
Context Flow Architecture

Timothy E.A. Lees

Ph.D.

University of Edinburgh

1990

Abstract

Good computer architecture is, in many ways, very similar to good building ar-

chitecture. Its effectiveness can only be judged by the way in which the imple-

mentation of the design - whether a computer or a building 	fulfils its given

role. In computer architecture, this judgement is based on one criterion 	speed.

In the best computers, speed is obtained by coupling the best current technology

and materials with the best design. This Thesis presents a novel way in which to

design pipelined computers. Speed is achieved by maximising the use of hardware

resources to provide an environment in which many independent processes can

execute, concurrently in a single system. The design method is called context flow.

Two different facets of context flow are discussed. An underlying theory of

context flow is established which is used to prove certain properties of context

flow systems. These theoretical results show context flow machines to be imple-

meiltable. Using these results, a practical approach to the creation of context flow

systems is presented, leading to the design and analysis of an example context flow

processor. The result is an architectural design technique with a formal foundation

which can be used to build efficient pipelined computers.

Acknowledgements

Like any voyage of discovery, production of this Thesis, although credited to one

person, requires the help of many others. I would like to record my gratitude to

all the people helped me on my four-year mission, which although not "seeking

out new life forms and civilizations", did attempt to "boldly go where no man has

gone before".

I would like to thank my supervisor, Nigel Topham, for his patience and guid-

ance over the past four years; Doug Gurr, for helping to organize the ramblings of

a non-theorist; and Tom Stiemerling, Steve Proctor and Richard Eyre-Todd, with

whom I have shared the tears of frustration and laughter in Room 2412.

For my eight years at Edinburgh University, the Boathouse by the Union Canal

has been a second home, and the members of Edinburgh University Boat Club

Hamish, Sam, Tony, Tom, Alison, Mary, Steve, Geoff, Simon, Brian, Simon,

Vince, Bill, Will, Rob, Ed, Rupert, Mike, Kate, Rob, Richard, Ben, Cameron,

Ian and Gary to name but a few - a second family. I cannot thank each of you

enough.

This work was funded by a Research Studentship from the Science and Engi-

neering Research Council.

Publications

The following papers were published during the production of this Thesis.

. T.E.A. Lees. "On Context Streams and the Boundedness of Context Flow

Graphs", Internal Report CSR-2-90, Dept. of Computer Science, Edinburgh

University.

. T.E.A. Lees. "On Context Stream Tuples and Higher-Order Context Flow

Graphs", Internal Report CSR-4--90, Dept. of Computer Science, Edinburgh

University.

T.E.A. Lees. "Context Streams - A Theoretical Basis for a Generic Form

of MIMD Pipelining". In Proc. 2nd IEEE Symposium on Parallel and Dis-

tributed Processing, (Dallas, Texas; Dec. 9-11 1990).

111

Table of Contents

Preface 	 x

Introduction 	 1

1.1 	Parallel Architectures 2

1.2 	Pipelined Architectures 16

1.3 Micromultiprogramming29

A Theory of Context Flow 	 38

2.1 	The Principles of Context Flow39

2.2 	Context Streams45

2.3 	Boundedness of Queues in Acyclic Graphs56

Higher-Order Graphs 	 63

3.1 	Stream Tuples 64

3.2 	Queue Boundedness in Class III Graphs71

3.3 	Queue Boundedness in Class IV Graphs76

3.4 Determining Maximum Merge Queue Length79

3.5 	Graph Initialization 81

lv

Table of Contents 	 V

3.6 Context Flow as a Model of Parallel Computation82

Context Flow Architecture 87

4.1 Performance Criteria 88

4.2 A CF Arithmetic Unit 90

4.3 A CF Shared Memory Unit 93

4.4 A CF Network Routing Element 95

A Context Flow Processor 114

5.1 Design Objectives115

5.2 Instruction Set 116

5.3 Processor Architecture 120

5.4 Processor Performance 125

5.5 Design Alternatives135

Implementation, Application and Development 	 146

6.1 	Implementation Issues147

6.2 	Applications of Context Flow148

6.3 	Future Research 150

References 	 152

Annotated Bibliography 	 161

List of Figures

1-1 AMT mini-DAP Architecture10

1-2 Linear Pipeline Structure17

1-3 Delayed branch timing in a 2-stage pipeline25

1-4 Instruction dependencies detected in the CDC 6600 Scoreboard 	28

1-5 Conventional and MIMD Pipelining32

1-6 Architecture of a HEP PEM32

1-7 The Circulating Context Multiprocessor34

2-1 Transformation Node Operation41

2-2 Branch Node Operation43

2-3 Merge Node Representation43

2-4 Merge Node Operation55

4-1 Structure of the CF arithmetic unit91

4-2 Structure of the context flow shared memory interface94

4-3 Latency v. load for CF shared memory interface96

4-4 Maximum queue length v. load for CF shared memory interface 	97

4-5 Utilization v. load for CF shared memory interface98

vi

List of Figures 	 vii

4-6 Structure of the CF routing element99

4-7 Topology of Omega and binary n-Cube networks showing locations

of hotspots 104

4-8 Latency v. load for CF Omega and binary n-Cube networks. . . . 105

4-9 Maximum queue length v. load for CF Omega and binary n-Cube

networks . 	. 	106

4-10 Average queue length v. load for CF Omega and binary n-Cube

networks . 	. 	107

4-11 Latency v. hotspot occurrence for CF Omega and binary n-Cube

networks with 100% load . 109

4-12 Throughput v. hotspot occurrence for CF Omega and binary n-

Cube networks with 100% load . 110

4-13 Maximum queue length v. hotspot occurrence for CF Omega net-

work with 100% load111

4-14 Maximum queue length v. hotspot occurrence for CF binary n,-Cube

network with 100% load . 112

5-1 Format of CF processor instructions118

5-2 Architecture of the CF Processor in context flow graph form. . . . 121

5-3 Processor utilization v. load for varying memory access rates . . . 127

5-4 Utilization, latency, throughput and instruction completion for in-

creasing processor load128

5-5 Processor utilization v. load for increasing memory latency 130

5-6 Pipeline latency v. load for increasing memory latency132

5-7 Instruction throughput v. load for increased memory latency . . . 133

List of Figures 	 viii

5-8 Instruction completion v. load for increased memory latency 134

5-9 Maximum queue lengths v. processor load for the CF processor . . 136

5-10 Processor utilization v. load for CF processor with dual-port register

file....................................138

5-11 Throughput v. load for CF processor with dual-port register file. . 139

5-12 Throughput v. load for CF processor with single instruction fetch

and Harvard architecture141

5-13 Pipeline Latency v. load for CF processor with single instruction

fetch and Harvard architecture142

5-14 CF processor with Harvard architecture and dual-port register file

in context flow graph form144

List of Tables

2-1 Streams and stream operations45

3-1 Tuple operations65

4-1 Performance of CF arithmetic unit for various input streams . . . 92

4-2 Average queue lengths in CF arithmetic unit92

4-3 Maximum queue lengths in CF arithmetic unit93

4-4 Performance of CF routing element for constant routing functions 100

4-5 Performance of CF routing element for random routing functions . 100

4-6 Performance of CF routing element for random length sequences of

requests for the same routing function100

4-7 Queue lengths in CF routing element for constant routing functions 103

4-8 Queue lengths in CF routing element for random routing functions 103

4-9 Queue lengths in CF routing element for random length sequences

of requests for the same routing function103

5-1 CF Processor Instruction Set117

lx

Preface

This Thesis is concerned with the efficient implementation of pipelined computers.

It presents a design technique called context flow, which overcomes a number of

the inefficiencies of current pipelined systems by removing the source of these

inefficiencies from the pipeline, rather than merely attempting to lessen the effects

when they arise. This Thesis attempts to combine a theoretical foundation for

context flow, with practical designs for pipelined context flow systems, to show

context flow as an effective means of supporting multiple concurrent processes in

a highly-pipelined environment.

Chapter 1 argues the case for pipelining, as opposed to replication, as a means

to exploit parallelism while retaining generality of purpose. The principles of

pipelining are presented, together with existing solutions for the problems found

in conventional pipelined systems. Chapters 2 presents a theoretical basis for

context flow, which is developed in Chapter 3. Chapters 4 and 5 concern the

implementation and performance of context flow systems, providing a collection

of context flow versions of common architectural elements, and a design for a

context flow processor. Chapter 6 discusses the implementation and applications

of context flow systems and outlines directions for future research.

x

To my parents.

Please accept this as part repayment

of the huge debt of gratitude I owe you.

xi

Chapter 1

Introduction

Many significant improvements in computer performance have been

brought about through the application of technological advances. For

example, improved integrated circuit processing techniques have al-

lowed denser and more complex very large scale integration (VLSI)

devices to be fabricated, and materials research has yielded substrates

such as gallium arsenide which can sustain faster switching speeds

than silicon. Desires to increase performance still further, or to avoid

the high costs associated with innovative technologies and materials,

have prompted the search for methods to improve performance by non-

technological means. One area which has been particularly fruitful is

the introduction of techniques to exploit parallel or concurrent activ-

ities in a computer system and thus allow existing resources to be

utilized to the full. This chapter describes current methods which pro-

vide temporal and spatial solutions to the exploitation of parallelism,

and presents some of the associated problems.

1

Chapter 1. Introduction
	

2

1.1 Parallel Architectures

Parallel processing can be defined as

"an efficient form of information processing which emphasizes the ex-

ploitation of concurrent events in the computing process. Parallel

events may occur in multiple resources during the same time interval;

simultaneous events, at the same time instant; and pipelined events

during overlapped time spans."

[Hwang and Briggs, 1984]

Parallelism can be introduced into a computer system by either hardware or soft-

ware means at a number of different levels. Software solutions predominate at

higher levels of abstraction where parallelism is introduced either between jobs or

programs by means of multiprogramming or time sharing of resources; or between

procedures within the same program. Hardware mechanisms tend to be used to.

extract parallelism at a lower level - either between instructions or within the

execution cycle of a single instruction. Design of a parallel architecture is therefore

a trade-off between the costs of software and hardware approaches.

1.1.1 Classification of Parallel Architectures

The above definition of parallel processing covers a diverse range of architectures,

which need to be classified if meaningful comparisons of performance are to be

drawn. Four characteristics commonly used to distinguish architectures are:

Generality of purpose A general purpose machine attempts to provide a

given level of performance across a wide spectrum of applications. Spe-

cial purpose machines perform their designated task well, but other tasks

Chapter 1. Introduction
	 3

poorly or not at all, and often require the data either to be in a rigidly

defined format or to be programmed in a particular type of language.

Granularity The range of sizes of basic processing units at which a system

performs most efficiently determines many other characteristics. A parallel

system can be coarse-grained, consisting of a few complex processors; or

fine-grained, containing hundreds or thousands of simple processors.

Topology and reconfigurability The way in which processors are connected

is important, as is the ease with which the interconnection pattern can be

changed to suit a given algorithm.

Coupling 	This feature describes the distribution of clock signals and the 1-

cation of memory relative to the processing units. Tightly-coupled systems

have a global shared memory, whereas in loosely-coupled systems, memory

is distributed physically amongst the processors.

Classification also serves to relate past and present architectural developments,

and to aid clarification of design concepts.

The diverse nature of parallel architectures has lead to the evolution of several

design classification schemes. Flynn [1972] identifies four basic machine types,

based on the characteristics of the instruction and data streams:

Single Instruction Single Data (SISD) - a conventional uniprocessor in

which each instruction operates on a single datum.

Single Instruction Multiple Data (SIMD) - a single instruction specifies the

operation to be applied to several data.

Chapter 1. Introduction 	 4

Multiple Instruction Single Data (MISD) - included largely for complete-

ness sake.'

o Multiple Instruction Multiple Data (MIMD) - several instruction streams

are processed simultaneously, each operating on its own data.

This taxonomy is somewhat crude, as the SIMD and MIMD classifications each

encompass machines with very different architectures. Under Flynn's scheme, the

SIMD group includes vector processing machines, in which one instruction initiates

operations on every element of a vector in turn; and array processors, in which

a collection of processors operate synchronously on regular arrays of data under

centralized control. Hockney [1987] differentiates these two very different groups

as pipelined and replicated- SIMD, respectively.

Skillicorn [1988] presents a more complete classification scheme, which sub-

sumes those of Flynn and Hockney. Twenty-eight machine classes are identified

according to the number of instruction processors and data processors and their

interconnection topology. This taxonomy covers most current architectural forms

including graph reduction and data .flow machines, von Neumann uniprocessors,

array processors, and a wide variety of multiprocessors.

Johnson [1988] provides an alternative taxonomy for machines in Flynn's MIMD

category, which allows distinctions to be drawn according to factors which are more

pertinent from a programmer's point of view. Under this scheme, multiprocessor

machines are divided into four classes:

'Krishnamurthy [1989] cites pipelined systems as examples of MISD processing. How-

ever, it is somewhat tenuous to describe the stages in a pipeline as instruction streams.

Flynn could offer no examples of a machine in this class.

Chapter 1. Introduction
	

5

Global Memory Shared Variable (GMSV). Machines in this class have a

common memory, accessible at equal cost by each of the processors, and

use shared variables to provide process synchronization. Examples include

the New York Ultracomputer [Gottlieb et al., 19831, and the University of

Illinois Cedar [Kuck et al., 1987].

Distributed Memory Shared Variable (DMSV). Machines in this class have

memory modules connected to each processor, but which are globally acces-

sible via a common address space. An example of a DMSV architecture is

the BBN Butterfly [Rettberg and Thomas, 19861.

Distributed Memory Message Passing (DMMP). This class includes ma-

chines such as NCUBE [Hayes et al., 1986], in which each processor main-

tains its own address space and communicates with other processors across

an interconnection network.

Global Memory Message Passing (GMMP). This category completes the

taxonomy, but contains few actual machines. Each process would have an

isolated address space within a common memory.

It is difficult to see the development of a classification scheme which can capture

both architectural and operational aspects of all machines. Indeed, with Flynn's

scheme in such widespread use, it seems likely that its ambiguities will be tolerated

for some time to come.

1.1.2 Exploitation of Parallelism in Uniprocessors

Several improvements, both architectural and in software, can be made to single

processor machines to maximize use of processor resources, and thus to achieve

faster program execution.

Chapter 1. Introduction 	 6

Pipelining

The instruction execution sequence of a processor is typically broken down into

several phases - instruction fetch, instruction decode, operand fetch, and instruc-

tion execution. In a non-pipelined processor, each instruction proceeds through

each of the execution phases before processing of the next instruction begins. This

is wasteful of processor resources, as at any given time the hardware which sup-

ports all but one of the phases is idle. A pipelined processor begins execution of a

new instruction after each has passed through the first stage, allowing all stages to

remain in continuous use and, in the case of a k stage pipeline, producing a k-fold

increase in performance. Pipelining is covered in greater depth in Section 1.2.

Multiple Function Units

A conventional arithmetic and logic unit (ALU) contains circuits to perform sev-

eral operations, typically addition, subtraction, multiplication, and the boolean

logic functions, but can only perform one operation at a time. By transferring

execution of each function to a separate unit, and replicating commonly used op-

erators, increased completion of these operations can be achieved. The Control

Data Corporation (CDC) 6600 [Thornton, 1964] was the first computer to include

functional parallelism as a major design feature. It provided an execution unit

containing ten functional units (FUs) under the control of a device called the

scoreboard which regulated access to the FUs, and resolved data dependency con-

flicts between instructions. The IBM 360/91 [Tomasulo, 1967] provided separate

execution units for floating-point (FP) and scalar instructions, with the floating-

point unit (FPU) capable of performing concurrent addition and multiplication

operations, data dependencies permitting.

Chapter 1. Introduction
	

7

Input-output and Memory Systems

The mismatch in speed between input-output (I/o) operations and processor op-

erations can be overcome by the introduction of dedicated processors whose op-

erations are initiated by the central processor but run independently thereafter.

This allows the central processor to continue to perform useful computation while

waiting for completion of an i/o operation. The I/o processor can communicate

with the memory via a direct memory access (DMA) channel, allowing transfer of

data at the maximum possible rate.

The mismatch in speed which exists between the main memory and the proces-

sor can be overcome in a number of ways. By judicious placement of instructions

or data in an intermediate high speed memory or cache, the traffic between the

processor and main memory can be reduced substantially. This technique is par-

ticularly effective when a program exhibits considerable locality either in the form

of iterative loops or in repeated access to a small number of memory locations. A

technique called interleaving, can be used to exploit the sequential nature of mem-

ory references. A k-way interleaved store has k independently accessible memory

modules with consecutive locations stored in adjacent modules, giving a k-fold

increase in access rate, although the time taken to access individual locations

remains the same.

Multiprogramming

Multiprogramming is a software technique which allows processor-intensive and

I/o-intensive programs to share the resources of a computer system. The mix

of programs being executed can be controlled by a process called scheduling, to

balance access to available resources according to the needs and priority of each

program. By dividing processor availability into discrete intervals or time-slice. a

single high-priority process can be prevented from monopolising a given resource.

Chapter 1. Introduction 	 8

A combination of multiprogramming and time-slicing in an operating system pro-

vides an illusion of concurrency to the user of a uniprocessor system.

Vector Processing

Many scientific and numerical problems require evaluation of expressions of the

form

= b op

where , and Z are vectors of the form

and the operation performed is

a•=b1 opc2 ViE{1, ... ,n}

By using a single instruction to accomplish this operation, rather than repeated

application of the operator within a loop, a considerable amount of the overhead

associated with processing the instructions can be saved. The performance of

vector processors is difficult to estimate as it is very dependent on the size and

nature of the application. The CRAY 1, the first commercial processor to include

vector processing facilities, has a typical performance of 20 MFLOPS (floating-

point operations per second), and a theoretical peak performance of 160 MFLOPS.

Currently, the fastest available computer is the CRAY Y—MP/8, with a peak

performance of 2.667 GFLOPS [Bell, 19891. Vector processing is, however, an

efficient method of solving particular classes of numerical problems.

1.1.3 Array Processors

An array processor is a regular collection of ALUs or processing elements (PEs)

which operate synchronously under lockstep control. Each PE is a device capa-

ble of applying a series of simple operations to small data objects stored in a

Chapter 1. Introduction 	 9

local memory. Each PE executes the same operation simultaneously, with a single

stream of instructions being broadcast to all elements by a central controller. PEs

are interconnected by a routing network to allow exchange of data. Array pro-

cessors tend to be less general purpose and more difficult to program than other

parallel machines, being best suited to solving problems with data whose struc-

ture closely matches that of the interconnection network. Array processors are

classified according to the size of data each PE operates upon, either single/few-

bit or floating-point quantities, and the physical interconnection of the processors.

Research interest in array processors was initiated by the SOLOMON project [Gre-

gory and McReynolds, 1963], a 32 x 32 PE array developed by the Westinghouse

Electric Corporation.

Bit-serial Arrays

The ICL Distributed Array Processor (DAP) was one of the earliest array pro-

cessors to be developed commercially. The DAP consisted of a 64 x 64 array of

single bit processors connected to a master control unit. The design of the DAP

was similar to that of SOLOMON but with the introduction of two novel fea-

tures - separation of column-wise and row-wise access to PEs, and integration

of the array as part of the memory of an existing system (one of the 2900 series).

Each PE consisted of a 4 kbit memory and a 1-bit full adder, together with input

and output multiplexers and three 1-bit registers. The DAP had two modes of

operation, matrix mode in which 4096 words were processed concurrently in a

bit-serial manner, and vector mode in which sixty-four 64-bit words are processed

in parallel.

It was, perhaps, the DAP's dependence on its 2900 series host that ultimately

limited its commercial success, the host machine being expensive and superseded

largely by other machines and technologies soon after the introduction of the DAP.

In 1986, Active Memory Technologies (AMT) launched the mini-DAP, a 32x32 PE

Chapter 1. Introduction 	 10

Fast

Plan(

DAP St

(32x32x1 I

DAP P

(32x3

Figure 1-1: AMT mini-DAP Architecture

array built from LSI components. The design, as shown in Figure 1-1, is similar

to the mainframe DAP, with the addition of a fast I/o unit, a more generalized

host interface, and 1 Mbit memories for each PE.

The Connection Machine [Hillis, 1985] is a very large, fine-grain parallel com-

puter developed for artificial intelligence applications at Massachusetts Institute

of Technology, and implemented commercially as the CM-1 by Thinking Machines

Corporation. A connection machine consists of a large number of processors

(65,536 in the CM-1), connected by a communication network. Each PE has

a small amount of local memory and a 1-bit ALU, and is assigned a unique ad-

dress in the network. The PEs are controlled by a central processor via a global

instruction bus. Programs written for the connection machine [Christman, 1984]

consist of two parts - a description of the connection, an arbitrary graph having

Chapter 1. Introduction 	 11

one PE at each vertex, and a description of the operations the controlling com-

puter is to send to each PE. The power of the connection machine lies not in the

power of the individual processors, but in their quantity. This approach has been

taken a stage further with the development of neural network systems [Hopfield,

1979].

Bit-parallel Arrays

The SOLOMON project was also the stimulus for a series of architectures whose

processors operated on whole words of data rather than single bits. The first of

these was ILLIAC IV [Barnes et al., 1968], developed at the University of Illinois

and which became operational in 1972. It consisted of 64 PEs arranged on an 8x8

grid. Each PE performed addition, multiplication, logical and shifting operations

on several formats of data, from 64-bit floating-point numbers to 8-hit characters.

A 2048-word memory provided local storage for each PE. Despite problems with

reliability, delivery and budget, the ILLIAC IV made a valuable contribution to

research in parallel architectures, and influenced many subsequent designs.

The Burroughs Scientific Processor (BSP) [Jensen, 1978] developed many fea-

tures found lacking during production of ILLIAC IV. The size of memory associ-

ated with each PE was increased to 128 kwords, and the processing capability of

the controlling processor was increased to allow more complex scalar operations

to be performed. Due to problems within Burroughs Corporation, the design did

not meet its performance goals, and the BSP never went into production.

1.1.4 Multiprocessors

Multiprocessor systems are single computers which contain several processing units

which communicate and cooperate at various levels on the solution of a single

problem. No matter where in a multiprocessor system the memory is located, the

Chapter 1. Introduction 	 12

structure of the network linking the processing elements and memory modules has

an important bearing on system performance, with the choice of topology being a

trade-off between connectivity and cost.

Interconnection Networks

In any multiple processor system, making the right data available to the right pro-

cessor at the right time is essential for the full exploitation of available parallelism.

The physical interconnection of the processors has been the subject of great in-

terest for designers of multiprocessor systems [Feng, 1981],[Haynes et al., 19821.

There are two types of interconnection network, static, with dedicated buses, or

dynamic, with reconfigurable interprocessor links.

Static interconnection networks cover a large variety of topologies, all charac-

terized by the existence of fixed dedicated links between processors. Shared bus,

star and ring networks provide simple, low-cost interconnection between a few

processors. However, their usefulness is severely constrained by bandwidth lim-

itations, and lack of fault-tolerance. Although these three topologies have been

successfully applied to local area networks, their suitability for use in tightly cou-

pled multiprocessor environments is limited.

A binary tree would seem to be a very natural way of organizing an intercon-

nection network, as many problems can be described in terms of a tree structure,

and a natural correspondence exists between the hardware processors and the

software processes. However, the performance of the tree is potentially limited

by the root node if a large amount of communication has to take place between

the two halves of the tree, and the depth of the tree is limited by the number of

processors. An analysis of the number of messages transferred through a node,

in the case when each node sends a message to all other nodes in a network of n

nodes [Horowitz and Zorat, 1981], shows that a binary tree [O(n 1092 n)] compares

favourably with a linear array [0(n2)], and with a 2-dimensional array [0(n3t2)].

Chapter 1. Introduction 	 13

A n-Cube can connect k = 	processors, providing a rich interconnection

network. The ensemble can be thought of as a cube in n-dimensional space, with

the processors at the vertices and the connections forming the edges, with the

distance between any two processors oc 1092n. A possible source of difficulty is

that n connections are required per processing element, and that for k > 1000

wiring problems may be encountered. The cube-connected cycles [Preparata and

Vuillemin, 19811 is similar to the n-Cube, but with the vertices replaced by a

cycle of processors. This has the advantage of a constant number of connections

per processor. In an n-dimensional hypertorus, each processor is a member of n

orthogonal rings, the distance between any two processors being proportional to

the nth root of the number of processors.

A large number of dynamic routing networks have been designed offering a

variety of trade-offs between hardware complexity and operational efficiency. A

single stage network is composed of a set of switching elements connecting n

inputs to n outputs. The single stage network is also known as a recirculating

network as data items may have to circulate through the single bank of switching

elements several times before reaching their correct destination. A multistage

network consists of more than one stage of switching elements, and is capable of

establishing arbitrary connections between inputs and outputs. The multistage

networks can be further split into blocking, non-blocking and rearrangeable types.

In a blocking network, the establishing of a connection between two ports may

cause a conflict when subsequent connections are attempted. This class includes

delta and omega networks. A rearrangeable network can alter existing connections

to accommodate a new path between two ports, for example the Benés network.

The third type, the non-blocking network, can handle all possible connections

without the occurrence of blocking, for example the Cbs network. Multistage

networks such as the banyan network tend to have a hardware complexity of

Chapter 1. Introduction 	 14

O(n 1092 n) compared to connections schemes like the crossbar switch which have

a hardware cost that grows 009

Shared Memory MIMD Computers

Shared memory systems consist of separate processing and memory units, con-

nected by means of a network allowing uniform accessibility to all memory loca-

tions by any processor. Memory contention and its management are important

factors in determining machine performance.

A bus provides a simple and easily configurable means of connecting proces-

sor and memory units. The Sequent Balance has a 32-bit bus-connected shared

memory architecture. Up to 24 processing units, each constructed from N532032

processors with an 8 kbyte cache and floating-point unit, and 28 Mbytes of mem-

ory can be attached to a 52-bit pipelined packet bus. Use of caches reduces the

number of accesses to the common memory and hence the effect of contention

on performance, at the expense of maintaining coherency between the contents of

each cache and the memory. The Tandem-16 Nonstop system illustrates another

feature of multiprocessors - fault tolerance. Replication of resources within this

system allows continuous operation and repair of faults without bringing down the

entire system.

A crossbar switch offers complete connectivity between processors and mem-

ories, with the rate of transfer limited only by the number of memory modules,

rather than the availability of connective paths. With current technology, a cross-

bar switch is only practical if the number of processors is relatively small; and is

the preferred interconnection topology for sixteen or fewer processors. One of the

earliest MIMD computers, the C.mmp [Wulf and Bell, 19721 developed at Carnegie

Mellon University, used a 16x 16 crossbar switch (S.mp) to connect Digital Equip-

ment Corporation (DEC) PDP-11/40 minicomputers to shared memory modules.

A derivative of C.mmp, the Livermore S-i [Farmwald, 19841, consists of 16 Cray-1

Chapter 1. Introduction 	 15

processors fully connected to 16 memory modules by a crossbar switch, providing

a 16 Gbyte address space and an estimated performance of 1 GFLOP.

Multistage interconnection networks provide a cost-effective means of connect-

ing large numbers of processors and memory units. The New York Ultracomputer

project has produced a series of designs for machines based around an Omega

network connecting a large number of processing elements to a shared memory

constructed from distinct memory modules. A novel network switching element is

used to combine access requests to the same memory location, thereby reducing

contention. A 512 processor implementation is under construction as the IBM

Research Parallel Processor Project (RP3) [Pfister et (Li., 1985].

Distributed Memory MIMD Computers

Each processing element in a distributed memory MIMD computer has an asso-

ciated memory module which can be accessed by it more easily than by other

processors. Access to non-local memory is provided by an interconnection net-

work. The non-uniformity of memory access requires that placement of code and

data among the processors be optimized to achieve maximum performance.

Star and ring networks have only been used in a few multiprocessor systems, for

example the IBM £CAP and the CDC CyberPlus. Hierarchical network structures

have been employed successfully in some projects, notably Cm*, the successor to

C.mmp, based on bus-interconnected clusters of microprocessors. The hypercube

has received much interest as a network topology for MIMD computation. The

Cosmic Cube [Sietz, 19851 built at California Institute of Technology is a 6th-

order hypercube, the nodes being constructed from Intel microprocessors. Several

commercial machines have been derived from this design, including the NCUBE

and the Floating Point Systems T-Series.

Chapter]. Introduction 	 16

The BBN Butterfly consists of up to 256 computing nodes connected by a

Banyan network. Each node consists of a Motorola 68020 with a 68881 floating-

point co-processor and a 4 Mbyte local memory. Although the memory is physically

distributed among the nodes, it forms a continuous logical shared address space

with non-local memory addresses being accessible via the network.

The INMOS Transputer is a microprocessor designed as a building-block for

MIMD computers. A processing unit and memory are combined with hardware

support for process queues on a single chip. Interprocess communication is sup-

ported by instructions for passing messages either internally through a common

memory location, or externally through one of the four hardware links provided

on each transputer. The transputer has been used in a variety of parallel pro-

cessing applications, from large high performance systems such as the Edinburgh

Concurrent Supercomputer, to specialist processing systems such as the ALICE

graph reduction machine [Darlington and Reeve, 1981].

1.2 Pipelined Architectures

Pipelining is a technique developed to exploit the temporal parallelism that exists

in the execution of instructions within a computer. A pipelined processor allows

operations to be initiated before previous instructions have been completed, re-

suiting in an increased instruction execution rate, while the instruction execution

time remains)1unchanged. Instruction completion rate then becomes a function of

instruction issue rate, rather than total processing time. Concurrent execution of

different instructions is made possible by dividing the computational process into

hardware-independent stages. In an ideal pipeline, each stage is of equal complex-

ity, requiring the same time to complete its operation. Any discrepancy between

execution time results in a bottleneck, as rate of progression through the pipeline

is dependent on the longest time taken to complete a single stage, thus the rate

Chapter 1. Introduction 	 17

Latch 	 Stage

Ck

Figure 1-2: Linear Pipeline Structure

of instruction completion is reduced. Stages are connected by latches or buffers

which store intermediate results. Figure 1-2 shows the basic structure of a linear

pipeline.

Given a time r to perform the operation of each stage, and a delay r1 associated

with each latch, the beat time r, of the pipeline is given by

r=max(r3)+r1

As the execution time for individual instructions is not changed, the time taken

to complete a given number of tasks is the time taken to complete one task -

each stage taking r, plus the time to complete the remainder - a result being

produced every r. Thus for a k-stage pipeline, the time to complete N tasks is

kr + (N - 1)7-
	

(1.2)

The time to complete the first task is also known as the fill time of the pipeline, and

has an important bearing on pipeline performance in the presence of discontinuities

in an instruction stream.

Chapter 1. Introduction
	

18

The speedup of a k-stage pipeline over an equivalent non-pipelined machine is

defined as

Sk = 	
Nk
	 (1.3)
k+(N-1)

where, for N >> k, Sk -+ k, thus the maximum speedup achievable in a k-stage

linear pipelined is a factor of k.

The efficiency of a pipeline is the percentage of the total time taken to execute

a given number of tasks for which useful results are produced

N1CT 	 N
77

k(kT+(N-1)) k+(N-1) 	
(1.4)

T

From Equation 1.4, limN ,0 i = 1, implying that a greater efficiency can be ob-

tained with a greater number of tasks. From Equation 1.3, an alternative definition

of efficiency can be derived,

	

77 = Sk/k 	 (1.5)

as the ratio of actual speedup to theoretical speedup.

The throughput of a pipeline is the rate of task completion

N
w=

kr, + (N - 1)r 	7-,
(1.6)

the maximum throughput being one result per clock cycle, attained when i = 1.

Pipeline techniques can be applied at several levels within a computer system, a

common instance being the instruction processing section of a processor. Instruc-

tion execution is easily divisible into separate operations which can be applied

sequentially:

Instruction fetch: obtain the instruction code from memory.

Instruction decode: determine operation to be performed and how to locate

operands.

Chapter 1. Introduction 	 19

Address generation: calculate the effective address of the operand(s) with

indirection and offset as necessary.

Operand fetch: obtain the operands from memory.

Instruction evaluation: execute the instruction on the specified operands.

Operand store: update memory with result of evaluation.

Program counter update: generate address of next instruction.

Pipelining is also found in the arithmetic units (AUs) of many processors. The

process of floating point addition, for example, can be divided into four steps

exponent subtraction, mantissa alignment, mantissa addition and normalization.

Early examples of machines with pipelined AUs were the Texas Instruments Ad-

vanced Scientific Computer (ASC) [Watson, 1972], which contained four pipelined

AUs, and the IBM System/360 Model 91 [Tomasulo, 1967]. Incorporation of

pipelines in microprocessors is more recent, but nonetheless gaining in impor-

tance. The Intel 1860 microprocessor [Intel Corporation, 1989] contains pipelined

FP addition and multiplication units which can run concurrently with the core

(integer and control) unit, yielding a maximum performance of 80 MFLOPS. This

level of performance is made possible by limiting the length of the FP pipeline to

three stages.

Pipelines can be classified according to three main features, the function per-

formed, the configuration of the stages, and the data being operated on. A pipeline

is said to be uni-functional if it performs a single dedicated function and, by def-

inition, has a static configuration. A multi-functional pipeline can be configured

in a variety of ways to perform different functions, as in the Texas ASC. A static

multifunctional pipeline can only be reconfigured between batches of data, while

a dynamic multifunctional pipeline permits several simultaneous configurations.

Chapter 1. Introduction 	 20

Processing streams of data in a vector pipeline is a natural application of pipelin-

ing, as is repeated processing of a sequence of scalar operands.

In the presence of a regular flow of instructions, a pipeline is an effective means

of increasing processing ability. However, most instruction streams are irregular,

requiring the following problems to be addressed:

of a

Conditional branch instructions rQctv +kt o.iko'tJ1 before the target address

can be determined. Any instructions t&4'i 	 the pipeline after
ccAkfe(, 	-,

the branchnay need to be discarded.

An instruction must be delayed in the pipeline if it requires the result pro-

duced by an earlier instruction.

An instruction must not overwrite a memory location or register whose pre-

vious contents are required by an earlier instruction.

The pipeline must not change the order of updates of a memory location by

successive instructions.

1.2.1 Instruction Stream Discontinuities

A smooth flow of instructions through a pipeline is essential if efficient operation

is to be achieved. This, however, can be disrupted by a change in the expected

sequence of instructions, due to control transfer instructions. Branch instructions

play an important part in structured languages in one of two forms, unconditional

branches, for example to subroutines, and conditional branches in loops and con-

ditional statements

The address of the

instruction to be executed after a conditional branch may not be known until the

branch instruction has almost completed its passage through the pipeline. If the

Chapter 1: Introduction 	 21

branch is to be taken, the pipeline must be refilled from the target address. Not

only is processing time wasted in partial evaluation of the instructions immedi-

ately after the branch, but these instructions may also have changed register or

memory values.

The Branch Penalty

The penalty associated with branching becomes more severe as pipeline length

is increased. For a given pipeline, let k denote the number of stages which may

be required to be flushed when a branch instruction is encountered, Pb denote

the proportion of instructions which are branches in a program, Pt denote the

probability that a branch will be taken, and CPI denote the average number of

cycles required to execute a single instruction, after the initial start-up latency.

Then

CPI = 1 + (k - 1)pbpt 	 (1.7)

and the effective performance of the pipeline [Lilja, 1988], F0 is

1

F0 = 1 + (k - 1)pbpt
(1.8)

Thus, maximum performance may only be obtained if

the pipeline has only a single stage (k = 1),

there are no branch instructions (Pb = 0), or

the branch instructions are never taken (Pt = 0).

The first two conditions cannot be met, therefore the objective of pipeline de-

sign must be to reduce the value of pt. While it is not possible to ensure that

branches are never taken, always fetching the next instruction from the correct

Chapter]. Introduction 	 22

target address has the same effect. Equation 1.8 also shows that the branch penalty

increases with pipeline length.

If no steps are taken to reduce Pt, performance drops on average by 14% for

a two stage pipeline, and by 55% if the pipeline length is increased to 6 stages,

using the values Pb = 0.242 and Pt = 0.676 measured by Lee and Smith [1984].

Hardware Solutions

A simplistic solution to the branching problem would be to replicate the initial

stages of the pipeline, and process the instructions following both the branch and

its possible target. Despite additional problems of resource contention between the

instruction streams, occurrence of multiple branch instructions in the pipelines,

and the cost of replicating the hardware, this method was implemented in the IBM

System/370 Model 168 and 3033 machines. The hardware cost can be reduced if

duplication is confined to sufficient logic to prefetch the instruction at the branch

target address. If the branch is taken, the taget instruction can be loaded without

delay. A similar approach employed in several machines is loop catching. A small

high speed memory is provided which acts as a "loop cache", allowing instructions

from repeatedly executed segments of code to be presented to the pipeline without

the additional delay of fetching them from memory. The latter two strategies can,

however, only limit the effects of taking a conditional branch, and the pipeline

must always be refilled.

Branch prediction strategies can either be static, for example, always assum-

ing branches are taken when generated by certain instructions, and pre-fetching

accordingly; or dynamic, for example, maintaining a taken/not-taken bit for each

branch instruction, updated according to some heuristic algorithm. Assuming that

a correct prediction incurs no penalty, and that the penalty is the same whether

Chapter 1. Introduction 	 23

the branch is taken or not taken, then the effective performance becomes

1
Fpred =

	

	 (1.9)
1 + (k - 1)pbp

where p is the probability of a wrong prediction. Branch prediction provides a

performance improvement as long as the probability of a wrong prediction is less

than the probability that a branch will be taken anyway 	< Pt). McFarling

and Hennessy [1986] show that prediction accuracies of between 81% and 85% are

possible, yielding a value of p between 0.150 and 0.190, which is considerably

less that the value of Pt measured by Lee and Smith. Ditzel and McLellan [1987]

report accuracies as high as 95%.

An alternative approach caches branch instructions with destination addresses

in a branch target buffer (BTB). This approach was used in the instruction buffer

unit of the MU5 [Ibbett, 1982], which contains an associative store in which are

held eight pairs of branch addresses and their targets. When a new instruction

address is generated, the associative store is searched, and if a match is found, the

target address replaces the original address, and instructions are fetched from the

target. These instructions are flagged as "out of sequence" so that if the prediction

was incorrect, they can be discarded. 	 -

Given a BTB hit ratio Ph and an additional rn cycles to fetch an instruction

in the event of a miss, the effective performance becomes

1

Fbtb = 1 + [((k—i) + m) (1 Ph)]PbPt 	
(1.10)

For use of a branch target buffer to be effective,

M

Ph> ((k—i)+m) 	
(1.11)

Branch folding [Ditzel and McLellan, 1987] is a technique which eliminates

unconditional branches from pipelines. In the CRISP processor [Ditzel et al.,

Chapter]. Introduction 	 24

19871 a three stage execution pipeline is used in an architecture comprising a

prefetch and decode unit, a decoded instruction cache and an execution unit.

Instructions are fetched, in encoded form from main memory, decoded and stored in

the instruction cache in 192-bit form. Associated with each decoded instruction

is a next-address field, having the effect of making each instruction a branch.

This eliminates the need for the execution of separate branch instructions, which,

instead are folded with the preceding instruction and deleted from the pipeline.

Conditional branches contain an additional alternative-address field, not unlike

words of microcode, which is used in conjunction with a single static prediction

bit.

The effective performance of branch folding is

1

Fbf = 1 + (k - 1)pbpt
(1.12)

where Pcb is the probability that an instruction will be a conditional branch. In

the case of CRISP, which employs branch prediction and a three stage pipeline

FCRJSP = 	
1 	

(1.13)
1 + 2PCbPIJJ

generating a performance improvement if

PcbPw <PbPt

As, by definition, Pcb is always less than Pb, even the simplest static prediction

scheme, which always assumes that a branch will be taken, provides a performance

enhancement.

Software Solutions

The previous attempts to solve or ameliorate the branching problem all assume

that if instruction i were a taken branch, then instruction i + 1 would be out of

sequence. However, it is possible to promote the branch instruction so that the

Chapter 1. Introduction 	 25

Stage 1
	

Fetch BRANCH 	Fetch ADD 	Fetch target

Stage 2 	 Execute BRANCH 	Execute ADD

to 	 t1 	 t2

Figure 1-3: Delayed branch timing in a 2-stage pipeline

i + b' instruction is affected instead. This technique is known as delayed branch-

ing. If, for a k-stage pipeline b > k, then the target address of the branch will

always be known in time to fetch the current instruction. Figure 1-3 shows the

timing for such an instruction in a fetch/execute pipeline with k = b = 2. At time

to, the branch instruction is fetched from memory. At t1 it is executed, updating

the value of the next instruction pointer. At the same time, the add instruction is

fetched from memory. At t2, the target instruction is fetched, but is not available

for execution until t3. If the add instruction is discarded, the time spent fetch-

ing it will have been wasted, and no completed instruction will appear from the

pipeline during t2, thus reducing the pipeline efficiency. Instead, the add instruc-

tion can be executed if the programmer or compiler can arrange that its execution

would have no effect on the outcome of the branch. Thus, the branch instruction

has been redefined to mean "execute the next instruction and then branch con-

ditionally". A pipeline of the type shown in Figure 1-3 is employed successfully

in reduced instruction set computers (RISCs) and microcoded architectures [Hen-

nessy et al., 19821 [Radin, 19831. Delayed branching is most easily implemented for

short pipelines where it is possible to delay execution for one instruction. Great

reliance is placed on the use of compilers, as there are certain dangers inherent

in the use of this type of instruction in human generated and maintained assem-

Chapter]. Introduction 	 26

bly code. Conditional branches are implemented in the Intel i860 both with and

without delayed branching, which allows for easier compiler optimization [Kohn

and Margulis, 19891.

If Pno-op1 is the probability that the i-th instruction following a branch will

perform no useful work, then the effective performance of delayed branching is

1

Fdb= l+(k—l)pbpfl 	
(1.14)

where
k-i

pn = 	 1)
i=1

Thus, performance is improved providing Pn < Pt Radin [1983] reports a 60%

utilization of a single delayed branch slot in the IBM 801. Filling subsequent slots

becomes pregressively more difficult, with McFarling and 1-lennessy's [1986] figure

of 70% for first slot utilization in MIPS dropping to less than 25% for second slot

utilization.

Branch preparation is employed in PIPE [Goodman et al., 19851 where a

prepare-to-branch instruction which specifies a condition and the number of in-

structions to be executed irrespective of the outcome of the condition. The longer

pipeline in PIPE, compared to that of the IBM 801, allows up to seven instruc-

tions to be executed after the branch. Analysis of several benchmark programs

confirms this as a useful property, although use of all available slots cannot always

be made by the compiler.

Certain comparisons, including equality, inequality, and comparison with zero,

can be performed outwith the processor ALU and therefore incorporated into a

compare-and-branch instruction [Katevenis, 19851. These fast comparisons can be

performed as soon as the register operands are available, thus reducing the delay

to a single cycle, thereby allowing their use in delayed branches.

Delayed branches provide an improvement of between three and eight percent,

dependent on the number of instructions executed between branches, compared

Chapter 1. Introduction 	 27

with architectures with non-delayed branches [DeRosa and Levy, 1987]. However,

in cases where the proportion of taken branches increases to 75%, for example, as

a result of more frequent subroutine calls, assumption that all branches will be

taken accompanied by appropriate pre-fetching, provides the best performance.

1.2.2 Interinstruction Dependencies

The second major source of disruption in a pipeline is the existence of dependencies

between partially executed instructions. These dependencies manifest themselves

as one of four types of access conflicts for shared resources - read-after-read,

read-after-write, write-after-read and write-after-write [Ramamoorthy and Li, 19771.

A read-after-read interaction in fact poses no problem as the correct value is

accessed by both instructions. Two consecutive update operations could leave the

memory location or register containing the wrong value if they are performed out

of the intended order. The read-after-write conflict is characterized by an attempt

to fetch data from a location which an earlier instruction is in the process of

updating, and can arise during both register and memory accesses. This situation,

and its somewhat rarer converse, the write-after-read conflict, require detection and

prevention in hardware.

In the CDC 6600, the time required to complete an arithmetic operation differs

between functional units, creating the possibility that instructions may not be

executed in the correct order. This problem, and others caused by dependencies

are resolved by the scoreboard, which buffers information about register availability

with each of the FUs and unit usage with each register, and controls data transfer

within the processor. The scoreboard handles three types of conflict. First order

conflicts, as shown in Figure 1-4(a), are requests for units that are currently in

use, or instances of write-after-write conflicts, and are resolved by delaying issue of

the second operation. Second order conflicts, Figure 1-4(b), are cases of the read-

Chapter 1. Introduction

R2+ R3
	

E=Ri+R2
	

R3=R1-R2

i:II=R4 +P5
	

R5X R4
	

R5=::.!: xR3

(a)
	

(b)
	

(c)

Figure 1-4: Instruction dependencies detected in the CDC 6600 Scoreboard

after-write problem. In these instances, the second instruction is issued and passes

through early stages of the pipeline, so that its other operands can be fetched,

but reading of the operand in contention is delayed until the earlier instruction is

completed. Third order conflicts, Figure 1-4(c), are instances of the write-after-

read conflict which arise as the result of an earlier second order conflict. Although

the final instruction may complete before the second order conflict is resolved, it is

prevented from storing its result until the previous read operation has completed.

A similar scheme is implemented in the Motorola 88000 series of RISC pro-

cessors [Melear, 19891. The processor architecture is based around two execution

units, an integer unit executing single-cycle operations, and a FP unit containing

separate addition and multiplication pipelines. These units are connected to a reg-

ister file containing thirty-two 32-bit registers. Associated with the register file is

a scoreboard register which prevents read-after-write conflicts from occurring. This

register contains one bit corresponding to each member of the register file which is

set on issue of a multiple-cycle instruction. If another instruction attempts to read

from a register whose scoreboard bit is set, it is held in the instruction pipeline

until the appropriate bit is cleared.

Chapter 1. Introduction 	 29

1.3 Micromultiprogramming

The problems which can reduce the efficiency of pipelines stem from a single

common cause - delays in making data available for processing - whether as a

result of the existence of a dependency between two instructions, or the memory

latency when fetching the target instructions of a branch. Delays of a similar

nature are to be found at other levels within a computer system, notably at the

operating system level, when pages of virtual memory not held in the working

set have to be loaded from backing store. Due to the mismatch in speed between

semiconductor memory and the magnetic disks on which the swapped-out pages

are kept, a large amount of processing time would be wasted if the processor

remained idle while the page was fetched. Instead, the processor saves the state of

the current task and begins execution of another, until the page request has been

satisfied. This process of context switching is equally applicable at lower levels,

where similar speed mismatches exist when high latency tasks are initiated.

Context switching below the instruction level is termed rnicrornultiprogram-

ming, and was first proposed by Chen [1971] as a means of improving performance

of interleaved memory. Given an i-way interleaved store, randomly generated ad-

dress requests result only in a N/iT improvement in service time, rather than the

approximate factor of i improvement shown with incremental requests. If the re-

quests were handled by memory module availability, rather than arrival sequence,

the improvement in performance for both random and incremental address re-

quests would be close to i, albeit at the expense of a loss of ordering of data

responses.

Chapter 1. Introduction 	 30

1.3.1 Sub-Instruction Level Context Switching

The use of skeleton processors as a means of exploiting the available resources of

a multiprocessor architecture was suggested by Flynn and Podvin [1972]. Each

skeleton processor appears to the programmer as a logically independent com-

puter, but exists in hardware as a small register set supported by a minimum of

control logic. The machine is organized as four rings, each consisting of eight skele-

ton processors, with a different machine resource being accessible at each point

on the ring. Each processor is supplied from its own instruction stream, and is re-

sponsible for preparing its own instructions. Decoded instructions are then passed

to the execution unit. As the rings "rotate", a given resource is accessed by a new

processor. Contentions, if they arise, are dealt with on a priority basis. A per-

formance of 500 MIPS was predicted, using the then current technology, but the

machine was never built. In this machine, context switching at the sub-instruction

level is implicit between the phases of the instruction execution process.

Kaminsky and Davidson [1979] propose the use of a multiple instruction stream

pipeline as a means of increasing utilization of integrated circuit chip area in LSI

uniprocessors. Execution is divided into fixed-length cycles, each consisting of

a number of phases equal to the number of stages in the pipeline. During each

phase, instructions from distinct streams are each at a different stage of processing,

therefore no additional hardware is required to resolve dependencies.

Context switching is performed at the microinstruction level in the Xerox Alto

[Thacker et al., 19821. The micromachine is shared by sixteen tasks, which perform

instruction decoding, device control and general system maintenance operations.

The address of the next microinstruction for each task is held in a register, allow-

ing rapid switching between tasks in response to requests from device controllers.

Instruction prefetch and execution are overlapped, and delayed branching is em-

ployed for all conditional control transfers. The task-switching system provides

Chapter 1. Introduction 	 31

a means to share the system resources between the consumers of these resources,

and provides a greater integration of I/O devices with the central processor.

1.3.2 MIMD Pipelining

The Denelcor Heterogeneous Element Processor (HEP) [Jordan, 1985] is a shared

memory pipelined multiprocessor which takes the notion of micromultiprogram-

ming a stage further. At the outermost level, the HEP appears similar to many

other MIMD machines - consisting of up to 16 process execution modules (PEMs)

and 128 data memory modules (DMMs) connected by a message passing intercon-

nection network. However, each PEM can also be considered a MIMD computer

in its own right. Each PEM contains an eight stage instruction execution pipeline

through which flow instructions and their operands. Independence of instructions

is ensured by interleaving the instruction streams so that no two instructions from

the same process exist in the pipeline concurrently. An implicit context switch

thus takes place between each pipeline stage. Figure 1-5 contrasts instruction

processing in a conventional pipelined machine (a), with MIMD pipelining in the

HEP (b). Work in the HEP is-disseminated among a maximum of sixteen tasks.

Each task is described by a task status word (TSW) that identifies its associated

protection domain in memory. Tasks are composed of up to sixty-four processes

of which there are a maximum of 128 in each PEM. A process is characterized

by a process status word (PSW), containing a program counter and other state

information. Active processes are represented by a process tag (PT). During exe-

cution, PTs migrate from the scheduler, a hardware queue containing the PTs for

each task, to the execution pipeline. Instructions which refer to external mem-

ory locations are queued before routing to the appropriate DMM via a pipelined

network.

The HEP architecture, as shown in Figure 1-6, provides solutions for four ma-

jor problems concerning multiprocessor designs. Hardware support for process

Chapter 1. Introduction 	 32

lristr Fetch 	Operand Fetch 	Execute 	Execute 	Store Result 	Update PC

Process 1 Process 1 Process 1 Process 1 Process 1 Process 1

Instruction 6 Instruction 5 Instruction 4 1 	Instruction 3 Instruction 2 Instruction 1

Process 6 Process 5 Process 4 Process 3 Process 2 Process 1

Instruction 1 Instruction I Instruction 1 Instruction 1 Instruction 1 Instruction 1

Figure 1-5: Conventional and MIMD Pipelining

Task Queues (16)

Store Result

Execution Pipeline

Infrucilon &

Operand Fetch

I I 	Data Memory
____________ 	Modules

It I -r

Storage Function I 	

J 	

Storage 	I

Routing
Unit Queues (16)

-I

	

Pipelined I 	 I

	

Network I 	
I

	

I 	
I

Figure 1-6: Architecture of a HEP PEM

Chapter]. Introduction 	 33

creation is provided alongside management of process context queues, thus reliev-

ing the operating system of one of its major burdens. Efficient process synchro-

nization is important if processes are to be partitioned with finer granularity, to

extract the maximum parallelism, but still be executed effectively. The HEP pro-

vides a synchronization tag bit on each memory word that can be read by setting

the appropriate control bits in instructions. This scheme allows implementation

of algorithms requiring intensive synchronization and communication. The HEP's

solution to the problem of memory latency, the isolation of non-immediately sat-

isfiable memory requests in a separate queue, together with the interleaving of

several instruction streams, allows the processor to execute instructions at the

maximum possible rate, limited only by the parallelism of the problem. This last

feature makes the architecture easily scalable, with a commensurate increase in

processing capability.

1.3.3 Context Processing

The concept of interleaving instruction streams in a single processor is developed

in the Circulating Context Multiprocessor (CCMP) [Butner and Staley, 1986].

The generic CCMP machine, illustrated in Figure 1-7, is a circular pipeline in

which each stage implements part of the instruction processing cycle. Processes,

represented by their state information contained in packets or contexts, are passed

around the ring with the operations performed at each stage modifying the con-

text as required. Queues can be inserted between stages to smooth packet flow

and allow more concurrent active processes. To further increase the available

parallelism, the queues can feed multiple instances of each functional unit.

The CCMP model has several attractive features. The mobility of process

information, and the implication that processes are not tied to any one processor,

permits easy implementation of process migration for load-balancing or reliability

purposes. The replication of functional units within the processor allows packets

Chapter 1. Introduction 	 34

lnstr Fetch 	 Operand Fetch 	 Execute

Instruction 	 Data
Memory I 	 I Memory

Update PC 	 Result Store

Figure 1-7: The Circulating Context Multiprocessor

to be absorbed from the queues at greater rate, and therefore directly improve

processing ability.

lanucci [1988] uses hardware contexts which can be switched in a single cy-

cle. These continuations are therefore very small, and contain only the program

counter and a pointer to data space. Nikhil and Arvind [1989] combine the use

of continuations with a RISC-style execution pipeline. The continuations flow

through the pipeline identifying instructions and frames - segments of memory

usable as a register set by a given process - to be fetched from local memory.

Access requests to main memory are diverted from the main pipeline to a heap

controller, preventing the pipeline from stalling while they are being serviced. To

allow more than one read request to be outstanding for a given process, a limitation

which also exists in the HEP, fork and join primitive instructions are provided. As

long as sufficient parallelism exists within a given application to generate enough

continuations to fill the pipeline, processing is able to take place at the maximum

possible rate.

Chapter]. Introduction
	

35

Weber and Gupta [1989] propose a system of hardware contexts, each with a

dedicated register set, purely as a means of circumventing memory latency. Con-

text switches are initiated on cache misses or writes to shared locations. Using

four contexts, improvements of up to 80% have been measured when the architec-

ture exhibited large memory latency, the context switch overhead was low, and

the cache interference was minimal.

None of the architectures described above have taken micromultiprogramming

to its logical conclusion - the direct manipulation of process context, rather than

data, by pipeline stages. The benefits of interleaving multiple instruction streams

are clear. If two instructions from the same process can be guaranteed not to

exist in a state of partial execution concurrently, then there can be no dependency

or branching problems. Dependencies between instructions still exist within pro-

cesses, but do not affect pipeline operation as there is only a single instruction

active at any given time. Conditional branching still occurs, but presents no

problem as the condition is evaluated, and the target address known, before the

next instruction is fetched. Removal of these two obstacles allows a pipeline to

produce results at the maximum possible frequency. It must, however, be noted

that although one instruction is completed every cycle in an MIMD pipeline, each

process requires as much time to execute as if there were no pipelining.

The requirement to switch contexts between pipeline stages necessitates a min-

imal context associated with each process. This requirement is not met by the

CCMP model, in which the reliance on a von Neumann processing paradigm

yields large process contexts that have proven unimplementable [Staley and But-

ner, 19861. Instead, the bulk of the process status information has a fixed location,

and only the program counter, the current data object, and a process identification

tag are circulated. While this may seem only a slight deviation from the idealized

model, the process' relocatability is entirely lost, nullifying a significant feature

of the original model. Implementations of machines which employ sub-instruction

Chapter 1. Introduction 	 36

level context switching have confirmed the validity of this approach as a means

of achieving high performance from a pipelined architecture, although each ap-

pears to have used the technique to circumvent a different problem. Kaminsky

and Davidson [1979] proposed the multiplexing of processor resources between a

fixed number of instruction streams as a means to improve the utilization of chip

area and minimize the number of off-chip connections. CCMP was developed as a

means to provide a fault tolerant machine based around "trusted" first-in-first-out

(FIFO) queues [Butner, 1984].

Summary

Parallelism exists in two exploitable forms within any computation which may

be realized providing sufficient machine resources exist. The spatial parallelism

which exists in program data may be extracted by replication of execution units,

either within a processor as multiple functional units or in the form of a multiple

processor ensemble. The temporal parallelism which exists during the execution

of an instruction may be exploited by pipelining the stages which comprise the

execution sequence.

Replication and pipelining both have their own associated problems. The

problems with replication tend to be of a more algorithmic nature, for example,

loss of generality of application, synchronization and inter-process communication,

and placement of code and data. Although pipelining maintains generality of

purpose, it is at the expense of an increase in hardware complexity required to

handle dependencies which arise between pipeline stages.

While many solutions which attempt to ameliorate the problems caused by in-

struction and data dependencies have been proposed and adopted, none fully ad-

dresses the source of the problem by removing dependencies from the pipeline. Al-

Chapter 1. Introduction 	 37

though dependencies will always exist in program data, their effects could be elim-

inated if processing were performed on mutually independent instruction streams.

The incoherent approach to previous uses of sub-instruction level context

switching suggests the need for an architectural theory which handles all sources of

discontinuities in a unified manner. This need is addressed by a design technique

called context flow.

"la dernière chose qu 'on trouve en faisant un ouvrage,

est de savior celle qu 'II faut mettre la premiere."

- BLAISE PASCAL (1623-1662), Penseés I. 19

Chapter 2

A Theory of Context Flow

Several problems with instruction pipelines which degrade their per-

formance below the anticipated maximum have been identified. The

problems arise as a result of interinstruction dependencies and are ex-

acerbated by memory latency. A set of key features has been outlined

which smooth the disruptions found in conventional pipelines, resulting

in improved performance in pipelined multiprocessor systems, namely

interleaving of multiple instruction streams with only one active in-

struction per stream, removing interinstruction dependencies; efficient

process creation and management, including provision in hardware for

process queuing; pipelining of memory access requests, resulting in the

hiding of memory latency; and relocatability of processes between sites

of execution, providing inherent support for load balancing and fault

tolerance. Context Flow (CF) [Topham et al., 1988] is an architec-

tural paradigm in which process contexts rather than process data are

manipulated. This chapter presents the central concepts of context

flow.

Chapter 2. A Theory of Context Flow 	 39

2.1 	The Principles of Context Flow

The behaviour of a context flow system is encapsulated in a structure called a

context flow graph (CFG). A CFG is a directed graph which describes the operation

of the CF system in terms of the transformations applied to contexts which pass

through the graph. A CFG is not a program, rather an abstraction of the hardware

on which programs may be executed.

2.1.1 Contexts

The notion of a context is well established in the field of operating systems. The

volatile context of a process is the subset of shared system resources which are

accessible to the process. A description of the volatile context is contained in

a structure called a process context block (PCB). A typical PCB may contain

a unique process identification number, the contents of the processor register set

etc. It is natural, to use the term context to describe the process state information

in a system which is an implementation of multiprogramming at the instruction

level. The requirement for relocatability imposes two main constraints on the

nature of a context. A context should be entirely self-contained, encapsulating

all information pertinent to its related process and should be small enough to

be physically transmittable between the sites of different processing phases. A

context is defined as follows:

Definition 2.1 A context c at time t, t e N, is a tuple (f, D, Y)t where D, D' are
, 	

i 	i sets and D f -p D. The function f can be an identity dD, where \fd E D : d ' f -f d,

and can be abbreviated to the context (D). The set of all contexts is written C.

Remark 2.2 Time is represented as integer multiples of a machine cycle. There-

fore for a given instant t, t E N.

Chapter 2. A Theory of Context Flow 	 40

Sometimes D may be very large, in which case it is useful to differentiate between

the frequently used and less frequently used data. The frequently used data con-

stitutes the data set of a dynamic context. The infrequently used data is stored

at a fixed location as the data set of a static context.

Definition 2.3 Let c = (f, D, D') be a context. Its static context a(c) is a pair

(i, D3) where i is an integer label denoting the location where D3 is stored. Its

dynamic context 8(c) is the pair (f, DO whe're DdUD3 = D, such that Dd flD3 = 0.

In many cases, D3 = 0 and all process data is held in Dd. The term "context"

is used to refer to the dynamic context of a process, unless otherwise stated. The

empty or null context, which contains no function or data, is defined as follows:

Definition 2.4 A null context v is a tuple (f, D, D') where f = D = D' = 0.

The above definitions place no restrictions on the format of a context, nor do

they require that a context be of constant size throughout an application. This

differs significantly from the CCMP model in which the same packet of process

information circulates round the processing ring. The dynamic nature of the CF

contexts significantly eases implementation.

2.1.2 Nodes

The sites at which function application occurs, and where static contexts can be

stored, are called nodes. CFGs are constructed from such nodes.

A transformation (T) node is used to perform a manipulation of a single con-

text. AT-node has a single incoming arc on which contexts are accepted, and a

single outgoing arc along which processed contexts are delivered. All manipula-

tions performed at a given r-node take place within one unit of time, also called a

graph cycle period. The operation performed within a T-node may be dedicated, or

Chapter 2. A Theory of Context Flow 	 41

0 _____ 	 _____ 0
I- T 	 '-'-+ 	 I-T

Figure 2-1: Transformation Node Operation

selectable from a group of functions b a field within the context. For example, a

,r-node could implement a simple ALU, with the context containing the operands

and the function selector. Connected in sequence, a series of -r-nodes implement

a simple pipeline. A r-node may incorporate locally addressable storage, in the

form of a queue, stack, random access memory, or a register. Storage of this type

is private to the node to which it is attached. Control signals and data for memory

are provided from and returned in contexts.

Definition 2.5 A transformation node can perform the following actions

r: v -'--p jj

T : (ø,D,D')+ (D') +1 , D -- D'

T : (f, D, D') --+

r: (f,DdUDS,D')t -'-* (D') +1

where -'-- denotes the transformation during one graph cycle, and f represents

a dedicated function performed by the node.

Figure 2-1 shows the operation of a transformation node in diagrammatic form.

In these diagrams, a null context is denoted by o and a non-null context by ..

Diagrams of this form only indicate the flow of contexts through the graph, pro-

viding no information about the values contained in the contexts. A branch (i3)

node provides a means of introducing spatial parallelism in the form of multiple

Chapter 2. A Theory of Context Flow 	 42

context streams. A /3-node has a single input arc and two output arcs. A /3-node

examines one or more fields in the incoming context and routes the context to one

of the two output arcs, dependent on the outcome of its internal decision process.

A null context is output simultaneously on the other arc. A /3-node contains no

local memory, therefore routing can only be performed based on the contents of

the current context, and not on any previous state information.

Definition 2.6 A branch node performs the following actions

/3: t' --+ (v, ii)

/3:(idD,D,D) -'.-((D)+l,z/) if f,3 D

/3: (idD,D,D)-'-+ (zi,(D) +1) if -'fD

where fo is the decision function implemented within the node.

The operation of a branch node is shown in Figure 2-2

The introduction of parallelism by means of the branch node, requires the

definition of a complementary node to combine context streams. This function is

provided by the merge () node, as shown in Figure 2-3, which has two input arcs

and a single output arc. The merge node accepts a pair of contexts on its inputs

and delivers one context on its output each graph cycle period.

Definition 2.7 A merge node performs the action

: ((f1,D1,D),(f2,D2,D))~ (f3,D3,D) 1

As in the branch node, no transformation is applied to a context within a merge

node.

Chapter 2. A Theory of Context Flow

/ 	 'S

Figure 2-2: Branch Node Operation

43

Figure 2-3: Merge Node Representation

Chapter 2. A Theory of Context Flow
	

44

2.1.3 Graphs

A context flow graph is a representation of the evaluation algorithm of the ab-

stract machine being implemented. The vertices of the graph are the nodes which

perform the transformations, and the edges encode their temporal ordering.

Four classes of graph can be defined:

Class I 	The class of acyclic graphs which contain no branch or merge

nodes, equivalent to static, uni-functional arithmetic pipelines.

Class II The class of acyclic graphs which contain equal numbers of branch

and merge nodes, connected in such a way that the paths between a branch

and its corresponding merge node contain only matched pairs of branch and

merge nodes. Graphs in this class corresponds to dynamic multi-functional

pipelines.

Class III The class of acyclic graphs which contain any numbers of branch

and merge nodes in any combination. An example of a Class III graph is an

instruction pipeline with a connection to memory.

Class IV The class of cyclic graphs, equivalent to complete pipelined sys-

tems with pipelined access to memory.

A context flow graph is empty if every node contains a null context. A context flow

graph is open if it contains an edge for which the source or destination is undefined,

otherwise it is closed. Acyclic graphs are open, but cyclic graphs need not be

closed. The parallelism identified in a CFG is similar to the intra-algorithmic

parallelism revealed when data dependencies are drawn as a data flow graph [Davis

and Keller, 1982].

Chapter 2. A Theory of Context Flow
	

45

Notation 	 Meaning

(Q) 	the empty stream

((c)) 	a stream with a single context

((c1,c2,... ,cJ a stream with n contexts

(102) a pair of parallel streams

c c 81 context c is contained in stream .s1

81 	2 stream s 	is equivalent to stream 82

s7 stream s repeated n times•

s A s2 concatenation of streams s 	and s2

#8 the number of contexts in stream s

head of stream s

tail of stream s

Table 2-1: Streams and stream operations

2.2 Context Streams

The state of a computation in a context flow graph is represented by the stream of

contexts which pass a given point. Borrowing notation from CSP [Hoare, 1985],

Table 2-1 defines the set S of streams, and several basic stream operations. Before

any of these operations can be defined, a notion of stream equivalence must be es-

tablished. As the contexts in a stream represent independent processes, their order

is unimportant. Their relative position in the stream determines only the relative

speed with which they are operated on, not the outcome of the computation.

Definition 2.8 Two streams s and S2 are equivalent if and only if each context

in .s1 is contained in 52, and each context in S2 is contained in s j .

s1 s2 if VcCs1,cCs2AVcCs2,cCs1

Chapter 2. A Theory of Context Flow 	 46

Lemma 2.9 	is an equivalence relation.

Proof

• 	is reflexive. Clearly, Vc C sl, C ç s1, therefore s1 	81.

is symmetric. Suppose s1 S2 then by definition Vc C s, c C s2AVc C S21 c ç s

therefore 'c/cC .s2,cC s, AVcç s1,cç S2 therefore S2

is transitive. Suppose .s C sl , then 31 	2 = 	2 and 82 	S3

S c .93. Conversely, suppose s c 33, then S2 	 S2 and s, 82 =

Thus

This completes the proof. 	 Ii

The empty stream (()) is the identity element for all stream operations, and is

simply a stream which contains no contexts. The singleton stream contains only

one non-null context, and is therefore equivalent to the context itself. The stream

((c)) may be written as c. A pair of streams (1,2) denotes a grouping of two

independent streams of contexts.

2.2.1 Stream Operators

The concatenation operator A is used to join two or more streams to form a single

stream, and defines a function:

SxS —' - -*S

The following axioms show that concatenation is associative and commutative,

and distributive when applied to pairs of streams.

Axiom 2.10 	s1 A (52 A 33) (Si A 32) A .93

pue s.#=#

(+# ' +#) w = (I ')+#

uoiiujpç

poupp aLv smais jo squ _# ininuui

pu +# mrnurxim aq4 'su1l?aqs jo SJ!l?d Jo 	se UUM aq osie 'm

+ '# = (V ')# 61 i1IOtX'T

T = (())# 8I uoixy

o=(0)# Lt U10!XV

:sin., Vulmolloi aqj ol Vuipjoaae 'SUIl?UO UIl?aIS l? IITM SXUO

o 	qmnu atp st, pupp st # uotpun; quj 	 UUM. si TVs-...v
jpst qi& miats i jo uoil?ual?uoD po-u Ut, suuo;id iodo uoti1dai aqj

	

(11 v "i v ') (
ZI
"i) v ("s) 	91 tUOiX

(s v Zg 4 cg v ') 	v (Zg 4 ts.) 	uioixy

(0) 	'9 (0 	's 	g uioixy

C9 	C5. V 19 	5. v 19 RT
	uojx'f

JJgUlOiXy

Lv 	 htOfj 1XUO3 Jo JcJO11LL

Chapter 2. A Theory of Context Flow 	 48

Definition 2.21

#(si t) = min(#s,#t)

where

#s=#s and #isAt)=#s+#t

The stream difference is defined as the difference in lengths of the streams in a

pair.

Definition 2.22 	#d(s,t) = #+(s, t) - #(s,t), where #dS = 0.

The notion of membership can be extended to streams as follows:

Definition 2.23 	S1 9S2 if 3t,u:tAs1 Aus2

Remark 2.24 c C s if (c) C s

The head operator is used to isolate the first context in a stream from the

remainder or tail. The head operator, and tail operator' define functions

S -4S

Definition 2.25 	((c1)... 	 CO) 	((c2,.. . , c,))

The head of the empty stream is defined to be a null context, and the tail of the

empty stream to be the empty stream itself.

Definition 2.26 	
()Ø 	

ii
	

(0), 	(K))

Remark 2.27 Due to the possible variable order of contexts in equivalent streams,

does not extend to a function on the equivalence class of streams.

Chapter 2. A Theory of Context Flow 	 49

2.2.2 Graphs as Functions on Streams

Having defined a stream as the representation of the state of a computation, it

is only natural to view a context flow graph as a function which operates on an

input stream and returns an output stream1.

Definition 2.28 A graph g defines a function on S

As a graph simply represents the ordering of transformations applied to a context

stream, it can be written as the composition of the functions defined by the nodes

in the graph. For example, the graph

-r1

T2

can be written as

	

g = 	o (T1 , T2) o /2

Application of a graph to a stream is governed by the following rules, where

E 13, r, i}, .s represents a stream and c, a context.

Axiom 2.29 	{s}q 	((s0 çb)) A .s'

Axiom 2.30

(0) 	 if

if s = v, s' (Q)

((sr)) 	if s 	v, ,s' 	(Q)

((SO T, {s'}7)) 	if s, 	SI 	(Q)

1{a}f is used to denote the application of function f to argument a, and af to denote

the result of applying f to a

Chapter 2. A Theory of Context Flow
	 50

Axiom 2.31

if S 	(())

A {s'}/3 	if s, = v, s' 	(0)

(se, ii) A {s'}@ 	if s0 f, 8' 	(0)

(v) s) A {s'}/3 	if -ISO f131 s' 	(0)

Axiom 2.32 	{(s1) s 2)}p-...+s3

Axiom 2.33 	{((c1,...,c))}(1 002)-'- 1

2.2.3 Combining Context Streams

A merge node, as introduced in Definition 2.7 above, accepts two contexts on its

input and produces one one its output during each graph cycle period. While the

branch node always generates one null context per cycle, the merge node does not

necessarily perform the converse operation.

Proposition 2.34 A merge node must be able to accept two valid contexts during

a single graph cycle period.

Proof Given a graph

g = P o ((7-2 0 7-3), 7-1) 0

and stream

= (((D1), (D2))) : D1 f, —D2 f,3

{s}g ={(D2)} ({(D1)}j9 0 ((T2 0 7-3), T) 0 IL)

0 (({(D1)}r2 0 7-3), Ti) 0 IL

0 {(D17-2)17-3), {(D2)}T) 0 IL

-'-f {((D1r2r3), (D2r1))} IL

This completes the proof. 	 0

Chapter 2. A Theory of Context Flow
	

51

Corollary 2.35 A merge node must be able to store incoming contexts if they

cannot be output during the current graph cycle period.

Proof From Proposition 2.34 and Axiom 2.32, the expected outcome is

(((D1r2r3), (D27-1)))

If ,a has no ability to store incoming contexts, then the result can only be (D17-2 T3

or(D2r1). 	 0

2.2.4 Characteristics of a Merge Node Buffer

Having proved that a merge node must buffer incoming contexts, the precise nature

of the local storage mechanism must be determined.

Definition 2.36 ,if is used to denote a merge node containing n buffered con-

texts, and
cn) a merge node containing the buffered contexts c1,.. . ,c.

Proposition 2.37 A merge node may have to store more than one context.

Proof By induction on the difference in path length p between branch node

and merge node i. Consider the class of graphs which contain one matching pair

of branch and merge nodes:

and stream

3p - 	. 	 . . ,c2 _ 1)

where
10ip-1 	c2 f13

c
pi2p-1 -'cf

Chapter 2. A Theory of Context Flow 	 52

Here, and in all subsequent proofs, the graph is initially empty.

• 	Let p=O.

{c1}g0 ={c0 }/3 o (r0 , r') o /2

{

({c017-0, {u}T ') o P if Cob

({zi}r0, IC-0 17-') o P if -ICO ffl

I (c07-0 , v)/1

(u,cr)

as one of the inputs is always 11, no context needs to be stored in /1.

Let p=1.

From Corollary 2.35, t must store one context during the next graph cycle.

Assume that the proposition is true for p = n, that is given graph gn and

stream s where

g=fio((r0o ... or),(T'))o/2

Sn = ((c0 ,... 	 ,c2_1))

Chapter 2. A Theory of Context Flow

then

__ 2n
{ s}g 	- {({c_iro .. r_}r, {c2_1}r')} tn-i

Letp=n-I-1.

g+1 = /3 o ((re 0 ... 0 r+1), (T')) 0 It

= ((co.... 	 'C2n+i))

'-/3 • - T0

T

•

n-i

0 JO 0

,-) 	0 	 •

0 	
1 	
00 T

0 	I

	

'p 	ITO...

7-

------ 0 	I
•Tn+i

T 	• it 	I-

0 	0
I-To. •0 . .Tn+l

n-i

n
1

53

Chapter 2. A Theory of Context Flow 	 54

Therefore, in cases where a difference in path length exists, the merge node is

required to store more than one context. 	 0

Proposition 2.37 implies that it is not possible to use a register as the internal

storage mechanism of a merge node, as a register would only he able to hold

one input context. A register set, or some type of random access memory might

be a possible mechanism, except that the location at which the context is to

be stored would require specification in the context. This is undesirable, as the

process of buffering contexts should be automatic and not under the control of the

application being evaluated by the graph. This restricts the choice to a sequential

access memory - either a stack or a FIFO queue. Although a stack would satisfy

the ordering property of Definition 2.8, the first context to be buffered in the node

would be the last to be forwarded, which although not incorrect, would impose an

unnecessary and execution-specific delay on the particular process. Use of a FIFO

queue maintains ordering and imposes the minimum delay on contexts. With the

above restriction in mind, the operation of a merge node is defined as follows:

Axiom 2.38

{ ((ii, {(s', t')}1t°))

(s,t)}1i
__ 	((Se, {(s', t')}ji°))

{
((t0, {(s', t')} °))

((s0, {(s', tI)}1i(t0)))

{ ((co' 	
/ {(S ,tF)}1i (ci ,c n)))

((c0, {(s',
(CO, Cn) {(s,t)}

I 	/ 	(ci,...,cn,to)

((c0, { (s',

if s0 =t0 =v

if s0 Lu,t0 =v

if s0 =u,t0 v

if s0 =t0 L zi'

Figure 2-4 illustrates the operation of a merge node.

Chapter 2. A Theory of Context Flow

\0 _

0

0

0

I_in
n—i 	I

I

n
I- IL

7
 n+1 	I I L

/

55

Figure 2-4: Merge Node Operation

Chapter 2. A Theory of Context Flow 	 56

2.3 Boundedness of Queues in Acyclic Graphs

A FIFO queue is potentially capable of storing an infinite number of elements

should a mismatch in input and output flow rates be sustained for a considerable

period of time. In any implementation of a merge node, however, the queue must

be implemented within a strictly finite memory. Before any CF machine can be

built, the maximum length of all queues must be determined. In order to do this,

a means to induce a maximal length queue in a merge node must be established.

Consider the following graph

which is initially empty. Suppose a stream of contexts passes through 0 and are

all routed via a so that each node r0,... , r contains a non-null context. During

this time, null contexts pass along b to i. If the next context is routed via a then

it will merge a null context from b and non-null context from -rp and no contexts

are queued. If, however, the next context is routed via b, p will merge two non-

null contexts, queueing one. If non-null contexts continue to to be routed along b,

the queue at i will continue to grow until all the contexts in r0,. . . , r have been

merged. At this point, the queue cannot grow as at most one non-null context

can arrive at t. This is stated formally in the following Lemma.

Lemma 2.39 The input stream s = ((c0)... 	Cpl .. ,c2 -1)) operated on by

graph g of Proposition 2.37 induces a maximal length queue in ji.

Proof If for c3 c .
(0jp-1 -'c3f

aj:
pj2p-1 c3fp

Chapter 2. A Theory of Context Flow 	 57

then

I(((c0, ... ,u,.. . ,c_1,v, ... ,v)),((uo, c,.. .,v, c,.. .

((((co,. ..) c_1,v,. . . ,c,...,u)),((z o,... ,v,c,... ,u,.. .

After p + 1, p + j + 1, and p +j + 2 cycles, the following inputs to i would occur.

P+1 	F 	 ' 	0 {(((c,. ..)),c)}u

+J

{
i

{(((zi,. ..)),c,)}ji'

{(((c....

{(((c + ,.. .)),c, 31)}p!

{(((cj_ 1 ,.

In both cases, the result is a maximum queue length in t of one less than in

Proposition 2.37. The input stream in Proposition 2.37 generates the maximum

queue length in it since between the p + 11hi to 2 p1 graph cycles there is always a

non-null context at the head of the input streams to u. Any other input stream

introduces a null context during this time, allowing one context to be forwarded

from the merge node while only a single context is added, thus maintaining queue

length. 	 0

Having determined the nature of the input streams to a merge node which cause

a maximal length queue to form, the relationship between the lengths of those

streams and the queue size is established in the following Theorem and Corollaries.

Theorem 2.40 In Class II graphs, the maximum number of contexts which a

merge node may be required to store is p, the difference in path length between a

merge node and its matching branch node.

Chapter 2. A Theory of Context Flow

Proof Let t = K(co,. 	 Ac2 . Applying t to the initially

empty graph gp of Proposition 2.37 yields

{t}g

___2p-1 (
t{} ({c2p_1 }(({cp_1ro .. .r_21r_1 o {c_ 2T0 .

{({c2 }j3((o{c_17-0. r_ }r,), {c2P_ 117 .F))},.LP_1

IN), (()))} p' 	 if c2 = U

ifc2v,c2f

{((()), {c2P}T')} Yp 	 if C2p 	ii, 	f13

As all possible input streams result in one or both inputs to it being the empty

stream, the queue size cannot increase during the next graph cycle.

((c, {((()),)))} itP_l))

((c, {((1c2 7-017-1 ° . rn), {v}r')} it_1))

((c, {((()), (()))} it))

where c is the head of the merge queue in it As t contains the stream which

induces the largest possible queue in it from Lemma 2.39, the result follows. 	0

This gives rise to the following corollaries.

Corollary 2.41 In Class II graphs, the length of a queue in a merge node is

bounded.

Proof Follows from Theorem 2.40. 	 .
Corollary 2.42 In Class II graphs, the maximum number of contexts which a

merge node may be required to store is #d, the difference in length of the two

parallel streams applied to its inputs.

Chapter 2. A Theory of Context Flow
	

59

Proof From Proposition 2.37, and Theorem 2.40, after p +I cycles, the state of

the computation at the input to the merge node s is:

SA = {((c+2,. . . ,c2 _))} ({cp+i}fi o (({u}r0 o ...o 1c07-0 • r_1 }r), {c}r'))

This can be written as

(c +2 A 	A c2 _ 1) A c 1 A (v A (c_1r0) A ... A (c0r0 .. rn), (CPT'))

By Axiom 2.15

s =((c+2 A ... A c2 _ 1) A c 1 A (ii A (C_170) A ... A (coTo. Tn)),

(c +2 	A c2 _ 1) A c+i A (CPT'))

#ds =1#(c+2 A ... A c2_1) A c 1 A (ii A (c-1r0) A ... A (coro . . Tp)) -

(c 2 A ... A c2 _1) A c 1 A (CPT')

By Definition 2.22, this can be extended to all paths 7-0 	T1, which include pairs

of branch and merge nodes. 	 0

2.3.1 The Effects of Queues on Pipeline Operation

The use of queues in a pipeline - implicit in any CF system as a result of their

inclusion in every merge node - has a profound effect on the performance of the

processor. Decoupled architectures [Smith, 19841 are a class of pipelined system in

which hardware queues play an integral role. A decoupled architecture separates

memory access and instruction execution into two distinct modules, connected

by queues, each module executing instructions from its own instruction stream.

Although a dual instruction stream increases the effective instruction issue rate,

a more complex compiler is needed, and synchronization between streams is re-

quired during the evaluation of conditional branches. The use of queues to isolate

Chapter 2. A Theory of Context Flow 	 60

main memory allows access delays and mismatches in instruction processing rate

to be absorbed, allowing improved instruction issue and smoothing of long or un-

predictable memory references. Queues are also used to counteract the effects of

memory latency in the Fortran Optimized Machine [Brantley and Weiss, 1983].

When used in conjunction with a suitable compiler, memory requests can be issued

in advance of their being required by a particular instruction.

Since the minimum queue size for any merge node is determined exactly by the

position of the node in the CFG, as shown in Corollary 2.42, the need for inclusion

of interlocks between nodes to prevent queue overflow is removed. This maximises

the performance of any CF system, as hardware interlocks would impose a delay

on all contexts, irrespective of their effect on queue length. Implementation of

the CFG is also eased in that interlock hardware, which tends to be complex and

non-regular [Hennessy et al., 1982], is not required - particularly relevant in any

VLSI implementation.

The finite size of the CFG imposes a limit on the granularity of tasks into

which any problem that is to be solved using CF may be split.

2.3.2 The Effects of Memory Isolation on Pipeline Operation

The isolation of memory elements in a context flow graph within distinct nodes

makes pipelining the natural mechanism for memory access in context flow. The

incorporation of data memory into the execution pipeline causes memory refer-

ences to delay execution no more than any other type of instruction [Smith, 19851.

Neither parallel nor interleaved memory can offer this performance guarantee, be-

ing limited by the size of block accessed, and the degree of interleaving respectively.

Pipelined memory is the key to sustaining high instruction completion rates in the

HEP, and is an integral part of the University of Tokyo Cyclic Pipelined Computer

[Shimizu et al., 19861.

Chapter 2. A Theory of Context Flow

Although memories are associated with a single node, shared memory struc-

tures can be implemented by merging streams of contexts containing access re-

quests and using the resulting stream as input to determine the addresses to be

accessed. This ensures that strict ordering of memory accesses can be enforced,

and freedom from side-effects due to multiple accesses can be endured.

Many memory structures perform very localized functions, for example, queues

in merge nodes. Clearly, such devices should not be accessible from any node in

a graph. By restricting access to a memory to the node in which it is located,

all memory structures, irrespective of their function or operational characteristics,

can be treated in a uniform manner.

Summary

Context flow provides a simple yet powerful mechanism for constructing parallel

pipelined systems from a small set of basic building blocks. The context flow model

consists of a set of core nodes which can be used to construct representations of

systems in the form of context flow graphs. These nodes provide simple function-

ality and make possible the creation of multiple independent paths through the

graph. Accompanying the set of core nodes is a set of basic evaluation rules which

govern the movement of contexts in the graph.

Each context may represent only one process, but tasks may he divided into

sub-processes to allow parallel evaluation using multiple contexts.

Flow of contexts through the CFG is synchronous, with each node perform-

ing its operation in a single graph cycle period.

Exactly one context may be transmitted along an arc during a graph cycle.

In the case where no information is to be passed, a null context is generated.

Chapter 2. A Theory of Context Flow
	

62

Only contexts of one type may be passed along a given arc during the entire

period of graph activity. There is no other restriction on the types of arc

attached to the ports of a node.

Branch nodes route contexts solely on the basis of their current contents,

not on any external state information.

Cycles are permitted in a graph. However, self-loops of the form,

00 	-

cannot occur, as branch nodes cannot alter contexts.

Each transformation node is distinct, and can only interact with other nodes

through the arcs in the graph.

lrcwTa XWI)C1, 6I'6C11 fL€L1Et

"Everything flows and nothing stays"

- HERACLITUS (c.535—c.475 B.C.), Cratylus, 402a

Chapter 3

Higher-Order Graphs

A formal basis for context flow has been established, and some prop-

erties concerning queue lengths in certain types of acyclic context flow

graph proved. In this chapter, the notions of stream tupies and named

edges are introduced. Using these concepts, it is shown that for both

acyclic graphs with arbitrary numbers of branch and merge nodes and

cyclic graphs, the length of queue in all merge nodes is bounded. The

boundedness of queues is essential for the implementation of CF sys-

tems. As most systems are closed, and therefore contain cycles, it is

necessary to show that boundedness extends to these types of graph.

In order to do this, additional notation is required, in particular to

describe loops. Methods for calculating a numerical value for the max-

imum queue length and for graph initialization are presented.

63

Chapter 3. Higher-Order Graphs
	

64

3.1 Stream Tuples

The transformation, branch and merge nodes, and the context stream operators

provide a simple yet powerful means to describe certain classes of pipelilled system.

Their definitions avoid the inclusion of implementation specific features, and are

therefore suitable for use in a wide variety of applications. These nodes form the

basic or core nodes of a CF system. At the lowest level, a first-order CFG contains

only core nodes. To permit a more structured approach to CF system design,

higher-order graphs can be defined. In these graphs, restrictions as to the degree

of the nodes are relaxed, allowing structured nodes to be created with multiple

input and output arcs. Structured nodes are formed from interconnections of

lower-order nodes or core nodes. As higher-order graphs are built from core nodes

at the lowest level, they retain the property of passing only one context on each

arc during a graph cycle.

As more than two context streams may exist in parallel in higher-order graphs,

the concept of a pair of context streams is extended to groupings of an arbitrary

number of independent streams, called stream tuples. Table 3-1 defines the set S

of stream tuples, and the basic tuple operators.

Definition 3.1 	A stream tuple S = (si,. . . , s,) is a collection of n independent

context streams.

Definition 3.2 The cardinality of a stream tuple S is the number of context

streams in 5:

I (s1, .. . ,$)I = n

A context stream is defined as a member of a stream tuple if it is contained within

the tuple.

Chapter 3. Higher-Order Graphs
	

65

Notation 	 Meaning

((())) 	the tuple containing empty streams

(s) 	a tuple containing a single stream

(.s1,... , s,) a tuple containing n streams

SI cardinality of tuple S

s ç S stream .s is contained in tuple S

S 	S2 tuple S is equivalent to S2

Sfl j projection of the ith stream from tuple S

Si N S2 join of tuples S and S2

Si A S2 concatenation of tuples S and S2

#S length of tuple S

S heads of streams in tuple S

5' tails of streams in tuple S

Table 3-1: Tuple operations

Definition 3.3 	.s C (Si,... ,s,j if 11 : 1 < i < n,s

The notion of equivalence for stream tuples is slightly different to that for context

streams, in that the ordering of streams within a tuple is significant. The position

of a stream within a tuple determines the port of the node with which it is to be

associated. Equivalence is defined only for tuples of the same cardinality.

Definition 3.4 Given two stream tuples S,T, where ISI = TI, S and T are

equivalent if each context stream in S is equivalent to the corresponding context

stream in T.

Lemma 3.5 	is an equivalence relation over stream tuples.

Proof Let S = (s1,. . .,$),Y = (t1,.. .,t),U = (u1 ,. . . ,u,), such that 151 =
ITI=IUI=n.

Chapter 3. Higher-Order Graphs 	 66

z is reflexive. Clearly 'v/i : 1 < i < n, si s1, therefore S S.

is symmetric. Suppose S T, then by definition Vi : 1 < i < fl, Si

therefore, as is symmetric, 'v/i : 1 < i < n, ti s, therefore T S.

is transitive, Suppose s ç S, then S 7 s C 7 and 7 U = s c U.

Conversely, suppose sçU, then TU = sC_T and ST =' sCS.

Thus SU.

This completes the proof.

3.1.1 Tuple Operations

The identity element for all operations on stream tuples is a tuple containing

empty streams, and is denoted by (). The tuple containing only a single stream

is written as (s).

It is useful to define a projection operator H to extract one or more streams

from a stream tuple.

Definition 3.6

(s)Hs

(s1,. . 	s : 1 (i < n,n EN

(s,...,s j) : 1 < i <j 	n,n c

Axiom 3.7 ((0)) 	(0)

It may also be necessary to perform the converse operation, joining a context

stream with a tuple, or joining two tuples together. This is performed by the join

operator N.

Chapter 3. Higher-Order Graphs
	

67

Definition 3.8

(Si,.. .,$) M 	(Si,... ,s,t)

(Si,... ,$) N (ti,.. . ,t) 	(51," ,S,t1,...

The join operator has the following properties:

Axiom 3.9 S N (S2 NS3) (S NS2) N S3

Axiom 3.10 S ((Q))S

Axiom 3.11 S1 NS2 S1 NS3 =.S2 S3

Axiom 3.12 	S1 N 82 (((')) = S 	((()))

The concatenation operator A is extended to operate on stream tupies.

Definition 3.13 	(s1) .. . ,s,) A (t1,...,t) 	(s At1,... ,s At,)

The following axioms define concatenation to be associative and commutative

when applied to stream tuples.

Axiom 3.14 S1 A(S2 AS3)(S1 AS2)AS3

Axiom 3.15 S1 AS2 S2 AS1

Axiom 3.16 S A ((())) ((()) A S S

Axiom 3.17 S1 AS2 S1 AS3 =S2 S3

Axiom 3.18 	S A S2 ((())) = S 	((()))

Chapter 3. Higher-Order Graphs 	 68

Axiom 3.19 	(s1 , ... ,$) At 	(s1 At,...,.sAt)

It is important to differentiate between joining and concatenation. Joining oper-

ates on tuples, and does not affect the streams within the tuples. Concatenation

leaves tuple size unchanged, operating of the streams which make up the tuple.

The length operators #+ and # are extended over stream tuples, yielding the

lengths of the longest and shortest streams in a stream tuple.

Definition 3.20

N t) = max(#s, #t)

where

#s=#s and #(sAt)=#s+#t

Definition 3.21

N t) = min(#s, #t)

where

#s=s and #isAt)=#s+#t

Definition 3.22 #d(S N t) = #(s N t) - 	N t) where #dS = 0.

The head operator , when applied to a tuple, returns a tuple whose members

are the heads of each of the constituent streams. Similarly, the tail operator /

produces a tuple containing the tails of the member streams.

Definition 3.23 	(s1,... , s) 	(s10 ,.. . , s, 0) 	(si,.. . , 	(st,.. . , s)

The head of the empty tuple is defined as a tuple of null contexts, and the tail, as

the empty tuple itself.

Definition 3.24 	((())) 	('I, . . . , ii)

Chapter 3. Higher-Order Graphs

3.1.2 Named Edges

In many structured design methodologies it is useful to provide a series of interme-

diate definitions which are then combined to form the final result - the definition

of procedures or functions in high-level programming languages, for example. Not

only is this often notationally convenient, but it also can allow more efficient im-

plementation. A similar situation can arise in the definition of structured nodes

where several parallel output streams are defined in terms of a common function

of the inputs. In order to avoid repeating the function at each of the streams for

which it is required, the notion of a named edge is introduced, which defines a

function which can be reused at any point within the definition of the structured

node.

Definition 3.25 Let q be the function defined by node i, q E {/3,i,r}. The

expression € 	00 o ... o 0,, defines an edge associating the name € with the

composition of functions 01 to .

Remark 3.26 In the definition of the function representing a graph, the compo-

sition operator o represents an un-named edge connecting two nodes.

Once defined, named edges can be used to replace sequences of nodes connected

by un-named edges in a graph. For example, the graph

g = co 0 ... 00.00,

can be written as

g =

using the value of € from Definition 3.25; and the graph

T,

E2 2

Chapter 3. Higher-Order Graphs 	 70

can be written as

g = (61, €2)1 : El 	/30 Ill 0r1, 62 	/30f12 0 7-2

3.1.3 Structured Nodes

A structured node has an internal hierarchy, and a functionality determined by the

aggregate operation of the core nodes from which it is constructed. A structured

node is itself a graph which is treated as a node for the purposes of constructing

higher-order graphs. As projection and join operations are required to manipulate

the multiple stream inputs and outputs permitted in structured nodes, the be-

haviour of branch and merge nodes can be redefined in terms of these operations,

for tuples of cardinality two.

Axiom 3.27

((()))

(())) A{s'}/3

(s0 N ii) A {s'}/3

(v N s0) A {s'}/3

if s))

if s = 1", 8' 	(0>

if s04, 8''?~ (0)

if - s0f,s'~()

Axiom 3.28

{ ((v, IS'111 if Sri10 = S1120 =

	

0 	
((Sll, {S'} °)) 	if SIl. 	u, S1120 = ii

{S} -

((SH2o,{SF} 0)) 	if S1110 = v,SH20 	I'

((SH10, {Sl}p(8H2o))) 	if Sri10 = SH2 	11

{ ((c0, {51 }1Cn))) 	 if Sf110 = Sf120 =

	

{5}(C0.Cn) 	
((c0,

((c0,

((co, IS'
}1 (Cicn SH10 45H20)))

if S1110 v,SH20 =v

if Sll = ii, S0

if S1110=SH207~v

Chapter 3. Higher-Order Graphs 	 71

It should be noted that the only difference between the above Axioms and Ax-

ioms 2.31 and 2.38, on pages 50 and 54 respectively, is in the notation. There is

no generalization of either merge nodes to accept more than two inputs, or branch

nodes to produce more than two outputs.

Using the projection and joining operators, the operation of a node 'y whose

structure is
Y•Ii 	 'YI32

I
'Y.T

can be written as

= (f111 0/32) N €112 : c A {(111,2 0, 1)N [i3},i 2 oro/31

The definition of operations on stream tuples, coupled with the introduction

of named edges, provides greater flexibility for the definition of graphs. Higher-

order graphs are defined in exactly the same way as first-order graphs, with the

restriction that cardinality of the result of a hode must equal the sum of the input

cardinalities of its successors. Class III and IV context flow graphs can also be

defined using this notation.

3.2 Queue Boundedness in Class III Graphs

In Class II graphs, the paths between a branch node and a merge node contain

equal numbers of other branch-merge pairs. In Class III graphs, this is not the

case as the paths between branch and merge nodes may contain any combination

of nodes. Using the concepts and notation of stream tuples, the property of queue

boundedness that exists in Class II graphs can be shown to extend to Class III

graphs.

Chapter 3. Higher-Order Graphs
	 72

Proposition 3.29 The number of non-null contexts output from a merge node is

equal to the number of non-null contexts input to the node.

Proof From Corollary 2.35, a merge node cannot destroy or create a non-null

context. 	 •1

In order to show that the length of a queue in a merge node is bounded in a

Class III graph, two cases must be considered - a graph which contains more

branch than merge nodes, and a graph which contains more merge than branch

nodes.

Lemma 3.30 If the number of branch nodes is greater than the number of merge

nodes in the path between a branch-merge pair, the length of queue in the final

merge node is bounded.

Proof Consider the graph

p-1 61 P2

T
	 62

initially empty.

9={e1 /32 0112 Me2}t:

= 	o 111 o 00 0 ..

= 01 01120 T

The maximum length queue in p occurs when Vc: c C .s, s€1132111 	(() Therefore,

ifc: c C s,ce1 /32111 	i' then ce1 /32112 = ii and, from Lemma 2.39, the queue will

not reach its maximum length. 	 .
Lemma 3.31 If the number of merge nodes is greater than the number of branch

nodes in the path between a branch-merge pair, the length of queue in the merge

	

Chapter 3. Higher-Order Graphs
	 73

node is bounded.

Proof Consider the graph

C2 	 C2
	 Cl

T 112

initially empty, where the queue length in it, is bounded by q. There are three

cases to consider:

Suppose p = q. After p + 1 cycles,

• 	, 	• 	 S 	0 	S
Y J

10 P+1 	

0 	 0 	0
T 	 /12

If contexts are now routed via e3,

'fl 0 	
•S p-1 •
	 I - 01

I- 	-1

/ 	0 	 0 	0
T

0 	i 	I 	 S 	2 	I
1 i

/ 	5 	 0 	I
T 	 112

[L2 must now start to queue contexts. After it, has merged the p length

streams el and 4, p contexts are contained in its queue and p contexts have

been forwarded. Of the latter, p - 2 contexts have been merged with non-null

contexts from e'3.

,- 	0 	0 	 0 	P 	0
1•111

/ 	• 	 p-2 	•

T 	 1t2

	

Chapter 3. Higher-Order Graphs
	 74

During the next p cycles, the queue in jt1 empties into 1121 merging with a

stream of contexts from 4, causing the queue in /2 to grow to 2p-2 elements.

	

0 n 0 	0 	 0 0 0
•

P "~% [S

2p-2 •
T 	 1 112

0 	 0 0 o 0 	 0 	
p-i

[0

0 	 2p-1 S
T

As the inputs to both merge nodes are null, the queue lengths remain con-

stant.

Suppose p> q. After p+1 +q cycles, edge e1 always passes a null context.

S 	 S 	 S S 	q 	0
(7)p-1 	 1 'r

S

0 	 0 	5

	

112 	IS

As p > q, non-null contexts are routed via e2 maintaining the length of queue

in y j at q elements. At the same time, null contexts are routed via e3, thus

maintaining an empty queue in 12• After a further p - q cycles, ji holds q

contexts in its queue, and has forwarded p contexts.

0 0 01 0 	 5 q 0

	

I- 	. • •
	 p-1 	'• 1i

p-q

	 S
T 	 112

The q contexts remaining in it, merge with those from 4.
0

- 	

•o • 	0 ti q 	0

'S 	
S 	 L.

T 	 It

Chapter 3. Higher-Order Graphs 	 75

	

0 It 1 0 	 •o 	0 	0 	0
I

q

"~%

	

, 	 . 	

1

1- ft 	 • T

Therefore, the maximum queue length in i12 is q + 1 which is less than that

in the case for p = q.

Suppose p < q. After 2p + 1 cycles, edge 4 always passes a null context.

q—p contexts remain to be input to it, on e1, while the q contexts forwarded

by it1 have merged with a stream of p - 2 contexts from 4 at 112 . As p < q,

p - 2 <q, and the queue in 112 grows to p - 2 elements.

0 	 0
•q

I 	 0 p 	•

It2

After a further q
-

p cycles, the queue length in it, remains at p, and the

queue length in 92 grows by q
-

p to q - 2 contexts.

0 	 0 	 0 	p 	0
' 	 • p-1

q-2 •

	

T 	 ILL 2

After another p cycles, the queue in it, is empty, and the queue in it2 contains

(p + q) - 2 contexts.

	

0 c 0 	 0 	 0 0 0 '0 cr 	p-1

	

, 	 • 	p+ q-2 	•
T 	 it2

Therefore, maximum maximum queue length in it2 is (p + q) - 1, which is less than that

in the case for p=q.

This completes the proof. 	 11

Chapter 3. Higher-Order Graphs 	 76

Having proved that if the numbers of branch and merge nodes contained in a

context flow graph are different, the queue lengths in the merge nodes remain

bounded, the following Theorem follows by definition.

Theorem 3.32 The length of queue in a merge node in a Class III context flow

graph is bounded.

Proof Follows from the definition of a Class III graph, Lemma 3.30 and Lemma

3.31. 	 0

3.3 Queue Boundedness in Class IV Graphs

Class IV context flow graphs differ from Class III graphs in that cycles are per-

mitted. It can be shown that queue boundedness extends to certain cyclic graphs,

but that in others, queue length is directly proportional to input stream length.

As any practical CF machine is closed and therefore cyclic, it is essential that all

queue lengths are bounded.

Definition 3.33 A cycle or loop in a context flow graph is open if it contains

either a branch node for which one of the outputs is not connected to any point

in the loop, or a merge node for which one of the inputs is not connected to any

point in the loop; otherwise it is closed.

Lemma 3.34 Queue length is potentially unbounded in open context flow graphs

containing closed loops.

Proof Consider the class of graphs

Chapter 3. Higher-Order Graphs
	

77

where q denotes a sequence of branch, merge and transformation nodes containing

up to n contexts.

Clearly, if any non-null context enters the graph at e0, it continues to circulate.

If the number of contexts exceeds n then any additional contexts must be stored

in the queue at y. As the queue length is directly proportional to the number of

non-null context in the stream at e0, its length is potentially unbounded.

Lemma 3.35 Queue length is bounded in open context flow graphs containing

open loops if and only if the number of contexts entering the graph is equal to the

number leaving.

Proof Consider the class of graphs

6i+2 on

6\2

Lo IL

el

)3
0112

Lets = (c1, c2,. . . , cj such that Vi : 0 < i < n, c2 0 v. Applying s to the graph

yields the following situations:

If fill2 	(()), then the graph is equivalent to

ei+2 on

\'12

CO
'-IL 	TO

and, from Lemma 3.34, the queue length of it is unbounded.

If fill2 	s, then the graph is equivalent to

ITb 	IT/3 	I

and no contexts require to be queued.

Chapter 3. Higher-Order Graphs
	

78

As queue length is determined by the proportion of contexts which are routed out

of the loop at the branch node, there must be a point at which the rate of flow of

contexts out of the loop matches the rate of flow of contexts into the loop, resulting

in a constant queue length. If the outflow is less than this, the queue will grow, and

if greater, the queue will shrink. glen this condition is met, the graph becomes

equivalent to

which can also be drawn as

/ n

From Corollary 2.41, the length of queue in t is bounded. This completes the

proof. 	 LE

Theorem 3.36 If a context flow graph contains cycles, it must be closed for the

length of queues in the merge nodes to be bounded.

Proof Follows from Lemmas 3.34 and 3.35. 	 13

Chapter 3. Higher-Order Graphs 	 79

3.4 Determining Maximum Merge Queue Length

The results of Corollary 2.41, Theorem 3.32 and Theorem 3.36 show that the queue

lengths in merge nodes are bounded in all acyclic and closed cyclic context flow

graphs. It is possible to determine a numerical value for the upper bound on queue

length by the position of the merge node in the graph. The desirability of being

able to determine the upper bound on queue length in an analytic manner, as

opposed to requiring simulation, is clear, as simulation cannot assess the effects of

all possible distributions of contexts which may arise. There are four configurations

to consider.

3.4.1 Simple Transformation Sequences

In the case where both inputs to the final merge node are streams which have only

been operated on by transformation nodes, for example

i-r0 TP

f
F

the maximum length of queue at y is given by the result of Theorem 2.40, as the

difference in path length between /3 and it, or by Definition 3.22 as #d(Ep N

3.4.2 Matched Branch-Merge Pairs

The above result can be generalized to the situation where the paths between the

nodes themselves contain branch-merge pairs.

Chapter 3. Higher-Order Graphs

A maximum length queue is induced in it if all contexts are first routed along the

longest path between 3 and i via c and then by the shortest path via f q , which

is given by #d (c' N

3.4.3 Unmatched Branch Nodes

If one or both input paths to t contains an unmatched branch, a maximal length

queue in It will occur if the unmatched branches route all contexts to the merge

node. This corresponds to the graph

f p P ___________

where 02H1 2ll1 	()). The upper bound on the queue length in ft is given by

#d(cI32hhh1 N

3.4.4 Unmatched Merge Nodes

The situation in which unmatched merge nodes exist in the input paths of a merge

node is complicated by the fact that this creates two potential sources of contexts.

In the graph

op P

I,
If
lL

f
••(q 	112

it is assumed that iti has an upper bound on its queue length of in, given by the

stream difference of its inputs. The maximum length of queue in t 2 is determined

by incorporating the queue into the input stream as a point source of in contexts,

Chapter 3. Higher-Order Graphs 	 81

and then evaluating the stream difference. In the above graph, the upper bound

on queue length in 92 is given by

	

# d(' 	
' c M 	= max#c, #E + m) - min(#e, 	+ 772)

	

q 	U 	 ,

3.5 Graph Initialization

In each of the preceding situations it has been assumed that the graph is empty

prior to application of a stream - each node containing a null context. Whilst

this is convenient for, purposes of clarity, it is somewhat unrealistic, especially in

the case of closed cyclic graphs. It is quite conceivable that an acyclic graph or a

particular section of cyclic graph be initially empty, however, a closed cyclic graph

will require to be initialized by non-null contexts.

The only case which will be considered here is where contexts are initially

stored in a single queue. If a graph represents an execution pipeline, it is clearly

the case that no instruction should be started at a point which corresponds to a

partial state of execution.

If a graph is initialized with a number of contexts which is less than the short-

est path length in the graph, then the contexts will, after initial dispersal from

the queue, distribute themselves throughout the graph, allowing maximum queue

lengths to be calculated as detailed above. If, alternatively, the graph is initial-

ized with a number of contexts which is greater than the shortest path length, the

initialization queue will contain, on average, a quantity of contexts equal to the

number used in the initialization less the mean context latency. In both cases the

queue used for initialization must be capable of holding the initial number of con-

texts. Providing initialization is made at one node, calculation of other maximum

queue lengths may be made according to the procedures of Section 3.4.

Chapter 3. Higher-Order Graphs 	 82

3.6 Context Flow as a Model of Parallel Compu-

tation

The definition of context flow avoids the inclusion of implementation-specific fea-

tures, allowing the model to be applied in a wide variety of situations. Contexts

are defined merely as tuples of information with some internal, but undefined,

structure, and nodes are defined simply as the sites of function application. CF

is an abstract mathematical model of parallel computation. In order to obtain an

assessment of its relative strengths and weaknesses, it is instructive to compare it

to two other existing representations of parallel processing - Petri Nets and data

flow graphs.

3.6.1 Petri Nets and Data Flow Graphs

A Petri net [Reisig, 19851 is a directed graph containing two different types of

node - places and transitions. Each place is weighted by a number of tokens,

with places connected to transitions by weighted arcs. Tokens circulate in the net

as a consequence of firings, events which enable a transition when, for all input

arcs of a transition, the weight of a place and the arc which connets it to the

transition are equal. For example, the net

P2

Chapter 3. Higher-Order Graphs 	 83

has four places, P01P1,P2 and p3, and two transitions t1 and t2, connected by arcs

with weights w0 to w5. A net can also be represented by a matrix in which the

rows represent transitions and the columns represent places. The above net can

be written in matrix form as

(—too W1 w2 o

0 —w3 —w4 w5

Tokens are distributed in the graph according to an initial marking, which, in the

above example, is

3

1

2

3

A data flow graph (DFG) [Davis and Keller, 1982] is a directed graph which

consists of three different types of node - function nodes, distributors and selec-

tors. the arcs which connect the nodes denote the data dependencies present in a

computation. Tokens are used to represent the flow of data between nodes, each

token representing one data or booleañ value. Tokens reside on arcs rather than

in nodes, each arc storing only one token at a given time. Computation events are

initiated when a token is present on all the input arcs to a node, and no tokens

exist on the output arcs. The node then consumes the input tokens and generates

tokens for the output arcs.

Treatment of Time

In both Petri nets and data flow graphs, operations are performed as soon as

sufficient data, represented by tokens, are present - they are both asynchronous

models. Neither requires an explicit denotation of time, initiation of events being

governed by availability of data. Context flow, however, has a very strong notion

Chapter 3. Higher-Order Graphs 	 84

of time, encapsulated in the graph cycle period. Although time is not explicitly

referenced, the duration of operations in all nodes is equal. CF is a synchronous

model of parallel computation.

It is the synchronous nature of CF which necessitates the inclusion of null

contexts in the model. In both Petri nets and DFGs, the concept of an empty

token does not exist, and is indeed unnecessary. An empty token would simply

represent the absence of information, which is equally denoted by the absence of

a token which does contain information. Absence of a token causes a delay in

the firing of a function, just as the inclusion of a null context in a context stream

causes a delay of one graph cycle period in CF.

Parallelism

In CFCs, Petri nets and DFGs, the existence of parallelism is both inherent and

obvious from the graphical description. In CF, the spatial parallelism indicated by

the existence of multiple paths through the graph is augmented by the temporal

parallelism which exists between each node. In DFGs, the parallelism is a result

of, and hence limited only by, data dependencies.

Freedom From Side-Effects

All three models have no notion of a globally accessible, memory. In Petri nets and

DFGs, all computation is performed with values or fixed name-value bindings, all

references to an identifier yielding the same value for the entire duration of the

computation. CF is more general in its treatment of values in that changeable

memory locations may exist; but as access is controlled by a single transformation

node, non-local destructive updating of a memory location cannot be performed.

While it may be possible for two contexts to access a common memory location,

Chapter 3. Higher-Order Graphs

this would represent some form of synchronization of, or communication between,

the processes, which can be assumed to be intentional.

Locality of Effect

In Petri nets and DFGs, tokens generated at a transformation or function node

only cause changes in the nodes which are its immediate successors. The same is

also true for CF where applications of functions at one transformation node do

not affect other contexts or the contents of memory locations at other nodes.

Non-determinism

If a Petri net has a place with two output arcs of weight one, and a single input arc

also of weight one, then either of the successors may be fired non- deterministically.

In data flow, a merge node combines tokens in a non-deterministic manner. The

relative ordering of tokens from each of the two streams is preserved, but the

stream from which a given token occurs in the output is arbitrary. CF performs

a deterministic merge of context streams, the repeatability of a result for a given

input being guaranteed by the synchronous arrival of contexts at the node.

Although there are several similarities between the three models, their differ-

ing treatments of time make comparisons difficult as this one property has an

important bearing on the operation of the models.

Chapter 3. Higher-Order Graphs

Summary

Using the concepts of stream tuples and named edges, a mechanism for the de-

scription of arbitrary context flow graphs has been developed. From this, comes

a formal method for introducing hierarchies, bringing the benefits of structured

design techniques to the creation of CFGs. The property of queue boundedness,

demonstrated for certain acyclic CFGs in Chapter 2, has been shown to extend

to all acyclic and closed cyclic graphs. Methods to calculate the numeric value of

the upper bound have been presented. These allow maximum queue lengths, an

important facet of any CF implementation, to be determined analytically rather

than by simulation. This has an important bearing on the feasibility of CF im-

plementations. The relationship between CF and other parallel processing models

has been explored.

'A// things are a flowing."

- EZRA POUND (1885-1972)

Chapter 4

Context Flow Architecture

The principles of the context flow model, and the operation of the

core nodes from which context flow systems are constructed, have been

defined. The result is a formal framework for defining the structure and

operation of context flow graphs, which has been used to prove that

the queue length in any merge node has a fixed upper bound. This

Chapter is concerned with more pragmatic aspects of context flow.

Example designs for a number of example CF structures are presented

which perform commonly needed functions in computer systems, such

as decoding and access to shared memory, in a pipelined form. Their

performance is measured with respect to a set of criteria which define

utilization, throughput and latency for context flow structures. The

design of a context flow routing element which can be used to construct

pipelined multistage interconnection networks is discussed.

Chapter 4. Context Flow Architecture 	 88

4.1 Performance Criteria

Two properties of context flow have an important influence on the implementahil-

ity of CF systems - the ability to divide a context into static and dynamic com-

ponents, and the dependence of the upper bound on queue length solely on the po-

sition of a merge node within the graph. In order that the performance of context

flow structures may be compared meaningfully both with conventional structures

and other CF devices, it is important to establish a set of performance criteria.

The performance of CF systems is, however, very different from other more con-

ventional pipelined architectures. If a CF machine contains a single context, the

execution time will be greater than on an equivalent conventional pipelined ma-

chine - indeed no better than a non-pipelined system. As the number of contexts

is increased, the performance also increases, the additional processes being exe-

cuted during the times when stages would otherwise be idle. Three main features

of performance - utilization, throughput and latency 	are of interest, together

with their relationships to the number of contexts contained in the system.

4.1.1 Graph Loading

A graph is fully loaded if the number of contexts contained in the graph is equal to

the number of nodes in the graph. When containing fewer contexts, the graph is

under or lightly loaded, and with more contexts, over or heavily loaded. Overloaded

graphs may require contexts to be queued outwith merge nodes in transformation

nodes with an associated queue. As maximum queue length in merge nodes is

solely dependent on graph structure, and not on the functions performed by nodes,

provision of additional queueing capacity in transformation nodes will not effect

queue limits. Loading is expressed either as a percentage of the input stream

Chapter 4. Context Flow Architecture 	 89

which is non-null, in the case of acyclic graphs; or as the number of contexts

placed initially in a cyclic graph.

4.1.2 Graph Utilization

Utilization is defined as the average number of nodes in the graph which contain a

non-null context during a single graph cycle, usually expressed as a percentage of

the graph size. The minimum, average and maximum utilizations can be measured.

One of the aims of context flow is to provide mmi utilization, but this can only

be achieved if the graph is either fully or heavily loaded.

4.1.3 Throughput

Throughput is the average number of contexts which either reach the end of an

acyclic graph or pass a given point in a cyclic graph, during one graph period, and

is expressed in contexts per cycle. Context flow attempts to provide a throughput

of one context per cycle for each active context stream.

4.1.4 Latency

Latency is the average length of time a context takes either to traverse an acyclic

graph, or to complete one circuit of a cyclic graph. In overloaded graphs, it is

useful to differentiate between two forms of latency - pipeline latency which has

the same definition as latency above, and instruction latency which excludes' the

additional time a context spends in queues, due simply to the loading of the graph

rather than the graph structure. Latency is expressed in cycles per context.

Chapter 4. Context Flow Architecture

4.2 A CF Arithmetic Unit

The arithmetic unit of a processor, characterized by a regular input of similar in-

structions, lends itself naturally to a pipelined, and hence context flow, implemen-

tation, and would play a central role in any context flow processor. The pipeline

described here is intended only as an example to illustrate the construction of

context flow systems. A more realistic implementation is given in the design of

the context flow processor in Chapter 5.

The design is an example of a dynamically reconfigurable arithmetic unit which

performs multiplication, reciprocation, addition and subtraction of fixed and float-

ing point numbers. The unit, shown in Figure 4-1, is composed of three main sec-

tions - decoding and floating point pre-processing, execution, and floating point

post-processing. During the first stage of processing, instructions are categorized

into fixed and floating point operations, the floating point data undergoing expo-

nent subtraction and mantissa alignment before decoding of the function is per-

formed. Multiplication and subtraction both require the context to pass through

two nodes to be completed, the first to form the partial products or negative re-

spectively, followed by an addition step. The reciprocation function is provided

to support division, which requires a context to circulate at least twice through

the unit for evaluation. The results of floating point operations are then normal-

ized and accumulated for use in scalar product or double length multiplication

operations.

The simulated performance of the arithmetic unit is shown in Table 4-1. The

input to the unit in each case is a stream of contexts with the different instruc-

tions occurring in different proportions and distributions over a period of 5,000

cycles. An exhaustive series of input streams determined those which produced

}
Instruction
Decode

Reciprocal Stage 1

Peciprocd Stage 2

Pedpcocal Stage 3

Exponent Su

Negation

Align Mar

Nocmdizafio

Accumulotic

Chapter 4. Context Flow Architecture
	

91

Figure 4-1: Structure of the CF arithmetic unit

Chapter 4. Context Flow Architecture
	 92

Input Stream Composition Minimum
Utilization

Average
Utilization

Maximum
Utilization

Latency

Constant fixed pt. subtraction 3.85% 38.42% 38.46% 10.00

Constant floating pt. multiplication 3.85% 57.60% 57.69% 15.00

Alternate floating and fixed pt. 3.85% 45.03% 53.85% 14.00

Random uniform 3.85% 44.68% 57.69% 15.00

Table 4-1: Performance of CF arithmetic unit for various input streams

Input Stream Composition MuIQ 	RecQ 	AddQl 	NegQ 	AddQ2 	AddQ3 	PostQ 	OutQ

Constant fixed pt. - - 	- 	- 	- 	- 	- -
Constant floating pt. - - 	- 	- 	- 	- 	- -
Alternate - 	- 	- 	0.09 	0.16 	0.51 	0.86

Uniform 0.02 	0.02 	0.02 	0.02 	0.09 	0.23 	0.90 	0.76

Table 4-2: Average queue lengths in CF arithmetic unit

the best-case, worst-case, and intermediate performances, and those which induced

maximal length queues within the merge nodes.

The best-case performance, an average execution time of 10.00 graph cycles per

instruction, occurs with input streams consisting entirely of fixed point addition,

subtraction and reciprocation operations. The worst-case performance, an average

execution time of 15.00 graph cycles per instruction, occurs with a continuous

stream of floating point multiplication instructions. The unit provides a consistent

performance when given an input containing a mixture of fixed and floating point

instructions. A stream of uniformly-distributed random instructions is executed

in an average time of 15.00 graph cycles per instruction. The unit initiates one

instruction per cycle and has unit throughput for all input streams.

The average and maximum lengths of queue in each of the merge nodes are

given in Tables 4-2 and 4-3. Although the average queue lengths in many of

Chapter 4. Context Flow Architecture
	 93

Input Stream Composition I MU1Q 	RecQ 	AddQl 	NegQ 	AddQ2 AddQ3 PostQ OutQ

Theoretical Maxima 2 	2 	2 	2 	3 3 3 2

Constant fixed pt. - - 	- 	- 	- - - -
Constant floating pt. - - 	- 	- 	- - - -
Alternate - 	- 	- 	- 	1 1 1 2

Uniform 2 	2 	2 	2 	2 3 3 2

Table 4-3: Maximum queue lengths in CF arithmetic unit

the merge nodes is very short, these results show the maximum lengths to be in

agreement with the theoretical limits.

The design presented here is somewhat conservative, in that each distinct op-

eration is assigned to a different node for the purpose of clarity. It would be

possible to improve the performance of the design by combining certain functions

into single nodes, thus reducing the latency of the unit.

4.3 A CF Shared Memory Unit

There are many instances when two streams of contexts require access to the same

physical memory. For example, during instruction execution, values may be read

from a register file at one point in the pipeline and results written to the same reg-

ister file at another. The obvious method of implementing a memory of this type,

by connecting it between two transformation nodes, as shown in Figure 4-2(a), is

explicitly prohibited in context flow, due to the possibility of introducing uninten-

tional side-effects during simultaneous access to the same location by two contexts.

Shared memories can, nonetheless, be implemented in context flow with, in many

cases, only a small additional performance penalty. The structure required to im-

plement shared memory is shown in Figure 4-2(b). The unit consists of a merge

node to combine the two streams of contexts which require access to the shared

Chapter 4. Context Flow Architecture 	 94

nO 	 outi

outO 	 InI

mo 	 outO

out 1

Memory

Figure 4-2: Structure of the context flow shared memory interface

Chapter 4. Context Flow Architecture 	 95

data; a single transformation node with the shared data stored in an associated

memory; and a branch node to regenerate the two original streams after the mem-

ory access is complete. This method of shared memory organization has certain

advantages - mutual exclusion on shared data is enforced in hardware providing

an elegant implementation for semaphores and other synchronization primitives,

and the structure is easily extensible to allow access by more than two streams with

only the addition of merge nodes at the input and corresponding branch nodes at

the output. There are, however, certain disadvantages to a memory structure of

this type in that it can only process contexts at half the rate and is therefore a

potential source of delay.

Figures 4-3 to 4-5 show the simulated performance of the shared memory

unit under varying loads over a period of 2500 graph cycles. Changes in latency,

measured as the average number of graph cycles each context requires to pass

through the unit, are shown in Figure 4-3. Latency is almost constant at about

3 cycles for loads under 50%, after which it rises steeply to over 600 cycles for

a 100% load. Similar behaviour is observed in maximum queue length, which

remains almost constant at loads below 40% and rises rapidly with loads above

50%, as shown in Figure 4-4. Even at low levels of loading, a high degree of

utilization, measured as the proportion of nodes that process non-null contexts, is

achieved, as shown in Figure 4-5.

4.4 A CF Network Routing Element

In any multiprocessor system which includes a communications network linking

either several processing elements or processing elements and memory modules, the

performance of the switches which route information through the network has an

important bearing on the overall performance of the system. The basic component

of a multistage interconnection network is a 2 x 2 routing element, which can be

Chapter 4. Context Flow Architecture

MI

4..

200

01I

0 10 20 30 40 50 60 70 80 90 100
load (%)

Figure 4-3: Latency v. load for CF shared memory interface

97 Chapter 4. Context Flow Architecture

,z.I.is1

r
-I-
0)
C
ci)

ci)
ci)

E
E
><
0
10

1sIui

01 	1 	 1 	
I

0 10 20 30 40 50 60 70 80
load (%)

Figure 4-4: Maximum queue length v. load for CF shared memory interface

Chapter 4. Context Flow Architecture

m

MI

iI

70

60

50

DO

30

20

10

0, 10 20 30 40 50 60 70 80 90 100
load (%)

Figure 4-5: Utilization v. load for CF shared memory interface

Chapter 4. Context Flow Architecture

Input 0

Input 1

Output 0

Output 1

Figure 4-6: Structure of the CF routing element

used to construct a number of different network topologies implementing a variety

of permutations.

The context flow implementation of a 2 x 2 routing element consists of two

branch and two merge nodes, as shown in Figure 4-6. Four routing functions are

implemented by this element

straight-through - routing input 0 to output 0 and input 1 to output 1,

exchange - routing input 0 to output 1 and input 1 to output 0,

combine 0 - routing both input 0 and input 1 to output 0, and

combine 1 - routing both input 0 and input 1 to output 1.

The router accepts two contexts per cycle on its inputs and outputs two contexts

per cycle. In the case where one of the combining operations is required and two

non-null contexts are input, the internal operations of the appropriate merge node

ensure that both contexts are routed correctly.

The performance of the 2 x 2 router is given in Tables 4-4 to 4-6. 	The

input streams both consist of 5,000 contexts with varying destination distributions.

Modelling this element in isolation is complicated by the fact that an upper bound

for the queue lengths cannot be determined, as it is dependent on the structure

Chapter 4. Context Flow Architecture
	 100

Input Stream Composition

(Constant routing functions)

Average

Utilization

Latency Throughput

straight-through 99.94% 2.00 2.00

exchange 99.94% 2.00 2.00

combine 37.49% 2502.00 1.00

combine, alternate null contexts 49.97% 2.00 1.00

Table 4-4: Performance of CF routing element for constant routing functions

Input Stream Composition

(Random destinations)

load Average

Utilization

Latency Throughput

50% - 0, 50% - 1 100% 90.98% 29.41 1.99

60% - 0, 40% -* 1 100% 90.02% 116.78 1.90

70% - 0, 30% -* 1 100% 88.29% 244.34 1.80

50% -+ 0, 50% - 1, 95% 87.60% 7.71 1.90

50% - 0, 50% -* 1, 75% 70.52% 3.78 1.51

50% - 0, 50% - 1, 1 50% 47.78% 3.26 1.00

Table 4-5: Performance of CF routing element for random routing functions

Input Stream Composition

(Random length bursts)

Load Maximum

Burst Length

Average

Utilization

Latency Throughput

50% - 0, 50% - 11 100% 10 91.43% 88.23 1.95

100% 100 88.63% 205.64 1.86

50% -+ 01 50% 	11 95% 10 86.79% 35.77 1.87

95% 100 88.27% 70.53 1.88

50% -+ 01 50% 	1, 50% 10 47.99% 3.85 1.00

50% 100 47.92% 5.11 1.00

Table 4-6: Performance of CF routing element for random length sequences of

requests for the same routing function

Chapter 4. Context Flow Architecture 	 101

of the graph which generates the input streams. The routing element, and any

network constructed using these elements, should be considered as part of a system

which contains a fixed number of contexts. The input streams used to test the

model of the routers can be taken as representing the heaviest load liable to be

placed on an element.

When implementing a constant routing function the router can be very effi-

cient, as shown in Table 4-4, forwarding each context in a constant time of two

cycles and yielding two correctly routed contexts per cycle for both the straight-

through and exchange functions. The combine functions produce the poorest per-

formance, with an 0(1) average routing time and a unity completion rate for an

input stream containing 1 contexts.

The routing element performs well when given streams containing randomized

destinations, as shown in Table 4-5. If the destinations are uniformly distributed,

contexts are routed in an average of 29.41 cycles with an almost maximal through-

put. If the destinations are biased in favour of one of the outputs such that 60%

of contexts are directed there and 40% to the other, the average routing time

rises dramatically to 116.78 cycles and the throughput drops to 1.90 contexts per

cycle. This attenuation in performance is even more marked if the distribution is

changed to route 70% of contexts to one of the outputs.

All the above results are obtained with continuous streams of non-null con-

texts, a situation which is liable to occur relatively infrequently. Introducing null

contexts into the input streams improves the performance of the routing element.

If the load on the routing element is reduced by as little as 5%, latency is reduced

by nearly a factor of four, from 29.41 cycles to 7.71 cycles per context; whilst the

throughput is maintained. If the load is further reduced to 75%, latency drops to

3.26 cycles per context.

Many programs exhibit considerable locality, in that several successive memory

references may access the same location. Input streams representing this situation,

Chapter 4. Context Flow Architecture 	 102

containing random length sequences of contexts with the same destination, result

in a performance consistent with other distributions - the inclusion of null con-

texts producing a large improvement compared to continuous non-null sequences,

as shown in Table 4-6. All permutations of input stream yield a completion rate

of at least one context per cycle. The maximum and average queue lengths for

the routing element are given in Tables 4-7 to 4-9.

Using the CF routing element, a wide variety of pipelined interconnection

networks can be constructed. The only change to the design of the element is

the addition of a transformation node at each of the outputs to enable routing at

the next stage to be performed using the same branch condition. This allows a

network to be created by replication of a single type of routing element.

Two topologies which can both establish arbitrary connective paths between

any of the inputs and outputs are the omega [Lawrie, 1975] and the binary n-Cube

[Pease, 19771 networks, as shown in Figures 4-7(a) and (b) respectively. Figures 4-

8 to 4-10 show the simulated latency and queue lengths of CF implementations of

these networks connecting eight inputs to eight outputs for various network loads.

The load imposed on a CF interconnection network is the proportion of non-null

contexts presented as input. The graph in Figure 4-8 shows the change in latency

for given network loads, for an input of 2500 contexts with uniformly distributed

random destinations. As in the case of the routing element itself, inclusion of a

small percentage of null contexts results in a considerable fall in latency. The

same is true for maximum queue length, shown in the graph of Figure 4-9, with

average queue length showing a similar, though less marked, decline, as shown in

the graph of Figure 4-10 Throughput, the number of correctly routed contexts

output per cycle, is directly proportional to the load imposed on the network.

Figures 4-11 to 4-14 show latency, throughput and queue length in the pres-

ence of hot spots, for a network load of 100%. A hotspot occurs when an additional

percentage of input contexts are directed towards the same "hot" output. Fig-

Chapter 4. Context Flow Architecture
	 103

Input Stream Composition
(Constant routing functions)

Output 0
average 	maximum

Output 1
average 	maximum

straight-through 0 0 0 0

exchange 0 0 0 0

combine 1.00 5000 0 0

combine, alternate null contexts 0 0 0 0

Table 4-7: Queue lengths in CF routing element for constant routing functions

Input Stream Composition
(Random Destinations)

Load Output 0
average 	maximum

Output 1
average 	Inaxinaun

50% —* 01 50% - 1 100% 0.98 53 0.99 65

60% 	01 40% — 1 100% 1.09 480 0.67 17

70% —* 0, 30% —* 1 100% 1.20 1007 0.42 7

50% —* 01 50% — 1 95% 0.81 15 0.86 23

50% — 01 50% — 1 75% 0.36 6 0.37 6

Table 4-8: Queue lengths in CF routing element for random routing functions

Input Stream Composition
(Random Length Bursts)

Load Output 0
average 	maximum

Output 1
average 	maximum

50% — 0, 50% — 1 100% 0.99 200 0.89 230

100% 0.98 600 0.76 700

50% —+ 0 7 50% — 1 95% 0.92 137 0.80 80

95% 0.73 200 0.77 146

50% — 0, 50% — 1 50% 0.21 10 0.18 9

50% 0.23 13 0.23 15

Table 4-9: Queue lengths in CF routing element for random length sequences of

requests for the same routing function

Chapter 4. Context Flow Architecture
	 104

M54-chc'i..

Figure 4-7: Topology of Omega and binary n-Cube networks showing locations

of hotspots

Ell

20

10

Chapter 4. Context Flow Architecture
	 105

omega

indrect blricy n-Cube

:I1

10 20 30 40 50 60 70 80 90 100 110
load (%)

Figure 4-8: Latency v. load for CF Omega and binary n-Cube networks.

94

30

20

10

Ftl

Chapter 4. Context Flow Architecture
	 106

omega

Indrect binary nCube

10 20 30 40 50 60 70 80 90 100 110
load (%)

Figure 4-9: Maximum queue length v. load for CF Omega and binary n-Cube

networks.

Chapter 4. Context Flow Architecture
	

107

omega

inrect binay n-Cube

la

El

VA

MI

.2

10 20 30 40 50 60 70 80 90 100 110
load (%)

Figure 4-10: Average queue length v. load for CF Omega and binary n-Cube

networks.

Chapter 4. Context Flow Architecture 	 108

ure 4-11 shows the change in latency with increasing hotspot percentages. There

is little or no change in latency below 1%, but above this, latency rises rapidly,

reaching nearly 1100 cycles when all contexts are directed to the same destination.

Similarly, throughput is almost unchanged at a value close to the maximum of

8 contexts per cycle with hotspot occurrences of under 1%, declining towards a

minimum of 1 context per cycle for a 100% hotspot, as shown in Figure 4-12.

Maximum queue lengths in both networks show a similar trend, remaining

almost constant below 1% and rising rapidly thereafter. The shaded nodes in

Figure 4-7 indicate the locations of rapid growth in queue length. Figure 4-13

shows the maximum queue lengths for four of the elements in the Omega network,

each of which lies on the path to the hot output, together with the mean maximum

length of the queues. Figure 4-14 shows the maximum queue lengths in equivalent

positions in the binary n-Cube network. Both networks absorb hotspots of up to

1% with little or no degradation in performance.

Summary

Several features of the context flow model make the process of designing CF sys-

tems easier than that for conventional pipelined or concurrent systems. The inter-

leaved nature of the process contexts eliminates all dependencies between instruc-

tions in the pipeline. The need for additional hardware or software to mitigate

the effects of a conditional branch instruction is thus removed, as the condition

will always have been evaluated before execution of the instruction commences.

The need for data dependency checking in hardware, as provided by scoreboard

devices, is also removed, since no dependencies can exist between instructions in

a partial state of execution. Interaction between concurrent processes via shared

variables is limited as all memory is associated with single transformation nodes,

which may only contain one context during each graph cycle. Simultaneous access

Chapter 4. Context Flow Architecture
	 109

1100

1000

900-

800

1
700

2 oOO
0)
>-
0
C 500 ci)
.4-
0

400

300-

200-

100

00

200

100

0
0.01

omega

ndrect binay n-Cube

0.10 	1.00 	10.00 	100.00
hotspot (%)

Figure 4-11: Latency v. hotspot occurrence for CF Omega and binary n-Cube

networks with 100% toad.

ci)
0
0
-c
CI
2
0)
ci)
a

ci)
4—
C
0
0

a
-c
0)
3
2
-C
4-

A

3

5

7

Chapter 4. Context Flow Architecture
	 110

2

theorelicd mdmui

indrect UrKry n-Cube

omega

OL_
0.01
	

0.10 	1.00 	10.00 	100.00
hotspot (%)

Figure 4-12: Throughput v. hotspot occurrence for CF Omega and binary

n-Cube networks with 100% load.

Chapter 4. Context Flow Architecture
	

111

900

800

700

CD 600

500

E
3
E
o 400
E

300

200

100

or
0.01

Element 1, upper

Element 3. upper

Element 6, lower

Element 9, lower

mean

0.10 	 1.00 	 10.00
hotspot (%)

Figure 4-13: Maximum queue length v. hotspot occurrence for CF Omega net-

work with 100% load.

Chapter 4. Context Flow Architecture
	

112

E;IsI.1

Ir..I•i

Element 0. lower

Element 5.lower

Element 7. lower

Element H. upper

mean

1200

a)
ci)

1000 CT

E
><
a 800
'a

600-

400

200

0
0.01 0.10 	1.00 	10.00 	100.00

hotspot (%)

Figure 4-14: Maximum queue length v. hotspot occurrence for CF binary

n-Cube network with 100% load.

Chapter 4. Context Flow Architecture
	 113

to common memory locations by multiple contexts is therefore made impossible

as transformation node have a single input and output - thus removing a major

source of possible unintentional side-effects.

The formal definition of the temporal properties of the core CF nodes al-

lows graphs containing these nodes to be constructed which exhibit consistent

behaviour. This is due to the synchronous nature of the core nodes and the use

of null contexts to maintain a regular flow through the graph.

In general, CF structures are formed by expressing the desired functionality

in terms of transformation nodes, connected by branch and merge nodes which

encode alternative functional sequences.

"In Architecture as in other Operative Arts, the end must dictate the Operation.

The end is to build well."

- HENRY WOTTON (1568-1639), Elements of Architecture Part I

Chapter 5

A Context Flow Processor

Context flow implementations of several architectural elements have

been presented, and their performance evaluated. The design of a pro-

cessor provides an opportunity to demonstrate how larger CF struc-

tures can be assembled from these simple elements. This chapter out-

lines the design objectives for a simple, yet quite functional exam-

ple context flow processor, where traditional architectural criteria are

initially tempered by the operational constraints of the context flow

model. An instruction set for the processor is presented, together with

the operation and structure of the main functional elements. An analy-

sis of the processor performance and of the interaction between streams

of contexts in the graph identifies several opportunities for improve-

ment of the original design to allow the processor to meet its original

operational goals. The result is a processor capable of sustaining a

throughput of one instruction per cycle, with a constant instruction

execution time.

114

Chapter 5. A Context Flow Processor 	 115

5.1 Design Objectives

The context flow processor described in this Chapter is intended to provide high

performance for a wide variety of applications by maximal exploitation of hard-

ware resources. The essence of context flow is the formation of highly-pipelined

structures. This creates a need for a simple instruction set in which each opera-

tion is capable either of being performed in a single cycle, or of being pipelined

to allow completion of an operation every cycle. The highly-pipelined nature of

the architecture creates the ideal environment for memory to be absorbed into

the execution pipeline, thus preventing memory accesses from having an attenu-

ative effect on processor performance. In addition, expansion from a single local

memory to a distributed memory, shared among a group of processors by means

of an interconnection network, merely lengthens the processor pipeline, without

modifying the processor model. This allows an increase in the number of active

contexts to compensate for the longer execution time for each instruction clue to

the greater memory latency. Each contexts accesses a separate register and ad-

dress space, with seclusion enforced by the architecture. The context flow model,

however, makes safe and side-effect free inter-process communication possible by

merging streams of contexts requiring concurrent access before the memory unit,

as shown in the example of Section 4.3.

The aims of the design are to provide a pipelined processor architecture, ca-

pable of sustaining an instruction completion rate of one floating-point, scalar or

control operation per clock cycle, for up to 641 concurrent processes. It should be

noted that the object of this example is to explore some of the pertinent features

of context flow system design.

:1. (F4 0 15 	 & vwt(&trt r"46-to 4 possk

k. 63.

Chapter 5. A Context Flow Processor
	 116

5.2 Instruction Set

The instruction set for the context flow processor is relatively small, providing

a few elemental instructions which may be combined in sequence during compi-

lation to perform functions implemented by single instructions in more complex

instruction sets. The instruction set chosen for the CF processor is based on that

of the Motorola 88000 processor [Motorola Inc., 1988]. This particular instruction

set was chosen for its provision of a core instruction set and the availability of

detailed documentation of instructions and processor architecture.

A fixed instruction format simplifies the process of decoding instructions, yield-

ing a reduction in complexity of the circuit required to perform this function. In

conjunction with this, the provision of only two addressing modes - inherent,

specifying that the operands are either constants or data to be extracted from

the instruction itself; and extended, specifying that operands reside in registers

facilitates fast and easy implementation. A consequence of limiting the number

of addressing modes is that all operations are performed on the contents of regis-

ters (or on inherent data), with only load and store instructions accessing data in

memory.

5.2.1 Instruction Format

As a result of the above decisions, the instruction set of the CF processor can

be implemented with 16-bit instructions. The instructions are divided into four

groups - integer, floating-point, logical and control, with each group containing

up to eight instructions. Table 5-1 presents the complete instruction set .

Chapter 5. A Context Flow Processor
	 117

Integer Instructions Control Instructions

Mnemonic Operation Mnemonic 	Operation

add addition Id load from memory

addu unsigned addition st store to memory

cmp compare my move to register

rec reciprocation bra unconditional branch

recu unsigned reciprocation bsr branch to subroutine

mul multiplication imp unconditional jump

sub subtraction jsr jump to subroutine

subu unsigned subtraction bcnd conditional branch

Floating-Point Instructions Logical Instructions

Mnemonic Operation Mnemonic 	Operation

fadd addition and bitwise and

fcmp compare or bitwise inclusive-or

frec reciprocation not bitwise inversion

fmul multiplication xor bitwise exclusive-or

fsub subtraction rot rotation

inf convert to FP

fin convert to integer

Table 5-1: CF Processor Instruction Set

Chapter 5. A Context Flow Processor
	

118

I 	 I 	I 	 I 	 I 	I 	I 	 I 	I 	I

Group 	Operation 	Variant 	Mode 	Register/Constant 	Destination Register

I 	 I 	I 	 I 	 I 	I 	 I 	I

cukw.ekiL I
Figure 5-1: Format of CF processor/jinstructions

The instructions are provided in a two-address form, with one of the source reg-

isters acting as the destination. This is in contrast with the actual Motorola 88000

processor which implements triadic register addressing, allowing specification of

two sources and a separate destination register. Allocating four bits of each in-

struction to denote the source registers leaves three bits to describe the addressing

mode and other variants of each instruction. Although four bits are sufficient to

identify sixteen registers, the nature of the operand, either scalar or floating-

point, can be used implicitly to select between banks of sixteen separate scalar

and floating-point registers, providing thirty-two general purpose registers for each

process. Constant operands are stored in thirty-two read-only scalar and
~k4%6iL 	occt.

point constant registers, shared between processes. The format of theinstructions

is shown in Figure 5-1.

Integer Arithmetic Operations

Instructions are provided to perform addition, subtraction, multiplication and

reciprocation on integer quantities. With the exception of multiplication, both

signed and unsigned forms of the instruction are provided. Separate instructions

'Instructions providing support for separate user and supervisor modes, and for han-

dling exceptions and interrupts are not included. These would, however, be required to

implement operating system and i/o functions in a processor implementation.

Chapter 5. A Context Flow Processor 	 119

are not provided to perform addition with carry and subtraction with borrow.

These functions are encoded in the variant field of the core instruction. This

assists in limiting the number of separate instructions thus easing the decoding

process. The comparison instruction performs a subtraction of its operands, but

does not store the result, merely setting the appropriate flags in the status register.

Addition, subtraction and comparison operations are each performed in a single

cycle, while multiplication and reciprocation each require three cycles.

Floating-Point Arithmetic Operations

The above arithmetic operations are also provided in floating-point form. Two

instructions are provided to convert numbers between integer and floating-point

formats. The register fields in floating-point instructions specify floating point reg-

isters implicitly as the sources for all operations. This prevents integer operands

being used in floating-point operations and vice versa, except after explicit con-

version. Double precision quantities are beyond the scope of this example and

are not considered further. In any implementation, the IEEE standard 754 for

floating point would be used.

Logical Operations

A set of logical operations perform bitwise boolean operations - not, and, inclu-

sive and exclusive or - on the contents of scalar registers. The rotation operation

performs a left rotation of the contents of a scalar register, the number of places

to be shifted being specified as a 5-bit immediate operand in the instruction. This

is another example of instruction set economy, as many more complex instruction

sets provide separate instructions to perform rolls, logical shifts and arithmetic

shifts in both directions. These can all be accomplished using rotation in conjunc-

tion with setting or clearing of appropriate bits.

Chapter 5. A Context Flow Processor
	 120

Control Operations

The only instructions which explicitly reference memory are the load and store

operations. Again, the variant field is used to specify the type of the operand,

scalar or floating-point, to be referenced. Transfer of data between registers of

the same type is performed by the move instruction. The two unconditional con-

trol transfer instructions perform the same function, but use their operand from

different sources, the unconditional branch using an 11-bit immediate offset, and

the unconditional jump, the contents of a register. This is also the case for the

branch and jump to subroutine instructions. The conditional branch uses status

information from the execution of the previous instruction to determine whether

the branch is taken.

5.3 Processor Architecture

The architecture of Rogers and Topham [1990] is used as a starting point for

the CF processor design. The context flow processor architecture is divided into

three main parts - the execution, control and memory pipelines. The execution

pipeline contains the instruction decoding unit, the register file, and the ALU; the

control pipeline contains status registers and program counters; and the memory

pipeline contains either the memory unit or a network interface, depending on the

application of the processor. The overall architecture of the processor is shown in

the context flow graph of Figure 5-2.

5.3.1 Execution Pipeline

The execution pipeline consists of three main units - the thread issue unit (TIU),

the register file (RF) and the arithmetic unit (ALU). The execution pipeline per-

ALU Output

Chapter 5. A Context Flow Processor
	

121

Thread Issue 	 Multiplication Unit

Figure 5-2: Architecture of the CF Processor in context flow graph form

Chapter 5. A Context Flow Processor 	 122

forms instruction decoding and issue, operand fetch and evaluation for each in-

struction. Thread issue is performed in a single node; the register file is imple-

mented by a single transformation node with a shared access interface, as both

operand fetch and result storage context streams require access to the registers;

and the ALU is implemented as three separate pipelines, performing multipli-

cation, reciprocation and other floating-point operations, and scalar operations

respectively.

Threads and Instruction Decoding

Instruction decoding is performed in the thread issue unit, where instructions

are converted from their external format, as shown in Figure 5-1, to an internal

format called a thread. A thread is on Lbit quantity in which the value of each bit

corresponds to the path which the context containing the instructions is to take

at each branch node. Threads, therefore, define the flow of a context through the

processor. Given an instruction, the TIU produces a 6-bit function specifier which

explicitly encodes any variants, two 4-bit register identifiers and an access mode

bit, which are passed along with a 6-bit process identification tag to the register

file.

Register File

The register file contains 2016 registers, of which 32 are accessible to any one pro-

cess. The register space of each process is distinct, preventing one process writing

to a register belonging to another process and ensuring no unintended interactions.

In addition to the general purpose registers, a set of 32 read-only registers, which

contain commonly-used constants such as 0, 1, —1,ir etc., are shared between the

processes. These are used to provide the immediate mode constants specified in

instructions. The register file uses the signals from the TIU and yields two 32-bit

inputs to the ALU.

Chapter 5. A Context Flow Processor
	 123

Arithmetic Unit

The organization of the arithmetic unit is based on that of the Motorola 88100,

with three separate evaluation pipelines. The multiplication pipeline performs

both floating-point and integer multiplication and requires three stages. The other

floating-point operations - addition, subtraction, reciprocation and comparison

together with integer reciprocation, are performed in the arithmetic pipeline

which is also three stages long. All other instructions pass through the scalar

pipeline which implements integer addition and subtraction and the logical oper-

ators. The ALU is connected to the register file by means of a branch node which

routes the contexts to the appropriate evaluation pipeline, and provides a 32-bit

result and sign, zero and carry status bit to be used in the control and memory

pipelines.

5.3.2 Control Pipeline

All instructions commence evaluation by passing through the execution pipeline.

The next stage in processing is determined by the nature of the instruction -

either progressing directly to the control pipeline, or, in the case of load and store

instructions, firstly to the memory and then to the control pipeline. There are

three main components of the control pipeline - the status register unit (SRU)

and the instruction pointer unit (IPU), each implemented in a single node, and

the result storage unit which connects to the register file.

Status Register Unit

The status register unit contains one register for each process to hold the condition

codes generated by the ALU. These are then used during execution of conditional

branch instructions to determine the increment required to create the new target

address, this calculation also being performed in the SRU.

Chapter 5. A Context Flow Processor
	 124

Instruction Pointer Unit

The instruction pointer unit performs two functions. A pointer to the next pair of

instructions to be executed is maintained for each process. In the case of a control

transfer instruction, this value is either replaced or incremented by the output

from the SRU. The second task is to determine whether a new pair of instructions

is to be fetched from memory. If the instruction being evaluated is the first of the

current instruction pair, and is not a control transfer instruction, execution can

continue without accessing main memory. The appropriate bit in the thread is

then set to send the context back to the TIU. If a new instruction pair is required,

the context is routed to the memory pipeline.

Result Storage

The control pipeline has a connection to the register file in the execution pipeline

to allow a result from the ALU to be stored and the return address from subroutine

calls to be saved. The connection to the register file is made via the shared access

interface.

5.3.3 Memory Pipeline

The third of the pipelines in the context flow processor is the memory pipeline. Its

structure is sufficiently general to allow a variety of memory organizations to be

used with the processor in an integrated manner. The memory used in this design

is a linear array of 34-bit words, each with a 32-bit data field and a 2-bit tag to

identify the datum as either an instruction, a scalar quantity or a floating-point

quantity. The memory is attached to a single transformation node which performs

a limited amount of processing on the referenced datum - setting the thread bit to

route the context to the TIU if the datum is an instruction, or setting the condition

code flags in the case of a load instruction. Contexts containing load and store

Chapter 5. A Context Flow Processor 	 125

instructions are directed to the control pipeline, while others are returned to the

TIU to execute the next instruction.

5.4 Processor Performance

In order to determine the performance characteristics of the context flow proces-

sor, an architectural simulator was constructed and used to measure three aspects

of performance for a variety of test data. The three performance characteristics of

interest are processor utilization, total pipeline latency and instruction through-

put. After initialization, the model of the processor executes random instructions

whose relative frequencies parameterize the simulation. The proportion of the

total number of instructions which initiate control transfers is fixed at 24.2%, the

value determined by Lee and Smith [1984] after analysis of a large number of pro-

grams. Of the remaining instructions, the proportion of memory reference and

floating-point instructions is variable. During each measurement, the operation of

the processor was measured over a period of 2500 graph cycles.

5.4.1 Processor Utilization

Processor utilization is measured as the percentage of nodes in the context flow

graph representation of the processor which operate on a non-null context during

one graph cycle period. As the memory pipeline is an integral part of the processor,

the measured values of utilization include that of the memory.

Determining Average Utilization

Before any comparisons can be made between various simulations, a notion of

average utilization must be established, and an instruction mix to induce this

Chapter 5. A Context Flow Processor 	 126

must be determined. The ratio of infacyc to floating-point instructions was fixed

at 1:1 so as to exercise all parts of the graph, while the percentage of memory

reference instructions was varied between 0% and 100%. This was repeated for

processor loads of between 1 and 63 contexts. The graph of Figure 5-3 shows an

average utilization of approximately 50% for a memory access rate of 50%. The

instruction mix was 	fixed at 24.2% control transfers, 37.9% load/store

instructions, 18.95% floating-point instructions and 18.95% 'Miuye operations.

As can be seen from the graph of Figure 5-4(a), there is a linear relationship

between utilization and load, until the processor contains 18 active contexts. If

the load is increased further, utilization remains almost constant at approximately

50%. With more than 18 active contexts, a queue starts to form at the input to

the register file as different contexts attempt to read and write from registers.

For each write operation that is performed, a null context is sent to the ALU, by

virtue of the internal operation of the branch node connected to the output of the

register file, which eventually propagates through all eleven nodes of the ALU.

Although the same action takes place at all other branch nodes, their effects are

mitigated by the fact that they are almost immediately connected to merge nodes

which remove the excess null contexts.

5.4.2 Pipeline Latency

Pipeline latency is measured as the average number of graph cycles required to

execute an instruction. The graph in Figure 5-4(b) shows pipeline latency for

processor loads of between 1 and 63 contexts. Latency is virtually constant at

approximately 23 cycles per instruction for loads below 18 contexts. For greater

loads, the latency increases linearly, rising to 89.55 cycles for a load of 63 contexts.

This, again, is a consequence of context interaction in the queues of the merge

nodes.

20

Chapter 5. A Context Flow Processor
	 127

KII

10

ru

I 	 I 	 I 	 I

0% memory access

50% memory access

100% memory access

I 	 I 	 I

8 16 24 32 40 48 56 64
processes

Figure 5-3: Processor utilization v. load for varying memory access rates

10

90

80
50

'ZsI

10

Chapter 5. A Context Flow Processor INI

0 8 16 24 32 40 48 56 64
processes

(a)

.7

—I

.3

.2

D 8 16 24 32 40 48 56 64
processes

(C)

0 8 16 24 32 40 48 56 64
processes

(b)

I

36

32

28
0

8
24

20

16
0
0
8.

12

8

4 -

06-- 8 	16 	24 32 40 48 	56 	64
processes

(d)

Figure 5-4: Utilization, latency, throughput and instruction completion for in-

creasing processor load

Chapter 5. A Context Flow Processor
	 129

5.4.3 Instruction Throughput

Instruction throughput is measured as the average number of instructions which

are completed each graph period. An instruction is deemed to have completed

when its context leaves either the control pipeline or the memory pipeline, and

is routed to the thread issue unit. Throughput for a range of loads between 1

and 63 contexts is shown in Figure 5-4(c). As with utilization, throughput rises

linearly until the number of active processes causes the queue for access to the

register file to fill, after which it remains constant at about 0.67 instructions per

cycle. Throughput can also be expressed as the number of instructions which

are completed by a given process. This relationship is shown in the graph of

Figure 5-4(d).

5.4.4 Effects of Memory Latency on Processor Performance

The above results were achieved with a main memory of unit latency, all references,

whether read or write, being satisfiable in a single graph cycle. This, however, may

not always be the case, for example, if the processor was part of a multiprocessor

ensemble, the latency of the interconnection network must be taken into account

when deriving memory response time. The effects of increasing memory latency

from 1 up to 16 cycles are shown in Figures 5-5 to 5-8.

Processor Utilization

As the memory of the context flow processor is pipelined, the effect of increasing

memory latency is to lengthen the processor pipeline. Accordingly, a greater

number of active contexts are required to saturate the processor. This is illustrated

in the graph of Figure 5-5 by the decreasing gradient in the area of the graph

exhibiting linearity. As the memory is considered an integral part of the processor

pipeline, the addition of a linear section of pipeline which is kept mostly full results

IiI

20

Chapter 5. A Context Flow Processor
	 130

jI

10

1!

I 	 I

memory latency 1

memory latency 2

memory latency 4

• memory latency 8

memory latency 16

I 	 I 	 I 	 I 	 I

"0 8 16 24 32 40 48 56 64
processes

Figure 5-5: Processor utilization v. load for increasing memory latency

Chapter 5. A Context Flow Processor 	 131

in an increase in the percentage processor utilization. This is also confirmed in

Figure 5-5.

Pipeline Latency

For the same reasons that processor utilization increases, so pipeline latency

also increases in direct proportion to memory latency, as shown in Figure 5-

6. Increased latency is initially compensated by the increased capacity of the

pipeline, which allows the, albeit higher, latency to be sustained at a constant

level for a greater load before rising linearly. The result of this is that pipeline

latency becomes independent of memory latency, providing the processor load is

sufficient, making remote memory references in a multiprocessor system no more

expensive than local memory references.

Instruction Throughput

The effects of memory latency on instruction throughput are similar to those on

processor utilization. For a lightly loaded processor, the reduction in throughput is

marked, as shown in Figure 5-7. For 16 active contexts, the throughput is reduced

from 0.60 instructions per graph period for a memory latency of 1, to 0.41 for a

memory latency of 16 - a reduction of over 30%. Again, the increased capacity

of the pipeline compensates, and for a heavily loaded processor, the throughput

is independent of memory latency. The number of completed instructions per
perCcUL

processjkfollows a similar trend, as shown in Figure 5-8.

0)
QL

30

Chapter 5. A Context Flow Processor
	 132

20 I-

memory latency l

memory latency 2

10 I-
	 memory latency 4

memory latency 8

memory latency 16

0 1 	 I
0 8 16 24 32 40 48 56 64

processes

Figure 5-6: Pipeline latency v. load for increasing memory latency

Chapter 5. A Context Flow Processor
	

133

.7

0

memory latency l

memory latency 2

memory latency

memory latency 8

memory latency 16

8 16 24 32 40 48 56 64
processes

Figure 5-7: Instruction throughput v. load for increased memory latency

Chapter 5. A Context Flow Processor
	 134

IiI

CO
w
0 36
><

32
ci)
0
C)
ci)
a
CO 28
ci)
0
0

QL

E

E 12
0
0

memory latency 1

memory latency 2

memory latency 4

memory latency 8

memory latency 16

8

4

0
0 	8 16 24 32 40 48 56 64

processes

Figure 5-8: Instruction completion v. load for increased memory latency

Chapter 5. A Context Flow Processor 	 135

5.5 Design Alternatives

The aim of context flow is to create architectures which combine maxi.(pipeline

utilization, after initial filling, with a throughput of one instruction per cycle.

Individually, the elements of the context flow processor are capable of sustaining

such a performance, therefore their interaction must be the source of the measured

degradation.

5.5.1 Register File Access

The ALU, status register unit, instruction pointer unit and memory are indi-

vidually able to sustain an instruction completion rate of one per graph period,

providing their inputs are a continuous stream of non-null contexts. In contrast

however, the register file can only sustain a completion rate of 0.5 instructions per

cycle. This is due to its outputs being derived from the outputs of a branch node,

at least one of which passes a null context every cycle. Although the output which

feeds the execution pipeline is connected via a merge node, insufficient contexts

arrive at the other input to this merge node to allow a non-null context to enter

the ALU each cycle. Therefore, the throughput of the ALU is, on average, halved

as a result of being connected to the register file.

The register file also acts as a bottleneck. As approximately 70% of the in-

structions require both read and write access to the register file, its position in the

pipeline exacerbates the problem, with almost complete instructions competing

with newly issued instructions for access to the registers. This is illustrated in the

graphs of Figures 5-9(a)—(d) showing the maximum queue lengths and theoreti-

cally predicted limits at each merge node as the processor load is raised. As the

load is increased, the theoretical limit is constant for all queues, except the RF

Input queue where one input stream includes the queue in the merge node where

Chapter 5. A Context Flow Processor

,osl.to,laine4
fir—ficol 11IR 	 *m.om&lm Hm,t

70

5

60

r
40

E

E30

4

E

E

2

10

0 8 16 24 32 40 48 56 64
processes

(a)

Oil
0 8 16 24 32 40 48 56 64

processes

(b)

Co,ho4 frt 	 mmmomm.o.y,pt
thOetico4 limit 	 10

	------------- 	tmmldImn4t

S 	
9

8

4

CD

	

E

E
	

E 4

2

3

2

Th 8 16 24 32 40 48 56 64 	 Th 8 16 24 32 40 48 56 64
processes 	 processes

(C) 	 (d)

Figure 5-9: Maximum queue lengths v. processor load for the CF processor

Chapter 5. A Context Flow Processor 	 137

initialization occurs. The simulated maximum lengths for all queues are below

their predicted theoretical maxima.

The design of the register file is in strict accordance with the rules of context

flow which prohibit the sharing of memory between nodes. If this restriction

is relaxed, the bottleneck can be removed. As each process accesses a separate

register space, and has only one context, the memory containing the register file

can safely be shared between a transformation node in each of the execution and

control pipelines, without the risk of read/write conflicts. The use of a dual-

ported register file shared between the execution and control pipelines results in

an improvement in utilization of 20%, as can be seen from the graph of Figure 5-

10. More dramatic, however, is the improvement in throughput, which becomes

constant at close to one instruction per cycle, as shown in Figure 5-11.

On a macroscopic scale, óo% utilization is both achievable and sustainable, if

utilization of functional units rather than individual nodes is measured. Each of

the major architectural units of the processor contains at least one active context

per cycle, although not all of its constituent nodes may be active concurrently.

On a microscopic scale, it is unrealistic to expect sustainable total utilization for

anything other than this simplest of linear pipelines. In more complex structures,

peak utilization of 100% is possible, but only for short periods. In the context

flow processor, total utilization at the node level cannot be achieved, as no more

than three non-null contexts may be in the ALU concurrently - a consequence of

the operation of the branch nodes which decode the function on entry to the unit.

5.5.2 Instruction Size

The length of instruction is determined by several factors - the size of the in-

struction set, the number of addressing modes or instruction variants, and whether

a 2-address or 3-address format is used. The choice of a small set of 28 instruc-

138 Chapter 5. A Context Flow Processor

70

ME

50

MIR

20

10

0
0 8 16 24 32 40 48 56 64

processes

Figure 5-10: Processor utilization v. load for CF processor with dual-port reg-

ister file

Chapter 5. A Context Flow Processor
	

139

1.0

.9

.8

--

Ingle port, memory latency 1

dual port, memory latency 1

dual port, memory latency 2

dual port, memory latency 4

dual port, memory latency 8 	-

dual port, memory latency 16

I 	 I 	 I 	 I 	 I

8 16 24 32 40 48 56 64
processes

Figure 5-11: Throughput v. load for CF processor with dual-port register file

Chapter 5. A Context Flow Processor 	 140

tions, two addressing modes and a 2-address format allows instructions for the

CF processor to be encoded in 16 bits. There are two main benefits to a 16-bit

instruction size:

instructions can be fetched in pairs from memory, reducing the memory

access rate,

e instructions can be decoded more easily, and therefore more quickly.

If the instructions are longer than 16 bits, with 32-bit instructions being the

only sensible alternative, a new instruction has to be fetched every cycle. This

has an adverse effect on performance, as can be seen from Figures 5-12 and 5-13.

Throughput drops by nearly 30%, and pipeline latency is not only higher but

also increases more rapidly, if dual-cycle is replaced by single-cycle instruction

fetching.

However, a 16-bit instruction length does have disadvantages:

the ability to specify immediate data within an instruction is severely limited,

• 	the flexibility in register usage of a 3-address format cannot be achieved,

maintaining the same format for all instructions is difficult if operand deno-

tation is not to be compromised.

In the CF processor, only the bra, bsr and rot instructions have immediate operands,

and, in the case of the branch instructions, the size of encodable operand is small.

The constant registers provide an elegant solution in certain circumstances, but if

a particular constant value is not available in those registers then it must either

be loaded from memory having been placed at a specific address by an assembler,

or loaded from the context as the second of the pair of operands. In the latter

Chapter 5. A Context Flow Processor
	 141

1

.9

.8

0)
o .7
0

C
0
4-
0
5-

.4—
U)
C
4—
a.
-c
0)
3
2 .4
-c
-4—

.3

.2

.1

n

I 	 I

V 	 - -C

0

I

0

0

4

I

4

'4

Harvard architecture

ll' 	
------ 	dud port, dual fetch

dual port, single fetch

single port, dud fetch

4

I 	 I 	 I

8 16 24 32 40 48 56 64
processes

Figure 5-12: Throughput v. load for CF processor with single instruction fetch

and Harvard architecture

70
C
0
C-)

ao

50

40 a)
C
a)
Q-
a 30

20

10

Chapter 5. A Context Flow Processor
	 142

dud port, single fetch

dual port, dudfetch

Ell 	- - - - -. - - - - dud port, dud fetch, average execution time

Harvard architecture

Harvard architecture, average execution time

0' 	 I
0 8 16 24 32 40 48 56 64

processes

Figure 5-13: Pipeline Latency v. load for CF processor with single instruction

fetch and Harvard architecture

Chapter 5. A Context Flow Processor 	 143

case, insertion of noop instructions or delayed branching would be required to en-

sure correct alignment of an instruction and its immediate operand. Unlike other

processors with a 3-address instruction format, for example, the Motorola 88100

and the CDC 6600, a scoreboard would not be required in the CF processor, as

no data dependencies can arise. With the need to provide operating system and

exception support in any practical implementation, a larger instruction set would

be required.

By separating the data and instruction memories, thus creating a Harvard-type

architecture for the context flow processor as shown in Figure 5-14, a substantial

improvement in performance can be achieved, even fetching an instruction every

cycle. Single instruction-fetching requires a queue between the instruction mem-

ory and thread issue units to hold contexts when the processor load is greater than

the capacity of the graph. The same function was performed by a merge node con-

nected to the TIU in the dual-cycle instruction fetch architectures. Figures 5-12

and 5-13 provide a comparison between the Harvard architecture and the other

architectures with a memory latency of one cycle per reference. The major differ-

ence between the Harvard-type and the dual-port, dual fetch architectures is in

the average length of time required to execute an instruction. This is measured as

the time between a context entering the TIU and leaving the instruction memory

unit. Figure 5-13 also shows average execution times for both architectures. In

the Harvard architecture, execution time remains constant when processor load is

increased beyond the intrinsic capacity of the graph, the corresponding increase

in pipeline latency therefore being solely attributable to the additional time spent

by each context in the issue queue. Average execution time for the dual-port,

dual fetch architecture is not only higher, but also fluctuates, due to interaction

between the instruction-fetch and data-fetch streams in the memory pipeline. The

constant nature of the pipeline latency illustrates the smoothing effect that the

queues in the merge nodes have on system performance. The Harvard architecture

ry

ALU Output

Chapter 5. A Context Flow Processor
	

144

Multiplication Unit

Figure 5-14: CF processor with Harvard architecture and dual-port register file

in context flow graph form

Chapter 5. A Context Flow Processor 	 145

is significantly easier to implement as the maximum queue lengths in the merge

nodes are small - the longest queue being required at the ALU output which

must hold four contexts.

Summary

An analysis of the performance of the original context flow processor design iden-

tified several changes to the design which result in improved throughput and re-

duced pipeline latency. Although CF theory predicts throughput of one context

per graph cycle and 100% graph utilization, it is difficult to achieve this in prac-

tice. Throughput can be maximised by reducing interaction of context streams to

a minimum. Introduction of branch and corresponding merge nodes results in a

two-fold performance penalty being paid - utilization being reduced as a result

of the creation of null contexts, and latency being increased, if loading is such that

contexts require to be queued in merge nodes.

The processor architecture exhibiting the best performance is the Harvard-

type architecture, with separate instruction and data memories. This separation

reduces much of the interaction, and hence delay, associated with accessing exter-

nal memory. It also allows instruction size to be increased to 32 bits, providing a

more flexible and powerful instruction set while still retaining a fixed, easily de-

coded format. Introduction of a dual-ported register file removes the other major

bottleneck from the pipeline. The remaining merge nodes have small maximum

queue lengths - 1,4 and 2 for the register file read output, ALU output and

control input queues respectively 	making for compact implementation.

'It is quite a three-pipe problem."

- SHERLOCK HOLMES, The Red-Handed League

Chapter 6

Implementation, Application and Development

A new architectural design technique which eliminates the sources of

discontinuities from pipelines has been presented, both in a theoretical

form, allowing certain properties of resulting designs to be proved; and

in the form of practical examples, allowing the performance of these

designs to be measured. This Chapter tackles three further aspects of

context flow design. Issues concerning the practical implementation

of context flow structures are discussed. Using some of the experi-

ence gained in the design of context flow structures, some possible

applications for context flow are presented - both in general terms,

highlighting situations where context flow is particularly suitable and

unsuitable; and in real cases where the application of context flow may

be especially productive. Some possible directions for future work are

outlined.

146

Chapter 6. Implementation, Application and Development 	 147

6.1 Implementation Issues

For a number of reasons, the ideal method for the implementation of context

flow structures is using VLSI techniques. The organization of both context flow

graphs and VLSI circuits is similar in that they both consist of simple elements -

core nodes and leaf cells respectively - connected to give the device the required

operation. The design process is also similar, being performed upwards from the

simplest level in a hierarchical manner. Many of the nodes in a context flow graph

essentially perform the same operation. For example, merge nodes differ only in

the size of queue, and branch nodes, in the test condition. Therefore, a VLSI

implementation of these nodes could be parameterized and incorporated in an

application specific integrated circuit (ASIC) or standard cell design procedure.

A major limiting factor in the implementation of context flow systems is the

size of the contexts. Although context flow theory allows contexts to be split into

static and dynamic parts, the dynamic part can still be potentially very large.

Consider, for example, the processor design in Chapter 5. The process identifier

must circulate to each node in order to allow recombination of the static and

dynamic contexts - to support 63 processes and the null context requires a 6-

bit pathway to each node. The instructions and their operands flow through the

pipeline together, increasing the width of the data path to 96 bits in places. Careful

analysis of the algorithm being implemented by the graph is required to limit the

quantity of data which must transferred between nodes. This aspect of context

flow design underlines the desirability of a VLSI solution as implementation using

discrete components would necessitate large inter-chip data transfers. Reduction

of the number of pins on an integrated circuit package was one of the motivations

for Kaminsky and Davidson [1979] in their early work on multiple instruction

stream pipelines.

Chapter 6. Implementation, Application and Development 	 148

Partitioning the context into static and dynamic segments introduces another

problem, when access to statically held data is required at more than one point

in the graph. This is illustrated in the design of the register file of the processor

in Chapter 5. The original design, which adhered strictly to the rules of the

context flow model, proved to be inefficient, creating a large bottleneck in the

pipeline. Relaxation of the rule prohibiting the sharing of memory between nodes

allowed the bottleneck to be removed. In this particular instance there can be no

conflicting access to the memory, but this may not always be the case. Care must

therefore be taken if similar decisions are made to share a memory between two

or more parts of a pipeline.

6.2 Applications of Context Flow

By maintaining effective use of existing resources as one of its central tenets,

context flow achieves improved performance without changing the nature of the

problems which may be solved by a given architecture. That is not to say that

special purpose context flow machines cannot be designed, merely that context

flow maintains generality of purpose.

Context flow structures achieve their improved performance over conventional

designs as a consequence of improved pipeline utilization created by sharing the

hardware between several concurrent processes. Consider, again, the context flow

processor of Chapter 5. Although the time required to execute all the instructions

of a given process is liable to be greater than if the process were executed on a

single instruction stream pipeline, the total time to execute all instructions from all

processes is less as the throughput of the context flow processor is constant. This,

however, does require that such a processor be kept as close to being fully-loaded as

possible. As with many other parallel architectures, context flow structures do not

perform well when executing code with cannot be divided into sufficient parallel

Chapter 6. Implementation, Application and Development 	 149

tasks. The existence of a hardware limit on the number of concurrent active

processes may place restrictions on the suitability of some types of problems for

context flow implementation.

Increased memory latency, whether as a result of the memory being located

on the other side of an interconnection network, or simply slower than the graph

cycle time, is compensated by a rise in the capacity of the pipeline. If sufficient

parallel processes can be generated, the physical location of the memory in a

multiprocessor system becomes unimportant, with the latency of all non-local

memory access being dependent on topology of the network. The construction of

context flow graphs from simple nodes with well defined behaviours, coupled with

the similarity between graphs and algorithmic flow charts, provides for the rapid

design of context flow systems. The removal of the need for specialized branch

prediction hardware greatly simplifies the implementation of context flow designs.

Two particular areas which can make use of the features provided by a con-

text flow device are real-time and graphics systems. In real-time applications, the

sustainable and constant throughput offered by context flow is of great impor-

tance, offering a guarantee of system performance. For purposes such as process

monitoring and data gathering, context flow would be ideal, allowing each sensor

to be serviced by its own context. A lightly loaded real-time CF system could

also guarantee response times limited only by the size of the graph. In graphics

applications, windows, icons and pointers could also be mapped individually on to

separate contexts, reducing the software overhead associated with switching tasks.

Chapter 6. Implementation, Application and Development 	 150

6.3 Future Research

The next step in the development of context flow is the implementation of a

context flow processor. While the designs and simulations described in Chapter 5

will provide a starting point for an implementation, several deficiencies require

correction in order to produce a viable design.

Completion of the instruction set - If the Harvard architecture is to be

adopted, a 32-bit instruction length can be used, in which case adaptation

of an existing instruction set, such as the Motorola 88100 or the MIPS R3000,

would be sensible.

User and supervisor modes - In order to provide operating system support,

some notion of privilege is required, together with the creation of separate

user and supervisor modes of operation.

Support for handling exceptions and an indivisible test&set instruction for

the implementation of synchronization primitives are required.

Even after inclusion of these features, implementation of the processor on a single

VLSI chip should be feasible. If a 32-bit address size is used for both instruction

and data memories, up to 64 megabytes of real memory would be available for each

of the 63 active processes requiring 128 pins to connect to external memory devices.

Allocating up to 36 pins for connections to the power supply would still leave 16

pins in a 180-pin package for interrupts and other control and status signals. The

main limiting effect that the implementation will have on the architecture is on

the size of the register file, which will depend on the available area of silicon.

One possible area of investigation is the automatic synthesis of designs from

descriptions of context flow graphs. This would require the design of a library

Chapter 6. Implementation, Application and Development 	 151

of parameterized VLSI cells to implement merge nodes, branch node decision

mechanisms and a selection of transformation node functions. These cells could

then be composed using automatic routing generation or other silicon compilation

or assembly techniques to form VLSI implementations of context flow graphs.

"II n' existe pas de sciences appliquées, mais seulernen t

des applications de la science."

- LOUIS PASTEUR (1822-1895), Address, 11th September 1872,

Corn ptes render des tra va ux du Con grès viticole et séricicole de Lyon

References

[Barnes et at., 19681 G.H. Barnes, R.M. Brown, M. Kato, D.J. Kuck, D.L. Slot-

nick, and R.A. Stokes. "The ILLIAC IV computer". IEEE Trans. Comput.,

Vol. C-17, No. 8, pp. 746-57, Aug. 1968.

[Bell, 19891 G. Bell. "The future of high performance computing in science and

engineering". Comm. ACM, Vol. 32, No. 9, pp. 1091-1101, Sep. 1989.

[Brantley and Weiss, 19831 W.C. Brantley and J. Weiss. "Organization and ar-

chitecture trade-offs in FOM". In Proc. mt. Workshop on Comp. Sys. Organi-

zation, IEEE,(New Orleans, Mar. 29-31). IEEE Comp. Soc. Press, New York,

1983, pp. 139-145.

[Butner and Staley, 19861 S.E. Butner and C.A. Staley. "A RISC multiprocessor

based on circulating context". In Proc. 5th Ann. Phoenix Conf. Computers and

Communication, IEEE,(Phoenix, Arizona, Feb. 26-28). Mar. 1986, pp. 620-624.

[Butner, 19841 S. Butner. "The circulating context multiprocessor, An architec-

ture for reliable systems". In Proc. mt. Symp. Mini and Microcomputers. 1984,

pp. 50-52.

[Chen, 19711 T.C. Chen. "Parallelism, pipelining and computer efficiency". Com-

puter Design, Vol. 10, No. 1, pp. 69-74, Jan. 1971.

152

References 	 153

[Christman, 1984] D.P. Christman. "Programming the Connection Machine".

Technical Report ISL-81-3, Xerox Palo Alto Research Center, Apr. 1984.

[Darlington and Reeve, 19811 J. Darlington and M. Reeve. "ALICE—A multi-

processor reduction machine for the parallel evaluation of applicative lan-

guages". in Proc. ACM Conf. Functional Programming Lang. Comp. Arch.,

(Portsmouth, New Hampshire). 1981, pp. 65-75.

[Davis and Keller, 19821 A.L. Davis and R.M. Keller. "Data flow program

graphs". IEEE Computer, Vol. 15, No. 2, pp. 26-41, Feb. 1982.

[DeRosa and Levy, 1987] J.A. DeRosa and H.M. Levy. "An evaluation of branch

architectures". In Proc. 14th mt. Symp. Comp. Arch., ACM/ IEEE, (Pittsburgh,

PA., Jun. 2-5). IEEE Comp. Soc. Press, Washington D.C., June 1987, pp. 10-

16.

[Ditzel and McLellan, 19871 D.R. Ditzel and H.R. McLellan. "Branch folding in

the CRISP microprocessor: Reducing branch delay to zero". In Proc. 14th mt.

Symp. Comp. Arch., ACM/IEEE,(Pittsburgh, PA., Jun. 2-5). IEEE Comp. Soc.

Press, Washington D.C., June 1987, pp. 2-9.

[Ditzel et al., 19871 D.R. Ditzel, H.R. McLellan, and A.D. Berenbaum. "The

hardware architecture of the CRISP microprocessor". In Proc. 14th mt. Symp.

Comp. Arch., ACM/IEEE,(Pittsburgh, PA., Jun. 2-5). IEEE Comp. Soc. Press,

Washington D.C., June 1987, pp. 309-319.

[Farmwald, 19841 P.M. Farmwald. "The 5-1 Mark Il-A supercomputer". In J.S.

Kowalik, Ed., High Speed Computation, pp. 145-55. Springer-Verlag, Berlin,

1984. NATO ASI Series F: Comp. and Sys. Sci. Vol. 7.

[Feng, 1981] T-y. Feng. "A survey of interconnection networks". IEEE Computer,

Vol. 14, No. 12, pp. 12-27, Dec. 1981.

References 	 154

[Flynn and Podvin, 1972] M.J. Flynn and A. Podvin. "Shared resource multipro-

cessing". IEEE Computer, Vol. 5, No. 2, PP. 20-28, Mar./Apr. 1972.

[Flynn, 19721 M.J. Flynn. "Some computer organizations and their effectiveness".

IEEE Trans. Comput., Vol. C-21, No. 9, pp. 948-960, Sep. 1972.

[Goodman et al., 1985] J.R. Goodman, J-t. Hsieh, K. Liou, A.R. Pleszkun, P.B.

Schechter, and H.C. Young. "PIPE: A VLSI decoupled architecture". In Proc.

12th mt. Symp. Comp. Arch., ACM/IEEE,(Boston, Mass., Jun. 17-19). IEEE

Comp. Soc. Press, Washington D.C., June 1985, pp. 20-27.

[Gottlieb et al., 1983] A. Gottlieb, R. Grishman, C.P. Kruskal, K.P. McAuliffe,

L. Rudolph, and M. Snir. "The NYU Ultracomputer—Designing an MIMD

shared memory parallel computer". IEEE Trans. Comput., Vol. C-32, No. 2,

Pp. 175-189, Feb. 1983.

[Gregory and McReynolds, 19631 J. Gregory and R. McReynolds. 	"The

SOLOMON computer". IEEE Trans. Electronic Comput., Vol. 12, No. 6,

pp. 774-781, Dec. 1963.

[Hayes et al., 19861 J.P. Hayes, T. Mudge, Q.F. Stout, S. Colley, and J. Palmer.

"A microprocessor-based hypercube supercomputer". IEEE Micro, Vol. 6,

No. 5, pp. 6-17, Oct. 1986.

[Haynes et al., 1982] L.S. Haynes, R.L. Lau, D.P. Siewiorek, and D.W. Mizell. "A

survey of highly parallel computing". IEEE Computer, Vol. 15, No. 1, pp. 9-24,

Jan. 1982.

[Hennessy et al., 19821 J. Hennessy, N. Jouppi, J. Gill, F. Baskett, A. Strong,

T. Gross, C. Rowen, and J. Leonard. "The MIPS machine". In Proc. 9th mt.

Symp. Comp. Arch., ACM/ IEEE, (Austin, Texas, Apr. 26-29). IEEE Comp.

Soc. Press, Washington D.C., 1982, Pp. 2-7.

References 	 155

[Hillis, 19851 W.D. Hillis. The Connection Machine. Series in Artificial Intelli-

gence. The MIT Press, Cambridge, Mass., 1985. ISBN 0-262-08157-1.

[Hoare, 1985] C.A.R. Hoare. Communicating Sequential Processes. Series in Com-

puter Science. Prentice-Hall International, London, 1985. ISBN 0-13-153289-8.

[Hockney, 1987] R.W. Hockney. "Classification and evaluation of parallel com-

puter systems". In R. Dierstein, D. Müller-Wichards, and H-M. Wacker,

Eds., Parallel Computing in Science and Engineering. Proc. 4th mt. Seminar

on Foundations of Engineering Sciences, DFVLR,(Bonn, F.R.G., Jun. 25-26).

Springer-Verlag, Berlin, 1987, pp. 13-25. Published as Springer-Verlag Lecture

Notes in Computer Science Vol. 295.

[Hopfield, 1979] J.J. Hopfield. "Neural networks and physical systems with emer-

gent collective computational abilities". Proc. Nat. Acad. Sci. U.S.A., Vol. 79,

pp. 2554-2558, 1979.

[Horowitz and Zorat, 19811 E. Horowitz and A. Zorat. "The binary tree as an

interconnection network: Applications to multiprocessor systems and VLSI".

IEEE Trans. Comput., Vol. C-30, No. 4, pp. 247-253, Apr. 1981.

[Hwang and Briggs, 1984] K. Hwang and F.A. Briggs. Computer Architecture

and Parallel Processing. Series in Computer Organization and Architecture.

McGraw-Hill, New York, 1984. ISBN 0-07-031556-6.

[lanucci, 19881 R.A. lanucci. "Toward a dataflow/von Neumann hybrid architec-

ture". In Proc. 15th mt. Symp. Comp. Arch., ACM/IEEE,(Honolulu, Hawaii,

May 30—Jun. 2). IEEE Comp. Soc. Press, Washington D.C., 1988, pp. 147-153.

[Ibbett, 19821 R.N. Ibbett. The Architecture of High Performance Computers.

Computer Science Series. Macmillan, 1982. ISBN 0-333-33231-8.

References 	 156

[Intel Corporation, 1989] Intel Corporation. "i860 64-bit microprocessor". Tech-

nical Documentation 240296-001, 1989.

[Jensen, 19781 C. Jensen. "Taking another approach to supercomputing". Data-

mation, Vol. 24, No. 2, pp. 159-75, 1978.

[Johnson, 19881 E.E. Johnson. "Completing an MIMD multiprocessor taxon-

omy". ACM SIGARCH Comp. Arch. News, Vol. 16, No. 3, pp. 44-47, June

101-41-11

[Jordan, 19851 H.F. Jordan. "HEP architecture, programming and performance".

In J.S. Kowalik, Ed., Parallel MIMD Computation: HEP Supercomputer and its

Applications, ch. 1, pp. 1-40. The MIT Press, Cambridge, Mass., 1985. ISBN

0-262-11101-2.

[Kaminsky and Davidson, 1979] W.J. Kaminsky and E.S. Davidson. "Developing

a multiple-instruction-stream single-chip processor". IEEE Computer, Vol. 12,

No. 12, pp. 66-76, Dec. 1979.

[Katevenis, 19851 M.G.H. Katevenis. Reduced Instruction Set Computer Archi-

tectures for VLSI. The MIT Press, Cambridge, Mass., 1985. ACM Doctoral

Dissertation Award 1984.

[Kohn and Margulis, 1989] L. Kohn and N. Margulis. "Introducing the Intel i860

64-bit microprocessor". IEEE Micro, Vol. 9, No. 4, pp. 15-30, Aug. 1989.

[Krishnamurthy, 1989] E.V. Krishnamurthy. Parallel Processing - Principles

and Practice. International Computer Science Series. Addison-Wesley, 1989.

[Kuck et al., 19871 D.J. Kuck, E.S. Davidson, D.H. Lawrie, and A.H. Sameh.

"Parallel supercomputing today and the Cedar approach". In J.J. Dongarra,

References
	 157

Ed., Experimental Parallel Computer Architectures, ch. 1, PP. 1-23. North-

Holland, Amsterdam, 1987. Special Topics in Supercomputing, Volume 1. ISBN

0-444-70234-2.

[Lawrie, 19751 D.H. Lawrie. "Access and alignment of data in an array processor".

IEEE Trans. Comput., Vol. C-24; No. 12, pp. 1145-1155, Dec. 1975.

[Lee and Smith, 1984] J.K.F. Lee and A.J. Smith. "Branch prediction strategies

and branch target buffer design". IEEE Computer, Vol. 1, No. 1, PP. 7-22, Jan.

1984.

[Lilja, 19881 D.J. Lilja. "Reducing the branch penalty in pipelined processors".

IEEE Computer, Vol. 21, No. 7, pp. 47-55, July 1988.

[McFarling and Hennessy, 19861 S. McFarling and J. Hennessy. "Reducing the

cost of branches". In Proc. 13th Ann. Symp. Comp. Arch., IEEE/ACM,(Tokyo,

Japan). IEEE, 1986, pp. 396-403.

[Melear, 1989] C. Melear. "The design of the 88000 RISC family". IEEE Micro,

Vol. 9, No. 2, pp. 26-38, Apr. 1989.

[Motorola Inc., 19881 Motorola Inc. "MC88100 RISC microprocessor user's man-

ual". Technical Documentation MC88100UM/AD, 1988.

[Nilchil and Arvind, 19891 R.S. Nikhil and Arvind. "Can dataflow subsume

von Neumann computing?". 	In Proc. 16th mt. Symp. Comp. Arch.,

ACM/IEEE,(Jerusalem, Israel, May 28-Jun. 1). IEEE Comp. Soc. Press, Wash-

ington D.C., 1989, pp. 262-272.

[Pease, 1977] M.C. Pease. "The indirect binary n-cube microprocessor array".

IEEE Trans. Comput., Vol. C-26, No. 5, pp. 458-473, May 1977.

References 	 158

[Peyton Jones, 1987] S.L. Peyton Jones. The Implementation of Functional Pro-

gramming Languages. Series in Computer Science. Prentice-Hall International,

London, 1987. ISBN 0-13-453325-9.

[Pfister et al., 1985] G.F Pfister, W.C. Brantley, D.A. George, S.L. Harvey, W.J.

Kleinfelder, K.P. McAuliffe, E.A. Melton, V.A. Norton, and K.P. Weiss. "The

IBM research parallel processor prototype (RP3): Introduction and architec-

ture". In Proc. mt. Conf. Parallel Processing, IEEE,(Chicago, Ill.). 1985, pp.

764-771.

[Preparata and Vuillemin, 1981] F.P. Preparata and J. Vuillemin. "The cube-

connected cycles: A versatile network for parallel computation". Comm. ACM,

Vol. 24, No. 5, pp. 300-309, May 1981.

[Radin, 19831 G. Radin. "The 801 minicomputer". IBM J. Res. Dev., Vol. 27,

No. 3, pp. 237-246, May 1983. Also in Proc. Symp. for Programming Languages

and Operating Systems, ACM SIGARCH Computer Architecture News, Vol. 10,

No. 2, Mar. 1982.

[Rarnamoorthy and Li, 1977] C.V. Ramamoorthy and H.F. Li. "Pipeline archi-

tecture". ACM Comput. Surv., Vol. 9, No. 1, pp. 61-102, Mar. 1977.

[Reisig, 19851 W. Reisig. Petri Nets - An Introduction, Vol. 4 of EATCS Mono-

graphs on Theoretical Comp. Sci. Springer-Verlag, Berlin, F.R.G., 1985.

[Rettberg and Thomas, 19861 R. Rettberg and R. Thomas. "Contention is no

obstacle to shared-memory multiprocessing". Comm. ACM, Vol. 29, No. 12,

pp. 1202-1212, Dec. 1986.

[Rogers and Topham, 1990] D.D. Rogers and N.P. Topham. "Implementing a

practical context flow machine". Dept. of Computer Science, University of

Edinburgh. Private communication, 1990.

References 	 159

[Shimizu et al., 1986] K Shimizu, E. Goto, and S. Ichikawa. 	"CPC Cyclic

Pipelined Computer—An architecture suited for Josephson and pipelined ma-

chines". Technical Report 86-19, University of Tokyo, Department of Informa-

tion Science, Nov. 1986.

[Sietz, 19851 C.L. Sietz. "The cosmic cube". Comm. ACM, Vol. 28, No. 1, pp. 22-

33, Jan. 1985.

[Skillk.orn, 19881 D.B. Skilikorn. "A taxonomy for computer architectures". IEEE

Computer, Vol. 21, No. 7, pp. 46-57, Nov. 1988.

[Smith, 19841 J.E. Smith. "Decoupled access/execute computer architectures".

ACM Trans. Comput. Syst., Vol. 2, No. 4, pp. 289-308, Nov. 1984. also in

Proc. 9th Ann. Symp. Comp. Arch., IEEE Comp. Soc./ACM, (Austin, Texas,

Apr 26-29), ACM, 1982, pp. 112-119.

[Smith, 19851 B. Smith. "The architecture of HEP". In J.S. Kowalik, Ed., Parallel

MIMD Computation: HEP Supercomputing and Its Applications, ch. 1, pp. 41-

55. The MIT Press, Cambridge, Mass., 1985. ISBN 0-262-11101-2.

[Staley and Butner, 19861 C.A. Staley and S.E. Butner. "A feasability study and

simulation of the circulating context multiprocessor CMMP". In K. Hwang,

S.M. Jacobs, and E.E. Swartzlander, Eds., Proc. 1986 mt. Conf. Parallel Pro-

cessing, IEEE,. 19-22 Aug. 1986, pp. 455-462.

[Thacker et al., 19821 C.P. Thacker, E.M. McCreight, B.W. Lampson, R.F.

Sproull, and D.R. Boggs. "Alto: A personal computer". In D.P. Siewiorek,

C.G. Bell, and A. Newell, Eds., Computer Structures: Principles and Exam-

ples, ch. 33, pp. 549-572. McGraw-Hill, Japan, 1982.

[Thornton, 19641 J.E. Thornton. "Parallel operation in the Control Data 6600".

In Proc. Fail Joint Comput. Conf., AFIPS,. 1964, pp. 33-40. also in D.P.

References
	 160

Siewiorek, C.G. Bell and A. Newell. Computer Structures - Principles and

Examples. ch. 43, pp. 730-742. McGraw-Hill, Tokyo. 1982.

[Tomasulo, 19671 R.M. Tomasulo. "An efficient algorithm for exploiting multiple

arithmetic units". IBM J. Res. Dev., Vol. 11, No. 1, pp. 25-33, Jan. 1967.

[Topham et al., 19881 N.P. Topham, A. Omondi, and R.N. Ibbett. "Context flow:

An alternative to conventional pipelined architectures". J. Supercomputing,

Vol. 2, No. 1, pp. 29-53, 1988.

[Watson, 19721 W.J. Watson. "The TI ASC - A highly modular and flexible

super computer architecture". In Proc. AFIPS Fall Joint Comp. Con!. 1972,

pp. 221-228.

[Weber and Gupta, 19891 W-D. Weber and A. Gupta. "Exploring the benefits

of multiple hardware contexts in a multiprocessor architecture : Preliminary

results". In Proc. 16th mt. Symp. Comp. Arch., ACM/IEEE,(Jerusalern, Israel,

May 28-Jun. 1). IEEE Comp. Soc. Press, Washington D.C., 1989, pp. 273-280.

[Wulf and Bell, 19721 W.A. Wulf and G.C. Bell. 	"C.mmp: A multi-mini-

processor". In Proc. Fall Joint Comput. Con!., AFIPS,. 1972, pp. 765-77. Vol.

42, Part 2.

Annotated Bibliography

Architecture

D G.S. Almasi, and A. Gottlieb.

Highly Parallel Computing.

Benjamin Cummings, Redwood City, CA., 1989.

Models and architectures for parallel processing, with detailed examples.

fl J.L. Hennessy and D.A. Patterson.

Computer Architecture - A Quantitive Approach.

Morgan Kaufman Publishers Inc., San Mateo, CA., 1990.

Thorough treatment of all aspects of modern computer architecture, with

emphasis on RISC architectures.

0 R.W. Hockney, and C.R. Jesshope.

Parallel Computers 2 - Architecture, Programming and Algorithms.

Adam Huger, Bristol, 1988.

Introduction to parallel computer architecture, with particular emphasis on

evolution of parallel computers, pipelining and multiprocessors.

El K. Hwang, and F.A. Briggs.

Computer Architecture and Parallel Processing.

McGraw-Hill, Singapore, 1985.

161

Annotated Bibliography
	 162

Introduction to parallel computer architecture, with particular emphasis in

pipelining, SIMD and MIMD architectures.

0 R.N. Ibbett.

The Architecture of High Performance Computers.

Macmillan, London, 1982.

Architectural aspects of high-performance uniprocessors, with extensive de-

scription of the Manchester MU5.

0 J.S. Kowalik.

Parallel MIMD Computation.

The MIT Press, Cambridge, Mass., 1985.

Architecture and performance of the Denelcor HER

O E.V. Krishnamurthy.

Parallel Procssing - Principles and Practice.

Addison-Wesley, Sydney, 1989.

Introduction to the principles of parallel processing from a more theorectcal

viewpoint.

0 G.J. Lipovski, and M. Malek.

Parallel Computing - Theory and Comparisons.

John Wiley & Sons, New York, 1987.

Theoretical treatment of interconnection networks, includes cases studies of

several current novel architecture projects.

0 D.P. Siewiorek, C.C. Bell, and A. Newell.

Computer Structures: Principles and Examples.

McGraw-Hill, Tokyo, 1982.

Extensive source of papers on early high-performance computer systems,

although now somewhat outdated.

Annotated Bibliography 	 163

0 H.S. Stone.

High-Performance Computer Architecture.

Addison-Wesley, Reading, Mass., 1987.

Design aspects of high-performance computer systems, with particular em-

phasis on memory design, pipelining and interconnection networks.

Theory

0 A. Gibbons.

Algorithmic Graph Theory.

Cambridge University Press, Cambridge, 1985.

Introduction to graph theory and complexity of graph algorithms.

El C.A.R. bare.

Communicating Sequential Processes.

Prentice-Hall, London, 1985.

Mathematical modelling of communication and concurrency.

El R. Milner.

Communication and Concurrency.

Prentice-Hall, London, 1989.

Mathematical modelling of communication and concurrency using the cal-

culus of communicating systems (CCS).

0 W. Reisig.

Petri Nets - An Introduction.

Springer-Verlag, Berlin, F.R.G. 1982.

The introduction to the theory of Petri nets.

Annotated Bibliography 	 164

Simulation

o M.H. MacDougall.

Simulating Computer Systems - Techniques and Tools.

The MIT Press, Cambridge, Mass., 1987.

Introduction to construction of statistical models and simulation of computer

systems.

(3691) IX 10fl 'tIOS SpJOJ I(IWN

AeL/1J LfJ 'w'Lc2U!qs/ef(./ SDU&Jd J.15 ol tpiedsi

(96cI—LocI) 3>1ViG SIJNVHI WS-

-/fjo/F awl aqj sp j i1c

p1js!u!J flq-lnojoqj aq it I!Wfl pua aqj OZUfl 2U!flU!1UO

qi jnq 'jew zeai2 Aue jo 2uiuui2q e aq Ism aiqj,,

