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Abstract

This thesis was carried out in the G.-C. Rota Laboratory of Languages and
Combinatorics (LIN.COM), at the Dipartimento di Informatica, Università
degli Studi di Milano. The thesis deals with some topics in the theory of
formal languages and automata. Specifically, the thesis deals with the theory
of context-free languages and the study of their descriptional complexity.

The descriptional complexity of a formal structure (e.g., grammar, model
of automata, etc) is the number of symbols needed to write down its de-
scription. While this aspect is extensively treated in regular languages, as
evidenced by numerous references, in the case of context-free languages few
results are known.

An important result in this area is the Parikh’s theorem. The theorem
states that for each context-free language there exists a regular language with
the same Parikh image. Given an alphabet Σ = {a1, . . . , am}, the Parikh
image is a function ψ : Σ∗ → Nm that associates with each word w ∈ Σ∗,
the vector ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am), where |w|ai is the number of
occurrences of ai in w. The Parikh image of a language L ⊆ Σ∗ is the set of
Parikh images of its words. For instance, the language {anbn | n ≥ 0} has
the same Parikh image as (ab)∗. Roughly speaking, the theorem shows that
if the order of the letters in a word is disregarded, retaining only the number
of their occurrences, then context-free languages are indistinguishable from
regular languages.

Due to the interesting theoretical property of the Parikh’s theorem,
the goal of this thesis is to study some aspects of descriptional complexity
according to Parikh equivalence. In particular, we investigate the conversion
of one-way nondeterministic finite automata and context-free grammars into
Parikh equivalent one-way and two-way deterministic finite automata, from
a descriptional complexity point of view.

We prove that for each one-way nondeterministic automaton with n states
there exist Parikh equivalent one-way and two-way deterministic automata
with eO(

√
n·lnn) and p(n) states, respectively, where p(n) is a polynomial.

Furthermore, these costs are tight. In contrast, if all the words accepted by
the given one-way nondeterministic automaton contain at least two different
letters, then a Parikh equivalent one-way deterministic automaton with a
polynomial number of states can be found.
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Concerning context-free grammars, we prove that for each grammar
in Chomsky normal form with h variables there exist Parikh equivalent
one-way and two-way deterministic automata with 2O(h2) and 2O(h) states,
respectively. Even these bounds are tight.

A further investigation is the study under Parikh equivalence of the state
complexity of some language operations which preserve regularity. For union,
concatenation, Kleene star, complement, intersection, shuffle, and reversal,
we obtain a polynomial state complexity over any fixed alphabet, in contrast
to the intrinsic exponential state complexity of some of these operations
in the classical version. For projection we prove a superpolynomial state
complexity, which is lower than the exponential one of the corresponding
classical operation. We also prove that for each two one-way deterministic
automata A and B it is possible to obtain a one-way deterministic automaton
with a polynomial number of states whose accepted language has as Parikh
image the intersection of the Parikh images of the languages accepted by A
and B.

Keywords: automata and formal languages, context-free languages, semi-
linear set, Parikh image, descriptional complexity.
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Chapter 1

Introduction

L’Apprenti sorcier

Paul Dukas

This thesis deals with the theory of descriptional complexity and Parikh
equivalence. Descriptional complexity is an area of theoretical computer
science in which one of the main questions is how succinctly a formal language
can be described by a formalism in comparison with other formalisms. For
instance, a fundamental result in this area is the exponential trade-off
between nondeterministic and deterministic finite automata with respect to
the number of states.

It is well known that the state cost of the conversion of one-way non-
deterministic finite automata (1nfas) into equivalent one-way deterministic
finite automata (1dfas) is exponential: using the classical subset construc-
tion [RS59], from each n-state 1nfa we can build an equivalent 1dfa with 2n
states. Furthermore, this cost cannot be reduced in the worst case.

In all examples witnessing such a state gap (e.g., [Lup63, MF71, Moo71]),
input alphabets with at least two letters and proof arguments strongly
relying on the structure of words are used. As a matter of fact, for the unary
case, namely the case of the one letter input alphabet, the cost reduces to
eΘ(
√
n·lnn), as shown by Chrobak [Chr86]. So, we can ask:

What happens if we do not care of the order of symbols in the
words, i.e., if we are interested only in obtaining 1dfas accepting
sets of words which are equal, after permuting the symbols, to
the words accepted by the given 1nfas?

This question is related to the well-known notions of Parikh image and
Parikh equivalence [Par66], which have been extensively investigated in
the literature (e.g., [Gol77, AÉI02]) even for the connections of semilin-
ear sets [Huy80] and with other fields of investigation as, e.g., Presburger
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2 Chapter 1. Introduction

arithmetics [GS66], Petri nets [Esp97], logical formulas [VSS05] and formal
verification [To10a].

The goal of the thesis is to study some aspects of descriptional complexity
according to Parikh equivalence.

We remind the reader that two words over a same alphabet Σ are
Parikh equivalent if they are equal up to a permutation of their symbols or,
equivalently, for each letter a ∈ Σ, the number of occurrences of a in the
two words is the same. This notion extends in a natural way to languages
and to formal systems which are used to specify languages as, for instance,
grammars and automata. Two languages are Parikh equivalent if they are the
same language unless the order of the symbols in the words is disregarded.

An important result in this topic is the Parikh theorem, which states
that every context-free language is Parikh equivalent to a regular language.
For instance, the language {anbn | n ≥ 0} is Parikh equivalent to regular
language (ab)∗. Intuitively, the theorem shows that if the order of the letters
in a word is disregarded, retaining only the number of their occurrences,
then context-free languages are indistinguishable from regular languages.

Notice that in the unary case Parikh equivalence is just the standard
equivalence. So, in the unary case, the answer to our previous question is
given by the above mentioned result by Chrobak [Chr86].

Our first contribution in this thesis is an answer to that question in the
general case. In particular, we prove that the state cost of the conversion
of n-state 1nfas into Parikh equivalent 1dfas is the same as in the unary
case, i.e., it is eΘ(

√
n·lnn). More surprisingly, we prove that the worst case

is due to the unary words accepted by the automaton. In fact, we show
that if the given 1nfa accepts only nonunary words, i.e., each accepted word
contains at least two different letters, then we can obtain a Parikh equivalent
1dfa with a polynomial number of states in n. Hence, while in the standard
determinization, the most difficult part of the conversion, with respect to
the state complexity, comes from the nonunary part of a language, in the
“Parikh determinization” this part becomes easy and the most complex part
is the unary one.

In the second part of the thesis we consider context-free grammars
(cfgs). Parikh Theorem [Par66] states that each context-free language is
Parikh equivalent to a regular language. We study this equivalence from a
descriptional complexity point of view. Recently, Esparza, Ganty, Kiefer, and
Luttenberger proved that each cfg G in Chomsky normal form with h variables
can be converted into a Parikh equivalent 1nfa with O(4h) states [EGKL11].
In [LP12] it was proved that if G generates a bounded language then we can
obtain a 1dfa with 2hO(1) states, i.e., a number exponential in a polynomial
of the number of variables. In this thesis, we are able to extend such a
result by removing the restriction to bounded languages. We also reduce
the upper bound to 2O(h2). A milestone for obtaining this result is the
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conversion of 1nfas to Parikh equivalent 1dfas presented in the first part
of the thesis. By suitably combining that conversion (in particular the
polynomial conversion in the case of 1nfas accepting nonunary words) with
the above mentioned result from [EGKL11] and with a result by Pighizzini,
Shallit, and Wang [PSW02] concerning the unary case, we prove that each
context-free grammar in Chomsky normal form with h variables can be
converted into a Parikh equivalent 1dfa with 2O(h2) states. From the results
concerning the unary case, it follows that this bound is tight. Even for
this simulation, as for that of 1nfas by Parikh equivalent 1dfas, the main
contribution to the state complexity of the resulting automaton is given by
the unary part.

In the third part of the thesis, we consider conversions of 1nfas and cfgs
into Parikh equivalent two-way deterministic automata (2dfas). Due to the
fact that in the unary case these conversions are less expensive than the
corresponding ones into 1dfas, we are able to prove that each n-state 1nfa can
be converted into an equivalent 2dfa with a number of states polynomial in n,
and each context-free grammar in Chomsky normal form with h variables
can be converted into a Parikh equivalent 2dfa with a number of states
exponential in h.

The investigation of the state complexity of regular languages and their
operations is extensively reported in the literature (e.g., [PS02, Yu00, YZS94]).
Motivated by the interest in regular languages, we continue the same line of
research by considering basic operations on regular languages and on 1dfas.
In the fourth part of the thesis we reformulate under Parikh equivalence some
classical questions on the state complexity of operations as, for instance, the
following: given two arbitrary 1dfas A and B of n1 and n2 states, respectively,
how many states are sufficient and necessary in the worst case (as a function
of n1 and n2) for a 1dfa to accept the concatenation of the languages accepted
by A and B? For this question an exponential cost is known [YZS94]. Using
our above mentioned bound on the conversion of 1nfas into Parikh equivalent
1dfas, this exponential bound can be reduced, under Parikh equivalence,
to a superpolynomial upper bound. In this thesis we further reduce it to
a polynomial, namely we show that there exists a 1dfa with a number of
states polynomial in n1 and n2 accepting a language that is Parikh equivalent
to the concatenation of the languages accepted by A and B. We obtain a
similar result for the Kleene star operation while, for the union, the cost
is polynomial even in the classical case. We also present results for other
operations as intersection, complement, reversal, shuffle and projection.

Concerning intersection and complement, we observe that these operations
do not commute with Parikh image, e.g., the Parikh image of the complement
of a language L does not necessarily coincide with the complement of the
Parikh image of L. However, semilinear sets are closed under intersection
and complement [GS64]. Hence, we can formulate state complexity questions
about intersection and complement of Parikh images of languages accepted
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by given 1dfas. We solve the question for the intersection by proving, in a
constructive way, that for each two 1dfas there exists a 1dfa of polynomial
size accepting a language whose Parikh image is the intersection of the Parikh
images of the languages accepted by the two given 1dfas, while the analogous
question for complement will be the subject of future investigations.

The study of conversions into Parikh equivalent one-way deterministic
automata has been published in [LPS12], while the study of conversions
into Parikh equivalent two-way deterministic automata has been published
in [LPS13]. The investigation of operational state complexity of one-way de-
terministic automata under Parikh equivalence has been published in [LPS14].

1.1 Motivations

The main motivation of my thesis is the study of how succinctly a formal lan-
guage can be described by a formalism in comparison with other formalisms.
More precisely, we study the succinctness of these formalisms such as finite
automata, pushdown automata and context-free grammars. In other words,
the goal of this research is to find “small devices”. This brings us to the
area of descriptional complexity (often called conciseness, succinctness, or
economy of description) [GKK+02], that is, the science or sometimes the
art of making the description of objects as simple as possible and only as
complex as necessary.

My contribution to this field is through the use of the Parikh theorem. Just
to remind how it works, the Parikh mapping, introduced by Parikh [Par66],
provides a connection between formal language theory and number theory.
It associates a word with the vector of natural numbers that reflects the
number of the occurrences of the symbols in this word. Intuitively, the Parikh
theorem states that the class of context-free languages, with respect to the
Parikh images does not differ from the class of regular languages. Moreover,
Parikh succeeded in characterizing the Parikh images of context-free and
thus also of regular languages, namely in the framework of semilinear sets.

In addition of what will be exposed in this thesis, semilinear sets have been
extensively studied in many other important areas. For example, Ginsburg
and Spanier [GS64, GS66] have shown that the class of semilinear sets enjoys
many good properties, not only with respect to closure properties, but also
with respect to decision properties. Many good properties of semilinear sets
justify their application in solving many decision problems in formal language
theory. Most prominently, the decidability of the emptiness problem for a
language immediately follows once we have shown that the Parikh image of
this language effectively yields a semilinear set. For example, the decidability
of the emptiness problem for context-free languages immediately follows from
Parikh theorem.

Semilinear sets, by themselves of purely number-theoretical nature, are
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therefore tightly connected with formal language theory. In addition, the
notion of semilinear sets is related to logic. The class of semilinear sets turned
out to coincide with the class of sets definable in Presburger arithmetic.
Presburger has introduced in [Pre29, PJ91] the first-order theory of the
integer numbers with addition and ordering relation (Z, 0, 1,+, <), called
Presburger arithmetic. Presburger showed that this theory is complete
and therefore decidable. This connection, in fact, confirms the many good
properties of semilinear sets.

Presburger arithmetic and semilinear sets play an important role in
current research. In the field of system verification, on the one hand, many
decision problems concerning model-checking infinite-state systems can be
reduced to the emptiness problem for semilinear sets. Examples of such
infinite-state systems are discrete-timed pushdown automata (see Dang et
al. [Dan01]), several extensions of reversal-bounded counter machines (see
Ibarra et al. [IBS00]), and some classes of semilinear systems (see Bouajjani
and Habermehl [BH96]).

Other use of Parikh theorem can be found in the Petri nets area. For
example, a structural characterization of the reachable markings of Petri
nets has been shown in [Esp97]. They obtain a structural characterization
of the set of reachable markings of communication-free nets, and use it to
prove that the reachability problem for this class is NP-complete. Another
consequence of the characterization is that the set of reachable markings of
communication-free nets is effectively a semilinear set.

1.2 Contributions and outline
Summarizing, our contributions are the followings:

1. Conversions of one-way nondeterministic finite automata and context-
free grammars into Parikh equivalent one-way deterministic finite
automata.

2. In particular, one of our main contributions is the conversion from
one-way nondeterministic finite automata accepting only nonunary
words into Parikh equivalent one-way deterministic finite automata.
This result is important for our constructions.

3. Conversions of one-way nondeterministic finite automata and context-
free grammars into Parikh equivalent two-way deterministic finite
automata.

4. We investigate under Parikh equivalence the state complexity of some
language operations which preserve regularity.

5. The noncommutativity of intersection of two languages with respect to
Parikh image.
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Finally, let me introduce the outline of my thesis.
In Chapter 2 we fix our notation. Moreover, we present basic facts

concerning formal languages and automata.
In Chapter 3 we recall the notion of descriptional complexity. Further-

more, we present preliminary constructions of composition and decomposition
of regular and context-free languages.

In Chapter 4 we present basic facts concerning semilinear sets and Parikh
theorem.

In Chapter 5 we study conversions under Parikh equivalence. More
precisely, in Section 5.1 we study conversions of one-way nondeterministic
finite automata and context-free grammars into Parikh equivalent one-way
deterministic finite automata, while in Section 5.2 we extend the results to
conversions into Parikh equivalent two-way deterministic finite automata.

In Chapter 6 we study the operational state complexity of one-way
deterministic automata under Parikh equivalence.

In Chapter 7 we present the conclusions and further works.



Chapter 2

Languages, grammars and
automata

Ouverture

Guillaume Tell
Gioacchino Rossini

In this chapter, we introduce some notation that will be used in the sequel,
and review basic definitions and results from formal languages and automata
theory. For a detailed exposition, we refer the reader to [HU79, Sha08].

2.1 General notation

Most mathematical notation and terminologies that we use in this thesis are
fairly standard. For the sake of completeness, we shall mention some of them
in this section.

2.1.1 Some notation from set theory

A set is a collection of elements chosen from some domain. If S is a finite set,
we use the notation |S| to denote the number of elements or cardinality of the
set and 2S to denote the family of all its subsets. The empty set is denoted
by ∅. By A ∪B (respectively A ∩B , A \B) we mean the union of the two
sets A and B (respectively intersection and set difference). The notation Ac
means the complement of the set A with respect to some assumed universal
set U , that is, Ac = {x ∈ U | x /∈ A}.

2.1.2 Sets of numbers and vector spaces

We denote the set of integers by Z = {. . . ,−2,−1, 0, 1, 2, . . .} and the set of
nonnegative integers by N = {0, 1, 2, 3, . . .}. Then Zm and Nm denote the

7



8 Chapter 2. Languages, grammars and automata

corresponding sets of m-dimensional integer vectors including the null vector
0 = (0, 0, . . . , 0). For 1 ≤ i ≤ m, we denote the i-th component of a vector v
by v[i]. Let α = {i1, . . . , ik} ⊆ {1, . . . ,m}. We denote by πα : Nm → Nk the
α-projection defined by πα(x1, . . . , xm) = (xi1 , . . . , xik).

2.1.3 Asymptotic notation

We use the following standard asymptotic notation, especially when mea-
suring the state complexity: big-O O(), big-omega Ω(), big-theta Θ() and
little-o o().

Let f and g be two functions defined on some subset of the real numbers
R. We write f(n) = O(g(n)) if ∃c > 0, n0 ∈ N such that ∀n > n0,

f(n) ≤ c · g(n)

Intuitively, it means that f is asymptotically bounded from above by g (up
to constant factor).

We write f(n) = Ω(g(n)) if ∃c > 0, n0 ∈ N such that ∀n > n0,

f(n) ≥ c · g(n)

Intuitively, it means that f is asymptotically bounded from below by g.
We write f(n) = Θ(g(n)) if ∃c, d > 0, n0 ∈ N such that ∀n > n0,

c · g(n) ≤ f(n) ≤ d · g(n)

Intuitively, it means that f is bounded both above and below by g asymp-
totically. In fact, f(n) = Θ(g(n)) if and only if f(n) = O(g(n)) and
f(n) = Ω(g(n)).

We write f(n) = o(g(n)) if

limn→∞f(n)/g(n) = 0

Intuitively, it means that g(n) grows asymptotically faster than f(n). We
can observe that every function that is little-o of g is also big-O of g, but
not vice versa.

2.2 Alphabets, strings and languages
An alphabet is a finite, nonempty set of symbols. Conventionally, we use the
symbol Σ for an alphabet. An alphabet is said to be unary when it consists
of a single symbol.

A string or word over Σ is a finite sequence of symbols from Σ. The
empty string ε is the string with zero symbols. A word is said to be unary if
it consists only of k ≥ 0 occurrences of a same symbol, otherwise it is said
to be nonunary.
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The set of all strings over an alphabet Σ is conventionally denoted by Σ∗.
The set of nonempty strings from an alphabet Σ is denoted by Σ+.

Given a word w ∈ Σ∗, |w| denotes its length namely the number of
symbols in it and, for a letter a ∈ Σ, |w|a denotes the number of occurrences
of a in w.

Let x and y be strings. Then xy denotes the concatenation of x and y,
that is, if x is composed of n symbols x = a1a2 · · · an and y is composed
of m symbols y = b1b2 · · · bm, then xy is the string a1a2 · · · anb1b2 · · · bm of
length n+m.

A factor of a word x ∈ Σ∗ is a word y ∈ Σ∗ such that x = wyz for some
w, z ∈ Σ∗. If w 6= ε or z 6= ε, then y is said to be a proper factor. If z = ε,
then x = wy and y is said to be a suffix of x. Similarly, we say that y ∈ Σ∗
is a prefix of x ∈ Σ∗ when w = ε.

If w = a1a2 · · · an is a word, then by wR we mean its reversal, that
is, wR = anan−1 · · · a2a1. For example, (drawer)R = reward. Note that
(wx)R = xRwR. A word w is a palindrome if w = wR.

Given a word w ∈ Σ∗, the projection of w over an alphabet Σ0 ⊆ Σ, is
the word PΣ0(w) obtained by removing from w all the symbols which are
not in Σ0. For example, if w = aabbcc over Σ = {a, b, c}, then P{a,b}(w) is
the word aabb.

If x = a1a2 · · · an and y = b1b2 · · · bn are two words of the same length,
then the perfect shuffle of x and y is the word a1b1a2b2 · · · anbn. For example,
The perfect shuffle of term and hoes is theorems.

Now we turn to sets of strings. If Σ is an alphabet, and L ⊆ Σ∗, then L
is a language over Σ. A language L is unary if L ⊆ {a}∗ for some letter a,
otherwise it is said to be nonunary.

Given a language L, we define its prefix and suffix closures as

Pref(L) = {x ∈ Σ∗ | there exists y ∈ L such that x is a prefix of y} ;

Suff(L) = {x ∈ Σ∗ | there exists y ∈ L such that x is a suffix of y} .

Now let us introduce some useful operations on languages.
Standard set operations such as union, intersection, and complement can

be applied to languages as usual:

• Let L andM be languages over alphabet Σ. Then L∪M is the language
that contains all strings that are in either or both of L and M .

• Let L and M be languages over alphabet Σ. L ∩M is the language
that contains all strings that are in both L and M .

• Given an alphabet Σ, the complement of a language L ⊆ Σ∗ is the
language Lc = Σ∗ \ L.
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The operation of product or concatenation between two languages L1 and
L2 is defined by

L1L2 = {uv | u ∈ L1, v ∈ L2} .

For example, if L1 = {a, b, . . . , h} and L2 = {1, 2, . . . , 8}, then L1L2 repre-
sents all chess boards coordinates in algebraic notation.

The shuffle of two words w1 and w2, not necessarily of the same length,
is the set of all words obtained by interleaving the letters as in shuffling a
deck of cards. Note this is not the same as the perfect shuffle. We denote it
by w1 � w2. For instance, ab� cd = {abcd, acbd, acdb, cabd, cadb, cdab} and
ab� c = {cab, acb, abc}. Formally,

w1 � w2 = {u1v1 · · ·umvm | ∀i = 1, . . . ,m,m ∈ N,
ui, vi ∈ Σ∗, w1 = u1 · · ·um, w2 = v1 · · · vm} .

The shuffle of two languages L1 and L2 is defined to be

L1 � L2 = {x� y | x ∈ L1, y ∈ L2} .

We define L0 = {ε} and Lk = LLk−1 for k ≥ 1. Then the Kleene closure
or Kleene star is the set

L∗ =
∞⋃
k=0

Lk .

The positive closure of L ⊆ Σ∗ is the set

L+ =
∞⋃
k=1

Lk .

Note that L+ contains ε if and only if L does and in this case L+ = L∗.
If L is a language, then the reversed language is defined as

LR = {xR | x ∈ L} .

We can extend the notion of projection to languages in a standard way.
Given a language L ⊆ Σ∗, the projection of L over an alphabet Σ0 ⊆ Σ is

PΣ0(L) = {PΣ0(w) | w ∈ L} .

For example, if the language L = {anbncn | n ≥ 0} over Σ = {a, b, c}, then
P{a,b}(L) = {anbn | n ≥ 0}.

Let L ⊆ Σ+. Then a sequence (x1, x2, . . . , xn) of n words of L is an
L-factorization of a word w ∈ Σ∗ if w = x1x2 · · ·xn [Lot02, Chapter 6].

A set L ⊆ Σ+ is a code if any word w ∈ Σ∗ has at most one L-factorization.
For example, the language L = {a, ab, ba} over Σ = {a, b} is not a code
because w = aba has two distinct L-factorizations, namely (a, ba) and (ab, a).
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The simplest codes are prefix codes. A prefix code L ⊆ Σ+ is a set such
that no word of L is a proper prefix of another word of L. Prefix codes are also
known as prefix-free codes. For example, the language L = {a, ba, bb} over the
alphabet {a, b} is a prefix-free code. Suffix codes are defined symmetrically
as sets such that no word of L is a proper suffix of another word of L.

The advantage of codes is that we can decode a given encoded string
uniquely.

We now turn to a common notation for representing some kinds of
languages. Regular expressions over Σ can be obtained from ∅, the empty
language, {ε}, the language consisting of only the empty string and {a},
∀a ∈ Σ, by a finite number of applications of union, concatenation, and
Kleene star. Actually, we can observe that the empty string ε is redundant
because it can be obtained by ∅∗. In other words, a regular expression is a
well-formed string over the larger alphabet Σ∪A, where A = {ε, ∅, (, ),+, ·, ∗},
assuming Σ ∩A = ∅. In evaluating such an expression, ∗ represents Kleene
closure and has the highest precedence. Concatenation is represented by
·, but sometimes the symbol is omitted, and has next highest precedence.
Finally, + represents union and has lowest precedence. Parentheses are used
for grouping.

If the word u is a regular expression, then L(u) represents the language
that u is shorthand for. For instance, consider the regular expression u =
(a + b)∗a(a + b)(a + b). Then L(u) represents all finite words of as and bs
where the third symbol from the right is a. A language L is said to be regular
if L = L(u) for some regular expression u.

The number of languages that we can build over an alphabet is infinite. If
the language contains only a finite number of strings, it is easy to represent it:
one simply lists the finite set of strings. On the other hand, if the language
is infinite, we might not be able to provide any finite representation for
the language. Anyway, there exist classes of languages that have a finite
representation. Two methods to represent them are through the generative
and recognition point of views. The generative method is by grammars
that allow to generate all words of the language. The recognition method is
through a machine that recognizes the words of the language. In the next
sections we will recall these notions.

2.3 Chomsky’s hierarchy of grammars

A grammar is a tuple G = (V,Σ, P, S), where V , Σ, P , and S are, respectively,
the variables, terminals, productions or rules, and start symbol. The sets V ,
Σ, and P are finite sets. We assume that V and Σ contain no elements in
common, that is, V ∩Σ = ∅. The set of productions P consists of expressions
of the form α → β, where α is a string in (V ∪ Σ)+ and β is a string
in (V ∪ Σ)∗ [Cho56]. Some authors require that α contains at least one
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variable [Har78]. Anyway, this does not change the generative power. Finally,
S is always a symbol in V .

We have presented a grammar, but have not yet defined the language
it generates. To do this, we need to introduce the relations =⇒ and ?=⇒
between strings in (V ∪ Σ)∗.

We define as derivation in a single step the relation =⇒. Given x, y ∈
(V ∪ Σ)∗, x =⇒ y if there exist γ, δ ∈ (V ∪ Σ)∗ and α → β ∈ P such that
x = γαδ and y = γβδ.

For each k ≥ 0, we indicate by k=⇒ a derivation in k steps. Given

x, y ∈ (V ∪ Σ)∗, x k=⇒ y if there exist x0, x1, . . . , xk ∈ (V ∪ Σ)∗ such that

x = x0, y = xk and xi−1 =⇒ xi for each i = 1, . . . , k. Hence, x 0=⇒ y if and
only if x = y.

We denote by +=⇒ a derivation in one or more steps. Given x, y ∈ (V ∪Σ)∗,

x
+=⇒ y if there exists k ≥ 1 such that x k=⇒ y. The relation +=⇒ is the

transitive closure of =⇒.

Finally, the relation ?=⇒ denotes a derivation in an arbitrary number of
steps. Given x, y ∈ (V ∪ Σ)∗, y is derived from x in an arbitrary number
of steps if there exists k ≥ 0 such that x k=⇒ y. The relation ?=⇒ is the
reflexive, transitive closure of =⇒.

A string of terminals and variables α is called a sentential form. We can
go from one sentential form to another by applying a rule of the grammar.
Hence, a derivation consists of zero or more applications of =⇒ to some
sentential form.

The language generated by G, denoted L(G), is the set of all words in
Σ∗ that can be derived from S, i.e.,

L(G) = {w ∈ Σ∗ | S ?=⇒ w} .

When we deal with several grammars, to specify that a derivation is
referred to a grammar G, we use ?=⇒

G
for ?=⇒ and +=⇒

G
for +=⇒.

We say that two grammars G1 and G2 are equivalent if L(G1) = L(G2).
The grammars are classified according to the type of production. The

more general grammars, which have no restriction on production, are called
type 0 grammars. The class of languages generated by these grammars
coincides with the class of languages recognized by Turing machines and it
is often called the recursively enumerable languages.

Let G = (V,Σ, P, S) be a grammar. Suppose that for every production
α → β ∈ P , |α| ≤ |β|. Then the grammar G is type 1 or context sensitive
(csg). The class of languages generated by these grammars coincides with
the class of languages recognized by linear bounded automata.
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Now, suppose that every production in P is of the form A → β ∈ P ,
where A ∈ V and β ∈ (V ∪ Σ)+. Then the grammar is called type 2 or
context free (cfg). It can be noted that a production of the form A → β
allows the variable A to be replaced by the string β independently of the
context in which A appears, hence named context free. The class of languages
generated by these grammars coincides with the class of languages recognized
by pushdown automata.

Further, suppose that every production in P is of the form A→ aB or
A→ a, where A and B are variables and a is a terminal. Then the grammar
is called a type 3 or regular grammar (rg). The class of languages generated
by these grammars coincides with the class of languages recognized by finite
state automata. 1

It should be clear that every regular grammar is context free; every
context-free grammar is context sensitive; every context-sensitive grammar
is of type 0.

We shall call a language that can be generated by a type 0 grammar a
type 0 language. A language generated by a context-sensitive, context-free,
or regular grammar is a context-sensitive (csl), context-free (cfl), or regular
(rl) language, respectively.

Figure 2.1 shows the classes of languages according to Chomsky [Cho56,
Cho59]. This thesis deals with regular and context-free languages.

We summarize the closure properties for regular and context-free lan-
guages in Table 2.1. A detailed investigation on these closure properties are
presented in [HMU01, Sections 4.2,7.3] and [CSY02, JM12]. We see that
some, but not all, of the closure properties that the rls have are also possessed
by the cfls.

The context-free languages are closed under the following operations:
union, concatenation, star, reversal and projection. For the closure property
under projection we could proceed in the following way: if A → β is a
production of the grammar defined over Σ, then PΣ0(L) where Σ0 ⊆ Σ
can be obtained by removing from β all terminals which are not in Σ0.
Unlike the regular languages, the cfls are not closed under intersection,
complement or shuffle. For example, the shuffle of cfls L1 = {anbn | n ≥ 0}
and L2 = {cmdm | m ≥ 0} is not a cfl.

1 We might note that, the definition excludes ε from context-sensitive, context-free or
regular languages. We shall extend our definition of csg, cfg, and rg to allow productions
of the form S → ε, where S is the start symbol, provided that S does not appear on the
right-hand side of any production. In this case, it is clear that the production S → ε can
only be used as the first step in a derivation. We can observe that if L is a context-sensitive,
context-free, or regular language, then L ∪ {ε} and L \ {ε} are csls, cfls, or rls, respectively.
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Regular languages
(rls)

Context-free languages

(cfls)

Context-sensitive languages
(csls)

Recursively enumerable languages

Figure 2.1: Chomsky’s hierarchy of languages.

2.4 Context-free grammars

A context-free grammar is said to be in Chomsky normal form if all its
productions are in one of the three simple forms, either B → CD, B → a,
or S → ε, where a ∈ Σ, B ∈ V , and C,D ∈ V \ {S}. The cfgs in Chomsky
normal form are called Chomsky normal form grammars (Cnfgs).

Theorem 2.4.1 (Chomsky Normal Form). Every context-free language is
generated by a grammar in Chomsky normal form.

A useful way of representing the derivations in a context-free grammar is
by parse trees. These trees show us clearly how the symbols of a terminal
string are grouped into substring, each of which belongs to the language of
one of the variables of the grammar. Let us consider a cfg G = (V,Σ, P, S). A
(parse or derivation) tree T for G is a tree satisfying the following conditions:

• Each interior node is labeled by a variable in V .

• The root is labeled by a variable in V .

• Each leaf is labeled by either a variable, a terminal, or ε. However, if
the leaf is labeled ε, then it must be the only child of its parent S.
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Closed under Regular languages Context-free languages

Union Yes Yes

Intersection Yes No

Complement Yes No

Concatenation Yes Yes

Star Yes Yes

Shuffle Yes No

Reversal Yes Yes

Projection Yes Yes

Table 2.1: Closure properties of the classes of regular and context-free
languages.

• If an interior node is labeled with A ∈ V , and its children are labeled

X1, X2, . . . , Xk ∈ (V ∪ Σ)

respectively, from the left, then A → X1X2 · · ·Xk is a production in
P . Note that the only chance that one of the X’s can be ε is if this is
the label of the single child, and A→ ε is a production of G.

If we look at the leaves of any parse tree T and concatenate them from
the left, we get a string x ∈ (V ∪ Σ)∗, called the yield of the tree, which is
always a string that is derived from a root variable A. In this case we write
T : A ?=⇒ x.

Of special importance are those parse trees such that the root is labeled
by the start symbol and the yield is a terminal string, that is, all leaves are
labeled either with a terminal or with ε. These are parse trees whose yields
are strings in the language of the underlying grammar.

Let us introduce the concept of leftmost derivation, that is a derivation in
which the variable replaced at each step is the leftmost one. A grammar G
is said to be unambiguous if every word w ∈ L(G) has exactly one leftmost
derivation and ambiguous otherwise.

We can construct a (leftmost) derivation from a parse tree and vice versa.
The matter of ambiguity in grammars and languages is an important appli-
cation of parse trees. A grammar is unambiguous, if every word generated
has exactly one parse tree.
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2.5 Finite state automata
In this section we see another method of finitely specifying infinite languages,
the recognizer. We consider what is undoubtedly a very simple recognizer,
called a finite automaton. The languages defined are exactly the regular
languages.

We may visualize a finite state automaton as in Figure 2.2. The model
consists of a finite control, which reads symbols from a linear input tape.
The tape is divided into squares of cells; each cell can hold any of a finite
number of symbols. There is a tape head that is always positioned at one of
the tape cells. We say that the machine is scanning that cell.

` a1 a2 a3 a4 a5 . . . aam

Finite control

Figure 2.2: A finite state automaton.

Initially, the input string, which is a finite-length string of symbols, chosen
from the input alphabet, is placed on the tape. The input string is enclosed in
left ` and right a endmarkers, which are not elements of the input alphabet.

Informally, the finite control starts in its initial state with its reading
head pointing to the left endmarker. At any point in time, the machine
is in some state with its reading head scanning some tape cell containing
an input symbol or one of the endmarkers. Based on its current state and
the symbol occupying the tape cell, it moves its reading head one position
leftward, one position rightward or remains on the same cell. The reading
head may not move outside of the endmarkers. The machine move on a
particular state and symbol is determined by a transition function, which is
part of the specification of the machine.

The finite state automata are classified according to the transition func-
tion. While in one-way automata the input string is scanned from left to right,
until reaching the end of the input, where the word is accepted or rejected,
in two-way automata the head can be moved in both directions. Moreover,
unlike two-way automata, one-way automata do not need the endmarkers.
Now we introduce the formal definitions of finite state automata.
Definition 2.5.1. A two-way nondeterministic finite automaton (2nfa) is
defined as a 7-tuple A = (Q,Σ,`,a, δ, q0, F ) in which:
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• Q is the finite set of states.

• Σ is the finite input alphabet.

• `,a /∈ Σ are two special symbols, called the left and the right endmark-
ers, respectively.

• δ : Q× (Σ ∪ {`,a})→ 2Q×{−1,0,+1} is the transition function.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting (final) states.

The input string is stored on the tape surrounded by the two endmarkers.
The cells of the tape are numbered from left to right, beginning with zero for
the left endmarker. In one move, the automaton A reads an input symbol,
changes its state, and moves the reading head one cell to the right, left, or
keeps it stationary, depending on whether δ return +1,−1 or 0, respectively.

If, for some q ∈ Q and a ∈ Σ ∪ {`,a}, we have |δ(q, a)| > 1, the machine
makes a nondeterministic choice. If |δ(q, a)| = 0, the machine halts and the
state is said to be halting.

The machine accepts the input string, if there exists a computation
path from the initial state q0 with head on the left endmarker to the right
endmarker into some accepting state q ∈ F .

The language accepted or defined by an automaton A, denoted L(A),
consists of all input strings that are accepted by the automaton A.

Definition 2.5.2. A two-way nondeterministic automaton A = (Q,Σ,`,a
, δ, q0, F ) is said to be two-way deterministic (2dfa), if |δ(q, a)| ≤ 1 for all
q ∈ Q and a ∈ Σ ∪ {`,a}.

We assume that a 2dfa starts the computation in a designed initial state,
scanning the left endmarker and that its head cannot violate the endmarkers,
namely, there are no transitions reading the left (right) endmarker and moving
to the left (right, respectively). In the literature, several slightly different
acceptance conditions for two-way automata have been considered [RS59,
SS78, KMP14, KP12]. Here, we assume that a 2dfa accepts the input by
entering in a special unique state qf which is also halting.

Now we introduce one-way automata.

Definition 2.5.3. A one-way nondeterministic finite automaton (1nfa) is
defined as a 5-tuple A = (Q,Σ, δ, q0, F ) where:

• Q is the finite set of states.

• Σ is the finite input alphabet.

• δ : Q× Σ→ 2Q is the transition function.
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• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of accepting (final) states.

We need to extend the transition function δ to a function δ̂ that takes a
state q and an input string w, and returns the set of states the automaton
is in, if it starts in state q and processes the string w. The transition
function δ̂ : Q× Σ∗ → 2Q is defined as:

• ∀q ∈ Q, δ̂(q, ε) = q

• ∀x ∈ Σ∗,∀a ∈ Σ, δ̂(q, xa) =
⋃
p∈δ̂(q,x) δ(p, a)

In the following we will use just the symbol δ also for δ̂.
The machine accepts the input, if there exists a computation path from

the initial state q0 to some accepting state q ∈ F . The language accepted
or defined by a 1nfa, denoted L(A), consists of all input strings that are
accepted by the automaton A, i.e.,

L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F 6= ∅} .

Definition 2.5.4. A one-way nondeterministic automaton A = (Q,Σ, q0, F )
is a one-way deterministic (1dfa), if it has no nondeterministic choices, i.e.,
if ∀q ∈ Q,∀a ∈ Σ, |δ(q, a)| = 1.

A 1dfa is said to be complete if δ(q, a) is always defined. In our terminol-
ogy, a 1dfa is always complete unless it is explicitly stated to be incomplete.

We call unary any automaton that works with a single letter input
alphabet.

An automaton is halting if no computation path can get into an infinite
loop, that is, on every input, each computation path halts after a finite
number of steps. Note that infinite computations are possible in two-way
automata, while they are not possible in one-way automata. This is because
of the move of the reading head from left to right and vice versa.

Two automata A1 and A2 are equivalent if L(A1) = L(A2).
Considering one-way and two-way automata, with their deterministic

and nondeterministic versions, we obtain four types of automata which are
equivalent in constructive way. That is, a language L is accepted by a 2nfa
if and only if L is accepted by a 2dfa if and only if L is accepted by a 1nfa
if and only if L is accepted by a 1dfa. Hence, all these variants of finite
automata recognize the same class of languages, namely the class of regular
languages.

A useful way of representing the finite state automata is by a directed
graph, called state diagram. This consists of a node for every state and a
directed line from state q to state p with label a ∈ Σ if the finite automaton,
in state q, scanning the input symbol a, would go to state p. Final states are
indicated by a double circle. The initial state is indicated by an unlabeled
arrow entering in the state.
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Example 2.5.1. The state diagram in Figure 2.3 represents a one-way
nondeterministic automaton that accepts the language L3, where

Ln = {x ∈ {a, b}∗ | the nth symbol from the right is a} .

q0 q1 q2 q3

a

a, b

a, b a, b

Figure 2.3: State diagram for a 1nfa.

The language L3 accepted by the automaton in Figure 2.3 is representable
by the following regular expression (a + b)∗a(a + b)(a + b). The regular
expressions, introduced in Section 2.2, are an algebraic notation that describe
exactly the same languages as finite automata: the regular languages. The
equivalence between regular expressions and finite automata has been shown
by Kleene in [Kle56]. There is a correspondence in both directions and this
is formalized in Kleene’s Theorem.

Theorem 2.5.1. (Kleene’s Theoem) The following language classes are
identical:

• the class of languages specified by regular expressions.

• the class of languages accepted by 1dfas.

• the class of languages accepted by 1nfas.

It is possible to show that the smallest 1dfa accepting Ln has at least 2n
states, so 1nfas, while accepting the same class of languages as 1dfas, can be
exponentially more concise. This is the topic of the next chapter.





Chapter 3

Descriptional complexity

Adagio

Clarinet concerto in A Major
Wolfgang Amadeus Mozart

In this chapter, we introduce a few basic notions about descriptional
complexity. Moreover, fundamental properties of descriptional systems
and their complexity measures are discussed and presented in a unified
manner [GKK+02, HK10].

A natural and important measure of descriptional complexity is the size
of a representation of a language, that is, the length of its description. This
chapter is devoted to several aspects and results with respect to complexity
measures that are recursively related to the sizes.

q0 q1 q2

q3 q6 q4 q5

q7

b

a a

b

b
a

b

a

a

b

a

b

a

b

a

b

Figure 3.1: A 1dfa equivalent to 1nfa in Figure 2.3.
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A comprehensive overview of results is given concerning the question:
how succinctly can a regular or a context-free language be rep-
resented by a descriptor of one descriptional system compared
with the representation by an equivalent descriptor of another
descriptional system?

To illustrate the situation consider the language L3 = (a+b)∗a(a+b)(a+b)
introduced in Example 2.5.1 where

Ln = {x ∈ {a, b}∗ | the nth symbol from the right is a} .

Figure 3.1 shows a 1dfa equivalent to the 1nfa showed in Figure 2.3. The
automaton has been obtained by subset construction. Observe that the
states unreachable in the automaton are not shown. It is possible to show
that the smallest complete 1dfa has exactly 2n states while there is a 1nfa
with n + 1 states accepting Ln. This gives an exponential gap. However,
this example does not give the maximum blow-up. A more sophisticated
example, where the maximum blow-up is reached, can be found in [MF71].

This exponential trade-off between one-way nondeterministic and de-
terministic finite automata is a fundamental result in this area. Using the
classical subset construction [RS59], from each 1nfa with n states, we can
build an equivalent 1dfa with 2n states. Moreover, this state bound cannot
be reduced in the worst case. That is, it is optimal [Lup63, MF71, Moo71].

Now we first establish some notation for descriptional complexity.

3.1 Descriptional systems
We formalize the intuitive notion of a representation or description of a
family of languages. A descriptional system is a collection of encodings of
items where each item represents or describes a formal language. In the
following, we call the items descriptors. Formally,
Definition 3.1.1. A descriptional system S is a set of non-empty finite
descriptors, such that each descriptor D ∈ S describes a formal language
L(D).

The family of languages represented (or described) by some descriptional
system S is

L(S) = {L(D) | D ∈ S} .
For every language L, the set of its descriptors in a descriptional system

S is
S(L) = {D ∈ S | L(D) = L} .

For instance, 1nfas are a descriptional system S1 and L(S1) is the family of
regular languages. The family of context-free grammars is other descriptional
system S2 and L(S2) is the family of context-free languages.

Now we turn to measure the size of descriptors.
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3.2 Complexity measure
Basically, we are interested in defining a complexity measure as general as
possible to cover a wide range of approaches, and in defining it as precise as
necessary to allow a unified framework for proofs.

Common notions as the relative succinctness of descriptional systems and
our intuitive understanding of descriptional complexity suggest to consider
the size of descriptors.

For instance, note that for each n ≥ 1, the regular language Ln =
(an)∗ requires n states to be recognized by a 1nfa or by a 1dfa. Similar
considerations can be formulated for grammars. The language Ln is generated
by the grammar containing only one variable S and the productions S → an

and S → anS. Observe that for large n we have always one variable and two
productions to express this language. The number of variables or productions
are not a measure for grammars in general, but it becomes a measure if the
descriptional system is chosen to be that of grammars in some special form.
Another example is treated in [HK10, Example 1.71]. However, it is not
difficult to see that for grammars in Chomsky normal form, the number of
variables is a “reasonable” measure of complexity [Gru73]. Formally,

Definition 3.2.1. Given a descriptional system S, a complexity (or size)
measure for S is a total, recursive function c : S → N such that for any
alphabet Σ, the set of descriptors in S describing languages over Σ is recur-
sively enumerable in order of increasing size and, moreover, does not contain
infinitely many descriptors of the same size.

For D ∈ S, c(D) is the complexity of the descriptor D.

We will call “reasonable measure” a measure with the properties defined
above.

In this thesis we consider as complexity measures for context-free gram-
mars the number of variables of the grammar in Chomsky normal form and
for finite automata the number of states. Further measures based on other
criteria induced by grammatical levels, derivation trees, derivation steps, etc.,
are introduced and studied in [Gru71, Gru76].

Whenever we consider the relative succinctness of two descriptional
systems S1 and S2, we assume the intersection L(S1) ∩ L(S2) to be non-
empty.

Definition 3.2.2. Let S1 be a descriptional system with complexity measure
c1, and S2 be a descriptional system with complexity measure c2. A total
function f : N → N, is said to be an upper bound for the increase in
complexity when changing from a descriptor in S1 to an equivalent descriptor
in S2, if for all D1 ∈ S1 with L(D1) ∈ L(S2) there exists a D2 ∈ S2(L(D1))
such that

c2(D2) ≤ f(c1(D1)) .
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If there is no recursive function serving as upper bound, the trade-off is
said to be non-recursive.

Definition 3.2.3. Let S1 be a descriptional system with complexity measure
c1, and S2 be a descriptional system with complexity measure c2. A total
function f : N→ N, is said to be a lower bound for the increase in complexity
when changing from a descriptor in S1 to an equivalent descriptor in S2,
if for infinitely many D1 ∈ S1 with L(D1) ∈ L(S2) there exists a minimal
D2 ∈ S2(L(D1)) such that

c2(D2) ≥ f(c1(D1)) .

A main field of investigation deals with the question: how succinctly
can a language be represented by a descriptor of one descriptional system
compared with the representation by an equivalent descriptor of the other
descriptional system? An upper bound for the trade-off gives the maximal
gain in economy of description, and conversely, the maximal blow-up (in
terms of descriptional complexity) for simulations between the descriptional
systems. A maximal lower bound for the trade-off determines the costs which
are necessary in the worst cases.

3.3 Optimal simulations

Finite automata are one of the most elementary computational models. They
are used in many areas of computer science, from process modeling in software
engineering to protocol specification in distributed systems. First of all, their
computational power is well established: they exactly characterize the class of
regular languages. A classic example of descriptional complexity result in this
field is the comparison, in terms of states, between 1dfa and 1nfa. It is well
known that, for any integer n, 2n states are necessary [Lup63, MF71, Moo71]
and sufficient [RS59] for a 1dfa to simulate n-state 1nfa. In other words,
in [Lup63, MF71, Moo71] it is shown that the subset construction cannot
be improved.

Rabin and Scott [RS59] and Shepherdson [She59] independently discov-
ered that the capability of moving the input head in both directions does not
increase the recognition power of finite memory devices. Namely, also 2dfa
or 2nfa characterize regular languages, exactly as their one-way determin-
istic and nondeterministic counterparts. The fact that all models of finite
automata introduced so far have the same computational power encourages
to compare their succinctness, i.e., to compare the size of different automata
types required to accept the same language.

Figure 3.2 shows the well-known costs, in terms of states, of simulating
different n-state automata by 1dfa: one-way nondeterministic finite automata:
O(2n) [RS59], two-way deterministic finite automata: O(nn) [RS59, She59],
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Figure 3.2: Optimal simulations between automata.

two-way nondeterministic finite automata: O(2n2) [RS59, She59]. All these
bounds are tight. More detailed bounds are studied in [Kap05].

Nevertheless, some challenging problems concerning finite automata are
still open. An important example is the question posed by Sakoda and Sipser
in 1978 [SS78] about the existence of a polynomial simulation of 2nfa or 1nfa
by 2dfa. They conjecture that these simulations are exponential. Several
authors treated this problem, obtaining some results for restricted models,
e.g, sweeping automata [Sip80, Ber80, Mic81], oblivious automata [HS03],
unary automata [Chr86, MP01, GMP03]. However, a solution to the general
problem seems to be very far.

A sweeping automaton is a 2dfa that changes direction only at either end
of the input. Sipser [Sip80] showed that there exists a family of n-state 1nfa
over an alphabet of size 2n2 such that any equivalent sweeping automaton
requires at least 2n states. In [Ber80] and [Mic81] it is shown that 2dfa can
be exponentially more succinct than sweeping automata. The result of Sipser
was generalized by Hromkovic and G. Schnitger [HS03] considering oblivious
machines (moving the input head along the same trajectory on all inputs of
the same length).

Berman and Lingas [BL77] state a polynomial lower bound of Ω(n2/ logn)
for cost of 2nfa by 2dfa simulation, and provide an interesting connection
with the celebrated open problem L ?= NL (where L and NL are the classes of
languages accepted in logarithmic space by deterministic and nondeterminis-
tic Turing machines, respectively). More precisely, they show that if L = NL,
then for some polynomial p, for all integers m, and all k-state 2nfa A, there is
a p(mk)-state 2dfa accepting the set of all strings of length at mostm in L(A).
As a consequence of this result, Sipser [Sip80] relates the L ?= NL question
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also to the existence of sweeping automata with a polynomial number of
states for a certain family of regular languages. A further improvement is
contained in [Chr86], where the best known lower bound is Ω(n2) for the
cost of 2nfas by 2dfas simulation. As the L vs. NL problem is one of the
major open problems in the structural complexity theory, it gives additional
motivations for the study of the relationship between 2dfas and 2nfas.

One of the most promising restrictions of the open question of Sakoda
and Sipser is represented by its unary version which leads us to study optimal
simulations between unary automata. The following are the main results on
descriptional complexity of finite automata over unary alphabets:

• Each n-state 1nfa can be converted to a O(n2)-state 2dfa, and the
conversion is tight [Chr86].

• Each n-state 1nfa can be converted to a eO(
√
n·lnn)-state 1dfa [Chr86].

• Each n-state 2dfa can be converted to a eO(
√
n·lnn)-state 1dfa (and

1nfa) [Chr86].

• Each n-state 2nfa can be converted to a eO(
√
n·lnn)-state 1dfa [MP01].

They are shown in Figure 3.3.

2dfa1nfa 2nfa

1dfa

?

n2

e
√
n·lnn

e
√
n·lnn

e
√
n·lnn

e
√
n·lnn

Figure 3.3: Optimal simulations between different kinds of unary automata.

In [GMP03] the authors proved that each n-state unary 2nfa can be
simulated by an equivalent 2dfa with at most O(ndlog2 (n+1)+3e) = 2O((log2 n)2)

states, hence obtaining a subexponential but still superpolynomial upper
bound. Up to now, it is not known whether or not that simulation is tight.



3.4. Preliminary constructions 27

However, a positive answer to this question would imply the separation
between the classes L and NL. In fact, in [GP11] it was shown that if L = NL
then each unary 2nfa with n states can be simulated by a 2dfa with a number
of states polynomial in n. In [GMP07] the problem of the complementation
of unary 2nfa was considered. The authors proved that for each n-state
2nfa accepting a unary language L there exists a 2nfa with O(n8) states
accepting the complement of L. They also discuss the relationships between
the problem of the complementation of 2nfas and the problem of Sakoda
and Sipser.

The studies shown above give evidence that research in descriptional
complexity of automata is not only motivated by the investigation of succinct
representation of regular languages, but are also linked to fundamental
questions in computational and structural complexity.

3.4 Preliminary constructions
Here, we present some preliminary constructions which will be used in the
rest of the thesis. These constructions are simple and standard.

Throughout the section, let us fix an alphabet Σ = {a1, a2, . . . , am} of m
symbols. Given a language L ⊆ Σ∗, the unary parts of L are the languages

L1 = L ∩ {a1}∗, L2 = L ∩ {a2}∗, . . . , Lm = L ∩ {am}∗ ,

while the nonunary part is the language

L0 = L \ (L1 ∪ L2 ∪ . . . ∪ Lm) ,

i.e., the set of all nonunary words belonging to the language L. Clearly,

L =
m⋃
i=0

Li

First, we consider some decomposition results: we show how to obtain
automata and grammars for the unary and nonunary parts of the languages
defined by given automata and grammars, respectively. After, we will shortly
discuss some composition results: how to obtain 1dfas or 2dfas, respectively,
accepting the union of languages defined by given 1dfas or 2dfas.

3.4.1 Decomposition results

Let us start by considering finite automata. Given an automaton A, we can
readily build automata accepting the unary and nonunary parts of L(A),
respectively.

Lemma 3.4.1. For each n-state 1nfa A over an m-letter alphabet, there
exist m+ 1 1nfas A0, A1, . . . , Am such that:
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• A0 has n(m+ 1) + 1 states and accepts the nonunary part of L(A).

• For i = 1, . . . ,m, Ai is a unary 1nfa of n states which accepts the
unary part L(A) ∩ {ai}∗.

Furthermore, if A is deterministic then so are A0, A1, . . . , Am.

Proof. To accept an input w, the automaton A0 has to check that w is
accepted by A and contains at least two different symbols. To do that, A0
uses the same states and transitions as A. However, in a preliminary phase,
it keeps track in its finite control of the first letter of w, until discovering a
different letter.

The automaton A0, besides all states and transitions of A, has a new
initial state and m extra copies [q, 1], . . . , [q,m] of each state q of A. The
transitions from the initial state of A0 simulate those from the initial state
of A, also remembering the first symbol of the input, i.e., a transition in A
which from the initial state, reading a symbol ai, leads to the state q, is
simulated in A0 by a transition leading to [q, i].

From a state [q, i], reading the same symbol ai the automaton A0 can
move to each state [p, i] such that A from q reading ai can move to p. In
this way, until the scanned input prefix consists only of occurrences of the
same letter ai, A0 simulates A using the ith copies of the states. However,
when in a state [q, i] a symbol aj 6= ai is read, having verified that the input
contains at least two different letters, A0 can move to each state p which is
reachable in A from the state q, so entering the part of A0 corresponding to
the original A. The final states of A0 are the final states in the copy of A.
From this construction we see that the number of states of A0 is n(m+1)+1.
Furthermore, if A is deterministic then also A0 is deterministic.

For the unary parts, it is easily seen that for i = 1, . . . ,m, the automaton
Ai can be obtained by removing from A all the transitions on the symbols
aj 6= ai. Clearly, also this construction preserves determinism.

Let us see with an example how the lemma proceeds.

Example 3.4.1. Let us consider a 1dfa A as in Figure 3.4 accepting the
language

L(A) = {w ∈ {a1, a2}∗ | |w|a2 mod 2 = 0} .

The unary and nonunary parts of the automaton are shown in Figure 3.5
and Figure 3.6, respectively.

We can give a similar result in the case of cfgs. The results concerning
context-free grammars rely on the number of variables as complexity measure.
Since this does not make sense for general grammars, we consider grammars



3.4. Preliminary constructions 29
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Figure 3.4: A 1dfa A of Example 3.4.1.

q a1

(a) L(A1) = L(A) ∩
{a1}∗ = a∗1

q p

a2

a2

(b) L(A2) = L(A) ∩ {a2}∗ =
(a2a2)∗

Figure 3.5: Unary parts of the automaton A in Figure 3.4.

in Chomsky normal form. In order to make the results more comparable, we
report a known result about the size blow-up for converting a general context-
free grammar into Chomsky normal form [HMU01, Sections 7.1,7.4.2]:

Theorem 3.4.1. Given a cfg G having a description of length h, we can
find an equivalent Cnfg for G in time O(h2). The resulting grammar has
length O(h2).

Lemma 3.4.2. For each h-variable Cnfg G generating a language L(G) ⊆
Σ∗, there exist m+ 1 Cnfgs G0, G1, . . . , Gm such that:

• G0 has mh − m + 1 variables and generates the nonunary part L0
of L(G).

• For i = 1, . . . ,m, Gi is a unary Cnfg with h variables which generates
the unary part Li = L(G) ∩ {ai}∗.

Proof. For i = 1, . . . ,m, the design of Gi is simply done by deleting from P
all productions of the form B → aj with i 6= j. Built in this manner, it is
impossible for Gi to contain more than h variables.

Giving a linear upper bound on the number of variables for G0 is slightly
more involved. The construction is based on the fact that if any nonunary
word w is split into two parts at any position, that is, w = uv, then there
must exist two different letters ai 6= aj such that ai is contained in u and
aj is contained in v. Actually, ai, aj depend not only on w, but also on the
position of the boundary between u and v. It is clear that any production
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Figure 3.6: Nonunary part of the automaton A in Figure 3.4.

of one letter or ε directly from S is contrary to the purpose of G0. This
observation enables us to focus on the derivations by G that begin with
replacing S by two variables. Consider a derivation

S =⇒
G

BC
+=⇒
G

uC
+=⇒
G

uv

for some nonempty words u, v ∈ Σ+ and S → BC ∈ P . G0 simulates G,
but also requires extra feature to test whether u and v contain respectively
letters ai and aj , for some i 6= j, and make only derivations that pass this
test valid. To this end, we let the start variable S′ of G0 make guess which
of the two distinct letters in Σ have to derive from B and C, respectively.
We encode this guess into the variables in V \ {S} as a subscript like Bi (this
means that, for w ∈ Σ∗, Bi

+=⇒
G0

w if and only if B +=⇒
G

w and w contains at
least one ai).

Now, we give a formal definition of G0 as a quadruple (V ′,Σ, P ′, S′),
where

V ′ = {S′} ∪ {Bi | B ∈ V \ {S}, 1 ≤ i ≤ m}

and P ′ consists of the following production rules:

1. {S′ → BiCj | S → BC ∈ P and 1 ≤ i, j ≤ m with i 6= j};

2. {Bi → CiDj , Bi → CjDi | B → CD ∈ P , B 6= S and 1 ≤ i, j ≤ m};

3. {Bi → ai | B → ai ∈ P and 1 ≤ i ≤ m}.

We conclude the proof by checking that L(G0) = {w ∈ L(G) | w is nonunary}.
To this aim we prove the following:
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Claim. Let Bi be a variable of G0 that is different from the start variable.
For w ∈ Σ∗, Bi

+=⇒
G0

w if and only if B +=⇒
G

w and w contains at least one
occurrence of ai.

Both implications will be proved using induction on the length of derivations.
(Only-if part): If Bi =⇒

G0
w (single-step derivation), then w must be ai

and B → ai ∈ P according to the 3rd item in the definition of productions
in P ′. Hence, the base case is correct. The longer derivations must begin
with either Bi → CiDj or Bi → CjDi for some B → CD ∈ P and some
1 ≤ j ≤ m. It is enough to investigate the former case (the other one is
completely similar). Then we have

Bi =⇒
G0

CiDj
+=⇒
G0

w1Dj
+=⇒
G0

w1w2 = w

for some w1, w2 ∈ Σ+. By induction hypothesis, C +=⇒
G

w1, w1 contains

ai, and D
+=⇒
G

w2. Hence, B =⇒
G

CD
+=⇒
G

w1D
+=⇒
G

w1w2 = w is a valid
derivation by G, and w contains ai.

(If part): The base case is proved as for the direct implication. If B +=⇒
G

w

is not a single-step derivation, then it must start with applying to B some
production B → CD ∈ P . Namely,

B =⇒
G

CD
+=⇒
G

w′1D
+=⇒
G

w′1w
′
2 = w

for some nonempty words w′1, w′2 ∈ Σ+. Thus, either w′1 or w′2 contains
ai; let us say w′1 does (the other case is similar). By induction hypothesis,
Ci

+=⇒
G0

w′1. A letter aj occurring in w′2 is chosen, and the hypothesis gives

Dj
+=⇒
G0

w′2. As a result, the derivation

Bi =⇒
G0

CiDj
+=⇒
G0

w1Dj
+=⇒
G0

w′1w
′
2 = w

is valid.
This completes the proof of the claim.

To conclude the proof of the lemma, let us check that G0 genetates the
nonunary part of L(G). For the direct implication, assume that u ∈ L(G0).
Its derivation should be

S′ =⇒
G0

BiCj
+=⇒
G0

u1Cj
+=⇒
G0

u1u2 = u

for some S′ → BiCj ∈ P ′, u1, u2 ∈ Σ+, 1 ≤ i, j ≤ m, with i 6= j. Ignoring
the subscripts i, j in this derivation brings us with S +=⇒

G
u. Moreover, the
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claim above implies that u1 and u2 contain ai and aj , respectively. Thus, u
is a nonunary word in L(G).

Conversely, consider a nonunary word w ∈ L(G). Being nonunary,
|w| ≥ 2, and this means that its derivation by G must begin with a production
S → BC. Since B,C 6= S, they cannot produce ε, and hence, we have

S =⇒
G

BC
+=⇒
G

w1C
+=⇒
G

w1w2 = w

for some nonempty words w1, w2 ∈ Σ+. Again, being w nonunary, we can
find a letter ai in w1 and a letter aj in w2 such that i 6= j. Now, the
claim above implies Bi

+=⇒
G0

w1 and Cj
+=⇒
G0

w2. Since S′ → BiCj ∈ P ′, the
derivation

S′ =⇒
G0

BiCj
+=⇒
G0

w1Cj
+=⇒
G0

w1w2 = w

is a valid one by G0.
Note that, being thus designed, G0 contains mh−m+ 1 variables.

Let us see with an example how the lemma proceeds in the case of
cfgs. Here we report an example to obtain the nonunary part of a language
generated by a Cnfg.

Example 3.4.2. Let us consider a Cnfg G = (V,Σ, P, S), where

V = {S,A,B,C,D,E}

and P consists of the following production rules:

1. {S → AC | BD | a | b | ε};

2. {A→ a};

3. {B → b};

4. {C → EA | a};

5. {D → EB | b};

6. {E → AC | BD | a | b};

generating the language of all palindrome words in Σ = {a, b}.
Now, we give the Cnfg G0 as a quadruple (V ′,Σ, P ′, S′), where

V ′ = {S′} ∪ {A1, A2, B1, B2, C1, C2, D1, D2, E1, E2}

and P ′ consists of the following production rules:

1. {S′ → A1C2 | A2C1 | B1D2};

2. {A1 → a};
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3. {B2 → b};

4. {C2 → E2A1 | E2A2 | E1A2};

5. {C1 → E2A1 | E1A2 | E1A1 | a};

6. {D1 → E1B1 | E1B2 | E2B1};

7. {D2 → E2B1 | E2B2 | E1B2 | b};

8. {E1 → A1C1 | A1C2 | A2C1 | B1D1 | B1D2 | B2D1 | a};

9. {E2 → A2C2 | A2C1 | A1C2 | B2D2 | B2D1 | B1D2 | b};

We conclude this section by shortly discussing some constructions related
to the union of languages defined by 1dfas and by 2dfas.

3.4.2 Composition results

First, we remind the reader that k 1dfas A1, A2, . . . , Ak with n1, n2, . . . , nk
states, respectively, can be simulated “in parallel” by a 1dfa, in order to
recognize the union L(A1)∪L(A2)∪ · · · ∪L(Ak). In particular, the state set
of A is the Cartesian product of the state sets of the given automata. For this
reason, the automaton A obtained according to this standard construction is
usually called product automaton. Its number of states is n1 · n2 · · ·nk.

If A1, A2, . . . , Ak are 2dfas and we want to obtain a 2dfa A accepting
the union L(A1) ∪ L(A2) ∪ · · · ∪ L(Ak), the state cost reduces to the sum
n1 +n2 + · · ·+nk, under the hypothesis that the automata are halting, namely,
they do not present any infinite computation. We observe that the drastic
decrease in state complexity is due to the capability of moving the reading
head in both directions. In particular, on input w, the automaton A simulates
in sequence, for i = 1, . . . , k, the automata Ai, halting and accepting in the
case one ı̂ is found such that Aı̂ accepts w.

Suppose that, for i = 1, . . . , k, the state set of Ai is Qi with final state
qi,f and Qi ∩Qj 6= ∅ for i 6= j. Then, A can be defined as follows.

• The set of states is Q = Q1 ∪Q2 ∪ · · · ∪Qk.

• The initial state is the initial state of A1.

• The final state is the final state qk,f of Ak.

• For i = 1, . . . , k − 1, A contains all the transitions of Ai with the
exception of those leading to the final state qi,f of Ai. Those transitions
lead directly to qk,f , to halt and accept.
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In this way, the state qi,f of Ai becomes unreachable. (We remind the
reader that this state is also halting.) In the automaton A, the state qi,f
is “recycled” in a different way: it is used to prepare the simulation
of Ai+1 after a rejecting simulation of Ai. To this aim, each undefined
transition of Ai leads in A to the state qi,f , where the automaton A
loops, moving the head leftward, to reach the left endmarker. There,
A moves the head one position to the right, on the first symbol of
the input word, and enters the initial state of Ai+1, hence starting to
simulate it.

• All the transitions of Ak are copied in A without any change. Hence,
if the input was rejected in all the simulations of A1, A2, . . . , Ak−1, it
is accepted by A if and only if it is accepted by Ak.

We observe that each 1dfa can be converted into a 2dfa in the form we
are considering (cf. Definition 2.5.2), just adding the accepting state, which
is entered on the right endmarker when the given 1dfa accepts the input. So
the above construction works (with the addition of at most k extra states)
even when some of the Ai’s are one-way.

Finally, we point out that, as proven in [GMP07], with a linear increase
in the number of the states, each 2dfas can be made halting. In particular,
each n-state 2dfa can be simulated by a halting 2dfa with 4n states.

So the above outlined construction can be extended to the case of non-
halting 2dfas by obtaining a 2dfa with no more than 4 · (n1 + n2 + · · ·+ nk)
states.

3.5 State complexity of operations on regular lan-
guages

In this section we recall some results about state complexity of some opera-
tions between regular languages that we will use in Chapter 6. In particular,
we recall the state complexity of operations union, intersection, comple-
ment, concatenation, star [Yu00], shuffle [CSY02], reversal [YZS94] and
projection [JM12].

We assume that L1 is an n1-state 1dfa language and L2 is an n2-state
1dfa language, and n1, n2 > 1. Table 3.1 shows the state complexity of the
operations over unary and nonunary alphabet.
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Operation Unary alphabet Nonunary alphabet

L1 ∪ L2 n1n2 n1n2

L1 ∩ L2 n1n2 n1n2

Lc1 n1 n1

L1L2 n1n2 (2n1 − 1)2n2−1

L∗1 (n1 − 1)2 + 1 2n1−1 + 2n1−2

L1 � L2 n1n2 2n1n2 − 1

LR1 n1 2n1

PΣ0(L1) n1 3 · 2n1−2 − 1

Table 3.1: Operational state complexity on regular languages accepted by
1dfas.
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Semilinear sets and Parikh’s
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In this chapter we recall some notions concerning semilinear set and
Parikh’s theorem. In particular, we obtain a normal form for the Parikh
image of languages accepted by 1nfas (Lemma 4.0.2) which is a fundamental
tool used in the next chapters.

Let us start with some preliminary notions.
Given k vectors v1, . . . ,vk ∈ Zm, we say that they are linearly independent

if for all n1, . . . , nk ∈ Z, v1n1 + . . . + vknk = 0 implies n1 = . . . = nk = 0.
It is well known that, in this case, k cannot exceed m. The following result
will be required later.

Lemma 4.0.1. Given k linearly independent vectors v1, . . . ,vk ∈ Zm there
are k pairwise different integers t1, . . . , tk ∈ {1, . . . ,m} such that vj [tj ] 6= 0,
for j = 1, . . . , k.

Proof. Let W be the m× k matrix which has v1, . . . ,vk as columns. Since
the given vectors are linearly independent, k ≤ m. Furthermore, by suitably
deleting m − k rows from W , we can obtain a k × k matrix V whose
determinant d(V ) is nonnull.

If k = 1 then the result is trivial. Otherwise, we can compute d(V ) along
the last column as

d(V ) =
k∑
i=1

(−1)i+kvk[i]di,k

where di,k is the determinant of the matrix Vi,k obtained by removing from
V the row i and the column k. Since d(V ) 6= 0, there is at least one index

37
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i such that vk[i] 6= 0 and di,k 6= 0. Hence, as tk we take such i. Using an
induction on the matrix Vtk,k, we can finally obtain the sequence t1, . . . , tk
satisfying the statement of the theorem.

A vector v ∈ Zm is unary if it contains at most one nonzero component,
i.e., v[i],v[j] 6= 0 for some 1 ≤ i, j ≤ m implies i = j; otherwise, it is
nonunary. By definition, the null vector is unary.

We define � for the componentwise partial order on Nm, i.e., u � v if
and only if u[k] ≤ v[k] for all 1 ≤ k ≤ m. For a vector v ∈ Nm, let

Pred(v) = {u | u � v} .

For u,v ∈ Nm, v−u is defined to be a vector w with w[k] = v[k]−u[k]
for all 1 ≤ k ≤ m. Note that v − u is a vector in Nm if and only if u � v.

A linear set in Nm is a set of the form

{v0 + n1v1 + n2v2 + · · ·+ nkvk | n1, n2, . . . , nk ∈ N} , (4.1)

where k ≥ 0 and v0,v1,v2, . . . ,vk ∈ Nm. The vector v0 is called offset
(a.k.a. constant), while the vectors v1, . . . ,vk are called generators (a.k.a. pe-
riods). A semilinear set in Nm is a finite union of linear sets in Nm.

From Theorem 6.1, Corollary 1 of Theorem 6.2, and Lemma 6.3 of [GS64]
there follows:

Theorem 4.0.1. The family of semilinear sets of Nm is closed under union,
intersection, and complementation. The projection of a semilinear set is
semilinear.

The Parikh map ψ : Σ∗ → Nm associates with a word w ∈ Σ∗ the vector

ψ(w) = (|w|a1 , |w|a2 , . . . , |w|am) ,

which counts the occurrences of each letter of Σ in w. The vector ψ(w) is
also called Parikh image of w. Notice that a word w ∈ Σ∗ is unary if and
only if its Parikh image ψ(w) is a unary vector. One can naturally generalize
this map for a language L ⊆ Σ∗ as

ψ(L) = {ψ(w) | w ∈ L} .

The set ψ(L) is called the Parikh image of L. Two languages L,L′ ⊆ Σ∗ are
said to be Parikh equivalent if ψ(L) = ψ(L′).

Parikh equivalence can be defined not only between languages but among
languages, grammars, and finite automata by referring, in the last two cases,
to the defined languages. For example, given a language L, a cfg G, and a
finite automaton A, we say that:

• G is Parikh equivalent to L if ψ(L(G)) = ψ(L),
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• A is Parikh equivalent to L if ψ(L(A)) = ψ(L),

• G is Parikh equivalent to A if ψ(L(G)) = ψ(L(A)).

Parikh’s Theorem, proven in 1966 [Par66], states that the Parikh image of
any context-free language is a semilinear set. We observe that the converse of
the theorem is not true: the Parikh image of the language {anbncn | n ≥ 0}
is a semilinear set, but the language is not context free. Furthermore, we
can prove that a language is not context free using the contrapositive of
the Parikh’s Theorem: if ψ(L) is not a semilinear set then L is not context
free. For instance, ψ(L) =

{
(n2) | n ≥ 1

}
where L =

{
an

2 | n ≥ 1
}
cannot

be expressed as a semilinear set.
Since the class of regular languages is closed under union and each linear

set as in (4.1) is the Parikh image of the regular language

{w0} · {w1, w2, . . . , wk}∗ ,

where, for i = 0, . . . , k, wi = a
vi[1]
1 a

vi[2]
2 · · · avi[m]

m , Parikh’s Theorem is
frequently formulated by giving the following immediate consequence:

Theorem 4.0.2 ([Par66]). Every context-free language is Parikh equivalent
to a regular language.

It is immediate to observe that in the case of unary languages, i.e., lan-
guages defined over a one letter alphabet, two languages are Parikh equivalent
if and only if they are equal. Hence, as a consequence of Theorem 4.0.2, each
unary context-free language is regular. This result was firstly proved, without
using Parikh’s Theorem, by Ginsburg and Rice [GR62]. The equivalence
between unary context-free and regular languages has been studied from
the descriptional complexity point of view in [PSW02], where the following
result was proved:

Theorem 4.0.3 ([PSW02, Thms. 4, 6, 5, 7]). For any Cnfg with h variables
that generates a unary language, there exist an equivalent 1nfa with at most
22h−1+1 states and an equivalent 1dfa with less than 2h2 states. Furthermore,
these costs are tight.

In the thesis we will also make use of the transformation of unary 1nfas
into 1dfas, whose cost was obtained in 1986 by Chrobak [Chr86]:

Theorem 4.0.4 ([Chr86]). The state cost of the conversion of n-state unary
1nfas into equivalent 1dfas is eΘ(

√
n·lnn).

Actually, Geffert observed that a more precise value is e(1+o(1))
√
n·lnn [Gef07].

From now on, let us fix an alphabet Σ = {a1, a2, . . . , am}. A fundamental
tool which will be used is the following normal form for the Parikh image
of 1nfas, which is based on a result obtained by Kopczyński and To in
2010 [KT10].
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Lemma 4.0.2. There exists a polynomial p such that for each n-state 1nfa
A over Σ, the Parikh image of the language accepted by A can be written as

ψ(L(A)) = Y ∪
⋃
i∈I

Zi , (4.2)

where:

• Y ⊆ Nm is a finite set of vectors whose components are bounded by
p(n);

• I is a set of at most p(n) indices;

• for each i ∈ I, Zi ⊆ Nm is a linear set of the form:

Zi = {vi,0 +n1vi,1 +n2vi,2 +· · ·+nki
vi,ki

| n1, n2, . . . , nki
∈ N} , (4.3)

with:

– 0 ≤ ki ≤ m,
– the components of the offset vi,0 are bounded by p(n),
– the generators vi,1,vi,2, . . . ,vi,ki

are linearly independent vectors
from {0, 1, . . . , n}m.

Furthermore, if all the words in L(A) are nonunary then, for each i ∈ I
we can choose a nonunary vector xi ∈ Pred(vi,0) such that all those chosen
vectors are pairwise distinct.

Proof. In [KT10, Thms. 7 and 8] it was proved that ψ(L(A)) can be written
as claimed in the first part of the statement of the lemma, with Y = ∅, I
of size polynomial in n, and the components of each offset vi,0 bounded
by O(n2mmm/2).

For the sake of completeness, we derive a rough upper bound for the
cardinality of the set I by counting the number of possible combinations of
offsets and generators satisfying the given limitations. Since the components
of the offsets are bounded by O(n2mmm/2), the number of possible different
offsets is O(n2m2

mm2/2). We can observe that due to the linear independence
of the generators we have k ≤ m. Furthermore, there are (n+ 1)m vectors
in {0, 1, . . . , n}m. Hence, nm2 is an upper bound for the number of possible
sets of k generators, with k = 1, . . . ,m. This allows us to give O(n3m2

mm2/2)
as an upper bound for the cardinality of I. We point out that in [To10b,
Thm. 4.1] slightly different bounds have been given.

Now we prove the second part of the statement. Hence, let us suppose
that all the words in L(A) are nonunary. Notice that this implies that also
all the offsets vi,0 are nonunary.

If for each i ∈ I we can choose xi ∈ Pred(vi,0) such that all xi’s are
pairwise different, then the proof is completed.
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Otherwise, we proceed as follows. For a vector v, let us denote by ‖v‖
its infinite norm, i.e., the value of its maximum component. Let us suppose
I ⊆ N and denote as NI the maximum element of I.

By proceeding in increasing order, for i ∈ I we choose a nonunary vector
xi ∈ Pred(vi,0) such that ‖xi‖ ≤ i and xi is different from all already chosen
xj , i.e., xi 6= xj for all j ∈ I with j < i. The extra condition ‖xi‖ ≤ i will
turn out to be useful later.

When for an i ∈ I it is not possible to find such xi, we replace Zi by
some suitable sets. Essentially, those sets are obtained by enlarging the
offsets using sufficiently long “unrollings” of the generators. In particular,
for j = 1, . . . , ki, we consider the set

ZNI+j = {(vi,0 + hjvi,j) + n1vi,1 + · · ·+ nki
vi,ki

| n1, . . . , nki
∈ N} , (4.4)

where hj is an integer satisfying the inequalities

NI + j ≤ ‖vi,0 + hjvi,j‖ < NI + j + n (4.5)

Due to the fact that vi,j ∈ {0, . . . , n}m, we can always find such hj . Further-
more, we consider the following finite set

Yi = {vi,0 + n1vi,1 + · · ·+ nki
vi,ki

| 0 ≤ n1 < h1, . . . , 0 ≤ nki
< hki

} . (4.6)

It can be easily verified that

Zi = Yi ∪
ki⋃
j=1

ZNI+j .

Now we replace the set of indices I by the set

Î = I − {i} ∪ {NI + 1, . . . , NI + ki} ,

and the set Y by Ŷ = Y ∪ Yi. We continue the same process by considering
the next index i.

We notice that, since we are choosing each vector xi ∈ Pred(vi,0) in such
a way that ‖xi‖ ≤ i, when we will have to choose the vector xNI+j for a set
ZNI+j introduced at this stage, by the condition (4.5) we will have at least
one possibility (a vector with one component equal to NI + j and another
component equal to 1; we remind the reader that, since the given automaton
accepts only nonunary words, all offsets are nonunary). This implies that
after examining all sets Zi corresponding to the original set I, we do not
need to further modify the sets introduced during this process. Hence, this
procedure ends in a finite number of steps.

Furthermore, for each Zi in the initial representation, we introduced
at most m sets. Since the cardinality of the set of indices I, before the
transformation wasO(n3m2

mm2/2), the cardinality Ñ after the transformation
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is O(n3m2
mm2/2+1). Hence, the cardinality Ñ of the set of indices resulting

at the end of this process is still polynomial.
By (4.5) the components of the offsets which have been added in this

process cannot exceed Ñ + n. Hence, it turns out that m · (Ñ + n) is an
upper bound to the components of vectors in Yi. This permits to conclude
that p(n) = m · (Ñ + n) is an upper bound for all these amounts. Hence
p(n) = O(n3m2

mm2/2+2).
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Conversions under Parikh
equivalence

Veni Creator Spiritus

Symphony No. 8 in E-flat Major
Symphony of a Thousand

Gustav Mahler

In this chapter we investigate conversions from one-way nondeterministic
automata and context-free grammars to one-way and two-way deterministic
automata according to Parikh equivalence.

5.1 Conversions into Parikh equivalent 1dfas
Here we investigate conversions from one-way nondeterministic automata and
context-free grammars to one-way deterministic automata according to Parikh
equivalence. Conversions from context-free grammars are treated in Section
5.1.2, while we start presenting conversions from one-way nondeterministic
automata.

5.1.1 From 1nfas to Parikh equivalent 1dfas

In this section we present our first main contribution. From each n-state
1nfa A, we derive a Parikh equivalent 1dfa A′ with eO(

√
n·lnn) states. Fur-

thermore, we prove that this cost is tight.
Actually, as a preliminary step, we obtain a result which is interesting

per se: if each word accepted by the given 1nfa A contains at least two
different symbols, i.e., it is nonunary, then the Parikh equivalent 1dfa A′ can
be obtained with polynomially many states. Hence, the superpolynomial
blowup is due to the unary part of the accepted language. This result looks
quite surprising.

43
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Figure 5.1: (Left) The 1nfa A of Example 5.1.1. (Right) The Parikh equivalent
1dfa A′.

Before starting the technical presentation, we show an example with the
aim to give, in a very simple case, a taste of our constructions.

Example 5.1.1. Let us consider the following language

L = {ban | n mod 210 6= 0} .

Clearly, L does not contain any unary word. Furthermore, it can be verified
that L is accepted by the 18-state 1nfa A in Figure 5.1(Left). In particular,
in the initial state, reading the letter b, in a nondeterministic way A chooses
to verify the membership of the input to one of the following languages:

• L1 = {ban | n mod 2 6= 0} ,

• L2 = {ban | n mod 3 6= 0} ,

• L3 = {ban | n mod 5 6= 0} ,

• L4 = {ban | n mod 7 6= 0} .

Of course, L = L1 ∪L2 ∪L3 ∪L4. The automaton A can be transformed into
an equivalent 1dfa, by identifying the transitions leaving the initial state and
by merging the 4 loops into a unique loop of length 2 · 3 · 5 · 7 = 210. Using
standard distinguishability arguments, it can be shown that it is not possible
to do better. As a matter of fact, the smallest complete 1dfa accepting L
requires 212 states.

However, we can build a complete 1dfa A′ with only 22 states, accepting
a language L′ Parikh equivalent to L. To do that, for i = 1, . . . , 4, we replace
each language Li with a Parikh equivalent language L′i in such a way that
all the words in L′i begin with the prefix ai−1b, and then we define L′ as the
union of the resulting languages, namely:
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• L′1 = {ban | n mod 2 6= 0} = L1 ,

• L′2 = {aban−1 | n mod 3 6= 0} ,

• L′3 = {a2ban−2 | n mod 5 6= 0} ,

• L′4 = {a3ban−3 | n mod 7 6= 0} ,

• L′ = L′1 ∪ L′2 ∪ L′3 ∪ L′4 .

In this way, given an input word w, after reading the first 4 input symbols,
in a deterministic way A′ can decide for which language L′i, 1 ≤ i ≤ 4, the
membership of w should be tested, in order to decide whether or not w ∈ L′.

The automaton A′ is depicted in Figure 5.1(Right). The vertical path
starting from the initial state is used to select, depending on the position of
the letter b, one of the loops, i.e., to select which language L′i must be used
to decide the membership of the input to L′. (Of course, when the symbol b
does not appear in the prefix of length 4, the automaton rejects by entering a
dead state, which is not depicted.)

The loops of A′ are obtained by suitably “unrolling” the loops of the
original 1nfa A. The unrolled parts of the loops are moved before b-transitions
and merged together in the vertical path which starts from the initial state.

A fundamental tool which will be used in this section is the normal form
for the Parikh image of 1nfas (presented in Lemma 4.0.2).

Now we are able to consider the case of automata accepting only words
that are nonunary.

Theorem 5.1.1. For each n-state 1nfa over anm-letter alphabet Σ, accepting
a language none of whose words are unary, there exists a Parikh equivalent
1dfa with at most O(n3m3+6m2

mm3/2+m2+2m+5) states.

Proof. Let A be the given n-state 1nfa. According to Lemma 4.0.2, we
express the Parikh image of L(A) as:

ψ(L(A)) = Y ∪
⋃
i∈I

Zi ,

and, starting from this representation, we will build a 1dfa Anon that is
Parikh equivalent to A. To this end, we could apply the following procedure:

1. For each i ∈ I, build a 1dfa Ai such that ψ(L(Ai)) = Zi.

2. From the automata Ai’s so obtained, derive a 1dfa A′ such that
ψ(L(A′)) =

⋃
i∈I Zi.

3. Define a 1dfa A′′ such that ψ(L(A′′)) = Y .
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4. From A′ and A′′, using the standard construction for the union,
build a 1dfa Anon such that L(Anon) = L(A′) ∪ L(A′′) and, hence,
ψ(L(Anon)) = Y ∪

⋃
i∈I Zi, i.e., Anon is Parikh equivalent to A.

Actually, we will use a variation of this procedure. In particular, steps 1
and 2, to obtain A′, are modified as we now explain.

Let us start by considering i ∈ I. First, we handle the generators of Zi.
To this aim, let us consider the function g : Nm → Σ∗ defined by

g(v) = ai11 a
i2
2 · · · a

im
m ,

for each vector v = (i1, . . . , im) ∈ Nm.
Using this function, we map the generators vi,1, . . . ,vi,ki

into the words

si,1 = g(vi,1), si,2 = g(vi,2), . . . , si,ki
= g(vi,ki

) .

It is easy to define an automaton accepting the language {si,1, si,2, . . . , si,ki
}∗,

which consists of a start state q with ki loops labeled with si,1, si,2, . . . , si,ki
,

respectively. The state q is the only accepting state. However, this automaton
is nondeterministic.

To avoid this problem, we modify the language by replacing each si,j ,
for j = 1, . . . , ki, with a Parikh equivalent word wi,j in such a way that
for all pairwise different j, j′ the corresponding words wi,j and wi,j′ begin
with different letters. This is possible due to the fact, being vi,1, . . . ,vi,ki

linearly independent, according to Lemma 4.0.1 we can find ki different
letters at1 , at2 , . . . , atki

∈ Σ such that vi,j [tj ] > 0 for j = 1, . . . , ki. We
“rotate” each si,j by a cyclic shift so that the resulting word, wi,j , begins with
an occurrence of the letter atj . Then wi,j is Parikh equivalent to si,j . For
example, if si,j = a3

1a
4
2a3 and tj = 2, then wi,j should be chosen as a4

2a3a
3
1.

The construction of a 1dfa Bi with one unique accepting state q that
accepts {wi,1, wi,2, . . . , wi,ki

}∗ must be now clear: q with ki loops labeled
with these respective ki words (see Figure 5.2). Furthermore, due to the
limitations deriving from Lemma 4.0.2, the length of these loops is at most
mn so that this 1dfa contains at most 1 +m(mn− 1) states.

Now, we can modify this 1dfa in order to build an automaton Ai recogniz-
ing a language whose Parikh image is Zi. To this aim, it is enough to add a
path which from an initial state, reading a word wi,0 with Parikh image vi,0,
reaches the state q and then the part accepting {wi,1, wi,2, . . . , wi,ki

}∗ that
we already described. Due to the limitations on vi,0 from Lemma 4.0.2, this
can be done by adding a polynomial number of states. In particular, we
could take wi,0 = g(vi,0), thus completing step 1. However, when we have
such 1dfas for all i ∈ I, by applying the standard construction for the union
to them, as in step 2, being I polynomial in n, the resulting 1dfa could
have exponentially many states in n, namely it could be too large for our
purposes.
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q

at1

at2

at3

Figure 5.2: A construction of 1dfa Bi that accepts {wi,1, wi,2, . . . , wi,ki
}∗ for

ki = 3.

To avoid this problem, the automaton A′ which should be derived from
steps 1-2, is obtained by using a different strategy. We introduce the function
f : Nm → Σ∗ defined as: for v ∈ Nm, f(v) = ←↩(g(v)), where ←↩ denotes
the 1-step left circular shift. For example, f(4, 1, 2, 0, . . . , 0) = a3

1a2a
2
3a1. It

can be verified that the 1-step left circular shift endows f with the prefix
property over the nonunary vectors, that is, for any u,v ∈ Nm that are
nonunary, if f(u) is a prefix of f(v), then u = v. Let

wi,0 = f(xi)g(vi,0 − xi) ,

where xi ∈ Pred(vi,0) is given by Lemma 4.0.2. Clearly, ψ(wi,0) = vi,0. We
now consider the finite language

W = {wi,0 | i ∈ I} .

Because the xi’s are nonunary and f has the prefix property over nonunary
words, the languageW is prefix-free. We build a (partial) 1dfa that acceptsW,
which is denoted by AW = (QW ,Σ, qε, δW , FW ), where:

• QW = {qu | u ∈ Pref(W )},

• the state qε corresponding to the empty word is the initial state,

• FW = {qu | u ∈W},

• δW is defined as: for u ∈ Pref(W ) and a ∈ Σ, if ua ∈ Pref(W ), then
δ(qu, a) = qua, while δ(qu, a) is undefined otherwise.
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See Figure 5.3. In the construction of the final 1dfa Anon, if wi,0 = acb, then
the initial state q of Bi is merged with the state qacb of AW . Clearly, this
accepts W. Since the longest word(s) in W is of length m · p(n), this 1dfa
contains at most 1 + |I| ·m · p(n) = O(mp2(n)) states.

qε

qa

qb

qab

qac

qba

qacb
a

b

b

c

b

a

Figure 5.3: A construction of 1dfa AW .

It goes without saying that each accepting state of this 1dfa is only
for one word in W, namely, two distinct words in W are accepted by AW
at distinct two states. Now, based on AW and the 1dfas Bi with i ∈ I,
we can build a finite automaton that accepts the language

⋃
i∈I wi,0L(Bi)

without introducing any new state. This is simply done by merging qwi,0

with the start state of Bi. Given an input u, the resulting automaton
A′ simulates the 1dfa AW , looking for a prefix w of u such that w ∈ W.
When such a prefix is found, A′ starts simulating Bi on the remaining
suffix z, where i is the index such that w = wi. Since W is prefix-free,
we need only to consider one decomposition of the input as u = wz. This
implies that A′ is deterministic. Finally, we observe that A′ contains at
most O(mp2(n)) + |I|(1 +m(mn− 1)) = O(mp(n)(p(n) +mn)) states, i.e.,
a number which is polynomial in n.

We now sketch the construction of a 1dfa A′′ accepting a language LY
whose Parikh image is Y (step 3). We just take LY = {g(v) | v ∈ Y }.
Let M be the maximum of the components of vectors in Y . With each
v ∈ {0, . . . ,M}m, we associate a state qv which is reachable from the initial
state by reading the word g(v). Final states are those corresponding to
vectors in Y . The automaton A′′ so obtained has (M + 1)m = (p(n) + 1)m
states, a number polynomial in n.

Finally, by applying the standard construction for the union (step 4),
from automata A′ and A′′ we obtain the 1dfa Anon Parikh equivalent to the
given 1nfa A, with number of states polynomial in n.

In fact, assuming p(n) ≥ mn, the number of states of A′ is O(mp2(n)).
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Hence, the number of states of Anon is O(mpm+2(n)). Using p(n) =
O(n3m2

mm2/2+2) (from Lemma 4.0.2), we conclude that the number of state
of Anon is O(mn3m2(m+2)m(m2/2+2)(m+2)) = O(n3m3+6m2

mm3/2+m2+2m+5).
Hence, it is polynomial in the number of states of the original 1nfa A,

but exponential in the alphabet size m.

It should be interesting to see whether or not the cost for the conversion
in the case n-state 1nfas accepting only nonunary words could be further
reduced. To this respect, we point out that n is a lower bound. In fact,
a smaller cost would imply that any given 1nfa (or 1dfa) B0, could be
converted into a smaller Parikh equivalent 1dfa B1 which, in turn, could
be further converted in a smaller Parikh equivalent 1dfa B2 an so on. In
this way, from B0 we could build an arbitrary long sequence of automata
B0, B1, B2, . . ., all of them Parikh equivalent to B0, and such that for each
i > 0, Bi would be smaller than Bi−1. This clearly does not make sense.
With a similar argument, we can also conclude that even the costs of the
conversion of n-state 1nfas into a Parikh equivalent 1nfas must be at least n.

We now switch to the general case. We prove that for each input alphabet
the state cost of the conversion of 1nfas into Parikh equivalent 1dfas is the
same as for the unary alphabet.

In the proof we will also make use of the transformation of unary 1nfas
into 1dfas given in Theorem 4.0.4.

Theorem 5.1.2. For each n-state 1nfa over Σ, there exists a Parikh equiv-
alent 1dfa with eO(

√
n·lnn) states. Furthermore, this cost is tight.

Proof. According to Lemma 3.4.1, from a given n-state 1nfa A with input
alphabet Σ = {a1, a2, . . . , am}, we build a 1nfa A0 with n(m+ 1) + 1 states
that accepts the nonunary part of L(A) and m n-state 1nfas A1, A2, . . . , Am
that accept the unary parts of L(A). Using Theorem 4.0.4, for i = 1, . . . ,m,
we convert Ai into an equivalent 1dfa A′i with eO(

√
n·lnn) states. We can

assume that the state sets of the resulting automata are pairwise disjoint.
We define Au that accepts {w ∈ L(A) | w is unary} consisting of one

copy of each of these 1dfas and a new state qs, which is its start state. In
reading the first letter ai of an input, Au transits from qs to the state q in
the copy of A′i if A′i transits from its start state to q on ai (such q is unique
because A′i is deterministic). These transitions from qs do not introduce
any nondeterminism because A′1, . . . , A′m are defined over pairwise distinct
letters. After thus entering the copy, Au merely simulates A′i. The start
state qs should be also an accepting state if and only if ε ∈ L(A′i) for some
1 ≤ i ≤ m. Being thus built, Au accepts exactly all the unary words in L(A)
and contains at most m · eO(

√
n·lnn) + 1 states.

On the other hand, for the nonunary part of L(A), using Theorem 5.1.1,
we convert A0 into a Parikh equivalent 1dfa An with a number of states
r(n), polynomial in n. The standard product construction is applied to Au
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and An in order to build a 1dfa accepting L(Au) ∪ L(An). The number of
states of the 1dfa thus obtained is bounded by the product eO(

√
n·lnn) ·r(n) =

eO(
√
n·lnn) · eO(lnn) = eO(

√
n·lnn+lnn), which is still bounded by eO(

√
n·lnn).

Finally, we observe that by Theorem 4.0.4, in the unary case eΘ(
√
n·lnn) is

the tight cost of the conversion from n-state 1nfas to 1dfas. This implies that
the upper bound we obtained here cannot be reduced and so it is optimal.

This completes the proof of Theorem 5.1.2.

We conclude this section with some observations. We proved that for a
fixed alphabet Σ, the state cost of the conversion of n-state 1nfas into Parikh
equivalent 1dfas is polynomial in n, in the case each word in the accepted
language is nonunary. The degree of this polynomial depends on m, the
cardinality of the input alphabet.

For general regular languages, possibly containing unary words, the
cost is superponynomial but subexponential in n. The optimality of this
superponynomial cost is given by the “hard” case, on unary inputs. A closer
inspection to our proofs shows that these costs are exponential in the size of
the alphabet.

It could be pointed out here, that Parikh equivalent 1dfas can, in some
sense, “capture” the Parikh characterization of regular languages polyno-
mially, independently whether the languages do contain or do not contain
unary words, as follows:

For the given regular language L (and its 1nfa), built over an m-letter
alphabet Σ = {a1, . . . , am}, consider a new language L′ = {a0} · L, where a0
is a new symbol, built over an (m+ 1)-letter alphabet Σ′ = {a0, a1, . . . , am}.
Clearly, except for w = ε, each w ∈ L is mapped into a nonunary word
w′ = a0w ∈ L′. Moreover, if L is accepted by an n-state 1nfa, then n + 1
states are sufficient for L′, and hence the new 1nfa accepting L′ can always
be converted into a Parikh equivalent 1dfa with a polynomial number of
states. It is also easy to see that the input w is mapped into a Parikh
image v = (v1, . . . , vm) if and only if w′ is mapped into the Parikh image
v′ = (1, v1, . . . , vm), that is, into an (m+1)-dimensional vector always having
v′[1] = 1. In this sense, the construction of Parikh equivalent 1dfa is never
“hard”.

5.1.2 From cfgs to Parikh equivalent 1dfas

In this section we extend the results of Section 5.1.1 to the conversion
of cfgs in Chomsky normal form into Parikh equivalent 1dfas. Actually,
Theorem 5.1.1 will play an important role in order to obtain the main result
of this section. The other important ingredient is the following result proven
in 2011 by Esparza, Ganty, Kiefer and Luttenberger [EGKL11], which gives
the cost of the conversion of Cnfgs into Parikh equivalent 1nfas.
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Theorem 5.1.3 ([EGKL11]). For each Cnfg with h variables, there exists
a Parikh equivalent 1nfa with

(2h+1
h

)
= O(4h) states.

We point out that the upper bound in Theorem 5.1.3 does not depend
on the cardinality of the input alphabet.

By combining Theorem 5.1.3 with the main result of the previous section,
i.e., Theorem 5.1.2, we can immediately obtain a double exponential upper
bound in h for the size of 1dfas Parikh equivalent to Cnfgs with h variables.
However, we can do better. In fact, we show how to reduce the upper
bound to a single exponential in a polynomial of h. We obtain this result by
proceeding as in the case of finite automata: we split the language defined
by given grammar into the unary and nonunary parts, we make separate
conversions, and finally we combine the results.

As in Section 5.1.1, from now on let us fix the alphabet Σ = {a1, a2, . . . , am}.
We start by considering the nonunary part. By combining Theorem 5.1.3
with Theorem 5.1.1 we obtain:

Theorem 5.1.4. For each h-variable Cnfg with terminal alphabet Σ, gen-
erating a language none of whose words are unary, there exists a Parikh
equivalent 1dfa with 2O(h) states. Furthermore, this cost is tight.

Proof. First, according to Theorem 5.1.3, we can transform the grammar
into a Parikh equivalent 1nfa with O(4h) states. Then, using Theorem 5.1.1,
we convert the resulting automaton into a Parikh equivalent 1dfa, with a
number of states polynomial in 4h = 22h, hence exponential in h.

Even the bound given in Theorem 5.1.4, for languages consisting only
of nonunary words, cannot be improved, by replacing the exponential in h
by a slowly increasing function. This can be shown by adapting a standard
argument from the unary case (e.g., [PSW02, Thm. 5]). For any integer
h ≥ 3, consider the grammar G with variables A,B,A0, A1, . . . , Ah−3, and
productions

A→ a , B → b , A0 → AB , Aj → Aj−1Aj−1 , for j = 1, ..., h− 3 .

An easy induction shows that, for j = 1, . . . , h− 3, the only word which is
generated from Aj is (ab)2j . Hence, by choosing Ah−3 as start symbol, we
have L(G) = {(ab)H}, with H = 2h−3. An immediate pumping argument
shows that each 1dfa (or even 1nfa) with less than 2H + 1 states accepting a
word of length 2H, should also accept some words of length < 2H. Since
L(G) contains only the word (ab)H , it turns out that each 1dfa accepting a
language Parikh equivalent to L(G) requires 2H + 1 states, namely a number
exponential in h.

Now, we switch to the general case. In the proof we will also make use of
the transformations of unary Cnfgs into 1dfas given in Theorem 4.0.3.
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Theorem 5.1.5. For each h-variable Cnfg with terminal alphabet Σ, there
exists a Parikh equivalent 1dfa with at most 2O(h2) states. Furthermore, this
cost is tight.

Proof. Let us denote the given Cnfg by G = (V,Σ, P, S), where |V | = h.
In the case m = 1 (unary alphabet), one can employ Theorem 4.0.3. Note

that, over a unary alphabet, two languages L1, L2 are Parikh equivalent if
and only if they are equivalent. Hence, from now on we assume m ≥ 2.

Let us give an outline of our construction first:

1. From G, we first create Cnfgs G0, G1, . . . , Gm such that G0 generates
the nonunary part of L(G) and G1, G2, . . . , Gm generate the unary
parts.

2. The grammars G1, G2, . . . , Gm are converted into respectively equiv-
alent unary 1dfas A1, A2, . . . , Am. From these 1dfas, a 1dfa Aunary
accepting the set of all unary words in L(G) is constructed.

3. The grammar G0 is converted into a Parikh equivalent 1dfa Anon.

4. Finally, from Aunary and Anon, a 1dfa that accepts the union of
L(Aunary) and L(Anon) is obtained.

Observe that L(Aunary) = {w ∈ L(G) | w is unary} and L(Anon) is Parikh
equivalent to L(G0) = {w ∈ L(G) | w is not unary}. Thus, the 1dfa which
is finally constructed by this procedure is Parikh equivalent to the given
grammar G.

We already have all the tools we need to implement each step in the
above construction.

1. We can obtain grammars G0, G1, . . . , Gm according to Lemma 3.4.2.
In particular, G0 has mh−m+ 1 variables, while each of the remaining
grammars has h variables.

2. According to Theorem 4.0.3, for i = 1, . . . ,m, grammar Gi is converted
into a 1dfa Ai with less than 2h2 states. Using the same strategy
presented in the proof of Theorem 5.1.2, from A1, . . . , Am, we define
Aunary consisting of one copy of each of these 1dfas and a new state qs,
which is its start state. Hence, the number of states of Aunary does not
exceed m2h2 + 1.

3. This step is done using Theorem 5.1.4. The number of the states of
the resulting 1dfa Anon is exponential in the number of the variables
of the grammar G0 and, hence, exponential in h.

4. The final 1dfa can be obtained as the product of two automata Aunary
and Anon. Considering the bounds obtained in Step 2 and 3 we conclude
that the number of states in exponential in h2.
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We briefly discuss how the upper bounds depends on m, the alphabet
size. Using the estimation of the cost of the conversions in Theorem 5.1.1
and observing that the grammar G0 in the previous construction has less
than mh variables, we can conclude that the automaton Anon has 2O(hm4)

states. Hence, the number of the states of the resulting 1dfa of the above
construction is 2O(h2+hm4).

We observe that in [PSW02, Thm. 7] it was proved that there is a constant
c > 0 such that for infinitely many h > 0 there exists a Cnfg with h variables
generating a unary language such that each equivalent 1dfa requires at least
2ch2 states. This implies that the upper bound in Theorem 5.1.5 cannot be
improved.

We point out that in [LP12] it has been proved a result close to Theorem 5.1.5
in the case of Cnfgs generating letter bounded languages, i.e., subsets of
a∗1a
∗
2 · · · a∗m. In particular, an upper bound exponential in a polynomial in

h has been obtained. However, the degree of the polynomial is, in turn, a
polynomial in the size m of the alphabet. Here, in our Theorem 5.1.5, the
degree is 2. Hence, it does not depend on m.

5.2 Conversions into Parikh equivalent 2dfas

In this section we study the conversions of 1nfas and Cnfgs into Parikh
equivalent two-way deterministic automata. In the previous section, for the
conversions into one-way deterministic automata, we observed that the unary
parts are the most expensive. However, the cost of the conversions of unary
1nfas and Cnfgs into 2dfas are smaller than the costs for the corresponding
conversions into 1dfas. We reduce the cost from an exponential in

√
n lnn

to a polynomial in n and, from an exponential in a polynomial in h to an
exponential in h, respectively. This allows us to prove that, in the general
case, the cost of the conversions of 1nfas and Cnfgs into Parikh equivalent
2dfas are smaller than the cost of the corresponding conversions into 1dfas.

Let us start by presenting the following result, which derives from [Chr86,
Thm. 6.2]:

Theorem 5.2.1. For each n-state unary 1nfa there exists an equivalent
halting 2dfa with n2 + 1 states. Furthermore, this cost is tight.

Proof. For the sake of completeness, we present a proof which is essentially
the same given by Chrobak [Chr86, Thm. 6.2] where, however, the obtained
upper bound was O(n2). Then we will explain why the big-O in the upper
bound can be removed.

First of all, each n-state unary 1nfa A can be converted into an equivalent
1nfa Ac in a special form, which is known as Chrobak normal form [Chr86,
Lemma 4.3], consisting of a deterministic path which starts from the initial
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state, and k ≥ 0 disjoint deterministic cycles. The number of states in the
path is s = O(n2), while the total number of states in the cycles is r ≤ n.
From the last state of the path there are k outgoing edges, each one of them
reaching a fixed state on a different cycle. Hence, on each input of length
` ≥ s, the computation visits all the states on the initial path, until the last
one where the only nondeterministic choice is taken, moving to one of the
cycles, where the remaining part of the input is examined. However, if ` < s
then computation ends in a state on the initial path, without reaching any
loop. (In the special case k = 0 the accepted language is finite.)

A 2dfa B can simulate the 1nfa Ac in Chrobak normal form, traversing
the input word at most k + 1 times. In the first traversal, the automaton
checks whether or not the input length is less than s. If this is the case, then
the automaton accepts or rejects according to the corresponding state on
the initial path of Ac. Otherwise, it moves to the right endmarker. This
part can be implemented with s+ 1 states (s states for the simulation of the
initial path, plus one more state to move to the right endmarker). From the
right endmarker, the automaton traverses the input leftward, by simulating
the first cycle of Ac from a suitable state (which is fixed, only depending
on s and on the cycle length). If the left endmarker is reached in a state
which simulates a final state in the cycle then the automaton B moves to
the final state qf and accepts, otherwise it traverses the input rightward,
simulating the 2nd cycle of Ac, and so on. Hence, in the (i+ 1)th traversal
of the input, 1 ≤ i ≤ k, the ith cycle is simulated. So the number of states
used to simulate the cycles is equal to the total number of states in the
cycles, namely r. Considering the final state qf , we conclude that B can be
implemented with s+ r + 2 = O(n2) states.

Finally, we point out that finer estimations for the number of the states
on the initial path and in the loops of Ac have been found. In [Gef07], it was
proved that the number of s of the states in the initial path is bounded by
n2 − 2 and the sum r of the numbers of the states in the cycles is bounded
by n− 1. Actually, there is an exception: if the given 1nfa A is just one cycle
of n states then A is already a 1dfa. If it is minimal, then in any equivalent
1nfa we cannot have a cycle with less than n states which is useful to accept
some input. However, in this degenerate case, Theorem 5.2.1 is trivially true,
without making use of the Chrobak normal form.

The first bound has been further reduced in [Gaw11] to s ≤ n2− n. This
allows us to conclude that the 2dfa B can be obtained with at most n2 + 1
states.

The upper bound given in Theorem 5.2.1 is asymptotically tight. As
proven in [Chr86, Thm. 6.3], for each integer n there exists an n-state unary
1nfa such that any equivalent 2dfa requires Ω(n2) states.

By combining Theorem 5.2.1 with the bound for the transformation of
unary Cnfgs into 1nfas given in Theorem 4.0.3, we immediately obtain the



5.2. Conversions into Parikh equivalent 2dfas 55

following bound.

Theorem 5.2.2. For each h-variable unary Cnfg there exists an equivalent
halting 2dfa with at most (22h−1 + 1)2 + 1 states. Moreover, this cost is tight.

We now have the tools for studying the conversions of 1nfas and cfgs
into Parikh equivalent 2dfas. Let us start with the first conversion.

5.2.1 From 1nfas to Parikh equivalent 2dfas

Theorem 5.2.3. For each n-state 1nfa there exists a Parikh equivalent 2dfa
with a number of states polynomial in n. Furthermore, this cost is tight.

Proof. We use the same technique as in the proof of Theorem 5.1.2, by
splitting the language accepted by the given 1nfa A into its unary and
nonunary parts, as explained in Lemma 3.4.1. Each unary part is accepted
by a 1nfa with n states. According to Theorem 5.2.1, this gives us m 2dfas
B1, B2, . . . , Bm, accepting the unary parts, each one of them has at most n2+1
states, where m is the cardinality of the input alphabet Σ = {a1, a2, . . . , am}.

For the nonunary part we have a 1nfa with n(m + 1) + 1 states and,
according to Theorem 5.1.1, a Parikh equivalent 1dfa B0 with a number of
states polynomial in n(m+ 1) + 1 and, hence, in n.

Finally, as explained in Section 3.4.2, we can build a 2dfa B such that
L(B) = L(B0) ∪ L(B1) ∪ · · · ∪ L(Bm). Hence, B is Parikh equivalent to the
given 1nfa A and its number of states is polynomial in n.

By making the same considerations as in Theorem 5.1.1 we can obtain
an O(m3) bound for the degree of the polynomial.

Finally, we observe that by Theorem 5.2.1, in the unary case Θ(n2) is
the tight cost of the conversion from n-state 1nfas to 2dfas. This implies
that the upper bound we obtained here cannot be reduced.

5.2.2 From cfgs to Parikh equivalent 2dfas

Now, we consider the conversion of cfgs.

Theorem 5.2.4. For each h-variable Cnfg there exists a Parikh equivalent
2dfa with 2O(h) states. Furthermore, this cost is tight.

Proof. Even in this case, the construction is obtained by adapting the corre-
sponding conversion into 1dfas (Theorem 5.1.5). In particular, the construc-
tion uses the same steps 1-4 given in that proof, with some modifications in
steps 2 and 4, which are replaced by the following ones:

2’. The grammars G1, G2, . . . , Gm are converted into respectively equiva-
lent unary 2dfas A′1, A′2, . . . , A′m.

4’. Finally, from Anon, A
′
1, A

′
2, . . . , A

′
m, a 2dfa that accepting the language

L(Anon) ∪ L(A′1) ∪ L(A′2) ∪ · · · ∪ L(A′m) is obtained.
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Clearly, the 2dfas resulting from this procedure is Parikh equivalent to the
original grammar G. The costs of steps 1 and 3 have been discussed in the
proof of Theorem 5.1.5. For the remaining steps:

2’. According to Theorem 5.2.2, for i = 1, . . . ,m, the 2dfa A′i has at most
(22h−1 + 1)2 + 1 states.

4’. We use the construction presented at the end of Section 3.4.2, to
obtain a 2dfa whose number of states is the sum of the number of the
states of Anon, A

′
1, A

′
2, . . . , A

′
m, hence 2O(h). Explicitly mentioning the

dependency on the alphabet size m, we can give a 2O(hm4) bound. This
derives from the size of the automaton Anon (cf. Theorem 5.1.5).

Finally, we observe that by Theorem 5.2.2, in the unary case 2Θ(h) is the
tight cost of the conversion from h-variable Cnfgs to 2dfas. This implies that
the upper bound we obtained here cannot be reduced.
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In this chapter, we investigate the state complexity of operations between
regular languages under Parikh equivalence. Operations include concate-
nation, Kleene star, reversal, shuffle, projection, union, intersection, and
complementation.

The problems we will work on in this chapter can be formalized in the
following general form:

Problem 6.0.1. For 1dfas A and B of n1 and n2 states, respectively, solve
the following problems:

1. For a unary operation f , how small can we make a 1dfa M that is
Parikh equivalent to f(L(A))?

2. For a binary operation g, how small can we make a 1dfa M that is
Parikh equivalent to g(L(A), L(B))?

In other words, given two 1dfas A and B of n1 and n2 states, we want to
build a 1dfa that accepts a language Parikh equivalent to L, where L is the
result of an operation between the languages accepted by A and B.

6.1 Union, intersection and complement
The state complexity of union and intersection is in the low order n1n2
even in the conventional sense over both unary and nonunary alphabets.

57
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Moreover, it is known to be tight already over a unary alphabet [Yu00].
Similar considerations hold for the complement. The next result hence
follows.
Proposition 6.1.1. Given two 1dfas A and B of n1 and n2 states, respec-
tively, there exist two 1dfas of n1n2 states that accept languages (Parikh)
equivalent to L(A)∪L(B) and to L(A)∩L(B), respectively, and a 1dfa of n1
states that accepts a language (Parikh) equivalent to the complement of L(A).
These bounds are tight.

6.2 Concatenation, shuffle and star
Unlike union or intersection, concatenation is known to cost 1dfas an expo-
nential number of states. In fact, the number of states which is necessary
and sufficient in the worst case for a 1dfa to accept the concatenation of an
n1-state 1dfa language and an n2-state 1dfa language over a binary alphabet
is (2n1 − 1)2n2−1 [YZS94]; over a unary alphabet, the cost decreases down
to n1n2 [Yu00].

We will show that under Parikh equivalence, the state complexity of
concatenation decreases down to polynomial in n1 and n2 over an arbitrary
alphabet. The Parikh equivalent conversion of 1nfas to 1dfas in Theorem 5.1.1
makes a great contribution to this purpose.

For concatenation, we could first build a 1nfa with n1 + n2 states and
then according to the superpolynomial conversion of 1nfas into Parikh
equivalent 1dfas presented in Theorem 5.1.2 we could convert it into a Parikh
equivalent 1dfa with a superpolynomial numbers of states. In order to
avoid a superpolynomial blowup in the number of states caused by this
conversion when being applied to the unary part of a 1nfa, we give an ad
hoc constructions below.
Problem 6.2.1. Given two arbitrary 1dfas A and B of n1 and n2 states,
respectively, how many states are sufficient and necessary in the worst case
(as a function of n1 and n2) for a 1dfa to accept a language Parikh equivalent
to the concatenation of the languages accepted by A and B?

Let us analyze the case Σ = {a, b}, that is, m = 2. Given two 1dfas A
and B, let L = L(A)L(B). The idea is to split L into unary and nonunary
parts. To do so we proceed as follows:
• Let 1dfas A1, A2, A0 such that L(A1) = L(A) ∩ {a}∗, L(A2) = L(A) ∩
{b}∗ be unary parts and L(A0) = L(A) \ (L(A1)∪L(A2)) be nonunary
part of A. This is possible by Lemma 3.4.1. In particular, automata
A1, A2 are unary 1dfas of n1 states.

• Similarly, let 1dfas B1, B2, B0, such that L(B1) = L(B)∩{a}∗, L(B2) =
L(B) ∩ {b}∗ be unary parts and L(B0) = L(B) \ (L(B1) ∪ L(B2)) be
nonunary part of B. In this case B1, B2 are unary 1dfas of n2 states.
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Solving the concatenation between L(A) and L(B), we observe in the
Equation (6.1) that L(A1)L(B1) = L∩ {a}∗ and L(A2)L(B2) = L∩ {b}∗ are
the only unary languages, while the others languages are nonunary.

L(A)L(B) = (L(A0) ∪ L(A1) ∪ L(A2))(L(B0) ∪ L(B1) ∪ L(B2))
= L(A0)L(B0) ∪ L(A0)L(B1) ∪ L(A0)L(B2)
∪ L(A1)L(B0) ∪ L(A1)L(B1) ∪ L(A1)L(B2)
∪ L(A2)L(B0) ∪ L(A2)L(B1) ∪ L(A2)L(B2)

(6.1)

Let L0 be the nonunary part of L and L1 = L(A1)L(B1), L2 = L(A2)L(B2)
be unary parts of L.

• For the nonunary part of L, let us denote by N the (n1 + n2)-state
1nfa obtained by applying the standard construction for the product
to A and B. From N we derive a 1nfa accepting L0 and we convert it
according to Lemma 3.4.1 into a 1nfa N0 with n0 = (n1 +n2)(m+1)+1
states. Using Theorem 5.1.1 there exists a Parikh equivalent 1dfa N̂0
with a polynomial number of states in n0.

• For the unary parts of L we can use a known result presented in [PS02]
to build unary 1dfasM1,M2 accepting the unary languages L1, L2 both
with at most n1n2 states.

Over an arbitrary alphabet, we obtain the following result.

Theorem 6.2.1. Given two 1dfas A and B of n1 and n2 states, respectively,
there exists a 1dfa of polynomial number of states in n1 and n2 that is Parikh
equivalent to L(A)L(B).

Proof. Let L = L(A)L(B). For each ai ∈ Σ, let us denote by Li the language
L ∩ {ai}∗ and by L0 the language L \ (

⋃m
i=1 Li), namely the nonunary part

of L.
Let A1, . . . , Am be the unary 1dfas of n1 states obtained by applying

Lemma 3.4.1 to the 1dfa A. Let B1, . . . , Bm be the unary 1dfas of n2 states
thus obtained from B. Let us denote by M the (n1 +n2)-state 1nfa obtained
by applying the standard construction for the product to A and B. Then we
proceed as follows:

• From M we derive a 1nfa accepting L0 with n0 = (n1 + n2)(m +
1) + 1 states by Lemma 3.4.1 and we convert it according to Theo-
rem 5.1.1 into a polynomial size Parikh equivalent 1dfa M0 with at
most O(n0

3m3+6m2
mm3/2+m2+2m+5) states. It consists of O((2(n1 +

n2))3m3+6m2
m7m3/2+7m2+2m+5) states.
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• For i = 1, . . . ,m, from Ai and Bi we obtain a unary 1dfa Mi accepting
the language Li. According to results in [PS02] the number of states
of Mi can be bounded by n1n2.

• We build a 1dfa M ′ with at most 1 +mn1n2 states accepting all the
unary words in L, namely the set

⋃m
i=1 Li. This consists of an initial

state q0 and one copy of each automaton Mi obtained in the previous
step. A transition from q0 on ai to an appropriate state ofMi simulates
the transition from the initial state of Mi.

• Finally, applying the standard construction for the union from 1dfasM0
and M ′ we get a 1dfa of polynomial number of states in n1 and n2
that accepts a language which is Parikh equivalent to L = L(A)L(B).
It consists of O(n1n2(2(n1 + n2))3m3+6m2

m7m3/2+7m2+2m+6) states.

We have two remarks concerning Theorem 6.2.1. First, the degree in the
upper bound given by the expression written at the end of the proof could
be reduced under the assumption that L(A)L(B) does not contain unary
strings. Anyway, the bound always remains a polynomial asymptotically.
Furthermore, we observe that in the unary case n1n2 [Yu00] is the tight
cost for the concatenation of an n1-state 1dfa language and an n2-state 1dfa
language. This implies that the upper bound we obtained here cannot be
reduced below the polynomial n1n2.

Now we address the state complexity of shuffle under Parikh equivalence.
Let A and B be 1dfas of n1 and n2 states, respectively. In the conventional
sense, shuffle involves the exponential cost 2n1n2−1 and this bound is tight
[CSY02]. In contrast, we can construct a 1dfa of polynomial number of
states in n1 and n2 that accepts a language Parikh equivalent to the shuffle
of L(A) and L(B), and in fact, the 1dfa we engineered in Theorem 6.2.1 for
concatenation is such a 1dfa. This is because the Parikh image of the shuffle
of two languages is equal to that of their concatenation.

Corollary 6.2.2. Given two 1dfas A and B of n1 and n2 states, respectively,
there exists a 1dfa of polynomial number of states in n1 and n2 that is Parikh
equivalent to the shuffle of L(A) and L(B).

Now we analyze the state complexity of star under Parikh equivalence.
Like concatenation, star is known to cost 1dfas an exponential number of
states. In fact, the number of states which is necessary and sufficient in the
worst case for a 1dfa to accept the star of an n-state 1dfa language over
a binary alphabet is 2n−1 + 2n−2, whereas it is (n − 1)2 + 1 over a unary
alphabet [YZS94].

Let us develop the above conversion of polynomial overhead for star.
We will show that under Parikh equivalence, the state complexity of star
decreases down to polynomial in n1 and n2 over an arbitrary alphabet.
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Theorem 6.2.3. Given a 1dfa A of n states, there exists a 1dfa of polynomial
number of states in n that is Parikh equivalent to L(A)∗. Moreover, this cost
is tight.

Proof. The idea is to split L(A)∗ into unary and nonunary parts.
Lemma 3.4.1 yields, from the given 1dfa A, 1dfas A1, . . . , Am (of n states)

for the unary parts. From them, we can construct 1dfas M1, . . . ,Mm of
(n− 1)2 + 1 states accepting L(A1)∗, . . . , L(Am)∗, respectively [YZS94]. We
further combine them into a 1dfa Munary of m((n− 1)2 + 1) + 1 states that
accepts L(A1)∗ ∪ · · · ∪ L(Am)∗.

From A, we also construct an n-state 1nfa recognizing L(A)∗, extract its
nonunary part by Lemma 3.4.1 (with n(m+ 1) + 1 states), and convert it
into a Parikh equivalent 1dfa M0 using Theorem 5.1.1. The resulting 1dfa
M0 consists of O((2n)3m3+6m2

m7m3/2+7m2+2m+5) states.
Applying the standard construction for the union from 1dfas M0 and

Munary we get a polynomial size 1dfa that accepts a language Parikh equiv-
alent to L(A)∗. The 1dfa consists of O((2n)3m3+6m2+1nm7m3/2+7m2+2m+6)
states.

Finally, we can observe that by the unary case, (n− 1)2 + 1 is the tight
cost for the star of an n-state 1dfa language [YZS94]. This implies that the
upper bound we obtained here cannot be reduced.

6.3 Reversal and projection

Reversal is also expensive for 1dfas. In fact, the tight bound 2n is known for
reversal [YZS94]. Under Parikh equivalence, however, nothing need be said
since Parikh image is invariant under this operation.

It is easy to see that projection preserves regularity. However, transform-
ing a 1dfa A of n states into a 1dfa for the projection can require a number
of states that is exponential in n [JM12]. Even in this case, the bound can
be reduced if we want to obtain a Parikh equivalent 1dfa: from A we can
obtain a 1nfa of n states for the projection, and then we can transform it
into a Parikh equivalent 1dfa of eO(

√
n·lnn) states. By using a projection over

a unary alphabet we can show that this bound cannot be reduced.

Theorem 6.3.1. Let A be a 1dfa with n states. Then:

1. There exists a 1dfa with n states that accepts a language Parikh equiv-
alent to the reversal of L(A).

2. There exists a 1dfa with eO(
√
n·lnn) states that accepts a language Parikh

equivalent to the projection PΣ0(L(A)) of L(A) over Σ0 ⊆ Σ.

Moreover, these bounds are asymptotically tight.
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6.4 Intersection and complement, revisited

We consider one more time the intersection and the complement. In fact, the
noncommutativity of those operations with the Parikh mapping brings us a
second problem of interest. The noncommutativity in the case of intersection
is illustrated in the inequality ψ(a+b+ ∩ b+a+) 6= ψ(a+b+) ∩ ψ(b+a+); the
left-hand side is the empty set, while the right-hand side is the linear set
N × N. In the case of complement the reader may consider the language
(ab)∗.

Note that each of the other operations examined so far is either commu-
tative with the Parikh mapping (i.e., union and projection) or not defined
naturally over the set of nonnegative integer vectors (i.e., concatenation, star,
shuffle, and reversal). The problem of interest asks: given two 1dfas A and
B of n1 and n2 states, respectively, how small can we make a 1dfa whose
Parikh image is equal to ψ(L(A)) ∩ ψ(L(B))? We can formulate a similar
problem in the case of the complement. The fact that the Parikh image
of a language accepted by an 1nfa is semilinear and the closure property
of semilinear sets under intersection and complement [GS64] makes these
problems meaningful. Here, we solve the problem for intersection, leaving
the one for complement for future investigations.

Over a unary alphabet, the problem is degenerated into the problem
addressed in Proposition 6.1.1 because over such an alphabet, intersection
commutes with the Parikh mapping. Therefore, in the following, we examine
the problem over a nonunary alphabet, and solve it by showing that a
polynomial number of states in n1 and n2 are sufficient. The proof consists of
revisiting the Ginsburg and Spanier’s proof [GS64, Thm. 6.1] of the closure
property of semilinear sets under intersection with a careful analysis of the
size of the resulting semilinear set.

Let us present some notation and results useful in the proof. Given
C,P ⊆ Nk for some k ≥ 1, let L(C;P ) be the set of all w ∈ Nk which
can be represented in the form w = w0 + w1 + · · ·+ w` with w0 ∈ C and
w1, . . . ,w` ∈ P for some ` ≥ 0.

Let A be a k × ` matrix with entries in Z and k ≤ `, and let b ∈ Zk.
Consider a system of linear Diophantine equations

Ax = b. (6.2)

Let Smin(A, b) be the set of minimal nonnegative integer solutions to (6.2),
where the minimality is with respect to the component-wise comparison.
It is well known that Smin(A, b) is finite. Hence, we let Smin(A, b) =
{s1, s2, . . . , sr} for some r ≥ 1 and s1, . . . , sr ∈ N`. Define ||Smin(A, b)|| =
max1≤i≤r ||si||∞, where ||si||∞ refers to the maximum norm. Huynh bounded
||Smin(A, b)|| as follows (see Theorem 2.6 and Corollary 2.7 in [Huy80]).
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Lemma 6.4.1 ([Huy80]). Let α be the rank of A and M be the maximum
of the absolute values of the α× α subdeterminants of the extended matrix
(A; b). Then ||Smin(A, b)|| ≤ (`+ 1)M . Thus, r ≤ ((`+ 1)M + 1)`.

Theorem 6.4.1. Given two 1dfas A and B of n1 and n2 states, respectively,
there exists a 1dfa of polynomial number of states in n1 and n2 whose Parikh
image is equal to ψ(L(A)) ∩ ψ(L(B)).

Proof. As usual, we begin with converting the given 1dfas A and B into
2(m + 1) 1dfas A0, A1, . . . , Am, B0, B1, . . . , Bm according to Lemma 3.4.1.
The nonunary 1dfas A0 and B0 contain n1(m + 1) + 1 and n2(m + 1) + 1
states, respectively, while the other unary ones Ai and Bi contain only n1
and n2 states for 1 ≤ i ≤ m, respectively. It is clear from the definition of
these automata that

ψ(L(A))∩ψ(L(B)) =
(
ψ(L(A0))∩ψ(L(B0))

)
∪

⋃
1≤i≤m

(
ψ(L(Ai))∩ψ(L(Bi))

)
.

As observed before the proof, for any 1 ≤ i ≤ m, we can construct a 1dfa
Mi of n1n2 states such that ψ(L(Mi)) = ψ(L(Ai)) ∩ ψ(L(Bi)). We combine
them into one 1dfa Munary with mn1n2 + 1 states that accepts

⋃m
i=1 L(Mi).

What we have to consider now is the intersection between the Parikh
images of the nonunary 1dfas A0 and B0. In order to simplify the notation
below, let n = max{n1, n2}(m+ 1) + 1. Then, A0 and B0 consist of at most
n states each. Lemma 4.0.2 implies that the Parikh image ψ(L(A0)) can be
represented as:

ψ(L(A0)) = YA ∪
⋃
i∈I

ZA,i,

where YA ⊆ {0, 1, . . . , p(n)}m, I is a set of at most p(n) indices, and for each
i ∈ I, ZA,i ⊆ Nm is a linear set whose offset is in {0, 1, . . . , p(n)}m and whose
generators are linearly independent vectors in {0, 1, . . . , n}m. The Parikh
image of L(B0) also admits an analogous representation with YB, J , and
ZB,j (j ∈ J). The intersection ψ(L(A0)) ∩ ψ(L(B0)) can be expressed as:

(
YA ∩ ψ(L(B0))

)
∪

⋃
i∈I

ZA,i ∩ YB

 ∪
⋃
i∈I

ZA,i ∩
⋃
j∈J

ZB,j

 .
Since both YA and YB are finite, the first two terms are finite, and can be
computed even by hand. Let PY =

(
YA ∩ ψ(L(B0))

)
∪
(⋃

i∈I ZA,i ∩ YB
)
,

that is, their union. Note that PY ⊆ YA ∪ YB ⊆ {0, 1, . . . , p(n)}m. We can
construct a 1dfa MY of O(p(n)m) states that accepts the bounded language
{ai11 a

i2
2 · · · aimm | (i1, . . . , im) ∈ PY }. It is clear that ψ(L(MY )) = PY .

Now we shift our attention to the third term
(⋃

i∈I ZA,i ∩
⋃
j∈J ZB,j

)
.

What we actually do is to construct a 1dfa Bi,j whose Parikh image is equal
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to ZA,i ∩ZB,j , for each i ∈ I and j ∈ J . According to Lemma 4.0.2, for some
p, q ≤ m, we can let

ZA,i = {u0 + n1u1 + · · ·+ npup | n1, . . . , np ∈ N},
ZB,j = {v0 +m1v1 + · · ·+mqvq | m1, . . . ,mq ∈ N},

where u0,v0 ∈ {0, 1, . . . , p(n)}m and u1, . . . ,up,v1, . . . ,vq ∈ {0, 1, . . . , n}m.
Let

XC =

(n1, . . . , np,m1, . . . ,mq)

∣∣∣∣∣∣ u0 +
p∑
i=1

niui = v0 +
q∑
j=1

mjvj


XP =

(n1, . . . , np,m1, . . . ,mq)

∣∣∣∣∣∣
p∑
i=1

niui =
q∑
j=1

mjvj


Let τ : Np+q → Nm be a function defined as τ((n1, . . . , np,m1, . . . ,mq)) =∑p

i=1 niui, and we generalize this function over a set X ⊆ Np+q as τ(X) =
{τ(~x) | ~x ∈ X}. Then

ZA,i ∩ ZB,j = {u0 + w | w ∈ τ(XC)}. (6.3)

Note that if XC is semilinear, then so is τ(XC) [GS64, Lemma 6.3]. Ginsburg
and Spanier proved that XC is semilinear [GS64]. More strongly, they gave
a representation of XC as L(C;P ), where C and P are the set of minimal
elements of XC and XP \ {0p+q}, respectively. Lemma 6.4.1 gives the
following bounds:

||C|| ≤ (p+ q + 1)m!nm−1p(n),
||P || ≤ (p+ q + 1)m!nm.

They bound the cardinality of the sets C and P as follows:

|C| ≤ ((p+ q + 1)m!nm−1p(n) + 1)m,
|P | ≤ ((p+ q + 1)m!nm + 1)m.

Using τ(XC) = τ(L(C;P )) = L(τ(C); τ(P )) (see the proof of Lemma 6.3 in
[GS64]), we rewrite (6.3) as

ZA,i ∩ ZB,j = ~u0 + L(τ(C); τ(P )).

Note that |τ(C)| ≤ |C|, |τ(P )| ≤ |P |, and we have

||τ(C)|| ≤ nm||C|| ≤ m(p+ q + 1)m!nmp(n)
||τ(P )|| ≤ nm||P || ≤ m(p+ q + 1)m!nm+1.

We construct an 1nfa whose Parikh image is equal to this semilinear
set. Specifically, it is to accept the language {f(~u0)f(~v)f(~w) | ~v ∈ τ(C), ~w ∈
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L(~0; τ(P ))}, where ~0 is the zero vector and f : Nm → Σ∗ is defined as:
f((x1, x2, . . . , xm)) = ax1

1 a
x2
2 · · · axm

m . It first recognize f(~u0) using mp(n) + 1
states (recall that any coordinate of ~u0 is at most p(n)). Then it recognizes
f(~v) for some ~v nondeterministically chosen from τ(C), usingm||τ(C)||·|τ(C)|
states. Finally it recognizes f(~w) for some ~w ∈ L(~0; τ(P )) using m||τ(P )|| ·
|τ(P )| states. In total, it consists of O(m2(2m + 1)2(m!)2n2m−1p(n)2)
states. Now that we have at most p(n)2 1nfas M0,0, . . . ,M|I|−1,|J |−1 of
such size. The standard construction combines them into an 1nfa with
O(m2(2m+ 1)2(m!)2n2m−1p(n)4) states and it is nonunary. The nonunarity
allows Theorem 5.1.1 to convert this 1nfa into a Parikh equivalent 1dfa M0
with O(n(2m−1)(3m3+6m2)p(n)2(3m3+6m2)) states.

Now that the standard construction for union combines this, MY , and
Munary into the 1dfa with O(n(2m−1)(3m3+6m2)+2p(n)2(3m3+6m2)+m) states,
and its Parikh image is equal to ψ(L(A)) ∩ ψ(L(B)).

We conclude this section with some short considerations concerning the
complement. It is well known that any regular language and its complement
are accepted by 1dfas with the same number of states. Hence, this gives a
trivial bound even under Parikh equivalence. However, as for the intersection,
the complement does not commute with the Parikh mapping (consider, e.g.,
the language (ab)∗). Furthermore, the semilinear sets are closed under
complementation [GS64]. Hence the problem arises of stating how small we
can make a 1dfa accepting a language whose Parikh image is the complement
of the Parikh image of the language accepted by a given 1dfa. We leave this
problem for future investigations.





Chapter 7

Conclusion and future works

Hallelujah!

Messiah
George Frideric Handel

In this final chapter we briefly summarize the results shown in this thesis
and we outline some possible future extensions of the research in the field of
Parikh equivalence.

7.1 Conclusion

We proved that the state cost of the conversion of n-state 1nfas into Parikh
equivalent 1dfas is eΘ(

√
n·lnn) (Theorem 5.1.2). This is the same cost of the

conversion of unary 1nfas into equivalent 1dfas. Since in the unary case
Parikh equivalence is just standard equivalence, this result can be seen as a
generalization of the Chrobak conversion [Chr86] to the nonunary case.

More surprisingly, such a cost is due to the unary part of the languages.
In fact, as shown in Theorem 5.1.1, for each n-state unary 1nfa accepting
a language which does not contain any unary word, there exists a Parikh
equivalent 1dfa with polynomially many states. Hence, while for the trans-
formation from 1nfas to equivalent 1dfas, we need at least two different
symbols to prove the exponential gap from n to 2n states and we have a
smaller gap in the unary case, for Parikh equivalence the worst case is due
to unary words. Even in the proof of our result for cfgs (Theorem 5.1.5), the
separation between the unary and nonunary parts was crucial. Also in this
case, it turns out that the most expensive part is the unary one.

On the other hand, in our conversions into Parikh equivalent 2dfas, the
most expensive part turns out to be the nonunary one.

The state costs of the conversions from 1nfas and cfgs into Parikh equiva-
lent 1dfas and 2dfas are summarized in Table 7.1 and Table 7.2, respectively.
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Tables also show the lower bounds that come from unary cases, when the
alphabet is unary.

Upper bound Lower bound

n-state 1nfa eO(
√
n·lnn) eΘ(

√
n·lnn)

Thm. 5.1.2 Thm. 4.0.4

h-variable Cnfg 2O(h2) 2Θ(h2)

Thm. 5.1.5 Thm. 4.0.3

Table 7.1: Conversions from 1nfas and cfgs into Parikh equivalent 1dfas.

Upper bound Lower bound

n-state 1nfa poly(n) Θ(n2)

Thm. 5.2.3 Thm. 5.2.1

h-variable Cnfg 2O(h) 2Θ(h)

Thm. 5.2.4 Thm. 5.2.2

Table 7.2: Conversions from 1nfas and cfgs into Parikh equivalent 2dfas.

In Chapter 6 we reformulated, under Parikh equivalence, some classical
questions on the state complexity of operations on regular languages and
on 1dfas. For union, intersection, complement, concatenation, Kleene star,
shuffle and reversal operations, we proved a polynomial state complexity over
any fixed alphabet, in contrast to the intrinsic exponential state complexity
of some of these operations under standard equivalence. For the case of
projection we proved a superpolynomial state complexity, which is lower
than the exponential one of the corresponding classical operations.

Table 7.3 shows the state complexity of operations on regular languages
treated under Parikh equivalence and standard equivalence. We assume
that L1 is an n1-state 1dfa language and L2 is an n2-state 1dfa language
defined over an m-letter alphabet, and n1, n2 > 1. The lower bounds of
the operations under Parikh equivalence coincide with the state costs of the
operations under standard equivalence when the alphabet is unary (m = 1).

Concerning intersection, we observed that this operation does not com-
mute with Parikh image. However, semilinear sets are closed under inter-
section [GS64]. We proved that for each two 1dfas A and B it is possible to
obtain a 1dfa with a polynomial number of states, whose Parikh image is
the intersection of the Parikh images of the languages accepted by A and B
(Theorem 6.4.1).
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Operation Parikh equivalence Standard equivalence

m = 1 m ≥ 2

L1 ∪ L2 n1n2 n1n2 n1n2

L1 ∩ L2 n1n2 n1n2 n1n2

Lc1 n1 n1 n1

L1L2 poly(n1, n2) n1n2 (2n1 − 1)2n2−1

L∗1 poly(n1) (n1 − 1)2 + 1 2n1−1 + 2n1−2

L1 � L2 poly(n1, n2) n1n2 2n1n2 − 1

LR1 n1 n1 2n1

PΣ0(L1) eO(
√
n1·lnn1) n1 3 · 2n1−2 − 1

Table 7.3: State complexity of operations on regular languages under Parikh
and standard equivalence.

7.2 Future works
The research described in this thesis can be extended along several directions
as follows:

• As in the case of the intersection, the complement does not commute
with the Parikh mapping. The noncommutativity in the case of comple-
ment is illustrated in the inequality ψ((a∗b∗)c) 6= (ψ(a∗b∗))c. The left-
hand side is the linear set N×N, while the right-hand side is the empty
set. However, semilinear sets are closed under complement [GS64].
Hence the problem arises of stating how small can we make a 1dfa
accepting a language whose Parikh image is the complement of the
Parikh image of the language accepted by a given 1dfa.
The fact that the Parikh image of a language accepted by a 1nfa is
semilinear and the closure property of semilinear sets under complement
makes this problem meaningful.

• Another possible extension is the minimization problem. Given a
deterministic automaton, finding the smallest Parikh equivalent deter-
ministic automaton is an open question. More precisely, given a 1dfa
A, we want to know if there is a 1dfa B such that:

– B is Parikh equivalent to A.
– the number of states of B is less than number of states of A.

It could be interesting to find an efficient algorithm to solve it.
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• It could also be interesting to study computational complexity aspects
of Parikh equivalent conversions.
As we know, in the case of Cnfgs with h variables all known translations
from cfg to semilinear set yield at least exponentially many linear
sets [Esp97, Koz97, SSMH04, VSS05]. All these constructions run in
exponential time. Kopczyński and To in [KT10, Proposition 10] show
that this cannot be improved even for cfgs over a fixed unary alphabet.
More precisely, they show that the number of linear sets for Parikh
images of cfgs could be exponential in the size of the cfgs. More details
can be found in [To10a, Theorem 2.2.12, Proposition 7.3.9].
Furthermore, we use the result proven by Esparza et al. [EGKL11],
which gives the state cost of the conversion of Cnfgs into Parikh
equivalent 1nfas (Theorem 5.1.3), but the computational complexity of
their conversion is not known.

• An interesting decision problem is the following: given two automata,
are they Parikh equivalent?
This problem brings us to study the equality problem for semilinear
sets, i.e., whether two semilinear set representations are equivalent. It
is shown that the equivalence problem for semilinear sets (these sets are
exactly the Presburger sets) is decidable in polynomial space [Huy80].
Hence we can solve it in deterministic time 2P (N), where P is a fixed
polynomial and N is the input size. More precisely, N is the sum of the
sizes of representations of the semilinear sets being considered [GI79,
Thm. 4.2].
Furthermore, in the case of 1nfas with n states and fixed alphabet
size, Kopczyński and To in [KT10, Thm. 8] gave a polynomial-time
algorithm for computing such Parikh images. Hence the normal form
for the Parikh image of 1nfas presented in Lemma 4.0.2 can be also
obtained in polynomial time. Observe that the Parikh image of 1nfas
in Lemma 4.0.2 is the union of a polynomial number of linear sets.
We can conclude that the problem whether two automata are Parikh
equivalent, is decidable in deterministic time 2p(n), where p is a fixed
polynomial and n is the input size.

• What we can say concerning the Parikh equivalence of two cfgs?
All translations known to us from cfg to semilinear set run in an
exponential time and may output a union of exponentially many linear
sets in the worst case. Because of the exponential number of linear sets
we obtain an exponential size of the semilinear set. So, the problem
whether two cfgs are Parikh equivalent, is decidable in deterministic
time 22q(h) , where q is a polynomial function on h (the size of the
grammar). Hence, we can conclude according to these considerations



7.2. Future works 71

that, the computational time to decide the Parikh equivalence of two
cfgs is double exponential.

• Finally, in this thesis we have treated the conversion from 1nfa into
Parikh equivalent 2dfa, but what happens in the other direction?
More precisely, given a two-way deterministic automaton, how many
states are necessary and sufficient to build a Parikh equivalent one-way
deterministic or nondeteministic automaton?
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