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Abstract 

Good computer architecture is, in many ways, very similar to good building ar-

chitecture. Its effectiveness can only be judged by the way in which the imple- 

mentation of the design - whether a computer or a building 	fulfils its given 

role. In computer architecture, this judgement is based on one criterion 	speed. 

In the best computers, speed is obtained by coupling the best current technology 

and materials with the best design. This Thesis presents a novel way in which to 

design pipelined computers. Speed is achieved by maximising the use of hardware 

resources to provide an environment in which many independent processes can 

execute, concurrently in a single system. The design method is called context flow. 

Two different facets of context flow are discussed. An underlying theory of 

context flow is established which is used to prove certain properties of context 

flow systems. These theoretical results show context flow machines to be imple-

meiltable. Using these results, a practical approach to the creation of context flow 

systems is presented, leading to the design and analysis of an example context flow 

processor. The result is an architectural design technique with a formal foundation 

which can be used to build efficient pipelined computers. 
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Preface 

This Thesis is concerned with the efficient implementation of pipelined computers. 

It presents a design technique called context flow, which overcomes a number of 

the inefficiencies of current pipelined systems by removing the source of these 

inefficiencies from the pipeline, rather than merely attempting to lessen the effects 

when they arise. This Thesis attempts to combine a theoretical foundation for 

context flow, with practical designs for pipelined context flow systems, to show 

context flow as an effective means of supporting multiple concurrent processes in 

a highly-pipelined environment. 

Chapter 1 argues the case for pipelining, as opposed to replication, as a means 

to exploit parallelism while retaining generality of purpose. The principles of 

pipelining are presented, together with existing solutions for the problems found 

in conventional pipelined systems. Chapters 2 presents a theoretical basis for 

context flow, which is developed in Chapter 3. Chapters 4 and 5 concern the 

implementation and performance of context flow systems, providing a collection 

of context flow versions of common architectural elements, and a design for a 

context flow processor. Chapter 6 discusses the implementation and applications 

of context flow systems and outlines directions for future research. 
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Chapter 1 

Introduction 

Many significant improvements in computer performance have been 

brought about through the application of technological advances. For 

example, improved integrated circuit processing techniques have al-

lowed denser and more complex very large scale integration (VLSI) 

devices to be fabricated, and materials research has yielded substrates 

such as gallium arsenide which can sustain faster switching speeds 

than silicon. Desires to increase performance still further, or to avoid 

the high costs associated with innovative technologies and materials, 

have prompted the search for methods to improve performance by non-

technological means. One area which has been particularly fruitful is 

the introduction of techniques to exploit parallel or concurrent activ-

ities in a computer system and thus allow existing resources to be 

utilized to the full. This chapter describes current methods which pro-

vide temporal and spatial solutions to the exploitation of parallelism, 

and presents some of the associated problems. 

1 
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1.1 Parallel Architectures 

Parallel processing can be defined as 

"an efficient form of information processing which emphasizes the ex-

ploitation of concurrent events in the computing process. Parallel 

events may occur in multiple resources during the same time interval; 

simultaneous events, at the same time instant; and pipelined events 

during overlapped time spans." 

[Hwang and Briggs, 1984] 

Parallelism can be introduced into a computer system by either hardware or soft-

ware means at a number of different levels. Software solutions predominate at 

higher levels of abstraction where parallelism is introduced either between jobs or 

programs by means of multiprogramming or time sharing of resources; or between 

procedures within the same program. Hardware mechanisms tend to be used to. 

extract parallelism at a lower level - either between instructions or within the 

execution cycle of a single instruction. Design of a parallel architecture is therefore 

a trade-off between the costs of software and hardware approaches. 

1.1.1 Classification of Parallel Architectures 

The above definition of parallel processing covers a diverse range of architectures, 

which need to be classified if meaningful comparisons of performance are to be 

drawn. Four characteristics commonly used to distinguish architectures are: 

Generality of purpose A general purpose machine attempts to provide a 

given level of performance across a wide spectrum of applications. Spe- 

cial purpose machines perform their designated task well, but other tasks 
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poorly or not at all, and often require the data either to be in a rigidly 

defined format or to be programmed in a particular type of language. 

Granularity The range of sizes of basic processing units at which a system 

performs most efficiently determines many other characteristics. A parallel 

system can be coarse-grained, consisting of a few complex processors; or 

fine-grained, containing hundreds or thousands of simple processors. 

Topology and reconfigurability The way in which processors are connected 

is important, as is the ease with which the interconnection pattern can be 

changed to suit a given algorithm. 

Coupling 	This feature describes the distribution of clock signals and the 1- 

cation of memory relative to the processing units. Tightly-coupled systems 

have a global shared memory, whereas in loosely-coupled systems, memory 

is distributed physically amongst the processors. 

Classification also serves to relate past and present architectural developments, 

and to aid clarification of design concepts. 

The diverse nature of parallel architectures has lead to the evolution of several 

design classification schemes. Flynn [1972] identifies four basic machine types, 

based on the characteristics of the instruction and data streams: 

Single Instruction Single Data (SISD) - a conventional uniprocessor in 

which each instruction operates on a single datum. 

Single Instruction Multiple Data (SIMD) - a single instruction specifies the 

operation to be applied to several data. 
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Multiple Instruction Single Data (MISD) - included largely for complete-

ness sake.'  

o Multiple Instruction Multiple Data (MIMD) - several instruction streams 

are processed simultaneously, each operating on its own data. 

This taxonomy is somewhat crude, as the SIMD and MIMD classifications each 

encompass machines with very different architectures. Under Flynn's scheme, the 

SIMD group includes vector processing machines, in which one instruction initiates 

operations on every element of a vector in turn; and array processors, in which 

a collection of processors operate synchronously on regular arrays of data under 

centralized control. Hockney [1987] differentiates these two very different groups 

as pipelined and replicated- SIMD, respectively. 

Skillicorn [1988] presents a more complete classification scheme, which sub-

sumes those of Flynn and Hockney. Twenty-eight machine classes are identified 

according to the number of instruction processors and data processors and their 

interconnection topology. This taxonomy covers most current architectural forms 

including graph reduction and data .flow machines, von Neumann uniprocessors, 

array processors, and a wide variety of multiprocessors. 

Johnson [1988] provides an alternative taxonomy for machines in Flynn's MIMD 

category, which allows distinctions to be drawn according to factors which are more 

pertinent from a programmer's point of view. Under this scheme, multiprocessor 

machines are divided into four classes: 

'Krishnamurthy [1989] cites pipelined systems as examples of MISD processing. How-

ever, it is somewhat tenuous to describe the stages in a pipeline as instruction streams. 

Flynn could offer no examples of a machine in this class. 
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Global Memory Shared Variable (GMSV). Machines in this class have a 

common memory, accessible at equal cost by each of the processors, and 

use shared variables to provide process synchronization. Examples include 

the New York Ultracomputer [Gottlieb et al., 19831, and the University of 

Illinois Cedar [Kuck et al., 1987]. 

Distributed Memory Shared Variable (DMSV). Machines in this class have 

memory modules connected to each processor, but which are globally acces-

sible via a common address space. An example of a DMSV architecture is 

the BBN Butterfly [Rettberg and Thomas, 19861. 

Distributed Memory Message Passing (DMMP). This class includes ma-

chines such as NCUBE [Hayes et al., 1986], in which each processor main-

tains its own address space and communicates with other processors across 

an interconnection network. 

Global Memory Message Passing (GMMP). This category completes the 

taxonomy, but contains few actual machines. Each process would have an 

isolated address space within a common memory. 

It is difficult to see the development of a classification scheme which can capture 

both architectural and operational aspects of all machines. Indeed, with Flynn's 

scheme in such widespread use, it seems likely that its ambiguities will be tolerated 

for some time to come. 

1.1.2 Exploitation of Parallelism in Uniprocessors 

Several improvements, both architectural and in software, can be made to single 

processor machines to maximize use of processor resources, and thus to achieve 

faster program execution. 
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Pipelining 

The instruction execution sequence of a processor is typically broken down into 

several phases - instruction fetch, instruction decode, operand fetch, and instruc-

tion execution. In a non-pipelined processor, each instruction proceeds through 

each of the execution phases before processing of the next instruction begins. This 

is wasteful of processor resources, as at any given time the hardware which sup-

ports all but one of the phases is idle. A pipelined processor begins execution of a 

new instruction after each has passed through the first stage, allowing all stages to 

remain in continuous use and, in the case of a k stage pipeline, producing a k-fold 

increase in performance. Pipelining is covered in greater depth in Section 1.2. 

Multiple Function Units 

A conventional arithmetic and logic unit (ALU) contains circuits to perform sev-

eral operations, typically addition, subtraction, multiplication, and the boolean 

logic functions, but can only perform one operation at a time. By transferring 

execution of each function to a separate unit, and replicating commonly used op-

erators, increased completion of these operations can be achieved. The Control 

Data Corporation (CDC) 6600 [Thornton, 1964] was the first computer to include 

functional parallelism as a major design feature. It provided an execution unit 

containing ten functional units (FUs) under the control of a device called the 

scoreboard which regulated access to the FUs, and resolved data dependency con-

flicts between instructions. The IBM 360/91 [Tomasulo, 1967] provided separate 

execution units for floating-point (FP) and scalar instructions, with the floating-

point unit (FPU) capable of performing concurrent addition and multiplication 

operations, data dependencies permitting. 
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Input-output and Memory Systems 

The mismatch in speed between input-output (I/o) operations and processor op-

erations can be overcome by the introduction of dedicated processors whose op-

erations are initiated by the central processor but run independently thereafter. 

This allows the central processor to continue to perform useful computation while 

waiting for completion of an i/o operation. The I/o processor can communicate 

with the memory via a direct memory access (DMA) channel, allowing transfer of 

data at the maximum possible rate. 

The mismatch in speed which exists between the main memory and the proces-

sor can be overcome in a number of ways. By judicious placement of instructions 

or data in an intermediate high speed memory or cache, the traffic between the 

processor and main memory can be reduced substantially. This technique is par-

ticularly effective when a program exhibits considerable locality either in the form 

of iterative loops or in repeated access to a small number of memory locations. A 

technique called interleaving, can be used to exploit the sequential nature of mem-

ory references. A k-way interleaved store has k independently accessible memory 

modules with consecutive locations stored in adjacent modules, giving a k-fold 

increase in access rate, although the time taken to access individual locations 

remains the same. 

Multiprogramming 

Multiprogramming is a software technique which allows processor-intensive and 

I/o-intensive programs to share the resources of a computer system. The mix 

of programs being executed can be controlled by a process called scheduling, to 

balance access to available resources according to the needs and priority of each 

program. By dividing processor availability into discrete intervals or time-slice. a 

single high-priority process can be prevented from monopolising a given resource. 
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A combination of multiprogramming and time-slicing in an operating system pro-

vides an illusion of concurrency to the user of a uniprocessor system. 

Vector Processing 

Many scientific and numerical problems require evaluation of expressions of the 

form 

= b op 

where , and Z are vectors of the form 

and the operation performed is 

a•=b1 opc2 ViE{1, ... ,n} 

By using a single instruction to accomplish this operation, rather than repeated 

application of the operator within a loop, a considerable amount of the overhead 

associated with processing the instructions can be saved. The performance of 

vector processors is difficult to estimate as it is very dependent on the size and 

nature of the application. The CRAY 1, the first commercial processor to include 

vector processing facilities, has a typical performance of 20 MFLOPS (floating-

point operations per second), and a theoretical peak performance of 160 MFLOPS. 

Currently, the fastest available computer is the CRAY Y—MP/8, with a peak 

performance of 2.667 GFLOPS [Bell, 19891. Vector processing is, however, an 

efficient method of solving particular classes of numerical problems. 

1.1.3 Array Processors 

An array processor is a regular collection of ALUs or processing elements (PEs) 

which operate synchronously under lockstep control. Each PE is a device capa- 

ble of applying a series of simple operations to small data objects stored in a 
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local memory. Each PE executes the same operation simultaneously, with a single 

stream of instructions being broadcast to all elements by a central controller. PEs 

are interconnected by a routing network to allow exchange of data. Array pro-

cessors tend to be less general purpose and more difficult to program than other 

parallel machines, being best suited to solving problems with data whose struc-

ture closely matches that of the interconnection network. Array processors are 

classified according to the size of data each PE operates upon, either single/few-

bit or floating-point quantities, and the physical interconnection of the processors. 

Research interest in array processors was initiated by the SOLOMON project [Gre-

gory and McReynolds, 1963], a 32 x 32 PE array developed by the Westinghouse 

Electric Corporation. 

Bit-serial Arrays 

The ICL Distributed Array Processor (DAP) was one of the earliest array pro-

cessors to be developed commercially. The DAP consisted of a 64 x 64 array of 

single bit processors connected to a master control unit. The design of the DAP 

was similar to that of SOLOMON but with the introduction of two novel fea-

tures - separation of column-wise and row-wise access to PEs, and integration 

of the array as part of the memory of an existing system (one of the 2900 series). 

Each PE consisted of a 4 kbit memory and a 1-bit full adder, together with input 

and output multiplexers and three 1-bit registers. The DAP had two modes of 

operation, matrix mode in which 4096 words were processed concurrently in a 

bit-serial manner, and vector mode in which sixty-four 64-bit words are processed 

in parallel. 

It was, perhaps, the DAP's dependence on its 2900 series host that ultimately 

limited its commercial success, the host machine being expensive and superseded 

largely by other machines and technologies soon after the introduction of the DAP. 

In 1986, Active Memory Technologies (AMT) launched the mini-DAP, a 32x32 PE 
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Fast 

Plan(  

DAP St 

(32x32x1 I 

DAP P 

(32x3 

Figure 1-1: AMT mini-DAP Architecture 

array built from LSI components. The design, as shown in Figure 1-1, is similar 

to the mainframe DAP, with the addition of a fast I/o unit, a more generalized 

host interface, and 1 Mbit memories for each PE. 

The Connection Machine [Hillis, 1985] is a very large, fine-grain parallel com-

puter developed for artificial intelligence applications at Massachusetts Institute 

of Technology, and implemented commercially as the CM-1 by Thinking Machines 

Corporation. A connection machine consists of a large number of processors 

(65,536 in the CM-1), connected by a communication network. Each PE has 

a small amount of local memory and a 1-bit ALU, and is assigned a unique ad-

dress in the network. The PEs are controlled by a central processor via a global 

instruction bus. Programs written for the connection machine [Christman, 1984] 

consist of two parts - a description of the connection, an arbitrary graph having 
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one PE at each vertex, and a description of the operations the controlling com-

puter is to send to each PE. The power of the connection machine lies not in the 

power of the individual processors, but in their quantity. This approach has been 

taken a stage further with the development of neural network systems [Hopfield, 

1979]. 

Bit-parallel Arrays 

The SOLOMON project was also the stimulus for a series of architectures whose 

processors operated on whole words of data rather than single bits. The first of 

these was ILLIAC IV [Barnes et al., 1968], developed at the University of Illinois 

and which became operational in 1972. It consisted of 64 PEs arranged on an 8x8 

grid. Each PE performed addition, multiplication, logical and shifting operations 

on several formats of data, from 64-bit floating-point numbers to 8-hit characters. 

A 2048-word memory provided local storage for each PE. Despite problems with 

reliability, delivery and budget, the ILLIAC IV made a valuable contribution to 

research in parallel architectures, and influenced many subsequent designs. 

The Burroughs Scientific Processor (BSP) [Jensen, 1978] developed many fea-

tures found lacking during production of ILLIAC IV. The size of memory associ-

ated with each PE was increased to 128 kwords, and the processing capability of 

the controlling processor was increased to allow more complex scalar operations 

to be performed. Due to problems within Burroughs Corporation, the design did 

not meet its performance goals, and the BSP never went into production. 

1.1.4 Multiprocessors 

Multiprocessor systems are single computers which contain several processing units 

which communicate and cooperate at various levels on the solution of a single 

problem. No matter where in a multiprocessor system the memory is located, the 
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structure of the network linking the processing elements and memory modules has 

an important bearing on system performance, with the choice of topology being a 

trade-off between connectivity and cost. 

Interconnection Networks 

In any multiple processor system, making the right data available to the right pro-

cessor at the right time is essential for the full exploitation of available parallelism. 

The physical interconnection of the processors has been the subject of great in-

terest for designers of multiprocessor systems [Feng, 1981],[Haynes et al., 19821. 

There are two types of interconnection network, static, with dedicated buses, or 

dynamic, with reconfigurable interprocessor links. 

Static interconnection networks cover a large variety of topologies, all charac-

terized by the existence of fixed dedicated links between processors. Shared bus, 

star and ring networks provide simple, low-cost interconnection between a few 

processors. However, their usefulness is severely constrained by bandwidth lim-

itations, and lack of fault-tolerance. Although these three topologies have been 

successfully applied to local area networks, their suitability for use in tightly cou-

pled multiprocessor environments is limited. 

A binary tree would seem to be a very natural way of organizing an intercon-

nection network, as many problems can be described in terms of a tree structure, 

and a natural correspondence exists between the hardware processors and the 

software processes. However, the performance of the tree is potentially limited 

by the root node if a large amount of communication has to take place between 

the two halves of the tree, and the depth of the tree is limited by the number of 

processors. An analysis of the number of messages transferred through a node, 

in the case when each node sends a message to all other nodes in a network of n 

nodes [Horowitz and Zorat, 1981], shows that a binary tree [O(n 1092  n)] compares 

favourably with a linear array [0(n2)], and with a 2-dimensional array [0(n3t2)]. 



Chapter 1. Introduction 	 13 

A n-Cube can connect k = 	processors, providing a rich interconnection 

network. The ensemble can be thought of as a cube in n-dimensional space, with 

the processors at the vertices and the connections forming the edges, with the 

distance between any two processors oc 1092n.  A possible source of difficulty is 

that n connections are required per processing element, and that for k > 1000 

wiring problems may be encountered. The cube-connected cycles [Preparata and 

Vuillemin, 19811 is similar to the n-Cube, but with the vertices replaced by a 

cycle of processors. This has the advantage of a constant number of connections 

per processor. In an n-dimensional hypertorus, each processor is a member of n 

orthogonal rings, the distance between any two processors being proportional to 

the nth  root of the number of processors. 

A large number of dynamic routing networks have been designed offering a 

variety of trade-offs between hardware complexity and operational efficiency. A 

single stage network is composed of a set of switching elements connecting n 

inputs to n outputs. The single stage network is also known as a recirculating 

network as data items may have to circulate through the single bank of switching 

elements several times before reaching their correct destination. A multistage 

network consists of more than one stage of switching elements, and is capable of 

establishing arbitrary connections between inputs and outputs. The multistage 

networks can be further split into blocking, non-blocking and rearrangeable types. 

In a blocking network, the establishing of a connection between two ports may 

cause a conflict when subsequent connections are attempted. This class includes 

delta and omega networks. A rearrangeable network can alter existing connections 

to accommodate a new path between two ports, for example the Benés network. 

The third type, the non-blocking network, can handle all possible connections 

without the occurrence of blocking, for example the Cbs network. Multistage 

networks such as the banyan network tend to have a hardware complexity of 
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O(n 1092  n) compared to connections schemes like the crossbar switch which have 

a hardware cost that grows 009 

Shared Memory MIMD Computers 

Shared memory systems consist of separate processing and memory units, con-

nected by means of a network allowing uniform accessibility to all memory loca-

tions by any processor. Memory contention and its management are important 

factors in determining machine performance. 

A bus provides a simple and easily configurable means of connecting proces-

sor and memory units. The Sequent Balance has a 32-bit bus-connected shared 

memory architecture. Up to 24 processing units, each constructed from N532032 

processors with an 8 kbyte cache and floating-point unit, and 28 Mbytes of mem-

ory can be attached to a 52-bit pipelined packet bus. Use of caches reduces the 

number of accesses to the common memory and hence the effect of contention 

on performance, at the expense of maintaining coherency between the contents of 

each cache and the memory. The Tandem-16 Nonstop system illustrates another 

feature of multiprocessors - fault tolerance. Replication of resources within this 

system allows continuous operation and repair of faults without bringing down the 

entire system. 

A crossbar switch offers complete connectivity between processors and mem-

ories, with the rate of transfer limited only by the number of memory modules, 

rather than the availability of connective paths. With current technology, a cross-

bar switch is only practical if the number of processors is relatively small; and is 

the preferred interconnection topology for sixteen or fewer processors. One of the 

earliest MIMD computers, the C.mmp [Wulf and Bell, 19721 developed at Carnegie 

Mellon University, used a 16x 16 crossbar switch (S.mp) to connect Digital Equip-

ment Corporation (DEC) PDP-11/40 minicomputers to shared memory modules. 

A derivative of C.mmp, the Livermore S-i [Farmwald, 19841, consists of 16 Cray-1 
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processors fully connected to 16 memory modules by a crossbar switch, providing 

a 16 Gbyte address space and an estimated performance of 1 GFLOP. 

Multistage interconnection networks provide a cost-effective means of connect-

ing large numbers of processors and memory units. The New York Ultracomputer 

project has produced a series of designs for machines based around an Omega 

network connecting a large number of processing elements to a shared memory 

constructed from distinct memory modules. A novel network switching element is 

used to combine access requests to the same memory location, thereby reducing 

contention. A 512 processor implementation is under construction as the IBM 

Research Parallel Processor Project (RP3) [Pfister et (Li., 1985]. 

Distributed Memory MIMD Computers 

Each processing element in a distributed memory MIMD computer has an asso-

ciated memory module which can be accessed by it more easily than by other 

processors. Access to non-local memory is provided by an interconnection net-

work. The non-uniformity of memory access requires that placement of code and 

data among the processors be optimized to achieve maximum performance. 

Star and ring networks have only been used in a few multiprocessor systems, for 

example the IBM £CAP and the CDC CyberPlus. Hierarchical network structures 

have been employed successfully in some projects, notably Cm*,  the successor to 

C.mmp, based on bus-interconnected clusters of microprocessors. The hypercube 

has received much interest as a network topology for MIMD computation. The 

Cosmic Cube [Sietz, 19851 built at California Institute of Technology is a 6th-

order hypercube, the nodes being constructed from Intel microprocessors. Several 

commercial machines have been derived from this design, including the NCUBE 

and the Floating Point Systems T-Series. 
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The BBN Butterfly consists of up to 256 computing nodes connected by a 

Banyan network. Each node consists of a Motorola 68020 with a 68881 floating-

point co-processor and a 4 Mbyte local memory. Although the memory is physically 

distributed among the nodes, it forms a continuous logical shared address space 

with non-local memory addresses being accessible via the network. 

The INMOS Transputer is a microprocessor designed as a building-block for 

MIMD computers. A processing unit and memory are combined with hardware 

support for process queues on a single chip. Interprocess communication is sup-

ported by instructions for passing messages either internally through a common 

memory location, or externally through one of the four hardware links provided 

on each transputer. The transputer has been used in a variety of parallel pro-

cessing applications, from large high performance systems such as the Edinburgh 

Concurrent Supercomputer, to specialist processing systems such as the ALICE 

graph reduction machine [Darlington and Reeve, 1981]. 

1.2 Pipelined Architectures 

Pipelining is a technique developed to exploit the temporal parallelism that exists 

in the execution of instructions within a computer. A pipelined processor allows 

operations to be initiated before previous instructions have been completed, re-

suiting in an increased instruction execution rate, while the instruction execution 

time remains)1unchanged. Instruction completion rate then becomes a function of 

instruction issue rate, rather than total processing time. Concurrent execution of 

different instructions is made possible by dividing the computational process into 

hardware-independent stages. In an ideal pipeline, each stage is of equal complex-

ity, requiring the same time to complete its operation. Any discrepancy between 

execution time results in a bottleneck, as rate of progression through the pipeline 

is dependent on the longest time taken to complete a single stage, thus the rate 
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Latch 	 Stage 

Ck 

Figure 1-2: Linear Pipeline Structure 

of instruction completion is reduced. Stages are connected by latches or buffers 

which store intermediate results. Figure 1-2 shows the basic structure of a linear 

pipeline. 

Given a time r to perform the operation of each stage, and a delay r1  associated 

with each latch, the beat time r, of the pipeline is given by 

r=max(r3 )+r1  

As the execution time for individual instructions is not changed, the time taken 

to complete a given number of tasks is the time taken to complete one task - 

each stage taking r, plus the time to complete the remainder - a result being 

produced every r. Thus for a k-stage pipeline, the time to complete N tasks is 

kr + (N - 1)7- 
	

(1.2) 

The time to complete the first task is also known as the fill time of the pipeline, and 

has an important bearing on pipeline performance in the presence of discontinuities 

in an instruction stream. 
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The speedup of a k-stage pipeline over an equivalent non-pipelined machine is 

defined as 

Sk = 	
Nk 
	 (1.3) 
k+(N-1) 

where, for N >> k, Sk -+ k, thus the maximum speedup achievable in a k-stage 

linear pipelined is a factor of k. 

The efficiency of a pipeline is the percentage of the total time taken to execute 

a given number of tasks for which useful results are produced 

N1CT 	 N 
77

k(kT+(N-1)) k+(N-1) 	
(1.4) 

T  

From Equation 1.4, limN ,0  i = 1, implying that a greater efficiency can be ob-

tained with a greater number of tasks. From Equation 1.3, an alternative definition 

of efficiency can be derived, 

	

77 = Sk/k 	 (1.5) 

as the ratio of actual speedup to theoretical speedup. 

The throughput of a pipeline is the rate of task completion 

N 
w= 

kr, + (N - 1)r 	7-, 
(1.6) 

the maximum throughput being one result per clock cycle, attained when i = 1. 

Pipeline techniques can be applied at several levels within a computer system, a 

common instance being the instruction processing section of a processor. Instruc-

tion execution is easily divisible into separate operations which can be applied 

sequentially: 

Instruction fetch: obtain the instruction code from memory. 

Instruction decode: determine operation to be performed and how to locate 

operands. 
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Address generation: calculate the effective address of the operand(s) with 

indirection and offset as necessary. 

Operand fetch: obtain the operands from memory. 

Instruction evaluation: execute the instruction on the specified operands. 

Operand store: update memory with result of evaluation. 

Program counter update: generate address of next instruction. 

Pipelining is also found in the arithmetic units (AUs) of many processors. The 

process of floating point addition, for example, can be divided into four steps 

exponent subtraction, mantissa alignment, mantissa addition and normalization. 

Early examples of machines with pipelined AUs were the Texas Instruments Ad-

vanced Scientific Computer (ASC) [Watson, 1972], which contained four pipelined 

AUs, and the IBM System/360 Model 91 [Tomasulo, 1967]. Incorporation of 

pipelines in microprocessors is more recent, but nonetheless gaining in impor-

tance. The Intel 1860 microprocessor [Intel Corporation, 1989] contains pipelined 

FP addition and multiplication units which can run concurrently with the core 

(integer and control) unit, yielding a maximum performance of 80 MFLOPS. This 

level of performance is made possible by limiting the length of the FP pipeline to 

three stages. 

Pipelines can be classified according to three main features, the function per-

formed, the configuration of the stages, and the data being operated on. A pipeline 

is said to be uni-functional if it performs a single dedicated function and, by def-

inition, has a static configuration. A multi-functional pipeline can be configured 

in a variety of ways to perform different functions, as in the Texas ASC. A static 

multifunctional pipeline can only be reconfigured between batches of data, while 

a dynamic multifunctional pipeline permits several simultaneous configurations. 
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Processing streams of data in a vector pipeline is a natural application of pipelin-

ing, as is repeated processing of a sequence of scalar operands. 

In the presence of a regular flow of instructions, a pipeline is an effective means 

of increasing processing ability. However, most instruction streams are irregular, 

requiring the following problems to be addressed: 

of a 

Conditional branch instructions rQctv +kt o.iko'tJ1 before the target address 

can be determined. Any instructions t&4'i 	 the pipeline after 
ccAkfe(, 	-, 

the branchnay need to be discarded. 

An instruction must be delayed in the pipeline if it requires the result pro-

duced by an earlier instruction. 

An instruction must not overwrite a memory location or register whose pre-

vious contents are required by an earlier instruction. 

The pipeline must not change the order of updates of a memory location by 

successive instructions. 

1.2.1 Instruction Stream Discontinuities 

A smooth flow of instructions through a pipeline is essential if efficient operation 

is to be achieved. This, however, can be disrupted by a change in the expected 

sequence of instructions, due to control transfer instructions. Branch instructions 

play an important part in structured languages in one of two forms, unconditional 

branches, for example to subroutines, and conditional branches in loops and con-

ditional statements 

The address of the 

instruction to be executed after a conditional branch may not be known until the 

branch instruction has almost completed its passage through the pipeline. If the 
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branch is to be taken, the pipeline must be refilled from the target address. Not 

only is processing time wasted in partial evaluation of the instructions immedi-

ately after the branch, but these instructions may also have changed register or 

memory values. 

The Branch Penalty 

The penalty associated with branching becomes more severe as pipeline length 

is increased. For a given pipeline, let k denote the number of stages which may 

be required to be flushed when a branch instruction is encountered, Pb  denote 

the proportion of instructions which are branches in a program, Pt  denote the 

probability that a branch will be taken, and CPI denote the average number of 

cycles required to execute a single instruction, after the initial start-up latency. 

Then 

CPI = 1 + (k - 1)pbpt 	 (1.7) 

and the effective performance of the pipeline [Lilja, 1988], F0  is 

1 

F0 = 1 + (k - 1)pbpt  
(1.8) 

Thus, maximum performance may only be obtained if 

the pipeline has only a single stage (k = 1), 

there are no branch instructions (Pb = 0), or 

the branch instructions are never taken (Pt = 0). 

The first two conditions cannot be met, therefore the objective of pipeline de-

sign must be to reduce the value of pt. While it is not possible to ensure that 

branches are never taken, always fetching the next instruction from the correct 
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target address has the same effect. Equation 1.8 also shows that the branch penalty 

increases with pipeline length. 

If no steps are taken to reduce Pt,  performance drops on average by 14% for 

a two stage pipeline, and by 55% if the pipeline length is increased to 6 stages, 

using the values Pb = 0.242 and Pt = 0.676 measured by Lee and Smith [1984]. 

Hardware Solutions 

A simplistic solution to the branching problem would be to replicate the initial 

stages of the pipeline, and process the instructions following both the branch and 

its possible target. Despite additional problems of resource contention between the 

instruction streams, occurrence of multiple branch instructions in the pipelines, 

and the cost of replicating the hardware, this method was implemented in the IBM 

System/370 Model 168 and 3033 machines. The hardware cost can be reduced if 

duplication is confined to sufficient logic to prefetch the instruction at the branch 

target address. If the branch is taken, the taget instruction can be loaded without 

delay. A similar approach employed in several machines is loop catching. A small 

high speed memory is provided which acts as a "loop cache", allowing instructions 

from repeatedly executed segments of code to be presented to the pipeline without 

the additional delay of fetching them from memory. The latter two strategies can, 

however, only limit the effects of taking a conditional branch, and the pipeline 

must always be refilled. 

Branch prediction strategies can either be static, for example, always assum-

ing branches are taken when generated by certain instructions, and pre-fetching 

accordingly; or dynamic, for example, maintaining a taken/not-taken bit for each 

branch instruction, updated according to some heuristic algorithm. Assuming that 

a correct prediction incurs no penalty, and that the penalty is the same whether 
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the branch is taken or not taken, then the effective performance becomes 

1 
Fpred = 

	

	 (1.9) 
1 + (k - 1)pbp 

where p is the probability of a wrong prediction. Branch prediction provides a 

performance improvement as long as the probability of a wrong prediction is less 

than the probability that a branch will be taken anyway 	< Pt). McFarling 

and Hennessy [1986] show that prediction accuracies of between 81% and 85% are 

possible, yielding a value of p between 0.150 and 0.190, which is considerably 

less that the value of Pt  measured by Lee and Smith. Ditzel and McLellan [1987] 

report accuracies as high as 95%. 

An alternative approach caches branch instructions with destination addresses 

in a branch target buffer (BTB). This approach was used in the instruction buffer 

unit of the MU5 [Ibbett, 1982], which contains an associative store in which are 

held eight pairs of branch addresses and their targets. When a new instruction 

address is generated, the associative store is searched, and if a match is found, the 

target address replaces the original address, and instructions are fetched from the 

target. These instructions are flagged as "out of sequence" so that if the prediction 

was incorrect, they can be discarded. 	 - 

Given a BTB hit ratio Ph  and an additional rn cycles to fetch an instruction 

in the event of a miss, the effective performance becomes 

1 

Fbtb = 1 + [((k—i) + m) (1 Ph)]PbPt 	
(1.10) 

For use of a branch target buffer to be effective, 

M 

Ph> ((k—i)+m) 	
(1.11) 

Branch folding [Ditzel and McLellan, 1987] is a technique which eliminates 

unconditional branches from pipelines. In the CRISP processor [Ditzel et al., 
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19871 a three stage execution pipeline is used in an architecture comprising a 

prefetch and decode unit, a decoded instruction cache and an execution unit. 

Instructions are fetched, in encoded form from main memory, decoded and stored in 

the instruction cache in 192-bit form. Associated with each decoded instruction 

is a next-address field, having the effect of making each instruction a branch. 

This eliminates the need for the execution of separate branch instructions, which, 

instead are folded with the preceding instruction and deleted from the pipeline. 

Conditional branches contain an additional alternative-address field, not unlike 

words of microcode, which is used in conjunction with a single static prediction 

bit. 

The effective performance of branch folding is 

1 

Fbf = 1 + (k - 1)pbpt 
(1.12) 

where Pcb  is the probability that an instruction will be a conditional branch. In 

the case of CRISP, which employs branch prediction and a three stage pipeline 

FCRJSP = 	
1 	

(1.13) 
1 + 2PCbPIJJ 

generating a performance improvement if 

PcbPw <PbPt 

As, by definition, Pcb  is always less than Pb,  even the simplest static prediction 

scheme, which always assumes that a branch will be taken, provides a performance 

enhancement. 

Software Solutions 

The previous attempts to solve or ameliorate the branching problem all assume 

that if instruction i were a taken branch, then instruction i + 1 would be out of 

sequence. However, it is possible to promote the branch instruction so that the 
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Stage 1 
	

Fetch BRANCH 	Fetch ADD 	Fetch target 

Stage 2 	 Execute BRANCH 	Execute ADD 

to 	 t1 	 t2 

Figure 1-3: Delayed branch timing in a 2-stage pipeline 

i + b' instruction is affected instead. This technique is known as delayed branch-

ing. If, for a k-stage pipeline b > k, then the target address of the branch will 

always be known in time to fetch the current instruction. Figure 1-3 shows the 

timing for such an instruction in a fetch/execute pipeline with k = b = 2. At time 

to, the branch instruction is fetched from memory. At t1  it is executed, updating 

the value of the next instruction pointer. At the same time, the add instruction is 

fetched from memory. At t2, the target instruction is fetched, but is not available 

for execution until t3. If the add instruction is discarded, the time spent fetch-

ing it will have been wasted, and no completed instruction will appear from the 

pipeline during t2, thus reducing the pipeline efficiency. Instead, the add instruc-

tion can be executed if the programmer or compiler can arrange that its execution 

would have no effect on the outcome of the branch. Thus, the branch instruction 

has been redefined to mean "execute the next instruction and then branch con-

ditionally". A pipeline of the type shown in Figure 1-3 is employed successfully 

in reduced instruction set computers (RISCs) and microcoded architectures [Hen-

nessy et al., 19821 [Radin, 19831. Delayed branching is most easily implemented for 

short pipelines where it is possible to delay execution for one instruction. Great 

reliance is placed on the use of compilers, as there are certain dangers inherent 

in the use of this type of instruction in human generated and maintained assem- 
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bly code. Conditional branches are implemented in the Intel i860 both with and 

without delayed branching, which allows for easier compiler optimization [Kohn 

and Margulis, 19891. 

If Pno-op1  is the probability that the i-th instruction following a branch will 

perform no useful work, then the effective performance of delayed branching is 

1 

Fdb= l+(k—l)pbpfl 	
(1.14) 

where 
k-i 

pn = 	 1) 
i=1 

Thus, performance is improved providing Pn < Pt Radin [1983] reports a 60% 

utilization of a single delayed branch slot in the IBM 801. Filling subsequent slots 

becomes pregressively more difficult, with McFarling and 1-lennessy's [1986] figure 

of 70% for first slot utilization in MIPS dropping to less than 25% for second slot 

utilization. 

Branch preparation is employed in PIPE [Goodman et al., 19851 where a 

prepare-to-branch instruction which specifies a condition and the number of in-

structions to be executed irrespective of the outcome of the condition. The longer 

pipeline in PIPE, compared to that of the IBM 801, allows up to seven instruc-

tions to be executed after the branch. Analysis of several benchmark programs 

confirms this as a useful property, although use of all available slots cannot always 

be made by the compiler. 

Certain comparisons, including equality, inequality, and comparison with zero, 

can be performed outwith the processor ALU and therefore incorporated into a 

compare-and-branch instruction [Katevenis, 19851. These fast comparisons can be 

performed as soon as the register operands are available, thus reducing the delay 

to a single cycle, thereby allowing their use in delayed branches. 

Delayed branches provide an improvement of between three and eight percent, 

dependent on the number of instructions executed between branches, compared 
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with architectures with non-delayed branches [DeRosa and Levy, 1987]. However, 

in cases where the proportion of taken branches increases to 75%, for example, as 

a result of more frequent subroutine calls, assumption that all branches will be 

taken accompanied by appropriate pre-fetching, provides the best performance. 

1.2.2 Interinstruction Dependencies 

The second major source of disruption in a pipeline is the existence of dependencies 

between partially executed instructions. These dependencies manifest themselves 

as one of four types of access conflicts for shared resources - read-after-read, 

read-after-write, write-after-read and write-after-write [Ramamoorthy and Li, 19771. 

A read-after-read interaction in fact poses no problem as the correct value is 

accessed by both instructions. Two consecutive update operations could leave the 

memory location or register containing the wrong value if they are performed out 

of the intended order. The read-after-write conflict is characterized by an attempt 

to fetch data from a location which an earlier instruction is in the process of 

updating, and can arise during both register and memory accesses. This situation, 

and its somewhat rarer converse, the write-after-read conflict, require detection and 

prevention in hardware. 

In the CDC 6600, the time required to complete an arithmetic operation differs 

between functional units, creating the possibility that instructions may not be 

executed in the correct order. This problem, and others caused by dependencies 

are resolved by the scoreboard, which buffers information about register availability 

with each of the FUs and unit usage with each register, and controls data transfer 

within the processor. The scoreboard handles three types of conflict. First order 

conflicts, as shown in Figure 1-4(a), are requests for units that are currently in 

use, or instances of write-after-write conflicts, and are resolved by delaying issue of 

the second operation. Second order conflicts, Figure 1-4(b), are cases of the read- 
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Figure 1-4: Instruction dependencies detected in the CDC 6600 Scoreboard 

after-write problem. In these instances, the second instruction is issued and passes 

through early stages of the pipeline, so that its other operands can be fetched, 

but reading of the operand in contention is delayed until the earlier instruction is 

completed. Third order conflicts, Figure 1-4(c), are instances of the write-after-

read conflict which arise as the result of an earlier second order conflict. Although 

the final instruction may complete before the second order conflict is resolved, it is 

prevented from storing its result until the previous read operation has completed. 

A similar scheme is implemented in the Motorola 88000 series of RISC pro-

cessors [Melear, 19891. The processor architecture is based around two execution 

units, an integer unit executing single-cycle operations, and a FP unit containing 

separate addition and multiplication pipelines. These units are connected to a reg-

ister file containing thirty-two 32-bit registers. Associated with the register file is 

a scoreboard register which prevents read-after-write conflicts from occurring. This 

register contains one bit corresponding to each member of the register file which is 

set on issue of a multiple-cycle instruction. If another instruction attempts to read 

from a register whose scoreboard bit is set, it is held in the instruction pipeline 

until the appropriate bit is cleared. 
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1.3 Micromultiprogramming 

The problems which can reduce the efficiency of pipelines stem from a single 

common cause - delays in making data available for processing - whether as a 

result of the existence of a dependency between two instructions, or the memory 

latency when fetching the target instructions of a branch. Delays of a similar 

nature are to be found at other levels within a computer system, notably at the 

operating system level, when pages of virtual memory not held in the working 

set have to be loaded from backing store. Due to the mismatch in speed between 

semiconductor memory and the magnetic disks on which the swapped-out pages 

are kept, a large amount of processing time would be wasted if the processor 

remained idle while the page was fetched. Instead, the processor saves the state of 

the current task and begins execution of another, until the page request has been 

satisfied. This process of context switching is equally applicable at lower levels, 

where similar speed mismatches exist when high latency tasks are initiated. 

Context switching below the instruction level is termed rnicrornultiprogram-

ming, and was first proposed by Chen [1971] as a means of improving performance 

of interleaved memory. Given an i-way interleaved store, randomly generated ad-

dress requests result only in a N/iT improvement in service time, rather than the 

approximate factor of i improvement shown with incremental requests. If the re-

quests were handled by memory module availability, rather than arrival sequence, 

the improvement in performance for both random and incremental address re-

quests would be close to i, albeit at the expense of a loss of ordering of data 

responses. 
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1.3.1 Sub-Instruction Level Context Switching 

The use of skeleton processors as a means of exploiting the available resources of 

a multiprocessor architecture was suggested by Flynn and Podvin [1972]. Each 

skeleton processor appears to the programmer as a logically independent com-

puter, but exists in hardware as a small register set supported by a minimum of 

control logic. The machine is organized as four rings, each consisting of eight skele-

ton processors, with a different machine resource being accessible at each point 

on the ring. Each processor is supplied from its own instruction stream, and is re-

sponsible for preparing its own instructions. Decoded instructions are then passed 

to the execution unit. As the rings "rotate", a given resource is accessed by a new 

processor. Contentions, if they arise, are dealt with on a priority basis. A per-

formance of 500 MIPS was predicted, using the then current technology, but the 

machine was never built. In this machine, context switching at the sub-instruction 

level is implicit between the phases of the instruction execution process. 

Kaminsky and Davidson [1979] propose the use of a multiple instruction stream 

pipeline as a means of increasing utilization of integrated circuit chip area in LSI 

uniprocessors. Execution is divided into fixed-length cycles, each consisting of 

a number of phases equal to the number of stages in the pipeline. During each 

phase, instructions from distinct streams are each at a different stage of processing, 

therefore no additional hardware is required to resolve dependencies. 

Context switching is performed at the microinstruction level in the Xerox Alto 

[Thacker et al., 19821. The micromachine is shared by sixteen tasks, which perform 

instruction decoding, device control and general system maintenance operations. 

The address of the next microinstruction for each task is held in a register, allow-

ing rapid switching between tasks in response to requests from device controllers. 

Instruction prefetch and execution are overlapped, and delayed branching is em-

ployed for all conditional control transfers. The task-switching system provides 
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a means to share the system resources between the consumers of these resources, 

and provides a greater integration of I/O devices with the central processor. 

1.3.2 MIMD Pipelining 

The Denelcor Heterogeneous Element Processor (HEP) [Jordan, 1985] is a shared 

memory pipelined multiprocessor which takes the notion of micromultiprogram-

ming a stage further. At the outermost level, the HEP appears similar to many 

other MIMD machines - consisting of up to 16 process execution modules (PEMs) 

and 128 data memory modules (DMMs) connected by a message passing intercon-

nection network. However, each PEM can also be considered a MIMD computer 

in its own right. Each PEM contains an eight stage instruction execution pipeline 

through which flow instructions and their operands. Independence of instructions 

is ensured by interleaving the instruction streams so that no two instructions from 

the same process exist in the pipeline concurrently. An implicit context switch 

thus takes place between each pipeline stage. Figure 1-5 contrasts instruction 

processing in a conventional pipelined machine (a), with MIMD pipelining in the 

HEP (b). Work in the HEP is-disseminated among a maximum of sixteen tasks. 

Each task is described by a task status word (TSW) that identifies its associated 

protection domain in memory. Tasks are composed of up to sixty-four processes 

of which there are a maximum of 128 in each PEM. A process is characterized 

by a process status word (PSW), containing a program counter and other state 

information. Active processes are represented by a process tag (PT). During exe-

cution, PTs migrate from the scheduler, a hardware queue containing the PTs for 

each task, to the execution pipeline. Instructions which refer to external mem-

ory locations are queued before routing to the appropriate DMM via a pipelined 

network. 

The HEP architecture, as shown in Figure 1-6, provides solutions for four ma-

jor problems concerning multiprocessor designs. Hardware support for process 
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Figure 1-5: Conventional and MIMD Pipelining 
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Figure 1-6: Architecture of a HEP PEM 
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creation is provided alongside management of process context queues, thus reliev-

ing the operating system of one of its major burdens. Efficient process synchro-

nization is important if processes are to be partitioned with finer granularity, to 

extract the maximum parallelism, but still be executed effectively. The HEP pro-

vides a synchronization tag bit on each memory word that can be read by setting 

the appropriate control bits in instructions. This scheme allows implementation 

of algorithms requiring intensive synchronization and communication. The HEP's 

solution to the problem of memory latency, the isolation of non-immediately sat-

isfiable memory requests in a separate queue, together with the interleaving of 

several instruction streams, allows the processor to execute instructions at the 

maximum possible rate, limited only by the parallelism of the problem. This last 

feature makes the architecture easily scalable, with a commensurate increase in 

processing capability. 

1.3.3 Context Processing 

The concept of interleaving instruction streams in a single processor is developed 

in the Circulating Context Multiprocessor (CCMP) [Butner and Staley, 1986]. 

The generic CCMP machine, illustrated in Figure 1-7, is a circular pipeline in 

which each stage implements part of the instruction processing cycle. Processes, 

represented by their state information contained in packets or contexts, are passed 

around the ring with the operations performed at each stage modifying the con-

text as required. Queues can be inserted between stages to smooth packet flow 

and allow more concurrent active processes. To further increase the available 

parallelism, the queues can feed multiple instances of each functional unit. 

The CCMP model has several attractive features. The mobility of process 

information, and the implication that processes are not tied to any one processor, 

permits easy implementation of process migration for load-balancing or reliability 

purposes. The replication of functional units within the processor allows packets 
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lnstr Fetch 	 Operand Fetch 	 Execute 

Instruction 	 Data 
Memory I 	 I Memory 

Update PC 	 Result Store 

Figure 1-7: The Circulating Context Multiprocessor 

to be absorbed from the queues at greater rate, and therefore directly improve 

processing ability. 

lanucci [1988] uses hardware contexts which can be switched in a single cy-

cle. These continuations are therefore very small, and contain only the program 

counter and a pointer to data space. Nikhil and Arvind [1989] combine the use 

of continuations with a RISC-style execution pipeline. The continuations flow 

through the pipeline identifying instructions and frames - segments of memory 

usable as a register set by a given process - to be fetched from local memory. 

Access requests to main memory are diverted from the main pipeline to a heap 

controller, preventing the pipeline from stalling while they are being serviced. To 

allow more than one read request to be outstanding for a given process, a limitation 

which also exists in the HEP, fork and join primitive instructions are provided. As 

long as sufficient parallelism exists within a given application to generate enough 

continuations to fill the pipeline, processing is able to take place at the maximum 

possible rate. 
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Weber and Gupta [1989] propose a system of hardware contexts, each with a 

dedicated register set, purely as a means of circumventing memory latency. Con-

text switches are initiated on cache misses or writes to shared locations. Using 

four contexts, improvements of up to 80% have been measured when the architec-

ture exhibited large memory latency, the context switch overhead was low, and 

the cache interference was minimal. 

None of the architectures described above have taken micromultiprogramming 

to its logical conclusion - the direct manipulation of process context, rather than 

data, by pipeline stages. The benefits of interleaving multiple instruction streams 

are clear. If two instructions from the same process can be guaranteed not to 

exist in a state of partial execution concurrently, then there can be no dependency 

or branching problems. Dependencies between instructions still exist within pro-

cesses, but do not affect pipeline operation as there is only a single instruction 

active at any given time. Conditional branching still occurs, but presents no 

problem as the condition is evaluated, and the target address known, before the 

next instruction is fetched. Removal of these two obstacles allows a pipeline to 

produce results at the maximum possible frequency. It must, however, be noted 

that although one instruction is completed every cycle in an MIMD pipeline, each 

process requires as much time to execute as if there were no pipelining. 

The requirement to switch contexts between pipeline stages necessitates a min-

imal context associated with each process. This requirement is not met by the 

CCMP model, in which the reliance on a von Neumann processing paradigm 

yields large process contexts that have proven unimplementable [Staley and But-

ner, 19861. Instead, the bulk of the process status information has a fixed location, 

and only the program counter, the current data object, and a process identification 

tag are circulated. While this may seem only a slight deviation from the idealized 

model, the process' relocatability is entirely lost, nullifying a significant feature 

of the original model. Implementations of machines which employ sub-instruction 
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level context switching have confirmed the validity of this approach as a means 

of achieving high performance from a pipelined architecture, although each ap-

pears to have used the technique to circumvent a different problem. Kaminsky 

and Davidson [1979] proposed the multiplexing of processor resources between a 

fixed number of instruction streams as a means to improve the utilization of chip 

area and minimize the number of off-chip connections. CCMP was developed as a 

means to provide a fault tolerant machine based around "trusted" first-in-first-out 

(FIFO) queues [Butner, 1984]. 

Summary 

Parallelism exists in two exploitable forms within any computation which may 

be realized providing sufficient machine resources exist. The spatial parallelism 

which exists in program data may be extracted by replication of execution units, 

either within a processor as multiple functional units or in the form of a multiple 

processor ensemble. The temporal parallelism which exists during the execution 

of an instruction may be exploited by pipelining the stages which comprise the 

execution sequence. 

Replication and pipelining both have their own associated problems. The 

problems with replication tend to be of a more algorithmic nature, for example, 

loss of generality of application, synchronization and inter-process communication, 

and placement of code and data. Although pipelining maintains generality of 

purpose, it is at the expense of an increase in hardware complexity required to 

handle dependencies which arise between pipeline stages. 

While many solutions which attempt to ameliorate the problems caused by in-

struction and data dependencies have been proposed and adopted, none fully ad- 

dresses the source of the problem by removing dependencies from the pipeline. Al- 
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though dependencies will always exist in program data, their effects could be elim-

inated if processing were performed on mutually independent instruction streams. 

The incoherent approach to previous uses of sub-instruction level context 

switching suggests the need for an architectural theory which handles all sources of 

discontinuities in a unified manner. This need is addressed by a design technique 

called context flow. 

"la dernière chose qu 'on trouve en faisant un ouvrage, 

est de savior celle qu 'II faut mettre la premiere." 

- BLAISE PASCAL (1623-1662), Penseés I. 19 



Chapter 2 

A Theory of Context Flow 

Several problems with instruction pipelines which degrade their per-

formance below the anticipated maximum have been identified. The 

problems arise as a result of interinstruction dependencies and are ex-

acerbated by memory latency. A set of key features has been outlined 

which smooth the disruptions found in conventional pipelines, resulting 

in improved performance in pipelined multiprocessor systems, namely 

interleaving of multiple instruction streams with only one active in-

struction per stream, removing interinstruction dependencies; efficient 

process creation and management, including provision in hardware for 

process queuing; pipelining of memory access requests, resulting in the 

hiding of memory latency; and relocatability of processes between sites 

of execution, providing inherent support for load balancing and fault 

tolerance. Context Flow (CF) [Topham et al., 1988] is an architec-

tural paradigm in which process contexts rather than process data are 

manipulated. This chapter presents the central concepts of context 

flow. 
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2.1 	The Principles of Context Flow 

The behaviour of a context flow system is encapsulated in a structure called a 

context flow graph (CFG). A CFG is a directed graph which describes the operation 

of the CF system in terms of the transformations applied to contexts which pass 

through the graph. A CFG is not a program, rather an abstraction of the hardware 

on which programs may be executed. 

2.1.1 Contexts 

The notion of a context is well established in the field of operating systems. The 

volatile context of a process is the subset of shared system resources which are 

accessible to the process. A description of the volatile context is contained in 

a structure called a process context block (PCB). A typical PCB may contain 

a unique process identification number, the contents of the processor register set 

etc. It is natural, to use the term context to describe the process state information 

in a system which is an implementation of multiprogramming at the instruction 

level. The requirement for relocatability imposes two main constraints on the 

nature of a context. A context should be entirely self-contained, encapsulating 

all information pertinent to its related process and should be small enough to 

be physically transmittable between the sites of different processing phases. A 

context is defined as follows: 

Definition 2.1 A context c at time t, t e N, is a tuple (f, D, Y)t  where D, D' are 
, 	

i 	i sets and D f -p D. The function f can be an identity dD, where \fd E D : d ' f -f d, 

and can be abbreviated to the context (D). The set of all contexts is written C. 

Remark 2.2 Time is represented as integer multiples of a machine cycle. There-

fore for a given instant t, t E N. 
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Sometimes D may be very large, in which case it is useful to differentiate between 

the frequently used and less frequently used data. The frequently used data con-

stitutes the data set of a dynamic context. The infrequently used data is stored 

at a fixed location as the data set of a static context. 

Definition 2.3 Let c = (f, D, D') be a context. Its static context a(c) is a pair 

(i, D3) where i is an integer label denoting the location where D3  is stored. Its 

dynamic context 8(c) is the pair (f, DO whe're DdUD3  = D, such that Dd flD3  = 0. 

In many cases, D3  = 0 and all process data is held in Dd. The term "context" 

is used to refer to the dynamic context of a process, unless otherwise stated. The 

empty or null context, which contains no function or data, is defined as follows: 

Definition 2.4 A null context v is a tuple (f, D, D') where f = D = D' = 0. 

The above definitions place no restrictions on the format of a context, nor do 

they require that a context be of constant size throughout an application. This 

differs significantly from the CCMP model in which the same packet of process 

information circulates round the processing ring. The dynamic nature of the CF 

contexts significantly eases implementation. 

2.1.2 Nodes 

The sites at which function application occurs, and where static contexts can be 

stored, are called nodes. CFGs are constructed from such nodes. 

A transformation (T) node is used to perform a manipulation of a single con-

text. AT-node has a single incoming arc on which contexts are accepted, and a 

single outgoing arc along which processed contexts are delivered. All manipula-

tions performed at a given r-node take place within one unit of time, also called a 

graph cycle period. The operation performed within a T-node may be dedicated, or 
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0 _____ 	 _____ 0 
I- T 	 '-'-+ 	 I-T 

Figure 2-1: Transformation Node Operation 

selectable from a group of functions b a field within the context. For example, a 

,r-node could implement a simple ALU, with the context containing the operands 

and the function selector. Connected in sequence, a series of -r-nodes implement 

a simple pipeline. A r-node may incorporate locally addressable storage, in the 

form of a queue, stack, random access memory, or a register. Storage of this type 

is private to the node to which it is attached. Control signals and data for memory 

are provided from and returned in contexts. 

Definition 2.5 A transformation node can perform the following actions 

r: v -'--p jj 

T : (ø,D,D')+ (D') +1 , D -- D' 

T : ( f, D, D') --+ 

r: (f,DdUDS,D')t -'-* ( D') +1  

where -'-- denotes the transformation during one graph cycle, and f represents 

a dedicated function performed by the node. 

Figure 2-1 shows the operation of a transformation node in diagrammatic form. 

In these diagrams, a null context is denoted by o and a non-null context by .. 

Diagrams of this form only indicate the flow of contexts through the graph, pro-

viding no information about the values contained in the contexts. A branch (i3) 

node provides a means of introducing spatial parallelism in the form of multiple 
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context streams. A /3-node has a single input arc and two output arcs. A /3-node 

examines one or more fields in the incoming context and routes the context to one 

of the two output arcs, dependent on the outcome of its internal decision process. 

A null context is output simultaneously on the other arc. A /3-node contains no 

local memory, therefore routing can only be performed based on the contents of 

the current context, and not on any previous state information. 

Definition 2.6 A branch node performs the following actions 

/3: t' --+ (v, ii) 

/3:(idD,D,D) -'.-((D)+l,z/) if f,3 D 

/3: (idD,D,D)-'-+ (zi,(D) +1 ) if -'fD 

where fo is the decision function implemented within the node. 

The operation of a branch node is shown in Figure 2-2 

The introduction of parallelism by means of the branch node, requires the 

definition of a complementary node to combine context streams. This function is 

provided by the merge () node, as shown in Figure 2-3, which has two input arcs 

and a single output arc. The merge node accepts a pair of contexts on its inputs 

and delivers one context on its output each graph cycle period. 

Definition 2.7 A merge node performs the action 

: ((f1,D1,D),(f2,D2,D))~ (f3,D3,D) 1 

As in the branch node, no transformation is applied to a context within a merge 

node. 
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Figure 2-2: Branch Node Operation 
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Figure 2-3: Merge Node Representation 
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2.1.3 Graphs 

A context flow graph is a representation of the evaluation algorithm of the ab-

stract machine being implemented. The vertices of the graph are the nodes which 

perform the transformations, and the edges encode their temporal ordering. 

Four classes of graph can be defined: 

Class I 	The class of acyclic graphs which contain no branch or merge 

nodes, equivalent to static, uni-functional arithmetic pipelines. 

Class II The class of acyclic graphs which contain equal numbers of branch 

and merge nodes, connected in such a way that the paths between a branch 

and its corresponding merge node contain only matched pairs of branch and 

merge nodes. Graphs in this class corresponds to dynamic multi-functional 

pipelines. 

Class III The class of acyclic graphs which contain any numbers of branch 

and merge nodes in any combination. An example of a Class III graph is an 

instruction pipeline with a connection to memory. 

Class IV The class of cyclic graphs, equivalent to complete pipelined sys-

tems with pipelined access to memory. 

A context flow graph is empty if every node contains a null context. A context flow 

graph is open if it contains an edge for which the source or destination is undefined, 

otherwise it is closed. Acyclic graphs are open, but cyclic graphs need not be 

closed. The parallelism identified in a CFG is similar to the intra-algorithmic 

parallelism revealed when data dependencies are drawn as a data flow graph [Davis 

and Keller, 1982]. 
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Notation 	 Meaning 

(Q) 	the empty stream 

((c)) 	a stream with a single context 

((c1,c2,... ,cJ a stream with n contexts 

(102) a pair of parallel streams 

c c 81  context c is contained in stream .s1  

81 	2 stream s 	is equivalent to stream 82 

s7  stream s repeated n times• 

s A s2  concatenation of streams s 	and s2  

#8 the number of contexts in stream s 

head of stream s 

tail of stream s 

Table 2-1: Streams and stream operations 

2.2 Context Streams 

The state of a computation in a context flow graph is represented by the stream of 

contexts which pass a given point. Borrowing notation from CSP [Hoare, 1985], 

Table 2-1 defines the set S of streams, and several basic stream operations. Before 

any of these operations can be defined, a notion of stream equivalence must be es-

tablished. As the contexts in a stream represent independent processes, their order 

is unimportant. Their relative position in the stream determines only the relative 

speed with which they are operated on, not the outcome of the computation. 

Definition 2.8 Two streams s and S2  are equivalent if and only if each context 

in .s1  is contained in 52,  and each context in S2  is contained in s j . 

s1 s2  if VcCs1,cCs2AVcCs2,cCs1 
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Lemma 2.9 	is an equivalence relation. 

Proof 

• 	is reflexive. Clearly, Vc C sl, C ç s1, therefore s1 	81. 

is symmetric. Suppose s1 S2  then by definition Vc C s, c C s2AVc C S21  c ç s 

therefore 'c/cC .s2,cC s, AVcç s1,cç S2  therefore  S2 

is transitive. Suppose .s C sl , then 31 	2 = 	2 and 82 	S3 

S c .93. Conversely, suppose s c 33, then S2 	 S2 and s, 82 = 

Thus 

This completes the proof. 	 Ii 

The empty stream (()) is the identity element for all stream operations, and is 

simply a stream which contains no contexts. The singleton stream contains only 

one non-null context, and is therefore equivalent to the context itself. The stream 

((c)) may be written as c. A pair of streams (1,2)  denotes a grouping of two 

independent streams of contexts. 

2.2.1 Stream Operators 

The concatenation operator A is used to join two or more streams to form a single 

stream, and defines a function: 

SxS —' - -*S 

The following axioms show that concatenation is associative and commutative, 

and distributive when applied to pairs of streams. 

Axiom 2.10 	s1  A (52  A 33) (Si A 32)  A .93 
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Definition 2.21 

#(si t) = min(#s,#t) 

where 

#s=#s and #isAt)=#s+#t 

The stream difference is defined as the difference in lengths of the streams in a 

pair. 

Definition 2.22 	#d(s,t) = #+(s, t) - #(s,t), where #dS = 0. 

The notion of membership can be extended to streams as follows: 

Definition 2.23 	S1 9S2 if 3t,u:tAs1 Aus2  

Remark 2.24 c C s if (c) C s 

The head operator is used to isolate the first context in a stream from the 

remainder or tail. The head operator, and tail operator' define functions 

S -4S 

Definition 2.25 	((c1)... 	 CO) 	((c2,.. . , c,)) 

The head of the empty stream is defined to be a null context, and the tail of the 

empty stream to be the empty stream itself. 

Definition 2.26 	
()Ø 	

ii 
	

(0), 	(K )) 

Remark 2.27 Due to the possible variable order of contexts in equivalent streams, 

does not extend to a function on the equivalence class of streams. 
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2.2.2 Graphs as Functions on Streams 

Having defined a stream as the representation of the state of a computation, it 

is only natural to view a context flow graph as a function which operates on an 

input stream and returns an output stream1. 

Definition 2.28 A graph g defines a function on S 

As a graph simply represents the ordering of transformations applied to a context 

stream, it can be written as the composition of the functions defined by the nodes 

in the graph. For example, the graph 

-r1  

T2  

can be written as 

	

g = 	o (T1 , T2) o /2 

Application of a graph to a stream is governed by the following rules, where 

E 13, r, i}, .s represents a stream and c, a context. 

Axiom 2.29 	{s}q 	((s0 çb)) A .s' 

Axiom 2.30 

(0) 	 if 

if s = v, s' (Q) 

((sr)) 	if s 	v, ,s' 	(Q) 

((SO T, {s'}7)) 	if s, 	SI 	(Q) 

1{a}f is used to denote the application of function f to argument a, and af to denote 

the result of applying f to a 
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Axiom 2.31 

if S 	(( )) 

A {s'}/3 	if s, = v, s' 	(0) 

(se, ii) A {s'}@ 	if s0 f, 8' 	(0) 

(v )  s) A {s'}/3 	if -ISO f131 s' 	(0) 

Axiom 2.32 	{(s1) s 2 )}p-...+s3  

Axiom 2.33 	{((c1,...,c))}( 1 002)-'- 1  

2.2.3 Combining Context Streams 

A merge node, as introduced in Definition 2.7 above, accepts two contexts on its 

input and produces one one its output during each graph cycle period. While the 

branch node always generates one null context per cycle, the merge node does not 

necessarily perform the converse operation. 

Proposition 2.34 A merge node must be able to accept two valid contexts during 

a single graph cycle period. 

Proof Given a graph 

g = P o ((7-2  0 7-3), 7-1) 0 

and stream 

= (((D1), (D2))) : D1 f, —D2  f,3  

{s}g ={(D2)} ({(D1)}j9 0 ((T2  0 7-3), T) 0 IL) 

0 (({(D1)}r2  0 7-3), Ti)  0 IL 

0 {(D17-2)17-3), {(D2)}T) 0 IL 

-'-f {((D1r2r3), (D2r1))} IL 

This completes the proof. 	 0 
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Corollary 2.35 A merge node must be able to store incoming contexts if they 

cannot be output during the current graph cycle period. 

Proof From Proposition 2.34 and Axiom 2.32, the expected outcome is 

(((D1r2r3), (D27-1))) 

If ,a has no ability to store incoming contexts, then the result can only be (D17-2  T3 

or(D2r1). 	 0 

2.2.4 Characteristics of a Merge Node Buffer 

Having proved that a merge node must buffer incoming contexts, the precise nature 

of the local storage mechanism must be determined. 

Definition 2.36 ,if is used to denote a merge node containing n buffered con- 

texts, and 	.... 
cn)  a merge node containing the buffered contexts c1,.. . ,c. 

Proposition 2.37 A merge node may have to store more than one context. 

Proof By induction on the difference in path length p between branch node 

and merge node i. Consider the class of graphs which contain one matching pair 

of branch and merge nodes: 

and stream 

3p - 	. 	 . . ,c2 _ 1 ) 

where 
10ip-1 	c2  f13  

c 
pi2p-1 -'cf 
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Here, and in all subsequent proofs, the graph is initially empty. 

• 	Let p=O. 

{c1}g0  ={c0 }/3 o (r0 , r') o /2 

{

({c017-0, {u}T ') o P if Cob 

({zi}r0, IC-0 17-' ) o P if -ICO ffl  

I (c07-0 , v)/1 

(u,cr) 

as one of the inputs is always 11, no context needs to be stored in /1. 

Let p=1. 

From Corollary 2.35, t must store one context during the next graph cycle. 

Assume that the proposition is true for p = n, that is given graph gn  and 

stream s where 

g=fio((r0o ... or),(T'))o/2 

Sn  = ((c0 ,... 	 ,c2_1)) 
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then 

__ 2n  
{ s}g 	- {({c_iro .. r_}r, {c2_1}r')} tn-i 

Letp=n-I-1. 

g+1 = /3 o ((re  0 ... 0 r+1), (T')) 0  It 

= ((co.... 	 'C2n+i)) 

'-/3 • - T0 

T 

• 

n-i 

0 JO 0 

,-) 	0 	 • 

0 	
1 	
00 T 

0 	I 

	

'p 	ITO... 

7- 

------ 0 	I 
•Tn+i 

T 	• it 	I- 

0 	0 
I-To. •0 . .Tn+l 

n-i 

n 
1 

53 
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Therefore, in cases where a difference in path length exists, the merge node is 

required to store more than one context. 	 0 

Proposition 2.37 implies that it is not possible to use a register as the internal 

storage mechanism of a merge node, as a register would only he able to hold 

one input context. A register set, or some type of random access memory might 

be a possible mechanism, except that the location at which the context is to 

be stored would require specification in the context. This is undesirable, as the 

process of buffering contexts should be automatic and not under the control of the 

application being evaluated by the graph. This restricts the choice to a sequential 

access memory - either a stack or a FIFO queue. Although a stack would satisfy 

the ordering property of Definition 2.8, the first context to be buffered in the node 

would be the last to be forwarded, which although not incorrect, would impose an 

unnecessary and execution-specific delay on the particular process. Use of a FIFO 

queue maintains ordering and imposes the minimum delay on contexts. With the 

above restriction in mind, the operation of a merge node is defined as follows: 

Axiom 2.38 

{ ((ii, {(s', t')}1t°)) 

(s,t)}1i 
__ 	((Se, {(s', t')}ji°)) 

{  
((t0, {(s', t')} °)) 

((s0, {(s', tI)}1i(t0))) 

{ ((co' 	
/ {(S ,tF)}1i (ci .... ,c n))) 

((c0, {(s', 
(CO,  ....Cn) {(s,t)} 

I 	/ 	(ci,...,cn,to) 

((c0, { (s', 

if s0 =t0 =v 

if s0 Lu,t0 =v 

if s0 =u,t0 v 

if s0 =t0 L zi' 

Figure 2-4 illustrates the operation of a merge node. 



Chapter 2. A Theory of Context Flow 

\0  _ 

0 

 

0 

0 

I_in 
n—i 	I 

I 

n 
I-  IL 

7 
 n+1 	I I L 

/ 

55 

Figure 2-4: Merge Node Operation 
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2.3 Boundedness of Queues in Acyclic Graphs 

A FIFO queue is potentially capable of storing an infinite number of elements 

should a mismatch in input and output flow rates be sustained for a considerable 

period of time. In any implementation of a merge node, however, the queue must 

be implemented within a strictly finite memory. Before any CF machine can be 

built, the maximum length of all queues must be determined. In order to do this, 

a means to induce a maximal length queue in a merge node must be established. 

Consider the following graph 

which is initially empty. Suppose a stream of contexts passes through 0 and are 

all routed via a so that each node r0,... , r contains a non-null context. During 

this time, null contexts pass along b to i. If the next context is routed via a then 

it will merge a null context from b and non-null context from -rp  and no contexts 

are queued. If, however, the next context is routed via b, p will merge two non-

null contexts, queueing one. If non-null contexts continue to to be routed along b, 

the queue at i will continue to grow until all the contexts in r0,. . . , r have been 

merged. At this point, the queue cannot grow as at most one non-null context 

can arrive at t. This is stated formally in the following Lemma. 

Lemma 2.39 The input stream s = ((c0)... 	Cpl .. ,c2 -1)) operated on by 

graph g of Proposition 2.37 induces a maximal length queue in ji. 

Proof If for c3  c . 
(0jp-1 -'c3f 

aj: 
pj2p-1 c3fp 
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then 

I(((c0, ... ,u,.. . ,c_1,v, ... ,v)),((uo, .... c,.. .,v, c,.. . 

( (((co,. .. ) c_1,v,. . . ,c,...,u)),((z o,... ,v,c,... ,u,.. . 

After p + 1, p + j + 1, and p +j + 2 cycles, the following inputs to i would occur. 

P+1 	F 	 ' 	0 {(((c,. ..)),c)}u 

+J 

{
i

{(((zi,. ..)),c,)}ji' 

{(((c....  

{(((c + ,.. .)),c, 31)}p! 

{(((cj_ 1 ,. 

In both cases, the result is a maximum queue length in t of one less than in 

Proposition 2.37. The input stream in Proposition 2.37 generates the maximum 

queue length in it since between the p + 11hi to 2  p1 graph cycles there is always a 

non-null context at the head of the input streams to u. Any other input stream 

introduces a null context during this time, allowing one context to be forwarded 

from the merge node while only a single context is added, thus maintaining queue 

length. 	 0 

Having determined the nature of the input streams to a merge node which cause 

a maximal length queue to form, the relationship between the lengths of those 

streams and the queue size is established in the following Theorem and Corollaries. 

Theorem 2.40 In Class II graphs, the maximum number of contexts which a 

merge node may be required to store is p, the difference in path length between a 

merge node and its matching branch node. 
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Proof Let t = K(co,. 	 Ac2 . Applying t to the initially 

empty graph gp  of Proposition 2.37 yields 

{t}g 

___2p-1 ( 
t{} ({c2p_1 }(({cp_1ro .. .r_21r_1  o {c_ 2T0 . 

{({c2 }j3((o{c_17-0.  r_ }r,), {c2P_ 117 .F ))},.LP_1  

IN ), (( )))} p' 	 if c2  = U 

ifc2v,c2f 

{((( )), {c2P}T')} Yp 	 if C2p 	ii, 	f13  

As all possible input streams result in one or both inputs to it being the empty 

stream, the queue size cannot increase during the next graph cycle. 

((c, {((( )), )))} itP_l)) 

((c, {((1c2 7-017-1 ° . rn), {v}r')} it_1 )) 

((c, {((( )), (( )))} it)) 

where c is the head of the merge queue in it  As t contains the stream which 

induces the largest possible queue in it  from Lemma 2.39, the result follows. 	0 

This gives rise to the following corollaries. 

Corollary 2.41 In Class II graphs, the length of a queue in a merge node is 

bounded. 

Proof Follows from Theorem 2.40. 	 . 
Corollary 2.42 In Class II graphs, the maximum number of contexts which a 

merge node may be required to store is #d,  the difference in length of the two 

parallel streams applied to its inputs. 
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Proof From Proposition 2.37, and Theorem 2.40, after p +I cycles, the state of 

the computation at the input to the merge node s is: 

SA = {((c+2,. . . ,c2 _))} ({cp+i}fi  o (({u}r0  o ...o 1c07-0  • r_1 }r), {c}r')) 

This can be written as 

(c +2  A 	A c2 _ 1) A c 1  A (v A (c_1r0) A ... A (c0r0 .. rn), (CPT')) 

By Axiom 2.15 

s =((c+2  A ... A c2 _ 1) A c 1  A (ii A (C_170) A ... A (coTo. Tn)), 

(c +2 	A c2 _ 1) A c+i  A (CPT')) 

#ds =1#(c+2 A ... A c2_1) A c 1  A (ii A (c-1r0 ) A ... A (coro  . . Tp)) - 

# (c 2  A ... A c2 _1) A c 1  A (CPT')  

By Definition 2.22, this can be extended to all paths 7-0 	T1, which include pairs 

of branch and merge nodes. 	 0 

2.3.1 The Effects of Queues on Pipeline Operation 

The use of queues in a pipeline - implicit in any CF system as a result of their 

inclusion in every merge node - has a profound effect on the performance of the 

processor. Decoupled architectures [Smith, 19841 are a class of pipelined system in 

which hardware queues play an integral role. A decoupled architecture separates 

memory access and instruction execution into two distinct modules, connected 

by queues, each module executing instructions from its own instruction stream. 

Although a dual instruction stream increases the effective instruction issue rate, 

a more complex compiler is needed, and synchronization between streams is re-

quired during the evaluation of conditional branches. The use of queues to isolate 
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main memory allows access delays and mismatches in instruction processing rate 

to be absorbed, allowing improved instruction issue and smoothing of long or un-

predictable memory references. Queues are also used to counteract the effects of 

memory latency in the Fortran Optimized Machine [Brantley and Weiss, 1983]. 

When used in conjunction with a suitable compiler, memory requests can be issued 

in advance of their being required by a particular instruction. 

Since the minimum queue size for any merge node is determined exactly by the 

position of the node in the CFG, as shown in Corollary 2.42, the need for inclusion 

of interlocks between nodes to prevent queue overflow is removed. This maximises 

the performance of any CF system, as hardware interlocks would impose a delay 

on all contexts, irrespective of their effect on queue length. Implementation of 

the CFG is also eased in that interlock hardware, which tends to be complex and 

non-regular [Hennessy et al., 1982], is not required - particularly relevant in any 

VLSI implementation. 

The finite size of the CFG imposes a limit on the granularity of tasks into 

which any problem that is to be solved using CF may be split. 

2.3.2 The Effects of Memory Isolation on Pipeline Operation 

The isolation of memory elements in a context flow graph within distinct nodes 

makes pipelining the natural mechanism for memory access in context flow. The 

incorporation of data memory into the execution pipeline causes memory refer-

ences to delay execution no more than any other type of instruction [Smith, 19851. 

Neither parallel nor interleaved memory can offer this performance guarantee, be-

ing limited by the size of block accessed, and the degree of interleaving respectively. 

Pipelined memory is the key to sustaining high instruction completion rates in the 

HEP, and is an integral part of the University of Tokyo Cyclic Pipelined Computer 

[Shimizu et al., 19861. 
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Although memories are associated with a single node, shared memory struc-

tures can be implemented by merging streams of contexts containing access re-

quests and using the resulting stream as input to determine the addresses to be 

accessed. This ensures that strict ordering of memory accesses can be enforced, 

and freedom from side-effects due to multiple accesses can be endured. 

Many memory structures perform very localized functions, for example, queues 

in merge nodes. Clearly, such devices should not be accessible from any node in 

a graph. By restricting access to a memory to the node in which it is located, 

all memory structures, irrespective of their function or operational characteristics, 

can be treated in a uniform manner. 

Summary 

Context flow provides a simple yet powerful mechanism for constructing parallel 

pipelined systems from a small set of basic building blocks. The context flow model 

consists of a set of core nodes which can be used to construct representations of 

systems in the form of context flow graphs. These nodes provide simple function-

ality and make possible the creation of multiple independent paths through the 

graph. Accompanying the set of core nodes is a set of basic evaluation rules which 

govern the movement of contexts in the graph. 

Each context may represent only one process, but tasks may he divided into 

sub-processes to allow parallel evaluation using multiple contexts. 

Flow of contexts through the CFG is synchronous, with each node perform-

ing its operation in a single graph cycle period. 

Exactly one context may be transmitted along an arc during a graph cycle. 

In the case where no information is to be passed, a null context is generated. 
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Only contexts of one type may be passed along a given arc during the entire 

period of graph activity. There is no other restriction on the types of arc 

attached to the ports of a node. 

Branch nodes route contexts solely on the basis of their current contents, 

not on any external state information. 

Cycles are permitted in a graph. However, self-loops of the form, 

00 	- 

cannot occur, as branch nodes cannot alter contexts. 

Each transformation node is distinct, and can only interact with other nodes 

through the arcs in the graph. 

lrcwTa XWI)C1,  6I'6C11 fL€L1Et 

"Everything flows and nothing stays" 

- HERACLITUS (c.535—c.475 B.C.), Cratylus, 402a 



Chapter 3 

Higher-Order Graphs 

A formal basis for context flow has been established, and some prop-

erties concerning queue lengths in certain types of acyclic context flow 

graph proved. In this chapter, the notions of stream tupies and named 

edges are introduced. Using these concepts, it is shown that for both 

acyclic graphs with arbitrary numbers of branch and merge nodes and 

cyclic graphs, the length of queue in all merge nodes is bounded. The 

boundedness of queues is essential for the implementation of CF sys-

tems. As most systems are closed, and therefore contain cycles, it is 

necessary to show that boundedness extends to these types of graph. 

In order to do this, additional notation is required, in particular to 

describe loops. Methods for calculating a numerical value for the max-

imum queue length and for graph initialization are presented. 

63 
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3.1 Stream Tuples 

The transformation, branch and merge nodes, and the context stream operators 

provide a simple yet powerful means to describe certain classes of pipelilled system. 

Their definitions avoid the inclusion of implementation specific features, and are 

therefore suitable for use in a wide variety of applications. These nodes form the 

basic or core nodes of a CF system. At the lowest level, a first-order CFG contains 

only core nodes. To permit a more structured approach to CF system design, 

higher-order graphs can be defined. In these graphs, restrictions as to the degree 

of the nodes are relaxed, allowing structured nodes to be created with multiple 

input and output arcs. Structured nodes are formed from interconnections of 

lower-order nodes or core nodes. As higher-order graphs are built from core nodes 

at the lowest level, they retain the property of passing only one context on each 

arc during a graph cycle. 

As more than two context streams may exist in parallel in higher-order graphs, 

the concept of a pair of context streams is extended to groupings of an arbitrary 

number of independent streams, called stream tuples. Table 3-1 defines the set S 

of stream tuples, and the basic tuple operators. 

Definition 3.1 	A stream tuple S = (si,. . . , s,) is a collection of n independent 

context streams. 

Definition 3.2 The cardinality of a stream tuple S is the number of context 

streams in 5: 

I (s1, .. . ,$)I = n 

A context stream is defined as a member of a stream tuple if it is contained within 

the tuple. 
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Notation 	 Meaning 

((( ))) 	the tuple containing empty streams 

(s) 	a tuple containing a single stream 

(.s1,... , s,) a tuple containing n streams 

SI cardinality of tuple S 

s ç S stream .s is contained in tuple S 

S 	S2  tuple S is equivalent to S2  

Sfl j  projection of the ith  stream from tuple S 

Si N S2  join of tuples S and S2  

Si A S2  concatenation of tuples S and S2  

#S length of tuple S 

S heads of streams in tuple S 

5' tails of streams in tuple S 

Table 3-1: Tuple operations 

Definition 3.3 	.s C (Si,... ,s,j if 11 : 1 < i < n,s 

The notion of equivalence for stream tuples is slightly different to that for context 

streams, in that the ordering of streams within a tuple is significant. The position 

of a stream within a tuple determines the port of the node with which it is to be 

associated. Equivalence is defined only for tuples of the same cardinality. 

Definition 3.4 Given two stream tuples S,T, where ISI = TI, S and T are 

equivalent if each context stream in S is equivalent to the corresponding context 

stream in T. 

Lemma 3.5 	is an equivalence relation over stream tuples. 

Proof Let S = (s1,. . .,$),Y = (t1,.. .,t),U = (u1 ,. . . ,u,), such that 151 = 
ITI=IUI=n. 
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z is reflexive. Clearly 'v/i : 1 < i < n, si  s1, therefore S S. 

is symmetric. Suppose S T, then by definition Vi : 1 < i < fl, Si  

therefore, as is symmetric, 'v/i : 1 < i < n, ti  s, therefore T S. 

is transitive, Suppose s ç S, then S 7 s C 7 and 7 U = s c U. 

Conversely, suppose sçU, then TU = sC_T and ST =' sCS. 

Thus SU. 

This completes the proof. 

3.1.1 Tuple Operations 

The identity element for all operations on stream tuples is a tuple containing 

empty streams, and is denoted by ( ). The tuple containing only a single stream 

is written as (s). 

It is useful to define a projection operator H to extract one or more streams 

from a stream tuple. 

Definition 3.6 

(s)Hs 

(s1,. . 	s : 1 (i < n,n EN 

(s,...,s j) : 1 < i <j 	n,n c  

Axiom 3.7 ((0)) 	(0) 

It may also be necessary to perform the converse operation, joining a context 

stream with a tuple, or joining two tuples together. This is performed by the join 

operator N. 
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Definition 3.8 

(Si,.. .,$) M 	(Si,... ,s,t) 

(Si,... ,$) N (ti,.. . ,t) 	(51," ,S,t1,... 

The join operator has the following properties: 

Axiom 3.9 S N (S2  NS3) (S  NS2) N S3  

Axiom 3.10 S  ((Q))S 

Axiom 3.11 S1 NS2 S1 NS3 =.S2 S3  

Axiom 3.12 	S1  N 82  ((( ')) = S 	((( ))) 

The concatenation operator A is extended to operate on stream tupies. 

Definition 3.13 	(s1) .. . ,s,) A (t1,...,t) 	(s At1,... ,s At,) 

The following axioms define concatenation to be associative and commutative 

when applied to stream tuples. 

Axiom 3.14 S1 A(S2 AS3)(S1 AS2)AS3  

Axiom 3.15 S1 AS2 S2 AS1  

Axiom 3.16 S A ((( ))) ((( )) A S S 

Axiom 3.17 S1 AS2 S1 AS3 =S2 S3  

Axiom 3.18 	S  A  S2 ((( ))) = S 	((( ))) 
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Axiom 3.19 	(s1 , ... ,$) At 	(s1 At,...,.sAt) 

It is important to differentiate between joining and concatenation. Joining oper-

ates on tuples, and does not affect the streams within the tuples. Concatenation 

leaves tuple size unchanged, operating of the streams which make up the tuple. 

The length operators #+ and # are extended over stream tuples, yielding the 

lengths of the longest and shortest streams in a stream tuple. 

Definition 3.20 

N t) = max(#s, #t) 

where 

#s=#s and #(sAt)=#s+#t 

Definition 3.21 

N t) = min(#s, #t) 

where 

#s=s and #isAt)=#s+#t 

Definition 3.22 #d(S N t) = #(s N t) - 	N t) where #dS = 0. 

The head operator , when applied to a tuple, returns a tuple whose members 

are the heads of each of the constituent streams. Similarly, the tail operator / 

produces a tuple containing the tails of the member streams. 

Definition 3.23 	(s1,... , s) 	(s10 ,.. . , s, 0 ) 	(si,.. . , 	(st,.. . , s) 

The head of the empty tuple is defined as a tuple of null contexts, and the tail, as 

the empty tuple itself. 

Definition 3.24 	((( ))) 	('I,  . . . , ii)  
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3.1.2 Named Edges 

In many structured design methodologies it is useful to provide a series of interme-

diate definitions which are then combined to form the final result - the definition 

of procedures or functions in high-level programming languages, for example. Not 

only is this often notationally convenient, but it also can allow more efficient im-

plementation. A similar situation can arise in the definition of structured nodes 

where several parallel output streams are defined in terms of a common function 

of the inputs. In order to avoid repeating the function at each of the streams for 

which it is required, the notion of a named edge is introduced, which defines a 

function which can be reused at any point within the definition of the structured 

node. 

Definition 3.25 Let q  be the function defined by node i, q E {/3,i,r}. The 

expression € 	00  o ... o 0,, defines an edge associating the name € with the 

composition of functions 01  to . 

Remark 3.26 In the definition of the function representing a graph, the compo-

sition operator o represents an un-named edge connecting two nodes. 

Once defined, named edges can be used to replace sequences of nodes connected 

by un-named edges in a graph. For example, the graph 

g = co 0 ... 00.00,  

can be written as 

g = 

using the value of € from Definition 3.25; and the graph 

T, 

E2 2 
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can be written as 

g = (61, €2)1 : El 	/30 Ill 0r1, 62 	/30f12 0 7-2 

3.1.3 Structured Nodes 

A structured node has an internal hierarchy, and a functionality determined by the 

aggregate operation of the core nodes from which it is constructed. A structured 

node is itself a graph which is treated as a node for the purposes of constructing 

higher-order graphs. As projection and join operations are required to manipulate 

the multiple stream inputs and outputs permitted in structured nodes, the be-

haviour of branch and merge nodes can be redefined in terms of these operations, 

for tuples of cardinality two. 

Axiom 3.27 

((( ))) 

(())) A{s'}/3 

(s0 N ii) A {s'}/3 

(v N s0 ) A {s'}/3 

if s)) 

if s = 1", 8' 	(0> 

if s04, 8''?~ (0) 

if - s0f,s'~() 

Axiom 3.28 

{ ((v, IS'111 if Sri10 = S1120 = 

	

0 	
((Sll, {S'} °)) 	if SIl. 	u, S1120 = ii 

{S} - 

((SH2o,{SF} 0)) 	if S1110 = v,SH20 	I' 

((SH10, {Sl}p(8H2o))) 	if Sri10 = SH2 	11 

{ ((c0, {51 }1 .....Cn))) 	 if Sf110 = Sf120 = 

	

{5}(C0.Cn) 	
((c0,  

((c0, 

((co, IS' 
}1 (Ci .....cn SH10 45H20))) 

if S1110 v,SH20 =v 

if Sll = ii, S0 

if S1110=SH207~v 
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It should be noted that the only difference between the above Axioms and Ax-

ioms 2.31 and 2.38, on pages 50 and 54 respectively, is in the notation. There is 

no generalization of either merge nodes to accept more than two inputs, or branch 

nodes to produce more than two outputs. 

Using the projection and joining operators, the operation of a node 'y whose 

structure is 
Y•Ii 	 'YI32 

I 
'Y.T 

 

can be written as 

= (f111  0/32) N €112  : c A {(111,2 0, 1 )N [i3},i 2 oro/31  

The definition of operations on stream tuples, coupled with the introduction 

of named edges, provides greater flexibility for the definition of graphs. Higher-

order graphs are defined in exactly the same way as first-order graphs, with the 

restriction that cardinality of the result of a hode must equal the sum of the input 

cardinalities of its successors. Class III and IV context flow graphs can also be 

defined using this notation. 

3.2 Queue Boundedness in Class III Graphs 

In Class II graphs, the paths between a branch node and a merge node contain 

equal numbers of other branch-merge pairs. In Class III graphs, this is not the 

case as the paths between branch and merge nodes may contain any combination 

of nodes. Using the concepts and notation of stream tuples, the property of queue 

boundedness that exists in Class II graphs can be shown to extend to Class III 

graphs. 
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Proposition 3.29 The number of non-null contexts output from a merge node is 

equal to the number of non-null contexts input to the node. 

Proof From Corollary 2.35, a merge node cannot destroy or create a non-null 

context. 	 •1 

In order to show that the length of a queue in a merge node is bounded in a 

Class III graph, two cases must be considered - a graph which contains more 

branch than merge nodes, and a graph which contains more merge than branch 

nodes. 

Lemma 3.30 If the number of branch nodes is greater than the number of merge 

nodes in the path between a branch-merge pair, the length of queue in the final 

merge node is bounded. 

Proof Consider the graph 

p-1 61  P2 

T 
	 62 

initially empty. 

9={e1 /32 0112 Me2}t: 

= 	o 111  o  00 0 .. 

= 01 01120 T 

The maximum length queue in p occurs when Vc: c C .s, s€1132111 	(() Therefore, 

ifc: c C s,ce1 /32111 	i' then ce1 /32112  = ii and, from Lemma 2.39, the queue will 

not reach its maximum length. 	 . 
Lemma 3.31 If the number of merge nodes is greater than the number of branch 

nodes in the path between a branch-merge pair, the length of queue in the merge 
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node is bounded. 

Proof Consider the graph 

C2 	 C2 
	 Cl  

T 112 

initially empty, where the queue length in it, is bounded by q. There are three 

cases to consider: 

Suppose p = q. After p + 1 cycles, 

• 	, 	• 	 S 	0 	S 
Y J  

10   P+1 	

0 	 0 	0 
T 	 /12 

If contexts are now routed via e3, 

'fl  0 	
•S p-1 • 
	 I - 01

I- 	-1 

/ 	0 	 0 	0 
T 

0 	i 	I 	 S 	2 	I 
1 i 

/ 	5 	 0 	I 
T 	 112 

[L2  must now start to queue contexts. After it, has merged the p length 

streams el  and 4, p contexts are contained in its queue and p contexts have 

been forwarded. Of the latter, p - 2 contexts have been merged with non-null 

contexts from e'3. 

,- 	0 	0 	 0 	P 	0 
1•111  

__________________  
/ 	• 	 p-2 	• 

T 	 1t2 
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During the next p cycles, the queue in jt1 empties into 1121 merging with a 

stream of contexts from 4, causing the queue in /2 to grow to 2p-2 elements. 

	

0 n 0 	0 	 0 0 0 
• 

P "~% [S 

2p-2 • 
T 	 1 112 

0 	 0 0 o 0 	 0 	
p-i 

[0  

0 	 2p-1 S 
T 

As the inputs to both merge nodes are null, the queue lengths remain con-

stant. 

Suppose p> q. After p+1 +q cycles, edge e1 always passes a null context. 

S 	 S 	 S S 	q 	0 
(7)p-1 	 1 'r 

S 

0 	 0 	5 

	

112 	IS 

As p > q, non-null contexts are routed via e2 maintaining the length of queue 

in y j at q elements. At the same time, null contexts are routed via e3, thus 

maintaining an empty queue in 12• After a further p - q cycles, ji holds q 

contexts in its queue, and has forwarded p contexts. 

0 0 01 0 	 5 q 0 

	

I- 	. • • 
	 p-1 	'• 1i 

p-q 

	 S 
T 	 112 

The q contexts remaining in it, merge with those from 4. 
0 

- 	

•o • 	0 ti q 	0 

'S 	
S 	 L. 

T 	 It  
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0 It 1 0 	 •o 	0 	0 	0 
I 

q 

"~% 
 

	

, 	 . 	

1  

1- ft 	 • T 

Therefore, the maximum queue length in i12 is q + 1 which is less than that 

in the case for p = q. 

Suppose p < q. After 2p + 1 cycles, edge 4 always passes a null context. 

q—p contexts remain to be input to it, on e1, while the q contexts forwarded 

by it1 have merged with a stream of p - 2 contexts from 4 at 112 . As p < q, 

p - 2 <q, and the queue in 112 grows to p - 2 elements. 

0 	 0 
•q 

I 	 0 p 	• 

It2 

After a further q 
- 

p cycles, the queue length in it, remains at p, and the 

queue length in 92 grows by q 
- 

p to q - 2 contexts. 

0 	 0 	 0 	p 	0 
' 	 • p-1 

q-2 • 

	

T 	 ILL 2 

After another p cycles, the queue in it, is empty, and the queue in it2 contains 

(p + q) - 2 contexts. 

	

0 c 0 	 0 	 0 0 0 '0 cr 	p-1 

	

, 	 • 	p+ q-2 	• 
T 	 it2 

Therefore, maximum maximum queue length in it2 is (p + q) - 1, which is less than that 

in the case for p=q. 

This completes the proof. 	 11 
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Having proved that if the numbers of branch and merge nodes contained in a 

context flow graph are different, the queue lengths in the merge nodes remain 

bounded, the following Theorem follows by definition. 

Theorem 3.32 The length of queue in a merge node in a Class III context flow 

graph is bounded. 

Proof Follows from the definition of a Class III graph, Lemma 3.30 and Lemma 

3.31. 	 0 

3.3 Queue Boundedness in Class IV Graphs 

Class IV context flow graphs differ from Class III graphs in that cycles are per-

mitted. It can be shown that queue boundedness extends to certain cyclic graphs, 

but that in others, queue length is directly proportional to input stream length. 

As any practical CF machine is closed and therefore cyclic, it is essential that all 

queue lengths are bounded. 

Definition 3.33 A cycle or loop in a context flow graph is open if it contains 

either a branch node for which one of the outputs is not connected to any point 

in the loop, or a merge node for which one of the inputs is not connected to any 

point in the loop; otherwise it is closed. 

Lemma 3.34 Queue length is potentially unbounded in open context flow graphs 

containing closed loops. 

Proof Consider the class of graphs 
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where q  denotes a sequence of branch, merge and transformation nodes containing 

up to n contexts. 

Clearly, if any non-null context enters the graph at e0, it continues to circulate. 

If the number of contexts exceeds n then any additional contexts must be stored 

in the queue at y. As the queue length is directly proportional to the number of 

non-null context in the stream at e0, its length is potentially unbounded. 

Lemma 3.35 Queue length is bounded in open context flow graphs containing 

open loops if and only if the number of contexts entering the graph is equal to the 

number leaving. 

Proof Consider the class of graphs 

6i+2  on 

6\2 

Lo IL 

el 

 )3 
0112 

Lets = (c1, c2,. . . , cj such that Vi : 0 < i < n, c2  0 v. Applying s to the graph 

yields the following situations: 

If fill2 	(()), then the graph is equivalent to 

ei+2 on 

\'12 

CO  
'-IL 	TO 

and, from Lemma 3.34, the queue length of it is unbounded. 

If fill2 	s, then the graph is equivalent to 

ITb 	IT/3 	I 

and no contexts require to be queued. 
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As queue length is determined by the proportion of contexts which are routed out 

of the loop at the branch node, there must be a point at which the rate of flow of 

contexts out of the loop matches the rate of flow of contexts into the loop, resulting 

in a constant queue length. If the outflow is less than this, the queue will grow, and 

if greater, the queue will shrink. glen this condition is met, the graph becomes 

equivalent to 

which can also be drawn as 

/ n 

From Corollary 2.41, the length of queue in t is bounded. This completes the 

proof. 	 LE 

Theorem 3.36 If a context flow graph contains cycles, it must be closed for the 

length of queues in the merge nodes to be bounded. 

Proof Follows from Lemmas 3.34 and 3.35. 	 13 
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3.4 Determining Maximum Merge Queue Length 

The results of Corollary 2.41, Theorem 3.32 and Theorem 3.36 show that the queue 

lengths in merge nodes are bounded in all acyclic and closed cyclic context flow 

graphs. It is possible to determine a numerical value for the upper bound on queue 

length by the position of the merge node in the graph. The desirability of being 

able to determine the upper bound on queue length in an analytic manner, as 

opposed to requiring simulation, is clear, as simulation cannot assess the effects of 

all possible distributions of contexts which may arise. There are four configurations 

to consider. 

3.4.1 Simple Transformation Sequences 

In the case where both inputs to the final merge node are streams which have only 

been operated on by transformation nodes, for example 

i-r0 ..... TP 

f  
F 

the maximum length of queue at y is given by the result of Theorem 2.40, as the 

difference in path length between /3 and it, or by Definition 3.22 as #d(Ep N 

3.4.2 Matched Branch-Merge Pairs 

The above result can be generalized to the situation where the paths between the 

nodes themselves contain branch-merge pairs. 
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A maximum length queue is induced in it if all contexts are first routed along the 

longest path between 3 and i via c and then by the shortest path via f q , which 

is given by #d (c'  N 

3.4.3 Unmatched Branch Nodes 

If one or both input paths to t contains an unmatched branch, a maximal length 

queue in It will occur if the unmatched branches route all contexts to the merge 

node. This corresponds to the graph 

f p P ___________ 

where 02H1 2ll1 	( )). The upper bound on the queue length in ft is given by 

#d(cI32hhh1 N 

3.4.4 Unmatched Merge Nodes 

The situation in which unmatched merge nodes exist in the input paths of a merge 

node is complicated by the fact that this creates two potential sources of contexts. 

In the graph 

op  P  

I, 
If 
lL 

f 
••(q 	112 

it is assumed that iti  has an upper bound on its queue length of in, given by the 

stream difference of its inputs. The maximum length of queue in t 2  is determined 

by incorporating the queue into the input stream as a point source of in contexts, 
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and then evaluating the stream difference. In the above graph, the upper bound 

on queue length in 92  is given by 

	

# d(' 	
' c M 	= max#c, #E + m) - min(#e, 	+ 772) 

	

q 	U 	 ,  

3.5 Graph Initialization 

In each of the preceding situations it has been assumed that the graph is empty 

prior to application of a stream - each node containing a null context. Whilst 

this is convenient for, purposes of clarity, it is somewhat unrealistic, especially in 

the case of closed cyclic graphs. It is quite conceivable that an acyclic graph or a 

particular section of cyclic graph be initially empty, however, a closed cyclic graph 

will require to be initialized by non-null contexts. 

The only case which will be considered here is where contexts are initially 

stored in a single queue. If a graph represents an execution pipeline, it is clearly 

the case that no instruction should be started at a point which corresponds to a 

partial state of execution. 

If a graph is initialized with a number of contexts which is less than the short-

est path length in the graph, then the contexts will, after initial dispersal from 

the queue, distribute themselves throughout the graph, allowing maximum queue 

lengths to be calculated as detailed above. If, alternatively, the graph is initial-

ized with a number of contexts which is greater than the shortest path length, the 

initialization queue will contain, on average, a quantity of contexts equal to the 

number used in the initialization less the mean context latency. In both cases the 

queue used for initialization must be capable of holding the initial number of con-

texts. Providing initialization is made at one node, calculation of other maximum 

queue lengths may be made according to the procedures of Section 3.4. 



Chapter 3. Higher-Order Graphs 	 82 

3.6 Context Flow as a Model of Parallel Compu- 

tation 

The definition of context flow avoids the inclusion of implementation-specific fea-

tures, allowing the model to be applied in a wide variety of situations. Contexts 

are defined merely as tuples of information with some internal, but undefined, 

structure, and nodes are defined simply as the sites of function application. CF 

is an abstract mathematical model of parallel computation. In order to obtain an 

assessment of its relative strengths and weaknesses, it is instructive to compare it 

to two other existing representations of parallel processing - Petri Nets and data 

flow graphs. 

3.6.1 Petri Nets and Data Flow Graphs 

A Petri net [Reisig, 19851 is a directed graph containing two different types of 

node - places and transitions. Each place is weighted by a number of tokens, 

with places connected to transitions by weighted arcs. Tokens circulate in the net 

as a consequence of firings, events which enable a transition when, for all input 

arcs of a transition, the weight of a place and the arc which connets it to the 

transition are equal. For example, the net 

P2 
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has four places, P01P1,P2  and p3, and two transitions t1  and t2, connected by arcs 

with weights w0  to w5. A net can also be represented by a matrix in which the 

rows represent transitions and the columns represent places. The above net can 

be written in matrix form as 

(—too  W1  w2  o 

0 —w3  —w4  w5  

Tokens are distributed in the graph according to an initial marking, which, in the 

above example, is 

3 

1 

2 

3 

A data flow graph (DFG) [Davis and Keller, 1982] is a directed graph which 

consists of three different types of node - function nodes, distributors and selec-

tors. the arcs which connect the nodes denote the data dependencies present in a 

computation. Tokens are used to represent the flow of data between nodes, each 

token representing one data or booleañ value. Tokens reside on arcs rather than 

in nodes, each arc storing only one token at a given time. Computation events are 

initiated when a token is present on all the input arcs to a node, and no tokens 

exist on the output arcs. The node then consumes the input tokens and generates 

tokens for the output arcs. 

Treatment of Time 

In both Petri nets and data flow graphs, operations are performed as soon as 

sufficient data, represented by tokens, are present - they are both asynchronous 

models. Neither requires an explicit denotation of time, initiation of events being 

governed by availability of data. Context flow, however, has a very strong notion 
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of time, encapsulated in the graph cycle period. Although time is not explicitly 

referenced, the duration of operations in all nodes is equal. CF is a synchronous 

model of parallel computation. 

It is the synchronous nature of CF which necessitates the inclusion of null 

contexts in the model. In both Petri nets and DFGs, the concept of an empty 

token does not exist, and is indeed unnecessary. An empty token would simply 

represent the absence of information, which is equally denoted by the absence of 

a token which does contain information. Absence of a token causes a delay in 

the firing of a function, just as the inclusion of a null context in a context stream 

causes a delay of one graph cycle period in CF. 

Parallelism 

In CFCs, Petri nets and DFGs, the existence of parallelism is both inherent and 

obvious from the graphical description. In CF, the spatial parallelism indicated by 

the existence of multiple paths through the graph is augmented by the temporal 

parallelism which exists between each node. In DFGs, the parallelism is a result 

of, and hence limited only by, data dependencies. 

Freedom From Side-Effects 

All three models have no notion of a globally accessible, memory. In Petri nets and 

DFGs, all computation is performed with values or fixed name-value bindings, all 

references to an identifier yielding the same value for the entire duration of the 

computation. CF is more general in its treatment of values in that changeable 

memory locations may exist; but as access is controlled by a single transformation 

node, non-local destructive updating of a memory location cannot be performed. 

While it may be possible for two contexts to access a common memory location, 
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this would represent some form of synchronization of, or communication between, 

the processes, which can be assumed to be intentional. 

Locality of Effect 

In Petri nets and DFGs, tokens generated at a transformation or function node 

only cause changes in the nodes which are its immediate successors. The same is 

also true for CF where applications of functions at one transformation node do 

not affect other contexts or the contents of memory locations at other nodes. 

Non-determinism 

If a Petri net has a place with two output arcs of weight one, and a single input arc 

also of weight one, then either of the successors may be fired non- deterministically. 

In data flow, a merge node combines tokens in a non-deterministic manner. The 

relative ordering of tokens from each of the two streams is preserved, but the 

stream from which a given token occurs in the output is arbitrary. CF performs 

a deterministic merge of context streams, the repeatability of a result for a given 

input being guaranteed by the synchronous arrival of contexts at the node. 

Although there are several similarities between the three models, their differ-

ing treatments of time make comparisons difficult as this one property has an 

important bearing on the operation of the models. 
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Summary 

Using the concepts of stream tuples and named edges, a mechanism for the de-

scription of arbitrary context flow graphs has been developed. From this, comes 

a formal method for introducing hierarchies, bringing the benefits of structured 

design techniques to the creation of CFGs. The property of queue boundedness, 

demonstrated for certain acyclic CFGs in Chapter 2, has been shown to extend 

to all acyclic and closed cyclic graphs. Methods to calculate the numeric value of 

the upper bound have been presented. These allow maximum queue lengths, an 

important facet of any CF implementation, to be determined analytically rather 

than by simulation. This has an important bearing on the feasibility of CF im-

plementations. The relationship between CF and other parallel processing models 

has been explored. 

'A// things are a flowing." 

- EZRA POUND (1885-1972) 



Chapter 4 

Context Flow Architecture 

The principles of the context flow model, and the operation of the 

core nodes from which context flow systems are constructed, have been 

defined. The result is a formal framework for defining the structure and 

operation of context flow graphs, which has been used to prove that 

the queue length in any merge node has a fixed upper bound. This 

Chapter is concerned with more pragmatic aspects of context flow. 

Example designs for a number of example CF structures are presented 

which perform commonly needed functions in computer systems, such 

as decoding and access to shared memory, in a pipelined form. Their 

performance is measured with respect to a set of criteria which define 

utilization, throughput and latency for context flow structures. The 

design of a context flow routing element which can be used to construct 

pipelined multistage interconnection networks is discussed. 
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4.1 Performance Criteria 

Two properties of context flow have an important influence on the implementahil-

ity of CF systems - the ability to divide a context into static and dynamic com-

ponents, and the dependence of the upper bound on queue length solely on the po-

sition of a merge node within the graph. In order that the performance of context 

flow structures may be compared meaningfully both with conventional structures 

and other CF devices, it is important to establish a set of performance criteria. 

The performance of CF systems is, however, very different from other more con-

ventional pipelined architectures. If a CF machine contains a single context, the 

execution time will be greater than on an equivalent conventional pipelined ma-

chine - indeed no better than a non-pipelined system. As the number of contexts 

is increased, the performance also increases, the additional processes being exe-

cuted during the times when stages would otherwise be idle. Three main features 

of performance - utilization, throughput and latency 	are of interest, together 

with their relationships to the number of contexts contained in the system. 

4.1.1 Graph Loading 

A graph is fully loaded if the number of contexts contained in the graph is equal to 

the number of nodes in the graph. When containing fewer contexts, the graph is 

under or lightly loaded, and with more contexts, over or heavily loaded. Overloaded 

graphs may require contexts to be queued outwith merge nodes in transformation 

nodes with an associated queue. As maximum queue length in merge nodes is 

solely dependent on graph structure, and not on the functions performed by nodes, 

provision of additional queueing capacity in transformation nodes will not effect 

queue limits. Loading is expressed either as a percentage of the input stream 
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which is non-null, in the case of acyclic graphs; or as the number of contexts 

placed initially in a cyclic graph. 

4.1.2 Graph Utilization 

Utilization is defined as the average number of nodes in the graph which contain a 

non-null context during a single graph cycle, usually expressed as a percentage of 

the graph size. The minimum, average and maximum utilizations can be measured. 

One of the aims of context flow is to provide mmi utilization, but this can only 

be achieved if the graph is either fully or heavily loaded. 

4.1.3 Throughput 

Throughput is the average number of contexts which either reach the end of an 

acyclic graph or pass a given point in a cyclic graph, during one graph period, and 

is expressed in contexts per cycle. Context flow attempts to provide a throughput 

of one context per cycle for each active context stream. 

4.1.4 Latency 

Latency is the average length of time a context takes either to traverse an acyclic 

graph, or to complete one circuit of a cyclic graph. In overloaded graphs, it is 

useful to differentiate between two forms of latency - pipeline latency which has 

the same definition as latency above, and instruction latency which excludes' the 

additional time a context spends in queues, due simply to the loading of the graph 

rather than the graph structure. Latency is expressed in cycles per context. 
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4.2 A CF Arithmetic Unit 

The arithmetic unit of a processor, characterized by a regular input of similar in-

structions, lends itself naturally to a pipelined, and hence context flow, implemen-

tation, and would play a central role in any context flow processor. The pipeline 

described here is intended only as an example to illustrate the construction of 

context flow systems. A more realistic implementation is given in the design of 

the context flow processor in Chapter 5. 

The design is an example of a dynamically reconfigurable arithmetic unit which 

performs multiplication, reciprocation, addition and subtraction of fixed and float-

ing point numbers. The unit, shown in Figure 4-1, is composed of three main sec-

tions - decoding and floating point pre-processing, execution, and floating point 

post-processing. During the first stage of processing, instructions are categorized 

into fixed and floating point operations, the floating point data undergoing expo-

nent subtraction and mantissa alignment before decoding of the function is per-

formed. Multiplication and subtraction both require the context to pass through 

two nodes to be completed, the first to form the partial products or negative re-

spectively, followed by an addition step. The reciprocation function is provided 

to support division, which requires a context to circulate at least twice through 

the unit for evaluation. The results of floating point operations are then normal-

ized and accumulated for use in scalar product or double length multiplication 

operations. 

The simulated performance of the arithmetic unit is shown in Table 4-1. The 

input to the unit in each case is a stream of contexts with the different instruc-

tions occurring in different proportions and distributions over a period of 5,000 

cycles. An exhaustive series of input streams determined those which produced 
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Figure 4-1: Structure of the CF arithmetic unit 
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Input Stream Composition Minimum 
Utilization 

Average 
Utilization 

Maximum 
Utilization 

Latency 

Constant fixed pt. subtraction 3.85% 38.42% 38.46% 10.00 

Constant floating pt. multiplication 3.85% 57.60% 57.69% 15.00 

Alternate floating and fixed pt. 3.85% 45.03% 53.85% 14.00 

Random uniform 3.85% 44.68% 57.69% 15.00 

Table 4-1: Performance of CF arithmetic unit for various input streams 

Input Stream Composition MuIQ 	RecQ 	AddQl 	NegQ 	AddQ2 	AddQ3 	PostQ 	OutQ 

Constant fixed pt. - - 	- 	- 	- 	- 	- - 
Constant floating pt. - - 	- 	- 	- 	- 	- - 
Alternate - 	- 	- 	0.09 	0.16 	0.51 	0.86 

Uniform 0.02 	0.02 	0.02 	0.02 	0.09 	0.23 	0.90 	0.76 

Table 4-2: Average queue lengths in CF arithmetic unit 

the best-case, worst-case, and intermediate performances, and those which induced 

maximal length queues within the merge nodes. 

The best-case performance, an average execution time of 10.00 graph cycles per 

instruction, occurs with input streams consisting entirely of fixed point addition, 

subtraction and reciprocation operations. The worst-case performance, an average 

execution time of 15.00 graph cycles per instruction, occurs with a continuous 

stream of floating point multiplication instructions. The unit provides a consistent 

performance when given an input containing a mixture of fixed and floating point 

instructions. A stream of uniformly-distributed random instructions is executed 

in an average time of 15.00 graph cycles per instruction. The unit initiates one 

instruction per cycle and has unit throughput for all input streams. 

The average and maximum lengths of queue in each of the merge nodes are 

given in Tables 4-2 and 4-3. Although the average queue lengths in many of 
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Input Stream Composition I MU1Q 	RecQ 	AddQl 	NegQ 	AddQ2 AddQ3 PostQ OutQ 

Theoretical Maxima 2 	2 	2 	2 	3 3 3 2 

Constant fixed pt. - - 	- 	- 	- - - - 
Constant floating pt. - - 	- 	- 	- - - - 
Alternate - 	- 	- 	- 	1 1 1 2 

Uniform 2 	2 	2 	2 	2 3 3 2 

Table 4-3: Maximum queue lengths in CF arithmetic unit 

the merge nodes is very short, these results show the maximum lengths to be in 

agreement with the theoretical limits. 

The design presented here is somewhat conservative, in that each distinct op-

eration is assigned to a different node for the purpose of clarity. It would be 

possible to improve the performance of the design by combining certain functions 

into single nodes, thus reducing the latency of the unit. 

4.3 A CF Shared Memory Unit 

There are many instances when two streams of contexts require access to the same 

physical memory. For example, during instruction execution, values may be read 

from a register file at one point in the pipeline and results written to the same reg-

ister file at another. The obvious method of implementing a memory of this type, 

by connecting it between two transformation nodes, as shown in Figure 4-2(a), is 

explicitly prohibited in context flow, due to the possibility of introducing uninten-

tional side-effects during simultaneous access to the same location by two contexts. 

Shared memories can, nonetheless, be implemented in context flow with, in many 

cases, only a small additional performance penalty. The structure required to im-

plement shared memory is shown in Figure 4-2(b). The unit consists of a merge 

node to combine the two streams of contexts which require access to the shared 
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Figure 4-2: Structure of the context flow shared memory interface 
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data; a single transformation node with the shared data stored in an associated 

memory; and a branch node to regenerate the two original streams after the mem-

ory access is complete. This method of shared memory organization has certain 

advantages - mutual exclusion on shared data is enforced in hardware providing 

an elegant implementation for semaphores and other synchronization primitives, 

and the structure is easily extensible to allow access by more than two streams with 

only the addition of merge nodes at the input and corresponding branch nodes at 

the output. There are, however, certain disadvantages to a memory structure of 

this type in that it can only process contexts at half the rate and is therefore a 

potential source of delay. 

Figures 4-3 to 4-5 show the simulated performance of the shared memory 

unit under varying loads over a period of 2500 graph cycles. Changes in latency, 

measured as the average number of graph cycles each context requires to pass 

through the unit, are shown in Figure 4-3. Latency is almost constant at about 

3 cycles for loads under 50%, after which it rises steeply to over 600 cycles for 

a 100% load. Similar behaviour is observed in maximum queue length, which 

remains almost constant at loads below 40% and rises rapidly with loads above 

50%, as shown in Figure 4-4. Even at low levels of loading, a high degree of 

utilization, measured as the proportion of nodes that process non-null contexts, is 

achieved, as shown in Figure 4-5. 

4.4 A CF Network Routing Element 

In any multiprocessor system which includes a communications network linking 

either several processing elements or processing elements and memory modules, the 

performance of the switches which route information through the network has an 

important bearing on the overall performance of the system. The basic component 

of a multistage interconnection network is a 2 x 2 routing element, which can be 
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Figure 4-3: Latency v. load for CF shared memory interface 
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Figure 4-6: Structure of the CF routing element 

used to construct a number of different network topologies implementing a variety 

of permutations. 

The context flow implementation of a 2 x 2 routing element consists of two 

branch and two merge nodes, as shown in Figure 4-6. Four routing functions are 

implemented by this element 

straight-through - routing input 0 to output 0 and input 1 to output 1, 

exchange - routing input 0 to output 1 and input 1 to output 0, 

combine 0 - routing both input 0 and input 1 to output 0, and 

combine 1 - routing both input 0 and input 1 to output 1. 

The router accepts two contexts per cycle on its inputs and outputs two contexts 

per cycle. In the case where one of the combining operations is required and two 

non-null contexts are input, the internal operations of the appropriate merge node 

ensure that both contexts are routed correctly. 

The performance of the 2 x 2 router is given in Tables 4-4 to 4-6. 	The 

input streams both consist of 5,000 contexts with varying destination distributions. 

Modelling this element in isolation is complicated by the fact that an upper bound 

for the queue lengths cannot be determined, as it is dependent on the structure 
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Input Stream Composition 

(Constant routing functions) 

Average 

Utilization 

Latency Throughput 

straight-through 99.94% 2.00 2.00 

exchange 99.94% 2.00 2.00 

combine 37.49% 2502.00 1.00 

combine, alternate null contexts 49.97% 2.00 1.00 

Table 4-4: Performance of CF routing element for constant routing functions 

Input Stream Composition 

(Random destinations) 

load Average 

Utilization 

Latency Throughput 

50% - 0, 50% - 1 100% 90.98% 29.41 1.99 

60% - 0, 40% -* 1 100% 90.02% 116.78 1.90 

70% - 0, 30% -* 1 100% 88.29% 244.34 1.80 

50% -+ 0, 50% - 1, 95% 87.60% 7.71 1.90 

50% - 0, 50% -* 1, 75% 70.52% 3.78 1.51 

50% - 0, 50% - 1, 1  50% 47.78% 3.26 1.00 

Table 4-5: Performance of CF routing element for random routing functions 

Input Stream Composition 

(Random length bursts) 

Load Maximum 

Burst Length 

Average 

Utilization 

Latency Throughput 

50% - 0, 50% - 11  100% 10 91.43% 88.23 1.95 

100% 100 88.63% 205.64 1.86 

50% -+ 01  50% 	11  95% 10 86.79% 35.77 1.87 

95% 100 88.27% 70.53 1.88 

50% -+ 01  50% 	1, 50% 10 47.99% 3.85 1.00 

50% 100 47.92% 5.11 1.00 

Table 4-6: Performance of CF routing element for random length sequences of 

requests for the same routing function 
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of the graph which generates the input streams. The routing element, and any 

network constructed using these elements, should be considered as part of a system 

which contains a fixed number of contexts. The input streams used to test the 

model of the routers can be taken as representing the heaviest load liable to be 

placed on an element. 

When implementing a constant routing function the router can be very effi-

cient, as shown in Table 4-4, forwarding each context in a constant time of two 

cycles and yielding two correctly routed contexts per cycle for both the straight-

through and exchange functions. The combine functions produce the poorest per-

formance, with an 0(1) average routing time and a unity completion rate for an 

input stream containing 1 contexts. 

The routing element performs well when given streams containing randomized 

destinations, as shown in Table 4-5. If the destinations are uniformly distributed, 

contexts are routed in an average of 29.41 cycles with an almost maximal through-

put. If the destinations are biased in favour of one of the outputs such that 60% 

of contexts are directed there and 40% to the other, the average routing time 

rises dramatically to 116.78 cycles and the throughput drops to 1.90 contexts per 

cycle. This attenuation in performance is even more marked if the distribution is 

changed to route 70% of contexts to one of the outputs. 

All the above results are obtained with continuous streams of non-null con-

texts, a situation which is liable to occur relatively infrequently. Introducing null 

contexts into the input streams improves the performance of the routing element. 

If the load on the routing element is reduced by as little as 5%, latency is reduced 

by nearly a factor of four, from 29.41 cycles to 7.71 cycles per context; whilst the 

throughput is maintained. If the load is further reduced to 75%, latency drops to 

3.26 cycles per context. 

Many programs exhibit considerable locality, in that several successive memory 

references may access the same location. Input streams representing this situation, 
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containing random length sequences of contexts with the same destination, result 

in a performance consistent with other distributions - the inclusion of null con-

texts producing a large improvement compared to continuous non-null sequences, 

as shown in Table 4-6. All permutations of input stream yield a completion rate 

of at least one context per cycle. The maximum and average queue lengths for 

the routing element are given in Tables 4-7 to 4-9. 

Using the CF routing element, a wide variety of pipelined interconnection 

networks can be constructed. The only change to the design of the element is 

the addition of a transformation node at each of the outputs to enable routing at 

the next stage to be performed using the same branch condition. This allows a 

network to be created by replication of a single type of routing element. 

Two topologies which can both establish arbitrary connective paths between 

any of the inputs and outputs are the omega [Lawrie, 1975] and the binary n-Cube 

[Pease, 19771 networks, as shown in Figures 4-7(a) and (b) respectively. Figures 4-

8 to 4-10 show the simulated latency and queue lengths of CF implementations of 

these networks connecting eight inputs to eight outputs for various network loads. 

The load imposed on a CF interconnection network is the proportion of non-null 

contexts presented as input. The graph in Figure 4-8 shows the change in latency 

for given network loads, for an input of 2500 contexts with uniformly distributed 

random destinations. As in the case of the routing element itself, inclusion of a 

small percentage of null contexts results in a considerable fall in latency. The 

same is true for maximum queue length, shown in the graph of Figure 4-9, with 

average queue length showing a similar, though less marked, decline, as shown in 

the graph of Figure 4-10 Throughput, the number of correctly routed contexts 

output per cycle, is directly proportional to the load imposed on the network. 

Figures 4-11 to 4-14 show latency, throughput and queue length in the pres-

ence of hot spots, for a network load of 100%. A hotspot occurs when an additional 

percentage of input contexts are directed towards the same "hot" output. Fig- 
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Input Stream Composition 
(Constant routing functions) 

Output 0 
average 	maximum 

Output 1 
average 	maximum 

straight-through 0 0 0 0 

exchange 0 0 0 0 

combine 1.00 5000 0 0 

combine, alternate null contexts 0 0 0 0 

Table 4-7: Queue lengths in CF routing element for constant routing functions 

Input Stream Composition 
(Random Destinations) 

Load Output 0 
average 	maximum 

Output 1 
average 	Inaxinaun 

50% —* 01  50% - 1 100% 0.98 53 0.99 65 

60% 	01  40% — 1 100% 1.09 480 0.67 17 

70% —* 0, 30% —* 1 100% 1.20 1007 0.42 7 

50% —* 01  50% — 1 95% 0.81 15 0.86 23 

50% — 01  50% — 1 75% 0.36 6 0.37 6 

Table 4-8: Queue lengths in CF routing element for random routing functions 

Input Stream Composition 
(Random Length Bursts) 

Load Output 0 
average 	maximum 

Output 1 
average 	maximum 

50% — 0, 50% — 1 100% 0.99 200 0.89 230 

100% 0.98 600 0.76 700 

50% —+ 0 7  50% — 1 95% 0.92 137 0.80 80 

95% 0.73 200 0.77 146 

50% — 0, 50% — 1 50% 0.21 10 0.18 9 

50% 0.23 13 0.23 15 

Table 4-9: Queue lengths in CF routing element for random length sequences of 

requests for the same routing function 



Chapter 4. Context Flow Architecture 
	 104 

M54-chc'i.. 

 

 

Figure 4-7: Topology of Omega and binary n-Cube networks showing locations 

of hotspots 
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Figure 4-8: Latency v. load for CF Omega and binary n-Cube networks. 
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Figure 4-9: Maximum queue length v. load for CF Omega and binary n-Cube 

networks. 
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Figure 4-10: Average queue length v. load for CF Omega and binary n-Cube 

networks. 
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ure 4-11 shows the change in latency with increasing hotspot percentages. There 

is little or no change in latency below 1%, but above this, latency rises rapidly, 

reaching nearly 1100 cycles when all contexts are directed to the same destination. 

Similarly, throughput is almost unchanged at a value close to the maximum of 

8 contexts per cycle with hotspot occurrences of under 1%, declining towards a 

minimum of 1 context per cycle for a 100% hotspot, as shown in Figure 4-12. 

Maximum queue lengths in both networks show a similar trend, remaining 

almost constant below 1% and rising rapidly thereafter. The shaded nodes in 

Figure 4-7 indicate the locations of rapid growth in queue length. Figure 4-13 

shows the maximum queue lengths for four of the elements in the Omega network, 

each of which lies on the path to the hot output, together with the mean maximum 

length of the queues. Figure 4-14 shows the maximum queue lengths in equivalent 

positions in the binary n-Cube network. Both networks absorb hotspots of up to 

1% with little or no degradation in performance. 

Summary 

Several features of the context flow model make the process of designing CF sys-

tems easier than that for conventional pipelined or concurrent systems. The inter-

leaved nature of the process contexts eliminates all dependencies between instruc-

tions in the pipeline. The need for additional hardware or software to mitigate 

the effects of a conditional branch instruction is thus removed, as the condition 

will always have been evaluated before execution of the instruction commences. 

The need for data dependency checking in hardware, as provided by scoreboard 

devices, is also removed, since no dependencies can exist between instructions in 

a partial state of execution. Interaction between concurrent processes via shared 

variables is limited as all memory is associated with single transformation nodes, 

which may only contain one context during each graph cycle. Simultaneous access 
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to common memory locations by multiple contexts is therefore made impossible 

as transformation node have a single input and output - thus removing a major 

source of possible unintentional side-effects. 

The formal definition of the temporal properties of the core CF nodes al-

lows graphs containing these nodes to be constructed which exhibit consistent 

behaviour. This is due to the synchronous nature of the core nodes and the use 

of null contexts to maintain a regular flow through the graph. 

In general, CF structures are formed by expressing the desired functionality 

in terms of transformation nodes, connected by branch and merge nodes which 

encode alternative functional sequences. 

"In Architecture as in other Operative Arts, the end must dictate the Operation. 

The end is to build well." 

- HENRY WOTTON (1568-1639), Elements of Architecture Part I 



Chapter 5 

A Context Flow Processor 

Context flow implementations of several architectural elements have 

been presented, and their performance evaluated. The design of a pro-

cessor provides an opportunity to demonstrate how larger CF struc-

tures can be assembled from these simple elements. This chapter out-

lines the design objectives for a simple, yet quite functional exam-

ple context flow processor, where traditional architectural criteria are 

initially tempered by the operational constraints of the context flow 

model. An instruction set for the processor is presented, together with 

the operation and structure of the main functional elements. An analy-

sis of the processor performance and of the interaction between streams 

of contexts in the graph identifies several opportunities for improve-

ment of the original design to allow the processor to meet its original 

operational goals. The result is a processor capable of sustaining a 

throughput of one instruction per cycle, with a constant instruction 

execution time. 

114 



Chapter 5. A Context Flow Processor 	 115 

5.1 Design Objectives 

The context flow processor described in this Chapter is intended to provide high 

performance for a wide variety of applications by maximal exploitation of hard-

ware resources. The essence of context flow is the formation of highly-pipelined 

structures. This creates a need for a simple instruction set in which each opera-

tion is capable either of being performed in a single cycle, or of being pipelined 

to allow completion of an operation every cycle. The highly-pipelined nature of 

the architecture creates the ideal environment for memory to be absorbed into 

the execution pipeline, thus preventing memory accesses from having an attenu-

ative effect on processor performance. In addition, expansion from a single local 

memory to a distributed memory, shared among a group of processors by means 

of an interconnection network, merely lengthens the processor pipeline, without 

modifying the processor model. This allows an increase in the number of active 

contexts to compensate for the longer execution time for each instruction clue to 

the greater memory latency. Each contexts accesses a separate register and ad-

dress space, with seclusion enforced by the architecture. The context flow model, 

however, makes safe and side-effect free inter-process communication possible by 

merging streams of contexts requiring concurrent access before the memory unit, 

as shown in the example of Section 4.3. 

The aims of the design are to provide a pipelined processor architecture, ca-

pable of sustaining an instruction completion rate of one floating-point, scalar or 

control operation per clock cycle, for up to 641  concurrent processes. It should be 

noted that the object of this example is to explore some of the pertinent features 

of context flow system design. 

:1. (F4 0 15 	 & vwt( 	 &trt r"46-to 4 possk 

k. 63. 
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5.2 Instruction Set 

The instruction set for the context flow processor is relatively small, providing 

a few elemental instructions which may be combined in sequence during compi-

lation to perform functions implemented by single instructions in more complex 

instruction sets. The instruction set chosen for the CF processor is based on that 

of the Motorola 88000 processor [Motorola Inc., 1988]. This particular instruction 

set was chosen for its provision of a core instruction set and the availability of 

detailed documentation of instructions and processor architecture. 

A fixed instruction format simplifies the process of decoding instructions, yield-

ing a reduction in complexity of the circuit required to perform this function. In 

conjunction with this, the provision of only two addressing modes - inherent, 

specifying that the operands are either constants or data to be extracted from 

the instruction itself; and extended, specifying that operands reside in registers 

facilitates fast and easy implementation. A consequence of limiting the number 

of addressing modes is that all operations are performed on the contents of regis-

ters (or on inherent data), with only load and store instructions accessing data in 

memory. 

5.2.1 Instruction Format 

As a result of the above decisions, the instruction set of the CF processor can 

be implemented with 16-bit instructions. The instructions are divided into four 

groups - integer, floating-point, logical and control, with each group containing 

up to eight instructions. Table 5-1 presents the complete instruction set . 



Chapter 5. A Context Flow Processor 
	 117 

Integer Instructions Control Instructions 

Mnemonic Operation Mnemonic 	Operation 

add addition Id load from memory 

addu unsigned addition st store to memory 

cmp compare my move to register 

rec reciprocation bra unconditional branch 

recu unsigned reciprocation bsr branch to subroutine 

mul multiplication imp unconditional jump 

sub subtraction jsr jump to subroutine 

subu unsigned subtraction bcnd conditional branch 

Floating-Point Instructions Logical Instructions 

Mnemonic Operation Mnemonic 	Operation 

fadd addition and bitwise and 

fcmp compare or bitwise inclusive-or 

frec reciprocation not bitwise inversion 

fmul multiplication xor bitwise exclusive-or 

fsub subtraction rot rotation 

inf convert to FP 

fin convert to integer 

Table 5-1: CF Processor Instruction Set 
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Figure 5-1: Format of CF processor/jinstructions 

The instructions are provided in a two-address form, with one of the source reg-

isters acting as the destination. This is in contrast with the actual Motorola 88000 

processor which implements triadic register addressing, allowing specification of 

two sources and a separate destination register. Allocating four bits of each in-

struction to denote the source registers leaves three bits to describe the addressing 

mode and other variants of each instruction. Although four bits are sufficient to 

identify sixteen registers, the nature of the operand, either scalar or floating-

point, can be used implicitly to select between banks of sixteen separate scalar 

and floating-point registers, providing thirty-two general purpose registers for each 

process. Constant operands are stored in thirty-two read-only scalar and 
~k4%6iL 	occt. 

point constant registers, shared between processes. The format of theinstructions 

is shown in Figure 5-1. 

Integer Arithmetic Operations 

Instructions are provided to perform addition, subtraction, multiplication and 

reciprocation on integer quantities. With the exception of multiplication, both 

signed and unsigned forms of the instruction are provided. Separate instructions 

'Instructions providing support for separate user and supervisor modes, and for han-

dling exceptions and interrupts are not included. These would, however, be required to 

implement operating system and i/o functions in a processor implementation. 
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are not provided to perform addition with carry and subtraction with borrow. 

These functions are encoded in the variant field of the core instruction. This 

assists in limiting the number of separate instructions thus easing the decoding 

process. The comparison instruction performs a subtraction of its operands, but 

does not store the result, merely setting the appropriate flags in the status register. 

Addition, subtraction and comparison operations are each performed in a single 

cycle, while multiplication and reciprocation each require three cycles. 

Floating-Point Arithmetic Operations 

The above arithmetic operations are also provided in floating-point form. Two 

instructions are provided to convert numbers between integer and floating-point 

formats. The register fields in floating-point instructions specify floating point reg-

isters implicitly as the sources for all operations. This prevents integer operands 

being used in floating-point operations and vice versa, except after explicit con-

version. Double precision quantities are beyond the scope of this example and 

are not considered further. In any implementation, the IEEE standard 754 for 

floating point would be used. 

Logical Operations 

A set of logical operations perform bitwise boolean operations - not, and, inclu-

sive and exclusive or - on the contents of scalar registers. The rotation operation 

performs a left rotation of the contents of a scalar register, the number of places 

to be shifted being specified as a 5-bit immediate operand in the instruction. This 

is another example of instruction set economy, as many more complex instruction 

sets provide separate instructions to perform rolls, logical shifts and arithmetic 

shifts in both directions. These can all be accomplished using rotation in conjunc-

tion with setting or clearing of appropriate bits. 
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Control Operations 

The only instructions which explicitly reference memory are the load and store 

operations. Again, the variant field is used to specify the type of the operand, 

scalar or floating-point, to be referenced. Transfer of data between registers of 

the same type is performed by the move instruction. The two unconditional con-

trol transfer instructions perform the same function, but use their operand from 

different sources, the unconditional branch using an 11-bit immediate offset, and 

the unconditional jump, the contents of a register. This is also the case for the 

branch and jump to subroutine instructions. The conditional branch uses status 

information from the execution of the previous instruction to determine whether 

the branch is taken. 

5.3 Processor Architecture 

The architecture of Rogers and Topham [1990] is used as a starting point for 

the CF processor design. The context flow processor architecture is divided into 

three main parts - the execution, control and memory pipelines. The execution 

pipeline contains the instruction decoding unit, the register file, and the ALU; the 

control pipeline contains status registers and program counters; and the memory 

pipeline contains either the memory unit or a network interface, depending on the 

application of the processor. The overall architecture of the processor is shown in 

the context flow graph of Figure 5-2. 

5.3.1 Execution Pipeline 

The execution pipeline consists of three main units - the thread issue unit (TIU), 

the register file (RF) and the arithmetic unit (ALU). The execution pipeline per- 
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Thread Issue 	 Multiplication Unit 

Figure 5-2: Architecture of the CF Processor in context flow graph form 
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forms instruction decoding and issue, operand fetch and evaluation for each in-

struction. Thread issue is performed in a single node; the register file is imple-

mented by a single transformation node with a shared access interface, as both 

operand fetch and result storage context streams require access to the registers; 

and the ALU is implemented as three separate pipelines, performing multipli-

cation, reciprocation and other floating-point operations, and scalar operations 

respectively. 

Threads and Instruction Decoding 

Instruction decoding is performed in the thread issue unit, where instructions 

are converted from their external format, as shown in Figure 5-1, to an internal 

format called a thread. A thread is on Lbit quantity in which the value of each bit 

corresponds to the path which the context containing the instructions is to take 

at each branch node. Threads, therefore, define the flow of a context through the 

processor. Given an instruction, the TIU produces a 6-bit function specifier which 

explicitly encodes any variants, two 4-bit register identifiers and an access mode 

bit, which are passed along with a 6-bit process identification tag to the register 

file. 

Register File 

The register file contains 2016 registers, of which 32 are accessible to any one pro-

cess. The register space of each process is distinct, preventing one process writing 

to a register belonging to another process and ensuring no unintended interactions. 

In addition to the general purpose registers, a set of 32 read-only registers, which 

contain commonly-used constants such as 0, 1, —1,ir etc., are shared between the 

processes. These are used to provide the immediate mode constants specified in 

instructions. The register file uses the signals from the TIU and yields two 32-bit 

inputs to the ALU. 
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Arithmetic Unit 

The organization of the arithmetic unit is based on that of the Motorola 88100, 

with three separate evaluation pipelines. The multiplication pipeline performs 

both floating-point and integer multiplication and requires three stages. The other 

floating-point operations - addition, subtraction, reciprocation and comparison 

together with integer reciprocation, are performed in the arithmetic pipeline 

which is also three stages long. All other instructions pass through the scalar 

pipeline which implements integer addition and subtraction and the logical oper-

ators. The ALU is connected to the register file by means of a branch node which 

routes the contexts to the appropriate evaluation pipeline, and provides a 32-bit 

result and sign, zero and carry status bit to be used in the control and memory 

pipelines. 

5.3.2 Control Pipeline 

All instructions commence evaluation by passing through the execution pipeline. 

The next stage in processing is determined by the nature of the instruction - 

either progressing directly to the control pipeline, or, in the case of load and store 

instructions, firstly to the memory and then to the control pipeline. There are 

three main components of the control pipeline - the status register unit (SRU) 

and the instruction pointer unit (IPU), each implemented in a single node, and 

the result storage unit which connects to the register file. 

Status Register Unit 

The status register unit contains one register for each process to hold the condition 

codes generated by the ALU. These are then used during execution of conditional 

branch instructions to determine the increment required to create the new target 

address, this calculation also being performed in the SRU. 
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Instruction Pointer Unit 

The instruction pointer unit performs two functions. A pointer to the next pair of 

instructions to be executed is maintained for each process. In the case of a control 

transfer instruction, this value is either replaced or incremented by the output 

from the SRU. The second task is to determine whether a new pair of instructions 

is to be fetched from memory. If the instruction being evaluated is the first of the 

current instruction pair, and is not a control transfer instruction, execution can 

continue without accessing main memory. The appropriate bit in the thread is 

then set to send the context back to the TIU. If a new instruction pair is required, 

the context is routed to the memory pipeline. 

Result Storage 

The control pipeline has a connection to the register file in the execution pipeline 

to allow a result from the ALU to be stored and the return address from subroutine 

calls to be saved. The connection to the register file is made via the shared access 

interface. 

5.3.3 Memory Pipeline 

The third of the pipelines in the context flow processor is the memory pipeline. Its 

structure is sufficiently general to allow a variety of memory organizations to be 

used with the processor in an integrated manner. The memory used in this design 

is a linear array of 34-bit words, each with a 32-bit data field and a 2-bit tag to 

identify the datum as either an instruction, a scalar quantity or a floating-point 

quantity. The memory is attached to a single transformation node which performs 

a limited amount of processing on the referenced datum - setting the thread bit to 

route the context to the TIU if the datum is an instruction, or setting the condition 

code flags in the case of a load instruction. Contexts containing load and store 
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instructions are directed to the control pipeline, while others are returned to the 

TIU to execute the next instruction. 

5.4 Processor Performance 

In order to determine the performance characteristics of the context flow proces-

sor, an architectural simulator was constructed and used to measure three aspects 

of performance for a variety of test data. The three performance characteristics of 

interest are processor utilization, total pipeline latency and instruction through-

put. After initialization, the model of the processor executes random instructions 

whose relative frequencies parameterize the simulation. The proportion of the 

total number of instructions which initiate control transfers is fixed at 24.2%, the 

value determined by Lee and Smith [1984] after analysis of a large number of pro-

grams. Of the remaining instructions, the proportion of memory reference and 

floating-point instructions is variable. During each measurement, the operation of 

the processor was measured over a period of 2500 graph cycles. 

5.4.1 Processor Utilization 

Processor utilization is measured as the percentage of nodes in the context flow 

graph representation of the processor which operate on a non-null context during 

one graph cycle period. As the memory pipeline is an integral part of the processor, 

the measured values of utilization include that of the memory. 

Determining Average Utilization 

Before any comparisons can be made between various simulations, a notion of 

average utilization must be established, and an instruction mix to induce this 
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must be determined. The ratio of infacyc to floating-point instructions was fixed 

at 1:1 so as to exercise all parts of the graph, while the percentage of memory 

reference instructions was varied between 0% and 100%. This was repeated for 

processor loads of between 1 and 63 contexts. The graph of Figure 5-3 shows an 

average utilization of approximately 50% for a memory access rate of 50%. The 

instruction mix was 	fixed at 24.2% control transfers, 37.9% load/store 

instructions, 18.95% floating-point instructions and 18.95% 'Miuye operations. 

As can be seen from the graph of Figure 5-4(a), there is a linear relationship 

between utilization and load, until the processor contains 18 active contexts. If 

the load is increased further, utilization remains almost constant at approximately 

50%. With more than 18 active contexts, a queue starts to form at the input to 

the register file as different contexts attempt to read and write from registers. 

For each write operation that is performed, a null context is sent to the ALU, by 

virtue of the internal operation of the branch node connected to the output of the 

register file, which eventually propagates through all eleven nodes of the ALU. 

Although the same action takes place at all other branch nodes, their effects are 

mitigated by the fact that they are almost immediately connected to merge nodes 

which remove the excess null contexts. 

5.4.2 Pipeline Latency 

Pipeline latency is measured as the average number of graph cycles required to 

execute an instruction. The graph in Figure 5-4(b) shows pipeline latency for 

processor loads of between 1 and 63 contexts. Latency is virtually constant at 

approximately 23 cycles per instruction for loads below 18 contexts. For greater 

loads, the latency increases linearly, rising to 89.55 cycles for a load of 63 contexts. 

This, again, is a consequence of context interaction in the queues of the merge 

nodes. 
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5.4.3 Instruction Throughput 

Instruction throughput is measured as the average number of instructions which 

are completed each graph period. An instruction is deemed to have completed 

when its context leaves either the control pipeline or the memory pipeline, and 

is routed to the thread issue unit. Throughput for a range of loads between 1 

and 63 contexts is shown in Figure 5-4(c). As with utilization, throughput rises 

linearly until the number of active processes causes the queue for access to the 

register file to fill, after which it remains constant at about 0.67 instructions per 

cycle. Throughput can also be expressed as the number of instructions which 

are completed by a given process. This relationship is shown in the graph of 

Figure 5-4(d). 

5.4.4 Effects of Memory Latency on Processor Performance 

The above results were achieved with a main memory of unit latency, all references, 

whether read or write, being satisfiable in a single graph cycle. This, however, may 

not always be the case, for example, if the processor was part of a multiprocessor 

ensemble, the latency of the interconnection network must be taken into account 

when deriving memory response time. The effects of increasing memory latency 

from 1 up to 16 cycles are shown in Figures 5-5 to 5-8. 

Processor Utilization 

As the memory of the context flow processor is pipelined, the effect of increasing 

memory latency is to lengthen the processor pipeline. Accordingly, a greater 

number of active contexts are required to saturate the processor. This is illustrated 

in the graph of Figure 5-5 by the decreasing gradient in the area of the graph 

exhibiting linearity. As the memory is considered an integral part of the processor 

pipeline, the addition of a linear section of pipeline which is kept mostly full results 
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in an increase in the percentage processor utilization. This is also confirmed in 

Figure 5-5. 

Pipeline Latency 

For the same reasons that processor utilization increases, so pipeline latency 

also increases in direct proportion to memory latency, as shown in Figure 5-

6. Increased latency is initially compensated by the increased capacity of the 

pipeline, which allows the, albeit higher, latency to be sustained at a constant 

level for a greater load before rising linearly. The result of this is that pipeline 

latency becomes independent of memory latency, providing the processor load is 

sufficient, making remote memory references in a multiprocessor system no more 

expensive than local memory references. 

Instruction Throughput 

The effects of memory latency on instruction throughput are similar to those on 

processor utilization. For a lightly loaded processor, the reduction in throughput is 

marked, as shown in Figure 5-7. For 16 active contexts, the throughput is reduced 

from 0.60 instructions per graph period for a memory latency of 1, to 0.41 for a 

memory latency of 16 - a reduction of over 30%. Again, the increased capacity 

of the pipeline compensates, and for a heavily loaded processor, the throughput 

is independent of memory latency. The number of completed instructions per 
perCcUL 

processjkfollows a similar trend, as shown in Figure 5-8. 
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5.5 Design Alternatives 

The aim of context flow is to create architectures which combine maxi.( pipeline 

utilization, after initial filling, with a throughput of one instruction per cycle. 

Individually, the elements of the context flow processor are capable of sustaining 

such a performance, therefore their interaction must be the source of the measured 

degradation. 

5.5.1 Register File Access 

The ALU, status register unit, instruction pointer unit and memory are indi-

vidually able to sustain an instruction completion rate of one per graph period, 

providing their inputs are a continuous stream of non-null contexts. In contrast 

however, the register file can only sustain a completion rate of 0.5 instructions per 

cycle. This is due to its outputs being derived from the outputs of a branch node, 

at least one of which passes a null context every cycle. Although the output which 

feeds the execution pipeline is connected via a merge node, insufficient contexts 

arrive at the other input to this merge node to allow a non-null context to enter 

the ALU each cycle. Therefore, the throughput of the ALU is, on average, halved 

as a result of being connected to the register file. 

The register file also acts as a bottleneck. As approximately 70% of the in-

structions require both read and write access to the register file, its position in the 

pipeline exacerbates the problem, with almost complete instructions competing 

with newly issued instructions for access to the registers. This is illustrated in the 

graphs of Figures 5-9(a)—(d) showing the maximum queue lengths and theoreti-

cally predicted limits at each merge node as the processor load is raised. As the 

load is increased, the theoretical limit is constant for all queues, except the RF 

Input queue where one input stream includes the queue in the merge node where 
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initialization occurs. The simulated maximum lengths for all queues are below 

their predicted theoretical maxima. 

The design of the register file is in strict accordance with the rules of context 

flow which prohibit the sharing of memory between nodes. If this restriction 

is relaxed, the bottleneck can be removed. As each process accesses a separate 

register space, and has only one context, the memory containing the register file 

can safely be shared between a transformation node in each of the execution and 

control pipelines, without the risk of read/write conflicts. The use of a dual-

ported register file shared between the execution and control pipelines results in 

an improvement in utilization of 20%, as can be seen from the graph of Figure 5-

10. More dramatic, however, is the improvement in throughput, which becomes 

constant at close to one instruction per cycle, as shown in Figure 5-11. 

On a macroscopic scale, óo% utilization is both achievable and sustainable, if 

utilization of functional units rather than individual nodes is measured. Each of 

the major architectural units of the processor contains at least one active context 

per cycle, although not all of its constituent nodes may be active concurrently. 

On a microscopic scale, it is unrealistic to expect sustainable total utilization for 

anything other than this simplest of linear pipelines. In more complex structures, 

peak utilization of 100% is possible, but only for short periods. In the context 

flow processor, total utilization at the node level cannot be achieved, as no more 

than three non-null contexts may be in the ALU concurrently - a consequence of 

the operation of the branch nodes which decode the function on entry to the unit. 

5.5.2 Instruction Size 

The length of instruction is determined by several factors - the size of the in-

struction set, the number of addressing modes or instruction variants, and whether 

a 2-address or 3-address format is used. The choice of a small set of 28 instruc- 
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tions, two addressing modes and a 2-address format allows instructions for the 

CF processor to be encoded in 16 bits. There are two main benefits to a 16-bit 

instruction size: 

instructions can be fetched in pairs from memory, reducing the memory 

access rate, 

e instructions can be decoded more easily, and therefore more quickly. 

If the instructions are longer than 16 bits, with 32-bit instructions being the 

only sensible alternative, a new instruction has to be fetched every cycle. This 

has an adverse effect on performance, as can be seen from Figures 5-12 and 5-13. 

Throughput drops by nearly 30%, and pipeline latency is not only higher but 

also increases more rapidly, if dual-cycle is replaced by single-cycle instruction 

fetching. 

However, a 16-bit instruction length does have disadvantages: 

the ability to specify immediate data within an instruction is severely limited, 

• 	the flexibility in register usage of a 3-address format cannot be achieved, 

maintaining the same format for all instructions is difficult if operand deno-

tation is not to be compromised. 

In the CF processor, only the bra, bsr and rot instructions have immediate operands, 

and, in the case of the branch instructions, the size of encodable operand is small. 

The constant registers provide an elegant solution in certain circumstances, but if 

a particular constant value is not available in those registers then it must either 

be loaded from memory having been placed at a specific address by an assembler, 

or loaded from the context as the second of the pair of operands. In the latter 
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case, insertion of noop instructions or delayed branching would be required to en-

sure correct alignment of an instruction and its immediate operand. Unlike other 

processors with a 3-address instruction format, for example, the Motorola 88100 

and the CDC 6600, a scoreboard would not be required in the CF processor, as 

no data dependencies can arise. With the need to provide operating system and 

exception support in any practical implementation, a larger instruction set would 

be required. 

By separating the data and instruction memories, thus creating a Harvard-type 

architecture for the context flow processor as shown in Figure 5-14, a substantial 

improvement in performance can be achieved, even fetching an instruction every 

cycle. Single instruction-fetching requires a queue between the instruction mem-

ory and thread issue units to hold contexts when the processor load is greater than 

the capacity of the graph. The same function was performed by a merge node con-

nected to the TIU in the dual-cycle instruction fetch architectures. Figures 5-12 

and 5-13 provide a comparison between the Harvard architecture and the other 

architectures with a memory latency of one cycle per reference. The major differ-

ence between the Harvard-type and the dual-port, dual fetch architectures is in 

the average length of time required to execute an instruction. This is measured as 

the time between a context entering the TIU and leaving the instruction memory 

unit. Figure 5-13 also shows average execution times for both architectures. In 

the Harvard architecture, execution time remains constant when processor load is 

increased beyond the intrinsic capacity of the graph, the corresponding increase 

in pipeline latency therefore being solely attributable to the additional time spent 

by each context in the issue queue. Average execution time for the dual-port, 

dual fetch architecture is not only higher, but also fluctuates, due to interaction 

between the instruction-fetch and data-fetch streams in the memory pipeline. The 

constant nature of the pipeline latency illustrates the smoothing effect that the 

queues in the merge nodes have on system performance. The Harvard architecture 
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is significantly easier to implement as the maximum queue lengths in the merge 

nodes are small - the longest queue being required at the ALU output which 

must hold four contexts. 

Summary 

An analysis of the performance of the original context flow processor design iden-

tified several changes to the design which result in improved throughput and re-

duced pipeline latency. Although CF theory predicts throughput of one context 

per graph cycle and 100% graph utilization, it is difficult to achieve this in prac-

tice. Throughput can be maximised by reducing interaction of context streams to 

a minimum. Introduction of branch and corresponding merge nodes results in a 

two-fold performance penalty being paid - utilization being reduced as a result 

of the creation of null contexts, and latency being increased, if loading is such that 

contexts require to be queued in merge nodes. 

The processor architecture exhibiting the best performance is the Harvard-

type architecture, with separate instruction and data memories. This separation 

reduces much of the interaction, and hence delay, associated with accessing exter-

nal memory. It also allows instruction size to be increased to 32 bits, providing a 

more flexible and powerful instruction set while still retaining a fixed, easily de-

coded format. Introduction of a dual-ported register file removes the other major 

bottleneck from the pipeline. The remaining merge nodes have small maximum 

queue lengths - 1,4 and 2 for the register file read output, ALU output and 

control input queues respectively 	making for compact implementation. 

'It is quite a three-pipe problem." 

- SHERLOCK HOLMES, The Red-Handed League 



Chapter 6 

Implementation, Application and Development 

A new architectural design technique which eliminates the sources of 

discontinuities from pipelines has been presented, both in a theoretical 

form, allowing certain properties of resulting designs to be proved; and 

in the form of practical examples, allowing the performance of these 

designs to be measured. This Chapter tackles three further aspects of 

context flow design. Issues concerning the practical implementation 

of context flow structures are discussed. Using some of the experi-

ence gained in the design of context flow structures, some possible 

applications for context flow are presented - both in general terms, 

highlighting situations where context flow is particularly suitable and 

unsuitable; and in real cases where the application of context flow may 

be especially productive. Some possible directions for future work are 

outlined. 

146 
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6.1 Implementation Issues 

For a number of reasons, the ideal method for the implementation of context 

flow structures is using VLSI techniques. The organization of both context flow 

graphs and VLSI circuits is similar in that they both consist of simple elements - 

core nodes and leaf cells respectively - connected to give the device the required 

operation. The design process is also similar, being performed upwards from the 

simplest level in a hierarchical manner. Many of the nodes in a context flow graph 

essentially perform the same operation. For example, merge nodes differ only in 

the size of queue, and branch nodes, in the test condition. Therefore, a VLSI 

implementation of these nodes could be parameterized and incorporated in an 

application specific integrated circuit (ASIC) or standard cell design procedure. 

A major limiting factor in the implementation of context flow systems is the 

size of the contexts. Although context flow theory allows contexts to be split into 

static and dynamic parts, the dynamic part can still be potentially very large. 

Consider, for example, the processor design in Chapter 5. The process identifier 

must circulate to each node in order to allow recombination of the static and 

dynamic contexts - to support 63 processes and the null context requires a 6-

bit pathway to each node. The instructions and their operands flow through the 

pipeline together, increasing the width of the data path to 96 bits in places. Careful 

analysis of the algorithm being implemented by the graph is required to limit the 

quantity of data which must transferred between nodes. This aspect of context 

flow design underlines the desirability of a VLSI solution as implementation using 

discrete components would necessitate large inter-chip data transfers. Reduction 

of the number of pins on an integrated circuit package was one of the motivations 

for Kaminsky and Davidson [1979] in their early work on multiple instruction 

stream pipelines. 
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Partitioning the context into static and dynamic segments introduces another 

problem, when access to statically held data is required at more than one point 

in the graph. This is illustrated in the design of the register file of the processor 

in Chapter 5. The original design, which adhered strictly to the rules of the 

context flow model, proved to be inefficient, creating a large bottleneck in the 

pipeline. Relaxation of the rule prohibiting the sharing of memory between nodes 

allowed the bottleneck to be removed. In this particular instance there can be no 

conflicting access to the memory, but this may not always be the case. Care must 

therefore be taken if similar decisions are made to share a memory between two 

or more parts of a pipeline. 

6.2 Applications of Context Flow 

By maintaining effective use of existing resources as one of its central tenets, 

context flow achieves improved performance without changing the nature of the 

problems which may be solved by a given architecture. That is not to say that 

special purpose context flow machines cannot be designed, merely that context 

flow maintains generality of purpose. 

Context flow structures achieve their improved performance over conventional 

designs as a consequence of improved pipeline utilization created by sharing the 

hardware between several concurrent processes. Consider, again, the context flow 

processor of Chapter 5. Although the time required to execute all the instructions 

of a given process is liable to be greater than if the process were executed on a 

single instruction stream pipeline, the total time to execute all instructions from all 

processes is less as the throughput of the context flow processor is constant. This, 

however, does require that such a processor be kept as close to being fully-loaded as 

possible. As with many other parallel architectures, context flow structures do not 

perform well when executing code with cannot be divided into sufficient parallel 
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tasks. The existence of a hardware limit on the number of concurrent active 

processes may place restrictions on the suitability of some types of problems for 

context flow implementation. 

Increased memory latency, whether as a result of the memory being located 

on the other side of an interconnection network, or simply slower than the graph 

cycle time, is compensated by a rise in the capacity of the pipeline. If sufficient 

parallel processes can be generated, the physical location of the memory in a 

multiprocessor system becomes unimportant, with the latency of all non-local 

memory access being dependent on topology of the network. The construction of 

context flow graphs from simple nodes with well defined behaviours, coupled with 

the similarity between graphs and algorithmic flow charts, provides for the rapid 

design of context flow systems. The removal of the need for specialized branch 

prediction hardware greatly simplifies the implementation of context flow designs. 

Two particular areas which can make use of the features provided by a con-

text flow device are real-time and graphics systems. In real-time applications, the 

sustainable and constant throughput offered by context flow is of great impor-

tance, offering a guarantee of system performance. For purposes such as process 

monitoring and data gathering, context flow would be ideal, allowing each sensor 

to be serviced by its own context. A lightly loaded real-time CF system could 

also guarantee response times limited only by the size of the graph. In graphics 

applications, windows, icons and pointers could also be mapped individually on to 

separate contexts, reducing the software overhead associated with switching tasks. 
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6.3 Future Research 

The next step in the development of context flow is the implementation of a 

context flow processor. While the designs and simulations described in Chapter 5 

will provide a starting point for an implementation, several deficiencies require 

correction in order to produce a viable design. 

Completion of the instruction set - If the Harvard architecture is to be 

adopted, a 32-bit instruction length can be used, in which case adaptation 

of an existing instruction set, such as the Motorola 88100 or the MIPS R3000, 

would be sensible. 

User and supervisor modes - In order to provide operating system support, 

some notion of privilege is required, together with the creation of separate 

user and supervisor modes of operation. 

Support for handling exceptions and an indivisible test&set instruction for 

the implementation of synchronization primitives are required. 

Even after inclusion of these features, implementation of the processor on a single 

VLSI chip should be feasible. If a 32-bit address size is used for both instruction 

and data memories, up to 64 megabytes of real memory would be available for each 

of the 63 active processes requiring 128 pins to connect to external memory devices. 

Allocating up to 36 pins for connections to the power supply would still leave 16 

pins in a 180-pin package for interrupts and other control and status signals. The 

main limiting effect that the implementation will have on the architecture is on 

the size of the register file, which will depend on the available area of silicon. 

One possible area of investigation is the automatic synthesis of designs from 

descriptions of context flow graphs. This would require the design of a library 
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of parameterized VLSI cells to implement merge nodes, branch node decision 

mechanisms and a selection of transformation node functions. These cells could 

then be composed using automatic routing generation or other silicon compilation 

or assembly techniques to form VLSI implementations of context flow graphs. 

"II n' existe pas de sciences appliquées, mais seulernen t 

des applications de la science." 

- LOUIS PASTEUR (1822-1895), Address, 11th September 1872, 

Corn ptes render des tra va ux du Con grès viticole et séricicole de Lyon 
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