
S while querying F only on a few locations, specifically two. In other words, we focus on
two-query tests in the paper where we pick a pair of subsets (both in the domain) according
to some fixed distribution and then check if the two subsets agree on their intersection. We
say that a domain V admits a direct product testing theorem if there exists a two-query
test T satisfying the following: For every ε ≥ 0 and F : V → {0, 1}k if T accepts F with
probability 1− ε, then we have F (S) = DPV (a)(S) for some a ∈ {0, 1}n on 1−O(ε)-fraction
of the sets S in V , where the constant behind the O notation is independent of |V | and k.

This question was studied under various domains. Dinur and Steurer [9] analyzed a
two-query test under the domain V =

([n]
k

)
. Recently, Dinur and Kaufman [6] studied this

question in a much shrunken domain, which is obtained by considering the set of the faces of
a high dimensional expander. However, both of these proofs are tailored to the structure of
their own domain and cannot be (trivially) generalized to other domains. It is natural to ask
whether a more generalized argument can be applied covering both of these domains, and on
which domains it may be applied. The main question we are investigating is as follows:

Which domains admit a two-query direct product testing theorem?

Let us elaborate more about the previous proofs. The proofs given by [9] and [6] first
analyze the testability in the high error regime, i.e. when the acceptance probability is slightly
bounded away from 0. They show that any function that passes the test with non-negligible
probability ε must agree with some legal codeword DPV (a) on Ω(ε) fraction of sets. Then
they analyze the test in the low error regime, i.e. when the acceptance probability of the
test is close to 1. Finally they stitch local tiny agreements into a single codeword and show
that the agreement is almost everywhere.

2 For the ease of presentation, we only consider domains which are a subset of
([n]

k

)
in this section.

However, in the rest of the paper we consider V which is a collection of subsets of [n], and all our results
are proved for this more general case.
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We would like to establish a direct product testing theorem using a more straightforward
approach: we decode a string from the input function F using the majority operator and
then show that if the test passes with high probability then F is close to the direct product
encoding of the decoded string. More precisely, given the input function F , we define a
string a ∈ {0, 1}n as follows: for every coordinate i ∈ [n] we set ai to be the majority value
of F (S)i, where the majority is taken over the sets that contain i. Next we show that if
F passes the test with probability 1 − ε then F must be 1 − O(ε)-close to DPV (a). We
remark that Dinur and Reingold [8] indeed followed this proof strategy, however, their proof
admits only a relaxed notion of closeness between the input function and the direct product
encoding of the decoded string (namely, that on most sets S, F (S) and DPV (a)(S) agree
only on most of the coordinates in S).

Observe that any two-query test on a domain V gives rise to a weighted graph whose
vertex set is V and the weight we assign for each pair (S, S′) is the probability of this pair
being picked by the test3. We refer to this graph as the test graph. We say that a test graph
yields a tester for the domain V , if for every ε ≥ 0 and every function F : V → {0, 1}k the
following holds: if the test accepts F with probability 1− ε, then F must be 1−O(ε)-close to
some DPV (a). Here the test corresponds to picking an edge (S, S′) at random (according to
the distribution of weights on the edges) and accepting if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

Another proof insight that we desire is the explicit use of the properties of the underlying
test graph. For example, one property that the test graph must satisfy to be a tester is that
for most edges (S, S′) the intersection between S and S′ is linear in k. Assume not, then we
consider the following construction of F : We start from F = DPV (a) for some a ∈ {0, 1}n
and then for each S ∈ V we reset the value of F (S)i for some random i ∈ S. Then for most
sets (S, S′) with small intersection the test accepts but F is far from any direct product
codeword. Another property that the test graph must have is some notion of expansion.
Summing up, our more refined question is as follows:

What properties of the test graph yields a tester for its underlying
domain?

1.1 Our Results
Our conceptual contributions in this paper are two-fold. First, we introduce a notion
called coordinate expansion which captures the properties of direct product testable domains.
Second, we introduce the sliding window domain which is of size exactly equal to the universe
and is direct product testable. Our main technical contribution is showing that domains
having coordinate expansion with certain parameters admit a direct product theorem.

1.1.1 A General Direct Product Theorem
We introduce below the notion of coordinate expansion. Informally, a coordinate expander
has both global and local expansion properties, and has good intersection properties.

I Definition 1 ((λ, ρ)-Coordinate Expander). Let G = (V,E) be a test graph, where V ⊆
([n]
k

)
.

For i ∈ [n] let Vi = {S ∈ V |i ∈ S} and Gi be the subgraph of G induced by the vertices in
Vi. The graph G is called (λ, ρ)-coordinate expander if:

3 In this paper we analyze test graphs which are undirected.
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1. λ(G) < λ (where λ(G) = max{|λ2(AG)| ,
∣∣λ|V |(AG)

∣∣} and AG is the normalized adjacency
matrix of G).

2. For every i ∈ [n] we have that λ(Gi) < λ and for each S ∈ Vi the probability that a
uniformly random neighbor S′ of S is in Vi is at least ρ.

3. For every subset S and T ⊆ S, satisfying |T | ≥ 2/ρ , the probability that for a uniformly
random neighbor S′ of S we have |S′ ∩ T | ≤ ρ |T | /2 is upper bounded bounded by λ .

Notice that condition 1 implies that the test graph must be a good expander (in the
traditional sense). Moreover, condition 2, implies that on certain local subsets (i.e., subsets
containing a common coordinate) of vertices, the induced subgraph must be expanding as
well. Finally, condition 3 implies that the neighbors of every subset S samples well every
subset T of S.

Observe that condition 2 is necessary for the test graph to be a direct product tester. To see
this, consider a test graph that does not satisfy this property, namely, there exists a coordinate
i ∈ [n] for which: there exits a set Bi ⊂ Vi such that PrS′∈Vi

[S′ /∈ Bi|S ∈ Bi] = o(1). Then,
we show that the test graph does not yield a tester. Indeed, consider the following construction
of F : we first choose F = DPV (a) for some a ∈ {0, 1}n. Then for every S ∈ Bi we change
the value of F (S)i to 1−ai. Clearly, the distance of F from a direct product encoding equals
δ := |Bi| / |V |. However, the rejection probability equals:

2· Pr
S′∼S

[S ∈ Bi and S′ ∈ Vi\Bi] ≤ 2·Pr[S ∈ Bi]·Pr[S′ ∈ Vi]· Pr
S′∈Vi

[S′ /∈ Bi|S ∈ Bi] = o(1)·δ.

Then, we show our main technical result that coordinate expansion implies direct product
testing (for a certain range of parameters).

I Theorem 2. Let ρ ≥ 1/2 and λ ≤ 1/33. Let G = (V,E) be a test graph, V ⊆
([n]
k

)
, let

ε ≥ 0, and F : V → {0, 1}k. Let G be a (λ, ρ)-coordinate expander. If F passes the test
implied by the test graph G with probability 1 − ε then F is 1 − O(ε)-close to DPV (a) for
some a ∈ {0, 1}n.

The overview of the above proof is given in Section 1.2. Also, as an application of the
above theorem, we show4 a direct product theorem for the test graph isomorphic to the
Johnson graph J(n, k) when k is close to n/2, where J(n, k) is a graph whose vertex set is
the set of all subsets of [n] of cardinality k, and two subsets have an edge if their intersection
is equal to k/2. This should be compared to [9], where they show the direct product for the
Johnson graph for all the layers up to n/2 (i.e., for all J(n, k) where k ≤ n/2).

The main open problem stemming from our work is to improve the parameters in
Theorem 2. In particular, does the following hold?

I Open Problem 3. Does (1/2, 1/2)-coordinate expansion imply a direct product theorem?

A positive resolution of the above open question would imply direct product testability
on the test graph isomorphic to the Johnson graph for every layer of the Boolean hypercube
(completely recovering the results in [9]). It even implies a direct product testability on a
new domain: where the subsets are stemming from d-dimensional subspaces of Fm2 and two
subsets are connected by an edge if they intersect on a (d− 1)-dimensional subspace (this
is referred to as the Grassmann graph). Finally, we would like to recall that Theorem 2

4 The claim as written here is slightly inaccurate. Please refer to Appendix B for a precise statement.
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states that (1/33, 1/2)-coordinate expansion implies a direct product theorem, i.e., in order to
positively resolve Open Problem 3, we might need to improve the analysis in the proof of
Theorem 2 to accommodate test graphs with weaker expansion properties.

In fact, if we can resolve Open Problem 3 in a slightly stronger way i.e., if we show that
for some small enough constant γ > 0, we have (1/2 + γ, 1/2)-coordinate expansion implies a
direct product theorem then we recover the testability result of [6] on Ramanujan complexes.
Summarizing, we view the study of coordinate expansion as providing a unified framework
to prove direct product theorems. Also, it might be useful in the future to establish direct
product testability for new domains (in a black-box manner).

1.1.2 Sliding Window Domain

In this subsubsection, we define a new direct product testable domain which we call the
sliding window domain, and also discuss about the necessary and sufficient structure that a
domain (and test graph) should have, in order to admit direct product testing.

For every n, k, the sliding window domain A ⊆
([n]
k

)
is the collection of all contiguous

k-sized subsets (windows) of [n], i.e., A = {{i, . . . , i+ k − 1} | i ∈ [n]}, where the addition
is done modulo n. Two vertices (i.e., subsets in A) have an edge in the test graph, if their
intersection is non-empty. Notice that |A| = n and yet we show that it admits a direct
product theorem (see Theorem 9 for a simple proof).

Let us put the above result in context with the recent breakthrough of Dinur and Kaufman
[6]. In [6], the authors obtain a direct product testable domain (subset of

([n]
k

)
) of size O(2k2

n).
The domain arises from the highly non-trivial object called Ramanujan complex. Such a
domain is studied because apart from admitting a direct product theorem over a domain
of size linear in the universe (i.e., n), it also has other desirable properties such as distance
amplification which are needed for applications in gap and hardness amplification. Thus, our
direct product testing result (Theorem 9) provides a conceptual clarification that if one is
only interested in direct product testing as a property testing question, then there is a very
simple domain of size n, namely the sliding window domain, which is testable.

Roughly speaking, a domain (subset of
([n]
k

)
) has distance amplification if for every two

strings of relative distance δ, the relative distance between their direct product encoding is
Ω(kδ). This seems to be a crucial property for PCP applications of direct product testing.
Thus, the construction of the sliding window domain provides a conceptual clarification as to
why we need high dimensional expanders: we can obtain direct product testing from simple
constructions like the sliding window domain and we can obtain distance amplification from
known constructions of vertex expanders (see Appendix D); but to obtain both simultaneously,
[6] needed high dimensional expanders. We leave it as an open question whether there exists
a simple construction admitting both direct product testability and distance amplification.

I Open Problem 4. Is there a (relatively) simple domain of linear size in the universe (i.e.,
n) for which we have both direct product testing and distance amplification?

Lack of Global Expansion. We would like to now briefly discuss about the minimal structure
of the domain (and the test graph) sufficient to prove a direct product theorem. This is
highlighted by the sliding window domain, an in particular by the proof of its testability
(Lemma 10 to be precise). Notice that GA has very bad edge-expansion/vertex-expansion but
is a very good local expander, i.e., the induced subgraph containing any particular coordinate
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11:6 Towards a General Direct Product Testing Theorem

has good expansion (in fact is a clique). Lemma 10 guarantees that in such situations5
the domain admits direct product testing if for every vertex in the test graph, and every
element in that vertex, the probability of retaining that element when moving to a uniformly
random neighbor is bounded from below by a positive constant. The probability of retaining
a coordinate when moving to a random neighbor is 1/2 in A, and thus A admits a direct
product theorem. Therefore, A demonstrates that direct product testing does not require
the test graph to be an expander (like the Johnson/Ramanujan graph) but only needs to
have certain local expansion properties. Finally, recall that we had earlier argued that local
expansion is necessary (to justify the need for condition 2 in Definition 1) for direct product
testing.

Finally, it seems that conditions 1 and 3 in coordinate expansion are not (necessarily)
needed for direct product testing, but are merely artifacts of our proof (Theorem 2). How-
ever, these conditions might imply distance amplification6 and are typically guaranteed in
structured domains of interest (namely, Johnson, Grassmannian, and Ramanujan).

1.2 Technical Contribution: Proof Overview of Theorem 2
For the sake of convenience, through out this subsection, we fix V =

([n]
k

)
and the test would

pick pairs (S, S′) that intersect on k/2 elements and checks for agreement. As suggested
above there is a natural way to decode any function F : V → {0, 1}k using the majority
operator: define a string a ∈ {0, 1}n by setting ai to be the majority value of F (S)i for
all S 3 i. We define B = {S|F (S) 6= DPV (a)(S)}, i.e., B is the subset of the domain that
disagrees with the direct product encoding of the decoded string. Also for S ∈ B we call
i ∈ S conflicting if F (S)i 6= ai. Our goal is to show that the test rejects with probability
Ω(|B| / |V |) as |B|/|V | is the relative distance between F and DPV (a).

Indeed fix S ∈ B, then it must contain at least one conflicting coordinate, say i. Observe
that with probability 1/2 we also have that i ∈ S′. Now if S′ were a random set containing
i, then since at least half of the elements that contain i agree with the majority value, the
test rejects with probability 1/2. And the overall rejection probability of the test would be
at least |B|4|V | and we are done.

However, S′ is not a random set that contains i, it intersects with S on further k/2− 1
coordinates. Therefore, it may well be that among the neighbors of S that contain i we do
not see the majority value so often. A natural way to overcome this is by aggregating all Ss’
that contain i and disagree with the majority value on i. We could try to show that if we
start from some member of this set then with constant probability we reach S′ that contains
i and resides outside of this aggregated set (by using the local expansion property). But
this leads into another problem: using this argument sets S that contain many conflicting
coordinates are counted many times, whereas sets that contain few conflicting coordinates
are counted much less.

Our analysis proceeds by studying the variance of the number of conflicting coordinates
in the following manner. We first sort the set B based on the number of their conflicting
coordinates. Let BL (resp. BH) be the first (resp. last) third of the elements in B according
the sorting. We first show that if the number of conflicting coordinates of each member in
BL is much smaller than it is in BH , then the test rejects with probability Ω( |B||V | ). To show
this, we prove that whenever the test picks S ∈ BH then with constant probability S′ is in

5 Lemma 10 can be generalized to accommodate test graphs which are locally subgraphs that strongly
satisfy the expander mixing lemma.

6 This would be an interesting question to resolve in either direction.
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BL ∪ {V \B} (by using the global expansion property). Moreover, there is a large subset Γ
of conflicting coordinates in S which are also in S′ (follows from condition 3 in Definition 1).
However, S′ has few conflicting coordinates in total (by our choice of S′), and thus, there
must be a coordinate in Γ that agrees with the majority value on S′ but disagrees on it on S
and hence the test rejects the edge (S, S′).

On the other hand, if the number of conflicting coordinates does not vary a lot among
these sets, then we analyze the test by selecting (at random) a single conflicting coordinate in
S and focusing on the rejection probability based only on the value of the selected coordinate.

1.3 Related Work
The question of testing the direct product was studied extensively when the underlying
domain V =

([n]
k

)
[10, 8, 5, 9, 11]. In this setting, Goldreich and Safra [10] proposed a

constant query test. Dinur and Reingold [8] suggested the two-query test mentioned above
and analyzed it in the high acceptance regime but with a relaxed distance measure.

The state of the art in this context is the result of Dinur and Steurer7 [9] dealing with
the domain V =

([n]
k

)
where k varies between 2 and n/2. They analyze the aforementioned

two-query test with k/2-intersection size. They analyze it in the high acceptance regime and
show that

([n]
k

)
indeed admits a direct product testing theorem. The proof is quite involved

and in particular analyzes first the low acceptance regime. Recently, in a breakthrough paper,
Dinur and Kaufman [6] analyzed the two-query test when the underlying domain is obtained
from the set of faces of a Ramanujan complex. Their approach crucially relies on the result
of [9].

We remark that the direct product testability question was further analyzed in the low
acceptance regime under the domain

([n]
k

)
, see [5, 11, 7] and also under the domain where

the universe is Fm2 , and the domain is the set of all subspaces of Fm2 [11].

1.4 Organization of the Paper
Section 2 lists the notations and technical tools that we use in the paper. In Section 3
we formalize the notion of direct products and their testing. In Section 4 we prove our
main technical result, namely, that whenever the underlying test graph is a (λ, ρ)-coordinate
expander it admits a direct product testing theorem. Finally, in Section 5 we introduce the
sliding window domain for which we show a direct product theorem.

2 Preliminaries

In this section, we list the notations and technical tools used in this paper.

Notations. We use the following notations throughout the paper. We denote the set
{1, . . . , n} by [n]. For any n, k ∈ N, with k ≤ n, we denote by

([n]
k

)
, all subsets of [n] of

cardinality k. For any set S, we denote by P(S) the power set of S, i.e., the set of all subsets
of S. For any graph G(V,E) and any two subsets S, T ⊆ V , we denote by E(S, T ) the set
of all edges between S and T . For any x, y ∈ {0, 1}n, we denote by ∆(x, y) the relative
Hamming distance between x and y given by the fraction of coordinates in which x and y
differ.

7 The result in [9] is stated in the language of tuples, i.e., the domain is a subset of [n]k, but their result
also holds when the domain is a collection of k-sized subsets of [n]. See [4] for more details.
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11:8 Towards a General Direct Product Testing Theorem

Johnson Graph Family. For every n, k, t ∈ N such that t ≤ k ≤ n, J(n, k, t) is a graph
which is a member of the Johnson graph family, whose vertex set is

([n]
k

)
, and whose edge set

is {(S, S′) | S, S′ ∈
([n]
k

)
, |S ∩ S′| = t}.

Expander Mixing Lemma. The following is a standard claim concerning the expansion of
two sets in expander graphs. For completeness we include a proof in Section A:

I Claim 5. Let G = (V,E) be a d-regular graph and A be its adjacency matrix. Let λ be its
second largest eigenvalue in absolute value. Let S, T ⊆ V satisfying: |S| ≤ |V | /2 then:

Pr
(u,v)

[v ∈ T |u ∈ S] ≤ |T |
|V |

+ λ

d

√
|T |
|S|

,

where the probability is given by first picking u uniformly at random from S, and then picking
v according to A. Furthermore, let µ be a distribution on S satisfying that for every two
elements b, b′ ∈ S: µ(b) ≤ cµ(b′), then:

Pr
(u,v)

[v ∈ T | u ∼ µ] ≤ |T |
|V |

+ λ

d
·

√
c |T |
|S|

3 Direct Product Testing: The Setting

In this section, we formalize the notion of direct products and their testing. Specifically,
we formalize the notion of direct product testing through test graphs, which is slightly
non-standard but it helps in introducing the notion of coordinate expansion in a later section
succinctly.

For every subset S of [n], let FS be the class of all functions whose domain is S and
range is {0, 1}. Let V ⊆ P([n]) be the domain of the direct product. Let FV be the class of
all functions whose domain is V and maps every subset S in V to a function in FS . The
direct product encoding is a function DPV : {0, 1}n → FV defined as follows: for every string
a ∈ {0, 1}n, and every subset S ∈ V , let DPV (a)S be defined as the projection function
which maps S to aS , the string a restricted to only the coordinates in S.

I Definition 6. For two functions F,G ∈ FV we define their relative distance as:

∆(F,G) = |{S ∈ V |F (S) 6= G(S)}|
|V |

.

For a function F and a set of functions G̃ we define the distance between F and G̃ as the
minimal distance between F and some function G ∈ G̃. If ∆(F, G̃) ≤ δ, we say that F is
1− δ-close to G̃, otherwise, it is δ-far from G̃.

For every function F ∈ FV , we define dec(F ) as follows: Given F construct aF ∈ {0, 1}n
in the following way,

aFi = maj
S∈V
S3i

(F (S)i).

Then, we define dec(F ) := DPV (aF ).
Let GV be a graph whose vertex set is V . Then we interpret GV as a test graph on

functions defined on FV in the following sense:



E. Goldenberg and Karthik C. S. 11:9

Test T (GV ):
Input: A function F ∈ FV .
Procedure: Pick an edge (S, S′) in GV uniformly at
random.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

It is important to note that we allow self loops and multiple edges between a pair of
vertices. Also, we can generalize the above direct product testing setting to the case when V
is a multiset of P([n]), and the results in this paper still hold. However, we choose not to
handle this more general setting for the sake of clarity of presentation. The above remark
also applies to the case of studying test graphs which are not regular in degree, that are not
considered in this paper. Finally, throughout the paper, we drop the subscript V in GV , if
V is clear from the context.

4 Direct Product Testing: Coordinate Expansion

In this section we prove our main technical result, namely, that whenever the underlying
test graph is a (λ, ρ)-Coordinate Expander (defined next) it admits a direct product testing
theorem.

I Definition 7 ((λ, ρ)-Coordinate Expander). Let n ∈ N and let G = (V,E) be a test graph,
where V ⊆ P([n]). For i ∈ [n] let Vi = {S ∈ V |i ∈ S} and Gi be the subgraph of G induced
by the vertices in Vi. Let λ(G) = max{|λ2(AG)| ,

∣∣λ|V |(AG)
∣∣}, where AG is the normalized

adjacency matrix of G. The graph G is called (λ, ρ)-coordinate expander if:
1. λ(G) < λ and for every i ∈ [n] we have λ(Gi) < λ.
2. For every i ∈ [n] and for each S ∈ Vi we have Pr

S′∼S
[S′ ∈ Vi] ≥ ρ.

3. For every subset S and T ⊆ S, satisfying |T | ≥ 2/ρ , we have Pr
S′∼S

[|S′ ∩T | ≤ ρ|T |/2] ≤ λ.

Informally, a domain is a coordinate expander if the test graph is an expander and every
induced subgraph of the test graph containing a fixed coordinate is also an expander8, and it
has good correlation/intersection properties – i.e., for any subset S and coordinate i ∈ S, an
uniformly random neighbor of S contains i with constant probability (say ρ > 0), and for
every S in the domain, and any subset T of S, the number of elements of T that we see in a
random neighbor of S is close to the expected number, which is ρ · |T |. Below, we see that
coordinate expansion of the test graph implies a direct product theorem for the underlying
domain.

I Theorem 8. Let n ∈ N, and let ρ ≥ 1/2 and λ ≤ 1/33 be some constants. Let G = (V,E)
be a graph, V ⊆ P([n]), let ε ≥ 0, and F ∈ FV . Let G be a (λ, ρ)-coordinate expander. If F
passes T (G) with probability 1− ε then F is 1−O(ε)-close to dec(F ).

Proof. Let F ∗ := dec(F ) = DPV (aF ). We define B,C ⊆ V as follows:

B = {S | F (S) 6= F ∗(S)} and C = V \B.

Let β = |B| / |V |. Given a subset S ∈ V we say that a coordinate i is conflicting if the value
of F (S) at i does not equal aFi . For a set S denote by B(S) the set of conflicting coordinates
in S. We show that T (G) rejects with probability at least Ω(β).

8 Actually, the property of an expander that we need is that for any two sets of vertices S, T in the graph,
the number of edges between S and T is roughly equal to α|S||T |, where α is the density of the edge
set of the graph.
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11:10 Towards a General Direct Product Testing Theorem

Let us sort in ascending order the elements of B based on the number of coordinates on
which they disagree with F ∗. For a parameter 0 ≤ p ≤ 1 we define the set B≥p as the set of
last (1− p) |B| elements of B (and similarly the set B≤p is the set of the first p |B| elements
of B). We denote by mp the number of conflicting coordinates of the p |B|-th element of B.

Let c = 3/40. We consider two cases based on mc,m1/2 and m1−c.

Case 1: m1−c > 2
ρ

m1/2 or m1/2 > 2
ρ

mc

For both the possibilities we have similar arguments, which is why they are clubbed under
one case, but will be handled separately for ease of presentation.

Case 1A: m1−c > 2
ρ

m1/2

The probability that an uniformly random S ∈ V is in B≥1−c is cβ. Now by Claim 5, we get
that

Pr[S′ ∈ B>1/2|S ∈ B≥1−c] < β/2 + λ

√
1
2c ,

so with probability at least 1− β/2− λ
√

1
2c if S ∈ B≥1−c then S′ ∈ B≤1/2 ∪ C.

Now, by the third property of (λ, ρ)-coordinate expander, the probability that |S′ ∩B(S)|
≤ ρ

2 |B(S)| is at most λ. Notice that the probability that |S′ ∩B(S)| ≤ m1/2 is at least the
probability that |S′ ∩B(S)| ≤ ρ

2 |B(S)| (because m1/2 <
ρ
2m1−c ≤ ρ

2 |B(S)|). Hence we have
that the probability that |S′ ∩B(S)| ≤ m1/2 is at most λ.

Overall, using union bound, conditioned on S ∈ B≥1−c, the probability that S′ ∈
B≤1/2 ∪ C and |S′ ∩B(S)| > m1/2 is at least 1− β/2− λ

√
1
2c − λ. But in such a case since

S′ ∈ B≤1/2 ∪ C we get |B(S′)| ≤ m1/2, so there exists at least one coordinate i ∈ S ∩ S′ on
which F (S′)i = aFi but F (S)i 6= aFi , so the test rejects. In total T rejects with probability at
least cβ

(
1− β/2− λ

√
1
2c − λ

)
≥ cβ

(
1/2− λ

(√
1
2c + 1

))
(where we used a trivial bound

that β ≤ 1). Notice that 1/2− λ
(√

1
2c + 1

)
> 0 holds for c = 3/40 whenever λ ≤ 0.13.

Case 1B: m1/2 ≥ 2
ρ

mc

In this case we would like to mimic the proof strategy of the previous case. That is we
would like to show that with non-zero constant probability a random neighbor in B≥1/2 is in
B≤c ∪ C. By an application of Claim 5, we get:

Pr[S′ ∈ B>c|S ∈ B≥1/2] < (1− c)β + λ
√

2− 2c,

so with probability at least 1− (1− c)β − λ
√

2− 2c if S ∈ B≥1/2 then S′ ∈ B≤c ∪ C.
Now, by the third property of (λ, ρ)-coordinate expander, the Pr[|S′ ∩B(S)| ≤ ρ

2 |B(S)|]
is at most λ. Notice that mc ≤ ρ

2m1/2 ≤ ρ
2 · |B(S)| and thus Pr[|S′ ∩B(S)| ≤ ρ

2 |B(S)|] ≥
Pr[|S′ ∩B(S)| ≤ mc]. Therefore we have Pr[|S′ ∩B(S)| ≤ mc] ≤ λ.

Overall, using union bound, conditioned on S ∈ B≥1/2, the probability that S′ ∈ B≤c ∪C
and |S′ ∩B(S)| > mc is at least 1 − (1 − c)β − λ

√
2− 2c − λ. But in such a case since

S′ ∈ B≤c ∪ C we get |B(S′)| ≤ mc, so there exists at least one coordinate i ∈ S ∩ S′ on
which F (S′)i = aFi but F (S)i 6= aFi , so the test rejects. In total T rejects with probability
at least β

2
(
1− (1− c)β − λ

√
2− 2c− λ

)
≥ β

2
(
c− λ

(√
2− 2c+ 1

))
(where we used a trivial

bound that β ≤ 1). Notice that
(
c− λ

(√
2− 2c+ 1

))
> 0 holds for c = 3/40 whenever

λ ≤ 0.03177.
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Case 2: m1−c ≤ 4
ρ2 mc

Define B(c,1−c) as the set B \ (B≤c ∪ B≥1−c). Observe that in B(c,1−c) the number of
conflicting coordinates is between mc and 4mc/ρ

2. Now we would like to consider a different
test T ′(G) that selects S, S′ according to G. If S /∈ B(c,1−c) then T ′ accepts. Otherwise,
it picks uniformly at random i0 ∈ B(S) and checks for consistency only on i0, namely: It
rejects iff i0 ∈ S′ and F (S)i0 6= F (S′)i0 . Clearly the rejection probability of T ′(G) is at most
the rejection probability of T (G). We conclude the proof by showing that T ′(G) rejects F
with probability Ω(β).

With probability (1− 2c)β the test T ′ selects S ∈ B(c,1−c) and we would like to analyze
the rejection probability conditioned on that. For this sake we bound the probability of the
following events:

E1 is the event where S′ ∈ B≤c ∪B≥1−c.
E2 is the event where i0 ∈ S′ and S′ /∈ B̃i0 where B̃i = {S ∈ B(c,1−c)|F (S)i 6= aFi }.

If the event E2 occurs but E1 does not, then it must be the case that F (S′)i0 = aFi0 . Hence
T ′ rejects. As a consequence Pr[T ′ rejects] ≥ (1 − 2c)β(Pr[E2|S ∈ B(c,1−c)] − Pr[E1|S ∈
B(c,1−c)]). Thus it suffices to show that (Pr[E2|S ∈ B(c,1−c)] − Pr[E1|S ∈ B(c,1−c)]) is a
positive constant bounded away from 0.

To bound the probability for the event E1 we use Claim 5: The probability of E1

conditioned on S ∈ B(c,1−c) is at most 2cβ + λ
√

2c
1−2c .

Since the graph G is a (λ, ρ)-coordinate expander then for each i ∈ S, we have that
Pr[i ∈ S′] ≥ ρ, in particular this is true for i0, hence: Pr[i0 ∈ S′] ≥ ρ.

Now we divide the event E2 into disjoint events depending on the value of i0 and bound
the rejection probability of T ′ conditioned on specific value of i0. Fix i ∈ [n] and assume
that T ′ selects S, S′ ∈ Vi and sets i0 = i (so S ∈ B̃i). We denote by βi the fraction |B̃i|

|Vi| .
Observe that βi ≤ 1/2, since otherwise the majority value would become the value of F (S)i,
but we have S ∈ B̃i.

Note, that under the assumption that T ′ selects i0 = i and S ∈ B̃i, sets S with few
conflicting coordinates are more likely to be chosen than those who have many of them.
However, since by our assumption the number of conflicting coordinates is between m∗ and
4
ρ2m

∗, then sets with m∗ conflicting coordinates are only 4/ρ2-times more probable than
those having 4

ρ2m
∗-conflicting coordinates. Denote by µ the distribution of picking S ∈ B̃i

assuming that T ′ selects i0 = i. By an application of Claim 5 we get:

Pr
S∼µ,S′

[S′ ∈ B̃i] ≤
∣∣B̃i∣∣
|Vi|

+ λ

√
4
ρ2 ≤

1
2 + 2λ/ρ

So we get that,

Pr[E2|S ∈ B(c,1−c)] =
(

1− Pr
S∼µ,S′

[S′ ∈ B̃i | i0 ∈ S′]
)
· Pr[i0 ∈ S′] ≥

ρ

2 − 2λ.

Summing up, we get:

Pr[T ′ rejects|S ∈ B(c,1−c)] ≥ Pr[E2|S ∈ B(c,1−c)]− Pr[E1|S ∈ B(c,1−c)]

≥ ρ

2 − 2λ−
(

2c+ λ

√
2c

1− 2c

)

≥ 1
4 − 2c− λ

(
2 +

√
2c

1− 2c

)
,

a constant bounded away from 0 for c = 3/40 whenever λ < 0.04. J
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11:12 Towards a General Direct Product Testing Theorem

In Appendix B, we consider the test graph J(n, k, k/2) and show a direct product theorem
when k is close to n/2.

5 Sliding Window Domain

In this section, we introduce the sliding window domain for which we show a direct product
theorem.

Construction. Let k, n ∈ N such that k ≤ n. Let A be a collection of n subsets of [n] of
Hamming weight k.

A = {{i, . . . , i+ k − 1} | i ∈ [n]},

where the addition is done9 modulo n.

Testability. The domain of our direct product test is A. The corresponding test is as
follows:

Test T :
Input: A function F : A → {0, 1}k.
Procedure: Pick uniformly at random S ∈ A. Then
pick uniformly at random S′ ∈ A such that S ∩ S′ 6= ∅.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

The test graph GA of the above is given by the vertex set A and the edge set {(S, S′) |
S ∩ S′ 6= ∅}. The correctness of the above test is shown below. We would like to emphasize
that |A| = n and yet admits a direct product theorem.

I Theorem 9. Let ε ≥ 0 and F ∈ FA. If F passes T (GA) with probability 1− ε then F is
(1− 4ε)-close to dec(F ).

Proof. We will in fact prove a more general direct product testing result.

I Lemma 10. Let n ∈ N and G = (V,E) be a d-regular graph where V ⊆ P([n]), let ε ≥ 0,
and F ∈ FV . For every i ∈ [n], let the induced subgraph of Vi in G be a clique (with self
loops). Additionally, let c > 0 be a constant such that for every S ∈ V and every i ∈ S,
the probability that a uniformly random neighbor S′ of S in G contains i is at least c. If F
passes T (G) with probability 1− ε then F is (1− 2ε

c )-close to dec(F ).

Now we show that the above lemma gives the proof of the theorem. Let Ai = {S ∈ A |
i ∈ S}. Note that for every i ∈ [n], the induced subgraph of Ai in G is a clique (with self
loops) because any two subsets in Ai have i in their intersection and thus have non-empty
intersection. Also for every S ∈ A and every i ∈ S, the probability that a uniformly random
neighbor S′ of S in G contains i is at least 1/2. Thus, from Lemma 10 the theorem follows. J

We complete the proof of the above theorem by showing Lemma 10 below.

9 Strictly speaking, the addition is done modulo n and then the resulting number is incremented by one.
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Proof of Lemma 10. Let F ∗ := dec(F ) = DPV (aF ). Let B ⊆ V be defined as follows:

B = {S | F (S) 6= F ∗(S)}.

Let Ci ⊆ Vi be defined as follows:

Ci = {S ∈ Vi | F (S)i = aFi }.

By definition of aFi , it is clear that |Ci| ≥ |Vi|/2.
Since F passes T (G) with probability 1− ε this implies that the number of edges that

fail T (G) is at most ε · |V |d2 .
Fix S ∈ B. Fix i ∈ [n] (arbitrarily) such that F (S)i 6= F ∗(S)i. Now observe that

whenever S′ ∈ Ci, the test T (G) rejects the edge (S, S′) in G because F (S)i 6= aFi = F (S′)i.
This implies that there are at least |Ci| ≥ |Vi|/2 ≥ cd/2 many edges incident on S that fail
the test T (G). Therefore, there are in total at least |B| · cd/4 edges that fail the test. Recall
that the total number of rejected edges is at most ε · |V |d2 . Thus we have that |B|/|V | ≤ 2ε

c .
The proof is concluded by noting that the distance between F and F ∗ is exactly |B|/|V |. J

Note that Lemma 10 holds even when the induced subgraph of Vi in G is a clique without
self loops. In Appendix C, we provide a couple of direct product theorems on domains that
are known in literature as an immediate consequence of this lemma.

Lack of Global Expansion. Notice that GA has very bad edge-expansion/vertex-expansion
but is a very good local expander, i.e., the induced subgraph containing any particular
coordinate has good expansion (in fact is a clique). Lemma 10 guarantees that and thus A
admits a direct product theorem. Therefore, A demonstrates that direct product testing
does not require the test graph to be an expander (like the Johnson/Ramanujan graph) but
only to have certain local expansion properties.

Sub-linear Size Domains. We remark here that we could consider subsets Ã of A of size
smaller than n which still admit a direct product theorem. For example consider Ã as
follows:

Ã = {{ik/2, . . . , ik/2 + k − 1} | i ∈ [2n/k]},

and the test graph GÃ is given by the vertex set Ã and the edge set {(S, S′) | S ∩ S′ 6= ∅}.
It is easy to see that Ã admits a direct product theorem by applying Lemma 10. Again, we
emphasize that |Ã| = 2n/k and yet admits a direct product theorem.

Comparison with Dinur and Kaufman. One might wonder that if direct product testing
results can be established on linear sized direct product domains using simple constructions
such as the sliding window domain then, why did [6] work so hard and use extremely heavy
objects such as high dimensional expanders to obtain linear sized direct product domains.
This is because for applications to gap and hardness amplification, it is desirable that a
direct product domain also has distance amplification (defined below) and high dimensional
expanders have distance amplification whereas the sliding window domain does not.

I Definition 11 (Distance Amplification, [6]). A direct product domain V ⊆
([n]
k

)
is said to

have distance amplification if for every x, y ∈ {0, 1}n such that δ := ∆(x, y) < 1/k, we have
that ∆(DPV (x),DPV (y)) = Ω(kδ).

FSTTCS 2018



11:14 Towards a General Direct Product Testing Theorem

Thus, the construction of the sliding window domain provides a conceptual clarification as
to why we need high dimensional expanders: we can obtain direct product testing from simple
constructions like the sliding window domain and we can obtain distance amplification from
known constructions of vertex expanders (see Appendix D); but to obtain both simultaneously,
[6] needed high dimensional expanders.
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distribution vector that describes µ. First observe that:

Pr
(u,v)

[v ∈ T | u ∼ µ] = 1
d
· (pµ)t ·A · 1T ,

where the probability is taken over u that is drawn according to µ and v is a uniformly
random neighbor of u. Note that 1V is an eigenvector of A corresponding to the largest
eigenvalue (in absolute value) of d. We decompose the vectors: pµ,1T as follows:

pµ = 1
|V |

1V + ~p and 1T = γ1V + ~t.

Note that γ = |T |
|V | and ~p,~t are both orthogonal to 1V and let β = |S|

|V | . In these notations:

1
d
· (pµ)t ·A · 1T = 1

d

(
1
|V |

1V + ~p

)t
·A · (γ1V + ~t)

= γ + 〈~pA,~t〉

≤ γ + λ

d
‖~p‖ ·

∥∥~t∥∥ ,
where in the last step we used the Cauchy-Schwarz inequality and the fact that ‖~pA‖ ≤ λ ‖~p‖.
Now since the value of each coordinate of pµ is upper bounded by c

|S| we get: ‖~p‖2 =

‖pµ‖2 − 1
|V |2 ‖1V ‖

2 ≤ c
|S| −

1
|V | , and

∥∥~t∥∥2 = (γ(1− γ)) |V |. So:

Pr
(u,v)

[v ∈ T | u ∼ µ] = 1
d
· (pµ)t ·A · 1T

≤ γ + λ

d
·

√(
c

|S|
− 1
|V |

)
γ(1− γ) |V |

≤ γ + λ

d
·

√
cγ |V |
|S|

= |T |
|V |

+ λ

d
·

√
c|T |
|S|

J

B Application of Theorem 8: Ω(n)-slice of the Hypercube

In this section, we consider the test graph J(n, k, k(0.5 + ε)), where ε is some small constant.
The domain of the direct product encoding is

([n]
k

)
. The pair (S, S′) is connected by an edge

if and only if: |S ∩ S′| = k/2(0.5 + ε). We show that:

I Claim 12. Let ε = 1/64. Let n ∈ N, let 1/2− ε ≤ c ≤ 1/2 be a constant and let k = c · n,
then the graph J(n, k, k · (1/2 + ε)) is (1/33, 1/2)-coordinate expander for large enough n.

Proof.
1. The proof of the second largest eigenvalue in absolute value was recently confirmed in [3]

and we use it below. Note that λ0 =
(

k
k/2+εk

)(
n−k

k/2−εk
)
, which is the degree of the graph.

Theorem 3.10 in [3] states that λ1 below is the second largest eigenvalue in absolute value
when

λ1 = −
(

1
0

)(
k

k/2 + εk

)(
n− k − 1

k/2 + εk − 1

)
+
(

1
1

)(
k − 1

k/2 + εk

)(
n− k

k/2 + εk

)
≤ λ0/33
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2. Fix i ∈ [n]. Then the graph Gi is isomorphic to J(n− 1, k − 1, k/2− 1 + εk). Therefore
by the first item λ(Gi) < λ. Clearly, for every value of i ∈ [n] and for each S ∈ Vi the
probability that i ∈ S′ equals 1/2 + ε.

3. We verify here the proof for t > 16. The case when t = 4, 8, 12, 16 can be routinely
calculated and verified.

Pr[|T ∩ S′| ≤ t/4] ≤ t

4 ·
(
t
t/4
)
·
(

k−t
k/2−t/4

)(
k
k/2
)

≤ t

4 ·
(
t
t/4
)
·
(

k−t
k/2−t/2

)(
k
k/2
)

≤ t

4 · (1.01)2H(1/4)t(1.01) 2k−t√
k − t

·
2
√
k/2

2k

≤ t

2 · (1.02)
√

k

k − t
· 2−.43t

< 1/33
Where in third line we used Stirling’s approximation that for all n ≥ 16 to derive:

2n

2
√
n/2
≤
(
n
n/2
)
≤ (1.01) 2n√

πn/2
and

(
n
εn

)
≤ (1.01)2H(ε)n. J

As a corollary we get that we test the direct product encoding when the domain V equals([n]
k

)
for values of k which are close to n/2. Recall that [9] established this result for all

k ≤ n/2.

C Simple Applications of Lemma 10

In this subsection, we consider two direct product domains, namely
( [n]
n/2
)
and

([n]
2
)
and prove

a direct product theorem for these domains when the test graph is a clique and a member of
Johnson graph family respectively.

C.1 n/2 slice of the Hamming cube
A natural two-query test on the n/2 slice of the Hamming cube is as follows:

Test T :
Input: A function F :

( [n]
n/2
)
→ {0, 1}n/2.

Procedure: Pick uniformly and independently at random S, S′ ∈( [n]
n/2
)
.

Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

We now interpret the above test in the language established in Section 3. In the above
test, the domain V of the direct product is

( [n]
n/2
)
and the test graph G is a clique with self

loops. Therefore, for every i ∈ [n], the induced subgraph of Vi in G is a clique (with self
loops). And, for every S ∈ V and every i ∈ S, the probability that a uniformly random
neighbor S′ of S in G contains i is 1/2. Thus, from Lemma 10 we have that for any F ∈ FV ,
if F passes T (G) with probability 1− ε then F is (1− 4ε)-close to dec(F ).

C.2 J(n, 2, 1) of the Johnson Graph Family
For the domain

([n]
2
)
, we note that if we pick two elements from

([n]
2
)
uniformly and inde-

pendently at random then they have empty intersection with probability almost 1. Therefore,
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the same test as for the n/2 slice of the Hamming cube does not work here. Nonetheless,
there is still a natural two-query test for the domain

([n]
2
)
described as follows:

Test T :
Input: A function F :

([n]
2
)
→ {0, 1}2.

Procedure: Pick uniformly at random S ∈
([n]

2
)
. Then

pick uniformly at random S′ ∈
([n]

2
)
such that |S∩S′| =

1.
Output: Accept if and only if F (S)|S∩S′ = F (S′)|S∩S′ .

We now interpret the above test in the language established in Section 3. In the above
test, the domain V of the direct product is

([n]
2
)
and the test graph G is J(n, 2, 1). Note that

for every i ∈ [n], the induced subgraph of Vi in G is a clique (without self loops) because any
two distinct subsets in Vi have i in their intersection and thus have intersection size equal to
1. Also for every S ∈ V and every i ∈ S, the probability that a uniformly random neighbor
S′ of S in G contains i is 1/2. Thus, from Lemma 10 we have that for any F ∈ FV , if F
passes T (G) with probability 1− ε then F is (1− 4ε)-close to dec(F ).

D Linear Sized Domains having Distance Amplification

In this section, we show how to construct a collection of sets which have distance amplification.
To do so we rely on the existence of vertex expanders.

I Definition 13 (Vertex Expansion). Let G(V,E) be a d-regular graph. For every subset
S ⊆ V let ∂(S) = {u ∈ V \ S | ∃v ∈ S such that (u, v) ∈ E}. The vertex isoperimetric
constant h(G) is defined as follows:

h(G) = min
0≤|S|≤|V |/d

|∂(S)|
|S| · d

.

We say that G is a vertex expander if h(G) is a constant bounded away from 0.

I Theorem 14 (Folklore). For all d > 2, a random d-regular graph is a vertex expander with
high probability.

Given a d-regular graph G(V,E) (where n := |V |) which is a vertex expander with vertex
isoperimetric constant γ > 0, we show how to construct AG ⊆

([n]
d

)
of cardinality n such

that AG has distance amplification. We identify the vertices in V with [n] and construct AG
as follows:

AG = {∂({v}) | v ∈ V }.

I Claim 15. AG has distance amplification.

Proof. Fix distinct x, y ∈ {0, 1}n. Let δ := ∆(x, y) ≤ 1/d. Let R ⊆ [n] be the set of
coordinates on which x and y differ. Clearly, |R| ≤ n/d. The number of subsets in AG
that contain an element in R is at least γd|R|. Therefore we have ∆(DPAG

(x),DPAG
(y)) ≥

γδd. J
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Space Complexity of Two Adaptive Bitprobe
Schemes Storing Three Elements
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Abstract
We consider the following set membership problem in the bitprobe model – that of storing subsets
of size at most three from a universe of size m, and answering membership queries using two
adaptive bitprobes. Baig and Kesh [2] proposed a scheme for the problem which takes O(m2/3)
space. In this paper, we present a proof which shows that any scheme for the problem requires
Ω(m2/3) amount of space. These two results together settle the space complexity issue for this
particular problem.
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1 Introduction

Given a universe U containing m elements, consider the problem of storing an arbitrary
subset S of size at most n. Once we have stored some such subset, we are required to answer
membership queries of the form “Is x in S?” The solutions to these problems are referred to
as schemes. The resources that we consider to evaluate schemes for the problem are the space
required by the data structure, denoted by s, and the number of bits of the data structure
accessed to answer the membership queries, denoted by t. This particular class of static
membership problems is referred to in the literature as the bitprobe model.

1.1 The Bitprobe Model
Schemes for the bitprobe model are further classified based on how the decision is made to
probe a particular bit of the data structure for some query. If for a given query, the location
of a bitprobe is independent of the result obtained from the previous bitprobes, then such a
scheme is called a non-adaptive scheme. On the other hand, if the location of the current
bitprobe depends on the results obtained from the previous bitprobes, then such a scheme is
called an adaptive scheme.

Given a universe U and the size of the subset to be stored, say n, the design of any scheme
has two components – the storage scheme and the query scheme. Given an arbitrary subset
S of size at most n, the storage scheme sets the bits of the data structure such that the
membership queries can be answered correctly. The query scheme handles arbitrary queries
of the form “Is x in S?”

Radhakrishnan et al. [7] introduced the following notation to represent the various schemes
in the model – a scheme that takes s amount of space and requires t bitprobes to answer
membership queries correctly is denoted as (n, m, s, t)A or (n, m, s, t)N depending on whether
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the scheme is adaptive or non-adaptive, respectively. Sometimes, the notations sA(n, m, t)
and sN (n, m, t) are used to denoted the space requirement for the respective schemes.

1.2 The Problem Statement
The space complexity for two adaptive bitprobe schemes storing subsets of size one (n =
1, t = 2) is well understood – the lower bound is Ω(m1/2), and there is an explicit scheme that
matches this lower bound [1, 5]. For subsets of size two (n = 2, t = 2), there is a scheme due
to Radhakrishnan et al. [6] that takes O(m2/3) amount of space. They further conjectured
that this is also the minimum space required for the problem. Though progress has been
made towards proving the lower bound [6, 7], the problem still remains open.

In this paper, we consider the problem of storing subsets of size at most three, and
answering membership queries using two adaptive bitprobes, i.e. n = 3 and t = 2. Particularly,
we look into the lower bound on space for the class schemes solving the problem.

Garg and Radhakrishnan [4] has proposed a general upper and lower bound for all
adaptive schemes using two bitprobes, which are as follows.

sA(n, m, 2) = O(m1− 1
4n+1 ).

sA(n, m, 2) = Ω(m1− 1
bn/4c )

When applied to the particular case of storing three elements, the upper and lower bounds
come out to be O(m12/13) and Ω(1), respectively. Garg [3] improved the general upper bound
in his thesis to the following.

sA(n, m, 2) = O(m1− 1
4n−1 )

This improves the bound for the three element case to O(m11/12). Further improvement of
the upper bound was made by Baig and Kesh [2] when they came up with a scheme that
takes O(m2/3) space.

A much better lower bound was proposed by Radhakrishnan et al. [7] when they proved
that for storing subsets of size at most two (n = 2), the space required is Ω(m4/7). As a
corollary, their result puts a lower bound for the scenario when n = 3.

In this paper, we make the following claim – an adaptive scheme storing subsets of size at
most three from a universe of size m and answering membership queries using two bitprobes
requires Ω(m2/3) amount of space, i.e.

sA(3, m, 2) = Ω(m2/3) (Theorem 19).

This claim, along with the scheme due to Baig and Kesh [2] resolves the space complexity
question for n = 3 and t = 2.

2 Two Bitprobe Schemes

In this section, we discuss the components of an adaptive two-bitprobe scheme, restate a few
notations from the literature, and introduce some new ones used in the proof of our claim.

2.1 The Decision Tree
The data structure for two-bitprobe adaptive schemes consists of three tables, namely A,B,
and C. Every element in our universe has a location reserved in each of the three tables, a
location which stores a single bit. For an element x, we use the notations A(x),B(x), and
C(x) to denote its location in the three tables. We abuse this notation a bit, and use these
notations to also denote the bits stored in those locations.
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A

B C

No Yes No Yes

0 1

0 1 0 1

Figure 1 The decision tree of an element.

Given a subset S of the universe U , the storage scheme sets the bits of these tables in
such a way that the query scheme answers membership questions correctly. The arrangement
and the purpose of these three tables will become more apparent from the query scheme,
discussed below.

The design of the query scheme is as follows. Upon the query “Is x in S?”, the first
bitprobe in made in table A at the location A(x). Depending on whether the bit stored in
the location is 0 or 1, the second bitprobe is made in table B or C, respectively. Finally, if
the second bitprobe returned 1, we declare that the element x is a member of S, else if 0 is
returned, we declare that x is not a member of S.

The description of the query scheme can be represented in the form of tree, shown in
Figure 1, and is known as the decision tree.

2.2 Blocks

We borrow the terminology introduced in Radhakrishnan et al. [6] and define the notion
of blocks.

I Definition 1. The set of all elements of the universe U that query the same location in
table A is said to form a block.

It follows that if elements u and v belong to the same block, then A(u) = A(v). Con-
sequently, we have as many blocks as there are bits in table A. Blocks are significant for the
following reason – all the elements of a block will either query table B or C, depending on
whether the bit corresponding to the block stores a 0 or a 1, respectively.

Given a block, each of its elements will be numbered uniquely starting from 1. We will
call this number corresponding to an element within a block as the index of the element.

The notion of blocks together with the notion of indices gives us a unique way of identifying
the elements of the universe U – the block number in table A, and the index within that
block. Henceforth, we are going to use the following notation to label any element. If an
element belongs to block a, and its index within the block is i, then we are going to address
that element as ai.

As a block is essentially a set, we will use the notation |a| to denote the number of
elements block a contains. Table A being a collection of blocks, we use the notation |A| to
denote its size.
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2.3 Sets
In tables B and C, for the sake of convenience, which will become apparent as the proof
progresses, we use the term sets instead of blocks for elements querying the same location.

I Definition 2. Elements that query the same location in table B are said to belong the
same set. The same terminology is used for elements that query the same location in table C.

So, there are as many sets in tables B and C as there are bits. Similar to table A, we will
use the notation |B| and |C| to denote the sizes of the respective tables.

We now define two of the key notions employed in the proof of the lower bound, that of
the mass of a set and the universe of a set.

I Definition 3. The mass of a set is the total number of elements in all of those blocks of
table A which has one or more elements in the set. For a set W , its mass is denoted by mW .

I Definition 4. Given the set W , we construct a new set corresponding to W using the
following steps.
Step 1. Collect all the elements in all of those blocks of table A which has a member in

set W .
Step 2. From the resulting set, remove the elements of set W .
This set will be denoted as UW , the universe of W . The size of this set is

|UW | = mW − |W |. (1)

To take an example, suppose the set W = { a1, e1, f2, h3 }. Let the members of the
relevant blocks a, e, f , and h be

a = {a1, a2, a3};
e = {e1, e2};
f = {f1, f2, f3, f4}; and

h = {h1, h2, h3, h4, h5},

then,

mW = |a|+ |e|+ |f |+ |h|
UW = {a2, a3, e2, f1, f3, f4, h1, h2, h4, h5}.

3 Clean and Dirty Sets

In this section, we define and discuss two categories of sets, namely clean sets and dirty sets.

I Definition 5. A set is said to be dirty if the set contains more than one element from
some block of table A. On the other hand, if all of the elements of a set are from distinct
blocks of table A, then that set is said to be clean.

For example, the set { a1, a2, b3, c4 } is a dirty set as it contains two elements from block
a. On the other hand, the set { e1, f1, g3 } is a clean set. Note that same indices, as in the
later set, are allowed, but same block numbers are not.

We now make an important observation about the relationship between blocks and
dirty sets.
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I Lemma 6. If a set in any of the tables is dirty due to the elements of a block of table A,
then all of the elements of that block must belong to distinct sets in the other table.

In other words, if some block of table A makes some set dirty in table B, then it cannot
make any set dirty in table C, and vice versa. This is similar to what has been considered by
Radhakrishnan et al. [6] as part of item 4 in Section 4. We reprove it in our teminology.

Proof. Without loss of generality, let the elements a1 and a2 (the first and the second
elements of block a) belong to the same set W in table B. So, the set W is dirty due to
block a. We will prove that the elements of this block will necessarily belong to distinct sets
in table C.

Let us construct the subset S so as to contain the element a1 but not the element a2.
In this case, A(a) cannot be 0. If A(a) is indeed 0, then upon query for the element a1, we
would get a 0 from table A, and the second query for a1 must be in table B. As a1 belongs
to the set W of table B, and as a1 belongs to the subset S, the bit corresponding to the set
W must be set to 1.

Under this assignment, we look into the queries for the element a2. As A(a) = 0, the
second query for a2 will be in table B. As we have assumed that a1 and a2 belong to the set
W in B, the second query for a2 will be to the bit corresponding to the set W . As the bit
stored is 1, we will deduce that a2 belongs to S, which would be incorrect.

So, A(a) cannot store 0, and hence it must store 1. So, the second query for all the
elements of block a will be made in table C.

In table C, if two elements of block a are again together in some set, we can put one of
the elements in S but not the other, and we will reach a contradiction similar to the one
above. Note that the subset S is allowed to contain at most three elements, and to arrive at
the contradiction we need to put at most two elements in S.

We can thus conclude that the elements of block a must belong to distinct sets in
table C. J

The next lemma shows the relationship between multiple blocks that create dirty sets in
table B

I Lemma 7. Consider all of those blocks of table A that make one or more sets dirty in
table B. All of the elements from all of those blocks must necessarily be in distinct sets of
table C.

Proof. Without loss of generality, let the elements a1 and a2 of block a make some set dirty
in table B. Putting one of them in subset S but not the other, and reasoning along the lines
of the proof of Lemma 6, we will have A(a) = 1. Similarly, if we have the elements b1 and b2
of block b making some set dirty in table B, we can put one of them in S and not the other,
and ensure that A(b) = 1.

Now, suppose that the elements ai and bj belong to a set X in table C. In this scenario,
we will add ai to subset S as its third member. As the second query for ai will be in table C,
we will have to set the bit corresponding to the set X to 1.

With this assignment, we look in the query “Is bj in S?” As A(b) is 1, the second query
of bj will be in table C. As it belongs to set X, we will get a 1 for the second query and
incorrectly deduce that bj is a member of S.

This tells us that all the elements of blocks a and b must belong to distinct sets of table
C. It is to be noted that it has been implicitly assumed that the elements a1, a2, b1, and b2
are distinct from ai and bj , which need not necessarily be true. In such a case too it can be
argued, as above, that the elements of the two blocks cannot share a set in table C. J
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The aforementioned restrictions on the blocks creating dirty sets help us to estimate the
total number elements in all of those blocks of table A which are responsible for creating
dirty sets in table B.

Consider those blocks of table A that create dirty sets in table B. Let the total number
of elements in all of those blocks combined be NB. Lemma 7 tells us that of those elements
must belong to distinct sets in table C. This observation immediately puts the following
bound on NB –

NB ≤ |C|.

We can do the same exercise for table C, and count the total number of elements in all of
the blocks responsible for creating dirty sets in table C. If that number is NC , then we will
arrive at the relation

NC ≤ |B|.

In our data structure, let us remove all of those NB elements from their respective sets
and put in singleton sets in table B, and we do the same for the NC elements in table C.
This will make all of the sets in the tables B and C clean. Of course, this comes with an
additional cost to the size our data structure, and the its new size will be

|A|+ 2|B|+ 2|C|.

If the sizes of all of the tables in our initial data structure be s each, resulting in the
total size to be 3s to begin with, after the adjustment mentioned above we will have a data
structure whose size is at most 5s, an increase by a constant factor, and no asymptotic
penalty.

We can further introduce s empty blocks in table A and make the sizes of the three tables
uniform. With these observations, we can make the following claim.

I Theorem 8. Given a (3, m, s, 2)A-scheme, we can have an equivalent (3, m, 2 × s, 2)A

adaptive scheme where the data structure has only clean sets.

Henceforth, we will talk exclusively about schemes with clean sets only, and whose table
sizes are all equal, and prove the lower bound for this class of schemes. Theorem 8 guarantess
that the lower bound claim will also hold for the general class of schemes, with or without
dirty sets.

4 Mass of a set

The following relationship holds between the total mass of all the sets of tables B and C, and
the sizes of the blocks of table A.

I Lemma 9. For the sets of tables B and C, and the blocks of table A, the following equality
is true.∑

W∈B
mW =

∑
X∈C

mX =
∑
a∈A
|a|2 (2)

Proof. Consider a block a of table A. As we are dealing with schemes containing clean
sets only, the elements of the block a will be distributed in exactly |a| sets of table B. This
implies that block a will contribute to the masses of |a| sets of table B. In other words, the
term |a| will occur as summand in the masses of |a| sets of table B.
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So, in the total mass of all the sets of table B, |a| will occur as a summand exactly |a|
times. In other words, the contribution of block a to the total mass of table B is |a|2, and
the equality follows.

We can similarly argue about table C. J

I Lemma 10. The following inequality holds between the masses of the sets of tables B and
C, and the size of table A –∑

W∈B
mW =

∑
X∈C

mX ≥
m2

|A|
. (3)

Proof. Consider the sum from Equation 2∑
a∈A
|a|2.

Using the arithmetic mean geometric mean inequality, we can show that the sum is minimized
when all the summands are equal, i.e.

∑
a∈A
|a|2 ≥ |A| ×

(∑
a∈A |a|
|A|

)2

.

By using the fact that
∑

a∈A |a| = m, we get the desired R.H.S. J

It is interesting to note that the total mass of either of the tables B and C is minimized
when all of the blocks of table A are of equal size.

5 Bad Elements

In this section, we give a characterisation of certain elements of our universe U as being bad
for some particular sets of table C.

I Definition 11. Suppose an element ai from block a of table A belongs to a set W of table
B, and to a set X in table C. Such an element is said to be a bad element for the set X if
the following holds:
1. ai shares the set W with two other elements bj and ck, from blocks b and c, respectively.
2. There exists elements bl and cn, different from the elements bj and ck, such that they

share a set in table C.

Figure 2 describes pictorially the notion of a bad element.

As in the above instance, let us suppose that the element ai is a bad element for the set
X of table C. We discuss below why, given such an arrangement of elements, is ai referred to
as bad for the set X.

5.1 Property of a bad element
Consider the following subset S = { ai, bl }. We show that if we want to store this subset,
then A(a) must be set to 1, and we show this by contradiction.

If it is indeed the case that A(a) = 0, then upon query for the element ai, we will go
to table B for the second query. As ai belongs to the set W in table B, and as it is also a
member of subset S, the bit corresponding to W must be set to 1.
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Table B

ai

bj

ck

...

Set W

Table C

ai

...

Set
X

bl

cn

...

Set
Y

Figure 2 In this arrangement, ai is a bad element for the set X. Note that j 6= l and k 6= n.
Further, the sets X and Y need not necessarily be distinct.

This would imply that A(b) = 1. If it is not, and A(b) is set to 0, then the second query
for the element bj would in table B. As bj is a member of the set W in table B, we would
get a 1 against the second query and incorrectly assume bj is a member of S. So, we see
that A(b) must be 1. We can similarly argue that A(c) must also be 1.

As shown in Figure 2, the elements bl and cn belong to the set Y in table C. From the
arrangement of elements above, we can further deduce that as bl is a member of S, and it is
also a member of the set Y in table C, the bit corresponding to the set Y must be set to 1.
If we now consider the query “Is cn in S?”, we would find out that we would incorrectly get
that cn is a member of S.

This shows that if the subset S contains the elements ai and bl, then A(a) cannot be 0,
and hence it must be set to 1. We summarise our findings in the following lemma.

I Lemma 12. If the subset S contains the elements ai and bl, then A(a) must be set to 1.

5.2 Universe of X

We would show that no two elements of UX \ a, the universe of X minus the elements of
block a, can share a set in table B, and we arrive at this by contradiction.

Let us suppose, without loss of generality, that the elements x1 and y1 belong to set X,
implying that the elements of the blocks x and y will be part of UX . Let us further assume
that the elements x2 and y2, which are members of UX , share the set Z in table B. The
arrangement of the elements can be seen in Figure 3.

In this scenario we will show next that while trying to store the subset S = { ai, bl, x2 },
the query for the element y2 will give an incorrect answer.

As the subset S contains the elements ai and bl, Lemma 12 tells us that A(a) must be
equal to 1. This means that the second query for ai will be in table C. ai belongs to the set
X in this table, and hence the bit corresponding to the X must be set to 1.

The element x1 is not a member of S, so the second query for this element cannot be in
table C. If it is, then it will query the bit corresponding to the set X and get a 1, implying x1
is a member of S. To ensure that the second query is in table B, we ought to have A(x) = 0.
We can argue similarly about the block y, and conclude that A(y) = 0.

With A(x) = 0, the second query for the element x2 must be in table B. Considering the
fact that x2 is a member of the subset S, the bit corresponding to the set Z in table B must
be set to 1(Figure 3).
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Table B

ai

bj

ck

...

Set W

x2

y2

...

Set
Z

Table C

ai

x1

y1

...

Set
X

bl

cn

...

Set
Y

Figure 3 In this arrangement, ai is a bad element. Note that j 6= l and k 6= n.

Let us now consider the query “Is y2 in S?” As A(y) = 0, the second query for y2 will
be in table B. In this table, y2 belongs to the set Z, and hence, the second query for this
element will return a 1, implying incorrectly that y2 is a member of S.

We summarise our findings in the following lemma.

I Lemma 13. Suppose that an element ai is bad for a set X in table C. Then, the elements
of UX \ a must belong to distinct sets in table B.

5.3 Bounded Sets of Table C

Lemma 13 tells us that the elements of UX \ a must belong to distinct sets in table B. Hence,
the size of UX is bounded by the size of B.

|UX | − |a| ≤ |B|
=⇒ mX ≤ |B|+ |a|+ |X| (from Equation 1),

giving us the following corollary to the lemma above.

I Corollary 14. If a set X of table C contains a bad element from a block a of table A, then
the mass of X must satisfy the following inequality.

mX ≤ |B|+ |a|+ |X|. (4)

We now come to reason why elements with the property, as stated in Definition 11, are said
to be bad for sets of table C. A bad element in a set of table C puts an upper bound on the
mass of that set. For small data structures, the sizes of the sets of the tables B and C must
be large, so that the number of distinct sets is small. A bad element in a set, on the other
hand, restricts the size of the set.

For easy reference, we characterise these sets as bounded sets because their mass has an
upper bound.

I Definition 15. A set in table C which contains one or more bad elements is called a
bounded set.

FSTTCS 2018



12:10 Two Bitprobe and Three Elements

5.4 Large Sets of Table B
I Lemma 16. Consider a set W of table B whose mass satisfies the following inequality.

mW ≥ 2× |C|+ |W |+ 1.

Then, all of the elements of set W are bad elements.

Proof. If some set W of table B satisfies the above inequality, then the size of the universe
of W , which is mW − |W |, has more than twice the number of elements than there are sets
in table C. Hence, there is at least one set in table C which contains three elements or more
of UW .

Without loss of generality, let us assume that all of the elements of W have index 1,
i.e. W = { a1, b1, c1, d1, . . . }. Let us assume further that the set X of table C is the set
containing at least three elements of UW ; let those elements be a2, b2, and c2.

If we consider the element c1, it satisfies the definition of a bad element - a1 and b1 along
with c1 belong to the set W in table B, and the elements a2 and b2 belong to the set X

in table C. We can say the same for every element of W except for a1 and b1. So, we get
|W | − 2 bad elements in the set W .

a1 is also a bad element due to b1, c1, b2, c2, and similarly b1. So, all of the elements of
W are bad for one or the other set of table C. J

We characterise these sets of table B as large sets.

I Definition 17. A set W in table B is called a large set if its mass satisfies the following
inequality.

mW ≥ 2× |C|+ |W |+ 1. (5)

We next highlight an important relation between the masses of large sets of table B and
the bounded sets of table C.

I Lemma 18. The total mass of the large sets of table B is less than or equal to the total
mass of the bounded sets of table C.

Proof. Let ai be an element that belongs to a large set W in table B. Then, two things hold
true – ai is a bad element, and ai contributes the amount |a| to the mass of the large set W .

In table C, if ai belongs to set X, then two things hold true here as well – X is a bounded
set, and ai contributes the amount |a| to the mass of X.

So, every contribution to the total mass of a large set will also have an equal amount of
contribution to the total mass of bounded sets.

Additionally, there could be bad elements due to sets that are not large, or there would
be elements in bounded sets that are not bad. Both of these will contribute to the mass of
bounded sets, but not to that of large sets. Consequently, the inequality follows. J

6 The Lower Bound

Baig and Kesh [2] have shown that there exists an adaptive scheme that stores subsets of size
at most three elements from a universe of size m, and answers memberships queries using
two bitprobes. The space required by the scheme is 3 ×m2/3. In other words, we have a
(3, m, 3×m2/3, 2)A-scheme.
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In this section, we will show that a (3, 2×m, 3×m2/3, 2)A scheme cannot exist. Thus, a
3×m2/3-sized datastructure is not sufficient if the universe size is doubled, giving us the
desired contradiction.

Section 3 tells us that we will only have to look into schemes with data structures having
the following properties – all of the sets are clean, and the sizes of the three tables are equal.
So we have the following setting.

|U | = 2m

n = 3
t = 2

|A| = |B| = |C| = m2/3

If the total number of elements is 2m, then Lemma 10 tells us that the total mass of all
the sets of table B or table C is at least

(2m)2

|A|
= (2m)2

m2/3 = 4m4/3.

The mass of a set W which is not large is at most

2× |C|+ |W | = 2m2/3 + |W | (from Equation 5).

In the worst case, the total number of such sets could at most m2/3 – the size of table B –
and the total number of elements belonging to such sets could be 2m. So, the total mass of
all such non-large sets of table B is

m2/3 × 2×m2/3 + 2m = 2×m4/3 + 2m.

This means that the total mass of the large sets of table B is at least

4m4/3 − 2×m4/3 − 2m = 2m4/3 − 2m (6)

If table C, the mass of a bounded set X is at most

|B|+ |a|+ |X| = m2/3 + |a|+ |X| (Corollary 14).

Here, a is the block to which the bad element belongs. In the case that all of the sets of
table C are bounded, then the total mass of all bounded sets is at most

m2/3 ×m2/3 + 2m + 2m = m4/3 + 4m. (7)

Equations 6 and 7 tell us that as long as m ≥ 73, the total mass of large sets of table
B is strictly greater than the total mass of bounded sets of table C, which is absurd as it
contradicts Lemma 18.

This tells us that a (3, 2×m, 3×m2/3, 2)A-scheme cannot exist. We now arrive at the
final result.

I Theorem 19. sA(3, m, 2) = Ω(m2/3).
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7 Conclusion

In this paper, we have provided a lower bound for two-bitprobe adaptive schemes storing
subsets of size at most three (Theorem 19), which matches with the upper bound for the
problem proposed by Baig and Kesh [2]. This, as alluded to earlier, settles the space
complexity problem for this particular n and t.

The lower bound for the problem where n = 2 and t = 2, conjectured by Radhakrishnan
et al. [6] to be Ω(m2/3), still remains open. We hope that the notions of the mass of a set
(Definition 3) and the universe of a set (Definition 4) would help us better understand the
data structure for this problem, and consequently resolve the conjecture.
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Abstract
Nisan and Szegedy [14] conjectured that block sensitivity is at most polynomial in sensitivity
for any Boolean function. There is a huge gap between the best known upper bound on block
sensitivity in terms of sensitivity – which is exponential, and the best known separating examples
– which give only a quadratic separation between block sensitivity and sensitivity.

In this paper we give various new constructions of families of Boolean functions that exhibit
quadratic separation between sensitivity and block sensitivity. Our constructions have several
novel aspects. For example, we give the first direct constructions of families of Boolean functions
that have both 0-block sensitivity and 1-block sensitivity quadratically larger than sensitivity.
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1 Introduction

The Sensitivity Conjecture posed by Nisan and Szegedy [14] is one of the most intriguing,
yet elusive problems in computational complexity theory.

The sensitivity s(f) of a Boolean function f is the maximum over all inputs x of the
number of coordinate positions i such that changing the value of the i-th bit of x changes the
value of the function. The block sensitivity bs(f) of a Boolean function f is the maximum
over all inputs x of the number of disjoint blocks of bits such that changing the value of all
bits of x in any given block changes the value of the function. (See Section 2 for more formal
definitions.) Sensitivity was introduced by Cook, Dwork and Reischuk [8] as a measure to
prove lower bounds on the parallel complexity of Boolean functions in the CREW PRAM
model. Nisan [13] defined the more general block sensitivity measure, and showed that the
CREW PRAM complexity of any Boolean function f is characterized by its block sensitivity
up to constant factors as Θ(log bs(f)). Nisan also showed that several other complexity
measures, including certificate complexity and decision tree depth are polynomially related
to block sensitivity. Nisan and Szegedy [14] showed that the degree of real polynomials
representing a Boolean function f is also polynomially related to its block sensitivity. These
relations extend to approximate representation by real polynomials and to randomized
and quantum decision tree depth. Thus, a number of important complexity measures are
polynomially related to block sensitivity. See [6, 11] for a survey.

However, it remains open to fully understand the relationship between sensitivity and
block sensitivity. Of course for any Boolean function f , s(f) ≤ bs(f). Nisan and Szegedy
[14] conjectured that block sensitivity is at most polynomial in sensitivity for any Boolean
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13:2 New Constructions with Quadratic Separation between s(f) and bs(f)

function f . They even raised the possibility that bs(f) = O(s(f)2). This possibility is
still not ruled out - the best separation so far remains quadratic. The current best upper
bound on block sensitivity in terms of sensitivity by Ambainis et al. [2, 4] is exponential:
bs(f) ≤ s(f)2s(f)−1. (More precisely, bs(f) ≤ max{2s(f)−1(s(f) − 1

3 ), s(f)} [4].) This
improves the earlier upper bounds of Kenyon and Kutin and Simon [12, 16].

The first example of a function with quadratic separation between its sensitivity and block
sensitivity was given by Rubinstein [15] who constructed a function f with bs(f) = 1

2s(f)2.
Other constructions with quadratic separation were given in [19, 7, 10, 5]. The largest
separation so far is achieved by the construction of Ambainis and Sun [5] who gave a function
f with bs(f) = 2

3s(f)2 − 1
3s(f).

Improving the constant 2
3 in the separation would be interesting, since a function f

with bs(f) > cs(f)2 for a constant c > 1 would imply a construction with superquadratic
separation by iterated composition of the function f [3].

In order to better understand the relationship between sensitivity and block sensitivity, the
one-sided versions of the measures 0-sensitivity s0(f), 1-sensitivity s1(f), 0-block sensitivity
bs0(f) and 1-block sensitivity bs1(f) have also been extensively studied. These measures
are obtained by restricting attention to inputs x ∈ f−1(0) for defining 0-sensitivity and
0-block sensitivity and to inputs x ∈ f−1(1) for defining 1-sensitivity and 1-block sensitivity,
respectively. (See Section 2 for formal definitions.) Then s(f) = max{s0(f), s1(f)} and
bs(f) = max{bs0(f), bs1(f)}.

Ambainis and Prusis [3] (improving the constant of a statement in [12]) proved that
bs0(f) ≤ 2

3s0(f)C1(f) where C1(f) denotes the 1-certificate complexity of f . See Section
2 for the definition of certificate complexity. On the other hand, [13] proved that C1(f) ≤
bs1(f)s0(f). The analogous statements also hold for upper bounding bs1 and C0, respectively.
Combining these results implies that in order to obtain much stronger separation between
sensitivity and block sensitivity it is necessary to construct functions f such that both bs0(f)
and bs1(f) are significantly larger than s(f).

Avishay Tal [18] pointed out to us, that one can get such examples by the following trick.
Let g be any function with bs(g) = Ω(s(g)2), then taking f(x, y) = g(x) ∨ ¬g(y) will give
min{bs0(f), bs1(f)} = Ω(s(f)2). Notice however that in this example the function f will not
give an asymptotically larger separation between its block sensitivity and sensitivity than
what was achieved by the function g unless bs1(g) = θ(bs0(g)). Thus, limitations on the
separation that follow from properties of the function g will be inherited by the function f .
By direct constructions, the largest simultaneous separation has been min{bs0(f), bs1(f)} =
Ω(s(f)log2 3) in [1]. On the other hand, all previous direct constructions with quadratic
separation between bs(f) and s(f) had min{bs0(f), bs1(f)} = O(s(f)).

1.1 Our Results
In this paper we give various new constructions of families of Boolean functions that exhibit
quadratic separation between sensitivity and block sensitivity. Our constructions have several
novel aspects.

We provide the first direct constructions of families of Boolean functions f with
min{bs0(f), bs1(f)} = Ω(s(f)2). Our simultaneous quadratic separation of both 0-block
sensitivity and 1-block sensitivity from sensitivity is based on a more refined study of the
effects of function composition on these measures. We also present sufficient conditions for
achieving such simultaneous separations and give several examples of functions satisfying
these conditions.

All previous constructions - with the exception of Chakraborty’s functions [7] - were of
the form f = ORm ◦ gk that is f : {0, 1}mk → {0, 1} was obtained by composing the m-bit
OR function with an appropriately chosen inner function g on k bits. Chakraborty [7] did
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not use function composition at all. As for the choice of the inner function, [10] defined the
inner function g based on codewords of a Hamming code. All other constructions (including
Chakraborty [7]) used the presence of certain patterns in the input x to set the function
value g(x) to 1.

We observe that other function compositions instead of OR-composition can also yield
quadratic separations. We define new functions, that could be used as inner or outer
functions, based on algebraic criterions related to multiplication in finite fields or polynomial
multiplication.

We also give new examples of functions to match the current best constant of 2
3 by

Ambainis and Sun [5] among the known quadratic separations. We give a general condition
for achieving quadratic separations with the 2

3 constant for functions defined by families of
certificates. The function by Ambainis and Sun [5] fits into this framework.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function. For x ∈ {0, 1}n and i ∈ [n] we denote by xi

the input obtained by flipping the i-th bit of x. More generally, for S ⊆ [n] we denote by xS

the input obtained by flipping the bits of x in all coordinates in the subset S.

I Definition 1 (Sensitivity). The sensitivity s(f, x) of a Boolean function f on input x is
the number of coordinates i ∈ [n] such that f(x) 6= f(xi). The 0-sensitivity and 1-sensitivity
of f are defined as s0(f) = max{s(f, x) : f(x) = 0} and s1(f) = max{s(f, x) : f(x) = 1},
respectively. The sensitivity of f is defined as s(f) = max{s(f, x) : x ∈ {0, 1}n} =
max{s0(f), s1(f)}.

I Definition 2 (Block Sensitivity). The block sensitivity bs(f, x) of a Boolean function f on
input x is the maximum number of pairwise disjoint subsets S1, . . . , Sk of [n] such that for
each i ∈ [k] f(x) 6= f(xSi). The 0-block sensitivity and 1-block sensitivity of f are defined as
bs0(f) = max{bs(f, x) : f(x) = 0} and bs1(f) = max{bs(f, x) : f(x) = 1}, respectively. The
block sensitivity of f is defined as bs(f) = max{bs(f, x) : x ∈ {0, 1}n} = max{bs0(f), bs1(f)}.

It is convenient to refer to coordinates i ∈ [n] such that f(x) 6= f(xi) as sensitive bits for
f on x. Similarly, a subset S ⊆ [n] is called a sensitive block for f on x if f(x) 6= f(xS).

I Definition 3 (Partial assignment). Given an integer n > 0, a partial assignment α is a
function α : [n]→ {0, 1, ?}. A partial assignment α corresponds naturally to a setting of n
variables (x1, x2, . . . xn) to {0, 1, ?} where xi is set to α(i). The variables set to ? are called
unassigned or free, and we say that the variables set to 0 or 1 are fixed.
We say that x ∈ {0, 1}n agrees with α if xi = α(i) for all i such that α(i) 6= ?.
The size of a partial assignment α is defined as the number of fixed variables of α.

I Definition 4 (Certificate). For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n a
partial assignment α is a certificate of f on x if x agrees with α and any input y agreeing
with α satisfies f(y) = f(x).
The size of a certificate α is defined as the size of the partial assignment α.

I Definition 5 (Certificate Complexity). The certificate complexity C(f, x) of a Boolean
function f on input x is the size of the smallest certificate of f on x. The 0-certificate
complexity and 1-certificate complexity of f are defined as C0(f) = max{C(f, x) : f(x) = 0}
and C1(f) = max{C(f, x) : f(x) = 1}, respectively. The certificate complexity of f is defined
as C(f) = max{C(f, x) : x ∈ {0, 1}n} = max{C0(f), C1(f)}.
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I Definition 6 (Function defined by a set of partial assignments). Let C = {c1, c2, . . . ct} be a
set of partial assignments c1, c2, . . . ct : [n]→ {0, 1, ?}.
Then C naturally defines a function gC : {0, 1}n → {0, 1} as:
gC(x) = 1 iff x agrees with some partial assignment ci ∈ C.

I Definition 7 (Distances). The distance between two inputs x, y ∈ {0, 1}n is defined as the
number of bits in which they differ.
The distance between an input x ∈ {0, 1}n and a partial assignment α : [n] → {0, 1, ?} is
defined as the minimum distance between x and any input y agreeing with α.
The distance between two partial assignments α, β : [n]→ {0, 1, ?} is defined as the minimum
distance between any input x agreeing with α and any input y agreeing with β.

I Definition 8 (Function Composition). For Boolean functions f : {0, 1}m → {0, 1} and
g : {0, 1}k → {0, 1} the function f ◦ g : {0, 1}mk → {0, 1} is defined on z ∈ {0, 1}mk as

f ◦ g(z) = f(g(z1, . . . zk), g(zk+1, . . . , z2k), . . . , g(z(m−1)k+1, . . . , zmk))

Properties of function composition were formally studied with respect to sensitivity and
block sensitivity (as well as other related measures) in [17, 9]. We note the following two
properties, relevant for us.

I Lemma 9. [17, 9] For any Boolean functions f and g we have s(f ◦ g) ≤ s(f)s(g).

I Definition 10. [17] For z ∈ {0, 1} we say that f : {0, 1}n → {0, 1} is in z-good form, if
(1) f(zn) = z and (2) bs(f) = bs(f, zn)

I Lemma 11. [17] If both f and g are in 0-good form, or if both f and g are in 1-good form,
then bs(f ◦ g) ≥ bs(f)bs(g).

2.1 Previous Constructions with Quadratic Separation
All previous constructions that achieve quadratic separation between sensitivity and block
sensitivity - with the exception of Chakraborty’s functions [7] - were based on the following
“OR-composition Lemma” first used by Rubinstein [15].

I Lemma 12. [15] For any function g : {0, 1}m → {0, 1}, we have:
s0(ORn ◦ g) = ns0(g)
bs0(ORn ◦ g) = nbs0(g)
s1(ORn ◦ g) = s1(g)
bs1(ORn ◦ g) = bs1(g)

The quadratic separations of [15, 19, 5, 10] are based on using this lemma and considering
functions of the form f = ORn ◦ g for appropriately chosen inner functions g.

Next we briefly describe the previous constructions of functions with quadratic separation.

1. Rubinstein’s function [15] Define g : {0, 1}2m → {0, 1} as:
g(x) = 1 iff x2j −1 = x2j = 1 for some j ∈ [m] and xi = 0 for i 6= 2j − 1, 2j.
This gives s0(g) = 1, s1(g) = bs1(g) = 2m, bs0(g) = m.
Let f = OR2m ◦ g. Then s0(f) = s1(f) = bs1(f) = 2m, bs0(f) = 2m2, giving bs(f) =
1
2 s(f)2.

2. Virza’s function [19] Define g : {0, 1}2m+1 → {0, 1} as:
g(x) = 1 iff one of the following holds:
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1) ∃j ∈ [m] such that (x2j−1 = x2j = 1) and (xi = 0 ∀ i 6= 2j − 1, 2j).
2) (x2m+1 = 1) and (xi = 0 ∀ i 6= 2m+ 1).

This gives s0(g) = 1, s1(g) = bs1(g) = 2m+ 1, bs0(g) = m+ 1.
Let f = OR2m+1 ◦g. Then s0(f) = s1(f) = bs1(f) = 2m+1, bs0(f) = (m+1)(2m+1).
Therefore, bs(f) = 1

2s(f)2 + 1
2s(f).

3. Ambainis and Sun’s function [5] Define g : {0, 1}2(2m+1) → {0, 1} as:
g(x) = 1 iff ∃j ∈ [2m+ 1] such that:
1) x2j−1 = x2j = 1, and
2) For all i ∈ [m], x2j+2i = x2j−2i = x2j−2i−1 = 0.
Here, the index of x is taken modulo (2(2m+ 1)) i.e. we index x as if it were laid around
a circle.
This gives s0(g) = 1, s1(g) = bs1(g) = 3m+ 2, bs0(g) = 2m+ 1.
Let f = OR3m+2 ◦ g. Then s0(f) = s1(f) = bs1(f) = 3m+ 2, bs0(f) = (3m+ 2)(2m+ 1).
Therefore, bs(f) = 2

3s(f)2 − 1
3s(f).

4. Function based on Hamming Code [10]:
Consider the hamming code on m = 2r − 1 bits.
Define g : {0, 1}m → {0, 1} as:
g(x) = 1 iff x is a codeword of the hamming code on m bits.
This gives s0(g) = 1, s1(g) = bs1(g) = m, bs0(g) = m+1

2 .
Let f = ORm ◦ g. Then, s0(f) = s1(f) = bs1(f) = m, bs0(f) = m(m+1)

2 . Thus
bs(f) = 1

2s(f)2 + 1
2s(f).

Finally, we describe a construction by Chakraborty that does not involve function
composition. Another similar construction appeared in [7].

5. Chakraborty’s function [7] For integers k,m such that 2 < k < m and 2k | m, the function
gk : {0, 1}m → {0, 1} is defined as follows.
For x = (x0, . . . xm−1), gk(x) = 1 iff ∃ i ∈ {0, . . .m−1} such that xi = xi+1( mod m) = 1
and xj = 0 for all j ∈ {i+ 2( mod m), . . . , i+ k − 1( mod m)}.
Then, s0(gk) = 2m

k , s1(gk) = k, bs0(gk) = m
2 and bs1(gk) = k.

Therefore, setting k =
√

2m gives s(g√2m) =
√

2m and bs(g√2m) = m
2 . So we have

bs(g√2m) = 1
4s(g√2m)2.

3 New Building Blocks for Quadratic Separation

Here we define several new functions that we will use as inner or outer functions in various
function compositions to obtain quadratic separations.

3.1 A General Framework Based on Certificates
For an odd integer m, consider a set of partial assignments C = {c1, c2, . . . cm} on a set of
variables X with |X | = 2m. We say that the set of partial assignments C is good if it satisfies
the following 2 properties:
(a) The distance between any two partial assignments ci, cj ∈ C is at least 3.
(b) Each partial assignment ci has exactly 2 bits set to 1, 3

2 (m − 1) bits set to 0 and the
remaining bits free.

Consider the function gC defined by a good set of partial assignments. We prove the following
lemma for such a function gC :

FSTTCS 2018
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I Lemma 13. For an odd integer m, and any function gC : {0, 1}2m → {0, 1} defined by a
good set of partial assignments C, we have:
(1) s0(gC) = 1
(2) s1(gC) = 3m+1

2
(3) bs0(gC) ≥ m

Proof. We first note that the set of partial assignments C also forms a set of 1-certificates
for gC such that every 1-input agrees with exactly one partial assignment from C.
1. s0(gC) = 1. This follows from property (a) of a good set of partial assignments since: for

any 0-input x, there is at most one certificate ci ∈ C such that x is at a distance 1 from
it.

2. s1(gC) = 3m+1
2 . This follows from property (a): Consider a 1-input x agreeing with

ci. The bits fixed by ci form exactly the set of sensitive bits for f on x, since any two
certificates in C are at a distance of at least 3 from each other.

3. bs0(gC) ≥ m. Follows from properties (a),(b): Consider the input 02m which is a 0-input
(due to property (b)).
Recall that any two certificates ci, cj must be at a distance at least 3 from each other.
But since each certificate only sets exactly 2 bits to 1, this implies that the bits set to 1
by ci must be disjoint from the bits set to 1 by cj , for any ci, cj ∈ C.
Therefore, for the 0-input 02m, the pair of bits set to 1 by a certificate ci gives a
sensitive block for every i ∈ [m]. All these blocks are mutually disjoint and therefore
bs0(gC) ≥ m. J

I Theorem 14. Consider any function gC : {0, 1}2m → {0, 1} defined by a good set of partial
assignments C, for an odd integer m. Then the function f = OR 3m+1

2
◦ gC has:

bs(f) = 2
3s(f)2 − 1

3s(f).

We note that the inner function defined by Ambainis and Sun [5] can be shown to fit
into this framework.

We will use Lemma 13 to analyze the functions defined in subsection 3.3.

3.2 Using Finite Field Multiplication
In this subsection, we give constructions of families of functions based on Finite Field
Multiplication, which achieve quadratic separation between block sensitivity and sensitivity.

Fix an irreducible polynomial p of degree m in F2[z] and consider the representation of
the elements of F2m as univariate polynomials modulo p.
For a ∈ {0, 1}m, we interpret a = (a0, . . . am−1) as an element of F2m under this representa-
tion.

I Definition 15 (Function based on Finite Field Multiplication). The function gF F : {0, 1}m ×
{0, 1}m → {0, 1} is defined as follows:
gF F (a, b) = 1 iff a · b = c, where c ∈ F2m is the element represented as (0, . . . , 0, 1) and
multiplication is over the field F2m .

We prove the following lemma listing the values of sensitivity and block sensitivity for the
function gF F :
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I Lemma 16. For the function gF F : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(gF F ) ≤ 2
bs0(gF F ) ≥ m
s1(gF F ) = 2m
bs1(gF F ) = 2m

Proof.
s0(gF F ) ≤ 2:
For any non-zero a ∈ F2m , there exists a unique b ∈ F2m such that a · b = (0, . . . , 0, 1)
i.e. gF F (a, b) = 1. Therefore, for any input (a, b) ∈ g−1

F F (0), at most 1 bit j of a may be
flipped to get aj · b = (0, 0 . . . 1) i.e. a has at most 1 sensitive bit. Similarly, at most 1 bit
of b may be sensitive.
s1(gF F ) = 2m
Consider any input (a, b) ∈ g−1

F F (1). Flipping any bit of a or b changes the value of the
product a · b. Therefore every bit of (a, b) is sensitive, giving s1(gF F ) = 2m.
bs0(gF F ) ≥ m
Consider the 0-input a = (0, . . . 0), b = (0, . . . 0).
For each j ∈ {0, . . .m− 1}, we can flip the pair of bits (aj , bm−1−j), so that their product
becomes c = (0, . . . , 0, 1). This gives m disjoint sensitive blocks.
bs1(gF F ) = 2m
This follows since: 2m ≥ bs1(gF F ) ≥ s1(gF F ) = 2m J

The following theorem follows from Lemma 16 and the OR-composition Lemma.

I Theorem 17. The function f = ORm ◦ gF F has:

bs(f) ≥ 1
4s(f)2

We now modify the function gF F to improve the constant of separation from 1
4 to 1

2 .

I Definition 18. The function g∗F F : {0, 1}m × {0, 1}m → {0, 1} is defined as follows:
g∗F F (a, b) = 1 iff the following two conditions hold:
1. a · b = c, where c ∈ F2m is the element represented as (0, . . . , 0, 1) and multiplication is

over the field F2m

2. a0 ⊕ a1 . . .⊕ am−1 = 1

I Lemma 19. For the function g∗F F : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(g∗F F ) = 1
bs0(g∗F F ) ≥ m
s1(g∗F F ) = 2m
bs1(g∗F F ) = 2m

Proof. Note that Conditions 1. and 2. of Definition 18 both have to hold for 1 inputs, and
at least one is violated for 0 inputs.

s0(g∗F F ) = 1
For a 0-input (a, b) which satisfies condition 1., flipping any bit of a or b changes the
product a · b and condition 1. is no longer satisfied. Therefore, such a 0-input has no
sensitive bit.
For any 0-input (a, b) which leaves condition 1. unsatisfied, both a and b can have at
most one sensitive bit each as observed in the proof of Lemma 16.
We further note that for any given 0-input (a, b), only one of a or b can have a sensitive
bit because condition 2 has to hold for 1-inputs. Therefore, s0(g∗F F ) = 1.
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s1(g∗F F ) = 2m
Consider any 1-input (a, b). Flipping any bit of a or b changes the value of the product
a · b and condition 1. is no longer satisfied. Therefore every bit of (a, b) is sensitive, giving
s1(g∗F F ) = 2m.
bs0(g∗F F ) ≥ m
Consider the 0-input a = (0, . . . 0), b = (0, . . . 0).
For each j ∈ {0, . . .m− 1}, we can flip the pair of bits (aj , bm−1−j), so that their product
becomes c = (0, 0 . . . 1) to satisfy the first condition. Since aj has exactly one 1, the
second condition is satisfied as well, and g∗F F (aj , bm−1−j) = 1. This gives m disjoint
sensitive blocks and therefore, bs0(g∗F F ) ≥ m.
bs1(g∗F F ) = 2m
This follows since: 2m ≥ bs1(g∗F F ) ≥ s1(g∗F F ) = 2m. J

Using Lemma 19 and the OR-composition Lemma gives the following theorem.

I Theorem 20. The function f = OR2m ◦ g∗F F has:

bs(f) ≥ 1
2s(f)2.

I Remark. We could replace c = (0, . . . , 0, 1) in the above definitions by other field elements
and still achieve quadratic separations. In fact using any c ∈ F2m , we would get s0 ≤ 2 and
s1 = 2m for the inner function. However, we need to choose c carefully to guarantee that bs0
of the inner function is large enough.

3.3 Using Polynomial Multiplication
We now describe another family of functions similar in essence to the one involving finite
field multiplication, but easier to analyze.

Here we consider polynomials over the Integers. For a ∈ {0, 1}m, we interpret the
bits of a = (a0, . . . am−1) as the coefficients of a univariate polynomial pa that is pa(z) =
a0 + a1z + . . . am−1z

m−1.

I Definition 21 (Function based on Polynomial Multiplication). The function gpoly : {0, 1}m×
{0, 1}m → {0, 1} is defined as follows:
gpoly(a, b) = 1 iff pa(z) · pb(z) has a non-zero coefficient for zm−1 and has coefficient 0 for zj

for all j < m− 1.

It is convenient to use the following equivalent definition.

I Definition 22 (Alternative definition). Consider the set of partial assignments C =
{c0, c1 . . . cm−1} on variables (a, b) where a = (a0, . . . am−1) and b = (b0, . . . bm−1) defined as
below:
For every i ∈ {0, . . .m− 1},

ci(aj) =


1, if j = i

0, if j < i

?, if j > i

ci(bj) =


1, if j = m− 1− i
0, if j < m− 1− i
?, if j > m− 1− i
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Now the function gpoly is the function defined by the set of partial assignments C i.e. gC .

We now analyze this function for its sensitivity and block sensitivity:

I Lemma 23. For gpoly : {0, 1}m × {0, 1}m → {0, 1}, we have:
s0(gpoly) = 2
bs0(gpoly) = m

s1(gpoly) = m+ 1
bs1(gpoly) = m+ 1

Proof.
1. s0(gpoly) = 2:

s0(gpoly) ≤ 2: Let (a, b) be any 0-input of gpoly. Let i ∈ {0, . . .m− 1} be the smallest
index such that ai = 1 (if it exists - let i = m if it does not) and j be the smallest
index such that bj = 1(if it exists - let j = m otherwise). Then, we have two cases:
Case 1: i + j > m − 1. In this case, the only bits which can be flipped to change

the value of gpoly from 0 to 1 are am−1−i (unless i = m) and bm−1−j (unless j = m).
Case 2: i + j < m − 1. Now, the only way to flip a bit and possibly change the

value of gpoly to 1 is by flipping the bits ai or bj .
s0(gpoly) ≥ 2: The following 0-input (a, b) achieves s0(gpoly, (a, b)) = 2:

Let am−1 = 1, ai = 0 ∀i < (m− 1).
Similarly, bm−1 = 1, bi = 0 ∀i < (m− 1).
Notice that (a, b) has 2 sensitive bits: a0 and b0.

2. s1(gpoly) = m + 1:
First, we observe from the alternative definition of gpoly that every 1-input of gpoly agrees
with a certificate ci from the set C. Therefore, C1(gpoly) ≤ (m+ 1).
Therefore, s1(gpoly) ≤ (m+ 1).
Also, note that every two certificates of C are at a distance of at least 2 from each other.
Therefore, for any 1-input (a, b) of gpoly, each of the m + 1 bits where it agrees with
ci ∈ C is sensitive. So s1(gpoly) = m+ 1.

3. bs0(gpoly) = m:
We first prove bs0(gpoly) ≥ m. Consider the 0-input with ai = bi = 0 ∀ i ∈ {0, . . .m− 1}.
We can flip the pair of bits ai, bm−1−i for i ∈ {0, . . .m− 1} so that the function changes
value from 0 to 1. Therefore, bs0(gpoly) ≥ m.
Next we prove bs0(gpoly) ≤ m. Since s0(gpoly) = 2, any 0-input other than the all-0 input
can have only at most 2 blocks of size 1 each and all the other blocks must have size at
least 2. Therefore, bs0(gpoly) ≤ 2 + (m− 2) = m.

4. bs1(gpoly) = m + 1:
As observed before, C1(gpoly) ≤ (m+ 1). Also, s1(gpoly) = m+ 1.
Since s1(gpoly) ≤ bs1(gpoly) ≤ C1(gpoly), we have bs1(gpoly) = m+ 1. J

Lemma 23 and the OR-composition Lemma imply the following theorem.

I Theorem 24. Consider gpoly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m.
Then the function f = ORm+1

2
◦ gpoly has:

bs(f) = 1
2s(f)2 − 1

2s(f)

We modify the above function to improve the constant of separation from 1
2 to 2

3 .
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I Definition 25. The function g∗poly : {0, 1}m×{0, 1}m → {0, 1}, is defined as: g∗poly(a, b) = 1
iff all the following conditions are met:
1. pa(z) ·pb(z) has a non-zero coefficient for zm−1 and has coefficient 0 for zj for all j < m−1
2. If j is the smallest index such that aj = 1, then

ai = 0 for all i such that i > j and i⊕ j = 1
3. If k is the smallest index such that bk = 1, then

bi = 0 for all i such that i > k and i⊕ k = 0

It is again helpful to consider an equivalent definition based on certificates.

I Definition 26 (Alternative definition). Consider the set of partial assignments C ′ =
{c′0, c′1, . . . c′m−1} on variables (a, b) where a = (a0, . . . am−1) and b = (b0, . . . bm−1) defined
as below:
For every i ∈ {0, . . .m− 1},

c′i(aj) =


1, if j = i

0, if j < i

0, if j > i and i⊕ j = 1
?, if j > i and i⊕ j = 0

c′i(bj) =


1, if j = m− 1− i
0, if j < m− 1− i
0, if j > m− 1− i and (m− 1− i)⊕ j = 0
?, if j > m− 1− i and (m− 1− i)⊕ j = 1

Now the function g∗poly is the function defined by the set of partial assignments C ′ i.e. gC′ .

I Lemma 27. Consider g∗poly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m. Then
s0(g∗poly) = 1
bs0(g∗poly) ≥ m
s1(g∗poly) = 3m+1

2
bs1(g∗poly) = 3m+1

2

Proof. It is clear from the alternative definition of g∗poly that it is defined by a set of good
assignments.Therefore, we can use Lemma 13 to prove that:

s0(g∗poly) = 1
bs0(g∗poly) ≥ m
s1(g∗poly) = 3m+1

2
Furthermore, from the alternative definition of g∗poly, every 1-input has a certificate of size at
most 3m+1

2 .
Therefore, bs1(g∗poly) ≤ C1(g∗poly) ≤ 3m+1

2 .
Also, bs1(g∗poly) ≥ s1(g∗poly) = 3m+1

2 .
Therefore bs1(g∗poly) = 3m+1

2 . J

The following theorem follows from Lemma 27 and the OR-composition Lemma.

I Theorem 28. Consider g∗poly : {0, 1}m × {0, 1}m → {0, 1} for any odd integer m.
Then the function f = OR 3m+1

2
◦ g∗poly has:

bs(f) ≥ 2
3s(f)2 − 1

3s(f).

Note that this bound matches the current best quadratic separation of [5].
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4 Additional Properties of Function Composition

As we noted in Section 2, properties of function composition have been formally studied in
[17, 9] in the context of separating sensitivity and block sensitivity. Here we take a closer
look at the effect of function composition on the measures 0-sensitivity, 1-sensitivity, 0-block
sensitivity and 1-block sensitivity. These properties provide the tools we need to obtain
quadratic separation of both 0-block sensitivity and 1-block sensitivity from sensitivity.

First we define measures to quantify the number of sensitive bits for f on x which are
equal to 0 and those that are equal to 1 in x.

I Definition 29. For a function f : {0, 1}n → {0, 1} and input x ∈ {0, 1}n, we define:
σ1(f, x) = |{i|xi = 1 AND f(x) 6= f(xi)}|,
σ0(f, x) = |{i|xi = 0 AND f(x) 6= f(xi)}|.

We will use the following notation. We index the bits of the input y ∈ {0, 1}mn to f ◦ g
as y = (y11, y12, . . . y1m, y21, . . . y2m, . . . yn1, . . . ynm).
We denote by yi the i-th group of m bits of y, that is yi = (yi1, yi2, . . . yim).

I Lemma 30. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we have:

s0(f ◦ g) = max
x∈f−1(0)

{σ0(f, x)s0(g) + σ1(f, x)s1(g)},

s1(f ◦ g) = max
x∈f−1(1)

{σ0(f, x)s0(g) + σ1(f, x)s1(g)}.

Proof. We first prove the first equation. The second equation has an analogous proof.
LHS ≥ RHS. Consider the input a ∈ f−1(0) for which (σ0(f, a)s0(g) + σ1(f, a)s1(g)) is

maximized. Note that s0(g), s1(g) don’t change for different choices of a ∈ f−1(0). Now,
consider an input y ∈ {0, 1}mn such that, a = (g(y1), . . . g(yn)) and for each i ∈ [n], if
ai = g(yi) = 0, then s(g, yi) = s0(g) and if ai = g(yi) = 1, then s(g, yi) = s1(g). So if
ai = 0, we choose as yi a 0-input of g which achieves the 0-sensitivity of g, and similarly,
if ai = 1, we choose as yi a 1-input of g which achieves the 1-sensitivity of g.
Since a ∈ f−1(0), y must be a 0-input of f ◦ g. Therefore, we have

s0(f ◦ g) ≥ s(f ◦ g, y) ≥ σ0(f, a)s0(g) + σ1(f, a)s1(g).

LHS ≤ RHS. Consider the input y ∈ {0, 1}mn which achieves the 0-sensitivity of f ◦ g i.e.
s0(f ◦ g) = s(f ◦ g, y). Let g(y1) = x1, g(y2) = x2 and so on, and let x = (x1, x2 . . . xn).
Consider the expression (σ0(f, x)s0(g) + σ1(f, x)s1(g)). Now, if a bit yij of y is sensitive
for f ◦ g, then the bit xi = g(yi) must be a sensitive bit for f on x.
Now, consider the set X0 of indices i ∈ [n] constructed the following way: i is included in
X0 iff xi = g(yi) = 0 and there is a bit yij sensitive for f ◦ g on y.
Similarly, we define the set X1 of indices i ∈ [n] constructed the following way: i is
included in X1 iff xi = g(yi) = 1 and there is a bit yij sensitive for f ◦ g on y.
Note that for every i ∈ X0, the bit xi is a 0-bit of x and f is sensitive to the i-th bit on x.
So |X0| ≤ σ0(f, x).
Similarly |X1| ≤ σ1(f, x).
Now,

s(f ◦ g, y) =
∑
i∈X0

s(g, yi) +
∑

j∈X1

s(g, yj)

≤
∑
i∈X0

s0(g) +
∑

j∈X1

s1(g)

≤ σ0(f, x)s0(g) + σ1(f, x)s1(g).
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Therefore,

s0(f ◦ g) = s(f ◦ g, y) ≤ σ0(f, x)s0(g) + σ1(f, x)s1(g) ≤ RHS. J

To simplify the equations of Lemma 30 (at the cost of being less precise), we define
σ0

0(f) := max
x∈f−1(0)

σ0(f, x)

σ1
0(f) := max

x∈f−1(1)
σ0(f, x)

σ0
1(f) := max

x∈f−1(0)
σ1(f, x)

σ1
1(f) := max

x∈f−1(1)
σ1(f, x)

Finally, we define:

σ0(f) := max{σ0
0(f), σ1

0(f)}

σ1(f) := max{σ0
1(f), σ1

1(f)}

We can now use Lemma 30 to get the following bounds:

I Corollary 31. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}

s0(f ◦ g) ≤ σ0
0(f)s0(g) + σ0

1(f)s1(g)

s1(f ◦ g) ≤ σ1
0(f)s0(g) + σ1

1(f)s1(g)

Note that the equalities in Lemma 30 change to inequalities in Corollary 31, since the
max of σ0(f, x) and σ1(f, x) may be achieved on different inputs among x ∈ f−1(0) (or
among x ∈ f−1(1), respectively).
We now state some simple observations for these measures.

I Lemma 32. For any function f : {0, 1}n → {0, 1}, and any input x, we have:
1. s(f, x) = σ0(f, x) + σ1(f, x)
2. σ0

0(f) ≤ s0(f)
3. σ0

1(f) ≤ s0(f)
4. σ0

0(f) + σ0
1(f) ≥ s0(f)

5. σ1
0(f) ≤ s1(f)

6. σ1
1(f) ≤ s1(f)

7. σ1
0(f) + σ1

1(f) ≥ s1(f)
The proof of Lemma 32 is straightforward from the definitions.

Now we present an observation about these measures for monotone functions.

I Lemma 33. For any monotone function f : {0, 1}n → {0, 1}, we have:
σ1

0(f) = 0
σ0

1(f) = 0

The proof follows from the definition of monotone functions.
We now consider the effects of function composition on 0- block sensitivity and 1-block

sensitivity.

I Lemma 34. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, we have:

bs0(f ◦ g) ≥ bs0(f) ·min{bs0(g), bs1(g)},

bs1(f ◦ g) ≥ bs1(f) ·min{bs0(g), bs1(g)}.
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Proof. Consider x ∈ {0, 1}n such that f(x) = 0 and bs0(f) = bs(f, x).
Now, consider input y ∈ {0, 1}mn such that, x = (g(y1), . . . g(yn)) and for each i ∈ [n], if
xi = g(yi) = 0, then bs(g, yi) = bs0(g) and if xi = g(yi) = 1, then bs(g, yi) = bs1(g). So
if xi = 0, we choose as yi a 0-input of g on which its 0-block sensitivity is achieved, and
similarly, if xi = 1, we choose as yi a 1-input of g on which its 1-block sensitivity is achieved.
Now, we claim that bs0(f ◦ g, y) ≥ bs0(f) min{bs0(g), bs1(g)}. To see this, let ρ1, ρ2, . . . , ρk

be the disjoint sensitive blocks for f on x where k = bs(f, x). For each of these sensitive
blocks, there are at least min{bs0(g), bs1(g)} disjoint blocks of y such that flipping any of
them changes the value of f ◦ g. This gives at least bs0(f) · min{bs0(g), bs1(g)} disjoint
sensitive blocks for f ◦ g on the input y, and the first equation follows.
The second equation can be proved in an analogous way. J

We get a stronger form of Lemma 34 if f satisfies some additional conditions.

I Lemma 35. For any functions f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}
if f satisfies (1) f(0n) = 0, (2) bs0(f) = bs(f, 0n), then bs0(f ◦ g) ≥ bs0(f) · bs0(g)
and if f satisfies (1) f(1n) = 1, (2) bs1(f) = bs(f, 1n), then bs1(f ◦ g) ≥ bs1(f) · bs1(g)

Proof. Consider input y ∈ {0, 1}mn such that, 0n = (g(y1), . . . g(yn)) and bs(g, yi) = bs0(g)
for each i ∈ [n].

Now, we claim that bs(f ◦g, y) ≥ bs0(f)bs0(g). To see this, let ρ1, ρ2, . . . , ρk be the disjoint
sensitive blocks for f on input 0n, where k = bs(f, 0n). For each of these k = bs(f, 0n)
sensitive blocks, there are bs0(g) disjoint blocks of y that we can flip and change the value of
f ◦ g.
This gives bs0(f) · bs0(g) disjoint sensitive blocks for f ◦ g on the input y.
The second inequality can be proved analogously. J

Comparing the statement of Lemma 35 with Lemma 11 of Tal [17] we note that in the
context of 0-block sensitivity and 1-block sensitivity it is enough to require an additional
condition for the outer function. On the other hand the condition on the inner function in
Lemma 11 of Tal [17] is necessary as illustrated by considering f = ORn and g = ANDn.

Note that the conditions we require are similar to, but slightly different from being in
z-good form: It follows from the definition, that if f is in z-good form, then bs(f) = bsz(f).
Our conditions do not require that bs(f) = bsz(f) for a specific z.

5 Quadratic Separation of both bs0(f) and bs1(f) from s(f)

We obtain constructions of functions with quadratic separation of both 0-block sensitivity and
1-block sensitivity from sensitivity by considering various compositions of our new building
blocks as well as some of the inner functions used in previous quadratic separations.

I Theorem 36. Consider gpoly : {0, 1}m × {0, 1}m → {0, 1}.
Let f : {0, 1}4m2 → {0, 1} be defined as f = gpoly ◦ gpoly.
Then, we have:

s0(f) = 2(m− 1)
bs0(f) ≥ m2

s1(f) = 4(m− 1)
bs1(f) ≥ m(m+ 1)

Therefore, we have:

min{bs0(f), bs1(f)} = Ω(s(f)2).
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Proof. In this proof, we refer to gpoly by g, and we use the notation bsmin(f) = min{bs0(f),
bs1(f)}.

We first prove the following claims about σ-values for g:

I Claim 37. For any input x ∈ g−1(0) exactly one of the following must be true:
σ0(g, x) = s(g, x) and σ1(g, x) = 0
σ1(g, x) = s(g, x) and σ0(g, x) = 0

Proof of Claim. For any 0-input x = (a, b) of g, (1) of Lemma 32 states that:
σ0(g, x) + σ1(g, x) = s(g, x).
As in the definition of gpoly, consider the polynomials pa(z), pb(z). If the lowest degree
monomial of pa(z)pb(z) with a non-zero coefficient is zt then, we have 2 cases:
Case 1: t < m− 1. In this case, no 0-bit of a or b can be sensitive. Therefore, σ0(g, x) = 0
and σ1(g, x) = s(g, x).
Case 2: t > m− 1. In this case, no 1-bit of a or b can be sensitive. Therefore, σ1(g, x) = 0
and σ0(g, x) = s(g, x). J

I Claim 38. For an input x ∈ g−1(1),
σ0(g, x) = m− 1
σ1(g, x) = 2

Proof of Claim. Recall the alternative definition based on certificates. Any 1-input x of g
belongs to a unique subcube given by a certificate ci ∈ C. Since the subcubes corresponding
to different certificates in C are disjoint and at a distance of at least 2 from each other, every
bit of x that is fixed by ci is sensitive.
Since each certificate fixes exactly 2 bits to 1 and (m−1) bits to 0, we have σ0(g, x) = (m−1)
and σ1(g, x) = 2. J

We can now use Lemma 30 to compute the sensitivity of f :
s0(f) = 2s1(g) = 2(m− 1).
s1(f) = (m− 1) · 2 + 2 · (m− 1) = 4(m− 1)
Since g(02m) = 0 and bs0(g) = bs(g, 02m), we can use Lemma 35 to get:
bs0(f) ≥ bs0(g)2 = m2.
We can use Lemma 34 to get:
bs1(f) ≥ bs1(g) ·min{bs0(g), bs1(g)} = m(m+ 1).
Therefore, we have bs(f) ≥ s(f)2

16 and bsmin(f) = Ω(s(f)2). J

We prove the following general theorem:

I Theorem 39. For functions f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} such that the
following conditions hold:
1. σ1(f) = c1, where c1 is some fixed constant
2. s0(g) = c2, where c2 is some fixed constant
3. bs0(f), bs1(f), bs0(g), bs1(g) = θ(n)
We have,

min{bs0(f ◦ g), bs1(f ◦ g)} = Ω(s(f ◦ g)2).

The proof is straightforward from Corollary 31 and Lemma 34.
This theorem allows us to use various compositions of our new building blocks and some

of the inner functions of previous constructions to obtain other functions with both 0-block
sensitivity and 1-block sensitivity quadratically larger than sensitivity.
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In particular, let f, g be any two functions from the following list of functions: Rubinstein’s
inner function [15], Virza’s inner function [19], Ambainis and Sun’s inner function [5], gpoly,
g∗poly. In addition, we can also let g be gF F , g∗F F , or the inner function of the function based
on Hamming Code [10]. Then, bs0(f ◦ g) and bs1(f ◦ g) are both quadratically larger than
s(f ◦ g).
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4 Andris Ambainis, Krišjānis Prūsis, and Jevgēnijs Vihrovs. Sensitivity Versus Certificate
Complexity of Boolean Functions. In Computer Science – Theory and Applications, pages
16–28, Cham, 2016. doi:10.1007/978-3-319-34171-2_2.

5 Andris Ambainis and Xiaoming Sun. New separation between s(f) and bs(f). Elec-
tronic Colloquium on Computational Complexity (ECCC), 18:116, 2011. URL: http:
//eccc.hpi-web.de/report/2011/116.

6 Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree complexity: a
survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

7 Sourav Chakraborty. On the Sensitivity of Cyclically-Invariant Boolean Functions. CoRR,
abs/cs/0501026, 2005. URL: http://arxiv.org/abs/cs/0501026, arXiv:cs/0501026.

8 Stephen A. Cook, Cynthia Dwork, and Rüdiger Reischuk. Upper and Lower Time Bounds
for Parallel Random Access Machines without Simultaneous Writes. SIAM J. Comput.,
15(1):87–97, 1986. doi:10.1137/0215006.

9 Justin Gilmer, Michael Saks, and Srikanth Srinivasan. Composition limits and separating
examples for some boolean function complexity measures. Combinatorica, 36(3):265–311,
June 2016. doi:10.1007/s00493-014-3189-x.

10 Parikshit Gopalan, Rocco A. Servedio, Avishay Tal, and Avi Wigderson. Degree and Sens-
itivity: tails of two distributions. CoRR, abs/1604.07432, 2016. arXiv:1604.07432.

11 Pooya Hatami, Raghav Kulkarni, and Denis Pankratov. Variations on the Sensitivity
Conjecture. Theory of Computing, Graduate Surveys, 4:1–27, 2011. doi:10.4086/toc.gs.
2011.004.

12 Claire Kenyon and Samuel Kutin. Sensitivity, Block Sensitivity, and L-block Sensitivity of
Boolean Functions. Inf. Comput., 189(1):43–53, February 2004. doi:10.1016/j.ic.2002.
12.001.

13 Noam Nisan. CREW PRAMs and decision trees. SIAM J. Comput., 20(6):999–1007, 1991.
doi:10.1137/0220062.

14 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.
Computational Complexity, 4(4):301–313, December 1994. doi:10.1007/BF01263419.

15 David Rubinstein. Sensitivity vs. block sensitivity of Boolean functions. Combinatorica,
15(2):297–299, June 1995. doi:10.1007/BF01200762.

FSTTCS 2018

http://dx.doi.org/10.1016/j.jcss.2005.06.006
http://dx.doi.org/10.1007/978-3-662-43948-7_9
http://dx.doi.org/10.1007/978-3-662-43948-7_9
http://dx.doi.org/10.1007/978-3-662-44465-8_4
http://dx.doi.org/10.1007/978-3-319-34171-2_2
http://eccc.hpi-web.de/report/2011/116
http://eccc.hpi-web.de/report/2011/116
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://dx.doi.org/10.1016/S0304-3975(01)00144-X
http://arxiv.org/abs/cs/0501026
http://arxiv.org/abs/cs/0501026
http://dx.doi.org/10.1137/0215006
http://dx.doi.org/10.1007/s00493-014-3189-x
http://arxiv.org/abs/1604.07432
http://dx.doi.org/10.4086/toc.gs.2011.004
http://dx.doi.org/10.4086/toc.gs.2011.004
http://dx.doi.org/10.1016/j.ic.2002.12.001
http://dx.doi.org/10.1016/j.ic.2002.12.001
http://dx.doi.org/10.1137/0220062
http://dx.doi.org/10.1007/BF01263419
http://dx.doi.org/10.1007/BF01200762


13:16 New Constructions with Quadratic Separation between s(f) and bs(f)

16 Hans-Ulrich Simon. A tight ω(loglog n)-bound on the time for parallel RAM’s to compute
nondegenerated boolean functions. Information and Control, 55(1):102–107, 1982. doi:
10.1016/S0019-9958(82)90477-6.

17 Avishay Tal. Properties and applications of boolean function composition. In Innovations
in Theoretical Computer Science, ITCS ’13, Berkeley, CA, USA, January 9-12, 2013, pages
441–454, 2013. doi:10.1145/2422436.2422485.

18 Avishay Tal. Personal communication, 2018.
19 Madars Virza. Sensitivity versus block sensitivity of Boolean functions. Information Pro-

cessing Letters, 111(9):433–435, 2011. doi:10.1016/j.ipl.2011.02.001.

http://dx.doi.org/10.1016/S0019-9958(82)90477-6
http://dx.doi.org/10.1016/S0019-9958(82)90477-6
http://dx.doi.org/10.1145/2422436.2422485
http://dx.doi.org/10.1016/j.ipl.2011.02.001


Lambda-Definable Order-3 Tree Functions are
Well-Quasi-Ordered
Kazuyuki Asada
Tohoku University, Sendai, Japan
asada@riec.tohoku.ac.jp

https://orcid.org/0000-0001-8782-2119

Naoki Kobayashi
The University of Tokyo, Tokyo, Japan
koba@is.s.u-tokyo.ac.jp

Abstract
Asada and Kobayashi [ICALP 2017] conjectured a higher-order version of Kruskal’s tree theorem,
and proved a pumping lemma for higher-order languages modulo the conjecture. The conjecture
has been proved up to order-2, which implies that Asada and Kobayashi’s pumping lemma holds
for order-2 tree languages, but remains open for order-3 or higher. In this paper, we prove
a variation of the conjecture for order-3. This is sufficient for proving that a variation of the
pumping lemma holds for order-3 tree languages (equivalently, for order-4 word languages).

2012 ACM Subject Classification Theory of computation → Lambda calculus

Keywords and phrases higher-order grammar, pumping lemma, Kruskal’s tree theorem, well-
quasi-ordering, simply-typed lambda calculus

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.14

Related Version A full version of the paper is available at http://www.riec.tohoku.ac.jp/
~asada/papers/fsttcs18.pdf.

Acknowledgements We would like to thank anonymous referees for useful comments. This work
was supported by JSPS Kakenhi 15H05706 and 18K11156.

1 Introduction

Kruskal’s tree theorem [7] says that the homeomorphic embedding relation �he on finite
trees is a well-quasi-ordering, i.e., for every infinite sequence of trees π0, π1, π2, . . ., there exist
i < j such that πi �he πj . Here, π �he π′ means that there exists an embedding of the nodes
of π to those of π′, preserving the labels and the ancestor/descendant relation. Asada and
Kobayashi [2] considered a higher-order version �he

κ of �he on simply-typed λ-terms of type
κ, and conjectured that �he

κ is also a well-quasi-ordering, for every simple type κ. Under the
assumption that the conjecture (which we call AK-conjecture) is true, they proved a pumping
lemma for higher-order languages (a la higher-order languages in Damm’s IO hierarchy [3]),
which says that for any order-k tree grammar that generates an infinite language L, there
exists a strictly increasing infinite sequence π0 ≺he π1 ≺he π2 ≺he · · · such that πi ∈ L and
|πi| ≤ expk(ci+ d), where ≺he is the strict version of the homeomorphic embedding, c and
d are constants that depend on the grammar, and expk(x) is defined by exp0(x) = x and
expk+1(x) = 2expk(x). The pumping lemma can be used to prove that a certain language
does not belong to the class of order-k languages. They also proved that the conjecture is
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true up to order-2 types, and hence also the pumping lemma for order-2 tree languages and
(by the correspondence between tree/word languages [1, 3]) order-3 word languages. The
AK-conjecture is still open for order-3 or higher.

In the present paper, we consider a variation of the AK-conjecture (which we call nAK-
conjecture), where the homeomorphic embedding relation is replaced by �#, defined by
π1 �# π2 if and only if, for every tree constructor a, #a(π1) ≤ #a(π2); here #a(π) denotes
the number of occurrences of a in π. The correctness of the nAK-conjecture would imply the
following variation of the pumping lemma: for any order-k tree grammar that generates an
infinite language L, there exists a strictly increasing infinite sequence π0 ≺# π1 ≺# π2 ≺# · · ·
such that πi ∈ L and |πi| ≤ expk(ci+ d). We prove that the nAK-conjecture is true for the
order-3 case, i.e., that �#

κ (the logical relation on simply-typed λ-terms of type κ, obtained
from �#) is a well-quasi-ordering for any type κ of order up to 3. The variation of the
pumping lemma above is thus obtained for order-3 tree languages and order-4 word languages.
To our knowledge, pumping lemmas were known only for tree (word, resp.) languages of
order up to 2 (3, resp.) [2].

To prove the order-3 nAK-conjecture, we define a transformation (·)\ from order-3 λ-
terms to order-2 numeric functions (that are also represented by λ-terms), and prove (i)
the transformation reflects the quasi-orderings, i.e., t1 �#

κ t2 if t1\ �N t2
\ for a certain

quasi-ordering �N on numeric functions, and (ii) �N is a well-quasi-ordering.

Related work. We are not aware of directly related work, besides our own previous work [2].
Our reduction from the well-quasi-orderedness of order-3 λ-terms to that of order-2 numeric
functions relies on the inexpressiveness of simply-typed λ-terms as (higher-order) tree
functions. Zaionc [11, 12, 13] studied the expressive power of simply-typed λ-terms. Pumping
lemmas for higher-order languages have been known to be difficult. After Hayashi [5] proved
a pumping lemma for indexed languages (i.e. order-2 word languages), it was only in 2017
that a pumping lemma for order-3 word languages was proved [2]. We have further improved
the result to obtain a pumping lemma for order-4 word (or, order-3 tree) languages.

The rest of the paper is structured as follows. Section 2 introduces basic definitions.
Section 3 explains the nAK-conjecture and the pumping lemma. Section 4 proves the
nAK-conjecture up to order-3. Section 5 concludes the paper.

2 Preliminaries

We give basic definitions on λ-terms and quasi-orderings.

2.1 λ-terms and higher-order languages
I Definition 1 (types and terms). The set of simple types, ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order1 of a simple type κ, written order(κ) is defined by order(o) = 0
and order(κ1 → κ2) = max(order(κ1) + 1, order(κ2)). The type o describes trees, and
κ1 → κ2 describes functions from κ1 to κ2. A (ranked) alphabet Σ is a map from a finite set
of constants (that represent tree constructors) to the set of natural numbers called arities.
The set of λY nd-terms, ranged over by s, t, u, v, is defined by:

t ::= x | a t1 · · · tk | t1 t2 | λx : κ.t | Yκ t | t1 ⊕ t2

1 For clarity, we use the word order for this notion, and ordering for relations such as ≤, �he, etc.
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Here, x, y, . . . ranges over variables, and a over dom(Σ). The term a t1 · · · tk (where we
require Σ(a) = k) constructs a tree that has a as the root and (the values of) t1, . . . , tk
as children. Yκ and ⊕ represent a fixed-point combinator and a non-deterministic choice,
respectively. We often omit the type annotation and just write λx.t and Y t for λx : κ.t and
Yκ t. A λY nd-term is called: (i) a λ→,nd-term if it does not contain Y ; (ii) a λ→-term if it
contains neither Y nor ⊕; and (iii) an applicative term if it contains none of λ-abstractions,
Y , and ⊕. We often call a λ→-term just a term. As usual, we identify λY nd-terms up to the
α-equivalence, and implicitly apply α-conversions.

A type environment Γ is a sequence of type bindings of the form x :κ such that Γ contains
at most one binding for each variable x. A λY nd-term t has type κ under Γ if Γ `ST t : κ is
derivable from the following typing rules.

Γ, x : κ, Γ′ `ST x : κ
Σ(a) = k Γ `ST ti : o (for each i ∈ {1, . . . , k})

Γ `ST a t1 · · · tk : o

Γ `ST t : κ→ κ

Γ `ST Yκ t : κ
Γ `ST t1 : κ2 → κ Γ `ST t2 : κ2

Γ `ST t1 t2 : κ
Γ, x : κ1 `ST t : κ2

Γ `ST λx : κ1.t : κ1 → κ2

Γ `ST t1 : o Γ `ST t2 : o

Γ `ST t1 ⊕ t2 : o

We consider below only well-typed λY nd-terms. Note that given Γ and t, there exists at
most one type κ such that Γ `ST t : κ. We call κ the type of t (with respect to Γ). We often
omit “with respect to Γ” if Γ is clear from context. Given a judgment Γ ` t : κ, we define
λΓ.t by: λ∅.t := t and λ(Γ, x : κ′).t := λΓ.λx.t. Also we define Γ→ κ by: ∅ → κ := κ and
(Γ, x : κ′)→ κ := Γ→ (κ′ → κ); thus we have ` λΓ.t : Γ→ κ if Γ ` t : κ. Given an alphabet
Σ, we write ΛΣ for the set of λ→-terms whose constants are taken from Σ. Also we define
ΛΣ

Γ,κ := {t ∈ ΛΣ | Γ ` t : κ} and ΛΣ
κ := ΛΣ

∅,κ.
For a λY nd-term t with a type environment Γ, the (internal) order of t (with respect to

Γ), written orderΓ(t), is the largest order of the types of subterms of λΓ.t, and the external
order of t (with respect to Γ), written eorderΓ(t), is the order of the type of t with respect
to Γ. We often omit Γ when it is clear from context. For example, for t = (λx : o.x)e,
order∅(t) = 1 and eorder∅(t) = 0. We define the size |t| of a λY nd-term t by: |x| := 1,
|a t1 · · · , tk| := 1 + |t1|+ · · ·+ |tk|, |s t| := |s|+ |t|+ 1, |λx.t| := |t|+ 1, |Yκ t| := |t|+ 1 and
|s⊕ t| := |s|+ |t|+ 1. We call a λY nd-term t ground (with respect to Γ) if Γ `ST t : o. We
call t a (finite, Σ-ranked) tree if t is a ground closed applicative term (consisting of only
constants). We write TreeΣ for the set of Σ-ranked trees, and use the meta-variable π for a
tree. We often write −→· to denote a sequence (possibly with a condition on the range of the
sequence in the superscript). For example, −→ti

i≤m
denotes the sequence t1, . . . , tm of terms,

and [
−−→
ti/xi

i≤m
] denotes the substitution [t1/x1, . . . , tm/xm].

We sometimes identify a ranked alphabet Σ = {a1 7→ r1, . . . , ak 7→ rk} with the first-
order environment Σ = {a1 : or1 → o, . . . , ak : ork → o} (assuming an arbitrary fixed linear
ordering on Σ).

I Definition 2 (reduction and language). The set of (call-by-name) evaluation contexts is
defined by:

E ::= [ ] t1 · · · tk | a π1 · · ·πiE t1 · · · tk

and the call-by-name reduction for (possibly open) ground λY nd-terms is defined by:

E[(λx.t)t′] −→ E[t[t′/x]] E[Y t] −→ E[t (Y t)] E[t1 ⊕ t2] −→ E[ti] (i = 1, 2)

where t[t′/x] is the usual capture-avoiding substitution. We write −→∗ for the reflexive
transitive closure of −→. A call-by-name normal form is a ground λY nd-term t such that
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t 6−→ t′ for any t′. For a ground closed λY nd-term t, we define the tree language L(t)
generated by t by L(t) := {π | t −→∗ π}. For a ground closed λ→-term t, L(t) is a singleton
set {π}; we write T (t) for such π and call it the tree of t.

In the previous paper [2] we stated the pumping lemma for the notion of a higher-order
grammar ; in this paper, following [8, 9], we use only the formalism by λY nd-terms for simpli-
city. Since there exist well-known order-preserving and language-preserving transformations
between higher-order grammars and ground closed λY nd-terms, we obtain corresponding
results on higher-order grammars immediately.

The notion of a word can be seen as a special case of that of a tree:

I Definition 3 (word alphabet). We call a ranked alphabet Σ a word alphabet if it has a special
nullary constant e and all the other constants have arity 1. For a tree π = a1(· · · (an e) · · · ) of
a word alphabet, we define word(π) := a1 · · · an, and we define utree as the inverse function
of word, i.e., utree(a1 · · · an) := a1(· · · (ane)). The word language generated by a ground
closed λY nd-term t over a word alphabet, written Lw(t), is defined as {word(π) | π ∈ L(t)}.

A tree language (word language, resp.) over an alphabet (word alphabet, resp.) Σ is called
order-n if it is generated by some order-n ground closed λY nd-term of Σ; we note that
the classes of order-0, order-1, and order-2 word languages coincide with those of regular,
context-free, and indexed languages, respectively [10].

2.2 Some quasi-orderings and their logical relation extension
I Definition 4 ((well-)quasi-ordering). A quasi-ordering (a.k.a. preorder) on a set A is a
binary relation on A that is reflexive and transitive. A well-quasi-ordering (wqo for short)
on a set S is a quasi-ordering ≤ on S such that for any infinite sequence (si)i of elements in
S there exist j and k such that j < k and sj ≤ sk.

As a general notation, for a quasi-ordering denoted by �, we write ≈ for the induced
equivalence relation (i.e., x ≈ y if x � y and y � x), and write ≺ for the strict version (i.e.,
x ≺ y if x � y and y 6� x). Also, for a quasi-ordering denoted by ≤, we write ∼ for the
induced equivalence relation and < for the strict version. We apply these conventions also to
notations with superscript/subscript such as �a, �b, �ab , ≤a, ≤b, and ≤ab . Further, for any
quasi-ordering on the set of trees of a word alphabet, we use the same notation also for the
quasi-ordering on the set of words induced through utree.

I Definition 5 (logical relation extension). Let Σ be a ranked alphabet. We call ≤ a base quasi-
ordering (with respect to Σ) if ≤ is a quasi-ordering on the set ΛΣ

o modulo βη-equivalence
and every constant in Σ is monotonic on ≤. We define the logical relation extension of ≤ as
the family (≤κ)κ of relations ≤κ on the set ΛΣ

κ modulo βη-equivalence indexed by simple
types κ where ≤κ’s are defined by induction on κ as follows:

t1 ≤o t2 if t1 ≤ t2
t1 ≤κ→κ′ t2 if for any t′1, t′2, t′1 ≤κ t′2 =⇒ t1 t

′
1 ≤κ′ t2 t

′
2.

Furthermore we extend the relation to open terms: for t1, t2 ∈ ΛΣ
Γ,κ, we define t1 ≤Γ,κ t2 if

λΓ.t1 ≤Γ→κ λΓ.t2. We omit the subscripts of ≤κ and ≤Γ,κ if there is no confusion.

The next lemma follows immediately from the basic lemma (a.k.a. the abstraction theorem)
of logical relations (see the full version for details).



K. Asada and N. Kobayashi 14:5

I Lemma 6. Let ≤ be a base quasi-ordering. Each component ≤κ of the logical relation
extension of ≤ is a quasi-ordering. Further, ≤κ is the point-wise quasi-ordering:

t1 ≤κ→κ′ t2 if and only if for any t′ ∈ ΛΣ
κ , t1 t

′ ≤κ′ t2 t
′.

Every quasi-ordering for higher-order terms used in this paper is a logical relation extension
(of some base quasi-ordering). The next ordering is used in the previous paper [2].

I Definition 7 (homeomorphic embedding). Let Σ be a ranked alphabet. The homeomorphic
embedding ordering �he,Σ between Σ-ranked trees2 is inductively defined by the following
rules:

πi �he,Σ π′i (for all i ≤ k) k = Σ(a)
a π1 · · ·πk �he,Σ a π′1 · · ·π′k

π �he,Σ πi k = Σ(a) > 0 1 ≤ i ≤ k
π �he,Σ a π1 · · ·πk

We extend the above ordering to a base ordering by: t1 �he,Σ t2 if T (t1) �he,Σ T (t2).

For example, br a b �he br (br a c) b. The homeomorphic embedding on words is nothing
but the (scattered) subsequence ordering. The following is a fundamental result on the
homeomorphic embedding:

I Proposition 8 (Kruskal’s tree theorem [7]). For any (finite) ranked alphabet Σ, the homeo-
morphic embedding �he on Σ-ranked trees is a well-quasi-ordering.

Also, we often use the Dickson’s theorem [6] which says that the product quasi-ordering
(component-wise quasi-ordering) of a finite number of wqo’s is a wqo.

The next is the quasi-ordering that is used in the theorems in this paper.

I Definition 9 (occurrence-number quasi-ordering). Let Σ be a ranked alphabet. For a ∈ Σ
and a Σ-tree π, we define #a(π) as the number of occurrences of a in π, and extend this
to a ground closed λ→-term t by #a(t) := #a(T (t)). Then we define a base quasi-ordering
�#,Σ,a by:

t1 �#,Σ,a t2 if #a(t1) ≤ #a(t2).

Also we define a base quasi-ordering �#,Σ by:

t1 �#,Σ t2 if for every a ∈ Σ, t1 �#,Σ,a t2.

Note that π �he π′ implies π �#,Σ π′, shown by induction on the rule of �he; and further
π �he

κ π′ implies π �#,Σ
κ π′ for any κ since �he

κ and �#,Σ
κ are point-wise quasi-ordering. Also

note that �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ ) for any κ.
The next quasi-ordering is used just in proofs. We write ΣN for the ranked alphabet

{0 7→ 0, 1 7→ 0,+ 7→ 2,× 7→ 2}; we write + t t′ as t + t′ and × t t′ as t × t′. We define a
set-theoretical denotational interpretation J−K of ΛΣN by: JoK := N, Jκ → κ′K is the set of
functions from JκK to Jκ′K, J0K := 0, J1K := 1, J+K(n)(m) := n+m, and J×K(n)(m) := n×m.
For t1, t2 ∈ ΛΣN

Γ,κ, we write t1 =JK
Γ,κ t2 (or t1 =JK t2) if Jt1K = Jt2K.

I Definition 10 (natural number quasi-ordering). We define a base quasi-ordering �N on the
set ΛΣN

o by:

t1 �N t2 if Jt1K ≤ Jt2K.

2 In the usual definition, a quasi-ordering on labels (tree constructors) is assumed. Here we fix the
quasi-order on labels to the identity relation.
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3 Numeric Pumping Lemma for Higher-order Tree Languages

Here we explain the nAK-conjecture and the pumping lemma for higher-order tree languages
with respect to �#,Σ.

I Conjecture 11 (nAK-conjecture). For any Σ and κ, �#,Σ
κ is a well quasi-ordering.

Our main theorem (Theorem 14) is to show the above conjecture for κ of order up to 3.
The above conjecture (and Theorem 14) can be used for the following pumping lemma:

I Theorem 12 (pumping lemma). Assume that Conjecture 11 holds. Then, for any order-n
ground closed λY nd-term t of a ranked alphabet Σ such that L(t) is infinite, there exist an
infinite sequence of trees π0, π1, π2, . . . ∈ L(t), and constants c, d such that:
(i) π0 ≺#,Σ π1 ≺#,Σ π2 ≺#,Σ · · ·, and
(ii) |πi| ≤ expn(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 3.

The proof of the above theorem is obtained as a simple modification of the proof of the
pumping lemma in [2]: see the full version.

I Remark. The theorem we prove in the full version is actually slightly stronger than
Theorem 12 above, in the following three points (see the full version for details):

(i) As in [2], we relax the assumption of nAK conjecture, so that �#,Σ
κ need not be the

logical relation; any higher-order extension of the base quasi-ordering that is closed
under application suffices.

(ii) As in [2], we use actually a weaker conjecture, called the periodicity, which requires
that, for any `ST t : κ → κ and `ST s : κ, there exist i, j > 0 such that ti s �#,Σ

κ

ti+j s �#,Σ
κ ti+2j s �#,Σ

κ · · ·.
(iii) Whilst Theorem 12 states a pumping lemma on �#,Σ, the generalized theorem states

a pumping lemma on arbitrary base quasi-ordering with certain conditions, which
includes �#,Σ and �he as instances.

By the correspondence between order-n tree grammars and order-(n+1) word grammars [3,
1], we also have:

I Corollary 13 (pumping lemma for word languages). Assume that Conjecture 11 holds. Then,
for any order-n ground closed λY nd-term t of a word alphabet Σ (where n ≥ 1) such that Lw(t)
is infinite, there exist an infinite sequence of words w0, w1, w2, . . . ∈ Lw(t), and constants c,
d such that:
(i) w0 ≺#,Σ w1 ≺#,Σ w2 ≺#,Σ · · ·, and
(ii) |wi| ≤ expn−1(ci+ d) for each i ≥ 0.

Furthermore, we can drop the assumption on Conjecture 11 when n ≤ 4.

4 Numeric Version of Order-3 Kruskal’s Tree Theorem

Here we prove the main theorem (Theorem 14 below), which states that the nAK-conjecture
(Conjecture 11) holds for order-3 types. In this whole section, by a term, we mean a λ→-term,
and we never consider a fixed-point combinator nor non-determinism.
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4.1 Main theorem
I Theorem 14. For any alphabet Σ and any type κ of order up to 3, �#,Σ

κ on ΛΣ
κ is a wqo.

The theorem above is obtained as a corollary of the following lemma.

I Lemma 15. For any alphabet Σ, any a ∈ Σ, and any order-2 type environment Γ (i.e.,
a type environment whose codomain consists of types of order up to 2), the quasi-ordering
�#,Σ,a

Γ,o on Λ∅Γ,o is a wqo.

Proof sketch of Theorem 14.
For Theorem 14, it is sufficient that �#,Σ,a

κ on ΛΣ
κ is a wqo for every a ∈ Σ and κ with

order(κ) ≤ 3, because �#,Σ
κ = ∩a∈Σ(�#,Σ,a

κ ) and well-quasi-orderings are closed under
finite intersection.
For �#,Σ,a

κ to be a wqo for every order-3 type κ, it is sufficient that the restriction
of �#,Σ,a

κ to Λ∅κ (i.e. �#,Σ,a
κ ∩(Λ∅κ × Λ∅κ)) is a wqo for every order-3 type κ, because

t1 �#,Σ,a
κ t2 holds if λΣ.t1(�#,Σ,a

Σ→κ ∩(Λ∅Σ→κ × Λ∅Σ→κ))λΣ.t2, and order(Σ→ κ) ≤ 3.
For �#,Σ,a

κ ∩(Λ∅κ × Λ∅κ)) to be a wqo, Lemma 15 is sufficient, because t1(�#,Σ,a
κ ∩(Λ∅κ ×

Λ∅κ))t2 holds if t1 z1 · · · zk �#,Σ,a
Γ,o t2 z1 · · · zk, where κ = κ1 → · · · → κk → o and

Γ = z1 : κ1, . . . , zk : κk.
See the full version for details. J

Henceforth, we fix arbitrary afix ∈ Σ, and show Lemma 15 for a = afix. We prove this
lemma in two steps: First we give a transformation (·)\ from order-3 terms in Λ∅Γ,o (and their
type environment Γ) to order-2 terms in ΛΣN

Γ\,o (and to Γ\) so that it reflects quasi-orderings:
t\ �N

Γ\,o t
′\ implies t �#,Σ,afix

Γ,o t′ (Lemma 18). Then we show that �N
Γ\,o on ΛΣN

Γ\,o is a wqo
(Lemma 19). From these two results, Lemma 15 follows immediately.

4.2 Transformation from order-3 terms to order-2 terms
The key observation behind the transformation (·)\ is as follows. Let s be a closed term of
type om → o and t1, . . . , tm be closed terms of type o. Then, we have:

#a(s t1 · · · tm) = c1 ×#a(t1) + · · ·+ cm ×#a(tm) + d

for some numbers c1, . . . , cm, d that do not depend on t1, . . . , tm. This is because the order-
1 function s representable as a λ→-term can copy only arguments, and the number of
copies cannot depend on the arguments. Thus, if we are interested only in the number of
occurrences of a constant, information about an order-1 function can be represented by a
tuple (c1, . . . , cm, d) of numbers (order-0 values, in other words). By lifting this representation
to order-3 terms in Λ∅Γ,o, we obtain order-2 terms in ΛΣN

Γ\,o.
The actual transformation is non-trivial. Let us first fix Γ = ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 →

o, . . . , f` : oq` → o. Here, ϕi’s are order-2 variables and fj ’s are variables of order up to 1.
Every element of Λ∅Γ,o can be normalized to a term generated by the following syntax (which
we call an order-3 normal form):

t ::= y | fj | t1 t2 | ϕi t1 · · · tk | λy.t.

Here, y is a local variable of order 0. We require that the order of ϕ t1 · · · tk is at most
1. For example, ϕ : (o → o) → o → o → o, f : o → o → o, x : o ` λy : o. ϕ (f x) ((λy′ :
o. f y′ y′) y) : o → o → o is an order-3 normal form. It can be checked by induction that
for any order-3 normal form t, eorderΓ(t) ≤ 1 (with a suitable environment Γ). Since any
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long βη-normal form in Λ∅Γ,o with order(Γ→ o) = 3 is an order-3 normal form, considering
only order-3 normal forms does not lose generality. In the rest of this section, we use the
meta-variable t for order-3 normal forms.

We now define the transformation for order-3 normal forms. Given a term t0 ∈ Λ∅Γ,o, we
transform the term in a compositional manner, by transforming each subterm t typed by:

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

to a term e with some suitable type environment. Here, y1, . . . , yn are order-0 variables that
are bound inside t0 (rather than t), order(κi) = 2 for i ≤ m, and qi ≥ 0 for i ≤ `. We call
fi and ϕi external variables and yi an internal variable. Note that an external variable fi
can be order-0.

We first explain how variables and environments are transformed.
The variables y1, . . . , yn will just disappear after the transformation.
For each order-1 variable fi of type oqi → o, we prepare a tuple of variables (cfi,1, . . . , cfi,qi

,

dfi). Each cfi,j expresses how often fi copies the j-th argument, and dfi expresses how
often afix occurs in the value of fi, so that the number of afix in fi t1, . . . , tqi

can be
represented by cfi,1×#afix(t1) + · · ·+ cfi,qi ×#afix(tqi) + dfi (recall the observation given
at the beginning of this subsection).
For each order-2 variable ϕi of type κi = (oq1 → o) → · · · → (oqk → o) → (oq → o)
(where qk > 0), we prepare a tuple of order-1 variables (gϕi,1, . . . , gϕi,q, hϕi , ĥϕi). Basically,
gϕi,j and hϕi

are analogous to cfi,j and dfi
, respectively. Given order-1 functions t1, . . . , tk

whose values are ~u1, . . . , ~uk (where each ~u` is a tuple of size q` + 1), for each j ≤ q, the
function ϕi t1 · · · tk copies the j-th order-0 argument gϕi,j(~u1, . . . , ~uk) times, and creates
hϕi

(~u1, . . . , ~uk) copies of the constant afix. The other function variable ĥϕi
is similar to

hϕi but used for counting an internal variable yj rather than afix.

For a type environment

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where κi = (oqi
1 → o)→ · · · → (oq

i
ki → o)→ (oqi → o) (qiki

> 0, i = 1, . . . , k), we define:

Γ\ :=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
−−→gϕi,j

j≤qi

, hϕi , ĥϕi : oq
i
1+1 → . . .→ oq

i
ki

+1 → o
i≤m

,
−−−−−−−−−−−→−−→cfi,j

j≤qi , dfi : o
i≤`

We now define the transformation of terms. A term t such that

ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o; y1 : o, . . . , yn : o ` t : or → o

is transformed to a tuple (v1, . . . , vn;w1, . . . , wr; e), using the transformation relation

ϕ1 :κ1, . . . , ϕm :κm, f1 :oq1 → o, . . . , f` :oq` → o; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e)

defined below. Here, each component is constructed from variables cfi,j , dfi , gϕi,j , hϕi , ĥϕi

above and ×,+, 0, 1. The output of the transformation consists of three parts, separated by
semicolons: a (possibly empty) sequence v1, . . . , vn, a (possibly empty) sequence w1, . . . , wr,
and a single element e. The term vj represents how often yj is copied, wj represents how
often the j-th argument of t is copied, and e represents how often the constant afix is copied.
The terms vj and wj are auxiliary ones for this transformation, and e plays the role of t\
explained in Section 4.1.
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The transformation relation is defined by the following rules, where Γ = ϕ1 : κ1, . . . , ϕm :
κm, f1 : oq1 → o, . . . , f` : oq` → o is fixed.

Γ; y1 : o, . . . , yn : o ` yj . (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

; ; 0)
(IVar)

Γ; y1 : o, . . . , yn : o ` fi . (0, . . . , 0︸ ︷︷ ︸
n

; cfi,1, . . . , cfi,qi ; dfi)
(Var)

Γ; y1 : o, . . . , yn : o ` t1 . (v1, . . . , vn;w1, . . . , wr; e) r ≥ 1
Γ; y1 : o, . . . , yn : o ` t2 . (v′1, . . . , v′n; ; e′)

Γ; y1 : o, . . . , yn : o ` t1t2 . (v1 + w1v
′
1, . . . , vn + w1v

′
n;w2, . . . , wr; e+ w1e

′)
(App0)

Γ; y1 : o, . . . , yn : o ` tj . (~vj ; ~wj ; ej) ~uj = (~wj ; ej) (for each j ∈ {1, . . . , k})
~u′j,j′ = (~wj ; vj,j′) (for each j ∈ {1, . . . , k} and j′ ∈ {1, . . . , n})

k ≥ 1 and the type of tk is order-1
Γ; y1 : o, . . . , yn : o ` ϕi t1 · · · tk .
(ĥϕi(~u′1,1, . . . , ~u′k,1) . . . , ĥϕi(~u′1,n, . . . , ~u′k,n);
gϕi,1(~u1, . . . , ~uk), . . . , gϕi,qi

(~u1, . . . , ~uk); hϕi
(~u1, . . . , ~uk))

(App1)

Γ; y1 : o, . . . , yn : o, yn+1 : o ` t . (v1, . . . , vn, vn+1;w1, . . . , wr; e)
Γ; y1 : o, . . . , yn : o ` λyn+1.t . (v1, . . . , vn; vn+1, w1, . . . , wr; e)

(Lam)

Rules (IVar) (for internal variables of type o) (Var) (for order-1 variables), and (Lam)
should be obvious from the intuition on the tuple and the translation of an environment.
Rules (App0) and (App1) are for applications of order-1 and order-2 functions respectively.
(Note however that in (App0), t1 itself may be an application of order-2 function, of the
form ϕ t1,1 · · · t1,k.) In (App0), note that t1t2 creates w1 copies of (the value of) t2, so that
the number of copies of yi can be calculated by vi + w1v

′
i, where vi and v′i are the numbers

of copies created by t1 and t2 respectively. Rule (App1) is based on the intuition explained
above about the translation of order-2 variables. Note that the same function ĥϕi

is used
for counting y1, . . . , yn; this is because ϕi does not know yj (in other words, ϕi cannot be
instantiated to a term containing yj as a free variable), so that the information for counting
yj can only be passed through arguments ~u′j,j′ .

It should be clear that if Γ; y1 :o, . . . , yn :o ` t . (v1, . . . , vn;w1, . . . , wr; e) then vj , wj′ , e ∈
ΛΣN

Γ\,o and the order of Γ\ → o is no greater than 2.

I Example 16. Let Γ = ϕ : (o→ o)→ o→ o, f : o→ o. Then, we have

Γ\ = gϕ,1, hϕ, ĥϕ : o2 → o, cf,1, df : o

and t := λy.ϕ(ϕf) y is transformed to

t\ = hϕ
(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
+ gϕ,1

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
× 0
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by the following derivation:

Γ; y : o ` f . (0; cf,1; df )
(Var)

Γ; y : o ` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df );hϕ(cf,1, df ))
(App1)

Γ; y : o ` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ; y : o ` y . (1; ; 0)
(IVar)

Γ; y : o ` ϕ(ϕf) y . (ĥϕ(~u′) + gϕ,1(~u)× 1; ;hϕ(~u) + gϕ,1(~u)× 0)
(App0)

Γ;` λy.ϕ(ϕf) y . (; ĥϕ(~u′) + gϕ,1(~u)× 1;hϕ(~u) + gϕ,1(~u)× 0)
(Lam)

where ~u = gϕ,1(cf,1, df ), hϕ(cf,1, df ) and ~u′ = gϕ,1(cf,1, df ), ĥϕ(cf,1, 0). The terms in the
bottom line of the derivation, ĥϕ(~u′) + gϕ,1(~u)× 1 and t\ = hϕ(~u) + gϕ,1(~u)× 0, have type o
under the environment Γ\, and eorder(λΓ\.t\) = order(Γ\ → o) = 2.

The next example is a slightly modified one involving an external variable x : o instead of
the internal variable y : o. We have

(Γ, x : o)\ = Γ\, dx : o

and t′ := ϕ(ϕf)x is transformed to

t′
\ = hϕ

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
+ gϕ,1

(
gϕ,1(cf,1, df ), hϕ(cf,1, df )

)
× dx

by the following derivation:

Γ, x : o;` f . (0; cf,1; df )
(Var)

Γ, x : o;` ϕf . (ĥϕ(cf,1, 0); gϕ,1(cf,1, df );hϕ(cf,1, df ))
(App1)

Γ, x : o;` ϕ(ϕf) . (ĥϕ(~u′); gϕ,1(~u);hϕ(~u))
(App1)

Γ, x : o;` x . (0; ; dx)
(Var)

Γ, x : o;` ϕ(ϕf)x . (ĥϕ(~u′) + gϕ,1(~u)× 0; ;hϕ(~u) + gϕ,1(~u)× dx)
(App0)

where ~u and ~u′ are the same as above. J

Lemma 17 below says that the transformation preserves the meaning of ground terms.
Here we regard constants in Σ as variables of up to order 1, and we define a substitution
θafix

Σ by:

θafix
Σ := [

−−−→
1/ca,i

a∈Σ,i≤ar(a)
, 1/dafix ,

−−→
0/da

a∈Σ\{afix}
].

(Recall that afix ∈ Σ above is the constant arbitrarily fixed at the end of Section 4.1.)
I Lemma 17 (preservation of meaning). If Σ;` t . (; ; e), then we have #afix(t) = Jeθafix

Σ K.
The above lemma follows from a usual substitution lemma (on internal variables) and a

subject reduction property; see the full version for the proof.
The correctness of the transformation is stated as the following lemma.

I Lemma 18 (ordering reflection). Let: Σ be an alphabet; afix ∈ Σ; Γ be an environment of
the form

Γ = ϕ1 : κ1, . . . , ϕm : κm, f1 : oq1 → o, . . . , f` : oq` → o

where order(κi) = 2 and qi ≥ 0; t, t′ ∈ Λ∅Γ,o; and

Γ;` t . (; ; e) Γ;` t′ . (; ; e′).

Then we have:

t �#,Σ,afix
Γ,o t′ if e �N

Γ\,o e
′.

The proof of the above lemma is given in the full version, where we use Lemma 17 and
substitution lemmas on external variables.
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4.3 �N on order-2 terms is a wqo

The main goal of this subsection is to prove the following lemma.

I Lemma 19 (�N
Γ,o on order-2 terms is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o, the

quasi-ordering �N
Γ,o on ΛΣN

Γ,o is a wqo.

Lemma 15 follows as a corollary of Lemma 19 above and Lemma 18 in the previous
subsection:

Proof of Lemma 15. Let t0, t1, . . . ∈ Λ∅Γ,o be an infinite sequence. We have the infinite
sequence e0, e1, . . . ∈ ΛΣN

Γ\,o such that Γ;` ti . (; ; ei), and by Lemma 18, ti �#,Σ,afix
Γ,o tj if

ei �N
Γ\,o ej . By Lemma 19, there indeed exist i, j (i < j) such that ei �N

Γ\,o ej . Thus, we
have ti �#,Σ,afix

Γ,o tj as required. J

To prove Lemma 19, we restrict (without loss of generality) ΛΣN
Γ,o to the set of β-normal

forms (which we call order-2 polynomials), generated by the following grammar:

P ::= 0 | 1 | P1 + P2 | P1 × P2 | f P1 · · · Pq

Here, in f P1 · · · Pq, f should have type oq → o. We write PN
2 for the set of all order-2

polynomials, and write PN
Γ,o for ΛΣN

Γ,o ∩ PN
2 . Note that the arity of f may be 0, so that, for

example, f1(f2 × (f2 + 1)) ∈ PN
f1:o→o,f2:o,o. Thus, for Lemma 19, the following suffices:

I Lemma 20 (�N
Γ,o on order-2 polynomials is wqo). For Γ = f1 : oq1 → o, . . . , fn : oqn → o,

the quasi-ordering �N
Γ,o on PN

Γ,o is a wqo.

The idea for proving this lemma is as follows:
An order-2 polynomial is regarded as a tree. Thus, by Kruskal’s tree theorem (Proposi-
tion 8), the set PN

Γ,o is well-quasi-ordered with respect to the homeomorphic embedding
�he,ΣN∪Γ

o . Unfortunately, however, the relation P1 �he,ΣN∪Γ
o P2 does not necessarily imply

�N
Γ,o; for example, if P1 = 1 and P2 = f1(1), then P1 �he,ΣN∪Γ

o P2 holds but P1 �N
Γ,o P2

does not, because f1 may be instantiated to λx.0. Similarly for P1 = f2 and P2 = f2 × 0.
To address the problem above, we classify the values of f ∈ PN

Γ,o (i.e. elements of ΛΣN
oq→o)

into a finite number of equivalence classes A(1), . . . , A(`), and use the classification to
further normalize order-2 polynomials, so that P1 �he,ΣN∪Γ

o P2 implies P1 �N
Γ,o P2 on

the normalized polynomials. For example, in the case of P1 = 1 and P2 = f1(1) above,
the values of f1 are classified to (i) those that use the argument, (ii) those that return a
positive constant without using the argument, and (iii) those that always return 0. We
can then normalize P2 = f1(1) to f1(1) (in case (i)), f1(0) (in case (ii)), and 0 (in case
(iii)), respectively. (In case (ii), any argument is replaced with 0, because the argument
is irrelevant.) Thus, we can indeed deduce P1 �N

Γ,o P2 from P1 �he,ΣN∪Γ
o P2 when the

value of f1 is restricted to just those in (i); and the same holds also for (ii) and (iii).
It follows that the restriction of the relation �N

Γ,o to each classification of the values of
f1, . . . , f` ∈ dom(Γ) is a wqo. Since the number of classifications is finite, by Dickson’s
theorem (recall the sentence below Proposition 8), �N

Γ,o (which is the intersection of the
restrictions of �N

Γ,o to the finite number of classifications) is also a wqo.

We first formalize and justify the reasoning in the last part (using Dickson’s theorem).
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I Definition 21 (finite case analysis). For Γ = f1 : κ1, . . . , fn : κn, we call a finite case
analysis of Γ a family (Aji )i≤n,j∈Ji

of sets such that ΛΣN
κi

= ∪j≤Ji
Aji for each i ≤ n. For

(Ai)i≤n such that Ai ⊆ ΛΣN
κi

, we define a quasi-ordering �N
Γ,(Ai)i

on ΛΣN
Γ,o as follows:

t �N
Γ,(Ai)i

t′ ⇐⇒ ∀t1 ∈ A1, . . . , tn ∈ An. Jt[ti/fi]iK ≤ Jt′[ti/fi]iK

We often omit the subscript Γ of �N
Γ,(Ai)i

and write �N
(Ai)i

.

The following lemma follows immediately from the fact that the intersection of a finite
number of wqo’s is a wqo (which is in turn an immediate corollary of Dickson’s theorem).
(see the full version for omitted proofs in the rest of this section).

I Lemma 22. For Γ = f1 : κ1, . . . , fn : κn and a finite case analysis (Aji )i≤n,j∈Ji of Γ, if
�N

(Aji
i

)i

on ΛΣN
Γ,o is a wqo for any “case” (ji)i≤n ∈

∏
i≤n Ji, then so is �N on ΛΣN

Γ,o.

Thus, to prove Lemma 20, it remains to find an appropriate decomposition ΛΣN
κi

= ∪j≤JiA
j
i

(where κi is an order-1 type oq → o), and prove that �N
(Aji

i
)i

is a wqo.

Henceforth we identify an element of ΛΣN
oq→o with the corresponding element of the

polynomial semi-ring N[x1, . . . , xq]. For example, λx1.λx2.((λy.y)x1) + x2 × x2 is identified
with the polynomial x1 + x2

2 (which is obtained by normalizing and omitting λ-abstractions,
assuming a fixed ordering of the bound variables). For t ∈ ΛΣN

oq→o we write poly(t) for the
corresponding polynomial.

We define the equivalence relation ∼ as the least semi-ring congruence relation on
N[x1, . . . , xq] that satisfies (i) a ∼ 1 if a > 0 and (ii) xji ∼ xi if j > 0. For example,
2x2

1x2 + 3x1x
2
2 + x1 + 4 ∼ x1x2 + x1 + 1, and the quotient set N[x1]/ ∼ consists of:

[0]∼, [1]∼, [x1]∼, [x1 + 1]∼,

and N[x1, x2]/ ∼ consists of

[0]∼, [1]∼, [x1]∼, [x2]∼, [x1x2]∼, [1+x1]∼, [1+x2]∼, [1+x1x2]∼, [x1+x2]∼, . . . , [1+x1+x2+x1x2]∼.

In general, P(P([q])) (where [q] denotes {1, . . . , q} and P(X) denotes the powerset of X)
gives a complete representation of the quotient set N[x1, . . . , xq]/∼, i.e.,

N[x1, . . . , xq]/∼ =
{[ ∑
{p1<···<pr}∈Φ

xp1 · · ·xpr

]
∼

∣∣∣∣Φ ∈ P(P([q]))
}
.

Through poly : ΛΣN
oq→o → N[x1, . . . , xq], we can induce an equivalence relation on ΛΣN

oq→o
from ∼ on N[x1, . . . , xq], and let AΦ

q be the equivalence class corresponding to Φ, i.e.,

AΦ
q :=

{
t ∈ ΛΣN

oq→o

∣∣∣ poly(t) ∼
∑

{p1<···<pr}∈Φ

xp1 · · ·xpr

}
. (1)

Then we have ΛΣN
oq→o = tΦ∈P(P([q]))A

Φ
q . Now, given Γ = f1 : oq1 → o, . . . , fn : oqn → o, we

have obtained a finite case analysis of Γ as (AΦ
qi

)i≤n,Φ∈P(P([qi])); for (Φi)i ∈
∏
i≤n P(P([qi])),

we write �N
(Φi)i

for �N
(AΦi

qi
)i

. Thus it remains to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])).

The following lemma justifies the partition of polynomials based on ∼.

I Lemma 23 (zero/positive). For any Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈∏
i≤n P(P([qi])), and Γ ` P : o, we have either P �N

(Φi)i
0 or 1 �N

(Φi)i
P .
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In other words, the lemma above says that, given an order-2 polynomial P , whether
P [t1/f1, . . . , tn/fn] evaluates to 0 or not is solely determined by the equivalence classes
t1, . . . , tn belong to.

I Example 24. Let Γ := f : o2 → o, and Φ := {∅, {1, 2}} ∈ P(P([2])), which denotes the
equivalence class [1 + x1x2]∼. We have 1 �N

Φ f P1 P2 for any P1 and P2, since any element of
the equivalence class is of the form a+ · · · for some natural number a ≥ 1.

Based on the property above, we define the rewriting relation −→(Φi)i
, to simplify order-2

polynomials by replacing (i) subterms that always evaluate to 0, and (ii) arguments of a
function that are irrelevant, with 0.

I Definition 25 (rewriting relation and (Φi)i-normal form). For Γ = f1 : oq1 → o, . . . , fn :
oqn → o and (Φi)i ∈

∏
i≤n P(P([qi])), we define the relation −→◦(Φi)i

by the following two
rules.

P −→◦(Φi)i
0 if P �N

(Φi)i
0 and P 6= 0.

f` P1 · · · Pq`
−→◦(Φi)i

f` P1 · · · Pk−1 0Pk+1 · · · Pq`
if (i) Pk 6= 0 and (ii) for all φ ∈ Φ`

such that k ∈ φ, there exists p ∈ φ such that Pp �N
(Φi)i

0.
We write P0 −→(Φi)i

P1 if Pi = E[P ′i ] and P ′0 −→◦(Φi)i
P ′1 for some E, P ′0 and P ′1, where the

evaluation context E is defined by:

E ::= [ ] | E + P | P + E | E × P | P × E | f P1 . . . Pi−1E Pi+1 . . . Pq.

We call a normal form of −→(Φi)i
a (Φi)i-normal form.

Intuitively, the condition (ii) in the second rule says that whenever the k-th argument Pk
is used by f`, it occurs only in the form of Pk × Pp × · · · (up to equivalence) and Pp always
evaluates to 0; thus, the value of Pk is actually irrelevant.

I Example 26. We continue Example 24. Recall Γ = f : o2 → o and Φ = {∅, {1, 2}}.
Consider the order-2 polynomial f 1 (1× 0). It can be rewritten to f 1 0 by using the first
rule (and the evaluation context E = f 1 [ ]). We can further apply the second rule to obtain
f 1 0 −→Φ f 0 0, because k = 1 satisfies the conditions ((i) and) (ii). In fact, if 1 ∈ φ ∈ Φ,
then φ = {1, 2}; hence, the required condition holds for p = 2. Note that f 0 0 is a Φ-normal
form; the first rule is not applicable, as f 0 0 6�N

Φ 0 by the discussion in Example 24.

The following lemma guarantees that any order-2 polynomial can be transformed to at
least one equivalent (Φi)i-normal form.

I Lemma 27 (existence of normal form).
1. −→(Φi)i

is strongly normalizing.
2. If P −→(Φi)i

P ′ then P ≈N
(Φi)i

P ′.

We can reduce the wqoness of �N
(Φi)i

to that of �he,ΣN∪Γ
o by the following lemma:

I Lemma 28. For Γ = f1 : oq1 → o, . . . , fn : oqn → o, (Φi)i ∈
∏
i≤n P(P([qi])), and

(Φi)i-normal forms Γ ` P ′, P : o, if P ′ �he,ΣN∪Γ
o P then P ′ �N

(Φi)i
P .

The proof is given by a simple calculation using Lemma 23 and that the given (Φi)i-normal
forms P ′, P do not satisfy the condition for the rewriting −→(Φi)i

.
Now we are ready to prove Lemma 20.
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Proof of Lemma 20. By Lemma 22, it suffices to show that �N
(Φi)i

on PN
Γ,o is a wqo for each

(Φi)i ∈
∏
i≤n P(P([qi])). By the Kruskal’s tree theorem, �he,ΣN∪Γ

o on PN
Γ,o is a wqo, and

hence the sub-ordering �he,ΣN∪Γ
o on the subset

{P ∈ PN
Γ,o | P is a (Φi)i-normal form} ⊆ PN

Γ,o

is a wqo. Therefore by Lemma 28, �N
(Φi)i

on {P ∈ PN
Γ,o | P is a (Φi)i-normal form} is a wqo.

By Lemma 27, {P ∈ PN
Γ,o | P is a (Φi)i-normal form} and PN

Γ,o – both modulo βη-equivalence
– are isomorphic (with respect to �N

(Φi)i
and �N

(Φi)i
); hence �N

(Φi)i
on PN

Γ,o is a wqo. J

5 Conclusion

W have introduced the nAK-conjecture, a weaker version of the AK-conjecture in [2], and
proved it up to order 3. We have also proved a pumping lemma for higher-order grammars
(which is slightly weaker than the pumping lemma conjectured in [2]) under the assumption
that the nAK-conjecture holds. Obvious future work is to show the nAK-conjecture or the
original AK-conjecture for arbitrary orders. Finding other applications of the two conjectures
(cf. an application of Kruskal’s tree theorem to program termination [4]) is also left for future
work.
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Abstract
Prior’s tense logic forms the core of linear temporal logic, with both past- and future-looking
modalities. We present a sound and complete proof system for tense logic over ordinals. Tech-
nically, this is a hypersequent system, enriched with an ordering, clusters, and annotations. The
system is designed with proof search algorithms in mind, and yields an optimal coNP complexity
for the validity problem. It entails a small model property for tense logic over ordinals: every
satisfiable formula has a model of order type at most ω2. It also allows to answer the validity
problem for ordinals below or exactly equal to a given one.
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1 Introduction

Linear temporal logic has become a staple specification language in verification since its
introduction by Pnueli [28]. In its most common form, the logic features an “until” temporal
modality and ranges over linear time flows of order type ω, i.e. over infinite words, where
it enjoys a PSPACE-complete satisfiability problem [34]. A large number of variants with
the same complexity has been motivated and introduced in the literature, notably temporal
logics with past modalities [23, 21], ranging over arbitrary ordinals [33, 12], or even – with
the Stavi modalities added – over arbitrary linear time flows [10, 32].

Linear temporal logic finds its roots in Prior’s tense logic [31, 9], which only featured the
strict “past” P and “future” F modalities. This set of modalities is still interesting in its
own right, as it is sufficient for many modelling tasks [35], and is known to lead to a slightly
easier NP-complete satisfiability problem both over ω [34] and over arbitrary linear time
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flows [26]. While linear tense logic is less expressive than FO(<), the first-order logic over
linear orders with unary predicates, it has nevertheless nice characterisations as it captures
instead its two-variable fragment FO2(<) [13].

In this paper, we investigate tense logic over well-founded linear time flows, i.e. over
ordinals, which can be denoted as KtL`.3 in the taxonomy of modal logics from [6]. We
show in particular that
1. the satisfiability problem for KtL`.3 over the class of ordinals is NP-complete, and that
2. a formula ϕ of KtL`.3 has a well-founded linear model if and only if it has a model of

order type α for some α < ω · (|ϕ|+ 2); this should be contrasted with the corresponding
ω|ϕ|+2 bound proven in [12, Cor. 3.3] for linear temporal logic.

These two results are however just byproducts of our main contribution, which is a sound
and complete proof system for KtL`.3 in which proof search runs in coNP.

All the algorithmic results for tense logic mentioned earlier in this introduction have been
obtained via model-theoretic techniques, by showing that if a formula has a model, then it has
a “small” one, and it is actually possible to proceed similarly for KtL`.3. However, as the
resulting algorithms consist essentially in guessing a model, they are impractical as they are
unlikely to avoid the (high) worst case complexity of the problem. In the case of the full linear
temporal logic, this has motivated the use of automata-theoretic techniques [36, 33, 8, 12],
typically by building an at most exponential-sized automaton recognising the set of models of
the formula: checking the language non-emptiness of the automaton can then be performed
on-the-fly in PSPACE and can rely in practice on a rich algorithmic toolset. However, in the
case of tense logic, it is not immediate how to tailor this approach to recover the above NP
upper bound, because the automata for tense logic may require exponential-size – over ω,
this is a consequence of the proof of [13, Thm. 3]. Finally, if one’s interest is to check that a
formula ϕ is valid, neither the model-theoretic nor the automata-theoretic approach yields a
“natural” certificate that could be checked by simple independent means.

All these considerations motivate our use of proof-theoretic techniques. In their simplest
form, those can be Hilbert-style axiomatisations which, in the context of modal logic, allow
to characterise valid formulas in a way that is modular with respect to the considered classes
of models – incidentally, the name KtL`.3 refers to its axiomatisation (see Appendix A).
However, these systems are not directly amenable to automated reasoning, which is rather
achieved through more structured proof systems, the seminal example being Gentzen’s sequent
calculus. As the latter is often too limited for modal logics, it has been enriched in various ways,
using e.g. labelled sequents [25], display calculus [5, 19], nested sequents [18, 7, 30, 29, 22],
or hypersequents [2, 14, 20, 15]. These enriched formalisms remain quite modular and
sustain extensions simply by adding a few rules. They can be exploited to provide optimal
complexity solutions to the validity problem directly by proof search [17, 24, 4, 11, 3], which
may sometimes avoid the worst-case complexity of the problem and rely in practice on various
heuristics. Finally, this approach obviously yields a proof of validity as a certificate in case
of success.

Our proof system for KtL`.3 is obtained as a natural extension of our earlier work
on Kt4.3 [3], using additional insights from Avron’s sequent calculus for KL [1]. This is
satisfying since KtL`.3 is simply obtained from Kt4.3 – the tense logic of arbitrary linear
time flows – by adding well-foundation to the left, i.e. towards the past (see Section 2), and
completes the picture as KtQ the tense logic of dense linear time flows was also handled in [3].
Specifically, we use the framework of ordered hypersequents with clusters introduced in [3] as
an elaboration, with terminating proof search, of Indrzejczak’s ordered hypersequent calculus
for Kt4.3 [15, 16]. Conceptually, re-using the framework required to generalise its semantics.
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The new semantics is more uniform, and allows us to provide purely proof-theoretic soundness,
completeness, and complexity arguments in Section 3, unlike in [3] where soundness builds
on a model-theoretic result from [26].

Furthermore, our proof system is easily shown in Section 4 to also address the more
precise problems of validity over all the well-founded linear time flows

of order type β < α+ 1 for a given α, and
of order type exactly α < ω2.

Such a result seems out of reach of axiomatisations, and yields for instance a coNP decision
procedure for validity over ω-words. Finally, using the exponential translation of FO2(<)
into tense logic given in [13, Thm. 2], our results yield an optimal NEXP upper bound for
satisfiability of the former over ordinals, which was already known from [27]. But more
importantly they yield a proof system for FO2(<) over ordinals, which would be challenging
to construct directly, because eigenvariables cannot be handled in the usual fashion.

2 Tense Logic over Ordinals

2.1 Syntax
Tense logic features two unary temporal operators, over a countable set Φ of propositional
variables, with the following syntax:

ϕ ::= ⊥| p | ϕ ⊃ ϕ | Gϕ | Hϕ (where p ∈ Φ)

Formulæ Gϕ and Hϕ are called modal formulæ. Intuitively, Gϕ expresses that ϕ holds
“globally” in all future worlds, while Hϕ expresses that ϕ holds “historically” in all past
worlds. Other Boolean connectives may be encoded from ⊥ and ⊃, and as usual Fϕ = ¬G¬ϕ
expresses that ϕ will hold “in the future” and Pϕ = ¬H¬ϕ that it held “in the past.”

2.2 Ordinal Semantics
In the case of KtL`.3, our formulæ shall be evaluated on Kripke structures M = (α, V ),
where α is an ordinal and V : Φ→ ℘(α) is a valuation of the propositional variables. Recall
that an ordinal α is seen set-theoretically as {β ∈ Ord | β < α}. An ordinal is either 0 (the
empty linear order), a limit ordinal λ (such that for all β < λ there exists γ with β < γ < λ),
or a successor ordinal α+ 1.

Given a structure M = (α, V ), we define the satisfaction relation M, β |= ϕ, where β < α

and ϕ is a formula, by structural induction on ϕ:

M, β 6|= ⊥
M, β |= p iff β ∈ V (p)
M, β |= ϕ ⊃ ψ iff if M, β |= ϕ then M, β |= ψ

M, β |= Gϕ iff M, γ |= ϕ for all β < γ < α

M, β |= Hϕ iff M, γ |= ϕ for all γ < β

When M, β |= ϕ, we say that (M, β) is a model of ϕ.

I Example 2.1. The satisfiable formulæ of KtL`.3 are strictly contained in the set of
formulæ satisfiable in Kt4.3, i.e. over arbitrary linear orders. For instance, the formula
ϕ0 = P p ∧ H (p ⊃ P p) is satisfiable in Kt4.3 but not in KtL`.3, because all its models
must contain an infinite decreasing sequence of worlds where p is true. Moreover, KtL`.3
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can force models to be of order type greater than ω: for instance, the formula ϕ1 = G (p ⊃
F p) ∧ G (¬p ⊃ F¬p) ∧ F¬p ∧ F (p ∧ G p) forces to have a first infinite sequence of worlds not
satisfying p, followed by a second infinite sequence of worlds satisfying p, and all its models
(α, V ) must have α ≥ ω · 2.

3 Hypersequents with Clusters

As is often the case with modal logics, Gentzen’s sequent calculus does not provide a rich
enough framework to obtain complete proof systems. The extension we consider is to use
hypersequents [2], which are essentially sets of sequents logically interpreted as a disjunction.
Indrzejczak has moved to ordered hypersequents [15, 16] (which are lists of hypersequents)
to obtain a sound and complete calculus for Kt4.3. We have further enriched the structure
of his ordered hypersequents with clusters and annotations [3] to obtain a calculus for
Kt4.3 for which proof search terminates and, in fact, yields an optimal complexity decision
procedure. We keep the same structure in the present work, but significantly adapt the proof
rules, annotation mechanism, and even the semantics of hypersequents; we discuss these
differences in more depth when concluding in Section 5. It should be noted that, unlike
simple hypersequents, hypersequents with clusters do not have a translation as formulæ.

3.1 Annotated Hypersequents with Clusters
A sequent (denoted S) is a pair of two finite sets of formulæ, written Γ ` ∆. It is satisfied in
a world γ of a structure M if, in that world, the conjunction of the formulæ of Γ implies the
disjunction of the formulæ of ∆. In that case, we write M, γ |= Γ ` ∆.

We define next the basic structure of our hypersequents, then enrich it with annotations
to obtain the hypersequents that we shall work with.

I Definition 3.1 (hypersequent). A hypersequent is a list of cells, each cell being either a
sequent or a non-empty list of sequents called a (syntactic) cluster. We shall use the following
abstract syntax, where both operators “;” and “‖” are associative with unit “•”:

H ::= C | H ;H (hypersequents)

C ::= • | S | {Cl} (cells)

Cl ::= S | Cl ‖ Cl (cluster contents)

Note that this definition allows for empty cells and hypersequents “•”, but these notational
conveniences will never arise in actual proofs – and should not be confused with the empty
sequent “`”. We will see that the order of cells in a hypersequent is semantically relevant, but
the order of sequents inside a cluster is not. Nevertheless, assuming an ordering as part of
the syntactic structure of clusters is useful in order to refer to specific sequents or positions.

I Definition 3.2. An annotated sequent is a sequent that may be annotated with G formulæ.
We simply write Γ ` ∆ for a sequent carrying no annotation, otherwise we write, e.g.,
Γ ` ∆ (Gϕ,Gψ, . . .). Then, annotated hypersequents are hypersequents whose sequents are
annotated, with the constraint that an annotation may only occur once in an annotated
hypersequent, and that ϕ occurs on the right-hand side of sequents carrying the annotation
Gϕ. Formally, we can see annotations as partial functions from the set of G formulæ to the
set of positions of the hypersequent.
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I Example 3.3. For instance, Γ ` ∆, ϕ (Gϕ) ;{Π ` Σ, ψ (Gψ)} is an annotated hypersequent
but Γ ` ∆, ϕ, ψ (Gϕ,Gψ) ; {Π ` Σ, ψ (Gψ)} is not allowed due to the two occurrences of
(Gψ). Finally, ` ⊥ (G p) is not an annotated hypersequent as it fails the second condition.

Annotations will impact the semantics of hypersequents: intuitively, counter-models
should attach to sequents annotated with (Gϕ) a world or set of worlds that invalidates ϕ
and is (in a sense that will be made clear below) “rightmost” for that property.

3.2 Semantics
The semantics of an ordered hypersequent with clusters relies on a notion of embedding
which we define next, building on a view of hypersequents as partially ordered structures.

I Definition 3.4 (partial order of a hypersequent). Let H be a hypersequent containing n
sequents, counting both the sequents found directly in its cells and those in its clusters. In
this context, any i ∈ [1;n] is called a position of H , and we write H(i) for the i-th sequent of
H. We define a partial order - on the positions of H by setting i - j if and only if either
the i-th and j-th sequents are in the same cluster, or the i-th sequent is in a cell that lies
strictly to the left of the cell of the j-th sequent. We write i ≺ j when i - j but j 6- i, i.e. j
lies strictly to the right of i in H. We write i ∼ j when i - j - i. Finally, the domain of H
is defined as dom(H) = ([1;n],-); note that empty cells are ignored in dom(H).

While a hypersequent is syntactically a finite partial order, its semantics will refer to a
linear well-founded order, obtained by “bulldozing” its clusters into copies of ω. The resulting
order type is the object of the next definition.

I Definition 3.5 (order type). Let H be a hypersequent. We define its order type o(H)
by induction on its structure: for cells, o(•) = 0, o(S) = 1, and o({Cl}) = ω, and for
hypersequents, o(H1 ;H2) = o(H1) + o(H2). Thus, o(H) = ω · k +m where k is the number
of clusters in H and m the number of non-empty cells to the right of the rightmost cluster.

I Definition 3.6 (embedding). Let H be an annotated hypersequent and α an ordinal. We
say that µ : dom(H)→ α+ 1 \ {0} is an embedding of H into α, written H ↪→µ α, if:

for all i, j ∈ dom(H), i ≺ j implies µ(i) < µ(j) and i ∼ j implies µ(i) = µ(j); and
for all i ∈ dom(H), i is in a cluster if and only if µ(i) is a limit ordinal.

Observe that, if H ↪→µ α, then o(H) < α+ 1.

I Definition 3.7 (semantics). Let M = (α, V ) be a structure, H a hypersequent, and µ an
embedding H ↪→µ α. We say that µ is annotation-respecting if, for all ϕ and i such that
H(i) carries the annotation (Gϕ) and for all γ < α such that M, γ |= ¬ϕ, we have γ < µ(i).

We say that (M, µ) is a model of H , written M, µ |= H , if µ is annotation-respecting and
there exists a position i of H and an ordinal β < µ(i) such that for all γ with β ≤ γ < µ(i)
we have M, γ |= H(i).

Following this definition, we say that a hypersequent is valid if for any M = (α, V ) and
annotation-respecting H ↪→µ α, we have M, µ |= H. A formula ϕ is valid in the usual sense
(i.e., satisfied in every world of every ordinal structure) if and only if the hypersequent ` ϕ is
valid in our sense.

If a hypersequentH is not valid, then it has a counter-model, that is a structureM = (α, V )
and an annotation-respecting embedding H ↪→µ α such that, for every i ∈ dom(H) and
β < µ(i), there exists γ with β ≤ γ < µ(i) such that M, γ 6|= H(i). For the positions
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(ax)
H [ϕ,Γ ` ∆, ϕ]

H [ϕ ⊃ ψ,Γ ` ∆, ϕ] H [ϕ ⊃ ψ,ψ,Γ ` ∆]
H [ϕ ⊃ ψ,Γ ` ∆]

(⊃ `)

(⊥)
H [Γ,⊥ ` ∆]

H [ϕ,Γ ` ∆, ψ, ϕ ⊃ ψ]
H [Γ ` ∆, ϕ ⊃ ψ]

(` ⊃)

Figure 1 Propositional rules of HKtL`.3.

i ∈ dom(H) that are not in clusters, µ(i) is a successor ordinal γ + 1 and this amounts to
asking that M, γ 6|= H(i). When i is in a cluster, the condition implies the existence of an
infinite increasing sequence (γj)j of ordinals with limit µ(i) = supj γj such that M, γj 6|= H(i)
for all j.

3.3 Proof System
We now present our proof system for KtL`.3, called HKtL`.3. This system deals with
annotated hypersequents; from now on, we simply call sequents and hypersequents their
annotated versions. The rules of HKtL`.3 are given in Figures 1 to 3: the first group
includes the usual propositional rules, the second deals with modalities, and the last one
with annotations. The figures make use of some notations which we explain next, before
commenting on the rule definitions themselves.

Notations. First, we use hypersequents with holes. One-placeholder hypersequents, cells,
and clusters are defined by the following syntax:

H [] ::= H ; C [] ;H C [] ::= ? | { Cl[] } Cl[] ::= Cl• ‖ ? ‖ Cl• Cl• ::= • | Cl

Two-placeholder cells and hypersequents have two holes identified by ?1 and ?2:

H [] [] ::= H ; C [] [] ;H | H[?1] ;H[?2] C [] [] ::= { Cl[?1] ‖ Cl[?2] } | { Cl[?2] ‖ Cl[?1] }

As usual, C [S] (resp. C [Cl]) denotes the same cell with S (resp. Cl) substituted for ?;
two-placeholder cells and hypersequents with holes behave similarly. In terms of the partial
orders underlying hypersequents with two holes, observe that the positions i and j associated
resp. to ?1 and ?2 are such that i - j.

Second, we do not write explicitly the annotations that sequents may carry in rule
applications. These annotations are implicitly the same in a conclusion sequent and the
corresponding sequents in premises, or updated by adding the explicit annotation; freshly
created sequents always have an explicit annotation. Annotations can prevent a rule
application if the addition of an annotation would break the single-annotation constraint.

Third, we use a convenient notation for enriching a sequent: if S is a sequent Γ ` ∆ (A),
then S n (Γ′ ` ∆′ (A′)) is the sequent Γ,Γ′ ` ∆,∆′ (A,A′). Moreover, we sometimes need
to enrich an arbitrary sequent of a cluster {Cl} with a sequent S; then {Cl}n S denotes the
cluster with its leftmost sequent enriched.

Rules. We now comment on the definition of our rules. The propositional rules of Figure 1 are
straightforward: they are the usual ones applied to an arbitrary sequent of the hypersequent.
The left modal rules of Figure 2 should not be surprising. For instance, in (G`), if the
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(G`)
H [Gϕ,Γ ` ∆] [ϕ,Gϕ,Π ` Σ]

H [Gϕ,Γ ` ∆] [Π ` Σ]
H1;

{
Cl• ‖ ϕ,Gϕ,Γ ` ∆ ‖ Cl ′•

}
;H2

H1;
{

Cl• ‖ Gϕ,Γ ` ∆ ‖ Cl ′•
}

;H2
({G`})

(H`)
H [ϕ,Hϕ,Π ` Σ] [Hϕ,Γ ` ∆]

H [Π ` Σ] [Hϕ,Γ ` ∆]
H1;

{
Cl• ‖ ϕ,Hϕ,Γ ` ∆ ‖ Cl ′•

}
;H2

H1;
{

Cl• ‖ Hϕ,Γ ` ∆ ‖ Cl ′•
}

;H2
({H`})

H1 ; C [Γ ` ∆,Gϕ] ; ` ϕ (Gϕ) ; C ′ ;H2
H1 ; C [Γ ` ∆,Gϕ] ; { ` ϕ (Gϕ)} ; C ′ ;H2
H1 ; C [Γ ` ∆,Gϕ ‖ ` ϕ (Gϕ)] ; C ′ ;H2 if C 6= ?

H1 ; C [Γ ` ∆,Gϕ] ; C ′ n (` Gϕ) ;H2 if C ′ 6= •
H1 ; C [Γ ` ∆,Gϕ] ; C ′ n (` ϕ (Gϕ)) ;H2 if C ′ 6= • and C ′ 6= {Cl}

H1 ; C [Γ ` ∆,Gϕ] ; C ′ ;H2
(`G)

H2 ; C ′ ; Hϕ ` ϕ ; C [Γ ` ∆,Hϕ] ;H1
H2 ; C ′ n (` Hϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C ′ 6= •
H2 ; C ′ n (Hϕ ` ϕ) ; C [Γ ` ∆,Hϕ] ;H1 if C ′ 6= • and C ′ 6= {Cl}

H2 ; C ′ ; C [Γ ` ∆,Hϕ] ;H1
(`H)

Figure 2 Modal rules of HKtL`.3. In (`G) and (`H), we allow C′ = • only when H2 = •.

((G))
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ,Gϕ] H1 ; Γ ` ∆,Gϕ (Gϕ) ;H2

({(G)})

((Ḡ))
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π, ϕ ` Σ]
H1 [Γ ` ∆ (Gϕ)] ;H2 [Π ` Σ]

Figure 3 Annotation rules of HKtL`.3.

conclusion has a counter-model, then Gϕ holds at some ordinal and thus both ϕ and Gϕ
must also hold at strictly greater ordinals. The rule also applies to two distinct sequents
inside the same cluster; the soundness proof below shows how this is covered in detail. The
({G`}) rule allows to proceed in the same way inside a cluster when the sequent “further to
the right” is the original sequent itself, something that our notations do not allow in (G`).
Finally, (H`) and ({H`}) are symmetric to the two previous rules.

The rules (`G) and (`H) are the most complex ones. We shall not try to justify their
soundness at this point, but simply make a few remarks that are important to understand their
definition. First, these rules are the only ones that may introduce new cells in hypersequents.
In the case of (`G), new cells are annotated with the principal formula Gϕ, which prevents
another application of (`G) on Gϕ (otherwise a premise would carry this annotation at two
positions). Second, the principal cell C [Γ ` ∆,Gϕ] in (`G) may be the rightmost cell of the
conclusion hypersequent, in which case both C ′ and H2 are empty, and the rule has two
or three premises depending on whether the principal cell is a cluster or not. When the
principal cell is not rightmost, then C ′ is not allowed to be empty, and the rule has one or
two extra premises depending on whether C ′ is a cluster or not. The situation is symmetric
for (`H).

Finally, the special rules of Figure 3 are, again, best explained through the soundness
proof: they correspond to situations that can be ruled out or simplified by taking into account
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. . .

. . .

(ax)
S1 ; p ` p (G p) ; {G p, p ` (Gϕ)} S1; ` p,G p (G p) ; {G p, p ` (Gϕ)}

({(G)})

S1 ; G p ⊃ p ` p (G p) ; {G p, p ` (Gϕ)}
(⊃ `)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; ` p (G p) ; {G p, p ` (Gϕ)}
(G`)
. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {G p, p ` (Gϕ)}
(`G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(`G)

Figure 4 In a proof of S1 (Example 3.9) branches with a non-cluster cell for (G p) are provable.

the annotation-respecting nature of our semantics. These rules are important to be able to
extract counter-models from proof search failures (i.e., sequents on which no rule applies).

Examples. We have designed our rules so that they are all invertible: by keeping in premises
all the formulæ from the conclusion, we ensure that validity is never lost by applying a rule;
this will be shown formally in Proposition 3.11. In practice, keeping all formulæ can be
unnecessarily heavy. Fortunately, it is easy to see that the following weakening rules are
admissible:

(weak `)
H [Γ ` ∆]
H [Γ, ϕ ` ∆]

H [Γ ` ∆]
H [Γ ` ϕ,∆]

(` weak)

I Example 3.8. The formula ϕ0 = P p ∧ H (p ⊃ P p) from Example 2.1 is not satisfiable in
KtL`.3, so the dual sequent S0 = H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥) is valid. Here is
indeed a proof tree, with implicit uses of propositional and weakening rules, and principal
formulæ shown in orange.

(ax)
H (p ⊃ ⊥), p ` p ; S0 H (p ⊃ ⊥), p ` H (p ⊃ ⊥) ; S0

(ax)

p ⊃ (H (p ⊃ ⊥) ⊃ ⊥),H (p ⊃ ⊥), p ` ; S0
(⊃ `)

H (p ⊃ ⊥), p ` ; H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥)
(H`)

H (p ⊃ (H (p ⊃ ⊥) ⊃ ⊥)) ` H (p ⊃ ⊥)
(`H)

I Example 3.9. Since ϕ1 = G (p ⊃ F p)∧G (¬p ⊃ F¬p)∧F¬p∧F (p∧G p) from Example 2.1
is satisfiable, its dual sequent S1 = G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ where
ϕ = p ⊃ ⊥ ∨ (G p ⊃ ⊥) is invalid, although with no counter-models below ω · 2.

In our calculus, proof search for S1 will succeed on branches not considering at least
two clusters; we show in Figure 4 one such branch, with implicit uses of propositional and
weakening rules, and principal formulæ shown in orange.

However, proof search will fail on the branch shown in Figure 5, which corresponds to
the counter-model described in Section 2.

3.4 Soundness
I Proposition 3.10. The rules of HKtL`.3 are sound: if the premises of a rule instance
are valid, then so is its conclusion.

Proof. We show the contrapositive: considering an application of a rule with a conclusion
hypersequent H and a counter-model (M, µ) of H with M = (α, V ) and H ↪→µ α, we provide
a counter-model of one of the premises (or a contradiction when there is no premise).
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. . .

. . .

. . .

S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p ` G (p ⊃ ⊥) (G (p ⊃ ⊥))}
S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p, p ⊃ (G (p ⊃ ⊥) ⊃ ⊥) ` (G (p ⊃ ⊥))}

(⊃ `)

S1 ; {` G p, p (G p)} ; {G p, p ` (Gϕ) ‖ p ` (G (p ⊃ ⊥))}
(G`)
. . .

S1 ; {` G p, p (G p)} ; {G p, p ` G (p ⊃ ⊥) (Gϕ)}
(`G)

S1 ; {G p ⊃ p ` p (G p)} ; {p ⊃ (G (p ⊃ ⊥) ⊃ ⊥),G p, p ` (Gϕ)}
(⊃ `)×2

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {` p (G p)} ; {G p, p ` (Gϕ)}
(G`)×2
. . .

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,Gϕ ; {G p, p ` (Gϕ)}
(`G)

G (G p ⊃ p),G (p ⊃ (G (p ⊃ ⊥) ⊃ ⊥)) ` G p,G (p ⊃ ⊥ ∨ (G p ⊃ ⊥))
(`G)

Figure 5 A failed branch in the proof of S1 (Example 3.9).

Since we will often have to extend an embedding with a value for a new position, we
define µ + (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) = µ(k) for k < i and
µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

A full proof is given in Appendix B, and we cover here only a few key cases. Consider
first an application of (`G) with Γ ` ∆,Gϕ at position i, when C ′;H2 is empty. For any
βi < µ(i) there exists γi with βi ≤ γi < µ(i) such that M, γi 6|= H(i), hence there also exists
γ′i > γi such that M, γ′i 6|= ϕ. Let γ be the least ordinal that contains all such γ′i. We have
that µ(i) ≤ γ.

If µ(i) = γ, then µ(i) must be a limit ordinal. Hence C 6= ? and the third premise H ′3
is available. We construct a counter-model (M, µ′) for it by taking µ′ = µ + (k 7→ γ),
where k = i+ 1 is the new position in H ′3. Indeed, we have that for any β′ < µ′(k) there
exists γ′ with β′ ≤ γ′ < µ′(k) and M, γ′ 6|= ϕ (the inequality can even be made strict).
Moreover, the annotation is respected by definition of γ: there cannot be any λ ≥ γ such
that M, λ 6|= ϕ.
Otherwise we conclude by observing that (M, µ′) is a counter-model of one of the first
two premises with µ′ = µ+ (k 7→ γ) where k is the newly created position. We check that
µ′ is monotone, because µ(i) < γ. If γ is a successor ordinal, (M, µ′) is a counter-model
of the first premise simply because the predecessor of γ invalidates ϕ and the annotation
is respected; both hold by construction. If γ is a limit ordinal we have a counter-model
(M, µ′) of the second premise: we do have that for any β′ < µ′(k) there exists γ′ with
β′ ≤ γ′ < µ′(k) that invalidates ϕ, and the annotation is respected by construction.

When C ′ ;H2 is not empty, we need to consider whether γ is less than the ordinal to which
the positions of C ′ are mapped by µ, and use the last two premises when it is not the case.

The case of (`H) is similar, but simpler in that we can take γ = λ + 1 where λ is
the least ordinal such that M, λ 6|= ϕ. Finally, annotation rules (Figure 3) rely on the
annotation-respecting condition on µ: informally, ϕ cannot be falsified at an ordinal beyond
µ(i) when i carries the annotation (Gϕ), thus the conclusions of ((G)) and ({(G)}) cannot
have counter-models, and ϕ must be satisfied at ordinals corresponding to Π ` Σ for ((Ḡ)). J

3.5 Completeness and Complexity
As in [3], completeness is a by-product of the very simple proof-search behaviour of our
calculus. As we shall see, all the rules are invertible and proof search branches are polynomially
bounded, as long as obvious pitfalls are avoided in the search strategy. Thus it is useless to
backtrack during proof-search. Moreover, proof attempts result in finite (polynomial depth)
partial proofs, whose unjustified leaves yield counter-models that amount (by invertibility)
to counter-models of the conclusion. Hence the completeness of our calculus. We detail this
argument below, and its corollary: proof-search yields an optimal coNP procedure for validity.
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(H`)
(ax)

H a, a ` a ; H b ` b ; H a ` a ; ` H a,H b
H a ` a ; H b ` b ; H a ` a ; ` H a,H b

b,H a ` a ; H b ` b,H a ; ` H a,H b
H a ` a ; H b ` b,H a ; ` H a,H b

(H`)
· · ·

H a ` a ; H b ` b ; ` H a,H b · · ·
(`H)

H a ` a ; ` H a,H b
(`H)

` H a,H b
(`H)

Figure 6 Proof search with a failure hypersequent and an immediately provable hypersequent.

I Proposition 3.11 (invertibility). In any rule instance, if a premise has a counter-model,
then so does its conclusion.

Proof. Considering a rule instance with a counter-model (M, µ) of a premise H, we build a
counter-model (M, µ′) of the conclusion H ′. Depending on the rule that is applied, H and H ′
will either have exactly the same structure, or H will have a new cell. Accordingly, we take
µ′ to be the restriction of µ to the positions of H ′ (and adapt it accordingly for the positions
that have been shifted). It is indeed a proper annotation-respecting embedding of H ′ into
M. It is then easy to see that (M, µ′) is a counter-model of H ′, since any sequent H ′(i) is
contained in the corresponding sequent H(j): M, µ(j) 6|= H(j) implies M, µ′(i) 6|= H ′(i). J

We characterise next the proof attempts that we consider for proof search, and show how
to extract counter-models when such attempts fail.

I Definition 3.12. We say that a sequent is immediately provable if it is provable by an
application of (H`) or ({H`}) followed by (ax). We call partial proof a finite derivation tree
whose internal nodes correspond to rule applications, but whose leaves may be unjustified
hypersequents, and that satisfies two conditions: any rule application should be such that all
premises differ from the conclusion; immediately provable sequents must be proven through
(ax) and (H`) or ({H`}). Finally, we call failure hypersequent a hypersequent that can only
be the conclusion of a rule instance when it is also one of its premises.

Obviously, a hypersequent has a proof if and only if it has a partial proof without
unjustified leaves. The two conditions on partial proofs amount to a simple proof search
strategy that avoids loops. The second one addresses specifically loops arising from repeated
applications of (`H), in branches where several new cells are created for the same Hϕ

formula: this results in two cells of the form Γ,Hϕ ` ϕ,∆ and thus in an immediately
provable hypersequent. This is seen, for example, in the first premise of the third application
of rule (`H) in Figure 6. Finally, failure hypersequents correspond to points where proof
search is stuck, as with the unjustified hypersequent of Figure 6. We show next that such
hypersequents are invalid.

I Proposition 3.13. Any failure hypersequent H has a counter-model.

Proof sketch, details in Appendix B. We construct a counter-model over α = o(H), taking
µ as the only possible embedding, notably satisfying µ(i) = ω · k if i belongs to the k-th
cluster of H and µ(i) = ω · k +m if i is the m-th cell between the k-th and the next cluster
(if any). We can then take a function pos : α → dom(H) which maps worlds β < α to
positions of H in a way that respects the partial order induced by H. For a position i that
does not belong to a cluster, pos(β) = i if and only if β is the predecessor of µ(i). A position
i appearing in a cluster must correspond to an infinite sequence of ordinals of limit µ(i),
so that for all i ∼ j and β, if pos(β) = i then there exists γ with β < γ < µ(i) = µ(j)
such that pos(γ) = j; informally, this ensures that positions i and j inside a cluster are
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“infinitely interleaved” within µ(i) = µ(j). For example, for the unjustified hypersequent
of Figure 5, we could set pos(0) = 1, pos(i) = 2 for all other i < ω, pos(ω + 2j) = 3
and pos(ω + 2j + 1) = 4 for all j ≥ 0. We finally define the valuation V : Φ → ℘(α) by
V (p) = {β < α | ∃Γ,∆ . H(pos(β)) = (p,Γ ` ∆)} and let M = (α, V ).

We claim that M, γ 6|= H(pos(γ)) for all γ < α: we prove by induction on ψ that, if ψ
appears in the left-hand (resp. right-hand) side of H(pos(γ)), then M, γ � ψ (resp. M, γ 2 ψ).
Most cases follow a standard argument, we only detail the one where ψ = Gϕ occurs on the
right of H(pos(γ)). Since (`G) does not apply, an annotation must already exist for Gϕ. By
rules ((G)) and ({(G)}) this annotation must be on a position i such that pos(γ) - i. By
definition of annotations, ϕ occurs on the right of H(i). Hence, there exists γ′ > γ such that
i = pos(γ′), and M, γ′ 2 ϕ, thus M, γ 2 Gϕ.

From there we can check that H ↪→µ α, and the rule ((Ḡ)) enforces that µ is annotation-
respecting. It is then easy to conclude that (M, µ) is a counter-model of H. J

We now turn to establishing that proof search terminates, and always produces branches
of polynomial length. For a hypersequent H, let len(H) be its number of sequents (i.e., the
size of dom(H)), and |H| the number of distinct subformulæ occurring in H.

I Lemma 3.14 (small branch property). For any partial proof of a hypersequent H, any
branch of the proof is of length at most 2(|H|+ len(H) + 1) · |H|.

Proof. Let H be a hypersequent, P a partial proof of it, and B a branch of P. Remark
that the number of positions in hypersequents of β is bounded by |H| + len(H) + 1: we
have at most len(H) positions initially, and a new position may only be created once per
modal formula among at most |H| formulæ plus possibly one more (overall) to create an
immediately provable hypersequent. This is by definition of the annotation system for G
formulæ, and because a second cell created by (`H) on the same Hϕ would belong to an
immediately provable sequent. Any rule application adds some subformulæ among |H| to
the left or to the right of the turnstile at a position among |H| + len(H) + 1, hence with
2(|H|+ len(H) + 1) · |H| choices. Thus B is of length at most 2(|H|+ len(H) + 1) · |H|. J

We conclude that HKtL`.3 is complete, and also enjoys optimal complexity proof search.

I Theorem 3.15 (completeness). Every valid hypersequent H has a proof in HKtL`.3.

Proof. Assume that H is not provable. Consider a partial proof P of H that cannot be
expanded any more: its leaves cannot be obtained as the conclusion of a rule instance.
Such a partial proof exists by Lemma 3.14. Any unjustified leaf of that partial proof has a
counter-model by Proposition 3.13, and by invertibility it is also a counter-model of H. J

I Proposition 3.16. Proof search in HKtL`.3 is in coNP.

Proof. Proof search can be implemented in an alternating Turing machine maintaining the
current hypersequent on its tape, where existential states choose which rule to apply (and
how) and universal states choose a premise of the rule. By Lemma 3.14, the computation
branches are of length bounded by a polynomial. By Proposition 3.11, the non-deterministic
choices in existential states can be replaced by arbitrary deterministic choices, thus the
resulting Turing machine has only universal states, hence is in coNP. J
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4 Logic on Given Ordinals

We have designed a proof system that is sound and complete for KtL`.3, and enjoys optimal
complexity proof search. We now show that this system can easily be enriched to obtain
decision procedures not only for tense logic over arbitrary ordinals, but also for tense logic
over specific ordinals. We first observe that the logic can only distinguish ordinals up to ω2,
which should be contrasted with [12]. Then we show how to capture validity over ordinals
below some ω · k +m, and finally how to reason over a specific ordinal of this form.

I Proposition 4.1 (small model property). If a hypersequent H has a counter-model, then it
has a counter-model of order type α < ω · (|H|+ len(H) + 1).

Proof. This is a corollary of Theorem 3.15. By the proof of Lemma 3.14, the hypersequents in
a failure hypersequent – which are not immediately provable – have at most |H|+ len(H) non-
empty cells. The counter-model extracted in Proposition 3.13 from a failure hypersequent
H ′ is over o(H ′) < ω · (|H| + len(H) + 1). A counter-model for H is then obtained by
Proposition 3.11, with a different embedding but the same structure. J

In particular, for a formula ϕ, the hypersequent H = ` ϕ has |H| = |ϕ| and len(H) = 1,
hence the ω · (|ϕ|+ 2) bound announced in the introduction.

Next we observe that we can easily enrich our calculus to obtain a proof system for tense
logic over ordinals below a certain type α.

I Proposition 4.2. Let α be an ordinal. The proof system HKtL`.3 enriched with the
following axiom is sound and complete for tense logic over ordinals β ≤ α:

H
(ordα) if o(H) > α

Proof. The soundness argument for the rules of HKtL`.3 (Proposition 3.10) carries over to
the restricted semantics, since the underlying structure (and ordinal) is never modified in
the argument. Conversely, the completeness argument of Theorem 3.15 can be strengthened
because, thanks to the new rule, we can guarantee that any failure hypersequent H is such
that o(H) ≤ α, hence the extracted counter-model is also below this bound. J

I Example 4.3. When extending HKtL`.3 to check for validity below ω, the failing branch
of Figure 5 can be completed, as well as the other failing branches since they all involve
hypersequents of order type ω · 2, and S1 becomes provable.

We finally show how to capture validity at a fixed ordinal α < ω2. The basic idea is to
start with a hypersequent H such that o(H) = α = ω · k +m for some finite k and m, and
take rule (ordα) to forbid larger ordinals. The only catch is that we should check that the
formula of interest in valid in all possible positions. Let us write {`}k for {`}; · · · ; {`} with
k clusters containing the empty sequent, and (`)m for `; · · · ;` with m cells containing the
empty sequent.

I Proposition 4.4. The formula ϕ is valid in all structures of order type exactly α = ω ·k+m
if and only if HKtL`.3 extended with (ordα) proves all hypersequents of the form

{`}k1 ; ` ϕ ; {`}k2 ; (`)m and {`}k ; (`)m1 ; ` ϕ ; (`)m2

where k1 + k2 = k, k2 > 0 and m1 + m2 = m − 1. In other words, one must consider all
hypersequents H containing one sequent ` ϕ and otherwise only empty sequents, and such
that o(H) = ω · k +m.
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For instance, when k = m = 0, ϕ vacuously holds in all worlds of (0, V ). When k = 0 and
m = 1 we are checking ` ϕ only, and (ordα) closes any branch where a new cell is created,
rendering modal formulæ trivially true. When k = 1 and m = 0 we are checking ` ϕ ; {`}.

Proof. If ϕ holds in all worlds of all structures of the form (α, V ) for some V , the hyper-
sequents are valid and thus provable in HKtL`.3 with (ordα). We prove the converse by
contradiction. Assume that all the hypersequents hold and M, β 6|= ϕ for some M = (α, V )
and β < α. If ω · k1 ≤ β < ω · (k1 + 1) with k1 + 1 ≤ k we can build an embedding to obtain
a counter-model of the first kind of sequent. Otherwise, ω · k ≤ β < ω · k +m and we derive
a counter-model of the second kind of sequent. J

I Example 4.5. Consider the formula Gϕ for ϕ = G⊥ ⊃ ⊥. We cannot prove Gϕ in general,
since this formula is not satisfied over finite ordinals, as witnessed by the following partial
proof and its failure hypersequent (in the left branch) corresponding to a counter-model over
the ordinal 2:

(` ⊃)
` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ)
` Gϕ; ` ϕ (Gϕ)

` Gϕ ; { G⊥,⊥ ` ⊥, ϕ (Gϕ)}
(⊥)

` Gϕ ; { G⊥ ` ⊥, ϕ (Gϕ)}
({G`})

` Gϕ ; { ` ϕ (Gϕ)}
(` ⊃)

` Gϕ
(`G)

According to Proposition 4.4, over α = ω, i.e., k = 1 and m = 0, we need to prove
` Gϕ ; {`} in HKtL`.3 extended with (ordω), for which the presence of the cluster will be
crucial. The extra rule (ordω) is actually not necessary in this case, but simplifies the proof.
We start with an application of (`G), this time with three premises:

` Gϕ; ` ϕ (Gϕ) ; { ` } ` Gϕ ; { ` ϕ (Gϕ)} ; { ` } ` Gϕ ; { ` Gϕ}
` Gϕ ; { ` }

(`G)

The first premise is derived as follows:

` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ) ; {⊥ ` }
(⊥)

` Gϕ ; G⊥ ` ⊥, ϕ (Gϕ) ; { ` }
(G`)

` Gϕ; ` ϕ (Gϕ) ; { ` }
(` ⊃)

The middle premise can simply be discharged by (ordω). For the last premise, we use
(`G) inside the cluster, which yields three premises: ` Gϕ ; { ` Gϕ} ; ` ϕ (Gϕ) and `
Gϕ ; { ` Gϕ} ; {` ϕ (Gϕ)} are discharged by (ordω), while the last one is derived as follows:

` Gϕ ; {⊥ ` Gϕ ‖ G⊥ ` ⊥, ϕ (Gϕ)}
(⊥)

` Gϕ ; { ` Gϕ ‖ G⊥ ` ⊥, ϕ (Gϕ)}
(G`)

` Gϕ ; { ` Gϕ ‖ ` ϕ (Gϕ)}
(` ⊃)

5 Related Work and Conclusion

We have designed the first proof system for KtL`.3, i.e. tense logic over ordinals. Thanks to
Indrzejczak’s ordered hypersequents [15], enriched with clusters and annotations as in [3], our
system enjoys optimal complexity proof search, allows to derive small model properties, and
can be extended into a proof system for variants of the logic over bounded or fixed ordinals.
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Our (`H) rule is broadly related to the rule that Avron uses in his system for KL [1].
Unlike Avron, we cannot work with standard sequents due to the presence of converse
modalities. In turn, this allows us to consider a somewhat simpler right introduction rule for
H , which does not have to take into account H Γ antecedents as they will remain available in
the principal cell when a new one is created.

The system most closely related to HKtL`.3 is obviously the calculus for Kt4.3 [3] in
which we introduced the notions of clusters and annotations. These were inspired by the
small model property of Kt4.3 [26], and it is notable that we could put them to work in the
considerably richer setting of KtL`.3; it is the main technical contribution of the present
paper. In retrospect, we believe that it is possible to present the semantics of HKtL`.3
hypersequents as a particular case of HKt4.3 hypersequents: the semantics µ(i) of a position
in a cluster would be infinite to the left and right for HKt4.3, but only infinite to the right
for HKtL`.3. This shift of perspective, together with the addition of rule ((Ḡ)), allows to get
rid of the somewhat awkward use of different semantics for the soundness and completeness
of HKt4.3. It also frees the proof-theoretic development from the small model property; in
fact, proof theory then allows to derive the small model property just as precisely. Of course,
there are also fundamental differences between HKtL`.3 and HKt4.3: well-foundedness
allows us to take Hϕ assumptions in rule (`H), which renders (Hϕ) annotations useless; this
benefit of well-foundedness for proof search is usual [1, 4].
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A Axiomatisation

For reference, the logic KtL`.3 can also be defined as the set of theorems generated by
necessitation, modus ponens and substitution from classical tautologies and the following
axioms [6, Ch. 4]:

G (p ⊃ q) ⊃ (G p ⊃ G q) (Kr)
H (p ⊃ q) ⊃ (H p ⊃ H q) (K`)

p ⊃ G P p (tr)
p ⊃ H F p (t`)

F p ∧ F q ⊃ F (p ∧ F q) ∨ F (p ∧ q) ∨ F (q ∧ F p) (.3r)
P p ∧ P q ⊃ P (p ∧ P q) ∨ P (p ∧ q) ∨ P (q ∧ P p) (.3`)

H (Hφ ⊃ φ) ⊃ Hφ (L`)

The first two axioms are simply the Kripke schema, given for each modality. Next we find
the t axioms, which force the two modalities to be converses of each other. The canonical
models of the trichotomy axioms .3 have accessibility relationships that are non-branching
to the left and to the right. Finally, the axiom (L`) of Gödel-Löb ensures that the models
are transitive and well-founded to the left.

B Detailed Proofs

I Proposition 3.10. The rules of HKtL`.3 are sound: if the premises of a rule instance
are valid, then so is its conclusion.

Proof. We show the contrapositive: considering an application of a rule with a conclusion
hypersequent H and a counter-model (M, µ) of H with M = (α, V ) and H ↪→µ α an
annotation-respecting embedding, we provide a counter-model of one of the premises (or a
contradiction when there is no premise).

Since we will often have to extend an embedding with a value for a new position, we
define µ + (i 7→ α) as the mapping µ′ such that µ′(i) = α, µ′(k) = µ(k) for k < i and
µ′(k + 1) = µ(k) for k ≥ i in the domain of µ.

The case of propositional rules (Figure 1) is immediate: The usual reasoning applies to
the principal sequent, and the same embedding is used to obtain a counter-model of one of
the premises.

Next we turn to the modal rules of Figure 2:
Consider the case of (G`), applied with Gϕ,Γ ` ∆ at position i and Π ` Σ at position
j such that i - j. Remark that the rule ensures that i 6= j, but we do not need this
assumption to justify it. We show that (M, µ) is an annotation-respecting counter-model

http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1006/inco.1993.1006
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of the premise H ′, concentrating on the only difference with H, at position j. For clarity
we distinguish two cases:

When i ≺ j, we also have µ(i) < µ(j). Since (M, µ) is a counter-model of H , by taking
an arbitrary βi < µ(i) we obtain γi such that βi ≤ γi < µ(i) such that M, γi 6|= H(i).
In particular, M, γi |= Gϕ. Now, considering an arbitrary β < µ(j) we need to exhibit
γ such that β ≤ γ < µ(j) and M, γ 6|= H ′(j). By taking βj = max(β, µ(i)) < µ(j)
we obtain γj such that βj ≤ γj < µ(j) and M, γj 6|= H(j). Furthermore, since
γi < µ(i) ≤ βj ≤ γj , we also have M, γj |= ϕ and M, γj |= Gϕ, hence M, γj 6|= H ′(j).
When i ∼ j we have that µ(i) = µ(j) and it is a limit ordinal because we are considering
positions in a cluster. Consider an arbitrary β < µ(i). There exists γi such that
β ≤ γi < µ(i) and M, γi 6|= H(i). Because µ(i) is a limit ordinal, γi + 1 < µ(i) = µ(j).
Again, there exists γj such that γi + 1 ≤ γj < µ(j) and M, γj 6|= H(j). But, since
γi < γj we also have that γj satisfies ϕ and Gϕ, hence M, γj 6|= H ′(j).

The case of rule ({G`}) is covered by the second part of the previous argument, by taking
i = j. Indeed, we have i ∼ i when ({G`}) applies at position i.
Consider now an application of rule (H`) with Π ` Σ at position i and Hϕ,Γ ` ∆ at
j. We have i - j, hence µ(i) ≤ µ(j). Consider an arbitrary β < µ(i). There exists γi
such that β ≤ γi < µ(i) and M, γi 6|= H(i). We claim, as before, that there exists γj
such that γi < γj < µ(j) and M, γj 6|= H(j). Indeed, if µ(i) < µ(j) then there exists γj
with µ(i) ≤ γj < µ(j) that falsifies H(j). Otherwise µ(i) = µ(j) but then this must be
a limit ordinal and, by considering γi + 1 < µ(i) = µ(j) we obtain γi < γj < µ(j) that
invalidates H(j). Having M, γj 6|= H(j), we also have M, γj |= Hϕ. Thus γi satisfies ϕ
and Hϕ, and M, γi 6|= H ′(i) as needed.
The case of ({H`}) is covered by the previous argument.
Consider an application of (`G) with Γ ` ∆,Gϕ at position i. For any βi < µ(i) there
exists γi with βi ≤ γi < µ(i) such that M, γi 6|= H(i), and thus M, γi 6|= Gϕ. Hence there
also exists γ′i > γi such that M, γ′i 6|= ϕ. Let γ be the least ordinal that contains all such
γ′i. We have that µ(i) ≤ γ.
We now distinguish several cases regarding γ. When C ′;H2 is not empty let j be the first
position of the conclusion hypersequent that is in C ′.

If µ(i) = γ, then µ(i) must be a limit ordinal. Hence C 6= ? and the third premise H ′3
is available. We construct a counter-model (M, µ′) for it by taking µ′ = µ+ (k 7→ γ),
where k = i + 1 is the new position in H ′3. Indeed, we have that for any β′ < µ′(k)
there exists γ′ with β′ ≤ γ′ < µ′(k) and M, γ′ 6|= ϕ (the inequality can even be made
strict). Moreover, the annotation is respected by definition of γ: there cannot be any
λ ≥ γ such that M, λ 6|= ϕ.
If C ′ ;H2 is empty, or γ < µ(j), we conclude by observing that (M, µ′) is a counter-
model of one of the first two premises with µ′ = µ+ (k 7→ γ) where k is the position of
the new cell in these premises. We check that µ′ is monotone, because µ(i) < γ, and
γ < µ(j) when it is defined. If γ is a successor ordinal, (M, µ′) is a counter-model of
the first premise simply because the predecessor of γ invalidates ϕ and the annotation
is respected; both hold by construction. If γ is a limit ordinal we have a counter-model
(M, µ′) of the second premise: we do have that for any β′ < µ′(k) there exists γ′ with
β′ ≤ γ′ < µ′(k) that invalidates ϕ, and the annotation is respected by construction.
Otherwise µ(j) ≤ γ.
∗ If µ(j) < γ, we obtain a counter-model (M, µ) of the fourth premise H ′4. We check it

for the only position whose sequent has changed between H and H ′4, that is position
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j. Take any βj < µ(j). We know that there exists γj with βj ≤ γj < µ(j) such that
M, γj 6|= H(j). But, since γj < µ(j) < γ, there exists δ such that γj < δ < γ and
M, δ 6|= ϕ. Thus M, γj 6|= Gϕ, and M, γj 6|= H ′4(j).

∗ If µ(j) = γ and is a limit ordinal, we also obtain a counter-model (M, µ) of the
fourth premise. This time, for any βj < µ(j), we know that there exists γj with
βj ≤ γj < µ(j) such that M, γj 6|= H(j). But, since γj < γ and γ is a limit ordinal,
there still exists δ such that γj < δ < γ and M, δ 6|= ϕ. Thus M, γj 6|= Gϕ, and
M, γj 6|= H ′4(j).

∗ Finally, if µ(j) = γ and is not a limit ordinal, then the position j is not in a cluster,
so the fifth premise is available. We claim that it admits (M, µ) as a counter-model.
Let θ be the predecessor of γ = θ + 1, which satisfies M, θ 6|= ϕ by definition of γ.
Since (M, µ) is a counter-model of H we also have M, θ 6|= H(j). This allows us to
conclude, together with the fact that, as before, the new annotation is respected by
definition of γ (there cannot be any λ ≥ γ such that M, λ 6|= ϕ).

Finally we consider an application of rule (`H) with Γ ` ∆,Hϕ at position i. Let j be
the first position of C ′, if it exists. For any βi < µ(i) there exists γi with βi ≤ γi < µ(i)
that invalidates H(i), thus there exists γ′i < γi < µ(i) such that M, γ′i 6|= ϕ. Let γ be the
successor of the least ordinal among all such γ′i. We have γ < µ(i).

If H2;C ′ is empty, or µ(j) < γ, then (M, µ′) is a counter-model of the first premise
with µ′ = µ+ (k 7→ γ) where k is the new position in that premise. We do have that
the predecessor of γ satisfies Hϕ (by minimality) but not ϕ (by definition). Moreover,
µ′ is indeed annotation-respecting.
If µ(j) = γ then C ′ cannot be a cluster, because γ is a successor. In that case (M, µ)
directly yields a counter-model of the third premise.
Otherwise γ < µ(j) and (M, µ) is a counter-model of the second premise.

We finally consider the case of annotation rules (Figure 3):
Consider an application of ((G)), with H(i) = Γ ` ∆ (Gϕ) and H(j) = Π ` Σ,Gϕ,
and i ≺ j. By definition of an embedding, we have µ(i) < µ(j). Since (M, µ) is a
counter-model of H , there exists γj such that µ(i) ≤ γj < µ(j) and M, γj 6|= H(j). There
also exists γi < µ(i) such that M, γi 6|= H(i). Hence there exists γ′ > γj such that
M, γ′ 6|= ϕ. A fortiori, γ′ > γi, so µ does not respect the annotation on i, contradiction.
Consider an application of ({(G)}) with H(i) = Γ ` ∆,Gϕ (Gϕ). For any β < µ(i) there
exists γ with β < γ such that M, γ 6|= ϕ. Because µ is annotation-respecting, we must
have γ < µ(i), thus µ(i) is a limit ordinal. This contradicts the fact that i is not in a
cluster.
Consider an application of ((Ḡ)) with Γ ` ∆ (Gϕ) at position i and Π ` Σ at position
j, with i ≺ j. Since µ is annotation-respecting we have that, for all λ ≥ µ(i), M, λ |= ϕ.
Hence (M, µ) is a counter-model of the premise. J

I Proposition 3.13. Any failure hypersequent H has a counter-model.

Proof. Let α = o(H). We define µ : dom(H)→ α+ 1 \ {0} as follows:

µ(i) = m if i is the m-th cell of H and appears before its first cluster;
µ(i) = ω · k if i belongs to the k-th cluster of H;
µ(i) = ω · k +m if i is the m-th cell between the k-th and the next cluster (if any).

Now let pos : α→ dom(H) be a function such that:
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(a) ∀β < β′ < α, pos(β) - pos(β′)
(b) ∀β < α, ∀i ∈ dom(H), β < µ(i)⇔ (pos(β) - i or pos(β) = i)
(c) ∀β < α, ∀i ∈ dom(H), pos(β) - i⇒ ∃β < γ < µ(i), i = pos(γ)
There always exists one such function. Its choice is quite constrained due to the definitions
of α and µ. Positions i that are not in a cluster will be such that i = pos(β) for a single β,
typically the predecessor of µ(i). A position i appearing in a cluster must correspond to
an infinite sequence of ordinals of limit µ(i), so that for all i ∼ j and β, if pos(β) = i then
there exists γ with β < γ < µ(i) = µ(j) such that pos(γ) = j; informally, this ensures that
positions i and j inside a cluster are “infinitely interleaved” within µ(i) = µ(j).

We finally define a valuation V : Φ → ℘(α) by V (p) = {β < α | ∃Γ,∆ . H(pos(β)) =
(p,Γ ` ∆)} and let M = (α, V ). We now claim that M, γ 6|= H(pos(γ)) for all γ < α: we
prove by induction on ψ that, if ψ appears in the left-hand (resp. right-hand) side of the
turnstile in H(pos(γ)), then M, γ � ψ (resp. M, γ 2 ψ).

If ψ is an atom p ∈ Φ the results follow by definition of V , and because (ax) does not
apply to H. The propositional cases are obtained by induction hypothesis, because the
corresponding rules of Figure 1 have already been applied.
The cases of modal formulæ on the left-hand side are similar, we only detail that of H .
If ψ = Hϕ occurs on the left-hand side of H(pos(γ)) then by (H`) and ({H`}), the
formula ϕ must occur on the left-hand side of any H(i) with i - pos(γ). Moreover, for
all γ′ < γ, we have pos(γ′) - pos(γ) by a, so M, γ′ � ϕ, and thus M, γ � ψ.
Assume that ψ = Gϕ occurs on the right of H(pos(γ)). Since (`G) does not apply, an
annotation must already exist for Gϕ. By rules ((G)) and ({(G)}) this annotation must
be on a position i such that pos(γ) - i. By definition of annotations, ϕ occurs on the
right of H(i). By c, there exists γ′ > γ such that i = pos(γ′). We then have M, γ′ 2 ϕ,
thus M, γ 2 Gϕ.
Assume finally that ψ = Hϕ occurs on the right of H(pos(γ)). We prove by a sub-
induction on pos(γ) that M, γ 6|= Hϕ. Since (`H) does not apply, and since the first
premise necessarily differs from the conclusion, it must be that there is a cell C ′ preceding
the cell that contains pos(γ), and that the last two premises (if available) would coincide
with H. Let i be the first position in C ′. Take an arbitrary λ < µ(i) such that pos(λ) = i

(such a λ always exists, thanks to b and c instantiated with β = 0). Since i ≺ pos(γ) it
must be that λ < γ. As noted above, we have either that Hϕ belongs to the right-hand
side of H(i), or that ϕ belongs to its left-hand side. In the first case, we obtain M, λ 6|= Hϕ
by induction hypothesis on i < pos(γ). In the second case we directly have M, λ 6|= ϕ.
We conclude either way that M, γ 6|= Hϕ.

We can check that H ↪→µ α: the conditions of Definition 3.6 hold by construction.
We must also check that µ is annotation-respecting. Assume that H(i) carries the

annotation (Gϕ), and that there is a world M, β 6|= ϕ. Let j = pos(β). If j - i, then by c
there exists γ with β < γ < µ(i) such that i = pos(γ), so β < µ(i) as expected. If i ≺ j, then
by the rule ((Ḡ)) ϕ occurs on the left of H(j), contradicting M, β 6|= ϕ. Otherwise, i = j

and by b we have β < µ(pos(β)) = µ(i) as expected.
Finally, (M, µ) is a counter-model of H. Indeed, for all i ∈ dom(H) and β < µ(i) there

exists γ with β ≤ γ < µ(i) such that pos(γ) = i, and hence M, γ 6|= H(i): if pos(β) = i, we
can take γ = β, else b enforces pos(β) - i, and c provides one such γ. J
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Abstract
Good-for-Games (GFG) automata offer a compromise between deterministic and nondetermin-
istic automata. They can resolve nondeterministic choices in a step-by-step fashion, without
needing any information about the remaining suffix of the word. These automata can be used
to solve games with ω -regular conditions, and in particular were introduced as a tool to solve
Church’s synthesis problem. We focus here on the problem of recognizing Büchi GFG automata,
that we call Büchi GFGness problem: given a nondeterministic Büchi automaton, is it GFG?
We show that this problem can be decided in P, and more precisely in O(n4m2|Σ|2) , where n
is the number of states, m the number of transitions and |Σ| is the size of the alphabet. We
conjecture that a very similar algorithm solves the problem in polynomial time for any fixed
parity acceptance condition.
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1 Introduction

The fundamental difference between determinism and nondeterminism is one of the deep
questions asked by theoretical computer science. The P versus NP problem is an emblematic
example of the fact that many basic questions about the power of nondeterminism are still
not well-understood. In this work, we investigate an automaton model that offers a middle
ground between determinism and nondeterminism, while retaining some advantages of both
paradigms in the framework of automata theory. Although this model was introduced as a
tool to solve a specific problem – Church’s synthesis – we believe that it is a natural stepping
stone on our way to get a better understanding of the power of nondeterminism in automata
theory.

We will start by mentioning the historical motivation for the model of Good-for-Games
(shortly GFG) automata. One of the classical problems of automata theory is synthesis –
given a specification, decide if there exists a system that fulfils it and if there is, automatically
construct one. The problem was posed by Church [5] and solved positively by Büchi and
Landweber [3] for the case of ω -regular specifications. Henzinger and Piterman [10] have
proposed the model of GFG automata, that can be seen as a weakening of determinism
while still preserving soundness and completeness when solving the synthesis problem. An
automaton is GFG if there exists a strategy that resolves the nondeterministic choices, by
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taking into account only the prefix of the input ω -word read so far. The strategy is supposed
to construct an accepting run of the automaton whenever an ω -word from the language is
given. The notion of GFG automata was independently discovered in [6] under the name
history-determinism, in the more general framework of regular cost functions. It turns out
that deterministic cost automata have strictly smaller expressive power than nondeterministic
ones and therefore history-determinism is used whenever a sequential model is needed.

We emphasize the fact that although the model of GFG automata requires the existence
of a strategy resolving the nondeterminism, this strategy is not used in algorithms but only
in proofs. Therefore, it is not a part of the size of the input in computations based on
GFG automata. The model of GFG automata offers a compromise between determinism
and nondeterminism: in particular, as deterministic automata, it preverses soundness of
composition with games and trees [10, 1], while as nondeterministic automata, it can exhibit
exponential succinctness compared to deterministic automata [15]. Properties of GFG
automata are currently being actively investigated, and most of what we know about them
has been uncovered only very recently, with several important questions still open. A brief
history of recent advances in the understanding of GFG automata is given in Section 1.1
“Related works”.

A major challenge in the understanding of GFG automata is to be able to decide efficiently
whether an input automaton is GFG. If C is an accepting condition, for instance C ∈ {Büchi,
coBüchi, Parity} , we call C GFGness problem the following decision problem:

Input: A nondeterministic automaton A with accepting condition C
Output: Is A a GFG automaton ?

This problem has been posed in [10], where an EXPTIME algorithm is given for the
general case of parity automata. The algorithm makes use of a deterministic automaton for
L(A) , which can be built in exponential time. The problem is further studied in [15], where
the following results are obtained:

The coBüchi GFGness problem is in P.
The Büchi GFGness problem is in NP.
In general, the C GFGness problem is at least as hard as solving games with winning
condition C . This is tight for automata accepting all infinite words.

The precise complexity of the GFGness problem for Büchi and all higher parity conditions
remained open. In particular, even for parity conditions using only 3 ranks, the only known
upper bound is EXPTIME. In [14], an incremental algorithm to build GFG automata is given.
This algorithm uses as a subroutine an algorithm deciding the GFGness problem. This gives
an additional motivation to pinpoint the complexity of the GFGness problem, as it is a
bottleneck of the algorithm from [14].

In this work, we tackle the Büchi case, and we show that the Büchi GFGness problem is
in P. More precisely, we show that for a Büchi automaton A on alphabet Σ with n states
and m transitions, we can decide whether A is GFG in O(n4m2|Σ|2 ). We do so by reducing
the GFGness problem to a game where 3 tokens move in A . The correctness of the reduction
is showed using an intermediate construction using doubly exponentially many tokens.

1.1 Related Works
In the survey [7] two important results about GFG automata over finite words are mentioned:
first that every GFG automaton over finite words contains an equivalent deterministic
subautomaton, second that the GFGness problem is in P for automata on finite words.
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Additionally, a conjecture stating that every parity GFG automaton over ω -words contains
an equivalent deterministic subautomaton is posed. In [1], examples were given of Büchi and
coBüchi GFG automata which do not contain any equivalent deterministic subautomaton.
Moreover, a link between GFG and tree automata was established: an automaton for a
language L of ω -words is GFG if and only if its infinite tree version accepts the language
of trees that have all their branches in L . Experimental evaluation of GFG automata and
their applications to stochastic problems were discussed in [13]. In [15], it is shown that for
co-Büchi automata (and all higher parity conditions), GFG automata can be exponentially
more succinct than deterministic ones. For Büchi automata, this gap is not exponential,
and only a quadratic upper bound is known. Typeness properties of GFG automata are
established in [2], as well as complexities for changing between several acceptance conditions.
In [14], the model of GFG automata is generalized to the notion of width of a nondeterministic
automaton, GFG automata corresponding to width 1 , and an incremental algorithm is given
to build GFG automata from nondeterministic automata. The games with tokens we define
in the present work are very similar in spirit to the k -simulation games introduced in [9].
However, our games cannot be seen directly as particular instances of k -simulation games,
as the specific dynamics of the games are different.

2 Definitions

We will use Σ to denote a finite alphabet. The empty word is denoted ε . If i ≤ j , the set
{ i , i+1 , i+2 , . . . , j } is denoted [i, j] . The cardinal of a set X is denoted |X| . If u ∈ Σ∗ is
a word and L ⊆ Σ∗ is a language, the left quotient of L by u is u−1L = { v ∈ Σ∗ | uv ∈ L } .

2.1 Automata
A nondeterministic automaton A is a tuple (Q,Σ, q0,∆, F ) where Q is the set of states, Σ
is a finite alphabet, q0 ∈ Q is the initial state, ∆ : Q× Σ→ 2Q is the transition function,
and F ⊆ Q is the set of accepting states. We will often write p

a−→ q or p a−→ q ∈ ∆ to
signify that q ∈ ∆(p, a) , i.e. there is a transition from p to q labelled by a . If for all (p, a)
in Q × Σ , ∆(p, a) 6= ∅ , we say that the automaton is complete. In the following, we will
assume that all automata are complete, by adding a rejecting sink state ⊥ if needed. If
for all (p, a) ∈ Q× Σ , |∆(p, a)| = 1 , we say that A is deterministic. If u = a1a2 . . . is an
infinite word of Σω , a run of A on u is a sequence q0q1q2 . . . such that for all i > 0 , we
have qi ∈ ∆(qi−1, ai) . A run is said to be Büchi accepting if it contains infinitely many
accepting states, and coBüchi accepting if it contains finitely many non-accepting states.
Automata on infinite words will be called Büchi and coBüchi automata, to specify their
acceptance condition. Finally, we define the parity condition on infinite runs: each state q
has a rank rk(q) ∈ N , and an infinite run is accepting if the highest rank appearing infinitely
often is even. An automaton on infinite words using this acceptance condition is a parity
automaton. The language of an automaton A , denoted L(A) , is the set of words on which
the automaton A has an accepting run. If p is a state of A , the language accepted by A
with p as initial state will be denoted L(p) . A language is called ω -regular if it is recognized
by a nondeterministic Büchi automaton, or equivalently by a deterministic parity automaton.
Two automata are said equivalent if they recognise the same language.

An automaton A is Good-for-Games (GFG) if there exists a function σ : Σ∗ → Q (called
GFG strategy) that resolves the nondeterminism of A depending only on the prefix of the
input word read so far: over every word u = a1a2a3 . . . (finite or infinite depending on the
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type of automaton considered), the sequence of states σ(ε)σ(a1)σ(a1a2)σ(a1a2a3) . . . is a
run of A on u , and it is accepting whenever u ∈ L(A) . For instance every deterministic
automaton is GFG. See [1] for more introductory material and examples on GFG automata.

2.2 Games

A game G = (VE , VA, vI , E,W ) of infinite duration between two players Eve (Player E )
and Adam (Player A) consists of: a finite set of positions V being a disjoint union of VE
and VA ; an initial position vI ∈ V ; a set of edges E ⊆ V × V ; and a winning condition
W ⊆ V ω .

A play is an infinite sequence of positions v0v1v2 · · · ∈ V ω such that v0 = vI and for all
n ∈ N , (vn, vn+1) ∈ E . A play π ∈ V ω is winning for Eve if it belongs to W . Otherwise π
is winning for Adam.

A strategy for Eve (resp. Adam) is a function σE : V ∗×VE → V (resp. σA : V ∗×VA → V )
describing which edge should be played given the history of the play u ∈ V ∗ and the current
position v ∈ V . A strategy has to obey the edge relation, i.e. there has to be an edge in E

from v to σP (u, v) . A play π is consistent with a strategy σP of a player P ∈ {E,A} if for
every n such that π(n) ∈ VP we have π(n+ 1) = σP (v0 . . . vn−1, vn) .

A strategy for Eve (resp. Adam) is positional if it does not use the history of the play,
i.e. it is a function VE → V (resp. VA → V ).

We say that a strategy σP of a player P is winning if every play consistent with σP is
winning for player P . In this case, we say that P wins the game G .

A game is positionally determined if one of the players has a positional winning strategy in
the game. A game is half-positionally determined if whenever Eve wins, she has a positional
winning strategy.

A finite-memory strategy for Eve is a tuple (M,m0, σM , upd ) where
M is a finite set called the memory, and m0 ∈M is the initial memory state.
σM is a function M × VE → V ,
upd is a function M × V →M called the update function.

Such a tuple induces a strategy σE : V ∗ × VE → V for Eve in the original sense as follows.
First, the function upd∗ : V ∗ → M is defined by upd∗(ε) = m0 , and if (~u, v) ∈ V ∗ × V ,
upd∗(~u · v) = upd(upd∗(~u), v) . We can now define σE by σE(~u · v) = σM (upd∗(~u), v) .

A game is finite-memory determined if one of the players has a finite-memory winning
strategy.

I Remark 1. In the rest of the paper, for readability purposes, we will define games in a
slightly more informal manner. Namely we will allow sequences of moves of Eve and Adam
going through implicit states in the game. Note that it is always possible to come back to
the formal version defined in this section. We will also use examples of automata where the
acceptance condition is defined on transitions rather than on states, for clarity purposes.

2.2.1 Winning Conditions

A parity game is a game where W is a parity condition, i.e. where every position v has
rank rk(v) ∈ N , and the winning set W consists of infinite words for which the maximal
rank appearing infinitely often is even. The degree of a parity game is the number of ranks
used in its parity condition.

We will use the following results on parity games:
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I Theorem 2 ([8, 12, 4]). Parity games are positionally determined, and can be solved in
QuasiP.

I Theorem 3 ([16, 11, 17]). Parity games of fixed degree can be solved in polynomial time. In
particular, parity games of degree 3 with n positions and m edges can be solved in O(n ·m) .

If the winning set W is an ω -regular language of V ω , we say that the game is ω -regular.

I Theorem 4 ([3]). ω -regular games are finite-memory determined.

Solving an ω -regular game G = (V,E) can be costly: the classical procedure from [3] is
to build a deterministic automaton D recognizing W , and building a new game G ◦ D of
size |V | × |D| with winning condition inherited from the acceptance condition of D . Thus,
the idea is to simplify the winning condition of the game at the expense of a blowup in the
number of positions.

I Remark 5. The original motivation for GFG automata [10] is that it is sufficient for the
correctness of this algorithm to take D GFG instead of deterministic. This also explains
the name “good-for-games” introduced in [10]. Remarkably, D can be used in this algorithm
without any knowledge of the GFG strategy witnessing that D is GFG: as long as such a
strategy exists, D can be used in place of a deterministic automaton to solve any ω -regular
G with winning condition W .

3 Game Characterization of GFG Automata

The main goal of this paper is to give an efficient decision procedure for the Büchi GFGness
problem. In order to decide whether an input automaton is GFG, it is natural to replace the
abstract definition from Section 2.1 with a more operational one.

3.1 The GFG Game
If A = (Q,Σ, q0,∆, F ) is a nondeterministic Büchi automaton recognizing a language L , let
us define the GFG game GGFG(A) on A . The game is played on arena Q , starting from
position q0 . Each round, from position p :
1. Adam chooses a letter a ∈ Σ ,
2. Eve chooses a transition p

a−→ p′ ,
3. the position of the game moves to p′ .

The winning condition is the following: Eve wins if either the word u = a1a2a3 . . . chosen
by Adam is not in L(A) , or if the run ρ = p0p1p2 . . . she constructed is accepting (i.e. there
are infinitely many i such that pi ∈ F ).

The GFG game actually corresponds to the original definition of GFG automata in [10]:
an automaton A is GFG if and only if Eve wins GGFG(A) . It is shown in [1] that the
definition we gave in Section 2.1 for GFG automata is equivalent.

3.2 Solving the GFG Game
Notice that GGFG(A) is an ω -regular game. Therefore, by Remark 5, in order to solve it
we need a GFG automaton for the language W = {(u, ρ) ∈ Aω × Qω | u /∈ L or ρ Büchi
accepting} . The Büchi condition can be recognized easily by a deterministic 2-state au-
tomaton, but for the u /∈ L part, we need a GFG automaton for the complement of L . A
GFG automaton for L would also do, since we can consider the game where the roles of
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the players are reversed, thereby complementing the accepting condition. Thus, in order to
decide whether an automaton for L is GFG, we seem to need a GFG automaton for L . In
[15], this approach is actually used for the coBüchi GFGness problem: an auxiliary GFG
automaton for L is computed, allowing to decide whether the original input automaton is
itself GFG.

In the present work, we will circumvent this issue, and instead consider relaxations of
the GFG game GGFG(A) , called token games that aim at mimicking the GFG game while
enjoying a simpler winning condition.

4 Token Games

Suppose we have fixed a Büchi automaton A = (Q,Σ, q0,∆, F ) for the rest of this section.
We define associated token games that will help deciding whether A is GFG.

4.1 First Attempt: the Game G1

As seen in Section 3.2, the difficulty of solving the GFG game GGFG(A) comes from the
fact that L(A) appears in the winning condition of GGFG(A) .

A natural attempt to circumvent this difficulty is to replace the condition “u /∈ L(A)” by
“Adam cannot build an accepting run of A on u”. This would simplify the winning condition,
turning it into a boolean combination of Büchi conditions, thus making the game solvable in
polynomial time by Theorem 3.

We therefore define G1(A) as a modification of GGFG(A) , where in addition to choosing
letters, Adam must additionally build a run witnessing that u ∈ L(A) . If he fails to do so,
Eve automatically wins the game. Therefore, we can view a play as Adam choosing letters,
and both Eve and Adam possessing a token, and moving it in the automaton in order to
build an accepting run. Here is a formal definition of G1(A) :

I Definition 6 (G1(A)). We define the game G1(A) as follows. The game is played on
arena Q2 , starting from (q0, q0) . Each turn, from position (p, q) :
1. Adam chooses a letter a ∈ Σ ,
2. Eve chooses a transition p

a−→ p′ ,
3. Adam chooses a transition q

a−→ q′ ,
4. The game moves to position (p′, q′) .
Eve wins the game if either the run ρ = p0p1 . . . she chose is accepting, or the run λ = q0q1 . . .

chosen by Adam is rejecting.

Notice that at each turn, Eve must choose a transition before Adam does. This is not
abritrary, as the other way around would trivialize the game: if Adam chooses q a−→ q′ before
Eve chooses p a−→ p′ , then Eve can simply copy all choices of Adam, and will always win
G1(A) even if A is not GFG.

I Lemma 7. If A is GFG, then Eve wins G1(A) .

Proof. If Eve has a winning strategy in GGFG(A) , she can simply use the same strategy
in G1(A) , ignoring the second component of the position. If the run λ built by Adam is
accepting, this means the word u that has been played is in L(A) , and therefore by definition
of the winning condition of GGFG(A) , the run ρ built by Eve is accepting. J

The hope behind the definition of G1(A) is that if Eve wins, then she can win without
using the extra information given by the second component of the position. This would
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make G1(A) equivalent to GGFG(A) , and allow us to decide the Büchi GFGness problem
in polynomial time by Theorem 3.

Unfortunately, we can show that the converse of Lemma 7 does not hold: there is a Büchi
automaton B such that Eve wins G1(B) but B is not GFG.

Indeed, let B be the following automaton, recognizing L(B) = (a+ b)∗aω (the accepting
state is drawn with a double circle):

p q ⊥

a, b

a, b

a

b

a, b

I Lemma 8. The automaton B is not GFG, but Eve wins G1(B) .

Proof. Adam wins GGFG(B) with the following strategy: play the letter a until Eve decides
to move to the state q (if she never moves, she fails to build an accepting run for aω which is
accepted by the automaton), then play baω from there; Eve is forced into state ⊥ and cannot
build an accepting run for a word of the form ambaω which is accepted by the automaton.

On the other hand, the strategy for Eve to win G1(A) is to simply go where the token
of Adam currently is. J

This means that in general, if A is a Büchi automaton, G1(A) is not a good enough
approximation of GGFG(A) and does not characterize GFGness of A .

4.2 Allowing More Tokens
Since the game G1(A) is too easy for Eve compared to the GFG game, it is natural to try
to make the game harder for Eve, by allowing Adam to build several runs in parallel, some of
them being allowed to fail as long as one accepts. Indeed, it is sufficient that one accepting
run exists in order to guarantee that the input word chosen by Adam is in L(A) .

The game Gk(A) can be summed up as follows: Adam chooses a word, Eve moves a
token in the automaton while Adam moves k tokens. After ω moves, if one of Adam’s tokens
followed an accepting run, then Eve’s token must also have followed an accepting run. We
note simply Gk instead of Gk(A) in the rest of the document, in order to lighten notations.
Below is a formal definition of the game Gk .

I Definition 9 (Gk ). For any integer k ≥ 2 , we define the game Gk as follows. The
game is played on arena Qk+1 , starting from (q0, q0, . . . , q0) . Each turn, from position
(p, q1, . . . , qk) :
1. Adam chooses a letter a ∈ Σ ,
2. Eve chooses a transition p

a−→ p′ ,
3. Adam chooses transitions q1

a−→ q′1, . . . , qk
a−→ q′k ,

4. The game moves to position (p′, q′1, . . . , q′k) .
Eve wins the game if either the run ρ = p0p1 . . . she chose is accepting, or all runs λ1, . . . , λk
chosen by Adam are rejecting.

I Lemma 10. Gk can be seen as a parity game with 3 parities.

Proof. We define a new parity condition on Gk as follows:

rk(p, q1, . . . qk) =


2 if p ∈ F
1 if p /∈ F and qi ∈ F for some i
0 otherwise.
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A play is won by Eve in Gk iff ρ is accepting or all runs λ1, . . . , λk are rejecting iff the
play contains infinitely many positions with rank 2 or finitely many positions with rank 1 iff
Eve wins according to the new parity condition. Notice that we use the fact that if infinitely
many positions have rank 1 , then there is an i ∈ [1, k] such that the (1 + i)th component of
the position (corresponding to the ith token of Adam) is in F infinitely many times. J

By Theorem 2, this means that Gk is positionally determined for all k . We will now turn
to the particular case where k = 2 , and obtain a precise upper bound on the complexity of
solving G2 . Let n be the number of states of A and m its number of transitions.

I Lemma 11. An explicit version of G2 has O(n3|Σ|) positions and O(nm2|Σ|) edges.

Proof. We can define an explicit version of G2 , where the last component specifies which
player owns the positions. Positions in this game are V = {(v0,Adam)} ∪

(
Q3 × Σ ×

{Eve,Adam}
)
, so |V | is in O(n3|Σ|) . Edges are

E = {(v0,Adam)→ (q0, q0, a,Eve) | a ∈ Σ}

∪ {(p, q1, q2, a,Eve)→ (p′, q1, q2, a,Adam) | p a−→ p′ ∈ ∆, (q1, q2) ∈ Q2}

∪ {(p, q1, q2, a,Adam)→ (p, q′1, q′2, b,Eve) | p ∈ Q, q1
a−→ q′1 ∈ ∆, q2

a−→ q′2 ∈ ∆, b ∈ Σ}.

We obtain |E| = |Σ|+n2m+nm2|Σ| . Since we assume our automata to be complete, n ≤ m
and |E| is in O(nm2)|Σ|) . J

By combining Theorem 3, Lemma 10 and Lemma 11, we obtain the following result:

I Theorem 12. G2 can be solved in O(n4m2|Σ|2) .

4.3 Some Consequences of Winning G2

The main result of the present work will be that Eve winning G2 on A is equivalent to A
being GFG. One direction is actually trivial:

I Proposition 13. If A is GFG, then Eve has a winning strategy for all Gk .

Proof. Eve can ignore Adam’s tokens and play her GFG strategy. If the word played by
Adam is in L(A) she will build an accepting run, if not Adam will not be able to build one
with any of his tokens. J

One of the key steps of the proof is to show that if Eve wins against 2 tokens for Adam,
she can actually win against any number of tokens.

I Theorem 14. If Eve wins G2 then she wins Gk for any k .

Proof. Let σ2 be a positional winning strategy for Eve in G2 . We proceed by induction on
k , the idea being that σk+1 will be obtained by having σk play against the first k tokens
and then σ2 against the last token and the output of σk . More precisely:

If Eve wins Gk , by Theorem 2 and Lemma 10, she has a winning positional strategy
σk : Qk+1×Σ→ Q in Gk . Define the finite-memory strategy σ′k+1 = (M,m0, µ, upd) where

the memory M is the set of states Q , and the initial memory state m0 is q0

the update function is upd(m, (p, q1, . . . , qk+1)) = σk(m, q1, . . . , qk)
µ(m, (p, q1, . . . , qk+1)) = σ2(p,m, qk+1) picks the move actually played by Eve
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In a play using σ′k+1 , the memory m takes the value of σk playing against q1, . . . , qk so if
any of these tokens follows an accepting run, then so will m . The moves of Eve are chosen
by playing σ2 against m and qk+1 so that if either of these follow an accepting run, so will
Eve’s token. In the end, if any of Adam’s tokens follows an accepting run, then either qk+1
or m does as well and therefore, by correctness of σ2 , the strategy σ′k+1 is winning for Eve
in Gk+1 . Because Gk+1 is a parity game, there exists another winning strategy σk+1 for
Eve that is positional. Since Eve wins G2 , she wins Gk for all k ≥ 2 by induction. J

Winning G2 also implies an important property regarding residuals, that will be key in
the proof of our main theorem.

I Definition 15 (residual automaton). A transition p a−→ q is called residual if L(q) = a-1L(p)
(remember that only L(q) ⊆ a-1L(p) holds in general). An automaton is residual if all its
transitions are residual. Given an automaton A , we define the associated residual automaton
Ar as A where all non-residual transitions have been removed. An automaton is pre-residual
if it accepts the same language as its residual automaton.

I Lemma 16. If Eve wins G2 on A , we have:
A is pre-residual, i.e. L(A) = L(Ar)
Eve wins G2 on Ar
If Ar is GFG, then A is GFG

Proof. Assume that A is not pre-residual, i.e. L(A) 6= L(Ar) . Since Ar is obtained from
A by removing transitions, we always have L(Ar) ⊆ L(A) . So there is u ∈ L(A) \ L(Ar) ,
i.e. any accepting run for u must take a non-residual transition at some point. Then Adam
can win G2 in the following way: play the letters of u and have the first token follow Eve’s
token, and the second one follow an accepting run for u . If Eve never takes any non-residual
transition, she cannot build an accepting run for u and loses; if she eventually takes a
non-residual transition p

a−→ q , then Adam picks another transition p
a−→ q′ such that there

is v ∈ L(q′) \ L(q) , move the first token to q′ and start playing the letters of v from there.
Adam can build an accepting run for v from q′ with the first token, while Eve is unable to
do so from q . Therefore, this is a winning strategy for Adam in G2 , a contradiction.

For the second property, we show that if Eve wins G2(A) with a strategy σ2 , then σ2
is actually well-defined and winning for G2(Ar) . First note that any reachable position
(p, q, r) of G2(Ar) has the property that L(p) = L(q) = L(r) since the initial position is
(q0, q0, q0) and only residual transitions can be taken. But in a position (p, q, r) such that
L(p) = L(q) = L(r) , σ2 cannot pick a non-residual transition p

a−→ p′ , otherwise Adam can
start playing a word that is not in L(p′) and win the game. So σ2 is a valid strategy to play
in G2(Ar) . Moreover, any play of G2(Ar) is in particular a play of G2(A) , and we showed
that L(A) = L(Ar) , so σ2 is a winning strategy in G2(Ar) .

Finally, suppose Eve has a GFG strategy σ for Ar . Then this strategy is also well-defined
on A and wins the GFG game because L(A) = L(Ar) . J

I Remark 17. Any GFG automaton is pre-residual, but the converse does not hold.
The proof that any GFG automaton is pre-residual is stated in the appendix of [15]. In

our setting, it is a corollary of Proposition 13 together with the first item of Lemma 16.
We give two counter-examples for the converse: a Büchi automaton B on Σ = {a, b, c}

with L(B) = (Σ∗abΣ∗c)ω , and a {1, 2, 3}-parity automaton C accepting (a+ b)ω . In both
cases, we label transitions with parity ranks.
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p q rB :

a, b, c : 1

a : 1
a, c : 1

b : 2
a, b : 1

c : 1

s tC :

a : 1

b : 2

a, b : 3 a : 2

b : 1a, b : 3

Automata B and C are pre-residual, and in fact residual: all their states accept the
language of the automaton, so all transitions are residual. However, they are not GFG: we
can give a winning strategy for Adam in the GFG game in both cases.2

For B , Adam first plays a . If Eve goes to q , then Adam plays abc , bringing Eve back to
p . If Eve stays in p , then Adam plays bc , leaving Eve in p . Repeating this process leads
Adam to build a word of L(B) , while preventing Eve from seeing any Büchi transition.

For C , Adam can play a whenever Eve is in s and b whenever she is in t .

5 Deciding GFGness

Before we get to the sequence of results leading to the proof of our main result, let us quickly
outline the approach.

We already know that if Eve is winning G2 then she wins Gk for any k (Theorem 14)
and the main idea is to find a k for which she will be able to move k tokens so that at least
one follows an accepting run, and then play σk against these virtual tokens. We can note
that by simply splitting tokens at any nondeterministic choice, she will be able to explore all
the possible runs, and as k grows bigger she can keep doing it for a longer time. The results
of subsection 5.1 (specifially Theorem 19) essentially guarantee there is a k large enough so
that following this approach, she will eventually reach accepting states.

It then remains to use this to precisely formulate Eve’s strategy to win against an hypo-
thetic winning strategy for Adam in the GFG game, reaching a contradiction (Theorem 20).

5.1 Powerset Automaton
We will assume here that A is residual. We review a few properties of the powerset automaton
that will be useful in our setting.

I Definition 18. Given a residual Büchi automaton A = (Q, q0,∆, F ) we define the powerset
automaton of A , 2A = (2Q,Σ, {q0},∆′, F ′) where

∆′(q, a) =
⋃
p∈q ∆(p, a)

q ∈ F ′ when there is q ∈ q such that q ∈ F

Note that it is well known that as such 2A does not necessarily recognize the same
language as A . However, it is always true that L(A) ⊆ L(2A) . More precisely, for any state
p ∈ Q , we have L(p) ⊆ L({p}) . This property will be sufficient for our purpose. Let us write
q• w for the sequence of states visited by 2A when reading w from state q .

The following lemma will be crucial in the proof of the main theorem: it tells us that if
Adam is choosing letters according to a finite-memory winning strategy for the GFG game,

2 Actually, B has a stronger property: Eve could not win the GFG game even if she had k tokens instead
of one, for any k .
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then the number of turns before being able to see an accepting state while reading these
letters is bounded. This bound will allow to follow all the possible runs up to that accepting
state with a finite number of tokens.

I Lemma 19. If τ is a finite-memory winning strategy for Adam in GGFG(A) , then there
exists an integer Kτ such that: if w is a sequence of letters of length Kτ chosen by τ

from a state p0 (reached by playing τ from the starting position), and q is any state with
L(p0) = L(q) then {q}• w contains an accepting state.

Proof. Let M be the memory of τ and let Kτ = |Q×M × 2Q| . Let w = a1a2 . . . aKτ be a
word of length Kτ that can be played by τ in GGFG(A) from a position p0 reachable in
GGFG(A) with some memory m0 . Consider the sequence

(p0,m0, {q})
a1−→ (p1,m1,q1) a2−→ · · · aKτ−−−→ (pKτ ,mKτ ,qKτ )

where the pi ’s describe the states of A in this play, the mi ’s are Adam’s memory states,
and the qi ’s are the states of 2A reached upon reading the letters of w starting from {q} .
By choice of Kτ , there must be i < j such that (pi,mi,qi) = (pj ,mj ,qj) . This means
that there is a prefix uv of w such that Eve can force the strategy τ to play uvω from
(p0,m0, {q}) , while guaranteeing that on the suffix vω , the run of 2A (corresponding to the
third component) repeats the same cycle C from qi to qj = qi .

Because τ is winning for Adam, and A is residual, we must have uvω ∈ L(p0) = L(q) .
Since L(q) ⊆ L({q}) , we have uvω ∈ L({q}) , and therefore the cycle C must contain an
accepting state of 2A . Since the cycle C is present in {q}• w , this concludes the proof. J

5.2 Two Tokens Are Enough
I Theorem 20. If Eve wins G2 on a residual automaton A , then A is GFG.

Proof. Assume by contradiction that Eve wins G2 but Adam wins GGFG(A) . By Theorem
4, he can do so with a finite-memory strategy τ (with memory of size exponential in |Q|).
Let K = Kτ given by Theorem 19, and c = max{|∆(p, a)| | p ∈ Q, a ∈ Σ} be the degree of
nondeterminism of A . Let N = cK and T = N · |Q| , so that when moving T tokens on A ,
at least one state will hold N or more tokens at any given time. Recall that by Theorem 14,
Eve has a positional winning strategy σT : QT+1 × Σ→ Q in GT . Notice that T is doubly
exponential in |Q| .

We will now define a finite-memory strategy σ = (M,m0, σM , upd) for Eve in GGFG(A) .
The strategy σ will be defined according to the following intuition: Eve plays against τ by
simulating T tokens moving in A , and chooses her actual moves in GGFG(A) by playing
σT against these virtual tokens. The memory M of σ is QT , and its initial memory state is
m0 = (q0, . . . , q0) . We now describe the update function upd of σ . This amounts to giving
a strategy for moving T tokens in A , when letters are given by the opponent step-by-step.
We will consider that some tokens are active and the others are passive. Tokens are moved
according to the following rules:

Initially, the T tokens are in q0 , and are all active.
At each nondeterministic choice, active tokens are divided evenly between possible
successors.
Passive tokens are moved arbitrarily.
If an accepting state is reached by some token, then choose a state p containing at least
N tokens, and set the tokens in this state to active, and all others to passive. We call
this a reset point p .
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Figure 1 Illustrating Eve’s strategy for moving the T tokens.

We will also consider that the initial position is a reset point. An illustration of this update
strategy is given in Figure 1.

Finally, we define σM : M × (Q× Σ)→ Q by σM (q, p, a) = σT (p,q, a) .
We can now consider the play ρ of σ against τ in GGFG(A) . Let pi,qi, ai be respectively

the state of Q , the memory state of σ , and the letter played by τ after i moves in ρ . Notice
that since A is residual, for all i and q ∈ qi , we have L(pi) = L(q) . This allows us to use
Theorem 19 in the following.

We first show that there are infinitely many i such that qi contains an accepting state.
Consider p a reset point in the play. Starting from at least N = cK active tokens in p ,
and dividing them evenly at each step, the update strategy can cover all states reached by
2A from {p} with some active tokens during K steps. By Theorem 19, the memory will
reach an accepting state within these K steps, and can therefore restart at another reset
point without ever running out of active tokens. This shows that there are infinitely many
i such that qi contains an accepting state. Since M is a finite tuple, there is one of its
a components j such that the jth coordinate of qi is accepting for infinitely many i . By
correctness of σT , we obtain that there are infinitely many i such that pi is accepting. This
implies that the play ρ of GGFG(A) is won by Eve, a contradiction with the assumption
that τ is winning for Adam. J

I Corollary 21. On any Büchi automaton A , Eve wins G2 if and only if A is GFG.

Proof. A consequence of Theorem 16 and the above theorem: if Eve wins G2 on A , then
she also does on Ar , which implies that Ar is GFG, and therefore A is GFG as well. We
already saw the other direction in Theorem 13. J

By Theorem 12, we can now state our main result:

I Theorem 22. The Büchi GFGness problem is in P, and more precisely in O(n4m2|Σ|2) .

I Remark 23. Let us discuss briefly the possible extension of this proof to other parity cases.
On one hand Theorem 14 is true regardless of the acceptance condition (the proof does

not rely on the automaton being Büchi), which is quite promising. But on the other, the
adaptation of Theorem 19 proves problematic, and without this lemma it seems difficult to find
a way to move T virtual tokens so that at least one of them follows an accepting run, which
we rely on critically in the proof of Theorem 20. Already in the coBüchi case a substitute
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technique is missing, although our current work focuses on using some of the techniques from
[15] to prove Theorem 20 in this case, hoping this will eventually lead to a technique working
for any parity condition.

Conclusion

We showed that the Büchi GFGness problem can be decided in P, by introducing new
techniques using token games. While it seems that our proof cannot be directly used to
solve efficiently the parity GFGness problem, the game G2 could still be relevant in this
more general setting. We did not find any example of a non-GFG parity automaton A such
that Eve wins G2(A) , so in our opinion it is plausible that Eve wins G2(A) if and only
if A is GFG for any parity automaton A . Since for any fixed acceptance condition (for
instance parity condition of fixed degree), the game G2 can be solved in P, this would put
the GFGness problem in P for any fixed acceptance condition, with an algorithm that is
already known.
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Abstract
Our input is a complete graph G = (V,E) on n vertices where each vertex has a strict ranking
of all other vertices in G. The goal is to construct a matching in G that is “globally stable”
or popular. A matching M is popular if M does not lose a head-to-head election against any
matching M ′: here each vertex casts a vote for the matching in {M,M ′} where it gets a better
assignment. Popular matchings need not exist in the given instance G and the popular matching
problem is to decide whether one exists or not. The popular matching problem in G is easy to
solve for odd n. Surprisingly, the problem becomes NP-hard for even n, as we show here.
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Consider a complete graph G = (V,E) on n vertices where each vertex ranks all other vertices
in a strict order of preference. Such a graph is called a roommates instance with complete
preferences. The problem of computing a stable matching in G is a classical and well-studied
problem. Recall that a matching M is stable if there is no blocking pair with respect to M ,
i.e., a pair (u, v) where both u and v prefer each other to their respective assignments in M .
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d0 : d1 > d2 > d3
d1 : d2 > d3 > d0
d2 : d3 > d1 > d0
d3 : d1 > d2 > d0

d0

d1

d2 d3

1

3

2
3

3
3

1

2

1 2

1

2

Figure 1 An instance that admits two popular matchings – marked by dotted blue and dashed
orange edges – but no stable matching. The preference list of each vertex is illustrated by the
numbers on its edges: a lower number indicates a more preferred neighbor.

ranking over matchings as follows: u prefers matching M to matching M ′ if (i) u is matched
in M and unmatched in M ′ or (ii) u is matched in both and u prefers M(u) to M ′(u). For
any two matchings M and M ′, let φ(M,M ′) be the number of vertices that prefer M to M ′.

I Definition 1. Let M be any matching in G. M is popular if φ(M,M ′) ≥ φ(M ′,M) for
every matching M ′ in G.

Suppose an election is held between M and M ′ where each vertex casts a vote for the
matching that it prefers. So φ(M,M ′) (similarly, φ(M ′,M)) is the number of votes for M
(resp., M ′). A popular matching M never loses an election to another matching M ′ since
φ(M,M ′) ≥ φ(M ′,M): thus it is a weak Condorcet winner [6, 1] in the corresponding voting
instance. So popularity can be regarded as a natural notion of “global stability”.

The notion of popularity was first introduced in bipartite graphs in 1975 by Gärdenfors
– popular matchings always exist in bipartite graphs since stable matchings always exist
here [11] and every stable matching is popular [12]. The proof that every stable matching
is popular holds in non-bipartite graphs as well [5]; in fact, it is easy to show that every
stable matching is a min-size popular matching [14]. Relaxing the constraint of stability to
popularity allows us to find globally stable matchings that may exist in instances that do not
admit stable matchings; moreover, even when stable matchings exist, there may be popular
matchings that achieve more “social good” (such as larger size) in many applications.

Observe that the instance in Fig. 1 has two popular matchings: M1 = {(d0, d1), (d2, d3)}
and M2 = {(d0, d2), (d1, d3)}. However as was the case with stable matchings, popular
matchings also need not always exist in the given instance G. The popular roommates
problem is to decide if G admits a popular matching or not. When the graph is not complete,
it is known that the popular roommates problem is NP-hard [10, 13]. Here we are interested
in the complexity of the popular matching problem when the input instance is complete.

Interestingly, several popular matching problems that are intractable in bipartite graphs
become tractable in complete bipartite graphs. The min-cost popular matching problem in
bipartite graphs is such a problem – this is NP-hard in a bipartite graph with incomplete
lists [10], however it can be solved in polynomial time in a bipartite graph with complete
lists [8]. The difference is due to the fact that while there is no efficient description of the
convex hull of all popular matchings in a general bipartite graph, this polytope has a compact
extended formulation in a complete bipartite graph.

It is a simple observation (see Section 2) that when n is odd, a matching in a complete
graph G on n vertices is popular only if it is stable. Since there is an efficient algorithm to
decide if G admits a stable matching or not, the popular roommates problem in a complete
graph G can be efficiently solved when n is odd. We show the following result here.
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I Theorem 2. Let G be a complete graph on n vertices, where n is even. The problem of
deciding whether G admits a popular matching or not is NP-hard.

So the popular roommates problem with complete preference lists is NP-hard for even n
while it is easy to solve for odd n. Note that the popular roommates problem is non-trivial
for every n ≥ 5, i.e., there are both “yes instances” and “no instances” of size n. It is rare
and unusual for a natural decision problem in combinatorial optimization to be efficiently
solvable when n has one parity and become NP-hard when n has the other parity. We are not
aware of any natural optimization problem on graphs that is non-trivially tractable when the
cardinality of the vertex set has one parity, which becomes intractable for the other parity.

1.1 Background and related work
The first polynomial time algorithm for the stable roommates problem was by Irving [17] in
1985. Roommates instances that admit stable matchings were characterized in [25]. New
polynomial time algorithms for the stable roommates problem were given in [24, 26].

Algorithmic questions for popular matchings in bipartite graphs have been well-studied
in the last decade [3, 8, 14, 16, 18, 19, 20]. Not much was known on popular matchings
in non-bipartite graphs. Biró et al. [3] proved that validating whether a given matching
is popular can be done in polynomial time, even when ties are present in the preference
lists. It was shown in [15] that every roommates instance G = (V,E) admits a matching
with unpopularity factor O(log |V |) and that it is NP-hard to compute a least unpopularity
factor matching. It was shown in [16] that computing a max-weight popular matching in
a roommates instance with edge weights is NP-hard, and more recently, that computing a
max-size popular matching in a roommates instance is NP-hard [21].

The complexity of the popular roommates problem was open for several years [3, 7, 15, 16,
22] and two independent NP-hardness proofs [10, 13] of this problem were announced very
recently. Interestingly, both these hardness proofs need “incomplete preference lists”, i.e.,
the underlying graph is not complete. The reduction in [13] is from a variant of the vertex
cover problem called the partitioned vertex cover problem and we discuss the reduction in
[10] in Section 1.2 below. So the complexity status of the popular roommates problem in a
complete graph was an open problem and we resolve it here.

Computational hardness for instances with complete lists has been investigated in various
matching problems under preferences. An example is the three-sided stable matching problem
with cyclic preferences: this involves three groups of participants, say, men, women, and
dogs, where dogs have weakly ordered preferences over men only, men have preferences over
women only, and finally, women only list the dogs. If these preferences are allowed to be
incomplete, the problem of finding a weakly stable matching is known to be NP-complete [4].
It is one of the most intriguing open questions in stable matchings [22, 27] as to whether the
same problem becomes tractable when lists are complete.

1.2 Techniques
The 1-in-3 SAT problem is a well-known NP-hard problem [23]: it consists of a 3-SAT formula
φ with no negated literals and the problem is to find a truth assignment to the variables in
φ such that every clause has exactly one variable set to true. We show a polynomial time
reduction from 1-in-3 SAT to the popular roommates problem with complete lists.

Our construction is based on the reduction in [10] that proved the NP-hardness of the
popular roommates problem. However there are several differences between our reduction
and the reduction in [10]. The reduction in [10] considered a popular matching problem in
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bipartite graphs called the “exclusive popular set” problem and showed it to be NP-hard –
when preference lists are complete, this problem can be easily solved. Thus the reduction in
[10] needs incomplete preference lists.

The exclusive popular set problem asks if there is a popular matching in the given
bipartite graph where the set of matched vertices is S, for a given even-sized subset S. A key
step in the reduction in [10] from this problem in bipartite graphs to the popular matching
problem in non-bipartite graphs merges all vertices outside S into a single node. Thus the
total number of vertices in the non-bipartite graph used in [10] is odd. Moreover, the fact
that popular matchings always exist in bipartite graphs is crucially used in this reduction.
However in our setting, the whole problem is to decide if any popular matching exists in the
given graph – thus there are no popular matchings that “always exist” here.

The reduction in [10] primarily uses the LP framework of popular matchings in bipartite
graphs from [18, 19, 21] to analyze the structure of popular matchings in their instance. The
LP framework characterizing popular matchings in non-bipartite graphs is more complex [21],
so we use the combinatorial characterization of popular matchings [14] in terms of forbidden
alternating paths/cycles to show that any popular matching in our instance will yield a 1-in-3
satisfying assignment for φ. To show the converse, we use a dual certificate similar to the
one used in [10] to prove the popularity of the matching that we construct using a 1-in-3
satisfying assignment for φ.

2 Preliminaries

Let M be any matching in G = (V,E). For any pair (u, v) /∈ M , define voteu(v,M) as
follows: (here M(u) is u’s partner in M and M(u) = null if u is unmatched in M)

voteu(v,M) =
{

+ if u prefers v to M(u);
− if u prefers M(u) to v.

Label every edge (u, v) that does not belong to M by the pair (voteu(v,M), votev(u,M)).
Thus every non-matching edge has a label in {(±,±)}. Note that an edge is labeled (+,+)
if and only if it is a blocking edge to M . Let GM be the subgraph of G obtained by deleting
edges labeled (−,−) from G. The following theorem characterizes popular matchings in G.

I Theorem 3 ([14]). M is popular in G if and only if GM does not contain any of the
following with respect to M :
(1) an alternating cycle with a (+,+) edge;
(2) an alternating path with two distinct (+,+) edges;
(3) an alternating path with a (+,+) edge and an unmatched vertex as an endpoint.

Using the above characterization, it can be easily checked whether a given matching
is popular or not [14]. Thus our NP-hardness result implies that the popular roommates
problem is NP-complete.

When n is odd. Recall the claim made in Section 1 that when n is odd, every popular
matching in G has to be stable. A simple proof of this statement is included below.

I Observation 4 ([2]). Let G be a complete graph on n vertices, where n is odd. Any popular
matching in G has to be stable.
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xi : yi > y′i > D > . . .

x′i : yi > y′i > D > . . .

yi : xi > x′i > D > . . .

y′i : xi > x′i > D > . . .

xi yi

y′ix′i

1 1

2 2
1

22

1

Figure 2 The variable gadget in level 1.

Proof. Suppose not. Let M be a popular matching in G that is not stable. So there is a
blocking edge (u, v) to M . Because n is odd, we know that there is an unmatched vertex. If
one of u, v is unmatched, then the edge (u, v) is a forbidden alternating path for popularity
(by Theorem 3, part (3)). So let the unmatched vertex be x /∈ {u, v}.

Then the path x - (M(u), u) - (v,M(v)) with respect toM is again a forbidden alternating
path for popularity (by Theorem 3, part (3)). Thus M is not a popular matching. J

3 The graph G

Recall that φ is the input formula to 1-in-3 SAT. The graph G that we construct here
consists of gadgets in 4 levels along with 2 special gadgets that we will call the D-gadget
and Z-gadget. Gadgets in level 1 correspond to variables in the formula φ while gadgets in
levels 0, 2, and 3 correspond to clauses in φ. Variants of the gadgets in levels 0-3 and the
D-gadget were used in [10] while the Z-gadget is new.

We will now describe these gadgets: along with a figure, we provide the preference lists
of vertices in this gadget. The tail of each list consists of all vertices not listed yet, in an
arbitrary order. Even though the preference lists are complete, the structure of the gadgets
and the preference lists will ensure that inter-gadget edges will not belong to any popular
matching, as we will show in Section 4.

The D-gadget. The D-gadget is on 4 vertices d0, d1, d2, d3 and the preference lists of these
vertices are as given in Fig. 1 with all vertices outside the D-gadget at the tail of each list
(in an arbitrary order). Recall that this gadget admits no stable matching.

We describe gadgets from level 1 first, then levels 0, 2, 3, and finally, the Z-gadget.
The stable matchings within the gadgets are highlighted by colors in the figures. The gray
elements in the preference lists denote vertices that are outside this gadget. We will assume
that D in a preference list stands for d0 > d1 > d2 > d3.

Level 1. For each variable Xi in the formula φ, we construct a gadget on four vertices as
shown in Fig. 2. The bottom vertices x′i and y′i will be preferred by some vertices in level 0
to vertices in their own gadget, while the top vertices xi and yi will be preferred by some
vertices in level 2 to vertices in their own gadget. All four vertices in a level 1 gadget prefer
to be matched among themselves, along the four edges drawn than be matched to any other
vertex in the graph. This gadget has a unique stable matching {(xi, yi), (x′i, y′i)}.

Level 0. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 0.
One of these can be seen in Fig. 3. The top two vertices, i.e. ac1 and bc1, rank y′j and x′k in
level 1, as their respective second choices. Recall that indices j and k are well-defined in the
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17:6 Popular Matchings in Complete Graphs

a1 : b1 > y′j > b2 > D > . . .

a2 : b2 > b1 > D > . . .

b1 : a2 > x′k > a1 > D > . . .

b2 : a1 > a2 > D > . . .

ac1 bc1

bc2ac2

1 3

1 2
2

13

1

Figure 3 A clause gadget in level 0.

p0 : q0 > q2 > D > . . .

p1 : q1 > q2 > D > . . .

p2 : q0 > yj > q1 > q2 > D > . . .

q0 : p0 > p2 > D > . . .

q1 : p1 > p2 > D > . . .

q2 : p1 > xk > p0 > p2 > D > . . .

pc0 qc0

pc1 qc1

pc2 qc2

1 1

1 1

4 4

2

31

2

2

13

3

Figure 4 A clause gadget in level 2.

clause c = Xi ∨Xj ∨Xk. Within this level 0 gadget on ac1, bc1, ac2, bc2, both {(ac1, bc1), (ac2, bc2)}
and {(ac1, bc2), (ac2, bc1)} are stable matchings. In the preference lists below (and also for gadgets
in levels 2 and 3), we have omitted the superscript c in their lists for the sake of readability.

The gadget on vertices {ac3, ac4, bc3, bc4} is built analogously: the vertex ac3 ranks y′k as its
second choice, while bc3 ranks x′i second. In the third gadget, the vertex ac5 ranks y′i second,
while bc5 ranks x′j second. Observe the shift in i, j, k indices as second choices for vertices
ac1, a

c
3, a

c
5 (and similarly, for bc1, bc3, bc5).

The fourth, fifth and sixth gadgets are analogous to the first, second, and third gadgets,
respectively, but there is a slight twist. More precisely, the preferences of a′c1 , a′c2 , b′c1 , b′c2 in
the fourth gadget are analogous to the preferences in Fig. 3, except that a′c1 ranks y′k second,
while b′c1 ranks x′j second. Similarly, the second choice of a′c3 is y′i, the second choice of b′c3
is x′k, and finally, a′c5 ranks y′j second, while b′c5 ranks x′i second. Observe the change in
orientation of the indices i, j, k as second choice neighbors when comparing the first three
level 0 gadgets of c with its last three level 0 gadgets. This will be important to us later.

Level 2. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 6 gadgets in level 2.
The first gadget in level 2 is on vertices pc0, pc1, pc2, qc0, qc1, qc2 and their preference lists are
described in Fig. 4. Note that pc2 ranks yj from level 1 as its second choice, while qc2 ranks
xk from level 1 second.

The second gadget in level 2 is on vertices pc3, pc4, pc5, qc3, qc4, qc5 and it is built analogously.
That is, pc3 and qc3 are each other’s top choices and similarly, pc4 and qc4 are each other’s
top choices, and so on. The preference list of pc5 is qc3 > yk > qc4 > qc5 > D > . . . and the
preference list of qc5 is pc4 > xi > pc3 > pc5 > D > . . .

The third gadget in level 2 is on vertices pc6, pc7, pc8, qc6, qc7, qc8 and it is built analogously.
In particular, the preference list of pc8 is qc6 > yi > qc7 > qc8 > D > . . . and the preference list
of qc8 is pc7 > xj > pc6 > pc8 > D > . . .

The fourth gadget in level 2 is on vertices p′c0 , p′c1 , p′c2 , q′c0 , q′c1 , q′c2 and it is totally analogous
to the first gadget in level 2. That is, p′c0 and q′c0 are each other’s top choices and similarly,
p′c1 and q′c1 are each other’s top choices, and so on. In particular, the preference list of p′c2 is
q′c0 > yj > q′c1 > q′c2 > D > . . . and the preference list of q′c2 is p′c1 > xk > p′c0 > p′c2 > D > . . .
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s0 : t1 > q0 > t2 > q3 > t3 > D > t0 > . . .

t0 : s3 > p7 > s2 > p4 > s1 > D > s0 > . . .

s1 : t1 > t0 > D > . . .

t1 : s1 > s0 > D > . . .

s2 : t2 > t0 > D > . . .

t2 : s2 > s0 > D > . . .

s3 : t3 > t0 > D > . . .

t3 : s3 > s0 > D > . . .

sc0 tc0

sc1 tc1

sc2 tc2

sc3 tc3

1

2

3

2

5

2

5

2

3

2

1

2

11

11

11

Figure 5 A clause gadget in level 3.

z0 : z4 > z5 > ∪i {xi, yi} > ∪c,i
{
pc3i+1, q

c
3i, p

′c
3i+1, q

′c
3i
}
>

∪c,i {aci , bci , a′ci , b′ci } > z1 > z2 > z3 > D > . . .

z1 : z5 > z4 > ∪i {xi, yi} > ∪c,i
{
pc3i+1, q

c
3i, p

′c
3i+1, q

′c
3i
}
>

∪c,i {aci , bci , a′ci , b′ci } > z0 > z3 > z2 > D > . . .

z2 : z0 > z1 > z3 > z4 > z5 > D > . . .

z3 : z1 > z0 > z2 > z5 > z4 > D > . . .

z4 : z2 > z3 > z5 > z0 > z1 > D > . . .

z5 : z3 > z2 > z4 > z1 > z0 > D > . . .

z0 z1

z2 z3

z4 z5

3 3

3 3

3 3

2

5

2

5

2

5

2

5

2

5

2

5

1

4

1

4

1

4

1

4

1

4

1

4

Figure 6 The Z-gadget.

Similarly, the fifth gadget in level 2 is on vertices p′c3 , p′c4 , p′c5 , q′c3 , q′c4 , q′c5 and it is totally
analogous to the second gadget in level 2. Also, the sixth gadget in level 2 is on vertices
p′c6 , p

′c
7 , p
′c
8 , q
′c
6 , q

′c
7 , q

′c
8 and it is totally analogous to the third gadget in level 2.

Level 3. To each clause c = Xi ∨Xj ∨Xk in the formula φ, we create 2 gadgets in level 3.
The first gadget is on vertices sc0, sc1, sc2, sc3, tc0, tc1, tc2, tc3 and the preference lists of these vertices
are described in Fig. 5.

The second gadget in level 3 is on s′c0 , s′c1 , s′c2 , s′c3 , t′c0 , t′c1 , t′c2 , t′c3 and their preference lists
are absolutely analogous to the preference lists of the first gadget in level 3.

The Z-gadget. The Z-gadget is on 6 vertices z0, z1, z2, z3, z4, z5 and the preference lists
of these vertices are given in Fig. 6. The vertices in a set stand for all these vertices in an
arbitrary order. For example, ∪i{xi, yi} denotes all the “top” vertices belonging to variable
gadgets in an arbitrary order.

Note that G is a complete graph on an even number of vertices and so every popular
matching in G has to be a perfect matching.

4 Popular edges in G

Call an edge e in G popular if there is a popular matching M in G such that e ∈ M . In
this section we identify edges that are not popular and show that every popular edge is an
intra-gadget edge, connecting two vertices of the same gadget. All missing proofs are in the
full version of our paper on the arxiv [9].

I Lemma 5. For any clause c, no popular matching in G can match sc0 (similarly, tc0) to a
neighbor worse than tc0 (resp., sc0). An analogous statement holds for s′c0 and t′c0 .
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17:8 Popular Matchings in Complete Graphs

I Lemma 6. Every popular matching matches the vertices in the D-gadget among themselves.

The gadget D admits 2 popular matchings: {(d0, d1), (d2, d3)} and {(d0, d2), (d1, d3)}. So
if M is a popular matching then either {(d0, d1), (d2, d3)} ⊂M or {(d0, d2), (d1, d3)} ⊂M .

I Lemma 7. Let (u, v) be an edge in G where both u and v prefer d0 to each other. Then
(u, v) cannot be a popular edge.

I Corollary 8. The edges (sc0, tc0) and (s′c0 , t′c0 ) are not popular edges for any clause c.

Corollary 8 follows from Lemma 7 by setting u and v to sc0 and tc0 (similarly, s′c0 and t′c0 ),
respectively. Let us call u a level i vertex if u belongs to a level i gadget.

I Lemma 9. No edge between a level i vertex and a level i+1 vertex is popular, for 0 ≤ i ≤ 2.

I Lemma 10. All popular matchings match the 6 vertices of the Z-gadget among themselves.

Proof. Let M be any popular matching in G. It follows from Lemma 7 that M has to pair
each of z2, z3, z4, and z5 to a vertex in the Z-gadget. Let us now show that z0 also has to be
matched within the Z-gadget. Then it immediately follows that z1 also has to be matched
within the Z-gadget. We have the following 3 cases:
(1) Suppose z0 is matched in M to a level 0 neighbor, say bc1. Then (ac1, bc1) is a blocking

edge to M . Lemmas 6, 7, and 9 ensure that ac1 is either matched to z1 or to bc2. We
investigate these two cases below.

(ac1, z1) ∈ M : Here both z0 and z1 are matched to vertices they prefer to all their
neighbors inside the Z-gadget, except for z4 and z5. We know that z4 and z5 must
be matched inside the Z-gadget. There are 3 subcases and in each case there is
an alternating cycle in GM with a blocking edge (ac1, bc1): a contradiction to M ’s
popularity (by Theorem 3).

(z4, z2) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z2)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(z4, z3) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z3)

(+,−)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(z4, z5) ∈M : the alternating cycle is (bc1, z0)
(+,−)
− (z4, z5)

(−,+)
− (z1, a

c
1)

(+,+)
− (bc1, z0).

(ac1, bc2) ∈M : Lemmas 6, 7, and 9 ensure that ac2 is matched to z1 (recall that M is
perfect). This leads to the same 3 subcases as above, except that instead of the edge
(z1, a

c
1), there is the path (z1, a

c
2)− (bc2, ac1) in GM : here (ac2, bc2) is labeled (+,−).

(2) Suppose z0 is matched in M to a level 1 neighbor, say yi.
This case is similar to the previous case. Here the edge (xi, yi) becomes the blocking
edge to M . It follows from Lemmas 6, 7, and 9 that xi is either matched to z1 or to y′i.
The latter case leaves x′i unmatched and the subcases that arise in the former case are
analogous to the ones in case (1).

(3) Suppose z0 is matched in M to a level 2 neighbor, say qc0.
It follows from Lemmas 6, 7, and 9 that (pc0, qc2), (pc2, qc1), and (pc1, z1) are in M . Consider
the alternating path (z0, q

c
0)− (pc2, qc1)− (pc1, z1): it has two blocking edges (pc2, qc0) and

(pc1, qc1). This is again a contradiction to M ’s popularity.

Recall that Lemma 6 showed that all vertices of D must be matched within the gadget.
Thus z0 cannot be matched to a vertex in the D-gadget. The case where z0 is matched
in M to a level 3 neighbor does not arise as such an edge would violate Lemma 7. This
finishes our proof that any popular matching M matches the 6 vertices of the Z-gadget
among themselves. J
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It follows from Lemmas 6, 7, 9, and 10 that every popular edge is an intra-gadget edge.
Lemma 11 (proof in [9]) shows that there is only one possibility for a popular matching
within the Z-gadget. Thus every popular matching in G contains (z0, z1), (z2, z3), (z4, z5).

I Lemma 11. The only popular matching inside the Z-gadget is {(z0, z1), (z2, z3), (z4, z5)}.

5 Stable states versus unstable states

In this section we will show how to obtain a 1-in-3 satisfying assignment for the input φ from
any popular matching in G. The following definition will be useful to us.

I Definition 12. A gadget A in G = (V,E) is said to be in unstable state with respect to
matching M if there is a blocking edge (u, v) ∈ V (A)× V (A) with respect to M . If there is
no such blocking edge to M then we say A is in stable state with respect to M .

In Figures 2-6 depicting our gadgets, corresponding to matchings that consist of colored
edges within the gadget, the relevant gadget is in stable state. A level 1 gadget in unstable
state will encode the corresponding variable being set to true while a level 1 gadget in stable
state will encode the corresponding variable being set to false. We will now analyze what
gadgets are in stable/unstable state with respect to any popular matching M in G. This will
lead to the proof that for any clause c, exactly one of the level 1 gadgets corresponding to
the 3 variables in c is in unstable state.

I Lemma 13. For any clause c, the following statements hold:
all its 6 level 0 gadgets are in stable state with respect to M ;
both its level 3 gadgets in G are in unstable state with respect to M .

Proof. Consider a level 0 gadget corresponding to clause c, say the one on vertices ac1, bc1, ac2, bc2.
Lemmas 6, 7, 9, and 10 imply that either {(ac1, bc1), (ac2, bc2)} ⊂M or {(ac1, bc2), (ac2, bc1)} ⊂M .
Thus there is no blocking edge within this gadget. As this holds for every level 0 gadget
corresponding to c and for every clause c, the first part of the lemma follows.

We will now prove the second part of the lemma. Since M is a perfect matching, the
vertices sc0, tc0 (also s′c0 , t

′c
0 ) have to be matched in M , for all clauses c. It follows from

Lemmas 6 and 7 that both sc0 and tc0 (similarly, s′c0 and t′c0 ) have to be matched to neighbors
that are better than d0. Lemma 9 showed that there is no popular edge between a level 3
vertex and a level 2 vertex. Thus sc0 is matched to tci for some i ∈ {1, 2, 3}.

If sc0 is matched to tci then sci has to be matched to tc0 – otherwise Lemma 7 would
be violated by sci and its partner. So (sci , tci ) blocks M and this holds for every clause c.
Similarly, there is a blocking edge (s′ci , t′ci ) for some i ∈ {1, 2, 3} for every clause c. J

I Lemma 14. For any clause c, at least one of the following two conditions has to hold:
two or more of its first three level 2 gadgets are in unstable state with respect to M ;
two or more of its last three level 2 gadgets are in unstable state with respect to M .

The proof of Lemma 14 is given in [9]. Recall that there are three level 1 gadgets
associated with any clause c: these gadgets correspond to the three variables in c.

I Lemma 15. Let c = Xi ∨Xj ∨Xk. At least one of the level 1 gadgets corresponding to
Xi, Xj , Xk is in unstable state with respect to M .

Proof. Suppose not. That is, assume that for some clause c, all three of its level 1 gadgets are
in stable state. Let c = Xi ∨Xj ∨Xk. So (xr, yr) and (x′r, y′r) are in M for all r ∈ {i, j, k}.
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17:10 Popular Matchings in Complete Graphs

We know from Lemma 14 that either two or more of the first three level 2 gadgets
corresponding to c are in unstable state with respect to M or two or more of the last three
level 2 gadgets corresponding to c are in unstable state with respect to M . Assume without
loss of generality that the first and second gadgets, i.e., those on pci , qci , for 0 ≤ i ≤ 5, are in
unstable state with respect to M .

We know from our lemmas in Section 4 that there is no popular edge across gadgets. Thus
M matches the 6 vertices of a level 2 gadget with each other. In particular, it follows from
Lemma 7 that for the level 2 gadget on pci , qci for i = 0, 1, 2, we have (i) (pc0, qc0), (pc1, qc1), (pc2, qc2)
in M or (ii) (pc0, qc2), (pc1, qc1), (pc2, qc0) in M or (iii) (pc0, qc0), (pc1, qc2), (pc2, qc1) in M .

There are two unstable states for each level 2 gadget, i.e., either (ii) or (iii) above for
the gadget on pci , qci for i = 0, 1, 2. A level 2 gadget can be in either of these two unstable
states in M – without loss of generality assume that M contains (pc0, qc0), (pc1, qc2), (pc2, qc1) and
(pc3, qc5), (pc4, qc4), (pc5, qc3). Observe that pc2 likes yj more than qc1 and similarly, qc5 likes xi more
than pc3. Consider the following alternating path ρ with respect to M :

(qc2, pc1)
(+,+)
− (qc1, pc2)

(+,−)
− (yj , xj)

(−,+)
− (z0, z1)

(+,−)
− (yi, xi)

(−,+)
− (qc5, pc3)

(+,+)
− (qc3, pc5).

Note that M has to contain (z0, z1) (by Lemma 11). Observe that ρ is an alternating
path in GM with two blocking edges (pc1, qc1) and (pc3, qc3). This is a contradiction to M ’s
popularity (by Theorem 3) and the lemma follows. J

We can also show that (see [9]) at most one of the level 1 gadgets corresponding to
Xi, Xj , Xk is in unstable state with respect to M . So exactly one of the level 1 gadgets
corresponding to Xi, Xj , Xk is in unstable state with respect to M . This allows us to set a
1-in-3 satisfying assignment to instance φ. For each variable Xi in φ do:

– if the gadget corresponding to Xi is in unstable state then set Xi = true else set
Xi = false.

It follows from our above discussion that this is a 1-in-3 satisfying assignment for φ. We
have thus shown the following result.

I Theorem 16. If G admits a popular matching then φ has a 1-in-3 satisfying assignment.

6 The converse

We will now show the converse of Theorem 16, i.e., if φ has a 1-in-3 satisfying assignment S
then G admits a popular matching. We will use S to construct a popular matching M in G
as follows. To begin with, M = ∅.

Level 1. For each variable Xi do:
if Xi is set to true in S then add (xi, y′i) and (x′i, yi) to M ;
else add (xi, yi) and (x′i, y′i) to M .

For each clause c = Xi ∨Xj ∨Xk, we know that exactly one of Xi, Xj , Xk is set to true in
S. Assume without loss of generality that Xk = true in S. For the level 0, 2, and 3 gadgets
corresponding to c, we do as follows:

Level 0. Recall that there are six level 0 gadgets that correspond to c. For the first 3
gadgets (these are on vertices aci , bci for i = 1, . . . , 6) do:

include (ac1, bc2), (ac2, bc1) from the first gadget;
include (ac3, bc3), (ac4, bc4) from the second gadget;
choose either (ac5, bc5), (ac6, bc6) or (ac5, bc6), (ac6, bc5) from the third gadget.
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Observe that since the third variable Xk of c was set to be true, cross edges are fixed in
the first gadget (see Fig. 3), while the other stable matching (horizontal edges) is chosen in
the second gadget.

For the fourth and fifth gadgets, we will do exactly the opposite. Also, it will not matter
which stable pair of edges is chosen from the third and sixth gadgets. So for the last 3 level 0
gadgets corresponding to c (these are on vertices a′ci , b′ci for i = 1, . . . , 6) do:

include (a′c1 , b′c1 ), (a′c2 , b′c2 ) from the fourth gadget;
include (a′c3 , b′c4 ), (a′c4 , b′c3 ) from the fifth gadget.
choose either (a′c5 , b′c5 ), (a′c6 , b′c6 ) or (a′c5 , b′c6 ), (a′c6 , b′c5 ) from the sixth gadget.

Level 2. Recall that there are six level 2 gadgets that correspond to c. For the first 3
gadgets (these are on vertices pci , qci for i = 0, . . . , 8) do:

include (pc0, qc2), (pc1, qc1), (pc2, qc0) from the first gadget
include (pc3, qc3), (pc4, qc5), (pc5, qc4) from the second gadget
include (pc6, qc6), (pc7, qc7), (pc8, qc8) from the third gadget

In the first three gadgets, because Xk = true, the third one is set to parallel edges, reaching
the stable state, while the first one is blocked by the top horizontal edge and the second one
is blocked by the middle horizontal edge. Include isomorphic edges (to the above ones) from
the last three level 2 gadgets corresponding to c, i.e., include (p′c0 , q′c2 ), (p′c1 , q′c1 ), (p′c2 , q′c0 ) from
the fourth gadget, and so on. On this level, the last three gadgets mimic the matching edges
from the first three gadgets, unlike in level 0.

Level 3. For the first level 3 gadget corresponding to c do:
include (sc0, tc3), (sc1, tc1), (sc2, tc2), (sc3, tc0) in M .

Since the third variable in c was set to be true, the vertices sc0 and tc0 are matched to tc3
and sc3, respectively – thus the bottom horizontal edge (sc3, tc3) blocks M . Include isomorphic
edges (to the above ones) for the second level 3 gadget corresponding to c, i.e., include
(s′c0 , t′c3 ), (s′c1 , t′c1 ), (s′c2 , t′c2 ), (s′c3 , t′c0 ) in M . Once again, the second gadget mimics the matching
edges on the first gadget.

Z-gadget and D-gadget. Finally include the edges (z0, z1), (z2, z3), (z4, z5) from the Z-
gadget in M . By Lemma 11, every popular matching in G has to include these edges. Also
include (d0, d1), (d2, d3) from the D-gadget in M .

6.1 The popularity of M

We will now prove the popularity of the above matching M via the LP framework of popular
matchings initiated in [18] for bipartite graphs. This framework generalizes to provide a
sufficient condition for popularity in non-bipartite graphs [10]. This involves showing a
witness ~α ∈ {0,±1}|V | such that ~α is a certificate of M ’s popularity. In order to define the
constraints that ~α has to satisfy so as to certify M ’s popularity, let us define an edge weight
function wM as follows.

For any edge (u, v) in G do:
if (u, v) is labeled (−,−) then set wM (u, v) = −2;
if (u, v) is labeled (+,+) then set wM (u, v) = 2;
else set wM (u, v) = 0. (So wM (e) = 0 for all e ∈M .)
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Let N be any perfect matching in G. It is easy to see from the definition of the edge
weight function wM that wM (N) = φ(N,M)− φ(M,N).

Let the max-weight perfect fractional matching LP in the graph G with edge weight
function wM be our primal LP. This is LP1 defined below.

maximize
∑
e∈E

wM (e)xe (LP1)

subject to∑
e∈δ(u) xe = 1 ∀u ∈ V and xe ≥ 0 ∀ e ∈ E.

If the primal optimal value is at most 0 then wM (N) ≤ 0 for all perfect matchings N in
G, i.e., φ(N,M) ≤ φ(M,N). This means φ(M ′,M) ≤ φ(M,M ′) for all matchings M ′ in G,
since G is a complete graph on an even number of vertices (so M ′ ⊆ some perfect matching).
That is, M is a popular matching in G.

Consider the LP that is dual to LP1. This is LP2 given below in variables αu, where
u ∈ V .

minimize
∑
u∈V

αu (LP2)

subject to

αu + αv ≥ wM (u, v) ∀ (u, v) ∈ E.

If we show a dual feasible solution ~α such that
∑
u∈V αu = 0 then the primal optimal

value is at most 0, i.e., M is a popular matching.
In order to prove the popularity of M , we define ~α as follows. For each variable Xr do:
if Xr was set to true then set αxr

= αyr
= 1 and αx′

r
= αy′

r
= −1;

else set αxr = αyr = αx′
r

= αy′
r

= 0.

Let clause c = Xi∨Xj ∨Xk. Recall that we assumed that Xi = Xj = false and Xk = true.
For the vertices in clauses corresponding to c, we will set α-values as follows.

For every level 0 vertex v do: set αv = 0.
For the first three level 2 gadgets corresponding to c do:

set αpc
0

= αqc
0

= 1, αpc
1

= 1, αqc
1

= −1, and αpc
2

= αqc
2

= −1;
set αpc

3
= −1, αqc

3
= 1, αpc

4
= αqc

4
= 1, and αpc

5
= αqc

5
= −1;

set αpc
6

= αqc
6

= αpc
7

= αqc
7

= αpc
8

= αqc
8

= 0.

The setting of α-values is analogous for vertices in the last three level 2 gadgets corres-
ponding to c. For the first level 3 gadget corresponding to c do:

set αsc
0

= αtc0 = −1, αsc
1

= −1, αtc1 = 1, αsc
2

= −1, αtc2 = 1, and αsc
3

= αtc3 = 1.

The setting of α-values is analogous for vertices in the other level 3 gadget corresponding
to c. For the z-vertices do: set αu = 0 for all u ∈ {z0, . . . , z5}. For the d-vertices do:

set αd0 = αd2 = −1 and αd1 = αd3 = 1.

Properties of ~α. For every (u, v) ∈ M , either αu = αv = 0 or {αu, αv} = {−1, 1}; so
αu +αv = 0. Since M is a perfect matching, we have

∑
u∈V αu = 0. The claims stated below

(proofs are in [9]) show that ~α is a feasible solution to LP2. This will prove the popularity of
M .

We need to show that every edge (u, v) is covered, i.e., αu + αv ≥ wM (u, v). We have
already observed that for any (u, v) ∈M , αu + αv = 0 = wM (u, v).



Á. Cseh and T. Kavitha 17:13

I Claim 17. Let (u, v) be a blocking edge to M . Then αu + αv = 2 = wM (u, v).

I Claim 18. Let (u, v) be an intra-gadget edge that is non-blocking. Then αu+αv ≥ wM (u, v).

I Claim 19. Let (u, v) be any inter-gadget edge. Then αu + αv ≥ wM (u, v).

Thus we have shown the following theorem.

I Theorem 20. If φ has a 1-in-3 satisfying assignment then G admits a popular matching.

Theorem 2 stated in Section 1 follows from Theorems 16 and 20. Thus the popular
matching problem in a roommates instance on n vertices with complete preference lists is
NP-hard for even n.
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Abstract
Given a host graph G and a pattern graph H, the induced subgraph isomorphism problem is to
decide whether G contains an induced subgraph that is isomorphic to H. We study the time com-
plexity of induced subgraph isomorphism problems when the pattern graph is fixed. Nešetřil and
Poljak gave an O(nkω) time algorithm that decides the induced subgraph isomorphism problem
for any 3k vertex pattern graph (the universal algorithm), where ω is the matrix multiplication
exponent. Improvements are not known for any infinite pattern family.

Algorithms faster than the universal algorithm are known only for a finite number of pattern
graphs. In this paper, we show that there exists infinitely many pattern graphs for which the
induced subgraph isomorphism problem has algorithms faster than the universal algorithm.

Our algorithm works by reducing the pattern detection problem into a multilinear term
detection problem on special classes of polynomials called graph pattern polynomials. We show
that many of the existing algorithms including the universal algorithm can also be described
in terms of such a reduction. We formalize this class of algorithms by defining graph pattern
polynomial families and defining a notion of reduction between these polynomial families. The
reduction also allows us to argue about relative hardness of various graph pattern detection
problems within this framework. We show that solving the induced subgraph isomorphism for
any pattern graph that contains a k-clique is at least as hard detecting k-cliques. An equivalent
theorem is not known in the general case.

In the full version of this paper, we obtain new algorithms for P5 and C5 that are optimal
under reasonable hardness assumptions. We also use this method to derive new combinatorial
algorithms – algorithms that do not use fast matrix multiplication – for paths and cycles. We
also show why graph homomorphisms play a major role in algorithms for subgraph isomorphism
problems. Using this, we show that the arithmetic circuit complexity of the graph homomorphism
polynomial for Kk − e (The k-clique with an edge removed) is related to the complexity of many
subgraph isomorphism problems. This generalizes and unifies many existing results.
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1 Introduction

The induced subgraph isomorphism problem asks, given simple and undirected graphs G and
H, whether there is an induced subgraph of G that is isomorphic to H . The graph G is called
the host graph and the graph H is called the pattern graph. This problem is NP-complete
(See [8], problem [GT21]). If the pattern graph H is fixed, there is a simple O(n|V (H)|) time
algorithm to decide the induced subgraph isomorphism problem for H. We study the time
complexity of the induced subgraph isomorphism problem for fixed pattern graphs on the
Word-RAM model.

The earliest non-trivial algorithm for this problem was given by Itai and Rodeh [9]
who showed that the number of triangles can be computed in O(nω) time on n-vertex
graphs, where ω is the exponent of matrix multiplication. Later, Nešetřil and Poljak[11]
generalized this algorithm to count K3k in O(nkω) time, where K3k is the clique on 3k
vertices. Eisenbrand and Grandoni [3] extended this algorithm further to count K3k+j for
j ∈ {0, 1, 2} using rectangular matrix multiplication in O(nω(k+dj/2e,k,k+bj/2c)) time. Here
ω(i, j, k) denotes the exponent of the running time of matrix multiplication when multiplying
an i× j matrix with a j×k matrix. It is known that detecting/counting any k-vertex pattern
is easier than detecting/counting Kk. Therefore, these algorithms are called “universal”
algorithms.

Our Contributions

Algorithms that improve the universal algorithm for specific pattern graphs are only known
for small fixed values of k. For example, the induced subgraph isomorphism problem for P4
can be solved in O(n+m) time [1] and all 4-vertex graphs other than K4 can be detected
in O(nω) time [14]. In Section 5, we give the first algorithm that detects infinitely many
pattern graphs faster than the universal algorithm.

Our algorithm works by reducing the induced subgraph isomorphism problem into
detecting multilinear terms in a related polynomial. This idea has been previously used
by many authors (See [13], [10], [5], and [7] for its application to subgraph isomorphism
problems) to solve combinatorial problems efficiently. A major contribution of our work is a
general framework that can describe many existing algorithms for subgraph isomorphism
problems. We show that graph pattern2 detection problems can be reformulated as the
problem of detecting multilinear terms in special classes of polynomials called graph pattern
polynomials (Defined in Section 4).

We also define a notion of reduction between these polynomials that allows us to argue
about the relative hardness of the graph pattern detection problems. It is known that
detecting an induced path on 2k vertices is at least as hard as detecting a Kk [6]. Intuitively,

2 Examples of graph patterns include subgraph isomorphisms, induced subgraph isomorphisms, and graph
homomorphisms

https://arxiv.org/abs/1809.08858
https://arxiv.org/abs/1809.08858
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any pattern graph H that contains a Kk (or equivalently, an independent set on k vertices)
should be as hard to detect as a Kk. But this is not known. In Section 6, we show that the
graph pattern polynomial for Kk can be reduced to the polynomial that corresponds to the
induced subgraph isomorphism problem for H for any H that contains a Kk. This shows
that if we can obtain better algorithms for H using our framework, then we obtain better
algorithms for Kk. We show that all existing algorithms for induced subgraph isomorphism
problems can be either described using our framework or we can obtain algorithms with
matching running times using our framework. Therefore, these reductions can be viewed as
showing the limitations of current methods for solving subgraph isomorphism problems.

In Section 7, we discuss the results in the full version of this paper. In Section 3, we show
how to use graph pattern polynomials to obtain a linear-time algorithm for detecting paths
on four vertices.

2 Preliminaries

For a polynomial f , we use deg(f) to denote the degree of f . A monomial is called multilinear,
if every variable in it has degree at most one. We use ML(f) to denote the multilinear part
of f , that is, the sum of all multilinear monomials in f . An arithmetic circuit computing
a polynomial P ∈ K[x1, . . . , xn] is a circuit with +, × gates where the input gates are
labelled by variables or constants from the underlying field and one gate is designated as
the output gate. The size of an arithmetic circuit is the number of wires in the circuit. For
indeterminates x1, . . . , xn and a set S = {s1, . . . , sp} ⊆ {1, . . . , n} of indices, we write xS to
denote the product xs1 · · ·xsp

.

An induced subgraph isomorphism from H to G is an injective function φ : V (H) ind7→
V (G) such that {u, v} ∈ E(H) ⇐⇒ {φ(u), φ(v)} ∈ E(G). Any function from V (H) to
V (G) can be extended to unordered pairs of vertices of H as φ({u, v}) = {φ(u), φ(v)}.
A subgraph isomorphism from H to G is an injective function φ : V (H) sub7→ V (G) such
that {u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Two subgraph isomorphisms or induced
subgraph isomorphisms are considered different only if the set of edges in the image are
different. A graph homomorphism from H to G is a function φ : V (H) hom7→ V (G) such that
{u, v} ∈ E(H) =⇒ {φ(u), φ(v)} ∈ E(G). Unlike isomorphisms, we consider two distinct
functions that yield the same set of edges in the image as distinct graph homomorphisms.
We define φ(S) = {φ(s) : s ∈ S}.

We write H v H ′ (H w H ′) to specify that H is a subgraph (supergraph) of H ′. The
number tw(H) stands for the treewidth of H . We denote the number of automorphisms of H
by #aut(H). The graph Kn is the complete graph on n vertices labelled using [n]. We use
the fact that #aut(H) = 1 for almost all graphs in many of our results. In this paper, we
will frequently consider graphs where vertices are labelled by tuples. A vertex (i, p) is said to
have label i and colour p. An edge {(i1, p1), (i2, p2)} has label {i1, i2} and colour {p1, p2}.
We will sometimes write this edge as ({i1, i2}, {p1, p2}). Note that both {(i1, p1), (i2, p2)}
and {(i2, p1), (i1, p2)} are written as ({i1, i2}, {p1, p2}). But the context should make it clear
which edge is being rewritten.

We will often use the following short forms to denote specific pattern graphs:
K` : A clique on ` vertices I` : An independent set on ` vertices
K` − e : A K` with an edge removed K` + e : A K` and one more edge on ` + 1 vertices
P` : A Path on ` vertices C` : A cycle on ` vertices

FSTTCS 2018
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3 A Motivating Example: Induced-P4 Isomorphism

In this section, we sketch a one-sided error, randomized O(n2) time algorithm for the induced
subgraph isomorphism problem for P4 to illustrate the techniques used to derive algorithms
in this paper.

We start by giving an algorithm for the subgraph isomorphism problem for P4. Consider
the following polynomial:

NP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}

where the summation is over all quadruples over [n] where all four elements are distinct.
Each of the y variables corresponds to a vertex of a possible P4 and the x variables correspond
to the edges. Hence each monomial in the above polynomial corresponds naturally to a P4
on the vertices p, q, r, s chosen in the summation. The condition p < s ensures that each
path has exactly one monomial corresponding to it.

Given an n-vertex host graph G and an arithmetic circuit for NP4,n, we can construct an
arithmetic circuit for the polynomial NP4,n(G) on the y variables obtained by substituting
xe = 0 when e 6∈ E(G) and xe = 1 when e ∈ E(G). The polynomial NP4,n(G) can be written
as
∑
X aXyX where the summation is over all four vertex subsets X of V (G) and aX is the

number of P4s in the induced subgraph G[X]. Therefore, we can decide whether G has a
subgraph isomorphic to P4 by testing whether NP4,n(G) is identically 0. Since the degree of
this polynomial is a constant k, this can be done in time linear in the size of the arithmetic
circuit computing NP4,n.

However, we do not know how to construct a O(n2) size arithmetic circuit for NP4,n.
Instead, we construct a O(n2) size arithmetic circuit for the following polynomial called the
walk polynomial:

HomP4,n =
∑

φ:P4
hom7→Kn

∏
v∈V (P4)

zv,φ(v)yφ(v)
∏

e∈E(P4)

xφ(e)

Similar to NP4,n, the y and x variables correspond to vertices and edges respectively. The
z variables play the role of fixing the mapping from P4 to Kn that is chosen in the summation.
This polynomial is also called the homomorphism polynomial for P4 because its terms are in
one-to-one correspondence with graph homomorphisms from P4 to Kn. As before, we consider
the polynomial HomP4,n(G) obtained by substituting for the x variables appropriately. The
crucial observation is that HomP4,n(G) contains a multilinear term if and only if NP4,n(G)
is not identically zero. This is because the multilinear terms of HomP4,n correspond to
injective homomorphisms from P4 which in turn correspond to subgraph isomorphisms from
P4. More specifically, each P4 corresponds to two injective homomorphisms from P4 since P4
has two automorphisms. Therefore, we can test whether G has a subgraph isomorphic to
P4 by testing whether HomP4,n(G) has a multilinear term. It is known that the polynomial
p4 = HomP4,n has O(n2) size circuits using the following inductive construction:

p1,v = yv, v ∈ [n]

pi+1,v = zi+1,v
∑
u∈[n]

pi,uyvx{u,v}, v ∈ [n], i ≥ 1

p4 =
∑
v∈[n]

p4,v
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The above construction can be extended to construct pk for any k and not just k = 4.
This method is used in [13] to obtain an O(2k(n + m)) time algorithm for the subgraph
isomorphism problem for Pk.

In fact, the above method works for any pattern graph H. Extend the definitions above
to define NH,n and HomH,n in the natural fashion. Then, we can test whether an n-vertex
graph G has a subgraph isomorphic to H by testing whether NH,n(G) is identically zero
which in turn can be done by testing whether HomH,n(G) has a multilinear term. Therefore,
the complexity of subgraph isomorphism problem for any pattern H is as easy as constructing
the homomophism polynomial for H. This method is used by Fomin et. al. [7] to obtain
efficient algorithms for subgraph isomorphism problems.

We now turn our attention to the induced subgraph isomorphism problem for P4. We note
that the induced subgraph isomorphism problem for Pk is much harder than the subgraph
isomorphism problem for Pk. The subgraph isomorphism problem for Pk has a linear time
algorithm as seen above but the induced subgraph isomorphism problem for Pk cannot have
no(k) time algorithms unless FPT = W[1]. We start by considering the polynomial:

IP4,n =
∑

(p,q,r,s):p<s

ypyqyrysx{p,q}x{q,r}x{r,s}(1− x{p,r})(1− x{p,s})(1− x{q,s})

The polynomial IP4,n(G) can be written as
∑
X yX where the summation is over all four

vertex subsets of V (G) that induces a P4. Notice that all coefficents are 1 because there can
be at most 1 induced-P4 on any four vertex subset. By expanding terms of the form 1− x∗
in the above polynomial, we observe that we can rewrite IP4,n as follows:

IP4,n = NP4,n − 4NC4,n − 2NK3+e,n + 6NK4−e,n + 12NK4,n

Since the coefficients in IP4,n(G) are all 0 or 1, it is sufficient to check whether IP4,n(G)
(mod 2) is non-zero to test whether IP4,n(G) is non-zero. From the above equation, we can
see that IP4,n = NP4,n (mod 2). Therefore, instead of working with IP4,n (mod 2), we can
work with NP4,n (mod 2). We have already seen that we can use HomP4,n(G) to test whether
NP4,n(G) is non-zero. However, this is not sufficient to solve induced subgraph isomorphism.
We want to detect whether NP4,n(G) is non-zero modulo 2. Therefore, the multilinear terms
of HomP4,n(G) has to be in one-to-one correspondence with the terms of NP4,n(G). We have
to divide the polynomial HomP4,n(G) by 2 before testing for the existence of multilinear
terms modulo 2. However, since we are working over a field of characteristic 2, this division
is not possible. We work around this problem by starting with HomP4,n′ for n′ slightly larger
than n and we show that this enables the “division” by 2.

The reader may have observed that instead of the homomorphism polynomial, we could
have taken any polynomial f for which the multilinear terms of f(G) are in one-to-one
correspondence with NP4,n(G). This observation leads to the definition of a notion of
reduction between polynomials. Informally, f � g if detecting multilinear terms in f(G) is
as easy as detecting multilinear terms in g(G). Additionally, for the evaluation f(G) to be
well-defined, the polynomial f must have some special structure. We call such polynomials
graph pattern polynomials.

On first glance, it appears hard to generalize this algorithm for P4 to sparse pattern
graphs on an arbitrary number of vertices (For example, Pk) because we have to argue
about the coefficients of many N∗ polynomials in the expansion. On the other hand, if we
consider the pattern graph Kk, we have IKk

= HomKk
. In this paper, we show that for

many graph patterns sparser than Kk, the induced subgraph isomorphism problem is as easy
as constructing arithmetic circuits for homomorphism polynomials for those patterns (or
patterns that are only slightly denser).

FSTTCS 2018
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4 Graph pattern polynomial families

We will consider polynomial families f = (fn) of the following form: Each fn will be a
polynomial in variables y1, . . . , yn, the vertex variables, and variables x1, . . . , x(n

2), the edge
variables, and at most linear in n number of additional variables.The degree of each fn will
usually be constant.

The (not necessarily induced) subgraph isomorphism polynomial family NH = (NH,n)n≥0
for a fixed pattern graph H on k vertices and ` edges is a family of multilinear polynomials
of degree k + `. The nth polynomial in the family, defined over the vertex set [n], is the
polynomial on n+

(
n
2
)
variables given by (1):

NH,n =
∑

φ:V (H)sub7→V (Kn)

yφ(V (H))xφ(E(H)) (1)

When context is clear, we will often omit the subscript n and simply write NH . Given
a (host) graph G on n vertices, we can substitute values for the edge variables of NH,n
depending on the edges of G (xe = 1 if e ∈ E(G) and xe = 0 otherwise) to obtain a
polynomial NH,n(G) on the vertex variables. The monomials of this polynomial are in
one-to-one correspondence with the H-subgraphs of G. i.e., a term ayv1 · · · yvk

, where a is a
positive integer, indicates that there are a subgraphs isomorphic to H in G on the vertices
v1, . . . , vk. Therefore, to detect if there is an H-subgraph in G, we only have to test whether
NH,n(G) has a multilinear term.

The induced subgraph isomorphism polynomial family IH = (IH,n)n≥0 for a pattern
graph H over the vertex set [n] is defined in (2).

IH,n =
∑

φ:V (H)ind7→V (Kn)

yφ(V (H))xφ(E(H))
∏

e6∈E(H)

(1− xφ(e)) (2)

If we substitute the edge variables of IH,n using a host graph G on n vertices, then the
monomials of the resulting polynomial IH,n(G) on the vertex variables are in one-to-one
correspondence with the induced H-subgraphs of G. In particular, all monomials have
coefficient 0 or 1 because there can be at most one induced copy of H on a set of k vertices.
This implies that to test if there is an induced H-subgraph in G, we only have to test whether
IH,n(G) has a multilinear term and we can even do this modulo p for any prime p. Also,
note that IH is simply IH where all the edge variables xe are replaced by 1− xe.

The homomorphism polynomial family HomH = (HomH,n)n≥0 for pattern graph H over
the vertex set [n] is defined in (3).

HomH,n =
∑

φ:V (H)hom7→ V (Kn)

∏
v∈V (H)

zv,φ(v)yφ(v)
∏

e∈E(H)

xφ(e) (3)

The variables za,v’s are called the homomorphism variables. They keep track how the
vertices of H are mapped by the different homomorphisms in the summation. We note
that the size of the arithmetic circuit computing HomH,n is independent of the labelling
chosen to define the homomorphism polynomial. The arithmetic circuit complexity of such
homomorphism polynomials, with respect to properties of the pattern graph, has been studied
in [4].

The induced subgraph isomorphism polynomial for any graph H and subgraph isomorph-
ism polynomials for supergraphs of H are related as follows:

IH,n =
∑
H′wH

(−1)e(H′)−e(H)#sub(H,H ′)NH′,n (4)
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Here e(H) is the number of edges in H and #sub(H,H ′) is the number of times H
appears as a subgraph in H ′. The sum is taken over all supergraphs H ′ of H having the
same vertex set as H. Equation 4 is used by Curticapean, Dell, and Marx [2] in the context
of counting subgraph isomorphisms.

For any fixed pattern graph H, the degree of polynomial families NH , IH , and HomH

are bounded by a constant depending only on the size of H. Such polynomial families are
called constant-degree polynomial families.

I Definition 4.1. A constant-degree polynomial family f = (fn) is called a graph pattern
polynomial family if the nth polynomial in the family has n vertex variables,

(
n
2
)
edge

variables, and at most cn other variables, where c is a constant, and every non-multilinear
term of fn has at least one non-edge variable of degree greater than 1.

It is easy to verify that IH , NH , and HomH are all graph pattern polynomial families. For
a graph pattern polynomial f , we denote by f(G) the polynomial obtained by substituting
xe = 0 if e 6∈ E(G) and xe = 1 if e ∈ E(G) for all edge variables xe. Note that for any graph
pattern polynomial f , we have ML(f(G)) = ML(f)(G). This is because any non-multilinear
term in f has to remain non-multilinear or become 0 after this substitution.

I Definition 4.2.
1. A constant degree polynomial family f = (fn) has circuits of size s(n) if there is a

sequence of arithmetic circuits (Cn) such that Cn computes fn and has size at most s(n).
2. f has uniform s(n)-size circuits, if on input n, we can construct Cn in time O(s(n)) on a

Word-RAM.3

We now define a notion of reducibility among graph pattern polynomials. Informally, if
f � g, then we detecting whether fn(G) has a multilinear term is as easy as constructing
an arithmetic circuit for gn for all n. First, we define a notion of substitution families that
preserves the semantic structure of graph pattern polynomials.

I Definition 4.3. A substitution family σ = (σn) is a family of mappings

σn : {y1, . . . , yn, x1, . . . , x(n
2), u1, . . . , um(n)} → K[y1, . . . , yn′ , x1, . . . , x(n′

2 ), v1, . . . , vr(n)]

mapping variables to polynomials such that:
1. σ maps vertex variables to constant-degree monomials containing one or more vertex

variables or other variables, and no edge variables.
2. σ maps edge variables to polynomials with constant-size circuits containing at most one

edge variable and no vertex variables.
3. σ maps other variables to constant-degree monomials containing no vertex or edge

variables and at least one other variable.
σn naturally extends to K[y1, . . . , yn, x1, . . . , x(n

2), u1, . . . , um(n)].

For the reduction to be useful in deriving algorithms, the substitution has to be easily
computable. This leads us to the following definition.

I Definition 4.4. A substitution family σ = (σn) is constant-time computable if given n and
a variable z in the domain of σn, we can compute σn(z) in constant-time on a Word-RAM.
(Note that an encoding of any z fits into on cell of memory.)

3 Since we are dealing with fine-grained complexity, we have to be precise with the encoding of the circuit.
We assume an encoding such that evaluating the circuit is linear time and substituting for variables
with polynomials represented by circuits is constant-time.
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Finally, we define our notion of reduction.

I Definition 4.5. Let f = (fn) and g = (gn) be graph pattern polynomial families. Then f
is reducible to g, denoted f � g, via a constant time computable substitution family σ = (σn)
if for all n there is an m = O(n) and q = O(1) such that
1. σm(ML(gm)) is a graph pattern polynomial and
2. ML(σm(gm)) = v[q]ML(fn). (Recall that v[q] = v1 · · · vq.)
For any prime p, we say that f � g (mod p) if there exists an f ′ = f (mod p) such that
f ′ � g.

Property 1 of Definition 4.5 and Properties 1 and 3 of Definition 4.3 imply that σm(gm)
is a graph pattern polynomial because Properties 1 and 3 of Definition 4.3 ensure that
non-multilinear terms remain so after the substitution. It is easy to see that � is reflexive
via the identity substitution. We can also assume w.l.o.g. that the variables v1, . . . , vq are
fresh variables introduced by the substitution family σ.

What is the difference between σm(ML(gm)) and ML(σm(gm)) in the Definition 4.5?
Every monomial in ML(σm(gm)) also appears in σm(ML(gm)), however, the latter may
contain further monomials that are not multilinear.

It is easy to see that � is reflexive via the identity substitution. It can be shown that �
is transitive by composing substitutions.

We conclude this section by mentioning how to obtain efficient algorithms using �.
Efficient algorithms are known (See [10]) for detecting multilinear terms of small degree with
non-zero coefficient modulo primes.

I Theorem 4.6. Let k be any constant and let p be any prime. Given an arithmetic circuit
of size s, there is a randomized, one-sided error O(s)-time algorithm to detect whether the
polynomial computed by the circuit has a multilinear term of degree at most k with non-zero
modulo p coefficient.

An important algorithmic consequence of reducibility is stated in Proposition 4.7. This
proposition is used to derive algorithms for induced subgraph isomorphism problems in this
paper.

I Proposition 4.7. Let p be any prime. Let f and g be graph pattern polynomial families.
Let s(n) be a polynomially-bounded function. If f � g (mod p) and g has size uniform
s(n)-size arithmetic circuits, then we can test whether fn(G) has a multilinear term with
non-zero coefficient modulo p in O(s(n)) (randomized one-sided error) time for any n-vertex
graph G.

5 Pattern graphs easier than cliques

In this section, we describe a family H3k of pattern graphs such that the induced subgraph
isomorphism problem for H3k has an O(nω(k,k−1,k)) time algorithm when k = 2`, ` ≥ 1.
Note that for the currently known best algorithms for fast matrix multiplication, we have
ω(k, k − 1, k) < kω. Therefore, these pattern graphs are strictly easier to detect than cliques.

The pattern graph H3k is defined on 3k vertices and we consider the canonical labelling of
H3k where there is a (3k− 1)-clique on vertices {1, . . . , 3k− 1} and the vertex 3k is adjacent
to the vertices {1, . . . , 2k − 1}.

I Lemma 5.1. IH3k
= NH3k

(mod 2) when k = 2`, ` ≥ 1
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Proof. We show that the number of times H3k is contained in any of its proper supergraphs
is even if k is a power of 2. The graph K3k contains 3k

(3k−1
2k−1

)
copies of H3k. This number is

even when k is even. The graph K3k − e contains 2
(3k−2

2k−1
)
copies of H3k. This number is

always even. The remaining proper supergraphs of H3k are the graphs K3k−1 + (2k + i)e,
i.e., a (3k − 1)-clique with 2k + i edges to a single vertex, for 0 ≤ i < k − 2. There are
mi =

(2k+i
2k−1

)
copies of the graph H3k in these supergraphs. We observe that the numbers

mi are even when k = 2`, ` ≥ 1 by Lucas’ theorem. Lucas’ theorem states that
(
p
q

)
is even

if and only if in the binary representation of p and q, there exists some bit position i such
that qi = 1 and pi = 0. To see why mi is even, observe that in the binary representation of
2k − 1, all bits 0 through ` are 1 and in the binary representation of 2k + i, 0 ≤ i < k − 2, at
least one of those bits is 0. J

I Lemma 5.2. NH3k
� HomH3k

Proof. We start with HomH3k
over the vertex set [n]× [3k] and apply the following substi-

tution.

σ(za,(v,a)) = za (1)
σ(za,(v,b)) = z2

a, a 6= b (2)
σ(y(v,a)) = yv (3)

σ(x(u,a),(v,b)) = 0, if a, b ∈ {1, . . . , 2k − 1} and a < b and u > v (4)
σ(x(u,a),(v,b)) = 0, if a, b ∈ {2k, . . . , 3k − 1} and a < b and u > v (5)
σ(x(u,a),(v,b)) = x{u,v}, otherwise (6)

Rule 3 ensures that in any surviving monomial, all vertices have distinct labels. Rule 4
ensures that the vertices coloured 1, . . . , 2k − 1 are in increasing order and Rule 5 ensures
that the vertices coloured 2k, . . . , 3k − 1 are in increasing order.

Consider an H3k labelled using [n] where the vertices in the (3k − 1)-clique are labelled
v1, . . . , v3k−1 and the remaining vertex is labelled v3k which is connected to v1 < . . . < v2k−1.
Also, v2k < . . . < v3k−1. We claim that the monomial corresponding to this labelled H3k
(say m) is uniquely generated by the monomial m′ =

∏
1≤i≤3k zi,(vi,i)w in HomH3k

. Note
that the vertices and edges in the image of the homomorphism is determined by the map
i 7→ (vi, i). The monomial w is simply the product of these vertex and edge variables. It is
easy to see that this monomial yields the required monomial under the above substitution.
The uniqueness is proved as follows: observe that in any monomial m′′ in HomH3k

that
generates m, the vertex coloured 3k must be v3k. This implies that the vertices coloured
1, . . . , 2k − 1 must be the set {v1, . . . , v2k−1}. Rule 4 ensures that vertex coloured i must
be vi for 1 ≤ i ≤ 2k − 1. Similarly, the vertices coloured 2k, . . . , 3k − 1 must be the set
{v2k, . . . , v3k−1} and Rule 5 ensures that vertex coloured i must be vi for 2k ≤ i ≤ 3k − 1 as
well. But then the monomials m′ and m′′ are the same. J

I Lemma 5.3. HomH3k
can be computed by arithmetic circuits of size O(nω(k,k−1,k)) for

k > 1.

Proof. Consider H3k labelled as before. We define the sets S1,k,2k,3k−1 = {1, . . . , k, 2k . . . ,
3k − 1}, Sk+1,3k−1 = {k + 1, . . . , 3k − 1}, Sk+1,2k−1 = {k + 1, . . . , 2k − 1}, and S1,2k−1 =
{1, . . . , 2k−1}. We also define the tuples V1,k = (v1, . . . , vk), V2k,3k−1 = (v2k, . . . , v3k−1), and
Vk+1,2k−1 = (vk+1, . . . , v2k−1) for any set vi of 3k − 1 distinct vertex labels. The algorithm
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also uses the matrices defined below. The dimensions of each matrix are specified as the
superscript. All other entries of the matrix are 0. Notice that all entries are constant-sized
monomials.

An
k×nk

V1,k,V2k,3k−1
=
( ∏
i∈S1,k,2k,3k−1

zi,vi
yvi

)( ∏
i,j∈S1,k,2k,3k−1

i6=j

x{vi,vj}

)

Bn
k×nk−1

V2k,3k−1,Vk+1,2k−1
=
( ∏
i∈Sk+1,2k−1

zi,viyvi

)( ∏
i∈Sk+1,3k−1
j∈Sk+1,2k−1

i6=j

x{vi,vj}

)

Cn
k−1×nk

Vk+1,2k−1,V1,k
= x{(vi,i)i∈S1,2k−1

}
∏

i∈Sk+1,2k−1
j∈[k]
i6=j

x{vi,vj}

Dnk×n
V1,k,v3k

= z3k,v3k
yv3k

∏
i∈[k]

x{vi,v3k}

En×n
k−1

v3k,Vk+1,2k−1
=

∏
i∈Sk+1,2k−1

x{vi,v3k}

Compute the matrix products ABC and DE. Replace the n2k−1 variables x{(vi,i)i∈S3
}

with (DE)V1,k,Vk+1,2k−1
. The required polynomial is then just

HomH3k
=

∑
(v1,...,vk)

(ABC)(v1,...,vk),(v1,...,vk)

Consider a homomorphism of H3k defined as φ : i 7→ ui. The monomial corresponding
to this homomorphism is uniquely generated as follows. Let U∗ be defined similarly to the
tuples V∗. Set vi = ui for i ∈ [k] in the summation and consider the monomial generated
by the product AU1,k,U2k,3k−1BU2k,3k−1,Uk+1,2k−1CUk+1,2k−1,U1,k

after replacing the variable
x{(ui,i)i∈S3

} by (DE)U1,k,Uk+1,2k−1
taking the monomial DU1,k,u3k

Eu3k,Uk+1,2k−1 from that
entry. It is easy to verify that this generates the required monomial. For uniqueness, observe
that this is the only way to generate the required product of the homomorphism variables.

Computing ABC can be done using O(nω(k,k−1,k)) size circuits. Computing DE can be
done using O(nω(k,1,k−1)) size circuits. The top level sum contributes O(nk) gates. This
proves the lemma. J

We conclude this section by stating our main theorem.

I Theorem 5.4. The induced subgraph isomorphism problem for H3k has an O(nω(k,k−1,k))
time algorithm when k = 2`, ` ≥ 1.

6 Lower Bounds for Pattern Graphs with Cliques

Since we can obtain algorithms for induced subgraph isomorphism problems that match
the known best algorithms using reductions between graph pattern polynomials, we can
interpret the reduction f � g as evidence that detecting the graph pattern corresponding to
g is harder than detecting f . It is known that the induced subgraph isomorphism problem
for P2k is harder than that for Kk. In general, one would think that detecting any graph H
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that contains Kk as a subgraph would be at least as hard as detecting Kk. However, this is
known only when H has a Kk that is vertex disjoint from all other Kk in H. The following
theorem shows that we can drop this restriction when working with pattern polynomials.

I Theorem 6.1. If H contains a k-clique or a k-independent set, then IKk
� IH .

Proof. We will prove the statement when H contains a k-clique. The other part follows
because if H contains a k-independent set, then the graph H contains a k-clique and
IKk
� IH � IH .
Fix a labelling of H where the vertices of a k-clique are labelled using [k] and the

remaining vertices are labelled k + 1, . . . , k + `. Consider the polynomial IH over the vertex
set ([n]× [k]) ∪ {(n+ i, k + i) : 1 ≤ i ≤ `} and apply the following substitution.

σ(y(i,p)) =
{
yiup if i ∈ [n] and p ∈ [k]
up otherwise

(1)

σ(x{(i1,p1),(i2,p2)}) =


x{i1,i2} if {p1, p2} ∈ E(Kk) and p1 < p2 and i1 < i2

1 if {p1, p2} ∈ E(H) \ E(Kk)
0 otherwise

(2)

Consider a k-clique on the vertices i1, . . . , ik ∈ [n] on an n-vertex graph where i1 < · · · < ik.
The monomial in IKk

corresponding to this clique is generated uniquely from the monomial
y(i1,1) . . . y(ik,k)

∏
i y(n+i,k+i)x{(i1,1),(i2,2)}. . . x{(ik−1,k−1),(ik,k)}w in IH , where w is the product

of all edge variables corresponding to edges in H but not in Kk. Note that Rules 1 and 2
ensure that in any surviving monomial, the labels and colours of all vertices are distinct
and the colours of the edges must be the same as E(H). The product w is determined
by i1, . . . , ik. This proves that ML(σ(IH)) = u[k+`]ML(IKk

). It is easy to verify that the
substitution satisfies the other properties. J

Using reductions between graph pattern polynomial families, it is possible to give evidence
for many “natural” relative hardness results. We see these hardness results as showing the
limitations of current methods for solving induced subgraph isomorphism problems.

7 Discussion

Are there patterns other than the pattern in Theorem 5.4 for which we can use homomorphism
polynomials of graphs sparser thanKk for solving the induced subgraph isomorphism problem?
In the full version of this paper, we show that we can obtain better algorithms for paths and
cycles using our method. More specifically, we show that the induced subgraph isomorphism
problems for P5 and C5 can be done in O(nω) time which is optimal assuming the optimality
of triangle detection. We also show how to speed up algorithms for Pk and Ck when k ≤ 9.

An interesting class of algorithms for induced subgraph isomorphism problems are the
so called combinatorial algorithms – algorithms that do not use fast matrix multiplication.
The best combinatorial algorithm known for k-cliques is the trivial O(nk) time algorithm.
Contrary to general algorithms, we know that many patterns have improved combinatorial
algorithms. For example, Virginia Williams [12] showed that there is a O(nk−1) time
combinatorial algorithm for the induced subgraph isomorphism problem for Kk − e. In fact,
we show that ,from existing results, one can obtain combinatorial algorithms running in time
O(nk−1) for all patterns except Kk and Ik. Furthermore, for Pk and Ck we show that we
can obtain new combinatorial algorithms running in time O(nk−2).
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In the full version of the paper, we show that the complexity of many pattern detection
and counting problems can be linked to the circuit complexity of homomorphism polynomials
for Kk − e. We show that if there are O(nf(k)) size circuits for HomKk−e, then:
1. The induced subgraph isomorphism problem for any k-vertex pattern other than Kk,

Ik can be solved in O(nf(k)) time. This shows that the induced subgraph isomorphism
problem for any k-vertex pattern has a O(nk−1) time combinatorial algorithm. This also
shows that when k ≤ 9, all patterns other than Kk, Ik have faster algorithms.

2. The number of subgraphs isomorphic to any k-vertex pattern can be counted in O(nf(k))
time.

3. If we can count the number of induced subgraphs isomorphic to some k-vertex pattern
in O(t(n)) time, then we can count all k-vertex patterns in O(nf(k) + t(n)) time. This
implies that for k ≤ 9, improved algorithms for counting any k-vertex pattern will improve
algorithms for counting k-cliques.

We also explain why homomorphism polynomials feature prominently in many results
related to subgraph isomorphism. We show that for any pattern H, if there exists a family
of polynomials such that NH � f , then the size complexity of HomH is at most the size
complexity of f . Therefore, in a concrete sense, homomorphism polynomials are the best
graph pattern polynomial families for subgraph isomorphism problems.

We also use reductions between graph pattern polynomial families similar to Theorem 6.1
to show many lower bounds that seem natural but are not known for general algorithms.

1. For almost all pattern graphs H, the induced subgraph isomorphism problem for H is
harder than the subgraph isomorphism problem for H (A randomized reduction is to just
randomly delete edges from the graph).

2. For almost all pattern graphs H , the subgraph isomorphism problem for H is easier than
subgraph isomorphism problems for any supergraph of H.

Note however that we do not know whether these lower bounds imply general algorithmic
hardness. But we believe that these results show the limitations of existing methods for
solving subgraph isomorphism problems.
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Abstract
The well-known k-disjoint path problem (k-DPP) asks for pairwise vertex-disjoint paths between
k specified pairs of vertices (si, ti) in a given graph, if they exist. The decision version of the
shortest k-DPP asks for the length of the shortest (in terms of total length) such paths. Similarly,
the search and counting versions ask for one such and the number of such shortest set of paths,
respectively.

We restrict attention to the shortest k-DPP instances on undirected planar graphs where
all sources and sinks lie on a single face or on a pair of faces. We provide efficient sequential
and parallel algorithms for the search versions of the problem answering one of the main open
questions raised by Colin de Verdière and Schrijver [13] for the general one-face problem. We do
so by providing a randomised NC2 algorithm along with an O(nω/2) time randomised sequential
algorithm, for any fixed k. We also obtain deterministic algorithms with similar resource bounds
for the counting and search versions. In contrast, previously, only the sequential complexity of
decision and search versions of the “well-ordered” case has been studied. For the one-face case,
sequential versions of our routines have better running times for constantly many terminals.

The algorithms are based on a bijection between a shortest k-tuple of disjoint paths in the
given graph and cycle covers in a related digraph. This allows us to non-trivially modify estab-
lished techniques relating counting cycle covers to the determinant. We further need to do a
controlled inclusion-exclusion to produce a polynomial sum of determinants such that all “bad”
cycle covers cancel out in the sum allowing us to count “pure” cycle covers.
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1 Introduction

1.1 The k-disjoint paths problem
The k-Disjoint Path Problem, denoted by k-DPP, is a well-studied problem in algorithmic
graph theory with many applications in transportation networks, VLSI-design and most
notably in the algorithmic graph minor theory (see for instance [19] and references therein).
The k-DPP can be formally defined as follows: Given a (directed/undirected) graph G =
(V,E) together with k specified pairs of terminal vertices (si, ti) for i ∈ [k], find k pairwise
vertex-disjoint paths Pi from si to ti, if they exist. One may similarly define an edge-disjoint
variant (EDPP) of the problem. We will mainly focus on the vertex-disjoint variant in this
paper though several of our results are translated to an edge-disjoint variant as well. The
Shortest k-DPP asks to find k pairwise vertex-disjoint paths of minimum total length. We
consider the following variants of Shortest k-DPP:
1. Decision: given w, decide if there is a set of k-disjoint paths of length at most w.
2. Construction/Search: construct one set of shortest k-disjoint paths.
3. Counting: count the number of shortest k-disjoint paths.

1.2 Finding k-disjoint paths: Historical overview
The existence as well as construction versions of k-DPP are well-studied in general as well as
planar graphs. The problem in general directed graphs is NP-hard even for k = 2 [16]. It
is one of Karp’s NP-hard problems [18] (when k is part of the input) and remains so when
restricted to undirected planar graphs [20] and [22] extends this to EDPP as well. In fact,
EDPP remains NP-hard even on planar undirected graphs when all the terminals lie on a
single face [29].The problem of finding two disjoint paths, one of which is a shortest path, is
also NP-hard [14].

The existence of a One/Two-Face k-DPP was studied in [24] as part of the celebrated
Graph Minors series. This was extended (for fixed k) to graphs on a surface [25] and general
undirected graphs [26] in later publications in the same series [26]. A solution to this problem
was central to the Graph Minors Project and adds to the importance of the corresponding
optimization version. Even when k is part of the input, Suzuki et al. [30] gave linear time
and O(n log n) time algorithms for the One-Face and the Two-Face case, respectively and
[31] gave NC algorithms for both. In directed graphs, for fixed k polynomial time algorithms
are known when the graph is either planar [28] or acyclic [16].

Though there are recent exciting works on planar restrictions of the problem (e.g. [7])
and even on grid graphs where all the terminals lie on the outer-face [9], the One-Face or
Two-Face setting might appear on first-look to be a bit restrictive. However, the One-Face
setting occurs naturally in the context of routing problems for VLSI circuits where the graph
is a two dimensional grid and all the terminals lie on the outer face. In Relaxations of the
One-Face setting become intractable, e.g., “only all source-terminals on one face” is hard to
even approximate under a reasonable complexity assumption (NP 6= quasi-P [8]).

1.3 Shortest k-DPP: Related work
The optimization problem is considerably harder. A version of the problem is called length-
bounded DPP, where each of the path need to have length bounded by some integer `. This
problem is NP-hard in the strong sense even in the One-Face case for unbounded k [34]. For
the shortest k-DPP, where we want to minimise the sum of the lengths of the paths, very few
instances are known to be solvable in polynomial time. For general undirected graphs, very
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recently, Björklund and Husfeldt [3] have shown that shortest 2-DPP admits a randomised
polynomial time algorithm. The deterministic polynomial time bound for the same – to this
date – remains an intriguing open question.

For planar graphs, Colin de Verdière and Schrijver [13] and Kobayashi and Sommer [19]
give polynomial time algorithms for shortest k-DPP in some special cases. An O(kn log n)
time algorithm is given in [13] for the case when the sources are incident on one face and
sinks on another. In [19] an O(n4 log n) time and O(n3 log n) time algorithm is given when
the terminal vertices are on one face for k ≤ 3 or on two faces for k = 2, respectively. For
arbitrary k, linear time algorithm is known for bounded tree-width graphs [27]. Polynomial
time algorithms are also known through reducing the problems to the minimum cost flow
problem when all the sources (or sinks) coincides or when the terminal vertices lie on a face
in the (parallel) order s1, s2, . . . , sk, tk, . . . , t2, t1 [34].

In [13] the authors ask about the existence of a polynomial time algorithm provided all
the terminals are on a common face, for which we give an efficient deterministic algorithm
for k = O(log n). The only progress on this was made by Borradaile et al. [5] where an
O(kn5) time algorithm is presented when corresponding sources and sinks are in series on
the boundary of a common face and more recently, by Erickson and Wang [15] who give an
O(n6) time algorithm for k = 4. All the previous One-Face planar results are strictly more
restrictive or orthogonal to our setting and our sequential algorithms are more efficient (for
fixed k). We are able to tackle the counting version that is typically harder than the decision
version. Also, to the best of our knowledge, none of the previous works have addressed the
parallel complexity of these problems. Very recently, Björklund and Husfeldt [4] presented
an algorithm for the k = 2 case in max-degree 3 planar graphs with no restriction on the
placement of the terminals. Interestingly, like our algorithms, their algorithm also uses
determinants (with some additional techniques) to count the solutions.

1.4 Our results and techniques
I Theorem 1. Given an undirected planar graph with k pairs of source and sink terminals
on the boundary of a common face we can count all shortest k-disjoint paths between the
terminals in O(4knω/2+1) time.

Here ω < 2.373 is the matrix multiplication constant. We also get efficient randomised
algorithm (through isolation a la [23] and matrix inversion) and deterministic algorithm
(using the counting procedure as an oracle) to construct a witness.

I Theorem 2. Given an undirected planar graph with k pairs of source and sink terminals on
the boundary of a common face, finding a shortest set of k-disjoint paths between the terminals
is in randomised O(4knω/2) time and in deterministic O(4knω/2+2) time, respectively.

The counting algorithm is based on computing several determinants in parallel along with a
large matrix inversion which, for k logarithmic in n, can be computed using NC (efficient-
parallel) algorithms, i.e., using uniform circuits of polynomial size and polylogarithmic depth.
Hence we also get the following result.

I Theorem 3. Given an undirected planar graph with k pairs of source and sink terminals on
the boundary of a common face and k logarithmic in n, we can count all shortest k-disjoint
paths between the terminals in NC.

From the randomised procedure of Theorem 2 we also get a randomized NC (RNC) algorithm
to construct a witness. Our algorithms work for weighted graphs where each edge is assigned
a weight which is polynomially bounded in the number of vertices. All our results also hold
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Table 1 Summary of Results. The dependence on k and n of our results (in bold) is emphasized.
Note that ω is the matrix multiplication constant.

Problem Variant Sequential Parallel
Deterministic Randomised

One-Face General
Decision 4knω/2 NC
Counting 4knω/2+1 NC
Search 4knω/2+2 4knω/2 RNC

Two-Face Parallel
Decision knω NC
Counting knω+1 NC
Search knω+2 (kn log n[13]) knω RNC

for the case when all the source vertices lie on a single face and the sinks on another, with an
extra nω/2 factor blow up in the sequential runtime. Though a more efficient algorithm for
the search version is known from [13], we provide an efficient parallel algorithm which is also
able to count. Our algorithms extend to a variant of the edge-disjoint version of the problem
(for decision and search) by known reductions to the vertex disjoint case. We obtain running
times independent of k when the terminal vertices on the faces are in parallel order. We
summarize our main results in Table 1. The proof of Theorem 1 depends on the following
ideas:

An injection from k disjoint paths to cycle covers in a related graph for the general case.
The injection above reduces to a bijection in the parallel case. (Lemma 29)
An identity involving telescoping sums to simplify the count of k-disjoint paths.
(Lemma 16)

We sketch these ideas in more detail below.

Proof Sketch
Throughout the following sketch we talk about pairings which are essentially a collection of
k source-sink pairs, though not necessarily the same one which was specified in the input.
We refer to this input pairing by M0.
1. One-Face Case. We first convert the given undirected planar graph into a directed

one such that each set of disjoint paths between the source-sink pairs in M0 corresponds
to directed cycle covers (Lemma 5). In this process, we might introduce “bad” cycle
covers corresponding to pairings of terminals which are not required and they need to be
cancelled out. Each “bad” cycle cover which was included, can be mapped to a unique
pairing, say M1. Since the “bad” cycle cover occurs in M0 as well as M1 we can cancel it
out by adding or subtracting the determinant of M1 fromM0. However, M1 can introduce
further “bad” cycle covers which again need to be cancelled. We show that all the “bad”
cycle covers like this can be cancelled by adding or subtracting determinants exactly like
in an inclusion-exclusion formula over a DAG (Lemma 16). This process terminates with
the so called “parallel” pairings (where the correspondence between k-disjoint paths and
cycle covers with k non-trivial cycles is a bijection) (Lemma 29).

2. Counting. The cycle covers in a graph can be counted by a determinant - more precisely,
we have a univariate polynomial which is the determinant of some matrix such that every
cycle cover corresponds with one monomial in the determinant expansion. Since the “bad”
cycle covers cancel out in the inclusion-exclusion, the coefficient of the least degree term
gives the correct count of the shortest cycle covers in M0 which can then be extracted
out by interpolation.
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3. Two-Face Case. The inclusion-exclusion formula exploited the topology of the One-Face
case which is not present in the Two-Face case. Here, this approach breaks down as the
pairings can not be put together as a DAG. We resolve this for a special case when all
sources are on one face and all sinks are on the other by using a topological artifice to
prune out pairings which cause cycles. For the Two-Face case, we need the number of
cycle covers with a certain winding number modulo k. This can be read off from the
monomial with the appropriate exponent in the determinant polynomial.

Main Technical Contribution
Our main technical ingredient here is the Cancellation Lemma 16 that makes it possible to
reduce the count of disjoint paths to signed counts over a larger set in such a way that the
spurious terms cancel out. This reduces the count of disjoint paths to the determinant. To
the best of our knowledge this is the first time a variant of the disjoint path problem has
been reduced to the determinant, a parallelizable quantity (in contrast [3] reduce 2-DPP to
the Permanent modulo 4 for which no parallel algorithm is known).

1.5 Organization
We recall some preliminaries in Section 2 and describe the connection between k-disjoint
paths and the determinant in Section 3. In Section 4 we discuss the general One-Face case
and in Section 5 the parallel Two-Face case. We extend our results for shortest k-DPP to a
variant of shortest k-EDPP in Section 6. We conclude in Section 7 with some open ends.

2 Preliminaries

An embedding of a graph G = (V,E) into the plane is a mapping from V to different points
of R2, and from E to internally disjoint simple curves in R2 such that the endpoints of the
image of (u, v) ∈ E are the images of vertices u, v ∈ V . If such an embedding exists then G
is planar. The faces of an embedded planar graph G are the maximal connected components
of R2 that are disjoint from the image of G. We can find a planar embedding in logspace
using [2, 12]. In this paper we assume G to be an embedded planar graph. We say that a
set of k terminal pairs {(si, ti) : i ∈ [k]} is One-Face if the terminals all occur on a single
face F . They are in parallel order if the pairs occur in the order s1, s2, . . . , sk, tk, . . . , t2, t1
on the facial boundary and in serial order if they occur in the order s1, t1, s2, t2, . . . , sk, tk.
Otherwise they are said to be in general order. If all the k terminal pairs occur on two faces
F1 and F2, we call it Two-Face. Here they are in parallel order if the sources s1, s2, . . . , sk
occur on one face and all the sinks t1, t2, . . . , tk, are on another. Though conventionally the
face containing the terminals is drawn as the outer (infinite) face, for the ease of exposition
here we consider it to be bounded. The region inside the face (including the face boundary)
is a closed set and the graph is embedded on the other side of the face, which is an open set.

Recall that a cycle cover is a collection of directed vertex-disjoint cycles incident on every
vertex in the graph. Our proofs go through by reducing the problems to counting/isolating
cycle covers. Since the determinant of the adjacency matrix of a graph is the signed sum of
its cycle covers, we can count the lightest cycle covers by ensuring that all such cycle covers
get the same sign. Similarly, isolating one lightest cycle cover enables us to extract it via
determinant computations. We note the following seemingly innocuous but important fact:

I Fact 4 (see e.g. [21]). The sign of a permutation π ∈ Sn equals (−1)n+c where c is the
number of cycles in the cycle decomposition of π.
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Figure 1 (a) Parallel. (b) Serial. (c) General Terminal Orderings.

3 Disjoint paths, cycle covers and determinant

We first describe a basic graph modification step using which we can show connections
between cycle covers and shortest k-DPP. In the rest of the paper, we will first perform the
modification before applying our algorithms.

Modification Step. Let G be an undirected graph with 2k terminal vertices. We add k new
special vertices r1, . . . , rk to get a new graph G′ and let A be the corresponding adjacency
matrix. We add unit weight self loops to all non-special vertices and weigh the rest of the
edges of G′ by x. The terminals are paired together into k disjoint ordered pairs. We refer
to the ith pair as (si, ti), where si is the source and ti is the sink. For each terminal pair
i, we add directed edges of unit weight from the sink ti to ri and from ri to the source si.
By slightly abusing the terminology we refer to these pair of edges (essentially a directed
path of length two) together as a demand edge. These k demand edges together defines the
input pairing. In general any set of k demand edges between the terminals (not necessarily
directed from the sources to the sinks) that do not share any endpoints defines a pairing
which essentially gives a bijection between two equal sized partitions of the 2k terminals (e.g.
in the input pairing each ti maps to si). Let the resulting mixed graph, containing both
directed and undirected edges, be H. It can be thought of as a directed graph where each
undirected edge corresponds to a pair of directed edges oriented in the opposite directions.
Let B be the resultant weighted adjacency matrix corresponding to H and it can be written
as D+ xA where D is the matrix with 1’s for non-special vertices and zeroes for special ones
on the diagonal and 1’s for the newly added subdivided demand edges as off diagonal entries.
There is a bijection between cycle covers in the graph and monomials4 in the determinant
det(D+ xA). Each cycle cover in turn consists of disjoint cycles which are one of three types:
1. consisting alternately of paths between two terminals and demand edges.
2. a non-trivial cycle avoiding all terminals.
3. a trivial cycle i.e. a self loop.
Thus every cycle cover contains a set of k disjoint paths. Further any collection of k disjoint
paths between the terminals (not necessarily in the specified pairing) can be extended using
the edges on the uncovered vertices (by the paths) in at least one way to a cycle cover of the
above type.

Finally we have extensions of “pure” k-disjoint paths (which are between a designated
set of pairs of terminals), which are in bijection with a subset of all cycle covers. We call
the corresponding set of cycle covers pure cycle covers. This bijection carries over to some
monomials (the so called pure monomials) of the determinant. Thus we obtain the following:

4 Here we think of the entries of the matrix as formal variables and many such monomials combine to
give a term.
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I Lemma 5. Let B = D+ xA as above. The non-zero monomials in det(B) are in bijection
with the cycle covers in the graph H and every cycle cover in H is also an extension of a
k-disjoint path in G. This bijection also applies to the subset of “pure” k-disjoint paths to
yield, so called pure cycle covers and pure monomials. Moreover, the bijection preserves the
degree of a monomial as the length of the cycle cover it is mapped to.

Let’s focus on the terms that correspond to minimum length pure cycle covers. Then these
terms have the same exponent `, the length of this shortest pure cycle cover. This is also the
least exponent amongst all the pure monomials occurring in the determinant. Notice that
their sign is the same. To see this, consider the sign given by (−1)n+c (see Fact 4) where n
is the number of vertices and c the number of cycles in the cycle cover. The number of non
self-loop cycles is k, the minimum number of cycles needed to cover all the vertices without
self loops and equalling the number of source sink pairs. Notice that any extra cycles can be
replaced by self loops yielding a cycle cover of strictly smaller length hence will not figure
in the minimum exponent term. The number of self loops is therefore n − `. Hence the
total number of cycles is k + n− ` for each of these terms hence the sign is (−1)k−` which is
independent of the specific shortest cycle cover under consideration.

I Lemma 6. The shortest pure cycle covers all have the same sign.

Notice that ultimately we want to cancel out all monomials which are not pure. In the
One-Face case described in Section 4 we show how to do this in the Cancellation Lemma 16.
In the Two-Face case, we cannot do this in general but by measuring how paths wind around
the faces, we can characterize the cycle covers which we wish to obtain (see Theorem 26).

4 Disjoint Paths on One Face: The General Case

In the Appendix B we consider an important special case - when all demands are in parallel
and now we proceed to the more general case. We consider an embedding of an undirected
planar graph G with all the terminal vertices on a single face in some arbitrary order. The
primary idea is, given graph G to construct a sequence of graphs H so that in the signed
sum of the determinants of the graphs in H the uncancelled minimum weight cycle covers
are in bijection with the shortest k-disjoint paths of G.

Notation and Modification. Let s1, . . . , sk and t1, . . . , tk be the source and the sink vertices
respectively, incident on a face F in some arbitrary order. Consider the graph GM0 obtained
by applying the modification step in Section 3 on G with respect to the input pairing M0
such that each special vertex ri is placed inside F and so are the edges (ti, ri), (ri, si). Label
the terminals in the counter clockwise order by {1, 2, . . . , 2k} and let `(t) denote the label of
terminal t. A demand edge (u, v) is said to be forward if `(u) < `(v) and reverse otherwise.
For any pairing M if the edges of M are forward we declare the pairing to be in standard
form.

4.1 Pure Cycle Covers
We define pure cycle covers of a graph to be cycle covers in which each non-trivial cycle
(cycles that are not self-loops) either avoids all terminals or consists only of a terminal and
its mate, where the mate of a terminal is specified in the pairing under consideration. In
other words, in a pure cycle cover no two terminal pairs are part of the same cycle. Let
the graph obtained by deleting all vertices and edges strictly outside F in GM0 be ĜM0 .
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Figure 2 Compatible and Incompatible Pairings where M = {(1, 8), (2, 7), (3, 6), (4, 5)}(len(M) =
16) and M ′ = {(1, 8), (2, 3), (4, 5), (6, 7)}(len(M ′) = 10).

Though F does not remain a face in GM0 , it is a cycle nonetheless. If two edges in ĜM0 cross
then the paths joining corresponding endpoints outside F in GM0 will also cross. So the
terminals cannot interlace (see Definition 8), because otherwise there is no solution. A bit
more formally, the following is a consequence of the fact that two cycles in the plane must
cross each other an even number of times. Notice that the following condition is necessary
but not sufficient.

I Observation 7. Unless ĜM0 is outerplanar there is no pure cycle cover in G.

4.2 Cancelling Bad Cycle Covers
I Definition 8. Consider two forward demand edges h1 = (u1, v1) and h2 = (u2, v2). We
say h1 and h2 are in series if either both endpoints of h1 are smaller than both the endpoints
of h2 or vice-versa. If however, the sources of h1 and h2 are smaller than the corresponding
sinks then the demands could be in parallel or interlacing with each other as follows.
1. Parallel: either `(u1) < `(u2) < `(v2) < `(v1) or `(u2) < `(u1) < `(v1) < `(v2).
2. Interlacing: either `(u1) < `(u2) < `(v1) < `(v2) or `(u2) < `(u1) < `(v2) < `(v1).
We don’t use interlacing demands in the One-face case. The concept is needed in Section 5.

I Definition 9. An ordered pair 〈M,M ′〉 of pairings is compatible if, when we orient M in
the standard form then there is a way to orient M ′ such that the union of the two directed
edge sets forms a set of directed cycles. We refer to this set of directed cycles as M ∪M ′.

See Figure 2 for an example. Let 〈M,M ′〉 form a compatible pair. We call the edges of M
as internal edges (drawn inside the face) and those of M ′ as external edges (drawn outside).

I Lemma 10. Compatibility is reflexive and antisymmetric i.e. 〈M,M〉 is always compatible
and for M 6= M ′ if 〈M,M ′〉 is compatible then 〈M ′,M〉 isn’t.

Proof. 〈M,M〉 is always a compatible pair as for any pairingM inside just putM outside with
demand edges directed in the opposite direction. Antisymmetry follows from Lemma 12. J

I Definition 11. Define len(u, v) = `(v)− `(u) for every demand edge (u, v). Let len(M)
be the sum of lengths of demand edges of M when the pairing M is placed inside and len( ~M)
be the sum of lengths of the demand edges when the pairing comes with directions not
necessarily in the standard form.

For external demand edges len(u, v) may be negative, but for internal edges len(u, v) is
positive since the internal demand edges are always drawn with `(u) < `(v). Call a standard
pairing to be the parallel pairing if for each demand edge (u, v) we have `(u) + `(v) = 2k + 1.
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Similarly we have the serial pairing where for each demand edge (u, v) we have `(v)−`(u) = 1.
Then notice that len(M) achieves the maximum value when M is the parallel pairing and
achieves the minimum value in the case when M is the serial pairing.

I Lemma 12. If 〈M,M ′〉 is a compatible pair and M 6= M ′ then len(M) < len(M ′).

Proof. It suffices to prove this for a non-trivial cycle C in M ∪M ′. Let the edges of the cycle
C be partitioned into A,A′ according to which one is inside. We have len(A) + len( ~A′) = 0
where ~A′ is A′ oriented according to the orientation of M ′ when placed outside (because each
vertex of C occurs with opposite sign in len(A) and len( ~A′). Notice that to go from ~A′ to
A′ we need to convert the reverse edges to forward edges, which increases the absolute value
of len( ~A′)). Since in absolute value A and ~A′ have the same length, the lemma follows. J

A set of disjoint paths R in G between a collection of pairs of terminals which form a pairing
M is called a routing. We say that R corresponds to M in this case i.e. the mapping between
the terminals is given by the routing R. For pairings M,M ′ let W (〈M,M ′〉) denote the
weighted signed sum of all cycle covers consisting of the pairing M inside the face in forward
direction and routing R′ that correspond to the pairing M ′, outside the face. Note that the
cycle covers are computed on the mixed graph GM . It follows immediately that W (〈M,M〉)
denotes the weighted sum of all pure cycle covers of M .

I Observation 13. W (〈M,M ′〉) will be zero unless 〈M,M ′〉 is a compatible pair.

Also notice that the cycle cover has an arbitrary set of (disjoint) cycles covering vertices not
lying on the routing in the sense that we may cover such vertices by non self-loops. Let’s abbre-
viate W (〈M, ∗〉) =

∑
M ′:M ′ is a pairingW (〈M,M ′〉). From Lemma 12 and Observation 13

we have that:

I Proposition 14. W (〈M, ∗〉) =
∑
M ′:len(M ′)>len(M)∨M ′=M W (〈M,M ′〉)

I Proposition 15. For a compatible pair 〈M,M ′〉, W (〈M,M ′〉) = (−1)k−cM,M′W (〈M ′,M ′〉)
where cM,M ′ is the number of cycles passing through at least one demand edge in the union
M ∪ M ′ (and k the total number of terminal pairs and equals the number of cycles in
〈M ′,M ′〉).

Proof. Notice that the paths belonging to the routing R′ are the same in both 〈M,M ′〉 and
〈M ′,M ′〉. Thereafter it is an immediate consequence of the assumption that the number of
cycles in M ∪M ′ is cM,M ′ + k′ (where k′ is the the number of cycles avoiding all terminals
in 〈M,M ′〉), in M ′ ∪M ′ is k+ k′ (because the number of cycles avoiding all terminals is the
same in both 〈M,M ′〉 and 〈M ′,M ′〉) and of Fact 4. J

Thus by plugging in the values from Proposition 15 in Proposition 14 and rearranging, we
get the main result of this section (see example in Subsection 4.4):

I Lemma 16 (Cancellation Lemma). LetMM be the set of pairings M ′ compatible with M
such that M 6= M ′. Then,

W (〈M,M〉) = W (〈M, ∗〉) +
∑

M ′:MM

(−1)k+cM,M′+1W (〈M ′,M ′〉).

For a given pairing M0, we are interested in the least order term in W (〈M0,M0〉). From
Lemma 5 we know that for any pairing M , there is a bijection between shortest k-DPP of
M and the lightest pure cycle covers of M . Moreover, from Lemma 6 we know that all the
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lightest pure cycle covers of M occur with the same sign and exponent in the determinant
and hence also in the W (〈M,M〉) polynomial. Therefore, the coefficient of the least order
term in W (〈M0,M0〉) gives us the count of the shortest k-DPP of M0. We illustrate this
with an example in Subsection 4.4. We can now apply Lemma 16 to prove Theorems 1 and 3.

4.3 Proof of The Main Theorems
I Theorem (Theorem 1 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face we can count all shortest k-disjoint
paths between the terminals in O(4knω/2+1) time.

Proof. The Cancellation Lemma 16 allows us to cancel out all cycle covers that are not pure
(i.e. those which do not correspond to the input terminal pairing M0) and replace them by
a signed sum of W (〈M, ∗〉) for various pairings. This process terminates with W (〈P, P 〉)
where P is the unique parallel pairing. Moreover, the replacement can be done in time
linear in the total number of possible terms since each pairing will be considered at most
once. Observe that there are at most 4k different pairings possible (since they correspond
to outerplanar matchings, see Observation 7 which are bounded in number by the Catalan
number 1

k+1
(2kk
<

)
4k see e.g. [17]). We obtain the count itself by evaluating the polynomial

obtained by the signed sum of determinants at O(n) distict points followed by interpolation
(see Fact 28). This accounts for a blow-up of O(n) in the running time. We know that the
determinant of an n× n matrix which corresponds to the adjacency matrix of some planar
graph, can be computed in time O(nω/2) [36] where ω < 2.373 is the matrix multiplication
constant. J

Observe that for the decision version of the shortest k-DPP, it suffices to check whether the
polynomial obtained by the signed sum of determinants is non-zero or not.

I Theorem (Theorem 3 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face and k logarithmic in n, we can count
all shortest k-disjoint paths between the terminals in NC.

Proof. Lemma 16 gives us a formula using which one can isolate the pure cycle covers of M
by adding to W (〈M, ∗〉) (obtained by computing the determinant) an appropriately signed
sum of pure cycle covers of all pairings M ′ 6= M such that M ′ is compatible with M . Observe
that Lemma 12 allows us to order all such pairings M ′ (according to the len() metric) in
the form of a poset. We can build a matrix C (of size 4k × 4k) indexed by M,M ′ and
containing zero if 〈M,M ′〉 is not a compatible pair and the sign with which W (〈M,M ′〉)
occurs in the expression for W (〈M, ∗〉), otherwise. Since there is a partial order on the
pairings (from Lemma 12) this matrix which represents a system of linear equations Cx = b

is upper triangular. Here C is the compatibility matrix above and entries of column vector
b are W (〈M, ∗〉). Also along the diagonal we have ±1’s because W (〈M,M〉) always occurs
in the expression for W (〈M, ∗〉). Thus the determinant of C is ±1 and in particular, C is
invertible. We can invert the matrix to get the count in O(k2 + log2 n) parallel time using
4O(k)nO(1) processors [10], hence in NC2 for k = O(log n). J

I Theorem (Theorem 2 Restated). Given an undirected planar graph with k pairs of source
and sink terminals on the boundary of a common face, finding a shortest set of k-disjoint paths
between the terminals is in randomised O(4knω/2) time and in deterministic O(4knω/2+2)
time, respectively.
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First we describe a simple deterministic algorithm followed by a randomised algorithm as
well as an RNC procedure for search. These together completes the proof of Theorem 2.
Using the proof ideas from Theorem 1 and Theorem 3 we can also count the solutions for the
Two-face parallel case (see Section 5) in time O(knω+1) as well as in NC. Hence the following
procedures also work in the Two-face parallel case giving an O(knω+2) time deterministic
algorithm, an O(knω) time randomised algorithm along with an RNC algorithm.

A deterministic search algorithm. Let Ctot be the count of total number of shortest k-
disjoint paths in G. For every edge e ∈ G we remove e and count the remaining number of
shortest k-disjoint paths using the sequential counting procedure above as oracle. Let Cē be
this count. If Cē > 0, we proceed with the graph G \ e since the graph still has a shortest
k-disjoint path. If Cē = 0 then every existing shortest k-disjoint paths contains the edge e so
keep e in G and proceed with the next edge. Let H be the final graph obtained.

I Claim 17. The graph H is a valid shortest k-disjoint path.

Proof. It is easy to see that all the edges in H are part of a shortest k-disjoint path. Notice
that all the edges are part of a single shortest k-disjoint paths since otherwise we could
remove that edge, say e∗ and will have Cē∗ > 0 in H and therefore also in the graph G at
the time e∗ was under consideration, contradicting that e∗ was retained. J

Since for each edge we spend O(4knω/2+1) time, the total search time is O(4knω/2+2).

A randomised search algorithm. For the construction of shortest k-DPP we use the
following Isolation lemma introduced by Mulmuley, Vazirani, and Vazirani [23]. It is a simple
but powerful lemma that crucially uses randomness:

I Lemma 18 (Isolation Lemma). Given a non-empty F ⊆ 2[m], if one assigns for each
i ∈ [m], wi ∈ [2m] uniformly at random then with probability at least half, the minimum
weight subset of in F is unique; where the weight of a subset S is

∑
i∈S wi.

I Lemma 19. A solution to the shortest One-Face k-DPP can be constructed in randomised
O(4knω/2) time.

Proof. First we introduce small random weights in the lower order bits of the edges of the
graph G (i.e. give weights like 4n2 + re to edge e). Using Lemma 18 these are isolating for
the set of k-disjoint paths between the designated vertices, with high probability. In other
words the coefficient of least degree monomial equals ±1 in the isolating case. At the same
time the ordering of unequal weight paths is preserved. This is because the sum of the lower
order bits cannot interfere with the higher order bits of the monomial which represent the
length of the corresponding k-disjoint path.

Let the monomial with minimum exponent be xw. Our counting algorithms works for the
weighted case as explained in the remark in Subsection A.2. Borrowing notation from the
previous part we can compute Cē in parallel for each edge under the small random weights
above. If the weight is indeed isolating, we will obtain the least degree monomial in Cē
will be xw exactly when e does not belong to the isolated shortest k-disjoint paths. Thus
with probability at least half we will obtain a set of shortest k-disjoint paths. When the
assignment is not isolating the set of edges which lie on some shortest k-disjoint path will
not form a k-disjoint path itself so we will know for sure that the random assignment was
not isolating. For k = O(log n) this also gives an RNC algorithm using the NC algorithm for
counting from Theorem 3 as subroutine.
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Figure 3 An Example (a) M1 ∪M2 (b) M2 ∪M3 (c) 〈M3, ∗〉 = M3 ∪M3.

We give a randomised sequential algorithm for the problem running in time O(4knω/2)
using the idea of inverting a matrix in order to find a witness for perfect matching described in
[23]. They use it in the parallel setting but we apply it in the sequential case also. Essentially
we need to compute all the O(n) many Cē’s in O(nω/2) time. Notice that C − Cē will be
the weighted count for the k-disjoint paths that contain the edge e. This is precisely the
co-factor of the entry (u, v) where e = (u, v) and since all co-factors can be computed in
O(nω/2) time we are done. J

4.4 An Example of the One-Face Case

Let M1 = {(1, 8), (2, 5), (3, 4), (6, 7)} be the input pairing. M1 is compatible with a routing,
say R2, whose corresponding pairing is M2 = {(1, 8), (2, 7), (3, 4), (5, 6)}. We consider the
pairing M2 then which is compatible with another routing, say R3 and the corresponding
pairing be M3 = {(1, 8), (2, 7), (3, 6), (4, 5)}. Since M3 is in parallel configuration, from
Lemma 29 the only routing compatible with M3 corresponds to M3 itself and the recursion
stops. We illustrate this in Figure 3. From the above discussion, we have the following
sequence of equations.

W (〈M1,M1〉) = W (〈M1, ∗〉)−W (〈M1,M2〉)
W (〈M1,M2〉) = −W (〈M2,M2〉)
W (〈M2,M2〉) = W (〈M2, ∗〉)−W (〈M2,M3〉)
W (〈M2,M3〉) = −W (〈M3,M3〉)
W (〈M3, ∗〉) = W (〈M3,M3〉)

After substitutions we get the following formula,

W (〈M1,M1〉) = W (〈M1, ∗〉) +W (〈M2, ∗〉) +W (〈M3, ∗〉)

5 Disjoint Paths on Two faces: The parallel case

In this section, we solve the shortest k-DPP on planar graphs such that all terminals lie on
two faces, say f1, f2 in some embedding of the graph and all the demands are directed from
one face to another. The key difference between the One-Face case and the Two-Face case is
that the compatibility relation in the Two-Face case is not antisymmetric. Consequently, the
pairings in the Two-Face case cannot directly be put together as a DAG (see Figure 4) and
we are unable to perform an inclusion-exclusion (like in Lemma 16).
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Figure 4 The presence of two faces allows routings of two pairings to be present in the determinant
of each other like in this example. Paxis is a path between the two faces. (a) shows two parallel
demands on two faces and (b) shows a different configuration for the two parallel demands. Notice
that one of the two paths necessarily needs to cross the axis in order to obtain (b) from (a), whereas
to obtain the pure cycle cover of (a) both paths must cross the axis equal number of times.

Notation and Modification. We connect f1, f2 by a path Paxis in the (directed)5 dual
graph G∗. We consider the corresponding primal arcs of Paxis which are directed from f1 to
f2 (in the dual) and weigh them by y. Without loss of generality, we can assume that these
arcs are counter clockwise as seen from Paxis. Similarly, the primal arcs of Paxis which are
directed from f2 to f1(in the dual) are weighed by y−1. According to our convention, these
arcs are clockwise as seen from Paxis. We number the terminals of the graph in the following
manner. Take the face f2 and start labeling the terminals in a counter-clockwise manner
starting from the vertex immediately to the left of Paxis as 1, 2, . . . , k and then label the
terminals of f1 again in a counter-clockwise manner starting from the vertex immediately
to the right of the dual path as k + 1, . . . , 2k. Here the directions “left” and “right” are
chosen with respect to Paxis in the plane and are used consistently. For any terminal s, `(s)
describes the label associated with s. We now apply the modification step in Section 3 and
direct the demand edges forward. Throughout this section, we fix a pairing M such that
each demand edge of M has one terminal on either face. We refer to these types of demand
edges as cross demand edges and denote them by CDM . Clearly, |CDM | = k.

5.1 Pure Cycle Covers
Like in Subsection 4.1 pure cycle covers are defined to be cycle covers CC, such that each
cycle in CC which contains a terminal also contains the corresponding mate of that terminal
and no other terminal. We distribute the terminals of the cross demands(CDM ) evenly on
the faces f1 and f2 at intervals of 2π

|CDM |
. For convenience sake, assume that the graph is

embedded such that Paxis is a radial line. Our proofs go through even if this is not the case
simply by accounting for the angle between the endpoints of the axis. The other terminals,
vertices and edges of G are embedded such that the graph is planar. We begin with Lemma 20
from [24] which will be useful to analyze the Two-Face k-DPP. In their notation, the two faces
having terminals are C1, C2 with C1 inside C2 in the embedding of G. See Appendix A.3 for
details.

I Lemma 20 (Quoted from Section 5 [24]). We represent the surface on which C1, C2 are
drawn by σ = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}. Let f : [0, 1]→ σ be continuous. Then it has
finite winding number θ(f) defined intuitively as 1

2π times the the total angle turned through
(measured counterclockwise) by the line OX, where O is the origin, X = f(x), and x ranges

5 By directed dual graph we mean the dual graph of G where edges are bi-directed (like in the primal).
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from 0 to 1. Let L be a set of k paths (from C1 to C2) drawn on σ, pairwise disjoint. We
call such a set L a linkage. If L is a linkage then clearly θ(P ) is constant for P ∈ L, and we
denote this common value by θ(L).

Claim 21, while not being crucial in the analysis, still helps us understand how the demand
edges occur in the parallel Two-Face case.

I Claim 21. Any three demand edges in CDM cannot interlace with each other.

Proof. Assume that the claim does not hold for three demand edges h1, h2, h3 ∈ CDM such
that l(s1) < l(s2) < l(s3). Since all three edges interlace, we have that l(t1) > l(t2) > l(t3).
If this is the case, we show that M cannot support a pure cycle cover, say CC. Let C1, C2, C3
be the cycles of CC including the demand edges h1, h2, h3 respectively. Since the cycle
cover is pure, there exist disjoint paths, say P1, P2, P3, between the endpoints of the three
demand edges. Also consider the paths P4, P5 which are comprised of the edges of f1 from
s1 to s3 via s2 and t1 to t3 without using t2. Paths P1, P3, P4, P5 form a cycle in the graph
with s2 inside and t2 outside it. Therefore, P2 must intersect either P1 or P3 which gives a
contradiction. J

We say that a cycle cover CC effectively crosses the axis x times if the total number of times
the paths in CC cross Paxis counter-clockwise is x more than the total number of times they
cross it in the clockwise direction. We abbreviate this by AxisCrossM,CC . We now show that
for any pure cycle cover CC the value of AxisCrossM,CC (modulo |CDM |)must be a constant
independent of the cycle cover itself (Lemma 23).

I Observation 22. If P is any path (on the plane) in G such that θ(P ) = 2π then P

effectively crosses the axis exactly once in the counter-clockwise direction. Similarly, when
θ(P ) = −2π then P effectively crosses the axis exactly once in the clockwise direction.

Proof (Sketch). We know that θ is a continuous function and its evaluations at the start
and end of P are zero and 2π respectively. By the intermediate value theorem, it follows
that on some point of P , θ takes on the value θ0 where θ0 which is the angle between the
start of P and any point on Paxis. Since the direction of measurement is counter-clockwise,
we conclude that P must cross Paxis exactly once in the counter-clockwise direction. The
second part of the statement follows analogously with the only difference being that the
direction of traversal of P must be clockwise in order to obtain a negative value of θ(P ). J

I Lemma 23. Assuming CDM 6= ∅, for any pure cycle cover CC, there exists a fixed integer
OM ∈ {0, 1, . . . , |CDM| − 1} (independent of CC) such that AxisCrossM,CC = ω|CDM |+ OM
where ω ∈ Z.

Proof. We only have to show that the cross demands must contribute to AxisCrossM,CC by
an amount of ω|CDM |+ OM. As CC is a pure cycle cover, we know from Lemma 20 that
each path between a terminal pair traverses the same angle, say θ = 2πω for some integer ω.
Since each path traverses the same angle, each source terminal is routed to its corresponding
sink terminal which is shifted by an angle of θ0 ∈ [0, 2π) and therefore, θ0 can be written as
2π OM

CDM
where OM ∈ {0, 1, . . . , |CDM − 1|} is the common offset. Observe that the offset is

dependent only on the pairing M and is not related to the cycle cover. Summing this angle
for all demand edges in CDM , the total angle traversed by the corresponding paths in CC
is simply θ|CDM | = 2πω|CDM |+ 2πOM. From Observation 22 every time an angle of 2π is
covered, we effectively cross the axis exactly once. Thus the value of AxisCross due to the
demands in CDM is ω|CDM |+ OM. J
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5.2 Pruning Bad Cycle Covers
As a consequence of the topology of the One-Face case, the compatibility relation for pairings
is antisymmetric and therefore a straightforward inclusion-exclusion is enough to cancel all
the “bad” cycle covers. In the Two-Face case, there may exist a set of compatible pairings
which yield routings of each other in the determinant, thus making it impossible to cancel
bad cycle covers. Therefore, we must make distinction between compatible pairings which
yield pure cycle covers and the ones which yield bad cycle covers.

I Definition 24 (Compatibility & M-Compatibility). Consider two pairings M,M ′. We say
that M ′ is compatible with M if there exists a routing R′ yielding a pure cycle cover for M ′,
which when combined with the demand edges of M , forms a cycle cover, denoted by CCR′ .
Moreover, if CCR′ satisfies the following property, we say M ′ is M-compatible for M .

AxisCrossM,CCR′ ≡ OM(mod |CDM|) (Modular Property)

From Lemma 23, it is clear that M is M-compatible with itself. We now show that any other
M ′ 6= M is not M-compatible with M .

I Lemma 25. For any routing R′ corresponding to a pairing M ′ such that M ′ 6= M ,

AxisCrossM,CCR′ 6≡ OM(mod |CDM|)

Proof. Let {P1, P2, . . . , Pk} be k disjoint paths in the routing R′. Next, we use Lemma 20
to say that each path in the set must have the same angle as seen from the center of the
concentric faces. Since the routing does not lead to a pure cycle cover of M , each source
terminal is routed to a sink terminal which is shifted by an angle of θ′0 ∈ [0, 2π) and therefore,
θ′0 can be written as 2π OR′

CDM
where OR′ ∈ {0, 1, . . . , |CDM − 1|}\{OM} is the common offset

that each path traverses. Notice that pure cycle covers will have an offset of OM 6= OR′ since
in the pure case, the offset between the source and sink must be different from that of the
offset of OR′ , otherwise R′ would be a pure cycle cover. Therefore,

θ(P1) = θ(P2) = . . . = θ(Pk) = 2ωπ + θ′0 (1)

=⇒ θ(
k⋃
i=1

Pi) = 2π(ω.|CDM |+ OR′) (2)

From Observation 22 every time an angle of 2π is covered, we effectively cross the axis
exactly once. Thus the value of AxisCross due to the routing R′ is 2ω|CDM |+ OR′ . Since,
OR′ 6≡ OM mod |CDM|, we conclude that R′ does not satisfy (Modular Property). J

I Theorem 26. Let M,M ′ be two Two-Face pairings such that M ′ is M-compatible for M .
Then it must be the case that M = M ′.

Theorem 26 is a consequence of Lemma 23 and Lemma 25.
Using the proof ideas of Theorem 1 and Theorem 3 in addition to the following, we can

also do counting in the Two-Face parallel case in time O(knω+1) as well as in NC. Unlike the
One-Face case, here the graph might not remain planar after the modification step and the
determinant computation takes O(nω) time [1]. Also, here we have a bivariate polynomial
and we need to discard the terms in the determinant polynomial whose exponent in y is not
equivalent to OM modulo k. In order to do this, we can evaluate the polynomial at each one
of the kth roots of unity and sum each of the k polynomials obtained by the k evaluations.
We describe this in Appendix A.4 in more detail. After discarding the unwanted terms in
the determinant polynomial we extract the monomial with the smallest exponent in x to
obtain the shortest pure cycle covers.
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Figure 5 Degree Reduction Gadgets.

6 Edge disjoint paths

We define planar k-EDPP to be the problem of finding k edge disjoint paths in a planar
graph G between terminal pairs when, the demand edges can be embedded in G such that
planarity is preserved. We show how to transfer results for k vertex disjoint paths to k edge
disjoint paths in undirected graphs using gadgets in Figure 5 borrowed from [22].

I Lemma 27. Decision, Search for One-Face planar k-EDPP reduces to One-Face k-DPP.

Proof (Sketch). The reduction is performed in three steps. First we reduce the degrees of
terminals by using the gadget in Figure 5(b) to at most three. Next, we use the gadget in
Figure 5(a)(1) to reduce the degree of any vertex which is not a terminal to at most four.
After each application of this gadget the degree of the vertex reduces by one. A parallel
implementation of this procedure would first expand every vertex into an, at most ternary
tree and then replace each node by the gadget. We then reduce the degrees to at most three
by using the gadget in Figure 5(a)(2). Notice that since the demand edges can be embedded
in a planar manner on the designated face, the disjoint paths can only cross each other an
even number of times and hence the for every shortest EDPP we will always be able to find
a corresponding shortest DPP after using the gadget in Figure 5(a)(2). It must also be noted
that path lengths will not be preserved, however, we can give any new edges introduced in
the gadgets zero additive weight. This can be achieved by simply not weighing the new edges
by the indeterminate x in the graph modification step. Finally, observe that two paths in a
graph with maximum degree three are vertex disjoint iff they are edge disjoint. J

I Remark. Since counts are not preserved in the gadget reduction, we do not have an
NC-bound for counting k-EDPP’s.

7 Conclusion and Open Ends

We have reduced some planar versions of the shortest k-DPP to computing determinants. This
technique has the advantage of being simple and parallelisable while remaining sequentially
competitive. Is it possible to solve the Two-Face case with an arbitrary distribution of the
demand edges while obtaining similar complexity bounds? The more general question of
extending our result to the case when the terminals are on some fixed f many faces also
remains open. For the One-Face case, can we make the dependence on k from exponential
to polynomial or even quasipolynomial? Also, what about extending our result to planar
graphs or even K3,3-free or K5 free graphs or to graphs on surfaces. Can one de-randomize
our algorithm to get deterministic NC bound for the construction? It will be interesting if
one can show lower bounds or hardness results for these problems.
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A Appendix

A.1 Polynomial Interpolation
I Fact 28 (Folklore [6, 33]). Polynomial interpolation i.e. obtaining the coefficients of a
univariate polynomial given its value at sufficiently many (i.e. degree plus one) points is in
TC0 ⊆ NC1. It is also in O(n log n) time (where n is the degree of the polynomial) via Fast
Fourier Transform.

A.2 Weighted Graphs
I Remark. Our algorithms also work for weighted graphs where each edge e is assigned a
weight w(e) which is polynomially bounded in n. This can be done by putting odd (additive)
weights w′(e) = (|E|+ 1)w(e) + 1 on the edges i.e. replacing the entry corresponding to e
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in the adjacency matrix by xw′(e) instead of just x. Notice that the length of a collection
of edges has the same parity as the sum of its weights. So the calculation in Lemma 6 go
through with small changes. This implies that we do not have to convert a weighted graph
into unweighted one in order to run the counting algorithms and we get the sum of the
weights of edges instead of counts as a result.

A.3 Proof of Lemma 20
Proof. Recall, the surface on which C1, C2 are drawn is given by

σ = {(r, θ) : 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π}

We quote from [24]. If P is a path drawn on σ with one end in C1 and the other in C2, let
f : [0, 1]→ σ be a continuous injection with image P and with f(0) ∈ C1, f(1) ∈ C2; then
we define θ(P ) = θ(f). It is easy to see that this definition is independent of the choice of f .
If P1, P2 are both paths drawn on σ from some s ∈ C1, to some t ∈ C2, then θ(P1)− θ(P2) is
an integer, and is zero if and only if P1 is homotopic to P2. Let k > 0 be some fixed integer,
and let

Mi = {(i, 2j
k
π) : 1 ≤ j ≤ k}(i = 1, 2).

If L is a linkage then clearly θ(P ) is constant for P ∈ L, and we denote this common value
by θ(L). Intuitively, this is because if any two simple paths wind around a face a different
number of times then they both must intersect. J

A.4 Computing the univariate polynomial in the Two-Face case
In this section we show that we can extract the desired coefficients of the bivariate determinant
polynomial (and thus the count) in GapL.

We firstly describe a procedure using which we can get rid of all the terms whose exponent
in y is not equivalent OM modulo k. For simplicity, let OM = 0. We first compute the
determinant which is a bivariate polynomial in this case. Since we are looking for exponents
of y to be modulo k, we evaluate this polynomial in y at all the kth roots of unity. Upon
taking their sum, all the monomials whose exponents are not equal to 0 (mod k) cancel out.
We can divide the resulting polynomial by k to preserve the coefficients. If OM 6= 0, we can
simply multiply the determinants by y−OM while performing the procedure described above.
Note than in order to do this, we must shift to a model of computation which allows us to
approximately evaluate polynomials at imaginary points. Since our determinant polynomial
now does not have terms corresponding to unwanted cycle covers, we can evaluate it at n
points and then interpolate like in the One-Face Case (Fact 28). This gives us the same
complexity as in the One-face case, with an additional blow-up of k and can also be done in
GapL modifying the algorithm in [21].

Another way of seeing that the computation is in GapLis as follows. The determinant of
an integer matrix is complete for the class GapL [11, 32, 35] and Mahajan-Vinay [21] give a
particularly elegant proof of this result by writing the determinant of an n× n matrix as
the difference of two entries of a product of n+ 1 matrices of size 2n2 × 2n2. By a simple
modification of their proof we can obtain each coefficient of the determinant - which is a
univariate polynomial (in fact for polynomials with constantly many variables) - in GapL.
One way to do so is to evaluate the polynomial at several points and then interpolate.

Alternatively, we can also modify the division-free algorithm for determinant computation
described in [21] as follows. We briefly review the algorithm described by Mahajan and Vinay
[21] to compute the determinant. Instead of writing down the determinant as a sum of cycle
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covers, they write it as a sum of clow sequences. A clow sequence which generalises from a
cycle cover allows walks that may visit vertices many times as opposed to cycles where each
vertex is visited exactly once (for more details see [21]). Even though the determinant is now
written as a sum over more terms, they show an involution where any clow sequence which
is not a cycle cover cancels out with a unique “mate” clow sequence which occurs with the
opposite sign. In order to implement this determinant computation as an algorithm, each
clow which can be realised as a closed walk in the graph is computed in a non-deterministic
manner.

Our only modification to the algorithm is as follows: in each non-deterministic path, we
maintain a O(log k)-bit counter which counts the number of times edges from Paxis have
been used in the clow sequence so far modulo k. In other words, every time the counts
exceeds k, we shift the counter to 0. At the end of the computation, the number in this
counter is exactly the exponent of y modulo k. It is easy to see that clow sequences which
are not cycle covers, still cancel out because, in a clow sequence and its mate the set of
directed edges traversed is the same. Consequently, at the end of the computation of each
clow sequence, a clow and its made get the same exponent in y modulo k. This can be done
in GapL as described in [21].

B Disjoint Paths on One-face: The parallel case

In this section, we consider directed planar graphs where all the terminal vertices lie on a
single face in the parallel order. Here we exhibit a weight preserving bijection between the
set of k-disjoint paths in the given graph and the set of cycle covers with exactly k cycles in
a modified graph G′. This enables us to count all the shortest k-DPP solutions. Unlike the
general case, here the bijection works even when the input graph is directed and we are also
able to give efficient sequential and parallel algorithms when k is part of the input. We first
modify the given graph as follows:

Notation and Modification. Let G = (V,E) be the given directed planar graph with n

vertices and m edges. Let s1, . . . , sk and tk, . . . , t1 be the source and sink vertices respectively,
all occurring on a face F in the order specified above. We apply the modification step described
in Section 3. Let the modified graph be G′ with n′ vertices and m′ edges where n′ = n+ k

and m′ = m+ 2k. G′ remains planar. Let A′ be the adjacency matrix of G′.
Recall that a cycle cover is a collection of directed vertex-disjoint cycles covering every

vertex in the graph. A k-cycle cover is a cycle cover containing exactly k non-trivial cycles
(i.e. cycles that are not self-loops). We show the following bijection:

I Lemma 29 (Parallel Bijection). There is a weight-preserving bijection between shortest
k-disjoint paths and lightest k-cycle covers in the modified graph G′.

Proof. Suppose the graph G contains a set of k disjoint paths. Consider a shortest set of
k-disjoint paths of total length `. There are k disjoint cycles in G′ corresponding to the
shortest k disjoint paths in G, using the new paths from ti to si through ri, inside the face,
for each i ∈ [k]. The n− `− k vertices which are not covered by these k cycles will use the
self loops on them, yielding a k-cycle cover of G′. All these cycle covers have the same weight
`. For the other direction, consider a k-cycle cover in G′. If each non-trivial cycle includes
exactly one pair si, ti of terminals then we are done.

Suppose not, then there is a cycle in the cycle cover which contains si and tj for some
1 ≤ i 6= j ≤ k. We further assume, without loss of generality, that there are no terminals
other than possibly sj , ti between si, tj in the direction of traversal of this cycle, called, say,
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si
sj

ti tj

ri rj

t′i t′j

s′i s′j

t1

s1

tk

sk

r1 rk
Pij

Pji

Figure 6 Parallel Configuration. The bipartite subgraph {s′
i, rj , t′

i} ∪ {s′
j , ri, t′

j} gives a K3,3,.

C. Then C must go through the vertices rj and sj since the only incoming edge incident on
rj starts at tj and the only outgoing edge leads to sj . By the same logic ti and ri are on the
cycle C. Also notice that the vertices ti, ri, si must occur consecutively in that order and
so must tj , rj , sj . Let the C be ti, ri, si, Pij , tj , rj , sj , Pji, ti where Pij , Pji are paths. Let the
face F be si, Fij , sj , Fj , tj , Fji, ti, Fi, si where Fij , Fji, Fi, Fj are paths made of vertices and
edges from F . Since C is simple Pji cannot intersect Pij .

Thus the region inside F bounded by ti, ri, si, Fij , sj , rj , tj , Fji, ti does not contain any
vertex or edge from C. Thus we can subdivide (ti, ri), (ri, si), (tj , rj), (rj , sj) to introduce
vertices t′i, s′i, t′j , s′j respectively and also the edges (t′i, t′j), (ri, rj), (s′i, s′j) without affecting
the planarity of C ∪ F . But now observe that the complete bipartite graph with {s′i, rj , t′i}
and {s′j , ri, t′j} as the two sets of branch vertices forms a minor of C ∪ F augmented with
the above vertices and edges. This contradicts the planarity of G′.

As the newly added edges (including the self loops) have weight 1, the bijection is also
weight preserving. J

I Remark. We also get an alternative shorter proof of the Parallel Bijection Lemma 29 from
Lemma 12 in Section 4 by observing that the parallel pairing is the unique pairing with
maximum length thus has no compatible pairing other than itself.
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Abstract
We define HyPOL, a local hyper logic for partial order models, expressing properties of sets of
runs. These properties depict shapes of causal dependencies in sets of partially ordered executions,
with similarity relations defined as isomorphisms of past observations. Unsurprisingly, since
comparison of projections are included, satisfiability of this logic is undecidable. We then address
model checking of HyPOL and show that, already for safe Petri nets, the problem is undecidable.
Fortunately, sensible restrictions of observations and nets allow us to bring back model checking of
HyPOL to a decidable problem, namely model checking of MSO on graphs of bounded treewidth.
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1 Introduction

Hyperproperties. A way to address information security in systems is to guarantee various
information flow properties. Examples of such properties are non-interference [18] (an
attacker of a system cannot obtain confidential information from its observation of the
system), or opacity of secrets [2] (an attacker cannot decide whether the system is in some
particular secret configuration). For a long time since the seminal work of [18] introducing
non-interference, security properties have been characterized as equivalences between partially
observed behaviors of systems. This idea was later formalized [23] as combinations of language
closure properties, the so-called “basic security predicates”. We refer to [29] for a survey on
language based information flow properties. More recently, logics with path equivalences [1]
encompassing indistinguishability among partially observed executions have been proposed
as a generic framework to define security conditions. Security properties are now frequently
called hyperproperties [11, 10], i.e., properties of sets of runs.

Most proposals address verification questions in an interleaved setting, ignoring concur-
rency aspects. For instance, non-interference properties were considered for Petri nets [8],
but still with techniques relying on interleaved interpretation of behaviors. Recently, [7]
showed how to characterize some non-interference properties that cannot be handled in an
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interleaved model. This result is interesting, as it shows that even if complexity gains are
not straightforward, considering causal dependences in systems leads to characterize types of
attacks of a system that cannot be characterized in an interleaved setting.

Local logics. We focus here on local logics that account for causal dependencies and
concurrency in behaviors of models. Several variants of local logic have been proposed:
TLC−, LD0, PDL, LPOC, or even MSO. The first one, proposed by [27], is a logic tailored
for Message Sequence Charts (MSCs). The logic features propositions, a next and an until
operator and is interpreted over causal paths of MSCs. Model checking TLC− is decidable
for families of partial orders generated by High-level Message Sequence Charts (HMSCs). It
is linear in the size of the considered HMSC, but exponential in the size of the formula.

The logic LD0 [26] addresses properties of causal paths in partial orders. It resembles
LTL in that its atomic propositions are attached to events, but it follows causal paths rather
than linearizations, and is equipped with successor/predecessor relations.

An extension of TLC− called Propositional Dynamic logic (PDL), which also subsumes
LD0, is given in [9] to express properties of Communicating Finite State Machines (CFSMs).
This logic is divided into path formulas and local formulas. Path formulas make it possible
to navigate forward or backward in partially ordered executions via two relations: One that
indicates whether an event f is the next executed event after e on the same process, and
one that indicates whether a pair (e, f) forms a message. At each event along a followed
path, truth of a local formula can be checked. Local formulas are used to check whether
some atomic proposition holds at a given event, or whether some path formula holds at an
event together with another PDL subformula. In general, verification of PDL for CFSMs is
undecidable, but checking whether some B-bounded execution of a CFSM (in which buffer
contents can remain of size smaller than B) satisfies a PDL formula is PSPACE-complete.
This result extends to HMSC specifications, whose executions are naturally bounded. Another
approach to study properties of partial orders generated by system executions is to express
them directly as MSO properties. As MSO verification can easily be undecidable for some
families of graphs, decidability is proved for families of partial orders generated by Message
Sequence Charts in [21]. The result is obtained thanks to the particular shape of orders
generated by MSCs that are “layered”. Similarly, [22] considers restrictions in executions of
CFSMs that have to synchronize frequently.

LPOC [17] is a logic for partially ordered computations. It describes the shape of partial
orders, and not only of their causal paths. In addition to standard local operators, the logic
has the ability to require existence of a particular partial order pattern in the causal past
of an event. It was used as a specification formalism for diagnosis purposes, but without
restriction, satisfiability of an LPOC formula is undecidable.

Contributions. We propose a framework unifying path equivalence logics, hyperproperties
and partial order approaches. The logic borrows ingredients from LPOC [17]: in particular,
it expresses existence of a pattern in a partial order, rather than on a causal path. It also
borrows the idea of comparing executions up to observation, as proposed in CTL≡, one of
the branching logics with path equivalence proposed in [1]. Events in a pair of executions
are considered as equivalent if the (partial) observations of their causal pasts are isomorphic.
One of the artifacts used by [1] to obtain decidability of CTL≡ is to require equivalence to
hold only among events located at the same depth in executions. We do not use such an
interpretation of equivalence, and rather exhibit sufficient conditions on behaviors of systems
that are almost a layeredness property [21], to obtain decidability.
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e0 a,b

e1 b,c

e2 a,b
e3 a

e4 b,c

e5 a,b,c
e6 a,c

e7 b

f0 a

f1 b f2 a

f3 a,b

O T

Figure 1 A partial order O over events {e0, e1, e2, e3, e4, e5, e6, e7}, a template T with events
{f0, f1, f2, f3}, and a mapping (dashed arrows) witnessing that O matches T .

We first define a partial order logic called Hyper Partial Order Logic (HyPOL for short).
While we show undecidability for the satisfiability of this logic, we address model checking on
a true concurrency model, and start with Labeled Safe Petri Nets (LSPNs). The universe of
all behaviors of an LSPN can be defined as the set of processes of its complete unfolding [25].
Unsurprisingly, model checking HyPOL on runs of LSPNs is again undecidable. We then
consider sensible assumptions on nets and projections saying that behaviors of a Petri net
cannot remain unobserved for an arbitrary long time, and that equivalences necessarily link
events whose common past is “not too old”. We consider the unfolding of an LSPN as a
graph connecting events and conditions via a successor relation. Isomorphism of causal
pasts of events can be encoded as an additional relation on this unfolding graph. With
these restrictions on nets and observations, model checking HyPOL can be brought back to
verification of MSO on a graph generated by an hyperedge replacement grammar [19]. As
MSO is decidable for such graphs [13], this yields decidability of HyPOL model checking for
this subclass of nets and observations.

Outline. We introduce basic notations in Section 2. In Section 3, we define the logic HyPOL
and prove undecidability of satisfiability. In Section 4, we show undecidability of HyPOL
model checking on sets of processes of safe Petri nets, while decidability is proved in Section 5
for a subclass. Due to lack of space, proofs are omitted or only sketched, but can be found
in an extended version available at [5].

2 Preliminaries

I Definition 1. A labeled partial order (LPO) over alphabet Σ is a triple O = (E,≤, λ) where
E is a set of events, ≤⊆ E×E is a partial ordering, i.e., a reflexive, transitive, antisymmetric
relation, and λ : E → 2Σ is a function associating with each event a set of labels from Σ.

We denote by LPO(Σ) the set of labeled partial orders over Σ. For O = (E,≤, λ),
we denote by max(O) = {e ∈ E | @f 6= e, e ≤ f} the set of its maximal events, and by
min(O) = {e ∈ E | @f 6= e, f ≤ e} the set of its minimal events. The covering relation of O is
a relation <⊆ E × E such that e < f iff e ≤ f , e 6= f and ∀e′ : (e ≤ e′ ≤ f)⇒ (e′ ∈ {e, f}).
A causal path of O is a sequence of events e1.e2 . . . en such that ei < ei+1. If e ∈ E, the ideal
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of e is the set ↓e = {f | f ≤ e} and its ending section is the set ↑ e = {f | e ≤ f}. The
arrows and relations may be indexed by the order in case of ambiguity. A set H ⊆ E of
events is downward closed iff H =

⋃
e∈H
↓e, and upward closed iff H =

⋃
e∈H
↑e.

I Definition 2. The restriction of O = (E,≤, λ) to a subset H ⊆ E is the LPO O|H =
(H,≤|H , λ|H) where ≤|H=≤ ∩(H ×H) and λ|H is the restriction of λ to H. The projection
of O on a subset of labels Σ′ ⊆ Σ is the restriction of O to events that carry labels in Σ′.

I Definition 3. Two partial orders O = (E,≤, λ) and O′ = (E′,≤′, λ′) over Σ are isomorphic
(written O ≡ O′) iff there exists a bijective function h : E → E′ such that e ≤ e′ ⇐⇒ h(e) ≤′
h(e′) and λ(e) = λ′(h(e)).

Note that two discrete LPOs O and O′ are isomorphic iff their coverings are isomorphic.

I Definition 4. Let O = (E,≤, λ) and T = (ET ,≤T , λT ) be partial orders over Σ. Then
O matches T iff there exists H ⊆ E and a bijective mapping h : H → ET such that
λT (h(e)) ⊆ λ(e), and e <T e′ implies h−1(e) < h−1(e′). The partial order T is called a
template and we say that h is witnessing the matching.

In the sequel, we constrain the mapping witnessing a matching, using the notion of
anchored matching. We say that there exists an anchored matching of template T at event e
in O and f in T iff O matches T , and there exists a mapping he,f witnessing this matching
such that he,f (e) = f . In the example shown in Figure 1, the order O matches template T :
the mapping h (depicted by dashed arrows) is defined by h(e2) = f0, h(e4) = f1, h(e6) = f2,
h(e5) = f3. It satisfies: λT (f0) ⊆ λ(e2), λT (f1) ⊆ λ(e4), λT (f2) ⊆ λ(e6), λT (f3) ⊆ λ(e5).

An observation function is a mapping O : LPO(Σ)→ LPO(Σ′), representing the visible
part of the system. One can notice that an observation maps an LPO on an alphabet Σ
to another LPO on another alphabet Σ′. To illustrate this notion, consider the following
example: A system is composed of 4 sites, A,B,C,D, that communicate asynchronously.
An agent X logs communication events that have occurred on sites A and B, their ordering,
but cannot distinguish between messages that are sent to sites C and D. Executions in this
system can be represented by labeled partial orders. Events are labeled by the identity of
the site s ∈ {A,B,C,D} on which they occurred. They also carry indication on messages
sent and received: a message sending from a site s to s′ carries label s!s′, and a reception on
s of a message sent by s′ carries label s?s′. Executions of this system are hence LPOs over
Σ = {A,B,C,B} ∪ {s!s′ | s, s′ ∈ {A,B,C,D}} ∪ {s?s′ | s, s′ ∈ {A,B,C,D}}. Let γ denote
a new label attached to message sendings to C or D. The information that X can obtain
from an execution O = (E,≤, λ) of the system can be modeled as an observation OA,B such
that OA,B(O) = (F,≤′, λ′), with F = {f ∈ E | A ∈ λ(e) ∨ B ∈ λ(e)}, ≤′=≤ ∩F × F and
λ′(f) = (λ(f) ∩ {A,B}) ∪ γ if ∃s!s′ ∈ λ(f) with s′ ∈ {C,D}, and λ(f) otherwise. OA,B(O)
is hence an LPO over Σ′ = {A,B} ∪ {s?s′ | s ∈ {A,B} ∧ s′ ∈ {A,B,C,D}} ∪ {s!s′ | s, s′ ∈
A,B} ∪ {γ}. An example of LPO O and its observation OA,B(O) is shown in Figure 2.

In what follows, we focus on observation functions that are the identity function id (i.e.,
the function such that id(O) = O), relabellings, and various restrictions of orders, for instance
associating with O = (E,≤, λ) the order O|F for some F ⊆ E.

With a slight abuse, if O = (E,≤, λ) and F ⊆ E, we write O(F ) for the corresponding
subset of events of O(O). With observation functions like those described above, either an
event is kept by observation (but it can be relabeled) or deleted. When event e ∈ E has an
image in O(E), we denote this image by O(e).

Consider the example of Figure 3. The partial order O contains events labeled by atomic
propositions a, b, c. Let observation O1 be the projection of orders on events carrying a
proposition in {a, b}. Such a projection can be used to indicate which actions are observed by
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e0 A,A!B

e1 A,A?B

e2 B,B?A

e3 B,B!C

e4 B,B!D

e5 B,B!A

e6 B,B?D

e7 C,C?B

e8 D,D?B

e9 D,D!B

O : e0 A,A!B

e1 A,A?B

e2 B,B?A

e3 B,γ

e4 B,γ

e5 B,B!A

e6 B,B?D

OA,B(O) :

Figure 2 An LPO O and its observation OA,B(O).

e0 a,b

e1 c

e2 a,b

e3 c

e4 a,b

e5 b,c

e0 a,b

e2 a,b

e4 a,b

e5 b

e0 a,b

e1 c

e2 a,b

e3 c

e4 a,b

e5 b,c

O O1(O) O2(O)

Figure 3 A partial order O, its projection O1(O) on events that carry label a or b, and its
restriction O2(O) to causal dependencies from any event carrying label a to other events.

a particular user. Now, consider observation O2 that restricts an order to causal dependencies
in ≤ ∩{(e, f) | a ∈ λ(e)}. This kind of observation can encode the fact that a particular user
observing the execution of a system is not able to know if some events are causally related
or not. Last, we can combine projections and order restriction: the observation defined by
O3(O) = O1(O2(O)) describes what would be visible to a user of the system that logs events
tagged with propositions a and b, and can only know dependencies from events tagged by a.
For the order O in Figure 3, O3(O) = O1(O).

3 Hyper Partial Order Logic

We are now ready to define HyPOL, a hyperproperty partial order logic. HyPOL is designed
to express properties of partially observed sets of executions described by LPOs in LPO(Σ).

3.1 Syntax and semantics
We consider a set A of atomic propositions, a finite set T of templates labeled over A, and a
finite set Obs of observation functions producing LPOs over A. We assume that Σ ⊆ A but,
since an event labeling can be modified by observations, it is not always the case that A = Σ.
The syntax of HyPOL is given by:

φ ::= true | match(O, T, f) | EXD,O φ | EX≡,O φ | φ1EUD,O φ2 | EGD,O φ | ¬φ | φ1 ∨φ2

where D ⊆ A, T ∈ T , f is an event of T , and O ∈ Obs an observation function.
A formula is equivalence-free iff it does not use the EX≡,O operator. To reduce the

number of primitives in our logic, we address labeling of events via templates. For D ⊆ A,
we define a template TD composed of a single event fD labeled by all propositions in D.
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In particular, when D = {a} for some proposition a ∈ A, we write Ta instead of T{a} and
fa instead of f{a}. When template Ta is matched at some event e in an order O under
observation O, this means that the image of e by O carries proposition a.

We define derived operators (with D ⊆ A):

λ 6∈D ::=
∧
a∈D
¬match(id, Ta, fa)

λ=D ::= match(id, TD, fD) ∧ λ 6∈A\D
EFD,O φ ::= true EUD,Oφ

AGD,O φ ::= ¬EFD,O¬φ
AXD,O ::= ¬EXD,O¬φ
AX≡,O ::= ¬EX≡,O¬φ

The semantics of HyPOL formulas is defined over a set W ⊆ LPO(Σ) of orders, for
O=(E,≤, λ)∈ W and e ∈ E. Letting λO be the labeling of O(O) and <O its covering, we
say that O ∈ W satisfies φ at event e (denoted by O, e |= φ) if formula φ is satisfied when
starting its evaluation from event e in order O:

O, e |= true for every event e ∈ E;
O, e |= ¬φ iff O, e 6|= φ and O, e |= φ1 ∨ φ2 iff O, e |= φ1 or O, e |= φ2;
O, e |= match(O, T, f) if and only if f is an event of T , e has image e′ in O(↓ e), and
O(↓e) matches T with at least a witness mapping he′,f associating f with e′;
O, e |= EXD,O φ iff ∃f ∈ E, e has image e′ ∈ O(↑ e), f has image f ′ ∈ O(↑ f), e′ <O f ′,
such that λO(e′) ∩D 6= ∅ and O, f |= φ;
O, e |= EX≡,Oφ iff there exists O′ ∈ W and e′ 6= e ∈ O′ such that O(↓O e) ≡ O(↓O′ e′)
and O′, e′ |= φ;
O, e |= φ1 EUD,O φ2 iff there exists an event f ∈ E such that O, f |= φ2, and a finite set
of events e′1, e′2, . . . e′k ∈ O(O) such that
e′1 <O e

′
2 <O · · · <O e′k, e′1 = O(e) and e′k = O(f),

∀i ∈ 2..k−1, e′i is the image of some event ei ∈ E by O, λO(e′i)∩D 6= ∅ and O, ei |= φ1;
O, e |= EGD,Oφ iff

either there exists an infinite sequence of events (ei)i≥1 in E such that e = e1, every
ei has an image e′i in O(O), and ∀i ≥ 1, e′i <O e′i+1, λ(e′i) ∩D 6= ∅ and O, ei |= φ, or
there exists a finite set of events e1, . . . ek ∈ E such that e = e1, for every i ∈ 1..k, ei
has an image e′i by O with e′1 <O e′2 <O · · · <O e′k, λO(e′i) ∩D 6= ∅, O, ei |= φ, and
e′k ∈ max(O(O)).

In particular, O, e |= match(id, Ta, fa) iff e carries label a in order O, i.e., a ∈ λ(e).
Intuitively, formulas of the form O, e |= EGD,O φ, O, e |= φ1EUD,O φ2, and O, e |= EXD,O φ

describe properties of causal paths in orders, and have the standard interpretation seen for
instance in LTL for words. Observation O is used to select successive events along a path,
and set D performs an additional filtering among possible next events, by requiring the next
considered event in a path to carry a label in D. The definition O, e |= EX≡,O φ requires
existence of another order O′ ∈ W and of an event e′ ∈ EO′ such that e′ 6= e, but nothing
forces O′ and O to be different orders. Hence, e and e′ can be distinct events from the same
order that cannot be distinguished by observing their causal past.

An order O satisfies φ, denoted by O |= φ, iff there exists e ∈ min(O) such that O, e |= φ.
The set of orders W satisfies φ iff every LPO O ∈ W satisfies φ. Last, φ is satisfiable iff
there exists a set of LPOs W such that W |= φ. Unsurprisingly, HyPOL is very powerful
and satisfiability is undecidable on LPOs:

I Theorem 5. Satisfiability of a HyPOL formula is undecidable.

Proof Sketch. The proof is a reduction of Post’s Correspondence Problem (PCP): given
an instance I of PCP, we build a HyPOL formula φI such that I has a solution iff φI is
satisfiable (See Appendix A for details). J
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O1:

e0 h

e1 a

e2 b O2:

f1 a f2 b

Figure 4 Two orders where observing linearizations is not enough to leak information.

3.2 An example: Causal Non-Interference
The example of Figure 4 shows that, in the context of concurrent models, languages are
not discriminative enough to characterize some security leaks. Let W = {O1, O2} represent
behaviors of a concurrent system, where h labels a non observable secret action, while events
with labels a and b can be observed by an attacker. In a language-based setting, an attacker
only observes the linearizations a.b and b.a of these orders. Hence it is not possible to deduce
whether h has occurred or not. On the other hand, if causal dependencies are considered,
observing that a precedes b reveals the occurrence of h, thus leaking the information that h
occurred. Observation of causal dependencies during the execution of a system is not a purely
hypothetic capacity of users. Indeed, systems equipped with mechanisms such as vectorial
clocks [24] can be used to record faithfully dependencies among observed events. From a more
practical point of view, messages exchange during web browsing sometimes allow to trace the
last visits of users, and consequently some causal ordering among logged communications.
Observation functions hence formalize which causal dependencies are captured by attackers.
However, if an observation function erases some dependencies, and an attacker observes two
apparently concurrent events, it might still be the case that these events are causally related
in the execution that is observed. This information is simply lost during observation.

Non-interference is a more general example showing the discriminating power of HyPOL.
In the setting proposed by [18], a system is non-interferent if users cannot infer that classified
actions have occurred only from observation of the system, i.e., execution of a classified event
does not affect what a user can see or do. Such situations occur in a distributed system which
can be accessed by two kinds of users: those with a high accreditation level and low-level
users that have limited access to operations and observations of the system. We suppose that
high-level users can perform classified actions, the occurrences of which shall not be detected
by low-level users. In a standard setting for non-interference properties, this situation is
modeled by associating with each event occurring in the system a particular operation
name. Let Σ be the set of all these names, with Σhigh the subset of confidential ones and
Σlow = Σ \ Σhigh containing those which can be observed by low-level users. Observation
Olow projects orders on events that carry at least one label in Σlow. We can define a causal
non-interference property with HyPOL as follows:

φCNI ::= AGΣ,id
(
λ∈Σhigh

∨ Predh =⇒ EX≡,Olow
(λ 6∈Σhigh

∧ ¬Predh)
)

where λ∈Σhigh
stands for ¬λ/∈Σhigh

, Predh ::=
∨
a∈Σmatch(Oh,a, Th≤a, f), and Th≤a is

the template containing a pair of events fh, f such that fh ≤ f , fh carries proposition h, f
carries proposition a and Oh,a is the observation that projects orders on Σhigh ∪ {a} and
relabels events representing confidential operations with h.

Intuitively, satisfying Predh means that a confidential operation occurred in the causal
past of an event. Hence, an order O satisfies φCNI if, for every high-level event e in O,
there exists an order O′ and an event e′ ∈ O′ such that e 6= e′, no high-level operation has
occurred in the causal past of e′, and a low level user cannot distinguish e from e′ (i.e.,
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Olow(↓e) ≡ Olow(↓e′)). A system is (causally) non-interferent iff every order generated by
this system satisfies φCNI, i.e., every order that contains a confidential operation cannot be
distinguished from other orders that do not contain confidential operations. Note that Olow(O)
is a partial order, hence φCNI uses the discriminating power of causal dependencies. Notice
also that local logics such as TLC− or LD0 cannot characterize (causal) non-interference,
as they address properties of a single run, and cannot express the fact that a run must be
observationally equivalent to another execution of the system, which is essential in φCNI.

4 Model-checking HyPOL

We address the question of model checking HyPOL formulas for a model for which at least
reachability is decidable. As a starting point, we choose Labeled Safe Petri Nets (LSPNs).

I Definition 6. A Petri net is a tuple N = (P, T, F,M0) where P is a set of places, T is a
set of transitions with P ∩ T = ∅, F ⊆ P×T ∪ T×P is the flow relation, and M0 ∈ NP is
the initial marking.

A net is labeled if it is equipped with a (not necessarily injective) mapping λ : T → Σ
labeling the transitions. A marking is a multiset M ∈ NP . For x ∈ P ∪ T , we define its
preset by •x = {y | (y, x) ∈ F} and its postset by x • = {y | (x, y) ∈ F}. The interleaved
semantics of Petri nets can be defined as a (possibly infinite) transition system LTS(N )
where states are markings, the initial state is M0, and the transition relation is defined by:
M

t−→M ′, iff (i) M(p) ≥ 1 for all p ∈ •t, in which case transition t is said firable from M

and (ii) M ′ = (M \ •t) ] t • is the new marking reached by firing t. We write M0
∗−→ M

iff there exists a sequence of transition firings reaching M from M0. The set of reachable
markings is denoted by Reach(N ) = {M |M0

∗−→M}.
We henceforth consider only safe Petri nets, where Reach(N ) is a subset of {0, 1}P ; we

also assume that all transitions have at least one pre- and one post-place, i.e., ∀ t ∈ T : |•t| ≥
1 ≤ |t •|. Let us recall standard vocabulary and notations for nets (we borrow definitions
from [16]). Two nodes x, y ∈ P ∪T are in causal relation iff xF ∗y. Transitions t and t′ are in
immediate (structural) conflict iff t 6= t′ and •t ∩ •t′ 6= ∅. Nodes x, x′ ∈ T ∪ P are in conflict,
written x#x′, iff there exist t, t′ ∈ T in immediate conflict such that tF ∗x and t′F ∗x′. A
subset C of T ∪ P is conflict free if for all x, x′ ∈ C, ¬(x#x′).

I Definition 7. An occurrence net is a Petri net ON = (B,E, F,Cut0) where the elements
of B are called conditions and those of E events, and Cut0 ⊆ B such that:

ON is acyclic, and hence < def= F+ and ≤ def= F ∗ are strict and weak partial orders;
∀e ∈ E : ¬(e#e) (no event is in conflict with itself);
∀b ∈ B, |•b| ≤ 1 (every condition has a unique predecessor);
ON is finitary: for all x ∈ E ∪B, the set Past(x) def= {y | y ≤ x} is finite; and
Cut0 contains exactly the <-minimal nodes of ON.

Nodes x and y are in concurrency relation, denoted x || y, if neither x < y, x > y nor x#y
holds. Note that every occurrence net is safe, and that occurrence net ON is conflict free iff
for every b ∈ B, one has |b •| ≤ 1.

I Definition 8. A prefix of an occurrence net ON = (B,E, F,Cut0) is an event set R ⊆ E
that is downward closed, i.e., such that e ∈ R and e′ < e together imply e′ ∈ R. A prefix
C ⊆ E is a configuration iff it is conflict free.

I Definition 9. Given a net N = (P, T, F,M0), and an occurrence net ON = (B,E, F̂ , Cut0),
a homomorphism is a map µ : E ∪B → T ∪ P such that:
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µ(B) ⊆ P and µ(E) ⊆ T ,
for all e ∈ E, the restriction of µ to •e is a bijection from •e to •µ(e), and the restriction
of µ to e • is a bijection from e • to µ(e) •, and
µ(Cut0) = {p ∈ P |M0(p) = 1}

The “unfolding” semantics of a labeled safe Petri net yields a labeled occurrence net.

I Definition 10 (Unfolding). A branching process of a labeled Petri net N = (P, T, F,M0, λ)
is a triple BR = (ON, µ, λ′) where ON = (B,E, F̂ , Cut0) is an occurrence net, µ is a
homomorphism and ∀e ∈ E, λ′(e) = λ(µ(e)). A process of a net N is a branching process
of N such that for every condition b ∈ B, |b •| ≤ 1, or equivalently, such that E is a
configuration. If BR1 = (B1, E1, F̂1, Cut0, µ1, λ

′
1) and BR2 = (B2, E2, F̂2, Cut0, µ2, λ

′
2) are

two branching processes of N , BR1 is a prefix of BR2 iff E1 ⊆ E2, and F̂1, µ1, λ
′
1 are the

respective restrictions of F̂2, µ2, λ
′
2 to B1 and E1. The unfolding of N , denoted by U(N ), is

the maximal branching process w.r.t. the prefix relation.

Although the construction is rather standard since [15], we give here, for the sake of
completeness, a procedure to build an unfolding U(N ) of an LSPN N . We first define
the notion of co-set and cut. A co-set of a branching process BR = (ON,µ, λ) with
ON = (B,E, F̂ , Cut0) is a set of conditions that are pairwise concurrent. A maximal co-set
(w.r.t. set inclusion) is called a cut. Finite configurations, cuts and markings are related
as follows. If C is a configuration of a branching process BR = (ON, µ, λ′), then we can
define the co-set Cut(C) = (Min(ON) ∪ C •) \ •C. The set of places in Cut(C) represents
the marking reached after firing transitions in µ(C) in an order compatible with the ordering
prescribed by ON.

The construction of an unfolding of a net N = (P, T, F,M0) consists in iteratively
extending an initial branching process of N . For convenience, we assume a dummy event ⊥,
whose postset fills all places of M0. A condition of a branching process built by unfolding N
is of the form b = (e, p) where p ∈ P is such that µ(b) = p and e is the (unique) input event
of the condition b. Similarly, events are of the form e = (X, t) where X is a set of conditions
(and more precisely a co-set) and t the transition such that µ(e) = t. One can notice that
with these definitions of events and conditions, the flow relation in an unfolding is implicit
: for an event e = (X, t) and a condition b = (e′, p), b ∈ •e iff b ∈ X, and e ∈ •b iff e′ = e.
A possible extension of a branching process BR is an event (X, t), where t ∈ T and X is a
co-set such that µ(X) = •t and which does not belong to BR.

The initial branching process of the unfolding algorithm is BR0 = (ON0, µ0, λ0), where
ON0 = (B0, E0, F0), B0 = {(⊥, p) |M0(p) = 1}, E0 = ∅, F0 = {(⊥, b) | b ∈ B0}, µ0((⊥, p)) =
p. The following steps are then iterated to produce BRi+1 = (Bi+1, Ei+1, Fi+1, µi+1, λi+1)
from BRi = (Bi, Ei, Fi, µi, λi):
1) find the set PE of possible extensions of BRi;
2) if PE is not empty, choose a particular event e = (X, t);
3) Ei+1 = Ei ∪ {e}

Bi+1 = Bi ∪X ′ with X ′ = {(e, p) | p ∈ t •}
Fi+1 = Fi ∪ (X × {e}) ∪ ({e} ×X ′)
µi+1 extends µi by µi+1(e) = t and for any b = (e, p) ∈ X ′, µi+1(b) = p

λi+1 extends λi by λi+1(e) = λ(t).

With every process BR = (ON, µ, λ) contained in U(N ), with ON = (B,E, F,Cut0), is
associated an LPO Ord(BR) = (E,≤, λ). Note that events in such LPOs are labeled by a
singleton (transition label), which is a sub-case of the LPOs defined in Section 2. We define
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PR(N ), the set of processes - up to isomorphism - that can be built from N . Given a HyPOL
formula φ, we say that N satisfies φ iff Ord(PR(N )) |= φ.

I Theorem 11. The HyPOL model checking problem for safe Petri nets is undecidable.

Proof (Sketch). We reuse the encoding of PCP from the proof of Theorem 5, and build a
safe Petri net whose behaviors (processes) are exactly concatenations of the templates used
in the HyPOL formula φI associated with an instance I of PCP. J

5 Decidability

The reason for the undecidability results above is that projections give a huge expressive
power to HyPOL. Indeed, the difference in depth of equivalent events can be arbitrary large,
and labeling allows for the design of a pair of growing sequences of letters w1, w2 where w1
is always a prefix of w2, yielding a non-terminating instance of PCP. We show in this section
that one can recover decidability when restricting to Petri nets in which the difference in the
depth of equivalent events is bounded.

Since the set of processes of a safe Petri net can be depicted in a compact way by its
unfolding (as recalled in Section 4), a natural question is whether validity of a HyPOL
formula expressing hyperproperties of the processes of a safe Petri net N can be rewritten as
a property of its unfolding U(N ). We first prove that this unfolding can be seen as a graph
and defined as the production of a Hyperedge Replacement Grammar (HRG) [19].

I Proposition 12. Let N be a safe labeled Petri net. Then, there exists a hyperedge
replacement grammar GN that generates U(N ).

Proof (Sketch). We briefly give the principle for the construction of GN . The unfolding
algorithm in section 4 builds inductively an unfolding U(N ) of N . This unfolding can be
infinite, but exhibits a regular structure. All markings and possible causal dependencies of
U(N ) are captured by a finite prefix of U(N ) called a complete finite prefix [25]. Complete
finite prefixes are built inductively as unfoldings, but with an additional constraint on the
choice of events to add. Given a branching process BRi and a possible extension e, e is
called a cut-off event if the marking obtained after execution of ↓ e already appears in some
execution of a process of BRi. Construction of a complete finite prefix follows the same line
as construction of unfoldings, but limits the choice of extensions of a branching process BRi
to events that are not cut-off events. The construction terminates for bounded nets [25].

Once a complete finite prefix of N is built, the principle for the construction of GN
is to find the markings that can be reached when appending cut-off events to maximal
configurations of the prefix. We then use these markings as hyperarcs, and the part of the
prefix occurring after these markings as the right part of a grammar rule. We refer interested
readers to Appendix B for a complete description of the construction of GN . J

Note that GN does not define a semantics of N via application of one rewriting rule per
transition firing, as proposed in [3, 4], but rather builds the unfolding. The grammar GN
starts from an axiom Ax. Denoting by GωN (Ax) the (unique) graph generated from Ax, we
have GωN (Ax) = U(N ). The grammar GN exhibits a certain form of regularity, but this is
not yet sufficient to check HyPOL formulas, nor to express HyPOL properties in terms of
properties of GN . Indeed, the graphical representation of U(N ) does not address equivalences.
We adapt the idea of [1], and represent isomorphism of causal pasts of events w.r.t. an
observation function as a new relation connecting events. In other words, we augment U(N )
with additional edges connecting equivalent events.
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I Definition 13 (Execution Graph). Given a set of observation functions O1, . . . ,Ok, the
execution graph of N is the graph GU(N ) = (E ∪B,−→, λ), where E and B are the sets of
events and conditions in U(N ), and −→⊆ (E×{0}×B) ∪ (B×{0}×E) ∪ (E×{1, . . . k}×E)
is the relation defined by: (e, 0, b) ∈−→ iff e ∈ •b in U(N ), (b, 0, e) ∈−→ iff b ∈ •e in U(N ),
and (e, i, e′) ∈−→ for 1 ≤ i ≤ k iff e 6= e′ and Oi(↓e) ≡ Oi(↓e′).

We write e i−→ e′ for (e, i, e′) ∈−→. So far, we have simply recast ordering and equi-
valence of events into a graph setting, but this translation does not change decidability of
hyperproperties. Even if the unfolding U(N ) can be generated by an HRG, this is not the
case for GU(N ). Indeed, to produce edges, hyperarcs of an HRG need to memorize nodes
that will be at the origin or destination of an edge in future productions of the grammar. In
particular, for GU(N ), this means that hyperarcs of any HRG producing this graph have to
memorize a list of events that will be declared as equivalent to some event (w.r.t. a particular
observation Oi) generated in future rewritings.

I Proposition 14. There exist labeled safe Petri nets and observation functions whose
execution graphs are not of bounded treewidth, and cannot be represented by an hyperedge
replacement grammar.

Proof (Sketch). We exhibit a net, and an observation function whose execution graph
contains grid minors of arbitrary sizes. It is well known [28] that a family of graphs FG has
bounded treewidth iff there exists a constant m such that no graph G ∈ FG has a minor
isomorphic to the m×m grid and that HRGs can only generate graphs of bounded treewidth
(see for instance [12]). See extended version for a complete proof. J

I Definition 15. Let ON = (B,E, F,Cut0) be an occurrence net. The height of en event e
or condition b in ON is the function H : B ∪ E → N be defined recursively by

∀ b ∈ Cut0 : H(b) def= 1
∀ x ∈ B ∪ E : H(x) def= 1 + max {H(y) | y ∈ •x} .

By extension, the height H(A) for a set A ⊆ (B ∪ E) is given by H(∅) = 0 and H(A) def=
supx∈AH(x). Now, define the distance dist : (B ∪ E)× (B ∪ E)→ N by

Hu(e, e′) def= H (↓e ∩ ↓e′)
dist(e, e′) def= max (H (e) ,H (e′))−Hu(e, e′).

Intuitively, dist(e, e′) measures the maximal number of edges between e, e′ and their
common past. This distance dist defines a pseudometric. Using this notion of distance, we
can define the K-Ball of an event e in the unfolding U(N ) as the set of nodes in U(N ) that
are at distance at most K from e. Formally, BallK(e) = {n ∈ U(N ) | dist(n, e) ≤ K}. In the
rest of the paper, we consider classes of unfoldings where two events can only be equivalent
w.r.t. any observation Oi if they are in the K-Ball of one another.

An important remark is that even for a safe Petri net N , given an integer K ∈ N, the
K-Ball of an event e may not be finite. Furthermore, the graph (E ∪B, 0−→) depicting the
unfolding U(N ) without equivalence edges is always a graph of finite incoming degree, but
this is not necessarily the case for GU(N ). In the rest of the paper, we will see that HyPOL
formulas can be encoded as MSO properties of GU(N ). The reason for undecidability of
HyPOL is hence the nature of execution graphs that cannot be generated in general by
context free graph grammars, are not of bounded treewidth,... nor enjoy any of the properties
that usually make MSO decidable. We can recover decidability with some restrictions. Let
↓K e =↓e ∩ BallK(e) denote the K−bounded past of e.
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Figure 5 Equivalence w.r.t. Oi in the unfolding of a K−layered Petri net.

I Definition 16. Let N be a safe Petri net, and Oi be an observation function. N is
K−layered w.r.t. Oi iff ∀e, e′ ∈ U(N ) :

there is a bound SK ∈ N such that |BallK(e)| ≤ SK ;
dist(e, e′) > K implies e 6≡ e′;
dist(e, e′) ≤ K implies that one can compute H = {f1, . . . fm} ⊆↓K e ∪ ↓K e′ such that,
letting Fe,e′ =

⋃
i∈1..m

↓fi and F̂e,e′ = Fe,e′ \H,

e ≡i e′ iff Oi(↓e \ F̂e,e′) ≡i Oi(↓e′ \ F̂e,e′).

In the sequel, we assume that observation functions O1, . . .Ok are given, and we say that
a safe Petri net N is K−layered iff it is K−layered for every Oi. Intuitively, a Petri net is
K−layered w.r.t. observation Oi iff one can decide equivalence of a pair of events e, e′ w.r.t.
Oi from their K−bounded past.

I Proposition 17. Let N be a K−layered safe Petri net. Then, one can effectively compute
a hyperedge replacement grammar GK,N that recognizes the execution graph GU(N ).

Proof (Sketch). First, one can notice that in the unfolding of a K−layered safe Petri net,
for every observation Oi, every event e has a bounded number of events connected to it
via relation i−→. This is due to the fact that this set is contained in its finite K-Ball. The
hyperedge replacement grammar GK,N starts from an axiom representing a complete finite
prefix of the unfolding of N with hyperarcs. Its hyperarcs represent possible extensions of this
prefix from its maximal markings. Rules of GK,N are of the form r = (ht,lab, HGt,lab) where
ht,lab contains all conditions and events appearing in the K-Balls of the next occurrence of a
transition t that can be appended after a maximal marking, and lab is a labeling providing
sufficient information to know the ordering among events and a part of their common
past. HGt,lab is an hypergraph containing the newly generated occurrences of events and
conditions in the execution graph, the flow relation among them, and connects equivalent
events (contained in the events of ht,lab and HGt,lab) and creating one hyperarc per new
maximal marking. A complete construction of this grammar is detailed in the extended
version. J

We now show that model checking HyPOL on K−layered execution graphs can be brought
back to verification of an equivalent MSO property. But the first question to address is
decidability of MSO on execution graphs. An MSO formula uses the following syntax:

φ ::= laba(x) | edge(x, y) | edgei(x, y) | x = y | x ∈ X | ¬φ | φ1 ∧ φ2 | ∃x, φ | ∃X,φ
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where x, y, ... are first order variables representing vertices in a graph, and X,Y, ... are second
order variables representing sets of vertices in a graph. In execution graphs, first order
variables will represent events or conditions, and an edge the flow relation or isomorphism.

An interpretation I of an MSO formula φ over a graph G is an assignment of nodes of
G to first order variables used in φ and of subsets of nodes of G to second order variables.
An MSO formula φ holds for G under interpretation I iff replacing variables in φ by their
interpretation yields a tautology. A graph satisfies formula φ iff there exists an interpretation
I such that φ holds for G under I. Classes of graphs with decidable MSO theory have been
considered for a long time (see for instance [12] for a complete monograph on this topic).
As MSO is decidable for context free graphs such as the graphs generated by HRGs ([13],
Corollary 4.10), we immediately have the following property:

I Corollary 18. MSO is decidable on execution graphs of K−layered labeled safe Petri nets.

Note that the decidability highlighted in corollary 18 does not necessarily hold outside
the class of K−layered nets. As shown in Proposition 14, execution graphs of safe Petri nets
may contain grids minors of arbitrary sizes and hence in general do not have a bounded
treewidth [28]. MSO is also undecidable in general for execution graphs: one can use a safe
Petri net whose unfolding is a binary tree and an observation that implements the “same
level” relation on this tree. It is well known that MSO is undecidable on this graph [30]. We
will use MSO to address decidability of HyPOL, by converting formulas to MSO, and in
particular equivalences into i−→ relations among events.

I Proposition 19. Let φ be a HyPOL formula. Then there exists an MSO formula ψ such
that N |= φ iff GU(N ) |= ψ.

Proof (Sketch). We first encode in MSO a succ(e, e′) relation that relates pairs of events
such that e • ∩ •e 6= ∅. Then, causal precedence ≤ in an order can be encoded with MSO.
A property of the form x |= EX≡,Oi

φ asks existence of an edge x i−→ y where y satisfies
the MSO translation of φ. Until operations are described as properties of chains of events
that can again be encoded with MSO, and pattern embedding are MSO properties checking
existence of some subgraph. A complete translation is given in Appendix C. J

Proposition 19 holds for any net N and its execution graph GU(N ). However, in general,
GU(N ) is not of bounded treewidth. One can always choose an integer K, and build a
context free graph grammar GK,N as proposed in Proposition 17, but in general, the graph
generated by GK,N is only a subgraph of GU(N ), where some i−→ edges are missing. This
is not surprising: in non-layered nets, the sizes of equivalence classes in GU(N ) need not be
finite. If N is K−layered, the graph generated by GK,N and GU(N ) are equivalent. Further,
isomorphism is one of the building blocks of HyPOL, but in general cannot be expressed in
MSO. The translation from HyPOL to MSO applies to any HyPOL formula for any type of
net and observation. Further, MSO is decidable for HRGs [13, 20]. So, in general, GU(N ) is
not the production of an HRG. Altogether, these remarks give the following corollaries:

I Corollary 20. It is undecidable whether the execution graph of a net N satisfies an MSO
formula.

I Corollary 21. Model checking equivalence-free HyPOL properties on labeled safe Petri nets
is decidable.

I Corollary 22. HyPOL model checking is decidable for K−layered safe Petri nets.
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Figure 6 A net N1. Observation Oa projects LPOs on events labeled a. N1 is not observable:
Oa cannot distinguish behaviors in u1.e.(u1.e + u2.f)k from those in u2.f.(u1.e + u2.f)k.

K−layeredness is a semantic property that should hold on the possibly infinite unfolding
of a net. However, some syntactic classes of nets meet the conditions needed to layer
equivalences. In the following, we only consider observations that are projections. Slightly
abusing our notations, for a transition t we will denote by Oi(t) the LPO obtained by
applying observation Oi to the LPO Ot that contains a single event e with λ(e)=λ(t).

I Definition 23. Let N be a safe Petri net. Two transitions t, t′ are independent iff there is
no link from t to t′ in the flow relation of N . We will say that N is observable iff,
i) for every observation Oi, and every cyclic behavior t1 . . . tn of LTS(N ), Oi(t1 . . . tn) 6= ∅,
ii) For every reachable marking M of N , every observation Oi and every pair of conflicting

transitions t1, t2 enabled in M , there exists a bound kc such that for every pair of paths
ρ = t1.t1,1 . . . t1,p and ρ2 = t2.t2,1 . . . t2,q, if p > kc or q > kc then Oi(Oρ1) 6= Oi(Oρ2),
where Oρ1 (resp Oρ2) is the process of N obtained by successively appending t1, t1,1, ...
(resp. t2, t2,1, ...) to M0.

iii) for every observation Oi and every cyclic behavior M ρ−→ M of LTS(N ) with ρ =
t1 . . . tn and such that t1 . . . tn can be partitioned into sets T1, T2, . . . Tk of independent
transitions ∀j, j′ ∈ 1..k, there exists tj ∈ Tj and tj′ ∈ Tj′ such that Oi(tj) 6= Oi(tj′).

Condition i) forbids cyclic behaviors that cannot be observed. This is a sensible restriction
often required for diagnosis (where it is called convergence, as in [6]). It guarantees that an
event cannot be equivalent to an arbitrary number of predecessors. Condition ii) indicates
that each branch of a choice in the net is eventually visible by each observation after a
bounded duration. Condition iii) says that parallel sequences of transitions cannot grow up
to an arbitrary size without becoming distinguishable by all observations.

I Proposition 24. Let N = (P, T, F,M0, λ) be a safe labeled observable Petri net for
observations O1, . . . ,Ok. Then N is K−layered, for some K ≤ max(2 · kc, 3 · |T |)

I Corollary 25. HyPOL model-checking is decidable for observable safe Petri nets.

6 Conclusion

HyPOL is a local logic for hyperproperties of partially observed set of labeled partial orders.
It is powerful enough to express properties such as non-interference in distributed systems.
This logic follows the same line as local logics such as TLC− or LD0, as it depicts shapes of
causal chains in partially ordered computations. In addition, it is possible to check whether
some finite behavior has occurred in the past, and a new modal operator is introduced to
move from an event in an LPO to another equivalent event in another LPO. Unsurprisingly,
such a powerful logic is undecidable, even for simple models such as safe labeled Petri nets.
However, upon some restrictions, one can bring back verification of HyPOL formulas to
verification of MSO properties on unfoldings of nets decorated with additional edges that
simulate equivalences. The restrictions forbid nets with infinite unobservable runs, and
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assume bounds on the depth of indistinguishable suffixes. In this context, equivalence of runs
only depends on a bounded future and past of each event, and decorated unfoldings have
bounded treewidth. So far, we do not know whether K−layeredness is decidable for a fixed
K. Another interesting question is existence of a bound K such that a net N is K−layered.
We strongly believe that some restrictions used in observable nets can be relaxed, or adapted
to consider larger classes of nets for which decorated unfoldings are of bounded treewidth or
split-width [14]. A natural question that follows is whether these classes of nets have sensible
and decidable syntactic characterizations.
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A Proof of Theorem 5

I Theorem 5. Satisfiability of a HyPOL formula is undecidable.

Proof. The proof consists of a reduction of the Post Correspondence Problem (PCP). Recall
that an instance I of PCP is a sequence (x1, y1), . . . , (xn, yn) of n pairs of words over some
alphabet. A (non trivial) solution of size k is a (non empty) sequence of indices σ = i1 . . . ik
such that xi1 . . . xik = yi1 . . . yik . If the alphabet contains at least two letters, PCP is
undecidable for n ≥ 7. Moreover, we can assume that for all 1 ≤ i ≤ n, xi 6= yi (otherwise
the problem can be trivially decided with a solution of size k = 1).

Given an instance I, we build a formula φI of HyPOL such that φI is satisfiable if and
only if I has a (non trivial) solution.

Let I be the sequence (x1, y1), . . . , (xn, yn) of words over alphabet A. We write z =
z(1) . . . z(`) where ` = |z| is the length of word z, with `i = |xi| and hi = |yi|, 1 ≤ i ≤ n

and we consider the family of templates Ti, 1 ≤ i ≤ n, as depicted in Figure 7. The set of
events of Ti is Ei = {xi, yi, si, ei} ∪ {xi,j | 1 ≤ j ≤ `i} ∪ {yi,j | 1 ≤ j ≤ hi} and labels are
in Pi = A ∪ {], starti, endi}. We set Ind = {starti, endi, 1 ≤ i ≤ n}, S = {starti, 1 ≤ i ≤ n}
and the global set of labels is P = ∪ni=1Pi. Intuitively, a solution σ = i1 . . . ik will be
described by the sequence of templates Ti1 . . . Tik .
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si starti

xi,1 xi(1)

xi,2 xi(2)

...

xi,`i xi(`i)

yi,1yi(1)

yi,2yi(2)

...

yi,hiyi(hi)

ei endi

xi ] yi]

f] ]

f1 [ f2 [ f3 [

Figure 7 Templates Ti and T].

To detect that a solution ends with an event labeled by ], we define the formula stop ::=
λ={]}∧¬EXP,idtrue. We can express that any event with label ] has at most two predecessors:

two-pred] ::= AGP,id(λ={]} =⇒ ¬match(O], T], f]))

where T] is the pattern depicted onFigure 7 right and O] keeps any event with label ]
unchanged and relabels all other events with [. Now, if OS denotes the projection on S,
keeping only events with labels in S, a solution is described by:

IsSeqIndex ::= EGS,OS
(∨ni=1HoldsTi) ∧ EFP,idstop

where HoldsTi ::= match(id, Ti, si). Finally, we consider the subset W of orders of LPO(P )
where all labels are singletons. Note that this condition can be ensured by the formula
Sing ::= AGP,id(∨p∈Pλ={p}). For an order O = (E,≤, λ) ∈ W , we write E = EA ∪E] ∪Eind
as a disjoint union with EA = E ∩ λ−1(A), E] = E ∩ λ−1({]}) and Eind = E ∩ λ−1(Ind).
We define the observation function Osol over W by keeping all events and restricting ≤ to
(E ×E) \ ((EA ×Eind) ∪ (Eind ×EA)), thus removing the order between letters and indices.
The formula φI is then defined by :

φI ::= two-pred] ∧ IsSeqIndex ∧ (stop =⇒ EX≡,Osol
true),

where the last sub-formula means that from some final ], it will not be possible to distinguish
between paths with labels from the xi’s and those with labels from the yi’s.

Then, there is an order O inW satisfying φI if and only if I has a non trivial solution. J

B Construction of a hyperarc replacement grammar for U(N )

I Proposition 12. Let N be a safe labeled Petri net. Then, there exists a hyperedge
replacement grammar GN that generates U(N ).

FSTTCS 2018
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I Definition 26. A hyperarc is a pair (l, V ), where l is a label, and V ⊆ N is an ordered set
of vertices. A hypergraph is a triple (V,E,H) where V is a set of vertices, E a set of edges,
and H a set of hyperarcs. A hyperedge replacement grammar (HRG) is defined as a pair
G = (Ax,R), where Ax is a hypergraph called the axiom of the grammar and R is a set of
rules. A grammar rule is a pair (L,R) where L, the left part of the rule is a hyperarc, and
R, the right part of the rule is a hypergraph that contains all vertices of L.

Let G = (V,E,H) be a hypergraph and h = (lh, Vh) ∈ H a hyperarc. Let r = (L,R) be a
rule where L = (l,X) is a hyperarc with label l = lh and the same number of vertices as Vh,
and R = (VR, ER, HR). The application of rule r to G simply replaces hyperarc h in G by
the right part R. More formally, application of r produces a hypergraph G′ = (V ′, E′, H ′)
with V ′ = V ] (α(VR) \X), E′ = E ] α(ER) and H ′ = H \ {h} ] α(HR), where α : N→ N
is a map that associates with the jth vertex of X the identity of the jth vertex in Vh, and
associates with vertices of VR \XR a fresh identity that does not appear in V . We denote by
G

r−→ G′ this rewriting step, and by Gω(G) the (possibly infinite) limit graph obtained by
application of rules of grammar G on G.

LetN = (P, T, F,M0, λ) be a safe labeled Petri net. We fix an arbitrary order <P on places.
Given a marking M , and a set of integers 1 . . . |M |, we denote by index(p,M) ∈ 1 . . . |M |
the rank of place p in the sequence of integers representing marked places in M . Similarly,
given a marking M and a list of integers representing this marking, we denote by place(i)
the place represented by index i.

We have seen in section 4 an algorithm to build inductively an unfolding of a safe Petri
net N . This unfolding can be infinite, but exhibits a regular structure. Furthermore, many
verification algorithms addressing reachability of coverability questions work on a structure
called a complete finite prefix. A complete finite prefix is built inductively as an unfolding,
but stops within a finite number of steps, according to some criterion that forbids the
addition of events fulfilling some properties. A stopping criterion frequently met is the
reachability criterion: it forbids a possible extension if adding the considered event produces
a configuration that ends in a marking that was already visited in the branching process [25].
These events are called cut-off events. The principle of the HRG construction described
hereafter is to build a complete finite prefix of net N , to find the markings that can be
reached when appending cut-off events to maximal configurations of the prefix. We then use
these markings as hyperarcs, and the part of the prefix occurring after the marking as the
right part of a grammar rule.

Let us first recall some definitions borrowed from [25]. Let ON = (B,E, F ) be an
occurrence net and let S be a configuration of ON. We denote by S • the set of all
places that are maximal w.r.t. to this configuration, i.e., the set X of all places such that
∀p ∈ X, ∀e ∈ S, p 6∈ •e and ∀p ∈ X, ∀e ∈ E \ S, p 6∈ e •. Let µ be a homomorphism from ON
to N . The final state of a configuration F(S) is the marking µ(S •). The local configuration
of an event e is the set ↓ e.

Let BR be a branching process. A possible extension e is a cut-off event (w.r.t. the
reachability criterion) iff there exists another event e′ such that F(↓ e •) = F(↓ e′ •), and
|↓ e′ •| < |↓ e •|. Now, the algorithm to compute a complete finite prefix is the following:

0) Start from the initial branching process BR0

1) find the set PE of possible extensions of BRi, i.e., the fresh pairs (X, t) such that X is a
co-set of BR and µi(X) = •t;

2) Compute NE = {pe ∈ PE | pe is not a cut-off event}
3) while NE is not empty,
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4) choose a particular event e = (X, t) in NE
5) Ei+1 = Ei ∪ {e}

Bi+1 = Bi ∪X ′ with X ′ = {(e, p) | p ∈ t •}
Fi+1 = Fi ∪ (X × {e}) ∪ ({e} ×X ′)
µi+1 extends µi by µi+1(e) = t and for any b = (e, p) ∈ X ′, µi+1(b) = p.
λi+1 extends λi by λi+1(e) = λ(t).

6) compute the set PE of possible extensions of BRi+1;
7) Compute NE = {pe ∈ PE | pe is not a cut-off event}
8) endwhile

It is well known (see for instance [25]) that:
the construction of a complete finite prefix w.r.t. the reachability criterion terminates,
all cuts of the prefix (and in fact even all those of the unfolding) correspond via µ to a
reachable marking, and
conversely, all reachable markings of an unfolded net are represented by at least one cut
in the prefix.

Let us call CFP(N ) the complete finite prefix thus built; then for every reachable marking
M of N , there exists a configuration S of CFP(N ) such that F(S •) = M .

We can now detail the construction of a HRG that generates the unfolding of N . We
first build CFP(N ) using the algorithm above. Then, we compute the set PE of possible
extensions in CFP(N ), and add these possible extensions to CFP(N ). Let BRCFP,PE be
the branching process obtained by adding these events, and let S1, . . . Sk be the maximal
configurations of BRCFP,PE. For every Si there exists at least one configuration S′i of
CFP(N ) such that F(Si •) = F(S′i •). Note that for the reachability cut-off criterion, there
can be more than one configuration of this form. We can choose arbitrarily one of them, for
instance the configuration with the minimal number of events. For such a configuration S′i
we denote by ↑BRCFP,PE S

′
i the restriction of BRCFP,PE to events and conditions that are

descendants of S′i •.
We build the grammar GN = (Ax,R) as follows. We set Ax = (N0, H0) where N0 =

BRCFP,PE and H0 = {(li, Xi) | Si is a maximal configuration of BRCFP,PE} where each Xi

is an ordered set of vertices containing all conditions in Si • (we can order vertices according
to <P and according to the place µ(b) represented by each condition b in Xi).

Then, for every maximal configuration Si in BRCFP,PE, we create a rule ri = (Li, Ri)
where Li is a hyperarc Li = (li, 1 . . . |Si •|), and Ri = (Vi, Ei, Hi), where (Vi, Ei) is a copy
of ↑BRCFP,PE S

′
i, in which conditions in S′i are numbered 1 . . . |S′i •|. Last, Hi is the set of

hyperarcs of the form h = (li, Xi), where Xi is a set of conditions contained in Ei∩BRCFP,PE.
One can notice that GN may have up to 2|P | rules. We can show that GωN (Ax) = U(N ).

C Proof of Proposition 19

I Proposition 19. Let φ be a HyPOL formula. Then there exists an MSO formula ψ such
that N |= φ iff GU(N ) |= ψ.

Proof. Without leaving MSO, we can define a particular labeling to differentiate events and
conditions in GU(N ): We write Cond(x) for the predicate that holds for every condition and
Event(x) for the predicate that holds on all events.

We first define some basic formulas, holding at some node of GU(N ):
true holds for every element of GU(N );
Lab(x) ∩D 6= ∅ is equivalent to the formula

∨
d∈D

labd(x) ;
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Event(x) holds under any interpretation that assigns an event of GU(N ) to x;
Cond(x) holds under any interpretation that assigns a condition of GU(N ) to x;
edge(x, y) holds under an interpretation that assigns a condition b to x and an event e to
y, and such that b ∈ •e, or an event e to x and a condition b to y such that b ∈ e •;
edgei(x, y) holds under any interpretation I that assigns events I(x) and I(y) of GU(N )

to x and y and such that I(x) i−→ I(y).

From these building blocks, we can define more advanced expressions.
succ(x, y) is a formula that holds under an interpretation I such that e = I(x) is an
event, f = I(y) is an event, and the pair of events e, f is in immediate successor relation
in GU(N ). Formally, this is written as:
succ(x, y) ::= ∃z, Event(x) ∧ Event(y) ∧ Cond(z) ∧ edge(x, z) ∧ edge(z, y).
isMinimal(x,X) is a formula that holds under an interpretation that maps variable x to
an event, X to a set of nodes of GU(N ), and such that I(x) is minimal in X with respect
to the causal ordering of GU(N ). Formally, we write:
isMinimal(x,X) ::= x ∈ X ∧ Event(x) ∧ @y ∈ X, succ(y, x).
isMaximal(x,X) is similar to the previous formula, and requires I(x) to be maximal in
X. It is defined as: isMaximal(x,X) ::= x ∈ X ∧ Event(x) ∧ @y ∈ X, succ(x, y)
isAChain(x,X) is a formula that holds for any interpretation I in which X is a chain
(a totally ordered sequence of events w.r.t. the successor relation) starting from x. It is
formulated as follows:

isAChain(x,X) ::=
isMinimal(x,X) ∧ ∀y ∈ X,
(isMinimal(y,X) =⇒ x = y)∧
(∃z ∈ X, succ(y, z)) =⇒ (@z′ ∈ X, z 6= z′ ∧ succ(y, z′))

x ≤ y can be defined as the formula:

x ≤ y ::=
Event(x) ∧ Event(y) ∧ ∃X,x ∈ X ∧ y ∈ X
∧∀z ∈ X, succ(z, z′) =⇒ z′ ∈ X
∧∀u ∈ X, @u′, succ(u′, u) =⇒ u = x

More intuitively, this formula says that I(X) is the set of all successors of I(x) in
GU(N ), and it contains I(y). This is a standard formula frequently used when addressing
properties of partially ordered sets.
x < y (covering) is defined by x < y ::= x ≤ y ∧ @z, z 6= x, z 6= y, x ≤ z ∧ z ≤ y.
Let O be a particular observation erasing events that do not carry a label from a particular
subset D, and restrict covering of the obtained order to pairs of events carrying specific
pairs of labels in R ⊆ Σ× Σ. Then one can define x <O y as the formula stating that
the labels attached to x and y are contained in D, that (lab(x), lab(y)) ∈ R, that there
exists a path from x to y such that every intermediate event visited between x and y
carries a label that does not belong to D. This type of construction applies for all kind
of labeling-based projection and order restriction. More formally :

x <O y ::=

Event(x) ∧ Event(y) ∧ Lab(x) ∩D 6= ∅ ∧ Lab(y) ∩D 6= ∅
∧ x ≤ y
∧ ∀z, x < z ∧ z < y =⇒ Lab(z) ∩D = ∅
∧

∨
(a,b)∈R

laba(x) ∧ labb(y)
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We are now ready to transform HyPOL formulas into MSO formulas. For every hypol
formula φ we will build inductively an MSO formula ψ. The inductive construction will
use fresh first order variables x, y, ... and second order variables X,Y, ... at every induction
step. Further, as HyPOL formulas should hold at a particular event, we will design ψ with
a particular free variable x depicting the event at which ψ must hold. For every HyPOL
formula φ, letting ψ be the MSO formula obtained by translation of φ into MSO, for every
order O in Ord(PR(N )) and every event e ∈ EO, O, e |= φ if and only if ψ holds in GU(N )
under an interpretation that assigns e to x. We hence define ψ = MSO(φ, x, C) where C is
a context listing variable names already used, x is a free variable in ψ that appears in C, and
ψ is an MSO formula over x and fresh variable names not used in C. For a given HyPOL
formula φ, we build inductively ψ = MSO(φ, x, C) as follows:

if φ = true then MSO(φ, x, C) = true for any variable x and context C;
if φ = ¬φ′ then MSO(φ, x, C) = ¬(MSO(φ′, x, C));
if φ = φ1 ∧ φ2 then MSO(φ, x, C) = MSO(φ1, x, C) ∧MSO(φ2, x, C);
if φ = EXD,O φ

′ then MSO(φ, x, C) = ∃y, x ≤O y ∧MSO(φ, y, C ′) where y is a fresh
variable name (w.r.t. C and to the set Cx≤Oy of variables used to encode subformula
x ≤O y ) and C ′ = C ∪ {y} ∪ Cx≤Oy;
if φ = match(O, T, f) where T = (E,<T , λT ), with E = {f} ∪ {e1, e|E|−1} then
MSO(φ, x, C) = ∃x1, . . . x|E|−1,

∧
(f,ei)∈<T

x <O xi

∧
∧

(ei,ej)∈<T

xj <O xi

∧
∧

i∈1..|E|−1
Lab(xi) ⊇ λT (xi)

where x1, . . . x|E|−1 are fresh variable names (w.r.t. C);
if φ = EX≡,Oi

φ′ then
MSO(φ,X,C)) = ∃y, edgei(x, y) ∧MSO(φ′, y, C ′)
where y is a fresh variable name (w.r.t. C) and C ′ = C ∪ {y};
if φ = φ1 EUD,O φ2 then
MSO(φ, x, C) = ∃X, isAChain(x,X) ∧∀y ∈ X, ∃y′, y <O y′ =⇒MSO(φ1, y, C

′)
∧@y′, y <O y′ =⇒MSO(φ2, y, C

′)
where y, y′, X are fresh variable names (w.r.t. C and to the sets Cy,y′ and Cchain
of variables used to encode respectively formulas y <O y′ and isAChain(x,X) ) and
C ′ = C ∪ {y} ∪ Cy,y′ ∪ Cchain;
if φ = EGD,O φ

′ then MSO(φ, x, C) = ∃y,Event(y) ∧ x <O y ∧MSO(φ′, y, C ′) where y
is a fresh variable name (w.r.t. C) and C ′ = C ∪ {y}.

We have assumed that the unfolding of N has a unique starting event denoted by ⊥ and
carrying label ⊥. We can prove by induction on the length of HyPOL formulas that N |= φ

iff GU(N |= ∃s, x, lab⊥(s) ∧ succ(s, x) ∧MSO(φ, x, {s, x}). J
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Abstract
Different types of automata over words and trees offer different trade-offs between expressivity,
conciseness, and the complexity of decision procedures. Alternating weak automata enjoy simple
algorithms for emptiness and membership checks, which makes transformations into automata
of this type particularly interesting. For instance, an algorithm for solving two-player infinite
games can be viewed as a special case of such a transformation. However, our understanding
of the worst-case size blow-up that these transformations can incur is rather poor. This paper
establishes two new results, one on word automata and one on tree automata. We show that:

Alternating parity word automata can be turned into alternating weak automata of quasi-
polynomial (rather than exponential) size.
Universal co-Büchi tree automata, a special case of alternating parity tree automata, can be
exponentially more concise than alternating weak automata.

Along the way, we present a family of game languages, strict for the levels of the weak hierarchy
of tree automata, which corresponds to a weak version of the canonical game languages known
to be strict for the Mostowski–Rabin index hierarchy.
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1 Introduction

The interplay between games and automata has been proven fruitful for both game- and
automata-theory. In particular, solving two-player infinite games of some winning condition,
such as Büchi or parity, reduces to transforming an alternating word automaton with the
same acceptance condition into an alternating weak automaton: i) solving a game over an
arena A is the same as deciding whether A, seen as a one-letter alternating automaton, is
empty; and ii) deciding the emptiness of one-letter alternating weak automata can be done
in linear time. The simplicity of weak automata stems from their defining property, the lack
of cycles with both accepting and rejecting states.

As a result, the time complexity of solving games is intimately connected to the size
blow-up of translating alternating automata to alternating weak automata. Note, however,
that the automata-translation question is more general, since automata need not be defined
over a one-letter alphabet, and often a binary, or larger, alphabet adds substantial complexity.

Nevertheless, until recently, the best known algorithms for the two problems, with respect
to the Büchi and parity conditions, were the same. For Büchi, they involved a quadratic time
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or size blow-up, and for parity an exponential one [13, 12]. Moreover, some competitive tools
for solving parity games are based on the translation from parity to weak automata [23].

About a year ago the picture changed; After many years of incremental progress, two quasi-
polynomial algorithms using different techniques for solving parity games were published [5, 8].
So far this breakthrough has not extended to automata-translation.

Recently, a third quasi-polynomial algorithm for solving parity games was published,
employing yet another technique [14]. We extend this algorithm for addressing the more
general problem, and provide a translation of alternating parity word automata into weak
automata that involves only a quasi-polynomial size blow-up.

K. Lehtinen defines in [14] register games, which are a parameterised variant of parity
games, and bases the new algorithm on them. A central result in the complexity analysis of
this algorithm is that Eve wins a parity game with n positions if and only if she wins the
corresponding k-register game for every k > log n. The least such k is called the register-index
of the game. We extend this result, showing that the register-index is also logarithmic in
a more refined measure of game size: the maximal number of distinct strongly connected
components in it. We call this measure the ssc-size of the game.

We link the automata setting to the game setting by defining for every alternating parity
word automaton A and positive integer k, a parameterised alternating parity word automaton
Ak, such that Ak accepts an ultimately periodic word w if and only if Eve wins the k-register
game on the arena of the model-checking game over A and w. When A has n states, Ak
has knO(k) states and O(k) priorities. Using our logarithmic bound of k in the scc-size of
games, we show that A and Ak are equivalent for k > log n. Then, applying the standard
O(md) transformation into weak automata [12] (where m is the number of states in the
automaton and d the number of its priorities) to A1+logn rather than to the original A, we
get a translation with a quasi-polynomial blow-up.

For tree automata, the picture is very different. While every alternating parity word
automaton can be translated into a weak one, this is not the case with tree automata. In fact
there is a strict expressiveness hierarchy of parity tree automata, defined by the automaton’s
index, that is, the number of its priorities [4]. It is known as the Mostowski–Rabin hierarchy
in the automata-theoretic literature, and as the alternation hierarchy in the µ-calculus
literature. The decidability of whether a given language is expressible in some level of the
hierarchy, and specifically by an alternating weak automaton, is open. Here we show that
even when a language is recognised by an alternating weak automaton, this automaton may
be exponentially larger than an equivalent parity, or even a co-Büchi automaton.

Analogously to the parity hierarchy, there is a hierarchy of weak automata, defined by the
number of alternations between accepting and rejecting states. Like the Mostowski–Rabin
hierarchy, it also collapses in the word setting [16, 9] and is infinite in the tree setting [19, 21].
So far, its strictness has only been shown for ranked (directed/ordered) trees.

In ranked trees, each child of a node is distinguished by its unique direction – left and
right for binary trees. In unranked (undirected/unordered) trees, which are more common
when talking of Kripke structures, and modal or temporal logics, this is not the case. An
unranked tree automaton (also known as a symmetric tree automaton) can only require that
there exists a child (♦) with some property and that all children (�) have some property. It
thus cannot recognise properties such as “there are two distinct children that satisfy p”.

We extend the proof of the strictness of the weak hierarchy to alternating automata that
run on unranked trees. Our proof combines the technique used for ranked trees in [21] and a
weak version of the languages known to be strict for the parity hierarchy [7, 3]. We show
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that the language of unranked trees that represent co-Büchi games in which Eve wins with a
strategy that sees at most n alternations between accepting and rejecting positions is only
recognised by alternating weak automata of level at least n in the hierarchy.

We use the strictness of the weak hierarchy as an intermediate step in showing that there
is at least an exponential size blow-up in translating a universal co-Büchi tree automaton into
an alternating weak one. We define a language of unranked trees recognised by an automaton
of the former type of size in O(n), and show that it is strict for the (n+ 1)2n level of the
weak hierarchy. This language combines the aforementioned language of trees representing
games in which Eve wins in a restricted way, and explicit counting with n binary bits.

The lower bound we present on unranked tree automata also holds for ranked tree
automata: the tree languages we work with can easily be translated into languages of ranked
binary trees, and the automata that we construct, or argue that do not exist, can be adapted
accordingly. Indeed, the trees we build in the proofs are already binary; and the automata
that operate on them can be turned into automata on ranked binary trees by transforming
�q in transition conditions into (left, q) ∧ (right, q) and ♦q into (left, q) ∨ (right, q).

Related Work. Over words, the best known upper bound for the size blow-up involved
in translating alternating parity to alternating weak automata is exponential [12]. The
known lower bound, Ω(n log n), is the lower bound for translating alternating Büchi into
weak automata [13]. It is directly linked to the 2Ω(n logn) lower bound in determinizing
nondeterministic Büchi automata [18]. How to use the power of the parity condition and the
limitations of alternation (as opposed to concurrency) to get a better lower bound is open.

Over trees, little is known about the decidability of the weak definability of languages
recognised by alternating parity automata. It is known that the intersection of Büchi and
co-Büchi definable languages is weakly definable [11]. Weak definability is decidable for tree
languages recognised by alternating Büchi automata, as was first shown for ranked trees
by Colcombet et al [6] via reduction to cost automata. Skrzypczak and Walukiewicz [22]
provide a topological characterisation and exponential decision procedure, which was later
extended to unranked trees [15]. It seems that a singly-exponential translation of universal
co-Büchi to alternating weak tree automata can be extracted from these procedures to match
our lower bound; however it is a non trivial procedure that is yet to be verified.

Due to space constraints, some of the proofs are omitted and appear in the appendix.

2 Preliminaries

Alphabets, words, and trees. An alphabet is an arbitrary finite and nonempty set, usually
denoted by Σ. We also use two specific alphabets: ΣG = {E0, A0, E1, A1}, to which we refer
as the game alphabet and ΣB = {0, 1, $}, to which we refer as the binary-counting alphabet.

A word over Σ is a (possibly infinite) sequence w = w0 · w1 · · · of letters in Σ. We write
suffixes(w) for the set of suffixes of w (which includes w itself). We consider a tree to be an
unranked infinite rooted tree in the graph-theoretic sense. A Σ-tree is a tree together with a
mapping of each of its nodes to a letter in Σ.

For a word or tree language L over an alphabet Σ, we denote by L its complement,
namely the set of words over Σ or Σ-labeled trees that are not in L.

For natural numbers i and j, we write [i..j] for the set of natural numbers between them,
including i and j. For a set Q, we denote by B+(Q) the set of positive boolean formulas over
the atomic propositions Q ∪ {true, false}.
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Automata. Several definitions of alternating tree automata exist. The differences relate to
how flexible the transition condition is with respect to ε-transitions and the combination of
path quantifiers (♦,�) and boolean connectives (∨,∧). Usually, all of these definitions give
the same expressiveness ([24, Proposition 1] and [10, Remark 9.4]), except for the case of
very restricted automata, in which they do not [2]. In our definition of alternating automata,
there are no epsilon transitions and path quantifiers are applied directly on states.

An alternating tree automaton is a tuple 〈Σ, Q, ι, δ,Ω〉 where Σ is a finite alphabet, Q is
a finite set of states, ι ∈ Q is the initial state, δ : Q× Σ→ B+({♦,�} ×Q) is the transition
function, and Ω is the acceptance condition, on which we further elaborate below.

Intuitively, given a state q ∈ Q and a letter σ ∈ Σ, the transition function returns a
positive boolean formula that defines which states the automaton should transition to, and
whether to consider the next state at one non-deterministically chosen child (♦), or at all of
the children (�). Positive boolean formulas over {♦,�} ×Q are called transition conditions.

Formally, a run of an automaton with states Q over a Σ-tree t is a (Q× Σ)-tree r that
assigns states to nodes of t along the transition function of A. That is, there is a binary
relation ρ that relates nodes of t and nodes of r and satisfies the following constraints.

For every pair (n, n′) ∈ ρ, n is a node of t, n′ is a node of r, and if n is labeled σ then n′
is labeled (·, σ). (The · stands for an arbitrary value.) For every node n′ of r, there is
exactly one node n of t, such that (n, n′) ∈ ρ.
The roots of t and of r appear in exactly one pair, together, and r’s root is labeled (ι, ·).
For a node n of t with parent p, and a node n′ of r with parent p′, if (n, n′) ∈ ρ then
(p, p′) ∈ ρ.
Consider a node n of t, and a node n′ of r labeled (q, σ), such that (n, n′) ∈ ρ. Let
Φ = δ(q, σ) be the transition condition of the state q over the letter σ. Then Φ should be
satisfied by ρ as inductively defined below.

If Φ = ♦h then there exists a child c of n and a child c′ of n′, such that (c, c′) ∈ ρ and
c′ is labeled (h, ·).
If Φ = �h then for every child c of n, there is a child c′ of n′, such that (c, c′) ∈ ρ and
c′ is labeled (h, ·).
If Φ = b1 ∨ b2 (resp. Φ = b1 ∧ b2), for transition conditions b1 and b2, then b1 or b2
(resp. b1 and b2) should be satisfied.

A run is accepting if each of its paths satisfies the acceptance condition Ω or ends with
true. There exist various acceptance conditions in the literature; We use the following.

Büchi (resp. co-Büchi), where Ω ⊆ Q is the set of accepting states, and a path is accepting
if some state (resp. all states) that it visits infinitely often are in Ω.
A Büchi (and a co-Büchi) automaton is weak if every strongly connected component in
the transition graph consists of either only accepting states or only rejecting states.
Parity, where Ω : Q→ I is a priority function that assigns to each state a priority from a
set I = [0..i] or I = [1..i], for some i ∈ N. A path is accepting if the maximal priority
seen infinitely often in it is even.

Note that the weak condition is a special case of both the Büchi and co-Büchi conditions,
which are dual and are both special cases of the parity condition.

An automaton A accepts a tree if it has an accepting run on it; the language that it
recognises, denoted by L(A), is the set of trees that it accepts. Two automata that recognise
the same language are equivalent.

The size of an automaton is the maximum of the alphabet length, the number of states,
the number of subformulas in the transition function, and the acceptance condition’s index,
which is 1 for Büchi and co-Büchi, and |I| for parity. Observe that in alternating automata,
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the difference between the size of an automaton and the number of states in it can stem
from a transition function that has exponentially many subformulas. (In stronger acceptance
conditions, not considered here, the index might also be exponential in the number of states.)

Nondeterminism in tree automata also varies in the literature. In general, it only concerns
the boolean connectives of the transition condition and not the path quantifiers (or directions,
in ranked trees). We consider an alternating automaton to be nondeterministic (resp.
universal) if its transition conditions only use the ∨ (resp. ∧) connective, in addition to the
path quantifiers ♦ and �.

Word automata are defined exactly as tree automata, without the path quantifiers ♦ and
�. Accordingly, a run of a word automaton is a sequence of states.

The class of an automaton characterises its transition mode (deterministic, nondetermin-
istic, or alternating), its acceptance condition, and whether it runs on words or trees. We
often abbreviate automata classes by acronyms in {D, N, A}× {W, B, C, P}× {W, T}. The
first letter stands for the transition mode; the second for the acceptance-condition (weak,
Büchi, co-Büchi, and parity); and the third indicates whether the automaton runs on Words
or on Trees. For example, AWW stands for an alternating weak automaton on words.

It is known that AWWs recognise all ω-regular word languages [16], while AWTs do not:
they have the same expressiveness as alternation-free µ-calculus (AFMC) [20].

Games. A parity game is an infinite-duration path-forming game, played between Eve and
her opponent Adam on a game graph G = 〈V, Ve, Va, E,Ω〉 called the arena. The positions V
of the arena are partitioned into those belonging to Eve, Ve, and those belonging to Adam, Va.
We assume that every position has at least one successor. The priority assignment Ω→ I

maps every position to a priority in I, a finite prefix of the non-negative integers. Starting
at some position of G, a play proceeds with the owner of the current position choosing the
next position among its successors in the directed edge relation E ⊆ V × V . The players
collaboratively form a play, consisting of an infinite path along the edges of the game graph.
Eve wins if the highest priority visited infinitely often is even, and Adam wins if it is odd.

A co-Büchi game is a parity game, in which the set of priorities is I = {0, 1}. (The
positions with priority 0 are accepting and those with priority 1 are rejecting.)

We shall view a ΣG-tree t also as a co-Büchi game, where nodes labelled Ei and Ai, for
i ∈ {0, 1}, are interpreted as Eve’s and Adam’s positions respectively, and have priority i. If
not stated differently, we assume that the game starts at the root of t.

A (positional) strategy σ for a player P ∈ {Adam,Eve} maps every position v belonging
to P to one of its successors σ(v). A play π = v0v1 . . . is said to agree with σ when for all i,
if vi belongs to P , then vi+1 is σ(vi). A strategy σ for player P is said to be winning for P
from a region W ⊆ V if all plays starting within W that agree with σ are winning for P .

I Proposition 1 (Positional determinacy [7]). Parity games are positionally determined: at
each position, either Adam or Eve has a positional winning strategy.

I Definition 2 (Model-checking game). Given a word w ∈ Σω and an APW A = 〈Σ, Q, ι, δ,Ω〉,
the model-checking game G(w,A) is the following parity game:

Positions are B+(Q)× suffixes(w).
For a ∈ Σ, u ∈ Σω and transition conditions b and b′, there is an edge from:

(b ∧ b′, u) to (b, u) and (b′, u)
(q, au) to (δ(q, a), u)
(true, au) to (true, u)
(b ∨ b′, u) to (b, u) and (b′, u)
(false, au) to (false, u).
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Positions (b ∧ b′, u) belong to Adam, other positions belong to Eve.
A position (b, u) is of priority Ω(b) if b is a state, 1 if b = false, and 0 otherwise.

Note that for ultimately periodic words w, the game G(w,A) has finitely many positions.

I Proposition 3. An APW A with initial state ι accepts a word w if and only if Eve has a
winning strategy in the model-checking game G(w,A) from (ι, w).

3 The Weak Hierarchy

A weak automaton can be categorised by the maximal number of alternations3 between
accepting and rejecting states in it [19]. This is a strict hierarchy over ranked trees [19, 21],
whereas over words it collapses [16, 9]. We clarify the level to which it collapses over words,
and extend the strictness result to the setting of unranked trees. We will use this hierarchy
to show the lower bound for translating alternating parity to alternating weak tree automata.

Formally, to define its level, we consider a weak automaton as a parity automaton in
which whenever a state q is reachable from a state q′, Ω(q) ≤ Ω(q′), i.e. the parities seen on
any path of the automaton are non-increasing. In such parity automata, there are no cycles
with both an even and an odd priority, and therefore all even priorities can be replaced with
0 and odd priorities with 1. This definition therefore coincides with the definition of a weak
automaton as a special case of a Büchi or co-Büchi automaton, as given in Section 2, by
interpreting states of even priority as accepting and odd priority as rejecting. Then, for every
n ∈ N, a (0, n)-AWT (resp. (1, n + 1)-AWT ) is a weak automaton with priorities (ranks)
within [0..n] (resp. [1..n+ 1]). Notice that every AWT can also have transitions to true and
false, which “do not count” in the ranking

The classes of (0, n)- and (1, n+ 1)-AWTs form the weak hierarchy. Notice that for every
n ∈ N, an automaton is a (0, n)-AWT iff its dual is a (1, n + 1)-AWT, and the class of
(1, n+ 1)-AWTs is contained in the class of (0, n+ 1)-AWTs.

The weak hierarchy over words is defined analogously for AWWs rather than AWTs.

3.1 Word Automata: Collapse of the Hierarchy
AWWs recognise all ω-regular word languages: there is a translation of deterministic Muller
word automata into AWWs A [16]. A close look at the construction reveals that A is in the
(1, 3) class. We now show that this is the first class that recognises all ω-regular languages.

I Theorem 4. Every ω-regular word language is recognised by some (0, 2)-AWW, and there
are ω-regular word languages not recognised by any (0, 1)-AWW.

One direction follows from the translation in [16]; for the other direction we show that the
Büchi condition, i.e. the language of words with infinitely many repetitions of a fixed letter,
is not recognised by any (0, 1)-AWW.

3.2 Tree Automata: Strict Hierarchy for Ranked and Unranked Trees
We extend the result on the strictness of the weak hierarchy to the setting of unranked trees.
Our proof combines the technique used for ranked trees in [21] and a weak version of the
cannonical example of a family of languages known to exhaust the parity hierarchy [7, 3].

3 This sort of “alternation” has nothing to do with the “alternation” of alternating automata, which refers
to having both nondeterminism and universality in the transition condition.



U. Boker and K. Lehtinen 21:7

For n ∈ N, let Winn be the language of trees over the game alphabet ΣG in which, when
viewed as co-Büchi games, Eve wins with up to n alternations between 0 and 1 nodes. That
is, Eve has a winning strategy σ, such that every path of the tree that agrees with σ has up
to n transitions from a node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}.

We start with the positive direction, showing that Winn is recognised by a (0, n)-AWT.
The (0, n)-AWT is simply the standard automaton to recognise a winning strategy for Eve,
duplicated to count alternations.

I Lemma 5. For every n ∈ N, Winn is recognised by a (0, n)-AWT.

We continue with the negative direction, showing that the complement of Winn is not
recognised by a (0, n)-AWT.

I Lemma 6. For every n ∈ N, Winn is not recognised by a (0, n)-AWT.

The proof consists of an induction on n. For the inductive case we assume, towards a
contradiction, that a (0, n + 1)-AWT A recognises Winn+1. The key to this proof is that
when n+ 1 is odd, there must be some depth after which an accepting run does not visit
states of priority n. We can then use states of lower priority to build a (0, n)-AWT that
recognises Winn, reaching a contradiction. For odd n, we look at the dual (1, n+ 2)-AWT in
which n+ 2 is odd and follow the analogous reasoning.

I Theorem 7. The weak hierarchy is strict for alternating weak tree automata over unranked
trees. That is, for every integer n, there is a language of unranked trees that is recognised by
a (0, n+ 1)-AWT and not by any (0, n)-AWT.

Proof. The family of languages Winn fits the bill. By Lemma 5, for every n ∈ N, Winn is
recognised by a (0, n)-AWT, implying that Winn is recognised by a (1, n+ 1)-AWT, which is
in particular a (0, n+ 1)-AWT. By Lemma 6, Winn is not recognised by any (0, n)-AWT. J

4 From Alternating Parity to Alternating Weak Word Automata

We present a quasi-polynomial transformation from APW to AWW, based on the idea of
register games [14]. These were developed as an automata-theoretic method for solving parity
games in quasi-polynomial time; here we show that this approach is more general and can be
used to turn APW into AWW with a quasi-polynomial state and size blow-up.

Register games are a parameterised variant of parity games, also played on a parity game
arena. We define for any APW A an APW Ak that accepts an ultimately periodic word w if
and only if Eve wins the k-register game on the arena of the model-checking game G(w,A).
When A has n states, Ak has O(knk+1) states and 2k + 1 priorities. We then show that A
and Ak are equivalent for k = 1 + log n. Then, applying the standard O(md) transformation
into weak automata [12], where m is the number of states in the automaton and d the
number of priorities in it, however to A1+logn rather than to A, we get a translation with a
quasi-polynomial blow-up.

A similar line of reasoning does not work on trees because the register-index of the model-
checking game between a tree and an APT depends on both the tree and the automaton.

I Definition 8 (Register game [14]). For a strictly positive integer k, a k-register game
consists of a normal parity game, augmented with k registers. Each register records the
highest priority that has occurred in the parity game since it was last reset. The registers are
ranked according to how long it has been since their last reset, with a newly reset register
having rank 1. Eve is given control of the registers: Before every move in the parity game,
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Eve can choose to reset a register of any rank r. If the register contains the priority p, this
produces output 2r if p is even and 2r+ 1 otherwise. As long as Eve resets registers infinitely
often, this produces an infinite sequence in [1..2k + 1]ω. To win, Eve has to produce an
infinite sequence of outputs such that the maximal value output infinitely often is even. A
play in a register game can begin at any position and register configuration (even having
registers with an integer bigger than the maximal priority of the parity game); Note that the
initial register configuration does not affect the number of registers needed. Unless stated
otherwise, we assume all the registers to be initialised to 0.

We call a k-tuple x̄ of priorities a register configuration, where xi is the content of the
register of rank i. The top register is the register of rank k.

I Definition 9 (Register-index [14]). The register-index of a parity game G from a position
v is the least k such that Eve wins either both the k-register game and the parity game
on G from v or both the k-register game and the parity game on the dual of G from v

(i.e. priorities are shifted by 1 and node ownership is inverted). The register-index always
exists [14]. The register-index of a region W winning for Eve is the least k such that Eve
wins the k-register game from any position in W . The register-index of G is the maximal
register-index over all its positions.

We now define for every APW A its parameterised version Ak, which is an APW that
will be shown to accept a word w if and only if Eve wins the k-register game on G(w,A)
starting from (ι, w). The idea is to emulate the k-register game by keeping track of register
configurations with a tuple x̄ ∈ Ik that is updated according to which priorities are seen and
Eve’s resetting choices, which are represented as nondeterministic choices in Ak. The outputs
from resets are captured by the priorities of the states of Ak. Here we note a slight subtlety:
In the k-register game on G(w,A), Eve can reset not only at positions (q, u) where q is a
state of A, but also at positions (b, u) where b is a boolean formula. In Ak we aggregate
the outputs from all resets between two states (by taking the largest among them) into the
priority of the next state – this is the third element p ∈ [1..2k+ 1] of the states of Ak. When
Eve does not reset, we use the priority 1 so that if Eve does not reset infinitely often, she
loses the game, as required.

I Definition 10. Given an APW A = 〈Σ, Q, ι, δ,Ω〉 with Ω : Q→ I and a strictly positive
integer k, we define an APW Ak = 〈Σ, Q′, ι′, δ′,Ω′〉 as follows:

Q′ = Q× Ik × [1..2k + 1]
ι′ = (ι, (0, .., 0), 1)
Ω′: For every q ∈ Q, x̄ ∈ Ik, and p ∈ [1..2k + 1], we have Ω′(q, x̄, p) = p.
δ′: For every q ∈ Q, ȳ ∈ Ik, p ∈ [1..2k + 1], and a ∈ Σ, we have δ′((q, ȳ, p), a) =
move(δ(q, a), ȳ, 1)∨ reset(δ(q, a), ȳ, 1), where for every q′ ∈ Q, x̄ ∈ Ik, p′ ∈ [1..2k+ 1], and
transition conditions b and b′:

move(q′, x̄, p′) = (q′, x̄′, p′), with x′i = max(xi,Ω(q′)).
move(b ∧ b′, x̄, p′) = (move(b, x̄, p′) ∨ reset(b, x̄, p′)) ∧ (move(b′, x̄, p′) ∨ reset(b′, x̄, p′))
move(b ∨ b′, x̄, p′) = (move(b, x̄, p′) ∨ reset(b, x̄, p′)) ∨ (move(b′, x̄, p′) ∨ reset(b′, x̄, p′))
reset(b, x̄, p′) =

∨
i∈[1..k] reseti(b, x̄, p′), where reseti(b, x̄, p′) = move(b, x̄′, p′′) with

∗ x′j = xj for j > i; x′j = xj−1 for j ≤ i, j > 1; x′1 = 0
∗ p′′ is max(2i, p′) if xi is even; and max(2i+ 1, p′) otherwise.

I Lemma 11. Given an APW A, the APW Ak accepts a word w if and only if Eve wins
the k-register game on G(w,A) from (ι, w).
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The register-index of a parity game G is logarithmically bounded in the number of
positions in G [14]. However, the number of positions of G(w,A) depend on both w and
A. We introduce a new measure of game size that we use to logarithmically bound the
register-index, but which in G(w,A) only depends on A.

I Definition 12. For a game G, let SG be a maximal set of distinct (not necessarily maximal)
strongly connected components in G. Call the size of SG the scc-size of G.

The proof that the register-index of a game is logarithmic in its scc-size is similar to the
proof that it is logarithmic in the number of positions of the game [14], while strengthening it
by showing that: i) every game of scc-size 1 has register-index 1, and ii) as the register-index
increases, the scc-size, rather than just the number of positions, has to double.

We use slightly stronger strategies for Eve: instead of just winning, we require her not to
reset the top register when it contains an odd priority. This allows us to compose strategies.

I Definition 13 (Defensive register-index [14]). A winning strategy for Eve in a register game
on G is defensive if, whenever the strategy is played from a position in the winning region of
G and a register-configuration in which the top register contains an even priority no smaller
than the largest priority in G, the play never outputs 2k + 1.

The defensive register-index of a winning region for Eve of a parity game is the lowest
integer k such that Eve has a defensive winning strategy. Observe that the defensive
register-index is trivially at most one larger than the register-index.

The proof that the defensive register-index is logarithmic in the scc-size is different for
arbitrary scc-size and scc-size 1; we consider the two cases separately.

I Lemma 14. A parity game with scc-size 1 has defensive register-index 1.

Proof sketch. We prove by induction on the number of positions in an arena G that Eve has
a defensive strategy in the 1-register game on G, such that if the initial value of the register
is 0 then a play that agrees with the strategy outputs only 2’s. The base case is trivial.

In the induction step, we consider the maximal strongly connected components consisting
of vertices with priority smaller than the maximal priority p. Observe that there is up to one
such component, denoted by Gs. If it does not exist, Eve’s strategy is to reset whenever p is
seen. If Gs does exist, Eve’s strategy is to reset the register whenever entering Gs, and within
Gs to follow the strategy that is guaranteed by the induction assumption. The correctness
builds on the fact that in an arena with scc-size 1, all cycles intersect. J

I Lemma 15. The register-index k of a parity game of scc-size z is at most 1 + log z.

Proof. From the definition of register-index, it suffices to consider the single-player parity
games G induced by any winning strategy for Eve in her winning region. Observe that in
the register games on G, Eve’s strategy consists of just choosing when to reset registers.

We proceed by induction on the number of positions n in G. The base case, n = 1, is
trivial. For the inductive step, let G′ be the game induced by positions of G of priority
up to p− 2, where p is the maximal even priority that appears in some cycle of G. Then,
let G1, . . . , Gj be the maximal strongly connected subgames of G′. Let k1, . . . , kj be their
respective defensive register-indices, and km the maximal among these. If there are no such
subgames, then all cycles in G contain p in which case Eve wins defensively the 1-register
game on G by resetting whenever p is seen.
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Case of a unique i for which ki = km, and km > 1: We show that the register-index of
G is no more than km. Since the scc-size of G is at least that of Gi, and using the
induction hypothesis, this suffices.
Eve’s strategy in the km-register game on G is as follows: she first resets any odd priorities
in the registers (this may take several turns); then, after this clean-up phase, she resets
km whenever p occurs; within a subgame Gj she uses the bottom ranking kj registers to
simulate her defensive winning strategy in the kj-register game on Gj .
Assume that this strategy is played from a register-configuration where the top register
contains an even priority no smaller than p. First observe that since km > 1, after
seeing p and resetting km, the top register still contains an even value no smaller than
p. Furthermore, since this strategy encounters p between any two entrances into Gi, it
always enters Gi with an even value no smaller than p in the top register. Thus, it never
outputs 2km + 1. It leaves Adam the choice of losing within a subgame Gj (where Eve
follows a winning strategy) or changing subgames infinitely often. In the latter case, p
is seen infinitely often, thus producing 2km as output infinitely often. It is therefore
winning and defensive for Eve.
If it is played from a register-configuration in which the top register is not an even priority
no smaller than p, then it might output 2km + 1, but the values output infinitely often
will still be the same as above, so the strategy is still winning and defensive.

Case of i, j where i 6= j and ki = kj = km: We show that the register-index of G is no
more than km + 1. This suffices, since by the induction hypothesis, each of Gi and Gj
has scc-size at least 2km−1; then G has scc-size at least 2km .
Eve’s strategy in the km + 1-register game on G is as follows: reset the register of rank
km + 1 whenever p is seen; in a subgame Gi, use the bottom ranking ki registers to
simulate a winning strategy in the ki-register game on G. As above, this strategy is
winning, and since it only resets the register of rank km + 1 after seeing p, it is defensive.

Case of km = 1: If the scc-size of G is 1 then the result follows from Lemma 14. Otherwise,
Eve can win the 2-register game on G, using a strategy as above: within a subgame, she
uses her defensive 1-register strategy, and resets the top register whenever p is seen. This
strategy is winning since a play either remains in a subgame and follows a winning strategy,
or sees p infinitely often and therefore outputs 4 infinitely often, but does not output
5 infinitely often. It is therefore winning. If initially the top register contains an even
priority no smaller than p, this strategy never outputs 5 and is therefore defensive. J

We now show that the scc-size of G(w,A), for an ultimately periodic word w, is independent
of w and logarithmic in A. It basically follows from Lemma 15 and the fact that w is
represented by a Kripke structure with a single cycle.

I Lemma 16. Given an ultimately periodic word w = ucω and an APW A with n states,
the parity game G(w,A) has register-index at most 1 + log n.

Then A is equivalent to its 1 + log n parameterised version; the main result follows by
applying the existing transformation – exponential in the number of priorities – to A1+logn.

I Lemma 17. Every APW A is equivalent to its parameterised version Ak, for k = 1 + log n.

I Theorem 18. The size blow-up and state blow-up involved in translating alternating parity
word automata to alternating weak word automata is at most quasi-polynomial. In particular,
every APW A of size (resp. number of states ) n is equivalent to an AWW of size (resp.
number of states) 2O((logn)3).
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5 From Universal Co-Büchi to Alternating Weak Tree Automata

As opposed to the word setting, alternating weak tree automata do not recognise all ω-
regular tree languages. Furthermore, we show below that in cases that a translation from
an alternating parity automaton, or even a universal co-Büchi automaton, is possible, there
might be an exponential size blow-up.

We provide a family {Ln}n≥1 of tree languages, such that Ln is only recognised by an
AWT with at least 2n states, while recognised by a UCT of size in O(n).

The languages Ln are defined over the game alphabet combined with the binary-counting
alphabet. Intuitively, a tree t belongs to Ln if Eve wins the co-Büchi game with respect to
the game alphabet, and every path of t provides a correct prefix of an n-bit binary counter,
with respect to the binary-counting alphabet, when only considering nodes that come right
after an alternation between E0/A0 and E1/A1 labelling. Notice that the latter requirement
guarantees that there are up to (n+ 1)2n such alternations in every path of t. (There are up
to 2n numbers in an n-bit counter, and with the separator $ every number takes n+ 1 bits.)

Formally, Ln is the language of (ΣG × ΣB)-labeled trees, such that a tree t is in Ln iff it
satisfies the following properties:

I. Considering only the ΣG labelling of t and viewing the tree as a co-Büchi game, Eve
wins.

II. The ΣG-labelling of t’s root is E0 or A0.
III. For a string π over Σ, a node of π is in the derived string π′ if it is labeled by Ex/Ax

and its predecessor is labeled by Ey/Ay for x 6= y. Then, for every path π of t, the
derived string π′, when considering only its ΣB labelling, should be a correct prefix
of an n-bit binary counter, where each n bits of 0/1 are separated by $. For example,
000$001$01 is a correct prefix, while 000$100 and 000$ . . . $111$000 are not.

Intuitively, i) Ln is recognised by a small UCT that combines three succinct components,
each checking one of the three requirements in the definition of Ln; ii) Ln is AWT-recognizable,
since the third requirement guarantees boundedly many alternations between accepting and
rejecting states; and iii) Ln is only recognised by an AWT with at least (n + 1)2n states,
since Ln will be shown to be in that level of the weak alternation hierarchy.

I Lemma 19. For every n ∈ N, Ln is recognised by a UCT of size in O(n).

Proof. A UCT for Ln can be defined as the conjunction of three UCTs, AI , AII , and AIII ,
each checking the corresponding requirement in the definition of Ln.

AI . The UCT AI can be defined by straightforwardly relating E0 and E1 to accepting
and rejecting nondeterministic states, respectively, and A0 and A1 to accepting and rejecting
universal states, respectively. Formally, AI = 〈Σ, QI , ιI , δI , αI〉, where

QI = {q0, q1}.
ιI = q0.
δI . For every q ∈ Q and b ∈ ΣB, we define: δI(q, (E0, b)) = ♦q0; δI(q, (E1, b)) = ♦q1;
δI(q, (A0, b)) = �q0; and δI(q, (A1, b)) = �q1.
αI = q0.

A winning strategy of Eve on a game-tree t suggests how to resolve the nondeterminism in
AI , while an accepting run of AI on t can be translated to a winning strategy for Eve.

AII . Trivially checking the tree root’s labeling.
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q q′

A transition in C.

b (q,G0) (q′, G0)

(q,G1) (q′, G1)

The corresponding transitions in AIII .

(E0/A0, b)
(E1/A1, b)

(E1/A1, b)
(E0/A0, b)

Figure 1 From the universal finite-tree automaton C to the UCT AIII in the proof of Lemma 19.

AIII . The core idea behind the definition of the UCT AIII is that improper n-bit binary
counting can be recognised by a nondeterministic finite-word automaton A of size in O(n).
Furthermore, all states of A are rejecting, except for a single “forever accepting” state (true).
See, for example, [1, Figure 2] for a concrete construction of such an automaton.

Accordingly, proper n-bit binary counting can be recognised by the dual of A, which is a
universal finite-word automaton B of size in O(n). Now, a universal word automaton Aw
for a word language L can be adapted to a universal tree automaton At for the language
of trees all of whose paths are in L, by simply adding � to every transition in Aw. (Notice
that this does not hold for a nondeterministic word automaton.) Hence, we can adapt B to
a universal finite-tree automaton C that recognises the language of finite trees all of whose
paths are a proper prefix of n-bit counter. Notice that all states of C are accepting, except
for a single “forever rejecting” state (false).

Now, all that is left for getting AIII is to adapt C to operate over the extended alphabet
and to only consider the binary-counting alphabet when there is an alternation between
E0/A0 and E1/A1 labeling. We do this by having two copies of C, each “remembering”
whether the last game-labeling was 0 or 1. This adaptation is illustrated in Figure 1.

Formally, let C = 〈ΣB , Q, ι, δ, F 〉. We define AIII = 〈Σ, QIII , ιIII , δIII , αIII〉, where
QIII = q0 ∪Q× {G0, G1}.
ιIII = q0.
δIII .

For every b ∈ ΣB , δIII(q0, (E0/A0, b)) = �(ι, G0) and δIII(q0, (E1/A1, b)) = �(ι, G1).
For every q ∈ Q and b ∈ ΣB , we define:
∗ δIII((q,G0), (E0/A0, b)) = �(q,G0)
∗ δIII((q,G0), (E1/A1, b)) = G1(δ(q, b)), where G1(TC), for a transition condition
TC of C, changes every instance of a state q in TC to (q,G1). For example,
G1(�q ∧�q′) = �(q,G1) ∧�(q′, G1).

∗ δIII((q,G1), (E0/A0, b)) = G0(δ(q, b)), where G0(TC), for a transition condition
TC of C, changes every instance of a state q in TC to (q,G0).

∗ δIII((q,G1), (E1/A1, b)) = �(q,G1)
αIII = F × {G0, G1}.

Notice that by the special structure of AIII , it is not only a UCT and even a (0, 0)-
UWT. J

Since condition III guarantees a bound on the number of alternations between E0/A0
and E1/A1 labels, the languages {Ln} can also be recognised by alternating weak automata.

I Lemma 20. For every n ∈ N, Ln is AWT-recognizable.
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Proof. Analogously to the construction of a UCT for Ln in the proof of Lemma 19, an AWT
for Ln can be defined as the conjunction of three AWTs, BI , BII , and BIII , each checking
the corresponding requirement in the definition of Ln.

The automata BII and BIII can be identical to the automata AII and AIII , respectively,
from the proof of Lemma 19, as they are already AWTs (and even (0, 0)-UWTs).

As for BI , it obviously cannot be identical to AI from the proof of Lemma 19, as the latter
heavily builds on the co-Büchi acceptance condition. Furthermore, the first requirement in
the definition of Ln is not AWT-definable. Yet, due to the third requirement in the definition
of Ln, in every tree t that belongs to Ln, all paths have up to (n+ 1)2n alternations between
E0/A0 and E1/A1 labelling. Hence, the first requirement in the definition of Ln can be
reformulated to “Eve wins t with up to (n+ 1)2n alternations between E0/A0 and E1/A1
nodes”, namely to “t belongs to Win(n+1)2n”, without changing Ln.

By Lemma 5, there is an AWT recognizing Win(n+1)2n , providing the desired AWT
BI . J

We establish in two steps the lower bound on the size of an AWT recognizing Ln: i) We
prove a claim on the weak-hierarchy levels of a family {Hm}m≥1 of languages that are quite
similar to {Ln}, but lack the explicit counting; and ii) We prove that an AWT for Ln must
be in the same level of the weak hierarchy as an AWT for H(n+1)2n .

Formally, Hm is the language of ΣG-labeled trees, such that a tree t is in Hm iff i) Eve
wins t, when viewing t as a co-Büchi game, ii) the root of t is labeled E0 or A0 if m is even,
and E1 or A1 if m is odd, and iii) In every path of t, there are up to m transitions from a
node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}.

The proof that Hm is strict for the mth level of the weak hierarchy follows the inductive
reasoning of showing that Winm is in the mth level of the weak hierarchy (Lemma 6), but
requires some additional manoeuvres, due to the asymmetry between Adam and Eve in Hm.
Specifically, in the induction step, when assuming toward contradiction a (0,m+ 1)-AWT
that recognises Hm+1 or a (1,m+ 2)-AWT that recognises Hm+1, we not only manipulate
subtrees in Hm and Hm, but also subtrees that are in the conjunction or disjunction of Hm

with languages that correspond to the second and third requirements in the definition of Hm.

I Lemma 21. For every m ∈ N, there is no (0,m)-AWT recognizing Hm.

Proof. We use the following simple AWTs: Let Root0 (resp. Root1) be a (0, 0)-AWT that
accepts a tree t iff the root of t is labeled E0/A0 (resp. E1/A1). For every m ∈ N, let Altm
be a (0, 0)-AWT that accepts a tree t iff in every path of t, there are up to m transitions
from a node labeled Ex/Ax to a node labeled Ey/Ay, for x 6= y ∈ {0, 1}. Observe that for
an even m, a tree t ∈ Hm iff t ∈ L(Eve wins) ∩ L(Root0) ∩ L(Altm), while t is in Hm iff
t ∈ L(Adam wins) ∪ L(Root1) ∪ L(Altm). We prove the claim by induction on m.

Base case. Recall that there is a (0, 0)-AWT recognizing H0 iff there is a (1, 1)-AWT
recognizing H0, which is the language of trees in which Eve wins and all paths are labeled
A0/E0. Let t be the single-path tree labelled A0 throughout. If a (1, 1)-AWT A recognises
H0, it must accept t. Since every loop in A is rejecting, an accepting run r of A on t only
has finite paths, ending with true. Let k be the length of the longest one. Let t′ be the tree
identical to t up to depth k and labelled A1 from there on. Then A accepts t′, but t′ /∈ H0.

Induction step. The induction hypothesis is that Hm is not recognised by a (0,m)-AWT
(and its dual, that Hm is not recognised by a (1,m + 1)-AWT). There are two cases to
consider, an even m and an odd m.
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Even m. Assume, towards a contradiction, a (0,m+ 1)-AWT A that recognises Hm+1. We
will build a (0,m)-AWT that recognises Hm, reaching a contradiction.

Consider an arbitrary tree t′ ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm). Let t be the tree
consisting of one branch along which all nodes are labelled E1, and they all have a child
labelled E0 that in turn has a copy of t′ as its unique child.

First, we claim that t ∈ Hm+1: if Eve does not play into a copy of t′, the play sees only
labels E1 and is winning for Adam; if Eve plays into a copy of t′, then from there she loses.

Now let r be an accepting run of A on t. As m+ 1 is odd, there is a depth k of t, starting
from which r only assigns states of rank at most m. Let St′ be the set of states that r assigns
to the root of t′ at depth k, and let At′ be the automaton that is derived from A by setting
St′ to be the initial set, namely having the initial formula

∧
q∈St′ q (which can be translated

to an initial state). At′ is a (0,m)-AWT, since it lacks the m+1-ranked states of A.
Clearly, At′ accepts t′. Furthermore, At′ does not accept any tree in Hm: If it accepted

some tree t′′ ∈ Hm then A would also accept the tree t̂ derived from t by replacing the
occurrence of t′ at depth k with t′′. However, t̂ is not in Hm+1, since Eve wins it (by going
to t′′), its root is labeled E0/A0, and every path of it has up to m+ 1 alternations.

Let B be the automaton that is the disjunction of all of these At′ automata (there are
finitely many such automata, as each of them corresponds to a subset of A’s states) for
t′ ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm), and let C be the disjunction of B, Root1, and
Altm. Observe that C is a (0,m)-AWT.

We claim that C recognises Hm, leading to the claimed contradiction.
If t ∈ Hm, there are two cases: either t ∈ L(Root1) ∪ L(Altm) or t ∈ L(Adam wins) ∩

L(Root0) ∩ L(Altm). If t ∈ L(Root1) ∪ L(Altm) then C clearly accepts t. Moreover,
if t ∈ L(Adam wins) ∩ L(Root0) ∩ L(Altm) then B and therefore C accepts t. Hence
Hm ⊆ L(C).

If t ∈ Hm, then B does not accepts t since no At′ accepts t. Furthermore, t ∈ L(Root0)∩
L(Altm) so neither Root1 nor Altm accepts t. Hence C does not accepts t and L(C) = Hm.

Odd m. Observe that Hm+1 is recognised by a (0,m + 1)-AWT if and only if Hm+1 is
recognised by a (1,m+ 2)-AWT. Assume, towards a contradiction, that there is a (1,m+ 2)-
AWT A that recognises Hm+1. We will build a (1,m+ 1)-AWT that recognises Hm, reaching
a contradiction.

Consider a tree t′ ∈ Hm. Let t be the tree consisting of one branch along which all nodes
are labelled A0, and they each have a child labelled A1 that in turn has a copy of t′ as its
unique child.

First, we claim that t ∈ Hm+1: i) The label of t’s root is in {E0, A0}; ii) Since m is odd,
the root of t′ is labeled E1/A1 and thus there are up to m+ 1 alternations in all paths of
t; and iii) Eve wins t: if Adam does not play into a copy of t′, the play sees only labels A0
and is winning for Eve; if Adam plays into a copy of t′, then from there Eve has a winning
strategy.

Now let r be an accepting run of A on t. Since m+ 2 is odd, there is a depth k starting
from which r only assigns states of rank at most m+ 1. Let St′ be the set of states that r
assigns to the root of t′ at depth k, and let At′ be the automaton that is derived from A
by setting St′ to be the initial set. Observe that At′ is a (1,m+ 1)-AWT, since it lacks the
m+ 2-ranked states of A.

Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree t′′ not in Hm, whose
root is labeled E1/A1: If it accepted such a tree t′′ then A would also accept the tree t̂ that
is derived from t by replacing the occurrence of t′ at depth k with t′′. However, t̂ is not in
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Hm+1, since i) if Adam wins t′′ then Adam wins t̂; and ii) if there exists a path in t′′ with
more than m alternations then there exists a path in t̂ with more than m+ 1 alternations.

Let B be the automaton that is the disjunction of all of these At′ automata, and let C be
the automaton that is the conjunction of B and Root1. Observe that C is a (1,m+ 1)-AWT

We claim that C recognises Hm, leading to the claimed contradiction. If t ∈ Hm, then
B and therefore C accepts t. If t /∈ Hm and the root of t is labeled E0/A0 then Root1 and
therefore C does not accept t. If t /∈ Hm and the root of t is labeled E1/A1 then no At′
accepts t, and therefore B and C do not accept t. Hence L(C) = Hm. J

We now show that an AWT A for Ln cannot be in a lower level of the weak hierarchy
than an AWT A′ for H(n+1)2n , and must therefore have at least (n+ 1)2n states. The idea
is to construct A′ by having (n+ 1)2n adapted copies of A, each properly adding the extra
letters of the binary-counting alphabet. We get a much bigger automaton than A, yet on
the same level of the weak hierarchy, which provides the desired result.

I Lemma 22. For every n ≥ 1, an AWT recognizing Ln must have at least (n+ 1)2n states.

Proof. Let N = (n + 1)2n. Consider an AWT A that recognises Ln, and let m be the
minimal natural number such that A is in the (0,m)-AWT class. We will construct from A
a (0,m)-AWT A′ that recognises HN . This will imply the desired result, as by Lemma 21,
m must be at least N .

The idea in the construction of A′ is to follow the transitions of A, while properly adding
the extra letters of the binary-counting alphabet. In order to add the letters in a way that
matches a proper counting, A′ has N copies of A, each corresponding to a number between
0 and N − 1. The constructed automaton will be much bigger than A, yet on the same level
of the weak hierarchy, which provides the desired result.

Formally, let A = 〈Σ, Q, ι, δ,Ω〉. (For considering the level of A in the weak hierarchy, we
view it as a parity automaton that satisfies the weakness constraint.) For every i ∈ [0..N − 1],
let bit(i) stand for the letter in ΣB that appears in the ith position of the n-bit counter. For
example, for n = 3 and i = 7, we have bit(7) = $, since $ is the letter in the 7th position in
the counter 000$001$ . . ..

In addition to the proper letter of ΣB, A′ should also “remember” whether the last
alternation was from E0/A0 to E1/A1 or vice versa. Yet, this can be derived from the
counter position, as in even positions of the counter, the last alternation should be to
E0/A0, and in odd positions, the other way round. We therefore define the function
NextIndex : ΣG × [0..N − 2] → [0..N − 1], by NextIndex(g, i) = i + 1 if (i is even and
g ∈ {E1, A1} or i is odd and g ∈ {E0, A0}), while in other cases NextIndex(g, i) = i.

We can now define the AWT A′ = 〈ΣG, Q′, ι′, δ′,Ω′〉, where
Q′ = Q× [0..N − 1].
ι′ = (ι, 0).
δ′: For every q ∈ Q, i ∈ [0..N−1], and g ∈ ΣG, we have δ′((q, i), g) = Next(δ(q, (g, bit(i))),
where Next(TC), for a transition condition TC of A, changes every instance of a state q
in TC to (q,NextIndex(g, i)).
Ω′: For every q ∈ Q and i ∈ [0..N − 1], Ω′(q, i) = Ω(q).

Observe that A′ is in the same level of the weak hierarchy as A, since the priorities and
transitions in A′ are the same as in A, except for having a component number, which does
not affect the priority of a state.

It is left to show that A′ recognises HN . Consider a tree t′ ∈ HN . Let t be the Σ-tree
that is derived from t′ by adding the binary-counting labelling as follows: i) labelling the
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root of t with 0; ii) keeping the binary-counting labelling of the parent node if there was no
alternation between E0/A0 and E1/A1 labelling; and iii) labelling the node with the next
letter of a proper binary-counter when there is an alternation between E0/A0 and E1/A1
labelling. Since t′ belongs to HN , t belongs to Ln and there is some accepting run-tree r of
A on t. Recall that r has labels in Q× (ΣG ×ΣB). Let r′ be the (Q×ΣB)×ΣG-tree that is
derived from r by changing the labelling of every node from (q, (σG, σB)) to ((q, σB), σG).
Observe that r′ is an accepting run of A′ on t′.

As for the other direction, consider a tree t′ accepted by A′ via some run-tree r′. Recall
that r′ has labels in (Q× ΣB)× ΣG. Let r be the Q× (ΣG × ΣB)-tree that is derived from
r′ by changing the labelling of every node from ((q, σB), σG) to (q, (σG, σB)). Observe that r
is an accepting run of A on some Σ-tree t, such that t is identical to t′ except for having
additional ΣB labelling to each node. Hence, t ∈ Ln and t′ ∈ HN . J

Gathering the lemmas above, we get the blow-up involved in the translation.

I Theorem 23. The size blow-up and state blow-up involved in translating UCTs to AWTs,
when possible, is in 2Ω(n).

6 Conclusions

Up until the recent quasi-polynomial parity game algorithms, the best known blow-up of
turning APW into AWW roughly matched the complexity of known algorithms for solving
parity games. Here we have again closed this gap by establishing a quasi-polynomial APW
to AWW transformation. This immediately improves the worst-case complexity of parity
game solving via reduction to the AWW emptiness problem [23] to quasi-polynomial. While
a more effecient APW to AWW transformation will always yield a more efficient parity game
solving algorithm, the extent to which the converse holds is an open question.

In stark contrast, our lower bound for transformations to weak tree automata shows that
on trees the simplicity of the weak acceptance condition comes at a much higher cost.
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A Appendix – Omitted Proofs

A.1 Proofs of Section 3
I Theorem 4. Every ω-regular word language is recognised by some (0, 2)-AWW, and there
are ω-regular word languages not recognised by any (0, 1)-AWW.

Proof. In [16], there is a translation of an arbitrary deterministic Muller automaton to a
(1, 3)-AWW. Hence, given an ω-regular language L, one can represent its dual language L by
a deterministic Muller automaton A and translate it to an equivalent (1, 3)-AWW B. The
dual of B is a (0, 2)-AWW recognizing L.

As for the negative part, consider the language L over the alphabet Σ = {a, b}, consisting
of words with infinitely many a’s. Observe that the word w = ababbabbbab4ab5 . . . is in L.

Assume towards contradiction a (0, 1)-AWW A recognizing L, and having a set of states
Q. Then, A accepts w via some run r. Recall that r is a Q× Σ-tree. For every n ∈ N, let
Sn be the set of states of A that appear in the labeling of nodes of r at the level n.

FSTTCS 2018
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Since Q is finite and the sequences of subsequent b’s in w are unbounded, there is a set
S ⊆ Q and two numbers x < y ∈ N, such that there are only b’s between the positions x and
y of w, S = Sx = Sy, and S = Sn for infinitely many n ∈ N.

As A is weak and its top rank is rejecting, no state of S can be from the top rank.
(Otherwise there is a path in r all of whose nodes are from the top rank, implying that the
path is rejecting.) Hence, all states of S are from the 0 rank. Thus, from every node v in the
x level of r, there is a run on the finite word by−x, such that every state that appears in its
labeling is from the 0-level of A, and all its leaves are labeled with states from S or true.

Let w′ be the infinite word that is the same as w up to position x, and from there on has
only b’s. Then A has an accepting run r′ on w′ that is the same as r up to level y, and then
for every i ∈ N and node v in a y + i(y − x) level that is labeled with some state q, it makes
the next y − x steps from v as the run r from a node in its x level that is labeled with q.
Yet, w′ 6∈ L, leading to a contradiction. J

I Lemma 5. For every n ∈ N, Winn is recognised by a (0, n)-AWT.

Proof. We first define a (0, n)-AWT Wn and then show that it recognises Winn.
Wn:

Alphabet: ΣG (Namely, {E0, E1, A0, A1}.)
States: {q0, q1, . . . , qn}
Initial state: qn
Priorities (ranks): Ω(qj) = j for all j
Transitions:
δ(q0, E0) = ♦q0; δ(q0, A0) = �q0; δ(q0, E1/A1) = false

For every j ∈ [1..n]:

δ(qj , E0) =
{
♦qj n is even

♦qj−1 n is odd

δ(qj , E1) =
{
♦qj n is odd

♦qj−1 n is even

δ(qj , A0) =
{
�qj n is even

�qj−1 n is odd

δ(qj , A1) =
{
�qj n is odd

�qj−1 n is even

Observe that Wn is indeed a (0, n)-AWT.
Next, we show that Wn recognises Winn. The transition relation guarantees that in every

infinite run of Wn on any tree t, whenever a node v is labeled E0/A0 (resp. E1/A1), every
successor of v is seen at a state of Wn of even (resp. odd) rank.

Let σ be a winning strategy for Eve in t, such that any play that agrees with σ only
sees up to n alternations. We translate σ into an accepting run rσ of Wn on t by resolving
the nondeterminism of Wn at a node v ∈ t labelled Ei along σ(v). That is, the choice of a
successor node in a ♦-transition is done along the choice of Eve in σ. Since no play that
agrees with σ sees more than n alternations, rσ does not reach false. Furthermore, since
every path of t that agrees with σ sees only finitely many nodes labeled E1/A1, the run rσ is
accepting.
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Conversely, an accepting run r of Wn on a tree t translates into a strategy σ for Eve on
the game t: first observe that r visits up to one state for every node of t, and up to one
successor of every node labelled E0/E1; Then, at node v labelled E0/E1, the strategy σ
chooses the unique successor that r visits. Since r is accepting, every path of r can have
only finitely many nodes labeled E1/A1, implying that every play that agrees with σ sees
E1/A1 only finitely often. J

I Lemma 6. For every n ∈ N, Winn is not recognised by a (0, n)-AWT.

Proof. We prove the claim by induction on n.
Base case. Recall that there is a (0, 0)-AWT recognizing Win0 iff there is a (1, 1)-AWT

recognizing Win0, which is the language of trees in which Eve wins without ever seeing
A1/E1. Let t be the single-path tree labelled A0 throughout. If a (1, 1)-AWT A recognises
Win0, it must accept t. Since every loop in A is rejecting, an accepting run r of A on t
only has finite paths, ending with true. Let k be the length of the longest one. Let t′ be
the tree identical to t up to depth k and labelled A1 from there on. Then A accepts t′,
but t′ /∈Win0.

Induction step. The induction hypothesis is that Winn is not recognised by a (0, n)-AWT
(and its dual, that Winn is not recognised by a (1, n+ 1)-AWT). There are two cases to
consider, an even n and an odd n.

Even n. Assume, towards a contradiction, a (0, n+ 1)-AWT A that recognises Winn+1. We
will build a (0, n)-AWT that recognises Winn, reaching a contradiction.
Consider an arbitrary tree t′ ∈ Winn. Let t be the tree consisting of one branch along
which all nodes are labelled E1, and they all have a child labelled E0 that in turn has a
copy of t′ as its unique child.
First, we claim that t ∈ Winn+1: if Eve does not play into a copy of t′, the play sees
only labels E1 and is winning for Adam; if Eve plays into a copy of t′, then from there
she either loses or wins but sees over n alternations within t′ and therefore over n + 1
alternations overall.
Now let r be an accepting run of A on t. Since n + 1 is odd, there is a depth k of t,
starting from which r only assigns states of rank at most n. Let St′ be the set of states
that r assigns to the root of t′ at depth k, and let At′ be the automaton that is derived
from A by setting St′ to be the initial set, namely having the initial formula (which can
be translated to an initial state)

∧
q∈St′ q. Observe that At′ is a (0, n)-AWT, since it

lacks the n+1-ranked states of A.
Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree out of Winn, namely
in Winn: If it accepted some tree t′′ ∈Winn then A would also accept the tree t̂ that is
derived from t by replacing the occurrence of t′ at depth k with t′′. However, t̂ is not
in Winn+1 – Notice that since the last alternation on any play winning for Eve must be
from E1/A1 to E0/A0, in t′′ Eve either wins while seeing only up to n− 1 alternations or
the root of t′′ is labelled A0/E0. Thus, t̂ is not in Winn+1, since if Eve plays to t′′, she
wins and sees either at most n− 1 alternations within t′′ and at most n+ 1 overall, or up
to n alternations within t′′ but only one more, i.e. n+ 1 alternations overall.
Since A is finite, the set {St′ |t′ ∈Winn} is finite and therefore the disjunction

∨
t′∈Winn

At′
of (0, n)-AWTs is a (0, n)-AWT that recognises Winn – a contradiction.

Odd n. Observe that Winn+1 is recognised by a (0, n + 1)-AWT if and only if Winn+1 is
recognised by a (1, n+2)-AWT. Assume, towards a contradiction, that there is a (1, n+2)-
AWT A that recognises Winn+1. We will build a (1, n+ 1)-AWT that recognises Winn,

FSTTCS 2018



21:20 On the Way to Alternating Weak Automata

reaching a contradiction. The construction is analogous to the above case of an even n,
using the dual trees.
Consider a tree t′ ∈ Winn. Let t be the tree consisting of one branch along which all
nodes are labelled A0, and they each have a child labelled A1 that in turn has a copy of
t′ as its unique child.
First, we claim that t ∈Winn+1: if Adam does not play into a copy of t′, the play sees
only labels A0 and is winning for Eve; if Adam plays into a copy of t′, then from there Eve
has a winning strategy, such that every play that agrees with it has up to n alternations.
Observe that such a play in t′ either sees up to n− 1 alternations, or begins with A1/E1,
since the last alternation must be from E1/A1 to E0/A0. Then, in either cases, the overall
play sees up to n alternation.
Now let r be an accepting run of A on t. Since n+ 2 is odd, there is a depth k starting
from which r only assigns states of rank at most n+ 1. Let St′ be the set of states that r
assigns to the root of t′ at depth k, and let At′ be the automaton that is derived from A
by setting St′ to be the initial set. Observe that At′ is a (1, n+ 1)-AWT, since it lacks
the n+2-ranked states of A.
Obviously, At′ accepts t′. Furthermore, At′ does not accept any tree not in Winn: If it
accepted some t′′ /∈Winn then A would also accept the tree t̂ that is derived from t by
replacing the occurrence of t′ at depth k with t′′. However, t̂ is not in Winn+1, since if
Adam plays to t′′, he either wins or forces to see more than n alternations within t′′ and
therefore more than n+ 1 alternations overall.
Since A is finite, the set {St′ |t′ ∈Winn} is finite and therefore the disjunction

∨
t′∈Winn

At′
of (1, n+ 1)-AWTs is a (1, n+ 1)-AWT that recognises Winn – a contradiction. J

A.2 Proofs of Section 4
I Lemma 11. Given an APW A, the APW Ak accepts a word w if and only if Eve wins
the k-register game on G(w,A) from (ι, w).

Proof. Recall that by Proposition 3, A accepts a word w if and only if Eve wins the parity
game G(w,A) from (ι, w). The intuition is that G(w,Ak) encodes as a parity game the
k-register game on G(w,A) by encoding the register-configuration in the state space, Eve’s
resetting choices as new disjunctions and the highest output from resets between two states
as priorities.

Positions of G(w,Ak) are in B+(Q× Ik × [1..2k + 1]) × Σω while configurations of the
k-register game on G(w,A) consist of a position B+(Q)× Σω and a tuple of register values.
G(w,Ak) begins at ((ι, (0, .., 0), 1), w) while the k-register game on G(w,A) begins at

(ι, w) with register configuration (0, .., 0).
Now, observe that at a position (q, au) in G(w,A) at register configuration x̄, Eve has a

choice to reset a register, or let the parity game proceed to (δ(q, a), u). Similarly in G(w,Ak),
from ((q, x̄, p), au) Eve has a choice to either proceed with a move or reset a register.

Whenever Eve decides to proceed with a parity-game move, the decision falls in both
games to Adam if δ(q, a) is a conjunction, and to Eve otherwise. Then Eve again has, in both
games, the option between proceeding in the parity game or a reset. Observe that a move
(that is, not a reset) only affects the register configuration in the register game on G(w,A) if
it reaches a position (q, j) where q is a state (because intermediate positions have priority
0 in the parity game) and in G(w,Ak) a non-reset move only affects x̄ if it is move(q, x̄, p)
where q is a state. In both cases, if q is a state, the register configuration is updated to
contain the maximum of the old value and the priority of q in A.



U. Boker and K. Lehtinen 21:21

If Eve decides to reset a register i in the register game on G(w,A) at (b, u) with register
configuration x̄, then this updates the register configuration in the same way as Eve’s choice
of reseti(b, x̄, p) updates x̄. Furthermore, the output in G(w,A) is 2i if xi is even and 2i+ 1
if xi is odd. Observe that the largest such output between two positions (q, au) and (q′, u) is
recorded in G(w,Ak) as the priority p of (q′, x̄, p). This guarantees that the largest priority
output infinitely often on a play in the register-game on G(w,A) matches the highest priority
seen infinitely often in the corresponding play in G(w,Ak). On the other hand, in a play
with finitely many resets, the maximal priority seen in G(w,Ak) infinitely often is 1, causing
Eve to lose, as required.

Then a winning strategy for Eve in one game translates into a winning strategy for Eve
in the other game. J

I Lemma 14. A parity game with scc-size 1 has defensive register-index 1.

Proof. From the definition of register-index, instead of considering an arbitrary parity game
and an arbitrary position of it, it suffices to consider the single-player parity games G induced
by any winning strategy for Eve from that position. Observe that in the register games on
G, Eve’s strategy consists of just resetting the register.

We say that a defensive winning strategy in a 1-register game G is “very defensive” if
whenever starting the game with the value 0 in the register, a play that agrees with the
strategy does not output 3. (That is, it only outputs 2.)

We prove by induction on the number n of positions in a game G with scc-size 1 that
Eve has a very-defensive winning strategy in the 1-register game on G.

The case of n = 1 is trivial.
For the inductive case, let G′ be the game induced by the positions of G of priority up

to p− 2, where p is the maximal even priority that appears in some cycle of G. Let Gs be
the unique maximal strongly connected component in G′. If such a Gs does not exist, then
Eve’s strategy in the 1-register game on G is to reset whenever p is seen; since there are no
cycles without p, this strategy is winning and very defensive.

If Gs does exist, then by the induction hypothesis, Eve has a very defensive winning
strategy σs in the 1-register game on Gs. In addition, since G is of scc-size 1, there is no
cycle in G that is disjoint to Gs.

Eve’s very defensive winning strategy σ in the 1-register game on G is as follows: Reset
whenever entering Gs, and follow σs within Gs.

Observe that a play that agrees with σ must see p between leaving and entering Gs
(else Gs either isn’t maximal, or there is a cycle with an odd maximal priority). Hence,
when entering Gs, the play outputs 2, the register’s content is 0, and the play continues
along Gs, which is very defensive. Thus, σ is a very defensive winning strategy: there is no
output of value 3, neither when entering Gs nor when remaining in it, and there are infinitely
many outputs of value 2, either by the strategy σs or by leaving and entering Gs infinitely
often. J

I Lemma 16. Given an ultimately periodic word w = ucω and an APW A with n states,
the parity game G(w,A) has register-index at most 1 + log n.

Proof. We show that the scc-size of G(w,A) is at most n. Then, from Lemma 15, its
register-index is at most 1 + log n.

First note that all strongly connected components of G(w,A) occur in the subgame
G(cω,A). We consider the graph H that is derived from G(cω,A) by ignoring the intermediate
positions (b, v), where b is a boolean formula between positions of the form (q, v), for a state
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q. That is, let H be the graph consisting of just the vertices (q, v) of G(cω,A), where q is a
state. The edges of H connect positions (q, v) and (q′, v′) if (q′, v′) is reachable from (q, v)
in G(cω,A) directly, that is, with a path which does not visit yet another position (q′′, v′′)
where q′′ is a state.
G(cω, A) has ssc-size no larger than the graph H: a set of distinct strongly connected

components in G(cω, A) induces a set of strongly connected components in H. If m is the
size of the cycle c, then each strongly connected component of H must be of size at least m.
H is of size at most mn, so the ssc-size of H, and therefore of G(w,A), is at most n. J

I Lemma 17. Every APW A is equivalent to its parameterised version Ak, for k = 1 + log n.

Proof. Since two ω-regular languages are equivalent if they agree on the set of ultimately
periodic words [17], it suffices to argue that A and Ak agree on ultimately periodic words.

From Lemma 11, Ak accepts an ultimately periodic word w if and only if Eve wins the
k-register game on G(w,A). From Lemma 16, this is the case exactly when Eve wins the
parity game on G(w,A), that is, when A accepts w. J

I Theorem 18. The size blow-up and state blow-up involved in translating alternating parity
word automata to alternating weak word automata is at most quasi-polynomial. In particular,
every APW A of size (resp. number of states ) n is equivalent to an AWW of size (resp.
number of states) 2O((logn)3).

Proof. From Lemma 17, an APW A with n states and d priorities is equivalent to its
parameterised APW Ak for k = 1 + log n, having n · dk · (2k + 1) states and 2k + 1 priorities.
Ak can then be turned into a weak automaton using standard techniques [12] with a O(md′)
blow-up, where m is the number of states and d′ the number of priorities, which yields
an AWW with 2O((logn)3) many states, since m is here in O(knk+1) ≤ 2O((logn)2) and d′ is
2k + 1 ∈ O(log n).

In case that the size of A is dominated by the size e of its transition function, namely
when e > n, observe that the parameter k, the number of states in Ak, and the number
of priorities in Ak do not depend on e, while the size of Ak’s transition function is in
O(k2edk) ≤ 2O((log e)2). Since the translation in [12] does not blow up the transition-function
size more than it blows up the number of states, we end up with an AWW of size in
2O((log e)3). J
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Abstract
We consider equivalence and containment problems for word transductions. These problems
are known to be undecidable when the transductions are relations between words realized by
non-deterministic transducers, and become decidable when restricting to functions from words
to words. Here we prove that decidability can be equally recovered the origin semantics, that
was introduced by Bojańczyk in 2014. We prove that the equivalence and containment problems
for two-way word transducers in the origin semantics are PSpace-complete. We also consider
a variant of the containment problem where two-way transducers are compared under the ori-
gin semantics, but in a more relaxed way, by allowing distortions of the origins. The possible
distortions are described by means of a resynchronization relation. We propose MSO-definable
resynchronizers and show that they preserve the decidability of the containment problem under
resynchronizations.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases Transducers, origin semantics, equivalence

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.22

Related Version A full version of the paper is available at https://arxiv.org/abs/1807.
08053.

1 Introduction
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relation between words by associating an output with each transition. It is called functional
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logic (MSO) [7, 13], have shown that the functions realized by two-way word transducers
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regular functions. For a recent, nice survey on logical and algebraic properties of regular
word transductions the reader is referred to [17].

Non-determinism is a very natural and desirable feature for most types of automata.
However, for word transducers, non-determinism means less robustness. As an example,
non-deterministic transducers are not equivalent anymore to NMSOT (the non-deterministic
version of MSO transductions), however the latter is equivalent to non-deterministic streaming
transducers [3]. A major problem is the undecidability of the equivalence of non-deterministic,
one-way word transducers [18] (also called NGSM, and capturing the class of rational
relations). In contrast, equivalence of functional, two-way word transducers is decidable [9],
even in PSpace. This complexity is mainly based on the fact that it can be checked in
PSpace if two non-deterministic, two-way automata are equivalent (see e.g. [21]).

The equivalence test is one of the most widely used operation on automata, so that it
becomes a natural question to know what is needed to recover decidability of equivalence
for rational relations, and even for regular relations, which are transductions defined by
non-deterministic, two-way transducers. The main result of our paper is that equivalence
of non-deterministic, two-way transducers is decidable if one adopts a semantics based on
origin information. According to this origin semantics [5], each letter of the output is tagged
with the input position that generated it. Thus, a relation in the origin semantics becomes a
relation over Σ∗ × (Γ×N)∗. Surprisingly, the complexity of the equivalence test turns out to
be as low as it could be, namely in PSpace (thus PSpace-complete for obvious reasons).

As a second result, we introduce a class of MSO-definable resynchronizations for regular
relations. A resynchronization [15] is a binary relation over Σ∗ × (Γ×N)∗ that preserves the
input and the output (i.e., the fist two components), but can change the origins (i.e., the third
component). Resynchronizations allow to compare transducers under the origin semantics in
a more relaxed way, by allowing distortions of origins. Formally, given two non-deterministic,
two-way transducers T1, T2, and a resynchronization R, we want to compare T1, T2 under
the origin semantics modulo R. Containment of T1 in T2 modulo R means that for each
tagged input/output pair σ′ generated by T1, there should be some tagged input/output
pair σ generated by T2 such that (σ, σ′) ∈ R. In other words, the resynchronization R

describes possible distortions of origin, and we ask whether T1 is contained in R(T2). The
resynchronizations defined here correspond to MSO formulas that describe the change
of origin by mainly considering the input (and to some small extent, the output). The
containment problem under such resynchronizations turns to be undecidable, unless we
enforce some restrictions. It is decidable for those resynchronizations R that use formulas
satisfying a certain (decidable) “boundedness” property. In addition, if R is fixed, then
the containment problem modulo R is solvable in PSpace, thus with the same complexity
as the origin-equivalence problem. This is shown by providing a two-way transducer T ′2
that is equivalent to R(T2) (we say that R(T2) is realizable by a transducer), and then we
check containment of T1 in T ′2 using our first algorithm. We conjecture that our class of
resynchronizations captures the rational resynchronizations of [15], but we leave this for
future work.

Related work and discussion. The origin semantics for transducers has been introduced
in [5], and was shown to enjoy several nice properties, in particular a Myhill-Nerode charac-
terization that can be used to decide the membership problem for subclasses of transductions,
like first-order definable ones. The current state of the art counts quite a number of results
related to the origin semantics of transducers. In [6] a characterization of the class of origin
graphs generated by (functional) streaming transducers is given (the latter models were
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studied in [2, 3]). Decision problems for tree transducers under the origin semantics have been
considered in [16], where it is shown that origin-equivalence of top-down tree transducers is
decidable. Note that top-down transducers correspond on words to one-way transducers, so
the result of [16] is incomparable with ours.

As mentioned before, the idea of resynchronizing origins of word transducers has been
introduced by Filiot et al. in [15] for the case of one-way transducers. Rational resynchronizers
as defined in [15] are one-way transducers R that read sequences of the form u1v1u2v2 · · ·unvn,
where u1 · · ·un represents the input and v1 · · · vn the output, with the origin of vi being the
last letter of ui. It is required that any image of u1v1u2v2 · · ·unvn through R leaves the input
and the output part unchanged, thus only origins change. The definition of resynchronizer
in the one-way case is natural. However, it cannot be extended to two-way transducers,
since there is no word encoding of tagged input-output pairs realized by arbitrary two-way
transducers. Our approach is logic-based: we define MSO resynchronizations that refer to
origin graphs. More precisely, our MSO resynchronizations are formulas that talk about the
input and, to a limited extent, about the tagged output.

Overview. After introducing the basic definitions and notations in Section 2, we present the
main result about the equivalence problem in Section 3. Resynchronizations are considered in
Section 4. A full version of the paper is available at https://arxiv.org/abs/1807.08053.

2 Preliminaries

Given a word w = a1 . . . an, we denote by dom(w) = {1, . . . , n} its domain, and by w(i) its
i-th letter, for any i ∈ dom(w).

Automata. To define two-way automata, and later two-way transducers, it is convenient to
adopt the convention that, for any given input w ∈ Σ∗, w(0) = ` and w(|w|+ 1) = a, where
`,a /∈ Σ are special markers used as delimiters of the input. In this way an automaton can
detect when an endpoint of the input has been reached and avoid moving the head outside.

A two-way automaton (2NFA for short) is a tuple A = (Q,Σ,∆, I, F ), where Σ is the
input alphabet, Q = Q≺ ·∪Q� is the set of states, partitioned into a set Q≺ of left-reading
states and a set Q� of right-reading states, I ⊆ Q� is the set of initial states, F ⊆ Q is the
set of final states, and ∆ ⊆ Q× (Σ] {`,a})×Q×{left, right} is the transition relation. The
partitioning of the set of states is useful for specifying which letter is read from each state:
left-reading states read the letter to the left, whereas right-reading states read the letter to
the right. A transition (q, a, q′, d) ∈ ∆ is leftward (resp. rightward) if d = left (resp. d = right).
Of course, we assume that no leftward transition is possible when reading the left marker `,
and no rightward transition is possible when reading the right marker a. We further restrict
∆ by asking that (q, a, q′, left) ∈ ∆ implies q′ ∈ Q≺, and (q, a, q′, right) ∈ ∆ implies q′ ∈ Q�.

To define runs of 2NFA we need to first introduce the notion of configuration. Given
a 2NFA A and a word w ∈ Σ∗, a configuration of A on w is a pair (q, i), with q ∈ Q and
i ∈ {1, . . . , |w|+ 1}. Such a configuration represents the fact that the automaton is in state
q and its head is between the (i− 1)-th and the i-th letter of w (recall that we are assuming
w(0) = ` and w(|w|+ 1) = a). The transitions that depart from a configuration (q, i) and
read a are denoted (q, i) −a−→ (q′, i′), and must satisfy one of the following conditions:

q ∈ Q�, a = w(i), (q, a, q′, right) ∈ ∆, and i′ = i+ 1,
q ∈ Q�, a = w(i), (q, a, q′, left) ∈ ∆, and i′ = i,
q ∈ Q≺, a = w(i− 1), (q, a, q′, right) ∈ ∆, and i′ = i,
q ∈ Q≺, a = w(i− 1), (q, a, q′, left) ∈ ∆, and i′ = i− 1.
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A configuration (q, i) on w is initial (resp. final) if q ∈ I and i = 1 (resp. q ∈ F and
i = |w|+1). A run of A on w is a sequence ρ = (q1, i1) −b1−→ (q2, i2) −b2−→ · · · −bm−−→ (qm+1, im+1)
of configurations connected by transitions. The figure below depicts an input w = a1a2a3 (in
blue) and a possible run on it (in red), where q0, q1, q2, q6, q7, q8 ∈ Q� and q3, q4, q5 ∈ Q≺,
and 1, 2, 3, 4 are the positions associated with the various configurations.

q0 q1 q2

q3q4q5

q6 q7 q8 q9

a1 a2
a3

a2a1
`

a1 a2 a3

1 2 3 4

` a1 a2 a3 a

A run is successful if it starts with an initial configuration and ends with a final config-
uration. The language of A is the set [[A]] ⊆ Σ∗ of all words on which A has a successful
run.

When A has only right-reading states (i.e. Q≺ = ∅) and rightward transitions, we say
that A is a one-way automaton (NFA for short).

Transducers. Two-way transducers are defined similarly to two-way automata, by introduc-
ing an output alphabet Γ and associating an output from Γ∗ with each transition rule. So a
two-way transducer (2NFT for short) T = (Q,Σ,Γ,∆, I, F ) is basically a 2NFA as above, but
with a transition relation ∆ ⊆ Q× (Σ]{`,a})×Γ∗×Q×{left, right}. A transition is usually
denoted by (q, i) −a|v−−→ (q′, i′), and describes a move of the transducer from configuration
(q, i) to configuration (q′, i′) that reads the input letter a and outputs the word v. The
same restrictions and conventions for two-way automata apply to the transitions of two-way
transducers, and configurations and runs are defined in a similar way.

The output associated with a successful run ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ · · · −bm|vm−−−−→
(qm+1, im+1) is the word v1v2 · · · vm ∈ Γ∗. A two-way transducer T defines a relation
[[T ]] ⊆ Σ∗ × Γ∗ consisting of all the pairs (u, v) such that v is the output of some successful
run ρ of T on u. Throughout the paper, a transducer is non-deterministic and two-way.

Origin semantics. In the origin semantics for transducers [5], the output is tagged with
information about the position of the input where it was produced. If reading the i-th letter of
the input we output v, then all letters of v are tagged with i, and we say they have origin i. We
use the notation (v, i) to denote that all positions in v have origin i. The outputs associated
with a successful run ρ = (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ (q3, i3) · · · −bm|vm−−−−→ (qm+1, im+1) in
the origin semantics are the words of the form ν = (v1, j1)(v2, j2) · · · (vm, jm) over Γ × N,
where, for all 1 ≤ k ≤ m, jk = ik if qk ∈ Q�, and jk = ik − 1 if qk ∈ Q≺. Under the origin
semantics, the relation defined by T , denoted [[T ]]o, is the set of pairs σ = (u, ν) – called
synchronized pairs – such that u ∈ Σ∗ and ν ∈ (Γ × N)∗ is the output of some successful
run on u. Take as example the 2NFA run depicted in the previous figure, and assume
that any transition on a letter a ∈ Σ outputs a, while a transition on a marker ` or a
outputs the empty word ε. The output associated with that run in the origin semantics is
(a1, 1)(a2, 2)(a3, 3)(a2, 2)(a1, 1)(a1, 1)(a2, 2)(a3, 3).

Given two transducers T1, T2, we say they are origin-equivalent if [[T1]]o = [[T2]]o. Note
that two transducers T1, T2 can be equivalent in the classical semantics, i.e. [[T1]] = [[T2]],
while they can have different origin semantics, so [[T1]]o 6= [[T2]]o.
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Regular outputs. The transducers we defined just above consume input letters while
outputting strings of bounded length. In order to perform some crucial constructions later –
notably, to shortcut factors of runs with empty output – we need to slightly generalize the
notion of output associated with a transition, so as to allow producing arbitrarily long words on
reading a single letter. Formally, the transition relation of a transducer with regular outputs is
allowed to be any subset ∆ of Q×(Σ]{`,a})×2Γ∗2Γ∗2Γ∗×Q×{left, right} such that, for all q, q′ ∈ Q,
a ∈ Σ, d ∈ {left, right}, there is at most one language L ⊆ Γ∗ such that (q, a, L, q′, d) ∈ ∆;
moreover, this language L must be non-empty and regular. A transition (q, i) −a|L−−→ (q′, i′)
means that the transducer can move from configuration (q, i) to configuration (q′, i′) while
reading a and outputting any word v ∈ L. Accordingly, the outputs that are associated
with a successful run ρ = (q1, i1) −b1|L1−−−→ (q2, i2) −b2|L2−−−→ (q3, i3) · · · −bn|Lm−−−−→ (qm+1, im+1) in
the origin semantics are the words of the form ν = (v1, j1)(v2, j2) · · · (vm, jm), where vk ∈ Lk
and jk = ik or jk = ik−1 depending on whether qk ∈ Q� or qk ∈ Q≺. We say that two runs
ρ1, ρ2 are origin-equivalent if they have the same sets of associated outputs. Clearly, the
extension with regular outputs is only syntactical, and it preserves the expressiveness of the
class of transducers we consider. In the remaining of the paper, we will tacitly refer to above
notion of transducer.

PSpacePSpacePSpace-constructibility. As usual, we call the size of an automaton or a transducer the
number of its states, input symbols, transitions, plus, if present, the sizes of the NFA
descriptions of the regular output languages associated with each transition rule.

In our complexity analysis, however, we will often need to work with online presentations
of automata and transducers. For example, we may say that an automaton or a transducer
can be computed using a polynomial amount of working space (at thus its size would be at
most exponential) w.r.t. a given input. The terminology introduced below will be extensively
used throughout the paper to describe the computational complexity of an automaton, a
transducer, or a part of it, in terms of a specific parameter.

Given a parameter n ∈ N, we say that an automaton or a transducer has PSpace-
constructible transitions w.r.t. n if its transition relation can be enumerated by an algorithm
that uses working space polynomial in n, and in addition, when the device is a transducer,
every transition has at most polynomial size in n. In particular, if a transducer has PSpace-
constructible transitions, then the size of the NFA representing every output language is
polynomial. Similarly, we say that an automaton is PSpace-constructible w.r.t. n if all its
components, – the alphabets, the state set, the transition relation, etc. – are enumerable by
algorithms that use space polynomial in n.

3 Equivalence of transducers with origins

We focus on the equivalence problem for two-way transducers. In the classical semantics,
this problem is known to be undecidable even if transducers are one-way [18] (called NGSM
in the latter paper). We consider this problem in the origin semantics. We will show that, in
this setting, equivalence becomes decidable, and can even be solved in PSpace – so with no
more cost than equivalence of non-deterministic two-way automata:

I Theorem 1. Containment and equivalence of two-way transducers under the origin se-
mantics is PSpace-complete.

The proof of this result is quite technical. As a preparation, we first show how to check
origin-equivalence for transducers in which all transitions produce non-empty outputs, namely,
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where the transition relation is of the form ∆ ⊆ Q× (Σ ] {`,a})× 2Γ+2Γ+
2Γ+ ×Q× {left, right}.

We call busy any such transducer.

3.1 Origin-equivalence of busy transducers
An important feature of our definition of transducers is that, along any possible run, an input
position is never read twice in a row. In other words, our transducers do not have “stay”
transitions. For a busy transducer, this implies that the origins of outputs of consecutive
transitions are always different. As a consequence, runs of two busy transducers can be only
origin-equivalent if they visit the same sequences of positions of the input and have the same
possible outputs transition-wise. To give the intuition, we note that origin-equivalence of busy
classical transducers, with single output words associated with transitions, can be reduced
to a version of equivalence of 2NFA, where we ask that runs have the same shape. Already
the last condition does not allow to apply the PSpace algorithm for equivalence of 2NFA of
[21], and the naive algorithm would be of exponential time. Some more complications arise
when we assume regular outputs, which will be required when we shall deal with non-busy
transducers. We introduce now the key notions of transition shape and witness procedure.

Let T1, T2 be busy transducers over the same input alphabet, with Ti = (Qi,Σ,Γi,∆i, Ii,

Fi) for i = 1, 2. We say that two transitions t1 ∈ ∆1 and t2 ∈ ∆2, with ti = (qi, ai, q′i, Li, di),
have the same shape if a1 = a2, q1 ∈ Q1,≺ ⇔ q2 ∈ Q2,≺, and q′1 ∈ Q1,≺ ⇔ q′2 ∈ Q2,≺ (and
hence d1 = d2).

We assume that there is a non-deterministic procedure W , called witness procedure, that
does the following. Given a transition t1 = (q1, a1, q

′
1, L1, d1) of T1, W returns a set X ⊆ ∆2

of transitions of T2 satisfying the following property: for some word v ∈ L1, we have

X =
{
t2 = (p2, a2, q2, L2, d2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.

Note that W is non-deterministic: it can return several sets based on the choice of v. If
t1 ∈ ∆1 and X is a set that could be returned by W on t1, we write X ∈ W(t1). However,
if T1 and T2 were classical transducers, specifying a single output word for each transition,
then W could return only one set on t1 ∈ ∆1, that is, the set of transitions of T2 with the
same shape and the same output as t1.

The intuition behind the procedure W is the following. Consider a successful run ρ1 of
T1 on u. Since T1, T2 are both busy, [[T1]]o ⊆ [[T2]]o necessarily means that for all possible
outputs produced by the transitions of ρ1, there is some run ρ2 of T2 on u that has the same
shape as ρ1 and the same outputs, transition-wise. Procedure W will precisely provide, for
each transition t1 of T1 with output language L ⊆ Γ+, and for each choice of v ∈ L, the set
of all transitions of T2 with the same shape as t and that could produce the same output v.

We introduce a last piece of terminology. Given a run ρ1 = t1 . . . tm of T1 of length m
and a sequence ξ = X1, . . . , Xm of subsets of ∆2 (witness sequence), we write ξ ∈ W(ρ1)
whenever Xi ∈ W(ti) for all 1 ≤ i ≤ m. We say that a run ρ2 = t′1 . . . t

′
m of T2 is ξ-compatible

if t′i ∈ Xi for all 1 ≤ i ≤ m. The following result (proved in the appendix) is crucial:

I Proposition 2. Let T1, T2 be two busy transducers over the same input alphabet, and W a
witness procedure. Then [[T1]]o ⊆ [[T2]]o if and only if for every successful run ρ1 of T1, and for
every witness sequence ξ ∈ W(ρ1), there is a successful run ρ2 of T2 which is ξ-compatible.

Next, we reduce the problem [[T1]]o ⊆ [[T2]]o to the emptiness problem of a one-way
automaton (NFA) B. In this reduction, the NFA B can be exponentially larger than T1, T2,
but is PSpace-constructible under suitable assumptions on T1, T2, and W.
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I Lemma 3. Given two busy transducers T1, T2 with input alphabet Σ and a witness procedure
W, one can construct an NFA B that accepts precisely the words u ∈ Σ∗ for which there exist
a successful run ρ1 of T1 on u and a witness sequence ξ ∈ W(ρ1) such that no ξ-compatible
run ρ2 of T2 is successful.

Moreover, if T1, T2 have a total number n of states and PSpace-constructible transitions
w.r.t. n, and W uses space polynomial in n, then B is PSpace-constructible w.r.t. n.

The proof of the lemma (in the appendix) is based on variants of the classical techniques
of subset construction and crossing sequences [20, 21]. Below, we state an immediate
consequence of the previous proposition and lemma:

I Corollary 4. Given two busy transducers T1, T2 with a total number n of states, and given
a witness procedure that uses space polynomial in n, the problem of deciding [[T1]]o ⊆ [[T2]]o is
in PSpace w.r.t. n.

3.2 Origin-equivalence of arbitrary transducers
We now consider transducers that are not necessarily busy. To show that origin-equivalence
remains decidable in PSpace, we will modify the transducers so as to make them busy, and
reduce in this way the origin equivalence problem to the case treated in Section 3.1.

A naive idea would be to modify the transitions that output the empty word ε and make
them output a special letter #. This however would not give a correct reduction towards
origin-equivalence with busy transducers. Indeed, a transducer may produce non-empty
outputs, say v1, v2, . . . , with transitions that occur at the same position, say i, and that are
interleaved by runs traversing other positions of the input but producing only ε. In that
case, we would still need to compare where the words v1, v2, . . . were produced, and see that
they may form a contiguous part of the output with origin i. The above idea is however
useful if we first normalize our transducers in such a way that maximal subruns generating
empty outputs are unidirectional. Paired with the fact that the same input position is never
visited twice on two consecutive transitions, this will give the following characterization:
two arbitrary transducers are origin-equivalent if and only if their normalized versions, with
empty outputs replaced by #, are also origin-equivalent.

For simplicity, we fix a single transducer T = (Q,Σ,Γ,∆, I, F ), which could be thought
of as any of the two transducers T1, T2 that are tested for origin-equivalence. To normalize
T we consider runs that start and end in the same position, and that produce empty output.
Such runs are called lazy U-turns and are formally defined below. We will then abstract lazy
U-turns by pairs of states, called U-pairs for short.

I Definition 5. Given an input word u, a left (resp. right) lazy U-turn at position i of u is
any run of T on u of the form (q1, i1) −b1|v1−−−→ (q2, i2) −b2|v2−−−→ · · · −bm|vm−−−−→ (qm+1, im+1), with
i1 = im+1 = i, ik < i (resp. ik > i) for all 2 ≤ k ≤ m, and vk = ε for all 1 ≤ k ≤ m.

For brevity, we shall often refer to a left/right lazy U-turn without specifying the position i
and the word u, assuming that these are clear from the context.

The pair (q1, qm+1) of states at the extremities of a left/right lazy U-turn is called a
left/right U-pair (at position i of u). We denote by U ý

i (resp. Uý
i ) the set of all left

(resp. right) U-pairs at position i (again, the input u is omitted from the notation as it
usually understood from the context).

Note that we have U ý
i ⊆ Q≺ × Q� and Uý

i ⊆ Q� × Q≺. Accordingly, we define the
word u ýover 2Q≺×Q� that has the same length as u and labels every position i with the
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set U ý
i of left U-pairs. This u ýis seen as an annotation of the original input u, and can be

computed from T = (Q,Σ,Γ,∆, I, F ) and u using the following recursive rule:

qq1

q′1

...
qk

q′k q′

ii− 1

u(i− 1) | ε

u(i− 1) | ε

u(i− 1) | ε

(q, q′) ∈ u ý(i) if and only if q ∈ Q≺ ∧
(
q, u(i− 1), ε, q′, right

)
∈ ∆

or q ∈ Q≺ ∧ ∃ (q1, q
′
1), . . . , (qk, q′k) ∈ u ý(i− 1)

(
q, u(i− 1), ε, q1, left

)
∈ ∆(

q′j , u(i− 1), ε, qj+1, left
)
∈ ∆ ∀1 ≤ j ≤ k(

q′k, u(i− 1), ε, qk, right
)
∈ ∆.

The annotation uý with right U -pairs satisfies a symmetric recursive rule.

Of course, the annotations u ý, uý are over alphabets of exponential size. This does
not raise particular problems concerning the complexity, since we aim at deciding origin-
equivalence in PSpace, and towards this goal we could work with automata and transducers
that have PSpace-constructible transitions. In particular, we can use the recursive rules for
u ýand uý to get the following straightforward lemma (proof omitted):

I Lemma 6. Given a transducer T , one can compute an NFA U that has the same number
of states as T and such that [[U ]] = {u⊗u ý⊗uý : u ∈ Σ∗}, where ⊗ denotes the convolution
of words of the same length. The NFA U is PSpace-constructible w.r.t. the size of T .

To normalize the transducer T it is convenient to assume that the sets of left and right
U-pairs can be read directly from the input (we refer to this as annotated input). For this, we
introduce the transducer TU , that is obtained from T by extending its input alphabet from Σ
to Σ× 2Q≺×Q� × 2Q�×Q≺ , and by modifying the transitions in the obvious way, that is, from
(q, a, L, q′, d) to

(
q, (a, U ý, Uý), L, q′, d

)
for any U ý⊆ Q≺×Q� and Uý ⊆ Q�×Q≺. Note

that TU does not check that the input is correctly annotated, i.e. of the form u⊗ u ý⊗ uý

(this is done by the NFA U). Further note that TU has exponential size w.r.t. T , but its
state space remains the same as T , and its transitions can be enumerated in PSpace.

We are now ready to describe the normalization of TU , which produces an origin-equivalent
transducer Norm(TU ) with no lazy U-turns. The transducer Norm(TU ) is obtained in two steps.
First, using the information provided by the annotation of the input, we shortcut all runs of
TU that consist of multiple transitions outputting at the same position and interleaved by lazy
U-turns. The resulting transducer is denoted Shortcut(TU ). After this step, we will eliminate
the lazy U -turns, thus obtaining Norm(TU ). Formally, Shortcut(TU ) has for transitions the
tuples of the form

(
q, (a, U ý, Uý), L, q′, d

)
, where L is the smallest language that contains

every language of the form L1 · L2 · · ·Lk for which there are q1, q
′
1, . . . , qk, q

′
k and d1, . . . , dk,

with q = q1, q′k = q′ (and hence dk = d), (qi, a, Li, q′i, di) ∈ ∆, and (q′i, qi+1) ∈ U ý∪ Uý for
all i (see the figure below).
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q q′1

q2

...
qk−1q′k−1

qk

q′

a | L ⊇ L1 · · ·Lk

a | L1

a | L2

a | Lk−1

a | Lk

Note that there is no transition
(
q, (a, U ý, Uý), L, q′, d

)
when there are no languages

L1, L2, . . . , Lk as above. The output languages associated with the transitions of Shortcut(TU )
can be constructed using a classical saturation mechanism, which is omitted here, they are
regular, and their NFA representations are polynomial-sized w.r.t. the size of the NFA
representations of the output languages of TU . This implies that Shortcut(TU ) has PSpace-
constructible transitions w.r.t. the number of its states, exactly like TU .

Recall that two runs are origin-equivalent if they produce the same synchronized pairs.
The next lemma shows that, on correctly annotated inputs, Shortcut(TU ) is origin-equivalent
to TU , even when avoiding U-turns. The proof of the lemma is in the appendix.

I Lemma 7. Let w = u ⊗ u ý⊗ uý be an arbitrary input annotated with left and right
U-pairs. Every successful run of TU on w is origin-equivalent to some successful run of
Shortcut(TU ) on w without lazy U-turns. Conversely, every successful run of Shortcut(TU )
on w is origin-equivalent to some successful run of TU on w.

The next step of the normalization consists of restricting the runs of Shortcut(TU ) so as to
avoid any lazy U-turn. This is done by simply forbidding the shortest possible lazy U-turns,
namely, the transitions that output ε and that remain on the same input position. On the
one hand, since every lazy U-turn contains a transition of the previous form, forbidding this
type of transitions results in forbidding arbitrary lazy U-turns. On the other hand, thanks
to Lemma 7, this will not affect the semantics of Shortcut(TU ). Formally, we construct from
Shortcut(TU ) a new transducer Norm(TU ) by replacing every transition rule (q, a, L, q′, d)
with (q, a, L′, q′, d), where L′ is either L or L\{ε}, depending on whether q ∈ Q≺ ⇔ q′ ∈ Q≺
or not. We observe that Norm(TU ) has the same set of states as the original transducer T ,
and PSpace-constructible transitions w.r.t. the size of T . The proof of the following result
is straightforward and thus omitted.

I Lemma 8. TU and Norm(TU ) are origin-equivalent when restricted to correctly annotated
inputs, i.e.: [[TU ]]o ∩R = [[Norm(TU )]]o ∩R, where R = [[U ]]× (Γ× N)∗.

We finally come to the last step of the reduction. This amounts to consider two normalized
transducers Norm(T1,U ) and Norm(T2,U ) that read inputs annotated with the left/right U-
pairs of both T1 and T2, and replacing, in their transitions, the empty output by a special letter
# /∈ Γ. Formally, in the transition relation of Norm(Ti,U ), for i = 1, 2, we replace every tuple
(q, a, L, q′, d), where q is left-reading iff q′ is left-reading, with the tuple (q, a, L′, q′, d), where
L′ is either (L\{ε})∪{#} or L, depending on whether ε ∈ L or not. The transducer obtained
in this way is busy, and is thus called Busy(Ti,U ). Moreover, the states of Busy(Ti,U ) are the
same as those of Ti, and its transitions are PSpace-constructible. The proposition below
follows immediately from the previous arguments, and reduces origin-containment between
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T1 and T2 to an origin-containment between Busy(T1,U ) and Busy(T2,U ), but relativized to
correctly annotated inputs.

I Proposition 9. Given two transducers T1 and T2,

[[T1]]o ⊆ [[T2]]o if and only if [[Busy(T1,U )]]o ∩ R ⊆ [[Busy(T2,U )]]o ∩ R.

where R = [[U ′]]× (Γ×N)∗ and U ′ is an NFA that recognizes inputs annotated with left/right
U-pairs of both T1 and T2.

It remains to show that, given the transducers T1, T2, there is a PSpace witness procedure
for Busy(T1,U ),Busy(T2,U ):

I Proposition 10. Let T1, T2 be transducers with a total number n of states, and Busy(Ti,U ) =
(Qi, Σ̂,Γ,∆i, Ii, Fi) for i = 1, 2 (the input alphabet Σ̂ is the same as for U ′). There is a
non-deterministic procedure W that works in polynomial space in n and returns on a given
transition t1 = (q1, a1, q

′
1, L1, d1) of Busy(T1,U ) any set X ⊆ ∆2 of transitions of Busy(T2,U )

such that for some v ∈ L1:

X =
{
t2 = (p2, a2, q2, L2, d2) ∈ ∆2 : v ∈ L2, and t2 has same shape as t1

}
.

We can now conclude with the proof of our main result, which we recall here:

I Theorem 1. Containment and equivalence of two-way transducers under the origin se-
mantics is PSpace-complete.

Proof. The lower bound follows from a straightforward reduction from the classical equiv-
alence problem of NFA. For the upper bound, in view of Proposition 9, we can consider
origin containment between the transducers Busy(T1,U ) and Busy(T2,U ), obtained from T1
and T2, respectively. We recall that Busy(Ti,U ) has at most ni = |Ti| states and PSpace-
constructible transitions w.r.t. ni, for i = 1, 2. We then apply Proposition 2 and Lemma
3 to reduce the containment problem to an emptiness problem for the intersection of two
PSpace-constructible NFA, i.e. B and U ′. We observe that U ′ is basically the product of
two NFA obtained from Lemma 6 by letting T = Ti, once for i = 1 and once for i = 2.
Finally, we use the same arguments as in the proof of Corollary 4 to conclude that the latter
emptiness problem is decidable in PSpace w.r.t. n = n1 + n2. J

4 Containment modulo resynchronization

In this section we aim at generalizing the equivalence and containment problems for trans-
ducers with origins. The goal is to compare the origin semantics of any two transducers up
to “distortions”, that is, differences in the origin tagging each position of the output.

Recall that [[T ]]o is the set of synchronized pairs σ = (u, ν), where u ∈ Σ∗ is a possible
input for the transducer T and ν ∈ (Γ× N)∗ is an output (tagged with origins) produced
by a successful run of T on u. Given a pair σ = (u, ν) ∈ [[T ]]o, we denote by in(σ), out(σ),
and orig(σ) respectively the input word u, the output word obtained by projecting ν onto
the finite alphabet Γ, and the sequence of input positions obtained by projecting ν onto N.
This notation is particularly convenient for describing resynchronizations, that is, relations
between synchronized pairs. Following prior terminology from [15], we call resynchronization
any relation R between synchronized pairs that preserves input and output words, but can
modify the origins, namely, such that (σ, σ′) ∈ R implies in(σ) = in(σ′) and out(σ) = out(σ′).



S. Bose, A. Muscholl, V. Penelle, and G. Puppis 22:11

The containment problem modulo a resynchronization R [15] is the problem of deciding,
given two transducers T1, T2, if for every σ′ ∈ [[T1]]o, there is σ ∈ [[T2]]o such that (σ, σ′) ∈ R,
or in other words if every synchronized pair of T1 can be seen as a distortion of a synchronized
pair of T2. In this case we write for short T1 ⊆R T2. We remark that, despite the name
“containment” and the notation, the relation ⊆R is not necessarily transitive, in the sense
that it may happen that T1 ⊆R T2 and T2 ⊆R T3, but T1 6⊆R T3.

We propose a class of resynchronizations that can be described in monadic second-
order logic (MSO). The spirit is that, as synchronized pairs are (special) graphs, graph
transformations à la Courcelle and Engelfriet [8] are an adequate tool to define resynchronizers.
However, we cannot directly use MSO logic over origin graphs, since this would result in
an undecidable containment problem. Our MSO resynchronizers will be able to talk about
(regular) properties of the input word and the output word, and say how origins are distorted.
We will show that containment modulo MSO resynchronizations is decidable, assuming a
(decidable) restriction on the change of origins.

I Definition 11. An MSO resynchronizer R is a tuple (α, β, γ, δ), where
α(I) is an MSO formula over the signature of the input word, and has some free monadic
variables I = (I1, . . . , Im), called input parameters,
β(O) is an MSO formula over the signature of the output word, and has some free monadic
variables O = (O1, . . . , On), called output parameters,
γ is a function that maps any element τ ∈ Γ× Bn, with B = {0, 1}, to an MSO formula
γ(τ)(I, y, z) over the input signature that has a tuple of free monadic variables I (input
parameters) and two free first-order variables y, z (called source and target, respectively),
δ is a function that maps any pair of elements τ, τ ′ ∈ Γ × Bn, with B = {0, 1}, to an
MSO formula δ(τ, τ ′)(I, z, z′) over the input signature that has a tuple of free monadic
variables I (input parameters) and two free first-order variables z, z′ (called targets).

The input and output parameters I, O that appear in the formulas of an MSO resynchronizer
play the same role as the parameters of an NMSO-transduction [14]. They allow to express
regular properties of the input and output word, respectively, through the first two formulas,
α(I) and β(O). The other two formulas are used to describe how the origin function is
transformed. They depend on the input and output parameters, in particular, on the “type”
of the positions of the output word, as defined next.

Given an output word v = out(σ) and an interpretation O = O1, . . . , On ⊆ dom(v)
for the output parameters, let us call output-type of a position x ∈ dom(v) the element
τ = (v(x), b1, . . . , bn) ∈ Γ× Bn, where each bi is either 1 or 0 depending on whether x ∈ Oi
or not. Based on the output-type τ of x, the formula γ(τ)(I, y, z) describes how the origin of
x is redirected from a source y to a target z in the input word. Similarly, δ(τ, τ ′)(I, z, z′)
constraints the origins z, z′ of two consecutive output positions x, x + 1, based on their
output-types τ and τ ′. This is formalized below.

I Definition 12. An MSO resynchronizer R = (α, β, γ, δ) induces the resynchronization
[[R]] defined by (σ, σ′) ∈ [[R]] if and only if in(σ) = in(σ′), out(σ) = out(σ′), and there are
I = I1, . . . , Im ⊆ dom(in(σ)) and O = O1, . . . , On ⊆ dom(out(σ)) such that:

(in(σ), I) � α (or equally, (in(σ′), I) � α),
(out(σ), O) � β (or equally, (out(σ′), O) � β),
for all x ∈ dom(out(σ)) with output-type τ , if orig(σ)(x) = y and orig(σ′)(x) = z, then
(in(σ), I, y, z) � γ(τ),
for all pairs of consecutive positions x and x+ 1 in out(σ) with output-types τ and τ ′,
respectively, if orig(σ′)(x) = z and orig(σ′)(x+ 1) = z′, then (in(σ), I, z, z′) � δ(τ, τ ′).
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I Example 13. We provide a few examples of MSO resynchronizers:
1. The most unconstrained resynchronization, called universal resynchronization, groups

any two synchronized pairs with the same input and output strings. This is readily
defined by an MSO resynchronizer Runiv = (α, β, γ, δ) without parameters, where α =
β = γ(τ)(y, z) = δ(τ, τ ′)(z, z′) = true for all τ, τ ′ ∈ Γ.

2. Consider a resynchronization that displaces the origin in a synchronized pair by one
position to the left or to the right. An instance of this resynchronization is shown
below, where solid arrows represent origins in the initial synchronized pair, and dashed
arrows represent origins in the modified synchronized pair. This transformation can be
defined by a parameterless MSO resynchronizer R±1 = (α, β, γ, δ), where α = β = true,
γ(τ)(y, z) = (z = y − 1) ∨ (z = y + 1), and δ(τ, τ ′)(z, z′) = true for all τ, τ ′ ∈ Γ. Note
that the reflexive and transitive closure of [[R±1]] gives the universal resynchronization
[[Runiv]].

i n p u t

o u t p u t

3. We give a variant of the previous resynchronizer R±1, where the direction of movement of
the origin is controlled by a property of the output position, e.g. the parity of the number
of b’s that precede that position in the output. We see an instance of the resynchronization
below (as usual, solid and dashed arrows represent initial and modified origins). The
transformation can be defined by an MSO resynchronizer with a single output parameter
O that encodes the parity condition (an interpretation of O is shown in the figure as an
annotation of the output over B = {0, 1}).

i n p u t

a b a a a b
O : 0 0 1 1 1 1

Formally, we let R′±1 = (α, β, γ, δ), where α = true, β(O) = ∀x
(
b(x) → (x ∈ O ↔

x + 1 6∈ O)
)
∧
(
¬b(x) → (x ∈ O ↔ x + 1 ∈ O)

)
∧ (x = first → x ∈ O)), and γ and δ

are defined on the basis of the output-types τ, τ ′ ∈ Γ× B, as follows: γ(τ)(y, z) enforces
either z = y + 1 or z = y − 1 depending on whether τ ∈ Γ × {0} or τ ∈ Γ × {1}, and
δ(τ, τ ′)(z, z′) = true.

4. Let us now consider a resynchronization that does not modify the origins, but only
constrain them so as to obtain a “regular” subset of synchronization pairs. Here the
allowed synchronization pairs are those that correspond to the process of applying a
rational substitution f : Σ → 2Γ∗ to an input over Σ. The figure below describes a
possible synchronized pair for f defined by f(a) = c∗d and f(b) = ε.

a b b a b a

c d c c d d
Oa,(q,c,q) : 1 0 1 1 0 0

Oa,(q,d,q′) : 0 1 0 0 1 1
Ofirst : 1 0 0 0 0 0
Olast : 0 0 0 0 0 1
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Below, we show how to define such a resynchronization for an arbitrary rational substitu-
tion f . We fix, for each letter a ∈ Σ, an NFA Aa that recognizes the regular language
f(a). We then define an MSO resynchronizer Rf that uses one output parameter Oa,t for
every letter a ∈ Σ and every transition t of Aa, plus two additional output parameters
Ofirst and Olast . By a slight abuse of notation, given the output-type τ of a position x,
we write τ [a, t] = 1 whenever x ∈ Oa,t, and similarly for τ [first] and τ [last]. The first
formula α of the resynchronizer holds vacuously, as we have no restriction on the input.
The second formula β requires that the parameters Oa,t form a partition of the output
domain in such a way that if a position x is labeled by a letter c ∈ Γ and x ∈ Oa,t,
then t is a c-labeled transition of Aa. In addition, β requires that the parameters Ofirst
and Olast are singletons consisting of the first and the last output position, respectively.
The third component γ of the resynchronizer is defined by γ(τ)(y, z) = a(y) ∧ (y = z)
whenever τ [a, t] = 1 (the origin is not modified, and the transition annotating the output
position must belong to the correct NFA). The last component δ restricts further the
parameters and the origins for consecutive output positions, so as to simulate successful
runs of the NFA. Formally, δ(τ, τ ′)(z, z′) enforces the following constraints:

if τ [a, t] = 1, τ ′[a, t′] = 1, and z = z′, then the target state of t coincide with the
source state of t′, namely, tt′ forms a factor of a run of Aa,
if τ [a, t] = 1, τ ′[a′, t′] = 1, and z < z′, then the target state of t must be final, the
source state of t′ must be initial, and every input letter strictly between z and z′ is
mapped via f to a language that contains ε,
if τ [first] = 1 and τ [a, t], then the source state of t must be initial, and every input
letter strictly before z is mapped via f to a language that contains ε,
if τ ′[last] = 1 and τ ′[a, t], then the target state of t must be final, and every input
letter strictly after z′ is mapped via f to a language that contains ε.

5. We conclude the list of examples with a resynchronization that moves the origin of an
arbitrarily long output over an arbitrarily long distance. This resynchronization contains
the pairs (σ, σ′), where σ (resp. σ′) maps every output position to the first (resp. last)
input position, as shown in the figure.

i n p u t

o u t p u t

This is defined by the MSO resynchronizer R1st−to−last = (α, β, γ, δ), where α = β =
δ(τ, τ ′)(z, z′) = true and γ(τ)(y, z) = (y = first) ∧ (z = last), for all τ, τ ′ ∈ Γ. Note that
the resynchronization [[R1st−to−last ]] is also “one-way”, in the sense that it contains only
synchronized pairs that are admissible outcomes of runs of one-way transducers. However,
[[R1st−to−last ]] is not captured by the formalism of one-way rational resynchronizers from
[15].

Recall the Example 13.1 above, which defines the universal resynchronization [[Runiv]]. The
containment problem modulo [[Runiv]] boils down to testing classical containment between
transducers without origins, which is known to be undecidable [18]. Based on this, it is
clear that in order to compare effectively transducers modulo resynchronizations, we need to
restrict further our notion of MSO resynchronizer. Intuitively, what makes the containment
problem modulo resynchronization undecidable is the possibility of redirecting many sources
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to the same target. This possibility is explicitly forbidden in the definition below. Also
observe that, since [[Runiv]] is the reflexive and transitive closure of [[R±1]], we cannot take
our resynchronizations to be equivalence relations.

I Definition 14. An MSO resynchronizer (α, β, γ, δ) is k-bounded if for all inputs u, parame-
ters I = I1, . . . , Im ⊆ dom(u), output-types τ ∈ Γ×Bn, and targets z ∈ dom(u), there are at
most k distinct sources y1, . . . , yk ∈ dom(u) such that (u, I, yi, z) � γ(τ) for all i = 1, . . . , k.
An MSO resynchronizer is bounded if it is k-bounded for some k.

Note that all resynchronizers from Example 13 but Runiv are bounded. For instance,
R1st−to−last is 1-bounded and R±1 is 2-bounded.

It is also easy to decide the boundedness property of an MSO resynchronizer by reducing
it to a problem of finite-ambiguity for finite automata [22]:

I Proposition 15. t is decidable to know whether a given MSO resynchronizer is bounded.

The goal is to reduce the problem of containment modulo a bounded MSO resynchronizer
to a standard containment problem in the origin semantics. For this, the natural approach
would be to show that transducers are effectively closed under bounded MSO resynchro-
nizers. However, this closure property cannot be proven in full generality, because of the
(input) parameters that occur in the definition of resynchronizers. More precisely, two-way
transducers cannot guess parameters in a consistent way (different guesses could be made
at different visits of the same input position). We could show the closure if we adopted a
slightly more powerful notion of transducer, with so-called common guess [6]. Here we prefer
to work with classical two-way transducers and explicitly deal with the parameters. Despite
the different terminology, the principle is the same: parameters are guessed beforehand and
accessed by the two-way transducer as explicit annotations of the input. Given a transducer
T over an expanded input alphabet Σ× Σ′ and an NFA A over Σ× Σ′, we let

[[T ]]o�
A
Σ =

{
(u, ν) ∈ Σ∗ × (Γ× N)∗ : ∃ u′ ∈ Σ′|u| u⊗ u′ ∈ [[A]], (u⊗ u′, ν) ∈ [[T ]]o

}
.

In other words, [[T ]]o�AΣ is obtained from [[T ]]o by restricting the inputs of T via A, and then
projecting them on Σ.

The following result is the key to reduce containment modulo bounded MSO resynchro-
nizers to containment in the origin semantics.

I Theorem 16. Given a bounded MSO resynchronizer R with m input parameters, a
transducer T with input alphabet Σ× Σ′ and an NFA A over Σ× Σ′, one can construct a
transducer T ′ with input alphabet Σ× Σ′ × Bm and an NFA A′ over Σ× Σ′ × Bm such that

[[T ′]]o�
A′
Σ =

{
σ′ : (σ, σ′) ∈ [[R]] for some σ ∈ [[T ]]o�

A
Σ
}
.

Moreover, if R is fixed, T has n states and PSpace-constructible transitions w.r.t. n, and A
is PSpace-constructible w.r.t. n, then T ′ and A′ have similar properties, namely, T ′ has a
number of states polynomial in n and PSpace-constructible transitions w.r.t. n, and A′ is
PSpace-constructible w.r.t. n.

Proof. To prove the claim, it is convenient to assume that R has no input nor output
parameters. If this were not the case, we could modify T in such a way that it reads inputs
over Σ×Σ′×Bm, exposing a valuation of the parameters I, and produces outputs over Γ×Bn,
exposing a valuation O. We could then apply the constructions that follow, and finally
modify the resulting transducer T ′ by projecting away the input and output annotations.
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We observe that the projection operation on the output is easier and can be implemented
directly at the level of the transitions of T ′, while the projection of the input requires the
use of the notation [[T ′]]o�A

′

Σ , for the reasons that we discussed earlier. In both cases the
complexity bounds are preserved.

Let R = (α, β, γ, δ) a bounded MSO resynchronizer with no input/output parameters.
Since there are no existentially quantified parameters, [[R]] can be seen as the relational
composition of four different resynchronizations, as induced by the formulas of R. For-
mally, we have [[R]] = [[Rα]] ◦ [[Rβ ]] ◦ [[Rγ ]] ◦ [[Rδ]], where Rα = (α, true, γid , δtrue), Rβ =
(true, β, γid , δtrue), Rγ = (true, true, γ, δtrue), Rδ = (true, true, γid , δ), γid(τ)(y, z) = (y = z)
and δtrue(τ, τ ′)(z, z′) = true for all output-types τ, τ ′ ∈ Γ. This means that, to prove the
claim, it suffices to consider only one resynchronizer at a time among Rα, Rβ , Rγ , Rδ. The
case of Rα, Rβ is quite straightforward, since it amounts to intersect the input and output
with the regular language of α and β, respectively.

We now consider the most interesting case, that of Rγ = (true, true, γ, δtrue), which
modifies the origins. The case of δ is similar and can be found in the full version. The
rough idea here is that T ′ has to simulate an arbitrary run of T , by displacing the origins
of any output letter with type τ from a source y to a target z, as indicated by the formula
γ(τ)(x, y). Since a factor of an output of T that originates at the same input position can be
broken up into multiple sub-factors with origins at different positions, here it is convenient
to assume that T outputs at most a single letter at each transition. This assumption can be
made without loss of generality, since we can reproduce any longer word v that is output by
some transition (q, i) −a|L−−→ (q′, i′) letter by letter, with several transitions that move back
and forth around position i.

The idea of the construction is as follows. Whenever T outputs a letter b with origin
in y, T ′ non-deterministically moves to some position z that, together with y, satisfies the
formula γ(b) (note that b is also the output-type of the produced letter). Then T ′ produces
the same output b as T , but at position z. Finally, it moves back to the original position y.
For the latter step, we will exploit the fact that R is bounded.

Now, for the details, we construct from γ a finite monoid (M, ·), a monoid morphism
h : (Σ×Σ′×B×B)∗ →M , and some subsets Fτ ofMτ , for each output-type τ ∈ Γ, such that
(u, x, y) � γ(τ) if and only if h(ux,y) ∈ Fτ , where ux,y is the encoding on u of the positions x
and y, namely, ux,y(i) =

(
(u(i), bi=x, bi=y)

)
for all 1 ≤ i ≤ |u|, and bi=x (resp. bi=y) is either

1 or 0 depending on whether i = x (resp. i = y) or not. Similarly, we denote by u∅,∅ the
encoding on u of two empty monadic predicates. For all 1 ≤ i ≤ j ≤ |u|, we then define
`i = h(u∅,∅[1, i− 1]), rj = h(u∅,∅[j + 1, |u|]), and mi,j = h(ui,j [i, j]). We observe that

(u, y, z) � γ(τ) iff
{
`y ·my,z · rz ∈ Fτ if y ≤ z
`z ·mz,y · ry ∈ Fτ if y > z.

The elements `i and ri associated with each position i of the input u are functionally
determined by u. In particular the word `1 . . . `|u| (resp. r1 . . . r|u|) can be seen as the run of
a deterministic (resp. co-deterministic) automaton on u. Without loss of generality, we can
assume that the values `i and ri are readily available as annotations of the input at position
i, and checked by means of a suitable refinement A′ of the NFA A.

We now describe how T ′ simulates a transition of T , say q −a|b−−→ q′, that originates at
a position y and produces the letter b (the simulation of a transition with empty output
is straightforward). The transducer T ′ stores in its control state the transition rule to be
simulated and the monoid element `y associated with the current position y (the source). It
then guesses whether the displaced origin z (i.e. the target) is to the left or to the right of y.
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We only consider the case where z ≥ y (the case z < y is symmetric). In this case T ′ starts
moving to the right, until it reaches some position z ≥ y such that (u, y, z) � γ(b) (as we
explained earlier, this condition is equivalent to checking that `y ·my,z · rz ∈ Fb). Once a
target z is reached, T ′ produces the same output b as the original transition, and begins a
new phase for backtracking to the source y. During this phase, the transducer will maintain
the previous monoid elements `y, my,z, and, while moving leftward, compute mz′,z for all
z′ ≤ z. We claim that there is a unique z′ such that `z′ = `y and mz′,z = my,z, and hence
such z′ must coincide with the source y. Indeed, if this were not the case, we could pump
the factor of the input between the correct source y and some z′ 6= y, showing that the MSO
resynchronizer Rγ is not bounded. Based on this, the transducer T ′ can move back to the
correct source y, from which it can then simulate the change of control state from q to q′
and move to the appropriate next position. Any run of T ′ that simulates a run of T on
input u, as described above, results in producing the same output v as T , but with the origin
mapping modified from i 7→ yi to i 7→ zi, for all 1 ≤ i ≤ |v| and for some 1 ≤ yi, zi ≤ |u| such
that (u, yi, zi) � γ(v(i)). In other words, we have [[T ′]]o = {σ′ : (σ, σ′) ∈ [[R]], σ ∈ [[T ]]o}.

With the above constructions, if R is fixed and if T has n states and PSpace-constructible
transitions w.r.t. n, then similarly T ′ has a number of states polynomial in n and PSpace-
constructible transitions w.r.t. n. Finally, a PSpace-constructible NFA A′ can be obtained
from a direct product of the NFA A, U , and a suitable NFA for checking inputs annotated
with the monoids elements `z, rz. J

The above result is used to reduce the containment problem modulo a bounded MSO
resynchronizer R to a containment problem with origins (relativized to correctly annotated
inputs). That is, if T1, T2 are transducers with input alphabet Σ, and T ′2 ,A′ are over the
input alphabet Σ× Σ′ and constructed from T2 using Theorem 16, then

T1 ⊆R T2 iff [[T1]]o ⊆ [[T ′2 ]]o�
A′
Σ iff [[T1]]o�

Σ×Σ′ ∩ R′ ⊆ [[T ′2 ]]o ∩ R′

where R′ = [[A′]] × (Γ × N)∗ and �Σ′ is the inverse of the input-projection operation,
i.e. [[T ]]o�Σ×Σ′ =

{
(u ⊗ u′, ν) ∈ (Σ × Σ′)∗ × (Γ × N)∗ : u ⊗ u′ ∈ [[A]], (u, ν) ∈ [[T ]]o

}
.

We also recall from Section 3 that the latter containment reduces to emptiness of a PSpace-
constructible NFA, which can then be decided in PSpace w.r.t. the sizes of T1 and T2. We
thus conclude with the following result:

I Corollary 17. The problem of deciding whether T1 ⊆R T2, for any pair of transducers
T1, T2 and for a fixed bounded MSO resynchronizer R, is PSpace-complete.

5 Conclusions

We studied the equivalence and containment problems for non-deterministic, two-way word
transducers in the origin semantics, and proved that the problems are decidable in PSpace,
which is the lowest complexity one could expect given that equivalence and containment of
NFA are already PSpace-hard. This result can be contrasted with the undecidability of
equivalence of non-deterministic, one-way word transducers in the classical semantics.

We have also considered a variant of containment up to “distortions” of the origin,
called containment modulo a resynchronization R, and denoted ⊆R. We identified a broad
class of resynchronizations, definable in MSO, and established decidability of the induced
containment problem. In fact, we obtained an optimal fixed-parameter complexity result:
testing a containment T1 ⊆R T2 modulo a bounded MSO resynchronization R is PSpace-
complete in the size of the input transducers T1, T2, where the fixed parameter is the size of
the formulas used to describe R.
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Our logical definition of resynchronizations talks implicitly about origin graphs. Since
we cannot encode the origin semantics of arbitrary two-way transducers by words, we have
chosen to work directly with origin graphs defined by two-way transducers. A classical way
to define resynchronizations of origin graphs would be to use logical formalisms for graph
transformations. Unfortunately, the classical MSO approach [7, 13] does not work in our
setting, since satisfiability of MSO over origin graphs of two-way transducers is already
undecidable, which means that the definable resynchronizations would not be realizable by
two-way transducers.

Another possibility would be to use a decidable logic over origin graphs, like the one
introduced by Filiot et al. in [10]. Their logic is not suited either for our purposes, since it
allows predicates of arbitrary arity defined using MSO over the input word. The reason is
that single head devices would not be able to move between the tuples of positions related
by those definable predicates, and thus, in particular, we would not be able to guarantee
that the definable resynchronizations are realizable by two-way transducers.

Yet an alternative approach to the above problem consists in viewing tagged outputs as
data words, and using transducers to transform data words. Durand-Gasselin and Habermehl
introduced in [11] a framework for transformations of data words. However, this approach
would be unsatisfactory, because the transformation does not take the input into account.

We conjecture that the bounded MSO resynchronizers defined here strictly capture the
rational resynchronizers introduced in [15]. In particular, although MSO resynchronizers
do not have the ability to talk about general origin graphs, they presumably can describe
“regular” origin graphs of one-way transducers, i.e., graphs expressed by regular languages
over sequences that alternate between the input and the output word. We also recall that the
MSO resynchronizer R1st−to−last from Example 13.5 contains only origin graphs of one-way
transducers, but cannot be defined by a rational resynchronizer.

Another natural question that we would like to answer concerns compositionality: are
bounded MSO resynchronizers closed under relational composition? In other words, given
two bounded MSO resynchronizers R,R′, is it possible to find (possibly effectively) a bounded
MSO resynchronizer R′′ such that [[R′′]] = [[R]] ◦ [[R′]]?
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Abstract
In this paper, we give the first constant factor approximation algorithm for capacitated knapsack
median problem (CKnM) for hard uniform capacities, violating the budget by a factor of 1 + ε

and capacities by a 2 + ε factor. To the best of our knowledge, no constant factor approximation
is known for the problem even with capacity/budget/both violations. Even for the uncapacitated
variant of the problem, the natural LP is known to have an unbounded integrality gap even after
adding the covering inequalities to strengthen the LP. Our techniques for CKnM provide two
types of results for the capacitated k-facility location problem. We present an O(1/ε2) factor
approximation for the problem, violating capacities by (2+ ε). Another result is an O(1/ε) factor
approximation, violating the capacities by a factor of at most (1+ε) using at most 2k facilities for
a fixed ε > 0. As a by-product, a constant factor approximation algorithm for capacitated facility
location problem with uniform capacities is presented, violating the capacities by (1 + ε) factor.
Though constant factor results are known for the problem without violating the capacities, the
result is interesting as it is obtained by rounding the solution to the natural LP, which is known
to have an unbounded integrality gap without violating the capacities. Thus, we achieve the best
possible from the natural LP for the problem. The result shows that the natural LP is not too
bad.
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1 Introduction

Facility location and k-median problems are well studied in the literature. In this paper,
we study some of their generalizations. In particular, we study capacitated variants of the
knapsack median problem (KnM) and the k facility location problem (kFLP). Knapsack
median problem is a generalization of the k-median problem, in which we are given a set C
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of clients with demands, a set F of facility locations and a budget B. Setting up a facility
at location i incurs cost fi (called the facility opening cost or simply the facility cost ) and
servicing a client j by a facility i incurs cost c(i, j) (called the service cost). We assume that
the costs are metric i.e., they satisfy the triangle inequality. The goal is to select the locations
to install facilities, so that the total cost for setting up the facilities does not exceed B and
the cost of servicing all the clients by the opened facilities is minimized. When fi = 1 ∀i ∈ F
and B = k, it reduces to the k-median problem. In the capacitated version of the problem,
we are also given a bound ui on the maximum number of clients that facility i can serve.
Given a set of open facilities, an assignment problem is solved to determine the best way of
servicing the clients. Thus any solution is completely determined by the set of open facilities.
In this paper, we address the capacitated knapsack median (CKnM) problem with uniform
capacities i.e., ui = u ∀i ∈ F and clients with unit demands. In particular, we present the
following result:

I Theorem 1. There is a polynomial time algorithm that approximates hard uniform capa-
citated knapsack median problem within a constant factor violating the capacity by a factor
of at most (2 + ε) and budget by a factor of at most (1 + ε), for every fixed ε > 0.

Our result is nearly the best achievable from rounding the natural LP: we cannot expect
to get rid of the violation in the budget as it would imply a constant factor integrality gap
for the uncapacitated case which is known to have an unbounded integrality gap. Even with
budget violation, capacity violation cannot be reduced to below 2 as it would imply less than
2 factor capacity violation for k-median problem with k+ 1 facilities. The natural LP has an
unbounded integrality gap for this scenario as well1 2.

The k-facility location problem (kFLP) is a common generalization of the facility location
problem and the k-median problem. In kFLP, we are given a bound k on the maximum
number of facilities that can be opened (instead of a budget on the total facility opening cost)
and the objective is to minimize the total of facility opening cost and the cost of servicing
the clients by the opened facilities. In particular we present the following two results:

I Theorem 2. There is a polynomial time algorithm that approximates hard uniform capa-
citated k-facility location problem within a constant factor (O(1/ε2)) violating the capacities
by a factor of at most (2 + ε) for every fixed ε > 0.

I Theorem 3. There is a polynomial time algorithm that approximates hard uniform
capacitated k-facility location problem within a constant factor (O(1/ε)) violating the capacity
by a factor of at most (1 + ε) using at most 2k facilities for every fixed ε > 0.

As a particular case of CkFLP, we obtain the following interesting result for the capacitated
facility location problem (CFLP):

1 Let M be a large integer, ui = M and k = 2M − 2. There are M groups of locations; distance between
locations within a group is 0 and distance between locations in two different groups is 1. Each group has
2M − 2 facilities and 2M − 2 clients, all co-located. In an optimal LP solution each facility is opened to
an extent of 1/M thereby creating a capacity of 2M − 2 within each group. In an integer solution, if at
most k + 1 = 2M − 1 facilities are allowed to be opened then there is at least one group with only one
facility opened in it. Thus capacity in the group is M whereas the demand is 2M − 2. Thus the blowup
in capacity is (2M − 2)/M .

2 We thank Moses Charikar for providing the above example where violation in one of the parameters is
less than 2 factor and no violation in the other. The example was subsequently modified by us to allow
k + 1 facilities.
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I Corollary 4. There is a polynomial time algorithm that approximates hard uniform capa-
citated facility location problem within a constant factor (O(1/ε)) violating the capacity by a
factor of at most (1 + ε) for every fixed ε > 0.

The standard LP is known to have an unbounded integrality gap for CFLP even with
uniform capacities. Though constant factor results are known for the problem without
violating the capacities [2, 4], our result is interesting as it is obtained by rounding the
solution to the natural LP. Our result shows that the natural LP is not too bad.

1.1 Motivation and Challenges
The natural LP for KnM is known to have an unbounded integrality gap [10] even for
the uncapacitated case. Obtaining a constant factor approximation for the (capacitated)
k-median (CkM) problem is still open, let alone the CKnM problem. Existing solutions
giving constant-factor approximation for CkM violate at least one of the two (cardinality
and capacity) constraints. Natural LP is known to have an unbounded integrality gap when
any one of the two constraints is allowed to be violated by a factor of less than 2 without
violating the other.

Several results [9, 11, 6, 21, 16, 1] have been obtained for CkM that violate either the
capacities or the cardinality by a factor of 2 or more. The techniques used for CkM cannot
be used for CKnM as they work by transferring the opening from one facility to another
(ensuring bounded service cost) facility thereby maintaining the cardinality within claimed
bounds. This works well when there are no facility opening costs or the (facility opening)
costs are uniform. For the general opening costs, this is a challenge as a facility, good for
bounded service cost, may lead to budget violation. To the best of our knowledge, capacitated
knapsack median problem has not been addressed earlier.

CkFLP is NP-hard even when there is only one client and there are no facility costs [1].
The hardness results for CkM hold for CkFLP as well. On the other hand, standard LP
for capacitated facility location problem (CFLP) has an unbounded integrality gap, thereby
implying that constant integrality ratio can not be obtained for CkFLP without violating
the capacities even if k = n. Byrka et al. [6] gave an O(1/ε2) algorithm for CkFLP when
the capacities are uniform (UCkFLP) violating the capacities by a factor of 2 + ε. They use
randomized rounding to bound the expected cost. It can be shown that deterministic pipage
rounding cannot be used here. The strength of our techniques is demonstrated in obtaining
the first deterministic constant factor approximation with the same capacity violation. The
primary source of inspiration for our result in Theorem 3 comes from its corollary.

1.2 Related Work
Capacitated k-median problem has been studied extensively in the literature. For the case of
uniform capacities, several results [6, 9, 11, 21, 16] have been obtained that violate either
the capacities or the cardinality by a factor of 2 or more. In case of non-uniform capacities,
a (7 + ε) algorithm was given by Aardal et al. [1] violating the cardinality constraint by a
factor of 2 as a special case of Capacitated k-FLP when the facility costs are all zero. Byrka
et al. [6] gave an O(1/ε) approximation result violating capacities by a factor of (3 + ε).

Li [22] broke the barrier of 2 in cardinality and gave an exp(O(1/ε2)) approximation
using at most (1 + ε)k facilities for uniform capacities. Li gave a sophisticated algorithm
using a novel linear program which he calls the rectangle LP. The result was extended to
non-uniform capacities by the same author using a new LP called configuration LP [23]. The
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approximation ratio was also improved from exp(O(1/ε2)) to (O(1/ε2 log(1/ε))). Though
the algorithm violates the cardinality only by 1 + ε, it introduces a softness bounded by a
factor of 2. The running time of the algorithm is nO(1/ε).

Byrka et al. [8] broke the barrier of 2 in capacities and gave an O(1/ε2) approximation
violating capacities by a factor of (1 + ε) factor for uniform capacities. The algorithm uses
randomized rounding to round a fractional solution to the configuration LP. For non-uniform
capacities, a similar result has been obtained by Demirci et al. [14]. The paper presents an
O(1/ε5) approximation algorithm with capacity violation by a factor of at most (1 + ε). The
running time of the algorithm is nO(1/ε).

Another closely related problem to Capacitated k-median problem is the Capacitated
k-center problem, where-in we have to minimize the maximum distance of a client to a facility.
A 6 factor approximation algorithm was given by Khuller and Sussmann [15] for the case of
uniform hard capacities (5 factor for soft capacitated case). For non-uniform hard capacities,
Cygan et al. [13] gave the first constant approximation algorithm for the problem, which was
further improved by An et al. in [3] to 9 factor.

Though the knapsack median problem (a.k.a. weighted W -median) is a well motivated
problem and occurs naturally in practice, not much work has been done on the problem.
Krishnaswamy et al. [17] showed that the integrality gap, for the uncapacitated case, holds
even on adding the covering inequalities to strengthen the LP, and gave a 16 factor approx-
imation that violates the budget constraint by a factor of (1 + ε). Kumar [19] strengthened
the natural LP by obtaining a bound on the maximum distance a client can travel and gave
first constant factor approximation without violating the budget constraint. Charikar and Li
[12] reduced the large constant obtained by Kumar to 34 which was further improved to 32
by Swamy [26]. Byrka et al. [7] extended the work of Swamy and applied sparsification as a
pre-processing step to obtain a factor of 17.46. The result was further improed to 7.081(1 + ε)
very recently by Krishnaswamy et al. [18] using iterative rounding technique, with a running
time of nO(1/ε2).

For CkFLP, Aardal et al. [1] extended the FPTAS for knapsack problem to give an FPTAS
for single client CkFLP. They also extend an α− approximation algorithm for (uncapacitated)
k-median to give a (2α+ 1)− approximation for CkFLP with uniform opening costs using at
most 2k for non-uniform and 2k − 1 for uniform capacities. Byrka et al. [6] gave an O(1/ε2)
factor approximation violating the capacities by a factor of (2 + ε) using dependent rounding.

For CFLP, An, Singh and Svensson [4] gave the first LP-based constant factor approxima-
tion by strengthening the natural LP. Other LP-based algorithms known for the problem are
due to Byrka et al. and Levi et al. ([6, 20]). The local search technique has been particularly
useful to deal with capacities. The approach provides 3 factor for uniform capacities [2] and
5 factor for the non-uniform case [5].

1.3 Our techniques
We extend the work of Krishnaswamy et al. [17] to capacitated case. The major challenge is
in writing the LP which opens sufficient number of facilities for us in bounded cost.

Filtering and clustering techniques [24, 11, 20, 25, 6, 17, 1] are used to partition the set
of facilities and demands. Routing trees are used to bound the assignment costs. Main
contribution of this work is a new LP and an iterative rounding algorithm to obtain a solution
with at most two fractionally opened facilities.

High Level Ideas. We first use the filtering and clustering techniques to partition the set of
facilities and demands. Each partition (called cluster) has sufficient opening (≥ 1−1/` ≥ 1/2)
for a fixed parameter ` ≥ 2 in it. An integrally open solution is obtained where-in some
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clusters have at least 1 integrally opened facility and some do not have any facility opened in
them. To assign the demand of the cluster that cannot be satisfied locally within the cluster,
a (directed) rooted binary routing tree is constructed, on the cluster centers. If (s, t) is an
edge in the routing tree then the cost of sending the unmet demand of the cluster centered
at s to t is bounded. The edges of the tree have non-increasing costs as we go up the tree,
with the root being at the top. Hence the cost of sending the unmet demand of the cluster
centered at s to any node r up in the tree at a constant number of edges away from s is
bounded.

In order to decide which facilities to open integrally, clusters are grouped into meta-
clusters of size (the number of clusters in it) ` so as to have at least `− 1 opening in it. The
routing tree is used to group the clusters into meta-clusters (MCs) in a top-down greedy
manner, i.e., starting from the root, a meta-cluster grows by including the cluster (center)
that connects to it by the cheapest edge. A MC grows until its size reaches `. We then
proceed to make a new MC from the tree with the remaining nodes in the same greedy
manner. This imposes a natural directed (not necessarily binary) rooted tree structure on the
meta-clusters with the property that the edge going out of a MC is cheaper than the edges
inside the MC which are further cheaper than the edges coming into the MC. Out-degree of
a MC is 1 whereas the in-degree is at most q + 1 where q is the number of clusters in a MC.

Next, we write a new LP to open sufficient number of facilities within each cluster and
each MC. We also give an iterative rounding algorithm to solve the LP, removing the integral
variables and updating the constraints accordingly in each iteration until either all the
variables are fractional or all are integral. In case all the variables are fractional, we use the
property of extreme point solutions to claim that the number of non-integral variables is
at most two. Thus we obtain a solution to the LP with at most two fractional openings.
Both the fractionally opened facilities are opened integrally at a loss of additive fmax in the
budget where fmax is the maximum facility opening cost 3.

Finally a min-cost flow problem is solved with capacities scaled up by a factor of (2+ ε) to
obtain an integral assignment. A feasible solution to the min-cost flow problem of bounded
cost is obtained as follows: consider a scenario in which the demand accumulated within
each cluster is less than u (we call such clusters as sparse). For the sake of easy exposition of
the ideas, let each MC be of size exactly `. The LP solution opens at least `− 1 facilities
integrally in each MC, with at least one facility in each cluster except for one cluster. If
the cluster with unmet demand is at the root of the induced subgraph of the MC, then its
demand cannot be met within the MC. We make sure that such a demand is served in the
parent MC. Total demand to be served by the facilities in a MC is at most `u plus at most
(`+ 1)u coming from the children of the MC. Thus (`− 1) facilities have to serve at most
(2`+ 1)u demand leading to a violation of (2 +O(1/`)) in capacity. Demands have to travel
O(`) edges upwards (at most ` within its own MC and at most ` in the parent MC), and
hence the cost of serving them is bounded.

The situation becomes a little tricky when there are clusters with more than u demand
(we call such clusters as dense). One way to deal with dense clusters is to open bdemand/uc
facilities integrally within such a cluster and assign the residual demand to one of them at
a capacity violation of 2. But if this cluster also has to serve u units of unmet demand of
one of its children (we will see later that a dense cluster has at most one child), the capacity
violation could blow upto 3 in case bdemand/uc = 1. We deal with this scenario carefully.

3 Let F ′ be the set of facilities i with fi > ε · B. Enumerate all possible subsets of F ′ of size <= 1/ε.
There are at most nO(1/ε) such sets. For each such set S, solve the LP with yi = 1 ∀ i ∈ S and
yi = 0 ∀ i ∈ F ′ \ S. The additive fmax (which comes from the fractionally opened facilities) is <= ε · B.
Choose the best solution and hence theorem 1 follows.
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Algorithm 1 Cluster Formation.
1: C′ ← ∅, S ← C, ctr(j) = ∅ ∀j ∈ S.
2: while S 6= ∅ do
3: Pick j′ ∈ S with the smallest radius Rj′ in S, breaking ties arbitrarily.
4: S ← S \ {j′}, C′ ← C′ ∪ {j′}
5: while ∃j ∈ S: c(j′, j) ≤ 2`Ĉj do
6: S ← S \ {j}, ctr(j) = j′

7: end while
8: end while
9: ∀j′ ∈ C′: let Nj′ = {i ∈ F | ∀k′ ∈ C′ : j′ 6= k′ ⇒ c(i, j′) < c(i, k′)}

2 Capacitated Knapsack Median Problem

In this section, we consider the capacitated knapsack median problem. CKnM can be
formulated as the following integer program (IP):

Minimize CostKnM(x, y) =
∑
j∈C

∑
i∈F c(i, j)xij

subject to
∑
i∈F xij = 1 ∀ j ∈ C (1)∑

j∈C xij ≤ u yi ∀ i ∈ F (2)
xij ≤ yi ∀ i ∈ F , j ∈ C (3)∑
i∈F fiyi ≤ B (4)

yi, xij ∈ {0, 1} (5)

LP-Relaxation of the problem is obtained by allowing the variables yi, xij ∈ [0, 1]. Call it
LP1. To begin with, we guess the facility with maximum opening cost, f∗max, in the optimal
solution and remove all the facilities with facility cost > f∗max before applying the algorithm.
For the easy exposition of ideas, we will give a weaker result, in section 2.4, in which we
violate capacities by a factor of 3. Most of the ideas are captured in this section.

2.1 Simplifying the problem instance
We first simplify the problem instance by partitioning the sets of facilities and clients into
clusters. This is achieved using the filtering technique of Lin and Vitter [24]. For an LP
solution ρ =< x, y > and a subset T of facilities, let size(y, T ) =

∑
i∈T yi denote the total

extent up to which facilities are opened in T under ρ.

Partitioning the set of facilities into clusters and sparsifying the client set. Let ρ∗ =<
x∗, y∗ > denote the optimal LP solution. Let Ĉj denote the average connection cost of a
client j in ρ∗ i.e., Ĉj =

∑
i∈F x

∗
ijc(i, j). Let ` ≥ 2 be a fixed parameter and ball(j) be the set

of facilities within a distance of `Ĉj of j i.e., ball(j) = {i ∈ F : c(i, j) ≤ `Ĉj} (Figure 1(a)).
Then, size(y∗, ball(j)) ≥ 1− 1

` . Let Rj = `Ĉj denote the radius of ball(j). We identify a
set C′ of clients ( Figure 1(b)) which will serve as the centers of the clusters using Algorithm
1. Note that ball(j′) ⊆ Nj′ and the sets Nj′ partition F . (Figure 2(b)).

Partitioning the demands. Let li denote the total demand of clients in C serviced by facility
i i.e., li =

∑
j∈C x

∗
ij and, dj′ =

∑
i∈Nj′

li for j′ ∈ C′. Move the demand dj′ to the center j′ of
the cluster (Figures 1-(b) and 2-(a)). For j ∈ C, let Aρ∗(j,Nj′) denote the total extent upto
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(a) (b)

Figure 1 (a) The balls around the clients. (b) Reduced set of clients and assignment by LP
solution.

(a) (b)

Figure 2 (a) Partitioning of demand. (b) Partition of F .

which j is served by the facilities in Nj′ . Then, we can also write dj′ =
∑
j∈C Aρ∗(j,Nj′).

Thus, after this step, unit demand of any j ∈ C, is distributed to centers of all the clusters
whose facilities serve j. In particular, it takes care of the demand of the clients that were
removed during sparsification. Each cluster center is then responsible for the portion of
demand of j ∈ C served by the facilities in its cluster.

The cost of moving the demand dj′ to j′ is bounded by 2(` + 1)LPopt as shown in
Corollary 6. Also, any two cluster centers j′ and k′ satisfy the separation property: c(j′, k′) >
2` max{Ĉj′ , Ĉk′}. In addition, they satisfy Lemmas (5), (7) and (8).

I Lemma 5. Let j′ ∈ C′ and i ∈ Nj′ then, (i) For k′ ∈ C′, c(j′, k′) ≤ 2c(i, k′), (ii) For
j ∈ C \ C′, c(j′, j) ≤ 2c(i, j) + 2`Ĉj and (iii) For j ∈ C, c(i, j′) ≤ c(i, j) + 2`Ĉj.

Proof.
i) By triangle inequality, c(j′, k′) ≤ c(i, j′) + c(i, k′). Since i ∈ Nj′ ⇒ c(i, j′) ≤ c(i, k′) and

hence c(j′, k′) ≤ 2c(i, k′).
ii) Since j /∈ C′, there exist a client k′ ∈ C′ such that ctr(j) = k′ and c(j, k′) ≤ 2`Ĉj . Also,

If k′ = j′ then c(i, j′) = c(i, k′) else c(i, j′) ≤ c(i, k′) because i ∈ Nj′ and not Nk′ .
Then, by triangle inequality, c(i, k′) ≤ c(i, j) + c(j, k′) ≤ c(i, j) + 2`Ĉj = c(i, j) + 2Rj .
Therefore, c(j′, j) ≤ c(i, j′) + c(i, j) ≤ 2c(i, j) + 2Rj .

iii) Consider two cases: j ∈ C′ and j /∈ C′. In the first case, c(i, j′) ≤ c(i, j) because
i ∈ Nj′ and not Nj and hence c(i, j′) ≤ c(i, j) + 2`Ĉj . In the latter case, by triangle
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inequality we have, c(i, j′) ≤ c(i, j) + c(j′, j). Since j /∈ C′ ⇒ c(j′, j) ≤ 2`Ĉj . Thus,
c(i, j′) ≤ c(i, j) + 2`Ĉj . J

I Corollary 6.
∑
j∈C

∑
j′∈C′ c(j′, j)Aρ∗(j,Nj′) ≤ 2(`+ 1)LPopt.

I Lemma 7. Let j ∈ C \ C′ and j′ ∈ C′ such that c(j′, j) ≤ Rj′ , then Rj′ ≤ 2Rj.

Proof. Suppose, if possible, Rj′ > 2Rj . Let ctr(j) = k′. Then, c(j, k′) ≤ 2Rj . And,
c(k′, j′) ≤ c(k′, j) + c(j, j′) ≤ 2Rj + Rj′ < 2Rj′ = 2`Ĉj′ , which is a contradiction to
separation property. J

I Lemma 8.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ ≤ 3

∑
j∈C

∑
i∈F c(i, j)x∗ij = 3LPopt.

Proof.
∑
j′∈C′ dj′

∑
i∈F c(i, j′)x∗ij′ =

∑
j′∈C′

(∑
j∈C Aρ∗(j,Nj′)

)
Ĉj′

=
∑
j′∈C′

(∑
j∈C:c(j′,j)≤Rj′

Aρ∗(j,Nj′)Ĉj′ +
∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)Ĉj′
)

Second term in the sum on RHS < 1
`

∑
j′∈C′

∑
j∈C:c(j′,j)>Rj′

Aρ∗(j,Nj′)c(j′, j)
≤ 1

`

∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(2c(i, j) + 2`Ĉj) as c(j′, j) ≤ 2c(i, j) + 2`Ĉj by
Lemma 5
≤
∑
j∈C

∑
j′∈C′:c(j′,j)>Rj′

∑
i∈Nj′

x∗ij(c(i, j) + 2Ĉj). Thus the claim follows. J

Let CS be the set of cluster centers j′ ∈ C′ for which dj′ < u and CD be the set of
remaining centers in C′. The clusters centered at j′ ∈ CS are called sparse and those centered
at j′ ∈ CD dense. For j′ ∈ CD, sufficient facilities are opened in Nj′ so that its entire demand
is served within the cluster itself and we say that j′ is self-sufficient. Unfortunately, the
same claim cannot be made for the sparse clusters i.e., we cannot guarantee to open even
one facility in each sparse cluster (since dj′ < u, we need only one facility in each sparse
cluster j′). Thus, in the next section, we define a routing tree that is used to route the unmet
demand of a cluster to another cluster in bounded cost.

2.2 Constructing the Binary Routing Tree
First, we define a dependency graph G = (V,E), similar to the one defined by Krishnaswamy
et al [17], on cluster centers, i.e., V = C′. For brevity of notation, we use j′ to refer to the
node corresponding to cluster center j′ as well as to refer to the cluster center j′ itself. For
j′ ∈ CS , let η(j′) be the nearest other cluster center in C′ of j′ i.e., η(j′) = k′( 6= j′) ∈ C′ : k′′ ∈
C′ ⇒ c(j′, k′) ≤ c(j′, k′′) and for j′ ∈ CD, η(j′) = j′. The dependency graph consists of
directed edges c(j′, η(j′)). Each connected component of the graph is a tree except possibly
for a 2-cycle at the root. We remove any edge arbitrarily from the two cycle. The resulting
graph is then a forest. Note that, there is at most one dense cluster in a component and if
present, it must be the root of the tree. The following lemma will be useful to bound the
cost of sending the unserved demand of j′ ∈ CS to η(j′).

I Lemma 9.
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, η(j′))(1−
∑
i∈Nj′

x∗ij′)) ≤ 6LPopt.

Proof. The second term of LHS =
∑
j′∈CS

dj′
(∑

i/∈Nj′
c(j′, η(j′))x∗ij′

)
≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

c(j′, k′)x∗ij′
)

≤
∑
j′∈CS

dj′
(∑

k′∈C′:k′ 6=j′
∑
i∈Nk′

2c(i, j′)x∗ij′
)
. J

Unfortunately, the in-degree of a node in a tree may be unbounded and hence arbitrarily
large amount of demand may accumulate at a cluster center, which may further lead to
unbounded capacity violation at the facilities in its cluster.



S. Grover, N. Gupta, S. Khuller, and A. Pancholi 23:9

(a) (b) (c)

Figure 3 (a) A Tree T of unbounded in-degree. a < b < d < h , a < c < g , b < e. (b) A Binary
Tree T ′ where each node has in-degree at most 2. (c) Formation of meta-clusters for ` = 3.

Bounding the in-degree of a node in the dependency graph. We convert the dependency
graph G into another graph G′ where-in the in-degree of each node is bounded by 2 with
in-degree of the root being 1. This is done as follows (Figure 3(a)-(b)): let T be a tree in G.
T is converted into a binary tree using the standard procedure after sorting the children of
node j′ from left to right in non-decreasing order of distance from j′ i.e., for each child k′
(except for the nearest child) of j′, add an edge to its left sibling with weight 2c(k′, η(k′))
and remove the edge (k′, j′). There is no change in the outgoing edge of the leftmost child of
j′. Let ψ(j′) be the parent of node j′ in G′. Its easy to see that c(j′, ψ(j′)) ≤ 2c(j′, η(j′)).
Henceforth whenever we refer to distances, we mean the new edge weights. Hence, we have
the following:∑

j′∈CS

dj′
( ∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)
)
≤ 12LPopt (6)

2.3 Constructing the Meta-clusters
If we could ensure that for every j′ ∈ CS for which no facility is opened in Nj′ , a facility is
opened in ψ(j′), we are done (with 3 factor loss in capacities). But we do not know how to
do that. However, for every such cluster center j′, we will identify a set of centers which
will be able to take care of the demand of j′ and each one of them is within a distance of
O(`)c(j′, ψ(j′)) from j′.

We exploit the following observation to make groups of ` clusters: each cluster has
facilities opened in it to an extent of at least (1− 1/`). Hence, every collection of ` clusters,
has at least `− 1 facilities opened in it. Thus, we make groups (called meta-clusters), each
consisting of ` clusters, if possible. For every tree T in G′, MCs are formed by processing the
nodes of T in a top-down greedy manner starting from the root as described in Algorithm 2.
(Also see Figure 3(c)). There may be some MCs of size less than `, towards the leaves of the
tree.

Let Gr denote a MC with r being the root cluster of it. With a slight abuse of notation,
we will use Gr to denote the collection of centers of the clusters in it as well as the set of
clusters themselves. Let H(Gr) denote the subgraph of T induced by the nodes in Gr. H(Gr)
is clearly a tree. We say that Gr is responsible for serving the demand in its clusters.
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Algorithm 2 Meta-cluster Formation.
1: Meta-cluster(Tree T )
2: N ← set of nodes in T .
3: while there are non-grouped nodes in N do
4: Pick a topmost non-grouped node, say k of N : form a new MC, Gk.
5: while Gk has fewer than ` nodes do
6: If N = ∅ then break and stop.
7: Let j = argminu∈N {c(u, v) : (u, v) ∈ T , v ∈ Gk}, set Gk = Gk∪{j}. N ← N \{j}.
8: end while
9: end while

With the guarantee of only ` − 1 opening amongst ` clusters, there may be a cluster
with no facility opened in it. If this cluster happens to be a sparse cluster at the root, its
demand cannot be served within the MC. Thus we define a (routing) tree structure on MCs
as follows: a tree consists of MCs as nodes and there is an edge from a MC Gr to another
MC Gs if there is a directed edge from root r of Gr to some node s′ ∈ Gs, Gs is then called
the parent meta-cluster of Gr, Gr a child meta-cluster of Gs and the edge (r, s′) is called
the connecting edge of the child MC Gr. If Gr is a root MC, add an edge to itself with cost
c(r, ψ(r)). This edge is then called the connecting edge of Gr. Note that the cost of any
edge in Gs is less than the cost of the connecting edge of Gr which is further less than the
cost of any edge in Gr. Further, a dense cluster, if present, is always the root cluster of a
root MC. We guarantee that the unmet demand of a MC is served in its parent MC.

2.4 3-factor capacity violation
In this section, we present the main contribution of our work. Inspired by the LP of
Krishnaswamy et al. [17], we formulate a new LP and present an iterative rounding algorithm
to obtain a solution with at most two fractionally opened facilities. Such a solution is called
pseudo-integral solution. Modifying the LP of Krishnaswamy et al. [17] and obtaining a
feasible solution of bounded cost for the capacitated scenario is non-trivial. The rounding
algorithm is also non-trivial.

2.4.1 Formulating the new LP and obtaining a pseudo-integral solution
Sparse clusters have the nice property that they need to take care of small demand (< u

each) and dense clusters have the nice property that the total opening within each cluster is
at least 1. These properties are exploited to define a new LP that opens sufficient number of
facilities in each MC such that the opened facilities are well spread out amongst the clusters
(we make sure that at most 1 (sparse) cluster has no facility opened in it) and demand of
a dense cluster is satisfied within the cluster itself. We then present an iterative rounding
algorithm that provides us with a solution having at most two fractionally opened facilities.

Let δr be the number of dense clusters and σr be the number of sparse clusters in a
MC Gr. With at least 1 − 1/` opening in each sparse cluster, observing the fact that
σr ≤ `, we have at least σr(1 − 1/`) ≥ σr − 1 total opening in σr sparse clusters of
Gr. Also, at least bdjd

/uc opening is there in a dense cluster centered at jd in Gr. Let
αr = max{0, σr − 1}. LP is defined so as to open at least bdjd

/uc+ αr facilities in Gr. Let
τ(j′) = {i ∈ Nj′ : c(i, j′) ≤ c(j′, ψ(j′))} if j′ ∈ CS (recall that ψ(j′) is the parent of j′ in
binary tree) and τ(j′) = Nj′ if j′ ∈ CD. Also, let Sr = Gr ∩ CS and sr = αr for all MCs Gr,
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F̃ = F , B̃ = B, rj′ = bdj′/uc ∀j′ ∈ CD and τ̂(j′) = τ(j′) ∀j′ ∈ C′. These sets are updated as
we go from one iteration to the next iteration in our rounding algorithm, thereby giving a new
(reduced) LP in each iteration. Let wi denote whether facility i is opened in the solution or
not. We now write an LP, called LP2 with the objective of minimising the following function:
CostKM(w) =

∑
j′∈CS

dj′ [
∑
i∈Nj′

c(i, j′)wi + c(j′, ψ(j′))(1−
∑
i∈Nj′

wi)] + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)wi

s.t.
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (7)∑
i∈τ̂(j′) wi = rj′ ∀ j′ ∈ CD (8)∑

j′∈Sr

∑
i∈τ̂(j′) wi ≥ sr ∀ r : Gr is a MC (9)∑

i∈F̃ fiwi ≤ B̃ (10)
0 ≤ wi ≤ 1 ∀ i ∈ F̃ (11)

Constraints (8) and (9) ensure that sufficient number of facilities are opened in a meta-
cluster. Constraints (7) and (8) ensure that the opened facilities are well spread out amongst
the clusters as no more than 1 and bdj′

u c facilities are opened in a sparse and dense cluster
respectively. Constraint (8) also ensures that at least bdj′

u c facilities are opened in a dense
cluster. This requirement is essential to make sure that the demand of a dense cluster is
served within the cluster only. Hence, equality in constraint (8) is important.

I Lemma 10. A feasible solution w′ to LP2 can be obtained such that CostKM(w′) ≤
(2`+ 13)LPopt.

Proof. Refer to Appendix 5.1. J

For a vector w ∈ R|F| and F ′ ⊆ F , let wF ′ denote the vector ‘w restricted to F ′’. Also,
let s =< sr >, S =< Sr > and R =< rj′ >j′∈CD

. Algorithm 3 presents an iterative rounding
algorithm that solves LP2 and returns a pseudo-integral solution w̃. A sparse cluster is
removed from the scenario for the next iteration as and when a facility is integrally opened
in it (lines 11, 12). In a dense cluster centered at j′, the number of facilities to be opened by
the LP (rj′) is decremented by the number of integrally opened facilities in it (line 15) at
every iteration and the cluster is removed when it becomes 0 (line 16). Similar treatment is
done for Gr ∩ CS (line 12, 14)

I Lemma 11. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)
w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.

Proof. Refer to Appendix 5.2. J

2.4.2 Obtaining an integrally open solution
The two fractionally opened facilities obtained in Section 2.4.1, if any, are opened integrally
at a loss of additive fmax in the budget. Let ŵ denote the solution obtained. Next lemma
shows that ŵ has sufficient number of facilities opened in each MC to serve the demand the
MC is responsible for, except possibly for u units. Lemma (12) presents the assignments
done within a MC and discusses their impact on the capacity and the cost bounds.

I Lemma 12. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor
of max{3, 2 + 4

`−1} for ` ≥ 2. Then, i) the dense cluster in Gr (if any) is self-sufficient i.e.,
its demand can be completely assigned within the cluster itself at a loss of at most factor 2 in
cost. ii) There is at most one cluster with no facility opened in it and it is a sparse cluster.
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Algorithm 3 Obtaining a pseudo-integral solution.
1: pseudo-integral(F̃ , B̃, s, S, τ̂(), R)
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP2.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F . \∗ exit when all variables are fractionally opened∗\
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Sr such that constraint (7) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (7). \∗ a facility in τ(j′) has been opened∗\
12: set Sr = Sr \ {j′}, sr = max{0, sr − 1}. \∗ delete the contribution of j′ in constraint (9)∗\
13: end while
14: If sr = 0, remove the constraint corresponding to Sr from (9). \∗ σr − 1 facilities have been

opened in Gr ∩ CS ∗\
15: If ∃j′ ∈ Gr ∩ CD, set rj′ ← rj′ − |τ̂(j′) ∩ F̃1|. \∗ decrement rj′ by the number of integrally

opened facilities in τ̂(j′) ∗\
16: If rj′ = 0, remove the constraint corresponding to j′ from (8). \∗ bdj′/uc facilities have been

integrally opened in τ(j′) ∗\ }
17: end if
18: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

19: end while
20: Return w̃F

iii) Any (cluster) center responsible for the unserved demand of j′ ∈ C′ is an ancestor of j′
in H(Gr). iv) At most u units of demand in Gr remain un-assigned and it must be in the
root cluster of Gr. Such a MC cannot be a root MC. v) Let βr = bdjd

/uc+ max{0, σr − 1},
where jd is the center of the dense root cluster (if any) in Gr. Then, at least βr facilities
are opened in Gr. (vi) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the
centers of the clusters in which they are served is bounded by dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.3. J

Lemma (13) deals with the remaining demand that we fail to assign within a MC.
Such demand is assigned in the parent MC. Lemma (13) discusses the cost bound for such
assignments and the impact of the demand coming onto Gr from the children MCs along
with the demand within Gr on capacity.

I Lemma 13. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto
Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:
i) capacities are violated at most by a factor of max{3, 2 + 4

`−1} for ` ≥ 2. ii) Total distance
traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served
is bounded by `dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.4. J

Choosing ` ≥ 2 such that 2+ 4
(`−1) = 3⇒ ` = 5. Lemma (14) bounds the cost of assigning

the demands collected at the centers to the facilities opened in their respective clusters.

I Lemma 14. The cost of assigning the demands collected at the centers to the facilities
opened in their respective clusters is bounded by O(1)LPopt.

Proof. The proof follows from the observation that if dj′ is served by a facility in τ(j′′), j′′ ∈
CS then c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). This was the motivation to define τ(j′) the
way it was, while defining LP2. For details, refer to Appendix 5.5. J
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2.5 (2 + ε) factor capacity violation
There is only one scenario in which we violate the capacities by a factor of 3 in the previous
section. In all other scenarios capacities scaled up by a factor of (2 + ε) are sufficient even
to accommodate the demand of the children MCs. Consider this special scenario. Let jd
be the center of the dense cluster and js be its only child (sparse) cluster in the routing
tree. Further let, djd

= 1.99u and djs
= .99u. Then, we must have a total opening of more

than 2 in the clusters of jd and js taken together whereas LP2 opens only 1. In such a
scenario, if we treat js with jd instead of considering it with the remaining sparse clusters
of Gr, we can open 2 facilities in τ(jd) ∪ τ(js) and they have to serve a total demand of at
most 4u (1.99u+ .99u+ at most u of the remaining sparse clusters) within the MC, thereby
violating the capacities by a factor of at most 2. On the other hand, if djd

= 1.01u and
djs = .98u, then we cannot guarantee to open 2 facilities in τ(jd) ∪ τ(js). In this case, if we
treated js with jd and only 1 facility is opened in τ(jd) ∪ τ(js), it will have to serve a total
demand of (close to) 3u (1.01u+ .98u+ at most u of the remaining sparse clusters) leading to
violation of 3 in capacity. Note that first case corresponds to the scenario when the residual
demand of jd (viz. .99u here) is large (close to u) and the second case corresponds to the
scenario when the residual demand of jd (viz. .01u here) is small (close to 0). In the first
case we treat js with jd whereas in the second case, we treat it with the remaining sparse
clusters. In Section 2.4, one can imagine that a MC Gr is partitioned into G1

r and G2
r where

G1
r contained only the dense cluster of Gr and G2

r contained all the sparse clusters of Gr.
We modify the partitions as follows: let res(jd) = djd

/u − bdjd
/uc: (i) if res(jd) < ε: set

G1
r = Gr ∩CD, G2

r = Gr ∩CS , γr = bdjd
/uc, σ′r = σr. (This is same as above.) (ii) otherwise,

ε ≤ res(jd) < 1: set G1
r = (Gr ∩ CD) ∪ {js}, G2

r = (Gr ∩ CS) \ {js}, γr = bdjd
/uc+ |{js}| 4,

σ′r = max{0, σr − 1}.
We modify our LP accordingly so as to open at least γr facilities in G1

r and αr =
max{0, σ′r−1} facilities in G2

r. Let S1
r = G1

r, s
1
r = γr and S2

r = G2
r, s

2
r = αr, τ̂(j′) = τ(j′) ∀j′.

For j′ ∈ CD, let rj′ = bdj′/uc. Also, let F̃ = F and B̃ = B. Let wi denote whether facility i
is opened in the solution or not. LP2 is modified as follows:
LP3 : Min. CostKM(w)

subject to
∑
i∈τ̂(j′) wi ≤ 1 ∀ j′ ∈ CS (12)∑

j′∈S1
r

∑
i∈τ̂(j′) wi ≥ s1

r ∀ G1
r : s1

r 6= 0 (13)∑
j′∈S2

r

∑
i∈τ̂(j′) wi ≥ s2

r ∀ G2
r : s2

r 6= 0 (14)∑
i∈F̃ fiwi ≤ B̃ (15)
0 ≤ wi ≤ 1 ∀i ∈ F̃ (16)

I Lemma 15. A feasible solution w′ to LP3 can be obtained such that CostKM(w′) ≤
(2`+ 13)LPopt.

Proof. Proof is similar to the proof of Lemma (10). J

Algorithm 3 can be modified to obtain Algorithm 4 as follows: whenever a constraint
corresponding to (12) gets tight over integrally opened facilities, it is removed from S1

r or S2
r

wherever it belongs, in the same manner as line 12 of Algorithm 3.

4 In case a component of dependency graph consists of a singleton dense cluster, js may not exist. This
case causes no problem even if res(jd) is large as it must be a leaf MC in this case.
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Algorithm 4 Obtaining a pseudo-integral solution.
1: pseudo-integral(F̃ , B̃, s1, s2, S1, S2, τ̂(), R′ )
2: w̃F

i = 0 ∀i ∈ F
3: while F̃ 6= ∅ do
4: Compute an extreme point solution w̃F̃ to LP3.
5: F̃0 ← {i ∈ F̃ : w̃F̃

i = 0}, F̃1 ← {i ∈ F̃ : w̃F̃
i = 1}.

6: if |F̃0|= 0 and |F̃1|= 0 then
7: Return w̃F .
8: else
9: For all MCs Gr{
10: while ∃j′ ∈ Gr ∩ CS such that constraint (12) is tight over F̃1 i.e.,

∑
i∈τ̂(j′)∩F̃1

w̃F̃
i = 1 do

11: Remove the constraint corresponding to j′ from (12). \∗ a facility in τ(j′) has been opened∗\
12: If j′ ∈ S1

r , set S1
r = S1

r \ {j′}, s1
r = max{0, s1

r − 1}. \∗ delete the contribution of j′ in
constraint (13) ∗\

13: If j′ ∈ S2
r , set S2

r = S2
r \{j′}, s2

r = max{0, s2
r−1}.\∗ delete the contribution of j′ in constraint

(14) ∗\
14: If s2

r = 0, remove the constraint corresponding to the MC from (14).\∗ αr facilities have been
opened in Gr ∩ CS ∗\

15: end while
16: If ∃j′ ∈ Gr ∩ CD, set s1

r = s1
r − |τ̂(j′)∩ F̃1|. \∗ decrement s1

r by the number of integrally opened
facilities in τ̂(j′) ∗\

17: If s1
r = 0, remove the constraint corresponding to the MC from (13). \∗ γr facilities have been

opened in G1
r ∗\

18: end if
19: F̃ ← F̃ \ (F̃0 ∪ F̃1), B̃ ← B̃ −

∑
i∈F̃1

fiw̃
F̃
i , τ̂(j′)← τ̂(j′) \ (F̃1 ∪ F̃0) ∀j′ ∈ C′.

20: end while
21: Return w̃F .

I Lemma 16. The solution w̃ given by Iterative Rounding Algorithm satisfies the following: i)
w̃ is feasible, ii) w̃ has at most two fractional facilities and iii) CostKM(w̃) ≤ (2`+13)LPopt.

Proof. Proof is similar to the proof of Lemma (11). J

The two fractionally opened facilities, if any, are opened integrally as in Section 2.4.2 at
a loss of additive fmax in the budget. Let ŵ denote the integrally open solution.

In the next lemma, we show that ŵ has sufficient number of facilities opened in each MC
to serve the demand the MC is responsible for, except possibly for u units. Let M be the set
of all meta clusters and M1 be the set of meta clusters, each consisting of exactly one dense
and one sparse cluster. MCs in M1 need special treatment and will be considered separately.
Lemma (17) presents the assignments done within a MC and discusses their impact on the
capacity and the cost bounds.

I Lemma 17. Consider a meta-cluster Gr. Suppose the capacities are scaled up by a factor
of 2 + ε for ` ≥ 1/ε. Then, (i) G1

r is self-sufficient i.e., its demand can be completely assigned
within the cluster itself. (ii) There are at most two clusters, one in G1

r and one in G2
r, with

no facility opened in them and these clusters are sparse. (iii) Any (cluster) center responsible
for the unserved demand of j′ is an ancestor of j′ in H(Gr). (iv) At most u units of demand
in Gr remain un-assigned and it must be in the root cluster of Gr. Such a MC cannot be a
root MC. (v) For Gr ∈M \M1, let βr = bdjd

/uc+ max{0, σr − 1}, where jd is the center of
the dense root cluster in Gr. Then, at least βr facilities are opened in Gr. (vi) For Gr ∈M1,
let βr = bdjd

/uc if res(jd) < ε and = bdjd
/uc + 1 otherwise. Then, at least βr facilities

are opened in Gr. (vii) Total distance traveled by demand dj′ of j′( 6= r) ∈ Gr to reach the
centers of the clusters in which they are served is bounded by 2dj′c(j′, ψ(j′)).

Proof. Refer to Appendix 5.6. J
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Lemma (18) deals with the remaining demand that we fail to assign within the MC.
Such demand is assigned in the parent MC. Lemma (18) discusses the cost bound for such
assignments and the impact of the demand coming onto Gr from the children MCs along
with the demand within Gr on capacity.

I Lemma 18. Consider a meta-cluster Gr. The demand of Gr and the demand coming onto
Gr from the children meta-clusters can be assigned to the facilities opened in Gr such that:
(i) capacities are violated at most by a factor of (2 + 4

`−1 ) for ` ≥ 1/ε and, (ii) Total distance
traveled by demand dj′ of j′ ∈ C′ to reach the centers of the clusters in which they are served
is bounded by `dj′c(j′, ψ(j′)).

Proof. Proof is similar to the proof of Lemma (13). J

I Lemma 19. The cost of assigning the demands collected at the centers to the facilities
opened in their respective clusters is bounded by (2 + ε)(2`+ 1)LPopt.

Proof. Proof is similar to the proof of Lemma (14). J

3 Capacitated k Facility Location Problem

Standard LP-Relaxation of the CkFLP can be found in Aardal et al. [1]. When fi = 0,
the problem reduces to the k-median problem and when k = |F| it reduces to the facility
location problem. Our techniques for CKnM provide similar results for CkFLP in a straight
forward manner i.e., O(1/ε2) factor approximation, violating the capacities by a factor of
(2 + ε) and cardinality by plus 1. The violation of cardinality can be avoided by opening
the facility with larger opening integrally while converting a pseudo integral solution into an
integrally open solution. Thus, we obtain Theorem 2.

Proof of Theorem 3. Let ρ∗ =< x∗, y∗ > denote the optimal LP solution. For sparse
clusters, we open the cheapest facility i∗ in ball(j), close all facilities in the cluster and shift
their demands to i∗. Let ρ̂ =< x̂, ŷ > be the solution so obtained. It is easy to see that we
loose at most a factor of 2 in cardinality, and CostkFLP (x̂, ŷ) is within O(1)LPopt.

To handle dense clusters, we introduce the notion of cluster instances. For each cluster
center j′ ∈ CD, let bfj′ =

∑
i∈Nj′

fiy
∗
i and bcj′ =

∑
i∈Nj′

∑
j∈C x

∗
ij [c(i, j) + 4Ĉj ]. We define

a cluster instance Sj′(j′, Nj′ , dj′ , bcj′ , b
f
j′) as follows: Minimize CostCI(z) =

∑
i∈Nj′

(fi +
uc(i, j′))zi s.t. u

∑
i∈Nj′

zi ≥ dj′ and zi ∈ [0, 1]. It can be shown that zi =
∑
j∈C x

∗
ij/u =

li/u ≤ y∗i ∀i ∈ Nj′ is a feasible solution with cost at most bfj′ + bcj′ . An almost integral
solution z′ is obtained by arranging the fractionally opened facilities in z in non-decreasing
order of fi + c(i, j′)u and greedily transferring the total opening size(z, Nj′) to them. Let
l′i = z′iu. For a fixed ε > 0, an integrally open solution ẑ and assignment l̂ (possibly fractional)
is obtained as follows: let i1 be the fractionally opened facility, if any. If z′i1 < ε, close i1 and
shift its demand to another integrally opened facility at a loss of factor (1 + ε) in its capacity.
Else (z′i1 ≥ ε), open i1, at a loss of factor 2 in cardinality and 1/ε in facility cost. The
solution ẑ satisfies the following: l̂i ≤ (1 + ε)ẑiu ∀i ∈ Nj′ ,

∑
i∈Nj′

ẑi ≤ 2
∑
i∈Nj′

z′i ∀j′ ∈ CD
and CostCI(ẑ) ≤ max{1/ε, 1 + ε}CostCI(ẑ). J

4 Conclusion

In this work, we presented the first constant factor approximation algorithm for uniform hard
capacitated knapsack median problem violating the budget by a factor of (1 + ε) and capacity
by (2 + ε). Two variety of results were presented for capacitated k-facility location problem

FSTTCS 2018
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with a trade-off between capacity and cardinality violation: an O(1/ε2) factor approximation
violating capacities by (2 + ε) and a O(1/ε) factor approximation, violating the capacity by a
factor of at most (1 + ε) using at most 2k facilities. As a by-product, we also gave a constant
factor approximation for uniform capacitated facility location at a loss of (1 + ε) in capacity
from the natural LP. The result shows that the natural LP is not too bad.

It would be interesting to see if the capacity violation can be reduced to (1 + ε) using the
techniques of Byrka et al. [8]. Avoiding violation of budget will require strengthening the LP
in a non-trivial way. Another direction for future work would be to extend our results to
non-uniform capacities. Conflicting requirement of facility costs and capacities makes the
problem challenging.
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5 Appendix

5.1 Proof of Lemma 10
Define a feasible solution to the LP2 as follows: let j′ ∈ CD, i ∈ τ(j′), set w′i = li

dj′
bdj′/uc =

li
u
bdj′/uc
dj′/u

≤ li
u ≤ y∗i . For j′ ∈ CS , we set w′i = min{x∗ij′ , y∗i } = x∗ij′ ≤ y∗i for i ∈ τ(j′) and

w′i = 0 for i ∈ Nj′ \ τ(j′). We will next show that the solution is feasible.

For j′ ∈ CS ,
∑

i∈τ(j′)

w′i ≤
∑
i∈Nj′

w′i =
∑
i∈Nj′

x∗ij′ ≤ 1.

Next, let j′ ∈ CD, then
∑

i∈τ(j′)

w′i =
∑
i∈Nj′

li
u
bdj′/uc
dj′/u

= bdj′/uc as
∑
i∈Nj′

li = dj′ . Note that

∑
i∈τ(j′)

w′i ≥ 1 as dj′ ≥ u.

For a meta-cluster Gr, we have
∑
j′∈Gr

∑
i∈τ(j′)

w′i =
∑

j′∈Gr∩CS

∑
i∈τ(j′)

x∗ij′ ≥
∑

j′∈Gr∩CS

(1 −

1/l) = max{0, σr − 1} = αr.

Since for each i ∈ F we have w′i ≤ y∗i ⇒
∑
i∈F

fiw
′
i ≤

∑
i∈F

fiy
∗
i ≤ B.

Next, consider the objective function. For j′ ∈ CD, we have
∑

i∈τ(j′)

u c(i, j′)w′i =

u
∑
i∈Nj′

c(i, j′)(
∑
j∈C x

∗
ij

u ) =
∑
i∈Nj′

∑
j∈C

c(i, j′)x∗ij ≤
∑
i∈Nj′

∑
j∈C

(
c(i, j) + 2`Ĉj

)
x∗ij . Summing

over all j′ ∈ CD we get,
∑
j′∈CD

∑
i∈Nj′

∑
j∈C

x∗ij [c(i, j) + 2`Ĉj ] ≤ (2`+ 1)LPopt.

Now consider the part of objective function for CS .
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i +
c(j′, ψ(j′))(1 −

∑
i∈Nj′

w′i)) =
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)w′i +

∑
i∈Nj′\τ(j′) c(i, j′)w′i +

c(j′, ψ(j′))(1−
∑
i∈τ(j′) w

′
i−
∑
i∈Nj′\τ(j′) w

′
i)) =

∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′+c(j′, ψ(j′))

(1−
∑
i∈τ(j′) x

∗
ij′))

<
∑
j′∈CS

dj′(
∑
i∈τ(j′) c(i, j′)x∗ij′ + c(j′, ψ(j′))(1 −

∑
i∈τ(j′) x

∗
ij′))

+
∑
j′∈CS

dj′(
∑
i∈Nj′\τ(j′) (c(i, j′)−c(j′, ψ(j′)))x∗ij′) as c(i, j′) > c(j′, ψ(j′)) ∀i ∈ Nj′ \τ(j′)

=
∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)x∗ij′ + c(j′, ψ(j′))(1−
∑
i∈Nj′

x∗ij′)). Thus, by equation (6),
we get

∑
j′∈CS

dj′(
∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))(1−
∑
i∈Nj′

w′i)) ≤ 12LPopt.
Thus, the solution w′ is feasible and CostKM(w′),∑

j′∈CS

dj′

 ∑
i∈Nj′

c(i, j′)w′i + c(j′, ψ(j′))

1−
∑
i∈Nj′

w′i

 + u
∑
j′∈CD

∑
i∈Nj′

c(i, j′)w′i ≤ (2` +

13)LPopt.

5.2 Proof of Lemma 11
i) We will prove the claim by induction. Let LP (t) denote the LP at the beginning of the
tth iteration and w̃(t) denote the solution at the end of the tth iteration. We will show
that if w̃(t) is a feasible solution to LP2, then w̃(t+1) is also a feasible solution to LP2.
Since w̃(1) is feasible (extreme point solution), the feasibility of the solution follows. Let
F̃ (t), B̃(t), s(t), S(t), τ̂()(t), R(t) denote the values at the beginning of the tth iteration.
Then, w̃(t+1)

i = w̃
(t)
i ∀i ∈ F \ F̃ (t+1).
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Consider a constraint that was not present in LP (t+1). In any iteration, we remove a
constraint only when none of the facilities in its corresponding clusters is fractionally
opened. That is all the facilities in τ(j′) appearing on the left hand side of a constraint
are integral. Thus w̃(t+1)

i = w̃
(t)
i for all such facilities. Hence if they are satisfied by

w̃(t) then they are satisfied by w̃(t+1). So, we consider only those constraints that
were present in LP (t+1). For j′ ∈ CS , since τ̂(j′)(t+1) = τ(j′) \ F̃ (t)

0 ∀t, therefore,∑
i∈τ̂(j′)(t+1) w̃

(t+1)
i =

∑
i∈τ(j′) w̃

(t+1)
i ∀t. Thus, we will omit (t) and use τ() instead of

τ̂() for brevity of notation.
Consider constraints (7) that were not removed in tth iteration. Since τ(j′) ⊆ F̃ (t+1) for
j′ ∈ CS , the feasibility of the constraint follows as w̃(t+1) is an extreme point solution of
the reduced LP over the set F̃ (t+1).
Next, consider constraints (8). Let F (t)

1 denote the set of facilities that are opened
integrally in w̃(t) i.e., w̃(t)

i = 1 ∀i ∈ F (t)
1 then the corresponding constraint in LP (t+1) is∑

i∈τ(j′)\F(t)
1
wi = bdj′

u c− |F
(t)
1 |. Since w̃(t+1) is an extreme point solution of LP (t+1), it

satisfies this constraint i.e.,
∑
i∈τ̂(j′)\F(t)

1
w̃

(t+1)
i = bdj′

u c − |F
(t)
1 |. Since w

(t+1)
i = w

(t)
i =

1 ∀i ∈ F (t)
1 , adding F (t)

1 on both the sides, we get the desired feasibility.
Consider constraints (9). Since w̃(t) is feasible for LP2, we have

∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t)
i

≥ αr and since w̃(t+1) is feasible for LP (t+1), we have
∑
j′∈S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i ≥ s(t+1)

r .
Then,

∑
j′∈Gr∩CS

∑
i∈τ(j′) w̃

(t+1)
i =

∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t+1)
i +∑

j′∈S(t+1)
r

∑
i∈τ(j′) w̃

(t+1)
i ≥

∑
j′∈(Gr∩CS)\S(t+1)

r

∑
i∈τ(j′) w̃

(t)
i + s

(t+1)
r

=
∑
j′∈(Gr∩CS)\S(t+1)

r
1 + s

(t+1)
r (as these clusters must have been removed as they got

tight) = |(Gr ∩ CS) \ S(t+1)
r |+ s

(t+1)
r = αr.

Next, consider constraint (10). Since w̃(t) is feasible for LP2, we have
∑
i∈F fiw̃

(t)
i ≤ B

and since w̃(t+1) is feasible for LP (t+1), we have
∑
i∈F̃(t+1) fiw̃

(t+1)
i ≤ B̃(t+1). Also, we

have w(t+1)
i = w

(t)
i ∀i ∈ F \ F̃ (t+1). Consider

∑
i∈F fiw̃

(t+1)
i =

∑
i∈F\F̃(t+1) fiw̃

(t+1)
i +∑

i∈F̃(t+1) fiw̃
(t+1)
i ≤

∑
i∈F\F̃(t+1) fiw̃

(t)
i + B̃(t+1).

And since B̃(t+1) = B −
∑
i∈F\F̃(t+1) fiw̃

(t)
i , we have

∑
i∈F fiw̃

(t+1)
i ≤ B. Thus, the

solution w̃(t+1) is feasible.
ii) Consider the last iteration of the algorithm. The iteration ends either at step (3− 4)

or at step (9− 10). In the former case, the solution clearly has no fractionally opened
facility. Suppose we are in the latter case. Let the linearly independent tight constraints
corresponding to (7), (8) and (9) be denoted as X , Y and Z respectively. Let A and
B be set of variables corresponding to some constraint in X and Z respectively such
that A ∩B 6= ∅. Then, A ⊆ B. Imagine deleting A from B and subtracting 1 from sr.
Repeat the process with another such constraint in X until there is no more constraint in
X whose variable set has a non-empty intersection with B. At this point, sr ≥ 1 and the
number of variables in B is at least 2. Number of variables in any set corresponding to a
tight constraint in X (or Y) is also at least 2. Thus, the total number of variables is at
least 2|X |+ 2|Y|+ 2|Z| and the number of tight constraints is at most |X |+ |Y|+ |Z|+ 1.
Thus, we get |X |+ |Y|+ |Z| ≤ 1 and hence there at most two (fractional) variables.

iii) Note that no facility is opened in Nj′ \ τ(j′) : j′ ∈ CS for if i ∈ Nj′ \ τ(j′) : j′ ∈ CS
is opened, then it can be shut down and the demand dj′w̃i, can be shipped to ψ(j′),
decreasing the cost as c(j′, ψ(j′)) < c(i, j′). Then, the claim follows as we compute
extreme point solution in step (7) in the first iteration and the cost never increases in
subsequent calls.
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5.3 Proof of Lemma 12
i) Let jd ∈ CD ∩ Gr. Total demand djd

of jd can be distributed to the opened facilities
(≥ bdjd

/uc) at a loss of factor 2 in capacity and cost both, as djd
/u − bdjd

/uc < 1 ≤
bdjd

/uc.
For σr = 0, (ii) - (v) hold vacuously. So, let σr ≥ 1.

ii) LP2 opens αr = max{0, σr − 1} facilities in Gr ∩ CS . Constraint (7) ensures that at
most one facility is opened in each sparse cluster. Thus, there is at most one cluster in
Gr ∩ CS with no facility opened in it.

iii) and iv) Let j′ ∈ Gr ∩ CS such that no facility is opened in τ(j′). If j′ is not the root of
Gr or Gr is a root MC, then LP2 must have opened a facility in τ(ψ(j′)). Demand of j′
is assigned to this facility at a loss of maximum 2 factor in capacity if ψ(j′) ∈ CS and 3
if ψ(j′) ∈ CD: dψ(j′) = 1.99u and dj′ = .99u. Otherwise (if j′ is the root of Gr and Gr is
not a root MC), at most u units of demand of Gr remain unassigned within Gr. (v) holds
asbdjd

/uc facilities are opened in the cluster centered at jd and αr = max{0, σr − 1}
facilities are opened in Gr ∩ CS by constraints (8) and (9) respectively. (vi) Since the
demand dj′ of j′ ∈ Gr is served either within its own cluster or in the cluster centered
at ψ(j′), total distance traveled by demand dj′ of j′ to reach the centers of the clusters
in which they are served is bounded by dj′c(j′, ψ(j′)).

5.4 Proof of Lemma 13
After assigning the demands of the clusters within Gr as explained in Lemma (12), demand
coming from all the children meta-clusters are distributed proportionately to facilities within
Gr utilizing the remaining capacities. Next, we will show that this can be done within the
claimed capacity bound.

i) Let Gr be a non leaf meta-cluster with a dense cluster j′ ∈ CD at the root, if any. Also,
let tr be the total number of clusters in Gr, i.e., tr = δr + σr. The total demand to
be served in Gr is at most u(bdj′/uc + 1 + σr) + u(tr + 1) ≤ (βr + 2)u + (tr + 1)u
whereas the total available capacity is at least βru by Lemma (12). Thus, the capacity
violation is bounded by (βr+2)u+(tr+1)u

βru
≤ (βr+2)u+(βr+2)u

βru
= 2 + 4/βr ≤ 2 + 4/(` − 1)

(as bdj′/uc ≥ δr we have βr ≥ σr − 1 + δr = tr − 1 = `− 1 for a non-leaf MC).
The capacity violation of factor 3 can happen in the case when no facility is opened in
τ(j′) for j′ ∈ CS and ψ(j′) ∈ CD as explained in Lemma (12).
Leaf meta-clusters may have length less than l but they do not have any demand coming
onto them from the children meta-cluster, thus capacity violation is bounded as explained
in Lemma (12).

ii) Let j′ belongs to a MC Gr such that its demand is not served within Gr. Then, j′ must
be the root of Gr and its demand is served by facilities in clusters of the parent MC, say
Gs. Since the edges in Gs are no costlier than the connecting edge (j′, ψ(j′)) of Gr and
there are at most `− 1 edges in Gs, the total distance traveled by demand dj′ of j′ to
reach the centers of the clusters in which they are served is bounded by `dj′c(j′, ψ(j′)).

5.5 Proof of Lemma 14
Let j′ ∈ C′. Let λ(j′) be the set of centers j′′ such that facilities in τ(j′′) serve the demand
of j′. Note that if some facility is opened in τ(j′), then λ(j′) is {j′} itself and if no facility is
opened in τ(j′), then λ(j′) = {j′′ : ∃i ∈ τ(j′′) such that demand of j′ is served by i as per
the assignments done in Lemmas (12) and (13)}.
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The cost of assigning a part of the demand dj′ to a facility opened in λ(j′)∩CS is bounded
differently from the part assigned to facilities in λ(j′) ∩ CD.

Let j′′ ∈ CS ∩ λ(j′), i ∈ τ(j′′). Then, c(j′′, i) ≤ c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)). Last
inequality follows as: either j′′ is above j′ in the same MC (say Gr) (by Lemma (12.3)) or
j′′ is in the parent MC (say Gs) of Gr. In the first case, the edge (j′′, ψ(j′′)) is either in Gr
or is the connecting edge of Gr. The inequality follows as edge costs are non-increasing as
we go up the tree. In the latter case, edge (j′′, ψ(j′′)) is either in Gs or it is the connecting
edge of Gs: in either case, c(j′′, ψ(j′′)) ≤ c(j′, ψ(j′)) as the connecting edge of Gs is no
costlier than the edges in Gs which are no costlier than the connecting edge of Gr (possibly
c(j′, ψ(j′))) which are no costlier than the edges in Gr. Summing over all j′, j′′ ∈ CS , we
see that this cost is bounded by O(1)LPopt.

Next, let j′′ ∈ CD ∩λ(j′), i ∈ Nj′′ . Further, let gi be the total demand served by a facility
i. Since gi ≤ 3u, the cost of transporting 3u units of demand from j′′ to i is 3uŵic(i, j′′).
Summing it over all i ∈ Nj′′ , j′′ ∈ CD, and then over all j′ ∈ C′, we get that the total cost
for CD is bounded by O(1)LPopt.

5.6 Proof of Lemma 17
i) Let jd ∈ CD ∩G1

r. Consider the case when res(jd) < ε. The total demand (bdjd
/uc+

res(jd))u ≤ (bdjd
/uc+ ε)u of G1

r can be distributed to the opened facilities (≥ bdjd
/uc)

at a loss of factor 2 in capacity as bdjd
/uc ≥ 1.

When ε ≤ res(jd) < 1, the demand of G1
r is at most (bdjd

/uc + res(jd) + 1)u ≤
(bdjd

/uc+ 2)u. The available opening is bdjd
/uc+ 1. Thus, the capacity violation is at

most (bdjd
/uc+ 2)u/(bdjd

/uc+ 1)u < 2 as bdjd
/uc ≥ 1. Hence G1

r is self-sufficient.
For σr = 0, (ii) - (vi) hold vacuously. Thus, now onwards we assume that σr ≥ 1.

ii) LP2 opens max{0, σ′r − 1} facilities in G2
r where σ′r is the number of clusters in G2

r.
Constraint (12) ensures that at most one facility is opened in each cluster. Thus, there
is at most one cluster in G2

r with no facility opened in it and it is a sparse cluster. Next
consider G1

r with a sparse cluster in it, i.e., G1
r = {jd, js}, it is possible that all the γr

facilities are opened in τ(jd) and no facility is opened in τ(js). Thus, there are at most
two clusters with no facility opened in them and these clusters are sparse.

iii) and iv) Let j′ ∈ G2
r such that no facility is opened in τ(j′). If ψ(j′) ∈ G2

r, then LP2
must have opened a facility in τ(ψ(j′)). Demand of j′ is assigned to this facility at a loss
of maximum 2 factor in capacity. If ψ(j′) /∈ G2

r then either G1
r is empty or ψ(j′) ∈ G1

r.
In the former case j′ must be the root of Gr and Gr cannot be the root MC. Clearly,
at most u units of demand of Gr remain unassigned within Gr. In the latter case
i.e., ψ(j′) ∈ G1

r, then ψ(j′) is either jd or js.
v) and vi) We will next show that demand of j′ will be absorbed in τ(jd) ∪ τ(js) in the

claimed bounds along with claims (v) and (vi) of the lemma.

1. res(jd) < ε, we have G1
r = {jd}, γr = bdjd

/uc, G2
r = Gr ∩ CS , σ′r = σr, and

βr = bdjd
/uc+ σr − 1. In this case, j′ = js and ψ(j′) = jd. LP2 must have opened at

least bdjd
/uc ≥ 1 facilities in τ(jd) Total demand (bdjd

/uc+ res(jd) + 1))u of jd and
j′ can be distributed to the facilities opened in τ(jd) (≥ bdjd

/uc) at a loss of factor
2 + ε in capacity, as res(jd) < ε and 1 ≤ bdjd

/uc.
2. ε ≤ res(jd) < 1, we have G1

r = {jd, js}, γr = bdjd
/uc + 1, G2

r = Gr ∩ CS \ {js},
σ′r = σr − 1 and βr = bdjd

/uc + σr − 1 if σr ≥ 2 and = bdjd
/uc + 1 if σr = 1.

In this case, ψ(j′) = js. In the worst case, no facility is opened in τ(js). LP2
must have opened at least bdjd

/uc+ 1 ≥ 2 facilities in τ(jd) ∪ τ(js). Total demand
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(bdjd
/uc+ res(jd) + 1 + 1))u of jd, js and j′ can be distributed to the facilities opened

in τ(jd) ∪ τ(js) (≥ bdjd
/uc+ 1) at a loss of factor 2 in capacity, as bdjd

/uc+ 1 ≥ 2.

vii) Clearly, c(j′, jd) ≤ 2c(j′, ψ(j′)). (2) above also handles the case when no facility is
opened in a sparse cluster in G1

r.
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Abstract
In this paper, we propose and analyze a local search algorithm for the Universal facility location
problem. Our algorithm improves the approximation ratio of this problem from 5.83, given by
Angel et al., to 5. A second major contribution of the paper is that it gets rid of the expensive
multi operation that was a mainstay of all previous local search algorithms for capacitated facility
location and universal facility location problem. The only operations that we require to prove the
5-approximation are add, open, and close. A multi operation is basically a combination of the
open and close operations. The 5-approximation algorithm for the capacitated facility location
problem, given by Bansal et al., also uses the multi operation. However, on careful observation,
it turned out that add, open, and close operations are sufficient to prove a 5-factor for the
problem. This resulted into an improved algorithm for the universal facility location problem,
with an improved factor.
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1 Introduction

In a facility location problem we are given a set of clients C = {1, . . . ,m} and a set of facilities
F = {1, . . . , n}. A client j has a demand dj which needs to be serviced by some facilities,
i.e., the demand is splittable. The cost of servicing a client j ∈ C by a facility i is given by
cij (the service cost). The service costs form a metric. Further let, for i, i′ ∈ F i 6= i′, cii′ be
the cost of the shortest path between i and i′, i.e. cii′ = minj∈C(cji + cji′). For the sake of
simplicity, we consider the case when demand of a client j ∈ C is one. Arbitrary demands
can be easily handled by doing slight modifications, details of which can be found in Pal et
al. [4] and Mahdian et al. [3].

In the classical uncapacitated facility location problem (UFL), we are also given f : F →
<+, and fi is the cost of opening a facility at location i. In the capacitated version of the
facility location problem, besides the cost of opening a facility at location i we are also
given an upper bound ui on the number of clients that can be served at location i. The
Universal facility location (UniFL) problem is a further generalization of the capacitated
facility location problem. Now the cost of opening a facility at i ∈ F depends on the number
of clients that this facility would serve and is given by a cost function fi(.), which is a
monotonically non-decreasing function of the capacity allocated to facility i. Thus if ui is the
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capacity allocated to facility i, then fi(ui) is its facility opening cost. The aim is to determine
a capacity allocation vector U = 〈u1, u2, · · · , un〉 such that the total cost of opening facilities
and the cost of serving clients by the open facilities, while respecting capacity constraints, is
minimized. Once the allocation vector U is known it is easy to determine the assignment
of clients by solving a mincost flow problem. Therefore the capacity allocation vector U
completely determines the solution. Note that if fi(ui) = ∞ for ui > ci and fi(ui) = fi

otherwise, then we have an instance of the capacitated facility location problem where ci is
the fixed capacity of facility i.

The Universal facility location problem was introduced by Mahdian and Pal [3] who gave
a 7.88-approximation algorithm which was improved by Vygen [5] to a 6.702-approximation.
This has been further improved to a 5.83-approximation by Angel et al. [1]. Our main
result in this paper, is a 5-approximation algorithm for this problem. Our algorithm extends
our earlier 5-approximation algorithm for the capacitated facility location problem [2] and
borrows heavily from that work. Bansal et al. [2] gave a local search algorithm for capacitated
facility location problem that uses the operations add, mopen, mclose, and mmulti. Our
algorithm too uses the operations add, mopen, and mclose (which we call open, and close
in this paper) but doesn’t require the mmulti operation. The mmulti operation which is
a combination of an open and close operation is an expensive operation to perform and
has appeared in some form in all previous works on universal facility location problem and
capacitated facility location problem. By getting rid of this expensive operation we hope that
our algorithm would be simpler to implement and faster in practice. This paper, thus, not
only extends but also simplifies the result in [2]. Bansal et al. [2] argue that the locality gap
of any procedure for the capacitated facility location problem that uses the operations add,
mopen, mclose, and mmulti is atleast 5. This lower bound also applies in our setting since
we consider a subset of these operations for a more general problem. When analyzing the
cost of an operation we sometimes assign clients fractionally to the facilities. This can be
done as it is well known that a fractional assignment cannot be better than the integral
optimum assignment, in an assignment problem.

The remainder of this paper is organized as follows: We begin with some preliminaries
and in section 3 we present the local search steps. In Section 4 we analyse the local search
algorithm by identifying a suitable set of inequalities and finally in Section 5 we put the
various pieces together to prove our main theorem. As mentioned earlier, our paper borrows
heavily from ideas developed in [2, 6] and other previous work. At many places we have
rephrased key arguments to keep the paper self-contained.

2 Preliminaries

A solution to the UniFL problem consists of a capacity allocation vector and an assignment
of the clients to the facilities which obey capacity constraints.

Let us consider an allocation vector U = 〈u1, u2, . . . , un〉 for a given instance. We abuse
notation and use U to denote both the solution and the allocation vector. The cost of a
solution U is denoted by c(U) = cf (U) + cs(U), where cf (U) is the facility cost and cs(U) is
the service cost of the solution U .

Let U be a locally optimal solution and U∗ be an optimum solution. For each s ∈ F ,
us (respectively u∗s) denotes the capacity allocated to s in the locally optimal (respectively
optimum) solution. Let FU (respectively FU∗) be the set of facilities for which us (respectively
u∗s) is greater than zero. It is no loss of generality to assume that us is the number of clients
served by s in U , and u∗s the no. of clients served by s in U∗.
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Let σ(j), τ(j) be the facilities serving client j in solutions U,U∗ respectively. Construct a
bipartite graph, G = (C ∪ F,E) where E contains edges (σ(j), j) and (j, τ(j)). Thus each
client has one incoming and one outgoing edge while a facility s has us outgoing edges and
u∗s incoming edges. The graph G is now decomposed into a set of maximal paths, P, and
cycles, C. A path P ∈ P is a sequence of vertices s = s0, j0, s1, j1, . . . , sk, jk, sk+1 = o, which
starts at a vertex s ∈ FU and ends at a vertex o ∈ FU∗ . Let head(P ) denote the client served
by s and tail(P ) the client served by o on this path. Note that {s1, s2, . . . , sk} ⊆ FU ∩ FU∗ .
Similarly all facilities on a cycle are from FU ∩ FU∗ .

The length of a path P is given by

length(P ) =
∑

j∈C∩P

(U∗j + Uj)

where U∗j (respectively Uj) is the service cost of client j in the solution U∗(respectively U).
Note that∑

P∈P
length(P ) +

∑
Q∈C

length(Q) = cs(U) + cs(U∗).

A shift along a path P is a reassignment of clients so that ji which was earlier assigned to si

is now assigned to si+1. As a consequence of this shift, facility s serves one client less while
facility o serves one client more. shift(P ) denotes the increase in service cost due to a shift
along P i.e.

shift(P ) =
∑

j∈C∩P

(U∗j − Uj).

For a cycle in C the increase in service cost equals the sum of U∗j − Uj for all clients j in the
cycle and since the assignment of clients to facilities is done optimally in our solution and in
the global optimum, this sum is zero. Thus∑

Q∈C

∑
j∈Q

(U∗j − Uj) = 0.

Let No
s be the set of paths that begin at s and end at o. Define out(s) = ∪oN

o
s as the

set of paths starting from s and in(o) = ∪sN
o
s as the set of paths ending at o. Since the

paths chosen are maximal, for any s, at least one of the two sets in(s),out(s) is empty.
Let S be the set of facilities for which in(s) is empty and O the set of facilities for which
out(s) is empty. Hence, S ∩O = φ. Note that for s ∈ S, |out(s)| = us − u∗s and for s ∈ O,
|in(s)| = u∗s − us.

Define a capacity function, û, on the facilities as follows: û(s) equals |out(s)| = us − u∗s
if s ∈ S, it equals |in(s)| = u∗s − us if s ∈ O and is 0 for s ∈ F \ (S ∪O). To bound the cost
of facilities in S, we reduce the capacity of each facility s ∈ S from us to u∗s and reassign
us − u∗s = û(s) clients served by s to facilities in O. We refer to this step as closing facility s.
Similarly, opening a facility o ∈ O implies increasing its capacity by u∗o − uo = û(o). open
and close operations are explained in the next section.

To formulate a suitable set of inequalities we formulate an assignment problem where
each node s ∈ S has supply û(s) and a node o ∈ O has demand û(o). When a client served
by s is transferred to o the increase in service cost is at most cso and hence this is the cost of
sending one unit of flow from node s to o. Let y(s, o) be the flow from s to o in an optimum
solution to this assignment problem.
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I Lemma 1. The cost of an optimum flow y is at most cs(U) + cs(U∗).

Proof. Consider a solution ŷ defined as ŷ(s, o) = |No
s |. It is easy to check that this is a feasible

solution to the assignment problem. Note that for every path P ∈ No
s , length(P ) ≥ cso.

Hence∑
s

∑
o

csoŷ(s, o) ≤
∑

s

∑
o

∑
P∈No

s

length(P )

=
∑

P∈P
length(P )

≤ cs(U) + cs(U∗) J

It is easy to argue that there is an optimum flow y where the edges carrying non-zero flow
form an acyclic subgraph. We call this subgraph as exchange graph. Let G′ = (S ∪O,E′)
where E′ = {(s, o)|y(s, o) > 0} and suppose G′ is not acyclic. Let C be the edges on a cycle.
Take alternate edges of C to form sets C1, C2. Let γ be the minimum flow on an edge in C.
Consider two operations - one in which we increase the flow on edges in C1 and decrease
the flow on edges in C2 by an amount γ and the other in which we do the inverse. In one
of these operations the total cost

∑
s∈S,o∈O csoy(s, o) would not increase and the flow on

one of the edges would reduce to zero thereby removing it from the graph. This process is
continued till the graph becomes acyclic. Note that the total flow from nodes of S to a node
o ∈ O is equal to û(o) i.e.,

∑
s∈S y(s, o) = û(o) and total flow from a node s ∈ S to nodes in

O is equal to û(s), i.e.,
∑

o∈O y(s, o) = û(s).

3 The local search operations

Starting with a feasible solution U , we perform add, open and close operations to improve
the solution U if possible. Given a solution U , we can assume that for each facility i ∈ U , ui

is exactly equal to the number of clients it is serving for if it is not true then we can reduce
ui and hence the cost of the solution. U is locally optimal if none of these operations improve
the cost of the solution and at this point the algorithm stops. The add operation is the same
as given by Mahdian and Pal [3] while the open and close are almost the same as in [2].

add(s, δ). In this operation the capacity allocated at a facility s is increased by an amount
δ > 0. A mincost flow problem is then solved to find the best assignment of clients to the
facilities. As a consequence of this operation the cost increases by: fs(us + δ) − fs(us) +
cs(U ′)− cs(U) where U ′ is the new solution after increasing the capacity of s. This operation
can be performed in polynomial time [3] .

open(t, δ1, δ2). This operation is best viewed as a combination of two operations. In the
first operation the capacity allocated at t ∈ F is increased by δ2 and the total capacity of a
set T , to be determined as a part of the operation, is decreased by the same amount. The
second operation is add(t, δ1 − δ2). Our procedure for implementing this operation is as
follows.
1. We create an instance of the knapsack problem where the sack has capacity δ2. For

each facility i ∈ F, i 6= t, we have for all 0 < j < ui, an object of weight j and profit
fi(ui) − fi(ui − j) − j · cit. Picking such an object into the knapsack corresponds to
reducing the capacity of facility i by j units and the profit is a lower bound on the
savings we get and is obtained by reassigning j clients served by i to t. The knapsack
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t

Kd(t)
Ku(t)

O

S

O

Figure 1 A subtree of height 2 showing up-facilities and down-facilities. The square facilities are
in the optimum solution while the circular facilities are in the locally optimum solution. The arrow
in the facility identifies it as an up/down facility.

problem is to maximise profit under the constraint that we can pick at most one object
corresponding to each facility. Thus, by solving the knapsack problem, we find a set T
and for each facility i ∈ T , a quantity j by which the capacity at i is decreased.

2. Independently of the above knapsack procedure we find, by solving a mincost flow problem,
the maximum savings in service cost if an additional δ1 − δ2 clients are assigned to t.

The profit in step 1 and the savings in step 2, when reduced by (ft(ut + δ1)− ft(ut)) is an
estimate of the savings obtained by this operation and if this quantity is positive we have
a local improvement. Step 2 can be performed in polynomial time. To perform step 1 in
polynomial time, a dynamic programming solution, similar to Mahdian and Pal [3] is used,
and values of j are taken to be non-negative integers.

close(t, δ1, t∗). This operation too is best viewed as a combination of two operations. The
first operation is add(t∗, δ2 − δ1). In the second operation the capacity allocated at t ∈ F
is decreased by δ1 and the total capacity of a set T, t∗ ∈ T , to be determined during the
operation, is increased by an amount δ2, δ2 > δ1. Assuming δ2 ≥ 0 is known, the operation
can be implemented as follows.

1. We solve a mincost flow problem to compute the maximum savings in service cost when
δ2 − δ1 clients are assigned to t∗.

2. Next we create a knapsack instance with sack capacity δ1. For all 0 < j < δ1, for each
facility i ∈ F, i /∈ {t, t∗}, we have an object of weight j and profit fi(ui)−fi(ui +j)−j ·cit

while for facility i = t∗, we have an object of weight j and profit fi(ui + δ2 − δ1)− fi(ui +
j + δ2 − δ1)− j · cit. As before, the knapsack problem is to maximise profit under the
constraint that we can pick at most one object corresponding to each facility.

The savings in step 1 and the profit in step 2, when increased by (ft(ut) − ft(ut − δ1)) −
(ft∗(ut∗ + δ2 − δ1)− ft∗(ut∗)) is an estimate of the savings obtained by this operation and if
this quantity is positive we have a local improvement. To perform step 2 in polynomial time,
a dynamic programming solution, similar to Mahdian and Pal [3] is used with values of j
being non-negative integers.
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t

Ku(t)

Figure 2 open operation considered for handling facilities in Ku(t) when t is an up-facility.

4 Bounding the cost of our solution

Recall that U is a locally optimal solution and U∗ is an optimum solution. Also, G′ is an
exchange graph and y defines an optimum flow on the edges in this graph. We consider
potential local improvement steps and using the fact that U is a locally optimal solution,
formulate suitable inequalities which help us bound the cost of our solution. The inequalities
are written such that

1. each facility in S is closed once.

2. each facility in O is opened at most five times.

3. the total cost of reassigning clients is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈in(o)

shift(P ).

Every tree in the forest G′ is rooted at a facility in O. Consider a subtree T of height 2
having root t ∈ O( Figure 1). For a facility i, let p(i) be the parent and K(i) the children of
i. A facility i is an up-facility if y(i, p(i)) ≥

∑
j∈K(i) y(i, j) and a down-facility otherwise.

Ku(i) (respectively Kd(i)) denote the children of i which are up-facilities (respectively
down-facilities).

Our choice of operations, considered for the purpose of analysis, is different from the ones
considered in [2] and ensure that for a facility o ∈ O:

1. If o is an up-facility, it is opened at most twice in operations involving facilities which are
descendants of o in the tree and is opened at most twice in other operations.

2. If o is a down-facility, it is opened at most four times in operations involving facilities
which are descendants of o in the tree and is opened at most once in other operations.
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t

A B

t

Figure 3 open operations considered for facilities in Ku(t) \ {h} when t is a down facility.

4.1 Closing children of t which are up-facilities
Consider the children of t which are up-facilities. We first consider the easier case when t is
an up-facility(Figure 2). Now,

û(t) =
∑

s∈K(t)

y(s, t)+y(p(t), t) ≥
∑

s∈Ku(t)

y(s, t)+y(p(t), t) ≥
∑

s∈Ku(t)

2y(s, t) ≥
∑

s∈Ku(t)

û(s)

where the second last inequality is due to the fact that t is an up-facility and the last
inequality holds since for all s ∈ Ku(t) we have

û(s) = y(s, t) +
∑

o∈K(s)

y(s, o) ≤ 2y(s, t).

Thus all facilities s ∈ Ku(t) can be closed (i.e.,their capacity reduced by û(s)) in a single
operation open(t, û(t),

∑
s∈Ku(t) û(s)). We now bound the cost of reassignment of clients as

a result of this operation.

1. û(s) clients of a facility s ∈ Ku(t) are assigned to t. Since for s ∈ Ku(t), û(s) ≤ 2y(s, t),
this reassignment cost is at most 2y(s, t)cst.

2. We can assign an additional û(t)−
∑

s∈Ku(t) û(s) clients to t. One way of doing this is
by shifting to an extent (1−

∑
s∈Ku(t) û(s)/û(t)) along each of the û(t) paths in in(t).

Since U is locally optimal, this operation will not improve the cost of U . This operation
then yields the inequality

ft(u∗t )− ft(ut)−
∑

s∈Ku(t)

(fs(us)− fs(u∗s)) +

∑
s∈Ku(t)

2y(s, t)cst +

1−
∑

s∈Ku(t)

û(s)/û(t)

 ∑
P∈in(t)

shift(P ) ≥ 0 (1)

We next consider the case when t is a down-facility (Figure 3) and begin by noting that∑
s∈Ku(t)

û(s) ≤
∑

s∈Ku(t)

2y(s, t) ≤ 2
∑

s∈K(t)

y(s, t) ≤ 2û(t).
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s1 si Si+1 sk

t

Kd(t)        

sk

t

h

t

…

Figure 4 close operations for facilities in Kd(t) and facility h showing the reassignment of clients
when one of these facilities are closed.

Let h = arg maxs∈Ku(t) y(s, t) and partition the facilities in Ku(t) \ h into two sets A and B
such that

∑
s∈A û(s) ≤ û(t) and

∑
s∈B û(s) ≤ û(t). The facilities in sets A and B are closed

in two open operations open(t, û(t),
∑

s∈A û(s)) and open(t, û(t),
∑

s∈B û(s)) respectively;
see Figure 3.

The extra capacity available at t in each of these open operations is used to assign
additional clients to t in the same manner as done earlier.

The facility h is handled together with the facilities in Kd(t) using close operations as
discussed next.

4.2 Closing facility h and down-facilities which are children of t

Now we discuss the operations to close facilities s ∈ Kd(t) ∪ {h} and refer to Figure 4.
Consider the facilities in Kd(t). As in [2, 5], for every s ∈ Kd(t) we define rem(s) = y(s, t)−∑

o∈Kd(s) y(s, o) and rename the facilities in Kd(t) so that rem(s1) ≤ rem(s2) ≤ · · · rem(sk).
We can close facility si ∈ Kd(t), i < k by reassigning û(si) of its clients to facilities in

K(si) ∪Ku(si+1) as follows:
1. y(si, o) clients are reassigned to o ∈ Ku(si).
2. 2y(si, o) clients are reassigned to o ∈ Kd(si). Since o is a down-facility, y(si, o) ≤∑

s′∈K(o) y(s′, o) and hence 2y(si, o) ≤ û(o).
3. This leaves rem(si) = y(si, t)−

∑
o∈Kd(si) y(si, o) clients, which are reassigned to facilities

in Ku(si+1). Doing so is feasible since

rem(si) ≤ rem(si+1) = y(si+1, t)−
∑

o∈Kd(si+1)

y(si+1, o) ≤
∑

o∈Ku(si+1)

y(si+1, o).

We denote by z(si, o) the number of clients reassigned to o ∈ K(si) ∪Ku(si+1) in the
above argument.

We can formulate the following inequality, w.r.t.closing of facility si:
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I Lemma 2.

fsi(usi)− fsi(u∗si
)−

∑
o∈K(si)∪Ku(si+1)

(fo(u∗o)− fo(uo))

≤
∑

o∈K(si)∪Ku(si+1)

z(si, o)csio +
∑

P∈in(o)

(
1− z(si, o)

û(o)

)
shift(P )

 (2)

Proof. Denote the set K(si) ∪ Ku(si+1) by T . Consider the facilities of T in decreasing
order of z(si, o)/û(o) and keep including them into a set T ′ until the total capacity of the
facilities in T ′, i.e.

∑
o∈T ′ û(o), exceeds û(si). Let t∗ be the last facility to be included into

T ′ and k = û(si)−
∑

o∈T ′\{t∗} û(o) be the number of clients reassigned from si to t∗. Then
a close(si, û(si), t∗) operation which reassigns û(o) clients from si to o ∈ T ′ \ {t∗}, k clients
from si to t∗ and an additional û(t∗)− k clients to t∗ by performing a shift along each path
in in(t∗) to an extent 1− k/û(t∗) yields the inequality

fsi
(usi

)− fsi
(u∗si

)−
∑
o∈T ′

(fo(u∗o)− fo(uo))

≤
∑

o∈T ′\{t∗}

û(o)csio + kcsit∗ + (1− k/û(t∗))
∑

P∈in(t∗)
shift(P ) (3)

We now build a linear combination by taking inequality 3 to an extent of ξ, reduce z(si, o)
by ξ · û(o) for all facilities o ∈ T ′ \ {t∗} and reduce z(si, t

∗) by ξ · k, where ξ is the largest
value such that z(si, o) ≥ 0, o ∈ T ′. We keep building the linear combination in this manner
till ξ = 0. This process can be viewed as sending ξ · û(si) units of flow from si to facilities in
T ′ with facility o ∈ T ′ \ {t∗} receiving ξ · û(o) flow and facility t∗ receiving ξ · k flow. The
edges (si, o) have capacity z(si, o) which is reduced by the amount of flow sent in each step.
Initially the total capacity of all edges

∑
o∈T z(si, o) equals the amount of flow û(si) that

needs to be sent and this property is maintained at each step. By picking the facilities with
the largest values of z(si, o)/û(o) we are ensuring that the maximum of these quantities
never exceeds the fraction of the flow that remains to be sent. This implies that when the
procedure terminates all z(si, o) are zero and û(si) units of flow have been sent.

If a facility o ∈ T was opened to an extent λo in the above process, then its con-
tribution in the linear combination would be λo(fo(u∗o) − fo(uo)) + z(si, o)csio + (λo −
z(si, o)/û(o))

∑
P∈in(o) shift(P ). We add a 1− λo multiple of the inequality

fo(u∗o)− fo(uo) +
∑

P∈in(o)
shift(P ) ≥ 0 (4)

which corresponds to the operation add(o, û(o)), to the linear combination to match the
contribution of o in Inequality 2. J

Note that due to the above process, si is closed to an extent of one and o ∈ T is opened
to an extent of one.

We now consider operations of the kind close(sk, û(sk), t∗) where t∗ ∈ K(sk) ∪ {t} to
handle sk. As before we build a suitable linear combination of the inequalities arising
from these operations while ensuring that the total number of clients reassigned from sk to
o ∈ K(sk)∪{t} is z(sk, o) = y(sk, o). The inequality corresponding to this linear combination
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is given by

(fsk
(usk

)− fsk
(u∗sk

))−
∑

o∈K(sk)∪{t}

(fo(u∗o)− fo(uo))

≤
∑

o∈K(sk)∪{t}

z(sk, o)csko +
∑

o∈K(sk)∪{t}

∑
P∈in(o)

(1− z(sk, o)/û(o))shift(P ) (5)

Note that in the above process, sk is closed to an extent of one and o ∈ K(sk) ∪ {t} is
opened to an extent of one.

The following lemma bounds the cost of reassigning clients (excluding the cost of shifting
along paths in P) in the close operations on facilities in Kd(t).

I Lemma 3.

k∑
i=1

∑
o

z(si, o)csio ≤ 2
k∑

i=1

∑
o∈K(si)∪{t}

y(si, o)csio

Proof. We begin by observing that since edge costs form a metric, csio, o ∈ Ku(si+1) is at
most csit + ctsi+1 + csi+1o.

The contribution of the edge (si, t), i 6= 1, k to the reassignment cost is at most (rem(si)+
rem(si−1))csit. Since both rem(si−1) ≤ rem(si) ≤ y(si, t) the total contribution of this edge
is at most 2y(si, t)csit. The contribution of the edge (s1, t) to the reassignment cost is at
most rem(s1)cs1t ≤ y(s1, t)cs1t while the contribution of the edge (sk, t) to the reassignment
cost is at most (rem(sk−1) + y(sk, t))cskt ≤ 2y(sk, t)cskt.

The contribution of the edge (si, o), o ∈ Kd(si) is at most 2y(si, o)csio since 2y(si, o)
clients are assigned to o when si is closed.

The contribution of the edge (si, o), o ∈ Ku(si), i 6= 1 is at most 2y(si, o)csio since at
most y(si, o) clients are assigned to j once when si is closed and once when si−1 is closed.
The contribution of the edge (s1, o), o ∈ Ku(s1) is at most y(s1, o)cs1o. J

Finally, by considering operations close(h, û(h), t∗) where t∗ ∈ K(h) ∪ {t} and taking a
suitable linear combination we obtain an inequality similar to inequality 5 with h replacing
sk. Note that in this operation, the contribution of an edge (h, o), o ∈ K(h) ∪ {t} is at most
y(h, o)cho. Also note that h is closed to an extent of one and o ∈ K(h) ∪ {t} is opened to an
extent of one in this process.

5 Putting Things Together

In all the operations discussed in the previous section, a facility o ∈ O is opened at most
5 times and cost of reassignment of clients in all these operations is small. We prove these
facts in the following lemmas.

I Lemma 4. A facility o ∈ O is opened at most 5 times and is assigned a total of at most
2
∑

s y(s, o) ≤ 2û(o) clients, from the facilities closed in the respective operations, over all
the operations considered.

Proof.
When o is an up-facility: While considering the facilities of S which are descendants of

o, o would be opened twice, once when it is part of close operations close(sk, û(sk), t),
sk ∈ Kd(o), t ∈ K(sk) ∪ {o} and once when it is part of an open operation open(o, û(o),
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∑
s∈Ku(o) û(s)). o is assigned at most 2

∑
s∈Ku(o) y(s, o)+y(sk, o) clients where sk ∈ Kd(o).

Note that this is at most 2
∑

s∈K(o) y(s, o).
While considering the facilities of S which are not descendants of o, if the parent of o,
p(o), is an up-facility, o would be opened once if p(o) = h. In this case a close operation
involving p(o) assigns at most y(p(o), o) clients to o. If p(o) 6= h then o is not opened and
no client is assigned to it.
If p(o) is a down-facility then o would be opened at most twice and would be assigned at
most 2y(p(o), o) clients. This can be argued in a straightforward manner by considering
the 3 cases: p(o) = s1; p(o) = si, i 6= 1, k; p(o) = sk.

When o is a down-facility: While considering the facilities of S which are descendants of o,
o would be opened four times: once when it is part of close operations close(sk, û(sk), t)
where sk ∈ Kd(o), t ∈ K(sk)∪{o}, once when it is part of close operations close(h, û(h), t)
where h ∈ Ku(o), t ∈ K(h) ∪ {o}, and twice as a part of two open operations in which
sets A,B ⊆ Ku(o) are closed. The number of clients assigned to o in these operations is
2
∑

s∈A y(s, o), 2
∑

s∈B y(s, o), y(h, o) and y(sk, o) respectively. Since A∪B∪{h} = Ku(o)
and sk ∈ Kd(o), the total number of clients assigned to o in these four operations is at
most 2

∑
s∈K(o) y(s, o).

o would be opened at most once while considering the facilities of S, which are not
descendants of o irrespective of whether p(o) is an up-facility or a down-facility. If the
parent of o, p(o), is an up-facility then o would be assigned at most y(p(o), o) clients
in a close operation involving p(o). If p(o) is a down-facility then o would be assigned
at most 2y(p(o), o) clients and once again this can be argued by considering 2 cases:
p(o) = si, i 6= k; p(o) = sk. Therefore the total number of clients assigned to o when o is
a down-facility is at most 2

∑
s y(s, o). J

I Lemma 5. The total reassignment cost of all the operations is bounded by

2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P )

Proof. The first term in the required expression follows from the fact that in all the operations
considered, the contribution of an edge (s, o) of the exchange graph is at most 2csoy(s, o).

When all the inequalities are added, the term
∑

P∈in(o) shift(P ) for a facility o ∈ O
appears to the extent of α− β/û(o) where α is the number of times o is opened and β is the
total number of clients assigned to o from the facilities whose capacity allocation decreases in
the operation in which o is opened. From Lemma 4, β is at most 2û(o) and α is at most 5. If
a facility o ∈ O is opened less than five times in these operations then we add the inequality
corresponding to add(o, û(o)) to our linear combination so that each facility is now opened
exactly five times. Therefore, the coefficient of the term

∑
P∈in(o) shift(P ) is at least 3. If

its greater than 3 for some o ∈ O then we will reduce the coefficient of
∑

P∈in(o)) shift(P )
in some of the inequalities involving o to make this contribution exactly 3. J

From Lemma 4 and Lemma 5, we can conclude that

−
∑
s∈S

(fs(us)− fs(u∗s)) + 5
∑
o∈O

(fo(u∗o)− fo(uo))

+ 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈NU∗ (o)

shift(P ) ≥ 0
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Rearranging terms, we get

−
∑
i∈F

fi(ui) + 5
∑
i∈F

fi(u∗i ) + 2
∑

s∈S,o∈O

csoy(s, o) + 3
∑
o∈O

∑
P∈in(o)

shift(P ) ≥ 0

The third term in the above inequality can be bounded by 2(cs(U) + cs(U∗)) (Lemma 1).
The fourth term can be written as

3
∑
o∈O

∑
P∈in(o)

shift(P ) = 3
∑

P∈P

∑
j∈P

(U∗j − Uj) + 3
∑
Q∈C

∑
j∈Q

(U∗j − Uj) = 3
∑
j∈C

(U∗j − Uj)

where second term in the middle equality is due to the fact that
∑

j∈Q: Q∈C(U∗j − Uj) = 0.
Thus,

−cf (U) + 5cf (U∗) + 2(cs(U) + cs(U∗)) + 3(cs(U∗)− cs(U)) ≥ 0

which implies the following bound on the cost of our solution

cf (U) + cs(U) ≤ 5cf (U∗) + 5cs(U∗) (6)

To ensure that the local search procedure has a polynomial running time we need to
modify the local search procedure so that a step is performed only when the cost of the
solution decreases by at least (ε/4n)c(U). This modification gives rise to an extra term of at
most (4ε/4)c(U) in the above inequality. This implies that the cost of the solution U is at
most 5c(U∗) + ε · c(U).

Thus we arrive at our main result:

I Theorem 6. The local search procedure with operations add, open and close yields a locally
optimum solution that is a (5 + ε)-approximation to the optimum solution.
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25:2 On Fair Division for Indivisible Items

1 Introduction

We consider the task of dividing indivisible goods among a set of n agents in a fair manner.
More precisely, we consider the following scenario. We have m distinct goods. Goods are
available in several copies or items; there are kj items of good j. The agents have decreasing
utilities for the different items of a good, i.e., for all i and j

ui,j,1 ≥ ui,j,2 ≥ . . . ≥ ui,j,kj .

An allocation assigns the items to the agents. For an allocation x, xi denotes the multi-set
of items assigned to agent i, and m(j, xi) denotes the multiplicity of good j in xi. Of course,∑
im(j, xi) = kj for all j. The total utility of bundle xi for agent i is given by

ui(xi) =
∑
j

∑
1≤`≤m(j,xi)

ui,j,`.

Each agent has a utility cap ci. The capped utility of bundle xi for agent i is defined as

ūi(xi) = min(ci, ui(xi)).

Our notion of fairness is Nash social welfare (NSW) [13], i.e., the goal is to maximize the
geometric mean

NSW(x) =

 ∏
1≤i≤n

ūi(xi)

1/n

of the capped utilities. All utilities and caps are assumed to be integers. We give a polynomial-
time approximation algorithm with approximation guarantee e1/e + ε ≈ 1.445 + ε for any
positive ε.

The problem has a long history. For divisible goods, maximizing Nash Social Welfare
(NSW) for any set of valuation functions can be expressed via an Eisenberg-Gale program [8].
Notably, for additive valuations (ci =∞ for each agent i and kj = 1 for each good j) this
is equivalent to a Fisher market with identical budgets. In this way, maximizing NSW is
achieved via the well-known fairness notion of competitive equilibrium with equal incomes
(CEEI) [12].

For indivisible goods, the problem is NP-complete [14] and APX-hard [10]. Several
constant-factor approximation algorithms are known for the case of additive valuations. They
use different approaches.

The first one was pioneered by Cole and Gkatzelis [6] and uses spending-restricted Fisher
markets. Each agent comes with one unit of money to the market. Spending is restricted in
the sense that no seller wants to earn more than one unit of money. If the price p of a good
is higher than one in equilibrium, only a fraction 1/p of the good is sold. Cole and Gkatzelis
showed how to compute a spending restricted equilibrium in polynomial time and how to
round its allocation to an integral allocation with good NSW. In the original paper they
obtained an approximation ratio of 2e1/e ≈ 2.889. Subsequent work [5] improved the ratio
to 2.

The second approach is via stable polynomials. Anari et al. [1] obtained an approximation
factor of e.

The third approach is via integral allocations that are Pareto-optimal and envy-free up
to one good. It was introduced by Barman et al. [3]. An allocation is envy-free up to one
good if for any two agents i and k there is a good j such that ui(xk − j) ≤ ui(xi), i.e., after
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removal of one good from k’s bundle its utility for i is no larger than the utility of i’s bundle
for i. Caragiannis et al. [4] have shown that an allocation maximizing NSW is Pareto-optimal
and envy-free up to one good. For a price vector p for the goods, the price P (xi) of a bundle
is the sum of the prices of the goods in the bundle. An allocation is almost price-envy-free
up to one good (ε-p-EF1) if P (xk − j) ≤ (1 + ε)P (xi) for all agents i and k and some good
j, where ε is an approximation parameter. An allocation is MBB (maximum bang per buck)
if j ∈ xi implies uij/pj = max` ui`/p` for all j and i. Barman et al. [3] studied allocations
that are Pareto-optimal, almost price-envy-free up to one good, and MBB. They showed that
such allocations are almost envy-free up to one good3 and approximate NSW up to a factor
e1/e + ε ≈ 1.445 + ε. They also showed how to compute such an allocation in polynomial
time.

There are also constant-factor approximation algorithms beyond additive utilities.
Garg et al. [9] studied budget-additive utilities (kj = 1 for all goods j and arbitrary ci).

They showed how to generalize the Fisher market approach and obtained an 2e1/2e ≈ 2.404-
approximation.

Anari et al. [2] investigated multi-item concave utilities (ci =∞ for all i and kj arbitrary).
They generalized the Fisher market and the stable polynomial approach and obtained
approximation factors of 2 and e2, respectively.

We show that the price-envy-free allocation approach can handle both generalizations
combined. We obtain an approximation ratio of e1/e+ε ≈ 1.445+ε. The allocation computed
by our algorithm is Pareto-optimal and guarantees ui(xk − j) ≤ (2 + ε)ui(xi) for any two
agents i and k, i.e., it approximates envy-freeness up to one item up to a factor of essentially
two. The approach via price-envy-freeness does not only yield better approximation ratios,
it is, in our opinion, also simpler to state and simpler to analyze.

The paper is structured as follows. In Section 2 we give the algorithm and analyze its
approximation ratio (Section 2.3), guarantee to individual agents (Section 2.4), and running
time (Section 2.5). In Section 3 we show that the analysis is essential tight by establishing a
lower bound of 1.44 on the approximation ratio of the algorithm, in Section 4 we discuss
certification of the approximation ratio, and in Section 5 we show that for the multi-copy
case and the capped case optimal allocations are not necessarily envy-free up to one good.

2 Algorithm and Analysis

Let us recall the setting. Items are indivisible. There are n agents and m goods. There are
kj items or copies of good j. Let M =

∑
j kj be the total number of items. The agents have

decreasing utilities for the different items of a good, i.e., for all i and j

ui,j,1 ≥ ui,j,2 ≥ . . . ≥ ui,j,kj .

For an allocation x, xi denotes the multi-set of items assigned to agent i, and m(j, xi) denotes
the multiplicity of good j in xi. The total utility of bundle xi for agent i is given by

ui(xi) =
∑
j

∑
1≤`≤m(j,xi)

ui,j,`.

3 Consider two bundles xk and xi and assume P (xk − j) ≤ (1 + ε)P (xi) for some j ∈ xk. Let
αi = max` ui`/p`. Then ui(xk − j) =

∑
`∈xk−j

ui` ≤ αi

∑
`∈xk−j

p` ≤ (1 + ε)αi

∑
`∈xi

p` =
(1 + ε)

∑
`∈xi

ui`.
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25:4 On Fair Division for Indivisible Items

Each agent has a utility cap ci. The capped utility of bundle xi for agent i is defined as

ūi(xi) = min(ci, ui(xi)).

Following [9], we assume w.l.o.g. ui,j,` ≤ ci for all i, j, and `. In the algorithm, we ensure this
assumption by capping every ui,∗,∗ at ci. All utilities and caps are assumed to be integers.

2.1 A Reduction to Rounded Utilities and Caps
Let r ∈ (1, 3/2]. For every non-zero utility ui,j,` let vi,j,` be the next larger power of r.
For zero utilities v and u agree. Similarly, for ci let di be the next larger power of r. It
is well-known that it suffices to solve the rounded problem with a good approximation
guarantee.

I Lemma 1. Let x approximate the NSW for the rounded problem up to a factor of γ. Then
x approximates the NSW for the original problem up to a factor γr.

Proof. Let x∗ be an optimal allocation for the original problem. Let us write NSW(x∗, u, c)
for the Nash social welfare of the allocation x∗ with respect to the utilities u and caps
c. Define NSW(x, u, c), NSW(x∗, v, d), and NSW(x, v, d) analogously. We need to upper
bound NSW(x∗, u, c)/NSW(x, u, c). Since u ≤ v and c ≤ d componentwise, NSW(x∗, u, c) ≤
NSW(x∗, v, d). Since x approximates the NSW for the rounded problem up to a factor γ,
NSW(x∗, v, d) ≤ γNSW(x, v, d). Since v ≤ ru and d ≤ rc componentwise, NSW(x, v, d) ≤
rNSW(x, u, c). Thus

NSW(x∗, u, c)
NSW(x, u, c) ≤

γNSW(x, v, d)
NSW(x, v, d)/r = γr. J

2.2 The Algorithm
Barman et al. [3] gave a highly elegant approximation algorithm for the case of a single
copy per good and no utility caps. We generalize their approach. The algorithm uses an
approximation parameter ε ∈ (0, 1/4]. Let r = 1 + ε. The nonzero utilities are assumed to
be powers of r.

The algorithm maintains an integral assignment x, a price pj for each good, and an MBB-
ratio4 αi for each agent. Of course,

∑
im(j, xi) = kj for each good j. The prices, MBB-ratios,

and multiplicity of goods in bundles are related through the following inequalities:

ui,j,m(j,xi)+1

pj
≤ αi ≤

ui,j,m(j,xi)

pj
, (1)

i.e., if ui,j,`/pj > αi, then at least ` copies of j are allocated to agent i and if ui,j,`/pj < αi,
then less than ` copies of j are allocated to agent i. If no copy of good j is assigned to i,
the upper bound for αi is infinity. If all copies of good j are assigned to i, the lower bound
for αi is zero. Note that if αi is equal to its upper bound in (1), we may take one copy of
j away from i without violating the inequality as the upper bound becomes the new lower
bound. Similarly, if αi is equal to its lower bound in (1), we may assign an additional copy
of j to i without violating the inequality as the lower bound becomes the new upper bound.

4 In the case of one copy per good, αi = ui,j/pj whenever (the single copy of) good j is assigned to i and
αi ≥ ui,`/p` for all goods `. Thus αi is the maximum utility per unit of money (maximum bang per
buck (MBB)) that agent i can get.
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Since (1) must hold for every good j, αi must lie in the intersection of the intervals for the
different goods j, i.e.,

max
j

ui,j,m(j,xi)+1

pj
≤ αi ≤ min

j

ui,j,m(j,xi)

pj
.

The value of bundle xi for i is given by5

Pi(xi) = ui(xi)
αi

= 1
αi

∑
j

∑
1≤`≤m(j,xi)

ui,j,`. (2)

Definitions (1) and (2) are inspired by Anari et al [2]. We say that αi is equal to the upper
bound for the pair (i, j) if αi is equal to its upper bound in (1) and that αi is equal to the
lower bound for the pair (i, j) if αi is equal to its lower bound in (1).

An agent i is capped if ui(xi) ≥ ci and is uncapped otherwise.
The algorithm starts with a greedy assignment. For each good j, it assigns each copy to

the agent that values it most. The price of each good is set to the utility of the assignment
of its last copy and all MBB-values are set to one. Note that this setting guarantees (1) for
every pair (i, j). Also, all initial prices and MBB-values are powers of r. It is an invariant of
the algorithm that prices are powers of r. Only the final price increase in the main-loop may
destroy this invariant.

After initialization, the algorithm enters a loop. We need some more definitions. An
agent i is a least spending uncapped agent if it is uncapped and Pi(xi) ≤ Pk(xk) for every
other uncapped agent k. An agent i ε-p-envies agent k up to one item if Pk(xk − j) >
(1 + ε) · Pi(xi) for every good j ∈ xk. Recall that xk is a multi-set. In the multi-set
xk − j, the number of copies of good j is reduced by one, i.e., m(j, xk − j) = m(j, xk)− 1.
Therefore Pk(xk − j) = Pk(xk) − uk,j,m(j,xk)/αk. An allocation is ε-p-envy free up to one
item (ε-p-EF1) if for every uncapped agent i and every other agent k there is a good j such
that Pk(xk − j) ≤ (1 + ε)Pi(xi).

We also need the notion of the tight graph. It is a directed bipartite graph with the agents
on one side and the goods on the other side. We have a directed edge (i, j) from agent i to
good j if αi = uijm(j,xi)+1/pj , i.e., αi is at its lower bound for the pair (i, j). We have a
directed edge (j, i) from good j to agent i if αi = uijm(j,xi)/pj , i.e., αi is at its upper bound
for the pair (i, j). Note that necessarily m(j, xi) ≥ 1 in the latter case, since otherwise good
j does not impose an upper bound for αi.

An improving path starting at an agent i is a simple path P = (i = a0, g1, a1, . . . , gh, ah)
in the tight graph starting at i and ending at another agent ah such that Pah(xah − gh) >
(1 + ε)Pi(xi) and Pa`(xa` − g`) ≤ (1 + ε)Pi(xi) for 1 ≤ ` < h.

Let i be the least spending uncapped agent. We perform a breadth-first search in the
tight graph starting at i. If the BFS discovers an improving path starting at i, we use the
shortest such path to improve the allocation. Note that if i ε-p-envies some node that is
reachable from i in the tight graph then the BFS will discover an improving path.

In the main loop, we distinguish cases according to whether BFS discovers an improving
path starting at i or not.

Assume first that BFS discovers the improving path P = (i = a0, g1, a1, . . . , gh, ah). We
take gh away from ah and assign it to ah−1. If we now have Pah−1(xah−1 + gh − gh−1) ≤

5 In the case of one copy per good, Pi(xi) = ui(xi)/αi =
∑

j∈xi
pj is the total price of the goods in the

bundle. We reuse the letter P for the value of a bundle, although Pi(xi) = 1/αi ·
∑

j

∑
1≤`≤m(j,xi)

ui,j,`

is no longer the total price of the goods in the bundle.
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25:6 On Fair Division for Indivisible Items

Algorithm 1: Approximate Nash Social Welfare for Multi Item Concave Utilities
with Caps.

Input : Fair Division Problem given by utilities uij`, i ≤ n, j ≤ m, ` ≤ kj , utility caps ci,
and approximation parameter ε ∈ (0, 1/4]. Let r = 1 + ε. Nonzero uij ’s and ci’s
are powers of r.

Output : Price vector p and 4ε-p-EF1 integral allocation x

1 for i, j, ` do
2 ui,j,` ← min(ci, ui,j,`)
3 for j ∈ G do
4 for ` ∈ [kj ] in increasing order do
5 assign the `-th copy of j to i0 = argmaxi uij,m(j,xi)+1;
6 Set pj ← ui0,j,m(j,xi0 ), where i0 is the agent to which the kj-th copy of j was assigned

7 for i ∈ A do
8 αi = 1
9 while true do

10 if allocation x is ε-p-EF1 then
11 break from the loop and terminate
12 Let i be a least spending uncapped agent
13 Perform a BFS in the tight graph starting at i
14 if the BFS-search discovers an improving path starting in i, let

P = (i = a0, g1, a1, . . . , gh, ah) be a shortest such path then
15 Set `← h

16 while ` > 0 and Pa`(xa` − g`) > (1 + ε)Pi(xi) do
17 remove g` from xa` and assign it to a`−1; `← `− 1

18 else
19 Let S be the set of goods and agents that can be reached from i in the tight graph
20 β1 ← mink∈S; j 6∈S αk/(uk,j,m(j,xk)+1/pj) (add a good to S)
21 β2 ← mink 6∈S; j∈S (uk,j,m(j,xk)/pj)/αk (add an agent to S)
22 β3 ← 1

r2Pi(xi)
maxk 6∈S minj∈xk Pk(xk − j) (i is happy)

23 β4 ← rs, where s is the smallest integer such that rs−1 ≤ Ph(xh)/Pi(xi) < rs and h

is the least spending uncapped agent outside S (new least spender)
24 β ← min(β1, β2,max(1, β3), β4)
25 multiply all prices of goods in S by β and divide all MBB-values of agents in S by β
26 if β3 ≤ min(β1, β2, β4) then
27 break from the while-loop

(1 + ε)Pi(xi) we stop. Otherwise, we take gh−1 away from ah−1 and assign it to ah−2. If we
now have Pah−2(xah−2 + gh−1 − gh−2) ≤ (1 + ε)Pi(xi) we stop. Otherwise, . . . . We continue
in this way until we stop or assign g1 to a0. In other words, let h′ < h be maximum such
that Pah′ (xah′ + gh′+1 − gh′) ≤ (1 + ε)Pi(xi). If h′ exists, then we take a copy of g` away
from a` and assign it to a`−1 for h′ < ` ≤ h. If h′ does not exist, we do so for 1 ≤ ` ≤ h. Let
us call the above a sequence of swaps.

I Lemma 2. Consider an execution of lines (15) to (17) and let h′ be the final value of
` (this agrees with the definition of h′ in the preceding paragraph). Let x′ be the resulting
allocation. Then x′` = x` for 0 ≤ ` < h′, x′h′ = xh′+gh′+1, x′` = x`+g`+1−g` for h′ < ` < h,
and x′h = xh − gh. Also,

Pah(xah) ≥ Pah(x′ah) > (1 + ε)Pi(xi),
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i j1 i1 j2 jh ih

= good

= agent = at lower bound

= at upper bound

Figure 1 An improving path. Agents and goods alternate on the path and the path starts and
ends with an agent. For the solid edges (j, i), αi is at its upper bound for the pair (i, j) and for the
dashed edges (i, j), αi is at its lower bound for the pair (i, j).

Pah′ (x
′
ah′
− gh′) = Pah′ (xah′ + gh′+1 − gh′) ≤ (1 + ε)Pi(xi) if h′ ≥ 1

Pa0(x′a0
− g1) = Pa0(xa0) ≤ (1 + ε)Pi(xi) if h′ = 0.

Pa`(x′a`) = Pa`(xa` + g`+1 − g`) > (1 + ε)Pi(xi) and Pa`(x′a` − g`+1) = Pa`(xa` − g`) ≤
(1 + ε)Pi(xi) for h′ < ` < h.
Pa`(x′a` − g`) = Pa`(xa` − g`) ≤ (1 + ε)Pi(xi) for 0 ≤ ` < h′.

Proof. Immediate from the above. J

If i is still the least spending uncapped agent after an execution of lines (15) to (17), we
search for another improving path starting from i. We will show below that i can stay the
least spending agent for at most n2M iterations. Intuitively this holds because for any agent
(factor n) and any fixed length shortest improving path (factor n), we can have at most M
iterations for which the shortest improving path ends in this particular agent.

We come to the else-case, i.e., BFS does not discover an improving path starting at i.
This implies that i does not ε-p-envy any agent that it can reach in the tight graph. We
then increase some prices and decrease some MBB-values. Let S be the set of agents and
goods that can be reached from i in the tight graph.

I Lemma 3. If a good j belongs to S and αk is at its upper bound for the pair (k, j), then k
belongs to S. If an agent k belongs to S and αk is at its lower bound for the pair (k, j), then
j belongs to S.

Proof. Consider any good j ∈ S. Since j belongs to S, there is an alternating path starting
in i and ending in j. If the path contains k, k belongs to S. If the path does not contain k,
we can extend the path by k. In either case, k belongs to S.

Consider any agent k ∈ S. Since k belongs to S, there is an alternating path starting in i
and ending in k. If the path contains j, j belongs to S. If the path does not contain j, we
can extend the path by j. In either case, j belongs to S. J

We multiply all prices of goods in S and divide all MBB-values of agents in S by a
common factor t ≥ 1. What is the effect?

Let uk,j,(j,xk)+1/pj ≤ αk ≤ uk,j,m(j,xk)/pj be the inequality (1) for the pair (k, j). The
endpoints do not move if j 6∈ S and are divided by t for j ∈ S. Similarly, αk does not
move if k 6∈ S and are divided by t if k ∈ S. So in order to preserve the inequality, we
must have: If αk is equal to the upper endpoint and pj moves, i.e., j ∈ S, then αk must
also move. If αk is equal to the lower endpoint and αk moves then pj must also move.
Both conditions are guaranteed by Lemma 3.
If k and j are both in S, then αk and the endpoints of the interval for (k, j) move in sync.
So agents and goods reachable from i in the tight graph, stay reachable.
If k 6∈ S, there might be a j ∈ S such that αk becomes equal to the right endpoint of the
interval for (k, j). Then k is added to S.
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25:8 On Fair Division for Indivisible Items

If k ∈ S, there might be a j 6∈ S such that αk becomes equal to the left endpoint of the
interval for (k, j). Then j is added to S.
For agents in S, Pk(xk) is multiplied by t. For agents outside S, Pk(xk) stays unchanged.

How is the common factor t chosen? There are four limiting events. Either S grows and
this may happen by the addition of a good (factor β1) or an agent (factor β2); or Pi(xi)
comes close to the largest value of minj∈xk Pk(xk − j) for any other agent (factor β3), or
Pi(xi) becomes larger than Ph(xh) for some uncapped agent h outside S (factor β4). Since
we want prices to stay powers of r, β4 is chosen as a power of r. The factor β3 might be
smaller than one. Since we never want to decrease prices, we take the maximum of 1 and β3.

I Lemma 4. Prices and MBB-values are powers of r, except maybe at termination.

Proof. This is true initially, since prices are utility values and utility values are assumed to
be powers of r and since MBB-values are equal to one. If prices and MBB-values are powers
of r before a price update, β1, β2, and β4 are powers of r. Thus prices and MBB-values are
after the price update, except maybe when the algorithm terminates. J

We next show that the algorithm terminates with an allocation that is almost price-envy-
free up to one item.

I Lemma 5. Assume ε ≤ 1/4. When the algorithm terminates, x is a 4ε-p-EF1 allocation.

Proof. Let q be the price vector after the price increase and let h be the least spending
uncapped agent after the increase; h = i is possible. We first show that that Qi(xi) ≤ rQh(xh).
This is certainly true if h = i. If h 6∈ S, since the price increase is limited by β4, we have

Qi(xi) = βPi(xi) ≤ β4Pi(xi) = r · rs−1 · Pi(xi) ≤ rPh(xh) = rQh(xh).

So in either case, we have Qi(xi) ≤ rQh(xh). Moreover, Qh(xh) ≤ Qi(xi) because h is a
least spending uncapped agent after the price increase.

If the algorithm terminates, we have β3 ≤ β4. Consider any agent k. Then, for k ∈ S,

Qk(xk − jk) ≤ (1 + ε)Qi(xi) ≤ (1 + ε) · r ·Qh(xh)

and, for k 6∈ S,

Qk(xk − jk) = Pk(xk − jk) ≤ β3(1 + ε)rPi(xi) = (1 + ε)rQi(xi) ≤ (1 + ε) · r2 ·Qh(xh).

Thus we are returning an allocation that is ((1 + ε)r2 − 1)-q-EF1. Finally, note that
(1 + ε)r2 = (1 + ε)3 ≤ (1 + 4ε) for ε ≤ 1/4. J

I Remark. We want to point out the differences to the algorithm by Barman et al. Our
definition of alternating path is more general than theirs since it needs to take into account
that the number of items of a particular good assigned to an agent may change. For this
reason, we need to maintain the MBB-ratio explicitly. In the algorithm by Barman et al. the
MBB ratio of agent i is equal to the maximum utility to price ratio maxj uij/pj and only
MBB goods can be assigned to an agent. As a consequence, if a good belongs to S, the
agent owning it also belongs to S. In price changes, there is no need for the quantity β2. In
the definition of β3, we added an additional factor r2 in the denominator. We cannot prove
polynomial running time without this factor. Finally, we start the search for an improving
path from the least uncapped agent and not from the least agent.
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2.3 Analysis of the Approximation Factor
The analysis refines the analysis given by Barman et al. Let (xalg, p, α) denote the allocation
and price and MBB vector returned by the algorithm. Recall that xalg is γ-p-EF1 with
γ = 4ε with respect to p and (1) holds for every i. We scale all the utilities of agent i and
its utility cap by αi, i.e., we replace ui,j,` by ui,j,`/αi and ci by ci/αi and use ui,j,` and ci
also for the scaled utilities and scaled utility cap. The scaling does not change the integral
allocation maximizing Nash Social Welfare. Inequality (1) becomes

ui,j,m(j,xalg
i

)+1

pj
≤ 1 ≤

ui,j,m(j,xalg
i

)

pj
, (3)

i.e., the items allocated to i have a utility to price ratio of one or more and the items that
are not allocated to i have a ratio of one or less. Also, the value of bundle xi for i is now
equal to its utility for i and is given by

Pi(xalg
i ) = ui(xalg

i ) =
∑
j

∑
1≤`≤m(j,xalg

i
)

ui,j,`. (4)

All ui,∗,∗ are at most ci.
Let Ac and Au be the set of capped and uncapped agents in xalg, let c = |Ac| and

n− c = |Au| be their cardinalities. We number the uncapped agents such that u1(xalg
1 ) ≥

u2(xalg
2 ) ≥ . . . ≥ un−c(xalg

n−c). Let ` = un−c(xalg
n−c) be the minimum utility of a bundle

assigned to an uncapped agent. The capped agents are numbered n− c+ 1 to n. Let x∗ be
an integral allocation maximizing Nash social welfare.

We define an auxiliary problem with
∑
j kj goods and one copy of each good. The goods

are denoted by triples (i, j, `), where 1 ≤ ` ≤ m(j, xalg
i ). The utility of good (i, j, `) is uniform

for all agents and is equal to ui,j,`. Formally,

v∗,(i,j,`) = ui,j,`, (5)

where v is the utility function for the auxiliary problem. The cap of agent i is ci. Since
v is uniform, we can write v(xi) instead of vi(xi). The capped utility of xi for agent i is
v̄i(xi) = min(ci, v(xi)). Note that v is uniform, but v̄ is not. Let xoptaux be an optimal
allocation for the auxiliary problem.

I Lemma 6. We have:
(a)

∑
i ui(x∗i ) ≤

∑
i ui(x

alg
i ) =

∑
i,j,1≤`≤m(j,xalg

i
) v∗,(i,j,`).

(b) NSW(x∗) = (
∏
i ūi(x∗i ))

1/n ≤
(∏

i v̄i(x
optaux
i )

)1/n
= NSW(xoptaux).

(c) xalg is Pareto-optimal.

Proof. We can obtain x∗ from xalg by moving copies of goods.
Set x← xalg. Consider any good j. As long as the multiplicities of j in the bundles of x

and x∗ are not the same, identify two agents i and k, where xi contains more copies of j
than x∗i and xk contains fewer copies of j than x∗k, and move a copy of j from i to k. Each
copy taken away has a utility of at least pj , each copy assigned additionally has a utility of
at most pj . Thus the total utility cannot go up by reassigning. This proves (a).

For part (b), we interpret xalg as an allocation for the auxiliary problem; goods (i, j, `)
with 1 ≤ ` ≤ m(j, xalg

i ) are allocated to agent i. We then move goods exactly as in (a). We
obtain an allocation x̂ for the auxiliary problem with ui(x∗i ) ≤ v(x̂i) for all i.
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For part (c), assume that xalg is not Pareto-optimal. Then there is an integral allocation
y with ui(yi) ≥ ui(xalg

i ) for all i and at least one strict inequality. These inequalities are not
affected by our scaling of the utilties. However, the reasoning of part (a) applied to y and
xalg shows

∑
i ui(yi) ≤

∑
i ui(x

alg
i ) for all i for the scaled utilities. J

We stress that Lemma 6 refers to the scaled utilities. For the scaled utilities xalg maximizes
social welfare. It does not do so for the unscaled utilities.

For any agent i, let bi ∈ xalg
i be such that ui(xalg

i −bi) ≤ (1+γ)`. Note that ui(xalg
i −bi) =

ui(xalg
i )−ui,bi,m(bi,xalg

i
). Let B = { (i, bi,m(bi, xalg

i )) ; 1 ≤ i ≤ n } be the goods in the auxiliary
problem corresponding to the bi’s. We now consider allocations for the auxiliary problem
that are allowed to be partially fractional. We require that the goods in B are allocated
integrally and allow all other goods to be assigned fractionally. For convenience of notation,
let gi = (i, bi,m(bi, xalg

i )). The following lemma is crucial for the analysis.

I Lemma 7. There is an optimal allocation for the relaxed auxiliary problem in which good
gi is allocated to agent i.

Proof. Assume otherwise. Among the allocations maximizing Nash social welfare for the
relaxed auxiliary problem, let xoptrel be the one that maximizes the number of agents i that
are allocated their own good gi.

Assume first that there is an agent i to which no good in B is allocated. Then gi is
allocated to some agent k different from i. Since bi ∈ xalg

i , v(gi) = ui,bi,m(bi,xalg
i

) ≤ ci. The
inequality holds since utilities ui,∗,∗ are capped at ci during initialization. We move gi from k

to i and min(v(gi), v(xoptrel
i )) value from i to k. This is possible since only divisible goods are

allocated to i. If we move v(gi) from i to k, the NSW does not change. If v(gi) > v(xoptrel
i )

and hence ci ≥ v(gi) > v(xoptrel
i ), the product v̄i(xi) · v̄k(xk) changes from

min(ci, v(xoptrel
i ))·min(ck, v(xoptrel

k − gi + gi)) =

min(ckv(xoptrel
i ), v(xoptrel

k − gi)v(xoptrel
i ) + v(gi)v(xoptrel

i ))

to

min(ci, v(gi))·min(ck, v(xoptrel
k − gi + xoptrel

i )) =

min(ckv(gi), v(xoptrel
k − v(gi))v(gi) + v(xoptrel

i )v(gi)).

The arguments of the min in the lower line are componentwise larger than those of the min
in the upper line. We have now modified xoptrel such that the NSW did not decrease and
the number of agents owning their own good increased. The above applies as long as there is
an agent owning no good in B.

So assume every agent i owns a good in B, but not necessarily gi. Let i be such that v(gi)
is largest among all goods gi that are not allocated to their i. Then gi is allocated to some
agent k different from i. The value of the good g` allocated to i is at most v(gi) since ` 6= i

and by the choice of i. We move gi from k to i and min(v(gi), v(xoptrel
i )) value from i to k.

This is possible since v(g`) ≤ v(gi) and all other goods assigned to i are divisible. We have
now modified xoptrel such that the NSW did not decrease and the number of agents owning
their own good increased. We continue in this way until gi is allocated to i for every i. J

Let xoptrel be an optimal allocation for the relaxed auxiliary problem in which good gi is
contained in the bundle xoptrel

i for every i. Let α be such that

α` = min{ v(xoptrel
i ) ; v(xoptrel

i ) < ci }
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is the minimum value of any agent that is uncapped in xoptrel . Let α =∞, if every agent
is capped in xoptrel . Let Aoptrel

c and Aoptrel
u be the set of capped and uncapped agents in

xoptrel . Let h be such that uh(xalg
h ) > α` ≥ uh+1(xalg

h+1).

I Lemma 8. For i ≤ h, v(xoptrel
i ) ≤ ui(xalg

i ). For all i, ui(xalg
i ) ≤ v(xoptrel

i ) + (1 + γ)`. For
i ∈ Au ∩Aoptrel

c , ci ≤ α` and i 6∈ [h].

Proof. Consider any i ≤ h. v(xoptrel
i ) ≤ ui(xalg

i ) is obvious, if v(xoptrel
i ) ≤ α`. If v(xoptrel

i ) >
α`, then α < ∞ and hence Aoptrel

u is non-empty. We claim that xoptrel
i = {gi}, i.e., xoptrel

i

is a singleton consisting only of gi. Assume otherwise, then also some divisible goods are
assigned to i. We can move some of them to an agent that is uncapped in xoptrel and has
value α`. This increases the NSW, a contradiction.

For the upper bound, we observe that gi ∈ xoptrel
i and ui(xalg

i − bi) ≤ (1 + γ)`.
Consider next any i ∈ Au ∩ Aoptrel

c . Assume ci > α`. If xoptrel assigns divisible goods
to i, we can move some of them to an agent that is uncapped in xoptrel and has value α`.
This increases the NSW. Thus xoptrel

i consists only of gi. But then v(gi) ≤ ui(xalg
i ) < ci

and i does not belong to Aoptrel
c . This shows ci ≤ α`. Then also i 6∈ [h] because otherwise

ci < ui(xalg
i ) and hence i would be capped in xalg. J

I Lemma 9.

NSW(x∗) ≤ NSW(xoptrel) ≤

(α`)n−c−h−|Au∩A
optrel
c | ·

∏
i∈Ac∪(Au∩Aoptrel

c )

ci ·
∏

1≤i≤h
ui(xalg

i )

 1
n

.

Moreover, ci ≤ α` for any i ∈ Au ∩Aoptrel
c .

Proof. If v(xoptrel
i ) 6= α` then either i ∈ Ac or i ∈ Au∩Aoptrel

c or i ∈ Au \Aoptrel
c . In the first

case, v(xoptrel
i ) ≤ ci. In the second case, v(xoptrel

i ) = ci ≤ α` and i 6∈ [h] by Lemma 8. In the
third case, v(xoptrel

i ) ≤ ui(xalg
i ) for i ≤ h. So assume i > h. Then v(gi) ≤ ui(xalg

i ) ≤ α` and
hence all value in v(xoptrel

i ) above α` would be by fractional goods. They could be reassigned
for an increase in NSW. We conclude that for the agents i ∈ Au \Aoptrel

c with i > h, we have
v(xoptrel

i ) = α`. J

We next bound NSW(xalg) from below. We consider assignments x for the auxiliary
problem that agree with xalg for the agents in Ac∪[h] and reassign the value

∑
i∈Au−[h] ui(x

alg
i )

fractionally. Note that for any i ∈ Au− [h], ` ≤ ui(xalg
i ) ≤ min(ci, α`). The former inequality

follows from i ∈ Au and the latter inequality follows from the definition of h and i ∈ Au. We
reallocate value so as to move ui(xi) towards the bounds ` and min(ci, α`). As long as there
are two agents whose value is not at one of their bounds, we shift value from the smaller to
the larger. This decreases NSW. We end when all but one agent have an extreme allocation,
either ` or min(ci, α`). One agent ends up with an allocation β` with β ∈ [1, α].

Let us introduce some more notation. Write Au ∩ Aoptrel
c as S ∪ T , where the agents

i ∈ T end up at ci and the agents in S end up at `. Also let s and t be the number of agents
in Au \Aoptrel

c that end up at ` and α` respectively. Then

NSW(xalg) ≥

∏
i∈Ac

ci ·
∏

1≤i≤h
ui(xalg

i ) · `s · (α`)t · (β`) ·
∏
i∈T

ci · `|S|
1/n

.
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25:12 On Fair Division for Indivisible Items

Note that n− c− h = s+ t+ 1 + |S|+ |T |. Therefore

NSW(x∗)
NSW(xalg) ≤

(
αs · α

β
·
∏
i∈S

ci
`

)1/n

≤

(sα+ α
β +

∑
i∈S

ci
`

s+ 1 + |S|

)s+1+|S|
1/n

,

where we used the inequality between geometric mean and arithmetic mean for the second
inequality.

The total mass allocated by xoptrel to the agents in Au−[h] is (s+t+1)α`+
∑
i∈S∪T ci. The

allocation xalg wastes up to (1+γ)` for each i ∈ Ac∪ [h] and uses s`+tα`+β`+
∑
i∈T ci+ |S|`

on the agents in Au − [h]. Therefore

(s+ t+ 1)α`+
∑
i∈S∪T

ci ≤ (|Ac|+ h)(1 + γ)`+ s`+ tα`+ β`+
∑
i∈T

ci + |S|`

and hence after rearranging, dividing by ` and adding α/β on both sides

sα+ α

β
+
∑
i∈S

ci
`
≤ (1 + γ)(|Ac|+ h) + s+ |S|+ α

β
+ β − α

≤ (1 + γ)(|Ac|+ h) + s+ |S|+ 1 ≤ (1 + γ)n.

Note that β +α/β −α ≤ 1 for β ∈ [1, α], since the expression is one at β = 1 and β = α and
it second derivative as function of β is positive. Thus

NSW(xoptrel)
NSW(xalg) ≤

((
(1 + γ)(|Ac|+ h) + s+ |S|+ 1

s+ 1 + |S|

)s+1+|S|
)1/n

≤
(

(1 + γ)n
s+ 1 + |S|

)(s+1+|S|)/n
≤ ee

−1/(1+γ)
,

since the maximum of ((1 + γ)δ)1/δ is attained for δ = 1
(1+γ)e

1/(1+γ) and is equal to
exp(exp(−1/(1 + γ))). The following table contains concrete values for small non-negative
values of γ.

1 + γ 1.00 1.01 1.02 1.03 1.04
exp(exp(−1/(1 + γ))) 1.44467 1.44997 1.45523 1.46046 1.46566

I Remark. The paper [5] introduces a mathematical program for maximizing NSW in the
case of additive valuations. The program has an integrality gap of e1/e. We believe that the
fact that the same expression e1/e appears at two places is coincidence and does not point
to some hidden relationship. In particular, Barman et al.’s algorithm computes the optimal
allocation for the instances which [5] uses to demonstrate the integrality gap.

2.4 Guarantees for Individual Agents
The allocation computed by our algorithm is Pareto-optimal and maximizes NSW up to a
factor 1.45. It also gives any uncapped agent i the guarantee minj∈xk Pk(xk−j) ≤ (1+ε)Pi(xi)
for every other agent k. This guarantee is not meaningful for agent i. We now show that
it implies minj∈xk ui(xk − j) ≤ (2 + ε)ui(xi), i.e., the utility for i of k’s bundle minus one
item is essentially bounded by twice the utility of i’s bundle for i. The proof shows that the
additional utility for i of the items that k has in excess of i up to one item is bounded by
(1 + ε)ui(xi). In the case of one copy per good, xk and xi are disjoint and hence any item in
xk is in excess of i’s possession of the same good.
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I Theorem 10. The allocation computed by the algorithm satisfies minj∈xk ui(xk − j) ≤
(2 + ε)ui(xi) for any agent k and any uncapped agent i.

Proof. Let g be such that uk(xk − g) = minj∈xk uk(xk − j). Then

ui(xk − g) ≤ ui(xi ∪ xk − g) more never harms

= ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

ui,j,`

≤ ui(xi) +
∑
j

m(j,xk∪xi−g)∑
`=m(j,xi)+1

αipj since ui,j,`/pj ≤ αi for ` > m(j, xi)

≤ ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αipj

≤ ui(xi) +
∑
j

m(j,xk−g)∑
`=1

αi
uk,j,`
αk

since uk,j,`/pj ≥ αk for k ≤ m(j, xk)

≤ ui(xi) + αipk(xk − g) definition of Pk(xk − g)
≤ ui(x) + αi(1 + ε)Pi(xi) since Pk(xg − g) ≤ Pi(xi)
= (2 + ε)ui(xi) since ui(xi) = αiPi(xi). J

2.5 Polynomial Running Time
The analysis follows Barman et al. with one difference. Lemma 12 is new. For its proof, we
need the revised definition of β3.

I Lemma 11. The price of the least spending uncapped agent is non-decreasing.

Proof. This is clear for price increases. Consider a sequence of swaps along an improving path
P = (i = a0, g1, a1, . . . , gh, ah), where the agent ah loses a good, the agents a`, h′ < ` < h,
lose and gain a good, and the agent ah′ gains a good. By Lemma 1, all agents a` with
h′ < ` ≤ h have a price of at least (1 + ε)Pi(xi) after the swap. Also the price of agent ah′
does not decrease. J

I Lemma 12. For any agent k, let jk be a highest price item in xk. Then maxk Pk(xk −
jk) does not increase in the course of the algorithm as long as this value is above (1 +
ε) minuncapped i Pi(xi). Once maxk Pk(xk − jk) ≤ (1 + ε) minuncapped i Pi(xi), the algorithm
terminates.

Proof. We first consider price increases and then a sequence of swaps.
Consider any price increase which is not the last. Then β4 ≤ β3. Let h be the least

uncapped spender after the price increase and q be the price vector after the increase. Then
Qh(xh) ≤ Qi(xi) ≤ rQh(xh). For k ∈ S, we have minjQk(xk − j) ≤ (1 + ε)Qi(xi) ≤
(1 + ε)rQh(xh), i.e., agents in S can become violators but we can bound how bad they can
become. For the agent k 6∈ S defining β3, we have

min
j
Pk(x` − j) = β3(1 + ε)rPi(xi) ≥ (1 + ε)rQi(xi) ≥ (1 + ε)rQh(xh)

and hence the worst violator stays outside S. We used the equality r = 1 + ε and the
inequality Qi(xi) = βPi(xi) ≤ β3Pi(xi) in this derivation.
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25:14 On Fair Division for Indivisible Items

Consider next a sequence of swaps. We have an improving path from i to k, say
P = (i = a0, g1, a1, . . . , gh, ah = k). Let x′ be the allocation after the sequence of swaps. Then
minj Pk(x′k − j) ≤ minj Pk(xk − j) since k looses a good and minj P`(x′` − j) ≤ (1 + ε)Pi(xi)
for all ` ∈ [0, h− 1] by Lemma 2. J

I Lemma 13. The number of subsequent iterations with no change of the least spending
agent and no price increase is bounded by n2M .

Proof. Let i be the least spending agent. We count for any other agent k, how often the
improving path can end in k. For each fixed length of the improving path, this can happen
at most M times (for details see [3]). The argument is similar to the argument used in the
strongly polynomial algorithms for weighted matchings [7]. J

I Lemma 14. If the least spending uncapped agent changes after a price increase, the value
of the old least spending uncapped agent increases by a factor of at least r.

Proof. The least uncapped spender changes if β = β4 and β4 is at least r. So Pi(xi) increases
by at least r. J

I Theorem 15. The number of iterations is bounded by n3M2 logrMU .

Proof. Divide the execution into maximum subsequences with the same least spender.
Consider any fixed agent i and the subsequences where i is the least spender. At the end of
each subsequence, i receives an additional item, or we have a price increase. In the latter
case, Pi(xi) is multiplied by at least r. Consider the subsequences between price increases.
At the end of a subsequence i receives an additional item. It may or may not keep this item
until the beginning of the next subsequence. If there are more than M subsequences with i
being the least spender, there must be two subsequences such that i looses an item between
these subsequences. According to Lemma 2, the value of i after the swap is at least r times
the minimum price of any bundle and hence at least r times the price of bundle i when i was
least spender for the last time. Thus Pi(xi) increases by a factor of at least r.

We have now shown: After at most M · n2M iterations with i being the least spender,
Pi(xi) is multiplied by a factor r. Thus there can be at most n2M2 logrMU such iterations.
Multiplication by n yields the bound on the number of iterations. J

3 A Lower Bound on the Approximation Ratio of the Algorithm

We show that the performance of the algorithm is no better than 1.44. Let k, s and K be
positive integers with K ≥ k which we fix later. Consider the following instance. We have
h = s(k − 1) goods of value K and n = h+ s goods of value 1. There is one copy of each
good. The number of agents is n and all agents value the goods in the same way.

The algorithm may construct the following allocation. There are h agents that are
allocated a good of value 1 and a good of value K and there are s agents that are allocated
a good of value 1. This allocation can be constructed during initialization. The prices are
set to the values and the algorithm terminates.

The optimal allocation will allocate a good of value K to h players and spread the
h + s = sk goods of value 1 across the remaining s agents. So s agents get value k each.
Thus

NSW(OPT )
NSW(ALG) =

(
Khks

(K + 1)h

)1/(h+s)

=
((

K

K + 1

)(k−1)s
ks

)1/ks

=
(

K

K + 1

)(k−1)/k
k1/k.
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c

1 nh n−k+1

uhu1

delta

Figure 2 The allocation constructed in the proof of Theorem 16. The dashed line above agents 1
to n− k indicates the utility caps. The solid rectangles visualize the values of the bundles.

The term involvingK is always less than one. It approaches 1 asK goes to infinity. The second
term k1/k has it maximal value at k = e. However, we are restricted to integral values. We
have 21/2 = 1.41 and 31/3 = 1.442. For k = 3, (K/(K + 1))2/3 = exp( 2

3 ln(1− 1/(K + 1))) ≈
exp(− 2

3(K+1) ) ≈ 1− 2
3(K+1) . So for K = 666, the factor is less than 1− 1/1000 and therefore

NSW(OPT )/NSW(ALG) ≥ 1.440.

4 Certification of the Approximation Ratio

How can a user of an implementation of the algorithm be convinced that the solution returned
has a NSW no more than 1.445 times the optimum? She may read this paper and convince
herself that the program indeed implements the algorithm described in this article. This is
unsatisfactory [11]. In this section, we describe an alternative certificate.

The algorithm returns an allocation xalg, prices pj for the goods, and MBB-ratios αi for
the agents. After scaling all utilities and the utility gap of agent i by αi, we have (3). The
user needs to understand that this scaling has no effect on the optimal allocation. As in
Section 2.3, we introduce the auxiliary problem with M =

∑
j kj goods and one copy of each

good. The goods have uniform utilities. The user needs to understand that the NSW of the
auxiliary problem is an upper bound (Lemma 6). We are left with the task of convincing the
user of an upper bound on the NSW of the auxiliary problem.

I Theorem 16. Let c1 ≥ c2 ≥ . . . ≥ cn be the utility caps of the agents, let u1 ≥ u2 ≥ . . . ≥
uM be the utilities of the M goods of the auxiliary problem, and let xoptaux be an optimal
allocation for the auxiliary problem. Then

NSW(xoptaux) ≤

 ∏
1≤i≤h

min(ci, ui) · δn−h−k ·
∏

n−k+1≤i≤n
ci

1/n

,

where δ =
(∑

h+1≤j≤M uj −
∑
n−k+1≤i≤n ci

)
/(n− h− k) and h and k are such that h <

n− k and cn−k+1 ≤ δ < cn−k and δ < uh. The right hand side is illustrated in Figure 2.

Proof. We insist that the goods 1 to h are allocated integrally and allow the remaining
goods to be allocated fractionally. Clearly, we cannot allocate more than ci to any agent, in
particular, not to agents n− k + 1 to n and to agents 1 to h. The optimal way to distribute
value

∑
h+1≤j≤M uj to agents h+ 1 to n is clearly to allocate δ each to agents h+ 1 to n− k

which all have a cap of more than δ and to the assign their cap to agents n− k+ 1 to n. The
items u1 to uh of value more than δ are best assigned to the agents with the largest utility
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caps. Assume that two such items, say u` and uk, are allocated to the same agent. Then
one of the first h agents is allocated no such item; let v be the value allocated to this agent.
Moving uk to this agent and value min(uk, v) from this agent in return, does not decrease
the NSW. Also, if any fractional items are assigned in addition to the first h agents, we move
them to agents h+ 1 to n− k and increase the NSW. This establishes the upper bound. J

The upper bound can be computed in time O(n2 + M). We conjecture that it can be
computed in linear time O(n+M). We also conjecture that the bound is never worse than
the bound used in the analysis of the algorithm. It can be better as the following example
shows. We have two uncapped agents and three goods of value u1 = 3, u2 = 1 and u3 = 1,
respectively. The algorithm may assign the first two goods to the first agent and the third
good to the second agent. The set B in the analysis of the algorithm consists of the first
good and the last good. Then ` = 1. The optimal allocation allocates 3 to the first agent
and 2 to the second agent. Thus α` = 2. The analysis uses the upper bound

√
4 · 2 for the

NSW of the optimal allocation. The theorem above gives the upper bound
√

3 · 2; note that
h = 1, k = 0, and δ = 2.

5 Envy-Freeness up to one Copy

For the case of additive valuations and one copy of each good, the optimal allocation is
envy-free up to one good as shown in [4]. Also the allocation constructed by the algorithm by
Barman et al. [3] is envy-free up to one good. In this section, we show that these properties
hold neither for the multi-copy case nor for the capped case.

We first give an example for the multi-copy uncapped case. There are two agents and
two goods. Good 1 has 5 copies, and good 2 has 2 copies. For the first agent, the utility
vector for good 1 is (1, 1, 0, 0, 0) and for good 2 is (δ, 0), where δ = 1/4. For the second agent,
the utility vector for good 1 is (1, 1, 1, 0, 0) and for good 2 is (1, 1). Then at the optimal
NSW allocation, the first agent is allocated two copies of good 1 and none of good 2, while
the second agent is allocated three copies of good 1 and two copies of good 2. Clearly, the
first agent envies the second agent even after removing one copy (of either good) from the
allocation of the second agent. However, u1(x2) = 2 + δ.

What does the algorithm do? The initial assignment constructs the optimal assignment
and sets p1 = p2 = α1 = α2 = 1. Agent 1 is the least spending uncapped agent. The
constraints on α1 are [0, 1] by the first good and [δ, 1] by the second good. The tight graph
consists only of agent 1. We enter the else-case of the main loop with S = 1. Then β1 = 1/δ,
β2 =∞, β3 = 4/(2r2) = 2/r2 and β4 = r1+blogr 5/2c ≥ β3. Thus β = β3. We decrease α1to
r2/2 ≈ 1/2 and terminate. The optimal allocation is now ε-p-envy free up to one copy.

For the linear capped case, again we have two agents, and this time we have four goods
with one copy each. The utility vectors of both agents are (1, 1, 1, 1), but the first agent is
capped at 1 + δ, while the second agent is uncapped. Again δ = 1/4. Then the optimal NSW
allocation allocates one good to the first agent and three goods to the second agent. Clearly,
the first agent envies the second agent, even after removing one good from the allocation of
the second agent.

What does the algorithm do? It may construct the optimal assignment during initialization;
the prices of all four goods and both α-values are set to one. Agent 1 is the least spending
uncapped agent. The tight graph consists of the edges from agent 1 to the goods owned by
agent 2 and from these goods to agent 1. An improving path exists and one of these goods is
reassigned to agent 1. The algorithm terminates with an allocation in which both agents
own two goods.
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Abstract
We present a combinatorial algorithm for determining the market clearing prices of a general linear
Arrow-Debreu market, where every agent can own multiple goods. The existing combinatorial
algorithms for linear Arrow-Debreu markets consider the case where each agent can own all of
one good only. We present an Õ((n+m)7 log3(UW )) algorithm where n, m, U andW refer to the
number of agents, the number of goods, the maximal integral utility and the maximum quantity
of any good in the market respectively. The algorithm refines the iterative algorithm of Duan,
Garg and Mehlhorn using several new ideas. We also identify the hard instances for existing
combinatorial algorithms for linear Arrow-Debreu markets. In particular we find instances where
the ratio of the maximum to the minimum equilibrium price of a good is UΩ(n) and the number
of iterations required by the existing iterative combinatorial algorithms of Duan, and Mehlhorn
and Duan, Garg, and Mehlhorn are high. Our instances also separate the two algorithms.
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1 Introduction

In a linear Arrow-Debreu market, there is a set B of n agents and a set G of m divisible
goods. We will refer to an individual agent by bi for i ∈ [n] and to an individual good by gj

for j ∈ [m]. Each agent comes with a basket of goods to the market, more precisely, agent bi

owns wij ≥ 0 units of good gj . The total supply of gj is then
∑

i wij units. Moreover, the
agents have utilities over the goods and uij ≥ 0 is the utility derived by agent bi from one
unit of good gj .

The goal is to find a positive price vector p ∈ Rm
≥0 and a non-zero flow f ∈ Rn×m

≥0 such
that:

a) For all j ∈ [m]:
∑

i fij =
∑

i wijpj (all goods are completely sold)
b) For all i ∈ [n]:

∑
j wijpj =

∑
j fij (agents spend all their income)

c) fij > 0 implies uij/pj = max`∈[m] ui`/p` (only bang-for-buck spending)
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Such a price vector is called a vector of equilibrium prices. In a), the left hand side is the
total flow (of money) into gj and the right hand side is the total value of all units of good gj .
In b), the left hand side is the income of agent bi under prices p and the right hand side is
his spending. In c), max`∈[m] ui`/p` is the maximum ratio of utility to price (bang-for-buck)
that agent bi can achieve. Agents spend only money on goods that give them the maximum
bang-for-buck. For agent bi and good gj , we use xij = fij/pj for the amount of gj allocated
to agent bi. A price vector p and an flow f as above is called a market equilibrium.

We make the standard assumption that every agent likes at least one good, i.e., for all i,
maxj uij > 0, and that each good is liked by some agent, i.e., for all j, maxi uij > 0. We
also make the nonstandard assumption that for every proper subset B′ ⊂ B there is at least
one good gj that is not completely owned by the agents in B′ and such that at least some
bi ∈ B′ is interested in gj , i.e., wkj > 0 for some bk 6∈ B′ and uij > 0 for some bi ∈ B′. In
other words, there is no subset of agents that are only interested in the goods completely
owned by them. References [15, 7, 11] show how to remove the nonstandard assumption.
We assume that utilities uij and weights wij are integral and use U = maxi∈[n],j∈[m] uij to
denote the maximum utility and W = maxj∈[m] maxi∈[n] wij to denote the maximum weight.
Then the budget available to any agent is bounded by

∑
j wijpj ≤ nW maxj pj .

Linear Exchange markets were introduced by Walras [19] back in 1874. Walras also
argued that equilibrium prices exist. The first rigorous proof for the existence of equilibirum
under strong assumptions was given by Wald [18]. Arrow and Debreu [1] gave the proof
for the existence of equilibrium when the utility functions are concave. There has been
substantial algorithmic research put into determining the equilibrium prices since the 60s.
Codenotti et al. [3] gives a surveys the algorithmic literature before 2004. While there are
strongly polynomial approximation schemes for determining the equilibrium prices [16, 14, 9],
the existence of a strongly polynomial exact algorithms still remains as an open question.
There have been exact finite algorithms [12, 13], exact weakly polynomial time algorithms [15,
20, 11, 10] and the characterization of the equilibrium prices as a solution set of a convex
program [7, 17].

A market equilibrium can be found in time polynomial in n, m, logU and logW by a
number of different algorithms. Jain [15] and Ye [20] gave algorithms based on the ellipsoid
and the interior point method, respectively, and Duan and Mehlhorn [11] and Duan, Garg,
and Mehlhorn [10] described combinatorial algorithms. The algorithm by Ye has a running
time of O(max(n,m)8(logUW )2), see [10, footnote on page 2].

The combinatorial algorithms actually only solve a special case: m = n and each agent is
the sole owner of a good, i.e., wii = 1, and wij = 0 for i 6= j. The algorithm in [10] solves
the special case in time O(n7 log3(nU)). A reduction for reducing the general case to the
special case is known, see Section 2. However, it turns a general problem with n agents
and m goods into a special problem with nm goods and hence leads to a running time of
Õ((nm)7poly(log(U))) (ignoring poly logarithmic dependencies on n). In an unpublished
note, Darwish and Mehlhorn [6, 4] have shown how to extend the algorithm in [11] to
the general problem without going through the reduction. The resulting running time is
O(max(n,m)10 log2(max(n,m)UW )). They were unable to generalize the approach in [10].

Our Contribution. Our contribution is twofold: a combinatorial algorithm for the general
problem and examples that are difficult for the algorithms in [11, 10]. We give a combinatorial
algorithm for the general problem with running time O((n + m)7 log3(nmUW )). The
algorithm refines the algorithm in [10] by several new ideas. We discuss them in Section 2.
In particular, in [10], the number of iterations compared to [11] is reduced by a factor of
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Ω(n) by a modified price update rule . The modified update rule is subtle and heavily relies
on the fact that there is a one to one correspondence between an agent and a good (one
agent owns all of one good only) and this is not true in the general scenario and several of
their crucial arguments break down. We come up with a novel price update rule that also
highlights some new structure in the problem.

We also give examples that are difficult for the algorithms in [11, 10] amd where the equi-
librium prices are exponential in U . Both algorithms are iterative and need O(n5 log(U)) and
O(n4 log(nU)) iterations respectively. The examples force the algorithms into Ω̃(n4+ 1

3 log(U))
and Ω̃(n4 log(U)) iterations respectively (ignoring poly logarithmic dependencies on n). They
separate the two algorithms.

2 Determining the equilibrium price vector of the general linear
Arrow-Debreu market

For completeness we first give the reduction from the general case to the special case (where
each agent owns all of one good only). This reduction is well-known. For each positive wij

we create an agent bij and a good gij owned by this agent. There is one unit of good gij . If
wij = 0, there is no good gij and no agent bij . We interpret gij as the goods gj owned by bi

and bij as a copy of agent bi. We define the utility derived by the agent bij from one unit of
good g`k as ũij,`k = w`k · uik; here the factor uik reflects that bij is a copy of agent bi and
g`k is a copy of gk and the factor w`k reflects that b` owns w`k units of good gk but there is
only copy of good g`k.

I Lemma 1. Let p and f be the market clearing price vector and the corresponding money
flow for the above instance of the special case with nm agents and goods. Then p`k

w`k
does not

depend on `, but only on k. Let p̂k = p`k

w`k
and f̂ik =

∑
j∈[m]

∑
`∈[n] fij,`k. Then p̂ and f̂ are

the market clearing price vector and corresponding money flow for general case with utility
matrix u and weight matrix w.

Proof. Assume w`k

p`k
> whk

phk
. Let bij be any arbitrary agent. Then

ũij,`k

p`k
= w`k · uik

p`k
>
whk · uik

phk
= ũij,hk

phk
.

Hence agent bij prefers good g`k over good ghk. Since bij is arbitrary, ghk will not be sold
at all, a contradiction. Thus w`k

p`k
= whk

phk
for all ` and h. Now, it is easy to verify that every

agent invests in goods that give him maximum utility to price ratio. Assume f̂ik > 0. Then
for any arbitrary k′ and `′, there is a j and `, such that

uik

p̂k
= ũij,`k

w`k · p̂k
= ũij,`k

p`k
≥ ũij,`′k′

p`′k′
= ũij,`′k′

w`′k′ · p̂k′
= uik′

p̂k′
.

The equilibrium flow constraints are also easily verifiable,∑
i∈[n]

f̂ik =
∑
i∈[n]

∑
j∈[m]

∑
`∈[n]

fij,`k =
∑
`∈[n]

p`k =
∑
`∈[n]

w`k · p̂k

∑
k∈[m]

f̂ik =
∑

k∈[m]

∑
j∈[m]

∑
`∈[n]

fij,`k =
∑

j∈[m]

pij =
∑

j∈[m]

wij · p̂j J

We now give our algorithm that does not rely on this reduction.

FSTTCS 2018
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Algorithm 1 Combinatorial algorithm for determining the equilibirum prices in the general
linear Arrow-Debreu market.
1: Set pi ← 1 ∀j ∈ [n].
2: Set ε← 1/(8 · (n+m)4(n+m)(UW )3(n+m)).
3: while ‖rf‖2 > ε , where f is a balanced flow in Np do
4: Let S be the set of high-surplus agents w.r.t f in Np.
5: x← min(xeq, x23, x24, x13, x2, xmax).
6: Multiply prices of goods in Γ(S) by x and update f , p to f ′ and p′ as in (1) - (2) and
Np to Np′ .

7: Let f ′′ be the balanced flow in Np′ .
8: Set p← p′ and f ← f ′′.
9: end while

10: Round p to equilibrium prices.

2.1 The Algorithm
Algorithm 1 shows the algorithm. Similar to the algorithms in [8, 11, 10], the algorithm is
iterative and flow based. For the description of the algorithm, we need the concepts of an
equality network, of a balanced flow, of the set of high-surplus buyers, and of the flow- and
price-update.

Equality Network Np. For a price vector p the equality network Np is a flow network with
vertices s ∪ t ∪B ∪G and edges

(s, bi) with capacity
∑

j∈[m] wij · pj for all i ∈ [n].
(gj , t) with capacity

∑
i∈[n] wij · pj for all j ∈ [m].

(bi, gj) with capacity ∞ iff uij/pj ≥ uik/pk for all k ∈ [m].
For any B′ ⊆ B let Γ(B′) = {gj | (bi, gj) ∈ Np for some bi ∈ B′} denote the neighborhood of
B′ in Np (all the goods agents in B′ may invest on).

Surpluses and Surplus vector rf . Let f be a valid flow in the equality network Np, and let
fij , fsi and fjt denote the flow along the edge (bi, gj), (s, bi) and (gj , t) respectively. We define
the surplus rf (bi) of the agent bi and rf (gj) of the good gj , as rf (bi) =

∑
j∈[m] wij · pj − fsi

and rf (gj) =
∑

i∈[n] wij · pj − fjt respectively. Surpluses are always non-negative. We define
the surplus vector rf ∈ Rn as 〈rf (b1), rf (b2), . . . rf (bn)〉.

Balanced Flow: A balanced flow f is a valid flow in Np with minimum norm ‖rf‖22. Every
balanced flow is a maximum flow. Additionally, if f is a balanced flow and fij and fi′j are
positive, then the surpluses of the agents bi and bi′ are the same and if (bi, gj) and (bi′ , gj)
are edges of Np and rf (bi) > rf (bi′) then fi′j = 0. This essentially follows from the fact that
the L2 norm of a vector reduces as the components move closer to each other in magnitude
(while the L1 norm remain constant). The following algorithmic property of balanced flows
will be useful.

I Lemma 2. Balanced Flows can be computed with at most n max flow computations [8]
and by one parameterized flow computation [5].

High Surplus Agents S and Goods in High Demand Γ(S). Let f be a balanced flow and
assume that there is surplus. The high surplus edges and high demand goods w.r.t. f in
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type-1 and type-2

S

rf (bl)

type-4a

rf (bl)/(1 + 1/n)

type-3 and type-4b

Figure 1 The horizontal line indicates the agents ordered by decreasing surplus from left to right.
b` is the agent of smallest surplus in S. All agents with surplus in rf (b`), rf (b`)/(1 + 1/n)] are
type-4a agents. They have no outflow and do not own goods in Γ(S).

Np are defined exactly as in [10]. Renumber the agents in order of decreasing surplus so
that b1 has the highest surplus and bn has the lowest surplus. Let ` be minimal such that
rf (b`) > rf (b`+1) and for every k such that rf (b`) > rf (bk) ≥ rf (b`)/(1 + 1/n), fsk = 0 and
wkj = 0 for every gj ∈ Γ(S), where S = {b1, . . . , b`}. If no such ` exists, let ` = n. We refer
to S as the set of high surplus agents and to Γ(S) as the set of high demand goods. The
surplus of the goods in Γ(S) is zero since the agents in S have positive surplus. There is no
flow on edges (bi, gj) ∈ Np with bi 6∈ S and gj ∈ Γ(S).

The algorithm in [10] that determines S in time O(n2) can be easily generalized and we
do not discuss it here.

Price and Flow Update. Like the earlier combinatorial algorithms, our algorithm is a
multiplicative price update algorithm. It works in phases and in each phase we compute
the balanced flow f in Np and determine the high surplus agents S and high demand goods
Γ(S). We increase the prices of the goods in Γ(S) as well as the money flow into them by
the same factor x > 1 (so we change the flow f in Np to f ′ in Np′). Formally,

f ′ij =
{
x · fij gj ∈ Γ(S)
fij gj /∈ Γ(S) f ′si =

{
x · fsi bi ∈ S
fsi bi /∈ S

(1)

f ′jt =
{
x · fjt gj ∈ Γ(S)
fjt gj /∈ Γ(S) p′i =

{
x · pi gj ∈ Γ(S)
pi gj /∈ Γ(S) (2)

The Factor x. We define x = min(xeq, x23, x24, x13, x2, xmax), where the quantities on the
right are defined below.

Since we increase the prices of all the goods in Γ(S) by the same factor x, the only
equality edges that may disappear are the ones that connect an agent from B \ S to a good
from Γ(S). Since f is a balanced flow and the agents in S have strictly higher surplus than
the ones in B \ S, the edges from agents in B \ S to goods in Γ(S) in Np carry no flow and
hence them disappearing will not lead to a violation of the flow constraints. The new edges
that appear will connect an agent in S to a good in G \ Γ(S). Therefore we define,

xeq = min
{
uij

pj
· pk

uik

∣∣∣∣ bi ∈ S, (bi, gj) ∈ Np, gk /∈ Γ(S)
}

This is the minimum x at which a new equality edge appears in the network.
Next we consider how the surpluses of the agents are affected. Observe that rf ′(bi) =

rf (bi) +x · (
∑

gj∈Γ(S)(wijpj − fij)). Therefore all the surpluses vary linearly with x. We now,
introduce 5 classes of agents similar to the ones in [10]. Figure 1 illustrates this definition.

Type-1 agent: An agent is a type-1 agent if it belongs to S and its surplus increases by
the price change. Formally, bi is type-1 if bi ∈ S and

∑
gj∈Γ(S) wijpj >

∑
gj∈Γ(S) fij .

FSTTCS 2018
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Type-2 agent: An agent is a type-2 agent if it belongs to S and its surplus does not increase
by the price change. Formally, bi is type-2 if bi ∈ S and

∑
gj∈Γ(S) wijpj ≤

∑
gj∈Γ(S) fij .

Type-3 agent: An agent is type-3 agent if it does not belong to S and its surplus increases
by the price change, i.e., it partially owns a good in Γ(S). Formally, bi 6∈ S and wij > 0
for some gj ∈ Γ(S).
Type-4a agent: An agent is a type-4a agent if it does not belong to S and has no
ownership in a good in Γ(S) and its surplus is at least rmin/(1 + 1/n), where rmin is
the minimum surplus of any agent in S. Formally, bi 6∈ S, wij = 0 for all j ∈ Γ(S) and
rf (bi) ≥ rmin/(1 + 1/n). By definition of S such bi have no outflow, i.e., fsi = 0, and no
ownership of any good in Γ(S), i.e., wij = 0 for any j ∈ Γ(S).
Type-4b agent: An agent is a type-4b agent if it does not belong to S and has no
ownership in a good in Γ(S) and its surplus is strictly less than rmin/(1 + 1/n), where
rmin is the minimum surplus of any agent in S. Formally, bi 6∈ S, wij = 0 for all j ∈ Γ(S)
and rf (bi) < rmin/(1 + 1/n).

We abbreviate the above sets of agents of each type as T1, T2, T3, T4a and T4b. Notice
that the surpluses of agents in T4a ∪ T4b remain unaffected by increase of price of goods in
Γ(S). We now define x23, x24, x13 as the minimal x such that rf ′(bi) = rf ′(bj) for some
bi ∈ T2, bj ∈ T3 and bi ∈ T2, bj ∈ T4b and bi ∈ T1, bj ∈ T3 respectively. We also define x2 as
the minimal x when rf ′(bi) = 0 where bi ∈ T2.

Finally,

xmax =
{

1 + 1
Rn3 whenmingj∈Γ(S) pj < Rn4mW

1 + 1
Rkn2 whenmingj∈Γ(S) pj ≥ Rn4mW,

where k is the number of agents in S that partially own a good in Γ(S) and R = 8e2. Note
that k is at least the number of type-1 agents.1 We distinguish light and heavy iterations.
An iteration is light, if pj < Rn4mW for some good gj ∈ Γ(S) (some good in demand is not
heavily priced), and heavy if pj ≥ Rn4mW for all goods gj ∈ Γ(S) (all goods in demand are
heavily priced).

Effect of an Iteration. We multiply the prices of the goods in Γ(S) by x and update f , p
to f ′ and p′ as in (1)-(4) and Np to Np′ . Note that the goods completely sold w.r.t. f in
Np are also completely sold with respect to Np′ . Maximizing and balancing the flow will
not increase the surplus of a good from zero to a positive value. Thus all goods that are
completely w.r.t. f in Np are also completely sold w.r.t. the balanced flow f ′′ in Np′ . The
2-norm of rf ′′ is at most the L2 norm of rf ′ .

We stop updating the prices once the L2 norm of the surplus vector is at most ε =
1/(8(n+m)4(n+m)(U ·W )3(n+m)).

1 In [10], xmax is defined as

xmax =
{

1 + 1
Rn3 if there are type-3 agents

1 + 1
Rkn2 otherwise, where k = number of type-1 agents.

The revised definition we change the classification of iterations. We do not classify them based on the
type of the agents in S, but by looking at the smallest price of a good in Γ(S) and we have a larger k
(k is at least the number of type-1 agents).
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2.2 Analysis of the Algorithm
Before we present the analysis of our algorithm we briefly indicate why the price-update
scheme used in [10] does not generalize. The algorithm in [10] reduces the number of iterations
of the algorithm in [11] by a multiplicative factor of Ω(n) by performing a more careful
selection of the set S and crucial change in the price update rule. In particular they set

xmax =
{

1 + 1
Rn3 if there are type-3 agents

1 + 1
Rkn2 otherwise, where k = number of type-1 agents.

Since in the special case, every agent owns only all of one good, k equals the number of
type-1 agents in S and the number of goods in Γ(S) in all iterations that do not involve a
type-3 agent. We enlist two crucial arguments that are necessary (not sufficient) to reduce
the number of iterations by Ω(n) from that in [11] and their dependencies on k as follows,
1. There is a decrease in the L2 norm of the surplus vector in every balancing iteration

without a type-3 agent. This argument crucially relies on k being equal to the number of
type-1 agents.

2. The total multiplicative increase of the L2 norm of the surplus vector in all xmax iterations
without a type-3 agent is at most (nU)O(n). This claim relies on the fact that k equals
the number of goods in Γ(S).

In the general scenario we do not have such one to one correspondence between the agents
and the goods. Therefore if we choose k to be either the number of type-1 agents in S or the
number of goods in Γ(S), then one of the claims from above will fail. Thus we need at least
a different classification of the iterations or a different choice of k than the ones used in [10].
In our algorithm we do both and thereby highlighten more hidden structure in the problem.

Like the algorithms in [11, 10], in every iteration Algorithm 1 only increases the prices of
goods that are completely sold (since f is a balanced flow and the agents in S have positive
surplus, the goods in Γ(S) will have zero surplus). Since the sum of surpluses of the agents
equals the sum of surpluses of the goods, both are therefore non-decreasing during a price
update. Also the goods completely sold w.r.t. f in Np also remain sold w.r.t. f ′′ in Np′ in
every iteration. Therefore the sum of surpluses of the agents is non-increasing throughout
the algorithm. Initially (when the price of every good gj is 1) this sum is at most nmW .

I Observation 3. The L1 norm of the surplus vector is non-increasing throughout the
algorithm and is at most nmW .

2.2.1 An Upper Bound on the Maximum Price
Observe that in every iteration of the algorithm there is a good with unit price. This follows
from the fact that the goods that are completely sold stay completely sold and since only
the prices of goods that are completely sold are increased, the price of goods that are not
completely sold is equal to the initial price and hence equal to one. We now derive an upper
bound on the maximum price of a good.

I Lemma 4. At any time during the course of the algorithm the maximum price is at most
max(2, U)m−1 ·W 2m−2 and the maximum budget is at most max(2, U)m ·W 2m.

Proof. Let us renumber the goods in increasing order of their prices. We show that pi ≤
max(2, U)i−1 ·W 2i−2 by induction on i. The smallest price is 1 and this establishes the
induction base. Consider an arbitrary i and let Ĝ denote the set of goods {gi+1, ..., gm} and
B̂ be the agents investing on the goods in Ĝ. We will derive a bound on pi+1. We distinguish
two cases.

FSTTCS 2018
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Assume first that there is an agent in bh ∈ B̂ that is also interested in a good in G \ Ĝ;
say bh invests on good gj ∈ Ĝ and is interested in good g` ∈ G \ Ĝ. Then uhj/pj ≥ uh`/p`

and hence pi+1 ≤ pj ≤ U · p` ≤ U · pi ≤ U ·max(2, U)i−1 ·W 2i−2 ≤ max(2, U)i ·W 2i.
Assume next that the agents in B̂ are only interested in the goods in Ĝ. Then there must

be a good in Ĝ, say gk, that is partially owned by an agent in B \ B̂. Otherwise, the agents
in B̂ will only be interested in goods completely owned by them. Therefore let bh ∈ B \ B̂
be the agent that partially owns gk. The budget mh of bh is at least whkpk and hence at
least pk. Since bh invests only in goods in G \ Ĝ, its budget is at most the total value of the
goods in G \ Ĝ. Thus

mh ≤W ·
∑
j∈[i]

pj ≤W ·
∑
j∈[i]

(
max(2, U)j−1W 2j−2) ≤W max(2, U)iW 2i−1 = max(2, U)iW 2i

and hence pi+1 ≤ pk ≤ max(2, U)iW 2i. The maximum budget of an agent is at mostW times
the total price of all goods and hence is bounded by W ·

∑
j∈[m]

(
max(2, U)j−1 ·W 2j−2) ≤

max(2, U)m ·W 2m. J

In particular, when n = m and w is an identity matrix, we have an upper bound of
max(2, U)n−1 for the highest price of a good in contrast to max(n,U)n in [11, 10]. Also note
that the maximum price of a good and the maximum budget of an agent is independent
of the number of agents. We now separately bound the xmax-iterations (x = xmax) and
balancing iterations (x < xmax).

2.2.2 Bounding the number of xmax-iterations
In this section we will be bounding the light and the heavy xmax-iterations separately. For
bounding both classes of iterations, we use upper bounds on the prices of the goods. A more
aggressive price update scheme is used for the heavy xmax-iterations as the prices of all goods
in Γ(S) in such iterations are high. Such aggressive price update may apparently result in
a significant multiplicative increase in the L2 norm of the surplus vector. We address this
concern in the next subsection. We first show that xmax-iterations where there is at least
one type-3 agent are light.

I Lemma 5. xmax-iterations with at least one type-3 agent are light.

Proof. Let bi be a type-3 agent. Then there is a gj ∈ Γ(S) with wij > 0. The additive
increase in the surplus of a type-3 agent bi during an xmax-iteration is at least wij · pj/Rn

3.
Since the total surplus is always at most nmW (by Observation 3), the increase in the surplus
of any agent is at most nmW . This immediately implies that pj ≤ Rn4mW . J

Now we bound the number of light xmax-iteration.

I Lemma 6. The number of light xmax-iterations is at most 10R2n3m log(nmW ).

Proof. Assume otherwise. Then there exists a good gj that is the minimum priced good
in Γ(S) in more than 10R2n3 log(nmW ) iterations. Before the last such iteration, pj >

(1+ 1
Rn3 )10R2n3 log(nmW ) > e5R log(nmW ) = n5Rm5RW 5R > Rn4mW , which is a contradiction.

The second to last inequality uses the fact that 1 + x > e
x
2 for 0 < x ≤ 1. J

We turn to heavy xmax-iterations. For such iterations, there exists no type-3 agent and
hence the goods in Γ(S) are completely owned by the agents in T1 ∪ T2. Thus∑

bi∈T1∪T2

∑
gj∈Γ(S)

fij =
∑

gj∈Γ(S)

∑
i∈T1∪T2

wijpj =
∑

bi∈T1

∑
gj∈Γ(S)

wij · pj +
∑

bi∈T2

∑
gj∈Γ(S)

wij · pj ,
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and hence∑
bi∈T1

∑
gj∈Γ(S)

(wij · pj − fij) =
∑

bi∈T2

∑
gj∈Γ(S)

(fij − wij · pj). (3)

Note that type-1 and type-2 agents can own goods outside of Γ(S). However the above
relation will help us prove that this “excess budget” is at most nmW . In fact the following
lemma plays a pivotal role to bound the multiplicative increase in the L2 norm of the surplus
vector in the next subsubsection.
I Lemma 7. For every agent bi ∈ S in a heavy xmax-iteration,

∑
gj /∈Γ(S) wijpj ≤ nmW .

Proof. For bi ∈ S, we have rf (bi) =
∑

gj 6∈Γ(S) wijpj +
∑

gj∈Γ(S)(wijpj − fij). For bi ∈ T1,
this implies

∑
gj 6∈Γ(S) wijpj ≤ rf (bi) ≤ nmW . For bi ∈ T2, using (3)∑

gj 6∈Γ(S)

wijpj = rf (bi) +
∑

gj∈Γ(S)

(fij − wijpj) ≤ rf (bi) +
∑

bh∈T2

∑
gj∈Γ(S)

(fhj − whjpj)

= rf (bi) +
∑

bh∈T1

∑
gj∈Γ(S)

(whjpj − fhj) ≤ rf (bi) +
∑

bh∈T1

rf (bh) ≤ nmW. J

In a heavy xmax-iteration, the price of any good in Γ(S) is at least Rn4mW and hence
the budget of any agent that partially owns a good in Γ(S) is at least that much. By the
above, the ownership of the goods outside Γ(S) contribute very little to the budget of such
agents. Thus any multiplicative increment on the prices of the goods in Γ(S) will inflict an
almost equal multiplicative increase in the budget of such agents.
I Lemma 8. The number of heavy xmax-iterations is O(n3m · log(WU)).
Proof. Consider any heavy xmax iteration and let mi denote the budget of agent bi. For any
agent bi that partially owns a good in Γ(S), mi ≥ Rn4mW . The budget mi of any agent bi

that partially owns a good in Γ(S), increases as follows (new budget denoted by m′i):

m
′
i =

∑
gj /∈Γ(S)

wijpj + (1 +
1

Rkn2 ) ·
∑

gj∈Γ(S)

wijpj

≥ (1 +
1

Rkn2 ) · (1 +
1

n3 )−1 · (1 +
1

n3 ) ·
∑

gj∈Γ(S)

wijpj

= (1 +
1

Rkn2 ) · (1 +
1

n3 )−1 ·

 ∑
gj∈Γ(S)

wijpj +

∑
gj∈Γ(S)

wijpj

n3


≥ (1 +

1
Rkn2 ) · (1 +

1
n3 )−1 ·

 ∑
gj∈Γ(S)

wijpj + nmW

 since
∑

gj∈Γ(S)

wijpj ≥ Rn
4
mW

≥ (1 +
1

Rkn2 ) · (1 +
1

n3 )−1 ·

 ∑
gj∈Γ(S)

wijpj +
∑

gj /∈Γ(S)

wijpj

 since
∑

gj 6∈Γ(S)

wijpj ≤ nmW

≥ (1 + Ω(
1

kn2 )) ·mi.

Let M =
∏

i∈[n]mi. Since mi ≤ (max(2, U)W 2)m we have log(M) ≤ nm log(UW ) always.
Also logM ≥ 0 initially. At any heavy xmax iteration, log(M) increases by a additive factor
of log((1 + Ω( 1

kn2 ))k) ∈ Ω( 1
n2 ). Since log(M) is non-decreasing in every iteration of the

algorithm (since the prices of the goods and the budgets of the agents only increase), the
number of heavy xmax-iterations is O(n3m log(WU)). J

We have now bounded the total number of xmax-iterations by O(n3m log(nmUW )).
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2.2.3 On the Increase in the L2-Norm of the Surplus Vector in the
xmax-Iterations

The L2 norm of the surplus vector is minimal for the balanced flow. We just look at the
difference in the L2 norm of the surpluses with respect to the flows f in Np and f ′ in Np′

(Updated flow as in 1 - (2)) . Note that this difference in surplus is at least as large as the
difference between the L2 norm of the surplus vector with respect to f in Np and f ′′ in Np′

(balanced flow in Np′ in Algorithm 1). This suffices as we are upper bounding the difference
in the L2 norm of the surplus vector in this section.

In a light xmax-iteration, the L2 norm of the surplus vector increases at most by a factor
of (1 +O( 1

n3 )) and thus the total multiplicative increase in the L2 norm of the surplus vector
resulting from such iterations is (1 +O( 1

n3 ))O(n3m·log(nmW )) = (nmW )O(m).

We now bound the multiplicative increase resulting from heavy xmax-iterations. Despite
the more aggressive price update scheme in heavy xmax-iterations, we can assure the same
multiplicative increase. As in [10] we wish to prove that the ratio of the highest to the lowest
surplus of the agents in S is at most 1 +O( k

n )). One possible approach is to show that the
number of distinct surpluses in S is O(k) (in that case the ratio will be (1+ 1

n )O(k) = 1+O( k
n )).

In [10], this is relatively easy to argue, as goods and agents are in one-to-one correspondence
and all agents having positive outflow to a good g have same surplus (by the property of
balanced flow). This immediately implies that there are at most 2k distinct surpluses of the
agents in S (additional k for agents with zero outflow that own one of the goods in Γ(S)).
This argument does not hold in the general scenario as the number of goods can be much
larger |S|. However Lemma 7 gives us a useful structure in the equality network.

I Lemma 9. The total multiplicative increase resulting in the L2 norm of the surplus vector
in heavy xmax-iterations is (WU)O(m).

Proof. Let S′ be the set of agents in S that partially own some good in Γ(S) and k = |S′|.
Let S′′ be the set of agents in S with positive outflow. Any agent in S′ has a budget of at
least Rn4mW (follows from the definition of heavy xmax iteration) and therefore has positive
outflow (since its surplus is at most nmW by Observation 3). Thus S′ ⊆ S′′. By Lemma 7,
the budget of any agent in S \ S′ is at most nmW and hence the total outflow from agents
in S \ S′ is at most n2mW . Therefore any good in Γ(S) must have inflow from an agent in
S′ and hence the surplus of any agent in S′′ is equal to the surplus of some agent in S′.

Let r1 > r2 > . . . > rh with h ≤ k be the distinct surplus values of the agents in
S′′. Agents in S \ S′′ have no outflow and no ownership of any good in Γ(S). Therefore
ri+1 ≥ ri/(1 + 1/n) by definition of S for 1 ≤ i < h.

From ri ≤ (1 + 1
n )ri+1 for all i, we conclude r1 ≤ (1 + 1

n )krh ≤ (1 + 2k
n )rh. Therefore

for any type-1 agent bi, we can claim that rf (bi) < (1 + 2k
n )rh. Let rf ′ be the surplus

vector after the xmax-iteration. Since there are no type-3 agents in this iteration, only the
surpluses of the type-1 and type-2 agents belonging to S′′ are affected (Agents belonging
to S \ S′′ have no ownership of goods in Γ(S) and no outflow also, so their surpluses
are unchanged when we change f to f ′) . Let δi denote the increase in the surplus of a
type-1 agent bi and let µj denote the decrease of surplus of a type-2 agent bj . Note that∑

bi∈T1
δi =

∑
bi∈T2

µi ≤ 1
Rkn2

∑
bi∈T1

rf (bi). Then,
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‖rf ′‖22 − ‖rf‖22 =
∑

bi∈T1

((rf (bi) + δi)2 − rf (bi)2)−
∑

bi∈T2

(rf (bi)2 − (rf (bi)− µi)2)

= 2
∑

bi∈T1

rf (bi)δi − 2
∑

bi∈T2

rf (bi)µi +
∑

bi∈T1

δ2
i +

∑
bi∈T2

µ2
i

≤ 2r1
∑

bi∈T1

δi − 2rh

∑
bi∈T2

µi +
∑

bi∈T1

δ2
i +

∑
bi∈T2

µ2
i

≤ 2(r1 − rh)
∑

bi∈T1

δi + 2
(∑

bi∈T1

δi

)2

≤ 2((1 + 2k
n

)rh − rh)
∑

bi∈T1

1
Rkn2 · rf (bi) + 2 1

R2k2n4

(∑
bi∈T1

rf (bi)
)2

≤ 4
Rn3

∑
bi∈T1

rf (bi)2 + n · 2
R2k2n4

∑
bi∈T1

rf (bi)2,

Thus ‖rf ′‖22 ∈ (1 +O( 1
n3 ))‖rf‖22. Therefore the multiplicative increase in any heavy xmax-

iterations is 1 +O( 1
n3 ). Thus the total multiplicative increase in the L2 norm of the surplus

vector in all heavy xmax iterations is at most (1 +O( 1
n3 ))O(n3m log(W U)) ∈ O(WU)O(m). J

Thus the total multiplicative increase in all xmax-iterations is at most (nmUW )O(m).

2.2.4 Balancing Iterations

In the balancing iterations x < xmax. First we discuss the case when x = min(x23, x24, x13, x2).
Since the L1 norm of the surplus vector is non-increasing during such an iteration (by
Observation 3), the total decrease in the surplus of the type-2 agents is at least the total
increase in the surpluses of the type-1 and type-3 agents. So now we quantify the decrease
in the L2 norm of the surplus during such an iteration. Let rmin denote the lowest surplus
of an agent in S and rmax denote the highest surplus of a type-3 or type-4b agent. Notice
that the highest surplus of any agent and hence any agent in S is at most e · rmin and that
rmax ≤ rmin/(1 + 1/n).

Each type-1 agent’s surplus increases at most by a multiplicative factor of 1 + 1/Rkn2.
Every type-1 agent partially owns at least one good in Γ(S) and therefore, k is at least the
number of type-1 agents in B(S). Thus the total increase in the sum of squares of the surpluses
as a result of increase in the surpluses of the type-1 agents is

∑
bi∈T1

(1/Rkn2) · rf (bi)2 which
is at most e2r2

min/Rn
2.

The surplus of the type-2 and the type-3 agents move closer to each other and the decrease
in the former is at least as large as the increase in the latter. Therefore, the sum of their
surpluses does not increase. We now quantify the decrease in the sum of squares of their
surpluses. Let δi denote the decrease in the surplus of a type-2 agent bi and µj the increase
in surplus of a type-3 agent bj . Let rf ′ be the new surplus vector (w.r.t flow f ′). Then the
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change in the sum of squares of type-2, type-3 and type-4 agents is∑
bi∈T2

((rf (bi)− δi)2 − rf (bi)2)) +
∑

bi∈T3

((rf (bi) + µi)2 − rf (bi)2))

=
∑

bi∈T2

(−2rf (bi)δi + δ2
i ) +

∑
bi∈T3

(2rf (bi)µi + µ2
i ))

=
∑

bi∈T2

−rf (bi)δi +
∑

bi∈T3

rf (bi)µi −
∑

bi∈T2

δi(rf (bi)− δi) +
∑

bi∈T3

µi(rf (bi) + µi)

For any balancing iteration we have that minbi∈T2(rf (bi)− δi) ≥ maxbi∈T3(rf (bi) + µi) and∑
bi∈T2

δi ≥
∑

bi∈T3
µi. This implies that

∑
bi∈T2

δi(rf (bi) − δi) ≥
∑

bi∈T3
µi(rf (bi) + µi).

Notice that rmin is minbi∈T1∪T2 rf (bi) and rmax is maxbi∈T3∪T4b
rf (bi). Therefore, we may

continue

≤ −rmin
∑

bi∈T2

δi + rmax
∑

bi∈T3

µi

≤ −(rmin − rmax) ·
∑

bi∈T2

δi ≤ −(rmin − rmax) ·
(
∑

bi∈T2
δi +

∑
bi∈T3

µi)
2 .

Now, whenever x = min(x23, x24, x13, x2),
∑

bi∈T2
δi +

∑
bi∈T3

µi ≥ rmin − rmax. Thus

≤ − (rmin − rmax)2

2 ≤ − r2
min

2(n+ 1)2 ≤ −
r2
min

4n2 .

Therefore ‖rf ′‖22 − ‖rf‖22 ≤
e2r2

min
Rn2 − r2

min
4n2 = − r2

min
4n2 (Recall that R = 8e2). Since ‖rf‖22 ≤

ne2r2
min, we have

‖rf ′‖22 ≤ (1− Ω( 1
n3 ))‖rf‖22.

Now we look into the case when x = xeq. We update the flow exactly the same way as
in [10]. The new equality edge will involve a type-1 agent or a type-2 agent. But after we
update the flow, we are in a similar situation as above, with a possibility that the surplus of
a few type-1 agents may even decrease and be equal to that of a few type-3 agents. Like
earlier the sum of surpluses of the agents is non-increasing here too and all arguments for
the decrease in the sum of squares of the agents remain the same. The flow adjustment is
exactly identical to the one in [10].

I Lemma 10. The total number of balancing iterations is O(n3 max(n,m) log(nmUW ))

Proof. Every balancing iteration results in a multiplicative decrease of 1 − Ω( 1
n3 ) in the

L2 norm of the surplus. The total multiplicative increase as a result of xmax-iterations is
(nmUW )O(max(n.m)). Initially ‖rf‖2 is at most

√
n(mW )2 and the algorithm terminates

with ‖rf‖2 being ε. Therefore the total number of balancing iterations is at most

log1−Ω( 1
n3 )(

1
ε
·
√
n(mW )2 · (nmUW )O(m)) = O(n3 max(n,m) log(nmUW )). J

So now we have bounded all the iterations of our algorithm.

I Theorem 11. The total number of iterations is O(n3 max(n,m) · log(nWU)).
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2.2.5 Extraction of Equilibrium Prices and Perturbation of Utilities
In [11] is was shown for the special case (n = m and w the identity matrix) that once the
total surplus is sufficiently small, the equality network for the current price vector p is the
equality network for the equilibrium price vector p̂. The equilibrium price vector can then
be extracted by solving a linear system. Darwish [4] showed that the same approach also
works for the general case.

I Theorem 12. Consider any instance of the general linear Arrow-Debreu market with n
agents, m goods, utility matrix u and weight matrix w. If p is a price vector such that ‖rf‖ at
most 1/(8 · (n+m)4(n+m)(UW )3(n+m)) for any balanced flow f in Np, then the equilibrium
price vector p∗ can be determined in O((n+m)4 · log(UW )).

[10] achieves O(n2) time for determining the balanced flow in every iteration by keeping
the Equality Network acyclic at every point in time in the algorithm. This improvement,
after minor adaptions, also applies to the general case. More details are given in the full
version of the paper in [2].

2.3 Summary
I Theorem 13. The market clearing price vector for the general Arrow-Debreu market can
be determined with O((n+m)6 log(nmWU)) arithmetic operations.

Proof. We perturb the utility matrix following the same perturbation as in [10]. This
perturbation ensures that the equality network is acyclic at any point in time in the
algorithm. Thereafter we run Algorithm 1 until ‖rf‖ < 1/(8 · (n+m)4(n+m)(UW )3(n+m)).
This involves O((n)3m log(nWU)) iterations. In each iteration we can determine x23, x24,
x13, x2 and xeq in O(n2) comparisons. The balanced flow can also be determined by n+m

max flow calls in Np. Since Np is acyclic (due to the perturbation), we can compute
each max flow in O(n+m) arithmetic operations as in [10]. Thus every iteration involves
O((n + m)2) arithmetic operations and comparisons. Therefore Algorithm 1 terminates
performing O((n + m)6 log(nmWU)) arithmetic operations and comparisons. Thereafter
we perform extraction as in Theorem 12 in time O((n+m)4 log(nmUW )) and determine
the equilibrium prices for the perturbed utilities. We then determine equilirbium prices
corresponding to the original utilities from the equilibrium prices of the perturbed utilities
performing O(m3) arithmetic operations in O(m4 log(UW )) time (details in the full version
of the paper in [2]) . Overall we perform O((n + m)6 log(nmWU)) arithmetic operations
and comparisons. J

To achieve the polynomial running time we can follow the same strategy used in [11].
where we restrict the prices and the update factor to powers of 1+1/L where L has polynomial
bit length (linear in n + m). This guarantees that all arithmetic is done on rationals of
polynomial bitlength. This can be adapted to the perturbation as well [10].

3 Lower Bounds for the Algorithms in [11, 10]

In this section, we construct non-trivial instances that make the equilibrium prices exponential
in U and forces the algorithms in [11, 10] to execute large number of iterations. We construct
an In comprises of a set of agents B = {b1, b2, ..., bn} and a set of goods G = {g1, g2, ..., gn},
and n is even. There is exactly one unit of each good (W = 1) and agent bi only owns one
unit of good gi. We now define the utility matrix as follows: ui,i−1 = U for 2 ≤ i ≤ n,
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b6

b5

b4

b3

b2

b1

g6

g5

g4

g3

g2

g1

Figure 2 Utility matrix for n = 6. The agents are the green nodes on the left and the goods
are the red nodes on the right. Agent bi owns good gi. The blue edges represent utility U and the
orange ones represent utility one.

ui,i+1 = 1 for 2 ≤ i ≤ n − 1, and u1,1 = u1,2 = U . ui,j = 0 for every other pair of (i, j).
See Figure 2.

I Theorem 14. For the instance In we have,
1. The ratio of the maximum to the minimum price of a good at equilirbium is Ω(UΩ(n)).
2. The algorithms in [11, 10] execute Ω(n4 log(U)) iterations.

Proof. We first show (1). Let p be the market clearing price vector with pi denoting the
price of good gi, and f be the money flow at equilibrium. Since the only agent interested in
gn is bn−1 , pn−1 ≥ pn. We now discuss two disjoint scenarios,

pn = pn−1. In this case we claim that for every even i, pi−1 = pi ≥ U · pi+1 = U · pi+2
and fi,i−1 = fi−1,i = pi = pi−1. For the base case, i = n we have pn = pn−1 and
fn,n−1 = fn−1,n = pn = pn−1. For the inductive step we assume that the claim holds for
i + 2. Since gi+2 is a bang per buck good for bi+1, pi ≥ U · pi+2 = U · pi+1. Since the
only other agent interested in gi is bi−1 we may conclude that pi−1 ≥ pi (bi−1 is the only
agent investing in gi). But then again, since the only good bi invests in is gi−1, pi−1 ≤ pi.
This implies that pi−1 = pi ≥ U · pi+1 = U · pi+2 and fi,i−1 = fi−1,i = pi = pi−1.
pn−1 > pn. In this case we claim that for every even i, pi < pi−1 and pi−1 ≥ U · pi+1. For
the base case i = n, this trivially holds. For the inductive step we assume that our claim
holds for i+ 2. Since pi+1 > pi+2, the agent bi+1 must invest in the good gi. This implies
that pi ≤ U · pi+2. Since pi+2 < pi+1, agent bi must invest in good gi+1. Therefore gi+1
is a bang per buck good for agent bi, implying that pi−1 ≥ U · pi+1 > U · pi+2 ≥ pi.
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In either case, we have pi−1 ≥ Upi+1 for even i. Thus there are goods with price ratio
equal to U

n
2−1. For (2), note that the algorithm in [11] never increases the price of a

good more than a multiplicative factor of (1 +O(1/n3)). Thus the number of iterations is
log1+O(1/n3) U

Ω(n) ∈ Ω(n4 log(U)). To prove that the algorithm in [11, 10] takes Ω(n4 log(U))
iterations, we first need to understand the details of how the sets S (high surplus agents) and
Γ(S) (high demand goods) evolve throughout the iterations of the algorithm in [11, 10]. In
particular we show that there exists a good gi and its price is increased by a multiplicative
factor of UΩ(n) in xmax iterations with Ω(n) type-1 agents. Note that the price of any good
is increased at most by a multiplicative factor of 1 + O(1/n3) in any xmax iteration with
Ω(n) type-1 agents. Since the total price increase in such iterations is UΩ(n), the number of
such iterations is Ω(log1+O(1/n3) U

Ω(n)) ∈ Ω(n4 log(U)). For the detailed proof we refer to
the full version of the paper in [2]. J

We next claim that there is an instance I ′n that separates the two algorithms in [11, 10].

I Theorem 15. The number of iterations executed by the algorithm in [11] on the instance
I ′n is Ω((n4+ 1

3 log(U))/ log(n)4).

We refer to the full version of the paper [2] for the exact construction and the detailed
proof of Theorem 15.
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Abstract
A voting mechanism is a method for preference aggregation that takes as input preferences over
alternatives from voters, and selects an alternative, or a distribution over alternatives. While
preferences of voters are generally assumed to be cardinal utility functions that map each alterna-
tive to a real value, mechanisms typically studied assume coarser inputs, such as rankings of the
alternatives (called ordinal mechanisms). We study cardinal mechanisms, that take as input the
cardinal utilities of the voters, with the objective of minimizing the distortion – the worst-case
ratio of the best social welfare to that obtained by the mechanism.

For truthful cardinal mechanisms withm alternatives and n voters, we show bounds of Θ(mn),
Ω(m), and Ω(

√
m) for deterministic, unanimous, and randomized mechanisms respectively. This

shows, somewhat surprisingly, that even mechanisms that allow cardinal inputs have large dis-
tortion. There exist ordinal (and hence, cardinal) mechanisms with distortion O(

√
m logm),

and hence our lower bound for randomized mechanisms is nearly tight. In an effort to close
this gap, we give a class of truthful cardinal mechanisms that we call randomized hyperspher-
ical mechanisms that have O(

√
m logm) distortion. These are interesting because they violate

two properties – localization and non-perversity – that characterize truthful ordinal mechanisms,
demonstrating non-trivial mechanisms that differ significantly from ordinal mechanisms.

Given the strong lower bounds for truthful mechanisms, we then consider approximately
truthful mechanisms. We give a mechanism that is δ-truthful given δ ∈ (0, 1), and has distortion
close to 1. Finally, we consider the simple mechanism that selects the alternative that maximizes
social welfare. This mechanism is not truthful, and we study the distortion at equilibria for the
voters (equivalent to the Price of Anarchy, or PoA). While in general, the PoA is unbounded, we
show that for equilibria obtained from natural dynamics, the PoA is close to 1. Thus relaxing
the notion of truthfulness in both cases allows us to obtain near-optimal distortion.
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1 Introduction

A society or a group of people may have different views and preferences but want to make a
collective decision that will impact the entire group. For example, the people of India may
have conflicting opinions on which party should win the Lok Sabha elections, and who should
be the Prime Minister. This is the problem of preference aggregation, and the methods
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of achieving this aggregation are called voting mechanisms – functions that map the given
preferences of voters over a set of alternatives to a single alternative or a distribution over
alternatives, without money being exchanged.

Central to the question of preference aggregation is the question of how preferences
are perceived by the voters, and how they are expressed to the mechanism. In classical
social choice theory, particularly when a voting mechanism is randomized, i.e., can output a
distribution over the set of alternatives, voter preferences are assumed to be von Neumann-
Morgenstern utility functions, that map each alternative to a real-valued utility. We assume
that the total utility each voter has for the alternatives is 1. This is the unit-sum assumption,
though other normalizations such as unit-range are also studied. A voter then prefers
distributions over the alternatives that maximize her expected utility. These utility functions
may be latent and hidden from the mechanism but are required for the voter to rationally
compare distributions or lotteries over the set of outcomes. In contrast to these cardinal
utility functions of the voters, frequently the mechanisms studied in the literature, and used
in practice, have coarser inputs, such as a ranking of the alternatives, or simply a vote for
the alternative with the highest utility (called ordinal and plurality voting respectively).

If utility functions are cardinal, then an understanding of cardinal voting mechanisms,
where voters give as input their utility functions, seems fundamental to understanding the
problem of preference aggregation. Though less popular than other voting mechanisms owing
to their complexity, cardinal voting mechanisms find use in many areas. For example, they
are motivated by automated agents in recommender systems that use exact numeric values
for making decisions, and hence naturally have easily expressible cardinal utilities. The use of
these automated agents in a movie recommendation system is described by Ghosh et al. [14]
(cf. [24]). Hillinger further argues for the use of cardinal voting mechanisms, especially since
they do not artificially restrict the freedom of expression of voters [17].

Given an input format for voter preferences, how then should the mechanism choose an
alternative? A widely studied property is incentive compatibility or truthfulness – a voter
should maximize her expected utility by truthfully expressing her preferences, irrespective
of the votes of others. Truthful mechanisms are desirable since voters need not strategize
or seek information on the behavior of other voters. Other properties for mechanisms that
are studied include Pareto-efficiency and polynomial-time computation. A natural objective
for the voting mechanism, given the cardinal utilities of voters, is to maximize the social
welfare or the total utility of the voters. This has been a mechanism objective in a number
of recent papers (e.g., [7, 13]). The objective of social welfare assumes that the utilities allow
for interpersonal comparison: that a unit of voter 1’s utility is equivalent to a unit of agent
2’s utility. Such comparisons may not be generally applicable, but even then, aggregate
utility (or disutility) is frequently used as a quantitative measure, e.g., man-hours required
for a project, or total time spent in traffic. The motivation for studying social welfare from
classical economic theory, as well as further uses in modern recommendation systems, is also
described by Boutilier et al. [7].

The social welfare of a voting mechanism is measured by the distortion – the ratio of the
welfare of the best alternative to the expected welfare obtained by the mechanism, in the
worst case over all instances [24].2 Unfortunately, combined with the requirement that the

2 In their paper, Procaccia and Rosenschein use distortion to measure the loss due to the embedding of
cardinal utilities into the space ordinal preferences. However, they also define distortion as stated here.
Other papers use ‘approximation ratio’ for this quantity (e.g., [13]). We find the term distortion to be
more natural and descriptive, and hence use it here for cardinal mechanisms as well.
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mechanism be truthful, for the input formats typically studied, the distortion is known to be
large – for ordinal mechanisms, that take as input a ranking of the alternatives, the distortion
is Θ(

√
m logm) [5], where m is the number of alternatives. Even for ordinal mechanisms

that are not truthful, the distortion is Ω(
√
m) [7], suggesting that most of the loss in welfare

is caused by the incongruity between the cardinal utilities experienced by the voters, and
ordinal preferences given as input to the mechanism. This begs the question: for truthful,
cardinal mechanisms, where the input to the mechanisms are cardinal utility functions, how
large is the distortion? Note that in this case, there is no incongruity between the preferences
experienced and expressed: both are cardinal.

Our goal in this paper is to address this question, and to obtain bounds on the social
welfare obtainable by cardinal mechanisms. While cardinal mechanisms are less popular than
mechanisms with simpler input formats, we believe that an understanding of cardinal mecha-
nisms is crucial in many ways to understanding other preference aggregation mechanisms.
Firstly, lower bounds obtained for cardinal mechanisms are lower bounds for mechanisms
with other input formats as well. Secondly, studying cardinal mechanisms helps disentangle
the effects of various constraints on the mechanism, since the input format is no longer a
constraint. Thirdly, as noted above, particularly in the case of automated agents, cardinal
mechanisms are of practical use. Lastly, we note that cardinal mechanisms have received less
attention than ordinal mechanisms, and theoretically these present several challenging ques-
tions. For example, strong characterizations of truthful ordinal mechanisms are known [16, 1],
while truthful cardinal mechanisms are only partially characterized (e.g., [18, 3]). This is
a long-standing open question, and we hope that the perspective of distortion of cardinal
mechanisms may present useful insights for this question as well.

We study truthful, nearly-truthful, as well as manipulable cardinal mechanisms, and
provide bounds on the social welfare obtainable. In the last case, we study the social welfare
at equilibrium for the deterministic cardinal mechanism that simply returns the alternative
with maximum social welfare for the reported utility functions. While for truthful cardinal
mechanisms we show strong and nearly tight lower bounds, for the last two cases we are able
to show that with some reasonable restrictions, the distortion achieved is nearly 1, in sharp
contrast to the case of truthful cardinal mechanisms, where the distortion is Ω(

√
m).

Our Contribution. In this paper, we study the distortion of cardinal mechanisms with n
unit-sum voters and m ≥ 3 alternatives. Unit-sum assumes that the sum of utilities of
each voter for the alternatives is 1. This assumption implies that all the voters have equal
weight, and no voter is more important than the other in contributing to the social welfare.
We first focus on truthful cardinal mechanisms, and show that for deterministic cardinal
mechanisms, the distortion is Θ(mn). Note that the trivial randomized mechanism that
picks an alternative uniformly without looking at the utilities of the voters has distortion
O(m). A natural property for mechanisms is Pareto-optimality (e.g., [16]), which states
that for any alternative a chosen by the mechanism with positive probability, there is no
alternative b for which all voters have higher utility. A significantly weaker property is
unanimity, which states that if there is an alternative that has maximum utility for all voters,
then the mechanism should pick this with probability 1. Unfortunately, even for this weaker
property, we show that any truthful unanimous mechanism has distortion Ω(m). Underlying
our results are strong previous characterizations of unanimous mechanisms which show that
such mechanisms must be random dictatorships, which pick a voter at random and return
the maximum utility alternative for the voter [10, 18, 21].

FSTTCS 2018
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We then focus on truthful randomized mechanisms. There exist randomized ordinal
(and hence cardinal) mechanisms with distortion O(

√
m logm). We show that, perhaps

surprisingly, this is nearly the best possible for cardinal mechanisms as well, showing a bound
of Ω(

√
m) on the distortion of cardinal mechanisms. Note that if voters reported their utility

truthfully, a mechanism with distortion 1 is trivial. This implies that the loss in welfare due
to truthfulness is already large, apart from that caused by the information loss due to the
input format.3

We leave the problem of closing the gap between the upper and lower bounds (O(
√
m logm)

and Ω(
√
m)) open. We instead address the following question: can cardinal mechanisms with

low distortion be very different from ordinal mechanisms? In particular, the characterization
by Gibbard of truthful ordinal mechanisms requires such mechanisms to satisfy non-perversity
and localization (these are defined in the next section) [16]. Must mechanisms that violate
these properties be trivial, with large distortion, or do there exist cardinal mechanisms
that violate these properties, and yet have good distortion? We give a mechanism that
we call a randomized hyperspherical mechanism that violates these properties, but has
distortion O(

√
m logm), matching the best known upper bound. Spherical mechanisms were

previously studied by Feige and Tennenholtz [12], but these are much simpler mechanisms
with distortion Ω(m). We view our mechanism as a significant extension of these. The
mechanism we introduce may be of independent technical interest as well. One of the steps
involved in the mechanism is to project a point onto the intersection of the standard simplex
and a hypersphere of given radius, for which we give a polynomial time algorithm.

Given the strong lower bounds, we then consider two kinds of mechanisms that may
incentivize strategic behavior (called manipulable). We first study approximately-truthful
cardinal mechanisms, where a mechanism is δ-truthful if no voter can increase her expected
utility by more than δ by reporting her utilities untruthfully. Here we show surprisingly good
results: for any δ ∈ (0, 1), we give a cardinal mechanism that has distortion that approaches
1 as the number of voters increases, and is 2δ-truthful. Thus slightly relaxing the notion of
truthfulness allows us to obtain near optimal bounds on the distortion. It is instructive to
compare our results with those of Birrell and Pass, who show that approximately truthful
ordinal mechanisms can be used to approximate any deterministic ordinal mechanism, in a
formal sense [6]. However, the distortion of any deterministic ordinal mechanism is Ω(m) [24].

We lastly consider the natural, but manipulable, deterministic mechanism that for any
utilities given as input, simply returns the alternative that has maximum social welfare
according to these utilities. Since we can no longer rely on voters being truthful, we instead
consider the pure Nash equilibrium for this mechanism, i.e., utility profiles where no single
voter can report a different utility function and improve her utility. Here, the distortion
is equivalent to the Price of Anarchy (PoA), defined as the ratio of the welfare of the best
alternative to the expected welfare of the mechanism, in the worst case over all equilibria
and all instances. Simple examples show the PoA is in general unbounded, and even natural
refinements studied previously have unbounded PoA. Instead, we consider equilibria reachable
from natural iterative voting, where in each step, a voter changes her input to the mechanism
to improve her utility. Iterative voting has been considered in a number of previous papers
(e.g., [20, 25]), though usually for ordinal or other mechanisms with restricted input formats.
We show that under certain natural restrictions on the allowable deviations, iterative voting
converges, and the PoA approaches 1 as the number of voters increases.

3 Ariel Procaccia in a conversation mentioned that he had also obtained this bound independently, but
had not written it up.
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Related Work. We focus here on literature directly related to our work, and refer to the
book on computational social choice [8] and the survey by Barbera [2] for a wider discussion.
For voting mechanisms, truthfulness has been an important consideration, epitomized
by the well-known impossibility result by Gibbard and Satterthwaite for deterministic
ordinal voting mechanisms which states that any such truthful mechanism must be a
dictatorship [15, 27]. Allowing randomization alleviates this, and such mechanisms were
characterized by Gibbard [16] as being distributions over unilateral and duple mechanisms,
each of which must be localized and non-perverse. This characterization was further refined
by Barbera [1].

In comparison, for characterizing truthful cardinal mechanisms, only partial results are
known. Characterizations are known for twice-differentiable truthful cardinal mechanisms [3].
Further, truthful cardinal mechanisms which are unanimous are a convex combination of
dictatorial schemes [18, 10, 21].

The social welfare of voting mechanisms was explicitly studied by Boutilier et al. [7],
who showed that for randomized ordinal mechanisms, the distortion was O(

√
m log∗m)

and Θ(
√
m). The concept of distortion as a measure of loss of welfare by a mechanism

was introduced earlier and studied for many well-known deterministic voting mechanisms
including Borda, Plurality, and Veto [24]. In general, the distortion is shown to be unbounded.
For highly structured utility functions, the authors obtain positive results. The mechanisms
studied in these papers are not truthful. For truthful ordinal mechanisms for voters with
unit-sum utilities, the distortion is known to be Θ(

√
m logm) [5].

Filos-Ratsikas and Miltersen study the social welfare of truthful cardinal mechanisms
with voters that have unit-range utilities, i.e., for each voter i, maxa∈A ui(a) = 1 and
mina∈A ui(a) = 0 [13]. They obtain bounds of O(m3/4) and Ω(log logm/ logm) for truthful
cardinal mechanisms, and a bound of Ω(m2/3) for ordinal mechanisms and some generaliza-
tions.

Relaxing truthfulness, it is known that approximately truthful randomized ordinal mech-
anisms can approximate any deterministic ordinal voting rule, in that the output obtained
by the randomized mechanism could have been obtained by the deterministic ordinal voting
rule by changing a small number of votes [6]. This does not give us bounds on the distortion,
since any deterministic ordinal mechanism has distortion Ω(m) (e.g., [24]).

The social welfare at equilibrium – with the ratio well-known as the Price of Anarchy
(PoA) – is known to be bad if the set of equilibria is not restricted. Hence a number of papers
study equilibria reachable by natural best-response dynamics, called iterative voting. For
the plurality voting rule, best-response dynamics is shown to converge in O(mn) steps [20].
Convergence for Veto, Borda, and other voting rules is also studied [19, 26]. Further, the
social welfare for equilibria obtained through best-response dynamics for plurality is known
to be at most 1 less than the optimal, however, this can be small (and hence the PoA
can be large) for Veto and Borda. Finally, further restrictions on the class of equilibria
obtainable have also been studied for plurality voting, such as strong equilibria or equilibria
with truth-biased voters [11, 23]. In particular, Rabinovich et al. [25] characterize the set of
equilibria obtainable from plurality voting with truth-biased voters.

2 Preliminaries and Notation

A population of n voters (or agents) N = {1, 2, . . . , n} want to select an alternative (or
candidate) from a set A of size m. Each voter i has a utility function ui : A → [0, 1]. We
will sometimes abuse notation and think of ui as vector in Rm. We assume that the voters

FSTTCS 2018
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are unit-sum voters, i.e., the total utility of a voter is 1 (
∑
a∈A ui(a) = 1 for each voter

i). We will also assume that no two alternatives have the same utility for a voter, thus if
ui(a) = ui(b), then a = b. This is a mild technical assumption which allows us to obtain a
total order over alternatives for each voter, and simplify our proofs. Let ~u := (ui)i∈N be a
vector of utility functions, or a utility profile. Define ~u/iu′i to be the utility profile ~u with
the utility function for the ith voter replaced by u′i.

A (cardinal) mechanism µ is defined as a map, possibly randomized, from input utility
profiles to distributions over alternatives. For our lower bounds, we assume that the
mechanisms we study have at least 3 feasible alternatives, i.e., there exist three alternatives
each of which is chosen with positive probability for some input utility profile. We will
sometimes compare our mechanisms to ordinal mechanisms, which are similarly possibly
randomized maps from rankings over the set of alternatives provided by voters, to distributions
over the alternatives. A plurality mechanism is one where each voter selects a single
alternative, and the mechanism chooses an alternative that is selected by the maximum
number of voters. Given a distribution (pa)a∈A over the alternatives, the expected utility of
a voter is

∑
a∈A ui(a)pa. We assume that all voters are expected utility maximizers, and

note that to maximize her utility a voter i may report a different utility function u′i 6= ui
to the mechanism. For clarity, we call the input provided to a mechanism by a voter her
strategy, which may not be her true utility. A mechanism is truthful (more formally, truthful
in expectation) if each voter obtains maximum expected utility by reporting her true utility
profile ui, irrespective of the strategies of the other voters. Thus a cardinal mechanism
is truthful if for each voter i with utility ui, and each strategy profile ~u′, Ea∼µ(~u′)[ui(a)]
≤ Ea∼µ(~u′/iui)[ui(a)]. A mechanism is manipulable if it is not truthful. Further, relaxing
truthfulness, in a δ-truthful mechanism each voter can improve her expected utility by at
most δ by choosing a strategy that is not her true utility. In both these cases, we assume
that voters vote truthfully, since the incentive to misreport utility functions is small.

For an alternative a in an instance with utility profile ~u, the utilitarian social welfare (or
simply welfare) is sw(a) =

∑
i ui(a), the sum of utilities of all the voters for that alternative.

We study mechanisms that maximize welfare, and hence our primary measure of a mechanism
is its distortion, defined informally as the worst-case ratio of the maximum utility of an
alternative, to the expected utility obtained by the mechanism [4, 24]. The distortion of a
mechanism is thus at least 1. Under the assumption that voters choose their utility ui as
strategy, the distortion for a mechanism µ is defined formally as:

dist(µ) := sup
~u

maxa∈A sw(a)
Ea∼µ(~u)sw(a) .

In Section 5, we study the simple deterministic mechanism that chooses the alternative
with maximum welfare, for the strategy profile reported by the voters. This mechanism is
not truthful, and we will be interested in welfare at the pure Nash equilibrium for the voters.
In this case, the distortion is equivalent to the well-studied Price of Anarchy. Formally, let ~u
be the utility profile of the voters, and let ~u′ be a strategy profile. Then ~u′ is a pure Nash
equilibrium if for every voter i ∈ N and every strategy u′′i ,

Ea∼µ(~u′)ui(a) ≥ Ea∼µ(~u′/iu′′i )ui(a) .

The Price of Anarchy (PoA) of a mechanism µ is defined as the worst-case ratio over all
possible instances, of the maximum welfare of an alternative to the lowest welfare of an
alternative chosen by the mechanism at an equilibrium.

sup
~u

sup
equilibrium strategy profiles ~u′

maxa∈A
∑
i∈N ui(a)

Ea∼µ(~u′)
∑
i∈N ui(a)
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The following properties for ordinal mechanisms were introduced by Gibbard [16].

I Definition 1. An ordinal mechanism is non-perverse if increasing the ranking of an
alternative by a voter, while leaving the relative order of the other alternatives unchanged,
does not decrease the probability that the alternative is selected. An ordinal mechanism is
localized if, for two rankings by a voter where the set of top k alternatives are the same (but
individual rankings may not be preserved), the total probability mass on these k alternatives
is also unchanged.

We extend these properties to cardinal mechanisms as follows.

I Definition 2. Let utility functions v, v′ be such that v′(a) > v(a) for some alternative a,
and for all other alternatives b, c 6= a, v(b) ≥ v(c) iff v′(b) ≥ v′(c). That is, the relative order
of the other alternatives remains unchanged. Cardinal mechanism µ is non-perverse if for all
utility profiles ~u and voters i, µ(~u/iv′)(a) ≥ µ(~u/iv)(a).

I Definition 3. Given utility functions v, v′ and a permutation π so that v(a1) ≥ · · · ≥ v(am)
and v′(aπ(1)) ≥ · · · ≥ v′(aπ(m)), cardinal mechanism µ is localized if for every k ≤ m such
that (i) {a1, . . . , ak} = {aπ(1), . . . , aπ(k)} and (ii)

∑k
i=1 v(ai) =

∑k
i=1 v(aπ(i)), the probability

mass on these k alternatives remains unchanged. That is, for every utility profile ~u and voter
i,
∑k
i=1 µ(~u/iv)(ai) =

∑k
i=1 µ(~u/iv′)(aπ(i)).

All missing proofs are given in the appendix.

3 Truthful Mechanisms

In this section, we obtain bounds on the distortion of truthful mechanisms. Disappointingly,
but perhaps unsurprisingly, we first show that deterministic mechanisms have distortion
Θ(mn) (Theorem 7). Further, mechanisms that are unanimous – i.e., if there exists an
alternative that has maximum utility for each voter, then this alternative must be selected –
have distortion Ω(m) (Theorem 9).4 In fact, we show that truthfulness is in general expensive
– all truthful cardinal mechanisms, even randomized, have distortion Ω(

√
m) (Theorem 10).

The lower bound is disappointing, since it shows that even truthful mechanisms that do not
restrict the input format have large distortion. Our lower bound is nearly tight, since there
are truthful ordinal mechanisms that have distortion O(

√
m logm), implying that the loss

from restricting the input format does not impose a significant additional burden.
The gap between the upper and lower bounds (O(

√
m logm) and Ω(

√
m)) remains open.

However, the seminal work by Gibbard [16] shows that an ordinal mechanism is truthful iff
it is localized and non-perverse. An interesting question is if there exist mechanisms which
approach the distortion lower bound, and violate these properties, extended to cardinal
mechanisms. We show that indeed such mechanisms exist, and give one such mechanism
with distortion O(

√
m logm), matching the best known upper bound.

We will use the following definition and characterization for our proofs. Recall that we
assume that for each voter, no two alternatives have the same utility. Since we assume
truthfulness in this section, this extends to their strategies as well.

I Definition 4. A mechanism is a dictatorship if there exists voter i so that for any strategy
profile ~u, µ(~u) = arg maxa∈A ui(a). Voter i is said to decide the mechanism in this case.

4 A mechanism that is Pareto-optimal must be unanimous, hence the lower bound holds for all Pareto-
optimal mechanisms as well.

FSTTCS 2018
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I Definition 5. Cardinal mechanism µ is unanimous if whenever there exists an alternative
a∗ ∈ A such that arg maxa∈A ui(a) = a∗ for all voters i, µ(~u) selects a∗ with probability 1.

I Theorem 6 ([18, 10]). A unanimous truthful cardinal mechanism is a randomization over
dictatorial mechanisms.

A similar result was also shown for ordinal mechanisms by Gibbard [16]. We first show
tight bounds for deterministic mechanisms.

I Theorem 7. Deterministic truthful cardinal mechanisms have distortion Θ(mn).

Proof. For the upper bound, consider the mechanism that picks the maximum utility
alternative for voter 1. This mechanism has welfare at least 1/m, while the maximum welfare
obtainable is n, giving us the upper bound.

For the lower bound, we first assume that for every a ∈ A, there is some strategy profile
for which the mechanism returns a. This is without loss of generality, since if there is some
alternative a that is never chosen, then when all agents have utility 1 for a and 0 for all other
alternatives, the distortion is infinite. We next show in the following claim that a truthful
deterministic cardinal mechanism must be unanimous.

I Claim 8. A truthful deterministic cardinal mechanism must be unanimous.

Proof. Suppose the truthful deterministic mechanism µ is not unanimous. Then for some
alternative a, ~u is a utility profile where the maximum utility alternative for every voter is
a, but the mechanism returns b 6= a. Since a is feasible, there exists ~u′ such that µ(~u′) = a.
Let the voters deviate, one by one, from their strategy in ~u to ~u′. For some voter i, the
mechanism chooses a after the player deviates, and not before. This player then has an
incentive to report her utility as in ~u′ when her actual utility is as in ~u, when the other
voters have utilities as in the utility profile before (and also after) the deviation by i. The
mechanism thus cannot be truthful. J

We can now complete the proof of the theorem. By Theorem 6 and Claim 8, any truthful
deterministic cardinal mechanism must be a dictatorship. For such a mechanism, let i be
the voter that decides the mechanism. Consider the utility profile where voter i has utility
1/m+ ε for candidate a and utility 1/m− ε/(m− 1) for the other alternatives. All the other
voters have utility 1 for some candidate b 6= a. Then the maximum welfare is about (n− 1)
while the mechanism obtains welfare 1/m+ ε, giving us the required distortion. J

I Theorem 9. Unanimous truthful cardinal mechanisms have distortion Ω(m).

Proof. Let the unanimous mechanism be µ, by Theorem 6 this must be a randomization over
dictatorships. Select a∗ ∈ A, and consider the utility profile ~u where all agents have utility
0.5− ε for a∗ and 0.5 + ε for some other alternative uniformly selected from A \ {a∗}. Then
µ(~u) selects a∗ with probability 0, and gets expected welfare n/2(m− 1), while alternative
a∗ has welfare n/2 (we assume ε→ 0), giving distortion Ω(m). J

We now show a lower bound for all truthful cardinal mechanisms.

I Theorem 10. Any truthful cardinal mechanism has distortion Ω(
√
m).

Proof. We will assume that
√
m is an integer and n is divisible by

√
m. This helps sim-

plify the proof but is not required for it to hold. Let µ be a truthful mechanism. Let
{a1, a2, . . . , a√m} = A∗ ⊆ A be a subset of alternatives of size

√
m. Partition the set of

agents N into
√
m sets of equal size n/

√
m, say N1, N2, . . . , N√m. Let n′ := n − (n/

√
m).
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Create a utility profile where for each i ∈ {1, 2, . . . ,
√
m}, the agents in set Ni have utility 1

for ai and utility 0 for the other alternatives. Call this profile ~u0. For this profile, at least
one of the alternatives in A∗ is selected by µ with probability ≤ 1/

√
m, say alternative a√m.

Let the probability it gets be p0 ≤ 1/
√
m.

Now, for all voters i ∈ N \N√m = {1, . . . , n′} we will make the utility uniform among the
alternatives in A\{a√m}, one voter at a time. Formally, let v be a utility function where a√m
has utility 0 and all other alternatives have utility 1/(m− 1). Let utility profile ~ui = ~ui−1/iv,
and let pi be the probability that alternative a√m gets for profile ~ui, for i ∈ {1, 2, . . . , n′}.

Observe that only the utility for the ith agent changes when we change the strategy profile
from ~ui−1 to ~ui. Suppose voter i has utility function v. Then the truthfulness condition
requires that the probability mass on alternatives other than a√m should be maximum when
it reports truthfully, and hence 1 − pi ≥ 1 − pi−1, or pi ≤ pi−1. Thus, pn′ ≤ p0 ≤ 1/

√
m.

Now for the bound on the distortion, for the last utility profile ~un′ when only voters in N√m
have positive utility 1 for a√m and all other voters divide their utility equally among the
other alternatives, a√m has maximum social welfare equal to n/

√
m, and this is picked with

probability at most 1/
√
m. The distortion bound follows from simple calculations. J

Randomized Hyperspherical Mechanisms
We now describe a truthful cardinal mechanism that has distortion O(

√
m logm), matching

the best known distortion upper bound, and which violates the properties of localization and
non-perversity. We first present the mechanism and its analysis, and then show an example
for which the mechanism violates these properties. For a dimension m, let 1 be the all-ones
vector. The standard (m − 1)-simplex {x ∈ Rm≥0 : ‖x‖1 = 1} is denoted 4m. Before we
describe our mechanism, for a fixed radius R ≥ 0 and dimension m, consider the following
sets:

S1
m(R) =

{
p ∈ Rm :

∥∥∥∥p− 1
m
1

∥∥∥∥
2
≤ R, ‖p‖1 = 1

}
, S2

m(R) = S1
m ∩ Rm≥0 .

S1
m(R) is the set of points in Rm whose coordinates (possibly negative) sum to 1, and are

at distance at most R from (1/m, . . . , 1/m). S2
m(R) is the set of points that lie in the

intersection of the standard simplex with the ball of radius R with center 1
m1. Note that

both sets are convex. Given x ∈ Rm, there is a boundary point p that maximizes pTx in
either of these sets, since the objective is linear.

We now describe our mechanism. Let ~u be the given strategy profile. Let µ1 be the
mechanism that picks an alternative with uniform probability and returns it. Let µ2 be the
mechanism that selects a radius R uniformly from the set

Γ =
{

1√
m(m− 1)

,
2√

m(m− 1)
,

4√
m(m− 1)

, . . . ,
m− 1√
m(m− 1)

}

and selects a voter i from N with uniform probability. Mechanism µ2 returns the point
p ∈ S2

m(R) that maximizes pTui. Since p lies in the standard simplex, it is a distribution.
Finally, our randomized hyperspherical mechanism runs µ1 with probability 1/2, and µ2
with probability 1/2.

Analysis. The truthfulness of the mechanism is evident since for µ2, the voter i and radius
R are chosen independently from the input ~u, and we choose p ∈ S2

m(R) that maximizes
the expected utility pTui for voter i. There are thus two things we need to show: that the
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Algorithm 1 Compute-p.
Input: Dimension m ∈ Z+, vector x ∈ 4m, radius R ≥ 0.
Output: Distribution p ∈ S2

m(R) that maximizes pTx.
1: p← 1

m 1 +R
x− 1

m 1

‖x− 1
m1‖2

2: if p ≥ 0 then
3: return p

4: else
5: x′ ← x[1:m−1]∑m−1

i=1
xi
, R′ ←

√
R2 − 1

m(m−1) , m
′ ← m− 1.

6: p′ ← Compute-p(m′, x′, R′). return (p′ 0).

distribution p that maximizes pTui over S2
m(R) can be obtained efficiently, and that the

mechanism has distortion O(
√
m logm).

We first give an algorithm for computing p. Let x = ui be the utility for the voter chosen.
We reindex the alternatives so that x1 ≥ · · · ≥ xm. We use x[1 : k] = (x1, . . . , xk) to denote
the vector consisting of the first k components of x.

Theorem 11 shows that the algorithm finds the point p ∈ S2
m(R) that maximizes pTx,

as required. The algorithm first finds the point in p ∈ S1
m(R) that maximizes pTx. If p

is nonnegative, then p ∈ S2
m(R), and this is returned. If not, then we show that in the

optimal distribution, it must be the case that pm = 0. In this case, let x′ and R′ be x and R
as modified in Line 5. It can be checked that S2

m−1(R′) is the intersection of S2
m(R) with

the hyperplane pm = 0. In this case, we focus on the first m − 1 coordinates of x, and
recursively find the point in p′ in S2

m−1(R′) that maximizes p′Tx′. We show in the proof that
the distribution p = (p′ 0) is the point in S2

m(R) that maximizes pTx.

I Theorem 11. Algorithm 1 correctly returns p ∈ S2
m(R) that maximizes pTx.

Proof. The proof of the theorem follows from these claims.

I Claim 12. The point p obtained in Line 1 is the point q ∈ S1
m(R) that maximizes qTx.

Proof. It can be checked from the steps in the algorithm that
∑
i pi = 1, and ‖p−1/m‖2 = R,

hence p ∈ S1
m(R). Secondly, q ∈ S1

m(R) maximizes qTx iff q maximizes (q − 1/m)Tx
= ‖q− 1/m‖2‖x‖2 cos θ, where θ is the angle between q− 1/m and x. The point p is chosen
such that θ = 0 and ‖q − 1/m‖2 = R, hence it maximizes qTx. J

Clearly, if p ≥ 0, then p ∈ S2
m(R) and we are done. Else, since x1 > x2 > . . . > xm,

p1 ≥ p2 ≥ . . . ≥ pm (else permuting the coordinates of p to obtain these inequalities would
give us a point in S1

m(R) with higher value for pTx). Hence suppose pm < 0.

I Claim 13. If pm < 0, then there is a point p′ ∈ S2
m(R) that maximizes qTx over all points

q in S2
m(R), and has p′m = 0.

Proof. Let q′ be a point in S2
m(R) that maximizes qTx over such points, and suppose q′m > 0.

Then xT q′ ≤ xT p, and since q′m > 0, pm < 0, and the coordinates for each of these vectors
is nonincreasing in the indices, there is a point p′ on the line joining q′ and p that lies in
S1
m(R) (since both these points lie in S1

m(R), and this set is convex) so that xT p′ ≥ xT q′

and p′m = 0, and with coordinates nonincreasing in the indices. Hence p′ ≥ 0, and hence
p′ ∈ S2

m(R), which is the required point. J
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Now let λ =
∑m−1
i=1 xi, x′ = (x1, x2, . . . , xm−1)/λ, and R′ =

√
R2 − 1

m(m−1) , as we use in
Line 5. Let q′ be a point in S2

m−1(R′) that maximizes qTx[1 : m− 1] over all such points q.

I Claim 14. If pm < 0, then (q′ 0) ∈ S2
m(R) maximizes qTx over all such points q.

Proof. Since q′ ∈ S2
m−1(R′), (q′ 0) is in S2

m(R). For the second part, let p′ be as obtained
in Claim 13, and let q′′ = (p′1, . . . , p′m−1). Since p′m = 0, q′′ ∈ S2

m−1(R′). Then λq′
T
x′

= (q′ 0)Tx, and similarly λq′′
T
x′ = (q′′ 0)Tx = p′

T
x. Suppose for a contradiction that

(q′ 0)Tx = λq′
T
x′ < p′

T
x. Then λq′Tx′ < λq′′

T
x′, which contradicts the optimality of q′. J

Thus, if the point p ≥ 0, then this is a point in S2
m(R) that maximizes pTx, and is

correctly returned. If not, then pm < 0. In this case, by Claim 13, p′m = 0, and by Claim 14
it is sufficient to compute the point q′ ∈ S2

m−1(R′) that maximizes qTx over all such points
q, and return the vector (q′ 0), which is the iterative step in our algorithm as well. J

We now show the bound on the distortion.

I Theorem 15. The randomized hyperspherical mechanism has distortion O(
√
m logm).

Proof. Let a∗ ∈ A be the alternative with maximum social welfare. Observe that mechanism
µ1, that picks an alternative with uniform probability, has expected welfare of n/m. If
sw(a∗) ≤ n

√
logm
m , then since µ1 is picked w.p. 1/2, dist(µ) ≤ 2 dist(µ1) ≤ 2

√
m logm.

Else, assume µ2 is the mechanism picked. Let p(a) be the probability that alternative
a is picked, and pi(a) be the probability that agent i and alternative a are picked. Then
p(a) =

∑
i∈N pi(a). For any i ∈ N and corresponding utility function ui, there is hypersphere

with radius R between ‖ui − 1/m‖2 and ‖ui − 1/m‖/2. The point p on this hypersphere
that maximizes pTui is the point on the line joining 1/m with ui, which clearly lies in the
simplex. Since this point is at least halfway to ui, the coordinate corresponding to alternative
a has value λui(a) + (1− λ) 1

m for λ ≥ 1/2, and hence

pi(a) ≥ 1
n

1
logm

ui(a)
2

and hence p(a) ≥
∑
i pi(a) ≥ sw(a)/(2n logm). Since sw(a∗) ≥ n

√
logm
m , the distortion is

dist(µ) ≤ 2 dist(µ2) ≤ 2sw(a∗)
sw(a∗)p(a∗) ≤

4n logm
sw(a∗) ≤

4n logm
n
√

logm/m
= 4
√
m logm. J

We now show that the randomized hyperspherical mechanism violates the properties
of non-perversity and locality. Let there be 3 alternatives and 1 voter. The mechanism
randomizes over hyperspheres with radii 1/

√
6 and 2/

√
6 with probability 1/4 each, and

selects an alternative uniformly with probability 1/2.

Perverse. Consider the utility profiles u = (1/4− ε, 1/2, 1/4 + ε) and u′ = (0, 3/4, 1/4),
where ε → 0+. The relative ordering of the alternatives for both the profiles is same.
Running the mechanism returns the distributions p ≈ (0.208, 0.584, 0.208) and p′ ≈
(0.187, 0.579, 0.234) for u and u′, respectively. The mechanism is perverse, since the
probability of the second alternative decreases, despite its utility increasing and the
ordering of the alternatives remaining unchanged.
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Figure 1 The hyperspherical mechanism for a single sphere of radius 1/
√

6, with three alternatives.

Not localized. Consider the utility profiles u = (1− ε, ε, 0) and u′ = (3/4, 1/4, 0), where
ε → 0+. The total utility for the first two alternatives is same for both profiles and is
equal to 1. Running the mechanism returns the distributions p ≈ (0.584, 0.208, 0.208)
and p′ ≈ (0.579, 0.234, 0.187) for u and u′ respectively. The mechanism is not localized,
since the total probability given to the first two alternatives is different: 0.792 and 0.813,
despite having the same total utility.

Figure 1 shows the projection of the two utility vectors in the first example onto the
second hypersphere of radius 1/

√
6.

4 Approximately Truthful Mechanisms

Given the strong lower bounds on distortion with truthful mechanisms, we now consider
approximately truthful mechanisms. A mechanism is δ-truthful if no voter can increase
her expected utility by more than an additive δ by misreporting her utilities. In this case,
perhaps surprisingly, we are able to show mechanisms that obtain near-optimal distortion.
Our mechanism takes a parameter δ ∈ (0, 1) as input. The resulting mechanism is 2δ-
truthful, and has distortion that goes to 1 as the number of voters increases. In particular, if
δ = 25m/n < 1, then the mechanism has distortion almost 1.01.

The mechanism proceeds as follows. It first elicits the strategy profile ~u of the voters.
For alternative j ∈ [m], define sj = sw(j) =

∑
i∈N ui(j). Assume (or re-index the set of

alternatives) that s1 ≥ s2 ≥ · · · ≥ sm. Define

λ := max
{
k ∈ [m] :

k∑
i=1

(si − sk) < 1
δ

}
. (1)

Note that λ ≥ 1. Then the mechanism returns the probability distribution defined as follows:

pk =
{

1
λ

(
1− δ

∑λ
i=1(si − sk)

)
for k ≤ λ

0 for k > λ
(2)

Since
∑λ
k=1

∑λ
i=1(si − sk) = 0, the sum of probabilities

∑m
i=1 pi =

∑λ
i=1 pi = 1. Further,
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for all k ≤ λ the sum

λ∑
i=1

(si − sk) =
k∑
i=1

(si − sk) +
λ∑

i=k+1
(si − sk) ≤

k∑
i=1

(si − sk) ≤ 1/δ ,

where the first inequality is by the indexing of the alternatives and the second is by definition
of λ. Hence all the probabilities are non-negative. It can also be shown by a quick calculation
that the probability distribution returned by the mechanism can also be written as:

pk =
{
p1 − δ(s1 − sk) for k ≤ λ
0 for k > λ

(3)

with p1 chosen so that the sum of the probabilities is 1. We now show the required properties
for this mechanism.

I Theorem 16. Given parameter δ ∈ (0, 1), the described mechanism has distortion < s1
s1− 1

4δ
.

Proof. Clearly, the maximum welfare obtainable is s1. The expected welfare obtained by the
mechanism is

∑m
j=1 pjsj , and replacing for sj from (3), this gives us s1 − (p1 −

∑λ
j=1 p

2
j )/δ.

Optimizing over the pj ’s, we find that the worst social welfare is obtained when p1 =
(1 + 1/λ)/2, pj = 1/(2λ) for 2 ≤ j ≤ λ, and the expected welfare in this case is at least
s1 − (1/4δ). The bound on the distortion follows immediately. J

I Theorem 17. Given parameter δ ∈ (0, 1), the described mechanism is 2δ-truthful.

Proof. We show the following stronger property: give two strategy profiles ~u, ~u′, let ~s :=
(
∑
i∈N ui(a))a∈A and ~s′ := (

∑
i∈N u

′
i(a))a∈A be the respective social welfare vectors. Let

α := ‖~s− ~s′‖1 be the L1 distance between the two welfare vectors. Then the distributions
returned by the mechanism given inputs ~u and ~u′ differs in any component by at most αδ.
The theorem then follows, since by deviating, a single player can change the total welfare by
at most 2, and hence the distribution changes in any component by at most 2δ. We first state
the following claim, which states that if λ remains unchanged for ~s and ~s′, then the property
described holds. Let p and p′ be the probability distributions returned by the mechanism
for ~u and ~u′ (with welfare vectors ~s and ~s′ respectively). The proof follows immediately
from (2).

I Claim 18. If λ is the same for ~s and ~s′, then the distributions p and p′ differ in each
component by at most δ‖~s− ~s′‖1.

The next claim shows that if there exists an index k so that
∑k
i=1(si − sk) = 1

δ , then
including this in λ does not change the distribution. Another way of viewing the claim is
that it shows that the probability distribution changes continuously with s. In particular,
the strict inequality in the definition of λ can be replaced by an inequality without changing
the distribution.

I Claim 19. Given a strategy profile ~u, let ~s :=
∑
i∈N ui. Let λ be as defined previously,

and define λ′ as any index k so that
∑k
i=1(si − sk) = 1

δ (if it exists). Then the distribution p
is unchanged if we replace λ by λ′ in (2).

Proof. Assume λ′ exists, else the claim is trivially true. Let p be as defined in (2), and p′
be the distribution obtained from (2) with λ replaced by λ′. By definition, λ′ > λ. Let
r := λ′ − λ. Then since 1/δ =

∑λ+k
i=1 (si − sλ+k) for all k ∈ {1, . . . , r}, it must be true that
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sλ+1 = · · · = sλ′ . Hence, it must also be true that
∑λ
i=1(si − sλ′) =

∑λ′

i=1(si − sλ′). We will
use this last equality later in the proof. For any k ≤ λ′, we get the probability distribution

p′k = 1
λ′

1− δ
λ′∑
i=1

(si − sk)


= 1
λ′

1− δ
λ′∑
i=1

(si − sλ′)− δλ′(sλ′ − sk)


= 1
λ′

(δλ′(sk − sλ′)) = δ(sk − sλ′)

Note that (i) for λ < k ≤ λ′, since sk = sλ′ as discussed above, p′k = 0 = pk, and similarly for
k > λ′, by definition p′k = 0 = pk. Hence it remains to show that for k ≤ λ, pk = δ(sk − sλ′).
Simple calculations yield that for k ≤ λ,

pk − δ(sk − sλ′) = 1
λ

(
1− δ

λ∑
i=1

(si − sλ′)
)

= 0 ,

where the last equality follows from the discussion in the first paragraph. J

We now complete the proof of the theorem. Instead of the strategy profiles, we consider
directly the resulting welfare vectors. Consider the straight line from ~s to ~s′. Let λ and λ′
be defined as in (1) for s and s′ respectively. If λ = λ′, then by Claim 18, the theorem holds.
Suppose instead that λ′ = λ+r, for some r ≥ 1. Let ~s0 = ~s and ~sr = ~s′. We segment the path
from ~s to ~s′ into r segments [~s0, ~s1), [~s1, ~s2), . . . , [ ~sr−1, ~sr] so that (i) λ remains unchanged
at each point within a segment, and (ii) at the ith breakpoint ~si, 1/δ =

∑λ+i
j=1(sj − sλ+i). It

follows from the previous claims that for any component, the change in probability between
~s and ~s′ is at most δ

∑r
i=1 ‖~si − ~si−1‖1 = δ‖~s′ − ~s‖1, as required to complete the proof. J

5 Convergence and Price of Anarchy in Iterative Voting

In this section, we focus on the deterministic mechanism µ that given a strategy profile
~u′, chooses the alternative that maximizes the reported social welfare

∑
i∈N u

′
i(a). The

alternatives are indexed, and ties are resolved in favour of the alternative with lower index.
All results are presented for this mechanism. It is easily seen that even for two voters, this
mechanism is not truthful. Hence we focus on the stable outcomes of strategic voting, in
particular strategy profiles that are at a pure Nash equilibrium. As before, we are concerned
with the social welfare of the alternative chosen by the mechanism at equilibrium. The
distortion in this case is equivalent to the Price of Anarchy, and we refer to it as such here.
The PoA is in general unbounded, and so are certain refinements. Instead, we consider
equilibria which arise as a result of iterative voting dynamics, when starting from the initial
truthful utility profile, a voter deviates at each step in a manner that improves her utility,
until the voters reach an equilibrium. In contrast to truthful mechanisms, we show a strong
positive result. We show that a particular and natural class of iterative voting dynamics
converges quickly to an equilibrium. Further, the price of anarchy for the class of equilibria
thus obtained is close to 1, as the number of voters increases. We note that while previous
papers have studied either the convergence of iterative voting (e.g., [19, 22, 25]) or the PoA
obtained for mechanisms such as plurality and veto (e.g., [9]), ours is the first to obtain results
for the PoA of outcomes obtained by iterative voting for a natural cardinal mechanism.
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The PoA over all equilibria is unbounded; consider a simple example where all voters
have utility 1 for candidate a and 0 for candidate b, but all choose the strategy with utility 1
for b. This is clearly an odd example, and there seem to be two possible remedies. Firstly,
we could consider strong equilibria, where ~u′ is a strong equilibrium if no set (or coalition) of
players can deviate to improve the expected utility of all the players in the set. Secondly, we
could consider truth-biased agents, who prefer to vote truthfully if it does not reduce their
utility (for which positive results are known in some cases, see [20, 23]). Unfortunately, in
both cases we show that the PoA continues to be unbounded.

I Theorem 20. The PoA with truth-biased agents is unbounded. Further, an equilibrium
may not exist.

I Theorem 21. The PoA of strong Nash equilibria is unbounded.

Given these negative results, we focus on equilibrium outcomes that are obtained as a
result of iterative voting. As stated, we fix the mechanism µ that given a strategy profile
~u′, chooses the alternative that maximizes the reported social welfare

∑
i∈N u

′
i(a). The

alternatives are indexed, and ties are resolved in favour of the alternative with lower index.
We assume that initially, all voters report their utilities truthfully. At each step, a single
voter chooses a different strategy that improves her utility. We say that a particular iterative
voting dynamics converges if in finite time, the strategy profile is an equilibrium. We are
interested in the PoA of equilibria that are obtained as a result of iterative voting.

Again, we show in the appendix that without further restrictions, the PoA for equilibria
obtained can be unbounded, even if the deviating player at each step strictly improves her
utility. Let us instead consider the iterative voting process where the deviation by the player
at each step satisfies the following properties:
(A) The utility of the deviating player must strictly increase after the deviation.
(B) The deviating player can increase the reported utility for a single alternative, and this

alternative must be chosen by the mechanism after the deviation.
With these restrictions, the PoA for the class of equilibria obtained is nearly 1.

I Theorem 22. The PoA for iterative voting with restrictions (A) and (B) is
maxa∈A sw(a)

maxa∈A sw(a)−2 log2 m
.

Proof. Let ~vt be the strategy profile in the tth time step. Then ~v0 = ~u, where ~u is the utility
profile for the voters. We define swt(a) :=

∑
i∈N u

t
i(a) as the welfare of alternative a according

to the strategy profile at step t. Then sw0(a) = sw(a) since iterative voting starts with the
true utility as strategy, and we index the alternatives so that sw(a1) ≥ sw(a2) ≥ · · · ≥ sw(am).
In particular, the maximum-welfare candidate is a1. We say an alternative wins at time t if
it maximizes swt(a), and among all such alternatives, has the lowest index.

Fix any j ∈ {2, . . . ,m}, and let t be the first time that an alternative ak with k ≥ j wins,
hence sw(aj) ≥ sw(ak) by our indexing. Further, since this is the first time that ak wins, it
is also the first time that any voter raises its utility for ak, and hence sw(ak) ≥ swt−1(ak).
Lastly, since the voter that deviates at time t changes it’s utility by at most 1 for any
alternative, and ak wins at time t, it must be true that swt−1(ak) ≥ maxr≤m swt−1(ar)− 2.
Putting these together,

sw(aj) ≥ sw(ak) ≥ swt−1(ak) ≥ max
r≤m

swt−1(ar)− 2 ≥ 1
j − 1

j−1∑
r=1

swt−1(ar)− 2

where the last inequality is simply because the maximum of set of numbers is at least its
average. Now observe that step t is the first step when an alternative with index at least j
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has won, and hence by the dynamics restriction, this is the first step when an alternative with
index at least j had its utility increased. Hence

∑
r≥j swt−1(ar) ≤

∑
r≥j sw(ar). Since the

sum of utilities of a strategy profile is always n,
∑
r<j swt−1(ar) ≥

∑
r<j sw(ar). Plugging

this into the previous inequality yields

sw(aj) ≥
1

j − 1

j−1∑
r=1

sw(ar)− 2

Let aj be the highest indexed alternative to win during the dynamics. Then the above
inequality is valid for all k ∈ {2, . . . , j}, giving us a recurrence relation. To solve this
recurrence, we can check that the hypothesis that sw(aj) ≥ sw(a1)− 2 log2 j is correct. Our
proof thus shows the stronger property that if alternative a wins at any time step in the
dynamics, then sw(a) ≥ sw(a1)− 2 log2 m. J

Unfortunately, it turns out that iterative voting even with these restrictions may not
converge (Theorem 24, in the Appendix). However, with one further restriction on the
allowable deviations, we can prove convergence.
(C) The deviating player can decrease the reported utility for a single alternative, and this

alternative must be chosen by the mechanism before the deviation.

It is not hard to see that the number of steps required for convergence depends upon the
least value by which a voter can change her score. As an example, consider two alternatives
and two voters with utilities (0.5− ε, 0.5 + ε) and (0.5 + ε, 0.5− ε). Let δ be the least value
by which an voter can change her utility. Then each time a voter increases the reported
utility of her preferred alternative by δ, the alternative chosen by the mechanism changes,
and hence convergence takes Ω(1/δ) steps. In fact, a convergence bound of O(mn/δ) for
iterative voting with restrictions (A), (B) and (C) can easily be shown, by observing that
in each move a voter shifts her stated utility from a less preferred alternative to a more
preferred alternative by at least δ. A voter can thus move at most m

δ times, and hence after
mn
δ steps the iterative voting process must reach a Nash equilibrium.
We can obtain even better convergence bounds for iterative voting, where apart from

the initial votes, in all subsequent strategies of a voter, exactly one alternative is given
utility 1. These subsequent votes are then plurality votes, for which Meir et al. [20] show a
bound of O(mn) on the convergence. Hence every O(mn) steps a new voter must change to
plurality voting from her initial utility, and hence this iterative voting process must converge
in O(mn2) steps. If the dynamics also satisfies restrictions (A) and (B), then the equilibrium
obtained has PoA as shown in Theorem 22.
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6 Appendix

In the appendix, we give the missing proofs from Section 5. We first prove that the PoA
with truth-biased voters is unbounded, and in fact a pure Nash equilibrium may not exist.

Proof of Theorem 20. We will give an example for which the price of anarchy →∞. There
are 3 alternatives {a, b, c} and 2n+ 1 agents. The utility profile is:

Agents a b c

1, . . . , n 1 0 0
n+ 1, . . . , 2n+ 1 0 1− ε ε

Social Welfare n (n+ 1)(1− ε) (n+ 1)ε

The strategy profile in Nash equilibrium:

Agents a b c

1, . . . , n 1 0 0
n+ 1 0 1− ε ε

n+ 2, . . . , 2n+ 1 0 0 1

Total n 1− ε n+ ε

The winner is alternative c. Observe that no agent can increase her utility by deviating.
The PoA is (n+1)(1−ε)

(n+1)ε = 1−ε
ε →∞ as ε→ 0.

We now give an example for which there is no PNE. There are 2 alternatives {a, b} and 2
agents. The mechanism is deterministic and ties are broken in favour of a. The utility profile
is given below:

Agents a b

1 0.75 0.25
2 0.25 0.75

None of the three exhaustive cases below allow an equilibrium.

If u1(a) < u2(b) then b is the winner. For voter 1, this is not an equilibrium because she
can increase her utility for a and make a win.
If 1 > u1(a) ≥ u2(b) then a is the winner. Now, for voter 2 this is not an equilibrium
because she can increase her utility for b and make b win.
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If u1(a) = 1 then a is the winner. Voter 2 cannot make b win, and as voters are truth-
biased she will give her true input. Now, voter 1 is also truth-biased, and will give her
true input, and a will remain the winner. This puts us in the second case above. J

We now show that the PoA even restricted to strong Nash equilibria is unbounded.

Proof of Theorem 21. We will give an example for which the price of anarchy →∞. There
are 4 alternatives and 4n− 1 agents. Ties are broken lexicographically. The utility profile is
given below:

Agents → a b c d

1, . . . , 2n− 1 1 0 0 0
2n, . . . , 3n− 1 0 1− ε 0 ε

3n, . . . , 4n− 1 0 0 1− ε ε

Social Welfare 2n− 1 n(1− ε) n(1− ε) 2nε

The strong pure Nash equilibrium strategy profile is:

Agents a b c d

1, . . . , 2n− 1 1 0 0 0
2n, . . . , 3n− 1 0 0 0 1
3n, . . . , 4n− 2 0 0 0 1

4n− 1 0 0 1− ε ε

Total 2n− 1 0 1− ε 2n− 1 + ε

The winner is alternative d. Observe that no agent can increase her utility by deviating.
The PoA is 2n−1

2nε →∞ as ε→ 0. J

Iterative Voting
We give the proofs related to the PoA and convergence of iterative voting dynamics. We
first restate the restrictions on dynamics from the main paper.

(A) The utility of the deviating player must strictly increase after the deviation.
(B) The deviating player can increase the reported utility for a single alternative, and this

alternative must be chosen by the mechanism after the deviation.
(C) The deviating player can decrease the reported utility for a single alternative, and this

alternative must be chosen by the mechanism before the deviation.

We first show that just restriction (A) is insufficient to ensure bounded PoA.

I Theorem 23. The price of anarchy of iterative voting with restriction (A) is unbounded.

Proof. There are 5 alternatives {a, b, c, d, e}, and 2n+4 agents. Ties broken lexicographically.
ε→ 0 is much smaller than 1/n. The utility profile is as given.

Agents a b c d e

A: 1, . . . , n 0.5 0.5− ε ε 0 0
B: n+ 1, . . . , 2n 0.5− ε 0.5 0 ε 0
2n+ 1, 2n+ 2 0 0 ε 0 1− ε
2n+ 3, 2n+ 4 0 0 0 ε 1− ε

Social Welfare n− nε n− nε (n+ 2)ε (n+ 2)ε 4− 4ε
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Initially, alternative a is the winner. But an agent in B, say agent n+ 1, can deviate and
make b win. Say the agent deviates to: 0.5 + ε to b, 0.5− ε to d, and 0 to others. Now, an
agent in a, say agent 1, deviates and gives input: 0.5 + ε to a, 0.5− ε to c, and 0 to others.
Now, alternative a wins again. Repeating this for all agents in A and B, after n steps the
strategy profile is given below. Currently, a is the winner.

Agents a b c d e

1, . . . , n 0.5 + ε 0 0.5− ε 0 0
n+ 1, . . . , 2n 0 0.5 + ε 0 0.5− ε 0
2n+ 1, 2n+ 2 0 0 ε 0 1− ε
2n+ 3, 2n+ 4 0 0 0 ε 1− ε

Total n(0.5 + ε) n(0.5 + ε) n(0.5− ε) + 2ε n(0.5− ε) + 2ε 4− 4ε

Now, the agent 2n+ 3 makes a move and sets d’s score to 1, then the agent 2n+ 1 makes a
move and sets c’s score to 1. The same moves are then repeated by agents 2n+ 4 and 2n+ 2.
This makes c the current winner. The strategy profile after these deviations is given below.

Agents a b c d e

1, . . . , n 0.5 + ε 0 0.5− ε 0 0
n+ 1, . . . , 2n 0 0.5 + ε 0 0.5− ε 0
2n+ 1, 2n+ 2 0 0 1 0 0
2n+ 3, 2n+ 4 0 0 0 1 0

Total n(0.5 + ε) n(0.5 + ε) n(0.5− ε) + 2 n(0.5− ε) + 2 0

Alternatives a and b cannot win the election by a deviation by the agents in A or B, so
the agents in A and B start competing for c and d to reach the final equilibrium strategy
profile given below. Alternative c is the final winner.

Agents a b c d e

1, . . . , n 0 0 1 0 0
n+ 1, . . . , 2n 0 0 0 1 0
2n+ 1, 2n+ 2 0 0 1 0 0
2n+ 3, 2n+ 4 0 0 0 1 0

Total 0 0 n+ 2 n+ 2 0

No agent has a move that can increase her utility, and hence this is an equilibrium. The
PoA is n(1−ε)

(n+2)ε →∞. Observe that this proof works even for best response iterative voting
dynamics: The deviating agent plays a move that makes the most preferred alternative win
the election, among the alternatives that can win the election after a move by the agent. J

With just restriction (A), as shown, we obtain unbounded PoA. Theorem 22 shows that
with both (A) and (B) we get a near-optimal bound on the PoA. We now show, however,
that the two restrictions (A) and (B) that ensured small PoA are not enough to ensure
convergence to a Nash equilibrium.

I Theorem 24. Iterative voting with restrictions (A) and (B) may not converge to a PNE.

Proof. We will give a utility profile with 4 alternatives A = {a, b, c, d} and 4 agents N =
{1, 2, 3, 4}, and a sequence of steps taken by the agents that will create a cycle. For ease
of writing, we normalize the utilities to sum up to 6 rather than 1. In the tables below the
winner is denoted by ∗. The steps are:
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1. Utility profile is

Alternatives → a∗ b c d

Agent 1 1 1 0 4
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 4 0 2 0

2. Agent 1 plays. Utility increases from 1 to 4.

Alternatives → a b c d∗

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 4 0 2 0

3. Agent 4 plays. Utility increases from 0 to 2.

Alternatives → a b c∗ d

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

4. Agent 1 plays. Utility increases from 0 to 1.

Alternatives → a b∗ c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

5. Agent 3 plays. Utility increases from 2 to 3.

Alternatives → a b c∗ d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 0 5 1
Agent 4 0 0 6 0

6. Agent 4 plays. Utility increases from 2 to 4.

Alternatives → a∗ b c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 0 5 1
Agent 4 6 0 0 0

7. Agent 3 plays. Utility increases from 0 to 2.

Alternatives → a b∗ c d

Agent 1 0 5 0 1
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 6 0 0 0
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8. Agent 1 plays. Utility increases from 1 to 4.
Alternatives → a b c d∗

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 6 0 0 0

9. Agent 4 plays. Utility increases from 0 to 2.
Alternatives → a b c∗ d

Agent 1 0 0 0 6
Agent 2 2 2 0 2
Agent 3 0 2 3 1
Agent 4 0 0 6 0

Observe that the strategy profile in 3 and 9 are same, giving us a cycle. This proof also
works for best-response dynamics. J



Symbolic Approximation of Weighted Timed
Games

Damien Busatto-Gaston
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
damien.busatto-gaston@lis-lab.fr

Benjamin Monmege
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
benjamin.monmege@univ-amu.fr

https://orcid.org/0000-0002-4717-9955

Pierre-Alain Reynier
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
pierre-alain.reynier@univ-amu.fr

Abstract
Weighted timed games are zero-sum games played by two players on a timed automaton equipped
with weights, where one player wants to minimise the accumulated weight while reaching a target.
Weighted timed games are notoriously difficult and quickly undecidable, even when restricted to
non-negative weights. For non-negative weights, the largest class that can be analysed has been
introduced by Bouyer, Jaziri and Markey in 2015. Though the value problem is undecidable, the
authors show how to approximate the value by considering regions with a refined granularity. In
this work, we extend this class to incorporate negative weights, allowing one to model energy
for instance, and prove that the value can still be approximated, with the same complexity. In
addition, we show that a symbolic algorithm, relying on the paradigm of value iteration, can be
used as an approximation schema on this class.
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1 Introduction

The design of programs verifying some real-time specifications is a notoriously difficult
problem, because such programs must take care of delicate timing issues, and are difficult
to debug a posteriori. One research direction to ease the design of real-time software is to
automatise the process. The situation may be modelled into a timed game, played by a
controller and an antagonistic environment: they act, in a turn-based fashion, over a timed
automaton [2], namely a finite automaton equipped with real-valued variables, called clocks,
evolving with a uniform rate. A simple, yet realistic, objective for the controller is to reach a
target location. We are thus looking for a strategy of the controller, that is a recipe dictating
how to play so that the target is reached no matter how the environment plays. Reachability
timed games are decidable [4], and EXPTIME-complete [18].
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Weighted extensions of these games have been considered in order to measure the quality
of the winning strategy for the controller [9, 1]: when the controller has several winning
strategies in a given reachability timed game, the quantitative version of the game helps
choosing a good one with respect to some metrics. This means that the game now takes
place over a weighted (or priced) timed automaton [5, 3], where transitions are equipped
with weights, and locations with rates of weights (the cost is then proportional to the time
spent in this location, with the rate as proportional coefficient). While solving the optimal
reachability problem on weighted timed automata has been shown to be PSPACE-complete [6]
(i.e. the same complexity as the non-weighted version), weighted timed games are known to
be undecidable [12]. This has led to many restrictions in order to regain decidability, the first
and most interesting one being the class of strictly non-Zeno cost with only non-negative
weights (in transitions and locations) [9]: this hypothesis requires that every execution of
the timed automaton that follows a cycle of the region automaton has a weight far from 0
(in interval [1,+∞), for instance).

Negative weights are crucial when one wants to model energy or other resources that
can grow or decrease during the execution of the system to study. In [16], we have recently
extended the strictly non-Zeno cost restriction to weighted timed games in the presence
of negative weights in transitions and/or locations. We have described there the class of
divergent weighted timed games where each execution that follows a cycle of the region
automaton has a weight far from 0, i.e. in (−∞,−1] ∪ [1,+∞). We were able to obtain a
doubly-exponential-time algorithm to compute the values and almost-optimal strategies, while
deciding the divergence of a weighted timed game is PSPACE-complete. These complexity
results match the ones that could be obtained in the non-negative case from [9, 1].

The techniques used to obtain the results of [16] cannot be extended if the conditions are
slightly relaxed. For instance, if we add the possibility for an execution of the timed automaton
following a cycle of the region automaton to have weight exactly 0, the decision problem is
known to be undecidable [10], even with non-negative weights only. For this extension, in
the presence of non-negative weights only, it has been proposed an approximation schema
to compute arbitrarily close estimates of the optimal value [10]. To this end, the authors
consider regions with a refined granularity so as to control the precision of the approximation.
In this work, our contribution is two-fold: first, we extend the class considered in [10] to the
presence of negative weights; second, we show that the approximation can be obtained using
a symbolic computation, based on the paradigm of value iteration.

More precisely, we define the class of almost-divergent weighted timed games where, for
each strongly connected component (SCC) of the region automaton, executions following
a cycle of this SCC have weights either all in (−∞,−1] ∪ {0}, or all in {0} ∪ [1,+∞). In
contrast, the divergent condition is equivalent to the same property on the strongly connected
components, but without the presence of singleton {0}. Given an almost-divergent weighted
timed game, an initial configuration c and a threshold ε, we compute a value that we
guarantee to be ε-close to the optimal value when the play starts from c. Moreover, we prove
that deciding if a weighted timed game is almost-divergent is a PSPACE-complete problem.

In order to approximate almost-divergent weighted timed games, we first adapt the
approximation schema of [10] to our setting. At the very core of their schema is the notion
of kernels that collect all cycles of weight exactly 0 in the game. Then, a semi-unfolding of
the game (in which kernels are not unfolded) of bounded depth is shown to be equivalent to
the original game. Adapting this schema to negative weights requires to address new issues:

The definition and the approximation of these kernels is much more intricate in our
setting (see Sections 4 and 6). Indeed, with only non-negative weights, a cycle of weight
0 only encounters locations and transitions with weight 0. It is no longer the case with
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arbitrary weights, both for discrete weights on transitions (that could alternate between
weight +1 and −1, e.g.) and continuous rates on locations: for this continuous part, this
requires to keep track of the real-time dynamics of the game.

Some configurations may have value −∞. While it is undecidable in general whether a
configuration has value −∞, we prove that it is decidable for almost-divergent weighted
timed games (see Lemma 9).

The identification of an adequate bound to define an equivalent semi-unfolding of bounded
depth is more difficult in our setting, as having guarantees on weight accumulation is
harder (we can lose accumulated weight). We deal with this by evaluating how large the
value of a configuration can be, provided it is not infinite. This is presented in Section 5.

We also develop, in Section 7, a more symbolic approximation schema, in the sense that
it avoids the a priori refinement of regions. Instead, all computations are performed in a
symbolic way using the techniques developed in [1]. This allows to mutualise as much as
possible the different computations: comparing these schemas with the evaluation of MDPs
or quantitative games like mean-payoff or discounted-payoff, it is the same improvement as
when using value iteration techniques instead of techniques based on the unfolding of the
model into a finite tree which can contain many times the same location.

2 Weighted timed games

Clocks, guards and regions. We let X be a finite set of variables called clocks. A valuation
of clocks is a mapping ν : X → R>0. For a valuation ν, d ∈ R>0 and Y ⊆ X, we define
the valuation ν + d as (ν + d)(x) = ν(x) + d, for all x ∈ X, and the valuation ν[Y := 0]
as (ν[Y := 0])(x) = 0 if x ∈ Y , and (ν[Y := 0])(x) = ν(x) otherwise. The valuation 0
assigns 0 to every clock. A guard on clocks of X is a conjunction of atomic constraints of
the form x ./ c, where ./ ∈ {6, <,=, >,>} and c ∈ Q (we allow for rational coefficients as
we will refine the granularity in the following). Guard g is the closed version of a satisfiable
guard g where every open constraint x < c or x > c is replaced by its closed version x 6 c

or x > c. A valuation ν : X → R>0 satisfies an atomic constraint x ./ c if ν(x) ./ c. The
satisfaction relation is extended to all guards g naturally, and denoted by ν |= g. We let
Guards(X) denote the set of guards over X. We rely on the crucial notion of regions, as
introduced in the seminal work on timed automata [2]: intuitively, a region is a set of
valuations that are all time-abstract bisimilar. We will need some refinement of regions,
with respect to a granularity 1/N , with N ∈ N. Formally, with respect to the set X of
clocks and a constant M , a 1/N -region r is a subset of valuations characterised by the vector
(ιx)x∈X = (min(MN, bν(x)Nc))x∈X ∈ [0,MN ]X and the order of fractional parts of ν(x)N ,
given as a partition X = X0]X1] · · ·]Xm of clocks: a valuation ν is in this 1/N -region r if

(i) bν(x)Nc = ιx, for all clocks x ∈ X;

(ii) ν(x) = 0 for all x ∈ X0;

(iii) all clocks x ∈ Xi satisfy that ν(x)N have the same fractional part, for all 1 6 i 6 m.
We denote by RegN (X,M) the set of 1/N -regions, and we write Reg(X,M) as a shorthand
for Reg1(X,M). We recover the traditional notion of region for N = 1. E.g., the figure below
depicts regions Reg({x, y}, 2) as well as their refinement Reg3({x, y}, 2).
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For any integer guard g, either all valuations of a given 1/N -region satisfy g, or none of
them do. A 1/N -region r′ is said to be a time successor of the 1/N -region r if there exist
ν ∈ r, ν′ ∈ r′, and d > 0 such that ν′ = ν + d. Moreover, for Y ⊆ X, we let r[Y := 0] be the
1/N -region where clocks of Y are reset.

Weighted timed games. A weighted timed game (WTG) is then a tuple G = 〈L =
LMin ] LMax,∆,wt, LT ,wtT 〉 where LMin and LMax are finite disjoint subsets of locations
belonging to Min and Max, respectively, ∆ ⊆ L × Guards(X) × 2X × L is a finite set of
transitions, wt : ∆ ] L→ Z is the weight function, associating an integer weight with each
transition and location, LT ⊆ LMin is a subset of target locations for player Min, and
wtT : LT ×RX>0 → R∞ is a function mapping each target location and valuation of the clocks
to a final weight of R∞ = R ] {−∞,+∞} (possibly 0, +∞, or −∞). The addition of target
weights is not standard, but we will use it in the process of solving those games: anyway,
it is possible to simply map each target location to the weight 0, allowing us to recover
the standard definition. Without loss of generality, we suppose the absence of deadlocks
except on target locations, i.e. for each location ` ∈ L\LT and valuation ν, there exists
(`, g, Y, `′) ∈ ∆ such that ν |= g, and no transitions start in LT .

The semantics of a WTG G is defined in terms of a game played on an infinite transition
system whose vertices are configurations of the WTG. A configuration is a pair (`, ν) with a
location and a valuation of the clocks. Configurations are split into players according to the
location. A configuration is final if its location is a target location of LT . The alphabet of
the transition system is given by R>0 ×∆ and will encode the delay that a player wants to
spend in the current location, before firing a certain transition. For every delay d ∈ R>0,
transition δ = (`, g, Y, `′) ∈ ∆ and valuation ν, there is an edge (`, ν) d,δ−−→ (`′, ν′) if ν + d |= g

and ν′ = (ν + d)[Y := 0]. The weight of such an edge e is given by d× wt(`) + wt(δ). An
example is depicted on Figure 1.

A finite play is a finite sequence of consecutive edges ρ = (`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→
· · · (`k, νk). We denote by |ρ| the length k of ρ. The concatenation of two finite plays ρ1
and ρ2, such that ρ1 ends in the same configuration as ρ2 starts, is denoted by ρ1ρ2. We
let FPlaysG be the set of all finite plays in G, whereas FPlaysMin

G (resp. FPlaysMax
G ) denote

the finite plays that end in a configuration of Min (resp. Max). A play is then a maximal
sequence of consecutive edges (it is either infinite or it reaches LT ).

A strategy for Min (resp. Max) is a mapping σ : FPlaysMin
G → R>0×∆ (resp. σ : FPlaysMax

G →
R>0 ×∆) such that for all finite plays ρ ∈ FPlaysMin

G (resp. ρ ∈ FPlaysMax
G ) ending in non-

target configuration (`, ν), there exists an edge (`, ν) σ(ρ)−−−→ (`′, ν′). A play or finite play
ρ = (`0, ν0) d0,δ0−−−→ (`1, ν1) d1,δ1−−−→ · · · conforms to a strategy σ of Min (resp. Max) if for all k such
that (`k, νk) belongs to Min (resp. Max), we have that (dk, δk) = σ((`0, ν0) d0,δ0−−−→ · · · (`k, νk)).
A strategy σ is memoryless if for all finite plays ρ, ρ′ ending in the same configuration, we
have that σ(ρ) = σ(ρ′). For all strategies σMin and σMax of players Min and Max, respectively,
and for all configurations (`0, ν0), we let playG((`0, ν0), σMax, σMin) be the outcome of σMax
and σMin, defined as the only play conforming to σMax and σMin and starting in (`0, ν0).
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2
`2

`3

wtT = 0

−1
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−2
`5

x 6 2
x := 0

0

1 6 x 6 3
1

x 6 3; x := 0; 0

2 6 x 6 3
3 x 6 3

0

x 6 3; 0 x 6 3; 0

x 6 1
x := 0; 3

1 < x 6 3
x := 0; 1

2/3
x

Val

0 1 2 3
0

1

2

3
`2 → `4 → `3

`2 → `3

Figure 1 On the left, a weighted timed game. Locations belonging to Min (resp. Max) are
depicted by circles (resp. squares). The target location is `3, whose output weight function is null.
It is easy to observe that location `1 (resp. `5) has value +∞ (resp. −∞). As a consequence, the
value in `4 is determined by the edge to `3, and depicted in blue on the right. In location `2, the
value associated with the transition to `3 is depicted in red, and the value in `2 is obtained as the
minimum of these two curves. Observe the intersection in x = 2/3 requiring to refine the regions.

The objective of Min is to reach a target configuration, while minimising the accumu-
lated weight up to the target. Hence, we associate to every finite play ρ = (`0, ν0) d0,δ0−−−→
(`1, ν1) d1,δ1−−−→ · · · (`k, νk) its cumulated weight, taking into account both discrete and continu-
ous costs: wtΣ(ρ) =

∑k−1
i=0 wt(`i) × di + wt(δi). Then, the weight of a play ρ, denoted by

wtG(ρ), is defined by +∞ if ρ is infinite (does not reach LT ), and wtΣ(ρ) + wtT (`T , ν) if it
ends in (`T , ν) with `T ∈ LT . Then, for all locations ` and valuation ν, we let ValG(`, ν) be
the value of G in (`, ν), defined as ValG((`, ν)) = infσMin supσMax

wtG(play((`, ν), σMax, σMin)),
where the order of the infimum and supremum does not matter, since WTGs are known
to be determined1. We say that a strategy σ?Min of Min is ε-optimal if, for all (`, ν), and all
strategies σMax of Max, wtG(play((`, ν), σMax, σ

?
Min)) 6 ValG(`, ν) + ε. It is said optimal if this

holds for ε = 0. A symmetric definition holds for optimal strategies of Max. If the game is
clear from the context, we may drop the index G from all previous notations.

As usual in related work [1, 9, 10], we assume that the input WTGs have guards where
all constants are integers, and all clocks are bounded, i.e. there is a constant M ∈ N such
that every transition of the WTG is equipped with a guard g such that ν |= g implies
ν(x) 6M for all clocks x ∈ X. We denote by wLmax (resp. w∆

max, wemax) the maximal weight
in absolute values of locations (resp. of transitions, edges) of G, i.e. wLmax = max`∈L |wt(`)|
(resp. w∆

max = maxδ∈∆ |wt(δ)|, wemax = MwLmax + w∆
max). We also assume that the output

weight functions are piecewise linear with a finite number of pieces and are continuous on
each region. Notice that the zero output weight function satisfies this property. Moreover,
the computations we will perform in the following maintain this property as an invariant,
and use it to prove their correctness.

Region and corner abstractions. The region automaton, or region game, RN (G) (abbrevi-
ated as R(G) when N = 1) of a game G = 〈L = LMin]LMax,∆,wt, LT ,wtT 〉 is the WTG with
locations S = L× RegN (X,M) and all transitions ((`, r), g′′, Y, (`′, r′)) with (`, g, Y, `′) ∈ ∆
such that the model of guard g′′ (i.e. all valuations ν such that ν |= g′′) is a 1/N -region r′′,

1 The determinacy result is stated in [13] for WTG (called priced timed games) with one clock, but the
proof does not use the assumption on the number of clocks.
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28:6 Symbolic Approximation of Weighted Timed Games

time successor of r such that r′′ satisfies the guard g, and r′ = r′′[Y := 0]. Distribution of
locations to players, final locations and weights are taken according to G. We call path a finite
or infinite sequence of transitions in this automaton, and we denote by π the paths. A play ρ
in G is projected on a path π in RN (G), by replacing every edge (`, ν) d,δ=(`,g,Y,`′)−−−−−−−−−→ (`′, ν′)
by the transition ((`, r), g, Y, (`′, r′)), where r (resp. r′) is the 1/N -region containing ν (resp.
ν′): we say that ρ follows the path π. It is important to notice that, even if π is a cycle
(i.e. starts and ends in the same location of the region game), there may exist plays following
it in G that are not cycles, due to the fact that regions are sets of valuations. By projecting
away the region information of RN (G), we simply obtain:

I Lemma 1. For all ` ∈ L, 1/N -regions r, and ν ∈ r, ValG(`, ν) = ValRN (G)((`, r), ν).

On top of regions, we will need the corner-point abstraction techniques introduced in [8].
A valuation v is said to be a corner of a 1/N -region r, if it belongs to the topological
closure r and has coordinates multiple of 1/N (v ∈ (1/N)NX). We call corner state a
triple (`, r, v) that contains information about a location (`, r) of the region-game RN (G),
and a corner v of the 1/N -region r. Every region has at most |X| + 1 corners. We now
define the corner-point abstraction CN (G) of a WTG G as the WTG obtained as a refinement
of RN (G) where guards on transitions are enforced to stay on one of the corners of the
current 1/N -region: the locations of CN (G) are all corner states of RN (G), associated to
each player accordingly, and transitions are all ((`, r, v), g′′, Y, (`′, r′, v′)) such that there
exists t = ((`, r), g, Y, (`′, r′)) a transition of RN (G) such that the model of guard g′′ is a
corner v′′ satisfying the guard g (recall that g is the closed version of g), v′ = v′′[Y := 0],
and there exist two valuations ν ∈ r, ν′ ∈ r′ such that ((`, r), ν) d′,t−−→ ((`′, r′), ν′) for some
d′ ∈ R>0 (the latter condition ensures that the transition between corners is not spurious).
Because of this closure operation, we must also define properly the final weight function:
we simply define it over the only valuation v reachable in location (`, r, v) (with ` ∈ LT ) by
wtT ((`, r, v), v) = limν→v,ν∈r wtT (`, ν) (the limit is well defined since wtT is piecewise linear
with a finite number of pieces on region r).

The WTG CN (G) can be seen as a weighted game (with final weights), i.e. a WTG
without clocks (which means that there are only weights on transitions), by removing guards,
resets and rates of locations, and replacing the weights of transitions by the actual weight of
jumping from one corner to another: a transition (((`, r), v), g′′, Y, ((`′, r′), v′)) becomes an
edge from ((`, r), v) to ((`′, r′), v′) with weight d× wt(`) + wt(t) (for all possible values of d,
which requires to allow for multi-edges2). Note that delay d is necessarily a rational of the
form α/N with α ∈ N, since it must relate corners of 1/N -regions. In particular, this proves
that the cumulated weight wtΣ(ρ) of a finite play ρ in CN (G) is indeed a rational number
with denominator N . We will call corner play a play ρ in the corner-point abstraction CN (G):
it can also be interpreted as a timed execution in G where all guards are closed (as explained
in the definition above). It straightforwardly projects on a finite path π in the region game
RN (G): in this case, we say again that ρ follows π. Figure 2 depicts a play, its projected
path in the region game and one of its associated corner plays.
Corner plays allow one to obtain faithful information on the plays that follow the same path:

I Lemma 2. If π is a finite path in RN (G), the set {wtΣ(ρ) | ρ finite play following π}
is an interval bounded by the minimum and the maximum values of the set {wtΣ(ρ) |
ρ finite corner play of CN (G) following π}.

2 The only case where several edges could link two corners using the same transition is when all clocks
are reset in Y , in which case there is a choice for delay d.
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(`0, r0)
(`1, r1) (`2, r2)

(`3, r3)

ρ

ρ′

g0, Y0 g1, Y1 g2, Y2

Figure 2 A play ρ (in blue), its projected path π in the region game (in red), and one of its
associated corner plays ρ′ (in green).

Value iteration. We will rely on the value iteration algorithm described in [1] for a WTG G.
If V represents a value function—i.e. a mapping from configurations of L × RX>0 to a

value in R∞—we denote by V`,ν the image V (`, ν), for better readability, and by V` the
function mapping each valuation ν to V`,ν . One step of the game is summarised in the
following operator F mapping each value function V to a value function V ′ = F(V ) defined
by V ′`,ν = wtT (`, ν) if ` ∈ LT , and otherwise

V ′`,ν =

sup
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMax

inf
(`,ν)

d,δ−−→(`′,ν′)

[
d× wt(`) + wt(δ) + V`′,ν′

]
if ` ∈ LMin

(1)

where (`, ν) d,δ−−→ (`′, ν′) ranges over valid edges in G. Then, starting from V 0 mapping every
configuration to +∞, except for the targets mapped to wtT , we let V i = F(V i−1) for all
i > 0. The value function V i represents the value ValiG , which is intuitively what Min can
guarantee when forced to reach the target in at most i steps.

More formally, we define wtiG(ρ) the weight of a maximal play ρ at horizon i, as wtG(ρ)
if ρ reaches a target state in at most i steps, and +∞ otherwise. Using this altern-
ative definition of the weight of a play, we can obtain a new game value ValiG(`, ν) =
infσMin supσMax

wtiG(play((`, ν), σMax, σMin)). Then, if G is a tree of depth d, V i=ValG if i ≥ d.
The mappings V 0

` are piecewise linear for all `, and F preserves piecewise linearity over
regions, so all iterates V i` are piecewise linear with a finite number of pieces. In [1], it is proved
that V i` has a number of pieces (and can be computed within a complexity) exponential in i
and in the size of G when wtT = 0. This result can be extended to handle negative weights
in G and output weights wtT 6= 0.

3 Results

We consider the value problem that asks, given a WTG G, a location ` and a threshold
α ∈ Z ∪ {−∞,+∞}, to decide whether ValG(`,0) 6 α. In the context of timed games,
optimal strategies may not exist. We generally focus on finding ε-optimal strategies, that
guarantee the optimal value, up to a small error ε. Moreover, when the value problem is
undecidable, we also consider the approximation problem that consists, given a precision
ε ∈ Q>0, in computing an ε-approximation of ValG(`,0).

In the one-player case, computing the optimal value and an ε-optimal strategy for
weighted timed automata is known to be PSPACE-complete [6]. In the two-player case, the
value problem of WTGs (also called priced timed games in the literature) is undecidable
with 3 clocks [12, 10], or even 2 clocks in the presence of negative weights [15] (for the
existence problem asking if a strategy of player Min can guarantee a given threshold). To
obtain decidability, one possibility is to limit the number of clocks to 1: then, there is

FSTTCS 2018



28:8 Symbolic Approximation of Weighted Timed Games

an exponential-time algorithm to compute the value as well as ε-optimal strategies in the
presence of non-negative weights only [7, 19, 17], whereas the problem is only known to be
PTIME-hard. A similar result can be lifted to arbitrary weights, under restrictions on the
resets of the clock in cycles [13].

The other possibility to obtain a decidability result [9, 16] is to enforce a semantical
property of divergence (originally called strictly non-Zeno cost): it asks that every play
following a cycle in the region automaton has weight far from 0. It allows the authors to
prove that playing for only a bounded number of steps is equivalent to the original game,
which boils down to the problem of computing the value of a tree-shaped weighted timed
game G using the value iteration algorithm.

Other objectives, not directly related to optimal reachability, have been considered in [11]
for weighted timed games, like mean-payoff and parity objectives. In this work, the authors
manage to solve these problems for the so-called class of δ-robust WTGs that they introduce.
This class includes the class we consider, but is decidable in 2-EXPSPACE.

In [16], we generalised the strictly non-Zeno cost property of [9, 16] to weighted timed
games with both positive and negative weights: we called them divergent weighted timed
games. This article relaxes the divergence property, to introduce almost-divergent weighted
timed games. We first define formally these classes of games. A cycle π of R(G) is said to be
a positive cycle (resp. a 0-cycle, or a negative cycle) if every finite play ρ following π satisfies
wtΣ(ρ) > 1 (resp. wtΣ(ρ) = 0, or wtΣ(ρ) 6 −1). A strongly connected component (SCC) S
of R(G) is said to be positive (resp. negative) if every cycle π ∈ S is positive (resp. negative).
An SCC S of R(G) is said to be non-negative (resp. non-positive) if every play ρ following a
cycle in S satisfies either wtΣ(ρ) > 1 or wtΣ(ρ) = 0 (resp. either wtΣ(ρ) 6 −1 or wtΣ(ρ) = 0).

I Definition 3. A WTG G is divergent if every SCC of R(G) is either positive or negative. As
a generalisation, a WTG G is almost-divergent when every SCC of R(G) is either non-negative
or non-positive.

In [16], we showed that we can decide in 2-EXPTIME the value problem for divergent
WTGs. Unfortunately, it is shown in [10] that this problem is undecidable for almost-divergent
WTGs (already with non-negative weights only, where almost-divergent WTGs are called
simple). They propose a solution to the approximation problem, again with non-negative
weights only. Our first result is the following extension of their result:

I Theorem 4. Given an almost-divergent WTG G, a location ` and ε ∈ Q>0, we can compute
an ε-approximation of ValG(`,0) in time doubly-exponential in the size of G and polynomial
in 1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.

To obtain this result, we follow an approximation schema that we now outline. First, we
will always reason on the region game R(G) of the almost-divergent WTG G. The goal is to
compute an ε-approximation of ValR(G)(s0,0) for some state s0 = (`0, r0), with r0 the region
where every clock value is 0. As already recalled, techniques of [1] allow one to compute
the (exact) values of a WTG played on a finite tree, using operator F . The idea is thus to
decompose as much as possible the game R(G) in a WTG over a tree. First, we decompose
the region game into SCCs (left of Figure 3).

During the approximation process, we must think about the final weight functions as the
previously computed approximations of the values of SCCs below the current one. We will
keep as an invariant that final weight functions are piecewise linear functions with a finite
number of pieces, and are continuous on each region.

For an SCC of R(G) and an initial state s0 of R(G) provided by the SCC decomposition,
we show that the game on the SCC is equivalent to a game on a tree built from a semi-
unfolding (see middle of Figure 3) of R(G) from s0 of finite depth, with certain nodes of the
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Figure 3 Static approximation schema: SCC decomposition of R(G), semi-unfolding of an SCC,
corner-point abstraction for the kernels.

tree being kernels. These kernels are some parts of R(G) that contain all cycles of weight 0.
The semi-unfolding is stopped either when reaching a final location, or when some location
(or kernel) has been visited for a certain fixed number of times: such locations deep enough
are called stop leaves.

Our second result is a more symbolic approximation schema based on the value iteration
only. It is more symbolic in the sense that it does not require the SCC decomposition, the
computation of kernels nor the semi-unfolding of the game in a tree.

I Theorem 5. Let G be an almost-divergent WTG such that ValG > −∞ for all configurations.
Then the sequence (ValkG)k>0 converges towards ValG and for every ε ∈ Q>0, we can compute
an integer P such that ValPG is an ε-approximation of ValG for all configurations.

I Remark. In a weighted-timed game, it is easy to detect the set of states with value +∞:
these are all the states from which Min cannot ensure reachability of a target location ` ∈ LT
with wtT (`) < +∞. It can therefore be computed by an attractor computation, and is indeed
a property constant on each region. In particular, removing those states from R(G) does not
affect the value of any other state and can be done in complexity linear in |R(G)|. We will
therefore assume that the considered WTG have no configurations with value +∞.

4 Kernels of an almost-divergent WTG

The approximation procedure described before uses the so-called kernels in order to group
together all cycles of weight 0. We study those kernels and give a characterisation allowing
computability. Contrary to the non-negative case, the situation is more complex in our
arbitrary case, since weights of both locations and transitions may differ from 0 in the kernel.
Moreover, it is not trivial (and may not be true in a non almost-divergent WTG) to know
whether it is sufficient to consider only simple cycles, i.e. cycles without repetitions.

To answer these questions, let us first analyse the cycles of R(G) that we will encounter.
Since we are in an almost-divergent game, by Lemma 2, all cycles π = t1 · · · tn of R(G)
(with t1, . . . , tn transitions of R(G)) are either 0-cycles, positive cycles or negative cycles.
Additionally, in an SCC S of R(G), we cannot find both positive and negative cycles by
definition. Moreover, we can classify a cycle by looking only at the corner plays following it.

I Lemma 6. A cycle π is a 0-cycle iff there exists a corner play ρ following π with wtΣ(ρ)=0.
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Proof. If π is a 0-cycle, every such corner play ρ will have weight 0, by Lemma 2. Reciprocally,
if such a corner play exists, all corner plays following π have weight 0: otherwise the set
{wtΣ(ρ) | ρ play following π} would have non-empty intersection with the set (−1, 1) \ {0}
which would contradict the almost-divergence. J

An important result is that 0-cycles are stable by rotation. This is not trivial because
plays following a cycle can start and end in different valuations, therefore changing the
starting state of the cycle could a priori change the plays that follow it and their weights.

I Lemma 7. Let π and π′ be paths of R(G). Then, ππ′ is a 0-cycle iff π′π is a 0-cycle.

Proof. Since π1 = ππ′ is a cycle, first(π) = last(π′) and first(π′) = last(π), so π2 = π′π is
correctly defined.

First, since there are finitely many corners, by constructing a long enough play following
an iterate of π′π, we can obtain a corner play that starts and ends in the same corner.
Formally, we define two sequences of region corners (vi ∈ first(π))i and (v′i ∈ first(π′))i. We
start by choosing any v0 ∈ first(π). Let v′0 be a corner of first(π′) such that v′0 is accessible
from v0 by following π. For every i > 0, let vi be a corner of first(π) such that vi is accessible
from v′i−1 by following π′, and let v′i be a corner of first(π′) such that v′i is accessible from vi by
following π. We stop the construction at the first l such that there exists k < l with vk = vl.
Additionally, we let v′l = v′k and vl+1 = vk+1. This process is bounded since first(π) has at
most |X|+ 1 corners.

For every 0 6 i 6 l, let wi be the weight of a play ρi from vi to v′i along π, and let w′i
be the weight of a play ρ′i from v′i to vi+1 along π′. The concatenation of the two plays has
weight wi + w′i = 0, since it follows the 0-cycle π1. Therefore, all corner plays from vi to v′i
following π have the same weight wi, and the same applies for w′i. For every 0 6 i < l, the
concatenation of ρ′i and ρi+1 is a play from v′i to vi+1, of weight w′i + wi+1 = −wi + wi+1,
following π2. Since π2 is a cycle, and the game is almost-divergent, all possible values of
wi+1 − wi have the same sign.

Finally, we can construct a corner play from v′k to v′l by concatenating the plays ρ′k, ρk+1,

ρ′k+1, ρk+2, . . . , ρ
′
l−1, ρl. That play has weight

∑l−1
i=k(wi+1 −wi) = wl −wk = 0. This implies

that the terms wi+1 − wi, of constant sign, are all equal to 0. As a consequence, the
concatenation of ρ′k and ρk+1 is a corner play following π2 of weight 0. By Lemma 6, we
deduce that π2 is a 0-cycle. J

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.
Formally, let TK be the set of transitions of R(G) belonging to a simple 0-cycle, and SK be
the set of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G)
defined by SK and TK. Transitions in T\TK with starting state in SK are called the output
transitions of K. We define it using only simple 0-cycles in order to ensure its computability.
However, we now show that this is of no harm, since the kernel contains exactly all the
0-cycles, which will be crucial in the approximation schema we present in Section 6.

I Proposition 8. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles. The
initialisation contains only cycles of length 1, that are in K by construction. If we consider a
cycle π of length n > 1, it is either simple or it can be rotated and decomposed into π′π′′,
π′ and π′′ being smaller cycles. Let ρ be a corner play following π′π′′. We denote by ρ′ the
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prefix of ρ following π′ and ρ′′ the suffix following π′′. It holds that wtΣ(ρ′) = −wtΣ(ρ′′),
and in an almost-divergent SCC this implies wtΣ(ρ′) = wtΣ(ρ′′) = 0. Therefore, by Lemma 6
both π′ and π′′ are 0-cycles, and they must be in K by induction hypothesis. Note that this
reasoning proves that every cycle contained in a longer 0-cycle is also a 0-cycle.

t1

t2

t3

t4

t5

πt5

πt4

πt3

πt2

πt1

We now prove that every cycle in K is a 0-cycle. By construction, every transition t ∈ TK
is part of a simple 0-cycle. Thus, to every transition t ∈ TK, we can associate a path πt
such that tπt is a simple 0-cycle (rotate the simple cycle if necessary). We can prove (using
both Lemmas 6 and 7) the following property by relying on another pumping argument on
corners: If t1 · · · tn is a path in K, then t1t2 · · · tnπtn · · ·πt2πt1 is a 0-cycle of R(G). Now, if
π is a cycle of R(G) in K, there exists a cycle π′ such that ππ′ is a 0-cycle, therefore π is a
0-cycle. J

5 Semi-unfolding of almost-divergent WTGs

Given an almost-divergent WTG G, we describe the construction of its semi-unfolding T (G)
(as depicted in Figure 3). This crucially relies on the absence of states with value −∞, so we
explain how to deal with them first:

I Lemma 9. In an SCC of R(G), the set of configurations with value −∞ is a union of
regions computable in time linear in the size of R(G).

Sketch of proof. If the SCC is non-negative, the cumulated weight cannot decrease along a
cycle, thus, the only way to obtain value −∞ is to jump in a final state with final weight
−∞. We can therefore compute this set of states with an attractor for Min.

If the SCC is non-positive, we let SR
f (resp. S−∞f ) be the set of target states where wtT

is bounded (resp. has value −∞). We also define TR
f (resp. T−∞f ), the set of transitions of

R(G) whose end state belongs to SR
f (resp. S−∞f ). Notice that the kernel cannot contain

target states since they do not have outgoing transitions. We can prove that a configuration
has value −∞ iff it belongs to a state where player Min can ensure the LTL formula on
transitions: (G¬TR

f ∧ ¬FGTK) ∨ FT−∞f . The procedure to detect −∞ states thus consists
of four attractor computations, which can be done in time linear in |R(G)|. J

We can now assume that no states of G have value −∞, and that the output weight
function maps all configurations to R. Since wtT is piecewise linear with finitely many
pieces, wtT is bounded. Let sup |wtT | denote the bound of |wtT |, ranging over all target
configurations.

We now explain how to build the semi-unfolding T (G). We only build the semi-unfolding
T (G) of an SCC of G starting from some state (`0, r0) ∈ S of the region game, since it is
then easy to glue all the semi-unfoldings together to get the one of the full game. Since
every configuration has finite value, we can prove that values of the game are bounded by
|R(G)|wemax + sup |wtT |. As a consequence, we can find a bound γ linear in |R(G)|, wemax
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and sup |wtT | such that a play that visits some state outside the kernel more than γ times
has weight strictly above |R(G)|wemax + sup |wtT |, hence is useless for the value computation.
This leads to considering the semi-unfolding T (G) of G (nodes in the kernel are not unfolded,
see Figure 3) such that each node not in the kernel is encountered at most γ times along a
branch: the end of each branch is called a stop leaf of the semi-unfolding. In particular, the
depth of T (G) is bounded by |R(G)|γ, and thus is polynomial in |R(G)|, wemax and sup |wtT |.
Leaves of the semi-unfolding are thus of two types: target leaves that are copies of target
locations of G for which we set the target weight as in G, and stop leaves for which we set
their target weight as being constant to +∞ if the SCC G is non-negative, and −∞ if the
SCC is non-positive.

I Proposition 10. Let G be an almost-divergent WTG, and let (`0, r0) ∈ S be some state of
the region game. The semi-unfolding T (G) with initial state (˜̀0, r0) (a copy of state (`0, r0))
is equivalent to G, i.e. for all ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀0, r0), ν0).

6 Approximation of almost-divergent WTGs

Approximation of kernels. We start by approximating a kernel G by extending the region-
based approximation schema of [10]. In their setting, all runs in kernels had weight 0, allowing
a simple reduction to a finite weighted game. In our setting, we have to approximate the
timed dynamics of runs, and therefore resort to the corner-point abstraction (as shown to
the right of Figure 3).

Since output weight functions are piecewise linear with a finite number of pieces and
continuous on regions, they are Λ-Lipschitz-continuous3, for a given constant Λ > 0. We let
B = wLmax |L||Reg(X,M)|+ Λ.

Let N be an integer. Consider the game CN (G) described in the preliminary section, with
locations of the form (`, r, v) with v a corner of the 1/N -region r. Two plays ρ of G and ρ′ of
CN (G) are said to be 1/N -close if they follow the same path π in RN (G). In particular, at
each step the configurations (`, ν) in ρ and (`′, r′, v′) in ρ′ (with v′ a corner of the 1/N -region
r′) satisfy ` = `′ and ν ∈ r′, and the transitions taken in both plays have the same discrete
weights. Close plays have close weights, in the following sense:

I Lemma 11. For all 1/N -close plays ρ of G and ρ′ of CN (G), |wtG(ρ)−wtCN (G)(ρ′)| 6 B/N .

In particular, if we start in configurations (`0, ν0) of G, and ((`0, r0, v0), v0) of CN (G),
with ν0 ∈ r0, since both players have the ability to stay 1/N -close all along the plays, a
bisimulation argument permits to obtain that the values of the two games are also close in
(`0, ν0) and ((`0, r0, v0), v0):

I Lemma 12. For all locations ` ∈ L, 1/N -regions r, ν ∈ r and corners v of r, |ValG(`, ν)−
ValCN (G)((`, r, v), v)| 6 B/N .

Using this result, picking N an integer larger than B/ε, we can thus obtain |ValG(`, ν)−
ValCN (G)((`, r, v), v)| 6 ε. Recall that CN (G) can be considered as an untimed weighted game
(with reachability objective). Thus we can apply the result of [14], where it is shown that the
optimal values of such games can be computed in pseudo-polynomial time (i.e. polynomial

3 The function wtT is said to be Λ-Lipschitz-continuous when |wtT (s, ν)− wtT (s, ν′)| 6 Λ‖ν − ν′‖∞ for
all valuations ν, ν′, where ‖v‖∞ = maxx∈X |v(x)| is the ∞-norm of vector v ∈ RX . The function wtT is
said to be Lipschitz-continuous if it is Λ-Lipschitz-continuous, for some Λ.
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time with weights encoded in unary, instead of binary). We then define an ε-approximation
of ValG , named Val′N , on each 1/N -region by interpolating the values of its 1/N -corners in
CN (G) with a piecewise linear function: therefore, we can control the Lipschitz constant of
the approximated value for further use.

I Lemma 13. Val′N is an ε-approximation of ValG, that is piecewise linear with a finite
number of pieces and 2B-Lipschitz-continuous over regions.

Approximation of almost-divergent WTGs. We now explain how to approximate the value
of an almost-divergent WTG G, thus proving Theorem 4. First, we compute a semi-unfolding
T (G) as described in the previous section. Then we perform a bottom-up computation of
the approximation. As already recalled, techniques of [1] allow us to compute exact values
of a tree-shape WTG. In consequence, we know how to compute the value of a non-kernel
node of T (G), depending of the values of its children. There is no approximation needed
here, so that if all children are ε-approximation, we can compute an ε-approximation of
the node. Therefore, the only approximation lies in the kernels, and we explained before
how to compute arbitrarily close an approximation of a kernel’s value. We crucially rely on
the fact that the value function is 1-Lipschitz-continuous4. This entails that imprecisions
will sum up along the bottom-up computations, as computing an ε-approximation of the
value of a game whose output weights are ε′-approximations yields an (ε+ ε′)-approximation.
Therefore we compute approximations with threshold ε′ = ε/α for kernels in T (G), where α
is the maximal number of kernels along a branch of T (G): α is smaller than the depth of
T (G), which is bounded by Proposition 10.

The subregion granularity considered before for kernel approximation crucially depends
on the Lipschitz constant of output weights. The growth of these constants is bounded for
kernels in T (G) by Lemma 13. For non-kernel nodes of T (G), using a careful analysis of the
algorithm of [1], we obtain the following bound:

I Lemma 14. If all the output weights of a WTG G are Λ-Lipschitz-continuous over regions
(and piecewise linear, with finitely many pieces), then ValiG is ΛΛ′-Lipschitz-continuous over
regions, with Λ′ polynomial in wLmax and |X| and exponential in i.

The overall time complexity of this method is doubly-exponential in the size of the input
game and polynomial in 1/ε.

7 Symbolic approximation algorithm

The previous approximation result suffers from several drawbacks. It relies on the SCC
decomposition of the region automaton. Each of these SCCs have to be analysed in a
sequential way, and their analysis requires an a priori refinement of the granularity of regions.
This approach is thus not easily amenable to implementation. We instead prove in this section
that the symbolic approach based on the value iteration paradigm, i.e. the computation of
iterates of the operator F recalled in page 7, is an approximation schema. This is stated
in Theorem 5, for which we now sketch a proof in this section.

Notice that configurations with value +∞ are stable through value iteration, and do not
affect its other computations. Since Theorem 5 assumes the absence of configurations of
value −∞, we will therefore consider in the following that all configurations have finite value
in G.

4 Indeed, inf and sup are 1-Lipschitz-continuous functions, and with a fixed play ρ, the mapping
wtT → wtΣ(ρ) + wtT (last(ρ)) is 1-Lipschitz-continuous.
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Consider first a game G that is a kernel. By the results of Section 6, there exists an in-
teger N such that solving the untimed weighted game CN (G) computes an ε/2-approximation
of the value of 1/N corners. Using the results of [14] for untimed weighted games, we
know that those values are obtained after a finite number of steps of (the untimed ver-
sion of) the value iteration operator. More precisely, if one considers a number of it-
erations P = |L||RegN (X,M)|(|X| + 1)(2(|L||RegN (X,M)|(|X| + 1) − 1)wemax + 1), then
ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v). From this observation, we deduce the following
property of P :

I Lemma 15. If G is a kernel with no configurations of infinite value, then |ValG(`, ν) −
ValPG (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. We already know that ValPCN (G)((`, r, v), v) = ValCN (G)((`, r, v), v) for all configurations
((`, r, v), v) of CN (G). Moreover, Section 6 ensures |ValG(`, ν) − ValCN (G)((`, r, v), v)| 6 ε/2
whenever ν is in the 1/N -region r. Therefore, we only need to prove that |ValPG (`, ν) −
ValPCN (G)((`, r, v), v)| 6 ε/2 to conclude. This is done as for Lemma 12, since Lemma 11 (that
we need to prove Lemma 12) does not depend on the length of the plays ρ and ρ′, and
both runs reach the target state in the same step, i.e. both before or after the horizon of P
steps. J

Once we know that value iteration converges on kernels, we can use the semi-unfolding of
Section 5 to prove that it also converges on non-negative SCCs when all values are finite.

I Lemma 16. If G is a non-negative SCC with no configurations of infinite value, we can
compute P+ such that |ValG(`, ν)− ValP+

G (`, ν)| 6 ε for all configurations (`, ν) of G.

The idea is to unfold every kernel of the semi-unfolding game T (G) according to its bound
in Lemma 15. More precisely, let α be the maximum number of kernels along one of the
branches of T (G). In a bottom-up fashion, we can find for each kernel K in T (G) a bound PK
such that, for all configurations (`, ν), |ValK(`, ν)− ValPK

K (`, ν)| 6 ε/α. We thus unfold K in
T (G) with depth up to PK. After each kernel has been replaced this way, T (G) is no longer a
semi-unfolding, it is instead a (complete) unfolding of R(G), of a certain bounded depth P+.
This new bound P+ is bounded by the former depth of T (G) to which is added α times the
biggest bound PK we need for the kernels. Now, T (G) is a tree of depth P+ whose value
at its root is ε-close to the value of G. Finally, the value computed by ValP+

G is bounded
between ValG and ValT (G), which allows us to conclude.

The bound PK for a kernel K depends linearly in Λ, the Lipschitz constant of value
functions on locations of T (G) reachable from K. Once K has been replaced by its unfolding
of depth PK, the Lipschitz constant of the value function at the root of T (G) are thus bounded
exponentially in Λ. This means that we ensure a bound for P+ that is at most polynomial in
1/ε, and that is of the order of a tower of α exponentials.

Proving the same property on non-positive SCCs requires more work, because the semi-
unfolding gives output weight −∞ to stop leaves, which doesn’t integrate well with value
iteration (initialisation at +∞ on non-target states). However, by unfolding those SCCs
slightly more (at most |R(G)| more steps), we can obtain the desired property with a similar
bound P−.

I Lemma 17. If G is a non-positive SCC with no configurations of infinite value, we can
compute P− such that |ValG(`, ν)− ValP−G (`, ν)| 6 ε for all configurations (`, ν) of G.

Now, if we are given an almost-divergent game G and a precision ε, we can add the
bounds for value iteration obtained from each SCC by Lemmas 16 and 17, and obtain a final
bound P such that for all k > P , ValkG is an ε-approximation of ValG .
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Discussion. Overall, this leads to an upper bound complexity that is polynomial in 1/ε and
of the order of a tower of n exponentials, with n polynomial in the size of the input WTG.
However, we argue that this symbolic procedure is more amenable to implementation than
the previous approximation schema. First, it avoids the three already mentioned drawbacks
(SCC decomposition, sequential analysis of the SCCs, and refinement of the granularity
of regions) of the previous approximation schema. Then, it allows one to directly launch
the value iteration algorithm on the game G, and we can stop the computation whenever
we are satisfied enough by the approximation computed: however, there are no guarantees
whatsoever on the quality of the approximation before the number of steps P given above.
Finally, this schema allows one to easily obtain an almost-optimal strategy with respect to
the computed value.

If G is not guaranteed to be free of configurations of value −∞, then we must first perform
the SCC decomposition of R(G), and, as G is almost-divergent, identify and remove regions
whose value is −∞, by Lemma 9. Then, we can apply the value iteration algorithm.

As a final remark, notice that our correctness proof strongly relies on Section 6, and thus
would not hold with the approximation schema of [10] (which does not preserve the continuity
on regions of the computed value functions, in turn needed to define output weights on
1/N -corners).

8 Conclusion

We have given an approximation procedure for a large class of weighted timed games with
unbounded number of clocks and arbitrary integer weights that can be executed in doubly-
exponential time with respect to the size of the game. In addition, we proved the correctness
of a symbolic approximation schema, that does not start by splitting exponentially every
region, but only does so when necessary (as dictated by [1]). We argue that this paves the
way towards an implementation of value approximation for weighted timed games.

Another perspective is to extend this work to the concurrent setting, where both players
play simultaneously and the shortest delay is selected. We did not consider this setting
in this work because concurrent WTGs are not determined, and several of our proofs rely
on this property for symmetrical arguments (mainly to lift results of non-negative SCCs
to non-positive ones). Another extension of this work is the exploration of the effect of
almost-divergence in the case of multiple weight dimensions, and/or with mean-payoff
objectives.
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Abstract
For many modern applications like e.g., contactless payment, and keyless systems, ensuring
physical proximity is a security goal of paramount importance. Formal methods have proved
their usefulness when analysing standard security protocols. However, existing results and tools
do not apply to e.g., distance bounding protocols that aims to ensure physical proximity between
two entities. This is due in particular to the fact that existing models do not represent in a
faithful way the locations of the participants, and the fact that transmission of messages takes
time.

In this paper, we propose several reduction results: when looking for an attack, it is actually
sufficient to consider a simple scenario involving at most four participants located at some specific
locations. These reduction results allow one to use verification tools (e.g. ProVerif, Tamarin)
developed for analysing more classical security properties. As an application, we analyse several
distance bounding protocols, as well as a contactless payment protocol.
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1 Introduction

The shrinking size of microprocessors and the ubiquity of wireless communication have led to
the proliferation of portable computing devices with novel security requirements. Whereas
traditional security protocols achieve their security goals relying solely on cryptographic
primitives like encryptions and hash functions, this is not the case anymore for many modern
applications like e.g., contactless payment. Actually, a typical attack against these devices is
the so-called relay attack, as demonstrated for EMV in [14]. Such an attack allows a malicious
participant to relay communications between a victim’s card (possibly inside a wallet) and a
genuine terminal so that the victim’s card, even if it is far away from the terminal, will pay the
transaction. Due to the contactless nature of most of our communications, obtaining reliable
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information regarding physical proximity is of paramount importance and specific protocols,
namely distance bounding protocols, were proposed to achieve this specific goal [11, 26]. They
typically take into account the round trip time of messages and the transmission velocity to
infer an upper bound of the distance between two participants.

In the context of standard security protocols, such as key establishment protocols, formal
methods have proved their usefulness for providing security guarantees or detecting attacks.
The purpose of formal verification is to provide rigorous frameworks and techniques to analyse
protocols and find their flaws. For example, a flaw has been discovered in the Single-Sign-On
protocol used e.g., by Google Apps [2]. This flaw has been found when analysing the protocol
using formal symbolic methods, abstracting messages by a term algebra and using the
Avantssar validation platform [3]. The techniques used in symbolic models have become
mature and several verification tools are nowadays available, e.g., ProVerif [8], Tamarin [29].

However, protocols whose security relies on constraints from the physical world fall outside
the scope of traditional symbolic models that are based on the omniscient attacker who
controls the entire network, and who can for instance relay messages without introducing
any delay. Following [7, 24], and more recently [27], our aim is to bridge the gap between
informal approaches currently used to analyse these protocols and the formal approaches
already used for analysing traditional security protocols.

Our contributions. To model timed protocols as well as the notion of physical proximity,
we first propose a calculus in which communications are subject to physical restrictions.
These constraints apply to honest agents and attackers. An attacker can only intercept
messages at his location, and attackers can not instantaneously exchange their knowledge:
transmitting messages takes time. Moreover each agent has clocks to be able to perform
time measurements. Then, our main contribution is to provide reduction results in the spirit
of the one obtained in [15] for traditional protocols: if there is an attack, then there is one
considering only few participants at some specific locations. As it is usually done in distance
bounding protocols, we consider different types of attacks : mafia fraud and hijacking attack.
A mafia fraud is an attack in which an attacker tries to convince the verifier that an honest
prover is close to him whereas he is far away. The notion of distance hijacking attack has
been introduced more recently [17]. In such a scenario, a dishonest prover located far away
succeeds in convincing a verifier that they are actually close, and he may only exploit the
presence of honest participants in the neighboorhood to achieve his goal. Our results slightly
differ depending on the type of attacks we consider and allow one to reduce the number of
topologies to be considered from infinitely many to only one (involving at most 4 participants
including the malicious ones). They hold in a rather general setting: we consider arbitrary
cryptographic primitives as soon as they can be expressed using rewriting rules modulo an
equational theory.

An interesting consequence of our reduction results is that it allows one to use techniques
and tools developed so far for traditional security protocols. As an application, we analyse
several distance bounding protocols (relying on the automatic ProVerif tool), and a contactless
payment protocol [14]. We confirmed some known vulnerabilities in a number of protocols,
and discovered an unreported attack on the SPADE protocol [12]. All files related to our
case studies as well as a full version of this paper are available [18, 19].

Related work. Recent efforts have been made on proving security of distance bounding
protocols. For instance, in 2011, Avoine et al. [5] proposed a framework in which many
protocols have been analysed and compared in a unified manner [4]. A rather general model
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has been proposed by Boureanu et al. in [10]. This computational model captures all the
classical types of attacks and generalises them enabling attackers to interact with many
provers and verifiers. These models are very different from ours. Indeed, we consider here a
formal symbolic model in which messages are no longer bitstrings but are abstracted away
by terms. Some recent attempts have been made to design formal symbolic model suitable
to analyse distance bounding protocols: e.g., a model based on multiset rewriting rules has
been proposed in [7] and [27], another one based on strand spaces is available in [31]. Even
if our model shares some similarities with those mentioned above, we design a new one based
on the applied pi calculus [1] in order to connect our theoretical results with the ProVerif
verification tool that we ultimately use to analyse protocols.

Our main reduction result follows the spirit of [16] where it is shown that it is sufficient
to consider five specific topologies when analysing routing protocols. To our knowledge,
the only work proposing a reduction result suitable for distance bounding protocols is [31]:
they show that n attackers are sufficient when analysing a configuration involving at most n
honest participants. However, an arbitrary number of participants is still needed when
looking for an attack. Moreover, due to the way attackers are located (close to each honest
participant), such a result can not be applied to analyse distance hijacking scenarios for
which the presence of an attacker in the neighbourhood of the verifier is disallowed. In
contrast, our result reduces to only one topology, even when considering an arbitrary number
of honest participants, and it applies to the scenario mentioned above. In particular, this
allows us to leverage existing verification tools such as ProVerif and Tamarin. To do that we
get some inspiration from [14]. Our contributions improve upon their work by providing a
strong theoretical foundation to their idea.

Recently, a methodology to analyse distance bounding protocols within Tamarin has been
proposed [27]. They do not try to define the different class of attacks as usually considered
in distance bounding protocols. Instead, they provide a generic definition of secure distance
bounding: when an honest verifier successfully ends a session with a prover P , then he has
correctly computed an upper bound on his distance to either P (if P is honest) or to some
other dishonest participant P ′ (if P is dishonest). The security analysis is then performed
w.r.t. such a generic security property. This prevents them to draw meaningful conclusions
on protocols such as Paysafe which is not supposed to resist to some particular classes of
attacks.

2 Modelling timed security protocols

As usual in symbolic models, we rely on a term algebra for modelling messages exchanged by
the participants, and on a process algebra to represent the protocols themselves.

2.1 Messages as terms
We consider two infinite and disjoint sets of names: a set N of basic names used to represent
keys, nonces, and a set A of agent names used to represent agents identities. We consider
an infinite set Σ0 of constant symbols that are used e.g., to represent nonces drawn by the
attacker. We also consider two infinite and disjoint sets of variables, denoted X and W.
Variables in X refer to unknown parts of messages expected by participants while those in W ,
namely handles, are used to store messages learnt by the attacker.

We assume a signature Σ, i.e. a set of function symbols together with their arity. The
elements of Σ are split into constructor and destructor symbols, i.e. Σ = Σc ]Σd. We denote
Σ+ = Σ ] Σ0, and Σ+

c = Σc ] Σ0. Given a signature F , and a set of atomic data A, we
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denote by T (F ,A) the set of terms built from atomic data A by applying function symbols
in F . A constructor term is a term in T (Σ+

c ,N ] A ] X ). We denote vars(u) the set of
variables that occur in a term u. A message is a constructor term u that is ground, i.e. such
that vars(u) = ∅. The application of a substitution σ to a term u is written uσ. We denote
dom(σ) its domain, and img(σ) its image. The positions of a term are defined as usual.

I Example 1. We consider the following signature Σex = Σc ] Σd:

Σc = {commit, sign, sk, vk, ok, 〈〉,⊕, 0}, Σd = {open, getmsg, check, proj1, proj2, eq}.

The symbols open and commit (arity 2) represent a commitment scheme, whereas the
symbols sign, check (arity 2), getmsg, sk, and vk (arity 1) are used to model signature. Pairing
and projections are modelled using 〈 〉 (arity 2), and proji with i ∈ {1, 2} (arity 1). The
symbols ⊕ (arity 2) and the constant 0 model the exclusive-or operator. We consider the
symbol eq to model equality test and ok a specific constant.

Following the approach developed in [9], constructor terms are subject to an equational
theory. This allows one to model the algebraic properties of the primitives. It consists of a
finite set of equations of the form u = v where u, v ∈ T (Σc,X ), and induces an equivalence
relation =E over constructor terms. Formally, =E is the smallest congruence on constructor
terms, which contains u = v in E, and that is closed under substitutions of terms for variables.

I Example 2. To reflect the algebraic properties of the exclusive-or operator, we consider
the equational theory Exor generated by the following equations:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ 0 = x x⊕ x = 0.

We also give a meaning to destructor symbols through a set of rewriting rules of the form
g(t1, . . . , tn)→ t where g ∈ Σd, and t, t1, . . . , tn ∈ T (Σc,X ). A term u can be rewritten in v if
there is a position p in u, and a rewriting rule g(t1, . . . , tn)→ t such that u|p = g(t1, . . . , tn)θ
for some substitution θ. Moreover, we assume that t1θ, . . . , tnθ as well as tθ are messages.
We only consider sets of rewriting rules that yield a convergent rewriting system, and we
denote u↓ the normal form of a term u. For modelling purposes, we split the signature Σ
into two parts, Σpub and Σpriv, and we denote Σ+

pub = Σpub ∪Σ0. An attacker builds messages
by applying public symbols to terms he knows and that are available through handles in W .
Formally, a computation done by the attacker is a recipe, i.e. a term in T (Σ+

pub,W).

I Example 3. Among symbols in Σex, only sk is in Σpriv. The properties of the symbols
in Σd are reflected through the following rewriting rules:

check(sign(x, sk(y)), vk(y))→ ok
eq(x, x)→ ok

getmsg(sign(x, sk(y)))→ x

open(commit(x, y), y)→ x

proj1(〈x1, x2〉)→ x1
proj2(〈x1, x2〉)→ x2.

2.2 Protocols as processes
Protocols are modelled through processes using the following grammar:

P, Q := 0 | in(x).P | in<t(x).P | let x = v in P

| new n.P | out(u).P | reset.P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X ]N ]A), v ∈ T (Σ+,X ]N ]A) and t ∈ R+.

Most of these constructions are rather standard. As usual, 0 denotes the empty process
that does nothing, and the new instruction is used to model fresh name generation. Then,
we have standard constructions to model inputs and outputs. We may note the special



A. Debant, S. Delaune, and C. Wiedling 29:5

construction in<t(x) that combines an input with a constraint on the local clock of the
process executing this action. This construction is in contrast with the approach proposed
in [27] where input actions are not subject to any timing constraint, and are therefore
always possible provided that enough time has elapsed. From this point of view, our model
represents the reality more faithfully since an agent will not proceed an input arriving later
than expected. The reset instruction will reset the local clock of the process. Finally, the
process let x = v in P tries to evaluate v, the process P is executed in case of success, and
the process is blocked otherwise. Note that the usual conditional operator can be modelled
as follows: let x = eq(u, v) in P .

We write fv(P ) (resp. fn(P )) for the set of free variables (resp. names) occurring in P , i.e.
the set of variables (resp. names) that are not in the scope of an in or a let (resp. a new).
We consider parametrised processes, denoted P (z0, . . . , zn), where z0, . . . , zn are variables
from a special set Z (disjoint from X and W). Intuitively, these variables will be instantiated
by agent names, and z0 corresponds to the name of the agent that executes the process. A
role R = P (z0, . . . , zn) is a parametrised process that does not contain any agent name, and
such that fv(R) ⊆ {z0, . . . , zn}. A protocol is a set of roles.

I Example 4. As a running example, we consider the signature-based Brands and Chaum
distance bounding protocol [11] that is informally described below.

1. P → V : commit(m, k)
2. V → P : n

3. P → V : n⊕m
4. P → V : k

5. P → V : sign(〈n, n⊕m〉, sk(P )).

The prover P generates a nonce m and a key k, and sends a commitment to the verifier V .
The verifier V generates his own nonce n and initiates the time measurement phase, also
called the rapid phase. P has to provide an answer as quickly as possible since V will reject
any answer arriving too late (a long response time does not give him any guarantee regarding
its proximity with the prover). After this phase, P sends a means to open the commitment,
as well as a signature on the values exchanged during the rapid phase. When a verifier
ends the protocol, the prover with whom he is communicating should be located in his
neighbourhood. In our setting, this 2-party protocol is modelled through the two following
parametrised processes: V (zV , zP ) represents the role of the verifier played by agent zV with
agent zP whereas P (z′P ) represents the role of the prover played by agent z′P .

V (zV , zP ) :=
in(yc).new n.
reset.out(n).in<2×t0(y0).
in(yk).in(ysign).
let ym = open(yc, yk) in
let ycheck = check(ysign, vk(zP )) in
let yeq = eq(〈n, n⊕ ym〉, getmsg(ysign)) in 0.

P (z′P ) :=
new m.new k.
out(commit(m, k)).
in(xn).
out(xn ⊕m).
out(k).
out(sign(〈xn, xn ⊕m〉, sk(z′P ))).0

2.3 Semantics
The operational semantics is defined using a relation over configurations, and is parametrised
by a topology reflecting the fact that interactions between agents depend on their location.

I Definition 5. A topology is a tuple T0 = (A0,M0, Loc0, v0, p0) where:
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A0 ⊆ A is the finite set of agents composing the system;
M0 ⊆ A0 is the subset of agents that are dishonest;
Loc0 : A0 → R3 is a mapping defining the position of each agent in space.
p0 and v0 are two agents in A0 that represent respectively the prover and the verifier for
which we analyse the security of the protocol.

In our model, the distance between two agents is expressed by the time it takes for a
message to travel from one to another, DistT0 : A0 ×A0 → R, defined as follows:

DistT0(a, b) = ‖Loc0(a)− Loc0(b)‖
c0

for any a, b ∈ A0

with ‖·‖ : R3 → R the euclidian norm and c0 the transmission speed. We suppose, from
now on, that c0 is a constant for all agents, and thus an agent a can recover, at time t, any
message emitted by any other agent b before t− DistT0(a, b).

Note that our model is not restricted to a single dishonest node. In particular, our results
apply to the case of several compromised nodes that communicate (and therefore share their
knowledge). However, communication is subject to physical constraints. This results in a
distributed attacker with restricted, but more realistic, communication capabilities than
those of the traditional omniscient Dolev-Yao attacker [21].

Our semantics is given by a transition system over configurations that manipulates
extended processes, i.e. expressions of the form bPac taa with a ∈ A, Pa a process such that
fv(Pa) = ∅, and ta ∈ R+. Intuitively, Pa describes the actions of agent a, and ta his local
clock. Messages that have been outputted so far are stored into a frame (introduced in [1])
extended to keep track of the time at which the message has been outputted and by whom.

I Definition 6. Given a topology T0 = (A0,M0, Loc0, v0, p0), a configuration K over T0 is
a tuple (P; Φ; t), where:
P is a multiset of extended process bP c taa with a ∈ A0;
Φ = {w1

a1,t1−−−→ u1, . . . ,wn
an,tn−−−→ un} is an extended frame, i.e. a substitution such that

wi ∈ W , ui ∈ T (Σ+
c ,N ]A), ai ∈ A0 and ti ∈ R+ for 1 ≤ i ≤ n;

t ∈ R+ is the global time of the system.
We write bΦc ta for the restriction of Φ to the agent a at time t, i.e. :

bΦc ta =
{

wi
ai,ti−−−→ ui | (wi

ai,ti−−−→ ui) ∈ Φ and ai = a and ti ≤ t
}
.

I Example 7. Continuing Example 4, we may consider the topology T0 = (A0,M0, Loc0, v0,

p0) depicted below where A0 = {p0, v0, p}, and M0 = {p0}. The precise location of each
agent is not relevant, only the distance between them matters. Here DistT0(p, v0) < t0 whereas
DistT0(p0, v0) ≥ t0.

v0

p

p0
t0

A typical initial configuration is:

K0 = (bP (p)c 0
p ] bV (v0, p0)c 0

v0
; {w1

p0,0−−→ sk(p0)}; 0)
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TIM (P; Φ; t) −→T0 (Shift(P, δ); Φ; t+ δ) with δ ≥ 0

OUT (bout(u).P c taa ) ] P ; Φ; t) a,out(u)−−−−−→T0 (bP c taa ] P ; Φ ] {w a,t−−→ u}; t)
with w ∈ W fresh

LET (blet x = u in P c taa ] P ; Φ; t) a,τ−−→T0 (bP{x 7→ u↓}c taa ] P ; Φ; t)
when u↓ ∈ T (Σ+

c ,N ]A)
NEW (bnew n.P c taa ] P ; Φ; t) a,τ−−→T0 (bP{n 7→ n′}c taa ] P ; Φ; t) with n′ ∈ N fresh
RST (breset.P c taa ] P ; Φ; t) a,τ−−→T0 (bP c 0

a ] P ; Φ; t)

IN (bin?(x).P c taa ] P ; Φ; t) a,in?(u)−−−−−→T0 (bP{x 7→ u}c taa ] P ; Φ; t)

when there exist b ∈ A0 and tb ∈ R+ such that tb ≤ t− DistT0(b, a) and:
if b ∈ A0 rM0 then u ∈ img(bΦc tbb );
if b ∈ M0 then u = RΦ↓ for some recipe R such that for all w ∈ vars(R) there exists
c ∈ A0 such that w ∈ dom(bΦc tb−DistT (c,b)

c ).
Moreover, in case ? is < tg for some tg, we assume in addition that ta < tg.

Figure 1 Semantics of our calculus.

where p is playing the prover’s role, and v0 the verifier’s role with a dishonest agent p0. The
signature key of this dishonest participant is given to the attacker through w1. A more
realistic configuration would include other instances of these two roles and will give more
knowledge to the attacker. This simple configuration is sufficient to present an attack.

Given a topology T0 = (A0,M0, Loc0, v0, p0), the semantics of processes is formally
defined by the rules given in Figure 1.

The TIM rule allows time to elapse, meaning that the global clock as well as the local
clocks will be shifted by δ:

Shift(P, δ) =
⊎

bPc ta
a ∈P

Shift(bP c taa , δ) and Shift(bP c taa , δ) = bP c ta+δ
a .

The RST rule allows an agent to reset the local clock of the process. The other rules are
rather standard. The IN rule allows an agent a to evolve when receiving a message: the
received message has necessarily been forged and sent at time tb by some agent b who was in
possession of all the necessary information at that time.

We sometimes simply write −→T0 instead of a,α−−→T0 . The relation →∗T0
is the reflexive and

transitive closure of →T0 , and we often write tr−→T0 to emphasise the sequence of labels tr
that has been used during this execution.

I Example 8. Continuing Example 7, we may consider the following execution:

K0
p,τ−−→T0

p,τ−−→T0

p,out(commit(m′,k′))−−−−−−−−−−−−−→T0−→T0

v0,in(commit(m′,k′))−−−−−−−−−−−−−→T0

v0,τ−−−→T0

v0,τ−−−→T0 K1

where K1 = (bP1c δ0
p ] bV1c 0

v0
; {w1

p0,0−−→ sk(p0), w2
p,0−−→ commit(m′, k′)}; δ0). The two first

arrows correspond to applications of the rule NEW to generate m′ and k′, the one without
label is an instance of the TIM rule, and the two last arrows correspond respectively to the
rule NEW and the rule RST. We have that:

P1 = in(xn).out(xn ⊕m′).out(k′).out(sign(〈xn, xn ⊕m′〉, sk(p))); and
V1 = out(n′).in<2×t0(y0).in(yk).in(ysign).let ym = open(commit(m′, k′), yk) in . . .
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This models the beginning of a normal execution between p and v0. The message outputted
at location p is received at location v0. The instance of the rule TIM in between (here with
δ0 = DistT0(p, v0)) allows the message to reach location v0.

3 Modelling physical proximity

A distance bounding protocol is a protocol in which a party (the verifier) is assured of the
identity of another party (the prover), as well as the fact that this prover is located in his
neighbourhood. Before to consider the type of frauds we are interested in, we first introduce
the notion of valid initial configuration that aims to represent the scenarios that have to be
analysed once the topology is fixed.

3.1 Valid initial configurations
We consider a topology T0 = (A0,M0, Loc0, v0, p0), a protocol Pprox i.e. a set of roles), and
we assume that the initial knowledge of dishonest participants is given through a template
I0, i.e. a set of terms in T (Σ+

c ,Z). Using this template I0, and considering a set of agents
A0, we derive the initial knowledge of agent a ∈ A0 as follows:

Knows(I0, a,A0) =
{

(u0{z0 7→ a})σ ground u0 ∈ I0 and
σ a substitution such that img(σ) ⊆ A0

}
For the sake of simplicity, we extend our calculus with a special action of the form

end(z0, z1) and we assume that configurations representing instances of distance bounding
protocols contain a process (typically a session of the verifier) that ends with it. When
analysing physical proximity, we consider any valid initial configuration as defined below:

I Definition 9. Let Pprox be a protocol, V0(z0, z1) be a parametrised role containing the
special action end(z0, z1), I0 be a template, and T0 = (A0,M0, Loc0, v0, p0) be a topology.
A configuration K = (P; Φ; t) is a valid initial configuration for the protocol Pprox and V0
w.r.t. T0 and I0 if:
1. P = bV0(v0, p0)c t

′

v0
]P ′ for some t′ and for each bP ′c ta′a′ ∈ P ′ there exists P (z0, . . . , zk) ∈

Pprox, and a1, . . . , ak ∈ A0 such that P ′ = P (a′, a1, . . . , ak).
2. img(bΦc ta) = Knows(I0, a,A0) when a ∈M0, and img(bΦc ta) = ∅ otherwise.

The first condition says that we consider initial configurations made up of instances of
the roles of the protocols, and we only consider roles executed by agents located at the right
place, i.e. the agent a′ who executes the role must be the first argument of the parametrised
process. The second condition allows one to give some initial knowledge to each malicious
node. We may note that we do not give any constraint regarding time. It is indeed important
that all the possible initial configurations are analysed before declaring a protocol secure.

I Example 10. Going back to Example 7 and considering the template I0 = {sk(z0)}, we
have that K0 is a valid initial configuration.

3.2 Mafia fraud and distance hijacking
A mafia fraud [20] is an attack in which generally three agents are involved: a verifier,
an honest prover located outside the neighbourhood of the verifier, and an attacker. We
consider here its general version which may involve an arbitrary number of participants. The
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v0 p
(neighbourhood of v0)

p0
(far away)

new m′, k′commit(m′, k′)
new n′ n′

n′ ⊕m′

k′

sign(〈n′, n′ ⊕m′〉, sk(p0))

Figure 2 Distance hijacking attack on the Brands and Chaum’s protocol.

aim of the attacker is to convince the verifier that the honest prover is actually close to it.
We denote by CMF the set of all the mafia fraud topologies, i.e. any topology T such that
T = (A0,M0, Loc0, v0, p0) with v0, p0 ∈ A0 rM0.

A distance hijacking fraud [17] is an attack in which a dishonest prover located far
away succeeds in convincing a verifier that he is actually close to him. The dishonest
prover may exploit honest entities located in the neighbourhood of the verifier. We denote
by CDH the set of all the distance hijacking topologies, i.e. any topology T such that
T = (A0,M0, Loc0, v0, p0) with p0 ∈ M0, v0 ∈ A0 rM0, and DistT0(v0, a) ≥ t0 for any
a ∈M0.

I Definition 11. Let Pprox be a protocol, V0(z0, z1) be a parametrised role containing the
special event end(z0, z1), and I0 be a template. We say that Pprox admits a mafia fraud
attack (resp. distance hijacking attack) w.r.t. t0-proximity if there exist T ∈ CMF (resp. CDH),
a valid initial configuration K for Pprox and V0 w.r.t. T and I0 such that:

K →∗T (bend(a1, a2)c taa ] P ; Φ; t) with DistT (a1, a2) ≥ t0.

We also say that K admits an attack w.r.t. t0-proximity in T .

In other words, there is an attack if starting from an initial valid configuration, the verifier
a1 successfully ends a session with an agent a2 who is far away.

I Example 12. As reported in [17], the Brands and Chaum protocol is actually vulnerable
to a distance hijacking attack. This attack is informally depicted in Figure 2. A honest
prover who is in the neightbouhood of a legitimate verifier v0 starts a session. At the end of
the session, the dishonest prover p0 who is far away hijacks the honest prover by sending
a signature of the transcript of the rapid phase with his own signature key, namley sk(p0).
Upon reception of this signature, the verifier v0 will believe that he played the session with p0,
and will wrongly conclude that p0 is in his neighbourhood. Note that, the rapid phase (plain
lines) can only be done by a prover who is in the neighbourhood of v0 due to the guarded
input that occurs in the verifer’s role played by v0.

We explain below how this attack is captured in our model. Continuing Example 7, we
consider the configuration K ′0 below:

K ′0 = (bP (p)c 0
p ] bV

′(v0, p0)c 0
v0

; {w1
p0,0−−→ sk(p0)}; 0)

where V ′(zV , zP ) is V (zV , zP ) in which the null process has been replaced by end(zV , zP ).
The configuration K ′0 can still follow the execution of Example 8:

K ′1 = (bP1c δ0
p ] bV

′
1c

0
v0

; {w1
p0,0−−→ sk(p0), w2

p,0−−→ commit(m′, k′)}; δ0)
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malicious node
honest node

v0 p0
vi pi

t0 v0
e0

p0
t0

Figure 3 Topologies T t0
MF (mafia fraud), and T t0

DH (distance hijacking fraud).

where V ′1 is V1 in which the occurrence of the null process has been replaced by end(v0, p0).
Now, we can pursue this execution as follows:

K ′1
v0,out(n′)−−−−−−→T0−→T0

p,in(n′)−−−−−→T0

p,out(n′⊕m′)−−−−−−−−→T0

p,out(k′)−−−−−→T0−→T0

v0,in<2×t0 (n′⊕m′)−−−−−−−−−−−−→T0

v0,in(k′)−−−−−→T0

−→T0

v0,in(sign(〈n′,n′⊕m′〉,sk(p0)))−−−−−−−−−−−−−−−−−−−→T0 (bP2c 3δ0+2δ′0
p ] bend(v0, p0)c 2δ0+2δ′0

v0
; Φ; 3δ0 + 2δ′0).

The two first lines correspond to a normal execution of the protocol between v0 and p. Note
that, on each line, we need an instance of the TIM rule with δ0 = DistT0(v0, p) = DistT0(p, v0)
to allow the sent message to reach its destination and the guarded input passes because
p is close to v0. The last transition does not follow the normal execution of the protocol.
Actually, the dishonest agent p0 is responsible of this input. He built this message from
the messages n′ and n′ ⊕m′ that have been sent on the network, and the key sk(p0) that
is part of his initial knowledge. Note that he has to wait the necessary amount of time to
allow these messages to reach him (e.g. δ′0 = DistT0(v0, p0)), and some time is needed for the
forged message to reach v0 (actually δ′0 = DistT0(v0, p0)). Therefore, the first rule of the last
line is an instance of the TIM rule during which a delay of 2δ′0 has elapsed.

4 Reducing the topology

Our reduction results allow one to analyse the security of a protocol (w.r.t. t0-proximity)
considering only a specific and rather simple topology (see Figure 3) without missing any
attacks.

4.1 Mafia fraud
A simple idea to reduce towards the topology T t0MF would be to move each node n in the
neighbourhood of v0 at the same location as v0, and to keep the other ones at distance (i.e.
location of p0). However, such a reduction will lengthen the distance between n and p0,
and the resulting execution could not be feasible anymore. Since dishonest participants are
allowed in the neighbourhood of v0, getting inspiration from [31], we consider a dishonest
participant right next to each honest participant. Such a dishonest participant is ideally
located to forge and send messages that will be received by honest agents close to him.

However, contrary to the result provided in [31], our goal is not only to reduce the
number of dishonest agents but also the number of honest agents that are involved in an
attack trace. In order to ensure that moving (and reducing) the honest agents will lead to a
feasible execution, we need an extra assumption. We require that each role of the protocol is
executable. This is a reasonable assumption that only put weird protocols aside. This allows
us to discard any role executed by a malicious participant. Intuitively, all these operations
will be done directly by the attacker.

I Definition 13. Given a template I0 = {u1, . . . , uk}, we say that a parametrised role
P (z0, ..., zn) is I0-executable if fv(P ) ⊆ {z0, ..., zn}, fn(P ) = ∅ and for any term u (resp. v)
occurring in an out or a let construction, there exists a recipe R ∈ T (Σ+

pub, {w1, . . . ,wk} ]
N ] X ) such that u = Rσ↓ (resp. v↓ = Rσ↓) where σ = {w1 7→ u1, . . . ,wk 7→ uk}.
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A protocol P is I0-executable if each role of P is I0-executable.

I Example 14. Going back to our running example given in Example 4. We have that
V (z0, z1) is {z1}-executable, and P (z0) is {sk(z0)}-executable. Thus, the protocol made of
these two roles is {sk(z0), z1}-executable.

We are now able to state our main reduction result regarding mafia fraud.

I Theorem 15. Let I0 be a template, Pprox be a protocol I0-executable, and V0(z0, z1) be a
parametrised role containing the special event end(z0, z1). We have that Pprox admits a mafia
fraud attack w.r.t. t0-proximity, if and only if, there is an attack against t0-proximity in the
topology T t0MF.

Proof. Since T t0MF ∈ CMF, we have that the existence of an attack in T t0MF is a mafia fraud.
Regarding the other direction, we present the main steps of the proof below. A detailed
proof is available in [19].

We consider an attack trace in T = (A0,M0, Loc0, v0, p0) ∈ CMF.

K0 −→∗T (bend(v0, p0)c tvv0
] P ; Φ; t) with DistT (v0, p0) ≥ t0.

We proceed in three main steps:
1. We reduce the number of active agents (those that are actually executing a process) - we

do this for honest and malicious agents. We transform honest agent (but v0 and p0) into
malicious ones. This intuitively gives more power to the attacker, and malicious agents
in the neighborhood of v0 are allowed in a mafia fraud scenario. Then, relying on our
executability condition, we discard processes executed by malicious agents. These actions
can actually be mimicked by an attacker located at the same place.

2. In the spirit of [31], we reduce the number of attackers by placing them ideally (one close
to each honest agent). Since we have removed all honest agents but two, we obtain a
topology with only two dishonest agents.

3. To conclude, we reduce the knowledge showing that we can project all the dishonest
agents that are located in p0 on pi and all the dishonest agents that are located in v0
on vi. J

4.2 Distance hijacking attack
First, we may note that the reduction we did in case of mafia fraud is not possible any-
more. There is no hope to reduce the number of attackers by placing them close to each
honest participant since the addition of a malicious node in the neighbourhood of v0 is not
authorised when considering distance hijacking. Actually, adding such a dishonest node in
the neighbourhood of v0 will always introduce a false attack since in our model dishonest
participants share their knowledge. Therefore, this dishonest participant would be able to
impersonate the dishonest prover p0 (who is actually far away).

Given a process P , we denote P the process obtained from P by removing reset
instructions, and replacing all the occurrences of in<t(x) by in(x). This transformation will
be applied on the protocol but not on the role V0 for which these instructions play a crucial
role. Our reduction result ensures that no distance hijacking attack will be missed if we just
analyse the transformed protocol in topology T t0DH.
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I Theorem 16. Let I0 be a template, Pprox be a protocol, t0 ∈ R+, and V0(z0, z1) be a
parametrised role obtained using the following grammar:

P,Q := end(z0, z1) | in(x).P | let x = v in P
| new n.P | out(u).P | reset.out(u′).in<t(x).P

where x ∈ X , n ∈ N , u, u′ ∈ T (Σ+
c ,X ∪ N ∪ {z0, z1}), v ∈ T (Σ+,X ∪ N ∪ {z0, z1}) and

t ≤ 2× t0. If Pprox admits a distance hijacking attack w.r.t. t0-proximity, then Pprox admits
an attack against t0-proximity in the topology T t0DH.

In order to establish this result, we will first transform the initial attack trace into an
”attack” trace in an untimed model. This model (with no timing constraints to fullfill) is
more suitable to reorder some actions in the trace. We will show in a second step how to
come back in the original timed model. We consider the untimed configuration associated to
a configuration K = (P; Φ; t). Formally, we have untimed(K) = (P ′; Φ′) with:

P ′ = {bP ca | bP c
t
a ∈ P}, and Φ′ = {w a−→ u|w a,t−−→ u ∈ Φ}.

Then, we consider a relaxed semantics over untimed configurations: K a,α
T K

′ if there exist
K0 and K ′0 such that K0

a,α−−→T K ′0 (for some rule other than the TIM rule), and for which
K = untimed(K0) (resp. K ′ = untimed(K ′0)).

Under the same hypotheses as those stated in Theorem 16, we establish a result that
allows one to “clean” an attack trace by pushing instructions (before or after) outside the
rapid phase delimited by a reset and its following guarded input in. In the resulting trace,
the only remaining actions in the rapid phase are those performed by agents who are close
to v0.

I Proposition 17. Let K0 be a valid initial configuration for Pprox and V0 w.r.t. a topology
T = (A0,M0, Loc, v0, p0) and I0. If K0

tr−→T K1 then there exists an execution K ′0
tr′

K ′1
such that K ′i = untimed(Ki) for i ∈ {0, 1}.

Moreover, for any sub-execution of K ′0
tr′

K ′1 of the form

(breset.P c v0
] P ; Φreset) v0,τ (bP c v0

] P ; Φreset)
tr′0

K−in
v0,in<t(u)

K ′in

where tr′0 only contains actions (a, α) with α ∈ {τ, out(u), in(u)}, we have that:
2× DistT (v0, a) < t for any (a, α) ∈ tr′0;
for any (a, in?(v)) occurring in tr′0.(v0, in<t(u)), the agent b responsible of the output
and the recipe R (as defined in Figure 1) are such that either 2 × DistT (v0, b) < t, or
vars(R) ⊆ dom(Φreset).

Relying on Proposition 17, we are then able to provide a sketch of proof for Theorem 16
(the full and detailed proof is available in [19]).

1. We start by removing reset instructions and by transforming any guarded input in<

(but those in V0) into simple inputs. The resulting trace is still an attack trace w.r.t.
Pprox.

2. Then, we apply Proposition 17 in order to obtain an attack trace in the relaxed semantics.
We will exploit the extra conditions given by Proposition 17 in order to lift the trace in
the timed model at step 4.
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malicious node
honest node v0 p0

v1 v2

p1 p2

t0
v0 p0t0

e0p1

v1
p2 v2

Figure 4 Reduced topologies for mafia fraud and distance hijacking when agents are not allowed
to execute both roles.

3. We now consider another topology T ′ with two locations (as T t0DH) and such that agents
close to v0 are now located with v0, and those that are far away from v0 in T are now
located with p0. This execution is still a valid trace in T ′ since we consider the relaxed
semantics.

4. Then, to lift this execution trace into our timed model, the basic idea is to wait enough
time before a reset instruction to allow messages to be received by all the participants
before starting the rapid phase.

5. To conclude, as in the previous attack scenarios, we reduce the initial knowledge and the
number of agents by applying a renaming on agent names.

I Example 18. The hijacking attack briefly described in Example 12 on the topology
T0 ∈ CDH can be retrieved on the topology T t0DH starting with the valid initial configuration:

Kinit = (bP (v0)c 0
v0
] bV (v0, p0)c 0

v0
; {w1

p0,0−−→ sk(p0)}; 0)

We may note that in the reduced topology the role of the prover has to be played by v0
who is the only agent in the neighbourhood of himself. Such a configuration is indeed a
valid initial configuration according to our definition. Actually, our reduction results still
apply considering a model in which a same agent is not allowed to execute both roles. The
resulting reduced topologies are depicted in Figure 4. Basically, we have to duplicate agents
to ensure that both kinds of roles (verifier and prover) are available at each location.

5 Case studies using ProVerif

We have reduced the topology but we still have to take it into account when analysing
the protocol preventing us from using automatic verification tools dedicated to traditional
security protocols. In this section, we will explain how to get rid of the resulting topology
and obtain interesting results on timed protocols relying on the ProVerif verification tool.

5.1 ProVerif in a nutshell
We consider a subset of the ProVerif calculus defined as follows:

P := 0 | in(x).P | let x = v in P | new n.P | out(u).P | i : P | !P

where x ∈ X , n ∈ N , u ∈ T (Σ+
c ,X ]N ]A), v ∈ T (Σ+,X ]N ]A) and i ∈ N.

The semantics is similar to the one introduced earlier, and formally defined through a
relation, denoted =⇒, over configurations (only partially described below) . A configuration is
a tuple (P;φ; i) where P is a multiset of processes (as given by the grammar), φ is a frame
as usual (with no decoration on the arrow), and i ∈ N is an integer that indicates the current
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phase. Intuitively, the process !P executes P an arbitrary number of times (in parallel), and
only processes in the current phase are allowed to evolve. We often write P instead of 0 : P .

(i : in(x).P ] P ;φ; i) in(Rφ↓)=====⇒ (i : P{x 7→ Rφ↓} ] P ;φ; i) for some recipe R
(i : !P ] P ;φ; i) τ=⇒ (i : P ] (i : !P ) ] P ;φ; i)

(P;φ; i) phase i′====⇒ (P;φ; i′) with i′ > i.

5.2 Our transformation
Given a topology T (typically one in Figure 3), a protocol Pprox, a role V0, and a template
I0, we build a configuration (P;φ; 0) on which the security analysis could be done using
ProVerif. In such a configuration, P is a multiset of (non-extended) processes with phases,
and φ is a (non extended) frame. From now on, we assume that V0(v0, p0) only contains one
block of the form reset.out(n).in<t(x), i.e. it is of the form:

block1 . reset . out(n) . in<t(x) . block2 . end(v0, p0)

where blocki is a sequence of actions (only simple inputs, outputs, let, and new instructions
are allowed). The main idea is to use phase 1 to represent the rapid phase. Such a phase
starts when V0 performs its reset instruction, and ends when V0 performs its in<t(x)
instruction. During this rapid phase, only participants that are close enough to V0 can
manipulate messages outputted in this rapid phase. The other ones are intuitively too far.
Therefore, we mainly consider two transformations, namely F< and F≥, whose purposes are
to transform a parametrised role of our process algebra given in Section 2.2 (with no reset
instruction and no guarded input) into a process in the ProVerif calculus.

Transformation F<: this transformation introduces the phase instructions with i = 0, 1
and 2 considering all the possible ways of splitting the role into three phases (0, 1, and 2).
Each phase instruction is placed before an in instruction. Such a slicing is actually
sufficient for our purposes.
Transformation F≥: this transformation does the same but we forbid the use of the
instruction phase 1, jumping directly from phase 0 to phase 2.

The configuration, denoted F(T ,Pprox, V0, I0, t0), is the tuple (P;φ; 0) where φ is such
that img(φ) =

⋃
a∈M0

Knows(I0, a,A0), and P contains:
block1 . 1 : out(m) . in(x) . 2 : block2 . end(v0, p0);
!R(a0, .., an) when R(z0, .., zn) ∈ F<(Pprox), a0, .., an ∈ A0, DistT (v0, a0) < t0;
!R(a0, .., an) when R(z0, .., zn) ∈ F≥(Pprox), a0, .., an ∈ A0, DistT (v0, a0) ≥ t0.

We then establish the following result that justifies the transformation presented above.

I Proposition 19. Let T = (A0,M0, Loc0, v0, p0) be a topology, Pprox a protocol, t0 ∈ R+,
I0 a template, and V0(z0, z1) a parametrised process of the form:

block1 . reset . out(n) . in<t(x) . block2 . end(z0, z1) with t ≤ 2× t0

Let K0 be a valid initial configuration for the protocol Pprox and V0 w.r.t. T and I0. If K0
admits an attack w.r.t. t0-proximity in T , then we have that:

F(T0,Pprox, V0, I0, t0) tr=⇒ ({2 : end(v0, p0)} ] P ;φ; 2).

Moreover, in case there is no a ∈M0 such that DistT0(a, v0) < t0, we have that for any
in(u) occurring in tr during phase 1, the underlying recipe R is either of the form w, or only
uses handles ouputted in phase 0.

This result allows us to turn any mafia attack attack or distance hijacking attack into an
attack trace regarding the reachability of the event end.
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Table 1 Results on our case studies (×: attack found, X: proved secure, n.a.: not applicable).

Protocols MF DH
Brands and Chaum [11] X ×
Meadows et al. (nV ⊕ nP , P ) [28] X X
Meadows et al. (nV , nP ⊕ P ) [28] X ×
TREAD-Asymmetric [6] × ×
TREAD-Symmetric [6] X ×
SPADE [12] × ×
MAD (One-Way) [13] X ×
Swiss-Knife [26] X X

Protocols MF DH
Munilla et al. [30] X X
CRCS [32] X ×
Hancke and Kuhn ? [23] X X
Eff-pkDB [25] X X

PaySafe [14] X n.a.

PaySafe-v2 [14] × n.a.
PaySafe-v3 [14] × n.a.

? the protocols Tree-based, Poulidor, and Uniform are actully equivalent to this one.

5.3 Case studies
Regardless of the type of the considered attack, we only need to consider a single topology
(depicted in Figure 3). Once down to this single topology, we can apply Proposition 19,
and analyse the configuration (P;φ; 0) = F(T t0XX,Pprox, V0, I0, t0) with XX ∈ {MF,DH} in
ProVerif. If the protocol is proved secure, then Pprox is resistant to the class of attacks we
have considered. Otherwise, we have to check whether the trace returned by ProVerif can
be turned into a real attack in our timed model. In principle, it may happen that ProVerif
returns an attack trace that is only suitable in the untimed model.

Actually, to obtain meaningful results regarding scenarios that only involved honest
participants in the neighbourhood of v0, we have to go one step further. Indeed, the attacker
model behind ProVerif allows him to interact with any participant (even those that are far
away) with no delay. To avoid these behaviours that are not possible in the rapid phase,
we slightly modify the ProVerif code taking advantage of the extra condition stated in
Proposition 19. During phase 1, we consider an attacker who is only able to forward messages
previously sent, and forged new messages using his knowledge obtained in phase 0.

On all our case studies, ProVerif answered in less than one second (on a standard laptop)
and all the traces returned by ProVerif are actually real attack traces (no false positive).

Distance bounding protocols. We apply our methodology to a number of well-known
distance bounding protocols. In symbolic models, it is not possible to reason at the bit-level,
and therefore we replace the bit-sized exchanges by a single challenge-response exchange
using a fresh nonce (as done in Example 4). Sometimes, we also abstract the answer from
the prover relying on an uninterpreted function symbol with relevant arguments. Finally,
in order to rely on ProVerif, the xor operator has been abstracted as follows (even if our
theoretical development is generic enough to deal with such an operator):

x⊕ y)⊕ x→ y (x⊕ y)⊕ y → x x⊕ (x⊕ y)→ y y ⊕ (x⊕ y)→ x.

For instance, we succeed in proving resistance against mafia fraud for the first version of
the Meadows et al. protocol which could not be proved using the framework proposed in [28].
The results are consistent with the ones obtained in [27, 17]. In addition, we discovered a
new attack on the SPADE protocol [12] which has been designed to be mafia fraud resistant.

As described in Figure 5, the prover generates a nonce nP , signs it and encrypts the
resulting message with the public key of the verifier. Receiving such a message, the veri-
fier answers by sending fresh nonces. Once these two messages are exchanged, the rapid
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V(k) P(k)

new
m,nV

new
nP

{nP , σP }pkV

m,nV

new
b

b

r = f(a, nP ,m, b)
h1(b, nP , nV ,m, r)

with a = h0(nP , nV )
and σP = SignskP

(nP )

Figure 5 SPADE protocol.

v0 a
(neighbourhood of v0)

p0
(far away)

new nP
σP = Signskp0

(nP ){nP , σP }pka{nP , σP }pkv0

new m,nV m,nV

new b b

a = h0(nP , nV ) r = f(a, nP ,m, b)
h1(b, nP , nV ,m, r)

Figure 6 Mafia fraud on the SPADE protocol.

phase begins: the prover has to answer to the challenge b relying on some hash functions
applied on various nonces. Finally the protocol ends when the prover sends the final hash
h1(b, nP , nV ,m, r). The attack we discovered (see the description given in Figure 6) is similar
to the one obtained on TREAD-Asymmetric by [27]. Roughly, once a dishonest verifier a
received a message {nP , σP }pka

, he can use it to forge {nP , σP }pkp0
and acts as if the prover

p0 was in the neighboorhood of v0. The attacker model presented in [12] does not allow them
to capture this attack since they not consider dishonest verifers.

PaySafe protocol. We studied the PaySafe protocol [14] designed to be resistant against
mafia fraud attacks. More generally, contactless payment protocols need to prevent relay
attacks where malicious agents would abuse from an honest agent to perform a payment,
which corresponds to the mafia fraud scenario.

The PaySafe protocol is schematised in Figure 7 where plain arrows represents the rapid
exchange phase. During the initialisation phase, the reader and the card exchange some
identifiers, while during the authentication exchange, the reader ensures that the card is
legitimate using signatures and certificates verifications. The main idea is to send nonces
and constants during the rapid phase and to perform all the necessary checks later on. The
aim is to increase the accuracy on the proximity property needed to ensure the security of
the protocol. We also considered two other versions of PaySafe, also described in [14]: in
PaySafe-v2 we just remove the reader nonce nR and in PaySafe-v3 we remove nR and nC .

Our results confirmed those presented in [14]. Their methodology and ours, especially
when it comes down to the use of ProVerif, are quite similar but we would like to emphasise
the fact that our use of ProVerif is a consequence of our formal development. Actually
our ProVerif models differ from those given in [14]. We typically define richer scenario by
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Figure 7 PaySafe (simplified).

giving additional knowledge to the attacker and allowing prover roles and verifier roles to
be executed in phase 1. The authors of [27] reported a distance fraud attack which is not
relevant in the context of EMV contactless payment protocols. Their result does not allow
them to isolate each class of attacks, and therefore, they can not prove whether PaySafe is
mafia fraud resistant or not.

6 Conclusion

Regarding physical proximity, we have shown two main reduction results: if there is an
attack on an arbitrary topology then there is an attack on a simple one having at most four
nodes. Relying on these reduction results, we have shown how to use ProVerif to analyse
several protocols. Our methodology is flexible enough to draw meaningful conclusions on
each class of attacks: hijacking attack, and mafia fraud. The interested reader may also find
some additional results regarding distance fraud in our companion report [19].

As future work, we would like to extend our result to consider the notion of terrorist
fraud. This would require to consider dishonest participants who only share a part of their
knowledge. Our work should also benefit from the recent advances that have been made to
integrate the exclusive-or operator in existing verification tool such as Tamarin [22]. Even if
our formal development allows us to rely on the Tamarin prover (e.g. we obtain meaningful
results on the Hancke and Kuhn protocol with Tamarin), it happens that Tamarin (automatic
mode) behaves poorly on some of our case studies (e.g. Brands and Chaum) that uses the
xor operator. This deserves further investigations.
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A Brief description of our case studies

V(k) P(k)

new
nV

new
nP

nV

F (nV , nP , P )

P, nP , nV
Mack(P, nP , nV )

Meadows et al.

V(k) P(k)

new
nV

new
nP

nP

nV

new b
b

h(b, nP , nV , k)

Hancke and Kuhn

V(k) P(k)

new
s, s′

commit(s, s′)
new
b

b

b⊕ s

s′,Mack(b, s)

MAD (One-Way)

V(k) P(k)

new
nV

new
nP

nV

nP

new
b

b Z0 = h0(nP , k)
Z1 = Z0 ⊕ kf(b, Z0, Z1)

h1(b, nV , nP , k), b

Swiss-Knife

V(k) P(k)

new
nV

new
nP

nP

nV

D = h0(nV , nP , k) w = h1(nV , nP , k)
new
b

S = h2(b,D)

f(S,w)

h3(w, k)

Munilla et al.

V(pkP ) P(skP )

new
s, s′commit(s, s′)

new
b

b

f(b, s)

SignskP
(V, nV , s)

CRCS

V(k−1, pkP ) P(k, skP )

new
na, nb

s = SignskP
(na, nb)

new
m

{na, nb, s}k
m

new b b

f(b,m, na, nb)

TREAD



On Canonical Models for Rational Functions over
Infinite Words
Emmanuel Filiot
Université Libre de Bruxelles, Belgium
efiliot@ulb.ac.be

Olivier Gauwin
LaBRI, Université de Bordeaux, France
olivier.gauwin@labri.fr

Nathan Lhote
LaBRI, Université de Bordeaux, France and Université Libre de Bruxelles, Belgium
nlhote@labri.fr

Anca Muscholl
LaBRI, Université de Bordeaux, France
anca@labri.fr

Abstract
This paper investigates canonical transducers for rational functions over infinite words, i.e., func-
tions of infinite words defined by finite transducers. We first consider sequential functions, defined
by finite transducers with a deterministic underlying automaton. We provide a Myhill-Nerode-
like characterization, in the vein of Choffrut’s result over finite words, from which we derive an
algorithm that computes a transducer realizing the function which is minimal and unique (up to
the automaton for the domain).

The main contribution of the paper is the notion of a canonical transducer for rational func-
tions over infinite words, extending the notion of canonical bimachine due to Reutenauer and
Schützenberger from finite to infinite words. As an application, we show that the canonical
transducer is aperiodic whenever the function is definable by some aperiodic transducer, or equi-
valently, by a first-order transduction. This allows to decide whether a rational function of infinite
words is first-order definable.
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Introduction
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1 2

a|a
a|a

b|a

b|a

3 4
b|ε

a, b|ε b|b

F = {{1} , {1, 2} , {4}}

Figure 1 Transducer with Muller sets F realizing the function f#a mapping any word with
infinitely many a to aω, otherwise to bω.

C(M1) = C(M2). Accordingly, C(M1) is called the canonical model of the object described by
M1, and it does not depend on the initial representation of the object. A classical example of
canonization is the function which associates with a finite automaton its equivalent minimal
deterministic automaton. A canonization function becomes interesting when it satisfies
additional constraints like being computable, preserving some algebraic properties, and
enjoying minimal models. Canonical models not only shed light on the intrinsic characteristics
of the class of objects they describe, but can also serve to decide definability problems. For
instance, it is well-known that the minimal DFA of a word language L is aperiodic if and only
if L is definable in first-order logic [17, 21]. Hence, this allows to decide whether a monadic
second-order formula has an equivalent first-order one over words. This result has been
extended to infinite words [23, 24, 1, 18], although there is no unique minimal automaton for
languages of infinite words (see also [10] for a survey).

Rational functions are functions defined by word transducers. A canonical model for
rational functions over finite words has been introduced in [20]. This result, which can be
considered as one of the jewels of transducer theory, states the existence of a procedure
that computes from a given transducer a canonical input-deterministic transducer with
look-ahead, called bimachine. For the subclass of functions realized by input-deterministic
transducers, called sequential functions, it is even possible to compute a unique and minimal
transducer realizing the function [8]. For rational functions, the procedure of [20], though
it preserves aperiodicity of the transition congruence of the transducer, does not preserve
other congruence varieties, in general. In [14, 15] it was shown how to adapt [20] to obtain a
canonization procedure which overcomes this issue. Later it was shown that the first-order
definability problem for rational functions is PSpace-c [13]. In a different setting, functions
with origin information realizable by two-way transducers were shown to have decidable
first-order definability [4]. In this paper, we extend the results of [20] and the decidability of
first-order definability of [13] to rational functions of infinite words.

Rational functions of infinite words. We consider rational functions of infinite words, i.e.
functions defined by transducers with Muller acceptance condition. Such machines map
any ω-word for which there exists an accepting run to either a finite or an ω-word. Take
as example the function f#a over alphabet {a, b} mapping any word containing an infinite
number of a to aω, and to bω otherwise. This function is realized by the transducer of Fig. 1.

The class of sequential functions is of particular interest: they are realized by transducers
whose underlying input Muller automaton is deterministic. Note that the function f#a is not
sequential, unlike the function fab of Fig. 2. Sequential functions over infinite words have
been studied e.g. in [2]. One difference between our setting and [2] is that in the latter paper
infinite words are mapped to infinite words, whereas we need also functions that map infinite
words to finite words. Deciding whether a rational function is sequential can be done in
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qb qa

a|ε
b|ε

b|ab

a|ε

Figure 2 Sequential transducer with Muller condition F = {{qb}} realizing the function fab

which maps any word containing a finite number of a’s to the subsequence of ab factors, and is
undefined otherwise.

PTime, as shown in [2]. Bimachines for infinite words were introduced in [25] to define the
particular class of total letter-to-letter rational functions, and in their counter-free versions,
a connection with linear temporal logic was established.

To the best of our knowledge, nothing is known about canonical models for sequential
and rational functions over infinite words, and their applications to definability problems in
logics.

Contributions.
(1) We provide a characterization of sequential functions by means of the finiteness of a

congruence. We give a PTime procedure which, for any sequential function f given as
a transducer whose domain is topologically closed, produces the minimal (and hence
canonical) sequential transducer Tf realizing f . When the domain of f is not topologically
closed, we extend f to a domain-closed sequential function f which coincides with f on
its domain. By intersecting Tf with some automaton D recognizing the domain of f ,
one obtains a canonical transducer for f , as long as D can be obtained in a canonical
way (such a procedure exists, see e.g. [7]).

(2) Our main contribution (Theorem 29) is a notion of canonical sequential transducer
with look-ahead for any rational function. This canonical transducer is an effectively
computable bimachine. Hence we lift results of Reutenauer and Schützenberger [20] on
rational transductions from finite to infinite words.

(3) As a side result we lift a result by Elgot and Mezei [11] from finite to infinite words,
stating that a function f is rational if and only if f = g1 ◦ h1 (resp. f = g2 ◦ h2)
such that h1, h2 are letter-to-letter, g1, h2 are sequential and h1, g2 are right-sequential
(i.e., realized by a transducer whose underlying input automaton is prophetic [6]). The
existence of such g1, h1 was already shown in [5], but the one of g2, h2 was left open.

(4) Finally, we show that our procedure which computes a canonical bimachine for any
rational function given by a transducer, preserves aperiodicity. As an application, after
showing some correspondences between logics and transducers, we obtain the decidability
of FO-transductions in MSO-transductions over infinite words.

Overview of the canonization procedure for rational functions. The main idea to get
a canonical object for a rational function, inspired by [20], is to add a canonical look-
ahead information to the input word, so that the function can be evaluated in a sequential
(equivalently, deterministic) manner. We say that the look-ahead “makes the function
sequential”. By doing so, we can reduce the problem to computing canonical machines for
sequential functions. The main difficulty is to define a canonical (and computable) notion of
look-ahead which makes the function sequential. Over finite words, the look-ahead information
is computed by a co-deterministic automaton, or equivalently, a deterministic automaton
reading the input word from right to left (called a right automaton). On infinite words we
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need something different, so we use prophetic automata [6] to define look-aheads (called right
automata in this paper). Prophetic automata are a special form of co-deterministic automata
over infinite words. In Section 3, sequential transducers with look-ahead are formalized via
the notion of bimachines, consisting of a left automaton and a right automaton. We show
that bimachines over infinite words capture exactly the class of rational transductions. Our
goal is to obtain a canonical bimachine, fine enough to realize the function, but coarse enough
to preserve algebraic properties like aperiodicity.

Unlike the setting of finite words, some difficulties arise when prefix-independent properties
matter (such as for instance that a suffix contains an infinite number of a’s). We overcome
this issue by defining two kinds of look-ahead information which we combine later on. This
decomposition simplifies the overall proof.

The first look-ahead information we define allows one to make any rational function
almost sequential, in the sense that it can be implemented by a transducer model which
can additionally output some infinite word after processing the whole input, depending
on the run (similar to so-called subsequential transducers in the case of finite words). We
call quasi-sequential functions realized by such transducers. They constitute a class with
interesting properties. We show that they correspond precisely to transducers satisfying
the weak twinning property, a syntactic condition defined in [2]. On the algebraic side, we
exhibit a congruence having finite index exactly for quasi-sequential functions.

We then define another kind of canonical look-ahead which makes any quasi-sequential
function sequential. Combined together, these two look-aheads turn any rational function
into a sequential one: the first one from rational to quasi-sequential, and the second one
from quasi-sequential to sequential.

The whole procedure does not yield a minimal bimachine in general. While the minimality
question is an important and interesting (open) question, our procedure still has the strong
advantages of being canonical, effective, and of preserving aperiodicity. This allows one to
answer positively the important question of the decidability of first-order definability for
rational functions of infinite words. Detailed proofs are provided in a long version of this
paper, available online.

1 Regular languages and rational functions

Finite words, infinite words and languages. An alphabet A is a finite set of symbols called
letters. A finite word is a finite sequence of letters, the empty sequence is called the empty
word and is denoted by ε. The set of (resp. non-empty) finite words over A is denoted by
A∗ (resp. A+). An infinite sequence of letters is called an ω-word (or just an infinite word),
we denote by Aω the set of ω-words and we write A∞ = A∗ ∪ Aω. For a word x ∈ Aω we
denote by Inf(x) the set of letters of x which appear an infinite number of times. The length
of a word w is written |w|, with |w| =∞ if w ∈ Aω. Throughout the paper, we often denote
finite words by u, v, . . . and infinite words by x, y . . .

For a non-empty word w and two integers 1 ≤ i ≤ j ≤ |w| we denote by w(i) the ith letter
of w, by w(i:) the suffix of w starting at the ith position, by w(:i) the prefix of w ending at
the ith position and by w(i:j) the infix of w starting at the ith position and ending at the
jth, both included. For two words u ∈ A∗ and v ∈ A∞, we write u ≺ v if u is a strict prefix
of v, i.e. there exists a non-empty word w ∈ A∞ such that uw = v, and we write u−1v for
w. For u, v ∈ A∞, we write u � v if either u ≺ v, or u = v. We denote by u ∧ v the longest
common prefix of u and v. The delay del(u, v) between two words u, v ∈ A∞ is the unique
pair (u′, v′) such that u = (u ∧ v)u′ and v = (u ∧ v)v′. For example, del(aab, ab) = (ab, b)
and del(aω, aω) = (ε, ε).
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a

b

b

3 4

a

a

b

b

F = {{1} , {1, 2} , {4}}

Figure 3 A right automaton (with Muller condition) recognizing (b∗a)ω. Words with finitely
many b’s have final run with {1}, words with finitely many a’s have final run with {4}, and those
with infinitely many a’s and infinitely many b’s have final run with {1, 2}.

A language is a set of words L ⊆ A∞, and by
∧
L we denote the longest common prefix of

all words in L (if L 6= ∅). The closure L of L is {u ∈ A∞ |∀i ∈ N, i ≤ |u|, ∃w s.t. u(:i)w ∈ L},
i.e. the set of words for which any finite prefix has a continuation in L. For instance
a∗bω = a∗bω ∪ aω. A word is called regular if it is of the form uvω with u, v ∈ A∗. In
particular any finite word is regular (since εω = ε) and regular ω-words are also called
ultimately periodic. We say that a regular word uvω is in normal form if v has minimal
length and is minimal in the lexicographic order among all possible decompositions of uvω,
and v is not a suffix of u (if v 6= ε). E.g. the normal form of (ba)ω is b(ab)ω. In the sequel
we often assume regular words are in normal form.

Automata. A Muller1 automaton over an alphabet A is a tuple A = (Q,∆, I, F ) where Q
is a finite set of states, ∆ ⊆ Q× A×Q is the set of transitions, I ⊆ Q is the set of initial
states, and F ⊆ P(Q) is called the final condition. When there is no final condition, so
F = P(Q), we will omit it. A run of A over a word w ∈ A∞ is itself a word r ∈ Q∞ of
length |w|+ 1, (with the convention that ∞+ 1 =∞) such that for any 1 ≤ i < |r|, we have
(r(i), w(i), r(i+ 1)) ∈ ∆. A run r is called initial if r(1) ∈ I, final if r ∈ Qω and Inf(r) ∈ F ,
and accepting if it is both initial and final. For a finite word u and two states p, q, we write
p
u−→A q to denote that there is a run r of A over u such that r(1) = p and r(|r|) = q. For an

ω-word x, a state p and a subset of states P ⊆ Q, we write p x−→A P to denote that there is a
run r of A over x such that r(1) = p and Inf(r) = P . A word is accepted by A if there exists
an accepting run over it, and the language recognized by A is the set of words it accepts,
denoted by JAK ⊆ Aω. A state p is accessible (resp. co-accessible) if there exists a finite
initial (resp. infinite final) run r such that r(|r|) = p (resp. r(1) = p), and an automaton
A is called accessible (resp. co-accessible) if all its states are. An automaton which is both
accessible and co-accessible is called trim.

An automaton is called deterministic if its set of initial states is a singleton, and any
word has at most one initial run. We define a left automaton as a deterministic automaton
L = (Q,∆, I) with no acceptance condition. We call a right automaton an automaton for
which any ω-word has exactly one final run2. A language is called ω-regular if it is recognized
by an automaton. It is well-known that every ω-regular language can be recognized by a
deterministic (Muller) automaton. Moreover, [6] shows that every ω-regular language can
be recognized by a right automaton (even with Büchi condition). Figure 3 shows a right
automaton accepting the words with infinitely many a’s. Throughout the paper, all automata
– except for right automata – are assumed trim, without loss of generality.

1 We consider the Muller condition since it is more general than Büchi or parity for instance, but most of
our results hold for other conditions as well.

2 Such automata are called prophetic and were introduced in [6].
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Transductions. Given two alphabets A,B, we call transduction a relation R ⊆ Aω ×B∞
whose domain is denoted by dom(R). A transducer over A,B is a tuple T = (A, i, o) with
A = (Q,∆, I, F ) the underlying automaton, i : I → B∗ the initial function and o : ∆→ B∗

the output function.
Let u be a finite word of length n, let r be a run of A over u with r(1) = p, r(n+ 1) = q,

and let v be the word o(p, u(1), r(2)) · · · o(r(n), u(n), q) then we write p u|v−−→T q to denote that
fact. Similarly, for p ∈ Q and P ⊆ Q we write p x|v−−→T P to denote that there is a run r of A
over the ω-word x such that r(1) = p, Inf(r) = P and v = o(p, u(1), r(2))o(r(2), u(2), r(3)) · · · .
In that case, if p ∈ I and P ∈ F , let w = i(p) · v, then we say that the pair (x,w) is realized
by T . We denote by JT K the set of pairs realized by T , which we call the transduction realized
by T . A transducer is called functional if it realizes a (partial) function, and in that case
we write JT K(x) = w rather than (x,w) ∈ JT K. Functionality is a decidable property, see
e.g. [16], and it can be checked in PTime (see e.g. [19]). In the following all the transductions
we consider are functional, and when we speak about functions, we tacitly assume that they
are partial. A transduction is rational if it is realized by a transducer. A transducer with a
deterministic underlying automaton is called sequential, as well as the function it realizes.
A transducer with a left (resp. right) underlying automaton is called left-sequential (resp.
right-sequential), and again we extend this terminology to the function it realizes.

Congruences. Given an equivalence relation ∼ over a set L, we denote by [w]∼ (or simply
[w]) the equivalence class of an element w ∈ L. We say that ∼ has finite index if the set
L/∼ = {[w] | w ∈ L} is finite. Given two equivalence relations ∼1,∼2 over the same set
we say that ∼1 is finer than ∼2 (or that ∼2 is coarser than ∼1) if for any u, v we have
u ∼1 v ⇒ u ∼2 v. Equivalently we could say that the equivalence classes of ∼2 are unions of
equivalence classes of ∼1 or that ∼1 is included (as a set of pairs) in ∼2, which we denote
by ∼1v∼2. A right congruence over A∗ is an equivalence relation ∼ such that for any
letter a and any words u, v we have u ∼ v ⇒ ua ∼ va. A left congruence over A∗ (resp.
Aω) is an equivalence relation ≈ such that for any letter a and any words u, v we have
u ≈ v ⇒ au ≈ av. We say that a left congruence is regular if it has finite index and any
equivalence class is an ω-regular language. In the following all the left congruences will be
regular. A congruence over A∗ is a left and right congruence. A congruence ≡ is aperiodic if
there exists an integer n such that ∀u ∈ A∗, un ≡ un+1.

Given an automaton A with state space Q, the right congruence associated with A is
defined for u, v ∈ A∗ by u ∼A v if ∀q ∈ Q, there is an initial run of A over u reaching q if and
only if there is one over v. Note that for a trim deterministic automaton, there is a bijection
(up to adding a sink state) between Q and the equivalence classes of A. Similarly, the left
congruence associated with A is defined for x, y ∈ Aω by x ≈A y if ∀q ∈ Q there is a final
run of A over x from q if and only if there is one over y. Given a right automaton there is a
bijection between Q and the equivalence classes of ≈A. Finally, the transition congruence of
A is defined for u, v ∈ A∗ by u ≡A v if ∀p, q ∈ Q, there is a run over u from p to q if and
only if there is one over v. An automaton is called aperiodic if its transition congruence is
aperiodic. A language is called aperiodic if there exists an aperiodic automaton recognizing
it. A transducer is aperiodic if its underlying automaton is aperiodic and in that case the
transduction it realizes is called aperiodic.

Given a right congruence ∼, the left automaton associated with ∼ is A∼ = (Q∼,∆∼, I∼):
Q∼ = A∗/∼, ∆∼ = {([u] , a, [ua]) | u ∈ A∗}, I∼ = {[ε]}. Given a left congruence ≈ and a
right automaton R, if ≈Rv≈ then we say that R recognizes ≈. The existence of a canonical
automaton for a left congruence is less obvious. From [6] we know that every ω-regular
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language can be recognized by a right automaton. We rely on the construction of [6] and,
abusing language, we denote the right automaton obtained in the next proposition as the
canonical right automaton recognizing a left congruence:

I Proposition 1. Given a (regular) left congruence, we can compute in 2-ExpTime a right
automaton recognizing it. Furthermore, this automaton is aperiodic if the congruence is
aperiodic.

2 Sequential and quasi-sequential transductions

We define the syntactic congruence associated with any functional transduction over infinite
words. Sequential functions are exactly the rational functions having a syntactic congruence
of finite index, and being continuous over their domain. When removing this last condition
on continuity, we obtain the class of quasi-sequential transductions. These transductions are
also characterized by the weak twinning property [2].

We will show that for any sequential function, like in the case of finite words [8], we
can define a canonical transducer, with a minimal underlying automaton. This minimal
transducer extends the domain of the function to its closure.

I Definition 2 (f̂ and f). Let f : Aω → B∞ be a function, we define f̂ : A∗ → B∞ by
f̂(u) =

∧
{f(ux) | ux ∈ dom(f)}. In other words, f̂ outputs the longest possible output

that f could produce on any word that begins with u. We also define f : Aω → B∞ by
setting f(x) = limn f̂(x(:n)), for x ∈ dom(f).

We refer to f as the sequential extension of f . Note that if f is sequential, then f extends f
over the closure dom(f) of the domain of f .

I Example 3. We illustrate these definitions on three rational transductions, described in
Table 1.

I Definition 4 (syntactic congruence ∼f ). The syntactic congruence associated with a
transduction f is defined over A∗ by u ∼f v if:
1. ∀x ∈ Aω, ux ∈ dom(f)⇔ vx ∈ dom(f), and
2. either f̂(u) and f̂(v) are both ultimately periodic with the same period (in normal form) or

they are both finite and ∀x ∈ Aω such that ux, vx ∈ dom(f), f̂(u)−1f(ux) = f̂(v)−1f(vx).

I Example 5. Let us illustrate the definition of ∼f on fab, as defined in Table 1. The
syntactic congruence ∼fab

has only two classes: [ε] and [a]. Indeed, if we consider two
finite words u and v, condition (1) on the domain is always true, and f̂ab(u) and f̂ab(v)
are finite (ab-factors in u and v, respectively). Hence u ∼fab

v if and only if ∀x ∈ Aω,
f̂ab(u)−1fab(ux) = f̂ab(v)−1fab(vx).

Let us analyze f̂ab(u)−1fab(ux). If u does not end with an a, then f̂ab(u)−1fab(ux) =
((ab)n)−1((ab)n+k) = (ab)k where n and k are the number of ab-factors in u and x, respectively.
Now, if u ends with an a and x starts with a b, then a new ab-factor appears in ux and
we get f̂ab(u)−1fab(ux) = ((ab)n)−1((ab)n+k+1) = (ab)k+1. This means that ∼fab

contains
exactly two classes: one for the words ending with an a, and one for the others.

The resulting transducer Tfab
is depicted in Figure 4. Let us check for instance the

transition from [a] to [ε] when reading b. We have [ab] = [ε], so ([a] , b, [ε]) ∈ ∆fab
. From the

definition, ofab
([a] , b, [ε]) = f̂ab(a)−1f̂ab(ab) = ε−1.ab = ab.

I Proposition 6. Let f be a functional transduction, then ∼f is a right congruence.
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Table 1 Examples of rational transductions, and their associated f̂ and f functions.

fab f#a fblocks

definition maps a word over {a, b}
with a finite number of
a’s to the subsequence of
ab-factors.

maps a word x over {a, b}
to aω if x contains an in-
finite number of a’s, and
to bω otherwise.

maps u1# . . .#un#v where
v does not contain #, to
a
|u1|
1 # . . .#a|un|

n #w where
ui ∈ {a, b}∗, ai is the last
letter of ui (if any), w = aω

if v has an infinite number of
a’s, and w = bω otherwise.

A and B A = B = {a, b} A = B = {a, b} A = B = {a, b,#}
dom(f) words over {a, b} with a

finite number of a’s
{a, b}ω words over {a, b,#} with a fi-

nite (non-zero) number of #’s
examples fab(abbabω) = abab,

fab(bω) = ε

f#a(abω) = bω,
f#a((ab)ω) = aω

fblocks((ab#)nbω) =
(bb#)nbω, fblocks(#(ab)ω) =
aω.

f̂ f̂ab extracts the ab-
factors, for instance
f̂ab(abbabb) = abab.

reading a finite prefix
u does not give any in-
sight on the output, thus
f̂#a(u) = ε

f̂blocks(u1# . . .#un#v) =
a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

f fab is defined over
dom(fab) = {a, b}ω

and fab((ba)ω) =
limn f̂ab((ba)n) =
limn(ab)n−1 = (ab)ω.

f#a(x) = ε for every x ∈
{a, b}ω as it is based on
f̂#a

fblocks(u1# . . .#un#v) =
a
|u1|
1 # . . .#a|un|

n # whenever
v does not contain #.

class sequential quasi-sequential not quasi-sequential

[ε] [a]

a | ε
b | ε

b | ab

a | ε

Figure 4 Transducer Tfab .

From ∼f we define3 the transducer Tf = (Af , if , of ) with Af = (Qf ,∆f , If ) and:
Qf = A∗/∼f

and If = {[ε]}
∆f = {([u] , a, [ua]) | u ∈ A∗, a ∈ A, ∃x s.t. uax ∈ dom(f)}

of ([u] , a, [ua]) =

 f̂(u)−1f̂(ua) if f̂(ua) is finite
β if f̂(u) = αβω, β 6= ε

α if f̂(u) is finite and f̂(u)−1f̂(ua) = αβω, β 6= ε

if ([ε]) =
[
f̂(ε) if f̂(ε) is finite
α if f̂(ε) = αβω, β 6= ε

I Remark. Note that, in general, ∼f may have an infinite index, thus Tf may be infinite. This
is the case for fblocks: for two words u = u0#w and v = u0#w′ with u0ww

′ not containing
#, u ∼fblocks v if and only if |w| = |w′| and they end with the same letter. We will define
below a subclass of rational transductions, which captures exactly finite ∼f (Theorem 12).

3 We check in the long version that Tf is well-defined.
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As shown below, the sequential transducer Tf computes the sequential extension f of f . If f
is sequential then f and f coincide on dom(f).

I Proposition 7. Given a function f , the transducer Tf realizes f .

We now focus on sequential transductions, and show first that Tf can be built in PTime.

I Proposition 8. There is a PTime algorithm that, for a given sequential transducer T
realizing the function f , computes the transducer Tf .

For sequential transductions we get a characterization, as stated in the next theorem. We
will see that the first condition is equivalent to the weak twinning property. Thus, the next
theorem adapts a result from [2] to the case where transducers may output finite words.

I Theorem 9. A rational function f is sequential if and only if the following conditions
hold:
∼f has finite index
f |dom(f) = f

If we remove the last restriction f |dom(f) = f in Theorem 9, we obtain a class of transductions
where the output can be still generated deterministically (as for sequential transductions),
although not necessarily in a progressive manner:

I Definition 10. A function f is called quasi-sequential if it is rational and ∼f has finite
index.

Intuitively, quasi-sequential functions generalize the so-called subsequential functions on finite
words to infinite words. For subsequential functions there is a final output associated with
final states. Quasi-sequential functions can be shown to correspond to sequential transducers
where final sets may have an associated word in A∞. The output of an accepting run with
such a final set is obtained by appending the associated word to the output word obtained
through the transitions (if finite). Since we do not use this model in the present paper, we
do not provide more details in the following. The following property and construction are
now taken directly from [2]. As in the latter article, a state is called constant if the set of
words produced by final runs from this state is a singleton.

I Definition 11 (weak twinning property). A transducer T is said to satisfy the weak twinning
property (WTP) if for any initial runs p1

u|α1−−−→ q1
v|β1−−−→ q1 and p2

u|α2−−−→ q2
v|β2−−−→ q2 the

following property holds:
If q1, q2 are not constant then del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2)
If q1 is not constant, q2 is constant and produces the regular word γ, then either β1 = ε

or i(p1)α1β
ω
1 = i(p2)α2β2γ

Note that if q2 is constant and β2 6= ε then γ = βω2 .

The authors of [2] provide a determinization procedure – which we call subset construction
with delays– which terminates if and only if the transducer satisfies the WTP. We show that
actually the procedure gives a transducer realizing the sequential extension of the function
and we use this fact in Sec. 4 in order to compute a canonical look-ahead.

I Theorem 12. Let T be a transducer realizing a function f , let S be the transducer obtained
by subset construction with delays. The following statements are equivalent:
1. The transducer T satisfies the WTP
2. The transducer S is finite
3. f is quasi-sequential
Furthermore, if T is aperiodic then S is aperiodic as well.

FSTTCS 2018



30:10 On Canonical Models for Rational Functions over Infinite Words

3 Rational transductions

Bimachines over infinite words. A bimachine over alphabets A,B is a tuple B = (L,R, i, o)
where L = (QL,∆L, {l0}) is a left automaton, R = (QR,∆R, I, F ) is a right automaton,
i : I → B∗ is the initial function and o : QL×A×QR → B∗ is the output function. We have
a semantic restriction that JLK = JRK. The output produced on an infinite word w ∈ JRK
at position i ≥ 1 is αi = o(l, a, r), where l is the state reached in L after reading the prefix
w(:i − 1) of w up to position i − 1 (if defined), r is the state of the unique final run of R
on w (if defined) reached by the suffix w(i+ 1:) of w from position i+ 1 on, and a = w(i).
In other words, the output at position i is determined by the left context up to position
i− 1, the right context from position i+ 1 onwards, and the letter at position i. The output
produced on w is i(r0)α1α2 · · · , with r0 ∈ I the state from which there is a final run of R on
w (if defined). Thus, the right automaton R provides a look-ahead and the output depends
both on the state of L and the unique final run of R on the given word. The transduction
realized by B is denoted by JBK. Note that JBK is defined over JRK. A bimachine is called
aperiodic if both its automata are aperiodic.

I Example 13. Let us define a bimachine for fab, the function that outputs ab-factors of
the input over {a, b}, if this input has a finite number of a’s. We use as left automaton the
underlying automaton of the transducer in Figure 2, without its Muller acceptance condition.
This automaton will only be used to store the last letter read. The domain has to be checked
by the right automaton, and we choose the one in Figure 3. As output functions, we let
i(q) = ε for the initial states of the right automaton, and let o(qa, b, r) = ab for r ∈ {1, 2},
and o(l, c, r) = ε for all other states l, r of the left and right automata, and letter c ∈ {a, b}.

Left minimization. We show how to minimize the left automaton of a bimachine with
respect to a right automaton R. The procedure is very similar to the minimization for
sequential transducers. The objects we use are the same as in Section 2, but relativized to the
right context defined by the look-ahead provided by the right automaton R. The bimachine
with minimal left automaton with respect to the right automaton R is the bimachine BRf
defined below.

Recall that the left congruence ≈R of a right automaton R sets x ≈R y if the unique state
from which there is a final run on x is the same as for y. Let f : Aω → B∞ be a function and
let R = (QR,∆R, I, F ) be a right automaton recognizing dom(f). We write [x]R for the class
of a word x with respect to ≈R, and, abusing notations, for the state of QR from which words
of [x]R have a final run. We define f̂x : A∗ → B∞ by setting f̂x(u) =

∧
{f(uy) | y ≈R x}.

Note that there are finitely many functions f̂x, one for each equivalence class of ≈R. We
also define fR : Aω → B∞, by setting fR(x) = limn f̂x(n+1:)(x(:n)). The transduction fR is
defined over dom(f).

I Definition 14 (R-syntactic congruence). The R-syntactic congruence of f is defined over
A∗ by letting u ∼Rf v if:
1. ∀x ∈ Aω, ux ∈ dom(f)⇔ vx ∈ dom(f), and
2. for any x ∈ Aω, either f̂x(u) and f̂x(v) are both infinite with the same ultimate period

(in normal form) or they are both finite and f̂x(u)−1f(ux) = f̂x(v)−1f(vx).
Similarly to the sequential case, we define from ∼Rf a bimachine BRf =

(
LRf ,R, iRf , oRf

)
with right automaton R, and left automaton LRf =

(
QRf ,∆Rf , IRf

)
corresponding to ∼Rf . To

simplify notations we denote the congruence class of a word u with respect to ∼Rf by [u].
Abusing notations we also write [x]R for the state of R from which x has an accepting run.



E. Filiot, O. Gauwin, N. Lhote, and A. Muscholl 30:11

QRf = A∗/∼R
f

and IRf = {[ε]}
∆Rf = {([u] , a, [ua]) | u ∈ A∗, a ∈ A, uax ∈ dom(f) for some x ∈ Aω}

of ([u] , a, [x]R) =


f̂ax(u)−1f̂x(ua) if f̂x(ua) is finite
β if f̂ax(u) = αβω, β 6= ε

α if f̂ax(u) is finite, f̂ax(u)−1f̂(ua) = αβω

and β 6= ε

if ([x]R) =
[
f̂x(ε) if f̂x(ε) is finite
α if f̂x(ε) = αβω, β 6= ε

We show in the long version of this paper that BRf is well-defined, and exhibit some of its
properties. We also describe in the long version a polynomial time algorithm that computes
BRf from a bimachine with right automaton R, with a technique similar to the sequential
case.

From transducers to bimachines. For the theorem below, recall that ∼A denotes the right
congruence of an automaton A. The left congruence ≈A of an automaton A sets x ≈A y if
for every state q of A, there is some final run on x from q if and only if there is one on y.

I Theorem 15. Given a transducer with underlying automaton A and a right automaton R
with ≈R v ≈A. Then ∼A v ∼Rf and the bimachine BRf realizes f .

In particular any aperiodic transduction can be realized by an aperiodic bimachine.

The other direction also holds: from a bimachine we can build an equivalent (unambiguous)
transducer, by taking the product of the left and right automata of the bimachine. The
construction is not hard but given in the long version. By Theorem 15 and Proposition 1 we
obtain:

I Theorem 16. A function is rational (resp. rational and aperiodic) if and only if it can be
realized by a bimachine (resp. aperiodic bimachine).

Labelings and bimachines. We define the labeling function associated with a right auto-
maton R = (Q,∆, I, F ) by the right transducer `(R) = (R, i, o), with i(q) = ε and
o(p, a, q) = (a, q). Intuitively, the labeling function labels each position with the look-ahead
information about the suffix provided by R. For a transduction f we define fR = f ◦J`(R)K−1.
Note that fR is a function, since the labeling is injective (because R is unambiguous). Thus,
fR corresponds to f defined over words enriched by the look-ahead information of R.

I Proposition 17. Let f be a transduction and let R be a right automaton. There exists
a bimachine B realizing f with R as a right automaton if and only if fR is left-sequential.
Furthermore, assuming that R is aperiodic, then ∼Rf is aperiodic if and only if fR is aperiodic.

We say that a transducer is letter-to-letter if its initial output function always outputs the
empty word and its output function always outputs a single letter. The following corollary
states the classical result of [11] but over infinite words, and generalizes a result of [5].

I Corollary 18. For any rational function f , there exists a left-sequential (right-seq. resp.)
function g and a letter-to-letter right-sequential (left-seq. resp.) function h such that f = g◦h.
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4 Canonical machines

The goal of this section is to define a canonical bimachine for any rational function. By
canonicity we mean that it should be machine-independent. Our ultimate goal is to show
that the canonical bimachine suffices to decide the algebraic properties we are interested
in. To get a canonical bimachine, we need a right automaton for the look-ahead that is 1)
canonical, 2) coarse-grained enough to preserve algebraic properties, and 3) fine-grained
enough to obtain a deterministic left automaton (and hence a bimachine).

We define the delay congruence and show that it is the coarsest left congruence such
that any automaton R recognizing it satisfies that fR is quasi-sequential (Proposition 21).
However, this congruence is, in general, too coarse to make fR sequential. We then introduce
the ultimate congruence, and show how to combine these two congruences to build a canonical
bimachine.

Let f be a transduction. We define the delay between x, y ∈ Aω with respect to f by:
delf (x, y) = {del(f(ux), f(uy)) | ux, uy ∈ dom(f)}. The following definition is taken from
[20, 3].

I Definition 19 (delay congruence). The delay congruence of f is defined by setting x ∆
≈f y

for x, y ∈ Aω if (1) for all u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f), and (2) |delf (x, y)| <∞.

I Example 20. Let us illustrate the above definition on fblocks (recall Example 3). We
consider x = u1# . . .#un#v and y = u′1# . . .#u′n#v′ where v and v′ are infinite words
not containing #. Note that x ∆

≈fblocks y if and only if u1, u
′
1 are either both empty, or end

with the same letter. Indeed, if the latter holds then del(f(ux), f(uy)) = del(f(x), f(y)).
Conversely, if both u1, u

′
1 are non-empty but end with different letters, then for any u without

#, del(fblocks(ux), fblocks(uy)) = (f(ux), f(uy)). If u1 = ε and u, u′1 end with different letters,
then again, del(fblocks(ux), fblocks(uy)) = (f(ux), f(uy)). There are two more classes with
respect to ∆

≈fblocks , one for infinitely many #, and one for no #.
The look-ahead ∆

≈fblocks provides enough information to transform the blocks determin-
istically (we only need the last letter before the next #), but not enough information to
produce the output after the last # deterministically.

The following proposition shows that the delay congruence, when used as a look-ahead (see
the definition of fR page 11), transforms any rational function into a quasi-sequential one.

I Proposition 21. Let f be a transduction and let R be a right automaton recognizing
dom(f). Then fR is quasi-sequential iff ≈Rv

∆
≈f . In particular, if f is aperiodic then ∆

≈f is
aperiodic.

The delay congruence is minimal, i.e. coarsest, among right congruences of bimachines
realizing a function, and we show in the long version that it can be computed in PTime
from a bimachine.

I Proposition 22. Given a transducer T (resp. a bimachine B) with underlying automaton
A (resp. right automaton R) realizing a function f , we have that ≈A (resp. ≈R) is finer
than ∆

≈f .

Canonical machine for quasi-sequential functions. As noted in [2], the class of quasi-se-
quential functions, or equivalently, the class of functions satisfying the WTP, is strictly larger
than the class of sequential functions. The last left congruence that we define now will be fine
enough to make a quasi-sequential function sequential. By taking the intersection between
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this congruence and the left delay congruence we will obtain a congruence that is fine enough
to make any rational function sequential. However, it should be noted that this look-ahead
is not minimal, in the sense that it is not necessarily coarser than any look-ahead that is fine
enough to realize the function.

I Definition 23 (Ultimate congruence). We define the ultimate congruence of a rational
function f by setting x ∪

≈f y for x, y ∈ Aω if the following conditions hold:
For all u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f)
If ux ∈ dom(f) then f̂(u) = f(ux) ⇔ f̂(u) = f(uy) Moreover, if f̂(u) = f(ux) then
f(ux) = f(uy).

Observe that f̂(u) � f(ux) for every ux ∈ dom(f). So the intuition behind f̂(u) = f(ux) is
that no finite look-ahead on x can help to output f(ux) deterministically after u. And the
intuition behind f(ux) = f(uy) is that the missing outputs f̂(u)−1f(ux) and f̂(u)−1f(uy)
have to be equal, which is equivalent to f(ux) = f(uy). Now, for a given class of ∪

≈f as
look-ahead, a left automaton would know the missing output and start producing it. We
show in the long version that ∪

≈f is a left congruence.

I Example 24. Recall the function fblocks defined in Example 3. f̂blocks maps every block
to its output and stops at the last #. Hence f̂blocks(u) = fblocks(ux) if and only if x does not
contain #. When f̂blocks(u) = fblocks(ux), we have f(ux) = f(uy) if and only if x and y both
contain an infinite number of a’s, or none of them does. The congruence classes of ∪

≈fblocks

are thus: a) words x with an infinite number of # (yielding ux outside the domain), b) words
x with a finite (non-zero) number of #, c) words without #, with an infinite number of a’s,
d) words without #, with a finite number of a’s. This is precisely the information lacking
in the look-ahead provided by ∆

≈fblocks (see Example 20) to obtain a look-ahead allowing a
sequential processing of the input.

I Proposition 25. For a quasi-sequential transduction f , the ultimate congruence ∪
≈f has

finite index. If f is given as a bimachine, ∪
≈f can be computed in 2-ExpTime. Furthermore,

if f is aperiodic then ∪
≈f is aperiodic.

Let R be a right automaton recognizing ∪
≈f . We define the bimachine URf = (Af ,R, if , oR)

with Af and if (as in Section 2), and for oR we take:

oR([u] , a, [x]R) =

 f̂(u)−1f̂(ua) if f̂(ua) ≺ f(uax)
β if f̂(u) = f(uax) and f̂(u)−1f(uax) = αβω

α if f̂(u) ≺ f̂(ua) = f(uax) and f̂(u)−1f(uax) = αβω

The following lemma states that URf realizes f .

I Lemma 26. Let f be a quasi-sequential transduction, and let R be a right automaton
recognizing the ultimate congruence ∪

≈f , then URf realizes f .

Let R be the canonical right automaton of ∪
≈f . By the previous lemma, there exists a

bimachine with R as right automaton realizing f . By minimizing its left automaton with
respect to R, we obtain a canonical bimachine for f .

I Corollary 27. Let f be a quasi-sequential transduction, and let R be the canonical right
automaton of the ultimate congruence ∪

≈f , then BRf realizes f (and is finite).
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Canonical bimachine. We finally show that by composing the information given by the delay
and the ultimate congruences, we obtain a canonical bimachine for any rational function. Let
us make clear what we mean by composition. Let R1 = (Q1,∆1, I1, F1) be a right automaton
and let R2 = (Q1,∆2, I2, F2) be a right automaton over A×Q1 . The automaton R1 ./ R2 is
defined as (Q1 ×Q2,∆{1,2}, I1 × I2, F1 × F2) with F1 × F2 = {P1 × P2 | P1 ∈ F1, P2 ∈ F2}
and ∆{1,2} = {((s1, s2), a, (r1, r2) | (s1, a, r1) ∈ ∆1, (s2, (a, r1), r2) ∈ ∆2}, which is a right
automaton.

I Lemma 28. Let R1 = (Q1,∆, I, F ) be a right automaton and let R2 be a right automaton
over A × Q1. Then J`(R2)K ◦ J`(R1)K = J`(R1 ./ R2)K (up to the isomorphism between
(A×Q1)×Q2 and A× (Q1 ×Q2)).

We can now state our main result. In our construction we focused on clarity and composition-
ality and we obtain a several-fold exponential complexity. At the cost of greater technicality,
one should obtain a tighter result.

I Theorem 29 (Canonical Bimachine). Let f be a transduction given by a bimachine, let R1

be the canonical automaton of the delay congruence ∆
≈f , and let R2 be the canonical automaton

of the ultimate congruence ∪
≈(fR1 ). Then the bimachine BR1./R2

f realizes f . Furthermore if
f is aperiodic then BR1./R2

f is aperiodic.

Proof. Let f be a transduction, let R1 be the canonical automaton of the delay congruence
∆
≈f and let R2 be the canonical automaton of the ultimate congruence ∪

≈(fR1 ). Since R1

recognizes ∆
≈f , we know according to Proposition 22 that fR1 is quasi-sequential. Hence since

R2 is finer than ∪
≈(fR1 ), we know from Cor. 27 that the bimachine BR2

fR1
realizes f . From

Proposition 17 we obtain that (fR1)R2 , the function obtained by composing the labelings
`(R2) and `(R1), is left-sequential. We use Lemma 28 to obtain that fR1./R2 is left-sequential
and thus, again by Proposition 17 we know there is a bimachine with R1 ./ R2 as right
automaton which realizes f . In particular, BR1./R2

f realizes f .
If we assume that f is aperiodic, we obtain from Proposition 22 that R1 is aperiodic and

from Proposition 17 that fR1 is aperiodic. Hence from Proposition 25 we have that R2 is
aperiodic. Again from Proposition 17, we have that (fR1)R2 = fR1./R2 is aperiodic. A third
time from Proposition 17 we have that BR1./R2

f is aperiodic. J

Note that the right automaton constructed in Proposition 1 is actually a right Büchi
automaton. So our result would still hold for bimachines with Büchi right automata.

5 First-Order Definability Problem

In this section, we show that given a transducer T realizing a transduction JT K : Aω → B∞,
one can decide whether JT K is first-order definable (FO-definable). First, let us recall the
notion of FO-definability for word languages. Any word w ∈ A∞ is seen as a structure of
domain {1, . . . , |w|} linearly ordered by � and with unary predicates a(x), for all a ∈ A. By
FO we denote the first-order logic over these predicates, and by MSO the extension of FO
with quantification over sets and membership tests x ∈ X (see for instance [22] for a detailed
definition). We write w |= φ if some word w satisfies a formula φ, and φ(x1, . . . , xn) any
formula φ with n free first-order variables x1, . . . , xn. Interpreted over words in Aω (resp.
A∞), any sentence φ defines a language JφK ⊆ Aω (resp. JφK ⊆ A∞) defined as the set of
words satisfying φ. E.g. the sentence φ0 = ∀x, y · a(x) ∧ b(y) → x � y, interpreted on Aω,
defines the language aω ∪ a∗bω. Interpreted on A∞, it defines the language aω ∪ a∗bω ∪ a∗b∗.
A language L is said to be FO-definable (resp. MSO-definable) if L = JφK for some sentence
φ ∈ FO (resp. φ ∈ MSO).
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Definability of transductions. An MSO-transducer is a tuple F = (A,B, φdom, V, µ) where
φdom is an MSO-sentence, V is a finite subset of B∗ and µ a function mapping any word
v ∈ V to some MSO-formula (over alphabet A) denoted φv(x), with one-free variable. An
FO-transducer is an MSO-transducer which uses only FO-formulas. Any MSO-transducer
defines a transduction denoted JFK ⊆ Aω × B∞ such that (u, v) ∈ JFK if u |= φdom and
there exists (vi)i≥1 such that v = v1v2v3 . . . and for all i ≥ 1, vi ∈ V and u |= φvi(i). We
say that f : Aω → B∞ is MSO- (resp. FO-) definable if there exists some MSO- (resp. FO-)
transducer F such that JFK = f .

For example the functional transduction which erases all a’s of any input ω-word over
{a, b} is defined by φdom = > and the two formulas φε(x) = a(x) and φb(x) = b(x). The
functional transduction mapping any word of the form anbω to abn/2cbω is not FO-definable,
even though its domain is. Intuitively, the formula φa(x) would have to decide whether
x is an odd or even position, which is a typical non FO-definable property. It is one of
the goal of this paper to automatically verify that such a property is indeed not FO. It is
however MSO-definable with φdom = φ0 ∧ ∃x · b(x), where φ0 has been defined before, and
the three formulas φε(x) = a(x) ∧ odd(x), φa(x) = a(x) ∧ even(x) (properties which are
MSO-definable) and φb(x) = b(x).

As a remark, Courcelle has defined in the context of graph transductions the notion of
MSO-transducers [9], which can also be restricted to FO-transducers. Cast to infinite words,
Courcelle’s formalism is strictly more expressive than rational functions, as they allow to
mirror factors of the input word for instance. Restricted to the so called order-preserving
Courcelle transducers [4, 12], they are equivalent to our MSO- and FO-transducers, however
with a more complicated definition. This equivalence can be seen, for finite words, in the
proof of Theorem 4 in [12]. The same proof works for infinite words as well.

We first exhibit a correspondence between logics and transducers, the proof of which is
similar to the finite case [12], but requires some additional results on aperiodic automata on
ω-words.

I Theorem 30 (Logic-transducer correspondences). Let f : Aω → B∞. Then:
f is MSO-definable if and only if it is realizable by some transducer.
f is FO-definable if and only if it is realizable by some aperiodic transducer.

We obtain the following decidability result (in elementary complexity if the input is a
transducer).

I Theorem 31. It is decidable whether a rational function f : Aω → B∞, given as a
transducer or equivalently as an MSO-transducer, is definable in FO.

Proof. By Theorem 30, it suffices to show that f is aperiodic, i.e. definable by some aperiodic
transducer. By Theorem 16, one can construct a bimachine which is aperiodic if and only if
f is. So, it suffices to construct this bimachine and to test its aperiodicity, i.e., whether its
left and right automata are both aperiodic, a property which is decidable [10]. J
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Abstract
We prove that the reachability relation of two-counter machines with one zero-test and one reset
is Presburger-definable and effectively computable. Our proof is based on the introduction of two
classes of Presburger-definable relations effectively stable by transitive closure. This approach
generalizes and simplifies the existing different proofs and it solves an open problem introduced
by Finkel and Sutre in 2000.
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1 Introduction

Context. Vector addition systems with states (VASS) are equivalent to Petri nets and
to counter machines without the ability to test counters for zero. Although VASS have
been studied since the 1970’s, they remain fascinating since there are still some important
open problems like the complexity of reachability (known between ExpSpace and cubic-
Ackermannian) or even an efficient (in practice) algorithm to solve reachability. In 1979,
Hopcroft and Pansiot [13] gave an algorithm that computes the Presburger-definable reach-
ability set of a 2-dim VASS, hence VASS in dimension 2 are more easy to verify and they
enjoy interesting properties like reachability and equivalence of reachability sets, for instance,
are both decidable. Unfortunately, these results do not extend in dimension 3 or for 2-dim
VASS with zero-tests on the two counters: the reachability set (hence also the reachability
relation) is not Presburger-definable for 3-dim VASS [13]; reachability, and all non-trivial
problems, are undecidable for 2-dim VASS extended with zero-tests on the two counters.
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31:2 Reachability for Test/Reset Two-Counter Machines

Table 1 Reachability sets (post∗ and pre∗) and reachability relation ( ∗−→) for extensions of 2-
dimensional VASS. We let ' denote the existence of mutual reductions between two classes of
machines that preserve the effective Preburger-definability of the reachability sets and relation. The
contributions of this paper are indicated in boldface.

Class Post∗ Pre∗ ∗−→

T1Tr2 ' T1,2 ' T1,2R1,2Tr1,2 Not Recursive Not Recursive Not Recursive
T1R2 ' T1R1,2Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
R1,2Tr1 ' R1,2Tr1,2 Eff. Presburger Eff. Presburger Eff. Presburger

T1 ' T1R1Tr1 Eff. Presburger Eff. Presburger Eff. Presburger
2-dim VASS Eff. Presburger Eff. Presburger Eff. Presburger

In 2004, Leroux and Sutre proved that the reachability relation of a 2-dim VASS is
also effectively Presburger-definable [17] and this is not a consequence of the Presburger-
definability of the reachability set. As a matter of fact, there exist counter machines (even
3-dim VASS) with a Presburger-definable reachability set but with a non Presburger-definable
reachability relation [13, 17]. But, for all recursive 2-dim extended VASS, the reachability
sets are Presburger-definable [11, 10]. More precisely, let us denote by TIRJTrK , with
I, J,K ⊆ {1, 2}, the class of 2-dim VASS extended with zero-tests on the I-counters, resets
on the J-counters and transfers from the K-counters. For instance, T{1}R{1,2}Tr∅, also
written T1R1,2 for short, is the class of 2-dim VASS extended with zero-tests on the first
counter, resets on both counters, and no transfer. The relations between classes from [11] are
recalled in Figure 1 and the class T1R2 has been shown to be the “maximal” class having
Presburger-definable post∗ and pre∗ reachability sets [11]. However, it was unknown whether
the Presburger-definable reachability set post∗ can be effectively computed or not. In fact,
even the boundedness problem (is the reachability set post∗ finite?) was open for this class.

Contributions. Our main contribution is a proof that the reachability relation of counter
machines in T1R2 is effectively Presburger-definable. Our proof relies on the effective
Presburger-definability of the reachability relation for 2-dim VASS [17]. The impact of our
result is threefold.

We solve the main open problem in [11] which was the question of the existence of
an algorithm that computes the Presburger-definable reachability set for two-counter
machines in T1R2.
In fact, we prove a stronger result, namely that the reachability relation of counter machines
in T1R2 is Presburger-definable and computable. This completes the decidability picture
of 2-dim extended VASS.
We provide a simple proof of the effective Presburger-definability of the reachability
relation in T1R2. As an immediate consequence, one may deduce all existing results [11,
10] for 2-dim extended VASS and our proof unifies all different existing proofs on 2-dim
extended VASS, including the proof in [6] that the boundedness problem is decidable for
the class R1,2 of 2-dim VASS extended with resets on both counters.

Related work. VASS have been extended with resets, transfers and zero-tests. Extended
VASS with resets and transfers are well structured transition systems [9] hence termination
and coverability are decidable; but reachability and boundedness are undecidable (except
boundedness which is decidable for extended VASS with transfers) [5, 6]. The reachability and
place-boundedness problems are decidable for extended VASS with one zero-test [19, 3, 8, 4].
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A

B

C

D

c1 ← c1 + 1

c1 == 0

c1 == 0

c2 ← 0

(c1, c2)← (c1 − 2, c2 + 1)

(c1, c2)← (c1 − 2, c2 + 4)

(c1, c2)← (c1 + 1, c2 − 1)

Figure 1 A 2-dimensional VASS extended with zero-tests on the first counter and resets on the
second counter (shortly called TRVASS).

Recently, Akshay et al. studied extended Petri nets with a hierarchy on places and with
resets, transfers and zero-tests [1]. As a counter is a particular case of a stack, it is natural
to study counter machines with one stack. Termination and boundedness are decidable for
VASS with one stack [16] but surprisingly, the decidability status of the reachability problem
is open for VASS with one stack, both in arbitrary dimension and in dimension 1. We only
know that reachability and coverability for VASS with one stack are Tower-hard [14, 15].

Outline. We present in Section 2 an example of 2-dim extended VASS in T1R2. This
example motivates the study of two classes of binary relations on natural numbers, namely
diagonal relations in Section 3 and horizontal relations in Section 4. These two classes of
relations are combined in Section 5 into a new class of one counter automata with effectively
Presburger-definable reachability relations. These automata are used in Section 6 to compute
the reachability relations of 2-dim extended VASS in T1R2.

For the remainder of the paper, 2-dim extended VASS in T1R2 are shortly called TRVASS.

2 Motivating Example

Figure 1 depicts an example of a TRVASS. There are four states A, B, C and D, and two
counters c1 and c2. Following the standard semantics of vector addition systems, these
counters range over natural numbers. The operations labeling the three loops and the edge
from A to C are classical addition instructions of vector addition systems. In dimension 2,
these addition instructions are always of the form (c1, c2)← (c1 + a1, c2 + a2) where a1 and
a2 are integer constants. For instance, the instruction (c1, c2)← (c1 − 2, c2 + 1) labeling the
loop on B means that c1 is decremented by 2 and at the same time c2 is incremented by 1.
As the counters must remain nonnegative, this instruction may be executed (i.e., the loop on
B may be taken) only if c1 ≥ 2. In addition to classical addition instructions, TRVASS may
test the first counter for zero, written c1 == 0, and reset the second counter to zero, written
c2 ← 0.
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31:4 Reachability for Test/Reset Two-Counter Machines

The operational semantics of a TRVASS is given, as for vector addition systems, by an
infinite directed graph whose nodes are called configurations and whose edges are called steps.
Formal definitions will be given in Section 6. For the TRVASS of Figure 1, configurations
are triples q(x1, x2) where q ∈ {A,B,C,D} is a state and x1, x2 ∈ N are values of the
counters c1 and c2, respectively. It is understood that N denotes the set of natural numbers
{0, 1, 2, . . .}. There is a step from a configuration p(x1, x2) to a configuration q(y1, y2),
written p(x1, x2)→ q(y1, y2), if there is an edge from p to q labeled by an operation (1) that
can be executed from the counter values (x1, x2) and (2) whose execution changes the counter
values from (x1, x2) to (y1, y2). Here, we have the steps B(5, 1)→ B(3, 2), C(0, 2)→ D(0, 2)
and D(7, 3)→ A(7, 0). But there is no step from C(1, 2) and there is no step to A(7, 1).

The reachability relation of a TRVASS, written ∗−→, is the reflexive-transitive closure of
the step relation →. The reachability relation is one of the main objects of interest for
verification purposes. Coming back to our example of Figure 1, we have A(1, 0) ∗−→ A(2, 0)
since we have the following contiguous sequence of steps:

A(1, 0)→ C(2, 0)→ C(0, 4)→ D(0, 4)→ D(1, 3)→ D(2, 2)→ A(2, 0)

By removing the steps → D(1, 3)→ D(2, 2), we also get that A(1, 0) ∗−→ A(0, 0). In fact, it
can be shown that A(1, 0) ∗−→ A(y, 0) for every y ∈ N, thanks to the following pattern, where
k denotes an odd natural number and i ∈ {1, 2}:

A(k, 0)→ C(k + 1, 0) ∗−→ D(2k + 2, 0) ∗−→ D(k + i, k + 2− i) ∗−→ A(k + i, 0)

One may wonder whether it also holds that A(x, 0) ∗−→ A(y, 0) for every x, y ∈ N. A
consequence of our main result (see Theorem 14) is that we can do even better: we can
compute the set of pairs (x, y) ∈ N×N such that A(x, 0) ∗−→ A(y, 0), as a formula in Presburger
arithmetic1.
I Remark. It is well-known that zero-tests are more expressive than resets. Indeed, a reset
c1 ← 0 can be simulated by a loop c1 ← c1 − 1 followed by a zero-test c1 == 0. A crucial
difference between resets and zero-tests is monotony. In a 2-dimensional VASS extended with
resets on both counters (shortly called RRVASS), larger counter values are always better,
in the sense that every behavior from a configuration q(x1, x2) can be reproduced from a
configuration q(x′1, x′2) with x′1 ≥ x1 and x′2 ≥ x2. This is not true anymore in presence
of zero-tests. This difference makes the analysis of TRVASS more complex than that of
RRVASS, as illustrated in the following example.

I Example 1. Consider the RRVASS obtained from the TRVASS of Figure 1 by replacing
the two zero-tests (from B to D and from C to D) with resets c1 ← 0. Suppose that we want
to show that c1 is unbounded in state A from A(1, 0), i.e., A(1, 0) ∗−→ A(y, 0) for infinitely
many y ∈ N. A natural strategy is, starting from A(x, 0) with x ≥ 1, to reach D(0, y) with y
as large as possible (without visiting A on the way), and then to reach A(y, 0) by taking the
“transfer” loop on D as much as possible. By iterating this strategy, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 8) ∗−→ A(8, 0) ∗−→ D(0, 16) ∗−→ A(16, 0) · · ·

This witnesses that c1 is unbounded in state A from A(1, 0). In comparison, this strategy
does not work for the original TRVASS of Figure 1. Indeed, we get

A(1, 0) ∗−→ D(0, 4) ∗−→ A(4, 0) ∗−→ D(0, 2) ∗−→ A(2, 0) ∗−→ D(0, 1) ∗−→ A(1, 0)

by following this strategy. This is because the only way to reach D from a configuration
A(x, 0) with x even is via B.

1 Recall that Presburger arithmetic [18] is the first-order theory of the natural numbers with addition.
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The rest of the paper is devoted to the proof that the reachability relation of a TRVASS
is effectively Presburger-definable, i.e., there is an algorithm that, given a TRVASS and two
states p and q, computes a formula ϕ(x1, x2, y1, y2) in Presburger arithmetic whose models
are precisely the quadruples (x1, x2, y1, y2) of natural numbers such that p(x1, x2) ∗−→ q(y1, y2).
It is already known that the reachability relation is effectively Presburger-definable in the
absence of zero-tests and resets [17]. Obviously, the counter c1 is zero after a zero-test
c1 == 0 and, similarly, the counter c2 is zero after a reset c2 ← 0. So we focus on the
reachability subrelations between configurations where at least one of the counters is zero,
for instance, {(x, 0, 0, y) | p(x, 0) ∗−→ q(0, y)}. Such a subrelation can be seen as a (binary)
relation on N. This motivates our study in Sections 3 and 4 of two classes of relations on N
that naturally stem from the operational semantics of TRVASS.

3 Diagonal Relations

We call a relation R ⊆ N× N diagonal when (x, y) ∈ R implies (x+ c, y + c) ∈ R for every
c ∈ N. For instance, the identity relation on N, namely {(x, x) | x ∈ N}, is a diagonal relation.
The usual order ≤ on natural numbers is also a diagonal relation. It is readily seen that the
class of diagonal relations is closed under union, intersection, composition, and transitive
closure. In this section, we show that the transitive closure of a diagonal Presburger-definable
relation is effectively Presburger-definable. Our study of diagonal relations is motivated by
the following observation.
I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ q(0, y)}, where p and q are
states, are diagonal in a TRVASS with no reset. Analogously, the reachability subrelations
{(x, y) | p(x, 0) ∗−→ q(y, 0)} are diagonal in a TRVASS with no zero-test.

I Example 2. Let us consider the diagonal relation R ⊆ N × N defined by (x, y) ∈ R if,
and only if, the Presburger formula x ≤ y ∧ y ≤ 2x holds. It is routinely checked that
the transitive closure R+ of R satisfies (x, y) ∈ R+ if, and only if, the Presburger formula
(x = 0⇔ y = 0) ∧ x ≤ y holds.

We fix, for the remainder of this section, a diagonal relation R ⊆ N× N. Consider the
subsets IR and DR of N defined by

IR
def= {x | ∃y : (x, y) ∈ R ∧ x < y} DR

def= {y | ∃x : (x, y) ∈ R ∧ x > y}

Since R is diagonal, the sets IR and DR are upward-closed, meaning that x ∈ IR implies
x′ ∈ IR for every x′ ≥ x (and similarly for DR). If x ∈ IR then (x, x + δ) ∈ R for some
positive integer δ > 0. Since R is diagonal, (x′, x′ + δ) ∈ R for every x′ ≥ x. So the pair
(x, x+ δ) can be viewed as an “increasing loop” that applies to every x′ ≥ x. Similarly, if
y ∈ DR then there is a “decreasing loop” (y + δ, y) ∈ R that applies to every y′ ≥ y. We are
mostly interested in increasing and decreasing loops that apply to every element of IR and
DR, respectively. This leads us to the following definitions:

α
def=

{
min{δ > 0 | ∀x ∈ IR : (x, x+ δ) ∈ R} if IR 6= ∅
0 otherwise

(1)

β
def=

{
min{δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} if DR 6= ∅
0 otherwise

(2)

Let us explain why the natural numbers α and β are well-defined. If IR 6= ∅ then there
exists δ > 0 such that (m,m + δ) ∈ R where m = min IR. It follows from diagonality
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of R that (x, x + δ) ∈ R for every x ≥ m, hence, for every x ∈ IR. Therefore the set
{δ > 0 | ∀x ∈ IR : (x, x + δ) ∈ R} is non-empty, and so it has a minimum. A similar
argument shows that {δ > 0 | ∀y ∈ DR : (y + δ, y) ∈ R} is non-empty when DR 6= ∅.

We are now almost ready to provide a characterization of the transitive closure of R+.
To do so, we introduce the relations IncR and DecR on N defined by

IncR(x, y) def= (x = y) ∨ (x ∈ IR ∧ ∃h ∈ N : y = x+ hα)

DecR(x, y) def= (x = y) ∨ (y ∈ DR ∧ ∃k ∈ N : x = y + kβ)

We let # denote relational composition (S # R def= {(x, z) | ∃y : xS y R z}). The powers of a
relation R are inductively defined by R1 def= R and Rn+1 def= R #Rn.

I Lemma 3. It holds that R+ = IncR # (R ∪ · · · ∪Rα+β+1) # DecR.

Proof. We introduce the relation C = IncR # (R ∪ · · · ∪ Rα+β+1) # DecR, so as to reduce
clutter. To prove that C ⊆ R+, we show that IncR and DecR are both contained in R∗. Let
(x, y) ∈ IncR. If x = y then (x, y) ∈ R∗. Otherwise, x ∈ IR and there exists h ∈ N such that
y = x+ hα. Moreover, h and α are positive as x 6= y. It follows from x ∈ IR and α > 0 that
(x, x+α) ∈ R. Since R is diagonal, we derive that (x, x+α), . . . , (x+(h−1)α, x+hα) are all
in R. Hence, (x, y) ∈ R+. We have shown that IncR ⊆ R∗. Now let (x, y) ∈ DecR. If x = y

then (x, y) ∈ R∗. Otherwise, y ∈ DR and there exists k ∈ N such that x = y+ kβ. Moreover,
k and β are positive as x 6= y. It follows from y ∈ DR and β > 0 that (y + β, y) ∈ R.
Since R is diagonal, we derive that (y + kβ, y + (k − 1)β), . . . , (y + β, y) are all in R. Hence,
(x, y) ∈ R+. We have shown that DecR ⊆ R∗. We derive from IncR ⊆ R∗ and DecR ⊆ R∗

that C ⊆ R+.
Let us now prove the converse inclusion R+ ⊆ C. We first observe that IncR = Inc∗R

and DecR = Dec∗R. These equalities easily follow from the definitions of IncR and DecR. As
a consequence, we get that

C = Inc∗R # (R ∪ · · · ∪Rα+β+1) # Dec∗R (3)

Let us prove by induction on n that Rn ⊆ C for all n ≥ 1. The base cases n = 1, . . . , α+β+1
are trivial. Assume that Rm ⊆ C for all 1 ≤ m < n, where n ≥ α+ β + 2, and let us show
that this inclusion also holds for m = n. Let (x, y) ∈ Rn. There exists x0, . . . , xn such that
x = x0Rx1R · · ·Rxn = y. We start by showing the two following properties, as they will
be crucial for the rest of the proof.

x 6∈ IR =⇒ x0 ≥ x1 ≥ · · · ≥ xn and y 6∈ DR =⇒ x0 ≤ x1 ≤ · · · ≤ xn

We prove these properties by contraposition. If xi < xi+1 for some 0 ≤ i < n, then we may,
w.l.o.g., choose the first such i. This entails that x0 ≥ · · · ≥ xi. Moreover, xi ∈ IR since
xi < xi+1 and xiRxi+1. It follows that x = x0 ∈ IR as IR is upward-closed. Similarly, if
xi−1 > xi for some 0 < i ≤ n, then we may, w.l.o.g., choose the last such i. This entails
that xi ≤ · · · ≤ xn. Moreover, xi ∈ DR since xi−1 > xi and xi−1Rxi. It follows that
y = xn ∈ DR as DR is upward-closed.

To prove that (x, y) ∈ C, we consider four cases, depending on the membership of x in
IR and on the membership of y in DR.

If x 6∈ IR and y 6∈ DR then x0 = x1 = · · · = xn. This means in particular that x0Rxn,
hence, x = x0 C xn = y.
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If x 6∈ IR and y ∈ DR then x0 ≥ x1 ≥ · · · ≥ xn. Note that β > 0 since DR is non-empty.
Since n ≥ β, there exists 0 ≤ i < j ≤ n such that xi ≡ xj (mod β), hence, xi = xj + kβ for
some k ∈ N. Recall that x = x0R

i xi and xj Rn−j xn = y. As R is diagonal, we derive that
xiR

n−j y′ where y′ = y + kβ. We obtain that xRn+i−j y′. It follows from the induction
hypothesis that xC y′. Moreover, we have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kβ.
Hence, x (C # DecR) y and we derive from Equation 3 that xC y.

If x ∈ IR and y 6∈ DR then x0 ≤ x1 ≤ · · · ≤ xn. Note that α > 0 since IR is non-empty.
Since n ≥ α, there exists 0 ≤ i < j ≤ n such that xi ≡ xj (mod α), hence, xj = xi + hα

for some h ∈ N. Recall that x = x0R
i xi and xj Rn−j xn = y. As R is diagonal, we derive

that x′Ri xj where x′ = x+ hα. We obtain that x′Rn+i−j y. It follows from the induction
hypothesis that x′ C y. Moreover, we have (x, x′) ∈ IncR since x ∈ IR and x′ = x + hα.
Hence, x (IncR # C) y and we derive from Equation 3 that xC y.

If x ∈ IR and y ∈ DR then both α and β are positive. Since n ≥ α, there exists
0 ≤ i < j ≤ n such that xi ≡ xj (mod α). If xi ≤ xj then xj = xi + hα for some h ∈ N and
we may proceed as in the case x ∈ IR ∧ y 6∈ DR to show that xC y. Otherwise, xi = xj + kα

for some k ∈ N. Recall that x = x0R
i xi and xj R

n−j xn = y. As R is diagonal, we
derive that x′Ri z′Rn−j y′ where x′ = x+ kα(β − 1), z′ = xi + kα(β − 1) = xj + kαβ and
y′ = y + kαβ. We obtain that x′Rn+i−j y′. It follows from the induction hypothesis that
x′ C y′. Moreover, we have (x, x′) ∈ IncR since x ∈ IR and x′ = x+ kα(β − 1), and we also
have (y′, y) ∈ DecR since y ∈ DR and y′ = y + kαβ. Hence, x (IncR # C # DecR) y and we
derive from Equation 3 that xC y. J

We derive the following theorem.

I Theorem 4. The transitive closure of a diagonal Presburger-definable relation is effectively
Presburger-definable.

Proof. Assume that ϕR(x, y) is a Presburger formula denoting a diagonal relation R. The
sets IR and DR are defined by the Presburger formulas ∃y : ϕR(x, y) ∧ x < y and ∃x :
ϕR(x, y) ∧ x > y, respectively. The natural numbers α and β defined in Equations 1 and 2
are obviously computable from ϕR. So the characterization given in Lemma 3 immediately
provides a computable Presburger formula denoting R+. J

4 Horizontal Relations

A relation R ⊆ N× N is said to be horizontal if (x, y) ∈ R implies (x+ c, y) ∈ R for every
c ∈ N. The class of horizontal relations is clearly stable by union, intersection, composition,
and transitive closure. In this section we prove that the transitive closure of a horizontal
Presburger-definable relation is effectively Presburger-definable. Our study of horizontal
relations is motivated by the following observation.

I Remark. The reachability subrelations {(x, y) | p(0, x) ∗−→ c2←0−−−→ ∗−→ q(y, 0)}, where p and q
are states, are horizontal in a TRVASS.

I Example 5. Let us consider the following horizontal relation R:

R
def= {(x, y) | 2y ≤ x ∨ (y ∈ 4N ∧ y ≤ 2x+ 2)}

We prove that R+ is equal to C def= {(x, y) | x = 0 ⇒ y = 0} as follows. Since R ⊆ C and
C is transitive, we get R+ ⊆ C. Conversely, let (x, y) ∈ C. If x = 0 then y = 0 and from
(0, 0) ∈ R we derive (x, y) ∈ R+. So, we can assume that x ≥ 1. In that case (x, 4) ∈ R and
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(4z, 4(z+ 1)) ∈ R for every z > 0. It follows that (x, n) ∈ R+ for every n ∈ 4 + 4N. Moreover,
there exists such an n satisfying 2y ≤ n. For such an n, we have (x, n) ∈ R+ and (n, y) ∈ R.
We deduce that (x, y) ∈ R+. It follows that R+ = C.

The effective Presburger-definability of the transitive closure comes from the following
characterization.

I Lemma 6. For every horizontal relation R we have:

R+ = {(x, y) | ∃z : (z, y) ∈ R ∧ ∀u : x ≤ u < z ⇒ ∃v : (u, v) ∈ R ∧ u < v} (4)

Proof. Assume first that (x, y) ∈ R+. There exists a sequence x0, . . . xk such that x =
x0Rx1 . . . R xk = y with k ≥ 1. Let z = xk−1 and let us prove that for every u ∈
{x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. If z ≤ x we are done. So we can
assume that z > x. Since x0 ≤ u, there exists a maximal j ∈ {1, . . . , k} such that xj−1 ≤ u.
Let v = xj and observe that (u, v) ∈ R. Since xk−1 = z > u, it follows that j < k and by
maximality of j we deduce that xj > u. Therefore v > u.

Conversely, let us consider (x, y) ∈ N× N such that there exists z satisfying (z, y) ∈ R
and such that for every u ∈ {x, . . . , z − 1} there exists v > u such that (u, v) ∈ R. Notice
that there exists a sequence x0 < · · · < xk with k ≥ 0 such that x = x0Rx1 . . . R xk ≥ z. It
follows that (x, xk) ∈ R∗. Moreover, since (z, y) ∈ R, z ≤ xk, and R is horizontal we deduce
that (xk, y) ∈ R. It follows that (x, y) ∈ R+. J

The previous lemma shows that the transitive closure of a horizontal relation R denoted
by a Presburger formula ϕR is denoted by the Presburger formula obtained from (4) by
replacing (z, y) ∈ R and (u, v) ∈ R by ϕR(z, y) and ϕR(u, v) respectively. We have proved
the following theorem.

I Theorem 7. The transitive closure of a horizontal Presburger-definable relation is effectively
Presburger-definable.

5 Presburger Automata

We exhibit in this section a general class of one counter automata with effectively Presburger-
definable reachability relations. These automata will be used in the next section to compute
the reachability relations of TRVASS.

A Presburger automaton is a pair P = (Q,∆) where Q is a finite set of states, and ∆
is a finite set of transitions (p,R, q) where p, q ∈ Q and R ⊆ N × N is a relation denoted
by a Presburger formula (which is left implicit). A configuration is a pair (q, x) ∈ Q × N,
also written as q(x) in the sequel. The one-step relation →P is the binary relation over
configurations defined by p(x)→P q(y) if there exists (p,R, q) ∈ ∆ such that (x, y) ∈ R. The
reachability relation ∗−→P is defined as the reflexive-transitive closure of →P .

I Remark. The reflexive-transitive closure R∗ of a Presburger-definable relation R ⊆ N× N
need not be Presburger-definable, in general. For instance, if R = {(x, y) ∈ N× N | y = 2x}
then R∗ is the relation {(x, y) ∈ N × N | ∃k ∈ N : y = 2kx}, which is not definable in
Presburger arithmetic. Worse, a simple reduction from the halting problem for Minsky
machines shows that membership of a pair (x, y) in R∗ is undecidable (where R is a
Presburger-definable relation given as input along with x and y).
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A consequence of the above remark is that the reachability problem for Presburger
automata is undecidable, even if we restrict ourselves to Presburger automata with a single
state and a single transition. This comes from the fact that transitions can use arbitrary
Presburger-definable relations. We will exhibit a subclass of Presburger automata with
effectively Presburger-definable reachability relations (hence, with a decidable reachability
problem) by limiting the expressive power of the transitions occurring on cycles. We say that
a transition (p,R, q) is diagonal if R is diagonal, horizontal if R is horizontal, and ordinary
if it is neither diagonal nor horizontal. Note that a relation on N may be both diagonal
and horizontal, for instance {(x, y) ∈ N × N | y ≤ 2x}. A cycle is non-empty sequence of
transitions (p1, R1, q1), . . . , (pn, Rn, qn) such that qn = p1 and qi = pi+1 for all 1 ≤ i < n.

I Lemma 8. Let P be a Presburger automaton. If every cycle of P contains only diagonal
transitions then ∗−→P is effectively Presburger-definable.

Proof. We first observe that ∗−→P is effectively Presburger-definable when P = (Q,∆) is
a Presburger automaton whose transitions are all diagonal. Indeed, we may view P as a
finite-state automaton over the finite alphabet {R | (p,R, q) ∈ ∆}. For every states p and q,
we may compute a regular expression denoting the language accepted by P with initial state p
and final state q. The obvious evaluation of this regular expression (concatenation · becomes
relational composition #, sum + becomes union ∪, and star ? becomes reflexive-transitive
closure ∗) yields the relation {(x, y) | p(x) ∗−→P q(y)}. This evaluation is computable because
Presburger-definable diagonal relations are effectively closed under union, composition and
reflexive-transitive closure (as an immediate consequence of Theorem 4). We have shown
that ∗−→P is effectively Presburger-definable when all transitions of P are diagonal.

We now prove the lemma. Let P = (Q,∆) be a Presburger automaton such that every
cycle of P contains only diagonal transitions. Let N be the Presburger automaton obtained
from P by keeping only diagonal transitions. Consider two configurations p(x) and q(y). It
is readily seen that p(x) ∗−→P q(y) if, and only if, there exists 1 ≤ k ≤ |Q|, s1, . . . , sk ∈ Q and
x1, y1, . . . , xk, yk ∈ N such that p(x) = s1(x1), sk(yk) = q(y) and

s1(x1) ∗−→P s1(y1)→P s2(x2) ∗−→P s2(y2) · · · sk−1(yk−1)→P sk(xk) ∗−→P sk(yk)

Observe that for every state s ∈ Q and for every x, y ∈ N, s(x) ∗−→P s(y) if, and only if,
s(x) ∗−→N s(y). Moreover, ∗−→N is effectively Presburger-definable since all transitions of N
are diagonal. We derive from the above characterization of ∗−→P that ∗−→P is also effectively
Presburger-definable. J

We say that a Presburger automaton P is shallow if every cycle that contains an ordinary
transition also contains a horizontal transition. Shallowness of Presburger automata is
decidable. This follows from two easy observations. Firstly, diagonality and horizontality of
Presburger-definable relations on N are decidable, since these properties can be expressed in
Presburger arithmetic. Secondly, a Presburger automaton is shallow if, and only if, every
simple cycle containing an ordinary transition also contains a horizontal transition. We now
show the main result of this section.

I Theorem 9. The reachability relation of a shallow Presburger automaton is effectively
Presburger-definable.

Proof. By induction on the number of horizontal transitions. The base case follows from
Lemma 8. Indeed, if P is a shallow Presburger automaton with no horizontal transition then
every cycle of P contains only diagonal transitions. Assume that the theorem holds for every
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shallow Presburger automaton with n horizontal transitions, where n ∈ N. Let P = (Q,∆)
be a Presburger automaton with n+ 1 horizontal transitions. Pick a horizontal transition
(p,R, q) ∈ ∆ and let N be the Presburger automaton obtained from P by removing the
transition (p,R, q). Let S denote the reachability relation from q to p in N , namely the
relation S = {(y, x) | q(y) ∗−→N p(x)}. It is readily seen that, for every configurations s(x)
and t(y) of P , s(x) ∗−→P t(y) if, and only if, s(x) ∗−→N t(y) or there exists x′, y′ ∈ N such that

s(x) ∗−→N p(x′) ∧ (x′, y′) ∈ ((R # S)∗ #R) ∧ q(y′) ∗−→N t(y)

By induction hypothesis, the relation ∗−→N is effectively Presburger-definable, and so is R # S.
Moreover, R # S is horizontal since R is horizontal. It follows from Theorem 7 that (R # S)∗
is effectively Presburger-definable. We derive from the above characterization of ∗−→P that
∗−→P is also effectively Presburger-definable. J

I Remark. The notions of diagonal relations, horizontal relations and Presburger automata
are extended to larger dimensions in the obvious way. A relation R ⊆ Nd × Nd is diagonal
(resp. horizontal) if (x,y) ∈ R implies (x + c,y + c) ∈ R (resp. (x + c,y) ∈ R) for every
c ∈ Nd. But Theorem 9 does not extend to larger dimensions, even if we restrict ourselves
to Presburger automata with a single state and a single transition. In fact, the reflexive-
transitive closure of a Presburger-definable relation that is diagonal (resp. horizontal) need
not be Presburger-definable. Consider the relation R ⊆ N2 ×N2 defined by (x1, x2)R (y1, y2)
if, and only if, the Presburger formula y1 ≤ 2x1 ∧ y2 < x2 holds. The relation R is both
diagonal and horizontal. It is routinely checked that the reflexive-transitive closure R∗ is the
set of pairs ((x1, x2), (y1, y2)) ∈ N2 × N2 such that y1 ≤ 2x2−y2x1 and y2 ≤ x2, which is not
definable in Presburger arithmetic.

6 Reachability Relations of TRVASS

A TRVASS is a 2-dimensional vector addition system with states (2-dim VASS) such that
the first counter can be tested for zero and the second one can be reset to zero. Formally,
a TRVASS is a triple V = (Q,Σ,∆) where Q is a finite set of states, Σ ⊆ Z2 ∪ {T,R} is
a finite set of actions, and ∆ ⊆ Q × Σ × Q is a finite set of transitions. A configuration
of V is a triple (q, x1, x2) ∈ Q× N× N written as q(x1, x2) in the sequel. The operational
semantics of V is given by the binary relations a−→V over configurations, with a ∈ Σ, defined
by p(x1, x2) a−→V q(y1, y2) if (p, a, q) ∈ ∆ and

(y1, y2) = (x1 + a1, x2 + a2) if a = (a1, a2) ∈ Z2

(y1, y2) = (0, x2) ∧ x1 = 0 if a = T

(y1, y2) = (x1, 0) if a = R

Given a word w = a1 . . . ak of actions aj ∈ Σ, we denote by w−→V the binary relation over
configurations defined as the relational composition a1−→V # · · · # ak−→V . The relation ε−→V
denotes the identity relation on configurations. Given a subset W ⊆ Σ∗, we let W−→V denote
the union

⋃
w∈W

w−→V . The relation Σ∗

−−→V , also written ∗−→V , is called the reachability relation
of V . Observe that ∗−→V is the reflexive-transitive closure of the step relation→V

def=
⋃
a∈Σ

a−→V .

The remainder of this section is devoted to the proof that TRVASS have effectively
Presburger-definable reachability relations. Let us fix a TRVASS V = (Q,Σ,∆). We let A
denote the set Σ ∩ Z2 of addition vectors.
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Figure 2 The Presburger automaton P associated to the TRVASS of Figure 1.

The reachability relation of V can be expressed in terms of the reachability relation of
a Presburger automaton by observing that configurations reachable just after a zero-test
T or a reset R are restricted to q(0, n) or q(n, 0), respectively, where q ∈ Q and n ∈ N.
Those configurations are parametrized by introducing the set S = {qT , qR | q ∈ Q} obtained
as two disjoint copies of Q. Elements in {qT | q ∈ Q} are called test states, and those in
{qR | q ∈ Q} are called reset states. Given s ∈ S and n ∈ N, we introduce the configuration
Js, nK in Q× N2 defined as follows:

Js, nK def=
{
q(0, n) if s = qT

q(n, 0) if s = qR

We also introduce, for each pair (s, t) ∈ S × S, the binary relation Rs,t defined by

Rs,t
def= {(m,n) ∈ N× N | Js,mK A∗X−−−→V Jt, nK}

where X = T if t is a test state and X = R if t is a reset state. It is known that the
reachability relation of a 2-dim VASS is effectively Presburger-definable [17, 2]. This entails
that the relation A∗

−−→V is effectively Presburger-definable, and it follows that the relations
Rs,t are also effectively Presburger-definable. We introduce the Presburger automaton P
with set of states S and set of transitions {(s,Rs,t, t) | (s, t) ∈ S × S}. Note that P is
computable from V.

I Example 10. Let us come back to the TRVASS of Figure 1. The relations Rs,t are all
empty except for RDT ,AR , RDR,AR and Rs,DT with s ∈ {AT , AR, BT , BR, CT , CR}. The
corresponding automaton P is depicted in Figure 2. Each transition (s,Rs,t, t) is depicted
by an edge from s to t labeled by a Presburger formula ϕs,t(m,n) denoting the relation Rs,t.
The empty relations (which are both diagonal and horizontal) are not depicted. Notice that
the transition from AR to DT is ordinary and the one from DT to AR is horizontal. It follows
that P is shallow. We observe that the horizontal relation R defined as the composition
RDT ,AR #RAR,DT is the one introduced in Example 5.

We first show that the Presburger automaton P is shallow. By Theorem 9, this will entail
that its reachability relation ∗−→P is effectively Presburger-definable.
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I Lemma 11. The Presburger automaton P is shallow.

Proof. It is readily seen that P satisfies the following properties:
Transitions from reset states to reset states are diagonal,
Transitions from test states to reset states are horizontal,
Transitions from test states to test states are diagonal.

It follows that an ordinary transition of P is a transition from a reset state to a test state. If
a cycle contains such a transition then it must contain a transition from a test state to a
reset state as well. Since such a transition is horizontal, we obtain that P is shallow. J

The two following lemmas show how to decompose the reachability relation of V in terms
of the reachability relation of P.

I Lemma 12. For every s, t ∈ S and m,n ∈ N, if s(m) ∗−→P t(n) then Js,mK ∗−→V Jt, nK.

Proof. It is easily seen that s(m)→P t(n) implies Js,mK ∗−→V Jt, nK, for every s, t ∈ S and
m,n ∈ N. We derive, by an immediate induction on k ≥ 1, that s(m) (→P)k t(n) implies
Js,mK ∗−→V Jt, nK, for every s, t ∈ S and m,n ∈ N. The lemma follows. J

I Lemma 13. Consider two configurations p(x1, x2) and q(y1, y2) of V. It holds that
p(x1, x2) Σ∗\A∗

−−−−→V q(y1, y2) if, and only if, there exist s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

Proof. Lemma 12 shows the “if” direction of the equivalence. For the other direction, let
w ∈ Σ∗\A∗ such that p(x1, x2) w−→V q(y1, y2). By splitting w after each occurrence of an
action in {T,R}, we deduce that w = w0X1 . . . wk−1Xkwk where k ≥ 1, and w0, . . . , wk ∈ A∗.
Let us introduce the configurations c1, . . . , ck satisfying the following relations:

p(x1, x2) w0X1−−−→V c1 · · ·
wk−1Xk−−−−−→V ck

wk−−→V q(y1, y2)

Notice that cj = JqXj

j , njK for some qj ∈ Q and some nj ∈ N. By definition of P, we get
q
Xj−1
j−1 (nj−1)→P q

Xj

j (nj) for every j ∈ {1, . . . , k}. We have proved the lemma. J

We deduce our main result.

I Theorem 14. The reachability relation of a TRVASS is effectively Presburger-definable.

Proof. Lemma 13 shows that p(x1, x2) ∗−→V q(y1, y2) if, and only if, p(x1, x2) A∗

−−→V q(y1, y2)
or there exists s, t ∈ S and m,n ∈ N such that:

p(x1, x2) A∗{T,R}−−−−−−→V Js,mK ∧ s(m) ∗−→P t(n) ∧ Jt, nK A∗

−−→V q(y1, y2)

From [17, 2], the relation A∗

−−→V is effectively Presburger-definable. From Lemma 11 and
Theorem 9, the relation ∗−→P is effectively Presburger-definable as well. J

Coming back to the classes of 2-dim extended VASS discussed in the introduction (see
Table 1), Theorem 14 means that the reachability relation is effectively Presburger-definable
for the “maximal” class T1R2. This result also applies to 2-dim VASS extended with resets
and transfers on both counters (i.e., the class R1,2Tr1,2), since they can be simulated by
machines in T1R2.
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7 Conclusion and Open Problems

We have shown that the reachability relation of 2-dim VASS extended with tests on the first
counter and resets on the second counter, is effectively Presburger-definable. This completes
the decidability picture of 2-dim extended VASS initiated in [11]. Our proof techniques may
also be used for other classes of counter machines where shallow Presburger automata would
naturally appear. Many other problems on extensions of VASS are still interesting to solve.

The reachability problem is NP-complete [12] for 1-dim VASS, PSpace-complete [2] for
2-dim VASS, and NL-complete [7] for unary 2-dim VASS. But we do not know what are
the complexities for the reachability problem, for the construction of the reachability set
and for the reachability relation for all 2-dim extended VASS.
The boundedness problem is undecidable for 3-dim VASS extended with resets on all
counters [5] and it is decidable for arbitrary dimension VASS extended with resets on
two counters [6]. Is boundedness decidable for arbitrary dimension TRVASS?
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recognizes a Parikh-equivalent language [5]. Parikh’s Theorem has been applied in automata
theory for decision problems concerning Parikh-equivalence such as membership, universality,
equivalence and disjointness [4, 11, 12, 13], to establish complexity bounds on verification
problems for counter machines [9], equational Horn clauses [21], among many others. It
has also found application in the analysis of asynchronous programs with procedures [8, 20]
where the Parikh-equivalent finite-state automaton is used to compute another asynchronous
program without procedures that preserves safety bugs.

Weighted finite-state automata are a generalization of the classical nondeterministic
finite-state automata in which each transition carries a weight. This weight can be defined,
for instance, as a nonnegative number representing the cost of its execution. Then, the weight
of a path in the weighted automaton can be computed by adding the weights of its transitions.
If we are interested in the minimal cost of execution of a given word, we can compute its
weight as the minimum of the weights of the paths accepting that word. In general, the
algebraic structure underlying the computation of the weights is that of a semiring, an
algebraic structure with two operations · (product) and + (sum) used to compute the weight
of a path and the weight of a word, respectively. In the same way, it is possible to add weights
to the transitions of a pushdown automaton. The later model, so-called weighted pushdown
automata, has been used to perform data-flow analysis of programs with procedures [19].

In this paper we study the question of whether Parikh’s Theorem can be extended to
the weighted case. Roughly speaking, for a given weighted pushdown automaton P, we
ask whether there is a weighted finite-state automaton F that accepts a Parikh-equivalent
language and such that for every word w, the sum of the weights of all words Parikh-equivalent
to w in P coincides with that of all Parikh-equivalent words to w in F . Extending Parikh’s
Theorem to the weighted case has the potential of reaching new applications, for instance,
the analysis of event-driven asynchronous programs with procedures where each transition is
augmented with the probability of the event associated to it. Finding a weighted finite-state
automaton that is Parikh-equivalent to the original program and preserves the probabilities
can be used to perform probabilistic analysis of programs following this paradigm.

We will present our results using the grammar model (as opposed to the automata model).
It is well-known that both models are equivalent, in the sense that both representations
generate the same family of languages of weighted words. Using weighted context-free
grammars (WCFGs for short) allows us to exploit their connection with algebraic systems of
equations to give more simple and convincing proofs of our results. In a WCFG, a weight is
assigned to each rule of the grammar. The notion of weight is extended from rules to parse
trees by multiplying the weights of the rules used along a tree, and from parse trees to words
by adding the weights of all the possible parse trees that yield to a word. We say that two
WCFGs G1 and G2 are Parikh-equivalent if for each Parikh-equivalence class E , the sum of
the weights of every word in E under G1 and G2 coincide.

We consider the following problem: given a WCFG G, does there exist a Parikh-equivalent
WCFG G′ that is regular? If the answer is positive we say that G satisfies the Parikh property.
It follows from a known counterexample by Petre [18] that the property is not true in general.
Recently, Bhattiprolu et al. [2] further investigated this question. They show a class of
WCFGs over the unary alphabet that always satisfy the Parikh property. Now, we show
that every nonexpansive WCFG (over an arbitrary alphabet and arbitrary semiring) satisfies
the Parikh property. A WCFG is nonexpansive if no grammar derivation is of the form
X ⇒∗ w0X w1X w2. Note that nonexpansiveness is decidable as it reduces to computing
predecessors of a regular set [6]. We can show that in the unary case the class of nonexpansive
grammars strictly contains the class defined by Bhattiprolu et al. [2] (see Appendix D in the
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extended version of the paper [7]). However, nonexpansiveness is a sufficient condition for the
Parikh property, but not necessary. In particular, we give an example of an expansive WCFG
for which there exists a Parikh-equivalent regular WCFG. This shows that a conjecture
formulated by Baron and Kuich [1] in 1981 is false3. Furthermore, we can show that
nonexpansiveness is not necessary for the property even when the alphabet is unary by means
of a similar example.

In the second part of our work, we study the question of whether the Parikh property is
decidable. As far as we can tell, this question is open. However, it implicitly follows from
a result by Kuich et al. [15] that, when we equivalently formulate the property in terms
of formal power series, it is decidable over the semiring of rational numbers. Their proof
relies on an ad-hoc elimination procedure which is hard to perform even on small examples.
Now we give a decision procedure that sidesteps this problem by using a different technique
that allows to illustrate the algorithm on small examples with the support of mainstream
open-source computer algebra systems.

The document is organized as follows. After preliminaries in Section 2, we show in
Section 3 that every nonexpansive WCFG is Parikh-equivalent to a regular WCFG. In
Section 4, we give a decision procedure for the property when the weight domain is over the
rational numbers and we illustrate its use with several examples. Finally, we give further
details of the related work in Section 5, and conclusions and further work in Section 6.
Missing proofs can be found in the Appendix. For space reasons, some proofs are deferred to
a full version of this paper [7].

2 Preliminaries

We denote by Σ∗ (Σ⊕) the free (commutative) monoid generated by Σ. The elements of
Σ∗ are written as words over the alphabet Σ, typically denoted by w,w′ and wi (i ∈ N),
while the elements of Σ⊕ are written as monomials in the variables Σ and they are typically
denoted by v, v′ and vi. For instance, if Σ = {a, b} then all the elements in Σ∗ of length two
containing 1 a and 1 b are the words ab and ba while the only element with that property in
Σ⊕ is the monomial ab.

We denote a context-free grammar (CFG for short) as a tuple (V,Σ, S,R) where V
is a finite set of variables including S, the start variable, Σ is the set of terminals and
R ⊆ V × (Σ ∪ V )∗ is a finite set of rules. Rules are conveniently denoted X → γ. We will
always assume that CFGs are cycle-free, i.e., there is no derivation of the form X ⇒+ X with
X ∈ V . This guarantees that the number of parse trees for one given word is finite and thus
the weight of a word is a well-defined function. W.l.o.g., we assume that every regular CFG
is right-regular , i.e., γ ∈ Σ+(ε ∪ V ) for each γ. A CFG is nonexpansive if no derivation is of
the form X ⇒∗ w0X w1X w2 with X ∈ V and wi ∈ (Σ ∪ V )∗. Otherwise, it is expansive.

A semiring is a structure (A,+, ·, 0A, 1A) where (A,+, 0A) is a commutative monoid with
identity 0A, (A, ·, 1A) is a monoid with identity 1A, · distributes over + and 0A satisfies
that a · 0A = 0A · a = 0A, for all a ∈ A. A semiring is called commutative iff a · b = b · a
for every a, b ∈ A. In the sequel, we assume that A is always a commutative semiring. An
idempotent semiring is one that satisfies a+ a = a, for all a ∈ A, . A (commutative) ring is
a (commutative) semiring where (A,+, 0A) is a commutative group (i.e., every element in A
has an additive inverse). Finally, a field is a ring where (A \ {0A}, ·, 1A) is a commutative

3 Essentially, they conjectured that every unambiguous WCFG G is nonexpansive iff G has the Parikh
property [1, Conjecture C].
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group (i.e., every element in A except 0A has a multiplicative inverse). We sometimes use A
for both the structure and the underlying set when the meaning is clear from the context.
We abuse notation and use + and · to denote the ordinary sum and product in N and Q.
Classical examples of a commutative semirings are (N,+, ·, 0, 1) and (Q,+, ·, 0, 1). The later
is also a field and we will refer to it as the rational semiring. Another classical example of
a commutative semiring is the tropical semiring, defined as (N ∪ {∞},min,+,∞, 0). Note
that this semiring is also idempotent as min(a, a) = a, for all a ∈ N ∪ {∞}.

A weighted context-free grammar (WCFG for short) is a pair (G,W ) where G is a CFG
as defined above and W is a mapping with the signature W : R→ A that assigns a weight
from A to each production in R, for some (commutative) semiring A. Note that W may
assign 0A to some rules in R. The mapping W is usually referred to as the weight function of
the WCFG. We extend the definition of W from rules to derivation sequences4 by assigning
to each derivation sequence ψ a weight value which is the product of the weights of the rules
applied in ψ. We assume that, the derivation policy for G, i.e., the derivation strategy that
determines the next variable to rewrite along a derivation, defines one unique derivation
sequence for each parse tree. We also assume that the · operation is commutative, i.e.,
we will always consider commutative semirings. Then, the weight of a derivation sequence
does not depend on the choice of the derivation policy. Under these assumptions we can
extend the definition from rules to parse trees (instead of derivation sequences). Before, we
recall some definitions. We define a labeled tree c(τ1, . . . , τn) (with n ≥ 0) as a finite tree
whose nodes are labeled, where c is the label of the root and τ1, . . . , τn are labeled trees,
the children of the roots. When n = 0 we prefer to write c instead of c(). We simply write
τ = c(. . .) when the children nodes τ1, . . . , τn are not important. We will write parse trees as
labeled trees of the form τ = π(τ1, . . . , τn) to denote that the topmost level of τ is induced
by the grammar rule π and has exactly n children nodes which root (from left to right)
the parse trees τ1, . . . , τn, i.e., the right-hand side of π contains n grammar variables where
the i-th (from the left) is derived according to τi. We thus define the yield of a parse tree
τ = π(τ1, . . . , τn), denoted as Y(τ) inductively as follows. If n = 0, then Y(τ) = γ where π is
of the form X → γ and γ ∈ Σ∗ ∪ {ε}. Otherwise, Y(τ) = α1Y(τ1) . . . αnY(τn)αn+1 where π
is of the form X → α1X1 . . . αnXnαn+1 with αi ∈ Σ∗ ∪ {ε}, and each Xi corresponds to the
left-hand side of the rule in the root of τi. Define the weight of a parse tree τ = π(τ1, . . . , τn)
inductively as:

W (τ) def= W (π)
n∏
i=1

W (τi) .

Note that W (τ) does not depend on the order in which we consider the rules in τ as we
assume that · is commutative. Denote by TG the set of all parse trees of a CFG G. Then,
define the weight of a word w ∈ Σ∗ as follows:

W (w) def=
∑
Y(τ)=w
τ∈TG

W (τ) .

If for some w ∈ Σ∗, the set {τ | Y(τ) = w, τ ∈ TG} = ∅ then W (w) def= 0A. Define
the semantics of a WCFG (G,W ), denoted by JGKW , as the mapping JGKW : Σ∗ → A

such that JGKW (w) def= W (w). Define the Parikh image of a word w ∈ Σ∗ with Σ =

4 For a definition of derivation sequence go to the beginning of Appendix A.
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{a1, . . . , an}, denoted by *w+ as the monomial aα1
1 aα2

2 . . . aαn
n ∈ Σ⊕ such that αi is the

number of occurrences of ai in w. Define the Parikh image of a weighted context-free
grammar (G,W ), denoted by PkJGKW , as the mapping PkJGKW : Σ⊕ → A such that:

PkJGKW (v) def=
∑
v=*w+
w∈Σ∗

JGKW (w) .

We write JGKW and PkJGKW as the formal sums
∑
w∈Σ∗JGKW (w)w and

∑
v∈Σ⊕ PkJGKW (v) v,

respectively. Two WCFGs (G,W ) and (G′,W ′) are language-equivalent iff JGKW = JG′KW ′ ,
while (G,W ) and (G′,W ′) are Parikh-equivalent iff PkJGKW = PkJG′KW ′ . Finally, a WCFG
(G,W ) is regular/nonexpansive/cycle-free iff G is regular/nonexpansive/cycle-free, respect-
ively.

I Definition 1 (Parikh property). A WCFG (G,W ) satisfies the Parikh property iff there
exists a WCFG (G`,W`) such that:
1. (G`,W`) is regular, and
2. PkJGKW = PkJG`KW`

.

3 Sufficient condition for the Parikh property

Petre [18] shows that the Parikh property is not true in general. In the following example we
show a well-known WCFG (for instance, see [2, 18]) for which no regular Parikh-equivalent
WCFG exists.

I Example 2. Consider the WCFG (G,W ) with G = ({X}, {a}, X, {X → aXX, X → a})
and the weight function W over (N,+, ·, 0, 1) that assigns 1 to each production in the
grammar. Note that, because the alphabet is unary, we have that PkJGKW = JGKW . As W
assigns 1 to each grammar rule, the weight of each word can be interpreted as its ambiguity
according to G. Then, the reader can check that:

JGKW =
∑
n≥0

Cn a
2n+1 = 1a+ 1a3 + 2a5 + 5a7 + 14a9 + 42a11 + 132a13 + 429a15 + . . .

with Cn = 1
n+1

(2n
n

)
the n-th Catalan number. We will see in Example 10 that this formal

power series cannot be generated by a regular WCFG.

Now we show that every nonexpansive WCFG over an arbitrary commutative weight
domain satisfies the Parikh property.

I Theorem 3. Let (G,W ) be an arbitrary WCFG. If G is nonexpansive then (G,W ) satisfies
the Parikh property.

Proof. The proof is constructive. Here we give the main intuition of the construction. For a
complete proof go to Appendix A. For every nonexpansive WCFG (G,W ), we give a 2-step
construction that results in a Parikh-equivalent regular WCFG (G`,W`). The steps are:
1. construct a new WCFG

(
G dke,W dke), with k ∈ N, language-equivalent to (G,W ); and

2. construct a regular WCFG (G`,W`) Parikh-equivalent to
(
G dke,W dke).

The general idea behind the first step is to build a WCFG
(
G dke,W dke) that contains all

the information needed to define a “strategic” derivation policy. This derivation policy is
strategic in the sense that the total number of grammar variables in all derivation sentences5
produced along a derivation sequence is bounded.

5 For a definition of derivation sentence go to the beginning of Appendix A.
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In the second step of the construction, we use
(
G dke,W dke) to build a regular WCFG

(G`,W`) that is Parikh-equivalent. Each grammar variable of (G`,W`) represents each
possible sentence (without the terminals) along a derivation sequence of

(
G dke,W dke), and

each rule simulates a derivation step of
(
G dke,W dke). Because the number of variables in the

sentences is bounded, the number of variables and rules of (G`,W`) is necessarily finite. J

The converse of Theorem 3 is not true. The next counterexample illustrates this fact by
defining an expansive WCFG G2 for which a Parikh-equivalent regular WCFG G1 exists.
Thus, nonexpansiveness does not provide an exact characterization of the Parikh property.

I Example 4. Consider the WCFG (G1,W1) where G1 = ({X1}, {a, a}, X1, R1 = {X1 →
aX1, X1 → aX1, X1 → ε}) and W1 is defined over (N,+, ·, 0, 1) and assigns 1 to each rule
in R1. First, note that (G1,W1) is regular and the weight of each word can be interpreted as
its ambiguity according to G1. Because G1 is unambiguous, the weight of each word in the
language of G1 is 1. It is easy to see that JG1KW1 is:

JG1KW1 = (a+ a)∗ =
∑
n≥0

(a+ a)n = 1ε+ 1a+ 1a+ 1aa+ 1aa+ 1aaa+ 1aaa+ 1aaa+ 1aaa+ . . .

Now consider the expansive WCFG (GD,WD) where GD = ({D}, {a, a}, D,RD = {D →
aDaD, D → ε}) and WD is defined over N and assigns 1 to each rule in RD. The grammar
GD generates the Dyck language LD over the alphabet {a, a} and it is also unambiguous
(i.e., the weight of each w ∈ LD is 1). It is well-known that LD is a deterministic context-free
language (DCFL). Then the complement of LD, namely {a, a}∗ \ LD, is also a DCFL and
thus admits an unambiguous CFG. Let GD = (VD, {a, a}, D,RD) be the unambiguous CFG
that generates {a, a}∗ \ LD, and define (GD,WD) where WD is defined over N and assigns 1
to each rule in RD.

W.l.o.g., assume VD ∩ VD = ∅ and consider a new variable X2 /∈ VD ∪ VD. Define the
WCFG (G2,W2) where G2 = ({X2}∪VD ∪VD, {a, a}, X2, R2), R2 is defined as R2 = {X2 →
D, X2 → D} ∪RD ∪RD where W2 is defined over N and assigns 1 to each rule in R2. First,
G2 is expansive because GD is expansive. Furthermore, D and D generate unambiguously
languages that are complementary over {a, a}. As the weight of each word in (G2,W2)
corresponds to its ambiguity, we have that JG2KW2 = (a+ a)∗. Hence JG1KW1 = JG2KW2 and
thus PkJG1KW1 = PkJG2KW2 . Recall that (G1,W1) is regular. We conclude that (G2,W2) is
expansive and satisfies the Parikh property.

We can give a similar counterexample over a unary alphabet (see Appendix B). This shows
that nonexpansiveness is not necessary for the Parikh property even in the unary case.

4 A decision procedure for the Parikh property over the rationals

In this section we give a decision procedure that tells whether or not a given WCFG with
weights over the rational semiring satisfies the Parikh property. Our procedure relies on a
decidability result by Kuich and Salomaa [15, Theorem 16.13]. It implicitly follows from
this result that the Parikh property is decidable over the rational semiring. However, their
decision procedure is hard to follow as it relies on algebraic methods beyond the scope of this
field. This makes its implementation rather involved even for small instances. We propose
an alternative method to sidestep this problem using Groebner basis theory.

First, we give some preliminaries. In what follows, A will denote a partially ordered
commutative semiring. Given A and an alphabet Σ, a formal power series in commuting
variables is a mapping of Σ⊕ into A. A〈〈Σ⊕〉〉 denotes the set of all formal power series
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in commuting variables Σ and coefficients in A. The values of a formal power series r are
denoted by (r, v) where v ∈ Σ⊕. As r is a mapping of Σ⊕ into A, it can be written as a formal
sum as r =

∑
v∈Σ⊕(r, v) v. When v = ε we will write the term (r, ε)ε of r simply as (r, ε).

We define the support of a formal power series as supp(r) def= {v | (r, v) 6= 0A}. The subset of
A〈〈Σ⊕〉〉 consisting of all series with a finite support is denoted by A〈Σ⊕〉 and its elements
are called polynomials. Finally, define, for k ≥ 0, the operator Rk by Rk(r) def=

∑
|v|≤k

(r, v)v

where r ∈ A〈〈Σ⊕〉〉.
Now we establish the connection between WCFGs and algebraic systems in commuting

variables. Let (G,W ) be a WCFG with G = (V,Σ, X1, R), V = {X1, . . . , Xn}, and W

defined over the semiring A. We associate to (G,W ) the algebraic system in commuting
variables defined as follows. For each Xi ∈ V :

Xi =
∑
π∈R

π=(Xi→γ)

W (π) * γ + . (1)

We refer to this system as the algebraic system (in commuting variables) corresponding to
(G,W ). Sometimes, we write A〈Σ⊕〉-algebraic system to indicate that the coefficients of the
system lie in A〈Σ⊕〉. Note that (1) can be written as follows. For each Xi ∈ V :

Xi = pi , with pi ∈ A〈(Σ ∪ V )⊕〉 . (2)

A solution to (2) is defined as an n-tuple r = (r1, . . . , rn) of elements of A〈〈Σ⊕〉〉 such that
ri = r(pi), for i = 1, . . . , n, where r(pi) denotes the series obtained from pi by replacing, for
j = 1, . . . , n, simultaneously each occurrence of Xj by rj . Note that, r1, the first component
of r, always corresponds to the solution for X1, the initial variable of G. The approximation
sequence σ0, σ1, . . . , σj , . . . where each σj is an n-tuple of elements of A〈Σ⊕〉 associated to
an algebraic system as (2) is defined as σ0 = (0A, . . . , 0A) and σj+1 = (σj(p1), . . . , σj(pn))
for all j ≥ 0. We have that limj→∞ = σj iff for all k ≥ 0 there exists an m(k) such that
Rk(σm(k)+j) = Rk(σm(k)) = Rk(σ) for all j ≥ 0. If limj→∞ σj = σ, then σ is a solution
of (2) (from Theorem 14.1 in [15]) and is referred to as the strong solution. Note that, by
definition, the strong solution is unique whenever it exits. Finally, if (G,W ) is a regular
WCFG then each pi in its corresponding algebraic system written as in (2) is a polynomial
in A〈M〉, whereM denotes the set of monomials of the form aα1

1 . . . aαm
m Xβ1

1 . . . Xβn
n with

ai ∈ Σ, αi, βj ∈ N for all i and j, and
∑n
i=1 βi ≤ 1. We call a system of this form a

regular algebraic system. Conversely, we associate to each A〈Σ⊕〉-algebraic system S in
commuting variables of the form (2) a WCFG (G,W ) over the semiring A as follows. Define
G = ({X1, . . . , Xn},Σ, X1, R) and such that π = (Xi → γ) ∈ R iff (pi, γ) 6= 0A. If π ∈ R
then W (π) = (pi, γ). We will refer to (G,W ) as the WCFG corresponding to the algebraic
system S. Note that if we begin with an algebraic system in commuting variables, then go to
the corresponding WCFG and back again to an algebraic system, then the latter coincides
with the original. However, if we begin with the WCFG, form the corresponding algebraic
system and then again the corresponding WCFG, then the latter grammar may differ from
the original.

Next theorem shows that the Parikh image of a cycle-free WCFG corresponds to the
solution for the initial variable in the corresponding algebraic system.

I Theorem 5. Let (G,W ) be a cycle-free WCFG and let S be the algebraic system in
commuting variables corresponding to (G,W ). Then, the strong solution r of S exists and
the first component of r corresponds to PkJGKW .

Proof. See Appendix C in the extended version [7]. J
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Now we introduce the class of rational power series in commuting variables Σ with
coefficients in the semiring A, denoted by Arat〈〈Σ⊕〉〉.

I Definition 6. r ∈ Arat〈〈Σ⊕〉〉 iff r is the first component of the solution of a regular
algebraic system in commuting variables.

From the previous definition and Theorem 5 we can characterize the WCFGs that satisfy
the Parikh property as follows.

I Lemma 7. Let (G,W ) be a cycle-free WCFG. Then (G,W ) satisfies the Parikh property
iff PkJGKW ∈ Arat〈〈Σ⊕〉〉.

Proof. See Appendix C in the extended version [7]. J

Next we observe that every WCFG (G,W ) defined over a commutative ring with the
Parikh property satisfies a linear equation of a special kind. This result directly follows from
Theorem 16.4 in [15].

I Theorem 8. Let (G,W ) be a cycle-free WCFG with W defined over a commutative ring
A. Then (G,W ) satisfies the Parikh property iff PkJGKW satisfies a linear equation of the
form: X = sX + t, for some s, t ∈ A〈Σ⊕〉 with (s, ε) = 0.

Proof. The result is a consequence of Theorem 16.4 in [15] and Lemma 7. J

We conclude from the previous theorem that, given a WCFG (G,W ) with W defined
over a commutative ring, if such a linear equation exists then (G,W ) satisfies the Parikh
property; otherwise it does not. Now we will use a result by Kuich et al. [15] to conclude
that, if (G,W ) is defined over Q then there exists an irreducible polynomial q(X) such that q
evaluates to 0 when X = PkJGKW , denoted by q(PkJGKW ) ≡ 0. Intuitively, this polynomial
contains all the information needed to decide whether or not (G,W ) has the Parikh property.

I Theorem 9 (from Theorem 16.9 in [15]). Let S be the Q〈Σ⊕〉-algebraic system in commuting
variables corresponding to a cycle-free WCFG. Let r1 be the first component of its strong
solution. Then there exists an irreducible polynomial q(X1) with coefficients in Q〈Σ⊕〉, and
unique up to a factor in Q〈Σ⊕〉, such that q(r1) ≡ 0.

Kuich et al. [15] show that the polynomial q is effectively computable by means of a procedure
based on the classical elimination theory. Now we develop an alternative method using
Groebner bases. Before introducing this technique, we give some intuition on the ideas
presented above by revisiting the examples of the previous section.

I Example 10. Consider the cycle-free WCFG (G,W ) defined in Example 2 where the weight
functionW is now defined over (Q,+, ·, 0, 1) and assigns 1 to each production in the grammar.
The algebraic system S corresponding to (G,W ) is given by the equation X = aX2+a. Let r1
be its strong solution. Assume for now that the irreducible polynomial q(X) ∈ Q〈{a}⊕〉〈X〉
from Theorem 9 is q(X) = aX2 −X + a (later we will give its construction using Groebner
bases). We will see later that the fact that q(X) is not linear is enough to conclude that
(G,W ) does not satisfy the Parikh property (as we expected). Note that the solution of
S is r1 = 1−

√
1−4a2

2a , which written as a series corresponds to r1 =
∑
n≥0 Cn a

2n+1, with
Cn = 1

n+1
(2n
n

)
the n-th Catalan number. It is known that this formal power series cannot be

written as the solution of a linear equation with coefficients in Q〈{a}⊕〉 [2].
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I Example 11. Now we will consider the WCFG given in Example 4. This time we
will give a complete definition of its grammar rules and, as in the previous example, we
will extend its weight domain from N to Q. Define the WCFG (G2,W2) where G2 =
({X2, D,D, Y, Z}, {a, a}, X2, R2), R2 is given by:

X2 → D | D D → DaY | DaZ Z → DaZ | D .

D → aD aD | ε Y → a Y | a Y | ε

and the weight function W2 is defined over (Q,+, ·, 0, 1) and assigns 1 to each production
in the grammar. Note that (G2,W2) is cycle-free. The grammar variable D generates all
the words in the Dyck language LD over the alphabet {a, a}, while the variable D generates
{a, a}∗ \ LD. The system S corresponding to (G2,W2) consists of the following equations:

X2 = D +D D = DaY +DaZ Z = DaZ +D .

D = aD aD + 1 Y = a Y + a Y + 1

Let σ = (r1, r2, r3, r4, r5) be its strong solution where r1 corresponds to the solution for the
initial variable X2. Assume for now that the irreducible polynomial q(X2) ∈ Q〈{a, a}⊕〉〈X2〉
described by Theorem 9 is:

q(X2) = (1− (a+ a))X2 − 1 .

We observe that q is linear in X2 and can be written as:

q(X2) = (1− s)X2 − t = (1− (a+ a))X2 − 1 ,

with (s, ε) = 0. Thus, by Theorem 8, we conclude that (G2,W2) satisfies the Parikh property
as we expected.

Now we develop the technique we will use to construct the irreducible polynomial of
Theorem 9: Groebner bases. A Groebner basis is a set of polynomials in one or more variables
enjoying certain properties. Given a set of polynomials F with coefficients in a field, one can
compute a Groebner basis G of F with the property that G has the same solutions as F when
interpreted as a polynomial system of equations. Then, problems such as finding the solutions
for the system induced by F , or looking for alternative representations of polynomials in
terms of other polynomials become easier using G instead of F . One of the main insights
for using Groebner bases is that they are effectively constructable using standard computer
algebra systems, for any set of polynomials with coefficients in a field.

We are interested in computing Groebner bases of algebraic systems in commuting
variables corresponding to weighted CFGs. Given a WCFG and its corresponding algebraic
system, our goal is to obtain a system with the same solution as the original, and such that
one equation in the new system depends only on the initial grammar variable X1. This
equation will contain all the information needed to decide whether or not the given WCFG
satisfies the Parikh property. We will not enter into the technical details of how Groebner
bases are constructed and their properties as these lie beyond the scope of this document
(however, an explicit reference will be given in connection with each result applied). Instead,
we will give a result that encapsulates all the preconditions and postconditions we need for
our purpose (Theorem 13). We first introduce the definitions that will appear in the theorem.

In what follows, K will always denote a field. First we need to introduce the notion of
ideal. Let K〈V ⊕〉 denote the ring of polynomials in variables V and with coefficients in K.
A subset I ⊂ K〈V ⊕〉 is an ideal iff (i) 0K ∈ I, (ii) if f, g ∈ I then f + g ∈ I, and (iii) if
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f ∈ I and h ∈ K〈V ⊕〉 then h · f ∈ I. Given a set of polynomials F = {f1, . . . , fn}, we define
〈F 〉 as 〈F 〉 def= {

∑n
i=1 hi · fi | hi ∈ K〈V ⊕〉, fi ∈ F}. It can be shown that 〈F 〉 is an ideal [3]

and we call it the ideal generated by F . When an ideal is generated by a finite number of
polynomials g1, . . . , gn ∈ K〈V ⊕〉, we say that g1, . . . , gn is a basis of the ideal. It is known
that every ideal in K〈V ⊕〉 has a basis (actually many, but the ones we are particularly
interested in are the so-called Groebner bases) [3]. If one considers the set of polynomial
equations {f = 0 | f ∈ F}, denoted by F = 0, then the set of all solutions of F = 0 is
defined as {(r1, r2, . . . , rn) ∈ Kn | f(r1, . . . , rn) ≡ 0, for all f ∈ F}. Then, given two sets
of polynomials F and G, if 〈F 〉 = 〈G〉 then the set of solutions of F = 0 coincides with
the set of solutions of G = 0 [3]. To construct a Groebner basis of an ideal I, one needs
to impose first a total ordering on the monomials of variables occuring in I. This choice is
significant as different orderings lead to different Groebner bases with different properties.
We are interested in computing Groebner bases with the elimination property for the initial
variable X1, i.e., bases where at least one polynomial depends only on X1. Hence, we will
always impose the reverse lexicographic ordering to construct Groebner bases.

I Definition 12. Let V = {X1, . . . , Xn} be a set of variables. Let α and β be two monomials
in V ⊕ and let α (resp. β) be the vector in Nn such that its i-th component corresponds to
the number of occurrences of the variable Xi in α (resp. β). Then we say that α is greater
than β w.r.t. the reverse lexicographic ordering, denoted by α �revlex β, iff the first non-zero
component of the vector α− β is negative.

Notice that Definition 12 implies an ordering of the variables: Xn �revlex Xn−1 �revlex
. . . �revlex X1. The reason for choosing the reverse lexicographic ordering is that, in order to
compute a Groebner basis with the elimination property for the initial variable X1, we need
X1 to be the least monomial (with one or more variable). In what follows, the phrase “w.r.t.
the reverse lexicographic ordering” (for some given V = {X1, . . . , Xn}) will refer to the one
described in Definition 12 with variables V , unless stated otherwise. Fixed a total monomial
ordering, we define the leading monomial of a polynomial p as the greatest monomial in p,
and we denote it by LM(p). We define the leading term of p as the leading monomial of p
together with its coefficient, and we denote it by LT (p). Finally, we introduce the notion
of a reduced Groebner basis which allows to define uniquely a Groebner basis of an ideal of
polynomials. Let F be a set of polynomials and G a Groebner basis of 〈F 〉. We say that G is
a reduced Groebner basis of 〈F 〉 iff for each gi ∈ G (i) the coefficient of LT (gi) = 1; and (ii)
LM(gi) does not divide any term of any gj with i 6= j. For a given set of polynomials F and
monomial ordering �, there exists exactly one reduced Groebner basis of 〈F 〉 w.r.t. � [3].
We abuse notation and write K〈X〉 instead of K〈{X}⊕〉 to refer to the ring of polynomials
in the variable X with coefficients in K. Now we are ready to give the theorem.

I Theorem 13. Let K be a field and V = {X1, . . . , Xn} a set of variables. Let F ⊆ K〈V ⊕〉
be a set of polynomials such that the strong solution of the system F = 0 is (r1, . . . , rn) where
ri corresponds to the solution for Xi. Let G be the reduced Groebner basis of 〈F 〉 w.r.t. the
reverse lexicographic ordering. Then the following properties are satisfied:
1. (r1, . . . , rn) is also the strong solution of the system G = 0 and,
2. there is exactly one polynomial g ∈ G s.t. g ∈ K〈X1〉, and for that g we have g(r1) ≡ 0.

Proof. Property 1. follows from the fact that G is a basis of 〈F 〉. Now we prove property 2.
G is a Groebner basis of 〈F 〉 w.r.t. the reverse lexicographic ordering. Then, as a result of
the Elimination Theorem [3, Theorem 3.1.2], G∩K〈X1〉 is a Groebner basis of 〈F 〉 ∩K〈X1〉.
Assume first that G ∩K〈X1〉 contains only the zero polynomial (the constant polynomial
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whose coefficients are equal to 0). Then the ideal 〈F 〉 ∩K〈X1〉 also contains only the zero
polynomial. But this contradicts Theorem 9. Then G ∩K〈X1〉 contains at least one nonzero
polynomial g. Assume now that G ∩K〈X1〉 contains two different elements g1 and g2 in
K〈X1〉. W.l.o.g., let g1 be such that LM(g1) �lex LM(g2). Thus, LM(g1) divides (at least)
the leading term of g2. Then G is not in reduced form (contradiction). We conclude that
there is exactly one (nonzero) polynomial g ∈ G such that g ∈ K〈X1〉. Finally, g(r1) ≡ 0
follows from 1. and the fact that g ∈ (G ∩K〈X1〉). J

Now we show in Theorem 14 how to construct q using Groebner bases. Finally, we give
in Theorem 15 the main result of this section.

I Theorem 14. Let S be a Q〈Σ⊕〉-algebraic system in commuting variables corresponding to
a cycle-free WCFG and r1 be the first component of its strong solution. Then an irreducible
polynomial q(X1) with coefficients in Q〈Σ⊕〉 such that q(r1) ≡ 0 can be effectively constructed.

Proof. We begin with the first part of the algorithm. Let K be the fraction field of Q〈Σ⊕〉,
i.e., the smallest field (w.r.t. inclusion) containing Q〈Σ⊕〉. Consider S as defined in (2)
(page 7) where now each polynomial pi has its coefficients in K and its variables in V , and
let F ⊆ K〈V ⊕〉 be the set of polynomials {pi | 1 ≤ i ≤ n}. Construct the reduced Groebner
basis G of F w.r.t. the reverse lexicographic ordering. Let G = {g1, . . . , gs} with s ≥ 1. By
Theorem 13, there is exactly one g ∈ G such that g ∈ K〈X1〉, and g satisfies g(r1) ≡ 0.

We cannot conclude yet that g(X1) is the polynomial q(X1) we are looking for since g(X1)
might not be irreducible in the fraction field of Q〈Σ⊕〉. This constitutes the second part of
the algorithm which follows the method given in [15] to obtain from g(X1) an irreducible
polynomial q(X1) such that q(r1) ≡ 0. Compute the factorization6 of g in the fraction field
of Q〈Σ⊕〉 and let {q1(X1), . . . , qm(X1)} with m ≥ 1 be the set of all irreducible polynomials
obtained thus as factors. Because g(r1) ≡ 0, there exists an index j0 with 1 ≤ j0 ≤ m such
that qj0(r1) ≡ 0 and qj(r1) 6≡ 0 for j 6= j0 and 1 ≤ j ≤ m. Now we show how to find j0. Using
the operator Rk introduced in the beginning of Section 4, we have that Rk(qj0(Rk(r1))) ≡ 0
for all k ≥ 0, while for each j 6= j0 there is always an index kj such that Rkj

(qj(Rkj
(r1))) 6≡ 0.

Then, eventually an index j0 is always found. Let qj0(X1) = nk

dk
Xk

1 + nk−1
dk−1

Xk−1
1 + . . .+ n0

d0

with k ≥ 0, ni, di ∈ Q〈Σ⊕〉 and di 6= 0 for all i. Let lcm(d0, . . . , dk) denote the least common
multiple of d0, . . . , dk and define q(X1) = lcm(d0, . . . , dk) ·qj0(X1). Now q(X1) ∈ Q〈Σ⊕〉〈X1〉
and this completes the algorithm. J

I Remark. It is worth noting that, even though q(X1) is an irreducible polynomial over K,
the fraction field of Q〈Σ⊕〉, it might not be irreducible over Q〈Σ⊕〉 since it might have a
factorization consisting of a polynomial q̃(X1) ∈ Q〈Σ⊕〉〈X1〉 of the same degree and one or
more constant polynomials over Q〈Σ⊕〉, i.e., polynomials of degree zero, that are not units
in Q〈Σ⊕〉. However, since constant factors are not relevant for the result, we say that a
polynomial over Q〈Σ⊕〉 is irreducible iff either no factorization exists, or, if there is one, then
it is of the aforementioned form.

I Theorem 15. Let (G,W ) be a cycle-free WCFG with W defined over Q. Then, it is
decidable whether or not (G,W ) verifies the Parikh property.

Proof. Let S be the Q〈Σ⊕〉-algebraic system corresponding to G and let r1 be the first
component of its strong solution. Construct the irreducible polynomial q(X1) with coefficients
in Q〈Σ⊕〉 as in Theorem 14. By Theorem 8, we only need to check whether or not the

6 Polynomial factorizations are performed w.r.t. polynomials with coefficients in the fraction field of
Q〈Σ⊕〉 which is a computable field.
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equation q(X1) = 0 can be written as a linear equation of the form: (1− s)X1 − t = 0, with
s, t ∈ Q〈Σ⊕〉 and (s, ε) = 0. Observe that the procedure given in Theorem 14 is complete, i.e.,
if the polynomial q obtained is not linear in X1 then there cannot exist a polynomial q`(X1)
with coefficients in Q〈Σ⊕〉 and linear in X1 such that q`(r1) ≡ 0. If it were the case, then
q` would be necessarily a factor of q, and this contradicts the fact that q is irreducible over
Q〈Σ⊕〉. Then, if q is not linear in X1, we conclude that (G,W ) does not satisfy the Parikh
property. Otherwise, q(X1) can be rewritten as q(X1) = (1− s)X1− t with s, t ∈ Q〈Σ⊕〉 and
(s, ε) = 0, and we conclude that (G,W ) satisfies the Parikh property. J

Consider a WCFG (G,W ) with r1 the first component of the solution of its corresponding
algebraic system. Observe that, if the decision procedure returns a positive answer for (G,W )
then the polynomial q(X1) constructed as in Theorem 14 is of the form:

q(X1) = (s0 − s1)X1 − t = 0 ,

with s0 ∈ Q, s0 6= 0 and s1, t ∈ Q〈Σ⊕〉 with (s1, ε) = (t, ε) = 0. It follows that the algebraic
system consisting of the equation:

X1 = 1
s0
s1X1 + 1

s0
t , (3)

has also r1 as solution. Then a regular WCFG Parikh-equivalent to (G,W ) is the one
corresponding to the regular algebraic system (3).

Now we complete Examples 10 and 11 by following the decision procedure given in
Theorem 15 and giving the construction of a Parikh-equivalent regular WCFG (if exists).
Additionally, we give a third example.

I Example 16. Consider the WCFG (G,W ) given in Example 10. Recall that its correspond-
ing algebraic system S is given by the equation X = aX2 + a. Let r be its strong solution.
Now we construct the irreducible polynomial q(X) ∈ Q〈{a}⊕〉〈X〉 following the procedure
given in Theorem 14. Let F = {aX2 −X + a}. The reduced Groebner basis G of F w.r.t.
reverse lexicographic ordering is (trivially) G = {X2 − 1

aX + 1}. Then the polynomial g ∈ G
such that g ∈ K〈X〉 where K is the fraction field of Q〈{a}⊕〉, and g(r1) ≡ 0 is:

g(X) = X2 − 1
a
X + 1 .

Note that this polynomial cannot be reduced into factors in the fraction field of Q〈{a}⊕〉.
Multiplying g by a, we get q(X) = aX2 −X + a ∈ Q〈{a}⊕〉〈X〉 and we conclude that q(X)
is the irreducible polynomial described by Theorem 9. As q(X) is not linear we conclude
that (G,W ) does not satisfy the Parikh property.

I Example 17. Now consider the WCFG given in Example 4 and its corresponding algebraic
system S. We construct the irreducible polynomial q(X2) ∈ Q〈{a, a}⊕〉〈X2〉 following the
procedure given in Theorem 14. Given F , the set of polynomials in the left-hand sides of
the equations of S after moving all monomials from right to left, we construct the reduced
Groebner basis G of F w.r.t. reverse lexicographic ordering. For clarity, we just show the
polynomial g ∈ G such that g ∈ K〈X2〉 where K is the fraction field of Q〈{a, a}⊕〉, and
verifies g(r1) ≡ 0:

g(X2) = X2 −
1

1− (a+ a) .
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This polynomial is linear so it is irreducible over the fraction field of Q〈{a, a}⊕〉. Now we
multiply g by (1− (a+ a)) and thus obtain q(X2) = (1− (a+ a))X2 − 1 ∈ Q〈{a, a}⊕〉〈X2〉
which is the irreducible polynomial described by Theorem 9. Now we apply the decision
procedure described in Theorem 15. We observe that q can be written as follows:

q(X2) = (1− s)X2 − t = (1− (a+ a))X2 − 1 ,

with (s, ε) = 0. Thus, we conclude that (G,W ) satisfies the Parikh property. Finally, we
give a regular Parikh-equivalent WCFG (G`,W`). The regular algebraic system:

(1− (a+ a))X2 − 1 = 0 ⇐⇒ X2 = (a+ a)X2 + 1 (4)

has r1 as solution. Then, the WCFG (G`,W`) corresponding to (4) is given by G` =
({X2}, {a, a}, R`, X2) with R` defined as:

π1 = X2 → aX2

π2 = X2 → aX2

π3 = X2 → ε

and W` defined over (Q,+, ·, 0, 1) as W`(πi) = 1, for all i. Notice that (G`,W`) coincides
with (G1,W1) in Example 4.

I Example 18. Consider the cycle-free WCFG (G,W ) given by G = ({X1, X2}, {a, b}, R,X1)
with R defined as follows:

X1 → aX2X2

X2 → bX2 | a ,

and the weight function W over (Q,+, ·, 0, 1) that assigns 1 to each production in the
grammar. The algebraic system S corresponding to (G,W ) is defined as follows:{

X1 = aX2
2

X2 = bX2 + a .

Let σ = (r1, r2) be its strong solution. Now we construct the irreducible polynomial
q(X1) ∈ Q〈{a, b}⊕〉〈X1〉 following the procedure given in Theorem 14. Let F = {X1 −
aX2

2 , X2 − bX2 − a}. The reduced Groebner basis7 G of F w.r.t. lexicographic ordering is:

G =
{
X1 −

a3

b2 − 2b+ 1 , X2 + a

b− 1

}
.

Clearly, the polynomial g ∈ G such that g ∈ K〈X1〉 where K is the fraction field of Q〈Σ⊕〉,
and g(r1) ≡ 0 is:

g(X1) = X1 −
a3

b2 − 2b+ 1 .

This polynomial cannot be reduced into factors in the fraction field of Q〈Σ⊕〉. Now we
multiply g by (b2 − 2b + 1) and thus obtain q(X1) = (b2 − 2b + 1)X1 − a3 in Q〈Σ⊕〉〈X1〉

7 The Groebner basis G was computed using the groebner_basis method of the open-source mathematics
software system SageMath.
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which is the irreducible polynomial described by Theorem 9. Now we apply the decision
procedure described in Theorem 15. We observe that q is linear in X1 and can be written as:

q(X1) = (1− s)X1 − t = (1− (2b− b2))X1 − a3 ,

with (s, ε) = 0. Then we conclude that (G,W ) satisfies the Parikh property. Note that this
is the result expected as (G,W ) is nonexpansive. Finally, we give a regular Parikh-equivalent
WCFG (G`,W`). We know that the algebraic system:

X1 = (2b− b2)X1 + a3 (5)

has r1 as solution. Then the WCFG (G`,W`) corresponding to the regular system (5) is
given by G` = ({X1}, {a, b}, R`, X1) with R` defined as:

π1 = X1 → bX1

π2 = X1 → b2X1

π3 = X1 → a3

and W` defined over (Q,+, ·, 0, 1) as:

W`(π) =


2 if π = π1

−1 if π = π2

1 if π = π3

.

5 Related Work

The problem of extending Parikh’s Theorem to the weighted case has been significantly
considered in the literature [2, 14, 16, 18]. Petre [18] establishes that the family of power
series in commuting variables that can be generated by regular WCFGs is strictly contained
in that of the series generated by arbitrary WCFGs. In this way, he shows that Parikh’s
Theorem does not hold in the weighted case. It is well-known that the Parikh property
holds in a commutative and idempotent semiring [2, 14, 16]. Luttenberger et al. [16] deal
with WCFGs where the weight of a word corresponds to its ambiguity (or commutative
ambiguity when considering monomials instead of words) and they show that if a CFG
is nonexpansive then its commutative ambiguity can be expressed by a weighted rational
expression relying on the fact that all the parse trees of a nonexpansive CFG are of bounded
dimension. We used this fact to give a Parikh-equivalent regular WCFG construction, for a
given nonexpansive WCFG defined over any commutative semiring. Baron and Kuich [1]
gave a similar characterization of nonexpansive grammars using rational power series to that
of Luttenberger et al. They also conjectured that an unambiguous WCFG is nonexpansive iff
it has the Parikh property. This conjecture appears to be false as evidenced by Example 4.
Bhattiprolu et al. [2] also show that the class of polynomially ambiguous WCFGs over the
unary alphabet satisfies the property. In the unary case, this class is strictly contained in the
class of nonexpansive grammars (see Appendix D in the extended version of this paper [7]).
Finally, our decision procedure relies on a result by Kuich and Saloma [15] that decides if an
algebraic series in commuting variables with coefficients in Q is rational. To the best of our
knowledge, the connection of this result to a decidability result for the Parikh property was
only implicit.
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6 Conclusions and Further Work

Note that from the theoretical point of view, our decision procedure can be applied to
WCFGs over any arbitrary field. For arbitrary semirings, the decidability of the Parikh
property remains open. It would be interesting to tackle the question first in the unary case.
Finally, Theorem 3 shows an equivalent characterization of the Parikh property. Namely, the
Parikh property holds for a WCFG (G,W ) iff there exists a Parikh-equivalent nonexpansive
WCFG, i.e., iff (G,W ) is not inherently expansive. It is known that inherent expansiveness
is undecidable in the noncommutative and unweighted case [10], but the question remains
unsolved in the commutative case when weights are considered.
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A Proof of Theorem 3

First, we give the definitions we will use in this section. Given a CFG G = (V,Σ, S,R),
define the degree of G as max{|γ�V | : (X → γ) ∈ R} − 1, where γ�V denotes the projection
of γ onto the variables V . Given a production π = (X −→ γ) ∈ R and a position
1 ≤ i ≤ |α|, we define a derivation step α

π/i==⇒ β with α, β ∈ (Σ ∪ V )∗ iff (α)i = X and
β = (α)1 . . . (α)i−1 γ (α)i+1 . . . (α)|α|. We omit the position i when it is not important. We
say that α and β in (Σ ∪ V )∗ are derivation sentences of G. We define a derivation sequence
α0

π1=⇒ α1
π2=⇒ . . .

πn=⇒ αn iff for every i ∈ {1, . . . , n}, αi−1
πi=⇒ αi is a derivation step. We call

the derivation step αi−1
πi=⇒ αi the i-step of the derivation sequence. A derivation sequence

ψ = α0 ⇒ · · · ⇒ αn of G has index j, denoted by idx(ψ), if for every i ∈ {0, . . . , n}, no word
(αi)�V is longer than j. Now we define the dimension of a labeled tree as follows.

I Definition 19. Given a labeled tree τ = c(τ1, . . . , τn) (n ≥ 0), the dimension of τ
represented as dim(τ) is defined as follows:

dim(c(τ1, . . . , τn)) def=


0 if n = 0
dim(τi) if n > 0 ∧ |{i | ∀j : dim(τj) ≤ dim(τi)}| = 1
dim(τi) + 1 if n > 0 ∧ |{i | ∀j : dim(τj) ≤ dim(τi)}| > 1

Now we present the proof of Theorem 3. All the definitions, lemmas and theorems referred
there can be found below the proof.

I Theorem 3. Let (G,W ) be an arbitrary WCFG. If G is nonexpansive then (G,W ) satisfies
the Parikh property.

Proof. The proof is constructive. For every nonexpansive WCFG (G,W ), we give a 2-step
construction that results in a Parikh-equivalent regular WCFG (G`,W`). The steps are:
1. construct a new WCFG

(
G dke,W dke), with k ∈ N, language-equivalent to (G,W ); and

2. construct a regular WCFG (G`,W`) Parikh-equivalent to
(
G dke,W dke).

The first part of the construction consists of building a new WCFG
(
G dke,W dke)

(Definition 20 below), so-called at-most-k-dimension WCFG of (G,W ), which is language-
equivalent to the original and where grammar variables are annotated with information about
the dimension of the parse trees that can be obtained from these variables. Let us give an
intuition on its construction.

http://dx.doi.org/10.1016/j.ic.2015.11.008
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1145/321356.321364
http://dx.doi.org/10.1016/j.scico.2005.02.009
http://dx.doi.org/10.1007/11817963_29
http://dx.doi.org/10.1007/11817963_29
http://dx.doi.org/10.1007/11532231_25
http://dx.doi.org/10.1007/11532231_25


P. Ganty and E. Gutiérrez 32:17

For a given CFG G and k ∈ N (the choice of k ∈ N will be described later on), we define
G dke using the same construction as Luttenberger et al. [16]. They show how to construct,
for a given CFG G, a new grammar Gdke with the property that TGdke corresponds to the
subset of TG of trees of dimension at most k. They annotate each grammar variable with
the superscript [d] (resp. dde) to denote that only parse trees of dimension exactly d (resp.
at most d), where d ≤ k, can be obtained from these variables. When constructing the
grammar, they also consider those rules containing two or more variables in its right-hand
side and distinguish which cases yield an increase of dimension. We recall the construction
of G dke in Definition 20.

To define the weight function W dke, we assign to each rule in G dke the same weight
as its corresponding version in G (note that for those rules in G dke with no corresponding
version in G, i.e. the so-called e-rules, we assign the identity 1A with respect to ·, where A
denotes the weight domain). Let us discuss the choice of k in

(
G dke,W dke). Luttenberger et

al. [16] also show that if G is a nonexpansive CFG then the dimension of every parse tree
in TG is bounded (Theorem 21). Moreover, the bound is at most the number of grammar
variables of G. Then, for a given nonexpansive WCFG (G,W ), define k as this bound.
Because k is at most equal to the number of variables of G, such a value is always found and
consequently, the first part of the construction always terminates. Finally, we show that the
WCFG

(
G dke,W dke) is language-equivalent to (G,W ) (Lemma 22).

In the second part of the construction, we build a regular WCFG (G`,W`) that is Parikh-
equivalent to

(
G dke,W dke). Esparza et al. [5] show that if the dimension of a parse tree is

bounded by k then there exists a derivation sequence for the yield of the tree whose index is
bounded by some affine function of k (Lemma 23). We rely on this result to define a special
derivation policy over at-most-k-dimension WCFGs, for which we know the dimension of
every parse tree is bounded by k. They are called lowest-dimension-first (LDF) derivations.
We prove that, for every WCFG

(
G dke,W dke), the index of an LDF derivation sequence is

always bounded by an affine function of k (Lemma 25). Then, each grammar variable of
(G`,W`) represents each possible sentence (without the terminals) along an LDF derivation
sequence of

(
G dke,W dke), and each grammar rule is intended to simulate an LDF derivation

step of
(
G dke,W dke). Because the number of variables in these sentences is bounded, the sets

of variables and rules of (G`,W`) are necessarily finite. A formal definition of the weighted
regular (G`,W`) is given in Definition 26 . Finally we show that (G`,W`) is Parikh-equivalent
to
(
G dke,W dke) (Lemma 27) and this concludes the proof. J

Now we give the construction of the at-most-k-dimension WCFG (G dke,W dke) for a
given WCFG (G,W ) and k ∈ N. For the construction of G dke, we rely on the one given by
Luttenberger et al. [16].

I Definition 20 (The at-most-k-dimension WCFG). Let (G,W ) be a WCFG with G =
(V,Σ, S,R) and W defined over the commutative semiring A, and let k ∈ N. Define the at-
most-k-dimension WCFG

(
G dke,W dke) with G dke = (V dke,Σ, Sdke, R dke) of (G,W ) (with

u0, . . . , un ∈ Σ∗) as follows:
The set V dke of variables is given by

{X [d], Xdde | X ∈ V, 0 ≤ d ≤ k} .

The set R dke of production rules is given by
1. Linear rules:
• r0(π) = {X [0] → u0} for each rule π = (X → u0) ∈ R.
• r1(π) = {X [d] → u0X

[d]
1 u1 | 0 ≤ d ≤ k} for each rule π = (X → u0X1 u1) ∈ R.
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2. Non-linear rules:
For each rule π = (X → u0X1 u1 . . . un−1Xn un) ∈ R
• r2(π) = {X [d] → u0 Z1 u1 . . . un−1 Zn un | 1 ≤ d ≤ k, J ⊆ {1, . . . , n} with |J | = 1 :
Zi = X

[d]
i if i ∈ J , and Zi = X

dd−1e
i for all i ∈ {1, . . . , n} \ J} and

• r3(π) = {X [d] → u0 Z1 u1 . . . un−1 Zn un | 1 ≤ d ≤ k, J ⊆ {1, . . . , n} with |J | ≥ 2 :
Zi = X

[d−1]
i for all i ∈ J and Zi = X

dd−1e
i for all i ∈ {1, . . . , n} \ J}.

3. e-rules:
• r4 = {Xdde → X [e] | 0 ≤ e ≤ d ≤ k}.

The weight function W dke is given by

W dke(ϕ) =


W (π) if ϕ ∈ r0(π) for some π = (X → u0) ∈ R

W (π) if ϕ ∈ r1(π) for some π = (X → u0 X1 u1) ∈ R

W (π) if ϕ ∈ r2(π) ∪ r3(π) for some π = (X → u0 Z1 u1, . . . , un−1 Zn un) ∈ R

1A if ϕ ∈ r4

We say that a variable Z ∈ V dke is of dimension d iff either Z = Xdde, or Z = X [d], with
X ∈ V , and we denote it by dim(Z) = d. Define V (d) def= {Z ∈ V dke | dim(Z) = d}, for each
0 ≤ d ≤ k.

I Theorem 21 (from Theorem 3.3 in [16]). Let G be a nonexpansive CFG with n variables.
Then there exists k ∈ N with k ≤ n such that every parse tree in TG has dimension at most k.

I Lemma 22. JGKW = JG dkeKW dke .

Proof. See Appendix A in the extended version [7]. J

I Lemma 23 (from Lemma 2.2 in [5]). Let G be a CFG of degree m and let τ ∈ TG with
dim(τ) ≤ k and k ∈ N. Then there is a derivation sequence for Y(τ) of index at most km+1.

Now we define a derivation policy over at-most-k-dimension WCFGs. We will prove that
this derivation policy satisfies Lemma 23 and thus the index of every derivation is bounded.
We call these derivations lowest-dimension-first (LDF) derivations.

Intuitively, given a parse tree τ of an at-most-k-dimension WCFG, we define the LDF
derivation sequence of τ by performing a depth-first traversal of τ where nodes in the same
level of the tree are visited from lower to greater dimension and, if more than one node has
the same dimension, then from left to right. Recall that the dimension of a node corresponds
to the dimension of the parse tree that it roots.

Before giving a formal definition, we introduce the following notation. Given a derivation
sequence ψ = α0 ⇒ . . . ⇒ αn and β0, β1 (possibly empty) sequences of symbols and/or
variables, we will denote by β0 ψ β1 the derivation sequence β0 α0 β1 ⇒ . . .⇒ β0 αn β1.

I Definition 24. Let G dke be an at-most-k-dimension CFG as in Definition 20. Let τ =
π(τ1, . . . , τn) be a parse tree of G dke. Define the lowest-dimension-first (LDF) derivation
sequence ψ of τ inductively as follows:

If n = 0, then π is of the form π = X [0] → u0, and τ = π. Then, the LDF derivation
sequence of τ is:

ψ = X [0] ⇒π
ldf u0 .

If n ≥ 1, we distinguish the following cases:
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1. If π ∈ r1, i.e., π is of the form π = X [d] → u0X
[d]
1 u1 with 0 ≤ d ≤ k, and τ = π(τ1).

Then, the LDF derivation sequence of τ is:

ψ = X [d] ⇒π
ldf u0X

[d]
1 u1 ⇒ldf u0ψ1u1 ,

where ψ1 is the LDF derivation sequence of τ1.
2. If π ∈ r4, i.e., π is of the form π = Xdde → X [e] with 0 ≤ e ≤ d ≤ k, and τ = π(τ1).

Then, the LDF derivation sequence of τ is:

ψ = Xdde ⇒π
ldf X

[e] ⇒ldf ψ1 ,

where ψ1 is the LDF derivation sequence of τ1.
3. If π ∈ r2, w.l.o.g., we assume that π is of the form:

π = X [d] → u0X
[d]
1 u1X

dd−1e
2 u2 . . . un−2X

dd−1e
n−1 un−1X

dd−1e
n un ,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn). Define, for each i ∈ {2, . . . , n}, the derivation
sequence ψ̃i as follows:

ψ̃i
def= u0X

[d]
1 u1 Y(τ2)u2 . . . Y(τi−1)ui−1X

dd−1e
i ui . . . un−1X

dd−1e
n un

⇒∗ldf u0X
[d]
1 u1 Y(τ2)u2 . . . Y(τi−1)ui−1 ψi uiX

dd−1e
i+1 ui+1 . . . un−1X

dd−1e
n un ,

where ψi is the LDF derivation sequence of τi. And define:

ψ̃1
def= u0X

[d]
1 u1 Y(τ2)u2 . . . un−1 Y(τn)un

⇒∗ldf u0 ψ1 u1 Y(τ2)u2 . . . un−1 Y(τn)un ,

where ψ1 is the LDF derivation sequence of τ1. Then the LDF derivation ψ of τ is:

ψ = X [d] ⇒π
ldf ψ̃2 ⇒ldf . . .⇒ldf ψ̃n ⇒ldf ψ̃1 .

4. If π ∈ r3, w.l.o.g., we assume that π is of the form:

π = X [d] → u0X
dd−1e
1 u1X

dd−1e
2 u2 . . . un−2X

[d−1]
n−1 un−1X

[d−1]
n un ,

with 1 ≤ d ≤ k, and τ = π(τ1, . . . , τn). Define, for each i ∈ {1, . . . , n}, the derivation
sequence ψ̃i as follows:

ψ̃i
def= u0 Y(τ1)u1 Y(τ2)u2 . . . Y(τi−1)ui−1X

dd−1e
i ui . . . un−1X

[d−1]
n un

⇒∗ldf u0 Y(τ1)u1 Y(τ2)u2 . . . Y(τi−1)ui−1 ψi uiX
dd−1e
i+1 ui+1 . . . un−1X

[d−1]
n un ,

where ψi is the LDF derivation sequence of τi. The the LDF derivation ψ of τ is:

ψ = X [d] ⇒ldf ψ̃1 ⇒ldf . . .⇒ldf ψ̃n .

Note that, given a parse tree τ of G dke, the LDF derivation sequence of τ is uniquely defined.

I Lemma 25. Let G dke be an at-most-k-dimension CFG of degree m and τ ∈ TG dke such
that dim(τ) ≤ k. Then, the LDF derivation sequence of τ verifies idx(ψ) ≤ km+ 1.

Proof. See Appendix A in the extended version [7]. J

Given a derivation sentence α ∈
(
Σ ∪ V dke

)∗ of an at-most-k-dimension CFG, define
LDF(α) def= α�Σ α�V (0) α�V (1) . . . α�V (k) and LDFV dke(α) def= (LDF(α))�V dke . Now we show
how to construct a regular (G`,W`) that is Parikh-equivalent to

(
G dke,W dke).

FSTTCS 2018
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I Definition 26 (Regular WCFG for
(
G dke,W dke)). Let

(
G dke,W dke) be an at-most-k-

dimension WCFG with G dke = (V dke,Σ, Sdke, R dke) and degree m, and W dke defined over
the commutative semiring A. Define the WCFG (G`,W`) with G` = (V`,Σ, S`, R`) as follows:

Each variable in V` corresponds to a sequence α ∈
(
V dke

)km+1 where (V dke
)km+1 denotes

the set {w | w ∈ (V dke
)∗
, |w| ≤ km+ 1}, and we denote it by 〈α〉. Formally,

V`
def= {〈α〉 | α ∈

(
V dke

)km+1} .

The initial variable is defined as S`
def= Sdke.

For each rule π = (X −→ γ) ∈ R dke define πα def= (〈X α〉 −→ γ�Σ 〈LDFV dke(γ)α〉). The
set R` of rules is given by

{πα | π = (X −→ γ) ∈ R dke and 〈Xα〉, 〈LDFV dke(γ)α〉 ∈ V`} .

The weight function W` is given by

W`(πα) def= W dke(π) for all πα ∈ R` .

I Lemma 27. PkJG dkeKW dke = PkJG`KW`
.

Proof. See Appendix A in the extended version [7]. J

B Counterexample in the unary case

I Example 28. The idea behind this example is to use the definition of (G2,W2) from
Example 4 (a complete definition is given in Example 11) and replace each occurrence of
the alphabet symbol a in the rules of (G2,W2) by a. Thus, define the WCFG (G,W ) where
G = ({X,D,D, Y, Z}, {a}, X,R), R is given by:

X → D | D D → DaY | DaZ Z → DaZ | D ,

D → aD aD | ε Y → a Y | ε

and the weight function W is defined over (N,+, ·, 0, 1) and assigns 1 to each production
in the grammar except from the rule Y → a Y which is assigned weight 2. Notice that we
preferred to assign weight 2 to the later rule instead of adding two copies each of weight
1. Recall that PkJG2KW2 = (a+ a)∗. Now, relying on our construction of (G,W ), we have
that PkJGKW is the formal power series that results from replacing each a by a in the series
PkJG2KW2 . Thus, we obtain that PkJGKW = (a+ a)∗ = (2a)∗. The reader can check that
the formal power series (2a)∗ corresponds to the Parikh image of the regular WCFG (G`,W`)
where G` is defined as G` = ({X}, {a}, X, {X → aX, X → ε}) and the weight function W`

is defined over (N,+, ·, 0, 1) and assigns 2 to the rule X → aX and 1 to the rule X → ε.

We refer to the extended version of this document [7] for an alternative proof that (G,W )
satisfies the Parikh property using the decision procedure presented in Section 4.
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objective is to find a minimum-cost subgraph G′ such that si and ti have distance at most L in
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1 Introduction

In many network design problems we are given a graph G = (V,E) and some demand pairs
(s1, t1), (s2, t2), . . . , (sp, tp) ⊆ V ×V , and are asked to find the “best” (usually minimum-cost)
subgraph in which every demand pair satisfies some type of connectivity requirement. In
the simplest case, if the demands are all pairs and the connectivity requirement is just to
be connected, then this is the classical Minimum Spanning Tree problem. If we consider
other classes of demands, then we get more difficult but still classical problems. Most
notably, if the demands form a star (or any connected graph on V ), then we have the famous
Steiner Tree problem. If the demands are completely arbitrary, then we have the Steiner
Forest problem. Both problems are known to be in FPT parameterized by the number of
demands [9] (i.e., they can be solved in f(p) · poly(n) time for some function f).
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There are many obvious generalizations of Steiner Tree and Steiner Forest of
the general network design flavor given above. We will be particularly concerned with
length-bounded variants, which are related to (but still quite different from) directed variants.
In Directed Steiner Tree (DST) the input graph is directed and the demands are a
directed star (either into or out of the root), while in Directed Steiner Network (DSN)
the input graph and demands are both directed, but the demands are an arbitrary subset of
V × V . Both problems have been well-studied (e.g., [5, 19, 6, 8, 1]), and in particular it is
known that the same basic dynamic programming algorithm used for Steiner Tree will
also give an FPT algorithm for DST. However, DSN is known to be W[1]-hard, so it is not
believed to be in FPT [11].

In the length-bounded setting, we typically assume that the input graph and demands
are undirected but each demand has a distance bound, and a solution is only feasible if
every demand is connected within distance at most the given bound (rather than just being
connected). One of the most basic problems of this form is the Shallow-Light Steiner
Tree problem (SLST), where the demands form a star with root r = s1 = s2 = · · · = sp and
there is a global length bound L (so in any feasible solution the distance from r to ti is at most
L for all i ∈ [p]). As with DST and DSN, SLST has been studied extensively [16, 18, 14, 13].
If we generalize this problem to arbitrary demands, we get the Shallow-Light Steiner
Network problem, which is the main problem we study in this paper. Surprisingly, it has
not received nearly the same amount of study (to the best of our knowledge, this paper is
the first to consider it explicitly). It is formally defined as follows (note that we focus on the
special case of unit lengths, and will consider general lengths in Section 5:

I Definition 1 (Shallow-Light Steiner Network). Given a graph G = (V,E), a cost
function c : E → R+, a length function l : E → R+, a distance bound L, and p pairs of
vertices {s1, t1}, . . . , {sp, tp}. The objective of SLSN is to find a minimum cost subgraph
G′ = (V, S), such that for every i ∈ [p], there is a path between si and ti in G′ with length
less or equal to L.

LetH be the graph with {s1, . . . , sp, t1, . . . , tp} as its vertex set and {{s1, t1}, . . . , {sp, tp}}
as its edge set. We call H the demand graph of the problem. We use |H| to represent the
number of edges in H.

Both the directed and the length-bounded settings share a dichotomy between considering
either star demands (DST/SLST) or totally general demands (DSN/SLSN). But this gives an
obvious set of questions: what demand graphs make the problem “easy” (in FPT) and what
demand graphs make the problem “hard” (W[1]-hard)? Recently, Feldmann and Marx [11]
gave a complete characterization for this for DSN. Informally, they proved that if the demand
graph is transitively equivalent to an “almost-caterpillar” (the union of a constant number of
stars where their centers form a path, as well as a constant number of extra edges), then the
problem is in FPT, and otherwise the problem is W[1]-hard.

While a priori there might not seem to be much of a relationship between the directed
and the length-bounded problems, there are multiple folklore results that relate them, usually
by means of some sort of layered graph. For example, any FPT algorithm for the DST
problem can be turned into an FPT algorithm for SLST (with unit edge lengths) and vice
versa through such a reduction (though this is a known result, to the best of our knowledge
it has not been written down before, so we include it for completeness in Section 3.2). Such
a relationship is not known for more general demands, though.

In light of these relationships between the directed and the length-bounded settings and
the recent results of [11], it is natural to attempt to characterize the demand graphs that make
SLSN easy or hard. We solve this problem, giving (as in [11]) a complete characterization of
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easy and hard demand graphs. Our formal results are given in Section 2, but informally we
show that SLSN is significantly harder than DSN: the only “easy” demand graphs are stars
(in which case the problem is just SLST) and constant-size graphs. Even tiny modifications,
like a star with a single independent edge, become W[1]-hard (despite being in FPT for
DSN).

1.1 Connection to Overlay Routing

SLSN is particularly interesting due to its connection to overlay routing protocols that use
dissemination graphs to support next-generation Internet services. In fact, our motivation
for studying the fixed-parameter complexity of SLSN is from our use of heuristics for SLSN
in a recent system [3] in which the number of demands was relatively small.

Many emerging applications (such as remote surgery) require extremely low-latency yet
highly reliable communication, which the Internet does not natively support. Babay et
al. [3] recently showed that such applications can be supported by using overlay networks to
enable routing schemes based on subgraphs (dissemination graphs) rather than paths. Their
extensive analysis of real-world data shows that two node-disjoint overlay paths effectively
overcome any one fault in the middle of the network, but specialized dissemination graphs are
needed to address problems at a flow’s source or destination. Because problems affecting a
source typically involve probabilistic loss on that source’s outgoing links, a natural approach
to increase the probability of a packet being successfully transmitted is to increase the number
of outgoing links on which it is sent. In [3], when a problem is detected at a particular
flow’s source, that source switches to use a dissemination graph that floods its packets to
all of its overlay neighbors and then forwards them from these neighbors to the destination.
The paths from the source’s neighbors to the destination must meet the application’s strict
latency requirement, but since the bandwidth used on every edge a packet traverses must
be paid for, the total number of edges used should be minimized. Thus, constructing the
optimal dissemination graph in this setting is precisely the Shallow-Light Steiner Tree
problem, where the root of the demands is the destination and the other endpoints are the
neighbors of the source.

However, in order to achieve the desired reliability, it was shown in [3] that simultaneous
failures at both the source and the destination of a flow must also be addressed. Since
it is not known in advance which neighbors of the source or destination will be reachable
during a failure, the most resilient approach is to require a latency-bounded path from every
neighbor of the source to every neighbor of the destination. This is precisely SLSN with
a complete bipartite demand graph. Since no FPT algorithm for SLSN with complete
bipartite demands was known, [3] relied on a heuristic that worked well in practice. The
search for an FPT algorithm for SLSN with complete bipartite demands was the main
motivation for this work.

In the context of dissemination-graph-construction problems, our results provide a good
solution for problems affecting either a source or a destination: the FPT algorithm for the
SLST problem is quite practical, since overlay topologies typically have bounded degree
(and thus a bounded total number of demands). Unfortunately a trivial corollary of our main
result implies that the other case which was particularly important in this setting, SLSN
with complete bipartite demands, is W[1]-hard. This has important applications to future
system design, since (like all hardness results) it will allow system designers to focus on issues
other than perfect algorithms, even for dissemination graphs that provide only slightly more
resiliency than SLST.
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2 Our Results and Techniques

In order to distinguish the easy from the hard cases of the SLSN problem with respect to
the demand graph, we should first define the problem with respect to a class (set) of demand
graphs.

I Definition 2. Given a class C of graphs. The problem of Shallow-Light Steiner
Network with restricted demand graph class C (SLSNC) is the SLSN problem with the
additional restriction that the demand graph H of the problem must be isomorphic to some
graph in C.

We define Cλ as the class of all demand graphs with at most λ edges, and C∗ as the class
of all star demand graphs (there is a central vertex called the root, and every other vertex
in the demand graph is adjacent to the root and only the root). Our main result is that
these are precisely the easy classes: We first prove that SLSN is in XP parameterized by
the number of demands (i.e. solvable in nf(p) time for some function f), which immediately
implies that SLSNCλ can be solved in polynomial time if λ is a constant. Note that SLSNC∗
is precisely the SLST problem, for which a folklore FPT algorithm exists, thus SLSNC∗
(while NP-hard) is in FPT for parameter p. We also show that, for any other class C (i.e.,
any class which is not just a subset of C∗ ∪ Cλ for some constant λ), the problem SLSNC is
W[1]-hard for parameter p. In other words, if the class of demand graphs includes arbitrarily
large non-stars, then the problem is W[1]-hard parameterized by the number of demands.

More formally, we prove the following theorems.

I Theorem 3. The unit-length arbitrary-cost SLSN problem with parameter p is in XP,
and it can be solved in nO(p4) time.

By “unit-length arbitrary-cost” we mean that the length l(e) = 1 for all edges e ∈ E,
while the cost c is arbitrary. To prove this theorem, we first prove a structural lemma which
shows that the optimal solution must be the union of several lowest cost paths with restricted
length (these paths may be between steiner nodes, but we show that there cannot be too
many). Then we just need to guess all the endpoints of these paths, as well as all the lengths
of these paths. We prove that there are only nO(p4) possibilities, and the running time is
also nO(p4). The algorithm and proof is in Section 3.1.

I Theorem 4. The unit-length arbitrary-cost SLSNC∗ problem is FPT for parameter p.

As mentioned, SLSNC∗ is exactly the same as SLST, so we use a folklore reduction
between SLST and DST in Section 3.2 to prove this theorem.

I Theorem 5. If C is a recursively enumerable class, and C * Cλ ∪ C∗ for any constant λ,
then SLSNC is W[1]-hard for parameter p, even in the unit-length and unit-cost case.

Many W[1]-hardness results for network design problems reduce from the Multi-
Colored Clique (MCC) problem, and ours are no exception. We reduce from MCC
to SLSNC′ , where C′ is a specific subset of C which has some particularly useful properties,
and which we show must exist for any such C. Since C′ ⊆ C, this will imply the theorem.
The reduction is in Section 4.2.

All of the above results are in the unit-length setting. We extend both our upper bounds
and hardness results to handle arbitrary lengths, but with some extra complications. If
p = 1 (there is only one demand), then with arbitrary lengths and arbitrary costs the SLSN
problem is equivalent to the Restricted Shortest Path problem, which is known to be
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NP-hard [15]. Therefore we can no longer hope for a polynomial time exact solution when
p = 1, and thus cannot hope for an FPT algorithm (with parameter p). So we change our
notion of “easy” from “solvable in FPT” to “arbitrarily approximable in FPT”: we show
(1 + ε)-approximation algorithms for the easy cases, and prove that there is no

( 5
4 − ε

)
-

approximation algorithm for the hard cases in f(p) · poly(n) time for any function f . We
discuss these results in Section 5.

I Theorem 6. For any constant λ > 0, there is a fully polynomial time approximation
scheme (FPTAS) for the arbitrary-length arbitrary-cost SLSNCλ problem.

I Theorem 7. There is a (1 + ε)-approximation algorithm in O(4p · poly(nε )) time for the
arbitrary-length arbitrary-cost SLSNC∗ problem.

For both upper bounds, we use basically the same algorithm as in the unit-length
arbitrary-cost case, with some changes inspired by the (1 + ε)-approximation algorithm for
the Restricted Shortest Path problem [17].

Our next theorem is analogous to Theorem 5, but since costs are allowed to be arbitrary
we can prove stronger hardness of approximation (under stronger assumptions).

I Theorem 8. Assume that (randomized) Gap-Exponential Time Hypothesis (Gap-ETH,
see [4]) holds. Let ε > 0 be a small constant, and C be a recursively enumerable class where
C * Cλ ∪ C∗ for any constant λ. Then, there is no

( 5
4 − ε

)
-approximation algorithm in

f(p) · nO(1) time for SLSNC for any function f , even in the unit-length and polynomial-cost
case.

Note that this theorem uses a much stronger assumption (Gap-ETH rather than W[1]
6= FPT), which assumes that there is no (possibly randomized) algorithm running in 2o(n)

time that can distinguish whether a 3SAT formula is satisfiable or at most a (1− ε)-fraction
of its clauses can be satisfied. This enables us to utilize the hardness result for a generalized
version of the MCC problem from [7], which will allow us to modify our reduction from
Theorem 5 to get hardness of approximation.

2.1 Relationship to [11]
As mentioned, our results and techniques are strongly motivated and influenced by the work of
Feldmann and Marx [11], who proved similar results in the directed setting. Informally, they
showed that Directed Steiner Network is in FPT if the demand graph is transitively
equivalent to an “almost-caterpillar”, and otherwise it is W[1]-hard. Since “transitively
equivalent to an almost-caterpillar” is a complex and subtle class, this showed that the
tractability of DSN exhibits interesting behavior. Our results, on the other hand, show that
SLSN is extraordinarily hard: there simply are not any algorithms possible for demand graphs
that are even a little bit complex, despite the folklore relationships between directed settings
and length-bounded settings. Thus our hardness proof is significantly more complicated than
the reduction in [11], despite sharing some ideas.

The main case of the hardness reduction of [11] (which, like our reduction, is from MCC)
is when the demand graph is a 2-by-k complete bipartite graph (i.e., two stars with the same
leaf set). For this case, their reduction from MCC uses one star to control the choice of
edges in the clique and another star to control the choice of vertices in the clique. They set
this up so that if there is a clique of the right size then the “edge demands” and the “vertex
demands” can be satisfied with low cost by making choices corresponding to the clique, while
if no such clique exists then any way of satisfying the two types of demands simultaneously
must have larger cost.
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The 2-by-k complete bipartite graph is also a hard demand graph in our setting, and the
same reduction from [11] can be straightforwardly modified to prove this (this appears as one
of our cases). However, we prove that far simpler demand graphs are also hard. Most notably,
the “main” case of our proof is when the demand graph is a single star together with one
extra edge. Since we have only a single star in our demand graph, we cannot have two “types”
of demands (vertex demands and edge demands) in our reduction. So we instead use the star
to correspond to “edge demands” and use the single extra edge to simultaneously simulate
all of the “vertex demands”. This makes our reduction significantly more complicated.

With respect to upper bounds, the algorithm of [11] is quite complex in part due to the
complexity of the demand graphs that it must solve. Our hardness results for SLSN imply
that we need only concern ourselves with demand graphs that are star or have constant size.
The star setting is relatively simple due to a reduction to DST, but it is not obvious how
to use any adaptation of [11] (or the earlier [10]) to handle a constant number of demands
for SLSN. Our algorithm ends up being relatively simple, but requires a structural lemma
which was not necessary in the DSN setting.

3 Algorithms for Unit-Length Arbitrary-Cost SLSN

In this section we discuss the “easy” cases of SLSN. We first present an XP algorithm for
SLSN in Section 3.1. In Section 3.2, we describe a reduction from SLSN with star demand
graphs to DST, which gives an FPT algorithm.

3.1 The XP algorithm
The XP algorithm for Theorem 3 relies on the following structural lemma, which allows us
to limit the structure of the optimal solution and finally find it out. Note that this lemma
works not only for the unit-length case, but also for the arbitrary-length case.

I Lemma 9. In any feasible solution S ⊆ E of the SLSN problem, there exists a way to
assign a path Pi between si and ti in S for each demand {si, ti} ∈ H such that:

For each i ∈ [p], the total length of Pi is at most L and there is no cycle in Pi.
For each i, j ∈ [p] and u, v ∈ Pi ∩ Pj, the paths between u and v in Pi and Pj are the
same.

Proof. We give a constructive proof. Let m = |S| and S = {e1, . . . , em}. We first want to
modify the lengths to ensure that there is always a unique shortest path. Let ∆ denote the
minimum length difference between any two subsets of S with different total length, i.e.,

∆ = min
A,B⊆S,

∑
e∈A

l(e) 6=
∑

e∈B
l(e)

∣∣∣∣∣∑
e∈A

l(e)−
∑
e∈B

l(e)

∣∣∣∣∣ .
We create a new length function g where g(ei) = l(ei) + ∆ · 2−i. Note that ∆ is always
non-zero for any S which has at least 2 edges, and the problem is trivial when |S| = 1.

We now show that any two paths have different lengths under g. Consider any two
different paths Px and Py. If

∑
e∈Px l(e) 6=

∑
e∈Py l(e), then without loss of generality we

assume
∑
e∈Px l(e) <

∑
e∈Py l(e). Then

∑
e∈Px

g(e) ≤
∑
e∈Px

l(e) +
m∑
i=1

∆ · 2−i <
∑
e∈Px

l(e) + ∆ ≤
∑
e∈Py

l(e) <
∑
e∈Py

g(e). (1)
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Algorithm 1 Unit-length arbitrary-cost SLSN.
Let M ←

∑
e∈E c(e) and S ← E

for Q ⊆ V where |Q| ≤ p(p− 1) do
Q′ ← Q ∪ (

⋃p
i=1{si, ti})

for E′ ⊆ {{u, v} | u, v ∈ Q′, u 6= v} and l′ : E′ → [L] do
T ← ∅
for {u, v} ∈ E′ do

T ← T ∪ {the lowest cost path between u and v with length at most l′({u, v})}
// if such path does not exist, T remains the same

end for
if T is a feasible solution and

∑
e∈T l

′(e) < M then
M ←

∑
e∈T c(e) and S ← T

end if
end for

end for
return S

Otherwise, if
∑
e∈Px l(e) =

∑
e∈Py l(e), then∑

e∈Px

g(e)−
∑
e∈Py

g(e) =
∑

i:ei∈Px

∆ · 2−i −
∑

i:ei∈Py

∆ · 2−i 6= 0.

Therefore in both cases Px and Py have different lengths under g.
For each demand {si, ti} ∈ H, we let Pi be the shortest path between si and ti in S

under the new length function g. Because any two paths under g have different length, the
shortest path between each {si, ti} ∈ H is unique. In addition, because these are shortest
paths and edge lengths are positive, they do not contain any cycles.

For each i ∈ [p], we can see that Pi is also one of the shortest paths between si and ti
under original length function l. This is because in equation (1) we proved that a shorter
path under length function l is still a shorter path under length function g. Since S is a
feasible solution, the shortest path between si and ti in S must have length at most L. Thus
for each i ∈ [p], we have

∑
e∈Pi l(e) ≤ L.

For any two different paths Pi and Pj , let u, v ∈ Pi ∩ Pj . If the subpath of Pi between u
and v is different from the subpath of Pj between u and v, then by the uniqueness of shortest
paths under g we know that either Pi or Pj is not a shortest path (since one of them could
be improved by changing the subpath between u and v). This contradicts our definition of
Pi and Pj , and hence they must use the same subpath between u and v. J

Lemma 9 implies that any two paths Pi, Pj in the optimal solution are either disjoint, or
share exactly one (maximal) subpath. Since there are only p demands, the total number
of shared subpaths is at most

(
p
2
)
. Therefore we can solve the unit-length arbitrary-cost

SLSNCλ by guessing these subpaths.
Informally, we guess the set of endpoints of all the “maximal overlapping subpaths” (Q),

guess how these endpoints are paired up to create the distinct subpaths (E′), guess the length
of each subpath, and then find the lowest cost path that connects the endpoints of each
guessed subpath and is within the guessed length. The full algorithm is given as Algorithm 1.

I Claim 10. The running time of Algorithm 1 is nO(p4).
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Proof. Clearly there are at most np(p−1) possibilities for Q, and for each Q there are
at most 2(p(p−1)+2p)2 possible sets E′ and at most L(p(p−1)+2p)2 possible l′. Since we
assume unit edge lengths, we can use the Bellman-Ford algorithm to find the lowest cost
path within a given length bound in polynomial time. Checking feasibility also takes
polynomial time using standard shortest path algorithms. Thus, the running time is at most
np(p−1) · 2(p(p+1))2 · n(p(p+1))2 · poly(n). J

Proof of Theorem 3

By Claim 10, the running time of Algorithm 1 is nO(p4). Now we will prove correctness. The
algorithm always returns a feasible solution, because we replace S by T only if T is feasible,
and thus S is always a feasible solution. Therefore, we only need to show that this algorithm
returns a solution with cost at most the cost of the optimal solution.

Let the optimal solution be S∗. We assign P ∗i for all i ∈ [p] as in Lemma 9. Recall that
path P ∗i and P ∗j can share at most one (maximal) subpath for each i, j ∈ [p] where i 6= j.
Let Q∗ be the endpoint set of the (maximal) subpaths which are shared by some P ∗i and P ∗j ,
and let Q′∗ = Q∗ ∪

⋃p
i=1{si, ti}.

We can see that the optimal solution S∗ can be partitioned to a collection of paths by
Q∗. We use E′∗ to represent whether two vertices in Q′∗ are “adjacent” on some path P ∗i :
for any u, v ∈ Q′∗ where u 6= v, the set E′∗ contains {u, v} if and only if there exists i ∈ [p]
such that u, v ∈ P ∗i , and there is no vertex w ∈ Q′∗ \ {u, v} which is in the subpath between
u and v in P ∗i . For each {u, v} ∈ E′∗, let P ∗{u,v} be the subpath between u and v on path
P ∗i . This is well defined because by Lemma 9 the subpath is unique. We define l′∗({u, v}) as
the length of P ∗{u,v} for each {u, v} ∈ E′∗

Note that for any {u, v} 6= {u′, v′} ∈ E′∗, we also know that P ∗{u,v} and P ∗{u′,v′} are
edge-disjoint. To see this, assume that they do share an edge, and let u′′ and v′′ be the
endpoints of the (maximal) shared subpath between P ∗{u,v} and P ∗{u′,v′}. Then u′′ and v′′ are
both in Q′∗, and at least one of them is in Q′∗ \ {u, v} or in Q′∗ \ {u′, v′}, which contradicts
our definition of E′∗.

Since the algorithm iterates over all possibilities for Q, E′ and l′, there is some iteration
in which Q = Q′∗, E′ = E′∗, and l′ ≡ l′∗. We will show that the algorithm also must find an
optimal feasible solution in this iteration.

For each i ∈ [p], the path P ∗i is partitioned to edge-disjoint subpaths by Q′∗. Let qi
be the number of subpaths, and let the endpoints be si = vi,0, vi,1, . . . , vi,qi−1, vi,qi = ti.
We further let these subpaths be P ∗{si,vi,1}, P

∗
{vi,1,vi,2}, . . . , P

∗
{vi,qi−1,ti}. By the definition of

l′∗, for each j ∈ [qi], there must be a path between vi,j−1 and vi,j with length at most
l′∗({vi,j−1, vi,j}) in graph G. Thus after the algorithm visited {vi,j−1, vi,j} ∈ E′∗, the edge
set T must contains a path between u and v with length at most l′∗({vi,j−1, vi,j}). Therefore
we know that the edge set T in this iteration contains a path between si and ti with length∑qi

j=1 l
′∗({vi,j−1, vi,j}) ≤ L, and thus it is a feasible solution.

Let MinCost(u, v, d) be the lowest cost for a path between u and v with distance at most
d in graph G, then the total cost of this solution is

∑
{u,v}∈E′∗MinCost(u, v, l′∗({u, v})).

Moreover, for each {u, v} ∈ E′∗ and {u′, v′} ∈ E′∗ with {u, v} 6= {u′, v′}, the paths P ∗{u,v}
and P ∗{u′,v′} are edge-disjoint, and each P ∗{u,v} has cost at least MinCost(u, v, l′∗({u, v})).
Thus the cost of the optimal solution is at least

∑
{u,v}∈E′∗MinCost(u, v, l′∗({u, v})), and

so the algorithm outputs an optimal solution and it runs in polynomial time. J

I Corollary 11. The arbitrary-length unit-cost SLSN problem with parameter p is in XP.
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Proof. We can use the same technique, but instead of guessing the length l′ we guess the
cost c′, and then find shortest path under cost bound c′. We can also use Bellman-Ford
algorithm in this step. J

3.2 Star Demand Graphs (SLSNC∗)

We prove Theorem 4 by reducing SLSNC∗ to DST, which has a known FPT algorithm [10].
This reduction is essentially folklore, but is included in Section 3.2 of the full paper [2]
for completeness. This reduction transforms a unit-length arbitrary-cost SLSNC∗ instance
(G, c, l ≡ 1, {{s1, t1}, . . . , {sp, tp}}, L) into a DST instance by creating a layered graph G′

with L+ 1 layers. Each layer includes |V | vertices (one for each vertex in G). Letting v(i)

represent vertex v in layer i, each vertex v(i−1) (for i ∈ [1, L]) is connected to vertex v(i) with
a 0-cost edge (v(i−1), v(i)). Each such v(i−1) is also connected to each vertex u(i) such that
(v, u) ∈ E(G) by an edge (v(i−1), u(i)) with cost c(u, v). For the demands of the DST instance,
we require the demand-source s = s1, . . . sp of the SLSNC∗ instance in layer 0 (i.e., s(0)) to be
connected to layer-L endpoints t(L)

1 , . . . t
(L)
p , giving us an instance (G′, c′, s(0), t

(L)
1 , . . . , t

(L)
p )

of DST. We solve this DST instance using the algorithm of [10] and construct a solution
to the SLSNC∗ by including each edge (v, u) such that edge (v(i−1), u(i)) for some layer i
appears in the DST solution.

4 W[1]-Hardness for Unit-Length Unit-Cost SLSN

In this section we prove our main hardness result, Theorem 5. We begin with some
preliminaries, then give our reduction and proof.

4.1 Preliminaries

We prove Theorem 5 by constructing an FPT reduction from the Multi-Colored Clique
(MCC) problem to the unit-length unit-cost SLSNC problem for any C * Cλ ∪C∗. We begin
with the MCC problem.

I Definition 12 (Multi-Colored Clique). Given a graph G = (V,E), a number k ∈ N
and a coloring function c : V → [k]. The objective of the MCC problem is to determine
whether there is a clique T ⊆ V in G with |T | = k where c(x) 6= c(y) for all x, y ∈ T .

For each i ∈ [k], we define Ci = {v ∈ V : c(v) = i} to be the vertices of color i. We can
assume that the graph does not contain edges where both endpoints have the same color,
since those edges do not affect the existence of a multi-colored clique. It has been proven
that the MCC problem is W[1]-complete.

I Theorem 13 ([12]). The MCC problem is W[1]-complete with parameter k.

We first define a few important classes of graphs. These are the major classes that fall
outside of C∗ ∪ Cλ, so we will need to be able to reduce MCC to SLSN where the demand
graphs are in these classes, and then this will allow us to prove the hardness for general
C * C∗ ∪ Cλ. For every k ∈ N, we define the following graph classes. Each of the first four
classes is just one graph up to isomorphism, but classes 5 and 6 are sets of graphs, so we use
the notation H instead of H for these classes. Note that each of the first three classes is just
a star with an additional edge, so we use ∗ to make this clear.
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1. H∗k,0: a star with k(k − 1) leaves and an edge with both endpoints not in the star.
2. H∗k,1: a star with (k(k − 1) + 1) leaves and an edge {u, v} where u is a leaf of the star

and v is not in the star.
3. H∗k,2: a star with (k(k − 1) + 2) leaves, and an edge {u, v} where both u and v are leaves

of the star.
4. Hk,k: k(k − 1) + 1 edges where all endpoints are different (i.e., a matching of size

k(k − 1) + 1).
5. H2,k: the class of graphs that have exactly k(k − 1) + 2 vertices, and contain a 2 by

k(k − 1) complete bipartite subgraph (not necessarily an induced subgraph).
6. Hk: the class of graphs that contain at least one of the graphs in previous five classes as

an induced subgraph.

We first prove the following lemma.

I Lemma 14. For any k ≥ 2, if a graph H is not a star and H has at least 8k10 edges,
then H ∈ Hk, and we can find an induced subgraph which is isomorphic to a graph in
{H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪ H2,k ∪Hk in poly(|H|) time.

Proof. We give a constructive proof. We first claim that either there is a vertex in H which
has degree at least 2k4 or there is an induced matching in H of size k2. Suppose that all
vertices have degree less than 2k4. Then we can create an induced matching by adding an
arbitrary edge {u, v} ∈ H to a edge set M , removing all vertices that are adjacent to either
u or v from H , and repeating until there are no more edges in H . In each iteration we reduce
the total number of edges by at most 2 · 2k4 · 2k4, thus |M | ≥ 8k10

8k8 = k2. Since when we add
an edge {u, v} we also remove all vertices adjacent to u or v, every future edge we add to M
will have endpoints which are not adjacent to u or v, and thus M is an induced matching of
H with size k2.

If H has an induced matching of size k2, then H ∈ Hk because it contains Hk,k as an
induced subgraph, and thus we are done.

Otherwise, H has a vertex s with degree at least 2k4. Let S be the neighbors of s. If
there is any vertex other than s that is adjacent to at least k(k − 1) vertices in S, then H
contains a 2 by k(k − 1) complete bipartite subgraph, so it contains an induced subgraph
H ′ ∈ H2,k and thus is in Hk.

So suppose that there is no vertex other than s that is adjacent to at least k(k − 1)
vertices in S. Consider the case that there is no edge between any pair of vertices in S; then,
because H is not a star, there must be an edge {u, v} ∈ H with at least one of u, v not in
S ∪ {s}. Since both u and v are adjacent to at most k(k− 1) vertices in S, there are at least
k4 − 2 · k(k − 1) ≥ k(k − 1) vertices in S that are not adjacent to either u or v. Let the set
of these vertices be T . Then the induced subgraph on vertex set T ∪ {s, u, v} is either H∗k,0
or H∗k,1, depending on whether {u, v} ∩ T is an empty set.

Now the only remaining case is that there is at least one edge in H with both endpoints
in S. In this case, we can find H∗k,2 as an induced subgraph as follows: We first let S0 = S.
Then, in each iteration t we let vt be a vertex in St−1 that is adjacent to the fewest number of
other vertices in St−1. We add vt to the vertex set T , and then delete vt and all the vertices
in St−1 that are adjacent to vt to get St. This process repeats until we have |T | = k(k − 1).

We can use induction to show that, after each iteration t ≤ k(k − 1), there is always at
least one edge in H where both endpoints are in St. The base case is t = 0, where such
an edge clearly exists. Assume the claim holds for iteration t − 1, consider the iteration
t ≤ k(k − 1). If vt is not adjacent to any other vertex in St−1, then removing vt does not
affect the fact that there is at least one edge left, and thus the claim still holds. Otherwise,
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vt is adjacent to at least one vertex in St−1. Thus, each vertex in St−1 must be adjacent
to at least one vertex in St−1. Since there is no vertex other than s which is adjacent to at
least k(k − 1) vertices in S, we know that at most k2 vertices are deleted in each iteration,
and thus there are still at least 2k4 − k2 · k(k − 1) ≥ k4 vertices in St−1. Because removing
vt and its neighbors can only affect the degree of at most k2(k − 1)2 vertices in St−1, there
must still be an edge left between the vertices in St.

Let {u, v} be one of the edges in H where both endpoints are in St, then the induced
subgraph on vertex set T ∪ {s, u, v} is H∗k,2. Thus H ∈ Hk.

It is easy to see that all the previous steps directly find an induced subgraph which is
isomorphic to a graph in {H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪ H2,k ∪ Hk and takes polynomial time,
thus the lemma is proved. J

4.2 Reduction
In this subsection, we will prove the following reduction theorem.

I Theorem 15. Let (G = (V,E), c) be an MCC instance with parameter k, and let H ∈ Hk
be a demand graph. Then a unit-length unit-cost SLSN instance (G′, L) with demand graph
H can be constructed in poly(|V ||H|) time, and there exists a function g (computable in time
poly(|H|)) such that the MCC instance has a clique with size k if and only if the SLSN
instance has a solution with cost g(H).

In order to prove this theorem, we first introduce a construction for any demand graph
H ∈ {H∗k,0, H∗k,1, H∗k,2, Hk,k} ∪H2,k, and then use the instances constructed in these cases to
construct the instance for general H ∈ Hk.

The construction for H ∈ H2,k is similar to [11], which proves the W[1]-hardness of the
DSN problem. We change all the directed edges in their construction to undirected, and add
some edges and dummy vertices. This construction is presented in Appendix A.3. To handle
H∗k,0, H∗k,1, H∗k,2, and Hk,k, we need to change this basic construction due to the simplicity
of the demand graphs. Because the constructions for these four graphs are quite similar, we
first introduce the construction for H∗k,0 in Section 4.2.1, and then show how to modify it for
H∗k,1, H∗k,2, and Hk,k in Appendix A.2.

4.2.1 Case 1: H∗
k,0

Given an MCC instance (G = (V,E), c) with parameter k, we create a unit-length and
unit-cost SLSN instance (G′, L) with demand graph H∗k,0 as follows.

We first create a graph G∗k with integer edge lengths (we will later replace all non-unit
length edges by paths). See Figure 1 for an overview of this graph. The vertex set V ∗k
contains 6 layers of vertices and another group of vertices. The first layer V1 is just a root
r. The second layer V2 contains a vertex z{i,j} for each 1 ≤ i < j ≤ k, so there are

(
k
2
)

vertices. The third layer V3 contains a vertex ze for each e ∈ E, so there are |E| vertices.
The fourth layer V4 contains a vertex xv,j for each v ∈ V and j ∈ [k] with j 6= c(v), so there
are |V | · (k − 1) vertices. The fifth layer V5 again contains a vertex x′v,j for each v ∈ V and
j ∈ [k] with j 6= c(v). The sixth layer V6 contains a vertex li,j for each i, j ∈ [k] where i 6= j,
so there are k(k − 1) vertices. Finally, we have a vertex yi for i = 0, . . . , k, so there are k + 1
vertices in the set Vy.

Let fi : N→ N be the function defined by fi(j) = j + 1 if j + 1 6= i and fi(j) = j + 2 if
j+1 = i. This function gives the next integer after j, but skips i. Let f ti (j) = fi(fi(. . . fi(j)))
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denote this function repeated t times. Recall that Ci = {v ∈ V : c(v) = i}. The edge set E∗k
contains following edges, with lengths as indicated:

E1 = {{r, z{i,j}} | 1 ≤ i < j ≤ k}, each edge in E1 has length 2.
E2 = {{z{c(u),c(v)}, ze} | e = {u, v} ∈ E}, each edge in E2 has length 1.
E3 = {{ze, xu,c(v)} | e = {u, v} ∈ E}, each edge in E3 has length 2k2 − 2. Note that if
{ze, xu,c(v)} ∈ E3, then {ze, xv,c(u)} ∈ E3
E4 = {{xv,j , x′v,j} | v ∈ V, j 6= c(v)}, each edge in E4 has length 1.
E5 = {{x′v,j , lc(v),j} | v ∈ V, j 6= c(v)}, each edge in E5 has length 2k2 − 2.
Eyx = {{yi−1, xv,fi(0)} | i ∈ [k], v ∈ Ci}, each edge in Eyx has length 4.
Exx = {{x′v,j , xv,fc(v)(j)} | v ∈ V, j ∈ [k] \ {c(v), fk−1

c(v) (0)}}, each edge in Exx has length 3.
Exy = {{x′

v,fk−1
i

(0), yi} | i ∈ [k], v ∈ Ci}, each edge in Exy has length 3.

Let G′ be the graph obtained from G∗k by replacing each edge e ∈ E∗k by a length(e)-hop
path. We create an instance of SLSN on G′ by setting the demands to be {r, li,j} for all
i, j ∈ [k] where i 6= j, as well as {y0, yk}. Note that these demands form a star with k(k − 1)
leaves and an edge with both endpoints not in the star, so it is isomorphic to H∗k,0. We set
the distance bound L to be 4k2.

This construction clearly takes poly(|V ||H∗k,0|) time. Let g(H∗k,0) = 4k4− 4k3 + 3
2k

2 + 5
2k,

which is clearly computable in poly(H∗k,0) time. We will first prove the easy direction in the
correctness of the construction.

I Lemma 16. If there is a multi-colored clique of size k in G, then there is a solution S for
the SLSN instance (G′, L) with demand graph H∗k,0, and the total cost of S is g(H∗k,0).

Proof. Let v1, . . . , vk be a multi-colored clique of size k in G, where vi ∈ Ci for all i ∈ [k].
We create a feasible solution S to our SLSN instance, which contains following paths in G′
(i.e., edges in G∗k):
{r, z{i,j}} for each 1 ≤ i < j ≤ k. The total cost of these edges is 2 ·

(
k
2
)

= k2 − k.
{z{i,j}, z{vi,vj}} for each 1 ≤ i < j ≤ k. The total cost of these edges is

(
k
2
)

= k2−k
2 .

{z{vi,vj}, xvi,j} and {z{vi,vj}, xvj ,i} for each 1 ≤ i < j ≤ k. The total cost of these edges
is 2 · (2k2 − 2) ·

(
k
2
)

= 2k4 − 2k3 − 2k2 + 2k.
{xvi,j , x′vi,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2 ·

(
k
2
)

= k2−k.
{x′vi,j , li,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2·(2k2−2)·

(
k
2
)

=
2k4 − 2k3 − 2k2 + 2k.
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{yi−1, xvi,fi(0)} for each i ∈ [k]. The total cost of these edges is 4k.
{x′vi,j , xvi,fi(j)} for each i ∈ [k] and j ∈ [k] \ {i, fk−1

i (0)}. The total cost of these edges is
3 · k(k − 2) = 3k2 − 6k.
{x′

vi,f
k−1
i

(0), yi} for each i ∈ [k]. The total cost of these edges is 3k.

Therefore, the total cost is k2 − k + k2−k
2 + 2k4 − 2k3 − 2k2 + 2k + k2 − k + 2k4 − 2k3 −

2k2 + 2k + 4k + 3k2 − 6k + 3k = 4k4 − 4k3 + 3
2k

2 + 5
2k = g(H∗k,0).

Now we show the feasibility of this solution. For each i, j ∈ [k] where i 6= j, the path
between r and li,j is r – z{i,j} – z{vi,vj} – xvi,j – x′vi,j – li,j . The length of this path is
2 + 1 + 2k2 − 2 + 1 + 2k2 − 2 = 4k2, thus it is a feasible path.

The path between y0 and yk is y0 – xv1,2 – x′v1,2 – xv1,3 – x′v1,3 – . . . – xv1,k – x′v1,k
– y1 –

xv2,1 – x′v2,1 – xv2,3 – x′v2,3 – . . . – y2 – . . . – yk. The length of this path is (4 + 1 · (k − 1) +
3 · (k − 2) + 3) · k = 4k2, thus it is a feasible path. J

For the other direction, we begin the proof with a few claims. We first show that the only
feasible way to connect r and li,j is to pick one edge between every two adjacent layers. We
can also see in Figure 1 that for each i ∈ [k], there are |Ci| disjoint “zig-zag” paths between
yi−1 and yi, and each path corresponds to a vertex with color i. We will also show that the
only feasible way to connect y0 and yk is to pick one zig-zag path between each yi−1 and yi.
The proof of these claims are in Appendix A.1. From these claims we can then prove that, if
the cost of the optimal solution is at most g(H∗k,0), then there is a multi-colored clique in G.

I Claim 17. For all i, j ∈ [k] where i 6= j, any path Pi,j between r and li,j with length at
most 4k2 must be of the form r – z{i,j} – z{u,v} – xu,j – x′u,j – li,j, where u ∈ Ci, v ∈ Cj
and {u, v} ∈ E.

I Claim 18. Any path Py between y0 and yk with length at most 4k2 can be divided to k
subpaths as follows. For each i ∈ [k], there is a subpath Pvi between yi−1 and yi with length 4k,
of the form yi−1−xvi,fi(0)−x′vi,fi(0)−xvi,f2

i
(0)−x′vi,f2

i
(0)−· · ·−xvi,fk−1

i
(0)−x

′
vi,f

k−1
i

(0)−yi,
where vi ∈ Ci.

Now, we can prove the other direction in the correctness of the construction.

I Lemma 19. Let S be an optimal solution for the SLSN instance (G′, L) with demand
graph H∗k,0. If S has cost at most g(H∗k,0) = 4k4−4k3 + 3

2k
2 + 5

2k, then there is a multi-colored
clique of size k in G.

Proof. For each i, j ∈ [k] with i 6= j, let Pi,j be a (arbitrarily chosen) path in S which
connects r and li,j with length at most L = 4k2. Let P = {Pi,j | i, j ∈ [k], i 6= j} be the
set of all these paths. We also let Py be a (arbitrary) path in S of length at most L which
connects y0 and yk.

From Claim 18, Py can be divided to k subpaths, each of which corresponds to a vertex
vi. We will show that v1, . . . , vk form a clique in G (i.e., for each 1 ≤ i < j ≤ k, we have
{vi, vj} ∈ E).

We first prove that these paths must share certain edges due to the cost bound of the
optimal solution. From Claim 17, we know that each Pi,j costs exactly 2 + 1 + 2k2 − 2 +
1 + 2k2 − 2 = 4k2. In addition, from the form of Pi,j we can also see that these paths are
almost disjoint, except that Pi,j and Pj,i may share a length 2 edge {r, z{i,j}} ∈ E1 and
a length 1 edge {z{i,j}, ze} ∈ E2. Therefore, in order to satisfy the demands between r

and all of the li,j ’s, the total cost of the edges in S ∩ (E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5) is at least
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4k2 · k(k− 1)−
(
k
2
)
· (2 + 1) = 4k4− 4k3− 3

2k
2 + 3

2k, even if every Pi,j and Pj,i do share edge
{r, z{i,j}} and edge {z{i,j}, ze}.

We now calculate the cost of the edges in S∩ (Eyx∪Exx∪Exy). From Claim 18, the total
cost of edges in Py∩(Eyx∪Exx∪Exy) is at least (4+3·(k−1)+3)·k = 3k2+k. Thus, the total
cost is already at least

(
4k4 − 4k3 − 3

2k
2 + 3

2k
)

+(3k2 +k) = 4k4−4k3 + 3
2k

2 + 5
2k = g(H∗k,0),

so S cannot contain any edge which has not been counted yet.
Therefore, every edge in Py ∩ E4 must appear in some path in P . In fact, by the form of

the paths in P , we can see that for each i, j ∈ [k] where i 6= j, the edge {xvi,j , x′vi,j} ∈ Py∩E4
can only appear in path Pi,j , rather than any other Pi′,j′ . Thus xvi,j is in path Pi,j , and
similarly xvj ,i is in path Pj,i. Recall that Pi,j and Pj,i must share an edge {z{i,j}, ze} for
some e ∈ E because of the cost bound, and z{vi,vj} is the only vertex which adjacent to both
xvi,j and xvj ,i, we can see that e can only be {vi, vj}. Therefore {vi, vj} ∈ E, which proves
the lemma. J

4.2.2 Cases 2: H∗
k,1, 3: H∗

k,2, 4: Hk,k, and 5: H2,k

For Cases 2, 3, and 4, we can use essentially the same reduction as in Case 1. For Case 2, we
just need to add a new demand {r, y0}, and do some extra analysis to show that adding this
demand does not change anything. For Case 3, we similarly add another demand {r, yk}.
Case 4 requires only adding another layer of vertices and edges before the root r. The details
are in Appendix A.2. Case 5 is a variant of the reduction in [11], and we prove this case in
Appendix A.3.

4.2.3 Case 6: Hk

We now want to construct an SLSN instance for a demand graph H ∈ Hk from an MCC
instance (G = (V,E), c) with parameter k; since all other cases have been handled, this will
complete the proof of Theorem 15. By the definition of Hk, for some t ∈ [5] there is a graph
H(t) of Case t that is an induced subgraph of H. We use Lemma 14 to find the graph H(t).
Let (G(t), L) be the SLSN instance obtained by applying our reduction for Case t to the
MCC instance (G, c), and let the corresponding function be g(t).

We now want to transform the SLSN instance (G(t), L) with demand graph H(t) into
a new SLSN instance (G′, L) with demand graph H, so that instance (G(t), L,H(t)) has
a solution with cost g(t)(H(t)) if and only if instance (G′, L,H) has a solution with cost
g(H) = g(t)(H(t))+L · (|H|− |H(t)|). If there is such a construction which runs in polynomial
time, then there is a multi-colored clique of size k in G if and only if instance (G′, L,H) has
a solution with cost g(H). This will then imply Theorem 15.

The graph G′ is basically just G(t) with some additional vertices and edges from H \H(t).
For each vertex v in H but not in H(t), we add a new vertex v to G′. For each edge
{u, v} ∈ H \H(t), we add an L-hop path between u and v to G′.

The construction still takes poly(|V ||H|) time, because the construction for the previous
cases takes poly(|V ||H(t)|) time and the construction for Case 6 takes poly(|G(t)||H|) time.
Here |H(t)| ≤ |H|, and we know that |G(t)| is polynomial in |V | and |H(t)|.

I Lemma 20. SLSN instance (G(t), L,H(t)) has a solution with cost g(t)(H(t)) if and only
if instance (G′, L,H) has a solution with cost g(H) = g(t)(H(t)) + L · (|H| − |H(t)|).

Proof. If instance (G(t), L,H(t)) has a solution with cost g(t)(H(t)). Let the solution be S(t).
For each e = {u, v} ∈ H \H(t), let the new L-hop path between u and v in G′ be Pe. Then
S(t) ∪

⋃
e∈H\H(t) Pe is a solution to G′ with cost g(t)(H(t)) + L · (|H| − |H(t)|).
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If instance (G′, L,H) has a solution with cost g(t)(H(t))+L ·(|H|−|H(t)|), let the solution
be S. Since for each e = {u, v} ∈ H \H(t), the only path between u and v in G′ within the
length bound is the new L-hop path Pe, any valid solution must include all these Pe, which
has total cost L · (|H| − |H(t)). In addition, for each demand {u, v} which is also in H, any
path between u and v in G′ within the length bound will not include any new edge, because
otherwise it will strictly contain an L-hop path, and have length more than L. Therefore,
S \

⋃
e∈H\H(t) Pe is a solution to G(t) with cost g(t)(H(t)). J

4.3 Proof of Theorem 5
If C is a recursively enumerable class, and C * Cλ ∪ C∗ for any constant λ, then for every
k ≥ 2, let Hk be the first graph in C where Hk is not a star and has at least 2k10 edges. The
time for finding Hk is f(k) for some function f . From Lemma 14 we know that Hk ∈ Hk, so
that we can use Theorem 15 to construct the SLSNC instance with demand Hk.

The parameter p = |Hk| of the instance is a function just of k, and the construction time
is FPT from Theorem 15. Therefore this is a FPT reduction from the MCC problem to
the unit-length unit-cost SLSNC problem. Thus Theorem 13 implies that the unit-length
unit-cost SLSNC problem is W[1]-hard for parameter p. J

5 Overview of General Length and Cost Settings

As discussed in Section 2, we extended our results from the unit-length setting to the general
length setting. We defer all detailed results to Section 5 and 6 of the full paper [2], and
instead give only a brief overview of our results and techniques.

5.1 Upper bounds
Recall that we cannot have an exact FPT algorithm for SLSNC∗ and SLSNCλ since even
if there is only a single demand the problem becomes the Restricted Shortest Path
problem, which is known to be NP-hard [15]. But since Restricted Shortest Path
admits an FPTAS [15, 17], it is natural to instead try to give a (1 + ε)-approximation
algorithm for both problems. We show that with some modifications of the algorithms in the
unit-length case, we can give an FPTAS for arbitrary-length arbitrary-cost SLSNCλ , and
can give a (1 + ε)-approximation algorithm in FPT time for arbitrary-length arbitrary-cost
SLSNC∗ .

For SLSNCλ , Lemma 9 still holds, so we can still guess how the paths in the solution
intersect with each other and what the endpoints of maximum shared subpaths are. However,
we cannot guess the length of a subpath in this setting, since there are too many possibilities.
We instead guess the cost of all the subpaths. Because we are aiming to find an approximation
solution, we are allowed to have (1 + ε) error on the cost of each subpath, so this allows us
to reduce the search space. However, this is still not enough: if the space of the possible
values is too large, then log1+ε of it is still too large. So we then use an additional procedure
from [17] which gives valid upper bound U and lower bound L on the optimal solution such
that U/L ≤ n2. This sufficiently decreases the space of possible guesses so that we get a
(1 + ε)-approximation in polynomial time. The full algorithm and analysis are in Section 5.2
of the full paper [2].

For the star demand graph, we cannot do the same reduction as in Section 3.2 because
with arbitrary lengths the natural layered graph used in the reduction to DSN can have
exponential layers. However, similar to Steiner Tree and DST, one can prove that the
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optimal solution for SLSNC∗ is always a tree. Therefore we look at the original FPT
algorithm for Steiner Tree and DST and attempt to modify it to work in our setting.
Given a star demand graph where the center is s and the leaf set is T , both algorithms use
dynamic programming to solve the subproblems f(v,R), which are to find the minimum cost
tree with root v ∈ V that contains R ⊆ T , starting from |R| = 1 to |R| = |T |. The base case
when |R| = 1 is essentially a shortest path algorithm. Then we can build up larger trees
since a tree with more than two leaves can always be partitioned to two subtrees and a path
from the root.

We use a similar approach, first discretizing the possible costs to be powers of (1 + ε).
We define the subproblem d(v, j, R) to be the smallest height of a tree (with the given edge
lengths) such that the root is v, the total cost is at most j, and it contains all vertices in R.
Then, we find the smallest j for which d(s, j, T ) is at most the length bound L, and this j is
actually a good approximation to the optimal solution. The full algorithm and analysis are
in Section 5.3 of the full paper [2].

5.2 Lower bounds

For the lower bound on SLSNC with C * (Cλ∪C∗), the same reduction as in Section 4 already
shows that it is W[1]-hard to obtain a

(
1 + 1

O(p2)

)
-approximation. However, we would like

a stronger hardness of approximation, one which would rule out good approximations (like
we gave for SLSNC∗ and SLSNCλ) even for large p. With some modifications of the cost of
some edges in the instance constructed in Section 4, and a stronger assumption of Gap-ETH,
we can show that there is no ( 5

4 − ε)-approximation for SLSNC which runs in FPT time,
even for the unit-length polynomial-cost setting.

Consider the reduction in Section 4. We showed that if there is a low-cost solution to
the SLSN instance that we created, then the paths satisfying the demands must share some
specific edges with each other, and the existence of these edges implies the existence of a
clique in the given MCC instance. For the polynomial-cost setting, we reduce from a different
problem known as the Multi-Colored Densest k-Subgraph, which is a gap version of
the MCC instance. Under the assumption of Gap-ETH, a corollary of [7] shows that for
any constant 0 < ε < 1, no FPT algorithm can distinguish between the case that there is a
multi-colored k-clique and the case that every subgraph with k vertices has at most ε ·

(
k
2
)

edges. By modifying the cost of some edges and making a slightly delicate inclusion-exclusion
argument, we can show that if the cost of the SLSN solution is not too large then many
edges still need to be shared by different paths, which ensures that a subgraph with k vertices
and ε ·

(
k
2
)
edges must exist. The entire reduction and the correctness proof is in Section 6 of

the full paper [2].
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A Proofs in Section 4

A.1 Proof of Claims in Case 1

A.1.1 Proof of Claim 17
We can see that G∗k is a 6-layer graph with a few additional paths between the fourth layer
and the fifth layer. Thus Pi,j must contain at least one edge between each two adjacent
layers. From the construction of G∗k, all the edges between two adjacent layers have the same
length. If we sum up the length from r to the fourth layer plus the length from the fifth layer
to li,j , it is already 2 + 1 + 2k2 − 2 + 2k2 − 2 = 4k2 − 1. Thus, between the fourth layer and
the fifth layer we can only choose one length 1 edge.

We know that the vertex in the fifth layer must adjacent to li,j , so it must be x′u,j for
some u ∈ Ci. Thus, the edge between the fourth layer and the fifth layer must be {xu,j , x′u,j},
because this is the only length 1 edge adjacent to x′u,j . In addition, the only way to go from
r to xu,j with one edge per layer is to pass through vertex z{i,j} and z{u,v} for some v ∈ Cj
and {u, v} ∈ E. Therefore Pi,j must correspond to an edge {u, v} ∈ E where u ∈ Ci and
v ∈ Cj , and it has form r – z{i,j} – z{u,v} – xu,j – x′u,j – li,j . J

A.1.2 Proof of Claim 18
For the path connecting y0 and yk, we first prove another claim.

I Claim 21. Any path Py between y0 and yk with length at most 4k2 does not contain any
edge in E1 ∪ E2 ∪ E3 ∪ E5.

Proof. We prove the claim by contradiction. If Py contains an edge in E1 ∪E2 ∪E3 ∪E5, it
must contain at least two edges with length 2k2− 2 (one edge to go out of the fourth and the
fifth layer, and another one to go back). Since any edge which has endpoint y0 has length 4
and any edge which has endpoint yk has length 3, the total length 2 ·(2k2−2)+4+3 = 4k2 +3
already exceeds the length bound 4k2, giving a contradiction. J

Since we have Claim 21, it suffices to consider the edge set E4 ∪ Eyx ∪ Exx ∪ Exy. We
can see that E4 ∪ Eyx ∪ Exx ∪ Exy can be partitioned to k|V | paths, where for each i ∈ [k]
and each v ∈ Ci, there is a path Pv which connects yi−1 and yi with length 4k. The path is
yi−1 – xv,fi(0) – x′v,fi(0) – xv,f2

i
(0) – x′

v,f2
i

(0) – . . . – xv,fk−1
i

(0) – x′
v,fk−1

i
(0) – y1. We can see

that these paths are vertex disjoint except for the endpoints y0, y1, . . . , yk.
Therefore, the only way to go from y0 to yk is by passing through y0, y1, . . . , yk one-by-one.

Thus, for each i ∈ [k], Py must contain a subpath Pvi where vi ∈ Ci. Because each of these
subpaths has length 4k, the total cost is already 4k · k = 4k2, which is exactly the length
bound. Therefore, Py can not contain any other edge, which proves the lemma. J

A.2 Case 2, 3, and 4
Cases 2, 3, and 4 are basically the same as Case 1, so we discuss them in the same subsection.

Case 2: H∗
k,1

We use the same G∗k, G′, and L in the construction of the SLSN instance for demand graph
H∗k,0, and also set g(H∗k,1) = 4k4 − 4k3 + 3

2k
2 + 5

2k. The only difference is the demand graph.
Besides the demand of {r, li,j} for all i, j ∈ [k] where i 6= j, and {y0, yk}, there is a new
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demand {r, y0}. Clearly this new demand graph is a star with (k(k − 1) + 1) leaves, and an
edge in which exactly one of the endpoints is a leaf of the star, so it is isomorphic to H∗k,1.

Assume there is a multi-colored clique of size k in G. The paths connecting previous
demands in the solution of the SLSN instance are the same as Case 1. The path between r
and y0 is r – z{1,2} – z{v1,v2} – xv1,2 – y0. All the edges in this path are already in the previous
paths, so the cost remains the same. The length of this path is 2+1+2k2−2+4 = 2k2+5 < 4k2,
which satisfies the length bound.

Assume there is a solution for the SLSN instance (G′, L,H∗k,1) with cost 4k4 − 4k3 +
3
2k

2 + 5
2k. The proof that there exists a multi-colored clique of size k in G is the same as

Case 1.

Case 3: H∗
k,2

As in Case 2, only the demand graph changes. The new demand graph is the same as in
Case 2 but again with a new demand {r, yk}. Since {r, y0} was already a demand, our new
demand graph is a star with (k(k − 1) + 2) leaves (the li,j ’s and y0 and yk), and an edge
between two of its leaves (y0 and yk), which is isomorphic to H∗k,2.

Assume there is a multi-colored clique of size k in G. The paths connecting previous
demands in the solution of the SLSN instance are the same as Case 2. The path between r
and yk is r – z{k−1,k} – z{vk−1,vk} – xvk,k−1 – yk. All the edges in this path are already in the
previous paths, so the cost stays the same. The length of this path is 2 + 1 + 2k2 − 2 + 4 =
2k2 + 5 < 4k2, which satisfies the length bound.

Assume there is a solution for the SLSN instance (G′, L,H∗k,2) with cost 4k4 − 4k3 +
3
2k

2 + 5
2k. The proof that there exists a multi-colored clique of size k in G is the same as

Case 1.

Case 4: Hk,k

In order to get Hk,k as our demand graph, we have to slightly change the construction from
Case 1. We still first make a weighted graph Gk,k = (Vk,k, Ek,k) and then transform it to
the unit-length unit-cost graph G′. For the vertex set Vk,k, we add another layer of vertices
V0 = {l′i,j | i, j ∈ [k], i 6= j} to V ∗k before the first layer V1. For the edge set Ek,k, we include
all the edges in E∗k , but change the length of edges in E1 to length 1. We also add another
edge set E0 = {{l′i,j , r} | i, j ∈ [k], i 6= j}. Each edge in E0 has length 1.

The demands are {l′i,j , li,j} for each i, j ∈ [k] where i 6= j, as well as {y0, yk}. This is a
matching of size k(k − 1) + 1, which is isomorphic to Hk,k. We still set the length bound to
be L = 4k2, and set g(Hk,k) = 4k4 − 4k3 + 2k2 + 2k.

If there is a multi-colored clique of size k in G, the construction for the solution in G′ is
similar to Case 1. For each i, j ∈ [k] where i 6= j, the path between l′i,j and li,j becomes l′i,j –
r – z{i,j} – z{vi,vj} – xvi,j – x′vi,j – li,j (i.e., one more layer before the root r). It is easy to
see that the length bound and size bound are still satisfied.

Assume there is a solution for the SLSN instance (G′, L,Hk,k) with cost 4k4−4k3+2k2+2k.
The proof that there exists a multi-colored clique of size k in G is essentially the same as
Case 1, except the path between l′i,j and li,j has one more layer.

A.3 Case 5: H2,k

In this case, we slightly modify the reduction of [11]. We first change all the edges from
directed to undirected. In addition, in [11] the demand graph is precisely a 2-by-k(k − 1)
bipartite graph, but we also handle the generalization in which there may be more demands
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between vertices on each sides (i.e., the 2-by-k(k − 1) bipartite graph is just a subgraph of
our demands). In order to do this, we add some dummy vertices and some edges.

Given an MCC instance (G = (V,E), c) with parameter k, and a demand graph H ∈ H2,k,
we create a unit-length and unit-cost SLSN instance G′ with demand isomorphic to H as
follows.

We first create a weighted graph G2,k = (V2,k, E2,k). The vertex set V2,k contains 5 layers
of vertices. The first layer V1 is just two roots r1, r2. The second layer V2 contains a vertex
z{i,j} for each 1 ≤ i < j ≤ k, and a vertex yi for each i ∈ [k]. The third layer V3 contains
a vertex ze for each e ∈ E, and a vertex yv for each v ∈ V . The fourth layer V4 contains a
vertex xv,j for each v ∈ V and j 6= c(v). The fifth layer V5 contains a vertex li,j for each
i, j ∈ [k] where i 6= j.

The edge set E2,k contains the following edges:
E11 = {{r1, z{i,j}}, 1 ≤ i < j ≤ k}, each edge in E11 has length 1.
E12 = {{z{c(u),c(v)}, ze} | e = {u, v} ∈ E}, each edge in E12 has length 1.
E13 = {{ze, xu,c(v)} | e = {u, v} ∈ E}, each edge in E13 has length 1. Note that if
{ze, xu,c(v)} ∈ E13, then {ze, xv,c(u)} ∈ E13

E21 = {{r2, yi} | i ∈ [k]}, each edge in E21 has length 1.
E22 = {{yc(v), yv} | v ∈ V }, each edge in E22 has length 1.
E23 = {{yv, xv,j} | v ∈ V, j 6= c(v)}, each edge in E23 has length 1.
Exl = {{xv,j , lc(v),j} | v ∈ V, j 6= c(v)}, each edge in Exl has length 4.
Ell = {{li,j , li′,j′} | i, j, i′, j′ ∈ [k], i 6= j, i′ 6= j′, (i, j) 6= (i′, j′)}, each edge in Ell has
length 7.

We get a unit-length graph G′ from G2,k by replacing every edge e ∈ E2,k by a length(e)-
hop path. Our SLSN instance consists of the graph G′, length bound L = 7, and the
following demands (which will be isomorphic to H). For each r ∈ {r1, r2} and i, j ∈ [k]
with i 6= j, there is a demand between r and li,j (note that these demands form a 2 by
k(k − 1) complete bipartite graph. Let this complete bipartite subgraph be B. For the rest
of the demands, we arbitrarily choose a mapping between V1 = {r1, r2} and the 2-side of
the bipartite graph in H, as well as a mapping between V5 = {li,j | i, j ∈ [k], i 6= j} and
the k(k − 1)-side. There is a demand between two vertices u, v ∈ V1 ∪ V5 if there is an edge
between u, v in H.
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This construction clearly takes poly(|V ||H|) time. Let g(H) = 7|H| − 7k2 + 9k − 7 ·
1{r1,r2}∈H , where 1{r1,r2}∈H is an indicator variable for {r1, r2} being a demand in H . This
function is also computable in time poly(|H|). We first prove the easy direction in the
correctness of the reduction.

I Lemma 22. If there is a multi-colored clique of size k in G, then there is a solution S

for the SLSN instance (G′, L) with demand graph H ∈ H2,k, and the total cost of S is
7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H .

Proof. Let v1, . . . , vk be a multi-colored clique of size k in G, where vi ∈ Ci for all i ∈ [k].
We create a feasible solution S to our SLSN instance, which contains following paths in G′
(i.e., edges in G2,k):
{r1, z{i,j}} for each 1 ≤ i < j ≤ k. The total cost of these edges is

(
k
2
)

= k2−k
2 .

{z{i,j}, z{vi,vj}} for each 1 ≤ i < j ≤ k. The total cost of these edges is
(
k
2
)

= k2−k
2 .

{z{vi,vj}, xvi,j} and {z{vi,vj}, xvj ,i} for each 1 ≤ i < j ≤ k. The total cost of these edges
is 2 ·

(
k
2
)

= k2 − k.
{r2, yi} for each i ∈ [k]. The total cost of these edges is k.
{yi, yvi} for each i ∈ [k]. The total cost of these edges is k.
{yvi , xvi,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 2 ·

(
k
2
)

= k2 − k.
{xvi,j , li,j} for each i, j ∈ [k] where i 6= j. The total cost of these edges is 4 · 2 ·

(
k
2
)

=
4k2 − 4k.
{u, v} for each {u, v} ∈ H \ (B ∪ {{r1, r2}}). The total cost of these edges is 7 · (|H| − 2 ·
k(k − 1)− 1{r1,r2}∈H) = 7|H| − 14k2 + 14k − 7 · 1{r1,r2}∈H .

Therefore, the total cost is k2−k
2 + k2−k

2 + k2 − k + k + k + k2 − k + 4k2 − 4k + 7|H| −
14k2 + 14k − 7 · 1{r1,r2}∈H = 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H .

Now we show the feasibility of this solution. For each i, j ∈ [k] where i 6= j, the path
between r1 and li,j is r1 – z{i,j} – z{vi,vj} – xvi,j – li,j , and the path between r2 and li,j is
r2 – yi – yvi – xvi,j – li,j . Both paths have length 7, which is within the length bound. For
each {u, v} ∈ H \ (B ∪ {{r1, r2}}), u and v have an edge with length 7, thus a path under
the length bound exists. Finally, if there exists a demand between r1 and r2, we can follow
the path r1 – z{1,2} – z{v1,v2} – xv1,2 – yv1 – y1 – r2, which has length 6. J

Now we prove the other direction.
Let S be an optimal solution for the SLSN instance (G′, L) with demand graph H∗k,0. If

S has cost at most 4k4 − 4k3 + 3
2k

2 + 5
2k, then there is a multi-colored clique of size k in G.

I Lemma 23. Let S be an optimal solution for the SLSN instance (G′, L) with demand
graph H ∈ H2,k. If S has cost at most 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H , then there is a
multi-colored clique of size k in G.

Proof. For each i, j ∈ [k] where i 6= j, let P1,i,j ⊆ S be a (arbitrarily chosen) path between r1
and li,j with length at most 7, and P2,i,j ⊆ S be a (arbitrarily chosen) path between r2 and li,j
with length at most 7. Let P1 = {P1,i,j | i, j ∈ [k], i 6= j}, and P2 = {P2,i,j | i, j ∈ [k], i 6= j}.
As in lemma 19, we first show that some edges must be shared by multiple paths by calculating
the total cost.

In order to satisfy the demand for each {li,j , li′,j′} ∈ H \ (B ∪ {{r1, r2}}), the only way
is to use the edge between li,j and li′,j′ in Ell. Otherwise, suppose the path has more than
one edge, since the only edges incident on any li,j have length either 4 or 7, the cost of two
of these edges already exceeds the length bound. Thus the total cost of the edges in S ∩ Ell
is at least 7|H| − 7|B| − 7 · 1{r1,r2}∈H = 7|H| − 14k2 + 14k − 7 · 1{r1,r2}∈H .
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We can see that each of the paths in P1 ∪ P2 must have exactly one edge between every
two adjacent levels, and they cannot have any other edges because of the length bound. Thus,
each path P1,i,j ∈ P1 must have form r1 – z{i,j} – z{u,v} – xu,j – li,j for some {u, v} ∈ E
with u ∈ Ci and v ∈ Cj , and each path in P2,i,j ∈ P2 must have form r2 – yi – yv – xv,j –
li,j for some v ∈ Ci.

By looking at the form of paths in P1, we can see that these paths are almost disjoint,
except that P1,i,j and P1,j,i may share edge {r1, z{i,j}} ∈ E11 and edge {z{i,j}, ze} ∈ E12.
Since paths in P1 only contain edges in E11 ∪E12 ∪E13 ∪Exl, the cost of edges in S ∩ (E11 ∪
E12 ∪E13 ∪Exl) must be at least 7 · k(k− 1)−

(
k
2
)
−
(
k
2
)

= 6k2 − 6k, even if every P1,i,j and
P1,j,i do share edge {r1, z{i,j}} and edge {z{i,j}, ze}.

We then look at the form of paths in P2. We can see that the first 3 hops of these paths
only contain edges in E21 ∪ E22 ∪ E23. In addition, these paths are all disjoint on edges
in E23. Moreover, in order to reach all li,j from r2 within length 7, these paths should
contain all edges in E21 and at least k edges in E22. Therefore, the total cost of edges in
S ∩ (E21 ∪ E22 ∪ E23) should be at least k(k − 1) + k + k = k2 + k.

By summing up all these edges, the total cost of edges in S is already at least 7|H| −
14k2 + 14k − 7 · 1{r1,r2}∈H + 6k2 − 6k + k2 + k = 7|H| − 7k2 + 9k − 7 · 1{r1,r2}∈H = g(H),
which means S cannot contain any edge that has not been counted before.

Therefore, S must contain exactly k edges in E22, and each of these edges must have a
different yi as an endpoint. We let these edges be {y1, yv1}, . . . , {yk, yvk}, where vi ∈ Ci for
all i ∈ [k]. We claim that v1, . . . , vk forms a (multicolored) clique in G.

For each 1 ≤ i < j ≤ k, by looking at the form of paths in P2, we know that the path
P2,i,j must be r2 – yi – yvi – xvi,j – li,j . Because of the total cost limitation, the edge
{xvi,j , li,j} ∈ P2,i,j ∩Exl must also appear in some path in P1. By looking at the form of the
paths in P1, the only possible path is P1,i,j . Similarly, path P2,j,i must share edge {xvj ,i, lj,i}
with P1,j,i. Again by looking at the form of the paths in P1, the edge in {z{i,j}, ze} ∈ S∩E12
which is shared by P1,i,j and P1,j,i must have e = {vi, vj}, which means {vi, vj} ∈ E.

Therefore, v1, . . . , vk forms a clique in G. J
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Abstract
For a graph G, a set D ⊆ V (G) is called a [1, j]-dominating set if every vertex in V (G) \D has
at least one and at most j neighbors in D. A set D ⊆ V (G) is called a [1, j]-total dominating
set if every vertex in V (G) has at least one and at most j neighbors in D. In the [1, j]-(Total)
Dominating Set problem we are given a graph G and a positive integer k. The objective is to
test whether there exists a [1, j]-(total) dominating set of size at most k. The [1, j]-Dominating
Set problem is known to be NP-complete, even for restricted classes of graphs such as chordal and
planar graphs, but polynomial-time solvable on split graphs. The [1, 2]-Total Dominating Set
problem is known to be NP-complete, even for bipartite graphs. As both problems generalize
the Dominating Set problem, both are W[1]-hard when parameterized by solution size. In
this work, we study [1, j]-Dominating Set on sparse graph classes from the perspective of
parameterized complexity and prove the following results when the problem is parameterized by
solution size:

[1, j]-Dominating Set is W[1]-hard on d-degenerate graphs for d = j + 1;
[1, j]-Dominating Set is FPT on nowhere dense graphs.

We also prove that the known algorithm for [1, j]-Dominating Set on split graphs is optimal
under the Strong Exponential Time Hypothesis (SETH). Finally, assuming SETH, we provide a
lower bound for the running time of any algorithm solving the [1, 2]-Total Dominating Set
problem parameterized by pathwidth.
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1 Introduction

A dominating set of a graph G is a subset D of vertices such that each vertex in V (G) \D is
adjacent to at least one vertex in D. Various extensions of domination, such as independent,
total, efficient, and perfect domination, have been introduced and widely studied both
combinatorially and algorithmically. A discussion of these extensions can be found in [14]. A
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[1, j]-dominating set, as first defined in [3], is a set that dominates the vertices of the graph
but every vertex outside of the set must have at most j neighbors in it. In [3], it was shown
that a minimum [1, 2]-dominating set and a minimum dominating set are of the same size in
several classes of graphs such as claw-free graphs, P4-free graphs, and caterpillars. It was also
shown that the problem is NP-complete, even for bipartite graphs. In the [1, j]-Dominating
Set problem the input is a graph G and a positive integer k. The objective is to test whether
there is a [1, j]-dominating set of size at most k. The authors in [3] raised several open
problems, including whether restricting to specific classes of graphs leads to strictly better
upper bounds for the size of [1, j]-dominating sets and whether [1, j]-Dominating Set
is efficiently solvable on trees. In [29] the first question was answered negatively for the
classes of planar, bipartite, and triangle-free graphs in which the smallest [1, 2]-dominating
set is the entire set of vertices. In [12] the second question was answered positively via a
linear-time algorithm. In [2], the [1, j]-Dominating Set problem was shown to be NP-hard
even for chordal and planar graphs. However, for a constant j, a polynomial-time algorithm
running in time O(njp(lg n)) where p is a polynomial function, was obtained for n-vertex split
graphs [2]. This is in contrast to the classic Dominating Set problem which is NP-hard for
this class of graphs.

The Dominating Set problem has been widely studied in the realm of parameterized
complexity. In general, finding a dominating set of size k is a canonical W[2]-complete
problem and therefore unlikely to admit FPT algorithms [7]. Moreover, the problem remains
W[2]-complete for split and bipartite graphs [23]. Nevertheless, there are interesting classes
of sparse graphs for which the Dominating Set problem admits FPT algorithms. For
example, there is an O∗(3tw)-time algorithm for graphs of treewidth at most tw [28, 15], and
FPT algorithms for nowhere dense graphs [6] and d-degenarate graphs [1]. Also, an FPT
algorithm was reported in [27] for t-biclique-free graphs, i.e., graphs that do not contain Kt,t

as a subgraph. To the best of our knowledge, this is the largest class of graphs for which
the Dominating Set problem is known to be fixed-parameter tractable; d-degenerate and
nowhere dense graphs are subclasses of t-biclique-free graphs.

Another variant of dominating sets and [1, j]-dominating sets is [1, j]-total dominating sets.
For a graph G, a subset D ⊆ V (G) is called a [1, j]-total dominating set if 1 ≤ |N(v)∩D| ≤ j
for all v ∈ V (G), where N(v) denotes the open neighbourhood of v in G. In the [1, j]-Total
Dominating Set problem we are given a graph G and a positive integer k. The objective
is to check whether G admits a [1, j]-total dominating set of size at most k. [1, 2]-Total
Dominating Set is NP-complete even for bipartite graphs [24]. Sharp upper bounds on the
[1, 2]-total domination number of a graph are investigated in [16, 29]. Using a result of Rooij
et al. [28], we can show that [1, j]-Dominating Set and [1, j]-Total Dominating Set are
solvable in time O∗((j + 2)tw) and O∗((2j + 2)tw), respectively, on graphs of treewidth at
most tw.

Our Contribution. In this paper, we study [1, j]-Dominating Set and [1, j]-Total Dom-
inating Set from the parameterized complexity perspective. We prove the following results.
1. For any ε > 0, there is no algorithm with running time O(nj−ε) for [1, j]-Dominating

Set on split graphs assuming the Strong Exponential Time Hypothesis (SETH).
2. For the case of d-degenerate graphs, we tighten the complexity results and show that the

[1, j]-Dominating Set problem is W[1]-hard for d = j + 1.
3. [1, j]-Dominating Set is FPT on classes of nowhere dense graphs.
4. There is no algorithm for [1, 2]-Total Dominating Set running in time O∗((4− ε)pw)

assuming SETH, where pw is the pathwidth of the input graph.
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We begin by some basic terminology and notation in Section 2. Then the next sections
each address one of the results mentioned above.

2 Preliminaries

Graphs. We assume G is a simple graph with vertex set V (G) and edge set E(G). For
brevity, we often denote these sets by V and E. We let n = |V (G)| denote the order of G. For
a vertex v ∈ V , the open neighborhood of v, denoted by N(v), is defined as {u : {u, v} ∈ E}
and the closed neighborhood N [v] is defined as N(v)∪{v}. For a set S ⊆ V , we use N(S) and
N [S] to denote the open and closed neighborhood S, respectively. That is, N [S] =

⋃
v∈S N [v]

and N(S) = N [S] \ S. For a set U ⊆ V , we use G[U ] to denote the subgraph of G induced
on U . A tree decomposition of a graph G is a tree T in which each vertex x ∈ T has an
assigned set of vertices Bx ⊆ V (G) (called a bag) which satisfies the following properties: (i)⋃
x∈T Bx = V (G); (ii) For any {u, v} ∈ E, there exists x ∈ V (T ) such that u, v ∈ Bx; (iii)

For any v ∈ V (G), the subtree of T induced on {x ∈ V (T ) : v ∈ Bx} is connected. The width
of a tree decomposition T is maxx∈V (T )(|Bx| − 1). The treewidth of G, denoted by tw(G),
is the minimum width over all tree decompositions of G. The pathwidth of G, denoted by
pw(G), is the minimum width over all tree decompositions T of G, where T is a path.

Parameterized complexity. We now review some necessary concepts from parameterized
complexity. For more details we refer the reader to [4, 8]. Given a finite alphabet Σ, a
parameterization of Σ∗ is a function p : Σ∗ → N. A parameterized language L is a subset
of {(x, k) | x ∈ Σ∗ ∧ k = p(x)}. Here k is called the parameter. A parameterized language
L ⊆ Σ∗ × N is called fixed-parameter tractable (FPT) if there exist an algorithm A (called a
FPT algorithm) and a computable function f : N→ N such that given (x, k) ∈ Σ∗ × N, the
algorithm A correctly decides whether (x, k) ∈ L in time f(k) · |(x, k)|O(1). The class of all
fixed-parameter tractable problems is denoted by FPT.

I Definition 1. Let L and L′ be two parameterized languages with parameterization functions
p and p′. An FPT reduction from L to L′ is a mapping ρ : Σ∗ → Σ∗ such that the following
holds.

For all x ∈ Σ∗, (x, p(x)) ∈ L if and only if (ρ(x), p′(ρ(x))) ∈ L′

There exists a computable function g : N→ N such that for all x ∈ Σ∗, p′(ρ(x)) ≤ g(p(x)).
ρ is computable in FPT time, i.e., there exists a computable function f such that ρ(x) is
computable in time O(f(p(x)) · |x|O(1)).

To classify problems that are not FPT, Downey and Fellows [8] introduced the W-
hierarchy. The hierarchy consists of complexity class W[t] for every integer t ∈ N such that
W [t] ⊆ W [t + 1], for all t. More generally, FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ W[t]. For our
purposes, it is sufficient to note that these classes are closed under FPT reduction.

ETH and SETH. For q ≥ 3, let δq be the infimum of the set of constants c for which there
exists an algorithm solving q-SAT with n variables and m clauses in time 2cn ·mO(1). The
Exponential-Time Hypothesis (ETH) and Strong Exponential-Time Hypothesis (SETH) are
then formally defined as follows. ETH conjectures that δ3 > 0 and SETH that limq→∞ δq = 1.
In other words, SETH conjectures that for all 0 < ε < 1, there exist a (large) q = q(ε) such
that q-SAT cannot be solved in time O(2(1−ε)n), where n is the number of variables in the
input formula.

FSTTCS 2018
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C1 C2 C3 Cm

Figure 1 Constructed Split Graph.

3 Split Graphs

A graph G is called a split graph if its vertices can be partitioned into V1 ] V2 such that
G[V1] is a complete graph and G[V2] is an empty graph (i.e., V2 is an independent set in
G). Several domination-like problems such as domination, total domination, and k-tuple
domination are known to be NP-complete even on split graphs. On the other hand, there is
a nj · (lg n)O(1) time algorithm for [1, j]-Dominating Set on split graphs [2]. In this section,
we prove that this is optimal, in the sense that one cannot obtain an O(nj−ε) algorithm for
[1, j]-Dominating Set on split graphs unless SETH fails.

Reduction. Given an instance I = C1∧C2∧. . .∧Cm of q-SAT over the set X = {x1, . . . , xn}
of variables, we construct a graph GI as follows.

We partition the set X into j subsets X1, . . . , Xj of size at most dn/je.
For each Xi we add a set Si of 2|Xi| vertices to the graph, each corresponding to one
possible valuation of the variables in Xi. We also add two distinguished vertices ui and
vi and connect them to all of Si.
We connect all the vertices in

⋃j
i=1 Si. That is

⋃j
i=1 Si forms a clique in GI .

For every clause Ci, we add a vertex ci and connect it to every vertex w of any Sj where
the valuation corresponding to w satisfies Ci.

This completes the construction of GI . See Figure 1 for an illustration. Our reduction
algorithm will output an instance (GI , j) of [1, j]-Dominating Set. We now proceed to
proving the correctness of the reduction.

I Lemma 2. If I is satisfiable then GI has a [1, j]-dominating set of size j.

Proof. Take one satisfying valuation of I and let s1 ∈ S1, s2 ∈ S2, . . . , sj ∈ Sj be the
vertices of GI that correspond to this valuation. We claim that S = {s1, s2, . . . , sj} is a
[1, j]-dominating set. Every vertex in any of the Si’s is dominated by all of S, every {ui, vi}
pair is dominated only by the corresponding si and every ci is dominated by a non-empty
subset of S, i.e., the vertices whose corresponding valuation forces satisfaction of Ci. Given
that |S| = j, there can be at most j such vertices. J

I Lemma 3. If GI has a [1, j]-dominating set of size j then I is satisfiable.

Proof. First note that any dominating set of GI of size j is also a [1, j]-dominating set. Let
S be a dominating set of size at most j (and hence a [1, j]-dominating set) in GI . Since
{N [ui] : i ∈ {1, . . . , j}} are pairwise vertex disjoint we have that |S| = j and |S ∩N [ui]| = 1
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for all i ∈ {1, . . . , j}. Moreover, since N(ui) = N(vi), we conclude that S ⊆ (
⋃j
i=1 Si).

Consider the valuation of variables in X that corresponds to the vertices in S. This valuation
satisfies every Ci, because S dominates every ci. J

I Theorem 4. For any ε < 1 and constant j, there is no O(nj−ε) time algorithm for
[1, j]-Dominating Set on split graphs unless SETH fails.

Proof. For the sake of contradiction assume that there is an O(nj−ε) time algorithm A for
[1, j]-Dominating Set on split graphs. Then we claim that SETH is false. Let ε = (1− ε

j ).
Let q = q(ε) be the constant defined in the SETH conjecture. Given a q-SAT instance
I we construct an instance (GI , j) as mentioned in the reduction. By Lemmas 2 and 3
we know that I is satisfiable if and only if (GI , j) is a yes-instance. Therefore, we use
algorithm A to solve q-SAT. Now consider the running time for solving q-SAT using A.
The construction of (GI , j) takes time 2dn/je · nO(1) and the number of vertices in GI is at
most 2j +m+ j2dn/je = 2dn/je · nO(1). Thus the algorithm A on instance (GI , j) takes time
2dn/je(j−ε) ·nO(1) = 2(n/j+(j−1))(j−ε) ·nO(1) = 2(n/j)(j−ε) ·nO(1) = 2n(1−ε/j) ·nO(1) = 2εn ·nO(1).
This refutes SETH and the proof of the theorem is complete. J

4 Degenerate Graphs

A graph G is d-degenerate if every subgraph of G contains a vertex of degree at most d.
Equivalently, a graph G is d-degenerate if and only if there exists an elimination ordering on
its vertices such that every vertex has at most d neighbors appearing later in the ordering.
In this section we prove the following result.

I Theorem 5. [1, j]-Dominating Set parameterized by solution size is W[1]-hard on graphs
of degeneracy j + 1.

The following parameterized problem, proved to be W[1]-hard in [11], is used in our proof.
In the Multicolored Independent Set problem, we are given a graph G and a proper
vertex coloring of V (G) with k colors. The parameter k is equal to the number of colors
and the goal is to find a k-sized independent set in G containing exactly one vertex from
each color class (such independents sets are called k-colored independent sets). We shall
reduce the Multicolored Independent Set problem (with parameter k) to the problem
of finding a [1, j]-dominating set of size at most 2k + j − 1 in a graph of degeneracy j + 1.

The reduction. Let k be an integer and G be a proper k-vertex colored graph such that
its vertices are partitioned into k groups V1, V2, . . . , Vk, where each group corresponds to
an independent set of the same color. Now we construct an instance (G′, 2k + j − 1) of
[1, j]-Dominating Set as follows. For every edge e = {u, v} ∈ E(G), we replace it by a path
uvev, where ve is a new vertex corresponding to the edge e. Let SE = {ve : e ∈ E(G)}. For
each group Vi, 1 ≤ i ≤ k, we build a K1,2k+j graph centered at a new vertex ui. We also add
new vertices xi1 and xi2 and connect the vertices ui, xi1 and xi2 to the vertices of Vi. Moreover,
we build j − 1 star graphs K1,2k+j centered at vertices r1, . . . , rj−1 and make r1, . . . , rj−1
adjacent to the vertices in SE . This concludes the construction of G′. See Figure 2 for
an illustration. Now we output (G′, 2k + j − 1) as an instance of [1, j]-Dominating Set.
Clearly our reduction takes time polynomial in |V (G)| and k.

I Lemma 6. The constructed graph G′ has degeneracy j + 1.

FSTTCS 2018
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r1 r2 rj−1

V1 V2 Vk

u1 u2 uk

Figure 2 Reducing the Multicolored Independent Set problem to the [1, j]-Dominating
Set problem.

Proof. The proof is by constructing a degeneracy ordering, which is an ordering on the
vertices that we get from repeatedly removing a vertex of minimum degree in the remaining
subgraph. First, we put all of the degree-one vertices in the degeneracy ordering and delete
them. In the remaining subgraph, we select all the vertices in SE and put them in ordering,
because every vertex in SE has degree j+ 1 in G′. After removing all vertices of SE from the
graph, each vertex in any block Vi, for 1 ≤ i ≤ k, has degree three because after removing SE
such vertices are only connected to xi1, xi2, and ui. So, next we can put the vertices

⋃k
i=1 Vi

in the ordering. Finally we add all the remaining vertices. J

Lemmas 6, 7, and 8 below, imply Theorem 5.

I Lemma 7. If there exists a k-colored independent set in G then there exists a [1, j]-
dominating set of size 2k + j − 1 in G′.

Proof. Suppose that S is a k-colored independent set in G. We claim that D = S∪{ui : i ∈
{1, . . . , k}} ∪ {ri : i ∈ {1, . . . , j − 1}} is a [1, j]-dominating set of G′. Clearly, the size of D
is 2k+ j−1. Each vertex vj ∈ Vi is dominated only by ui in D. Moreover, each pair of xi1, xi2
vertices is dominated by the single vertex in Vi ∩ S. All the vertices in SE are dominated by
{ri : i ∈ {1, . . . , j − 1} and by at most one vertex from S (since S is an independent set).
Moreover all the degree one vertices in G′ are dominated exactly once by D. J

I Lemma 8. If there exists a [1, j]-dominating set of size 2k + j − 1 in G′ then there exists
a k-colored independent set in G.

Proof. Let D be a [1, j]-dominating set of size at most 2k + j − 1. First, note that since
|D| ≤ 2k + j − 1, we have that {r1, . . . , rj−1} ∪ {ui, . . . , uk} ⊆ D (because each ui and ri is
connected to 2k+j degree one vertices). We claim that S = D\({r1, . . . , rj−1}∪{ui, . . . , uk})
is a k-colored independent set in G. Clearly |S| ≤ k. Also, to dominate all the vertices xi1, x2

i

for 1 ≤ i ≤ k, we should have exactly one vertex from each Vi. Therefore S ⊆ V (G) and
|S ∩ Vi| = 1 for all 1 ≤ i ≤ k. Suppose u, v ∈ S is adjacent in G. Then the vertex ve, where
e = {u, v} is dominated j+1 times by D (because ve is adjacent to {u, v} and {r1, . . . , rj−1}).
Therefore since D is a [1, j]-dominating set in G′, S is a k-colored independent set in G This
completes the proof of the lemma. J
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5 Nowhere Dense Graphs

The notion of nowhere denseness was introduced by Nešetřil and Ossona de Mendez [20, 21]
as a general model of uniform sparseness of graphs. Many familiar classes of sparse graphs,
like planar graphs, graphs of bounded tree-width, graphs of bounded degree, and all classes
that exclude a fixed (topological) minor, are nowhere dense. An important and related
concept is the notion of a graph class of bounded expansion, which was also introduced by
Nešetřil and Ossona de Mendez [17, 18, 19].

I Definition 9. Let H be a graph and let r ∈ N. An r-subdivision of H is obtained by
replacing all edges of H by internally vertex disjoint paths of length at most r.

I Definition 10. A class C of graphs is nowhere dense if there exists a function t : N→ N
such that for all q ∈ N and for all G ∈ C we do not find an q-subdivision of the complete
graph Kt(q) as a subgraph of G. Otherwise, C is called somewhere dense.

I Definition 11. A class C of graphs has bounded expansion if there exists a function
d : N → N such that for all r ∈ N and all graphs H, such that an r-subdivision of H is a
subgraph of G for some G ∈ C, satisfy |E(H)|/|V (H)| ≤ d(r).

Every class of bounded expansion is nowhere dense, which in turn excludes some biclique as
a subgraph and hence is biclique-free. For extensive background on bounded expansion and
nowhere dense graphs we refer to the textbook of Nešetřil and Ossona de Mendez [22].

Before we state our result, we quickly recall the necessary definitions from logic. For our
purpose, it suffices to consider first-order logic over the vocabulary of graphs. We refer to
the textbook [9] for extensive background on logic. A (relational) vocabulary is a finite set
of relation symbols, each with a prescribed arity. We let σ be a vocabulary. A σ-structure A
consist of a (not necessarily finite) set V (A), called the universe or vertex set of A, and for
each k-ary relation symbol R ∈ σ a k-ary relation R(A) ⊆ V (A)k. A structure A is finite if
its universe is. For example, graphs may be viewed as {E}-structures, where E is a binary
relation symbol. First-order formulas of vocabulary σ are formed from atomic formulas
x = y and R(x1, . . . , xk), where R ∈ σ is a k-ary relation symbol and x, y, x1, . . . , xk are
variables (we assume that we have an infinite supply of variables) by the usual Boolean
connectives ¬ (negation), ∧ (conjunction), ∨ (disjunction), and existential and universal
quantifications ∃x and ∀x, respectively. The set of all first-order formulas of vocabulary σ is
denoted by FO[σ], and the set of all first-order formulas by FO. The free variables of a formula
are those not in the scope of a quantifier, and we write φ(x1, . . . , xk) to indicate that the free
variables of the formula φ are among x1, . . . , xk. A sentence is a formula without free variables.
To define the semantics, we inductively define a satisfaction relation |=, where for a σ-structure
A, a formula φ(x1, . . . , xk), and elements a1, . . . , ak ∈ V (A), A |= φ(a1, . . . , ak) means that
A satisfies φ if the free variables x1, . . . , xk are interpreted by a1, . . . , ak, respectively. If
φ(x1, . . . , xk) = R(x1, . . . , xk) is atomic, then A |= φ(a1, . . . , ak) if (a1, . . . , ak) ∈ R(A). The
meaning of the equality symbol, the Boolean connectives, and the quantifiers is the usual
one. For example, consider the formula φ(x1, x2) = ∀y(x1 = y ∨ x2 = y ∨E(x1, y)∨E(x2, y))
in the vocabulary {E} of graphs. For every graph G and vertices v1, v2 ∈ V (G) we have
G |= φ(v1, v2) if any only if {v1, v2} is a dominating set of G. Thus G satisfies the sentence
∃x1∃x2φ(x1, x2) if and only if it has a (nonempty) dominating set of size at most 2.

I Theorem 12. The [1, j]-Dominating Set problem parameterized by solution size k is
fixed-parameter tractable on nowhere dense classes of graphs.
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Proof. Our proof is based on a result of Grohe, Kreutzer, and Siebertz [13], which states
that for every first-order sentence ψ (or formula without free variables), every nowhere dense
class C of graphs and every real ε > 0, there exists a constant f(|ψ|, ε), such that given an
n-vertex graph G ∈ C, one can decide in time f(|ψ|, ε) · n1+ε whether ψ holds in G.

It is easy to verify that the [1, j]-Dominating Set problem is expressible in FO. We let
ψ be the following sentence.

∃v1, v2, . . . , vk∀u
(

(u = v1∨u = v2, . . . , u = vk)∨((φ1(u, v1, v2, . . . , vk)∨φ2(u, v1, v2, . . . , vk)

· · · ∨ φj(u, v1, v2, . . . , vk))
)
,

where the function φi(u, v1, v2, . . . , vk) is true where the vertex u is adjacent to exactly i
vertices of v1, v2, . . . , vk, which can be represented using a formula of length bounded by a
function of i and k. Note that the length of ψ is bounded by a function depending only on k
(and on j, though only as a fixed constant). Then, by fixing any ε > 0 and using the result
of [13], we conclude that [1, j]-Dominating Set is fixed-parameter tractable parameterized
by solution size k on every nowhere dense class C. J

6 Bounded Treewidth Graphs

It is well-known [4] that the Dominating Set problem can be solved in O∗(3t) time on graphs
of treewidth at most t. Lokshtanov et al. [15] showed that this is essentialy optimal, i.e.,
they showed that the problem cannot be solved in O∗((3− ε)t) time unless SETH fails. The
situation is almost identical for the Connected Dominating Set problem. The problem
can be solved in O∗(4t) time, but cannot be solved in time O∗(4− ε)t unless SETH fails [5].
The [1, j]-Dominating Set problem is a special case of the (σ, ρ)-domination problem. The
concept of (σ, ρ)-domination was introduced by Telle [26]. Let σ, ρ be a pair of non-empty
sets of non-negative integers. A set S of vertices of a graph G is called (σ, ρ)-dominating if for
every vertex v ∈ S, |S ∩N(v)| ∈ σ, and for every v /∈ S, |S ∩N(v)| ∈ ρ. [1, j]-Dominating
Set and [1, 2]-Total Dominating Set are special cases of the (σ, ρ)-Dominating Set
problem. For [1, j]-Dominating Set, we set σ = {0, 1, . . .} and ρ = {1, . . . , j}. On the other
hand for [1, 2]-Total Dominating Set we set σ = ρ = {1, . . . , j}. The following result is
due to Rooij et al. [28].

I Proposition 13. Let σ, ρ ⊆ N be finite or cofinite. There exists an algorithm with running
time O∗(st) for finding a (σ, ρ)-dominating set in graphs of treewidth at most t where s is
the number of states per vertex used in the representations of the solution.

I Corollary 14. [1, j]-Dominating Set and [1, j]-Total Dominating Set are solvable in
time O∗((j + 2)tw) and O∗((2j + 2)tw), respectively, on graphs of treewidth at most tw.

Proof. As mentioned before, [1, j]-Dominating Set is a special case of (σ, ρ)-Dominating
Set, where σ = {0, 1, . . .} and ρ = {1, . . . , j}. The states needed in the representation of the
solution in this special case are {ρ0, ρ1, . . . , ρj} and ∗, where ρi, 0 ≤ i ≤ j means the vertex
in the bag is not in the dominating set and dominated i times and ∗ means that the vertex
is in the dominating set. Then by Proposition 13, [1, j]-Dominating Set is solvable in time
O∗((j + 2)tw).

[1, j]-Total Dominating Set is the special case of (σ, ρ)-Dominating Set, with
σ = ρ = {1, . . . , j}. In this case the states needed in the representation of the solution
are {σ0, ρ0, σ1, ρ1, . . . , σj , ρj}, where ρi, 0 ≤ i ≤ j means the vertex in the bag is not in
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Figure 3 Parts of the construction.

the dominating set and dominated i times and σi, 0 ≤ i ≤ j means the vertex in the bag
is in the dominating set and i of its neighbours are also in the dominating set. Then by
Proposition 13, [1, j]-Total Dominating Set is solvable in time O∗((2j + 2)tw). J

In what follows, we prove that the [1, 2]-Total Dominating Set problem cannot be
solved in time O∗(4 − ε)pw (unless SETH fails) and which is also a lower bound in terms
of the treewidth of the input graph. It remains open whether a similar result holds for
[1, 2]-Dominating Set. Our proof closely follow the work of Cygan et al. [5] and we use
the notions of path decompositions, pathwidth, tree decompositions, treewidth, and mixed
search games. We give a reduction from CNF-SAT to the [1, 2]-Total Dominating Set
problem and prove that the reduced graph has pathwidth at most n

2 +O(1), where n is the
number of variables in the input CNF-SAT formula.

The reduction. Given ε > 0 and an instance Φ of CNF-SAT with n variable and m

clauses, we construct a graph G as follows. We assume that the number of variables n is
even, otherwise we add a single dummy variable. We partition the variables of Φ into groups
F1, F2, . . . , Fn′ , each of size two, where n′ = n/2. We let a = m(n+ 1).

For each 1 ≤ t ≤ n′ we create a path Pt of length 4a = 4m(n+ 1) consisting of vertices
vαt,q and hαt,q, where 1 ≤ α ≤ 2 and 0 ≤ q < a. The vertices are arranged on the path in the
following order: v1

t,0, h
1
t,0, v

2
t,0, h

2
t,0, v

1
t,1, h

1
t,1, v

2
t,1, h

2
t,1, . . . , v

1
t,a−1, h

1
t,a−1, v

2
t,a−1, h

2
t,a−1. We let

V and H denote the sets of all vαt,q vertices and hαt,q vertices, respectively.
For each vertex vαt,q, we add a forcing gadget consisting of a 4-cycle with one additional

pendant vertex connected to a vertex which we denote as the root vertex rαt,q. We add an edge
between vαt,q and the root of the cycle rαt,q. Similarly, for each vertex hαt,q, we add a forcing
gadget consisting of a 4-cycle rooted at vertex sαt,q (i.e. the pendant vertex is connected
to sαt,q). We add an edge between hαt,q and sαt,q (see Figure 3). Note that any dominating
set in the graph will contain at least two vertex from a forcing gadget and if a [1, 2]-total
dominating set contains only two vertex from a forcing gadget, then it include the root vertex
and one of its neighbours on the 4-cycle (by the definition of [1, 2]-total dominating set).

Next, we add three pairs of guard vertices p1
t,q, p2

t,q, and p3
t,q, for each 1 ≤ t ≤ n′ and

0 ≤ q < a. Each of the vertices in these pairs are of degree two and are connected to
other vertices as follows: (i) vertices in p1

t,q are adjacent to v1
t,q and v2

t,q; (ii) vertices in p2
t,q

are adjacent to v2
t,q and v2

t,q+1; and (iii) vertices in p3
t,q are adjacent to h1

t,q and h2
t,q. This

structure forces a dominating set to either contain the vertices from the guard sets or one
of their two neighbors. For instance, to dominate the pair p1

t,q, either both vertices in p1
t,q

must be in the dominating set or one of v1
t,q or v2

t,q. We use G to denote the set of all guard
vertices.

FSTTCS 2018



34:10 On the Parameterized Complexity of [1, j]-Domination Problems

The intuition of the construction made so far is as follows. For each two-variable block
Ft we encode any assignment of the variables in Ft as a choice of whether to take v1

t,q or v2
t,q

and h1
t,q or h2

t,q into the dominating set. This concludes the construction of the “variable
gadgets” which are required for encoding an assignment. The forcing gadgets attached to
vertices in V and H will guarantee that those vertices are all dominated at least once.

We now add “clause gadgets” required for checking the satisfiability of Φ. For each clause
Ci, we build (n+ 1) vertices ci,j , one for each 0 ≤ j ≤ n. Consider a clause Ci and a group of
variables Ft = {x1

t , x
2
t}. If x1

t occurs positively as the `th literal in Ci, then connect v1
t,mj+i

to ci,j via a path of length five by adding four vertices w`i,j , x`i,j , y`i,j and z`i,j and edges
{ci,j , w`i,j}, {w`i,j , x`i,j}, {x`i,j , y`i,j}, {y`i,j , z`i,j}, and {z`i,j , v1

t,mj+i}. If x1
t occurs negatively as

the `th literal in Ci, we connect v2
t,mj+i to ci,j again via a path of length five by adding four

vertices w`i,j , x`i,j , y`i,j and z`i,j and edges {ci,j , w`i,j}, {w`i,j , x`i,j}, {x`i,j , y`i,j}, {y`i,j , z`i,j}, and
{z`i,j , v2

t,mj+i}. Similarly, if x2
t occurs positively as the `th literal in Ci, we connect h1

t,mj+i to
ci,j via a path of length five and if it occurs negatively, we connect h2

t,mj+i to ci,j via a path
of length five. We let W, X , Y, and Z denote the sets of all w, x, y, and z vertices added
between clause vertices and vertices in V ∪H, respectively. This concludes the construction
of the graph G.

I Lemma 15. If Φ is satisfiable then G has a [1, 2]-total dominating set D of size k =
10an′ + 2(n+ 1)Σmi=1|Ci|.

Proof. Consider a satisfying assignment φ for Φ. We construct a [1, 2]-total dominating set
D of size k in G as follows. We first add the root vertex and one of its neighbors on the
4-cycle of each forcing gadget to D. Then, for each block Ft = {x1

t , x
2
t} and each 0 ≤ q < a,

we add the vertex v1
t,q to D if the value of x1

t is true, otherwise we add v2
t,q to D. Similarly,

if the value of x2
t is true, we add h1

t,q to D, otherwise we add h2
t,q. Since the clause Ci is

satisfied, at least one of the vertices vαt,q or hαt,q (for some t, α) will be in the dominating
set D. Hence, the corresponding z`i,j vertex will be dominated, for some 1 ≤ ` ≤ |Ci|. We
can therefore add vertices x`i,j and w`i,j to D as to dominate ci,j and y`i,j (and maintain the
[1, 2]-total dominating set property). To dominate the remaining vertices in the clause gadget
for ci,j , we add all y`′

i,j and x`
′

i,j vertices, where 1 ≤ `′ ≤ |Ci| and `′ 6= `.
It is clear that for each clause Ci, we add 2(n + 1)|Ci| vertices to D, for a total of

2(n+ 1)Σmi=1|Ci| vertices. Moreover, for each path Pt, we add 10a vertices to D. Therefore,
accounting for the fact that we have n′ paths in total, the total number of vertices in D is
10an′ + 2(n+ 1)Σmi=1|Ci| = k. It remains to show that D is in fact a [1, 2]-total dominating
set. Every vertex in V ∪H is dominated at most twice; once by a vertex in its corresponding
forcing gadget and possibly once by a neighbor in V ∪H. Each vertex in the guard sets is
dominated exactly once and each vertex in W , X , Y , and Z is dominated at most twice (as
they have degree two). Finally, each vertex ci,j is dominated exactly once (by a vertex in
W), as needed. This concludes the proof of the lemma. J

I Lemma 16. If G has a [1, 2]-total dominating set of size at most k = 10an′+2(n+1)Σmi=1|Ci|
then Φ is satisfiable.

Proof. Consider a [1, 2]-total dominating set D of size at most k. The set D must contain
at least 2 vertex from each forcing gadget. This constitute at least 8an′ vertices from forcing
gadgets. Since 2(n+ 1)|Ci| vertices are required to total dominate the vertices in the clause
gadget for Ci, we know that |D ∩ (W ∪ X ∪ Y ∪ Z)| ≥ 2(n + 1)Σm

i=1|Ci| and, therefore,
|D ∩ (V ∪ H ∪ G)| ≤ 2an′. Moreover, G contains n′ paths each of length 4a and the guard
vertices in G ensure that at least 2a vertices are required to dominate the vertices of each path.
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Finally, since we have 2an′ pairs of guards with disjoint neighbors, exactly one vertex from
{v1
t,q, v

2
t,q} and one vertex from {h1

t,q, h
2
t,q} must be in D, for each 1 ≤ t ≤ n′ and 0 ≤ q < a.

This implies that each forcing gadget will contribute two vertices to D– the root vertex and
one of its neighbour in the 4-cycle. Moreover |D ∩ (W ∪ X ∪ Y ∪ Z)| = 2(n + 1)Σm

i=1|Ci|.
This implies that exactly two vertex from a path from ci,j to a vertex in V ∪H is included in
D. Moreover, this in turn implies that ci,j /∈ D for any i, j.

Now, for each 0 ≤ q < a, we construct an assignment φq as follows. For each block
Ft = {x1

t , x
2
t}, we define φq(x1

t ) as true if v1
t,q ∈ D and we define φq(x1

t ) to be false if v2
t,q ∈ D.

Similarly, for x2
t , we define φq(x2

t ) to be true if h1
t,q ∈ D and we define φq(x2

t ) to be false if
h2
t,q ∈ D. Note that for each block Ft = {x1

t , x
2
t} and each 0 ≤ q < a, we have:

If φq(x1
t ) is true then φq+1(x1

t ) is true. Otherwise, both v2
t,q and v1

t,q+1 are not in the
dominating set and vertices in p2

t,q is not dominated by D.
If φq(x2

t ) is false then φq+1(x2
t ) is false. Otherwise, both h2

t,q and h1
t,q+1 are in the

dominating set and vertex v1
t,q+1 is dominated three times in D; by h2

t,q, h1
t,q+1, and the

root of the forcing gadget corresponding to v1
t,q+1.

For each variable x, we define a sequence φ̂x = φ0(x)φ1(x) . . . φa−1(x). By the discussion
above we infer that for each variable x, the sequence φ̂x can change its value at most once.
Hence, as a = m(n + 1), we conclude that there exists 0 ≤ j < n + 1 such that for all
0 ≤ i < m, the assignment φmj+i(x) are equal. We claim that the assignment φ = φmj(x)
satisfies φ. Consider a clause Ci and focus on the vertex ci,j . We know that ci,j /∈ D. Thus
one of its neighbors from W (say w`′

i,j) is contained in D. Therefore, by the definition of a
[1, 2]-total dominating set, x`′

i,j is in D. We have already argued that any path from ci,j to
any vertex in V ∪H can contain at most 2 vertices in D. This implies that z`′

i,j is dominated
by a vertex in V ∪ H and the literal corresponding to it will be set to true by φ. This
completes the proof of the lemma. J

I Lemma 17. pw(G) ≤ n′ +O(1).

Proof. Let us first recall the definition of a mixed search game. In a mixed search game,
the graph G represents a “system of tunnels”. Initially, all edges are contaminated by a gas.
An edge is cleared by placing searchers at both its endpoints simultaneously or by sliding
a searcher along the edge. A cleared edge is re-contaminated if there is a path from an
uncleared edge to the cleared edge without any searchers on its vertices or edges. A search is
a sequence of operations that can be of the following types: (i) placement of a new searcher
on a vertex; (ii) removal of a searcher from a vertex; (iii) sliding a searcher on a vertex along
an incident edge and placing the searcher on the other end. A search strategy is winning if
after its termination all edges are cleared. The mixed search number of a graph G, denoted
by ms(G), is the minimum number of searchers required for a winning strategy of mixed
searching on G. Takahashi et al. [25] obtained the following relationship between pw(G) and
ms(G): pw(G) ≤ ms(G) ≤ pw(G) + 1.

We give a mixed strategy to clean the graph with n′ + O(1) searchers. The cleaning
process will be done in a rounds. At each round 0 ≤ q < a, we put a searcher on clause
variable ci,j and keep this searcher there until the cleaning round is completed. It is clear we
could clean each forcing gadget by four searcher and keep searcher on the root vertex after
cleaning the edges in the force gadget. For each 1 ≤ t ≤ n′ and 0 ≤ q < a, after cleaning
four connected forcing gadgets we slide the searchers from the root of forcing gadgets to
the vertices v1

t,q, h1
t,q, v2

t,q, h2
t,q. Then we put searchers on the the (at most two) z vertices

connected to them and the guard vertices in sets p1
t,q, p2

t,q and p3
t,q. As we have a searcher

FSTTCS 2018
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Figure 4 Parts of the construction. Dashed edges are connecting vertices with a forcing gadget.

on ci,j unil the end of this round we could clean the paths between vertex ci,j and those z
vertices using one more searcher. The last step of the round is removing the searchers from
vertices v1

t,q, h
1
t,q, v

2
t,q, h

2
t,q and searchers on the gaurd sets p1

t,q, p
2
t,q and p3

t,q. We just keep
the searcher on v1

t,q+1. Also, we remove searchers in path between ci,j and V ∪H except for
the one standing on the ci,j . To commence the next round, the searcher in ci,j is deleted and
a new searcher is put on ci,j+1. After the last round the whole graph G is cleaned. Since at
any point in time we need at most 14 searchers (they are on ci,j , two z vertices, v1

t,q, h1
t,q,

v2
t,q, h2

t,q, guard vertices in sets p1
t,q, p2

t,q and p3
t,q, one searcher to clean the paths between

two z vertices and ci,j) and we reuse 14 searchers in the cleaning process, n′ + 14 searchers
suffice to clean the graph. J

I Theorem 18. Assuming SETH, for any ε > 0 there is no algorithm running in time
(4− ε)pw|V (G)|O(1) for [1, 2]-Total Dominating Set on a graph G with pathwidth pw.

Proof. Suppose that [1, 2]-Total Dominating Set can be solved in time (4−ε)pw|V (G)|O(1).
Given an instance of CNF-SAT, we can construct an instance of [1, 2]-Total Dominating
Set using the above construction and solve it with a (4− ε)pw|V (G)|O(1) time algorithm. The
correctness of the algorithm follows from Lemmata 15 and 16. Lemma 17 implies that the
running time of the algorithm is (4− ε) n

2 |V (G)|O(1). However, we have (4− ε) n
2 = (

√
4− ε)n

and
√

4− ε < 2 which refutes SETH. This concludes the proof. J
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7 Conclusion

We have shown that the [1, j]-Dominating Set problem parameterized by solution size is
W[1]-hard on graphs of degeneracy (j + 1). It is thus natural to ask whether the problem
becomes fixed-parameter tractable when the degeneracy of the graph is smaller or equal
to j. In particular, is the [1, j]-Dominating Set problem fixed-parameter tractable on
j-degenerate graphs? There is a very rich literature [6, 1, 10] on kernelization for the
Dominating Set problem on sparse graphs and it would be interesteing to see where (if
anywhere) the known techniques for the Dominating Set problem become applicable to the
[1, j]-Dominating Set problem. Finally, we have shown a lower bound of O∗((4− ε)tw) for
[1, 2]-Total Dominating Set assuming SETH, while the known upper bound is O∗(6tw).
Closing this gap is an interesting open problem. On the other hand [1, 2]-Dominating Set
can be solved in time O∗(4tw) and getting a matching lower bound is another open problem.
Moreover, can we get lower bounds for more general problems such as [1, j]-Dominating
Set and [1, j]-Total Dominating Set?
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Abstract
Fradkin and Seymour [Journal of Combinatorial Graph Theory, Series B, 2015] defined the class
of digraphs of bounded independence number as a generalization of the class of tournaments.
They argued that the class of digraphs of bounded independence number is structured enough
to be exploited algorithmically. In this paper, we further strengthen this belief by showing that
several cut problems that admit sub-exponential time parameterized algorithms (a trait uncom-
mon to parameterized algorithms) on tournaments, including Directed Feedback Arc Set,
Directed Cutwidth and Optimal Linear Arrangement, also admit such algorithms on
digraphs of bounded independence number. Towards this, we rely on the generic approach of
Fomin and Pilipczuk [ESA, 2013], where to get the desired algorithms, it is enough to bound
the number of k-cuts in digraphs of bounded independence number by a sub-exponential FPT
function (Fomin and Pilipczuk bounded the number of k-cuts in transitive tournaments). Spe-
cifically, our main technical contribution is that the yes-instances of the problems above have a
sub-exponential number of k-cuts. We prove this bound by using a combination of chromatic
coding, an inductive argument and structural properties of the digraphs.
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35:2 Graph Layout Problems on Digraphs with Bounded Independence Number

Indeed, this has been the case when designing parameterized algorithms or approximation
algorithms. Two problems that have been extensively studied on tournaments are Directed
Feedback Vertex Set (DFVS) and Directed Feedback Arc Set (DFAS).

In the realm of approximation, we know that DFVS admits a 7/2-approximation algorithm
on tournaments [20], and DFAS admits a PTAS on tournaments [18]. Here, it is worth to
point out that whether or not DFAS is NP-complete on tournaments was a well known open
problem in the area [4]. First, Ailon et al. [1] proved that unless NP⊆BPP, DFAS admits no
polynomial-time algorithm. Shortly afterwards, the proof that DFAS is NP-complete was
attained simultaneously and independently by Alon [2] and Charibt et al. [6].

For DFVS on tournaments, the best known parameterized algorithm runs in time
1.618k · nO(1) [19]. Prior to this the fastest known parameterized algorithm for DFVS ran
in time 2k · nO(1) [10], based on iterative compression. As in the case of approximation,
from the viewpoint of Parameterized Complexity, DFAS on tournaments is “easier” than
DFVS on tournaments. Here, we mean that for DFAS on tournaments, sub-exponential
time parameterized algorithms are known. The quest for sub-exponential time parameterized
algorithms for DFAS has a rich history. For a long time (even after the 2k · nO(1)-time
algorithm for DFVS was discovered), the question of the existence of an algorithm for DFAS
that runs in time 2k · nO(1) was still being posed as an open problem.

Based on a generic method called chromatic coding (also used in our paper), Alon et
al. [3] gave the first sub-exponential time parameterized algorithm for DFAS, which runs in
time 2O(

√
k log2 k) · nO(1). This was the the first problem not confined to planar graphs (or

generalizations such as apex-minor-free graphs) that was shown to admit a sub-exponential
time parameterized algorithm. Later, simultaneously and independently, Feige [11] and,
Karpinski and Schudy [17] gave faster algorithms that run in time 2O(

√
k) · nO(1). Fomin

and Pilipczuk [13] presented a general approach, based on a bound on the number of k-
cuts (defined below) in transitive tournaments, that achieved the same running time for
DFAS. Using this framework they also designed the first sub-exponential time algorithms
for Directed Cutwidth and Optimal Linear Arrangement (OLA) (defined later) on
tournaments. Barbero et al. [5] studied Directed Cutwidth and OLA on semi-complete
digraphs (that is, digraphs where for any two vertices u and v, at least one of the arcs (u, v)
and (v, u) is present) and showed that these problems are NP-complete on semi-complete
digraphs. Furthermore, they showed that Directed Cutwidth does not a admit polynomial
kernel on semi-complete digraphs but admits a polynomial Turing kernel. Finally, they
obtained a linear vertex kernel for OLA on semi-complete digraphs.

The measure of directed cutwidth plays a key role in the work of Chudnovsky and
Seymour [8] where it is shown that tournaments are well-quasi-ordered under immersion.
This measure was considered by Chudnovsky et al. [7] also in their algorithmic study of
Immersion on tournaments. Later, Fradkin and Seymour [14] showed that the Directed
Pathwidth and Topological Containment problems on tournaments are fixed parameter
tractable (FPT). Fomin and Pilipczuk [12, 13], and Pilipczuk [21] revisited these problems
and gave the best known algorithms for them on tournaments. Fradkin and Seymour [15],
to generalize their results from tournaments to broader families of graphs, introduced the
idea of digraphs that have bounded independence number. In particular, tournaments have
independence number 1. They showed that Edge disjoint Paths admits an XP algorithm
(that is, an algorithm with running time of the form of nf(k), where n is the number of
vertices in the input graph and k is the number of pairs between which one is asked to find
edge-disjoint paths) on this family of graphs.
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In this paper, we study well-known cut problems (DFAS, Directed Cutwidth and
OLA) on digraphs of bounded independence number. Our main contribution is a bound
on the number of k-cuts (defined below), which shows that the sub-exponential behavior of
these problems on tournaments generalizes to digraphs of bounded independence number.

1.1 Problem statements and our algorithms
For a simple digraph D (every pair of vertices has at most one arc), denote n = |V (D)|
and m = |E(D)|. Let us formally define the class of digraphs relevant to our work. Given
a digraph D, a vertex subset I ⊆ V (D) is called an independent set if there are no arcs
between any pair of vertices in I. For any positive integer α, let

Dα = {D | maximum independent set in D has size at most α}.

Observe that for α = 1, Dα is a family of tournaments. For simplicity, we assume to work
with simple digraphs. However, all our results hold also when the digraph is not simple. That
is, for any pair of vertices u, v, both the arcs (u, v) and (v, u) can be present in the digraph.
A digraph is a DAG (Directed Acyclic Graph) if it has no directed cycles.

We first study the following problem.

Directed Feedback Arc Set (DFAS) Parameter: k

Input: A digraph D and an integer k.
Question: Does there exist S ⊆ E(D) of size at most k such that D − S is a DAG?

Our first theorem gives a sub-exponential time algorithm for DFAS on Dα.

I Theorem 1. DFAS on Dα is solvable in time 2O(α2√k log(αk)) · nO(α).

Towards the definition of the second problem, let D be a digraph. For X,Y ⊆ V (D),
let E(X,Y ) = {(u, v) ∈ E(D) | u ∈ X, v ∈ Y } denote the set of arcs from X to Y . For
an integer q, denote [q] = {1, . . . , q}. The width of an ordering (v1, . . . , vn) of V (D) is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. The cutwidth of D, denoted by ctw(D), is the
smallest possible width of an ordering of V (D). Now, the second problem is defined as follows.

Directed Cutwidth Parameter: k

Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

We present a sub-exponential time algorithm for Directed Cutwidth on Dα.

I Theorem 2. Directed Cutwidth on Dα is solvable in time 2O(α2√k log(αk)) · nO(α).

Towards the definition of the third problem, let D be a digraph. For two integers i, j, let
[i > j] evaluate to 1 if i > j, and to 0 otherwise. The cost of an ordering σ = (v1, . . . , vn) of
V (D) is

∑
(vi,vj)∈E(D)(i− j) · [i > j]. In other words, every arc (vi, vj) directed backward in

σ costs a value equal to its length, where the length of (vi, vj) is the distance between vi and
vj in σ. Our last problem seeks an ordering of cost at most k.

Optimal Linear Arrangement (OLA) Parameter: k

Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

Our third theorem gives a sub-exponential time algorithm for OLA on Dα.

FSTTCS 2018



35:4 Graph Layout Problems on Digraphs with Bounded Independence Number

I Theorem 3. OLA on Dα is solvable in time 2O(α2k
1
3 log(αk)) · nO(α).

1.2 Main contribution and methods
Our algorithms are based on the general framework of Fomin and Pilipczuk [13] to design
parameterized sub-exponential time algorithms. The main ingredient to prove in order to
employ this framework is a combinatorial upper bound on the number of “k-cuts” in graphs
that are Yes-instances of the problem at hand. The proof for the combinatorial bound
in our case is completely different from the proof given by Fomin and Pilipczuk [13] for
transitive tournaments. The bound of Fomin and Pilipczuk [13] is achieved by mapping
the set of k-cuts in a transitive tournament to the set of partitions of the integer k. Then,
an asymptotic bound on the partition number of an integer yields a bound on the number
of k-cuts in a transitive tournament. In the case of digraphs with bounded independence
number, we do not know how to attain the desired bound by utilizing such partitions of
integers.

Before we go further, we define the notion of k-cuts.

I Definition 4 (k-cut). A k-cut in a digraph D is a partition of V (D) into two parts L and
R (that is, V (D) = L ] R) such that |E(R,L)| ≤ k. The k-cut is denoted by the ordered
pair (L,R). The set L is called the left part of the cut, and the set R is called the right part
of the cut. The arcs in E(R,L) are the cut-arcs of (L,R).

Our first technical contribution is an upper bound on the number of k-cuts in Dα.

I Lemma 5. If D ∈ Dα, then for any positive integer k, the number of k-cuts in D is at
most 2c

√
k log k · (n+ 1)2αd

√
ke · log n, where c is a fixed absolute constant.

The upper bound in Lemma 5 is of the form nO(f(α)
√
k). That is, it shows that the number

of k-cuts in digraphs in Dα is upper bounded by a sub-exponential function in n. Clearly,
such a bound is not sufficient to design sub-exponential time parameterized algorithms. If
any of the problems DFAS, Directed Cutwidth or OLA on Dα admits a polynomial
kernel, then Lemma 5 can readily yield a sub-exponential time parameterized algorithm for
the corresponding problem. However, we do not know whether these problems admit such
kernels, and the resolution of these questions remains an interesting open problem.

Our second main technical contribution is an upper bound on the number of k-cuts in a
subfamily of Dα. This bound suffices to prove Theorems 1, 2 and 3 by embedding it in the
framework of Fomin and Pilipczuk [13]. Let us first define this subfamily. Given a vertex
v ∈ V (D), denote the set of out-neighbors of v inD byN+

D (v) = {u ∈ V (D) | (v, u) ∈ E(D)}.

I Definition 6 (d-out-degenerate digraph). For any positive integer d, a digraph D is d-out-
degenerate if for every subgraph H of D, there exists a vertex v ∈ V (H) such that d+

H(v) ≤ d.
An ordering (v1, . . . , vn) of the vertex set of D is a d-out-degeneracy sequence of D if for any
i ∈ {2, . . . , n}, |N(vi) ∩ {vj | j < i}| ≤ d.

Observe that a digraph is d-out degenerate if and only if it has a d-out-degeneracy
sequence, that is there is an ordering of the vertex set of the digraph such that each vertex
has at most d edges to the vertices before it. Also observe that DAGs are 0-out-degenerate.
Next, we define a class of digraphs having small independence number and bounded out-
degeneracy. Formally, Dα,d = {D | D ∈ Dα and D is d-out-degenerate}. Note that if
D ∈ Dα,d, then every induced subgraph D′ of D belongs to Dα,d. Our second main technical
contribution is formally stated as follows.
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I Lemma 7. If D ∈ Dα,d, then for any positive integer k, the number of k-cuts in D is at
most 2c(α+1)

√
k log k · (d+ 1 + α(2k + 1))2α(α+1)d

√
ke · log(d+ α(2k + 1)) · nα+1, where c is a

fixed absolute constant.

One can easily see that if (D, k) is a Yes-instance of DFAS, Directed Cutwidth or
OLA, then D is k-out-degenerate. Thus, Lemma 7 implies a sub-exponential (in k) upper
bound on the number of k-cuts for Yes-instances of these problems. In fact, for OLA one
can show that D is 2k2/3-out-degenerate, and thus obtain an improved upper bound on the
number of k-cuts for Yes-instances. Since the k-cuts of any digraph can be enumerated with
polynomial delay [13], hence the upper bounds in Lemmas 5 and 7 are constructive.

In what follows, we present our proof strategies for the results stated above.

Proof Strategy of Lemma 5. We first make a very simple observation, which serves as the
starting point of our proof. Let V (D) = V1 ] · · · ] V` be some partition of V (D). Then,
the number of k-cuts in D is upper bounded by the product of the number of k-cuts in
the digraph induced by each Vi. Thus, we aim to partition V (D) into parts that induce
“sufficiently structured” subdigraphs – we want the number of k-cuts in D[Vi], for any i ∈ [`],
to be “easier” to upper bound than the number of k-cuts in D directly. Moreover, since our
aim is to achieve a bound of no(k) for the total number of k-cuts in D, we want a partition
V (D) = V1 ] · · · ] V` where ` = o(k). To this end, we utilize Gallai-Milgram’s Theorem
(explained next) under the canvas of chromatic coding.

On the one hand, Gallai-Milgram’s Theorem states that if the size of a maximum
independent set in a digraph is α, then its vertex set can be partitioned into at most α
parts such that the digraph induced by each of these parts has a directed Hamiltonian path.
On the other hand, chromatic coding (in its derandomized form) provides a family F of
partitions of V (D) such that (i) |F| = 2o(k) log n, (ii) for each k-cut (L,R) in D, there exists
a partition P ∈ F such that all the cut arcs of (L,R) go across the parts of P, and (iii)
the number of parts of each partition in F is upper bounded by O(

√
k). If the cut-arcs of

(L,R) go across the parts of a partition P, we say that (L,R) respects P. To see how to
combine these two tools, let F be a family provided by chromatic coding. Since the number
of partitions in F is 2o(k) log n, and for each k-cut (L,R) there exists a partition in F that
it respects, it suffices to bound the number of k-cuts that respect a particular (arbitrary)
partition in F . Then, the total number of k-cuts in the digraph will be the product of the
number of k-cuts that respect a partition in F , over all partitions in F .

Consider an arbitrary partition P ∈ F (of V (D)). Let P = P1 ] · · · ] P`. Recall that
` = O(

√
k), and the number of k-cuts in D is at most the product of the number of k-cuts

in D[Pi], over all i ∈ [`]. Here, a crucial insight is that the number of k-cuts in D that
respect P is at most the product of the number of 0-cuts in D[Pi], over all i ∈ [`]. Thus, we
have reduced our problem to upper bounding the number of 0-cuts in a digraph. Now, to
upper bound the number of 0-cuts in D[Pi] by no(k), we utilize Gallai-Milgram’s Theorem.
Since D[Pi] ∈ Dα, Gallai-Milgram’s Theorem implies that Pi can be partitioned into at most
α parts, say Pi = Pi1 ] . . . ] Piq, q ≤ α, such that for each j ∈ [q], D[Pij ] has a directed
Hamiltonian path. Thus, we have finally reduced our problem to finding 0-cuts in digraphs
that have a directed Hamiltonian path. As we will see later, the number of 0-cuts in such
digraphs is linear in its number of vertices. Combining everything together, we are able to
bound the number of k-cuts in D by nO(α

√
k).

Proof Strategy of Lemma 7. Each vertex in a digraph D has two choices of how to
participate in a cut – it can belong either to its left side or to its right side. Thus, if
|V (D)| = n, a trivial upper bound on the total number of k-cuts in D is 2n. Suppose that

FSTTCS 2018



35:6 Graph Layout Problems on Digraphs with Bounded Independence Number

we have (somehow) reached a “situation” where most of the vertices must belong to only one
of the sides of a k-cut. Then, the arguments to attain the 2n bound imply that the number
of k-cuts is at most 2q, where q is the number of vertices which possibly have both choices.
By the bound in Lemma 5, we can further conclude that the number of k-cuts is, in fact, at
most qO(α

√
k). Thus, if q = kO(1) (that is, only kO(1) vertices can choose a side), we get a

bound of 2o(k).
On a different note, suppose that we can identify a set of vertices in D, say V1, such that

D[V1] has at most 2o(k) k-cuts. If V1 is large enough, say |V1| is such that |V (D)\V1| = kO(1),
then we can bound the number of k-cuts in D[V (D) \ V1] by 2o(k) (by Lemma 5). Since the
number of k-cuts in D is bounded by the product of the number of k-cuts in D[V1] and the
number of k-cuts in D[V (D) \V1], we attain the bound of 2o(k) on the number of k-cuts in D.

Our algorithm combines the two ideas above to obtain the desired bound. For any vertex
v ∈ V (D), we aim to bound the number of k-cuts in D where v is “forced” to belong to the
left part. We exploit the position of v in a fixed d-out-degeneracy sequence of D to conclude
that a large number of vertices are forced to belong to one side of these cuts. Then, building
on the second idea, we inductively find a set of vertices such that the digraph induced on it
has independence number strictly smaller than the independence number of D. For such a
set of vertices, we can inductively assume that the number of k-cuts in the digraph induced
by them is 2o(k). Having this bound at hand, we are able to conclude the proof.

Proof Strategy of Theorems 1, 2 and 3. To obtain sub-exponential FPT algorithms for
DFAS, Directed Cutwidth and OLA on Dα, we first use Lemma 7 to bound the number
of k-cuts in the digraphs of the Yes-instances of these problems by 2o(k). Here, we rely on the
observation that these digraphs must be k-out-degenerate. Though we do not explicitly state
this, the procedures to bound the number of k-cuts in both Lemmas 5 and 7 are constructive.
However, constructiveness is not necessary since a standard branching procedure can also
enumerate all k-cuts in a digraph with polynomial delay [13]. To actually solve any of the
three problem, we design a dynamic programming procedure over the k-cuts.

The last two steps of this proof (namely, the enumeration and the dynamic programming
procedures) are quite standard, based on the work by Fomin and Pilipczuk [13] to obtain
subexponential FPT algorithms for DFAS, Directed Cutwidth and OLA on tournaments.
Since the proofs of Theorems 1, 2 and 3 are standard and resemble [13], we defer them to
the appendix.

1.3 Preliminaries
For any i, j ∈ Z+, denote [i] = {1, . . . , i}, [i]0 = {0, 1, . . . , i} and [i, j] = {i, i+ 1, . . . , j− 1, j}.
For a partition P = P1 ] · · · ] P`, each Pi is referred to as a part of P. For a digraph D,
V (D) denotes its vertex set and E(D) its arc set. We write (u, v) ∈ E(D) if there is an arc
in D with u as its tail and v as its head. Given a vertex v ∈ V (D), the set of in-neighbors of
v in D, denoted by N−D (v), is the set of all vertices u ∈ V (D) such that (u, v) ∈ E(D). The
set of out-neighbors of v in D, denoted by N+

D (v), is the set of all vertices u ∈ V (D) such
that (v, u) ∈ E(D). The set of neighbors of v, denoted by ND(v), is the union of N−D (v) and
N+
D (v). For a set X ⊆ V (D), we let N−X (v) denote the set of in-neighbors of v in X, that is,

N−X (v) = N−D (v) ∩X (respectively, N+
X(v) = N+

D (v) ∩X, NX(v) = ND(v) ∩X). Similarly,
N+
X(v) = N+

D (v) ∩ X and NX(v) = ND(v) ∩ X. Whenever the digraph is clear from the
context, we drop the subscript D. For X,Y ⊆ V (D), E(X,Y ) = {(u, v) | (u, v) ∈ E(D), u ∈
X and v ∈ Y } denotes the set of arcs from X to Y . By D[X], we denote the directed
subgraph induced by the vertices of X. A set X ⊆ V (D) is called an independent set of D if
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for any u, v ∈ X, (u, v) 6∈ E(D) and (v, u) 6∈ E(D). In other words, X is an independent set
in the underlying undirected graph of D. The independence number of a digraph is equal to
the size of the maximum independent set it contains. A directed Hamiltonian path in D is a
directed simple path on all vertices in D. For a set of vertices {v1, . . . , vn}, let (v1, . . . , vn)
denote the ordering where for any i ∈ [n], vi is the ith vertex of the ordering.

2 Bounding the number of k-cuts for digraphs in Dα

In this section, we prove that the number of k-cuts in any digraph on n vertices with bounded
independence number is no(k). In particular we prove Lemma 5. Let us recall that a k-cut
in a directed graph D is a partition of the vertex set of D into two parts, V (D) = L ] R,
such that |E(R,L)| ≤ k. Let us note that a 0-cut in a digraph D is a partition (L,R) of the
vertex set V (D) such that there are no arcs from R to L in D.

At the heart of the proof of Lemma 5 is a simple observation that helps us focus on parts
of the digraph for which bounding the number of k-cuts is easier. This simple observation is
then exploited to its fullest using two main tools - (1) the Gallai-Milgram’s Theorem and
(2) chromatic coding. Let us state them formally. We begin by stating this key observation,
followed by formally defining both these ideas.

I Lemma 8. Let D be a digraph and k ∈ Z+. Let V (D) = V1 ] . . . ] Vq be some partition
of V (D). For any i ∈ [q], let Ni be the number of k-cuts in D[Vi], then the number of k-cuts
in D is at most

∏
i∈[q] Ni.

Proof. To prove the lemma, observe that, it is enough to prove that for any k-cut (L,R)
in D, there exists k-cuts (Li, Ri), for each i ∈ [q], in D[Vi], such that L = ∪i∈[q]Li and
R = ∪i∈[q]Ri. To see this, for any i ∈ [q], let Li = L ∩ Vi and Ri = R ∩ Vi. Observe that,
each (Li, Ri) is a k-cut in D[Vi], otherwise (L,R) is not a k-cut in D. J

Thus, if we can partition the vertex set of D into o(k) parts such that it is “easier” to
bound the number of k-cuts in each of these parts, then we are done. At a high level, we will
first partition the vertex set of D using chromatic coding, and then further partition each
part of this partition using Gallai-Milgram’s Theorem. We will then conclude by proving
that the number of k-cuts in each of the sub-parts is linear in the number of vertices. We
now state the Gallai-Milgram’s Theorem formally.

I Proposition 9 ([16], Gallai-Milgram Theorem, 1960). For any α ∈ Z+ and D ∈ Dα, there
exists a partition of V (D) = V1 ] . . . ] Vq, such that q ≤ α and for each i ∈ [q], D[Vi] has a
directed Hamiltonian path.

Next, we state the technique of chromatic coding in its derandomized form. To this end,
we first define universal (n, k, r)-coloring family and then state the known results about the
existence of such a families of bounded size. This result is called the chromatic coding lemma.
For any graph G, a proper vertex coloring of G is a function f : V (G)→ Z+, such that for
any (u, v) ∈ E(G), f(u) 6= f(v).

I Definition 10 ([3], Universal (n, k, r)-Coloring Family). For integers n, k and r, a family H
of functions from [n] to [r] is called a universal (n, k, r)-coloring family, if for any graph G
on the vertex set [n] with at most k edges, there exists an h ∈ H which is a proper vertex
coloring of G.

Observe that the above mentioned definition holds for digraphs too, where the notion of
proper vertex coloring is defined on its underlying undirected graph.
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35:8 Graph Layout Problems on Digraphs with Bounded Independence Number

I Proposition 11 ([3], Chromatic Coding Lemma). For any n, k ≥ 1, there exists a universal
(n, k, 2d

√
ke)-coloring family of size at most 2O(

√
k log k) · log n.

A formulation of the Chromatic Coding lemma, in the way that is useful to us, can be
seen in the following corollary.

I Corollary 12. For any digraph D on n vertices, and an integer k, there exists a family F
of partitions of V (D) into at most 2

√
k parts, such that,

1. for any k-cut (L,R) in D, there exists a partition P = {P1, . . . , Pq} in the family F , such
that for any cut-arc (u, v) of (L,R), there exists i, j ∈ [q], i 6= j, such that u ∈ Pi and
v ∈ Pj, and

2. |F| = 2O(
√
k log k) · log n.

Proof. Let H be a (n, k, 2d
√
ke)-universal coloring family from Proposition 11, of size at

most 2O(
√
k log k) · log n. We construct a family F of partitions of V (D) from the family H

as follows. For each h ∈ H, there is a partition Ph = P1 ] · · · ] Pd2√ke in F , where for any
i ∈ [2d

√
ke], Pi = h−1(i). Here, if for a certain i, Pi = ∅, then we discard this part from the

partition Ph.
We will now show that F is indeed the family with the required properties. Since

|H| = 2O(
√
k log k) · log n, clearly |F| = 2O(

√
k log k) · log n. Let (L,R) be some k-cut in D.

Consider the digraph, say D(L,R), on the vertex set of D with only the cut-arcs of (L,R).
Note that |E(D(L,R))| ≤ k. Thus, from the definition of (n, k, 2d

√
ke)-universal coloring

family, there exists a function h : V (D(L,R))→ [2d2
√
ke] in H, such that h is a proper vertex

coloring of D(L,R). Consider the partition Ph ∈ F . Let Ph = P1 ] · · · ] P2d
√
ke. Since h is a

proper coloring of D(L,R) and all the cut-arcs of (L,R) are in D(L,R), for any cut-arc (u, v)
of (L,R), h(u) 6= h(v). Thus, if h(u) = i and h(v) = j, i 6= j, then u ∈ Pi and v ∈ Pj . J

For the rest of this section, let F denote the family described in Corollary 12 for the
digraph D and integer k. For any arc (u, v) of a digraph and a partition P = P1 ] · · · ]Pq of
the vertex set of the digraph, we say that the arc (u, v) goes across the parts of this partition
P, if u ∈ Pi, v ∈ Pj and i 6= j. For any partition P of the vertex set of the digraph D, we
say that a k-cut (L,R) in D respects P if all the cut-arcs of (L,R) go across the parts of P .
The next lemma states that, the number of k-cuts in D is at most the sum of the number of
k-cuts that respect a partition P, over all partitions P ∈ F . Since |F| = 2o(k), it is enough
to bound the number of k-cuts that respect an arbitrary partition in F by no(k). For the
digraph D, an integer k and P ∈ F , let NP be the number of k-cuts in D that respect P.

I Lemma 13. The total number of k-cuts in D is at most
∑
P∈F NP .

Proof. To prove the lemma, we need to prove that for any k-cut (L,R) in D, there exists
P ∈ F such that (L,R) respects P. This follows from Corollary 12. J

Henceforth, let us fix P = P1 ] · · · ] Pq, q ≤ 2d
√
ke, where P is an arbitrary partition

in F . We are now only interested in bounding the number of k-cuts in D that respect P.
It follows from Lemma 8, that to bound the total number of k-cuts in D, it is sufficient to
bound the number of k-cuts in D[Pi], for each i ∈ [q]. We now have the following lemma,
that says something much stronger. To bound the number of k-cuts in D that respect P , it
is sufficient to bound the number of just the 0-cuts in D[Pi], for all i ∈ [q].

I Lemma 14. For any digraph D, let P = P1 ] . . . ] Pq be some partition of the vertex set
of D. For any i ∈ [q], let Ni be the number of 0-cuts in D[Pi]. Then the number of k-cuts in
D that respect P is at most

∏
i∈[q] Ni.
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P1`

P1 P2 Pq

P21

P2`

P11 Pq1

Pq`

Figure 1 The Vertex Partition for the Sub-exponential XP bound. P = {P1 ] · · · ] Pq} is the
vertex partition obtained using chromatic coding and Pi = Pi1 ] · · · ] Pi` is the partition obtained
using Gallai-Milgram’s Theorem. Each Pij contains a Directed Hamiltonian Path. The cut arcs of
all the cuts that respect P are marked in blue.

Proof. Observe that to prove the lemma it is enough to prove that for any k-cut (L,R) of D
that respects P, there exists 0-cuts (Li, Ri) in D[Pi], for each i ∈ [q] such that L = ∪i∈qLi
and R = ∪i∈[q]Ri. Let (L,R) be some k-cut in D that respects P. For each i ∈ [q], let
Li = L ∩ Pi and Ri = R ∩ Pi. Observe that, for each i ∈ [q], (Li, Ri) is a 0-cut in D[Pi].
Suppose not. Then there exists a cut-arc of (Li, Ri), say (u, v), such that u, v ∈ Pi and
u ∈ Ri, v ∈ Li. Since L = ∪i∈[q]Li and R = ∪i∈[q]Ri, u ∈ R and v ∈ L. This contradicts
that (L,R) respects P. J

Thus, we have further narrowed down the class of k-cuts that we want to bound. More
precisely, we are now interested in bounding the number of 0-cuts in D[Pi], for any part Pi
of P . Since D ∈ Dα, for any Pi ∈ P , D[Pi] ∈ Dα. Thus, from Gallai-Milgram Theorem, the
vertex set of Pi can be partitioned into at most α parts, say Pi = Pi1 ] · · · ] Pi`, ` ≤ α, such
that for each j ∈ [`], D[Pij ] has a directed Hamiltonian path. We will now prove that for
any digraph that has a directed Hamiltonian path, the number of 0-cuts in it are linear in
the number of its vertices.

I Lemma 15. Let D be a digraph on n vertices that has a directed Hamiltonian path. Then
the number of 0-cuts in D is n+ 1.

Proof. Since D has a directed Hamiltonian path, let {v1, . . . , vn} be the vertex set of D such
that for each i ∈ [n − 1], (vi, vi+1) ∈ E(D). Consider any 0-cut (L,R) in D. Let i be the
smallest integer such that vi ∈ R. By the choice of i, for all j < i, vj ∈ L. We now claim
that, for all j > i, vj ∈ R. Suppose not. Then there exist a j > i, such that vj ∈ L. Since
j > i, and vi appears before vj in the Hamiltonian path ordering. Thus, there is a directed
path from vi to vj in D. Since vi ∈ R and vj ∈ L, an arc of this directed path is a cut-arc
for (L,R), which contradicts that (L,R) is a 0-cut.

Thus, for any i ∈ [n], the number of 0-cuts in D where vi is the first vertex in the ordering
(v1, . . . , vn) that belongs to the right part of these cuts is exactly 1. Since any cut in D,
either does not contain any vertex in its right part (there is only one such cut) or contains
some vertex, the total number of 0-cuts in D is n+ 1. J

We are now ready to prove Lemma 5. An illustration depicting the partitioning used in
the proof of Lemma 5 is given in Figure 1.

Proof of Lemma 5. Let N be the total number of k-cuts in D. Consider the family F of
Corollary 12 for the digraph D and integer k. From Corollary 12, |F| ≤ 2O(

√
k log k) · log n.

For each partition P ∈ F , let NP be the number of k-cuts in D that respect P. From
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Lemma 13, N ≤
∑
P∈F NP . Consider any arbitrary partition P ∈ F . Let P = P1 ] . . . ] Pq,

and from Corollary 12 we have q ≤ 2d
√
ke. For any i ∈ [q], let NPi

be the number of 0-cuts
in D[Pi]. From Lemma 14, NP ≤

∏
i∈[q] NPi

. Since D ∈ Dα, for any Pi, D[Pi] ∈ Dα. Thus,
from Gallai-Milgram Theorem, the vertex set of Pi can be partitioned into at most α parts,
say Pi = Pi1 ] . . . ] Pi`, ` ≤ α, such that such that for each j ∈ [`], D[Pij ] has a directed
Hamiltonian path. From Lemma 15, the number of 0-cuts in D[Pij ] is n+ 1. From Lemma 8,
NPi
≤

∏
j∈[`](n+ 1) ≤ (n+ 1)` ≤ (n+ 1)α. Combining everything stated above, we get that,

N ≤ |F| ·NP ≤ |F| · (NPi)2d
√
ke ≤ |F| · (n+1)2αd

√
ke ≤ 2O(

√
k log k) · (n+1)2αd

√
ke · log n). J

3 Improved bounds for digraphs in Dα with bounded out-degeneracy

In this section we give the proof of Lemma 7. Recall from the introduction that a digraph D
is said to be d-out-degenerate, if for every subgraph H of D, there exists a vertex v ∈ V (H),
such that d+

H(v) ≤ d. Furthermore, a digraph D d-out degenerate if and only if it has a
d-out-degeneracy sequence.

Throughout this section, D is a digraph on n vertices and D ∈ Dα,d. Let (v1, . . . , vn)
be a d-out-degeneracy sequence of D. For any i ∈ [n], we say that a k-cut (L,R) in D is
of type-i, if vi ∈ L and for all j > i, vj ∈ R. We say that a k-cut (L,R) in D is of type-0 if
L = ∅. Note that the collection of the sets of type-i cuts for all i ∈ [n]0, forms a partition of
the set of all the k-cuts. Observe that there is exactly 1 type-0 cut in any digraph.

I Observation 16. For any i ∈ [n]0, let Ni be the number of k-cuts in D of type-i. Then
the number of k-cuts in D is at most

∑
i∈[n]0

Ni.

Henceforth, our goal is to bound the number of k-cuts in D of type-i, for an arbitrary
i ∈ [n]. Recall from Lemma 8 that if V (D) = V1 ] · · · ] Vc is a partition of the vertex set of
D, then to bound the number of k-cuts in D, it is enough to bound the number of k-cuts
in each D[Vj ], j ∈ [c]. This remains our underlying strategy. However, this time we use a
different partition of the vertex set of D, where the number of parts of this partition is 4,
compared to o(k) in Lemma 5. This partition of the vertex set, is presented in Lemma 17.

I Lemma 17. For a digraph D ∈ Dα,d and any positive integer k, for any fixed i ∈ [n], there
exists a partition V (D) = Vinduct ] VforceL ] VforceR ] Vsmall such that:
1. If α = 1, then Vinduct = ∅, otherwise D[Vinduct] ∈ Dα′,d, where α′ < α.
2. For any k-cut (L,R) in D of type-i, VforceL ⊆ L.
3. For any k-cut (L,R) in D of type-i, VforceR ⊆ R.
4. |Vsmall| ≤ d+ α(2k + 1).

Lemma 17 states that the vertex set of D can be partitioned into 4 parts with the following
properties. The digraph induced on the first part is either empty or belongs to Dα′,d, for
α′ < α. To bound the number of k-cuts in such a digraph we will use an induction on α. For
the second part of this partition, we prove that for any k-cut (L,R) of type-i, all the vertices
of this part belong to L. Similarly, for the third part of this partition, we prove that for any
k-cut (L,R) of type-i, all the vertices of this part belong to R. Therefore, there is a unique
k-cut of type-i in the digraph induced by the second and third part. The last part of the
partition has the property that the number of vertices in this part is “small”. For the digraph
induced by this part, we will get the desired bound by using Lemma 5 on this digraph.

The proof of Lemma 17 is deferred for later. We will now proceed towards the proof of
Lemma 7 using Lemma 17 and induction on α. At any inductive step we use the partition of
Lemma 17 and bound the number of k-cuts of type-i in the digraph induced on each part of
the partition, thereby bounding the number of k-cuts in D because of Observation 16.
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Proof of Lemma 7. We prove the lemma using induction on α. For any positive integer α, let
us denote the bound of Lemma 5 on the number of k-cuts in D ∈ Dα, on at most d+α(2k+1)
vertices, by η(α, d, k). That is, η(α, d, k) = 2c

√
k log k ·(d+1+α(2k+1))2αd

√
ke·log(d+α(2k+1)),

where c is the absolute constant hidden in the O notation of the expression in Proposition 11.
Let Nk(n, α, d) denote the maximum number of k-cuts in D for any digraph D ∈ Dα,d on n
vertices. We claim that for any positive integers n, d and α > 1, Nk(n, 1, d) ≤ 1 +n · η(1, d, k)
and Nk(n, α, d) ≤ 1 +Nk(n, α− 1, d) · η(α, d, k) · n. Solving the recurrence, we will get the
desired bound on the number of k-cuts in D.

Let us first prove that for any positive integers n and d, Nk(n, 1, d) ≤ 1 + n · η(1, d, k).
If the independence number of the digraph D is 1, then from Lemma 17, there exists a
partition V (D) = VforceL ] VforceR ] Vsmall of D such that for any k-cut (L,R) in D of type-i,
VforceL ⊆ L and VforceR ⊆ R. Thus, from Lemma 8, we conclude that the number of k-cuts
of type-i in D is at most the number of k-cuts in D[Vsmall]. Since D[Vsmall] is an induced
subgraph of D, the independence number of D[Vsmall] is at most α and D[Vsmall] is a digraph
on d+ 2k + 1 vertices. Thus, we conclude that the number of k-cuts in D of type-i are at
most η(1, d, k). From Observation 16, we conclude that the number of k-cuts in D are at
most 1 + η(1, d, k) · n.

By induction hypothesis, let us assume that for any positive integers n, d and for all
α′ < α, the number of k-cuts in any digraph D′ ∈ Dα′,d on at most n vertices is Nk(n, α′, d).
We will now prove that the number of k-cuts in the digraph D ∈ Dα,d is Nk(n, α, d) ≤
1 +Nk(n, α − 1, d) · η(α, d, k). From Lemma 17, there exists a partition V (D) = Vinduct ]
VforceL ] VforceR ] Vsmall, such that for any k-cut (L,R) in D of type-i, VforceL ⊆ L and
VforceR ⊆ R. Thus, from Lemma 8, the number of k-cuts of type-i in D is at most the
product of the number of k-cuts in D[Vinduct] and the number of k-cuts in D[Vsmall]. Since
D[Vinduct] ∈ Dα′,d, where α′ < α, from inductive hypothesis we get that the number of k-cuts
in D[Vinduct] is at most Nk(n, α′, d) ≤ Nk(n, α− 1, d). Since |Vsmall| ≤ d+ α(2k + 1), from
Lemma 5, the number of k-cuts in D[Vsmall] is at most η(α, d, k). Thus, the number of k-cuts
of type-i in D is at most Nk(n, α− 1, d) · η(α, d, k). From Observation 16, we conclude that
the number of k-cuts in D is at most 1 +Nk(n, α− 1, d) · η(α, k, d) · n. J

Proof of Partitioning Lemma. We start by a lemma that gives an upper bound on the size
of a digraph in Dα when every vertex has small out-degree.

I Lemma 18. For any digraph D ∈ Dα and a positive integer k, if for all v ∈ V (D),
d+(v) ≤ k, then |V (D)| ≤ α(2k + 1).

Proof. Let |V (D)| = n. We will first prove that if D ∈ Dα, then there exists v ∈ V (D) such
that d+(v) ≥ (n−α)

2α . Since d+(v) ≤ k, for all v ∈ V (D), this implies that (n−α)
2α ≤ k, thereby

implying that n ≤ α(2k + 1).
To prove the above-mentioned claim, we invoke Turan’s Theorem ([9]), which states

that for any graph G and integer r, if G does not contain a clique of size r + 1, then
|E(G)| ≤ (1 − 1

r ) · |V (G)|2
2 . Let G be the underlying undirected graph of D. Let Ḡ be

the complement graph of G. Since D ∈ Dα, Ḡ does not contain a clique of size α + 1.
Thus, by Turan’s Theorem, |E(Ḡ)| ≤ (1− 1

α ) · n
2

2 . Since Ḡ is the complement graph of G,
|E(G)| ≥ n(n−1)

2 − (1− 1
α ) · n

2

2 ≥
(n2−nα)

2α . Since G is the underlying undirected graph of D,
|E(D)| ≥ (n2−nα)

2α . Since |E(D)| =
∑
v∈V (D) d

+(v) ≥ (n2−nα)
2α , there exists v ∈ V (D), such

that d+(v) ≥ (n−α)
2α . J
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Intuitive Ideas for the proof Lemma 17. Let us begin by recalling that (v1, . . . , vn) is a
d-out-degeneracy sequence of D. Also recall that, the aim of proving Lemma 17 is to be able
to use it to bound the number of k-cuts in D of type-i. Consider any k-cut in D of type-i.
By definition, vi ∈ L and for all j > i, vj ∈ R. Thus, vi ∈ VforceL and {vj | j > i} ⊆ VforceR.
Thus, to prove Lemma 17, we essentially need to partition the vertices that appear before vi
in (v1, . . . , vn). Consider the non-neighbors of vi. They induce a digraph whose independence
number is strictly less than the independence number of D. Thus, they go to Vinduct. Thus,
we are now left with the goal of partitioning the set of neighbors of vi that appear before
vi in (v1, . . . , vn). Since (v1, . . . , vn) is a d-out-degeneracy sequence of D, the number of
out-neighbors of vi that appear before vi in (v1, . . . , vn) is at most d. This set of neighbors
goes to the set Vsmall. Finally, we are left with the set, say X, of vertices that appear before
vi in (v1, . . . , vn) and are in-neighbors of vi. Here, we observe that, if any vertex v ∈ X has
out-degree at least k + 1 in D[X], then there are at least k + 1 arc-disjoint paths from v to
vi in D[X ∪ {vi}], and hence in D. Thus, such a vertex v should always belong to same part
as vi in any k-cut. Thus, such vertices goes to VforceL. Finally, the remaining vertex set, say
X ′, has the property that each vertex in X has out-degree at most k. By Lemma 18, in such
a case the size of X ′ is at most α(2k + 1), and hence X ′ goes to Vsmall. We are now ready to
prove Lemma 17 formally.

Proof of Lemma 17. Let (v1, . . . , vn) be a d-out-degeneracy sequence of D. Consider the
partition of V (D) into three parts: {vi}, the predecessors of vi in this ordering, VP and
the successors of vi in this ordering VS . Formally, consider V (D) = {vi} ] VP ] VS , where
VP = {vj : j < i} and VS = {vj : j > i}. Further consider the partition of VP into the set
of vertices of VP that are neighbors of vi, say V NP , and the set of vertices of VP that are
non-neighbors of vi, say V NNP . That is, V (P ) = V NP ] V NNP . Next consider the partition
of V NP into two parts: V ONP and V INP such that V ONP is the set of vertices in V NP that are
out-neighbors of vi and V INP is the set of vertices in V NP that are in-neighbors of vi. Finally,
consider the digraph induced on V INP . We partition the set V INP based on the out-degree
of the vertices in D′ = D[V INP ∪ {vi}]. We partition the set V INP into two parts: V INP,L and
V INP,S , in the following way. If d+

D′(v) ≥ k + 1, v ∈ V INP,L, otherwise v ∈ V INP,S . Observe that,
for each v ∈ V INP,S , d

+
D′′(v) ≤ k, where D

′′ = D[V INP,S ∪ {vi}]. We have the following from the
above discussion.

V (D) = {vi} ] VP ] VS = {vi} ] V NP ] V NNP ] VS = {vi} ] V ONP ] V INP ] V NNP ] VS
= {vi} ] V ONP ] V INP,L ] V INP,S ] V NNP ] VS .

We now claim that the desired partition V (D) = Vinduct]VforceL]VforceR]Vsmall is such that,
(1) Vinduct = V NNP , (2) VforceL = {vi} ∪ V INP,L, (3) VforceR = VS , and (4) Vsmall = V ONP ∪ V INP,S .
An illustration depicting this partitioning can be found in Figure 2. Let us now prove that
the sets Vinduct, VforceL, VforceR and Vsmall satisfy the desired properties.
1. Vinduct: Observe that when α = 1, that is, when D is a tournament, V NNP = ∅. Therefore,

in this case, Vinduct = ∅. Otherwise, since D[Vinduct] is a subgraph of D and D ∈ Dα,d,
D[Vinduct] ∈ Dα,d. Since Vinduct only contains vertices that are non-neighbors of vi, if
D[Vinduct] has an independent set, say X, of size α then X ∪ {vi} is an independent set
in D of size α+ 1, which contradicts the fact that the size of any independent set in D is
bounded by α. Thus, D[Vinduct] ∈ Dα′,d, where α′ < α.

2. VforceL: By the definition of a type-i cut, for any k-cut (L,R) of type-i in D, vi ∈ L.
We will now show that for any vj ∈ V INP,L, there exists k + 1 arc-disjoint paths from vj to
vi. Thus, if (L,R) is a k-cut in D and vi ∈ L, then for all vj ∈ V INP,L, vj ∈ L. Consider
any vj ∈ V INP,L. Recall that d+

D′(vj) ≥ k + 1 where D′ = D[V INP ∪ {vi}] and V INP is the
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vi

Vinduct VforceL

VforceR Vsmall

Figure 2 The vertex partition for the Subexponential FPT bound. Here the vertices are arranged
in the linear order respecting the d-out-degeneracy sequence of D. Here k = 2 and the partition of
the vertices into the respective sets is demonstrated using appropriate colors.

set of in-neighbors of vi in VP . Consider the set of out-neighbours of vj in D′. Since
the number of such out-neighbors is at least k + 1 and each of these out-neighbors is an
in-neighbor of vi, we conclude that there are at least k + 1 arc-disjoint paths from vj to
vi.

3. VforceR: By the definition of type-i cut, VS ⊆ R, for any type-i cut (L,R).
4. Vsmall: Since (v1, . . . , vn) is a d-out-degeneracy sequence of D, |V NOP | ≤ d. We need

to show that |V INP,S | ≤ α(2k + 1). Recall that, as observed before, for each v ∈ V INP,S ,
d+
D′′(v) ≤ k, whereD′′ = D[V INP,S∪{vi}]. SinceD′′ is an induced subgraph ofD,D′′ ∈ Dα,d.

Also for each v ∈ V (D′′), d+
D′′(v) ≤ k. Thus, from Lemma 18, |V (D′′)| ≤ α(2k+ 1). This

proves that |V INP,S | ≤ α(2k + 1).
This concludes the proof. J

4 Conclusion

In this paper, we designed sub-exponential time parameterized algorithms for DFAS, Dir-
ected Cutwidth and OLA on digraphs of bounded independence number. We thus
significantly generalized known results for the restricted case of input digraphs that are
tournaments. Towards this, we obtained an upper bound on the number of k-cuts in digraphs
in Dα. This bound is our main contribution, which we believe to find further implications
in the future, and to be of independent interest. We conclude with an open problem: Do
DFAS, Directed Cutwidth and OLA admit polynomial kernels on Dα?
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A Appendix: Sub-exponential FPT algorithms for DFAS, Directed
Cutwidth and OLA for digraphs in Dα

In this section, we will give sub-exponential FPT algorithms for DFAS, Directed Cutwidth
and Optimal Linear Arrangement when the input graph belongs to Dα, for some positive
integer α. All these algorithms are based on a three step procedure. The first is observing
that the digraphs that are Yes-instances of these problems have sub-exponential FPT many
k-cuts. The proofs for DFAS and Directed Cutwidth are based on showing that the
digraph in the Yes-instances of the problems are k-out-degenerate, and hence, the bounds
follow from Lemma 7. For OLA, we show that if there is an ordering of the vertex set of
a digraph of cost at most k then the cutwidth of this digraph is O(k2/3). Hence, from the
results for Directed Cutwidth, the number of k-cuts in the Yes-instances of OLA is
also bounded. The second step is a procedure to enumerate all k-cuts of the input digraph.
And the third is to do some dynamic programming procedure over these enumerated cuts to
solve the respective problems. The last part of the algorithm (doing dynamic programming
over k-cuts) is standard and is identical to the algorithm given by Fomin and Pilipczuk [13].
Proofs are given for completeness.

Before proceeding further, we make a small remark that the proofs of Lemma 5 and 7 can
be made constructive by using the constructive versions of the Gallai-Milgram’s Theorem,
Chromatic Coding lemma and a polynomial time procedure to output a d-out-degeneracy
sequence of a digraph. Thus, one can actually enumerate all the k-cuts in the input digraphs
of these Lemmas using our algorithm. However, for the sake of completeness, we state in
Lemma 19, a different procedure that using a standard branching, enumerates all the k-cuts
in any digraph with polynomial delay.

I Lemma 19 (Lemma 7, [13]). k-cuts of a digraph D can be enumerated with polynomial-time
delay.

A.1 Sub-exponential algorithm for Directed Feedback Arc Set
We begin by recalling the problem definition.

Directed Feedback Arc Set (DFAS) Parameter: k

Input: A digraph D and an integer k.
Question: Does there exist S ⊆ E(D) such that D − S is a DAG?

Such a set S ⊆ E(D) is called a dfas of D. Observe that, a digraph D has a dfas of
size at most k if and only if there exists an ordering, say (v1, . . . , vn), of V (D) such that
|
∑
i∈[n] N

+(vi) ∩ {vj | j < i}| ≤ k, that is, the number of backward arcs in this ordering is
at most k. Next we bound the number of k-cuts in the Yes-instances of DFAS.

I Lemma 20. If (D, k) is a Yes-instance of DFAS and D ∈ Dα, then the number of k-cuts
in D is at most 2c(α+1)

√
k log k ·22α(α+1)d

√
ke log((k(2α+1)+α+1)) · log(k+α(2k+1)) ·nα+1, where

c is a fixed absolute constant.

Proof. Since (D, k) is a Yes-instance of DFAS, there exists an ordering, say (v1, . . . , vn),
of V (D), such that |

∑
i∈[n] N

+(vi) ∩ {vj | j < i}| ≤ k. In particular, for any i ∈ [n],
|N+(vi) ∩ {vj | j < i}| ≤ k. Thus, (v1, . . . , vn) is a k-out-degeneracy sequence of V (D).
Therefore, the bound follows from Lemma 7. J

Now we give the proof of Theorem 1.
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Proof of Theorem 1. Using the algorithm of Lemma 19, we enumerate all k-cuts in D. If
during the enumeration we exceed the bound given in Lemma 20, then we correctly conclude
that (D, k) is a No-instance of DFAS. Otherwise, from Lemma 19, in time 2O(α2√k log(αk)) ·
nO(α), we would have enumerated the set of all k-cuts in D. Let us denote this set by C. We
will solve the DFAS problem by doing a dynamic programming over the set C of k-cuts. Let
T be the dynamic programming table indexed by a k-cut (L,R) ∈ C and an integer i ∈ [k].
For any (L,R) ∈ C and i ∈ [k], we want T ((L,R), i) to store the following information.

T ((L,R), i) =


1 if there exists an ordering (v1, . . . , v`) of L

witnessing that D[L] has a dfas of size i, and
(L \ {v`}, R ∪ {v`}) ∈ C

0 otherwise

Note that T ((V (D), ∅), k) = 1 if and only if D has a dfas of size at most k. We now
describe how we compute T ((L,R), i), for any (L,R) ∈ C and i ∈ [k]. For all i ∈ [k],
T ((∅, V (D)), i) = 1. For any (L,R) ∈ C, such that L 6= ∅, and any i ∈ [k], T ((L,R), i) = 1
if and only if there exists v ∈ L such that (L \ {v}, R ∪ {v}) ∈ C and, if |N+

L (v)| = j, then
T ((L \ {v}, R ∪ {v}), i− j) = 1.

We now prove that for any (L,R) ∈ C and i ∈ [k], T ((L,R), i) = 1 if and only if
there exists an ordering (v1, . . . , v`) of L witnessing that D[L] has a dfas of size i, and
(L \ {v`}, R ∪ {v`}) ∈ C. We prove this by induction on |L|. When |L| = 0, this is true
because of the base case. By inductive hypothesis, assume that it holds for any (L′, R′) ∈ C
such that |L′| = ` − 1, and for any i ∈ [k]. We will first prove that if T ((L,R), i) = 1,
then there exists an ordering (v1, . . . , v`) of L witnessing that D[L] has a dfas of size i, and
(L \ {v`}, R ∪ {v`}) ∈ C.

Since T ((L,R), i) = 1, there exists a vertex, say v` ∈ L, such that (L \ {v`}, R∪{v`}) ∈ C
and if |N+

L (v`)| = j then T ((L\{v`}, R∪{v`}), i−j) = 1. Since T ((L\{v`}, R∪{v`}), i−j) = 1,
from induction hypothesis, D[L \ {v`}] has a dfas of size at most i − j. Let (v1, . . . , v`−1)
be the ordering of L \ {v`} witnessing this, that is,

∑
p∈[`−1] |N+(vp) ∩ {vq | q < p}| ≤ i− j.

Since |N+
L (v`)| = j,

∑
p∈[`] |N+(vp) ∩ {vq | q < p}| ≤ i. Thus, the ordering (v1, . . . , v`−1, v`)

is a witness to the fact that D[L] has a dfas of size at most i.
We will now prove that if D[L] has a dfas of size at most i and (v1, . . . , v`) is an

ordering witnessing this such that (L \ {v`}, R ∪ {v`}) ∈ C, then T ((L,R), i) = 1. Clearly, if
|N+(v`)| = j, then the ordering (v1, . . . , v`−1) witnesses that D[L \ {v`}] has a dfas of size
at most i− j. Thus, T ((L \ {v`}, R ∪ {v`}), i− j) = 1. J

A.2 Sub-exponential algorithm for Directed Cutwidth

Let D be a digraph. For an ordering (v1, . . . , vn) of V (D), the width of this ordering is
maxi∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|. The cutwidth of D, denoted by ctw(D), is the
smallest possible width of an ordering of V (D).

Directed Cutwidth Parameter: k

Input: A digraph D and an integer k.
Question: Is ctw(D) ≤ k?

Next we bound the number of k-cuts in the Yes-instances of DFAS.
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I Lemma 21. If (D, k) is a Yes-instance of Directed Cutwidth and D ∈ Dα, then
the number of k-cuts in D is at most 2c(α+1)

√
k log k · 22α(α+1)d

√
ke log((k(2α+1)+α+1)) · log(k +

α(2k + 1)) · nα+1, where c is a fixed absolute constant.

Proof. If (D, k) is a Yes-instance of DFAS, then there is an ordering, say (v1, . . . , vn), of
V (D) of width at most k. Recall that, the width of an ordering (v1, . . . , vn) is maxi∈[n−1]
|E({vi+1, . . . , vn}, {v1, . . . , vi})|. Observe that if maxi∈[n−1] |E({v1, . . . , vi}, {vi+1, . . . , vn})|
≤ k, then for each i ∈ [n], |N+(vi) ∩ {vj : j < i}| ≤ k. Thus, D is k-out-degenerate. Thus,
the bound follows from Lemma 7. J

Now we give the proof of Theorem 2.

Proof of Theorem 2. Using the algorithm of Lemma 19, we enumerate all k-cuts in D. If
during the enumeration we exceed the bound given in Lemma 21, then we correctly conclude
that (D, k) is a No-instance of Directed Cutwidth. Otherwise, from Lemma 19, in
time 2O(α2√k log(αk)) · nO(α), we would have enumerated the set of all k-cuts in D. Let us
denote this set by C. We will solve the Directed Cutwidth problem by doing a dynamic
programming over the set C of k-cuts. Let T be the dynamic programming table indexed by
a k-cut (L,R) ∈ C. For any (L,R) ∈ C, we want T ((L,R)) to store the following information.

T ((L,R)) =


1 if there exists an ordering of L, say (v1, . . . , v`),

such that for all j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k
0 otherwise

Note that T ((V (D), ∅)) = 1 if and only if ctw(D) ≤ k. We now describe how we
compute T ((L,R)) for any (L,R) ∈ C. Set T ((∅, V (D))) = 1. For any (L,R) ∈ C such that
L 6= ∅, T ((L,R)) = 1 if and only if there exists v ∈ L such that (L \ {v}, R ∪ {v}) ∈ C and
T ((L \ {v}, R ∪ {v})) = 1.

We now prove that for any (L,R) ∈ C, T ((L,R)) = 1 if and only if there exists an ordering
of L, say (v1, . . . , v`), such that for all j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k. We
prove this by induction on |L|. When |L| = 0, this is true because of the base case. By
inductive hypothesis, assume that for any (L′, R′) ∈ C, such that |L′| = `− 1, T ((L′, R′)) = 1
if and only if there exists an ordering of L′, say (v1, . . . , v`−1), such that for all j ∈ [`− 2],
|E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k. Let (L,R) ∈ C be such that |L| = `. We will first
prove that if T ((L,R)) = 1, then there exists an ordering of L, say (v1, . . . , v`), such that
for all j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k. Since T ((L,R)) = 1, there exists a
vertex in L, say v`, such that (L \ {v`}, R ∪ {v`}) and T ((L \ {v`}, R ∪ {v`})) = 1. Since
T ((L \ {v`}, R ∪ {v`})) = 1, from inductive hypothesis, there exists an ordering of L \ {v`},
say (v1, . . . , v`−1), such that for all j ∈ [` − 2], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k. Also,
since (L \ {v`}, R ∪ {v`}) ∈ C, |E({v`, . . . , vn}, {v1, . . . , v`−1})| ≤ k. Thus, for the ordering
(v1, . . . , v`) of L, for all j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k.

We will now prove that if there exists an ordering of L, say (v1, . . . , v`), such that for all
j ∈ [`− 1], |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ k, then T ((L,R)) = 1. Since |E({v`, . . . , vn},
{v1, . . . , v`−1})| ≤ k, (L\{v`}, R∪{v`}) ∈ C. Also, since for all j ∈ [`−2], |E({vj+1, . . . , vn},
{v1, . . . , vj})| ≤ k, therefore, T ((L\{v`}, R∪{v`})) = 1. Thus, T ((L,R)) = 1. This concludes
the proof. J
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A.3 Sub-exponential algorithm for Optimal Linear Arrangement
Let D be a digraph. For an ordering σ = (v1, . . . , vn) of V (D), the cost of σ is∑

(vi,vj)∈E(D)

(i− j) · [i > j],

that is, every arc directed backward in the ordering contributes a cost that is equal to the
length of this arc, which is the distance between the end-points of this arc in the ordering.
Recall that [i > j], evaluates to 1 if i > j, to 0 otherwise.

Optimal Linear Arrangement (OLA) Parameter: k

Input: A digraph D and an integer k.
Question: Is there an ordering of V (D) of cost at most k?

The following proposition gives an alternate definition of the cost of an ordering.

I Proposition 22 ([13]). For a digraph D and an ordering (v1, . . . , vn) of V (D), the cost of
this ordering is equal to

∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})|.

Lemma 23 shows a relation between the cost of an ordering and its width. Note that this
lemma was already proved in [13], but the authors state the result for the case when the
input digraph is a semi-complete digraph. We observe that the same proof works for any
digraph. For the sake of completeness, we give the same proof here.

I Lemma 23. For any digraph D, if there is an ordering say (v1, . . . , vn) of V (D), of cost
at most k, then ctw(D) ≤ (2k) 2

3 .

Proof. Since (v1, . . . , vn) is an ordering of cost at most k, from Proposition 22,
∑
i∈[n−1]

|E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ k. Fix an arbitrary i ∈ [n − 1]. We will show that
|E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ (2k) 2

3 . Let |E({vi+1, . . . , vn}, {v1, . . . , vi})| = `. For any
arc (vp, vq) ∈ E(D), such that p < q, the length of the arc (vp, vq) is equal to q − p. Observe
that, for any r, the number of arcs of length exactly r with tail in {vi+1, . . . , vn} and head
in {v1, . . . , vi} is at most r. Thus, for any r, the total number of arcs of length at most
r, with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi}, is at most r(r+1)

2 . In particular, the
number of arcs of length at most

√
`− 1, with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi}

is at most
√
`(
√
`−1)

2 ≤ `
2 . Since |E({vi+1, . . . , vn}, {v1, . . . , vi})| = `, the number of arcs of

length at least
√
` with tail in {vi+1, . . . , vn} and head in {v1, . . . , vi} is at least `

2 . Since∑
i∈[n−1] |E({vi+1, . . . , vn}, {v1, . . . , vi})| ≤ k, we have that k ≥

√
` · `2 . Thus, ` ≤ (2k) 2

3 . J

Next we bound the number of k-cuts in the Yes-instances of OLA.

I Lemma 24. If (D, k) is a Yes-instance of OLA and D ∈ Dα, then the number of k-cuts
in D is at most 2c(α+1)k

1
3 log k ·22α(α+1)dk

1
3 e log((k(2α+1)+α+1)) · log(k+α(2k+1)) ·nα+1, where

c is a fixed absolute constant.

Proof. Since D is a Yes-instance of OLA, from Lemma 23, ctw(D) ≤ (2k) 2
3 . Thus,

(D, (2k) 2
3 ) is a Yes-instance of Directed Cutwidth. Hence, from Lemma 21, the number

of k-cuts in D are bounded by the desired function. J

Proof of Theorem 3. Using the algorithm of Lemma 19, we enumerate all k-cuts in D. If
during the enumeration we exceed the bound given in Lemma 24, then we correctly conclude
that (D, k) is a No-instance of OLA. Otherwise, from Lemma 19, in time 2O(α2k

1
3 log(αk)) ·
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nO(α), we would have enumerated the set of all k-cuts in D. Let us denote this set by C.
We will solve OLA by doing a dynamic programming over the set C of k-cuts. Let T be the
dynamic programming table indexed by a k-cut (L,R) ∈ C and an integer i ∈ [k]. For any
(L,R) ∈ C and i ∈ [k], we want T ((L,R), i) to store the following information.

T ((L,R), i) =


1 if there exists an ordering of L, say (v1, . . . , v`),

such that
∑
j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i

0 otherwise

Note that T ((V (D), ∅), k) = 1 if and only if D has an ordering of cost at most k. We
now describe how we compute T ((L,R), i) for any (L,R) ∈ C and i ∈ [k]. For all i ∈ [k],
T ((∅, V (D)), i) = 1. For any (L,R) ∈ C such that L 6= ∅, and any i ∈ [k], T ((L,R)) = 1 if
and only if there exists v ∈ L such that (L\{v`}, R∪{v`}) and T ((L\{v}, R∪{v}), i−j) = 1,
where j = |E(R,L)|.

We now prove that for any (L,R) ∈ C and integer i ∈ [k], T ((L,R), i) = 1 if and
only if there exists an ordering of L, say (v1, . . . , v`), such that

∑
j∈[`] |E({vj+1, . . . , vn},

{v1, . . . , vj})| ≤ i. We prove this by induction on |L|. When |L| = 0, this is true because of the
base case. By inductive hypothesis, assume that for any (L′, R′) ∈ C such that |L′| = `−1, and
for any p ∈ [k], T ((L′, R′), p) = 1 if and only if there exists an ordering of L, say (v1, . . . , v`),
such that

∑
j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i. Let (L,R) ∈ C be such that |L| = `

and i ∈ [k]. We will first prove that if T ((L,R), i) = 1, then there exists an ordering of L, say
(v1, . . . , v`), such that

∑
j∈[`] |E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i. Let j = |E(R,L)|. Since

T ((L,R), i) = 1, there exists a vertex in L, say v`, such that (L \ {v`}, R ∪ {v`}) ∈ C and
T ((L \ {v`}, R ∪ {v`}), i − j) = 1. From inductive hypothesis, there exists an ordering of
L\{v`}, say (v1, . . . , v`−1), such that

∑
p∈[`−1] |E({vp+1, . . . , vn}, {v1, . . . , vp})| ≤ i−j. Since

j = |E(R,L)|, for the ordering (v1, . . . , v`) of L,
∑
p∈[`] |E({vp+1, . . . , vn}, {v1, . . . , vp})| ≤ i.

We will now prove that if there exists an ordering of L, say (v1, . . . , v`), such that
∑
j∈[`]

|E({vj+1, . . . , vn}, {v1, . . . , vj})| ≤ i, then T ((L,R), i) = 1. Observe from the definition of this
ordering (v1, . . . , v`) that (L\{v`}, R∪{v`}) is an i-cut in D. Since i ≤ k, (L\{v`}, R∪{v`}) ∈
C. Clearly, if |E(R,L)| = j, then

∑
p∈[`−1] |E({vp+1, . . . , vn}, {v1, . . . , vp})| ≤ i − j. Thus,

T ((L\{v`}, R∪{v`}), i−j) = 1 implying that T ((L,R), i) = 1. This concludes the proof. J
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Abstract
We consider a stochastic scheduling problem with both hard and soft tasks on a single machine.
Each task is described by a discrete probability distribution over possible execution times, and
possible inter-arrival times of the job, and a fixed deadline. Soft tasks also carry a penalty cost to
be paid when they miss a deadline. We ask to compute an online and non-clairvoyant scheduler
(i.e. one that must take decisions without knowing the future evolution of the system) that is
safe and efficient. Safety imposes that deadline of hard tasks are never violated while efficient
means that we want to minimise the mean cost of missing deadlines by soft tasks.

First, we show that the dynamics of such a system can be modelled as a finite Markov Decision
Process (MDP). Second, we show that our scheduling problem is PP-hard and in EXPTime.
Third, we report on a prototype tool that solves our scheduling problem by relying on the
Storm tool to analyse the corresponding MDP. We show how antichain techniques can be used
as a potential heuristic.
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1 Introduction

In modern real-time systems, we usually need to distinguish between two types of tasks: hard
tasks that ought to be scheduled so that they meet their deadline with absolute certainty and
soft tasks for which missing a deadline can be tolerated. Typically, hard tasks are vital for the
correct execution of the system and missing a deadline for such tasks may have catastrophic
consequences while missing a deadline of a soft task only degrades the overall performances
of the system (as in a video decoding system, for example, where missing a deadline means
skipping some video frames). An example of a system with both hard and soft tasks may
consist of the computer system of a commercial aircraft, that must, at the same time, run
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36:2 Safe and Optimal Scheduling

the avionics control, and the on-board entertainment system. Clearly, avionics controls are
vital and most of these tasks will be hard, while missing a few frames in the video stream of
the entertainment system only degrades the quality of the video; hence those tasks are soft.
It is also usual to distinguish between tasks for which the inter-arrival time is fixed (such
tasks are often called periodic tasks); and tasks for which the inter-arrival time is subject
to uncertainty and specified by an interval constraint (such task are often called sporadic
tasks). Most real systems naturally contain both periodic and sporadic tasks.

In this paper, we consider a rich formal model of infinite duration scheduling on a single
processor that is applicable to systems with both periodic/aperiodic and hard/soft tasks.
The tasks can be preempted. Additionally, we assume our schedulers to be non-clairvoyant
in the sense that the execution and inter-arrival times of tasks are not known in advance and
subject to uncertainty modelled by stochastic distributions. More precisely, each hard and
soft task is characterised by a fixed deadline, and two discrete finite support distributions
specifying its possible inter-arrival times and durations respectively. When a job associated
to a task (i.e. a new instance of the task) arrives in the system, its execution time and the
arrival time of the next job are not known but only the probability distribution over the
possible execution times and arrival times are known. In addition, each soft task comes with
a cost that is incurred each time a job of this task misses a deadline. The objective of a
scheduler in this model is two-fold:
(i) the deadline of all jobs corresponding to hard tasks must be met with certainty; and
(ii) the expected mean cost of missing deadlines of jobs associated to soft tasks must be

minimised.

Contributions. We define formally our scheduling problem as a non-standard optimisation
problem on an MDP. That is, we consider MDPs with two simultaneous objectives: a safety
objective asking that the deadline of each job associated to a hard task is met; and an
optimisation objective asking to minimise the expected mean-cost of missing job deadlines
associated to soft tasks. Second, we provide a worst-case exponential time algorithm (see
Theorem 4) that decides the existence of a safe and optimal schedule, and provide a PP-hard
lower bound1, which is an improvement on the NP-Complete and coNP-Complete lower
bounds that can be deduced from the literature (see related works below). Third, we propose
a heuristic based on antichain techniques [16]: we identify a naturally occurring ordering
on the states of the MDP, that can be used to prune the state space while computing the
set of safe states. Thanks to the antichain technique, this set of safe states can also be
described compactly. Finally, we have implemented a prototype tool for computing safe
schedules on top of the probabilistic model-checker Storm [13], which we use to solve the
optimisation part of our problem. We rely on the classical attractor algorithm to compute
the set of states of the MDP from which the safety objective can always be satisfied. We
also have implemented the antichain-based heuristic, and our experiments are encouraging:
using the compact description of the safe states, we manage to produce a much smaller input
file for Storm. Our algorithm works well for a small number of tasks and each task can
have infinitely many jobs. Further an optimal schedule can be implemented simply as a table
lookup and during runtime it requires minimal computation.

1 Recall that PP is the class of problems that can be solved by a probabilistic Turing machine that
operates in polynomial time [21].
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To the best of our knowledge, there does not exist any scheduling algorithm in the
literature that considers a cost model as ours as well as stochastic behaviour. In the
appendix, we show that adapting the classical EDF scheduling policy to our setting yields
scheduler that can be arbitrarily worse when compared to our optimal algorithm in terms of
the expected mean-costs.

Related work. The schedulability of (hard) periodic tasks is a classical problem that has
been studied in details in the literature, see e.g. [29, 26, 27, 14, 8]; and which has been shown
to be coNP-complete in [26, 8] (see also [34, 25, 24, 7] where the tasks are not strictly
periodic). It can be seen as a special case of our problem, where there are only hard tasks.

The clairvoyant scheduling of soft tasks (only) is also a classical problem that has attracted
ample attention in the scheduling literature, see e.g. [41, 28, 6]. In [30], the authors consider
a setting in which all the tasks have a mandatory (hard) part and an optional (soft) part
that incurs a penalty when not executed; and show that cost minimisation is NP-complete
when the optional tasks have arbitrary processing times. Again, this setting is a particular
case of ours.

Finally, there are works in the literature that consider scheduling problems with both
hard and soft tasks, see e.g. [10, 40, 11, 1]. A prominent line of works among them is based
on the notion of servers [10, 40] to handle soft tasks. Algorithms for preemptive uniprocessor
scheduling following this approach include Priority Exchange [40, 25], Sporadic Server [40, 38],
Total Bandwidth Server [40], Earliest Deadline Late (EDL) Server [11, 39, 40], Constant
Bandwidth Server [1], etc. However, those algorithms do not take into account a stochastic
model of the tasks as in our problem nor a notion of deadline and cost for the soft tasks. The
algorithm EDL is known to be optimal for dynamic priority assignment [11]. In Appendix B,
we show that a version of EDL adapted to our setting can be arbitrarily worse in terms of
the expected mean-cost when compared to our optimal algorithm.

The non-standard optimisation problem that we consider on MDP and which simultan-
eously asks for satisfying a safety and an expected mean-cost constraint is related to a recent
line of works that mixes two-player zero sum games and MDPs, see e.g. [9, 3, 12].

2 Preliminaries

We denote by IN the set of non-negative integer numbers, and by Q the set of rational
numbers. For n ∈ IN, we use [n] to denote {1, . . . , n} and [n]0 to denote {0, 1, . . . , n}. Given
a finite set A, a (rational) probability distribution over A is a function p : A→ [0, 1] ∩Q such
that

∑
a∈A p(a) = 1. We denote the set of probability distributions on A by D(A). The

support of the probability distribution p on A is Supp(p) = {a ∈ A | p(a) > 0}. A distribution
is called Dirac if |Supp(p)| = 1.

Job Scheduling for both soft and hard tasks. We consider a system of n preemptive tasks
{τ1, . . . , τn} to be scheduled on a single processor. We identify all tasks τi with their unique
respective index i. We assume that the time is discrete and measured in CPU ticks. Each
task τi generates an infinite number of instances τi,j , that we call jobs, with j = 1, 2, . . . .
We assume that all tasks are either hard or soft and denote by F and H the set of indexes
of soft and hard tasks respectively (i.e. i ∈ F iff τi is a soft task). Jobs generated by both
hard and soft tasks are equipped with deadlines, which are relative to the respective arrival
times of the jobs in the system. Jobs generated by hard tasks must complete before their
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respective deadlines, but this is not mandatory for jobs generated by soft tasks. We also
assume that tasks are independent, i.e. the scheduling a job of one task does not depend on
another job belonging to some other task.

In order to make our model more realistic, we rely on a probabilistic model for the
computation times of the jobs and on the time between the arrival of two successive jobs of
the same task. Formally, for all i ∈ [n], task τi is defined as a tuple 〈Ii, Ci, Di,Ai〉, where:
(i) Ii ∈ IN is the arrival time of the first job of τi;
(ii) Ci is a discrete probability distribution on the (finitely many) possible computation

times of the jobs generated by τi;
(iii) Di ∈ IN is the deadline of all jobs generated by τi which is relative to the arrival time

of the jobs; and
(iv) Ai is a discrete probability distribution on the (finitely many) possible inter-arrival

times of the jobs generated by τi.
We note that max(Supp(Ci)) ≤ Di, and throughout the paper, we assume that Di ≤
min(Supp(Ai)) for all i ∈ [n]. In addition, we model the potential degradation in the quality
when a soft task misses its deadline by a cost function cost : F → Q≥0, that associates, to
each soft task τj , a cost c(j) which is incurred every time a job of τj misses its deadline.

One of the main contributions of this paper is to provide a formal model for such a system
(see Section 3). We provide an intuitive explanation for now: each task τi releases a first job
τi,1 at time Ii. This job, like all other jobs of τi will request a CPU time which is chosen
randomly according to Ci. The deadline of τi,1 is at time Ii +Di. The next job τi,2 will be
released by τi at a time Ii + δ2, where δ2 is chosen randomly according to Ai, and so forth.

I Example 1. Consider a system with one hard task τh = 〈0, Ch, 2,Ah〉 s.t. Ch(1) = 1 and
Ah(3) = 1; one soft task τs = 〈0, Cs, 2,As〉 s.t. Cs(1) = 0.4, Cs(2) = 0.6, and As(3) = 1; and
the cost function c s.t. c(τs) = 10. This means that both tasks will submit their first job at
time 0, both with deadlines at time 0 + 2 = 2. Then, τh,1 will have a computation time of 1,
while τs,1 will have a computation time which is either 1 (with probability 0.4) or 2 (with
probability 0.6). Both tasks will submit new jobs τh,2 and τs,2 at time 0 + 3 = 3. Each time
a job of τs misses its deadline, a cost of 10 will be incurred.

Our goal is to find a scheduler, i.e. a function that, given the current state of the system,
returns the identifier of the task that needs to be granted CPU access and ensuring that:
(i) no job of the hard tasks misses its respective deadline; and
(ii) the expected mean-cost incurred by the soft tasks missing their deadlines is minimised.
In Section 3, we model the problem as a game between two players: the Scheduler whose
objectives are sketched above, and TaskGen, the task generator that generates jobs according
to the semantics of the tasks, and whose goal is antagonistic to the scheduler’s. Then,
computing a scheduler will amount to computing a winning strategy of the Scheduler player.
We now introduce the necessary notions to model this game with stochastic features.

Labelled Directed Graphs. A labelled directed graph (or graph for short) is a tuple G =
〈V,E, L〉 where:
(i) V is the finite set of vertices;
(ii) E ⊆ V × V is the set of directed edges (sometimes called transitions); and
(iii) L : E → A is the function labelling the edges by elements from some set A.
For a transition e = (v, v′), v is its source, denoted src(e), and v′ its destination denoted
trg(e).
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Given v ∈ V , let Succ(v) = {v′ ∈ V | ∃(v, v′) ∈ E} be its set of successors, and
E(v) = {e | src(e) = v} be its set of outgoing edges. We assume that for all v ∈ V :
Succ(v) 6= ∅, i.e. there is no deadlock. A play in a graph G from an initial vertex vinit ∈ V is an
infinite sequence of transitions π = e0e1e2 . . . such that src(e0) = vinit and trg(ei) = src(ei+1)
for all i ≥ 0. The prefix up to the n-th vertex of π is the finite sequence π(n) = e0e1 . . . en.
We denote its last vertex by Last(π(n)) = trg(en). The set of plays of G is denoted by Plays(G)
and the corresponding set of prefixes is denoted by Prefs(G).

Weighted Markov Chains. A finite weighted Markov chain (MC, for short) is a tuple
M = 〈G, P rob〉, where G = 〈V,E, L〉 is a graph with L : E 7→ Q (i.e. edges are labelled by
rational numbers that we call the costs of the edges), and Prob : V → D(E) is a function
that assigns a probability distribution on the set E(v) of outgoing edges to all vertices
v ∈ V . Given an initial vertex vinit ∈ V , we define the set of possible outcomes in M as
OutsM (vinit) = {π = e0e1e2 . . . ∈ Plays(G) | src(e0) = vinit ∧ (∀n ∈ N, en+1 ∈ Supp(trg(en))}.
Let VOutsM (vinit) ⊆ V denote the set of vertices visited in the set of possible outcomes
OutsM (vinit). Finally, let us assume some measurable function f : Plays(G)→ IR≥0 associating
a rational value to each play of the MC. Since the set of plays of M forms a probability
space, f is a random variable, and we denote by EMvinit

(f) the expected value of f over the set
of plays starting from vinit.

Markov decision processes. A finite Markov decision process (MDP, for short) is a tuple
Γ = 〈V,E, L, (V2, V#), A, Prob〉, where:
(i) A is a finite set of actions;
(ii) 〈V,E, L〉 is a graph;
(iii) the set of vertices V is partitioned into V2 and V#;
(iv) the graph is bipartite i.e. E ⊆ (V2 × V#) ∪ (V# × V2), and the labeling function is s.t.

L(v, v′) ∈ A if v ∈ V2, and L(v, v′) ∈ Q if v ∈ V#; and
(v) Prob assigns to each vertex v ∈ V# a rational probability distribution on E(v).
For all edges e, we let cost(e) = L(e) if L(e) ∈ Q, and cost(e) = 0 otherwise. We further
assume that, for all v ∈ V2, for all e, e′ in E(v): L(e) = L(e′) implies e = e′, i.e. an action
identifies uniquely and outgoing edge.

An MDP can be interpreted as a game between two players: 2 and # (Scheduler and
TaskGen respectively), who own the vertices in V2 and V# respectively. A play in an MDP
is a play in its underlying graph 〈V,E,A∪Q〉. We say that a prefix π(n) of a play π belongs
to player i ∈ {2,#}, iff Last(π(n)) ∈ Vi. The set of prefixes that belong to player i is
denoted by Prefsi(G). A play in the MDP is then obtained by the interaction of the two
players as follows: if the current play prefix π(n) belongs to 2, she plays by picking an edge
e ∈ E(Last(π(n))) (or, equivalently, an action that labels a necessarily unique edge from
Last(π(n))). Otherwise, when π(n) belongs to #, the next edge e ∈ E(Last(π(n))) is chosen
randomly according to Prob(Last(π(n))). In both cases, the plays prefix is extended by e
and the game goes ad infinitum.

A strategy of 2 is a function σ2 : Prefs2(G) → E, such that σ2(ρ) ∈ E(Last(ρ)) for
all prefixes. A strategy σ2 is memoryless if for all finite prefixes ρ1 and ρ2 ∈ Prefs(G):
Last(ρ1) = Last(ρ2) implies σ2(ρ1) = σ2(ρ2). From now on, we will consider mainly
memoryless strategies. Let Γ = 〈V,E, L, (V2, V#), A, Prob〉 be an MDP and let σ2 be a
memoryless strategy. Then, assuming that 2 plays according to σ2, we can express the
behaviour of Γ as an MC Γ[σ2], where the probability distributions reflect the stochastic
choices of #. Formally, Γ[σ2] = 〈V#, E

′, L′, P rob′〉, where (v, v′) ∈ E′ iff there is v̂ s.t.:
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(i) (v, v̂) ∈ E;
(ii) σ2(v̂) = v′; and
(iii) Prob(v̂, v′) = Prob′(v, v′).
Further, for all e ∈ E′, we have L′(e) = L(e).

Safety synthesis. Given an MDP Γ = 〈V,E, L, (V2, V#), A, Prob〉, an initial vertex vinit ∈ V ,
and a set Vsafe ⊆ V of so-called safe vertices, the safety synthesis problem is to decide whether
2 has a strategy σ2 such that VOutsΓ[σ2](vinit) ⊆ Vsafe, that is, all the plays obtained when 2
plays according to σ2 visit only the safe vertices. The safety synthesis problem is decidable
in polynomial time for MDPs. Indeed, since probabilities do not matter for this problem,
the MDP can be regarded as a plain two-player game played on graphs (like in [42]), and the
classical attractor algorithm can be used (see Appendix A).

Expected mean cost threshold synthesis. Let us first associate a value, called the mean
cost MC(π) to all plays π in an MDP Γ = 〈V,E, L, (V2, V#), A, Prob〉. First, for a prefix
ρ = e0e1 . . . en−1, we define MC(ρ) = 1

n

∑i=n−1
i=0 cost(ei) (recall that cost(e) = 0 when L(e) is

an action). Then, for a play π = e0e1 . . ., we have MC(π) = lim supn→∞MC(π(n)). Observe
that MC is a measurable function. Then, the expected mean-payoff threshold synthesis
problem is to decide whether 2 has a strategy σ2 such that EΓ[σ2]

vinit (MC) ≤ λ for some initial
vertex vinit ∈ V and threshold λ ∈ Q. Such strategies are called optimal, and it is well-known
that, if such an optimal strategy exists, then, there is one which is memoryless. Moreover,
this problem can be solved in polynomial time through linear programming [17] or in practice
using value iteration (as implemented, for example, in the tool Storm [13]).

3 Modelling the system as an MDP

Let us fix a system of tasks τ = {τ1, τ2, . . . , τn} and a cost function cost and let us model our
scheduling problem by means of an MDP Γτ . This will provide us with a precise and formal
definition of the problem, and will allow us to rely on automatic tools (such as Storm [13],
see Section 6) to solve it. In order to define Γτ , it is easier to first build an infinite MDP
Γ = 〈V,E,L, (V2, V#), `, Prob〉. Then, Γτ will be the (finite) portion of Γ that is reachable
from some designated initial state vinit. In our model, 2 models the Scheduler and # models
the task generator (abbreviated TaskGen).

Modelling the system states. Since Di ≤ min(Supp(Ai)) for all tasks τi, there can be at
most one job of each task at a time t that can be scheduled at t or later. Thus when the
system executes, we keep information related to only one job per task. For each task τi, at
every time, in the vertices of the MDP we maintain the following information about the
current job in the system at that time:
(i) a distribution ci over the job’s possible remaining computation times (rct);
(ii) the time di up to its deadline; and
(iii) a distribution ai over the possible times up to the next arrival of a new job of τi.
We also have a special vertex ⊥ that will be reached when a hard task misses a deadline.
Formally: V2 =

(
D([Cmax]0)× [Dmax]0×D([Amax]0)

)n×{2}∪{⊥} and V# =
(
D([Cmax]0)×

[Dmax]0 × D([Amax]0)
)n × {#}; where Cmax = maxi(max(Supp(Ci))), Dmax = maxi({Di})

and Amax = maxi(max(Supp(Ai))). For a vertex v =
(
(c1, d1, a1), . . . (cn, dn, an)

)
, we let

active(v) = {i | ci(0) 6= 1 and di > 0} and dlmiss(v) = {i | ci(0) = 0 and di = 0}. Intuitively,
active(v) is the set of tasks that have an active job in v, that is one which has not finished
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and whose deadline has not passed yet; and dlmiss(v) is the set of tasks that have missed
a deadline for sure in v (observe that for ci(0) > 0, the task could complete now and does
not miss a deadline for sure). In v, for every task i ∈ [n], the tuple (ci, di, ai) is called its
configuration.

Distribution updates. Let us now introduce the dec and norm functions that will be useful
when we will need to update the knowledge of the Scheduler. For example, consider a state
where ci(1) = 0.5, ci(4) = 0.1 and ci(5) = 0.4 for some i, and where τi is granted one CPU
time unit. Then, all elements in the support of ci should be decremented, yielding c′i with
c′i(0) = 0.5, c′i(3) = 0.1 and c′i(4) = 0.4. Since 0 ∈ Supp(c′i), the current job of τi could now
terminate with probability c′i(0) = 0.5, or continue running, which will be observed by the
Scheduler player. In the case where the job does not terminate, the probability mass must be
redistributed to update Scheduler’s knowledge, yielding the distribution c′′i with c′′i (3) = 0.2
and c′′i (4) = 0.8. Formally, let p and p′ be probability distributions on IN s.t. 0 6∈ Supp(p).
Then, we let dec(p) and norm(p′) be probability distributions on {x− 1 | x ∈ Supp(p)} and
Supp(p′) \ {0} respectively s.t.:

for all x ∈ Supp(p) : dec(p)(x− 1) = p(x)

for all x ∈ Supp(p′) \ {0} : norm(p′)(x) = p′(x)∑
x≥1 p

′(x) .

Observe that, when 0 6∈ Supp(p′), then norm(p′) = p′.

Possible moves of the Scheduler. The possible actions of Scheduler are to schedule an
active task or to idle the CPU. We model this by having, from all states v ∈ V2 one transition
labelled by some element from active(v), or by ε (no job gets scheduled). The effect of the
transition models the elapsing of one clock tick.

Formally, fix v =
(
(c1, d1, a1), . . . , (cn, dn, an),2

)
∈ V2 s.t. 0 6∈ Supp(ci) and 0 6∈

Supp(ai) for all i ∈ [n]. Then, there is e = (v, v′) ∈ E with L(e) ∈ [n] ∪ {ε} and v′ =(
(c′1, d′1, a′1), . . . , (c′n, d′n, a′n),#

)
iff the following four conditions hold:

(i) L(e) = i ∈ [n] implies that i ∈ active(v) and c′i = dec(ci), i.e. if a task is scheduled, it
must be active, and its rct is decremented;

(ii) for all j ∈ [n] \ {L(e)}: c′j = cj , i.e. the rct of all the other tasks does not change;
(iii) for all j ∈ [n]: d′j = max(dj − 1, 0), i.e. the deadline is one time unit closer, if not

reached yet;
(iv) for all j ∈ [n]: a′j = dec(aj), i.e. we decrement the time to next arrival of all tasks.
Observe that when a soft task misses a deadline, we maintain the positive rct of the job in
the next state: this will be used as a marker to ensure that the associated cost is paid when
a new job of the same task will arrive. For example, consider a state (with one soft task)(
(c, 0, a),2

)
with c(2) = 1 and a(1) = 1 i.e. the task has reached its deadline but still need 2

time units to complete and the next job arrives in 1 time unit. Then, the successor state will
be
(
(c, 0, a′),#

)
with a′(0) = 1, from which a new job will be submitted, which will incur a

cost (see action killANDsub in the next paragraph).

Possible moves of the Task Generator. The moves of TaskGen (modelled by #) consist
in selecting, for each task one possible action out of four: either nothing (ε); or
(i) to finish the current job without submitting a new one (fin); or
(ii) to submit a new job while the previous one is already finished (sub); or
(iii) to submit a new job and kill the previous one, in the case of a soft task (killANDsub),

which will incur a cost.
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Formally, let Actions = {fin, sub, killANDsub, ε}. To define Γτ , we introduce a function
L : (V#×V2) 7→ Actionsn, i.e. L(e, i) is the action of # corresponding to τi on edge e. Fix a
state v =

(
(c1, d1, a1), . . . , (cn, dn, an),#

)
∈ V#. Let v̂ =

(
(ĉ1, d̂1, â1), . . . , (ĉn, d̂n, ân),2

)
∈

V2 be such that that v̂ i−→ v. Note that there is a unique such v̂ from which action i can be
done to reach v. We consider two cases. Either dlmiss(v) ∩H 6= 0, i.e., a hard task has just
missed a deadline. In this case, the only transition from v is e = (v,⊥) with L(e, i) = ε for
all i ∈ [n]. Otherwise, there is an edge e = (v, v′) with v′ =

(
(c′1, d′1, a′1), . . . , (c′n, d′n, a′n),2

)
iff for all i ∈ [n], one of the following holds:
1. L(e, i) = fin, min(Supp(ĉi = 1)), ai(0) 6= 1, c′i(0) = 1, d′i = di, and a′i = norm(ai). The

current job of τi finishes now (ci(0) > 0) and the next arrival will occur in the future
(ai(0) 6= 1), according to the probability distribution norm(ai).

2. L(e, i) = sub, ci(0) > 0, ai(0) > 0, c′i = Ci, d′i = Di, and a′i = Ai. In this case, we assume
that the previous job of τi has completed (ci(0) > 0) and we let τi submit a new job (see
the new values c′i, d′i and a′i); or

3. L(e, i) = killANDsub, ci(0) 6= 1, ai(0) > 0, c′i = Ci, d′i = Di, and a′i = Ai. In this case,
τi (necessarily a soft task) submits a new job, and kills the previous one (there is possibly
some remaining rct as ci(0) 6= 1); or

4. L(e, i) = ε, ai(0) 6= 1, either c′i = norm(ci) or c′i(0) = ci(0) = ĉi(0) = 1 , d′i = di and
a′i = norm(ai). No action is performed on τi which must not submit a new job now
(ai(0) 6= 1) and does not finish now. For c′i(0) = ci(0) = ĉi(0) = 1, it denotes that the job
already finished during a previous clock tick. The knowledge of the scheduler (c′ and a′)
is updated accordingly.

The cost of and edge e is: L(e) = c =
∑
i:L(e,i)=killANDsub cost(i). As said earlier, the cost is

incurred when the killANDsub action is performed by some task τi, although the deadline
miss might have occurred earlier. Finally, the probability of an edge e is Prob(e) =

∏
i∈[n] pi,

where, for all i ∈ [n]:

pi =



ci(0) · (1− ai(0)) if L(e, i) = fin

ci(0) · ai(0) if L(e, i) = sub

(1− ci(0)) · ai(0) if L(e, i) = killANDsub

(1− ci(0)) · (1− ai(0)) if L(e, i) = ε and ci(0) 6= 1
1− ai(0) if L(e, i) = ε and ci(0) = 1.

Finally, the initial vertex is vinit =
(
(c0, d0, a0), . . . , (cn, dn, an),2

)
∈ V2 s.t. for all i ∈ [n]:

(ci, di, ai) = (Ci, Di,Ai) if Ii = 0; and (ci, di, ai) = (c, 0, a) with c(0) = 1 and a(Ii) = 1
otherwise. The finishes the definition of Γ. As explained above, the MDP Γτ modelling
our problem is the portion of Γ that is reachable from vinit. One can check, by a careful
inspection of the definitions, that Γτ is indeed finite. Let us now illustrate these definitions.

I Example 2. Figure 1 presents an excerpt of the MDP Γτ built from the set of tasks
τ = {τh, τs} of Example 1. We denote a distribution p with support {x1, x2, . . . , xn} by
[x1, p(x1);x2, p(x2); . . . ;xnp(xn)]. When p is s.t. p(x) = 1 for some x, we simply denote p
by x. States from V2 and V# are depicted by rectangles and rounded rectangles respectively.
Each state is labelled by (ch, dh, ah) on the top and (cs, ds, as) below.

A strategy to avoid missing a deadline of τh consists in first scheduling τs, then τh.
One then reaches the left-hand part of the graph from which 2 can avoid ⊥ irrespective of
whatever # does. Note that other safe strategies are possible: the first step of our algorithm
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⊥
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Figure 1 An excerpt of the MDP for Example 1. Tasks in bold are active, tasks in italics have
missed a deadline.

is actually to compute all the safe nodes (i.e. those from which 2 can ensure to avoid ⊥),
and then to look for an optimal one (wrt to the cost of missing deadlines for soft tasks)
among those.

From state (1,1,2), ([0:.4,1:.6],1,2) , # chooses whether τs finishes or not with respective probabil-
ities 0.4 and 0.6. In the latter case, τs will miss its deadline, which incurs a cost on the edge
where the killANDsub action occurs.

Equipped with these definitions, we can define the problem that we want to solve. The
Safe and optimal scheduler synthesis problem is stated as, given a set of real-time tasks
τ partitioned into hard and soft tasks, and a rational threshold λ whether there exists, in
the MDP Γτ a strategy σ2 of 2 s.t.:
(i) ⊥ 6∈ VOutsΓτ [σ](vτinit), i.e. no hard task misses its deadline. Strategies that enforce this

objective are called safe strategies; and
(ii) EΓτ [σ]

vτinit
(MC) ≤ λ, i.e. the expectation of the mean-cost (due to the deadline misses by

the soft tasks) is at most λ.
This strategy σ2 constitutes our scheduler. We will see in the next section that when such a
strategy exists, then there exists one which is also memoryless.

I Example 3. Let us continue with Example 2. There are two optimal memoryless strategies,
one in which the Scheduler first chooses to execute τh, then τs; and another where τs is
scheduled for 1 time unit, and then preempted to let τh execute. Since the period of τs is 3
and the cost of missing a deadline is 10, for both of these optimal strategies, the soft task’s
deadline is missed with probability 0.6 during each period and hence the mean-cost is 2.
Observe that there is another safe schedule that is not optimal is one in which only τh is
granted CPU access, and τs is never scheduled thus giving a mean-cost of 10

3 .

4 Algorithm and Complexity

In this section, we show that the safe and optimal scheduler synthesis problem is PP-hard
and in EXPTime. We start with the upper bound first.

I Theorem 4. The safe and optimal scheduler synthesis problem can be solved in EXPTime.
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Proof. We sketch an exponential time algorithm that solves our problem. First, we build
the MDP Γτ = 〈V,E,A, Prob〉 according to the above definitions. Note that the supports
of the distributions and the deadline given in binary, the size of this MDP is exponential
in the size of the task set, hence Γτ can be built in exponential time. Then, we run the
attractor algorithm on Γτ (see Appendix A), using {⊥} as the set of unsafe vertices. This
takes polynomial time in the size of Γτ , hence exponential time in the size of τ . We obtain
a set Vunsafe ⊆ V of losing vertices. That is, Vunsafe contains all the vertices from which
2 cannot guarantee that all the hard tasks will never miss deadlines. We then prune Γτ
by removing all the vertices of Vunsafe, and obtain Γ′ = 〈V \ Vunsafe, E′, A, Prob〉. Observe
that, by definition of the attractor, whenever a vertex v ∈ V# has a successor in Vunsafe,
then v ∈ Vunsafe too. So, the pruning operation either keeps a vertex v ∈ V# with all
its successors, or remove it. The corresponding edges are also removed. Hence, the Prob
function is still a probability distribution and Γ′ is still an MDP. By property of the attractor,
the possible strategies for 2 in Γ′ are exactly all the safe strategies in Γτ . Hence, we can
now solve our problem by applying some classical polynomial time algorithm [36, 35] to solve
the mean-cost threshold synthesis problem in Γ′, and we have the guarantee that for all
strategies σ2: EΓ′[σ2]

vτinit
(MC) ≤ λ iff ⊥ 6∈ VOutsΓτ [σ2](vτinit) and EΓτ [σ2]

vτinit
(MC) ≤ λ.

Observe that those algorithms compute memoryless optimal strategies that map all
vertices in V2 to an action in [n] ∪ {ε}, representing which task (if any) should be granted
CPU access. This strategy is thus the actual scheduler, and we are done. J

Let us now turn our attention to a lower bound on the complexity. As explained in
the related works section, our problem subsumes classical scheduling problems that are
known to be coNP-complete, like the periodic (hard) task scheduling problem [26, 8],
and NP-complete, like the clairvoyant scheduling problem for soft tasks [30]. The proof
of task scheduling problem for sporadic hard tasks in [7] also applies to our case giving
coNP-completeness in a system with only hard tasks that are neither periodic nor sporadic2.
We now provide a stronger lower bound by establishing PP-hardnes. Recall that PP is the
class of languages L ⊆ Σ∗ recognised by a probabilistic polynomial-time Turing machine M
with access to a fair coin such that for all w ∈ Σ∗, we have w ∈ L if and only if M accepts w
with probability at least 1

2 . The class PP contains NP , is closed under complement [37] and
hence also contains the class coNP. Further, the class PP is contained in PSPACE.

I Theorem 5. The safe and optimal schedule synthesis problem is PP-hard.

Proof. We show a reduction from k-th largest subset which has recently been shown to
be PP-complete [22]. The k-th largest subset problem is stated as given a finite set A, a
size function h : A→ N assigning strictly positive integer values to elements of A, and two
naturals K,L ∈ N, decide if there exist K or more distinct subsets Sj ⊆ A, where 1 ≤ j ≤ K,
such that

∑
o∈Sj h(o) ≤ L for all these K or more subsets.

Let |A| = n, and B =
∑
o∈A h(o). Given an instance of k-th largest subset, we construct

a system of n hard tasks and one soft task. Let H denote the set of hard tasks. The first
instance of each hard task arrives at time 0. The computation time is ei = h(oi) with
probability 1

2 , and ei = 0 with probability 1
2 , the deadline d = B, and the inter-arrival time

pi = B for all 1 ≤ i ≤ n.
The arrival time of the first instance of the soft task is L, its computation time is B − L,

(relative) deadline is B − L and inter-arrival time is B.

2 Note that in sporadic tasks, only the minimum inter-arrival time for a task is specified.
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Suppose there is a solution to the instance of k-th largest subset problem, i.e. there are at
least r ≥ K subsets of A such that the sum of the elements in each Sj , where j ∈ [r] is less
than L. Hence in the system constructed above, there are r ≥ K subsets of the set H such
that corresponding to each subset Sj , where i ∈ [r], for each i ∈ [n], hard task i executes
with time h(oi) if oi ∈ Sj , else i executes with time 0.

Note that since each hard task has two possible computation times that are 0 and h(oj),
there are 2n combinations of computation times for all the hard tasks, each such combination
having a probability of 1

2n , and r of them finish before L and for each of these r combinations,
the soft task executes to completion. Thus the cost is 0 for r of these combinations, that is,
with probability r

2n , while the cost is 1 with probability 1 − r
2n . Hence the expected cost

is 1− r
2n over a time period B. The expected mean-cost is 1

B · (1 −
r

2n ). So the expected
mean-cost is indeed less than or equal to 1

B · (1−
K
2n ) iff there are at least K subsets of A

each of whose elements sum up to L or less. J

As a consequence, our EXPTime upper bound cannot be improved substantially unless
P=PP. We note that our proof implies that we cannot have a short certificate indicating
the absence of a safe schedule that meets some minimal performance for the soft tasks unless
PP = coNP = NP.

Finally, we note that in our reduction, we associate a system with only one soft task to
each instance of the K-th largest subset sum problem. But our reduction can be adapted by
turning all hard tasks into soft tasks with costs > 1. In place of each hard task, we have a
soft task, each parameter of the soft task remains the same as the hard task, and the cost
of missing the deadline for the soft task is strictly greater than 1 while we have only one
soft task as in the previous case whose cost is 1. Arguing as above, we see that minimum
expected mean-cost is less than or equal to 1

B · (1−
K
2n ) iff there are at least K subsets of A

each of whose elements sum up to L or less. Hence, we obtain the same lower bound in the
case where we have only soft tasks:

I Corollary 6. The safe and optimal scheduler synthesis problem is PP-hard even in a system
with only soft tasks.

This shows that the non-clairvoyant scheduling of soft tasks where the tasks are described
using probability distributions is computationally more difficult than the clairvoyant version
(unless NP = PP ).

5 A symbolic data-structure for the safety game

Our last theoretical contribution is to propose an antichain-based [16] heuristic to mitigate
the high complexity of the problem, and solve the safety part of the game in an efficient way
(in practice). The core of this approach consists in identifying an ordering � ⊆ V2 × V2

on the vertices of 2 and that can be interpreted intuitively as follows: v1 � v2 means that
v1 is as difficult as v2 (from the point of view of 2, i.e. the Scheduler player). Thus, if 2
has a safe strategy from v1, then she also has a safe strategy from v2 (Theorem 9). This
implies that the set of safe 2 vertices, (that our algorithm computes in the first place) is
downward-closed for �, a special structure that we will exploit in our implementation (see
Section 6).

Let v1 =
(
(s1

1, s
1
2, . . . , s

1
n),2

)
, and v2 =

(
(s2

1, s
2
2, . . . , s

2
n),2

)
be two vertices of 2 where

sji = (cji , d
j
i , a

j
i ) for all j ∈ {1, 2} and i ∈ [n]. Intuitively, in order to make sure that, for all

tasks i ∈ [n] its configuration s1
i is at least as difficult as s2

i , we could request that:
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(i) for all e2
i ∈ Supp(c2i ), there is e1

i ∈ Supp(c1i ) s.t.: d2
i − e2

i ≥ d1
i − e1

i ; and
(ii) d1

i ≤ d2
i ; and

(iii) Supp(a1
i ) ⊇ Supp(a2

i ).
Indeed, condition (i) means that the amount of work needed for τi to complete in v1 is at
least the amount of work needed in v2, whatever the choices of the task generator (observe
that we ignore the probabilities here since we are only interested in safety). Condition (ii)
says that the deadline is closer in v1 than in s2. Condition (iii) ensures that all next arrivals
that can occur in v2 can also occur in v1, hence, all the actions that # will be able to play
from the successors of v2 should also be present from the successors of v1.

Let us now argue that we can actually simplify these conditions. Assume the three
conditions hold on v1 and v2, and consider (iii) i.e. Supp(a1

i ) ⊇ Supp(a2
i ). Since the ai

parameters of all tasks are initialised to the same value Ai, this implies that the job of τi in
v2 has been submitted earlier than the corresponding job in v1, which implies that d1

i ≥ d2
i .

This last inequality together with (ii) implies that d1
i = d2

i , which means that the two jobs of
τi in both states have actually been submitted at the same time, hence we must also have
a1
i = a2

i . This motivates our definition of the � order:

I Definition 7. Let v1 =
(
(s1

1, s
1
2, . . . , s

1
n),2

)
, and v2 =

(
(s2

1, s
2
2, . . . , s

2
n),2

)
be two states of

2 where sji = (cji , d
j
i , a

j
i ) for all j ∈ {1, 2} and i ∈ [n]. Then, v1 � v2 iff: for all i ∈ [n], there

exists an injective function f : Supp(c2i ) → Supp(c1i ) s.t. for all e2 ∈ Supp(c2i ): f(e2) ≥ e2,
d1
i = d2

i and a1
i = a2

i .

Observe that this ordering is defined on the structure of the states of the MDP, so it is easy to
test simply by inspecting v1 and v2. In order to show that � has the right properties, we rely
on a variation of the notion of alternating simulation [4], which we adapt to our setting. Fix
an MDP γτ = 〈V,E, L, (V2, V#), `, Prob〉. Then, a relation R ⊆ V2 × V2 is an alternating
simulation relation iff for all (v1, v2) ∈ R, the following holds. For all v′1 ∈ Succ(v1), there is
v′2 ∈ Succ(v2) s.t.:
(i) L(v2, v

′
2) ∈ {L(v1, v

′
1), ε}; and

(ii) for all v′′2 ∈ Succ(v′2) there is v′′1 ∈ Succ(v′1) s.t. L(v′1, v′′1 ) = L(v′2, v′′2 ) and (v′′1 , v′′2 ) ∈ R.
Then, we can show that:

I Lemma 8. � is an alternating simulation relation.

Proof. Let (v1, v2) ∈� with v1 = (s1,1, s2,1, . . . sn,1,2) and v1 = (s1,2, s2,2, . . . sn,2,2) Recall
that v1, v2 ∈ V2. Let i ∈ [n] ∪ {ε} be the action of 2 from v1, let v1

i−→ v′1, and let
si,1 = 〈c1, d, a〉 and si,2 = 〈c2, d, a〉. Since v1 � v2, by definition of �, there exists an injective
function f : Supp(c2) → Supp(c1) as defined above. Let e = min(Supp(c2)). Consider the
action from v2 as v2

ε−→ v′2 if f(e) > e, else v2
i−→ v′2.

Now since ai is the same in both v′1 and v′2, we see that for every action b of # such that
v′2

b−→ v′′2 , we have a v′′1 such that v′1
b−→ v′′1 , and v′′1 , v′′2 ∈ V2. From the transitions of the MDP

as defined in Section 3, it is not difficult to see that (v′′1 , v′′2 ) ∈ �, and we are done. J

From this Lemma, and from the fact that the objective of the safety part of the game is
to avoid reaching ⊥, we can now deduce that � has the desired property. More precisely, we
show that, if v1 � v2 and Scheduler can schedule all hard tasks from v1, then we can find a
so-called �-strategy σ′ that is also winning and that takes the same choices (when possible,
that is, when the same tasks are active) from all pairs of states which are comparable (in
particular, from s2). Formally, we call a strategy σ : V2 → [n] ∪ {ε} �-compatible iff for all
v1, v2 with v1 � v2: either σ(v1) = σ(v2) or σ(v2) = ε. That is, either σ schedules the same
task from both states, or it idles the CPU in the “easier” state v2.
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I Theorem 9. For all 2 vertices v1 and v2 with v1 � v2, if 2 (Scheduler player) has a safe
strategy from v1, then she has a �-compatible safe strategy σ from v2 (also safe from v1).

Proof. Let v1 =
(
(c11, d1

1, a
1
1), . . . , (c1n, d1

n, a
1
n),2

)
and v2 =

(
(c21, d2

1, a
2
1), . . . , (c2n, d2

n, a
2
n),2

)
respectively. Given a winning strategy σ′ from v1, we construct an �-compatible winning
strategy σ from v1 as follows. Consider VOutsΓ(σ′)(v1), the set of all vertices visited from
v1 when σ′ is played from v1. We define σ such that for all ṽ1 ∈ VOutsΓ(σ′)(v1), we have
σ(ṽ1) = σ′(ṽ1). For all vertices v̂1 =

(
(ĉ1, d̂1, â1), (ĉ2, d̂2, â2), . . . , (ĉn, d̂n, ân),2

)
∈ V2 s.t.

there exists a ṽ1 ∈ VOutsΓ(σ′)(v1) with ṽ1 � v̂1, we have σ(v̂1) = σ(ṽ1), when σ(ṽ1) = i for some
i ∈ [n] and f(min(Supp(ĉσ(ṽ1)))) = min(Supp(ĉσ(ṽ1))) for the injective function f defined
above and σ(v̂1) = ε otherwise. For all the remaining vertices v, we have σ(v) = σ′(v).
Clearly, σ is �-compatible. From Lemma 8, since � is an alternating simulation relation and
since an ε action can be scheduled from every 2 vertex, it is always possible to construct
such a strategy σ.

Now we show that σ is safe from v2. We show by induction on the length of the play that
playing σ from v2 does not visit ⊥. Let σ(v1) = a, and σ(v2) = α, where a, α ∈ [n] ∪ {ε}.
Let v1

a−→ v1,# and v2
α−→ v2,#. Recall that for all i ∈ [n], we have d1

i = d2
i and a1

i = a2
i .

Further from the definition of σ, we have that # player has the same set of actions from
both v2,# and v1,#. Let v2,#

b−→ v′2 and v1,#
b−→ v′1, where b is a # action and v′1, v′2 ∈ V2.

Clearly, v′1 � v′2, and since v′1 6= ⊥ then v′2 6= ⊥ too (because ⊥ is not comparable to any
other vertex). By induction hypothesis, σ is a �-compatible winning strategy from v′2, and
we are done. J

A consequence of this theorem is that the set V 2
safe = Vsafe ∩ V2 of safe 2 vertices has

a special structure wrt �. Formally, V 2
safe is downward-closed, i.e. if v1 ∈ V 2

safe, then for
all v2 ∈ V2: v1 � v2 implies that v2 ∈ V 2

safe as well. We can thus represent V 2
safe in a

compact way by keeping its maximal elements only. Formally, for a set S of vertices, we
let dSe = {v | @v′ ∈ S : v′ 6= v and v′ � v} be its maximal antichain. When the set S is
downward-closed, dSe can be regarded as a symbolic (compact) representation of S. In the
next section, we will rely on A2

safe = dV 2
safee.

6 Implementation and Experiments

In this section, we discuss a prototype tool implementing the techniques described so far.
The tool uses the networkx library [23] to build the pruned MDP (see the steps outlined in
the proof of Theorem 4 in Section 4) containing only the transitions that allow all possible
schedules in which no hard task misses a deadline. This is given as an input to the Storm
model-checker which analyses the MDP and finds an optimal schedule among the set of safe
schedules.

We have run our prototype on a small benchmark with different numbers of hard and
soft tasks. We measure the size of the system as the number of vertices in the MDP which is
analysed by Storm. We ran our experiments in a MacBook Air with 1.7 GHz Intel Core i5
processor with 2 cores and having 4GB memory. We ran three different experiments:
1. We compute the time taken by our tool to remove the unsafe schedules for increasing

number of hard tasks and increasing number of vertices. The results are shown in Table 1.
We have only hard tasks in these experiments and the values of all the parameters is less
than or equal to 12. We perform the following optimisation when constructing the set
of safe vertices. We call a vertex s = 〈s1, . . . , sn, X〉 with X ∈ {2,#} to be immediately
unsafe if there is a task j ∈ H s.t. sj = (cj , dj , aj) with max(Supp(cj)) > dj , i.e. in
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Figure 2 Fraction of vertices in the antichain
(Y-axis) with increasing number of safe vertices
(X-axis).

Table 1 Removing the unsafe schedules for
a set of |H| hard tasks. |V | and |Vsafe| are the
number of initial and safe vertices in the MDP
respectively, TMDP is the time to compute the
entire MDP and Tsafe is the time required to
remove the unsafe vertices (all times in second)

|H| |V | |Vsafe| TMDP Tsafe

1 2 32 0 0.02 0.02

2 3 1,155 0 5.49 0.4

3 3 6,550 6,015 231.37 5.29

4 5 4,397 0 122.41 1.58

5 6 2,875 0 53.05 1.21

6 6 7,685 0 339.52 3.88

Table 2 Experiments where the number
|S| of soft tasks varies. |Vsafe| is the number
of safe vertices in the MDP that is analysed by
Storm and T is the running time of Storm
to compute the mean-cost C.

|S| |Vsafe| T C

1 1 230 0.03 0

2 2 5,369 0.39 0.07

3 3 150,895 73.09 0.28

Table 3 Experiments where the number
|H| of hard tasks varies. |Vsafe| is the number
of safe vertices in the MDP that is analysed by
Storm and T is the running time of Storm
to compute the mean-cost C.

|H| |Vsafe| T C

1 1 560 0.05 0

2 2 8,040 2.35 0

3 3 9,626 6.08 0

the rct distribution, the maximum remaining computation time exceeds the remaining
time before the deadline. While computing the set of reachable vertices, once we detect
that a vertex is immediately unsafe, we stop exploring from that node further. We note
that both TMDP and Tsafe are proportional to the number |V | of vertices rather than
the number of hard tasks in the system and the number of vertices may not be directly
related to the number of tasks in the system, but also depends on the parameters of the
tasks. Most of these experiments were designed so that a safe schedule does not exist for
the set of hard tasks considered, that is, all the vertices in V were found to be unsafe.
We however have one experiment (number 3 in which most of the vertices are safe and
we note that Tsafe is not negligible in this case.

2. We run our complete algorithm on examples where all the task parameters are less than or
equal to 10, we have only one hard task and the number of soft tasks varies, see Table 2.

3. Symmetrically, we run our complete algorithm on examples where all the task parameters
are less than or equal to 9, we have only one soft task and the number of hard tasks
varies, see Table 3.

Symbolic vertices and transitions with antichain. Finally, let us explain how we have
exploited the relation defined in Section 5 in our prototype. As explained earlier, the
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set V 2
safe of safe 2 vertices of Γτ is downward-closed for the relation �, and can be thus

represented by its maximal antichain A2
safe = dV 2

safee. Our experiments show that A2
safe

is, in practice, much smaller that V 2
safe, as can be seen in Figure 2, where we plot the ratio

|A2
safe|
|V 2
safe
| against |V

2
safe| on a set of randomly generated systems where some have only hard

tasks while some are with both hard and soft tasks. The number of different tasks varies
from 1 to 6. We notice that the fraction reduces with increasing number of vertices and it
reduces to less than 10% when the number of safe vertices is a few thousands.

We then exploit A2
safe to obtain a more succinct and more structured input file to the

Storm model checker. The input syntax of Storm uses a guarded command language,
where the states of the system are described by means of variables that are tested and
updated by a transition. So, a possible transition could be of the form:

rct1_1=1 & d1=3 & p1_1=4 & ... -> (rct1_1’=1) & (d1’=2) & (p1_1’=3) & ...;

where rct1_1, d1, etc are the variables that encode the system state, and their primed
versions characterise the successors from V2, as the vertices from V# are not explicitly
encoded in the Storm models. In the experiments we have described above, this is how we
have encoded the Storm models: all transitions from all safe states are encoded explicitly
by means of conjunctions of equalities on the systems states.

Now that we have a compact representation A2
safe = {v1, v2, . . . , vn} of the safe states, we

further improve the encoding of the Storm model, by testing, in the guard of the transition,
whether the potential successor state v′ is s.t. vi � v′ for some i. We then use inequalities in
the guards of the transition and describe several possible transitions at once, for example:

rct1_1>=0 & d1=3 & ... &
((rct1_1<=1 & rct2_1-1<=2 & rct2_2-1<=4) | (rct1_1<=2 & ...) | ...)
-> (rct1_1’=rct1_1) & ...;

Observe that now we test that variable rct_1 is ≥ 0 and constrain that it is unmodified
(rct1_1’=rct1_1), so the guard is satisfied by potentially several vertices at once. The part
of the guard that appears on the second line tests whether for a vertex v that is reached
after the transition, there exists a v′ ∈ A2

safe such that v′ � v. See Appendix C for a more
detailed discussion of this new encoding. We however noted that though this approach
produces a succinct input file for Storm, the latter constructs an MDP with all the vertices
and transitions among them appearing explicitly in the MDP.

Another possible optimisation that our preorder � allows would be to compute A2
safe

directly by maintaining, during the fix point computation of the attractor, sets that are
antichains only, in the spirit of [20]. This has the potential to speed up the computation of
the safe states. We leave this implementation for future works.

7 Discussion and Future Work

In this paper, given a set of hard and soft tasks, we described an algorithm to compute a
strategy that is safe and has the minimal expected mean-cost. We formalise the construction
of an MDP and show that a safe and optimal schedule can be implemented as a simple table
lookup unlike many of the existing scheduling algorithm that requires more computations
during scheduling the tasks. We also implemented a prototype of a tool and use Storm
model-checker to show that our approach can indeed be used in practice.
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Using reinforcement learning. Our algorithm relies on a stochastic model for the arrival of
the tasks and the duration of the tasks. If this stochastic model is not available, techniques
like reinforcement learning can be used for the online construction of a stochastic model
during interaction with the tasks. The challenge here is to combine reinforcement learning
with techniques to maintain the safety for the deadline of the hard tasks. Algorithms to
combine learning with hard guarantees are currently explored [44].
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A Attractor algorithm for Safety Synthesis

The algorithm consists of computing all the vertices from which 2 cannot avoid reaching the
unsafe vertices. To this end, the algorithm computes a sequence of sets of vertices (Ai)i≥0
defined as follows:
(i) A0 = V \ Vsafe; and
(ii) for all i ≥ 0: Ai+1 = Ai ∪ {v ∈ V2 | Succ(v) ⊆ Ai} ∪ {v ∈ V# | Succ(v) ∩Ai 6= ∅}.

That is, the sequence (Ai)i≥0 is initialised to the set of unsafe vertices. Then, the algorithm
grows this set of vertices by adding:
(i) vertices belonging to 2 whose set of successors has been entirely identified as unsafe in

a previous step; and
(ii) vertices belonging to # having at least one unsafe successor.

It is easy to check that this sequence converges after at most |V | steps (the graph of
the MDP being finite) and returns the set of vertices Attr(V \ Vsafe) from which 2 has no
strategy to stay within Vsafe. Hence, 2 has a strategy σ2 to stay within Vsafe from all vertices
in which is s.t. σ2(v) 6∈ Attr(V \ Vsafe) (any successor of v satisfying this criterion yields a
safe strategy).

B Comparison with Relevant Scheduling Algorithms

Several works in the literature consider real-time scheduling of systems with both soft and
hard tasks. A prominent line of works among them is based on the notion of servers [10, 40] to
handle soft tasks. Algorithms for preemptive uniprocessor scheduling following this approach

http://dx.doi.org/10.1007/3-540-59042-0_57
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include Priority Exchange [40, 25], Sporadic Server [40, 38], Total Bandwidth Server [40],
Earliest Deadline Late (EDL) Server [11, 39, 40], Constant Bandwidth Server [1], etc. Their
performance are measured according to the responsiveness to each of the soft task requests
without compromising the schedulability of the hard tasks. The responsiveness is defined as
the difference between the time of completion of a request and the time of its arrival in the
system. However, those algorithms do not take into account a stochastic model of the tasks
as in our problem nor a notion of deadline and cost for the soft tasks. Hence they do not
provide solutions to the problem that we consider in this paper.

The algorithm EDL is known to be optimal for dynamic priority assignment [11]. An
EDL server algorithm is a dynamic slack-stealing algorithm in which the active periodic
tasks are processed as late as possible. The basic idea behind the EDL server is to use the
idle times of an EDL schedule to execute aperiodic requests (soft tasks) as soon as possible.
When there are no aperiodic activities in the system, periodic tasks are scheduled according
to the earliest deadline first (EDF) algorithm. An important property of EDL is that it
guarantees the maximum available idle time that is used for an optimal server mechanism
for soft aperiodic activities.

In order to evaluate the potential of those solutions for our problem, we consider the
following modified version of EDL:

The hard tasks are scheduled as late as possible following an EDF among the hard tasks,
without compromising their schedulability.
At every time, when a hard task is not scheduled, the active soft tasks are also scheduled
according to EDF.

The algorithm is preemptive as in the original setting.
The example below shows that in our setting, the ratio of the expected costs obtained

with the modified EDL and the the expected cost of the optimal strategy can be arbitrarily
large.

I Example 10. Consider a system with three tasks: one hard task h and two soft tasks s1
and s2. The hard task h has execution time, deadline and a period of 2, 3 and 3 respectively.
The execution time, deadline and period of s1 are 1, 3 and 3 respectively. For s2, the
execution time and the deadline are 1 and 2 respectively while the inter-arrival time is 3 with
probability 0.1 and 6 with probability 0.9. Let the cost of missing the deadline for an instance
of s1 and s2 be c1 and c2 respectively and let c2 > c1. The first instance of each of h and s1
arrives at time 0 while the first instance of s2 arrives at time 1. We divide the entire timeline
into blocks of 3 time units with consecutive odd and even blocks and the first block is an odd
block. In every even block, an instance of task s2 appears with probability 0.1 while in every
odd block excluding the first block, it appears with probability 0.9. Thus in the optimal
strategy, in every even block, s1 misses its deadline with probability 0.1 while in every odd
block it misses its deadline with probability 0.9. The optimal schedule prioritises scheduling
s2 over scheduling s1 since c2 > c1. A strategy that produces the minimum expected mean
cost thus has an associated cost proportional to 0.1 · c1 + 0.9 · c1 = c1.

The modified version of the EDL, on the other hand, in both odd and even blocks,
schedules the soft task s1. Thus with probability 0.1, an instance of the soft task s2 misses
its deadline in every even interval and with probability 0.9, it misses its deadline in every
odd interval and hence the minimum expected mean cost is proportional to c2.

As we increase c2, we see that the ratio of the costs obtained from using the modified
EDL and the optimal strategy cannot be bounded above.
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Note that the above example could be simplified by considering a Dirac distribution on
the inter-arrival time of task s2 that can be set to 3. However, the example above illustrates
the robustness of our approach in the sense that it can find an optimal schedule even when we
consider arbitrary probability distributions. The optimal schedule generated by our approach
indeed changes with the change in the distribution. We thus have the following proposition.

I Proposition 11. There exists a family of systems S in which the ratio of the expected mean
costs of missing the deadlines of the soft tasks by using the modified EDL and the optimal
strategy (as obtained by our algorithm) can be arbitrarily large.

Further, EDL suffers from the following problems. Although optimal with respect to the
finishing time of the soft tasks, it involves a heavy overload for the computation of the idle
times (slacks) that makes it less practical [10]. As seen in Proposition 11, since EDL does
not consider any cost associated to missing deadlines of the soft tasks, it is not optimal for
our setting. Furthermore, it does not take advantage of the information that is given by the
stochastic model of the tasks.

We also consider a simple adaptation of the EDF algorithm to schedule hard and soft
tasks to our setting that we call the two- stage EDF.

Two-stage EDF. The two-stage EDF is described as follows. Among the set of safe
strategies, first the hard tasks are scheduled by EDF strategy. Next the soft tasks are
scheduled by EDF strategy only when there does not exist an active hard task in the system.
We show that in the worst case, the two-stage EDF algorithm can be arbitrarily bad in terms
of the mean cost.

I Proposition 12. There exists a family of systems S in which the ratio of the expected
mean costs of missing the deadlines of the soft tasks by using the two-stage EDF algorithm
and the optimal strategy (as obtained by our algorithm) can be arbitrarily large.

Proof. Consider a deterministic system with one hard and one soft task. Let the execution
time, deadline and period of the hard task be 1, 2 and 2 respectively. The parameters for the
soft task are 1, 1 and 2 respectively. The first instance of both the hard and the soft task
arrives the system at time 0 and let the cost of missing the deadline for each job of the soft
task be 20. The two-phase EDF first schedules the hard task and thus for every instance
of the soft task, it misses the deadline. Since the period is 2, the expected mean cost for
missing the deadline for the soft task instances is 10.

On the other hand, the optimal schedule generated by our approach always schedules the
soft task before the hard task and hence the soft task always finishes execution before the
deadline and hence the mean cost is 0 and we are done. J

We also have an implementation of the two-stage-EDF and compare the time taken to
compute the mean-cost by our optimal algorithm and the two-stage EDF. Given a specific
schedule (two-stage EDF in our experiments) it corresponds to a fixed strategy of Scheduler,
and hence the state space of the MDP that is analysed by Storm to compute the expected
mean-cost for this particular strategy is usually only a small part entire state space of the
MDP that is given as an input to Storm. Computing the cost corresponding to an optimal
schedule giving the minimum expected mean-cost, on the other hand, requires Storm to find
the corresponding optimal strategy of Scheduler which involves exploring the entire state
space of this MDP.

In Table 4, |Soft| denotes the number of soft tasks, SEDF denotes the number of vertices
in the system that is analysed by Storm when we consider the two-stage EDF schedule and
TEDF is the time required to analyse the system for two-stage EDF and CEDF denotes the
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Table 4 Comparison between two-stage EDF and our optimal algorithm with different number
of soft tasks.

|Soft| SEDF SOP T TEDF TOP T CEDF COP T

1 1 71 230 0.03 0.03 0.18 0

2 2 876 5369 0.08 0.39 0.22 0.07

3 3 18273 150895 4.93 73.09 0.68 0.28

Table 5 Comparison between two-stage EDF and our optimal algorithm with different number
of hard tasks.

|Hard| SEDF SOP T TEDF TOP T CEDF COP T

1 1 109 560 0.04 0.05 0.07 0

2 2 810 8040 0.38 2.35 0.26 0

3 3 808 9626 0.93 6.08 0.24 0

mean-cost that we obtain for two-stage EDF. Similarly, we have SOPT , TOPT and COPT for
our optimal algorithm. The columns SOPT , TOPT and COPT are the same as Ssafe, T and
C in Table 2 and Table 3 respectively. In these experiments, all the parameters, that is, the
supports in the execution time distribution, the deadline and the supports in the inter-arrival
time distribution for every task have values less than or equal to 10.

In Table 5, the first column |Hard| denotes the number of hard tasks in the system. We
use one soft task. The trends of the results are similar to those in Table 4. The values of all
the parameters used in these experiments is less than or equal to 9.

Further, there have been several studies to analyse quality of service driven applications.
These studies use stochastic tools to analyse the execution times of different tasks and their
effects on the quality of service [15, 43, 18, 19, 5, 2, 32, 31, 33]. Those methods do not
propose synthesis techniques and consider that the scheduler preexists.

C Optimising the Storm input file with antichains

An example of a transition using concrete vertices is like the following. Here every state is
represented concretely. [hard2] is the task that is executed, that is, it corresponds to the
second hard task as specified in the input file.

[hard2] rct1_1=1 & d1=3 & p1_1=4 & p1_2=5 &
rct2_1=3 & rct2_2=5 & d2=5 & p2_1=6 & p2_2=7 ->
(rct1_1’=1) & (d1’=2) & (p1_1’=3) & (p1_2’=4) &
(rct2_1’=2) & (rct2_2’=4) & (d2’=4) & (p2_1’=5) & (p2_2’=6);

The variable [rct1_1] denotes the first element in the support of the rct distribution of task
τ1 when the elements of the support are arranged in an increasing order, while [rct2_1]
denotes the first element of the support in the rct distribution of task τ2 and so on. d1 is
the remaining deadline of task τ1, and d2 denotes the remaining deadline for task τ2. p1_1
and p1_2 respectively denote the first and the second elements in an increasing order in the
support of the remaining time before the arrival of the next job for task τ1. The part of
the transition on the left side of -> is the guard while the part on its right is the new state
reached. Note that in this particular example, we have only state that is reached following
the transition.
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A transition using symbolic states is the following.

[hard2] rct1_1>=0 & d1=3 & p1_1=4 & p1_2=5 & rct2_1>=2 &
rct2_2>=4 & d2=5 & p2_1=6 & p2_2=7 &
((rct1_1<=1 & rct2_1-1<=2 & rct2_2-1<=4) |
(rct1_1<=2 & rct2_1-1<=1 & rct2_2-1<=3)) ->
(rct1_1’=rct1_1) & (d1’=2) & (p1_1’=3) & (p1_2’=4) &
(rct2_1’=rct2_1-1) & (rct2_2’=rct2_2-1) & (d2’=4) & (p2_1’=5) & (p2_2’=6);

Note that in the rct distributions, we have inequalities instead of equalities and hence trans-
itions corresponding to several concrete states are represented by this. The part ((rct1_1<=1
& rct2_1-1<=2 & rct2_2-1<=4) | (rct1_1<=2 & rct2_1-1<=1 & rct2_2-1<=3)) de-
notes that the state reachable following the transition should be less difficult than at
least one of the two elements of the antichain. Each disjunct corresponds to a comparison
with an element of the antichain.



The ∆-Framework
Furio Honsell
Dept. of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze,
206, 33100 Udine, Italy
furio.honsell@uniud.it

Luigi Liquori
Université Côte d’Azur, INRIA Sophia Antipolis – Méditerranée 2004 Route des Lucioles – BP
93 FR-06902 Sophia Antipolis, France
Luigi.Liquori@inria.fr

Claude Stolze
Université Côte d’Azur, INRIA Sophia Antipolis – Méditerranée 2004 Route des Lucioles – BP
93 FR-06902 Sophia Antipolis, France
Claude.Stolze@inria.fr

Ivan Scagnetto
Dept. of Mathematics, Computer Science and Physics, University of Udine, Via delle Scienze,
206, 33100 Udine, Italy
ivan.scagnetto@uniud.it

Abstract
We introduce the ∆-framework, LF∆, a dependent type theory based on the Edinburgh Logical
Framework LF, extended with the strong proof-functional connectives, i.e. strong intersection,
minimal relevant implication and strong union. Strong proof-functional connectives take into
account the shape of logical proofs, thus reflecting polymorphic features of proofs in formulæ.
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subformulæ. However, existing approaches to strong proof-functional connectives are all
quite idiosyncratic in mentioning proofs. Existing Logical Frameworks, on the other hand,
provide a uniform approach to proof terms in object logics, but they do not fully capitalize
on subtyping.

This situation calls for a natural combination of the two understandings of types, which
should benefit both worlds. On the side of Logical Frameworks, the expressive power of
the metalanguage would be enhanced thus allowing for shallower encodings of logics, a
more principled use of subtypes [37], and new possibilities for formal reasoning in existing
interactive theorem provers. On the side of type disciplines for programming languages, a
principled framework for proofs would be provided, thus supporting a uniform approach to
“proof reuse” practices based on type theory [38, 12, 20, 9, 6].

Therefore, in this paper, we extend LF with the connectives of strong intersection, strong
union, and minimal relevant implication of Proof-Functional Logics [40, 3, 4]. We call this
extension the ∆-framework (LF∆), since it builds on the ∆-calculus [31]. Moreover, we
illustrate by way of examples, that LF∆ subsumes many expressive type disciplines in the
literature [37, 3, 4, 38, 12].

It is not immediate to extend the judgments-as-type, Curry-Howard paradigm to logics
supporting strong proof-functional connectives, since these connectives need to compare the
shapes of derivations and do not just take into account the provability of propositions, i.e.
the inhabitation of the corresponding type. In order to capture successfully strong logical
connectives such as ∩ or ∪, we need to be able to express the rules:

D1 : A D2 : B D1 ≡ D2
A ∩B (∩I) D1 : A ⊃ C D2 : B ⊃ C A ∪B D1 ≡ D2

C
(∪E)

where ≡ is a suitable equivalence between logical proofs. Notice that the above rules suggest
immediately intriguing applications in polymorphic constructions, i.e. the same evidence can
be used as a proof for different statements. Pottinger [40] was the first to study the strong
connective ∩. He contrasted it to the intuitionistic connective ∧ as follows: “The intuitive
meaning of ∩ can be explained by saying that to assert A ∩ B is to assert that one has a
reason for asserting A which is also a reason for asserting B ... (while) ... to assert A ∧B
is to assert that one has a pair of reasons, the first of which is a reason for asserting A and
the second of which is a reason for asserting B”. A logical theorem involving intuitionistic
conjunction which does not hold for strong conjunction is (A ⊃ A)∧ (A ⊃ B ⊃ A), otherwise
there should exist a closed λ-term having simultaneously both one and two abstractions.
Lopez-Escobar [32] and Mints [35] investigated extensively logics featuring both strong and
intuitionistic connectives especially in the context of realizability interpretations.

Dually, it is in the ∪-elimination rule that proof equality needs to be checked. Following
Pottinger, we could say that asserting (A ∪ B) ⊃ C is to assert that one has a reason for
(A ∪B) ⊃ C, which is also a reason to assert A ⊃ C and B ⊃ C. The two connectives differ
since the intuitionistic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not derivable for ∪, otherwise
there would exist a term which behaves both as I and as K.

Following Barbanera and Martini [4], Minimal Relevant Implication, ⊃r, can be viewed
as a special case of implication whose related function space is the simplest possible one,
namely the one containing only the identity function. The operators ⊃ and ⊃r differ, since
A ⊃r B ⊃r A is not derivable. Relevant implication allows for a natural introduction of
subtyping, in that A ⊃r B morally means A 6 B. Relevant implication amounts to a notion
of “proof-reuse”. Combining the remarks in [4, 3], minimal relevant implication, strong
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B `M : σ B `M : τ
B `M : σ ∩ τ (∩I) B `M : σ ∩ τ

B `M : σ (∩Ei) B `M : σ ∩ τ
B `M : τ (∩Er)

B `M : σ
B `M : σ ∪ τ (∪Il) B `M : τ

B `M : σ ∪ τ (∪Ir)

B, x:σ `M : ρ B, x:τ `M : ρ B ` N : σ ∪ τ
B `M [N/x] : ρ

(∪E) B `M : σ σ ≤ τ
B `M : τ (Sub)

x:σ ∈ B
B ` x : σ (V ar) B `M : σ → τ B ` N : σ

B `M N : τ (App) B, x:σ `M : τ
B ` λx.M : σ → τ

(Abs)

(1) σ 6 σ ∩ σ (8) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ, τ 6 ρ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ, σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ, τ 6 σ ∪ τ (11) (σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 ω (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ

(6) σ 6 σ (13) ω 6 ω → ω

(7) σ1 6 σ2, τ1 6 τ2 ⇒ σ1 ∩ τ1 6 σ2 ∩ τ2 (14) σ2 6 σ1, τ1 6 τ2 ⇒ σ1 → τ1 6 σ2 → τ2

Figure 1 The type assignment system B of [3] and the subtype theory Ξ.

intersection and strong union correspond respectively to the implication, conjunction and
disjunction operators of Meyer and Routley’s Minimal Relevant Logic B+ [34]1.

Strong connectives arise naturally in investigating the propositions-as-types analogy for
intersection and union type assignment systems. Intersection types were introduced by Coppo,
Dezani et al. in the late 70’s [13, 15, 16, 5] to support a form of ad hoc polymorphism, for
untyped λ-calculi, à la Curry. Intersection types were used originally as an (undecidable) type
assignment system for pure λ-calculi, i.e. for finitary descriptions of denotational semantics
[14]. This line of research was later explored by Abramsky [1] in a full-fledged Stone duality.
Union types were introduced semantically, by MacQueen, Plotkin, and Sethi [33, 3]. In [3]
strong intersection, union and subtyping were thoroughly studied in the context of type-
assignment systems, see Figure 1. A classical example of the expressiveness of union types is
due to Pierce [38]: without union types, the best information we can get for (Is_0Test) is a
boolean type.

Test def= if b then 1 else−1 : Pos ∪Neg
Is_0 : (Neg → F ) ∩ (Zero→ T ) ∩ (Pos→ F )

(Is_0 Test) : F

1 A terminological comment is in order. We refer to (⊃r) as “relevant implication” in order to be faithful
to the original logical literature, since this constructor satisfies the logical properties of implication in
the minimal relevant logical system introduced in [34]. And precisely in this sense it was used later in
[4]. This use of the word “relevant” is therefore considerably stronger than, but not totally unrelated to,
the one arising in the context of λI−calculus and linear logic, where it expresses the requirement that
the variable “is used at least once” in the function, in contrast to affine “at most one use” and linear
“exactly one use”.
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x:σ ` x:σ (Var)

` λx:σ.x:σ → σ
(→I) x:τ ` x:τ (Var)

` λx:τ .x:τ → τ
(→I)

` λx:???.x:(σ → σ) ∩ (τ → τ)
(∩I)

Figure 2 Polymorphic identity.

Designing a λ-calculus à la Church with intersection and union types is problematic. The
usual approach of simply adding types to binders does not work, as shown in Figure 2. Same
difficulties can be found with union types. Intersection and union type disciplines started to
be investigated in a explicitly typed programming language settings à la Church, much later
by Reynolds and Pierce [41, 38], Wells et al. [48, 49], Liquori et al. [29, 18], Frisch et al. [21]
and Dunfield [19]. From a logical point of view, there are many proposals to find a suitable
logics to fit intersection: among them we cite [35, 37, 47, 42, 36, 11, 10, 39].

The LF∆, introduced in this paper extends [31] with union types, dependent types and
minimal relevant implication. The novelty of LF∆ in the context of Logical Frameworks, lies
in the full-fledged use of strong proof-functional connectives, which to our knowledge has
never been explored before. Clearly, all ∆-terms have a computational counterpart.

Pfenning’s work on Refinement Types [37] pioneered an extension of the Edinburgh
Logical Framework with subtyping and intersection types. His approach capitalises on a
tame and essentially ad hoc notion of subtyping, but the logical strength of that system
does not go beyond the LF (i.e. simple types). The logical power of LF∆ allows to type all
strongly normalizing terms. Furthermore, subtyping in LF∆ arises naturally as a derived
notion from the more fundamental concept of minimal relevant implication, as illustrated in
Section 2.

Miquel [36] discusses an extension of the Calculus of Constructions with implicit typing,
which subsumes a kind of proof-functional intersection. His approach has opposite motivations
to ours. While LF∆ provides a Church-style version of Curry-style type assignment systems,
Miquel’s Implicit Calculus of Constructions encompasses some features of Curry-style systems
in an otherwise Church-style Calculus of Constructions. In LF∆ we can discuss also ad
hoc polymorphism, while in the Implicit Calculus only structural polymorphism is encoded.
Indeed, he cannot assign the type ((σ ∩ τ) → σ) ∩ (ρ → ρ)) to the identity λx.x [28].
Kopylov [27] adds a dependent intersection type constructor x:A ∩B[x] to NuPRL, allowing
the resulting system to support dependent records (which are a very useful data structure to
encode mathematics). The implicit product-type of Miquel, together with the dependent
intersection type of Kopylov, and a suitable equality-type is used by Stump [46] to enrich
the impredicative second-order system λP2, in order to derive induction.

In order to achieve our goals, we could have carried out simply the encoding of LF∆ in
LF. But, due to the side-conditions characterizing proof-functional connectives, this would
have be achieved only through a deep encoding. As an example of this, in Figure 8, we give
an encoding of a subsystem of [3], where subtyping has been simulated using relevant arrows.
This encoding illustrates the expressive power of LF in treating proofs as first-class citizens,
and it was also a source of inspiration for LF∆.

All the examples discussed in this paper have been checked by an experimental proof
development environment for LF∆ [45] (see Bull and Bull-Subtyping in [44]).

Synopsis. In Section 2, we introduce LF∆ and outline its metatheory, together with a
discussion of the main design decisions. In Section 3, we provide the motivating examples.
In Section 4, we outline the details of the implementation and future work.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping
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Kinds
K ::= Type | Πx:σ.K as in LF

Families
σ, τ ::= a | Πx:σ.τ | σ∆ | as in LF

σ →r τ | relevant family
σ ∩ τ | intersection family
σ ∪ τ union family

Objects
∆ ::= c | x | λx:σ.∆ | ∆ ∆ | as in LF

λrx:σ.∆ | relevant abstraction
∆ r ∆ | relevant application
〈∆ , ∆〉 | intersection objects
[∆ , ∆] | union objects
prl ∆ | prr ∆ | projections objects
inσl ∆ | inσr ∆ injections objects

Figure 3 The syntax of the ∆-framework.

o 〈∆1 , ∆2〉 o
def= o∆1 o

oλrx:σ.∆ o def= λx.o∆ o

oλx:σ.∆ o def= λx.o∆ o

o [∆1 , ∆2] o def= o∆1 o

o∆1 ∆2 o
def= o∆1 o o∆2 o

o∆1 r ∆2 o
def= o∆2 o

o pri ∆ o def= o∆ o

o ini ∆ o def= o∆ o

o c o def= c

ox o def= x

Figure 4 The essence function.

2 The ∆-framework: LF with proof-functional operators

The syntax of LF∆ pseudo-terms is given in Figure 3. For the sake of simplicity, we suppose
that α-convertible terms are equal. Signatures and contexts are defined as finite sequence of
declarations, like in LF. Observe that we could formulate LF∆ in the style of [23], using only
canonical forms and without reductions, but we prefer to use the standard LF format to
support better intuition. There are three proof-functional objects, namely strong conjunction
(typed with σ ∩ τ) with two corresponding projections, strong disjunction (typed with σ ∪ τ)
with two corresponding injections, and strong (or relevant) λ-abstraction (typed with →r).
Indeed, a relevant implication is not a dependent one because the essence of the inhabitants
of type σ →r τ is essentially the identity function as enforced in the typing rules. Note that
injections ini need to be decorated with the injected type σ in order to ensure the unicity of
typing.

We need to generalize the notion of essence, introduced in [17, 30] to syntactically connect
pure λ-terms (denoted by M) and type annotated LF∆ terms (denoted by ∆). The essence
function compositionally erases all type annotations, see Figure 4.

One could argue that the choice of ∆1 in the definition of strong pairs/co-pairs is arbitrary
and could have been replaced with ∆2: however, the typing rules will ensure that, if 〈∆1 , ∆2〉
(resp. [∆1 , ∆2]) is typable, then we have that o∆1 o =η o∆2 o. Thus, strong pairs/co-pairs
are constrained. The rule for the essence of a relevant application is justified by the fact that
the operator amounts to just a type decoration.

The six basic reductions for LF∆ objects appear on the left in Figure 5. Congruence
rules are as usual, except for the two cases dealing with pairs and co-pairs which appear on
the right of Figure 5. Here redexes need to be reduced “in parallel” in order to preserve
identity of essences in the components. We denote by =∆ the symmetric, reflexive, and
transitive closure of →∆, i.e. the compatible closure of the reduction induced by the first six
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37:6 The ∆-Framework

(λx:σ.∆1) ∆2 −→β ∆1[∆2/x]

prl 〈∆1 , ∆2〉 −→prl ∆1

prr 〈∆1 , ∆2〉 −→prr ∆2

[∆1 , ∆2] inσl ∆3 −→inl ∆1 ∆3

[∆1 , ∆2] inσr ∆3 −→inr ∆2 ∆3

(λrx:σ.∆1) r ∆2 −→βr ∆1[∆2/x]

∆1 →∆ ∆′
1 ∆2 →∆ ∆′

2 o∆′
1 o ≡ o∆′

2 o
〈∆1 , ∆2〉 →∆ 〈∆′

1 , ∆′
2〉

(Congr∩)

∆1 →∆ ∆′
1 ∆2 →∆ ∆′

2 o∆′
1 o ≡ o∆′

2 o
[∆1 , ∆2]→∆ [∆′

1 , ∆′
2]

(Congr∪)

Figure 5 The reduction semantics.

rules on the left in Figure 5, with the addition of the last two congruence rules in the same
figure. In order to make this definition truly functional as well as to be able to prove a simple
subject reduction result, we need to constrain pairs and co-pairs, i.e. objects of the form
〈∆i , ∆j〉 and [∆i , ∆j ] to have congruent components up-to erasure of type annotations.
This is achieved by imposing o∆i o ≡ o∆j o in both constructs. We will therefore assume
that such pairs and co-pairs are simply not well defined terms, if the components have a
different “infrastructure”. The effects of this choice are reflected in the congruence rules in
the reduction relation, in order to ensure that reductions can only be carried out in parallel
along the two components.

The restriction on reductions in pairs/co-pairs and the new constructs do not cause any
problems in showing that →∆ is locally confluent:

I Theorem 1 (Local confluence).
The reduction relation on well-formed LF∆-terms is locally confluent.

The extended type theory LF∆ is a formal system for deriving judgements of the forms:

` Σ Σ is a valid signature
`Σ Γ Γ is a valid context in Σ

Γ `Σ K K is a kind in Γ and Σ

Γ `Σ σ : K σ has kind K in Γ and Σ
Γ `Σ ∆ : σ ∆ has type σ in Γ and Σ

The set of rules for object formation is defined in Figure 6, while the sets of rules for
signatures, contexts, kinds and families are defined as usual in the Appendix: all typing rules
are syntax-directed. Note that proof-functionality is enforced by the essence side-conditions
in rules (→rI), (∩I), and (∪E). In the rule (Conv) we rely on the external notion of equality
=∆. An option could have be to add an internal notion of equality directly in the type
system (Γ `Σ σ =∆ τ), and prove that the external and the internal definitions of equality
are equivalent, as was proved for semi-full Pure Type Systems [43]. Yet another possibility
could be to compare type essences oσ o =∆ o τ o, for a suitable extension of essence to types
and kinds. Unfortunately, this would lead to undecidability of type checking, in connection
with relevant implication, as the following example shows. Consider two constants c1 of type
σ →r (Πy:σ.σ) and c2 of type (Πy:σ.σ)→r σ: the following ∆-term is typable with σ and its
essence is Ω.

∆Ω
def= (λx:σ.c1 r xx) (c2 r (λx:σ.c1 r xx)) o∆Ω o = Ω

Since the intended meaning of relevant implication is “essentially” the identity, introducing
variables or constants whose type is a relevant implication, amounts to assuming axioms
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Valid Objects

`Σ Γ c:σ ∈ Σ
Γ `Σ c : σ (Const) `Σ Γ x:σ ∈ Γ

Γ `Σ x : σ (Var)

Γ, x:σ `Σ ∆ : τ
Γ `Σ λx:σ.∆ : Πx:σ.τ (ΠI) Γ `Σ ∆1 : Πx:σ.τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 ∆2 : τ [∆2/x]
(ΠE)

Γ, x:σ `Σ ∆ : τ o∆ o =η x

Γ `Σ λrx:σ.∆ : σ →r τ
(→rI) Γ `Σ ∆1 : σ →r τ Γ `Σ ∆2 : σ

Γ `Σ ∆1 r ∆2 : τ (ΠrE)

Γ `Σ ∆1 : σ Γ `Σ ∆2 : τ o∆1 o =η o∆2 o
Γ `Σ 〈∆1 , ∆2〉 : σ ∩ τ

(∩I) Γ `Σ ∆ : σ ∩ τ
Γ `Σ prl ∆ : σ (∩El)

Γ `Σ ∆ : σ ∩ τ
Γ `Σ prr ∆ : τ (∩Er)

Γ `Σ ∆ : σ Γ `Σ σ ∪ τ : Type
Γ `Σ inτl ∆ : σ ∪ τ (∪Il)

Γ `Σ ∆ : τ Γ `Σ σ ∪ τ : Type
Γ `Σ inσr ∆ : σ ∪ τ (∪Ir)

Γ `Σ ∆1 : Πy:σ.ρ[inτl y/x] o∆1 o =η o∆2 o
Γ `Σ ∆2 : Πy:τ.ρ[inσr y/x] Γ, x:σ ∪ τ `Σ ρ : Type

Γ `Σ [∆1 , ∆2] : Πx:σ ∪ τ.ρ
(∪E)

Γ `Σ ∆ : σ
Γ `Σ τ : Type σ =∆ τ

Γ `Σ ∆ : τ (Conv)

Figure 6 The type rules for valid objects.

corresponding to type inclusions such as those that equate σ and σ → σ. As a consequence,
β-equality of essences becomes undecidable. Thus, we rule out such options in relating
relevant implications in LF∆ to subtypes in the type assignment system B of [3].

2.1 Relating LF∆ to B
We compare and contrast certain design decisions of LF∆ to the type assignment system B
of [3]. The proof of strong normalization for LF∆ will rely, in fact, on a forgetful mapping
from LF∆ to B. As pointed out in [3], the elimination rule for union types in B breaks
subject reduction for one-step β-reduction, but this can be recovered using a suitable parallel
β-reduction. The well-known counter-example for one-step reduction, due to Pierce is

x ((I y) z) ((I y) z) −→β

1β x (y z) ((I y) z) %β

%β x ((I y) z) (y z) 1β
x (y z) (y z),

where I is the identity. In the typing context B def= x:(σ1 → σ1 → τ) ∩ (σ2 → σ2 → τ), y:ρ→
(σ1 ∪ σ2), z:ρ, the first and the last terms can be typed with τ , while the terms in the fork
cannot. The reason is that the subject in the conclusion of the (∪E) rule uses a context
which can have more than one hole, as in the present case2. In LF∆, the formulation of the
(∪E) rule takes a different route which does not trigger the counterexample. Indeed, we have
introduction and elimination constructs inl , inr and [ , ] which allow to reduce the term

2 The problem would not arise if (∪E) is replaced by the rule schema
B, x1:σ, . . . , xn:σ `M : ρ B, x1:τ, . . . , xn:τ `M : ρ B ` Ni : σ ∪ τ Ni =β Nj i, j = 1 . . . n

B `M [N1/x1 . . . Nn/xn] : ρ
(∪E′)

Removing the non-static clause on the Ni’s would yield a more permissive type system than B.
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only if we know that the argument, stripped of the introduction construct, has one of the
types of the disjunction. Pierce’s critical term can be expressed and typed in LF∆ with the
following judgment (the full derivation is in the Appendix):

Γ `Σ [(λx1:σ1.(prl x)x1 x1)︸ ︷︷ ︸
∆1

, (λx2:σ2.(prr x)x2 x2)︸ ︷︷ ︸
∆2

] ( (λx3:ρ→ σ1 ∪ σ2.x3)︸ ︷︷ ︸
∆3

y z) : τ

where Γ def= x:(Πx1:σ1.Πx2:σ1.τ) ∩ (Πx1:σ2.Πx2:σ2.τ), y:ρ→ σ1 ∪ σ2, z:ρ, and Σ def= τ :Type.
Notice that there is only one redex, namely ∆3 y, and the reduction of this redex leads to
[∆1,∆2] (y z), and no other intermediate (untypable) ∆-terms are possible.

The following result will be useful in the following section.

I Theorem 2. The system B without ω gives types only to strongly normalizing terms.

A proof is embedded in Theorem 4.8 of [3]. It can also be obtained using the general
computability method presented in [25] Section 4, by interpreting intersection and union
types precisely as intersections and unions in the lattice of computability sets.

2.2 LF∆ metatheory
LF∆ can play the role of a Logical Framework only if decidable. Due to the lack of space,
we list here only the main results: the complete list appears in the Appendix. The first
important step states that if a ∆-term is typable, then its type is unique up to =∆.

I Theorem 3 (Unicity of types and kinds).
1. If Γ `Σ ∆ : σ and Γ `Σ ∆ : τ , then σ =∆ τ .
2. If Γ `Σ σ : K and Γ `Σ σ : K ′, then K =∆ K ′.

Strong normalization is proved as in LF. First we encode LF∆-terms into terms of the type
assignment system B such that redexes in the source language correspond to redexes in the
target language and we use Theorem 2. Then, we introduce two forgetful mappings, namely
|| · || and | · |, defined in Figure 11 of the Appendix, to erase dependencies in types and to drop
proof-functional constructors in ∆-terms and we conclude. Special care is needed in dealing
with redexes occurring in type-dependencies, because these need to be flattened at the level
of terms.

I Theorem 4 (Strong normalization).
1. LF∆ is strongly normalizing, i.e.,

a. If Γ `Σ K, then K is strongly normalizing.
b. If Γ `Σ σ : K, then σ is strongly normalizing.
c. If Γ `Σ ∆ : σ, then ∆ is strongly normalizing.

2. Every strongly normalizing pure λ-term can be annotated so as to be the essence of a
∆-term.

Local confluence and strong normalization entail confluence, so we have

I Theorem 5 (Confluence). LF∆ is confluent, i.e.:
1. If K1 −→∗∆ K2 and K1 −→∗∆ K3, then ∃K4 such that K2 −→∗∆ K4 and K3 −→∗∆ K4.
2. If σ1 −→∗∆ σ2 and σ1 −→∗∆ σ3, then ∃σ4 such that σ2 −→∗∆ σ4 and σ3 −→∗∆ σ4.
3. If ∆1 −→∗∆ ∆2 and ∆1 −→∗∆ ∆3, then ∃∆4 such that ∆2 −→∗∆ ∆4 and ∆3 −→∗∆ ∆4.
Then, we have subject reduction, whose proof relies on technical lemmas about inversion
and subderivation properties (see Appendix).
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I Theorem 6 (Subject reduction of LF∆).
1. If Γ `Σ K and K →∆ K ′, then Γ `Σ K ′.
2. If Γ `Σ σ : K and σ →∆ σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ ∆ : σ and ∆→∆ ∆′, then Γ `Σ ∆′ : σ.

Finally, we define a possible algorithm for checking judgements in LF∆ by computing
a type or a kind for a term, and then testing for definitional equality, i.e. =∆, against the
given type or kind. This is achieved by reducing both to their unique normal forms and
checking that they are identical up to α-conversion. Therefore we finally have:

I Theorem 7 (Decidability). All the type judgments of LF∆ are recursively decidable.

Minimal Relevant Implications and Type Inclusion. Type inclusion and the rules of sub-
typing are related to the notion of minimal relevant implication, see [4, 17]. The insight is
quite subtle, but ultimately very simple. This is what makes it appealing. The apparently
intricate rules of subtyping and type inclusion, which occur in many systems, and might even
appear ad hoc at times, can all be explained away in our principled approach, by proving that
the relevant implication type is inhabited by a term whose essence is essentially a variable.

In the following theorem we show how relevant implication subsumes the type-inclusion
rules of the theory Ξ of [3], without rules (5) and (13) (dealing with ω) and rule (10)
(distributing ∩ over ∪) in Figure 1: we call Ξ′ such restricted subtype theory. Note that
the reason to drop subtype rule (10) is due to the fact that we cannot inhabit the type
σ ∩ (τ ∪ ρ)→r (σ ∩ τ) ∪ (σ ∩ ρ)3.

I Theorem 8 (Type Inclusion). The judgement 〈〉 `Σ ∆ : σ →r τ (where both σ and τ do not
contain dependencies or relevant families) holds iff σ ≤ τ holds in the subtype theory Ξ′ of B
enriched with new axioms of the form σ1 ≤ σ2 for each constant c : σ1 →r σ2 ∈ Σ.

As far as the λΠ& system of Refinement Types introduced by Pfenning in [37], we have the
following theorem:

I Corollary 9 (Pfenning’s Refinement Types). The judgment `Σ σ ≤ τ in λΠ& can be encoded
in LF∆ by adding a constant of type σ →r τ to Σ′, where the latter is the signature obtained
from Σ by replacing each clause of the form a1 :: a2 or a1 ≤ a2 in Σ by a constant of type
a1 →r a2.

Moreover, while Pfenning needs to add explicitly the rules of subtyping (i.e. the theory of ≤)
in λΠ&, we inherit them naturally in LF∆ from the rules for minimal relevant implication.

3 Examples

As we have argued in the previous sections, the point of this paper is a uniform and
principled approach to the encoding of a plethora of type disciplines and systems which
ultimately stem or can capitalize from strong proof-functional connectives and subtyping.

3 To encompass also the subtype rule (10) of the type theory Ξ, besides adding a special constant, we can
strengthen the form of the (∪E) type rule as follows:

Γ `Σ ∆1 : Πy:χ ∩ σ.ρ 〈prl y , in
τ
l prr y〉 o∆1 o =η o∆2 o

Γ `Σ ∆2 : Πy:χ ∩ τ.ρ 〈prl y , in
σ
r prr y〉 Γ `Σ ρ : Πy:χ ∩ (σ ∪ τ).Type

Γ `Σ [∆1 , ∆2] : Πx:χ ∩ (σ ∪ τ).ρ x
(∪E)

Similarly we can treat the remaining rules of the type theory Π in [3].
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Atomic propositions, non-atomic goals and non-atomic programs: α, γ0, π0 : Type
Goals and programs: γ = α ∪ γ0 π = α ∪ π0

Constructors (implication, conjunction, disjunction).
impl : (π → γ → γ0) ∩ (γ → π → π0)

impl1 = λx:π.λy:γ.inαr (prl impl x y) impl2 = λx:γ.λy:π.inαr (prr impl x y)
and : (γ → γ → γ0) ∩ (π → π → π0)

and1 = λx:γ.λy:γ.inαr (prl and x y) and2 = λx:π.λy:π.inαr (prr and x y)
or : (γ → γ → γ0) or1 = λx:γ.λy:γ.inαr (or x y)

solve p g indicates that the judgment p ` g is valid.
bchain p a g indicates that, if p ` g is valid, then p ` a is valid.
solve : π → γ → Type bchain : π → α→ γ → Type
Rules for solve:
− : Π(p:π)(g1,g2:γ)solve p g1 → solve p g2 → solve p (and1 g1 g2)
− : Π(p:π)(g1,g2:γ)solve p g1 → solve p (or1 g1 g2)
− : Π(p:π)(g1,g2:γ)solve p g2 → solve p (or1 g1 g2)
− : Π(p1,p2:π)(g:γ)solve (and2 p1 p2) g → solve p1 (impl1 p2 g)
− : Π(p:π)(a:α)(g:γ)bchain p a g → solve p g → solve p (inγ0

l a)
Rules for bchain:
− : Π(a:α)(g:γ)bchain (impl2 g (inl π0a)) a g
− : Π(p1,p2:π)(a:α)(g:γ)bchain p1 a g → bchain (and2 p1 p2) a g
− : Π(p1,p2:π)(a:α)(g:γ)bchain p2 a g → bchain (and2 p1 p2) a g
− : Π(p:π)(a:α)(g,g1,g2:γ)bchain (impl2 (and1 g1 g2) p) a g → bchain (impl2 g1 (impl2 g2 p)) a g
− : Π(p1,p2:π)(a:α)(g,g1:γ)bchain (impl2 g1 p1) a g → bchain (impl2 g1 (and2 p1 p2)) a g
− : Π(p1,p2:π)(a:α)(g,g1:γ), bchain (impl2 g1 p2) a g → bchain (impl2 g1 (and2 p1 p2)) a g

Figure 7 The LF∆ encoding of Hereditary Harrop Formulæ.

The framework LF∆, presented in this paper, is the first to accommodate all the examples
and counterexamples that have appeared in the literature. The complete developments of
both the implementation of the ∆-framework and example encodings can be found in [44].

We start the section showing the expressive power of LF∆ in encoding classical features
of typing disciplines with strong intersection and union.

Auto application. The judgement `B λx.x x : σ ∩ (σ → τ) → τ in B, is rendered in LF∆
by the LF∆-judgement `Σ λx:σ ∩ (σ → τ).(prr x) (prl x) : σ ∩ (σ → τ)→ τ .

Polymorphic identity. The judgement `B λx.x : (σ → σ) ∩ (τ → τ) in B, is rendered in
LF∆ by the judgement `〈〉 〈λx:σ.x , λx:τ.x〉 : (σ → σ) ∩ (τ → τ).

Commutativity of union. The judgement λx.x : (σ ∪ τ)→ (τ ∪ σ) in B is rendered in LF∆
by the judgement λx:σ∪τ.[λy:σ.inτr y , λy:τ.inσl y]x : (σ ∪ τ)→ (τ ∪ σ).

Pierce’s expression of page 2. The expressive power of union types highlighted by Pierce
is rendered in LF∆ by

Neg : Type Zero : Type Pos : Type T : Type F : Type Test : Pos ∪Neg
Is_0 : (Neg → F ) ∩ (Zero→ T ) ∩ (Pos→ F )

Is_0_Test def= [λx:Neg.(prl prl Is_0)x , λx:Pos.(prr Is_0)x]Test

The above example illustrates the advantages of taking LF∆ as a framework. In LF we would
render it only encoding B deeply, ending up with the verbose code in pierce_program.v [44].

https://github.com/cstolze/Bull/blob/master/coq_encodings/pierce_program.v
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Hereditary Harrop Formulæ. The encoding of Hereditary Harrop’s Formulæ is one of the
motivating examples given by Pfenning for introducing refinement types in [37]. In LF∆ it
can be expressed as in Figure 7 and type checked in the environment [45] using our concrete
syntax (file pfenning_harrop.bull [44]), without any reference to intersection types, by a
subtle use of union types. We add also rules for solving and backchaining. Hereditary Harrop
formulæ can be recursively defined using two mutually recursive syntactical objects called
programs (π) and goals (γ):

γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ π := α | π ∧ π | γ ⇒ π

Using Corollary 9, we can provide an alternative encoding of atoms, goals and programs
which is more faithful to the one by Pfenning. Namely, we can introduce in the signature
the constants c1 : α→r γ and c2 : α→r π in order to represent the axioms atom ≤ goal and
atom ≤ prog in Pfenning’s encoding. Our approach based on union types, while retaining
the same expressivity permits to shortcut certain inclusions and to rule out also certain
exotic goals and exotic programs. Indeed, for the purpose of establishing the adequacy of the
encoding, it is sufficient to avoid variables involving union types in the derivation contexts.

Natural Deductions in Normal Form. The second motivating example for intersection
types given in [37] is natural deductions in normal form. We recall that a natural deduction
is in normal form if there are no applications of elimination rules of a logical connective
immediately following their corresponding introduction, in the main branch of a subderivation.

The encoding we give in LF∆ is a slightly improved version of the one in [37]: as Pfenning,
we restrict to the purely implicational fragment.

o : Type ⊃: o→ o→ o Elim,Nf0 : o→ Type
Nf ≡ ΠA:o.Nf0(A) ∪ Elim(A)
⊃I : ΠA,B:o.(Elim(A)→ Nf(B))→ Nf0(A ⊃ B)
⊃E : ΠA,B:o.Elim(A ⊃ B)→ Nf0(A)→ Elim(B).

As in the previous example, we use union types to define normal forms (Nf(A)) either as
pure elimination-deductions from hypotheses (Elim(A)) or normal form-deductions (Nf0(A)).
As above we could have used also intersection types. This example is interesting in itself,
being the prototype of the encoding of type systems using canonical and atomic syntactic
categories [23] and also of Fitch Set Theory [26].

Adequacy, Canonical Forms, Exotic terms. In the presence of union types, we have to
pay special attention to the exact formulation of Adequacy Theorems, as in the Harrop’s
formulæ example above. Otherwise exotic terms arise, such as [λx:σ.C(x) , λx:τ.D(x)] y,
where C(·) and D(·) are distinct contexts (i.e. terms with holes), which cannot be naturally
simplified even if oC o ≡ oD o. More work needs to be done to streamline how to exclude, or
even capitalize on exotic terms.

Metacircular Encodings. The following diagram summarizes the network of adequate
encodings/inclusions between LF∆, LF, and B that can be defined.

LF sh +3 LF∆
dp +3 LF

B

sh

8@

dp +3 LF
?�

OO
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(* Define our types *)
Axiom o : Set.
(* Axiom omegatype : o. *)
Axioms (arrow inter union : o → o → o).

(* Transform our types into LF types *)
Axiom OK : o → Set.

(* Define the essence equality as an equivalence relation *)
Axiom Eq : forall (s t : o), OK s → OK t → Prop.
Axiom Eqrefl : forall (s : o) (M : OK s), Eq s s M M.
Axiom Eqsymm : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N → Eq t s N M.
Axiom Eqtrans : forall (s t u : o) (M : OK s) (N : OK t) (O : OK u), Eq s t M N → Eq t u N O → Eq s u M O.

(* constructors for arrow (→ I and → E) *)
Axiom Abst : forall (s t : o), ((OK s) → (OK t)) → OK (arrow s t).
Axiom App : forall (s t : o), OK (arrow s t) → OK s → OK t.

(* constructors for intersection *)
Axiom Proj_l : forall (s t : o), OK (inter s t) → OK s.
Axiom Proj_r : forall (s t : o), OK (inter s t) → OK t.
Axiom Pair : forall (s t : o) (M : OK s) (N : OK t), Eq s t M N → OK (inter s t).

(* constructors for union *)
Axiom Inj_l : forall (s t : o), OK s → OK (union s t).
Axiom Inj_r : forall (s t : o), OK t → OK (union s t).
Axiom Copair : forall (s t u : o) (X : OK (arrow s u)) (Y : OK (arrow t u)), OK (union s t) →
Eq (arrow s u) (arrow t u) X Y → OK u.

(* define equality wrt arrow constructors *)
Axiom Eqabst : forall (s t s’ t’ : o) (M : OK s → OK t) (N : OK s’ → OK t’),
(forall (x : OK s) (y : OK s’), Eq s s’ x y → Eq t t’ (M x) (N y)) →
Eq (arrow s t) (arrow s’ t’) (Abst s t M) (Abst s’ t’ N).

Axiom Eqapp : forall (s t s’ t’ : o) (M : OK (arrow s t)) (N : OK s) (M’ : OK (arrow s’ t’)) (N’ : OK s’),
Eq (arrow s t) (arrow s’ t’) M M’ → Eq s s’ N N’ → Eq t t’ (App s t M N) (App s’ t’ M’ N’).

(* define equality wrt intersection constructors *)
Axiom Eqpair : forall (s t : o) (M : OK s) (N : OK t) (pf : Eq s t M N), Eq (inter s t) s (Pair s t M N pf) M.
Axiom Eqproj_l : forall (s t : o) (M : OK (inter s t)), Eq (inter s t) s M (Proj_l s t M).
Axiom Eqproj_r : forall (s t : o) (M : OK (inter s t)), Eq (inter s t) t M (Proj_r s t M).

(* define equality wrt union *)
Axiom Eqinj_l : forall (s t : o) (M : OK s), Eq (union s t) s (Inj_l s t M) M.
Axiom Eqinj_r : forall (s t : o) (M : OK t), Eq (union s t) t (Inj_r s t M) M.
Axiom Eqcopair : forall (s t u : o) (M : OK (arrow s u)) (N : OK (arrow t u)) (O : OK (union s t))
(pf: Eq (arrow s u) (arrow t u) M N) (x : OK s),
Eq s (union s t) x O → Eq u u (App s u M x) (Copair s t u M N O pf).

Figure 8 The LF encoding of B (Coq syntax).

We denote by S1 =⇒ S2 the encoding of system S1 in system S2, where the label sh (resp.
dp), denotes a shallow (resp. deep) embedding. The notation S1 ↪→ S2 denotes that S2 is an
extension of S1. Due to lack of space, but with the intention of providing a better formal
understanding of the semantics of strong intersection and union types in a logical framework,
we provide in Figure 8 a deep LF encoding of a presentation of B à la Church [17]. A shallow
encoding of B in LF∆ (file intersection_union.bull [44]) can be mechanically type checked in
the environment [45]. A shallow encoding of LF in LF∆ (file lf.bull) making essential use of
intersection types can be also type checked.

LF encoding of B. Figure 8 presents a pure LF encoding of a presentation of B à la Church
in Coq syntax using HOAS. We use HOAS in order to take advantage of the higher-order
features of the frameworks: other abstract syntax representation techniques would not be
much different, but more verbose. The Eq predicate plays the same role of the essence
function in LF∆, namely, it encodes the judgement that two proofs (i.e. two terms of type
(OK _)) have the same structure. This is crucial in the Pair axiom (i.e. the introduction

https://github.com/cstolze/Bull/blob/master/bull/intersection_union.bull
https://github.com/cstolze/Bull/blob/master/bull/lf.bull


F. Honsell, L. Liquori, C. Stolze, and I. Scagnetto 37:13

rule of the intersection type constructor) where we can inhabit the type (inter s t) only
when the proofs of its component types s and t share the same structure (i.e. we have a
witness of type (Eq s t M N), where M has type (OK s) and N has type (OK t)). A similar
role is played by the Eq premise in the Copair axiom (i.e. the elimination rule of the union
type constructor). We have an Eq axiom for each proof rule. Examples of this encoding can
be found in intersection_union.v [44].

4 Implementation and Future Work

In a previous paper [45], we have implemented in OCaml suitable algorithms for type
reconstruction, as well as type checking. In [30] we have implemented the subtyping algorithm
which extends the well-known Hindley algorithm for intersection types [24] with union types.
The subtyping algorithm has been mechanically proved correct in Coq, extending the Bessai’s
mechanized proof of a subtyping algorithm for intersection types [8].

A Read-Eval-Print-Loop allows to define axioms and definitions, and performs some basic
terminal-style features like error pretty-printing, subexpressions highlighting, and file loading.
Moreover, it can type-check a proof or normalize it, using a strong reduction evaluator. We
use the syntax of Pure Type Systems [7] to improve the compactness and the modularity of
the kernel. Binders are implemented using de Brujin indexes. We implemented the conversion
rule in the simplest way possible: when we need to compare types, we syntactically compare
their normal form. Abstract and concrete syntax are mostly aligned: the concrete syntax is
similar to the concrete syntax of Coq (see Bull and Bull-Subtyping [44]).

We are currently designing a higher-order unification algorithm for ∆-terms and a
bidirectional refinement algorithm, similar to the one found in [2]. The refinement can be
split into two parts: the essence refinement and the typing refinement. In the same way,
there will be a unification algorithm for the essence terms, and a unification algorithm for
∆-terms. The bidirectional refinement algorithm aims to have partial type inference, and to
give as much information as possible to a hypothetical solver, or the unifier. For instance, if
we want to find a ?y such that `Σ 〈λx:σ.x , λx:τ.?y〉 : (σ → σ) ∩ (τ → τ), we can infer that
x:τ `?y : τ and that o ?y o = x.

LF∆ in Canonical Form. We presented LF∆ in the standard LF format in order to support
intuition. It would be worthwhile however, to attempt to formulate LF∆ in the style of [23],
using only canonical forms without reductions, especially in view of Adequacy Theorems.
The term constructs peculiar to LF∆ would then introduce new clauses in the definition
of canonical and atomic terms. The principle to follow in this task is that atomic terms
synthesize their type, while canonical terms are checked against their type. We are currently
exploring with the following extension:

M ::= . . . | λrx.M | 〈M , M〉 | [M , M ] | inlM | inrM
R ::= . . . | prlR | prr R | R rM

Notice the somewhat surprising treatment of the [ , ] constructor, which is not really an
elimination construct but rather behaves as another form of abstraction. Accordingly
hereditary substitution needs to be extended.

An intriguing issue raised by one of the referees is to explore the connections between
strong implication and the singleton type of the identity function. This could lead also to an
internalization of the essence function.

FSTTCS 2018
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A Appendix

Let Figure 9 denote Valid Signatures and Contexts and Figure 10 denote Valid Kinds and
Families.

LF∆ can play the role of a logical framework only if decidable. The road map which
we follow to establish decidability is the standard one, see e.g. [22]. In particular, we prove
in order: uniqueness of types and kinds, structural properties, normalization for raw well-
formed terms, and hence confluence. Then we prove the inversion property, the subderivation
property, subject reduction, and finally decidability.

I Lemma 10. Let α be either σ : K or ∆ : σ. Then:
1. Weakening: If Γ `Σ α and `Σ Γ,Γ′, then Γ,Γ′ `Σ α.
2. Strengthening: If Γ, x:σ,Γ′ `Σ α, then Γ,Γ′ `Σ α, provided that x 6∈ FV (Γ′) ∪ FV (α).
3. Transitivity: If Γ `Σ ∆ : σ and Γ, x:σ,Γ′ `Σ α, then Γ,Γ′[∆/x] `Σ α[∆/x].
4. Permutation: If Γ, x1:σ,Γ′, x2:τ,Γ′′ `Σ α, then Γ, x2:τ,Γ′, x1:σ,Γ′′
`Σ α, provided that x1 does not occur free in Γ′ or in τ , and that τ is valid in Γ.

I Theorem 3 (Unicity of Types and Kinds).
1. If Γ `Σ ∆ : σ and Γ `Σ ∆ : τ , then σ =∆ τ .
2. If Γ `Σ σ : K and Γ `Σ σ : K ′, then K =∆ K ′.

In order to prove strong normalization we follow the pattern used for pure LF. Namely, we
map LF∆-terms into terms of the system B in such a way that redexes in the source language
are mapped into redexes in the target language, and then take advantage of Theorem 2.
Special care is needed in dealing with redexes occurring in type-dependencies, because these
need to be flattened at the level of terms.

I Definition 11. Let the forgetful mappings || · || and | · | be defined as in Figure 11.

The forgetful mappings are extended to contexts and signatures in the obvious way. The
clauses for strong pairs/co-pairs are justified by the following lemma:

I Lemma 12. If Γ `Σ 〈∆1 , ∆2〉 : σ or Γ `Σ [∆1 , ∆2] : σ, then |∆1 |=β |∆2 |.

The following lemmas are proved by straightforward structural induction.

https://github.com/cstolze/Bull
https://github.com/cstolze/Bull-Subtyping
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Let Γ def= {x1:σ1, . . . , xn:σn} (i 6= j implies xi 6≡ xj), and Γ, x:σ def= Γ ∪ {x:σ}

Let Σ def= {c1:σ1, . . . , cn:σn}, and Σ, c:σ def= Σ ∪ {c:σ}

Valid Signatures

〈〉 sig
(εΣ) Σ sig `Σ K a 6∈ dom(Σ)

Σ, a:K sig (KΣ)
Σ sig `Σ σ : Type c 6∈ dom(Σ)

Σ, c:σ sig (σΣ)

Valid Contexts
Σ sig
`Σ 〈〉

(εΓ) `Σ Γ Γ `Σ σ : Type x 6∈ dom(Γ)
`Σ Γ, x:σ (σΓ)

Figure 9 Valid Signatures and Contexts.

Valid Kinds
`Σ Γ

Γ `Σ Type (Type) Γ, x:σ `Σ K

Γ `Σ Πx:σ.K (ΠK)

Valid Families
`Σ Γ a:K ∈ Σ

Γ `Σ a : K (Const) Γ `Σ σ : K1 Γ `Σ K2 K1 =∆ K2
Γ `Σ σ : K2

(Conv)

Γ, x:σ `Σ τ : Type
Γ `Σ Πx:σ.τ : Type (ΠI)

Γ `Σ σ : Πx:τ.K Γ `Σ ∆ : τ
Γ `Σ σ∆ : K[∆/x]

(ΠE)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ →r τ : Type (→r I)

Γ `Σ σ : Type Γ `Σ τ : Type
Γ `Σ σ ∩ τ : Type (∩I) Γ `Σ σ : Type Γ `Σ τ : Type

Γ `Σ σ ∪ τ : Type (∪I)

Figure 10 Valid Kinds and Families.

I Lemma 13.
1. If σ =∆ τ , then ||σ ||=β ||τ ||.
2. If K1 =∆ K2, then ||K1 ||=β ||K2 ||.

I Lemma 14.
1. |∆1[∆2/x] |=β |∆1 | [|∆2 | /x].
2. |σ[∆/x] |=β |σ | [|∆ | /x].

I Lemma 15.
1. If Γ `Σ σ : K, then ||Γ ||`B+ |σ | : ||K ||.
2. If Γ `Σ ∆ : σ, then ||Γ ||`B+ |∆ | : ||σ ||.
where `B+ denotes the type system B, augmented by c× : > → > → > and the infinite set of
axioms c||σ|| : > → (||σ ||→ >)→ >, for each type σ.

Notice that the function o o and | | treat differently relevant implication.

FSTTCS 2018
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||Type || = > (a special constant)
||Πx:σ.K || = ||σ ||→||K ||

||a || = a

||Πx:σ.τ || = ||σ ||→||τ ||

||σ →r τ || = ||σ ||→||τ ||
||σ∆ || = ||σ ||
||σ ∩ τ || = ||σ || ∩ ||τ ||
||σ ∪ τ || = ||σ || ∪ ||τ ||

|a | = a

|c | = c

|x | = x

|σ∆ | = |σ | |∆ |

|∆1 ∆2 | = |∆1 | |∆2 |

|∆1 r∆2 | = |∆1 | |∆2 |

|λx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ fv(∆)

|λrx:σ.∆ | = (λy.λx. |∆ |) |σ | y 6∈ fv(∆)

|Πx:σ.τ | = c||σ|| |σ | (λx. |τ |)

|σ →r τ | = c× |σ | |τ |

|σ ∩ τ | = c× |σ | |τ |

|σ ∪ τ | = c× |σ | |τ |

| 〈∆1 , ∆2〉 | = |∆1 |

| [∆1 , ∆2] | = |∆1 |

|prl ∆ | = |∆ |

|prr ∆ | = |∆ |

| inσl ∆ | = (λx. |∆ |) |σ | x 6∈ fv(∆)

| inσr ∆ | = (λx. |∆ |) |σ | x 6∈ fv(∆)

Figure 11 The forgetful mappings || · || and | · |

I Lemma 16.
1. If σ −→β τ , then |σ |−→+

β |τ |.
2. if ∆1 −→β ∆2, then |∆1 |−→+

β |∆2 |.

Parallel reduction enjoys the strong normalization property, i.e.

I Theorem 4 (Strong normalization).
1. The LF∆ is strongly normalizing, i.e.,

a. If Γ `Σ K, then K is strongly normalizing.
b. If Γ `Σ σ : K, then σ is strongly normalizing.
c. If Γ `Σ ∆ : σ, then ∆ is strongly normalizing.

2. Every strongly normalizing pure λ-term can be annotated so as to be the essence of a
∆-term.

Proof. 1) Strong normalization derives directly from Lemmas 15, 16 and Theorem 2.
2) By induction on the specification of strongly normalizing terms which can be inductively
defined as i) ∆1 . . .∆n ∈ SN ⇒ λx1, . . . , xn.x∆1 . . .∆n ∈ SN for x possibly among the xi’s,
ii) ∆[∆′/x] ∆1 . . .∆n ∈ SN , and iii) ∆′ ∈ SN ⇒ (λx:σ.∆) ∆′∆1 . . . ∆n ∈ SN . J

Local confluence (Proposition 1) and strong normalization (Theorem 4) entail confluence,
so we have

I Theorem 5 (Confluence). LF∆ is confluent, i.e.:
1. If K1 −→∗∆ K2 and K1 −→∗∆ K3, then ∃K4 such that K2 −→∗∆ K4 and K3 −→∗∆ K4.
2. If σ1 −→∗∆ σ2 and σ1 −→∗∆ σ3, then ∃σ4 such that σ2 −→∗∆ σ4 and σ3 −→∗∆ σ4.
3. If ∆1 −→∗∆ ∆2 and ∆1 −→∗∆ ∆3, then ∃∆4 such that ∆2 −→∗∆ ∆4 and ∆3 −→∗∆ ∆4.

The following lemmas are proved by structural induction.
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I Lemma 17 (Inversion properties).
1. If Πx:σ.τ =∆ τ ′′, then τ ′′ ≡ Πx:σ′.τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
2. If σ →r τ =∆ τ ′′, then τ ′′ ≡ σ′ →r τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
3. If σ ∩ τ =∆ ρ, then ρ ≡ σ′ ∩ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
4. If σ ∪ τ =∆ ρ, then ρ ≡ σ′ ∪ τ ′, for some σ′, τ ′, such that σ′ =∆ σ, and τ ′ =∆ τ .
5. If Γ `Σ λx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ .
6. If Γ `Σ λrx:σ.∆ : Πx:σ.τ , then Γ, x:σ `Σ ∆ : τ and o∆ o =η x.
7. If Γ `Σ 〈∆1 , ∆2〉 : σ ∩ τ , then Γ `Σ ∆1 : σ, Γ `Σ ∆2 : τ , and o∆1 o =β o∆2 o.
8. If Γ `Σ [∆1 , ∆2] : Πx:σ ∪ τ.ρ, then Γ `Σ ∆1 : Πy:σ.ρ (inτl y), Γ `Σ ∆2 : Πy:τ.ρ (inσr y),

and o∆1 o =β o∆2 o.
9. If Γ `Σ prl ∆ : σ, then Γ `Σ ∆:σ ∩ τ , for some τ .

10. If Γ `Σ prr ∆ : τ , then Γ `Σ ∆:σ ∩ τ , for some σ.
11. If Γ `Σ inτl ∆ : σ ∪ τ , then Γ `Σ ∆ : σ and Γ `Σ σ ∪ τ : Type.
12. If Γ `Σ inσr ∆ : σ ∪ τ , then Γ `Σ ∆ : τ and Γ `Σ σ ∪ τ : Type.

I Proposition 18 (Subderivation).
1. A derivation of `Σ 〈〉 has a subderivation of Σ sig.
2. A derivation of Σ, a:K sig has subderivations of Σ sig and `Σ K.
3. A derivation of Σ, f :σ sig has subderivations of Σ sig and `Σ σ:Type.
4. A derivation of `Σ Γ, x:σ has subderivations of Σ sig, `Σ Γ, and Γ `Σ σ:Type.
5. A derivation of Γ `Σ α has subderivations of Σ sig and `Σ Γ.
6. Given a derivation of the judgement Γ `Σ α, and a subterm occurring in the subject of

this judgement, there exists a derivation of a judgement having this subterm as a subject.

I Theorem 6 (Subject reduction of LF∆).
1. If Γ `Σ K, and K →∆ K ′, then Γ `Σ K ′.
2. If Γ `Σ σ : K, and σ →∆ σ′, then Γ `Σ σ′ : K.
3. If Γ `Σ ∆ : σ, and ∆→∆ ∆′, then Γ `Σ ∆′ : σ.

Finally, we define a possible algorithm for checking judgements in LF∆ by computing a
type or a kind for a term, and then testing for definitional equality, i.e. =∆, against the given
type or kind. This is achieved by reducing both to their unique normal forms and checking
that they are identical up to α-conversion. Therefore we finally have:

I Theorem 7 (Decidability). All the type judgments of LF∆ are recursively decidable.

Minimal Relevant Implications and Type Inclusion. Type inclusion and the rules of sub-
typing are related to the notion of minimal relevant implication, see [4, 17]. The insight is
quite subtle, but ultimately very simple. This is what makes it appealing. The apparently
intricate rules of subtyping and type inclusion, which occur in many systems, and might even
appear ad hoc at times, can all be explained away in our principled approach, by proving that
the relevant implication type is inhabited by a term whose essence is essentially a variable.

The following theorem we show how relevant implication subsumes the type-inclusion
rules of the theory Ξ of [3], without rule (10): we call Ξ′ the resulting set.

I Theorem 8 (Type Inclusion). The judgement 〈〉 `Σ ∆ : σ →r τ (where both σ and τ do not
contain dependencies or relevant families) holds iff σ ≤ τ holds in the subtype theory Ξ′ of B
enriched with new axioms of the form σ1 ≤ σ2 for each constant c : σ1 →r σ2 ∈ Σ.

Proof.
(if). Follows directly from Lemma 17.

FSTTCS 2018
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(only if). It is possible to write a ∆-term whose essence is an η−expansion of the identity
(λx.x) corresponding to each of the axioms and rules in Ξ′. The ∆-term is obtained by
defining a function ‖σ ≤ τ‖∆, where σ ≤ τ is a subtyping derivation tree in the type
theory Ξ′, which coerce a ∆-term from type σ to type τ :

(1) ‖σ 6 σ ∩ σ‖∆
def= 〈∆ , ∆〉

(2) ‖σ ∪ σ 6 σ‖∆
def= [λx:σ.x , λx:σ.x] ∆

(3) ‖σ1 ∩ σ2 6 σi‖∆
def= pri ∆

(4) ‖σi 6 σ1 ∪ σ2‖∆
def= ini ∆

(6) ‖σ 6 σ‖∆
def= ∆

(7)
∥∥∥σ1 6 σ2 τ1 6 τ2
σ1 ∩ τ1 6 σ2 ∩ τ2

∥∥∥
∆

def= 〈‖σ1 6 σ2‖(prl ∆) , ‖τ1 6 τ2‖(prr ∆)〉

(8)
∥∥∥σ1 6 σ2 τ1 6 τ2
σ1 ∪ τ1 6 σ2 ∪ τ2

∥∥∥
∆

def= [λx:σ1.in
τ2
l ‖σ1 6 σ2‖x , λx:τ1.inσ2

r ‖τ1 6 τ2‖x] ∆

(9)
∥∥∥σ 6 τ τ 6 ρ

σ 6 ρ

∥∥∥
∆

def= ‖τ 6 ρ‖(‖σ6τ‖∆)

(11) ‖(σ → τ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)‖∆
def= λx:σ.〈(prl ∆)x , (prr ∆)x〉

(12) ‖(σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ)→ ρ‖∆
def= λx:σ ∪ τ.[λy:σ.(prl ∆) y , λy:τ.(prr ∆) y]x

(14)
∥∥∥ σ2 6 σ1 τ1 6 τ2
σ1 → τ1 6 σ2 → τ2

∥∥∥
∆

def= λx:σ2. ‖τ1 6 τ2‖(∆ ‖σ26σ1‖x)

J
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Extending Finite-Memory Determinacy by
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Abstract
We study finite-memory (FM) determinacy in games on finite graphs, a central question for
applications in controller synthesis, as FM strategies correspond to implementable controllers.
We establish general conditions under which FM strategies suffice to play optimally, even in a
broad multi-objective setting. We show that our framework encompasses important classes of
games from the literature, and permits to go further, using a unified approach. While such an
approach cannot match ad-hoc proofs with regard to tightness of memory bounds, it has two
advantages: first, it gives a widely-applicable criterion for FM determinacy; second, it helps to
understand the cornerstones of FM determinacy, which are often hidden but common in proofs
for specific (combinations of) winning conditions.
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1 Introduction

Controller synthesis through the game-theoretic metaphor. Two-player games on graphs
are widely studied, notably for their applications in controller synthesis for reactive systems [18,
22, 5, 1]. In this context, Player 1 is seen as the system to control, Player 2 as its uncontrollable
environment, and the game models their interaction. The objective of Player 1 is to enforce
a given specification represented as a winning condition. The goal of synthesis is thus to
decide if Player 1 has a winning strategy, i.e., one that guarantees victory against all possible
strategies of Player 2, and to build such a strategy efficiently if it exists.

Winning strategies are essentially formal blueprints for controllers that one may want to
implement in practical applications. With that in mind, the complexity of such strategies
is of tremendous importance: the simpler the strategy, the easier and cheaper it will be to
build the corresponding controller and maintain it. That is why a lot of research effort is
put into pinpointing the complexity (in terms of memory and/or randomness) of strategies
needed to play optimally for each specific class of games and winning conditions.
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Memoryless determinacy. An elegant result by Gimbert and Zielonka established more
than ten years ago characterizes the winning conditions that enjoy memoryless determinacy2
in two-player turn-based zero-sum games on finite graphs [17]. These include conditions such
as parity, mean-payoff, or energy, all in the single-objective case.

The need for memory. Over the last decade, the increasing need to model complex spec-
ifications has shifted research toward games where multiple quantitative and qualitative
objectives co-exist and interact, requiring the analysis of interplay and trade-offs between
several objectives. Consider a computer server responding to requests. Decreasing its
response-time (modeled using a mean-payoff condition) would usually require to increase its
computational power and energy consumption (modeled by an energy condition). Hence, we
need to consider games where winning conditions are actually conjunctions of conditions, or
even richer Boolean combinations. In this context, memoryless strategies do not suffice, and
one has to use an amount of memory which can quickly become an obstacle to implementation
(e.g., exponential memory) or which can prevent it completely (infinite memory).

See for example [9, 13, 19] for combinations of energy and parity, [26] for combinations
of mean-payoff, [4, 3] for combinations of energy and average-energy conditions, [10] for
combinations of total-payoff, or [10, 6] for combinations of window objectives. Establishing
precise complexity bounds for such general combinations of winning conditions is tricky
and sometimes counterintuitive. For example, while energy games and mean-payoff games
are inter-reducible in the single-objective setting, exponential-memory strategies are both
sufficient and necessary for conjunctions of energy conditions while infinite-memory strategies
are required for conjunctions of mean-payoff ones.

Our contribution. Our goal is to provide a general and abstract theorem that lets us draw
conclusions over games with complex objectives, provided that the primitive objectives used
in the construction of the complex objectives fulfill some criteria. Such an abstract approach
provides results for many concrete types of objectives at once, and can be applied to new
types of objectives in which the community may become interested later. Another advantage
of an abstract approach is that it reveals partially the core features determining whether the
results hold or not. Admittedly, a downside of the abstract approach is that the concrete
bounds that we obtain for the required memory will often be far worse than those established
in concrete instances (as we depend on the most general upper bound).

Let us sketch our approach intuitively. First, we define the notion of regularly-predictable
winning condition: a winning condition is regularly-predictable if for every game using it, a
finite automaton suffices to recognize histories from which Player 1 has a winning strategy.
As we will show, many well-behaved winning conditions fall in this category (including all
prefix-independent ones). Second, we consider regular languages which subsume many simple
winning conditions (e.g., fully bounded energy, window objectives). Third, we introduce the
notion of hypothetical subgame-perfect equilibrium (hSPE) that is a key technical tool for the
theorem to come.3 Finally, we prove our main result: given a class W of regularly-predictable
winning conditions admitting FM hSPE and closed under Boolean combination, any winning
condition obtained by Boolean combination of elements of W and regular languages is itself
a regularly-predictable condition admitting FM hSPE.

2 The existence, in each vertex of the game, of a winning strategy that requires no memory at all, for one
of the two players.

3 Morally, we consider regularly-predictable winning conditions for which FM strategies suffice, but for
technical reasons, we need the slightly stronger assumption of existence of FM hSPE.
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Discussion. The sketch depicted above may seem unsurprising to the expert reader. Indeed,
regular languages are morally equivalent to safety conditions, and combining reasonably
well-behaved objectives with safety objectives should preserve FM determinacy (with a
blow-up due the possible compact encoding of the safety-like conditions). This is perfectly
true but in our opinion the interest of our contribution is elsewhere. First, while it is morally
easy to believe that such an extension of FM determinacy will hold, it is actually quite
tedious to manage to prove it for general classes of games (e.g., see all aforementioned
articles on specific combinations of objectives). Here, we provide a general proof of this
scheme of extension, based on (in our humble opinion) elegant and natural concepts such
as regularly-predictable objectives and hSPE. Second, we provide a thorough discussion of
the hypotheses needed for our main theorem, and we show that they are relatively tight
in the sense that weakening any condition almost immediately leads to falsification of FM
determinacy for the resulting complex objective. Thus, we give a rather complete picture of
the frontiers of FM determinacy for combination of objectives that, hopefully, will help in
understanding its cornerstones and drive further research toward such amenable objectives.

Related work. We already mentioned several papers studying specific (combinations of) win-
ning conditions. Here, we highlight works where similar approaches have been considered to
establish “meta-theorems” applying to general classes of games. Arguably the most important
result in this direction is the determinacy theorem by Martin that guarantees determinacy
(without considering the complexity of strategies) for Borel winning conditions [21]. We
already discussed Gimbert and Zielonka’s focus on memoryless strategies [17]. Kopczynski
studied games where memoryless strategies suffice for only one of the players whereas his
opponent requires memory [20]. Finally, a similar approach has been pursued in [23], where
abstract criteria were identified that enable moving from FM determinacy of two-player
win/lose games to the existence of FM Nash equilibria in multi-player multi-outcome games.
An extended version of our article is available online [24].

Outline. In Sect. 2, we define the core concepts, discuss known results from the literature,
and present an illustrative example that requires Boolean combinations, not only conjunctions.
In Sect. 3, we present the main theorem sketched above. In Sect. 4, we discuss classical
(combinations of) objectives from the literature and how they fit (or not) in our framework.
Then, in Sect. 5, we come back to the theorem to discuss its requirements and its relative
tightness. Finally, in Sect. 6, we present several more precise results that can be obtained from
our approach when restricting combinations of objectives to conjunctions and disjunctions
only. Due to space constraints, some technical details are presented in Appendix A.

2 Preliminaries and example

2.1 Definitions

I Definition 1. We fix a set C, calling its elements colors. A C-colored arena O is a tuple
O = 〈V1, V2, E,Γ〉, where (V1 ∪ V2, E) is a directed graph such that each vertex has at least
one outgoing edge, and Γ: V1 ∪ V2 → C is the coloring function. We assume finite arenas.

As we generally consider the set C of colors fixed, we suppress C-colored in the following.
A winning condition is a set W ⊆ Cω of infinite sequences of colors. An arena O together
with a winning condition W constitutes a game g = (O,W ).

FSTTCS 2018
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A strategy for Player i is a function σi : C∗×Vi → (V1 ∪V2) satisfying that for all w ∈ C∗
and v ∈ Vi we have (v, σi(w, v)) ∈ E. This means that a strategy selects a successor vertex
based on the current vertex owned by the relevant player, and a finite sequence of colors.

I Remark. Let us comment on our use of colors. If we consider a fixed game only, we could
w.l.o.g. consider each vertex to be colored by itself. However, separating vertices and colors
is necessary to speak about using the same winning condition together with different arenas.
Then one might expect that a strategy can take into account the history of vertices leading
up to the current position, not merely the sequence of colors. However, it is straightforward
to verify that players have no incentive to take these specifics into account. Moreover, the
notion of hSPE defined below takes into account also histories not actually realizable in the
given arena. Defining strategies on color histories is thus the most convenient approach.

A strategy profile is a pair of strategies (σ1, σ2), which we identify with the function
σ = σ1 ∪ σ2 : C∗ × (V1 ∪ V2)→ (V1 ∪ V2). We say that Player i can deviate from (σ1, σ2) to
(σ′1, σ′2) if σ3−i = σ′3−i. A strategy profile σ induces a function Σσ : C∗ × (V1 ∪ V2) → Cω

coinductively as follows: Σσ(w, v)(i) = w(i) (where w(i) represents the ith symbol of w) for
i ≤ |w| and Σσ(w, v)(k) = Σσ(wΓ(v), σ(w, v))(k) for k = |w|+ 1. The infinite color sequence
Σσ(w, v) is the play starting at v with history w. For a play ρ, let Pref(ρ) be the set of
finite prefixes of ρ.

I Definition 2. A hypothetical subgame-perfect equilibrium (hSPE) is a strategy profile σ
such that for all w ∈ C∗, v ∈ V1 ∪ V2 the following implications hold: If Σσ(w, v) ∈ W ,
then Σσ′(w, v) ∈W for each σ′ that Player 2 can deviate to from σ. If Σσ(w, v) /∈W , then
Σσ′′(w, v) /∈W for each σ′′ that Player 1 can deviate to from σ.

Informally, in an hSPE a player is winning from exactly these combinations of history
and current vertex that she can win from at all. What differentiates the notion of hSPE
from the usual subgame-perfect equilibria is that we take into account not just histories
realizable in the arena, but also the hypothetical histories which could not actually have
happened. Clearly, every hSPE can be domain-restricted to an SPE. Moreover, if for a
winning condition W there are SPE for all arenas, there are also hSPE for all arenas. The
subtlety of this notion only becomes relevant when working with restricted classes of arenas.

We focus on the existence of finite-memory (FM) hSPE for classes of games. An hSPE is
finite-memory when the strategies σi, i ∈ {1, 2}, can be implemented as Moore machines,
i.e., finite automata with outputs. The size of an FM strategy (and by extension of an FM
hSPE) is taken to be the number of memory states of the Moore machine(s).

2.2 State of the art
We will briefly review a selection of results about combinations of classical objectives in
two-player turn-based zero-sum games. As mentioned in Sect. 1, results in this area are too
numerous to provide an exhaustive list here. We thus focus on prominent winning conditions
and memory requirements only, and do not delve too deep into technical details.

Simple objectives. We first present the simple winning conditions.
Parity. Vertices are labeled with integer priorities, and a play is winning for Player 1
iff, among the priorities seen infinitely often, the maximal one is even. This condition
subsumes many simple ones such as reachability or safety with regard to a given set.
Muller. Let U1, . . . , Up be subsets of vertices, a play is winning iff the set of vertices seen
infinitely often is equal to some Ui.
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Energy. Vertices are labeled with integer weights representing energy consumption and/or
gain. The running sum of weights along a play must stay non-negative at all times. An
upper bound may also be fixed. We consider two variants of upper bounds: battery-like
and spill-over-like energy conditions. In the former, any energy in excess is simply lost,
while in the latter, the play is lost if the upper bound is exceeded.
Mean-payoff. Vertices are labeled with integer weights, and we look at the limit of the
averages over all prefixes of a play. Since this limit need not exist in general, two variants
are studied, for lim sup and lim inf. We require the limit to be above a given threshold.
Total-payoff. Vertices are labeled with integer weights, and we look at the limit of partial
sums over prefixes. Again, two variants exist for lim sup and for lim inf. We require the
limit to be above a given threshold.
Average-energy. Vertices are labeled with integer weights, and we look at the limit of the
averages of partial sums (i.e., the average energy level) over prefixes. Again, two variants
exist for lim sup and for lim inf. We require the limit to be above a given threshold.
Window objectives. Variations of mean-payoff and parity where instead of looking at the
limit over an infinite play, we fix a finite window sliding over the play and we require the
appropriate behavior to happen within the window at each step along the play.

Observe that all these winning conditions, along with arbitrary combinations, can be expressed
in our formalism, i.e., as subsets of Cω for an appropriate set of colors C.

Single-objective case. The situation is as follows: parity [27], energy with only a lower
bound [8], mean-payoff [15], total-payoff [16] and average-energy [4] games are memoryless
determined; Muller games require exponential-memory strategies for both players [14]; lower
and upper bounded energy games (both variants) require pseudo-polynomial memory (in the
upper bound) for both players [4]; window objectives require polynomial memory (in the
window size) for both players [10, 6]. Hence, all these winning conditions are FM determined.

Combinations of objectives. Despite this common trait, these objectives behave in very
different ways when used in combinations, even for very restricted ones. First, let us note that
most results in the literature deal with the simplest case of conjunctions (or disjunctions) of
objectives. In this setting, parity [12], Muller, energy [13, 19], and window objective [10, 6]
games remain FM determined (often, with an exponential blow-up in the number of conjuncts).
The same holds for conjunctions of (possibly multiple) lower-bounded energy and parity
conditions [9, 13] or of a single average-energy condition with an energy one [4, 3].

On the contrary, conjunctions of mean-payoff conditions [26] or of a single mean-payoff and
a single parity condition [11] require infinite-memory strategies (for Player 1). Furthermore,
it follows from the undecidability of multi-dimension average-energy games [3] and multi-
dimension total-payoff games [10] that unbounded memory is required for both players in
these two settings. Finally, let us mention that Boolean combinations were studied by Velner
for mean-payoff conditions, and they were proved to be undecidable and requiring infinite-
memory strategies [25]. For Boolean combinations of window objectives and a strict subset of
parity conditions, Bruyère et al. proved that games are exponential-memory determined [7].

The take-home message is that winning conditions that are similar in the single-objective
case may lead to contrasting behaviors when considering combinations, even for the simple
case of conjunctions. Despite all these related works, little is known about the inherent
mechanisms underlying FM determinacy, and why some objectives preserve it in combinations
while others do not. Our main theorem, in Sect. 3, formulates an answer to that question.
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2.3 A motivating example
We define a general class of games combining Muller conditions and instances of the two
variants of bounded energy games presented in Sect. 2.2.

I Definition 3 (Multi-dimension bounded-energy Muller games). Let U1, . . . , Up be subsets of
vertices of a finite arena, let every vertex of this arena be labeled with a tuple in Zn+m, let
b ∈ Nn+m, and let ϕ be a proposition from propositional logic with p+ n+m free variables.
Player 1 wins the game iff ϕ(x1, . . . , xp, y1, . . . , yn, z1, . . . , zm) holds, where

xi holds if the Muller condition induced by Ui is satisfied,
yi holds if the the i-th battery-like energy condition holds, using bi as a battery-like
bound and the i-th components of the labels as energy deltas,
zi holds if the the i-th spill-over-like energy condition holds, using bi+n as a spill-over-like
bound and the (i+ n)-th components of the labels as energy deltas.

I Example 4. A reporter has two options to travel across a country and make a documentary.
Either by car and by sending pictures instantly to colleagues from her newspaper, or on
foot to get a deeper understanding of the country. In the latter case she would not need to
send pictures instantly, but to report on her location everyday for safety reasons. She finally
decides to go by car, but if at some point she ran out of gas, she would continue on foot.
In these specifications we can identify one energy condition, relating to the gas for the car,
and two Muller conditions: sending the pictures and reporting the location. Note that such
conditional Muller conditions could not be simulated by one Muller condition alone.

Whereas all the ingredients of such a game, i.e., Muller, battery-like and spill-over-like
energy conditions, are rather well understood, little is known about arbitrary combinations
thereof. To prove that they are all FM determined we shall prove a more general result
implying that combining a well-behaved winning condition (e.g., Muller) with conditions
expressible by finite automata (e.g., bounded energy) yields a well-behaved condition again.

3 Main theorem

3.1 The class of arenas
We will formulate our main theorem for games built with arenas from some class O that
is closed under certain operations. The class of all arenas is trivially closed under these
operations, and in most applications it will be the most reasonable choice for O. Our theorem
allows for cases, however, where to ensure the premise we exploit some interactions between
the specific structure of the arenas considered and the winning condition. The two operations
we consider are restrictions of the arena, and products with finite automata.

IDefinition 5 (Restriction of an arena). Let O = 〈V1, V2, E,Γ〉 be an arena, and let S ⊆ V1∪V2
be such that vE ∩ S 6= ∅ for all v ∈ S, where vE := {u ∈ V1 ∪ V2 | (v, u) ∈ E}. The arena
O |S := 〈V1 ∩ S, V2 ∩ S,E ∩ S2,Γ |S〉 is called the restriction of O to S.

I Definition 6 (Product arena-automaton). Let O = 〈V1, V2, E,Γ〉 be an arena and let
A = (C,Q, q0, F,∆) be a finite automaton over the alphabet C of colors. The product O×A
is the arena 〈V1 ×Q,V2 ×Q,E′,Γ′〉 where Γ′(v, q) := Γ(v), and where ((v, q), (v′, q′)) ∈ E′
iff (v, v′) ∈ E and (q,Γ(v), q′) ∈ ∆.

I Lemma 7. Let O = 〈V1, V2, E,Γ〉 be an arena and let A = (C,Q, q0, F,∆) and A′ =
(C,Q′, q′0, F ′,∆′) be finite automata.
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1. (Idempotency) (O |S) |S′= O |(S∩S′)
2. (Associativity) (O ×A)×A′ ∼= O × (A×A′).
3. (Restricted commutativity) O |S ×A = (O ×A) |S×Q

I Corollary 8. Let the arena O′ be obtainable from the arena O by finitely many operations
chosen from products with automata and restrictions. Then there is an automaton A and a
suitable set S ⊆ V ×Q such that O′ = (O ×A) |S, where Q are the states of A.

So if we start with some class of arenas, and then wish to close it under products with
automata and restriction, we can just first consider all products of the original arenas with
finite automata, and then the restrictions of these; and we obtain the desired class.

3.2 Regularly-predictable games
Our theorem requires, informally spoken, that Player 1 always knows whether winning is still
possible for him given the history so far and given the current vertex. Knowing here means
(since we want FM strategies) the existence of a finite automaton producing the answer.

I Definition 9. A game g is regularly-predictable if for all vertices v ∈ V of g there exists
a finite automaton Av that reads an initial color sequence and accept it iff Player 1 has a
winning strategy from v after this sequence. A winning condition is regularly-predictable if
all games using it are regularly-predictable.

Many popular winning conditions are prefix-independent, in which case it does not
depend on the history at all whether a player can win from some vertex. Hence, these are
trivially regularly-predictable. Reachability and safety conditions, on the other hand, are
not prefix-independent, but still regularly-predictable.

At first glance, one may think that FM determinacy implies regular-predictability. This
is false, as witnessed by the following proposition, where K2 is the two-clique with self-loops.

I Proposition 10. Energy games with only a lower bound are not regularly-predictable.

Proof. Consider a one-player game on K2, with one vertex giving +1 energy, and the other
giving −1. The winning condition is that the current energy level stays non-negative. The
player can win from every history where the energy level had not already been negative before.
However, deciding this amounts to deciding the language of all binary words containing at
least as many 1s and 0s, a typical example of a non-regular language. Hence such sequences
cannot be recognized by a finite automaton. J

The proposition above together with the example below shows that regular-predictability
and existence of FM hSPE are of incomparable strength.

I Example 11. Let W be the winning condition for Player 1 that consists of the non-regular
sequences in {0, 1}ω: it is prefix-independent, so every game is regularly-predictable. Yet,
the game over K2 (with self-loops) involving colors 0 and 1 and where only Player 1 plays is
winnable but not via FM strategies (as it would contradict non-regularity of the sequences).

3.3 Boolean combination
The following definition suggests how we will combine the well-behaved regularly-predictable
winning conditions to conditions definable by regular languages.
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I Definition 12 (Regular combination of winning conditions). Let W be a class of subsets of
Cω that is closed under Boolean combination. The combination ofW with l regular languages,
denoted Rl(W), is defined as follows. Let ϕ(w1, . . . , wk, r1, . . . , rl) be a propositional-logic
formula with k+ l variables. Let W1, . . . ,Wk ∈ W . For 1 ≤ i ≤ l let Li be a regular language
over C. Then the winning condition {ρ ∈ Cω | ϕ(ρ ∈ W1, . . . , ρ ∈ Wk, P ref(ρ) ∩ L1 =
∅, . . . , P ref(ρ) ∩ Ll = ∅)} is in Rl(W).

Intuitively, we allow for any Boolean combination between variables that either represent
satisfaction of an objective from W (which we will require to be regularly-predictable) or
represent the existence of a prefix of the play within a given regular language. Note that it is
not restrictive for W to be closed under Boolean combination: we present our framework as
such to allow for very general combinations (e.g., in the toy example from Section 2.3), but,
for less amenable winning conditions, one can still take W to have four elements: a winning
condition of interest, its complement, and the empty/universal winning conditions.

3.4 Regular combinations preserve FM determinacy
We are now able to state our main result. We only sketch its proof due to space constraints:
full details are provided in Appendix A.

I Theorem 13.
Let O be a class of arenas that is closed under product with finite automata and under
simple restriction.
Let W be a class of winning conditions that is closed under Boolean combination.
Let all games in O ×W be regularly-predictable and have FM hSPE.

Then all games in O ×Rl(W) are regularly-predictable and have FM hSPE. (for all l ∈ N)

Proof idea. The proof of Theorem 13 proceeds by induction on l from Definition 12. The
basic idea of the induction step is to do the product of the arena of the game by a finite
automaton accepting the language Ll, and then to partition the vertices of the new game
into three regions: a region where Pref(ρ) ∩ Ll = ∅ has been falsified, a region where the
players can force the play4 to reach the part of the first region that they like, and a third
region restricted to the remaining vertices, where Pref(ρ) ∩ Ll = ∅ holds, and no player has
an incentive to leave the third region.

For the first and third regions, a suitable strategy profile will be provided by induction
hypothesis, for the second region reachability analysis will do. These profiles together will be
translated back into one single profile for the original game. A problem arises: a possible
history in the original game may correspond in the product game to a history starting in the
third region, going down the second region and coming back to the third. Thus the induced
color sequence may fall out of the domain of the profile for the third region. Therefore we
need to cope with “impossible histories”, and use hSPE rather than the more familiar SPE.

A second problem arises because of the aforementioned reachability analysis. To show
this, let us slightly detail the basic idea of the proof. Let A be a finite automaton recognizing
the words with a prefix in Ll. The product O ×A looks like Fig. 1, where T refers to the
vertices where Pref(ρ) ∩ Ll = ∅ has not (yet) been falsified. The bottom part corresponds
to the product of O with the final states of A. Fig. 2 invokes the induction hypothesis to
get a suitable profile σ⊥ for this part of the arena. Then in Fig. 3 we would like to split T

4 Slight abuse of notation as plays are formally defined as sequences of colors only: for the sake of
readability, we sometimes use a play to refer to the corresponding sequence of vertices in the graph.
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Figure 1 The product
arena O ×A.

T

σ⊥

Figure 2 Profile σ⊥ pro-
vided by induction.

T0

T1 T2

σ⊥

Figure 3 Splitting T via sim-
plistic reachability analysis.

into two regions: first, a region T1 ∪ T2, where Player i can force (as suggested by the arrow
tips) every play starting in Ti to reach the region she likes in the bottom component; and
second, a region T0 that no player wants to leave. The problem is that whether a player can
win from a vertex in the bottom component depends on how the vertex was reached, so T1
and T2 cannot be simply defined as subsets of vertices in O ×A. It is possible to reduce the
problem to classical reachability, though: the proof in appendix considers the product of the
original arena O with all the automata provided by the regular-predictability assumption
(as well as with other automata derived from Ll). J

Prefix-independence. Many popular winning conditions are prefix-independent, in which
case regular-predictability comes for free, and the notions of SPE and hSPE coincide. We
state this special case explicitly, and also include an upper bound for the required memory.

I Corollary 14. Let O be a class of arenas that is closed under product with finite automata
and under simple restriction. Let W be a class of prefix-independent winning conditions that
is closed under Boolean combination. If all games in O ×W have FM SPE, so do all games
in O ×Rl(W).

Furthermore, let f(l, n) be the memory size required to implement the optimal strategies
for n-vertex games in Rl(W) if the regular languages are recognized by automata with m
states each. Then f(l, n) ≤ mn · f(l − 1, n) · f(l − 1, nmn).

Note that while Corollary 14 provides bounds on the memory requirements, these bounds
are non-elementary. Such horrible bounds are unfortunately inevitable given the generality
of the framework. In Sect. 6, we provide results for specific Boolean combinations that yield
much more reasonable memory bounds.

Let us mention that very simple cases of combinations already lead to large lower bounds
in terms of memory. For example, exponential memory is required for conjunctions of
fully-bounded energy conditions, while they are actually all covered by the regular languages
part of Rl(W) [3]. The same holds for conjunctions of window objectives [10, 6].

Back to the example. We can now apply our theorem to the example of Sect. 2.3.

I Corollary 15. Multi-dimension bounded-energy Muller games have FM SPE (aka combi-
nation of optimal strategies).

Proof. Let O be the class of the finite arenas, which is clearly closed under simple restriction
and product by finite automaton. Let W be the class of the (prefix-independent) Muller
winning conditions, which is closed under Boolean combination. All games in O ×W have
FM SPE [14], and so do all games in O ×Rl(W) by Corollary 14.
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To show that this applies to multi-dimension bounded-energy Muller games, it suffices
to see that fully-bounded energy conditions can be expressed as regular languages, which
is trivial since the sum of weights must be constrained within the two bounds at all times,
hence can only take a bounded number of integer values. J

4 Applications

Let us compare the hypotheses and concepts used in Theorem 13 with the classical (combi-
nations of) winning conditions from the literature, already discussed in Sect. 2.2, to get a
better grasp of its applicability. Interesting winning conditions for our theorem fall in two
categories: regular languages and regularly-predictable conditions. First, observe that any
condition that can be defined as a regular language is trivially regularly-predictable. (The
latter is a more general notion.) Hence, we first discuss the regular languages.

Regular languages. Among the simplest conditions that can be recognized through finite
automata (hence expressed as regular languages) lie reachability and safety conditions. Indeed,
as mentioned in Sect. 1, regular languages are essentially a compact way to represent safety-
like winning conditions. For example, fully-bounded energy conditions (both battery-like
and spill-over-like) can also be encoded through finite automata whose size depends on the
upper bound. Window objectives (both for mean-payoff and parity), thanks to their finite
window mechanism, can also be represented as regular languages. All the other objectives
discussed in Sect. 2.2 cannot.

Regularly-predictable conditions. Recall that for Theorem 13, we require the classW to be
closed under Boolean combination and such that winning conditions are regularly-predictable
and admit FM hSPE. Let us review the classical objectives.

Regular languages. As stated above, conditions expressed as regular languages can be
used. Hence, this easily permits to rediscover FM determinacy results for multi-dimension
fully-bounded energy games [2, 4, 3] or conjunctions of window objectives [10, 6], and
even extend them to full Boolean combinations.
Parity and Muller. Any combination of such conditions can be expressed in the closed
class. Furthermore they are trivially regularly-predictable (because they are prefix-
independent) and admit FM hSPE. Hence, these conditions can be mixed in any Boolean
combination with regular languages and retain FM determinacy. This lets us rediscover
FM determinacy results for generalized parity games [12], or combinations of parity
conditions with window conditions [7], and extend them to full Boolean combinations.
Mean-payoff. The mean-payoff condition is regularly-predictable (as it is prefix-indepen-
dent) and admits FM hSPE. Unfortunately, this does not hold for Boolean combinations of
mean-payoff [26, 25]. Still, one can take W as the trivial class containing one mean-payoff
condition and its complement, and use it in Boolean combinations with regular languages.
Average-energy, total-payoff and energy with no upper bound. These three conditions
are not regularly-predictable as one needs to be able to store an arbitrarily large sum of
weights in memory to decide if Player 1 can win from a given prefix. Hence our theorem
cannot be applied to these conditions.

Theorem applicability. Observe that our theorem cannot be applied to Boolean combina-
tions of mean-payoff, average-energy and total-payoff, or to combinations of mean-payoff and
parity (two regularly-predictable conditions but which cannot be put in the same closed class
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Figure 4 Average-energy games with lower-bounded energy are FM determined but do not admit
FM SPE. Vertices are colored by integer weights.

W), four cases in which indeed FM determinacy is not preserved [26, 25, 4, 10, 11]. On the
other hand, we recover many known results from the literature [2, 4, 3, 10, 6, 12, 7] and are
able to extend them to more general combinations (or to completely novel ones).

It remains to discuss corner cases: combinations that are known to preserve FM determi-
nacy but are not covered by our theorem. We are aware of three cases from the literature,
all involving the energy condition without an upper bound: (a) conjunctions of energy
conditions [13, 19], (b) conjunctions of energy and parity conditions [9, 13], (c) conjunctions
of energy and a single average-energy condition [3]. It is very interesting to spend a moment
on these corner cases. Indeed, the ad-hoc techniques used to prove FM determinacy in all
three cases intuitively rely on proving equivalence with games where the energy condition
can be bounded both from below and from above, for a sufficiently large bound. Yet, we know
that such fully-bounded energy conditions define regular languages. Hence, for cases (a) and
(b) we actually retrieve applicability of our theorem, leaving case (c) as the only case, to
our knowledge, of preservation of FM determinacy in the literature which is not covered by
Theorem 13. This is because the average-energy condition is not regularly-predictable (as
one can see in [4, 3], it behaves rather oddly in comparison to all other classical objectives).

FM determinacy vs. FM hSPE. We can say more on case (c), and for that we want to
highlight once again that the result we obtain in Theorem 13 deals with a stronger concept
than FM determinacy, namely the existence of FM (h)SPE. As seen above, these two notions
do coincide in virtually all cases studied in the literature. Now, case (c) is actually the only
setting, to our knowledge, where they do not, as proved in the following example.

I Example 16. Consider the arena in Fig. 4, colored by integers: vertex a has weight 1, b
weight −1 and c weight 0. The objective of Player 1 (circle) is to have the average-energy
(AE, limit of the average energy level) less than or equal to zero while keeping the energy
level (EL) non-negative at all time. Such games are FM determined [3], and in this case,
Player 2 (diamond) has a trivial strategy to win from a: looping forever. He also wins from
b (the energy directly drops below zero), and Player 1 wins from c.

Now, consider SPE. Observe that when in vertex c, the EL does not change anymore so
the AE is actually equal to the EL when you reach c. Thus, Player 1 can win if he reaches
c with an EL of zero (and it is the only way). In an SPE, we need to consider all possible
histories. Imagine an history w = an for some n ≥ 1: Player 1 wins by looping exactly n
times in b before reaching c. This defines a subgame-perfect strategy for Player 1 which
consists in looping in b for as many times as Player 2 looped in a. Clearly, this SPE requires
infinite memory. We thus have an FM determined game where no FM SPE exists.

5 Discussion of the requirements

We discuss the requirements of Theorem 13 and explore whether improvement seems plausible.
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Arenas. First, we inspect the conditions pertaining to the arenas. Typically all arenas are
considered, and the class of all arenas trivially satisfies the closure properties we demand.
These properties are only relevant if we need to use specific subsets of the arenas to prove
the required properties of the games. To ask that the class of arenas we consider is closed
under products with finite automata is a very mild condition. Apart from arenas of bounded
size, we would expect all naturally occurring classes of arenas to have this property.

Requiring closure under simple restriction is more restrictive (e.g., the games we consider
in the upcoming Example 17 are not closed under simple restriction). To see that this is
necessary, let O′ be a simple restriction of an arena O such that the game played on O is
FM determined, but the one played on O′ is not. W.l.o.g., assume that O′ has no deadlock.
We can obtain a new winning condition for a game played on O by combining the original
condition with a regular language expressing informally that, if the game ever reaches a
vertex in O \O′, the last player to move loses, and otherwise, the winner is the winner of the
original winning condition. The resulting game is not FM determined, thus witnessing the
need for our requirement of closure under simple restriction.

Furthermore, as soon as we are demanding that our arenas are closed under products
with automata and simple restriction, we see that we need to require the existence of FM
SPE rather than merely FM determinacy (up to uniformity). The reason is that by taking a
suitable combination of products and restriction, we generate an arena that first produces a
predetermined finite color sequence before starting the original game.

Regular languages. Theorem 13 is tight in the sense that it fails if making the conjunction
of the universal winning condition and a condition derived from any irregular language.
Indeed, Example 11 already showed that FM hSPE may not exist for such conditions.

FM determinacy vs. FM hSPE. Being able to win using bounded finite memory, and
being able to decide who wins from a given history with a finite automaton (i.e., regular-
predictability) together do not suffice to imply the existence of an FM subgame-perfect
strategy, as observed in the next example.

I Example 17. Consider an arena with colors 0, 1, α, β, where a vertex has an α-successor
iff it has a β-successor, and each such vertex is controlled by Player 1 (let us call them
αβ-vertices). Player 1 wins any play ρ that has a prefix of the form wα with w ∈ {0, 1}∗
and w has the same number of 0 and 1s, and any play ρ that has a prefix of the form wβ

with w ∈ {0, 1}∗ and w has different numbers of 0 and 1s. Hence, for Player 1 to win, it
suffices to reach an αβ-vertex and pick the α (resp. β) successor if the play contains an equal
(resp. a different) number of 0 and 1s. So there is a simple finite automaton deciding from
which histories Player 1 can win, and linear memory suffices for Player 1 to win from any
winnable history, but Player 1 has no FM subgame-perfect strategy.

In Sect. 4, we also discussed the case of conjunctions of energy and a single average-energy
condition [3], which is also FM determined, but do not have FM hSPE, for similar reasons.

Note that the games above are not closed by simple restriction. As a further example, we
show that the condition on subgame-perfect strategies is not dispensable entirely.

I Example 18. Consider the arena in Fig. 5 where Player 1 controls circle vertices and
Player 2 controls diamond vertices. LetW be defined such that Player 1 wins iff either the play
ends with cω, or b occurs an even number of times and the play ends with deedeeedeeee . . .,
or b occurs an odd number of times and the play ends with eω. Player 1 has an FM winning
strategy: play towards b first; if the game returns to a, play d and then loop at e. Player 1
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Figure 5 FM SPEs are needed for transfer in combinations, not only FM determinacy.

also has a subgame-perfect strategy, but no FM subgame-perfect strategy (as it needs to
react to all histories, hence also the ones where b happens an even number of times).

If we take the conjunction of W with avoiding the regular language of words containing
c, then in the resulting game, Player 1 still wins, but he has no FM winning strategy.

6 Specific results for conjunctions and disjunctions

The ability of our main theorem to deal with arbitrary Boolean formulae is often not needed.
In fact, as discussed in Sect. 2.2, in the literature on multi-dimension games, it is very
common to work only with conjunctions on the winning conditions of Player 1 (which dually
means using disjunctions for Player 2). In this section, we give some direct constructions for
these cases, which have different requirements or conclusions from our main theorem – and
in particular, come with much more reasonable bounds than provided by Corollary 14.

As an outline, we give a brief account of the main constructions here. (i) For simple
disjunctions for Player 2, we obtain FM determinacy results without the regularity assumption
on the combined language-based condition. (ii) For simple conjunctions for Player 1, we obtain
FM determinacy results and better memory bounds without requiring regular-predictability
(but requiring regularity of the language). As corollary, we regain known bounds on fully-
bounded energy games. (iii) For the case of subgame-perfect strategies (not required in
(i) and (ii)), we obtain better memory bounds. The interest of these side results, apart
from improved bounds for still general classes of games, is to illustrate how the different
hypotheses of Theorem 13 interact and how restrictions on some dimensions of the problem
permits to be more general on other dimensions.

The reason why we cannot obtain a general statement as in our main theorem by combining
the lemmata in this section is that their conclusions do not match their requirements. We
can thus not apply them in an iterative fashion.

To formulate some of the results, we recall the notion of future game from [23].

I Definition 19 (Future games). Let g be a game with winning condition W , and let w ∈ C∗.
The future game gw is derived from g by replacing W with {ρ ∈ Cω | w · ρ ∈W}. If σi is a
strategy in g, let σwi (w′, v) := σi(ww′, v) define another strategy for the same player.

Our first lemma consider the case of disjunctions for Player 2, dropping the regularity
assumption with regard to the language-based condition.

I Lemma 20. Consider a game such that if Player 2 can win g or its future games, he can
win by using finite memory. Let L be a language over the alphabet C, and let us derive gL
from g by replacing W with WL such that ρ ∈WL iff ρ ∈W ∨ Pref(ρ)∩L = ∅. If Player 2
wins gL, he has an FM winning strategy.

Proof. Among the histories h in g whose colors are in L, let HL contain the minimal ones
for the prefix relation. Let H2 be the histories h in HL from where Player 2 wins the future
game of g (and therefore also of gL) after h. For a strategy σ, let H(σ) denote the set of
histories compatible with σ, and let [H(σ)] denote the set of plays compatible with σ.
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Let σ2 be a winning strategy for Player 2, so every play in [H(σ2)] has a prefix in H2,
and we can define T as the subtree (a subset that is a tree) of H(σ2) whose maximal paths
are all in H2. By König’s Lemma T is finite. For each h ∈ H2 ∩ T let σh2 be an FM strategy
making Player 2 win the future game of g after h. The following FM strategy makes Player
2 win gL: if h ∈ T \ H2 go to some vertex v ∈ V such that hv ∈ T ; if h has h1 ∈ H2 as a
prefix, play as prescribed by σh1

2 . J

We now turn to conjunctions for Player 1, assuming regularity of the language, but
dropping the regular-predictability assumption for the winning condition. For every finite
automaton A let LA be the words accepted by A.

I Lemma 21. Let g = (O,W ) be a game such that whenever O′ is a simple restriction of a
product O ×A for some finite automaton A, then (O′,W ) is determined via strategies using
finite memory (of size m(n), where n is the number of vertices in O′). Let A be a finite
automaton over the alphabet C, and let us derive gA from g by replacing W with WA such
that ρ ∈WA iff ρ ∈W ∧Pref(ρ)∩LA = ∅. Then gA is determined via strategies using finite
memory (of size |Q| ·m(|V | · |Q|), where Q are the states of A).

Proof. Let A = (E,Q, q0, F,∆) and let g′ := ((O×A),W ). Let S ⊆ V ×Q be the vertices of
g′ from where Player 2 cannot force the play to reach V × F . Let us make a case distinction.
First case, (v0, q

0) is not in S. So in g′ Player 2 can win by playing positionally. Such a
strategy yields a strategy in g (gA) that only needs memory to run A, in order to know the
current state in Q. For this a memory of size |Q| suffices.

Second case, (v0, q
0) ∈ S. By assumption, the simple restriction (S,W ) is determined via

strategies using finite memory (of size m(|V | · |Q|)). If Player 1 has a winning strategy for
(S,W ), he can use it together with A to play in gA. If Player 2 has a winning strategy, he
can do the same until the play, seen as a play in g′, leaves S; and then he can play as in the
first case. J

The next example shows that the regularity assumption of LA in Lemma 21 is not
dispensable. We will use the language made of the histories with positive energy levels at
every prefix, which is not regular.

I Example 22. We consider games where the vertices are colored by {a, b} and where Player 1
wins the plays with colors waω for all w ∈ {a, b}∗ and the plays with colors babbaa . . . bnan . . ..
Such games are FM determined, but their conjunction with a lower-bounded energy condition
is not.

Proof. In order to win, Player 1 needs to be able to force arbitrarily long color sequences of
a’s. But if he can do that, he can force eventually constant a even by a positional strategy.
Likewise, for Player 2 it suffices to play a positional strategy preventing eventually constant
a to win all games he can win. Hence, the base game is memoryless determined.

To see that the energy version is not FM determined, we consider a one-player game on
the 2-clique K2 (with added self-loops), such that both states s and t belong to Player 1. Let
s, the initial vertex, have color b and weight 1, and t have color a and weight −1. Player 1
can win by playing according to the colors babbaabbb . . ., which keeps the energy non-negative,
but requires infinite memory to do so. However, any FM strategy winning the underlying
game has to produce a color sequence of the form waω, which will cause the energy to diverge
to −∞, thus falsifying the energy condition. J

Next, we consider simple disjunctions for Player 1 and obtain improved bounds.
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I Lemma 23. Let g = (O,W ) be a regularly-predictable game such that whenever O′ is a
simple restriction of a product O×A for some finite automaton A, then (O′,W ) is determined,
and whenever Player 1 can win, he can do so via strategies using finite memory (of size
m(n), where n is the number of vertices in O′).

Let A be a finite automaton over the alphabet C, and let us derive gA from g by replacing
W with WA such that ρ ∈ WA iff ρ ∈ W ∨ Pref(ρ) ∩ LA = ∅. If Player 1 has a winning
strategy in gA, he has one using finite memory (of size |Q| · |Qg| ·m(|V | · |Q| · |Qg|)), where
Q and Qg are the states of A and of a finite automaton witnessing regular-predictability of g.

Proof. Let a finite automaton Ag accept exactly the histories that correspond to the future
games won by Player 2. Let A = (E,Q, q0, F,∆), let Ag = (E,Qg, q0

g , Fg,∆g), and let
g′ := g×A×Ag. Let S ⊆ V ×Q×Qg be the vertices of g′ from where Player 2 cannot force
the play to reach V × F × Fg. Let us make a case distinction.

First case, (v0, q
0, q0

g) is not in S, so in g′ Player 2 can reach V × F × Fg and win, by
playing in some way.

Second case, (v0, q
0, q0

g) ∈ S. If a finite history h in g′ |S reaches V × F ×Qg, it must be
in V × F × (Qg \ Fg), by definition of S. So Player 1 can win after h in g′, and therefore
in the simple restriction g′ |S too. By assumption he can do so via a strategy using finite
memory (of size m(|V | · |Q| · |Qg|)). He can use the same strategy to win gA, but he needs
more memory to run A and Ag in parallel. J

Since the assumptions from Lemma 23 are stronger than those from Lemma 20, we also
find that Player 2 has an FM winning strategy if he can win. However, even under the
assumptions from Lemma 23, the memory required by Player 2 might not be uniformly
bounded. We can obtain bounds for the memory required by Player 2 (Lemma 25) by
considering subgame-perfect strategies.

I Lemma 24. Let Player 1 be able to win g and all its future games that he wins by some
FM strategy (using memory of size k). Moreover, for each FM strategy of size k, let there be
a finite automaton (of size l) accepting exactly those histories won by that strategy. Then
Player 1 has an FM subgame-perfect strategy of size (2l · k)((k|V |)k|V |).

Proof. There are (k|V |)k|V | FM strategies of size k. For each of them we keep track of
its current state, and run the automaton deciding whether it is currently winning (using l
bits). We always play according to some strategy, and we change it only once it is no longer
winning, and another strategy is identified as winning from the current history. J

I Lemma 25. Let g be a regularly-predictable game such that Player 2 has a subgame-perfect
strategy of size m. Let A be a finite automaton over the alphabet C. Let us derive gA from g

by replacing W with WA such that ρ ∈WA iff ρ ∈W ∨ Pref(ρ) ∩LA = ∅. If Player 2 wins
gA, he has a winning strategy of size l|A|+ m, where some automaton of size l witnesses
regular-predictability of g.

Proof. We can combine the automaton deciding who wins a history and A into one automaton
of size l|A|that accepts the intersection of these two languages. By considering the expansion
by this automaton, we see that simulating it suffices for Player 2 to force an accepted history,
if he can do so. Now reaching such a history and then switching to the subgame-perfect FM
strategy of size m wins gA if this is possible at all. J

We briefly return to the two versions of fully-bounded energy conditions from [2] discussed
in Sect. 2.2: battery-like and spill-over-like variants. Let Emax be the energy upper bound
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in both cases. Since both conditions can be simulated by a finite automaton with O(Emax)
states, Lemma 21 implies the following corollary. Contrast this to the requirement of memory
size |V | · d ·W (where d is the number of priorities and W the largest energy weight) for
unbounded-energy parity games from [9].

I Corollary 26. Battery-like energy parity games and spill-over-like energy parity games are
determined via strategies using O(Emax) memory states, where Emax is the energy upper
bound.

References
1 Roderick Bloem, Krishnendu Chatterjee, and Barbara Jobstmann. Graph Games and

Reactive Synthesis. In Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and
Roderick Bloem, editors, Handbook of Model Checking., pages 921–962. Springer, 2018.
doi:10.1007/978-3-319-10575-8_27.

2 Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jiří Srba. Infinite
Runs in Weighted Timed Automata with Energy Constraints. In Franck Cassez and Claude
Jard, editors, Formal Modeling and Analysis of Timed Systems, volume 5215 of Lecture
Notes in Computer Science, pages 33–47. Springer Berlin Heidelberg, 2008. doi:10.1007/
978-3-540-85778-5_4.

3 Patricia Bouyer, Piotr Hofman, Nicolas Markey, Mickael Randour, and Martin Zimmer-
mann. Bounding Average-Energy Games. In Javier Esparza and Andrzej S. Murawski,
editors, Foundations of Software Science and Computation Structures - 20th Interna-
tional Conference, FOSSACS 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 179–195, 2017.
doi:10.1007/978-3-662-54458-7_11.

4 Patricia Bouyer, Nicolas Markey, Mickael Randour, Kim G. Larsen, and Simon Laursen.
Average-energy games. Acta Inf., 55(2):91–127, 2018. doi:10.1007/s00236-016-0274-1.

5 Romain Brenguier, Lorenzo Clemente, Paul Hunter, Guillermo A. Pérez, Mickael Randour,
Jean-François Raskin, Ocan Sankur, and Mathieu Sassolas. Non-Zero Sum Games for
Reactive Synthesis. In Adrian-Horia Dediu, Jan Janousek, Carlos Martín-Vide, and Bianca
Truthe, editors, Language and Automata Theory and Applications - 10th International
Conference, LATA 2016, Prague, Czech Republic, March 14-18, 2016, Proceedings, volume
9618 of Lecture Notes in Computer Science, pages 3–23. Springer, 2016. doi:10.1007/
978-3-319-30000-9_1.

6 Véronique Bruyère, Quentin Hautem, and Mickael Randour. Window parity games: an
alternative approach toward parity games with time bounds. In Domenico Cantone and
Giorgio Delzanno, editors, Proceedings of the Seventh International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2016, Catania, Italy, 14-16 Septem-
ber 2016., volume 226 of EPTCS, pages 135–148, 2016. doi:10.4204/EPTCS.226.10.

7 Véronique Bruyère, Quentin Hautem, and Jean-François Raskin. On the Complexity of
Heterogeneous Multidimensional Games. In Josée Desharnais and Radha Jagadeesan, ed-
itors, 27th International Conference on Concurrency Theory, CONCUR 2016, August 23-
26, 2016, Québec City, Canada, volume 59 of LIPIcs, pages 11:1–11:15. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.CONCUR.2016.11.

8 Arindam Chakrabarti, Luca de Alfaro, Thomas A. Henzinger, and Mariëlle Stoelinga.
Resource Interfaces. In Rajeev Alur and Insup Lee, editors, EMSOFT, volume 2855
of Lecture Notes in Computer Science, pages 117–133. Springer, 2003. doi:10.1007/
978-3-540-45212-6_9.

http://dx.doi.org/10.1007/978-3-319-10575-8_27
http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-540-85778-5_4
http://dx.doi.org/10.1007/978-3-662-54458-7_11
http://dx.doi.org/10.1007/s00236-016-0274-1
http://dx.doi.org/10.1007/978-3-319-30000-9_1
http://dx.doi.org/10.1007/978-3-319-30000-9_1
http://dx.doi.org/10.4204/EPTCS.226.10
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.11
http://dx.doi.org/10.1007/978-3-540-45212-6_9
http://dx.doi.org/10.1007/978-3-540-45212-6_9


S. Le Roux, A. Pauly, and M. Randour 38:17

9 Krishnendu Chatterjee and Laurent Doyen. Energy parity games. Theor. Comput. Sci.,
458:49–60, 2012. doi:10.1016/j.tcs.2012.07.038.

10 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Look-
ing at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015.
doi:10.1016/j.ic.2015.03.010.

11 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-Payoff Parity
Games. In 20th IEEE Symposium on Logic in Computer Science (LICS 2005), 26-29
June 2005, Chicago, IL, USA, Proceedings, pages 178–187. IEEE Computer Society, 2005.
doi:10.1109/LICS.2005.26.

12 Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Generalized Parity
Games. In Helmut Seidl, editor, Foundations of Software Science and Computational Struc-
tures, 10th International Conference, FOSSACS 2007, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March
24-April 1, 2007, Proceedings, volume 4423 of Lecture Notes in Computer Science, pages
153–167. Springer, 2007. doi:10.1007/978-3-540-71389-0_12.

13 Krishnendu Chatterjee, Mickael Randour, and Jean-François Raskin. Strategy synthesis
for multi-dimensional quantitative objectives. Acta Inf., 51(3-4):129–163, 2014. doi:10.
1007/s00236-013-0182-6.

14 Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How Much Memory is
Needed to Win Infinite Games? In Proceedings, 12th Annual IEEE Symposium on Logic in
Computer Science, Warsaw, Poland, June 29 - July 2, 1997, pages 99–110. IEEE Computer
Society, 1997. doi:10.1109/LICS.1997.614939.

15 Andrzej Ehrenfeucht and Jan Mycielski. Positional Strategies for Mean Payoff Games. Int.
Journal of Game Theory, 8(2):109–113, 1979.

16 Hugo Gimbert and Wieslaw Zielonka. When Can You Play Positionally? In Jirí Fiala,
Václav Koubek, and Jan Kratochvíl, editors, Mathematical Foundations of Computer Sci-
ence 2004, 29th International Symposium, MFCS 2004, Prague, Czech Republic, August
22-27, 2004, Proceedings, volume 3153 of Lecture Notes in Computer Science, pages 686–
697. Springer, 2004. doi:10.1007/978-3-540-28629-5_53.

17 Hugo Gimbert and Wieslaw Zielonka. Games Where You Can Play Optimally Without
Any Memory. In Martín Abadi and Luca de Alfaro, editors, CONCUR 2005 - Concurrency
Theory, 16th International Conference, CONCUR 2005, San Francisco, CA, USA, August
23-26, 2005, Proceedings, volume 3653 of Lecture Notes in Computer Science, pages 428–
442. Springer, 2005. doi:10.1007/11539452_33.

18 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl seminar, February
2001], volume 2500 of Lecture Notes in Computer Science. Springer, 2002. doi:10.1007/
3-540-36387-4.

19 Marcin Jurdzinski, Ranko Lazic, and Sylvain Schmitz. Fixed-Dimensional Energy Games
are in Pseudo-Polynomial Time. In Magnús M. Halldórsson, Kazuo Iwama, Naoki
Kobayashi, and Bettina Speckmann, editors, Automata, Languages, and Programming -
42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part II, volume 9135 of Lecture Notes in Computer Science, pages 260–272. Springer, 2015.
doi:10.1007/978-3-662-47666-6_21.

20 Eryk Kopczynski. Half-Positional Determinacy of Infinite Games. In Michele Bugliesi,
Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages and
Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006,
Proceedings, Part II, volume 4052 of Lecture Notes in Computer Science, pages 336–347.
Springer, 2006. doi:10.1007/11787006_29.

21 Donald A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.

FSTTCS 2018

http://dx.doi.org/10.1016/j.tcs.2012.07.038
http://dx.doi.org/10.1016/j.ic.2015.03.010
http://dx.doi.org/10.1109/LICS.2005.26
http://dx.doi.org/10.1007/978-3-540-71389-0_12
http://dx.doi.org/10.1007/s00236-013-0182-6
http://dx.doi.org/10.1007/s00236-013-0182-6
http://dx.doi.org/10.1109/LICS.1997.614939
http://dx.doi.org/10.1007/978-3-540-28629-5_53
http://dx.doi.org/10.1007/11539452_33
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.1007/978-3-662-47666-6_21
http://dx.doi.org/10.1007/11787006_29


38:18 Extending Finite-Memory Determinacy by Boolean Comb. of Winning Conditions

22 Mickael Randour. Automated Synthesis of Reliable and Efficient Systems Through Game
Theory: A Case Study. In Proc. of ECCS 2012, Springer Proceedings in Complexity XVII,
pages 731–738. Springer, 2013. doi:10.1007/978-3-319-00395-5_90.

23 Stéphane Le Roux and Arno Pauly. Extending finite-memory determinacy to multi-player
games. Inf. Comput., 261(Part):676–694, 2018. doi:10.1016/j.ic.2018.02.024.

24 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory deter-
minacy by Boolean combination of winning conditions. CoRR, abs/1808.05791, 2018.
arXiv:1808.05791.

25 Yaron Velner. Robust Multidimensional Mean-Payoff Games are Undecidable. In An-
drew M. Pitts, editor, Foundations of Software Science and Computation Structures - 18th
International Conference, FoSSaCS 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings, volume 9034 of Lecture Notes in Computer Science, pages 312–327. Springer, 2015.
doi:10.1007/978-3-662-46678-0_20.

26 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexan-
der Moshe Rabinovich, and Jean-François Raskin. The complexity of multi-mean-payoff and
multi-energy games. Inf. Comput., 241:177–196, 2015. doi:10.1016/j.ic.2015.03.001.

27 Wieslaw Zielonka. Infinite Games on Finitely Coloured Graphs with Applications to Au-
tomata on Infinite Trees. Theor. Comput. Sci., 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

A Technical details

Let us first come back to the notion of FM strategy. Recall that a strategy for Player i
is a function σi : C∗ × Vi → (V1 ∪ V2). It is finite-memory if it can be encoded by a
deterministic Moore machine (M,m0, αu, αn) where M is a finite set of states (the memory
of the strategy), m0 ∈M is the initial memory state, αu : M×C →M is the update function,
and αn : M × Vi → (V1 ∪ V2) is the next-action function. The Moore machine defines a
strategy σi such that σi(wv) = αn(α̂u(m0, w), v) for all history w ∈ C∗ and vertex v ∈ Vi,
where α̂u extends αu to sequences of colors as expected. The size of the strategy is the size
|M | of its Moore machine. Note that a strategy is memoryless when |M | = 1.

We need some additional notation: If I is some finite index set, and (Ai)i∈I is an I-indexed
family of automata, we denote their product by ⊗i∈IAi.

Proof of Theorem 13. By induction on l. The claim holds for l = 0 by assumption since
R0(W) = W, so let us assume that l > 0. Let g = 〈V1, V2, E,Γ,W 〉 ∈ O × Rl(W), let ϕ,
W1, . . . ,Wk, and L1, . . . , Ll witness that W ∈ Rl(W).

Let us fix ϕ⊥(w1, . . . , wk, r1, . . . , rl−1) := ϕ(w1, . . . , wk, r1, . . . , rl−1,⊥) , and let g⊥ =
〈V1, V2, E,Γ,W⊥〉 where ρ ∈ W⊥ if and only if ϕ⊥(ρ ∈ W1, . . . , ρ ∈ Wk, P ref(ρ) ∩ L1 =
∅, . . . , P ref(ρ) ∩ Ll−1 = ∅). Since W⊥ ∈ Rl−1(W), by induction hypothesis let σ⊥ be
an hSPE for g⊥ and for all vertices v ∈ V let A⊥v = 〈C,Q⊥v , q⊥0,v, F⊥v ,∆⊥v 〉 witness the
regular-predictability of g⊥.

In g, if and once the current color history and the current vertex have falsified Pref(ρ)∩
Ll = ∅, two issues are simplified: first, playing in g according to σ⊥ is optimal for both
players; second, for each vertex v ∈ V := V1 ∪ V2, the automaton A⊥v accounts faithfully for
who has a winning strategy when reaching v after a given color history.

When Pref(ρ) ∩ Ll = ∅ has not (yet) been falsified, it is more difficult for players
both to know how to play optimally and to know who is the potential winner. A special
case arises when a player can force the play to eventually falsify Pref(ρ) ∩ Ll = ∅ while
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ensuring victory regardless of how falsification happens. Given arbitrary color history and
vertex, two types of object are relevant for the players to know whether the special case
obtains: for all v ∈ V , the A⊥v and a finite automaton Blv = (C,Qlv, ql0,v, F lv,∆l

v) accepting
the finite words α such that αΓ(v) has a prefix in Ll. (The Blv exist since Ll is regular.) Let
g′ := 〈O×⊗u∈V Blu×⊗u∈VA⊥u ,W 〉, where O is the arena of g. Note that to play using finite
memory in g′ is like to play in g using the same memory used in g′, plus some finite memory
keeping track of the Blv and the A⊥v .

Let S1 (S2) be the vertices of g′, i.e., of the form (v, (qlu)u∈V , (q⊥u )u∈V ) such that qlv ∈ F lv
and q⊥v ∈ F⊥v (q⊥v /∈ F⊥v ). We observe, merely by rephrasing, that given a color history α and
a vertex v, the special case obtains for Player 1 (2) iff Player 1 (2) has a winning strategy
in g′ to reach S1 (S2) from (v, (qlu)u∈V , (q⊥u )u∈V ) where the states qlu and q⊥u correspond to
the states of Blu and the A⊥u , respectively, after reading α. Recognizing the special case in g
therefore amounts to reachability analysis in g′: let S′1 (S′2) be the vertices of g′ \ (S1 ∪ S2)
from where Player 1 (2) can reach S1 (S2) regardless of how the opponent is playing. So
Player 1 (2) has a partial positional strategy in g′ that ensures uniformly that S1 (S2) is
reached from S′1 (S′2). The combination of the two partial strategies translates back to g into
an FM partial strategy profile σ′⊥ that uses only the Blv and the A⊥v as auxiliary memory,
and such that playing according to σ⊥ ∪ σ′⊥ is optimal for both players when the vertex in g
corresponds to a vertex in S1 ∪ S2 ∪ S′1 ∪ S′2.

Furthermore, deciding who is the potential winner in g at a vertex after some color
history is easy when the corresponding vertex in g′ is in S′1 ∪ S′2: if it is in S′1, Player 1 is
the potential winner; otherwise it is Player 2. So the automaton ⊗u∈V Blu ×⊗u∈VA⊥u will
help us witness regular-predictability of g in the next paragraphs.

Let us now consider the remaining case, where Pref(ρ) ∩ Ll = ∅ has not been falsified,
and no player is able to force falsification to his own benefit. The corresponding color
histories and vertices in g translate in g′ to the set V> := (V × ⊗u∈VQlu × ⊗u∈VQ⊥u ) \
(S1 ∪ S2 ∪ S′1 ∪ S′2). By definition of reachability, every vertex in V> with an edge towards
S1 ∪ S2 ∪ S′1 ∪ S′2 has also an edge staying in V>. So O′ |V> is also an arena, where O′ is
the arena of g′. Moreover, by definition of S′1, if Player 1 controls a vertex in V> with an
edge towards S1 ∪ S2 ∪ S′1 ∪ S′2, it is an edge towards S2 ∪ S′2, so never taking this edge
is optimal. (Likewise for Player 2.) This implies that every (FM) hSPE in “g> := g′ |V>”
(precisely defined below) translates back to g into (FM) partial hSPE, and for all color
histories and vertices the potential winner in the restriction is the same as in g′. Let
ϕ>(w1, . . . , wk, r1, . . . , rl−1) := ϕ(w1, . . . , wk, r1, . . . , rl−1,>), and let g> := 〈O′ |V> ,W>〉
where ρ ∈W> iff ϕ>(ρ ∈W1, . . . , ρ ∈Wk, P ref(ρ)∩L1 = ∅, . . . , P ref(ρ)∩Ll−1 = ∅). Since
W> ∈ Rl−1(W), by induction hypothesis let σ> be an hSPE for g> and for all vertices v ∈ V
let C>v = 〈C,Q>v , q>0,v, F>v ,∆>v 〉 witness the regular-predictability of g>.

To show the regular-predictability of g, let v ∈ V and let Av be the modification of
⊗u∈V Blu × ⊗u∈VA⊥u × C>v where the final states Fv are the ((qlu)u∈V , (q⊥u )u∈V , q>v ) such
that either (v, (qlu)u∈V , (q⊥u )u∈V ) ∈ S1 (falsification happened and Player 1 is the potential
winner), or (v, (qlu)u∈V , (q⊥u )u∈V ) ∈ S′1 (Player 1 can force falsification to his own benefit), or
(v, (qlu)u∈V , (q⊥u )u∈V ) /∈ S2∪S′2∧ q>v ∈ F>v (falsification benefiting Player 2 has not happened
and is not going to, and Player 1 is the potential winner of restricted game). The automaton
Av accepts exactly the color histories after which Player 1 has a winning strategy when
starting from v.

A strategy profile σ for g (which is meant to be an hSPE) is build by case disjunction.
Informally, given a color history and a vertex,

if the corresponding vertex in g′ is in S1 ∪ S2, follow σ⊥,
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if it is in S′1 ∪ S′2, follow σ′⊥,
otherwise follow σ>.

More formally, let α ∈ C∗, let v ∈ V , let ((qlu)u∈V , (q⊥u )u∈V ) be the state of ⊗u∈V Blu ×
⊗u∈VA⊥u after reading αΓ(v), and let us make a case disjunction.

If (v, (qlu)u∈V , (q⊥u )u∈V ) ∈ S1 ∪ S2 let σ(α, v) := σ⊥(α, v).
If (v, (qlu)u∈V , (q⊥u )u∈V ) ∈ S′1 ∪ S′2, let σ(α, v) := π1 ◦ σ′⊥(α, v, (qlu)u∈V , (q⊥u )u∈V )
If (v, (qlu)u∈V , (q⊥u )u∈V ) ∈ V>, let σ(α, v) := π1 ◦ σ>(α, (v, (qlu)u∈V , (q⊥u )u∈V )).

(Above, projection π1 is used twice to retrieve vertex v from vertex (v, (qlu)u∈V , (q⊥u )u∈V ).)
To implement the above strategy, we use the automaton ⊗u∈V Blu ×⊗u∈VA⊥u to keep track
of the current vertex in g′, and we also use automata implementing σ⊥, σ′⊥, and σ>. J

Proof of Corollary 14. Let us use the notation from the proof of Theorem 13. Thanks
to prefix-independence of the winning condition, we do not need to worry about regular-
predictability and the corresponding automata. Since σ⊥ is an hSPE on a n-vertex game,
f(l − 1, n) states suffice to implement it. The σ′⊥ for reachability can be chosen memoryless.
As σ> is an hSPE on a game with at most nmn vertices, f(l − 1, nmn) states suffice to
implement it. Additionally, we keep track of the current vertex in g′, adding a factor of mn.
Therefore f(l, n) ≤ mn · f(l − 1, n) · f(l − 1, nmn). J

Proof of Example 17. Player 1 wins from some not-yet-determined history iff he can force
an αβ-vertex. Linear memory suffices to keep track of how many 0 and 1’s have been
encountered along the way (as a simple path suffices), and enables Player 1 to choose
correctly. However, which choice is correct depends on the pre-history in a way that a
finite automaton cannot keep track of (as this history is unbounded). Thus, there is no FM
subgame-perfect strategy. J
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Abstract
We present an improved deterministic algorithm for Maximum Cardinality Matching on general
graphs in the Semi-Streaming Model. In the Semi-Streaming Model, a graph is presented as a
sequence of edges, and an algorithm must access the edges in the given sequence. It can only use
O(n polylog n) space to perform computations, where n is the number of vertices of the graph.
If the algorithm goes over the stream k times, it is called a k-pass algorithm. In this model,
McGregor [28] gave the currently best known randomized (1 + ε)-approximation algorithm for
maximum cardinality matching on general graphs, that uses (1/ε)O(1/ε) passes. Ahn and Guha [1]
later gave the currently best known deterministic (1+ε)-approximation algorithms for maximum
cardinality matching: one on bipartite graphs that uses O

(
log log(1/ε)/ε2) passes, and the other

on general graphs that uses O(log n ·poly(1/ε)) passes (note that, for general graphs, the number
of passes is dependent on the size of the input). We present the first deterministic algorithm that
achieves a (1 + ε)-approximation on general graphs in only a constant number

(
(1/ε)O(1/ε)) of

passes.
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1 Introduction

Matching is one of the most well-studied problems in combinatorial optimization. See
Schrijver’s book [31] and references therein for a comprehensive overview of the classical
work. There are polynomial time algorithms known for both weighted and unweighted
maximum matching on general graphs [29]. With the advancement of internet and social
networks, large amount of data is generated, and often the input graph is so huge that the
entire graph may not fit even inside large size RAMs. One way to tackle this problem is
to provide the input to the algorithm in pieces. For instance, edges can be provided to
the algorithm one by one, or vertices can be provided one by one along with all the edges
from that vertex to the previously revealed vertices. The maximum matching problem has
been studied in various models in which the input is provided piecewise, for instance, the
online preemptive/non-preemptive model (vertex/edge arrival) [15, 11, 23, 7], the dynamic
graph model [5, 6, 4, 32], the streaming model [18, 28, 33, 14], etc. In these models, random
order [25, 26] arrivals have also been considered.
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39:2 Maximum Matching in Graph Streams

We study the maximum matching2 problem in the semi-streaming model. Feigenbaum
et al. [18] were the first to consider this problem in the semi-streaming model. A graph
stream is an (adversarial) sequence of the edges of a graph, and a semi-streaming algorithm
must access the edges in the given order. A semi-streaming algorithm can use O(n polylog n)
space only, where n is the number of vertices in the input graph. Note that a matching
can have size Ω(n), so Ω(n log n) space is necessary. If a semi-streaming algorithm goes
over the stream k times, it is called a k-pass algorithm. We say that an algorithm is an
α-approximation algorithm if the size of the matching output by the algorithm is at least 1

α

times the size of an optimum matching, and we say that the matching is α-approximate.
McGregor [28] gave the first (1 + ε)-approximation algorithm for maximum match-

ing in this model. This algorithm is randomized, and uses a constant number of passes(
(1/ε)O(1/ε)). Eggert et al. [13] later improved this result on bipartite graphs by giving a

(1 + ε)-approximation deterministic algorithm that uses O(1/ε5) passes. Ahn and Guha [1]
also gave linear programming based (1+ε)-approximation deterministic algorithms. For bipar-
tite graphs, they further improved the results. Their algorithm uses only O(log log(1/ε)/ε2)
passes. But for general graphs, their algorithm uses O(log n · poly(1/ε)) passes. The number
of passes is dependent on the size of the input. There are no known (1 + ε)-approximation
deterministic algorithms on general graphs that use a constant number of passes, and it is not
clear how to extend the deterministic algorithms on bipartite graphs [13, 1], to deterministic
algorithms on general graphs that use only a constant number of passes. In this paper, we
present the first (1 + ε)-approximation deterministic algorithm for maximum matching on
general graphs that uses only a constant number

(
(1/ε)O(1/ε)) of passes.

We first present a (1 + ε)-approximation deterministic algorithm for maximum matching
on bipartite graphs, that uses (1/ε)O(1/ε)-passes, which will help in understanding the main
techniques behind the algorithm on general graphs. Note that the algorithm on bipartite
graphs in itself does not hold much value, as we have already mentioned earlier that there
exist poly(1/ε)-pass (1 + ε)-approximation algorithms on bipartite graphs.

These algorithms build on the techniques used in the two-pass algorithm for maximum
matching presented in [20]. In the first pass, the algorithm [20] finds a maximal matching,
and in the second pass, it finds a semi-matching between matched and unmatched vertices
from the first pass. A (λX , λY ) Semi-Matching is defined as a set of edges such that at most
λX edges are incident on any vertex in X, and at most λY edges are incident on any vertex
in Y , when X ∩ Y = ∅. The algorithm uses this semi-matching to find length 3-augmenting
paths in the maximal matching. In the following paragraph, we give a brief overview of how
these techniques can be used to find longer augmenting paths in bipartite graphs, and some
of the difficulties in extending them to general graphs.

Technical Overview

Let M∗ denote some optimal matching in the given graph, and let M denote some maximal
matching. For any integer ` ≥ 1, a connected component of M ∪M∗ that has a path of
length (2`+ 1) is called a length (2`+ 1)-augmenting path (non-augmenting otherwise) with
respect to M∗. In general, a length (2`+ 1)-augmenting path contains ` edges in M , and
(`+ 1) edges not in M . We call an edge in M (2`+ 1)-augmentable, if it belongs to a length
(2`+ 1)-augmenting path. A length (2`+ 1)-augmentation is a replacement of edges in M ,
by edges not in M , from a length (2`+ 1)-augmenting path.

2 Unless explicitly mentioned, Maximum Matching means Maximum Cardinality Matching.
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It is widely known, and can also be easily proved that in a maximal matching M , if there
are no augmenting paths of length less than (2/ε+1) with respect to some optimum matching
M∗, then the matching M is (1 + ε)-approximate. We present deterministic algorithms which
output a matching M , that contains a negligible number of augmenting paths of length less
than (1/ε + 1) with respect to some optimum matching M∗. We use Lemma 1 to prove
that this matching is an (1 + O(ε))-approximation to the optimum matching. Informally,
the lemma states that if there exist a negligible number of augmenting paths of length less
that (1/ε+ 1) in a maximal matching M , then M is a good approximation to any optimum
matching.

The algorithms for bipartite graphs and general graphs have a common high level idea.
Each algorithm begins by finding a maximal matching M in the first pass. Then it first
carries out length 3-augmentations of some edges in M , such that after a constant number of
passes, the number of remaining 3-augmentable edges in M with respect to any fixed optimal
matching M∗ is negligible. Then it similarly carries out length 5-augmentations, followed by
length 7-augmentations, and so on, up to length (1/ε)-augmentations.

Suppose there are no augmenting paths in M of length less than (2`+ 1). Then, a length
(2` + 1)-augmenting path is found as follows. Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes
some length (2`+ 1)-augmenting path in M with respect to M∗. (Note that edges uivi ∈M ,
for all 1 ≤ i ≤ `.) In one pass, (a constant fraction of) the outermost edges of any length
(2`+1)-augmenting path (for instance au1 and v`b) are added to a semi-matching S. Now that
the algorithm already knows the outermost four edges (for instance au1, u1v1, u`v`, v`b) in
the augmenting path, it tries to find the length (2`− 3)-augmenting path v1u2v2u3 . . . v`−1u`.
Using this length (2`− 3)-augmenting path v1u2v2u3 . . . v`−1u`, and edges in M and S, the
algorithm finds a length (2`+ 1)-augmenting path.

For general graphs, suppose such a procedure is successful in finding a middle length
(2`′ − 3) path of some length (2`+ 1)-augmenting path. Then how to ensure that the edges
stored in the semi-matchings, along with the edges in M , do not form an odd length cycle
with this middle length (2`′ − 3) path? We do not face this issue for bipartite graphs as they
do not contain any odd length cycles, and so we require new ideas (Directed Semi-Matchings
– defined in Section 2) to extend the described techniques to find longer augmenting paths in
general graphs.

A Comparison with McGregor’s Randomized Algorithm

McGregor’s algorithm [28] begins by finding a maximal matching M . To find length (2`+ 1)-
augmenting paths (for all ` ≤ (1/(2ε))), the algorithm randomly partitions the vertices
in G into (` + 2) layers L0, L1, . . . , L`, L`+1. The unmatched vertices in G are added to
either L0 or L`+1, and the matched vertices are added at random to the layers L1, . . . , L`.
The algorithm only stores the edges between two consecutive layers. This makes the graph
bipartite, and removes the possibility of any odd length cycle. The algorithm works by
finding maximal matchings, first between the first and second levels and then between the
vertices in the second that were matched in the first matching, and the third level, and then
between the nodes in the third level that were matched in the second matching and the
fourth level and so on. This gives node-disjoint (`+ 1)-paths, which correspond to length
(2`+ 1)-augmenting paths in G. The random partitioning operation keeps roughly a (1/`)O(`)

fraction of the length (2`+ 1)-augmenting paths, as each such augmenting path “survives”
the partitioning by this probability. By repeating this process by a factor of `O(`), almost
all length (2`+ 1)-augmenting paths are found. The algorithm finds a (1 + ε)-approximate
matching with probability (1− f) by running O(log(1/f)) copies of this procedure in parallel.

FSTTCS 2018
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Like McGregor’s algorithm, our algorithm also ensures that a negligible number of
(2`+ 1)-augmentable edges remain in M (for all ` ≤ (1/(2ε))). As pointed out earlier, the
main difficulty in finding augmenting paths in general graphs is due to the existence of
odd length cycles (this challenge is present in nearly all variants of the matching problem
in non-bipartite graphs, including in the polynomial time algorithms for this problem in
the offline setting [29]). McGregor’s algorithm handles this issue by considering a random
bipartite subgraph of the original graph in each augmentation phase. We rely on the use of
directed semi-matchings. The major technical challenge lies in finding which edges need to
be stored in the directed semi-matchings. The algorithm needs to recognize and ensure that
it does not store edges (in the directed semi-matchings) that form an odd length cycle. This
turns out to be non-trivial. Section 4 gives more details.

Note. The random bipartitioning operation (from McGregor’s algorithm [28]) in general
graphs, keeps roughly a (1/`)O(`) fraction of the length (2`+1)-augmenting paths. And hence,
this process has to be repeated `O(`) times to find almost all length (2`+1)-augmenting paths.
So, it is unlikely that this idea can be extended to get a poly(1/ε)-pass (1 + ε)-approximation
algorithm on general graphs. Our deterministic algorithm explicitly bypasses the barrier of
“blossoms” (hereafter, we refer to an odd length alternating (edges not in M and edges in M)
cycle that starts and ends at an unmatched vertex as a blossom), and hence can be viewed
as a step towards achieving a poly(1/ε)-pass (1 + ε)-approximation algorithm for general
graphs.

Related Work

The algorithm that finds a maximal matching (in which an edge is added to the matching M if
there are no edges in M incident on any of its endpoints) is a trivial one-pass 2-approximation
algorithm, and no (randomized/deterministic) one-pass algorithm with approximation ratio
better than 2 is known for maximum matching although this model was introduced over a
decade ago. It remains as one of the major open problems in the streaming community [27].
Goel, Kapralov, and Khanna [19], using connection between streaming complexity and
communication complexity, proved that for any ε > 0, a one-pass semi-streaming (3/2− ε)-
approximation algorithm does not exist. Later, Kapralov [21], building on those techniques,
showed the non-existence of a one-pass semi-streaming (e/(e−1)−ε)-approximation algorithms
for any ε > 0. Konrad et al. [25] showed that if the algorithm is allowed one extra pass, then a
better than 2-approximate matching can be obtained, by giving a two-pass algorithm. Later,
Esfandiari et al. [16] improved these results for bipartite graphs, and Kale and Tirodkar [20]
gave improved results on triangle-free as well as general graphs.

Feigenbaum et al. [18] gave a (3/2 + ε)-approximation deterministic algorithm on bi-
partite graphs that uses O(log(1/ε)/ε) passes. Later, Ahn and Guha [1] gave a (3/2 + ε)-
approximation deterministic algorithm on general graphs that uses O(log(1/ε)/ε2) passes.
Kale and Tirodkar [20] improved both these results by giving a (3/2 + ε)-approximation
deterministic algorithm on general graphs that use only O(1/ε) passes.

Feigenbaum et al. [18] gave the first one-pass algorithm for maximum weight matching,
with an approximation ratio 6. Subsequent results improved this approximation ratio.
Recently in a breakthrough, Paz and Schwartzman [30] gave a (2+ε)-approximation algorithm.
The multi-pass version of the problem was considered first by McGregor [28], then by Ahn
and Guha [1]. Chakrabarti and Kale [9] and Chekuri et al. [10] consider a more general
version of the matching problem where a submodular function is defined on the edges of the
input graph.
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The problem of estimating the size of a maximum matching (instead of outputting the
actual matching) has been well studied [22, 17, 8, 2]. The Maximum Matching problem has
also been studied on dynamic streams (in which edges can be added as well as deleted) [24,
3, 12].

1.1 Organization of the paper

After setting up notation in Section 2, we see a (1 + ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs in Section 3. Then in Section 4, we see our
main result – a (1 + ε)-approximation deterministic algorithm on general graphs that uses a
constant number of passes.

2 Preliminaries

Let M∗ denote some optimal matching in the given graph, and let M denote some maximal
matching. We define the following terms which are used in the subsequent sections.

I Definition 2.1. A (λX , λY ) Directed Semi-Matching is defined as a set of directed edges
such that at most λX incoming edges are incident on any vertex in X, and at most λY
outgoing edges are incident on any vertex in Y .

For a (λX , λY ) Semi-Matching S, let degS(x) represent the number of edges in S incident on
vertex x. For a directed semi-matching S, let degOS (x) and degIS(x) represent the number of
outgoing and incoming edges, respectively, in S incident on vertex x. For an edge xy in the
input stream, both the directed edges xy and yx are considered while finding the directed
semi-matchings.

I Definition 2.2. While finding the middle length (2`′ + 1) path of the length (2` + 1)-
augmenting paths, the end points of M which have a length (`− `′) alternating path (with
edges in M and edges in the semi-matchings) to unmatched vertices, are called free vertices.

(For instance, the green vertices in Figure 1 are free vertices while finding the middle length
(2` − 3)-augmenting path.) Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes some augmenting
path of length (2` + 1) in M with respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . .

u(`+`′)/2 v(`+`′)/2u(`+`′)/2+1 denotes the middle length (2`′ + 1) path of the augmenting
path. Vertex u(`−`′)/2 (or v(`+`′)/2+1) is a free vertex if there exists a length (`− `′) path to
unmatched vertices starting from u(`−`′)/2 (or v(`+`′)/2+1) via alternate edges in M and the
semi-matchings maintained by the algorithm. When `′ = `, V \ V (M) are the free vertices.

We use the following lemma (similar to Lemma 1 in [28]) in analyzing the performance of
the algorithms described in this paper.

I Lemma 1. Let M∗ be a maximum matching in G. If there are at most ε2|M | (2` + 1)-
augmentable edges in a maximal matching M with respect to M∗, for any ` ≤ (1/ε− 1)/2,
then M is a (1 + 3ε)-approximate maximum matching.

Proof. Let k` denote the number of (2`+ 1)-augmentable edges in M . In any length (2`+ 1)-
augmenting path, the ratio of number of edges in M∗ to the number of edges in M is l+1

l .

FSTTCS 2018



39:6 Maximum Matching in Graph Streams

. . . . . .

semi-matching used for length (2` + 1)-augmentations

semi-matching used for length (2`− 3)-augmentations

Figure 1 Length (2` + 1)-augmentations. Solid red lines represent edges in M , and dashed orange
lines represent edges that belong to S during the recursive steps.

Then,

|M∗| ≤ 2k1 + 3
2k2 + 4

3k3 + · · ·+ (1/ε− 1)/2 + 1
(1/ε− 1)/2 k(1/ε−1)/2

+ (1/ε+ 1)/2 + 1
(1/ε+ 1)/2 (|M | − k1 − k2 − · · · − k(1/ε−1)/2)

=
(

1 + 2
1/ε+ 1

)
|M |+

(
2− 1/ε+ 3

1/ε+ 1

)
k1 +

(
4
3 −

1/ε+ 3
1/ε+ 1

)
k3 + . . .

+
(

1/ε+ 1
1/ε− 1 −

1/ε+ 3
1/ε+ 1

)
k(1/ε−1)/2

≤ (1 + 2ε)|M |+ ε2 · |M |+ ε2 · |M |+ · · ·+ ε2 · |M |
≤ (1 + 3ε)|M |. J

For the sake of exposition, we ignore floors and ceilings during the analyses of the
algorithms presented in Sections 3 and 4.

3 Warming Up: An Algorithm on Bipartite Graphs

In this section, we present a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs.

The high level idea for the algorithm is already described in Section 1. What remains
to be described is how the length (2`+ 1)-augmentations are performed. The function call
for length (2` + 1)-augmentations in the matching M assumes that there are no shorter
augmenting paths (although there is a small number of them). For each function call, the
algorithm finds a (1/ε4, 1) semi-matching S in one pass, between the free and matched
vertices. For an edge e ∈ M , if there are no edges in S, incident on any of the endpoints
of e, add e to M ′. For an edge e ∈ M , if there is an edge in S, incident on one of the
end points of e, add the other endpoint to the set V1. Then, the function recursively calls
Augment(`− 2, V1,M

′) to find length (2`− 3)-augmenting paths for the matching M ′ in
the graph induced on V1 ∪ V (M ′). For the recursive call, vertices in V1 are the free vertices,
and vertices in V (M ′) are the matched vertices. Using these length (2` − 3)-augmenting
paths, and edges in S, the algorithm finds length (2`+ 1)-augmenting paths in M . Figure 1
gives an illustration of the semi-matchings stored by the algorithm which are used for length
(2`+ 1)-augmentations.

Algorithm 1 gives a formal description.
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Algorithm 1 Deterministic Algorithm on Bipartite Graphs.
1: Find Maximal Matching M in the first pass.
2: for ` = 1 to 1/(2ε) do . To Remove almost all (2`+ 1)-augmenting paths
3: for Phase p = 1 to 1/ε5` do
4: M ← Augment(`, V,M).
5: Output M .
6: function Augment(`, V,M) . Function of length (2`+ 1)-augmentations.
7: if ` = 0 then
8: Find Maximal Matching M ′ on vertex set V in one pass.
9: M ←M ′.

10: else
11: S ← ∅, M ′ ← ∅.
12: V1 ← V \ V (M). . Set of free vertices.
13: S ← Semi(1, V (M), 1/ε4, V1).
14: if ` > 1 then . For longer than length 3-augmentations
15: V1 ← ∅
16: for all edges uv ∈M do
17: if ∃au ∈ S then
18: V1 ← V1 ∪ {v}. . Free Vertices in the recursive call.
19: if @ edge in S on either u or v then
20: M ′ ←M ′ ∪ {uv}.
21: M ′ ← Augment(`− 2, V1,M

′). . Find length (2`− 3)-augmentations.
22: (2`+ 1)-augment M greedily using edges in S and M ′.

return M .
23: function Semi(λX , X, λY , Y ) . Finds a semi-matching in one pass.
24: S ← ∅.
25: for all edges xy such that x ∈ X, y ∈ Y do
26: if degS(x) < λX and degS(y) < λY then
27: S ← S ∪ {xy}

return S.

We begin the analysis for any length (2`+ 1)-augmentations for the matching M . The
function assumes that there are no shorter length augmenting paths in M with respect to any
optimal matching. Let E` denote the set of (2`+ 1)-augmentable edges in M with respect to
an optimal matching M∗, such that |E`| is maximum.

Bad Edges

Suppose au1v1u2v2u3 . . . v`−1u`v`b denotes any length (2`+ 1)-augmenting path in M with
respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . . u(`+`′)/2v(`+`′)/2 u(`+`′)/2+1 denotes
the middle length (2`′ + 1) path of the augmenting path. Edge u(`−`′)/2+1v(`−`′)/2+1 ∈M ′
(or u(`+`′)/2v(`+`′)/2 ∈M ′) is called a bad edge, if there is no edge in S from u(`−`′)/2+1 (or
v(`+`′)/2) to a free vertex, during the recursive call Augment(`′, V1,M

′). Note that V1 is
the set of free vertices during a function call Augment(`′, V1,M

′).
Let E`B1

denote a set of bad edges u1v1 (or u`v`) if no edge is added to S during a function
call Augment(`, V,M) that is incident from the vertex u1 (or v`) to some free vertex (in
this case V1 = V \ V (M) are the free vertices).

FSTTCS 2018



39:8 Maximum Matching in Graph Streams

I Lemma 2. |E`B1
| ≤ 2ε4|M |.

Proof. Suppose there is no edge in S incident from u1 (or v`) to any unmatched vertex in
V1. This means that for all the edges incident from u1 (or v`) to unmatched vertices, there
already were 1/ε4 edges in S incident on the respective unmatched vertices. For ` > 1, each
edge in M can have at most one edge in S incident on its endpoints (as there are no length
3-augmentable edges in M). Hence, |E`B1

|/ε4 ≤ |M |.
For ` = 1, each edge in M can have at most one edge in S incident on each its endpoints.

Hence, |E`B1
|/ε4 ≤ 2|M |. J

After finding a (1/ε4, 1) semi-matching S from unmatched to matched vertices, the function
call Augment(`, V,M) makes a recursive call Augment(`− 2, V1,M

′). Inside the recursive
call, V1 is the set of free vertices, and V (M ′) is the set of matched vertices. Let E`B2

denote the bad edges formed while finding a (1/ε4, 1) semi-matching inside the recursive call.
By Lemma 2, |E`B2

| ≤ 2ε4|M ′| ≤ 2ε4|M |.
If au1v1u2v2u3 . . . v`−1u`v`b denotes any length (2` + 1)-augmenting path in M with

respect to M∗, let E`B denote the set of all the bad edges uivi ∈ E` formed during one
function call Augment(`, V,M), and the subsequent recursive calls inside the function. The
following lemma bounds the total number of bad edges E`B in E`.

I Lemma 3. |E`B | ≤ ε3|M |.

Proof. We write a recurrence relation to find the total number of bad edges E`B in E`.

BadEdges(`) = |E`B1
|+ BadEdges(`− 2)

=⇒ |E`B | ≤ 2ε4|M |+ BadEdges(`− 2) . . . by Lemma 2
=⇒ |E`B | ≤ 2ε4|M |+ 2ε4|M |+ · · ·+ 2ε4|M | . . . at most (1/(4ε)) times.
=⇒ |E`B | ≤ ε3|M |.

The function BadEdges(`′) gives the total number of bad edges in E` from one function
call Augment(`′, V1,M

′). J

Now, we give a bound on the total number of augmentations during one function call
Augment(`, V,M). We say that an augmenting path is “good” if none of the edges in that
augmenting path belong to E`B .

I Lemma 4. One function call Augment(`, V,M) augments at least ε4`/2 fraction of the
total number of good (2`+ 1)-augmenting paths in M .

Proof. Consider a length (2` + 1)-augmentation of an augmenting path P (for instance,
P := au1v1u2v2u3 . . . v`−1u`v`b). There are at most (1/ε4)` length (2`+1)-augmenting paths
(considering edges in M and all edges in S during the recursive calls) with endpoint a (,
and at most (1/ε4)` length (2` + 1)-augmenting paths with endpoint b). This is because,
on any of the free vertices, at most 1/ε4 edges are stored in S during the function call
Augment(`, V,M), and the subsequent recursive calls. (See Figure 1 for instance.)

After the length (2`+ 1)-augmentation of P , none of the other 2/(ε4)`− 1 length (2`+ 1)-
augmenting paths can be augmented. (Figure 2 gives an illustration.) Thus, the total number
of augmentations during one call Augment(`, V,M) is at least 1

2/(ε4)` fraction of the total
number of good (2`+ 1)-augmenting paths in M . J

I Lemma 5. After
(
1/ε5`) function calls Augment(`, V,M), there are at most ε2|M | edges

remaining in M that are (2`+ 1)-augmentable.
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Figure 2 Suppose ` = 3. Green solid lines and dotted lines represent a path P that was augmented,
and blue solid lines and dashed lines represent the paths that can no longer be augmented due to
that augmentation of path P .

Proof. Lemma 4 shows that, if there are k good (2`+1)-augmenting paths in M with respect
to some M∗, then in each call Augment(`, V,M), at least ε4` fraction of these good paths
are augmented (ignoring the 1/2 factor). So, after log(1/ε4`)/ε4` passes, the number of good
(2`+ 1)-augmenting paths remaining in M are at most

k(1− ε4`)(log(1/ε4`)/ε4`) ≤ ε4` · k ≤ ε4` · |M | ≤ ε3|M |.

Suppose that all the bad edges E`B from the last function call Augment(`, V,M) belong
to distinct length (2` + 1)-augmenting paths. Then, by Lemma 3, and by the bound on
the number of good length (2` + 1)-augmenting paths remaining, at most 2ε3|M | length
(2`+ 1)-augmenting paths remain in M .

Since we only consider augmenting paths of length at most (1/ε), and each augmenting
path of length (1/ε) contains at most (1/(2ε)) edges in M , the total number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |. J

As mentioned earlier, the function call Augment(`, V,M) assumes that there are no shorter
than length (2`+ 1)-augmenting paths. But the analysis does not require this assumption.
This assumption is used in the proof of Lemma 2. But Lemma 2 anyways gives an overestimate
on the upper bound for ` > 1. Also, during the function call Augment(`, V,M), if the
algorithm comes across a shorter augmenting path, it is ignored. Thus, using Lemmas 1
and 5, we claim the following result.

I Theorem 6. Algorithm 1 is a (1/ε)O(1/ε)-pass (1+ε)-approximation deterministic algorithm
for maximum matching on bipartite graphs.

Note that during the function call Augment(`, V,M), at most one edge is stored in S

from a matched vertex to a free vertex. So, there are at most 2|M | edges stored in the
semi-matchings at any stage. Thus, the algorithm uses O(n log n) space.

4 Algorithm on General Graphs

In this section, we present a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic algorithm
for maximum matching on general graphs. The high level idea for the algorithm on general
graphs is same as the algorithm on bipartite graphs.

As already mentioned earlier, there do not exist “blossoms” in the bipartite graphs, and
the existence of blossoms in the general graphs, makes it difficult to find augmenting paths.
We address this issue in the following manner.

While finding the semi-matchings, instead of storing at most one edge on any matched
vertex, the algorithm stores at most two edges, and the second edge is chosen carefully. The
algorithm needs access to all prior semi-matchings it has stored during the function call
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xy′

y

S` M S`−2 M S`−4 M S`′ M

Figure 3 Blue solid and dotted lines represent the path pxy, and green solid and dash-dot lines
represent the path pxy′ . As these paths do not intersect in any vertex other than x, xy is added to
S`′ .

Figure 4 Consider the iteration to find length 7-augmentations in general graphs. All the edges
represented by the dashed orange lines will be added to the semi-matching S3, and in the subsequent
iteration if we only consider those edges in M on which there are no edges stored in S3 (there are
none), then we wont be able to find the length 7-augmenting path. So we need to consider all the
edges in M in the subsequent iterations. But then V1 ∩ V (M) 6= ∅.

Augment(`, V,M) to add the second edge. So, rather than using recursive calls inside the
function call Augment (`, V,M), we iteratively find semi-matchings. Let S`′ denote the
semi-matching stored during the iteration to find the middle length (2`′ + 1) path of any
length (2`+ 1)-augmenting path. In this iteration, when the edge xy is read during a pass,
such that x ∈ V (M) and y ∈ V1, suppose ∃xy′ ∈ S`′ . Let Pxy (or Pxy′) denote the set of
paths starting with xy (or xy′), alternating between some edge in M and some edge in S`′+2i,
for i going from 1 to (`− `′)/2, ending in some edge in S`. If ∃pxy ∈ Pxy, and ∃pxy′ ∈ Pxy′ ,
such that pxy and pxy′ do not intersect in any vertex except x, then we add xy to S`′ . This
ensures that when the middle length (2`′ + 1) path of any length (2`+ 1)-augmenting path is
found, there exist two non-intersecting paths of length (`− `′), such that each path contains
one edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence), and they form length
(2`+ 1)-augmenting path along with the middle length (2`′ + 1) path. See Figure 3 for an
illustration of the process of adding a second edge, incident on vertex x, to S`′ .

For general graphs, unlike bipartite graphs, we require that V (M) and V1 are not disjoint
(see Figure 4 for a reason).

So, the algorithm needs to store directed semi-matchings instead of semi-matchings.
Because V (M) and V1 are not disjoint, while adding an edge xy to any directed semi-
matching, it is ensured that there exists a directed path starting with xy containing alternate
edges in M and the directed semi-matchings previously stored, such that it does not visit x,
thus avoiding formation of a cycle. (See Figures 5 and 6 for an illustration.)

Algorithm 2 gives a formal description.

Bad Edges

In the function call Augment(`, V,M), suppose we are in an iteration to find the middle
length (2`′ + 1) path of the length (2` + 1)-augmenting paths in the matching matching
M . Let au1v1u2v2u3 . . . v`−1u`v`b denote any length (2`+ 1)-augmenting path in M with
respect to M∗. Then, v(`−`′)/2u(`−`′)/2+1v(`−`′)/2+1 . . . u(`+`′)/2v(`+`′)/2 u(`+`′)/2+1 denotes
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x y

Figure 5 Red solid lines represent edges in M . Edge xy is not added to a Directed Semi-Matching
because there does not exist a directed path starting from xy and not visiting x. The other orange
dotted lines represent edges stored in Directed Semi-Matchings in previous iterations.

x y

Figure 6 Red solid lines represent edges in M . Edge xy is added to a Directed Semi-Matching
because there exists a directed path starting from xy and not visiting x. The other orange dotted
lines represent edges stored in Directed Semi-Matchings in previous iterations.

the middle length (2`′ + 1) path of the augmenting path. Edge u(`−`′)/2+1v(`−`′)/2+1 ∈M
(or u(`+`′)/2v(`+`′)/2 ∈ M) is called a bad edge under one of the following two conditions.
(Note that in any iteration, V1 denotes the set of free vertices.)
1. If there is no directed edge added to S`′ which is incident from the vertex u(`−`′)/2+1 (or

v(`+`′)/2) to some vertex in V1, because there already were (1/ε4) incoming edges in S`′

incident on the vertices in V1 for all the edges incident from u(`−`′)/2+1 (or v(`+`′)/2).
2. If there is only one directed edge (not in M∗) added to S`′ that is incident from the

vertex u(`−`′)/2+1 (or v(`+`′)/2) to some vertex in V1, and a second directed edge is not
added to S`′ , because there already were (1/ε4) incoming edges in S`′ incident on the
vertices in V1 for all other edges incident from u(`−`′)/2+1 (or v(`+`′)/2).

Note. A directed edge which is incident from the vertex u(`−`′)/2+1 (or v(`+`′)/2) to some
vertex in V1 may not be added to S`′ also for one of the following two other reasons. First, if
the addition of such an edge is going to form a cycle, and second, if the addition of such an edge
does not produce two non-intersecting paths from the vertex u(`−`′)/2+1 to the unmatched
vertices. We argue that the edge u(`−`′)/2+1v(`−`′)/2+1 ∈ M (or u(`+`′)/2v(`+`′)/2 ∈ M) is
not bad due to either of the above mentioned reasons.

In the first case, such an edge can be ignored, as there already exists a shorter directed
path from the vertex u(`−`′)/2+1 to some unmatched vertex. The second case needs careful
attention. Let u(`−`′)/2+1v(`−`′)/2 ∈M∗ be the edge not added to S`′ , and let u(`−`′)/2+1v

be the only edge that is added to S`′ . Either v(`−`′)/2u(`−`′)/2 ∈ M∗ is a bad edge or not.
If it is a bad edge, we can ignore the edge u(`−`′)/2+1v(`−`′)/2+1 ∈M . Otherwise, there are
two sub cases.
1. There are two directed edges from u(`−`′)/2 in S`′+2, which means there are two non-

intersecting directed paths p1 and p2, from u(`−`′)/2 to unmatched vertices. If there exists
a directed path from v which intersects p1 or p2 or neither of them, then the algorithm
should be able to add u(`−`′)/2+1v(`−`′)/2 to S`′ . If there exists a directed path from v

which intersects both p1 and p2, then the edge u(`−`′)/2+1v(`−`′)/2+1 is not a bad edge,
as it can be used in the length (2`+ 1)-augmentation.

2. There is only one directed edge from u(`−`′)/2 in S`′+2. Suppose there exists a directed
path from u(`−`′)/2 to unmatched vertices, which does not contain any bad edges (If
there does not exist such a path, then we can ignore the edge u(`−`′)/2+1v(`−`′)/2+1 ∈M .)
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Algorithm 2 Deterministic Algorithm on General Graphs.
1: Find Maximal Matching M in the first pass.
2: for ` = 1 to 1/(2ε) do . To Remove almost all (2`+ 1)-augmenting paths
3: for Phase p = 1 to 1/ε5` do
4: M ← Augment(`, V,M).
5: Output M .
6: function Augment(`, V,M) . Function of length (2`+ 1)-augmentations.
7: `′ := `, V1 ← V \ V (M).
8: while `′ ≥ 0 do
9: S`′ ← ∅.

10: for all edges ab do . One pass to find a directed semi-matching
11: for all xy ∈ {ab, ba} do . Directed edges ab and ba.
12: if x ∈ V (M), y ∈ V1, and ∃ a directed path starting with xy, with one

edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence) that does not visit x
then

13: if degOS`′ (x) = 0 and degIS`′ (y) < 1/ε4 then
14: S`′ ← S`′ ∪ {xy} . Add directed edge xy.
15: else if degOS`′ (x) = 1 and degIS`′ (y) < 1/ε4 then
16: Suppose ∃xy′ ∈ S`′ .
17: Let Pxy (or Pxy′) denote the set of directed paths starting with xy

(or xy′), with one edge each from M,S`′+2,M, S`′+4, . . . ,M, S` (in that sequence).
18: if ∃pxy ∈ Pxy, and ∃pxy′ ∈ Pxy′ , such that pxy and pxy′ do not

intersect in any vertex except x then
19: S`′ ← S`′ ∪ {xy} . Add directed edge xy.
20: V1 ← ∅.
21: for all edges uv ∈M do
22: if ∃ua ∈ S`′ then . Directed edge ua.
23: V1 ← V1 ∪ {v}. . Set of free vertices for the next iteration.
24: `′ := `′ − 2

. End of While Loop
25: (2`+ 1)-augment M greedily using edges in S`, S`−2, . . . .
26: return M .

This implies that there is a directed path from v that intersects this directed path, and
hence the edge u(`−`′)/2+1v(`−`′)/2+1 is not a bad edge, as it can be used in the length
(2`+ 1)-augmentation (along with the directed edge u(`−`′)/2+1v ∈ S`′).

4.1 Analysis
We begin the analysis for any length (2`+ 1)-augmentations for the matching M . Let E`
denote the set of (2`+ 1)-augmentable edges in M with respect to an optimal matching M∗,
such that |E`| is maximum. Also, let E`B1

denote the outermost bad edges of any length
(2`+ 1)-augmenting path. The following lemma gives an upper bound on E`B1

.

I Lemma 7. |E`B1
| ≤ 4ε4|M |.

Proof. Without loss of generality, lets consider the edge u1v1 in a length (2`+ 1)-augmenting
path au1v1u2v2u3 . . . v`−1u`v`b. If u1v1 is a bad edge, then by the definition of a bad edge,
there are (1/ε4) edges in S` responsible. So, (1/ε4)|E`B1

| ≤ |S`|. For ` > 1, each edge in M
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can have at most two outgoing edges in S` incident on its endpoints (as there are no length
3-augmentable edges in M), i.e. |S`| ≤ 2|M |. Hence, |E`B1

|/ε4 ≤ 2|M |.
For ` = 1, each edge in M can have at most two outgoing edges in S` incident from each

its of endpoints, i.e. |S`| ≤ 4|M |. Hence, |E`B1
|/ε4 ≤ 4|M |. J

Let E`B denote the set of the bad edges, formed during the iterations inside the function
call Augment(`, V,M), in all the length (2`+ 1)-augmenting paths. The following lemma
bounds the total number of bad edges E`B in E`.

I Lemma 8. |E`B | ≤ ε3|M |.

Proof. We write a recurrence relation to find the total number of bad edges E`B in E`.

BadEdges(`) = |E`B1
|+ BadEdges(`− 2)

=⇒ |E`B | ≤ 2ε4|M |+ BadEdges(`− 2) . . . by Lemma 7
=⇒ |E`B | ≤ 2ε4|M |+ 2ε4|M |+ · · ·+ 2ε4|M | . . . at most (1/(4ε)) times.
=⇒ |E`B | ≤ ε3|M |.

The function BadEdges(`′) gives the total number of bad edges in E` formed during the
iteration to find middle length (2`′ + 1) path of any length (2`+ 1)-augmenting path. J

Now, we give a bound on the total number of augmentations during one function call
Augment(`, V,M). We say that an augmenting path is “good” if none of the edges in that
augmenting path belong to E`B .

I Lemma 9. One function call Augment(`, V,M) augments at least ε4`/2 fraction of the
total number of good (2`+ 1)-augmenting paths in M .

Proof. Consider a length (2` + 1)-augmentation of an augmenting path P (for instance,
P := au1v1u2v2u3 . . . v`−1u`v`b). There are at most (1/ε4)` length (2`+1)-augmenting paths
(considering edges in M,S`, S`−2, . . . ) with the endpoint a (, and at most (1/ε4)` length
(2`+ 1)-augmenting paths with the endpoint b). This is because, on any of the free vertices,
at most 1/ε4 edges are stored in any Si during the function call Augment(`, V,M).

After the length (2` + 1)-augmentation of P , none of the other 2/(ε4)` − 1 length
(2` + 1)-augmenting paths can be augmented. Thus, the total number of augmentations
during one call Augment(`, V,M) is at least 1

2/(ε4)` fraction of the total number of good
(2`+ 1)-augmenting paths in M . J

I Lemma 10. After (1/ε5`) function calls Augment(`, V,M), the number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |.

Proof. Lemma 9 shows that, if there are k good (2`+1)-augmenting paths in M with respect
to some M∗, then in each call Augment(`, V,M), at least ε4` fraction of these good paths
are augmented (ignoring the 1/2 factor). So, after log(1/ε4`)/ε4` passes, the number of good
(2`+ 1)-augmenting paths remaining in M are at most

k(1− ε4`)(log(1/ε4`)/ε4`) ≤ ε4` · k ≤ ε4` · |M | ≤ ε3|M |.

Suppose all the bad edges E`B from the last function call Augment(`, V,M) belong to distinct
length (2`+ 1)-augmenting paths. Then, by Lemma 8, and by the bound on the number of
good length (2`+1)-augmenting paths remaining, at most 2ε3|M | length (2`+1)-augmenting
paths remain in M .
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Since we only consider augmenting paths of length at most (1/ε), and each augmenting
path of length (1/ε) contains at most (1/(2ε)) edges in M , the total number of (2` + 1)-
augmentable edges remaining in M is at most ε2|M |. J

As mentioned earlier, the function call Augment(`, V,M) assumes that there are no shorter
than length (2`+ 1)-augmenting paths. But the analysis does not require this assumption.
This assumption is used in the proof of Lemma 7. But Lemma 7 anyways gives an overestimate
on the upper bound for ` > 1. Also, during the function call Augment(`, V,M), if the
algorithm comes across a shorter augmenting path, it is ignored. Thus, using Lemmas 1
and 10, we claim the following result.

I Theorem 11. Algorithm 2 is a (1/ε)O(1/ε)-pass (1 + ε)-approximation deterministic
algorithm for maximum matching on general graphs.

Note that during the function call Augment(`, V,M), at most two edges are stored in any
S` from a matched vertex to free vertices. So, there are at most 2`|M | edges stored in the
directed semi-matchings at any stage. Thus, the algorithm uses O

( 1
ε · n log n

)
= O(n log n)

space.
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Abstract
We study sketching and streaming algorithms for the Longest Common Subsequence problem
(LCS) on strings of small alphabet size |Σ|. For the problem of deciding whether the LCS of strings
x, y has length at least L, we obtain a sketch size and streaming space usage of O(L|Σ|−1 logL).
We also prove matching unconditional lower bounds.

As an application, we study a variant of LCS where each alphabet symbol is equipped with
a weight that is given as input, and the task is to compute a common subsequence of maximum
total weight. Using our sketching algorithm, we obtain an O(min{nm, n+m|Σ|})-time algorithm
for this problem, on strings x, y of length n,m, with n ≥ m. We prove optimality of this running
time up to lower order factors, assuming the Strong Exponential Time Hypothesis.
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1 Introduction

1.1 Sketching and Streaming LCS
In the Longest Common Subsequence problem (LCS) we are given strings x and y and the
task is to compute a longest string z that is a subsequence of both x and y. This problem has
been studied extensively, since it has numerous applications in bioinformatics (e.g. comparison
of DNA sequences [5]), natural language processing (e.g. spelling correction [40, 49]), file
comparison (e.g. the UNIX diff utility [23, 38]), etc. Motivated by big data applications, in
the first part of this paper we consider space-restricted settings as follows:

LCS Sketching: Alice is given x and Bob is given y. Both also are given a number L.
Alice and Bob compute sketches skL(x) and skL(y) and send them to a third person, the
referee, who decides whether the LCS of x and y is at least L. The task is to minimize
the size of the sketch (i.e., its number of bits) as well as the running time of Alice and
Bob (encoding) and of the referee (decoding).
LCS Streaming: We are given L, and we scan the string x from left to right once, and
then the string y from left to right once. After that, we need to decide whether the LCS
of x and y is at least L. We want to minimize the space usage as well as running time.
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Analogous problem settings for the related edit distance have found surprisingly good solutions
after a long line of work [11, 29, 46, 16]. For LCS, however, strong unconditional lower
bounds are known for sketching and streaming: Even for L = 4 the sketch size and streaming
memory must be Ω(n) bits, since the randomized communication complexity of this problem
is Ω(n) [47]. Similarly strong results hold even for approximating the LCS length [47], see
also [35]. However, these impossibility results construct strings over alphabet size Θ(n).

In contrast, in this paper we focus on strings x, y defined over a fixed alphabet Σ (of
constant size). This is well motivated, e.g., for binary files (Σ = {0, 1}), DNA sequences
(Σ = {A,G,C, T}), or English text (Σ = {a, . . . , z, A, . . . , Z} plus punctuation marks). We
therefore suppress factors depending only on |Σ| in O-notation throughout the whole paper.
Surprisingly, this setting was ignored in the sketching and streaming literature so far; the
only known upper bounds also work in the case of large alphabet and are thus Ω(n).

Before stating our first main result we define a run in a string as the non extendable
repetition of a character. For example the string baaabc has a run of character a of length 3.
Our first main result is the following deterministic sketch.

I Theorem 1. Given a string x of length n over alphabet Σ and an integer L, we can
compute a subsequence CL(x) of x such that (1) |CL(x)| = O(L|Σ|), (2) CL(x) consists of
O(L|Σ|−1) runs of length at most L, and (3) any string y of length at most L is a subsequence
of x if and only if it is a subsequence of CL(x). Moreover, CL(x) is computed by a one-pass
streaming algorithm with memory O(L|Σ|−1 logL) and running time O(1) per symbol of x.

Note that we can store CL(x) using O(L|Σ|−1 logL) bits, since each run can be encoded
using O(logL) bits. This directly yields a solution for LCS sketching, where Alice and Bob
compute the sketches skL(x) = CL(x) and skL(y) = CL(y) and the referee computes an LCS
of CL(x) and CL(y). If this has length at least L then also x, y have LCS length at least L.
Similarly, if x, y have an LCS z of length at least L, then z is also a subsequence of CL(x)
and CL(y), and thus their LCS length is at least L, showing correctness. The sketch size is
O(L|Σ|−1 logL) bits, the encoding time is O(n), and the decoding time is O(L2|Σ|), as LCS
can be computed in quadratic time in the string length O(L|Σ|).

We similarly obtain an algorithm for LCS streaming by computing CL(x) and then CL(y)
and finally computing an LCS of CL(x) and CL(y). The space usage of this streaming
algorithm is O(L|Σ|−1 logL), and the running time is O(1) per symbol of x and y, plus
O(L2|Σ|) for the last step.

These size, space, and time bounds are surprisingly good for |Σ| = 2, but quickly
deteriorate with larger alphabet size. For very large alphabet size, this deterioration was to
be expected due to the Ω(n) lower bound for |Σ| = Θ(n) from [47]. We further show that
this deterioration is necessary by proving optimality of our sketch in several senses:

We show that for any L,Σ there exists a string x (of length O(L|Σ|)) such that no string x′
of length o(L|Σ|) has the same set of subsequences of length at most L. Similarly, this
string x cannot be replaced by any string consisting of o(L|Σ|−1) runs without affecting
the set of subsequences of length at most L. This shows optimality of Theorem 1 among
sketches that replace x by another string x′ (not necessarily a subsequence of x) and then
compute an LCS of x′ and y. See Theorem 4.
More generally, we study the Subsequence Sketching problem: Alice is given a string x
and number L and computes skL(x). Bob is then given skL(x) and a string y of length L
and decides whether y is a subsequence of x. Observe that any solution for LCS sketching
or streaming with size/memory S = S(L,Σ) yields a solution for subsequence sketching
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with sketch size S.1 Hence, any lower bound for subsequence sketching yields a lower
bound for LCS sketching and streaming. We show that any deterministic subsequence
sketch has size Ω(L|Σ|−1 logL) in the worst case over all strings x. This matches the
run-length encoding of CL(x) even up to the logL-factor. If we restrict to strings of
length Θ(L|Σ|−1), we still obtain a sketch size lower bound of Ω(L|Σ|−1). See Theorem 7.
Finally, randomization does not help either: We show that any randomized subsequence
sketch, where Bob may err in deciding whether y is a subsequence of x with small constant
probability, has size Ω(L|Σ|−1), even restricted to strings x of length Θ(L|Σ|−1). See
Theorem 10.

We remark that Theorem 1 only makes sense if L � n. Although this is not the best
motivated regime of LCS in practice, it corresponds to testing whether x and y are “very
different” or “not very different”. This setting naturally occurs, e.g., if one string is much
longer than the other, since then L ≤ m� n. We therefore think that studying this regime
is justified for the fundamental problem LCS.

1.2 WLCS: In between min-quadratic and rectangular time
As an application of our sketch, we determine the (classic, offline) time complexity of a
weighted variant of LCS, which we discuss in the following.

A textbook dynamic programming algorithm computes the LCS of given strings x, y
of length n in time O(n2). A major result in fine-grained complexity shows that further
improvements by polynomial factors would refute the Strong Exponential Time Hypothesis
(SETH) [1, 13] (see Section 5 for a definition). In case x and y have different lengths n and
m, with n ≥ m, Hirschberg’s algorithm computes their LCS in time O((n+m2) log n) [22],
and this is again near-optimal under SETH. This running time could be described as “min-
quadratic”, as it is quadratic in the minimum of the two string lengths. In contrast, many
other dynamic programming type problems have “rectangular” running time2 Õ(nm), with
a matching lower bound of (nm)1−o(1) under SETH, e.g., Fréchet distance [4, 12], dynamic
time warping [1, 13], and regular expression pattern matching [43, 10].

Part of this paper is motivated by the intriguing question whether there are problems with
intermediate running time, between “min-quadratic” and “rectangular”. Natural candidates
are generalizations of LCS, such as the weighted variant WLCS as defined in [1]: Here
we have an additional weight function W : Σ → N, and the task is to compute a common
subsequence of x and y with maximum total weight. This problem is a natural variant of
LCS that, e.g., came up in a SETH-hardness proof of LCS [1]. It is not to be confused with
other weighted variants of LCS that have been studied in the literature, such as a statistical
distance measure where given the probability of every symbol’s occurrence at every text
location the task is to find a long and likely subsequence [6, 18], a variant of LCS that favors
consecutive matches [36], or edit distance with given operation costs [13].

Clearly, WLCS inherits the hardness of LCS and thus requires time (n + m2)1−o(1).
However, the matching upper bound Õ(n+m2) given by Hirschberg’s algorithm only works
as long as the function W is fixed (then the hidden constant depends on the largest weight).
Here, we focus on the variant where the weight function W is part of the input. In this case,
the basic O(nm)-time dynamic programming algorithm is the best known.

1 For LCS sketching this argument only uses that we can check whether y is a subsequence of x by testing
whether the LCS length of x and y is |y|. For LCS streaming we use the memory state right after
reading x as the sketch skL(x) and then use the same argument.

2 By Õ-notation we ignore factors of the form polylog(n).
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Our second main result is to settle the time complexity of WLCS in terms of n and m
for any fixed constant alphabet Σ, up to lower order factors no(1) and assuming SETH.

I Theorem 2. WLCS can be solved in time O(min{nm, n+m|Σ|}). Assuming SETH, WLCS
requires time min{nm, n+m|Σ|}1−o(1), even restricted to n = Θ(mα) and |Σ| = σ for any
constants α ∈ R, α ≥ 1 and σ ∈ N, σ ≥ 2.

In particular, for |Σ| > 2 the time complexity of WLCS is indeed “intermediate”, in
between “min-quadratic” and “rectangular”! To the best of our knowledge, this is the first
result of fine-grained complexity establishing such an intermediate running time.

To prove Theorem 2 we first observe that the usual O(nm) dynamic programming
algorithm also works for WLCS. For the other term n + m|Σ|, we compress x by running
the sketching algorithm from Theorem 1 with L = m. This yields a string x′ = Cm(x)
of length O(m|Σ|) such that WLCS has the same value on (x, y) and (x′, y), since every
subsequence of length at most m of x is also a subsequence of x′, and vice versa. Running
the O(nm)-time algorithm on (x′, y) would yield total time O(n + m|Σ|+1), which is too
slow by a factor m. To obtain an improved running time, we use the fact that x′ consists
of O(m|Σ|−1) runs. We design an algorithm for WLCS on a run-length encoded string x′
consisting of r runs and an uncompressed string y of length m running time O(rm). This
generalizes algorithms for LCS with one run-length encoded string [7, 20, 37]. Together, we
obtain time O(min{nm, n + m|Σ|}). We then show a matching SETH-based lower bound
by combining our construction of incompressible strings from our sketching lower bounds
(Theorem 4) with the by-now classic SETH-hardness proof of LCS [1, 13].

1.3 Further Related Work
Analyzing the running time in terms of multiple parameters like n,m,L has a long history
for LCS [8, 9, 19, 22, 24, 26, 42, 44, 51]. Recently tight SETH-based lower bounds have been
shown for all these algorithms [14]. In the second part of this paper, we perform a similar
complexity analysis on a weighted variant of LCS. This follows the majority of recent work on
LCS, which focused on transferring the early successes and techniques to more complicated
problems, such as longest common increasing subsequence [39, 33, 52, 17], tree LCS [41], and
many more generalizations and variants of LCS, see, e.g., [32, 15, 48, 28, 3, 34, 30, 21, 45, 25].
For brevity, here we ignore the equally vast literature on the closely related edit distance.

1.4 Notation
For a string x of length n over alphabet Σ, we write x[i] for its i-th symbol, x[i . . . j] for
the substring from the i-th to j-th symbol, and |x| for its length. For c ∈ Σ we write
|x|c := |{i | xi = c}|. For strings x, y we write x ◦ y for their concatenation, and for k ∈ N
we write xk for the k-fold repetition x ◦ . . . ◦ x. A subsequence of x is any string of the form
y = x[i1] ◦ x[i2] ◦ . . . ◦ x[i`] with 1 ≤ i1 < i2 < . . . < i` ≤ |x|; in this case we write y � x.
A run in x is a maximal substring x[i . . . j] = cj−i+1, consisting of a single alphabet letter
c ∈ Σ. Recall that we suppress factors depending only on |Σ| in O-notation.

2 Sketching LCS

In this section design a sketch for LCS, proving Theorem 1. Consider any string z defined
over alphabet S ⊆ Σ. We call z a (q, S)-permutation string if we can partition z =
z(1) ◦ z(2) ◦ . . . ◦ z(q) such that each z(i) contains each symbol in S at least once. Observe
that a (q, S) permutation string contains any string y of length at most q over the alphabet
S as a subsequence.
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Algorithm 1 Outline for computing CL(x) given a string x and an integer L.
1: initialize CL(x) as the empty string
2: for all i from 1 to |x| do
3: if for all S ⊆ Σ with x[i] ∈ S, no suffix of CL(x) is an (L, S)-permutation string then
4: set CL(x)← CL(x) ◦ x[i]
5: return CL(x)

I Claim 3. Consider any string x = x′ ◦ c ◦ x′′, where x′, x′′ are strings over alphabet Σ and
c ∈ Σ. Let S ⊆ Σ. If some suffix of x′ is an (L, S)-permutation string and c ∈ S, then for
all strings y of length at most L we have y � x if and only if y � x′ ◦ x′′.

Proof. The “if”-direction is immediate. To prove the “only if”, consider any subsequence
y of x of length d ≤ L and let y = x[i1] ◦ x[i2] ◦ . . . ◦ x[id]. Let ` and r be the length of x′
and x′′, respectively. If ik 6= `+ 1 for all 1 ≤ k ≤ d, then clearly y � x′ ◦ x′′. Thus, assume
that ik = `+ 1 for some k. Let a be minimal such that x[a . . . `] only contains symbols in S.
By assumption, x[a . . . `] is an (L, S)-permutation string, and c = x[`+ 1] ∈ S. Let j ≥ 1 be
the minimum index such that x[ij ] . . . x[ik] only contains symbols in S. Since j is minimal,
x[ij−1] /∈ S and thus ib < a for all b < j. Therefore x[i1] ◦ x[i2] ◦ . . . ◦ x[ij−1] � x[0 . . . a− 1].
Since x[a . . . `] is an (L, S)-permutation string and |x[ij ] ◦ . . . ◦ x[ik]| ≤ d ≤ L, it follows
that x[ij ] ◦ . . . ◦ x[ik] is a subsequence of x[a . . . `]. Hence, x[i1] ◦ . . . ◦ x[ik] � x′ and
x[ik+1] ◦ . . . ◦ x[id] � x′′, and thus y � x′ ◦ x′′. J

The above claim immediately gives rise to the following one-pass streaming algorithm.
By Claim 3, the string CL(x) returned by this algorithm satisfies the subsequence property

(3) of Theorem 1. Note that any run in CL(x) has length at most L, since otherwise for
S = {c} we would obtain an (L, S)-permutation string followed by another symbol c, so that
Claim 3 would apply. We now show the upper bounds on the length and the number of runs.
Consider a substring z = CL(x)[i . . . j] of CL(x), containing symbols only from S ⊆ Σ. We
claim that z consists of at most rL(|S|) := 2(L+ 1)|S|−1 − 1 runs. We prove our claim by
induction on |S|. For |S| = 1, the claim holds trivially. For |S| > 1 and any k ≥ 1, let ik
be the minimal index such that z[1 . . . ik] is a (k, S)-permutation string, or ik = ∞ if no
such prefix of z exists. Note that iL ≥ |z|, since otherwise a proper prefix of z would be an
(L, S)-permutation string, in which case we would have deleted the last symbol of z. The
string z[ik−1 + 1 . . . ik − 1] contains symbols only from S \ {z[ik]} and thus by induction
hypothesis consists of at most rL(|S| − 1) runs. Since iL ≥ |z|, we conclude that the number
of runs in z is at most L · (rL(|S| − 1) + 1) ≤ L · 2(L+ 1)|S|−2 ≤ 2(L+ 1)|S|−1 − 1 = rL(|S|).
Thus the number of runs of CL(x) is at most rL(|Σ|) ∈ O(L|Σ|−1), and since each run has
length at most L we obtain |CL(x)| ∈ O(L|Σ|).

Algorithm 2 shows how to efficiently implement Algorithm 1 in time O(1) per symbol of x.
We maintain a counter tS (initialized to 0) and a set QS (initialized to ∅) for every S ⊆ Σ with
the following meaning. After reading x[1 . . . i], let j be minimal such that x[j . . . i] consists of
symbols in S. Then tS is the maximum number t such that x[j . . . i] is a (t, S)-permutation
string. Moreover, let k be minimal such that x[j . . . k] still is a (tS , S)-permutation string.
Then QS ⊆ S is the set of symbols that appear in x[k + 1 . . . i]. In other words, in the future
we only need to read the symbols in S \QS to complete a (tS + 1, S)-permutation string. In
particular, when reading the next symbol x[i+ 1], in order to check whether Claim 3 applies
we only need to test whether for any S ⊆ Σ with x[i+ 1] ∈ S we have tS ≥ L. Updating tS
and QS is straightforward, and shown in Algorithm 2.

FSTTCS 2018
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Algorithm 2 Computing CL(x) in time O(1) per symbol of x.
1: set ts ← 0, QS ← ∅ for all S ⊆ Σ
2: set CL(x) to the empty string
3: for all i from 1 to |x| do
4: if tS < L for all S ⊆ Σ with x[i] ∈ S then
5: set CL(x)← CL(x) ◦ x[i]
6: for all S such that x[i] ∈ S do
7: set QS ← QS ∪ {x[i]}
8: if QS = S then
9: set QS ← ∅

10: set tS ← tS + 1
11: for all S such that x[i] /∈ S do
12: set tS ← 0
13: set QS ← ∅

Since we assume |Σ| to be constant, each iteration of the loop runs in time O(1), and
thus the algorithm determines CL(x) in time O(n). This finishes the proof of Theorem 1.

3 Optimality of the Sketch

In this section we show that the sketch CL(x) is optimal in many ways. First, we show that
the length and the number of runs are optimal for any sketch that replaces x by any other
string z with the same set of subsequences of length at most L.

I Theorem 4. For any L and Σ there exists a string x such that for any string z with
{y | y � x, |y| ≤ L} = {y | y � z, |y| ≤ L} we have |z| = Ω(L|Σ|) and z consists of Ω(L|Σ|−1)
runs.

Let Σ = {0, 1, . . . , σ − 1} and Σk = {0, 1, . . . , k − 1}. We construct a family of strings
x(k) recursively as follows, where m := L/|Σ|:

x(0) = 0m

x(k) = (x(k−1) ◦ k)m ◦ x(k−1) for 1 ≤ k ≤ σ − 1.

Theorem 4 now follows from the following inductive claim, for k = σ − 1.

I Claim 5. For any string z with {y | y � x(k), |y| ≤ m(k+1)} = {y | y � z, |y| ≤ m(k+1)}
we have |z| ≥ mk+1 and the number of runs in z is at least mk.

Proof. We use induction on k. For k = 0, since y = 0m � x(0) we have z = 0m′ with m′ ≥ m
and the number of runs in z is exactly 1. For any k > 0, if |x(k)|k > |z|k then km � xk

but km � z, and similarly if |x(k)|k < |z|k then km+1 � z but km+1 � x(k) (note that
m(k + 1) ≥ m+ 1 since k ≥ 1, and thus y can be km+1). This implies |z|k = m and thus we
have z = z(0) ◦ k ◦ z(1) ◦ k ◦ . . . ◦ k ◦ z(m), where each z(i) is a string on alphabet Σk−1. Hence,
for any 0 ≤ i ≤ m and string y′ of length at most mk, we have y = kiy′km−i � z if and only
if y′ � z(i). Similarly, y � x(k) holds if and only if y′ � x(k−1). Since y � z is equivalent to
y � x by assumption, we obtain that y′ � z(i) is equivalent to y′ � x(k−1). By induction
hypothesis, z(i) has length at least mk and consists of at least mk−1 runs. Summing over
all i, string z has length at least mk+1 and consists of at least mk runs. J
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x(z)

x(1,0) 2 x(1,1) 2 x(1,2)

x(0,0) 1 x(0,1) 1 x(0,2) 2 x(0,3) 1 x(0,4) 1 x(0,5) 2 x(0,6) 1 x(0,7) 1 x(0,8)

0z[0] 1 0z[1] 1 0z[2] 2 0z[3] 1 0z[4] 1 0z[5] 2 0z[6] 1 0z[7] 1 0z[8]

Figure 1 Illustration of constructing x(z) from z. Let m = σ = 3. Consider a string z of length
mσ−1 = 9. The figure shows the construction of x(z) from z.

2 1 y 1 2

Figure 2 Illustration of the construction of pat(i, y). Letm = σ = 3. Consider i = 4 = 1·31 +1·30.
Therefore pat(i, y) = 21y12.

Note that the run-length encoding of CL(x) has bit length O(L|Σ|−1 logL), since CL(x)
consists of O(L|Σ|−1) runs, each of which can be encoded using O(logL) bits. We now show
that this sketch has optimal size, even in the setting of Subsequence Sketching: Alice is given
a string x of length n over alphabet Σ and a number L and computes skL(x). Bob is then
given skL(x) and a string y of length at most3 L and decides whether y is a subsequence
of x.

We construct the following hard strings for this setting, similarly to the previous con-
struction. Let Σ = {0, 1, 2, . . . , σ − 1} and m ∈ N. Consider any vector z ∈ {0, . . . ,m− 1}k,
where k := mσ−1. We define the string x = x(z) recursively as follows; see Figure 1 for an
illustration:

x(z) = x(σ−1,0)

x(c,i) =
(
©m−2
j=0 x(c−1,m·i+j) ◦ c

)
◦ x(c−1,m·i+m−1) for 1 ≤ c ≤ σ − 1

x(0,i) = 0z[i]

A straightforward induction shows that |x(z)| ≤ mσ − 1. Moreover, for any 0 ≤ i < mσ−1

with base-m representation i =
∑σ−2
j=0 ij ·mj , where 0 ≤ ij < m, we define the following

string; see Figure 2 for an illustration:

pat(i, y) :=
(
©σ−1
j=1 (σ − j)iσ−1−j

)
◦ y ◦

(
©σ−1
j=1 j

m−1−ij−1
)
.

The following claim shows that testing whether pat(i, y) is a subsequence of x(z) allows
to infer the entries of z.

I Claim 6. We have pat(i, y) � x(z) if and only if y � 0z[i].

Proof. See Figure 3 for illustration. Given i and y, let z(c) = cic−1 ◦ z(c−1) ◦ cm−1−ic−1 for
all 1 ≤ c ≤ σ − 1, and z(0) = y. Note that z(σ−1) = pat(i, y) . Set jc :=

∑σ−2
l=c il ·ml−c,

so in particular we have jc = m · jc−1 + ic. Observe that z(c) � x(c,jc) if and only if

3 In the introduction, we used a slightly different definition where Bob is given a string of length exactly L.
This might seem slightly weaker, but in fact the two formulations are equivalent (up to increasing L
by 1), as can be seen by replacing x by x′ = 0L1x and y by y′ = 0L−|y|1y. Then y � x if and only if
y′ � x′, and y′ has fixed length L+ 1.
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0z[0] 1 0z[1] 1 0z[2] 2 0z[3] 1 0z[4] 1 0z[5] 2 0z[6] 1 0z[7] 1 0z[8]

2 1 y 1 2

Figure 3 Illustration of Claim 6. Let m = σ = 3 and i = 4. Then pat(i, y) = 21y12. Now observe
that pat(i, y) � x(z) if and only if y � x(0,i) = 0z[i].

z(c−1) � x(c−1,jc−1), which follows immediately after matching all c’s in z(c) and x(c,jc).
Therefore, pat(i, y) = z(σ−1) � x(σ−1,0) = x(z) holds if and only if z(c) � x(c,jc) for
any c ≤ σ − 2. Substituting c = 0 we obtain that pat(i, y) � x(z) holds if and only if
y = z(0) � x(0,j0) = x(0,i) = 0z[i]. J

I Theorem 7. Any deterministic subsequence sketch has size Ω(L|Σ|−1 logL) in the worst
case. Restricted to strings of length Θ(L|Σ|−1), the sketch size is Ω(L|Σ|−1).

Proof. Let m := L/|Σ|. Let z ∈ {0, . . . ,m− 1}k with k = m|Σ|−1 and let x = x(z) as above.
Alice is given x, L as input. Notice that there are mk distinct inputs for Alice. Assume for
contradiction that the sketch size is less that k · logm for every x. Then the total number of
distinct possible sketches is strictly less than mk. Therefore, at least two strings, say x(z1)
and x(z2), have the same encoding, for some z1, z2 ∈ {0, . . . ,m− 1}k with z1 6= z2. Let i be
such that z1[i] 6= z2[i], and without loss of generality z1[i] < z2[i]. Now set Bob’s input to
y = pat(i, z2[i]), which is a valid subsequence of x(z2), but not of x(z1). However, since the
encoding for both x(z2) and x(z1) is the same, Bob’s output will be incorrect for at least one
of the strings. Finally, note that |y| ≤ mσ = L. Hence, we obtain a sketch size lower bound
of Ω(k logm) = Ω(L|Σ|−1 logL).

If we instead choose z from {0, 1}k, then the constructed string x(z) has length O(k) =
O(L|Σ|−1), and the same argument as above yields a sketch lower bound of Ω(L|Σ|−1). J

We now discuss the complexity of randomized subsequence sketching where Bob is allowed
to err with probability 1/3. To this end, we will reduce from the Index problem.

I Definition 8. In the Index problem, Alice is given an n-bit string z ∈ {0, 1}n and sends a
message to Bob. Bob is given Alices’s message and an integer i ∈ [n] and outputs z[i].

Intuitively, since the communication is one-sided, Alice cannot infer i and therefore has
to send the whole string z. This intuition also holds for randomized protocols, as follows.

I Fact 9 ([31]). The randomized one-way communication complexity of Index is Ω(n).

Claim 6 shows that subsequence sketching allows us to infer the bits of an arbitrary
string z, and thus the hardness of Index carries over to subsequence sketching.

I Theorem 10. In a randomized subsequence sketch, Bob is allowed to err with probability
1/3. Any randomized subsequence sketch has size Ω(L|Σ|−1) in the worst case. This holds
even restricted to strings of length Θ(L|Σ|−1).

Proof. We reduce the Index problem to subsequence sketching. Let z ∈ {0, 1}k be the input
to Alice in the Index problem, where k = m|Σ|−1. As above, we construct the corresponding
input x(z) to Alice in subsequence sketching. Observe that |x(z)| = O(m|Σ|−1). For any
input i to Bob in the Index problem, we construct the corresponding input pat(i, 0) for Bob
in subsequence sketching. We have pat(i, 0) � x(z) if and only if z[i] = 1 (by Claim 6). This
yields a lower bound of Ω(k) = Ω(m|Σ|−1) = Ω(L|Σ|−1) on the sketch size (by Fact 9). J
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4 Weighted LCS

I Definition 11. In the WLCS problem we are given strings x, y of lengths n,m over alphabet
Σ and given a function W : Σ→ N. A weighted longest common subsequence (WLCS) of x
and y is any string z with z � x and z � y maximizing W (z) =

∑|z|
i=1W (z[i]). The task is

to compute this maximum weight, which we abbreviate as WLCS(x, y).

In the remainder of this section we will design an algorithm for computing WLCS(x, y) in
time O(min{nm, n+m|Σ|}). This yields the upper bound of Theorem 2. Note that here we
focus on computing the maximum weight WLCS(x, y); standard methods can be applied
to reconstruct a subsequence attaining this value. We prove a matching conditional lower
bound of min{nm, n+m|Σ|}1−o(1) in the next section.

Let x, y,W be given. The standard dynamic programming algorithm for determining
LCS(x, y) in time O(nm) trivially generalizes to WLCS(x, y) as well. Alternatively, we can
first compress x to x′ := Cm(x) in time O(n) and then compute the WLCS(x′, y), which is
equal to WLCS(x, y) since all subsequences of length at most m of x are also subsequences
of Cm(x). We show below in Theorem 12 how to compute WLCS of a run-length encoded
string x′ with r runs and a string y of length m in time O(rm). Since x′ = Cm(x) consists of
O(m|Σ|−1) runs and the length of y is m, we can compute WLCS(x, y) = WLCS(Cm(x), y)
in time O(m|Σ|). In total, we obtain time O(min{nm, n+m|Σ|}).

It remains to solve WLCS on a run-length encoded string x with r runs and a string
y of length m in time O(rm). For (unweighted) LCS a dynamic programming algorithm
with this running time was presented by Liu et al. [37]. We first give a brief intuitive
explanation as to why their algorithm does not generalize to WLCS. Let x = c`1

1 c
`2
2 . . . c`rr

be the run-length encoded string, where ci ∈ Σ, and let Li =
∑i
j=1 `j . Let D(i, j) :=

WLCS(x[1 . . . Li], y[1 . . . j]). Liu et al.’s algorithm relies on a recurrence for D(i, j) in terms
of D(i, j − 1). Consider an input like x = ba1a2 · · · akb and y = a1a2 · · · akbb with W (b) >∑
`∈[k]W (a`). Note that D(k+2, k+1) =

∑
`∈[k]W (a`)+W (b), but D(k+2, k+2) = 2W (b).

Thus D(k + 2, k + 2) = D(k + 2, k + 1)−
∑
`∈[k]W (a`) +W (b). Therefore, in the weighted

setting D(i, j) and D(i, j − 1) can differ by complicated terms that seem hard to figure out
locally. Our algorithm that we develop below instead relies on a recurrence for D(i, j) in
terms of D(i− 1, j′).

I Theorem 12. Given a run-length encoded string x consisting of r runs, a string y of
length m, and a weight function W : Σ→ N we can determine WLCS(x, y) in time O(rm).

Proof. We write the run-length encoded string x as c`1
1 c

`2
2 . . . c`rr with ci ∈ Σ and `i ≥ 1.

Let Li =
∑i
j=1 `j . We will build a dynamic programming table D where D(i, j) stores

the value WLCS(x[1 . . . Li], y[1 . . . j]). In particular, D(0, j) = D(i, 0) = 0 for all i, j. We
will show how to compute this table in O(1) (amortized) time per entry in the following.
Since we can split WLCS(x[1 . . . Li], y[1 . . . j]) = max0≤k≤j WLCS(x[1 . . . Li−1], y[1 . . . k]) +
WLCS(c`ii , y[k + 1 . . . j]), we obtain the recurrence D(i, j) = max0≤k≤j D(i− 1, k) +W (ci) ·
min{`i, |y[k + 1 . . . j]|ci}. Since D(i, j) is monotonically non-decreasing in i and j, we may
rewrite the same recurrence as

D(i, j) = max
0≤k≤j : |y[k+1...j]|ci≤`i

D(i− 1, k) +W (ci) · |y[k + 1 . . . j]|ci .

= W (ci) · |y[1 . . . j]|ci + max
0≤k≤j : |y[k+1...j]|ci≤`i

D(i− 1, k)−W (ci) · |y[1 . . . k]|ci
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Algorithm 3 Computing RTLM(Ki,j) from RTLM(Ki,j−1).
1: Initialize RTLM(Ki,j) = RTLM(Ki,j−1)
2: while the smallest (=leftmost) element k of RTLM(Ki,j) satisfies |y[k + 1 . . . j]|ci > `i

do
3: Remove k from RTLM(Ki,j)
4: while the largest (=rightmost) element k of RTLM(Ki,j) satisfies hi(k) ≤ hi(j) do
5: Remove k from RTLM(Ki,j)
6: Append j to RTLM(Ki,j)

Let bi,j be the minimum value of 0 ≤ k ≤ j such that |y[k + 1 . . . j]|ci ≤ `i. Note that bi,j
is well-defined, since for k = j we always have |y[k + 1 . . . j]|ci = 0 ≤ `i, and note that bi,j
is monotonically non-decreasing in j. We define the active k-window Ki,j as the interval
{bi,j , bi,j + 1, . . . , j}. Note that Ki,j is non-empty and both its left and right boundary are
monotonic in j. Let hi(k) := D(i− 1, k)−W (ci) · |y[1 . . . k]|ci be the height of k. We define
highest(Ki,j) as maxk∈Ki,j hi(k). With this notation, we can rewrite the above recurrence as

D(i, j) = W (ci) · |y[1 . . . j]|ci + highest(Ki,j).

We can precompute all values |y[1 . . . j]|c in O(m) time. Hence, in order to determine D(i, j)
in amortized time O(1) it remains to compute highest(Ki,j) in amortized time O(1). To this
end, we maintain the right to left maximum sequence of the active window Ki,j . Specifically,
we consider the sequence RTLM(Ki,j) = 〈ks, ks−1, . . . , k1〉 where k1 = j and for any p > 1,
kp is is the largest number in Ki,j with kp < kp−1 and hi(kp) > hi(kp−1). In particular, ks
is the largest number in Ki,j attaining hi(ks) = highest(Ki,j). Hence, from this sequence
RTLM(Ki,j) we can determine highest(Ki,j) and thus D(i, j) in time O(1). It remains to
argue that we can maintain RTLM(Ki,j) in amortized time O(1) per table entry. We sketch
an algorithm to obtain RTLM(Ki,j) from RTLM(Ki,j−1).

It is easy to see correctness, since the first while loop removes right to left maxima
that no longer lie in the active window, the second while loop removes right to left max-
ima that are dominated by the new element j, and the last line adds j. Note that
|y[k + 1 . . . j]|c = |y[1 . . . j]|c − |y[1 . . . k]|c can be computed in time O(1) from the pre-
computed values |y[1 . . . j]|c, and thus the while conditions can be checked in time O(1). A
call of Algorithm 3 can necessitate multiple removal operations, but only one insertion. By
charging removals to the insertion of the removed element, we see that Algorithm 3 runs
in amortized time O(1). We therefore can compute each table entry D(i, j) in amortized
time O(1) and obtain total time O(rm). Pseudocode for the complete algorithm is given
below. J

5 Conditional lower bound for Weighted LCS

In this section, we prove a conditional lower bound for Weighted LCS, based on the standard
hypothesis SETH, which was introduced by Impagliazzo, Paturi, and Zane [27] and asserts
that satisfiability has no algorithms that are much faster than exhaustive search.

Strong Exponential Time Hypothesis (SETH). For any ε > 0 there is a k ≥ 3 such that
k-SAT on n variables cannot be solved in time O((2− ε)n).
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Algorithm 4 Computing WLCS(x, y) in time O(r ·m).
1: precompute |y[1 . . . i]|c for all i ∈ [m] and c ∈ Σ.
2: set D(i, 0) = D(0, j) = 0 for any 0 ≤ i ≤ r and 0 ≤ j ≤ m.
3: for i = 1, . . . , r do
4: RTLM(Ki,0)← 〈0〉.
5: for j = 1, . . . ,m do
6: Update RTLM(Ki,j) as in Algorithm 3
7: Let k be the smallest (=leftmost) element of RTLM(Ki,j)
8: Compute highest(Ki,j) = hi(k) = D(i− 1, k)−W (ci) · |y[1 . . . k]|ci
9: D(i, j)←W (ci) · |y[1 . . . j]|ci + highest(Ki,j).

10: return D(r,m)

Essentially all known SETH-based lower bounds for polynomial-time problems (e.g. [1,
10, 12, 13, 14]) use reductions via the Orthogonal Vectors problem (OV): Given sets A,
B ⊆ {0, 1}D of size |A| = N , |B| = M , determine whether there are a ∈ A, b ∈ B that are
orthogonal, i.e.,

∑D
i=1 a[i]·b[i] = 0, where the sum is over the integers. Simple algorithms solve

OV in time O(2D(N +M)) and O(NMD). The fastest known algorithm for D = c(N) logN
runs in time N2−1/O(log c(N)) (when N = M) [2], which is only slightly subquadratic for
D � logN . This has led to the following reasonable hypothesis.

(Unbalanced) Orthogonal Vectors Hypothesis (OVH). For any γ > 0, OV restricted to
M = Θ(Nγ) and D = No(1) requires time (NM)1−o(1).

A well-known reduction by Williams [50] shows that SETH implies OVH in case γ = 1.
Moreover, an observation in [14] shows that if OVH holds for some γ > 0 then it holds for
all γ > 0. Thus, OVH is a weaker assumption than SETH, and any OVH-based lower bound
also implies a SETH-based lower bound. The conditional lower bound in this section does
not only hold assuming SETH, but even assuming the weaker OVH.

We use the following construction from the OVH-based lower bound for LCS [1, 13]. For
binary alphabet, such a construction was given in [13].

I Theorem 13. Given A,B ⊆ {0, 1}D of size N , in time O(DN) we can compute strings xA
and yB on alphabet {0, 1} of length Θ(DN) as well as a number τ such that LCS(xA, yB) ≥ τ
holds if and only if there is an orthogonal pair of vectors in A and B. In this construction,
xA and yB depend only on A and B, respectively, and |xA|, |yB |, τ depend only on N,D.

We now prove a conditional lower bound for WLCS, i.e., the lower bound of Theorem 2.

I Theorem 14. Given strings x, y of lengths n,m with n ≥ m over alphabet Σ, computing
WLCS(x, y) requires time min{nm, n+m|Σ|}1−o(1), assuming OVH. This holds even restricted
to n = mα±o(1) and |Σ| = σ for any fixed constants α ∈ R, α ≥ 1 and σ ∈ N, σ ≥ 2.

Proof. Let Σ = {0, 1, . . . , σ − 1} and α = αI + αF , where αI = bαc and αF = α − αI
are the integral and fractional parts. Let M ∈ N and set N = min{MαI · dMαF e,Mσ−1}.
Note that M divides N . Consider any instance A = {a0, a1, . . . , aN−1} ⊆ {0, 1}d and
B = {b0, b1, . . . , bM−1} ⊆ {0, 1}D of the Orthogonal Vectors problem. Partition A into
A0, A1, . . . , AN/M−1, where |Ai| = M . Then by Theorem 13 we can construct strings x(i)

A

and yB on alphabet {0, 1} of length Θ(DM) and τ ∈ N in time O(DM) such that Ai and
B contain an orthogonal pair of vectors if and only if LCS(x(i)

A , yB) ≥ τ . Note that A
and B contain an orthogonal pair of vectors if and only if for some 0 ≤ i < N

M , Ai and B

FSTTCS 2018



40:12 Sketching, Streaming, and Fine-Grained Complexity of (Weighted) LCS

contain an orthogonal pair of vectors. Hence, A and B contain an orthogonal pair if and
only if max0≤i< N

M
LCS(x(i)

A , yB) ≥ τ . In the following, we encode the latter inequality into
an instance of WLCS.

For simplicity we only give the proof for integral α and α < σ (the remaining cases are
omitted and can be found in the appendix). In this case, N = Mα and the running time
lower bound that we will prove is (nm)1−o(1).

We set λ to any value such that λ > |yB |/M , and note that λ ∈ Θ(D) suffices. Set
W (k) = λ ·Mk−1 for k ≥ 2, andW (1) = W (0) = 1. Let Σk = {0, 1, . . . , k − 1}. We construct
strings x and y as follows:

x = x(α,0)

x(k,i) =
(
©M−2
j=0 x(k−1,M ·i+j) ◦ k

)
◦ x(k−1,M ·i+(M−1)) for 2 ≤ k ≤ α

x(1,i) = xiA for 0 ≤ i < N/M

y = y(α)

y(k) = kM−1 ◦ y(k−1) ◦ kM−1 for 2 ≤ k ≤ α

y(1) = yB .

Observe that for all k, x(k,i) and y(k) are defined on Σk. In particular, since α ≤ σ − 1
we only use symbols from Σ. Let `(k) denote the length of x(k,i) for any i. Observe
that `(k) = M · `(k − 1) + (M − 1) and `(1) ∈ Θ(DM). Thus, `(k) ∈ Θ(DMk) and
n := |x| ∈ Θ(DMα). It is straightforward to see that m := |y| = Θ((k +D)M) = Θ(DM),
since k ≤ |Σ| = O(1). Recall that for any string z, W (z) is its total weight.

I Claim 15. For any integer 2 ≤ k ≤ α, we have (1) (M − 1) ·
∑k
`=2W (`) = λ(Mk −M)

and (2) W (y(k)) < W (k + 1) + λ · (Mk −M).

Proof. For (1), we calculate (M − 1) ·
∑k
`=2W (`) = (M − 1) ·

∑k−1
`=1 λM

` = λ(Mk −M).
For (2), by definition of y(k) and λ we have

W (y(k)) < λM + 2(M − 1) ·
k−1∑
`=2

W (l) (1)= λM + 2λ(Mk −M) = W (k+ 1) +λ(Mk −M).J

We now can perform the core step of our correctness argument.

I Lemma 16. For any 2 ≤ k ≤ α and 0 ≤ i < Mk−1, we have (1) WLCS(x(k,i), y(k)) ≥
λ(Mk−M), and (2) WLCS(x(k,i), y(k)) = (M−1) ·W (k)+WLCS(x(k−1,j), y(k−1)) for some
M · i ≤ j < M · (i+ 1).

Proof. For (1), clearly ©k
j=2j

M−1 is a common subsequence of x(k,i) and y(k). Together
with Claim 15.(1), we obtain WLCS(x(k,i), y(k)) ≥

∑k
j=2(M − 1) ·W (j) = λ(Mk −M).

For (2), we claim that kM−1 is a subsequence of any WLCS of x(k,i) and y(k). Assuming
otherwise, the WLCS can contain at most M − 2 symbols k and all of y(k−1). Therefore,

WLCS(x(k,i), y(k)) ≤ (M − 2) ·W (k) +W (y(k−1))
< (M − 2) ·W (k) +W (k) + λ(Mk−1 −M) by Claim 15.(2)
= (M − 1) · λMk−1 + λ(Mk−1 −M) = λ · (Mk −M).

This contradicts WLCS(x(k,i), y(k)) ≥ λ(Mk −M). It follows that kM−1 is a subsequence of
the WLCS of x(k,i) and y(k). Hence, WLCS(x(k,i), y(k)) = (M − 1) ·W (k) +WLCS(x(k−1,j),

y(k−1)) for some j with M · i ≤ j < M · (i+ 1). J
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Recursively applying the above lemma and substituting x(1,j) by xjA, we conclude that
WLCS(x, y) = λ · (Mα −M) + max0≤j<Mα−1 LCS(xjA, yB). Using Mα = N and the con-
struction of xjA, yB , we obtain that WLCS(x, y) ≥ λ(N −M) + τ holds if and only if there is
an orthogonal pair of vectors in A and B. Since OVH asserts that solving the OV instance
(A,B) in the worst case requires time (NM)1−o(1), even for D = No(1), we obtain that
determining WLCS(x, y) requires time (NM)1−o(1) = (nm/D2)1−o(1) = (nm)1−o(1). This
completes the proof for all instances where α < σ is integral. Note that if α ≥ σ, the claimed
lower bound trivially holds as it matches the input size. Now we consider the two remaining
cases, where σ − 1 < α < σ and α < σ − 1.

Case σ − 1 < α < σ. Then N = MαI = Mσ−1. We construct strings x and y as follows:

x = x(αI ,0) ◦ αI ◦ 0DM
α

y = y(αI) ◦ αI .

Again, since αI ≤ σ − 1 the strings x and y only use symbols in Σ. We now have n := |x| ∈
Θ(DMα) and m := |y| ∈ Θ(DM). Clearly, WLCS(x, y) ≥WLCS(x(αI ,0), y(αI)) +W (αI) ≥
W (αI)+λ(MαI −M). Similar to the proof for integral α, we claim that αMI is a subsequence
of the WLCS of x and y. Assuming otherwise, the WLCS of x and y contains at most M − 1
symbols αI and all of y(αI−1). Therefore,

WLCS(x, y) ≤ (M − 1) ·W (αI) +W (y(αI−1))
< (M − 1) ·W (αI) +W (αI) + λ(MαI−1 −M) by Claim 15.(2)
= W (αI) + λ · (MαI −MαI−1 +MαI−1 −M) = W (αI) + λ(MαI −M).

This contradicts WLCS(x, y) ≥ W (αI) + λ(MαI −M). Hence, αMI is a subsequence of
the WLCS of x and y, and WLCS(x, y) = W (αI) + WLCS(x(αI ,0), y(αI)). It follows that
WLCS(x, y) ≥ λMαI−1 +λ(MαI −M)+ τ holds if and only if there exists an orthogonal pair
of vectors in A and B. OVH asserts that solving the OV instance (A,B) in the worst case
requires time (NM)1−o(1), even for D = No(1). Using N = Θ(MαI ) = Θ(Mσ−1), we obtain
that determining WLCS(x, y) requires time (NM)1−o(1) = (Mσ)1−o(1) = ((m/D)σ)1−o(1) =
(m|Σ|)1−o(1). This completes the proof in the case σ − 1 < α < σ.

Case α < σ − 1. In this case αI ≤ σ − 2 and N = MαI · dMαF e. Let f = dMαF e as
shorthand. We construct x and y as follows:

x =
(
©f−2
j=0 x

(αI ,j) ◦ (αI + 1)
)
◦ x(αI ,f−1)

y = (αI + 1)f ◦ y(αI) ◦ (αI + 1)f

Once again x and y consist of symbols in Σ, since αI ≤ σ − 2. Since |x(αI ,i)| ∈ Θ(DMαI ),
we have n := |x| ∈ Θ(DMαI+αF ) = Θ(DMα), and m := |y| ∈ Θ(DM). The same argument
as before, now with f instead of M parts, shows that WLCS(x, y) = (f − 1)W (αI + 1) +
WLCS(x(αI ,j), y(αI)) holds for some 0 ≤ j < f . Plugging in WLCS(x(αI ,j), y(αI)), we see
that

WLCS(x, y) = λ(f − 1)MαI + λ(MαI −M) + max
0≤j≤ N

M−1
LCS(xjA, yB).

Hence, WLCS(x, y) ≥ λ(f−1)MαI+λ(MαI−M)+τ holds if and only if there is an orthogonal
pair of vectors in A and B. OVH asserts that solving the OV instance (A,B) in the worst
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case requires time (NM)1−o(1), even for D = No(1). Using N = Θ(MαI · f) = Θ(Mα),
we obtain that determining WLCS(x, y) requires time (NM)1−o(1) = (Mα+1)1−o(1) =
(nm/D2)1−o(1) = (nm)1−o(1). This completes the proof of the last case α < σ − 1.

Finally, note that in all cases we constructed strings over alphabet size σ of length
n = Mα±o(1) and m = M1±o(1), and thus n = mα±o(1). J
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Abstract
Motivated by cryptographic applications such as predicate encryption, we consider the problem
of representing an arbitrary predicate as the inner product predicate on two vectors. Concretely,
fix a Boolean function P and some modulus q. We are interested in encoding x to ~x and y to ~y
so that

P (x, y) = 1⇐⇒ 〈~x, ~y〉 = 0 mod q,

where the vectors should be as short as possible. This problem can also be viewed as a generaliz-
ation of matching vector families, which corresponds to the equality predicate. Matching vector
families have been used in the constructions of Ramsey graphs, private information retrieval
(PIR) protocols, and more recently, secret sharing.

Our main result is a simple lower bound that allows us to show that known encodings for
many predicates considered in the cryptographic literature such as greater than and threshold
are essentially optimal for prime modulus q. Using this approach, we also prove lower bounds
on encodings for composite q, and then show tight upper bounds for such predicates as greater
than, index and disjointness.
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1 Introduction

There are many situations in cryptography where one is interested in computing some function
F of a sensitive input x but the computational model is restricted so that only “simple”
functions F can be directly computed. For instance, the entries of x may be encrypted so
that only affine functions can be computed, or distributed between multiple non-interacting
parties so that only local functions can be computed, or simply that we only know how to
construct schemes for handling simple functions.

For all of these reasons, it is useful to be able to “encode” complex functions as simple
functions. An extremely influential example of an “encoding” in the cryptographic literature
is that of garbling schemes (or randomized encodings), which have found applications in
many areas of cryptography and elsewhere (see [20, 11, 14, 3, 2, 4, 19] and references therein).

In this work, we consider the problem of inner product encoding, namely, representing an
arbitrary predicate as the inner product predicate on two vectors. Concretely, fix a Boolean
function P (a predicate) and some modulus q (may be composite as well as prime). We are
interested in mappings x 7→ ~x, y 7→ ~y that map to vectors in Z`q such that for all x, y:

P (x, y) = 1⇐⇒ 〈~x, ~y〉 = 0 mod q,

and ` is as small as possible. This notion is motivated by the study of predicate encryption
in [15], where q is typically very large, for instance, as large as the domains of P , and can
also be viewed as a natural generalization of matching vector families to arbitrary predicates.

As an example, consider the equality predicate over [n]. Here, if q = 2, then it is not
difficult to show that the vectors must have length Ω(n). On the other hand, if q > n, then
it is sufficient to use vectors of length 2: the inner product of (1, x) and (y,−1) is 0 mod q
iff x = y. More generally, for any predicate P : X × Y → {0, 1} and any prime q ≥ 2, the
“truth table” construction achieves vectors of length min{|X |, |Y|}.

Interestingly, inner product predicate encoding for the equality predicate have been
studied in combinatorics and complexity theory, where they are known as matching vector
families. Moreover, matching vector families have found many applications, including the
construction of Ramsey graphs, private information retrieval (PIR) protocols [13, 21, 10, 7, 8],
and more recently, secret-sharing schemes [17, 18, 16]. Here, prior works showed that if q is
a prime, then we must use vectors of length Ω(n

1
q−1 ) [7].

1.1 Our results
Our main results are nearly tight bounds for many predicates considered in the cryptographic
literature such as greater than and threshold, for both prime and composite modulus q. In
particular, we have the following results for prime modulus q:

Greater than predicate for numbers in [n] requires vectors of length n. This rules out the
possibility of deriving the predicate encryption for range queries with O(

√
n) ciphertext

and secret key sizes in [6] as a special case of inner product predicate encryption.
Threshold for n-bit strings and threshold t requires vectors of length 2n−t+1. This
rules out the possibility of constructing full-fledged functional encryption schemes by
carrying out FHE decryption in the lattice-based predicate encryption of Gorbunov,
Vaikuntanathan and Wee [12] using a pairing-based functional encryption scheme for the
inner product predicate.

We then investigate encodings for composite q, specifically when q is a product of k
distinct primes. In many cases, a lower bound of `/k for composite q follows naturally if
our method gives lower bound ` for prime q. For predicates such as greater than, index and



B. Bauer, J. Vihrovs, and H. Wee 41:3

Table 1 Summary of upper and lower bounds.

predicate q prime q product of k primes
upper lower upper lower

EQn
3 O(qn

1
q−1 ) Ω(n

1
q−1 ) 2Õ((log n)1/k) Ω(log n)

GTn n n n/k n/k

DISJn
4, INDEXn, NEQn n n n/k n/k

ETHRt
n

4 5 n + 1 n/2 n + 1 n/2k

MPOLYd,q
n nd nd nd nd/k

THRt
n nn−t+1 2n−t+1 nn−t+1 2n−t+1/k

OR−EQq
n 2n 2n 2n 2n/k

disjointness, we are able to show tight lower and upper bounds for both prime and composite
q. The full summary of upper and lower bounds is shown in Table 1, and the listed predicates
are described in Section 3.

Finally, we also consider probabilistic inner product predicate encoding. For example,
there is a probabilistic encoding of length O((log n)2) for the greater than predicate for
numbers in [n], while any deterministic encoding must have length Ω(n), if q is prime.

Our lower bound technique

Our lower bound technique is remarkably simple. Suppose that q is prime and we can
represent a predicate P : X × Y → {0, 1} as an inner product predicate on vectors of length
r corresponding to mappings x 7→ ~x, y 7→ ~y. Following [5], we consider a matrix F of
dimensions |X | × |Y| over Zq whose (x, y)’th entry is 〈~x, ~y〉 mod q. Then the matrix F has
rank at most r, because we can write F as the product of two matrices of dimensions |X | × r
and r× |Y|. Concretely, F = UV where the x’th row of U is ~xT and the y’th column of V is
~y. This means that to show a lower bound on r, it suffices to show that F has large rank,
e.g. by exhibiting a full rank submatrix.

As an example, consider the greater than predicate on [n] for any prime modulus q. Then,
the matrix F is an n × n upper triangular matrix where all the entries on and above the
diagonal are non-zero. This matrix has rank n, hence any correct construction must have
dimension at least n. Note that the above lower bound argument breaks down when q is
composite. In fact, if q = 2n, there is an encoding for greater than with dimension 1: take
x 7→ 2x, y 7→ 2n−y. Correctness follows from the fact that 2x · 2n−y = 0 mod 2n ⇔ x ≥ y,
and the construction extends also to the setting where q is a product of n distinct primes.

In order to extend our lower bounds to composite q that is the product of k distinct
primes, we observe that if F mod q contains a triangular submatrix of dimensions `× `, then
there exists some prime factor p of q such that F mod p contains a triangular submatrix
of dimensions `/k × `/k; this follows from looking at the CRT decomposition of q and a
pigeonhole argument. This simple observation allows us to translate many of our lower
bounds to the composite modulus setting, which we prove to be essentially optimal via new
upper bounds.

3 Bounds from previous works, see Section 4.1 for references.
4 For sufficiently large q.
5 Assuming t ≤ n − 2, see Section 4.6.

FSTTCS 2018



41:4 On the Inner Product Predicate and a Generalization of Matching Vector Families

For instance, for the “greater than” predicate, we obtain a tight bound of n/k when q is
a product of k distinct primes; this is sharp contrast to standard matching vector families
(i.e., the equality predicate), where we have constructions of length 2Õ((logn)1/k) when q is a
product of k distinct primes. For the upper bound, we begin with a construction of length 1
for k = n and then derive the more general construction by treating the inputs as vectors of
length n and then dividing that into n/k blocks each of length k.

Finally, we extend our results to the randomized setting. Here, we use a similar argument
to show that the minimum size of a probabilistic inner product encoding is upper bounded
by the probabilistic rank introduced by Alman and Williams [1].

2 Main Theorem

In this section we describe our lower bound technique. Let P : X ×Y → {0, 1} be a predicate,
and q ≥ 2 be the integer modulus. We say that a matrix F : X ×Y represents P modulo q if
for all x ∈ X , y ∈ Y, we have Fx,y = 0 mod q iff P (x, y) = 1.

An inner product encoding of P of length ` is a pair of mappings from X ,Y to Z`q that
map x, y to ~x, ~y in a way that the matrix F : X × Y defined by Fx,y = 〈~x, ~y〉 mod q =
(
∑`
i=1 ~xi ·~yi) mod q represents P . Denote the length of the shortest reduction from P to inner

product modulo q by DI(P, q) (Deterministic Inner product). Then we have the following
simple and effective lower bound method.

I Theorem 1. For any predicate P and any prime q ≥ 2, we have DI(P, q) = minF rank(F ),
where F is any matrix that represents P modulo q.

Proof. We show that if P can be represented by a matrix F modulo q, then the necessary
and sufficient length of the encoding from P to F is exactly rank(F ). The decomposition
rank definition states that the rank of an m× n matrix F is the smallest integer r such that
F can be factored as F = UV , where U is an m × r matrix and V is a r × n matrix. Let
Ux,∗ be the row vector of U that corresponds to x ∈ X and V∗,y be the column vector of V
that corresponds to y ∈ Y. Then the pair of mappings x 7→ UT

x,∗ and y 7→ V∗,y is a correct
encoding of P , which is also the shortest possible for F . J

Therefore, to show a lower bound on the length of an encoding for P , it is sufficient to
exhibit a set of rows R and a set of columns C such that for any matrix F that represents P ,
the submatrix F [C,R] is a full rank submatrix. Typically we find a large full rank upper
triangular submatrix and apply Theorem 1. Other times, we prove a lower bound for some
predicate Q, and then prove that the same lower bound holds for P by showing a predicate
reduction from Q to P (see Section 3 for details).

For composite q, we have the following lower bound:

I Theorem 2. Let q = p1 · · · pk be a product of k distinct primes. Let P be a predicate such
that every matrix F that represents P modulo q is a triangular n× n matrix such that all
numbers on the main diagonal are non-zero modulo q. Then DI(P, q) ≥ n/k.

Proof. Let F represent P modulo q. Let F (i) = F mod pi (all entries taken modulo pi).
Since all entries on the main diagonal of F are non-zero, there exists i ∈ [k] such that
there at least n/k non-zero entries on the main diagonal of F (i) by pigeonhole principle. As
F (i) is also a triangular matrix, the rank of F (i) modulo pi is at least n/k. By Theorem
1, the length of any encoding from P to F (i) modulo pi must be at least n/k, hence also
DI(P, q) ≥ n/k. J
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3 Definitions and Predicates

In this section, first we describe some of the notation used throughout the paper. Then we
define the predicates examined in the paper, and define the predicate reduction.

Notation

We denote the set of all subsets of [n] by 2[n]. For a set S ⊆ [n], define the characteristic
vector χ(S) ∈ {0, 1}n by

χ(S)i =
{

1, if i ∈ S,
0, otherwise.

Conversely, for a vector x ∈ {0, 1}n, let χ−1(x) be the characteristic set of x.
For simplicity, denote the characteristic vector of {i} by ei (the length is usually inferred

from the context). The characteristic vectors of ∅ and [n] are denoted by 0n and 1n. We
denote the identity matrix of dimension n by In, and all ones matrix by Jn.

For a truth expression T , we define [T ] to be 1 if T is true, and 0 if T is false. For
example, [x = y] = 1 iff x = y.

For a number x ∈ [2n], let bin(x) ∈ {0, 1}n be the binary representation of x− 1.

Predicates

We consider the predicates listed below.
Equality: X = Y = [n] and EQn(x, y) = [x = y].
Greater than: X = Y = [n] and GTn(x, y) = [x > y].
Inequality: X = Y = [n] and NEQn(x, y) = [x 6= y].
Index: X = {0, 1}n,Y = [n] and INDEXn(x, i) = [xi = 0]. Here, xi denotes the i’th
coordinate of x. Note that we can also interpret x as the characteristic vector of a subset
of [n]. Because in our model 0 mod q corresponds to “true”, we have defined the index to
be true if the bit value in the corresponding position is 0.
Disjointness: X = Y = 2[n] and DISJn(S, T ) = [S ∩ T = ∅].
Exact threshold: X = Y = 2[n] and ETHRt

n(S, T ) = [|S ∩ T | = t], where t ∈ [n] is the
threshold parameter.
Threshold: X = Y = 2[n] and THRt

n(S, T ) = [|S ∩ T | ≥ t], where t ∈ [n] is the threshold
parameter.
Multilinear polynomials: X = Znq , Y ⊆ {p | p ∈ Zq[x1, . . . , xn], deg(p) ≤ d}, the latter
is the set of all multilinear polynomials of degree at most d. Then MPOLYd,q

n (x, p) =
[p(x1, . . . , xn) = 0 mod q].
Disjunction of equality tests: X = Y = Znq and OR−EQq

n(x, y) = [
∨n
i=1 xi = yi].

Reductions

We say that a predicate P1 : X1 ×Y1 → {0, 1} can be reduced to a predicate P2 : X2 ×Y2 →
{0, 1} if there exist two mappings f : X1 → X2 and g : Y1 → Y2 such that P2(f(x), g(y)) =
P1(x, y) for all x ∈ X1, y ∈ Y1 (or mappings f : X1 → Y2 and g : Y1 → X2). In that case we
write P2 ⇒ P1.

For example, consider the following reductions:
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41:6 On the Inner Product Predicate and a Generalization of Matching Vector Families

DISJn ⇒ INDEXn ⇒ NEQn.
The reduction DISJn ⇒ INDEXn holds since INDEXn(x, i) = DISJn(χ−1(x), {i}).
On the other hand, INDEXn ⇒ NEQn, as NEQn(i, j) = INDEXn(ei, j).
INDEXn ⇒ GTn.
As GTn(x, y) = INDEXn(χ([y]), x), the reduction follows.
Let P : X × Y → {0, 1} be any predicate. Then INDEXmin{|X|,|Y|} ⇒ P .
Let T be the X × Y truth table of P defined by Tx,y = P (x, y). Then we have P (x, y) =
INDEX|X |(Tx, y) and INDEX|X | ⇒ P . Similarly, we also have INDEX|Y| ⇒ P .

Effectively, then an inner product encoding for P2 implies an encoding for P1 and a lower
bound for P1 implies a lower bound for P2. This makes it easier to prove upper and lower
bounds. For example, as later we prove that DI(INDEXn, q) = n for prime q (see Section
4.2), the last reduction implies that DI(P, q) ≤ min{|X |, |Y|} for all predicates P .

If q is a product of k distinct primes, then DI(P, q) ≤ min{|X |, |Y|}/k for the same reason.
Therefore, for any predicate, if k = min{|X |, |Y|}, there is an encoding of X and Y simply
to numbers modulo q.

4 Deterministic Encodings

In this section, we apply our technique to provide lower bounds on deterministic inner
product encodings for many well-known predicates. For each of them, first we discuss the
encodings and then proceed to prove lower bounds.

4.1 Equality
An encoding for EQn over q is a matching family of vectors modulo q [7]. The maximum
size of a matching family of vectors of length ` modulo q is denoted by MV(q, `) and has
been studied extensively. Lower and upper bounds on MV(q, `) give upper and lower bounds
on DI(EQn, q), respectively (in the relevant literature, usually q and ` are denoted by m and
n, respectively).

For prime q, a tight DI(EQn, q) = Θ(qn
1

q−1 ) bound is known [7]. If q is a product of k
primes, we have a 2Õ((logn)1/k) upper bound from [13]. For any composite q, we also have
an Ω(log n) lower bound from [9].

Here, first we show two simple upper bounds for q = 2 and q ≥ n. Then we reprove the
optimal lower bound for q = 2 using our rank lower bound.

Upper bounds

For q = 2, we construct an encoding of length n. Let ~x = ex and ~y = 1n − ey. Then
〈~x, ~y〉 = 〈ex, 1n〉 − 〈ex, ey〉 = 1 − [x = y], thus it is a correct inner product encoding and
DI(EQn, 2) ≤ n.

Let q be any integer such that q ≥ n. Let ~x = (1, x) and ~y = (y,−1). Then 〈~x, ~y〉 = y−x,
so it is 0 iff x = y. Therefore, DI(EQn, q) ≤ 2.

Lower bound

We show a matching lower bound for case q = 2. There is a unique matrix F over Z2 that
represents EQn, namely Fx,y = 0 mod q ⇔ x = y. Express F = Jn − In. By sub-additivity
of rank, we have rank(F ) ≥ rank(In) − rank(Jn) = n − 1. Hence, by Theorem 1, any
inner product encoding of EQn modulo 2 requires vectors of length at least n− 1, that is,
DI(EQn, 2) ≥ n− 1.
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4.2 Index
We prove that DI(INDEXn, q) = dn/ke, for every q that is a product of k distinct primes.

For some q, the upper bound follows from DISJn ⇒ INDEXn (see Section 4.5). However,
there is a much simpler encoding, which we present below. Moreover, this upper bound holds
for every q that is the product of k distinct primes.

Upper bound

We begin with the warm-up for the special case k = n. Here, consider

~x =
n∏
i=1

p1−xi
i , ~y = q/py.

Then 〈~x, ~y〉 = 0 mod q iff xy = 0.
Next, we consider general k, n. Since INDEXdn/ke·k ⇒ INDEXn, it is enough to

construct an encoding for the case k | n. The data is the string x ∈ {0, 1}n, and the index
is given by y ∈ [n]. Encode x as an n/k × k binary matrix Xi,j = x(i−1)·k+j , and y as an
n/k × k binary matrix Yi,j = [y = (i− 1) · k + j].

Now we construct the encoding.

~xi =
k∏
j=1

p
Xi,j

j , ~yi =
{
q/pj , if Yi,j = 1,
0, otherwise.

Now we analyze the correctness of the protocol. Let i, j be such that Yi,j = 1. Then
〈~x, ~y〉 =

∏k
l=1 p

Xi,l

l · (q/pj).
If Xi,j = 1, then 〈~x, ~y〉 = 0 mod q.
If Xi,j = 0, then pj - 〈~x, ~y〉, hence 〈~x, ~y〉 6= 0 mod q.

Lower bound

The lower bound follows from INDEXn ⇒ NEQn (see Section 4.3).

4.3 Inequality
We show that DI(NEQn, q) = dn/ke, for every q that is the product of k distinct primes.

Upper bound

The upper bound follows from INDEXn ⇒ NEQn (see Section 4.2).

Lower bound

Any matrix that represents NEQn is a diagonal matrix with non-zero entries on the main
diagonal. By Theorem 2, it follows that DI(NEQn, q) ≥ n/k.

4.4 Greater Than
We show that DI(GTn, q) = dn/ke, for every q that is the product of k distinct primes.
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Upper bound

The upper bound follows from INDEXn ⇒ GTn (see Section 4.2).
If q is prime, the encoding simplifies to ~x = ex and ~y =

∑y
i=1 ei. If k = n, a different

simple encoding is ~x =
∏x−1
i=1 pi and ~y =

∏n
i=y+1 pi.

Lower bound

Let F be any matrix that represents GTn modulo q. Then all entries below the main
diagonal are 0, while all entries on and above the main diagonal are non-zero, hence F is a
triangular matrix. By Theorem 2, we conclude that DI(GTn, q) ≥ n/k.

4.5 Disjointness

We prove that DI(DISJn, q) = dn/ke for an appropriate choice of q that depends on n, and
that DI(DISJn, q) ≥ n/k if q is any product of k distinct primes.

Upper bound

We start with a simple encoding for k = n that works for any product of n distinct primes q.
Recall that the sets S and T are the input to disjointness. Let

~x =
n∏
i=1

p
1−χ(S)i

i , ~y =
n∏
i=1

p
1−χ(T )i

i .

Then 〈~x, ~y〉 =
∏n
i=1 p

2−χ(S)i−χ(T )i

i is 0 mod q iff S and T are disjoint. If k < n, then for any
pi it is possible that although some of the products ~xi · ~yi are not divisible by pi, their sum
might be divisible by pi, hence the encoding doesn’t work for any q.

For the general case, the following variation of Dirichlet’s theorem will be useful for us.

I Theorem 3 (Dirichlet). For any integer q ≥ 2, there are infinitely many primes p such
that p = 1 mod q.

Let q = p1 · · · pk be a product of k distinct primes p1, . . . , pk to be defined later. We
construct an encoding of length n/k for the case k | n. Encode S ⊆ [n] as an n/k × k binary
matrix Xi,j = χ(S)(i−1)·k+j . Similarly encode T as Y . Let

~xi =
k∏
j=1

p
1−Xi,j

j , ~yi =
k∏
j=1

p
1−Yi,j

j .

Now we find the appropriate primes p1, . . . , pk for the general case. We construct them
and prove the correctness by induction on k.

Base case. If k = 1, then q is a prime itself. Pick any prime q such that q > n. We have
〈~x, ~y〉 =

∑n
i=1 q

2−χ(S)i−χ(T )i . If x and y are disjoint, then q | 〈~x, ~y〉. Suppose that S and T
are not disjoint. Let b = |S ∩ T |. Then 〈~x, ~y〉 = (

∑
i∈S∩T 1) mod q = b mod q. As b ≤ n, we

have b < q, therefore 〈~x, ~y〉 6= 0 mod q.
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Inductive step. Assume that there exists a correct encoding for some q such that it
is a product of k − 1 distinct primes p1, . . . , pk−1. Let pk be a prime such that pk >

(n/k) · (p1 · · · pk−1)2 and pk = 1 mod (p1 · · · pk−1) (such exist by Theorem 3).
Suppose that 〈~x, ~y〉 = pk · a+ b, where b ∈ {0, . . . , pk − 1}. Examine the sets S(k) = {i ∈

[n/k] | ik ∈ S} and T (k) = {i ∈ [n/k] | ik ∈ T}.
Suppose that S(k) and T (k) are not disjoint. Then the set I = S(k) ∩ T (k) is non-empty.
If i /∈ I, then at least one of Xi,k and Yi,k is 0, thus ~xi ·~yi =

∏k
j=1 p

2−Xi,j−Yi,j

j is divisible
by pk. Thus, we have that b =

∑
i∈I
∏k−1
j=1 p

2−Xi,j−Yi,j

j < (n/k) · (p1 · · · pk−1)2 < pk.
Therefore, 〈~x, ~y〉 = b mod pk 6= 0 mod pk.
Suppose that S(k) and T (k) are disjoint. Then for all i ∈ [n/k], we have that pk | ~xi~yi.
Therefore, pk | 〈~x, ~y〉.
Moreover, since pk = 1 mod (p1 · · · pk−1), we have that ~xi mod (p1 · · · pk−1)
=

∏k−1
j=1 p

1−Xi,j

j and ~yi mod (p1 · · · pk−1) =
∏k−1
j=1 p

1−Yi,j

j . Therefore,
〈~x, ~y〉 mod (p1 · · · pk−1) is equal to 0 iff the sets S \ S(k) and T \ T (k) are disjoint by the
inductive hypothesis.

Lower bound

The lower bound follows from DISJn ⇒ INDEXn (see Section 4.2).

4.6 Exact Threshold
Upper bound

The following encoding modulo q ≥ n of length n+ 1 is due to Katz, Sahai and Waters [15].
For all 1 ≤ i ≤ n, let ~xi = χ(S)i, and let ~xn+1 = 1. For all 1 ≤ i ≤ n, let ~yi = χ(T )i, and
let ~yn+1 = −t. Then 〈~x, ~y〉 is equal to 0 iff |S ∩ T | = t. Therefore, DI(ETHRt

n, q) ≤ n+ 1.
Surprisingly, if t ≥ n− 1, there exist constant size encodings.
If t = n, there is an encoding of length 2. The encoding is as follows: ~x = (1, [S = [n]])
and ~y = (1,−[T = [n]]). Then we have 〈~x, ~y〉 = 1 − [S = [n]] · [T = [n]], which is 0 iff
S = T = [n].
If t = n− 1, there is an encoding of length 3. The encoding for S and T is as follows:

~x =


(1, 0, 0), if |S| = n,
(0, i, 1), if |S| = [n] \ {i},
(1,−1, 1), otherwise.

~y =


(1, 0, 0), if |T | = n,
(0, 1,−i), if |T | = [n] \ {i}.
(1, 1, 1), otherwise.

It is easy to check by hand that 〈~x, ~y〉 = 0 iff |S ∩ T | = n − 1. Note that we require
q ≥ n+ 2.

Lower bound

We show that for 1 ≤ t ≤ n− 2, we have DI(P, q) ≥ max{n− t+ 2, t+ 2}/k ≥ (n/2 + 2)/k.

(a) First we prove that if t ≥ 1, the length of any encoding must be at least (n− t+ 2)/k.
We show that by using two reductions.
Firstly, we have ETHRt

n ⇒ ETHR1
n−t+1, because we can map S 7→ S∪{n−t+2, . . . , n}.

Secondly, we prove that ETHR1
m ⇒ GTm+1. Consider the following mappings:

f =
{

1 7→ ∅,
i 7→ [i− 1],

g =
{
j 7→ {j},
m+ 1 7→ ∅.

(1)
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Consider a pair of numbers x, y ∈ [m + 1]. If x = 1, then GTm+1(x, y) = 0 and also
ETHR1

m(f(x), g(y)) = ETHR1
m(∅, g(y)) = 0. If y = m + 1, then GTm+1(x, y) = 0

and ETHR1
m(f(x), g(y)) = ETHR1

m(f(x),∅) = 0. Otherwise, ETHR1
m(f(x), g(y)) =

ETHR1
m([x− 1], {y}) = GTm+1(x, y). Hence the reduction is correct.

Therefore, we conclude that

DI(ETHRt
n, q) ≥ DI(ETHR1

n−t+1, q) ≥ DI(GTn−t+2, q) ≥ (n− t+ 2)/k

by the lower bound on greater than of Section 4.4.
(b) Now we prove that if t ≤ n− 2, the length of any encoding is at least (t+ 2)/k. Again,

we exhibit two reductions.
Firstly, ETHRt

n ⇒ ETHRt
t+2 simply mapping any set to itself. Secondly, ETHRm−2

m ⇒
NEQm. This is because we can map x 7→ [m] \ {x} for any x ∈ [m]. Then the size of
the intersection |([m] \ {x})∩ ([m] \ {y})| is equal to m− 2 if x 6= y, and m− 1, if x = y.
Therefore, it follows that

DI(ETHRt
n, q) ≥ DI(ETHRt

t+2, q) ≥ DI(NEQt+2, q) ≥ (t+ 2)/k

by the lower bound on inequality of Section 4.3.

Therefore, for any 1 ≤ t ≤ n− 2, any encoding must have length at least max{n− t+
2, t+ 2}/k and we have that DI(ETHRt

n, q) = Ω(n).

4.7 Multilinear Polynomials
First we show a known encoding that gives DI(MPOLYd,q

n , q) ≤
(
n
≤d
)

= O(nd). Then we
show a lower bound of DI(MPOLYd,q

n , q) ≥
(
n
d

)
/k = Ω(nd/k). For prime q, there is an

optimal lower bound DI(MPOLYd,q
n , q) ≥

(
n
≤d
)
.6

Upper bound

The following is a simple construction by [15]. For S ⊆ [n], let XS =
∏
i∈S xi and let

p =
∑
S⊆[n],|S|≤d aSXS be a multilinear polynomial of degree at most d. For each subset

S ⊆ [n] such that |S| ≤ d, let ~xS = XS and ~yS = aS ; then 〈~x, ~y〉 is precisely equal
to p(x). Since a multilinear polynomial of degree at most d on n variables has at most(
n
≤d
)

=
∑d
i=0
(
n
i

)
≤ (n+ 1)d monomials, it follows that DI(MPOLYd,q

n , q) = O(nd).

Lower bound

We show a reduction MPOLYd,q
n ⇒ NEQ(n

d). Let S be the bijection from the numbers
in
[(
n
d

)]
to subsets of [n] of size d. For a pair of inputs x, y ∈

[(
n
d

)]
, consider mappings

x 7→ χ(S(x)) and y 7→ XS(y). Since MPOLYd,q
n (χ(S(x)), XS(y)) = 0 iff x 6= y, it is a correct

reduction. Thus, DI(MPOLYd,q
n , q) ≥

(
n
d

)
/k = Ω(nd/k) by the lower bound from Section

4.3.
Note that if q is prime, we can get a tight lower bound of

(
n
≤k
)
. Let ` = DI(MPOLYd,q

n , q).
Since any two distinct polynomials disagree on some inputs, each polynomial must be mapped
to a different vector. Therefore, the number of possible vectors must be at least the number of
possible polynomials, |Z`q| ≥ |Y|. The total number of possible monomials of degree at most
d is

(
n
≤d
)
. Each monomial can have any coefficient in Zq. Hence, q` ≥ q(

n
≤d) and ` ≥

(
n
≤d
)
.

6 We thank an anonymous reviewer for pointing out this lower bound.
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4.8 Threshold
First we show an upper bound of DI(THRt

n, q) = O(nn−t+1) for q > n! (q > n if q is prime),
and then a lower bound of DI(THRt

n, q) ≥ 2n−t+1/k if q is any product of k primes.

Upper Bound

The idea is to encode the threshold into multilinear polynomial evaluation. Let x = χ(S)
and y = χ(T ). Examine the following polynomial:

py(x) =
(

n∑
i=1

xiyi − t

)
·

(
n∑
i=1

xiyi − (t+ 1)
)
· . . . ·

(
n∑
i=1

xiyi − n

)
.

Firstly,
∑n
i=1 xiyi = |S ∩ T |, thus py(x) = 0 iff |S ∩ T | ≥ t (assuming q > n!). Secondly,

the degree of each factor is 1, hence deg(py) = n − t + 1. Note that the polynomial
py is still multilinear, as all the variables are 0 or 1. Therefore, we have a reduction
MPOLYn−t+1,q

n ⇒ THRt
n. The upper bound from Section 4.7 implies that DI(THRt

n, q) ≤
DI(MPOLYn−t+1,q

n , q) ≤
(

n
≤n−t+1

)
= O(nn−t+1).

Lower Bound

First of all, we have THRt
n ⇒ THR1

n−t+1, as we can map a set S ⊆ [n − t + 1] to
S ∪ {n− t+ 2, . . . , n}. Next we prove that DI(THR1

m, q) ≥ 2m/k.
Let F be any matrix representing THR1

m. We show that F is a triangular matrix with
all entries on the main diagonal being non-zero. Then the claim follows by Theorem 2.

Order the rows of F by the increasing order of the size of the sets they correspond to.
Then order the columns of F in such a way that the sets corresponding to the i-th row and
the i-th column are the complements of each other.

As the complements don’t overlap, the numbers on the main diagonal of F are non-zero.
Now examine any entry on the i-th row and j-th column such that i ≥ j. Let S correspond
to the set of the i-th row and T correspond to the set of the j-th column. Since the columns
are ordered by the decreasing size of the sets, we have that |S| ≥ m− |T |, or equivalently
|S|+ |T | ≥ m.

If |S|+ |T | > m, then the sets must overlap and the value of Fi,j is 0. If |S|+ |T | = m,
then the only way S and T do not overlap is if T is the complement of S. In any case all the
numbers below the main diagonal are 0, and non-zero on the main diagonal.

4.9 Disjunctions of Equality Tests
We show that for prime q, we have DI(OR−EQq

n, q) ≤ 2n and if q is a product of k distinct
primes, then DI(OR−EQq

n, q) ≥ 2n/k.

Upper bound

We prove that MPOLYn,q
n ⇒ OR−EQq

n. Examine a multilinear polynomial py(x) =∏n
i=1(xi − yi). Clearly, py(x) = 0 mod q iff at least one equality holds. Therefore, if we map

x 7→ x and y 7→ py, then we have a correct reduction to multilinear polynomial evaluation.
By the upper bound from Section 4.7, we have DI(OR−EQq

n, q) ≤ DI(MPOLYn,q
n , q) ≤∑n

i=0
(
n
i

)
= 2n.
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Lower bound

We prove that OR−EQq
n ⇒ NEQ2n . For the input x, y ∈ [2n] to NEQn, map x 7→ bin(x)

and y 7→ bin(y)⊕ 1n. As x 6= y iff there exists an i such that bin(x)i 6= bin(y)i, we have that
x 6= y iff OR−EQq

n(bin(x), bin(y)⊕ 1n) = 1. The lower bound follows by Section 4.3.

5 Randomized Constructions

We can formulate the problem in the randomized setting as follows. Let P : X × Y → {0, 1}
be a predicate. Consider all pairs of mappings U = {(x 7→ ~x, y 7→ ~y) | ~x, ~y ∈ Z`q for some `}.
These also include mappings that are incorrect inner product encodings of P . Let µ be a
probability distribution over U . Then µ is a probabilistic inner product encoding modulo q
with error ε, if Pr[P (x, y) 6= [〈~x, ~y〉 = 0 mod q] | (x 7→ ~x, y 7→ ~y) ∼ µ] ≤ ε.

We consider the length of the longest encoding under µ to be the length of µ and denote
it by RIµ(P, q) (Randomized Inner product). Then define RIε(P, q) = minµ RIµ(P, q), where
µ ranges over all probabilistic inner product encodings of P modulo q with error ε.

Next is the definition of the probabilistic rank (over Zq) by Alman and Williams [1]:

I Definition 4 (Probabilistic Matrix). For n,m ∈ N, define a probabilistic matrix over Zq
to be a distribution of matricesM⊂ Zn×mq . A probabilistic matrixM computes a matrix
A ∈ Zn×mq with error ε > 0 if for every entry (i, j) ∈ [n]× [m], PrM∼M[Ai,j 6= Mi,j ] ≤ ε.

I Definition 5 (Probabilistic Rank). Let q be prime. Then a probabilistic matrix M has
rank r if the maximum rank of an M in support ofM is r. Define the ε-probabilistic rank of
a matrix A ∈ Zn×mq to be the minimum rank of a probabilistic matrix computing M with
error ε. Denote it by rankε(A).

As we can see, the probabilistic choice of a distribution µ corresponds to a matrix M
sampled fromM. By a similar reasoning as in Theorem 1, we have the following theorem:

I Theorem 6. For any predicate P , prime q ≥ 2 and error ε, RIε(P, q) ≤ minF rankε(F ),
where F is any matrix that represents P modulo q.

Proof. Let F be any matrix that represents P modulo q. Suppose thatM is a probabilistic
matrix that computes F . Then any M in support of M defines an encoding of length
rank(M) by the decomposition rank. Therefore, there is a probability distribution over the
encodings such that the maximum length is rankε(F ). J

For some predicates, the probabilistic rank can be much smaller than the deterministic
rank. Let T (P ) be a truth table of a predicate P (defined by T (P )x,y = P (x, y)). The
same authors prove that rankε(T (EQn)) = O(1/ε) and rankε(T (LEQn)) = O((log n)2/ε)
(see Lemmas D.1 and D.2 in [1]). Since the matrix T (P ) represents the predicate ¬P (in our
setting), these results imply that for any prime q:
1. RIε(NEQn, q) = O(1/ε),
2. RIε(GTn, q) = O((log n)2/ε).

We conclude by showing that these results immediately imply a constant length probabil-
istic encoding for EQn modulo any prime:

I Corollary 7. For any prime q, we have RIε(EQn, q) = O(1/ε).

Proof. LetM be a probabilistic matrix that computes T (EQn) with error ε. The matrix
F (EQn) = Jn − T (EQn) represents EQn. Therefore, the probabilistic matrix Jn −M
computes F (EQn) with error ε. Since rank(F (EQn)) ≤ 1 + rank(T (EQn)), we have that
RI(EQn, q) = O(1/ε). J
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Robustness Properties
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Abstract
We study an extension of propositional separation logic that can specify robustness properties,
such as acyclicity and garbage freedom, for automatic verification of stateful programs with
singly-linked lists. We show that its satisfiability problem is PSpace-complete, whereas modest
extensions of the logic are shown to be Tower-hard. As separating implication, reachability
predicates (under some syntactical restrictions) and a unique quantified variable are allowed,
this logic subsumes several PSpace-complete separation logics considered in previous works.
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1 Introduction

Separation Logic [26] is a well-known assertion logic providing a scalable solution for Hoare-
style verification of imperative, heap-manipulating programs [7, 16, 29]. To achieve scalability,
separation logic relies in two spatial connectives to represent memory regions: the separating
conjunction (∗) and the separating implication (−∗). These operators allow to express complex
properties of stateful programs, making this logic the core assertion language of many tools
[2, 3, 6, 14, 15, 18, 20, 23]. To achieve automation, the underlying Hoare-style proof system
requires these tools to check for the classical decision problems of satisfiability, validity and
entailment. The complexity of these problems have been quite studied:

PTime algorithms for satisfiability and entailment have been defined for the symbolic
heap fragment (the core logic of many tools) [9]. This complexity is achieved by removing
the separating implication from separation logic and heavily restricting the use of Boolean
connectives. Decidability results (the general lower-bound is ExpTime) for these problems
are also known when the fragment is enriched with inductive predicates [1, 17, 19, 21].
PSpace-completeness has been shown for propositional separation logic [8]. Its extension
with one quantified variable, denoted with 1SL(∗,−∗), was also found to be in PSpace [12].
However, adding a second quantified variable causes the logic to become undecidable [11].
In absence of the separating implication, PSpace-completeness has also been proved
for SL(∗, ls), i.e. the propositional fragment enriched with the list-segment predicate ls.
Here, adding the separating implication again leads to undecidability [13].

Besides these decision problems, in program analysis it is crucial to be able to check for
robustness properties such as garbage freedom and acyclicity (see Section 2 for precise
definitions). A recent work [19] tackles these problems for the symbolic heap fragment with
user-defined inductive predicates by introducing the framework of heap automata. Within
this framework, both garbage freedom and acyclicity are shown to be ExpTime-complete.
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A natural question is how to check the satisfaction of robustness properties for propos-
itional separation logic as they are not expressible in 1SL(∗,−∗) nor in SL(∗, ls). Indeed,
it would be nice to capture these problems directly in the logic, without introducing any
external framework, to then solve them using procedures for the classical decision problems.

Our contribution. In this paper we address this question by studying an extension of pro-
positional separation logic that captures both 1SL(∗,−∗) and SL(∗, ls) and whose expressive
power allows to directly reduce the robustness properties to entailment. This logic, herein
called 1SLR1

R2(∗,−∗, reach+), is defined from 1SL(∗,−∗) by adding reachability predicates under
some syntactical restrictions (the formal definition is given in Section 2). In Section 4 we show
that the satisfiability problem (and hence entailment, validity and robustness properties) of
this logic can be decided in PSpace. As far as we know, this makes 1SLR1

R2(∗,−∗, reach+)
the largest decidable fragment of separation logic including full Boolean connectives, spatial
connectives and reachability predicates and the first one where these predicates can be used
in the scope of −∗, albeit in a controlled way to retain decidability [13]. To show the PSpace
upper-bound we extend the widely used proof technique of test formulæ introduced in [22].

This complexity result is rather surprising as, besides subsuming the results in [12]
and [13], slightly extending the logic entails Tower-hardness (the complexity class Tower
has been introduced in [28] and sits between the class of elementary problems and the class
of primitive-recursive problems). Indeed, in Section 3 we show how weakening the syntactic
restrictions on reachability predicates allows the logic to capture a Tower-complete fragment
of Moszkowski’s propositional interval temporal logic (PITL) [25]. To better formalise this
result we first introduce an alternative semantics for PITL and reduce this logic to an
intermediate logic interpreted on trees (ALT). We then consider a modest extension of
1SLR1

R2(∗,−∗, reach+) and show that it captures ALT, proving its non-elementary complexity.

2 The separation logic 1SL(∗,−∗, reach+)

Let VAR be a countably infinite set of program variables and let LOC be a countably infinite
set of locations. A memory state is a pair (s, h) consisting of a variable valuation function (the
store) s : VAR→ LOC and a partial function with finite domain (the heap) h : LOC→fin LOC.
We denote with dom(h) the domain of definition of a heap h and with ran(h) its range. Each
element in dom(h) is understood as a memory cell of h. With hδ we denote δ ≥ 0 functional
composition(s) of h. Two heaps h1 and h2 are said to be disjoint, written h1⊥h2, whenever
dom(h1) ∩ dom(h2) = ∅. We define the union h1 + h2 of h1 and h2 as the standard sum of
two functions (h1 + h2)(`) def= if `∈dom(h1) : h1(`) else h2(`), defined only whenever h1⊥h2.

We extend propositional separation logic with reachability predicates and one quantified
variable denoted by u 6∈ VAR. We call this logic 1SL(∗,−∗, reach+). Its formulæ ϕ are from

ϕ := emp | e1 = e2 | e1 ↪→ e2 | reach+(e1, e2) | ϕ∧ϕ | ¬ϕ | ∃u ϕ | ϕ ∗ϕ | ϕ−∗ϕ

where e1, e2∈VAR∪{u}. We denote with fv(ϕ) the set of free variables in ϕ. 1SL(∗,−∗, reach+)
is interpreted on triples (s, h, l), where (s, h) is a memory state and l ∈ LOC is the current
assignment of the only quantified variable u. The satisfaction relation |= is defined as follows
(standard clauses for ¬ and ∧ are omitted throughout the paper)

(s, h, l) |= emp if and only if dom(h) = ∅.
(s, h, l) |= e1 =e2 if and only if [[e1]]=[[e2]], with [[u]] def= l and [[x]] def= s(x) for every x ∈ VAR.
(s, h, l) |= e1 ↪→ e2 if and only if s([[e1]]) = [[e2]].
(s, h, l) |= reach+(e1, e2) if and only if there is δ ≥ 1 such that hδ([[e1]]) = [[e2]].
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(s, h, l) |= ∃u ϕ if and only if there is l′ ∈ LOC such that (s, h, l′) |= ϕ.
(s, h, l) |= ϕ1 ∗ ϕ2 iff h1 + h2 = h, (s, h1, l) |= ϕ1 and (s, h2, l) |= ϕ2, for some h1 and h2.
(s, h, l) |= ϕ1 −∗ ϕ2 iff for all h′, if h′⊥h and (s, h′, l) |= ϕ1 then (s, h+ h′, l) |= ϕ2.

Standard connectives ⇒, ⇔, ∨ and the universal quantification ∀ are derived as usual. We
denote with > the tautology emp ∨ ¬emp and with ⊥ its negation. alloc(e) stands for
e ↪→ e−∗ ⊥, the formula satisfied if and only if [[e]] ∈ dom(h). We recursively define the
formula size ≥ β as size ≥ 0 def= > and size ≥ β+1 def= ¬emp∗size ≥ β. size ≥ β is satisfied
if and only if card(dom(h)) ≥ β (we write card(.) to denote the cardinality of a set). We write
size = β for the formula size ≥ β ∧ ¬size ≥ β+1. For a complete description of separation
logic we refer the reader to the classical paper by Reynolds [26]. Note that the heap-precise
predicates defined in [26] can be retrieved in our logic. Indeed, the points-to relation e1 7→ e2
can be expressed as e1 ↪→e2 ∧ size = 1 whereas the list-segment relation ls(e1, e2) can be
defined as (e1 = e2 ∧ emp) ∨ (e1 6= e2 ∧ reach+(e1, e2) ∧ ¬(size = 1 ∗ reach+(e1, e2))).

Decision problems and robustness properties. The satisfiability problem takes as input a
formula ϕ and asks whether there is a model (s, h, l) such that (s, h, l) |= ϕ. The validity
problem asks whether ϕ is satisfied by every memory state. Given a second formula ψ, the
entailment problem ϕ |= ψ asks whether each memory state satisfying ϕ also satisfies ψ.

As advocated in [19], besides these decision problems, in program analysis we are also
interested in the robustness properties of acyclicity and garbage freedom. The acyclicity
property asks every model satisfying ϕ to be acyclic. Instead, garbage freedom holds whenever
in every model satisfying ϕ, each memory cell is reachable from a program variable of fv(ϕ).
In 1SL(∗,−∗, reach+) both problems can be reduced to entailment:

acyclicity requires us to be able to solve ϕ |= ∀u ¬reach+(u, u);
garbage freedom can be expressed as ϕ |= ∀u (alloc(u)⇒

∨
x∈fv(ϕ)(reach+(x, u)∨x = u)).

As our logic is closed under Boolean connectives, validity and entailment reduce to satisfiability.
The main purpose of this paper is then to study the complexity status of the latter problem
for fragments of 1SL(∗,−∗, reach+) that can still express both robustness properties.

Decidability status and restrictions. As shown in [13], extending propositional separation
logic so that it can express bounded reachability up to distance three leads to undecidabil-
ity. Unfortunately this makes the satisfiability problem of 1SL(∗,−∗, reach+) undecidable.
Indeed, two-steps reachability between two program variables x and y can be expressed as
∃u (x ↪→ u ∧ u ↪→ y ∧ u 6= x ∧ u 6= y) whereas three-steps reachability is captured with

(reach+(x, y) ∧ size = 3 ∧ ¬(size = 1 ∗ reach+(x, y))︸ ︷︷ ︸
isolating any memory cell makes impossible for s(x) to reach s(y)

)∗>

To retain decidability we propose to restrict the logic to those formulæ where each occurrence
of reach+(e1, e2) is constrained so that
(R1) it is not on the right side of its first −∗ ancestor (seeing the formula as a tree), and
(R2) if e1 = u then e2 = u.
For instance, given two formulæ ϕ and ψ satisfying these conditions, the formula reach+(u, x)∗
(ϕ−∗ψ) only satisfies R1, both conditions are satisfied in ϕ−∗ (reach+(x, y)−∗ψ) whereas the
formula ϕ−∗ (ψ ∗reach+(u, u)) only satisfies R2. A grammar of this logic is given in Section 4,
where we show that under these conditions the satisfiability problem of 1SL(∗,−∗, reach+)
can be decided in PSpace.

From the results in [13], weakening even slightly R1 seems to be a challenge. Indeed, after
enforcing R1 the logic can still freely express two-steps reachability between program variables
and it is unable to do the same for paths of length three only in positions of the formula where
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42:4 Extending Propositional Separation Logic for Robustness Properties

reach+ cannot occur. On these positions, even the modest addition of a second quantified
variable causes then undecidability (coherently with the results in [11]). We could hope for
the satisfiability problem to still be in PSpace without the R2 condition. In the next section
we show that this is not the case: without R2 the problem is Tower-hard. Nevertheless,
under these conditions the logic is still able to express both robustness properties.

3 Tower-hardness of 1SL(∗,−∗, reach+) under R1

In this section we show that 1SLR1(∗,−∗, reach+), i.e. the fragment of 1SL(∗,−∗, reach+)
formulæ satisfying the condition R1, is Tower-hard. To do so, we first introduce an auxiliary
logic (ALT) interpreted on trees. At its core, ALT is a simple logic whose formulæ can only
split a tree and check whether the only (quantified) variable points to a node in the tree or not.
In a way, ALT represents a small subset of the properties expressible in 1SLR1(∗,−∗, reach+)
that are sufficient to reach Tower-hardness. Indeed, despite its simplicity, we show that
ALT is Tower-complete. In particular, the hardness proof is achieved by reduction of
Moszkowski’s propositional interval temporal logic [25] with locality principle (PITL). This
reduction is done by first defining an alternative semantics for PITL based on marked words.

3.1 An auxiliary logic on trees ALT
To easily relate ALT with separation logic, finite trees are here defined using heaps encoding
the parent relation. We assume a location ρ ∈ LOC as the root of all trees. A heap T is
a tree whenever ρ 6∈ dom(T ) and for each ` ∈ dom(T ) there is δ ≥ 1 such that T δ(`) = ρ.
Then, ` is a descendant (resp. child) of `′ ∈ ran(T ) whenever there is δ ≥ 1 (resp. δ = 1)
such that T δ(`) = `′. It is straightforward to see that these definitions are equivalent to the
classical ones. As formally introduced below, ALT formulæ are able to chop a tree, preventing
some memory cells to reach ρ. These locations form a heap G, called garbage, such that
ρ 6∈ dom(G) ∪ ran(G).

ρ

T1 T2

⊆G2 ⊆G1

⊆G1+G2
G

G

We denote with T the domain of pairs (T ,G) where T and G are respectively a tree and a
garbage such that dom(T ) ∩ (dom(G) ∪ ran(G)) = ∅. The notions of disjointness (⊥) and
composition on disjoint heaps (+) are naturally extended to elements of T. (T1,G1) and
(T2,G2) are disjoint whenever (T1 +G1)⊥(T2 +G2). If they are disjoint then their composition
(T1,G1) + (T2,G2) (see picture on the left) is the pair (T1 + T2 + G,G) ∈ T such that G + G =
G1 + G2 and dom(G) = {` ∈ dom(G1 + G2) | (G1 + G2)δ(`) ∈ dom(T1 + T2) for some δ ≥ 1}.
ALT-formulæ ϕ are built from

ϕ := T(u) | G(u) | ϕ ∧ ϕ | ¬ϕ | ∃u ϕ | ϕ ∗ ϕ

and interpreted on states (T ,G, l) where (T ,G) ∈ T and l ∈ LOC \ {ρ} is the current
assignment of u. The satisfaction relation |= is defined as follows:

(T ,G, l) |= T(u) if only if l ∈ dom(T ).
(T ,G, l) |= G(u) if and only if l ∈ dom(G).
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(T ,G, l) |= ∃u ϕ if and only if there is l′ ∈ LOC \ {ρ} such that (T ,G, l′) |= ϕ.
(T ,G, l) |= ϕ1∗ϕ2 iff (T1,G1, l) |=ϕ1 and (T2,G2, l) |=ϕ2 for some (T1,G1)+(T2,G2)=(T ,G).

The tautology > is defined as T(u)∨¬T(u). alloc(u) def= T(u)∨G(u) is the formula satisfied if
and only if l ∈ dom(T +G). The size |ϕ| of a formula ϕ is defined as: 1 for the atomic predicates
T(u) and G(u), |ϕ1 ∧ ϕ2| def= max(|ϕ1| , |ϕ2|), |¬ϕ| def= |∃u ϕ| def= |ϕ| and |ϕ1 ∗ ϕ2| def= |ϕ1|+ |ϕ2|.

Notice how the ∗ operator splits the model similarly to the separating conjunction in
separation logic. In Section 3.3 we explore the similarities between these two logics by
providing the formal translation from ALT to 1SLR1(∗,−∗, reach+). ALT is also reminiscent of
static ambient logic [5, 22], where the composition operator ϕ ψ cuts the tree into two parts.
However, differently from the ∗ operator of ALT, this operation preserves the parent relation.
Then, ϕ ψ holds on trees that can be divided into a tree satisfying ϕ, one satisfying ψ and
no garbage locations are generated by the split. Given a model (T ,G) ∈ T where G = ∅, this
semantics can be retrieved in ALT with the formula (ϕ ∧ ¬∃u G(u)) ∗ (ψ ∧ ¬∃u G(u)).

Expressive power: encoding words in ALT. Despite using one single variable, the ability
of splitting the model with a operator having the semantics of the separating conjunction
greatly increases the expressive power of ALT. In particular, we show that ALT is able to
characterise finite words. We first establish a correspondence between words and trees of
a particular shape. Let Σ = [1, n] be the alphabet of natural numbers between 1 and n.
Let w = a1·· ·ak be a k-letters word in Σ∗ and {`1,·· ·, `k} be a set of k locations. For every
i ∈ [1, k], let L(i) be a set of ai + 1 locations different from `1,·· ·, `k and so that for each
distinct i, j ∈ [1, k], L(i) ∩ L(j) = ∅. An encoding of w is a tree T defined on these sets as

T (`k) def= ρ; T (`i) def= `i+1 for each i∈ [1, k− 1]; T (`) def= `i for each i∈ [1, k] and `∈L(i)

`1

`2

`3

`4

ρ

1

1

2

1

The locations `1,·· ·, `k are the main path of T , where T (`i) = `i+1 for i ∈ [1, k − 1], and
T (`k) = ρ. These are the only locations in dom(T ) with at least one child, with `1 being the
only location with the same number of descendants and children. We say that a location
` ∈ dom(T ) encodes the symbol a ∈ Σ if it has exactly a + 1 children that are not in the
main path. Then the locations of the main path of T are the only ones encoding symbols,
where `i encodes ai for any i ∈ [1, k]. The tree on the left encodes the word 1121. We now
show how to capture these trees with a logical formula. As symbols in Σ are represented
using the number of children of elements in T , we need a formula that expresses this number
for the location assigned to u. We first define sizeT+G ≥ β and sizeG ≥ β, two formulæ
respectively stating that dom(T+G) and dom(G) have size at least β∈N. They are > for
β=0 and otherwise

sizeT+G ≥ β def= ∃u alloc(u) ∗ sizeT+G ≥ β − 1
sizeG ≥ β def= ∃u (G(u) ∧ ((alloc(u) ∧ sizeT+G = 1) ∗ sizeG ≥ β − 1)︸ ︷︷ ︸

by excluding a location in G, at least other β − 1 such locations can be found

)

where sizeT+G = β is sizeT+G ≥ β ∧ ¬sizeT+G ≥ β + 1, the formula that checks if T + G
has exactly β elements. In sizeG ≥ β, notice how the ∗ operator is used to isolate the
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42:6 Extending Propositional Separation Logic for Robustness Properties

memory cell of G corresponding to u from the remaining part of the model and then search
for other β − 1 elements of G. This “trick” is often used in our formulæ, including the one
that checks the number of descendants of a location l ∈ dom(T ) corresponding to u:

#desc(u) ≥ β def= > ∗ ((∀u ¬G(u))︸ ︷︷ ︸
G is empty

∧ ((alloc(u) ∧ sizeT+G = 1) ∗ sizeG ≥ β)︸ ︷︷ ︸
isolating l creates a garbage of at least β locations

)

I Proposition. l ∈ dom(T ) and has at least β descendants ⇐⇒ (T ,G, l) |= #desc(u) ≥ β.

#desc(u) ≥ β can then be used to define a formula that checks the number of children of
the location l corresponding to u: #child(u) ≥ 0 def= T(u), whereas #child(u) ≥ β + 1 is

> ∗ ((∀u ¬G(u))︸ ︷︷ ︸
G is empty

∧
l has at least β + 1 descendants︷ ︸︸ ︷

#desc(u) ≥ β + 1∧¬(sizeT+G = β ∗ (T(u) ∧ ¬#desc(u) ≥ 1))︸ ︷︷ ︸
isolating β memory cells makes impossible for l to reach ρ and have no descendants

)

I Proposition. l ∈ dom(T ) and has at least β children ⇐⇒ (T ,G, l) |= #child(u) ≥ β.

Notice that the size of every formula introduced above is linear with respect to β. We denote
with symbol(u) the formula #desc(u) ≥ 1, which in our encoding is satisfied if and only if u
is interpreted by a location in the main path. We define 1stS(u) as the formula that check if
u corresponds to the location that encodes the first letter of a word and that symbol is in
S ⊆ Σ. As stated above, this is the only location of the main path with the same number of
descendants and children. Then, 1stS(u) can be easily defined as follows:

1stS(u) def=
∨
β∈S

(#desc(u) = β + 1 ∧#child(u) = β + 1)

Lastly, we define a formula, linear in the size of Σ = [1, n], that characterises the family of
trees encoding a word by capturing the properties of the encoding. wordn

def= ψ ∧ χn where

ψ
def=

ρ has at most 1 child︷ ︸︸ ︷
¬(∃u T(u) ∗ ∃u T(u))∧

T is empty or it encodes symbols︷ ︸︸ ︷
(∃u symbol(u) ∨ ∀u ¬T(u))

χn
def= ∀u (symbol(u) =⇒ 1st[1,n](u) ∨ ((sizeT+G = 1 ∗ 1st[1,n](u)) ∧ ¬1st[1,n+1](u))︸ ︷︷ ︸

the location corresponding to u encodes a symbol in [1, n] and exactly one of its children encodes a letter

)

I Proposition. Let (T ,G, l) be a state. T encodes a word in [1, n]∗ ⇐⇒ (T ,G, l) |= wordn.

3.2 An alternative semantics for PITL
Propositional interval temporal logic (PITL) [25] was introduced for the verification of
hardware components. Similarly to separation logic, it contains an operator called chop that
splits the model into two parts. We refer the reader to [24] for a complete description of PITL
and consider here its interpretation under locality principle, known to be Tower-complete
(the full logic is undecidable). Every formula of PITL is built from

ϕ := a | pt | ϕ ∧ ϕ | ¬ϕ | ϕ ϕ

and is interpreted on a non-empty finite word w ∈ Σ+, where the satisfaction relation |= is
w |= a if and only if w is headed by the symbol a, i.e. there is w′ ∈ Σ∗ such that w = aw′.
w |= pt if and only if the length of w is 1, i.e. w ∈ Σ.
w |= ϕ1 ϕ2 iff there are a ∈ Σ and w′,w′′ ∈ Σ∗ s.t. w = w′aw′′, w′a |= ϕ1 and aw′′ |= ϕ2.
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PITL seems a good candidate for a reduction, since finite words and the predicates a, pt can
be easily encoded in it. Capturing ϕ1 ϕ2 seems however to be challenging. Let w = a1·· ·ak
be a non-empty word and let T be a tree encoding w. Let `1,·· ·, `k be the main path of
T . From the semantics of the chop operator, w |= ϕ1 ϕ2 if and only if there is a position
i ∈ [1, k] so that a1·· ·ai |= ϕ1 and ai·· ·ak |= ϕ2. Alternatively, we would like to split the
main path of T so that we are able to check that its prefix with main path `1,·· ·, `i encodes
a word satisfying ϕ1 whereas its suffix with main path `i,·· ·, `k encodes a word satisfying ϕ2.
However, using ∗ to naïvely cutting T causes the locations `1,·· ·, `i not to encode any word
(as they do not reach ρ anymore), making it impossible to check the satisfaction of ϕ1. To
solve this issue we define an equivalent interpretation of PITL based on marked symbols.

A marking of an alphabet Σ is a bijection (.) : Σ→ Σ, relating each symbol a ∈ Σ to its
marked representation a ∈ Σ. We denote with ΣI the extended alphabet Σ∪Σ. A word ΣI + is
marked if it has some symbols from Σ. The satisfaction relation |=• on a marked word w is

w |=• a iff w is headed by a or a.
w |=• pt iff w is headed by a marked symbol.
w |=• ϕ1 ϕ2 iff there are a ∈ Σ, b ∈ Σ, w′,w′1,w′2 ∈ Σ∗ and w′′ ∈ ΣI ∗ s.t. (w = w′aw′′,
w′aw′′ |=• ϕ1 and aw′′ |=• ϕ2) or (w′=w′1bw′2, w′1bw′2aw′′ |=• ϕ1 and bw′2aw′′ |=• ϕ2).

Here, the satisfaction of a formula is only checked on the prefix a1·· ·ai−1ai of w that ends
with the first marked letter. To check whether w |=• ϕ1 ϕ2 we search for a position j ∈ [1, i]
inside this prefix so that ϕ1 is satisfied by w updated so that its j-th letter is marked, and
ϕ2 is satisfied by the suffix of w starting in j. As shown in the next section, taking the suffix
of a word and marking a symbol can be simulated in ALT. As the two semantics of PITL are
shown to be equivalent (by induction on the structure of ϕ), this makes ALT capture PITL.

I Theorem 1 (|= equiv. |=•). Let w ∈ Σ+. Let w = w′aw′′ with w′ ∈ Σ∗, a ∈ Σ and
w′′ ∈ ΣI ∗. If w = w′a then for every PITL formula ϕ we have w |= ϕ ⇐⇒ w |=• ϕ.

3.3 Tower-completeness of ALT and other complexity results
We reduce the satisfiability problem of PITL on marked words to the satisfiability problem of
ALT. Let Σ = [1, n], ΣI = Σ ∪ Σ and let f : ΣI → [1, 2n] be the bijection f(a) def= 2a for a ∈ Σ
and f(a) def= 2a− 1 for a ∈ Σ. f(a1·· ·ak) denotes the translated word f(a1)·· ·f(ak). f maps ΣI
into the alphabet [1, 2n], whose words can be encoded into trees (as in Section 3.1). In these
trees each symbol a ∈ Σ (resp. a ∈ Σ) corresponds to a location ` in the main path having
2a + 1 (resp. 2a) children not in this path. Then, removing exactly one of these children is
equal to marking a symbol. We can check if the assignment of u encodes marked symbols:

markedn(u) def=
∨

i∈[1,n]

((#child(u) = 2i∧ 1st[1,2n](u))∨ (#child(u) = 2i+ 1︸ ︷︷ ︸
the location corresponding to u has 2i children not in the main path and one in it

∧¬1st[1,2n](u)))

As stated in Section 3.2, w |=• ϕ examine the prefix of w that ends with the first marked
symbol. In trees T encoding w, this corresponds to the locations that reach every encoding
of marked symbols. The idea is then to track the number of these symbols in T . The formula
marksn ≥ β, defined as > for β = 0, shown below is satisfied only by trees with at least β
marked symbols. Then, the formula #marksn(u) ≥ β checks if the current assignment of u
encodes a symbol that reaches at least (other) β marked locations.

marksn ≥ β def= ∃u (markedn(u) ∧
by excluding a marked location, at least other β − 1 such locations can be found︷ ︸︸ ︷

((sizeT+G = 1 ∧ alloc(u)) ∗ marksn ≥ β − 1))
#marksn(u) ≥ β def= symbol(u) ∧ ((sizeT+G = 1 ∧ alloc(u)) ∗ marksn ≥ β)
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At last, we define the translation ∇β(ϕ), parametrised on the number β≥1 of marked symbols,
of a PITL formula ϕ. ∇β(ϕ) is homomorphic for Boolean connectives, ∇β(a) and ∇β(pt) are
respectively ∃u 1st[2α−1,2α](u) and ∃u (1st[1,2n](u) ∧ markedn(u)), whereas ∇β(ϕ1 ϕ2) is

∃u
(

symbol(u) ∧
(
(1st[1,2n](u) ∧ markedn(u) ∧∇β(ϕ1) ∧∇β(ϕ2))∨

(1st[1,2n](u) ∧ ¬markedn(u) ∧ (sizeG =1 ∗ (markedn(u) ∧∇β+1(ϕ1))) ∧∇β(ϕ2))∨
(¬1st[1,2n](u) ∧ markedn(u) ∧#marksn(u) ≥ β − 1 ∧∇β(ϕ1) ∧ (sizeG =1 ∗ (1st[1,2n](u) ∧∇β(ϕ2))))∨

(¬1st[1,2n](u) ∧ ¬markedn(u) ∧#marksn(u) ≥ β ∧ (sizeG =1 ∗ (markedn(u) ∧∇β+1(ϕ1)))
∧(sizeG =1 ∗ (1st[1,2n](u) ∧∇β(ϕ2))))

))
.

The translation follows closely the relation |=•. The case for ∇β(ϕ1 ϕ2) is split into four
disjuncts, depending on whether or not u points to a location (1) encoding the first letter
of the word and (2) encoding the first marked symbol. For example, in the third disjunct
u points to a location l which is not the first in the main path but that encodes the first
marked symbol. ∇β(ϕ1) needs then to hold on the current state whereas ∇β(ϕ2) must be
checked with respect to the portion of tree where l encodes the same marked symbol but is
now the first location in the main path. To obtain this, the formula cuts the tree by only
removing the child of l that is in the main path. Lemma 2 (whose proof is by induction on
the structure of ϕ) ensures that the translation captures the semantics of the formula. The
reduction of PITL with the standard semantics (Theorem 3) then stems from Theorem 1.

I Lemma 2. Let w ∈ ΣI + be a marked word with β ≥ 1 marked symbols. Let (T ,G, l) be a
state such that T encodes f(w). For every PITL formula ϕ, w |=• ϕ ⇐⇒ (T ,G, l) |= ∇β(ϕ).

I Theorem 3 (PITL to ALT). Every PITL formula ϕ interpreted on |= is equisatisfiable with

word2n ∧ ∃u T(u)︸ ︷︷ ︸
T encodes a non-empty word

∧∀u (markedn(u)⇔ (T(u) ∧ ¬(> ∗ G(u)))︸ ︷︷ ︸
u is interpreted a child of ρ

) ∧∇1(ϕ).

Complexity results. Even though the translation from PITL to ALT is exponential, the
Tower-completeness of PITL [24] ensures that ALT is Tower-hard. It remains to show that
ALT is captured by 1SLR1(∗,−∗, reach+). The translation τx(ϕ) of an ALT formula ϕ provided
here is quite straightforward, with the only specificity being the role of x ∈ VAR as the
root of the tree. τx(ϕ) is homomorphic for Boolean connectives and ∗ operators, τx(T(u)) def=
reach+(u, x), τx(G(u)) def= alloc(u) ∧ ¬reach+(u, x) and τx(∃u ϕ) def= ∃u (u 6= x ∧ τx(ϕ)). Its
soundness is proved by induction on the structure of ϕ (Lemma 4) and implies Theorem 5.

I Lemma 4. Let ϕ be a ALT formula and let x ∈ VAR. Let (T ,G, l) be a state and let s be
a store such that s(x) = ρ. Then, (T ,G, l) |= ϕ if and only if (s, T + G, l) |= τx(ϕ).

I Theorem 5. Let x ∈ VAR. Every ALT formula ϕ is equisat. with u 6= x∧¬alloc(x)∧τx(ϕ).

As the separating implication only appears inside alloc predicates, the formula obtained
through the translation satisfies R1. This proves both that 1SLR1(∗,−∗, reach+) is Tower-
hard and that ALT is Tower-complete as it is captured by 1SL(∗, reach+, alloc), a fragment
of first-order separation logic without −∗ which is known to be Tower-complete [4].

4 PSpace-completeness of 1SL(∗,−∗, reach+) under R1 and R2

We now consider 1SLR1
R2(∗,−∗, reach+), the fragment of 1SL(∗,−∗, reach+) satisfying both R1

and R2. Formulæ of this fragment are built from the non-terminals of the following grammar.

C := e1 = e2 | e1 ↪→ e2 | emp | C ∧ C | ¬C | ∃u C | C ∗ C | A −∗ C
A := C | reach+(x, e1) | reach+(u, u) | A ∧ A | ¬A | ∃u A | A ∗ A
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where x ∈ VAR, e1, e2 ∈ VAR ∪ {u}. Notice how each antecedent of a separating implication
(−∗) is in A whereas its consequent is in C. We say that ϕ is a A-formula (resp. C-formula)
whenever it is in the language generated by A (resp. C). Every C-formula is thus a A-formula.

For this logic, we show that satisfiability can be solved in PSpace by proving a small
model property: every satisfiable formula has a polynomial size model. As far as we know,
this is the first fragment with reachability predicates in the scope of −∗ that is proved
decidable. Moreover, it subsumes the logics studied in [12] and [13] which were also found to
be PSpace-complete. The result is shown by extending the test formulæ technique introduced
by Lozes in [22]: we design a finite index equivalence relation on memory states based on
the satisfaction of atomic predicates (the test formulæ). Then, we show that any formula of
our logic can be expressed as a Boolean combination of test formulæ, effectively replacing
quantifiers and spatial connectives. A proof of small model property for Boolean combination
of test formulæ thus extends to 1SLR1

R2(∗,−∗, reach+). To handle the asymmetry of A−∗ C,
the technique is here extended by introducing two families of test formulæ, one for the C
fragment and one for the A fragment (i.e. respectively the set of every C-formula and the set
of every A-formula). The two families are then combined together in order to deduce the
complexity of 1SLR1

R2(∗,−∗, reach+) (as we show in Section 4.3).

4.1 A family of test formulæ capturing C

In order to define the set of test formulæ for the C fragment we proceed as follows:

(1) we introduce a set of syntactical terms and a partition of a memory state.

(2) We then highlight properties of these objects by introducing the set of test formulæ.

(3) Lastly, we show that the test formulæ internalise the semantics of separating conjunctions
and quantifications.

The same steps are carried out, in Section 4.2, for the test formulæ of the A fragment.
As we are interested in the satisfiability of a given formula, it is natural to consider only

the finite set X ⊆fin VAR of variables appearing in it. The syntactical terms CTermX are
defined as X∪CNextX, where CNextX

def= {n(x) | x ∈ X} is the set of next-point variables. Given
a memory state (s, h, l), we write [[x]]Xs,h for s(x) and [[n(x)]]Xs,h to denote (if it exists) the
location h(s(x)). The locations corresponding to terms are said to be labelled and their set
is denoted with CLabelsX

s,h. Labelled locations correspond to locations for which the logic
is able to express particular properties. As such, the test formulæ primarily speak about
relationships between these locations, as well as the following subsets of dom(h):

CPredX
s,h(`) def= {`′ ∈ dom(h) \ CLabelsX

s,h | h(`′) = `}, for every ` ∈ s(X), i.e. the set of
unlabelled predecessors of a location corresponding to a program variable.

CLoopX
s,h

def= {` ∈ dom(h) \ CLabelsX
s,h | h(`) = `}, i.e. the set of unlabelled self-loops.

CSizeX
s,h

def= dom(h) \ (CLabelsX
s,h ∪ CLoopX

s,h ∪
⋃
`∈s(X) CPredX

s,h(`)), i.e. the set of unlabelled
locations that do not self-loop and are not predecessors of program variables.

Notice how {dom(h) ∩ CLabelsX
s,h, CLoopX

s,h, CSizeX
s,h} ∪ {CPredX

s,h(`) | ` ∈ s(X)} partitions
dom(h). The test formulæ CTEST(X, α) are parametric on X and α ∈ N+. Here, α is a
quantity that roughly express upper-bounds on the capabilities of a C-formula ϕ to check the
sizes of the sets of the partition. In Section 4.3 we show how α is connected to the size of ϕ.
CTEST(X, α) is divided into two sets, a skeleton CSKEL(X, α) expressing structural properties
that do not depend on the assignment of u, and an observed set COBS(X, α) of relationships
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between the memory state and the location currently assigned to u.

CSKEL(X, α) def=
{

t1 = t2, alloc(t1), t1 ↪→ x, t1 ↪→ t1,

#predCX(x) ≥ β, #loop1
X ≥ β, sizeCX ≥ β

∣∣∣∣ x ∈ X, β ∈ [1, α]
and t1, t2 ∈ CTermX

}
COBS(X, α) def=

{
u = t, u∈predCX(x), u∈loop1

X, u∈sizeCX
∣∣ x ∈ X and t ∈ CTermX

}
The formal semantics of the test formulæ is provided below:

(s, h, l) |= t1 = t2 if and only if [[t1]]Xs,h and [[t2]]Xs,h are defined and [[t1]]Xs,h = [[t2]]Xs,h.
(s, h, l) |= alloc(t1) if and only if [[t1]]Xs,h is defined and [[t1]]Xs,h ∈ dom(h).
(s, h, l) |= t1 ↪→ x if and only if [[t1]]Xs,h is defined and h([[t1]]Xs,h) = s(x).
(s, h, l) |= t1 ↪→ t1 if and only if [[t1]]Xs,h is defined and h([[t1]]Xs,h) = [[t1]]Xs,h.
(s, h, l) |= #predCX(x) ≥ β if and only if card(CPredX

s,h(s(x))) ≥ β.
(s, h, l) |= #loop1

X ≥ β if and only if card(CLoopX
s,h) ≥ β.

(s, h, l) |= sizeCX ≥ β if and only if card(CSizeX
s,h) ≥ β.

(s, h, l) |= u = t if and only if [[t]]Xs,h is defined and l = [[t]]Xs,h.
(s, h, l) |= u∈predCX(x) if and only if l ∈ CPredX

s,h(s(x)).
(s, h, l) |= u∈loop1

X if and only if l ∈ CLoopX
s,h.

(s, h, l) |= u∈sizeCX if and only if l ∈ CSizeX
s,h.

In CTEST(X, α), the classical predicates =, ↪→ and alloc are extended to terms of CTermX. For
instance n(x) ↪→ y is satisfied by only those memory states (s, h, l) where h(h(s(x))) = s(y).
There are some restrictions: all program variables are from X and t2 ↪→ t1 is syntactically
constrained so that t2 is equal to t1 when the latter is a next-point variable (so for instance
n(x) ↪→ n(y) is not a test formula). The test formulæ #predCX(x) ≥ β, #loop1

X ≥ β and
sizeCX ≥ β are respectively satisfied whenever the sets CPredX

s,h(s(x)), CLoopX
s,h and CSizeX

s,h

have size at least β. As β is bounded by α, memory states having both at least α elements
in one of these sets satisfy the same test formulæ related to that set. Lastly, the formulæ
u ∈ predCX(x), u ∈ loop1

X and u ∈ sizeCX respectively check whether the location currently
assigned to u is in CPredX

s,h(s(x)), CLoopX
s,h or CSizeX

s,h.
It is possible to show that each test formula can be expressed with a C-formula. For

instance, u ∈ loop1
X is equivalent to u ↪→ u ∧

∧
x∈X(u 6= x ∧ ¬x ↪→ u) and the formula

#loop1
X ≥ β is equivalent to ∃u (u∈ loop1

X ∧ ((alloc(u) ∧ size = 1) ∗#loop1
X ≥ β − 1)),

where #loop1
X ≥ 0 def= >. Although this result ensures that the test formulæ are not more

expressive than the logic, we need to show the converse. To do so, we start by defining an
indistinguishability relation between memory states, denoted with (s, h, l) ≈CX,α (s′, h′, l′),
that holds if and only if for all ϕ ∈ CTEST(X, α) it holds (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ.

We then use this relation to show that the expressive power of the test formulæ allows
to mimic quantifiers and separating conjunctions, as done in [12] for separation logic with
one quantified variable. This result should not be surprising, as the equivalence relation 'α
defined in [12] (Def. 3.8) can be shown equivalent to ≈CX,α. We first handle the quantifiers.

I Lemma 6 (C:∃ indistinguishability). Assume (s, h, l)≈CX,α (s′, h′, l′). Let `∈ LOC\L with
L def=dom(h′)∪ran(h′)∪s′(X). For every l1∈LOC there is l′1∈L∪{`} s.t. (s, h, l1)≈CX,α (s′, h′, l′1).

This holds as we show that for every assignment l1 we can find a location l′1 so that the formulæ
in COBS(X, α) are equisatisfied by both memory states. Indeed, formulæ of CSKEL(X, α)
do not depend on the assignment of u but they are key to prove the result. For example,
suppose that l1 ∈ CLoopX

s,h. From the equisatisfaction of #loop1
X ≥ 1, CLoopX

s′,h′ is not empty
and we can choose l′1 to be in this set. Then, (s, h, l1) and (s′, h′, l′1) satisfy the same test
formulæ. Notice how l′1 is taken from a finite set. This is key to prove that the logic is in
PSpace (Theorem 15). Lemma 6 shows that two indistinguishable memory states cannot be
distinguished using quantifiers. We show that the same holds for separating conjunctions.
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I Lemma 7 (C:∗ indistinguishability). Let X ⊆fin VAR and α, α1, α2 ∈ N+ with α = α1 + α2.
Assume (s, h, l) ≈CX,α (s′, h′, l′). For all heaps h1, h2 such that h = h1 + h2 there are heaps
h′1, h′2 such that h′ = h′1 + h′2, (s, h1, l) ≈CX,α1

(s′, h′1, l′) and (s, h2, l) ≈CX,α2
(s′, h′2, l′).

This result can be proved by looking at (s, h1, l) and (s, h2, l) in terms of their partitions

{dom(hk) ∩ CLabelsX
s,hk

, CLoopX
s,hk

, CSizeX
s,hk
} ∪ {CPredX

s,hk
(`) | `∈s(X)}, k ∈ {1, 2}

and showing that it is possible to construct h′1 and h′2 by dividing h′ in such a way that
(s, h1, l) ≈CX,α1

(s′, h′1, l′) and (s, h2, l) ≈CX,α2
(s′, h′2, l′). For instance, let us consider the

case of unlabelled self-loops. In the following, the index k stands for 1 or 2. We define
Lk def= CLoopX

s,h∩dom(hk), i.e. the set of unlabelled self-loops of h assigned to hk. We partially
construct h′1 and h′2 by defining two disjoint sets L′1 ⊆ dom(h′1) and L′2 ⊆ dom(h′2) so that:

L′1 ∪ L′2 = CLoopX
s′,h′ min(αk, card(Lk)) = min(αk, card(L′k)) l ∈ Lk ⇔ l′ ∈ L′k

This can be done as, by (s, h, l) ≈CX,α (s′, h′, l′), it follows that l ∈ CLoopX
s,h ⇔ l′ ∈ CLoopX

s′,h′

and min(α, card(CLoopX
s,h)) = min(α, card(CLoopX

s′,h′)). The construction goes by cases:
if card(L1) < α1 then select card(L1) locations from CLoopX

s′,h′ . If l ∈ L1 then l′ is one of
the selected locations. These locations constitute L′1. Then, L′2 is the set L′ \ L′1;
else if card(L2) < α2 then select card(L2) locations from CLoopX

s′,h′ . If l ∈ L2 then l′ is
one of the selected locations. These locations constitute L′2. Then, L′1

def= L′ \ L′2;
otherwise card(L1) ≥ α1 and card(L2) ≥ α2. Select α1 locations from CLoopX

s′,h′ . If l ∈ L1

then l′ is one of the selected locations. These locations constitute L′1. Then, L′2
def= L′ \ L′1.

Suppose now that, by considering all the other elements of the partitions of h1 and h2, we
can complete the construction of h′1 and h′2 so that l∈CLoopX

s,hk
\Lk ⇔ l′∈CLoopX

s′,h′
k
\L′k and

min(αk, card(CLoopX
s,hk
\Lk)) = min(αk, card(CLoopX

s′,h′
k
\L′k)) holds. From the properties of

L′k ensured by construction it then holds that

l ∈ CLoopX
s,h ⇔ l′ ∈ CLoopX

s′,h′ min(αk, card(CLoopX
s,hk

)) = min(αk, card(CLoopX
s′,h′

k
))

By semantics of the test formulæ we then conclude the following equisatisfiability results:
(s, hk, l) |= u∈loop1

X if and only if (s′, h′k, l′) |= u∈loop1
X;

for each β ∈ [1, αk], (s, hk, l) |= #loop1
X ≥ β if and only if (s′, h′k, l′) |= #loop1

X ≥ β.
In order to complete the proof of Lemma 7, a reasoning similar to what we presented here
for unlabelled self-loops is applied to each element of the partition and every test formula.
This concludes the study of the family of test formulæ for the C fragment.

4.2 A family of test formulæ capturing A
We now consider the A fragment and follow the same steps of the last section. Let X ⊆fin VAR.
ATermX is the set of syntactical terms X∪AMeetX∪AEndX, whereAMeetX

def= {m(x, y) | x, y ∈ X}
and AEndX

def= {e(x) | x ∈ X} are respectively the set of meet-point and end-point variables.
The interpretation of terms [[.]]Xs,h of the last section is extended on the new terms:

[[m(x, y)]]Xs,h = ` def⇔ hδ1(s(x)) = hδ2(s(y)) = ` for some δ1, δ2 ≥ 1 and for each 0 ≤ δ′1 ≤ δ1,
0 ≤ δ′2 ≤ δ2, if δ′1 6= δ1 or δ′2 6= δ2 then hδ′1(s(x)) 6= hδ

′
2(s(y)). For every δ′ ≥ 1, hδ′(`) 6= `.

[[e(x)]]Xs,h = ` def⇔ there is δ ≥ 1 such that hδ(s(x)) = ` and if ` ∈ dom(h) then hδ′(`) = ` for
some δ′ ≥ 1 and for all 0 ≤ δ1 < δ there no δ2 ≥ 1 is such that hδ2(hδ1(s(x))) = hδ1(s(x)).
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e(x),e(y)
m(x,y)

x y

e(z)z

[[m(x, y)]]Xs,h is the first location ` that is reached by both s(x) and s(y). Moreover, for
[[m(x, y)]]Xs,h to be defined, s(x) and s(y) cannot reach each other and ` cannot be inside a
cycle. Instead, [[e(x)]]Xs,h is defined if s(x) is a memory cell that is not inside a loop, as the
first location reachable from s(x) that is inside a loop or is not in dom(h). We extend the
notion of labelled location to the locations corresponding to terms of ATermX and denote with
ALabelsX

s,h their set. The picture on the right provide an example of the labelled locations in
a memory state. As done for C, the test formulæ of the A fragment express conditions on
the labelled locations and on a specific partition of a memory state. Let α ∈ N+. We define,
APredX

s,h(`) def= {`′ ∈ dom(h) | h(`′) = ` and hδ(s(y)) 6= `′ for every y ∈ X and δ ≥ 0}
for each ` ∈ s(X), i.e. the set of predecessors of a location corresponding to a program
variable that are not reached by any location corresponding to a program variable;
APathX

s,h(`) def= {`′ ∈ dom(h) | ∃δ ≥ 0 hδ(`) = `′ and hδ
′(`) 6∈ ALabelsX

s,h for every
0 < δ′ ≤ δ} for each `∈ALabelsX

s,h. This is the set of memory cells that are reachable from
the labelled location ` without passing through any labelled location different from `;
ALoopX

s,h(β) def=
{
{`0,·· ·, `β−1} ⊆ dom(h) | h(`i) = `(i+1 mod β) and `i 6∈ ALabelsX

s,h, for
every i ∈ [0, β − 1]

}
for each β ∈ [1, α], i.e. the set of unlabelled cycles of size β;

ALoop⇑X
s,h(α) def=

{
{`0,·· ·, `γ} ⊆ dom(h) | (h(`i) = `(i+1 mod γ) and `i 6∈ ALabelsX

s,h), for
each i ∈ [0, γ − 1] with γ > α

}
, i.e. the set of unlabelled cycles of size at least α+ 1;

ASizeX
s,h(α) is the set of locations in dom(h) that are not in any of the sets defined above.

It is straightforward to see that these sets constitute a partition of dom(h). Notice that any
` ∈ ALabelsX

s,h is in dom(h) if and only if APathX
s,h(`) 6= ∅. From the interpretation of terms,

if APathX
s,h(`) 6= ∅ then there is exactly one location `′ in this set that points to a labelled

location. Then, we denote with AseenX
s,h(`) the location h(`′), i.e. the first labelled location

reachable from ` in at least one step. As in the previous section, the set of test formulæ
ATEST(X, α) is split into a skeleton ASKEL(X, α) and an observed set AOBS(X, α).

ASKEL(X, α) def=


t1 = t2, seesX(t1, t2) ≥ β

 

#loopX(β) ≥ β	, #loop⇑X ≥ β
	

#predAX (x) ≥ β, sizeAX ≥ β

∣∣∣∣∣∣∣∣
β

 

∈
[
1, 1

6 (α+ 1)(α+ 2)(α+ 3)
]

β	∈
[
1, 1

2α(α+ 3)− 1
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ ATermX



AOBS(X, α) def=


u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β )

u = t1, u∈loopX(β), u∈loop⇑X
u∈predAX (x), u∈sizeAX

∣∣∣∣∣∣∣∣
←−
β ∈

[
1, 1

6α(α+ 1)(α+ 2) + 1
]

−→
β ∈

[
1, 1

2α(α+ 3)
]
, β ∈ [1, α]

x ∈ X, t1, t2 ∈ ATermX


The formal semantics of the test formulæ is provided below:
(s, h, l) |= t1 = t2 if and only if [[t1]]Xs,h and [[t2]]Xs,h are both defined, [[t1]]Xs,h = [[t2]]Xs,h.
(s, h, l) |= seesX(t1, t2) ≥ β iff card(APathX

s,h([[t1]]Xs,h)) ≥ β, [[t2]]Xs,h=AseenX
s,h([[t1]]Xs,h).

(s, h, l) |= #loopX(β1) ≥ β2 if and only if ALoopX
s,h(β1) has at least β2 cycles.

(s, h, l) |= #loop⇑X ≥ β if and only if ALoop⇑X
s,h(α) has at least β cycles.

(s, h, l) |= #predAX (x) ≥ β if and only if APredX(s(x)) has at least β elements.
(s, h, l) |= sizeAX ≥ β if and only if ASizeX

s,h(α) has at least β elements.
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(s, h, l) |= u = t if and only if l = [[t]]Xs,h;
(s, h, l) |= u∈seesX(t1, t2) ≥ (β1, β2) if and only if there are δ1 ≥ β1 and δ2 ≥ β2 such
that δ1 + δ2 = card(APathX

s,h([[t1]]Xs,h)) and hδ1([[t1]]Xs,h) = l and hδ2(l) = [[t2]]Xs,h;
(s, h, l) |= u∈loopX(β) if and only if there is a set L ∈ ALoopX

s,h(β) such that l ∈ L;
(s, h, l) |= u∈loop⇑X if and only if there is a set L ∈ ALoop⇑X

s,h(α) such that l ∈ L;
(s, h, l) |= u∈predAX (x) if and only if l ∈ APredX

s,h(s(x));
(s, h, l) |= u∈sizeAX if and only if l ∈ ASizeX

s,h(α).
As done for the C fragment, these test formulæ follow closely the partition defined above.
For example, seesX(t1, t2) ≥ β states that APathX

s,h([[t1]]Xs,h) describe a path of length at
least β from the location corresponding to t1 to its nearest labelled location [[t2]]Xs,h. Then,
formula u∈seesX(t1, t2) ≥ (β1, β2) state that the current assignment of u is in this path and
is reached from [[t1]]Xs,h after at least β1 steps whereas it reaches [[t2]]Xs,h in at least β2 steps.

The interesting aspect of ATEST(X, α) lies on the upper-bounds given to the formulæ, e.g.
the bound 1

2α(α+ 3)− 1 on β for #loop⇑X ≥ β formulaæ. These non-trivial upper-bounds
arise as we internalise the separating conjunction so that Lemma 8 (see below) holds. Since
these bounds are novelty in the test formulæ proof technique, as an example we informally
show how to derive the bound 1

2α(α+ 3)− 1 on β for #loop⇑X ≥ β formulæ. Let (s, h, l) be
a memory state, h1 + h2 = h and α, α1, α2 ∈ N+ so that α = α1 + α2 (as in Lemma 8) and
(w.l.o.g.) α1 ≥ α2. We study how the satisfaction of the test formulæ changes when the heap
h is split into h1 and h2 by looking at the possible partitions of these two heaps.

In our simple case, for each loop P ∈ ALoop⇑X
s,h(α) one of the following must hold:

P ⊆ dom(h1), P ⊆ dom(h2) or P is divided into two non-empty sets P1 ⊆ dom(h1) and
P2 ⊆ dom(h2). By definition of the partition, in the first two cases we have P∈ALoop⇑X

s,hk
(αk),

for k ∈ {1, 2}, whereas for the third case we have P1 ⊆ ASizeX
s,h1

(α1) and P2 ⊆ ASizeX
s,h2

(α2).
Then, these locations affects the formulæ #loop⇑X ≥ β1 and sizeAX ≥ β2 of ATEST(X, α1)
and ATEST(X, α2). For ATEST(X, α), we denote with L(α) the (desired) upper-bound on β
for #loop⇑X ≥ β formulæ and with S(α) the one for sizeAX ≥ β′ formulæ. For the sake of
brevity, suppose we derived S(α) = α with similar arguments to the ones herein described.
To effectively internalise the separating conjunct, L(α) must be at least the sum of the
upper-bounds L(α1) and L(α2) of ATEST(X, α1) and ATEST(X, α2) respectively, plus the
upper-bound S(α1) of ATEST(X, α1) (as α1 ≥ α2). Then, we need to satisfy the inequality
L(α) ≥ maxα=α1+α2(L(α1) + L(α2) + S(α1) + 1), where the last addend 1 is introduced to
handle the quantified variable u. As L(α1) + L(α2) + S(α1) + 1 is maximal for α1 = α− 1,
we solve the recurrence system {L(1) = 1, L(α+ 1) = L(α) + L(1) + α+ 1} (here, L(1) = 1
refers to the base-case of α = 1) and obtain the upper-bound L(α) = 1

2α(α + 3) − 1 that
satisfies the inequality above. Similarly, we derive all the upper-bounds of ATEST(X, α)
(Appendix A provides details of these derivations).

We say that two memory states are indistinguishable, written (s, h, l) ≈AX,α (s′, h′, l′), for
the A fragment if and only if for all ϕ ∈ ATEST(X, α) (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ. As
for the test formulæ of the C fragment (Lemma 7), we can show that two indistinguishable
memory states cannot be distinguished using separating conjunctions.

I Lemma 8 (A:∗ indistinguishability). Let X⊆fin VAR and α, α1, α2 ∈ N+ with α = α1 + α2.
Assume (s, h, l) ≈AX,α (s′, h′, l′). For all heaps h1, h2 such that h = h1 + h2 there are heaps
h′1, h′2 such that h′ = h′1 + h′2, (s, h1, l) ≈AX,α1

(s′, h′1, l′) and (s, h2, l) ≈AX,α2
(s′, h′2, l′).

As done for Lemma 7, this lemma can be proved by looking at (s, h1, l) and (s, h2, l) in terms
of their partitions and showing that it is possible to construct h′1 and h′2 by dividing h′ in
such a way that (s, h1, l) ≈AX,α1

(s′, h′1, l′) and (s, h2, l) ≈AX,α2
(s′, h′2, l′). In order to relate
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this result to the observations done for Lemma 7 and show the role of the upper-bounds
introduced in this section, let us consider the case of loops of size greater than α. In the
following, the index k stands for 1 or 2. For h1 and h2, we define the three following sets

L1
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h1)} L2
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h2)}

S def= {(P1,P2) | P1∪P2 ∈ ALoop⇑X
s,h(α), P1 6= ∅ 6= P2 and for each k ∈ {1, 2} Pk ⊆ dom(hk)}

Then, Lk is the set of loops in ALoop⇑X
s,h(α) that are completely assigned to hk whereas S

contains the loops of ALoop⇑X
s,h(α) that are split between h1 and h2. As introduced above, for

ATEST(X, α) we denote with L(α) def= 1
2α(α+3)−1 the upper-bound for #loop⇑X ≥ β formulæ

and with S(α) def= α the one for sizeAX ≥ β′ formulæ. Moreover, P(.) denotes the powerset op-
erator whereas πk(.) denotes the k-th projection of a tuple. We partially construct h′1 and h′2 by
defining three sets L′1 ⊆ P(dom(h′1)), L′2 ⊆ P(dom(h′2)) and S′ ⊆ P(dom(h′1))× P(dom(h′2))
satisfying the following properties:

L′k is the set of loops in ALoop⇑X
s′,h′(α) that are completely assigned to h′k

S′ contains the loops of ALoop⇑X
s′,h′(α) that are split between h′1 and h′2.

there is P ∈ Lk with l ∈ P if and only if there is P′ ∈ L′k with l′ ∈ P′;
there is P ∈ S with l ∈ πk(P) if and only if there is P′ ∈ S′ with l′ ∈ πk(P′);
min(L(αk), card(Lk)) = min(L(αk), card(L′k));
min(S(αk), card(

⋃
P∈S πk(P))) = min(S(αk), card(

⋃
P′∈S′ πk(P′))).

By (s, h, l) ≈AX,α (s′, h′, l′) we are guaranteed to find a construction satisfying all these prop-
erties, as it implies that min(L(α), card(ALoop⇑X

s,h(α))) = min(L(α), card(ALoop⇑X
s′,h′(α)))

and l ∈ ALoop⇑X
s,h(α)⇔ l′ ∈ ALoop⇑X

s′,h′(α). Recall that, by definition of the upper-bounds,
L(α) ≥ L(α1) + L(α2) + S(max(α1, α2)) + 1. Then, similarly to the proof of Lemma 7, the
construction goes by cases depending on whether or not the cardinalities of L1, L2 and S are
less than L(α1), L(α2) and S(max(α1, α2)) respectively and on whether or not l belongs to
a set in ALoop⇑X

s,h(α) (Appendix B provides the details of this step of the construction).
Suppose now that, by considering all the other elements of the partitions of h1 and h2, we

can complete the construction of h′1 and h′2 so that both heaps enjoy the following properties:

l∈ALoop⇑X
s,hk

(αk)\Lk ⇔ l′∈ALoop⇑X
s′,h′

k
(αk)\L′k

l∈ASizeX
s,h(αk)\

⋃
P∈S πk(P)⇔ l′∈ASizeX

s′,h′(αk)\
⋃

P′∈S′ πk(P′)

min(L(αk), card(ALoop⇑X
s,hk

(αk)\Lk)) = min(L(αk), card(ALoop⇑X
s′,h′

k
(αk)\L′k))

min(S(αk), card(ASizeX
s,hk

(αk)\
⋃
P∈S
πk(P))) = min(S(αk), card(ASizeX

s′,h′
k
(αk)\

⋃
P′∈S′

πk(P′)))

Then, as previously done for Lemma 7, by semantics of the test formulæ and from the prop-
erties of L′k and S′ ensured by construction we obtain the following equisatisfiability results:

(s, hk, l) |= u∈loop⇑X if and only if (s′, h′k, l′) |= u∈loop⇑X;
(s, hk, l) |= u∈sizeAX if and only if (s′, h′k, l′) |= u∈sizeAX ;
for each β ∈ [1,L(αk)], (s, hk, l) |= #loop⇑X ≥ β if and only if (s′, h′k, l′) |= #loop⇑X ≥ β.
for each β ∈ [1,S(αk)], (s, hk, l) |= sizeAX ≥ β if and only if (s′, h′k, l′) |= sizeAX ≥ β.

In order to complete the proof of Lemma 8, a similar reasoning is applied to each element of
the partition and every test formula. We conclude this section by showing that ATEST(X, α)
also enjoys quantification indistinguishability. The proof goes, as for Lemma 6, by checking
how the satisfaction of formulæ in AOBS(X, α) changes as the quantified variable is reassigned.

I Lemma 9 (A:∃ indistinguishability). Assume (s, h, l)≈AX,α (s′, h′, l′). Let `∈ LOC\L with
L def=dom(h′)∪ran(h′)∪s′(X). For every l1∈LOC there is l′1∈L∪{`} s.t. (s, h, l1)≈AX,α (s′, h′, l′1).
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4.3 Connecting the two families of test formulæ
We are now ready to show that the two indistinguishability relations introduced for the C
and A fragment allow us to mimic the A−∗ C separating implication using the test formulæ.

I Lemma 10 (A−∗C indistinguishability). Let (s, h, l) ≈CX,α+card(X) (s′, h′, l′) for some α ∈ N+

and X ⊆fin VAR. For all heaps h1 disjoint from h there exists h′1 disjoint from h′ such that:

1. card(dom(h′1)) is bounded by a polynomial P(card(X), α) in O(card(X)3α4),

2. (s, h1, l) ≈AX,α (s′, h′1, l′) and
3. (s, h+ h1, l) ≈CX,α (s′, h′ + h′1, l

′).
The proof is achieved by defining a “small” heap h′1 so that the first two points of the lemma
are guaranteed by construction. In doing so, we need to carefully handle the labelled locations
so that the third point also holds. For instance, suppose that in h1 there is a path from
s(x) to a location corresponding to the term t. Moreover, in this path the location h1(s(x))
corresponds to n(y) in h, as represented below (on the left). Then, (s, h+h1, l) |= n(x) = n(y).

x
[[n(y)]]X

s,h

y

· · ·
[[t]]X

s,h1

// ≈ x
[[n(y)]]X

s′,h′

y

[[t]]X
s′,h′1

(bounded)

We then construct (see the memory state on the right) h′1 so that there is a path from s′(x)
to a location corresponding to the term t where h′1(s′(x)) is the location corresponding to
the therm n(y) in h′. The hypothesis (s, h, l) ≈CX,α+card(X) (s′, h′, l′) guarantees that this can
always be done correctly. The third point of the lemma is then achieved by noticing that the
second point implies (s, h1, l) ≈CX,α (s′, h′, l′). Indeed this holds from the following result.

I Lemma 11. Let X ⊆fin VAR and α ∈ N+. It holds that ≈AX,α ⊆ ≈CX,α.

To relate the equisatisfaction of ϕ in 1SLR1
R2(∗,−∗, reach+) to the indistinguishability relations,

we define its memory size |ϕ|m as: 1 for atomic formulæ, |ϕ1∧ϕ2|m
def= max(|ϕ1|m, |ϕ2|m),

|¬ϕ|m
def= |ϕ|m, |ϕ1 ∗ ϕ2|m

def= |ϕ1|m+|ϕ2|m and |ϕ1−∗ϕ2|m
def= fv(ϕ1−∗ϕ2) + max(|ϕ1|m, |ϕ2|m).

I Lemma 12. Let ϕ be a A-formula such that fv(ϕ) ⊆ X ⊆fin VAR and |ϕ|m ≤ α ∈ N+. Let
(s, h, l), (s′, h′, l′) be two memory states. (s, h, l) |= ϕ ⇐⇒ (s′, h′, l′) |= ϕ whenever
1. (s, h, l) ≈AX,α (s′, h′, l′), or
2. (s, h, l) ≈CX,α (s′, h′, l′) and ϕ is a C-formula.
The proof is by structural induction on ϕ. The basic cases require to translate every atomic
C-formula and reach+(e1, e2) into a boolean combination of respectively CTEST(X, 1) and
ATEST(X, 1) formulæ. The inductive cases for Boolean connectives are immediate, whereas
for ∗, −∗, ∃ we use the various indistinguishability lemmata. Then, the following result holds.

I Theorem 13 (A captures the logic). Every 1SLR1
R2(∗,−∗, reach+) formula ϕ is logically

equivalent to a Boolean combination of test formulæ from ATEST(fv(ϕ), |ϕ|m).

For the proof, we first show that (s, h, l) ≈Afv(ϕ),|ϕ|m
(s′, h′, l′) and (s′, h′, l′) |=

∧
ψ∈LIT(s,h,l) ψ

are equivalent, where LIT(s, h, l) is the finite set of literals

{ψ ∈ ATEST(fv(ϕ), |ϕ|m) | (s, h, l) |= ψ}∪{¬ψ | (s, h, l) 6|= ψ and ψ ∈ ATEST(fv(ϕ), |ϕ|m)}

Then, the expression
∨

(s,h,l)|=ϕ
∧
ψ∈LIT(s,h,l) ψ is equivalent to a Boolean combination χ of

ATEST(fv(ϕ), |ϕ|m) formulæ. Using Lemma 12 we conclude thatϕ is logically equivalent toχ.
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Complexity upper bounds. Analogously to what is done in [12, 13], following Theorem 13 we
can establish a small model property for 1SLR1

R2(∗,−∗, reach+), whose proof relies on the upper-
bounds on ATEST(X, α) formulæ discussed in the previous section. Let |Xϕ| def= card(fv(ϕ)).

I Theorem 14 (small model). Every satisfiable ϕ in 1SLR1
R2(∗,−∗, reach+) is satisfied by a state

(s, h, l) such that card(dom(h)) is bounded by a polynomial Q(|Xϕ| , |ϕ|m) in O(|Xϕ|3 |ϕ|4m).

The satisfiability problem of 1SLR1
R2(∗,−∗, reach+) is then PSpace-complete (the hardness is

inherited from propositional separation logic [9]). Indeed, as |ϕ|m is at most |Xϕ|× |ϕ|, where
|ϕ| is the number of symbols in ϕ, Theorem 14 ensures a polynomial bound Q(|Xϕ| , |Xϕ|×|ϕ|)
on the heap of the smallest memory state that satisfies ϕ. Then, the non-deterministic
PSpace algorithm (leading to a PSpace upper-bound by Savitch Theorem [27]) first guess
a heap h, a store s restricted to fv(ϕ) and l∈LOC such that dom(h) ∪ ran(h) ∪ ran(s) ∪ {l}
has at most 2 × Q(|Xϕ| , |Xϕ| × |ϕ|) + |Xϕ| + 1 locations (in the worst case all these sets
are disjoint). It then checks that (s, h, l) |= ϕ by using a linear-depth recursive algorithm
that internalises the semantics of ϕ (see e.g. [8]). The various indistinguishability lemmata
ensure that only a polynomial amount of locations ever needs to be considered. For instance,
(s, h, l) 6|= ϕ1 −∗ ϕ2 if and only if we can guess h1 so that (s, h1, l) |= ϕ1, (s, h+ h1, l) 6|= ϕ2
and (by Lemma 10) dom(h1) ∪ ran(h2) has at most 2×P(|Xϕ| , |Xϕ| × |ϕ|) locations.

I Theorem 15. The satisfiability problem of 1SLR1
R2(∗,−∗, reach+) can be decided in PSpace.

5 Conclusions

We studied 1SLR1
R2(∗,−∗, reach+), an extension of propositional separation logic involving

one quantified variable and reachability predicates whose satisfiability problem is PSpace-
complete. We discussed how modest extensions of the logic entail Tower-hardness.

As far as we know, 1SLR1
R2(∗,−∗, reach+) is the largest decidable fragment in which

the separating implication cohabits with reachability predicates and quantified variables,
subsuming the logics introduced in [12] and [13] which were also found to be PSpace-complete.
Moreover, crucial robustness properties lying outside the expressive power of many fragments
of separation logic can be directly expressed in 1SLR1

R2(∗,−∗, reach+) and checked in PSpace.
Then, a procedure to decide robustness properties for this logic could perhaps be implemented
inside tools using any fragment of 1SLR1

R2(∗,−∗, reach+) as their assertion logic (see e.g. [15]).
To prove the PSpace upper-bound we relied on the widely used proof technique of the

test formulæ, here extended to capture asymmetric spatial connectives. The work presented
in [10] show a possible relation between test formulæ and games, paving a way toward better
understanding this technique and generalising it even further. In particular, by also using
the recurrence systems introduced here in Section 4.2, it seems possible to use this approach
to tackle in a new way extensions of separation logic with user-defined inductive predicates.
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A Details on the upper-bounds of ATEST(X,α) formulæ

In this section we provide the inequalities and recurrence systems that have been used to
compute the upper-bounds for the test formulæ ATEST(X, α) introduced in Section 4.2. Note
that the recurrence systems considered are generally more constrained that the inequalities
that we want to satisfy. This is however not a problem, as we just need to find a possible
solution to the inequalities, and our recurrence systems provide exactly that. For the cases
of #loopX(β1) ≥ β2 and #loop⇑X ≥ β2 we refer the reader to the body of the paper. Let
(s, h, l) be a memory state, h1 +h2 = h and α, α1, α2 ∈ N+ s.t. α = α1 +α2 (as in Lemma 8).

Bound for sizeAX ≥ β formulæ. For ATEST(X, α), let us call this upper-bound S(α), as
done in the body of the paper.

Inequality: S(α) ≥ maxα=α1+α2(S(α1) + S(α2)).
Recurrence system: {S(1) = 1, S(α+ 1) = S(α) + 1}.
Solution: S(α) = α.
Informal explanation: every location in ASizeX

s,h(α) can only appear in ASizeX
s,h1

(α1)
or ASizeX

s,h2
(α2).

Bound for #predAX ≥ β formulæ. For ATEST(X, α), let us call this upper-bound Pred(α).
Inequality: Pred(α) ≥ maxα=α1+α2(Pred(α1) + Pred(α2)).
Recurrence system: {Pred(1) = 1, Pred(α+ 1) = Pred(α) + 1}.
Solution: Pred(α) = α.
Informal explanation: similarly to the previous case, every location in APredX

s,h(α) can
only appear in APredX

s,h1
(α1) or APredX

s,h2
(α2).

Bound for
−→
β in u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ. For ATEST(X, α), let us call this

upper-bound Right(α).
Inequality: Right(α) ≥ maxα=α1+α2(Right(max(α1, α2)) + S(α1) + S(α2) + 1).
Recurrence system: {Right(1) = 2, Right(α+ 1) = Right(α) + (α+ 1) + 1}.
Solution: Right(α) = 1

2α(α+ 3).
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Informal explanation: the semantics of the formula u∈seesX(t1, t2) ≥ (
←−
β ,
−→
β ) implies

that there is a path from [[t1]]Xs,h to [[t2]]Xs,h that goes through l and is such that between
l and [[t2]]Xs,h there are at least

−→
β locations. Suppose α1 ≥ α2 (therefore, we focus our

attention on h1). Then, when the heap h is split into h1 and h2 it can hold that:
∗ [[t1]]Xs,h is a labelled location of (s, h1, l);
∗ in h1, the location l is still reachable from [[t1]]Xs,h, as shown in the picture below.

[[t1]]Xs,h l [[t2]]Xs,h

path preserved in h1 path preserved in h1

path split between h1 and h2

predecessor of [[t2]]Xs,h
↑

In this case, the set of locations that are reachable in h1 from l still counts for the
satisfaction of a u∈seesX(t1, t′) ≥ (

←−
β ,
−→
β ) predicate, again with respect to

−→
β . This

justifies Right(max(α1, α2)) addend of the inequality above. In the figure, notice how
there there is a part of the path whose locations are split between h1 and h2. These
locations can only appear in ASizeX

s,h1
(α1) or ASizeX

s,h2
(α2) and justify the addition of

S(α1) + S(α2) to the inequality. Lastly, if [[t2]]Xs,h corresponds to a program variable
in X then its predecessor appears in APredX

s,h1
([[t2]]Xs,h) or in APredX

s,h2
([[t2]]Xs,h). For

this reason, the inequality above contains a +1 addend. Then, the inequality is
maximal for α1 = α− 1 and α2 = 1 or vice-versa (recall that we do not admit α1 or
α2 to be equal to 0). From S(α) = α we obtain the recurrence system above with
solution Right(α) = 1

2α(α + 3). Notice that the base case for the recurrence system
is Right(1) = 2. Under the condition that [[t2]]Xs,h = s(x) for some x ∈ X, the test
formulæ can always check if the path from l to s(x) has at least length 2 with the
conjunction u∈seesX(t1, x) ≥ (1, 1)∧¬u ∈ #predAX (x). We therefore require Right(1)
to be at least 2 so that the formula above can be simply expressed in ATEST(X, 1) as
u∈seesX(t1, x) ≥ (1, 2). This makes the proof of Lemma 8 easier as, with respect to
−→
β , we can handle the test formulæ u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) without looking at the

satisfaction of other test formulæ.
Bounds for seesX(t1, t2) ≥ β formulæ and

←−
β in u∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ.

For ATEST(X, α), we denote the first upper-bound with Sees(α) whereas the second
upper-bound is called Left(α).

Inequalities: Sees(α) ≥ Left(α) + Right(α);
Left(α) + Right(α) ≥ max

α=α1+α2
(Sees(max(α1 + α2)) + 1 + S(α1) + S(α2) + 1)

Recurrence system: {
Left(1) = 2, Left(α+ 1) = Sees(α) + 1,
Sees(α) = Left(α) + Right(α)

}
Solution: Left(α) = 1

6α(α+ 1)(α+ 2) + 1 and Sees(α) = 1
6 (α+ 1)(α+ 2)(α+ 3).

Informal explanation: first of, it is easy to see that Sees(α) ≥ Left(α) + Right(α) must
hold. Indeed if a memory state satisfies the test formula u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β )

then by definition it also satisfies seesX(t1, t2) ≥
←−
β +

−→
β . Then, the latter formula

needs to be in ATEST(X, α) (otherwise, for instance, Lemma 9 does not hold). The
first inequality takes care of this. In the following, we strength this inequality to
Sees(α) = Left(α) + Right(α), as done for the recurrence system.
For the second inequality, the semantics of the formula u∈ seesX(t1, t2) ≥ (

←−
β ,
−→
β )

implies that there is a path from [[t1]]Xs,h to [[t2]]Xs,h that goes through l and is such that
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between [[t1]]Xs,h and l there are at least
←−
β locations. Suppose α1 ≥ α2 (therefore, we

focus our attention on h1). When the heap h is split into h1 and h2 it can hold that:
∗ [[t1]]Xs,h is a labelled location of (s, h1, l) and is such that [[t1]]Xs,h1

∈ dom(h1);
∗ in h1, l is no longer reachable from [[t1]]Xs,h, as shown in the picture below.

[[t1]]Xs,h l [[t2]]Xs,h

path preserved in h1 path split between h1 and h2 predecessor of [[t2]]Xs,h
↑

In this case, the set of locations that are reachable in h1 from [[t1]]Xs,h counts for
the satisfaction of a seesX(t1, t2) ≥ β predicate. This justifies Sees(max(α1, α2))
addend of the second inequality. In the figure, notice how there there is a part of the
path whose locations are split between h1 and h2. These locations can only appear
in ASizeX

s,h1
(α1) or ASizeX

s,h2
(α2) and justify the addition of S(α1) + S(α2) to the

inequality. If [[t2]]Xs,h corresponds to a program variable in X then its predecessor
appears in APredX

s,h1
([[t2]]Xs,h) or in APredX

s,h2
([[t2]]Xs,h). For this reason, the inequality

above contains a +1 addend. A last +1 is instead added to handle a corner case,
regarding l, in the proof of Lemma 8. Then, the second inequality is maximal for
α1 = α− 1 and α2 = 1 or vice versa (recall that we do not admit α1 or α2 to be equal
to 0). We then obtain

Left(α) + Right(α) ≥ Sees(α− 1) + 1 + S(α) + 1

As Right(α) ≥ S(α) + 1, to find a solution is then sufficient consider the recurrence
system above. Notice that the base case for the recurrence system is Left(1) = 2. As
for the previous case, this is done to ease the proof of Lemma 8, as we can then handle
the u∈seesX(t1, t2) ≥ (

←−
β ,
−→
β ) formulæ without looking at the satisfaction of other

test formulæ.

B Lemma 8: the case of ALoop⇑X
s,h(α)

In this section we complete the construction started in Section 4.2. Let (s, h, l) and (s′, h′, l′)
be two memory states. Moreover let α, α1, α2 ∈ N+ so that α = α1 +α2 and h = h1 + h2. In
the following, the index k stands for 1 or 2. For h1 and h2, we define the three following sets

L1
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h1)} L2
def= {P ∈ ALoop⇑X

s,h(α) | P ⊆ dom(h2)}

S def= {(P1,P2) | P1∪P2 ∈ ALoop⇑X
s,h(α), P1 6= ∅ 6= P2 and for each k ∈ {1, 2} Pk ⊆ dom(hk)}

Then, Lk is the set of loops in ALoop⇑X
s,h(α) that are completely assigned to hk whereas S

contains the loops of ALoop⇑X
s,h(α) that are split between h1 and h2. Lastly, we denote with

L(α) def= 1
2α(α + 3) − 1 the upper-bound for #loop⇑X ≥ β formulæ and with S(α) def= α the

one for sizeAX ≥ β′ formulæ, as introduced in Section 4.2.
The result that we want to prove is the following:

Hypothesis:
H1. min(L(α), card(ALoop⇑X

s,h(α))) = min(L(α), card(ALoop⇑X
s′,h′(α)))

H2. l ∈ ALoop⇑X
s,h(α)⇔ l′ ∈ ALoop⇑X

s′,h′(α).
Thesis:

there are h′1, h′2 such that h′ = h′1 + h′2 such that it is possible to define three sets
L′1 ⊆ P(dom(h′1)), L′2 ⊆ P(dom(h′2)) and S′ ⊆ P(dom(h′1))× P(dom(h′2)) satisfying the
following properties:
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L′k is the set of loops in ALoop⇑X
s′,h′(α) that are completely assigned to h′k

S′ contains the loops of ALoop⇑X
s′,h′(α) that are split between h′1 and h′2.

there is P ∈ Lk with l ∈ P if and only if there is P′ ∈ L′k with l′ ∈ P′;
there is P ∈ S with l ∈ πk(P) if and only if there is P′ ∈ S′ with l′ ∈ πk(P′);
min(L(αk), card(Lk)) = min(L(αk), card(L′k));
min(S(αk), card(

⋃
P∈S πk(P))) = min(S(αk), card(

⋃
P′∈S′ πk(P′))).

Recall that, by definition of the upper-bounds, L(α) ≥ L(α1) + L(α2) + S(max(α1, α2)) + 1.
Moreover, note that from α = α1 + α2 with α1, α2 ∈ N+ we obtain that α ≥ 2 and every set
in ALoop⇑X

s,h(α) and ALoop⇑X
s′,h′(α) contains at least three locations. The construction goes

by cases depending on whether or not the cardinalities of L1, L2 and S are less than L(α1),
L(α2) and S(max(α1, α2)) respectively. For each case we also need to deal with whether
or not l belongs to a set in ALoop⇑X

s,h(α). When we define a set among L′1, L′2 and S′ we
implicitly assume that their locations are assigned to h′1 and h′2 accordingly to the definitions
of these sets (i.e. L′1 and π1(S′) only contain locations of h′1 whereas L′2 and π2(S′) only
contain locations of h′2).
1. Case: card(L1) < L(α1), card(L2) < L(α2) and card(S) < S(max(α1, α2)).

By hypothesis H1 and the definition of L(α), it holds that

card(ALoop⇑X
s,h(α)) = card(ALoop⇑X

s′,h′(α)).

Select card(L1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select card(L2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By card(ALoop⇑X

s,h(α)) = card(ALoop⇑X
s′,h′(α)) it follows that

card(ALoop⇑X
s′,h′(α) \ (L′1 ∪ L′2)) = card(S).

Let f be an injection between S and ALoop⇑X
s′,h′(α) \ (L′1 ∪ L′2) such that if there is

P ∈ S with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to
H2. For each P ∈ S, divide f(P) into two sets P′1 and P′2, as follows:

if card(π1(P)) < S(α1) then select card(π1(P)) locations from f(P). If l ∈ π1(P) then
l′ is one of the selected locations. These locations form P′1. Then, P′2

def= f(P) \ P′1;
else if card(π2(P)) < S(α2) then select card(π2(P)) locations from f(P). If l ∈ π2(P)
then l′ is one of the selected locations. These locations form P′2. Then, P′1

def= f(P)\P′2;
otherwise card(π1(P)) ≥ S(α1) and card(π2(P)) ≥ S(α2). Select S(α1) locations
from f(P). If l ∈ π1(P) then l′ is one of the selected locations. These locations form
P′1. Then, P′2

def= f(P) \ P′1.
Iteratively add (P′1,P′2) to S′.

2. Case: card(L1) < L(α1), card(L2) < L(α2) and card(S) ≥ S(max(α1, α2)).
Select card(L1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Select card(L2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
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that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

3. Case: card(L1) < L(α1), card(L2) ≥ L(α2) and card(S) < S(max(α1, α2)).
Select card(L1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Let f be an injection between S and ALoop⇑X

s′,h′(α) \ L′1 such that if there is P ∈ S
with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to H2.
For each P ∈ S, divide f(P) into two sets P′1 and P′2 as shown in the third step of the
1st case of the construction. Iteratively add (P′1,P′2) to S′.
The set ALoop⇑X

s′,h′(α) \ (L′1 ∪ S′) constitutes L′2.
4. Case: card(L1) < L(α1), card(L2) ≥ L(α2) and card(S) ≥ S(max(α1, α2)).

Select card(L1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select L(α2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

5. Case: card(L1) ≥ L(α1), card(L2) < L(α2) and card(S) < S(max(α1, α2)). Symmetrical
to the 3rd case with respect to the indexes 1 and 2.

6. Case: card(L1) ≥ L(α1), card(L2) < L(α2) and card(S) ≥ S(max(α1, α2)). Symmetrical
to the 4rd case with respect to the indexes 1 and 2.

7. Case: card(L1) ≥ L(α1), card(L2) ≥ L(α2) and card(S) < S(max(α1, α2)).
Select L(α1) sets from ALoop⇑X

s′,h′(α). If l appears in one of the sets of L1, then by
hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set to
be among the selected ones. These sets constitute L′1.
Let f be an injection between S and ALoop⇑X

s′,h′(α) \ L′1 such that if there is P ∈ S
with l ∈ P then l′ ∈ f(P). This constraint on f can be always satisfied thanks to H2.
For each P ∈ S, divide f(P) into two sets P′1 and P′2 as shown in the third step of the
1st case of the construction. Iteratively add (P′1,P′2) to S′.
The set ALoop⇑X

s′,h′(α) \ (L′1 ∪ S′) constitutes L′2.
8. Case: card(L1) ≥ L(α1), card(L2) ≥ L(α2) and card(S) ≥ S(max(α1, α2)).

Select L(α1) sets from ALoop⇑X
s′,h′(α). If l appears in one of the sets of L1, then by

hypothesis H2 l′ belongs to one the sets of ALoop⇑X
s′,h′(α) and we require that set to

be among the selected ones. These sets constitute L′1.
Select L(α2) sets from ALoop⇑X

s′,h′(α) \ L′1. If l appears in one of the sets of L2, then
by hypothesis H2 l′ belongs to one the sets of ALoop⇑X

s′,h′(α) and we require that set
to be among the selected ones. These sets constitute L′2.
By H1, card(ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2)) ≥ S(max(α1, α2)). For each set {`1, `2,·· ·, `n}
of ALoop⇑X

s′,h′(α)\(L′1 ∪ L′2), iteratively add ({`1}, {`2,·· ·, `n}) to S′ while being careful
that if l′ is in the set then l′ = `1 if and only if there is P ∈ S such that l ∈ π1(P).
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This constraint is always satisfiable thanks to H2. Notice how, after this step, S′ has
at least S(max(α1, α2)) elements.

It is easy to see that all the properties are always satisfied for any of the cases above. In
particular, for the cases where card(S) ≥ S(max(α1, α2)), i.e. cases 2, 4, 6 and 8, the property

min(S(αk), card(
⋃

P∈S πk(P))) = min(S(αk), card(
⋃

P′∈S′ πk(P′)))

is implied by card(S) ≥ S(max(α1, α2)) and card(S′) ≥ S(max(α1, α2)). To prove that
this property holds also for the cases where card(S) < S(max(α1, α2)), i.e. cases 1, 3,
5 and 7, we use the fact that, for every P ∈ S and k ∈ {1, 2}, πk(P) < S(αk) implies
π3−k(P) ≥ S(α3−k). Indeed, this holds as all the loops in ALoop⇑X

s,h(α) have size greater
than α = S(α) = S(α1) + S(α2).
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Abstract
Quantified modal logic is notorious for being undecidable, with very few known decidable frag-
ments such as the monodic ones. For instance, even the two-variable fragment over unary predic-
ates is undecidable. In this paper, we study a particular fragment, namely the bundled fragment,
where a first-order quantifier is always followed by a modality when occurring in the formula,
inspired by the proposal of [15] in the context of non-standard epistemic logics of know-what,
know-how, know-why, and so on.

As always with quantified modal logics, it makes a significant difference whether the domain
stays the same across possible worlds. In particular, we show that the predicate logic with the
bundle ∀� alone is undecidable over constant domain interpretations, even with only monadic
predicates, whereas having the ∃� bundle instead gives us a decidable logic. On the other
hand, over increasing domain interpretations, we get decidability with both ∀� and ∃� bundles
with unrestricted predicates, where we obtain tableau based procedures that run in PSPACE.
We further show that the ∃� bundle cannot distinguish between constant domain and variable
domain interpretations.
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1 Introduction

Propositional modal logics have been extensively used to reason about labelled transition
systems in computer science. These have led to the advent of temporal logics which have
been very successful in the formal specification and verification of a wide range of systems.
While these have been best used in the context of finite state reactive systems (over infinite
behaviours), in the last couple of decades, such logics have been developed for infinite state
systems as well ([1]). Finding decidable logics with reasonable complexity over infinite state
systems continues to be a challenge.
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43:2 Bundled Fragments of First-Order Modal Logic

Table 1 x, y refers to the two-variable fragment, P 1 refers to unary predicates. GF is the guarded
fragment. �i is multi-modal logic. �i(x) refers to having only 1 free variable inside the scope of
modalities (monodic fragment). p refers to propositions and / indicates having one of them.

Language Decidability Ref
P 1 undecidable [10]
x, y, p, P 1 undecidable [9, 6]
x, y, �i, single P 1 undecidable [11]
single x decidable [12, 4]
x, y/P 1/GF, �i(x) decidable [17]

A natural candidate to describe systems with unbounded data is First Order Logic (FO),
and it has been extensively used not only in reasoning about mathematical structures, but
also about databases and knowledge representation systems. When we wish to describe
data updates in such systems, we have labelled transition systems where each state carries
information on data, thus making them infinite state systems. It is then easy to specify
transitional properties of such systems in First Order Modal Logic (FOML).

However FOML is infamously hard to handle technically: usually you lose good properties
of first-order logic and modal propositional logic when putting them together. (FOML is also
the theatre in which numerous philosophical controversies have been played out.) On the
one hand, the decidable fragments of first-order logic have been well mapped out during the
last few decades ([3]). On the other hand, we have a thorough understanding of the robust
decidability of propositional modal logics [13]. However, when it comes to finding decidable
fragments of FOML, the situation seems quite hopeless: even the two-variable fragment with
one single monadic predicate is (robustly) undecidable over almost all useful model classes
[11].

On the positive side, certain guarded fragments of FOML that are decidable [17]. One
promising approach has come from the study of the so-called monodic fragment, which
requires that there be at most one free variable in the scope of any modal subformula.
Combining the monodic restriction with a decidable fragment of FO we often obtain decidable
fragments of FOML[17, 2], as Table 1 shows.

The reason behind this sad tale is not far to seek: the addition of � gives implicitly
an extra quantifier, over a fresh variable. Thus if we consider the two-variable fragment of
FOML, with only unary predicates in the syntax, we can use � to code up binary relations
and we ride out of the two-variable fragment as well as the monadic fragment of FO. The
monodic fragment restricts the use of free variables inside the scope of � significantly to get
decidability.

It is then natural to ask: apart from variable restrictions, is there some other way to
obtain syntactic fragments of FOML that are yet decidable?

One answer came, perhaps surprisingly, from epistemic logic. In recent years, interest has
grown in studying epistemic logics of knowing-how, knowing-why, knowing-what, and so on
(see [16] for a survey). As observed there most of the new epistemic operators essentially
share a unified de re semantic schema of ∃x� where � is an epistemic modality (B∃�-FOML).
For instance, ∃x�ϕ may mean that there exists a mechanism which you know such that
executing it will make sure that you end in a ϕ state [14]. Such reasoning leads to the
proposal in [15] of a new fragment of FOML by packing ∃ and � into a bundle modality, but
without any restriction on predicates or the occurrences of variables. Formally, B∃�-FOML
fragment is given by the syntax:

ϕ ::= Px | ¬ϕ | (ϕ ∧ ϕ) | ∃x�ϕ
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Note that in this language, quantifiers have to always come with modalities. Such a
language may seem weak but it already suffices to say many interesting things.

The following examples describe a database model that comes with a binary relation
R(x, y) to mean that x “is dominated by” y, and the states describe the possible updates of
the database before/after updates.

∃x� ¬∃y� (R(x, y)): There is a king element such that after any update, no element is
sure to dominate it later.
∀x♦ ∃y� (R(x, y)): Every element can be updated in such a way that another can
necessarily dominate it (∀x♦ is the dual of ∃x�).
∃x�

(
∃y� (R(x, y) ∧ ∃z� (R(x, z) ∧R(y, z))

)
: There is an element x that is dominated

by some element y after any possible update and further, there exists z which will always
dominate both x and y in any possible update from there on.

It may be noted that the domain does not need to be fixed uniformly at all states to
interpret these formulas. For instance, when we consider the first formula above, we refer to
some “active” element x present at the current state. It is necessary that x continues to be
active at successor states where we compare it against other elements, but there could be new
elements in the successor states. When we define the formal semantics in the next section,
it will be clear that these (and other similar) formulas may be interpreted over constant
domain or increasing domain models uniformly.

It is shown [15] that the B∃�-FOML fragment with arbitrary predicates is in fact PSPACE-
complete over FOML. Essentially, the idea is based on the ‘secret of success’ of modal
logic: guard the quantifiers, now with a modality. On the other hand, the same fragment is
undecidable over equivalence models, and this can be shown by coding first-order sentences
in this language using the symmetry property of the accessibility relation.

There are curious features to observe in this tale of (partial) success. The fragment
in [15] includes the ∃� bundle but not its companion ∀� bundle, and considers only
increasing domain models. The latter observation is particularly interesting when we notice
that equivalence models, where the fragment becomes undecidable, force constant domain
semantics.

The last distinction is familiar to first-order modal logicians, but might come across as
a big fuss to others. Since FOML extends FO, the models contain a first order structure at
each state. Then it makes a significant difference whether we work with a single data domain
fixed for the entire model, or whether this can vary across transitions (updates). In the latter
case, each possible world has its own domain, and quantification extends only over objects
that exist in the current world.

Given such subtlety, it is instructive to consider more general bundled fragments of FOML,
including both ∃� and ∀� as the natural first step, and study them over constant domain as
well as varying domain models. This is precisely the project undertaken in this paper, and
the results are summarized in Table 2. In this paper, the only varying domains we consider
are increasing ones, whereby the data domain may change across a transition but can only
increase monotonically.

As we can see, the ∃� bundle behaves better computationally than the ∀� bundle. For
∀�, even the monadic fragment is undecidable over constant domain models: we can encode
in this language, qua satisfiability, any first-order logic sentence with binary predicates by
exploiting the power of ∀�.

On the other hand, we can actually give a tableau method for the ∃� and ∀� fragment
together, similar to the tableau in [15], for increasing domain models. The crucial observation
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Table 2 Satisfiability problem classification for Bundled FOML fragment, P refers to predicates of
arbitrary arity and P 1 refers to monadic predicates. Models are either constant domain or increasing
domain.

Language Model Decidability Remark
∀�, P 1 Constant undecidable
∃�, P Constant decidable PSPACE-complete
∃�, ∀�, P Increasing decidable PSPACE-complete

is that such models allow us to manufacture new witnesses for ∃x� and ∃x♦ formulas on the
fly, giving considerable freedom in model construction, which is not available in constant
domain models.

Indeed, the well-behavedness of the ∃� bundle is further attested to by the fact that it is
decidable over constant domain models as well. So constant domain is not the culprit for
undecidability of this fragment over equivalence models. In fact, we show that the ∃� bundle
cannot distinguish increasing domain models and constant domain models.

The paper is structured as follows. After formal definitions of bundled fragments, we
present undecidability results for unary predicate ∀� fragment over FOML with constant
domain semantics and then move on to tableaux procedures for the decidable fragments.
We then show that the validities of ∃� over increasing domain are exactly the same as its
validities over constant domain models, and end the paper with another look at mapping the
terrain of these fragments.

2 Bundled fragment of First order modal logic

Let Var be a countable set of variables, and P be a countable set of predicate symbols, with
Pn ⊆ P denoting the set of all predicate symbols of arity n. We use x to denote a finite
sequence of variables in Var. We only consider the “pure” first order unimodal logic: that is,
the vocabulary is restricted to Var (no equality and no constants and no function symbols).

I Definition 1. Given Var and P, the bundled fragment of FOML denoted by B-FOML is
defined as follows:

ϕ ::= Px | ¬ϕ | (ϕ ∧ ϕ) | ∃x�ϕ | ∀x�ϕ

where x ∈ Var, P ∈ P. We denote the fragment B∃�-FOML to be the formulas which contains
only ∃�(and its dual ∀♦) formulas and B∀�-FOML which contains only ∀� ( and its dual
∃♦) formulas.

>,⊥,∨,→ are defined in the standard way. ∀x♦ϕ = ¬∃x�¬ϕ is the dual of ∃x�ϕ, and
∃x♦ϕ = ¬∀x�¬ϕ is the dual of ∀x�ϕ. With both bundles we can say, that every element is
guaranteed an update such that some element is updatable to dominate it: ∀x� ∃y� (R(x, y)).

The free and bound occurrences of variables are defined as in first-order logic, by viewing
∃x� and ∃x♦ as quantifiers. We denote Fv(ϕ) as the set of free variables of ϕ. We write ϕ(x)
if all the free variables in ϕ are included in x. Given a B-FOML formula ϕ and x, y ∈ Var,
we write ϕ[y/x] for the formula obtained by replacing every free occurrence of x by y. A
formula is said to be a sentence if it contains no free variables. As we will see later, ∃x�ϕ is
equivalent to �ϕ if x is not free in ϕ. Therefore B-FOML is indeed an extension of modal
logic.

The semantics presented below is the standard increasing domain semantics of FOML.
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I Definition 2. An (increasing domain) modelM for B-FOML is a tuple (W,D, δ,R, ρ) where,
W is a non-empty set of worlds, D is a non-empty domain, R ⊆ (W ×W ), δ : W → 2D
assigns to each w ∈ W a non-empty local domain s.t. wRv implies δ(w) ⊆ δ(v) for any
w, v ∈ W , and 1 ρ : (W × P) →

⋃
n∈ω 2Dn such that ρ assigns to each n-ary predicate on

each world an n-ary relation on D.

Given a modelM, we use WM, DM, δM, ρM to denote its corresponding components.
We often write Dw for δM(w). A constant domain model is one where Dw = DM for any
w ∈WM. Note that constant domain models are special cases of increasing domain models.
A finite model is one with both WM finite and DM finite.

I Definition 3. Consider a modelM = (W,D, δ,R, ρ), w ∈W . To interpret free variables,
we also need a variable assignment σ : Var→ D. GivenM = (W,D, δ,R, ρ), w ∈W , and an
assignment σ, defineM, w, σ � ϕ inductively as follows:

M, w, σ � P (x1 · · ·xn) ⇔ (σ(x1), · · · , σ(xn)) ∈ ρ(P,w)
M, w, σ � ¬ϕ ⇔ M, w, σ 2 ϕ
M, w, σ � (ϕ ∧ ψ) ⇔ M, w, σ � ϕ andM, w, σ � ψ
M, w, σ � ∃x�ϕ ⇔ there is some d ∈ δ(w) such that

M, v, σ[x 7→ d] � ϕ for all v s.t. wRv
M, w, σ � ∃x♦ϕ ⇔ there is some d ∈ δ(w) and some v ∈W

such that wRv andM, v, σ[x 7→ d] � ϕ

where σ[x 7→ d] denotes an assignment that is the same as σ except for mapping x to d.

Note that the standard �α(♦α) of FOML can be expressed in this logic as ∃x�α(∃x♦α)
where x does not occur in α.

In general, when considering the truth of ϕ in a model, it suffices to consider σ : Fv(ϕ)→ D,
assignment restricted to the free variables occurring free in ϕ. When Fv(ϕ) = {x1, . . . , xn}
and {d1, . . . , dn} ⊆ D, We write M, w � ϕ[d] to denote M, w, σ � ϕ(x) for any σ such
that for all i ≤ n we have σ(xi) = di. Finally, when ϕ is a sentence, we can simply write
M, w |= ϕ.

Call σ relevant at w ∈ W if σ(x) ∈ δM(w) for all x ∈ Var. The increasing domain
condition ensures that whenever σ is relevant at w and we have wRv, then σ is relevant at v
as well. (In a constant domain model, every assignment σ is relevant at all the worlds.) We
say ϕ is valid, if ϕ is true on anyM, w w.r.t. any σ relevant at w. ϕ is satisfiable if ¬ϕ is
not valid. 2

3 Undecidability results

In this section we prove that the satisfiability problem for the B∀�-FOML fragment over
the class of constant domain models is undecidable even when the atomic predicates are
restricted to be unary.

Kripke[10] showed that full FOML with constant domain semantics is undecidable even
when the atomic predicates are only unary. Gabbay and Shehtman [6] showed that 2-
variable Monadic FOML with propositions is undecidable. Kontchakov et al [9] showed that

1 Note that we do not impose the restriction ρ(w,P ) ⊆ [δ(w)]n where arity of P is n, since it is not needed
for our technical development. For more details about this relaxation, refer Hughes and Creswell [8].

2 Note that the classical first-order principle dictum de omne: ∀xψ → ψ[y/x] is not expressible in our
language, but validity over relevant assignments gives us classical expressible analogues.
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propositions can be eliminated. We take another step in this journey. We show that over
constant domain models, the satisfiability problem for B∀�-FOML fragment is undecidable
over unary predicates.

Consider FO(R), the first order logic with only variables as terms and no equality, and
the single binary predicate R. We know that FO(R) satisfiability problem is undecidable [7].
To translate FO(R) sentences to B∀�-FOML formulas, we use two unary predicate symbols
P,Q in the latter. The main idea is that the atomic formula R(x, y) is coded up as the
B∀�-FOML formula ∃z♦

(
P (x) ∧Q(y)

)
, where z is a new variable, distinct from x and y.3

For any quantifier-free FO(R) formula β, we define the translation of β to B∀�-FOML
formula ϕβ inductively as follows.

Tr(R(x, y)) := ∃z♦
(
P (x) ∧Q(y)

)
, where z is distinct from x and y.

Tr(¬β) := ¬Tr(β) and Tr(β1 ∧ β2) := Tr(β1) ∧ Tr(β2).

Note that a quantifier-free FO formula is translated to a B∀�-FOMLformula with modal
(quantifier) depth 1. Now consider an FO(R) sentence α (having no free variables) presented
in prenex form: Q1x1 Q2x2 · · ·Qnxn(β) where β is quantifier-free. We define

ψα := Q1x1∆1 Q2x2∆2 · · ·Qnxn∆n (Tr(β))

where Qixi∆i := ∃xi♦ if Qi = ∃ and Qixi∆i := ∀xi� if Qi = ∀.
We claim that satisfiability is preserved over this translation with a few additional

formulas. Ideally, we want α to be satisfiable iff ψα is satisfiable. However, the translated
formula might be satisfiable simply because some Qi := ∀ and there are no successors for the
worlds at depth i and thus the corresponding subformula translation ∀xi�ψ′ trivially holds.
To avoid this, we use formula λn which ensures that for all i ≤ n and every world at depth i,
there is at least one successor: λn :=

n∧
j=0

(∀z�)j(∃z♦>)

Finally to ensure that ∃z♦(P (x) ∧Q(y)) is evaluated uniformly at the “tail” worlds, we
have: γn := ∀z1� ∀z2�

(
(∃z♦)n (∃z♦ (P (z1)∧Q(z2))→ (∀z�)n(∃z♦(P (z1)∧Q(z2))

)
where

z1, z2 and z do not appear in α.
SupposeM, u |= γn then notice that for any world w at a path length 2 from u, if there is

one world at distance n starting from w where ♦(P (z1)∧Q(z2)) holds, then ♦(P (z1)∧Q(z2))
holds at all worlds at a distance n starting from w. Notice that we use two dummy variables
z1 and z2 in γn. Hence to match the modal depths of the translated formulas, we need to
append two �′s to ψα and we need to use λn+2 instead of λn. Thus, the complete translation
is given by:

I Definition 4. Given a FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in prenex normal form,
the translated B∀�-FOML formula ϕα is given by: ϕα := (∀z�)2(ψα) ∧ λn+2 ∧ γn where z
does not occur in α.

Note that for any FO(R) sentence α of quantifier depth n, we get a translated formula
ϕα of modal (quantifier) depth n+ 3.

Before stating the theorem, we define some useful notation.

I Definition 5. For any FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in the prenex normal
form with β being quantifier-free, we define the following:

3 This is similar to the approach used by Kripke [10], specialized to the B∀�-FOML fragment.
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v0 v1 w0 w1 wn

ua P (a), Q(b), Q(c)

ub P (b), Q(c)

uc P (c), Q(c)

Figure 1 The translated model for (D, I) where D = {a, b, c} and I = {(a, b), (a, c), (b, c), (c, c)}.
For any sentence α ∈ FO(R) of quantifier depth n, (D, I) |= α iff M, v0 |= ϕα.

For all 1 ≤ i ≤ n let x1 · · ·xi be denoted by xi and the vector [d1, d2 · · · di] be denoted
by di where every dj ∈ D.
Let [xi 7→ di] denote the interpretation where σ(xj) = dj .
For 0 ≤ i < n, let α[i] = Qi+1xi+1 · · ·Qnxnβ and ψα[i] = Qi+1xi+1∆i+1 · · ·Qnxn∆n(ϕβ)
be the corresponding translated formula. Also, let α[n] = β and ψα[n] = Tr(β).

I Theorem 6. For any FO(R) sentence α := Q1x1Q2x2 · · ·Qnxnβ in prenex normal form,
α is satisfiable iff ϕα is constant domain satisfiable.

Proof. Let α := Q1x1 · · ·Qnxnβ, where β is quantifier-free. To prove (⇒), assume that
α is satisfiable. Let D be some domain such that (D, I) |= α where I ⊆ (D × D) is the
interpretation for R. We use the same D as the domain and construct a FOML model. Define
M = (W,R,D, δ, ρ) where:

W = {v0, v1} ∪ {wi | 0 ≤ i ≤ n} ∪ {ud | d ∈ D}.
R = {(v0, v1), (v1, w0)} ∪ {(wi, wi+1) | 0 ≤ i < n} ∪ {(wn, ud) | ud ∈W}.
δ(u) = D for all u ∈W .
For all i ∈ {0, 1} and 0 ≤ j ≤ n and vi, wj ∈W define ρ(vi, P ) = ρ(vi, Q) = ρ(wj , P ) =
ρ(wj , Q) = ∅ and for all ud ∈W, ρ(ud, P ) = {d} and ρ(ud, Q) = {c | (d, c) ∈ I}.

Note that M is a constant domain model. M is illustrated in Figure 1 for one such
translation. Note thatM has exactly one path of length n+ 2 starting from v0 which ends
at wn. Hence,M, v1 |= λn+2 ∧ γn.

Finally, we claim that M, v0 |= (∀z�)2ψα which completes the proof of the forward
direction. Again, since v0 → v1 → w0 is the only path of length 2 starting from v0, it is
enough to verify thatM, w0 |= ψα. We set up an induction to prove this.

Claim. For all 0 ≤ i ≤ n, wi ∈ W , for all vectors di ∈ Di of length i, we have D, I, [xi 7→
di] |= α[i] iffM, wi, [xi 7→ di] |= ψα[i].

The proof is by reverse induction on i. The base case, when i = n, we have α[n] = β.
Now we induct on the structure of β, to prove the claim. In the base case we have R(xi, xj).
By definition of ρ, if (a, b) ∈ I then M, ua, [xi → a, xj → b] |= (P (x) ∧ Q(y)) and hence
M, wn, [xi → a, xj → b] |= ∃z♦(P (x1) ∧Q(x2)). On the other hand ifM, wn, [xi → a, xj →
b] |= ∃z♦(P (x1) ∧ Q(x2)) then since M, ua 6|= P (b) for all b 6= a, it has to be the case
that M, ua, [xi → a, xj → b] |= (P (x) ∧ Q(y)) and thus (a, b) ∈ I. The ¬ and ∧ cases are
standard.

For the induction step, we need to consider formulas α[i− 1] and ψα[i− 1] and the world
wi−1. Now α[i− 1] is either ∃xiα[i] or ∀xiα[i].

For the case when α[i− 1] is ∃xiα[i] the corresponding ψα[i− 1] is ∃xi♦(ψα[i]). We have
D, I, [xi−1 7→ di−1] |= ∃xiα[i] iff there is some c ∈ D such that
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D, I, [xi−1 7→ di−1, xi → c] |= α[i] iff (by induction hypothesis)
M, wi, [xi−1 7→ di−1, xi → c] |= ψα[i] iff
M, wi−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i], as required.

For the case when α[i− 1] is ∀xiα[i], we have ψα[i− 1] = ∀xi�ψα[i]. Now,
D, I, [xi−1 7→ di−1] |= ∀xiα[i] iff
for all c ∈ D we have D, I, [xi−1 7→ di−1, xi → c] |= α[i]
iff (by induction hypothesis) for all c ∈ D we have
M, wi, [xi−1 7→ di−1, xi → c] |= ψα[i] iff
M, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i] (since wi is the only successor of wi−1).

This completes (⇒) since (D, I) |= α[0] and we have α[0] = α. ThusM, w0 |= ψα.

To prove (⇐), suppose that ϕα is satisfiable, and letM = (W,D,R, γ, V ) be a constant
domain model such thatM, r |= ψα. Note that sinceM, r |= λn+2, every path starting from
r has length at least n+ 2 and there is at least one such path.

Let w be any world at height 2. Since M, r |= λn+2 ∧ (∀z�)2ψα, there is at least one
path of length n starting from w and also we have M, w |= ψα. Further since, M, r |=
γn, for any c, d ∈ D we have M, w, [z1 → c, z2 → d] |= (∃z♦)n(∃z♦(P (z1) ∧ Q(z2)) →
(∀z�)n(∃z♦(P (z1) ∧Q(z2)).

Define I = {(c, d) | c, d ∈ D andM, w, [x→ c, y → d] |= (∀z�)n∃z♦(P (x) ∧Q(y))}.
For 0 ≤ i ≤ n let Wi denote the set of all worlds at distance i from w with W0 = {w}.

The FO(R) model for α is given byM′ = (D, I). We now claim that the formula α is satisfied
in this model, which is proved by induction on n− i. Again, the relevant claim is as follows:

Claim. For all 0 ≤ i ≤ n and for all d1 · · · di ∈ D, we have:
(a) if there is some vi ∈Wi such thatM, vi, [xi 7→ di] |= ψα[i] then for all ui ∈Wi we have
M, ui, [xi 7→ di] |= ψα[i]

(b) D, I, [xi 7→ di] |= α[i] iff for all vi ∈Wi,M, vi, [xi 7→ di] |= ψα[i].

The proof is by induction on n − i. In the base case, i = n. Now we induct on the
structure of β (assume that β is in negation normal form).

In the base case we have R(xi, xj). To prove (a), if for some vn ∈ Wn suppose
M, vn, [xi → c, xj → d] |= (∃z♦)(P (xi) ∧ Q(xj)). Recall that M, w, [z1 → c, z2 → d] |=
(∃z♦)n(∃z♦(P (z1) ∧ Q(z2)) → (∀z�)n(∃z♦(P (z1) ∧ Q(z2)). Hence we have M, w, [z1 →
c, z2 → d] |= (∀z�)n(∃z♦(P (z1) ∧ Q(z2)). Thus, for all un ∈ Wn, we have M, un, [xi →
c, xj → d] |= (∃z♦)(P (xi) ∧Q(xj)).

For (b), (D, I) |= R(c, d) iffM, w, [xi → c, xj → d] |= (∃z�)n(∃z♦z(P (xi)∧Q(xj)) iff (by
definition of R) for all vn ∈Wn we haveM, vn, [xi → c, xj → d] |= (∃z♦)(P (xi) ∧Q(xj)).

For the case ¬R(x, y) let M,vn, [xi → c, xj → d] |= ¬(∃z♦(P (xi) ∧ Q(xj)) this implies
M,w, [xi → c, xj → d] 6|= (∃z�)n[∃z�(P (xi) ∧Q(xj)). Now suppose (a) does not hold, then
there is some v′n such that M, v′n, [xi → c, xj → d] |= (∃z♦(P (x) ∧ Q(y)) but this implies
M,w, [xi → c, xj → d] |= (∃z♦)n(∃z♦(P (x) ∧ Q(y)) and hence M,w, [xi → c, xj → d] |=
(∃z�)n(∃z�(P (x) ∧Q(y)) which contradicts the assumption. Further (b) follows but routine
induction.

The cases of ∨ and ∧ are standard.

For the induction step, consider the case when α[i − 1] is of the form ∃xiα[i]; the
corresponding translated formula is ∃xi♦ψα[i].

To prove (a), suppose for some vi−1 ∈Wi−1 we haveM, vi−1, [xi−1 7→ di−1] |= ∃x♦ψα[i]
then there is some c ∈ D and some successor of vi−1, v′i ∈ Wi such that M, v′i, [xi−1 7→
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di−1, xi → c] |= ψα[i]. Now by induction, for all ui ∈Wi, we haveM, ui, [xi−1 7→ di−1, xi →
c] |= ψα[i]. Further sinceM, r |= λn+2, every ui−1 ∈Wi−1 has at least one successor u′i ∈Wi.
Thus,M, ui−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i].

For (b) suppose, D, I, [xi−1 7→ di−1] |= ∃xiα[i] then there is some c ∈ D such that
D, I, [xi−1 7→ di−1, xi → c] |= α[i] iff (by induction hypothesis)
M, vi, [xi−1 7→ di−1, xi → c] |= ψα[i] for every vi ∈Wi at height i. Now any wi−1 ∈Wi−1 is
at height < n and sinceM, r |= λn+2, there is some v′i ∈ Wi which is a successor of wi−1.
Hence, for all wi−1 ∈Wi−1 we haveM, wi−1, [xi−1 7→ di−1] |= ∃xi♦ψα[i].

On the other hand, suppose for all vi−1 ∈ Wi−1 we have M, vi−1, [xi−1 7→ di−1] |=
∃xi♦ψα[i]. Choose arbitrary wi−1 ∈Wi−1. By semantics, there is some c ∈ D and ui ∈Wi

which is a successor of wi−1 such that M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now by
induction (a) at step i, for all u′ ∈ Wi we have M, u′, [xi−1 7→ di−1, xi → c] |= ψα[i] and
hence D, I, [xi−1 7→ di−1, xi → c] |= α[i]. Hence D, I, [xi−1 7→ di−1] |= ∃xiα[i].

For the case when α[i− 1] is of the form ∀xiα[i], to prove (a), suppose for some vi−1 ∈
Wi−1 we have M, vi−1, [xi 7→ di] |= ∀xi�ψα[i]. Choose arbitrary c ∈ D. Then for all
v′i ∈ Wi which are successors of vi−1, we have M, v′i, [xi−1 7→ di−1, xi → c] |= ψα[i].
Since there is at least once such successor of vi−1, by induction (a) for all ui ∈ Wi, we
have M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now, note that for all wi−1 ∈ Wi we have
successors of wi−1 ⊆ Wi and c was chosen arbitrarily. Hence for all wi−1 ∈ Wi−1 we have
M, wi−1, [xi−1 7→ di−1] |= ∀xi�α[i].

To prove (b), suppose D, I, [xi−1 7→ di−1] |= ∀xiα[i]. Choose arbitrary c ∈ D. Then
D, I, [xi−1 7→ di−1, xi → c] |= α[i] and by induction hypothesis, for all vi ∈ Wi we have
M, vi, [xi−1 7→ di−1, xi → c] |= ψα[i]. Again for any wi−1 ∈Wi−1, since successors of wi are
in Wi−1 and c was chosen arbitrarily we haveM, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i].

Finally, suppose for all wi−1 ∈ Wi−1 we have M, wi−1, [xi−1 7→ di−1] |= ∀xi�ψα[i].
Choose arbitrary c ∈ D. Since every ui ∈ Wi is a successor of some wi−1 ∈ Wi−1, for
all ui ∈ Wi we have M, ui, [xi−1 7→ di−1, xi → c] |= ψα[i]. Now by induction hypothesis,
D, I, [xi−1 7→ di−1, xi → c] |= α[i]. Since c was chosen arbitrarily, D, I, [xi−1 7→ di−1] |=
∀xiα[i]. J

4 Decidability results

Having seen that the B∀�-FOML (and hence full B-FOML) fragment is undecidable over
constant domain models, and noted that the ∃� bundle is decidable over increasing domain
models ([15]), it is natural to wonder whether the problem is undecidable because of ∃♦(∀�)
bundle or constant domain semantics, or both. In this section, we show that it is indeed
the combination that is the culprit, by proving that relaxing either of the conditions leads
to decidability. First, we show that the full B-FOML fragment is decidable over increasing
domain models, and then show that the ∃� bundle is decidable over constant domain models.
For technical reasons, we consider formulas given in negation normal form (NNF):

ϕ ::= Px | ¬Px | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | ∃x�ϕ | ∃x♦ϕ | ∀x�ϕ | ∀x♦ϕ

Formulas of the form Px and ¬Px are literals. Clearly, every B-FOML-formula ϕ can be
rewritten into an equivalent formula in NNF. We call a formula clean if no variable occurs
both bound and free in it and every use of a quantifier quantifies a distinct variable. A
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finite set of formulas is clean if their conjunction is clean. Note that every B-FOML-formula
can be rewritten into an equivalent clean formula. (For instance, ∃x�P (x) ∨ ∃x�Q(x) and
P (x) ∧ ∃x�Q(x) are unclean formulas, whereas ∃x�P (x) ∨ ∃y�Q(y) and P (x) ∧ ∃y�Q(y)
are their clean equivalents.)

A tableau is a tree structure T = (W,V,E, λ) where W is a finite set, (V,E) is a rooted
tree and λ : V → L is a labelling map. Each element in L is of the form (w,Γ, F ), where
w ∈ W , Γ is a finite set of formulas and F ⊆ Var is a finite set. The intended meaning of
the label is that the node constitutes a world w that satisfies the formulas in Γ with the
“assignment” F , with each variable in F denoting one that occurs free in Γ and as we will
see, the assignment will be the identity.

Tableau procedures offer an intuitive way of constructing a canonical model for the given
formula. See Fitting and Mendelson [5] for details on tableau procedures for first order modal
logics.

4.1 Increasing domain models

Tableau procedures for first order logics typically add witnesses for existential quantifiers using
“new” elements (either variables or constants) while simultaneously instantiate universally
quantified formulas by the newly added ones. Tableau procedures for modal logics add
successor worlds for ♦ modalities that inherit formulas α when �α is in the parent node.
Clearly, we need a combination of both. Increasing domain semantics enables us to easily
add new witnesses “as we need”, so we consider this first.

One complication with bundled quantifiers and modalities is that we need to ass witnesses
for existential quantifiers and successor worlds “simultaneously”, in the sense that any decision
for one affects the choice of the other. To be specific, suppose that we are in an intermediate
step of tableau construction when we have formulas {∃x♦α, ∃y�β, ∀z♦ϕ, ∀z′�ψ} at a node
w. We need new witnesses for x and y. Further, we need to add a new successor node wvx;
this new node inherits not only α but also β and ψ. But there is plenty more to consider.
We already have “active” variables F , which has been updated to F ′ now. For each y′ ∈ F ′
we need a ϕ-successor (which inherits β and ψ as well).

The (BR) rule in the tableau formalizes this intuition when there are multiple occur-
rences of the bundled formulas. In general if we have formulas {∃x1♦α1..∃xn1♦αn1} ∪
{∃y1�β1..∃yn2�βn2} ∪ {∀z1♦ϕ1..∀zm1ϕm1} ∪ {∀z′1�ψ1..∀z′m2

�ψ′m2
} at a world w, we need

two kinds of successors. The first kind is where a new successor wvxi is created for every
αi (where xi is the witness). These successors should satisfy all � formulas and hence we
add βj , ψl appropriately. The second kind are the ones that take care of ∀♦ formulas and
hence we have one successor wvy′

zk
for every ϕk and every y′ ∈ F ′. Again βj , ψl are added

appropriately to handle � constraints.
The (∨) and (∧) rules are standard and The rule (END) says that in the absence of any

Qx♦ formulas, with Q ∈ {∃, ∀}, the branch does not need to be explored further, as only the
literals remain.

The corresponding tableau rules are given as follows:

I Definition 7. Tableau rules for increasing domain models for the B-FOML fragment are
given by:
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w : ϕ1 ∨ ϕ2,Γ, F
w : ϕ1,Γ, F | w : ϕ2,Γ, F

(∨)
w : ϕ1 ∧ ϕ2,Γ, F
w : ϕ1, ϕ2,Γ, F

(∧)

Given n1 ≥ 1 or m1 ≥ 1; n2,m2, s ≥ 0:

w : ∃x1♦α1 · · · , ∃xn1♦αn1 , ∃y1�β1, · · · , ∃yn2�βn2 ,

∀z1♦ϕ1, · · · , ∀zm1♦ϕm1 , ∀z′
1�ψ1, · · · , ∀z′

m2�ψm2 ,
r1 . . . rs, F

〈wvxi : αi, {βj | 1 ≤ j ≤ n2}, {ψl[z/z′
l] | z ∈ F ′, l ∈ [1,m2]}, F ′〉 where i ∈ [1, n1]

∪ 〈wvy′
zk : ϕk[y′/zk], {βj | 1 ≤ j ≤ n2}, {ψl[z/z′

l] | z ∈ F ′, l ∈ [1,m2]}, F ′〉

(BR)

where k ∈ [1,m1], y′ ∈ F ′

Given n2 ≥ 1 or m2 ≥ 1; s ≥ 0:

w : ∃y1�β1, · · · , ∃yn2�βn2 , ∀z′
1�ψ1, · · · , ∀z′

m2�ψm2 , r1 . . . rs, F

w : r1 . . . rs, F
(END)

where F ′ = F ∪ {xi | i ∈ [1, n1]} ∪ {yj | j ∈ [1, n2]} and r1 · · · rs ∈ lit (the literals).

Note that we use variables themselves as witnesses and F ′ extends F with one witness for
each αi (xi) and one for each βj (yj). Further, there is an implicit ordering on how rules are
applied: (BR) insists on the label containing no top level conjuncts or disjuncts, and hence
may be applied only after the ∧ and ∨ rules have been applied as many times as necessary.

For a given formula ϕ, we start building the tableau with the root node ({w}, {r}, ∅, L)
where L(r) = (w, {ϕ},Fv(ϕ)). A rule specifies that if a node labelled by the premise of the
rule exists at a node, it can cause one or more new nodes to be created as children with the
labels as given by the completion of the rule. A tableau is saturated when no more rules
can be applied. For any formula ϕ, we refer to the saturated tableau of ϕ simply as tableau
of ϕ.4

The rule (BR) looks complicated but actually asserts standard modal validities with
multiplicity. To see how it works, consider a model M, a world u and assignment σ such
that (M, u, σ) |= ∃x♦α ∧ ∃y�β ∧ ∀z�ψ. Then there are some domain elements c, d ∈ δ(u),
and a successor world vc such that (M, vc, σ

′) |= α ∧ β ∧ ψ, where σ′(x) = σ′(z) = c and
σ′(y) = d. Further if (M, u, σ) |= ∀z♦ϕ ∧ ∀z′�ψ then for all d ∈ δ(u), we have a successor
world vd such that for all c ∈ δ(u), (M, vd, σ′) |= ϕ ∧ ψ, where σ′(z) = d and σ′(z′) = c.
When the domain elements is a finite set (C) which are themselves variables, then we could
as well write (M, vd, σ′) |= ϕ[z] ∧

∧
z′∈C ψ[z′]. The rule (BR) achieves just this, but has to

do all this simultaneously for all the quantified formulas at the node “in one shot”, and has
to keep the formulas clean too.

We need to check that the rule (BR) is well-defined. Specifically, if the label in the premise
contains only clean formulas, we need to check that the label in the conclusion does the same.
To see this, observe the following, with Γ being the set of clean formulas in the premise. Let
∆,∆′ stand for any modality.

Note that if ∃x∆ϕ and Qy∆′ψ are both in Γ, with Q any quantifier, then x 6= y and
neither x occurs free in ψ nor y occurs free in ϕ; also ϕ or ψ do not contain any subformula
that quantifies over x or y.

4 Refer Wang[15] for an illustration of a similar tableau construction.
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Hence, in the conclusion of (BR), every substitution of the form ϕ[z/y] results in a clean
formula, since z occurs free y does not occur at all. Similar argument holds for ψ. Hence
the resulting set of formulas in the successors are always clean.

Thus, maintaining “cleanliness” allows us to treat existential quantifiers as giving their
own witnesses. The “increase” in the domain is given by the added elements in F ′ in the
conclusion. Note that with each node creation either the number of boolean connectives or the
maximum quantifier rank of formulas in the label goes down, and hence repeated applications
of the tableau rules must terminate, thus guaranteeing that the tableau generated is always
finite.

A tableau is said to be open if it does not contain any node u such that its label contains
a literal r as well as its negation. Given a tableau T , we say a node (w : Γ, F ) is a branching
node if it is branching due to the application of BR. We call (w : Γ, F ) the last node of w, if
it is a leaf node or a branching node. Clearly, given any label w appearing in any node of a
tableau T , the last node of w uniquely exists. If it is a non-leaf node, every child of w is
labelled wu for some u.

Let tw denote the last node of w in tableau T and let λ(tw) = (w : Γ, F ). If it is a non-leaf
node, then it is a branching node with rule (BR) applying to it with F ′ as its conclusion. We
let Dom(tw) denote the set F ′ in this case and Dom(tw) = F otherwise.

I Theorem 8. For any clean B-FOML-formula θ in NNF let Fr = {x | x is free in θ} ∪ {z},
where z ∈ Var, z does not appear in θ. Then:
There is an open tableau from (r : {θ}, Fr) iff θ is satisfiable in an increasing domain model.

Proof. Note that we include a new variable z ∈ Fr to ensure that the domain is always
non-empty.

Let T be any (saturated) tableau T starting from (r : {θ}, Fr) where θ is clean. We
observe that for any node t with label (w : Γ, F ) in T , we have the following. If x ∈ F
and occurs in a formula in Γ then every occurrence of x is free. Further, every variable x
occurring free in a formula in Γ is in F . These are proved by induction on the height of t
using the fact that the rule (BR), when applied to clean formulas, results in clean formulas.

To prove the theorem, given an open tableau T starting from (r : {θ}, Fr), we define
M = (W,D, δ,R, ρ) where: W = {w | (w : Γ, F ) occurs in some label of T for some Γ, F};
D = Var; wRv iff v = wv′ for some v′; δ(w) = Dom(tw); x ∈ ρ(w,P ) iff Px ∈ Γ, where
λ(tw) = (w,Γ, F ). Clearly, if wRv then Dom(tw) ⊆ Dom(tv), and hence M is indeed an
increasing domain model.

Moreover ρ is well-defined due to openness of T . We now show that M, r is indeed a
model of θ, and this is proved by the following claim.

Claim. For any w ∈W if λ(tw) = (w : Γ, F ) and if α ∈ Γ then (M, w, idF ) |= α. (Below, we
abuse notation and write (M, w, F ) |= α for (M, w, idF ) |= α where idF = {(x, x) | x ∈ F}.)

The proof proceeds by reverse induction on the height of the node at which w occurs as
label. The base case is when the node considered is a leaf node and hence it is also the last
node with that label. The definition of ρ ensures that the literals are evaluated correctly in
the model and hence the base case follows.

For the induction step, the conjunction and disjunction cases, the current node is not the
last node. Thus the induction applies to its successor which will also have the same label w
and the claim follows.
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Now consider the application of rule (BR) at a branching node tw with label (w : Γ, F ).
Let 5

Γ = {∃xi♦αi | i ∈ [1, n1]} ∪ {∃yj�βj | j ∈ [1, n2]} ∪ {∀zk♦ϕk | k ∈ [1,m1]}
∪{∀z′l�ψl | l ∈ [1,m2]} ∪ {r1 . . . rs}.

By induction hypothesis, we have that for every i ≤ n1,M, wvxi , F
′ � αi∧

∧
j≤n2

βj ∧ψ′ and
for every y ∈ F ′ and k ∈ [1,m1],M, wvyzk

, F ′ � ϕk[y/zk] ∧ ψ′, where ψ′ =
∧z∈F ′

l≤m2
ψl[z/z′l].

Note that Dw = Dom(tw) = F ′. We need to show that M, w, F � α for each α ∈ Γ.
Every such α is either a literal or a bundle formula. The assertion for literals follows from
the definition of ρ. For ∃xi♦αi ∈ Γ we have the successor wvxi

whereM, wvxi
, F ′ |= αi and

(by observation at the beginning of the proof) Fv(αi) ⊆ F and hence we have M, w, F |=
∃xi♦αi. Similarly for every ∀zk♦ϕk ∈ Γ and y ∈ Dw we have the successor wvyzk

where
M, wvyzk

, F |= ϕk[y/zk] and thusM, w, F |= ∀zk♦ϕk.
Now for the case ∃yj�βj : by induction hypothesis, for all successors wv#

z of w where
# is either empty or # ∈ F ′ we haveM, wv#

z , F
′ � βj . Since Fv(βj) ⊆ F ∪ {yj}, we have

M, wv#
z , idF [yj 7→ yj ] � βj for each wv#

z . Finally note that yj ∈ F ′ = Dw and hence we
haveM, w, idF � ∃yj�βj .

The case ∀z′l�ψl is similar. By induction hypothesis, we have M, wv#
z , F

′ � ψl[z/z′l]
for every z ∈ F ′ and again by cleanliness preservation, M, wv#

z , F
′[zl 7→ z] � ψl for all

z ∈ F ′ = Dw.
HenceM, w, idF � ∀z′l�ψl.
Finally note that for the root r, if tr = (r : Γ, F ) then F = Fr since domain changes only

for a (BR) rule which will not be the tr. Hence it follows thatM, r, Fr � θ.

Completeness of tableau construction. For the other direction, we show that all rule
applications preserve the satisfiability of the formula sets in the labels. This would ensure
that there is an open tableau since satisfiability of formula sets ensures lack of contradiction
among literals. It is easy to see that the rules (∧) preserves satisfiability and so does the
(END) rule, since F is non-empty at every step. If one of the conclusions of the (∨) rule is
satisfiable then so is the premise. It remains only to show that (BR) preserves satisfiability.
Consider a label set Γ of clean formulas at a branching node. Let

Γ = {∃xi♦αi | i ∈ [1, n1]} ∪ {∃yj�βj | j ∈ [1, n2]} ∪ {∀zk♦ϕk | k ∈ [1,m1]}
∪{∀z′l�ψl | l ∈ [1,m2]} ∪ {r1 . . . rs}.

be satisfiable at a modelM = {W,D, δ,R, ρ}, w ∈W and a relevant assignment η such
that η(x) ∈ Dw for all x ∈ Fv(Γ) andM, w, η �

∧
χ∈Γ χ.

By the semantics, we have the following:
(A) There exist a1, . . . , an1 ∈ Dw and v1 . . . vn1 ∈W where wRvi such that

M, vi, η[xi 7→ ai] � αi for all i ≤ n1.
(B) For all c ∈ Dw there exist vc1 . . . vcm1

∈W , where wRvcmi
such that

M, vck, η[zk 7→ c] |= ϕk for all for all k ≤ m1.
(C) There exist b1, . . . bn2 ∈ Dw such that for all v ∈W

if wRv thenM, v, η[yj 7→ bj ] |= βj for all j ≤ n2.
(D) For all d ∈ Dw and for all v ∈W if wRv thenM, v, η[z′l 7→ d] |= ψl for all l ≤ m2.

Moreover, due to the fact that Γ is clean, we observe that:
(O) x, y, z and z′ only occur in αi, βj , ϕk and ψl respectively.

5 Note that the argument holds even if either of n1 or m1 is 0.
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We now need to show:
(1) {αi} ∪ {βj | 1 ≤ j ≤ n2} ∪ {ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2} is satisfiable for all i ≤ n1 .
(2) {ϕk[y′/zk]} ∪ {βj | 1 ≤ j ≤ n2}, {ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2} is satisfiable for all

k ≤ m1, y′ ∈ F ′.

For (1): given i ≤ n1, due to (A), (C) and (O), we can pick an ai ∈ Dw and a successor
vi of w, and some b ∈ Dw such that

M, vi, η[xi 7→ ai; y 7→ b] � αi ∧
∧
j

βj

By (D), (O) and the fact that η only assigns variables the elements in Dw, we can also show
that

M, vi, η[xi 7→ ai; y 7→ b] �
∧
{ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2}.

Note that η[xi 7→ ai; y 7→ b] is relevant for vi sinceM is an increasing domain model and
wRvi. This completes the proof for (1).

For (2): Given k ≤ m1 and y′ ∈ F ′. Suppose η(y′) = c ∈ Dw, then due to (B) we have a
successor vck of w such thatM, vck, η |= ϕk[y′/zk]. Now again, due to (C), (D), (O) and the
fact that η is a relevant assignment for w, we have:

M, vck, η[y 7→ b] |= ϕk[y′/zk] ∧
∧
j

βj ∧
∧
{ψl[z/z′l] | z ∈ F ′, 1 ≤ l ≤ m2}.

Again, η[y 7→ b] is also a relevant assignment for vck, and this completes the proof for (2). J

The theorem offers us a decision procedure for checking satisfiability. Note that not only
is the depth of the tableau linear in the size of the formula, but also that labels are never
repeated across siblings. Hence an algorithm can explore the tableau depth wise and reuse
the same space when exploring other branches. The techniques are standard as in tableau
procedures for modal logics. The extra space overhead for keeping track of domain elements
is again only linear in the size of the formula. Further, observe that every B-FOML formula
has an equivalent formula in negation normal form with linear blow-up. This way, we can
get a PSPACE-algorithm for checking satisfiability. The PSPACE lower bound follows from
propositional modal logic, of which our language is an extension.

I Corollary 9. Satisfiability of B-FOML fragment over increasing domain models is PSPACE-
complete.

4.2 Constant domain models
We now take up the second task, to show that over constant domain models, the culprit is
the ∀� bundle, by proving that the satisfiability problem for the B∃�-FOML is decidable
over constant domain models.

In these models, we need to fix the domain right at the start of the tableau construction
and use only these elements as witnesses. We do this by calculating a precise bound on how
many new elements need to be added for each subformula of the form ∃x�ϕ and include as
many as needed at the beginning of the tableau construction.

Let Sub(θ) stand for the finite set of subformulas of θ. Given a clean formula θ ∈
B∃�-FOML in NNF, for every ∃xj�ϕ ∈ Sub(θ) let Var∃(θ) = {x | ∃x�ϕ ∈ Sub(θ)}. Now,
cleanliness has its advantages: every subformula of a clean formula is clean as well. Hence,
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when θ1 and θ2 are both in Sub(θ), Var∃(θ1)∩Var∃(θ2) = ∅. Similarly, when θ1 ∈ Sub(θ) and
θ2 ∈ Sub(θ1), again Var∃(θ1) ∩ Var∃(θ2) = ∅.

Fix a clean formula θ in NNF with modal depth h. For every x ∈ Var∃(θ) define Varx to
be the set of h fresh variables {xk | 1 ≤ k ≤ h}, and let Var+(θ) =

⋃
{Varx | x ∈ Var∃(θ)} be

the set of new variables to be added. Note that Varx ∩ Vary = ∅ when x 6= y. Fix a variable
z not occurring in Var+(θ). Define Dθ = Fv(θ) ∪ Var+(θ) ∪ {z}.

The tableau rules for constant domain models for B∃�-FOML fragment are given by:

w : ϕ1 ∨ ϕ2,Γ, C
w : ϕ1,Γ, C | w : ϕ2,Γ, C

(∨)
w : ϕ1 ∧ ϕ2,Γ, C
w : ϕ1, ϕ2,Γ, C

(∧)

Given n, s ≥ 0; m ≥ 1:

w : ∃x1�ϕ1, . . . , ∃xn�ϕn, ∀y1♦ψ1, . . . , ∀ym♦ψm, r1 . . . rs, C

〈(wvyyi : {ϕj [x
kj

j /xj ] | 1 ≤ j ≤ n}, ψi[y/yi], C′)〉where y ∈ Dθ, i ∈ [1,m]
(BRC)

Given n ≥ 1, s ≥ 0:

w : ∃x1�ϕ1, · · · , ∃xn�ϕn, r1, · · · rs, C
w : r1 · · · rs, C

(ENDC)

where C ⊆ Dθ and C ′ = C ∪ {xkj

j | 1 ≤ j ≤ n} where kj is the smallest number such that
x
kj

j ∈ Varxj
\ C and r1 . . . rs ∈ lit.

Note that the rule BRC starts off one branch for each y ∈ Dθ, since the ∀♦ connective
requires this over the fixed constant domain Dθ. C keeps track of the variables used already
along the path from the root till the current node. These are now fixed, so the witness
for ∃x�ϕ is picked from the remaining variables in Varx(θ). The variables in Varxj

are
introduced only by applying BR. Since |Varxj | is the modal depth, we always have a fresh xkj
to choose.

I Theorem 10. For any clean B∃�-FOML-formula θ in NNF, there is an open constant
tableau from (r, {θ},Fv(θ)) iff θ is satisfiable in a constant domain model.

The structure of the proof is very similar to that of Theorem 8. But we need to be careful
to check that sufficient witnesses exist as needed, since the domain is fixed at the beginning
of tableau construction. The proof details are presented in the appendix.

I Corollary 11. The satisfiability problem for B∃�-FOML-formulas over constant domain
models is PSPACE-complete.

5 Between Constant Domain and Increasing Domain

We now show that the B∃�-FOML fragment cannot distinguish increasing domain models
and constant domain models. Note that in FOML this distinction is captured by the Barcan
formula ∀x�ϕ→ �∀xϕ; but this is not expressible in B∃�-FOML.6

6 However, with equality added in the language, we can distinguish the two by:
∃x1�(∀x2♦(∀z♦(x1 = x2)) ∧ ∀y1♦(∃z�(∃y2�(y1 6= y2)) .
We can also accomplish this in the ∀� fragment: ∀x�∀y�¬P (x) ∧ ∀z�∃x♦¬P (x).
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The tableau construction of B∃�-FOML fragment over increasing domain models is a
restriction of the BR rule in the last section presented in [15].

Given n, s ≥ 0; m ≥ 1:

w : ∃x1�ϕ1, . . . , ∃xn�ϕn, ∀y1♦ψ1, . . . , ∀ym♦ψm, r1 . . . rs, F

〈(wvyyi : {ϕj | 1 ≤ j ≤ n}, ψi[y/yi], F ′)〉where y ∈ F ′, i ∈ [1,m] (BRW)

where F ′ = F ∪ {xj | j ∈ [1, n]}.

Note that BRC produces a constant domain tableau whereas BRW produces an increasing
domain tableau. Now, to prove that the B∃�-FOML fragment cannot distinguish increasing
domain models and constant domain models, it is sufficient to show that any formula
ϕ ∈ B∃�-FOML is satisfiable over increasing domain model is also satisfiable in a constant
domain model. We prove this by showing that any ϕ ∈ B∃�-FOML fragment that has an
open tableau also has a constant domain tableau. From this tableau, we can extract the
constant domain model where ϕ is satisfiable.

I Theorem 12. For any B∃�-FOML formula ϕ satisfiable on some increasing domain model,
the constant domain tableau of ϕ is open.

The proof is sketched in the appendix.

6 Discussion

We have considered a decidable fragment of FOML by bundling quantifiers together with
modalities, retaining the same complexity as propositional modal logic, while yet admitting
arbitrary k-ary predicates.

We note that choice of how this bundling is done is crucial. The ∃� bundle is shown to
be robustly decidable, for both constant domain and increasing domain semantics, whereas
the ∀� bundle is undecidable over constant domain models. Indeed, other ways of “bundling”
quantifiers and modalities is possible. For instance, the �∀ bundle seems to be similar to the
∀� that we have considered (over constant domain models) but �∃ seems to be interestingly
different. Indeed, we could proceed further and consider bundles determined by a shape
of quantifier prefix: ∃x1 . . . ∃xn� or ∃x1 . . . ∃xn∀z1 . . . ∀zn� might be worthy of study as a
bundle as well. In this sense, this paper is envisaged as a study of “bundling” quantifiers
and modalities and its impact on decidability rather than proposing the definitive bundled
fragment.

An obvious extension is to consider the language with constants, function symbols and
equality. This would be of importance in the study of systems with unbounded data. A
crucial direction for further development is to consider the transitive closure modality so
that reachability properties are specified. The tableau procedures presented already give us
a basis for exploring model checking algorithms, but working with finite presentations of
data domains needs some care.
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Appendix

Proof of Theorem 10
I Theorem 10. For any clean B∃�-FOML-formula θ in NNF, there is an open constant
tableau from (r, {θ},Fv(θ)) iff θ is satisfiable in a constant domain model.

We show that existence of a constant open tableau is equivalent to satisfiability over
constant domain models. First, the following observation on the rule (BR) is useful.

I Proposition 13. The rule (BRC) preserves cleanliness of formulas: if a tableau node is
labelled by (w : Γ, C), Γ is clean, and a child node labelled (wv : Γ′, C ′) is created by (BR)
then Γ′ is clean as well.
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An important corollary of this proposition is that for all x ∈ Dθ, at any tableau node
all occurrences of x in Γ are free. Therefore, for any formula of the form ψi[z/yi] in the
conclusion of the rule, z is free and yi does not occur at all.

The following fact, familiar from first order logic, will be handy in the proof.

I Proposition 14. For any FOML formula ϕ and any model M, w and any variable z:

M, w, σ � ϕ[z/x] ⇐⇒ M, w, σ′[x 7→ σ(z)] � ϕ

if σ(y) = σ′(y) for all y 6= x with y occurring free in ϕ.

Now we shall prove Theorem 10.

Proof. To prove the soundness of tableau construction, given an open tableau T from the
root node labelled (r : {θ},Fv(θ)), we defineM = {W,Dθ, R, ρ} where W = {w | (w : Γ, C)
is a label at some node in T}. and wRv iff v = wv′ for some v′. For the valuation, we have
x ∈ ρ(w,P ) iff Px ∈ Γ, where λ(tw) = (w,Γ).

By definition, Dθ is not empty. Further, ρ is well-defined due to the openness of T . As
before, we prove thatM, r is indeed a model of θ, and this is proved by the following claim.

Claim. For any tree node w in T if λ(tw) = (w : Γ, C) and if α ∈ Γ then (M, w, idC) |= α.
(Again, we abuse notation and write (M, w, C) |= α for (M, w, idC) |= α and denote C(w)
to be the C associated with the node labelled w.)

The proof proceeds exactly as before for all the rules except for a slight modification for
the (BRC) rule. We shall consider only this rule in the proof here.

Suppose (w : Γ, C) is a branching node where

Γ = {∃x1�ϕ1 . . . ∃xn�ϕn, ∀y1♦ψ1 . . . ∀ym♦ψm, r1, . . . rs}.

By induction hypothesis,

M, wvyyi
, C ′(wvyyi

) � ψi[y/yi] ∧
n∧
1
ϕj [x

kj

j /xj ]

for every y ∈ Dθ and i ∈ [1,m]. We need to show thatM, w, C � χ for each χ ∈ Γ.
The assertion for literals in Γ follows from the definition of ρ. For each ∃xj�ϕj ∈ Γ and

each wvyyi
, with y ∈ Dθ, we have M, wvyyi

, C ′ � ϕj [x
kj

j /xj ] by induction hypothesis. It is
clear that {xkj

j | 1 ≤ j ≤ n} are not free in ϕj since they are chosen to be new. Further,
since xkj

j are not free in ϕj , by Proposition 14, M, wvyyi
, idC [xj 7→ x

kj

j ] � ϕj for all wvyyi
.

ThereforeM, w, C � ∃xj�ϕj .
For ∀yi♦ψi ∈ Γ, and y ∈ Dθ, by induction hypothesis, we haveM, wvyyi

, C ′ |= ψi[y/yi].
By Proposition 13 and its corollary, yi is not free in ψi[y/yi] and hence by Proposition 14,
M, wvyyi

, idC [yi 7→ y] � ψi. Since this holds for each y ∈ Dθ, we getM, w, idC � ∀yi♦ψi for
each i.

Thus, it follows thatM, r, σ(r) � θ.

To prove the completeness of the tableau construction, we show that rule applications
preserve the satisfiability of the formula set. Again, we only discuss the BRC case.

Consider a label set Γ of clean formulas at a branching node. Let

Γ = {∃xj�ϕj | j ∈ [1, n]} ∪ {∀yi♦ψi | j ∈ [1,m]} ∪ {r1 . . . rs}
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be satisfiable in a model M = {W,D,R, ρ}, w ∈ W and an assignment η such that
M, w, η � ϕ for all ϕ ∈ Γ.

By the semantics:
(A) for all c ∈ DM there exist vc1 . . . vcm ∈W , successors of w such thatM, vci , η[yi 7→ c] |= ψi

for each i ∈ [1,m].
(B) there exist c1, . . . cn ∈ D such that for all v ∈W , if wRv thenM, v, η[xj 7→ cj ] |= ϕj .

By cleanliness of formulas in Γ, each xj is free only in ϕj , and each yi is free only in ψi.
Thus we can merge the assignments without changing the truth values of ϕj and ψi, and
obtain:
(A’) for all c ∈ D there exist vc1 . . . vcm ∈W , successors of w, such that

M, vci , η[xj 7→ cj , yi 7→ c] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi

where i ∈ [1,m].

Fixing a y ∈ Dθ and an i ∈ [1,m], in the following we show that {ϕj [x
kj

j /xj ] | 1 ≤ j ≤
n} ∪ {ψi[y/yi]} is satisfiable. There are two cases to be considered:
1. y is not one of xkj

j . First since η is an assignment for all the variables in Var, we
can suppose η(y) = b ∈ D. By (A′) above, there exists a successor vbi of w such that
M, vbi , η[xj 7→ cj , yi 7→ b] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi.
Note that xj and yi are not in Dθ thus they are different from y. On the other hand,
by cleanliness of Γ, yi does not occur in ϕj and η(y) = b, hence M, vbi , η[xj 7→ cj ] |=
ϕ1 ∧ · · · ∧ ϕn ∧ ψi[y/yi].
Finally, since each xj only occurs in ϕj and each x

kj

j does not occur in ϕ1 . . . ϕj and

ψi[y/yi], we have: M, vbi , η[xkj

j 7→ cj ] |= ϕ1[xk1
1 /x1] ∧ · · · ∧ ϕn[xkn

n /xn] ∧ ψi[y/yi].
2. y is xkj

j for some j. Then we pick cj , the witness for xj , and by (A′), M, v
cj

i , η[xj 7→
cj , yi 7→ cj ] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi.
Since y is xkj

j , we haveM, v
cj

i , η[xj 7→ cj , x
kj

j 7→ cj ] |= ϕ1 ∧ · · · ∧ ϕn ∧ ψi[y/yi].

Now proceeding similarly as in the case above we can show that: M, v
cj

i , η[xkj

j 7→ cj ] |=
ϕ1[xk1

1 /x1] ∧ · · · ∧ ϕn[xkn
n /xj ] ∧ ψi[y/yi].

Finally note that all formulas resulting after applying (BRC) rule will be of the form A′ and
is satisfiable as argued above. This completes the proof of the theorem. J

Proof of Theorem 12
I Theorem 12. For any B∃�-FOML formula ϕ satisfiable on some increasing domain model,
the constant domain tableau of ϕ is open.

Proof. (Sketch) We give a proof sketch. Consider a clean B∃�-FOML formula ϕ, and let
ϕ′ = ϕ ∧

∧
{∃x′�> | x′ ∈ Var+(ϕ)} (recall that Var+(ϕ) =

⋃
x∈Var∃(ϕ) Varx). Clearly ϕ is

satisfiable in an increasing domain model iff ϕ′ is as well. Let T be an open tableau for ϕ′.
We show that T can be transformed into a constant open tableau T ′ for ϕ.

Suppose T has no applications of (BR), it is also a constant tableau and we are done,
so suppose that T has at least one application of the rule (BR). By construction, all the
x′ ∈ Var+(ϕ) are added to the domain of the root, thus they are also at all the local domains
in T . Note that we may have more elements in the local domains, such as x that get added
when we apply BR to ∃x�ϕ, and therefore there are more branches than needed for a constant
domain tableau of ϕ (such as those for x).

We can get rid of them by the following process:
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Fix ψ = ∃x�θ ∈ Sub(ϕ):
Fix a node s where BR rule is applied and ψ is in s. Since ϕ is clean, there is no other
node in any path of T from the root passing through s such that ∃x�θ′ ∈ Sub(ϕ)
occurs for some θ′. Let m be the modal depth of ϕ. The path from the root to the
predecessor of s can use at most m− 1 different variables in Varx(ϕ) when generating
successors by applying the BR rule to some ∀y♦θ formula. Pick the first xh ∈ Varx
which is not used in the path up to this node.
Delete all the descendent nodes of s that are named using xh when applying BR to
some ∀y♦ formula, i.e., the nodes named in the form of stvxh

y where t can be empty.
It is not hard to see that the resulting sub-tableau rooted at s has no occurrence of xh
at all since xh could only be introduced among the children of s using BR.
Rename all the occurrences of x by xh (in formulas and node names) in all the
descendent nodes of s. Then the branching structure from the sub-tableau rooted at s
will comply with the BR rule for constant-domain tableau.
Repeat the above for all the application nodes of the BR rule w.r.t. ψ

Repeat the above procedure for all ψ of the form ∃x�θ ∈ Sub(ϕ).

The core idea is to simply use the newly introduced variable x as if it were xh in a
constant-domain tableau. Note that each branch-cutting operation and renaming operation
(by new variables) above will preserve openness, since openness is merely about contradictions
among literals. We then obtain a constant domain tableau by setting the domain as Dϕ. J

Note that the constant domain tableau T of ϕ constructed can be viewed as a sub-
tree embedded inside the increasing domain tableau T ′ of ϕ′. However, showing that it is
generated precisely by the tableau rules in Section 4.2 involves some tedious detail.
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Karp and Miller’s algorithm is a well-known decision procedure that solves the termination and
boundedness problems for vector addition systems with states (VASS), or equivalently Petri
nets. This procedure was later extended to a general class of models, well-structured transition
systems, and, more recently, to pushdown VASS. In this paper, we extend pushdown VASS to
higher-order pushdown VASS (called HOPVASS), and we investigate whether an approach à la
Karp and Miller can still be used to solve termination and boundedness. We provide a decidable
characterisation of runs that can be iterated arbitrarily many times, which is the main ingredient
of Karp and Miller’s approach. However, the resulting Karp and Miller procedure only gives a
semi-algorithm for HOPVASS. In fact, we show that coverability, termination and boundedness
are all undecidable for HOPVASS, even in the restricted subcase of one counter and an order 2
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1 Introduction

Termination of a program is a desirable feature in computer science. As it is undecidable on
Turing machines, an important challenge is to find models as expressive as possible while
retaining decidability of termination. A prominent model having this property is vector
addition systems with states (or VASS for short), introduced by Karp and Miller (without
states) to model and analyse concurrent systems [10]. They also provide an algorithm, known
as the Karp and Miller tree, which can decide termination as well as boundedness (i.e.,
finiteness of the set of reachable configurations). This algorithm is not optimal complexity-
wise, as it has an Ackermannian worst-case running time [19, 20], whereas termination and
boundedness for VASS are ExpSPace-complete [17, 22]. But it is conceptually simple, and
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so amenable to other models. Karp and Miller’s algorithm has been extended, into a so-called
reduced reachability tree, to the general class of well-structured transition systems (WSTS),
to which VASS belong [6, 7]. It has also recently been applied to VASS equipped with one
pushdown stack [14]. These pushdown VASS are not WSTS, thus showing that Karp and
Miller’s algorithm can apply outside the realm of WSTS.

A well-known extension of pushdown automata is higher-order pushdown automata (or
HOPDA for short), introduced in [18, 8, 1], in which stacks are replaced by higher-order
stacks – an order n stack being a stack of order (n− 1) stacks, with an order 1 stack being a
classical stack, and the operations on an order n stack being the copying of the topmost order
(n− 1) stack on top of it, and its inverse operation. This model is interesting for modelling
because of its equivalence to safe higher-order recursion schemes [11]. Furthermore, their
transition graphs are exactly the graphs of the so-called prefix-recognisable hierarchy [5, 4],
which are known to enjoy decidable MSO model-checking. As all the graphs of the hierarchy
enjoy the same decidable properties, a tempting conjecture to make is that what holds
for models with an order 1 auxiliary stack also holds for the same models with an order
n auxiliary stack, for any order n. The starting point of the present work was thus the
conjecture that Karp and Miller’s algorithm would be a decision tool for termination and
boundedness for higher-order pushdown VASS (or HOPVASS for short).

Contribution. Our contribution in this paper is twofold. We first show that termination,
and therefore boundedness, are undecidable for HOPVASS by reducing from termination of
Minsky counter machines through a stepwise simulation. We also show that the coverability
problem (also known as the control-state reachability problem) is undecidable as well, through
the same simulation. Our undecidability results hold even in the restricted subcase of one
counter and an order 2 stack. This is in sharp contrast with the same model at order 1, for
which boundedness and coverability are decidable [14, 16].

We then give a decidable criterion over sequences of higher-order stack operations which
characterises which ones can be applicable arbitrarily many times. The detection of such
sequences is crucial for the implementation of Karp and Miller’s algorithm. Our criterion,
which is decidable in quadratic time, makes Karp and Miller’s approach implementable for
HOPVASS, but the resulting procedure is only a semi-algorithm. It can find witnesses of
non-termination or unboundedness, but it does not terminate in general because, contrary to
WSTS and order 1 pushdown VASS, there might be infinite runs that contain no iterable
factor. We provide an example that illustrates this fact. More interestingly, we prove, thanks
to the same iterability criterion, that our semi-algorithm always terminates on HOPDA.
This means that Karp and Miller’s algorithm also applies to HOPDA, and thus provides a
decision procedure that solves termination and boundedness for HOPDA.

Related work and discussion. The coverability and reachability problems for order 1
pushdown VASS are inter-reducible (in logspace) and Tower-hard [12, 13]. Their decidability
status is still open. The boundedness problem for the same model is decidable, and its
complexity is between Tower and Hyper-Ackermann [14]. For the subcase of only one
counter, coverability is decidable [16] and boundedness is solvable in exponential time [15].

The main framework for our presentation comes from the description of regular sets of
higher-order stacks from Carayol presented in [2, 3]. We borrow from it the notion of reduced
sequence of operations as a short description of the effect of a sequence. Our criterion for
iterability is a modification of that reduction notion, in which we aim to keep the domain
of definition of the sequence (which is not stable through reduction). To solve this issue,
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Carayol introduced test operations. Instead, we simply weaken the reduction by forbidding it
to reduce destructive tests of the highest level, and considering a so-obtained weak-reduced
sequence for every order. This iterability criterion is similar to the result of Parys in [21], in
the sense that the underlying idea is that a sequence of operations is iterable if, and only if, it
does not decrease the number of k-stack in the topmost (k− 1) stack, for every k. Otherwise,
our presentation and our techniques are very different from those of Parys.

To our knowledge, termination and boundedness have never been directly studied on
HOPDA. However, there are several existing works from which decidability of termination
and boundedness for HOPDA could be easily derived. For example, in [9], Hague, Kochems
and Ong study the downward closure of languages of HOPDA, and compute it by deciding
the simultaneous unboundedness problem of their languages. It follows that finiteness of
the language defined by a HOPDA is decidable. Termination and boundedness are easily
reducible1 to the latter problem.

2 Preliminaries

Higher-order pushdown automata. We consider a finite alphabet Σ. The set of order
1 stacks (or 1-stacks) over Σ is the set Stacks1(Σ) = Σ∗. We denote a 1-stack s as s =
[s1 . . . s|s|]1, where |s| is the length of s, where s|s| is the topmost letter of s. The empty
stack is denoted []1. For every a ∈ Σ, we define the operations pusha which adds an a at
the top of a stack, and popa which removes the topmost letter of a stack if it is an a and is
not applicable otherwise. Formally, pusha and popa are partial functions from Stacks1(Σ)
to Stacks1(Σ), defined by pusha([s1 · · · s|s|]1) = [s1 · · · s|s|a]1, and popa(s) = s′ if and only
if pusha(s′) = s. We define the set of order 1 operations Op1(Σ) = {pusha, popa | a ∈ Σ}.
When Σ is understood, we omit it (we will do it from now on).

For n > 1, we define the set of order n stacks (or n-stacks) over Σ as Stacksn =
(Stacksn−1)+. We denote an n-stack s as s = [s1 . . . s|s|]n, where s|s| is the topmost (n− 1)-
stack of s. The stack [[]n−1]n is denoted []n for short, and abusively called the empty stack. We
define the operations copyn which copies the topmost (n− 1)-stack on the top of the stack it
is applied to, and copyn its inverse, i.e., it removes the topmost (n−1)-stack of a stack if it is
equal to the one right below it, and is not applicable otherwise. Formally, copyn and copyn are
partial functions from Stacksn to Stacksn, defined by copyn([s1 · · · s|s|]n) = [s1 · · · s|s|s|s|]n,
and copyn(s) = s′ if and only if copyn(s′) = s. We define the set of order n operations
Opn = {copyn, copyn} ∪ Opn−1 and we define the application of an operation θ of Opn−1
to an n-stack s as θ(s) = [s1 · · · s|s|−1θ(s|s|)]n. Given θ ∈ Opn, we define θ̄ its inverse, i.e.,
pusha = popa, popa = pusha and copyi = copyi. Finally, we inductively define the topmost
k-stack of an n-stack s = [s1 · · · s|s|]n as topn(s) = s, and topk(s) = topk(s|s|) for k < n.

I Example 1. Assuming that Σ = {a, b}, we have pusha([[ab]1[b]1]2) = [[ab]1[ba]1]2,
copy2([[[ab]1]2[[a]1[b]1]2]3) = [[[ab]1]2[[a]1[b]1[b]1]2]3, and copy2([[b]1[a]1]2) is not defined.

An order n pushdown automaton, or n-PDA for short, or HOPDA if the order is left
implicit, is a tuple A = (Q, qinit,Σ,∆), where Q is a finite set of states, qinit is an initial
state, Σ is a stack alphabet and ∆ ⊆ Q× Opn ×Q is a finite set of transitions. A transition

1 For termination, simply make all transitions output a letter and make all states accepting, then observe
that the resulting HOPDA terminates if, and only if, its language is finite. This observation follows from
König’s lemma together with the fact that HOPDA are finitely branching. For boundedness, add a new
accepting state that the HOPDA may non-deterministically jump to, and from which it “dumps” the
contents of the stack on the output tape. All original states are non-accepting and all original transitions
are silent. It is readily seen that the resulting HOPDA is bounded if, and only if, its language is finite.
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(p, θ, q) ∈ ∆ is also written as p θ−→ q. A configuration of A is a pair (q, s), where q ∈ Q and
s ∈ Stacksn. The initial configuration is (qinit, []n). A step of A is a triple ((p, s), θ, (q, t)),
where (p, s) and (q, t) are configurations and θ is an operation, such that p θ−→ q and
t = θ(s). Such a step is also written as (p, s) θ−→ (q, t). A run of A is an alternating
sequence (q0, s0), θ1, (q1, s1), . . . , θk, (qk, sk) of configurations (qi, si) and operations θi, such
that (qi−1, si−1) θi−→ (qi, si) for every 0 < i ≤ k. Such a run is also written as (q0, s0) θ1−→
(q1, s1) · · · θk−→ (qk, sk), and it is called initialised when (q0, s0) is the initial configuration.
The reachability set of A is the set of configurations (q, s) such that there is an initialised
run in A that ends with (q, s).

I Remark. Instead of the copyn operation, the literature usually considers a popn operation
that destroys the topmost (n − 1)-stack (provided that there is one below it). Formally,
popn([s1 · · · s|s|−1s|s|]n) = [s1 · · · s|s|−1]n if |s| > 1 and is undefined otherwise. Following
Carayol [2], we prefer the more symmetric operation copyn that destroys the topmost
(n− 1)-stack only if it is equal to the previous one.

Higher-order pushdown vector addition systems with states. We let N denote the set of
natural numbers N = {0, 1, . . .} and we let Z denote the set of integers Z = {. . . ,−1, 0, 1, . . .}.
Consider a dimension d ∈ N with d > 0. Given a set S and a vector x in Sd, we let x(c)
denote the cth component of x, i.e., x = (x(1), . . . ,x(d)).

An order n pushdown vector addition system with states of dimension d, or d-dim n-
PVASS for short, or HOPVASS if the order and the dimension are left implicit, is a tuple
S = (Q, qinit,Σ,∆), where Q is a finite set of states, qinit is an initial state, Σ is a stack alphabet
and ∆ ⊆ Q×Zd × Opn ×Q is a finite set of transitions. Vectors a ∈ Zd are called actions. A
configuration of S is a triple (q,x, s), where q ∈ Q, x ∈ Nd and s ∈ Stacksn. Intuitively, the
dimension d is the number of counters, and x(1), . . . ,x(d) are the values of these counters.
The initial configuration is (qinit,0, []n). A step of S is a triple (p,x, s) a,θ−−→ (q,y, t), where
(p,x, s) and (q,y, t) are configurations, a is an action and θ is an operation, such that p a,θ−−→ q,
y = x + a and2 t = θ(s). The notions of run, initialised run and reachability set are defined
in the same way as for n-PDA.

Coverability, termination and boundedness. We investigate in this paper three basic
verification problems on HOPVASS, namely coverability, termination and boundedness. The
coverability problem asks, given a HOPVASS S and a state q of S, whether the reachability
set of S contains a configuration whose state is q. The termination problem asks, given a
HOPVASS S, whether all initialised runs of a S are finite. The boundedness problem asks,
given a HOPVASS S, whether the reachability set of S is finite. Observe that HOPVASS
are finitely branching, i.e., each configuration is the source of only finitely many steps. This
entails that termination is Turing-reducible to boundedness for HOPVASS. Indeed, if the
reachability set of a HOPVASS is infinite, then it necessarily has an infinite initialised run,
by König’s lemma (applied to its reachability tree). Otherwise, we may decide whether it has
an infinite initialised run by exploring its reachability graph, which is finite and computable.

2 The definition of configurations requires counters to be nonnegative. So the equality y = x + a carries
the implicit condition that x + a ≥ 0.
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3 Undecidability of Coverability and Termination for 1-dim 2-PVASS

It is known that coverability is decidable for 1-dim 1-PVASS [16] and that termination and
boundedness are decidable for 1-PVASS of arbitrary dimension [14]. We show in this section
that all three problems are undecidable for HOPVASS, even in the restricted subcase of 1-dim
2-PVASS. Our proof proceeds by reduction from coverability and termination in Minsky
counter machines, through a stepwise simulation of these machines by 1-dim 2-PVASS.

We use a non-standard presentation of Minsky counter machines (simply called counter
machines in the sequel) that is close to VASS and more convenient for our purpose than
the standard one. A d-counter machine is a tripleM = (Q, qinit,∆), where Q is a finite set
of states, qinit is an initial state and ∆ ⊆ Q × (Z ∪ {T})d × Q is a finite set of transitions.
Vectors a ∈ (Z ∪ {T})d are called actions. A configuration ofM is a pair (q,x), where q ∈ Q
and x ∈ Nd. The initial configuration is (qinit,0). A step of M is a triple (p,x) a−→ (q,y),
where (p,x) and (q,y) are configurations and a is an action, such that p a−→ q and{

y(c) = x(c) + a(c) if a(c) ∈ Z
y(c) = x(c) = 0 if a(c) = T

(1)

for every counter 1 ≤ c ≤ d. The notions of run, initialised run and reachability set are
defined in the same way as for n-PDA. It is well-known that, for every d ≥ 2, coverability,
termination and boundedness are undecidable for d-counter machines.

Our simulation of a d-counter machineM by a 1-dim 2-PVASS S roughly proceeds as
follows. To prevent confusion between the counters ofM and the counter of S, we will denote
the latter by κ. When S is idle, meaning that it is not simulating a step ofM, its counter κ
is zero and its stack is of the form [[(T, . . . , T)a1 · · · ak]1]2, where each ai ∈ (Z ∪ {T})d is an
action ofM. Intuitively, the word w = a1 · · · ak, which we call the history, is the sequence
of actions thatM has taken to reach its current configuration. The vector (T, . . . , T) acts as
a bottom symbol. To simulate a step (p,x) a−→ (q,y) ofM, S pushes a onto its stack, which
becomes [[(T, . . . , T)wa]1]2, and then it checks that its new history wa corresponds to a legal
sequence of actions (starting from 0) with respect to Equation 1. To perform this check, S
uses the history w and its counter κ to verify, for each counter 1 ≤ c ≤ d, that wa is legal
with respect to c. It can do so without destroying the history thanks to copy2 and copy2
operations. When all checks are complete, S is again idle, its counter κ is zero and its stack
is [[(T, . . . , T)wa]1]2.

We now present our simulation of d-counter machines by 1-dim 2-PVASS in detail. We
start with some additional notations. Given an action a ∈ (Z ∪ {T})d, we let a−→ denote the
binary relation on Nd defined by x a−→ y if Equation 1 holds. Given a word w = a1 · · · ak of
actions ai ∈ (Z ∪ {T})d, we let w−→ denote the binary relation on Nd defined by x w−→ y if
there exists x0, . . . ,xk such that x = x0

a1−→ x1 · · ·
ak−→ xk = y, with the convention that ε−→

is the identity relation on Nd. The notation x w−→ means that x w−→ y for some y. We define
the displacement δ(w) of a word w = a1 · · · ak in (Zd)∗ by δ(w) = a1 + · · · + ak. Observe
that, for such a word w ∈ (Zd)∗, it holds that x w−→ y if, and only if, x + δ(w) = y and
x + δ(v) ≥ 0 for every prefix v of w.

We extend the vector notation a(c) to sequences of actions a1 · · · ak ∈ ((Z ∪ {T})d)∗
by letting (a1 · · · ak)(c) denote the word in Z∗ defined by (a1 · · · ak)(c) = a1(c) · · · ak(c).
Note that for every x,y ∈ Nd and w ∈ ((Z ∪ {T})d)∗, it holds that x w−→ y if, and only if,
x(c) w(c)−−−→ y(c) for every 1 ≤ c ≤ d. Observe that the relation w−→ is forward-deterministic,
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A B C D
copy2

peeka
for a ∈ Σ with a(c) = T

copy2

K, popa
for a ∈ Σ with a(c) 6= T

−K + a(c), pusha
for a ∈ Σ with a(c) 6= T

Fc

E F G H
copy2

peeka
for a ∈ Σ with a(c) = T

copy2

K, popa
for a ∈ Σ with a(c) 6= T

−K − a(c), pusha
for a ∈ Σ with a(c) 6= T

Bc

(a) The gadgets Fc and Bc that apply, forward for Fc and backward for Bc, the current history of the cth
counter. The constant K ∈ N satisfies |a(c)| < K for every a ∈ Σ with a(c) 6= T.

I

Fc Bc

a Bc

a
J

peeka
for a ∈ Σ with a(c) 6= T

popa
for a ∈ Σ with a(c) = T

pusha

Cc

(b) The gadget Cc that checks that the most recent action of the history is applicable for the cth counter.

p q

qinit

p q̃ C1

q

. . . Cd

q

q

q̃init qinit

a pusha

push(T,...,T)

M S

(c) Translation of a d-counter machineM into a 1-dim 2-PVASS S.

Figure 1 Simulation of a d-counter machine M by a 1-dim 2-PVASS S. The stack alphabet
Σ ⊆ (Z∪{T})d is the finite set of actions ofM. Edges containing “for a ∈ Σ with ϕ” denote multiple
transitions, one for each a ∈ Σ satisfying the condition ϕ.

i.e., x w−→ y ∧ x w−→ y′ =⇒ y = y′. In a d-counter machine or 1-dim 2-PVASS, given two
configurations α and β, we let α ∗−→ β denote the existence of a run from α to β.

We fix, for the remainder of this section, a d-counter machine M = (Q, qinit,∆). Let
Σ ⊆ (Z ∪ {T})d denote the set of actions of M, formally, Σ = {a | ∃p, q : p a−→ q}. We
build from M a 1-dim 2-PVASS S with stack alphabet Σ. To simplify the presentation,
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we introduce, for every a ∈ Σ, a new order 1 operation peeka = pusha ◦ popa that tests,
without changing the stack, that the topmost letter of the stack is an a, and is not applicable
otherwise. The addition of these peeka operations has no impact on the decidability status
of coverability, termination and boundedness for 1-dim 2-PVASS.

We present the 1-dim 2-PVASS S that simulates the d-counter machineM in a “bottom
up” fashion. Recall that κ denotes the counter of S. We start with two gadgets Fc and
Bc, where 1 ≤ c ≤ d, that apply on κ, forward for Fc and backward for Bc, the current
history of the cth counter ofM. More precisely, they apply the displacement of the suffix v
of the history that starts after the most recent zero-test on c. These gadgets are depicted in
Figure 1a. Let us explain the behaviour of Fc. We ignore K for the moment. Firstly, the
copy2 from A to B copies the history so that it can be restored before leaving the gadget.
The loop on B together with the transition from B to C locates the most recent zero-test
on c in the history. The loop on C guesses the suffix v of the history and replays v(c) ∈ Z∗
on the counter κ. Lastly, the copy2 from C to D ensures that the guesses made in state C
are correct and restores the stack to its original contents before entering the gadget. The
increments by K in the loop on B are matched by decrements by K in the loop on C. So
they do not change the global displacement realised by Fc, which is δ(v(c)). Their purpose
is to ensure that the loop on C can be taken only finitely many times. This is crucial for
termination. The behaviour of Bc is identical to that of Fc except that when v(c) ∈ Z∗ is
replayed on the counter κ, the opposite of each action is applied instead of the action itself.
So the global displacement realised by Bc is −δ(v(c)). The following lemma shows that Fc
and Bc behave as expected. All proofs of this section can be found in Appendix A.

I Lemma 2. Let x, y ∈ N and s, t ∈ Stacks2. Assume that s = [[ubv]1]2 where b ∈ Σ and
u, v ∈ Σ∗ are such that b(c) = T and v(c) ∈ Z∗. Then the following assertions hold:

(A, x, s) ∗−→ (D, y, t) in Fc if, and only if, s = t and x+ δ(v(c)) = y,
(E, x, s) ∗−→ (H, y, t) in Bc if, and only if, s = t and x− δ(v(c)) = y.

Our next gadget, the 1-dim 2-PVASS Cc, where 1 ≤ c ≤ d, is depicted in Figure 1b. It
uses the gadgets Fc and Bc as subsystems. It is understood that each action a ∈ Σ with
a(c) = T induces a distinct copy of Bc in Cc. Provided that κ = 0 and that w is a legal
sequence of actions 0 w−→ x, the gadget Cc checks that the most recent action a of the history
wa is applicable for the cth counter of M, i.e., that x(c) a(c)−−→. If a(c) ∈ Z then Cc goes
through Fc, which checks that x(c) + a(c) ≥ 0 and exits with κ = x(c) + a(c), and then it
goes through Bc, which reverts the changes that Fc did on κ. If a(c) = T then Cc pops a and
then goes through Bc, which checks that x(c) ≤ 0 (hence, x(c) = 0) and exits with κ = 0,
and then pushes a back. In both cases, κ and the stack are restored to their original contents
before entering the gadget. The following lemma shows that Cc behaves as expected.

I Lemma 3. Let y ∈ N and s, t ∈ Stacks2. Assume that s = [[(T, . . . , T)wa]1]2 where a ∈ Σ
and w ∈ Σ∗ are such that 0 w−→. Then (I, 0, s) ∗−→ (J, y, t) in Cc if, and only if, y = 0, s = t

and 0 w(c)a(c)−−−−−→.

We are now ready to present our translation of the d-counter machine M into an
“equivalent” 1-dim 2-PVASS S. The translation is depicted in Figure 1c, and corresponds
to the informal description of S that followed the definition of d-counter machines. It is
understood that each state q of M induces distinct copies of C1, . . . , Cd in S. The initial
state of S is q̃init. We need a few additional notations to prove that this translation is correct
in the sense that it preserves coverability and termination. Given x ∈ Nd and s ∈ Stacks2,
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we let x ./ s denote the existence of w ∈ Σ∗ such that 0 w−→ x and s = [[(T, . . . , T)w]1]2.
Given two configurations (q̃, x, s) and (q, y, t) of S, where q ∈ Q is a state of M, we let
(q̃, x, s) (q, y, t) denote a run in S from (q̃, x, s) to (q, y, t) with no intermediate state in
Q. Put differently, such a run is the concatenation of runs of C1, . . . , Cd except for its first
and last steps (see Figure 1c). The correctness of the translation of M into S is shown by
the following two lemmas. Lemma 4 shows that ./ induces a “weak simulation” relation
from M to S. This lemma is used to show that every (possibly infinite) initialised run
of M can be translated into an initialised run of S. Lemma 6 shows that the subsystem
q̃ → C1 → · · · → Cd → q of S works as expected, in that it correctly checks that the most
recent action of the history is applicable provided that the previous actions of the history
are applicable. This lemma is used to show that every (possibly infinite) initialised run of S
can be translated back into an initialised run ofM.

I Lemma 4. Let x ∈ Nd and s ∈ Stacks2 such that x ./ s. For every step (p,x) a−→ (q,y) in
M, there exists a run (p, 0, s) pusha−−−→ (q̃, 0, t) (q, 0, t) in S with y ./ t.

I Corollary 5. For every initialised run (q0,x0) a1−→ (q1,x1) · · · ak−→ (qk,xk) · · · inM, there

is an initialised run (q̃init, 0, []2)
push(T,...,T)−−−−−−−→ (q0, 0, s0)

pusha1−−−−→ (q̃1, 0, s1) (q1, 0, s1) · · ·
pushak−−−−→

(q̃k, 0, sk) (qk, 0, sk) · · · in S.

I Lemma 6. Assume that t = [[(T, . . . , T)wa]1]2 where a ∈ Σ and w ∈ Σ∗ are such that
0 w−→. For every run (q̃, 0, t) (q, x, s), it holds that x = 0, s = t and 0 wa−−→.

I Corollary 7. Every initialised run of S that is infinite or ends with a configuration
whose state is in Q, is of the form (q̃init, 0, []2)

push(T,...,T)−−−−−−−→ (q0, 0, s0)
pusha1−−−−→ (q̃1, 0, s1)  

(q1, 0, s1) · · ·
pushak−−−−→ (q̃k, 0, sk) (qk, 0, sk) · · · with qi ∈ Q. Moreover, for every such run in

S, there is an initialised run (q0,x0) a1−→ (q1,x1) · · · ak−→ (qk,xk) · · · inM.

An immediate consequence of Corollaries 5 and 7 is that the coverability and termination
problems for d-counter machines are many-one reducible to the coverability and termination
problems for 1-dim 2-PVASS, respectively. Since coverability and termination are undecidable
for 2-counter machines, they are also undecidable for 1-dim 2-PVASS. Moreover, as mentioned
in Section 2, termination is Turing-reducible to boundedness for 1-dim 2-PVASS, since they
are finitely branching. We have shown the following theorem.

I Theorem 8. The coverability problem, the termination problem and the boundedness
problem are undecidable for 1-dim 2-PVASS.

I Remark. Theorem 8 also holds for 1-dim 2-PVASS defined with pop2 operations instead
of copy2 operations. Indeed, we may replace the gadgets Fc and Bc by “equivalent” ones
using pop2 and no copy2. Intuitively, instead of guessing and replaying in state C the suffix
of the history, F ′c copies the history twice. Each loop uses a fresh copy of the history and
then destroys this copy with a pop2. Both loops use popa operations to browse through
the history (backwards). The construction of B′c is similar. The new gadgets F ′c and B′c
also satisfy Lemma 2, and it follows that the resulting 1-dim 2-PVASS S ′ also simulates the
d-counter machineM.
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4 Iterability of Operation Sequences

In this section, we show that we can characterise exactly the sequences of operations which
can be applied arbitrarily many times to a given stack. This result is used in the next section
to provide a semi-decision procedure for the non-boundedness and non-termination problems
for HOPVASS, using the Karp and Miller reduced tree (as used in [14]).

We consider sequences of operations in Opn, called n-blocks for short. Given ρ =
θ1 · · · θm ∈ Op∗n, we identify it with the partial function ρ = θm ◦θm−1 ◦ · · · ◦θ1. We denote by
dom(ρ) the set of n-stacks s such that ρ(s) is defined. We define ρ̄ = θm · · · θ1, and observe
that ρ̄ is the partial inverse of ρ. We want to characterise n-blocks which are iterable, i.e.,
which can be applied arbitrarily many times to a given stack.

I Definition 9. An n-block ρ is iterable on a stack s if for all i, s ∈ dom(ρi).

To investigate iterability, we are interested in the global effect of an n-block while keeping
track of its condition of application. We thus need a normal form of sequences which keeps
track of these two things, and a criterion on this normal form to determine if it is iterable or
not. Following Carayol [2, 3], we say that an n-block is reduced if it does not contain any
factor of the form θθ̄ with θ ∈ Opn (in [2], they are called minimal, most details come from [3]).
Given an n-block ρ, we let red(ρ) denote the unique reduced operation sequence obtained
from ρ by recursively removing θθ̄ factors. It is immediate to observe that red(ρ)(s) = ρ(s)
for every stack s ∈ dom(ρ). In particular, dom(ρ) ⊆ dom(red(ρ)). Intuitively, red(ρ) is the
minimal n-block performing the transformation performed by ρ, in the sense that it does not
contain a factor which does not modify the stack. The reduced n-block is thus a good normal
form for determining the global effect of an n-block. However, reducing an n-block may yield
an n-block with a wider domain, e.g., popapusha is only applicable to stacks whose topmost
symbol is an a, while its reduced n-block is ε which is applicable to all stacks.

Thus, red is not a good tool to investigate iterability. We need to preserve the domain
of applicability of an n-block, while getting rid of factors that are always applicable and
do not modify the stack. To do this, Carayol adds test operations in the normal form of
regular sets of n-blocks, at the expense of augmenting the number of operations and having
no real normal form for n-blocks themselves as some tests may be redundant and not easy to
eliminate. We propose here a different approach which consists in associating to each n-block,
n normal blocks, one for every order. Each keeps track of the destructive operations of its
order the original n-block has to perform to be applicable, while getting rid of factors which
do not modify the stack and do not restrict the domain of application, and reducing the block
in the classical sense for lower orders. To this end, we define a weaker variant of reduction,
redn, which does not remove factors of the form copyncopyn but is otherwise identical to
red. The idea will thus be to consider for an n-block ρ, all its weak reduced blocks at every
order: ρ will be iterable if, and only if, for every k, redk(ρ) is iterable. Furthermore, it will
be possible to check syntactically whether redk(ρ) is iterable or not.

The restriction of an n-block ρ to an order k, written ρ|k, is the k-block obtained by
removing every operation of order strictly higher than k in ρ, e.g., (pushacopy2pushb)|1 =
pushapushb.

I Definition 10. Given an n-block ρ and an order k ≤ n, we call redk(ρ) the only k-block
obtained from ρ|k by applying the following rewriting system:

θθ̄ → ε, for θ ∈ Opk\{copyk} if k > 1, and θ ∈ {pusha | a ∈ Σ} if k = 1.
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Observe that this rewriting system is confluent, as is the classical reduction rewriting
system. Therefore, redk(ρ) can be computed in linear time, by always reducing the leftmost
factor first.

The following theorem shows that the domain of an n-block ρ is equal to the intersection of
the domains of the weak reductions of ρ of every order. This implies that red1(ρ), · · · , redn(ρ)
is indeed a good normal form of ρ in the sense it describes entirely the effect of ρ in a
canonical way, and it preserves its domain of definition (contrary to red(ρ)).

Intuitively, this result comes from the fact than whenever a reduction step (in red) enlarges
the domain of applicability of ρ, it is due to the removal of a factor of the form copykcopyk
(or popapusha). As such factors are left intact in redk(ρ), a stack added to the domain of
red(ρ) in this way is not added to the domain of redk(ρ).

I Theorem 11. For every n-stack s and n-block ρ, s ∈ dom(ρ) if, and only if, for every
k ≤ n, s ∈ dom(redk(ρ)).

Proof. (⇒) Suppose s ∈ dom(ρ). By definition of application, s ∈ dom(ρ|k) for every k. We
observe that dom(ρ|k) ⊆ dom(redk(ρ)) as every reduction step cannot restrict the domain of
application. It follows that s ∈ dom(redk(ρ)).

(⇐) For the sake of simplicity, in the following we suppose that when we reduce a
copykcopyk, copyk could not be matched with some copyk at its left and similarly for copyk
at its right (w.l.o.g., as the system is confluent).

We show that for every weak reduction step, either dom(ρ) is not modified, either it is
increased, but every stack added to it is not in one of the dom(redk(ρ)):

If ρ = ρ1copykcopykρ2 for k ≤ n (resp. ρ1pushapopaρ2), then dom(ρ) = dom(ρ1ρ2).
If ρ = ρ1copykcopykρ2 for k < n (resp. ρ1popapushaρ2), then for every stack s in
dom(ρ1ρ2)\dom(ρ), we get that ρ1(s) /∈ dom(copyk) (resp. ρ1(s) /∈ dom(popa)). As
redk(ρ) = redk(ρ1)copykcopykredk(ρ2) (resp. red1(ρ1)popapushared1(ρ2)) and
redk(ρ1)(s) = ρ1|k(s), we get that s /∈ dom(redk(ρ)).

Therefore, by induction on the weak reduction steps of ρ, if s ∈ dom(redn(ρ))\dom(ρ) then
s /∈ dom(redk(ρ)) for some k < n. As furthermore for every k ≤ n, s ∈ dom(ρ) implies that
s ∈ dom(ρ|k), and therefore that s ∈ dom(redk(ρ)), we get the result. J

The rest of this subsection is devoted to proving that it is decidable whether an n-block
is iterable on some stack or not. The decision algorithm is based on the observation that
when ρ is iterable then for every k, redk(ρ) can be written as ρEk

ρIk
ρEk

and ρIk
does not

contain copyk (see Theorem 15). Thus, if we iterate ρ, at each level, the accumulated effect
will only be the accumulated effect of ρIk

, as ρEk
and ρEk

cancel each other. We show that
ρ is iterable if, and only if, this accumulated effect does not decrease the “size of the stack”
at any level, i.e., ρIk

does not contain copyk for any k. The proof, if rather technical in
its formulation, only relies on the definition of the weak reduction and the two following
auxiliary lemmas, the second being proven in Appendix B.

I Lemma 12 ([3], Lemme 4.1.7). For every n-block ρ, red(ρ) = ε if, and only if, there is a
stack s such that s = ρ(s).

I Lemma 13. For every n-block ρ and order k, if redk(ρ) contains a factor of the form
copykρ

′copyk (or pushaρ
′popb if k = 1), then dom(ρ) = ∅.

I Corollary 14. For every n-block ρ and order k, if redk(ρ) is of the form ρ1ρ2ρ1 with ρ1
containing a copyk (or a popa if k = 1), then dom(ρ) = ∅.
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Proof. If ρ1 contains a copyk (resp. popa), then ρ1 contains a copyk (resp. pusha), therefore,
redk(ρ) contains a factor of the form copykρ

′copyk (resp. pushaρ
′popa). J

I Theorem 15. Given a stack s and an n-block ρ, ρ is iterable on s if, and only if, s ∈ dom(ρ)
and for every k ≤ n, redk(ρ) is of the form ρEk

ρIk
ρEk

with ρIk
containing no copyk (or no

popa if k = 1).

Proof. (⇒) We only do the proof for k ≥ 2. The case for k = 1 is similar. It suffices
to replace copyk and copyk with pusha and popa. Suppose that ρ is iterable on a stack
s, i.e., for every i, s ∈ dom(ρi). Fix k and let ρEk

be the largest suffix of redk(ρ) such
that redk(ρ) = ρEk

ρIk
ρEk

. Notice that this choice of ρEk
implies that redk(ρ2

Ik
) = ρ2

Ik
.

We prove by way of contradiction that so does ρIk
. Suppose now that ρIk

contains an
occurrence of copyk. From Lemma 13, we get that ρIk

= ρ1copykρ2 with ρ1 contain-
ing no order k operation. Suppose that ρ2 contains a copyk. Lemma 13 entails that
ρ2 = ρ3copykρ4 and ρ4 contains no order k operation. By maximality of ρEk

, we get
redk(ρ2) = ρEk

ρ1copykρ3copykρ4ρ1copykρ3copykρ4ρEk
. As s ∈ dom(ρ2), by the definition

of application, we get that (ρ4ρ1)(s′) = s′, for s′ = (ρEk
ρ1copykρ3copyk)(s). From Lemma 12,

we get red(ρ4ρ1) = ε. As it contains no order k operations, we also have that redk(ρ4ρ1) =
ε. But then, we obtain that redk(ρ2

Ik
) = redk(ρ1copykρ3copykρ4ρ1copykρ3copykρ4) =

redk(ρ1copykρ3copykρ4ρ1copykρ3copykρ4) = redk(ρ1copykρ3copykcopykρ3copykρ4) and
redk(ρ2

Ik
) = redk(ρ1copykρ3ρ3copykρ4) so that redk(ρ2

Ik
) 6= ρ2

Ik
. This is in contradiction

with the remark we made above. Therefore, ρ2 does not contain any copyk.
Thus, ρIk

contains some copyk and does not contain any copyk. Therefore for every
s′, topk(ρIk

(s′)) has strictly less (k − 1)-stacks than s′ and ρIk
is only applicable a finite

number of times to all stacks. From Theorem 11, as s ∈ dom(ρi) for all i, we get that
s ∈ dom(redk(ρ)i) for all i, and therefore ρEk

(s) ∈ dom(ρiIk
), for all i. We thus get a

contradiction. Therefore, for every k, ρIk
contains no copyk operation.

(⇐) We proceed by induction on the order n. Let us consider a 1-block ρ and a stack
s ∈ dom(ρ) such that red1(ρ) = ρE1ρI1ρE1 , with ρI1 containing no popa with a ∈ Σ. As
s ∈ dom(ρ), Corollary 14 shows that ρE1 contains no popa with a ∈ Σ. As a consequence, we
have that dom(ρI1) = dom(ρE1) = Stacks1. Therefore ρE1(s) ∈ dom(ρiI1

ρE1) for all i, and
ρE1(s) is defined as s ∈ dom(ρ). As red1(ρi) = ρE1ρ

i
I1
ρE1 , we get s ∈ dom(red1(ρi)) for all i.

Using Theorem 11, we get that ρ is iterable on s.
Suppose now that the property holds for (n − 1)-blocks, and consider an n-block ρ

and a stack s ∈ dom(ρ) such that for all k ≤ n, redk(ρ) = ρEk
ρIk

ρEk
with ρIk

containing
no copyk. From Corollary 14, we get that ρEk

contains no copyk as well. Let us show
that s ∈ dom(redn(ρi)) for all i. By hypothesis of induction, ρ|n−1 is iterable on s, thus
s ∈ dom((ρ|n−1)i) for all i. Observe (ρ|n−1)i = ρi|n−1. Therefore, s ∈ dom((redn(ρi)|n−1))
for all i, as the latter can be obtained from ρi|n−1 by applying reduction steps. As s ∈ dom(ρ),
ρEn

(s) is defined, we deduce that ρEn
(s) ∈ dom((ρiIn

ρEn
)|n−1) for all i. Given an n-block

ρ′ containing no copyn, as copyn is applicable to all stacks, we get that for all s′, if
s′ ∈ dom(ρ′|n−1), then s′ ∈ dom(ρ′). Thus ρEn

(s) ∈ dom(ρiIn
ρEn

) for all i, which entails
s ∈ dom(redn(ρi)) for all i. As by hypothesis of induction, s ∈ dom(redk(ρi)) for all i and
k < n, by Theorem 11, we deduce that ρ is iterable on s. J

An important remark which stems from the characterisation of Theorem 15 is that a
block is either applicable only finitely many times to every stack, or it is applicable arbitrarily
many times to every stack on which it can be applied once.
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A B C D E
+1, pushb −1, pusha 0, copy2 +2, popb

0, copy2

+1, popa

−1, pusha

−1, pushb

Figure 2 A 1-dim 2-PVASS whose reduced reachability tree is infinite.

5 Testing Non-Termination and Unboundedness

In this section, we use the characterisation of iterable blocks of Theorem 15 to obtain a
semi-algorithm à la Karp and Miller for the termination and boundedness problems for
HOPVASS. As seen in Section 3, these problems are undecidable. It is however possible to
search for witnesses of non-termination, and, with a slight modification, unboundedness. We
first present the semi-algorithm, called reduced reachability tree, and prove its correctness.
Then, we present an example of HOPVASS on which it does not terminate. Finally, we prove
that the semi-algorithm always terminates on HOPDA, and so is a decision procedure for
the termination and boundedness problems for HOPDA. We also recall that it is a decision
procedure for 1-PVASS as well [14]. We borrow its presentation from that paper.

We define the reachability tree of a d-dim n-PVASS S as follows. Nodes of the tree are
labelled by configuration of S. The root r is labelled by the initial configuration (qinit,0, []n),
written r : (qinit,0, []n). Each node u : (p,x, s) has one child v : (q,y, t) for each step
(p,x, s) a,θ−−→ (q,y, t) in S, and the edge from u to v is labelled by the pair (a, θ). Notice that
the reachability tree of S is finitely branching.

We say that a node u : (p,x, s) subsumes a node v : (q,y, t) if u is a proper ancestor of
v, p = q, x ≤ y, and the block ρ from u to v is iterable on s. Furthermore, we say that u
strictly subsumes v if x < y or red(ρ) is not ε.

I Theorem 16. If the reachability tree of a d-dim n-PVASS S contains two nodes u and v
such that u subsumes v (resp., u strictly subsumes v), then S has an infinite initialised run
(resp., an infinite reachability set).

For VASS [10], WSTS [6, 7] and 1-PVASS [14], it can be shown that every infinite branch
of the reachability tree contains two nodes such that one subsumes the other. Therefore,
termination and boundedness can be solved by constructing the so-called reduced reachability
tree, or RRT for short, which is constructed like the reachability tree, but on which every
branch is stopped at the first node subsumed by one of its ancestors. When the RRT of
an HOPVASS is finite, it can be computed and it contains enough information to decide
termination and boundedness.

As seen in Section 3, boundedness is undecidable for HOPVASS. Figure 2 depicts an
example of a 1-dim 2-PVASS whose reduced reachability tree is infinite. There is only one
infinite run in this HOPVASS, and for any two configurations with the same state in this run,
either the latter one has a smaller counter value, or the sequence of operations between them
is not an iterable n-block. That can be proven by an easy case study on the configurations
(see Appendix C).
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We now turn to show that the RRT is finite in natural subcases of HOPVASS. In [14], it
is shown that the RRT is finite for 1-PVASS, by replacing, in the definition of subsumption,
our iterability condition with the condition that s is a prefix of every stack appearing on
the path from u to v. Actually, the technique presented here yields, at order 1, a (slightly)
smaller RRT than in [14], as contrary to it, we can detect that a block in the tree is iterable
even if it destructs the stack and then reconstructs it. The rest of the section is devoted to
the proof that the RRT is also finite in the case of HOPDA. We first have to introduce some
notations and recall some facts.

I Lemma 17. If ρ is a block applicable to []n, then for every order k, redk(ρ) = red(ρ|k)
and redk(ρ) contains no copyk (no popa if k = 1).

From [2, 3], for every n-stack s, there exists a unique reduced block ρs such that ρs([]n) = s.
We define a norm on n-stacks, such that ||s|| is the length |ρs| of the reduced block ρs. For
every k ≤ n, we define ||s||k = ||topk(s)||. We make the following observations.

I Lemma 18. For every n-stack s and orders k < k′ ≤ n, it holds that ||s||k ≤ ||s||k′ .

I Lemma 19. Given m, there are at most (2(|Γ|+n−1)−1)m n-stacks s such that ||s||n = m.

We are now ready to prove the main result of this section, namely that the RRT of an
HOPDA is finite. To do so, we investigate all possible forms of infinite branch that can
appear in the reachability tree of an HOPDA and show that, in all cases, it is possible to
extract an iterable block between two nodes with the same state. The easy case is when the
branch visits only finitely many stacks, hence, finitely many configurations. In that case,
there are two identical configurations on the branch, and the block between them is obviously
iterable.

The other case is more involved. When the RRT has an infinite branch, this branch
represents an infinite run (q0, s0) θ1−→ (q1, s1) · · · θk−→ (qk, sk) · · · , with q0 = qinit and s0 = []n.
We then consider the smallest order k for which the sequence (||si||k)i∈N, is unbounded. For
every m, we show that we can extract a particular subsequence of positions j1, · · · , jm such
that ||sji

||k = i, and that for all stacks s between sji+1 and sjm
, ||s||k > i. We then show

that the reduced sequence red(θji+1 · · · θji′ ) does not contain any copyk′ with k′ ≥ k. As k is
the smallest order such that (||si||k)i∈N is unbounded, there are finitely many (k − 1)-stacks
that can appear at the top of the stacks si. Consequently we can find a subsequence of
j1, · · · , jm such that the topmost k− 1 stack is the same for all the stacks sji with 1 ≤ i ≤ m.
When m is chosen to be large enough, there must be i and i′ so that qji

= qj′
i
. Then the

conditions are met for us to use Theorem 15. This gives us an iterable block between two
nodes with the same state on the infinite branch we considered.

I Theorem 20. The reduced reachability tree of an HOPDA is finite.

Proof. We consider an n-PDA and suppose its RRT is infinite. By Koenig’s Lemma, it
contains an infinite branch (q0, s0 = []n), (q1, s1), (q2, s2), · · · , and for every i ≥ 1, we call θi
the operation such that si = θi(si−1). We thus get an infinite n-block θ1θ2 · · · . Observe that
for every i, we get ρsi = red(θ1 · · · θi).

Suppose that the sequence of ||si||n is bounded, i.e., there exists m ∈ N such that for
every i, ||si||n ≤ m. From Lemma 19 there are finitely many n-stacks of norm at most m.
Therefore, there is a stack s such that there are infinitely many i such that s = si. As Q is
finite, there are two positions i < j such that (qi, si) = (qj , sj). Thus, si = (θi+1 · · · θj)(si),
and therefore θi+1 · · · θj is iterable on si. Therefore i subsumes j, which contradicts the fact
that the branch considered is infinite in the RRT.
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Suppose now that the sequence of ||si||n is unbounded, i.e., for every m ∈ N, there exists
i such that ||si||n > m. As for every k < k′ ≤ n and s ∈ Stacksn, ||s||k ≤ ||s||k′ (Lemma 18),
we can fix k such that for every k′ ≥ k, the sequence of ||si||k′ is unbounded, but for every
k′ < k the sequence of ||si||k′ is bounded. For every m ∈ N, we define jm the first position
at which ||si||k = m, i.e., jm = min(i | ||si||k = m). Given p < m ∈ N, we define i(p,m) the
last position before jm at which ||si||k = p, i.e., i(p,m) = max(i < jm | ||si||k = p). As for
every stack s, operation θ and order k, ||s||k − 1 ≤ ||θ(s)||k ≤ ||s||k + 1, the jm and i(p,m)
are defined for every p ≤ m. Furthermore, observe that i(p,m) is strictly increasing with
respect to p.

Let us show that for every k′ ≥ k, for every p < p′ < m, there is no copyk′ in
redk′(θi(p,m)+1 · · · θi(p′,m)). Observe first that, as by definition ||si(p,m)||k < ||si(p,m)+1||k,
θi(p,m) ∈ Opk. Suppose there is a position i with i(p,m) < i < i(p′,m) such that θi = copyk′ .
As θ1 · · · θi is applicable to []n, redk′(θ0 · · · θi) does not contain any copyk′ (Lemma 17), and
therefore there is a position i′ < i such that θi′ = copyk′ , θi′+1 · · · θi−1 does not contain
any copyk nor copyk and redk′(θi′+1 · · · θi−1) = ε. As θi′+1 · · · θi−1 contains no copyk nor
copyk, by definition of reduction, for every i′ < ` < i, ||s`||k ≥ ||si′ ||k = ||si||k. Suppose
i′ < i(p,m) + 1, we thus have ||si(p,m)|| ≥ ||si||, which contradicts the definition of i(p,m).
Therefore i′ ≥ i(p,m) + 1, and redk′(θi(p,m)+1 · · · θi) does not contain any copyk′ . Thus, in
any case, redk′(θi(p,m)+1 · · · θi(p′,m)) does not contain any copyk′ .

From Lemma 19, there are at most (2(|Γ| + n − 1) − 1)h+1 (k − 1)-stacks of norm at
most h. We take m > |Q| ∗ (2(|Γ|+ n− 1)− 1)h+1, where h is the highest value for ||si||k−1.
Therefore, we can find |Q|+1 positions p1 < p2 < · · · < p|Q|+1 such that redk−1(θ1 · · · θi(pi,m))
is the same for every pi, and therefore, for every i < j, redk−1(θi(pi,m)+1 · · · θi(pj ,m)) = ε.
As from what precedes, for every k′ ≥ k and i < j, redk′(θi(pi,m)+1 · · · θi(pj ,m)) does not
contain any copyk′ , from Theorem 15 we get that θi(pi,m)+1 · · · θi(pj ,m) is iterable on si(pi,m).
We can furthermore find i < j such that qi(pi,m) = qi(pj ,m), and therefore, we get that
(qi(pi,m), si(pi,m)) subsumes (qi(pj ,m), si(pj ,m)), which contradicts the fact that the RRT is
infinite. J

We derive from Theorem 20 that we can solve termination and boundedness for HOPDA
by computing the RRT and checking whether it contains a (strictly) subsumed node.

6 Conclusion

In this paper, we have investigated whether an approach à la Karp and Miller can be used
to solve termination and boundedness for HOPVASS.

On the negative side, we have shown that coverability, termination, and boundedness are
all undecidable for HOPVASS, even in the restricted subcase of one counter and an order 2
stack. This is in sharp contrast with the same model at order 1, for which all three problems
are decidable [14, 16].

On the positive side, we have identified a simple and decidable criterion characterising
which sequences of higher-order stack operations can be iterated. Such a criterion is crucial
for the implementation of Karp and Miller’s approach. While the resulting Karp and Miller
procedure is only a semi-algorithm for HOPVASS, we have shown that it always terminates
for HOPDA. Moreover, when dealing with 1-PVASS, this algorithm is a variant of the
algorithm proposed in [14].

We have considered symmetric higher-order operations (as in [2]), namely copyn operations
and their inverse copyn. Our undecidability results still hold for HOPVASS defined with
popn operations instead of copyn. We conjecture that Karp and Miller’s approach can still
be applied to HOPVASS with popn and yields an algorithm for HOPDA with popn.
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A Proofs of Section 3

I Lemma 2. Let x, y ∈ N and s, t ∈ Stacks2. Assume that s = [[ubv]1]2 where b ∈ Σ and
u, v ∈ Σ∗ are such that b(c) = T and v(c) ∈ Z∗. Then the following assertions hold:

(A, x, s) ∗−→ (D, y, t) in Fc if, and only if, s = t and x+ δ(v(c)) = y,
(E, x, s) ∗−→ (H, y, t) in Bc if, and only if, s = t and x− δ(v(c)) = y.

Proof. We start with the proof of the first assertion. Define w = ubv. Suppose that there
are runs from (A, x, s) to (D, y, t) in Fc, and pick one of them. Since b(c) = T and a(c) 6= T
for every action a occurring in v, the run necessarily begins with the following steps:

(A, x, s) copy2−−−→ (B, x, [[w]1[ubv]1]2) ∗−→ (B, x′, [[w]1[ub]1]2) peekb−−−→ (C, x′, [[w]1[ub]1]2) (2)

where x′ = x+ |v|K. Then, the run necessarily continues with the following steps:

(C, x′, [[w]1[ub]1]2)
−K+a1(c),pusha1−−−−−−−−−−−→ · · ·

−K+ak(c),pushak−−−−−−−−−−−→ (C, z, [[w]1[uba1 · · · ak]1]2) (3)

for some z ∈ N and some actions a1, . . . , ak in Σ such that ai(c) 6= T for every 1 ≤ i ≤ k.
It follows from the definition of steps in 1-dim 2-PVASS that x′ (−K+a1(c))···(−K+ak(c))−−−−−−−−−−−−−−−−−→ z.
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This entails that z = x′ − kK + δ(a1(c) · · · ak(c)). Finally, the run necessarily ends with the
following step:

(C, z, [[w]1[uba1 · · · ak]1]2) copy2−−−→ (D, y, t) (4)

It follows that y = z and that t = copy2([[w]1[uba1 · · · ak]1]2). The last equality entails
that t = [[w]1]2 = s and w = uba1 · · · ak. Since w = ubv, we get that v = a1 · · · ak, hence,
v(c) = a1(c) · · · ak(c). We conclude that y = z = x′ − |v|K + δ(v(c)) = x+ δ(v(c)).

Conversely, suppose that s = t and x+ δ(v(c)) = y. Let us write v as v = a1 · · · ak with
ai ∈ Σ. Note that ai(c) 6= T for every 1 ≤ i ≤ k, by assumption. Therefore, Equation 2 is a
run in Fc, where x′ = x+ kK. Observe that, for every 1 ≤ i ≤ k,

x′ + (−K + a1(c)) + · · ·+ (−K + ai(c)) = x+ (k − i)K + a1(c) + · · ·+ ai(c)
= y + (K − ai+1(c)) + · · ·+ (K − ak(c))
≥ 0

It follows that x′ (−K+a1(c))···(−K+ak(c))−−−−−−−−−−−−−−−−−→ y. We deduce that Equation 3 is also a run in Fc, by
letting z = y. Moreover, Equation 4 is also a run in Fc since z = y and w = ubv = uba1 · · · ak.
By concatenating these three runs, we obtain that (A, x, s) ∗−→ (D, y, t) in Fc.

The second assertion follows from the first assertion by replacing v = a1 · · · ak with
v′ = a′1 · · · a′k, where a′i differs from ai only in c, with a′i(c) = −ai(c). J

I Lemma 3. Let y ∈ N and s, t ∈ Stacks2. Assume that s = [[(T, . . . , T)wa]1]2 where a ∈ Σ
and w ∈ Σ∗ are such that 0 w−→. Then (I, 0, s) ∗−→ (J, y, t) in Cc if, and only if, y = 0, s = t

and 0 w(c)a(c)−−−−−→.

Proof. We may write (T, . . . , T)w = ubv for some b ∈ Σ and u, v ∈ Σ∗ such that b(c) = T

and v(c) ∈ Z∗. This entails that Tw(c) = u(c)Tv(c). Since 0 w−→, we get that 0 u(c)Tv(c)−−−−−−→,
hence, 0 u(c)T−−−→ 0 v(c)−−→ x for x = δ(v(c)). Observe that x a(c)−−→ if, and only if, 0 w(c)a(c)−−−−−→.
The “only if” direction follows from 0 w(c)−−−→ x and the “if” direction follows from forward
determinism of w(c)−−−→. We now proceed with the proof of the lemma.

Suppose that (I, 0, s) ∗−→ (J, y, t) in Cc. We consider two cases, depending on a(c). If
a(c) ∈ Z then, by definition of Cc (see Figure 1b), we have (A, 0, s) ∗−→ (D, z, t′) in Fc and
(E, z, t′) ∗−→ (H, y, t) in Bc, for some z ∈ N and t′ ∈ Stacks2. Recall that s = [[ubva]1]2. We
get from Lemma 2 that s = t′ and δ(v(c)a(c)) = z, and we get from Lemma 2 that t′ = t

and z − δ(v(c)a(c)) = y. It follows that y = 0 and x+ a(c)) = δ(v(c)) + a(c)) = z ≥ 0. We
derive that x a(c)−−→, hence, 0 w(c)a(c)−−−−−→.

The other case is when a(c) = T. In that case, by definition of Cc (see Figure 1b), we have
(E, 0, s′) ∗−→ (H, y, t′) in Bc, for some s′, t′ ∈ Stacks2 such that s′ = popa(s) and t = pusha(t′).
Note that s′ = [[ubv]1]2. We get from Lemma 2 that s′ = t′ and −δ(v(c)) = y, hence,
δ(v(c)) ≤ 0. It follows that x = δ(v(c)) = 0, and therefore x T−→. Moreover, we deduce from
s′ = t′ that t = pusha(popa(s)) = s. We have shown that y = 0, s = t and x a(c)−−→. Hence,
0 w(c)a(c)−−−−−→.

Conversely, suppose that 0 w(c)a(c)−−−−−→ and let us show that (I, 0, s) ∗−→ (J, 0, s). Note that
x

a(c)−−→ and let z ∈ N such that x a(c)−−→ z. It follows that z = δ(v(c)a(c)) since x = δ(v(c)).
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Recall that s = [[ubva]1]2. We again consider two cases, depending on a(c). If a(c) ∈ Z
then we get from Lemma 2 that (A, 0, s) ∗−→ (D, z, s) in Fc, and we get from Lemma 2 that
(E, z, s) ∗−→ (H, 0, s) in Bc. It follows that (I, 0, s) ∗−→ (J, 0, s) in Cc. If a(c) = T then x = 0
since x a(c)−−→. Hence, δ(v(c)) = 0. Let s′ = [[ubv]1]2 and note that s′ = popa(s). We get that
from Lemma 2 that (E, 0, s′) ∗−→ (H, 0, s′) in Bc. It follows that (I, 0, s) ∗−→ (J, 0, s) in Cc. J

I Lemma 4. Let x ∈ Nd and s ∈ Stacks2 such that x ./ s. For every step (p,x) a−→ (q,y) in
M, there exists a run (p, 0, s) pusha−−−→ (q̃, 0, t) (q, 0, t) in S with y ./ t.

Proof. Consider a step (p,x) a−→ (q,y) inM. Since x ./ s, there exists of w ∈ Σ∗ such that
0 w−→ x and s = [[(T, . . . , T)w]1]2. Let t = pusha(s) = [[(T, . . . , T)wa]1]2. Observe that, by
construction of S fromM (see Figure 1c), (p, 0, s) pusha−−−→ (q̃, 0, t) is a step in S, since p a−→ q

is a transition inM. Notice that 0 wa−−→ y since 0 w−→ x and x a−→ y. This entails that y ./ t

and that 0 w(c)a(c)−−−−−→ for every 1 ≤ c ≤ d. We derive from Lemma 3 that (I, 0, t) ∗−→ (J, 0, t) in
Cc for every 1 ≤ c ≤ d. It follows that (q̃, 0, t) (q, 0, t) in S. J

I Corollary 5. For every initialised run (q0,x0) a1−→ (q1,x1) · · · ak−→ (qk,xk) · · · inM, there

is an initialised run (q̃init, 0, []2)
push(T,...,T)−−−−−−−→ (q0, 0, s0)

pusha1−−−−→ (q̃1, 0, s1) (q1, 0, s1) · · ·
pushak−−−−→

(q̃k, 0, sk) (qk, 0, sk) · · · in S.

Proof. Recall that the initial configuration ofM is (q0,x0) = (qinit,0) and that the initial
configuration of S is (q̃init, 0, []2). Observe that (q̃init, 0, []2)

push(T,...,T)−−−−−−−→ (qinit, 0, s0) in S for
the stack s0 = [[(T, . . . , T)]1]2. Note that 0 ./ s0. It follows from Lemma 4, by induction on i,

that there exists si ∈ Stacks2 and runs (qi−1, 0, si−1)
pushai−−−−→ (q̃i, 0, si) (qi, 0, si) in S with

xi ./ si, for every i ≥ 1. We obtain the desired initialised run of S by concatenating these
runs. J

I Lemma 6. Assume that t = [[(T, . . . , T)wa]1]2 where a ∈ Σ and w ∈ Σ∗ are such that
0 w−→. For every run (q̃, 0, t) (q, x, s), it holds that x = 0, s = t and 0 wa−−→.

Proof. Consider a run (q̃, 0, t)  (q, x, s). Recall that  means that the run can be
decomposed into a first step (moving from q̃ to C1), a last step (moving from Cd to q), and
runs of C1, . . . , Cd in between. So there exists x0, . . . , xd ∈ N and s0, . . . , sd ∈ Stacks2, with
x0 = 0, s0 = t, xd = x and sd = s, such that (I, xc−1, sc−1) ∗−→ (J, xc, sc) in Cc, for every
1 ≤ c ≤ d. We derive from Lemma 3, by induction on c, that xc = 0, sc = t and 0 w(c)a(c)−−−−−→,
for every 1 ≤ c ≤ d. It follows that x = xd = 0, t = sd = s and 0 wa−−→. J

I Corollary 7. Every initialised run of S that is infinite or ends with a configuration
whose state is in Q, is of the form (q̃init, 0, []2)

push(T,...,T)−−−−−−−→ (q0, 0, s0)
pusha1−−−−→ (q̃1, 0, s1)  

(q1, 0, s1) · · ·
pushak−−−−→ (q̃k, 0, sk) (qk, 0, sk) · · · with qi ∈ Q. Moreover, for every such run in

S, there is an initialised run (q0,x0) a1−→ (q1,x1) · · · ak−→ (qk,xk) · · · inM.

Proof. Consider an initialised run in S that is infinite or ends with a configuration whose state
is in Q. If the run is infinite, then it visits infinitely many configurations whose state are in Q.
Because if it were not the case, then an infinite suffix of the run would remain forever in the
same Fc or Bc. This is impossible as each loop in Fc or Bc either shrinks the stack or decreases
the counter κ, since K satisfies |a(c)| < K for every a ∈ Σ with a(c) 6= T. So the initialised
run under consideration starts with the step (q̃init, 0, []2)

push(T,...,T)−−−−−−−→ (qinit, 0, [[(T, . . . , T)]1]2)
followed by a run of the form:

(q0, x0, s0)
pusha1−−−−→ (q̃1, y1, t1) (q1, x1, s1) · · ·

pushak−−−−→ (q̃k, yk, tk) (qk, xk, sk) · · ·
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where (q0, x0, s0) = (qinit, 0, [[(T, . . . , T)]1]2) and q1, . . . , qk, . . . are in Q. Observe that yi =
xi−1 and ti = pushai

(si−1), for every i ≥ 1. We derive from Lemma 6, by induction on
i, that xi = 0, si = ti = [(T, . . . , T)a1 · · · ai]2 and 0 a1···ai−−−−→, for every i ≥ 1. Let xi ∈ Nd
such that 0 a1···ai−−−−→ xi. It is readily seen that 0 a1−→ x1 · · ·

ak−→ xk · · · . This comes from the
observation that w−→ is forward deterministic. Moreover, the construction of S fromM (see
Figure 1c) entails that qi−1

ai−→ qi is a transition of M, for every i ≥ 1. It follows that
(q0,0) a1−→ (q1,x1) · · · ak−→ (qk,xk) · · · is a run inM. J

B Proofs of Section 4

I Lemma 13. For every n-block ρ and order k, if redk(ρ) contains a factor of the form
copykρ

′copyk (or pushaρ
′popb if k = 1), then dom(ρ) = ∅.

Proof. By contradiction, suppose s ∈ dom(ρ) and redk(ρ) contains a factor of the form
copykρ

′copyk (or pushaρ
′popb if k = 1). Let ρ2 be one of the smallest such ρ′.

If k = 1 then we get that ρ2 = ε, hence, redk(ρ) contains a factor of the form pushapopb.
If a = b, this contradicts the fact that redk(ρ) is weakly reduced. If a 6= b, this contradicts
the assumption that dom(ρ) 6= ∅.

If k > 1 then we get that ρ2 ∈ Op∗k−1. We may write redk(ρ) = ρ1copykρ2copykρ3 for
some ρ1 and ρ3. By Theorem 11, s ∈ dom(redk(ρ)). Therefore (ρ1copykρ2)(s) ∈ dom(copyk).
As ρ2 ∈ Op∗k−1, we necessarily have ρ2(s) = s. By Lemma 12, red(ρ2) = ε, and as it is in
Op∗k−1, we derive that redk(ρ2) = ε. Therefore, redk(ρ) = ρ1copykcopykρ3, which contradicts
the fact that redk(ρ) is weakly reduced. J

C Proofs and comments of Section 5

I Lemma 21. For every n-block ρ and every i ≥ 1, red(ρ) = ε if, and only if, red(ρi) = ε.

Proof. We only prove the “if” direction as the “only if” direction is trivial. By contradiction,
suppose that i ≥ 2, red(ρi) = ε and red(ρ) 6= ε. Let us decompose red(ρ) as red(ρ) = ρ1ρ2ρ1
where ρ1 is maximal in length. Note that ρ2 6= ε since we would get red(ρ) = red(ρ1ρ1) = ε

otherwise. By definition of red, it holds that red(ρi) = red(red(ρ)i) = red(ρ1ρ
i
2ρ1) = ε. So

there exists a θθ̄ factor in ρ1ρ
i
2ρ1. Recall that ρ1ρ2ρ1 is reduced. This means this θθ̄ factor

is necessarily at the junction between to consecutive ρ2. Formally, we get that ρ2 = θ̄ρ3θ for
some ρ3. Hence, red(ρ) = ρ1θ̄ρ3θρ1, which contradicts the maximality of ρ1. J

I Corollary 22. For every n-block ρ and stack s such that ρ is iterable on s, if ρ(s) 6= s then
the infinite sequence s, ρ(s), ρ2(s), . . . , ρi(s), . . . contains no repetition.

Proof. If the sequence s, ρ(s), ρ2(s), . . . , ρi(s), . . . contains a repetition, then there is a stack
t satisfying ρj(t) = t for some j ≥ 1. This entails, by Lemmas 12 and 21, that red(ρ) = ε,
hence, ρ(s) = s. J

I Theorem 16. If the reachability tree of a d-dim n-PVASS S contains two nodes u and v
such that u subsumes v (resp., u strictly subsumes v), then S has an infinite initialised run
(resp., an infinite reachability set).

Proof. We have v : (q,x, s) and v′ : (q,x + y, ρ(s)), where y is a componentwise nonnegative
vector, and ρ is the n-block on the run from v to v′. As x ≤ x + y, we know that vectorwise,
the run from v to v′ is applicable to v′ (by monotony). As ρ is iterable on s, we know that
stackwise, the run from v to v′ is applicable to v′. Thus we can apply the run from v to
v′ on v′, and obtain a new node z : (q,x + 2y, ρ2(s)), and iterate the process to obtain an
infinite sequence of nodes vi : (q,x + iy, ρi(s)). We therefore have an infinite run in S.
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If furthermore v strictly subsumes v′, then y 6= 0 or ρ(s) 6= s, and we get that all these
nodes are labelled by distinct configurations (this claim is obvious if y 6= 0 and comes from
Corollary 22 if ρ(s) 6= s). Thus S can reach infinitely many configurations and is thus
unbounded. J

Non-completeness of the test. We detail here why the only run of the HOPVASS of
Figure 2 does not contain any iterable subrun.

One can show that the only possible configurations containing state B are of the form
(B, 1, [[ban]1]2). Moreover, the only run moving from (B, 1, [[ban]1]2) to (B, 1, [[ban+1]1]2)
passes through the states C,D,E and performs the stack operations sequence ρ =
pushacopy2popn+1

a popbpushbpopn+1
a copy2. red1(ρ) = popnapopbpushbpushn+1

a , and one
can see it cannot be written as ρE1ρI1ρE1 with ρI1 containing no pop operation. Intuitively,
this run adds an a at the top of the stack, copies the stack, and pops it until the b on
the bottom before reconstructing it. As it needs to go to the bottommost symbol while
adding a new symbol on top, it cannot be applied a second time, as it doesn’t go deep
enough anymore.
Similarly, all possible configurations containing state C are of the form (C, 0, [[ban]1]2),
and the same reasoning applies.
Configurations containing D are of the form (D, k, [[ban]1[ban−k]1]2). The run going from
(D, k, [[ban]1[ban−k]1]2) to (D, k′, [[ban+1]1[ban+1−k′ ]1]2) passes through E,B,C, and per-
forms the stack operations sequence ρ = popkapopbpushbpushnacopy2pushacopy2popk

′

a . It
is easy to see that either red1(ρ) is not iterable, or red2(ρ) is not iterable (depending on
k and k′). The run going from (D, k, [[ban]1[ban−k]1]2) to (D, k′, [[ban]1[ban−k′ ]1]2) stays
on D and performs the stack operations sequence popk−k

′

a , which is not iterable.
Configuration containing E are of the form (E, k, [[ban]1[ban−k]1]2). The run going from
(E, k, [[ban]1[ban−k]1]2) to (E, k′, [[ban+1]1[ban+1−k′ ]1]2) is similar to the previous case.
The run going from (E, k, [[ban]1[ban−k]1]2) to (E, k′, [[ban]1[ban−k′ ]1]2) decreases the
counter value, and thus cannot be iterated.

I Lemma 17. If ρ is a block applicable to []n, then for every order k, redk(ρ) = red(ρ|k)
and redk(ρ) contains no copyk (no popa if k = 1).

Proof. Suppose there is a copyk in ρ|k at position j in ρ = θ1 · · · θm. As ρ is applic-
able to []n, there is a i < j such that θi = copyk, there is no other copyk and copyk
between i and j (w.l.o.g) and θi+1 · · · θj−1(θ1 · · · θi([]n)) = θ1 · · · θi([]n). Thus, by Lemma 12,
red(θi+1 · · · θj−1|k) = ε. Therefore, redk(ρ) does not contain any copyk.

Furthermore, for orders lower than k, both red and redk coincide syntactically, therefore
redk(ρ) is reduced for red, and by unicity of the reduced k-block, we get the result. J

I Lemma 18. For every n-stack s and orders k < k′ ≤ n, it holds that ||s||k ≤ ||s||k′ .

Proof. Given a stack s, and two orders k < k′, by definition of application, we have
ρtopk′ (s)|k([]k) = topk(s) = ρtopk(s)([]k). By minimality of the reduced k-block and the
definition of restriction, we have ||s||k = |ρtopk(s)| ≤ |ρtopk′ (s)|k| ≤ |ρtopk′ (s)| = ||s||k′ . J

I Lemma 19. Given m, there are at most (2(|Γ|+n−1)−1)m n-stacks s such that ||s||n = m.

Proof. An n-stack s has norm m if and only if its reduced n-block has length m. Such an
n-block is a word in Opn−1 ∪ {copyn}m, hence there are at most (2(|Γ|+ n− 1)− 1)m such
words. J
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Abstract
In this paper, we focus on lower bounds for data structures supporting orthogonal range querying
on m points in n-dimensions in the semigroup model. Such a data structure usually maintains a
family of “canonical subsets” of the given set of points and on a range query, it outputs a disjoint
union of the appropriate subsets. Fredman showed that in order to prove lower bounds in the
semigroup model, it suffices to prove a lower bound on a certain combinatorial tradeoff between
two parameters: (a) the total sizes of the canonical subsets, and (b) the total number of canonical
subsets required to cover all query ranges. In particular, he showed that the arithmetic mean of
these two parameters is Ω(m lognm). We strengthen this tradeoff by showing that the geometric
mean of the same two parameters is Ω(m lognm).

Our second result is an alternate proof of Fredman’s tradeoff in the one dimensional setting.
The problem of answering range queries using canonical subsets can be formulated as factoring
a specific boolean matrix as a product of two boolean matrices, one representing the canonical
sets and the other capturing the appropriate disjoint unions of the former to output all possible
range queries. In this formulation, we can ask what is an optimal data structure, i.e., a data
structure that minimizes the sum of the two parameters mentioned above, and how does the
balanced binary search tree compare with this optimal data structure in the two parameters?
The problem of finding an optimal data structure is a non-linear optimization problem. In
one dimension, Fredman’s result implies that the minimum value of the objective function is
Ω(m logm), which means that at least one of the parameters has to be Ω(m logm). We show
that both the parameters in an optimal solution have to be Ω(m logm). This implies that
balanced binary search trees are near optimal data structures for range querying in one dimension.
We derive intermediate results on factoring matrices, not necessarily boolean, while trying to
minimize the norms of the factors, that may be of independent interest.
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1 Introduction

Orthogonal range querying is one of the fundamental problems in computational geometry.
The range querying problem is the following: Given a set X of m points in Rn and a range
set R of subsets of points in Rn, the goal is to pre-process the set X into a data structure so
that given a query range R ∈ R, the set of points in X ∩ R can be output efficiently. For
orthogonal range querying, a range is simply an axis aligned box in Rn. In this paper, we
only consider the problem of orthogonal range querying. Sometimes, we are also interested
in the number of points in the set X ∩R. The case where we output all the points in X ∩R
is called range reporting and the case where we only report the number of points in X ∩R is
called range counting. Other types of queries include whether or not X ∩R is empty and so
on. To capture these different types of queries in the range querying framework, it is typical
to associate with every point Xi ∈ X a weight wi, where wi comes from a commutative
semigroup (S,+)1. Then, for every query range R, the output is

∑
Xi∈X∩R wi. For instance,

for the orthogonal range reporting problem, we can take the semigroup (2X ,∪) and set
wi = {Xi} .; for the range counting problem, we can take the semigroup (N,+) and set
wi = 1.

Data structures for range querying typically store certain canonical subsets of the input
set X and on a query range R, the query algorithm comes up with a set of disjoint canonical
subsets such that their union is exactly X ∩R. The performance of a data structure for range
querying is measured by the time spent in answering a query, the space requirement of the
data structure and also the preprocessing cost involved in building the data structure. Often,
the preprocessing is ignored as the data structure is built only once. In the dynamic setting
where operations such as delete and insert are permitted, update time is also important.
Most data structures for geometric problems are described in the real RAM model [16] and
the pointer-machine model [1, 2]. A popular data structure for orthogonal range querying
is the range tree which was introduced by Bentley [3]; for an exposition, see [4, chap. 5].
For orthogonal range reporting on m points in n dimensions, the range tree can be built in
time O(m logn−1m) and every query can be answered in time O(lognm+ k), where k is the
number of points in the output. The query time though can be improved to O(logn−1m+ k)
through a technique called fractional cascading [7, 14]. These upper bounds have been
subsequently improved for range querying in various computation models [1, 2].

Fredman gave some of the first lower bounds on orthogonal range querying in the
semigroup model [10, 11]. These lower bounds are in the dynamic setting where insertions
and deletions are allowed. More specifically, in [11], he showed that for any m, there is
a sequence of m operations consisting of insert, delete and querying such that the time
required for this sequence is Ω(m lognm) in the semigroup model. The crux of Fredman’s
lower bound argument lies in exploiting a certain combinatorial tradeoff between the sizes of
the canonical sets and the number of canonical sets needed to answer all the query ranges
[15, p. 69, Lemma 9]. To state this more precisely, we set up some definitions and notations.

From here on, we take the set X to be the n-dimensional grid of m points, i.e.,

X :=
{

1, . . . ,
⌊
m1/n

⌋}n
.

The n coordinates of the point Xi are represented as Xij , j = 1, . . . , n. A one-sided range

1 Another algebraic structure from which weights are assigned are groups [12, 9], but in this paper we
restrict ourselves to the case where weights come from a semigroup.
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query on the set X takes as input a Y ∈ Rn and outputs

RY := {Xi ∈ X : Xi ≤ Y } ,

where Xi ≤ Y iff Xij ≤ Yj , for all j ∈ [n]. In this paper, range queries will always be
one-sided. Corresponding to m points in X, we have m range queries whose outputs are
Rj :=RXj

, for j ∈ [m]. A set D := {W1, . . . ,Wr} of subsets of X is a data structure for
answering range queries on X if every output to a range query on X is represented as
a disjoint union over the canonical sets W1, . . . ,Wr. Let 〈Rj〉D denote the set of indices of
Wk’s used in the representation of Rj . Fredman showed the following result:

I Proposition 1. If D is a data structure that answers range queries on X then
r∑

k=1
|Wk|+

m∑
j=1
| 〈Rj〉D | = Ω(m lognm).

This tradeoff between the sizes of canonical sets and the number of canonical sets needed for
covering all the query ranges is the central theme of this paper. Many more lower bounds on
orthogonal range querying in different computation models are also known (see [1, p. 7] and
[2, p. 11]).

The tradeoff in Proposition 1 gives us a lower bound on the arithmetic mean of the total
size of the canonical sets and the number of canonical sets needed for covering query ranges.
But in practice, data structures such as range trees need Θ(m lognm) many canonical sets
for orthogonal range querying on m points and the total size of these sets is Θ(m lognm) as
well. In view of this fact, we prove the following stronger result:

I Theorem 2. If D is a data structure that answers range queries on X then(
r∑

k=1
|Wk|

) m∑
j=1
| 〈Rj〉D |

 = Ω(m2 log2nm).

From the AM-GM inequality it is clear that Theorem 2 implies Proposition 1. Theorem 2
also implies that any data structure D that is tight with respect to Proposition 1, i.e.,

r∑
k=1
|Wk|+

m∑
j=1
| 〈Rj〉D | = Θ(m lognm), (1)

must satisfy:
r∑

k=1
|Wk| = Θ(m lognm) and

m∑
j=1
| 〈Rj〉D | = Θ(m lognm). (2)

The proof of Theorem 2 will be given in Section 2.
From (2), we see that the balanced binary search tree is an optimal data structure in the

boolean setting where the outputs are represented as disjoint unions over canonical sets. This
leaves open the possibility of existence of a more efficient data structure that does not take
disjoint unions of its canonical subsets but takes their weighted sum in order to represent
an output. In such a relaxed setting, Proposition 1 and Theorem 2 are not applicable. Can
balanced binary search tree be an optimal data structure even in this setting? In Section 3,
we give a positive answer to this question.
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In order to account for data structures that take weighted sums of their canonical sets, we
will reinterpret range querying differently from Proposition 1. In the proof of Proposition 1
[15, p. 69, Lemma 9 and 10], the problem of range querying is interpreted in a graph theoretic
setting, namely expressing a bipartite graph as a “product” of two bipartite graphs. This
can also be interpreted in terms of matrices [6, Sec. 2.2]. Let Um×r be the incidence matrix
of the set X with the canonical sets Wk’s, i.e, Uik = 1 iff Xi ∈Wk. Similarly, define Vr×m
to be the incidence matrix of the canonical sets Wk’s and the outputs Rj ’s. Let Rm×m be
the matrix whose columns are the characteristic vectors of the sets Rj ’s. To give a proof
of Proposition 1, it suffices to derive a lower bound on the optimal value of the following
optimization problem:

min
(
||U ||2F + ||V ||2F

)
subject to UV = R, (3)

where R ∈ {0, 1}m×m, U ∈ {0, 1}m×r and V ∈ {0, 1}r×m and ||.||F refers to the Frobenius
norms of the respective matrices.

In this optimization based formulation of the problem, the objective function aims to
minimize the sum of the two parameters we are interested in: The total size of the canonical
sets, ||U ||2F and the total number of canonical sets needed to cover all the query ranges,
||V ||2F . Every data structure that supports range querying in one dimension is a feasible
solution to the problem above. When the entries of the matrices are restricted to be boolean,
Proposition 1 implies that the optimal value of the objective function is Ω(m logm). Hence,
from (2), we see that for an optimal solution (Ubool, Vbool) of (3) we must have,

||Ubool||2F = Θ(m logm) and ||Vbool||2F = Θ(m logm).

To extend these bounds for data structures that take weighted sums of their canonical sets,
we consider the relaxation of the problem in (3) where the matrix entries are allowed to be
arbitrary reals. For an optimal solution (U∗, V ∗) of this relaxation, we show that

||U∗||2F = Ω(m logm) and ||V ∗||2F = Ω(m logm).

The lower bounds above imply that the balanced binary search tree is near optimal not
only in the boolean framework but also in a more relaxed setting.

The main idea in proving the lower bounds above is to use the Lagrangian dual of the
relaxation and show that

||U∗||2F = Trace((RtR)1/2) and ||V ∗||2F = Trace((RtR)1/2), (4)

where we take the principal square-root of a matrix [13]. The result in (4) holds for an
arbitrary matrix R (see Theorem 3) and is the key technical ingredient in our proof. Then,
by taking R to be the lower triangular all ones matrix, which corresponds to range querying in
one dimension, and by using some well established results on explicit forms for the eigenvalues
of tri-diagonal matrix (in this case (RtR)−1), we show that

Trace((RtR)1/2) = Ω(m logm).

We believe that our proof gives more understanding on the optimality of Fredman’s
lower bound by relating it to some intrinsic parameters of the matrix R, which is a natural
representation of the range query problem in one-dimension. To the best of our knowledge,
our proof is more general than the existing proofs in the literature; e.g., [17] works only in
the boolean setting. Whether our proof technique can be generalized to obtain an alternative
proof of Proposition 1 in all dimensions remains an open and interesting question.
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Figure 1 (a): Bipartite graph G with the vertex sets X, R and the edge set E. (b): Tripartite
graph G′ with vertex sets X, D and R.

2 Tradeoff between Sizes of Canonical Sets and Outputs to Query
Ranges

In this section, we will prove Theorem 2. The proof of the theorem follows by altering the
argument in the proof of Proposition 1. Before we proceed, we first present some high level
details of the proof of Proposition 1. For the complete details, we refer to [15, p. 69].

The argument relies on interpreting range querying in a graph theoretic setting: Consider
the weighted bipartite graph G(X ∪R,E), where R := {R1, R2, . . . , Rm} and the edge set
E := {(Xi, Rj) : Xi ∈ Rj}; see Figure 1(a) for illustration. The edge (Xi, Rj) ∈ E is assigned
the weight

W(Xi, Rj) := 1
n∏
κ=1

(Xjκ −Xiκ + 1)
. (5)

The graph G can be “factored” into a tripartite graph G′ whose vertex set is {X ∪ D ∪R}.
There is an edge (Xi,Wk) iff Xi ∈ Wk and there is an edge (Wk, Rj) iff k ∈ 〈Rj〉D; see
Figure 1(b) for an illustration. Note that the edges of G are a disjoint union over the sets{

(Xi, Rj) : Xi ∈Wk, k ∈ 〈Rj〉D
}
, for all k ∈ [r], as every Rj is a disjoint union of Wk’s. For

every set Wk, define

Ik := {Xi ∈ X : Xi ∈Wk}

i.e., the edges of G′ incident on Wk from the left and

Ok :=
{
Rj ∈ R : k ∈ 〈Rj〉D

}
,

i.e., the edges of G′ incident on Wk from the right. Therefore,

|Ik| = |Wk| and
m∑
j=1
| 〈Rj〉D | =

r∑
k=1
|Ok|.

At a high level, the proof of Proposition 1 can be broken down into two steps [15, p. 69,
Lemma 9 and p. 71, Lemma 10]:
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Step 1. For every k ∈ [r],∑
Xi∈Ik
Rj∈Ok

W(Xi, Rj) =
∑
Xi∈Ik
Rj∈Ok

1
n∏
κ=1

(Xjκ −Xiκ + 1)
≤ (2π)n(|Ik|+ |Ok|), (6)

where n is the dimension of the points in X. The outline of the proof is as follows.
Let Mj = max {Xij : Xi ∈ Ik}. Define the associate sets of Wk as

B := {(M1 −Xi1,M2 −Xi2, . . . ,Mn −Xin) : Xi ∈ Ik}

and

C := {(Xj1 −M1, Xj2 −M2, . . . , Xjn −Mn) : Rj ∈ Ok} .

Since every term of the form

(Xjκ −Xiκ + 1) = (Mκ −Xiκ +Xjκ −Mκ + 1),

the summation in (6) is equal to∑
Xi∈Ik
Rj∈Ok

1
n∏
κ=1

(Xjκ −Xiκ + 1)
=
∑
u∈B
v∈C

1
n∏
κ=1

(uκ + vκ + 1)
,

where uκ and vκ are non-negative integers. Then, by applying a generalized version
of Hilbert’s inequality for points with natural numbers as their coordinates, one
obtains∑

u∈B
v∈C

1
n∏
κ=1

(uκ + vκ + 1)
≤ (2π)n(|B|+ |C|) = (2π)n(|Ik|+ |Ok|). (7)

Step 2. The second step is to show that the total sum of weights over all edges in E satisfies

∑
(Xi,Rj)∈E

W(Xi, Rj) =
r∑

k=1

∑
Xi∈Ik
Rj∈Ok

W(Xi, Rj) = Ω(m lognm). (8)

By summing the inequality in (6) over all Wk and applying the lower bound from (8), we
get the claim in Proposition 1.

We now give the proof of Theorem 2.

Proof. Since
∑r
k=1 |Wk| =

∑r
k=1 |Ik| and

∑m
j=1 | 〈Rj〉D | =

∑r
k=1 |Ok|, we will show that

r∑
k=1
|Ik| ·

r∑
k=1
|Ok| = Ω(m2 log2nm).

To prove this, consider a pair of canonical sets, Wk and W`. Using the same weight function
as in (5) on the edges of G, we have

∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) =
∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

1
n∏
κ=1

(Xjκ −Xiκ + 1)(Xdκ −Xcκ + 1)
.

(9)
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Define the associate sets B, C of Wk as in Step 1; sets B′ and C ′ are defined analogously
for W`. Notice that |B| = |Ik|, |C| = |Ok|, |B′| = |I`| and |C ′| = |O`|. Using the associate
sets, equation (9) can be expressed as∑

Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) =
∑
u∈B
v∈C

∑
u′∈B′

v′∈C′

1∏n
κ=1(uκ + vκ + 1)(u′κ + v′κ + 1)

. (10)

The importance of the associate sets of Wk andW` is that they have non-negative coordinates
and they are in some sense independent of the actual coordinates of the points in X, since
difference choices of the point set X give the same associate sets. We now use the upper
bound from (7) to upper bound the RHS of (10). Since the RHS of (10) can be interpreted
as a function over 2n dimensional points, we define the following sets in R2n

B := {(u, u′) : u ∈ B, u′ ∈ B′} , C := {(v, v′) : v ∈ C, v′ ∈ C ′}

and

B′ := {(u, v′) : u ∈ B, v′ ∈ C ′} , C′ := {(v, u′) : v ∈ C, u′ ∈ B′} .

The pair of sets (B, C) and (B′, C′) allow us to express the RHS of (10) in two different ways
as: ∑

u∈B
v∈C

∑
u′∈B′

v′∈C′

1
n∏
κ=1

(uκ + vκ + 1)(u′κ + v′κ + 1)
=
∑
U∈B
V∈C

1
2n∏
κ=1

(Uκ + Vκ + 1)

=
∑
U ′∈B′

V′∈C′

1
2n∏
κ=1

(U ′κ + V ′κ + 1)
.

From (7), the RHS of the equalities above can be upper bounded as∑
U∈B
V∈C

1
2n∏
κ=1

(Uκ + Vκ + 1)
≤ (2π)2n(|B|+|C|) and

∑
U ′∈B′

V′∈C′

1
2n∏
κ=1

(U ′κ + V ′κ + 1)
≤ (2π)2n(|B′|+|C′|).

So, from the two inequalities above and (10) we obtain∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) ≤ (2π)2n min{|B|+ |C|, |B′|+ |C′|}.

= (2π)2n min{|B||B′|+ |C||C ′|, |B||C ′|+ |B′||C|},
= (2π)2n min{|Ik||I`|+ |Ok||O`|, |Ik||O`|+ |I`||Ok|}

Therefore, for an arbitrary pair Wk, W`, we have∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj) · W(Xc, Rd) ≤ (2π)2n(|Ik||O`|+ |I`||Ok|). (11)

Note that every edge (Xi, Rj) in E maps to a unique path (Xi,Wk, Rj) in the graph G′.
Hence the sum of the LHS of (11) over all possible pairs of Wk and W` gives us the sum of
the product of weights of all possible pairs of edges (Xi, Rj) and (Xc, Rd) in E. Hence from
(8) we obtain that∑
Wk
W`

∑
Xi∈Ik
Rj∈Ok

∑
Xc∈I`
Rd∈O`

W(Xi, Rj)·W(Xc, Rd) =
∑

(Xi,Rj)∈E
(Xc,Rd)∈E

W(Xi, Rj)·W(Xc, Rd) = Ω(m2 log2nm).
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(12)

Similarly, summing the RHS of (11) over all pairs of Wk and W` and using the fact that
|Ik| = |Wk| and

r∑
k=1
|Ok| =

m∑
j=1
| 〈Rj〉D |, we get

∑
Wk

∑
W`

(2π)2n(|Ik||O`|+ |I`||Ok|) = 2 · (2π)2n

 m∑
j=1
| 〈Rj〉D |

( r∑
k=1
|Wk|

)
.

Therefore, from (11), (12) and the equality above, we conclude that m∑
j=1
| 〈Rj〉D |

( r∑
k=1
|Wk|

)
= Ω(m2 log2nm). J

3 Optimality of the Balanced Binary Search Tree

In this section, we will show the optimality of the balanced binary search tree in a relaxed
framework where the data structures are allowed to take a weighted sum of their canonical
subsets. Let X := {1, 2, . . . ,m} . We again consider the set of one sided range queries:
For j ∈ X, output Rj := {i ∈ X : i ≤ j} . Let D := {W1,W2, . . . ,Wr} be an arbitrary data
structure that answers range queries on X. Proposition 1 in one dimension reduces to:(

r∑
k=1
|Wk|

)
+

 m∑
j=1
| 〈Rj〉D |

 = Ω(m logm). (13)

To extend the lower bound above for data structures that are allowed to take weighted sums
of their canonical subsets, we will reinterpret range querying in a different setting. The
problem of range querying can be interpreted in a linear algebraic setting as follows: Consider
the 0/1 matrix U whose rows are indexed by the m numbers and columns are indexed by
the r sets, Wk’s. The (i, j)th entry is one iff the number i is a member of Wj . Consider the
range query that asks for all the numbers less than or equal to the jth number. The output
is a union of at most, say ` sets. Then, Rj , which is an m-dimensional vector with ones from
the jth position onwards can be expressed as a linear combination of at most ` columns of
U . Let vj be this linear combination, i.e.

Rj = Uvj

where vj is a 0/1 vector. Since there are m distinct range queries, we have v1, . . . ,vm such
vectors. If V is the matrix with these vectors as its columns, then our observation regarding
these m range queries can be succinctly represented by the following matrix equation

UV =



1 0 0 · · · 0
1 1 0 · · · 0
...

...
. . . . . .

...
...

...
. . . . . .

...
1 1 1 · · · 1

 =:R, (14)

where R is the lower triangular matrix with all ones on and below the diagonal and the rows
of R are indexed by the numbers m,m − 1, . . . , 1 and the columns by Rm, Rm−1, . . . , R1.
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Also, U ∈ {0, 1}m×r and V ∈ {0, 1}r×m . Now,
r∑
i=1
|Wi| = ||U ||2F and

m∑
j=1
| 〈Rj〉 | = ||V ||2F ,

where ||A||F denotes the Frobenius norm of the matrix A. So, in terms of factorizations of
R as a product of U and V , proving the claim in (13) is equivalent to lower bounding the
optimal value of the following optimization problem

min
(
||U ||2F + ||V ||2F

)
subject to UV = R,U ∈ {0, 1}m×r , V ∈ {0, 1}r×m . (15)

In order to consider data structures that may take weighted sum of their canonical subsets
instead of disjoint unions, we focus on the following relaxation of the problem in (15): Given
an arbitrary matrix T ∈ Rm×m,

min
(
||U ||2F + ||V ||2F

)
subject to UV = T, U ∈ Rm×r, V ∈ Rr×m. (16)

It is clear that a lower bound on the optimal value of (16), when T is taken to be R, is also
a lower bound on the optimal value of (15). So, we first prove that

I Theorem 3. Any optimal solution (U∗, V ∗) for the optimization problem in (16) satisfies:

||U∗||2F = Trace((T tT )1/2) and ||V ∗||2F = Trace((T tT )1/2),

where the matrix (T tT )1/2 is defined to be the principal square root of the matrix T tT [13,
p .20, Theorem 1.29].

Proof. The Lagrangian dual function associated with the problem in (16) is defined as [5,
p. 216]

inf
U,V

L(U, V,Λ) = inf
U,V

||U ||2F + ||V ||2F +
m∑
i=1

m∑
j=1

r∑
k=1

(Tij − Uik · Vkj)λij

 , (17)

where Λ ∈ Rm×m. The Lagrange dual problem is now defined as

max
Λ

(
inf
U,V

L(U, V,Λ)
)
, (18)

where Λ ∈ Rm×m. Any optimal solution (U∗, V ∗) for the primal problem satisfies the following
inequality:

||U∗||2F + ||V ∗||2F ≥ max
Λ

(
inf
U,V

L(U, V,Λ)
)
.

From the inequality above, we see that it suffices to lower bound the optimal value of the
dual problem in order to prove the required claim. Consider the function

inf
U,V

L(U, V,Λ).

Applying the optimality conditions, we take the partial derivative of L(U, V,Λ) with respect
to variables in U to get the following matrix equation:

∇UL(U, V,Λ) = 2U t − V Λt = 0. (19)
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Similarly, taking derivative with respect to variables in V , we get

∇V L(U, V,Λ) = 2V − U tΛ = 0. (20)

From (19) and (20), we have

V Λt = 2U t and U tΛ = 2V. (21)

Since the dual problem is convex and aims to maximize the Lagrangian dual function in (17)
with respect to Λ, we apply the first order condition to L(U, V,Λ) with respect to Λ to get

UV = T.

By left multiplying the first equation in (21) by U , we get

UV Λt = 2UU t

TΛt = 2UU t since UV = T .

Using the equality above and the fact that ||U ||2F = Trace(UU t), we get

||U ||2F = 1
2Trace(TΛt).

Similarly, we can show that

||V ||2F = 1
2Trace(Λ

tT ).

Therefore, for an optimal solution Λ of the dual problem, we have

||U ||2F = 1
2Trace(TΛt), ||V ||2F = 1

2Trace(Λ
tT ).

Since Trace(TΛt) = Trace(ΛtT ), it suffices to show that the trace of ΛtT is 2 ·Trace((T tT )1/2)
to prove the theorem.

We begin by multiplying the transpose of the second equation in (21) with the first
equation in (21) to obtain

ΛtUV Λt = 4(UV )t.

Since UV = T , we see that any optimal solution for the dual problem must satisfy:

ΛtTΛt = 4T t.

Multiplying the equality above by T from the right, we get

(ΛtT )2 = 4T tT.

Since T tT is a positive semidefinite matrix 2, it is diagonalizable. Assuming Q to be the
m×m matrix whose columns are the eigenvectors of T tT and γ1 ≥ γ2 ≥ · · · ≥ γm to be the
eigenvalues of T tT , we can express the equality above as

(ΛtT )2 = 4Q−1ΓQ

2 Here we use the fact that any matrix A that can be written as A = BtB, is positive semidefinite.
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where Γ is the diagonal matrix with γk’s being the kth diagonal entry. Therefore, we have

(ΛtT ) = 2Q−1Γ1/2Q,

where Q−1Γ1/2Q is defined to be the principle square root of T tT whose eigenvalues are√
γ1,
√
γ2, . . . ,

√
γm and for all k, √γk ∈ R≥0. So,

Trace(ΛtT ) = 2Trace((T tT )1/2) = 2
m∑
k=1

√
γk.

Hence, we conclude that

||U∗||2F = Trace((T tT )1/2) ||V ∗||2F = Trace((T tT )1/2). J

We bound the trace of (RtR)1/2 in the following result:

I Lemma 4. Let R be the matrix as in (14). The trace of the principal square root of RtR
satisfies

Trace((RtR)1/2) =
m∑
k=1

√
γk = Ω(m logm),

where γk, k ∈ [m], are the eigenvalues of the matrix RtR.

Proof. To compute γk’s, consider the inverse matrix

(RtR)−1 = R−1(R−1)t.

The inverse of the matrix R is the bidiagonal matrix

R−1 =



1 0 0 0 . . . 0
−1 1 0 0 . . . 0
0 −1 1 0 . . . 0
0 0 −1 1 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . 1


So, the matrix R−1(R−1)t is the following tridiagonal matrix

R−1(R−1)t =



1 −1 0 0 0 . . . 0
−1 2 −1 0 0 . . . 0
0 −1 2 −1 0 . . . 0
0 0 −1 2 −1 . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . −1
0 0 0 0 0 . . . 2


,

which obtained as a special case of tridiagonal matrices of the form

a+ d b 0 0 0 . . . 0
b a b 0 0 . . . 0
0 b a b 0 . . . 0
0 0 b a b . . . 0
...

...
...

...
...

...
...

0 0 0 0 0 . . . b

0 0 0 0 0 . . . a+ c


,
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by substituting a = 2, b = −1, d = −1, and c = 0. From [8, p. 27], we know that the roots of
the characteristic polynomial of the matrix above is given by

a+ 2b cos θ (22)

where θ varies over the m zeros of the following function

sin(m+ 1)θ − c+d
b sinmθ + cd

b2 sin(m− 1)θ
sin θ .

Substituting a = 2, b = d = −1, and c = 0 in the formula above, we obtain the following
expression

sin(m+ 1)θ − sinmθ
sin θ .

Simplifying the formula above using the sum-to-product identity3, we get

2 sin (m+1)θ−mθ
2 cos (m+1)θ+mθ

2
sin θ = 2 sin(θ/2) cos(mθ + θ/2)

2 sin(θ/2) cos(θ/2) = cos(mθ + θ/2)
cos(θ/2) .

The expression above vanishes at the values(
2k − 1
2m+ 1

)
π,

where k = 1, 2, . . . ,m. Substituting in (22), we see that the eigenvalues of R−1(R−1)t are

2
(

1− cos
(

2k − 1
2m+ 1

)
π

)
= 4 sin2

(
2k − 1
4m+ 2

)
π,

for k = 1, 2, . . . ,m, where we use the identity (1 − cosx) = 2 sin2 x/2 above. So, the
eigenvalues of RtR are

γk = 1
4 sin2

(
2k−1
4m+2

)
π
,

for k = 1, 2, . . . ,m, and, therefore, the trace of the principal square root of RtR is

Trace((RtR)1/2) =
m∑
k=1

√
γk =

m∑
k=1

1
2 sin

(
2k−1
4m+2

)
π
.

Since for k = 1, . . . ,m, the reciprocal of the sine functions is a monotonically decreasing
concave function, the summation above can be lower bounded as follows:

Trace((RtR)1/2) =
m∑
k=1

1
2 sin (2k−1)π

4m+2

≥
∫ m

1

dx

2 sin (2x−1)π
4m+2

=
∫ m

1

csc (2x−1)π
4m+2
2 dx.

Substituting y = (2x−1)π
4m+2 and using the fact that

∫
csc y · dy = ln | tan(y/2)|, we obtain

Trace((RtR)1/2) ≥ 4m+ 2
4π

(
ln
(

tan (2m− 1)π
(8m+ 4)

)
− ln

(
tan π

(8m+ 4)

))
.

3 Namely, sin A− sin B = 2 sin (A−B)
2 cos (A+B)

2
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As m tends to infinity, the term tan((2m− 1)π/(8m+ 4)) tends to one. Therefore, we have

Trace((RtR)1/2) = Ω
(
m ln

(
cot π

(8m+ 4)

))
.

From the Taylor series of the cotangent function, we know that for m ≥ 1, cot π
(8m+4) = Θ(m).

Therefore,

Trace((RtR)1/2) = Ω(m logm). J

We note that from Theorem 3 and Lemma 4, we have a stronger conclusion than in (13).
From (13), we can only infer that one of the two parameters is Ω(m logm) whereas for data
structures such as balanced binary search trees, both the parameters are Θ(m logm). Our
proof shows that

||UBST||F = Θ(||U∗||F ) and ||VBST||F = Θ(||V ∗||F ),

where (U∗, V ∗) is an optimal solution for the problem in (15) and (UBST, VBST) are the
matrices U and V corresponding to the balanced binary search tree. Therefore, binary search
trees are optimal with respect to both the parameters, The total size of the canonical sets
and the total number of canonical sets needed for covering all the query ranges. Also, our
proof implies that balanced binary search trees are near optimal in a more relaxed framework
where the data structures are allowed to take weighted sums of their canonical subsets.

4 Conclusion

In this paper, we have shown that there is a stronger tradeoff between the sizes of canonical
sets and the outputs to query ranges than the one shown by Fredman. In Section 3, we
show the optimality of balanced binary search trees in a more general setting where we allow
weighted combinations of the canonical sets in the data structure. A natural continuation
would be to generalize this proof to higher dimensions. One can start by bounding the
integrality gap between an optimal solution in the boolean setting and an optimal solution
of the relaxation. In one dimension, our proof shows that this gap is at most a constant.

We also believe that the optimization problem introduced in Section 3 is interesting in
its own right. For instance, the lower bound for the average complexity of the partial sums
problem [12] in the one dimensional setting can be obtained from the lower bound on the
optimization problem in (15).
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Abstract
We introduce a dynamic version of the NP-hard Cluster Editing problem. The essential point
here is to take into account dynamically evolving input graphs: Having a cluster graph (that is, a
disjoint union of cliques) that represents a solution for a first input graph, can we cost-efficiently
transform it into a “similar” cluster graph that is a solution for a second (“subsequent”) input
graph? This model is motivated by several application scenarios, including incremental clustering,
the search for compromise clusterings, or also local search in graph-based data clustering. We
thoroughly study six problem variants (edge editing, edge deletion, edge insertion; each combined
with two distance measures between cluster graphs). We obtain both fixed-parameter tractability
as well as parameterized hardness results, thus (except for two open questions) providing a fairly
complete picture of the parameterized computational complexity landscape under the perhaps
two most natural parameterizations: the distance of the new “similar” cluster graph to (i) the
second input graph and to (ii) the input cluster graph.
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modifications (deletions or insertions). Being NP-hard, Cluster Editing gained high
popularity in studies concerning parameterized algorithmics, e.g. [1, 4, 8, 9, 12, 18, 20, 22, 25].
To the best of our knowledge, to date these parameterized studies mostly focus on a “static
scenario”. Chen et al. [12] are an exception by also looking at temporal and multilayer
graphs. In their work, the input is a set of graphs (multilayer) or an ordered list of graphs
(temporal), in both cases defined over the same vertex set. The goal is to transform each
input graph into a cluster graph such that, in the multilayer case, the number of vertices in
which any two cluster graphs may differ is bounded, and in the temporal case, the number of
vertices in which any consecutive (with respect to their position in the list) cluster graphs
may differ is bounded. In this work, we introduce a dynamic view on Cluster Editing
by, roughly speaking, assuming that the input graph changes. Thus we seek to efficiently
and effectively adapt an existing solution, namely a corresponding cluster graph. In contrast
to the work of Chen et al. [12], we do not assume that all future changes are known. We
consider the scenario where given an input graph, we only know changes that lie immediately
ahead, that is, we know the “new” graph that the input graph changes to. Motivated by
the assumption that the “new” cluster graph should only change moderately but still be a
valid representation of the data, we parameterize both on the number of edits necessary to
obtain the “new” cluster graph and the difference between the “old” and the “new” cluster
graph. We finally remark that there have been previous parameterized studies of dynamic
(or incremental) graph problems, but they deal with coloring [23], domination [16, 2], or
vertex deletion [3, 26] problems.

Mathematical model. In principle, the input for a dynamic version of a static problem X

are two instances I and I ′ of X, a solution S for I, and an integer d. The task is to find a
solution S′ for I ′ such that the distance between S and S′ is upper-bounded by d. Often,
there is an additional constraint on the size of S′. Moreover, the symmetric difference
between I and I ′ is used as a parameter for the problem many times. We arrive at the
following “original dynamic version” of Cluster Editing (phrased as decision version).

Original Dynamic Cluster Editing
Input: Two graphs G1 and G2 and a cluster graph Gc over the same vertex set,
and integers k and d such that |E(G1)⊕ E(Gc)| ≤ k.
Question: Is there a cluster graph G′ for G2 such that |E(G2)⊕ E(G′)| ≤ k and
dist(G′, Gc) ≤ d?

Herein, ⊕ denotes the symmetric difference between two sets and dist(·, ·) is a generic
distance function for cluster graphs, which we discuss later. Moreover, Gc is supposed to be
the “solution” given for the input graph G1. However, since the question in this problem
formulation is independent from G1 we can remove this graph from the input and arrive at
the following simplified version of the problem. For the remainder of this paper we focus on
this simplified version of Dynamic Cluster Editing.

Dynamic Cluster Editing
Input: A graph G and a cluster graph Gc over the same vertex set, and two
integers: a budget k and a distance upper bound d.
Question: Is there a cluster graph G′ for G such that |E(G) ⊕ E(G′)| ≤ k

and dist(G′, Gc) ≤ d?

There are many different distance measures for cluster graphs [28, 29]. Indeed, we will
study two standard ways of measuring the distance between two cluster graphs. One is called
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classification error distance, which measures the number of vertices one needs to move to
make two cluster graphs the same – we subsequently refer to it as matching-based distance.
The other is called disagreement distance, which is the symmetric distance between two edge
sets – we subsequently refer to it as edge-based distance. Notably, the edge-based distance
upper-bounds the matching-based distance. We give formal definitions in Section 2.

Motivation and related work. Beyond parameterized algorithmics and static Cluster
Editing, dynamic clustering in general has been subject to many studies, mostly in applied
computer science [32, 15, 14, 34, 33, 10]. We mention in passing that there are also close ties
to reoptimization (e.g., [7, 30]) and parameterized local search (e.g., [17, 19, 21, 23, 27]).

There are several natural application scenarios that motivate the study of Dynamic
Cluster Editing. Next, we list four of them.

Dynamically updating an existing cluster graph. Dynamic Cluster Editing can be in-
terpreted to model a smooth transition between cluster graphs, reflecting that “customers”
working with clustered data in a dynamic setting may only tolerate a moderate change of
the clustering from “one day to another” since “revolutionary” transformations would
require too dramatic changes in their work. In this spirit, when employing small parameter
values, Dynamic Cluster Editing has kind of an evolutionary flavor with respect to
the history of the various cluster graphs in a dynamic setting.

Editing a graph into a target cluster graph. For a given graph G, there may be many
cluster graphs which are at most k edge modifications away. The goal then is to find
one of these which is close to the given target cluster graph Gc since in a corresponding
application one is already “used to” work with Gc. Alternatively, the editing into the
target cluster graph Gc might be too expensive (that is, |E(G)⊕ E(G′)| is too big), and
one has to find one with small enough modification costs but being still close to the
target Gc.

Local search for an improved cluster graph. Here the scenario is that one may have found
an initial clustering expressed by Gc, and one searches for another solution G′ for G

within a certain local region around Gc (captured by our parameter d).
Editing into a compromise clustering. When focusing on the edge-based distance, one may

generalize the definition of Dynamic Cluster Editing by allowing Gc to be any graph
(not necessarily a cluster graph). This may be used as a model for “compromise cluster
editing” in the sense that the goal cluster graph then is a compromise for a cluster graph
suitable for both input graphs since it is close to both of them.

Our results. We investigate the (parameterized) computational complexity of Dynamic
Cluster Editing. We study Dynamic Cluster Editing as well as two restricted versions
where only edge deletions (“Deletion”) or edge insertions (“Completion”) are allowed. We
show that all problem variants (notably also the completion variants, whose static counterpart
is trivially polynomial-time solvable) are NP-complete even if the input graph G is already a
cluster graph. Table 1 surveys our main parameterized complexity results.

The general versions of Dynamic Cluster Editing all turn out to be parameterized
intractable (W[1]-hard) by the single natural parameters “budget k” and “distance d”;
however, when both parameters are combined, one achieves a polynomial kernel. We also
derive a generic approach towards fixed-parameter tractability for several deletion and
completion variants with respect to the budget k as well as with respect to the distance d.
Proofs of results marked with (?) are deferred to a full version of the paper.
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Table 1 Result overview for Dynamic Cluster Editing. We primarily categorize the problem
variants by the distance measure (Matching, Edge) they use and secondarily by the allowed
modification operation. NP-completeness for all problem variants (last column) even holds if
the input graph G is a cluster graph. PK stands for polynomial kernel.

Parameter
Problem Variant k + d k d

M
at
ch
in
g Editing FPT (PK)

T
hm

.3 W[1]-h Thm. 2 W[1]-h } Thm. 2 NP-c

T
hm

.1

Deletion FPT (PK) open W[1]-h NP-c
Completion FPT (PK) open FPT Thm. 4 NP-c

E
dg

e Editing FPT (PK)

T
hm

.3 W[1]-h Thm. 2 W[1]-h } Thm. 2 NP-c

T
hm

.1

Deletion FPT (PK) FPT }
Thm. 4 W[1]-h NP-c

Completion FPT (PK) FPT FPT Thm. 4 NP-c

2 Preliminaries and Problems Variants

In this section we give a brief overview on concepts and notation of graph theory and
parameterized complexity theory that are used in this paper. We also give formal definitions
of the distance measures for cluster graphs we use and of our problem variants.

Graph-theoretic concepts and notations. Given a graph G = (V, E), we say that a vertex
set C ⊆ V is a clique in G if G[C] is a complete graph. We say that a vertex set C ⊆ V is
isolated in G if there is no edge {u, v} ∈ E with u ∈ C and v ∈ V \ C. A P3 is a path with
three vertices. We say that vertices u, v, w ∈ V form an induced P3 in G if G[{u, v, w}] is
a P3. We say that an edge {u, v} ∈ E is part of a P3 in G if there is a vertex w ∈ V such
that G[{u, v, w}] is a P3. Analogously, we say that a non-edge {u, v} /∈ E is part of a P3 in
G if there is a vertex w ∈ V such that G[{u, v, w}] is a P3. A graph G = (V, E) is a cluster
graph if for all u, v, w ∈ V we have that G[{u, v, w}] is not a P3, or in other words, P3 is a
forbidden induced subgraph for cluster graphs.

Distance measures for cluster graphs. A cluster graph is simply a disjoint union of cliques.
We use two basic distance measures for cluster graphs [28, 29]. The first one is called
“matching-based distance” and counts how many vertices have to be moved from one cluster
to another to make two cluster graphs the same. It is formally defined as follows.

I Definition 1 (Matching-based distance). Let G1 = (V, E1) and G2 = (V, E2) be two cluster
graphs defined over the same vertex set. Let B(G1, G2) = (V1 ] V2, E, w) be a weighted
complete bipartite graph, where each vertex u ∈ V1 corresponds to a cluster in G1, denoted
by Cu ⊆ V , and each vertex v ∈ V2 corresponds to a cluster of G2, denoted by Cv ⊆ V . The
weight of the edge between u ∈ V1 and v ∈ V2 is w({u, v}) = |Cu ∩Cv|. Let W be the weight
of a maximum-weight matching in B(G1, G2). The matching-based distance dM between G1
and G2 is dM (G1, G2) := |V | −W .

The second distance measure is called “edge-based distance” and simply measures the
symmetric distance between the edge sets of two cluster graphs.

I Definition 2 (Edge-based distance). Let G1 = (V, E1) and G2 = (V, E2) be two cluster
graphs defined over the same vertex set. The edge-based distance dE between G1 and G2
is dE(G1, G2) := |E1 ⊕ E2|.
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Figure 1 An illustration of the two distance measures. On the left side, red dotted boundaries
represent cliques in cluster graph G1, and blue dashed boundaries represent cliques in cluster
graph G2. The bipartite graph on the right side is the edge-weighted bipartite graph B(G1, G2).
The maximum-weight matching for B(G1, G2) is formed by the two edges represented by the two
bold lines.

See Figure 1 for an example illustration of two cluster graphs G1 and G2 defined over
the same vertex set V = {u1, u2, u3, u4, u5, u6, v1, v2, w}. In G1 there are three cliques
(clusters) C1 = {u1, u2, u3, u4, u5, u6}, C2 = {v1, v2} and C3 = {w}. In G2 there are two
cliques C1

′ = {u1, u2, u3, v1, v2} and C2
′ = {u4, u5, u6, w}. Then in B(G1, G2) we have three

vertices on the left side for the cliques in G1 and two vertices on the right side for the
cliques in G2. A maximum-weight matching for B(G1, G2) matches C1 with C ′2 and C2
with C ′1, and has weight W = 5. Thus we have dM (G1, G2) = |V | − W = 9 − 5 = 4,
while dE(G1, G2) = 32 + 2 · 3 + 1 · 3 = 18.

Problem names and definitions. In the following we present the six problem variants we
are considering. We use Dynamic Cluster Editing as a basis for our problem variants. In
Dynamic Cluster Deletion we add the restriction that E(G′) ⊆ E(G) and in Dynamic
Cluster Completion we add the restriction that E(G) ⊆ E(G′). For each of these three
variants we distinguish a matching-based version and an edge-based version, where the
generic “dist” in the problem definition of Dynamic Cluster Editing is replaced by dM

and dE , respectively. This gives us a total of six problem variants. We use the following
abbreviations for our problem names. The letters “DC” stand for “Dynamic Cluster”, and
“Matching Dist” is short for “Matching-Based Distance”. Analogously, “Edge Dist” is short
for “Edge-Based Distance”. As an example, we abbreviate Dynamic Cluster Editing
with Matching-Based Distance as DCEditing (Matching Dist). All other problem
variants are abbreviated in an analogous way.

Parameterized complexity. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a finite alphabet. We call the second component the parameter of the problem. A
parameterized problem is fixed-parameter tractable (in the complexity class FPT) if there is an
algorithm that solves each instance (I, r) in f(r)·|I|O(1) time, for some computable function f .
A parameterized problem L admits a polynomial kernel if there is a polynomial-time algorithm
that transforms each instance (I, r) into an instance (I ′, r′) such that (I, r) ∈ L if and only
if (I ′, r′) ∈ L and |(I ′, r′)| ≤ f(r), for some computable function f . If a parameterized
problem is hard for the parameterized complexity class W[1], then it is (presumably) not
in FPT. The complexity class W[1] is closed under parameterized reductions, which may run
in FPT-time and additionally set the new parameter to a value that exclusively depends on
the old parameter.
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3 Intractability Results

In this section we first show that all problem variants of Dynamic Cluster Editing are
NP-complete even if the input graph G is already a cluster graph. Intuitively, this means that
on top of the NP-hard task of transforming a graph into a cluster graph, it is computationally
hard to improve an already found clustering (with respect to being closer to the target cluster
graph). In particular, while the dynamic versions of Cluster Completion are NP-complete,
it is simple to see that classical Cluster Completion is solvable in polynomial time. In a
second part we show W[1]-hardness results both for budget parameter k and for distance
parameter d for several variants of Dynamic Cluster Editing.

I Theorem 1. All considered problem variants of Dynamic Cluster Editing are NP-
complete, even if the input graph G is a cluster graph.

Next, we present several parameterized hardness results showing that for certain problem
variants we cannot hope for fixed-parameter tractability. Formally, we show the following.

I Theorem 2. DCEditing (Matching Dist) and DCEditing (Edge Dist) are W[1]-
hard with respect to the budget k. The following problems are W[1]-hard with respect to the
distance d: DCEditing (Matching Dist), DCDeletion (Matching Dist), DCEditing
(Edge Dist), and DCDeletion (Edge Dist).

As a representative for the results of Theorem 2, we present a parameterized reduction
showing that DCEditing (Matching Dist) is W[1]-hard when parameterized by the
budget k. The remaining results are deferred to a full version of the paper.

I Lemma 1. DCEditing (Matching Dist) is NP-complete and W[1]-hard with respect to
the budget k, even if the input graph G is a cluster graph.

Proof. We present a parameterized reduction from Clique, where given a graph G0 and
an integer `, we are asked to decide whether G0 contains a complete subgraph of order `.
Clique is W[1]-hard when parameterized by ` [13]. Given an instance (G0, `) of Clique,
we construct an instance (G, Gc, k, d) of DCEditing (Matching Dist) as follows.

The construction is illustrated in Figure 2. Let n = |V (G0)|. We first construct G. For
every vertex v of G0, create a clique Cv of size `7 + `4 + `2. For every edge e of G0, create a
clique Ce of size `4 + 2. Lastly, create a big clique CB of size `8. Note that G is already a
cluster graph. Next we construct Gc. We first create ` cliques Di of size n`3 for each 1 ≤ i ≤ `.
Every Di contains `3 vertices in every Cv in G. In other words, every Cv in G contains `3

vertices in every Di in Gc. Then create a big clique DB which contains all vertices in CB

and `7 vertices in every Cv. For every vertex v of G0, create clique Dv which contains `2

vertices in Cv and one vertex in every Ce for v ∈ e. Lastly, for every edge e create De

which contains `4 vertices in Ce. Set k =
(

`
2
)
(2`4 + 1) + `

(
`−1

2
)
and set d = d0 − `(` − 1),

where d0 = dM (G, Gc) is the matching-based distance between G and Gc, which is computed
as follows.

To compute dM (G, Gc), we need to find an optimal matching in B(G, Gc), the weighted
bipartite graph between G and Gc. First, in an optimal matching DB must be matched
with CB since |CB ∩DB | = `8 > |Cv ∩DB | = `7 for any v ∈ V (G0) and CB ⊆ DB . Similarly,
De must be matched with Ce for every e ∈ E(G0). Then the remaining n cliques Cv in G need
to be matched to ` cliques Di and n cliques Dv in Gc. Since |Cv ∩Di| = `3 > |Cv ∩Dv| = `2

for any v ∈ V (G0) and 1 ≤ i ≤ `, it is always better to match Cv with some Di. Since there
are only ` cliques Di, we can choose any ` cliques from {Cv | v ∈ V (G0)} to be matched
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Di, 1 ≤ i ≤ `

Cv, v ∈ V

Dv

Du

Ce and De

for e = {u, v} ∈ E

CB

DB

Figure 2 Illustration of the constructed instance for the proof of Lemma 1. Blue solid borders
represent cliques in G and red dotted borders represent cliques in Gc. One horizontal long blue
border represents a clique Cv in G. It has ` + 2 parts and each part is contained in one clique
of Gc. The first part contains `7 vertices which are contained in the big clique DB of Gc. The
following ` parts each contain `3 vertices which are contained in the ` cliques Di of Gc, and the last
part contains `2 vertices which are contained in Dv of Gc.

with Di for 1 ≤ i ≤ ` and the remaining n − ` cliques to be matched with Dv. Thus we
have many different matchings in B(G, Gc) which have the same maximum weight, and each
of them corresponds to choosing ` different cliques from {Cv | v ∈ V (G0)} to be matched
with Di for 1 ≤ i ≤ `. For each optimal matching, there are ` free cliques Dv in Gc which
are not matched.

This reduction works in polynomial time. We show that there is a clique of size `

in G0 if and only if there is a cluster graph G′ = (V, E′) such that |E(G′) ⊕ E(G)| ≤ k

and dM (G′, Gc) ≤ d.
(⇒): Assume that there is a clique C∗ of size ` in G0. We modify the graph G as

follows. First, for every edge e in the clique C∗ partition the corresponding clique Ce in G

into three parts; one part contains all vertices in De and the other two parts each have
one vertex. After this we get `(`− 1) single vertices. Since C∗ is a clique, all these single
vertices can be partitioned into ` groups such that each group has ` − 1 vertices and all
these `− 1 vertices are contained in the same Dv for some v ∈ C∗. Then for each v ∈ C∗, we
combine the corresponding `− 1 vertices into one clique C`−1

v . Denote the resulting graph
as G′. For an illustration see Figure 3. Along the way to get G′, we delete

(
`
2
)
(2`4 + 1)

edges and add `
(

`−1
2
)
edges, thus |E(G) ⊕ E(G′)| =

(
`
2
)
(2`4 + 1) + `

(
`−1

2
)

= k. Next we
show that dM (G′, Gc) ≤ d0 − `(` − 1). Recall that an optimal matching in B(G, Gc) can
choose ` cliques from {Cv | v ∈ V (G0)} to be matched with Di for 1 ≤ i ≤ `. Now in B(G, Gc)
we can choose all cliques in {Cv | v ∈ C∗} to be matched with Di for 1 ≤ i ≤ `, and then
match C`−1

v with Dv for all v ∈ C∗. Then in the new matching we have ` additional edges
between C`−1

v and Dv for v ∈ C∗, each with weight `− 1. Hence dM (G′, Gc) ≤ d0 − `(`− 1).
(⇐): Assume that there is a cluster graph G′ = (V, E′) such that |E′ ⊕ E(G)| ≤ k

and dM (G′, Gc) ≤ d. Note that k < `7, thus k < |Cv| and k < |CB |. Consequently, we can
only modify edges between vertices in Ce. It is easy to see that in any optimal matching
in B(G′, Gc), we still have that clique CB must be matched with DB and clique Ce must be
matched with De for every e ∈ E(G0). And we should choose ` cliques from {Cv | v ∈ V (G0)}
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Di, 1 ≤ i ≤ `

Cv, v ∈ V

Dv

Du

CB

DB

Figure 3 Illustration of a possible solution for the constructed instance (see Figure 2) in the proof
of Lemma 1. Blue solid borders represent cliques in G′ and red dotted borders represent cliques in
Gc. Green shaded areas indicate how cliques of G′ and Gc are matched. If two horizontal cliques of
G′ (blue) are matched with two of the ` vertical cliques of Gc, then the corresponding vertices are
part of the clique and hence are adjacent. This means the cliques corresponding to the edge can be
matched in the indicated way.

to be matched with Di for 1 ≤ i ≤ `, which creates ` free cliques Dv. Hence, to decrease the
distance between G and Gc, or to increase the matching, we have to create new cliques to
be matched with these ` free cliques Dv. Since for every Dv, except for vertices contained
in Cv, it only contains single vertices from Ce with v ∈ e, to create new cliques we need to
first separate De to get single vertices and then combine them. To decrease the distance
by `(`− 1), we need to separate at least `(`− 1) single vertices from Ce. This will cost at
least `(`− 1)(`4 + 1)−

(
`
2
)

=
(

`
2
)
(2`4 + 1) edge deletions if we always separate one Ce into

three parts and get two single vertices. Then we need to combine these single vertices into at
most ` cliques since there are at most ` free cliques Dv. This will cost at least `

(
`−1

2
)
edge

insertions if all these `(`− 1) single vertices can be partitioned into ` groups and each group
has `− 1 vertices. Since k =

(
`
2
)
(2`4 + 1) + `

(
`−1

2
)
, we have that in the first step we have to

choose
(

`
2
)
cliques Ce and separate them into three parts and all these `(`− 1) single vertices

are evenly distributed in ` free cliques Dv. This means that in G0 we can select
(

`
2
)
edges

between ` vertices and each vertex has `− 1 incident edges. Thus there is a clique of size `

in G0. J

4 Fixed-Parameter Tractability Results

In this section we identify tractable cases for the considered variants of Dynamic Cluster
Editing. We first show that all problem variants admit a polynomial kernel for the
combination of the budget k and the distance d. Then we present further FPT-results with
respect to single parameters.

4.1 Polynomial Kernels for the Combined Parameter (k + d)

In this section we present polynomial kernels with respect to the parameter combination (k+d)
for all considered variants of Dynamic Cluster Editing:
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I Theorem 3. The following problems admit an O(k2 + d2)-vertex kernel: DCEditing
(Matching Dist), DCDeletion (Matching Dist), and DCCompletion (Matching
Dist). The following problems admit an O(k2 + k · d)-vertex kernel: DCEditing (Edge
Dist), DCDeletion (Edge Dist), and DCCompletion (Edge Dist). All kernels can
be computed in O(|V |3) time.

We describe data reduction rules that each take an instance (G = (V, E), Gc = (V, Ec), k, d)
as input and output a reduced instance that is a yes-instance if and only if the original
instance is a yes-instance (of the corresponding problem variant). In the correctness proof of
each reduction rule, we assume that all previous rules are not applicable.

We first use some well-known reduction rules for classical Cluster Editing [20] to get
a graph which consists of isolated cliques plus one vertex set of size k2 + 2k that does not
contain any isolated cliques. These rules remove edges that are part of k + 1 induced P3s
and add edges between non-adjacent vertex pairs that are part of k + 1 induced P3s. We
defer a formal description and correctness proofs of these rules to a full version of the paper.
The reason we use these data reduction rules even though there are linear-vertex kernels for
classical Cluster Editing [9, 11] is that they do not eliminate any possible solutions.

Now we introduce new reduction rules that are specific to our problem setting, allowing
us to use k + d to upper-bound the size of all remaining isolated cliques and their number to
get a polynomial kernel. First, we observe that if there is a vertex set that forms an isolated
clique both in G and Gc, then we can remove it since it has no influence on k or d in any
problem variant. This is formalized in the next rule. We omit a formal correctness proof.

I Reduction Rule 1. If there is a vertex set C ⊆ V that is an isolated clique in G and Gc,
then remove all vertices in C from G and Gc.

The next rules deal with large cliques and allow us to either remove them or conclude
that we face a no-instance.

I Reduction Rule 2a (Matching-based distance). If there is a vertex set C ⊆ V with
|C| > k + 2d + 1 that is an isolated clique in G, then

if for each vertex set C ′ ⊆ V that is an isolated clique in Gc we have that |C ∩ C ′| ≤ d,
then answer NO,
otherwise, if there is a vertex set C ′ ⊆ V that is an isolated clique in Gc and |C ∩C ′| > d,
then we remove vertices in C from G and Gc and decrease d by |C \ C ′|. Furthermore,
if d ≥ 0, then add a set Cd of k + d + 1 fresh vertices to V . Add all edges between vertices
in Cd to E and add all edges between vertices in Cd ∪ (C ′ \ C) to Gc (if not already
present).

I Reduction Rule 2b (Edge-based distance). If there is a vertex set C ⊆ V with |C| > k

that is an isolated clique in G, then decrease d by |Ec|+
(|C|

2
)
− 2|E(Gc[C])| − |E(Gc[V \C])|

and remove vertices in C from G and Gc.

If none of the previous rules are applicable, then we know that there are no large cliques
left in the graph. The next rule allows us to conclude that we face a no-instance if there are
too many small cliques left.

I Reduction Rule 3. If there are more than 2(k + d) isolated cliques in G, then output NO.

In the following we show that the rules we presented decrease the number of vertices of
the instance to a number polynomial in k + d.
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I Lemma 2. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing that uses the matching-based distance. If
none of the appropriate reduction rules applies, then |V | ∈ O(k2 + d2).

I Lemma 3. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing that uses the edge-based distance. If none
of the appropriate reduction rules applies, then |V | ∈ O(k2 + k · d).

Finally, we can apply all data reduction rules exhaustively in O(|V |3) time.

I Lemma 4. Let (G = (V, E), Gc = (V, Ec), k, d) be an instance of any one of the considered
problem variants of Dynamic Cluster Editing. Then the respective reduction rules can
be exhaustively applied in O(|V |3) time.

It is easy to see that Theorem 3 directly follows from Lemma 2, Lemma 3, and Lemma 4.
We remark that the number of edges that are not part of an isolated clique can be bounded
by O(k3) [20].

4.2 Fixed-Parameter Tractable Cases for Single Parameters
In this section we show that several variants of Dynamic Cluster Editing are fixed-
parameter tractable with respect to either the budget k or the distance d.

I Theorem 4. DCDeletion (Edge Dist) and DCCompletion (Edge Dist) are in FPT
with respect to the budget k. DCCompletion (Matching Dist) and DCCompletion
(Edge Dist) are in FPT with respect to the distance d.

All our FPT results are using the same approach: We reduce (in FPT time) the input to an
instance of Multi-Choice Knapsack (MCK), formally defined as follows.

Multi-Choice Knapsack (MCK)
Input: A family of ` mutually disjoint sets S1, . . . , S` of items, a weight wi,j and a
profit pi,j for each item j ∈ Si, and two integers W and P .
Question: Is it possible to select one item from each set Si such that the profit
sum is at least P and the weight sum is at most W?

MCK is solvable in pseudo-polynomial time by dynamic programming [24]:

I Lemma 5 ([24, Section 11.5]). MCK can be solved in O(W ·
∑`

i=1 |Si|) time.

As our approach is easier to explain with the edge-based distance, we start with this case
and afterwards show how to extend it to the matching-based distance. As already exploited
in our reductions showing NP-hardness (see Theorem 1), all variants of Dynamic Cluster
Editing carry some number-problem flavor. Our generic approach will underline this flavor:
We will focus on cases where we can partition the vertex set of the input graph into parts
such that we will neither add nor delete an edge between two parts. Moreover, we require
that the parts are “easy” enough to list all Pareto-optimal (with respect to k and d) solutions
in FPT-time (this is usually achieved by some kernelization arguments). However, even with
these strict requirements we cannot solve the parts independently from each other: The
challenge is that we have to select for each part an appropriate Pareto-optimal solution.
Finding a feasible combination of these part-individual solutions leads to a knapsack-type
problem (in this case MCK). Indeed, this is common to all studied variants of Dynamic
Cluster Editing.

The details for our generic approach (for edge-based distance) are as follows:
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1. When necessary, apply data reduction rules from Section 4.1. Partition the input
graph G = (V, E) into different parts G1, G2, . . . , G`+1 such that there exists a solution
(if there is a solution) where no edge between two parts will be inserted or deleted. (In
particular, this implies that in G there is no edge between the parts.)

2. Compute for each part Gi = (Vi, Ei), 1 ≤ i ≤ `, a set Si ⊆ N2 encoding “cost” and “gain”
of all “representative” solutions for Gi. The size of the set Si has to be upper-bounded in
a function of the parameter p. (Here, p will be either k or d.)
More precisely, select a family Ei of f(p) edge sets such that for each edge set E′i ⊆

(
Vi

2
)

in Ei the graph G′i = (Vi, E′i ⊕ Ei) is a cluster graph achievable with the allowed number
of modification operations (edge deletions or edge insertions). For each such edge set E′i,
add to Si a tuple containing the cost (= |E′i|) and “decrease” of the distance from Gi

to the target cluster graph Gc. More formally, add (|E′i|, |E′i ∩ Ec| − |E′i \ Ec|) to Si,
where Ec is the edge set of Gc. Note that we allow E′i = ∅, that is, if Gi is a cluster
graph, then Si contains the tuple (0, 0).
The set Si has to fulfill the following property: If there is a solution, then there is a
solution G′ such that restricting G′ to Vi yields a tuple in Si. More precisely, we require
that (|E(G′[Vi])⊕ Ei|, |(E(G′[Vi])⊕ Ei) ∩ Ec| − |(E(G′[Vi])⊕ Ei) \ Ec|) ∈ Si.

3. Create an MCK instance I with W = k, P = |E ⊕ Ec| − d, and the sets S1, S2, . . . , S`

where the tuples in the sets correspond to the items with the first number in the tuple
being its weight and the second number being its profit.

4. Return true if and only if I is a yes-instance.
Note that the requirement in Step 1 implies that a part is a collection of connected components
in G. Furthermore, note that the part G`+1 will be ignored in the subsequent steps. Thus G`+1
contains all vertices which are not contained in an edge of the edge modification set. Observe
that ` ≤ n. Hence, we have

∑`
i=1 |Si| ∈ O(f(p) · n). (The parameter p will be either k or d.)

Moreover, as k and d are smaller than n2, it follows that W < n2 and thus, by Lemma 5,
the MCK instance I created in Step 3 can be solved in O(f(p) · n3) time in Step 4. This
yields the following.

I Observation 1. If the partition in Step 1 and the sets Si in Step 2 can be computed in
FPT-time with respect to p, then the above four-step-approach runs in FPT-time with respect
to p.

Note that Steps 1 and 2 are different for every problem variant we consider. There are,
however, some similarities between the variants where only edge insertions are allowed. Note
that the requirements of Steps 1 and 2 seem impossible to achieve in FPT-time when allowing
edge insertions and deletions. Indeed, as shown in Theorem 2, the corresponding edge-edit
variants are W[1]-hard with respect to the studied (single) parameters k and d respectively.

Next, we use the above approach to show that DCDeletion (Edge Dist) is fixed-
parameter tractable with respect to k. The fixed-parameter tractability of DCCompletion
(Edge Dist) with respect to k and with respect to d is deferred to a full version of the
paper.

I Lemma 6. DCDeletion (Edge Dist) is FPT with respect to k.

Proof (Sketch). We first apply the known reduction rules for Cluster Editing (see
discussion after Theorem 3). As a result, we end up with a graph where at most k2 + 2k

vertices are contained in an induced P3; all other vertices form a cluster graph with cliques
containing at most k vertices each. We define the parts G1, G2, . . . , G`, G`+1 of Step 1 as
follows: The first part G1 = (V1, E1) contains the graph induced by all vertices contained in
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a P3. Each of the cliques in the cluster graph G[V \ V1] forms another part Gi, 2 ≤ i ≤ `.
Finally, set G`+1 = (∅, ∅), that is, we include all vertices in the subsequent steps of our
generic approach. Clearly, each part contains less than 2k2 vertices. Moreover, observe that
there are no edges between the parts.

As to Step 2, we add, for every edge set E′i ⊆ Ei such that G′i = (Vi, E′i \ Ei) is a
cluster graph, a tuple (|E′i|, |E′i ∩ Ec| − |E′i \ Ec|) to Si. As this enumerates all possible
solutions for Gi, the requirement in Step 2 is fulfilled. Together with Observation 1 we get
the statement of the lemma. J

We next discuss how to adjust our generic four-step approach for DCCompletion
(Matching Dist). The main difference to the edge-based distance variants is an additional
search tree of size O(dd+2) in the beginning. Each leaf of the search tree then corresponds
to a simplified instance where we have additional knowledge on the matching defining the
distance of a solution to Gc. With this additional knowledge, we can apply our generic
four-step approach in each leaf, yielding the following.

I Lemma 7. DCCompletion (Matching Dist) is FPT with respect to d.

Proof. We apply our generic four-step approach and thus need to provide the details how to
implement Steps 1 and 2.

We can assume that our input graph is a cluster graph. Let C be the set of all cliques
in G and D = {D1, D2, . . . , Dq} the set of all cliques in Gc. Then we classify all cliques in C
into two classes C1 and C2, where every clique in C1 has the property that all its vertices
are contained in one clique in D and every clique in C2 contains vertices from at least two
different cliques in D. Observe that |C2| ≤ d as otherwise the input is a no-instance. Similarly,
every clique in C2 contains vertices from at most d + 1 different cliques in D as otherwise the
input is a no-instance.

This allows us to do the following branching step. For each clique in C2 we try out all
“meaningful” possibilities to match it to a clique in D, where “meaningful” means that the
cliques in C2 and D should share some vertices or we decide to not match the clique of C2
to any clique in D. For each clique this gives us d + 2 possibilities and hence we have at
most dd+2 different cases each of which defines a mapping M : C2 → D ∪ {∅} that maps a
clique in C2 to the clique in D it is matched to.

Given the mapping M from cliques in C2 to cliques D or ∅, we partition G into q + 1
groups G1, G2, . . . , Gq, Gq+1 with Gi = G[Vi], where Vi = {C ∈ C1 | C ⊆ Di} ∪ {C ∈ C2 |
M(C) = Di} and Vq+1 = {C ∈ C2 |M(C) = ∅}.

If there is a solution with a matching that uses the matches given by M , then there is a
solution only combining cliques within every group Gi, 1 ≤ i ≤ q, since all cliques in Gi that
are not matched by M are completely contained in Di and hence would not be merged with
cliques in Gj for some i 6= j. This shows that with ` = q the requirements of Step 1 of our
generic approach are met.

Next we describe Step 2, that is, for every part Gi, we show how to compute a set Si

corresponding to all “representative” solutions. Note that all except at most d cliques from Gi

need to be merged into one clique that is then matched with Di, otherwise the matching
distance would be too large. For each clique in Gi that is not completely contained in Di we
already know that it is matched to Di, hence we need to merge all cliques of this kind to one
clique C?

i . Each clique in Gi that is completely contained in Di and has size at least d + 1
also needs to be merged to C?

i , otherwise the matching distance would be too large. For all
cliques of Gi that are completely contained in Di with size x for some 1 ≤ x ≤ d we merge
all but d cliques to C?

i . This leaves us with one big clique C?
i and d2 cliques of size at most d
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each. Now we can brute-force all possibilities to merge some of the remaining cliques to C?
i .

There are less than dd possibilities to do so and for each possibility we add to Si a tuple
representing the cost and gain of merging the cliques according to the partition. J

5 Conclusion

Our work provides a first thorough (parameterized) analysis of Dynamic Cluster Editing,
addressing a natural dynamic setting for graph-based data clustering. We deliver both
(parameterized) tractability and intractability results. Our positive algorithmic results
(fixed-parameter tractability and kernelization) are mainly of classification nature. To get
practically useful algorithms, one needs to further improve our running times.

The main difference to static Cluster Editing seems to come from the fact that all
six variants of Dynamic Cluster Editing remain NP-hard when the input graph is a
cluster graph (see Theorem 1). Moreover, Dynamic Cluster Editing (both matching-
and edge-based distance) is W[1]-hard with respect to the budget k (see Theorem 2) whereas
Cluster Editing is FPT with respect to k. The obvious approach to solve Dynamic
Cluster Editing is to compute (almost) all cluster graphs achievable with at most k edge
modifications, then from this set of cluster graphs pick one at distance at most d to the
target cluster graph. However, listing these cluster graphs is computationally hard. Indeed,
our W[1]-hardness results indicate that we might not do much better than using this simple
approach.

We mention in passing that our results can also be used to show fixed-parameter tract-
ability for the case when both input graphs are arbitrary graphs and one wants to find a
“compromise” cluster graph being close enough (in terms edge-based distance) to both input
graphs. The parameter herein is the symmetric distance of the edge sets.

We conclude with few open questions. First, we left open the parameterized complexity of
Dynamic Cluster Editing (deletion variant and completion variant) with matching-based
distance when parameterized by the budget k, see Table 1 in Section 1. Moreover, the
existence of polynomial-size problem kernels for our fixed-parameter tractable cases in case
of single parameters (budget k or distance d) is open.
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Abstract
We investigate the complexity of the separation problem associated to classes of regular languages.
For a class C, C-separation takes two regular languages as input and asks whether there exists
a third language in C which includes the first and is disjoint from the second. First, in contrast
with the situation for the classical membership problem, we prove that for most classes C, the
complexity of C-separation does not depend on how the input languages are represented: it is
the same for nondeterministic finite automata and monoid morphisms. Then, we investigate
specific classes belonging to finitely based concatenation hierarchies. It was recently proved
that the problem is always decidable for levels 1/2 and 1 of any such hierarchy (with inefficient
algorithms). Here, we build on these results to show that when the alphabet is fixed, there
are polynomial time algorithms for both levels. Finally, we investigate levels 3/2 and 2 of the
famous Straubing-Thérien hierarchy. We show that separation is PSpace-complete for level 3/2
and between PSpace-hard and EXPTime for level 2.
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1 Introduction

For more than 50 years, a significant research effort in theoretical computer science was
made to solve the membership problem for regular languages. This problem consists in
determining whether a class of regular languages is decidable, that is, whether there is an
algorithm inputing a regular language and outputing ‘yes’ if the language belongs to the
investigated class, and ‘no’ otherwise.

Many results were obtained in a long and fruitful line of research. The most prominent
one is certainly Schützenberger’s theorem [19], which gives such an algorithm for the class of
star-free languages. For most interesting classes also, we know precisely the computational
cost of the membership problem. As can be expected, this cost depends on the way the
input language is given. Indeed, there are several ways to input a regular language. For
instance, it can be given by a nondeterministic finite automaton (NFA), or, alternately, by a
morphism into a finite monoid. While obtaining an NFA representation from a morphism into
a monoid has only a linear cost, the converse direction is much more expensive: from an NFA
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with n states, the smallest monoid recognizing the same language may have an exponential
number of elements (the standard construction yields 2n2 elements). This explains why the
complexity of the membership problem depends on the representation of the input. For
instance, for the class of star-free languages, it is PSpace-complete if one starts from NFAs
(and actually, even from DFAs [2]) while it is NL when starting from monoid morphisms.

Recently, another problem, called separation, has replaced membership as the cornerstone
in the investigation of regular languages. It takes as input two regular langages instead
of one, and asks whether there exists a third language from the class under investigation
including the first input language and having empty intersection with the second one. This
problem has served recently as a major ingredient in the resolution of difficult membership
problems, such as the so-called dot-depth two problem [16] which remained open for 40 years
(see [13, 18, 6] for recent surveys on the topic). Dot-depth two is a class belonging to a
famous concatenation hierarchy which stratifies the star-free languages: the dot-depth [1]. A
specific concatenation hierarchy is built in a generic way. One starts from a base class (level 0
of the hierarchy) and builds increasingly growing classes (called levels and denoted by 1/2, 1,
3/2, 2, . . . ) by alternating two standard closure operations: polynomial and Boolean closure.
Concatenation hierarchies account for a significant part of the open questions in this research
area. The state of the art regarding separation is captured by only three results [17, 9]: in
finitely based concatenation hierarchies (i.e. those whose basis is a finite class) levels 1/2, 1
and 3/2 have decidable separation. Moreover, using specific transfer results [15], this can
be pushed to the levels 3/2 and 2 for the two most famous finitely based hierarchies: the
dot-depth [1] and the Straubing-Thérien hierarchy [21, 22].

Unlike the situation for membership and despite these recent decidability results for
separability in concatenation hierarchies, the complexity of the problems and of the corres-
ponding algorithms has not been investigated so far (except for the class of piecewise testable
languages [3, 11, 5], which is level 1 in the Straubing-Thérien hierarchy). The aim of this
paper is to establish such complexity results. Our contributions are the following:

We present a generic reduction, which shows that for many natural classes, the way
the input is given (by NFAs or finite monoids) has no impact on the complexity of the
separation problem. This is proved using two LogSpace reductions from one problem to
the other. This situation is surprising and opposite to that of the membership problem,
where an exponential blow-up is unavoidable when going from NFAs to monoids.
Building on the results of [17], we show that when the alphabet is fixed, there are
polynomial time algorithms for levels 1/2 and 1 in any finitely based hierarchy.
We investigate levels 3/2 and 2 of the famous Straubing-Thérien hierarchy, and we show
that separation is PSpace-complete for level 3/2 and between PSpace-hard and EXPTime
for level 2. The upper bounds are based on the results of [17] while the lower bounds are
based on independent reductions.

Organization. In Section 2, we give preliminary terminology on the objects investigated in
the paper. Sections 3, 4 and 5 are then devoted to the three above points. Due to space
limitations, many proofs are postponed to the full version of the paper.

2 Preliminaries

In this section, we present the key objects of this paper. We define words and regular
languages, classes of languages, the separation problem and finally, concatenation hierarchies.
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2.1 Words and regular languages
An alphabet is a finite set A of symbols, called letters. Given some alphabet A, we denote
by A+ the set of all nonempty finite words and by A∗ the set of all finite words over A (i.e.,
A∗ = A+ ∪ {ε}). If u ∈ A∗ and v ∈ A∗ we write u · v ∈ A∗ or uv ∈ A∗ for the concatenation
of u and v. A language over an alphabet A is a subset of A∗. Abusing terminology, if
u ∈ A∗ is some word, we denote by u the singleton language {u}. It is standard to extend
concatenation to languages: given K,L ⊆ A∗, we write KL = {uv | u ∈ K and v ∈ L}.
Moreover, we also consider marked concatenation, which is less standard. Given K,L ⊆ A∗,
a marked concatenation of K with L is a language of the form KaL, for some a ∈ A.

We consider regular languages, which can be equivalently defined by regular expressions,
nondeterministic finite automata (NFAs), finite monoids or monadic second-order logic (MSO).
In the paper, we investigate the separation problem which takes regular languages as input.
Since we are focused on complexity, how we represent these languages in our inputs matters.
We shall consider two kinds of representations: NFAs and monoids. Let us briefly recall these
objects and fix the terminology (we refer the reader to [7] for details).

NFAs. An NFA is a tuple A = (A,Q, δ, I, F ) where A is an alphabet, Q a finite set of states,
δ ⊆ Q × A × Q a set of transitions, I ⊆ Q a set of initial states and F ⊆ Q a set of final
states. The language L(A) ⊆ A∗ consists of all words labeling a run from an initial state to a
final state. The regular languages are exactly those which are recognized by an NFA. Finally,
we write “DFA” for deterministic finite automata, which are defined in the standard way.

Monoids. We turn to the algebraic definition of regular languages. A monoid is a set M
endowed with an associative multiplication (s, t) 7→ s · t (also denoted by st) having a neutral
element 1M , i.e., such that 1M · s = s · 1M = s for every s ∈M . An idempotent of a monoid
M is an element e ∈M such that ee = e.

Observe that A∗ is a monoid whose multiplication is concatenation (the neutral element
is ε). Thus, we may consider monoid morphisms α : A∗ → M where M is an arbitrary
monoid. Given such a morphism, we say that a language L ⊆ A∗ is recognized by α when
there exists a set F ⊆M such that L = α−1(F ). It is well-known that the regular languages
are also those which are recognized by a morphism into a finite monoid. When representing a
regular language L by a morphism into a finite monoid, one needs to give both the morphism
α : A∗ →M (i.e., the image of each letter) and the set F ⊆M such that L = α−1(F ).

2.2 Classes of languages and separation
A class of languages C is a correspondence A 7→ C(A) which, to an alphabet A, associates a
set of languages C(A) over A.

I Remark. When two alphabets A,B satisfy A ⊆ B, the definition of classes does not
require C(A) and C(B) to be comparable. In fact, it may happen that a particular language
L ⊆ A∗ ⊆ B∗ belongs to C(A) but not to C(B) (or the opposite). For example, we may
consider the class C defined by C(A) = {∅, A∗} for every alphabet A. When A ( B, we have
A∗ ∈ C(A) while A∗ 6∈ C(B).

We say that C is a lattice when for every alphabet A, we have ∅, A∗ ∈ C(A) and C(A) is
closed under finite union and finite intersection: for any K,L ∈ C(A), we have K ∪ L ∈ C(A)
and K ∩ L ∈ C(A). Moreover, a Boolean algebra is a lattice C which is additionally closed
under complement: for any L ∈ C(A), we have A∗ \L ∈ C(A). Finally, a class C is quotienting
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if it is closed under quotients. That is, for every alphabet A, L ∈ C(A) and word u ∈ A∗, the
following properties hold:

u−1L
def= {w ∈ A∗ | uw ∈ L} and Lu−1 def= {w ∈ A∗ | wu ∈ L} both belong to C(A).

All classes that we consider in the paper are (at least) quotienting lattices consisting of
regular languages. Moreover, some of them satisfy an additional property called closure under
inverse image.

Recall that A∗ is a monoid for any alphabet A. We say that a class C is closed under
inverse image if for every two alphabets A,B, every monoid morphism α : A∗ → B∗ and
every language L ∈ C(B), we have α−1(L) ∈ C(A). A quotienting lattice (resp. quotienting
Boolean algebra) closed under inverse image is called a positive variety (resp. variety).

Separation. Consider a class of languages C. Given an alphabet A and two languages
L1, L2 ⊆ A∗, we say that L1 is C-separable from L2 when there exists a third language
K ∈ C(A) such that L1 ⊆ K and L2 ∩K = ∅. In particular, K is called a separator in C.
The C-separation problem is now defined as follows:

Input: An alphabet A and two regular languages L1, L2 ⊆ A∗.
Output: Is L1 C-separable from L2 ?

I Remark. Separation generalizes the simpler membership problem, which asks whether a
single regular language belongs to C. Indeed L ∈ C if and only if L is C-separable from A∗ \L
(which is also regular and computable from L).

Most papers on separation are mainly concerned about decidability. Hence, they do not
go beyond the above presentation of the problem (see [3, 16, 12, 17] for example). However,
this paper specifically investigates complexity. Consequently, we shall need to be more precise
and take additional parameters into account. First, it will be important to specify whether
the alphabet over which the input languages is part of the input (as above) or a constant.
When considering separation for some fixed alphabet A, we shall speak of “C(A)-separation”.
When the alphabet is part of the input, we simply speak of “C-separation”.

Another important parameter is how the two input languages are represented. We shall
consider NFAs and monoids. We speak of separation for NFAs and separation for monoids.
Note that one may efficiently reduce the latter to the former. Indeed, given a language
L ⊆ A∗ recognized by some morphism α : A∗ →M , it is simple to efficiently compute a NFA
with |M | states recognizing L (see [7] for example). Hence, we have the following lemma.

I Lemma 1. For any class C, there is a LogSpace reduction from C-separation for monoids
to C-separation for NFAs.

Getting an efficient reduction for the converse direction is much more difficult since going
from NFAs (or even DFAs) to monoids usually involves an exponential blow-up. However, we
shall see in Section 3 that for many natural classes C, this is actually possible.

2.3 Concatenation hierarchies
We now briefly recall the definition of concatenation hierarchies. We refer the reader to [18]
for a more detailed presentation. A particular concatenation hierarchy is built from a starting
class of languages C, which is called its basis. In order to get robust properties, we restrict C
to be a quotienting Boolean algebra of regular languages. The basis is the only parameter in
the construction. Once fixed, the construction is generic: each new level is built from the
previous one by applying generic operators: either Boolean closure, or polynomial closure.
Let us first define these two operators.
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Definition. Consider a class C. We denote by Bool(C) the Boolean closure of C: for every
alphabet A, Bool(C)(A) is the least set containing C(A) and closed under Boolean operations.
Moreover, we denote by Pol(C) the polynomial closure of C: for every alphabet A, Pol(C)(A)
is the least set containing C(A) and closed under union and marked concatenation (if
K,L ∈ Pol(C)(A) and a ∈ A, then K ∪ L,KaL ∈ Pol(C)(A)).

Consider a quotienting Boolean algebra of regular languages C. The concatenation
hierarchy of basis C is defined as follows. Languages are classified into levels of two kinds:
full levels (denoted by 0, 1, 2,. . . ) and half levels (denoted by 1/2, 3/2, 5/2,. . . ). Level 0 is
the basis (i.e., C) and for every n ∈ N,

The half level n+ 1/2 is the polynomial closure of the previous full level, i.e., of level n.
The full level n+ 1 is the Boolean closure of the previous half level, i.e., of level n+ 1/2.

0 1/2 1 3/2 2 5/2Pol

Bool

Pol

Bool

Pol

We write 1
2N = {0, 1/2, 1, 2, 3/2, 3, . . . } for the set of all possible levels in a concatenation

hierarchy. Moreover, for any basis C and n ∈ 1
2N, we write C[n] for level n in the concatenation

hierarchy of basis C. It is known that every half-level is a quotienting lattice and every full
level is a quotienting Boolean algebra (see [18] for a recent proof).

We are interested in finitely based concatenation hierarchies: if C is the basis, then C(A) is
finite for every alphabet A. Indeed, it was shown in [17] that for such hierarchies separation
is always decidable for the levels 1/2 and 1 (in fact, while we do not discuss this in the
paper, this is also true for level 3/2, see [9] for a preliminary version). In Section 4, we
build on the results of [17] and show that when the alphabet is fixed, this can be achieved in
polynomial time for both levels 1/2 and 1. Moreover, we shall also investigate the famous
Straubing-Thérien hierarchy in Section 5. Our motivation for investigating this hierarchy in
particular is that the results of [17] can be pushed to levels 3/2 and 2 in this special case.

3 Handling NFAs

In this section, we investigate how the representation of input languages impact the complexity
of separation. We prove that for many natural classes C (including most of those considered
in the paper), C-separation has the same complexity for NFAs as for monoids. Because of
these results, we shall be able to restrict ourselves to monoids in later sections.

I Remark. This result highlights a striking difference between separation and the simpler
membership problem. For most classes C, C-membership is strictly harder for NFAs than for
monoids. This is because when starting from a NFA, typical membership algorithms require
to either determinize A or compute a monoid morphism recognizing L(A) which involves an
exponential blow-up in both cases. Our results show that the situation differs for separation.

We already have a generic efficient reduction from C-separation for monoids to C-separation
for NFAs (see Lemma 1). Here, we investigate the opposite direction: given some class C, is
it possible to efficiently reduce C-separation for NFAs to C-separation for monoids ? As far
as we know, there exists no such reduction which is generic to all classes C.

I Remark. There exists an inefficient generic reduction from separation for NFAs to the sep-
aration for monoids. Given as input two NFAs A1,A2, one may compute monoid morphisms
recognizing L(A1) and L(A2). This approach is not satisfying as it involves an exponential
blow-up: we end-up with monoids Mi of size 2|Qi|2 where Qi is the set of states of Ai.
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Here, we present a set of conditions applying to a pair of classes (C,D). When they are
satisfied, there exists an efficient reduction from C-separation for NFAs to D-separation for
monoids. By themselves, these conditions are abstract. However, we highlight two concrete
applications. First, for every positive variety C, the pair (C, C) satisfies the conditions. Second,
for every finitely based concatenation hierarchies of basis C, there exists another finite basis
D such that for every n ∈ 1

2N, the pair (C[n],D[n]) satisfies the conditions
We first introduce the notions we need to present the reduction and the conditions

required to apply it. Then, we state the reduction itself and its applications.

3.1 Generic theorem
We fix a special two letter alphabet E = {0, 1}. For the sake of improved readability, we
abuse terminology and assume that when considering an arbitrary alphabet A, it always has
empty intersection with E. This is harmless as we may work up to bijective renaming.

We exhibit conditions applying to a pair of classes (C,D). Then, we prove that they
imply the existence of an efficient reduction from C-separation for NFAs to D-separation for
monoids. This reduction is based on a construction which takes as input a NFA A (over
some arbitrary alphabet A) and builds a modified version of the language L(A) (over A ∪E)
which is recognized by a “small” monoid. Our conditions involve two kinds of hypotheses:
1. First, we need properties related to inverse image: “D must be an an extension of C”.
2. The construction is parametrized by an object called “tagging”. We need an algorithm

which builds special taggings (with respect to D) efficiently.
We now make these two notions more precise. Let us start with extension.

Extensions. Consider two classes C and D. We say that D is an extension of C when for
every alphabet A, the two following conditions hold:

If γ : (A ∪ E)∗ → A∗ is the morphism defined by γ(a) = a for a ∈ A and γ(b) = ε for
b ∈ E, then for every K ∈ C(A), we have γ−1(K) ∈ D(A ∪E).
For every u ∈ E∗, if λu : A∗ → (A ∪ E)∗ is the morphism defined by λu(a) = au for
a ∈ A, then for every K ∈ D(A ∪E), we have λ−1

u (K) ∈ C(A).
Positive varieties give an important example of extension. Since they are closed under inverse
image, it is immediate that for every positive variety C, C is an extension of itself.

Taggings. A tagging is a pair P = (τ : E∗ → T,G) where τ is a morphism into a finite
monoid and G ⊆ T . We call |G| the rank of P and |T | its size. Moreover, given some NFA
A = (A,Q, δ, I, F ), P is compatible with A when the rank |G| is larger than |δ|.

For our reduction, we shall require special taggings. Consider a class D and a tagging
P = (τ : E∗ → T,G). We say that P fools D when, for every alphabet A and every morphism
α : (A ∪ E)∗ → M into a finite monoid M , if all languages recognized by α belong to
Bool(D)(A∪E), then, there exists s ∈M , such that for every t ∈ G, we have wt ∈ E∗ which
satisfies α(wt) = s and τ(wt) = t.

Our reduction requires an efficient algorithm for computing taggings which fool the output
class D. Specifically, we say that a class D is smooth when, given as input k ∈ N, one may
compute in LogSpace (with respect to k) a tagging of rank at least k which fools D.

Main theorem. We may now state our generic reduction theorem. The statement has two
variants depending on whether the alphabet is fixed or not.
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I Theorem 2. Let C,D be quotienting lattices such that D is smooth and extends C. Then
the two following properties hold:

There is a LogSpace reduction from C-separation for NFAs to D-separation for monoids.
For every fixed alphabet A, there is a LogSpace reduction from C(A)-separation for NFAs
to D(A ∪E)-separation for monoids.

We have two main applications of Theorem 2 which we present at the end of the section.
Let us first describe the reduction. As we explained, we use a construction building a language
recognized by a “small” monoid out of an input NFA and a compatible tagging.

Consider a NFA A = (A,Q, δ, I, F ) and let P = (τ : E∗ → T,G) be a compatible tagging
(i.e. |δ| ≤ |G|). We associate a new language L[A, P ] over the alphabet A ∪ E and show
that one may efficiently compute a recognizing monoid whose size is polynomial with respect
to |Q| and the rank of P (i.e |G|). The construction involves two steps. We first define an
intermediary language K[A, P ] over the alphabet A× T and then define L[A, P ] from it.

We define K[A, P ] ⊆ (A× T )∗ as the language recognized by a new NFA A[P ] which is
built by relabeling the transitions of A. Note that the definition of A[P ] depends on arbitrary
linear orders on G and δ. We let A[P ] = (A × T,Q, δ[P ], I, F ) where δ[P ] is obtained by
relabeling the transitions of A as follows. Given i ≤ |δ|, if (qi, ai, ri) ∈ δ is the i-th transition
of A, we replace it with the transition (qi, (ai, ti), ri) ∈ δ[P ] where ti ∈ G is the i-th element
of G (recall that |δ| ≤ |G| by hypothesis).
I Remark. A key property of A[P ] is that, by definition, all transitions are labeled by distinct
letters in A× T . This implies that K[A, P ] = L(A[P ]) is recognized by a monoid of size at
most |Q|2 + 2.

We may now define the language L[A, P ] ⊆ (A ∪E)∗. Observe that we have a natural
map µ : (AE∗)∗ → (A × T )∗. Indeed, consider w ∈ (AE∗)∗. Since A ∩ E = ∅ (recall
that this is a global assumption), it is immediate that w admits a unique decomposition
w = a1w1 · · · anwn with a1, . . . , an ∈ A and w1, . . . , wn ∈ E∗. Hence, we may define
µ(w) = (a1, P (w1)) · · · (an, P (wn)) ∈ (A× T )∗. Finally, we define,

L[A, P ] = E∗ · µ−1(K[A, P ]) ⊆ (A ∪E)∗

We may now state the two key properties of L[A, P ] upon which Theorem 2 is based. It is
recognized by a small monoid and the construction is connected to the separation.

I Proposition 3. Given a NFA A = (A,Q, δ, I, F ) and a compatible tagging P of rank n,
one may compute in LogSpace a monoid morphism α : (A ∪E)∗ →M recognizing L[A, P ]
and such that |M | ≤ n+ |A| × n2 × (|Q|2 + 2).

I Proposition 4. Let C,D be quotienting lattices such that D extends C. Consider two NFAs
A1 and A2 over some alphabet A and let P be a compatible tagging that fools D. Then, L(A1)
is C(A)-separable from L(A2) if and only if L[A1, P ] is D(A ∪E)-separable from L[A2, P ].

Let us explain why these two propositions imply Theorem 2. Let C,D be quotienting
lattices such that D is smooth and extends C. We show that the second assertion in the
theorem holds (the first one is proved similarly).

Consider two NFAs Ai = (A,Qj , δj , Ij , Fj) for j = 1, 2. We let k = max(|δ1|, |δ2|). Since
D is smooth, we may compute (in LogSpace) a tagging P = (τ : E∗ → T,G) of rank |G| ≥ k.
Then, we may use Proposition 3 to compute (in LogSpace) monoid morphisms recognizing
L[A1, P ] and L[A2, P ]. Finally, by Proposition 4, L(A1) is C(A)-separable from L(A2) if
and only if L[A1, P ] is D(A ∪E)-separable from L[A2, P ]. Altogether, this construction is a
LogSpace reduction to D-separation for monoids which concludes the proof.
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3.2 Applications

We now present the two main applications of Theorem 2. We start with the most simple one
positive varieties. Indeed, we have the following lemma.

I Lemma 5. Let C be a positive variety. Then, C is an extension of itself. Moreover, if
Bool(C) 6= REG, then C is smooth.

That a positive variety is an extension of itself is immediate (one uses closure under
inverse image). The difficulty is to prove smoothness. We may now combine Theorem 2 with
Lemma 5 to get the following corollary.

I Corollary 6. Let C be a positive variety such that Bool(C) 6= REG. There exists a LogSpace
reduction from C-separation for NFAs to C-separation for monoids.

Corollary 6 implies that for any positive variety C, the complexity of C-separation is the
same for monoids and NFAs. We illustrate this with an example: the star-free languages.

I Example 7. Consider the star-free languages (SF): for every alphabet A, SF(A) is the
least set of languages containing all singletons {a} for a ∈ A and closed under Boolean
operations and concatenation. It is folklore and simple to verify that SF is a variety. It is
known that SF-membership is in NL for monoids (this is immediate from Schützenberger’s
theorem [19]). On the other hand, SF-membership is PSpace-complete for NFAs. In fact, it
is shown in [2] that PSpace-completeness still holds for deterministic finite automata (DFAs).

For SF-separation, we may combine Corollary 6 with existing results to obtain that the
problem is in EXPTime and PSpace-hard for both NFAs and monoids. Indeed, the EXPTime
upper bounds is proved in [14] for monoids and we may lift it to NFAs with Corollary 6.
Finally, the PSpace lower bound follows from [2]: SF-membership is PSpace-hard for DFAs.
This yields that SF-separation is PSpace-hard for both DFAs and NFAs (by reduction from
membership to separation which is easily achieved in LogSpace when starting from a DFA).
Using Corollary 6 again, we get that SF-separation is PSpace-hard for monoids as well. J

We turn to our second application: finitely based concatenation hierarchies. Consider
a finite quotienting Boolean algebra C. We associate another finite quotienting Boolean
algebra CE which we only define for alphabets of the form A ∪ E (this is harmless: CE is
used as the output class of our reduction). Let A be an alphabet and consider the morphism
γ : (A ∪E)∗ → A∗ defined by γ(a) = a for a ∈ A and γ(0) = γ(1) = ε. We define,

CE(A ∪E) = {γ−1(L) | L ∈ C(A)}

It is straightforward to verify that CE remains a finite quotienting Boolean algebra. Moreover,
we have the following lemma.

I Lemma 8. Let C be a finite quotienting Boolean algebra. For every n ∈ 1
2N, CE[n] is

smooth and an extension of C[n].

In view of Theorem 2, we get the following corollary which provides a generic reduction
for levels within finitely based hierarchies.

I Corollary 9. Let C be a finite basis and n ∈ 1
2N. There exists a LogSpace reduction from

C[n]-separation for NFAs to CE[n]-separation for monoids.
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4 Generic upper bounds for low levels in finitely based hierarchies

In this section, we present generic complexity results for the fixed alphabet separation problem
associated to the lower levels in finitely based concatenation hierarchies. More precisely, we
show that for every finite basis C and every alphabet A, C[1/2](A)- and C[1](A)-separation
are respectively in NL and in P. These upper bounds hold for both monoids and NFAs: we
prove them for monoids and lift the results to NFAs using the reduction of Corollary 9.
I Remark. We do not present new proofs for the decidability of C[1/2]- and C[1]-separation
when C is a finite quotienting Boolean algebra. These are difficult results which are proved
in [17]. Instead, we recall the (inefficient) procedures which were originally presented in [17]
and carefully analyze and optimize them in order to get the above upper bounds.

For the sake of avoiding clutter, we fix an arbitrary finite quotienting Boolean algebra C
and an alphabet A for the section.

4.1 Key sub-procedure
The algorithms C[1/2](A)- and C[1](A)-separation presented in [17] are based on a common
sub-procedure. This remains true for the improved algorithms which we present in the
paper. In fact, this sub-procedure is exactly what we improve to get the announced upper
complexity bounds. We detail this point here. Note that the algorithms require considering
special monoid morphisms (called “C-compatible”) as input. We first define this notion.

C-compatible morphisms. Since C is finite, one associates a classical equivalence ∼C defined
on A∗. Given u, v ∈ A∗, we write u ∼C v if and only if u ∈ L ⇔ v ∈ L for all L ∈ C(A).
Given w ∈ A∗, we write [w]C ⊆ A∗ for its ∼C-class. Since C is a finite quotienting Boolean
algebra, ∼C is a congruence of finite index for concatenation (see [18] for a proof). Hence,
the quotient A∗/∼C is a monoid and the map w 7→ [w]C a morphism.

Consider a morphism α : A∗ →M into a finite monoid M . We say that α is C-compatible
when there exists a monoid morphism s 7→ [s]C fromM to A∗/∼C such that for every w ∈ A∗,
we have [w]C = [α(w)]C . Intuitively, the definition means that α “computes” the ∼C-classes
of words in A∗. The following lemma is used to compute C-compatible morphisms (note that
the LogSpace bound holds because C and A is fixed).

I Lemma 10. Given two morphisms recognizing regular languages L1, L2 ⊆ A∗ as input,
one may compute in LogSpace a C-compatible morphism which recognizes both L1 and L2.

In view of Lemma 10, we shall assume in this section without loss of generality that
our input in separation for monoids is a single C-compatible morphism recognizing the two
languages that need to be separated.

Sub-procedure. Consider two C-compatible morphisms α : A∗ →M and β : A∗ → N . We
say that a subset of N is good (for β) when it contains β(A∗) and is closed under multiplication.
For every good subset S of N , we associate a subset of M × 2N . We then consider the
problem of deciding whether specific elements belong to it (this is the sub-procedure used in
the separation algorithms).
I Remark. The set M × 2N is clearly a monoid for the componentwise multiplication. Hence
we may multiply its elements and speak of idempotents in M × 2N .

An (α, β, S)-tree is an unranked ordered tree. Each node x must carry a label lab(x) ∈
M × 2N and there are three possible kinds of nodes:
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Leaves: x has no children and lab(x) = (α(w), {β(w)}) for some w ∈ A∗.
Binary: x has exactly two children x1 and x2. Moreover, if (s1, T1) = lab(x1) and
(s2, T2) = lab(x2), then lab(x) = (s1s2, T ) with T ⊆ T1T2.
S-Operation: x has a unique child y. Moreover, the following must be satisfied:
1. The label lab(y) is an idempotent (e, E) ∈M × 2N .
2. lab(x) = (e, T ) with T ⊆ E · {t ∈ S | [e]C = [t]C ∈ S} · E.

We are interested in deciding whether elements in M × 2N are the root label of some
computation tree. Observe that computing all such elements is easily achieved with a least
fixpoint procedure: one starts from the set of leaf labels and saturates this set with three
operations corresponding to the two kinds of inner nodes. This is the approach used in [17]
(actually, the set of all root labels is directly defined as a least fixpoint and (α, β, S)-trees
are not considered). However, this is costly since the computed set may have exponential
size with respect to |N |. Hence, this approach is not suitable for getting efficient algorithms.
Fortunately, solving C[1/2](A)- and C[1](A)-separation does not require to have the whole
set of possible root labels in hand. Instead, we shall only need to consider the elements
(s, T ) ∈M × 2N which are the root label of some tree and such that T is a singleton set.
It turns out that these specific elements can be computed efficiently. We state this in the
next theorem which is the key technical result and main contribution of this section.

I Theorem 11. Consider two C-compatible morphisms α : A∗ →M and β : A∗ → N and a
good subset S ⊆ N . Given s ∈ M and t ∈ N , one may test in NL with respect to |M | and
|N | whether there exists an (α, β, S)-tree with root label (s, {t}).

Theorem 11 is proved in the full version of the paper. We only present a brief outline
which highlights two propositions about (α, β, S)-trees upon which the theorem is based.

We first define a complexity measure for (α, β, S)-trees. Consider two C-compatible
morphisms α : A∗ → M and β : A∗ → N as well as a good subset S ⊆ N . Given an
(α, β, S)-tree T, we define the operational height of T as the greatest number h ∈ N such
that T contains a branch with h S-operation nodes.

Our first result is a weaker version of Theorem 11. It considers the special case when we
restrict ourselves to (α, β, S)-trees whose operational heights are bounded by a constant.

I Proposition 12. Let h ∈ N be a constant and consider two C-compatible morphisms
α : A∗ →M and β : A∗ → N and a good subset S ⊆ N . Given s ∈M and t ∈ N , one may
test in NL with respect to |M | and |N | whether there exists an (α, β, S)-tree of operational
height at most h and with root label (s, {t}).

Our second result complements the first one: in Theorem 11, it suffices to consider
(α, β, S)-trees whose operational heights are bounded by a constant (depending only on the
class C and the alphabet A which are fixed here). Let us first define this constant. Given a
finite monoid M , we define the J -depth of M as the greatest number h ∈ N such that one
may find h pairwise distinct elements s1, . . . , sh ∈M such that for every i < h, si+1 = xsiy

for some x, y ∈M
I Remark. The term “J -depth” comes from the Green’s relations which are defined on any
monoid [4]. We do not discuss this point here.

Recall that the quotient set A∗/∼C is a monoid. Consequently, it has a J -depth. Our
second result is as follows.

I Proposition 13. Let h ∈ N be the J -depth of A∗/∼C. Consider two C-compatible
morphisms α : A∗ → M and β : A∗ → N , and a good subset S ⊆ N . Then, for every
(s, T ) ∈M × 2N , the following properties are equivalent:
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1. (s, T ) is the root label of some (α, β, S)-tree.
2. (s, T ) is the root label of some (α, β, S)-tree whose operational height is at most h.

In view of Proposition 13, Theorem 11 is an immediate consequence of Proposition 12
applied in the special case when h is the J -depth of A∗/∼C and m = 1.

4.2 Applications
We now combine Theorem 11 with the results of [17] to get the upper complexity bounds for
C[1/2](A)- and C[1](A)-separation that we announced at the begging of the section.

Application to C[1/2]. Let us first recall the connection between C[1/2]-separation and
(α, β, S)-trees. The result is taken from [17].

I Theorem 14 ([17]). Let α : A∗ → M be a C-compatible morphism and F0, F1 ⊆ M .
Moreover, let S = α(A∗) ⊆M . The two following properties are equivalent:

α−1(F0) is C[1/2]-separable from α−1(F1).
for every s0 ∈ F0 and s1 ∈ F1, there exists no (α, α, S)-tree with root label (s0, {s1}).

By Theorem 11 and the Immerman–Szelepcsényi theorem (which states that NL = co-NL),
it is straightforward to verify that checking whether the second assertion in Theorem 14
holds can be done in NL with respect to |M |. Therefore, the theorem implies that C[1/2](A)-
separation for monoids is in NL. This is lifted to NFAs using Corollary 9.

I Corollary 15. For every finite basis C and alphabet A, C[1/2](A)-separation is in NL for
both NFAs and monoids.

Application to C[1]. We start by recalling the C[1]-separation algorithm which is again taken
from [17]. In this case, we consider an auxiliary sub-procedure which relies on (α, β, S)-trees.

Consider a C-compatible morphism α : A∗ → M . Observe that M2 is a monoid for
the componentwise multiplication. We let β : A∗ → M2 as the morphism defined by
β(w) = (α(w), α(w)) for every w ∈ A∗. Clearly, β is C-compatible: given (s, t) ∈ M2, it
suffices to define [(s, t)]C = [s]C . Using (α, β, S)-trees, we define a procedure S 7→ Red(α, S)
which takes as input a good subset S ⊆M2 (for β) and outputs a subset Red(α, S) ⊆ S.

Red(α, S) = {(s, t) ∈ S | (s, {(t, s)}) ∈M × 2M2
is the root label of an (α, β, S)-tree} ⊆ S

It is straightforward to verify that Red(α, S) remains a good subset of M2. We now have
the following theorem which is taken from [17].

I Theorem 16 ([17]). Let α : A∗ →M be a morphism into a finite monoid and F0, F1 ⊆M .
Moreover, let S ⊆ M2 be the greatest subset of α(A∗) × α(A∗) such that Red(α, S) = S.
Then, the two following properties are equivalent:

α−1(F0) is Bool(Pol(C))-separable from α−1(F1).
for every s0 ∈ F0 and s1 ∈ F1, (s0, s1) 6∈ S.

Observe that Theorem 11 implies that given an arbitrary good subset S of α(A∗)×α(A∗),
one may compute Red(α, S) ⊆ S in P with respect to |M |. Therefore, the greatest subset S
of α(A∗)× α(A∗) such that Red(α, S) = S can be computed in P using a greatest fixpoint
algorithm. Consequently, Theorem 16 yields that C[1](A)-separation for monoids is in P.
Again, this is lifted to NFAs using Corollary 9.

I Corollary 17. For every finite basis C and alphabet A, C[1](A)-separation is in P for both
NFAs and monoids.
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5 The Straubing-Thérien hierarchy

In this final section, we consider one of the most famous concatenation hierarchies: the
Straubing-Thérien hierarchy [21, 22]. We investigate the complexity of separation for the
levels 3/2 and 2.

I Remark. Here, the alphabet is part of the input. For fixed alphabets, these levels can be
handled with the generic results presented in the previous section (see Theorem 18 below).

The basis of the Straubing-Thérien hierarchy is the trivial variety ST[0] defined by
ST[0](A) = {∅, A∗} for every alphabet A. It is known and simple to verify (using induction)
that all half levels are positive varieties and all full levels are varieties.

The complexity of separation for the level one (ST[1]) has already been given a lot of
attention. Indeed, this level corresponds to a famous class which was introduced independ-
ently from concatenation hierarchies: the piecewise testable languages [20]. It was shown
independently in [3] and [11] that ST[1]-separation is in P for NFAs (and therefore for DFAs
and monoids as well). Moreover, it was also shown in [5] that the problem is actually
P-complete for NFAs and DFAs1. Additionally, it is shown in [3] that ST[1/2]-separation is
in NL.

In the paper, we are mainly interested in the levels ST[3/2] and ST[2]. Indeed, the
Straubing-Thérien hierarchy has a unique property: the generic separation results of [17]
apply to these two levels as well. Indeed, these are also the levels 1/2 and 1 in another finitely
based hierarchy. Consider the class AT of alphabet testable languages. For every alphabet A,
AT(A) is the set of all Boolean combinations of languages A∗aA∗ for a ∈ A. One may verify
that AT is a variety and that AT(A) is finite for every alphabet A. Moreover, we have the
following theorem which is due to Pin and Straubing [8] (see [18] for a modern proof).

I Theorem 18 ([8]). For every n ∈ 1
2N, we have AT[n] = ST[n+ 1].

The theorem implies that ST[3/2] = AT[1/2] and ST[2] = AT[1]. Therefore, the results
of [17] yield the decidability of separation for both ST[3/2] and ST[2] (the latter is the main
result of [17]). As expected, this section investigates complexity for these two problems.

5.1 The level 3/2
We have the following tight complexity bound for ST[3/2]-separation.

I Theorem 19. ST[3/2]-separation is PSpace-complete for both NFAs and monoids.

The PSpace upper bound is proved by building on the techniques introduced in the
previous section for handling the level 1/2 of an arbitrary finitely based hierarchies. Indeed,
we have ST[3/2] = AT[1/2] by Theorem 18. However, let us point out that obtaining this
upper bound requires some additional work: the results of Section 4 apply to the setting in
which the alphabet is fixed, this is not the case here. In particular, this is why we end up
with a PSpace upper bound instead of the generic NL upper presented in Corollary 15. The
detailed proof is postponed to the full version of the paper.

In this abstract, we focus on proving that ST[3/2]-separation is PSpace-hard. The proof
is presented for NFAs: the result can then be lifted to monoids with Corollary 6 since ST[3/2]

1 Since ST[1] is a variety, P-completeness for ST[1]-separation can also be lifted to monoids using
Corollary 6.
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is a positive variety. We use a LogSpace reduction from the quantified Boolean formula
problem (QBF) which is among the most famous PSpace-complete problems.

We first describe the reduction. For every quantified Boolean formula Ψ, we explain how
to construct two languages LΨ and L′Ψ. It will be immediate from the presentation that
given Ψ as input, one may compute NFAs for LΨ and L′Ψ in LogSpace. Then, we show that
this construction is the desired reduction: Ψ is true if and only if LΨ is not ST[3/2]-separable
from L′Ψ.

Consider a quantified Boolean formula Ψ and let n be the number of variables it involves.
We assume without loss of generality that Ψ is in prenex normal form and that the quantifier-
free part of Ψ is in conjunctive normal form (QBF remains PSpace-complete when restricted
to such formulas). That is,

Ψ = Qn xn · · ·Q1 x1 ϕ

where x1 . . . xn are the variables of Ψ, Q1, . . . , Qn ∈ {∃, ∀} are quantifiers and ϕ is a quantifier-
free Boolean formula involving the variables x1 . . . xn which is in conjunctive normal form.

We describe the two regular languages LΨ, L
′
Ψ by providing regular expressions recognizing

them. Let us first specify the alphabet over which these languages are defined. For each
variable xi occurring in Ψ, we create two letters that we write xi and xi. Moreover, we let,

X = {x1, . . . , xn} and X = {x1, . . . , xn}

Additionally, our alphabet also contains the following letters: #1, . . . ,#i, $. For 0 ≤ i ≤ n,
we define an alphabet Bi. We have:

B0 = X ∪X and Bi = X ∪X ∪ {#1, . . . ,#i, $}

Our languages are defined over the alphabet Bn: LΨ, L
′
Ψ ⊆ B∗n. They are built by induction:

for 0 ≤ i ≤ n we describe two languages Li, L
′
i ⊆ B∗i (starting with the case i = 0). The

languages LΨ, L
′
Ψ are then defined as Ln, L

′
n.

Construction of L0, L′
0. The language L0 is defined as L0 = (B0)∗. The language L′0

is defined from the quantifier-free Boolean formula ϕ. Recall that by hypothesis ϕ is in
conjunctive normal form: ϕ =

∧
j≤k ϕj were ϕi is a disjunction of literals. For all j ≤ k, we

let Cj ⊆ B0 = X ∪X as the following alphabet:
Given x ∈ X, we have x ∈ Cj , if and only x is a literal in the disjunction ϕj .
Given x ∈ X, we have x ∈ Cj , if and only ¬x is a literal in the disjunction ϕj .

Finally, we define L′0 = C1C2 · · ·Ck.

Construction of Li, L′
i for i ≥ 1. We assume that Li−1, L

′
i−1 are defined and describe Li

and L′i. We shall use the two following languages in the construction:

Ti = (#ixi(Bi−1 \ {xi})∗$xi)∗ and Ti = (#ixi(Bi−1 \ {xi})∗$xi)∗

The definition of Li, L
′
i from Li−1, L

′
i−1 now depends on whether the quantifier Qi is existential

or universal.
If Qi is an existential quantifier (i.e. Qi = ∃):

Li = (#i(xi + xi)Li−1$(xi + xi))∗#i

L′i = (#i(xi + xi)L′i−1$(xi + xi))∗#i$
(
Ti#i + Ti#i

)
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If the Qi is an universal quantifier (i.e. Qi = ∀):

Li = (#i(xi + xi)Li−1$(xi + xi))∗#i

L′i = Ti#i$(#i(xi + xi)L′i−1$(xi + xi))∗#i$Ti#i

Finally, LΨ, L
′
Ψ are defined as the languages Ln, L

′
n ⊆ (Bn)∗. It is straightforward to

verify from the definition, than given Ψ as input, one may compute NFAs for LΨ and L′Ψ in
LogSpace. Consequently, it remains to prove that this construction is the desired reduction.
We do so in the following proposition.
I Proposition 20. For every quantified Boolean formula Ψ, Ψ is true if and only if LΨ is
not ST[3/2]-separable from L′Ψ.

Proposition 20 is proved by considering a stronger result which states properties of all
the languages Li, L

′
i used in the construction of LΨ, L

′
Ψ (the argument is an induction on i).

While we postpone the detailed proof to the full version of the paper, let us provide a sketch
which presents this stronger result.

Proof of Proposition 20 (sketch). Consider a quantified Boolean formula Ψ. Moreover, let
B0, . . . , Bn and Li, L

′
i ⊆ (Bi)∗ as the alphabets and languages defined above. The key idea

is to prove a property which makes sense for all languages Li, L
′
i. In the special case when

i = n, this property implies Proposition 20.
Consider 0 ≤ i ≤ n. We write Ψi for the sub-formula Ψi := Qi xi · · ·Q1 x1 ϕ (with

the free variables xi+1, . . . , xn). In particular, Ψ0 := ϕ and Ψn := Ψ. Moreover, we call
“i-valuation” a sub-alphabet V ⊆ Bi such that,
1. #1, . . . ,#i, $ ∈ V and x1, x1, . . . , xi, xi ∈ V , and,
2. for every j such that i < j ≤ n, one of the two following property holds:

xj ∈ V and xj 6∈ V , or,
xj 6∈ V and xj ∈ V .

Clearly, an i-valuation corresponds to a truth assignment for all variables xj such that j > i

(i.e. those that are free in Ψi): when the first (resp. second) assertion in Item 2 holds, xj

is assigned to > (resp. ⊥). Hence, abusing terminology, we shall say that an i-valuation V
satisfies Ψi if Ψi is true when replacing its free variables by the truth values provided by V .

Finally, for 0 ≤ i ≤ n, if V ⊆ Bi is an i-valuation, we let [V ] ⊆ V ∗ as the following
language. Given w ∈ V ∗, we have w ∈ [V ] if and only if for every j > i either xj ∈ alph(w)
or xj ∈ alph(w) (by definition of i-valuations, exactly one of these two properties must hold).
Proposition 20 is now a consequence of the following lemma.

I Lemma 21. Consider 0 ≤ i ≤ n. Then given an i-valuation V , the two following properties
are equivalent:
1. Ψi is satisfied by V .
2. Li ∩ [V ] is not ST[3/2]-separable from L′i ∩ [V ].

Lemma 21 is proved by induction on i using standard properties of the polynomial closure
operation (see [18] for example). The proof is postponed to the full version of the paper. Let
us explain why the lemma implies Proposition 20.

Consider the special case of Lemma 21 when i = n. Observe that V = Bn is an n-valuation
(the second assertion in the definition of n-valuations is trivially true since there are no j
such that n < j ≤ n). Hence, since Ψ = Ψn and LΨ, L

′
Ψ = Ln, L

′
n, the lemma yields that,

1. Ψ is satisfied by V (i.e. Ψ is true).
2. LΨ ∩ [V ] is not ST[3/2]-separable from L′Ψ ∩ [V ].
Moreover, we have [V ] = (Bn)∗ by definition. Hence, we obtain that Ψ is true if and only if
L is not ST[3/2]-separable from L′ which concludes the proof of Proposition 20. J
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5.2 The level two
For the level two, there is a gap between the lower and upper bound that we are able to
prove. Specifically, we have the following theorem.

I Theorem 22. ST[2]-separation is in EXPTime and PSpace-hard for both NFAs and monoids.

Similarly to what happened with ST[3/2], the EXPTime upper bound is obtained by
building on the techniques used in the previous section. Proving PSpace-hardness is achieved
using a reduction from ST[3/2]-separation (which is PSpace-hard by Theorem 19). The
reduction is much simpler than what we presented for ST[3/2] above. It is summarized by
the following proposition.

I Proposition 23. Consider an alphabet A and H,H ′ ⊆ A∗. Let B = A ∪ {#, $} with
#, $ 6∈ A, L = #(H ′#(A∗$#)∗)∗H#(A∗$#)∗ ⊆ B∗ and L′ = #(H ′#(A∗$#)∗)∗ ⊆ B∗. The
two following properties are equivalent:
1. H is ST[3/2]-separable from H ′.
2. L is ST[2]-separable from L′.

Proposition 23 is proved using standard properties of the polynomial and Boolean closure
operations. The argument is postponed ot the full version of the paper. It is clear than
given as input NFAs for two languages H,H ′, one may compute NFAs for the languages
L,L′ defined Proposition 23 in LogSpace. Consequently, the proposition yields the desired
LogSpace reduction from ST[3/2]-separation for NFAs to ST[2]-separation for NFAs. This
proves that ST[2]-separation is PSpace-hard for NFAs (the result can then be lifted to monoids
using Corollary 6) since ST[2] is a variety).

6 Conclusion

We showed several results, all of them raising new questions. First we proved that for many
important classes of languages (including all positive varieties), the complexity of separation
does not depend on how the input languages are represented. A natural question is whether
the technique can be adapted to encompass more classes. In particular, one may define
more permissive notions of positive varieties by replacing closure under inverse image by
weaker notions. For example, many natural classes are length increasing positive varieties:
closure under inverse image only has to hold for length increasing morphisms (i.e., morphisms
α : A∗ → B∗ such that |α(w)| ≥ |w| for every w ∈ A∗). For example, the levels of another
famous concatenation hiearchy, the dot-depth [1] (whose basis is {∅, {ε}, A+, A∗}) are length
increasing positive varieties. Can our techniques be adapted for such classes? Let us point
out that there exists no example of natural class C for which separation is decidable and
strictly harder for NFAs than for monoids. However, there are classes C for which the question
is open (see for example the class of locally testable languages in [10]).

We also investigated the complexity of separation for levels 1/2 and 1 in finitely based
concatenation hierarchies. We showed that when the alphabet is fixed, the problems are
respectively in NL and P for any such hierarchy. An interesting follow-up question would
be to push these results to level 3/2, for which separation is also known to be decidable in
any finitely based concatenation hierarchy [9]. A rough analysis of the techniques used in [9]
suggests that this requires moving above P.

Finally, we showed that in the famous Straubing-Thérien hierarchy, ST[3/2]-separation
is PSpace-complete and ST[2]-separation is in EXPTime and PSpace-hard. Again, a natural
question is to analyze ST[5/2]-separation whose decidability is established in [9].
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applications in formal languages, including a proof of the Ehrenfeucht Conjecture, decidability
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48:2 Reducing Transducer Equivalence to Register Automata Problems

1 Introduction

The study of finite-state machines, such as transducers [15, 8, 14] or register automata [2, 3],
and of logic specifications, such as MSO-definable transformations [9], provides a theoretical
ground to study document and data processing.

In this paper, we will consider the equivalence problem of functional transducers. We focus
on register automata, i.e. transducers that store values in a finite number of registers that
can be updated or combined after reading an input symbol. Streaming String Transducers
(SST) [2] and Streaming Tree Transducers (STT) [3] are classes of register automata (see
for example [4]) where the equivalence is decidable for the copyless restriction, i.e. the case
where each register update cannot use the same register twice. This restriction makes SST
equivalent to MSO-definable string transformations. Macro tree transducers (MTT) [11], an
expressive class of tree transducers for which equivalence decidability remains a challenging
open problem, can be seen as register automata, whose registers store tree contexts. Although
equivalence is not known to be decidable for the whole class, there exists a linear size increase
fragment of decidable equivalence, that is equivalent to MSO-definable tree transformations,
and can be characterized by a restriction on MTT quite close to copyless [10].

Some equivalence decidability results have been proven on register automata without
copyless restrictions [16, 5], by reducing to algebraic problems such as ideal inclusion and by
applying Hilbert’s Basis Theorem and other classical results of algebraic geometry. In this
paper we will refer to this as the “Hilbert Method”. This method was used to prove diverse
results, dating back to at least the proof of the Ehrenfeucht Conjecture [1], and the sequence
problem for HDT0L [13, 12]. It has recently found new applications in formal languages; for
example, equivalence was proven decidable for general tree-to-string transducers by seeing
them as copyful register automata on words [16].

In this paper, we use an abstraction of these previous applications of the “Hilbert
Method” as presented in [6]. We apply these preexisting results to the study of unordered
forest transductions – and notably MSO functions. Note that equivalence of MSO-definable
transductions on unordered forests is not a straightforward corollary of the ordered case, as
the loss of order makes equivalence more difficult to identify. We also try to apply those
methods to obtain decidability of MTT equivalence. For unordered forests, we obtain a
positive result, showing that register automata on forest contexts with one hole have decidable
functionality and equivalence. For the attempt to study MTT, we prove an undecidability
result on register automata using polynomials and composition, which means the natural
extension of this approach does not yield a definitive answer for the decidability of MTT
equivalence.

Layout

Section 2 presents the notions of algebra, register automata, and the notions necessary to
use an abstraction of the “Hilbert Method” as presented in [6]. Section 3 is dedicated to the
proof of the positive result that we can apply the “Hilbert Method” to contexts of unordered
forests with at most one hole (i.e. the algebra of unordered forests with limited substitution).
This provides a class of register automata encompassing MSO functions on unordered forests
where functionality is decidable. Finally, Section 4 describes how applying a method similar
as in Section 3 to study MTT equivalence leads to studying register automata on the algebra
of polynomials with the substitution operation, a class whose functionality and equivalence
we prove to be undecidable.
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2 Preliminaries

Algebras. An algebra A = (A, ρ1, . . . , ρn) is a (potentially infinite) set of elements A, and
a finite number of operations ρ1, . . . , ρn. Each operation is a function ρ : Ak → A for some
k ∈ N.

Polynomials. For an algebra A and a set X = {x1, . . . , xn} of variables, we note A[X]
the set of terms over A ∪ X. A polynomial function of A is a function f : Ak → A. For
example on A = (Q,+,×), the term ×(+(x, 2),+(x, y)) induces the polynomial function
f : (x, y) 7→ (x + 2)(x + y). The definition of polynomial functions can be extended to
functions f : Ak → Am by product of their output: if f1, . . . , fm are polynomial functions
from Ak to A, then f ′ : a ∈ Ak 7→ (f1(a), . . . , fm(a)) is a polynomial function from Ak to
Am. Note that polynomial functions are closed under composition.

One can define the algebra of polynomials over A with variable set X, denoted A[X]. Its
elements are equivalence classes of terms over A ∪X with the operations of A, where two
terms are called equivalent if they induce identical polynomial functions. A[X] can be seen
as an algebra that subsumes A, with natural definition of operations. A classical example of
this construction is the ring of polynomials (Q[x],+,×), obtained from the ring (Q,+,×).

By adding the substitution operation (−)[X := (−)] to A[X], we get a new algebra
called a composition algebra of polynomials and denoted A[X]subs. Homomorphisms of such
algebras are called composition homomorphisms. For brevity we write (−)[xi := (−)] for the
substitution of a single xi ∈ X. Examples of such algebras include well-nested words with a
placeholder symbol “?”, as used in the registers of Streaming Tree Transducers [3], or tree
contexts with variables in their leaves, as used in Macro Tree Transducers [11].

Simulation. Following the abstractions as they are presented in [6] 1, we define simulations
between algebras in a way that is relevant to the use of the “Hilbert Method”.

I Definition 1. Let A and B be algebras. We say that α : A→ Bn is a simulation of A in
B if for every operation ρ : Am → A of A, there is a polynomial function f : Bm×n → Bn of
B such that α ◦ ρ = f ◦ α, where α is defined from Am to Bm×n coordinate-wise. If such a
simulation α exists, we say that A is simulated by B (A �pol B).

Am

A

Bm×n

Bn

ρ

(α, · · · , α)

f

α

The following lemma states that simulations extend to composition algebras.

I Lemma 2. Let Q[X] = (Q[X],+,×). If A �pol Q[X] and A is an infinite set, then
A[Y ]subs �pol Q[X][Y ]subs.

1 As of this version’s redaction, Part 11 of [6] is the part relevant for this paper. This and any theorem or
page number can change in future versions of [6].
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48:4 Reducing Transducer Equivalence to Register Automata Problems

Proof. If there is a simulation α from A to Q[X], then α can be extended into a simulation
α̃ from A[Y ] to Q[X][Y ] by setting α(Y ) = Y , and requiring α̃ to be a homomorphism. It is
important to check that α̃ indeed is a function (i.e. preserves equivalence of terms): if terms
t1, t2 ∈ A[Y ] induce the same functions on A, then α̃(t1)(Y ) and α̃(t2)(Y ) are polynomial
functions that are equal on α(A). Since α(A) is an infinite subset of Q[X], α(t1) and α(t2)
are equal everywhere. The proof of injectivity is straightforward. Let P (Y ), Q(Y ) ∈ A[Y ]
be any two nonequivalent terms. Then there is a tuple a of A such that P (a) 6= Q(a). If
α̃(P ) = α̃(Q), we would have α(P (a)) = α(P )[Y := a] = α(Q)[Y := a] = α(Q(a)). This
would contradict the injectivity of α on A. J

Typed Algebras. Some of the algebras we consider are multi-sorted, which is to say that
their elements are divided between a finite number of types. A multi-sorted algebra is an
algebra A = (A, ρ1, . . . , ρn) such that:

A can be partitioned into A1, . . . , Am,
each operation ρ is a function ρ : Ai0 × · · · × Aik

→ Aj .
To each a ∈ A we associate a type, which is a unique i such that a ∈ Ai. Note that in
a multi-sorted algebra A polynomial functions are typed f : Ai0 × · · · × Aik

→ Aj , and
simulation and substitutions must be defined type-wise.

Register automata. In this paper we will work on register automata that make a single
bottom-up pass on an input ranked tree, use a finite set of states, and a finite set of registers
with values in Afor some algebra A. When the automaton reads an input symbol, it updates
its register values as a polynomial function of A applied to the register values in its subtrees.
This formalism is already present in the literature: streaming tree transducers [2], for example,
are register automata on input words and register values in the algebra of words on an
alphabet Σ, with the concatenation operation.

A signature Σ is a finite set of symbols a, each with a corresponding finite rank rk(a) ∈ N.
A ranked tree is a term on this signature Σ: if a ∈ Σ, rk(a) = n, and t1, . . . , tn are trees, then
a(t1, . . . , tn) is a tree.

I Definition 3. Let A = (A, ρ1, . . . , ρn) be an algebra. A bottom-up register automaton with
values in A (or A-RA) is a tuple M = (Σ, n,Q, δ, fout), where:

Σ is a ranked set
n is the number of A-registers used by M
Q is a finite set of states
δ is a finite set of transitions of form a(q1, . . . , qk) → q, f where a ∈ Σ of rank k,
{q, q1, . . . , qk} ⊂ Q, and f : An×k → An a polynomial function of A.
fout is a partial output function that to some states q ∈ Q associates fq : An → A a
polynomial function of A.

A configuration of M is a n-uple (q, r) where q ∈ Q is a state and r = (r1, . . . , rn) ∈ An is
a n-uple of register values in A. We define by induction the fact that a tree t can reach a
configuration (q, r), noted t→ (q, r): If a ∈ Σ of rank k, a(q1, . . . , qk)→ q, f a rule of δ, and
for 0 6 i 6 k, ti → (qi, ri), then

a(t1, . . . , tk)→ (q, f(r1, . . . , rk)).

M determines a relation JMK from trees to values in A. It is defined using fout as a final
step: if fout(q) = fq, and t→ (q, r), then fq(r) ∈ JMK(t).
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We say that a A-RA is functional if JMK is a function. We say that a A-RA is deterministic
if for all a, q1, . . . , qk there is at most one rule a(q1, . . . , qk)→ q, f in δ. Any deterministic
A-RA is functional.

Note that on a multi-sorted algebra, we further impose that every state q has a certain
type Ai1 × · · · × Ain , i.e. if (q, r) is a configuration of M , then r ∈ Ai1 × · · · × Ain .

“Hilbert Method”. We now describe an abstraction [6] of the classical algebra methods
that are used in the literature [16, 5] to decide equivalence of functional register automata
over certain algebras (e.g. (Σ∗, ·)) using what we will refer to as the “Hilbert Method”.
More specifically, as it is always easy to prove the semi-decidability of non-equivalence of
functional A-RA, by guessing two runs on the same input with different outputs, this method
aims to prove that the functionality and equivalence problems over functional A-RA are
semi-decidable.

This method can be described as a 4-step process:

Simulate A by Q, hence reducing A-RA equivalence to Q-RA equivalence
Functional Q-RA equivalence can be reduced to Q-RA zeroness, i.e. checking if a Q-RA
only outputs 0.
Q-RA zeroness can be reduced to ideal inclusion problem in Q[X], i.e. the ring of
polynomials with algebraic numbers as coefficients
Ideal inclusion problem in Q[X] is decidable

These results exist in the literature. We will provide references as well as an intuition
of the main mechanisms in these proofs. For the first point, the reduction from A-RA
equivalence to Q-RA equivalence, an example is provided in [16], where A is (Σ∗, ·). In
essence, this part of the method amounts to a simulation as described in Definition 1. If
A �pol B with simulation α, then any A-RA M can be simulated by a B-RA M ′, in the
sense that M outputs a ∈ A for an input t if and only M ′ outputs α(a) ∈ Bk for the same
input t. This gives a reduction from A-RA equivalence to B-RA equivalence.

The second point is presented in the proof of Theorem 11.8 of [6]. If M and M ′ are two
functional Q-RA of same domain, using a natural product construction, one can create M ′′
that runs M and M ′ in parallel, then computes the difference of outputs between M and
M ′. Thus M and M ′ are equivalent iff M ′′ only outputs 0.

The third point can be found in the proof of Theorem 11.8 of [6]. The idea is to express
Q-RA zeroness as a set problem (with polynomial grammars as an intermediary in [6]).
We want to find for each state q the set Xq of register values that M can hold in state q.
These states obey to some inclusion equations: if a(q1, . . . , qk)→ q, f is a rule of M , then
f(Xq1 × ...×Xqn) ⊆ Xq. Furthermore, if zeroness is true for M , then for every q such that
final output function fq is defined, fq(Xq) ⊆ {0}. Interestingly, if such a family of sets of Qn

(Xq)q state of M exists to satisfy those inclusions, then there exists a family of ideals of Q[X],
(Sq)q state of M , that satisfy opposite inclusions (Lemma 11.5 of [6]).

The fourth point uses classical algebra results to find such a family of ideal sets. The proof,
as it is presented in Theorem 11.3 of [6], works as follows: Hilbert’s Basis Theorem ensures
that all families of ideals (Sq)q state of M can be enumerated. For each of these families, it can
be checked using Groebner Basis whether it respects a set of inclusions or not. Eventually,
if a solution exists, it will be found, making this ideal problem, and thus Q-RA zeroness,
semi-decidable.

For this paper, we point out a few natural extensions to those methods and establish
Theorem 4 and Corollary 5 as a basis for our work.
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Figure 1 Two representations of the same unordered tree.

The first remark is that one can consider more problems than functional equivalence.
Functionality itself can be studied with these methods. It is preserved by simulations, and
Q-RA functionality can be reduced to zeroness: instead of comparing two functional Q-RA
in the second point, M ′′ can run two copies of the same Q-RA M and compute the output
difference. M is functional iff M ′′ only outputs 0.

The second remark is that the classical algebra results (Hilbert Basis Theorem, Groebner
Basis, algebraic closure of a field...) used in the fourth point extend to any computable field
K. In consequence, Theorem 11.8 of [6] holds for any K-RA. Since the polynomial ring K[X]
is a subring of a computable field K(X) (rational functions over K), it holds for K[X]-RA as
well. We therefore state the following theorem.

I Theorem 4. Let Q[X] = (Q[X],+,×). Functionality of Q[X]-RA and equivalence of
functional Q[X]-RA are decidable.

The result of Theorem 4 can be extended to other algebras using simulations from algebra
to algebra. Indeed, if A �pol B, then any A-RA can be simulated by a B-RA, and problems
of functionality and equivalence reduce from A-RA to B-RA.

I Corollary 5. Let A be an algebra. If A �pol Q[X], then functionality of A-RA and
equivalence of functional A-RA are decidable.

3 Unordered forests are simulated by polynomials

In this section we will show that the unordered tree forests (and more generally – the
unordered forest algebra [7] that contains both forests and contexts with one hole) can be
simulated in the sense of Definition 1 by polynomials with rational coefficients over a variable
x (noted Q[x]) with the operations +,×. This, combined with Corollary 5, implies the
decidability of functionality and equivalence for a class of Forests-RA. We then prove that
this class can express all MSO-transformations on unordered forests.

An unordered tree on a finite signature Σ is an unranked tree (i.e. every node can have
arbitrarily many children), but the children of a node form an unordered multiset, rather
than an ordered list. For example, the following figure displays two representations of the
same unordered tree. An unordered forest is a multiset of unordered trees.

Unordered forests can thus be defined as an algebra UF = (UF,+, {roota}):
1. UF is the set of unordered forests, including ∅ – the empty forest;
2. the operations are:

binary operation + is the multiset addition,
for each letter a ∈ Σ, unary operation roota: if h = t1 + · · · + tn, then roota(h) =
a(t1, . . . , tn).

In the rest of this paper, we will reason with a unary signature (and thus a unique root
operation). This is done without loss of generality, as unordered forests on a finite signature
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Σ = {a1, . . . , an} can easily be encoded by forests on a unary signature. To express it as a
polynomial simulation, we can say that α(∅) = ∅ , and that for all 1 6 i 6 n

α(rootai
(h)) = rooti(root(∅) + root(α(h)))

3.1 Encoding forests into polynomials
This subsection’s aim is to prove the following result:

I Proposition 6. (UF,+, root) is simulated by (Q[x],+,×).

To this end we construct an injective homomorphism φ : UF → Q[x]. This φ associates
injectively to each forest a rational polynomial p. It is important to check that two identical
forests with different representations (as in Figure 1) will not obtain different value by φ.
Furthermore, the operations +, root must be encoded as ψ+, ψr, two polynomial functions in
(Q[x],+,×), such that φ(h+ h′) = ψ+(φ(h), φ(h′)) and φ(root(h)) = ψr(φ(h)).

Note that the term “polynomial” suffers here from semantic overload. We will take care
to differentiate, on one hand, rational polynomials (i.e. the elements of Q[x], e.g. 2x− 7),
denoted by variants on letters p, q, and on the other hand, polynomial functions on the
algebra (Q[x],+,×) (e.g. ψ : (p, q) 7→ q × q + 2p), denoted by variants on the letter ψ.

Since + in UF is both associative and commutative, we choose ψ+ to be multiplication
between rational polynomials: ψ+ : (p, q) 7→ p × q. This leaves root to encode. To ensure
that φ is injective, we would like to pick ψr so that φ sends all root(h) to pairwise different
irreducible polynomials. This is done by picking ψr : p 7→ 2 +x×p and using the Eisenstein’s
criterion with prime number 2: if a monic polynomial has all its nonleading coefficients
divisible by 2, and the constant coefficient not divisible by 4, then this polynomial is
irreducible over Q. From there we define φ inductively: φ(∅) = 1, φ(h+ h′) = φ(h)× φ(h′),
and φ(root(h)) = 2+x×φ(h). It is clear that φ respects the condition of polynomial simulation
that any operation of UF must be encoded as polynomial operation in (Q[x],+,×).

This leads directly to the proof of Proposition 6: φ is a simulation from UF to Q[x]
as defined in Definition 1. It is injective, the operation + is encoded by the polynomial
function ψ+ : (p, q) 7→ p× q, and the operation root is encoded by the polynomial function
ψr : p 7→ 2 + x× p.

3.2 Extension to contexts
The combination of Corollary 5 and Proposition 6 gives decidability results on the class of
UF-RA. The transducers of this class read a ranked input, and manipulate registers with
values in UF. As an example, an UF-RA can read a binary input, and output the unordered
forests that it encodes in a “First Child Next Sibling” manner, that is to say the left child in
the input corresponds to the child in the output, and the right child in the input corresponds
to the brother in the output. Note that this is an adaptation of classical FCNS encoding of
unranked ordered trees in binary trees, but where the order is forgotten.

This can be described by a one-state one-register UF-RA that uses rules of form

(a, q, q)→ (q, (x, y) 7→ roota(x) + y).

However, UF-RA have their restriction: since root and + are the only two operations
allowed, registers can only store subtrees to be placed at the bottom of the output. This
leaves the class without the ability to combine subtrees of its output as freely as the MSO

FSTTCS 2018
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Figure 2 “FCNS” decoding.
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Figure 3 Subtree concatenation.

logic does. As an example, it is impossible to create an UF-RA that, if given an input f(u, v)
where u and v are two unary subtrees, outputs the subtree u above the subtree v as shown
in Figure 3.

To get a more general class of register automata, that can perform such superpositions,
we need to allow registers to store contexts, rather than forests. While the use of the Hilbert
Methods for algebras of general contexts remains a difficult and interesting open problem, we
will show that forest contexts with at most one hole are simulated by polynomials of Z[x].

We use the unordered version of 2-sorted Forest Algebra [7], consisting of unordered
forests of trees and contexts with at most one hole. Since the previous subsection deals with
an algebra of forests, to avoid confusion, we will call this the Unordered Context and Forest
algebra (noted UCF). Using the definition of composition algebras, UCF is a subset of
UF[◦]subs, where we impose that the replacable variable ◦ occurs at most once.


 :=

 =

On this algebra, we will show the following results:

I Theorem 7. UCF is simulated by (Q[x],+,×).

I Corollary 8. Functionality of UCF-RA and equivalence of functional UCF-RA are decid-
able.

Lemma 2 ensures that since UF �pol (Q[x],+,×), then UF[◦]subs �pol Q[x][y]subs, i.e.
Q[x, y] where only y can be substituted. UCF is the restriction of UF[◦]subs to its elements
with at most one occurrence of ◦. This forms a 2-sorted algebra. We consider its natural
match in Q[x][y]subs: Let A be the 2-sorted algebra:
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The universe is A := {p(x) + yq(x) : p, q ∈ Q[x]} ⊆ Q[x, y].
The types are A0 := Q[x], A1 := A \A0.
The operations are:

multiplication, defined only on pairs of types: (0, 0), (0, 1), (1, 0),
(−)[y := (−)].

I Lemma 9. UCF is simulated by A.

Proof. We call α : UF[◦]subs → Q[x][y]subs the homomorphism obtained by extending last
subsection’s φ with mapping the substitution variable ◦ to y. We restrict α to terms with at
most one occurrence of ◦. The image of h ∈ UCF will then be a term of Q[x][y]subs with
at most one occurrence of y. If ◦ never appears in h, then y never appears in α(h), thus
α(h) ∈ A0. If ◦ appears once in h, then y appears once in α(h), thus α(h) ∈ A1. J

We now prove that A is simulated by Q[x] without substitution.

I Lemma 10. A is simulated by (Q[x],+,×).

Proof. We will use encoding of A in Q[x]×Q[x] given by p(x) + yq(x) 7→ (p, q). Provided
this, we encode operations +,×, (−)[y := (−)] in a straightforward manner. For example,
for the composition operation in A, we see that (p(x) + yq(x))[y := (p′(x) + yq′(x))] is
equal to p(x) + p′(x)q(x) + yq′(x)q(x). Hence, in pairs of Q[x], (−)[y := (−)] is encoded by
ψ(−)[y:=(−)] : (p, q, p′, q′) 7→ (p+ p′q, q′q). J

Since �pol is a transitive relation, Lemma 10 and Lemma 9 give Theorem 7. Once
Theorem 7 is proven, Corollary 5 gives Corollary 8.

Note that this proof extends to contexts with a bounded number of holes. We can
add N substitution variables ◦1, . . . , ◦N to UF. Lemma 2 gives a homomorphism αN that
ensures UF[◦1, . . . , ◦N ]subs �pol Q[x][y1, . . . , yN ]subs. One could then define contexts with
at most M occurrences of variables UCF≤M. In a manner similar to Lemma 9, we can
find a finitely-sorted algebra that contains αN (UCF≤M), i.e. an algebra of all polynomials
of Q[x][y1, . . . , yN ] with a degree 6 M regarding the variables y1, . . . , yN . Then, in a
manner similar to Lemma 10, we can show that finite degree composition can be encoded in
(Q[x],+,×).

I Corollary 11. UCF≤M is simulated by (Q[x],+,×). Functionality of UCF≤M-RA and
equivalence of functional UCF≤M-RA are decidable.

3.3 Encompassing of MSO
Corollary 8 gives decidability results on the class of UCF-RA. We motivated this class as a
relevant extension of UF-RA by exhibiting a transformation (see Figure 3) that required
contexts to be expressed. However, this class is not immediately relevant in its properties or
expressiveness. In this section, we prove that UCF-RA can express strictly more than all
MSO-definable transformations on unordered trees. Note that UCF-RA define functions
from binary ordered trees to UCF, not from UF to UF. We say that an UCF-RA expresses a
function f : UF → UF if for a binary tree t that is the “FCNS” encoding of a forest h, its
image for the tree t is f(h).

We briefly present a definition of MSO formulae and transformations. More complete
definitions exist elsewhere in the literature (e.g. [9]).

The syntax of monadic second order logic (MSO) is:

φ := φ ∧ φ | ¬φ | ∃xφ | ∃Xφ | x ∈ X
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where lower cases x are node variables, and upper cases X are set variables. This syntax is
enriched by different relations to describe the structure of the objects we consider:

For binary trees (BT), we add two relations ChL(x, y) and ChR(x, y) that express that y
is the left child (resp. right child) of x.
For unranked ordered forests (OF), we add FC(x, y), that expresses that y is the first
child of x, and NS(x, y) that express that y is the brother directly to the right of x.
For unranked unordered forests (UF), we only add the relation Ch(x, y), that expresses
that y is a child of x. The relation “Sibling” would only be syntactic sugar.

An MSO-definable transformation with n copies is a transformation that for each input
node x, makes n output nodes x1, . . . , xn. The presence or absence of an edge in the output
are dictated by formulae defining the transformation. A MSO-definable transformation is
characterized by its formulae ϕR,i,j for each 1 6 i, j 6 n, and each structure relation R (e.g.
FC and NS if the output is ordered forests).

For example, if one wanted to reverse left and right children in binary trees, this would be
a transformation definable in MSOBT→BT with one copy, where ϕChL,1,1(x, y) = ChR(x, y),
i.e. y1 is x1’s left child in the output iff y was x’s right child in the input, and conversely
ϕChR,1,1(x, y) = ChL(x, y).

We note that this definition can express transformations between any two tree algebras.
For example, the “FCNS” decoding of Figure 2 can be encoded in MSO from binary trees to
UF. Since we will use different combinations of input-output in this part, we introduce the
notation MSO•→• to denote MSO from one type of trees to the other. MSOBT→OF designs
MSO-definable functions from binary trees to ordered forests, and MSOUF→UF designs
MSO-definable functions from unordered forests to unordered forests.

I Proposition 12. Every function of MSOUF→UF can be described by an UCF-RA.

The proof we provide to show this Proposition has three arguments:
1. MSOUF→UF can be represented by functions of MSOBT→OF .
2. Bottom-UP Streaming Tree Transducers (STT) [3] describe all functions of MSOBT→OF .
3. Bottom-Up STT can be expressed as register automata.

From MSOUF→UF to MSOBT→OF . We say that a binary tree t represents an unordered
forest h if the “FCNS” decoding of t as represented in Figure 2 is h. Note that t is not unique
for h, but every t represents a unique h. Similarily, we can say that an unranked ordered
forest h represents an unordered forest h′ if by forgetting the siblings’ order in h, we get
h′. Once again such an h is not unique for h′, but every h represents a unique h′. We can
extend this notion to MSO transformation.

I Definition 13. A function f ∈ MSOBT→OF represents a function f ′ ∈ MSOUF→UF if:
For every unordered forest h such that f ′ is defined over h, then there exists at least one
binary tree t such that t represents h, and f is defined over t
For every binary tree t such that f is defined over t, f ′ is defined over the unordered
forests h such that t represents h, and f(t) represents f ′(h).

Once again such an f is not unique for f ′, but every f represents a unique f ′. Furthermore,
it is always possible to find a representant f for an MSO-definable function f ′.

I Lemma 14. If f ′ ∈ MSOUF→UF , then there exists f ∈ MSOBT→OF that represents f ′.
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Proof. We start by encoding the input, transforming f ′ into a function of MSOBT→UF . To
modify f ′ so that it transforms trees that represent h into f ′(h), one has to replace every
occurence of Ch(x, y) into ϕCh,i,j by its “FCNS” encoding, i.e. ∃z | ChL(x, z) ∧ Ch∗L(z, y).

Encoding the output requires to change ϕCh,i,j into two relations ϕFC,i,j and ϕNS,i,j , i.e. to
artificially order the siblings of the output forest. To that effect, we note that from the
BT-formula ϕCh,i,j , one can describe in BT-MSO a set Sx,i,j = {y | ϕCh,i,j(x, y)}. Since Sx,i,j

is a set of input nodes of a binary tree, it is totally ordered by their occurrence in the infix
run. This order can be expressed as a BT-MSO relation. We can then decide to order all the
children yj of the output node xi.

To find the first child of a node in the output, we say that ϕFC,i,j(x, y) if j is the first
index where Sx,i,j 6= ∅ and y is its first element. Similarily, to find the next sibling of a node
in the output, we say that ϕNS,i,j(y, z) if ∃x | ϕCh,k,i(x, y) ∧ ϕCh,k,j(x, z), and either i = j

and y, z are consecutive elements of Sx,k,i, or y is the last element of Sx,k,i, z is the first
element of Sx,k,j , and j is the first index bigger than i such that Sx,k,j 6= ∅. J

From MSOBT →OF to STT to RA. The next step is to use an existing result from the
literature [3] that describes a model of transducers that describes all MSOBT→OF . The
formalism in question are Streaming Tree Transducers (STT). A STT is an automaton on
nested words (words representing trees) that maintains a stack of register configurations.
The nesting of the words dictates how this stack behaves: each opening letter <a stores the
current variable values in the stack to start with fresh ones, then each closing letter a> uses
the current variable values and the top of the stack to generate new values for the registers.

In [3], STT are limited to linear functions for the update of their value. Furthermore, the
paper proves that without loss of expression, one can consider Bottom-Up STT, where reading
an opening symbol <a resets the state as well as the registers. On such STT, the behavior
of a STT reading the nested word of a subtree does not depend on what occurs before or
after, and its computation behaves like a register automaton reading a tree in a bottom-up
manner. We will consider the class of Bottom-Up STT that read nested representations of
binary trees (Bottom-Up BT STT).

I Proposition 15. Every function of MSOBT→UF is described by a Bottom-Up BT STT.

I Proposition 16. Every function of a Bottom-Up BT STT is described by an OCF-RA.

Proposition 15 comes directly from Theorems 3.7 and 4.6 of [3]: 3.7 explains Bottom-Up
BT-STT are as powerful as general BT-STT, and 4.6 states that STT can describe any
function of MSOBT→UF . Proposition 16 is not directly proven in [3] but their definition of
Bottom-Up STT is made specifically to that end. We provide more details in the appendix.

End of Proof. To turn that OCF-RA into an UCF-RA, we just have to change the ordered
concatenation of OCF to the unordered concatenation of UCF. By combining Lemma 14,
Proposition 15 and Proposition 16, we conclude our proof of Proposition 12.

We note that every MSO-definable function can be described by a UCF-RA, however
the converse is not true; consider a function that creates output of exponential size (whereas
MSO can only describe functions of linear size increase). Consider unary input trees of form
rootn

a(⊥), and a 1-counter UCF-RA with rules ⊥ → q(root()), and a(q(h)) → h+ h. The
image doubles in size each time a symbol is read. Unsurprisingly, this counterexample uses
the copyful nature of UCF-RA, as copyless restrictions tend to limit the expressivity power
of register automata to MSO classes [2, 3].

FSTTCS 2018



48:12 Reducing Transducer Equivalence to Register Automata Problems

4 On decidability of MTT equivalence. Equivalence of
polynomials-RA with composition is undecidable

In this section, we tru to use the “Hilbert Method” to study the equivalence problem on
Macro Tree Transducers (MTT) [11]. MTT have numerous definitions. For this paper, we
will consider them to be register automata on an algebra of ranked trees with an operation
of substitution on the leaves; observe this is exactly OrderedTrees[X]subs-RA. The algebra
OrderedTrees (ranked trees without substitution on the leaves) can be simulated by words
with concatenation (via nested word encoding). Words with concatenation can be encoded
by Q (see, for example, the proof of Corollary 10.11 [6]). Thus, OrderedTrees �pol Q. Finally,
by Lemma 2, we have that OrderedTrees[X]subs �pol Q[X]subs. This means that if equivalence
is decidable for Q[X]subs-RA, then MTT equivalence is decidable. Unfortunately, we will
show that even with one variable x, the register automata of Q[x]subs-RA have undecidable
functionality and equivalence:

I Theorem 17. The functionality problem for Q[x]subs-RA and equivalence problem for
functional Q[x]subs-RA are undecidable.

We prove this undecidability result by reducing the reachability problem for 2-counter
machines to the equivalence problem on deterministic Q[x]subs-RA with a monadic input (i.e.
that reads words rather than trees). This means that the actual theorem we prove is slightly
more powerful than Theorem 17. Its full extent is described in Theorem 20. We recall the
definition of a 2-counter machine.

I Definition 18. A 2-counter machine (2CM) is a pair M = (Q, δ), where:
Q is a finite set of states,
δ : Q× {0, 1} × {0, 1} → Q× {−1, 0, 1} × {−1, 0, 1} is a total transition function.

A configuration of M is a triplet of one state and two nonnegative integer values (or
counters) (q, c1, c2) ∈ Q×N×N. We describe how to use transitions between configurations:
(q, c1, c2) → (q′, c′1, c′2) if there exists (q, b1, b2) → (q′, d1, d2) in δ such that for i ∈ {1, 2}:
ci = 0 ⇐⇒ bi = 0 and c′i = ci + di. Note that to ensure that no register wrongfully goes
into the negative, we assume wlog that if there exists (q, b1, b2) → (q′, d1, d2) in δ, then
di = −1 =⇒ bi = 1 (i.e. we can only decrease a non-zero counter).

The 2CM reachability problem can be expressed as such: starting from an initial configur-
ation (q0, 0, 0), can we access the state qf ∈ Q, i.e. is there a configuration (qf , c1, c2) such
that (q0, 0, 0)→∗ (qf , c1, c2). It is well known that 2CM reachability is undecidable.

Reduction of 2CM Reachability to Q[x]subs-RA Equivalence. LetM = (Q, δ) be a n-states
2CM. We rename its states Q = {1, . . . , n}. We consider the 2CM reachability problem in
M from state 1 to state n.

We simulate this machine with a Q[x]subs-RA M ′. It will have only one state qM ′ : the
configurations (q, c1, c2) of M will be encoded in 3 registers of M ′. It will work on a signature
⊥ ∪ δ, where ⊥ is of rank 0 and every transition (q, b1, b2)→ (q′, d1, d2) of δ is a symbol of
rank 1. Intuitively, reading a symbol (q, b1, b2) → (q′, d1, d2) in M ′ models executing this
transition in M . The automaton will have 6 registers: 3 to encode the configurations of M ′
and 3 containing auxiliary polynomials useful to test if the input sequence of transitions
describes a valid computation in M .
We encode the configurations (q, n1, n2) in 3 registers as follows:

register rq holds the (number of the) current state.
registers rc1 , rc2 hold n1, n2 – the current values of the counters.
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We now encode transitions in M as register operations in M ’. When reading a transition
(i, b1, b2)→ (j, d1, d2), the update of the configuration is natural. However, we must ensure
that we are allowed to use this transition in the current configuration.

To this end, we keep in M ’ a witness register. Its value will be 0 if and only if the
sequence of transitions read as an input does not constitute a valid path in M . To update
such a register, when a transition (i, b1, b2)→ (j, d1, d2) is read, we need to check that rq = i

and that rci
= 0 ⇐⇒ bi = 0.

For the state q ∈ {1, . . . , n}, we design Pq=i, a polynomial such that Pq=i(i) 6= 0 and for
every other value 1 6 j 6 n, Pq=i(j) = 0: Pq=i(x) :=

∏i6=j
16j6n (x− j). This approach cannot

work for counters, as there is no absolute bound to their value. To remedy that problem, we
will design for each m a polynomial P6m

c=0 such that P6m
c=0 (0) 6= 0 and for every other value,

1 6 j 6 m, P6m
c=0 (j) = 0. P6m

c=0 (x) :=
∏

16j6m (x− j). Intuitively, P6m
c=0 works as a test for

counters in the m-th step of M , since counters c1, c2 cannot exceed the value m at that point.
This means that P6m

c=0 will have to be stored and updated in a register of its own. To this
end, we introduce the last three registers of M ′:

the register r+. After m steps, r+ = m.
the register rzt. After m steps, rzt = P6m

c=0 .
the witness register rw. After m steps, rw 6= 0 ⇐⇒ we read a valid path in M .

We describe how to update the registers of M ′ when reading an input symbol (i, b1, b2)→
(j, d1, d2). Note that according to our definition of Q[x]subs-RA, the new values r′ are
computed as a function of the old value of r. This means that any value on the right of the
assignation symbol ← is the value before reading (i, b1, b2)→ (j, d1, d2).

rq ← j, rc1 ← rc1 + d1, rc2 ← rc2 + d2,
r+ ← r+ + 1, rzt ← rzt × (x− r+ − 1),
rw ← rw × Tq × T1 × T2, where:
Tq = (Pq=i)[x := (rq)],

for i ∈ {1, 2}, Ti =
{
rci

if bi = 1,
(rzt)[x := (rci

)] if bi = 0.

This update strategy ensures that each counter does what we established its role to be.
The only register for which this is not trivial is rw. We show that rw = 0 if and only if we
failed to read a proper path in M .

We proceed by induction on the number of steps. The induction hypothesis is that a
mistake happened before the m-th step if and only if rw = 0 before reading the m-th symbol.
If such is the case, rw will stay at zero for every subsequent step, as the new value of rw

is always a multiple of the previous ones. If the error occurs exactly at the m-th step, it
means that the m-th letter of the input was a transition (i, b1, b2)→ (j, d1, d2), but rq was
not i (and hence Tq = (Pq=i)[x := (rq)] = 0), or that for this transition to apply we need
the counter ci to be 0 when it was not (or conversely assumed it > 0 when it was 0). This
last case is caught by Ti. By using Ti = rci

, we have Ti = 0 exactly when we were wrong. If
bi = 0 then we assume ci = 0. We know that ci ≤ m, where m is the number of step taken.
By using Ti = (rzt)[x := (rci

)] = P6m
c=0 (ci), we have that Ti = 0 exactly when 0 < ci ≤ m.

The final step of the reduction comes by picking the output function for the only state of
M ′. We pick f(r) := (Pq=i)[x := (rq)]× rw. The only way for the output to not be 0 is if rq

ends in n (i.e. we reached state n) and if rw 6= 0 (i.e. we used a valid path). In other words,
the following Lemma holds.

I Lemma 19. JM ′K is the constant 0 function if and only if n is not reachable from 1 in M
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By comparing M ′ to a Q[x]subs-RA M0 performing the constant 0 function, we get that
deciding equivalence on functional Q[x]subs-RA would allow to decide 2CM Reachability.
Similarly, running nondeterministically M ′ and M0, we get that deciding functionality on
Q[x]subs-RA would allow to decide 2CM Reachability. This leads to the proof of Theorem 17.
More than that, we show a more thorough result:

I Theorem 20. The equivalence problem for deterministic Q[x]subs-RA is undecidable, even
with a monadic input alphabet. The functionality problem for Q[x]subs-RA is undecidable,
even with a one-letter monadic alphabet.

The first point is given directly by the point above: M ′ is a deterministic Q[x]subs-RA on
a monadic alphabet ⊥ ∪ δ, that is to say, the input of M ′ is a word where each letter is an
element of δ.

For the second point, we imagine a slight alteration of this proof where the input alphabet
is {a,⊥} where ⊥ is of rank 0 and a of rank 1, that is to say, the input of the Q[x]subs-RA
would be a word of form ak. In this new version, M ′ is no longer deterministic, but guesses
each time what transition of M to emulate. When M ′ reads ak, it either guesses a correct
path of length k, or makes a mistake and returns 0. M ′ is functional iff it cannot guess a
run that produces something else than 0, i.e. iff n is not reachable from 1 in M .

5 Conclusion

We use “Hilbert Methods” to study equivalence problems on register automata. To apply
these methods to register automata on contexts, we consider algebras with a substitution
operation. To show the decidability of equivalence on UCF-RA, a class that subsumes
MSO-definable transformations in unordered forests, we use the fact that bounded degree
substitution can be encoded into +,× in Q[X]. However, when applying the same method
to Macro Tree Transducers, we are led to consider register automata on Q[X]subs, whose
equivalence we prove to be undecidable. In essence, for the “Hilbert Methods” we consider
to provide positive results, it seems necessary to limit the use of composition.

Future developments of this work could then consist of finding other acceptable restrictions
on the use of composition in Q[X] that still allows for decidability results in register automata.
Another possible avenue is to use the properties of �pol to prove negative results: if A �pol B,
and register automata have undecidable problems in A, then this negative results propagates
to B. Finally, “Hilbert Methods” can apply to a huge variety of algebras (e.g. UCF in this
paper or Qn in [5]). They provide decidability results on register automata on algebras with
nontrivial structure properties like commutativity of operations (e.g. children in UCF) that
make the usual methods to decide equivalence difficult to apply.
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A Appendix

Bottom-Up Streaming Tree Transducers. We go more into detail into Streaming Tree
Transducers (STT), that read and output nested words. This formalism is central to the
proof of Proposition 15, and of Proposition 16.

In intuition, an STT works with a configuration composed of a state, a finite number of
typed variables (or registers) that contains nested words with at most one occurrence of a
context symbol (this corresponds to the Ordered Forest Algebra (OCF) in the sense of [7]),
and a stack containing pairs of stack symbols and variable valuations. The nesting of the
words dictates how this stack behaves: each opening letter <a stores the current variable
values in the stack to start with fresh ones, then each closing letter a> uses the current variable
values and the top of the stack to generate new values for the registers. The operations
on nested words that can be performed in such cases correspond to polynomial operations
on OCF: one can use concatenation, context application (which translates directly into
OCF), or use a constant nested word, that can be simulated by the roots and concatenation:
(<a ◦ a>)[◦ := r · r′]<b b> can be seen in forests as roota(r + r′) + rootb().

The general definitions are available on [3]. We use specifically bottom-up STT, where
reading an opening symbol <a resets the state as well as the registers. On such STT, the
behavior of a STT reading the nested word of a subtree does not depend on what occurs
before or after. The original paper also imposes a single-use restriction, to ensure each
operation can use each register only once. We can keep this restriction, but will not need it.
We add a few restrictions to this model:
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We do not allow letters beyond nesting letters. In the language of [3] this means we
ignore internal transitions.
The input domain is a language of nested words of binary trees.

We will call this subclass Bottom-Up BT STT. The first result we need comes directly
from the results of [3] that states that single-use STT (even limited to bottom-up) describe
exactly MSO functions on nested words:

I Proposition 21. Every function of MSOBT→UF is described by a Bottom-Up BT STT.

From STT to UCF-RA. To complete the proof, we show that if a Bottom-Up BT STT
describes f , then we can find a UCF-RA that describes the function f ′ that f represents,
by forgetting the order in the output.

I Proposition 22. Every function of a Bottom-Up BT STT is described by an OCF-RA.

Proof. We propose in a figure below the run of a bottom-up STT in a tree c(t, t′). The
subtrees t and t′ are of root a and b. The second line corresponds to its configuration (state
q, register values r), while the third line keeps track of the top symbol of the STT’s stack.
The state q0 and register valuation r0 are respectively the initial state and register values.
The symbol that was at the top of the stack when reaching <c is denoted as λ.

<c <a h a> <b h′ b> c>

(q0, r0)

λ

(q0, r0)

(pa, r0)

. . . (q, r)

. . . (pa, r0)

(q1, r1)

λ

(q0, r0)

(pb, r1)

. . . (q′, r′)

. . . (pb, r1)

(q2, r2)

λ

t t′

Figure 4 The run of a bottom-up STT on a binary tree c(t, t′).

From (q, r), when we read a>, we use a transition depending only on q, pa to get q1 and
apply to r, r0 a polynomial function depending only on q, pa. We note that pa depends only
of a. Similarly, from (q′, r′), when we read b>, we use a transition depending only on q′, pb

to get q2 and apply to r, r0 a polynomial function depending only on q′, pb. We note that pb

depends of b and q1.
This means that, if we have prior knowledge of a, b – the roots of the left and right child

of c – and q, q′ – the states reached by our STT after reading the left and right child of
c – we have enough information to find the state reached by our STT after reading c(t, t′).
We can call this state qa,b,q,q′ . From a, b, q, q′, we can also deduce the polynomial function
that links r, r′ to r2, the values of the registers after reading c(t, t′). We call such a function
φa,b,q,q′ , and it can be seen as a polynomial function on nested words or on OCF.

To find an OCF-RA that computes this function, we say that an input subtree leads to
a state (q, a), where a is the label of its root, and q is the state reached by the STT right
before reading the final a>. The registers have the same values as the STT’s right before
reading the final a>. The transitions of our OCF-RA will then be of form:

c((q, a), (q′, b))→ ((qa,b,q,q′ , c), φa,b,q,q′) J
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