
Logic
and Automata
History and Perspectives

EditEd by
jörg flum, Erich grädEl and thomas wilkE

Texts in Logic and Games | 2

Mathematical logic and automata theory are two scien-
tific disciplines with a close relationship that is not only
fundamental for many theoretical results but also forms
the basis of a coherent methodology for the verification
and synthesis of computing systems.

We take the occasion of the 60th birthday of Wolfgang
Thomas to present a tour d’horizon on automata theory
and logic. The twenty papers assembled in this volume
cover many different facets of logic and automata theo-
ry, emphasize the connections to other disciplines such
as complexity theory, games, algorithms, and semigroup
theory, and discuss current challenges in this field.

9 7 8 9 0 5 3 5 6 5 7 6 6

isbn 978 90 5356 576 6

amsterdam university press
www.aup.nl

amstErdam univErsity prEss

T∙L∙G
Texts in Logic and Games
Volume 2

T ∙L ∙G
 2

lo
g

ic
 a

n
d

 a
u

t
o

m
a

t
a

Flum
 | G

rädel | W
ilke (eds)

2_def.indd 1 9-11-2007 17:58:00

Logic and Automata

General Series Editor
Johan van Benthem

Managing Editors
Wiebe van der Hoek

(Computer Science)
Bernhard von Stengel

(Economics & Game Theory)
Robert van Rooij

(Linguistics & Philosophy)
Benedikt Löwe

(Mathematical Logic)

Editorial Assistant
Cédric Dégremont

Technical Assistant
Joel Uckelman

Advisory Board
Samson Abramsky
Krzysztof Apt
Robert Aumann
Pierpaolo Battigalli
Ken Binmore
Oliver Board
Giacomo Bonanno
Steve Brams
Adam Brandenburger
Yossi Feinberg
Erich Grädel
Joe Halpern
Wilfrid Hodges
Gerhard Jäger
Rohit Parikh
Ariel Rubinstein
Dov Samet
Gabriel Sandu
Reinhard Selten
Robert Stalnaker
Jouko Väänänen

T∙L∙G
Texts in Logic and Games
Volume 2

Logic and Automata

History and Perspectives

 	 	
Edited by
Jörg Flum
Erich Grädel
Thomas Wilke

Texts in Logic and Games

Volume 2

amsterdam universit y press

Cover design: Maedium, Utrecht

isbn	 978 90 5356 576 6
nur	 918

© 	 Jörg Flum, Erich Grädel, Thomas Wilke /
	 Amsterdam University Press, 2008

All rights reserved. Without limiting the rights under copyright reserved above, no
part of this book may be reproduced, stored in or introduced into a retrieval system,
or transmitted, in any form or by any means (electronic, mechanical, photocopying,
recording or otherwise) without the written permission of both the copyright owner
and the author of the book.

Table of Contents

Preface . 7

On the topological complexity of tree languages
André Arnold , Jacques Duparc, Filip Murlak, Damian Niwiński 9

Nondeterministic controllers of nondeterministic processes
André Arnold , Igor Walukiewicz .29

Reachability in continuous-time Markov reward decision processes
Christel Baier , Boudewijn R. Haverkort, Holger Hermanns, Joost-Pieter
Katoen . 53

Logical theories and compatible operations
Achim Blumensath, Thomas Colcombet, Christof Löding 73

Forest algebras
Miko laj Bojańczyk, Igor Walukiewicz . 107

Automata and semigroups recognizing infinite words
Olivier Carton, Dominique Perrin, Jean-Éric Pin . 133

Deterministic graph grammars
Didier Caucal . 169

Quantifier-free definable graph operations preserving recognizability
Bruno Courcelle . 251

First-order definable languages
Volker Diekert, Paul Gastin . 261

Matrix-based complexity functions and recognizable picture languages
Dora Giammarresi, Antonio Restivo .307

6 Table of Contents

Applying Blackwell optimality: priority mean-payoff games as limits of
multi-discounted games
Hugo Gimbert, Wies law Zielonka . 331

Logic, graphs, and algorithms
Martin Grohe . 357

Non-regular fixed-point logics and games
Stephan Kreutzer, Martin Lange . 423

The universal automaton
Sylvain Lombardy, Jacques Sakarovitch . 457

Deterministic top-down tree automata: past, present, and future
Wim Martens, Frank Neven, Thomas Schwentick . 505

Expressive power of monadic logics on words, trees, pictures, and graphs
Oliver Matz, Nicole Schweikardt . 531

Structured strategies in games on graphs
R. Ramanujam, Sunil Simon . 553

Counting in trees
Helmut Seidl, Thomas Schwentick, Anca Muscholl 575

Modular quantifiers
Howard Straubing, Denis Thérien . 613

Automata: from logics to algorithms
Moshe Y. Vardi, Thomas Wilke . 629

Preface

Mathematical logic and automata theory are two scientific disciplines with
a close relationship that is not only fundamental for many theoretical re-
sults but also forms the basis of a coherent methodology for the verification
and synthesis of computing systems. Although both automata theory and
mathematical logic look back to a much longer history, they have come to-
gether in the 1960s through the fundamental work of Büchi, Elgot, Rabin
and others who showed the expressive equivalence of automata with logi-
cal systems such as monadic second-order logic on finite and infinite words
and trees. This allowed the handling of specifications (where global system
properties are stated) and implementations (which involve the definition of
the local steps in order to satisfy the global goals laid out in the specifica-
tion) in a single framework. Moreover this framework offered algorithmic
procedures for essential questions such as the consistency of the specifica-
tions or the correctness of implementations. Through the methodology of
model-checking the connection between automata theory and logic has in-
deed become the basis of efficient verification methods with industrial scale
applications.

Wolfgang Thomas is one of the leading scientists in logic and automata
theory. He has shaped this scientific area, not only through many deep
and beautiful results, but also through his ability to bring together different
research threads, to provide a convincing synthesis of them, and to point
out new and promising directions. For a whole generation of scientists in
the field, including most of the collaborators of this volume, his tutorials
and surveys on automata theory, language theory and logic, his activities
as a teacher, and his lucid contributions at conferences and in informal dis-
cussions, have been extremely influential. We now take the occasion of the
60th birthday of Wolfgang Thomas to present a tour d’horizon on automata
theory and logic. The twenty papers assembled in this volume, written by
experts of the respective area upon invitation by the editors, cover many
different facets of logic and automata theory. They emphasize the connec-
tions of automata theory and logic to other disciplines such as complexity
theory, games, algorithms, and semigroup theory and stress their impor-
tance for modern applications in computer science such as the synthesis

8 Preface

and verification of reactive systems. The volume puts modern scientific de-
velopments into a historical perspective, and shows how they are rooted in
more than forty years of automata theory and mathematical logic. Perhaps
even more importantly, the authors present and discuss current perspectives
of automata and logic based methodologies in different areas of computer
science.

The cover picture of this volume is taken from an old paper by the Nor-
wegian mathematician Axel Thue (1863–1922)1 which is historically quite
remarkable. While Thue’s work on word rewriting and combinatorics of
words has been widely acknowledged, and notions such as Thue systems or
Thue-Morse sequences are familiar to most computer scientists, it had gone
unnoticed for a long time that Thue also, in the above mentioned paper,
introduced the concept of trees into logic, and was apparently the first to
discuss problems such as tree rewriting and the word problem for tree identi-
ties, and to use notions such as the Church-Rosser property, confluence, and
termination. Only recently, Magnus Steinby and Wolfgang Thomas brought
Thue’s 1910 paper again to the attention of the scientific community and
pointed out its historical importance.2

Freiburg, Aachen & Kiel J. F. E.G. T.W.

1 Axel Thue, Die Lösung eines Spezialfalles eines generellen logischen Problems, Kra. Vi-
densk. Selsk. Skrifter. I. Mat.-Nat. Kl., Christiana 1910, Nr. 8.

2 M. Steinby and W. Thomas. Trees and term rewriting in 1910: On a paper by Axel
Thue. Bulletin of the European Association for Theoretical Computer Science, 72:256-
269, 2000.

On the topological complexity of tree languages

André Arnold 1

Jacques Duparc2

Filip Murlak3

Damian Niwiński3

1 Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1
351 cours de la Libération
33405 Talence cedex, France
andre.arnold@club-internet.fr

2 École des Hautes Études Commerciales
Université de Lausanne
1015 Dorigny, Switzerland
Jacques.Duparc@unil.ch

3 Institute of Informatics
Uniwersytet Warszawski
Banacha 2
02-097 Warszawa, Poland
{fmurlak,niwinski}@mimuw.edu.pl

Abstract

The article surveys recent results in the study of topological com-
plexity of recognizable tree languages. Emphasis is put on the rela-
tion between topological hierarchies, like the Borel hierarchy or the
Wadge hierarchy, and the hierarchies resulting from the structure of
automata, as the Rabin-Mostowski index hierarchy. The topologi-
cal complexity of recognizable tree languages is seen as an evidence
of their structural complexity, which also induces the computational
complexity of the verification problems related to automata, as the
non-emptiness problem. Indeed, the topological aspect can be seen
as a rudiment of the infinite computation complexity theory.

1 Introduction

Since the discovery of irrational numbers, the issue of impossibility has been
one of the driving forces in mathematics. Computer science brings forward a
related problem, that of difficulty. The mathematical expression of difficulty
is complexity, the concept which affects virtually all subjects in computing
science, taking on various contents in various contexts.

In this paper we focus on infinite computations, and more specifically
on finite-state recognition of infinite trees. It is clearly not a topic of clas-

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 9–28.

10 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

sical complexity theory which confines itself to computable functions and
relations over integers or words, and measures their complexity by the—
supposedly finite—time and space used in computation. However, infinite
computations are meaningful in computer science, as an abstraction of some
real phenomena as, e.g., interaction between an open system and its envi-
ronment. The finite and infinite computations could be reconciliated in
the framework of descriptive complexity, which measures difficulty by the
amount of logic necessary to describe a given property of objects, were they
finite or infinite. However the automata theory has also developed its own
complexity measures which refer explicitly to the dynamics of infinite com-
putations.

From yet another perspective, infinite words (or trees) are roughly the
real numbers, equipped with their usual metric. Classification of functions
and relations over reals was an issue in mathematics long before the birth
of computer science. The history goes back to Émil Borel and the circle
of semi-intuitionists around 1900, who attempted to restrict the mathe-
matical universe to mentally constructible (définissables) objects, rejecting
set-theoretic pathologies as unnecessary. This program was subsequently
challenged by a discovery made by Mikhail Suslin in 1917: the projection
of a Borel relation may not be Borel anymore (see [12], but also [1] for a
brief introduction to definability theory). It is an intriguing fact that this
phenomenon is also of interest in automata theory. For example, the set
of trees recognized by a finite automaton may be non-Borel, even though
the criterion for a path being successful is so. One consequence is that the
Büchi acceptance condition is insufficient for tree automata.

Classical theory of definability developed two basic topological hierar-
chies: Borel and projective, along with their recursion-theoretic counter-
parts: arithmetical and analytical. These hierarchies classify the relations
over both finite (integers) and infinite (reals, or ωω) objects. Although the
classical hierarchies are relevant to both finite and infinite computations, it
is not in the same way.

Classical complexity theory borrows its basic concepts from recursion
theory (reduction, completeness), and applies them by analogy, but the
scopes of the two theories are, strictly speaking, different. Indeed, com-
plexity theory studies only a fragment of computable sets and functions,
while recursion theory goes far beyond computable world. Finite-state rec-
ognizability (regularity) forms the very basic level in complexity hierarchies
(although it is of some interest for circuit complexity).

In contrast, finite state automata running over infinite words or trees ex-
hibit remarkable expressive power in terms of the classical hierarchies. Not
surprisingly, such automata can recognize uncomputable sets if computable
means finite time. Actually, the word automata reach the second level of

On the topological complexity of tree languages 11

the Borel hierarchy, while the tree automata can recognize Borel sets on any
finite level, and also — as we have already remarked — some non-Borel sets.
So, in spite of a strong restriction to finite memory, automata can reach the
very level of complexity studied by the classical definability theory. Putting
it the other way around, the classical hierarchies reveal their finite state
hardcore.

In this paper we overview the interplay between automata on infinite
trees and the classical definability hierarchies, along with a subtle refinement
of the Borel hierarchy, known as the hierarchy of Wadge. The emerging pic-
ture is not always as expected. Although, in general, topological complexity
underlines the automata-theoretic one, the yardsticks are not always com-
patible, and at one level automata actually refine the Wadge hierarchy. A
remarkable application exploits the properties of complete metric spaces: in
the proof of the hierarchy theorem for alternating automata, the diagonal
argument follows directly from the Banach fixed-point theorem.

2 Climbing up the hierarchies

It is sufficiently representative to consider binary trees. A full binary tree
over a finite alphabet Σ is a mapping t : {1, 2}∗ → Σ. As a motivating
example consider two properties of trees over {a, b}.

• L is the set of trees such that, on each path, there are infinitely many
b’s (in symbols: (∀π ∈ {1, 2}ω)(∀m)(∃n ≥ m) t(π � n) = b).

• M is the set of trees such that, on each path, there are only finitely
many a’s (in symbols: (∀π ∈ {1, 2}ω)(∃m)(∀n ≥ m) t(π � n) = b).

(In the above, π � n denotes the prefix of π of length n.) At first sight the
two properties look similar, although the quantifier alternations are slightly
different. The analysis below will exhibit a huge difference in complexity:
one of the sets is definable by a Π0

2 formula of arithmetics, while the other
is not arithmetical, and even not Borel.

We have just mentioned two views of classical mathematics, where the
complexity of sets of trees can be expressed: topology and arithmetics. For
the former, the set TΣ of trees over Σ is equipped with a metric

d(t1, t2) =

{
0 if t1 = t2

2−n with n = min{|w| : t1(w) 6= t2(w)} otherwise

For the latter, trees can be encoded as functions over natural numbers ω.
The two approaches are reconciliated by viewing trees as elements of the
Cantor discontinuum {0, 1}ω. Indeed, by fixing a bijection ι : ω → {1, 2}∗,

12 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

and an injection ρ : Σ → {0, 1}` (for sufficiently large `), we continuously
embed

t 7→ ρ ◦ t ◦ ι

TΣ into ({0, 1}ω)`, which in turn is homeomorphic to {0, 1}ω. It is easy to
see that we have a homeomorphism TΣ ≈ {0, 1}ω, whenever 2 ≤ |Σ|.

On the other hand, as far as computability is concerned, the functions
in ωω can be encoded as elements of {0, 1}ω. Assuming that ι above is
computable, we can apply the recursion-theoretic classification to trees.

We now recall classical definitions. Following [10], we present topological
hierarchies as the relativized versions of recursion-theoretic ones. Thus we
somehow inverse the historical order, as the projective hierarchy (over reals)
was the first one studied by Borel, Lusin, Kuratowski, Tarski, and others
(see [1]). However, from computer science perspective, it is natural to start
with Turing machine. Let k, `, m, n, . . . range over natural numbers, and
α, β, γ, . . . over infinite words in {0, 1}ω; boldface versions stand for vectors
thereof. We consider relations of the form R ⊆ ωk × ({0, 1}ω)`, where
(k, `) is the type of R. The concept of (partially) recursive relation directly
generalizes the familiar one (see, e.g., [10, 23]). In terms of Turing machines,
a tuple 〈m, α〉 forms an entry for a machine, with α spread over infinite
tapes. Note that if a Turing machine gives an answer in finite time, the
assertion R(m, α) depends only on a finite fragment of α. Consequently the
complement R of a recursive relation R is also recursive.

The first-order projection of an arbitrary relation R of type (k + 1, `) is
given by

∃0R = {〈m, α〉 : (∃n) R(m, n, α)}

and the second-order projection of a relation R of type (k, `+1) is given by

∃1R = {〈m, α〉 : (∃β) R(m, α, β)}

The arithmetical hierarchy can be presented by

Σ0
0 = the class of recursive relations

Π0
n = {R : R ∈ Σ0

n}
Σ0

n+1 = {∃0R : R ∈ Π0
n}

∆0
n = Σ0

n ∩Π0
n

The relations in the class
⋃

n<ω Σ0
n =

⋃
n<ω Π0

n are called arithmetical .
Note that R is arithmetical if so is R.

On the topological complexity of tree languages 13

The analytical hierarchy can be presented by

Σ1
0 = the class of arithmetical relations

Π1
n = {R : R ∈ Σ1

n}
Σ1

n+1 = {∃1R : R ∈ Π1
n}

∆1
n = Σ1

n ∩Π1
n.

The two hierarchies have their relativized counterparts usually distin-
guished by the boldface notation. For a relation R of type (k, ` + 1) and
β ∈ {0, 1}ω, let

R[β] = {〈m, α〉 : R(m, α, β)}

Then, for i = 0, 1, we define

Σi
n = {R[β] : R ∈ Σi

n, β ∈ {0, 1}ω}
Πi

n = {R[β] : R ∈ Πi
n, β ∈ {0, 1}ω}

∆i
n = Σ0

n ∩Πi
n

The crucial observation is that the Σ0
1 relations (of type (0, `)) coincide

with open relations on {0, 1}ω with the Cantor topology. To see this, note
that an open set in {0, 1}ω can be presented by

⋃
v∈B v{0, 1}ω, for some

B ⊆ {0, 1}∗, and hence we can present it by (∃n) R(n, α, β), where the
parameter β lists the elements of B, and the recursive relation verifies,
given n = 〈k, m〉 that the kth prefix of α coincides with the mth element
of B. (The other direction is straightforward.) Next it is easy to see that
relations in Σ0

n+1 coincide with the countable unions of relations in Π0
n (of

suitable type). Therefore the classes Σ0
n, Π0

n form the initial segment of the
Borel hierarchy over {0, 1}ω.

Similarly, the classes Σ1
n, Π1

n, form the so-called projective hierarchy
over {0, 1}ω.

Like in computation/complexity theory, the problems can be compared
via reductions. We say that a continuous mapping of topological spaces,
ϕ : T1 → T2, reduces a set A ⊆ T1 to a set B ⊆ T2, if A = ϕ−1(B); in this
case we say that A is Wadge reducible to B, in symbols A ≤W B. A set B
is complete in a class C ⊆ ℘(T) if B ∈ C and (∀A ∈ C) A ≤W B.
A remarkable point is that complete sets may have very simple structure.

Example 2.1. The singleton {0ω} is in Π0
1, and it is complete for Π0

1. The
membership in Π0

1 is seen by presentation of the complement by (∃n) α(n) 6=
0. Now let L be any closed subset of ωω. Define f̂ : ω∗ → ω∗ by

f̂(xy) = 0|x|y

14 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

where x is the longest prefix of xy being also a prefix of u, for some u ∈ L.
Then it is easy to see that the mapping f : ωω → ωω given by

f(u)(n) = f̂(u � n + 1)(n)

is a desired reduction (where u = u0u1 . . . and u � n + 1 = u0u1 . . . un).
It can be seen that, in fact, any singleton {α} is complete in Π0

1, although
in general it need not be in Π0

1.

The reader may be puzzled by triviality of this example compared to the
construction of complete sets of natural numbers in Π0

1 or in Σ0
1. Intuitively,

the second-order objects (trees or words) are “less sensitive” to first-order
quantification.
In a similar vein, one can show

Example 2.2. The set {0, 1}∗0ω is in Σ0
2, and it is complete in Σ0

2.

We now revisit our motivating example from beginning of this section.

Example 2.3. It is not hard to see that the set L is in class Π0
2. Although

the original definition has used a second-order quantifier (for all paths), a
simpler definition can be given by exploiting arithmetic (like encoding finite
sets of nodes by single numbers):

t ∈ L ⇐⇒ for all v ∈ {1, 2}∗, there is a finite maximal antichain B
below v with (∀w ∈ B) t(w) = b.

On the other hand, the set M , which is by definition in Π1
1, is also complete

in Π1
1 w.r.t. continuous reductions, hence not Borel. The completeness can

be seen by reduction of the set W of the suitably encoded wellfounded
(non-labeled) trees T ⊆ ω∗ (see, e.g., [19]), which is well-known to be Π1

1-
complete [11].

3 The power of game languages

The properties of Example 2.3 have a powerful generalization, which is best
understood by viewing sequences in {a, b}ω as outcomes of some infinite
two-player game, where one of the players wants to see b infinitely often,
while the other does not. To make this game more general/symmetric, we
assume that each player has her or his favorite set of letters, and to make
the result definite, we assume a priority order on letters. This gives rise to
parity games (introduced by Emerson and Jutla [8], and independently by
A.W. Mostowski [13]), the concept highly relevant to the µ-calculus-based
model checking and to automata theory (see [26]). We briefly recall it now.

A parity game is a perfect information game of possibly infinite dura-
tion played by two players, say Eve and Adam. We present it as a tuple

On the topological complexity of tree languages 15

〈V∃, V∀,Move, p0, rank〉, where V∃ and V∀ are (disjoint) sets of positions of
Eve and Adam, respectively, Move ⊆ V ×V is the relation of possible moves,
with V = V∃ ∪V∀, p0 ∈ V is a designated initial position, and rank : V → ω
is the ranking function.

The players start a play in the position p0 and then move the token
according to relation Move (always to a successor of the current position),
thus forming a path in the graph (V,Move). The move is selected by Eve or
Adam, depending on who is the owner of the current position. If a player
cannot move, she/he looses. Otherwise, the result of the play is an infinite
path in the graph, v0, v1, v2, . . . Eve wins the play if lim supn→∞ rank(vn),
is even, otherwise Adam wins. A crucial property of parity games is the
positional determinacy : any position is winning for one of the players, and
moreover a winning strategy of player θ can be chosen positional , i.e., rep-
resented by a (partial) function σ : Vθ → V . We simply say that Eve wins
the game if she has a winning strategy, the similar for Adam. (See [9] for
more detailed introduction to parity games.)

Here we are interested in several groups of tree languages related to the
parity games.

For ι ∈ {0, 1} and ι ≤ κ < ω, let

Σ(ι,κ) = {ι, ι + 1, . . . , κ}
M(ι,κ) = {u ∈ Σω

(ι,κ) : lim sup
n→∞

un is even }

T(ι,κ) = {t ∈ TΣ(ι,κ) : (∀π ∈ {1, 2}ω)t � π ∈ M(ι,κ)},

where t � π stands for the restriction of t to the path π. That is, T(ι,κ) is the
set of trees over Σ(ι,κ) such that, on each path, the highest label occurring
infinitely often is even. The sets L and M of Example 2.3 can be readily
identified with T(1,2) and T(0,1), respectively.

We now present an important game variation of sets T(ι,κ); these will be
tree languages over alphabet {∃,∀} × Σ(ι,κ).

With each tree t in T{∃,∀}×Σ(ι,κ)
, we associate a parity game G(t), as

described in the previous section, with

• V∃ = {v ∈ {1, 2}∗ : t(v) ↓1= ∃},

• V∀ = {v ∈ {1, 2}∗ : t(v) ↓1= ∀},

• Move = {(w,wi) : w ∈ {1, 2}∗, i ∈ {1, 2}},

• p0 = ε (the root of the tree),

• rank(v) = t(v) ↓2, for v ∈ {1, 2}∗.

16 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

(1, 2) (1, 3)

(0, 1) (0, 2)

(1, 4)

(0, 3)
Figure 1. The Mostowski–Rabin index hierarchy.

The set W(ι,κ) consists of those trees for which Eve wins the game G(t).
Note that this means that Eve can force the resulting path π to satisfy
(t � π) ↓2∈ M(ι,κ).

Finally, we introduce the weak version of all the concepts above, which is
obtained by replacing everywhere lim sup by sup. We denote by L[the weak
version of L. So, in particular M [

(ι,κ) = {u ∈ Σω
(ι,κ) : supn→∞ un is even }.

Similarly, the weak parity games differ from the games defined above in that
Eve wins a play if the highest rank occurring in the play is even.

It is useful to have a partial ordering on pairs (ι, κ), with ι ∈ {0, 1},
which we call Mostowski-Rabin indices. We let (ι, κ) v (ι′, κ′) if either
ι′ ≤ ι and κ ≤ κ′ (i.e., {ι, . . . , κ} ⊆ {ι′, . . . , κ′}) or ι = 0, ι′ = 1, and
κ + 2 ≤ κ′ (i.e., {ι + 2, . . . , κ + 2} ⊆ {ι′, . . . , κ′}). We consider the indices
(1, κ) and (0, κ − 1) as dual , and let (ι, κ) denote the index dual to (ι, κ).
Note that (ι, κ) = (ι, κ). The ordering is represented on Figure 1.

Clearly, in each of the above-defined families, the ordering on Mostowski-
Rabin indices induces inclusion of corresponding sets.

Now the crucial observation is the following. If T is a complete metric
space then no contracting reduction can reduce a set A ⊆ T to its comple-
ment A. Indeed, otherwise, by the Banach Fixed-Point Theorem, we would
have

a ∈ A ⇐⇒ f(a) ∈ A ⇐⇒ a ∈ A (contradiction),

for the fixed point a = f(a).
It immediately implies the following.

Lemma 3.1. No contracting mapping reduces W
(ι,κ)

to W(ι,κ), or W [
(ι,κ)

to W [
(ι,κ).

Proof. Although W
(ι,κ)

and W(ι,κ) are over different alphabets, we have an
isometry of TΣ(ι,κ) and TΣ(ι,κ)

, induced by the re-labeling of symbols which
exchanges quantifiers and alters the ranks by ±1. This isometry reduces
W(ι,κ) to W

(ι,κ)
, so the claim follows from the observation above. The

argument for weak version is similar. q.e.d.

On the topological complexity of tree languages 17

It turns out that we can strengthen the above lemma by removing the
hypothesis of contractivity. This is because, in general, any continuous
reduction of W(ι,κ) to some L can be improved to a contracting one, by
composing it with a “stretching” reduction of W(ι,κ) to itself. The details
can be found in [3]. Thus we obtain the following.

Theorem 3.2. The game languages form a hierarchy w.r.t. the Wadge
reducibility, i.e.,

(ι, κ) v (ι′, κ′) iff W(ι,κ) ≤W W(ι′,κ′)

iff W [
(ι,κ) ≤W W [

(ι′,κ′)

This result has several applications involving automata. Let us first
recall definition of an alternating parity automaton.

An alternating parity tree automaton can be presented as a tuple A =
〈Σ, Q∃, Q∀, q0, δ, rank〉, where the set of states Q is partitioned into existen-
tial states Q∃ and universal states Q∀, δ ⊆ Q×Σ×{1, 2, ε}×Q is a transition
relation, and rank : Q → ω a rank function. An input tree t is accepted by
A iff Eve has a winning strategy in the parity game 〈Q∃ × {1, 2}∗, Q∀ ×
{1, 2}∗, (q0, ε),Move, rank〉, where Move = {((p, v), (q, vd)) : v ∈ dom(t),
(p, t(v), d, q) ∈ δ} and rank(q, v) = rank(q).

We can assume without loss of generality that min rank(Q) is 0 or 1.
The pair (min rank(Q),max rank(Q)) is the Mostowski-Rabin index of the
automaton.

A weak alternating parity tree automaton is defined similarly, by restric-
tion to weak parity games. Strictly speaking, a weak automaton is not a
parity automaton, but it can be easily turned into one. It is enough to mul-
tiply the set of states by rank(Q) so that the second component keeps record
of the highest rank seen so far (it can only increase). It is well known that
the languages recognized by weak alternating automata are exactly those
recognizable by both (0, 1) and (1, 2) automata (it follows essentially from
[22]).

It is straightforward to see that each W(ι,κ) is recognized by a parity
automaton of index (ι, κ), and each W [

(ι,κ) is recognized by a weak parity
automaton of index (ι, κ).
The next important observation is the following lemma:

Lemma 3.3. If a set of trees T is recognized by a (weak) alternating au-
tomaton of index (ι, κ) then T ≤W W(ι,κ) (resp. T ≤W W [

(ι,κ)).

The exact construction is somewhat tedious, but the idea of the reduc-
tion is simple: for a tree t, we construct a full game tree and then forget
anythings but ranks. The details are presented in [2, 5], where the reduction
is even made contracting, but in view of Theorem 3.2, it is not necessary.

18 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

Combining Theorem 3.2 with Lemma 3.3, we obtain

Theorem 3.4. The tree languages W(ι,κ) form a strict hierarchy for the
Mostowski-Rabin indices of alternating parity automata.

The tree languages W [
(ι,κ) form a strict hierarchy for Mostowski-Rabin

indices of weak alternating parity automata.

The first claim was established by Bradfield [6]; the proof via the Banach
Theorem was given later by Arnold [2] (see also [5]).

The strictness of the hierarchy of weak automata was first established
by Mostowski [14], who shown that it is equivalent to a hierarchy based on
weak monadic formulas, and then used the strictness of the latter hierarchy,
previously proved by W. Thomas [25].

As Skurczyński showed [24] (by other examples) that there are Π0
n and

Σ0
n-complete tree languages recognized by weak alternating automata of in-

dex (0, n) and (1, n + 1) accordingly, Lemma 3.3 also implies that the sets
W [

(ι,κ) are hard on the corresponding finite levels of the Borel hierarchy. Re-
cently, Duparc and Murlak [7] showed that these sets are actually complete
in these classes.

Theorem 3.5 (Duparc-Murlak, [7]). If a tree language T is recognized by
a weak alternating automaton of index (0, n) (resp. (1, n + 1)) it holds that
T ∈ Π0

n (resp. T ∈ Σ0
n).

Let us complete this recent theorem by what we have known since long
time about strong alternating automata.

Theorem 3.6. If a tree language T is recognized by an alternating au-
tomaton of index (0, 1) (resp. (1, 2)) it holds that T ∈ Π1

1 (resp. T ∈ Σ1
1).

For any recognizable tree language T , T ∈ ∆1
2.

The first claim was (essentially) established by Rabin [22] in terms of
the formulas of S2S and for nondeterministic automata of index (1, 2), now
called Büchi automata. It was later shown [4] that for Büchi automata alter-
nation does not matter. Note that this implies in particular that the set M
of Example 2.3 cannot be recognized by a Büchi automaton [22]. The second
claim follows from definition and Rabin’s Complementation Lemma [21].

4 How fine is the Wadge hierarchy?

In the previous section we saw that with regular tree languages one can go
much higher in the Borel hierarchy than with regular ω-languages. Now we
should like to concentrate on the fineness of the hierarchy. Let us start with
a simple example.

For n ∈ ω, let Ln denote the set of trees over the alphabet [0, n] =
{0, 1, . . . , n}, whose leftmost path satisfies the weak parity condition, i. e.,

On the topological complexity of tree languages 19

the highest label on this path is even. For example: L0 = T[0,0] consists
of the only tree over the alphabet {0}, and L1, a closed subset of T[0,1],
consists of trees with 0’s on the leftmost path and 0’s or 1’s elsewhere. It is
an easy exercise to show that Ln are regular.

Even everyday intuition of complexity tells us that Lk+1 is more complex
then Lk. This can be formalized by means of continuous reductions intro-
duced in the previous section. Consider an identity function id : T[0,`] →
T[0,k], with ` < k. Clearly, this function reduces L` to Lk: t ∈ L` iff id(t) ∈
Lk. Hence the languages Ln form a hierarchy: L0 ≤W L1 ≤W L2 ≤W

OK, but this already happened with the weak game languages from the
previous section, so what is the difference? Well, observe that all these
languages can be presented as a finite Boolean combination of closed sets,
e.g.

L3 = {t : ∀i t(0i) ∈ [0, 2]} \ {t : ∀i t(0i) ∈ [0, 1]} ∪ {t : ∀i t(0i) ∈ [0, 0]} .

Consequently, our entire hierarchy lies within ∆0
2 !

‘All right,’ the reader might say, ‘but how do I know that, say, L7 cannot
be reduced to L6? How do I know that this “hierarchy” is strict?’ It is,
but showing that directly would be rather tiresome. Instead, we shall use a
handy characterization provided by Wadge games.

Originally, these games were defined for ω-words (see [20]). Here, we
shall use a tree version. For any pair of tree languages L ⊆ TΣ,M ⊆ TΓ the
Wadge game GW(L,M) is played by Spoiler and Duplicator. Each player
builds a tree, tS ∈ TΣ and tD ∈ TΓ respectively. In every round, first Spoiler
adds at least one level to tS and then Duplicator can either add some levels
to tD or skip a round. Duplicator must not skip infinitely long, so that tD
is really an infinite tree. Duplicator wins the game if tS ∈ L ⇐⇒ tD ∈ M .

Lemma 4.1 (Wadge). Duplicator has a winning strategy in GW(L,M) if
and only if L ≤W M .

Proof. Essentially, a winning strategy for Duplicator can be transformed
into a continuous reduction, and vice versa.

Suppose Duplicator has a winning strategy ρ. For any tree t constructed
by Spoiler, there exist a unique tree tρ which will be constructed by Dupli-
cator if he is using the strategy ρ. The map t 7→ tρ is continuous by the
rules of the Wadge game, and t ∈ L ⇐⇒ tρ ∈ M since ρ is winning.

Conversely, suppose there exist a reduction t 7→ ϕ(t). It follows that
there exist a sequence nk (without loss of generality, increasing) such that
the level k of ϕ(t) depends only on the levels 1, . . . , nk of t. Then the
strategy for Duplicator is the following: if the number of the round is nk,
fill in the k-th level of tD according to ϕ(tS); otherwise skip. q.e.d.

20 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

Let us now see that the languages L1, L2, . . . form a strict hierarchy,
i.e., L` 6≤W Lk for ` > k. Consider the following strategy for Spoiler in
GW(L`, Lk). Outside of the leftmost path play 1 all the time - it does
not matter anyhow. On the leftmost path always play m + 1, where m
is the last number played by Duplicator on the leftmost path of his tree
(or 0 if he has kept skipping so far). This strategy only uses numbers
[1, k + 1] ⊆ [1, `], so it is legal. Obviously, the highest number we use on
the leftmost path is of different parity then the highest number used by
Duplicator, so tS ∈ L` ⇐⇒ tD /∈ Lk. Hence, the strategy is winning for
Spoiler, and by the lemma above L` 6≤W Lk.

Observe that in the above argument we have shown that Duplicator does
not have a winning strategy by providing a winning strategy for Spoiler. In
general it does not always hold that one of the players must have a winning
strategy in GW(L,M). Luckily, by Martin’s famous determinacy theorem,
it holds for Borel sets.

Theorem 4.2. If L,M are Borel languages, than one of the players has a
winning strategy in GW(L,M).

In fact the power of Wadge games relies on the above result: it lets us
replace a non-existence proof with an existence proof. Without determinacy,
Wadge games only give a rather trivial correspondence between reductions
and strategies.

The Wadge ordering ≤W induces a natural equivalence relation, L ≡W

M iff L ≤W M and L ≥W M . The order induced on the ≡W equivalence
classes of Borel languages is called the Wadge hierarchy. The determinacy
theorem actually gives a very precise information on the shape of the Wadge
hierarchy.

Theorem 4.3 (Wadge Lemma). For Borel languages L,M it holds that

L ≤W M or L ≥W M .

The proof of this result simply transforms Spoiler’s winning strategy in
GW(L,M), which must exist by determinacy, into Duplicator’s winning
strategy in GW(M,L) (see [11] or [20]). In other words the theorem says
that the width of the Wadge hierarchy is at most two, and if L and M are
incomparable, then L ≡W M . It means that the Wadge ordering is almost
linear. The second fundamental result states that it is also a well-ordering.

Theorem 4.4 (Wadge-Martin-Monk). The Wadge hierarchy is wellfounded.

Altogether, the position of a language in the Wadge hierarchy is determined,
up to complementation, by its height.

If L ≡W L then L is called selfdual. Otherwise L is not comparable with
L and is called non-selfdual. Steel and Van Weesp proved that the selfdual

On the topological complexity of tree languages 21

and non-selfdual levels alternate (see [11]). If the alphabet is finite, which
is our case, on limit steps we have non-selfduals. Furthermore, the selfduals
on successor levels can be obtained as disjoint unions of their predecessors.
All this makes it reasonable to ignore selfduals when counting the height.
Hence, we choose the following definition of the Wadge degree:

• dW(∅) = dW(∅) = 1,

• dW(L) = sup{dW(M)+1: M is non-selfdual, M <W L} for L >W ∅.

We have now all the tools necessary to formalize the question asked in
the title of the present section. For a family of languages F define the
height of the Wadge hierarchy restricted to F as the order type of the set
{dW(L) : L ∈ F} with respect to the usual order on ordinals. What we are
interested in is the height of the hierarchy of regular languages.

We have shown already that the height of the hierarchy of {L0, L1, . . .}
is ω. This of course gives a lower bound for the height of the hierarchy of all
regular languages. We shall now see how this result can be improved. We
consider a subclass of regular languages, the languages recognized by weak
alternating automata. Any lower bound for weak languages will obviously
hold for regular languages as well.

It will be convenient to work with languages of binary trees which are
not necessarily full, i.e., partial functions from {0, 1}∗ to Σ with prefix closed
domain. We call such trees conciliatory. Observe that the definition of weak
automata works for conciliatory trees as well. We shall write LC(A) to de-
note the set of conciliatory trees accepted by A. For conciliatory languages
L,M one can define a suitable version of Wadge games GC(L,M). Since
it is not a problem if the players construct a conciliatory tree during the
play, they are now both allowed to skip, even infinitely long. Analogously
one defines the conciliatory hierarchy induced by the order ≤C, and the
conciliatory degree dC.

The conciliatory hierarchy embeds naturally into the non-selfdual part
of the Wadge hierarchy. The embedding is given by the mapping L 7→ LS ,
where L is a language of conciliatory trees over Σ, and Ls is a language of
full trees over Σ∪ {s} which belong to L when we ignore the nodes labeled
with s (together with the subtrees rooted in their right children) in a top
down manner. Proving that L ≤C M ⇐⇒ Ls ≤W Ms for all conciliatory
languages L and M only requires translating strategies form one game to
the other. It can be done easily, since arbitrary skipping in GC(L,M)
gives the same power as the s labels in GW(Ls,Ms). Within the family of
languages of finite Borel rank, the embedding is actually an isomorphism,
and dC(L) = dW(Ls) [7].

Observe that if L is recognized by a weak alternating automaton, so
is Ls. Indeed, by adding to δ a transition p

0,s−→ p for each state p one

22 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

Figure 2. The automata B +A and A · ω.

transforms an automaton A into As such that L(As) = (LC(A))s. Hence,
the conciliatory subhierarchy of weakly recognizable languages embeds into
the Wadge hierarchy of weakly recognizable languages, and it is enough to
show a lower bound for conciliatory languages.

So far, when constructing hierarchies, we have been defining the whole
family of languages right off. This time we shall use a different method.
We shall define operations transforming simple languages into more sophis-
ticated ones. These operations will induce, almost accurately, classical or-
dinal operations on the degrees of languages: sum, multiplication by ω, and
exponentiation with the base ω1. We shall work with automata on trees
over a fixed alphabet {a, b}.

The sum B +A and multiplication A · ω are realized by combining au-
tomata recognizing simpler languages with a carefully designed gadget. The
constructions are shown on Figure 2. The diamond states are existential
and the box states are universal. The circle states can be treated as ex-
istential, but in fact they give no choice to either player. The transitions
leading to A, A, B and B should be understood as transitions to the initial
states of the according automata. The priority functions of these automata
might need shifting up, so that they were not using the value 0.

The automaton expA is a bit more tricky. This time, we have to change
the whole structure of the automaton. Instead of adding one gadget, we
replace each state of A by a different gadget. The gadget for a state p is
shown on Figure 3. By replacing p with the gadget we mean that all the

On the topological complexity of tree languages 23

Figure 3. The gadget to replace p in the construction of expA.

transitions ending in p should now end in p′ and all the transitions starting
in p should start in p′′. Note that the state p′′ is the place where the
original transition is chosen, so p′′ should be existential iff p is existential.
The number j is the least even number greater or equal to i = rank p.

Abusing slightly the notation we may formulate the properties of the
three constructions as follows.

Theorem 4.5 (Duparc-Murlak, [7]). For all weak alternating automata A,
B it holds that dC(B +A) = dC(B) + dC(A), dC(A · ω) = dC(A) · ω, and
dC(expA) = ω

dC(A)+ε
1 , where

ε =


−1 if dC(A) < ω

0 if dC(A) = β + n and cofβ = ω1

+1 if dC(A) = β + n and cofβ = ω.

As a corollary we obtain the promised bound.

Theorem 4.6 (Duparc-Murlak, [7]). The Wadge hierarchy of weakly rec-
ognizable tree languages has the height of at least ε0, the least fixed point
of the exponentiation with the base ω.

Proof. It is enough to show the bound for conciliatory languages. By it-
erating finitely many times sum and multiplication by ω we obtain multi-
plication by ordinals of the form ωnkn + . . . + ωk1 + k0, i.e., all ordinals
less then ωω. In other words, we can find a weakly recognizable language
of any conciliatory degree from the closure of {1} by ordinal sum, multipli-
cation by ordinals < ωω and pseudo-exponentiation with the base ω1. It
is easy to see that the order type of this set is not changed if we replace

24 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

pseudo-exponentiation with ordinary exponentiation α 7→ ωα
1 . This in turn

is isomorphic with the closure of {1} by ordinal sum, multiplication by ordi-
nals < ωω, and exponentiation with the base ωω. This last set is obviously
ε0, the least fixpoint of the exponentiation with the base ω. q.e.d.

Recently, the second author of this survey has found a modification of
the pseudo-exponentiation construction which results in ordinary exponen-
tiation α 7→ ωα

1 . This result makes it very tempting to conjecture that these
are in fact all Wadge degrees realised by weak automata, and if one replaces
ω1 by ωω, one gets the degree of the language in the Wadge hierarchy re-
stricted to weakly recognizable languages.

Supposing that the conjecture is true, the next step is an effective de-
scription of each degree. Or, in other words, an algorithm to calculate the
position of a given language in the hierarchy. Obtaining such a description
for all regular languages is the ultimate goal of the field we are surveying.
So far this goal is seems far away. The solution might actually rely on
analytical determinacy. On the other hand, it may also be the case that
determinacy for regular languages is implied by ZFC. The knowledge in this
subject is scarce.

To end up with some good news, the problem has been solved for an im-
portant and natural subclass of regular languages, the languages recognized
by deterministic automata (see below for definition).

Theorem 4.7 (Murlak, [17]). The hierarchy of deterministically recogniz-
able languages has the height of ωω·3 + 3. Furthermore, there exist an
algorithm calculating the exact position of a given language in this hierar-
chy.

5 Topology versus computation

In this concluding section we should like to confront the classical defin-
ability hierarchies with the automata-theoretic hierarchies based on the
Mostowski–Rabin index. To this end, let us first recall the concepts of
non-deterministic and deterministic tree automata. They are special cases
of alternating automata, but it is convenient to use traditional definitions.
A non-deterministic parity tree automaton over trees in TΣ can be pre-
sented as A = 〈Σ, Q, q0, δ, rank〉, where δ ⊆ Q × Σ × Q × Q. A transition
(q, σ, p1, p2) ∈ δ is usually written q

σ→ p1, p2.
A run of A on a tree t ∈ TΣ is itself a tree in TQ such that ρ(ε) = q0,

and, for each w ∈ dom (ρ), ρ(w)
t(w)→ ρ(w1), ρ(w2) is a transition in δ. A

path in ρ is accepting if the highest rank occurring infinitely often along it is
even. A run is accepting if so are all its paths. Again, the Mostowski-Rabin

On the topological complexity of tree languages 25

index of an automaton is the pair (min rank(Q),max rank(Q)), where we
assume that the first component is 0 or 1.

An automaton is deterministic if δ is a partial function from Q × Σ to
Q × Q. It can be observed that languages W(ι,κ) defined in Section 3 can
be recognized by non-deterministic automata of index (ι, κ), respectively,
and that languages T(ι,κ) defined there can be recognized by deterministic
automata of corresponding indices.

In general, the index may decrease if we replace an automaton by an
equivalent one of higher type. For example, it is not hard to see that the
complements of languages T(ι,κ) can all be recognized by non-deterministic
automata of index (1, 2) (Büchi automata), hence these languages them-
selves are of alternating index (0, 1). But it was showed in [18] that these lan-
guages form a hierarchy for the Mostowski-Rabin index of non-deterministic
automata. It can be further observed that all T(ι,κ) with (0, 1) v (ι, κ) are
Π1

1-complete, hence by the general theory [11], they are all equivalent w.r.t.
the Wadge reducibility. (In fact, it is not difficult to find the reductions to
T(0,1) directly.) So in this case the automata-theoretic hierarchy is more fine
than the Wadge hierarchy, which is a bit surprising in view of the fineness
of the latter hierarchy, as seen in the previous section.

Let us now compare the index hierarchy and the Wadge hierarchy. For
infinite words, this comparison reveals a beautiful correspondence, discov-
ered by Klaus Wagner.

Theorem 5.1 (Wagner, [27]).

1. Regular ω-languages have exactly the Wadge degrees of the form
ωk

1nk + . . . + ω1
1n1 + n0 for k < ω and n0, . . . , nk < ω.

2. The languages recognized by deterministic automata using k+1 ranks
(index [0, k] or [1, k + 1]) correspond to degrees ≤ ωk

1 .

Hence, for regular ω-languages, the Wadge hierarchy is a refinement of the
index hierarchy. For trees the situation is more complex because we have
four nontrivial hierarchies (alternating, weak-alternating, nondeterministic,
and deterministic).

The correspondence for weak alternating automata is not yet fully un-
derstood. By Theorem 3.5, the raise of topological complexity (in terms
of Borel hierarchy) forces the raise of the index complexity. However, the
converse is an open problem. A priori it is possible that an infinite sequence
of tree languages witnessing the weak index hierarchy can be found inside
a single Borel class, although it would be rather surprising.

What we do know is that a similar pathology cannot happen for de-
terministically recognizable tree languages. Indeed, for this class the two

26 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

hierarchies are largely compatible, however their scope is not large: a deter-
ministic language can either be recognized by a weak automaton of index
(at most) (0, 3), and hence, by Theorem 3.5 is in the Borel class Π0

3, or it
is Π1

1-complete [19]. Moreover, the membership in Borel and in weak-index
classes is decidable for deterministic languages [19, 16].

On the other hand, the kind of pathology described above actually does
happen if we regard the deterministic index hierarchy, i.e., for a determinis-
tically recognizable language we look for the lowest index of a deterministic
automaton recognizing it (the case rarely considered in literature). Observe
that the hierarchy of regular ω-languages embeds into the hierarchy of de-
terministic tree languages by a mapping L 7→ {t: the leftmost branch of t
is in L }. Recall that all the regular ω-languages are Boolean combinations
of Σ0

2 languages, denoted Boole(Σ0
2). It follows that there are deterministic

tree languages from each level of the deterministic index hierarchy which
are inside Boole(Σ0

2). At the same time one only needs index (0, 1) to get a
Π1

1-complete set. In other words, for some Π1
1-complete languages (0, 1) is

enough, but there are Σ0
2 languages which need an arbitrarily high index!

This means that the deterministic index hierarchy does not embed into
the Wadge hierarchy. Apparently, it measures an entirely different kind of
complexity.

One might suspect that alternating index would be a more suitable mea-
sure in this context. Alternation saves us from increasing the index with
complementation. Indeed, the complementation of an alternating automa-
ton is done simply by swapping Q∃ and Q∀, and shifting the ranks by one.
(To make complementation easy was an original motivation behind alter-
nating automata [15].) If a language has index (ι, κ), its complement will
only need (ι, κ), and vice versa. As it was stated in Section 3, the strong
game languages showing the strictness of the alternating hierarchy form also
a strict hierarchy within the Wadge hierarchy. In fact, since each recogniz-
able tree language can be continuously reduced to one of them, they give
a scaffold for further investigation of the hierarchy. Such a scaffold will be
much needed since the non-Borel part of the Wadge hierarchy is a much
dreaded and rarely visited place.

References

[1] J. W. Addison. Tarski’s theory of definability: common themes in
descriptive set theory, recursive function theory, classical pure logic,
and finite-universe logic. Ann. Pure Appl. Logic, 126(1-3):77–92, 2004.

[2] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on bi-
nary trees. ITA, 33(4/5):329–340, 1999.

On the topological complexity of tree languages 27

[3] A. Arnold and D. Niwiński. Continuous separation of game languages.
To appear.

[4] A. Arnold and D. Niwinski. Fixed point characterization of büchi au-
tomata on infinite trees. Elektronische Informationsverarbeitung und
Kybernetik, 26(8/9):451–459, 1990.

[5] A. Arnold and D. Niwiński. Rudiments of µ-calculus, volume 146 of
Studies in Logic and the Foundations of Mathematics. North-Holland
Publishing Co., Amsterdam, 2001.

[6] J. C. Bradfield. Simplifying the modal mu-calculus alternation hierar-
chy. In M. Morvan, C. Meinel, and D. Krob, editors, STACS, volume
1373 of Lecture Notes in Computer Science, pages 39–49. Springer,
1998.

[7] J. Duparc and F. Murlak. On the topological complexity of weakly
recognizable tree languages. In E. Csuhaj-Varjú and Z. Ésik, editors,
FCT, volume 4639 of Lecture Notes in Computer Science, pages 261–
273. Springer, 2007.

[8] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy (extended abstract). In FOCS, pages 368–377. IEEE, 1991.

[9] E. Grädel, W. Thomas, and Thomas. Wilke, editors. Automata, Log-
ics, and Infinite Games: A Guide to Current Research [outcome of a
Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in
Computer Science. Springer, 2002.

[10] P. G. Hinman. Recursion-theoretic hierarchies. Springer-Verlag, Berlin,
1978. Perspectives in Mathematical Logic.

[11] A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1995.

[12] Y. N. Moschovakis. Descriptive set theory, volume 100 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing
Co., Amsterdam, 1980.

[13] A. W. Mostowski. Games with forbidden positions. Preprint 78, Uni-
wersytet Gdańsk, Instytyt Matematyki, 1991.

[14] A. W. Mostowski. Hierarchies of weak automata and weak monadic
formulas. Theor. Comput. Sci., 83(2):323–335, 1991.

[15] D. E. Muller and P. E. Schupp. Alternating automata on infinite trees.
Theor. Comput. Sci., 54:267–276, 1987.

28 A. Arnold, J. Duparc, F. Murlak, D. Niwiński

[16] F. Murlak. On deciding topological classes of deterministic tree lan-
guages. In C.-H. L. Ong, editor, CSL, volume 3634 of Lecture Notes in
Computer Science, pages 428–441. Springer, 2005.

[17] F. Murlak. The wadge hierarchy of deterministic tree languages. In
M. Bugliesi, B. Preneel, V. Sassone, and I. Wegener, editors, ICALP
(2), volume 4052 of Lecture Notes in Computer Science, pages 408–419.
Springer, 2006.

[18] D. Niwiński. On fixed-point clones (extended abstract). In L. Kott, ed-
itor, ICALP, volume 226 of Lecture Notes in Computer Science, pages
464–473. Springer, 1986.

[19] D. Niwinski and I. Walukiewicz. A gap property of deterministic tree
languages. Theor. Comput. Sci., 1(303):215–231, 2003.

[20] D. Perrin and J.-E. Pin. Infinite Words. Automata, Semigroups, Logic
and Games, volume 141 of Pure and Applied Mathematics. Elsevier,
Amsterdam, 2004.

[21] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[22] M. O. Rabin. Weakly definable relations and special automata. In
Mathematical Logic and Foundations of Set Theory (Proc. Internat.
Colloq., Jerusalem, 1968), pages 1–23. North-Holland, Amsterdam,
1970.

[23] H. Rogers, Jr. Theory of recursive functions and effective computability.
McGraw-Hill Book Co., New York, 1967.

[24] J. Skurczynski. The borel hierarchy is infinite in the class of regular
sets of trees. Theor. Comput. Sci., 112(2):413–418, 1993.

[25] W. Thomas. A hierarchy of sets of infinite trees. In A. B. Cremers
and H.-P. Kriegel, editors, Theoretical Computer Science, volume 145
of Lecture Notes in Computer Science, pages 335–342. Springer, 1983.

[26] W. Thomas. Languages, automata, and logic. In Handbook of formal
languages, Vol. 3, pages 389–455. Springer, Berlin, 1997.

[27] K. Wagner. On omega-regular sets. Information and Control,
43(2):123–177, 1979.

Nondeterministic controllers of
nondeterministic processes

André Arnold
Igor Walukiewicz

Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1
351 cours de la Libération
33405 Talence cedex, France
andre.arnold@club-internet.fr, igw@labri.fr

Abstract

The controller synthesis problem as formalized by Ramadge and
Wonham consists of finding a finite controller that when synchronized
with a given plant results in a system satisfying a required property.
In this setting, both a plant and a controller are deterministic fi-
nite automata, while synchronization is modelled by a synchronous
product. Originally, the framework was developed only for safety and
some deadlock properties. More recently, Arnold et. al. have extended
the setting to all mu-calculus expressible properties and proposed a
reduction of the synthesis problem to the satisfiability problem of the
mu-calculus. They have also presented some results on decidability
of distributed synthesis problem where one requires to find several
controllers that control the plant at the same time. The additional
difficulty in this case is that each controller is aware of a different
part of the whole system. In this paper, an extension of the setting
to nondeterministic processes is studied.

1 Introduction

At the end of the eighties, Ramadge and Wonham introduced the theory
of control of discrete event systems (see the survey [13] and the books [6]
and [3]). In this theory a process (also called a plant) is a deterministic
non-complete finite state automaton over an alphabet A of events, which
defines all possible sequential behaviours of the process. The goal is to find
for a given plant another process, called controller, such that a synchronous
product of the plant and the controller satisfies desired properties. The
usual properties considered are for instance, that some dangerous states are
never reachable, or that one can always go back to the initial state of the
plant. In decentralized control one looks for a fixed number of controllers
that control the plant simultaneously.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 29–52.

30 A. Arnold and I. Walukiewicz

In the setting described above one assumes that both a plant and con-
trollers are deterministic automata. This paper examines what changes
when assumption on determinism is dropped. It is shown that nondeter-
minism in a plant can be handled at no cost, while nondeterminism in
controllers may lead to undecidability in the case of decentralized control.

The synthesis problem would be interesting neither form theoretical nor
from practical point of view if there were no additional restrictions on con-
trollers. In the most standard form a restriction is determined by two sub-
sets Aunc and Auobs of the alphabet A with the associated requirement that:

(C) For any state q of the controller, and for any uncontrollable event a,
there is a transition from q labelled by a.

(O) For any state q of the controller, and for any unobservable event a, if
there is a transition from q labelled by a then this transition is a loop
over q.

In other words, a controller must react to any uncontrollable event and
cannot detect the occurrence of an unobservable event.

In [1] an extension of this setting was proposed that handles specifica-
tions expressed in the mu-calculus, or rather in its extension called modal
loop mu-calculus. This allowed a more general formulation of the synthesis
problem:

(CC) Given a plant P and two formulas α and β, does there exist a
controller R satisfying β such that P ×R satisfies α?

With formulas α and β one can express properties (C) and (O) but also
much more, as for example that an action becomes unobservable after a
failure has occurred, or that always one of two actions is controllable but
never both at the same time.

The problem (CC) can be solved thanks to the division operation [1].
For a process P and a formula α there is a formula α/P such that: R � α/P
iff P × R � α. This way a process R is a solution to (CC) if and only if
R � (α/P) ∧ β. As (α/P) ∧ β is a formula of the modal loop mu-calculus
the synthesis problem reduces to the constructive satisfiability problem:
construct a model for a formula whenever a model exists. The latter is
decidable and a witnessing model, which is a controller, can be constructed.

Ramadge and Wonham have considered also the problem of synthesis of
decentralized controllers: a plant can be supervised by several independent
controllers (instead of only one). But each controller has its own set of con-
trollable and observable events. Hence, the decentralized control problem
is to find R1, . . . , Rn such that the supervised system P × R1 × · · · × Rn

satisfies the specification S and for each i, Ri satisfies (Ci) and (Oi). More
generally, in our setting, the decentralized control problem is:

Nondeterministic controllers of nondeterministic processes 31

(DC) Given a plant P and modal-loop mu-calculus formulas α, β1,
. . . ,βn, do there exist controllers Ri satisfying βi (for i = 1, . . . , n)
such that P ×R1 × · · · ×Rn satisfies α?

In [1] it is shown how to solve a decentralized control problem when at
most one of the formulas αi restrains visibility of a controller. If one allows
to put visibility restrictions on at least two controllers then the existence of
a solution to the problem is undecidable.

Till now, all the constructions assumed that processes are deterministic
automata. This may be a limiting assumption if, for example, a plant is a
model of a continuous system. In this case a continuous domain of values
must be sampled to a discrete one. Hence, the same measurement can
correspond to different values that may have different effect on the behaviour
of the plant. For similar reasons, the result of actions of controllers may be
also not completely determined.

In this paper, we show that in the case of centralized synthesis the
approach via division operation still works. We do this by generalizing
the division operation described above to a division by a nondeterministic
process. This shows that nondeterminism in a plant can be handled at no
cost. Next, we study decidability of (DC) problem. Thanks to the division,
allowing nondeterministic plant does not make the problem more complex.
By contrast, if we allow at least two controllers to be nondeterministic,
then the problem becomes undecidable even for formulas in the standard
mu-calculus. We study also the case when at most one of the controllers
can be nondeterministic, obtaining a full characterisation of decidability of
(DC) problem.

The paper is organized as follows. In the next section we introduce
processes and automata on processes. This will be a rather rich version
of alternating automata that has not only loop testing, 	a, but also indis-
tinguishability testing ↓↓a,b. Intuitively, the first constraint will be used to
say that a controller cannot observe a, and the second that it cannot make
a difference between a and b. These kinds of automata were introduced
in [1], and ↓↓a,b test was added in [2]. In Section 3 we give basic properties
of these automata, like closure under boolean operations and decidability
of emptiness. Section 4 presents an operation of division of an automaton
by a process. This operation is used in the following section to solve cen-
tralized synthesis problem and to eliminate the plant from formalization of
decentralized synthesis problem. Main results of the paper are given in this
section. The proofs of decidability and undecidability results announced
here are given in Sections 6 and 7 respectively.

32 A. Arnold and I. Walukiewicz

2 Processes and automata

2.1 Processes
Let A be a finite alphabet of actions. A process is a finite graph with a
distinguished node and with edges labelled by actions:

P = 〈S, A, s0 ∈ S, e ⊆ S ×A× S〉

We shall usually refer to nodes as states. We shall write s
a→ s′ instead

of (s, a, s′) ∈ e, and will say that there is a transition labelled a form a
state s to a state s′. A process is deterministic if e is a partial function
e : S×A → S. We shall write outP (s, a) for the set of states reachable from
s by a transition labelled a: outP (s, a) = {s′ : s

a→ s′}.
A product of two processes over the same alphabet is standard

P ×R = 〈SP × SR, A, (s0
P , s0

R), eP×R〉

where ((sP , sR), a, (s′P , s′R)) ∈ eP×R if (sP , a, s′P) ∈ eP and (sR, a, s′R) ∈ eR.

2.2 Games
As our specification language we shall use a rich variant of alternating au-
tomata that we shall introduce in the next subsection. It will be very con-
venient to describe its semantics in terms of games, so we recall necessary
definitions here.

A game G is a tuple 〈VE, VA, T ⊆ (VE ∪ VA)2,Acc ⊆ V ω〉 where Acc is
a set defining the winning condition, and 〈VE ∪ VA, T 〉 is a graph with the
vertices partitioned into those of Eve and those of Adam. We say that a
vertex v′ is a successor of a vertex v if T (v, v′) holds.

A play between Eve and Adam from some vertex v ∈ V = VE ∪ VA pro-
ceeds as follows: if v ∈ VE then Eve makes a choice of a successor, otherwise
Adam chooses a successor; from this successor the same rule applies and
the play goes on forever unless one of the parties cannot make a move. The
player who cannot make a move looses. The result of an infinite play is an
infinite path v0v1v2 . . . This path is winning for Eve if it belongs to Acc.
Otherwise Adam is the winner.

A strategy σ for Eve is a function assigning to every sequence of vertices
~v ending in a vertex v from VE a vertex σ(~v) which is a successor of v.
A play respecting σ is a sequence v0v1 . . . such that vi+1 = σ(vi) for all i
with vi ∈ VE. The strategy σ is winning for Eve from a vertex v iff all the
plays starting in v and respecting σ are winning. A vertex is winning if
there exists a strategy winning from it. The strategies for Adam are defined
similarly. A strategy is positional if it does not depend on the sequence of
vertices that were played till now, but only on the present vertex. So such
a strategy can be represented as a function σ : VE → V and identified with
a choice of edges in the graph of the game.

Nondeterministic controllers of nondeterministic processes 33

In this paper the winning conditions Acc ⊆ V ω will be regular conditions.
That is conditions defined in monadic second-order logic on sequences. An
important special case is a parity condition. It is a condition determined by
a function Ω : V → {0, . . . , d} in the following way:

Acc = {v0v1 . . . ∈ V ω : lim sup
i→∞

Ω(vi) is even}

Hence, in this case, each position is assigned a natural number and we
require that the largest among those appearing infinitely often is even. This
condition was discovered by Mostowski [9] and is the most useful form of
regular conditions. It guarantees existence of positional strategies [4, 10,
8]. It is closed by negation (the negation of a parity condition is a parity
condition). It is universal in the sense that every game with a regular
condition can be reduced to a game with a parity condition [9].

The main results about games that we need are summarized in the fol-
lowing theorem and uses results from [7, 4, 10].

Theorem 2.1. Every game with regular winning conditions is determined,
i.e., every vertex is winning for one of the players. It is algorithmically
decidable who is a winner from a given vertex in a finite game. In a parity
game a player has a positional strategy winning from each of his winning
vertices.

2.3 Automata
We shall need automata that work on graphs. These automata should cope
with multiple outgoing edges with the same label. Moreover, we should like
to equip them with tests of some simple structural graph properties. They
will be able to check that an edge on a given letter is a self-loop or that the
edges on two different letters lead to the same states. To incorporate all
these tests it will be simpler to define automata which use a kind of modal
formulas over the set of states in a process. Thus we start with defining
these formulas.

Let A be an alphabet and let Q be a finite set. The set of modal formulas
over A and Q, denoted F(A,Q), is the smallest set closed under the following
rules:

• tt, ff, q, 	a, 	a, ↓↓a.b ↓↓a,b are formulas, for any q ∈ Q and a, b ∈ A.

• α ∨ β and α ∧ β are formulas for all α, β ∈ F(A,Q).

• 〈a〉α and [a]α are formulas for all α ∈ F(A,Q) and a ∈ A.

An automaton over a set of actions A is a tuple:

A = 〈Q,A, q0 ∈ Q, δ : Q → F(A,Q),Acc ⊆ Qω〉

34 A. Arnold and I. Walukiewicz

where Q is a finite set of states, A is a finite alphabet, and Acc is an
accepting condition that is a regular set of infinite sequences of states.

The acceptance of a process P by an automaton A is defined in terms of
strategies in a game G(P,A) that we describe now. Let FA be the smallest
set of formulas closed under taking subformulas, and containing all formulas
in the range of δ together with tt and ff. We have

G(P,A) = 〈VE, VA, T, AccG〉

where

• VE = S × FAE , and FAE is the set of formulas form FA of one of the
forms: ff,	a, ↓↓a,b, q, 〈a〉α, α ∨ β.

• VA = S ×FA − VE.

• From (s, tt) and (s, ff) no move is possible.

• From (s,	a) there is a move to (s, tt) if outP (s, a) = {s} and to
(s, ff) otherwise.

• From (s, ↓↓a,b) there is a move to (s, tt) if outP (s, a) = outP (s, b) and
to (s, ff) otherwise.

• Similarly for (s,	a) and (s, ↓↓a,b) but with roles of (s, tt) and (s, ff)
interchanged.

• From (s, α∧β) as well as from (s, α∨β) there are moves to (s, α) and
to (s, β).

• From (s, 〈a〉α) and from (s, [a]α) there are moves to (t, α) for every
t ∈ out(s, a).

• Finally, from (s, q) there is a move to (s, δ(q)).

• The winning condition AccG contains sequences such that when look-
ing only at the elements of Q appearing in the sequence we obtain an
element of Acc.

We say that P satisfies A, in symbols P � A, if Eve has a winning
strategy in G(P,A) from (s0, q0), which is the pair consisting from the initial
states of P and A, respectively. As our automata are very close to formulas
we prefer to talk about satisfiability instead of acceptance. We shall still use
some automata terminology though. For example, the language recognized
by an automaton A will be the class of processes that satisfy A.

Our automata are a variant of alternating automata. In particular the
formulas used in the transition function are “closed” under disjunction and
conjunction. Using standard constructions on alternating automata we get.

Nondeterministic controllers of nondeterministic processes 35

Proposition 2.2. The class of languages recognized by automata is closed
under sum, intersection and complement.

This proposition allows to write A ∧ C to denote an automaton which
recognizes L(A) ∩ L(C).

Definition 2.3. An automaton is called simple if formulas in its transition
function use none of 	a,	a, ↓↓a,b, ↓↓a,b.

A simple automaton is nothing else but a µ-calculus formula in a different
presentation. Using the results on the µ-calculus we have:

Theorem 2.4 (Emerson-Jutla, [4]). It is decidable if for a given simple
automaton A there is a process P such that P � A. Similarly, if we require
P to be deterministic. In both cases a process P can be constructed if the
answer is positive.

Theorem 2.5 (Niwiński-Janin-Walukiewicz, [11, 5]). Over deterministic
systems which are trees, the expressive power of simple automata is equiv-
alent to that of monadic second-order logic. Over all processes: a property
is expressible by a simple automaton iff it is expressible in monadic second-
order logic and bisimulation invariant.

3 Satisfiability

The basic question one can ask about our automata model is whether for
a given automaton A there is a process that satisfies it. From the previous
section we know that there is an algorithm answering this question in the
case of simple automata. We shall now reduce the general case to that
of simple automata. For this, we shall encode information about loops
and parallel tests in additional transitions. This way for a process P we
shall define a process Code(P). It will then turn out that behaviour of an
automaton over P can be simulated by a behaviour of a simple automaton
over Code(P).

A type of a state s of a process P is:

type(s) = {	a: out(s, a) = {s}} ∪ {↓↓a,b: out(s, a) = out(s, b)}

Let Types(A) be the set of all possible types over an alphabet A.
Note that if τ ∈ Types(A) and ↓↓a,b∈ τ then 	a∈ τ implies 	b∈ τ , and

also ↓↓a,c∈ τ implies ↓↓b,c∈ τ .
Fix an alphabet A and some arbitrary ordering <A on it. For a process

P over an alphabet A we define its code Code(P) over an alphabet A ∪
Types(A). For each state s of P we do the following:

• Add a transition on action τ = type(s), the target of this transition
is some arbitrary fixed state (say, the initial state).

36 A. Arnold and I. Walukiewicz

• Remove transitions on a if 	a∈ type(s) or ↓↓a,b∈ type(s) for some
b <A a.

Let C be a simple automaton expressing the conditions:

• For every state there is transition on exactly one letter from Types(A).

• For every a ∈ A, there is no transition on a if 	a∈ τ or ↓↓a,b∈ τ for
some b <A a.

Lemma 3.1. The process Code(P) satisfies C and has no loops s
a→ s

Moreover, Code(P) is deterministic if P is. If R is a process satisfying C
without loops s

a→ s then there is a unique process P such that Code(P) is
isomorphic to R.

The next step is to transform an automaton over an alphabet A into an
“equivalent” automaton over an alphabet A∪Types(A). Take an automaton

A = 〈Q,A, q0, δ : Q → F(A,Q),Acc ⊆ Qω〉

We first define transformation, Code(α), on formulas from F(A,Q):

• Code(q) = q.

• Code(a) =
∨
{〈τ〉tt : τ ∈ Types(A),	a∈ τ}. Similarly for ↓↓a,b.

• Code(a) =
∨
{〈τ〉tt : τ ∈ Types(A),	a 6∈ τ}. Similarly for ↓↓a,b.

• Code(α∨ β) = Code(α)∨Code(β), and similarly for the conjunction.

• Code(〈a〉α) =
∨
{〈τ〉tt ∧ Code(〈a〉α, τ) : τ ∈ Types(A)} where

Code(〈a〉α, τ) =

{
Code(α) if 	a∈ τ

〈a〉Code(α) ∨
∨
{〈b〉Code(α) :↓↓a,b∈ τ} otherwise

• Code([a]α) =
∨
{〈τ〉tt ∧ Code([a]α, τ) : τ ∈ Types(A)}; where the

definition of Code([a]α, τ) is as above but replacing 〈a〉 by [a], 〈b〉 by
[b], and disjunctions by conjunctions.

Then automaton Code(A) is the same asA except for the transition function
δCode. We put δCode(q) = Code(δ(q)). The following lemma follows directly
from definitions.

Lemma 3.2. For every process P and automaton A over an alphabet A:

P � A iff Code(P) � Code(A)

Nondeterministic controllers of nondeterministic processes 37

Observe that Code(A) is simple, i.e., does not use neither 	 nor ↓↓
constraints. Using Code(A) we can transfer results from simple automata
to the general case.

Theorem 3.3. It is decidable if for a given automaton A there exist a
process P such that P � A. Similarly, if we ask for P being deterministic.
In both cases, if the answer is positive then a process satisfying A can be
constructed.

Proof. Consider Code(A). As Code(A)∧ C is a simple automaton, by The-
orem 2.4 we can test if there exists a process R � Code(A) ∧ C. Unfold-
ing the loops of R we can construct a process R′ without loops such that
R′ � Code(A) ∧ C. Lemma 3.1 gives us a process P such that Code(P)
is isomorphic to R′, hence Code(P) � Code(A). By Lemma 3.2 we have
P � A. This construction works also when we require P to be deterministic.

Conversely, if P is a (deterministic) process that satisfies A then the
(deterministic) process Code(P) satisfies Code(A), by Lemma 3.2, and C,
by Lemma 3.1. q.e.d.

4 Quotient for extended automata

In this section we present an operation that will permit us to reduce synthe-
sis problems to the satisfiability problems. Consider an extended automaton
A = 〈Q,A, q0, δ, Acc〉 and a process P = 〈S, A, s0, e〉 over a common alpha-
bet A. Our goal is to construct an automaton A/P such that for every
process R:

R � A/P if and only if P ×R � A

We first define a division α/s for α a formula from F(A,Q), and s a
state of P . The result is a formula from F(A,Q× S):

q/s = (q, s)
(α ∨ β)/s = α/s ∨ β/s (α ∧ β)/s = α/s ∧ β/s

(〈a〉α)/s = 〈a〉
∨
{α/s′ : s

a→ s′} ([a]α)/s = [a]
∧
{α/s′ : s

a→ s′}

Now
A/P = 〈Q× S, A, (q0, s0), δ/ : Q× S → F(Q× S),Ω〉

where δ/(q, s) = δ(q)/s; recall that δ(q) ∈ F(Q), so δ(q)/s ∈ F (Q× S).

Theorem 4.1. Let A be an alphabet. For every extended automaton A
and every process P , both over A, there is an automaton A/P such that
for every process R over A:

R � A/P if and only if P ×R � A

38 A. Arnold and I. Walukiewicz

Proof. Fix a process R. We examine the games G× = G(P × R,A) and
G/ = G(R,A/P). We want to show how a move of one of the players in G×
from a position of the form ((s, r), α) can be mimicked by, possibly several,
moves of the same player in G/ from (r, α/s). For example, suppose that a
position has the form ((s, r), α ∨ β) and that Eve chooses ((s, r), α). From
a position (r, (α ∨ β)/s)) this move can be mimicked by going to (r, α/s).
Slightly more complicated is the case of ((s, r), 〈a〉α). In this case Eve can
choose ((s′, r′), α) for s

a→ s′ and r
a→ r′. From (r, (〈a〉α)/s) this move can

be mimicked by first choosing (r′,
∨
{α/s′′ : s

a→ s′′}) and then (r′, α/s′);
this is possible as (〈a〉α)/s = 〈a〉

∨
{α/s′′ : s

a→ s′′}. The cases of α∧ β and
[a]α are dual.

These observations show that any play in G× can be mimicked in G/, so
the same player has a winning strategy from ((s0, r0), q0) in G× and from
(r0, (q0, s0)) in G/.

q.e.d.

5 Solving controller synthesis problems

Equipped with the operation of division we can reduce the control problem
to the satisfiability problem.

5.1 Centralized control
As we have argued in the introduction, the centralized controller synthesis
problem can be formulated as:

For a given process P and two automata A, B over an alphabet A,
find R such that:

P ×R � A and R � B

We denote by Sol(P,A,B) the set of solutions to the problem. The following
is a direct corollary of Theorem 4.1

Corollary 5.1. For every process R:

R ∈ Sol(P,A,B) if and only if R � (A/P) ∧ B.

This means that solving a synthesis problem amounts to checking empti-
ness of the automaton (A/P)∧B. Theorem 2.1 then states that this problem
is decidable both for the general, nondeterministic, case as well as for the
case of deterministic processes.

5.2 Decentralized control
The decentralized controller synthesis problem is:

For a given process P and automata A, B1, . . . ,Bn over an alphabet
A, find R1, . . . , Rn such that:

P ×R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n

Nondeterministic controllers of nondeterministic processes 39

Thanks to Theorem 4.1 we can take A/P and remove P from the left hand
side. This shows that we can as well consider the following simpler formu-
lation of the problem where P is not mentioned.

For a given automataA, B1, . . . ,Bn over an alphabet A, find R1, . . . , Rn

such that:

R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n

This last problem was studied in [1, 2] in the case when R1, . . . , Rn are re-
quired to be deterministic. In particular the problem was shown decidable
when all but one Bi are simple. We shall see later that the same problem
is undecidable in the nondeterministic case. To better understand the de-
cidable/undecidable borderline we propose a classification of decentralized
synthesis problems with respect to restrictions on R1,. . . , Rn.

A pair (pt, st) ⊆ {det, nondet} × {simple, full} describes requirements
on processes and specifications. A choice of a number of components and a
type for each component determines a distributed control problem:

DS(n, (pt1, st1), . . . , (ptn, stn)):

Given automata A, B1,. . . ,Bn such that Bi is simple if sti = simple,
find R1, . . . , Rn such that Ri is deterministic if pti = det, satisfying
P ×R1 × · · · ×Rn � A and Ri � Bi for all i = 1, . . . , n.

The following theorem gives a complete classification of these problems
with respect to decidability.

Theorem 5.2. The problem DS(A, (pt1, st1), . . . , (ptn, stn)) is decidable iff

• There is at most one i such that sti = full.

• There is at most one j such that ptj = nondet and moreover j 6= i.

The proof of this theorem will be given in the two following sections. In
terms of the decentralized control problem formulated at the beginning of
the section, we get that the problem is decidable if at most one of Bi is not
simple and at most one Rj is allowed to be nondeterministic (moreover j 6=
i). Probably the most important difference with respect to the deterministic
case considered in [1] is that now P can be nondeterministic.

6 The decidable sub-case of decentralized control

We should like to show the right to left implication of Theorem 5.2. The
solution in the case when all R1, . . . , Rn are required to be deterministic
uses the following extension of the quotient operation:

40 A. Arnold and I. Walukiewicz

Theorem 6.1 (Arnold-Vincent-Walukiewicz, [1]). For every automaton A
and every simple automaton B there is an automaton A/B such that for
every deterministic process P :

P � A/B iff ∃R. R deterministic, R � B, and P ×R � A

Here we show existence of a variant of this division operation. The differ-
ence is that the existentially quantified process R need not be deterministic.

Theorem 6.2. For every automaton A and every simple automaton B,
there is an automaton A/ndetB such that for every deterministic process P :

P � A/ndetB iff ∃R. R � B and P ×R � A

Before giving the proof of this theorem let us show how it can be used
to prove right to left direction of Theorem 5.2.

Let us assume that stn = full and pt1 = nondet. First, we find
a deterministic process Rn � (A/ndetB1/B2 . . . /Bn−1) ∧ Bn. If none ex-
ists then the problem has no solutions. Otherwise, by Theorem 3.3, we
can construct required Rn. Equipped with it we can find a determinis-
tic process Rn−1 � (A/Rn/ndetB1/B2 . . . /Bn−2) ∧ Bn−1. This construction
can be repeated, giving Rn−1. . . , until we construct a deterministic R2 �
(A/Rn/Rn−1/ . . . /R3/ndetB1)∧B2. Once R2, . . . , Rn are fixed, we can look
for, this time nondeterministic, process R1 � (A/Rn/Rn−1/ . . . /R2) ∧ B1.
By the above two theorems on division operations, R1, . . . , Rn is a solu-
tion to the problem. The theorems also guarantee that all solutions to the
problem can be obtained this way.

The rest of this section presents the proof of Theorem 6.2. We want to
transform the property of a deterministic process P :

∃R. R � B and P ×R � A (1.1)

to an equivalent formulation that is expressible by an automaton. This will
be our automaton A/B.

The first step is to introduce well-typed processes and restrict our prob-
lem only to this kind of processes. Given a process P over an alphabet
A, a well-typed process, wt(P), is a process over the alphabet A ∪ P(A)
that is obtained form P by adding a new state >, and precisely one ac-
tion from each state as follows: to a state s of P we add a transition to
> on outP (s) ∈ P(A), where outP (s) is the set of actions possible form s,
outP (s) = {b : outP (s, b) 6= ∅}. It should be clear that there is an automa-
ton checking if a processes is of the form wt(P). It is also easy, given an
automaton C, to construct an automaton C′ such that for all processes P
over an alphabet A

wt(P) � C iff P � C′

Nondeterministic controllers of nondeterministic processes 41

This means that in the following we can consider only processes of the form
wt(P). We call these processes well-typed.

The restriction to well-typed processes is important for the first simpli-
fication step. We want to find an automaton D such that (1.1) is equivalent
to

∃R. P ×R � D (1.2)

For this we construct an automaton B′ and show that (1.1) is equivalent to
∃R′. P × R′ � B′ ∧ P × R′ � A. Having this, we can just take B′ ∧ A for
D. We call a process over A ∪ P(A) typed if every state has precisely one
transition on a letter from P(A). Compared with well-typed processes, we
do not put any restriction what a γ is. We also define a safe extension of a
typed process R to be a process obtained form R by adding some states and
transitions provided that if (s, b, t) is an added transition and s is a state
from R then t must be an added state and b must not appear in the label of
the unique action from P(A) possible from s. With these definitions we can
say what the automation B′ is. We want B′ to accept a process if it is typed,
and moreover it has a safe extension that is accepted by B. It remains to
argue that B′ has the desired property. For one direction suppose that we
have R′ with P × R′ � B′ and P × R′ � A′. If P × R′ � B′ then, by the
definition of B′, there is a safe extension R of P × R′ that satisfies B. By
the definition of the safe extension, and the fact that P is well-typed we
have that P × R′ = P × R. So P × R � A. Now consider the opposite
direction. Take R which is assumed to exists and add to R a state > as
well as transitions to > from each state of R on every letter from P(A).
As B does not talk about the actions from P(A) then R′ � B. We have
P × R′ � B′ because P × R′ is typed and R′ is a safe extension of P × R′.
We also have P ×R′ � A as A does not talk about actions from P(A).

The above argument reduces our task to the problem of expressing by
an automaton the property (1.2) of well-typed P . First, we shall consider
a simpler property where the branching of the process R we quantify over
is bounded by k, i.e. for every s ∈ R and a, |out(s, a)| ≤ k.

∃R. branching(R) ≤ k and P ×R � D (1.3)

This formulation will allow us to use the division operation for the de-
terministic case, i.e, Theorem 6.1. Consider processes over an alphabet
A[k] = A×{1, . . . , k}. A deterministic process P ′ over an alphabet A[k] rep-
resents a nondeterministic process red(P ′) over an alphabet A where each
action (a, i), for i = 1, . . . , k, is mapped to a. Every nondeterministic pro-
cess of branching bounded by k can be represented in such a way (in general
not uniquely). From automaton D it is easy to construct an automaton D[k]

which accepts a process P ′ over A[k] iff red(P ′) is accepted by D. Consider

42 A. Arnold and I. Walukiewicz

D[k]/tt where tt is an automaton accepting all the processes over A[k]. By
Theorem 6.1 we have

P ′ � D[k]/tt iff ∃R′. P ′ ×R′ � D[k];

Here, all the processes are over A[k]. For a deterministic process P over
A we can define P[k] to be a deterministic process over A[k] where there is
an edge (b, i), for i = 1, . . . , k, between two nodes iff in P there is an edge
b between them. For an automaton D′ over A[k] is easy to construct an
automaton red(D′) such that for all deterministic processes P over A

P � red(D′) iff P[k] � D′

With this we get

P � red(D[k]/tt) iff P[k] � D[k]/tt iff ∃R′. P[k] ×R′ � D[k]

where R′ and P[k] are over the alphabet A[k]. By definition, the last formula
is equivalent to ∃R′.red(P[k] × R′) � D. As P is deterministic red(P[k] ×
R′) = P × red(R′). It is easy to see that (1.3) is equivalent to ∃R′. P ×
red(R′) � D and in consequence to P � red(D[k]/tt). So, for A/ndetB we
could take red(D[k]/tt) if only we could find a bound on k.

We are left to show that we can bound the branching in our prob-
lem (1.2), so that we can fix k. The following proposition gives the desired
bound.

Lemma 6.3. Let P be a deterministic process and let A be an automaton
with parity acceptance conditions. If there is (possibly nondeterministic)
process R such that:

P ×R � A

then there is R′ with the same property which has the branching degree
|A||A|

Proof. Take R such that P × R � A. Then Eve has a positional winning
strategy (cf. Theorem 2.1) in the game G(P × R,A). This strategy is a
function σ : (P×R)×FAE → (P×R)×FA which to pairs of the form (s, α∨β)
assigns either (s, α) or (s, β); and to pairs of the form (s, 〈b〉α) assigns a pair
(s′, α) for some s′ ∈ outP×R(s, b). This function has the property that all
the plays respecting suggestions of this function are winning for Eve.

Take some state s of P ×R. Let us(s, b), the set of useful successors, be
the set of all successors t of s such that (t, α) = σ(s, 〈b〉α) for some formula
〈b〉α. Because the number of formulas of this kind is bounded by the size
of A, so is the size of us(s, b).

The intention is that we should like to prune P × R so that on ac-
tion b from s only edges to us(s, b) remain. This may not be correct

Nondeterministic controllers of nondeterministic processes 43

as the following example shows. Suppose that us(s, b) = us(s, c), while
outP×R(s, b) 6= outP×R(s, c). Now, the result of ↓↓b,c test will be different
in P × R and in the pruned structure. Hence, it may happen that A does
not accept the pruned structure.

In order to avoid the problem mentioned in the above paragraph we
extend us(s, b) to us′(s, b). For every state s and action b, let us′(s, b) be a
set satisfying the following.

• us(s, b) ⊆ us′(s, b).

• if s �	b then s ∈ us′(s, b).

• if s � 	b then either us′(s, b′) = ∅, or s′ ∈ us′(s, b′) for some s′ 6= s
and s′ ∈ outP×R(s, b).

• if s �↓↓b,c then us′(s, b) = us′(s, c).

• if s � ↓↓b,c and outP×R(s, b) 6⊆ outP×R(s, c) then s′ ∈ us′(s, b) for
some arbitrary chosen s′ ∈ outP×R(s, b)− outP×R(s, c).

It is easy to see that us′(s, b) can be chosen in such a way that it is at most
|A|-times bigger than us(s, b).

Now take P × R and delete all edges (s, b, t) such that t 6∈ us′(s, b).
Let us call the resulting process R′. In R′, strategy σ is still a winning
strategy because we have only limited choices for Adam. Hence, Eve wins
in G(R′,A), and in consequence R′ � A. We have that P × R′ � A, as
P ×R′ = R′, since P is deterministic. By construction, the branching of R′

is bounded by the maximal possible size of us′(s, b) which is |A||A|.
q.e.d.

Remark 6.4. If the restriction of determinism of P is dropped than the
division A/ndetB does not exist even when A and B are simple. For example,
take A which says that all maximal paths are of the form a∗b, and if a
state has an successor on action a then it does not have one on action b.
Consider A/ndetA. Condition P � A/ndetA means that there is R such
that P × R � A and R � A. If P had two paths aib and ajb of different
length then in P × R we would have a path that does not finish with b.
This implies that P � A/ndetA iff there is k such that all the paths in P
have the form akb. So the set of processes satisfying A/ndetA is not regular.
Observe that in this argument it did not matter whether we restrict to R
being deterministic or not.

Remark 6.5. Even when restricting to deterministic processes, automaton
A/B may not exist if B is not simple. In [1] it is shown that decentralized
control problem is undecidable for n = 2 if both B1 and B2 are automata

44 A. Arnold and I. Walukiewicz

with 	a constraints. In [2] undecidability is shown when both automata
used ↓↓a,b constraints, or when one uses 	a constrains and the other ↓↓a,b

constraints.

7 Undecidable cases of decentralized control

In this subsection we show left to right direction of Theorem 5.2. It will be
enough to study the version of the control problem for two processes:

(ABC) Given automata A, B and C over the same action alphabet A,
do there exist, possibly nondeterministic, processes P , R such that

P � A, R � B and P ×R � C.

First, we shall show that the problem is undecidable even when A, B and
C are simple automata. This will give the proof of Theorem 5.2 for the case
when there are at least two processes that can be nondeterministic. Next,
we shall consider the case when at most one of the processes can be non-
deterministic. We shall show that the above problem is undecidable when
only R can be nondeterministic, and when B can use either 	 constraints or
↓↓ constrains. This not only will imply the remaining part of Theorem 5.2,
but will also show that restricting our automata uniquely to 	 constraints
or to ↓↓ constraints does not change the decidability classification.

Before showing these results we should like to introduce a syntactic
extension of our setting which will make the presentation easier. We shall
suppose that we have propositional letters labelling states of processes. So
each process comes not only with an alphabet of actions but also with an
alphabet Λ of propositions:

P = 〈A,Λ, S, s0, e ⊆ S ×A× S, λ : S → Λ〉

Automata are also extended to reflect this, so the transition function can
test what is a label of the current state:

A = 〈Q,A,Λ, q0, δ : Q× Λ → F (A,Q),Acc ⊆ Qω〉

There are many possible definitions of a product of two processes with
state labels. Here we choose the one that will suit our needs. Given two
processes over the same action alphabet, but possibly different proposition
alphabets:

P = 〈A,ΛP , SP , s0
P , ep, λP 〉 R = 〈A,ΛR, SR, s0

R, eR, λR〉

we define their product as:

P ⊗R = 〈A,ΛP × ΛR, SP × SR, (s0
P , s0

R), e⊗, λ⊗〉

Nondeterministic controllers of nondeterministic processes 45

where λ⊗(sP , sR) = (λP (sP), λR(sR)) and, as before, ((sp, sR), a, (s′P , s′R))
∈ e⊗ iff (sP , a, s′P) ∈ eP and (sR, a, s′R) ∈ eR.

It is quite straightforward to see how to simulate propositional letters
by actions. One can add propositional letters to the action alphabet and
require that from each state there is a transition on exactly one propositional
letter; the target of this transitions is of no importance.

The problem with this coding is that the standard product does not
reflect our ⊗-product. In order to recover the ⊗-product, we first make
the alphabets ΛP and ΛR disjoint. Let P̂ , R̂ denote respective plants with
encoding of propositions as described above. We add to every state of P̂ an
action on every letter from ΛR and to every state of R̂ an action on every
letter of ΛP . This way we have that P̂ × R̂ is the encoding of P ⊗R: from
every state of P̂ × R̂ we have a successor on exactly one letter from ΛP and
on one letter from ΛR.

After these remarks it should be clear that instead of the problem (ABC)
we can consider the problem (ABC⊗) where the processes are allowed to
have propositions and ⊗ is used in place of ordinary product.

(ABC⊗) Given automata A, B and C over the same action alphabet
A, and over proposition alphabets Λa, Λb and Λa × Λb respectively,
do there exist processes P , R such that

P � A, R � B and P ⊗R � C.

Thus, the following proposition implies the undecidability of the prob-
lem (ABC).

Proposition 7.1. The problem (ABC⊗) is undecidable.

Proof. We shall present a reduction of the halting problem. Let us fix a
deterministic Turing machine together with an alphabet Γ needed to en-
code its configurations. We write c ` c′ to say that a configuration c′ is
a successor of a configuration c. Without a loss of generality we assume
that the machine loops from the accepting configuration. We shall use just
one action letter, so we shall not mention it in the description below. The
alphabet of propositions will contain Γ and special symbols: l and #. The
nodes labelled by l will be called l-nodes; similarly for #-nodes, and γ-nodes
for γ ∈ Γ. We shall say that a node is a Γ-node, if it is a γ-node for some
γ. We shall also talk about an l-successor of a node, this a successor that is
an l-node. Finally, when we shall say that there is a path γ1 . . . γn in a pro-
cess, this would mean that there is a sequence of nodes, that is a path, and
such that the propositional letters associated to nodes form the sequence
γ1 . . . γn.

We want to construct A, B and C so that the problem (ABC⊗) has a
solution iff the machine accepts when started from the empty tape. Consider
the following three conditions that will be used for specifications A and B:

46 A. Arnold and I. Walukiewicz

l

γ1
1

γ1
2

γ1
n1

#ω

l

γ2
1

γ2
2

γ2
n3

#ω

l

γ3
1

γ3
2

γ3
n3

#ω

Figure 1. Intended shape of a process satisfying AB1, AB2, AB3.

AB1 Every l-node has an l-successor and a Γ-successor. Every Γ-node has
either only Γ-nodes or only #-nodes as successors.

AB2 From every Γ-node, every path reaches a #-node.

AB3 Every #-node has only #-nodes as successors.

The intended shape of a process satisfying these conditions is presented
in Figure 1. These conditions do not imply that the shape is exactly as
presented in the figure. For example, they do not guarantee that there is
only one infinite path labelled with l.

The constraints on the product of two processes are listed below. They
are formulated in terms of the product alphabet.

C1 Every (l, l)-node has an (l, l)-successor and an (γ, γ)-successor for some
γ ∈ Γ. Moreover all its successors are labelled either by (l, l), (l, γ),
(γ, l) or (γ, γ).

C2 Every maximal path starting with (l, l)i(γ, γ) has a form
(l, l)i∆+(#,#)ω where ∆ = {(γ, γ) : γ ∈ Γ}.

C3 Every maximal path that starts with (l, l)i(γ1, l)(γ2, γ
′
1) for some γ1, γ2,

γ′1 ∈ Γ has the form: (l, l)i(γ1, l)(γ2, γ
′
1) . . . (γk, γ′k−1)(#, γk)(#,#)ω.

Moreover γ1 . . . γk ` γ′1 . . . γ′k, or the two are identical if γ1 . . . γk is an
accepting configuration.

C4 For every path labelled (l, l)(γ1, γ2) . . . (γk, γk)(#,#)ω, the sequence
γ1 . . . γk represents the initial configuration for the Turing machine.
An accepting state of the machine appears in the tree.

Nondeterministic controllers of nondeterministic processes 47

Let C be the automaton expressing the conjunction of the conditions
C1-C4. We claim that with this choice of automata the problem (ABC⊗)
has a solution iff the Turing machine halts on the initial configuration.

We first consider an easy direction. Suppose that the Turing machine
halts on the initial configuration. Then we construct P and R as in the
Figure 1, where for every i the sequence of Γ letters after li is the i-th con-
figuration of the machine (we assume that all configurations are represented
by words of the same length). This way P and R satisfy conditions AB1-3.
It is straightforward to verify that P ⊗R satisfies the conditions C1-C4.

For the other direction, suppose that P and R are as required. We
shall show that the machine has an accepting computation from the initial
configuration.

First, we show that the conditions we have imposed limit very much
possible nondeterminism in P and R. Take any n and a path labelled
lnγ1 . . . γkn#ω in P as well as a path labelled lnγ′1 . . . γ′mn

#ω in R. These
paths exist by conditions AB1-AB3. In P ×R these two paths give a path
that starts with (l, l)n(γ1, γ

′
1). The condition AB1 implies that γ1 = γ′1.

Consequently, the condition AB2 implies that kn = mn and γi = γ′i for all
i = 1, . . . , kn. This allows us to define un = γ1 . . . γkn . To summarize, in P
all paths of the form lnΓ+#ω have the same labels: lnun#ω. Similarly for
paths in R.

It remains to show that un is the n-th configuration of the computation
of the Turing machine. By condition A3, we know that u1 is the initial
configuration. Consider now a path in P ⊗R labelled with

(l, l)n(γ1, l)(γ2, γ
′
1) . . . (γk, γ′k−1)(#, γ′k)(#,#)ω

This path exists as it is a product of a path in P starting with lnγ1 and a
path in R starting with ln+1γ′1. We have that un = γ1 . . . γk and un+1 =
γ′1 . . . γ′k. By the condition A2 we get un ` un+1. q.e.d.

This finishes the case of Theorem 5.2 when at least two processes can
be nondeterministic. It remains to consider the case when only one of the
processes, say R can be nondeterministic, and when specification B of R is
not simple. We shall show that in this case the problem is undecidable even
if B uses uniquely ↓↓ constraints, or uniquely 	 constraints. Recall that the
problem is decidable if B is simple, i.e. uses neither ↓↓ nor 	.

Proposition 7.2. The problem (ABC⊗) is undecidable if P is required to
be deterministic but R may be nondeterministic and moreover a specifica-
tion for R may use constraints ↓↓.

The reduction is very similar to the previous one. We just need to replace
nondeterminism with appropriate use of ↓↓. This time our processes will be

48 A. Arnold and I. Walukiewicz

P : l

γ1
1

γ1
2

γ1
n1

#ω

b

l

γ2
1

γ2
2

γ2
n3

#ω

b

l

γ3
1

γ3
2

γ3
n3

#ω

b

a

a

R : l

γ1
1

γ1
2

γ1
n1

#ω

b

a

l

γ2
1

γ2
2

γ2
n3

#ω

b

a

l

γ3
1

γ3
2

γ3
n3

#ω

b

a

a
b

a
b

Figure 2. ↓↓ constraints. Intended shapes of P and R.

over the alphabet of two actions {a, b}. The intended shapes of processes
P and R are shown in the Figure 2.

The shape of P is almost the same as in the previous construction,
but as P needs to be deterministic, some a transitions have to be changed
to b transitions. Process R has almost the same structure as P but it is
nondeterministic, and each a transition has a b transition in parallel.

Looking at P ⊗ R we get almost exactly the same structure as in the
case of nondeterministic processes. The fact that process P is deterministic
and that the two transitions from an l-node of P have different actions is
compensated by the fact that a and b transitions have the same targets in
R.

The formalization of the constraints and the proof of the proposition is
almost the same as in case of Proposition 7.1. The following proposition
treats the remaining case of 	 constraints.

Proposition 7.3. The problem (ABC⊗) is undecidable when P is required
to be deterministic but R may be nondeterministic and moreover a specifi-

Nondeterministic controllers of nondeterministic processes 49

cation for R may use looping constraints 	.

Proof. Consider an instance of the Post correspondence problem:

{(u1, v1), . . . , (uk, vk)};

where all ui, vi are words over an alphabet Σ. Let D = {1, . . . , k} stand for
the alphabet of indices. As an alphabet of actions we take A = Σ ∪ D ∪
{α1, α2, β,#}, with an assumption that the last four actions do not appear
in Σ ∪D.

The specification A for P will require that

A1 Every state, except the root, has only one successor. The root has
successors on α1 and α2.

A2 There is a maximal path of the form α1βi1ui1 . . . imuim# for some
i1, . . . , im ∈ D.

A3 There is a maximal path of the form α2βj1vj1 . . . jmvjm
for some

j1, . . . , jm ∈ D.

Observe that together with requirement that P is deterministic, the first
condition implies that P has exactly two maximal paths. The shape of P
is presented in Figure 3.

The specification B for R will require that:

B1 The root has loops on actions α1 and α2 and some transitions on β.

B2 There is a path from the root of the form βΣ∗#. Every node on this
path except the root has loops on all actions from D and has a suc-
cessor on at most one action from Σ ∪ {#}.

B3 There is a path from the root of the form βD∗#. This time every node
except the root has loops on actions from Σ and a successor on at
most one action from D ∪ {#}.

The intended shape of a process satisfying B is presented in Figure 3. Ob-
serve that we cannot force this process to be deterministic.

The specification C for P × R will require that all the paths are finite
and that the last action on every path is #.

We claim that with this choice of A, B, and C, the problem (ABC) has a
solution iff the instance of the Post correspondence problem has a solution.

For the right-to-left direction, take a solution i1, . . . , im to the correspon-
dence problem. We construct P that has two paths: α1βi1ui1 . . . imuim#
and α2βi1vi1 . . . imvim#. As R we take a process as depicted in Figure 3

50 A. Arnold and I. Walukiewicz

P:
α1 α2

β

i1

#

β

j1

#

R:
β β

α1 α2

a1 d1

a2 d2

#

D A

D A

D A

D A

Figure 3. 	-constraints. Intended shapes of P and R.

where the path satisfying condition B2 has the form βui1 . . . uim#, and the
path satisfying B3 is βi1 . . . im#. It is easy to see that P ×R satisfies A.

For the direction from left to right suppose that P and R are a solution
to the problem. Consider a path of R labelled βΣ∗# satisfying B2 and
the path α1βi1ui1 . . . imuim# of P as required by the condition A2. Recall
that there are loops on α1 and α2 in the root of R. This means that
the two paths synchronize, at least at the beginning. The only way that
the synchronization can continue until # is that ui1 . . . uim

is exactly the
labelling of the path in R. We can use the same argument for the path
α2βj1vj1 . . . jmvjn

and in consequence we get ui1 . . . uim
= vj1 . . . vjn

. If
we now repeat this argument once again but with a path of R labelled with
βD∗# as required by condition B3 then we shall get that i1 . . . im = j1 . . . jn.
This finishes the proof. q.e.d.

We can now summarize how the three propositions of this subsection can
be used to show left to right implication of Theorem 5.2. If two of the pro-
cesses Ri are allowed to be nondeterministic then the undecidability follows
from Proposition 7.1. The case when there are two automata that are not
simple but all processes are deterministic was proven in [1] for 	 constraints
and in [2] for ↓↓ constraints, and a mix of 	 and ↓↓ constraints. If a spec-
ification can use either 	 or ↓↓ constraints and the corresponding process

Nondeterministic controllers of nondeterministic processes 51

can be nondeterministic then undecidability follows from Propositions 7.2
and 7.3, respectively.

8 Conclusions

In this paper we have studied the controller synthesis problem for nondeter-
ministic plants and controllers. We have seen that going from deterministic
to nondeterministic plants does not change the complexity of the problem.
Allowing nondeterministic controllers is more delicate. It can be done in
centralized case, but in the decentralized case at most one controller can be
nondeterministic, moreover it should be able to observe all actions of the
plant.

Let us briefly comment on the complexity of the constructions presented
here. The operation of division by a process gives an exponential blow-up.
It is unavoidable for the same reason as in a translation from alternating
to nondeterministic automaton. The complexity of the construction for
division by automaton is also exponential.

Given the results above one can ask whether they also apply to the
setting of architectures of Pnueli and Rosner [12]. It is quite simple to
encode this latter setting into our setting using unobservable actions. Thus
all decidability results in our setting transfer to architecture setting. As for
undecidability results, one can show by methods very similar to those used
in this paper that even two element pipeline becomes undecidable when
specifications for controllers are allowed to be nondeterministic.

References

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of
controllers with partial observation. Theor. Comput. Sci., 1(303):7–34,
2003.

[2] X. Briand. Contrôle avec événements indiscernables et inobservables.
PhD thesis, Bordeaux University, 2006.

[3] C. G. Cassandras and S. Lafortune. Introduction to discrete event
systems. The Kluwer International Series on Discrete Event Dynamic
Systems, 11. Kluwer Academic Publishers, Boston, MA, 1999.

[4] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy (extended abstract). In FOCS, pages 368–377. IEEE, 1991.

[5] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic.

52 A. Arnold and I. Walukiewicz

In U. Montanari and V. Sassone, editors, CONCUR, volume 1119 of
Lecture Notes in Computer Science, pages 263–277. Springer, 1996.

[6] R. Kumar and V. K. Garg. Modeling and Control of Logical Discrete
Event Systems. Kluwer Academic Publishers, Norwell, USA, 1995.

[7] D. A. Martin. Borel determinacy. Ann. of Math. (2), 102(2):363–371,
1975.

[8] R. McNaughton. Infinite games played on finite graphs. Ann. Pure
Appl. Logic, 65(2):149–184, 1993.

[9] A. W. Mostowski. Regular expressions for infinite trees and a standard
form of automata. In Computation theory (Zaborów, 1984), volume
208 of Lecture Notes in Comput. Sci., pages 157–168, Berlin, 1985.
Springer.

[10] A. W. Mostowski. Games with forbidden positions. Technical Re-
port 78, University of Gdansk, 1991.

[11] D. Niwiński. Fixed points vs. infinite generation. In LICS, pages 402–
409. IEEE Computer Society, 1988.

[12] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190, 1989.

[13] P. J. G. Ramadge and W. M. Wonham. The control of discrete event
systems. Proc. of the IEEE, 77(1):81–98, Jan. 1989.

Reachability in continuous-time Markov

reward decision processes∗

Christel Baier 1

Boudewijn R. Haverkort2

Holger Hermanns3

Joost-Pieter Katoen4

1 Faculty of Computer Science
Technical University of Dresden
01062 Dresden, Germany
baier@tcs.inf.tu-dresden.de

2 Department of Computer Science
University of Twente
P.O. Box 217
7500 AE Enschede, The Netherlands
brh@cs.utwente.nl

3 Department of Computer Science
Saarland University
66123 Saarbrücken, Germany
hermanns@cs.uni-sb.de

4 Department of Computer Science
RWTH Aachen University
52056 Aachen, Germany
katoen@cs.rwth-aachen.de

Abstract

Continuous-time Markov decision processes (CTMDPs) are widely
used for the control of queueing systems, epidemic and manufacturing
processes. Various results on optimal schedulers for discounted and
average reward optimality criteria in CTMDPs are known, but the
typical game-theoretic winning objectives have received scant atten-
tion so far. This paper studies various sorts of reachability objectives
for CTMDPs. The central result is that for any CTMDP, reward
reachability objectives are dual to timed ones.

1 Introduction

Having their roots in economics, Markov decision processes (MDPs, for
short) in computer science are used in application areas such as randomised

∗ We thank Gethin Norman (Oxford) for his comments on an earlier version of this paper.
This work has been partially funded by the bilateral NWO-DFG Project Validation
of Stochastic Systems 2 (VOSS2).

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 53–71.

54 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

distributed algorithms and security protocols. The discrete probabilities are
used to model random phenomena in such algorithms, like flipping a coin
or choosing an identity from a fixed range according to a uniform distribu-
tion, whereas the nondeterminism in MDPs is used to specify unknown or
underspecified behaviour, e.g., concurrency (interleaving) or the unknown
malicious behavior of an attacker.

MDPs—also considered as turn-based 1 1
2 -player stochastic games—

consist of decision epochs, states, actions, and transition probabilities. On
entering a state, an action, α, say, is nondeterministically selected and the
next state is determined randomly by a probability distribution that de-
pends on α. Actions may incur a reward, interpreted as gain, or dually,
as cost. Schedulers or strategies prescribe which actions to choose in a
state. One of the simplest schedulers, the so-called memoryless ones, base
their decision solely on the current state and not on the further history. A
plethora of results for MDPs are known that mainly focus on finding an
optimal scheduler for a certain objective, see e.g. [8]. For, e.g., reachabil-
ity objectives—find a scheduler, possibly the simplest one, that maximises
the probability to reach a set of states— memoryless schedulers suffice and
can be determined in polynomial time. For step-bounded reachability ob-
jectives, finite memory schedulers are sufficient. These schedulers perform
the selection process on the basis of a finite piece of information, typically
encoded as a finite-state automaton that runs in parallel to the MDP at
hand.

This paper considers turn-based 1 1
2 -player stochastically timed games,

also known as continuous-time Markov decision processes (CTMDPs) [8].
They behave as MDPs but in addition their timing behaviour is random.
The probability to stay at most t time units in a state is determined by a
negative exponential distribution of which the rate depends on α. A reward
is obtained which is linearly dependent on the time t spent in state s, as
well as on a factor ̺(s, α), the state- and action-dependent reward rate. In
contrast to MDPs, CTMDPs have received far less attention; a reason for
this might be the increased complexity when moving to continuous time.
This paper studies reachability objectives for CTMDPs, in particular time-
bounded reachability—what is the optimal policy to reach a set of states
within a certain deadline—reward-bounded reachability, and their combi-
nation. We survey the results in this field, and show that reward-bounded
and time-bounded reachability are interchangeable.

The presented reachability objectives are for instance relevant for job-
shop scheduling problems where individual jobs have a random exponential
duration, see e.g., [5]. The problem of finding a schedule for a fixed number
of such (preemptable) jobs on a given set of identical machines such that the
probability to meet a given deadline is maximised, is, in fact, an instance

Reachability in continuous-time Markov reward decision processes 55

of timed reachability on CTMDPs. Optimal memoryless strategies exist for
minimising the sum of the job completion times, but, as is shown, this is
not the case for maximising the probability to reach the deadline. The same
applies for maximising the probability to complete all jobs within a fixed
cost.

This paper is further structured as follows. Section 2 rehearses the
necessary background in the area of Markov decision processes, schedulers,
stochastic processes, and reachability objectives. Section 3 then recalls the
logic CSRL and discusses its semantics for continuous-time Markov reward
decision processes. Section 4 then discusses a number of new results on
the duality of the roles of time and reward in such processes. Section 5
concludes the paper.

2 Preliminaries

2.1 Markov decision processes

Let AP be a fixed set of atomic propositions.

Definition 2.1 (CTMDP). A continuous-time Markov decision process

(CTMDP) M is a tuple (S, Act,R, L) with S, a countable set of states,
Act, a set of actions, R : S × Act × S → R>0, the rate function such that
for each s ∈ S there exists a pair (α, s′) ∈ Act×S with R(s, α, s′) > 0, and
labeling function L : S → 2AP.

The set of actions that are enabled in state s is denoted Act(s) = {α ∈
Act | ∃s′.R(s, α, s′) > 0 }. The above condition thus requires each state to
have at least one outgoing transition. Note that this condition can easily
be fulfilled by adding self-loops.

The operational behavior of a CTMDP is as follows. On entering state s,
an action α, say, in Act(s) is nondeterministically selected. Let R(s, α, B)
denote the total rate from state s to some state in B, i.e.,

R(s, α, B) =
∑

s′∈B

R(s, α, s′).

Given that action α has been chosen, the probability that the transition
s α−−→ s′ can be triggered within the next t time units is 1 − e−R(s,α,s′)·t.
The delay of transition s α−−→ s′ is thus governed by a negative exponential
distribution with rate R(s, α, s′). If multiple outgoing transitions exist for
the chosen action, they compete according to their exponentially distributed
delays. For B ⊆ S, let E(s, α) = R(s, α, S) denote the exit rate of state
s under action α. If E(s, α) > 0, the probability to move from s to s′

via action α within t time units, i.e., the probability that s α−−→ s′ wins the

56 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

competition among all outgoing α-transitions of s is:

R(s, α, s′)

E(s, α)
·
(

1− e−E(s,α)·t
)

,

where the first factor describes the discrete probability to take transition
s α−−→ s′ and the second factor reflects the sojourn time in state s given that
s is left via action α. Note that the sojourn time is distributed negative
exponentially with rate equal to the sum of the rates of the outgoing α-
transitions of state s. This is conform the minimum property of exponential
distributions.

A CTMC (a continuous-time Markov chain) is a CTMDP in which for
each state s, Act(s) is a singleton. In this case, the selection of actions is
purely deterministic, and R can be projected on an (S × S) matrix, known
as the transition rate matrix.

Definition 2.2 (MDP). A (discrete-time) Markov decision process (MDP)
M is a tuple (S, Act,P, L) with S, Act, and L as before and P : S ×Act×
S → [0, 1], a probability function such that for each pair (s, α):

∑

s′∈S

P(s, α, s′) ∈ { 0, 1 }.

A DTMC (a discrete-time Markov chain) is an MDP in which for each
state s, Act(s) is a singleton. In this case, P can be projected on an (S×S)
matrix, known as the transition probability matrix of a DTMC.

Definition 2.3 (Embedded MDP of a CTMDP). For CTMDP M =
(S, Act, R, L), the discrete probability of selecting transition s α−−→ s′ is de-
termined by the embedded MDP, denoted emb(M) = (S, Act,P, L), with:

P(s, α, s′) =







R(s, α, s′)
E(s, α)

, if E(s, α) > 0,

0, otherwise.

P(s, α, s′) is the time-abstract probability for the α-transition from s to
s′ on selecting action α. For B ⊆ S let P(s, α, B) =

∑

s′∈B P(s, α, s′).

Definition 2.4 (Path in a CTMDP). An infinite path in a CTMDP M =
(S, Act,R, L) is a sequence s0, α0, t0, s1, α1, t1, s2, α2, t2, . . . in (S × Act ×
R>0)

ω , written as:

s0
α0,t0−−−−→ s1

α1,t1−−−−→ s2
α2,t2−−−−→ · · · .

Any finite prefix of σ that ends in a state is a finite path in M. Let
Paths(M) denote the set of infinite paths in M.

Reachability in continuous-time Markov reward decision processes 57

Let σ = s0
α0,t0−−−−→ s1

α1,t1−−−−→ s2
α2,t2−−−−→ · · · ∈ Paths(M). The time-ab-

stract path of σ is s0
α0−−→ s1

α1−−→ s2
α2−−→ . . ., the corresponding action-

abstract path is: s0
t0−−→ s1

t1−−→ s2
t2−−→ . . ., and the time- and action-abstract

path is the state sequence s0, s1, s2, Let first(σ) denote the first state of
σ. For finite path σ, last(σ) denotes the last state of σ, and σ → s denotes
the finite time- and action-abstract path σ followed by state s. For i ∈ N,
let σ[i] = si denote the (i+1)-st state of σ. σ@t denotes the state occupied
at time instant t ∈ R>0, i.e., σ@t = σ[k] where k is the smallest index such

that
∑k

i=0 ti > t.

Definition 2.5 (CMRDP). A continuous-time Markov reward decision pro-

cess (CMRDP) is a pair (M, ̺) with M a CTMDP with state space S and
̺ : S ×Act → R>0 a reward function.

CMRDPs are often called CTMDPs in the literature [8]. The state
reward function ̺ assigns to each state s ∈ S and action α ∈ Act a reward
rate ̺(s, α). Under the condition that action α has been selected in state s, a
reward ̺(s, α)·t is acquired after residing t time units in state s. Recall that t
is governed by an exponential distribution with rate E(s, α), i.e., t randomly
depends on action α. A path through a CMRDP is a path through its
underlying CTMDP. For timed path σ = s0

α0,t0−−−−→ s1
α1,t1−−−−→ s2

α2,t2−−−−→ · · ·
and t =

∑k−1
i=0 ti + t′ with t′ 6 tk let:

y(σ, t) =

k−1∑

i=0

ti·̺(si, αi) + t′·̺(sk, αk)

the accumulated reward along σ up to time t. An MRM (Markov reward

model) is a CTMC equipped with a reward function. As an MRM is action-
deterministic, ̺ may be viewed as a function of the type S → R>0.

2.2 Schedulers

CMRDPs incorporate nondeterministic decisions, not present in CTMCs.
Nondeterminism in a CTMDP is resolved by a scheduler. In the litera-
ture, schedulers are sometimes also referred to as adversaries, policies, or
strategies. For deciding which of the next nondeterministic actions to take,
a scheduler may “have access” to the current state only or to the path
from the initial to the current state (either with or without timing infor-
mation). Schedulers may select the next action either (i) deterministically,
i.e., depending on the available information, the next action is chosen in
a deterministic way, or (ii) in a randomized fashion, i.e., depending on
the available information the next action is chosen probabilistically. Ac-
cordingly, the following classes of schedulers D are distinguished [8], where
Distr(Act) denotes the collection of all probability distributions on Act:

58 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

• stationary Markovian deterministic (SMD), D : S → Act such that
D(s) ∈ Act(s)

• stationary Markovian randomized (SMR), D : S → Distr(Act) such
that D(s)(α) > 0 implies α ∈ Act(s)

• Markovian deterministic (MD, also called step-dependent schedulers),
D : S × IN → Act such that D(s, n) ∈ Act(s)

• Markovian randomized (MR), D : S × IN → Distr(Act) such that
D(s, n)(α) > 0 implies α ∈ Act(s)

• (time-abstract) history-dependent, deterministic (HD), D : (S×Act)∗

× S → Act such that

D(s0
α0−−→ s1

α1−−→ . . .
αn−1−−−−→

︸ ︷︷ ︸

time-abstract history

, sn) ∈ Act(sn)

• (time-abstract) history-dependent, randomized (HR), D : (S×Act)∗×
S → Distr(Act) such that D(s0

α0−−→ s1
α1−−→ . . .

αn−1−−−−→ , sn)(α) > 0
implies α ∈ Act(sn).

All these schedulers are time-abstract and cannot base their decisions on
the sojourn times. Timed (measurable) schedulers [9, 7] are not considered
in this paper. Finally, let X denote the class of all X-schedulers over a fixed
CTMDP M.1

Note that for any HD-scheduler, the actions can be dropped from the
history, i.e., HD-schedulers may be considered as functions D : S+ →
Act, as for any sequence s0, s1, . . . , sn the relevant actions αi are given
by αi = D(s0, s1, . . . , si), and, hence, the scheduled action sequence can be
constructed from prefixes of the path at hand. Any state-action sequence
s0

α0−−→ s1
α1−−→ . . .

αn−1−−−−→ sn where αi 6= D(s0, s1, . . . , si) for some i, does
not describe a path fragment that can be obtained from D.

The scheduler-types form a hierarchy, e.g., any SMD-scheduler can be
viewed as an MD-scheduler (by ignoring parameter n) which, in turn, can be
viewed as an HD-scheduler (by ignoring everything from the history except
its length). A similar hierarchy exists between SMR, MR, and HR sched-
ulers. Moreover, deterministic schedulers can be regarded as trivial versions
of their corresponding randomized counterparts that assign probability one
to the actions selected.

1 Strictly speaking, we should write X (M) butM is omitted as it should be clear from
the context.

Reachability in continuous-time Markov reward decision processes 59

2.3 Induced stochastic process

Given a scheduler D (of arbitrary type listed above) and a starting state, D
induces a stochastic process on a CTMDP M. For deterministic schedulers
(HD, MD, and SMD), the induced process is a CTMC, referred to as MD

in the sequel. For MD- and HD-schedulers, though, the state space of MD

will in general be infinitely large (but countable).

Definition 2.6 (Induced CTMC of a CTMDP). Let M = (S, Act,R, L)
be a CTMDP and D : S+ → Act an HD-scheduler on M. The CTMC
MD = (S+,RD, L′) with:

RD(σ, σ′) =

{
R(last(σ), D(σ), s), if σ′ = σ → s,
0, otherwise,

and L′(σ) = L(last(σ)).

The embedded DTMC emb(MD) is a tuple (S+,PD, L) where:

PD(σ, σ′) =







RD(σ, σ′)
ED(σ)

, if ED(σ) > 0,

0, otherwise.

Here, ED(σ) = RD(σ, S+), i.e., the exit rate of σ in MD. States in CTMC
MD can be seen as state sequences s0 → s1 → . . . → sn−1 → sn cor-
responding to time- and action-abstract path fragments in the CTMDP
M. State sn stands for the current state in the CTMDP whereas states
s0 through sn−1 describe the history. Intuitively, the stochastic process in-
duced by an HD-scheduler D on the CTMDP M results from unfolding M
into an (infinite) tree while resolving the nondeterministic choices according
to D. For SMD-schedulers, the induced CTMC is guaranteed to be finite.
More precisely, for SMD-scheduler D, MD can be viewed as a CTMC with
the original state space S, as all sequences that end in s, say, are lumping
equivalent [6].

In contrast to a CTMDP (or MDP), a CTMC (or DTMC) is a fully
determined stochastic process. For a given initial state s0 in CTMC M,
a unique probability measure Prs0 on Paths(s0) exists, where Paths(s0)
denotes the set of timed paths that start in s0. Timed paths through a
CTMC are defined as for CTMDPs, but by nature are action-abstract. The
inductive construction of the probability measure below follows [2], the fact
that we allow countable-state Markov chains does not alter the construc-
tion. Let P be the probability matrix of the embedded DTMC of M and

let Cyl(s0
I0−−→ · · ·

Ik−1−−−−→ sk) denote the cylinder set consisting of all timed
paths σ that start in state s0 such that si (i 6 k) is the (i+1)th state on
σ and the time spent in si lies in the non-empty interval Ii (i < k) in R>0.

60 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

The cylinder sets induce the probability measure Prs0 on the timed paths
through M, defined by induction on k by Prs0(Cyl(s0)) = 1, and, for k > 0:

Prs0(Cyl(s0
I0−−→ · · ·

Ik−1−−−−→ sk
I′−−→ s′)) =

Prs0(Cyl(s0
I0−−→ · · ·

Ik−1−−−−→ sk))· P(sk, s′) ·
(
e−E(sk)·a − e−E(sk)·b

)
,

where a = inf I ′ and b = sup I ′.

2.4 Reachability objectives

For CTMDP M with state space S and B ⊆ S, we consider the maximum
(or, dually, minimum) probability to reach B under a given class of sched-
ulers. Let 3B denote the event to eventually reach some state in B, 3

6t B
the same event with the extra condition that B is reached within t time
units, and 36r B the event that B is eventually reached within accumu-

lated reward r. The event 3
6t
6r B asserts that B is reached within t time

units and accumulated reward at most r. Note that the accumulated reward
gained depends on the sojourn times in states, hence the bounds t and r are
not independent. It is not difficult to assess that these events are measur-
able for the time-abstract schedulers considered here. A detailed proof of
the measurability of 3

6t B for measurable timed schedulers (a richer class
of schedulers) can be found in [7]. The probability for such an event ϕ to
hold in state s of M is denoted Pr(s |= ϕ), i.e.,

Pr(s |= ϕ) = Prs{ σ ∈ Paths(M) | σ |= ϕ }.

The maximal probability to reach a state in B under a HR-scheduler is
given by:

Prmax
HR (s |= 3B) = sup

D∈HR
Pr(s |= 3B).

In a similar way, Prmin
HR (s |= 3B) = infD∈HR Pr(s |= 3B).

The following result follows immediately from the fact that for event
3B it suffices to consider the embedded MDP of a given CTMDP, and the
fact that memoryless schedulers for finite MDPs exist that maximize the
reachability probability for B. Such memoryless schedulers are obtained in
polynomial time by solving a linear optimization problem. A similar result
holds for minimal probabilities and for events of the form 3

6nB, i.e., the
event that B is reached within n ∈ N steps (i.e., transitions). Note that the
event 3

6t B requires a state in B to be reached within t time units (using
an arbitrary number of transitions), while 3

6n B requires B to be reached
in n discrete steps, regardless of the time spent to reach B.

Lemma 2.7 (Optimal SMD schedulers for reachability). Let M be a finite
CTMDP with state space S and B ⊆ S. There exists an SMD scheduler D

Reachability in continuous-time Markov reward decision processes 61

such that for any s ∈ S:

PrD(s |= 3B) = Prmax
HR (s |= 3B).

2.5 Time- and cost-bounded reachability

Consider the following class of CTMDPs:

Definition 2.8 (Uniform CTMDP). A CTMDP (S, Act,R, L) is uniform

if for some E > 0 it holds E(s, α) = E for any state s ∈ S and α ∈ Act(s).

Stated in words, in a uniform CTMDP the exit rates for all states and
all enabled actions are equal. It follows from [3]:

Theorem 2.9 (Optimal MD schedulers for timed reachability). Let M be
a finite uniform CTMDP with state space S, t ∈ R>0 and B ⊆ S. There
exists an MD scheduler D such that for any s ∈ S:

PrD(s |= 3
6tB) = Prmax

HR (s |= 3
6tB).

An ε-approximation of such scheduler, i.e., a scheduler that obtains
PrD(s |= 3

6tB) up to an accuracy of ε, can be obtained in polynomial time
by a greedy backward reachability algorithm as presented in [3]. A similar
result can be obtained for minimal time-bounded reachability probabilities
by selecting a transition with smallest, rather than largest, probability in
the greedy algorithm.

The following example shows that memoryless schedulers for maximal
time-bounded reachability probabilities may not exist.

Example 2.10 (Optimal SMD schedulers may not exist). Consider the
following uniform CTMDP:

β2

4

β

2

s0

s1

γ4s2

s3

α
α

13

α

3

γ

1

α

Action labels and rates are indicated at each edge. Let B = { s2 }, and
consider the SMD-schedulers, Dα, selecting action α in state s0, and Dβ ,
selecting action β. Comparing them with Dβα, i.e., the scheduler that after
selecting β once switches to selecting α in state s0, we find that for a certain

62 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

range of time bounds t, Dβα outperforms both Dβ and Dα. Intuitively, the
probability of stuttering in state s0 (by choosing β initially) may influence
the remaining time to reach B to an extent that it becomes profitable to
continue choosing α. For t = 0.5, for instance, PrDβα

(s0, 3
60.5B) = 0.4152,

whereas for Dα and Dβ these probabilities are 0.3935 and 0.3996, respec-
tively.

The following result is of importance later and is based on a result in
[3]. Informally, it states that maximal (and minimal) probabilities for timed
reachabilities in CTMDPs under deterministic and randomised HD sched-
ulers coincide. As this result holds for arbitrary CTMDPs, there is no need
to restrict to uniform ones here.

Theorem 2.11 (Maximal probabilities are invariant under randomization).
For CMRDP M with state space S, s ∈ S and B ⊆ S, it holds for any
r, t ∈ R>0 ∪ {∞}:

supD∈HD PrD(s |= 3
6t B) = supD∈HR PrD(s |= 3

6t B)

supD∈HD PrD(s |= 36r B) = supD∈HR PrD(s |= 36r B)

supD∈HD PrD(s |= 3
6t
6r B) = supD∈HR PrD(s |= 3

6t
6r B).

Analogous results hold for minimal probabilities for the events 3
6tB, 36rB,

and 3
6t
6r B.

Proof. For any HD-scheduler D for the CTMDP M it holds:

PrD(s |= 3
6t B) = lim

n→∞
PrD(s |= 3

6t,6n B)

where the superscript 6 n denotes that B has to be reached within at most
n transitions. Similarly, we have:

PrD(s |= 36r B) = lim
n→∞

PrD(s |= 3
6n
6r B).

By induction on n, it can be shown (cf. [3, Theorem 7]) that there is a
finite family (Di)i∈Jn

(with Jn an index set) of HD-schedulers such that the
measure PrD′ induced by an HR-scheduler D′ for the cylinder sets induced
by path fragments consisting of n transitions is a convex combination of the
measures PrDi

, i ∈ Jn. q.e.d.

The results for the events 3B and 3
6tB in finite CTMDP M can be

generalized towards constrained reachability properties C U B and C U6tB,
respectively, where C ⊆ S. This works as follows. First, all states in
S \ (C ∪ B) and in B are made absorbing, i.e., their enabled actions are
replaced by a single action, αs, say, with R(s, αs, s) > 0. The remaining

Reachability in continuous-time Markov reward decision processes 63

states are unaffected. Paths that visit some state in S \ (C ∪B) contribute
probability zero to the event C U B while the continuation of paths that
have reached B is of no importance to the probability of this event. For the
resulting CTMDP M′ it follows:

Prmax
M,X(s |= C U6n B) = Prmax

M′,X(s |= 3
6n B),

Prmax
M,X(s |= C U B) = Prmax

M′,X(s |= 3B),

Prmax
M,X(s |= C U6t B) = Prmax

M′,X(s |= 3
6t B),

where the subscript of Pr indicates the CTMDP of interest. Similar results
hold for Prmin.

For the event C U6r B in CMRDP M, the states in S \C ∪B are made
absorbing (as before) and the reward of states in B is set to zero. The latter
ensures that the accumulation of reward halts as soon as B is reached. Then
it follows:

Prmax
M,X(s |= C U6r B) = Prmax

M∗,X(s |= 36r B)

and similar for Prmin, where M∗ is the resulting CMRDP after the trans-
formations indicated above.

3 Continuous stochastic reward logic

CSRL is a branching-time temporal logic, based on the Computation Tree
Logic (CTL). A CSRL formula asserts conditions on a state of a CMRDP.
Besides the standard propositional logic operators, CSRL incorporates the
probabilistic operator PJ(ϕ) where ϕ is a path-formula and J is an interval of
[0, 1]. The path-formula ϕ imposes a condition on the set of paths, whereas
J indicates a lower bound and/or upper bound on the probability. The
intuitive meaning of the formula PJ(ϕ) in state s is: the probability for the
set of paths satisfying ϕ and starting in s meets the bounds given by J . The
probabilistic operator can be considered as the quantitative counterpart to
the CTL-path quantifiers ∃ and ∀.

The path formulae ϕ are defined as for CTL, except that a bounded
until operator is additionally incorporated. The intuitive meaning of the
path formula Φ UI

K Ψ for intervals I, K ⊆ R>0 is that a Ψ-state should be
reached within t ∈ I time units via a Φ-path with total cost r ∈ K.

Definition 3.1 (Syntax of CSRL). CSRL state-formulae over the set AP
of atomic propositions are formed according to the following grammar:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ PJ(ϕ),

where a ∈ AP, ϕ is a path-formula and J ⊆ [0, 1] is an interval with rational
bounds. CSRL path-formulae are formed according to:

ϕ ::= ©I
K Φ

∣
∣
∣ Φ1 UI

K Φ2,

64 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

where Φ, Φ1 and Φ2 are state-formulae, and I, K ⊆ R>0 ∪ {∞}.

Other boolean connectives such as ∨ and → are derived in the obvi-
ous way. The reachability event considered before is obtained as 3

I
K Φ =

true UI
K Φ. The always-operator 2 can be obtained by the duality of al-

ways/eventually and lower/upper probability bounds, e.g.,

P>p(2
I
K Φ) = P61−p(3

I
K ¬Φ) and P[p,q](2

I
K Φ) = P[1−q,1−p](3

I
K ¬Φ).

Special cases occur for the trivial time-bound I = [0,∞) and the trivial
reward-bound K = [0,∞):

©Φ = ©
[0,∞)
[0,∞) Φ and Φ UΨ = Φ U

[0,∞)
[0,∞) Ψ.

The semantics of CSRL is defined over the class of HR-schedulers.

Definition 3.2 (Semantics of CSRL). Let a ∈ AP, M = (S, Act,R, L) a
CMRDP, s ∈ S, Φ, Ψ CSRL state-formulae, and ϕ a CSRL path-formula.
The satisfaction relation |= for state-formulae is defined by:

s |= a iff a ∈ L(s)

s |= ¬Φ iff s 6|= Φ

s |= Φ ∧Ψ iff s |= Φ and s |= Ψ

s |= PJ(ϕ) iff for any scheduler D ∈ HR : PrD(s |= ϕ) ∈ J.

For path σ = s0
α0,t0−−−−→ s1

α1,t1−−−−→ s2
α2,t2−−−−→ · · · in M:

σ |= ©I
K Φ iff σ[1] |= Φ, t0 ∈ I and y(σ, t0) ∈ K

σ |= Φ UI
K Ψ iff ∃t ∈ I (σ@t |= Ψ ∧ (∀ t′ < t. σ@t′ |= Φ) ∧ y(σ, t) ∈ K) .

The semantics for the propositional fragment of CSRL is standard. The
probability operator PJ (·) imposes probability bounds for all (time-abstract)
schedulers. Accordingly, s |= P6p(ϕ) if and only if Prmax

HR (s |= ϕ) 6 p, and
similarly, s |= P>p(ϕ) if and only if Prmin

HR (s |= ϕ) > p. The well-definedness
of the semantics of PJ(ϕ) follows from the fact that for any CSRL path-
formula ϕ, the set { σ ∈ Paths(s) | σ |= ϕ } is measurable. This follows
from a standard measure space construction over the infinite paths in the
stochastic process induced by an HD-scheduler over the CMRDP M. In
fact, the measurability of these events can also be guaranteed for measurable
timed schedulers, cf. [7].

Recall that σ@t denotes the current state along σ at time instant t, and
y(σ, t) denotes the accumulated reward along the prefix of σ up to time t.
The intuition behind y(σ, t) depends on the formula under consideration and

Reachability in continuous-time Markov reward decision processes 65

the interpretation of the rewards in the CMRDP M at hand. For instance,
for ϕ = 3good and path σ that satisfies ϕ, the accumulated reward y(σ, t)
can be interpreted as the cost to reach a good state within t time units. For
ϕ = 3bad, it may, e.g., be interpreted as the energy used before reaching a
bad state within t time units.

4 Duality of time and reward

The main aim of this section is to show the duality of rewards and the elapse
of time in a CMRDP. The proof strategy is as follows. We first consider
the action-deterministic case, i.e., MRMs, and show that—in spirit of the
observations in the late 1970s by Beaudry [4]— the progress of time can
be regarded as the earning of reward and vice versa in the case of non-zero
rewards. The key to the proof of this result is a least fixed-point charac-
terization of Pr(C UI

KB) in MRMs. This result is then lifted to CMRDPs
under HD-schedulers. By Theorem 2.11, the duality result also applies to
HR-schedulers.

Consider first CMRDPs for which Act(s) is a singleton for each state s,
i.e., MRMs. For time-bounded until-formula ϕ and MRM M, PrM(s |= ϕ)
is characterized by a fixed-point equation. This is similar to CTL where
appropriate fixed-point characterizations constitute the key towards model
checking until-formulas. It suffices to consider time bounds specified by
closed intervals since:

Pr(s, Φ UI
KΨ) = Pr(s, Φ U

cl(I)
cl(K)Ψ),

where cl(I) denotes the closure of interval I. A similar result holds for the
next-step operator. The result follows from the fact that the probability
measure of a basic cylinder set does not change when some of the intervals
are replaced by their closure. In the sequel, we assume that intervals I and
K are compact.

In the sequel, let I ⊖ x denote { t−x | t ∈ I ∧ t > x } and T(s, s′, x)
denotes the density of moving from state s to s′ in x time units, i.e.,

T(s, s′, x) = P(s, s′)·E(s)·e−E(s)·x = R(s, s′)·e−E(s)·x.

Here, E(s)·e−E(s)·x is the probability density function of the residence time
in state s at instant x. Let Int denote the set of all (nonempty) intervals in
R>0. Let L = { x ∈ I | ̺(s) · x ∈ K } for closed intervals I and K. As we
consider MRMs, note that ̺ can be viewed as function S → R>0. (Strictly
speaking, L is a function depending on s. As s is clear from the context,
we omit it and write L instead of L(s).) Stated in words, L is the subset of
I such that the accumulated reward (in s) lies in K.

66 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

Theorem 4.1. Let s ∈ S, interval I, K ⊆ IR>0 and Φ, Ψ be CSRL state-
formulas. The function (s, I, K) 7→ Pr(s, Φ UI

KΨ) is the least fixed point of
the (monotonic) higher-order operator

Ω : (S × Int2 → [0, 1]) → (S × Int2 → [0, 1]),

where

Ω(F)(s, I, K) :=







1, if s |= ¬Φ ∧Ψ and
inf I = inf K = 0,

SΦ∧¬Ψ(F, s, I, K) if s |= Φ ∧ ¬Ψ,
SΦ∧Ψ(F, s, I, K) if s |= Φ ∧Ψ,
0, otherwise,

with

SΦ∧¬Ψ(F, s, I, K) :=

∫ sup L

0

∑

s′∈S

T(s, s′, x)·F (s′, I ⊖ x, K ⊖ ̺(s)·x) dx

and

SΦ∧Ψ(F, s, I, K) :=

e−E(s)· inf L +

∫ inf L

0

∑

s′∈S

T(s, s′, x)·F (s′, I ⊖ x, K ⊖ ̺(s)·x) dx.

Proof. Along the same lines as the proof of [2, Theorem 1]. q.e.d.

The above characterisation is justified as follows. If s satisfies Φ and ¬Ψ
(second case), the probability of reaching a Ψ-state from s at time t ∈ I
by earning a reward r ∈ K equals the probability of reaching some direct
successor s′ of s within x time units (x 6 sup I and ̺(s) · x 6 sup K, that
is, x 6 sup L), multiplied by the probability of reaching a Ψ-state from s′

in the remaining time t−x while earning a reward of at most r−̺(s) · x. If
s satisfies Φ ∧Ψ (third case), the path-formula ϕ is satisfied if no outgoing
transition of s is taken for at least inf L time units2 (first summand).

Alternatively, state s should be left before inf L in which case the prob-
ability is defined in a similar way as for the case s |= Φ ∧ ¬Ψ (second
summand). Note that inf L = 0 is possible (if e.g., inf K = inf I = 0). In
this case, s |= Φ∧Ψ yields that any path starting in s satisfies ϕ = Φ UI

K Ψ
and Pr(s, ϕ) = 1.

2 By convention, inf ∅ =∞.

Reachability in continuous-time Markov reward decision processes 67

Definition 4.2 (Dual CMRDP). The dual of a CMRDP M =
(S, Act,R, L, ̺) with ̺(s, α) > 0 for all s ∈ S and α ∈ Act is the CM-
RDP M∗ = (S, Act,R∗, L, ̺∗) where for s, s′ ∈ S and α ∈ Act:

R∗(s, α, s′) =
R(s, α, s′)

̺(s, α)
and ̺∗(s, α) =

1

̺(s, α)
.

Intuitively, the transformation of M into M∗ stretches the residence
time in state s under action α with a factor that is proportional to the
reciprocal of reward ̺(s, α) if 0 < ̺(s, α) < 1. The reward function is
changed similarly. Thus, for pairs (s, α) with ̺(s, α) < 1 the sojourn time
in s is extended, whereas if ̺(s, α) > 1 they are accelerated. For fixed action
α, the residence of t time units in state s in M∗ may be interpreted as the
earning of t reward in s in M, or reversely, earning a reward r in state s in
M corresponds to a residence of r time units in s in M∗.

The exit rates in M∗ are given by E∗(s, α) = E(s, α)/̺(s, α). It fol-
lows that (M∗)∗ = M and that M and M∗ have the same time-abstract
transition probabilities as E∗(s, α) = 0 iff E(s, α) = 0 and for E∗(s, α) > 0:

P∗(s, α, s′) =
R∗(s, α, s′)

E∗(s, α)
=

R(s, α, s′)/̺(s, α)

E(s, α)/̺(s, α)
=

R(s, α, s′)

E(s, α)
= P(s, α, s′).

Note that a time-abstract scheduler on CMRDP M is also a time-abstract
scheduler on M∗ and vice versa, as such schedulers can only base their
decisions on time-abstract histories, and the set of time-abstract histories
for M and M∗ coincide. Finally, observe that uniformity is not maintained
by ∗: M∗ is in general not uniform for uniform M.

Definition 4.3 (Dual formula). For state formula Φ, Φ∗ is the state for-
mula obtained from Φ by swapping the time- and reward-bound in each
subformula of the form ©I

K or UI
K .

For state-formula Φ, let Sat(Φ) = { s ∈ S | s |= Φ }.

Theorem 4.4 (Duality for MRMs). For MRM M = (S,R, L, ̺) with
̺(s) > 0 for all s ∈ S and CSRL state-formula Φ:

SatM(Φ) = SatM
∗

(Φ∗).

Proof. By induction on the structure of Φ. Let MRM M = (S,R, L, ̺)
with ̺(s) > 0 for all s ∈ S. We show that for each s ∈ S and sets of states
B, C ⊆ S:

PrM(s |= C UI
K B) = PrM

∗

(s |= C UK
I B).

The proof for a similar result for the next-step operator is obtained in an
analogous, though simpler way. For the sake of simplicity, let I = [0, t] and

68 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

K = [0, r] with r, t ∈ R>0. The general case can be obtained in a similar
way. Let s ∈ C \B. From Theorem 4.1 it follows:

PrM
∗

(s |= C UK
I B) =

∫

L∗

∑

s′∈S

T∗(s, s′, x) · PrM
∗

(s′, C UK⊖x
I⊖̺∗(s)·x B) dx

for L∗ = { x ∈ [0, t]|̺∗(s) · x ∈ [0, r] }, i.e., L∗ = [0, min(t, r
̺∗(s))]. By the

definition of M∗ and T∗(s, s′, x) = R∗(s, s′)·e−E∗(s)·x, the right-hand side
equals:

∫

L∗

∑

s′∈S

R(s, s′)

̺(s)
· e−

E(s)
̺(s)

·x · PrM
∗

(s′, C UK⊖x
I⊖ x

̺(s)
B) dx.

By substitution y = x
̺(s) this integral reduces to:

∫

L

∑

s′∈S

R(s, s′) · e−E(s)·y · PrM
∗

(s′, C U
K⊖̺(s)·y
I⊖y B) dy,

where L = [0, min(t
̺(s) , r)]. Thus, the values PrM

∗

(s, C UK
I B) yield a so-

lution to the equation system in Theorem 4.1 for PrM(s, C UI
K B). In fact,

these values yield the least solution. The formal argument for this latter
observation uses the fact that M and M∗ have the same underlying di-
graph, and hence, PrM(s, C UI

K B) = 0 iff PrM
∗

(s, C UK
I B) = 0 iff there

is no path starting in s where C U B holds. In fact, the equation system
restricted to { s ∈ S | PrM(s, C UI

K B) > 0 } has a unique solution. The

values PrM
∗

(s, C UK
I B) and PrM(s, C UI

K B) are least solutions of the same
equation system, and are thus equal. Hence, we obtain:

∫

L

∑

s′∈S

T(s, s′, y) · PrM(s′, C U
I⊖y

K⊖̺(s)·y B) dy

which equals PrM(s |= C UI
KB) for s ∈ C \B. q.e.d.

IfM contains states equipped with a zero reward, the duality result does
not hold, as the reverse of earning a zero reward in M when considering Φ
should correspond to a residence of 0 time units in M∗ for Φ∗, which—as
the advance of time in a state cannot be halted— is in general not possible.
However, the result of Theorem 4.4 applies to some restricted, though still
practical, cases, viz. if (i) for each sub-formula of Φ of the form ©I

KΦ′ we
have K = [0,∞), and (ii) for each sub-formula of the form ΦUI

K Ψ either
K = [0,∞) or SatM(Φ) ⊆ { s ∈ S | ̺(s) > 0 }. The intuition is that either
the reward constraint (i.e., time constraint) is trivial in Φ (in Φ∗), or that
zero-rewarded states are not involved in checking the reward constraint. In
such cases, let M∗ be defined by R∗(s, s′) = R(s, s′) and ̺∗(s) = 0 in case
̺(s) = 0 and defined as before otherwise.

Reachability in continuous-time Markov reward decision processes 69

Corollary 4.5 (Optimal MD schedulers for cost reachability). Let M be
a finite uniform CMRDP with state space S, r ∈ R>0 and B ⊆ S. There
exists an MD scheduler D such that for any s ∈ S:

PrD(s |= 36r B) = Prmax
HR (s |= 36r B).

Proof. Let M be a uniform CMRDP. By Theorem 2.9 it follows:

sup
D∈HD

PrD
M(s |= 3

6t B) = sup
D∈MD

PrD
M(s |= 3

6t B).

Observe that there is a one-to-one relationship between schedulers ofM and
of its dual M∗ as M and M∗ have the same time-abstract scheduler for any
class X as defined before. Moreover, for HD-scheduler D, the dual of MRM
MD is identical to the induced MRM of the dual of M, i.e., (MD)∗ = M∗

D.
Thus:

sup
D∈HD

PrD
M(s |= 3

6t B) = sup
D∗∈HD

PrD∗

M∗(s |= 3
6t B).

Applying Theorem 4.4 to M∗ yields:

sup
D∈HD

PrD
M(s |= 3

6t B) = sup
D∗∈HD

PrD∗

M∗(s |= 36r B),

and by an analogous argument for MD-schedulers:

sup
D∈MD

PrD
M(s |= 3

6t B) = sup
D∗∈MD

PrD∗

M∗(s |= 36r B).

Thus:
sup

D∈HD
PrD
M∗(s |= 36r B) = sup

D∈MD
PrD
M∗(s |= 36r B).

In addition, Theorem 2.11 asserts:

sup
D∈HD

PrD
M(s |= 36r B) = sup

D∈HR
PrD
M(s |= 36r B)

and hence supD∗∈MD PrD∗

M∗(s |= 36r B) coincides with the suprema for the
probability to reach B within reward bound r under all HD-, HR- and MD-
schedulers. As MR-schedulers are between HR- and MD-schedulers, the
stated result follows. q.e.d.

Unfortunately, this result does not imply that the algorithm in [3] ap-
plied on M∗ yields the optimal result for the event 36r B, as M∗ is not
guaranteed to be uniform whereas the algorithm ensures optimality only for
uniform CTMDPs.

We conclude this note by a duality result for arbitrary CMRDPs.

70 C. Baier, B. R. Haverkort, H. Hermanns, J.-P. Katoen

Corollary 4.6 (Duality for CMRDPs). For a CMRDP M = (S, Act,R, L,
̺) with ̺(s, α) > 0 for all s ∈ S and α ∈ Act, and CSRL state-formula Φ:

SatM(Φ) = SatM
∗

(Φ∗).

Proof. By induction on the structure of Φ. Let CMRDP M = (S, Act,R, L,
̺) with ̺(s, α) > 0 for all s ∈ S and α ∈ Act. Consider Φ = P6p(C UI

K B).
The proof for bounds of the form > p, and for the next-step operator are
similar. From the semantics of CSRL it follows:

s |=M P6p(C UI
K B) iff sup

D∈HR
PrD
M(s |= C UI

K B) 6 p.

In a similar way as stated in the third item of Theorem 2.11 it follows:

sup
D∈HR

PrD
M(s |= C UI

K B) = sup
D∈HD

PrD
M(s |= C UI

K B).

M andM∗ have the same time-abstract HD-schedulers and (MD)∗ = M∗
D.

Theorem 4.4 yields:

sup
D∈HD

PrD
M(s |= C UI

K B) = sup
D∗∈HD

PrD∗

M∗(s |= C UK
I B).

As HD- and HR-schedulers are indistinguishable for events of the form
C UI

K B (the proof of this fact is analogous to that of Theorem 2.11), it
follows:

sup
D∗∈HD

PrD∗

M∗(s |= C UK
I B) = sup

D∗∈HR
PrD∗

M∗(s |= C UK
I B).

Thus:
s |=M P6p(C UI

K B) iff s |=M∗ P6p(C UK
I B).

q.e.d.

5 Epilogue

In this paper we have brought together results on the use of the logic CSRL
and time and reward duality for MRMs [1], with recent results on reachabil-
ity in CTMDPs [3]. This leads to a duality result for CMRDPs, as well as
to the existence of optimal MD schedulers for cost reachability in uniform
CMRDPs.

References

[1] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. On the
logical characterisation of performability properties. In U. Montanari,
J. D. P. Rolim, and E. Welzl, editors, ICALP, volume 1853 of Lecture

Notes in Computer Science, pages 780–792. Springer, 2000.

Reachability in continuous-time Markov reward decision processes 71

[2] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-
checking algorithms for continuous-time Markov chains. IEEE Trans.

Software Eng., 29(6):524–541, 2003.

[3] C. Baier, H. Hermanns, J.-P. Katoen, and B. R. Haverkort. Effi-
cient computation of time-bounded reachability probabilities in uni-
form continuous-time Markov decision processes. Theor. Comput. Sci.,
345(1):2–26, 2005.

[4] M. D. Beaudry. Performance-related reliability measures for computing
systems. IEEE Trans. Computers, 27(6):540–547, 1978.

[5] J. L. Bruno, P. J. Downey, and G. N. Frederickson. Sequencing tasks
with exponential service times to minimize the expected flow time or
makespan. J. ACM, 28(1):100–113, 1981.

[6] P. Buchholz. Exact and ordinary lumpability in finite Markov chains.
J. Appl. Probab., 31(1):59–75, 1994.

[7] M. R. Neuhäußer and J.-P. Katoen. Bisimulation and logical preserva-
tion for continuous-time Markov decision processes. In L. Caires and
V. T. Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes in

Computer Science, pages 412–427. Springer, 2007.

[8] M. L. Puterman. Markov decision processes: discrete stochastic dynamic

programming. Wiley Series in Probability and Mathematical Statistics:
Applied Probability and Statistics. John Wiley & Sons Inc., New York,
1994. , A Wiley-Interscience Publication.

[9] N. Wolovick and S. Johr. A characterization of meaningful schedulers for
continuous-time Markov decision processes. In E. Asarin and P. Bouyer,
editors, FORMATS, volume 4202 of Lecture Notes in Computer Science,
pages 352–367. Springer, 2006.

Logical theories and compatible operations

Achim Blumensath1

Thomas Colcombet2

Christof Löding3

1 Fachbereich Mathematik
TU Darmstadt
Schloßgartenstraße 7
64289 Darmstadt, Germany
blumensath@mathematik.tu-darmstadt.de

2 Laboratoire d’Informatique Algorithmique: Fondements et Applications
Université Paris Diderot, Paris 7
Case 7014
75205 Paris Cedex 13, France
thomas.colcombet@liafa.jussieu.fr

3 Lehrstuhl Informatik 7
RWTH Aachen
Ahornstraße 55
52074 Aachen, Germany
loeding@cs.rwth-aachen.de

Abstract

We survey operations on (possibly infinite) relational structures
that are compatible with logical theories in the sense that, if we apply
the operation to given structures then we can compute the theory of
the resulting structure from the theories of the arguments (the logics
under consideration for the result and the arguments might differ).

Besides general compatibility results for these operations we also
present several results on restricted classes of structures, and their
use for obtaining classes of infinite structures with decidable theories.

1 Introduction

The aim of this article is to give a survey of operations that can be per-
formed on relational structures while preserving decidability of theories. We
mainly consider first-order logic (FO), monadic second-order logic (MSO),
and guarded second-order logic (GSO, also called MS2 by Courcelle). For
example, we might be interested in an operation f that takes a single struc-
ture a and produces a new structure f(a) such that the FO-theory of f(a)
can be effectively computed from the MSO-theory of a (we call such oper-
ations (MSO, FO)-compatible), i.e., for each FO-formula ϕ over f(a) we can

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 73–106.

74 A. Blumensath, T. Colcombet, C. Löding

construct an MSO-formula ϕ∗ such that

f(a) |= ϕ iff a |= ϕ∗.

The main application of such operations is to transfer decidability results
for logical theories. This technique can be applied for single structures, as
well as uniformly over classes of structures. The first approach is often
used for infinite structures, but it becomes trivial if the structure is finite
since each finite structure has a decidable MSO-theory (even a decidable full
second-order theory). The second approach is also useful for classes of finite
structures as not every such class has a decidable theory.

In order to process structures by algorithmic means, a finite encoding
of the structure is required. Such encodings are trivial when structures are
finite (though one may be interested into finding compact presentations),
but the choice of encoding becomes a real issue when dealing with infinite
structures. The approach using operations compatible with logical theories
is as follows. Starting from a (countable) setB of structures all of which have
a decidable theory for a certain logic L, we can construct new structures with
a decidable theory (possibly for a different logic L′) by applying operations
from a fixed (countable) set O of operations of the above form. This gives
rise to the class C of all structures that can be obtained from the basic
structures in B by application of the operations in O. Every element of C
can be represented by a term over O ∪ B. Evaluating an L′-formula over
a structure in C then amounts to constructing and evaluating L-formulae
over structures from B.

Given such a definition of a class of structures, an interesting problem is
to understand what structures can be encoded in this way and to give alter-
native characterisations of them. Before we give examples of such classes,
let us briefly summarise the main operations we are interested in.
Interpretations. An interpretation uses logical formulae with free vari-
ables to describe relations of a new structure inside a given one. Each
formula with n free variables defines the relation of arity n that contains
all tuples satisfying the formula. Usually, the free variables are first-order
variables and the universe of the new structure is a subset of the universe of
the original structure. Depending on the type of the formulae one speaks of
FO- and MSO-interpretations, and it is not difficult to see that these types of
interpretations preserve the respective logic. We shall frequently combine
other operations with interpretations that perform some pre-processing and
post-processing of structures.
Products. The simplest form is the direct or Cartesian product of two
or more structures. A generalised version allows us to additionally define
new relations on the product by evaluating formulae on the factors and
relating the results on the different factors by another formula. Feferman

Logical theories and compatible operations 75

and Vaught [32] proved that the first-order theory of such a product is
determined by the first-order theories of its factors (see also [39] for an
overview).
Sums. To transfer the results of Feferman and Vaught for products to
monadic second-order logic, Shelah considered sums (or unions) of struc-
tures instead of products [45].
Iteration. The iteration of a structure consists of copies of the original
structure that are arranged in a tree-like fashion. A theorem of Muchnik
that has been proven in [49, 50] states that the MSO-theory of an iteration
can be reduced to the MSO-theory of the original structure.
Incidence Structure. The universe of the incidence structure contains,
in addition to the elements of the original structure, all tuples that appear
in some relation. This construction can be used to reduce the GSO-theory
of a structure to the MSO-theory of its incidence structure [33].
Power set. The power set of a structure consists of all of its subsets.
The relations are transferred to the singleton sets and the signature addi-
tionally contains the subset relation. There is also a weak variant of the
power-set operation that takes only the finite subsets of a structure. These
constructions allow us to translate FO-formulae over the power-set structure
to MSO-formulae over the original structure, and to weak MSO-formulae in
case of finite sets [21].

Of course, these operations can also be combined to obtain more complex
ones. For example, applying a product with a finite structure followed by an
MSO-interpretation yields a parameterless MSO-transduction (see e.g., [24]).
Or applying the power-set operation followed by an FO-interpretation gives
an operation called a set interpretation (or finite set interpretation in the
case of the weak power set) [21].

Besides the general results on the compatibility of these operations, we
are interested in their behaviour on special classes of structures. In partic-
ular we consider the following families.
Tree-interpretable structures are structures that can be obtained by
the application of an interpretation to a tree. Here, the interpretation can
be chosen to be first-order, weak monadic-second order, or monadic second-
order without affecting the definition (if the tree is changed accordingly).
This class coincides with the class of structures of finite partition width [7].
The corresponding class of graphs consists of those with finite clique width
[28]. Seese [43] conjectures that all structures with decidable MSO-theory
are tree-interpretable.
Structures of finite tree width resemble trees. They can be charac-
terised as the structures with a tree-interpretable incidence graph. A the-

76 A. Blumensath, T. Colcombet, C. Löding

orem of Seese [43] states that all structures with decidable GSO-theory are
have finite tree width.
Uniformly sparse structures are the structures where the relations con-
tain “few” tuples. Over these structures the expressive powers of GSO and
MSO coincide [27]. A tree-interpretable structure is uniformly sparse if and
only if it has finite tree width.
Structures FO-interpretable in the weak power set of a tree have
a FO-theory which is reducible to the WMSO-theory of the tree. Special
techniques are developed to study those structures. In particular, we present
reductions to questions about WMSO-interpretability in trees.

Finally, we employ compatible operations to define classes of infinite
structures with decidable theories. We use the following classes of structures
to illustrate this method.
Prefix-recognisable structures. The original definition of this class
is based on term rewriting systems [17]. In our framework, these are all
structures that can be obtained from the infinite binary tree by an MSO-
interpretation, or equivalently by an FO-interpretation [20]. As the infinite
binary tree has a decidable MSO-theory [41], the same holds for all prefix-
recognisable structures. A fourth definition can be given in terms of the con-
figuration graphs of pushdown automata [40]. A graph is prefix-recognisable
if and only if it can be obtained from such a configuration graph by fac-
toring out ε-transitions. The class of HR-equational structures is a proper
subclass of the prefix-recognisable structures [22]. By definition, each prefix-
recognisable structure is tree-interpretable and it is HR-equational if and
only if it has finite tree width or, equivalently, if it is uniformly sparse.
The Caucal hierarchy. This hierarchy is defined by combining MSO-inter-
pretations with the iteration operation. Starting from the set of all finite
structures one alternatingly applies these two operations [18]. The first
level of this strict hierarchy corresponds to the class of prefix-recognisable
structures. As both operations are compatible with MSO, one obtains a
large class of infinite graphs with decidable MSO-theories. Each structure
in the Caucal hierarchy is tree-interpretable.
Automatic structures. According to the original definition, the universe
of an automatic structure is a regular set of words and the relations are
defined by finite automata that read tuples of words in a synchronous way
[36]. In the same way one can define tree-automatic structures using tree
automata instead of word automata (and an appropriate definition of au-
tomata reading tuples of trees).

In our approach, automatic structures are obtained via an FO-interpre-
tation from the weak power set of the structure 〈ω,<〉 (the natural numbers
with order). In the same way, tree-automatic structures can be obtained

Logical theories and compatible operations 77

from the infinite binary tree [21]. By the choice of the operations it follows
that each (tree-)automatic structure has a decidable FO-theory.
Tree-automatic hierarchy. Combining the previous ideas, one can con-
sider the hierarchy of structures obtained by applying the weak power-set
operation followed by an FO-interpretation to all trees in the Caucal hier-
archy. It can be shown that this yields a strict hierarchy of structures with
a decidable FO-theory.

The article is structured as follows. In the next section we introduce
basic terminology and definitions. Section 3 is devoted to the presentation
of the operations and basic results concerning their compatibility. Further
results that can be obtained on restricted classes of structures are presented
in Section 4. The use of compatible operations for defining classes of struc-
tures with decidable theories is illustrated in Section 5.

2 Preliminaries

Let us fix notation. We define [n] := {0, . . . , n − 1}, and P(X) denotes
the power set of X. Tuples ā = 〈a0, . . . , an−1〉 ∈ An will be identified
with functions [n] → A. We shall only consider relational structures a =
〈A,R0, . . . , Rn−1〉 with finitely many relations R0, . . . , Rn−1 and where the
universe A is at most countable.

An important special case of structures are trees. Let D be a set. We
denote by D∗ the set of all finite sequences of elements of D. The empty
sequence is 〈〉. The prefix ordering is the relation � ⊆ D∗ ×D∗ defined by

x � y : iff y = xz for some z ∈ D∗.

An unlabelled tree is a structure t isomorphic to 〈T,�〉 where T ⊆ D∗

is prefix closed, for some set D. A tree is a structure of the form 〈T,�, P̄ 〉
where 〈T,�〉 is an unlabelled tree and the Pi are unary predicates.

A tree is deterministic if it is of the form 〈T,�, (childd)d∈D, P̄ 〉 where
D is finite and

childd := {ud | u ∈ D∗}.

The complete binary tree is t2 :=
〈
{0, 1}∗, child0, child1,�

〉
.

We shall consider several logics. Besides first-order logic FO we shall
use monadic second-order logic MSO which extends FO by set variables and
set quantifiers, weak monadic second-order logic WMSO which extends FO

by variables for finite sets and the corresponding quantifiers, and guarded
second-order logic GSO. The syntax of GSO is the same as that of full
second-order logic where we allow variables for relations of arbitrary arity
and quantification over such variables. The semantics of such a second-
order quantifier is as follows (for a more detailed definition see [33]). We

78 A. Blumensath, T. Colcombet, C. Löding

call a tuple ā guarded if there exists a relation Ri and a tuple c̄ ∈ Ri such
that every component ai of ā appears in c̄. A relation is guarded if it only
contains guarded tuples. We define a formula of the form ∃Sϕ(S) to be true
if there exists a guarded relation S satisfying ϕ. Similarly, ∀Sϕ(S) holds if
every guarded relation S satisfies ϕ. For instance, given a graph g = 〈V,E〉
we can use guarded quantifiers to quantify over sets of edges.

Definition 2.1. Let L and L′ be two logics. A (total) unary operation f
on structures is (L,L′)-compatible if, for every sentence ϕ ∈ L′, we can
effectively compute a sentence ϕf ∈ L such that

f(a) |= ϕ iff a |= ϕf , for every structure a.

We call f (L,L′)-bicompatible if, furthermore, for every sentence ϕ ∈ L, we
can effectively compute a sentence ϕ′ ∈ L′ such that

a |= ϕ iff f(a) |= ϕ′, for every structure a.

For the case that L = L′ we simply speak of L-compatible and L-bicompatible
operations.

The interest in compatible operations is mainly based on the fact that
they preserve the decidability of theories.

Lemma 2.2. Let f be a (L,L′)-compatible operation. If the L-theory of a
is decidable then so is the L′-theory of f(a).

Another natural property of this definition is the ability to compose
compatible operations.

Lemma 2.3. If f is an (L,L′)-compatible operation and g an (L′, L′′)-com-
patible one then g ◦ f is (L,L′′)-compatible. If f and g are bicompatible
then so is g ◦ f .

3 Operations

In this section we survey various operations on structures and their effect on
logical theories (see also [39, 47, 34]). We attempt to provide a generic and
self-contained panorama. We do not intend to present all results in their
strongest and most precise form. For instance, many compatibility state-
ments can be strengthened to compatibility for (i) the bounded quantifier
fragments of the corresponding logics; (ii) their extensions by cardinality
and counting quantifiers; or (iii) operations depending on parameters. The
statements we present could also be refined by studying their complexity in
terms of the size of formulae. This goes beyond the scope of this survey.

Logical theories and compatible operations 79

3.1 Generic operations
We start with interpretations, which are among the most versatile opera-
tions we shall introduce. In fact, all other operations we present are quite
limited on their own. Only when combined with an interpretation they
reveal their full strength.

Definition 3.1. Let L be a logic and Σ and Γ signatures. An L-interpre-
tation from Σ to Γ is a list

I =
〈
δ(x), (ϕR(x̄))R∈Γ

〉
of L-formulae over the signature Σ where δ has one free (first-order) variable
and the number of free variables of ϕR coincides with the arity of R.

Such an interpretation induces an operation mapping a Σ-structure a to
the Γ-structure

I(a) := 〈D,R0, . . . , Rr−1〉

where

D :=
{
a ∈ A

∣∣ a |= δ(a)
}

and Ri :=
{
ā ∈ An

∣∣ a |= ϕRi(ā)
}
.

The coordinate map of I is the function mapping those elements of A that
encode an element of I(a) to that element. It is also denoted by I.

An L-interpretation with δ(x) = true is called an L-expansion. An L-
marking is an L-expansion that only adds unary predicates without chang-
ing the existing relations of a structure.

Proposition 3.2. Let I be an L-interpretation where L is one of FO,
WMSO, or MSO. For every L-formula ϕ(x̄), there exists an L-formula ϕI(x̄)
such that

I(a) |= ϕ(I(ā)) iff a |= ϕI(ā),

for all structures a and all elements ai ∈ A with a |= δ(ai).

The formula ϕI is easily constructed from ϕ by performing the following
operations: (i) replacing every atom Rx̄ by its definition ϕR; (ii) relativising
all first-order quantifiers to elements satisfying δ, and all set quantifiers to
sets of such elements.

Corollary 3.3. L-interpretations are L-compatible if L is one of FO, WMSO,
or MSO.

A nice property of interpretations is that they are closed under composition.

80 A. Blumensath, T. Colcombet, C. Löding

Proposition 3.4. Let L be one of FO, WMSO, or MSO. For all L-interpre-
tations I and J , there exists an L-interpretation K such that K = I ◦ J .

The second generic operation we are considering is the quotient operation.

Definition 3.5. Let a = 〈A, R̄〉 be a structure and ∼ a binary relation. If
∼ is a congruence relation of a then we can form the quotient of a by ∼
which is the structure

a/∼ := 〈A/∼, S̄〉

where, if we denote the ∼-class of a by [a], we have

A/∼ :=
{
[a]

∣∣ a ∈ A}
,

Si :=
{
〈[a0], . . . , [an−1]〉

∣∣ 〈a0, . . . , an−1〉 ∈ Ri

}
.

By convention, if ∼ is not a congruence, we set a/∼ to be a.

We shall only consider quotients by relations ∼ that are already present
in the structure. This is no loss of generality since we can use a suitable
interpretation to add any definable equivalence relation. For a relation
symbol R and a structure a we denote by Ra the relation of a corresponding
to R.

Proposition 3.6. Let L be one of FO, WMSO or MSO, and ∼ a binary
relation symbol. The quotient operation a 7→ a/∼a is L-compatible.

Remark 3.7.
(a) The convention in the case that ∼ is not a congruence causes no

problems for the logics we are considering since in each of them we can
express the fact that a given binary relation is a congruence.

(b) In order to factorise by a definable congruence relation that is not
present in the structure we can precede the quotient operation by a suitable
interpretation that expands the structure by the congruence.

(c) It is also possible to define quotients with respect to equivalence rela-
tions that are no congruences. This case is also subsumed by our definition
since, given an equivalence relation ∼, we can use an FO-interpretation I
to modify the relations of a structure a in such a way that ∼ becomes a
congruence and the quotient I(a)/∼ equals a/∼.

Another property of the quotient operation is that it commutes with
interpretations in the sense of the following proposition.

Proposition 3.8. Let L be one of FO, WMSO or MSO. For every L-
interpretation I and each binary relation symbol ∼, there exists an L-
interpretation J such that

I(a/∼a) = J (a)/∼J (a), for every structure a.

Logical theories and compatible operations 81

In combination with Proposition 3.4, it follows that every sequence of
L-interpretations and quotients can equivalently be written as a single L-
interpretation followed by a quotient. This is the reason why one often
defines a more general notion of an interpretation that combines the simple
interpretations above with a quotient operation by a definable congruence.
It follows that these generalised interpretations are also closed under com-
position.

3.2 Monadic second-order logic
We now turn to operations compatible specifically with monadic second-
order logic. The simplest one is the disjoint union. We also present a much
more general kind of union called a generalised sum. Finally we present
Muchnik’s iteration construction.

Definition 3.9. The disjoint union of two structures a = 〈A, R̄〉 and b =
〈B, S̄〉 is the structure

a] b := 〈A ·∪B, T̄ 〉 where Ti := Ri ·∪ Si.

The theory of the sum can be reduced to the theory of the two arguments
using the following proposition.

Proposition 3.10. Let L be one of FO, MSO, WMSO or GSO. For every
L-formula ϕ there exist L-formulae ψ0, . . . , ψn and ϑ0, . . . , ϑn such that

a] b |= ϕ iff there is some i ≤ n such that a |= ϕi and b |= ϑi.

Unions behave well with respect to MSO, but the same does not hold for
products. A notable exception are products with a fixed finite structure. In
the following definition we introduce the simpler product with a finite set,
which, up to FO-interpretations, is equivalent to using a finite structure.

Definition 3.11. Let a = 〈A, R̄〉 be a structure and k < ω a number. The
product of a with k is the structure

k × a :=
〈
[k]×A, R̄′, P̄ , I

〉
,

where

R′
j := {(〈i, a0〉, . . . , 〈i, an−1〉) | ā ∈ Rj and i < k},
Pi := {i} ×A,

I := {(〈i, a〉, 〈j, a〉) | a ∈ A, i, j < k}.

Proposition 3.12. For every MSO-formula ϕ(X0, . . . , Xn−1) and all k < ω,
there exists an MSO-formula ϕk(X̄0, . . . , X̄n−1) such that

k × a |= ϕ(P 0, . . . , Pn−1) iff a |= ϕk(Q̄0, . . . , Q̄n−1),

where Q`
i := {a ∈ A | 〈i, a〉 ∈ P `}. The same holds for WMSO.

82 A. Blumensath, T. Colcombet, C. Löding

This result can be proven as a consequence of Theorem 3.16 below.

Corollary 3.13. For k < ω, the product operation a 7→ k × a is MSO-
compatible. It is MSO-bicompatible if k 6= 0. The same holds for WMSO and
GSO.

Finite products are sometimes combined with MSO-interpretations re-
sulting in what is called a parameterless MSO-transduction [24]. Such a
transduction maps a structure a to the structure I(k × a), where k is a
natural number, and I is an MSO-interpretation. It follows that parameter-
less MSO-transductions are MSO-compatible. Furthermore, they are closed
under composition since, for every MSO-interpretation J , there exists an
MSO-interpretation K with

k × J (l × a) ∼= K(kl × a).

The operation of disjoint union can be generalised to a union of infinitely
many structures. Furthermore, we can endow the index set with a struc-
ture of its own. This operations also generalises the product with a finite
structure.

Definition 3.14. Let i = 〈I, S̄〉 be a structure and (a(i))i∈I a sequence of
structures a(i) = 〈A(i), R̄(i)〉 indexed by elements i of i.

The generalised sum of (a(i))i∈I is the structure∑
i∈i

a(i) :=
〈
U,∼, R̄′, S̄′

〉
with universe U := {〈i, a〉 | i ∈ I, a ∈ A(i)} and relations

〈i, a〉 ∼ 〈j, b〉 : iff i = j,

R′
` :=

{
(〈i, a0〉, . . . , 〈i, an−1〉)

∣∣ i ∈ I and ā ∈ R(i)
`

}
,

S′` :=
{
(〈i0, a0〉, . . . , 〈in−1, an−1〉)

∣∣ ı̄ ∈ S`

}
.

To illustrate the definition let us show how a generalised sum can be
used to define the standard ordered sum of linear orderings.

Example 3.15. Let i = 〈I,@〉 and a(i) = 〈A(i), <(i)〉, for i ∈ I, be linear
orders. Then ∑

i∈i

a(i) = 〈U,∼, <,@〉

where U = {〈i, a〉 | a ∈ A(i)} and we have

〈i, a〉 < 〈j, b〉 iff i = j and a <(i) b,

〈i, a〉 @ 〈j, b〉 iff i @ j.

Logical theories and compatible operations 83

If we introduce the new (definable) relation

〈i, a〉 ≺ 〈j, b〉 : iff 〈i, a〉 @ 〈j, b〉 or 〈i, a〉 < 〈j, b〉

then the structure 〈U,≺〉 is isomorphic to the ordered sum of the orders a(i).

The generalisation of Proposition 3.10 takes the following form.

Theorem 3.16. For every MSO-sentence ϕ, we can construct a finite se-
quence of MSO-formulae χ0, . . . , χs−1 and an MSO-formula ψ such that∑

i∈i

a(i) |= ϕ iff
〈
i, [[χ0]], . . . , [[χs−1]]

〉
|= ψ,

where [[χ]] := {i ∈ I | a(i) |= χ}.

Remark 3.17. This theorem is a special case of a result of Shelah [45]
following the ideas developped by Feferman and Vaught [32], see [47, 34] for
a readable exposition. As mentioned above it implies Proposition 3.10 (for
MSO) as well as Proposition 3.12.

We finally survey the iteration operation originally introduced by Much-
nik. Given a structure a this operation produces a structure consisting of
infinitely many copies of a arranged in a tree-like fashion.

Definition 3.18. The iteration of a structure a = 〈A, R̄〉 is the structure
a∗ := 〈A∗,�, cl, R̄∗〉 where � is the prefix ordering and

cl := {waa | w ∈ A∗, a ∈ A},
R∗

i := {(wa0, . . . , war) | w ∈ A∗, ā ∈ Ri}.

Theorem 3.19 (Muchnik). The iteration operation is MSO-bicompatible
and WMSO-bicompatible.

Remark 3.20. The Theorem of Muchnik was announced without proof
in [44]. The first published proof, based on automata-theoretic techniques,
is due to Walukiewicz [49, 50]. An exposition can be found in [2] and a
generalisation to various other logics is given in [9].

Example 3.21.
(a) Let a := 〈[2], P0, P1〉 be a structure with two elements and unary

predicates P0 := {0} and P1 := {1} to distinguish them. Its iteration
a∗ = 〈[2]∗,�, cl, P ∗

0 , P
∗
1 〉 resembles the complete binary tree t2. Applying a

simple (quantifier free) FO-interpretation I we obtain t2 = I(a∗).
(b) Let g be a graph. The unravelling of g is the graph U(g) := 〈U,F 〉

where U is the set of all paths through g and F consists of all pairs 〈u, v〉
such that the path v is obtained from u by appending a single edge of g.

84 A. Blumensath, T. Colcombet, C. Löding

The unravelling of g can be obtained from g via an iteration followed by
an interpretation. Note that g∗ consists of all sequences of vertices of g. All
that is needed to get U(g) is to define the subset of those sequences that
are paths through g. This can be done by the formula

δ(w) := ∀u∀v
[
suc(u, v) ∧ v � w → ∃u′(suc(u, u′) ∧ cl(u′) ∧ E∗u′v)

]
.

In view of the examples above we directly obtain the following corollaries.

Corollary 3.22 (Rabin, [41]). The MSO-theory of the infinite binary tree t2
is decidable.

Corollary 3.23 (Courcelle-Walukiewicz, [31]). The unravelling operation U
is MSO-compatible and WMSO-compatible.

Finally, let us mention that iterations commute with interpretations in
the following sense.

Lemma 3.24 (Blumensath, [5]). For every MSO-interpretation I, there
exists an MSO-interpretation J such that

I(a)∗ = J (a∗), for all structures a.

3.3 First-order logic
In this section we concentrate on first-order logic. We start by introducing
the power-set operation which relates MSO-theories to FO-theories. This
operation provides a systematic way to relate results about FO-compatibility
to those about MSO-compatibility above.

Definition 3.25. Let a = 〈A, R̄〉 be a structure. The power set of a is the
structure

P(a) := 〈P(A), R̄′,⊆〉,

where R′
i :=

{
〈{a0}, . . . , {an−1}〉

∣∣ ā ∈ Ri

}
.

The weak power set Pw(a) of a is the substructure of P(a) induced by
the set of all finite subsets of A.

Since elements of P(a) are sets of elements of a, FO-formulae over P(a)
directly correspond to MSO-formulae over a (and similarly for WMSO).

Proposition 3.26.
(a) For every FO-formula ϕ(x̄), we can construct an MSO-formula ϕ′(X̄)

such that

P(a) |= ϕ(P̄) iff a |= ϕ′(P̄),

Logical theories and compatible operations 85

for every structure a and all subsets Pi ⊆ A.
(b) For every MSO-formula ϕ(X̄), we can construct an FO-formula ϕ′(x̄)

such that

a |= ϕ(P̄) iff P(a) |= ϕ′(P̄),

for every structure a and all subsets Pi ⊆ A.
(c) Analogous statements hold for WMSO-formulae and the weak power-

set operation Pw.

Corollary 3.27. The power-set operation P is (MSO, FO)-bicompatible and
the weak power-set operation Pw is (WMSO, FO)-bicompatible.

Lemma 3.28. For every MSO-interpretation I, there exists an FO-interpre-
tation J such that

P ◦ I = J ◦ P.

A similar statement holds with WMSO instead of MSO and Pw instead of P.

Remark 3.29. In [19, 21] (finite) set interpretations are introduced which
are halfway between first-order and monadic second-order interpretations.
A (finite) set interpretation is of the form

I =
〈
δ(X), (ϕR(X̄))R∈Γ

〉
where δ, ϕR are (weak) monadic second-order formulae with set variables
as free variables. Correspondingly the elements of the structure I(a) are
encoded by (finite) subsets of the original structure. With the operations of
the present article we can express such a set interpretation as, respectively,

J ◦ P or J ◦ Pw

where J is an FO-interpretation. From Corollary 3.27 it follows that

• set interpretations are (MSO, FO)-compatible and

• finite set interpretations are (WMSO, FO)-compatible.

From Lemma 3.28 and Proposition 3.4 it follows that, if I is an FO-inter-
pretation, J a set interpretation, and K an MSO-interpretation then their
composition I ◦J ◦K is also a set interpretation. The same holds for finite
set interpretations provided K is a WMSO-interpretation.

We have mentioned that products are not compatible with monadic
second-order logic. But they are compatible with first-order logic. In fact,
historically they were among the first operations shown to be compatible
with some logic.

86 A. Blumensath, T. Colcombet, C. Löding

Definition 3.30. The (direct, or Cartesian) product of two structures a =
〈A, R̄〉 and b = 〈B, S̄〉 is the structure

a× b := 〈A×B, T̄ 〉,

where Ti :=
{
(〈a0, b0〉, . . . , 〈an−1, bn−1〉)

∣∣ ā ∈ Ri and b̄ ∈ Si

}
.

Proposition 3.31. For every FO-formula ϕ, we can construct FO-formulae
ψ0, . . . , ψn and ϑ0, . . . , ϑn such that

a× b |= ϕ iff there is some i ≤ n such that a |= ψi and b |= ϑi.

Product and disjoint union are related via the power-set construction.

Proposition 3.32. There exist FO-interpretations I,J and K such that

P(a] b) ∼= I(J (P(a))×K(P(b))), for all structures a and b.

A similar statement holds with Pw instead of P.

Remark 3.33.
(a) The interpretations J and K are only needed to avoid problems with

empty relations. If a relation is empty in one of the factors then the corre-
sponding relation of the product is also empty and cannot be reconstructed.
The quantifier-free interpretations are used to create dummy relations to
avoid this phenomenon.

(b) Using this result together with the (MSO, FO)-bicompatibility of P
we can deduce the MSO variant of Proposition 3.10 from Proposition 3.31.
A similar argument yields the WMSO version.

Similar to finite products that are MSO-compatible we can define a finite
exponentiation which is FO-compatible.

Definition 3.34. Let a = 〈A, R̄〉 be a structure and k < ω a number. The
exponent of a to the k is the structure

ak := 〈Ak, R̄′, Ē〉

with relations

R′
`i := {(ā0, . . . , ān−1) | (a0

i , . . . , a
n−1
i) ∈ R`},

Eij := {(ā, b̄) | ai = bj}.

The good behaviour of the finite exponent operation is illustrated by the
next proposition.

Logical theories and compatible operations 87

Proposition 3.35. For each k < ω and every FO-formula ϕ(x0, . . . , xn−1),
there exists an FO-formula ϕk(x̄0, . . . , x̄n−1) such that

ak |= ϕ(ā0, . . . , ān−1) iff a |= ϕk(ā0, . . . , ān−1),

for every structure a and all āi ∈ Ak.

Corollary 3.36. Let k < ω. The exponent operation a 7→ ak is FO-
compatible. It is FO-bicompatible for k ≥ 1.

The relation between finite exponentiation and finite products is given
in the next proposition. (This allows us to deduce Proposition 3.12 from
Proposition 3.35).

Proposition 3.37. For every k < ω, there exists an FO-interpretation I
such that

P(k × a) ∼= I(P(a)k), for every structure a.

The same holds for the weak power-set operation.

In the same way as the combination of MSO-interpretations and finite
products leads to the notion of a parameterless MSO-transduction, one can
perform a finite exponentiation before an FO-interpretation. The resulting
operation is called a k-dimensional FO-interpretation. The composition of
a k-dimensional FO-interpretation with an l-dimensional one yields a kl-
dimensional FO-interpretation. In the same spirit as above, multi-dimen-
sional interpretations are correlated to parameterless MSO-transductions via
the power-set operation.

As for unions we can generalise products to infinitely many factors. In
the original definition of a generalised product by Feferman and Vaught [32]
FO-formulae are used to determine the relations in the product structure.
We shall adopt a simpler yet richer definition where the product structure
is completely determined by the index structure and the factors.

Definition 3.38. Let a(i) = 〈A(i), R̄(i)〉, i ∈ I, be structures, and let

i =
〈
P(I),⊆, S̄

〉
be the expansion of the power-set algebra P(I) by arbitrary relations S̄.
We define the generalised product of the a(i) over i to be the structure∏

i∈i

a(i) :=
〈
U,⊆, S̄, R̄′, E=〉

88 A. Blumensath, T. Colcombet, C. Löding

with universe

U := P(I) ·∪
∏
i∈I

A(i)

where the relations ⊆ and S̄ are those of i and we have

R′
k :=

{
(X, ā)

∣∣ X = [[Rā]]
}
,

E= :=
{
(X, a, b)

∣∣ X = [[a = b]]
}
,

and [[χ(ā)]] := {i ∈ I | a(i) |= χ(ā(i))}.

Before stating that the generalised products are compatible with first-
order logic let us give two examples.

Example 3.39. Let g0 = 〈V0, E0〉 and g1 = 〈V1, E1〉 be two directed
graphs. There are two standard ways to form their product: we can take the
direct or synchronous product with edge relation Es := E0×E1, and we can
take the asynchronous product with edge relation Ea := (E0×id)∪(id×E1).
Both kinds of products can be obtained from the generalised product via a
first-order interpretation.
For the direct product, we define the edge relation by the formula

ϕEs(x, y) := ∃z[All(z) ∧ Ezxy]

where the formula

All(x) := x ⊆ x ∧ ∀y(x ⊆ y → x = y)

states that x = I is the maximal element of P(I). (Note that the condition
x ⊆ x is needed to ensure that x ∈ P(I).)
Similarly, we define the edge relation of the asynchronous product by

ϕEa(x, y) := ∃u∃v
[
E=vxy ∧ Euxy ∧ Sing(u)

∧ ∀z(z ⊆ z → (u * z ↔ z ⊆ v))
]

where the formula

Sing(z) := z ⊆ z ∧ ∀u∀v[v ⊆ u ⊆ z → (v = u ∨ u = z)]

states that z is a singleton set in P(I).

Theorem 3.40 (Feferman-Vaught, [32]). For every FO-sentence ϕ, there
exist an FO-sentence ϕ′ and a finite sequence of FO-sentences χ0, . . . , χm

such that ∏
i∈i

a(i) |= ϕ iff
〈
i, [[χ0]], . . . , [[χm]]

〉
|= ϕ′,

where [[χ]] := {i ∈ I | a(i) |= χ}.

Logical theories and compatible operations 89

Remark 3.41.
(a) If the structure i is of the form P(j), for some index structure j, then

instead of a FO-formula ϕ′ over i we can also construct an MSO-formula
over j, by Proposition 3.26. Hence, in this case we can reduce the FO-theory
of the product

∏
i ai to the MSO-theory of the index structure j.

(b) Note that Theorem 3.16 follows from Theorem 3.40 and Proposi-
tion 3.26 since there exist FO-interpretations I,J such that

P
(∑

i∈i

ai

)
= I

(∏
i∈P(i)

J (P(ai))
)
.

(c) As an application of the generalised product we give an alternative
proof to a result of Kuske and Lohrey [38] which states that, if we modify
the iteration operation by omitting the clone relation cl then the resulting
operation is (FO,Chain)-compatible. Here, Chain denotes the restriction of
MSO where set variables only range over chains, i.e., sets that are totally
ordered with respect to the prefix order �. Let us denote by a] the iteration
of a without cl and let Pch(a) be the substructure of P(a) induced by all
chains of a (we assume that a contains a partial order�). A closer inspection
reveals that, up to isomorphism, the structure Pch(a]) can be obtained by
a (2-dimensional) FO-interpretation from the generalised product of several
copies of a indexed by the structure P〈ω,<〉. By Theorem 3.40 and the
decidability of the MSO-theory of 〈ω,<〉 [13], it follows that the operation
a 7→ a] is (FO,Chain)-compatible.

3.4 Guarded second-order logic
We conclude this section by considering an operation that connects guarded
second-order logic with monadic second-order logic.

Definition 3.42. The incidence structure of a structure a = 〈A,R0, . . . , Rr〉
is

In(a) := 〈A ·∪G, R̄′, I0, . . . , In−1〉

where G := R0 ·∪ . . . ·∪Rr is the set of all tuples appearing in a relation of a,
we have unary predicates

R′
i := {ā ∈ G | ā ∈ Ri},

and binary incidence relations Ii ⊆ A×G with

Ii := {(ai, ā) ∈ A×G | ā ∈ G}.

Example 3.43. The incidence structure of a graph g = 〈V,E〉 is the struc-
ture

In(g) = 〈V ·∪ E,E′, I0, I1〉

90 A. Blumensath, T. Colcombet, C. Löding

where the universe consists of all vertices and edges, the unary predicate E′

identifies the edges, and the incidence relations I0 and I1 map each edge to
its first and second vertex, respectively.

The GSO-theory of a structure is equivalent to the MSO-theory of its
incidence structure.

Proposition 3.44. The operation In is (GSO,MSO)-bicompatible.

Remark 3.45. For the proof, note that we can encode every guarded n-
tuple ā by a triple 〈R, c̄, σ〉 consisting of an m-ary relation R, a tuple c̄ ∈ R,
and the function σ : [n] → [m] such that ai = cσ(i). Consequently, we can
encode a guarded relation S ⊆ An by a (finite) family of subsets PR,σ ⊆ G
where

PR,σ := {c̄ ∈ G | 〈R, c̄, σ〉 encodes an element of S}.

4 Structural properties

So far, we have presented a number of purely logical properties of operations.
In this section, we survey other equivalences which hold under some addi-
tional hypothesis on the structures in question. First we study properties
specific to trees. Then we present results for uniformly sparse structures.
Finally we consider structures interpretable in the weak power set of a tree.

4.1 Tree-interpretable structures
When studying logical theories of trees various tools become available that
fail for arbitrary structures. The most prominent example are automata-
theoretic methods. For instance, one can translate every MSO-formula into
an equivalent tree automaton (see [12, 46, 41]). Closer to the topic of the
present paper are composition arguments which are based on Theorem 3.16
and its variants. Those techniques provide the necessary arguments for the
tree-specific statements of the present section.

Definition 4.1. A structure is tree-interpretable if it is isomorphic to I(t)
for some MSO-interpretation I and tree t.

The notion of tree-interpretability is linked to two complexity measures:
the clique width [28] (for graphs) and the partition width [5, 7] (for arbitrary
structures). It turns out that a graph/structure is tree-interpretable if and
only if its clique width/partition width is finite.

In the definition of tree-interpretable structures, we can require the tree t
to be deterministic without any effect. We can also replace MSO by WMSO

without changing the definition. Our first result implies that the definition
still remains equivalent if we use FO instead of MSO.

Logical theories and compatible operations 91

Theorem 4.2 (Colcombet, [20]). For every MSO-interpretation I, there
exists an FO-interpretation J and an MSO-marking M such that

I(t) = (J ◦M)(t), for every tree t.

The same holds when MSO is replaced by WMSO.

Indeed, since the class of trees is closed under MSO-markings every tree-
interpretable structure can be obtained by an FO-interpretation from a tree.
Note that it is mandatory for this result that trees are defined in terms of
the prefix order � instead of using just the immediate successor relation.

One motivation for the study of tree-interpretable structures is the fact
that this class seems to capture the dividing line between simple and com-
plicated MSO-theories. On the one hand, trees have simple MSO-theories
and, therefore, so have all structures that can be interpreted in a tree. Con-
versely, it is conjectured that the MSO-theory of every structure that is not
tree-interpretable is complicated.

Conjecture 4.3 (Seese, [43]). Every structure with a decidable MSO-theory
is tree-interpretable.

Currently the best result in this direction was recently obtained by Cour-
celle and Oum [30]. It states that every graph that is not tree-interpretable
has an undecidable C2MSO-theory where C2MSO is the extension of MSO

by predicates for counting modulo 2. Unfortunately their proof appears
surprisingly difficult to generalise to arbitrary structures.

One evidence for Seese’s conjecture is the fact that the class of tree-inter-
pretable structures is closed under all known MSO-compatible operations.

Proposition 4.4. The class of tree-interpretable structures is closed under
(i) disjoint unions, (ii) generalised sums, (iii) finite products, (iv) quotients,
(v) MSO-interpretations, and (vi) iterations.

There is no difficulty in proving this proposition. In particular, it is easy
to establish that the quotient of a tree-interpretable structure is also tree-
interpretable. Indeed it is sufficient to guess a system C of representatives
of the equivalence classes. Once we have expanded the tree by this new
unary predicate C we can use a simple MSO-interpretation to obtain the
quotient. However, if one wants the representatives C to be unique and
MSO-definable this becomes impossible. This follows from the following
result of Gurevich and Shelah [35] (see [15] for a simple proof): There
is no MSO-formula ϕ(x,X) such that, for every deterministic tree t and all
nonempty sets P ⊆ t, there is a unique element a ∈ P such that t |= ϕ(a, P).

The following theorem circumvents this difficulty. It is more precise than
simply claiming the closure under quotients in that it states that we can

92 A. Blumensath, T. Colcombet, C. Löding

choose the same deterministic tree. The result is given for FO, but it can
also be derived for MSO and WMSO by a direct application of Theorem 4.2.

Theorem 4.5. Let I be an FO-interpretation and ∼ a binary relation sym-
bol. There exists an FO-interpretation J such that

I(t)/∼I(t) ∼= J (t), for every deterministic tree t.

Remark 4.6. For the proof of this result it is sufficient to assign to each
∼-class a unique element of the tree in an FO-definable way. First, one
maps each class to its infimum (for the prefix order �). With this definition
several classes might be mapped to the same element. Using a technique
similar to the one from [21] it is possible to distribute those elements in
a FO-definable way and thereby to transform the original mapping into an
injective one.

Another phenomenon is that the iteration and unravelling operations
turn out to be equivalent in the context of MSO-interpretations over trees.

Theorem 4.7 (Carayol-Wöhrle, [16]). There exist MSO-interpreta-
tions I,J such that

t∗ ∼= I(U(J (t))), for every deterministic tree t.

The first interpretation J adds backward edges and loops to every vertex
of t. From the unravelling of this structure we can reconstruct the iteration
of t by an MSO-interpretation.

4.2 Tree width, uniform sparse structures, and complete
bipartite subgraphs

In this section we introduce the tree width of a structure, a complexity
measure similar to the clique width or partition width, which were related
to the notion of tree-interpretability. Intuitively the tree width of a structure
measures how much it resembles a tree (see [10] for a survey).

Definition 4.8. Let a = 〈A, R̄〉 be a structure.
(a) A tree decomposition of a is a family (Uv)v∈T of subsets Uv ⊆ A

indexed by an undirected tree T with the following properties:

1.
⋃

v Uv = A.

2. For all ā ∈ Ri in some relation of a, there is some v ∈ T with ā ⊆ Uv.

3. For every element a ∈ A, the set {v ∈ T | a ∈ Uv} is connected.

Logical theories and compatible operations 93

(b) The width of such a tree decomposition (Uv)v∈T is

sup {|Uv| | v ∈ T}.

(For aesthetic reasons the width is traditionally defined as supremum of
|Uv| − 1. We have dropped the −1 since it makes many statements more
complicated and omitting it does not influence the results.)

(c) The tree width twd a is the minimal width of a tree decomposition
of a.

It turns out that, with respect to tree width, GSO plays a similar role
as MSO does with respect to tree-interpretability. The incidence structure
allows to go back and forth in this analogy.

Theorem 4.9. A structure a has finite tree width iff In(a) is tree-interpret-
able.

The corresponding result for classes of finite structures is due to Cour-
celle and Engelfriet [29]. The same ideas can be used to prove Theorem 4.9.
Note that this theorem in particular implies that every structure with finite
tree width is tree-interpretable. However the converse does not hold. For
instance, the infinite clique is tree-interpretable but its tree width is infinite.
The equivalent of Seese’s Conjecture 4.3 for tree width has been proved by
Seese.

Theorem 4.10 (Seese, [43]). Every structure with a decidable GSO-theory
has finite tree width.

The proof is based on the Excluded Grid Theorem of Robertson and Sey-
mour [42] and on the fact that the class of all finite grids has an undecidable
MSO-theory (see also [25, 5]).

In the remaining of this section, we present two other complexity mea-
sures for countable structures: sparsity and the existence of big complete
bipartite subgraphs in the Gaifman graph. A structure is uniformly sparse
if, in every substructure, the number of guarded tuples is linearly bounded
by the size of the substructure.

Definition 4.11. Let k < ω. A structure a = 〈A,R0, . . . , Rn−1〉 is called
uniformly k-sparse if, for all finite sets X ⊆ A and every i < n, we have

|Ri|X | ≤ k · |X|.

A structure is uniformly sparse if it is uniformly k-sparse for some k < ω.

The requirement of uniform sparsity is less restrictive than that of having
a finite tree width: every structure of finite tree width is uniformly sparse,

94 A. Blumensath, T. Colcombet, C. Löding

but the converse does not hold in general. Consider for instance the infinite
grid Z×Z with an edge between (i, k) and (j, l) if |i− j|+ |k− l| = 1. This
graph is uniformly sparse, but has infinite tree width.

The work of Courcelle [27] shows that the property of being uniformly
sparse is the correct notion for studying the relationship between GSO and
MSO. While, in general, GSO is strictly more expressive than MSO, it col-
lapses to MSO on uniformly sparse structures.

Theorem 4.12. Let k < ω. For every GSO-sentence ϕ, we can construct
an MSO-sentence ϕ′ such that

a |= ϕ iff a |= ϕ′, for all countable uniformly k-sparse structures a.

The proof of this result relies on the possibility, once k is fixed, to in-
terpret In(a) in n × a for a suitably chosen n, provided one has correctly
labelled n × a by a certain number of monadic parameters. Then Theo-
rem 4.12 follows by Proposition 3.44. This technique is formalised by the
following lemma.

Lemma 4.13. For all k < ω, there exist n < ω, an MSO-interpretation I,
and an MSO-formula ϕ such that, for every countable uniformly k-sparse
structure a,

• there exist unary predicates P̄ such that a |= ϕ(P̄) and

• In(a) = I(n× 〈a, P̄ 〉), for all P̄ with a |= ϕ(P̄).

The last notion we present is based on the Gaifman graph of a structure.

Definition 4.14. Let a = 〈A,R0, . . . , Rn−1〉 be a structure. The Gaifman
graph of a is the undirected graph

Gaif(a) := 〈A,E〉

with edge relation

E := {(a, b) | a 6= b and (a, b) is guarded}.

The Gaifman graph gives an approximation of the relations in a struc-
ture. All the notions of this section can be defined in terms of the Gaifman
graph as stated by the following proposition.

Proposition 4.15. A structure has finite tree width iff its Gaifman graph
has finite tree width. A structure is uniformly sparse iff its Gaifman graph
is uniformly sparse.

Logical theories and compatible operations 95

A complete bipartite graph is an undirected graph 〈V,E〉 where V is
partitioned into two sets A ·∪B such that

E = (A×B) ∪ (B ×A).

If |A| = |B| = n then we say that the graph is of size n. If a graph has
complete bipartite subgraphs of arbitrary size this implies that for those
subgraphs the number of edges is quadratic in the number of vertices. As
a consequence such a graph cannot be uniformly sparse. Hence, for ev-
ery uniformly sparse graph, there is a bound on the size of its complete
bipartite subgraphs. Over structures this means that for every uniformly
sparse structure there exists a bound on the size of the complete bipartite
subgraphs of its Gaifman graph. However the converse does not hold in
general. It is possible to define non-uniformly sparse graphs which do not
possess any complete bipartite subgraphs of size larger than some constant.
For instance, the graph with vertices Z with an edge between m and n iff
|m− n| is a power of 2.

The three notions of (i) admitting a bound on the size of complete bi-
partite subgraphs; (ii) being uniformly sparse; and (iii) having bounded tree
width; are related but do not coincide. The following theorem states the
equivalence of these three notions over tree-interpretable structures. It was
first proved for finite graphs in [26]. The generalisation to infinite structures
proceeds along the same lines (see [5]).

Theorem 4.16. For every structure a, the following statements are equiv-
alent:

1. a has finite tree width.

2. a is tree-interpretable and uniformly sparse.

3. a is tree-interpretable and the size of the complete bipartite subgraphs
of its Gaifman graph is bounded.

4.3 The weak power set of trees
We have seen that the power-set construction allows us to relate MSO and
FO, in the same way MSO and GSO are related by the incidence structure con-
struction. Hence, one may wonder whether results similar to Theorem 4.10
for GSO or Conjecture 4.3 for MSO hold in this setting. The answer is neg-
ative.

Proposition 4.17 (Colcombet-Löding, [21]). There are structures of de-
cidable FO-theory which are not of the form I(Pw(t)), for a tree t and an
FO-interpretation I.

96 A. Blumensath, T. Colcombet, C. Löding

An example of this phenomenon is the random graph (a graph in which
every finite graph can be embedded) which has a decidable FO-theory but
is not of the above form. This propositon is established as an application
of the following theorem which eliminates the weak power-set operation in
the equation (I ◦ Pw)(t) = Pw(a), provided that t is a deterministic tree.

Theorem 4.18 (Colcombet-Löding, [21]). For every FO-interpretation I,
there exists a WMSO-interpretation J such that

(I ◦ Pw)(t) ∼= Pw(a) implies J (t) ∼= a,

for every deterministic tree t and every structure a.

Note that some kind of converse to this theorem can easily be deduced
from Lemma 3.28. Indeed, for every WMSO-interpretation J , there exists
an FO-interpretation I such that

I ◦ Pw = Pw ◦ J .

Consequently, J (t) ∼= a implies (I ◦ Pw)(t) = (Pw ◦ J)(t) ∼= Pw(a).
Finally, let us state a variant of Theorem 4.5 for the weak power set of

a tree.

Theorem 4.19 (Colcombet-Löding, [21]). For every FO-interpretation I
and every binary relation symbol ∼, there is an FO-interpretation J such
that:

(I ◦ Pw)(t)/∼(I◦Pw)(t) ∼= (J ◦ Pw)(t), for every deterministic tree t.

When the power set operation is used instead of the weak power-set, we
conjecture that this theorem becomes false, whereas Theorem 4.18 remains
true: New phenomena arise when infinite sets are allowed.

5 Classes

Suppose that we are interested in, say, the monadic second-order theory of
some structure a. One way to show the decidability of this theory is to start
from a structure b for which we already know that its monadic second-order
theory is decidable, and then to construct a from b using MSO-compatible
operations. We have seen an example of this approach in Corollary 3.22
where the infinite binary tree t2 is constructed from a finite structure using
an iteration and an MSO-interpretation.

In this last section we follow this idea and consider not only single struc-
tures but classes of structures that can be obtained in the way described
above. For example, by applying the iteration operation to a finite struc-
ture followed by an MSO-interpretation we can not only construct t2 but

Logical theories and compatible operations 97

a whole class of structures with a decidable monadic second-order theory.
This class and its generalisations are the subject of the first part of this
section. In Section 5.2 we consider classes of structures with a decidable
first-order theory that can be obtained with the help of FO-interpretations
and the (weak) power-set operation. We conclude our survey in Section 5.3
by presenting HR-equational structures and their GSO-theory.

5.1 Prefix-recognisable structures and the Caucal hierarchy
We have conjectured above that all structures with a decidable MSO-theory
are tree-interpretable. In this section we take the opposite direction and
define large classes of tree-interpretable structures with a decidable MSO-
theory. We start with the class of prefix-recognisable structures. Originally,
this class was defined as a class of graphs in [17]. These graphs are defined
over a universe consisting of a regular set of finite words and their edge
relation is given as a finite union of relations of the form

(U × V)W := {(uw, vw) | u ∈ U, v ∈ V, w ∈W},

for regular languages U, V,W . Such relations are a combination of a recog-
nisable relation U×V for regular U and V , followed by the identity relation,
explaining the term ‘prefix-recognisable’.

This definition can been extended to arbitrary structures instead of
graphs (see [6, 14]) but the description of prefix-recognisable relations gets
more complicated. Using the approach of compatible operations we obtain
an alternative and simpler definition of the same class of structures.

Definition 5.1. A structure a is prefix-recognisable if and only if a ∼= I(t2),
for some MSO-interpretation I.

This definition directly implies that each prefix-recognisable structure
is tree-interpretable and has a decidable monadic second-order theory be-
cause t2 has. Further elementary properties are summarised in the following
proposition.

Proposition 5.2. The class of prefix-recognisable structures is closed un-
der (i) MSO-interpretations, (ii) parameterless MSO-transductions, (iii) dis-
joint unions, (iv) finite products, (v) quotients, and (vi) generalised sums
of the form

∑
i∈i a in which both a and i are prefix-recognisable and all

summands a are isomorphic.

In fact, according to Theorem 4.21, we can even replace MSO-interpre-
tations by FO-interpretations.

Theorem 5.3 (Colcombet, [20]). A structure a is prefix-recognisable if and
only if a ∼= I(t2), for some FO-interpretation I.
1 In combination with the fact that every regular tree is FO-interpretable in t2.

98 A. Blumensath, T. Colcombet, C. Löding

For prefix-recognisable graphs several alternative characterisations have
been given, for example they are the configuration graphs of pushdown au-
tomata after factoring out the ε-transitions, and also those graphs obtained
as the least solutions of finite systems of equations whose operations con-
sists of (i) disjoint unions and (ii) positive quantifier-free interpretations
(this approach is due to Barthelmann [1], see [4] for an overview).

In the definition of prefix-recognisable structures we have used the infi-
nite binary tree t2 as a generator and applied MSO-interpretations to it. In
Section 3 we have seen how t2 can be obtained from a finite structure with
the help of the iteration operation. In fact, we do not get more structures
when we allow the application of an MSO-interpretation to the iteration of
an arbitrary finite structure.

Proposition 5.4. The prefix-recognisable structures are exactly those of
the form I(a∗) for an MSO-interpretation I and a finite structure a.

As both operations used in Proposition 5.4 are MSO-compatible there is
no reason to stop after just one application of each of them. This idea is used
in [18] for graphs using the unravelling operation instead of the iteration
and an inverse rational mapping (a weakening of an MSO-interpretation)
instead of an MSO-interpretation. According to [16] the following definition
is equivalent to the original one.

Definition 5.5. The Caucal hierarchy C0 ⊂ C1 ⊂ . . . is defined as follows.
The first level C0 consists of all finite structures. Each higher level Cn+1

consists of all structures of the form I(a∗) where I is an MSO-interpretation
and a ∈ Cn.

The compatibility of the employed operations directly yields the decid-
ability of the MSO-theory for all structures in this class.

Theorem 5.6. All structures in the Caucal hierarchy have a decidable
MSO-theory.

In the same spirit as Theorem 5.3 one can show that MSO-interpretations
can be replaced by FO-interpretations. Furthermore, the iteration can also
be replaced by the unravelling operation applied to the graphs on each level.

Theorem 5.7 (Colcombet, [20]). A structure belongs to Cn+1 if and only if
it is of the form (I◦U)(g) where I is an FO-interpretation, U the unravelling
operation, and g ∈ Cn is a graph.

At present, the Caucal hierarchy is the largest known natural class of
structures with a decidable MSO-theory (other structures with decidable
MSO-theory can be constructed by ad hoc arguments; see, e.g., Proposi-
tion 5 of [16]). The first level of this hierarchy, i.e., the class of prefix-
recognisable structures, is already well investigated. In [16] the graphs of

Logical theories and compatible operations 99

level n are shown to be the same as the configuration graphs of higher-order
pushdown automata of level n (automata using nested stacks of nesting
depth n). Using this equivalence and a result on the languages accepted by
higher-order pushdown automata, one obtains the strictness of the Caucal
hierarchy. In [16] it is also shown that not all structures of decidable MSO-
theory are captured: There is a tree with decidable MSO-theory that is not
contained in any level of the hierarchy. It remains an open task to gain a
better understanding of the structures in higher levels of the hierarchy.

5.2 Automatic structures and extensions
Let us turn to structures with a decidable FO-theory. A prominent class of
such structures is the class of automatic (and tree-automatic) structures, a
notion originally introduced by Hodgson [36].

A relation R ⊆ (Σ∗)r on words is automatic if there is a finite automaton
accepting exactly the tuples (w0, . . . , wr−1) ∈ R, where the automaton reads
all the words in parallel with the shorter words padded with a blank symbol
(for formal definitions see, e.g., [37, 3, 8]). A structure is called automatic
(or has an automatic presentation) if it is isomorphic to a structure whose
universe is a regular set of words and whose relations are automatic in the
sense described above.

In the same way we can also use automata on finite (ranked) trees to
recognise relations. The superposition of a tuple of trees is defined by align-
ing their roots and then, for each node aligning the sequence of successors
from left to right, filling up missing positions with a blank symbol (again, a
formal definition can be found in [3, 8]). Accordingly, a structure is called
tree-automatic if it is isomorphic to a structure whose domain consists of
a regular set of finite trees and whose relations are recognised by finite au-
tomata reading the superpositions of tuples of trees. An alternative defini-
tion for tree-automatic structures can be given via least solutions of system
of equations [19] in the same spirit as [1] for prefix-recognisable structures.
In addition to the operations for prefix-recognisable structures one allows
the Cartesian product in the equations.

By inductively translating formulae to automata we can use the strong
closure properties of finite automata to show that each FO-definable relation
over an automatic structure is again automatic. As the emptiness problem
for finite automata is decidable this yields a decision procedure for the
model-checking of FO-formulae over (tree-)automatic structures.

We are interested in generating structures with a decidable FO-theory
using FO-compatible operations. We focus here on the use of FO-interpreta-
tions. The first possibility is to start from structures with a decidable FO-
theory and then apply FO-interpretations to it. Alternatively we can start
from structures with a decidable MSO-theory and then apply the (weak)
power-set operation followed by an FO-interpretation.

100 A. Blumensath, T. Colcombet, C. Löding

To obtain the class of automatic structures in this way let us first note
that each automatic structure can be represented using a binary alphabet,
say [2] = {0, 1}. A word over this alphabet can either be seen as the binary
encoding of a number, or as a set of natural numbers, namely the set of all
positions in the word that are labelled by 1.

When encoding [2]-words by natural numbers we need relations that al-
low us to extract single bits of a number to be able to simulate the behaviour
of finite automata in first-order logic. This can be done using the addition
operation + and the relation |2 defined as follows (see, e.g., [11, 3]):

k |2 m : iff k is a power of 2 dividing m.

Similarly, if [2]-words are viewed as sets of natural numbers we have to be
able to access the elements of the set. This is possible in the weak power-set
of the structure 〈ω,<〉. By Corollary 3.27, FO over Pw〈ω,<〉 corresponds
to WMSO over 〈ω,<〉, which is known to have the same expressive power as
finite automata (see, e.g., [48]).

These ideas lead to the following characterisations of automatic struc-
tures.

Proposition 5.8. Let a be a structure. The following statements are equiv-
alent:

1. a is automatic.

2. a ∼= I〈N,+, |2〉, for some FO-interpretation I.

3. a ∼= (I ◦ Pw)〈ω,<〉, for some FO-interpretation I.

To obtain tree-automatic structures we first note that it is enough to
consider unlabelled finite binary trees. Such a tree can be encoded in the
infinite binary tree t2 by the set of its nodes. It is not difficult to see
that first-order logic over the weak power-set structure of t2 has the same
expressive power as finite automata over trees.

Proposition 5.9. A structure a is tree-automatic if and only if a = (I ◦
Pw)(t2), for some FO-interpretation I.

This approach via compatible operations can easily be generalised by
using other generators than 〈ω,<〉 and t2. In the previous section we have
obtained a hierarchy of structures with a decidable MSO-theory. The infinite
binary tree t2 is on the first level of this hierarchy. Using Proposition 5.9 as
a definition for tree-automatic structures, we obtain a natural hierarchy of
higher-order tree-automatic structures.

Logical theories and compatible operations 101

Definition 5.10. A higher-order tree-automatic structure of level n is a
structure of the form (I ◦ Pw)(t) for some tree t from Cn, the nth level of
the Caucal hierarchy.

Using Theorem 5.6 and the properties of the operations involved we
obtain the following result.

Theorem 5.11. Every higher-order tree-automatic structure has a decid-
able first-order theory.

Although the Caucal hierarchy is known to be strict this does not directly
imply that the hierarchy of higher-order tree-automatic structures is also
strict. But by Theorem 4.18 it follows that, if the hierarchy would collapse
then all the trees in the Caucal hierarchy could be generated from a single
tree t in this hierarchy by means of WMSO-interpretations. This would
contradict the strictness of the Caucal hierarchy because, according to [16]2,
each level is closed under WMSO-interpretations.

Theorem 5.12 (Colcombet-Löding, [21]). The hierarchy of higher-order
tree-automatic structures is strict.

As mentioned in the previous section very little is known about struc-
tures on the higher levels of the Caucal hierarchy. As higher-order tree-
automatic structures are defined by means of the Caucal hierarchy we even
know less about these structures. In [21] it is illustrated how to apply
Theorem 4.18 to show that structures are not higher-order tree-automatic.

5.3 HR-equational structures
In [22] equations using operations on structures are used to define infinite
structures. The operations work on structures that are coloured by a finite
set of colours. We introduce constant symbols for each finite structure (over
a fixed signature). From these we build new structures using:

• the disjoint union operation];

• unary operations ρab recolouring all elements of colour a to colour b;

• unary operations θa that merge all elements of colour a into a single
element.

For example, the equation

x = ρ20

(
θ2

(
(
1•→2•)] ρ12(x)

))
2 In [16] the closure of each level under MSO-interpretations is shown. But in the same

paper it is shown that each level can be generated by MSO-interpretations from a
deterministic tree of this level, and on deterministic trees the finiteness of a set can be
expressed in MSO. Hence the levels are also closed under WMSO-interpretations.

102 A. Blumensath, T. Colcombet, C. Löding

has as least solution the graph
1•→0•→0•→0•→ · · ·

The class of structures obtained as solutions of finite systems of equa-
tions over these operations has various names in the literature (equational,
regular, hyperedge replacement). We use here the term HR-equational.

We obtain a connection between HR-equational structures and trees by
unravelling the system of equations defining a given structure a into an
infinite tree t. The inner nodes of the tree are labelled with the operations
and the leaves with the finite structures that are used as building blocks
for the resulting infinite structure. As an unravelling of a finite system of
equations the tree t is regular and it contains all the information on how to
build the structure a.

It should not be surprising that it is possible to construct the structure a
from t via a parameterless MSO-transduction. But we can do even better
because all the information on the relations of a is contained in the leaves
of the defining tree. This allows us to construct not only a but also In(a)
by a parameterless MSO-transduction. It turns out that this property char-
acterises HR-equational structures. As for prefix-recognisable structures we
therefore choose this property as the definition.

Definition 5.13. A structure a is HR-equational if and only if In(a) is
prefix-recognisable.

By Proposition 3.44 we can reduce the GSO-theory of an HR-equational
structure to the MSO-theory of a prefix-recognisable one.

Proposition 5.14. Every HR-equational structure has a decidable GSO-
theory.

Courcelle [23] has proved that the isomorphism problem for HR-equation-
al structures is decidable. We can generalise this result as follows. In [6] it
is shown that prefix-recognisable structures can be axiomatised in GSO, i.e.,
for each prefix recognisable structure a, one can construct a GSO-sentence
ψa such that

b |= ψa iff b ∼= a, for every structure b.

If we take b from a class of structures for which we can decide whether
b |= ψa holds then this allows us to solve the isomorphism problem for
a and b. To this end let b be a uniformly sparse structure from the Caucal
hierarchy. (Note that every HR-equational structure is uniformly sparse.)
According to Theorem 4.12 we can construct an MSO-sentence ψ′a that is
equivalent to ψa on b. And since the MSO-theory of each structure in the
Caucal hierarchy is decidable we can now verify if b |= ψ′a, which is the case
if, and only if, a ∼= b.

Logical theories and compatible operations 103

Theorem 5.15. Given an HR-equational structure a and a uniformly sparse
structure b from the Caucal hierarchy, we can decide whether a ∼= b.

The above description is slightly simplified. The GSO-sentence ψa con-
structed in [6] uses cardinality quantifiers ∃κ meaning “there are at least
κ many”, for a cardinal κ. To make Theorem 5.15 work in this extended
setting, we first note that Theorem 4.12 also works if the logics are extended
with cardinality quantifiers. Second, we have to verify that b |= ψ′a can also
be checked if ψ′a contains cardinality quantifiers. Because b is countable,
we only need to consider the quantifier “there are infinitely many”. This
quantifier can be eliminated since each structure of the Caucal hierarchy
can be obtained by an MSO-interpretation from a deterministic tree of the
same level and on such trees the property of a set being infinite can be
expressed in MSO.

Bibliography

[1] K. Barthelmann. When can an equational simple graph be generated
by hyperedge replacement? In MFCS, volume 1450 of LNCS, pages
543–552, 1998.

[2] D. Berwanger and A. Blumensath. The monadic theory of tree-like
structures. In E. Grädel, W. Thomas, and T. Wilke, editors, Automata,
Logic, and Infinite Games, LNCS 2500, pages 285–301. Springer, 2002.

[3] A. Blumensath. Automatic structures. Diploma thesis, RWTH Aachen,
1999.

[4] A. Blumensath. Prefix-recognisable graphs and monadic second-order
logic. Technical Report AIB-06-2001, RWTH Aachen, May 2001.

[5] A. Blumensath. Structures of Bounded Partition Width. Ph.D. Thesis,
RWTH Aachen, Aachen, 2003.

[6] A. Blumensath. Axiomatising tree-interpretable structures. Theory of
Computing Systems, 37:3–27, 2004.

[7] A. Blumensath. A Model Theoretic Characterisation of Clique-Width.
Annals of Pure and Applied Logic, 142:321–350, 2006.

[8] A. Blumensath and E. Grädel. Automatic structures. In Proceedings
of 15th IEEE Symposium on Logic in Computer Science LICS 2000,
pages 51–62, 2000.

[9] A. Blumensath and S. Kreutzer. An extension to muchnik’s theorem.
Journal of Logic and Computation, 15:59–74, 2005.

104 A. Blumensath, T. Colcombet, C. Löding

[10] H. L. Bodlaender. A partial k -arboretum of graphs with bounded
treewidth. Theor. Comput. Sci., 209(1-2):1–45, 1998.

[11] V. Bruyère, G. Hansel, C. Michaux, and R. Villemaire. Logic and p-
recognizable sets of integers. Bull. Belg. Math. Soc., 1:191–238, 1994.

[12] J. R. Büchi. Weak second order logic and finite automata. Z. Math.
Logik Grundlag. Math., 6:66–92, 1960.

[13] J. R. Büchi. On a decision method in restricted second-order arith-
metic. In Proc. 1960 Int. Congr. for Logic, Methodology and Philosophy
of Science, pages 1–11, 1962.

[14] A. Carayol and T. Colcombet. On equivalent representations of infinite
structures. In ICALP 2003, volume 2719 of LNCS, pages 599–610.
Springer, 2003.

[15] A. Carayol and C. Löding. MSO on the infinite binary tree: Choice
and order. In CSL’07, volume 4646 of LNCS, pages 161–176. Springer,
2007.

[16] A. Carayol and S. Wöhrle. The Caucal hierarchy of infinite graphs in
terms of logic and higher-order pushdown automata. In FSTTCS’03,
volume 2914 of LNCS, pages 112–123. Springer, 2003.

[17] D. Caucal. On infinite transition graphs having a decidable monadic
theory. In ICALP’96, volume 1099 of LNCS, pages 194–205. Springer,
1996.

[18] D. Caucal. On infinite terms having a decidable monadic theory. In
MFCS’02, volume 2420 of LNCS, pages 165–176. Springer, 2002.

[19] T. Colcombet. Représentations et propriétés de structures infinies. Phd
thesis, Université de Rennes, Rennes, 2004.

[20] T. Colcombet. A combinatorial theorem for trees. In ICALP 2007,
volume 4596 of LNCS, pages 901–912. Springer, 2007.

[21] T. Colcombet and C. Löding. Transforming structures by set interpre-
tations. Logical Methods in Computer Science, 3(2), 2007.

[22] B. Courcelle. The monadic second order logic of graphs II: Infinite
graphs of bounded width. Mathematical System Theory, 21:187–222,
1989.

[23] B. Courcelle. The monadic second-order logic of graphs IV: Definability
properties of equational graphs. Annals of Pure and Applied Logic,
49:193–255, 1990.

Logical theories and compatible operations 105

[24] B. Courcelle. Monadic second-order definable graph transductions: A
survey. Theor. Comput. Sci., 126(1):53–75, 1994.

[25] B. Courcelle. The monadic second-order logic of graphs VIII: Orienta-
tions. Annals of Pure and Applied Logic, 72:103–143, 1995.

[26] B. Courcelle. Structural properties of context-free sets of graphs gen-
erated by vertex replacement. Inf. Comput., 116(2):275–293, 1995.

[27] B. Courcelle. The monadic second-order logic of graphs XIV: Uniformly
sparse graphs and edge set quantifications. Theoretical Computer Sci-
ence, 299(1-36), 2003.

[28] B. Courcelle. Clique-width of countable graphs: a compactness prop-
erty. Discrete Mathematics, 276(1-3):127–148, 2004.

[29] B. Courcelle and J. Engelfriet. A Logical Characterization of the Sets
of Hypergraphs Defined by Hyperedge Replacement Grammars. Math.
System Theory, 28:515–552, 1995.

[30] B. Courcelle and S.-I. Oum. Vertex-minors, monadic second-order logic
and a conjecture by Seese. Journal of Combinatorial Theory, Series B,
97:91–126, 2007.

[31] B. Courcelle and I. Walukiewicz. Monadic second-order logic, graph
coverings and unfoldings of transition systems. Annals of Pure and
Applied Logic, 92:35–62, 1998.

[32] S. Feferman and R. Vaught. The first order properties of products of
algebraic systems. Fundamenta Mathematicæ, 47:57–103, 1959.

[33] E. Grädel, C. Hirsch, and M. Otto. Back and forth between guarded
and modal logics. ACM Transactions on Computational Logics,
3(3):418–463, 2002.

[34] Y. Gurevich. Monadic second-order theories. In J. Barwise and S. Fe-
ferman, editors, Model-Theoretic Logics, pages 479–506. Springer, 1985.

[35] Y. Gurevich and S. Shelah. Rabin’s uniformization problem. J. Symb.
Log., 48(4):1105–1119, 1983.

[36] B. R. Hodgson. Décidabilité par automate fini. Ann. Sci. Math. Québec,
7(3):39–57, 1983.

[37] B. Khoussainov and A. Nerode. Automatic presentations of structures.
In Workshop LCC ’94, volume 960 of LNCS, pages 367–392. Springer,
1995.

106 A. Blumensath, T. Colcombet, C. Löding

[38] D. Kuske and M. Lohrey. Monadic chain logic over iterations and
applications to pushdown systems. In LICS, pages 91–100, 2006.

[39] J. A. Makowsky. Algorithmic aspects of the feferman-vaught theorem.
Annals of Pure and Applied Logic, 126:159–213, 2004.

[40] D. E. Muller and P. E. Schupp. The theory of ends, pushdown au-
tomata, and second-order logic. Theoretical Computer Science, 37:51–
75, 1985.

[41] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. soc., 141:1–35, 1969.

[42] N. Robertson and P. D. Seymour. Graph minors. v. excluding a planar
graph. Journal of Combinatorial Theory B, 41:92–114, 1986.

[43] D. Seese. The structure of models of decidable monadic theories of
graphs. Annals of Pure and Applied Logic, 53:169–195, 1991.

[44] A. L. Semenov. Decidability of monadic theories. In MFCS’84, volume
176 of LNCS, pages 162–175, 1984.

[45] S. Shelah. The monadic theory of order. Annals Math, 102:379–419,
1975.

[46] J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[47] W. Thomas. Ehrenfeucht games, the composition method, and the
monadic theory of ordinal words. In Structures in Logic and Computer
Science, A Selection of Essays in Honor of A. Ehrenfeucht, volume
1261 of LNCS, pages 118–143. Springer, 1997.

[48] W. Thomas. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Language Theory, volume III,
pages 389–455. Springer, 1997.

[49] I. Walukiewicz. Monadic second order logic on tree-like structures. In
STACS’96, volume 1046 of LNCS, pages 401–413, 1996.

[50] I. Walukiewicz. Monadic second order logic on tree-like structures.
TCS, 275(1–2):230–249, 2002.

Forest algebras∗

Miko laj Bojańczyk1

Igor Walukiewicz2

1 Institute of Informatics
Uniwersytet Warszawski
Banacha 2
02-097 Warszawa, Poland
bojan@mimuw.edu.pl

2 Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1
351, cours de la Libération
33405 Talence cedex, France
igw@labri.fr

Abstract

There are at least as many interesting classes of regular tree lan-
guages as there are of regular word languages. However, much less is
known about the former ones. In particular, very few decidable char-
acterizations of tree language classes are known. For words, most
known characterizations are obtained using algebra. With this in
mind, the present paper proposes an algebraic framework for classi-
fying regular languages of finite unranked labeled trees.

If in a transformation semigroup we assume that the set being
acted upon has a semigroup structure, then the transformation semi-
group can be used to recognize languages of unranked trees. This
observation allows us to examine the relationship connecting tree lan-
guages with standard algebraic concepts such as aperiodicity idem-
potency, or commutativity. The new algebraic setting is used to give
several examples of decidable algebraic characterizations.

1 Introduction

There is a well-known decision problem in formal language theory:

Decide if a given a regular language of finite binary trees can be
defined by a formula of first-order logic with three relations: ancestor,
left and right successor.

∗ We would like to thank Olivier Carton, Jean-Éric Pin, Thomas Schwentick, Luc
Segoufin and Pascal Weil for their helpful comments. Special thanks are due to Howard
Straubing, for correcting several errors in a previous version, and suggesting some im-
proved definitions.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 107–131.

108 M. Bojańczyk and I. Walukiewicz

If the language is a word language (there is only one successor relation in this
case) the problem is known to be decidable thanks to fundamental results
of Schützenberger [14] and McNaughton and Papert [11]. The problem is
also decidable for words when only the successor relation is available [18, 1].
However, no algorithm is known for the case of tree languages, see [9, 13, 3, 2]
for some results in this direction.

There is a large body of work on problems of the type: decide if a given
regular word language can be defined using such and such a logic [6, 12, 15,
19, 20, 22]. Most of the results have been obtained using algebraic techniques
of semigroup theory. Recently, there has even been some progress for tree
languages [21, 8, 5, 2]. There is, however, a feeling that we still do not
have the right algebraic tools to deal with tree languages. In this paper we
propose an algebraic framework, called forest algebras, and study the notion
of recognizability in this framework. We want it to be as close to the word
case as possible to benefit from the rich theory of semigroups. We show how
standard notions, such as aperiodicity, idempotency, or commutativity, can
be used in our framework to characterize classes of tree languages.

Forest algebras are defined for forests (ordered sequences) of unranked
trees, where a node may have more than two (ordered) successors. This
more general (more general than, say, binary trees) setting is justified by
cleaner definitions, where semigroup theory can be used more easily.

We begin our discussion of forest algebras with the free forest algebra.
Just as the free monoid is the set of words, the free forest algebra is going to
be the set of forests. For finite words, there is one natural monoid structure:
concatenation of words with the empty word as a neutral element. For
forests there is also a concatenation operation that puts one forest after the
other (see Figure 1). This operation though, has very limited power as the
depth of the resulting forest is the maximum of the depths of the arguments.
One needs also some kind of vertical composition that makes forests grow.
This requires a notion of a context, which is a forest with a single hole in
some leaf. Contexts can be composed by putting one of them in the hole
of the other (see Figure 2). Moreover, by putting a forest in the hole of
a context we obtain again a forest. Summarizing, for unranked, ordered,
finite forests there are two natural monoids:

• Horizontal monoid. Forests with concatenation, and the empty tree
as a neutral element.

• Vertical monoid. Contexts with context composition, and the context
with a hole in the root as a neutral element.

The two monoids are linked by an action of contexts on forests: if p is a
context and t is a forest then pt is a forest obtained by putting t in the hole
of p in the same way as the contexts are composed.

Forest algebras 109

b

a c

A forest t1

c

c

c

A forest t2

b

a c

c

c

c

The resulting
forest t1 + t2

Figure 1. Forest concatenation

b

a * b

a a

A context p

c

*

c

A context q

b

a c

*

c b

a a

The resulting
context pq

Figure 2. Context composition

In the case of words, a language of finite words induces a congruence,
the Myhill-Nerode equivalence relation, which has finite index whenever
the language is regular. The same concepts apply to forest algebras, except
that we get two congruences: one for the vertical semigroup and one for the
horizontal semigroup. A regular language of finite forests can be thus seen
as one where both congruences are of finite index.

An important property of a forest algebra is that it is a special case of
a transformation semigroup. Recall that a transformation semigroup is a
semigroup along with an action over a set. In the forest algebra, the acting
semigroup is the set of contexts, while that set acted upon is the set of
forests (which itself is equipped with a semigroup structure).

There is a well-developed theory of transformation semigroups that is
useful in classifying regular word languages. We hope that this theory might
extend to the case of trees and this paper presents first steps in this direction.
To illustrate how forest algebra can be used in classifying regular languages,
we show how two language classes—forest languages determined by the
labels occurring in a forest, and forest languages definable by a Σ1 formula—
can be described in terms of forest algebra. We also present a more involved
example: languages definable in the temporal logic EF.

2 Preliminaries

The set of trees and forests over a finite alphabet A is defined as follows:

110 M. Bojańczyk and I. Walukiewicz

• an empty tree, denoted 0, is a tree (and therefore also a forest);

• if s, t are forests, then s+ t is a forest; moreover + is associative;

• If s is a forest, then as is a tree (and also a forest) for every a ∈ A.

The empty tree is a neutral element for the operation + of forest con-
catenation. This operation is in general non-commutative. A tree is a forest
of the form as, where s is a forest. We denote trees, as well as forests, by
s, t and u. Most of the time we shall be working with forests and we shall
say explicitly when a variable denotes a tree.

It will be convenient to interpret a forest as a partial function t : N+ → A
with a finite domain (the roots of this forest are the nodes from N). Elements
of this finite domain are called nodes of t. (The domain is closed under
nonempty prefixes, and if y < y′ are natural numbers with x · y′ in the
domain, then also x · y belongs to the domain.) This function assigns to
each node its label. If x, y are two nodes of t, we write x ≤ y (x < y) if
x is a (proper) prefix of y (i.e x is closer to the root than y). If x is a
maximal node satisfying x < y, then we call x the parent of y and we call y
a successor of x. (Each node has at most one parent, but may have many
successors.) Two nodes are siblings if they have the same parent. A leaf is
a node without successors. The subtree of t rooted in the node x, denoted
t|x, assigns the label t(x · y) to a node 0 · y. The successor forest of a node
is the forest of subtrees rooted in that node’s successors.

An A-context is an (A ∪ {∗})-forest, where ∗ is a special symbol not
in A. Moreover, ∗ occurs in exactly one leaf, which is called the hole. We
use letters p, q to denote contexts. When p is a context and t is a forest,
pt is the forest obtained from p by replacing the hole with t (see Figure 2).
Similarly we define the composition of two contexts p, q – this is the context
p · q that satisfies (p · q)t = p(qt) for every forest t. The neutral element
of context composition is a context, denoted 1, consisting only of a single
node labeled ∗.

3 Forest algebras

In this section we formally define a forest algebra. We give some examples
and explore some basic properties.

A forest algebra (H,V, act, inL, inR) consists of two monoids H,V , along
with an action act : H × V → H of V on H and two operations inL, inR :
H → V . We denote the monoid operation in H by + and the monoid
operation in V by ·. The neutral elements of the two monoids will be
denoted respectively: 0 and 1. Instead of writing act(h, v), we write vh
(notice a reversal of arguments). A forest algebra must satisfy the following
axioms:

Forest algebras 111

action (v · w)h = v(wh);

insertion inL(g)h = g + h and inR(g)h = h+ g;

faithfulness for every two distinct v, w ∈ V there is h ∈ H with vh 6= wh;

We call V the vertical monoid and H the horizontal monoid. Thanks
to the action axiom it is unambiguous to write vwh. Most of the time we
shall omit the act, inL, inR from (H,V, act, inL, inR) and write (H,V), just
as we identify a monoid with its carrier set. We shall also sometimes write
h+ 1 instead of inLh, and 1 + h instead of inRh.

Example 3.1. Let H be any monoid. Let V be the set HH of all transfor-
mations of H into H, with composition as the operation. To obtain a forest
algebra from (H,V) it suffices to add the action and inL, inR. We can take
the action of V on H to be just function application. The operations inL

and inR are then determined by the insertion axiom. Faithfulness can be
easily verified.

Note 3.2. As mentioned earlier, we have chosen to write the action on the
left, while the standard practice in the algebraic study of languages of words
is to write it on the right. That is, we write act(h, v) as vh, while in most
papers on monoids and word languages one would see hv. We feel that this
choice is justified by the difference in the way words and trees are denoted.
In the case of words, writing the action on the right is justified by the way
words are written (with the first letter on the left) as well as the way finite
automata read the input (from left to right). For example, if one wants to
calculate the action of a word abb on a state q of an automaton, one writes
qfafbfb; where fa, fb are the actions associated with the corresponding
letters. Using standard functional notation this would give fb(fb(fa(q))).
Hence, writing action on the right saves tiresome reversal of the word. For
trees the situation is different. Usually, one describes trees with terms. So
a(t1 + t2) denotes a tree with the root a and two subtrees t1 and t2. If we
were writing actions on the right, the value of this tree would be denoted
by (h1 + h2)va, where hi is the value of ti and va is the value of a. In
consequence, writing the action to the right corresponds to writing terms
in reverse Polish notation. Writing the action on the right would thus force
us either: to do the conversion into reverse Polish notation each time we
go from trees to algebra, or to write trees in reverse Polish notation. The
authors think that both options are more troublesome than the choice of
the writing action on the left.

Note 3.3. Despite additive notation for monoid (H,+), we do not require +
to be commutative. Having H commutative would be equivalent to saying
that the order of siblings in a tree is not relevant. Although in all the

112 M. Bojańczyk and I. Walukiewicz

examples given in this paper + will be commutative, one can easily find
examples when it will not be the case. A prominent one is first-order logic
with order on siblings.

Note 3.4. The axioms of forest algebra imply the existence of strong links
between horizontal and vertical monoids. The first observation is that every
element of h of H is of the form v0 for some v ∈ V . Indeed, it is enough
to take inLh for v. Moreover, the mappings inL, inR : H → V are monoid
morphisms as inL(h1 + h2) = inL(h1)inL(h2) and inL(0) = 1.

A morphism between two forest algebras (H,V) and (G,W) is a pair of
monoid morphisms (α : H → G, β : V → W) with additional requirements
ensuring that the operations are preserved:

α(vh) = β(v)α(h)
β(inL(h)) = inL(α(h)) and β(inR(h)) = inR(α(h))

Note 3.5. The morphism α is determined by β via

α(h) = α(h+ 0) = α(inL(h)0) = β(inL(h))α(0) ,

where α(0) must be the neutral element in G by the assumption on α being
a monoid morphism. So it is enough to give a morphism β and verify if
together with the uniquely determined α they preserve the operations.

Given an alphabet A, we define the free forest algebra over A, which is
denoted by A∆, as follows:

• The horizontal monoid is the set of forests over A.

• The vertical monoid is the set of contexts over A.

• The action is the substitution of forests in contexts.

• The inL function takes a forest and transforms it into a context with
a hole to the right of all the roots in the forest. Similarly for inR but
the hole is to the left of the roots.

Observe that inL and inR are uniquely determined by insertion axioms, once
the action is defined. The following lemma shows that free forest algebra is
free in the sense of universal algebra.

Lemma 3.6. The free forest algebra A∆ is a forest algebra. Moreover,
for every forest algebra (H,V), every function f : A → V can be uniquely
extended to a morphism (α, β) : A∆ → (H,V) such that β(a(∗)) = f(a) for
every a ∈ A.

Forest algebras 113

Proof. That A∆ is a forest algebra can be easily verified. We define a
homomorphism by induction on the size of a tree/context:

α(0) = 0 β(∗) = 1
α(at) = f(a)(α(t)) β(a(p)) = f(a)β(p)

α(t1 + t2) = α(t1) + α(t2) β(t1 + p+ t2) = inL(α(t1))inR(α(t2))β(p)

Directly from the definition it follows that α, β is a unique possible extension
of f to a homomorphism. It can be checked that the two mappings are
well defined. It is clear that α preserves + operation. One shows that
β(pq) = β(p)β(q) by induction on the size of p. The preservation of the
action property: α(pt) = β(p)α(t) is also proved by induction on p. Finally,
β(inL(t)) = β(t+ ∗) = α(t1) + β(1) = inL(α(t))β(1) = inL(α(t)). q.e.d.

We now proceed to define languages recognized by forest algebras.

Definition 3.7. A set L of A-forests is said to be recognized by a surjective
morphism (α, β) : A∆ → (H,V) if L is the inverse image α−1(G) of some
G ⊆ H. The morphism (α, β) is said to recognize L, the set G is called the
accepting set, and L is said to be recognized by (H,V).

Generally, we are interested in the case when (H,V) is finite; in this case
we say that L is recognizable.

Example 3.8. Consider the set L of forests with an even number of nodes.
We present here a finite forest algebra (H,V) recognizing L. Both H and V
are {0, 1} with addition modulo 2. The action is also addition; this defines
the insertion functions uniquely. The recognizing morphism maps a context
onto 0 if it has an even number of nodes. The accepting set is {0}.

Example 3.9. A language L of A-forests is called label-testable if the mem-
bership t ∈ L depends only on the sets of labels that occur in t. The ap-
propriate forest algebra is defined as follows. Both H and V are the same
monoid: the set P (A) with union as the operation. This determines the ac-
tion, which must also be also union. We can take as a recognizing morphism
a function that maps a context to the set of its labels.

Note 3.10. Another way to look at a forest algebra is from the point of
view of universal algebra. In this setting, a forest algebra is a two-sorted
algebra (with the sorts being H and V) along with two constants (neutral
elements for H and V) and five operations: (i) monoid operations in H and
V , (ii) the action vh of V on H and (iii) the two insertion operations inL and

114 M. Bojańczyk and I. Walukiewicz

inR. Forest algebras cannot be defined equationally due to the faithfulness
requirement.

The universal algebra viewpoint gives us definitions of such concepts
as subalgebra, cartesian product, quotient, morphism. The requirement of
faithfulness is not preserved by homomorphic images and quotients. This
implies that every time we take a quotient we need to check if the result is
a faithful algebra.

3.1 Syntactic algebra for forest languages
Our aim now is to establish the concept of a syntactic forest algebra of a
forest language. This is going to be a forest algebra that recognizes the
language, and one that is optimal among those that do.

Definition 3.11. We associate with a forest language L two equivalence
relations on the free forest algebra A∆:

• Two A-forests s, t are L-equivalent if for every context p, either both
or none of the forests ps, pt belong to L.

• Two A-contexts p, q are L-equivalent if for every forest t, the forests
pt and qt are L-equivalent.

Lemma 3.12. Both L-equivalence relations are congruences with respect
to the operations of the forest algebra A∆.

Proof. We first show that L-equivalence for forests is a congruence with
respect to concatenation of forests. We shall consider only concatenation to
the right. We show that if s and s′ are L-equivalent, then so are the forests
s+t and s′+t, for every forest t. Unraveling the definition of L-equivalence,
we must show that for every context p we have: p(s+t) ∈ L iff p(s′+t) ∈ L.
Taking q = p · inR(t) we get qs = p(inR(t)s) = p(s+ t). In consequence:

p(s+ t) ∈ L iff q(s) ∈ L iff q(s′) ∈ L iff p(s′ + t) ∈ L ,

where the middle equivalence follows from L-equivalence of s and s′. The
proof for the concatenation to the left is analogous.

We now proceed to show that L-equivalence for contexts is a congruence
with respect to context composition. We need to show that if two contexts p
and p′ are L-equivalent, then so are the contexts pq and p′q for any context q
(and similarly for the concatenation to the left). We need to show that for
every forest t and every context q′,

q′pqt ∈ L iff q′p′qt ∈ L .

The above equivalence follows immediately from the L-equivalence of p
and p′: it suffices to consider qt as a tree that is plugged into the contexts p
and p′.

Forest algebras 115

In a similar way, one shows that L-equivalence is a congruence with
respect to the action pt and the insertions inL(t), inR(t). q.e.d.

Definition 3.13. The syntactic forest algebra for L is the quotient of A∆

with respect to L-equivalence, where the horizontal semigroup HL consists
of equivalence classes of forests over A, while the vertical semigroup V L

consists of equivalence classes of contexts over A. The syntactic morphism
(αL, βL) assigns to every element of A∆ its equivalence class in (HL, V L).

The above lemma guarantees that the quotient is well defined. In this
quotient, faithfulness holds thanks to the definition of L-equivalence over
contexts. The action and insertion axioms are also satisfied (as it is a
quotient of a forest algebra). Hence, it is a forest algebra. We claim that
this forest algebra satisfies the properties required from the syntactic forest
algebra of L.

Proposition 3.14. A language L of A-forests is recognized by a the syntac-
tic morphism (αL, βL). Moreover, any morphism (α, β) : A∆ → (H,V) that
recognizes L can be extended by a morphism (α′, β′) : (H,V) → (HL, V L)
so that β′ ◦ β = βL.

Proof. The first part follows immediately by taking as an accepting set the
set of L-equivalence classes of all the elements of L. The second statement
follows from the observation that if two A-forests or contexts have the same
image under (α, β) then they are L-equivalent. q.e.d.

Note that in general the syntactic forest algebra may be infinite. How-
ever, Proposition 3.14 shows that if a forest language is recognized by some
finite forest algebra, then its syntactic forest algebra must also be finite.
In this case the syntactic forest algebra can be also easily computed. The
procedure is the same as for syntactic monoids. Given a finite forest algebra
(H,V) and a subset G ⊆ H one marks iteratively all the pairs of elements
that are not equivalent with respect to G. First, one marks all pairs con-
sisting of an element of G and of an element of H \ G. Then one marks a
pair (h1, h2) ∈ H × H if there is a v ∈ V such that (vh1, vh2) is already
marked. One marks also a pair of vertical elements (v1, v2) if there is a
horizontal element h with (v1h, v2h) already marked. This process contin-
ues until no new pairs can be marked. The syntactic forest algebra is the
quotient of the given algebra by the relation consisting of all the pairs that
are not marked. In Section 3.3 we shall show that recognizability is equiv-
alent with being accepted by the standard form of automata. In particular
the proof of Proposition 3.19 gives a way of constructing a forest algebra
from automaton. Together with the above discussion this gives a method of
constructing a syntactic forest algebra for the language accepted by a given
tree automaton.

116 M. Bojańczyk and I. Walukiewicz

3.2 Forest algebras and tree languages
Forest algebras give a natural definition of recognizable forest languages
(Definition 3.7). However, tree languages are studied more often than forest
languages. In this section we describe how a forest algebra can be used to
recognize a language of unranked trees.

Definition 3.15. Given a tree language L over A and a letter a ∈ A, the a-
quotient, denoted a−1L, is the set of forests t that satisfy at ∈ L. A language
L of A-trees is tree-recognized by a morphism (α, β) : A∆ → (H,V) if a−1L
is recognized by (α, β) for all a ∈ A.

Note that the above definition does not say anything about trees with
only one (root-leaf) node; but these are finitely many and irrelevant most
of the time. In particular, regular languages are closed under adding or
removing a finite number of trees.

Example 3.16. A tree language of the form: “the root label is a ∈ A” is
tree-recognized by any forest algebra. This because all the quotients b−1L
for b ∈ A are either empty (when b 6= a) or contain all forests (when b = a).

The above definition of recognizability induces a definition of syntactic
forest algebra for a tree language L. Consider the intersection of all (a−1L)-
equivalences for a ∈ A. This is a congruence on A∆ as it is an intersection
of congruences. It is easy to check that the result is a faithful algebra.

Note 3.17. There is an alternative definition of tree-recognizability. In
the alternative definition, we say that a tree language L is tree-recognized
by a forest algebra (H,V) if there is a forest language K recognized by
(H,V) such that L is the intersection of K with the set of trees. Under this
alternative definition, there is no correct notion of syntactic algebra. For in-
stance, the tree language “trees whose root label is a” can be tree-recognized
by two forest algebras that have no common quotient tree-recognizing this
language. Indeed, these may be forest algebras for two different forest lan-
guages that agree on trees.

Note 3.18. Yet another alternative definition of tree-recognizability says
that L is tree-recognized iff it is recognized. In this case, the forest algebra
must keep track of what is a single tree, and what is a forest. As a result,
it becomes impossible to characterize some languages by properties of their
syntactic algebras. For instance, consider the tree language “all trees”.
The horizontal monoid of this language has three elements: H = {0, 1, 2+}
which keep track of the number of trees in the forest. The vertical monoid
has the transformations

V = {h 7→ h, h 7→ h+ 1, h 7→ h+ 2, h 7→ 1, h 7→ 2+} .

Forest algebras 117

The first three are contexts with the hole in the root, and the last two have
the hole in a non root node. It is already inconvenient that the simplest
possible tree language needs a non-trivial algebra. Furthermore, this same
algebra recognizes the language “trees over {a, b} where a does not appear
in the root”. The recognizing morphism maps the label a to h 7→ h+ 2 and
the label b to h 7→ 1. One can suggest several logics that can describe the
first language but not the second, for all these logics characterizations in
terms of syntactic algebras will be impossible.

3.3 Automata over forests
We would like to show that our definition of recognizability is equivalent
with the standard notion of regular languages, i.e., languages accepted by
automata. There are numerous presentations of automata on finite un-
ranked trees and forests; here we shall use one that matches our algebraic
definitions.
A forest automaton over an alphabet A is a tuple

A = 〈(Q, 0,+), A, δ : (A×Q→ Q), F ⊆ Q〉

where (Q, 0,+) is a finite monoid; intuitively a set of states with an opera-
tion of composition on states.

The automaton assigns to every forest t a value tA ∈ Q, which is defined
by induction as follows:

• if t is an empty forest, then tA is 0;

• if t = as, then tA is defined to be δ(a, sA), in particular if t is a leaf
then tA = δ(a, 0);

• if t = t1 + · · ·+ tn then tA is defined to be tA1 + · · ·+ tAn ; observe that
the + operation in the last expression is done in (Q, 0,+).

A forest t is accepted by A if tA ∈ F .

Proposition 3.19. A forest language is recognized by a finite forest algebra
if and only if it is the language of forests accepted by some forest automaton.

Proof. Take a tree language L recognized by a morphism (α, β) : A∆ →
(H,V). That is L = α−1(F) for some F ⊆ H. For the “only if” part, we
need to show how it can be recognized by an automaton. Let A = 〈H,A, δ :
A×H → H,F 〉 where H is the horizontal monoid, F ⊆ H is as above, and
δ is defined by

δ(a, h) = β(a)h for a ∈ A .

By induction on the size of the forest one can show that tA = α(t). Thus
A recognizes the language of forests L.

118 M. Bojańczyk and I. Walukiewicz

For the other direction, suppose that we are given an automaton A =
〈(Q, 0,+), A, δ, F 〉. We consider a forest algebra (H,V) where H is (Q, 0,+)
and V is the function space H → H with function composition as the
operation and the identity as the neutral element. The action is function
application and the insertions are uniquely determined. It is easy to see
that (H,V) is a forest algebra. Consider now the unique homomorphism
(α, β) : A∆ → (H,V) with

β(a) = δ(a) for a ∈ A ;

observe that each δ(a) is a function from H to H. This homomorphism
might not be surjective as required by Definition 3.7, in this case we only
keep the part of the algebra used by the homomorphism. By induction on
the height of the forest one can show that tA = α(t). q.e.d.

Actually, the above notion of automaton can be refined to a notion of
(H,V) automaton for any forest algebra (H,V). Such an automaton has
the form:

A = 〈H, A, δ : A→ V, F ⊆ H〉
thus the only change is that now states are from H and δ(b) is an element of
from V while before it was a function from Q→ Q. We can do this because
using the action act of the forest algebra, each v ∈ V defines a function
act(v) : H → H.

By the same reasoning as before, every language accepted by a (H,V)
automaton is recognized by the algebra (H,V). Conversely, every language
recognized by (H,V) is accepted by some (H,V) automaton. This equiva-
lence shows essential differences between algebras and automata. Algebras
do not depend on alphabets, while alphabets are explicitly declared in the
description of an automaton. More importantly, the structure of the verti-
cal semigroup is not visible in an automaton: in an automaton we see only
generators of the vertical semigroup.

It may be worth to compare the above automata model with unranked
tree automata (UTA’s) [17, 10]. The only difference of any importance
between these models is that UTA’s have transition function of the form
δ : Σ×Q→ Reg(Q), i.e., to each pair of state and letter, a UTA assigns a
regular language over the alphabet Q. A tree whose root is labeled a can be
assigned a state q if the sequence of states assigned to its children is in the
regular language δ(q, a). In our case regular languages are represented by
monoids. More precisely, we use one monoid structure on states to simul-
taneously recognize all regular word languages that appear in transitions.
The two automata models have the same expressive power, and effective
translations can be easily presented. Note that since we use monoids, there
may be an exponential growth when translating from a UTA to a forest
automaton.

Forest algebras 119

3.4 Other possible variants of forest algebra
For words, one can use either monoids or semigroups to recognize word
languages. In the first case, the appropriate languages are of the form
L ⊆ A∗, while the second case disallows the empty word, and only languages
L ⊆ A+ are considered.

For forests, the number of choices is much greater. Not only do we have
two sorts (forests and contexts) instead of just one (words), but these sorts
are also more complex. This requires at least two choices:

• Is the empty forest a forest? Here, we say yes.

• Is the empty context a context? Here, we say yes.

We can also put some other restrictions on a position of the hole in the
context, for example that it cannot have siblings, or that it cannot be in
the root. Each combination of answers to the above questions gives rise to
an appropriate definition of a forest algebra, as long as the correct axioms
are formulated.

We do not lay any claim to the superiority of our choices. The others
are just as viable, but this does not mean that they are all equivalent.
The difference becomes visible when one tries to characterize algebras by
equations. For example, the equation vh = vg in our setting implies h = g
because this equation should be valid for all assignments of elements to
variables, and in particular we can assign the identity context to v. But then,
h = g says that the horizontal monoid is trivial. If we did not allow contexts
with the hole in a root, this equation would describe forest languages where
membership of a forest depends only on the labels of its roots.

One may also ask what would happen if we had dropped the vertical
structure. We could work with pairs of the form (H,Z) where Z is just
a set and not a semigroup, but still we could have an action of Z on H.
Such pairs correspond to automata where the alphabet is not fixed. For
such objects we do not need to require insertion axioms as these axioms
talk about the structure of the vertical semigroup which is not present here.
All the theory could be developed in this setting but once again equations
would have different meaning in this setting. In particular we would not
have any way to refer explicitly to vertical composition. We refrain from
doing this because we think that the structure of the vertical semigroup is
important.

4 Simple applications

In this section we present two straightforward characterizations of forest
languages. Both are effective, meaning that the conditions on the forest al-
gebra can be effectively tested. The first characterization—of label testable

120 M. Bojańczyk and I. Walukiewicz

languages—illustrates how a property of the context monoid can have im-
portant implications for the forest monoid. The second characterization—of
languages definable by a Σ1 formula—shows that we can also consider lan-
guage classes that are not closed under boolean operations.

In the following we shall very often express properties of algebras by
equations. An equation is a pair of terms in the signature of forest algebras
over two types of variables: horizontal variables (h, g, . . .), and vertical
variables (v, w,. . .). These terms should be well typed in an obvious sense
and should have the same type: both should be either of the forest type, or
of the context type. An algebra satisfies an equation if for any valuation
assigning elements of the horizontal monoid to horizontal variables, and
elements of the vertical monoid to vertical variables, the two terms have the
same value. In this way an equation expresses a propery of algebras.

We say a forest language is label testable if the membership in the lan-
guage depends only on the set of labels that appear in the forest.

Theorem 4.1. A language is label testable if and only if its syntactic al-
gebra satisfies the equations:

vv = v vw = wv .

Proof. The only if part is fairly obvious, we only concentrate on the if part.
Let then L be a language recognized by a morphism (α, β) : A∆ → (H,V),
with the target forest algebra satisfying the equations in the statement of
the theorem. We will show that for every forest t the value α(t) depends
only on the labels appearing in t.

We start by showing that the two equations from the statement of the
theorem imply another three. The first is the idempotency of the horizontal
monoid:

h+ h = h .

This equation must hold in any forest algebra satisfying our assumption
because of the following reasoning which uses the idempotency of the vertical
monoid:

h+ h = (h+ 1)(h+ 1)0 = (h+ 1)0 = h .

(In the above, h + 1 denotes the context inL(h).) The second is the com-
mutativity of the horizontal monoid:

h+ g = g + h .

The argument uses commutativity of the vertical monoid:

h+ g = (h+ 1)(g + 1)0 = (g + 1)(h+ 1)0 = g + h .

Forest algebras 121

Finally, we have an equation that allows us to flatten the trees:

v(h) = h+ v0 .

The proof uses once again the commutativity of the vertical monoid:

v(h) = v(h+ 1)0 = (h+ 1)v0 = h+ v0 .

The normal form of a forest will be a forest a10+· · ·+an0, where each tree
contains only one node, labeled ai. Furthermore, the labels a1, . . . , an are
exactly the labels used in t, sorted without repetition under some arbitrary
order on the set A. Using the three equations above one can show that
every forest has the same value under α as its normal form. Starting from
the normal form one can first use idempotency to “produce” as many copies
of each label as the number of its appearances in the tree. Then using the
last equation and the commutativity one can reconstruct the tree starting
from leaves and proceeding to the root. q.e.d.

Note 4.2. If we omit the equation vv = v, we get languages that can be
defined by a boolean combination of clauses of the forms: “label a occurs
at least k times”, or “the number of occurrences of label a is k mod n”.

We now present the second characterization. A Σ1 formula is a formula
of first-order logic, where only existential quantifiers appear in the quantifier
prenex normal form. The logic we have in mind uses the signature allowing
label tests (a node x has label a) and the descendant order (a node x is a
descendant of a node y). The following result shows which forest languages
can be defined in Σ1:

Theorem 4.3. Let L be a forest language, and let (α, β) be its syntactic
morphism. A language L is definable in Σ1 if and only if vh ∈ α(L) implies
vwh ∈ α(L), for every v, w, h.

Proof. The only if implication is an immediate consequence of the fact that
languages defined in Σ1 are closed under adding nodes. We will now show
the if implication. Below, we shall say that a forest s is a piece of a forest t
if s can be obtained from t by removing nodes (i.e. the transitive closure of
the relation which reduces a forest pqs to a forest ps).

Let L be a language recognized by a morphism (α, β) : A∆ → (H,V),
with α satisfying the property in the statement of the theorem. For each
h ∈ H, let Th be the set of forests that are assigned h by α, but have no
proper piece with this property. Using a pumping argument, one can show
that each set Th is finite. We claim that a forest belongs to L if and only
if it contains a piece t ∈ Th, with h ∈ α(L). The theorem follows from this
claim, since the latter property can be expressed in Σ1.

122 M. Bojańczyk and I. Walukiewicz

The only if part of the claim is obvious: if a forest t belongs to L, then by
definition it contains a piece from Tα(t), since α(t) belongs to α(L). For the
if part of the claim, we need to use the property of α stated in the theorem:
if t contains a piece s with α(s) ∈ α(L), then by iterative application of the
implication vh ∈ α(L) ⇒ vwh ∈ α(L), we can show that α(t) also belongs
to α(L), and hence t belongs to L. q.e.d.

5 Characterization of EF

In this section we show how forest algebras can be used to give a decid-
able characterization of a known temporal logic for trees. The logic in
question, called EF, is a fragment of CTL where EF is the only temporal
operator allowed. Decidability of this fragment for the case of binary trees
is known [5], and several alternative proofs have already appeared [23, 7].
Here, we should like to show how our setting—which talks about forests—
can be used to show decidability of a logic over trees.

5.1 The logic EF

EF is a temporal logic that expresses properties of trees. The name EF is due
to the unique temporal operator in the logic, EF, which stands for Exists
(some path) Further down (on this path). Formulas of EF are defined as
follows:

• If a is a letter, then a is a formula true in trees whose root label is a.

• EF formulas are closed under boolean connectives.

• If ϕ is an EF formula, then EFϕ is an EF formula true in trees having
a proper subtree satisfying ϕ.

We write t � ϕ to denote that a formula ϕ is true in a tree t. Restricting
to proper subtrees in the definition of EF gives us more power, since the
non-proper operator can be defined as ϕ ∨ EFϕ.

We need to deal with a mismatch due to the fact that EF is defined
over trees and our algebraic setting works with forests. For this, we need to
define how forest languages can be defined in EF.

Definition 5.1. A tree language L is definable in EF iff there is an EF
formula α with L = {t : t � α}. A forest language L is definable in EF if for
some a ∈ A the tree language {at : t ∈ L} is definable in EF.

Notice that the choice of a in the above definition does not matter. The
following observation shows that we can use forest definability to decide tree
definability.

Lemma 5.2. A tree language L is EF definable iff for every a ∈ A the forest
language a−1L is EF definable (as a language of forests).

Forest algebras 123

Proof. Suppose L is a tree language defined by a formula ϕ. This formula is
boolean combination for formulas starting with EF and formulas of the form
b for some b ∈ A. It is easy to see that ϕ can rewritten as a conjunction of
implications

∧
b∈A b⇒ ϕb, where ϕb, for all b ∈ A, is a boolean combination

of formulas starting with EF. Then ϕa defines the forest language a−1L.
For the other direction suppose that for each a ∈ A the forest language

a−1L is EF-definable. So there is a formula ϕa and a letter b ∈ A such that
bt � ϕa iff t ∈ a−1L. We can, if necessary, modify ϕa into ϕ′a with the
property that bt � ϕa if and only if at � ϕ′a. The tree language L is then
defined by

∧
a∈A a⇒ ϕ′a. q.e.d.

As the main result of this section, we present two equations and show
that a forest language is definable by an EF formula if and only if its syntactic
forest algebra satisfies these equations. In particular, it is decidable if a
regular tree language can be defined in EF.

Theorem 5.3. A forest language is definable in EF if and only if its syntac-
tic forest algebra satisfies the following equations, called the EF equations:

g + h = h+ g (1.1)
vh = h+ vh . (1.2)

Equation (1.1) states that the horizontal monoid is commutative. In
other words, membership of a forest in the language does not depend on
order of siblings. Equation (1.2) is specific to EF and talks about interaction
between two monoids. This equation also shows an advantage of our setting:
the equation can be that simple because we need not to worry about the
degree of vertices, and we can compare not only trees but also forests. The
proof of the theorem is split across the following two subsections.

Note 5.4. One can also consider the logic EF∗, where the EF modality is
replaced by its non-strict version EF∗. A formula EF∗ϕ is equivalent to
ϕ ∨ EFϕ. As mentioned before, this logic is strictly weaker than EF. For
example, one cannot express in EF∗ that a tree consists only of one leaf.
Recently, a decidable characterization of EF∗ was given in [23, 7]. The logic
EF∗ϕ is not as well-behaved in our algebraic setting as EF. The problem is
that one cannot tell if a forest language is definable in EF∗ just by looking at
its syntactic forest algebra. For an example, consider the language defined
by the formula EF∗(b ∧ EF∗c), over the alphabet {a, b, c}. The syntactic
forest algebra for this language can also recognize the language of flat forests
(where every tree consists only of the root). But the latter language is not
EF∗ definable.

124 M. Bojańczyk and I. Walukiewicz

5.2 Correctness
We show that the syntactic algebra of a forest language definable in EF
must satisfy the EF equations. The basic idea is to prove that any language
definable in EF is recognized by a forest algebra satisfying the EF equations.
We shall then be able to conclude that the syntactic algebra must also
satisfy these equations, as it is a morphic image of any algebra recognizing
the language.

Assume then that a forest language L over an alphabet A is defined
by a formula ϕ. The EF-closure of ϕ, denoted clEF(ϕ), is the set of all
subformulas of ϕ of the form EFψ for some ψ.

Given a forest t and a ∈ A we define a forest type of t (with respect to
our fixed ϕ):

FTϕ(t) = {ψ ∈ clEF(ϕ) : at � ψ} .
It is clear that this definition does not depend on the choice of a, so we do
not include it in the notation.

We now define an equivalence relation on forests by saying that two
forest are ϕ-equivalent if their FTϕ values are the same. We denote this
relation by ∼ϕ. The relation can be extended to contexts by saying that two
contexts p, q are ∼ϕ equivalent if for every nonempty forest t, the forests pt
and qt are ∼ϕ equivalent.

Lemma 5.5. The relation ∼ϕ is a congruence of the free forest algebra A∆.

Proof. It is clear that ∼ϕ is an equivalence relation on forests and contexts.
We need to show that it is a congruence. The first preparatory step is to
show by induction on the size of a context p that for any two forests t1 ∼ϕ t2
we have pt1 ∼ϕ pt2.

Using this we can now show that ∼ϕ preserves the action. Suppose that
p1 ∼ϕ p2 and t1 ∼ϕ t2. Then p1t1 ∼ϕ p1t2 ∼ϕ p2t2; where the second
equivalence follows directly from the definition of ∼ϕ for contexts.

Next, we deal with monoid operations in H and V . From the definition
it easily follows that if s1 ∼ϕ t1 and s2 ∼ϕ t2 then s1 + s2 ∼ϕ t1 + t2. For
the contexts take p1 ∼ϕ p2 and q1 ∼ϕ q2. For an arbitrary tree t we have:
q1p1t ∼ϕ q1p2t ∼ϕ q2p2t. The first equivalence follows from the property
proved in above, as p1t ∼ϕ p2t.

Finally, we deal with the insertion operations. Take s1 ∼ϕ s2 and an
arbitrary tree t. We have (inL(s1))t = s1 + t ∼ϕ s2 + t = (inL(s2))t. q.e.d.

Lemma 5.6. The quotient A∆/ ∼ϕ is a forest algebra, and it recognizes
L. Equations (1.1) and (1.2) are satisfied in the quotient.

Proof. For A∆/ ∼ϕ to be a forest algebra we must check if it is faithful. To
check faithfulness take p, q which are not in ∼ϕ relation. Then there is a
tree t such that pt 6∼ϕ qt which gives: [p][t] = [pt] 6∼ϕ [qt] = [q][t].

Forest algebras 125

The language L is recognized by a canonical homomorphism assigning
to each context its equivalence class, and the accepting set consisting of
equivalence classes of trees from L. To show that it is correct we need
to show that if two trees are equivalent then either both or none of them
satisfies ϕ. This follows from the observation that ϕ is equivalent to a
formula of the form a ⇒ ϕ′ where ϕ′ is a boolean combination of some
formulas form clEF(ϕ).

A straightforward inspection shows that the equations are satisfied. For
example, the fact that the trees vh and h + vh have the same FTϕ value
follows directly from the definition of the value. q.e.d.

As the syntactic algebra for L is a morphic image of any other algebra
recognizing L (cf. Proposition 3.14), all equations satisfied in A∆/ ∼ϕ must
hold also in the syntactic algebra.

Corollary 5.7. The syntactic algebra of an EF definable forest language
satisfies the equations (1.1) and (1.2).

5.3 Completeness
In this section we show that if a forest algebra satisfies the two EF equations,
then every forest language recognized by this algebra can be defined in EF.
This gives the desired result, since the syntactic algebra of L recognizes L.

From now on we fix a forest algebra (H,V) that recognizes a forest
language L via a morphism

(α, β) : A∆ → (H,V) .

We assume that the forest algebra (H,V) satisfies the two EF equations (1.1)
and (1.2). We shall show that L can be defined using an EF formula.

We first show that the EF equations imply two other properties:

h = h+ h (1.3)
w(vw)ω = (vw)ω . (1.4)

These state idempotency of the horizontal monoid, and L-triviality of the
vertical monoid, respectively. We need to explain the ω notation, though.
In each finite semigroup (and hence in each monoid) S, there is a power
n ∈ N such that all elements s ∈ S satisfy sn = snsn. We refer to this
power as ω, and use it in equations. In particular, every finite semigroup
satisfies the equation: sω = sωsω. The reader is advised to substitute “a
very large power” for the term ω when reading the equations.

The idempotency of the horizontal monoid follows directly from the
equation vh = h+ vh, by taking v to be the neutral element of the vertical
monoid. Observe that we always have 1h = h, as h = u0 for some u and then
1(u0) = (1u)0 = u0. The proof for the other equation is more complicated.

126 M. Bojańczyk and I. Walukiewicz

Lemma 5.8. For each v, w ∈ V , we have w(vw)ω = (vw)ω

Proof. First we show that the EF equations imply aperiodicity for the con-
text monoid:

vω = vvω .

Indeed, by applying the first equation repeatedly to vωvω, we obtain:

vω = vωvω = vω + vvω + vvvω + · · ·+ vωvω

Likewise for vvωvω:

vvω = vvωvω = vvω + vvvω + vvvvω + · · ·+ vωvω + vvωvω

If we cancel out vvωvω = vvω, and use idempotency and commutativity of
H, we obtain the desired equality vω = vvω.

We now proceed to show the statement of the lemma.

w(vw)ω = (vw)ω + w(vw)ω = vw(vw)ω + w(vw)ω = vw(vw)ω = (vw)ω .

In the first and third equation we use vh = h+ vh, while in the second and
fourth we use aperiodicity. q.e.d.

The main idea of the proof is to do an induction with respect to what
forests can be found inside other forests. Given g, h ∈ H, we write g ≤ h
there is some context u ∈ V such that h = ug. We write g ∼ h if ≤ holds
both ways. Here are three simple properties of these relations. The first is
a direct consequence of the second EF equation. The other two require a
short calculation.

Lemma 5.9. If g ≤ h then g + h = h.

Lemma 5.10. If g ∼ h then g = h. In particular, ≤ is a partial order.

Proof. Assume that g 6= h. If g ∼ h then there are contexts v, w such that
h = wg and g = vh. Iterating this process ω-times we obtain

h = wvh = (wv)ωh

But then, by applying Lemma 5.8, we get

h = (wv)ωh = v(wv)ωh = g .

q.e.d.

Lemma 5.11. If g1 ≤ h1 and g2 ≤ h2 then g1 + g2 ≤ h1 + h2.

Forest algebras 127

Proof. By assumption h1 = v1g1 and h2 = v2g2. Then, by using commuta-
tivity of H and equation (1.2), we get

h1 + h2 = v1g1 + v2g2 = v1g1 + g1 + v2g2 + g2 ≥ g1 + g2 .

The last inequality is a consequence of the property g+h ≥ g which follows
from the definition of the order as g + h = (1 + h)g. q.e.d.

The next proposition is the main induction in the completeness proof:

Proposition 5.12. For every h ∈ H, there is an EF formula ϕh such that
for every forest t and letter a we have

at � ϕh iff α(t) = h .

Proof. The proof is by induction on the depth of h in the order ≤, i.e. on
the number of f satisfying f < h (as usual, < denotes the strict version of
≤).

Consider first the base case, when h is minimal for ≤; which by the way
implies that h = 0 is the identity of the horizontal monoid. How can a
forest t satisfy α(t) = h? All leaves need to have labels a ∈ A satisfying
α(a) = h; this can be easily tested in EF. Second, all internal nodes need to
have labels a ∈ A satisfying α(a)h = h; this can also be tested in EF. These
conditions are clearly necessary, but thanks to idempotency h+h = h, they
are also sufficient. It remains to say how these conditions can be expressed
in EF . The formula ∃tt says that a node has a proper subtree, i.e., that a
node is an internal node. So, the formula

∧
b∈B ¬∃b∧∃tt expresses the fact

that no internal node has the label from a set B. Similarly one can say that
no leaf has a label form B.

We now proceed with the induction step. We take some h ∈ H and
assume that the proposition is true for all f < h. We claim that a forest t
satisfies α(t) = h iff the following three conditions hold:

• The forest t contains a witness. There are two types of witness. The
first type, is a forest of a form s1 + s2 with α(s1) + α(s2) = h but
α(s1), α(s2) < h. The second type is a tree of the form as, with
α(s) < h and β(a)α(s) = h.

• For all subtrees as of t with s containing a witness, β(a)(h) = h holds.

• For all subtrees as of t with α(s) < h we have β(a)α(s) ≤ h; moreover,
for all subtrees s1 and s2 of t, with α(s1) < h and α(s2) < h we have
α(s1 + s2) ≤ h.

128 M. Bojańczyk and I. Walukiewicz

These conditions can be easily written in EF using formulas ϕf for all f < h.
So it remains to show that they are equivalent to α(t) = h.

Suppose that the three conditions hold. By the first condition α(t) ≥ h.
If α(t) were strictly greater than h then there would be a minimal size
subtree s of t with α(s) 6≤ h. It cannot be of the form s1 + s2 because, by
Lemma 5.11, if α(s1), α(s2) ≤ h then α(s1) + α(s2) ≤ h. So this minimal
tree should be of the form as. It cannot be the case that α(s) = h because
of the second property. If α(s) < h then the third property guarantees
β(a)α(s) ≤ h, a contradiction.

Suppose now that α(t) = h. It is clear that a minimal subtree of t which
has the value h is a witness tree satisfying the first property. The second
property is obvious. Regarding the third property, it is also clear that for
every subtree of the form as if α(s) < h then β(a)α(s) ≤ h. It remains
to check that for every two subtrees s1, s2 with α(s1), α(s2) < h we have
α(s1) + α(s2) ≤ h. Take two such subtrees and a minimal tree containing
both of them. If it is, say s2, then α(s1) < α(s2) and α(s1) + α(s2) =
α(s2) < h. Otherwise, s1 and s2 are disjoint, and the minimal subtree has
the form b(t1 + t2 + t3) with t1 containing s1, and t2 containing s2 (due to
commutativity, the order of siblings does not matter). Now we have α(s1) ≤
α(t1) and α(s2) ≤ α(t2) which gives α(s1 + s2) ≤ α(t1 + t2) ≤ α(t) = h by
Lemma 5.11. q.e.d.

6 Conclusions and future work

This work is motivated by decidability problems for tree logics. As men-
tioned in the introduction, surprisingly little is known about this subject.
We hope that this paper represents an advance, if only by making more
explicit the algebraic questions that are behind these problems. Below we
discuss some possibilities for future work.

Wherever there is an algebraic structure for recognizing languages, there
is an Eilenberg theorem. This theorem gives a bijective mapping between
classes of languages with good closure properties (language varieties) and
classes of monoids with good closure properties (monoid varieties). It would
be interesting to see how this extends to trees, i.e. study varieties forest al-
gebras. Indeed, we have used equations to characterize EF, in particular the
appropriate class of forest algebras will satisfy all closure properties usually
required of a variety. The next step is to a develop variety theory, and check
what classes of forest algebras can be defined using equations. Under a cer-
tain definition, it can be shown that first-order definable languages form a
variety, so does CTL∗, and chain logic. There are also logics that do not
correspond to varieties; we have given EF∗ as an example. This situation is
well known in the word case: for some logics one needs to work in monoids,
for others in semigroups. In the case of trees the choice is bigger. For exam-

Forest algebras 129

ple, a characterization of EF∗ requires to forbid contexts consisting of just
a hole. Another example is a characterization of first-order logic with two
variables [4] where the empty tree is excluded.

A related topic concerns C-varieties [16]. This is a notion from semigroup
theory, which — among others — does away with the tedious distinction
between semigroup and monoid varieties. It would be interesting to unify
the variants mentioned above in a notion of C-variety of forest algebras.

There are of course classes of tree languages — perhaps even more so
in trees than words — that are not closed under boolean operations: take
for instance languages defined by deterministic top down automata, or Σ1

definable languages presented here. In the case of words, ordered semigroups
extend the algebraic approach to such classes. It would be interesting to
develop a similar concept of ordered forest algebras.

The logics considered in this paper cannot refer to the order on siblings
in a tree. It would be worthwhile to find correct equations for logics with
the order relation on siblings. It is also not clear how to cope with trees of
bounded branching. One can also ask what is the right concept of forest
algebras for languages of infinite trees.

References

[1] D. Beauquier and J.-E. Pin. Factors of words. In G. Ausiello,
M. Dezani-Ciancaglini, and S. R. D. Rocca, editors, ICALP, volume
372 of Lecture Notes in Computer Science, pages 63–79. Springer, 1989.

[2] M. Benedikt and L. Segoufin. Regular tree languages definable in FO.
In V. Diekert and B. Durand, editors, STACS, volume 3404 of Lecture
Notes in Computer Science, pages 327–339. Springer, 2005.

[3] M. Bojańczyk. Decidable Properties of Tree Languages. PhD thesis,
Warsaw University, 2004.

[4] M. Bojańczyk. Two-way unary temporal logic over trees. In LICS,
pages 121–130. IEEE Computer Society, 2007.

[5] M. Bojańczyk and I. Walukiewicz. Characterizing EF and EX tree
logics. Theor. Comput. Sci., 358(2-3):255–272, 2006.

[6] J. Cohen, D. Perrin, and J.-E. Pin. On the expressive power of temporal
logic. J. Comput. Syst. Sci., 46(3):271–294, 1993.

[7] Z. Ésik and I. Szabolcs. Some varieties of finite tree automata related
to restricted temporal logics. Fund. Inform., 2007. To appear.

130 M. Bojańczyk and I. Walukiewicz

[8] Z. Ésik and P. Weil. On logically defined recognizable tree languages.
In P. K. Pandya and J. Radhakrishnan, editors, FSTTCS, volume 2914
of Lecture Notes in Computer Science, pages 195–207. Springer, 2003.

[9] U. Heuter. First-order properties of trees, star-free expressions, and
aperiodicity. In R. Cori and M. Wirsing, editors, STACS, volume 294
of Lecture Notes in Computer Science, pages 136–148. Springer, 1988.

[10] L. Libkin. Logics for unranked trees: An overview. Logical Methods in
Computer Science, 2(3), 2006.

[11] R. McNaughton and S. Papert. Counter-free automata. The M.I.T.
Press, Cambridge, Mass.-London, 1971. M.I.T. Research Monograph,
No. 65.

[12] J.-E. Pin. Logic, semigroups and automata on words. Ann. Math.
Artif. Intell., 16:343–384, 1996.

[13] A. Potthoff. First-order logic on finite trees. In P. D. Mosses,
M. Nielsen, and M. I. Schwartzbach, editors, TAPSOFT, volume 915
of Lecture Notes in Computer Science, pages 125–139. Springer, 1995.

[14] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

[15] H. Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc.,
Boston, MA, 1994.

[16] H. Straubing. On logical descriptions of regular languages. In S. Ra-
jsbaum, editor, LATIN, volume 2286 of Lecture Notes in Computer
Science, pages 528–538. Springer, 2002.

[17] J. W. Thatcher. Characterizing derivation trees of context-free gram-
mars through a generalization of finite automata theory. J. Comput.
Syst. Sci., 1(4):317–322, 1967.

[18] D. Thérien and A. Weiss. Graph congruences and wreath products. J.
Pure Appl. Algebra, 36(2):205–215, 1985.

[19] D. Thérien and Th. Wilke. Temporal logic and semidirect products:
An effective characterization of the until hierarchy. In FOCS, pages
256–263, 1996.

[20] D. Thérien and Th. Wilke. Over words, two variables are as powerful
as one quantifier alternation. In STOC, pages 234–240, 1998.

Forest algebras 131

[21] T. Wilke. Algebras for classifying regular tree languages and an ap-
plication to frontier testability. In A. Lingas, R. G. Karlsson, and
S. Carlsson, editors, ICALP, volume 700 of Lecture Notes in Computer
Science, pages 347–358. Springer, 1993.

[22] Th. Wilke. Classifying discrete temporal properties. In C. Meinel and
S. Tison, editors, STACS, volume 1563 of Lecture Notes in Computer
Science, pages 32–46. Springer, 1999.

[23] Z. Wu. A note on the characterization of TL[EF]. Inform. Process.
Lett., 102(2-3):48–54, 2007.

Automata and semigroups recognizing

infinite words

Olivier Carton1

Dominique Perrin2

Jean-Éric Pin1

1 Laboratoire d’Informatique Algorithmique: Fondements et Applications
Université Paris Diderot, Paris 7
Case 7014
75205 Paris Cedex 13, France
Olivier.Carton@liafa.jussieu.fr, Jean-Eric.Pin@liafa.jussieu.fr

2 Institut Gaspard Monge
Université de Paris-Est
5, boulevard Descartes
77454 Champs-sur-Marne, France
perrin@univ-mlv.fr

Abstract

This paper is a survey on the algebraic approach to the theory
of automata accepting infinite words. We discuss the various ac-
ceptance modes (Büchi automata, Muller automata, transition au-
tomata, weak recognition by a finite semigroup, ω-semigroups) and
prove their equivalence. We also give two algebraic proofs of Mc-
Naughton’s theorem on the equivalence between Büchi and Muller
automata. Finally, we present some recent work on prophetic au-
tomata and discuss its extension to transfinite words.

1 Introduction

Among the many research contributions of Wolfgang Thomas, those regard-
ing automata on infinite words and more generally, on infinite objects, have
been highly inspiring to the authors. In particular, we should like to empha-
size the historical importance of his early papers [33, 34, 35], his illuminating
surveys [36, 37] and the Lecture Notes volume on games and automata [15].

Besides being a source of inspiration, Wolfgang always had nice words
for our own research on the algebraic approach to automata theory. This
survey, which presents this theory for infinite words, owes much to his en-
couragement.

Büchi has extended the classical theory of languages to infinite words in-
stead of finite ones. Most notions and results known for finite words extend
to infinite words, often at the price of more difficult proofs. For example,

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 133–167.

134 O. Carton, D. Perrin, J.-É. Pin

proving that rational languages are closed under Boolean operations be-
comes, in the infinite case, a delicate result, the proof of which makes use
of Ramsey theorem. In the same way, the determinization of automata, an
easy algorithm on finite words, turns to a difficult theorem in the infinite
case.

Not surprisingly, the same kind of obstacle occurred in the algebraic ap-
proach to automata theory. It was soon recognized that finite automata are
closely linked with finite semigroups, thus giving an algebraic counterpart
of the definition of recognizability by finite automata. In this setting, every
rational language X of A+ is recognized by a morphism from A+ onto a
finite semigroup. There is also a minimal semigroup recognizing X , called
the syntactic semigroup of X . The success of the algebraic approach for
studying regular languages was already firmly established by the end of the
seventies, but it took another ten years to find the appropriate framework
for infinite words. Semigroups are replaced by ω-semigroups, which are,
roughly speaking, semigroups equipped with an infinite product. In this
new setting, the definitions of recognizable sets of infinite words and of syn-
tactic congruence become natural and most results valid for finite words can
be adapted to infinite words. Carrying on the work of Arnold [1], Pécuchet
[21, 20] and the second author [22, 23] , Wilke [38, 39] has pushed the anal-
ogy with the theory for finite words sufficiently far to obtain a counterpart
of Eilenberg’s variety theorem for finite or infinite words. This theory was
further extended by using ordered ω-semigroups [26, 24]. Notwithstand-
ing the importance of the variety theory, we do not cover it in this article
but rather choose to present some applications of the algebraic approach to
automata theory. The first nontrivial application is the construction of a
Muller automaton, given a finite semigroup weakly recognizing a language.
The second one is a purely algebraic proof of the theorem of McNaughton
stating that any recognizable subset of infinite words is a Boolean combina-
tion of deterministic recognizable sets. The third one deals with prophetic
automata, a subclass of Büchi automata in which any infinite word is the
label of exactly one final path. The main result states that these automata
are equivalent to Büchi automata. We show, however, that this result does
not extend to words indexed by ordinals.

Our paper has the character of a survey. For the reader’s convenience
it reproduces some of the material published in the book Semigroups and

automata on infinite words [25], which owes a debt of gratitude to Wolfgang
Thomas. Proofs are often only sketched in the present paper, but complete
proofs can be found in [25]. Other surveys on automata and infinite words
include [23, 24, 36, 37, 32].

Our article is divided into seven sections. Automata on infinite words
are introduced in Section 2. Algebraic recognition modes are discussed in

Automata and semigroups recognizing infinite words 135

Section 3. The syntactic congruence is defined in Section 4. In Section 5,
we show that all recognition modes defined so far are equivalent. Sections
6 and 7 illustrate the power of the algebraic approach. In Section 6, we
give an algebraic proof of McNaughton’s theorem. Section 7 is devoted to
prophetic automata.

2 Automata

Let A be an alphabet. We denote by A+, A∗ and Aω, respectively, the sets
of nonempty finite words, finite words and infinite words on the alphabet
A. We also denote by A∞ the set A∗ ∪Aω of finite or infinite words on A.
By definition, an ω-rational subset of Aω is a finite union of sets of the form
XY ω where X and Y are rational subsets of A∗.

An automaton is given by a finite alphabet A, a finite set of states Q
and a subset E of Q × A × Q, called the set of edges or transitions. Two
transitions (p, a, q) and (p′, a′, q′) are called consecutive if q = p′. An infinite

path in the automaton A is an infinite sequence p of consecutive transitions

p : q0
a0−→ q1

a1−→ q2 · · ·

The state q0 is the origin of the infinite path and the infinite word a0a1 · · ·
is its label. We say that the path p passes infinitely often through a state q
(or that p visits q infinitely often, or yet that q is infinitely repeated in p) if
there are infinitely many integers n such that qn = q. The set of infinitely

repeated states in p is denoted by Inf(p).
An automaton A = (Q,A,E) is said to have deterministic transitions,

if, for every state q ∈ Q and every letter a ∈ A, there is at most one state q′

such that (q, a, q′) is a transition. It is deterministic if it has deterministic
transitions and if I is a singleton. Dually, A has complete transitions if, for
every state q ∈ Q and every letter a ∈ A, there is at least one state q′ such
that (q, a, q′) is a transition.

Acceptance modes are usually defined by specifying a set of successful

finite or infinite paths. This gives rise to different types of automata. We
shall only recall here the definition of two classes: the Büchi automata and
the Muller automata.

2.1 Büchi automata

In the model introduced by Büchi, one is given a set of initial states I and
a set of final states F . Here are the precise definitions.

Let A = (Q,A,E, I, F) be a Büchi automaton. We say that an infinite
path in A is initial if its origin is in I and final if it visits F infinitely often.
It is successful if it is initial and final. The set of infinite words recognized

by A is the set, denoted by Lω(A), of labels of infinite successful paths in
A. It is also the set of labels of infinite initial paths p in A and such that
Inf(p) ∩ F 6= ∅.

136 O. Carton, D. Perrin, J.-É. Pin

By definition, a set of infinite words is recognizable if it is recognized by
some finite Büchi automaton. Büchi has shown that Kleene’s theorem on
regular languages extends to infinite words.

Theorem 2.1. A set of infinite words is recognizable if and only if it is
ω-rational.

The notion of trim automaton can also be adapted to the case of infinite
words. A state q is called accessible if there is a (possibly empty) finite
initial path in A ending in q. A state q is called coaccessible if there exists
an infinite final path starting at q. Finally, A is trim if all its states are
both accessible and coaccessible.

It is easy to see that every Büchi automaton is equivalent to a trim
Büchi automaton. For this reason, we shall assume that all the automata
considered in this paper are trim.

So far, extending automata theory to infinite words did not raise any
insuperable problems. However, it starts getting harder when it comes to
determinism.

The description of the subsets of Aω recognized by deterministic Büchi
automata involves a new operator. For a subset L of A∗, let

−→
L = {u ∈ Aω | u has infinitely many prefixes in L}.

Example 2.2.

(a) If L = a∗b, then
−→
L = ∅.

(b) If L = (ab)+, then
−→
L = (ab)ω.

(c) If L = (a∗b)+ = (a + b)∗b, that is if L is the set of words ending

with b, then
−→
L = (a∗b)ω, which is the set of infinite words containing

infinitely many occurrences of b.

The following example shows that not every set of words can be written in

the form
−→
L .

Example 2.3. The set X = (a + b)∗aω of words with a finite number of

occurrences of b is not of the form
−→
L . Otherwise, the word baω would have a

prefix u1 = ban1 in L, the word ban1baω would have a prefix u2 = ban1ban2

in L, etc. and the infinite word u = ban1ban2ban3 · · · would have an infinity

of prefixes in L and hence would be in
−→
L . This is impossible, since u

contains infinitely many b’s.

A set of infinite words which can be recognized by a deterministic Büchi
automaton is called deterministic.

Theorem 2.4. A subset X of Aω is deterministic if and only if there exists

a recognizable set L of A+ such that X =
−→
L .

Automata and semigroups recognizing infinite words 137

2.2 Muller automata

Contrary to the case of finite words, deterministic Büchi automata fail to
recognize all recognizable sets of infinite words. This is the motivation for
introducing Muller automata which are also deterministic, but have a more
powerful acceptance mode. In this model, an infinite path p is final if the
set Inf(p) belongs to a prescribed set T of sets of states. The definition of
initial and successful paths are unchanged.

A Muller automaton is a 5-tuple A = (Q,A,E, i, T) where (Q,A,E) is
a deterministic automaton, i is the initial state and T is a set of subsets
of Q, called the table of states of the automaton. The set of infinite words
recognized by A is the set, denoted by Lω(A), of labels of infinite successful
paths in A.

A fundamental result, due to R. McNaughton [18], states that any Büchi
automaton is equivalent to a Muller automaton.

Theorem 2.5. Any recognizable set of infinite words can be recognized by
a Muller automaton.

This implies in particular that recognizable sets of infinite words are
closed under complementation, a result proved for the first time by Büchi
in a direct way.

2.3 Transition automata

It is sometimes convenient to use a variant of automata in which a set of
final transitions is specified, instead of the usual set of final states. This
idea can be applied to all variants of automata.

Formally, a Büchi transition automaton is a 5-tuple A = (Q,A,E, I, F)
where (Q,A,E) is an automaton, I ⊆ Q is the set of initial states and
F ⊆ E is the set of final transitions. If p is an infinite path, we denote by
InfT (p) the set of transitions through which p goes infinitely often. A path
p is final if it goes through F infinitely often, that is, if InfT (p) ∩ F 6= ∅.

Similarly, a transition Muller automaton is a 5-tuple A = (Q,A,E, I, T)
where (Q,A,E) is a finite deterministic automaton, i is the initial state and
T is a set of subsets of E, called the table of transitions of the automaton.
A path is final if InfT (p) ∈ T , that is, if the set of transitions occurring
infinitely often in p is an element of the table.

Proposition 2.6.

(1) Büchi automata and transition Büchi automata are equivalent.

(2) Muller automata and transition Muller automata are equivalent.

3 Algebraic recognition modes

In this section, we give an historical survey on the various algebraic notions
of recognizability that have been considered. The two earlier ones, weak and

138 O. Carton, D. Perrin, J.-É. Pin

strong recognition, are now superseded by the notions of ω-semigroupsand
Wilke algebras.

Recall that a semigroup is a set equipped with an associative operation
which does not necessarily admit an identity. If S is a semigroup, S1 denotes
the monoid equal to S if S is a monoid, and to S ∪{1} if S is not a monoid.
In the latter case, the operation of S is completed by the rules 1s = s1 = s
for each s ∈ S1. An element e of S is idempotent if e2 = e.

The preorder 6R is defined on S by setting s 6R s′ if there exists t ∈ S1

such that s = s′t. We also write s R s′ if s 6R s′ and s′ 6R s and s <R s′

if s 6R s′ and s′ 66R s. The equivalence classes of the relation R are called
the R-classes of S.

3.1 Weak recognition

The early attempts aimed at understanding the behaviour of a semigroup
morphism from A+ onto a finite semigroup. The key result is a consequence
of Ramsey’s theorem in combinatorics, which involves the notion of a linked
pair: a linked pair of a finite semigroup S is a pair (s, e) of elements of S
satisfying se = s and e2 = e.

Theorem 3.1. Let ϕ : A+ → S be a morphism from A+ into a finite
semigroup S. For each infinite word u ∈ Aω, there exist a linked pair (s, e)
of S and a factorization u = u0u1 · · · of u as a product of words of A+ such
that ϕ(u0) = s and ϕ(un) = e for all n > 0.

Theorem 3.1 is frequently used in a slightly different form:

Proposition 3.2. Let ϕ : A+ → S be a morphism from A+ into a fi-
nite semigroup S. Let u be an infinite word of Aω , and let u = u0u1 . . .
be a factorisation of u in words of A+. Then there exist a linked pair
(s, e) of S and a strictly increasing sequence of integers (kn)n>0 such that
ϕ(u0u1 · · ·uk0−1) = s and ϕ(ukn

ukn+1 · · ·ukn+1−1) = e for every n > 0.

Theorem 3.1 lead to the first attempt to extend the notion of rec-
ognizable sets. Let us call ϕ-simple a set of infinite words of the form
ϕ−1(s)

(
ϕ−1(e)

)ω
, where (s, e) is a linked pair of S. Then we say that a

subset of Aω is weakly recognized by ϕ if it is a finite union of ϕ-simple
subsets. The following result justifies the term “recognized”.

Proposition 3.3. A set of infinite words is recognizable if and only if it is
weakly recognized by some morphism onto a finite semigroup.

However, the notion of weak recognition has several drawbacks: there is
no natural notion of syntactic semigroup, dealing with complementation is
uneasy and more generally, the algebraic tools that were present in the case
of finite words are missing.

Automata and semigroups recognizing infinite words 139

3.2 Strong recognition

This notion emerged as an attempt to obtain an algebraic proof of the
closure of recognizable sets of infinite words under complement.

Let ϕ : A+ → S be a morphism from A+ into a finite semigroup S. Then
ϕ strongly recognizes (or saturates) a subset X of Aω if all the ϕ-simple sets
have a trivial intersection with X , that is, for each linked pair (s, e) of S,

ϕ−1(s)
(
ϕ−1(e)

)ω
∩X = ∅ or ϕ−1(s)

(
ϕ−1(e)

)ω
⊆ X

Theorem 3.1 shows that Aω is a finite union of ϕ-simple sets. It follows
that if a morphism strongly recognizes a set of infinite words, then it also
weakly recognizes it. Furthermore, Proposition 3.3 can be improved.

Proposition 3.4. A set of infinite words is recognizable if and only if it is
strongly recognized by some morphism onto a finite semigroup.

The proof relies on a construction which is interesting on its own right.
Given a semigroup S, we define a new semigroup

T = {(s P
0 s) | s ∈ S, P is a subset of S × S}

with multiplication defined by

(s P
0 s)

(
t Q
0 t

)
=

(
st sQ∪Pt
0 st

)

where sQ = {(sq1, q2) | (q1, q2) ∈ Q} and Pt = {(p1, p2t) | (p1, p2) ∈ P}.
Let now ϕ be a morphism from A+ onto S. Then one can show that the
map ψ : A+ → T defined by

ψ(u) =
(

ϕ(u) τ(u)
0 ϕ(u)

)

with τ(u) = {(ϕ(u1), ϕ(u2)) | u = u1u2}

is a semigroup morphism and that any set of infinite words weakly recog-
nized by ϕ is strongly recognized by ψ.

Proposition 3.4 leads to a simple proof of Büchi’s complementation theorem.

Corollary 3.5. Recognizable sets of infinite words are closed under com-
plement.

Proof. Indeed, if a morphism strongly recognizes a set of infinite words, it
also recognizes its complement. q.e.d.

140 O. Carton, D. Perrin, J.-É. Pin

3.3 ω-semigroups and Wilke algebras

Although strong recognition constituted an improvement over weak recogni-
tion, there were still obstacles to extend to infinite words Eilenberg’s variety
theorem, which gives a correspondence between recognizable sets and finite
semigroups. The solution was found by Wilke [38] and reformulated in
slightly different terms by the two last authors in [24]. The idea is to use
an algebraic structure, called an ω-semigroup, which is a sort of semigroup
in which infinite products are defined. This structure was actually implicit
in the original construction of Büchi to recognize the complement [7].

3.3.1 ω-semigroups

An ω-semigroup is a two-sorted algebra S = (S+, Sω) equipped with the
following operations:

(a) A binary operation defined on S+ and denoted multiplicatively,

(b) A mapping S+× Sω → Sω, called mixed product, that associates with
each pair (s, t) ∈ S+ × Sω an element of Sω denoted st,

(c) A surjective mapping π : Sω
+ → Sω, called infinite product

These three operations satisfy the following properties:

(1) S+, equipped with the binary operation, is a semigroup,

(2) for every s, t ∈ S+ and for every u ∈ Sω, s(tu) = (st)u,

(3) for every increasing sequence (kn)n>0 and for every sequence (sn)n>0

of elements of S+,

π(s0s1 · · · sk1−1, sk1sk1+1 · · · sk2−1, . . .) = π(s0, s1, s2, . . .)

(4) for every s ∈ S+ and for every sequence (sn)n>0 of elements of S+,

sπ(s0, s1, s2, . . .) = π(s, s0, s1, s2, . . .)

These conditions can be thought of as an extension of associativity. In
particular, conditions (3) and (4) show that one can replace π(s0, s1, s2, . . .)
by s0s1s2 · · · without ambiguity. We shall use this simplified notation in
the sequel.

Example 3.6.

(1) We denote by A∞ the ω-semigroup (A+, Aω) equipped with the usual
concatenation product. One can show thatA∞ is the free ω-semigroup
generated by A.

(2) The trivial ω-semigroup is the ω-semigroup 1 = ({1}, {a}), obtained
by equipping the trivial semigroup {1} with an infinite product: the
unique way is to declare that every infinite product is equal to a.

(3) Consider the ω-semigroup S = ({0, 1}, {a}) defined as follows: every
infinite product is equal to a and every finite product s0s1 . . . sn is

Automata and semigroups recognizing infinite words 141

equal to 0 except if all the si’s are equal to 1. In particular, the
elements 0 and 1 are idempotents and thus, for all n > 0, 1n 6= 0n.
Nevertheless 1ω = 0ω = a.

These examples, especially the third one, make apparent an algorithmic
problem. Even if the sets S+ and S∞ are finite, the infinite product is still
an operation of infinite arity and it is not clear how to define it as a finite
object. The problem was solved by Wilke [38], who proved that finite ω-
semigroups are totally determined by only three operations of finite arity.
This leads to the notion of Wilke algebras, that we now define.

3.3.2 Wilke Algebras

A Wilke algebra is a two-sorted algebra S = (S+, Sω), equipped with the
following operations:

(1) an associative product on S+,

(2) a mixed product, which maps each pair (s, t) ∈ S+ × Sω onto an
element of Sω denoted by st, such that, for every s, t ∈ S+ and for
every u ∈ Sω, s(tu) = (st)u,

(3) a map from S+ in Sω, denoted by s→ sω satisfying, for each s, t ∈ S+,

s(ts)ω = (st)ω

(sn)ω = sω for each n > 0

and such that every element of Sω can be written as stω with s, t ∈ S+.
Wilke’s theorem states the equivalence between finite Wilke algebra and

finite ω-semigroup. A consequence is that for a finite ω-semigroup, any
infinite product is equal to an element of the form stω, with s, t ∈ S+.

Theorem 3.7. Every finite Wilke algebra S = (S+, Sω) can be equipped,
in a unique way, with a structure of ω-semigroup that inherits the given
mixed product and such that, for each s ∈ S+, the infinite product sss · · ·
is equal to sω.

We still need to define morphisms for these algebras. We shall just give
the definition for ω-semigroups, but the definition for Wilke algebras would
be similar.

3.3.3 Morphisms of ω-semigroups

As ω-semigroups are two-sorted algebras, morphisms are defined as pairs
of morphisms. Given two ω-semigroups S = (S+, Sω) and T = (T+, Tω), a
morphism of ω-semigroups S is a pair ϕ = (ϕ+, ϕω) consisting of a semi-
group morphism ϕ+ : S+ → T+ and of a mapping ϕω : Sω → Tω preserving
the infinite product: for every sequence (sn)n∈N of elements of S+,

ϕω(s0s1s2 · · ·) = ϕ+(s0)ϕ+(s1)ϕ+(s2) · · ·

142 O. Carton, D. Perrin, J.-É. Pin

It is an easy exercise to verify that these conditions imply that ϕ also pre-
serves the mixed product, that is, for all s ∈ S+, and for each t ∈ Sω,

ϕ+(s)ϕω(t) = ϕω(st)

Algebraic concepts like isomorphism, ω-subsemigroup, congruence, quo-
tient, division are easily adapted from semigroups to ω-semigroups. We
are now ready for our algebraic version of recognizability.

3.3.4 Recognition by morphism of ω-semigroups.

In the context of ω-semigroups, it is more natural to define recognizable
subsets of A∞, although we shall mainly use this definition for subsets of
Aω . This global point of view has been confirmed to be the right one in
the study of words indexed by ordinals or by linear orders [3, 4, 5, 6, 28].
Thus a subset X of A∞ is split into two components X+ = X ∩ A+ and
Xω = X ∩Aω .

Let S = (S+, Sω) be a finite ω-semigroup, and let ϕ : A∞ → S be a
morphism. We say that ϕ recognizes a subset X of A∞ if there exist a pair
P = (P+, Pω) with P+ ⊆ S+ and Pω ⊆ Sω such that X+ = ϕ−1

+ (P+) and
Xω = ϕ−1

ω (Pω). In the sequel, we shall often omit the subscripts and simply
write X = ϕ−1(P). It is time again to justify our terminology by a theorem,
whose proof will be given in Section 5.

Theorem 3.8. A set of infinite words is recognizable if and only if it is
recognized by some morphism onto a finite ω-semigroup.

Example 3.9. Let A = {a, b}, and consider the ω-semigroup

S = ({1, 0}, {1ω, 0ω})

equipped with the operations 11 = 1, 10 = 01 = 00 = 0, 11ω = 1ω,
10ω = 00ω = 01ω = 0ω. Let ϕ : A∞ → S be the morphism of ω-semigroups
defined by ϕ(a) = 1 and ϕ(b) = 0. We have

ϕ−1(1) = a+ (finite words containing no occurrence of b),

ϕ−1(0) = A∗bA∗ (finite words containing at least one occurrence of b),

ϕ−1(1ω) = aω (infinite words containing no occurrence of b),

ϕ−1(0ω) = Aω \ aω(infinite words containing at least one occurrence of b),

The morphism ϕ recognizes each of these sets, as well as any union of these
sets.

Example 3.10. Let us take the same ω-semigroup S and consider the
morphism of ω-semigroups ϕ : A∞ → S defined by ϕ(a) = s for each a ∈ A.
We have ϕ−1(s) = A+, ϕ−1(t) = ∅ and ϕ−1(u) = Aω. Thus the morphism
ϕ recognizes the empty set and the sets A+, Aω and A∞.

Automata and semigroups recognizing infinite words 143

Example 3.11. Let A = {a, b}, and consider the ω-semigroup

S = ({a, b}, {aω, bω})

equipped with the following operations:

aa = a ab = a aaω = aω abω = aω

ba = b bb = b baω = bω bbω = bω

The morphism of ω-semigroups ϕ : A∞ → S defined by ϕ(a) = a and
ϕ(b) = b recognizes aAω since we have ϕ−1(aω) = aAω.

Boolean operations can be easily translated in terms of morphisms. Let
us start with a result which allows us to treat separately, the subsets of A+

and those of Aω.

Proposition 3.12. Let ϕ be a morphism of ω-semigroups recognizing a
subset X of A∞. Then the subsets X+, Xω, X+∪A

ω and A+∪Xω are also
recognized by ϕ.

We now consider the complement.

Proposition 3.13. Let ϕ be a morphism of ω-semigroups recognizing a
subset X of A∞ (resp. A+, Aω). Then ϕ also recognizes the complement
of X in A∞ (resp. A+, Aω).

For union and intersection, we have the following results.

Proposition 3.14. Let (ϕi)i∈F : A∞ → Si be a family of surjective mor-
phisms recognizing a subset Xi of A∞. Then the subsets

⋃

i∈F Xi and
⋂

i∈F Xi are recognized by an ω-subsemigroup of the product
∏

i∈F Si.

In the same spirit, the following properties hold:

Proposition 3.15. Let α : A∞ → B∞ be a morphism of ω-semigroups
and let ϕ be a morphism of ω-semigroups recognizing a subset X of B∞.
Then the morphism ϕ ◦ α recognizes the set α−1(X).

4 Syntactic congruence

The definition of the syntactic congruence of a recognizable subset of infinite
words is due to Arnold [1]. It was then adapted to the context of ω-semi-
groups. Therefore, this definition can be given for recognizable subsets of
A∞, but we restrict ourself to the case of subsets of Aω.

The syntactic congruence of a recognizable subset of Aω is defined on
A+ by u ∼X v if and only if, for each x, y ∈ A∗ and for each z ∈ A+,

xuyzω ∈ X ⇐⇒ xvyzω ∈ X

x(uy)ω ∈ X ⇐⇒ x(vy)ω ∈ X
(4.1)

144 O. Carton, D. Perrin, J.-É. Pin

and on Aω by u ∼X v if and only if, for each x ∈ A∗,

xu ∈ X ⇐⇒ xv ∈ X (4.2)

The syntactic ω-semigroup of X is the quotient of A∞ by the syntactic
congruence of X .

Example 4.1. Let A = {a, b} and X = {aω}. The syntactic congruence
of X divides A+ into two classes: a+ and A∗bA∗ and Aω into two classes
also: A∗bAω and aω. The syntactic ω-semigroup of X is the four element
ω-semigroup of Example 3.9.

Example 4.2. Let A = {a, b} and let X = aAω. The syntactic ω-semi-
group of X is the ω-semigroup of Example 3.11.

Example 4.3. When X is not recognizable, the equivalence relation ∼
defined on A+ by (4.1) and on Aω by (4.2) is not in general a congruence.
For instance, let A = {a, b} and X = {ba1ba2ba3b · · · }. We have, for each
n > 0, b ∼X ban, but nevertheless ba1ba2ba3b · · · is not equivalent to bω

since ba1ba2ba3b · · · ∈ X but bω /∈ X .

Example 4.4. Let X = (a{b, c}∗ ∪ {b})ω. We shall compute in Example
5.3 an ω-semigroup S recognizing this set. One can show that its syntac-
tic ω-semigroup is S(X) = ({a, b, c, ca}, {aω, cω, (ca)ω}), presented by the
relations

a2 = a ab = a ac = a ba = a b2 = b

bc = c cb = c c2 = c bω = aω baω = aω

acω = cω caω = (ca)ω a(ca)ω = aω b(ca)ω = (ca)ω c(ca)ω = (ca)ω

The syntactic ω-semigroup is the least ω-semigroup recognizing a recogniz-
able set. More precisely, we have the following statement:

Proposition 4.5. Let X be a recognizable subset of A∞. An ω-semigroup
S recognizes X if and only if the syntactic ω-semigroup of X is a quotient
of S.

Note in particular that, if u ∼X v for two words u, v of A+, then, for all
x ∈ A∗ and z ∈ Aω

xuz ∈ X ⇐⇒ xvz ∈ X (4.3)

Indeed, if ϕ : A∞ → S denotes the syntactic morphism of X , the condition
u ∼X v implies ϕ(u) = ϕ(v). It follows that ϕ(xuz) = ϕ(xvz), which gives
(4.3).

Automata and semigroups recognizing infinite words 145

5 Conversions from one acceptance mode into one

another

In this section, we explain how to convert the various acceptance modes one
into one another. We have already seen how to pass from weak to strong
recognition by a finite semigroup. We shall now describe, in order, the
conversions form weak recognition to Büchi automata, from Büchi automata
to ω-semigroups, from strong recognition to ω-semigroups and finally from
weak recognition to Muller automata.

5.1 From weak recognition to Büchi automata

Let ϕ : A+ → S be a morphism from A+ onto a finite semigroup S. First
observe that, given Büchi automata A1, . . . , An, their disjoint union recog-
nizes the set Lω(A1) ∪ . . . ∪ L

ω(An). Therefore, we may suppose that X is
a ϕ-simple set of infinite words, say X = ϕ−1(s)(ϕ−1(e))ω for some linked
pair (s, e) of S. We construct a nondeterministic Büchi automaton A that
accepts X as follows. The set Q of states of A is the set SI = S ∪ {f}
where f is a new neutral element added to S even if S has already one.
The product of S is thus extended to SI by setting tf = ft = t for any
t ∈ SI . The initial state of A is s and the unique final state is f . The set
of transitions is

E = {ϕ(a)t
a
−→ t | a ∈ A and t ∈ Q}

∪ {f
a
−→ t | a ∈ A, t ∈ Q and ϕ(a)t = e}.

Let t ∈ S. It is easily proved that a word w satisfies ϕ(w) = t if and only
if it labels a path from t to f visiting f only at the end. It follows that w
labels a path from f to f if and only if ϕ(w) = e and thus A accepts X .

The previous construction has one main drawback. The transition semi-
group of the automatonAmay not belong to the variety of finite semigroups
generated by S, as shown by the following example.

Example 5.1. Let S be the semigroup {0, 1} endowed with the usual mul-
tiplication. Let A be the alphabet {a, b} and ϕ : A+ → S be the morphism
defined by ϕ(a) = 0 and ϕ(b) = 1. Let (s, e) be the pair (0, 0). The set
ϕ−1(s)(ϕ−1(e))ω is thus equal to (b∗a)ω. The automaton A obtained with
the previous construction is pictured in Figure 1. The semigroup S is com-
mutative but the transition semigroup of A is not. Indeed, there is a path
from 1 to 0 labeled by ba but there is no path from 1 to 0 labeled by ab.

In order to solve this problem, Pécuchet [21] proposed the following
construction, which is quite similar to the previous one but has better prop-
erties. The set of states of the automaton is still the set SI = S ∪ {f}. The

146 O. Carton, D. Perrin, J.-É. Pin

0 1

f

a, b a

a

b

b

a

a, b

a

Figure 1. The automaton A.

initial state is s and the unique final state is f . The set E of transitions is
modified as follows:

E = {t′
a
→ t | a ∈ A, t, t′ ∈ Q and (t′ = ϕ(a)t or t′e = ϕ(a)t)}

The automaton B obtained with this construction is pictured in Figure 2.
It can be proved that for any states t and t′, there is a path from t′ to t

0 1

f

a, b a

a

a, b

a, b

a, b

a

a, b

a

Figure 2. The automaton B.

labeled by w if and only if t′ = ϕ(w)t or t′e = ϕ(w)t. It follows that if two
words w and w′ satisfy ϕ(w) = ϕ(w′), there is path from t′ to t labeled
by w if and only if there is path from t′ to t labeled by w′. This means that
the transition semigroup of the automaton B divides the semigroup S and
hence belongs to the variety of finite semigroups generated by S.

Automata and semigroups recognizing infinite words 147

5.2 From Büchi automata to ω-semigroups

Let A = (Q,A,E, I, F) be a Büchi automaton recognizing a subset X of
Aω . The idea is the following. Given a finite word u and two states p and
q, we define a multiplicity expressing the following possibilities for the set
P of paths from p to q labeled by u:

(1) P is empty,

(2) P is nonempty, but contains no path visiting a final state,

(3) P contains a path visiting a final state.

Our construction makes use of the semiring K = {−∞, 0, 1} in which ad-
dition is the maximum for the ordering −∞ < 0 < 1 and multiplication,
which extends the Boolean addition, is given in Table 1. Conditions (1),
(2) and (3) will be encoded by −∞, 0 and 1, respectively. Formally, we

−∞ 0 1
−∞ −∞ −∞ −∞
0 −∞ 0 1
1 −∞ 1 1

Table 1. The multiplication table.

associate with each finite word u a (Q ×Q)-matrix µ(u) with entries in K

defined by

µ(u)p,q =







−∞ in case (1),

0 in case (2),

1 in case (3)

It is easy to see that µ is a morphism from A+ into the multiplicative
semigroup of Q×Q-matrices with entries in K. Let S+ = µ(A+).

The next step is to complete our structure of Wilke algebra by defining
an appropriate set Sω, an ω-power and a mixed product. The solution
consists in coding infinite paths by column matrices of K

Q, in such a way
that each coefficient µ(u)p codes the existence of an infinite path of label u
starting at p.

The usual product of matrices induces a mixed product K
Q×Q ×K

Q →
K

Q. In order to define the operation ω on square matrices, we need the
following definition. Given a matrix s of S+, we call infinite s-path starting

at p a sequence p = p0, p1, . . . of states such that, for all i, spi,pi+1 6= −∞.
An s-path is said to be successful if spi,pi+1 = 1 for an infinite number of
indices i. We define the column matrix sω as follows. For every p ∈ Q,

sω
p =

{

1 if there exists a successful s-path of origin p,

−∞ otherwise

148 O. Carton, D. Perrin, J.-É. Pin

Note that the coefficients of this matrix can be effectively computed. Indeed,
computing sω

p amounts to checking the existence of circuits containing a
given edge in a finite graph.

Finally, Sω is the set of all column matrices of the form stω, with s, t ∈
S+. One can verify that S = (S+, Sω), equipped with these operations, is a
Wilke algebra. Further, the morphism µ can be extended in a unique way
as a morphism of ω-semigroups from A∞ into S which recognizes the set
Lω(A).

Example 5.2. Let A be the Büchi automaton represented in Figure 3. The

1

a

b

2 ab

Figure 3. A Büchi automaton.

morphism µ : A∞ → S(A) is defined by the formula

µ(a) =
(

0 −∞
−∞ 1

)
and µ(b) =

(
0 1
−∞ −∞

)

The ω-semigroup generated by these matrices contains five elements:

a =
(

0 −∞
−∞ 1

)
b =

(
0 1
−∞ −∞

)
aω =

(
−∞
1

)
bω =

(
−∞
−∞

)
baω =

(
1
−∞

)

and is presented by the relations:

a2 = a ab = b ba = b b2 = b aaω = aω abω = bω bbω = bω

Example 5.3. Let X = (a{b, c}∗ ∪ {b})ω. A Büchi automaton recognizing
X is represented in Figure 4. For this automaton, the previous computation

1a, b 2 b, c

a

b, c

Figure 4. An automaton.

provides an ω-semigroup with nine elements

S = ({a, b, c, ba, ca}, {aω, bω, cω, (ca)ω}) ,

Automata and semigroups recognizing infinite words 149

where

a =
(

1 1
−∞ −∞

)
b =

(
1 −∞
1 0

)
c =

(
−∞ −∞
1 0

)
ba = (1 1

1 1)

ca =
(
−∞ −∞
1 1

)

aω =
(

1
−∞

)
bω = (1

1) cω =
(
−∞
−∞

)
(ca)ω =

(
−∞
1

)

It is presented by the following relations:

a2 = a ab = a ac = a b2 = b bc = c

cb = c c2 = c (ba)ω = bω aaω = aω abω = aω

acω = cω aω = a(ca)ω baω = bω bbω = bω bcω = cω

b(ca)ω = (ca)ω caω = (ca)ω (ca)ω = cbω ccω = cω c(ca)ω = (ca)ω

Note that the syntactic ω-semigroup S(X) of X is not equal to S. To
compute S(X), one should first compute the image of X in S, which is
P = {aω, bω}. Next, one should compute the syntactic congruence ∼P of P
in S, which is defined on S+ by u ∼P v if and only if, for every x, y, z ∈ S+

xuyzω ∈ P ⇐⇒ xvyzω ∈ P

x(uy)ω ∈ P ⇐⇒ x(vy)ω ∈ P
(5.4)

and on Sω by u ∼P v if and only if, for each x ∈ S+,

xu ∈ P ⇐⇒ xv ∈ P (5.5)

Here we get a ∼P ba and aω ∼P bω and hence we recovered the semigroup

S(X) = ({a, b, c, ca}, {aω, cω, (ca)ω})

presented in Example 4.4.

5.3 From strong recognition to ω-semigroups

It is easy to associate a Wilke algebra S̄ = (S, Sω) to a finite semigroup S.
Let π be the exponent of S, that is, the smallest integer n such that sn

is idempotent for every s ∈ S. Two linked pairs (s, e) and (s′, e′) of S are
said to be conjugate if there exist x, y ∈ S1 such that e = xy, e′ = yx and
s′ = sx. These equalities also imply s = s′y (since s′y = sxy = se = s),
showing the symmetry of the definition. One can verify that the conjugacy
relation is an equivalence relation on the set of linked pairs of S. We shall
denote by [s, e] the conjugacy class of a linked pair (s, e).

We take for Sω the set of conjugacy classes of the linked pairs of S. One
can prove that the set S̄ is equipped with a structure of Wilke algebra by
setting, for each [s, e] ∈ Sω and t ∈ S,

t[s, e] = [ts, e] and tω = [tπ, tπ]

150 O. Carton, D. Perrin, J.-É. Pin

The definition is consistent since if (s′, e′) is conjugate to (s, e), then (ts′, e′)
is conjugate to (ts, e). It is now easy to convert strong recognition to recog-
nition by an ω-semigroup.

Proposition 5.4. If a set of infinite words is strongly recognized by a finite
semigroup S, then it is recognized by the ω-semigroup S̄.

5.4 From weak recognition to Muller automata

The construction given by Le Saec, Pin and Weil [29, 16] permits to convert
a semigroup that weakly recognizes a set of infinite words into a transition
Muller automaton. It relies, however, on two difficult results of finite semi-
group theory. Recall that a semigroup is idempotent if all its elements are
idempotent and R-trivial if the condition s R t implies s = t.

The first one is a cover theorem also proved in [29, 16]. Recall that the
right stabilizer of an element s of a semigroup S is the set of all t ∈ S such
that st = s. These stabilizers are themselves semigroups, and reflect rather
well the structure of S: if S is a group, every stabilizer is trivial, but if
S is has a zero, the stabilizer of the zero is equal to S. Here we consider
an intermediate case: the stabilizers are idempotent and R-trivial, which
amounts to saying that, for each s, t, u ∈ S, the condition s = st = su
implies t2 = t and tut = tu. We can now state the cover theorem precisely.

Theorem 5.5. Each finite semigroup is the quotient of a finite semigroup
in which the right stabilizers satisfy the identities x = x2 and xyx = xy.

The second result we need is a property of path congruences due to
I. Simon. A proof of this property can be found in [14]. Given an automaton
A, a path congruence is an equivalence relation on the set of finite paths of
A satisfying the following conditions:

(1) any two equivalent paths are coterminal (that is, they have the same
origin and the same end),

(2) if p and q are equivalent paths, and if r, p and s are consecutive paths,
then rps is equivalent to rqs.

Proposition 5.6 (I. Simon). Let ∼ be a path congruence such that, for
every pair of loops p, q around the same state, p2 ∼ p and pq ∼ qp. Then
two coterminal paths visiting the same sets of transitions are equivalent.

We are now ready to present our algorithm. Let X be a recognizable
subset of Aω and let ϕ : A+ → S be a morphism weakly recognizing X . By
Theorem 5.5, we may assume that the stabilizers of S satisfy the identities
x2 = x and xyx = xy. Let S1 be the monoid equal to S if S is a monoid
and to S ∪ {1} if S is not a monoid.

Automata and semigroups recognizing infinite words 151

One naturally associates a deterministic automaton (S1, A, ·) to ϕ by
setting, for every s ∈ S1 and every a ∈ A

s · a = sϕ(a).

Let s be a fixed state of S1. Then every word u is the label of exactly one
path with origin s, called the path with origin s defined by u.

Let A = (S1, A, · , 1, T) be the transition Muller automaton with 1 as
initial state and such that

T = {InfT (u) | u ∈ X} .

We claim that A recognizes X . First, if u ∈ X , then InfT (u) ∈ T by
definition, and thus u is recognized by A. Conversely, let u be an infinite
word recognized by A. Then

InfT (u) = InfT (v) = T for some v ∈ X.

Thus, both paths u and v visit only finitely many times transitions out of
T . Therefore, after a certain point, every transition of u (resp. v) belongs
to T , and every transition of T is visited infinitely often. Consequently, one
can find two factorizations u = u0u1u2 · · · and v = v0v1v2 · · · and a state
s ∈ S such that

(1) u0 and v0 define paths from 1 to s,

(2) for every n > 0, un and vn define loops around s that visit at least
once every transition in T and visit no other transition.

The situation is summarized in Figure 5 below. Furthermore, Proposition

1 s

u0

v0

u1

u2

v1

v2· · ·

Figure 5.

3.2 shows that, by grouping the ui’s (resp. vi’s) together, we may assume
that

ϕ(u1) = ϕ(u2) = ϕ(u3) = . . . and ϕ(v1) = ϕ(v2) = ϕ(v3) = . . .

It follows in particular
u0v

ω
1 ∈ X (5.6)

152 O. Carton, D. Perrin, J.-É. Pin

since ϕ(u0) = ϕ(v0) = s, ϕ(v1) = ϕ(v2) = . . . and v0v1v2 · · · ∈ X . Further-
more,

u ∈ X if and only if u0u
ω
1 ∈ X (5.7)

To simplify notation, we shall denote by the same letter a path and its label.
We define a path equivalence ∼ as follows. Two paths p and q are equivalent
if p and q are coterminal, and if, for every nonempty path x from 1 to the
origin of p, and for every path r from the end of p to its origin, x(pr)ω ∈ X
if and only if x(qr)ω ∈ X .

1 s
x

q

p

r

Figure 6.

Lemma 5.7. The equivalence ∼ is a path congruence such that, for every
pair of loops p, q around the same state, p2 ∼ p and pq ∼ qp.

Proof. We first verify that ∼ is a congruence. Suppose that p ∼ q and let u
and v be paths such that u, p and v are consecutive. Since p ∼ q, p and q are
coterminal, and thus upv and uqv are also coterminal. Furthermore, if x is a
nonempty path from 1 to the origin of upv, and if r is a path from the end of
upv to its origin such that x(upvr)ω ∈ X , then (xu)(p(vru))ω ∈ X , whence
(xu)(q(vru))ω ∈ X since p ∼ q, and thus x(uqvr)ω ∈ X . Symmetrically,
x(uqvr)ω ∈ X implies x(upvr)ω ∈ X , showing that upv ∼ uqv.

Next we show that if p is a loop around s ∈ S, then p2 ∼ p. Let x
be a nonempty path from 1 to the origin of p, and let r be a path from
the end of p to its origin. Then, since p is a loop, ϕ(x)ϕ(p) = ϕ(x). Now
since the stabilisers of S are idempotent semigroups, ϕ(p) = ϕ(p2) and thus
x(pr)ω ∈ X if and only if x(p2r)ω ∈ X since ϕ recognizes X .

Finally, we show that if p and q are loops around the same state s, then
pq ∼ qp. Let, as before, x be a nonempty path from 1 to the origin of p,
and let r be a path from the end of p to its origin. Then r is a loop around
s. We first observe that

x(pq)ω ∈ X ⇐⇒ x(qp)ω ∈ X (5.8)

Indeed x(pq)ω = xp(qp)ω , and since p is a loop, ϕ(x)ϕ(p) = ϕ(x). Thus
xp(qp)ω ∈ X if and only if x(qp)ω ∈ X , then proving (5.8). Now, we have
the following sequence of equivalences

x(pqr)ω ∈ X ⇐⇒ x(pqrq)ω ∈ X ⇐⇒ x(rqpq)ω ∈ X

⇐⇒ x(rqp)ω ∈ X ⇐⇒ x(qpr)ω ∈ X,

Automata and semigroups recognizing infinite words 153

where the second and fourth equivalences follow from (5.8) and the first
and third from the identity xyx = xy satisfied by the right stabilizer of
ϕ(x). q.e.d.

We can now conclude the proof of Theorem 2.5. By assumption, the two
loops around s defined by u1 and v1 visit exactly the same sets of transitions
(namely T). Thus, by Lemma 5.7 and by Proposition 5.6, these two paths
are equivalent. In particular, since u0v

ω
1 ∈ X by (5.6), we have u0u

ω
1 ∈ X ,

and thus u ∈ X by (5.7). Therefore A recognizes X .

6 An algebraic proof of McNaughton’s theorem

McNaughton’s celebrated theorem states that any recognizable subset of
infinite words is a Boolean combination of deterministic recognizable sets.
This Boolean combination can be explicitly computed using ω-semigroups.
This proof relies on a few useful formulas of independent interest on deter-
ministic sets. Note that McNaughton’s theorem can be formulated as the
equivalence of Büchi and Muller automata. Thus the construction described
in Section 5.4 gives an alternative proof of McNaughton’s theorem. Yet an-
other proof is due to Safra [30]. It provides a direct construction leading to
a reduced computational complexity.

Let S be a finite ω-semigroup and let ϕ : A∞ → S be a surjective
morphism recognizing a subset X of Aω. Set, for each s ∈ S+, Xs = ϕ−1(s).
Finally, we denote by P the image of X in S and by F (P) the set of linked
pairs (s, e) of S+ such that seω ∈ P .

For each s ∈ S+, the set Ps = Xs \XsA
+ is prefix-free, since a word of

Ps cannot be, by definition, prefix of another word of Ps. Put

Es = {f ∈ S+ | f
2 and sf = s} = {f ∈ S+ | (s, f) is a linked pair},

and denote by 6 the relation on Es defined by

g 6 e if and only if eg = g.

It is the restriction to the set Es of the preorder 6R, since, if g = ex then
eg = eex = ex = g. We shall use the notation e < g if e 6 g and if g 66 e.
To simplify notation, we shall suppose implicitly that for every expression
of the form XsX

ω
f or XsPf , the pair (s, f) is a linked pair of S+.

Proposition 6.1. For each linked pair (s, e) of S+, the following formula
holds

XsX
ω
e ⊂

−−−→
XsPe ⊂

⋃

f6e

XsX
ω
f . (6.9)

154 O. Carton, D. Perrin, J.-É. Pin

Corollary 6.2.

(1) For every idempotent e of S+, the following formula holds

Xω
e =

−−−→
XePe. (6.10)

(2) For every linked pair (s, e) of S+, we have

⋃

f6e

XsX
ω
f =

⋃

f6e

−−−→
XsPf . (6.11)

Proof. Formula (6.10) is obtained by applying (6.9) with s = e. Formula
(6.11) follows by taking the union of both sides of (6.9) for f 6 e. q.e.d.

The previous statement shows that a set of the form Xω
e , with e idem-

potent, is always deterministic. This may lead the reader to the conjecture
that every subset of the form Xω, where X is a recognizable subset of A+,
is deterministic. However, this conjecture is ruined by the next example.

Example 6.3. Let X = (a{b, c}∗ ∪{b})ω. The syntactic ω-semigroup of Y
has been computed in Example 4.4. In this ω-semigroup, b is the identity,
and all the elements are idempotent. The set X can be split into simple
elements as follows:

X = ϕ−1(a)ϕ−1(b)ω ∪ ϕ−1(a)ω

= b∗a{a, b, c}∗bω ∪ (b∗a{a, b, c}∗)ω.

It is possible to deduce from the previous formulas an explicit Boolean
combination of deterministic sets.

Theorem 6.4. The following formula holds

X =
⋃

(s,e)∈F (P)

⋃

fRe

XsX
ω
f (6.12)

and, for each (s, e) ∈ F (P),

⋃

fRe

XsX
ω
f = (

−→
Us,e \

−→
V s,e) (6.13)

where Us,e and Vs,e are the subsets of A+ defined by:

Us,e =
⋃

f6e

XsPf and Vs,e =
⋃

f<e

XsPf

In particular, X is a Boolean combination of deterministic sets.

Automata and semigroups recognizing infinite words 155

For a proof, see [25, p. 120]. One can also obtain a characterization of the
deterministic subsets.

Theorem 6.5. The set X is deterministic if and only if, for each linked
pairs (s, e) and (s, f) of S+ such that f 6 e, the condition seω ∈ P implies
sfω ∈ P . In this case

X =
⋃

(s,e)∈F (P)

−−−→
XsPe (6.14)

For a proof, see [25, Theorem 9.4, p. 121].

Example 6.6. We return to Example 6.3. The image of X in its syntactic
ω-semigroup is the set P = {aω}. Now, the pairs (a, b) and (a, c) are linked
pairs of S+ since ab = ac = a and we have c 6 b since bc = c. But
abω = aω ∈ P , and acω = cω /∈ P . Therefore X is not deterministic.

The proof of McNaughton’s theorem described above is due to Schützen-
berger [31]. It is related to the proof given by Rabin [27] and improved by
Choueka [12]. See [25, p. 72] for more details.

7 Prophetic automata

In this section, we introduce a new type of automata, called prophetic,
because in some sense, all the information concerning the future is encoded
in the initial state. We first need to make precise a few notions on Büchi
automata.

7.1 More on Büchi automata

There are two competing versions for the notions of determinism and co-
determinism for a trim automaton. In the first version, the notions are
purely local and are defined by a property of the transitions set. They
give rise to the notions of automaton with deterministic or co-deterministic
transitions introduced in Section 2. The second version is global: a trim
automaton is deterministic if it has exactly one initial state and if every
word is the label of at most one initial path. Similarly, a trim automaton
is co-deterministic if every word is the label of at most one final path.

The local and global notions of determinism are equivalent. The local
and global notions of co-determinism are also equivalent for finite words.
However, for infinite words, the global version is strictly stronger than the
local one.

Lemma 7.1. A trim Büchi automata is deterministic if and only if it has
exactly one initial state and if its transitions are deterministic. Further,
if a trim Büchi automata is co-deterministic, then its transitions are co-
deterministic.

156 O. Carton, D. Perrin, J.-É. Pin

The notions of complete and co-complete Büchi automata are also global
notions. A trim Büchi automata is complete if every word is the label of
at least one initial path. It is co-complete if every word is the label of
at least one final path. Unambiguity is another global notion. A Büchi

Det. transitions Co-det. transitions Unambiguous

Forbidden
configuration:

q

q1

q2

a

a

where a is a letter.

Forbidden
configuration:

q

q1

q2

a

a

where a is a letter.

Forbidden
configuration:

p q

u

u

where u is a word.

Deterministic Co-deterministic Unambiguous

Two initial paths
with the same label
are equal + exactly

one initial state

Two final paths
with the same label

are equal

Two successful
paths with the
same label are

equal

Complete Co-complete

Every word is the
label of some
initial path

Every word is the
label of some

final path

Table 2. Summary of the definitions.

automaton A is said to be ω-unambiguous if every infinite word in is the
label of at most one successful path. It is clear that any deterministic or
co-deterministic Büchi automaton is ω-unambiguous, but the converse is
not true. The various terms are summarized in Table 2.

7.2 Prophetic automata

By definition, a prophetic automaton is a co-deterministic, co-complete
Büchi automaton. Equivalently, a Büchi automaton is prophetic if every
word is the label of exactly one final path. Therefore, a word is accepted if
the unique final path it defines is also initial. The main result of this section
shows that prophetic and Büchi automata are equivalent.

Theorem 7.2. Any recognizable set of infinite words can be recognized by
a prophetic automaton.

Automata and semigroups recognizing infinite words 157

It was already proved independently in [19] and [2] that any recognizable
set of infinite words is recognized by a codeterministic automaton, but the
construction given in [2] does not provide unambiguous automata.

Prophetic automata recognize infinite words, but the construction can
be adapted to biinfinite words. Two unambiguous automata on infinite
words can be merged to make an unambiguous automaton on biinfinite
words. This leads to an extension of McNaughton’s theorem to the case of
biinfinite words. See [25, Section 9.5] for more details.

Theorem 7.2 was originally formulated by Michel in the eighties but
remained unpublished for a long time. Another proof was found by the
first author and the two proofs were finally published in [10, 11]. Our
presentation follows the proof which is based on ω-semigroups. We start
with a simple characterization.

Proposition 7.3. Let A = (Q,A,E, I, F) be a Büchi (transition Büchi)
automaton and let, for each q ∈ Q, Lq = Lω(Q,A,E, q, F).

(1) A is co-deterministic if and only if the Lq’s are pairwise disjoint.

(2) A is co-complete if and only if ∪q∈QLq = Aω.

Proof. (1) If A is co-deterministic, the Lq’s are clearly pairwise disjoint.

Suppose that the Lq’s are pairwise disjoint and let p0
a0−→ p1

a1−→ p2 · · ·

and q0
a0−→ q1

a1−→ q2 · · · be two infinite paths with the same label u =
a0a1 · · · . Then, for each i > 0, aiai+1 · · · ∈ L(pi)∩L(qi), and thus pi = qi.
Thus A is co-deterministic.

(2) follows immediately from the definition of co-complete automata.
q.e.d.

Example 7.4. A prophetic automaton is presented in Figure 7. The cor-
responding partition of Aω is the following:

L0 = A∗baω (at least one, but finitely many b)

L1 = aω (no b)

L2 = a(A∗b)ω (first letter a, infinitely many b)

L3 = b(A∗b)ω (first letter b, infinitely many b)

Example 7.5. Another example, recognizing the set A∗(ab)ω, is presented
in Figure 8.

Complementation becomes easy with prophetic automata.

Proposition 7.6. Let A = (Q,A,E, I, F) be a prophetic automaton rec-
ognizing a subset X of Aω. Then the Büchi automaton (Q,A,E,Q \ I, F)
recognizes the complement of X .

158 O. Carton, D. Perrin, J.-É. Pin

0 1a, b ab

2 3a b

a

b

Figure 7. A prophetic automaton.

0

1

2

3

4

5

6

a, b
a

b

ab

a
a

a

a

b

b

b

b

Figure 8. A prophetic automaton recognizing A∗(ab)ω.

It is easier to prove Theorem 7.2 for a variant of prophetic automata that
we now define. A prophetic transition automaton is a co-deterministic,
co-complete, transition automaton. Proposition 2.6 states that Büchi au-
tomata and transition Büchi automata are equivalent. It is not difficult to
adapt this result to prophetic automata [25, Proposition I.8.1].

Proposition 7.7. Prophetic and transition prophetic automata are equiv-
alent.

Thus Theorem 7.2 can be reformulated as follows.

Theorem 7.8. Any recognizable set of infinite words can be recognized by
a prophetic transition automaton.

Proof. Let X be a recognizable subset of Aω, let ϕ : A∞ → S be the
syntactic morphism of X and let P = ϕ(X). Our construction strongly
relies on the properties of >R-chains of the semigroup S+ and requires a
few preliminaries.

We shall denote by R the set of all nonempty >R-chains of S+:

R =
{
(s0, s1, . . . , sn) | n > 0, s0, . . . , sn ∈ S and s0 >R s1 >R · · · >R sn

}

Automata and semigroups recognizing infinite words 159

In order to convert a >R-chain into a strict >R-chain, we introduce the
reduction ρ, defined inductively as follows

ρ(s) = (s)

ρ(s1, . . . , sn) =

{

ρ(s1, . . . , sn−1) if sn R sn−1

(ρ(s1, . . . , sn−1), sn) if sn−1 >R sn

In particular, for each finite word u = a0a1 · · · an (where the ai’s are letters),
let ϕ̂(u) be the >R-chain ρ(s0, s1, . . . , sn), where si = ϕ(a0a1 · · · ai) for
0 6 i 6 n. The definition of ϕ̂ can be extended to infinite words. Indeed, if
u = a0a1 · · · is an infinite word,

s0 >R s1 >R s2 . . .

and since S+ is finite, there exists an integer n, such that, for all i, j > n,
si R sj . Then we set ϕ̂(u) = ϕ̂(a0 . . . an).

Define a map from A×S1
+ into S1

+ by setting, for each a ∈ A and s ∈ S1
+,

a· s = ϕ(a)s

We extend this map to a map from A×R into R by setting, for each a ∈ A
and (s1, . . . , sn) ∈ R,

a· (s1, . . . , sn) = ρ(a· 1, a· s1, . . . , a· sn)

To extend this map to A+, it suffices to apply the following induction rule,
where u ∈ A+ and a ∈ A

(ua)· (s1, . . . , sn) = u· (a· (s1, . . . , sn))

This defines an action of the semigroup A+ on the set R in the sense that,
for all u, v ∈ A∗ and r ∈ R,

(uv)· r = u(v · r)

The connections between this action, ϕ and ϕ̂ are summarized in the next
lemma.

Lemma 7.9. The following formulas hold:

(1) For each u ∈ A+ and v ∈ Aω, u·ϕ(v) = ϕ(uv)

(2) For each u, v ∈ A+, u· ϕ̂(v) = ϕ̂(uv)

Proof. (1) follows directly from the definition of the action and it suffices
to establish (2) when u reduces to a single letter a. Let v = a0a1 . . . an,
where the ai’s are letters and let, for 0 6 i 6 n, si = ϕ(a0a1 . . . ai). Then,

160 O. Carton, D. Perrin, J.-É. Pin

by definition, ϕ̂(v) = ρ(s0, . . . , sn) and since, the relation >R is stable on
the left,

a· ϕ̂(v) = ρ(a· 1, a· s0, a· s1, . . . , a· sn) = ϕ̂(av)

which gives (2). q.e.d. (Theorem 7.8)

We now define a transition Büchi automaton A = (Q,A,E, I, F) by setting

Q =
{(

(s1, . . . , sn), seω
)
| (s1, . . . , sn) ∈ R,

(s, e) is a linked pair of S+ and sn R s
}

I =
{(

(s1, . . . , sn), seω
)
∈ Q | seω ∈ P

}

E =
{((

a· (s1, . . . , sn), a· seω
)
, a,

(
(s1, . . . , sn), seω

))

a ∈ A and
(
(s1, . . . , sn), seω

)
∈ Q

}

A transition
((
a· (s1, . . . , sn), a· seω

)
, a,

(
(s1, . . . , sn), seω

))

is said to be

cutting if the last two elements of the >R-chain (a· 1, a· s1, . . . , a· sn) are
R-equivalent.
We choose for F the set of cutting transitions of the form

((
a· (s1, . . . , sn), a· eω

)
, a,

(
(s1, . . . , sn), eω

))

where e is an idempotent of S+ such that sn R e.
Note that A has co-deterministic transitions. A typical transition is

shown in Figure 9. The first part of the proof consists in proving that every

(
a· (s1, . . . , sn), a· seω

) (
(s1, . . . , sn), seω

)a

Figure 9. A transition of A.

infinite word is the label of a final path. Let u = a0a1 · · · be an infinite
word, and let, for each i > 0, xi = aiai+1 · · · and qi =

(
ϕ̂(xi), ϕ(xi)

)
. Each

qi is a state of Q, and Lemma 7.9 shows that

p = q0
a0−→ q1

a1−→ q2 · · ·

is a path of A.

Lemma 7.10. The path p is final.

Automata and semigroups recognizing infinite words 161

Proof. Let (ui)i>0 be a factorization of u associated with the linked pair
(s, e). Then for each i > 0, ϕ(uiui+1 · · ·) = eω. Fix some i > 0 and
let ni = |u0u1 · · ·ui|. Then qni

=
(
(s1, . . . , sn), eω

)
with (s1, . . . , sn) =

ϕ̂(ui+1ui+2 · · ·). In particular, sn R e and hence esn = sn. Suppose first
that n > 2. Then ϕ(ui)sn−1 = esn−1 6R e and ϕ(ui)sn = esn = sn R e.
Therefore the relation ϕ(ui)sn−1 >R ϕ(ui)sn does not hold. If n = 1, the
same argument works by replacing sn−1 by 1. It follows that in the path of
label ui from qni−1 to qni

, at least one of the transitions is cutting. Thus
p contains infinitely many cutting transitions and one can select one, say
(q, a, q′), that occurs infinitely often. This gives a factorization of the form

p = q0
x0−→ q

a
−→ q′

x1−→ q
a
−→ q′

x2−→ · · ·

Up to taking a superfactorization, we can assume, by Proposition 3.2, that
for some idempotent f , ϕ(xia) = f for every i > 0. It follows that the
second component of q′ is ϕ(xiaxi+1a · · ·) = fω and thus the transition
(q, a, q′) is final, which proves the lemma. q.e.d. (Theorem 7.8)

Furthermore, p is successful if and only if ϕ(u) ∈ P , or, equivalently, if
u ∈ X . Thus A recognizes X and is co-complete. It just remains to prove
that A is co-deterministic, which, by Proposition 7.3, will be a consequence
of the following lemma.

Lemma 7.11. Any final path of label u starts at state
(
ϕ̂(u), ϕ(u)

)
.

Proof. Let p be a final path of label u. Then some final transition, say
(q, a, q′), occurs infinitely often in p. Highlighting this transition yields a
factorization of p

q0
v0−→ q

a©
−→ q′

v1−→ q
a©
−→ q′

v2−→ · · ·

Let q′ =
(
(s1, . . . , sn), eω

)
, and consider a factor of the path p labelled by

a word of the form v = viavi+1a · · · vja, with i > 0 and j − i > n. By the
choice of v, q′ = v · q′, and the first component of q′ is obtained by reducing
the >R-chain

(
ϕ(v[0, 0]), ϕ(v[0, 1]), . . . , ϕ(v), ϕ(v)s1, . . . , ϕ(v)sn

)

Now, since the cutting transition (q, a, q′) occurs n+ 1 times in this factor,
the last n + 1 elements of this chain are R-equivalent. It follows that the
first component of q′ is simply equal to ϕ̂(v).

Consider now a superfactorization u = w0w1w2 · · · obtained by grouping
the factors via

u = (v0a · · · vi0−1a
︸ ︷︷ ︸

w0

)(vi0a · · · vi1−1a
︸ ︷︷ ︸

w1

)(vi1a · · · vi2−1a
︸ ︷︷ ︸

w2

)

162 O. Carton, D. Perrin, J.-É. Pin

in such a way that, for some idempotent f , ϕ(w1) = ϕ(w2) = · · · = f . We
may also assume that i0 > 0 and i1 − i0 > n + 1. Thus q′ = w1 · q

′ =
w1w2 · q

′ = · · · , and

(s1, · · · , sn) = ϕ̂(w1) = ϕ̂(w1w2) = · · · = ϕ̂(w1w2 · · ·)

It follows in particular sn R ϕ(w1) = f . Furthermore, sn R e since (q, a, q′)
is a final transition and thus e R f . Therefore eω = fω = ϕ(w1w2 · · ·).
Thus q′ =

(
ϕ̂(w1w2 · · ·), ϕ(w1w2 · · ·)

)
and it follows from Lemma 7.9 that

q0 = w0 · q
′ =

(
ϕ̂(u), ϕ(u)

)
. q.e.d. (Lemma 7.11)

q.e.d. (Theorem 7.8)

The construction given in the proof of Theorem 7.2 is illustrated in the
following examples.

Example 7.12. Let A = {a, b} and let X = aAω. The syntactic ω-semi-
group S of X , already computed in Example 4.2 is S = (S+, S∞) where
S+ = {a, b}, Sω = {aω, bω}, submitted to the following relations

aa = a ab = a aaω = aω abω = aω

ba = b bb = b baω = bω bbω = bω

The syntactic morphism ϕ of X is defined by ϕ(a) = a and ϕ(b) = b. The
transition Büchi automaton associated with ϕ is shown in Figure 10. The
final transitions are circled.

(a), aω (b), bωa© ©b

a©

©b

Figure 10. The transition Büchi automaton associated with ϕ.

Example 7.13. Let A = {a, b} and let X = (A∗a)ω. The syntactic ω-semi-
group S of X is S = (S+, S∞) where S+ = {0, 1}, Sω = {0ω, 1ω}, submitted
to the following relations

1· 1 = 1 1· 0 = 0 10ω = 0ω 11ω = 1ω

0· 1 = 0 0· 0 = 0 00ω = 0ω 01ω = 1ω

The syntactic morphism ϕ of X is defined by ϕ(a) = 0 and ϕ(b) = 1. The
transition Büchi automaton associated with ϕ is shown in Figure 11.

Automata and semigroups recognizing infinite words 163

(1, 0), 1ω

(0), 1ω (1), 1ω

b

a ©b
a

ba

(1, 0), 0ω (0), 0ωb a©

b

a©

Figure 11. The transition Büchi automaton associated with ϕ.

7.3 Transfinite words

A natural extension to finite and infinite words is to consider words indexed
by an ordinal, also called transfinite word. Automata on ordinals were
introduced by Büchi [8, 9]. This leads to the notion of recognizable set of
transfinite words. Subsequent work [3, 4, 5, 12, 13, 40] has shown that a
number of results on infinite words can be extended to transfinite words
(and even to words on linear orders [6, 28]).

An extension of the notion of ω-semigroup to countable ordinals was
given in [3, 4, 5]. A further extension to countable linear orders is given in
[6].

It is not difficult to extend the notion of prophetic automata to trans-
finite words. We show however that prophetic automata do not accept all
recognizable sets of transfinite words.

First recall that an automaton on transfinite words is given by a finite
set Q of states, sets I and F of initial and final states and a set E of
transitions. Each transition is either a triple (p, a, q) where p and q are
states and a is a letter or a pair (q, P) where where q is a state and P a
subset of states. The former ones are called successor transitions and the
latter ones limit transitions.

Let α be an ordinal. A path labeled by a word x = (aβ)β<α of length α
is a sequence c = (qβ)β6α of states of length α + 1 with the following
properties.

(1) for each β < α, the triple (qβ , aβ , qβ+1) is a successor transition of A.

(2) for each limit ordinal β 6 α, the pair (limβ(c), cβ) is a limit transition
of A, where limβ(c) is the set of states q such that, for each ordinal
γ < β, there is an ordinal η such that γ < η < β and q = qη.

Note that since Q is finite, the set limβ(c) is nonempty for each limit ordinal

164 O. Carton, D. Perrin, J.-É. Pin

β 6 α. A path c = (qβ)β6α is initial if its first state q0 is initial and it is
final if its last state qα is final. It is accepting if it is both initial and final.
A word x is accepted if it is the label of an accepting path.

The notion of prophetic automaton can be readily adapted to transfi-
nite words: an automaton is prophetic if any transfinite word is the label
of exactly one final path. However, the next result shows that not every
automaton is equivalent to a prophetic one.

Proposition 7.14. The set Aω2

of words of length ω2 cannot be accepted
by a prophetic automaton.

Proof. Suppose there is a prophetic automaton A accepting the set Aω2

.
Since the word aω2

is accepted by A, there is a unique successful path
c = (qβ)β6ω2 labeled by aω2

. In particular, q0 is an initial state and qω2 is
a final state. We claim that the word aω is also accepted by A.

We first prove that qβ = q0 for any β < ω2. The path (qβ)16β6ω2 is also

a final path labeled by aω2

. It must therefore be equal to c. This shows
that qn = q0 for any n < ω. Similarly, the path (qβ)ω6β6ω2 is a final path

labeled by aω2

and hence qβ = q for any β < ω2. Since the set limω2(c) is
equal to {q0}, the pair ({q0}, qω2) must be a limit transition of A. Thus the
path c′ = (q′β)β<ω defined by q′β = q0 if β < ω and q′ω = qω2 is a successful
path labeled by aω. q.e.d.

References

[1] A. Arnold. A syntactic congruence for rational ω-languages. Theor.

Comput. Sci., 39:333–335, 1985.

[2] D. Beauquier and D. Perrin. Codeterministic automata on infinite
words. Inf. Process. Lett., 20(2):95–98, 1985.

[3] N. Bedon. Finite automata and ordinals. Theor. Comput. Sci.,
156(1&2):119–144, 1996.

[4] N. Bedon. Automata, semigroups and recognizability of words on or-
dinals. Internat. J. Algebra Comput., 8(1):1–21, 1998.

[5] N. Bedon and O. Carton. An Eilenberg theorem for words on countable
ordinals. In Lucchesi and Moura [17], pages 53–64.

[6] V. Bruyère and O. Carton. Automata on linear orderings. In J. Sgall,
A. Pultr, and P. Kolman, editors, MFCS, volume 2136 of Lecture Notes

in Computer Science, pages 236–247. Springer, 2001.

Automata and semigroups recognizing infinite words 165

[7] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Logic, Methodology and Philosophy of Science (Proc. 1960 Internat.

Congr.), pages 1–11. Stanford Univ. Press, Stanford, Calif., 1962.

[8] J. R. Büchi. Transfinite automata recursions and weak second order
theory of ordinals. In Logic, Methodology and Philos. Sci. (Proc. 1964

Internat. Congr.), pages 3–23. North-Holland, Amsterdam, 1965.

[9] J. R. Büchi. The monadic second order theory of ω1. In The monadic

second order theory of all countable ordinals (Decidable theories, II),
pages 1–127. Lecture Notes in Math., Vol. 328, Berlin, 1973. Springer.

[10] O. Carton and M. Michel. Unambiguous Büchi automata. In G. H.
Gonnet, D. Panario, and A. Viola, editors, LATIN, volume 1776 of
Lecture Notes in Computer Science, pages 407–416. Springer, 2000.

[11] O. Carton and M. Michel. Unambiguous Büchi automata. Theor.

Comput. Sci., 1-3(297):37–81, 2003.

[12] Y. Choueka. Theories of automata on ω-tapes: A simplified approach.
J. Comput. Syst. Sci., 8(2):117–141, 1974.

[13] Y. Choueka. Finite automata, definable sets, and regular expressions
over ωn-tapes. J. Comput. Syst. Sci., 17(1):81–97, 1978.

[14] S. Eilenberg. Automata, Languages, and Machines. Vol. B. Aca-
demic Press [Harcourt Brace Jovanovich Publishers], New York, 1976.
With two chapters (“Depth decomposition theorem” and “Complex-
ity of semigroups and morphisms”) by Bret Tilson, Pure and Applied
Mathematics, Vol. 59.

[15] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl

seminar, February 2001], volume 2500 of Lecture Notes in Computer

Science. Springer, 2002.

[16] B. Le Saëc, J.-E. Pin, and P. Weil. Semigroups with idempotent stabi-
lizers and applications to automata theory. Internat. J. Algebra Com-

put., 1(3):291–314, 1991.

[17] C. L. Lucchesi and A. V. Moura, editors. LATIN ’98: Theoretical In-

formatics, Third Latin American Symposium, Campinas, Brazil, April,

20-24, 1998, Proceedings, volume 1380 of Lecture Notes in Computer

Science. Springer, 1998.

[18] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521–530, 1966.

166 O. Carton, D. Perrin, J.-É. Pin

[19] A. W. Mostowski. Determinancy of sinking automata on infinite trees
and inequalities between various Rabin’s pair indices. Inf. Process.

Lett., 15(4):159–163, 1982.

[20] J.-P. Pécuchet. Etude syntaxique des parties reconnaissables de mots
infinis. In L. Kott, editor, ICALP, volume 226 of Lecture Notes in

Computer Science, pages 294–303. Springer, 1986.

[21] J.-P. Pécuchet. Variétés de semigroupes et mots infinis. In B. Monien
and G. Vidal-Naquet, editors, STACS, volume 210 of Lecture Notes in

Computer Science, pages 180–191. Springer, 1986.

[22] D. Perrin. Variétés de semigroupes et mots infinis. C. R. Acad. Sci.

Paris Sér. I Math., 295(10):595–598, 1982.

[23] D. Perrin. An introduction to finite automata on infinite words. In
M. Nivat and D. Perrin, editors, Automata on Infinite Words, volume
192 of Lecture Notes in Computer Science, pages 2–17. Springer, 1984.

[24] D. Perrin and J.-E. Pin. Semigroups and automata on infinite words.
In Semigroups, formal languages and groups (York, 1993), volume 466
of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 49–72. Kluwer
Acad. Publ., Dordrecht, 1995.

[25] D. Perrin and J.-E. Pin. Infinite Words. Automata, Semigroups, Logic

and Games, volume 141 of Pure and Applied Mathematics. Elsevier,
Amsterdam, 2004.

[26] J.-E. Pin. Positive varieties and infinite words. In Lucchesi and Moura
[17], pages 76–87.

[27] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[28] C. Rispal and O. Carton. Complementation of rational sets on count-
able scattered linear orderings. Int. J. Found. Comput. Sci., 16(4):767–
786, 2005.

[29] B. L. Saëc, J.-E. Pin, and P. Weil. A purely algebraic proof of Mc-
Naughton’s theorem on infinite words. In S. Biswas and K. V. Nori,
editors, FSTTCS, volume 560 of Lecture Notes in Computer Science,
pages 141–151. Springer, 1991.

[30] S. Safra. On the complexity of ω-automata. In FOCS, pages 319–327.
IEEE, 1988.

Automata and semigroups recognizing infinite words 167

[31] M. Schützenberger. À propos des relations rationnelles fonctionnelles.
In Automata, Languages and Programming (Proc. Sympos., Rocquen-

court, 1972), pages 103–114, Amsterdam, 1973. North Holland.

[32] L. Staiger. ω-languages. In Handbook of formal languages, Vol. 3, pages
339–387. Springer, Berlin, 1997.

[33] W. Thomas. Star-free regular sets of ω-sequences. Information and

Control, 42(2):148–156, 1979.

[34] W. Thomas. A combinatorial approach to the theory of ω-automata.
Information and Control, 48(3):261–283, 1981.

[35] W. Thomas. Classifying regular events in symbolic logic. J. Comput.

Syst. Sci., 25(3):360–376, 1982.

[36] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models

and Sematics (B), pages 133–192. Elsevier, Amsterdam, 1990.

[37] W. Thomas. Languages, automata, and logic. In Handbook of formal

languages, Vol. 3, pages 389–455. Springer, Berlin, 1997.

[38] Th. Wilke. An Eilenberg theorem for infinity-languages. In J. L. Albert,
B. Monien, and M. Rodŕıguez-Artalejo, editors, ICALP, volume 510 of
Lecture Notes in Computer Science, pages 588–599. Springer, 1991.

[39] Th. Wilke. An algebraic theory for regular languages of finite and
infinite words. Internat. J. Algebra Comput., 3(4):447–489, 1993.

[40] J. Wojciechowski. The ordinals less than ωω are definable by finite
automata. In Algebra, combinatorics and logic in computer science,

Vol. I, II (Győr, 1983), volume 42 of Colloq. Math. Soc. János Bolyai,
pages 871–887. North-Holland, Amsterdam, 1986.

Deterministic graph grammars∗

Didier Caucal

Institut Gaspard Monge / C.N.R.S.
Université de Paris-Est
5, boulevard Descartes
77454 Champs-sur-Marne, France
caucal@univ-mlv.fr

Abstract

This paper is a first attempt at a general survey of deterministic
graph grammars and the class of graphs they generate. We focus on
providing some of the basic tools to reason about deterministic graph
grammars, and on a structural study of their generated graphs.

1 Introduction

Context-free grammars are one of the most classical and fundamental no-
tions in computer science textbooks, in both theoretical and applied set-
tings. As characterizations of the well-known class of context-free languages,
they are a very prominent tool in the field of language theory. Since context-
free grammars are powerful enough to express most programming languages,
they also play an important role in compilation, where they form the basis
of many efficient parsing algorithms.

A similar notion can be adapted to the more general setting of grammars
generating graphs instead of words. In this case, grammar rules no longer
express the replacement of a non-terminal letter by a string of terminal
and non-terminal letters, but that of a non-terminal arc (or more generally
hyperarc) by a finite graph (or hypergraph) possibly containing new non-
terminals, thus generating larger and larger graphs. It is still relevant to call
such grammars context-free, since the replacement of a given non-terminal
is independent of the context in which it is performed, i. e. the remainder
of the graph it is applied to, which is left unchanged.

Also, whenever two non-terminals can be replaced, the corresponding
derivation steps are independent. Consequently, starting from a given graph,
it is possible to describe any sequence of productions (a derivation) as a
derivation tree. This intuitively explains why many notions suitable for
the study of context-free word grammars extend to context-free (also called
hyperedge-replacement) graph grammars (see for instance [9]).

∗ Let me thank Arnaud Carayol and Antoine Meyer for their help in drafting this paper.
Many thanks to Wolfgang Thomas for his support, and happy birthday.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 169–250.

170 D. Caucal

In this paper, we are concerned with the specific setting where the con-
sidered sets of grammar rules are deterministic, meaning that there is only
one production rule for every non-terminal hyperarc. Consequently, from
a given axiom, a grammar does not generate a set of graphs (which could
be called a “context-free” graph language), but a unique graph up to iso-
morphism called a regular graph. This is an important restriction, which
entails another crucial conceptual difference with word grammars. Note
that grammars generating a unique finite graph are trivial: they are equiv-
alent to grammars containing a unique rule, or even no rule if any finite
graph is allowed as an axiom. As a result and contrary to the case of words,
we are not interested in graphs generated after a finite derivation sequence,
but in graphs generated “at the limit” i. e. after an infinite number of steps
(see Figure 2.8 and Figure 2.9).

These deterministic graph grammars correspond to the finite systems of
equations over graph operators originally defined by Courcelle [7], and whose
least solutions, called equational graphs, are the regular graphs. This kind
of graphs was first considered by Muller and Schupp [8]: they showed that
the connected components of the transition graphs of pushdown automata
are the connected graphs of finite degree whose decomposition by distance
from a vertex yields finitely many non-isomorphic connected components.
These graphs are exactly the connected regular graphs of finite degree [4]
(see also Section 5).

This work is a first attempt at a general survey of deterministic graph
grammars and the class of graphs they generate. We focus on providing
some of the basic tools to reason about deterministic graph grammars, and
on a structural study of their generated graphs.

First, Section 2 presents the necessary definitions as well as some exam-
ples of grammars and their generated graphs. We also define a canonical
representant of the set of isomorphic graphs generated by a given grammar.

Second, as is the case for word grammars, we need to provide a collec-
tion of normal forms before being able to conveniently write more involved
proofs. This is a slightly tedious but necessary task, which is addressed
in Section 3, where in particular the notions of reduced, proper and con-
nected grammars are defined. We provide a way to cleanly separate input
and output vertices in grammar rules. We also show that considering multi-
hypergraphs does not improve expressiveness. All these results are obtained
via fixed-point computations. This allows us, as a first application, to derive
some structural properties of regular graphs, namely that they only have a
finite number of non-isomorphic connected components, and that the sets
of possible vertex degrees in such graphs are finite.

A problematic feature of regular graphs is that any given such graph
can be generated by infinitely many different graph grammars. In Section

Deterministic graph grammars 171

4, we investigate systematic ways to generate regular graphs, for instance
according to the length of their vertex names for pushdown graphs, or more
generally, by increasing distance from the vertices having a given colour.
This yields a notion of a canonical graph grammar associated to any regular
graph (which will prove useful in the following section). It also allows us
to establish the closure of the class of regular graphs under various vertex
colouring operations.

Section 5 builds up on all the notions and results presented in the pre-
vious sections to establish a characterization of regular graphs of bounded
degree, either in a general way by the suffix transition graphs of labelled
word rewriting systems, or in a restrictive way by the transition graphs of
pushdown automata in a weak form.

Finally in Section 6, we present a simple and strong connection between
deterministic graph grammars and context-free grammars over words, and
hence also context-free word languages: even though regular graphs may in
general have an infinite degree, the set of path labels between two regular
sets of vertices in a regular graph remains a context-free language. In this
respect, deterministic graph grammars provide a natural and powerful tool
to reason about context-free languages, and indeed several classical results
in the theory of context-free languages can be reassessed in this framework.
To summarize, deterministic graph grammars are not only finite represen-
tations of infinite graphs whose structure is regular (i. e. which have a finite
decomposition by distance), they are also to context-free languages what
finite automata are to regular languages.

2 Regular graphs

In this section, we introduce the notion of deterministic graph grammar
(Section 2.2) together with the family of graphs they generate: the regular
graphs (Section 2.3). We conclude by presenting several examples of regular
graphs. But first, we introduce basic notations on graphs and hypergraphs
(Section 2.1).

2.1 Graphs

Let N be the set of natural numbers and N
+ = N− {0}. A set in bijection

with N is called countable. For a set E, we write |E| for its cardinal, 2E

for its powerset and for every n ≥ 0, En = {(e1, . . . , en) | e1, . . . , en ∈ E}
is the set of n-tuples of elements of E. Thus E∗ =

⋃

n≥0 En is the free
monoid generated by E for the concatenation: (e1, . . . , em) · (e′1, . . . , e

′
n) =

(e1, . . . , em, e′1, . . . , e
′
n), and whose neutral element is the 0-tuple (). A finite

set E of symbols is an alphabet of letters, and E∗ is the set of words over
E. Any word u ∈ En is of length |u| = n and is also represented by a
mapping from [n] = {1, . . . , n} into E, or by the juxtaposition of its letters:

172 D. Caucal

u = u(1) . . . u(|u|). The neutral element is the word of length 0 called the
empty word and denoted by ε.

A multi-subset M of E is a mapping from E into N where for any
e ∈ E, the integer M(e) is its multiplicity (the number of occurrences of e
in M). A multi-subset M of E is also represented by the functional subset
{(e, M(e)) | e ∈ E∧M(e) 6= 0} of E×N

+: if (e, m), (e, n) ∈M then m = n.
The cardinal of M is |M | =

∑

e∈E M(e), and M is said to be finite if its

support M̂ := {e ∈ E | M(e) 6= 0} is finite. By extension we write e ∈ M

for e ∈ M̂ . A finite multi-subset M can also be described by a subset of
E where each e ∈ E appears M(e) times. For instance the multi-subset
defined by a 7→ 3, b 7→ 1, x 7→ 0 otherwise, is represented by {(a, 3), (b, 1)}
or directly by {a, a, a, b}. For instance {2, 2, 2, 5} is the multi-subset of the
decomposition of the number 40 into its prime factors. A subset P ⊆ E
corresponds to the multi-subset {(e, 1) | e ∈ P} and vice-versa.

Given multi-subsets M and N , we define the multi-subset

sum M + N by (M + N)(e) := M(e) + N(e),
difference M −N by (M −N)(e) := max{M(e)−N(e), 0},
union M ∪N by (M ∪N)(e) := max{M(e), N(e)},
intersection M ∩N by (M ∩N)(e) := min{M(e), N(e)},

and restriction M|P to P ⊆ E by

M|P (e) :=

{

M(e) if e ∈ P,

0 otherwise;

We shall also write M|−P for M|E−P . The inclusion M ⊆ N means that
M(e) ≤ N(e) for every e ∈ E.

Let F be a set of symbols called labels, ranked by a mapping ̺ : F → N

associating to each label f its arity ̺(f), and such that

Fn := {f ∈ F | ̺(f) = n} is countable for every n ≥ 0.

We consider simple, oriented and labelled hypergraphs: a hypergraph G
is a subset of

⋃

n≥0 FnV n, where V is an arbitrary set, such that its vertex

set,
VG := {v ∈ V | FV ∗vV ∗ ∩G 6= ∅},

is finite or countable, and its label set,

FG := {f ∈ F | fV ∗ ∩G 6= ∅},

is finite.

Deterministic graph grammars 173

(x) (y) (z)

f

h
c

g

Figure 2.1. The hypergraph {fxyz, gxy, hx, c}.

Any fv1 . . . v̺(f) ∈ G is a hyperarc labelled by f and of successive vertices
v1, . . . , v̺(f); it is depicted for

̺(f) ≥ 2 as an arrow labelled f and successively linking v1, . . . , v̺(f);
̺(f) = 1 as a label f on vertex v1 and f is called a colour of v1;
̺(f) = 0 as an isolated label f called a constant.

This is illustrated in Figure 2.1.

A vertex v is depicted by a dot named (v) where parentheses are used
to differentiate a vertex name from a vertex label (a colour). Note that a
hyperarc X is a word whose first letter X(1) is its label, and for 1 < i ≤ |X |,
the ith letter X(i) is its (i− 1)st vertex; to avoid such a shift, we also write
a hyperarc as the word fY where f is its label and Y is its vertex word.
Observe that a hypergraph is finite if and only if it has a finite vertex set.

The transformation of a hypergraph G by a function h from VG into a
set V is the following hypergraph:

h(G) := {fh(v1) . . . h(v̺(f)) | fv1 . . . v̺(f) ∈ G}

An isomorphism h from a hypergraph G to a hypergraph H is a bijection

from VG to VH such that h(G) = H , and we write G
h
∼ H or G ∼ H if we

do not specify the bijection.
The restriction of a hypergraph G to a subset P ⊆ VG is the sub-

hypergraph of G induced by P :

G|P := G ∩ FP ∗.

So G|P = IdP (G) where IdP := {(v, v) | v ∈ P} is the identity on P .

For a hypergraph G, the edge relation ←→
G

is the binary relation on the

vertex set VG defined by

X(i)←→
G

X(j) for any X ∈ G and i 6= j ∈ {2, . . . , |X |}.

We denote by ←→
G

n with n ≥ 0 the n-fold composition of ←→
G

, with

←→
G

0:= IdVG
the identity on VG, and by ←→

G

∗:=
⋃

n≥0 ←→
G

n the reflexive

174 D. Caucal

b

a

i

h

g f

f

b

a b

Figure 2.2. A finite graph.

and transitive closure of←→
G

. As usual s and t are connected vertices in G if

s←→
G

∗ t, and G is a connected hypergraph if the vertices of G are connected.

The degree of a vertex s of a hypergraph G is

dG(s) := |{(X, i) | X ∈ G− F1VG ∧ 2 ≤ i ≤ |X | ∧X(i) = s}|.

Note that the colouring does not affect the degree. We say that a hypergraph
G is of finite degree (or locally finite) if dG(s) < ω for any vertex s ∈ VG,
and G is of bounded degree (or globally finite) if max{dG(s) | s ∈ VG} < ω.
For a subset E ⊆ F of labels, we write

VG,E := {v ∈ V | EV ∗vV ∗ ∩G 6= ∅} = VG∩EV ∗

G

the set of vertices of G linked by a hyperarc labelled in E.
A graph G is a hypergraph without constants and without labels of arity

strictly greater than 2: FG ⊂ F1 ∪ F2. Hence a graph G is a set of arcs

av1v2 identified with the labelled transition v1
a
−→

G
v2 or directly v1

a
−→ v2

if G is understood, plus a set of coloured vertices fv. For instance, the finite
graph:

{r
b
−→ p, p

a
−→ s, p

b
−→ q, q

a
−→ p, q

b
−→ s, ir, gp, hp, fs, ft}

has vertices p, q, r, s, t, colours f, g, h, i and arc labels a, b, and is represented
in Figure 2.2; we omit the names of the vertices to give a representation up
to isomorphism.

A tuple (v0, a1, v1, . . . , an, vn) for n ≥ 0 and v0
a1−→
G

v1 . . . vn−1
an−→
G

vn is

a path from v0 to vn labelled by u = a1 . . . an; we write v0
u

=⇒
G

vn or directly

v0
u

=⇒ vn if G is understood. For E ⊆ F ∗
2 , we write v

E
=⇒

G
v′ if v

u
=⇒

G
v′ for

some u ∈ E.
Given a graph G and vertex sets P, Q ⊆ VG, we write L(G, P, Q) the

language of path labels from a vertex in P to a vertex in Q:

L(G, P, Q) := {u ∈ F ∗
2 | ∃p ∈ P ∃q ∈ Q(p

u
=⇒

G
q)}.

Deterministic graph grammars 175

f

g
c c c(x)

h

h
(z)(y)

f

Figure 2.3. The multi-hypergraph {fxyz, fxyz, gxy, hx, hx, c, c, c}.

Given colours i, f ∈ F1, we define L(G, i, f) := L(G, VG,i, VG,f) as the
path labels from the set VG,i of vertices coloured by i to the set VG,f of
vertices coloured by f . For instance taking the previous graph, its path
labels from i to f is b(ba)∗(a + bb).

Hence a finite graph G with two colours i and f is a finite automaton

recognizing the language L(G, i, f). For any (finite) alphabet T ⊂ F2, the
family

Rat(T ∗) := {L(G, i, f) | |G| < ω ∧ FG ∩ F2 ⊆ T ∧ i, f ∈ F1}

of languages over T recognized by the finite automata coincides with the
family of regular languages over T . A graph G without vertex label, i. e.

such that FG ⊂ F2, is called an uncoloured graph.
The family of hypergraphs ordered by inclusion ⊆ forms a complete

partial order: its least element is the empty graph ∅ and any sequence
(Gn)n≥0 (not necessarily increasing) with a finite label set

⋃

n≥0 FGn
has a

least upper bound
⋃

n≥0 Gn.
If we fix a finite or countable set V of vertices and a finite set E ⊂ F of

labels, the family G(V, E) of subsets of
⋃

n≥0 EnV n with En = E ∩ Fn for
any n ≥ 0, is the set of hypergraphs G with VG ⊆ V and FG ⊆ E. Such a
set G(V, E) is a complete lattice: ∅ is the least element,

⋃

n≥0 EnV n is the
greatest element, and every subset H ⊆ G(V, E) has a supremum

⋃
H and

an infimum
⋂
H.

A multi-hypergraph G is a multi-subset of
⋃

n≥0 FnV n where V is an
arbitrary set; each hyperarc X ∈ G is depicted G(X) times. The vertex set
VG and the label set FG of a multi-hypergraph G are the sets defined on
its support Ĝ, i. e. VG := V bG

and FG := F bG
. The transformation of any

multi-graph G by any function h from VG into a set is extended in a natural
way:

h(G)(X) :=
∑

h(Y)=X

G(Y) for any hyperarc X

assuming that the sum is always finite. Given f ∈ F1 and v ∈ V , the
sequence {(fv, n)}n≥1 is increasing for the inclusion but it has no least
upper bound because an infinite multiplicity is not allowed.

176 D. Caucal

;

a

c

A B

b

d

a

a

c

B

A

A

(x) (x)

(y) (y)

(x) (x)

(y)

(z)

(y)

(z)

Figure 2.4. A (deterministic) graph grammar.

2.2 Graph grammars

A hypergraph grammar R is a finite set of rules of the form fx1 . . . x̺(f) −→
H where fx1 . . . x̺(f) is a hyperarc joining pairwise distinct vertices x1 6=
. . . 6= x̺(f) and H is a finite multi-hypergraph; we denote by NR := {f ∈
F | fX ∈ Dom(R)} the non-terminals of R, the labels of the left hand
sides; by TR := {f ∈ F −NR | ∃P ∈ Im(R)(fX ∈ P)} the terminals of R,
the labels of R which are not non-terminals; by FR := NR∪TR the labels of
R; and by ̺(R) := max{̺(A) | A ∈ NR} the arity of R, the maximal arity
of its non-terminals.

We use grammars to generate simple graphs (without multiplicity).
Hence in the following, we may assume that any terminal hyperarc of any
right hand side is of multiplicity 1, otherwise we replace R by

{(X, 〈H〉) | (X, H) ∈ R}

where 〈H〉 is obtained from H by removing the multiplicity of the terminal
hyperarcs:

〈H〉 := H|NRV ∗

H
∪ (H ∩ TRV ∗

H).

Remark that multiplicities of non-terminal hyperarcs are usually not
introduced when working with graph grammars. As explained in the next
subsection, they are in all generality necessary to ensure the unicity of the
graph generated (see also Figure 2.6). In the next section, we shall see that
any graph grammar can be transformed into an equivalent grammar where
multiplicities do not need to be taken into account.

Starting from any hypergraph, we want a grammar to generate a unique
hypergraph up to isomorphism. So we restrict ourselves to deterministic

grammars, meaning that there is only one rule per non-terminal:

(X, H), (Y, K) ∈ R ∧X(1) = Y (1) =⇒ (X, H) = (Y, K).

For any rule X −→ H , we say that VX ∩ VH are the inputs of H and
⋃
{VY | Y ∈ H ∧ Y (1) ∈ NR} are the outputs of H . We shall use upper-

case letters A, B, C, . . . for non-terminals and lower-case letters a, b, c . . . for
terminals. We say that R is a graph grammar if the terminals are of arity

Deterministic graph grammars 177

a

c

1

2

1

2

a

c

b

a

c

1

2

a

d

A B

A

A

a

c

b

a

c

1

2

a
c

a

a

c

d

B

B

=⇒=⇒=⇒

Figure 2.5. Parallel rewritings according to the grammar of Figure 2.4.

1 or 2. An example is given in Figure 2.4 where we have

NR = {A, B}, TR = {a, b, c, d}, ̺(R) = 3,

and the inputs of the first and second rule are x, y and x, y, z, respectively.
Given a grammar R, the rewriting −→

R
is the binary relation between

multi-hypergraphs defined as follows: M rewrites into N , written M −→
R

N ,

if we can choose a non-terminal hyperarc X = As1 . . . sp in M and a rule
Ax1 . . . xp −→ H in R such that N can be obtained by replacing X by H
in M and by removing the multiplicity of terminal hyperarcs:

N = 〈(M −X) + h(H)〉

for some function h mapping each xi to si, and the other vertices of H
injectively to vertices outside of M ; this rewriting is denoted by M −→

R,X
N .

The rewriting −→
R,X

of a hyperarc X is extended in an obvious way to the

rewriting −→
R,E

of any multi-subset E of non-terminal hyperarcs. A complete

parallel rewriting =⇒
R

is the rewriting according to the multi-subset of all

non-terminal hyperarcs: M =⇒
R

N if M −→
R,E

N where E is the multi-subset

of all non-terminal hyperarcs of M .
For instance, the first three steps of the parallel derivation from the

graph {Axy, 1x, 2y} according to the grammar of Figure 2.4 are depicted in
Figure 2.5.

The derivation =⇒
R

∗ is the reflexive and transitive closure for composi-

tion of the parallel rewriting =⇒
R

(i. e. G =⇒
R

∗ H if H is obtained from G

by a consecutive sequence of parallel rewritings). We can now define the
graphs generated by deterministic graph grammars.

2.3 Regular graphs

Intuitively the graph (up to isomorphism) generated by a deterministic
graph grammar R from a finite graph G0 is the limit of any infinite se-

178 D. Caucal

; ;

=⇒ =⇒ =⇒

Graph grammar:

Parallel rewritings:

(1)

(2)

(1)

(2)

(1)

(2)

B

(1)

(2)

Ab

(1)

(2)

(1)

(2)

Ab

A

A

a

c

b

a

c

B Cb

a

c

A Ab

a

c

b

C

C

C

B

B

c

c

a

B C

a

bb

Figure 2.6. Parallel rewritings producing multiplicity.

quence of rewritings starting from G0 where every non-terminal is eventu-
ally rewritten. Formally, to a sequence (Gi)i≥0 of finite multi-hypergraphs
such that

1. for all i ≥ 0, Gi −→
R,Xi

Gi+1, and

2. for all X ∈ Gi with X(1) ∈ NR, there exists j ≥ i such that X =
Xj ,

we associate the limit
⋃

i≥0[Gi] where for a hypergraph M , we designate by
[M] := M ∩ TRV ∗

M designates the (simple) set of terminal hyperarcs of M .
Note that the sequence (Gi)i≥0 can be not increasing contrary to the

sequence ([Gi])i≥0; in particular, even if
⋃

i≥0[Gi] is finite, the sequence
(Gi)i≥0 is not necessarily ultimately constant. It is easy to check that this
limit does not depend on the order of the rewriting. In particular, we can
use the parallel rewriting =⇒

R
which provides a canonical rewriting order

similar to the leftmost rewriting for context-free grammars. The example
in Figure 2.6 illustrates that without multiplicities, the unicity of the limit
graph no longer holds.

We shall see in next section that, though multiplicities are crucial in
ensuring the unicity of the generated graph, they can be omitted provided
that the grammar respects a certain normal form (see Subsection 3.2).

A hypergraph G is generated by a grammar R from a hypergraph H if
G is isomorphic to a hypergraph in the following set:

Rω(H) :=
{ ⋃

n≥0

[Hn]
∣
∣
∣H0 = H ∧ ∀n ≥ 0(Hn =⇒

R
Hn+1)

}

;

note that the vertices of H appear in any hypergraph of Rω(H). For instance
by continuing infinitely the derivation of Figure 2.5, we get a graph depicted

Deterministic graph grammars 179

b

d

1

2

a

c

a

a

c

Figure 2.7. Graph generated by the grammar of Figure 2.4.

in Figure 2.7. Note that the definition of Rω(H) does not fix a particular
naming of the vertices of the graph generated by R. A canonical naming is
provided in Section 3.5.

A regular hypergraph is a hypergraph generated by a (deterministic)
grammar from a finite hypergraph. The regular hypergraphs are the hy-

peredge replacement equational hypergraphs in the sense of [7], which are
defined as the smallest solutions of finite systems of equations involving a
set of hypergraph operators.

a

b

Figure 2.8. A regular graph.

A regular graph is a regular hypergraph which is a graph: it is generated
by a graph grammar from a finite hypergraph. We give some examples of
regular graphs. The grammar R reduced to the unique rule

A1234 −→ {a21, b25, A2345}

180 D. Caucal

a

b

a

b

a

c

d a

a

d a

c

b

a

a

d

Figure 2.9. Another regular graph.

and represented below:

a

(1) (2) (3) (4) (1) (2) (3) (4)

A A

b

(5)

generates from its left hand side the following regular graph:

aaaaaa

b b b b

which can be drawn without crossing edges as the regular graph in Fig-
ure 2.8. Another example of graph grammar is the grammar reduced to the
following rule:

A

(2)

(1)

(2)

A

(1)

a

b

A

c

d

generating from its left hand side the regular graph in Figure 2.9. The
grammar reduced to the following rule:

Deterministic graph grammars 181

c

A

A

(2)

(1)

(2)

A

(1)

a

b

generates from its left hand side the following regular graph:

a

cb

a a

b

c b

c

Finally the graph grammar reduced to the following rule:

A A A

b

a

a

b

(1)
(1)

(2)

(3)

(4)

(2)

(3)

(4)

generates from its left hand side the regular graph below, where each vertex
is of infinite in-degree:

a

b

a b

b

b a

a b

ab

a

3 Normalizations of graph grammars

In this section, we present several elementary transformations to normalize
hypergraph grammars. The first normalization gives an equivalent gram-
mar with a constant axiom such that each non-terminal is accessible and

182 D. Caucal

generates a non empty graph which is connected except for the axiom and
possibly another constant (cf. Proposition 3.5).

This normalization is extended to get ride of multiplicities both in the
definition of the graph grammar and in its derivation relation. To ensure
that multiplicities are not needed, we ask that any non-terminal hyperarc
appearing in a right hand side of a rule contains a vertex which is not an
input (cf. Proposition 3.10). We extend this second normalization by sep-
arating as much as possible for each right hand side the inputs and the
outputs (cf. Theorem 3.12). All these basic transformations are expressed
in a powerful and natural way as fixed point computations. These normal-
izations are used to derive properties on the generated graphs: any regular
graph has a finite number of non-isomorphic connected components, and a
finite number of vertex degrees (cf. Propositions 3.4 and 3.13). Finally we
give a canonical vertex naming for the regular graphs (cf. Subsection 3.5).

3.1 Reduced and connected form

We begin by transforming any grammar into a reduced form. We say that
a grammar R is reduced if R = ∅ or there exists a constant non-terminal
Z ∈ Dom(R)∩F0 called the axiom such that the following three conditions
are satisfied:

(i) for all H ∈ Im(R), Z /∈ FH

(ii) for all A ∈ NR there exists H such that Z =⇒
R

∗ H and A ∈ FH

(iii) Rω(X) 6= ∅ for every X ∈ Dom(R);

the axiom is a non-terminal constant which by condition (i) does not
appear in the right hand sides of the rules, condition (ii) means that each
non-terminal is accessible from the axiom, and condition (iii) expresses that
R generates a non empty hypergraph from any non-terminal hyperarc. By
condition (iii), the grammar ∅ (with no rule) is the unique reduced grammar
generating the empty graph ∅. By conditions (i) and (ii), a non empty re-
duced grammar has a unique axiom. For instance the grammar of Figure 2.4
is not reduced, but it becomes reduced by adding the rule Z −→ Axy.

We say that a hypergraph G is generated by a reduced grammar R if
R = G = ∅ or if the reduced grammar R is non empty and generates G
from its axiom.

Lemma 3.1. Any regular hypergraph can be generated in an effective way
by a reduced grammar.

Proof. Let G be a hypergraph generated by a deterministic grammar R
from a finite multi-hypergraph G0.

Deterministic graph grammars 183

⇓ E = {Z, A, B}, E = {Z, A}

Axiom:

Grammar:

;Z
baA

(x) (x)

A

;
(x) (x)

B B
;

(x) (x)

C
c

CA

(x) (x)

b
B

BA
a

Figure 3.1. Reduction of a grammar.

We take a new constant Z ∈ F0 − FR and we complete R into R := R ∪
{(Z, G0)}. The set E :=

⋃
{FK ∩ NR | Z =⇒

R

∗ K} of accessible non-

terminals from Z is the least fixed point of the equation

E = {Z} ∪ {Y (1) ∈ NR | ∃(X, H) ∈ R(X(1) ∈ E ∧ Y ∈ H)}.

The set E := {X(1) ∈ E | R
ω

(X) 6= {∅}} of productive accessible non-
terminals is the least fixed point of the equation

E = {X(1) ∈ E | ∃P ((X, P) ∈ R ∧ P ∩ (E ∪ TR)V ∗
P 6= ∅)}.

The following grammar

S := {(X, P
|(E∪TR)V ∗

P
) | (X, P) ∈ R ∧X(1) ∈ E}

is reduced and generates G. q.e.d. (Lemma 3.1)

The “standard” construction in the proof of Lemma 3.1 is illustrated in
Figure 3.1. Another form of grammar is to be proper :

VX ⊆ VG for all X ∈ Dom(R) and for all G ∈ Rω(X)

meaning that any vertex of the left hand side X of any rule, is a vertex
of its right hand side and is a vertex of a terminal hyperarc of any graph
obtained by a derivation from X . For instance the grammar of Figure 2.4
is proper but the following grammar:

Axy −→ {axz, Azy}

is not proper because the vertex y of Axy does not belong to any graph of
Rω(Axy).

184 D. Caucal

Lemma 3.2. Any regular hypergraph can be generated in an effective way
by a proper and reduced grammar.

Proof. Let G be a regular hypergraph. We may assume G 6= ∅ because
∅ is a proper and reduced grammar generating ∅. By Lemma 3.1, G is
generated by a reduced grammar R from its axiom Z.

For every rule Ax1 . . . x̺(A) −→ PA in R, we define the set Keep(A) of
indices 1 ≤ i ≤ ̺(A) such that xi is useful :

xi ∈ VG for all G ∈ Rω(Ax1 . . . x̺(A))

This collection of sets Keep(A) is the least fixed point of the following
recursive system:

Keep(A) := {i ∈ [̺(A)] | PA ∩ TRV ∗
PA

xiV
∗
PA
6= ∅∨

∃BY ∈ PA(B ∈ NR ∧ ∃1 ≤ j ≤ |Y |(Y (j) = xi ∧ j ∈ Keep(B)))}.

To each A ∈ NR, we associate a new symbol A′ of arity |Keep(A)|. To
each non-terminal hyperarc Ay1 . . . y̺(A) (with A ∈ NR), we associate the
following hyperarc:

h(Ay1 . . . y̺(A)) := A′yi1 . . . yip

with {i1, . . . , ip} = Keep(A) and i1 < . . . < ip. We complete h by the
identity: h(X) := X for any terminal hyperarc X . Finally we extend h by
union to any multi-hypergraph H : h(H) := {h(X) | X ∈ H}. We define a
grammar

h(R) := {(h(X), h(H)) | (X, H) ∈ R}.

The grammar h(R) is proper, reduced and generates G from its axiom
h(Z) = Z ′. q.e.d. (Lemma 3.2)

The construction in the proof of Lemma 3.2 is illustrated in Figure 3.2.

We now want to generate regular hypergraphs using grammars in two
parts: a set of rules producing only connected graphs, and a set of rules
whose left hand sides are constants. Note that for any reduced grammar
generating a connected hypergraph, the axiom is the unique non-terminal
of null arity. A connected grammar R is a proper grammar such that

for all X ∈ Dom(R)− F0 and all G ∈ Rω(X), G is connected.

In particular for every rule (X, H) ∈ R with X /∈ F0, we have H ∩ F0 = ∅.
Let us extend Lemma 3.2.

Lemma 3.3. Any regular hypergraph can be generated in an effective way
by a connected and reduced grammar.

Deterministic graph grammars 185

Keep(A) = {1, 2},Keep(B) = {2}⇓

B A

A

; A′
B′

;

A′ A′

B′

A

B

A

;

AZ ;

Z′

A′

A′

a

a

(x)(x)

(y) (y)

(x)

(y)

(x)(x)

(x)

(y)

(y)(y)

(y)(y)(z) (z)

Figure 3.2. Transformation of a grammar into a proper grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.2, G is generated
by a proper and reduced grammar R from its axiom Z. For every rule
Ax1 . . . x̺(A) −→ HA in R and for every 1 ≤ i ≤ ̺(A), we associate the set
Con(A, i) of vertices in HA which are connected to xi in Rω(Ax1 . . . x̺(A)).
This collection of sets Con(A, i) is the least fixed point of the following
recursive system:

Con(A, i) = {xi} ∪
⋃

{VX | X ∈ HA ∧X(1) ∈ TR ∧ VX ∩Con(A, i) 6= ∅}

∪
⋃

{X(j) | ∃Y ∈ Dom(R)

(Y (1)X ∈ HA ∧ ∃k(X(k) ∈ Con(A, i) ∧ xj ∈ Con(Y (1), k)))}.

We complete these sets by defining for any A ∈ NR the set

Con(A) := {Con(A, i) | 1 ≤ i ≤ ̺(A)} ∪ {∅}.

To each non-terminal hyperarc X ∈ Dom(R) and to each P ∈ Con(X(1)),
we associate a new symbol X(1)P of arity |P ∩ {x1, . . . , x̺(X(1))}|, and the
hyperarc

XP := X(1)P xi1 . . . xip

with {xi1 , . . . , xip
} = P ∩ {x1, . . . , x̺(X(1))} and i1 < . . . < ip.

In particular X∅ = X(1)∅ is a constant. This permits to define the following
grammar:

I := {(X, {XP | P ∈ Con(X(1))}) | X ∈ Dom(R)}

which splits each X ∈ Dom(R) into hyperarcs according to Con(X(1)).
For each rule (X, H) of R, there is a unique hypergraph KX such that
H =⇒

I
KX , and we denote

〈〈X〉〉 := VKX
−

⋃

Con(X(1))

186 D. Caucal

⇓ Con(Z) = {∅}, Con(A) = {{x, p}, {y, q}, ∅}

; AA

b

c
Z

;
Ax a

Ax

;
Ay Ayb

Z∅

A∅ A∅

c

A A

A∅A∅

Ay AyAxAx

a
(p)

(q)

(x)

(x)

(y)

(x)

(y)

(y)

(x)

(y)

Figure 3.3. From a proper grammar to a connected grammar.

Grammar:

Graph generated from its non-terminal:

(x)(x)

a a a

a a a

aA A A

Figure 3.4. A non connected regular graph.

the set of vertices of HX which are not connected to an input (a vertex in
VX). The following grammar

S := {(XP , (KX)|P − F0) | X ∈ Dom(R) ∧ P ∈ Con(X(1))− {∅}}

∪ {(X∅, (KX)|〈〈X〉〉 | X ∈ Dom(R)}

generates from XP the connected component of Rω(X) containing P 6= ∅,
and S generates from X∅ the remaining part of Rω(X). In particular
G ∈ Sω(Z∅). The grammar S is connected but it is not necessarily re-
duced. However by applying Lemma 3.1, we get an equivalent connected
and reduced grammar of axiom Z∅. q.e.d. (Lemma 3.3)

The transformation of Lemma 3.3 is illustrated in Figure 3.3.

Deterministic graph grammars 187

A regular graph can have an infinite number of connected components
as shown in Figure 3.4. An even simpler example is given by the graph
grammar reduced to the unique rule Z −→ {axy, Z} which generates from
the constant Z the infinite repetition of an a-arc. However these two regular
graphs have only a unique connected component up to isomorphism. Let
us generalize this property.

Proposition 3.4. A regular hypergraph has a finite number of non-iso-
morphic connected components.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.3, G is generated
by a connected and reduced grammar R from its axiom Z. We restrict R
to the grammar S := {(X, H) ∈ R | X /∈ F0}. The grammar S preserves
connectivity:

Sω(K) is connected for any connected hypergraph K /∈ NR ∩ F0.

Any connected component of G is isomorphic to a hypergraph of the fol-
lowing set:

⋃

{Sω(K) | ∃H ∈ Im(R)(K connected component of H − (NR ∩ F0))}

which has a finite number of non-isomorphic hypergraphs.
q.e.d. (Proposition 3.4)

Let us now normalize the constant rules: A grammar R is strongly re-

duced if R is a reduced grammar with at most two non-terminal constants
(i. e. |NR ∩ F0| ≤ 2), and such that

(X, H) ∈ R ∧X /∈ F0 =⇒ H ∩ F0 = ∅.

Note that this last condition is already satisfied if R is connected. Let us
extend Lemma 3.3.

Proposition 3.5. Any regular hypergraph can be generated in an effective
way by a connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.3, G is generated
by a connected and reduced grammar R from its axiom Z. We extract in
R the following constant rules:

R0 := {(X, Y) | ∃H((X, H) ∈ R ∧X ∈ F0 ∧ Y ∈ FH ∩NR ∩ F0)}

in order to determine the following subset of “non-repetitive” constant non-
terminals:

NRep := {A ∈ NR ∩ F0 | (A, A) /∈ R+
0 } − {Z}.

188 D. Caucal

First we restrict R to the rules of its non-repetitives constant non-terminals:

I := {(X, H) ∈ R | X ∈ NRep}.

To each X ∈ NRep, we derive a hypergraph HX such that

X =⇒
I

∗ HX ∧ FHX
∩NRep = ∅

and we define the following grammar:

I ′ := {(X, HX) | X ∈ NRep}.

By rewriting according to I ′, we remove the non-repetitive constant non-
terminals in R. For each X ∈ F0 − NRep, we associate a hypergraph H ′

X

such that
X R◦ =⇒

I′
H ′

X

with VH′

X
∩ VH′

Y
= ∅ for every X 6= Y in F0 −NRep.

The grammar

S := {(X, H) ∈ R | X /∈ F0} ∪ {(X, H ′
X) | X ∈ F0 −NRep}

remains connected, reduced and generates G from its axiom Z. The set of
“repetitive” constant non-terminals is

Rep := {A | (A, A) ∈ R+
0 } = (NR ∩ F0)− (NRep∪{Z})

If Rep = ∅ then S suits with NR ∩ F0 = {Z}. Otherwise we take a new
constant Y 6= Z and the following graphs:

K0 := (H ′
Z)|−F0

, the image of Z in S without constants,

and K :=
⋃

{(H ′
X)|−F0

| X ∈ Rep}.

The grammar

S′ := {(X, H) ∈ S | X /∈ F0} ∪ {(Z, K0 ∪ {Y }), (Y, K ∪ {Y })}

remains connected and S′ generates G from Z. By restriction to the acces-
sible non-terminals from Z using Lemma 3.1, we get an equivalent grammar
which is strongly reduced. q.e.d. (Proposition 3.5)

The transformation of Proposition 3.5 is illustrated in Figure 3.5.

Deterministic graph grammars 189

⇓ Rep = {A, B}, NRep = {C}

Z
c

Z A C

A CB
b

; A B
a

; C
c

;
a b c

Y Y Y

Figure 3.5. From a reduced grammar into a strongly reduced one.

3.2 Discarding the multiplicity

In this section, we construct for any reduced grammar a finite graph of its
output dependencies by rewritings from the axiom. This permits to decide
whether every derivation from the axiom is only on simple hypergraphs
(without multiplicity). Then we present a normal form that allows to get
ride of multiplicity. In a first time in Lemma 3.8, we show that any gram-
mar is equivalent to one where right hand sides are hypergraphs and not
multi-hypergraphs. In a second time, we show in Proposition 3.10 that any
grammar is equivalent to a grammar where each non-terminal hyperarc ap-
pearing in a right hand side contains a vertex which is not an input. For
a grammar in this normal form, the generated graph can be defined using
only hypergraphs and not multi-hypergraphs.

Let R be any reduced grammar. An output link C of R is a multi-
hypergraph of at most two hyperarcs which are non-terminals and with a
common vertex:

|C| ≤ 2 ∧ FC ⊆ NR ∧ (X, Y ∈ C =⇒ VX ∩ VY 6= ∅);

we denote [C]∼ := {D | C ∼ D} the closure of C by isomorphism. The
output dependency graph Out(R) of R is

Out(R) := G|{s|[Z]∼−→
G

∗s}

the graph G below and restricted to its vertices accessible from [Z]∼:

G :=
{

[C]∼ −→ [D]∼ | C, D output links ∧ ∃H

(C −→
R

H ∧D ⊆ H ∧ (|D| = 1⇒ D connected component of H− [H]))
}
.

In Figure 3.6, we give the output dependency graph of a reduced grammar.
We say that a grammar R is without multiplicity if R is reduced and every

190 D. Caucal

Grammar R:

Output dependency graph Out(R):

A

;

(1)

(2)

(1)

(2)

;

(1)

(2)

(1)

(2)

ba BA BA BZ

Z A B BB

A

A

B B

B

B

Figure 3.6. Output dependency graph of a grammar.

vertex of Out(R) is a simple hypergraph. Thus

R is without multiplicity ⇐⇒ (∀H(Z −→
R

∗ H =⇒ H simple)).

In particular, any grammar without multiplicity is simple.
We now want to transform any grammar into an equivalent grammar

without multiplicity. We start with preliminary normal forms presented in
Lemma 3.6 and 3.7. We say that a grammar R is growing if R = ∅ or R
generates an infinite hypergraph from each left hand side, except possibly
from its axiom Z:

for all X ∈ Dom(R)− {Z} and G ∈ Rω(X), we have |G| = ω.

Lemma 3.6. Any regular hypergraph can be generated in an effective way
by a growing, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Proposition 3.5, G is gen-
erated by a connected and strongly reduced grammar R from its axiom Z.
We define two binary relations R0 and R1 on the non-terminal set NR as
follows:

R0 := {(X(1), Y (1)) | ∃H((X, H) ∈ R ∧ Y ∈ H ∧ Y (1) ∈ NR)}

R1 := {(X(1), Y (1)) | ∃H((X, H) ∈ R ∧ Y ∈ H ∧ Y (1) ∈ NR

∧ VY − VX 6= ∅)}

Deterministic graph grammars 191

Then the set E := {A | ∃B((A, B) ∈ R∗
0 ∧ (B, B) ∈ R+

1)} is the set of
non-terminals X(1) with X ∈ Dom(R) such that the graphs of Rω(X) are
infinite. We begin with the grammar

I0 := {(X, ∅) | X ∈ Dom(R) ∧X(1) ∈ NR − E}.

Having constructed a grammar In for n ≥ 0, we define a deterministic
grammar In+1 with Dom(In+1) = Dom(I0) and

In+1 ⊆ {(X, H) | X R◦ =⇒
In

H}.

Note that the right hand sides of the grammars In do not contain any non-
terminal hyperarc. We finish with the grammar I = Im for m = min{n |
In = In+1}. Thus I is a grammar with Dom(I) = {X ∈ Dom(R) | X(1) ∈
NR − E} and for every (X, H) ∈ I, H is finite and H ∈ Rω(X).

From I, we construct a deterministic grammar S such that

S ⊆ {(X, H) | X R◦ =⇒
I

H ∧X(1) ∈ E}.

This grammar S is growing, connected and by restriction to the accessible
non-terminals from Z, it is strongly reduced. q.e.d. (Lemma 3.6)

We say that a grammar R is strict if

VH − VX 6= ∅ for any (X, H) ∈ R

any rule has at least one non-input vertex in its right hand side. Starting
from a growing grammar, it is enough to write every right hand side until
the grammar is strict.

Lemma 3.7. Any regular hypergraph can be generated in an effective way
by a strict, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.6, G is generated
by a growing, connected and strongly reduced grammar R from its axiom
Z. As R is growing, we derive each right hand side of S until we get a non
input vertex. We define

S0 := {(X, H) ∈ R | VX 6= VH}

and having defined Sn, we construct a maximal deterministic grammar

Sn+1 ⊆ Sn ∪ {(X, H) | X ∈ Dom(R)−Dom(Sn)

∧X R◦ =⇒
Sn

H ∧ VX 6= VH}

192 D. Caucal

Lemma 3.6

Lemma 3.7

⇓

⇓

B

Z A A;

B

Aa

Z ;

B

aa bB B

Z ;

B

aa
B C

;
bC B

C
;

bC B

(x)

(x)

(y) (y)

(x)

(x) (x)

(x) (x) (x) (x)

(x) (x) (x)

Figure 3.7. Transformation of a grammar into a strict grammar.

to get S := Sm for m = min{n | ∀(X, H) ∈ Sn(VX 6= VH)}. This grammar
S is strict and generates G from its axiom Z. Furthermore S remains
connected and becomes strongly reduced by restriction to the accessible
non-terminals from Z. q.e.d. (Lemma 3.7)

The transformations of Lemma 3.6 and Lemma 3.7 are illustrated in Fig-
ure 3.7.

To generate a regular (simple) hypergraph, we can avoid multiplicity in
the grammar. Precisely, a simple grammar is a grammar where each right
hand side is a (simple) hypergraph.

Lemma 3.8. Any regular hypergraph can be generated in an effective way
by a simple, strict, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.7, G is generated
by a strict, connected and strongly reduced grammar R from its axiom Z.
To each non-terminal A ∈ NR−{Z}, we associate its maximal multiplicity:

m(A) := max{H(X) | H ∈ Im(R) ∧X ∈ H ∧X(1) = A},

and we take new non-terminals A1, . . . , Am(A) of arity ̺(A). This allows
us to replace each right hand side H ∈ Im(R) by the following simple

Deterministic graph grammars 193

; ;

;

=⇒ =⇒ω
complete binary a-tree=⇒

Grammar:

Derivation:

Equivalent simple grammar:

a a

a

a

aa

a

a

a

a

a

Z
A

A

A A

A

A

A

A

A

A

A
Z

A1

A2

A2A1

A2

A1A1

A2

Z
(x) (x)(x) (x)

(x)(x)

Figure 3.8. Transformation of a grammar into a simple grammar.

hypergraph:

H ′ := {X | X ∈ H ∧X(1) ∈ TR}

∪ {X(1)iX(2) . . .X(|X |) | X ∈ H ∩NRV ∗
H ∧ 1 ≤ i ≤ H(X)}.

We obtain the grammar

S := {(Z, H ′) | (Z, H) ∈ R}

∪ {(X(1)iX(2) . . .X(|X |), H ′) | (X, H) ∈ R ∧ 1 ≤ i ≤ m(X(1))}

This grammar S is simple, strict, connected, strongly reduced and generates
G from its axiom Z. q.e.d. (Lemma 3.8)

The transformation of Lemma 3.8 is illustrated in Figure 3.8.

To generate a regular hypergraph, we also want to reduce the rewriting
steps to (simple) hypergraphs. This is not possible in general as shown
in Figures 2.6 and 3.9. However any regular hypergraph can be generated
by a simple hypergraph grammar whose rewriting steps are restricted to
simple hypergraphs. A grammar R is non-terminal outside if for any rule
X −→ H , any non-terminal hyperarc Y ∈ H with Y (1) ∈ NR has a vertex
which is not an input: VY − VX 6= ∅. The grammar of Figure 3.4 is non-
terminal outside and the grammar of Figure 3.9 is not. With the property
of being strongly reduced, we have removed the multiplicity by parallel
rewritings for constants. The non-terminal outside property removes the
multiplicity by parallel rewritings for non-constant non-terminals.

194 D. Caucal

=⇒ =⇒ω=⇒

Simple grammar:

Derivation:

aa

A

A AA
a

a

a

A

A

a

a

A

A

a aa

a
(x)

(y)

(z)

(x)

(y)

(z)

Figure 3.9. Multiplicity by parallel rewritings.

;;;

=⇒=⇒ =⇒

Derivation:

a

b c cbaa

bZ
A

B

A

C

B

C

Z
A B C C

c
C

(x)(x)

(x) (x)
(x)

(x)

Figure 3.10. A graph grammar which is not non-terminal outside.

Lemma 3.9. Any non-terminal outside, simple and strongly reduced gram-
mar is without multiplicity.

Proof. Let R be any non-terminal outside, simple and strongly reduced
grammar. By induction, we verify that the rewriting −→

R
preserves the

property P (H) of a hypergraph H to be simple and with at most one non-
terminal constant:

P (H) ∧H −→
R

K =⇒ P (K).

Let X be the left hand side of the applied rule. If X is a constant then
the implication is due to R being simple and strongly reduced. If X is not
a constant then the implication is due to R being simple, strongly reduced
and non-terminal outside. q.e.d. (Lemma 3.9)

In Figure 3.10, we give another simpler grammar which is not non-
terminal outside and for which the generated graph is obtained by parallel
rewritings with multiplicity. We can transform any grammar into an equiv-
alent simple non-terminal outside grammar.

Deterministic graph grammars 195

=⇒

; ; ;

=⇒=⇒

Grammar:

Derivation:

c

c cbaba ba

a bZ A B A C B C C

Z A B C C

(y) (y)

(x) (x)

(y) (y)

(x) (x) (x)

(y) (y)

(x)

Figure 3.11. Transformation of the grammar of Figure 3.10.

Proposition 3.10. Any regular hypergraph can be generated in an effec-
tive way by a non-terminal outside, simple, connected and strongly reduced
grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.8, G is generated
by a simple, strict, connected and strongly reduced grammar R from its
axiom Z. Recall that a connected grammar is proper.

We transform R by incrementing the arity of non constant non-terminal
hyperarcs. For each non-terminal A ∈ NR − F0, we take a new symbol A′

of arity ̺(A′) = ̺(A) + 1. For each (X, H) ∈ R with X /∈ F0, there exists a
vertex xX ∈ VH − VX because R is strict, and we define the hyperarc

X ′ := X(1)′X(2) . . .X(|X |)xX .

For each H ∈ Im(R) and for each Y ∈ H , we define the following hyperarc:

Y ′ :=

{

Y if Y (1) /∈ NR − F0

Y (1)′Y (2) . . . Y (|Y |)yY if Y (1) ∈ NR − F0;

where yY is a new vertex (not in R with yY 6= yZ for Y 6= Z). By union,
we extend to H ′ := {Y ′ | Y ∈ H}.

It remains to take

S := {(X, H ′) ∈ R | (X, H) ∈ R ∧X ∈ F0}

∪ {(X ′, H ′) | (X, H) ∈ R ∧X /∈ F0}.

The grammar S remains simple, connected and strongly reduced of axiom
Z. And S is non-terminal outside and generates G. q.e.d. (Proposition 3.10)

The transformation of Proposition 3.10 is illustrated in Figure 3.11.

196 D. Caucal

;;

a

c

b

d

a

a

c

Z

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(y)

(z)

(x)

A A B B

A

A

Figure 3.12. From the grammar of Figure 2.4 to a terminal outside one.

3.3 Separating the inputs with the outputs

We want to extend Proposition 3.10 by separating as much as possible in
every right hand side of the grammar input and output vertices. However
we can observe that if a vertex of a left hand side X is of infinite degree in
Rω(X) then it must be also an output. We shall show that a grammar can
be transformed into an equivalent one such that the non-output vertices of
every left hand side X are the inputs of finite degree in Rω(X).

A grammar R is terminal outside if for any rule X −→ H , any terminal
hyperarc Y ∈ H with Y (1) ∈ TR has a vertex which is not an input:
VY − VX 6= ∅. An outside grammar is a terminal outside and non-terminal
outside grammar.

Lemma 3.11. Any regular hypergraph can be generated in an effective
way by an outside, simple, connected and strongly reduced grammar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.1, G is generated
by a reduced grammar R from its axiom Z. By least fixed point, we define
the grammar I such that Dom(I) = Dom(R) and

I = {(X, H ∩ TRV ∗
X) | X R◦ =⇒

I
H}.

We define grammars

J := {(X, H ∪ {X}) | (X, H) ∈ I ∧X 6= Z}, and

S := {(Z, H) | Z R◦ =⇒
J

H} ∪ {(X, H|−TRV ∗

X
) | X R◦ =⇒

J
H}.

For any X ∈ Dom(R)− {Z},

Sω(X) = {K − TRV ∗
X | K ∈ Rω(X)}

hence Sω(Z) = Rω(Z). Furthermore S is terminal outside but not necessary
reduced (due to condition (iii)).

By applying the previous constructions, the obtained grammar remains
terminal outside and becomes non-terminal outside, simple, connected and
strongly reduced. q.e.d. (Lemma 3.11)

Deterministic graph grammars 197

Grammar:

Graph generated from its unique non-terminal:

A A a

(x) (x)

a

a a

Figure 3.13. A regular graph of infinite degree.

(x)

(y)

(z)

(y)

(z)

(x)

A

a

b

A

Figure 3.14. A grammar which is not degree-outside.

In Figure 3.12, we apply the construction of the proof of Lemma 3.11
to the grammar of Figure 2.4 completed with the rule Z −→ Axy. In
the last figure of Section 2 and in Figure 3.9, we have regular graphs with
vertices of infinite degree. In Figure 3.13, we give another regular graph of
infinite degree. We shall see that there is no regular hypergraph of finite
degree which is not of bounded degree. To compute the vertex degrees of a
hypergraph, we separate in the right hand sides of a grammar the outputs
from the inputs of finite degree. A degree-outside grammar R is a grammar
such that the vertices of any right hand side which are inputs and outputs
are the input vertices of infinite degree in the generated graph:

∀(X, H) ∈ R ∀Y ∈ H ∩NRV ∗
H(VX ∩ VY ⊆ {s ∈ VX | dRω(X)(s) = ω}).

The grammar of Figure 3.13 is degree-outside but the grammar in Fig-
ure 3.14 is not: x is both an input and an output but is of finite degree in
the generated graph. A degree-outside and reduced grammar generating a
hypergraph of finite degree is called an input-separated grammar : for each
right hand side, any input is not an output. A grammar which is outside
and degree-outside is a complete outside grammar.

Theorem 3.12. Any regular hypergraph can be generated in an effective
way by a complete outside, simple, connected and strongly reduced gram-
mar.

Proof. Let G 6= ∅ be a regular hypergraph. By Lemma 3.11, G is generated
by an outside, simple, connected and strongly reduced grammar R from its

198 D. Caucal

axiom Z. For any hypergraph H and any P ⊆ VH , we denote

[H, P] := |{(Y, i) | Y ∈ H ∧ Y (1) ∈ NR ∧ 2 ≤ i ≤ |Y | ∧ Y (i) ∈ P}|

the number of non-terminal links in H on vertices in P .
To get from R a degree-outside grammar, we derive each right hand side

until we cannot separate outputs from inputs. We begin with the initial
grammar S0 := R; having constructed a grammar Sn with n ≥ 0, we
associate to each rule (X, H) ∈ Sn a hypergraph KX such that

H −→
Sn

KX ∧ [KX , VX] < [H, VX]

if such a hypergraph exists, otherwise KX = H ; and we define the grammar

Sn+1 := {(X, KX) | X ∈ Dom(R)}.

We finish with the grammar

S := Sm for m = min{n | Sn = Sn+1}.

This grammar S is complete outside, simple, connected and generates G
from Z. And S becomes strongly reduced by restriction to the accessible
non-terminals from Z. q.e.d. (Theorem 3.12)

Note that the transformation of Theorem 3.12 applied directly to the
grammar of Figure 3.14 which is not terminal outside, and completed with
the rule Z −→ {A123}, leaves the grammar unchanged. In Figure 3.15,
we apply the transformation of Theorem 3.12 to a suitable grammar. The
transformation of Theorem 3.12 is illustrated in Figure 3.16. The regular
graph of Figure 3.16 has only two possible vertex degrees: 3 and ω. Let us
generalize this property.

Proposition 3.13.

a) Any regular hypergraph has a finite number of vertex degrees, hence is
either of infinite degree or of bounded degree.

b) The class of regular hypergraphs is closed under colouring of vertices
whose degree belongs to a given subset of N ∪ {ω}.

Proof. Let G 6= ∅ be a regular hypergraph. By Theorem 3.12, G is gener-
ated by a complete outside, simple, connected and strongly reduced gram-
mar R from its axiom Z. We can assume that the non-input vertices of the
right hand sides are distinct:

∀(X, H), (Y, K) ∈ R with X 6= Y ((VH − VX) ∩ (VK − VY) = ∅)

Deterministic graph grammars 199

;Z
A A

a

A

; B b

a

c

B B

c

b

Z ; B
A A

A

; B b

a

c

B

(x)

(x) (x)

(y) (y)

(x)

(x)

(x)

(x)

(y)

(x)

(y)

Outside, simple, connected and strongly reduced grammar:

Equivalent complete outside grammar:

a a a

c c

b

c

bb

a a

c c

b

c

bb

a a

c c

b

c

bb

a

a

Generated graph:

Figure 3.15. Transformation of Theorem 3.12.

and we denote by E the finite set of non-input vertices in R:

E :=
⋃

{VH − VX | (X, H) ∈ R}.

Let us prove Property a). For each rule (X, H) ∈ R, we take a hy-
pergraph K such that H =⇒

R
K and for every vertex s ∈ VH − VX , we

define

d(s) :=

{

ω if ∃Y ∈ K(Y (1) ∈ NR ∧ s ∈ VY)

d[K](s) otherwise.

The vertex degrees of G form the set {d(s) | s ∈ E} which is finite and
computable.

Let us prove Property b). Let P ⊆ N ∪ {ω} and # a colour. We want
to construct a grammar generating

GP := G ∪ {#s | s ∈ VG ∧ d(s) ∈ P}.

200 D. Caucal

⇓

;

;

Z ;

A

Z

A

A

A Bb B

b A

b

a

A

a

a a a
b

b
b

b

(x)

(y)

(x)

(y)(y)

(x)

(y)

(x)

(y)

(x)

(y)

(x)

generating the graph:

Figure 3.16. Transformation of a grammar into a degree-outside one.

To each rule (X, H) ∈ R, we associate the hypergraph:

H ′ := H ∪ {#s | s ∈ VH − VX ∧ dRω(H)(s) ∈ P}.

So the grammar {(X, H ′) | (X, H) ∈ R} generates GP from Z.
q.e.d. (Proposition 3.13)

3.4 Separating the outputs

This last normalization subsection permits to get grammars separating for
each right hand side the vertices of the non-terminals. A grammar R is
output-separated if for any right hand side, distinct non-terminal hyperarcs
have no common vertex and any non-terminal hyperarc has distinct vertices:
for any H ∈ Im(R) and any X, Y ∈ H ∩NRV ∗

H ,

|VX | = ̺(X(1)) ∧ (X 6= Y ⇒ VX ∩ VY = ∅).

Note that any output-separated grammar is without multiplicity. The-
orem 3.12 cannot be extended to get grammars which are also output-
separated. However we give a general sufficient condition on any reduced
grammar R that allows to transform R into an equivalent output-separated
grammar. To any hypergraph H labelled in NR ∪ TR, we denote

Comp(H) := {[C]∼ | C connected component of H|−TRV ∗

H
}

the family of the connected components (up to isomorphism) of the set of
non-terminal hyperarcs of H , and

Comp(R) :=
⋃

{Comp(H) | Z =⇒
R

∗ H}.

Deterministic graph grammars 201

a a a

b b b b

a a a

b b b b

c c c c

c c c c

Figure 3.17. Regular graph not given by an output-separated grammar.

We say that R is output-separable if Comp(R) is finite. This notion is
illustrated in Figure 3.18. Any input-separated grammar R (reduced and
degree-outside grammar with Gen(R) of finite degree) is output-separable:

Comp(R) = {{Z}} ∪ {[C]∼ | ∃H ∈ Im(R)

(C connected component of H|−TRV ∗

H
)}.

Any graph generated by an output-separable grammar can be generated by
an output-separated grammar.

Lemma 3.14. Any output-separable grammar can be transformed into an
equivalent output-separated grammar.

Proof. Let R be any output-separable grammar: R is reduced and Comp(R)
is finite. Denoting m the cardinality of Comp(R), we take hypergraphs
H1, . . . , Hm such that

{[H1]∼, . . . , [Hm]∼} = Comp(R).

The axiom Z of R satisfies [Z]∼ = {Z} hence Z ∈ {H1, . . . , Hm}. For each
1 ≤ i ≤ m, we take a new symbol Ai of arity ̺(Ai) = |VHi

|, we denote

{si,1, . . . , si,̺(Ai)} = VHi

we take a hypergraph Ki such that Hi =⇒
R

Ki and let

Ci,1, . . . , Ci,ni
be the connected components of (Ki)|−TRV ∗

Ki

.

By definition of Comp(R) and for every 1 ≤ i ≤ m and 1 ≤ j ≤ ni, there
is a unique 1 ≤ ij ≤ m such that Ci,j is isomorphic to Hij

, and we take an

202 D. Caucal

;

;

Output-separable grammar R:

Comp(R):

Non output-separable grammar:

; ;

AZ

(1)

(2)

A

(1)

(2)

bA A

a

Z

(1)

(2)

A

(1)

(2)

A a A

A

Z A A A

Figure 3.18. Output separation for grammars.

; ;

a

a
(2) (2)Z

(1)

(2)

A

(1)

(2)

bA

a

B B

b

b B

B

(3) (3)

(1) (1)

Figure 3.19. Output-separated grammar from the first grammar of Fig-
ure 3.18.

isomorphism hi,j from Hij
to Ci,j : Hij

hi,j

∼ Ci,j . We define the grammar S
having for each 1 ≤ i ≤ m, the following rule:

Aisi,1 . . . si,̺(Ai) −→ [Ki] ∪ {Aij
hi,j(sij ,1) . . . hi,j(sij ,̺(Aij

)) | 1 ≤ j ≤ ni}.

So S is output-separated and Sω(Z) = Rω(Z). q.e.d. (Lemma 3.14)

The construction of the proof of Lemma 3.14 is illustrated in Figure 3.19.
Lemma 3.14 permits to extend Theorem 3.12 to any regular graph of finite
degree.

Corollary 3.15. Any regular hypergraph of finite degree can be generated
in an effective way by a grammar which is input and output separated,
connected and strongly reduced.

By generation by distance from a vertex of any connected regular graph
of finite degree, we shall get in next section a grammar normal form stronger
than in Corollary 3.15 (cf. Theorem 4.6). The condition of a grammar to
be output-separable is effective.

Deterministic graph grammars 203

Lemma 3.16. We can decide whether a reduced grammar is output-
separable.

Proof. Left as a simple exercise on grammars. q.e.d.

Henceforth and considering Proposition 3.10, we assume that any gram-
mar is reduced, proper and without multiplicity.

3.5 Canonical regular graphs

A grammar R generates from a hypergraph K a family Rω(K) of isomorphic
hypergraphs. We present here a canonical way to extract a representant
Gen(R, K) in this family. A vertex s of Gen(R, K) is the word of the path
of the non-terminals plus the non-input vertex which are used to get s by
rewritings. Up to a label renaming with adding rules, we assume that K
and each right hand side of R has no two non-terminal hyperarcs with the
same label: for every H ∈ {K} ∪ Im(R),

Y, Y ′ ∈ H ∧ Y 6= Y ′ ∧ Y (1), Y ′(1) ∈ NR =⇒ Y (1) 6= Y ′(1).

We denote by VR the vertex set of K plus the set of non input vertices of
the right hand sides of R:

VR := VK ∪
⋃

{VH − VX | (X, H) ∈ R}.

To each word u ∈ N∗
R, we associate for each non-terminal A ∈ NR a new

symbol Au of arity ̺(A), and for each hyperarc X , we define

Xu :=

{

X if X(1) /∈ NR

X(1)uX(2) . . .X(|X |) if X(1) ∈ NR,

that we extend by union to any hypergraph H : Hu := {Xu | X ∈ H}. To
each rule (X, H) ∈ R and hyperarc Y with Y (1) = X(1)u, u ∈ N∗

R and

VY ⊂ N∗
RVR, we associate the finite hypergraph Ŷ := h(H)uX(1) where h is

the function defined for every vertex r ∈ VH by

h(r) :=

{

Y (i) if r = X(i) for some 2 ≤ i ≤ |X |

uX(1)r otherwise.

Beginning with the hypergraph H0 = Kε and having defined Hn for n ≥ 0,
we construct

Hn+1 := [Hn] ∪ {Ŷ | Y ∈ Hn ∧ ∃u ∈ N∗
R(Y (1) ∈ (NR)u)}

204 D. Caucal

Axiom K:
A

(s)

(t)

i

f

Grammar R:

a

b

B ; AC

e
(r)

B Cc

d

;A

(1) (1) (1) (1) (1)(1)

c

(q)(p)(2) (2) (2) (2) (2)(2)

=⇒ =⇒=⇒

Graphs H0, . . . , H3:

a

b

a c

b d

a c

b d

e

c

i

f

i

f

i

f

i

f

Aε

(s)

(t)

(s)

(t) (Ap)

BA CAB

(s)

(t) (Ap) (ABq)

AABC

(s) (ABCr)

(t) (Ap) (ABq)

(s)

(t) (Ap) (ABq)

(ABCr)

(ABCAp) (ABCABq)

(ABCABCr)

Canonical graph Gen(R, K) represented by vertices of increasing length:

a

b

c

d

e

b

a c

d

e

b

a c

d

e

ac c c

i

f

Figure 3.20. Canonical graph generated by a grammar.

in order to define the following terminal hypergraph:

Gen(R, K) :=
⋃

n≥0

[Hn].

Such a hypergraph is generated by R from K: Gen(R, K) ∈ Rω(K). In
Figure 3.20, we illustrate the previous construction.

The vertex set of Gen(R, K) is regular because

VGen(R,K) = VK ∪
⋃

{LA | A ∈ FK ∩NR}

where the family of languages LA for all A ∈ NR is the least fixed point of
the following system: for each (X, H) ∈ NR,

LX(1) = X(1).
(
(VH − VX) ∪

⋃

{LA | A ∈ FH ∩NR}
)
.

For the grammar R of Example 3.20, we have

LA = A({p} ∪ LB); LB = B({q} ∪ LC); LC = C({r} ∪ LA)

hence VGen(R) = {s, t} ∪ LA = {s, t} ∪ (ABC)∗{Ap, ABq, ABCr}

Deterministic graph grammars 205

c a

b

e
i

f

(1)

(2)

(Cr)

(CAp)

BCA

Figure 3.21. GenCAp(R, C12) for the grammar R of Figure 3.20.

For any non-empty finite ∅ 6= E ⊆ VGen(R,K), we define the least approxi-

mant GenE(R, K) of Gen(R, K) whose vertex set contains E, which is the
hypergraph obtained from K by a minimal number of rewritings to generate
all vertices in E. Precisely we begin with H0 = Kε; having defined Hn for
n ≥ 0, either we can choose Y ∈ Hn with Y (1) ∈ (NR)u for some u ∈ (NR)∗

such that E ∩ u(NR)+VR 6= ∅, and we take Hn+1 = (Hn − {Y }) ∪ Ŷ or if
such a Y does not exist, we finish with GenE(R, K) = Hn. In Figure 3.21,
the least approximant of Gen(R, C12) containing E = {CAp} is depicted,
where R is taken from Figure 3.20. Note that the hypergraphs Hn given to
define Gen(R, K) =

⋃

n≥0[Hn] are approximants:

Hn = GenEn
(R, K) for En = {v ∈ VGen(R,K) | |v| ≤ n + 1}.

The canonical graph of a reduced grammar R of axiom Z is Gen(R) :=
Gen(R, Z).

4 Generation by distance

In the previous section, we have considered transformations of grammars
into equivalent normalized grammars. We now investigate transformations
to get grammars generating hypergraphs by vertices of increasing distance
from a given colour, either by accessibility or by non-oriented accessibility.

4.1 Regularity by restriction

The regularity of a graph is preserved by restriction to the vertices having
a given colour.

Proposition 4.1. The class of regular hypergraphs is closed under restric-
tion to the vertices having a colour in a given set.

Proof. Let G 6= ∅ be a regular hypergraph. By Theorem 3.12, G is gen-
erated by an outside, simple, connected and strongly reduced grammar R
from its axiom Z. Let P be a colour set. We want to construct a grammar
generating

GP := G|{s∈G|∃c∈P (cs∈G)}.

We can restrict P to a unique colour #, otherwise we take a new colour d to
colour all the vertices of G having a colour in P , then we do the restriction of

206 D. Caucal

⇓

;;Z Ad

(q)
i

i
(p)

#

i
(r)

(s)

e B A

#

c A

(x)

(y)

a

b

c A

(x)

(y)

a

b

B

#

;d

i

i

#

#

Z∅ A1,2 B2

i#

;

#

c

a

b
#

A1,2 A1 B2 A2

;

a

A1A1 A2 A1

#

+ reduced

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

(1) (1)

(2) (2)

(1)

(2)

(1) (1)

(2)

Figure 4.1. Grammar transformation for the restriction to colour #.

G to the vertices coloured by d and we remove this colour. To each A ∈ NR

and each I ⊆ [̺(A)], we associate a new non-terminal AI of arity ̺(A). For
each rule (X, H) ∈ R and I ⊆ [̺(X(1))], we define the hypergraph

HI := {Y ∈ H | Y (1) ∈ TR ∧ ∀1 < i ≤ |Y |(#Y (i) ∈ H ∨ Y (i) ∈ [X, I])}

∪ {BJY | B ∈ NR ∧BY ∈ H ∧ J = {j | 1 ≤ j ≤ |Y | ∧

(#Y (j) ∈ H ∨ Y (j) ∈ [X, I])}}

with [X, I] := {X(i + 1) | i ∈ I}. Thus the grammar

{(AIX, HI) | A ∈ NR ∧ (AX, H) ∈ R ∧ I ⊆ [̺(A)]}

generates G# from Z∅. q.e.d. (Proposition 4.1)

By Propositions 3.13 and 4.1, the regular graphs are closed by restriction
to a given set of degrees. The construction of the proof of Proposition 4.1
is illustrated in Figure 4.1.

4.2 Regularity by graduation

A graduation g of a hypergraph G is a mapping from VG into N such that
only finitely many vertices have the same value by g i. e. g−1 is locally
finite: g−1(n) = {s ∈ VG | g(s) = n} is finite for every n ≥ 0. We shall
define the regularity of a hypergraph by vertices of increasing graduation.

Deterministic graph grammars 207

; C

e

B; ;AZ

i

f

a A
B

b

c c

C

d

a

A

(1) (1) (1)(1) (1) (1)

(2) (2) (2)(2) (2) (2)

Figure 4.2. Generating the graph of Figure 3.20 by (length −2).

Precisely for every n ≥ 0, we denote

Gg,n := G|{s|g(s)≤n}

= {X ∈ G | g(X(2)) ≤ n ∧ . . . ∧ g(X(|X |)) ≤ n}

and ∂g,nG := {s | g(s) ≤ n ∧

∃X ∈ G(s ∈ VX ∧ ∃t ∈ VX(g(t) > n))}

= {s ∈ VG−Gg,n
| g(s) ≤ n}

the nth frontier of G by g. This is illustrated by the following diagram:

Gg, n

nG:

where Gg,n contains all edges depicted by a full line and ∂g,nG is the set of
circled vertices; note that

VGg,n
∩ VG−Gg,n

⊆ ∂g,nG.

We say that a hypergraph G is regular by g if there exists a terminal
outside grammar R such that for every n ≥ 0, R generates from its axiom
Z by n + 1 parallel rewritings the hypergraph Gg,n of terminal hyperarcs,
plus a set of non-terminal hyperarcs of vertex set ∂g,nG

∀n ≥ 0 ∃H(Z =⇒
R

n+1 H ∧ [H] = Gg,n ∧ VH−[H] = ∂g,nG);

we also say that R generates G according to g. Observe that if G is con-
nected and Gg,m 6= ∅, we have for n ≥ 0,

∂g,m+nG = ∅⇐⇒ Gg,m+n = G.

When VG is a language, then word length may be used as a graduation. For
instance, the canonical graph of Figure 3.20 is regular by length.

Proposition 4.2. Any canonical hypergraph is regular by length.

208 D. Caucal

The graph G = {n
a
−→ n + 1 | n ≥ 0} ∪ {n

b
−→ ω | n ≥ 0} with the

graduation g(n) = n for n ≥ 0 and g(ω) = 0 yields the graph G
g
0 :

The graphs Gg
n for n ≥ 1 are all equal to the following graph:

b

0

a

b b

0 1 a 2 a 3

b

0

a

b b

0 a a

b

0 1 2

Figure 4.3. Graph decomposition.

Proof. Let R be a grammar. Let us construct a grammar generating Gen(R)
by length. By Lemma 3.11, we get a terminal outside grammar S with the
same canonical hypergraph: Gen(S) = Gen(R). As S is outside, S generates
Gen(S) by length minus 2. By denoting Z the axiom of S and by adding
two new constant symbols Z0, Z1, we complete S into S∪{(Z0, Z1), (Z1, Z)}
which generates Gen(S) by length (from Z0). q.e.d. (Proposition 4.2)

Proposition 4.2 implies that any regular hypergraph is regular by some
graduation. A dual way to express the regularity by graduation is by decom-
position: we remove iteratively on the graph the vertices with graduation
less than 1, 2, The decomposition allows to avoid the explicit use of
grammars. The decomposition at level n ≥ 0 of a hypergraph G by a grad-
uation g is the following hypergraph:

Gg
n := (G−Gg,n−1) ∪ {max{0, g(s)− n}s | s ∈ VG−Gg,n−1}

obtained from G by removing Gg,n−1 with Gg,−1 = ∅ and by colouring any
remaining vertex s by the integer max{0, g(s) − n} (assuming that G has
no integer colour otherwise we must use a new integer colour: p′ for each
p ≥ 0). In particular Gg

0 = G ∪ {g(s)s | s ∈ VG}. We give an example in
Figure 4.3.

We say that a hypergraph G is finitely decomposable by a graduation g if
the disjoint union

∑

n≥0

Gg
n := {X(1)(X(2), n) . . . (X(|X |), n) | n ≥ 0 ∧X ∈ Gg

n}

Deterministic graph grammars 209

only has a finite number of non-isomorphic connected components. For in-
stance the graph G of Figure 4.3 is finitely decomposable by its graduation g
with only two non isomorphic connected components: Gg

0 and Gg
1. Another

example is the complete binary tree

T := {u
a
−→ ua | u ∈ {a, b}∗} ∪ {u

b
−→ ub | u ∈ {a, b}∗}

which is finitely decomposable by length: T
| |

0 and for every n ≥ 1, any

connected component of T
| |
n is isomorphic to T

| |

1 .
A last example is the semiline N which is regular but is not finitely

decomposable using the graduation associating to n ≥ 0 the n + 1st prime
number. By definition the vertices of Gg

n coloured by 0 are vertices of G
coloured by some i ≤ n:

{s | 0s ∈ Gg
n} ⊆ {s ∈ VG | g(s) ≤ n}

which is finite. In particular any connected component C of
∑

n≥0 Gg
n has

a finite set VC,0 = {s ∈ VC | 0s ∈ C} of vertices coloured by 0. So any
hypergraph G finitely decomposable by g is bounded connected by g in the
following sense:

• there exists b ≥ 0 such that |VC,0| ≤ b for every connected component
C of

∑

n≥0 Gg
n,

or, equivalently,

• there exists b ≥ 0 such that |{s ∈ VC | g(s) ≤ n}| ≤ b for all n ≥ 0
and for every connected component C of G−Gg,n−1.

It follows that finite decomposition is a less powerful notion than reg-
ularity (by some graduation). The regular graph G of Figure 3.17 has no
finite decomposition because it is not bounded connected by any gradua-
tion g: the decomposition Gg

n at any level n has a connected component
containing all the vertices of infinite (in-)degree.

The finite decomposition of a hypergraph G by a graduation g also
imposes that G has finitely many connected components. It is due to the
fact that Gg

0 has a finite number of non isomorphic connected components,
and no connected component can be infinitely repeated because g is locally
finite.

Any finite decomposition can be done by a grammar generating what
we remove; the converse is true when the hypergraph is bounded connected
by the graduation and has only a finite number of connected components.

Proposition 4.3. Given a graduation g of a hypergraph G, G is finitely de-
composable by g if and only if G is regular by g and G is bounded connected
with finitely many connected components.

210 D. Caucal

Graduation g(m,n) = m + n

G
g
0
:

Graph G = {(m, n)
a
−→ (m, n + 1) | m, n ≥ 0}

a0 1 a 2 a 3

a a1 2 3

a2

3

3

Figure 4.4. Graph regular by graduation, bounded connected, but not
finitely decomposable.

Proof. =⇒: Let G be a hypergraph finitely decomposable by a graduation
g. As already mentioned, G is bounded connected by g and G has only a
finite number of connected components. It remains to be shown that G is
regular by g. Recall that for any n ≥ 0,

Gg
n := (G−Gg,n−1) ∪ {max{0, g(s)− n}s | s ∈ VG−Gg,n−1}

with Gg
−1 = ∅. We define

Ĝg
n := (G−Gg,n) ∪ {max{0, g(s)− n}s | s ∈ VG−Gg,n

}

obtained from Gg
n by removing the hyperarcs whose vertices are all coloured

by 0 (only a finite number) and then by removing the isolated vertices
coloured by 0. Let E be a maximal set of non-isomorphic connected com-
ponents of {Ĝg

n | n ≥ 0}. By hypothesis {Gg
n | n ≥ 0} has a finite number of

non-isomorphic connected components, hence E is finite. For each C ∈ E,
we order the set VC,0 of vertices of C coloured by 0:

{〈C, 1〉, . . . , 〈C, |VC,0|〉} = VC,0,

and we take a new symbol [C] of arity |VC,0|. Note that for every n ≥ 0,

Gg
n+1 =

(
Ĝg

n − {cs ∈ Ĝg
n | c ∈ N}

)

∪ {max{0, c− 1}s | cs ∈ Ĝg
n ∧ c ∈ N}.

To each C ∈ E, we associate the hypergraph

C′ := (C − NVC) ∪ {max{0, c− 1}s | cs ∈ C ∧ c ∈ N}

Deterministic graph grammars 211

which is isomorphic to a connected component of {Gg
n | n ≥ 0}, and we

define
E′ := {C′ | C ∈ E} ∪ {Gg

0}.

For each C ∈ E′, the connected components of

C − {X ∈ C | VX ⊆ VC,0 ∧X(1) /∈ N}

and not reduced to a vertex coloured by 0, are denoted by C1, . . . , CnC
. For

each 1 ≤ i ≤ nC , there is an isomorphism hi from Ci to a unique Di ∈ E.
To each C ∈ E′, we associate the hypergraph

〈〈C〉〉 := {X ∈ C | X(1) /∈ N ∧ VX ⊆ VC,0}

∪ {[Di]h
−1
i (〈Di, 1〉) . . . h−1

i (〈Di, |VDi,0|〉) | 1 ≤ i ≤ nC}.

Finally the following outside grammar:

R := {(Z, 〈〈Gg
0〉〉)} ∪ {([C]〈C, 1〉 . . . 〈C, |VC,0|〉, 〈〈C

′〉〉) | C ∈ E}

generates G from Z and according to g.

⇐=: Assume that G is regular by g, bounded connected by g and has a
finite number of connected components. We want to show that G is finitely
decomposable by g. We can assume without loss of generality that G only
has one connected component,i. e. that G is connected.

There exists an integer b such that for any connected component C of
∑

n≥0 Gg
n, |VC,0| ≤ b. Consider an outside grammar R generating G by

g from its axiom Z. By the transformation of Lemma 3.3 splitting any
hyperarc into connected hyperarcs, we can assume that R is connected.
Consider an infinite parallel derivation

Z =⇒
R

H0 . . . Hn =⇒
R

Hn+1 =⇒
R

. . .

For every n ≥ 0, we have

[Hn] = Gg,n and VHn−[Hn] = ∂g,nG

hence

{s | 0s ∈ Gg
n} = {s ∈ VG−Gg,n−1 | g(s) ≤ n}

⊇ {s ∈ VG−Gg,n
| g(s) ≤ n}

thus

VHn−[Hn] = ∂g,nG = {s ∈ VG−Gg,n
| g(s) ≤ n} ⊆ {s | 0s ∈ Gg

n}.

212 D. Caucal

Gradued graph of finite decomposition

Grammar:

a

b

0

a

b b

0 1 a 2 a 3

b

b b

a a

b

01

1

2 3

Z
Ab A

a

b

A

;

a

b

A

B

(1)

B
;

(1)

(2)

(1)

(2)
(1)

Figure 4.5. Grammar for a finitely decomposable graph.

Then for any n ≥ 0 and any connected component K of Hn−[Hn], |VK | ≤ b.
It follows that {Hn − [Hn] | n ≥ 0} has a finite number of non isomorphic
connected components, and we take a maximal set E of non isomorphic
connected components. Consequently E is finite and the Rω(K) for any
K ∈ E are, up to isomorphism, the connected components of {G − Gg,n |
n ≥ 0}.

For each K ∈ E, we take K = K0 =⇒
R

K1 . . .Kn =⇒
R

Kn+1 =⇒
R

. . . a

derivation generating the hypergraph K ′ :=
⋃

n≥0[Kn] which we complete
by an integer colouring as follows:

K := K ′ ∪ {min{n | s ∈ VKn+1}s | s ∈ VK′}

So {K | K ∈ E} are up to isomorphism the connected components of
{Gg

n | n > 0}. Hence G is finitely decomposable by g. q.e.d. (Proposition 4.3)

The transformation of the necessary condition of Proposition 4.3 is illus-
trated in Figure 4.5.

4.3 Regularity by accessibility

A usual problem in graph theory is the accessibility problem. This problem
consists in computing the set of vertices accessible from a given initial set.
Here we transform any grammar into another one generating the same graph
plus a colouring of the vertices accessible from (vertices with) a given colour
(cf. Proposition 4.4). This grammar transformation is expressed by least

Deterministic graph grammars 213

⇓

a a

b b b b

a a

b b b b

##

#

i

i

i i

iii

i

Figure 4.6. Computation of the vertices accessible from i.

fixpoint on the grammar. Finally we give a rooted regular graph of finite
degree which cannot be generated by accessibility.

The accessible vertex set Acc(G, i) of a hypergraph G from a colour i is
the smallest subset of VG containing the set VG,i of vertices coloured by i
and closed under the following accessibility property:

fv1 . . . v̺(f) ∈ G ∧ ̺(f) > 1 ∧ v1, . . . , v̺(f)−1 ∈ Acc(G, i)

=⇒ v̺(f) ∈ Acc(G, i)

Equivalently Acc(G, i) is the least solution of the following equation:

Acc(G, i) = VG,i ∪ SuccG(Acc(G, i))

for the following successor relation:

SuccG(E) := {v | FE+v ∩G 6= ∅} for any E ⊆ VG.

So a hyperarc realises an “and” boolean function: we access via a hyperarc
fv1 . . . v̺(f) its last vertex v̺(f) if we have accessed all its other vertices
v1, . . . , v̺(f)−1. A hypergraph G is accessible from a colour i if Acc(G, i) =
VG. For instance the hypergraph G = {fxyz, gxy, hx, c} of Figure 2.1 is
accessible from h: Acc(G, h) = {x, y, z}, but the hypergraph G = {ix, jy}
is not accessible from a unique colour.

We say that a vertex r of a hypergraph G is a root if Acc(G∪{ir}, i) = VG

for i a new colour: i /∈ FG. Let us mark by a given colour # the accessible
vertices of any regular hypergraph: we shall transform any grammar R
generating a hypergraph G into another grammar generating G∪{#v | v ∈
Acc(G, i)}. This is illustrated in Figure 4.6. The method simply translates
the least fixed point defining Acc(G, i) to a least fixed point on the grammar
generating G.

214 D. Caucal

Proposition 4.4. The class of regular hypergraphs is effectively closed
under accessible colouring.

Proof. Let R be a grammar of axiom Z generating a hypergraph G. For
colours ι, #, we want to construct a grammar generating G ∪ {#v | v ∈
Acc(G, ι)}. Let 1, . . . , ̺(R) be the vertices of the left hand sides of R: up
to renaming, we assume that each left hand side X ∈ Dom(R) of R is of
the form X = X(1)1 . . . ̺(X(1)). To each rule A1 . . . ̺(A) −→ HA in R and
each I ⊆ [̺(A)], we associate the set Acc(A, I) of vertices in VHA

which are
accessible from I and the vertices coloured by ι in a(ny) graph of Rω(HA).
This family of sets Acc(A, I) is the least fixed point of the following recursive
system:

Acc(A, I) := I ∪ {v | ιv ∈ HA}

∪ {v ∈ VHA
| TR(Acc(A, I))+v ∩HA 6= ∅}

∪ {Y (i) | ∃B ∈ NR(BY ∈ HA ∧ 1 ≤ i ≤ |Y | ∧

i ∈ Acc(B, {j | Y (j) ∈ Acc(A, I)}))}.

Precisely we take a linear order on the set

M := {(A, I) | A ∈ NR ∧ I ⊆ [̺(A)]}

and we define

E :=
{ ∏

(A,I)∈M

PA,I | ∀A ∈ NR ∀I ⊆ J ⊆ [̺(A)](PA,I ⊆ PA,J)
}

.

So E is a complete finite set for the inclusion componentwise whose smallest
element is ~∅ = (∅, . . . , ∅). Then we define the mapping f : E −→ E by

(

f
(∏

(B,J)∈M

PB,J

))

A,I

:= I ∪ {v | ιv ∈ HA}

∪ {v ∈ VHA
| TRP+

A,Iv ∩HA 6= ∅}

∪ {Y (i) | ∃B ∈ NR(BY ∈ HA ∧

1 ≤ i ≤ |Y | ∧ i ∈ PB,{j|Y (j)∈PA,I})}.

Thus f is monotonous:

(∀(A, I) ∈M(PA,I ⊆ QA,I)) =⇒ f
(∏

(A,I)∈M

PA,I

)

⊆ f
(∏

(A,I)∈M

QA,I

)

.

As E is finite, f is continuous and by the Knaster-Tarski theorem:
⋃

n≥0

fn(~∅) is the least fixed point of f.

Deterministic graph grammars 215

⇓

bA Bb B A

bbA1,2 B1 B1 A1,2

#

#

a

a
#

;

;

;

A1,2

#

#

Z∅ ;

Z A

i

i

i

i

(y)

(x)(x)

(y)(y)

(x)(x)

(y)

(y)

(x)(x)

(y)(y)

(x)(x)

(y)

Figure 4.7. Colouring from i for the grammar of Figure 4.6.

So we define for every (A, I) ∈M ,

Acc(A, I) :=
(⋃

n≥0

fn(~∅)
)

A,I
.

To each (A, I), we associate a new non-terminal AI of arity ̺(A), and we
define the following grammar:

S := {(AI1 . . . ̺(A), HA,I) | A ∈ NR ∧ I ⊆ [̺(A)]}

where

HA,I := (HA ∩ TRV ∗
HA

) ∪ {#v | v ∈ Acc(A, I)− [̺(A)]}

∪ {B{j|Y (j)∈Acc(A,I)}Y | BY ∈ HA ∧B ∈ NR}.

with a restriction to the rules whose non-terminals are accessible from Z∅.
Thus S generates from Z∅ the hypergraph G ∪ {#v | v ∈ Acc(G, ι)}.

q.e.d. (Proposition 4.4)

The construction in the proof of Proposition 4.4 is illustrated in Figure 4.7.

The colouring by accessibility of a hypergraph G is a particular case
of regular colouring by a finite hypergraph H whose vertices are colours
i. e. VH ⊂ F1, and is the hypergraph defined as the least fixed point of the
equation:

G⊗H := G ∪ {c̺(f)v̺(f) | ∃fv1 . . . v̺(f) ∈ G ∃fc1 . . . c̺(f) ∈ H

(c1v1, . . . , c̺(f)−1v̺(f)−1 ∈ G⊗H)}.

In particular

G ∪ {#v | v ∈ Acc(G, i)}

= G⊗
(
{i#} ∪ {f# . . . # | f ∈ FG ∧ ̺(f) > 1}

)
.

216 D. Caucal

Let us extend Proposition 4.4 to any regular colouring.

Proposition 4.5. The class of regular hypergraphs is effectively closed
under regular colouring.

Proof. We adapt the proof of Proposition 4.4. Let H be a finite hypergraph
with VH ⊂ F1. Let R be a grammar of axiom Z generating a hypergraph
G. We assume that the rule associated to any A ∈ NR is of the form:

A1 . . . ̺(A) −→ HA.

To each A ∈ NR and I ⊆ VH [̺(A)], we associate the terminal hypergraph
Acc(A, I) such that the family of these hypergraphs is the least fixed point
of the following recursive system:

Acc(A, I) := I ∪ [HA] ∪
(
Acc(A, I) ⊗H

)

∪ {cY (i) | ∃B ∈ NR(BY ∈ HA ∧ 1 ≤ i ≤ |Y | ∧

ci ∈ Acc(B, {dj | dY (j) ∈ Acc(A, I)}))}.

To each (A, I), we associate a new non-terminal AI of arity ̺(A), and we
define the following grammar:

S := {(AI1 . . . ̺(A), HA,I) | A ∈ NR ∧ I ⊆ VH [̺(A)]}

where

HA,I :=
(
Acc(A, I)− VH [̺(A)]

)

∪ {B{dj|dY (j)∈Acc(A,I)}Y | BY ∈ HA ∧B ∈ NR}.

Thus S generates from Z∅ the hypergraph G⊗H . q.e.d. (Proposition 4.5)

We now consider the generation by accessibility. Taking any hypergraph
G (whose vertices are) accessible from a given colour i, we map each vertex s
to the minimum path length g(s) to access s from i; precisely and inductively

g−1(0) = VG,i

g−1(n + 1) = SuccG(g−1(≤ n))− g−1(≤ n)

where g−1(≤ n) := g−1(0) ∪ . . . ∪ g−1(n). For instance the graph of Fig-
ure 3.20 is regular by accessibility as shown in Figure 4.8.

Note that any hypergraph which is regular by accessibility is of finite
out-degree and has a finite number of vertices coloured by the initial colour.
In Figure 4.9, we give a regular graph of finite degree, accessible from a
colour, and which is not regular by accessibility from this colour.

Deterministic graph grammars 217

;Z B;a c

b d

e

c a
B

c

b d

e

c a
B

AA
i

f
(2)

(1)

(2)
(1)

(1) (1)

Figure 4.8. Generating the graph of Figure 3.20 by accessibility from i.

i

Figure 4.9. Regular graph not regular by accessibility from i.

4.4 Regularity by distance

Another usual graduation is the distance from a given vertex set E:

dG(s, E) := min{dG(s, t) | t ∈ E}

where dG(s, t) := min({n | s←→
G

n t} ∪ {ω}).

For instance the regular graph of Figure 2.7 remains regular by distance
from the vertices coloured by 1 or 2 using outside grammar of Figure 4.10.
We denote by dG(s, i) := dG(s, VG,i) the distance in a hypergraph G of a
vertex s to the set of vertices coloured by i. Note that the nth frontier of
G by distance from i satisfies

∂g,nG = {s ∈ VG−Gd,n
| d(s, i) = n}.

We say that G is finitely connected by i if there is only a finite number of
vertices coloured by i, and from which all vertices are connected: VG,i is
finite and d(s, i) < ω for any s ∈ VG. Any grammar generating a hypergraph
G of finite degree and finitely connected from a colour i, can be transformed
in an effective way into a grammar generating G by distance from i. Such
a graph G is also bounded connected by distance.

Theorem 4.6. Any finitely connected regular hypergraph of finite degree
is finitely decomposable by distance.

Proof. In part (i), we introduce the notion of frontier and of interface that
allow to uniquely characterize any subset of hyperarcs in a hypergraph.
Taking a regular hypergraph G finitely connected and of finite degree, we
construct in part (ii) the canonical grammar generating G by distance. Part
(iii) shows that this canonical grammar is indeed finite. Using (i)–(iii), we
got that G is regular by distance. In (iv), we show that G is bounded

218 D. Caucal

;

;

;

;

c

a

d

c
d

a

a

a

c

b

b

1

2

a

a

c

c

d

a

a

a

c

b

a

c

Z A A B

D

E
CCB

D F E G

G

A

E

D

A
F

(x)

(y)

(z)(z)

(y)

(x)

(x)

(y)

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(y)

(x)

(z)

(y)

(x)

(x)

(y)

(x)

(y)

(x)

(y)

(z)

(x)

(y)

(z)

(x)

(y)

(x)

(y)

Figure 4.10. Grammar generating the graph of Figure 2.7 by distance.

connected by distance, and hence using Proposition 4.3, we deduce that G
is finitely decomposable by distance.

(i) Let G be any hypergraph. Consider any sub-hypergraph H ⊂ G such
that for any connected component C of G, H ∩ C 6= C. Such a hypergraph
H is characterized by its frontier :

FrG(H) := VH ∩ VG−H

and by its interface:

InG(H) := {X ∈ H | VX ∩ FrG(H) 6= ∅}

= {X ∈ H | VX ∩ VG−H 6= ∅};

in particular FrG(H) ⊆ VInG(H). The charaterization of H by FrG(H) and
InG(H) follows by this equality:

H = G〈InG(H), FrG(H)〉

where for any K ⊆ G and any P ⊆ VG, the hypergraph G〈K, P 〉 is the least
fixed point of the following equation:

G〈K, P 〉 = K ∪ {X ∈ G | VX ∩ VG〈K,P 〉
6= ∅ ∧ VX ∩ P = ∅}.

(ii) Let R be a grammar generating a finite degree hypergraph G finitely
connected by a colour ι. We want to show that G is regular by distance d

Deterministic graph grammars 219

from ι:
d(s) := d(s, ι) for any vertex s of G.

By Theorem 3.12, we can assume that R is complete outside and connected.
Up to a label renaming with adding rules, we assume that each right hand
side has no two non-terminal hyperarcs with the same label, and we denote
by VR the set of non input vertices of the right hand sides of R:

VR :=
⋃

{VH − VX | (X, H) ∈ R}.

Let Z = H0 =⇒
R

H1 . . . Hn =⇒
R

Hn+1 =⇒
R

. . . be the derivation generating

Gen(R):
⋃

n≥0[Hn] = Gen(R). As the set VG,ι of vertices of G coloured
by ι is finite, we denote by m the minimal derivation length to get all the
vertices of G coloured by ι:

m := min{n | ∀p > n((Hp −Hn) ∩ ιVHp
= ∅)}.

As G is of finite degree and R is degree-outside, each rule of R has no output
which is an input, hence

Gen(R)d,n ⊆ [Hm+n] for every n ≥ 0.

For every n ≥ 0, we get

∂d,n Gen(R) = {s ∈ VHm+n−Gen(R)d,n
| d(s) = n}.

For every n ≥ 0, we denote by {Pn,1, . . . , Pn,rn
} the partition of ∂d,n Gen(R)

into connected vertices of Gen(R)−Gen(R)d,n i. e. of Hm+n −Gen(R)d,n,
and for every 1 ≤ i ≤ rn,

Kn,i := {X ∈ Gen(R)−Gen(R)d,n | VX ∩ Pn,i 6= ∅}

= {X ∈ [Hm+n+1]−Gen(R)d,n | VX ∩ Pn,i 6= ∅}.

Thus for every n ≥ 0,

Gen(R)−Gen(R)d,n =

rn⋃

i=1

Gen(R)〈Kn,i, Pn,i〉.

The left residual of C ⊆ Gen(R) by u ∈ N∗
R is

u−1C := {fu1 . . . u̺(f) | f(uu1) . . . (uu̺(f)) ∈ C}

and pC is the greatest common prefix in N∗
R of the vertices of C. We

take a linear ordering < on NR ∪ VR that we extend on N∗
RVR by length

220 D. Caucal

lexicographic order. For any n ≥ 0 and 1 ≤ i ≤ rn, we define pn,i := pKn,i

and we define the hyperarc

Xn,i := (p−1
n,iKn,i, p

−1
n,iPn,i)s1 . . . sq

with {s1, . . . , sq} = Pn,i and s1 > . . . > sq; note that the label is a pair of
a finite graph with a vertex subset. We define the grammar S :=

⋃

n≥0 Sn

with

S0 := {(Z, Gen(R)d,0 ∪ {X0,1, . . . , X0,r0})}

and, for all n ≥ 0, Sn+1 := Sn ∪ T where T contains all pairs

(Xn,i, Kn,i ∪
⋃

{Xn+1,j | Pn+1,j ∩ VKn,i
6= ∅})

with 1 ≤ i ≤ rn ∧Xn,i(1) /∈ NSn
. The finiteness of S is shown in (iii). For

any n ≥ 0 and 1 ≤ i ≤ rn, S generates from Xn,i and by distance from ι
the connected component of Gen(R)−Gen(R)d,n containing Pn,i. Thus S
generates from Z the hypergraph Gen(R) by distance from ι.

(iii) Let us show that S is finite. This is obtained by giving a bound b
such that dGen(R)(s, t) ≤ b for any n ≥ 0, any connected component C of
Gen(R) − Gen(R)d,n and any s, t ∈ VC ∩ ∂d,n Gen(R). It is sufficient to
extract such a bound for any n ≥ n0 with n0 the smallest integer such that
Gen(R)d,n0 ⊇ [Hm]. As R is a connected grammar, we take the following
integer:

c := max{dRω(H)(s, t) | H ∈ Im(R) ∧ s, t ∈ VH}.

Let n ≥ n0. Let C be a connected component of Gen(R)−Gen(R)d,n and
let s, t ∈ VC with d(s) = n = d(t). We take a vertex z of C of minimal
length. As z ∈ VC , we have d(z) ≥ n. By definition of Gen(R), z = wr for
w ∈ N∗

R and r a vertex of a right hand side of R.
Consider an undirected path of minimal length from s (resp. t) to ι;

such a path goes through a vertex x = wp (resp. y = wq) for some vertex
p (resp. q) of a right hand side of R. Hence

d(x, y) ≤ c, d(x, z) ≤ c, d(y, z) ≤ c

for distances on Gen(R). Thus

d(s, x) + d(x) = d(s) ≤ d(z) ≤ d(z, x) + d(x) ≤ c + d(x)

so d(s, x) ≤ c. Similarly d(t, y) ≤ c. Finally

d(s, t) ≤ d(s, x) + d(x, y) + d(y, t) ≤ 3c.

Deterministic graph grammars 221

Finally b = 3c fits (for any n ≥ n0).

(iv) By Proposition 4.3, it remains to verify that G is bounded connected
by d. Let C be a connected component of Gd

n+1 for some n ≥ 0. So
C′ := C − NVC is a connected component of G−Gd,n with

VC,0 = VC′ ∩ ∂d,nG.

By (iii) we get dG(s, t) ≤ b for any s, t ∈ VC,0. As G is of finite degree, let D
be the maximum degree of its vertices. Thus for any connected component
C of

∑

n≥1 Gd
n, we have

|VC,0| ≤ D0 + D1 + . . . + Db

meaning that G is bounded connected by d. q.e.d. (Theorem 4.6)

The generation by distance is illustrated in Figure 4.11 with x > y and
p > q and

C =
(
{p

a
−→ Ax, Ay

b
−→ q}, {p, q}

)

D =
(
{r

a
−→ Bx, r

e
−→ s}, {r}

)

E =
(
{x

a
−→ Ax, Ay

b
−→ y}, {x, y}

)

F =
(
{Bx

a
−→ BAx, Bx

c
−→ By, By

b
−→ s}, {Bx, s}

)

G =
(
{Ax

a
−→ AAx, Ax

c
−→ Ay, Ay

b
−→ y}, {Ax, y}

)
.

5 Graph grammars and pushdown automata

A pushdown automaton is a particular case of a labelled word rewriting
system whose rules are only applied by suffix. Pushdown automata even
in a weak form and the rewriting systems define the same graphs by suf-
fix rewriting, which are exactly the regular graphs of bounded degree (cf.
Theorem 5.11).

5.1 Suffix transition graphs

A labelled word rewriting system is just a finite uncoloured graph whose ver-
tices are words. Its set of unlabelled suffix transitions is the suffix rewriting
relation, whose transitive closure is a rational relation (cf. Proposition 5.2).
Its set of labelled suffix transitions is called a suffix graph. Any regular
restriction of this graph is regular by length (cf. Theorem 5.6). Conversely
any regular graph of finite degree is a regular restriction of a suffix graph
(cf. Theorem 5.8).

222 D. Caucal

Taking grammar R of Figure 4.1

;;Z

#
(x)

(y)

(x)

(y)

a

b
#

(q)
i

i
(p)

#

i
(r)

(s)

#

B A c A c ABAd e

a

b

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

its canonical graph Gen(R) is

d

(Zp)

(Zq)#

#
i

i

a

b

c

(ZAx)

(ZAy)

#

a

b

c

#

a

b

c

#

(ZAAx)

(ZAAy)

(ZAAAx)

(ZAAAy)

d

i
a

b

c

a

b

c

#

a

b

c

#

#

(Zr)

(Zs)

(ZBx)

(ZBy)

(ZBAx)

(ZBAy)

(ZBAAx)

(ZBAAy)

The construction of Theorem 4.6 gives the grammar:

;;

i #

#
(Zp)

(Zq)

C

i

i

#

c

a

b

C E

#

c

a

b

EE

(ZAAx)

(ZAAy)

;;

(ZAx)

(ZAy)

a

b

#

c GG

(ZBAAx)

(ZBAy)

a a

b

#

F c G

(ZBAx)

(ZBy)

(ZBx)

d

e F

#

(Zr)

D

D

Z

(Zp)

(Zq)

(Zp)

(Zq)

(ZBx) (ZBAx)

(ZBy)

(ZBAx)

(ZBy)

(ZBx)

(Zs)(Zs)(Zs)

(Zr)

(Zr)

(ZAx)

(ZAy)

(ZAx)

(ZAy)

Figure 4.11. Generation by distance.

We fix a countable set T of symbols, called terminals. A labelled word
rewriting system S is a finite subset of N∗×T ×N∗ where N is an arbitrary
alphabet of non-terminals ; we write u

a
−→

S
v for (u, a, v) ∈ S, and define

Dom(S) := {u | ∃a ∈ T ∃v ∈ N∗(u
a
−→

S
v)} its left hand sides ,

Im(S) := {v | ∃a ∈ T ∃u ∈ N∗(u
a
−→

S
v)} its right hand sides ,

WS := Dom(S) ∪ Im(S) the words of S,

NS := {u(i) | u ∈WS ∧ 1 ≤ i ≤ |u|} its non-terminals,

TS := {a ∈ T | ∃u, v ∈ N∗(u
a
−→

S
v)} its terminals .

Rewritings in a rewriting system are generally defined as applications of
rewriting rules in every context. We are only concerned with suffix rewriting.
Given a rewriting system S and a terminal a ∈ TS, we call labelled suffix

Deterministic graph grammars 223

rewriting
a
−→p

S
the binary relation on N∗

S defined by

wu
a
−→p

S
wv for any u

a
−→

S
v and w ∈ N∗

S .

Example 5.1. Consider the rewriting system S = {ε
1
−→ ab, bab

2
−→ ab}.

We have

bb
1
−→p

S
bbab

2
−→p

S
bab

2
−→p

S
ab

1
−→p

S
abab

2
−→p

S
aab . . .

For any rewriting system S, the unlabelled suffix rewriting is

−→p
S

:=
⋃

a∈TS

a
−→p

S
= {wu −→ wv | u

a
−→

S
v ∧ w ∈ N∗

S}

and its reflexive and transitive closure (by composition) −→p
S

∗
is the suffix

derivation. In Example 5.1, we have bb −→p
S

∗
bb and bb −→p

S

∗
ab. We denote

by

−→p
S

+
= −→p

S
◦ −→p

S

∗

the transitive closure of −→p
S

. A well-known property is that the set of words

deriving by suffix from a given word is a regular language, and a finite au-
tomaton accepting it is effectively constructible [2]. This property remains
true starting from any regular set of words. More generally, the suffix deriva-
tion is itself a rational relation: it can be recognized by a transducer i. e. a
finite automaton labelled by pairs of words.

Proposition 5.2 (Caucal, [4]). The suffix derivation of any word rewriting
system is effectively a rational relation.

Proof. We give here a construction improved by Carayol.

(i) Let N be any alphabet. For any P ⊆ N∗ and for any word u ∈ N∗, we
denote by u ↓ P the set of irreducible words obtained from u by derivation
according to P × {ε}:

u ↓ P := {v | u −→
P×{ε}

∗ v, 6−→
P×{ε}

}.

We extend by union ↓ P to any language L ⊆ N∗:

L ↓ P :=
⋃

{u ↓ P | u ∈ L}.

224 D. Caucal

A standard result due to Benois [1] is that for P regular, the operation ↓ P
preserves regularity:

L, P ∈ Rat(N∗) =⇒ L ↓ P ∈ Rat(N∗).

Precisely, we have
L ↓ P = −→

P×{ε}

∗ (L)−N∗PN∗

It remains to show that the image −→
P×{ε}

∗ (L) of L by the derivation −→
P×{ε}

∗

is regular. This property is true even if P is not regular. Precisely and for
L regular, there is a finite automaton A ⊆ Q× N × Q recognizing L from
an initial state i ∈ Q to a subset F ⊆ Q of final states : L(A, i, F) = L. By
adding iteratively ε-transitions between states linked by a path labelled in
P , we complete A into an automaton B which is the least fixpoint of the
following equation:

B = A ∪ {p
ε
−→ q | ∃u ∈ P (p

u
=⇒

B
q)}.

Note that we can refine B by saturating A with only elementary ε-transi-
tions:

B = A ∪ {p
ε
−→ q | p 6= q ∧ ∃a ∈ P ∩N(p

a
−→

A
q)}

∪ {p
ε
−→ q | p 6= q ∧ ∃aub ∈ P (a, b ∈ N ∧ p

a
−→

A

u
=⇒

B

b
−→

A
q)}.

So L(B, i, F) = −→
P×{ε}

∗ (L).

(ii) We denote NS by N and to each letter x ∈ N , we associate a new
symbol x /∈ N with x 6= y for x 6= y. Let N := {x | x ∈ N}. We extend
the operation by morphism to all words u = x1 . . . xn i. e. u = x1 . . . xn.
Recall that the mirror ũ of any word u = x1 . . . xn is the word ũ = xn . . . x1.
The following set is regular:

[

{ũv | ∃a(u
a
−→

S
v)}∗

)
↓ {xx | x ∈ N}

]

∩N
∗
N∗

meaning that we can apply by suffix a rule (u, v) by producing on the right
v after having removed u on the right (using ↓ {xx | x ∈ N}). This set can
be written as a finite union

⋃

i∈I U iVi where Ui, Vi ∈ Rat(N∗) for all i ∈ I.
Taking the following relation:

S :=
⋃

i∈I

Ũi × Vi

Deterministic graph grammars 225

it is easy to verify that the suffix derivation according to S is the suffix
rewriting according to S:

−→p
S

∗
= −→p

S

.

It follows that −→p
S

∗
is an effective rational relation. In particular starting

from I ∈ Rat(N∗), we have

−→p
S

∗
(I) =−→p

S

(I) = Im
(
−→p

S

∩I ×N∗
)
∈ Rat(N∗)

q.e.d. (Proposition 5.2)

Taking the system S = {ε
1
−→ ab, bab

2
−→ ab} of Example 5.1, the

construction of Proposition 5.2 gives the following finite automaton where
the dashed arrows are ε-transitions:

f

a b
a

b

b

b

a

i

which gives the suffix derivation of S:

−→p
S

∗
= {ε} × (a+b)∗ ∪ b+ab× (a+b)+ ∪ b+ × (a+b)+.

To any rewriting system S, we associate its suffix graph:

Suff(S) := {wu
a
−→ wv | u

a
−→

S
v ∧ w ∈ N∗

S} = N∗
S .S

which is the set of its suffix transitions. For instance the suffix graph of

{x
a
−→ ε, x

b
−→ x4} is the regular graph of Figure 2.8. The suffix graph of

{x
a
−→ ε, x

b
−→ zxyx, y

c
−→ ε, z

d
−→ ε} restricted to the set (z + zxy)∗(ε +

x) of its vertices accessible from x is the graph of Figure 2.9. The suffix
transition graphs of word rewriting systems have bounded degree.

Lemma 5.3. The suffix graph of any rewriting system has bounded degree,
and has a finite number of non isomorphic connected components.

Proof. Let S be any labelled word rewriting system.

(i) Let us verify that Suff(S) = N∗
S .S has bounded degree. Let w be any

vertex of this graph. As we can at most apply all the rules of S, the out-
degree of w is bounded by the number of rules: d+(w) ≤ |S|. Note that the
inverse of N∗

S .S is the suffix graph of the inverse of S:

(
N∗

S .S
)−1

= N∗
S .S−1,

226 D. Caucal

so the in-degree of w is its out-degree for N∗
S .S−1, hence

d−(w) ≤ |S−1| = |S|.

Finally the degree of w satisfies: d(w) = d+(w) + d−(w) ≤ 2|S|.

(ii) We show that N∗
S .S has a finite number of non isomorphic connected

components. Let H be any connected component of N∗
S .S. Let w ∈ N∗

S

such that
w.WS ∩ VH 6= ∅ and of length |w| minimal.

Such a word w is unique because it is prefix of all the vertices of H : by
definition of w, there is u ∈ WS such that wu ∈ VH ; by induction on the
length of any derivation wu =⇒

H∪H−1

∗ v, w is prefix of v. By removing this

common prefix to the vertices of H , we obtain the graph

w−1H := {u
a
−→ v | wu

a
−→
H

wv}

which is isomorphic to H and has a vertex in WS which is finite. So
the set of connected components of Suff(S) is finite up to isomorphism.

q.e.d. (Lemma 5.3)

By Proposition 3.4, the second property of Lemma 5.3 is a particular case
of the fact that any suffix graph is regular.

Proposition 5.4. The suffix graph of any rewriting system can be gener-
ated by a one-rule graph grammar from its left hand side.

Proof. Let S be any labelled word rewriting system. Let

E := {y | ∃x 6= ε(xy ∈WS)}

be the set of strict suffixes of the words of S. We take a label Y of arity
n = |E| and let {e1, . . . , en} = E. We define the grammar R restricted to
the following rule:

Y e1 . . . en −→ S ∪ {Y (xe1) . . . (xen) | x ∈ NS}.

So N∗
S.S is generated by R from its left hand side: N∗

S .S ∈ Rω(Y e1 . . . en).
q.e.d. (Proposition 5.4)

Taking the system S = {ε
1
−→ ab, bab

2
−→ ab} of Example 5.1 and by

applying the construction of Proposition 5.4, we get the one-rule grammar
shown in Figure 5.1 generating the suffix graph of S. The regularity of any
suffix graph is preserved by any regular restriction.

Corollary 5.5. Any regular restriction of a suffix graph is a regular graph.

Deterministic graph grammars 227

Y

(a)

(aab)

(bab)

Y

2

(bb)

1

Y

(ab)

(b)

(ab)

(b)

(ε)(ε)

Figure 5.1. Generating the suffix graph of the system of Example 5.1.

Proof. Let S be any labelled word rewriting system and let P ∈ Rat(N∗
S) be

any regular language. We want to show that Suff(S)|P is a regular graph.
We can assume that each non-terminal of S is not a terminal and is an edge
label: NS ⊂ F2 − TS. We complete S into the following word rewriting
system:

S := S ∪ {ε
x
−→ x | x ∈ NS}.

It follows that

Suff(S) = Suff(S) ∪ {u
x
−→ ux | u ∈ N∗

S ∧ x ∈ NS}.

As P is regular, there exists a finite graph H labelled in NS which recog-
nizes P from an initial vertex i to a vertex subset F : L(H, i, F) = P . We
can assume that the vertices of H are vertex colours: VH ⊂ F1. By Propo-
sition 5.4, Suff(S) is a regular graph. We take a new colour ι ∈ F1 − VH .
By Proposition 4.5, the graph

G := Suff(S) ∪
(
{ιε} ⊗ (H ∪ {ιi})

)

remains regular. By removing in G the arcs labelled in NS , we get the graph

G′ := G− VG ×NS × VG

which is regular (it suffices to remove the arcs labelled in NS in the grammar
generating G). By Proposition 4.1, the restriction of G′ to the vertices
coloured in F is again a regular graph G′′. By removing all vertex colours
from G′′, we get Suff(S)|P which is regular. q.e.d. (Corollary 5.5)

Theorem 5.6. Any regular restriction of a suffix graph is regular by length.

Proof. We begin as in Corollary 5.5. Let S be any labelled word rewriting
system and let P ∈ Rat(N∗

S) be any regular language. We want to show
that Suff(S)|P is regular by vertex length. We can assume that each non-
terminal of S is not a terminal and is a label colour: NS ⊂ F1 − TS , we
complete S into the following word rewriting system:

S := S ∪ {ε
x
−→ x | x ∈ NS}, and get

228 D. Caucal

Suff(S) = Suff(S) ∪ {u
x
−→ ux | u ∈ N∗

S ∧ x ∈ NS}.

In particular VSuff(S) = N∗
S and we define

m := max{|u| | u ∈WS}.

As P is regular, there is a finite complete graph H labelled in NS which
recognizes P from an initial vertex ι to a vertex subset F : L(H, ι, F) = P .
We can assume that the vertices of H are vertex colours: VH ⊂ F1. We
define

H(P) := {cu | u ∈ P ∧ ι
u

=⇒
H

c} for any P ⊆ N∗
S .

(i) Let us show that Suff(S) ∪H(N∗
S) is regular by length. For any n ≥ 0,

we define

Sn := {zx
a
−→ zy | x

a
−→

S

y ∧min{|zx|, |zy|} ≤ n < max{|zx|, |zy|}}

in such a way that

Suff(S)− Suff(S)| |,n = Suff(Sn).

For every n ≥ 0, we get

∂| |,n Suff(S) = {u ∈ N∗
S .

(
Dom(Sn) ∪ Im(Sn)

)
| |u| ≤ n}

and we can compute {Pn,1, . . . , Pn,rn
} the partition of ∂| |,n Suff(S) into

connected vertices of Suff(S)− Suff(S)| |,n, and for every 1 ≤ i ≤ rn,

Kn,i := {u
a
−→

Suff(Sn)
v | {u, v} ∩ Pn,i 6= ∅ ∧max{|u|, |v|} = n + 1}.

Thus with the notation (i) of the proof of Theorem 4.6, we have for every
n ≥ 0,

Suff(S)− Suff(S)| |,n =

rn⋃

i=1

Suff(S)〈Kn,i, Pn,i〉.

We take a linear ordering < on NS that we extend on N∗
S by length-

lexicographic order. For any n ≥ 0 and 1 ≤ i ≤ rn, we take

pn,i := min{|u| −m | u ∈ Pn,i ∧ |u| ≥ m}

which is a common prefix of the words in Pn,i, and we define the hyperarc
Xn,i := p−1

n,iH(Pn,i)s1 . . . sq with {s1, . . . , sq} = Pn,i and s1 < . . . < sq; note
that the label is a finite set of coloured vertices. We define the grammar

Deterministic graph grammars 229

(x)
(xxx) (xxx) (xxx)

(xxx)

(x)(x) (x)

(x)

(xxxxx)

(xxx)

;
{iε, fx}{iε, fx} {fx, ix2

}

;;

{iε} ;Z {iε}

aa

{fx, ix2
}

{ix2, fx3
}

{fx2, ix3
}{fx2, ix3

}{ix2, fx3
}

{ix2, fx3
}

Figure 5.2. Generation by length of a regular restriction of a suffix graph.

R :=
⋃

n≥0 Rn with R0 := {(Z, (S ∩ {ε} × TS × {ε}) ∪ {ιε, X0,1}} and, for
all n ≥ 0, Rn+1 := Rn ∪ S where S contains all pairs

(Xn,i, Kn,i ∪H(VKn,i
− Pn,i) ∪

⋃

{Xn+1,j | Pn+1,j ∩ VKn,i
6= ∅})

with 1 ≤ i ≤ rn ∧Xn,i(1) /∈ NRn
. The finiteness of R is shown in (ii).

For any n ≥ 0 and any 1 ≤ i ≤ rn, R generates from Xn,i and by vertex
length, the connected component of

(
Suff(S)− Suff(S)| |,n

)
∪H({u ∈ N∗

S |
|u| > n}) containing Pn,i. Thus R generates from axiom Z the graph
Suff(S) ∪H(N∗

S) by vertex length.

(ii) Let us show that R is finite. It is sufficient to show that {p−1
n,iPn,i |

n ≥ 0 ∧ 1 ≤ i ≤ rn} is finite. Let n ≥ 0 and 1 ≤ i ≤ rn. We show
that any word in p−1

n,iPn,i has length at most 2m. Let u, v ∈ Pn,i. We

have |u| ≤ n. There exist z ∈ N∗
S and x

a
−→

Sn∪S
−1
n

y with v = zx and

|zy| > n. Hence |u| − |v| = |u| − |zy| ≤ n − (n − |y|) = |y| ≤ m. Assume
now that v is of minimal length. Either |v| ≤ m, so pn,i = ε and thus
|p−1

n,iu| = |u| ≤ m + |v| ≤ 2m. Or |v| > m, then v = wx for some w

and |x| = m. Thus pn,i = w and |p−1
n,iu| − |x| = |u| − |v| ≤ m hence

|p−1
n,iu| ≤ m + |x| = 2m.

(iii) It remains to end as in the proof of Corollary 5.5. We remove in R
the arcs labelled in NS and by Proposition 4.1, we restrict to the vertices
coloured by F . Then we remove the colours and apply Lemma 3.2 to get a
grammar generating Suff(S)|L by length. q.e.d. (Theorem 5.6)

Starting with the system S = {ε
a
−→ xx} and the language L = x(xx)∗

recognized by the complete automaton {i
x
−→ f, f

x
−→ i} from i to f , the

construction of Theorem 5.6 yields the grammar shown in Figure 5.2, which
generates Suff(S)|L = {x2n+1 a

−→ x2n+3 | n ≥ 0} by length.
In Subsection 3.5, we have associated to any grammar R a representant

Gen(R) of its set of generated graphs. Any vertex of Gen(R) is the word

230 D. Caucal

of the non-terminals used to get it. This allows us to express Gen(R) as a
suffix graph when it is of bounded degree.

Lemma 5.7. Any grammar R generating a bounded degree uncoloured
graph, can be transformed into a word rewriting system S such that any
connected component (resp. any accessible subgraph) of Gen(R) is a con-
nected component (resp. accessible subgraph) of Suff(S).

Proof. To define Gen(R) simply, we assume that each right hand side has
no two non-terminal hyperarcs with the same label. We assume that the
rule of any A ∈ NR is of the form: A1 . . . ̺(A) −→ HA. We write VR the
set of non input vertices of the right hand sides of R:

VR :=
⋃

{VHA
− [̺(A)] | A ∈ NR}.

To each A ∈ NR, let SA be a graph of vertex set VSA
⊂ N+

R VR ∪ [̺(A)]
labelled in TR such that the family of graphs SA is the least fixed point of
the following equations:

SA = A ·
(
[HA] ∪

⋃

{SB[Y (1), . . . , Y (̺(B))] | BY ∈ HA ∧B ∈ NR}
)

where for any A ∈ NR, for any graph G of vertex set VSA
⊂ N∗

RVR ∪ [̺(A)]
labelled in TR and for any a1, . . . , a̺(A) ∈ VR ∪ [̺(R)], the substitution

G[a1, . . . , a̺(A)] is the graph obtained from G by replacing in its vertices
each i ∈ [̺(A)] by ai:

G[a1, . . . , a̺(A)] := {u[a1, . . . , a̺(A)]
a
−→ v[a1, . . . , a̺(A)] | u

a
−→

G
v}

with

u[a1, . . . , a̺(A)] :=

{

ai if u = i ∈ [̺(A)]

u otherwise;

and where the addition A ·G is defined by

A ·G := {A · (u
a
−→ v) | u

a
−→

G
v}

and with A · (u
a
−→ v) defined by







u
a
−→ v if u, v ∈ [̺(A)] ∨ u, v /∈ [̺(A)] ∪ VR

Au
a
−→ v if u /∈ [̺(A)] ∧ v ∈ [̺(A)]

u
a
−→ Av if u ∈ [̺(A)] ∧ v /∈ [̺(A)]

Au
a
−→ Av if u, v /∈ [̺(A)] ∧ (u ∈ VR ∨ v ∈ VR).

The system S = SZ is suitable, for Z the axiom of R:

SZ = {u
a
−→ v | min{|u|, |v|} = 2 ∧ ∃w(wu

a
−→

Gen(R)
wv)}.

q.e.d. (Lemma 5.7)

Deterministic graph grammars 231

Taking the grammar of Figure 3.20, the construction of Lemma 5.7 yields

SZ = Z · (SA[s, t])

SA = A · ({1
a
−→ 2, p

b
−→ 2} ∪ SB[1, p])

SB = B · ({1
c
−→ 2, q

d
−→ 2} ∪ SC [1, q])

SC = C · ({1
c
−→ 2, 1

e
−→ r} ∪ SA[r, 2])

hence

SZ = {Zs
a
−→ Zt, Zs

c
−→ ZAp, Zs

c
−→ ZABq, Zs

e
−→ ZABCr}

∪ {ZAp
b
−→ Zt, ABq

d
−→ Ap, BCr

a
−→ Bq, BCAp

b
−→ Bq}

∪ {Cr
c
−→ CAp, CBq

d
−→ Cp, Cr

c
−→ CABq, Cr

e
−→ CABCr}

Corollary 5.5 (or Theorem 5.6) and Lemma 5.7 imply the equality be-
tween the classes of suffix graphs and uncoloured regular graphs of bounded
degree.

Theorem 5.8. Considering the suffix graphs of labelled word rewriting
systems, their connected components are the connected regular graphs of
bounded degree, their accessible subgraphs are the rooted regular graphs of
bounded degree, their regular restrictions are the regular graphs of bounded
degree.

Proof. (i) Let S be any word rewriting system. Let v be any vertex of
Suff(S) i. e. v ∈ N∗

S(Dom(S) ∪ Im(S)). By Proposition 5.2, the set of

vertices accessible from v is the regular language−→p
S

∗
(v), and the vertex set

of the connected component of Suff(S) containing v is the regular language

−→p
S∪S−1

∗
(v). By Corollary 5.5, any regular restriction (resp. any accessible

subgraph, any connected component) of Suff(S) is an uncoloured (resp.
rooted, connected) regular graph of bounded degree.

(ii) Let R be any grammar generating an uncoloured graph of bounded de-
gree. Let S be the word rewriting system constructed from R by Lemma 5.7.
In 5.1, we have seen that Gen(R) has a regular vertex set. By Lemma 5.7,

Gen(R) = Suff(S)|VGen(R)

hence Gen(R) is a regular restriction of a suffix graph. Furthermore by
Lemma 5.7, if Gen(R) is connected (resp. rooted) then it is a connected
component (resp. accessible subgraph) of Suff(S). q.e.d. (Theorem 5.8)

We now restrict as much as possible the word rewriting systems to define
the same suffix graphs.

232 D. Caucal

5.2 Weak pushdown automata

A (real-time) pushdown automaton S over the alphabet T of terminals is
a particular word rewriting system: S is a finite subset of PQ × T × P ∗Q
where P, Q are disjoint alphabets of respectively stack letters and states ; we
denote by

PS := {u(i) | 1 ≤ i ≤ |u| ∧ ∃q ∈ Q(uq ∈ WS)} the stack letters,

QS := {q | ∃u ∈ P ∗, uq ∈WS} the states of S.

A configuration of S is a word in P ∗
S .QS : a stack word followed by a state.

The transition graph of S is the set of its transitions restricted to its con-
figurations:

Tr(S) := {wu
a
−→ wv | u

a
−→

S
v ∧ w ∈ P ∗

S} = P ∗
S .S

It is also the suffix graph of S restricted to its configurations.
Note that a pushdown automaton is essentially a labelled word rewriting

system whose left hand sides are of length 2 and such that the rules are only
applied by suffix. A symmetrical way to normalize both sides of the rules
of a rewriting system is given by a weak pushdown automaton S which is a
finite set of rules of the form:

p
a
−→ q or p

a
−→ xq or xp

a
−→ q with x ∈ P, p, q ∈ Q, a ∈ T

where P and Q are disjoint alphabets of stack letters and states; we also
write PS and QS for respectively the stack letters and the states (appearing
in the rules) of S. The transition graph of S is also the set of its (suf-
fix) transitions restricted to its configurations: Tr(S) := P ∗

S .S. We define
the same suffix graphs by normalizing labelled word rewriting systems as
pushdown automata or weak pushdown automata.

Theorem 5.9. The suffix graphs of labelled word rewriting systems, the
transition graphs of pushdown automata, and the transition graphs of weak
pushdown automata, have up to isomorphism the same connected compo-
nents, the same accessible subgraphs and the same regular restrictions.

Proof. (i) Let S be any weak pushdown automaton. Let us construct a
pushdown automaton S simulating S: the connected components (resp. ac-
cessible subgraphs, regular restrictions) of Tr(S) are connected components
(resp. accessible subgraphs, regular restrictions) of Tr(S). We take a new
symbol ⊥ and we define the pushdown automaton:

S := {yp
a
−→ yxq | p

a
−→

S
xq ∧ y ∈ NS ∪ {⊥}}

∪ {yp
a
−→ yq | p

a
−→

S
q ∧ y ∈ NS ∪ {⊥}}

∪ {xp
a
−→ q | xp

a
−→

S
q}.

Deterministic graph grammars 233

(up) (uxp) (uxxp) (uxxxp)

(uq) (uxq) (uxxq) (uxxxq)

(vp’) (vyp’) (vyyp’) (vyyyp’)

(vq’) (vyq’) (vyyq’) (vyyyq’)

Weak pushdown automaton:

Transition graph:

p

a
−→ xp p

′ a
−→ yp

′

p
b
−→ q p

′ b
−→ q

′

xq

c
−→ q yq

′ c
−→ q

′

for any u ∈ {x, y}
∗

y ∪ {ε}

for any v ∈ {x, y}
∗

x ∪ {ε}

a a a

b b b b

c c c

a a a

b b b b

c c c

Figure 5.3. The transition graph of a weak pushdown automaton.

Thus PS = PS ∪ {⊥} and QS = QS . Furthermore

u
a
−→
Tr(S)

v ⇐⇒ ⊥u
a
−→
Tr(S)

⊥v for any u, v ∈ P ∗
S .QS .

It follows that for any L ∈ Rat((PS ∪ QS)∗) ∩ P ∗
S .QS written by abuse of

notation as Rat(P ∗
S .QS),

Tr(S)|L = Tr(S)|⊥L

and for any vertex v of Tr(S) i. e. v ∈ P ∗
S .WS , the connected component

(resp. accessible subgraph) of Tr(S) containing v (resp. from v) is the
connected component (resp. accessible subgraph) of Tr(S) containing (resp.
from) ⊥v.

(ii) Let S be any pushdown automaton. Thus S is simulated by itself as a
rewriting system over PS ∪QS because

Tr(S)|L = Suff(S)|L for any L ∈ Rat(P ∗
S .QS)

and for any v ∈ P ∗
S .WS , the connected component (resp. accessible sub-

graph) of Tr(S) containing v (resp. from v) is the connected component
(resp. accessible subgraph) of Suff(S) containing (resp. from) v.

234 D. Caucal

(iii) Let S be any labelled word rewriting system. We want to simulate
S by a weak pushdown automaton S. Let m be the greatest length of the
words of S:

m := max{|u| | u ∈WS}.

As in (i), we take a new symbol ⊥ to mark on the left the words over NS .
Any word in ⊥N∗

S is decomposed from left to right into m blocks (the last
block being of length ≤ m):

m

∈ P

m

∈ P ∈ Q

≤ mm

by using the two bijections: i from Nm
S ∪⊥Nm−1

S to a new alphabet P and
j from {⊥w | w ∈ N∗

S ∧ |w| < 2m} ∪ {w ∈ N∗
S | m < |w| ≤ 2m} to a new

alphabet Q, and according to the injection k defined from N∗
S ∪ ⊥N∗

S into
P ∗.Q by

k(u) :=







ε if u = ε

j(u) if u ∈ Dom(j)

i(w)k(v) if u = wv /∈ Dom(j) ∧ |w| = m.

For every n ≥ 0, we denote by f(n) := ⌈ n
m
⌉ the (minimal) number of blocs

of length m necessary to contain n letters. By applying (by suffix) any rule
of S, we can add or delete at most m letters, hence

|f(|u|)− f(|v|)| ≤ 1 for any u
a
−→

S
v.

We define the weak pushdown automaton S := S
′
∪ S

′′
with

S
′

:= {k(⊥wu)
a
−→ k(⊥wv) | u

a
−→

S
v ∧ w ∈ N∗

S ∧ f(⊥wu) + f(⊥wv) ≤ 5}

S
′′

:= {k(wu)
a
−→ k(wv) | u

a
−→

S
v ∧ w ∈ N∗

S ∧ 4 ≤ f(wu) + f(wv) ≤ 5}

We illustrate below the different types of rules for S
′
:

v

q

u

p

qp

a

qp

u⊥w v⊥w

⊥w ⊥w

u v

x

u

p x q

v

⊥w

⊥w ⊥w

⊥w

Deterministic graph grammars 235

We illustrate below the different types of rules for S
′′
:

v

q

u

p

qp

w w

u w vw

w

x

u

p

w

x q

v

Note that we have

u
a
−→
⊥N∗

S
.S

v =⇒ k(u)
a
−→
P∗.S

k(v)

u ∈ ⊥N∗
S ∧ k(u)

a
−→
P∗.S

w =⇒ ∃v(u
a
−→
⊥N∗

S
.S

v ∧ k(v) = w)

v ∈ ⊥N∗
S ∧ w

a
−→
P∗.S

k(v) =⇒ ∃u(u
a
−→
⊥N∗

S
.S

v ∧ k(u) = w).

It follows that the image by k of the connected component of ⊥N∗
S .S con-

taining ⊥u is equal to the connected component of P ∗.S containing k(⊥u).
Furthermore the accessible subgraph from ⊥u of ⊥N∗

S.S is equal to the ac-
cessible subgraph from k(⊥u) of P ∗.S. We also deduce that the suffix graph
Suff(S) = N∗

S .S is isomorphic to

k(⊥N∗
S.S) = S

′
∪ i(⊥Nm−1

S).(i(Nm
S))∗.S

′′
= (P ∗.S)|k(⊥N∗

S
),

hence N∗
S .S is not isomorphic to P ∗.S (we need a restriction). More gener-

ally we have

k
(
(⊥N∗

S.S)|⊥M

)
= (P ∗.S)|k(⊥M) for any M ⊆ N∗

S

and if M ∈ Rat(N∗
S) then k(⊥M) ∈ Rat(P ∗.Q). Consequently any regular

restriction of N∗
S .S is isomorphic to a regular restriction of the transition

graph of the weak pushdown automaton S. q.e.d. (Theorem 5.9)

Let us illustrate the construction of the proof (iii) of Theorem 5.9 applied
to the labelled word rewriting system:

S = {x
a
−→ xx, x

b
−→ ε}.

Its suffix graph Suff(S) is the following rooted graph:

a

b

a

b

b

(ε)

a

b

a

b(x) (xx) (x3) (x4) (x5)

236 D. Caucal

Note that L(Suff(S), x, ε) is the Lukasiewicz language. By applying the
construction (iii) of Theorem 5.9, the greatest length of S is m = 2. Its set
of states is Q = {1, 2, 3, 4, p, q} with the following bijection j:

⊥ 7−→ 1; ⊥x 7−→ 2; ⊥xx 7−→ 3;

⊥xxx 7−→ 4; xxx 7−→ p; xxxx 7−→ q

and its set of pushdown letters is P = {y, z} with the bijection i:

xx 7−→ y; ⊥x 7−→ z

By coding the arcs of Suff(S) restricted to {ε, . . . , x5}, we get the following
weak pushdown automaton S:

2
b
−→ 1; 2

a
−→ 3; 3

b
−→ 2

3
a
−→ 4; 4

b
−→ 3; 4

a
−→ zp

zp
b
−→ 4; p

a
−→ q; q

b
−→ p

q
a
−→ yp; yp

b
−→ q

Its transition graph Tr(S) accessible from 2 (or connected to 2) is the fol-
lowing:

a

b

b

(1) (2) (3)

a

b

a

b

a

b(4)

a

b

a

b

a

b(zp) (zq) (zyp) (zyq) (zyyp)

The use of weak pushdown automata, instead of word rewriting systems or
of pushdown automata, allows simpler constructions. For instance, let us
restrict Theorem 5.6 to weak pushdown automata.

Proposition 5.10. Let S be a weak pushdown automaton. Let H be a
finite deterministic graph labelled in PS and coloured in QS recognizing
from a vertex i the configuration language:

L = {uq | u ∈ P ∗
S ∧ q ∈ QS ∧ i

u
=⇒
H

s ∧ qs ∈ H}.

Thus Suff(S)|L is generated by length by a grammar with |VH |+ 1 rules.

Proof. Let QS = {q1, . . . , qn} be the set of states of S. We associate to any
vertex s of H a new label [s] of arity n and we define the grammar R with
the axiom rule

Z −→ {[i]q1 . . . qn} ∪ {p
a
−→

S
q | pi, qi ∈ H},

Deterministic graph grammars 237

; ;i

c

j

(xq)

(xp)

Z b i j

(xq)

(xp)

c

b i

(p)

(q) (q)

(p)

(q) (q) (q)

(p)

Figure 5.4. Regular restriction of a weak pushdown graph.

and for any vertex s of H , we take the following rule:

[s]q1 . . . qn −→ {xp
a
−→ xq | p

a
−→

S
q ∧ ∃t(s

x
−→
H

t ∧ pt, qt ∈ H)}

∪ {p
a
−→

S
xq | ∃t(s

x
−→
H

t ∧ ps, qt ∈ H)}

∪ {xp
a
−→

S
q | ∃t(s

x
−→
H

t ∧ pt, qs ∈ H)}

∪ {[t](xq1) . . . (xqn) | s
x
−→
H

t}

Thus R generates by length (P ∗
S .S)L from its axiom Z.

q.e.d. (Proposition 5.10)

Taking the weak pushdown automaton of Figure 5.3 restricted to the system

S = {p
a
−→ xp, p

b
−→ q, xq

c
−→ q}

and the regular language L = (xx)∗p∪x∗q of configuration recognized from
vertex i by the following finite deterministic automaton:

q p

p
(i) (j)

x

x

The construction of Proposition 5.10 gives the grammar shown in Figure 5.4
which generates Suff(S)L by length.

5.3 Main result

Finally we put together Theorem 5.8 and Theorem 5.9, and we recall The-
orem 4.6 and Theorem 5.6.

Theorem 5.11. The suffix graphs of labelled word rewriting systems, the
transition graphs of pushdown automata, and the transition graphs of weak
pushdown automata, have up to isomorphism

• the same connected components: the connected regular graphs of
bounded degree,

• the same accessible subgraphs: the rooted regular graphs of bounded
degree,

238 D. Caucal

• the same regular restrictions: the regular graphs of bounded degree.

These graphs are regular by length, and also by distance when they are
connected.

All these equivalences are effective. Note that by Theorem 4.6 (or Propo-
sition 4.3), the regularity by distance for the connected graphs coincides with
the finite decomposition by distance.

Theorem 5.12 (Muller-Schupp, [8]). The connected components of push-
down automata are the connected graphs of bounded degree having a finite
decomposition by distance.

This result has been expressed with the usual pushdown automata which
are intermediate devices between the general labelled word rewriting sys-
tems (applied by suffix) and the weak pushdown automata. Furthermore
the finite decomposition by distance for the connected graphs of bounded
degree is a normal form of the regularity.

6 Languages

Any graph G traces the language L(G, i, f) of the labels of its paths from a
colour i to a colour f . By Theorem 5.11, the regular graphs trace exactly
the context-free languages, and by restriction to path grammars, we give
directly a context-free grammar generating the path labels of any regular
graph (cf. Propositions 6.2 and 6.3). Finally we verify that the deterministic
regular graphs trace exactly the deterministic context-free languages (cf.
Proposition 6.5).

6.1 Path grammars

The regular languages are the languages recognized by the finite automata:

Rat(T ∗) := {L(G, i, f) | G finite ∧ FG ∩ F2 ⊆ T ∧ i, f ∈ F1}

and the context-free languages, which are the languages recognized by the
pushdown automata, are the languages recognized by the regular graphs:

Alg(T ∗) := {L(G, i, f) | G regular ∧ FG ∩ F2 ⊆ T ∧ i, f ∈ F1}.

This equality follows by Theorem 5.11 because by adding ε-transitions, we
can transform any regular graph G into a regular graph G of bounded degree
recognizing the same language: L(G, i, f) = L(G, i, f).

Let us give a simple construction to get directly a context-free grammar
generating the recognized language of a regular graph. In fact and contrary
to the previous sections, we just need transformations preserving the recog-
nized language but not the structure. First by adding ε-transitions, we can

Deterministic graph grammars 239

start from a unique vertex to end to a unique vertex. More precisely, let
R be a grammar and H be a finite hypergraph such that Rω(H) are only
coloured graphs. For any colours i, f , we denote

L(R, H, i, f) := L(Gen(R, H), i, f)

the label set of the paths from i to f of any generated graph by R from H ,
or in particular for the canonical graph Gen(R, H) defined in 3.5. For Z
the axiom of R, we also write

L(R, i, f) := L(R, Z, i, f) = L(Gen(R), i, f).

We say that R is an initial grammar for the colours i, f when only the right
hand side H of Z is coloured by i, f , and i, f colour a unique vertex:

|H ∩ iVH | = 1 = |H ∩ fVH |.

Lemma 6.1. For any grammar R and colours i, f , we can get an ini-
tial grammar S labelled in FR ∪ {ε} and recognizing the same language:
L(R, i, f) = L(S, i, f).

Proof. Let R be any grammar generating from its axiom Z a coloured graph
G. To any non-terminal A ∈ NR − {Z}, we associate a new symbol A′ of
arity ̺(A) + 2. We take two new vertices p, q which are not vertices of R.
We define the following grammar:

S := {(Z, K ′ ∪ {ip, fq}) | (Z, K) ∈ R}

∪ {(A′Xpq, K ′) | (AX, K) ∈ R ∧A 6= Z}

where for any hypergraph K ∈ Im(S), the graph K ′ is the following:

K ′ := {s
a
−→
K

t | a ∈ TR} ∪ {A
′Xpq | AX ∈ K ∧A ∈ NR}

∪ {p
ε
−→ s | is ∈ K} ∪ {s

ε
−→ q | fs ∈ K}.

Assuming that p, q /∈ VG, S generates from its axiom Z the following graph:

H := (G− F1VG) ∪ {ip, fq} ∪ {p
ε
−→ s | is ∈ G} ∪ {s

ε
−→ q | fs ∈ G}

satisfying L(G, i, f) = L(H, i, f) i. e. L(R, i, f) = L(S, i, f). Note that for
G having an infinite number of initial (resp. final) vertices, the vertex p
(resp. q) in H is of infinite out-degree (resp. in-degree). By adding new
ε-arcs, we can avoid these infinite degrees. q.e.d. (Lemma 6.1)

240 D. Caucal

⇓

;

;A

(1)

(2)

(1)

(2)

a

c

AA ;

;

B

B

Z b

(1) (1)

Z
ε

A′ A′

(4)

(1)

(2)

(3)

(4)

a

c

B′

b (1)

(2)

(3)

(1)

(2)

(3)

e

B′
ε

ε

A′

(1)

(2)

(3)

i

i

f

i

f

B

d

B′

d

e

Figure 6.1. Same language from an initial vertex to a final vertex.

;

a

c

b

d

a

a

c

A

A

A
B B

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

Figure 6.2. An acyclic path grammar.

In Figure 6.1 we illustrate the construction of Lemma 6.1. To preserve
the recognized language of a regular graph (and not the structure), we can
restrict to grammars having only arcs (of arity 2). A path grammar R is a
deterministic graph grammar without axiom and whose each rule is of the
form A12 −→ H where H is a finite set of arcs having no arc of source 2 and
no arc of goal 1. In Figure 6.2, we give a path grammar which is acyclic:
each right hand side is an acyclic graph. For any path grammar R, any
A ∈ NR and any derivation

A12 = H0 =⇒
R

H1 . . .Hn =⇒
R

. . .

we define the following languages, where n ≥ 0:

Ln(R, A) := L(Hn, 1, 2) ⊆ (NR ∪ TR)∗ ∀n ≥ 0

L(R, A) :=
⋃

m≥0

(
Lm(R, A) ∩ T ∗

R

)
⊆ T ∗

R.

Proposition 6.2 (Caucal-Hieu, [6]). For any grammar R and colours i, f ,
we can get a path grammar S recognizing from a non-terminal A the lan-
guage L(S, A) = L(R, i, f).

Proof. (i) We assume that each rule of R is of the form: A1 . . . ̺(A) −→ HA

for any A ∈ NR. Let Z be the axiom of R. By Lemma 6.1, we suppose
that R is initial: i (resp. f) colours only HZ (not the other right hand sides

Deterministic graph grammars 241

of R) and on a unique vertex p (resp. q 6= p). We assume that 0 is not a
vertex of R and we take a new set of labels of arity 2:

{Ai,j | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A)} ∪ {Z ′}.

We define the splitting ≺G≻ of any (TR ∪NR)-hypergraph G as being the
graph:

≺G≻ := {s
a
−→ t | ast ∈ G ∧ a ∈ TR}

∪ {s
Ai,j

−→ t | A ∈ NR ∧ 1 ≤ i, j ≤ ̺(A)∧

∃s1, . . . , s̺(A)(As1 . . . s̺(A) ∈ G ∧ s = si ∧ t = sj)}

and for p, q ∈ VG and P ⊆ VG with 0 /∈ VG, we define for p 6= q

Gp,q,P := {s
a
−→
≺G≻

t | t 6= p ∧ s 6= q ∧ s, t /∈ P}|{s|p−→∗s−→∗q}

Gp,p,P :=
(
{s

a
−→
≺G≻

t | t 6= p ∧ s, t /∈ P}

∪ {s
a
−→ 0 | s

a
−→
≺G≻

p}
)

|{s|p−→∗s−→∗0}
.

This allows us to define the splitting of R as the following path grammar:

≺R≻ := {Ai,j12 −→ hi,j

(
(HA)i,j,[̺(A)]−{i,j}

)
| A ∈ NR∧1 ≤ i, j ≤ ̺(A)}

∪ {Z ′12 −→
(
h〈HZ〉

)

|{s|1−→∗s−→∗2}
}

where hi,j is the vertex renaming of (HA)i,j,[̺(A)]−{i,j} defined by

hi,j(i) = 1, hi,j(j) = 2, hi,j(x) = x otherwise, for i 6= j

hi,i(i) = 1, hi,i(0) = 2, hi,i(x) = x otherwise,

and h is the vertex renaming of HZ defined by

h(p) = 1, h(q) = 2, h(x) = x otherwise.

We then put ≺R≻ into a reduced form.

(ii) Let us show that L(R, i, f) = L(≺R≻, Z ′). For any A ∈ NR, we take a
derivation

A1 . . . ̺(A) = H0 =⇒
R

H1 =⇒
R

. . . Hn =⇒
R

. . .

we write Hω =
⋃

n≥0[Hn] and for every 1 ≤ i, j ≤ ̺(A) and 0 ≤ n ≤ ω, we
define the following languages:

Ln(R, A, i, j) := L
(
(Hn)i,j,[̺(A)]−{i,j}, i, j

)
for i 6= j

Ln(R, A, i, i) := L
(
(Hn)i,i,[̺(A)]−{i}, i, 0

)
.

242 D. Caucal

Note that for any A ∈ NR, any i, j ∈ [̺(A)] and n ≥ 0, we have

Ln(R, A, i, j) ⊆
(
TR ∪ {Ap,q | A ∈ NR ∧ p, q ∈ [̺(A)]}

)∗

and Lω(R, A, i, j) ⊆ T ∗
R.

Let us verify that for any A ∈ NR and 1 ≤ i, j ≤ ̺(A), we have

Lω(R, A, i, j) = L(≺R≻, Ai,j).

As Lω(R, A, i, j) =
⋃

n≥0

(
Ln(R, A, i, j) ∩ T ∗

R

)
, it is sufficient to prove by

induction on n ≥ 0 that

Ln(R, A, i, j) = Ln(≺R≻, Ai,j).

“n = 0”: we have L0(R, A, i, j) = {Ai,j} = L0(≺R≻, Ai,j).

“n = 1”: we have

L1(R, A, i, j) = L((HA)i,j,[̺(A)]−{i,j}, i, j) = L1(≺R≻, Ai,j).

“n =⇒ n + 1”:

Ln+1(R, A, i, j) = L1(R, A, i, j)[Ln(R, B, p, q)/Bp,q]

= L1(≺R≻, Ai,j)[Ln(≺R≻, Bp,q)/Bp,q] by ind. hyp.

= Ln+1(≺R≻, Ai,j).

Finally we have

L(R, i, f) = L(Gen(R), i, f)

= L(≺HZ≻, p, q)[Lω(R, A, i, j)/Ai,j]

= L1(≺R≻, Z ′)[L(≺R≻, Ai,j)/Ai,j]

= L(≺R≻, Z ′).

q.e.d. (Proposition 6.2)

Let us illustrate Proposition 6.2 starting from the following grammar R:

;A

i

f

Z A
d

b
c

a

e

A

g

(1)

(2)

(3)

(1)

(2)

(3)

Its generated graph Rω(Z) is given below.

Deterministic graph grammars 243

d

b
c

a

e
d

b
c

a

e
d

b
c

a

e

c

a

e
d

b

d

b

g g g g g

f

i

Proposition 6.2 splits grammar R into the following grammar ≺R≻ in re-
duced form:

; ;

;

Z′ A1,3

A3,3

A1,3

A1,2

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

a

b

c

A1,2 A2,3

a

A3,3

e

A1,3

A3,3

(1)

(2)

(1)

(2)

(1)

(2)

(1)

(2)

d

g

(1)

(2)

(1)

(2)

A1,2

A2,3

A1,2

A2,3

We get the following generated graph ≺R≻ω(Z ′12):

a

c
b

d

b

a a

b
c

a

c
b

c
b

a

b
c

d

b

e

a

d

b

e

a

a

c

a

c
b b

a

c
b

a

c
b

a

c
b

d

b

e

a

d

b

e

a

g

g

g

g

g

(1)

(2)

Obviously the graphs Rω(Z) and ≺R≻ω(Z ′12) are not isomorphic but by
Proposition 6.2 they recognize the same language:

L(Rω(Z), i, f) = L(≺R≻, Z ′) = {am+nbcmd(eg∗)n | m, n ≥ 0}.

We now show that path grammars are language-equivalent to context-
free grammars (on words). Recall that a context-free grammar P is a finite
binary relation on words in which each left hand side is a letter called a
non-terminal, and the remaining letters of P are terminals. By denoting
NP and TP the respective sets of non-terminals and terminals of P , the

244 D. Caucal

rewriting −→
P

according to P is the binary relation on (NP ∪ TP)∗ defined

by
UAV −→

P
UWV if (A, W) ∈ P and U, V ∈ (NP ∪ TP)∗.

The derivation −→
P

∗ is the reflexive and transitive closure of −→
P

with

respect to composition. The language L(P, U) generated by P from any
U ∈ (NP ∪ TP)∗ is the set of terminal words deriving from U :

L(P, U) := {u ∈ T ∗
P | U −→

P

∗ u}.

Path grammars and context-free grammars are language-equivalent with
linear time translations.

Proposition 6.3 (Caucal-Dinh, [6]).

a) We can transform in linear time any path grammar R into a context-free

grammar R̂ such that L(R, A) = L(R̂, A) for any A ∈ NR.

b) We can transform in linear time any context-free grammar P into an

acyclic path grammar ~P such that L(P, A) = L(~P , A) for any A ∈ NP .

Proof. (i) The first transformation is analogous to the translation of any
finite automaton into an equivalent right linear grammar. To each non-
terminal A ∈ NR, we take a vertex renaming hA of R(A12) such that
hA(1) = A and hA(2) = ε, and the image Im(hA)− {ε} is a set of symbols
with Im(hA)∩Im(hB) = {ε} for any B ∈ NR−{A}. We define the following
context-free grammar:

R̂ := {(hA(s), ahA(t)) | ∃A ∈ NR(s
a
−→

R(A12)
t)}.

Note that each right side of R̂ is a word of length at most 2, and the number
of non-terminals of R̂ depends on the description length of R:

|N bR
| =

(∑

A∈NR

|VR(A12)|
)
− |NR|.

For instance, the path grammar of Figure 6.2 is transformed into the fol-
lowing context-free grammar:

A = aC; C = BD; D = c

B = aF + bE; E = aG + d; F = AG

G = AH ; H = c

Deterministic graph grammars 245

(ii) For the second transformation, we have N~P
= NP and for each A ∈ NP ,

its right hand side in ~P is the set of distinct paths from 1 to 2 labelled by
the right hand sides of A in P . We translate the context-free grammar P
into the following acyclic path grammar:

~P := {(A12, HA) | A ∈ Dom(P)}

such that for each non-terminal A ∈ Dom(P), the graph HA is the set of
right hand sides of A in P starting from 1 and ending to 2:

HA := {1
B
−→ (B, V) | (A, BV) ∈ P ∧ |B| = 1 ∧ V 6= ε}

∪ {(U, BV)
B
−→ (UB, V) | (A, UBV) ∈ P ∧ |B| = 1 ∧ U, V 6= ε}

∪ {(U, B)
B
−→ 2 | (A, UB) ∈ P ∧ |B| = 1 ∧ U 6= ε}

∪ {1
B
−→ 2 | (A, B) ∈ P ∧ |B| = 1}

∪ {1
ε
−→ 2 | (A, ε) ∈ P}.

Note that NP = N~P
and TP = T~P

− {ε}. For instance the context-free
grammar {(A, aAA), (A, b)} generating from A the Lukasiewicz language, is
translated into the acyclic path grammar reduced to the unique rule:

A12 −→ {1
b
−→ 2, 1

a
−→ (a, AA), (a, AA)

A
−→ (aA, A), (aA, A)

A
−→ 2}

and represented below:

a

bA A

A

(1)

(2)

(1)

(2)

q.e.d. (Proposition 6.3)

Note that by using the two transformations of Proposition 6.3, we can
transform in linear time any path grammar into a language equivalent
acyclic path grammar. By Proposition 6.2 and Proposition 6.3 a), the recog-
nized languages of regular graphs are generated by context-free grammars.
The converse is true by Proposition 6.3 b).

Corollary 6.4. The regular graphs recognize exactly the context-free lan-
guages.

246 D. Caucal

6.2 Deterministic languages

We now focus on the deterministic regular graphs. We say that a coloured
graph G is deterministic from a colour i if i colours a unique vertex of G,
and two arcs with the same source have distinct labels:

|G ∩ iVG| = 1 and (p
a
−→

G
q ∧ p

a
−→

G
r =⇒ q = r).

The languages recognized by the deterministic regular graphs

DAlg(T ∗) := {L(G, i, f) | G regular and deterministic from i

∧ FG ∩ F2 ⊆ T ∧ i, f ∈ F1}

are the languages recognized by the deterministic pushdown automata.

Proposition 6.5. The deterministic regular graphs recognize exactly the
deterministic context-free languages.

Proof. Recall that a deterministic pushdown automaton S over an alphabet
T of terminals is a finite subset of PQ × (T ∪ {ε})× P ∗Q where P, Q are
disjoint alphabets of respectively stack letters and states, and such that S
is deterministic for any a ∈ T ∪ {ε}:

(xp
a
−→ uq ∧ xp

a
−→ vr) =⇒ uq = vr

and each left-hand side of an ε-rule is not the left-hand side of a terminal
rule:

(xp
ε
−→ uq ∧ xp

a
−→ vr) =⇒ a = ε.

The language L(Tr(S), xp, F) recognized by S starting from an initial con-
figuration xp and ending to a regular set F ⊆ P ∗Q of final configurations,
is a deterministic context-free language.

(i) Let us verify that L(Tr(S), xp, F) is traced by a deterministic regular
graph. We take two colours i and f . By Proposition 5.4 or more precisely
by Corollary 5.5, the following coloured graph:

G := Tr(S) ∪ {i(xp)} ∪ {fu | u ∈ F}

is a regular graph. Let R be a grammar generating G. We define the
following grammar:

R′ := {(X ′, H ′) | (X, H) ∈ R}

where for any hyperarc fs1 . . . sn of R, we associate the hyperarc

(fs1 . . . sn)′ := f [s1] . . . [sn]

Deterministic graph grammars 247

that we extend by union to any right hand side H of R:

H ′ := {Y ′ | Y ∈ H}

and such that for any vertex s ∈ VH ,

[s] := {t | t
ε
−→
[H]

∗

s ∨ s
ε
−→
[H]

∗

t}.

Thus R′ is without ε-arc and

L(R′, i, f) = L(R, i, f) = L(G, i, f) = L(Tr(S), xp, F).

(ii) Let i, f be colours and R be a grammar such that Gen(R) is determin-
istic from i. We want to show that L(R, i, f) is a deterministic context-free
language. By Proposition 4.4 (and 4.1), we assume that Gen(R) is accessi-
ble from i. By Lemma 3.11, we can assume that R is terminal outside. For
any rule (X, H) ∈ R, we define

Out(X(1)) := {i | 1 < i ≤ ̺(X(1)) ∧ ∃a(X(i)
a
−→

Gen(R,X)
)}

the ranks of the input vertices which are source of an arc in the generated
graph from X . Precisely

(
Out(A)

)

A∈NR
is the least fixed point of the

system: for each (X, H) ∈ R,

Out(X(1)) = {i | ∃a(X(i)
a
−→
[H]

)}

∪ {i | ∃Y ∈ H ∩NRV ∗
H ∃j ∈ Out(Y (1))(X(i) = Y (j))}.

We rewrite non-terminal hyperarcs in the right hand sides of R until all the
terminal arcs of input source are produced. We begin with the grammar:

R0 := R

and having constructed a grammar Rn for n ≥ 0, we choose a rule (X, H) ∈
Rn and a non-terminal hyperarc Y ∈ H ∩NRV ∗

H such that

VX ∩ {Y (i) | i ∈ Out(Y (1))} 6= ∅

and we rewrite Y in H to get a hypergraph K i. e. H −→
Rn,Y

K in order to

replace H by K in Rn:

Rn+1 := (Rn − {(X, H)}) ∪ {(X, K)}.

248 D. Caucal

If such a choice is not possible, we finish with R := Rn. As Gen(R) is
deterministic, it is of bounded out-degree, hence R exists. By construction,
R is equivalent to R:

Rω(X) = R
ω

(X) for any X ∈ Dom(R) = Dom(R).

Furthermore R satisfies the following property:

∀(X, H) ∈ R ∀Y ∈ H ∩NRV ∗
H (VX ∩ {Y (i) | i ∈ Out(Y (1))} = ∅)

meaning that any input which is a vertex of a non-terminal hyperarc Y
cannot be a source of an arc in the generated graph from Y . For each rule
(X, H) ∈ R, we denote

InOut(X(1)) :=
⋃

{VX ∩ VY | Y ∈ H ∧ Y (1) ∈ NR}

the set of input-output vertices; and for each s ∈ InOut(X(1)), we take a
new vertex s′ /∈ VH and to any non-terminal hyperarc Y ∈ H with Y (1) ∈
NR, we associate the hyperarc Y ′ = Y (1)Y (2)′ . . . Y (|Y |)′ with s′ := s for
any s ∈ VH − InOut(X(1)). We define the grammar R′ by associating to
each rule (X, H) ∈ R, the following rule:

X −→ [H] ∪ {Y ′ | Y ∈ H ∧ Y (1) ∈ NR} ∪ {s
′ ε
−→ s | s ∈ InOut(X(1))}.

Thus L(R, i, f) = L(R′, i, f) and the graph Gen(R′) is of finite degree,
deterministic over TR ∪ {ε} and such that any source of an ε-arc is not
source of an arc labelled in TR. By Theorem 5.11, Gen(R′) is the transition
graph of a pushdown automaton S accessible from an initial configuration
c0 with a regular set F of final configurations:

Gen(R′) = Tr(S){c|c0−→
∗c} ∪ {ic0} ∪ {fc | c ∈ F}.

Finally S is a deterministic pushdown automaton recognizing the language:

L(Tr(S), i, F) = L(R′, i, f) = L(R, i, f).

q.e.d. (Proposition 6.5)

Due to a lack of space (and time), we have only presented a first (and
partial) survey on deterministic graph grammars. After defining suitable
normal forms, we explored the notion of regularity of a graph with respect
to a finite-index graduation of its vertices.

Together with a generic representation of grammar-generated graphs,
this yields a canonical representation of any given regular graph. These
definitions and techniques constitute a basic toolkit for conveniently ma-
nipulating deterministic graph grammars. As an illustration, we were able

Deterministic graph grammars 249

to prove in a self-contained way several known structural results concerning
regular graphs, the most important being their links with the transition
graphs of pushdown automata.

This is only a first step in studying deterministic graph grammars, and
many interesting developments remain to be explored. We hope that this
paper might encourage further work on the subject. In particular, we believe
that grammars will prove an invaluable tool in extending finite graph theory
to the class of regular graphs, as well as finite automata theory to some
sub-families of context-free languages. Some efforts in these directions have
already begun to appear [5, 6]. Other leads for further research concern the
use of grammars as a tool for more general computations (a particular case
is Proposition 4.4), and the design of geometrical proofs for results related
to context-free languages (e.g. the standard pumping lemma).

Let us conclude with a natural question: how can one extend determinis-
tic graph grammars in order to generate the structure of infinite automata
[10], in particular those associated to pushdown automata using stack of
stacks [11, 3]?

References

[1] M. Benois. Parties rationnelles du groupe libre. C. R. Acad. Sci. Paris

Sér. A-B, 269:A1188–A1190, 1969.

[2] J. R. Büchi. Regular canonical systems. Arch. Math. Logik Grundla-

genforsch., 6:91–111 (1964), 1964.

[3] A. Carayol. Automates infinis, logiques et langages. PhD thesis, Uni-
versity of Rennes 1, 2006.

[4] D. Caucal. On the regular structure of prefix rewriting. In A. Arnold,
editor, CAAP, volume 431 of Lecture Notes in Computer Science, pages
87–102. Springer, 1990.

[5] D. Caucal. Synchronization of pushdown automata. In O. H. Ibarra
and Z. Dang, editors, Developments in Language Theory, volume 4036
of Lecture Notes in Computer Science, pages 120–132. Springer, 2006.

[6] D. Caucal and Dinh Trong Hieu. Path algorithms on regular graphs.
In E. Csuhaj-Varjú and Z. Ésik, editors, FCT, volume 4639 of Lecture

Notes in Computer Science, pages 199–212. Springer, 2007.

[7] B. Courcelle. The monadic second-order logic of graphs, ii: Infinite
graphs of bounded width. Mathematical Systems Theory, 21(4):187–
221, 1989.

250 D. Caucal

[8] D. E. Muller and P. E. Schupp. The theory of ends, pushdown au-
tomata, and second-order logic. Theor. Comput. Sci., 37:51–75, 1985.

[9] G. Rozenberg, editor. Handbook of Graph Grammars and Computing

by Graph Transformations, Volume 1: Foundations. World Scientific,
1997.

[10] W. Thomas. A short introduction to infinite automata. In W. Kuich,
G. Rozenberg, and A. Salomaa, editors, Developments in Language

Theory, volume 2295 of Lecture Notes in Computer Science, pages 130–
144. Springer, 2001.

[11] W. Thomas. Constructing infinite graphs with a decidable mso-theory.
In B. Rovan and P. Vojtás, editors, MFCS, volume 2747 of Lecture

Notes in Computer Science, pages 113–124. Springer, 2003.

Quantifier-free definable graph operations
preserving recognizability∗

Bruno Courcelle

Laboratoire Bordelais de Recherche en Informatique
and Institut Universitaire de France
Université Bordeaux 1
351, cours de la Libération
33405 Talence cedex, France
courcell@labri.fr

Abstract

We show that an operation on graphs, and more generally, on re-
lational structures that has an inverse definable by a monadic second-
order transduction preserves the family of recognizable sets.

1 Introduction

Several algebras of graphs, and more generally of relational structures, can
be defined in terms of disjoint union as unique binary operation and of
several unary operations defined by quantifier-free formulas. These algebras
are the basis of the extension to graphs and hypergraphs of the theory of
formal languages in a universal algebra setting.

In every algebra, one can define two families of subsets, the family of
equational sets which generalizes the family of context-free languages, and
the family of recognizable sets which generalizes the family of recognizable
languages. Equational sets are defined as least solutions of systems of re-
cursive set equations and not in terms of rewriting rules. Recognizable
sets are defined in terms of finite congruences and not in terms of finite
automata. These purely algebraic definitions which are due to Mezei and
Wright [8] have the advantage of being applicable to every algebra, whereas
rewriting systems and finite automata cannot. One obtains definitions of
”context-free” sets of graphs which avoid the cumbersome analysis of the
confluence of particular graph rewriting systems. The basic definitions and
facts regarding these notions can be found in [2, 5, 6, 7].

∗ There has been a long cooperation between the Logic and Computer Science groups in
RWTH and in LaBRI, which started in 1984 with the visit of W. Thomas in Bordeaux
as invited speaker to the Colloquium on Trees (CAAP). This note extends my article
with A. Blumensath, which is a recent outcome of this cooperation, and hopefully, not
the last one. I thank A. Blumensath for helpful comments.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 251–260.

252 B. Courcelle

Certain closure properties of the families of equational and recognizable
sets are valid at the most general level. In particular, the family of equa-
tional sets of an algebra M is closed under union, intersection with the
recognizable sets and under the operations of this algebra. For an example,
the concatenation of two equational (i.e., context-free) languages is equa-
tional. The family of recognizable sets of an algebra M is closed under
union, intersection and difference, and under the inverses of unary derived
operations (the operations defined by finite terms over the signature of M).
The family of recognizable languages (alternatively called rational or reg-
ular) is also closed under concatenation, but this is not a special case of
a general algebraic property, by contrast with the case of equational lan-
guages. In a general algebra, the family of recognizable sets is not always
closed under the operations of the algebra. That these closure properties
are true depends on particular properties of the considered algebra.

Which properties of an algebra ensure that the family of recognizable
sets is closed under the operations of the algebra?

Two types of answers can be given: algebraic and logical answers. Al-
gebraic answers have been given in [4], an article motivated by the study
of the so-called Hyperedge Replacement (HR) algebra of graphs and hyper-
graphs, that is connected in a natural way to the notion of tree-width [6].
The results of the article [4] can be applied to the case of languages in a
quite simple way: the property of words that uv = wx if and only if there
exists a word z such that u = wz and zv = x, or uz = w and v = zx implies
that the concatenation of two recognizable languages is recognizable, by a
proof that uses only finite congruences and no construction of automata.

Another important case is that of an associative and commutative op-
eration, a useful example being the disjoint union of graphs and relational
structures denoted by ⊕. The corresponding (commutative) concatenation
of subsets preserves recognizability because the equality u ⊕ v = w ⊕ x is
equivalent to the existence of y1, y2, y3, y4 such that u = y1⊕y2, v = y3⊕y4,
w = y1 ⊕ y3 and x = y2 ⊕ y4.

The article [4] establishes that the family of HR-recognizable sets of
graphs is closed under the operations of the HR-algebra. One might think
that these results would extend without difficulties to the somewhat sim-
ilar Vertex Replacement (VR) algebra of graphs (which we define below).
However this is not the case as we shall see in the next section.

In the present article, we do not answer the above question in full gener-
ality, but we give a sufficient condition for algebras of finite relational struc-
tures (hence also of finite graphs) whose operations are disjoint union and
unary operations defined by quantifier-free formulas, that we call quantifier-
free definable operations. We are particularly interested by these algebras

Quantifier-free graph operations 253

because every monadic second-order definable set of finite relational struc-
tures is recognizable (see Theorem 5.1 below). Our main result (Theorem
5.4) is a direct consequence of a result of [2]. It relates the preservation
of recognizability in the algebra of relational structures under a unary op-
eration to the existence an inverse for this operation that is a monadic
second-order transduction. The present article continues the exploration
done in particular in [1, 2, 3, 6, 7] of the deep links between algebraic and
logical properties, more precisely here, between recognizability and monadic
second-order logic.

2 The VR-algebra of simple graphs.

Graphs are finite, simple (without multiple edges), directed, and loop-free.
Let C be a countable set of labels containing the set of nonnegative integers.
A C-graph is a graph G given with a total mapping labG from its vertex set
VG to C. Hence G is defined as a triple 〈VG, edgG, labG〉 where edgG is the
binary edge relation. We call labG(v) the label of a vertex v. We denote
by π(G) the finite set labG(VG) ⊆ C, and we call it the type of G. The
operations on C-graphs are the following ones:

1. We define a constant 1 to denote an isolated vertex labelled by 1.

2. For i, j ∈ C with i 6= j, we define a unary function addi,j such that

addi,j(〈VG, edgG, labG〉) = 〈VG, edg′G, labG〉

where edg′G is edgG augmented with the set of pairs (u, v) such that
labG(u) = i and labG(v) = j. In order to add undirected edges
(considered as pairs of opposite directed edges), we take

addi,j(addj,i(〈VG, edgG, labG〉)).

3. We let also reni→j be the unary function such that

reni→j(〈VG, edgG, labG〉) = 〈VG, edgG, lab′G〉

where lab′G(v) = j if labG(v) = i, and lab′G(v) = labG(v), otherwise.
This mapping relabels into j every vertex label i.

4. Finally, we use the binary operation ⊕ that makes the union of disjoint
copies of its arguments. Hence the graph G⊕H is well-defined up to
isomorphism.

We denote by FVR the countable set of all these operations, including
the constant 1. The VR-algebra has for domain the set G of all isomorphism

254 B. Courcelle

classes of C-graphs and the operations of FVR. A well-formed term t written
with the symbols of FVR defines a C-graph G = val(t), actually a graph up
to isomorphism. However, val(t) can be defined as a “concrete” graph with
vertex set Occ1(t) the set of occurrences in t of the constant 1.

A set of C-graphs L is VR-recognizable if there exists an FVR-congruence
≈ on G such that

1. G ≈ H implies π(G) = π(H)

2. for each finite subset D of C, the congruence ≈ has finitely many
equivalence classes of graphs of type D,

3. L is the union of a finite set of equivalence classes of ≈.

We shall prove below that the disjoint union and the renaming opera-
tions reni→j preserve VR-recognizability. (A more complicated proof can
be based on the algebraic lemmas of [4].) However :

Proposition 2.1. The operation adda,b does not preserve recognizability.
The operation that deletes all edges does not either.

Proof. Here is a counter-example. One takes the set L of finite directed
graphs G of type {a, b} consisting of pairwise nonadjacent edges linking
one vertex labelled by a to one vertex labelled by b. Hence, we have as
many a-labelled vertices as b-labelled ones. This set is definable in monadic
second-order logic (and even in first-order logic) hence is VR-recognizable by
a general theorem (see [3, 6], Theorem 5.1 below). The set K = adda,b(L)
consists of complete bipartite graphs Kn,n. And this set is not recognizable,
because otherwise, so would be the set of terms of the form adda,b([a⊕ (a⊕
(...a))..)]⊕[b⊕(...(b⊕b)..)]) having n occurrences of a defined as ren1→a(1)
and n occurrences of b defined as ren1→b(1) with n > 0. By a standard
pumping argument this set is not recognizable. The proof is similar for the
operation that deletes all edges. One uses the terms [a ⊕ (a ⊕ (...a))..)] ⊕
[b⊕ (...(b⊕ b)..)]. q.e.d.

We now describe the logical setting that will help to investigate rec-
ognizability. We formulate it not only for graphs but for finite relational
structures.

3 Relational structures and monadic second-order
logic

Let R = {A,B,C, ...} be a finite set of relation symbols each of them given
with a nonnegative integer %(A) called its arity. We denote by ST R(R) the
set of finite R-structures S = 〈DS , (AS)A∈R〉 where AS ⊆ D

%(A)
S if A ∈ R

Quantifier-free graph operations 255

is a relation symbol, and DS is the domain of S. If R consists of relation
symbols of arity one or two we say that the structures in ST R(R) are
binary. Binary structures can be seen as vertex- and edge-labelled graphs.
If we have several binary relations say A,B,C, the corresponding graphs
have edges with labels A,B,C.

Monadic Second-order logic (MS logic for short) is the extension of First-
Order logic with variables denoting subsets of the domains of the considered
structures and atomic formulas of the form x ∈ X expressing the member-
ship of x in a set X. We shall denote by MS(R,W) the set of Monadic
second-order formulas written with the set R of relation symbols and hav-
ing their free variables in a set W consisting of first-order and set variables.

As a typical and useful example, we give an MS formula with free vari-
ables x and y expressing that (x, y) belongs to the reflexive and transitive
closure of a binary relation A :

∀X(x ∈ X ∧ ∀u, v[(u ∈ X ∧A(u, v)) =⇒ v ∈ X] =⇒ y ∈ X).

If the relation A is not given in the considered structures but is defined by
an MS formula, then one replaces A(u, v) by this formula with appropriate
substitutions of variables.

A subset of ST R(R) is MS-definable if it is the set of finite models
of a monadic second-order sentence, i.e., of an MS formula without free
variables. Such a set is closed under isomorphism.

4 Monadic second-order transductions

Monadic second-order formulas can be used to define transformations of
graphs and relational structures. As in language theory, a binary relation
R ⊆ A×B where A and B are sets of words, graphs or relational structures
is called a transduction: A → B. An MS transduction is a transduction
specified by MS formulas. It transforms a structure S, given with an n-
tuple of subsets of its domain called the parameters, into a structure T ,
the domain of which is a subset of DS × [k], (where [k] = {1, ..., k}). It is
noncopying if k = 1. The general definition can be found in [1, 2, 6]. We
only define noncopying MS transductions which are needed in this article.

We let R and Q be two finite sets of relation symbols. Let W be a finite
set of set variables, called parameters. A (Q,R)-definition scheme is a tuple
of formulas of the form ∆ = (ϕ,ψ, (θA)A∈Q) where ϕ ∈ MS(R,W), ψ ∈
MS(R,W ∪ {x1}), and θA ∈ MS(R,W ∪ {x1, · · · , x%(A)}), for A ∈ Q.

These formulas are intended to define a structure T in ST R(Q) from a
structure S in ST R(R). Let S ∈ ST R(R), let γ be a W -assignment in S.

256 B. Courcelle

A Q-structure T with domain DT ⊆ DS is defined in (S, γ) by ∆ if

1. (S, γ) |= ϕ

2. DT = {d | d ∈ DS , (S, γ, d) |= ψ}

3. for each A in Q : AT = {(d1, · · · , dt) ∈ Dt
T | (S, γ, d1, · · · , dt) |= θA},

where t = %(A).

Since T is associated in a unique way with S, γ and ∆ whenever it
is defined, i.e., whenever (S, γ) |= ϕ, we can use the functional notation
def∆(S, γ) for T . The transduction defined by ∆ is the binary relation :

def∆ := {(S, T) | T = def∆(S, γ) for some W -assignment γ in S}.

A transduction f ⊆ ST R(R)×ST R(Q) is a noncopying MS transduc-
tion if it is equal to def∆ (up to isomorphism) for some (Q,R)-definition
scheme ∆. We shall also write functionally def∆(S) := {def∆(S, γ) | γ
is a W -assignment in S}. A definition scheme without parameters de-
fines a parameterless MS transduction, which is actually a partial function:
ST R(R) −→ ST R(Q).

A quantifier-free definable operation (a QF operation in short) is a pa-
rameterless noncopying MS-transduction δ : ST R(R) −→ ST R(Q) defined
by a scheme ∆ = (ϕ,ψ, (θA)A∈Q) such that the formula ϕ is equivalent to
True, and the formulas θA are without quantifiers (whence also without
set variables). This implies that δ is total. Furthermore, we say that such
an operation is nondeleting if the formula ψ is equivalent to True. This
condition implies that the domains of S and of δ(S) are the same.

A labelled graph 〈VG, edgG, labG〉 of type contained in D will be rep-
resented by the relational structure bGc = 〈VG, edgG, paG, ..., pdG〉 where
D = {a, ..., d} and pxG(u) is true if and only if labG(u) = x. Through this
representation, the unary operations adda,b and rena→b are quantifier-free.
This means that for some QF operation α, we have α(bGc) = badda,b(G)c
for all graphs G of type contained in D, and similarly for rena→b.

The composition of two transductions is defined as their composition as
binary relations. If they are both partial functions, then one obtains the
composition of these functions. The inverse image of a set L ⊆ ST R(Q)
under a transduction δ : ST R(R) −→ ST R(Q) is the set of elements S of
ST R(R) such that δ(S)∩L is not empty. It is denoted by δ−1(L). (Equality
of structures is understood up to isomorphism, hence δ−1(L) is closed under
isomorphisms.)

Proposition 4.1 (Courcelle, [6]).

1. The composition of two MS transductions is an MS transduction.

2. The inverse image of an MS-definable set of structures under an MS
transduction is MS-definable.

Quantifier-free graph operations 257

5 The many-sorted algebra of relational structures

We now make the family of sets ST R(R) for all relational signatures R
into a many-sorted algebra STR, where each R is a sort and ST R(R)
is the corresponding domain. Here are the operations. First we define a
disjoint union ⊕ : ST R(R)× ST R(Q) −→ ST R(R ∪ Q) for each pair of
sorts (R,Q) (using the same notation for all of these operations). Then
we also let in the signature all QF operations : ST R(R) −→ ST R(Q)
for all pairs of sorts (R,Q). For each pair (R,Q) there are actually only
finitely many such operations (see [7, Appendix A]). We take the constant ∗
denoting the structure in ST R(∅) with a single element. We could actually
take other constants, this would not affect the results stated below because
recognizability does not depend on the set of constants. We let FQF be this
signature. The notation refers to the role of QF operations.

A subset of ST R(R) is QF-recognizable if it is a (finite) union of classes
of an FQF-congruence on STR (equivalent elements must have the same
sort) that has finitely many classes in each domain ST R(R).

The labelled graphs having a type included in a finite set D are repre-
sented by relational structures bGc = 〈VG, edgG, paG, ..., pdG〉 in
ST R({edg} ∪ {pa, ..., pd}) where D = {a, ..., d}. A set of labelled graphs is
VR-recognizable if and only if it is QF-recognizable, and it is VR-equational
if and only if it is QF-equational [2, Theorem 68].

Theorem 5.1 (Courcelle, [3, 6]). If a subset of ST R(R) is MS-definable,
then it is QF-recognizable.

Theorem 5.2 (Blumensath-Courcelle, [2, Theorem 51]). The inverse image
of a QF-recognizable set of relational structures under an MS transduction
is QF-recognizable.

The following definition is new.

Definition 5.3. Let θ be a mapping that associates with every structure S
in ST R(R) a structure T in ST R(Q) with same domain. It is MS-invertible
if there exists a noncopying and nondeleting MS transduction ξ with set of
parameters W such that, for all structures S and T :

1. if θ(S) = T , then there exists a W -assignment γ such that ξ(T, γ) = S,

2. for every W -assignment γ such that ξ(T, γ) is defined, we have
θ(ξ(T, γ)) = T .

As an example, we can observe that the operation rena−→b is MS-
invertible. Let H = rena−→b(G) be obtained from G by replacing each
vertex label a by b. This means that the sets X and Y of vertices labelled

258 B. Courcelle

by a and by b are made into a unique set X ∪ Y , the set of vertices of H
labelled by b. To recover G from H, it is enough to use a set parameter Z
that guesses, among the vertices labelled by b those which were originally
labelled by a. Clearly, for each set Z of vertices labelled by b, one obtains
a graph G such that H = rena−→b(G), and every such G is of this form.

On the contrary, the operation adda,b is not MS-invertible: the inverse
MS-transduction would need to guess a set of edges to be deleted. This is
not possible without using edge set quantifications, which is not what we
are doing here (but can be done in relation with the HR-algebra, see [1, 6]).
However, the restriction of adda,b to the set of graphs that have no edge
from an a-labelled vertex to a b-labelled one is MS-invertible, and its inverse
MS-transduction is parameterless.

Theorem 5.4. Every MS-invertible mapping preserves QF-recognizability.

Proof. Let θ be an MS-invertible mapping : ST R(R) −→ ST R(Q) with
inverse MS transduction ξ, using a set of parameters W . Let L ⊆ ST R(R)
be recognizable. We claim that θ(L) = ξ−1(L), which will yield the result
by Theorem 5.2.

If T = θ(S), S ∈ L there exists a W -assignment γ such that ξ(T, γ) = S,
hence T belongs to ξ−1(L). Conversely, if T ∈ ξ−1(L), then ξ(T, γ) ∈ L for
some W -assignment γ hence θ(ξ(T, γ)) = T and T ∈ θ(L). q.e.d.

The proof of [2, Theorem 51] uses the fact that the QF operation that
deletes a unary relation preserves recognizability [2, Proposition 58]. Such
an operation is clearly MS-invertible. The proof of [2, Proposition 58] is done
with the algebraic techniques of [4]. (Since recognizability is an algebraic
notion, algebraic constructions must be used somewhere.)

Note that the same proof yields that MS-invertible QF operations pre-
serve MS-definability, whereas a QF operation like adda,b does not.

Question 5.5. Which QF operations are MS-invertible?

It does not seem easy to give necessary and sufficient conditions. We
have already given examples and counter-examples (with help of Proposition
2.1). The operation that relabels a binary symbol, say A into B, does not
preserve recognizability. The proof is as in Proposition 2.1. The following
is a related question.

Question 5.6. Does there exist a QF operation that is not MS-invertible
but preserves QF-recognizability?

We now consider in a similar way the disjoint union ⊕ : ST R(R) ×
ST R(Q) −→ ST R(R ∪ Q). Let mark be a unary relation not in R ∪ Q.
Let us define the marked disjoint union ⊕mark : ST R(R) × ST R(Q) −→

Quantifier-free graph operations 259

ST R(R∪Q∪{mark}), such that S⊕markT = S⊕T augmented with mark(u)
for every u in the domain of T . It clear that there are two parameterless
QF operations ξ1 and ξ2 such that for every structure Z

1. ξ1(Z) and ξ2(Z) are defined if and only if Z = S ⊕mark T for some S
in ST R(R) and some T in ST R(Q),

2. and if this is the case S and T as in 1. are unique and

Z = ξ1(Z)⊕mark ξ2(Z).

Theorem 5.7. Disjoint union preserves QF-recognizability.

Proof. Let L ⊆ ST R(R) and K ⊆ ST R(Q) be recognizable. Let M =
L⊕mark K. We claim that M = ξ−1

1 (L) ∩ ξ−1
2 (K).

If Z = S ⊕mark T ∈ M , S ∈ L, T ∈ K, then ξ1(Z) = S and ξ2(Z) = T ,
hence Z ∈ ξ−1

1 (S) and Z ∈ ξ−1
2 (T), Z ∈ ξ−1

1 (L) ∩ ξ−1
2 (K). Conversely,

if Z ∈ ξ−1
1 (L) ∩ ξ−1

2 (K) then ξ1(Z) = S ∈ L and ξ2(Z) = T ∈ K and
Z = S ⊕mark T ∈ L⊕mark K = M . This proves the claim, and by Theorem
5.2, ξ−1

1 (L) and ξ−1
2 (K) are recognizable and so is their intersection M .

The image of M under the QF operation that deletes mark is recogniz-
able by [2, Proposition 58], and this image is L⊕K. q.e.d.

A similar proof shows that disjoint union preserves MS-definability.

The family of recognizable sets of relational structures is thus preserved
under disjoint union and MS-invertible QF operations. These operations
form a subsignature Finv-QF of FQF. From general facts discussed in depth
in [2], it follows that the Finv-QF-equational sets form a subfamily of the
QF-equational ones, and that the QF-recognizable sets form a subfamily of
the Finv-QF-recognizable ones. If those two inclusions are equalities, then
we say that the signatures Finv-QF and FQF are equivalent.

Question 5.8. Is the signature Finv-QF equivalent to FQF?

Let us first go back to the case of the VR-algebra. The signature FVR

is equivalent to the restriction to graphs of the signature FQF ([3] and [7,
Theorem 4.5]). Furthermore, one can eliminate from FVR the operations
adda,b and replace them by derived operations of the form G⊗λH = λ(G⊕
H) where λ is a composition of adda,b operations and of relabellings that
only create edges between G and H (and not inside G or H). One obtains
an algebra of graphs with the same recognizable sets [7, Proposition 4.9]
and the same equational sets. For each operation ⊗λ a pair of inverse MS-
transductions like ξ1 and ξ2 for ⊕ can be defined so that the operations
⊗λ preserve recognizability. In this way we can handle the problem of the
non-MS-invertibility of adda,b.

260 B. Courcelle

Could we do the same for FQF? There is another difficulty with the QF
operations that delete relations of arity more than one, and those which
rename them, because, as observed above, they are not MS-invertible. A
subsignature of FQF equivalent to it is defined in [2] but it uses these non-
MS-invertible operations. We leave open Question 5.8.

As final comment, we observe that the result of [4] stating that the
family of HR-recognizable sets of graphs and hypergraphs is closed under the
operations of the HR-algebra can be proved by the tools used for Theorems
5.4 and 5.7.

References

[1] A. Blumensath, T. Colcombet, and C. Löding. Logical theories and com-
patible operations. In Automata and Logic: History and Perspectives,
volume 2 of Texts in Logics and Games. Amsterdam University Press,
Amsterdam, 2007. This volume.

[2] A. Blumensath and B. Courcelle. Recognizability, hypergraph opera-
tions, and logical types. Inform. and Comput., 204(6):853–919, 2006.

[3] B. Courcelle. The monadic second-order logic of graphs vii: Graphs as
relational structures. Theor. Comput. Sci., 101(1):3–33, 1992.

[4] B. Courcelle. Recognizable sets of graphs: Equivalent definitions and clo-
sure properties. Mathematical Structures in Computer Science, 4(1):1–
32, 1994.

[5] B. Courcelle. Basic notions of universal algebra for language theory and
graph grammars. Theor. Comput. Sci., 163(1&2):1–54, 1996.

[6] B. Courcelle. The expression of graph properties and graph transforma-
tions in monadic second-order logic. In G. Rozenberg, editor, Handbook
of Graph Grammars, pages 313–400. World Scientific, 1997.

[7] B. Courcelle and P. Weil. The recognizability of sets of graphs is a robust
property. Theor. Comput. Sci., 342(2-3):173–228, 2005.

[8] J. Mezei and J. B. Wright. Algebraic automata and context-free sets.
Information and Control, 11(1/2):3–29, 1967.

First-order definable languages∗

Volker Diekert1

Paul Gastin2

1 Institut für Formale Methoden der Informatik
Universität Stuttgart
Universitätsstraße 38
70569 Stuttgart, Germany
diekert@fmi.uni-stuttgart.de

2 Laboratoire Spécification et Vérification

École Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex, France
Paul.Gastin@lsv.ens-cachan.fr

Abstract

We give an essentially self-contained presentation of some princi-
pal results for first-order definable languages over finite and infinite
words. We introduce the notion of a counter-free Büchi automaton;
and we relate counter-freeness to aperiodicity and to the notion of
very weak alternation. We also show that aperiodicity of a regular
∞-language can be decided in polynomial space, if the language is
specified by some Büchi automaton.

1 Introduction

The study of regular languages is one of the most important areas in formal
language theory. It relates logic, combinatorics, and algebra to automata
theory; and it is widely applied in all branches of computer sciences. More-
over it is the core for generalizations, e.g., to tree automata [26] or to par-
tially ordered structures such as Mazurkiewicz traces [6].

In the present contribution we treat first-order languages over finite and
infinite words. First-order definability leads to a subclass of regular lan-
guages and again: it relates logic, combinatorics, and algebra to automata
theory; and it is also widely applied in all branches of computer sciences.
Let us mention that first-order definability for Mazurkiewicz traces leads
essentially to the same picture as for words (see, e.g., [5]), but nice charac-
tizations for first-order definable sets of trees are still missing.

The investigation on first-order languages has been of continuous interest
over the past decades and many important results are related to the efforts

∗ We would like to thank the anonymous referee for the detailed report.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 261–306.

262 V. Diekert, P. Gastin

of Wolfgang Thomas [31, 32, 33, 34, 35]. We also refer to his influential
contributions in the handbooks of Theoretical Computer Science [36] and
of Formal Languages [37].

We do not compete with these surveys. Our plan is more modest. We
try to give a self-contained presentation of some of the principal charac-
terizations of first-order definable languages in a single paper. This covers
description with star-free expressions, recognizability by aperiodic monoids
and definability in linear temporal logic. We also introduce the notion of a
counter-free Büchi automaton which is somewhat missing in the literature
so far. We relate counter-freeness to the aperiodicity of the transformation
monoid. We also show that first-order definable languages can be charac-
terized by very weak alternating automata using the concept of aperiodic
automata. In some sense the main focus in our paper is the explanation of
the following theorem.

Theorem 1.1. Let L be a language of finite or infinite words over a finite
alphabet. Then the following assertions are equivalent:

1. L is first-order definable.

2. L is star-free.

3. L is aperiodic.

4. L is definable in the linear temporal logic LTL.

5. L is first-order definable with a sentence using at most 3 names for vari-
ables.

6. L is accepted by some counter-free Büchi automaton.

7. L is accepted by some aperiodic Büchi automaton.

8. L is accepted by some very weak alternating automaton.

Besides, the paper covers related results. The translation from first-
order to LTL leads in fact to the pure future fragment of LTL, i.e., the
fragment without any past tense operators. This leads to the separation
theorem for first-order formulae in one free variable as we shall demonstrate
in Section 9. We also show that aperiodicity (i.e., first-order definability) of
a regular ∞-language can be decided in polynomial space, if the language
is specified by some Büchi automaton.

Although the paper became much longer than expected, we know that
much more could be said. We apologize if the reader’s favorite theorem is
not covered in our survey. In particular, we do not speak about varieties,
and we gave up the project to cover principle results about the fragment

First-order languages 263

of first-order logic which corresponds to unary temporal logic. These dia-
monds will continue to shine, but not here, and we refer to [30] for more
background. As mentioned above, we use Büchi automata, but we do not
discuss deterministic models such as deterministic Muller automata.

The history of Theorem 1.1 is related to some of the most influential
scientists in computer science. The general scheme is that the equivalences
above have been proved first for finite words. After that, techniques were
developed to generalize these results to infinite words. Each time, the gen-
eralization to infinite words has been non-trivial and asked for new ideas.
Perhaps, the underlying reason for this additional difficulty is due to the
fact that the subset construction fails for infinite words. Other people may
say that the difficulty arises from the fact that regular ω-languages are not
closed in the Cantor topology. The truth is that combinatorics on infinite
objects is more complicated.

The equivalence of first-order definability and star-freeness for finite
words is due to McNaughton and Papert [19]. The generalization to in-
finite words is due to Ladner [15] and Thomas [31, 32]. These results have
been refined, e.g. by Perrin and Pin in [24]. Based on the logical framework
of Ehrenfeucht-Fräıssé-games, Thomas also related the quantifier depth to
the so-called dot-depth hierarchy, [33, 35]. Taking not only the quantifier
alternation into account, but also the length of quantifier blocks one gets
even finer results as studied by Blanchet-Sadri in [2].

The equivalence of star-freeness and aperiodicity for finite words is due
to Schützenberger [28]. The generalization to infinite words is due to Perrin
[23] using the syntactic congruence of Arnold [1]. These results are the basis
allowing to decide whether a regular language is first-order definable.

Putting these results together one sees that statements 1, 2, and 3 in
Theorem 1.1 are equivalent. From the definition of LTL it is clear that
linear temporal logic describes a fragment of FO3, where the latter means
the family of first-order definable languages where the defining sentence uses
at most three names for variables. Thus, the implications from 4 to 5 and
from 5 to 1 are trivial. The highly non-trivial step is to conclude from 1 (or
2 or 3) to 4. This is usually called Kamp’s Theorem and is due to Kamp
[13] and Gabbay, Pnueli, Shelah, and Stavi [9].

In this survey we follow the algebraic proof of Wilke which is in his
habilitation thesis [38] and which is also published in [39]. Wilke gave the
proof for finite words, only. In order to generalize it to infinite words we
use the techniques from [5], which were developed to handle Mazurkiewicz
traces. Cutting down this proof to the special case of finite or infinite words
leads to the proof presented here. It is still the most complicated part in the
paper, but again some of the technical difficulties lie in the combinatorics of
infinite words which is subtle. Restricting the proof further to finite words,

264 V. Diekert, P. Gastin

the reader might hopefully find the simplest way to pass from aperiodic
languages to LTL. But this is also a matter of taste, of course.

Every first-order formula sentence can be translated to a formula in FO3.
This is sharp, because it is known that there are first-order properties which
are not expressible in FO2, which characterizes unary temporal logic [7] over
infinite words.

The equivalence between definability in monadic second order logic, reg-
ular languages, and acceptance by Büchi automata is due to Büchi [3].
However, Büchi automata are inherently non-deterministic. In order to
have deterministic automata one has to move to other acceptance conditions
such as Muller or Rabin-Streett conditions. This important result is due to
McNaughton, see [18]. Based on this, Thomas [32] extended the notion of
deterministic counter-free automaton to deterministic counter-free automa-
ton with Rabin-Streett condition and obtained thereby another characteri-
zation for first-order definable ω-languages. There is no canonical object for
a minimal Büchi automaton, which might explain why a notion of counter-
free Büchi automaton has not been introduced so far. On the other hand,
there is a quite natural notion of counter-freeness as well as of aperiodicity
for non-deterministic Büchi automata. (Aperiodic non-deterministic finite

automata are defined in [16], too.) For non-deterministic automata, aperi-
odicity describes a larger class of automata, but both counter-freeness and
aperiodicity can be used to characterize first-order definable ω-languages.
This is shown in Section 11 and seems to be an original part in the paper.

We have also added a section about very weak alternating automata.
The notion of weak alternating automaton is due to Muller, Saoudi, and
Schupp [21]. A very weak alternating automaton is a special kind of weak
alternating automaton and this notion has been introduced in the PhD
thesis of Rhode [27] in a more general context of ordinals. (In the paper
by Löding and Thomas [17] these automata are called linear alternating.)
Section 13 shows that very weak alternating automata characterize first-
order definability as well. More precisely, we have a cycle from 3 to 6 to 7
and back to 3, and we establish a bridge from 4 to 8 and from 8 to 7.

It was shown by Stern [29] that deciding whether a deterministic finite
automaton accepts an aperiodic language over finite words can be done
in polynomial space, i.e., in PSPACE. Later Cho and Huynh showed in [4]
that this problem is actually PSPACE-complete. So, the PSPACE-hardness
transfers to (non-deterministic) Büchi automata. It might belong to folklore
that the PSPACE-upper bound holds for Büchi automata, too; but we did
not find any reference. So we prove this result here, see Proposition 12.3.

As said above, our intention was to give simple proofs for existing re-
sults. But simplicity is not a simple notion. Therefore for some results,
we present two proofs. The proofs are either based on a congruence lemma

First-order languages 265

established for first-order logic in Section 10.1, or they are based on a split-
ting lemma established for star-free languages in Section 3.1. Depending on
his background, the reader may wish to skip one approach.

2 Words, first-order logic, and basic notations

By P we denote a unary predicate taken from some finite set of atomic

propositions, and x, y, . . . denote variables which represent positions in finite
or infinite words. The syntax of first-order logic uses the symbol ⊥ for
false and has atomic formulae of type P (x) and x < y. We allow Boolean
connectives and first-order quantification. Thus, if ϕ and ψ are first-order
formulae, then ¬ϕ, ϕ ∨ ψ and ∃xϕ are first-order formulae, too. As usual
we have derived formulae such as x ≤ y, x = y, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
∀xϕ = ¬∃x¬ϕ and so on.

We let Σ be a finite alphabet. The relation between Σ and the set of unary
predicates is that for each letter a ∈ Σ and each predicate P the truth-value
P (a) must be well-defined. So, we always assume this. Whenever convenient
we include for each letter a a predicate Pa such that Pa(b) is true if and
only if a = b. We could assume that all predicates are of the form Pa, but
we feel more flexible of not making this assumption. If x is a position in a
word with label a ∈ Σ, then P (x) is defined by P (a).

By Σ∗ (resp. Σω) we mean the set of finite (resp. infinite) words over
Σ, and we let Σ∞ = Σ∗ ∪Σω. The length of a word w is denoted by |w|, it
is a natural number or ω. A language is a set of finite or infinite words.

Formulae without free variables are sentences. A first-order sentence
defines a subset of Σ∞ in a natural way. Let us consider a few examples. We
can specify that the first position is labeled by a letter a using ∃x∀y Pa(x)∧
x ≤ y. We can say that each occurrence of a is immediately followed by b
with the sentence ∀x ¬Pa(x) ∨ ∃y x < y ∧ Pb(y) ∧ ∀z ¬(x < z ∧ z < y). We
can also say that the direct successor of each b is the letter a. Hence the
language (ab)ω is first-order definable. We can also say that a last position
in a word exists and this position is labeled b. For a 6= b this leads almost
directly to a definition of (ab)∗. But (aa)∗ cannot be defined with a first-
order sentence. A formal proof for this statement is postponed, but at least
it should be clear that we cannot define (aa)∗ the same way as we did for
(ab)∗, because we have no control that the length of a word in a∗ is even.

The set of positions pos(w) is defined by pos(w) = {i ∈ N | 0 ≤ i < |w|}.
We think of pos(w) as a linear order where each position i is labeled with
λ(i) ∈ Σ, and w = λ(0)λ(1) · · · .

A k-structure means here a pair (w, p), where w ∈ Σ∞ is a finite or
infinite word and p = (p1, . . . , pk) is a k-tuple of positions in pos(w). The
set of all k-structures is denoted by Σ∞

(k), and the subset of finite structures
is denoted by Σ∗

(k). For simplicity we identify Σ∞ with Σ∞
(0).

266 V. Diekert, P. Gastin

Let x be a k-tuple (x1, . . . , xk) of variables and ϕ be a first-oder formula
where all free variables are in the set {x1, . . . , xk}. The semantics of

(w, (p1, . . . , pk)) |= ϕ

is defined as usual: It is enough to give a semantics to atomic formulae,
and (w, (p1, . . . , pk)) |= P (xi) means that the label of position pi satisfies
P , and (w, (p1, . . . , pk)) |= xi < xj means that position pi is before position
pj , i.e., pi < pj.

With every formula we can associate its language by

L(ϕ) =
{

(w, p) ∈ Σ∞
(k)

∣
∣
∣ (w, p) |= ϕ

}

.

In order to be precise we should write LΣ,k(ϕ), but if the context is clear,
we omit the subscript Σ, k.

Definition 2.1. By FO(Σ∗) (resp. FO(Σ∞)) we denote the set of first-
order definable languages in Σ∗ (resp. Σ∞), and by FO we denote the
family of all first-order definable languages. Analogously, we define families
FOn(Σ∗), FOn(Σ∞), and FOn by allowing only those formulae which use
at most n different names for variables.

3 Star-free sets

For languages K,L ⊆ Σ∞ we define the concatenation by

K · L = {uv | u ∈ K ∩ Σ∗, v ∈ L} .

The n-th power of L is defined inductively by L0 = {ε} and Ln+1 = L ·Ln.
The Kleene-star of L is defined by L∗ =

⋃

n≥0 L
n. Finally, the ω-iteration

of L is
Lω = {u0u1u2 · · · | ui ∈ L ∩ Σ∗ for all i ≥ 0}.

We are interested here in families of regular languages, also called ratio-

nal languages. In terms of expressions it is the smallest family of languages
which contains all finite subsets, which is closed under finite union and
concatenation, and which is closed under the Kleene-star (and ω-power).
The relation to finite automata (Büchi automata resp.) is treated in Sec-
tion 11. For the main results on first-order languages the notion of a Büchi
automaton is actually not needed.

The Kleene-star and the ω-power do not preserve first-order definability,
hence we consider subclasses of regular languages. A language is called
star-free, if we do not allow the Kleene-star, but we allow complementation.
Therefore we have all Boolean operations. In terms of expressions the class

of star-free languages is the smallest family of languages in Σ∞ (resp. Σ∗)

First-order languages 267

which contains Σ∗, all singletons {a} for a ∈ Σ, and which is closed under
finite union, complementation and concatenation. It is well-known that
regular languages are closed under complement1, hence star-free languages
are regular.

As a first example we note that for every A ⊆ Σ the set A∗ (of finite
words containing only letters from A) is also star-free. We have:

A∗ = Σ∗ \ (Σ∗(Σ \A)Σ∞).

In particular, {ε} = ∅
∗ is star-free. Some other expressions with star are

also in fact star-free. For example, for a 6= b we obtain:

(ab)∗ = (aΣ∗ ∩ Σ∗b) \ Σ∗(Σ2 \ {ab, ba})Σ∗.

The above equality does not hold, if a = b. Actually, (aa)∗ is not star-free.
The probably best way to see that (aa)∗ is not star-free, is to show (by
structural induction) that for all star-free languages L there is a constant
n ∈ N such that for all words x we have xn ∈ L if and only if xn+1 ∈ L.
The property is essentially aperiodicity and we shall prove the equivalence
between star-free sets and aperiodic languages later. Since (ab)∗ is star-free
(for a 6= b), but (aa)∗ is not, we see that a projection of a star-free set is
not star-free, in general.

Definition 3.1. By SF(Σ∗) (resp. SF(Σ∞)) we denote the set of star-free
languages in Σ∗ (resp. Σ∞), and by SF we denote the family of all star-free
languages.

An easy exercise (left to the interested reader) shows that

SF(Σ∗) = {L ⊆ Σ∗ | L ∈ SF(Σ∞)} = {L ∩ Σ∗ | L ∈ SF(Σ∞)} .

3.1 The splitting lemma

A star-free set admits a canonical decomposition given a partition of the
alphabet. This will be shown here and it is used to prove that first-order
languages are star-free in Section 4 and for the separation theorem in Sec-
tion 9. The alternative to this section is explained in Section 10, where the
standard way of using the congruence lemma is explained, see Lemma 10.2.
Thus, there is an option to skip this section.

Lemma 3.2. Let A,B ⊆ Σ be disjoint subalphabets. If L ∈ SF(Σ∞) then
we can write

L ∩B∗AB∞ =
⋃

1≤i≤n

KiaiLi

where ai ∈ A, Ki ∈ SF(B∗) and Li ∈ SF(B∞) for all 1 ≤ i ≤ n.

1 We do not need this standard result here.

268 V. Diekert, P. Gastin

Proof. Since B∗AB∞ =
⋃

a∈AB
∗aB∞, it is enough to show the result when

A = {a}. The proof is by induction on the star-free expression and also on
the alphabet size. (Note that |B| < |Σ|.). The result holds for the basic
star-free sets:

• If L = {a} with a ∈ A then L ∩B∗AB∞ = {ε}a{ε}.

• If L = {a} with a /∈ A then L ∩B∗AB∞ = ∅a∅ (or we let n = 0).

• If L = Σ∗ then L ∩B∗AB∞ = B∗AB∗.

The inductive step is clear for union. For concatenation, the result follows
from

(L ·L′) ∩B∗AB∞ = (L∩B∗AB∞) · (L′ ∩B∞)∪ (L∩B∗) · (L′ ∩B∗AB∞).

It remains to deal with the complement Σ∞ \ L of a star-free set. By
induction, we have L ∩ B∗aB∞ =

⋃

1≤i≤nKiaLi. If some Ki and Kj are
not disjoint (for i 6= j), then we can rewrite

KiaLi ∪KjaLj = (Ki \Kj)aLi ∪ (Kj \Ki)aLj ∪ (Ki ∩Kj)a(Li ∪ Lj).

We can also add (B∗ \
⋃

iKi)a∅ in case
⋃

iKi is strictly contained in B∗.
Therefore, we may assume that {Ki | 1 ≤ i ≤ n} forms a partition of B∗.
This yields:

(Σ∞ \ L) ∩B∗aB∞ =
⋃

1≤i≤n

Kia(B
∞ \ Li).

q.e.d.

4 From first-order to star-free languages

This section shows that first-order definable languages are star-free lan-
guages. The transformation is involved in the sense that the resulting ex-
pressions are much larger than the size of the formula, in general. The proof
presented here is based on the splitting lemma. The alternative is again in
Section 10.

Remark 4.1. The converse that star-free languages are first-order definable
can be proved directly. Although strictly speaking we do not use this fact,
we give an indication how it works. It is enough to give a sentence for
languages of type L = L(ϕ) · a · L(ψ). We may assume that the sentences ϕ
and ψ use different variable names. Then we can describe L as a language
L(ξ) where

ξ = ∃z Pa(z) ∧ ϕ<z ∧ ψ>z,

where ϕ<z and ψ>z relativize all variables with respect to the position of
z. We do not go into more details, because, as said above, we do not need
this fact.

First-order languages 269

We have to deal with formulae having free variables. We provide first
another semantics of a formula with free variables in a set of words over
an extended alphabet allowing to encode the assignment. This will also be
useful to derive the separation theorem in Section 9.

Let V be a finite set of variables. We define ΣV = Σ×{0, 1}V . (Do not
confuse ΣV with Σ(k) from above.) Let w ∈ Σ∞ be a word and σ be an
assignment from the variables in V to the positions in w, thus 0 ≤ σ(x) < |w|
for all x ∈ V . The pair (w, σ) can be encoded as a word (w, σ) over ΣV .
More precisely, if w = a0a1a2 · · · then (w, σ) = (a0, τ0)(a1, τ1)(a2, τ2) · · ·
where for all 0 ≤ i < |w| we have τi(x) = 1 if and only if σ(x) = i.
We let NV ⊆ Σ∞

V be the set of words (w, σ) such that w ∈ Σ∞ and σ is
an assignment from V to the positions in w. We show that NV is star-
free. For x ∈ V , let Σx=1

V be the set of pairs (a, τ) with τ(x) = 1 and let
Σx=0
V = ΣV \ Σx=1

V be its complement. Then,

NV =
⋂

x∈V

(Σx=0
V)∗Σx=1

V (Σx=0
V)∞.

Given a first-order formula ϕ and a set V containing all free variables of ϕ,
we define the semantics [[ϕ]]V ⊆ NV inductively:

[[Pa(x)]]V = {(w, σ) ∈ NV | w = b0b1b2 · · · ∈ Σ∞ and bσ(x) = a}

[[x < y]]V = {(w, σ) ∈ NV | σ(x) < σ(y)}

[[∃x, ϕ]]V = {(w, σ) ∈ NV | ∃i, 0 ≤ i < |w| ∧ (w, σ[x→ i]) ∈ [[ϕ]]V ∪{x}}

[[ϕ ∨ ψ]]V = [[ϕ]]V ∪ [[ψ]]V

[[¬ϕ]]V = NV \ [[ϕ]]V .

Proposition 4.2. Let ϕ be a first-order formula and V be a set of variables
containing the free variables of ϕ. Then, [[ϕ]]V ∈ SF(Σ∞

V).

Proof. The proof is by induction on the formula. We have

[[Pa(x)]]V = NV ∩ (Σ∗
V · {(a, τ) | τ(x) = 1} · Σ∞

V)

[[x < y]]V = NV ∩ (Σ∗
V · Σ

x=1
V · Σ∗

V ·Σ
y=1
V ·Σ∞

V).

The induction is trivial for disjunction and negation since the star-free sets
form a Boolean algebra and NV is star-free. The interesting case is existen-
tial quantification [[∃x, ϕ]]V .

We assume first that x /∈ V and we let V ′ = V ∪ {x}. By induction,
[[ϕ]]V ′ is star-free and we can apply Lemma 3.2 with the sets A = Σx=1

V ′ and
B = Σx=0

V ′ . Note that NV ′ ⊆ B∗AB∞. Hence, [[ϕ]]V ′ = [[ϕ]]V ′ ∩ B∗AB∞

and we obtain [[ϕ]]V ′ =
⋃

1≤i≤nK
′
ia
′
iL
′
i where a′i ∈ A, K ′

i ∈ SF(B∗) and
L′i ∈ SF(B∞) for all i. Let π : B∞ → Σ∞

V be the bijective renaming defined

270 V. Diekert, P. Gastin

by π(a, τ) = (a, τ↾V). Star-free sets are not preserved by projections but
indeed they are preserved by bijective renamings. Hence, Ki = π(K ′

i) ∈
SF(Σ∗

V) and Li = π(L′i) ∈ SF(Σ∞
V). We also rename a′i = (a, τ) into

ai = (a, τ↾V). We have [[∃x, ϕ]]V =
⋃

1≤i≤nKiaiLi and we deduce that
[[∃x, ϕ]]V ∈ SF(Σ∞

V).
Finally, if x ∈ V then we choose a new variable y /∈ V and we let

U = (V \ {x}) ∪ {y}. From the previous case, we get [[∃x, ϕ]]U ∈ SF(Σ∞
U).

To conclude, it remains to rename y to x. q.e.d.

Corollary 4.3. We have:

FO(Σ∗) ⊆ SF(Σ∗) and FO(Σ∞) ⊆ SF(Σ∞).

5 Aperiodic languages

Recall that a monoid (M, ·) is a non-empty set M together with a binary
operation · such that ((x · y) · z) = (x · (y · z)) and with a neutral element
1 ∈ M such that x · 1 = 1 · x = x for all x, y, z in M . Frequently we write
xy instead of x · y.

A morphism (or homomorphism) between monoids M and M ′ is a map-
ping h : M →M ′ such that h(1) = 1 and h(x · y) = h(x) · h(y).

We use the algebraic notion of recognizability and the notion of aperiodic

languages. Recognizability is defined as follows. Let h : Σ∗ → M be
a morphism to a finite monoid M . Two words u, v ∈ Σ∞ are said to
be h-similar, denoted by u ∼h v, if for some n ∈ N ∪ {ω} we can write
u =

∏

0≤i<n ui and v =
∏

0≤i<n vi with ui, vi ∈ Σ+ and h(ui) = h(vi) for
all 0 ≤ i < n. The notation u =

∏

0≤i<n ui refers to an ordered product,
it means a factorization u = u0u1 · · · . In other words, u ∼h v if either
u = v = ε, or u, v ∈ Σ+ and h(u) = h(v) or u, v ∈ Σω and there are
factorizations u = u0u1 · · · , v = v0v1 · · · with ui, vi ∈ Σ+ and h(ui) = h(vi)
for all i ≥ 0.

The transitive closure of ∼h is denoted by ≈h; it is an equivalence rela-
tion. For w ∈ Σ∞, we denote by [w]h the equivalence class of w under ≈h.
Thus,

[w]h = {u | u ≈h w} .

In case that there is no ambiguity, we simply write [w] instead of [w]h. Note
that there are three cases [w] = {ε}, [w] ⊆ Σ+, and [w] ⊆ Σω.

Definition 5.1. We say that a morphism h : Σ∗ → M recognizes L, if
w ∈ L implies [w]h ⊆ L for all w ∈ Σ∞.

Thus, a language L ⊆ Σ∞ is recognized by h if and only if L is saturated
by ≈h (or equivalently by ∼h). Note that we may assume that a recognizing
morphism h : Σ∗ →M is surjective, whenever convenient.

First-order languages 271

Since M is finite, the equivalence relation ≈h is of finite index. More
precisely, there are at most 1+|M |+|M |2 classes. This fact can be derived by
some standard Ramsey argument about infinite monochromatic subgraphs.
We repeat the argument below in order to keep the article self-contained, see
also [3, 12, 25]. It shows the existence of a so-called Ramsey factorization.

Lemma 5.2. Let h : Σ∗ → M be a morphism to a finite monoid M and
w = u0u1u2 · · · be an infinite word with ui ∈ Σ+ for i ≥ 0. Then there
exist s, e ∈M , and an increasing sequence 0 < p1 < p2 < · · · such that the
following two properties hold:

1. se = s and e2 = e.

2. h(u0 · · ·up1−1) = s and h(upi
· · ·upj−1) = e for all 0 < i < j.

Proof. Let E =
{
(i, j) ∈ N

2
∣
∣ i < j

}
. We consider the mapping c : E →M

defined by c(i, j) = h(ui · · ·uj−1). We may think that the pairs (i, j) are
(edges of an infinite complete graph and) colored by c(i, j). Next we wish
to color an infinite set of positions.

We define inductively a sequence of infinite sets N = N0 ⊃ N1 ⊃ N2 · · ·
and a sequence of natural numbers n0 < n1 < n2 < · · · as follows. Assume
that Np is already defined and infinite. (This is true for p = 0.) Choose
any np ∈ Np, e.g., np = minNp. Since M is finite and Np is infinite, there
exists cp ∈ M and an infinite subset Np+1 ⊂ Np such that c(np,m) = cp
for all m ∈ Np+1. Thus, for all p ∈ N infinite sets Np are defined and
for every position np we may choose the color cp. Again, because M is
finite, one color must appear infinitely often. This color is called e and it is
just the (idempotent) element of M we are looking for. Therefore we find
a strictly increasing sequence p0 < p1 < p2 < · · · such that cpi

= e and
hence e = h(upi

· · ·upj−1) for all 0 ≤ i < j. Note that e = c(np0 , np2) =
c(np0 , np1)c(np1 , np2) = e2. Moreover, if we set s = h(u0 · · ·up1−1), we
obtain

s = c(0, np1) = c(0, np0)c(np0 , np1) = c(0, np0)c(np0 , np1)c(np1 , np2) = se.

This is all we need. q.e.d.

The lemma implies that for each (infinite) word w we may choose some
(s, e) ∈ M ×M with s = se and e = e2 such that w ∈ h−1(s) (h−1(e))ω .
This establishes that ≈h has at most |M |2 classes [w] where w is infinite;
and this in turn implies the given bound 1 + |M |+ |M |2.

Pairs (s, e) ∈M ×M with s = se and e = e2 are also called linked pair.

Remark 5.3. The existence of a Ramsey factorization implies that a lan-
guage L ⊆ Σω recognized by a morphism h from Σ∗ to some finite monoidM

272 V. Diekert, P. Gastin

can be written as a finite union of languages of type UV ω, where U, V ⊆ Σ∗

are recognized by h and where moreover U = h−1(s) and V = h−1(e) for
some s, e ∈M with se = s and e2 = e. In particular, we have UV ⊆ U and
V V ⊆ V . Since {ε}ω = {ε}, the statement holds for L ⊆ Σ∗ and L ⊆ Σ∞

as well.

A (finite) monoid M is called aperiodic, if for all x ∈ M there is some
n ∈ N such that xn = xn+1.

Definition 5.4. A language L ⊆ Σ∞ is called aperiodic, if it is recognized
by some morphism to a finite and aperiodic monoid. By AP(Σ∗) (resp.
AP(Σ∞)) we denote the set of aperiodic languages in Σ∗ (resp. Σ∞), and
by AP we denote the family of aperiodic languages.

6 From star-freeness to aperiodicity

Corollary 4.3 (as well as Proposition 10.3) tells us that all first-order defin-
able languages are star-free. We want to show that all star-free languages
are recognized by aperiodic monoids. Note that the trivial monoid recog-
nizes the language Σ∗, actually it recognizes all eight Boolean combinations
of {ε} and Σω.

Consider next a letter a. The smallest recognizing monoid of the single-
ton {a} is aperiodic, it has just three elements 1, a, 0 with a · a = 0 and 0 is
a zero, this means x · y = 0 as soon as 0 ∈ {x, y}.

Another very simple observation is that if Li is recognized by a morphism
hi : Σ∗ →Mi to some finite (aperiodic) monoidMi, i = 1, 2, then (the direct
product M1 ×M2 is aperiodic and) the morphism

h : Σ∗ →M1 ×M2, w 7→ (h1(w), h2(w))

recognizes all Boolean combinations of L1 and L2.
The proof of the next lemma is rather technical. Its main part shows

that the family of recognizable languages is closed under concatenation.
Aperiodicity comes into the picture only at the very end in a few lines.
There is alternative way to prove the following lemma. In Section 11 we
introduce non-deterministic counter-free Büchi automata which can be used
to show the closure under concatenation as well, see Lemma 11.3.

Lemma 6.1. Let L ⊆ Σ∗ and K ⊆ Σ∞ be aperiodic languages. Then L ·K
is aperiodic.

Proof. As said above, we may choose a single morphism h : Σ∗ → M to
some finite aperiodic monoid M , which recognizes both L and K.

The set of pairs (h(u), h(v)) with u, v ∈ Σ∗ is finite (bounded by |M |2)
and so its power set S is finite, too. We shall see that there is a monoid
structure on some subset of S such that this monoid recognizes L ·K.

First-order languages 273

To begin with, let us associate with w ∈ Σ∗ the following set of pairs:

g(w) = {(h(u), h(v)) | w = uv} .

The finite set g(Σ∗) ⊆ S is in our focus. We define a multiplication by:

g(w) · g(w′) = g(ww′)

= {(h(wu′), h(v′)) | w′ = u′v′} ∪ {(h(u), h(vw′)) | w = uv} .

The product is well-defined. To see this, observe first that (h(u), h(v)) ∈
g(w) implies h(w) = h(u)h(v) since h is a morphism. Thus, the set g(w)
knows the element h(w). Second, h(wu′) = h(w)h(u′) since h is a morphism.
Hence, we can compute {(h(wu′), h(v′)) | w′ = u′v′} from g(w) and g(w′).
The argument for the other component is symmetric.

By the very definition of g, we obtain a morphism

g : Σ∗ → g(Σ∗).

In order to see that g recognizes L ·K consider u ∈ L ·K and v such that
we can write u =

∏

0≤i<n ui and v =
∏

0≤i<n vi with ui, vi ∈ Σ+ and
g(ui) = g(vi) for all 0 ≤ i < n. We have to show v ∈ L · K. We have
u ∈ L ·K = (L ∩ Σ∗) ·K. Hence, for some index j we can write uj = u′ju

′′
j

with (
∏

0≤i<j

ui

)

u′j ∈ L and u′′j

(
∏

j<i<n

ui

)

∈ K.

Now, g(ui) = g(vi) implies h(ui) = h(vi). Moreover, uj = u′ju
′′
j implies

(h(u′j), h(u
′′
j)) ∈ g(uj) = g(vj). Hence we can write vj = v′jv

′′
j with h(u′j) =

h(v′j) and h(u′′j) = h(v′′j). Therefore

(
∏

0≤i<j

vi

)

v′j ∈ L and v′′j

(
∏

j<i<n

vi

)

∈ K

and v ∈ L ·K, too.
It remains to show that the resulting monoid is indeed aperiodic. To

see this choose some n > 0 such that xn = xn+1 for all x ∈ M . Consider
any element g(w) ∈ g(Σ∗). We show that g(w)2n = g(w)2n+1. This is
straightforward:

g(w)2n = g(w2n) =
{
(h(wku), h(vwm))

∣
∣ w = uv, k +m = 2n− 1

}
.

If k+m = 2n−1 then either k ≥ n or m ≥ n. Hence, for each pair, we have
either (h(wku), h(vwm)) = (h(wk+1u), h(vwm)) or (h(wku), h(vwm)) =
(h(wku), h(vwm+1)). The result follows. q.e.d.

274 V. Diekert, P. Gastin

Proposition 6.2. We have SF ⊆ AP or more explicitly:

SF(Σ∗) ⊆ AP(Σ∗) and SF(Σ∞) ⊆ AP(Σ∞).

Proof. Aperiodic languages form a Boolean algebra. We have seen above
that AP contains Σ∗ and all singletons {a}, where a is a letter. Thus,
star-free languages are aperiodic by Lemma 6.1. q.e.d.

7 From LTL to FO3

The syntax of LTLΣ[XU,YS] is given by

ϕ ::= ⊥ | a | ¬ϕ | ϕ ∨ ϕ | ϕ XU ϕ | ϕ YS ϕ,

where a ranges over Σ. When there is no ambiguity, we simply write LTL
for LTLΣ[XU,YS]. We also write LTLΣ[XU] for the pure future fragment
where only the next-until modality XU is allowed.

In order to give a semantics to an LTL formula we identify each ϕ ∈
LTL with some first-order formula ϕ(x) in at most one free variable. The
identification is done by structural induction. ⊤ and ⊥ still denote the truth
value true and false, the formula a becomes a(x) = Pa(x). The formulae
neXt-Until and Yesterday-Since are defined by:

(ϕ XU ψ)(x) = ∃z : x < z ∧ ψ(z) ∧ ∀y : x < y < z → ϕ(y).

(ϕ YS ψ)(x) = ∃z : x > z ∧ ψ(z) ∧ ∀y : x > y > z → ϕ(y).

It is clear that each LTL formula becomes under this identification a
first-order formula which needs at most three different names for variables.
For simplicity let us denote this fragment by FO3, too. Thus, we can write
LTL ⊆ FO3.

As usual, we may use derived formulas such as Xϕ = ⊥XUϕ (read neXt

ϕ), ϕUψ = ψ ∨ (ϕ ∧ (ϕ XU ψ)) (read ϕ Until ψ), Fϕ = ⊤U ϕ (read Future

ϕ), etc.
Since LTL ⊆ FO3 a model of an LTLΣ formula ϕ is a word v =

a0a1a2 · · · ∈ A
∞ \ {ε} together with a position 0 ≤ i < |v| (the alphabet A

might be different from Σ).
For a formula ϕ ∈ LTLΣ and an alphabet A, we let

LA(ϕ) = {v ∈ A∞ \ {ε} | v, 0 |= ϕ}.

We say that a language L ⊆ A∞ is definable in LTLΣ if L \ {ε} = LA(ϕ)
for some ϕ ∈ LTLΣ. Note that the empty word ε cannot be a model of a
formula. To include the empty word, it will be convenient to consider for
any letter c (not necessarily in A), the language

Lc,A(ϕ) = {v ∈ A∞ | cv, 0 |= ϕ}.

First-order languages 275

Remark 7.1. When we restrict to the pure future fragment LTLΣ[XU] the
two approaches define almost the same class of languages. Indeed, for each
formula ϕ ∈ LTLΣ[XU], we have LA(ϕ) = Lc,A(Xϕ) \ {ε}. Conversely, for
each formula ϕ there is a formula ϕ such that LA(ϕ) = Lc,A(ϕ) \ {ε}. The
translation is simply ϕ XU ψ = ϕ U ψ, c = ⊤ and a = ⊥ if a 6= c, and as
usual ¬ϕ = ¬ϕ and ϕ ∨ ψ = ϕ ∨ ψ.

8 From AP to LTL

8.1 A construction on monoids

The passage from AP to LTL is perhaps the most difficult step in completing
the picture of first-order definable languages. We shall use an induction on
the size of the monoid M , for this we recall first a construction due to [5].

For a moment let M be any monoid and m ∈ M an element. Then
mM ∩ Mm is obviously a subsemigroup, but it may not have a neutral
element. Hence it is not a monoid, in general. Note that, if m 6= 1M and M
is aperiodic, then 1M 6∈ mM ∩Mm. Indeed, assume that 1M ∈ mM and
write 1M = mx with x ∈ M . Hence 1M = mnxn for all n, and for some
n ≥ 0 we have mn = mn+1. Taking this n we see:

1M = mnxn = mn+1xn = m(mnxn) = m1M = m.

Therefore |mM ∩Mm| < |M |, if M is aperiodic and if m 6= 1M .
It is possible to define a new product ◦ such that mM ∩Mm becomes

a monoid where m is a neutral element: We let

xm ◦my = xmy

for xm,my ∈ mM ∩Mm. This is well-defined since xm = x′m and my =
my′ imply xmy = x′my′. The operation is associative andm◦z = z◦m = z.
Hence (mM ∩Mm, ◦,m) is indeed a monoid. Actually it is a divisor of M .
To see this consider the submonoid N = {x ∈M | xm ∈ mM}. (Note that
N is indeed a submonoid of M .) Clearly, the mapping x 7→ xm yields
a surjective morphism from (N, ·, 1M) onto (mM ∩ Mm, ◦,m), which is
therefore a homomorphic image of the submonoid N of M . In particular, if
M is aperiodic, then (mM ∩Mm, ◦,m) is aperiodic, too. The construction
is very similar to a construction of what is known as local algebra, see [8, 20].
Therefore we call (mM ∩Mm, ◦,m) the local divisor of M at the element
m.

8.2 Closing the cycle

Proposition 8.1. We have AP ⊆ LTL. More precisely, let L ⊆ Σ∞ be a
language recognized by an aperiodic monoid M .

(1) We can construct a formula ϕ ∈ LTLΣ[XU] such that L \ {ε} = LΣ(ϕ).

276 V. Diekert, P. Gastin

(2) For any letter c (not necessarily in Σ), we can construct a formula
ϕ ∈ LTLΣ[XU] such that L = Lc,Σ(ϕ).

Proof. Note first that (1) follows from (2) by Remark 7.1. The proof of (2)
is by induction on (|M |, |Σ|) (with lexicographic ordering). Let h : Σ∗ →M
be a morphism to the aperiodic monoid M . The assertion of Proposition 8.1
is almost trivial if h(c) = 1M for all c ∈ Σ. Indeed, in this case, the set
L is a Boolean combination of the sets {ε}, Σ+ and Σω which are easily
definable in LTLΣ[XU]: we have {ε} = Lc,Σ(¬X⊤), Σ+ = Lc,Σ(XF¬X⊤)
and Σω = Lc,Σ(¬F¬X⊤). Note that when |M | = 1 or |Σ| = 0 then we
have h(c) = 1M for all c ∈ Σ and this special case ensures the base of the
induction.

In the following, we fix a letter c ∈ Σ such that h(c) 6= 1M and we let
A = Σ \ {c}. We define the c-factorization of a word v ∈ Σ∞. If v ∈ (A∗c)ω

then its c-factorization is v = v0cv1cv2c · · · with vi ∈ A
∗ for all i ≥ 0. If

v ∈ (A∗c)∗A∞ then its c-factorization is v = v0cv1c · · · vk−1cvk where k ≥ 0
and vi ∈ A

∗ for 0 ≤ i < k and vk ∈ A
∞.

Consider two new disjoint alphabets T1 = {h(u) | u ∈ A∗} and T2 =
{[u]h | u ∈ A

∞}. Let T = T1 ⊎ T2 and define the mapping σ : Σ∞ → T∞

by σ(v) = h(v0)h(v1)h(v2) · · · ∈ Tω1 if v ∈ (A∗c)ω and its c-factorization
is v = v0cv1cv2c · · · , and σ(v) = h(v0)h(v1) · · ·h(vk−1)[vk]h ∈ T

∗
1 T2 if v ∈

(A∗c)∗A∞ and its c-factorization is v = v0cv1c · · · vk−1cvk.

Lemma 8.2. Let L ⊆ Σ∞ be a language recognized by h. There exists
a language K ⊆ T∞ which is definable in LTLT [XU] and such that L =
σ−1(K).

Proof. We have seen that the local divisor M ′ = h(c)M ∩ Mh(c) is an
aperiodic monoid with composition ◦ and neutral element h(c). Moreover,
|M ′| < |M | since h(c) 6= 1M . Let us define a morphism g : T ∗ → M ′ as
follows. For m = h(u) ∈ T1 we define g(m) = h(c)mh(c) = h(cuc). For
m ∈ T2 we let g(m) = h(c), which is the neutral element in M ′.

Let K0 = {[u]h | u ∈ L∩A
∞} ⊆ T2. We claim that L∩A∞ = σ−1(K0).

One inclusion is clear. Conversely, let v ∈ σ−1(K0). There exists u ∈ L∩A∞

such that σ(v) = [u]h ∈ T2. By definition of σ, this implies v ∈ A∞ and
v ≈h u. Since u ∈ L and L is recognized by h, we get v ∈ L as desired.

For n ∈ T1 and m ∈ T2, let Kn,m = nT ∗1m ∩ n[n−1σ(L) ∩ T ∗1m]g and
let K1 =

⋃

n∈T1,m∈T2
Kn,m. We claim that L ∩ (A∗c)+A∞ = σ−1(K1).

Let first v ∈ L ∩ (A∗c)+A∞ and write v = v0cv1 · · · cvk its c-factorization.
With n = h(v0) and m = [vk]h we get σ(v) ∈ Kn,m. Conversely, let
v ∈ σ−1(Kn,m) with n ∈ T1 and m ∈ T2. We have v ∈ (A∗c)+A∞ and
its c-factorization is v = v0cv1 · · · cvk with k > 0, h(v0) = n and [vk]h =
m. Moreover, x = h(v1) · · ·h(vk−1)[vk]h ∈ [n−1σ(L) ∩ T ∗1m]g hence we
find y ∈ T ∗1m with g(x) = g(y) and ny ∈ σ(L). Let u ∈ L be such

First-order languages 277

that σ(u) = ny ∈ nT ∗1m. Then u ∈ (A∗c)+A∞ and its c-factorization is
u = u0cu1 · · · cuℓ with ℓ > 0, h(u0) = n and [uℓ]h = m. By definition
of g, we get h(cv1c · · · cvk−1c) = g(x) = g(y) = h(cu1c · · · cuℓ−1c). Using
h(v0) = n = h(u0) and [vk]h = m = [uℓ]h, we deduce that v ≈h u. Since
u ∈ L and L is recognized by h, we get v ∈ L as desired.

For n ∈ T1, letKn,ω = nTω1 ∩n[n−1σ(L)∩Tω1]g and letK2 =
⋃

n∈T1
Kn,ω.

As above, we shall show that L∩ (A∗c)ω = σ−1(K2). So let v ∈ L∩ (A∗c)ω

and consider its c-factorization v = v0cv1cv2 · · · . With n = h(v0), we get
σ(v) ∈ Kn,ω. To prove the converse inclusion we need some auxiliary results.

First, if x ∼g y ∼g z with x ∈ Tω and |y|T1 < ω then x ∼g z. Indeed,
in this case, we find factorizations x = x0x1x2 · · · and y = y0y1y2 · · · with
xi ∈ T

+, y0 ∈ T
+ and yi ∈ T

+
2 for i > 0 such that g(xi) = g(yi) for all

i ≥ 0. Similarly, we find factorizations z = z0z1z2 · · · and y = y′0y
′
1y
′
2 · · ·

with zi ∈ T
+, y′0 ∈ T

+ and y′i ∈ T
+
2 for i > 0 such that g(zi) = g(y′i) for all

i ≥ 0. Then, we have g(xi) = g(yi) = h(c) = g(y′i) = g(zi) for all i > 0 and
g(x0) = g(y0) = g(y′0) = g(z0) since y0 and y′0 contain all letters of y from
T1 and g maps all letters from T2 to the neutral element of M ′.

Second, if x ∼g y ∼g z with |y|T1 = ω then x ∼g y
′ ∼g z for some

y′ ∈ Tω1 . Indeed, in this case, we find factorizations x = x0x1x2 · · · and
y = y0y1y2 · · · with xi ∈ T+, and yi ∈ T ∗T1T

∗ such that g(xi) = g(yi)
for all i ≥ 0. Let y′i be the projection of yi to the subalphabet T1 and let
y′ = y′0y

′
1y
′
2 · · · ∈ T

ω
1 . We have g(yi) = g(y′i), hence x ∼g y

′. Similarly, we
get y′ ∼g z.

Third, if σ(u) ∼g σ(v) with u, v ∈ (A∗c)ω then cu ≈h cv. Indeed, since
u, v ∈ (A∗c)ω, the c-factorizations of u and v are of the form u1cu2c · · · and
v1cv2c · · · with ui, vi ∈ A

∗. Using σ(u) ∼g σ(v), we find new factorizations
u = u′1cu

′
2c · · · and v = v′1cv

′
2c · · · with u′i, v

′
i ∈ (A∗c)∗A∗ and h(cu′ic) =

h(cv′ic) for all i > 0. We deduce

cu = (cu′1c)u
′
2(cu

′
3c)u

′
4 · · · ∼h (cv′1c)u

′
2(cv

′
3c)u

′
4 · · · = cv′1(cu

′
2c)v

′
3(cu

′
4c) · · ·

∼h cv
′
1(cv

′
2c)v

′
3(cv

′
4c) · · · = cv.

We come back to the proof of σ−1(Kn,ω) ⊆ L ∩ (A∗c)ω. So let u ∈
σ−1(Kn,ω). We have u ∈ (A∗c)ω and σ(u) = nx ∈ nT ω1 with x ∈ [n−1σ(L)∩
Tω1]g. Let y ∈ Tω1 be such that x ≈g y and ny ∈ σ(L). Let v ∈ L with
σ(v) = ny. We may write u = u0cu

′ and v = v0cv
′ with u0, v0 ∈ A∗,

h(u0) = n = h(v0), u
′, v′ ∈ (A∗c)ω, x = σ(u′) and y = σ(v′). Since x ≈g y,

using the first two auxiliary results above and the fact that the mapping
σ : (A∗c)ω → Tω1 is surjective, we get σ(u′) ∼g σ(w1) ∼g · · · ∼g σ(wk) ∼g
σ(v′) for some w1, . . . , wk ∈ (A∗c)ω. From the third auxiliary result, we get
cu′ ≈h cv

′. Hence, using h(u0) = h(v0), we obtain u = u0cu
′ ≈h v0cv

′ = v.
Since v ∈ L and L is recognized by h, we get u ∈ L as desired.

278 V. Diekert, P. Gastin

Finally, let K = K0 ∪K1 ∪K2. We have already seen that L = σ−1(K).
It remains to show that K is definable in LTLT [XU]. Let N ⊆ T∞,
then, by definition, the language [N]g is recognized by g which is a mor-
phism to the aperiodic monoid M ′ with |M ′| < |M |. By induction on
the size of the monoid, we deduce that for all n ∈ T1 and N ⊆ T∞

there exists ϕ ∈ LTLT [XU] such that [N]g = Ln,T (ϕ). We easily check
that nLn,T (ϕ) = LT (n ∧ ϕ). Therefore, the language n[N]g is definable
in LTLT [XU]. Moreover, K0, nT

∗
1m and nTω1 are obviously definable in

LTLT [XU]. Therefore, K is definable in LTLT [XU]. q.e.d. (Lemma 8.2)

Let b ∈ Σ be a letter. For a nonempty word v = a0a1a2 · · · ∈ Σ∞ \ {ε}
and a position 0 ≤ i < |v|, we denote by µb(v, i) the largest factor of
v starting at position i and not containing the letter b except maybe ai.
Formally, µb(v, i) = aiai+1 · · ·aℓ where ℓ = max{k | i ≤ k < |v| and aj 6=
b for all i < j ≤ k}.

Lemma 8.3 (Lifting). For each formula ϕ ∈ LTLΣ[XU], there exists a
formula ϕb ∈ LTLΣ[XU] such that for each v ∈ Σ∞\{ε} and each 0 ≤ i < |v|,
we have v, i |= ϕb if and only if µb(v, i), 0 |= ϕ.

Proof. The construction is by structural induction on ϕ. We let ab = a.

Then, we have ¬ϕb = ¬ϕb and ϕ ∨ ψ
b

= ϕb ∨ ψ
b

as usual. For next-until,

we define ϕ XU ψ
b

= (¬b ∧ ϕb) XU (¬b ∧ ψ
b
).

Assume that v, i |= ϕ XU ψ
b
. We find i < k < |v| such that v, k |= ¬b∧ψ

b

and v, j |= ¬b∧ ϕb for all i < j < k. We deduce that µb(v, i) = aiai+1 · · · aℓ
with ℓ > k and that µb(v, i), k − i |= ψ and µb(v, i), j − i |= ϕ for all
i < j < k. Therefore, µb(v, i), 0 |= ϕ XU ψ as desired. The converse can be
shown similarly. q.e.d. (Lemma 8.3)

Lemma 8.4. For all ξ ∈ LTLT [XU], there exists a formula ξ̃ ∈ LTLΣ[XU]

such that for all v ∈ Σ∞ we have cv, 0 |= ξ̃ if and only if σ(v), 0 |= ξ.

Proof. The proof is by structural induction on ξ. The difficult cases are for
the constants m ∈ T1 or m ∈ T2.

Assume first that ξ = m ∈ T1. We have σ(v), 0 |= m if and only if
v = ucv′ with u ∈ A∗∩h−1(m). The language A∗∩h−1(m) is recognized by
the restriction h↾A : A∗ →M . By induction on the size of the alphabet, we
find a formula ϕm ∈ LTLA[XU] such that Lc,A(ϕm) = A∗ ∩ h−1(m). We let
m̃ = ϕm

c ∧ XF c. By Lemma 8.3, we have cv, 0 |= m̃ if and only if v = ucv′

with u ∈ A∗ and µc(cv, 0), 0 |= ϕm. Since µc(cv, 0) = cu, we deduce that
cv, 0 |= m̃ if and only if v = ucv′ with u ∈ Lc,A(ϕm) = A∗ ∩ h−1(m).

Next, assume that ξ = m ∈ T2. We have σ(v) |= m if and only if
v ∈ A∞ ∩ m (note that letters from T2 can also be seen as equivalence
classes which are subsets of Σ∞). The language A∞ ∩m is recognized by

First-order languages 279

the restriction h↾A. By induction on the size of the alphabet, we find a
formula ψm ∈ LTLA[XU] such that Lc,A(ψm) = A∞ ∩ m. Then, we let

m̃ = ψm
c
∧ ¬XF c and we conclude as above.

Finally, we let ¬̃ξ = ¬ξ̃, ξ̃1 ∨ ξ2 = ξ̃1∨ ξ̃2 and for the modality next-until

we define ˜ξ1 XU ξ2 = (¬c ∨ ξ̃1) U (c ∧ ξ̃2).
Assume that σ(v), 0 |= ξ1 XU ξ2 and let 0 < k < |σ(v)| be such that

σ(v), k |= ξ2 and σ(v), j |= ξ1 for all 0 < j < k. Let v0cv1cv2c · · · be
the c-factorization of v. Since the logics LTLT [XU] and LTLΣ[XU] are pure
future, we have σ(v), k |= ξ2 if and only if σ(vkcvk+1 · · ·), 0 |= ξ2 if and only

if (by induction) cvkcvk+1 · · · , 0 |= ξ̃2 if and only if cv, |cv0 · · · cvk−1| |= ξ̃2.

Similarly, σ(v), j |= ξ1 if and only if cv, |cv0 · · · cvj−1| |= ξ̃1. Therefore,

cv, 0 |= ˜ξ1 XU ξ2. The converse can be shown similarly. q.e.d. (Lemma 8.4)

We conclude now the proof of Proposition 8.1. We start with a language
L ⊆ Σ∞ recognized by h. By Lemma 8.2, we find a formula ξ ∈ LTLT [XU]

such that L = σ−1(LT (ξ)). Let ξ̃ be the formula given by Lemma 8.4.

We claim that L = Lc,Σ(ξ̃). Indeed, for v ∈ Σ∞, we have v ∈ Lc,Σ(ξ̃) if

and only if cv, 0 |= ξ̃ if and only if (Lemma 8.4) σ(v), 0 |= ξ if and only if
σ(v) ∈ LT (ξ) if and only if v ∈ σ−1(LT (ξ)) = L. q.e.d. (Proposition 8.1)

9 The separation theorem

As seen in Section 7, an LTLΣ[YS,XU] formula ϕ can be viewed as a first-
order formula with one free variable. The converse, in a stronger form, is
established in this section.

Proposition 9.1. For all first-order formulae ξ in one free variable we
find a finite list (Ki, ai, Li)i=1,...,n where each Ki ∈ SF(Σ∗) and each Li ∈
SF(Σ∞) and ai is a letter such that for all u ∈ Σ∗, a ∈ Σ and v ∈ Σ∞ we
have

(uav, |u|) |= ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

Proof. By Proposition 4.2, with V = {x} we have [[ξ]]V ∈ SF(Σ∞
V). Hence,

we can use Lemma 3.2 with A = Σx=1
V and B = Σx=0

V . Note that NV =
B∗AB∞. Hence, we obtain

[[ξ]]V =
⋃

i=1,...,n

K ′
i · a

′
i · L

′
i

with a′i ∈ A, K ′
i ∈ SF(B∗) and L′i ∈ SF(B∞) for all i. Let π : B∞ → Σ∞ be

the bijective renaming defined by π(a, τ) = a. Star-free sets are preserved
by injective renamings. Hence, we can choose Ki = π(K ′

i) ∈ SF(Σ∗) and
Li = π(L′i) ∈ SF(Σ∞). Note also that a′i = (ai, 1) for some ai ∈ Σ. q.e.d.

280 V. Diekert, P. Gastin

Theorem 9.2 (Separation). Let ξ(x) ∈ FOΣ(<) be a first-order formula
with one free variable x. Then, ξ(x) = ζ(x) for some LTL formula ζ ∈
LTLΣ[YS,XU]. Moreover, we can choose for ζ a disjunction of conjunctions
of pure past and pure future formulae:

ζ =
∨

1≤i≤n

ψi ∧ ai ∧ ϕi

where ψi ∈ LTLΣ[YS], ai ∈ Σ and ϕi ∈ LTLΣ[XU]. In particular, every
first-order formula with one free variable is equivalent to some formula in
FO3.

Note that we have already established a weaker version which applies
to first-order sentences. Indeed, if ξ is a first-order sentence, then L(ϕ) is
star-free by Proposition 10.3, hence aperiodic by Proposition 6.2, and finally
definable in LTL by Proposition 8.1. The extension to first-order formulae
with one free variable will also use the previous results.

Proof. By Proposition 9.1 we find for each ξ a finite list (Ki, ai, Li)i=1,...,n

where each Ki ∈ SF(Σ∗) and each Li ∈ SF(Σ∞) and ai is a letter such
that for all u ∈ Σ∗, a ∈ Σ and v ∈ Σ∞ we have

(uav, |u|) |= ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

For a finite word b0 · · · bm where bj are letters we let
←−−−−−
b0 · · · bm = bm · · · b0.

This means we read words from right to left. For a language K ⊆ Σ∗

we let
←−
K = {←−w | w ∈ K}. Clearly, each

←−
Ki is star-free. Therefore, using

Propositions 6.2 and 8.1, for each 1 ≤ i ≤ n we find ψ̂i and ϕi ∈ LTLΣ[XU]

such that Lai
(ψ̂i) =

←−
Ki and Lai

(ϕi) = Li. Replacing all operators XU by YS

we can transform ψ̂i ∈ LTLΣ[XU] into a formula ψi ∈ LTLΣ[YS] such that

(a←−w , 0) |= ψ̂i if and only if (wa, |w|) |= ψi for all wa ∈ Σ+. In particular,
Ki = {w ∈ Σ∗ | wai, |w| |= ψi}.

It remains to show that ξ(x) = ζ(x) where ζ =
∨

1≤i≤n ψi ∧ ai ∧ϕi. Let
w ∈ Σ∞ \ {ε} and p be a position in w.

Assume first that (w, p) |= ξ(x) and write w = uav with |u| = p. We
have u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n. We deduce that
uai, |u| |= ψi and aiv, 0 |= ϕi. Since ψi is pure past and ϕi is pure future,
we deduce that uaiv, |u| |= ψi ∧ ai ∧ ϕi. Hence we get w, p |= ζ.

Conversely, assume that w, p |= ψi ∧ ai ∧ ϕi for some i. As above, we
write w = uaiv with |u| = p. Since ψi is pure past and ϕi is pure future, we
deduce that uai, |u| |= ψi and aiv, 0 |= ϕi. Therefore, u ∈ Ki and v ∈ Li.
We deduce that (w, p) |= ξ(x). q.e.d.

First-order languages 281

10 Variations

This section provides an alternative way to establish the bridge from first-
order to star freeness and an alternative proof for Theorem 9.2.

There is a powerful tool to reason about first-oder definable languages
which we did not discuss: Ehrenfeucht-Fräıssé-games. These games lead to
an immediate proof of a congruence lemma, which is given in Lemma 10.2
below. On the other hand, in our context, it would be the only place where
we could use the power of Ehrenfeucht-Fräıssé-games, therefore we skip this
notion and we use Lemma 10.1 instead.

Before we continue we introduce a few more notations. The quantifier

depth qd(ϕ) of a formula ϕ is defined inductively. For the atomic formulae
⊥, P , and x < y it is zero, the use of the logical connectives does not
increase it, it is the maximum over the operands, but adding a quantifier
in front increases the quantifier depth by one. For example, the following
formula in one free variable y has quantifier depth two:

∀x (∃y P (x) ∧ ¬P (y)) ∨ (∃z P (z) ∧ (x < z) ∨ (z < y))

By FOm,k we mean the set of all formulae of quantifier depth at most
m and where the free variables are in the set {x1, . . . , xk}, and FOm is a
short-hand of FOm,0; it is the set of sentences of quantifier-depth at most
m.

We say that formulae ϕ, ψ ∈ FOm,k are equivalent if L(ϕ) = L(ψ) (for all
Σ). Since the set of unary predicates is finite, there are, up to equivalence,
only finitely many formulae in FOm,k as soon as k and m are fixed. This
is true for m = 0, because over any finite set of formulae there are, up to
equivalence, only finitely many Boolean combinations. For m > 0 we have,
by induction, only finitely many formulae of type ∃xk+1 ϕ where ϕ ranges
over FOm−1,k+1. A formula in FOm,k is a Boolean combination over such
formulae, as argued for m = 0 there are only finitely many choices.

10.1 The congruence lemma

Recall that Σ∞
(k) means the set of pairs (w, p), where w ∈ Σ∞ is a finite or

infinite word and p = (p1, . . . , pk) is a k-tuple of positions in pos(w). If we
have (u, p) ∈ Σ∗

(k) and (v, q) ∈ Σ∞
(ℓ), then we can define the concatenation

in the natural way by shifting q:

(u, p) · (v, q) = (uv, p1, . . . , pk, |u|+ q1, . . . , |u|+ qℓ) ∈ Σ∞
(k+ℓ).

For each k and m and (w, p) ∈ Σ∞
(k) we define classes as follows:

[(w, p)]m,k =
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ).

282 V. Diekert, P. Gastin

For k = 0 we simply write [w]m,0. Since qd(ϕ) = qd(¬ϕ) and L(¬ϕ) =
Σ∞

(k) \ L(ϕ) we obtain

[(w, p)]m,k =
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ)

=
⋂

ϕ∈FOm,k|(w,p)|=ϕ

L(ϕ) \
⋃

ϕ∈FOm,k|(w,p) 6|=ϕ

L(ϕ).

Note that (u′, p′) ∈ [(u, p)]m,k if and only if (u, p) |= ϕ⇐⇒ (u′, p′) |= ϕ for
all ϕ ∈ FOm,k if and only if [(u′, p′)]m,k = [(u, p)]m,k.

Lemma 10.1. Let [(u, p)]m,k = [(u′, p′)]m,k with m ≥ 1, p = (p1, . . . , pk),
and p′ = (p′1, . . . , p

′
k). Then for all positions pk+1 ∈ pos(u) there exists a

position p′k+1 ∈ pos(u′) such that

[(u, (p1, . . . , pk+1))]m−1,k+1 = [(u′,
(
p′1, . . . , p

′
k+1

)
)]m−1,k+1.

Proof. Choose some pk+1 ∈ pos(u). We are looking for a position p′k+1 ∈
pos(u′) such that for all ψ ∈ FOm−1,k+1 we have (u, (p1, . . . , pk+1)) |= ψ if
and only if (u′,

(
p′1, . . . , p

′
k+1

)
) |= ψ.

Consider the following finite (up to equivalence) conjunction:

Ψ =
∧

ψ∈FOm−1,k+1|(u,(p1,...,pk+1))|=ψ

ψ.

We have (u, (p1, . . . , pk+1)) |= Ψ, qd(∃xk+1Ψ) ≤ m and (u, p) |= ∃xk+1Ψ.
Hence (u′, p′) |= ∃xk+1Ψ; and therefore there is some p′k+1 ∈ pos(u′) such

that (u′,
(
p′1, . . . , p

′
k+1

)
) |= Ψ.

Finally, for each ψ ∈ FOm−1,k+1, either Ψ implies ψ or Ψ implies
¬ψ, because either (u, (p1, . . . , pk+1)) |= ψ or (u, (p1, . . . , pk+1)) |= ¬ψ.
Hence, if (u, (p1, . . . , pk+1)) |= ψ, then (u′,

(
p′1, . . . , p

′
k+1

)
) |= ψ, too. If

(u, (p1, . . . , pk+1)) |= ¬ψ, then (u′,
(
p′1, . . . , p

′
k+1

)
) |= ¬ψ, too. The result

follows. q.e.d.

The next lemma is known as congruence lemma.

Lemma 10.2. Let [(u, p)]m,k = [(u′, p′)]m,k and [(v, q)]m,ℓ = [(v′, q′)]m,ℓ,
where u and u′ are finite words. Then we have

[(u, p) · (v, q)]m,k+ℓ = [(u′, p′) · (v′, q′)]m,k+ℓ.

Proof. We have to show that for all ϕ ∈ FOm,k we have (u, p) · (v, q) |= ϕ
if and only if (u′, p′) · (v′, q′) |= ϕ. Since we get Boolean combinations for
free, we may assume that ϕ is of the form ∃xk+1ψ or an atomic formula.

First-order languages 283

If ϕ = P (xi) and i ≤ k, then we have (u, p) · (v, q) |= P (xi) if and only
if (u, p) |= P (xi) and the result follows. The case i > k is symmetric.

If ϕ = xi < xj , assume first i ≤ k. If, in addition, j > k, then (u, p) ·
(v, q) |= xi < xj is true, otherwise i, j ≤ k and we see that (u, p) · (v, q) |=
xi < xj if and only if (u, p) |= xi < xj . The case i > k is similar.

It remains to deal with ϕ = ∃xk+1ψ. Assume (u, p) ·(v, q) |= ϕ. We have
to show that (u′, p′) · (v′, q′) |= ϕ. Assume first that there is some position
pk+1 ∈ pos(u) such that

(u, (p1, . . . , pk+1)) · (v, q) |= ψ.

By Lemma 10.1 there is some position p′k+1 ∈ pos(u′) such that

[(u, (p1, . . . , pk+1))]m−1,k+1 = [(u′,
(
p′1, . . . , p

′
k+1

)
)]m−1,k+1.

We have qd(ψ) ≤ m− 1, hence by induction on m we deduce

(u′,
(
p′1, . . . , p

′
k+1

)
) · (v′, q′) |= ψ

This in turn implies

(u′, p′) · (v′, q′) |= ∃xk+1ψ.

The case where (u, p) · (v, (q1, . . . , qℓ+1)) |= ψ for some position qℓ+1 in v is
similar. q.e.d.

10.2 From FO to SF and separation via the congruence lemma

It is convenient to define a dot-depth hierarchy. The Boolean combinations
of Σ∗ are of dot-depth zero. In order to define the m-th level of the dot-
depth hierarchy, m ≥ 1, one forms the Boolean closure of the languages
K · a ·L, where a ∈ Σ and K,L are of level at most m− 1. Note that there
are only finitely many languages of level m.

Proposition 10.3. Let m ≥ 0 and ϕ ∈ FOm be a sentence with quantifier-
depth at most m. Then we find a star-free language L of level at most m
in the dot-depth hierarchy such that L(ϕ) = L.

Proof. We perform an induction on m. The case m = 0 is trivial since the
only sentences are ⊤ and ⊥. Hence let m > 0. By definition,

[w]m−1,0 =
⋂

ψ∈FOm−1|w|=ψ

L(ψ).

By induction on m we may assume that [w]m−1,0 is star-free of dot-depth
m− 1. Consider next a sentence ϕ ∈ FOm. We want to show that L(ϕ) is

284 V. Diekert, P. Gastin

of dot-depth m. Languages of dot-depth m form a Boolean algebra, thus by
structural induction it is enough to consider a sentence ϕ = ∃xψ. Consider
the following union:

T =
⋃

(uav,|u|)|=ψ

[u]m−1,0 · a · [v]m−1,0.

Since [u]m−1,0 and [v]m−1,0 are star-free sets of dot-depth m− 1, there are
finitely many sets [u]m−1,0 · a · [v]m−1,0 in the union above. In fact, it is a
star-free expression of dot-depth m.

It remains to show that L(ϕ) = T . Let w ∈ L(ϕ) = L(∃xψ). We find a
position in w and a factorization w = uav such that (uav, |u|) |= ψ. Since
u ∈ [u]m−1,0 and v ∈ [v]m−1,0, we have uav ∈ T , hence L(ϕ) ⊆ T .

The converse follows by a twofold application of the congruence lemma
(Lemma 10.2): Indeed, let u′ ∈ [u]m−1,0 and v′ ∈ [v]m−1,0 then

[(u′a, |u′|)]m−1,1 = [(u′) · (a, 0)]m−1,1

= [(u) · (a, 0)]m−1,1 = [(ua, |u|)]m−1,1

[(u′av′, |u′|)]m−1,1 = [(u′a, |u′|) · (v′)]m−1,1

= [(ua, |u|) · (v)]m−1,1 = [(uav, |u|)]m−1,1.

Therefore, (uav, |u|) |= ψ implies (u′av′, |u′|) |= ψ and this implies u′av′ |=
∃xψ. Thus, T ⊆ L(Ψ). q.e.d.

The congruence lemma yields an alternative way to show Proposition 9.1
(and hence the separation theorem, Theorem 9.2) too.

Proof of Proposition 9.1 based on Lemma 10.2. Let qd(ξ) = m for some
m ≥ 0. As in the proof of Proposition 10.3 define a language:

T =
⋃

(uav,|u|)|=ξ

[u]m,0 · a · [v]m,0.

The union is finite and the classes [u]m,0 ∩ Σ∗ and [v]m,0 are first-order
definable. First-order definable languages are star-free by Proposition 10.3.
Thus, we can rewrite T as desired:

T =
⋃

i=1,...,n

Ki · ai · Li.

Moreover, the proof of Proposition 10.3 has actually shown that (uav, |u|) |=
ξ if and only if u ∈ Ki, a = ai and v ∈ Li for some 1 ≤ i ≤ n.

For convenience, let us repeat the argument. If (uav, |u|) |= ξ, then we
find an index i such that u ∈ Ki, a = ai, and v ∈ Li. For the converse, let

First-order languages 285

u′ ∈ Ki, a
′ = ai, and v′ ∈ Li for some i. We have to show (u′a′v, |u′|) |= ξ.

By definition of T , we have u′ ∈ Ki = [u]m,0 ∩ Σ∗, a′ = a, and v′ ∈ Li =
[v]m,0 for some (uav, |u|) |= ξ. The congruence lemma (Lemma 10.2) applied
twice yields:

[(a′v′, 0)]m,1 = [(a′, 0) · (v′)]m,1 = [(a, 0) · (v)]m,1 = [(av, 0)]m,1.

[(u′a′v′, |u′|)]m,1 = [(u′) · (a′v′, 0)]m,1 = [(u) · (av, 0)]m,1 = [(uav, |u|)]m,1.

We deduce (u′a′v, |u′|) |= ξ. q.e.d.

11 Counter-free and aperiodic Büchi automata

There is a standard way to introduce recognizable languages with finite
automata. Since we deal with finite and infinite words we use Büchi au-
tomata with two acceptance conditions, one for finite words and the other
for infinite words. A Büchi automaton is given as a tuple

A = (Q,Σ, δ, I, F,R),

where Q is a finite set of states and δ is a relation:

δ ⊆ Q× Σ×Q.

The set I ⊆ Q is called the set of initial states, the sets F,R ⊆ Q consist of
final and repeated states respectively.

If δ is the graph of a partially defined function from Q× Σ to Q and if
in addition |I| ≤ 1, then the automaton is called deterministic.

A path means in this section a finite or infinite sequence

π = p0, a0, p1, a1, p2, a2, . . .

such that (pi, ai, pi+1) ∈ δ for all i ≥ 0. We say that the path is accepting,
if it starts in an initial state p0 ∈ I and either it is finite and ends in a
final state from F or it is infinite and visits infinitely many repeated states
from R. The label of the above path π is the word u = a0a1a2 · · · ∈ Σ∞.
The language accepted by A is denoted by L(A) and is defined as the set
of words which appear as label of an accepting path. We have L(A) ⊆ Σ∞.
Languages of the form L(A) are called regular or regular ω-languages, if
L(A) ⊆ Σω

McNaughton and Papert have introduced the classical notion of a coun-

ter-free deterministic finite automaton, [19]. They showed that counter-
freeness captures star-freeness (hence aperiodicity) for languages over finite
words. Our aim is to give a natural notion of counter-freeness for non
deterministic (Büchi) automata such that a language L ⊆ Σ∞ is aperiodic
if and only if it can be accepted by a counter-free Büchi automaton. To

286 V. Diekert, P. Gastin

the best of our knowledge, all previous extensions to infinite words used
deterministic automata.

If p, q ∈ Q are states of A, then we let Lp,q be the set of labels of finite
paths from p to q.

Definition 11.1. A Büchi automaton A = (Q,Σ, δ, I, F,R) is called coun-

ter-free, if um ∈ Lp,p implies u ∈ Lp,p for all states p ∈ Q, words u ∈ Σ∗,
and m ≥ 1.

Note that the definition is taking only the underlying transition relation
δ into account, but does not depend on the sets I, F , or R. For deterministic
automata counter-freeness coincides with the standard notion as introduced
in [19]. We start with the classical result of [19] on finite words.

Lemma 11.2. Let L ⊆ Σ∗ be a language of finite words recognized by a
morphism h from Σ∗ to some finite aperiodic monoid M . Then the minimal
deterministic automaton recognizing L is counter-free.

Proof. The states of the minimal deterministic automaton recognizing L
can be written as

L(u) = u−1L = {w ∈ Σ∗ | uw ∈ L}

with u ∈ Σ∗ and all transitions have the form (L(u), a, L(ua)). Assume that
L(uvm) = L(u) for some m ≥ 1. Then we can take m as large as we wish
and since M is aperiodic we may assume that xm+1 = xm for all x ∈ M .
Since h recognizes L, we deduce that uvmw ∈ L if and only if uvm+1w ∈ L
for all w ∈ Σ∗, i.e., L(uvm) = L(uvm+1). Using L(uvm) = L(u) we obtain,

L(u) = L(uvm) = L(uvm+1) = L((uvm)v) = L(uv).

Hence, the automaton is counter-free. q.e.d.

Lemma 11.3. Let L ⊆ Σ∗ and L′ ⊆ Σ∞ be accepted by counter-free
automata. Then L · L′ can be accepted by some counter-free automaton.

Proof. Trivial, just consider a usual construction showing that regular lan-
guages are closed under concatenation. Essentially, the new automaton is
the disjoint union of the two automata with additional transitions allowing
to switch from the first one to the second one. Therefore, a loop in the
new automaton is either a loop in the first one or a loop in the second one.
Thus, we have no new loops and hence the result. q.e.d.

Proposition 11.4. Let L ⊆ Σ∞ be recognized by a morphism h : Σ∗ →M
to some finite aperiodic monoid M . Then we find a counter-free Büchi
automaton A with L = L(A).

First-order languages 287

Proof. By Remark 5.3 we can write L as a finite union of languages of type
UV ω, where U and V are aperiodic languages of finite words and where
moreover V = h−1(e) for some idempotent e ∈M . By a simple construction
on monoids we may actually assume that h−1(1) = {ε} and then in turn
that e 6= 1. Hence without restriction we have V ⊆ Σ+. The union of
two counter-free Büchi automata is counter-free and recognizes the union
of the accepted languages. Therefore we content to construct a counter-free
Büchi automaton for the language UV ω. By Lemmata 11.2 and 11.3 it is
enough to find a counter-free automaton for V ω. The trick is that V ω can
be accepted by some deterministic Büchi automaton. Define the witness W
by

W = V · (V \ V Σ+).

The language W is aperiodic. By Lemma 11.2, its minimal automaton A =
(Q,Σ, δ, I, F,∅) is counter-free. View this automaton as a deterministic
Büchi automaton A′ = (Q,Σ, δ, I,∅, F) where final states are now repeated
states. (It is also counter-free according to Definition 11.1, because it is
deterministic.)

The automaton A′ accepts those infinite strings where infinitely many
prefixes are in W . We want to show that this coincides with V ω. Clearly,
w ∈ V ω implies that w has infinitely many prefixes in W . We show that the
converse holds, too. Let w ∈ Σω and wi be a list of infinitely many prefixes
in W . For each wi choose some factorization wi = uivi with ui ∈ V and
vi ∈ V \ V Σ+. Note there might be several such factorizations. However,
if wi 6= wj , then we cannot have ui = uj, because otherwise vi is a strict
prefix of vj or vice versa. Thus, we find infinitely many ui and by switching
to some infinite subsequence we may assume

u1 < u1v1 < u2 < u2v2 < u3 < u3v3 · · ·

where ≤ means the prefix relation. For all i we can write ui+1 = uiviv
′
i. We

have

e = h(ui+1) = h(uiviv
′
i) = e · e · h(v′i) = e · h(v′i) = h(vi) · h(v

′
i) = h(viv

′
i).

Hence
w = u1(v1v

′
1)(v2v

′
2)(v3v

′
3) · · · ∈ V

ω.

Therefore, V ω is accepted by the counter-free Büchi automaton A′. q.e.d.

To prove that conversely, a language accepted by a counter-free Büchi
automaton is aperiodic, we shall use a weaker notion. The following defini-
tion coincides with the one given in [16, Definition 3.1] for non-deterministic
finite automata in the context of finite transducers.

288 V. Diekert, P. Gastin

1 2
a

a
a

Figure 1. The non-deterministic Büchi automaton A1

Definition 11.5. A Büchi automaton A = (Q,Σ, δ, I, F,R) is called aperi-

odic, if for some m ≥ 1 we have:

um ∈ Lp,q ⇐⇒ um+1 ∈ Lp,q

for all states p, q ∈ Q and words u ∈ Σ∗.

Lemma 11.6. Let A be a Büchi automaton.

1. If A is counter-free, then A is aperiodic.

2. If A is deterministic and aperiodic, then A is counter-free.

Proof. 1. Let um+1 ∈ Lp,q. If m is large enough, we find m+1 = k1 + ℓ+k2

with ℓ ≥ 2 and a state s such that uk1 ∈ Lp,s, u
ℓ ∈ Ls,s, and uk2 ∈ Ls,q.

Since the automaton is counter-free, we obtain u ∈ Ls,s and therefore um ∈
Lp,q. Similarly, we can show that um ∈ Lp,q implies um+1 ∈ Lp,q.

2. Let um ∈ Lp,p for some m ≥ 1. Then um ∈ Lp,p for m as large
as we wish. Since the automaton is aperiodic we have um, um+1 ∈ Lp,p for
some m large enough. Since the automaton is deterministic, we deduce that
u ∈ Lp,p, too. q.e.d.

Remark 11.7. Consider the non-deterministic Büchi automatonA1 of Fig-
ure 1 which accepts {aω}. The automaton A1 is aperiodic, but not coun-
ter-free.

The transformation monoid T (A) of A is realized as a submonoid of
Boolean matrices. More precisely, let A have n states. We consider the
monoid B

n×n of n × n matrices over the finite commutative semiring B =
{0, 1} with max as addition and the natural multiplication as product. For
every word u we define a matrix t(u) ∈ B

n×n by:

t(u)[p, q] = 1 ⇐⇒ u ∈ Lp,q.

The mapping t : Σ∗ → B
n×n is a monoid morphism, because t(ε) is the

identity matrix and we have for all u, v ∈ Σ∗:

t(u · v)[p, q] =
∑

r∈Q

t(u)[p, r] · t(v)[r, q].

The transition monoid of A is T (A) = t(Σ∗) ⊆ B
n×n.

First-order languages 289

1 2 345
a a

b

bb

a

Figure 2. The deterministic and counter-free Büchi automaton A2

Remark 11.8. In terms of the transition monoid, Definition 11.5 says that
a Büchi automaton A is aperiodic if and only if the monoid T (A) is aperi-
odic.

The problem is that the morphism t to the transition monoid of A does
not recognizeL(A), in general. Indeed consider the deterministic automaton
A2 on Figure 2 where the only repeated state is 2. The automaton accepts
the language

L = {w ∈ {aab, bba}ω | the factor aa appears infinitely often} .

Consider the matrix t(aab) for which all entries are 0 except t(aab)[1, 1] = 1.
We have t(aab) = t(bba), but (aab)ω ∈ L and (bba)ω 6∈ L. Thus t does not
recognize L.

It is therefore somewhat surprising that aperiodicity of T (A) implies
that L(A) is an aperiodic language. This is proved in Proposition 11.11,
below.

We still need another concept. In Büchi’s original proof that regular
ω-languages are closed under complementation (see [3]) he used a finer con-
gruence than given by the morphism t. To reflect this, we switch from the
Boolean semiring B to the finite commutative semiring K = {0, 1,∞}. The
semiring structure of K is given by x + y = max {x, y} and the natural
multiplication with the convention 0 · ∞ = 0.

In order to take repeated states into account we let Rp,q ⊆ Lp,q be the
set of labels of nonempty and finite paths from p to q, which use a repeated

state at least once. For every word u we define a matrix h(u) ∈ Kn×n by:

h(u)[p, q] =







0 if u 6∈ Lp,q,

1 if u ∈ Lp,q \Rp,q,

∞ if u ∈ Rp,q.

For the Büchi automaton A2 in Figure 2 we have h(aab)[1, 1] =∞, whereas
h(bba)[1, 1] = 1. For all other entries we have h(aab)[p, q] = h(bba)[p, q] = 0.

Note that h(ε) is the identity matrix. In the semiring Kn×n we have as
usual:

h(u · v)[p, q] =
∑

r∈Q

h(u)[p, r] · h(v)[r, q].

290 V. Diekert, P. Gastin

Hence, h : Σ∗ → Kn×n is a monoid morphism and we can check easily
that h recognizes L(A). The submonoid BT (A) = h(Σ∗) ⊆ Kn×n is called
either Büchi’s transition monoid of A or the ω-transition monoid of A. We
obtain Büchi’s result [3]:

Proposition 11.9. For every Büchi automaton A the morphism h : Σ∗ →
BT (A) onto the ω-transition monoid of A recognizes L(A).

Corollary 11.10. A language in L ⊆ Σ∞ can be accepted by some Büchi
automaton if and only if it can be recognized by some morphism to some
finite monoid.

Proof. Proposition 11.9 gives one direction. Conversely, assume that L is
recognized by a morphism h from Σ∗ to some finite monoid M . By Re-
mark 5.3, L is a finite union of languages of type UV ω , where U, V ⊆ Σ∗

are recognized by h. These sets are accepted by finite deterministic au-
tomata with M as set of states. Standard constructions on Büchi automata
for union, concatenation, and ω-power yield the result. q.e.d.

It also follows that regular ω-languages are closed under complemen-
tation, since recognizable languages are closed under complementation by
definition (as they are unions of equivalence classes).

Proposition 11.11. Let L ⊆ Σ∞ a language. The following are equivalent.

1. There is a counter-free Büchi automaton A with L = L(A).

2. There is an aperiodic Büchi automaton A with L = L(A).

3. The language L is aperiodic.

Proof. 1⇒ 2: Trivial by Lemma 11.6.1.
2 ⇒ 3: Let A have n states and consider Büchi’s morphism h : Σ∗ →

Kn×n as above. We show that the submonoid BT (A) = h(Σ∗) ⊆ Kn×n

is aperiodic. More precisely, we show for all states p, q and words u that
h(u2m)[p, q] = h(u2m+1)[p, q] as soon as m large enough.

Since the automaton is aperiodic we find a suitable m with um ∈ Lp,q if
and only if um+1 ∈ Lp,q for all states p, q and words u. We immediately get

h(u2m)[p, q] ≥ 1 ⇐⇒ h(u2m+1)[p, q] ≥ 1.

Assume now that h(u2m)[p, q] =∞. Then for some r we have h(u2m)[p, q] =
h(um)[p, r] · h(um)[r, q] and by symmetry we may assume h(um)[r, q] =
∞ and h(um)[p, r] 6= 0. This implies h(um+1)[p, r] 6= 0 and therefore
h(u2m+1)[p, q] = h(um+1)[p, r] · h(um)[r, q] = ∞. Similarly, we can show
that h(u2m+1)[p, q] =∞ implies h(u2m)[p, q] =∞.

First-order languages 291

1 2 3
a

a

a

a
a

Figure 3. Aperiodicity does not imply counter-freeness for minimal size
NFA.

Thus we have seen that h(u2m)[p, q] = h(u2m+1)[p, q] for all u ∈ Σ∗ and
all states p, q. This shows that L is recognized by some aperiodic monoid
(of size at most 3n

2

).
3⇒ 1: This is the contents of Proposition 11.4. q.e.d.

The automaton A2 above is counter-free, and this notion does not de-
pend on final or repeated states. In particular, the languages {aab, bba}ω

and {aab, bba}
∗

are further examples of aperiodic languages.
We conclude this section with several remarks concerning counter-free-

ness for Büchi automata.

Remark 11.12. If L ⊆ Σ∞ is aperiodic, then we actually find some Büchi
automaton A with L = L(A), where for all states p ∈ Q, words u ∈ Σ∗, and
m ≥ 1 the following two conditions hold:

1. If um ∈ Lp,p, then u ∈ Lp,p.

2. If um ∈ Rp,p, then u ∈ Rp,p.

This is true, because all crucial constructions in the proof of Proposition 11.4
were done for deterministic automata. If an automaton is deterministic,
then Condition 1 implies Condition 2, because if um ∈ Rp,p and u ∈ Lp,p,
then the path labeled by um from p to p visits the same states as the
path labeled by u from p to p. For non-deterministic automata the second
condition is a further restriction of counter-free automata.

Remark 11.13. For finite words, counter-freeness of the minimal automa-
ton of a language L ⊆ Σ∗ characterizes aperiodicity of L. There is no
canonical minimal Büchi automaton for languages of infinite words, but we
may ask whether counter-freeness of a non-deterministic automaton of min-
imal size also characterizes aperiodicity. The answer is negative. Indeed,
consider the language L =

{
ε, a2

}
∪ a4a∗ which is aperiodic and accepted

by the 3-state automaton in Figure 3. This automaton is not counter-free
since a2 ∈ L1,1 but a /∈ L1,1. We can check that L cannot be accepted by a
2-state automaton.

Remark 11.14. Let A = (Q,Σ, δ, I) be a non-deterministic automaton
and let B = (2Q,Σ, δB, {I}) be its (deterministic) subset automaton. Note

292 V. Diekert, P. Gastin

1 2 3
a, b a

a

a, b b

Figure 4. The Büchi automaton A accepting Σ+{a2, b}ω.

that, in this definition, we do not restrict to the accessible subsets from
I. First, we prove that if A is counter-free, then so is B. Assume that
δ(X,um) = X for some X ⊆ Q, u ∈ Σ+ and m > 0. Then, for each p ∈ X
we find some p′ ∈ X with p ∈ δ(p′, um). Iterating these backward paths, we
find q ∈ X such that

q
ujm

−−→ q
ukm

−−−→ p

Since A is counter-free, it follows q
u
−→ q. Hence, p ∈ δ(X,u1+km) = δ(X,u).

We have proved X ⊆ δ(X,u). It follows by induction that δ(X,u) ⊆
δ(X,um) = X . Therefore, B is counter-free.

Next, we show that if B is counter-free thenA is aperiodic. Let x ∈ T (A)
be in the transition monoid of A: x = t(u) for some u ∈ Σ∗. We have
xm = xm+k for some m, k > 0. Let X = xm(Q) = δ(Q, um). Since
xm = xm+k we have δ(X,uk) = X and we deduce δ(X,u) = X since B
is counter-free. Therefore, xm = xm+1 and we have shown that T (A) is
aperiodic.

Therefore, counter-freeness of the full subset automaton is another suf-
ficient condition for aperiodicity. But, for this to hold over infinite words,
it is important not to restrict to the subsets accessible from I. Indeed, let
Σ = {a, b} with a 6= b and consider the language:

L = Σ+{a2, b}ω.

The non-deterministic 3-state Büchi automaton A in Figure 4 accepts L
with I = {1}, F = ∅ and R = {2} (an easy exercise shows that there
is no deterministic Büchi automaton accepting L). The subset automaton
restricted to the subsets reachable from {1} is depicted in Figure 5. This
automaton is counter-free, but L is not aperiodic.

12 Deciding aperiodicity in polynomial space

This section is devoted to a construction which shows that aperiodicity is
decidable (in polynomial space) for recognizable languages. Thus, all prop-
erties mentioned in Theorem 1.1 are decidable for a regular ∞-languages.

Our aim is an optimal algorithm in a complexity theoretical meaning,
and the best we can do is to find a polynomial space bounded algorithm.

First-order languages 293

{1} {1, 2} {1, 2, 3}
a, b a

b

b a

Figure 5. The subset automaton B of A restricted to reachable states.

This is indeed optimal, because PSPACE-hardness is known by [4]. It should
be noted that our PSPACE-upper bound is not a formal consequence of
[29] or any other reference we are aware of, because [29] deals only with
deterministic automata over finite words. Moreover, our approach is not
based on the syntactic congruence of Arnold [1]. Instead we start with
any recognizing morphism and we consider its maximal aperiodic quotient.
We check whether this monoid still recognizes the same language. This is
possible in polynomial space, as we shall demonstrate below. We need an
algebraic construction first.

Proposition 12.1. Let h1 : Σ∗ → M1 be a surjective morphism onto a
finite monoid M1 which recognizes L and let m ≥ |M1|. Let M ′

1 be the
quotient of the monoid M1 by the congruence generated by {xm = xm+1 |
x ∈ M1} and let h′1 : Σ∗ → M ′

1 be the canonical morphism induced by h1.
Then L is aperiodic if and only if h′1 recognizes L.

Proof. First, If h′1 recognizes L, then L is aperiodic since M ′
1 is aperiodic

by construction.
Conversely, if L is aperiodic, then there is some surjective morphism

h2 : Σ∗ →M2 which recognizes L and where M2 is aperiodic. We first show
that L is also recognized by a quotient monoid M of both M1 and M2. This
means that M is a homomorphic image of M1 as well as of M2.

Σ∗

M1 M2

M

h1 h2

h̄1 h̄2

h

We define the relation H ⊆ Σ∗ × Σ∗ by:

H = {(u, v) | h1(u) = h1(v) ∨ h2(u) = h2(v)} .

The transitive closure H+ of H is an equivalence relation, and easily seen to
be a congruence. Thus, we can define the quotient monoid M of Σ∗ by H+.
We have a canonical morphism h : Σ∗ → M and |M | ≤ min{|M1|, |M2|}.

294 V. Diekert, P. Gastin

Since hi(u) = hi(v) implies h(u) = h(v) for all u, v ∈ Σ∗, the morphism h
factorizes through M1 and M2 as shown in the diagram above: h = h̄i ◦ hi
for i = 1, 2.

We show that h recognizes L, too. First, we note that H+ = Hℓ where
ℓ = min{|M1|, |M2|}. Indeed, if u0 H u1 · · · H uk with k ≥ |M1| then we
find 0 ≤ i < j ≤ k with h1(ui) = h1(uj) and we obtain (u0, uk) ∈ H

k−(j−i).
Now, consider some u =

∏

0≤i<n ui and v =
∏

0≤i<n vi with ui, vi ∈ Σ+

such that (ui, vi) ∈ H for all 0 ≤ i < n. Since H+ = Hℓ it is enough to see
that u ∈ L implies v ∈ L. Now, for all 0 ≤ i < n there is wi ∈ {ui, vi} with
h1(ui) = h1(wi) and h2(wi) = h2(vi). Since h1 recognizes L, we have u ∈ L
implies

∏

0≤i<n wi ∈ L, and this implies v ∈ L since h2 recognizes L.
The monoidM as constructed above is aperiodic, because it is a quotient

monoid of M2. But |M | ≤ |M1| ≤ m, hence xm = xm+1 for all x ∈ M . By
definition, M ′

1 is the quotient of the monoidM1 by the congruence generated
by {xm = xm+1 | x ∈M1}. Since M satisfies all equations xm = xm+1, the
morphism h̄1 : M1 →M factorizes through M ′

1: h̄1 = h̄′1 ◦ g where g is the
canonical morphism from M1 to M ′

1.

Σ∗

M1 M2

M

h1 h2

h̄1 h̄2

hM ′
1

g

h′1

h̄′1

By definition, h′1 = g ◦ h1 and we deduce that h = h̄′1 ◦ h
′
1. Hence, h′1(u) =

h′1(v) implies h(u) = h(v) for all u, v ∈ Σ∗. Since h recognizes L, this
implies that h′1 recognizes L, too. q.e.d.

From Proposition 12.1, we can derive easily a pure decidability result.
Indeed, if we start with a language L recognized by a Büchi automaton A
with n states, we know that L is aperiodic if and only if it is recognized
by some aperiodic monoid with at most 3n

2

elements. Hence, we can guess
a recognizing morphism h from Σ∗ to an aperiodic monoid M of size at
most 3n

2

, guess a set P of linked pairs, compute a Büchi automaton A′

recognizing L′ =
⋃

(s,e)∈P h
−1(s)h−1(e)ω using Corollary 11.10, and finally

check whether L = L′ starting from A,A′ and using complementations,
intersections and an emptiness tests.

The complexity of this algorithm is not optimal. In order to derive a
PSPACE algorithm, we first establish the following characterization.

Proposition 12.2. Let h : Σ∗ → M be a surjective morphism that recog-
nizes L ⊆ Σ∞. Let g : M →M ′ be a surjective morphism. Then, h′ = g ◦h

First-order languages 295

recognizes L if and only if for all s, e, s′, e′ ∈ M such that g(s) = g(s′) and
g(e) = g(e′) we have

h−1(s)h−1(e)ω ⊆ L ⇐⇒ h−1(s′)h−1(e′)ω ⊆ L

Intuitively, this means that the set of linked pairs associated with L is
saturated by g.

Proof. Assume first that h′ recognizes L. Let s, e, s′, e′ ∈ M with g(s) =
g(s′) and g(e) = g(e′) and assume that h−1(s)h−1(e)ω ⊆ L. Since h is sur-
jective, we find u, v, u′, v′ ∈ Σ∗ such that h(u) = s, h(v) = e, h(u′) = s′ and
h(v′) = e′. From the hypothesis, we get h′(u) = h′(u′) and h′(v) = h′(v′).
Now, uvω ∈ h−1(s)h−1(e)ω ⊆ L. Since h′ recognizes L we deduce u′v′ω ∈
h−1(s′)h−1(e′)ω ∩ L. Since h recognizes L we obtain h−1(s′)h−1(e′)ω ⊆ L.

Conversely, let u = u0u1u2 · · · ∈ L and v = v0v1v2 · · · with ui, vi ∈ Σ+

and h′(ui) = h′(vi) for all i ≥ 0. We have to show that v ∈ L. Grouping
factors ui and vi using Lemma 5.2, we find new factorizations u = u′0u

′
1u

′
2 · · ·

and v = v′0v
′
1v
′
2 · · · which satisfy in addition h(u′i) = e and h(v′i) = e′ for

all i > 0. Let s = h(u′0) and s′ = h(v′0). We have g(s) = h′(u′0) =
h′(v′0) = g(s′) and similarly g(e) = g(e′). Now, u ∈ h−1(s)h−1(e)ω ∩ L 6= ∅

and since h recognizes L we get h−1(s)h−1(e)ω ⊆ L. We deduce that
v ∈ h−1(s′)h−1(e′)ω ⊆ L. q.e.d.

Proposition 12.3. We can decide in PSPACE whether the accepted lan-
guage L ⊆ Σ∞ of a given Büchi automaton A is aperiodic.

Proof. Let h : Σ∗ → Kn×n be Büchi’s morphism and let M = BT (A) =
h(Σ∗) so that h : Σ∗ →M is surjective and recognizes L = L(A). Let g be
the canonical morphism from M to the quotient M ′ of M by the congruence
generated by {xm = xm+1 | x ∈M} with m = 3n

2

≥ |M |.
It is enough to design a non-deterministic polynomial space algorithm

which finds out that L is not aperiodic. By Propositions 12.1 and 12.2, we
have to check whether there exist four elements s, e, s′, e′ ∈ M such that
g(s) = g(s′), g(e) = g(e′), h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L.
By definition of M ′, this is equivalent to the existence of u, v, w, x, y, z ∈M
and ε1, ε2, ε3, ε4 ∈ {0, 1} with h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L
where s = uvm+ε1w, e = xym+ε2z, s′ = uvm+ε3w and e′ = xym+ε4z.

We have h−1(s)h−1(e)ω ⊆ L if and only if there are p ∈ I, q ∈ Q
such that (sek)[p, q] ≥ 1 and eℓ[q, q] = ∞ for some k, ℓ ≤ n. Indeed, if
the right hand side holds then we find an accepting run in A for some
word u ∈ h−1(s)h−1(e)ω. Hence, we have h−1(s)h−1(e)ω ∩ L 6= ∅ and
since h recognizes L we deduce that h−1(s)h−1(e)ω ⊆ L. Conversely, let
u = u0u1u2 . . . ∈ L with h(u0) = s and h(ui) = e for i > 0. Consider an
accepting run for u:

p
u0−→ q0

u1−→ q1
u2−→ q2 · · ·

296 V. Diekert, P. Gastin

Since this run is accepting, we find k such that a repeated state is visited

in the path qk
uk+1
−−−→ qk+1 and qk = qk+ℓ for some ℓ > 0. Removing loops

we may assume that k < n and ℓ ≤ n. We get the result with q = qk.
Therefore, we have the following algorithm.

1. Guess six matrices u, v, w, x, y, z ∈M and guess four values ε1, ε2, ε3,
ε4 in {0, 1} (with, if one wishes, ε1 + ε2 + ε3 + ε4 = 1).

2. Compute s = uvm+ε1w, e = xym+ε2z, s′ = uvm+ε3w and e′ =
xym+ε4z.

3. Check that h−1(s)h−1(e)ω ⊆ L and h−1(s′)h−1(e′)ω 6⊆ L.

Computing xm with x ∈ M can be done with O(logm) = O(n2) prod-
ucts of n × n matrices. Hence, steps 2 and 3 can be done in deterministic
polynomial time, once the matrices u, v, w, x, y, z ∈ M are known. It re-
mains to explain how to guess in PSPACE an element x ∈M = h(Σ∗). As
a matter of fact, it is here2 where we need the full computational power
of PSPACE. To do this, we guess a sequence a1, a2, . . . ai ∈ Σ letter after
letters and simultaneously we compute the sequence

h(a1), h(a1a2), . . . , h(a1a2 · · ·ai).

We remember only the last element h(a1a2 · · · aj) before we guess the next

letter aj+1 and compute the next matrix. We stop with some i ≤ 3n
2

and
we let x = h(a1a2 · · ·ai) be the last computed matrix. q.e.d.

In some cases it is extremely easy to see that a language is not aperiodic.
For example, (aa)∗ is recognized by the cyclic group Z/2Z of two elements.
Every aperiodic quotient of a group is trivial. But the trivial monoid cannot
recognize (aa)∗.

13 Very weak alternating automata

For a finite set Q we mean by B
+(Q) the non-empty positive Boolean com-

binations of elements of Q, e.g., p ∧ (q ∨ r). We write P |= ξ, if a subset
P ⊆ Q satisfies a formula ξ ∈ B

+(Q). By definition, P |= p if and only
if p ∈ P . As a consequence, we have for instance {p, r} |= p ∧ (q ∨ r) and
{p, r, s} |= p∧ (q∨ r), but {q, r} 6|= p∧ (q∨ r). Note that ∅ 6|= ξ since we use
non-empty positive Boolean combinations, only. The satisfiability relation

is monotone. This means, if P ⊆ P ′ and P |= ξ, then P ′ |= ξ, too.
An alternating automaton is a tuple A = (Q,Σ, δ, I, F,R) where

2 For the interested reader, the test x ∈ h(Σ∗) is PSPACE-hard, in general [10, Problem
MS5]. This problem is closely related to the intersection problem of regular languages,
where the PSPACE–hardness is due to Kozen [14].

First-order languages 297

• Q is a finite set of states,

• Σ is a finite alphabet,

• I ∈ B
+(Q) is the (alternating) initial condition,

• δ : Q × Σ → B
+(Q) is the (alternating) transition function (for in-

stance, δ(p, a) = (p ∧ (q ∨ r)) ∨ (q ∧ s) is a possible transition),

• F ⊆ Q is the subset of final states,

• and R ⊆ Q is the subset of repeated states.

A run of A over some word w = a0a1a2 · · · ∈ Σ∞ is a Q-labeled forest
(V,E, ρ) with E ⊆ V × V and ρ : V → Q such that

• the set of roots {z | E−1(z) = ∅} satisfy the initial condition:

ρ({z | E−1(z) = ∅}) |= I,

• each node satisfies the transition relation: for all x ∈ V of depth n, i.e.,
such that x ∈ En(z) where z ∈ V is the root ancestor of x, we have
n ≤ |w| and if n < |w| then x is not a leaf and ρ(E(x)) |= δ(ρ(x), an).

If the word w is finite then the run is accepting, if each leaf x satisfies
ρ(x) ∈ F . If the word w is infinite then the run is accepting, if every
infinite branch visits R infinitely often. Since we use nonempty boolean
combinations of states for the transition function, if w is finite then each
leaf must be of depth |w| and if w is infinite then each maximal branch must
be infinite. We denote by L(A) the set of words w ∈ Σ∞ for which there is
some accepting run of A.

An alternating automatonA is called very weak, if there is a partial order
relation ≤ on Q such that the transition function is non-increasing, i.e., for
each p, q ∈ Q and a ∈ Σ, if q occurs in δ(p, a) then q ≤ p. Clearly, we can
transform the partial ordering into a linear ordering without changing the
condition of being very weak3. The next proposition shows that every first-
order definable language can be accepted by some very weak automaton.
The converse is shown in Proposition 13.3.

Proposition 13.1. For any formula ξ ∈ LTLΣ(XU), we can construct a
very weak alternating automaton A over Σ such that L(A) = L(ξ).

3 In [17] a very weak automaton is therefore called a linear alternating automaton.

298 V. Diekert, P. Gastin

p

q p r

q q r

A B C D

p

q p r

q q r

Figure 6. A run on the left and on the right the new tree with fresh leaves.

p

q p r

q q q p r r

q q q q q q r r

A B A B A B C D D

Figure 7. The new run with leaves on level m+ 1.

First-order languages 299

p

q r s p r p

q r s s r p

A B C D E F G H I

Figure 8. Another run with leaves on level m+ 1.

p

q r s r p

A D E G H I

Figure 9. The new run with fewer labels at the leaves on level m.

300 V. Diekert, P. Gastin

Proof. First, we push the negations down to the constants. For this we need
a dual for each operator. Clearly, ∨ and ∧ are dual to each other. The dual
of next-until is next-release which is defined by

ϕ XR ψ = ¬(¬ϕ XU ¬ψ).

Hence, the semantics of next-release is given by

(ϕ XR ψ)(x) = ∀z : x < z → ψ(z) ∨ ∃y : x < y < z ∧ ϕ(y).

Note that this is always true at the last position of a finite word: for all
v ∈ Σ+, we have v, |v| − 1 |= ϕ XR ψ for all formulae ϕ and ψ. One may
also notice that

ϕ XR ψ = X Gψ ∨ (ψ XU (ϕ ∧ ψ)).

All LTLΣ(XU) formulae can be rewritten in positive normal form fol-
lowing the syntax

ϕ ::= ⊥ | ⊤ | a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ XU ϕ | ϕ XR ϕ.

Transforming a formula into positive normal form does not increase its size,
and the number of temporal operators remains unchanged.

So, let ξ be an LTL formula in positive normal form. We define the
alternating automaton A = (Q,Σ, δ, I, F,R) as follows:

• The set Q of states consists of ⊥, ⊤, END and the sub-formulae of ξ
of the form a, ¬a, ϕXU ψ or ϕXR ψ. Here, END means that we have
reached the end of a finite word. Note that each sub-formula of ξ is
in B

+(Q).

• The initial condition is I = ξ itself.

• The transition function is defined by

δ(a, b) =

{

⊤ if b = a

⊥ otherwise

δ(¬a, b) =

{

⊥ if b = a

⊤ otherwise

δ(⊥, a) = ⊥

δ(⊤, a) = ⊤

δ(ϕ XU ψ, a) = ψ ∨ (ϕ ∧ ϕ XU ψ)

δ(ϕ XR ψ, a) = END ∨ (ψ ∧ (ϕ ∨ ϕ XR ψ))

δ(END, a) = ⊥

First-order languages 301

• The set of final states is F = {⊤,END}.

• The repeated states are the next-release sub-formulae of ξ together
with ⊤.

Using the sub-formula partial ordering, we see that the alternating automa-
ton A is very weak. We can also easily check that L(A) = L(ξ). Note that
in a run over an infinite word, each infinite branch is ultimately labeled ⊤
or ⊥ or with a XU or XR formula. A state ϕ XU ψ is rejecting since if a
branch is ultimately labeled with this state, this means that the eventual-
ity ψ was not checked. On the other hand, ϕ XR ψ is accepting since if a
branch is ultimately labeled with this state then ψ is ultimately true for
this word. q.e.d.

As we see below, it is easy to transform a very weak alternating automa-
ton into a Büchi automaton. We follow the construction of [11]. However,
for this purpose it is convenient to generalize the acceptance conditions. A
generalized Büchi automaton is a tuple

A = (Q,Σ, δ, I, F, T1, . . . , Tr)

where Q is a finite set of states, Σ is a finite alphabet,

δ ⊆ Q× Σ×Q

is the non deterministic transition relation, I ⊆ Q is the subset of initial
states, F ⊆ Q is the subset of final states, and T1, . . . , Tr ⊆ δ defines the
accepting conditions. An infinite run q0, a1, q1, a2, q2, · · · is accepted by
A if for each 1 ≤ i ≤ r, some transition in Ti occurs infinitely often in
the run. Hence, the acceptance condition is generalized in two respects.
First, it uses accepting transitions instead of accepting states. Second it
allows a conjunction of Büchi’s conditions. Obviously, each generalized
Büchi automaton can be transformed into an equivalent classical Büchi
automaton.

From a very weak alternating automaton, we construct an equivalent
generalized Büchi automaton as follows. Let A = (Q,Σ, δ, I, F,R) be a very
weak alternating automaton. We define A′ = (Q′,Σ, δ′, I ′, F ′, (Tf)f /∈R) by

• Q′ = 2Q,

• I ′ = {P ⊆ Q | P |= I},

• (P, a, P ′) ∈ δ′ if and only if P ′ |=
∧

p∈P δ(p, a),

• F ′ = 2F is the set of final states,

302 V. Diekert, P. Gastin

• for each p /∈ R we have an accepting condition

Tp = {(P, a, P ′) | p /∈ P or P ′ \ {p} |= δ(p, a)}.

Proposition 13.2. The automata A and A′ accept the same language.

The proof thatA andA′ accept the same language is a little bit technical,
but not very hard. Details are left to the reader or can be found in [22].

We now state and prove the converse of Proposition 13.1.

Proposition 13.3. Let L ⊆ Σ∞ be accepted by some very weak alternating
automaton. Then L is aperiodic.

Proof. Let A = (Q,Σ, δ, I, F,R) be a very weak alternating automaton. For
a word u and subsets P and P ′ of Q we write

P
u

=⇒ P ′,

if A has a run (V,E, ρ) over u, where P is the set of labels of the roots
and P ′ is the set of labels of the leaves on level |u|. This means that in the
corresponding generalized Büchi automaton A′ there is path from state P
to state P ′, which is labeled by the word u.

Let m = |Q|, we want to show that P
um

=⇒ P ′ if and only if P
um+1

=⇒ P ′

for all words u and subsets P and P ′. This implies that the transformation
monoid of A′ is aperiodic. Then, we conclude that languages accepted by
very weak alternating automata are always aperiodic in a similar way as in
the proof of Proposition 11.11, (because the generalized accepting condition
can be easily incorporated in that proof).

First, assume that P
um

=⇒ P ′ and let us see that P
um+1

=⇒ P ′, too. This is
true if u is the empty word. Hence we may assume that |u| ≥ 1. Let (V,E, ρ)
be the forest which corresponds to this run. We assume that P = {p} and
that (V,E, ρ) is tree. This is not essential, but it simplifies the picture a
little bit. To simplify the picture further, we assume that u = a is in fact a
letter. Formally, we replace E by E|u| and we restrict the new forest to the
tree which has the same root as (V,E, ρ). Note that the set of leaves which
were on level |um| before are now exactly the leaves on level |m|. Hence the
assumption u = a is justified.

Since m = |Q| we find on each branch from the root to leaves a first
node which has the same label as its parent node. This happens because
the automaton is very weak and therefore the ordering on the way down
never increases. We cut the tree at these nodes and these nodes are called
fresh leaves. See Figure 6, where the fresh leaves have labels q, q, p, and r
from left-to-right.

First-order languages 303

Now, at each fresh leaf we glue the original sub tree of its parent node.
We obtain a new tree of height m+ 1 which has as the set of labels at level
m+ 1 exactly the same labels as before the labels at level m in the original
tree. (See Figure 7.) It is clear that the new tree is a run over um+1 and

thus, P
um+1

=⇒ P ′ as desired.

For the other direction, assume that P
um+1

=⇒ P ′ and let (V,E, ρ) be a
forest which corresponds to this run. Just as above we may assume that
(V,E, ρ) is a tree and that u is a letter. This time we go down from the
root to leaves and we cut at the first node, where the node has the same
label as one of its children. See Figure 8. Now, we glue at these new leaves
the original sub tree of one of its children which has the same label.

We obtain a new tree of height m such that each label at the leaves on
level m appeared before as a label on some leaf of the original tree (V,E, ρ)
at level m+ 1, see Figure 9.

Thus, P
um

=⇒ P ′′ for some subset P ′′ ⊆ P ′. But the satisfiability relation

is monotone; therefore P
um

=⇒ P ′, too. Thus, indeed P
um

=⇒ P ′ if and only if

P
um+1

=⇒ P ′ for m = |Q|. q.e.d.

References

[1] A. Arnold. A syntactic congruence for rational omega-language. Theor.

Comput. Sci., 39:333–335, 1985.

[2] F. Blanchet-Sadri. Some logical characterizations of the dot-depth hi-
erarchy and applications. J. Comput. System Sci., 51(2):324–337, 1995.

[3] J. R. Büchi. On a decision method in restricted second order arithmetic.
In Logic, Methodology and Philosophy of Science (Proc. 1960 Internat.

Congr .), pages 1–11, Stanford, Calif., 1962. Stanford Univ. Press.

[4] S. Cho and D. T. Huynh. Finite-automaton aperiodicity is pspace-
complete. Theor. Comput. Sci., 88(1):99–116, 1991.

[5] V. Diekert and P. Gastin. Pure future local temporal logics are expres-
sively complete for mazurkiewicz traces. Inf. Comput., 204(11):1597–
1619, 2006.

[6] V. Diekert and G. Rozenberg, editors. The Book of Traces. World
Scientific Publishing Co., Inc., River Edge, NJ, USA, 1995.

304 V. Diekert, P. Gastin

[7] K. Etessami, M. Y. Vardi, and Th. Wilke. First-order logic with two
variables and unary temporal logic. Inf. Comput., 179(2):279–295,
2002.

[8] A. Fernández López and M. Tocón Barroso. The local algebras of an
associative algebra and their applications. In J. Misra, editor, Applica-

ble Mathematics in the Golden Age, pages 254–275, New Delhi, India,
2002. Narosa.

[9] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
basis of fairness. In POPL, pages 163–173, 1980.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide

to the Theory of NP-Completeness. W. H. Freeman, 1979.

[11] P. Gastin and D. Oddoux. Fast ltl to büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, CAV, volume 2102 of
Lecture Notes in Computer Science, pages 53–65. Springer, 2001.

[12] P. Gastin and A. Petit. Infinite traces. In The book of traces, pages
393–486. World Sci. Publ., River Edge, NJ, 1995.

[13] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles (California), 1968.

[14] D. Kozen. Lower bounds for natural proof systems. In FOCS, pages
254–266. IEEE, 1977.

[15] R. E. Ladner. Application of model theoretic games to discrete linear
orders and finite automata. Information and Control, 33(4):281–303,
1977.

[16] C. Lautemann, P. McKenzie, T. Schwentick, and H. Vollmer. The
descriptive complexity approach to logcfl. J. Comput. Syst. Sci.,
62(4):629–652, 2001.

[17] C. Löding and W. Thomas. Alternating automata and logics over
infinite words. In J. van Leeuwen, O. Watanabe, M. Hagiya, P. D.
Mosses, and T. Ito, editors, IFIP TCS, volume 1872 of Lecture Notes

in Computer Science, pages 521–535. Springer, 2000.

[18] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9(5):521–530, 1966.

[19] R. McNaughton and S. Papert. Counter-free automata. The M.I.T.
Press, Cambridge, Mass.-London, 1971. With an appendix by William
Henneman, M.I.T. Research Monograph, No. 65.

First-order languages 305

[20] K. Meyberg. Lectures on algebras and triple systems, 1972.

[21] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata. the
weak monadic theory of the tree, and its complexity. In L. Kott, editor,
ICALP, volume 226 of Lecture Notes in Computer Science, pages 275–
283. Springer, 1986.

[22] D. Oddoux. Utilisation des automates alternants pour un model-

checking efficace des logiques temporelles linaires. PhD thesis, Uni-
versité Paris 7 (France), 2003.

[23] D. Perrin. Recent results on automata and infinite words. In M. Chytil
and V. Koubek, editors, MFCS, volume 176 of Lecture Notes in Com-

puter Science, pages 134–148. Springer, 1984.

[24] D. Perrin and J.-E. Pin. First-order logic and star-free sets. J. Comput.

Syst. Sci., 32(3):393–406, 1986.

[25] D. Perrin and J.-E. Pin. Infinite Words. Automata, Semigroups, Logic

and Games, volume 141 of Pure and Applied Mathematics. Elsevier,
Amsterdam, 2004.

[26] M. O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[27] S. Rhode. Alternating automata and the temporal logic of ordinals.
PhD Thesis, University of Illinois, Urbana Campaign II, 1997.

[28] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.

[29] J. Stern. Complexity of some problems from the theory of automata.
Information and Control, 66(3):163–176, 1985.

[30] P. Tesson and D. Thérien. Diamonds are forever: the variety DA.
In Semigroups, algorithms, automata and languages (Coimbra, 2001),
pages 475–499. World Sci. Publ., River Edge, NJ, 2002.

[31] W. Thomas. Star-free regular sets of omega-sequences. Information

and Control, 42:148–156, 1979.

[32] W. Thomas. A combinatorial approach to the theory of omega-
automata. Information and Control, 48(3):261–283, 1981.

[33] W. Thomas. Classifying regular events in symbolic logic. J. Comput.

Syst. Sci., 25(3):360–376, 1982.

306 V. Diekert, P. Gastin

[34] W. Thomas. An application of the Ehrenfeucht-Fräıssé game in formal
language theory. Mém. Soc. Math. France (N.S.), 16:11–21, 1984. Logic
(Paris, 1983).

[35] W. Thomas. A concatenation game and the dot-depth hierarchy. In
E. Börger, editor, Computation Theory and Logic, volume 270 of Lec-

ture Notes in Computer Science, pages 415–426. Springer, 1987.

[36] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B: Formal Models

and Sematics (B), pages 133–192. Elsevier, Amsterdam, 1990.

[37] W. Thomas. Languages, automata, and logic. In Handbook of formal

languages, Vol. 3, pages 389–455. Springer, Berlin, 1997.

[38] Th. Wilke. Classifying Discrete Temporal Properties. Habilitationss-
chrift, Universität Kiel, Apr. 1998.

[39] Th. Wilke. Classifying discrete temporal properties. In STACS 99

(Trier), volume 1563 of Lecture Notes in Comput. Sci., pages 32–46,
Berlin, 1999. Springer.

Matrix-based complexity functions and
recognizable picture languages∗

Dora Giammarresi1

Antonio Restivo2

1 Dipartimento di Matematica
Università di Roma “Tor Vergata”
via della Ricerca Scientifica
00133 Roma, Italy
giammarr@mat.uniroma2.it

2 Dipartimento di Matematica e Applicazioni
Università di Palermo
via Archirafi, 34
90123 Palermo, Italy
restivo@dipmat.math.unipa.it

Abstract

The aim of this paper is to shed new light onto the relations be-
tween the complement problem and the unambiguity in the family of
recognizable picture languages. It is known that, contrary to the one-
dimensional case, the family REC of recognizable picture languages
is not closed under complementation and that the family UREC of
unambiguous recognizable picture languages is a proper subfamily of
REC. The interest to investigate the relations between these two facts
was raised by Wolfgang Thomas. In this paper we present a novel
general framework to study such a problem, by introducing some
complexity functions on pictures languages.

1 Introduction

Picture (two-dimensional) languages were studied using different approaches
and perspectives since the sixties as the natural counterpart in two dimen-
sions of (one-dimensional) string languages. In 1991, a unifying point of
view was presented in [6] where the family of tiling recognizable picture
languages is defined (see also [7]). The definition of recognizable picture
language takes as starting point a well known characterization of recogniz-
able string languages in terms of local languages and projections. Namely,
any recognizable string language can be obtained as projection of a local
string language defined over a larger alphabet. Such notion can be extended
∗ We heartily thank Oliver Matz for his careful readings and suggestions.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 307–329.

308 D. Giammarresi, A. Restivo

in a natural way to the two-dimensional case: more precisely, local picture
languages are defined by means of a set of square arrays of side-length two
(called tiles) that represents the only allowed blocks of that size in the pic-
tures of the language (with special treatment for border symbols). Then,
we say that a two-dimensional language is tiling recognizable if it can be
obtained as a projection of a local picture language. The family of all tiling
recognizable two-dimensional languages is called REC. Remark that, when
we consider strings as particular pictures (that is pictures in which one side
has length one), this definition of recognizability coincides with the one for
the strings, i.e. the definition given in terms of finite automata. Further the
definition of class REC turns out to be robust because it inherits most of
the important properties from the class of regular string languages (see also
[8]). Moreover tiling recognizable picture languages have been considered
and appreciated in the picture processing and pattern recognition fields (see
[14]). Finally the approach to recognizability in terms of tiling systems is
very close to that one proposed by Woflgang Thomas in the more general
context of graphs (cf. [11, 17]).

A crucial difference between the recognizability of string languages and
the one of picture languages in REC arises directly from its definition. The
definition of recognizability in terms of local languages and projections is
implicitly non-deterministic (notice that in the one-dimensional case a tiling
system corresponds in general to a non-deterministic automaton). This
fact is strengthened by another result: the class REC is not closed under
complementation. As a consequence, we infer that it is not possible to
eliminate the non-determinism from this model without losing in power
of recognition (as long as deterministic versions allow complementation).
Problems on deterministic tiling systems are considered in [1]. If we denote
by co-REC the family of languages whose complement is in REC, we have
that REC is strictly included in REC ∪ co-REC.

In this scenario, related to the problem of defining a subset of REC
closed under complement, unambiguity plays a central role as intermedi-
ate notion between determinism and non-determinism. As determinism,
unambiguity corresponds to the existence of a unique process of computa-
tion, but while determinism is a “local” notion, unambiguity is a “global”
one. Recall that, for regular string languages, the three notions of deter-
minism, non-determinism and unambiguity coincide while in more general
structures this is not true (see for instance [13]). Unambiguous recognizable
two-dimensional languages have been introduced in [6], and their family re-
ferred to as UREC. Informally, a picture language belongs to UREC when
it admits an unambiguous tiling system, i.e. such that every picture has
a unique counter-image in its corresponding local language. In [2] sev-
eral problems on class UREC are studied and it is proved that UREC is

Matrix-based complexity functions and recognizable picture languages 309

strictly included in REC. Very recently, in [12], unambiguous recognizable
picture languages are considered in relation to picture series definable by
some weighted logic.

In this paper we present a novel general framework to study properties
of recognizable picture languages and then use it to study the relations
between classes REC ∪ co-REC, REC and UREC. The strict inclusions
among these classes have been proved in [4], [10], [2], respectively, using ad-
hoc techniques. Here we propose again those results in a unified formalism
and proof method with the major intent of establishing relations between the
complement problem and unambiguity in the family of recognizable picture
languages. Remark that the interest for such relations was also raised by
Wolfgang Thomas in [13].

We introduce some complexity functions on picture languages and com-
bine two main techniques. First, following the approach of O. Matz in [10],
we consider, for each positive integer m, the set L(m) of pictures of a lan-
guage L having one dimension (say the vertical one) of size m. Language
L(m) can be viewed as a string language over the alphabet (of the columns)
Σm,1. The idea is then to measure the complexity of the picture language L
by evaluating the grow rate, with respect to m, of some numerical parame-
ters of L(m). In order to specify such numerical parameters we make use,
as a second technique, of the Hankel matrix of a string language. The pa-
rameters are indeed expressed in terms of some elementary matrix-theoretic
notions of the Hankel matrices of the string languages L(m). In particular,
we consider here three parameters: the number of different rows, the rank,
and the maximal size of a permutation submatrix.

We prove three main theorems that establish some bounds on corre-
sponding complexity functions based on those three parameters, respec-
tively. Then, as applications for those bounds we analyze the complexity
functions of some examples of picture languages. Interestingly the lan-
guages we propose have quite similar definitions based on a combination of
the existence or non-existence of duplicate columns in the pictures either
for a single column or for all the columns. By means of those languages we
re-prove the strict inclusions of families REC ∪ co-REC, REC and UREC.

Moreover we show an example of a language in REC that does not belong
to UREC and whose complement is not in REC. This language introduces
further discussions on relations between unambiguity and non-closure under
complement.

The paper is organized as follows. We start, in Section 2, by introduc-
ing some basic two-dimensional languages terminology and definitions and
recalling the technique due to O. Matz to reduce a picture language to a
family of string languages on the columns alphabets. Then in Section 3 we
introduce our novel technique by defining complexity functions based on

310 D. Giammarresi, A. Restivo

Hankel matrices. In Section 4 we recall all definitions and properties of the
family REC of tiling recognizable picture languages. Our main results are
proved in Section 5 while in Section 6 we apply them to some picture lan-
guages in order to establish some separation results. Finally, in Section 7 we
discuss some further directions for the introduced techniques and propose
some related questions. For sake of completeness, we report here most of
proofs of the results we cite.

2 Picture languages

In this section we introduce some definitions about two-dimensional lan-
guages and their operations. More notations and definitions can be found
in [7].

Let Σ be a finite alphabet. A picture (or two-dimensional string) over Σ
is a two-dimensional rectangular array of elements of Σ. Given a picture p,
let p(i, j) denote the symbol in p with coordinates (i, j), moreover the size
of p is given by a pair (m,n) where m and n are the number of rows and
columns of p, respectively. The set of all pictures over Σ of size (x, y) for
all x, y ≥ 1 is denoted by Σ++ and a picture (two-dimensional) language
over Σ is a subset of Σ++. Remark that in this paper we do not consider
the case of empty pictures (i.e. pictures where the number of rows and/or
columns can be zero). The set of all pictures over Σ of fixed size (m,n),
with m,n ≥ 1 is denoted by Σm,n. We give a first example of a picture
language.

Example 2.1. Let L be the language of square pictures over an alphabet
Σ, that is:

L = { p | p has size (n, n), n > 0 }.

We now recall the classical concatenation operations between pictures
and picture languages. Let p and q be two pictures over an alphabet Σ,
of size (m,n) and (m′, n′) with m,n,m′, n′ > 0, respectively. The column
concatenation of p and q (denoted by p : q) and the row concatenation of p
and q (denoted by p	 q) are partial operations, defined only if m = m′ and
if n = n′, respectively and are given by:

p : q = p q p	 q =

p

q

As done in the string language theory, these definitions of picture concatena-
tions can be extended to define two-dimensional language concatenations. If

Matrix-based complexity functions and recognizable picture languages 311

L1, L2 are picture languages over an alphabet Σ, the column concatenation
of L1 and L2 is defined by

L1 : L2 = {x : y | x ∈ L1 and y ∈ L2}

Similarly, the row concatenation of L1 and L2 is defined by

L1 	 L2 = {x	 y | x ∈ L1 and y ∈ L2}

Furthermore, by iterating the concatenation operations, we obtain the
column and row closure or star. More precisely: the column closure of L
(denoted by L∗:) and the row closure of L (denoted by L∗) are defined
respectively as

L∗: =
⋃

i Li: and L∗	 =
⋃

i Li	

where L1: = L, Ln: = L(n−1): : L and L1	 = L, Ln	 = L(n−1)	 	 L.

We conclude this section by describing a technique, introduced by
O. Matz in [10], that associates to a given picture language L an infinite se-
quence (L(m))m≥1 of string languages. Let L ⊆ Σ++ be a picture language.
For any m ≥ 1, we consider the subset L(m) ⊆ L containing all pictures
with exactly m rows. Such language L(m) can be viewed as a string lan-
guage over the alphabet Σm,1 of the columns, i.e. words in L(m) have a
”fixed height m”. For example, if

p =

a b b a a
a a b b a
b b a b a
a a a a b

∈ L

then the word

w =


a
a
b
a




b
a
b
a




b
b
a
a




a
b
b
a




a
b
b
a




a
a
a
b


belongs to the string language L(4) over the alphabet of columns

Σ4,1 =




x
y
s
t

 |x, y, s, t ∈ Σ

 .

Observe that studying the sequence (L(m))m≥1 of string languages cor-
responding to a picture languages L does not capture the whole structure
of L because in some sense it takes into account only its horizontal dimen-
sion. Nevertheless it will be very useful to state some conditions for the
recognizability of the picture language L.

312 D. Giammarresi, A. Restivo

3 Hankel matrices and complexity functions

In this section we introduce a novel tool to study picture languages based on
combining two main techniques: the Matz’s technique described above (that
associates to a given picture language L an infinite sequence (L(m))m≥1 of
string languages) and the technique that describes a string language by
means of its Hankel matrix. As results there will be the definitions of some
complexity functions for picture languages that will be used to state some
necessary conditions on recognizable picture languages.

Hankel matrices were firstly introduced in [16] in the context of formal
power series (see also [3] and [15]). Moreover they are used under different
name in communication complexity (see [9]).

Definition 3.1. Let S ⊆ A∗ be a string language. The Hankel matrix of
S is the infinite boolean matrix HS = [hxy]x∈A∗,y∈A∗ where

hxy =
{

1 if xy ∈ S
0 if xy 6∈ S.

Therefore both the rows and the columns of HS are indexed by the set
of strings in A∗ and the 1s in the matrix gives the description of language
S in the way described above.

Given an Hankel matrix HS , we call submatrix of HS a matrix KS

specified by a pair of languages (U, V), with U, V ⊆ A∗, that is obtained by
intersecting all rows and all columns of HS that are indexed by the strings
in U and V , respectively. Moreover, given two Hankel submatrices K1

S and
K2

S , their intersection is the submatrix specified by the intersections of the
corresponding index sets respectively.

Moreover we recall some further notations on matrices. A permutation
matrix is a boolean matrix that has exactly one 1 in each row and in each
column. Usually when dealing with permutation matrices, one makes a
correspondence between a permutation matrix D = [dij] of size n with a
permutation function σ = IN −→ IN by assuming that dij = 1 ⇔ j = σ(i).

Finally we recall that the rank of a matrix is the size of the biggest
submatrix with non-null determinant (with respect to field Z). Alterna-
tively, the rank is defined as the maximum number of row or columns that
are linearly independent. Then, observe that, by definition, the rank of a
permutation matrix coincides with its size.

Given a picture language L over the alphabet Σ, we can associate to
L an infinite sequence (HL(m))m≥1 of matrices, where each HL(m) is the
Hankel matrix of string language L(m) associated to L.

We can define the following functions from the set of natural numbers
N to N ∪∞.

Matrix-based complexity functions and recognizable picture languages 313

Definition 3.2. Let L be a picture language.

i) The row complexity function RL(m) gives the number of distinct rows
of the matrix HL(m);

ii) The permutation complexity function PL(m) gives the size of the max-
imal permutation matrix that is a submatrix of HL(m);

iii) The rank complexity function KL(m) gives the rank of the matrix
HL(m).

Notice the all the functions RL(m), PL(m) and KL(m) defined above
are independent from the order of the rows (columns, resp.) of the Hankel
matrix HL(m). In the sequel we shall use any convenient order for the set
of strings that index the rows and the columns. We can immediately state
the following lemma.

Lemma 3.3. Given a picture language L, for each m ∈ N:

PL(m) ≤ KL(m) ≤ RL(m).

Proof. The rank of a matrix is the size of the biggest submatrix whose
rows are linearly independent and therefore the rank is greater than or
equal to the size of any permutational submatrix (recall that the rank of a
permutational matrix is equal to its size).

Moreover if two rows are linearly independent they should be different
and therefore KL(m) ≤ RL(m). q.e.d.

Example 3.4. Consider the language L of squares over a two-letters al-
phabet Σ = {a, b} described in Example 2.1. Observe that, for each m ≥ 0,
L(m) is the finite language of all possible strings of length m over the al-
phabet of the columns Σm,1. Then consider the Hankel matrix of L(m): it
has all its 1s in the positions indexed by pairs (x, y) of strings such that
|x| + |y| = m. Now assume that the strings that index the rows and the
columns of the Hankel matrix are ordered by length: we can have some non-
zero positions only in the upper-right portion of HL(m) that are indexed
by all possible strings of length ≤ m on the alphabet Σm,1, included the
empty word. More specifically, in this portion the matrix HL(m) has all 0s
with the exception of a chain of rectangles of all 1s from the top-right to
the bottom left corner. This is represented in the following figure where the
numbers 0, 1, . . . ,m− 1,m indicate the length of the index words.

314 D. Giammarresi, A. Restivo

. . .

...

. . .
. . .

1

1

1

1

0 1 . . . m− 1 m

0

1

...

m−1

m

It is easy to verify that the number of different rows in HL(m) is equal
to m + 1 and this is also the number of rows of a permutation submatrix
and this is also the rank of HL(m).

Then for this language it holds that for all positive m:

PL(m) = KL(m) = RL(m) = m + 1.

Example 3.5. As generalization of the above Example 3.4, consider the
language L of pictures over an alphabet Σ of size (n, f(n)) where f(n) is a
non-negative function defined on the set of natural numbers, that is:

L = { p | p is of size (n, f(n)}.

Similar arguments as in the above example show that, for each m ≥ 0,
language L(m) is a finite language (it contains all strings of length f(m) over
the alphabet of the columns Σm,1) and then, for all positive m: PL(m) =
KL(m) = RL(m) = f(m) + 1.

Example 3.6. Consider the language L of pictures over an alphabet Σ of
size (n, 2n) such that the two square halves are equal, that is:

L = { p : p | p is a square}.

Matrix-based complexity functions and recognizable picture languages 315

Again, as in the Example 3.4, for each m ≥ 0, language L(m) is a finite lan-
guage (it contains all strings of length 2m over the alphabet of the columns
Σm,1 of the form ww). Then, doing all the calculations, one obtains that,
for all positive m, PL(m), KL(m) and RL(m) are all of the same order of
complexity O(σm2

), where σ is the number of symbols in the alphabet Σ.

4 Recognizable picture languages

In this section we recall definitions and basic properties of tiling recognizable
two-dimensional languages firstly introduced in 1992 in [6]. We recall the
definition of local and recognizable picture languages and the corresponding
family LOC and REC. We state and discuss closure properties of REC under
concatenations and Boolean operations. Furthermore, we give the definition
of unambiguous recognizable picture languages and of class UREC. The
notations used together with all the results and proofs mentioned here can
be found in [7].

In order to describe scanning or recognizing strategies for pictures, it
is needed to identify the symbols on the boundary. Then, for any picture
p of size (m,n), we consider picture p̂ of size (m + 2, n + 2) obtained by
surrounding p with a special boundary symbol # 6∈ Σ. We call tile a square
picture of dimension (2, 2) and given a picture p we denote by B2,2(p) the
set of all blocks of p of size (2, 2).

Let Γ be a finite alphabet. A two-dimensional language L ⊆ Γ++ is local
if there exists a finite set Θ of tiles over the alphabet Γ ∪ {#} such that
L = {x ∈ Γ++ | B2,2(x̂) ⊆ Θ}. We shall write L = L(Θ). Therefore tiles
in Θ represent all the allowed blocks of size (2, 2) for the pictures in L. The
family of local picture languages will be denoted by LOC. We now give an
example of a local two-dimensional language.

Example 4.1. Let Γ = {0, 1} be an alphabet and let Θ be the following
set of tiles over Γ.

Θ =



0 #
1 #

0 #
0 #

#
0 0

#
0 1

#
1

#
0 #

1
0

0
0

0 0
#

0 1
#

0
#

1 #
#

1 0
0 1

0 0
0 1

0 1
0 0

0 0
0 0


The language L(Θ) is the language of square pictures (i.e. pictures of size
(n, n) with n ≥ 2) in which all diagonal positions (i.e. those of the form (i, i))

316 D. Giammarresi, A. Restivo

carry symbol 1, whereas the remaining positions carry symbol 0. That is,
pictures as the following:

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

Notice that the language of squares over a one-letter alphabet is not a
local language because there is no “local strategy” to compare the number
of rows and columns using only one symbol.

Let Γ and Σ be two finite alphabets. A mapping π : Γ → Σ will be in
the sequel called projection. The projection π(p) of p ∈ Γ++ of size (m,n) is
the picture p′ ∈ Σ++ such that p′(i, j) = π(p(i, j)) for all 1 ≤ i ≤ m, 1 ≤
j ≤ n. Similarly, if L ⊆ Γ++ is a picture language over Γ, we indicate by
π(L) the projection of language L, i.e. π(L) = {p′|p′ = π(p), p ∈ L} ⊆ Σ++.

A quadruple T = (Σ,Γ,Θ, π) is called tiling system if Σ and Γ are
finite alphabets, Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is
a projection. Therefore, a tiling system is composed by a local language
over Γ (defined by the set Θ) and a projection π : Γ −→ Σ. A two-
dimensional language L ⊆ Σ++ is tiling recognizable if there exists a tiling
system T = (Σ,Γ,Θ, π) such that L = π(L(Θ)). Moreover, we shall refer to
L′ = L(Θ) as an underling local language for L and to Γ as a local alphabet
for L. Let p ∈ L, if p′ ∈ L′ is such that π(p′) = p, we refer to p′ as a
counter-image of p in the underling local language L′.

The family of all two-dimensional languages that are tiling recognizable
is denoted by REC. We give here some examples to which we shall refer in
the sequel.

Example 4.2. Let L be the language of square pictures (i.e. pictures of
size (n, n)) over one-letter alphabet Σ = {a}. To show that language L
is in REC we remark that it can be obtained as projection of language in
Example 4.1 by mean of projection π(0) = π(1) = a.

Example 4.3. Let L be the language of pictures p whose first column is
equal to the last one. We have that L ∈ REC. Indeed we can define a
tiling system where the information on each letter of the first column of
p is brought along horizontal direction, using some subscripts, to the last
column of p. More precisely, we use a local alphabet Γ = {xy | x, y ∈ Σ}
with x, y ∈ Σ (the subscripts y are used to recall the symbols in the first
column of a picture), the projection π(xy) = x. The set of tiles is such that,
for p ∈ L and some i, j we have that if pi,1 = y and pi,j = x then p′i,j = xy

Matrix-based complexity functions and recognizable picture languages 317

with π(p′) = p. The tiles of the left border must be of the form
zz

tt
, the

tiles of the right border must be of the form
zz #
tt #

, whereas the “middle

tiles” must be of the form
zz sz

tt rt
. Here below it is given an example of

a picture p ∈ L ⊆ {a, b}∗ together with a corresponding local picture p′.

p =

b b a b b
a a b a a
b a a a b
a b b b a
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

aa ba ba ba aa

We remark that a tiling system T = (Σ,Γ,Θ, π) for a picture language
is in some sense a generalization to the two-dimensional case of an automa-
ton that recognizes a string language. Indeed, in one-dimensional case, the
quadruple (Σ,Γ,Θ, π) corresponds exactly to the state-graph of the automa-
ton: the alphabet Γ is in a one-to-one correspondence with the edges, the
set Θ describes the edges adjacency, the mapping π gives the labelling of the
edges in the automaton. Then, the set of words of the underlying local lan-
guage defined by set Θ corresponds to all accepting paths in the state-graph
and its projection by π gives the language recognized by the automaton. As
consequence, when rectangles degenerate in strings the definition of recog-
nizability coincides with the classical one for strings (cf. [5]).

4.1 Closure properties of family REC
The family REC is closed with respect to different types of operations.
We recall the following theorems without proof (the interested reader can
consult [7]).

Theorem 4.4. The family REC is closed under alphabetic projection.

Theorem 4.5. The family REC is closed under row and column concate-
nation and under row and column stars operations.

Theorem 4.6. The family REC is closed under union and intersection.

As immediate application of this closure properties we have that, as
we do in the string case, we can define recognizable languages by means
of picture regular expressions starting from finite languages containing a
single picture of one symbol and using operations of union, intersection,
row and column concatenations and closures and projection. We see this in
the following examples.

318 D. Giammarresi, A. Restivo

Example 4.7. Let us consider again language L in Example 4.3 of pictures
such that the first column is equal to the last one. We showed that L ∈ REC
by giving explicitly a tiling system for it. It is also easy to show that L can
be obtained by using concatenations and star operations as follows:

L =
⋃
a∈Σ

(a : Σ∗: : a))∗	

where a denotes the size (1, 1) picture containing symbol a.

Example 4.8. Let L be the language of pictures p of size (m,n) with the
property “ ∃1 ≤ i, j ≤ n such that the i-th column of p is equal to the j-th
column of p”. Observe that

L = Σ++ : L′ : Σ++

where L′ is the language of pictures with the first column equal to the last
one given the the above Example 4.3.

Given two string languages S, T ⊆ Σ∗, we define the row-column combi-
nation of S, T to be a picture language L = S⊕T as the set of all pictures p
such that all rows of p belongs to language S and all columns of p belongs to
language T . Notice that we can write L = S	∗ ∩T:∗, then, as consequence
of above closure properties, it holds the following corollary.

Corollary 4.9. If S, T ⊆ Σ∗ are recognizable string languages then picture
language L = S ⊕ T ∈ REC.

We use this result in the next example.

Example 4.10. Let L be the language of pictures p over an alphabet Σ of
size (m,n) with the property “∃1 ≤ i ≤ n such that the i-th column of p is
different from all the other columns of p”. We show that L is in REC.

It is convenient to define a new alphabet ∆. Assume that Σ has σ
symbols. Then, for each s ∈ Σ we define a new alphabet Σs obtained
by adding a subscript s to each element of Σ and define a new alphabet
∆ =

⋃
s∈Σ Σs. Let x, s ∈ Σ.

We now consider two string languages L(h) and L(v) over the alphabet
Σ ∪∆:

L(h) =
⋃
s∈Σ

Σ∗
ssΣ

∗
s

L(v) = Σ∗ ∪

 ⋃
x6=s

(∆∗xs∆∗)

 .

Matrix-based complexity functions and recognizable picture languages 319

and a projection π : Σ ∪ ∆ −→ Σ that erases subscripts (whenever there
are). Then one can verify that L = π(L(h)⊕L(v)) and hence, by Theorem
4.4 and Corollary 4.9, L ∈ REC.

All those closure properties confirm the close analogy with the one-
dimensional case. The big difference regards the complement operation. In
[7], using a combinatorial argument, it is showed that language in Example
3.6 is not tiling recognizable while it is not difficult to write a picture regular
expressions for its complement. This proves the following theorem.

Theorem 4.11. REC is not closed under complement.

As consequence of this theorem, it is interesting to consider the family
REC ∪ co-REC of picture languages L such that either L itself or its com-
plement CL is tiling recognizable. Observe that REC is strictly included
in REC ∪ co-REC. In Section 5 we shall state a necessary condition for a
language to be in REC ∪ co-REC.

4.2 Unambiguous Recognizable Languages
The definition of recognizability in terms of local languages and projections
is implicitly non-deterministic. This can be easily understood if we refer
to the one-dimensional case: if no particular constraints are given for the
set Θ, the tiling system T = (Σ,Γ,Θ, π) corresponds in general to a non-
deterministic automaton. Moreover Theorem 4.11 shows that is not possible
to eliminate non-determinism from this definition (as long as determinism
allows complementation).

All these results motivated the definition of the class of unambiguous
recognizable two-dimensional language firstly given in [6]. Informally, a tiling
system is unambiguous if every picture has a unique counter-image in its
corresponding local language. Let L ⊆ Σ++ be a two-dimensional language.

Definition 4.12. A tiling system T = (Σ,Γ,Θ, π) is an unambiguous tiling
system for L = L(T) if and only if for any picture x ∈ L there exists a unique
local picture y ∈ L(Θ) such that x = π(y).

An alternative definition for unambiguous tiling system is that function
π extended to Γ++ → Σ++ is injective. Observe that an unambiguous tiling
system can be viewed as a generalization in two dimensions of the definition
of unambiguous automaton that recognizes a string language.

A recognizable two-dimensional language L ⊆ Σ++ is unambiguous if
and only if it admits an unambiguous tiling system T = (Σ,Γ,Θ, π). We de-
note by UREC the family of all unambiguous recognizable two-dimensional
languages. Obviously it holds true that UREC ⊆ REC.

In [2], it is shown that it undecidable whether a given tiling system is un-
ambiguous. Furthermore some closure properties of UREC are proved. The

320 D. Giammarresi, A. Restivo

main result in [2] shows that UREC is strictly contained in REC and there-
fore that there exist languages that are inherently ambiguous. In Section 5
we shall re-state a necessary condition for a language to be in UREC.

5 Recognizability conditions based on complexity
functions

In this section we state three theorems that give necessary conditions for
a picture language to be in REC ∪ co-REC, REC and UREC, respectively.
Although these theorems are re-formulations of corresponding ones given
in [4], [10], [2], respectively, here all the results are given in this unify-
ing matrix-based framework that allows to make connections among these
results that before appeared unrelated.

We first report a lemma given in [10]. Let L be a recognizable picture
languages and let T = (Σ,Γ,Θ, π) a tiling system recognizing L.

Lemma 5.1. For all m > 1 there exists a finite automaton A(m) with γm

states that recognizes string language L(m), where γ = |Γ ∪ {#}|.

Proof. For any positive integer m, we define the non-deterministic finite
automaton A(m) = (Σ1,m, Qm, Im, Fm, δm) where Σ1,m is the alphabet of
the columns of height m over Σ; the set of states Qm is the set of all possible
columns of m symbols in Γ ∪ {#} therefore |Qm| = γ. The set of initial
states corresponds to the columns adjacent to the left border while the set of
final states Fm contains all the columns of border symbols. The transitions
from a given state p to state q are defined by using the adjacency allowed
by the set of local tiles. Then, by construction it holds that A(m) accepts
exactly L(m). q.e.d.

The construction of the automaton in the above proof implies directly
the following corollary.

Corollary 5.2. If L ∈ UREC, then A(m) is unambiguous.

We can now state the first necessary condition for picture recognizability.

Theorem 5.3. If L ∈ REC∪ co-REC then there exists a positive integer γ
such that, for all m > 0, RL(m) ≤ 2γm

Proof. Consider two rows of the Hankel matrix HL(m) indexed by the words
x and y respectively. It is easy to see that such two rows are equal if and
only if x and y are in the same Nerode equivalence class of L(m).(Recall
that, see also [5], given a language L ⊆ Σ∗, two words u and v are in the
same Nerode equivalence class of L if ∀w ∈ Σ∗ : uw ∈ L ⇔ vw ∈ L). Thus
the number RL(m) of different rows of HL(m) coincides with the number of
classes of the Nerode equivalence and therefore it corresponds to the number

Matrix-based complexity functions and recognizable picture languages 321

of states of the minimal DFA recognizing L(m). The number of states of
the DFA recognizing L(m) obtained by determinization of the NFA A(m)
is at most 2|Qm| = 2γm

.
Moreover observe that if CL is the complement of a given language L, the

Hankel matrix of CL can be obtained by taking the Hankel matrix of L and
changing all 0s in 1s and all 1s in 0s. Then the two matrices have the same
number of distinct rows, i.e.: RL(m) = R CL(m). The thesis follows. q.e.d.

We now state a necessary condition for a language to be tiling recognizable.

Theorem 5.4. If L ∈ REC then there exists a positive integer γ such that,
for all m > 0, PL(m) ≤ γm.

Proof. Consider a permutation matrix that is a submatrix of HL(M). Let
x1, x2, . . . , xn be the words that index its rows and let yσ(1), yσ(2), . . . , yσ(n)

be the words that index its columns, where σ is the permutation that repre-
sents the matrix. To prove the statement of the theorem it suffices to show
that n ≤ γm for some γ. Recall that by definition of Hankel matrix, one
has the following two conditions:

xiyσ(i) ∈ L for 1 ≤ i ≤ n(1)
xjyσ(i) /∈ L for i 6= j(2)

For any i, 1 ≤ i ≤ n, denote by Si ⊆ Qm the set of states q of the automaton
A(m) such that there exists a path from a starting state to q with label xi.
For condition (1), there exists a state pi ∈ Si such that in A(m) there is a
path with label yσ(i) from pi to an accepting state. Observe that pi 6∈ Sj

for all j 6= i otherwise in the automaton there would be an accepting path
for the word xjyσ(i) against condition (2). of the considered permutation
matrix. This implies that the number of such sets Si is at most the number
of states of Qm, that is n ≤ |Qm| = γm q.e.d.

For the third theorem we need some additional notations and definitions
on matrices. Let M be a boolean matrix. A 1-monocromatic submatrix of
M is any submatrix of M whose elements are all equal to 1. Let S =
{M1,M2, . . . ,Mn} be a set of 1-monocromatic submatrices of M : S is an
exact cover for M if, for any element mij ∈ M such that mij = 1, there
exists an integer t such that mij ∈ Mt and moreover Mr ∩Ms =60 for r 6= s.
For instance, consider the Hankel matrix in Example 3.4. Each rectangle
of 1s is an Hankel 1-monocromatic submatrix while all m + 1 rectangles
together are an exact cover for the matrix. Denote by τ(M) the minimal
cardinality of an exact cover of M . We now report the following lemma.

Lemma 5.5. Let M be a boolean matrix. Then: rank(M) ≤ τ(M).

322 D. Giammarresi, A. Restivo

Proof. Let S = {M1,M2, . . . ,Mτ(M)} be an exact cover of minimal size of
matrix M . Let M ′

i denote the matrix (of same size of M) obtained from M
by changing in 0 all the elements not belonging to Mi. It is easy to verify
that all those matrices M ′

i have rank 1. Moreover observe that

M = M ′
1 + M ′

2 + . . . + M ′
τ(M).

Then, by using the well known linear algebra fact that the rank of the sum
of some matrices in not greater than the sum of the ranks of those matrices,
we have that:

rank(M) ≤ rank(M ′
1) + rank(M ′

2) + . . . + rank(M ′
τ(M)) = τ(M).

q.e.d.

We can now state our third necessary condition.

Theorem 5.6. If L ∈ UREC then there exists a positive integer γ such
that, for all m > 0, KL(m) ≤ γm

Proof. Consider the NFA A(m) for the string language L(m) defined in
Lemma 5.1. Observe that, by Corollary 5.2, A(m) is unambiguous. For
every state q ∈ Qm consider the sets Uq and Vq of words defined as follows:

- u ∈ Uq if there exists a path in A(m) from an initial state to state q
with label u;

- v ∈ Vq if there exists a path in A(m) from state q to a final state with
label v.

Now take the Hankel matrix HL(m) of language L(m) and consider the sub-
matrix Mq corresponding to language pair (Uq, Vq). Mq is a 1-monocromatic
submatrix of HL(m) because uv ∈ L for all u ∈ Uq and all v ∈ Vq.

The set SA(m) = {Mq | q ∈ Qm} is an exact cover of HL(m). Indeed any
1 in HL(m) is in a position corresponding to a row indexed by a word u and
a column indexed by a word v such that uv ∈ L and then it belongs to an
element of SA(m). Moreover, for the unambiguity of A(m), it follows that
any pair of elements of SA(m) has empty intersection. Then, using Lemma
5.5, we can conclude that

KL(m) = rank(HL(m)) ≤ τ(HL(m)) ≤ |SA(m)| = |Qm| = γm.

q.e.d.

Matrix-based complexity functions and recognizable picture languages 323

6 Separation results

In this section we state some separation results for the classes of recognizable
picture languages here considered. We start by showing that there exist
languages L such that are neither L nor CL are recognizable.

Let Lf be a picture language over Σ with |Σ| = σ of pictures of size
(n, f(n)) where f is a non-negative function over IN . In Example 3.5 it is
remarked that RLf

(m) = f(m)+1. Then, if we choose a function “greater”
than the bound in Theorem 5.3, we obtain the following.

Corollary 6.1. Let f(n) be a function that has asymptotical growth rate
greater than 2γn

, then Lf 6∈ REC ∪ co-REC.

We now consider four examples of picture languages defined over a given
alphabet Σ with |Σ| = σ ≥ 2. Those examples will be checked for the
inequalities of the Theorems 5.3, 5.4, 5.6 of previous section and used to
separate classes REC∪co-REC, REC and UREC. It is interesting to observe
that these four languages have very similar definitions as if they were a
variation on a theme. Their properties are based on a combination of the
existence or non-existence of duplicate columns in the pictures either for
a single column or for all the columns. Surprisingly all those variations
suffice to separate the introduced recognizable classes. The languages are
the following:

L∀1 ={p∈Σ++| all columns of p appear once in p}
L∀2 ={p∈Σ++| all columns of p appear at least twice in p}
L∃2 ={p∈Σ++| there exists a column in p that appears at least twice in p}
L∃1 ={p∈Σ++| there exists a column in p that appears only once in p}

Notice that language L∃2 is the language already introduced in Example 4.8
while L∃1 is the language already introduced in Example 4.10; the remaining
two languages are their complements. More precisely: L∀1 = CL∃2 and
L∀2 = CL∃1. By using the inequalities on the complexity functions given
in the previous section, we shall prove that L∀2 6∈ REC, L∀1 6∈ REC and
L∃2 6∈ UREC.

In the proof of the following results we make use of submatrices of the
Hankel matrix HL(m) specified by row’s and column’s indices in the follow-
ing set of strings over the column alphabet Σm,1 = {c1, c2, . . . , cσm}:

S(m) = {ci1ci2ci3 . . . cik
| 1 ≤ i1 < i2 < i3 . . . < ik ≤ σm}.

Observe that there is a bijection between the set of words S(m) and the
family of subsets of Σm,1. So one has that |S(m)| = 2σm

.

Lemma 6.2. For all m ≥ 1, PL∀2(m) ≥ 2σm

.

324 D. Giammarresi, A. Restivo

Proof. Consider the Hankel matrix HL∀2(m) and its submatrix having row
and column indices in the set S(m). We show that such submatrix is an
identity matrix (and thus a permutation matrix). Indeed, for any element
hxy of the submatrix, with x, y ∈ S(m) one has that hxy = 1 if xy ∈ L∀2
and this is true if and only if x = y. Then, the remark that the size of this
submatrix is 2σm

concludes the proof. q.e.d.

From Theorem 5.4 the above Lemma 6.2 one derives the following.

Corollary 6.3. L∀2 6∈ REC.

Consider now language L∃1 and the complexity function RL∃1(m). Then

RL∃1(m) = RL∀2(m) ≥ PL∀2(m).

Since we have proved in Section 4.1 (Example 4.10) that L∃1 ∈ REC, from
Lemma 6.2 we derive the following.

Corollary 6.4. The bound given in Theorem 5.3 is tight.

We now consider language L∀1. We prove the following.

Lemma 6.5. For all m ≥ 1, PL∀1(m) ≥
(

σm

σm

2

)
.

Proof. Consider the following subset T (m) of S(m)

T (m) =
{

ci1ci2ci3 . . . cik
| 1 ≤ i1 < i2 < i3 . . . < ik ≤ σn, k =

σm

2

}
.

Notice that we are implicitly assuming that σ is even: in the opposite case
everything can be done similarly but with a bit of more technicality. It
is easy to verify that there is a bijection between T (m) and the family of

subsets of Σm,1 with size σm

2 . Therefore |T (m)| =
(

σm

σm

2

)
.

Consider now the Hankel matrix HL∀1(m) and its submatrix having row
and column indices in the set T (m). We show that such submatrix is a
permutation matrix.

Recall that the elements of T (m) correspond to the subsets of Σm,1 with
size σm

2 , and that any subset of size σm

2 has a unique complement of the
same size. This means that, denoting by hxy the element of the Hankel
matrix HL∀1(m) for x, y ∈ T (m), one has that hxy = 1 if xy ∈ L∀1 and this
is true if and only if x and y correspond to complementary sets in Σm,1.
Thus the submatrix is a permutation matrix and the thesis follows. q.e.d.

By Theorem 5.4 and the above Lemma 6.5 we derive the following.

Matrix-based complexity functions and recognizable picture languages 325

Corollary 6.6. L∀1 6∈ REC.

Let us now consider the language L∃2. We prove the following.

Lemma 6.7. For all m ≥ 1, KL∃2(m) ≥ 2σm − 1.

Proof. Consider as in Lemma 6.2 the Hankel matrix HL∃2(m) and its sub-
matrix, here denoted by M(m), having both row and column indices in the
set S(m). To easily compute the rank of M(m) it is useful to introduce a
total order in the strings of S(m).

We need the following notations and definitions. Given a sequence
S = (x1, . . . , xn) of strings and a string z, denote by Sz the sequence
(x1z, . . . , xnz). If T = (y1, . . . , ym) is another sequence of strings, denote by
(S, T) the sequence composed by elements of S followed by the elements of
T , i.e. the sequence (S, T) = (x1, . . . , xn, y1, . . . , ym). Further recall that we
are considering strings on the alphabet of columns Σm,1 = {c1, c2, . . . , cσm}.

With these notations we can define the sequence S(m) by induction on
the index k of the number of elements in Σm,1 involved in the definitions of
the strings. The definition is the following:

S
(m)
0 = (ε)

S
(m)
k = (S(m)

k−1, S
(m)
k−1ck)

for k = 1, . . . , σm. We have that S(m) = S
(m)
σm . For instance:

S
(m)
0 = (ε)

S
(m)
1 = (ε, c1)

S
(m)
2 = (ε, c1, c2, c1c2)

S
(m)
3 = (ε, c1, c2, c1c2, c3, c1c3, c2c3, c1c2c3)

By ordering the elements of S(m) as above, the matrix M(m) assumes a
particular shape. For instance, the submatrix of M(m) whose row’s and
column’s indices belongs to S

(m)
3 is represented below.

ε c1 c2 c1c2 c3 c1c3 c2c3 c1c2c3

ε 0 0 0 0 0 0 0 0
c1 0 1 0 1 0 1 0 1
c2 0 0 1 1 0 0 1 1
c1c2 0 1 1 1 0 1 1 1
c3 0 0 0 0 1 1 1 1
c1c3 0 1 0 1 1 1 1 1
c2c3 0 0 1 1 1 1 1 1
c1c2c3 0 1 1 1 1 1 1 1

326 D. Giammarresi, A. Restivo

Let M ′(m) denote the matrix obtained from M(m) by deleting the first
row and the first column. One can show that M ′(m) has 1 in all counter-
diagonal positions and in all positions below it. In fact, by construction
of M ′(m), the pair of strings (x, y) corresponding to the rows and columns
indices of these positions are such that there exists a symbol ci ∈ Σm,1 that
occurs both in x and y, and hence xy ∈ L∃2. Moreover all positions imme-
diately above the counter-diagonal contain 0 since the pair (x, y) of strings
corresponding to these positions have no symbols in common. By elemen-
tary matrix computations, one has that the determinant det M ′(m) 6= 0.
Since the size of M ′(m) is 2σm− 1, the thesis follows. q.e.d.

By Theorem 5.6 and the above Lemma 6.7 we derive the following.

Corollary 6.8. L∃2 6∈ UREC.

We conclude by collecting all the results of this section and state the
following separation result.

Theorem 6.9. UREC 6⊆ REC 6⊆ REC ∪ co-REC.

Proof. Language L∃2 separate UREC from REC. In fact, it does not belongs
to UREC by Corollary 6.8 while in Example 4.8 it is shown L∃2 ∈ REC.

Furthermore language L∀2 separates families REC and REC ∪ co-REC.
In fact, from Corollary 6.3, we have that language L∀2 6∈ REC while its
complement CL∀2 = L∃1 ∈ REC (see Example 4.10). q.e.d.

7 Final remarks and open questions

We proposed a unifying framework based on Hankel matrices to deal with
recognizable picture languages. As result, we stated three necessary condi-
tions for the classes REC∪ co-REC, REC and UREC. The first natural ques-
tion that arises regards the non-sufficiency of such statements, more specif-
ically the possibility of refining them to get sufficient conditions. Observe
that the technique we used of reducing a picture language L in a sequence of
string languages (L(m))m>0 on the columns alphabets Σm,1 allows to take
into account the ”complexity” of a picture language along only the hori-
zontal dimension. For instance, consider the languages L′∃1, L

′
∃2, L

′
∀1, L

′
∀2

obtained by exchanging the word ”column” with ”rows” in the definitions
of corresponding languages given the the previous section. For those lan-
guages the necessary conditions we gave are meaningless, nevertheless it
is easy to figure out a corresponding technique that, given a picture lan-
guage L, consider the sequence of string languages (L′(n))n>0 on the rows
alphabets Σ1,n and then consider the Hankel matrices of such languages.
Then the question is whether by combining conditions that use such both
techniques along the two dimensions we could get strong conditions for the
recognizability of the given picture language.

Matrix-based complexity functions and recognizable picture languages 327

The novelty of these matrix-based complexity functions gives a common
denominator to study relations between the complement problem and un-
ambiguity in this family of recognizable picture languages. In 1994, in the
more general context of graphs Wolfgang Thomas et. al. had pointed the
close relations between these two concepts. In particular, paper [13] ends
with the following question formulated specifically for grids graphs and a
similar notion of recognizability (here, we report it in our terminology and
context).

Question 7.1. Let L ⊆ Σ++ be a language in REC such that also CL ∈
REC. Does this imply that L ∈ UREC?

As far as we know, there are no negative examples for this question. On
the other hand, we have seen a language L∃2 that belongs to REC such
that its complement L∀1 does not and L∃2 is not in UREC. Then we can
formulate another question.

Question 7.2. Let L ⊆ Σ++ be a language in REC such that CL 6∈ REC.
Does this imply that L 6∈ UREC?

As further work we believe that this matrix-based complexity function
technique to discriminate class of languages could be refined to study re-
lations between closure under complement and unambiguity. Notice that
a positive answer to any of a single question above does not imply that
UREC is closed under complement. Moreover observe that the two prob-
lems can be rewritten as whether REC ∩ co-REC ⊆ UREC and whether
UREC ⊆ REC ∩ co-REC, respectively, i.e. they correspond to verify two
inverse inclusions. As consequence, if both conjectures were true then we
would conclude not only that UREC is closed under complement but also
that it is the largest subset of REC closed under complement.

References

[1] M. Anselmo, D. Giammarresi, and M. Madonia. From determinism
to non-determinism in recognizable two-dimensional languages. In
T. Harju, J. Karhumäki, and A. Lepistö, editors, Developments in
Language Theory, volume 4588 of Lecture Notes in Computer Science,
pages 36–47. Springer, 2007.

[2] M. Anselmo, D. Giammarresi, M. Madonia, and A. Restivo. Unam-
biguous recognizable two-dimensional languages. Theor. Inform. Appl.,
40(2):277–293, 2006.

328 D. Giammarresi, A. Restivo

[3] J. Berstel and C. Reutenauer. Rational series and their languages,
volume 12 of EATCS Monographs on Theoretical Computer Science.
Springer-Verlag, Berlin, 1988.

[4] J. Cervelle. Langages de figures. Technical report, Ecole Normale
Supériure de Lyon, Dept de Mathématiques et Informatique, 1997.
Rapport de Stage.

[5] S. Eilenberg. Automata, languages, and machines. Vol. A. Academic
Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New
York, 1974. Pure and Applied Mathematics, Vol. 58.

[6] D. Giammarresi and A. Restivo. Recognizable picture languages.
IJPRAI, 6(2&3):241–256, 1992.

[7] D. Giammarresi and A. Restivo. Two-dimensional languages. In Hand-
book of formal languages, Vol. 3, pages 215–267. Springer, Berlin, 1997.

[8] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic
second-order logic over rectangular pictures and recognizability by
tiling systems. Inf. Comput., 125(1):32–45, 1996.

[9] J. Hromkovic, S. Seibert, J. Karhumäki, H. Klauck, and G. Schnitger.
Communication complexity method for measuring nondeterminism in
finite automata. Inf. Comput., 172(2):202–217, 2002.

[10] O. Matz. On piecewise testable, starfree, and recognizable picture
languages. In M. Nivat, editor, FoSSaCS, volume 1378 of Lecture Notes
in Computer Science, pages 203–210. Springer, 1998.

[11] O. Matz and W. Thomas. The monadic quantifier alternation hierarchy
over graphs is infinite. In LICS, pages 236–244, 1997.

[12] I. Mäurer. Weighted picture automata and weighted logics. In B. Du-
rand and W. Thomas, editors, STACS, volume 3884 of Lecture Notes
in Computer Science, pages 313–324. Springer, 2006.

[13] A. Potthoff, S. Seibert, and W. Thomas. Nondeterminism versus de-
terminism of finite automata over directed acyclic graphs. Bull. Belg.
Math. Soc. Simon Stevin, 1(2):285–298, 1994. Journées Montoises
(Mons, 1992).

[14] S. C. Reghizzi and M. Pradella. A SAT-based parser and completer for
pictures specified by tiling. Pattern Recognition. To appear.

[15] A. Salomaa and M. Soittola. Automata-theoretic aspects of formal
power series. Springer-Verlag, New York, 1978. Texts and Monographs
in Computer Science.

Matrix-based complexity functions and recognizable picture languages 329

[16] M. P. Schützenberger. On the definition of a family of automata. In-
formation and Control, 4(2-3):245–270, 1961.

[17] W. Thomas. On logics, tilings, and automata. In J. L. Albert,
B. Monien, and M. Rodŕıguez-Artalejo, editors, ICALP, volume 510
of Lecture Notes in Computer Science, pages 441–454. Springer, 1991.

Applying Blackwell optimality: priority

mean-payoff games as limits of

multi-discounted games∗

Hugo Gimbert1

Wies law Zielonka2

1 Laboratoire d’informatique

École polytechnique
91128 Palaiseau Cedex, France
gimbert@lix.polytechnique.fr

2 Laboratoire d’Informatique Algorithmique: Fondements et Applications
Université Paris Diderot, Paris 7
Case 7014
75205 Paris Cedex 13, France
zielonka@liafa.jussieu.fr

Abstract

We define and examine priority mean-payoff games—a natural
extension of parity games. By adapting the notion of Blackwell op-
timality borrowed from the theory of Markov decision processes we
show that priority mean-payoff games can be seen as a limit of special
multi-discounted games.

1 Introduction

One of the major achievements of the theory of stochastic games is the re-
sult of Mertens and Neyman [15] showing that the values of mean-payoff
games are the limits of the values of discounted games. Since the limit of
the discounted payoff is related to Abel summability while the mean-payoff
is related to Cesàro summability of infinite series, and classical abelian and
tauberian theorems establish tight links between these two summability
methods, the result of Mertens and Neyman, although technically very dif-
ficult, comes with no surprise.

In computer science similar games appeared with the work of Gurevich
and Harrington [12] (games with Muller condition) and Emerson and Jutla
[5] and Mostowski [16] (parity games).

However discounted and mean-payoff games also seem very different from
Muller/parity games. The former, inspired by economic applications, are

∗ Partially supported by the French ANR-SETI project AVERISS

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 331–355.

332 H. Gimbert, W. Zielonka

games with real valued payments, the latter, motivated by logics and au-
tomata theory, have only two outcomes, the player can win or lose.

The theory of parity games was developed independently from the the-
ory of discounted/mean-payoff games [11] even though it was noted by Jur-
dziński [14] that deterministic parity games on finite arenas can be reduced
to mean-payoff games1.

Recently de Alfaro, Henzinger and Majumdar [3] presented results that
indicate that it is possible to obtain parity games as an appropriate limit
of multi-discounted games. In fact, the authors of [3] use the language of
the µ-calculus rather than games, but as the links between µ-calculus and
parity games are well-known since the advent [5], it is natural to wonder
how discounted µ-calculus from [3] can be reflected in games.

The aim of this paper is to examine in detail the links between discounted
and parity games suggested by [3]. In our study we use the tools and
methods that are typical for classical game theory but nearly never used for
parity games. We want to persuade the reader that such tools, conceived
for games inspired by economic applications, can be successfully applied to
games that come from computer science.

As a by-product we obtain a new class of games—priority mean-payoff
games — that generalise in a very natural way parity games but contrary
to the latter allow to quantify the gains and losses of the players.

The paper is organised as follows.
In Section 2 we introduce the general framework of deterministic zero-

sum infinite games used in the paper, we define optimal strategies, game
values and introduce positional (i.e. memoryless) strategies.

In Section 3 we present discounted games. Contrary to classical game
theory where there is usually only one discount factor, for us it is crucial to
work with multi-discounted games where the discount factor can vary from
state to state.

Section 4 is devoted to the main class of games examined in this paper—
priority mean-payoff games. We show that for these games both players have
optimal positional strategies (on finite arenas).

In classical game theory there is a substantial effort to refine the notion
of optimal strategies. To this end Blackwell [2] defined a new notion of op-
timality that allowed him a fine-grained classification of optimal strategies
for mean-payoff games. In Section 5 we adapt the notion of Blackwell op-
timality to our setting. We use Blackwell optimality to show that in some
strong sense priority mean-payoff games are a limit of a special class of
multi-discounted games.

1 But this reduction seems to be proper for deterministic games and not possible for
perfect information stochastic games.

Limits of multi-discounted games 333

The last Section 6 discusses briefly some other applications of Blackwell
optimality.

Since the aim of this paper is not only to present new results but also to
familiarize the computer science community with methods of classical game
theory we have decided to make this paper totally self-contained. We present
all proofs, even the well-known proof of positionality of discounted games2.
For the same reason we also decided to limit ourselves to deterministic
games. Similar results can be proved for perfect information stochastic
games [10, 9] but the proofs become much more involved. We think that
the deterministic case is still of interest and has the advantage of beeing
accessible through elementary methods.

The present paper is an extended and improved version of [8].

2 Games

An arena is a tuple A = (S1, S2, A), where S1 and S2 are the sets of states

that are controlled respectively by player 1 and player 2, A is the set of
actions.

By S = S1 ∪ S2 we denote the set of all states. Then A ⊆ S × S,
i.e. each action a = (s′, s′′) ∈ A is a couple composed of the source state

source(a) = s′ and the target state target(a) = s′′. In other words, an arena
is just a directed graph with the set of vertices S partitioned onto S1 and
S2 with A as the set of edges.

An action a is said to be available at state s if source(a) = s and the set
of all actions available at s is denoted by A(s).

We consider only arenas where the set of states is finite and such that
for each state s the set A(s) of available actions is non-empty.

A path in arena A is a finite or infinite sequence p = s0s1s2 . . . of
states such that for all i, (si, si+1) ∈ A. The first state is the source of p,
source(p) = s0, if p is finite then the last state is the target of p, target(p).

Two players 1 and 2 play on A in the following way. If the current state
s is controlled by player P ∈ {1, 2}, i.e. s ∈ SP , then player P chooses an
action a ∈ A(s) available at s, this action is executed and the system goes
to the state target(a).

Starting from an initial state s0, the infinite sequence of consecutive
moves of both players yields an infinite sequence p = s0s1s2 . . . of visited
states. Such sequences are called plays, thus plays in this game are just
infinite paths in the underlying arena A.

2 But this can be partially justified since we need positionality of multi-discounted games
while in the literature usually simple discounted games are treated. We should admit
however that passing from discounted to multi-discounted games needs only minor
obvious modifications.

334 H. Gimbert, W. Zielonka

We shall also use the term “a finite play” as a synonym of “a finite path”
but “play” without any qualifier will always denote an infinite play/path.

A payoff mapping

u : Sω → R (1.1)

maps infinite sequences of states to real numbers. The interpretation is that
at the end of a play p player 1 receives from player 2 the payoff u(p) (if
u(p) < 0 then it is rather player 2 that receives from player 1 the amount
|u(p)|).

A game is couple (A, u) composed of an arena and a payoff mapping.
The obvious aim of player 1 (the maximizer) in such a game is to maxi-

mize the received payment, the aim of player 2 (the minimizer) is opposite,
he wants to minimize the payment paid to his adversary.

A strategy of a player P is his plan of action that tells him which action
to take when the game is at a state s ∈ SP . The choice of the action can
depend on the whole past sequence of moves.

Therefore a strategy for player 1 is a mapping

σ : {p | p a finite play with target(p) ∈ S1} −→ S (1.2)

such that for each finite play p with s = target(p) ∈ S1, (s, σ(p)) ∈ A(s).
Strategy σ of player 1 is said to be positional if for every state s ∈ S1

and every finite play p with target(p) = s, σ(p) = σ(s). Thus the action
chosen by a positional strategy depends only on the current state, previously
visited states are irrelevant. Therefore a positional strategy of player 1 can
be identified with a mapping

σ : S1 → S (1.3)

such that for all s ∈ S1, (s, σ(s)) ∈ A(s).
A finite or infinite play p = s0s1 . . . is said to be consistent with a

strategy σ of player 1 if, for each i ∈ N such that si ∈ S1, we have
(si, σ(s0 . . . si)) ∈ A.

Strategies, positional strategies and consistent plays are defined in the
analogous way for player 2 with S2 replacing S1.

In the sequel Σ and T will stand for the set of strategies for player 1 and
player 2 while Σp and Tp are the corresponding sets of positional strategies.

The letters σ and τ , with subscripts or superscripts if necessary, will be
used to denote strategies of player 1 and player 2 respectively.

Given a pair of strategies σ ∈ Σ and τ ∈ T and an initial state s, there
exists a unique infinite play in arena A, denoted p(s, σ, τ), consistent with
σ and τ and such that s = source(p(s, σ, τ)).

Limits of multi-discounted games 335

Definition 2.1. Strategies σ♯ ∈ Σ and τ ♯ ∈ T are optimal in the game
(A, u) if

∀s ∈ S, ∀σ ∈ Σ, ∀τ ∈ T ,

u(p(s, σ, τ ♯)) ≤ u(p(s, σ♯, τ ♯)) ≤ u(p(s, σ♯, τ)) . (1.4)

Thus if strategies σ♯ and τ ♯ are optimal then the players do not have
any incentive to change them unilaterally: player 1 cannot increase his gain
by switching to another strategy σ while player 2 cannot decrease his losses
by switching to another strategy τ .

In other words, if player 2 plays according to τ ♯ then the best response
of player 1 is to play with σ♯, no other strategy can do better for him.
Conversely, if player 1 plays according to σ♯ then the best response of player
2 is to play according to τ ♯ as no other strategy does better to limit his losses.

We say that a payoff mapping u admits optimal positional strategies if for
all games (A, u) over finite arenas there exist optimal positional strategies
for both players. We should emphasize that the property defined above is a
property of the payoff mapping and not a property of a particular game, we
require that both players have optimal positional strategies for all possible

games over finite arenas.
It is important to note that zero-sum games that we consider here, i.e.

the games where the gain of one player is equal to the loss of his adversary,
satisfy the exchangeability property for optimal strategies:

for any two pairs of optimal strategies (σ♯, τ ♯) and (σ⋆, τ⋆), the pairs
(σ⋆, τ ♯) and (σ♯, τ⋆) are also optimal and, moreover,

u(p(s, σ♯, τ ♯)) = u(p(s, σ⋆, τ⋆)) ,

i.e. the value of u(p(s, σ♯, τ ♯)) is independent of the choice of the optimal
strategies—this is the value of the game (A, u) at state s.

We end this general introduction with two simple lemmas.

Lemma 2.2. Let u be a payoff mapping admitting optimal positional
strategies for both players.

(A) Suppose that σ ∈ Σ is any strategy while τ ♯ ∈ Tp is positional. Then
there exists a positional strategy σ♯ ∈ Σp such that

for all s ∈ S, u(p(s, σ, τ ♯)) ≤ u(p(s, σ♯, τ ♯)) . (1.5)

(B) Similarly, if τ ∈ T is any strategy and σ♯ ∈ Σp a positional strategy
then there exists a positional strategy τ ♯ ∈ Tp such that

for all s ∈ S, u(p(s, σ♯, τ ♯)) ≤ u(p(s, σ♯, τ)) .

336 H. Gimbert, W. Zielonka

Proof. We prove (A), the proof of (B) is similar. Take any strategies σ ∈ Σ
and τ ♯ ∈ Tp. Let A′ be a subarena of A obtained by restricting the actions
of player 2 to the actions given by the strategy τ ♯, i.e. in A′ the only
possible strategy for player 2 is the strategy τ ♯. The actions of player 1 are
not restricted, i.e. in A′ player 1 has the same available actions as in A, in
particular σ is a valid strategy of player 1 on A′. Since u admits optimal
positional strategies, player 1 has an optimal positional strategy σ♯ on A′.
But (1.5) is just the optimality condition of σ♯ on A′. q.e.d.

Lemma 2.3. Suppose that the payoff mapping u admits optimal positional
strategies. Let σ♯ ∈ Σp and τ ♯ ∈ Tp be positional strategies such that

∀s ∈ S, ∀σ ∈ Σp, ∀τ ∈ Tp,

u(p(s, σ, τ ♯)) ≤ u(p(s, σ♯, τ ♯) ≤ u(p(s, σ♯, τ)) , (1.6)

i.e. σ♯ and τ ♯ are optimal in the class of positional strategies. Then σ♯ and
τ ♯ are optimal in the class of all strategies.

Proof. Suppose that

∃τ ∈ T , u(p(s, σ♯, τ)) < u(p(s, σ♯, τ ♯)) . (1.7)

By Lemma 2.2 (B) there exists a positional strategy τ⋆ ∈ Tp such that
u(p(s, σ♯, τ⋆)) ≤ u(p(s, σ♯, τ)) < u(p(s, σ♯, τ ♯)), contradicting (1.6). Thus
∀τ ∈ T , u(p(s, σ♯, τ ♯)) ≤ u(p(s, σ♯, τ)). The left hand side of (1.4) can be
proved in a similar way. q.e.d.

3 Discounted Games

Discounted games were introduced by Shapley [19] who proved that stochas-
tic discounted games admit stationary optimal strategies. Our exposition
follows very closely the original approach of [19] and that of [17]. Neverthe-
less we present a complete proof for the sake of completeness.

Arenas for discounted games are equipped with two mappings defined
on the set S of states: the discount mapping

λ : S −→ [0, 1)

associates with each state s a discount factor λ(s) ∈ [0, 1) and the reward

mapping

r : S −→ R (1.8)

maps each state s to a real valued reward r(s).

The payoff mapping
uλ : Sω −→ R

Limits of multi-discounted games 337

for discounted games is defined in the following way: for each play p =
s0s1s2 . . . ∈ Sω

uλ(p) = (1− λ(s0))r(s0) + λ(s0)(1− λ(s1))r(s1)+

λ(s0)λ(s1)(1− λ(s2))r(s2) + . . .

=

∞∑

i=0

λ(s0) . . . λ(si−1)(1− λ(si))r(si) . (1.9)

Usually when discounted games are considered it is assumed that there is
only one discount factor, i.e. that there exists λ ∈ [0, 1) such that λ(s) = λ
for all s ∈ S. But for us it is essential that discount factors depend on the
state.

It is difficult to give an intuitively convincing interpretation of (1.9) if
we use this payoff mapping to evaluate infinite games. However, there is a
natural interpretation of (1.9) in terms of stopping games, in fact this is the
original interpretation given by Shapley [19].

In stopping games the nature introduces an element of uncertainty. Sup-
pose that at a stage i a state si is visited. Then, before the player controlling
si is allowed to execute an action, a (biased) coin is tossed to decide if the
game stops or if it will continue. The probability that the game stops is
1 − λ(si) (thus λ(si) gives the probability that the game continues). Let
us note immediately that since we have assumed that 0 ≤ λ(s) < 1 for all
s ∈ S, the stopping probabilities are strictly positive therefore the game
actually stops with probability 1 after a finite number of steps.

If the game stops at si then player 1 receives from player 2 the payment
r(si). This ends the game, there is no other payment in the future.

If the game does not stop at si then there is no payment at this stage
and the player controlling the state si is allowed to choose an action to
execute3.

Now note that λ(s0) . . . λ(si−1)(1 − λ(si)) is the probability that the
game have not stopped at any of the states s0, . . . , si−1 but it does stop at
state si. Since this event results in the payment r(si) received by player 1,
Eq. (1.9) gives in fact the payoff expectation for a play s0s1s2

Shapley [19] proved4 that

Theorem 3.1 (Shapley). Discounted games (A, uλ) over finite arenas ad-
mit optimal positional strategies for both players.

3 More precisely, if the nature does not stop the game then the player controlling the
current state is obliged to execute an action, players cannot stop the game by them-
selves.

4 In fact, Shapley considered a much larger class of stochastic games.

338 H. Gimbert, W. Zielonka

Proof. Let R
S be the vector space consisting of mappings from S to R. For

f ∈ R
S , set ||f || = sups∈S |f(s)|. Since S is finite || · || is a norm for which

R
S is complete. Consider an operator Ψ : R

S −→ R
S , for f ∈ R

S and
s ∈ S,

Ψ[f](s) =

{

max(s,s′)∈A(s)(1 − λ(s))r(s) + λ(s)f(s′) if s ∈ S1

min(s,s′)∈A(s)(1 − λ(s))r(s) + λ(s)f(s′) if s ∈ S2 .

Ψ[f](s) can be seen as the value of a one shot game that gives the payoff
(1−λ(s))r(s)+λ(s)f(s′) if the player controlling the state s choses an action
(s, s′) ∈ A(s).

We can immediately note that Ψ is monotone, if f ≥ g then Ψ[f] ≥ Ψ[g],
where f ≥ g means that f(s) ≥ g(s) for all states s ∈ S.

Moreover, for any positive constant c and f ∈ R
S

Ψ[f]− cλ1 ≤ Ψ[f − c · 1] and Ψ[f + c · 1] ≤ Ψ[f] + cλ1 , (1.10)

where 1 is the constant mapping, 1(s) = 1 for each state s, and λ =
sups∈S λ(s).

Therefore, since

f − ||f − g|| · 1 ≤ g ≤ f + ||f − g|| · 1 ,

we get
Ψ[f]− λ||f − g|| · 1 ≤ Ψ[g] ≤ Ψ[f] + λ||f − g|| · 1 ,

implying
||Ψ[f]−Ψ[g]|| ≤ λ||f − g|| .

By the Banach contraction principle, Ψ has a unique fixed point w ∈ R
S ,

Ψ[w] = w. From the definition of Ψ we can see that this unique fixed point
satisfies the inequalities

∀s ∈ S1, ∀(s, s
′) ∈ A(s), w(s) ≥ (1− λ(s))r(s) + λ(s)w(s′) (1.11)

and

∀s ∈ S2, ∀(s, s
′) ∈ A(s), w(s) ≤ (1 − λ(s))r(s) + λ(s)w(s′) . (1.12)

Moreover, for each s ∈ S there is an action ξ(s) = (s, s′) ∈ A(s) such that

w(s) = (1− λ(s))r(s) + λ(s)w(s′) . (1.13)

We set σ♯(s) = ξ(s) for s ∈ S1 and τ ♯(s) = ξ(s) for s ∈ S2 and we show
that σ♯ and τ ♯ are optimal for player 1 and 2. Suppose that player 1 plays

Limits of multi-discounted games 339

according to the strategy σ♯ while player 2 according to some strategy τ . Let
p(s0, σ

♯, τ) = s0s1s2 Then, using (1.12) and (1.13), we get by induction
on k that

w(s0) ≤

k∑

i=0

λ(s0) . . . λ(si−1)(1− λ(si))r(si) + λ(s0) . . . λ(sk)w(sk+1) .

Tending k to infinity we get

w(s0) ≤ uλ(p(s0, σ
♯, τ)) .

In a similar way we can establish that for any strategy σ of player 1,

w(s0) ≥ uλ(p(s0, σ, τ ♯))

and, finally, that
w(s0) = uλ(p(s0, σ

♯, τ ♯)) ,

proving the optimality of σ♯ and τ ♯. q.e.d.

4 Priority mean-payoff games

In mean-payoff games the players try to optimize (maximize/minimize) the
mean value of the payoff received at each stage. In such games the reward

mapping

r : S −→ R (1.14)

gives, for each state s, the payoff received by player 1 when s is visited. The
payoff of an infinite play is defined as the mean value of daily payments:

um(s0s1s2 . . .) = lim sup
k

1

k + 1

k∑

i=0

r(si) , (1.15)

where we take lim sup rather than the simple limit since the latter may
not exist. As proved by Ehrenfeucht and Mycielski [4], such games admit
optimal positional strategies; other proofs can be found for example in [1, 7].

We slightly generalize mean-payoff games by equipping arenas with a
new mapping

w : S −→ R+ (1.16)

associating with each state s a strictly positive real number w(s), the weight

of s. We can interpret w(s) as the amount of time spent at state s each
time when s is visited. In this setting r(s) should be seen as the payoff by
a time unit when s is visited, thus the mean payoff received by player 1 is

um(s0s1s2 . . .) = lim sup
k

∑k

i=0 w(si)r(si)
∑k

i=0 w(si)
. (1.17)

340 H. Gimbert, W. Zielonka

Note that in the special case when the weights are all equal to 1, the weighted
mean value (1.17) reduces to (1.15).

As a final ingredient we add to our arena a priority mapping

π : S −→ Z+ (1.18)

giving a positive integer priority π(s) of each state s.
We define the priority of a play p = s0s1s2 . . . as the smallest priority

appearing infinitely often in the sequence π(s0)π(s1)π(s2) . . . of priorities
visited in p:

π(p) = lim inf
i

π(si) . (1.19)

For any priority a, let 1a : S −→ {0, 1} be the indicator function of the set
{s ∈ S | π(s) = a}, i.e.

1a(s) =

{

1 if π(s) = a

0 otherwise.
(1.20)

Then the priority mean payoff of a play p = s0s1s2 . . . is defined as

upm(p) = lim sup
k

∑k

i=0 1π(p)(s) · w(si) · r(si)
∑k

i=0 1π(p)(si) · w(si)
. (1.21)

In other words, to calculate priority mean payoff upm(p) we take weighted
mean payoff but with the weights of all states having priorities different from
π(p) shrunk to 0. (Let us note that the denominator

∑k

i=0 1π(p)(si) · w(si)
is different from 0 for k large enough, in fact it tends to infinity since
1π(p)(si) = 1 for infinitely many i. For small k the numerator and the
denominator can be equal to 0 and then, to avoid all misunderstanding, it
is convenient to assume that the indefinite value 0/0 is equal to −∞.)

Suppose that for all states s,

• w(s) = 1 and

• r(s) is 0 if π(s) is even, and r(s) is 1 if π(s) is odd.

Then the payoff obtained by player 1 for any play p is either 1 if π(p) is odd,
or 0 if π(p) is even. If we interpret the payoff 1 as the victory of player 1, and
payoff 0 as his defeat then such a game is just the usual parity game [5, 11].

It turns out that

Theorem 4.1. For any arena A the priority mean-payoff game (A, upm)
admits optimal positional strategies for both players.

Limits of multi-discounted games 341

There are many possible ways to prove Theorem 4.1, for example by
adapting the proofs of positionality of mean payoff games from [4] and [1]
or by verifying that upm satisfies sufficient positionality conditions given in
[7]. Below we give a complete proof based mainly on ideas from [7, 20].

A payoff mapping is said to be prefix independent if for each play p
and for each factorization p = xy with x finite we have u(p) = u(y), i.e.
the payoff does not depend on finite prefixes of a play. The reader can
readily persuade herself that the priority mean payoff mapping upm is prefix
independent.

Lemma 4.2. Let u be a prefix-independent payoff mapping such that both
players have optimal positional strategies σ♯ and τ ♯ in the game (A, u). Let
val(s) = p(s, σ♯, τ ♯), s ∈ S, be the game value for an initial state s.

For any action (s, t) ∈ A,

(1) if s ∈ S1 then val(s) ≥ val(t),

(2) if s ∈ S2 then val(s) ≤ val(t),

(3) if s ∈ S1 and σ♯(s) = t then val(s) = val(t),

(4) if s ∈ S2 and τ ♯(s) = t then val(s) = val(t).

Proof. (1). This is quite obvious. If s ∈ S1, (s, t) ∈ A and val(s) < val(t)
then for a play starting at s player 1 could secure for himself at least val(t) by
executing first the action (s, t) and next playing with his optimal strategy.
But this contradicts the definition of val(s) since from s player 2 has a
strategy that limits his losses to val(s).

The proof of (2) is obviously similar.

(3). We know by (1) that if s ∈ S1 and σ♯(s) = t then val(s) ≥ val(t). This
inequality cannot be strict since from t player 2 can play in such a way that
his loss does not exceed val(t).

(4) is dual to (1). q.e.d.

Proof of Theorem 4.1. We define the size of an arena A to be the difference
|A| − |S| of the number of actions and the number of states and we carry
the proof by induction on the size of A. Note that since for each state there
is at least one available action the size of each arena is ≥ 0.

If for each state there is only one available action then the number
of actions is equal to the number of states, the size of A is 0, and each
player has just one possible strategy, both these strategies are positional
and, obviously, optimal.

Suppose that both players have optimal positional strategies for arenas
of size < k and let A be of size k, k ≥ 1.

342 H. Gimbert, W. Zielonka

Then there exists a state with at least two available actions. Let us fix
such a state t, we call it the pivot. We assume that t is controlled by player 1

t ∈ S1 (1.22)

(the case when it is controlled by player 2 is symmetric).
Let A(t) = AL(t)∪AR(t) be a partition of the set A(t) of actions available

at t onto two disjoint non-empty sets. Let AL and AR be two arenas, we
call them left and right arenas, both of them having the same states as
A, the same reward, weight and priority mappings and the same available
actions for all states different from t. For the pivot state t, AL and AR

have respectively AL(t) and AR(t) as the sets of available actions. Thus,
since AL and AR have less actions than A, their size is smaller than the
size of A and, by induction hypothesis, both players have optimal positional
strategies: (σ♯

L, τ ♯
L) on AL and (σ♯

R, τ ♯
R) on AR.

We set valL(s) = upm(p(s, σ♯
L, τ ♯

L)) and valR(s) = upm(p(s, σ♯
R, τ ♯

R)) to
be the values of a state s respectively in the left and the right arena.

Without loss of generality we can assume that for the pivot state t

valL(t) ≤ valR(t) . (1.23)

We show that this implies that

for all s ∈ S, valL(s) ≤ valR(s) . (1.24)

Suppose the contrary, i.e. that the set

X = {s ∈ S | valL(s) > valR(s)}

is non-empty. We define a positional strategy σ∗ for player 1

σ∗(s) =

{

σ♯
L(s) if s ∈ X ∩ S1

σ♯
R(s) if s ∈ (S \X) ∩ S1.

(1.25)

Note that, since the pivot state t does not belong to X , for s ∈ X ∩ S1,
σ♯

L(s) is valid action for player 1 not only in AL but also in AR, therefore
the strategy σ∗ defined above is a valid positional strategy on the arena AR.

We claim that

For games on AR starting at a state s0 ∈ X strategy σ∗ guarantees that

player 1 wins at least valL(s0) (against any strategy of player 2).

(1.26)

Suppose that we start a game on AR at a state s0 and player 1 plays
according to σ∗ while player 2 uses any strategy τ . Let

p(s0, σ
∗, τ) = s0s1s2 . . . (1.27)

Limits of multi-discounted games 343

be the resulting play. We define

for all s ∈ S, val(s) =

{

valL(s) for s ∈ X,

valR(s) for s ∈ S \X.
(1.28)

We shall show that the sequence val(s0), val(s1), val(s2), . . . is nondecreas-
ing,

for all i, val(si) ≤ val(si+1) . (1.29)

Since strategies σ♯
L and σ♯

R are optimal in AL and AR, Lemma 4.2 and
(1.28) imply that for all i

val(si) = valL(si) ≤ valL(si+1) if si ∈ X, (1.30)

and

val(si) = valR(si) ≤ valR(si+1) if si ∈ S \X. (1.31)

To prove (1.29) there are four cases to examine:

(1) Suppose that si and si+1 belong to X . Then val(si+1) = valL(si+1) and
(1.29) follows from (1.30).

(2) Suppose that si and si+1 belong to S \X . Then val(si+1) = valR(si+1)
and now (1.29) follows from (1.31).

(3) Let si ∈ X and si+1 ∈ S \X . Then (1.29) follows from (1.30) and from
the fact that valL(si+1) ≤ valR(si+1) = val(si+1).

(4) Let si ∈ S\X and si+1 ∈ X . Then valR(si+1) < valL(si+1) = val(si+1),
which, by (1.31), implies (1.29). Note that in this case we have the strict
inequality val(si) < val(si+1).

This finishes the proof of (1.29).

Since the set {val(s) | s ∈ S} is finite, (1.29) implies that the sequence
val(si), i = 0, 1, . . . , is ultimately constant. But examining the case (4)
above we have established that each passage from S \ X to X strictly in-
creases the value of val. Thus from some stage n onward all states si, i ≥ n,
are either in X or in S \X . Therefore, according to (1.25), from the stage

n onward player 1 always plays either σ♯
L or σ♯

R and the optimality of both
strategies assures that he wins at least val(sn), i.e.

upm(p(s0, σ
∗, τ)) = upm(s0s1 . . .) =

upm(snsn+1sn+2 . . .) ≥ val(sn) ≥ val(s0).

344 H. Gimbert, W. Zielonka

In particular, if s0 ∈ X then using strategy σ∗ player 1 secures for himself
the payoff of at least val(s0) = valL(s0) against any strategy of player

2, which proves (1.26). On the other hand, the optimality of τ ♯
R implies

that player 2 can limit his losses to valR(s0) by using strategy τ ♯
R. But how

player 1 can win at least valL(s0) while player 2 loses no more than valR(s0)
if valL(s0) > valR(s0) for s0 ∈ X? We conclude that the set X is empty
and (1.24) holds.

Now our aim is to prove that (1.23) implies that the strategy σ♯
R is

optimal for player 1 not only in AR but also for games on the arena A.
Clearly player 1 can secure for himself the payoff of at least valR(s) by

playing according to σ♯
R on A. We should show that he cannot do better.

To this end we exhibit a strategy τ ♯ for player 2 that limits the losses of
player 2 to valR(s) on the arena A.

At each stage player 2 will use either his positional strategy τ ♯
L optimal

in AL or strategy τ ♯
R optimal in AR. However, in general neither of these

strategies is optimal for him in A and thus it is not a good idea for him
to stick to one of these strategies permanently, he should rather adapt his
strategy to the moves of his adversary. To implement the strategy τ ♯ player
2 will need one bit of memory (the strategy τ ♯ we construct here is not

positional). He uses this memory to remember if at the last passage through
the pivot state t player 1 took an action of AL(t) or an action of AR(t). In

the former case player 2 plays using the strategy τ ♯
L, in the latter case he

plays using the strategy τ ♯
R. In the periods between two passages through

t player 2 does not change his strategy, he sticks either to τ ♯
L or to τ ♯

R,
he switches from one of these strategies to the other only when compelled
by the action taken by player 1 during the last visit at the pivot state5.
It remains to specify which strategy player 2 uses until the first passage
through t and we assume that it is the strategy τ ♯

R.
Let s0 ∈ S be an initial state and let σ be some, not necessarily posi-

tional, strategy of 1 for playing on A. Let

p(s0, σ, τ ♯) = s0s1s2 . . . (1.32)

be the resulting play. Our aim is to show that

upm(p(s0, σ, τ ♯)) ≤ valR(s0) . (1.33)

5 Note the intuition behind the strategy τ ♯: If at the last passage through the pivot
state t player 1 took an action of AL(t) then, at least until the next visit to t, the play
is like the one in the game AL (all actions taken by the players are actions of AL)
and then it seems reasonable for player 2 to respond with his optimal strategy on AL.
On the other hand, if at the last passage through t player 1 took an action of AR(t)
then from this moment onward until the next visit to t we play like in AR and then
player 2 will respond with his optimal strategy on AR.

Limits of multi-discounted games 345

If p(s0, σ, τ ♯) never goes through t then p(s0, σ, τ ♯) is in fact a play in AR

consistent with τ ♯
R which immediately implies (1.33).

Suppose now that p(s0, σ, τ ♯) goes through t and let k be the first stage

such that sk = t. Then the initial history s0s1 . . . sk is consistent with τ ♯
R

which, by Lemma 4.2, implies that

valR(t) ≤ valR(s0) . (1.34)

If there exists a stage n such that sn = t and player 2 does not change
his strategy after this stage6, i.e. he plays from the stage n onward either τ ♯

L

or τ ♯
R then the suffix play snsn+1 . . . is consistent with one of these strate-

gies implying that either upm(snsn+1 . . .) ≤ valL(t) or upm(snsn+1 . . .) ≤
valR(t). But upm(snsn+1 . . .) = upm(p(s0, σ, τ ♯)) and thus (1.34) and (1.23)
imply (1.33).

The last case to consider is when player 2 switches infinitely often be-
tween τ ♯

R and τ ♯
L.

In the sequel we say that a non-empty sequence of states z contains only
actions of AR if for each factorization z = z′s′s′′z′′ with s′, s′′ ∈ S, (s′, s′′)
is an action of AR. (Obviously, there is in a similar definition for AL.)

Since now we consider the case when the play p(s0, σ, τ ♯) contains in-
finitely many actions of AL(t) and infinitely many actions of AR(t) there
exists a unique infinite factorization

p(s0, σ, τ ♯) = x0x1x2x3 . . . , (1.35)

such that

• each xi, i ≥ 1, is non-empty and begins with the pivot state t,

• each path x2it, i = 0, 1, 2, . . . contains only actions of AR while

• each path x2i+1t contains only actions of AL.

(Intuitively, we have factorized the play p(s0, σ, τ ♯) according to the strategy
used by player 2.)

Let us note that the conditions above imply that

xR = x2x4x6 . . . and xL = x1x3x5 (1.36)

are infinite paths respectively in AR and AL.

Moreover, xR is a play consistent with τ ♯
R while xL is consistent with τ ♯

L.

By optimality of strategies τ ♯
R, τ ♯

L,

upm(xR) ≤ valR(t) and upm(xL) ≤ valL(t) . (1.37)

6 In particular this happens if p(s0, σ, τ ♯) goes finitely often through t.

346 H. Gimbert, W. Zielonka

It is easy to see that path priorities satisfy π(xR) ≥ π(p(s0, σ, τ ♯)) and
π(xL) ≥ π(p(s0, σ, τ ♯)) and at most one of these inequalities is strict.

(1) If π(xR) > π(p(s0, σ, τ ♯)) and π(xL) = π(p(s0, σ, τ ♯)) then there ex-
ists m such that all states in the suffix x2mx2m+2x2m+4 . . . of xR have
priorities greater than π(p(s0, σ, τ ♯)) and do not contribute to the payoff
upm(x2mx2m+1x2m+2x2m+3 . . .).

This and the prefix-independence property of upm imply

upm(p(s0, σ, τ ♯)) = upm(x2mx2m+1x2m+2x2m+3 . . .) =

upm(x2m+1x2m+3 . . .) = upm(xL) ≤ valL(s0) ≤ valR(s0),

where the first inequality follows from the fact that xL is consistent with
the optimal strategy τ ♯

L.

(2) If π(xL) > π(p(s0, σ, τ ♯)) and π(xR) = π(p(s0, σ, τ ♯)) then we get in a
similar way upm(p(s0, σ, τ ♯)) = upm(xR) ≤ valR(s0).

(3) Let a = π(xR) = π(p(s0, σ, τ ♯)) = π(xL). For a sequence t0t1 . . . tl of
states we define

Fa(t0 . . . tl) =

l∑

i=1

1a(ti) · w(ti) · r(ti)

and

Ga(t0 . . . tl) =

l∑

i=1

1a(ti) · w(ti),

where 1a is defined in (1.20). Thus for an infinite path p, upm(p) =
lim supi Fa(pi)/Ga(pi), where pi is the prefix of length i of p.

Take any ε > 0. Eq. (1.37) implies that for all sufficiently long prefixes
yL of xL, Fa(yL)/Ga(yL) ≤ valL(t) + ε ≤ valR(t) + ε and similarly for all
sufficiently long prefixes yR of xR, Fa(yR)/Ga(yR) ≤ valR(t) + ε. Then we
also have

Fa(yR) + Fa(yL)

Ga(yR) + Ga(yL)
≤ valR(t) + ε . (1.38)

If y is a proper prefix of the infinite path x1x2x3 . . . then

y = x1x2 . . . x2i−1x
′
2ix

′
2i+1 ,

Limits of multi-discounted games 347

where

• either x′2i is a prefix of x2i and x′2i+1 is empty or

• x′2i = x2i and x′2i+1 is a prefix of x2i+1

(and xi are as in factorization (1.35)). Then yR = x2x4 . . . x′2i is a prefix of
xR while yL = x1x3 . . . x2i−1x

′
2i+1 is a prefix of xL. If the length of y tends

to ∞ then the lengths of yR and yL tend to ∞. Since Ga(y) = Ga(yR) +
Ga(yL) and Fa(y) = Fa(yR)+Ga(yL) Eq. (1.38) implies that Ga(y)/Fa(y) ≤
valR(t) + ε. Since the last inequality holds for all sufficiently long finite
prefixes of x1x2x3 . . . we get that upm(p(s0, σ, τ ♯)) = upm(x1x2x3 . . .) ≤
valR(s0)+ ε. As this is true for all ε > 0 we have in fact upm(p(s0, σ, τ ♯)) ≤
valR(s0).

This finishes the proof that if player 2 plays according to strategy τ ♯

then his losses do not extend valR(s0).

We can conclude that strategies σ♯
R and τ ♯ are optimal on A and for

each initial state s the value of a game on A is the same as in AR.
Note however that while player 1 can use his optimal positional strategy

σ♯
R to play optimally on A the situation is more complicated for player 2.

The optimal strategy that we have constructed for him is not positional and
certainly if we pick some of his optimal positional strategies on AR then we
cannot guarantee that it will remain optimal on A.

To obtain an optimal positional strategy for player 2 we proceed as follows:

If for each state s ∈ S2 controlled by player 2 there is only one available
action then player 2 has only one strategy (τ ♯

R = τ ♯
L). Thus in this case

player 2 needs no memory.

If there exists a state t ∈ S2 with at least two available actions then we
take this state as the pivot and by the same reasoning as previously we find
a pair of optimal strategies (σ∗, τ ♯) such that τ ♯ is positional while σ∗ may
need one bit of memory to be implemented.

By exchangeability property of optimal strategies we can conclude that
(σ♯, τ ♯) is a couple of optimal positional strategies. q.e.d.

5 Blackwell optimality

Let us return to discounted games. In this section we examine what happens
if, for all states s, the discount factors λ(s) tend to 1 or, equivalently, the
stopping probabilites tend to 0.

When all discount factors are equal and tend to 1 with the same rate
then the value of discounted game tends to the value of a simple mean-payoff
game, this is a classical result examined extensively by many authors in the
context of stochastic games, see [6] and the references therein.

348 H. Gimbert, W. Zielonka

What happens however if discount factors tend to 1 with different rates
for different states? To examine this limit we assume in the sequel that
arenas for discounted games are equipped not only with a reward mapping
r : S −→ R but also with a priority mapping π : S −→ Z+ and a weight
mapping w : S −→ (0, 1], exactly as for priority mean-payoff games of
Section 4.

Let us take β ∈ (0, 1] and assume that the stopping probability of each
state s is equal to w(s)βπ(s), i.e. the discount factor is

λ(s) = 1− w(s)βπ(s) . (1.39)

Note that with these discount factors, for two states s and s′, π(s) < π(s′)
iff 1− λ(s′) = o(1 − λ(s)) for β ↓ 0.

If (1.39) holds then the payoff mapping (1.9) can be rewritten in the
following way, for a play p = s0s1s2 . . .,

uβ(p) =

∞∑

i=0

(1− w(s0)β
π(s0)) . . . (1− w(si−1)β

π(si−1))βπ(si)w(si)r(si) .

(1.40)
Let us fix a finite arena A. Obviously, it depends on the parameter β

which positional strategies are optimal in the games with payoff (1.40). It
is remarkable that for β sufficiently close to 0 the optimality of positional
strategies does not depend on β any more. This phenomenon was discov-
ered, in the framework of Markov decision processes, by David Blackwell [2]
and is now known under the name of Blackwell optimality.

We shall say that positional strategies (σ♯, τ ♯) ∈ Σ× T are β-optimal if
they are optimal in the discounted game (A, uβ).

Definition 5.1. Strategies (σ♯, τ ♯) ∈ Σ×T are Blackwell optimal in a game
(A, uβ) if they are β-optimal for all β in an interval 0 < β < β0 for some
constant β0 > 0 (β0 depends on the arena A).

Theorem 5.2.

(a) For each arenaA there exists 0 < β0 < 1 such that if σ♯, τ ♯ are β-optimal
positional strategies for players 1 and 2 for some β ∈ (0, β0) then they
are β-optimal for all β ∈ (0, β0), i.e. they are Blackwell optimal.

(b) If σ♯, τ ♯ are positional Blackwell optimal strategies then they are also
optimal for the priority mean-payoff game (A, upm).

(c) For each state s, limβ↓0 val(A, s, uβ) = val(A, s, upm), where val(A, s, uβ)
and val(A, s, upm) are the values of, respectively, the β-discounted game
and the priority mean-payoff game.

Limits of multi-discounted games 349

The remaining part of this section is devoted to the proof of Theorem 5.2.

Lemma 5.3. Let p be an ultimately periodic infinite sequence of states.
Then uβ(p) is a rational function7 of β and

lim
β↓0

uβ(p) = upm(p) . (1.41)

Proof. First of all we need to extend the definition (1.40) to finite sequences
of states, if x = s0s1 . . . sl then upm(x) is defined like in (1.40) but with the
sum taken from 0 to l.

Let p = xyω be an ultimately periodic sequence of states, where x, y are
finite sequences of states, y non-empty. Directly from (1.40) we obtain that,
for x = s0 . . . sl,

uβ(p) = uβ(x) + (1− w(s0)β
π(s0)) . . . (1− w(sl)β

π(sl))uβ(yω) . (1.42)

For any polynomial f(β) =
∑l

i=0 aiβ
i the order8 of f is the smallest j such

that aj 6= 0. By definition the order of the zero polynomial is +∞.
Now note that uβ(x) is just a polynomial of β of order strictly greater

than 0, which implies that limβ↓0 uβ(x) = 0. Thus limβ↓0 uβ(p) =
limβ↓0 uβ(yω). On the other hand, upm(p) = upm(yω). Therefore it suf-
fices to prove that

lim
β↓0

uβ(yω) = upm(yω) . (1.43)

Suppose that y = t0t1 . . . tk, ti ∈ S. Then

uβ(yω) = uβ(y)

∞∑

i=0

[(1− w(t0)β
π(t0)) · · · (1 − w(tk)βπ(tk))]i =

uβ(y)

1− (1− w(t0)βπ(t0)) · · · (1− w(tk)βπ(tk))
. (1.44)

Let a = min{π(ti) | 0 ≤ i ≤ k} be the priority of y, L = {l | 0 ≤ l ≤
k and π(tl) = a}. Now it suffices to observe that the right hand side of
(1.44) can be rewritten as

uβ(yω) =

∑

l∈L w(tl)r(tl)β
a + f(β)

∑

l∈L w(tl)βa + g(β)
,

where f and g are polynomials of order greater than a. Therefore

lim
β↓0

uβ(yω) =

∑

l∈L w(tl)r(tl)
∑

l∈L w(tl)
. (1.45)

However, the right hand side of (1.45) is the value of upm(yω). q.e.d.

7 The quotient of two polynomials.
8 Not to be confounded with the degre of f which is te greatest j such that aj 6= 0.

350 H. Gimbert, W. Zielonka

Proof of Theorem 5.2. The proof of condition (a) given below follows very
closely the one given in [13] for Markov decision processes.

Take a sequence (βn), βn ∈ (0, 1], such that limn→∞ βn = 0. Since
for each βn there is at least one pair of βn-optimal positional strategies and
there are only finitely many positional strategies for a finite arenaA, passing
to a subsequence of (βn) if necessary, we can assume that there exists a pair
of positional strategies (σ♯, τ ♯) that are βn-optimal for all βn.

We claim that there exists β0 > 0 such that (σ♯, τ ♯) are β-optimal for
all 0 < β < β0.

Suppose the contrary. Then there exists a state s and a sequence (γm),
γm ∈ (0, 1], such that limm→∞ γm = 0 and, for each m, either σ♯ or τ ♯ is
not γm-optimal. Therefore, for each m,

(i) either player 1 has a strategy σ⋆
m such that

uγm
(p(s, σ♯, τ ♯)) < uγm

(p(s, σ⋆
m, τ ♯)),

(ii) or player 2 has a strategy τ⋆
m such that

uγm
(p(s, σ♯, τ⋆

m)) < uγm
(p(s, σ♯, τ ♯)).

Due to Lemma 2.2, all the strategies σ⋆
m and τ⋆

m can be chosen to be po-
sitional and since the number of positional strategies is finite, taking a
subsequence of (γm) if necessary, we can assume that

(1) either there exist a state s, a positional strategy σ⋆ ∈ Σp and a sequence
(γm), γm ↓ 0, such that

uβ(p(s, σ♯, τ ♯)) < uβ(p(s, σ⋆, τ ♯)) for all β = γ1, γ2, . . . , (1.46)

(2) or there exist a state s, a positional strategy τ⋆ ∈ Tp and a sequence
(γm), γm ↓ 0, such that

uβ(p(s, σ♯, τ⋆)) < uβ(p(s, σ♯, τ ♯)) for all β = γ1, γ2, (1.47)

Suppose that (1.46) holds.

The choice of (σ♯, τ ♯) guarantees that

uβ(p(s, σ⋆, τ ♯)) ≤ uβ(p(s, σ♯, τ ♯)) for all β = β1, β2, (1.48)

Consider the function

f(β) = uβ(p(s, σ⋆, τ ♯))− uβ(p(s, σ♯, τ ♯)). (1.49)

Limits of multi-discounted games 351

By Lemma 5.3, for 0 < β < 1, f(β) is a rational function of β. But from
(1.46) and (1.48) we can deduce that when β tends to 0 then f(β) ≤ 0
infinitely often and f(β) > 0 infinitely often. This is possible for a ratio-
nal function f only if this function is identicaly equal to 0, contradicting
(1.46). In a similar way we can prove that (1.47) entails a contradiction.
We conclude that σ♯ and τ ♯ are Blackwell optimal.

To prove condition (b) of Theorem 5.2 suppose the contrary, i.e. that
there are positional Blackwell optimal strategies (σ♯, τ ♯) that are not optimal
for the priority mean-payoff game. This means that there exists a state s
such that either

upm(p(s, σ♯, τ ♯)) < upm(p(s, σ, τ ♯)) (1.50)

for some strategy σ of player 1 or

upm(p(s, σ♯, τ)) < upm(p(s, σ♯, τ ♯)) (1.51)

for some strategy τ of player 2. Since priority mean-payoff games have
optimal positional strategies, by Lemma 2.2, we can assume without loss
of generality that σ and τ are positional. Suppose that (1.50) holds. As
σ, σ♯, τ ♯ are positional the plays p(s, σ♯, τ ♯) and p(s, σ, τ ♯) are ultimately
periodic, by Lemma 5.3, we get

lim
β↓0

uβ(p(s, σ♯, τ ♯)) = upm(p(s, σ♯, τ ♯))

< upm(p(s, σ, τ ♯)) = lim
β↓0

uβ(p(s, σ, τ ♯)).
(1.52)

However, inequality (1.52) implies that there exists 0 < β0 such that

for all β < β0, uβ(p(s, σ♯, τ ♯)) < uβ(p(s, σ, τ ♯)) ,

in contradiction with the Blackwell optimality of (σ♯, τ ♯). Similar reasoning
shows that also (1.51) contradicts the Blackwell optimality of (σ♯, τ ♯). i
This also shows that

lim
β↓0

val(A, s, uβ) = lim
β↓0

uβ(p(s, σ♯, τ ♯)) = upm(p(s, σ♯, τ ♯)) = val(A, s, upm),

i.e., condition (c) of Theorem 5.2 holds as well. q.e.d.

Let us note that there is another known link between parity and dis-
counted games: Jurdziński [14] has shown how parity games can be reduced
to mean-payoff games and it is well-known that the value of mean-payoff
games is a limit of the value of discounted games, see [15] or [21] for the
particular case of deterministic games. However, the reduction of [14] does
not seem to extend to priority mean-payoff games and, more significantly, it
also fails for perfect information stochastic games. Note also that [21] con-
centrates only on value approximation and the issue of Blackwell optimality
of strategies in not touched at all.

352 H. Gimbert, W. Zielonka

6 Final remarks

6.1 Interpretation of infinite games

In real life all systems have a finite life span: computer systems become
obsolete, economic environment changes. Therefore it is reasonable to ask
if infinite games are pertinent as models of such systems. This question is
discussed for example in [18].

If there exists a family of payoff mappings un such that un : Sn −→ R

is defined for paths of length n (n-stage payoff) and the payoff u(s0s1 . . .)
for an infinite play is a limit of un(s0s1 . . . sn−1) when the number of stages
n tends to ∞ then we can say that infinite games are just approximations
of finite games where the length of the game is very large or not precisely
known. This interpretation is quite reasonable for simple mean-payoff games
for example, where the payoff for infinite plays is a limit of n stage mean-
payoff. However such an interpretation fails for priority mean-payoff games
and for parity games where no appropriate n-stage payoff mappings exist.

However the stopping (or discounted) games offer another attractive
probabilistic interpretation of priority mean-payoff games. For sufficiently
small β if we consider a stopping game with the stopping probabilities
w(s)βπ(s) for each state s then Theorem 5.2 states that optimal positional
strategies for the stopping game are optimal for the priority mean-payoff
game. Moreover, the value of the stopping game tends to the value of the
priority mean-payoff game when β tends to 0. And the stopping game is
a finite game but in a probabilistic rather than deterministic sense, such
a game stops with probability 1. Thus we can interpret infinite priority
mean-payoff games as an approximation of stopping games where the stop-
ping probabilities are very small. We can also see that smaller priorities are
more significant since the corresponding stopping probabilities are much
greater: w(s)βπ(s) = o(w(t)βπ(t)) if π(s) > π(t).

6.2 Refining the notion of optimal strategies for priority

mean-payoff games

Optimal strategies for parity games (and generally for priority mean-payoff
games) are under-selective. To illustrate this problem let us consider the
game of Figure 6.2.

For this game all strategies of player 1 guarantee him the payment 1.
Suppose however that the left loop contains 21000000 states while the right
loop only 3 states. Then, intuitively, it seems that the positional strategy
choosing always the small right loop is much more advantageous for player 1
than the positional strategy choosing always the big left loop. But with the
traditional definition of optimality for parity games one strategy is as good
as the other.

Limits of multi-discounted games 353

���� ����

���� ����

������
������
������
������

������
������
������
������

��������
��������
��������
��������

��������
��������
��������
��������

������
������
������
������

������
������
������
������

��������

����������

x tπ(x) = 2i + 1

π = 2i π = 2i π = 2i

π = 2iπ = 2iπ = 2i

π = 2i

yπ(y) = 2i + 1

Figure 1. The left and the right loop contain one state, x and y respec-
tively, with priority 2i + 1, all the other states have priority 2i. The weight
of all states is 1. The reward for x and for y is 1 and 0 for all the other
states. This game is in fact a parity (Büchi) game, player 1 gets payoff 1 if
one of the states {x, y} is visited infinitely often and 0 otherwise.

On the other hand, Blackwell optimality clearly distinguishes both strat-
egies, the discounted payoff associated with the right loop is strictly greater
than the payoff for the left loop.

Let us note that under-selectiveness of simple mean-payoff games origi-
nally motivated the introduction of the Blackwell’s optimality criterion [2].
Indeed, the infinite sequence of rewards 100, 0, 0, 0, 0, . . . gives, at the limit,
the mean-payoff 0, the same as an infinite sequence of 0. However it is clear
that we prefer to get once 100 even if it is followed by an infinite sequence
of 0 than to get 0 all the time.

6.3 Evaluating β0.

Theorem 5.2 is purely existential and does not provide any evaluation of the
constant β0 appearing there. However it is not difficult to give an elementary
estimation for β0, at least for deterministic games considered in this paper.
We do not do it here since the bound for β0 obtained this way does not
seem to be particularly enlightening.

The preceding subsection discussing the meaning of the Blackwell op-
timality raises the question what is the complexity of finding Blackwell
optimal strategies. This question remains open. Note that if we can find
efficiently Blackwell optimal strategies then we can obviously find efficiently
optimal strategies for priority mean-payoff games and, in particular, for par-
ity games. But the existence of a polynomial time algorithm solving parity
games is a well-known open problem.

354 H. Gimbert, W. Zielonka

References

[1] H. Björklund, S. Sandberg, and S. G. Vorobyov. Memoryless determi-
nacy of parity and mean payoff games: a simple proof. Theor. Comput.

Sci., 310(1-3):365–378, 2004.

[2] D. Blackwell. Discrete dynamic programming. Ann. Math. Statist.,
33:719–726, 1962.

[3] L. de Alfaro, T. A. Henzinger, and R. Majumdar. Discounting the
future in systems theory. In J. C. M. Baeten, J. K. Lenstra, J. Parrow,
and G. J. Woeginger, editors, ICALP, volume 2719 of Lecture Notes in

Computer Science, pages 1022–1037. Springer, 2003.

[4] A. Ehrenfeucht and J. Mycielski. Positional strategies for mean payoff
games. Internat. J. Game Theory, 8(2):109–113, 1979.

[5] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy (extended abstract). In FOCS, pages 368–377. IEEE, 1991.

[6] J. Filar and K. Vrieze. Competitive Markov decision processes.
Springer-Verlag, New York, 1997.

[7] H. Gimbert and W. Zielonka. When can you play positionally? In
J. Fiala, V. Koubek, and J. Kratochv́ıl, editors, MFCS, volume 3153
of Lecture Notes in Computer Science, pages 686–697. Springer, 2004.

[8] H. Gimbert and W. Zielonka. Deterministic priority mean-payoff games
as limits of discounted games. In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in

Computer Science, pages 312–323. Springer, 2006.

[9] H. Gimbert and W. Zielonka. Limits of multi-discounted markov deci-
sion processes. In LICS, pages 89–98. IEEE Computer Society, 2007.

[10] H. Gimbert and W. Zielonka. Perfect information stochastic priority
games. In L. Arge, C. Cachin, T. Jurdzinski, and A. Tarlecki, editors,
ICALP, volume 4596 of Lecture Notes in Computer Science, pages 850–
861. Springer, 2007.

[11] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and

Infinite Games: A Guide to Current Research [outcome of a Dagstuhl

seminar, February 2001], volume 2500 of Lecture Notes in Computer

Science. Springer, 2002.

[12] Y. Gurevich and L. Harrington. Trees, automata, and games. In STOC,
pages 60–65. ACM, 1982.

Limits of multi-discounted games 355

[13] A. Hordijk and A. A. Yushkevich. Blackwell optimality. In Handbook

of Markov decision processes, volume 40 of Internat. Ser. Oper. Res.

Management Sci., pages 231–267. Kluwer Acad. Publ., Boston, MA,
2002.

[14] M. Jurdzinski. Deciding the winner in parity games is in up ∩ co-up.
Inf. Process. Lett., 68(3):119–124, 1998.

[15] J.-F. Mertens and A. Neyman. Stochastic games. Internat. J. Game

Theory, 10(2):53–66, 1981.

[16] A. Mostowski. Games with forbidden positions. Technical Report 78,
Uniwersytet Gdański, Instytut Matematyki, 1991.

[17] A. Neyman. From Markov chains to stochastic games. In Stochas-

tic games and applications (Stony Brook, NY, 1999), volume 570 of
NATO Sci. Ser. C Math. Phys. Sci., pages 9–25. Kluwer Acad. Publ.,
Dordrecht, 2003.

[18] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press,
Cambridge, MA, 1994.

[19] L. S. Shapley. Stochastic games. Proceedings Nat. Acad. of Science

USA, 39:1095–1100, 1953.

[20] W. Zielonka. An invitation to play. In J. Jedrzejowicz and A. Szepi-
etowski, editors, MFCS, volume 3618 of Lecture Notes in Computer

Science, pages 58–70. Springer, 2005.

[21] U. Zwick and M. Paterson. The complexity of mean payoff games on
graphs. Theor. Comput. Sci., 158(1&2):343–359, 1996.

Logic, graphs, and algorithms∗

Martin Grohe

Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
grohe@informatik.hu-berlin.de

Abstract

Algorithmic meta theorems are algorithmic results that apply to
whole families of combinatorial problems, instead of just specific prob-
lems. These families are usually defined in terms of logic and graph
theory. An archetypal algorithmic meta theorem is Courcelle’s The-
orem [9], which states that all graph properties definable in monadic
second-order logic can be decided in linear time on graphs of bounded
tree width.

This article is an introduction into the theory underlying such
meta theorems and a survey of the most important results in this
area.

1 Introduction

In 1990, Courcelle [9] proved a fundamental theorem stating that graph
properties definable in monadic second-order logic can be decided in linear
time on graphs of bounded tree width. This is the first in a series of algo-

rithmic meta theorems. More recent examples of such meta theorems state
that all first-order definable properties of planar graphs can be decided in
linear time [42] and that all first-order definable optimisation problems on
classes of graphs with excluded minors can be approximated in polynomial
time to any given approximation ratio [19]. The term “meta theorem” refers
to the fact that these results do not describe algorithms for specific prob-
lems, but for whole families of problems, whose definition typically has a
logical and a structural (usually graph theoretical) component. For exam-
ple, Courcelle’s Theorem is about monadic second-order logic on graphs of

bounded tree width.

∗ I would like to thank Bruno Courcelle, Arnaud Durand, Sang-Il Oum, Stéphan
Thomassé for patiently answering various questions I had while writing this survey.
Thanks to Isolde Adler, Albert Atserias, Yijia Chen, Anuj Dawar, Reinhard Diestel,
Jörg Flum, Magdalena Grüber, Stephan Kreutzer, Nicole Schweikardt for valuable
comments on earlier drafts of the survey.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 357–422.

358 M. Grohe

This article is an introductory survey on algorithmic meta theorems.
Why should we care about such theorems? First of all, they often provide
a quick way to prove that a problem is solvable efficiently. For example,
to show that the 3-colourability problem can be solved in linear time on
graphs of bounded tree width, we observe that 3-colourability is a property
of graphs definable in monadic second-order logic and apply Courcelle’s the-
orem. Secondly, and more substantially, algorithmic meta theorems yield a
better understanding of the scope of general algorithmic techniques and, in
some sense, the limits of tractability. In particular, they clarify the interac-
tions between logic and combinatorial structure, which is fundamental for
computational complexity.

The general form of algorithmic meta theorems is:

All problems definable in a certain logic on a certain class of
structures can be solved efficiently.

Problems may be of different types, for example, they may be optimisation
or counting problems, but in this article we mainly consider decision prob-
lems. We briefly discuss other types of problems in Section 7.2. Efficient

solvability may mean, for example, polynomial time solvability, linear or
quadratic time solvability, or fixed-parameter tractability. We shall discuss
this in detail in Section 2.3. Let us now focus on the two main ingredients
of the meta theorems, logic and structure.

The two logics that, so far, have been considered almost exclusively for
meta theorems are first-order logic and monadic second-order logic. Tech-
niques from logic underlying the theorems are Feferman-Vaught style com-
position lemmas, automata theoretic techniques, and locality results such
as Hanf’s Theorem and Gaifman’s Theorem.

The structures in algorithmic meta theorems are usually defined by
graph theoretic properties. Actually, to ease the presentation, the only
structures we shall consider in this survey are graphs. Many of the meta
theorems are tightly linked with graph minor theory. This deep theory,
mainly developed by Robertson and Seymour in a long series of papers,
describes the structure of graphs with excluded minors. It culminates in
the graph minor theorem [75], which states that every class of graphs closed
under taking minors can be characterised by a finite set of excluded mi-
nors. The theory also has significant algorithmic consequences. Robertson
and Seymour [73] proved that every class of graphs that is closed under
taking minors can be recognised in cubic time. More recently, results from
graph minor theory have been combined with algorithmic techniques that
had originally been developed for planar graphs to obtain polynomial time
approximation schemes and fixed parameter tractable algorithms for many
standard optimisation problems on families of graphs with excluded mi-

Logic, graphs, and algorithms 359

nors. The methods developed in this context are also underlying the more
advanced algorithmic meta theorems.

There are some obvious similarities between algorithmic meta theorems
and results from descriptive complexity theory, in particular such results
from descriptive complexity theory that also involve restricted classes of
graphs. As an example, consider the theorem stating that fixed-point logic
with counting captures polynomial time on graphs of bounded tree width
[49], that is, a property of graphs of bounded tree width is definable in fixed-
point logic with counting if and only if it is decidable in polynomial time.
Compare this to Courcelle’s Theorem. Despite the similarity, there are two
crucial differences: On the one hand, Courcelle’s Theorem is weaker as it
makes no completeness claim, that is, it does not state that all properties of
graphs of bounded tree width that are decidable in linear time are definable
in monadic second-order logic. On the other hand, Courcelle’s Theorem is
stronger in its algorithmic content. Whereas it is very easy to show that all
properties of graphs (not only graphs of bounded tree width) definable in
fixed-point logic with counting are decidable in polynomial time, the proof
of Courcelle’s theorem relies on substantial algorithmic ideas like the trans-
lation of monadic second-order logic over trees into tree automata [80] and
a linear time algorithm for computing tree decompositions [5]. In general,
algorithmic meta theorems involve nontrivial algorithms, but do not state
completeness, whereas in typical results from descriptive complexity, the
algorithmic content is limited, and the nontrivial part is completeness. But
there is no clear dividing line. Consider, for example, Papadimitriou and
Yannakakis’s [66] well known result that all optimisation problems in the
logically defined class MAXSNP have a constant factor approximation al-
gorithm. This theorem does not state completeness, but technically it is
much closer to Fagin’s Theorem [36], a central result of descriptive com-
plexity theory, than to the algorithmic meta theorems considered here. In
any case, both algorithmic meta theorems and descriptive complexity the-
ory are branches of finite model theory, and there is no need to draw a line
between them.

When I wrote this survey, it was my goal to cover the developments up
to the most recent and strongest results, which are concerned with monadic
second-order logic on graphs of bounded rank width and with first-order
logic on graphs with excluded minors. The proofs of most theorems are
at least sketched, so that we hope that the reader will not only get an
impression of the results, but also of the techniques involved in their proofs.

2 The basics

R, Q, Z, and N denote the sets of real numbers, rational numbers, integers,
and natural numbers (that is, positive integers), respectively. For a set

360 M. Grohe

S ⊆ R, by S≥0 we denote the set of nonnegative numbers in S. For integers
m,n, by [m,n] we denote the interval {m,m+ 1, . . . , n}, which is empty if
n < m. Furthermore, we let [n] = [1, n]. The power set of a set S is denoted
by 2S, and the set of all k-element subsets of S by

(
S

k

)
.

2.1 Graphs

A graph G is a pair (V (G), E(G)), where V (G) is a finite set whose ele-

ments are called vertices and E(G) ⊆
(
V (G)

2

)
is a set of unordered pairs

of vertices, which are called edges. Hence graphs in this paper are always
finite, undirected, and simple, where simple means that there are no loops
or parallel edges. If e = {u, v} is an edge, we say that the vertices u
and v are adjacent, and that both u and v are incident with e. A graph
H is a subgraph of a graph G (we write H ⊆ G) if V (H) ⊆ V (G) and

E(H) ⊆ E(G). If E(H) = E(G) ∩
(
V (H)

2

)
, then H is an induced subgraph

of G. For a set W ⊆ V (G), we write G[W] to denote the induced subgraph
(
W,E(G) ∩

(
W
2

))
and G \W to denote G[V (G) \W]. For a set F ⊆ E,

we let GJF K be the subgraph
(⋃

F, F
)
. Here

⋃
F denote the union of all

edges in F , that is, the set of all vertices incident with at least one edge
in F . We call GJF K the subgraph of G generated by F ; note that it is not
necessarily an induced subgraph of G. The union of two graphs G and H
is the graph G ∪H = (V (G) ∪ V (H), E(G) ∪ E(H)), and the intersection

G ∩ H is defined similarly. The complement of a graph G = (V,E) is the
graph G =

(
V,

(
V

2

)
\ E

)
. There is a unique empty graph (∅,∅). For n ≥ 1,

we let Kn be the complete graph with n vertices. To be precise, let us say
Kn =

(
[n],

(
[n]
2

))
. We let Kn,m be the complete bipartite graph with parts

of size m,n, respectively.
Occasionally, we consider (vertex) labelled graphs. A labelled graph is a

tuple
G =

(
V (G), E(G), P1(G), . . . , Pℓ(G)

)
,

where Pi(G) ⊆ V (G) for all i ∈ [ℓ]. The symbols Pi are called labels,
and if v ∈ Pi(G) we say that v is labelled by Pi. Subgraphs, union, and
intersection extend to labelled graphs in a straightforward manner. The
underlying graph of a labelled graph G is (V (G), E(G)). Whenever we
apply graph theoretic notions such as connectivity to labelled graphs, we
refer to the underlying graph.

The order |G| of a graph G is the number of vertices of G. We usually
use the letter n to denote the order of a graph. The size of G is the number
||G|| = |G|+|E(G)|. Up to a constant factor, this is the size of the adjacency
list representation of G under a uniform cost model.

G denotes the class of all graphs. For every class C of graphs, we let
Clb be the class of all labelled graphs whose underlying graph is in C. A
graph invariant is a mapping defined on the class G of all graphs that is

Logic, graphs, and algorithms 361

invariant under isomorphisms. All graph invariants considered in this paper
are integer valued. For a graph invariant f : G → Z and a class C of graphs,
we say that C has bounded f if there is a k ∈ Z such that f(G) ≤ k for all
G ∈ C.

Let G = (V,E) be a graph. The degree degG(v) of a vertex v ∈ V is the
number of edges incident with v. We omit the superscript G if G is clear
from the context. The (maximum) degree of G is the number

∆(G) = max{deg(v) | v ∈ V }.

The minimum degree δ(G) is defined analogously, and the average degree

d(G) is 2|E(G)|/|V (G)|. Observe that ||G|| = O(d(G) · |G|). Hence if a
class C of graphs has bounded average degree, then the size of the graphs
in C is linearly bounded in the order. In the following, “degree” of a graph,
without qualifications, always means “maximum degree”.

A path in G = (V,E) of length n ≥ 0 from a vertex v0 to a vertex vn

is a sequence v0, . . . , vn of distinct vertices such that {vi−1, vi} ∈ E for all
i ∈ [n]. Note that the length of a path is the number of edges on the path.
Two paths are disjoint if they have no vertex in common. G is connected if
it is nonempty and for all v, w ∈ V there is a path from v to w. A connected

component of G is a maximal (with respect to ⊆) connected subgraph. G is
k-connected, for some k ≥ 1, if |V | > k and for every W ⊆ V with |W | < k
the graph G \W is connected.

A cycle in a graph G = (V,E) of length n ≥ 3 is a sequence v1 . . . vn of
distinct vertices such that {vn, v1} ∈ E and {vi−1, vi} ∈ E for all i ∈ [2, n].
A graph G is acyclic, or a forest, if it has no cycle. G is a tree if it is acyclic
and connected. It will be a useful convention to call the vertices of trees
nodes. A node of degree at most 1 is called a leaf. The set of all leaves of a
tree T is denoted by L(T). Nodes that are not leaves are called inner nodes.
A rooted tree is a triple T = (V (T), E(T), r(T)), where (V (T), E(T)) is a
tree and r(T) ∈ V (T) is a distinguished node called the root. A node t of
a rooted tree T is the parent of a node u, and u is a child of t, if t is the
predecessor of u on the unique path from the root r(T) to u. Two nodes
that are children of the same parent are called siblings. A binary tree is a
rooted tree T in which every node has either no children at all or exactly
two children.

2.2 Logic

I assume that the reader has some background in logic and, in particular,
is familiar with first-order predicate logic. To simplify matters, we only
consider logics over (labelled) graphs, even though most results mentioned
in this survey extend to more general structures. Let us briefly review the
syntax and semantics of first-order logic FO and monadic second-order logic

362 M. Grohe

MSO. We assume that we have an infinite supply of individual variables,
usually denoted by the lowercase letters x, y, z, and an infinite supply of set

variables, usually denoted by uppercase lettersX,Y, Z. First-order formulas

in the language of graphs are built up from atomic formulas E(x, y) and
x = y by using the usual Boolean connectives ¬ (negation), ∧ (conjunction),
∨ (disjunction), → (implication), and ↔ (bi-implication) and existential
quantification ∃x and universal quantification ∀x over individual variables.
Individual variables range over vertices of a graph. The atomic formula
E(x, y) expresses adjacency, and the formula x = y expresses equality. From
this, the semantics of first-order logic is defined in the obvious way. First-
order formulas over labelled graphs may contain additional atomic formulas
Pi(x), meaning that x is labelled by Pi. If a label Pi does not appear in
a labelled graph G, then we always interpret Pi(G) as the empty set. In
monadic second-order formulas, we have additional atomic formulas X(x)
for set variables X and individual variables x, and we admit existential and
universal quantification over set variables. Set variables are interpreted by
sets of vertices, and the atomic formula X(x) means that the vertex x is
contained in the set X .

The free individual and set variables of a formula are defined in the
usual way. A sentence is a formula without free variables. We write
ϕ(x1, . . . , xk, X1, . . . , Xℓ) to indicate that ϕ is a formula with free vari-
ables among x1, . . . , xk, X1, . . . , Xℓ. We use this notation to conveniently
denote substitutions and assignments to the variables. If G = (V,E)
is a graph, v1, . . . , vk ∈ V , and W1, . . . ,Wℓ ⊆ V , then we write G |=
ϕ(v1, . . . , vk,W1, . . . ,Wℓ) to denote that ϕ(x1, . . . , xk, X1, . . . , Xℓ) holds in
G if the variables xi are interpreted by the vertices vi and the variables Xi

are interpreted by the vertex sets Wi.
Occasionally, we consider monadic second-order formulas that contain no

second-order quantifiers, but have free set variables. We view such formulas
as first-order formulas, because free set variables are essentially the same
as labels (unary relation symbols). An example of such a formula is the
formula dom(X) in Example 2.1 below. We say that a formula ϕ(X) is
positive in X if X only occurs in the scope of an even number of negation
symbols. It is negative in X if X only occurs in the scope of an odd number
of relation symbols. We freely use abbreviations such as

∧k

i=1 ϕi instead of
(ϕ1 ∧ . . . ∧ ϕk) and x 6= y instead of ¬x = y.

Example 2.1. A dominating set in a graph G = (V,E) is a set S ⊆ V such
that for every v ∈ V , either v is in S or v is adjacent to a vertex in S.
The following first-order sentence domk says that a graph has a dominating

Logic, graphs, and algorithms 363

set of size k:

domk = ∃x1 . . . ∃xk

(∧

1≤i<j≤k

xi 6= xj ∧ ∀y
k∨

i=1

(
y = xi ∨ E(y, xi)

))
.

The following formula dom(X) says that X is a dominating set:

dom(X) = ∀y
(

X(y) ∨ ∃z
(
X(z) ∧ E(z, y)

))

.

More precisely, for every graph G and every subset S ⊆ V (G) it holds that
G |= dom(S) if and only if S is a dominating set of G.

Example 2.2. The following monadic second-order sentences conn and
acyc say that a graph is connected and acyclic, respectively:

conn = ∃xx = x ∧ ∀X
((
∃xX(x) ∧ ∀x∀y

(
(X(x) ∧E(x, y)) → X(y)

))

→ ∀xX(x)
)

,

acyc = ¬∃X
(

∃xX(x) ∧ ∀x
(
X(x)

→ ∃y1∃y2
(
y1 6= y2 ∧ E(x, y1) ∧ E(x, y2) ∧X(y1) ∧X(y2)

)))

.

The sentence acyc is based on the simple fact that a graph has a cycle if
and only if it has a nonempty induced subgraph in which every vertex has
degree at least 2. Then the sentence tree = conn ∧ acyc says that a graph
is a tree.

The quantifier rank of a first-order or monadic second-order formula ϕ is
the nesting depth of quantifiers in ϕ. For example, the quantifier rank of the
formula acyc in Example 2.2 is 4. Let G be a graph and v̄ = (v1, . . . , vk) ∈
V (G)k, for some nonnegative integer k. For every q ≥ 0, the first-order q-
type of v̄ in G is the set tpFO

q (G, v̄) of all first-order formulas ϕ(x1, . . . , xk) of
quantifier rank at most q such that G |= ϕ(v1, . . . , vk). The monadic second-

order q-type of v̄ in G, tpMSO
q (G, v̄) is defined analogously. As such, types

are infinite sets, but we can syntactically normalise formulas in such a way
that there are only finitely many normalised formulas of fixed quantifier rank
and with a fixed set of free variables, and that every formula can effectively
be transformed into an equivalent normalised formula of the same quantifier
rank. We represent a type by the set of normalised formulas it contains.
There is a fine line separating decidable and undecidable properties of types
and formulas. For example, it is decidable whether a formula is contained
in a type: We just normalise the formula and test if it is equal to one of
the normalised formulas in the type. It is undecidable whether a set of

364 M. Grohe

G H

v̄ ū w̄

Figure 2.1. An illustration of Lemma 2.3

normalised formulas actually is (more precisely: represents) a type. To
see this, remember that types are satisfiable by definition and that the
satisfiability of first-order formulas is undecidable.

For a tuple v̄ = (v1, . . . , vk), we sloppily write {v̄} to denote the set
{v1, . . . , vk}. It will always be clear from the context whether {v̄} refers
to the set {v1, . . . , vk} or the 1-element set {(v1, . . . , vk)}. For tuples v̄ =
(v1, . . . , vk) and w̄ = (w1, . . . , wℓ), we write v̄w̄ to denote their concatena-
tion (v1, . . . , vk, w1, . . . , wℓ). We shall heavily use the following “Feferman-
Vaught style” composition lemma.

Lemma 2.3. Let tp be one of tpFO, tpMSO. Let G,H be labelled graphs
and ū ∈ V (G)k, v̄ ∈ V (G)ℓ, w̄ ∈ V (H)m such that V (G)∩ V (H) = {ū} (cf.
Figure 2.1). Then for all q ≥ 0, tpq(G∪H, ūv̄w̄) is determined by tpq(G, ūv̄)
and tpq(H, ūw̄). Furthermore, there is an algorithm that computes tpq(G∪
H, ūv̄w̄) from tpq(G, ūv̄) and tpq(H, ūw̄).

Let me sketch a proof of this lemma for first-order types. The version for
monadic second-order types can be proved similarly, but is more complicated
(see, for example, [58]).

Proof sketch. Let G,H be labelled graphs and ū ∈ V (G)k such that V (G)∩
V (H) = {ū}. By induction on ϕ, we prove the following claim:

Claim: Let ϕ(x̄, ȳ, z̄) be a first-order formula of quantifier rank q,
where x̄ is a k-tuple and ȳ, z̄ are tuples of arbitrary length. Then there is a
Boolean combination Φ(x̄, ȳ, z̄) of expressions G |= ψ(x̄, ȳ) and H |= χ(x̄, z̄)
for formulas ψ, χ of quantifier rank at most q, such that for all tuples v̄ of
vertices of G and w̄ of vertices of H of the appropriate lengths it holds that

G ∪H |= ϕ(ū, v̄, w̄) ⇐⇒ Φ(ū, v̄, w̄).

Here Φ(ū, v̄, w̄) denotes the statement obtained from Φ(x̄, ȳ, z̄) by substi-
tuting ū for x̄, v̄ for ȳ, and w̄ for z̄.

Furthermore, the construction of Φ from ϕ is effective.

The claim holds for atomic formulas, because there are no edges from
V (G) \ V (H) to V (H) \ V (G) in G ∪H . It obviously extends to Boolean

Logic, graphs, and algorithms 365

combinations of formulas. So suppose that ϕ(x̄, ȳ, z̄) = ∃x0ψ(x̄, x0, ȳ, z̄).
Let v̄, w̄ be tuples in G, H of the appropriate lengths. By the induction
hypothesis, there are Ψ1(x̄, ȳy0, z̄) and Ψ2(x̄, ȳ, z̄z0) such that

G ∪H |= ϕ(ū, v̄, w̄)

⇐⇒ ∃v0 ∈ V (G) Ψ1(ū, v̄v0, w̄) or ∃w0 ∈ V (H) Ψ2(ū, v̄, w̄w0).

We may assume that Ψ1 is of the form

m∨

i=1

(
G |= χi(x̄, ȳy0) ∧H |= ξi(x̄, z̄)

)
.

Hence ∃v0 ∈ V (G) Ψ1(ū, v̄v0, w̄) is equivalent to

m∨

i=1

(
∃v0 ∈ V (G) G |= χi(ū, v̄v0) ∧H |= ξi(ū, w̄)

)
.

We let Φ1 =
∨m

i=1

(
G |= ∃y0χi(x̄, ȳy0) ∧H |= ξi(x̄, z̄)

)
. Similarly, we define

a Φ2 from Ψ2, and then we let Φ = Φ1 ∨ Φ2.
Clearly, the claim implies the statements of the lemma. q.e.d.

2.3 Algorithms and complexity

I assume that the reader is familiar with the basics of the design and anal-
ysis of algorithms. We shall make extensive use of the Oh-notation. For
example, we shall denote the class of all polynomially bounded functions
of one variable n by nO(1). I also assume that the reader is familiar with
standard complexity classes such as PTIME, NP, and PSPACE and with
concepts such as reducibility between problems and hardness and complete-
ness for complexity classes. If not specified otherwise, reductions are always
polynomial time many-one reductions. The following example illustrates
our notation for introducing algorithmic problems.

Example 2.4. The dominating set problem is defined as follows:

Dominating-Set

Instance. A graph G and a natural number k
Problem. Decide if G has a dominating set of size k

It is well-known that Dominating-Set is NP-complete.

We are mainly interested in algorithms for and the complexity of model

checking problems. For every logic L and every class C of graphs, we let:

366 M. Grohe

MC(L, C)
Instance. A sentence ϕ of L and a graph G ∈ C
Problem. Decide if G |= ϕ

If C is the class of all graphs, we just write MC(L).

Example 2.5. Example 2.1 shows that Dominating-Set is reducible to
MC(FO). Hence MC(FO) is NP-hard. As MC(FO) is trivially reducible
to MC(MSO), the latter is also NP-hard.

Fact 2.6 (Vardi, [81]). MC(FO) and MC(MSO) are PSPACE-complete.

This fact is often phrased as: “The combined complexity of FO resp.
MSO is PSPACE-complete.” Combined complexity refers to both the sen-
tence and the graph being part of the input of the model checking problem.
Two principal ways of dealing with the hardness of model checking problems
are restrictions of the logics and restrictions of the classes of input graphs. In
this survey, we shall only consider restrictions of the classes of input graphs.
As for restrictions of the logics, let me just mention that the model checking
problem remains NP-hard even for the fragment of first-order logic whose
formulas are the positive primitive formulas, that is, existentially quantified
conjunctions of atomic formulas. On the other hand, the model checking
problem is in polynomial time for the bounded variable fragments of first-
order logic [82].

Unfortunately, restricting the class of input graphs does not seem to
improve the complexity, because the hardness result in Fact 2.6 can be
strengthened: Let G be any graph with at least two vertices. Then it is
PSPACE-hard to decide whether a given FO-sentence ϕ holds in the fixed
graph G. Of course this implies the corresponding hardness result for MSO.
Hence not only the combined complexity, but also the expression complexity

of FO and MSO is PSPACE-complete. Expression complexity refers to the
problem of deciding whether a given sentence holds in a fixed graph. The
reason for the hardness result is that in graphs with at least two vertices we
can take atoms of the form x = y to represent Boolean variables and use
this to reduce the PSPACE-complete satisfiability problem for quantified

Boolean formulas to the model checking problem. Let us explicitly state
the following consequence of this hardness result, where we call a class of
graphs nontrivial if it contains at least one graph with at least two vertices.

Fact 2.7. For every nontrivial class C of graphs, the problems MC(FO, C)
and MC(MSO, C) are PSPACE-hard.

So what can we possibly gain by restricting the class of input graphs of
our model checking problems? As there are no polynomial time algorithms

Logic, graphs, and algorithms 367

(unless PTIME = PSPACE) even for very simple classes C of input graphs,
we have to relax our notion of “tractability”. A drastic way of doing this is
to consider data complexity instead of combined complexity, that is, consider
the complexity of evaluating a fixed sentence of the logic in a given graph.
The following fact implies that the data complexity of FO is in PTIME:

Fact 2.8. There is an algorithm that solves MC(FO) in time O(k2 · nk),
where n denotes the order of the input graph G and k the length of the
input sentence ϕ.

Even though FO and MSO have the same combined complexity and the
same expression complexity, the following example shows that the two logics
differ in their data complexity:

Example 2.9. It is easy to see that there is an MSO-formula 3-col saying
that a graph is 3-colourable. As the 3-colourability problem is NP-complete,
this shows that the data complexity of MSO is NP-hard.

There are, however, nontrivial classes C of graphs such that the data
complexity of MSO restricted to C is in PTIME. As we shall see later, an
example of such a class is the class of all trees. Thus things are starting to
get interesting.

Still, while we have seen that polynomial combined complexity is too
restrictive, polynomial data complexity may be too liberal as a notion of
tractability. Recall from the introduction that this survey is about algo-

rithmic meta theorems, that is, uniform tractability results for classes of
algorithmic problems defined in terms of logic. Fact 2.8 implies such a meta
theorem: Every graph property definable in first-order logic can be decided

in polynomial time. A serious draw back of this result is that it does not
bound the degrees of the polynomial running times of algorithms deciding
first-order properties. An important justification for PTIME being a rea-
sonable mathematical model of the class of “tractable” (that is, efficiently
solvable) problems is that most problems solvable in polynomial time are
actually solvable by algorithms whose running time is bounded by polyno-
mials of low degree, usually not more than three. However, this is not the
case for parameterized families of polynomial time definable problems such
as the family of first-order definable graph properties, for which the degree
of the polynomials is unbounded. Or more plainly, even for a property that
is defined by a fairly short first-order sentence, say, of length k = 10, an
algorithm deciding this property in time O(n10) hardly qualifies as efficient.
A much more useful meta theorem would state that first-order definable
graph properties can be decided “uniformly” in polynomial time, that is, in
time bounded by polynomials of a fixed degree. Unfortunately, such a the-
orem does not seem to hold, at least not for first-order definable properties
of the class of all graphs.

368 M. Grohe

The appropriate framework for studying such questions is that of param-

eterized complexity theory [28, 39, 63]. A parameterized problem is a pair
(P, κ), where P is a decision problem in the usual sense and κ is a poly-
nomial time computable mapping that associates a natural number, called
the parameter, with each instance of P .1

Here we are mainly interested in model checking problems parameterized
by the length of the input formula. For a logic L and a class C of graphs,
we let:

p-MC(L, C)
Instance. A sentence ϕ of L and a graph G ∈ C
Parameter. |ϕ|
Problem. Decide if G |= ϕ

A parameterized problem (P, κ) is fixed-parameter tractable if there is an
algorithm deciding whether an instance x is in P in time

f(κ(x)) · |x|c, (2.1)

for some computable function f and some constant c. We call an algorithm
that achieves such a running time an fpt algorithm. Slightly imprecisely, we
call f the parameter dependence of the algorithm and c the exponent. An
fpt algorithm with exponent 1 is called a linear fpt algorithm. Similarly,
fpt algorithms with exponents 2 and 3 are called quadratic and cubic. FPT
denotes the class of all parameterized problems that are fixed-parameter
tractable.

Hence a parameterized model checking problem is fixed-parameter trac-
table if and only if it is “uniformly” in polynomial time, in the sense dis-
cussed above. (By requiring the function f bounding the running time to be
computable, we impose a slightly stronger uniformity condition than above.
This is inessential, but technically convenient.)

Parameterized complexity theory is mainly concerned with the distinc-
tion between running times like O(2k ·n) (fpt) and O(nk) (not fpt). Running
times of the latter type yield the parameterized complexity class XP. Intu-
itively, a problem is in XP if it can be solved by an algorithm whose running
time is polynomial for fixed parameter values. Formally, XP is the class of
all parameterized problems that can be decided in time

O(|x|f(κ(x))),

1 At some places in this paper (the first time in Remark 3.19) we are dealing with “pa-
rameterized problems” where the parameterization is not polynomial time computable.
Whenever this appears here, the parameterization is computable by an fpt algorithm
(see below), and this is good enough for our purposes. The same issue is also discussed
in Section 11.4 of [39].

Logic, graphs, and algorithms 369

for some computable function f . Hence essentially, the parameterized model
checking problem for a logic is in XP if and only if the data complexity of
the logic is polynomial time. The class XP strictly contains FPT; this is an
easy consequence of the time hierarchy theorem.

There is an appropriate notion of fpt reduction and a wide range of
parameterized complexity classes between FPT and XP.

Example 2.10. A clique in a graph is the vertex set of a complete sub-
graph. The parameterized clique problem is defined as follows:

p-Clique

Instance. A graph G and a natural number k
Parameter. k
Problem. Decide if G has a clique of size k

It is easy to see that p-Clique ∈ XP. It can be proved that p-Clique

is complete for the parameterized complexity class W[1] under fpt reduc-
tions [27].

Example 2.11. The parameterized dominating set problem is defined as
follows:

p-Dominating-Set

Instance. A graph G and a natural number k
Parameter. k
Problem. Decide if G has a dominating set of size k

It is easy to see that p-Dominating-Set ∈ XP. It can be proved that p-

Dominating-Set is complete for the parameterized complexity class W[2]
under fpt reductions [26].

The parameterized complexity classes W[1] and W[2] form the first two
levels of the so-called W-hierarchy of classes between FPT and XP. Yet
another parameterized complexity class, located between the W-hierarchy
and XP, is called AW[∗]. Thus we have

FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ AW[∗] ⊆ XP.

It is conjectured that all containments between the classes are strict.

Fact 2.12 (Downey-Fellows-Taylor, [29]). p-MC(FO) is AW[∗]-complete
under fpt reductions.

370 M. Grohe

Observe that by Example 2.9, p-MC(MSO) is not even in XP unless
PTIME = NP.

This concludes our brief introduction to parameterized complexity the-
ory. For proofs of all results mentioned in this section, I refer the reader to
[39].

3 Monadic second-order logic on tree-like classes of

graphs

The model checking problem for monadic second-order logic turns out to be
tractable on trees and graph classes that are sufficiently similar to trees. A
well-known measure for the similarity of a graph with a tree is tree width.
In this article, however, we shall work with branch width instead. The tree
width and branch width of a graph are the same up to a factor of 3/2, so the
results are essentially the same. Some of the results, including Courcelle’s
theorem, may sound unfamiliar this way, but the reader can substitute
“tree” for “branch” almost everywhere, and the results will remain true
(up to constant factors, which we usually disregard anyway). Using branch
width instead of tree width may make this article a bit more interesting for
those who do not want to read the definition of tree width for the 100th
time. However, the main reason for working with branch width is that it
combines nicely with the other graph invariant that we shall study in this
section, rank width. Indeed, both branch width and rank width of a graph
are instances of the same abstract notion of branch width of a set function.

3.1 Trees

Let T denote the class of all trees. Recall that then Tlb denotes the class of
labelled trees.

Theorem 3.1 (Folklore). p-MC(MSO, Tlb) is solvable by a linear fpt algo-
rithm.

We sketch two proofs of this theorem. Even though one may view them
as “essentially the same”, the first is more natural from an algorithmic point
of view, while the second will be easier to generalise later.

First proof sketch. Using a standard encoding of arbitrary trees in binary
trees via the “first-child/next-sibling” representation, we can reduce the
model checking problem for monadic second-order logic on arbitrary la-
belled trees to the model checking problem for monadic second-order logic
on labelled binary trees. By a well-known theorem due to Thatcher and
Wright [80], we can effectively associate a (deterministic) bottom-up tree
automaton Aϕ with every MSO-sentence ϕ over binary trees such that a
binary tree T satisfies ϕ if and only if the automaton Aϕ accepts T . By

Logic, graphs, and algorithms 371

simulating the run of Aϕ on T , it can be checked in linear time whether Aϕ

accepts a tree T . q.e.d.

Second proof sketch. Again, we first reduce the model checking problem to
binary trees. Let T be a labelled binary tree, and let ϕ be a monadic
second-order sentence, say, of quantifier rank q. For every t ∈ V (T), let
Tt be the subtree of T rooted in t. Starting from the leaves, our algorithm
computes tpMSO

q (Tt, t) for every t ∈ T , using Lemma 2.3. Then it decides if

ϕ ∈ tpMSO
q (T, r) for the root r of T . q.e.d.

The fpt algorithms described in the two proofs of Theorem 3.1 are lin-
ear in the size of the input trees. Clearly, this is optimal in terms of n
(up to a constant factor). But what about the parameter dependence, that
is, the function f in an fpt running time f(k) · n? Recall that a function
f : N

n → N is elementary if it can be formed from the successor function,
addition, subtraction, and multiplication using composition, projections,
bounded addition of the form

∑

ℓ≤m g(n1, . . . , nk, ℓ), and bounded multi-

plication of the form
∏

ℓ≤m g(n1, . . . , nk, ℓ). Let exp(h) denote the h-fold

exponentiation defined by exp(0)(n) = n and exp(h)(n) = 2exp(h−1)(n) for all
n, h ∈ N. It is easy to see that exp(h) is elementary for all h ≥ 0 and that
if a function f : N → N is elementary then there is an h ≥ 0 such that
f(n) ≤ exp(h)(n) for all n ∈ N. It is well known that there is no elemen-
tary function f such that the number of states of the smallest automaton
Aϕ equivalent to an MSO-formula ϕ of length k is at most f(k). It fol-
lows that the parameter dependence of our automata based fpt algorithm
for p-MC(MSO, T) is non-elementary. Similarly, the number of monadic
second-order q-types is nonelementary in terms of q, and hence the type
based fpt algorithm also has a nonelementary parameter dependence. But
this does not rule out the existence of other fpt algorithms with a better
parameter dependence. The following theorem shows that, under reason-
able complexity theoretic assumptions, no such algorithms exist, not even
for first-order model checking:

Theorem 3.2 (Frick-Grohe, [43]).

1. Unless PTIME = NP, there is no fpt algorithm for p-MC(MSO, T)
with an elementary parameter dependence.

2. Unless FPT = W[1], there is no fpt algorithm for p-MC(FO, T) with
an elementary parameter dependence.

As almost all classes C of graphs we shall consider in the following con-
tain the class T of trees, we have corresponding lower bounds for the model
checking problems on these classes C. The only exception are classes of

372 M. Grohe

graphs of bounded degree, but even for such classes, we have a triply expo-
nential lower bound [43] (cf. Remark 4.13).

3.2 Branch decompositions

We first introduce branch decompositions in an abstract setting and then
specialise them to graphs in two different ways.

3.2.1 Abstract branch decompositions

Let A be a nonempty finite set and κ : 2A → R. In this context, the function
κ is often called a connectivity function. A branch decomposition of (A, κ)
is a pair (T, β) consisting of a binary tree T and a bijection β : L(T) → A.
(Recall that L(T) denotes the set of leaves of a tree T .) We inductively

define a mapping β̃ : V (T) → 2A by letting

β̃(t) =

{

{β(t)} if t is a leaf,

β̃(t1) ∪ β̃(t2) if t is an inner node with children t1, t2.

The width of the branch decomposition (T, κ) is defined to be the number

width(T, κ) = max
{
κ(β̃(t))

∣
∣ t ∈ V (T)

}
,

and the branch width of (A, κ), denoted by bw(A, κ), is defined to be the
minimum of the widths of all branch decompositions of (A, κ). We ex-
tend the definition of branch width to empty ground sets A by letting
bw(∅, κ) = κ(∅) for all κ : {∅} → R. Note that (∅, κ) does not have
a branch decomposition, because the empty graph, not being connected, is
not a tree.

Usually, the connectivity functions κ considered for branch decomposi-
tions are integer-valued, symmetric, and submodular. A function κ : 2A →
R is symmetric if κ(B) = κ(A \B) for all B ⊆ A, and it is submodular if

κ(B) + κ(C) ≥ κ(B ∪ C) + κ(B ∩C) (3.1)

for all B,C ⊆ A.

Example 3.3. Let A ⊆ R
n be finite. For every B ⊆ A, let r(B) be the

dimension of the linear subspace of R
n generated by B, or equivalently, the

rank of the matrix with column vectors B (defined to be 0 if B = ∅). Define
κlin : 2A → Z by

κlin(B) = r(B) + r(A \B)− r(A).

κlin measures the dimension of the intersection of the subspace generated
by B and the subspace generated by A \ B. It is easy to see that κlin is
symmetric and submodular.

Logic, graphs, and algorithms 373

b

b

b

b
0

B

B

@

1
0
0
0

1

C

C

A

0

B

B

@

0
1
0
0

1

C

C

A

0

B

B

@

1
1
0
0

1

C

C

A

0

B

B

@

1
1
1
1

1

C

C

A

b
0

B

B

@

0
0
1
0

1

C

C

A

0

B

B

@

0
0
0
1

1

C

C

A

b

b

b

0

B

B

@

1
0
0
0

1

C

C

A

0

B

B

@

0
0
1
0

1

C

C

A

0

B

B

@

1
1
0
0

1

C

C

A

b
0

B

B

@

1
1
1
1

1

C

C

A

b

0

B

B

@

0
1
0
0

1

C

C

A

0

B

B

@

0
0
0
1

1

C

C

A

Figure 3.1. Two branch decompositions of (A, κlin) from Example 3.3

For example, let

A =













1
0
0
0






,







0
1
0
0






,







0
0
1
0






,







0
0
0
1






,







1
1
0
0






,







1
1
1
1













⊆ R
4.

Figure 3.1 shows two branch decompositions of (A, κlin). I leave it as an
exercise for the reader to verify that the first decomposition has width 1 and
the second has width 2. Observe that bw(A, κlin) = 1, because every branch
decomposition (T, β) of (A, κlin) has a leaf t ∈ L(T) with β(t) = (1, 1, 1, 1)T ,
and we have κlin({(1, 1, 1, 1)T}) = 1.

Example 3.4. Again, let A ⊆ R
n. Now, for B ⊆ A let d(B) be the

dimension of the affine subspace of R
n spanned by B (defined to be −1 if

B = ∅), and let

κaff(B) = d(B) + d(A \B)− d(A).

It is not hard to prove that κaff is also symmetric and submodular.
Figure 3.2 shows an example of a set A = {a, b, c, d, e, f, g, h} ⊆ R

2 and
a branch decomposition of (A, κaff) of width 1.

374 M. Grohe

b

b

b

b

b

b

b

b

a b
c

d

e

f

g

h

b

b

b

b

b

b

b

a b

c

d

e

f

g

h

Figure 3.2. A set of A of eight points in the plane and a branch decom-
position of (A, κaff) of width 1

Example 3.5. The previous two examples have a common generalisation,
which is known as the branch width of matroids.2 Let M be a matroid with
base set A and rank function rM . Then the function κ : 2A → Z defined by

κM (B) = rM (B) + rM (A \B)− rM (A)

is known as the connectivity function of the matroid.3 Obviously, κM is
symmetric, and as the rank function rM is submodular, κM is also submod-
ular.

Before we return to graphs, let us state a very general algorithmic re-
sult, which shows that approximately optimal branch decompositions can
be computed by an fpt algorithm. The proof of this theorem is beyond
the scope of this survey. It is based on a deep algorithm for minimizing
submodular functions due to Iwata, Fleischer, and Fujishige [52].

When talking about algorithms for branch decompositions, we have to
think about how the input of these algorithms is specified. Let A be a
class of pairs (A, κ), where κ : 2A → Z is symmetric and submodular and
takes only nonnegative values. We call A a tractable class of connectivity

functions, if we have a representation of the pairs (A, κ) ∈ A such that,

2 Readers who do not know anything about matroids should not worry. This example
is the only place in this survey where they appear.

3 Often, the connectivity function is defined by κM (B) = rM (B)+rM (A\B)−rM (A)+1,
but this difference is inessential here.

Logic, graphs, and algorithms 375

given the representation of (A, κ), the ground set A can be computed in
polynomial time, and for every B ⊆ A, the value κ(B) can be computed in
polynomial time.

For example, if A is the class of pairs (A, κlin), where A is a finite set
of vectors over some finite field or the field of rationals and κlin is the
linear connectivity function, then we can represent a pair (A, κlin) simply
by a matrix whose columns are the vectors in A. For the graph based
examples that we shall describe next, the underlying graph is always used
as a representation.

Theorem 3.6 (Oum-Seymour, [65]). Let A be a tractable class of connec-
tivity functions. Then there is an fpt algorithm that, given (A, κ) ∈ A and
a parameter k ∈ N, computes a branch decomposition of (A, κ) of width at
most 3k if bw(A, κ) ≤ k. If bw(A, κ) > k, the algorithm may still compute
a branch decomposition of (A, κ) of width at most 3k, or it may simply halt
without an output.4

3.2.2 Branch decompositions of graphs

Let G = (V,E) be a graph. For a set F ⊆ E, we define the boundary of
F to be the set ∂F of all vertices of G incident both with an edge in F
and with an edge in E \ F . We define a function κG : 2E → Z by letting
κG(F) = |∂F | for every F ⊆ E. It is not hard to verify that κG is symmetric
and submodular. A branch decomposition of G is a branch decomposition of
(E, κG), and the branch width bw(G) of G is the branch width of (E, κG).

Example 3.7. Figure 3.3 shows an example of a graph and branch decom-
position of this graph of width 5.

Example 3.8 (Robertson-Seymour, [72]). For every n ≥ 3, the complete
graph Kn on n-vertices has branch width ⌈2n/3⌉.

We omit the proof of the lower bound. For the upper bound, we partition
the vertex set of Kn into three parts V1, V2, V3 of size ⌈n/3⌉ or ⌊n/3⌋, and
we partition the edge set into three sets E12, E23, E13 such that edges in Eij

are only incident with vertices in Vi ∪ Vj . Then we take arbitrary branch
decompositions of the three subgraphs Gij = (Vi ∪ Vj , Eij) and join them
together as indicated in Figure 3.4.

Note that the construction of the previous example actually shows that
every n-vertex graph has branch width at most ⌈2n/3⌉.

Example 3.9 (Robertson-Seymour, [72]). A graph has branch width 0 if
and only if it has maximum degree at most 1. A graph has branch width 1
if and only if it has at least one vertex of degree greater than 1, and every

4 An fpt algorithm of this type is known as an fpt approximation algorithm [7].

376 M. Grohe

b b

b b

b b

b b b

bb

b

d

b c

f

e

h

j
i

k
l

m n
o
p

q
r

s

t

v

u

wx

a

g

b
0

b
4

g
b
4

4 b

h 3 b

3 b

i j

m

b
3

r
b3

s x

b
4

b
4

a
b4

4 b

b
b3

c k

b3

d e

b
5

f
b
4

3 b

l o

b
4

5 b

3 b

n u

b3

t w

b
3

2 b

p v

q

Figure 3.3. A graph with a branch decomposition of width 5. The numbers
at the nodes indicate the size of the boundary of the edges in the subtree
below that node.

Logic, graphs, and algorithms 377

b

G12

b

G13 G23

Figure 3.4. A branch decomposition of a clique (see Example 3.8)

b b

bb

G2×2

b b b

bbb

b b b

G3×3

b b b b

bbbb

b b b b

bbbb

G4×4

Figure 3.5. The (n× n)-grids for n = 2, 3, 4

connected component has at most one vertex of degree greater than 1. Trees
and cycles have branch width at most 2.

Let me suggest it as an exercise for the reader to prove these simple
facts.

Example 3.10 (Robertson-Seymour, [72]). For all n ≥ 2, the n× n-grid

Gn×n =
(

[n]× [n],
{
{(i1, j1), (i2, j2)}

∣
∣ |i1 − i2|+ |j1 − j2| = 1

})

(cf. Figure 3.5) has branch width n.

Branch width is closely related to the more familiar tree width. In fact,
it is not very hard to prove the following inequalities for all graphs G [72]:

bw(G) ≤ tw(G) + 1 ≤ max
{
(3/2) · bw(G), 2}, (3.2)

where tw(G) denotes the tree width of G.
As the connectivity functions κG are symmetric and submodular, ap-

proximately optimal branch decompositions can be computed by the gen-
eral purpose algorithm of Theorem 3.6. However, for the special case of
branch decompositions of graphs, better algorithms are known:

Theorem 3.11 (Bodlaender-Thilikos, [6]). There is an algorithm that,
given a graph G and a k ∈ N, decides if bw(G) ≤ k and computes a branch

378 M. Grohe

b1

b2

b3

b

4

b5

b6

a

0

@

1 1 1
0 0 0
1 1 1

1

A

b

„

1 1 1 1
1 1 1 1

«

c

1 3

2

d

0

@

1 0 1
1 0 1
1 0 1

1

A

4 e

„

1 0 1 1
1 0 1 1

«

5 6

Figure 3.6. A graph with a rank decomposition of width 1. For later
reference, we have named the nodes of the tree

decomposition of G of width at most k if this is the case in time

f(k) · n,

where n = |V (G)|, for some computable function f .

3.2.3 Rank decompositions of graphs

Whereas branch width is based on decompositions of the edge set of a graph,
for rank width we decompose its vertex set. For a graph G = (V,E) and
subsets U,W ⊆ V of its vertex set, we let MG(U,W) be the |U |×|W |-matrix
with entries muw for u ∈ U,w ∈W , where

muw =

{

1 if {u,w} ∈ E,

0 otherwise.

Hence MG(V, V) is just the adjacency matrix of G. We view MG(U,W) as
a matrix over the field GF(2) and let rk(MG(U,W)) be its row rank over
GF(2). Now we define a connectivity function ρG : 2V → N by

ρG(U) = rk
(
MG(U, V \ U)

)

for all U ⊆ V . Since the row rank and column rank of a matrix coincide, the
function ρG is symmetric, and it is not hard to prove that it is submodular.
A rank decomposition of G is a branch decomposition of (V, ρG), and the
rank width rw(G) of G is the rank width of (V, ρG).

Example 3.12. Figure 3.6 shows an example of a graph and a rank de-
composition of this graph of width 1.

It is easy to prove that rank width can be bounded in terms of branch
width. The following theorem, which gives a tight bound, is not so obvious:

Logic, graphs, and algorithms 379

Theorem 3.13 (Oum [64]). For every graph G it holds that rw(G) ≤
max{1, bw(G)}.

The following example shows that the rank width of a graph can be
substantially smaller than the branch width, and that it can also be the
same.

Example 3.14. It is easy to see that every rank decomposition of a com-
plete graph has width 1. Combined with Example 3.8, this shows that the
branch width and rank width of a graph can differ by a factor Ω(n), where
n denotes the number of vertices.

Let I(Kn) be the graph obtained from the complete n-vertex graph Kn

by subdividing all edges once, that is, by replacing every edge by a path of
length 2. I(Kn) is the incidence graph of Kn. Then if n ≥ 3 and n ≡ 0, 1
mod 3 we have rw(I(Kn)) = bw(I(Kn)) = ⌈(2/3) · n⌉ [64].

Example 3.15. It can be shown that the rank width of an (n× n)-grid is
at least ⌈n/2− 2⌉ (follows from [64]). Hence grids have both large branch
width and large rank width.

As for the branch width of graphs, there is an algorithm for computing
rank width that is more efficient than the general purpose algorithm of
Theorem 3.6.

Theorem 3.16 (Hlineny-Oum, [51]). There is an algorithm that, given a
graph G and a k ∈ N, decides if rw(G) ≤ k and computes a rank decompo-
sition of G of width at most k if this is the case in time

f(k) · n3,

where n = |V (G)|, for some computable function f .

Rank width is related to the graph invariant clique width [17], which is
defined in terms of a graph algebra: The clique width cw(G) of a graph G
is the least number of constant symbols required in a term in this algebra
describing the graph G. Oum and Seymour [65] proved that for every graph
G it holds that

rw(G) ≤ cw(G) ≤ 2rw(G)+1 − 1.

In particular, this implies that a class of graphs has bounded rank width if
and only if it has bounded clique width.

3.3 Courcelle’s Theorems

For every k ≥ 1, let Bk be the class of all graphs of branch width at most k
and Rk the class of all graphs of rank width at most k. The following theo-
rem is usually formulated in terms of tree width, but by (3.2) the following
“branch width version” is equivalent.

380 M. Grohe

Courcelle’s Theorem (Courcelle, [9]). For every k, the problem
p-MC(MSO,Bk) is solvable by a linear fpt algorithm.

As for Theorem 3.1, we sketch two proofs. The first is a reduction to
Theorem 3.1, whereas the second is a generalisation of the second proof of
Theorem 3.1.

First proof sketch. Let us fix k ≥ 1. We reduce the model checking problem
on the class Bk to that on labelled trees and then apply Theorem 3.1. We
associate with each graph G ∈ Bk a labelled tree T+ and with each MSO-
sentence ϕ over graphs a sentence ϕ+ over labelled trees such that G |=
ϕ ⇐⇒ T+ |= ϕ+. We shall do this in such a way that T+ is computable
from G in linear time and that ϕ+ is computable from ϕ. Then our model
checking algorithm proceeds as follows: Given G ∈ Bk and ϕ ∈ MSO, it
computes T+ and ϕ+ and then tests if T+ satisfies ϕ+ using the algorithm
of Theorem 3.1.

The mapping G 7→ T+ will not be canonical, i.e., isomorphic graphs G
will not necessarily yield isomorphic trees T+. The tree T+ will depend on
the specific representation of the input graph G and on the algorithm we
use to compute a branch decomposition of this input graph. Note that this
does not affect the correctness of our algorithm.

We construct T+ fromG as follows: Without loss of generality we assume
that G has no isolated vertices. We first compute a branch decomposition
(T, β) of G of width at most k, which can be done in linear time by Theo-
rem 3.11. Then we define a labelling of T that allows us to reconstruct G
from the labelled tree T+ within MSO. Formally, we define the labelling in
such a way that G is MSO-interpretable in T+. Then we can construct ϕ+

from ϕ using the method of syntactic interpretations (see [32, 12]).
We assume that T is an ordered binary tree, that is, each inner node

has a left and a right child. Recall that, for a node t of T , β̃(t) is the set
of all edges e of G such that e = β(u) for some leaf u of T that appears
in the subtree rooted at t. Let Bt = ∂β̃(t) be the boundary of β̃(t), that
is, the set of all vertices incident with an edge in β̃(t) and with an edge in
E(G) \ β̃(t). Since the width of (T, β) is at most k we have |Bt| ≤ k for all
nodes t. The labelling of the tree T+ encodes for every inner node t with
left child t1 and right child t2 how Bt intersects the sets Bt1 and Bt2 . We
assume some linear order of the vertices of G. Then there will be labels
P1ij , for i, j ∈ [k], indicating that the ith vertex in Bt1 is equal to the jth
vertex in Bt, and similarly labels P2ij for t2. Note that Bt ⊆ Bt1 ∪Bt2 , so
these labels “determine” Bt. We do not label the leaves.

For each leaf t, the set Bt consists of the two endpoints of the edge β(t)
(unless one or both endpoints have degree 1). It is easy to write down four
MSO-sentences eqij(x, y), for i, j ∈ {0, 1}, such that for all leaves u, t of T

Logic, graphs, and algorithms 381

we have T+ |= eqij(u, v) if and only if the ith vertex in Bu is equal to the
jth vertex in Bt. Recalling our assumption that G has no isolated vertices,
it is now easy to reconstruct G from T+ within MSO. q.e.d.

Second proof sketch. Let G be a graph of branch width k, and let ϕ be an
MSO-sentence, say, of quantifier rank q. We compute a branch decompo-
sition (T, β) of G of width k. We fix some linear order on the vertices of
G. For every t ∈ V (T) we let b̄t be the ordered tuple of the elements of
∂β̃(t). Recall that for a subset B ⊆ E(G), by GJBK we denote the subgraph
(
⋃
B,B) generated by B.
Starting from the leaves we inductively compute tpq(GJβ̃(t)K, b̄t) for all

t ∈ V (T), applying Lemma 2.3 at every node. For this to work, it is
important that for all nodes t with children t1 and t2 it holds that

V
(
GJβ̃(t1)K ∩GJβ̃(t2)K

)
⊆ ∂β̃(t1) ∪ ∂β̃(t2)

and ∂β̃(t) ⊆ ∂β̃(t1) ∪ ∂β̃(t2).

Finally, we check if ϕ ∈ tpq(GJβ̃(r)K, b̄r) for the root r. (Note that b̄r is
actually the empty tuple, but this does not matter.) q.e.d.

The following theorem was first proved by Courcelle [8, 11] in a version
phrased in terms of certain graph grammars. Later, a version for clique
width was proved by Courcelle, Makowsky, and Rotics [14], and finally the
relation between clique width and rank width was established by Oum and
Seymour [65].

Theorem 3.17 (Courcelle-Makowsky-Oum-Rotics-Seymour, [8, 65, 11, 14]).
For every k, p-MC(MSO,Rk) is solvable by a cubic fpt algorithm.

Proof sketch. The proof follows the same strategy as the first proof of Cour-
celle’s Theorem: We fix k. For every graph G ∈ Rk we construct a labelled
tree T ∗ such that G can be reconstructed from T ∗ within MSO. Then
using the method of syntactic interpretations, for every MSO-sentence ϕ
over graphs we obtain an MSO-sentence ϕ∗ over labelled trees such that
G |= ϕ ⇐⇒ T ∗ |= ϕ∗.

T ∗ is obtained by suitably labelling the tree T of a rank decomposition
(T, β) of G of width k. The difficulty here is to encode G in a labelling
of T that uses only finitely many labels. Let t be an inner node of T with
children t1 and t2. For i = 1, 2, let Ui = β̃(ti). Furthermore, let U = U1∪U2

and W = V \U . Then β̃(t) = U , and the matrices at the nodes t1, t2, t can

382 M. Grohe

be written as

M(U1, V \ U1) =
(
M(U1, U2) M(U1,W)

)
,

M(U2, V \ U2) =
(
M(U2, U1) M(U2,W)

)
,

M(U, V \ U) =

(
M(U1,W)
M(U2,W)

)

.

Note that M(U2, U1) is the transpose of M(U1, U2). (We omit the subscript

G for the matrices MG(·, ·).)
For every node t ∈ V (T) we compute a set Bt of at most k vertices of G

such that the rows corresponding to the vertices in Bt form a basis of the
row space of the matrix M(U, V \U), where U = β̃(t). We define a labelling
of the (inner) nodes of T as follows: Let t be an inner node with children
t1 and t2 and U1 = β̃(t1), U2 = β̃(t2), U = U1 ∪ U2 = β̃(t). Then at t the
labelling encodes

• the matrix M(Bt1 , Bt2),

• for i = 1, 2 and each v ∈ Bti
a representation of the row ofM(U, V \U)

corresponding to v as a linear combination of vectors of the basis
corresponding to Bt over the field GF(2).

Note that this amounts to at most 3k2 bits of information: The matrix
requires at most k2 bits, and a linear combination of k vectors over GF(2)
requires k bits.

We now describe how the graphG can be reconstructed from the labelled
tree T ∗. The vertices of G correspond to the leaves of T ∗. To find out
whether there is an edge between a vertex v1, say, with v1 = β(u1) and a
vertex v2, say with v2 = β(u2), we proceed as follows: Let t be the first
common ancestor of u1 and u2, and let t1 and t2 be the children of t such that
ui is a descendant of ti, for i = 1, 2. Let Ui = β̃(ti) and U = U1∪U2 = β̃(t).
Then vi ∈ Ui. Note that Bui

= {vi}, because the matrices at the leaves
only have one row. Hence, using the labelling, we can recursively find a
representation of the row of the matrix M(Ui, V \ Ui) corresponding to vi

as a linear combination of the rows corresponding to Bti
. Then we can

use the matrix M(Bt1 , Bt2), which is also part of the labelling, to compute
the entry mv1v2 of the matrix M(U1, U2), and this entry tells us whether
there is an edge between v1 and v2. The following example illustrates this
construction. q.e.d.

Example 3.18. Consider the graph G and branch decomposition displayed
in Figure 3.6. We define the “bases” as follows:

t 1 2 3 4 5 6 a b c d e
Bt {1} {2} {3} {4} {5} {6} ∅ {1} {1} {4} {5}

Logic, graphs, and algorithms 383

Then for example, at node b the following information is stored: The matrix

M({1}, {2}) = (1),

and a representation of the rows r1 = (1 1 1) and r2 = (0 0 0) of the matrix
M({1, 2, 3}, {4, 5, 6}) in terms of the row r1:

r1 = 1 · r1, r2 = 0 · r1.

To determine whether there is an edge, say, between between v1 = 3 and
v2 = 5 we take the least common ancestor of the two leaves, a with
its two children b and d. The representation of row r3 = (1 1 1) of
M({1, 2, 3}, {4, 5, 6}) with respect to Bb = {1} is r3 = 1 · r1, and the rep-
resentation of row r5 = (1 0 1) of M({4, 5, 6}, {1, 2, 3}) with respect to
Bd = {4} is r5 = 1 · r4. Hence m35 = 1 · 1 ·m14 = 1, that is, there is an edge
between 3 and 5.

It follows from Theorem 3.2 that the parameter dependence of the fpt
algorithms in the previous two theorems has to be nonelementary.

We close this section with two remarks about strengthenings of the two
theorems:

Remark 3.19. Our proofs yield stronger theorems than stated: Not only is
the MSO model checking problem fixed-parameter tractable on every class
of graphs whose branch width is bounded, but actually the following doubly
parameterized model checking problem is fixed-parameter tractable:

Instance. A sentence ϕ ∈ MSO and a graph G
Parameter. |ϕ|+ bw(G)
Problem. Decide if G |= ϕ

The same is true for rank width.

Remark 3.20. It is easy to see that both theorems can be extended to
labelled graphs.

Courcelle’s Theorem even holds for a stronger monadic second order
logic, denoted by MSO2, that admits quantification not only over sets of
vertices of a graph, but also over sets of edges. This stronger result can
easily be derived from the (labelled) version of Courcelle’s Theorem. Define
the incidence graph I(G) of a graph G to be the graph (VI , EI), where
VI = V (G) ∪ E(G) and EI =

{
{v, e}

∣
∣ v ∈ e

}
. It is not hard to see

that for every graph G of branch width at least 2 it holds that bw(G) =
bw(I(G)). Furthermore, every MSO2-formula overG can be translated to an
MSO-formula over the labelled incidence graph (I(G), P), where P = E(G)

384 M. Grohe

(The labelling is not really needed, but convenient.) Hence it follows from
Courcelle’s Theorem that p-MC(MSO2,Bk) has a linear fpt algorithm for
every k ≥ 1.

This does not work for rank width, because the rank width of the inci-
dence graph can be much larger than that of the original graph. Surprisingly,
the rank width of the incidence graph of a graph is closely related to the
branch width of the original graph. Oum [64] proved that

bw(G)− 1 ≤ rw(I(G)) ≤ bw(G)

for every graph G with at least one vertex of degree 2.

4 First-order logic on locally tree-like classes of

graphs

There is not much hope for extending the tractability of monadic second-
order model checking to further natural classes of graphs such as pla-
nar graphs or graphs of bounded degree. Indeed, the MSO-definable 3-
colourability problem is NP-complete even when restricted to planar graphs
of degree 4. For first-order logic, however, the model checking problem is
tractable on much larger classes of graphs. Seese [77] showed that first-order
model checking admits a linear fpt algorithm on all classes of bounded de-
gree. Later Frick and Grohe [42] proved the same for planar graphs, essen-
tially by the general approach that we shall describe in this section. The
crucial property of first-order logic that we exploit is its locality.

4.1 The locality of first-order logic

Let G = (V,E) be a graph. The distance distG(v, w) between two vertices
v, w ∈ V is the length of the shortest path from v to w. For every v ∈ V
and r ∈ N, the r-neighbourhood of v in G is the set

NG
r (v) = {w ∈ V | distG(v, w) ≤ r}

of all vertices of distance at most r from v. For a set W ⊆ V , we let
NG

r (W) =
⋃

w∈W NG
r (w). We omit the superscript G if G is clear from the

context. The radius of a connected graph G is the least r for which there is
a vertex v ∈ V (G) such that V (G) ⊆ Nr(v). The radius of a disconnected
graph is ∞.

Observe that distance is definable in first-order logic, that is, for every
r ≥ 0 there is a first-order formula dist≤r(x, y) such that for all graphs G
and v, w ∈ V (G),

G |= dist≤r(v, w) ⇐⇒ dist(v, w) ≤ r.

In the following, we shall write dist(x, y) ≤ r instead of dist≤r(x, y) and
dist(x, y) > r instead of ¬dist≤r(x, y).

Logic, graphs, and algorithms 385

A first-order formula ϕ(x1, . . . , xk) is r-local if for every graph G and all
v1, . . . , vk ∈ V (G) it holds that

G |= ϕ(v1, . . . , vk) ⇐⇒ G
[
Nr({v1, . . . , vk})

]
|= ϕ(v1, . . . , vk).

This means that it only depends on the r-neighbourhood of a vertex tuple
whether an r-local formula holds at this tuple. A formula is local if it is
r-local for some r.

A basic local sentence is a first-order sentence of the form

∃x1 . . . ∃xk




∧

1≤i<j≤k

dist(xi, xj) > 2r ∧
k∧

i=1

ϕ(xi)



 ,

where ϕ(x) is r-local. In particular, for every local formula ϕ(x) the sentence
∃x ϕ(x) is a basic local sentence.

Gaifman’s Locality Theorem (Gaifman, [44]). Every first-order sen-
tence is equivalent to a Boolean combination of basic local sentences.

Furthermore, there is an algorithm that computes a Boolean combina-
tion of basic local sentences equivalent to a given first-order sentence.

We shall illustrate the following proof sketch in Example 4.2 below. To
appreciate the cleverness of the proof, the reader may try to find a Boolean
combination of basic local sentences equivalent to the simple sentence ϕ =
∃x∃y

(
¬E(x, y)∧P (x)∧Q(y)

)
considered in the example before reading the

proof.

Proof sketch. The proof is by structural induction on first-order formulas.
To enable this induction, we need to prove a stronger statement that also
includes formulas with free variables. We say that a first-order formula is in
Gaifman normal form (GNF) if it is a Boolean combination of basic local
sentences and local formulas.

Claim 4.1. Every first-order formula is equivalent to a formula in GNF.

Proof. The claim is trivial for atomic formulas, because all atomic formulas
are 0-local. It obviously extends to Boolean combinations of formulas. Uni-
versal quantification can be reduced to existential quantfication and nega-
tion. The only remaining case is that of existentially quantified formulas

ϕ(x̄) = ∃y ψ(x̄, y),

where ψ(x̄, y) is in GNF. We may assume that ψ(x̄, y) is of the form

m∨

i=1

(
χi ∧ ξi(x̄, y)

)
,

386 M. Grohe

where each χi is a Boolean combination of basic local sentences and each
ξi(x̄, y) is local. Here we use the simple observation that a Boolean combi-
nation of local formulas is local. Then ϕ(x̄) is equivalent to the formula

m∨

i=1

(
χi ∧ ∃y ξi(x̄, y)

)
.

It remains to prove that each formula

ϕ′(x̄) = ∃y ξ(x̄, y),

where ξ(x̄, y) is local, is equivalent to a formula in GNF. Let r ≥ 0 such
that ξ(x̄, y) is r-local. We observe that ϕ′(x̄) is equivalent to the formula

∃y
(
dist(x̄, y) ≤ 2r + 1 ∧ ξ(x̄, y)

)
∨ ∃y

(
dist(x̄, y) > 2r + 1 ∧ ξ(x̄, y)

)
, (4.1)

where dist(x̄, y) ≤ 2r + 1 abbreviates
∨

i dist(xi, y) ≤ 2r + 1. The first
formula in the disjunction (4.1) is (3r + 1)-local. Hence we only need to
consider the second, ∃y

(
dist(x̄, y) > 2r+1∧ξ(x̄, y)

)
. Using Lemma 2.3 and

the r-locality of ξ(x̄, y), it is not hard to see that this formula is equivalent
to a Boolean combination of formulas of the form

ζ(x̄) ∧ ∃y
(
dist(x̄, y) > 2r + 1 ∧ η(y)

)
,

where ζ(x̄) and η(y) are r-local. Let r′ = 2r + 1. It remains to prove that

ϕ′′(x̄) = ∃y
(
dist(x̄, y) > r′ ∧ η(y)

)

is equivalent to a formula in GNF. This is the core of the whole proof. Sup-
pose that x̄ = (x1, . . . , xk). Let G be a graph and v̄ = (v1, . . . , vk) ∈ V (G)k.
When does G |= ϕ′′(v̄) hold? Clearly, it holds if there are w1, . . . , wk+1 of
pairwise distance greater than 2r′ such that G |= η(wj) for all j, because
each r′-neighbourhood Nr′(vi) contains at most one wj and hence there is
at least one wj of distance greater than r′ from all the vi. For ℓ ≥ 1, let

θℓ = ∃y1 . . . ∃yℓ

(∧

1≤i<j≤ℓ

dist(yi, yj) > 2r′ ∧ η(yi)
)

.

Note that θℓ is a basic local sentence. We have just seen that θk+1 implies
ϕ′′(x̄). But of course ϕ′′(x̄) may also hold if θk+1 does not. Let us return
to our graph G and the tuple v̄ ∈ V (G)k. Let ℓ ≥ 1 be maximum such that
G |= θℓ and suppose that ℓ ≤ k. In the following case distinction, we shall
determine when G |= ϕ′′(v̄).

Case 1: There are no w1, . . . , wℓ ∈ Nr′({v̄}) of pairwise distance greater
than 2r′ such that G |= η(wj) for all j.

Logic, graphs, and algorithms 387

As G |= θℓ, this implies that there is at least one w 6∈ Nr′({v̄}) such that
G |= η(w). Hence G |= ϕ′′(v̄).

Case 2: There is a w ∈ N3r′(v̄) such that w 6∈ Nr′(v̄) and G |= η(w).

Then, trivially, G |= ϕ′′(v̄).

Case 3: Neither Case 1 nor Case 2, that is, there are w1, . . . , wℓ ∈ Nr′({v̄})
of pairwise distance greater than 2r′ such that G |= η(wj) for all j, and
there is no w ∈ N3r′(v̄) \Nr′(v̄) such that G |= η(w).

Then G 6|= ϕ′′(v̄). To see this, suppose for contradiction that there is a
w ∈ V (G) such that w 6∈ Nr′({v̄}) and G |= η(w). Then w 6∈ N3r′({v̄}) and
therefore dist(wj , w) > 2r′ for all j ∈ [ℓ]. Thus G |= θℓ+1, which contradicts
the maximality of ℓ.

Hence G |= ϕ′′(v̄) if any only if we are in Case 1 or 2. Note that
the conditions describing these cases can be defined by local formulas, say,
γℓ,1(x̄) and γℓ,2(x̄). Thus if G |= θℓ ∧ ¬θℓ+1, then G |= ϕ′′(v̄) if and only if
G |= γℓ,1(v̄) ∨ γℓ,2(v̄).

Overall, ϕ′′(x̄) is equivalent to the formula

θk+1 ∨

k∨

ℓ=1

(

θℓ ∧ ¬θℓ+1 ∧
(
γℓ,1(x̄) ∨ γℓ,2(x̄)

))

,

which is in GNF. q.e.d. (Claim 4.1)

It is not hard to show that our construction yields an algorithm that com-
putes a formula in GNF equivalent to a given first-order formula. q.e.d.

Example 4.2. Let us follow the proof of Gaifman’s theorem and construct
a Boolean combination of basic local sentences equivalent to the sentence

ϕ = ∃x∃y
(
¬E(x, y) ∧ P (x) ∧Q(y)

)
,

which is a sentence over labelled graphs with labels P and Q.
The quantifier free formula ϕ0(x, y) =

(
¬E(x, y)∧P (x)∧Q(y)

)
is 0-local.

Hence we start the construction with the formula

ϕ1(x) = ∃y
(
¬E(x, y) ∧ P (x) ∧Q(y)

)
.

ϕ1(x) is equivalent to the formula

ϕ′1 = P (x) ∧ ∃y
(
¬E(x, y) ∧Q(y)

)
.

Splitting ∃y
(
¬E(x, y) ∧ Q(y)

)
with respect to the distance between x and

y as in (4.1) (with r = 0) and simplifying the resulting formula, we obtain

P (x) ∧
(

Q(x) ∨ ∃y
(
dist(x, y) > 1 ∧Q(y)

))

.

388 M. Grohe

It remains to consider the formula ϕ′′1 (x) = ∃y
(
dist(x, y) > 1 ∧ Q(y)

)
.

Following the proof of Gaifman’s theorem (with ϕ′′ = ϕ′′1 , η(y) = Q(y),
r = 0, and k = 1), we obtain the following equivalent formula in GNF:

ϕ′′′1 (x) = θ2 ∨
(

θ1 ∧ ¬θ2 ∧
(
¬∃y(dist(x, y) ≤ 1 ∧Q(y))

∨ ∃y(dist(x, y) ≤ 3 ∧ dist(x, y) > 1 ∧Q(y))
))

where θ1 = ∃y1Q(y1) and θ2 = ∃y1∃y2
(
dist(y1, y2) > 2 ∧ Q(y1) ∧ Q(y2)

)
.

Hence ϕ1(x) is equivalent to the formula P (x) ∧
(
Q(x) ∨ ϕ′′′1 (x)

)
. The step

from ϕ1(x) to ϕ = ∃xϕ1(x) is simple, because there are no free variables left.
By transforming the formula P (x)∧

(
Q(x)∨ϕ′′′1 (x)

)
into disjunctive normal

form and pushing the existential quantfier inside, we obtain the formula:

∃x
(
P (x) ∧Q(x)

)

∨
(
∃x P (x) ∧ θ2

)

∨
(

∃x
(
P (x) ∧ ¬∃y(dist(x, y) ≤ 1 ∧Q(y))

)
∧ θ1 ∧ ¬θ2

)

∨
(

∃x
(
P (x) ∧ ∃y(dist(x, y) ≤ 3 ∧ dist(x, y) > 1 ∧Q(y))

)
∧ θ1 ∧ ¬θ2

)

.

Observe that this is indeed a Boolean combination of basic local sentences
equivalent to ϕ. A slightly simpler Boolean combination of basic local sen-
tences equivalent to ϕ is constructed in Example 3 of [50] by a different
technique.

It has recently been proved in [20] that the translation of a first-order
sentence into a Boolean combination of basic local sentences may involve a
nonelementary blow-up in the size of the sentence.

4.2 Localisations of graph invariants

Recall that G denotes the class of all graphs. For every graph invariant
f : G → N we can define its localisation ℓf : G × N → N by

ℓf (G, r) = max
{

f
(
G[Nr(v)]

)
∣
∣
∣ v ∈ V (G)

}

.

Hence to compute ℓf (G, r), we apply f to every r-neighbourhood in G and
then take the maximum. We say that a class C of graphs has locally bounded

f if there is a computable5 function g : N → N such that ℓf(G, r) ≤ g(r)
for all G ∈ C and all r ∈ N.

5 It would be more precise to call this notion “effectively locally bounded f”, but this
would make the terminology even more awkward.

Logic, graphs, and algorithms 389

Example 4.3. One of the simplest graph invariants is the order of a graph.
Observe that a class of graphs has locally bounded order if and only if it
has bounded degree.

Moreover, if a class C has bounded degree then it has locally bounded f
for every computable graph invariant f .

In this section, we are mainly interested in the localisation of branch
width. Maybe surprisingly, there are several natural classes of graphs of
locally bounded branch width. We start with two trivial examples and then
move on to more interesting ones:

Example 4.4. Every class of graphs of bounded branch width has locally
bounded branch width.

Example 4.5. Every class of graphs of bounded degree has locally bounded
branch width. This follows immediately from Example 4.3.

Example 4.6 (Robertson-Seymour-Tamaki, [70, 78]). The class of planar
graphs has locally bounded branch width. More precisely, a planar graph
of radius r has branch width at most 2r + 1.

Let me sketch the proof. Let G be a planar graph of radius r, and let v0
be a vertex such that V (G) ⊆ Nr(v0). We show how to recursively partition
the edge set of G in such a way that at each stage, the boundary of each part
has cardinality at most 2r+ 1. This will give us a branch decomposition of
width at most 2r + 1.

Without loss of generality we may assume that G is 2-connected; if it is
not, we first decompose it into its 2-connected blocks. Figure 4.1 illustrates
the following steps. We fix a planar embedding of G, and let C be the
exterior cycle. We pick two vertices v, w on C and shortest paths P,Q
from v0 to v, w, respectively. Then we cut along P and Q. This gives us a
partition of E(G) into two parts whose boundary is contained in V (P ∪Q).
We can add the edges in E(P ∪ Q) arbitrarily to either of the two parts.
Now we consider each of the parts separately. The boundary cycle consists
of P , Q, and a piece of the cycle C. If this piece of C is just one edge, we can
split it off and then further decompose the rest. Otherwise, we pick a vertex
x on the piece of C and a shortest path R from v0 to x. We obtain two new
parts with boundaries V (P ∪ R) and V (Q ∪ R). We partition these new
parts recursively until they only consist of their boundaries, and then we
partition the rest arbitrarily. Of course this proof sketch omits many details
and special cases. For example, the vertex v0 could be on the exterior cycle
to begin with. I leave it to the reader to work out these details.

The branch decomposition in Figure 3.3 was obtained by this method.
Note that the graph has radius 2, with centre v0 being the vertex inci-
dent with the edges m and j. The initial paths P and Q have edge sets

390 M. Grohe

b

b

b

v0

v

w

C

P

Q

A

B

b

A B

(a) The graph is cut along PQ

b

b

b

bv0

v

w

x

P

Q

R

B1

B2

b

A

b

B1 B2

(b) Part B is cut again along R

b

b

b

bv0

w

x

Q

R

e

b

A

b

B1

b

e

B2 \ {e}
(c) Edge e = {w, x} is split off part B2

Figure 4.1. Schematic branch decomposition of a planar graph

Logic, graphs, and algorithms 391

E(P) = {s,m} and E(Q) = {j}. The right part consists of the edges
a, b, c, k, d, e, f, l, o, n, u, t, w, p, v, q. The edges of P ∪ Q were added to the
left part. In the next step, the right part was split along the path R
with E(R) = {k, e}. The right part of this split consists of the edges
f, l, o, n, u, t, w, p, v, q. The edge f immediately can be split off, and the
new boundary cycle is w, q, l, k,m, s. The new splitting path consists of the
edge o, et cetera.

Example 4.7 (Eppstein, [34]). The genus of a graph is the minimum genus
of an orientable or nonorientable surface the graph can be embedded into.
For every k, the class of all graphs of genus at most k has locally bounded
branch width. Moreover, for every k the class of all graphs of crossing

number at most k has locally bounded branch width.

In the next example, we shall construct an artificial class of graphs of
locally bounded branch width. It serves as an illustration that the global
structure of graphs of locally bounded branch width can be quite compli-
cated. In particular, this example shows that there are classes of graphs
of locally bounded branch width and of unbounded average degree. Recall
that if a class C of graphs has unbounded average degree then the size of the
graphs in C is superlinear in their order. The graph classes in all previous
examples have bounded average degree and thus size linear in the order.
For planar graphs and graphs of bounded genus, this follows from Euler’s
formula.

Example 4.8 (Frick-Grohe, [42]). Recall that the girth of a graph is the
length of its shortest cycle, and the chromatic number is the least number
of colours needed to colour the graph in such a way that no two adjacent
vertices receive the same colour. We shall use the well-known fact, due to
Erdös [35], that for all g, k ≥ 1 there exist graphs of girth greater than g
and chromatic number greater than k. The proof of this fact (see [2]) shows
that we can effectively construct such a graph Gg,k for given g and k.

Then for every k ≥ 1, every graph Gk,k must have a subgraph Hk of
minimum degree at least k; otherwise we could properly colour G with k
colours by a straightforward greedy algorithm (see [25], Corollary 5.2.3).
Let Hk ⊆ Gk,k be such a subgraph. As a subgraph of Gk,k the graph Hk

still has girth greater than k.
Let C = {Hk | k ≥ 1}. Then C has unbounded minimum degree

and hence unbounded average degree. Nevertheless, C has locally bounded
branch width. To see this, simply observe that the r-neighbourhood of ev-
ery vertex in a graph of girth greater than 2r + 1 is a tree. As the branch
width of a tree is at most 2, for every graph H ∈ C and every r ≥ 1 we have

ℓbw(H, r) ≤ max
({

bw(Hk)
∣
∣ k ≤ 2r + 1

}
∪ {2}

)

.

392 M. Grohe

4.3 Model checking algorithms

Theorem 4.9. Let f be a graph invariant such that the following pa-
rameterization of the model checking problem for first-order logic is fixed-
parameter tractable:

p-MC(FO, f)
Instance. A sentence ϕ ∈ FO and a labelled graph G
Parameter. |ϕ|+ f(G)
Problem. Decide if G |= ϕ

So for every class C of graphs of locally bounded f , the problem p-MC(FO, C)
is fixed-parameter tractable.

The proof of the theorem relies on Gaifman’s Locality Theorem and the
following lemma:

Lemma 4.10 (Frick-Grohe, [42]). Let f and C be as in Theorem 4.9. Then
the following problem is fixed-parameter tractable:

Instance. A labelled graph G = (V,E, P) ∈ Clb and k, r ∈ N

Parameter. k + r
Problem. Decide if there are vertices v1, . . . , vk ∈ P such that

dist(vi, vj) > 2r for 1 ≤ i < j ≤ k

For simplicity, we only prove the lemma for graph invariants f that are
induced-subgraph-monotone, that is, for all graphs G and induced subgraphs
H ⊆ G we have f(H) ≤ f(G). Note that both branch width and rank width
are induced-subgraph-monotone.

Proof sketch of Lemma 4.10. Given G = (V,E, P) and k, r ∈ N, we first
compute a maximal (with respect to inclusion) set S ⊆ P of vertices of
pairwise distance greater than 2r. If |S| ≥ k, then we are done.

Otherwise, we know that P ⊆ N2r(S). Let H be the induced subgraph
of G with vertex set N3r(S). As |S| < k, the radius of each connected
component of H is at most (3r + 1) · k. Hence, because f is induced-
subgraph-monotone,

f(H) ≤ ℓf(G, (3r + 1) · k) ≤ g((3r + 1) · k),

where g is a function witnessing that C has locally bounded f .
Since P ⊆ N2r(S) and V (H) = N3r(S), for all vertices v, w ∈ P it holds

that distG(v, w) > 2r if and only if distH(v, w) > 2r. Hence it remains to

Logic, graphs, and algorithms 393

check whether H contains k vertices labelled P of pairwise distance greater
than 2r. This is equivalent to saying that H satisfies the first-order sentence

∃x1 . . . ∃xk




∧

1≤i<j≤k

dist(xi, xj) > 2r ∧

k∧

i=1

P (xi)



 .

We can use an fpt algorithm for p-MC(FO, f) to check this. q.e.d.

Proof sketch of Theorem 4.9. Let G = (V,E) ∈ C and ϕ ∈ FO. We first
transform ϕ into an equivalent Boolean combination of basic local sentences.
Then we check separately for each basic local sentence in this Boolean com-
bination whether it is satisfied byG and use the results to determine whether
ϕ holds.

So let us consider a basic local sentence

ψ = ∃x1 . . . ∃xk




∧

1≤i<j≤k

dist(xi, xj) > 2r ∧

k∧

i=1

χ(xi)



 ,

where χ(x) is r-local. For each vertex v of G we check whether G[Nr(v)]
satisfies χ(v) using an fpt algorithm for p-MC(FO, f). We can do this
within the desired time bounds because f(G[Nr(v)]) ≤ ℓf (G, r). If G[Nr(v)]
satisfies χ(v), we label v by P . To determine whether G satisfies ψ, we
have to check whether the labelled graph (V,E, P) has k vertices in P of
pairwise distance greater than 2r. By Lemma 4.10, this can be done by an
fpt algorithm. q.e.d.

Corollary 4.11 (Frick-Grohe, [42]). For every class C of graphs of locally
bounded branch width, p-MC(FO, C) is fixed-parameter tractable.

Corollary 4.12. For every class C of graphs of locally bounded rank width,
p-MC(FO, C) is fixed-parameter tractable.

Let me close this section with a few remarks on the running time of the
model checking algorithms.

Remark 4.13. We first look at the exponent of the fpt algorithms. An
analysis of the algorithms described above shows that for every class C
of locally bounded f we obtain an fpt algorithm for p-MC(FO, C) with
exponent c+1, where c is the exponent of an fpt algorithm for p-MC(FO, f).
Hence for classes of locally bounded branch width, this yields a quadratic
fpt algorithm, and for classes of locally bounded rank width, it yields an fpt
algorithm with exponent four.

For classes C of locally bounded branch width, the exponent can be
brought arbitrarily close to 1; more precisely, for every ε > 0 there is an fpt

394 M. Grohe

b

b

b

b

b

b

b

b

e

b

b

b

b

b

b

b

b

Figure 5.1. Contraction of edge e

algorithm for p-MC(FO, C) with a running time of f(k) · |G|1+ε [42]. Note
that we cannot hope to find an fpt algorithm that is linear in the order for
general classes of locally bounded branch width, because by Example 4.8
there are classes C of locally bounded branch width and unbounded average
degree, which implies that the size of the graphs in C is not linearly bounded
in the order (and thus an algorithm that is linear in the order cannot even
read the whole input graph). It is an open question whether for every
class C of graphs of locally bounded branch width there is an fpt algorithm
p-MC(FO, C) that is linear in the size ||G|| of the input graph.

For specific classes C, such as the class of planar graphs and classes of
bounded genus or bounded degree, it is known that there are fpt algorithms
that are linear in the order [42, 77].

Finally, let us look at the parameter dependence of the fpt algorithms.
In general, it is again nonelementary by Theorem 3.2, because our classes
contain the class of all trees. However, classes of graphs of bounded degree
do not contain all trees, and it turns out that for such classes there are
fpt algorithms with an elementary parameter dependence. For the class
Dk of graphs of degree at most k ≥ 3, there is a linear fpt algorithm for
p-MC(FO,Dk) with a triply exponential parameter dependence, and there
is a matching lower bound, which even holds on labelled binary trees [43].

5 Digression: Graph minor theory

A graph H is a minor of a graph G if H can be obtained from G by deleting
vertices, deleting edges, and contracting edges. Contracting an edge means
removing the edge, identifying its two end vertices, and possibly removing
the resulting parallel edges. Figure 5.1 illustrates this. We write H � G
if H is isomorphic to a minor of G. A minor mapping from H to G is
a mapping µ that associates with each v ∈ V (H) a connected subgraph
µ(v) ⊆ G and with each e ∈ E(H) an edge µ(e) ∈ E(G) such that:

• for all v 6= w, the graphs µ(v) and µ(w) are vertex disjoint;

• for all e = {v, w} ∈ E(H), the edge µ(e) is incident to a vertex
v′ ∈ V (µ(v)) and a vertex w′ ∈ V (µ(w)).

It is easy to see that H � G if and only if there is a minor mapping from
H to G. Observe that the graphs µ(v) of a minor mapping µ can be chosen

Logic, graphs, and algorithms 395

b b b

b

b b b

b b

b

b

b b b

b

b b b

b b

b

b

Figure 5.2. An image of K5 in a nonplanar graph

to be trees. If µ is a minor mapping from H to G, we call the graph

µ(H) =
(⋃

v∈V (H)

V (µ(v)),
⋃

v∈V (H)

E(µ(v)) ∪
{
µ(e)

∣
∣ e ∈ E(H)

})

an image of H in G.6 Figure 5.2 shows an example.
For every graph H , we let

X (H) = {G | H 6� G}.

We say that a class C of graphs excludes H if C ⊆ X (H). For a class H of
graphs, we let

X (H) =
⋂

H∈H

X (H) = {G | H 6� G for all H ∈ H}.

A class C of graphs is minor-closed if for every graph G ∈ C and every
H � G it holds that H ∈ C. Observe that a class C of graphs is minor-
closed if and only if it can be defined by excluding minors, that is, there is a
class H such that C = X (H) (just take H = G \C). Robertson and Seymour
proved that every minor-closed class of graphs can actually be defined by
excluding finitely many minors:

Graph Minor Theorem (Robertson-Seymour, [75]). For every minor-
closed class C of graphs there is a finite class F of graphs such that

C = X (F).

Many natural classes of graphs are minor-closed:

Example 5.1. Every cycle can be contracted to a triangle K3. Hence the
class of forests (acyclic graphs) is precisely X (K3).

6 In the literature, the term “model” is used instead of “image”. We prefer “image”
here to avoid confusion with “models” in the logical sense.

396 M. Grohe

Example 5.2. For every k ≥ 1, the class Bk of all graphs of branch width
k is minor-closed. Let me suggest it as an exercise for the reader to prove
this. Furthermore, it holds that B2 = X (K4) [72].

Example 5.3. Series-parallel graphs and outerplanar graphs exclude K4.
It can be shown that X (K4) is precisely the class of all graphs that are
subgraphs of series-parallel graphs (see [25], Exercise 7.32). X ({K4,K2,3})
is the class of outerplanar graphs (see [25], Exercise 4.20).

Example 5.4. By Kuratowski’s well-known theorem [55] (or, more pre-
cisely, by a variant due to Wagner [83]), the class of planar graphs is
X ({K5,K3,3}).

Example 5.5. For every k ≥ 0, the class of all graphs of genus k is minor-
closed.

Note that all previous examples of minor-closed classes also have locally
bounded branch width. But this is a coincidence, as the following example
shows.

Example 5.6. A graph G is an apex graph if there is a vertex v ∈ V (G)
such that G \ {v} is planar. The class of all apex graphs is minor-closed.

The class of apex graphs does not have locally bounded branch width.
To see this, consider the “pyramid graphs” Pn obtained from the (n × n)-
grid Gn×n by adding a new vertex and connecting it to all vertices of the
grid. Obviously, the pyramid graphs are apex graphs, and for every n ≥ 1
we have

ℓbw(Pn, 1) ≥ bw(Gn×n) ≥ n,

where the second inequality holds by Example 3.10.

Example 5.7. A graph is knot free if it can be embedded into R
3 in such

a way that no cycle of the graph is knotted in a nontrivial way. It is easy
to see that the class of all knot free graphs is minor-closed.

Similarly, the class of all graphs that can be embedded into R
3 in such

a way that no pair of cycles is linked is minor-closed.

Let me also mention a “non-example”: The class of all graphs of crossing
number k ≥ 1 is not minor-closed.

5.1 Structure theory

The proof of the graph minor theorem relies on a deep structure theory for
classes of graphs with excluded minors. While it is far beyond the scope of
this survey to describe this theory in adequate detail, or even give a precise
statement of the main structural result, I would like to give the reader a
glimpse of the theory, because the model checking algorithms for graphs

Logic, graphs, and algorithms 397

with excluded minors heavily rely on it. Let me start with a disclaimer:
The following intuitive remarks may make a nice story, but they do not
always reflect the actual proofs and thus should be taken with some care.

Suppose we have a class C with excluded minors. Then C ⊆ X (Kk) for
some k, because every graph is a minor of some complete graph. We fix
C and k for the rest of this section. We want to describe the structure of
the graphs in C by “decomposing” them into “simple” building blocks. We
shall define later what exactly we mean by “decomposing” a graph. For
now, let us just remark that if a graph has bounded branch width, then we
can decompose it into pieces of bounded size. Thus we are mainly interested
in classes C of unbounded branch width. The following theorem, which is
one of the fundamental results of the whole theory, gives us a handle on the
structure of graphs of unbounded branch width:

Excluded Grid Theorem (Robertson-Seymour, [71]). There is a com-
putable function f such that for every k ≥ 1 and every graph G, if bw(G) ≥
f(k) then Gk×k � G.

A proof of this theorem can be found in [25].

The Excluded Grid Theorem tells us that if our class C has unbounded
branch width, then the graphs in C contain large grids as minors. Now we
can try to use these large grids as “coordinate systems” and describe the
structure of the graphs relative to the grids. So suppose we have a graph
G ∈ C with a large grid minor, and let H ⊆ G be the image of a large
grid. Let us further assume that G is highly connected; if it is not we first
decompose it into highly connected parts and then consider each of them
separately. We come back to this decomposition process later. We think of
the grid as embedded into the plane and the rest of G being glued ontoH . It
can be proved now thatG\H must be glued ontoH in a fairly “orderly” way:
If there are many pairwise far apart “crossings” in the interior of G then
we can find a Kk-minor in G, which is impossible because G ∈ C ⊆ X (Kk).
Here a crossing consists of two pairwise disjoint paths with endpoints v1, v3
and v2, v4 respectively, such that v1, v2, v3, v4 occur in this clockwise order
on some cycle of the grid. Figure 5.3 shows a grid with two crossings.
This leaves us with the following structure: There is a bounded number
of vertices, called apices, that are connected to the grid in an arbitrary
fashion. After removing the apices, there still may be many crossings, but
they must be grouped together into a bounded number of small regions,
called vortices. Apart from the apices and the vortices, the rest of G must
fit nicely into the planar structure of the grid, that is, the components of
G \H are planar pieces, each of which can be embedded into a “square” of
the grid. However, so far we have only talked about the interior of the grid.
There may be connections between different parts of the exterior cycle of

398 M. Grohe

b

b

b

b

b

b

b

b

Figure 5.3. A grid with two crossings

the grid, but they cannot be too wild either, because otherwise we could
find a large clique minor again. We can subdivide the exterior cycle into a
bounded number of segments and stick some of these together. This gives
us a graph that can be embedded into a surface of bounded genus (recall
that every surface can be obtained by gluing together edges of a convex
polygon in the plane). Thus after removing a bounded number of apices
and vortices, G can be embedded into a surface of bounded genus. We say
that G has almost bounded genus. We assumed that G is highly connected;
if it is not then we can decompose it into pieces with this property. This is
Robertson and Seymour’s main structure theorem [74]: For every class C
of graphs with an excluded minor, the graphs in C can be decomposed into

graphs that have almost bounded genus.

Let us now make it precise what we mean by “decomposing” a graph.
Intuitively, we want to recursively split the graph along small separators un-
til there no longer are small separators and the graph is highly connected.
But if we do this, we lose too much structure in the decomposition process,
because two vertices that are far apart on one side of the partition may
be close together on the other side and hence in the original graph. Thus
“locality”, and similarly “connectivity”, may be destroyed in the decom-
position process, and this is something we would like to avoid. We take a
very drastic approach: Whenever we separate a graph, on both sides we
add edges between all vertices in the separator.

We call a graph G a clique sum of graphs G1 and G2 (and write G =
G1 ⊕G2) if G1 ∩G2 is a complete graph, V (G) = V (G1) ∪ V (G2), E(G) ⊆
E(G1)∪E(G2), and E(G1)\E(G) ⊆ E(G2), E(G2)\E(G) ⊆ E(G1). Thus
G is a subgraph of G1 ∪G2 obtained by possibly deleting some of the edges
in G1 ∩ G2. Figure 5.4 illustrates this. Note that we are slightly abusing
notation here because there may be several non-isomorphic graphs G such
that G = G1 ⊕G2.

A clique sum decomposition of a graph G is a pair (T, γ) consisting
of a binary tree T and a mapping γ that associates a graph γ(t) with
every node t ∈ V (T) such that γ(r) = G for the root r of T and γ(t) =
γ(t1)⊕γ(t2) for all nodes t with children t1, t2. Figure 5.5 shows an example

Logic, graphs, and algorithms 399

c

b

a

f

e

d

i

h

g

=
c

b

a

f

e

d

⊕
f

e

d

i

h

g

Figure 5.4. A clique sum

b b

b b b

b b

b b

b b

b b

b

b b

b b

b b

b

b b

b

b

b b

b

b

b b

b

Figure 5.5. A clique sum decomposition

of a clique sum decomposition of a graph. The decomposition in Figure 5.5
is complete in the sense that the graphs at the leaves cannot be decomposed
any further. In general, the clique sum decompositions we are interested in
are not necessarily complete.

We call the graphs γ(t) in a clique sum decomposition (T, γ) the parts

of the decomposition and the parts γ(t) for the leaves t the atomic parts, or
just atoms. (T, γ) is a clique sum decomposition over a class A of graphs if
all atoms of (T, γ) belong to A. We call a graph decomposable over A if it
has a clique sum decomposition over A and denote the class of all graphs
that are decomposable over A by D(A).

Example 5.8. Let k ≥ 1, and let Ok be the class of all graphs of order at
most k. If a graph G is decomposable over Ok, then bw(G) ≤ max{k, 2}.
Let me suggest it as an exercise for the reader to verify this simple fact.

400 M. Grohe

Conversely, it is not too hard to prove that if a graph has branch width
at most k, then it is decomposable over O⌈(3/2)·k⌉.

Let me remark that a graph has tree width k if and only if it is de-
composable over Ok+1. This follows from the fact that a graph has tree
width at most k if and only if it is a subgraph of a chordal graph of clique
number k + 1 (see Corollary 12.3.12 of [25]). The result for branch width
then follows by (3.2).

I leave it as an exercise to prove the following simple lemma:

Lemma 5.9. If a class A of graphs is minor-closed, then the class D(A) is
also minor-closed.

Robertson and Seymour’s structure theorem for classes of graphs with
excluded minors can now be stated slightly more precisely as follows: For

every class C of graphs with an excluded minor there is a class A of graphs

that have almost bounded genus such that C ⊆ D(A). Of course this still
leaves it open what exactly is meant by “almost bounded genus”. We refer
the curious reader to the last chapter of Diestel’s book [25] for a more
comprehensive introduction to the theory, or to Robertson and Seymour’s
original article [74].

We close this section by stating a simplified version of a Robertson and
Seymour’s structure theorem that will be sufficient for our purposes. Recall
that ℓbw denotes the localization of branch width. Minor-closed classes of
locally bounded branch width are particularly well behaved. Eppstein [33,
34] proved that a minor closed class C has locally bounded branch width if
and only if it does not contain all apex graphs (recall the definition of apex
graphs from Example 5.6). Demaine and Hajiaghayi [22] proved that if a
class of graphs has locally bounded branch width, then there actually is a
linear bound on the local branch width, that is, there is a λ ≥ 1 such that
for all G ∈ C and for all r ≥ 1 it holds that ℓbw(G, r) ≤ λ ·r. This motivates
the definition of the following classes of graphs, for every λ ≥ 1:

Lλ =
{
G

∣
∣ ℓbw(H, r) ≤ λ · r for all H � G

}
.

For every µ ≥ 0, we define a class of graphs that are “µ-close” to Lλ:

Lλ,µ =
{
G

∣
∣ ∃X ⊆ V (G) : |X | ≤ µ and G \X ∈ Lλ

}
.

Theorem 5.10 (Grohe, [47]). For every class C with excluded minors, there
exist nonnegative integers λ, µ such that

C ⊆ D(Lλ,µ).

To obtain this result from Robertson and Seymour’s structure theorem,
one only has to prove that graphs of almost bounded genus are in Lλ,µ for
suitable λ, µ. This is not very difficult.

Logic, graphs, and algorithms 401

5.2 Algorithms

Before we get back to model checking problems, let me briefly describe
some other algorithmic applications of graph minor theory. Consider the
following two parameterized problems:

p-Disjoint-Paths

Instance. A graph G and vertices s1, t1, . . . , sk, tk ∈ V (G)
Parameter. k
Problem. Decide if there are pairwise disjoint paths Pi, for

i ∈ [k], from si to ti in G

p-Minor

Instance. Graph G,H
Parameter. |H |
Problem. Decide if H � G

For neither of the two problems, it is even obvious that they belong to
the class XP, that is, can be solved in polynomial time for fixed k, |H |,
respectively. For Disjoint-Paths, this was a long standing open problem
posed by Garey and Johnson [45]. Robertson and Seymour proved that
both problems are fixed-parameter tractable:

Theorem 5.11 (Robertson-Seymour, [73]). p-Disjoint-Paths and
p-Minor have cubic fpt algorithms.

The reader may wonder why we combine both problems in one theorem.
The reason is that they are both special cases of the more general rooted

minor problem. A rooted graph is a tuple (G, v1, . . . , vk), where G is a graph
and v1, . . . , vk ∈ V (G), and a rooted graph (H,w1, . . . , wk) is a rooted minor

of a rooted graph (G, v1, . . . , vk) if there is a minor map µ from H into G
such that vi ∈ V (µ(wi)) for all i ∈ [k]. The parameterized problem p-

Rooted-Minor is defined as p-Minor, but for rooted graphs. I leave it to
the reader to reduce p-Disjoint-Paths to p-Rooted-Minor. Robertson
and Seymour proved that p-Rooted-Minor has a cubic fpt algorithm.

To get an idea of the proof it is easiest to look at the disjoint paths
problem. Suppose we are given a graph G and s1, t1, . . . , sk, tk ∈ V (G).
Let us further assume, to simplify the presentation, that G is 2k-connected.
If K3k � G, then we know that there are disjoint paths from the sis to
the tis: As the graph is 2k-connected, by Menger’s theorem we can find
disjoint paths from s1, t1, . . . , sk, tk to an image of K3k. Then in the image
of K3k, we can connect the pieces in the right way because all connections
are there. This is not entirely trivial, because we only have an image of

402 M. Grohe

K3k and not a subgraph, but it can be done. So now we can assume that
K3k 6� G, and we can apply the structure theory for graphs with excluded
K3k. If the branch width of G is bounded, we can solve the disjoint paths
problem easily, for example, by applying Courcelle’s theorem. If the branch
width is large, then by the Excluded Grid Theorem, we can find a large
grid in G. By the arguments described above, we can now find a small set
of vertices such that after removing these vertices, the whole graph G fits
nicely into the planar structure of the grid. Passing to a smaller grid if
necessary, we may assume that all the si and ti are outside the grid. Now
it can be proved that if there are disjoint paths from si to ti for all i ∈ [k],
then there are such paths that avoid the middle vertex of the grid (say, the
grid has odd order). Intuitively, it is plausible that if we have a very large
grid and k disjoint paths traversing the grid, then we can always re-route
them to avoid the middle vertex. Proving this formally turns out to be the
most difficult part of the whole proof [68, 69]. It builds on the full structure
theory described in the previous section. However, once this is done, we
know that we can delete the middle vertex of the grid and obtain a smaller
graph G′ such that there are disjoint paths from si to ti for all i ∈ [k] in G
if and only if there are such paths in G′. We repeatedly delete “irrelevant”
vertices this way until we obtain a graph of bounded branch width, and
then we solve the problem on this graph. This completes our outline of the
proof of Theorem 5.11.

Combined with the Graph Minor Theorem, Theorem 5.11 has the following
stunning consequence.

Corollary 5.12. Every minor-closed class C of graphs is decidable in cubic
time.

Note that a priori there is no reason why every minor-closed class C of
graphs should be decidable at all. Remarkably, Corollary 5.12 just claims
the existence of algorithms, without actually giving us the algorithms. For
example, by Example 5.7 it implies the existence of a cubic time algorithm
for deciding whether a graph is knot free. But we still do not know such an
algorithm! The reason is that we do not know a finite family of excluded
minors defining the class of knot free graphs. Corollary 5.12 is constructive
in the sense that if we are given a finite family of excluded minors that
defines the class C, then we can construct a cubic time algorithm deciding
C. However, for many minor-closed classes we do not know such a finite
family.

In recent years, there has been a substantial body of work on algorithms
for graph problems restricted to graph classes with excluded minors or even
generalisations of such classes [1, 21, 23, 24, 47, 53]. The algorithmic meta
theorems presented in the following section should be seen in this context

Logic, graphs, and algorithms 403

as an attempt to get a more global view on the potentials of algorithmic
graph minor theory.

We close this section with a lemma that we shall need in the next section.

Lemma 5.13. For every minor-closed class A of graphs there is an algo-
rithm that, given a graph G ∈ D(A), computes a clique sum decomposition
of G over A in time O(n5).

Note that, in particular, the lemma implies an algorithmic version of
Theorem 5.10: For every class C with excluded minors there is a polynomial
time algorithm that, given a graph in C, computes a clique sum decompo-
sition of G over Lλ,µ.

Proof sketch of Lemma 5.13. Recall that if we write G = G1⊕G2, this im-
plies that V (G1∩G2) induces a clique in both G1 andG2, but not necessarily
in G. If it also induces a clique in G, and hence G = G1 ∪ G2, we call the
clique sum simplicial. We call a clique sum decomposition (T, γ) a simplicial

decomposition if the clique sums at all nodes of T are simplicial. We call a
simplicial decomposition complete if its atoms can not be decomposed any
further. Simplicial decompositions are much easier to handle than clique
sum decompositions. Tarjan [79] showed that a separating clique of a graph
can be found in quadratic time. This implies that a complete simplicial
decomposition of a graph can be found in cubic time.

Observe that if a graph G has a clique sum decomposition over A, then
some supergraph G′ ⊇ G with the same vertex set has a simplicial decom-
position over A. As A is closed under taking subgraphs, we may actually
assume that this simplicial decomposition is complete.

To compute a clique sum decomposition of a graph G overA, we proceed
as follows: We add a maximal set of edges toG so that the resulting graphG′

is still in the class D(A). We can do this in time O(n5), testing membership
in the minor-closed class D(A) in cubic time for every potential edge. Then
we compute a complete simplicial decomposition of the graph G′. This also
gives us a clique sum decomposition of G. q.e.d.

6 First-order logic on graph classes with excluded

minors

Let C be a class of graphs with excluded minors. Our goal is to design an fpt
algorithm for the first-order model checking problem on C. Recall that by
Theorem 5.10, the graphs in C are decomposable into graphs that “almost”
have locally bounded branch width, where almost means after removing a
bounded number of vertices. We know how to deal with graphs of locally
bounded branch width, and it is not hard to extend this to graphs of almost
locally bounded branch width. Moreover, we know how to deal with tree

404 M. Grohe

structured graphs. By combining these things, so it seems, it should not be
too hard to obtain the desired result. This is true, but there are technical
difficulties to overcome.

We say that a tuple v̄ of vertices of a graph G induces a clique in G
if G[{v̄}] is a complete graph. We write G = G′ ⊕v̄ H to denote that
G is a clique sum of graphs G′ and H with V (G′) ∩ V (H) = {v̄}. For
tuples v̄1, . . . , v̄m of vertices in G′ and graphs H1, . . . , Hm, we may write
G′ ⊕v̄1 H1 ⊕v̄2 . . . ⊕v̄m

Hm; the order of the summation of the His does
not matter. In the following, types are always first-order types, and we
write tp instead of tpFO. Let me remark that of the two lemmas below that
are concerned with computing types, Lemma 6.1 also holds for MSO-types
instead of FO-types, whereas the Lemma 6.2 only holds for FO-types.

To see that the parameterized problems in Lemmas 6.1 and 6.2 are
well-defined, suppose that we have labelled graphs G, G′, H1, . . . , Hm and
tuples v̄0, . . . , v̄m of vertices of G′ such that G = G′⊕v̄1 H1⊕v̄2 . . .⊕v̄m

Hm.
Then it follows from Lemma 2.3 that tpq(G, v̄0) only depends on the types
tpq(H1, v̄1), . . . , tpq(Hm, v̄m) and not on the actual graphs Hi. That is, for
all graphs H ′

1, . . . , H
′
m with V (G′∩H ′

i) = {v̄i} and tpq(H
′
i, v̄i) = tpq(Hi, v̄i)

it holds that

tpq(G
′ ⊕v̄1 H

′
1 ⊕v̄2 . . .⊕v̄m

H ′
m) = tpq(G, v̄0).

Lemma 6.1. The following problem is fixed parameter tractable:

Instance. A labelled graph G′ of branch width k, tuples v̄i ∈
V (G′)ki for i ∈ [0,m] that induce cliques in G′, and
q-types Θ1, . . . ,Θm

Parameter. q
Problem. Compute the type tpq(G, v̄0) for all graphs G =

G′ ⊕v̄1 H1 ⊕v̄2 . . .⊕v̄m
Hm, where the Hi are graphs

with tpq(Hi, v̄i) = Θi for all i ∈ [m]

Proof sketch. The proof is similar to the second proof of Courcelle’s The-
orem: We take a branch decomposition of G′. Starting at the leaves, we
compute the types of the boundaries of all nodes. To accomodate for the
graphs Hi, we label some of the leaves of the branch decomposition with the
cliques v̄i, for i ∈ [m], instead of edges of G′. The type that is passed from
such a leaf to its parent in the computation is Θi. In order to obtain the
type tpq(G, v̄0) and not just tpq(G, ()) (the type of the empty tuple) at the
root, at each node t of the decomposition we compute the type of a tuple
consisting of the vertices in the boundary ∂β̃(t) together with all vertices
of the subgraph G′Jβ̃(t)K that appear in the tuple v̄0 (instead of just the
vertices in ∂β̃(t)). q.e.d.

Logic, graphs, and algorithms 405

Lemma 6.2. For all λ, µ, the following problem is fixed-parameter trac-
table:

Instance. A labelled graph G′ ∈ Lλ,µ, tuples v̄i ∈ V (G′)ki

for i ∈ [0,m] that induce cliques in G′, and q-types
Θ1, . . . ,Θm

Parameter. q
Problem. Compute the type tpq(G, v̄0) for all graphs G =

G′ ⊕v̄1 H1 ⊕v̄2 . . .⊕v̄m
Hm, where the Hi are graphs

with tpq(Hi, v̄i) = Θi for all i ∈ [m]

Proof sketch. We prove the statement by induction on µ. For µ = 0, that is,
graphs in Lλ, it can be proved similarly to Theorem 4.9 (using Lemma 6.1
locally).

So let µ > 0. Suppose we are given an instance of the problem. We ob-
serve that the graph G′ contains a vertex w such that G′ \{w} ∈ Lλ,µ−1. As
Lλ,µ−1 is minor-closed and hence decidable in cubic time by Corollary 5.12,
we can find such a vertex in time O(n4). We define a new labelled graph G∗

by deleting the vertex w and labelling all vertices adjacent to w in G′ with a
new label P . We then translate every formula ψ of quantifier rank at most q
into a formula ψ∗ such thatG |= ψ(v̄0) ⇐⇒ G∗ |= ψ∗(v̄0). AsG∗ ∈ Lλ,µ−1,
we can apply the induction hypothesis to check if G∗ |= ψ∗(v̄0), and this
way we can compute the type of v̄0 in G. q.e.d.

Theorem 6.3 (Flum-Grohe, [38]). For every class C of graphs with an
excluded minor, the problem p-MC(FO, C) is fixed-parameter tractable.

Proof sketch. Let G ∈ C and ϕ ∈ FO, say, of quantifier rank q. Let λ, µ ≥ 0
such that C ⊆ D(Lλ,µ). Using Lemma 5.13, we compute a clique sum
decomposition (T, γ) of G over Lλ,µ.

Now the obvious idea is to compute the q-types of the “boundary tuples”
for the parts γ(t) in the decomposition in a bottom-up fashion, similarly to
the second proof of Courcelle’s Theorem. Unfortunately, this simple idea
does not work, because a clique sum decomposition is not as well-behaved
as a branch decomposition, and the boundaries of the parts may have un-
bounded size. It may even happen that an atom of the decomposition
(corresponding to a leaf of the tree) intersects all other atoms. Figure 6.1
illustrates this.

Observe that a graph in Lλ,µ cannot contain a clique with more than
k = ⌈(3/2) · λ+ µ⌉ vertices. Hence for all nodes t of T with children t1, t2,
we must have V (γ(t1) ∩ γ(t2)) ≤ k, because V (γ(t1) ∩ γ(t2)) is a clique in
the γ(ti), and this clique will appear in some atom of the decomposition.
Let us fix some order of the vertices of G. For every inner node t with

406 M. Grohe

G
′

H4 H3

H2

I

H1

G
′

⊕H1 ⊕ . . .⊕H4 ⊕ I

G
′

⊕H1 ⊕ . . .⊕H3 ⊕ I

G
′

⊕H1 ⊕H2 ⊕ I

G
′

⊕H1 ⊕H2

G
′

⊕H1

G
′

H1

H2

I

H3

H4

Figure 6.1. The left hand side shows a graph and the right hand side a
clique sum decomposition of this graph where the atom G′ intersects four
other atoms and the atom H2 intersects two other atoms

children t1, t2, we let c̄t be the ordered tuple that contains the elements of
V (γ(t1) ∩ γ(t2)).

Our algorithm proceeds recursively, that is, “top-down”, instead of “bot-
tom up” as the algorithm in the proof of Courcelle’s Theorem, to compute
the types of the tuples c̄t. Let us start at the root r of T . Our goal is to
compute the q-type of the empty tuple in G. Suppose that the clique sum
at r is G = G1 ⊕G2. We now want to compute the q-type of the tuple c̄r
in both G1 and G2; from that we easily get the q-type of the empty tuple
in G using Lemma 2.3. So let us continue by computing the q-type of c̄r
in G1. Suppose the children of t1 are t11 and t12. Let c̄1 = c̄t1 . Now we
have a problem: To determine the q-type of c̄r in G1, it does not suffice
to compute the q-types of c̄1 in G11 and G12, because c̄r and c̄1 may be
disjoint tuples. It seems that we have to compute the q-type of the longer
tuple c̄1c̄r in both graphs. But clearly we cannot afford the tuples to get
longer at every recursion level. Now recall that {c̄r} is a clique in G1. Hence
it is either contained in {c̄1} = V (G11) ∩ V (G12), in which case we have no
problem anyway, or it is contained in precisely one of the two graphs G11,
G12. Suppose c̄r is contained in G12. Then we first compute the q-type
Θ of the tuple c̄1 in G11. Now we have to compute the type of c̄r in the
graph G1 = G11 ⊕ G12. That is, we are in the situation where we have to
compute the type of a tuple v̄ of vertices of a graph G′ in a graph G′ ⊕v̄′ H
for some (and hence all) graph(s) H with tpq(H, v̄

′) = Θ. Furthermore, we
know that v̄, v̄′ induce cliques in G′. The general problem we have to solve
recursively at all nodes of the decomposition tree is the following:

Compute the q-type of a tuple v̄0 of vertices of a graph G
′ in a graph

G
′

⊕v̄1 H1⊕v̄2 . . .⊕v̄m Hm for some (and hence all) graph(s) Hi with

Logic, graphs, and algorithms 407

tpq(Hi, c̄i) = Θi. Here all the tuples v̄i have length at most k, and
they induce cliques in G

′.

At the leaves we can use Lemma 6.2 to do this. At the inner nodes, we
proceed as described for the node t1 above. q.e.d.

The proof of the theorem actually shows that for all classes C with ex-
cluded minors, p-MC(FO, C) has an fpt algorithm with exponent at most 5.
Hence, the exponent is independent of the class C. Thus we have “almost”
proved that there is an fpt algorithm for the model checking problem pa-
rameterized both by formula size and the size of the excluded minor. With
considerable additional effort, we can get rid of the “almost” in this state-
ment. Let me explain where the difficulties are and, in very general terms,
how they are resolved.

Let us first make the statement precise. We define a new graph invariant
excluded minor order (emo) by letting

emo(G) = min{|H | | H 6� G}

for every graph G. Note that emo(G) = min{n | Kn 6� G} and that a class
C excludes a minor if and only if it has bounded excluded minor order. Our
goal is to prove that the following problem is fixed-parameter tractable:

p-MC(FO, emo)
Instance. A graph G and a sentence ϕ ∈ FO
Parameter. |ϕ|+ emo(G)
Problem. Decide if G |= ϕ

We have already proved that for every k there is an fpt algorithm Ak

with exponent 5 for the first-order model checking problem on the class
of all graphs of excluded minor order at most k. The problem is that the
family Ak of algorithms is nonuniform, that is, we have a different algorithm
for every k. To prove that p-MC(FO, emo) is fixed-parameter tractable, we
need a uniform family Ak, or equivalently, a single algorithm A that takes k
as an additional input. The family of algorithms we construct in the proof is
nonuniform because we use Corollary 5.12 to get decision algorithms for the
minor-closed classes Lλ,µ (in the proof of Lemma 6.2) and D(Lλ,µ) (in the
proof of Lemma 5.13) for parameters λ, µ that depend on the excluded minor
order of the input graph. If we could compute finite families of excluded
minors characterising the classes Lλ,µ and D(Lλ,µ) from the parameters
λ, µ, then we would be fine, but we currently do not know how to do this.
Fortunately, there is an alternative approach that avoids Corollary 5.12
entirely. The application of Corollary 5.12 in the proof of Lemma 5.13

408 M. Grohe

yielded an algorithm for computing a clique sum decomposition of a graph
over D(Lλ,µ). While we do not know how to compute such a decomposition
uniformly in λ and µ, in [18] we found a way to compute, uniformly in λ, µ,
a decomposition that is a sufficiently good approximation of the desired
clique sum decomposition. The algorithm recursively splits the input graph
along small separators that are sufficiently “balanced”. The application of
Corollary 5.12 in the proof of Lemma 6.2 was needed to find a set of at
most µ vertices in a graph in Lλ,µ whose removal left a graph in Lλ. In
[18], we found an fpt algorithm that, given a graph G ∈ Lλ,µ, computes a
set W ⊆ V (G) of at most µ vertices such that G\W ∈ Lλ′ for some λ′ that
is effectively bounded in terms of λ. This is good enough for our purposes.
Putting everything together, we obtain the following result:

Theorem 6.4 (Dawar-Grohe-Kreutzer, [18]). p-MC(FO, emo) is fixed-pa-
rameter tractable.

We say that a class locally excludes a minor if it has locally bounded
excluded minor order. Then combining Theorems 6.4 and 4.9, we get:

Corollary 6.5 (Dawar-Grohe-Kreutzer, [18]). For every class C locally ex-
cluding a minor, the problem p-MC(FO, C) is fixed-parameter tractable.

7 Other logics and other problems

In this section, we briefly discuss some extensions of the main results men-
tioned in this survey to more powerful logics, and also to variants of the
basic model checking problem.

7.1 Other logics

It is really not much that is known about algorithmic meta theorems for
logics other than first-order and monadic second-order logic. Courcelle’s
Theorem and its variant for graphs of bounded rank width can be extended
to the extension of monadic second order logic by modulo counting quan-
tifiers [10, 12] (also see [58]), and clearly not to full binary second order
logic.

As for the results for first-order logic, let us consider potential exten-
sions of the model-checking results to monadic transitive closure logic and
monadic least fixed-point logic. Both transitive closure logic and least fixed-
point logic have been extensively studied in finite model theory [31, 56].
Their monadic fragments are strictly contained in monadic second-order
logic, and they strictly contain first-order logic. (When we say that a logic
contains another logic, we mean semantic containment, that is, L1 contains

L2 if every formula of L2 is logically equivalent to a formula of L1. We say
that L1 strictly contains L2 it L1 contains L2, but L2 does not contain L1.)
Monadic transitive closure logic and monadic least fixed-point logic seem to

Logic, graphs, and algorithms 409

mark the boundary of the range of logics to which the tractability results
for first-order model checking can be extended.

Monadic transitive closure logic TC1 is the extension of first-order logic
by formulas of the form [TCx,yϕ](x, y), where ϕ is a formula with free
variables among {x, y}. The free variables of the formula [TCx,yϕ](x, y) are
x and y. It is allowed to nest TC-operators arbitrarily and interleave them
with first-order quantifiers and connectives. However, we do not allow any
other free variables than x and y in the formula ϕ in [TCx,yϕ](x, y). The
semantics is defined as follows: If G is a (labelled) graph and v, w ∈ V (G),
then G |= [TCx,yϕ](v, w) if and only if there is an m ≥ 1 and vertices
v1, . . . , vm ∈ V (G) such that v = v1, w = vm, and G |= ϕ(vi, vi+1) for all
i ∈ [m− 1].

Example 7.1. The following TC1-sentence states that a graph is con-
nected:

∀x∀y[TCx,yE(x, y)](x, y).

It is known that there is no sentence of first-order logic defining connectivity
(see, e.g., [31, 32, 56]).

Example 7.2. The following TC1-sentence states that a graph has no cyclic
walk of odd length and hence is bipartite

¬∃x∃y
([

TCx,y∃z
(
E(x, z) ∧E(z, y)

)]
(x, y) ∧E(y, x)

)

.

Again, it is known that there is no sentence of first-order logic defining
bipartiteness.

The logic TC1 trivially contains FO, and it is strictly contained in MSO.
As opposed to MSO, its data complexity is still in polynomial time (actually,
in nondeterministic logarithmic space).

Theorem 7.3. Let C be a class of graphs that contains all planar graphs
of degree at most 3. Then p-MC(TC1, C) is hard for the parameterized
complexity class AW[∗].

Proof sketch. We reduce the model checking problem for first-order logic on
arbitrary graphs, which is known to be AW[∗]-complete (by Theorem 2.12),
to p-MC(TC1, C). Let G be a graph and ϕ a first-order sentence.

We start with constructing a drawing of G in the plane, which of course
may involve edge crossings. We can find a drawing with at most polyno-
mially many (in the number of vertices of G) crossings such that in each
point of the plane at most 2 edges cross. We introduce five new labels
P1, P2, Q1, Q2, R. We define a new labelled graph G1 by labelling each ver-
tex of the original graph G with P1 and replacing each edge crossing in the

410 M. Grohe

= label Q1

= label Q2

= label R

Figure 7.1. A gadget for edge crossings

drawing of G by a little gadget, as shown in Figure 7.1. Observe that the
edge relation of the graph G can be defined in G1 by a TC1-formula (but
not by an FO-formula, because an edge may cross many other edges). G1

is planar, but may have degree greater than 3. We define a graph G2 by
replacing every vertex v of G1 of degree d by a binary tree with exactly d
leaves. With each leaf we associate one vertex w adjacent to v in G1. We
connect the leaf of the v-tree associated with w with the leaf of the w-tree
associated with v. Then we identify v with the root of its tree, label it P1,
and label all other vertices of the tree P2. Then the edge relation of G is
also definable in G2 by a TC1-formula. We can use this formula to translate
the formula ϕ into a TC1-formula ϕ2 such that

G |= ϕ ⇐⇒ G2 |= ϕ2.

G2 is a planar graph of degree at most 3, and it clearly can be computed
from G in polynomial time. This gives us the desired reduction. q.e.d.

Monadic least-fixed-point logic LFP1 (see, e.g., [48, 76]) is the extension
of first-order logic by formulas of the form [LFPx,Xϕ](x), where ϕ is a first-
order formula such that X only occurs positively in ϕ and ϕ has no free
individual variables other than x. (It may have free set variables other than
X .) The free variables of [LFPx,Xϕ](x) are x and all free set variables of
ϕ except X . To define the semantics, let ϕ = ϕ(x,X, Y1, . . . , Ym). Let
G be a labelled graph and W1, . . . ,Wm ⊆ V (G), v ∈ V (G). Then G |=
[LFPx,Xϕ(x,X,W1, . . . ,Wm)](v) if and only if v is in the least fixed point
of the monotone operator U 7→ {u | G |= ϕ(u, U,W1, . . . ,Wm)} on V (G).
We call a formula in LFP1 restricted if for every subformula of the form
[LFPx,Xϕ](x), the formula ϕ has no free set variables other than X . By
LFP1

r we denote the fragment of LFP1 consisting of all restricted formulas.
The reason for requiring that a formula ϕ in the scope of a fixed-point

operator [LFPx,Xϕ](x) contains no free individual variables other than x is
that otherwise even the restricted fragment of the logic would contain TC1.

Logic, graphs, and algorithms 411

It can be shown that LFP1 (as defined here) does not contain TC1 and that,
conversely, TC1 does not contain LFP1, not even LFP1

r.
I was unable to come up with convincing examples of properties of plain

graphs that are definable in LFP1
r or LFP1, but not in first-order logic.

However, this changes when we admit more general structures. For example,
on Kripke structures, that is, labelled directed graphs with one distinguished
element, LFP1 contains the modal µ-calculus. Here is another example:

Example 7.4. We can describe monotone Boolean circuits as labelled di-
rected acyclic graphs, and assignments to the input gates by an additional
label. It is easy to see that there is an LFP1

r-formula stating that an assign-
ment satisfies a circuit. This is not definable in first-order logic.

As we mentioned earlier, almost all results presented in this survey ex-
tend to arbitrary structures. In this context, the following tractability result
is more interesting than it may seem in a purely graph theoretical context.

Theorem 7.5. Let C be a class of graphs such that p-MC(FO, Clb) is fixed-
parameter tractable. Then p-MC(LFP1

r, Clb) is fixed-parameter tractable.

Proof sketch. To evaluate a formula of the form [LFPx,Xϕ](x), where ϕ =
ϕ(x,X) is first-order, in a graph G, we proceed as follows: We introduce
a new label P . Initially, we set P (G) = ∅. Then we repeatedly compute
the set of all v ∈ V (G) such that G |= ϕ(v, P (G)) using an fpt algorithm
for p-MC(FO, Clb) and set P (G) to be the set of all these vertices. After at
most n = |G| steps, the computation reaches a fixed point, which consists
precisely of all v such that G |= [LFPx,Xϕ](v). Using this algorithm as a
subroutine, we can easily model-check arbitrary sentences in LFP1

r. q.e.d.

Lindell [57] proved that for the classes Dk of graphs of degree at most
k, the problem p-MC(LFP1

r ,Dk) even has a linear time fpt algorithm.

7.2 Generalised model checking problems

For a formula ϕ(x1, . . . , xk) and a graph G, by ϕ(G) we denote the set of all
tuples (v1, . . . , vk) ∈ V (G)k such that G |= ϕ(v1, . . . , vk). For every logic L
and class C of graphs, we may consider the following variants of the model
checking problem p-MC(L, C): The input always consists of a graph G ∈ C
and a formula ϕ ∈ L, possibly with free variables. The parameter is |ϕ|. The
decision problem simply asks if ϕ(G) is nonempty. For logics closed under
existential quantification, this problem is equivalent to the model checking
problem p-MC(L, C). Therefore, we shall not consider it here anymore. The
construction problem asks for a solution v̄ ∈ ϕ(G) if there exists one. The
evaluation (or listing) problem asks for all solutions, that is, for the whole set
ϕ(G). Finally, the counting (or enumeration) problem asks for the number
|ϕ(G)| of solutions. All these problems have natural applications.

412 M. Grohe

The results on monadic second-order model checking on graphs of bound-
ed branch width and bounded rank width (Theorems 3.3 and 3.17) can be
extended to the corresponding construction and counting problems [3, 15,
37, 40]. For the evaluation problem, the situation is a bit more complicated
because the size of the answer ϕ(G) may be much larger than the size of the
input (nk for a graph of order n and a formula with k free variables), hence
we cannot expect an algorithm that is fixed-parameter tractable. However,
it has been proved that there is a linear time fpt algorithm for this problem if
the running time is measured in terms of the input size plus the output size
[16, 37]. Recently, it has been shown that there even is such an algorithm
that does a linear (in terms of the input size) pre-computation and then
produces solutions with delay bounded in terms of the parameter [4, 13].

Frick [40, 41] proved that the construction problem and counting prob-
lem for many classes of graphs of locally bounded branch width, including
planar graphs and graphs of bounded degree, has a linear fpt algorithm.
This is a nontrivial extension of the model checking results. Even for a
simple first-order definable counting problem like the parameterized inde-
pendent set counting problem (“Count the number of independent sets of
size k in a graph.”), say, on a class of graphs of bounded degree, it is not ob-
vious how to solve it by an fpt algorithm. For the evaluation problem, again
there are linear time fpt algorithms if the running time is measured in terms
of the input size plus the output size [40]. For classes of graphs of bounded
degree, Durand and Grandjean [30] proved that there is an fpt algorithm
for the first-order evaluation problem that does a linear pre-computation
and then produces solutions with delay bounded in terms of the parameter.

Finally, let us take a brief look at optimisation problems, which play a
central role in complexity theory, but have not been studied very systemat-
ically in the context of meta theorems. Consider a first-order formula ϕ(X)
that is positive in a free set variable X . Such a formula naturally describes
a minimisation problem: Given a graph G, find a set S ⊆ V (G) of minimum
size such that G |= ϕ(S). Many natural minimisation problems on graphs
can be described this way. An example is the minimum dominating set prob-
lem, which can be described by the formula dom(X) of Example 2.1. Simi-
larly, formulas ϕ(X) that are negative in X naturally describe maximisation
problems. An example is the maximum independent set problem, which is
described by the formula ind(X) = ∀x∀y(¬X(x) ∨ ¬X(y) ∨ ¬E(x, y)). We
call such optimisation problems first-order definable. It was proved in [19]
that the restriction of a first-order definable optimisation problem to a class
of graphs with an excluded minor has a polynomial time approximation
scheme, that is, can be approximated in polynomial time to any factor
(1 + ε), where ε > 0.

Logic, graphs, and algorithms 413

8 Concluding remarks and open questions

Trees

Bounded Branch Width

Bounded Rank Width

Planar

Bounded Genus

Bounded Local Branch
Width with Excluded Minor

Bounded Degree

Bounded Local
Branch Width

Exluded Minor

Locally Excluding a MinorBounded Local Rank Width

MSO

FO

Figure 8.1. Classes of graphs with a tractable first-order model checking
problems. Double-lined ellipses contain families of classes. Classes below the
dashed line have a tractable monadic second-order model checking problem

Figure 8.1 gives an overview of the classes of graphs we have studied
in this survey. Let me conclude by mentioning a few directions for further
research that I find particularly promising:

8.1 Further tractable classes

Many of the classes of graphs considered in this survey, including all classes
excluding a minor, have bounded average degree. It may be tempting to
conjecture that first-order model checking is tractable on all classes of graphs
of bounded average degree, but it is easy to see that this is not the case. As
Stephan Kreutzer observed, it is not even the case for classes of bounded
maximum average degree, where the maximum average degree of a graph
G is the maximum of the average degrees of all subgraphs of G. To see
this, just observe that model-checking on a graph G can be reduced to
model-checking on its incidence graph (i.e., the graph obtained from G by
subdividing each edge once), and that every incidence graph has maximum
average degree at most 4.

Nešetřil and Ossona de Mendez [61] introduced a property of graph

414 M. Grohe

classes that may be viewed as a refinement of maximum average degree
and that avoids such problems. Let G be a graph. The radius of a minor
mapping µ from a graphH to G is the minimum of the radii of the subgraphs
G[µ(v)], for v ∈ V (H). We write H �r G if there is a minor mapping of
radius at most r from H to G. Note that H �0 G if and only if H is a
subgraph of G. The greatest reduced average density (grad) of rank r of G
is the number

∇r(G) = max

{
|E(H)|

|V (H)|

∣
∣
∣
∣
H �r G

}

.

Note that ∇0(G) is half the maximum average degree of G. Now a class C of
graphs has bounded expansion if there is some function f such that∇r(G) ≤
f(r) for all G ∈ C and r ≥ 0. Nešetřil and Ossona de Mendez observed that
every class of graphs excluding a minor has bounded expansion. It can
be shown that there are classes of bounded expansion that do not exclude
a minor, not even locally. Conversely, there are classes of bounded local
tree width and hence classes locally excluding a minor that do not have
bounded expansion. This follows from Example 4.8 and the fact that classes
of bounded expansion have bounded average degree. I refer the reader to
[60, 61, 62] for an introduction to classes of bounded expansion and an
overview of their nice algorithmic properties.

Open Problem 8.1. Is p-MC(FO, C) fixed-parameter tractable for every
class C of graphs of bounded expansion?

There is no need to restrict the study of structural properties that fa-
cilitate efficient model checking to graph theoretic properties such as those
predominant in this survey. For example, it would also be very interest-
ing to study the complexity of model-checking problems on finite algebraic
structures such as groups, rings, fields, lattices, et cetera.

Open Problem 8.2. Are p-MC(FO, C) and p-MC(MSO, C) fixed-param-
eter tractable for the classes C of finite groups, finite abelian groups, finite
rings, finite fields?

8.2 Necessary conditions for tractability

The main results presented in this survey may be viewed as giving sufficient
conditions for classes of graphs to have tractable first-order or monadic
second-order model checking problems. What are necessary conditions for

tractability, and which classes have hard model checking problems? Note
that it is not easy to come up with structural conditions for hardness, be-
cause we can “cheat” and, for example, pad graphs that have a structure
presumably making model checking difficult with a large number of isolated
vertices. This makes the model checking problem “easier” just because it
gives us more time to solve it. Thus we probably want to impose closure

Logic, graphs, and algorithms 415

conditions on the classes of graphs we consider, such as being closed under
taking subgraphs.

It follows from the Excluded Grid Theorem that for minor-closed classes
C of graphs, p-MC(MSO, C) is fixed-parameter tractable if and only if C has
bounded branch width. Actually, this can be slightly strengthened to classes
closed under taking topological minors. I do not know of any results beyond
that. To stimulate research in this direction, let me state a conjecture:

Conjecture 8.3. Let C be a class of graphs that is closed under taking
subgraphs. Suppose that the branch width of C is not poly-logarithmically
bounded, that is, there is no constant c such that bw(G) ≤ logc |G| for every
G ∈ C. Then p-MC(MSO, C) is not fixed parameter tractable.

Of course, with current techniques we can only hope to prove this con-
jecture under some complexity theoretic assumption.

For first-order logic, I have much less intuition. Clearly, the present
results are very far from optimal. Just as an illustration, observe that if a
class C of graphs has a tractable first-order model checking problem, then so
has the closure of C under complementation. (Recall that the complement

of a graph G = (V,E) is the graph Ḡ =
(

V,
(
V
2

)
\ E

)

.) However, most of

the classes we considered here are not closed under complementation.

8.3 Average case analysis

Instead of the worst case running time, it is also interesting to consider the
average case. Here even the most basic questions are wide open. For n ≥ 1,
let Wn be a probability space of graphs with vertex set [n]. We say that
a model checking algorithm is fpt on average over

(
Wn

)

n≥1
if its expected

running time on input G ∈ Wn and ϕ is bounded by f(|ϕ|) ·nO(1), for some
computable function f . For every function p : N → [0, 1] (here [0, 1] denotes
an interval of real numbers), let G(n, p) denote the probability space of all
graphs over [n] with edge probability p(n) (see, e.g., [2]). For a constant
c ∈ [0, 1], we let G(n, c) = G(n, p) for the constant function p(n) = c. In [46],
I observed that for p(n) = min{1, c/n}, where c ∈ R≥0 is a constant, there
is a model checking algorithm for first-order logic that is fpt on average over
(
G(n, p)

)

n≥1
.

Open Problem 8.4. Is there a model checking algorithm for first-order
logic that is fpt on average over

(
G(n, 1/2)

)

n≥1
?

Let me suggest it as an exercise for the reader to design a model check-
ing algorithm for existential first-order logic that is fpt on average over
(
G(n, 1/2)

)

n≥1
.

416 M. Grohe

8.4 Structures of bounded rank width

Most of the results of this survey can easily be extended from classes C of
graphs to the classes Cstr of arbitrary relational structures whose underlying
graphs (Gaifman graphs) are in C. However, this is not true for the results
that involve rank width. It is not at all obvious what an appropriate notion
of rank width for arbitrary structures could look like, and I think it is a
challenging open problem to find such a notion.

8.5 Model checking for monadic least fixed-point logic

Conjecture 8.5. Let C be a class of graphs such that p-MC(FO, Clb) is
fixed-parameter tractable. Then p-MC(LFP1, Clb) is fixed-parameter trac-
table.

It will be difficult to prove this conjecture, because it is related to the
notoriously open problem of whether the model checking problem for the
modal µ-calculus is in polynomial time. But maybe the conjecture is wrong;
refuting it might be more feasible.

References

[1] I. Abraham, C. Gavoille, and D. Malkhi. Compact routing for graphs
excluding a fixed minor. In P. Fraigniaud, editor, DISC, volume 3724
of Lecture Notes in Computer Science, pages 442–456. Springer, 2005.

[2] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience
Series in Discrete Mathematics and Optimization. Wiley-Interscience
[John Wiley & Sons], New York, second edition, 2000. With an ap-
pendix on the life and work of Paul Erdős.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. J. Algorithms, 12(2):308–340, 1991.

[4] G. Bagan. Mso queries on tree decomposable structures are computable
with linear delay. In Z. Ésik, editor, CSL, volume 4207 of Lecture Notes

in Computer Science, pages 167–181. Springer, 2006.

[5] H. L. Bodlaender. A linear-time algorithm for finding tree-
decompositions of small treewidth. SIAM J. Comput., 25(6):1305–1317,
1996.

[6] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algo-
rithms for branchwidth. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, ICALP, volume 1256 of Lecture Notes in Com-

puter Science, pages 627–637. Springer, 1997.

Logic, graphs, and algorithms 417

[7] Y. Chen, M. Grohe, and M. Grüber. On parameterized approximability.
In H. L. Bodlaender and M. A. Langston, editors, IWPEC, volume 4169
of Lecture Notes in Computer Science, pages 109–120. Springer, 2006.

[8] B. Courcelle. An axiomatic definition of context-free rewriting and its
application to nlc graph grammars. Theor. Comput. Sci., 55(2-3):141–
181, 1987.

[9] B. Courcelle. Graph rewriting: An algebraic and logic approach. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science,

Volume B: Formal Models and Sematics (B), pages 193–242. Elsevier
Science Publishers, Amsterdam, 1990.

[10] B. Courcelle. The monadic second-order logic of graphs. i. recognizable
sets of finite graphs. Inf. Comput., 85(1):12–75, 1990.

[11] B. Courcelle. The monadic second-order logic of graphs vii: Graphs as
relational structures. Theor. Comput. Sci., 101(1):3–33, 1992.

[12] B. Courcelle. The expression of graph properties and graph transforma-
tions in monadic second-order logic. In G. Rozenberg, editor, Handbook

of Graph Grammars, pages 313–400. World Scientific, 1997.

[13] B. Courcelle. Linear delay enumeration and
monadic second-order logic, 2006. Available at
http://www.labri.fr/perso/courcell/ActSci.html.

[14] B. Courcelle, J. A. Makowsky, and U. Rotics. Linear time solvable opti-
mization problems on graphs of bounded clique-width. Theory Comput.

Syst., 33(2):125–150, 2000.

[15] B. Courcelle, J. A. Makowsky, and U. Rotics. On the fixed parame-
ter complexity of graph enumeration problems definable in monadic
second-order logic. Discrete Applied Mathematics, 108(1-2):23–52,
2001.

[16] B. Courcelle and M. Mosbah. Monadic second-order evaluations on
tree-decomposable graphs. Theor. Comput. Sci., 109(1&2):49–82, 1993.

[17] B. Courcelle and S. Olariu. Upper bounds to the clique width of graphs.
Discrete Applied Mathematics, 101(1-3):77–114, 2000.

[18] A. Dawar, M. Grohe, and S. Kreutzer. Locally excluding a minor. In
LICS, pages 270–279. IEEE Computer Society, 2007.

[19] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Approximation
schemes for first-order definable optimisation problems. In LICS, pages
411–420. IEEE Computer Society, 2006.

418 M. Grohe

[20] A. Dawar, M. Grohe, S. Kreutzer, and N. Schweikardt. Model the-
ory makes formulas large. In L. Arge, C. Cachin, T. Jurdzinski, and
A. Tarlecki, editors, ICALP, volume 4596 of Lecture Notes in Computer

Science, pages 913–924. Springer, 2007.

[21] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Thilikos.
Subexponential parameterized algorithms on graphs of bounded-genus
and -minor-free graphs. In Munro [59], pages 830–839.

[22] E. D. Demaine and M. T. Hajiaghayi. Equivalence of local treewidth
and linear local treewidth and its algorithmic applications. In Munro
[59], pages 840–849.

[23] E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. In
FOCS, pages 637–646. IEEE Computer Society, 2005.

[24] E. D. Demaine, M. T. Hajiaghayi, and K. Kawarabayashi. Algorith-
mic graph minor theory: Improved grid minor bounds and wagner’s
contraction. In S. K. Madria, K. T. Claypool, R. Kannan, P. Uppu-
luri, and M. M. Gore, editors, ISAAC, volume 4317 of Lecture Notes

in Computer Science, pages 3–15. Springer, 2006.

[25] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathemat-

ics. Springer-Verlag, Berlin, third edition, 2005.

[26] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness i: Basic results. SIAM J. Comput., 24(4):873–921, 1995.

[27] R. G. Downey and M. R. Fellows. Fixed-parameter tractability and
completeness ii: On completeness for w[1]. Theor. Comput. Sci.,
141(1&2):109–131, 1995.

[28] R. G. Downey and M. R. Fellows. Parameterized complexity. Mono-
graphs in Computer Science. Springer-Verlag, New York, 1999.

[29] R. G. Downey, M. R. Fellows, and U. Taylor. The parameterized com-
plexity of relational database queries and an improved characteriza-
tion of W [1]. In Combinatorics, complexity, & logic (Auckland, 1996),
Springer Ser. Discrete Math. Theor. Comput. Sci., pages 194–213, Sin-
gapore, 1997. Springer.

[30] A. Durand and E. Grandjean. First-order queries on structures of
bounded degree are computable with constant delay. ACM Trans. on

Comput. Log. To appear.

Logic, graphs, and algorithms 419

[31] H.-D. Ebbinghaus and J. Flum. Finite model theory. Perspectives in
Mathematical Logic. Springer-Verlag, Berlin, second edition, 1999.

[32] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical logic. Un-
dergraduate Texts in Mathematics. Springer-Verlag, New York, second
edition, 1994. Translated from the German by Margit Meßmer.

[33] D. Eppstein. Subgraph isomorphism in planar graphs and related prob-
lems. J. Graph Algorithms Appl., 3(3), 1999.

[34] D. Eppstein. Diameter and treewidth in minor-closed graph families.
Algorithmica, 27(3):275–291, 2000.

[35] P. Erdős. Graph theory and probability. Canad. J. Math., 11:34–38,
1959.

[36] R. Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In Complexity of computation (Proc. SIAM-AMS Sympos.

Appl. Math., New York, 1973), pages 43–73. SIAM–AMS Proc., Vol.
VII, Providence, R.I., 1974. Amer. Math. Soc.

[37] J. Flum, M. Frick, and M. Grohe. Query evaluation via tree-
decompositions. J. ACM, 49(6):716–752, 2002.

[38] J. Flum and M. Grohe. Fixed-parameter tractability, definability, and
model-checking. SIAM J. Comput., 31(1):113–145, 2001.

[39] J. Flum and M. Grohe. Parameterized complexity theory. Texts in The-
oretical Computer Science. An EATCS Series. Springer-Verlag, Berlin,
2006.

[40] M. Frick. Easy Instances for Model Checking. PhD thesis, Albert-
Ludwigs-Universität Freiburg, 2001.

[41] M. Frick. Generalized model-checking over locally tree-decomposable
classes. In H. Alt and A. Ferreira, editors, STACS, volume 2285 of
Lecture Notes in Computer Science, pages 632–644. Springer, 2002.

[42] M. Frick and M. Grohe. Deciding first-order properties of locally tree-
decomposable structures. J. ACM, 48(6):1184–1206, 2001.

[43] M. Frick and M. Grohe. The complexity of first-order and monadic
second-order logic revisited. Ann. Pure Appl. Logic, 130(1-3):3–31,
2004.

[44] H. Gaifman. On local and nonlocal properties. In Proceedings of the

Herbrand symposium (Marseilles, 1981), volume 107 of Stud. Logic

Found. Math., pages 105–135, Amsterdam, 1982. North-Holland.

420 M. Grohe

[45] M. R. Garey and D. S. Johnson. Computers and intractability. W. H.
Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of
NP-completeness, A Series of Books in the Mathematical Sciences.

[46] M. Grohe. Generalized model-checking problems for first-order logic.
In A. Ferreira and H. Reichel, editors, STACS, volume 2010 of Lecture

Notes in Computer Science, pages 12–26. Springer, 2001.

[47] M. Grohe. Local tree-width, excluded minors, and approximation al-
gorithms. Combinatorica, 23(4):613–632, 2003.

[48] M. Grohe, S. Kreutzer, and N. Schweikardt. The expressive power of
two-variable least fixed-point logics. In J. Jedrzejowicz and A. Szepi-
etowski, editors, MFCS, volume 3618 of Lecture Notes in Computer

Science, pages 422–434. Springer, 2005.

[49] M. Grohe and J. Mariño. Definability and descriptive complexity on
databases of bounded tree-width. In C. Beeri and P. Buneman, editors,
ICDT, volume 1540 of Lecture Notes in Computer Science, pages 70–
82. Springer, 1999.

[50] M. Grohe and S. Wöhrle. An existential locality theorem. Ann. Pure

Appl. Logic, 129(1-3):131–148, 2004.

[51] P. Hlinený and S. Oum. Finding branch-decompositions and rank-
decompositions. In L. Arge, M. Hoffmann, and E. Welzl, editors, ESA,
volume 4698 of Lecture Notes in Computer Science, pages 163–174.
Springer, 2007.

[52] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly
polynomial algorithm for minimizing submodular functions. J. ACM,
48(4):761–777, 2001.

[53] K. Kawarabayashi and B. Mohar. Approximating the list-chromatic
number and the chromatic number in minor-closed and odd-minor-
closed classes of graphs. In Kleinberg [54], pages 401–416.

[54] J. M. Kleinberg, editor. Proceedings of the 38th Annual ACM Sympo-

sium on Theory of Computing, Seattle, WA, USA, May 21-23, 2006.
ACM, 2006.

[55] K. Kuratowski. Sur le problème des courbes gauches en topologie.
Fundamenta Mathematicae, 15:271–283, 1930.

[56] L. Libkin. Elements of finite model theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer-Verlag, Berlin, 2004.

Logic, graphs, and algorithms 421

[57] S. Lindell. Computing monadic fixed-points in linear-
time on doubly-linked data structures, 2005. Available at
http://www.haverford.edu/cmsc/slindell/.

[58] J. A. Makowsky. Algorithmic uses of the feferman-vaught theorem.
Ann. Pure Appl. Logic, 126(1-3):159–213, 2004.

[59] J. I. Munro, editor. Proceedings of the Fifteenth Annual ACM-

SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans,

Louisiana, USA, January 11-14, 2004. SIAM, 2004.

[60] J. Nesetril and P. O. de Mendez. Linear time low tree-width partitions
and algorithmic consequences. In Kleinberg [54], pages 391–400.

[61] J. Nešetřil and P. O. de Mendez. Grad and classes with bounded
expansion I: Decompositions. European J. Combin., 2007. To appear.

[62] J. Nešetřil and P. O. de Mendez. Grad and classes with bounded
expansion II: Algorithmic aspects. European J. Combin., 2007. To
appear.

[63] R. Niedermeier. Invitation to fixed-parameter algorithms, volume 31
of Oxford Lecture Series in Mathematics and its Applications. Oxford
University Press, Oxford, 2006.

[64] S. Oum. Rank-width is less than or equal to branch-width, 2006. Avail-
able at http://www.math.uwaterloo.ca/˜sangil/.

[65] S. Oum and P. D. Seymour. Approximating clique-width and branch-
width. J. Comb. Theory, Ser. B, 96(4):514–528, 2006.

[66] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation,
and complexity classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

[67] N. Robertson and P. D. Seymour. Graph minors I–XXIII. Appearing
in Journal of Combinatorial Theory, Series B since 1982.

[68] N. Robertson and P. D. Seymour. Graph minors XXI. Graphs with
unique linkages. J. Combin. Theory Ser. B. To appear.

[69] N. Robertson and P. D. Seymour. Graph minors XXII. Irrelevant ver-
tices in linkage problems. To appear.

[70] N. Robertson and P. D. Seymour. Graph minors. III. Planar tree-width.
J. Comb. Theory, Ser. B, 36(1):49–64, 1984.

[71] N. Robertson and P. D. Seymour. Graph minors. V. Excluding a planar
graph. J. Comb. Theory, Ser. B, 41(1):92–114, 1986.

422 M. Grohe

[72] N. Robertson and P. D. Seymour. Graph minors. X. Obstructions to
tree-decomposition. J. Comb. Theory, Ser. B, 52(2):153–190, 1991.

[73] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint
paths problem. J. Comb. Theory, Ser. B, 63(1):65–110, 1995.

[74] N. Robertson and P. D. Seymour. Graph minors XVI. Excluding a
non-planar graph. J. Combin. Theory Ser. B, 77:1–27, 1999.

[75] N. Robertson and P. D. Seymour. Graph minors. XX. Wagner’s con-
jecture. J. Comb. Theory, Ser. B, 92(2):325–357, 2004.

[76] N. Schweikardt. On the expressive power of monadic least fixed point
logic. Theor. Comput. Sci., 350(2-3):325–344, 2006.

[77] D. Seese. Linear time computable problems and first-order descriptions.
Mathematical Structures in Computer Science, 6(6):505–526, 1996.

[78] H. Tamaki. A linear time heuristic for the branch-decomposition of
planar graphs. In G. D. Battista and U. Zwick, editors, ESA, volume
2832 of Lecture Notes in Computer Science, pages 765–775. Springer,
2003.

[79] R. E. Tarjan. Decomposition by clique separators. Discrete Math.,
55(2):221–232, 1985.

[80] J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[81] M. Y. Vardi. The complexity of relational query languages (extended
abstract). In STOC, pages 137–146. ACM, 1982.

[82] M. Y. Vardi. On the complexity of bounded-variable queries. In PODS,
pages 266–276. ACM Press, 1995.

[83] K. Wagner. Über eine Eigenschaft der ebenen Komplexe. Math. Ann.,
114(1):570–590, 1937.

Non-regular fixed-point logics and games

Stephan Kreutzer1

Martin Lange2

1 Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford, OX1 3QD, England
kreutzer@comlab.ox.ac.uk

2 Institut für Informatik
Ludwig-Maximilians-Universität München
Oettingenstraße 67
80538 München, Germany
martin.lange@ifi.lmu.de

Abstract

The modal µ-calculus is—despite strictly subsuming many other
temporal logics—in some respect quite limited in expressive power: it
is equi-expressive to the bisimulation-invariant fragment of Monadic
Second-Order Logic over words, trees, or graphs. Hence, properties
expressible in the modal µ-calculus are inherently regular.

Motivated by specifications that reach beyond the regularity
bound, we introduce extensions of the modal µ-calculus that can de-
fine non-regular properties. We focus on two modal fixed-point logics:
the Modal Iteration Calculus (MIC) which uses inflationary instead of
least fixed-point quantifiers, and Fixed-Point Logic with Chop (FLC)
which incorporates sequential composition into the modal µ-calculus.
We compare these two different approaches to increased expressive-
ness. In particular, we show how a common set of specifications can
be formalised in each of them and give an overview of known results.

The modal µ-calculus also enjoys a nice game-theoretic character-
isation: its model checking problem is equivalent to the problem of
solving a parity game. We also show how to characterise the model
checking problems for MIC and FLC in this way, making use of ap-
propriate extensions of parity games, namely stair parity and back-
tracking games.

1 Introduction

Modal and temporal logics. The most commonly used specification
logics in the theory of computer aided verification are based on proposi-
tional modal logic augmented by temporal operators. Among those one can

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 423–456.

424 S. Kreutzer, M. Lange

broadly distinguish between linear and branching time logics, depending
on how they treat the temporal development of processes. The modal µ-
calculus, Lµ for short, provides a common generalization of most temporal
logics. It is defined as the extension of basic propositional modal logic by
rules to form the least and the greatest fixed point of definable monotone
operators.
Lµ is a regular logic in the sense that it can be translated into monadic

second order logic (MSO) and therefore can only define regular classes
of trees and their representations as transition systems. It is even equi-
expressive to the bisimulation-invariant fragment of MSO over trees or
graphs [9] and can therefore be seen as the regular branching time tem-
poral logic.

Temporal logics such as LTL, CTL or CTL∗ are all embeddable into
Lµ. They can express important properties—such as reachability, safety,
liveness, fairness, etc.—and specifications in these languages can be verified
automatically and in many cases also efficiently in process models. How-
ever, a number of natural properties of processes are no longer regular and
therefore cannot be expressed in any of these logics. For instance, one can-
not express that a specific event occurs in all possible execution traces at
the same time [7], that every transmission is acknowledged, or that there
are no more returns than calls.

To express these properties in a logic, the logic needs to be able to count
to some extent, at least to compare cardinalities, i.e. it needs to incorporate
non-regular properties. There are various potential ways of defining logics
with non-regular features.

One option is to add a bisimulation preserving form of counting explic-
itly, i.e. to consider a modal analogue to first-order plus counting. Similarly,
one could add specific operators for the tasks at hand, an operator to com-
pare cardinalities, for instance. In this way, logics tailored towards specific
tasks can be obtained.

Another possibility is to enrich the models over which a regular logic
is interpreted with some extra information and let the operators of the
logic make use of this. This has been done in the linear time temporal logic
CaRet for example [1]. It is interpreted in an LTL-like fashion over infinite
words that represent runs of recursive processes, i.e. positions in these words
are marked with call and return symbols. CaRet then extends LTL by
allowing its operators to access return positions that match the previous call

position in the sense that in between the calls and returns form a balanced
Dyck-language. This way, non-regularity is added into the meta-logic rather
than the logic itself.

A different approach is to consider general purpose logics employing
more expressive fixed-point constructs than least fixed points of monotone

Non-regular fixed-point logics and games 425

operators. This is the trait we follow in this paper. There are (at least) two
ways in which the modal µ-calculus can be extended in this way: one can
relax the restriction to monotone operators or one can stick to monotone
operators but allow fixed-point inductions of higher order. We consider
these options and introduce two modal fixed-point logics: (1) the Modal
Iteration Calculus (MIC) which replaces least and greatest fixed points in
Lµ by inflationary and deflationary ones; and (2) Fixed-Point Logic with
Chop (FLC) which extends Lµ with an operator for sequential composition.
This necessitates a higher-order semantics.

Non-regular properties. We illustrate these logics by a set of examples
of non-regular properties, i.e. properties that cannot be expressed in Lµ.

The most obvious choices come from formal language theory. The first
hurdle to take for a logic that wants to be able to express non-regular prop-
erties is the standard example of a context-free and non-regular language,
i.e. L = {anbn | n ≥ 1}. Note that MIC and FLC are branching time
logics, and hence, we shall look for formulas that are satisfied by a state
if, and only if, it has a maximal outgoing path whose labels form a word
in L. While this is a toy example, there are also formal languages which
give rise to interesting program correctness properties. Let Σ = {a, b} and
consider the language L consisting of all words that do not have a prefix in
which there are more b’s than a’s. It is easily seen to be non-regular but
context-free, and it is the formal language basis of the aforementioned prop-
erty about calls and returns. A suitable reformulation of this language in a
formula of MIC or FLC would show that these logics can express properties
of recursive processes like “no process is ended unless it has been started”
etc. Note that this is also the same as absence of underflows in FIFO or
LIFO buffers of unbounded size.

Non-regularity, however, need not be rooted in the theory of formal word
languages. Branching time logics whose expressive power exceeds that of
Lµ may also be able to express properties that are unrelated to context-free
languages. For example, the aforementioned uniform inevitability property
– some event occurs in all executions at the same time—cannot be expressed
by a finite tree automaton. As we shall see, it can be expressed in both MIC
and FLC. Note that this is a generalization of the property of being bisimilar
to a balanced tree—the globally occurring event is just a deadlock in this
case.

Games. Closely related to modal logics are games since model check-
ing problems for modal logics often have game-theoretic characterizations.
Games in this context are played by two players who push a token along
a path through the game arena formed by some product of the underlying
structure and the syntax tree of the formula at hand. The logic influences
the type of winning condition.

426 S. Kreutzer, M. Lange

Modal logic for instance induces simple reachability games, while the
fixed-point recursion mechanism in the modal µ-calculus requires games
with winning conditions on infinite plays, namely parity games [18].

There is often a reverse connection between games and modal logics as
well. Game graphs can be seen as labeled transition systems again, and it
is reasonable to ask whether the winning regions—the parts from which one
of the players has a winning strategy—can in turn be defined by a formula
of that logic. This is the case for the modal µ-calculus and parity games.

As the logics considered here are proper extensions of Lµ, this gives an
intuitive explanation of why simple parity games do not suffice to charac-
terize their model checking problems. Instead, an interesting game model
for the logics presented here is that of stair parity games which are played
on the configuration graph of a visibly pushdown system [15]. The name is
due to the fact that the parity condition is not evaluated on the whole of a
play but only on that part that looks like stairs w.r.t. the stacks involved
in these games. We show how the model checking problems for both MIC
and FLC can be characterized by stair parity games.

Outline. The paper is organized as follows. Section 2 contains preliminary
definitions about transition systems and recalls some necessary fixed-point
theory and the modal µ-calculus. In Section 3 we then introduce MIC and
FLC formally and give examples of formulas defining non-regular properties
in these logics. At the end of this section we compare the two logics by giving
an overview of the known complexity and expressivity results about them.
Section 4 then defines stair parity games and shows how to characterize
MIC’s and FLC’s model checking problems by them. We also introduce
backtracking games, which are non-regular games extending ordinary parity
games in a different way. They were originally introduced as game model
for inflationary fixed-point logics. Finally, Section 5 concludes the paper
with some remarks about further research.

2 Preliminaries

Labeled transition systems. For the remainder of this paper we fix a
finite non-empty set A of actions and P of proposition symbols.

A labeled transition system is a structure T := (S, {
a
−→ : a ∈ A}, L),

where S is a finite non-empty set of states, a−→ is a binary relation on states
for each a ∈ A, and L : S → 2P is a function labeling each state s with the
set of propositions true at s.

Fixed-point theory. Let A be a set and F : 2A → 2A be a function. F
is called monotone if F (X) ⊆ F (Y) for all X ⊆ Y ⊆ A. A fixed point of F
is any set P ⊆ A such that F (P) = P . A least fixed point of F is a fixed
point that is contained in any other fixed point of F .

Non-regular fixed-point logics and games 427

It is a consequence of the Knaster-Tarski theorem [19] that every mono-
tone function F : 2A → 2A has a least and a greatest fixed point, written
as lfp(F) and gfp(F), which can be defined as

lfp(F) :=
⋂

{X ⊆ A : F (X) = X} =
⋂

{X ⊆ A : F (X) ⊆ X},

and

gfp(F) :=
⋃

{X ⊆ A : F (X) = X} =
⋃

{X ⊆ A : F (X) ⊇ X}.

Least fixed points of monotone operators can also be obtained inductively
by the ordinal-indexed sequence Xα of subsets of A defined as

X0 := ∅ , Xα+1 := F (Xα) , Xκ :=
⋃

α<κ

Xα

where κ is a limit ordinal. As F is monotone, this sequence of sets is
increasing, i.e. for all α, β: if α < β then Xα ⊆ Xβ, and therefore reaches
a fixed point X∞, with X∞ := Xα for the least ordinal α such that Xα =
Xα+1. The fixed point X∞ is called the inductive fixed point of F . Again it
follows from Knaster and Tarski’s theorem that for every monotone operator
F : 2A → 2A, the least and the inductive fixed point coincide.

Similarly, the greatest fixed point of a monotone operator can also be
defined inductively by the following sequence of sets:

X0 := A , Xα+1 := F (Xα) , Xκ :=
⋂

α<κ

Xα

where, again, κ is a limit ordinal.
Least and greatest fixed points are dual to each other. For every operator

F define the dual operator F d : X 7→ (F (Xc))c where Xc := A \X . If F is
monotone, then F d is also monotone and we have that

lfp(F) = (gfp(F d))c and gfp(F) = (lfp(F d))c.

The modal µ-calculus. We briefly recall the definition of Lµ. Let V be
a countable infinite set of variables. The formulas of Lµ are given by the
following grammar.

ϕ ::= q | ¬q | X | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | [a]ϕ | 〈a〉ϕ | µX.ϕ | νX.ϕ

where q ∈ P , a ∈ A, and X ∈ V . The semantics of Lµ is that of basic modal
logic where in addition formulas µX.ϕ and νX.ϕ are interpreted as follows.
On any labeled transition system T with state set S, an Lµ-formula ϕ(X)
with free variable X ∈ V induces an operator Fϕ : 2S → 2S which takes a

428 S. Kreutzer, M. Lange

set U of states to the set [[ϕ]]TX 7→U . Here, we write [[ϕ]]TX 7→U for the set of
states from T at which the formula ϕ holds under the interpretation that
interprets the variable X by the set U . As, by definition, X occurs only
positively in ϕ, this operator is monotone. We define [[µX.ϕ]]T := lfp(Fϕ)
and [[νX.ϕ]]T := gfp(Fϕ).

Notation 2.1. Sometimes we want to speak about transitions labeled with
any action, and therefore use the abbreviations 3ϕ :=

∨

a∈A〈a〉ϕ, and
2ϕ :=

∧

a∈A[a]ϕ. We shall also use terms tt := q ∨ ¬q, ff := q ∧ ¬q
for some q ∈ P .

3 Non-regular logics

In this section we introduce two extensions of the modal µ-calculus by non-
regular constructs. We first recall the Modal Iteration Calculus, introduced
in [4] which incorporates inflationary fixed points into Lµ. In Section 3.2 we
then introduce the Fixed-Point Logic with Chop, introduced in [16], based
on extending Lµ by sequential composition. To illustrate the logics and to
help comparing them, we exhibit a set of examples and give formalizations
for them in both logics.

3.1 The Modal Iteration Calculus

Informally, MIC is propositional modal logic ML, augmented with simulta-
neous inflationary fixed points.

3.1.1 Syntax and Semantics

Definition 3.1. Let V be a countable infinite set of variables. The formulas
of the Modal Iteration Calculus (MIC) are given by the following grammar.

ϕ ::= q | X | ¬ϕ | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | [a]ϕ | 〈a〉ϕ | ifpX.S | dfpX.S

where X ∈ V , q ∈ P , a ∈ A, and

S :=







X1 ← ϕ1

...
Xk ← ϕk

is a system of rules with ϕi ∈ MIC and Xi ∈ V for 1 ≤ i ≤ k. If S consists
of a single rule X ← ϕ we simplify the notation and write ifpX.ϕ instead
of ifp X.{X ← ϕ}.

We define Sub(ϕ) as the set of subformulas of ϕ as usual. In particular,
the variables Xi occurring on the left-hand side of rules in a system S as
above count as subformulas. The semantics of the various operators are
as in propositional modal logic with the semantics of ifp and dfp being as

Non-regular fixed-point logics and games 429

follows. On every transition system T := (S, { a−→ : a ∈ A}, L), the system
S defines, for each ordinal α, a tuple X̄α = (Xα

1 , . . . , X
α
k) of sets of states,

via the following inflationary induction:

X0
i := ∅,

Xα+1
i := Xα

i ∪ [[ϕi]]
T

X̄ 7→X̄α ,

Xκ
i :=

⋃

α<κ

Xα
i

where κ is a limit ordinal. We call (Xα
1 , . . . , X

α
k) the α-th stage of the

inflationary induction of S on T . As the stages are increasing (i.e. Xα
i ⊆ X

β
i

for any α < β), this induction reaches a fixed point (X∞
1 , . . . , X∞

k). Now
we put [[(ifp Xi : S)]]T := X∞

i .
The semantics of the deflationary fixed-point operator is defined analo-

gously as the i-th component of the deflationary fixed point (X∞
1 , . . . , X∞

k)
obtained from the sequence X0

i := S, Xα+1
i := Xα

i ∩ [[ϕi]]
T

X̄ 7→X̄α , and
Xκ

i :=
⋂

α<κ

Xα
i .

3.1.2 Properties Expressible in MIC

We demonstrate the Modal Iteration Calculus by some examples. It is
immediately clear from the definition that every Lµ-formula is equivalent
to a MIC-formula (by replacing every µ-operator by ifp and ν-operator by
dfp). We shall therefore use least fixed points as well as inflationary fixed
points in the examples below.

Example 3.2. Let us first consider the language {anbn | n ≥ 1} mentioned
above. We model a finite word by a transition system consisting of a simple
path whose edges are labeled by the letters in the word. For example, the

word aabb ∈ L is modeled by the system •
a
−→•

a
−→•

b
−→•

b
−→•. 1

Using this encoding of words, the language L can be defined as follows.
The formula ϕ := 〈a〉tt∧EF(〈b〉tt)∧¬EF(〈b〉〈a〉tt) defines all words starting
with an a, containing at least one b, and where all b’s come after all a’s,
i.e. the language a+b+. Here, EF(ϑ) is the Lµ formula µR.(ϑ ∨3R) saying
that a state satisfying ϕ is reachable. Within a+b+ the language L can then
be defined by the formula

¬




ifpZ.







X ← 〈b〉(2ff ∨X)

Y ← 〈a〉(¬〈a〉tt ∧ 〈b〉tt) ∨ 〈a〉Y

Z ← (〈a〉Y ∧ ¬EF(〈a〉〈b〉¬X)) ∨ (¬〈a〉Y ∧ EF(〈a〉〈b〉X))




 .

1 There are two common ways of modeling a word by a transition system: labeling edges
by letters, as we do it here, or labeling states by the corresponding letters. For MIC,
the latter is often more convenient and helps to simplify formulas. For the logic FLC,
which we shall consider below, the formalization used here is preferable. To unify the
examples for MIC and FLC we prefer to use the edge labeling model for both logics.

430 S. Kreutzer, M. Lange

We demonstrate the evaluation of the fixed points by the following two
words w1 ∈ L and w2 6∈ L.

w1 := 1 a−→ 2 a−→ 3 b−→ 4 b−→ 5 w2 := 1 a−→ 2 a−→ 3 a−→ 4 b−→ 5 b−→ 6

X1 := {4}
Y 1 := {2}
Z1 := ∅

X2 := {3, 4}
Y 2 := {1, 2}
Z2 := ∅

X1 := {5}
Y 1 := {3}
Z1 := ∅

X2 := {4, 5}
Y 2 := {2, 3}
Z2 := {1}

. . .
Hence, w1 satisfies the formula whereas w2 does not. The idea is that

at stage i of the fixed-point induction, X i contains all states from which
a b-labeled path of length i leads to a leaf. To define the induction on Y ,
let u be a state in T which has an incoming a-transition but only outgoing
b-transitions, i.e.

. . . • a−→u b−→• . . .

Note that for words in a+b+ this state is unique. The state u is “in the
middle” of the word. Then Y i contains all states from which there is a path
to u of length i labeled by a’s.

Finally, a state occurs in Z if at some stage i its a-successor is in Y i but
the b-successor of u is not in X i or vice versa. Hence, the root occurs in Z
if the labels of the path leading from the root to the leaf is not a word in
anbn.

The example demonstrates a general technique of how counting can be
implemented in MIC: we let an induction on a variable X start at a leaf
and in each iteration proceed to a predecessor of a state already contained
in X . At each stage i, X i contains the states of distance at most i from a
leaf. We can then use a formula ¬X ∧ 2X to define the states of distance
exactly i from a leaf. This techniques is employed in various proofs showing
expressibility and complexity results for MIC. We demonstrate it in the
following example, where we define the class of transition systems bisimilar
to a well-founded tree of finite height. Here the height of a leaf is 0 and the
height of an inner node is the maximum height of its successors plus 1.

Example 3.3. Let T := (S, { a−→ : a ∈ A}, L) be a transition system and
s ∈ S. Then s ∈ [[µX.2X]]T if, and only if, there is no infinite path emerging
from s, i.e. (T , s) is bisimilar to a well-founded tree—disregarding labels.
Using a similar trick as in the previous example, we can define all nodes of

Non-regular fixed-point logics and games 431

infinite height in a well-founded tree. For this, consider the formula

ϕ := ifp Z.







X ← 2X

Y ← X

Z ←
(
2X ∧3¬Y

)
∨ 2ff

After α < ω iterations, the stageXα contains all nodes of height< α and Y α

contains all nodes of height< α−1. Hence, every node of finite height will at
some point have all its successors in X but at least one successor outside of
Y (except for the leaves which are included into Z by the disjunct 2ff) and
therefore after ω iterations Z contains all nodes of finite height. However,
as Xω = Y ω a node r of height exactly ω will never occur in Z. Hence, a
tree has finite height if, and only if, its root satisfies µX.2X ∧ ¬EF(¬ϕ).

The next example shows how to define the class of transition systems
bisimilar to balanced trees of finite height.2

Example 3.4. All that remains is to define in the class of trees of finite
height the class of balanced trees. This is done by the formula

¬

(

ifp Y.

{

X ← 2X

Y ← 3X ∧3¬X

)

.

Again, for i > 0, the i-th stage X i contains all states from which no path
of length ≥ i emerges. Hence, a state occurs in Y if it has two successors
of different length.

Finally, we give an example showing that the class of all transition sys-
tems which are bisimilar to a word of finite length is MIC-definable.

Example 3.5. We have already seen in the previous examples that we can
axiomatize transition systems bisimilar to balanced trees of finite height.
So all that is left to do is to give a formula that defines in such trees that
all paths carry the same labels. This is easily expressed by the formula

¬







ifp Y.







X ← 2X

Y ←
∧

a∈A




EF(¬X ∧ 2X ∧ 〈a〉X) ∧

EF(¬X ∧ 2X ∧
∨

b∈A,a6=b

〈b〉X)










.

Using similar tricks we can express buffer underflow in finite words,
i.e. the context-free language

L := {w ∈ {a, b}∗ | ∀u, v : w = uv ⇒ |u|b ≤ |u|a}.

2 Note that all we can hope for is to define trees of finite height, as finiteness itself is
not preserved under bisimulation and hence not definable in any modal logic.

432 S. Kreutzer, M. Lange

Here, |u|b denotes the number of b’s in the word u and likewise for |u|a. It is
not known, however, whether the “buffer underflow” and “bisimilarity-to-
a-word” formulas can be amended for infinite words as well. The problem
is that there no longer is a natural starting point for fixed-point inductions.

3.2 Fixed-Point Logic with Chop

We proceed by introducing a different extension of the modal µ-calculus. It
differs from MIC in that we again consider monotone inductions only, but
the individual fixed-point stages are no longer sets of states but monotone
functions from the complete lattice of all monotone operators over the state
space.

3.2.1 Syntax and Semantics

Let P and A be as before, and V be a countable infinite set of variable
names. Formulas of Fixed-Point Logic with Chop (FLC) over P , A and V
are given by the following grammar.

ϕ ::= q | ¬q | X | τ | 〈a〉 | [a] | (ϕ ∨ ϕ) | (ϕ ∧ ϕ) | (ϕ;ϕ) | µX.ϕ | νX.ϕ

where q ∈ P , a ∈ A, and X ∈ V . We shall write σ for either µ or ν. In the
following, we shall also omit parentheses and introduce the convention that
“;” binds stronger than the Boolean operators which, in turn, bind stronger
than fixed-point quantifiers.

The set of subformulas Sub(ϕ) of an FLC formula ϕ is defined as usual,
for example Sub(σX.ϕ) = {σX.ϕ} ∪ Sub(ϕ), etc. Also, we assume that
variables are quantified at most once in each formula. Hence, each ϕ comes
with a function fpϕ which associates to each variableX in Sub(ϕ) its defining
fixed-point formula σX.ψ.

FLC extends the modal µ-calculus Lµ with the sequential composition
(“chop”) operator ; . Remember that variables in Lµ formulas can only
occur in rightmost positions within Boolean formulas, possibly prefixed by
modal operators. This gives an intuitive explanation of the fact that the
expressive power of Lµ is restricted to regular languages of infinite words
or trees—formulas of Lµ resemble (alternating) right-linear grammars with
modal operators as terminal symbols.

Variables in FLC formulas, however, can also be suffixed with modal
operators through the use of sequential composition, e.g. 〈a〉;X ; 〈b〉. Since
this is supposed to generalize the restricted composition of modal operators
with formulas on the right, there is no need to include formulas of the form
〈a〉ϕ in FLC. Instead, this is supposed to be simulated by 〈a〉;ϕ, and this
is why modal operators are chosen as atomic formulas in FLC.

The semantics of the modal µ-calculus cannot simply be extended by
clauses for the additional operators in FLC, in particular not for sequential
composition. Remember that the semantics of Lµ assigns to each formula

Non-regular fixed-point logics and games 433

and environment interpreting its free variables a set of states of the under-
lying LTS. In other words, the semantics of a Lµ formula is a predicate.

In order to interpret sequential composition naturally, the semantics of
FLC lifts the Lµ semantics to the space of monotone functions of type
2S → 2S , where S is the state space of an LTS. Hence, FLC formulas get
interpreted by predicate transformers. This allows sequential composition
to be interpreted naturally using function composition.

Let T = (S, { a−→ : a ∈ A}, L) be an LTS, and

2S ֌ 2S := {f : 2S → 2S | ∀S, T ⊆ S : if S ⊆ T then f(S) ⊆ f(T)}

be the set of all monotone predicate transformers over T . This can be
ordered partially by the well-known pointwise order

f ⊑ g iff ∀T ⊆ S : f(T) ⊆ g(T)

In fact, (2S ֌ 2S ,⊑) forms a complete lattice with top and bottom elements
⊤ = λT.S, ⊥ = λT.∅, as well as meets and joins

d
,
⊔

. The following is
easily verified. Let fi ∈ 2S ֌ 2S , i ∈ I for some set of indices I. Then

l

i∈I

fi := λT.
⋂

i∈I

fi(T)
⊔

i∈I

fi := λT.
⋃

i∈I

fi(T)

are monotone too, and form the infimum, resp. supremum of {fi | i ∈ I} in
2S ֌ 2S .

This function space will now act as the domain of interpretation for
FLC formulas. A formula ϕ(X) with a free variable X gives rise to a
second-order function Fϕ : (2S ֌ 2S) → (2S ֌ 2S) which is monotone
itself w.r.t. the partial order ⊑. According to the Knaster-Tarski Theorem,
least and greatest fixed points of such second-order functions exist uniquely
in 2S ֌ 2S and can be used to give meaning to formulas with fixed-point
quantifiers just as it is done in the modal µ-calculus and first-order functions.

Let ρ : V → (2S ֌ 2S) be an environment interpreting (free) variables
by monotone predicate transformers. As usual, we write ρ[X 7→ f] to
denote the environment that maps X to f and agrees with ρ on all other
arguments. The semantics of an FLC formula w.r.t. an underlying LTS and
the environment ρ is defined inductively as follows.

[[q]]Tρ := λT.{s ∈ S | q ∈ L(s)}

[[¬q]]Tρ := λT.{s ∈ S | q 6∈ L(s)}

[[X]]Tρ := ρ(X)

[[τ]]Tρ := λT.T

[[〈a〉]]Tρ := λT.{s ∈ S | ∃t ∈ S, s.t. s
a
−→ t and t ∈ T }

434 S. Kreutzer, M. Lange

[[[a]]]Tρ := λT.{s ∈ S | ∀t ∈ S : if s a−→ t then t ∈ T }

[[ϕ ∨ ψ]]Tρ := [[ϕ]]Tρ ⊔ [[ψ]]Tρ

[[ϕ ∧ ψ]]Tρ := [[ϕ]]Tρ ⊓ [[ψ]]Tρ

[[ϕ;ψ]]Tρ := λT.[[ϕ]]Tρ
(
[[ψ]]Tρ (T)

)

[[µX.ϕ]]Tρ :=
l
{f ∈ 2S ֌ 2S | [[ϕ]]Tρ[X 7→f] ⊑ f}

[[νX.ϕ]]Tρ :=
⊔

{f ∈ 2S ֌ 2S | f ⊑ [[ϕ]]Tρ[X 7→f]}

Thus, the operators of FLC are simply translated into related operators on
the lattice structure of the function space 2S ֌ 2S with τ being the identity
function as the neutral element of the sequential composition operator.

Since FLC is supposed to be a program logic, it is necessary to explain
when a single state satisfies a (closed) formula of FLC. Note that in the
case of the modal µ-calculus this is simply done using the element relation
on the semantics of the formula. This is clearly not possible if the semantics
is a function. The usual models-relation is therefore—by arbitrary choice—
defined as follows. Let T be an LTS with state set S and s ∈ S.

T , s |=ρ ϕ iff s ∈ [[ϕ]]Tρ (S)

This gives rise to two different equivalence relations in FLC: two formulas
ϕ and ψ are strongly equivalent if they have the same semantics.

ϕ ≡ ψ iff for all LTS T and all ρ : V → (2S ֌ 2S) : [[ϕ]]Tρ = [[ψ]]Tρ

On the other hand, they are weakly equivalent if they are satisfied by the
same set of states in any LTS.

ϕ ≈ ψ iff for all LTS T with state set S and all ρ : V → (2S ֌ 2S) :

[[ϕ]]Tρ (S) = [[ψ]]Tρ (S)

Clearly, strong equivalence is at least as strong as weak equivalence: ≡⊆≈—
two functions that agree on all arguments certainly agree on a particular
one. Here we are mainly interested in weak equivalence because it formalizes
“expressing the same property”, and it is therefore the right notion for
comparing FLC to other logics like MIC w.r.t. expressive power.

3.2.2 Properties Expressible in FLC

In the following we want to exemplify the use of FLC by formalizing a few
non-regular properties.

Example 3.6. Consider the language L = {anbn | n ≥ 1} again. It is
generated by the context-free grammar with productions

S → ab | aSb

Non-regular fixed-point logics and games 435

FLC can express the property “there is a maximal path whose label forms
a word in L”.

(µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉); 2; ff

Notice the apparent similarity to the grammar above.
To illustrate the semantics of FLC formulas, we give the first few stages

X i of the fixed-point iteration for the subformula µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉.

X0 := λT.∅
X1 := λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]](X0([[〈b〉]](T))) = λT.[[〈a〉]]([[〈b〉]](T))
X2 := λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]](X1([[〈b〉]](T)))

= λT.[[〈a〉]]([[〈b〉]](T)) ∪ [[〈a〉]]([[〈a〉]]([[〈b〉]]([[〈b〉]](T))))
...

In general,X i is the function taking any set T to the set of states from which
there is a path to a state in T under any of the words {ab, aabb, . . . , aibi}.
Hence, [[(µX.〈a〉; 〈b〉 ∨ 〈a〉;X ; 〈b〉); 2; ff]] takes any set T to the set of nodes
from which a node without successors can be reached by some anbn-path.

Example 3.7. FLC can, like MIC, axiomatize the tree of height (at least) ω
upto bisimulation. Again, we first say that there is no infinite path utilizing
the Lµ formula µX.2X .

ϕfin := µX.2;X

Then we need to say that there are paths of unbounded length.

ϕunb := (νX.τ ∧X ; 3); tt

Note that, by unfolding, this is equivalent to
∧

n∈N
3

n; tt.
The following then expresses that a transition system is bisimilar to a

tree of height exactly ω.

ϕfin ∧ ϕunb ∧ 2ϕunb

where the latter is supposed to express the complement of the respective
unboundedness property. It can be obtained straight-forwardly as ϕunb :=
(µX.τ ∨X ; 2); ff.

Recall that MIC can express bisimilarity to a finite word but possibly
not to an infinite one. In FLC it does not seem to be possible to express
either of these, and the problem is not to do with (in-)finiteness. For FLC
the difficulty is to speak about two different paths. Note that an LTS T
with starting state s is not bisimilar to any linear model if, and only if,
there are two different actions a and b and a natural number n ≥ 0, s.t.

T , s |= 3 . . .3
︸ ︷︷ ︸

ntimes

〈a〉tt ∧3 . . .3
︸ ︷︷ ︸

ntimes

〈b〉tt

436 S. Kreutzer, M. Lange

The model checking games for FLC presented below will give an idea of
why the existence of such an n cannot be expressed in FLC. Essentially,
non-bisimilarity could be decided using two stacks of formulas which would
be used by one player to build the two conjuncts while the other player then
decides which formula to prove in a given model. The FLC model checking
games, however, only provide a single stack.

Example 3.8. Consider the related but simpler property of bisimilarity to
a balanced tree. While non-bisimilarity to a word can be characterized in
meta-logic using quantification over three different sorts—there are actions
a and b and a natural number n, s.t. there are paths of length n ending in a,
resp. b—describing that an LTS looks like a balanced tree only needs two:
there are n,m ∈ N s.t. n < m and two paths, one of which is maximal and
has length n, the other has length m.

Take the FLC formula

(
µX.τ ∨X ; (3; tt ∧ 2)

)
; 2; ff

Now note that for any FLC formula ϕ we have tt;ϕ ≡ tt. Let Φ :=
µX.τ ∨X ; (3; tt ∧ 2). Unfolding the formula above and rewriting it using
some basic equalities yields:

Φ; 2ff ≡
(
τ ∨ Φ; (3tt ∧ 2)

)
; 2ff

≡ 2ff ∨ Φ; (3tt ∧ 2; 2ff)

≡ 2ff ∨
(
τ ∨ Φ; (3tt ∧ 2)

)
; (3tt ∧ 22ff)

≡ 2ff ∨ (3tt ∧22ff) ∨ Φ; (3tt ∧ 23tt ∧ 222ff)

≡ . . .

The i-th unfolding of this formula asserts that there is a path of length i, all
paths of length less than i can be extended by at least one state, but there
is no path of length i+ 1. Hence, the union over all these approximations
defines exactly the class of all balanced trees of finite height.

There is a straight-forward translation Φ〈·〉 : CFG→ FLC which assigns
to each context-free grammar G an FLC formula Φ〈G〉 s.t.

T , s |= Φ〈G〉 iff there is a t ∈ S and a w ∈ L(G) s.t. s
w
−−→ t

where L(G) denotes, as usual, the context-free language generated byG. ΦG

simply is the uniform translation of G which replaces nonterminals in the
grammars with µ-quantified FLC variables, concatenation with sequential
composition, and alternatives between rules with disjunctions [13].

Non-regular fixed-point logics and games 437

However, there is no translation Φ[·] : CFG → FLC s.t. for all LTS T
with state set S and all s ∈ S we have

T , s |= Φ[G] iff for all t ∈ S and all w ∈ A∗: if s
w
−−→ t then w ∈ L(G)

Such a translation would contradict the decidability of FLC’s model check-
ing problem by a simple reduction from the universality problem for context-
free languages.

Example 3.9. Finally, we consider the property of not doing more returns

than calls, i.e. we want to specify a tree (or transition system) in which all
paths, including non-maximal ones, are labeled by a word from the language
L = {w ∈ {a, b}∗ | ∀v � w : |v|b ≤ |v|a} where � denotes the prefix relation
on words, and |v|a stands for the number of occurrences of the letter a in v.

This language is context-free, and for example generated by the grammar
G as given by

S → aTS | ε T → b | aTT | ε

The specification would be completed if there was a translation Φ[·] as men-
tioned above. Even though this cannot exist, the desired property can still
be specified in FLC. Note that the language L(G) of all non-underflowing
buffer runs is deterministic context-free, and its complement is generated by
the grammar G′ defined as

S → bU | aT bU U → ε | aU | bU T → b | aTT

This can then be transformed into the FLC formula Φ〈G′〉 and consecutively
be complemented to obtain

ϕ := [b]; ff ∧ [a];
(
νT.[b] ∧ [a];T ;T

)
; [b]; ff

which expresses lack of buffer underflows on all runs.

3.3 Complexity and expressive power

First of all, it is not hard to see that both MIC and FLC are genuine
extensions of the modal µ-calculus w.r.t. expressive power.

Proposition 3.10 (Dawar-Grädel-Kreutzer-Müller-Olm, [4, 16]). Lµ �

MIC, Lµ � FLC.

It is obvious that any Lµ-formula is equivalent to a formula in MIC—
simply replace µ-operators by ifp- and ν- by dfp-operators. Furthermore,
Lµ translates into FLC almost as easily: simply replace every 〈a〉ϕ by 〈a〉;ϕ,
and every [a]ϕ by [a];ϕ. The strictness of both inclusions immediately
follows from the previous examples showing how to express certain non-
regular properties in these logics. Related to this is also the loss of the
finite model property compared to Lµ, as already shown in Ex. 3.3 and 3.7.

438 S. Kreutzer, M. Lange

Proposition 3.11 (Dawar-Grädel-Kreutzer-Müller-Olm, [4, 16]). Both
MIC and FLC do not have the finite model property.

The tree model property, however, can be proved by embedding MIC
and FLC into infinitary modal logic. This is particularly simple for MIC
where it only requires fixed-point elimination.

For every FLC formula ϕ we obtain a formula ϕ′ of infinitary modal
logic such that ϕ ≈ ϕ′ by eliminating fixed points first, then followed by the
elimination of sequential composition and the formula τ . This is possible
because ϕ ≈ ϕ; tt, and can easily be done by successively pushing sequential
composition inwards from the right.

Proposition 3.12 (Dawar-Grädel-Kreutzer-Lange-Stirling, [4, 14]). Both
MIC and FLC are invariant under bisimulation and, hence, have the tree-
model property.

Not much is known about the expressive power of each of these log-
ics relative to other formalisms like Predicate Logic, or—when restricted
to word models—formal grammars and automata. For MIC, it is known
that it is not the bisimulation-invariant fragment of monadic inflationary
fixed-point logic, which would have been the natural candidate as Lµ is
the bisimulation-invariant fragment of monadic least fixed-point logic. As
to grammars and automata, FLC is slightly easier to compare in this re-
spect because of the similarity between formulas and context-free gram-
mars. Also, the characterisation of least and greatest fixed points by the
Knaster-Tarski Theorem gives a straight-forward embedding of FLC into
Third-Order Logic. To gain a good intuition about the expressive power of
temporal logics, however, it is often useful to consider word or well-founded
models.

Proposition 3.13 (Dawar-Grädel-Kreutzer-Lange, [4, 10]). When inter-
preted over word models only,

i) there is a language that is not context-free but definable in MIC.

ii) FLC is equi-expressive to alternating context-free languages.3

iii) every language in DTime(O(n)) is definable in MIC.

3 These are generated by alternating context-free grammars which enrich ordinary
context-free grammars by two types of non-terminals: existential and universal ones.
While the generation of sentential forms and, thus, words for existential non-terminals
is the usual one, universal non-terminals derive a sentential form only if all (rather
than any) of their productions derive it. There are various ways of defining a precise
semantics that captures this idea. Alternating Context-Free Grammars as defined by
the second author [10] are in fact the same as Conjunctive Grammars by Okhotin [17].
There are also presumably non-equivalent models like the grammars by Moriya [8].

Non-regular fixed-point logics and games 439

iv) every language definable in MIC or FLC is in DSpace(O(n)), i.e.
deterministic context-sensitive.

As usual, great expressive power also comes at a price. One can show
that arithmetic is expressible in MIC on trees of height ω, i.e. the tree un-
raveling of the ordinal ω. For this, a natural number n ∈ N is identified
with the set of nodes of height at most n. Then, arithmetic on the height
of nodes can be shown to be definable in MIC. By doing so, one can trans-
late any first-order sentence ψ over the arithmetic N := (N, <,+, ·) into a
MIC-formula ψ∗ such that N |= ψ if, and only if, ψ∗ is satisfiable. Here,
ψ∗ enforces its models to be bisimilar to a tree of height ω and encodes the
arithmetical sentence ψ on such trees. This immediately implies undecid-
ability.

Satisfiability in FLC is undecidable as well. This was first shown by
Müller-Olm using a reduction from the simulation equivalence problem for
context-free processes [16]. An embedding of Propositional Dynamic Logic
of Non-Regular Programs, however, yields a quantitatively similar result as
the one for MIC.

Proposition 3.14 (Dawar-Grädel-Kreutzer-Lange-Somla, [4, 13]). The sat-
isfiability problem for both MIC and FLC is undecidable. They are not even
in the arithmetical hierarchy.

Concerning the model checking complexity, it is easily seen that a näıve
evaluation of MIC-formulas by iteratively computing the stages of the fixed-
point inductions leads to an algorithm that correctly checks whether a given
MIC-formula ϕ is true in a given transition system T in time O(|T ||ϕ|) and
space O(|T | · |ϕ|). It is therefore in P whenever the formula is fixed. It is,
however, PSPACE-hard already on a fixed 1-state transition system if the
formula is part of the input.

FLC differs from MIC w.r.t. model checking. First of all, fixed-point
approximations can be exponentially long in the size of the transition sys-
tem [12]. FLC can even express problems which are hard for deterministic
exponential time, namely Walukiewicz’s Pushdown Game problem [21].

An upper bound of deterministic exponential time is not immediately
seen. Note that näıve fixed-point iteration in the function space 2S ֌ 2S

would lead to a doubly exponential procedure. But remember that model
checking in FLC means that the value of a function on a particular argu-
ment, namely S, needs to be computed rather than the entire function itself.
This observation leads—with the aid of stair parity games, see below—to a
singly exponential model checking algorithm.

Proposition 3.15 (Dawar-Grädel-Kreutzer-Axelsson-Lange-Somla, [3, 4,
12]). The combined complexity of the model checking problem for

440 S. Kreutzer, M. Lange

i) MIC is PSPACE-complete,

ii) FLC is EXPTIME-complete.

Regarding the data complexity, we have the following result.

iii) For every fixed formula the model checking complexity of MIC is in P.

iv) There are fixed FLC formulas for which the model checking problem
is EXPTIME-hard.

Regarding the expression complexity, we have the following results.

v) Model checking MIC on a fixed transition system is PSPACE-com-
plete.

PSPACE-hardness of the expression complexity is obtained by a reduc-
tion from QBF, the problem to decide if a given quantified boolean formula
is satisfiable. It can easily be reduced to the model checking problem of
MIC on a trivial transition system consisting of one state only.

The only lower bound for the expression complexity of FLC that is
currently known is P-hardness trivially inherited from Lµ [6].

An interesting question for non-regular logics is decidability of the model
checking problem over infinite state systems. The known results there are
negative.

Proposition 3.16 (Müller-Olm-Lange-Stirling, [16, 14]). The model check-
ing problem for FLC over the class of normed deterministic BPA processes
is undecidable.

The proof uses the fact that characteristic formulas for simulation (equiv-
alence) of BPA processes can easily be constructed in FLC. It is currently
not known whether or not MIC has a decidable model checking problem
over the class of context-free processes.

Finally, we can use the model checking complexity results to prove an
inexpressibility theorem, and partially separate MIC and FLC in expressive
power.

Theorem 3.17. FLC 6≤ MIC.

Proof. Take an FLC formula ϕ whose set of models is EXPTIME-hard
according to Proposition 3.15 (iv). Suppose FLC ≤ MIC. Then there would
be a MIC formula ϕ′ with the same set of models. However, according to
Proposition 3.15 (iii), this set would also have to be in P, and we would
have P = EXPTIME which is not the case. q.e.d.

Non-regular fixed-point logics and games 441

It is not yet known whether every MIC-definable property is also FLC
definable or whether the two logics are incomparable w.r.t. expressive power.
We suspect that the latter is the case. The difficulty in establishing this as
a theorem though is the lack of machinery for showing inexpressibility in
FLC.

4 Non-regular games

There are many ways of extending ordinary parity games. One option,
which we shall consider first, is to introduce the concept of stacks to the
games. Formally, these games are played on configuration graphs of push-
down processes. In this approach we increase the modeling power of the
game arenas while keeping the traditional way of playing games, i.e. the
two players push a token along paths in the game arena and the priorities
of this path determine the winner.

A different approach is to stick to standard parity game arenas but
change the way the games are played. This approach is taken in the concept
of backtracking games, where a play no longer is a path through the arena
but defines a complex subgraph.

4.1 Stair parity games

A pushdown alphabet A is a tuple (Ac,Ar,Ai) consisting of three disjoint
finite alphabets, a finite set Ac of calls, a finite set Ar of returns and a finite
set Ai of internal states.

Definition 4.1. Let A := (Ac,Ar,Ai) be a pushdown alphabet. A visibly

pushdown system (VPS) over (Ac,Ar,Ai) is a tuple B = (Q,A,Γ, δ) where
Q is a finite set of states, and Γ is a finite stack alphabet. We simply write
Γ⊥ for Γ ∪ {⊥} assuming that Γ itself does not contain the special stack
bottom symbol ⊥. Finally, δ = δc ∪ δr ∪ δi is the transition relation with

δc ⊆ Q×Ac ×Q× Γ

δr ⊆ Q×Ar × Γ⊥ ×Q

δi ⊆ Q×Ai ×Q

A transition (q, a, q′, γ), where a ∈ Ac, means that if the system is in
the control state q and reads an a, it can change its state to q′ and push
the symbol γ onto the stack. Similarly, upon a transition (q, a, q′, γ), where
a ∈ Ar, it reads γ from the top of the stack (and pops it unless γ = ⊥)
and changes its state from q to q′. Transitions reading a ∈ Ai are internal

transitions that do not change the stack.
We now turn to defining stair parity games, which are parity games

played on the configuration graph of visibly pushdown systems with a
slightly modified winning condition.

442 S. Kreutzer, M. Lange

Definition 4.2. A stair parity game (SPG) over a VPS B is a tuple GB =
(V, v0, Q∃, Q∀, E,Ω) such that

• V := Q× Γ∗{⊥} is the set of nodes in this game,

• v0 ∈ V is a designated starting node,

• Q is partitioned into Q∃ and Q∀,

• E ⊆ V × V consists of edges
(
(q, δ), (q′, δ′)

)
s.t.

– there is a (q, a, q′, γ) ∈ δc and δ′ = γδ, or

– there is a (q, a, γ, q′) ∈ δr and δ = γδ′, or

– there is a (q, a, q′) ∈ δi and δ′ = δ.

• Ω : Q→ N assigns to each node a priority.

For simplicity we assume that SPGs always are total, i.e. every node has
an outgoing edge. A play in such a game is, as usual, an infinite sequence
of nodes. It is played starting in v0, and continued by a choice along an
outgoing edge of that player who owns the last visited node. Unlike the
case of parity games, the winner is not determined by the least or greatest
priority occurring infinitely often in a play. Instead, one only considers those
nodes that form stairs, i.e. nodes with a stack that persists for the entire
remainder of the play.

Definition 4.3. Let GB = (V, v0, Q∃, Q∀, E,Ω) be a SPG over a VPS B,
and let π = v0, v1, v2, . . . be an infinite play of this game s.t. vi = (qi, δi) for
all i ∈ N.

Define Steps(π) = {i ∈ N : ∀j ≥ i |δj | ≥ |δi|} where |δ| denotes the
length of the stack δ. Note that |Steps(π)| =∞ whenever π is infinite.

Player ∃ wins the play π if, and only if, max{c : there are infinitely
many qi with i ∈ Steps(π) and Ω(qi) = c} is even. Otherwise, Player ∀ is
the winner of π.

The stair parity game problem is: given a SPG (V, v0, Q∃, Q∀, E,Ω),
decide whether or not Player ∃ has a winning strategy from node v0 in
this game. It can be shown that such games are determined, and that this
problem is decidable. In fact, a reduction to an exponentially large ordinary
parity game yields a moderate upper complexity bound.

Theorem 4.4 (Löding-Madhusudhan-Serre, [15]). The stair parity game
problem can be decided in EXPTIME.

Non-regular fixed-point logics and games 443

s ⊢ (ϕ0 ∨ ϕ1) ; δ
s ⊢ ϕi ; δ

∃i ∈ {0, 1}
s ⊢ (ϕ0 ∧ ϕ1) ; δ

s ⊢ ϕi ; δ
∀i ∈ {0, 1}

s ⊢ (σX.ϕ) ; δ
s ⊢ X ; δ

s ⊢ X ; δ
s ⊢ ϕ ; δ

if fp(X) = σX.ϕ
s ⊢ (ϕ;ψ) ; δ
s ⊢ ϕ ; (ψ; δ)

s ⊢ τ ; (ϕ; δ)
s ⊢ ϕ ; δ

s ⊢ 〈a〉 ; (ϕ; δ)
t ⊢ ϕ ; δ

∃s
a
−→ t

s ⊢ [a] ; (ϕ; δ)
t ⊢ ϕ ; δ

∀s
a
−→ t

Figure 1. The rules of the FLC model checking games.

4.2 A game-theoretic characterization of FLC

Let T = (S, { a−→ : a ∈ A}, L) be an LTS, s0 ∈ S and Φ be a closed FLC
formula. The model checking game GT (s0,Φ) is played between Players ∃
and Player ∀ in order to establish whether or not T , s0 |= Φ holds. The set of
configurations is C := S×Sub(ϕ)×Sub(ϕ)∗. We usually write configurations
in the form s ⊢ ϕ ; δ where δ = ψ1; . . . ;ψk acts as a stack of FLC formulas
with its top on the left. The formula ϕ will in this case also be called the
principal formula of this configuration.

The intuitive meaning of such a configuration is the following. Player ∃
wants to show that s ∈ [[ϕ; δ]]Tρ (S) holds under a ρ which interprets the free
variables in ϕ; δ by suitable approximants.

The initial configuration is s0 ⊢ Φ ; tt— remember that Φ ≈ Φ; tt. The
rules of the model checking game are shown in Figure 1.

The idea underlying these games is to defer the examination of ψ in a
formula ϕ;ψ and to first consider whether or not ϕ determines the winner
already. This is in contrast to the Boolean binary constructs ∧ and ∨ in
which both operands have equal importance. However, this is not the case
for the sequential composition operator. A natural choice would be to let
Player ∃ provide a witness for the chop (a set of states for example) and
then to let Player ∀ respond by choosing either of the composed subformulas.
This is not sound though, as the following example shows.

Example 4.5. Let Φ = νX.µY.X ;Y . The exact meaning of this rather
simple formula is not too difficult to guess. It can also be computed using
fixed-point iteration on an imaginary model with state set S. Remember
that ⊤ and ⊥ are the top- and bottom-elements in the function lattice
2S ֌ 2S . At the beginning, the ν-quantified X gets mapped to ⊤, and in
the inner fixed-point iteration, Y gets mapped to ⊥. We use the symbol ◦
to denote function composition semantically as opposed to the syntactical

444 S. Kreutzer, M. Lange

operator “;”.

X0 := ⊤

Y 00 := ⊥

Y 01 := X0 ◦ Y 00 = ⊤

Y 02 := X0 ◦ Y 01 = ⊤ = Y 01

X1 := Y 02 = ⊤

Y 10 := ⊥

Y 11 := X1 ◦ Y 10 = ⊤

Y 12 := X1 ◦ Y 11 = ⊤ = Y 11

X2 := Y 12 = ⊤ = X1

Hence, Φ ≡ tt. Now suppose that Player ∀ was given the opportunity
to choose a subformula of a sequential composition. In this case he could
enforce a play which traverses solely through the µ-quantified variable Y
only. Hence, for such games we should have to abolish the correspondence
between infinite unfoldings of fixed points and wins for either of the players
known from parity games.

This example only explains why the games do a left-depth-first traversal
through formulas w.r.t. sequential compositions. This does not mean though
that parity winning conditions on these games provide a correct character-
ization of FLC’s model checking problem. The next example shows that
parity winning conditions indeed do not suffice.

Example 4.6. Consider the two-state LTS T = ({s, t}, {
a
−→,

b
−→}, L) with

L(s) = L(t) = ∅, and s
a
−→ t, t

b
−→ t. We shall evaluate the formula Φ :=

µY.〈b〉 ∨ 〈a〉; νX.Y ;X on T . Its precise semantics can be computed using
fixed-point iteration again.

Y 0 := ⊥

X00 := ⊤

X01 := Y 0 ◦X00 = ⊥ ◦ ⊤ = ⊥

X02 := Y 0 ◦X01 = ⊥ ◦ ⊥ = ⊥ = X01

Y 1 := [[〈b〉]]T ⊔ ([[〈a〉]]T ◦X02) = λT.[[〈b〉]]T (T) ∪ [[〈a〉]]T (∅)

= [[〈b〉]]T (T)

X10 := ⊤

X11 := Y 1 ◦X10 = [[〈b〉]]T ◦ ⊤ = λT.[[〈b〉]]T ({s, t})

Non-regular fixed-point logics and games 445

= λT.{t}

X12 := Y 1 ◦X11 = [[〈b〉]]T ◦ λT.{t} = λT.[[〈b〉]]T ({t})

= λT.{t} = X11

Y 2 := [[〈b〉]]T ⊔ ([[〈a〉]]T ◦X12) = λT.[[〈b〉]]T (T) ∪ [[〈a〉]]T ({t})

= λT.[[〈b〉]]T (T) ∪ {s}

Even though the fixed point is not found yet, we can deduce by monotonicity
that T , s |= Φ holds. Note that we shall have λT.[[〈b〉]]T (T) ∪ {s} ⊑ [[Φ]]T

and therefore s ∈ [[Φ]]T ({s, t}).
On the other hand, consider the following infinite play of GT (s,Φ) which

Player ∃ can enforce. It is also not hard to see that all other plays he can
enforce should lead to a win for Player ∀ immediately because they end in
a configuration in which ∃ gets stuck with no transitions to chose.

s ⊢ µY.〈b〉 ∨ 〈a〉; νX.Y ;X ; tt

s ⊢ Y ; tt

s ⊢ 〈b〉 ∨ 〈a〉; νX.Y ;X ; tt

s ⊢ 〈a〉; νX.Y ;X ; tt

s ⊢ 〈a〉 ; (νX.Y ;X); tt
t ⊢ νX.Y ;X ; tt

t ⊢ X ; tt

t ⊢ Y ;X ; tt

t ⊢ Y ; X ; tt
t ⊢ 〈b〉 ∨ 〈a〉; νX.Y ;X ; X ; tt
t ⊢ 〈b〉 ; X ; tt
t ⊢ X ; tt

...

This play reaches a loop and can therefore be played ad infinitum. Note that
both variablesX and Y occur as principle formulas in configurations on this
loop. Hence, if these games are equipped with an ordinary parity condition
on principle formulas then the µ-quantified variable Y determines—as the
outer one of the two— Player ∀ to be the winner of this play. But then he
would have a winning strategy, and the games would not be correct.

The crucial difference between the occurrences of Y and X is that each
Y does not stem from the unfolding of the Y above but from the unfolding
of the inner X . Such a phenomenon does not occur in the parity model
checking games for the modal µ-calculus.

The question that arises is how to recognize those variables that truly
regenerate themselves when a simple comparison according to the outer-
relation is not possible. The answer is provided by the stacks in those

446 S. Kreutzer, M. Lange

configurations that have variables as principle formulas. Note that between
each two occurrences of X the stack does not decrease, but between two
occurrences of Y it does. This shows that Y got “fulfilled” and the play
continued with a formula that was on the stack when Y was principle—
intuitively the left-depth-first search has terminated on this branch and
follows a branch to the right of Y . This takes us back to the notion of
Steps(π) for a play π in a stair parity game.

Take the play π above. Then Steps(π) consists of all positions whose
stack contents persist for the rest of the game. Here they are {0, 1, 2, 3, 5, 6, 7,
11, . . .}.

Definition 4.7. If π = C0, C1, . . . is an infinite play of GT (s0,Φ) and Ci =
si ⊢ ϕi ; δi then Steps(π) = {i ∈ N : ∀j ≥ i |δj | ≥ |δi|}. Furthermore, let
π|st denote the restriction of π to Steps(π), i.e.

π|st := Ci0 , Ci1 , Ci2 , . . . iff Steps(π) = {i0, i1, i2, . . .}

with ij < ij′ iff j < j′.

This allows us to define the winning conditions of the FLC games in a
way that correctly characterizes its model checking problem.

Definition 4.8. Let T = (S, {
a
−→ : a ∈ A}, L) be an LTS, s0 ∈ S, Φ a

closed FLC formula and π = C0, C1, . . . be a play of GT (s0,Φ) with Ci =
si ⊢ ϕi ; δi for all i ∈ N. Player ∃ wins π if, and only if,

1. π is finite and ends in some Cn with

a) Cn = sn ⊢ q ; δ and q ∈ L(s),

b) Cn = sn ⊢ ¬q ; δ and q 6∈ L(s),

c) Cn = sn ⊢ [a] ; δ and there is no t ∈ S s.t. s a−→ t;

2. π is infinite and the outermost variable occurring infinitely often as a
principle formula in π|st is of type ν.

Player ∀ wins π if, and only if,

1. π is finite and ends in some Cn with

a) Cn = sn ⊢ q ; δ and q 6∈ L(s),

b) Cn = sn ⊢ ¬q ; δ and q ∈ L(s),

c) Cn = sn ⊢ 〈a〉 ; δ and there is no t ∈ S s.t. s
a
−→ t;

2. π is infinite and the outermost variable occurring infinitely often as a
principle formula in π|st is of type µ.

Non-regular fixed-point logics and games 447

It is then possible to show that each play has a unique winner, that the
games are determined, etc.

Theorem 4.9 (Lange, [11]). Player ∃ has a winning strategy for the game
GT (s,Φ) if, and only if, T , s |= Φ.

As a consequence we obtain an upper bound on the complexity of FLC’s
model checking problem.

Corollary 4.10. The model checking problem for FLC can be decided in
EXPTIME.

Proof. Let T = (S, { a−→ : a ∈ A}, L) be an LTS and ϕ0 ∈ FLC. They
induce a VPS BT ,ϕ0 = (Q,A′,Γ, δ) with

• Q = S × Sub(ϕ0),

• A′c = {chop}, A′r = {tau,mod}, A′i = {disj, conj, unf},

• Γ = Sub(ϕ0),

• δ simply translates the rules of Figure 1 into a transition relation

– δc := {((s, ϕ;ψ), chop, (s, ϕ), ψ) : s ∈ S, ϕ;ψ ∈ Sub(ϕ0)};

– δr := {((s, τ), tau, ϕ, (s, ϕ)) : s ∈ S, ϕ ∈ Sub(ϕ0)}∪{((s, ψ),mod,
ϕ, (t, ϕ)) : ψ ∈ {〈a〉, [a]}, s a−→ t, ϕ ∈ Sub(ϕ0)};

– δi := {((s, ϕ1 ∨ ϕ2), disj, (s, ϕj)
)

: s ∈ S, ϕ1 ∨ ϕ2 ∈ Sub(ϕ0), j ∈
{1, 2}}∪{((s, ϕ1∧ϕ2), conj, (s, ϕj)) : s ∈ S, ϕ1∧ϕ2 ∈ Sub(ϕ0), j ∈
{1, 2}} ∪ {((s, σX.ϕ), unf, (s,X)) : s ∈ S, σX.ϕ ∈ Sub(ϕ0)} ∪
{((s,X), unf, (s, ϕ)) : s ∈ S, X ∈ Sub(ϕ0), fpX = σX.ϕ}

A stair parity game is then obtained by simply making states of the form
(s, ϕ0 ∨ ϕ1) choices of Player ∃ etc., and by assigning priorities to nodes
(
(s, ϕ), δ

)
only depending on the principal formula ϕ s.t. all formulas other

than variables have priority 0, µ-bound, resp. ν-bound variables have odd,
resp. even priorities, and outer variables have greater priorities than inner
ones. Correctness of this translation is given by the fact that the winning
conditions of the FLC model checking games can easily be transferred into
stair parity conditions by artificially prolonging finite plays ad infinitum.
The complexity bound then follows from Theorem 4.4. q.e.d.

These games do not only provide a local model checking algorithm for
FLC. They can also be used to show that the fixed-point alternation hi-
erarchy in FLC is strict [11]. The proof proceeds along the same lines as
Arnold’s proof for the alternation hierarchy in the modal µ-calculus [2] by
constructing hard formulas (that define the winning positions for Player ∃
in such a game) and by using Banach’s fixed-point theorem.

448 S. Kreutzer, M. Lange

4.3 Model-checking games for the Modal Iteration Calculus

Stair Parity Games provide an elegant framework of model checking games
for logics such as CaRet and FLC. We give further evidence for the signif-
icance of this concept in relation to fixed-point logics beyond the modal µ-
calculus by showing that model checking games for MIC can also be phrased
in this context. However, the games we present here only work for finite
transition systems. The reason for this will become clear later in the section.

To simplify notation, we shall only explain the games for MIC-formulas
without simultaneous inductions. Using similar ideas one can extend the
games to cover simultaneous fixed points also.

Suppose first that we are given a transition system T and a formula
ϕ := ifpX.ψ, where ψ ∈ ML is a modal logic formula in negation normal
form. If Player ∃ wants to show that ϕ holds true at a node s in T , he has
to prove that there is a stage n ∈ N so that s ∈ Xn. Here, choosing n out
of the natural numbers is enough as the fixed point in a finite transition
system is always reached after a finite number of steps. In other words, he
chooses an n ∈ N and then has to show that the n-fold unraveling4 ψn of ψ
holds true at s.

This idea is modeled in a stair parity game as follows. To choose the
stage n ∈ N, we give Player ∃ the option to push as many (finitely many)
symbols X onto the stack as he wishes. This done, the two players continue
by playing the standard modal logic game on the ML-formula ψ, with the
modification that each time the game reaches the propositionX , one symbol
X is popped from the stack and the game continues at ψ again. If the stack
is empty, then Player ∃ has lost as he has failed to show that the starting
state s satisfies ψn. However, there is one problem we need to solve. As ϕ is
a MIC formula, the fixed-point variable X may be used negatively, i.e. the
play on ψ may reach a literal ¬X . In this case, we again pop one symbol
X from the stack, but then the game proceeds to the negation ¬ψ. To keep
track of whether we are currently playing in ψ or the negation thereof, we
rename the fixed-point variable X in ¬ψ to Xc. If the play reaches Xc

and there are no more symbols X left on the stack, then Player ∃ wins.
Otherwise, one symbol is popped and the play continues at ¬ψ again. If,
however, a literal ¬Xc is reached, then one symbol X is popped and the
game proceeds back to the original formula ψ.

It should be clear now that Player ∃ can win this game on a formula
ϕ := ifpX.ψ and a transition system T with initial state s if, and only if,
s ∈ [[ϕ]]T .

To extend this idea to formulas containing nested fixed points, we have

4 The n-fold unravelling ψn of ψ is defined as follows: ψ0 := ff and ψn+1 is obtained
from ψ by replacing each occurrence of X by ψn. It is easily seen that s ∈ [[ψn]]T if,
and only if, the state s occurs in stage Xn of the induction on ψ in T .

Non-regular fixed-point logics and games 449

to modify the game slightly. Suppose a variable Y is bound by a fixed-
point operator dfpY.ψ inside the formula ifpX.ϑ which binds an outer
fixed-point variable X . When the game reaches ifpX.ϑ, Player ∃ pushes
as many symbols X onto the stack as he likes. The game continues inside
ϑ and reaches the formula dfpY.ψ at which Player ∀ can push symbols Y
onto the stack. Now, when the game reaches an atom X , then before we can
regenerate the formula ϑ and pop one symbol X from the stack, we have
to pop all Y s first. Other than that, the rules of the game are as described
above.

To present this idea in more detail, let us first fix some notation. Let
ϕ ∈ MIC be a formula in negation normal form and let X1, . . . , Xk be the
fixed-point variables occurring in it. W.l.o.g. we assume that no fixed-point
variable is bound twice in ϕ. Hence, with each Xi we can associate the
unique formula ϑi such that Xi is bound in ϕ by fp Xi.ϑi, where fp is
either ifp or dfp. We also assume that the Xi are numbered such that if
i < j then ϑi is not a subformula of ϑj .

Let ϕ′ be the formula obtained from ¬ϕ by first renaming every fixed-
point variable Xi in ϕ to Xc

i and then bringing the formula into negation
normal form. Let Φ := Sub(ϕ) ∪ Sub(ϕ′).

Let T := (S, {
a
−→ : a ∈ A}, L) be a finite transition system. The formula

ϕ and the system T induce a visibly pushdown system BT ,ϕ := (Q,A′,Γ, δ)
as follows. The stack alphabet is Γ := {X1, . . . , Xk}.

For each variable Xi or Xc
i we use a gadget clear(Xi) that pops all

symbols Xj from the stack with j > i until the top of the stack contains a
symbol Xj with j ≤ i. As the gadget is deterministic, we can arbitrarily
assign the nodes in it to either player. To simplify the presentation, we shall
treat these gadgets as black boxes, i.e. as single nodes in the game graph.

Now, Q contains all pairs S × Φ and the nodes of the gadgets clear(Xi)
and clear(Xc

i) for 1 ≤ i ≤ k. (Recall that Φ := Sub(ϕ) ∪ Sub(ϕ′).) We let
A′ := Ac ∪ Ar ∪Ai where Ac := {push}, Ar := {pop}, and Ai := {int}.

δc :=
{(

(s, ifpX.ϑ), push, (s, ifpX.ϑ), X
)

: s ∈ S, ifpX.ϑ ∈ Φ
}

∪
{(

(s,dfpX.ϑ), push, (s, ifpX.ϑ), X
)

: s ∈ S,dfpX.ϑ ∈ Φ
}

δr :=
{(

(s, clear(Xi)), pop, Xi, (s, ϑi)
)

: 1 ≤ i ≤ k, s ∈ S
}

∪
{(

(s, clear(Xc
i)), pop, Xi, (s, ϑ

c
i)
)

: 1 ≤ i ≤ k, s ∈ S
}

δi :=
{(

(s, ifpX.ϑ), int, (s, ϑ)
)

: s ∈ S, ifpX.ϑ ∈ Φ
}

∪
{(

(s,dfpX.ϑ), int, (s, ϑ)
)

: s ∈ S,dfpX.ϑ ∈ Φ
}

∪
{(

(s, ϕ1 ∨ ϕ2), int, (s, ϕi)
)

: s ∈ S, ϕ1 ∨ ϕ2 ∈ Φ, i ∈ {1, 2}
}

∪
{(

(s, ϕ1 ∧ ϕ2), int, (s, ϕi)
)

: s ∈ S, ϕ1 ∨ ϕ2 ∈ Φ, i ∈ {1, 2}
}

∪
{(

(s, 〈a〉ψ), int, (t, ψ)
)

: s ∈ S, t ∈ S, s a−→ t, 〈a〉ψ ∈ Φ
}

450 S. Kreutzer, M. Lange

∪
{(

(s, [a]ψ), int, (t, ψ)
)

: s ∈ S, t ∈ S, s a−→ t, [a]ψ ∈ Φ
}

∪
{(

(s,Xi), int, clear(Xi)
)

: s ∈ S, 1 ≤ i ≤ k
}

∪
{(

(s,Xc
i), int, clear(Xc

i)
)

: s ∈ S, 1 ≤ i ≤ k
}

∪
{(

(s,¬Xi), int, clear(Xc
i)
)

: s ∈ S, 1 ≤ i ≤ k
}

∪
{(

(s,¬Xc
i), int, clear(Xi)

)
: s ∈ S, 1 ≤ i ≤ k

}

To turn BT ,ϕ into a visibly pushdown game, we need to assign prior-
ities and the nodes where each of the players moves. Player ∃ moves at
disjunctions, nodes (s, 〈a〉ψ), (s, ifpXi.ϑi), (s,Xi), (s,¬Xc

i), (s, clear(Xi)),
and nodes (s, q), q ∈ P , if q 6∈ L(s). At all other nodes Player ∀ moves. Fi-
nally, nodes (s, ifpXi.ϑi) are assigned the priority 1 and nodes (s,dfpXi.ϑi)
are assigned the priority 0. Note that the priority assignment only needs
to ensure that no player can loop forever on a fixed-point formula fpXi.ϑi

pushing infinitely many variables onto the stack. As there are no infinite
plays unless one of the players keeps pushing symbols onto the stack forever,
the priorities do not influence the winner of “interesting” plays.

Example 4.11. We illustrate the construction by an example. Let T be
the system

and let ϕ := ifp X.
(
p∨ ifp Y.(q ∧3X)

)
. The corresponding game graph is

depicted in Figure 2, where ϕ2 := (p∨ifp Y.(q∧3X)), ϕ3 := ifp Y.(q∧3X),
and ϕ4 := q ∧ 3X are the non-trivial sub-formulas of ϕ. To simplify the
presentation, we have dropped the labels int and annotated the push and
pop labels by the variable being pushed onto the stack. Note that there are
no popY or clear(Y) labels, as the variable Y does not occur as an atom in
the formula.

Clearly, Player ∃ wins the game from position (1, ϕ) by first using the
push transition to push one variable X onto the stack and then continue
to (1, ϕ2). In this way, the play will either terminate in (1, q) or continue
along the node (2, X) to (2, clear(X)) and then along the pop-edge, where the
symbol X will be popped from the stack, to (2, ϕ), and finally to (2, p). In
both cases Player ∀ loses. Note, however, that Player ∃ cannot win without
initially pushing X onto the stack, as the play will then terminate at the
node (2, clear(X)) with the pop-edge no longer available. This corresponds
to the state 1 being in the stage X2 but not in the stage X1. (By pushing
X once onto the stack, Player ∃ enforces the play to go through the inner
formula ϕ2 twice, corresponding to the stage X2.)

The following theorem can be proved along the same lines as the corre-
sponding proof for backtracking games in [5].

Non-regular fixed-point logics and games 451

Figure 2. Visibly Pushdown System for Ex. 4.11.

Theorem 4.12. For every ϕ ∈ MIC (without simultaneous fixed points)
and finite transition system T , Player ∃ has a winning strategy from a node
(s, ϕ) in the visibly pushdown game BT ,ϕ if, and only if, T , s |= ϕ.

Clearly, winning regions of general visibly pushdown games are not de-
finable in MIC (as computing them is EXPTIME-hard), presumably not
even if we restrict attention to a fixed number of priorities. However, the
pushdown games constructed above have a rather simple structure. They
only have two priorities but, even more important, the push transitions are
local, i.e. for each fixed-point operator in ϕ there is one node which has a
self-loop pushing a variable onto the stack. Therefore, there is hope that we
can identify a suitable fragment of visibly pushdown games containing the
games arising from MIC-formulas and whose winning regions can be defined
in MIC, i.e. the winner of games from this fragment are MIC-definable in
the same way as the winner of parity games can be defined in Lµ.

We illustrate this by considering games arising from formulas ifpX.ψ
where ψ ∈ ML. Such a game has a starting node from which a path labeled
by push emerges. To each node v on this path with distance n to the
root there is a copy of the game ψn attached to it, where ψn is the n-fold
unraveling of ψ w.r.t. X . Hence, to define the winner of such games we only
need a formula that checks whether on this push-path emerging from the
root there is a node such that Player ∃ wins the modal logic game attached
to it. The latter is clearly MIC-definable, so the whole formula is easily seen
to be definable in MIC.

It is conceivable that a similar construction using nested fixed points
works for games arising from MIC-formulas with nested fixed points. How-
ever, a formal proof of this results is beyond the scope of this survey and is

452 S. Kreutzer, M. Lange

left for future work.

4.4 Backtracking games

We now turn to a different type of non-regular games, the so-called back-

tracking games. The motivation for backtracking games comes from proper-
ties such as the tree is balanced as shown to be expressible in MIC and FLC.
To verify such properties in a game-theoretical setting, the game needs to
be able to inspect all subtrees rooted at successors of the root of a finite
tree. However, linear games such as parity games that construct an infinite
path through a game arena can only visit one subtree, unless we introduce
back-edges towards the root. This motivates a game model where a play
is no longer an infinite path but a more complex subgraph. Backtracking
games were originally introduced as model checking games for inflationary
fixed-point logics such as MIC and the general inflationary fixed-point logic
IFP (see [5]). We first give an informal description.

Backtracking games are essentially parity games with the addition that,
under certain conditions, players can jump back to an earlier position in the
play. This kind of move is called backtracking.

A backtracking move from position v to an earlier position u is only
possible if v belongs to a given set B of backtrack positions, if u and v have
the same priority Ω(v) and if no position of higher priority has occurred
between u and v. With such a move, the player who backtracks not only
resets the play back to u, he also commits himself to a backtracking distance
d, which is the number of positions of priority Ω(v) that have been seen
between u and v. After this move, the play ends when d further positions of
priority Ω(v) have been seen, unless this priority is “released” by a higher
priority.

For finite plays we have the winning condition that a player wins if
his opponent cannot move. For infinite plays, the winner is determined
according to the parity condition, i.e. Player ∃ wins a play π if the highest
priority seen infinitely often in π is even, otherwise Player ∀ wins.

Definition 4.13. The arena G := (V,E, V∃, V∀, B,Ω) of a backtracking
game is a directed graph (V,E), with a partition V = V∃∪V∀ into positions
of Player ∃ and positions of Player ∀, a subset B ⊆ V of backtrack positions
and a map Ω : V → {0, . . . , k − 1} that assigns to each node a priority.

Proposition 4.14 (Dawar-Grädel-Kreutzer, [5]). The following basic prop-
erties about backtracking games are known.

1. Backtracking games are determined, i.e. in every backtracking game,
one of the two players has a winning strategy

2. Backtracking games in general do not admit finite memory strategies.

Non-regular fixed-point logics and games 453

3. Deciding the winner of a backtracking game even with only two pri-
orities is hard for NP and co-NP.

4. Deciding the winner of a backtracking game in general is Pspace-
hard.

However, no upper bound for the complexity of backtracking games is
known.

Backtracking games can be used as model checking games for inflationary
fixed-point logics, e.g. for every MIC-formula ϕ and every transition system
T one can construct in polynomial time a backtracking game that is won by
Player ∃ if, and only if, T |= ϕ. Here, the backtracking distance plays the
role of the stack being used to determine a stage of the fixed-point induction
containing the current state of the transition system. The rule that higher
priorities reset the distance for all lower priorities corresponds to the usual
idea that regenerating an outer fixed point restarts the induction on the
inner fixed points.

Unlike the stair parity games we constructed in Section 4.3, it seems
unlikely that the winner of backtracking games is definable in MIC, even
for the very simple fragment of backtracking games that suffice for a game-
theoretical framework for MIC model checking. The reason is that while
in a pushdown game, the possible stack contents are represented in the
game graph explicitly, the backtracking distance is an “external” concept
and counting the distance must be done in the logic itself. Therefore it
seems unlikely that MIC suffices for this. In [5], it was shown, however,
that the winner of a restricted class of backtracking games can be defined
in inflationary fixed-point logic.

5 Outlook

Clearly, MIC and FLC are not the only (modal) fixed-point logics that ex-
tend the modal µ-calculus semantically. Another modal fixed-point logic
of high expressivity is Higher-Order Fixed-Point Logic (HFL) [20]. It in-
corporates into Lµ a simply typed λ-calculus. Its ground type is that of a
predicate and its only type constructor is the function arrow. Syntactically,
HFL extends Lµ by function abstraction (λX.ϕ) and application (ϕ ψ).

Not surprisingly, HFL subsumes FLC. In fact, every (sub-)formula in
FLC is, semantically, a predicate transformer, i.e. an object of a function
type. This way, FLC is embedded into a very low level of HFL, namely
HFL1—the First-Order Fragment of HFL. Here, first order does not refer
to predicate logic but to the degree of function typing that is allowed in
subformulas of that logic. HFL0, the fragment of HFL restricted to formu-
las in which every subformula is a predicate, is exactly Lµ—syntactically
already.

454 S. Kreutzer, M. Lange

The type level hierarchy in HFL is strict, and it comes with increas-
ing model checking complexity: it is k-EXPTIME-complete for level k of
that hierarchy [3], and this holds already for the data complexity of each
fragment. Consequently, model checking full HFL is non-elementary.

HFL, and in particular HFL1, is also interesting as a specification lan-
guage for non-regular properties. It can, for instance, define assume-guaran-
tee properties [20]. Furthermore, it can define structural properties that we
are unable to express in FLC or MIC like that of being bisimilar to a (possi-
bly infinite) word model. Even though we have not formally defined HFL1,
we can present the formula for this property because it is very neat, and it
can be read with a little bit of understanding of functional programming.

¬
((

µXPr→Pr→Pr.λAPr.λBPr.(A ∧B) ∨ (X 3A 3B)
)
〈a〉tt 〈b〉tt

)

The superscripts are type annotations. The least fixed-point formula can be
seen as a recursively defined function that takes two predicates and checks
whether or not their conjunction holds. If not, it calls itself recursively with
the two arguments preceeded by 3-operators. Applied to the two initial
arguments, it checks successively, whether there are two paths of length
1, 2, . . . ending in an a-, resp. b-transition.

We have not included a thorough presentation of HFL (or just HFL1)
here, mainly because there is no interesting known game-theoretic charac-
terization of its model checking problem. It can be solved by a reduction
to a reachability game using fixed-point elimination [3], but it is not known
whether or not there is an extension of parity games to capture this. The ex-
ample above suggests that stair parity games do not suffice since two stacks
would be needed to contain the 3-operators for the two different paths.

We conclude with a positive remark: while FLC is trivially embeddable
into HFL1, and MIC and FLC seem incomparable, it is reasonable to ask
whether HFL1 is a superlogic of both of them. On finite models, MIC
can indeed be embedded into HFL. This is because the computation of an
inflationary fixed point can be carried out by a function of first-order type.
However, since this is modeled iteratively, this translation fails in stages
beyond ω. Hence, it may not work on infinite models. It remains to be seen
whether MIC can be embedded into HFL over arbitrary models.

References

[1] R. Alur, K. Etessami, and P. Madhusudan. A temporal logic of nested
calls and returns. In K. Jensen and A. Podelski, editors, TACAS,
volume 2988 of Lecture Notes in Computer Science, pages 467–481.
Springer, 2004.

Non-regular fixed-point logics and games 455

[2] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on bi-
nary trees. ITA, 33(4/5):329–340, 1999.

[3] R. Axelsson, M. Lange, and R. Somla. The complexity of model check-
ing higher-order fixpoint logic. Log. Methods Comput. Sci., 3(2):2:7, 33
pp. (electronic), 2007.

[4] A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in
modal logic. ACM Trans. Comput. Log., 5(2):282–315, 2004.

[5] A. Dawar, E. Grädel, and S. Kreutzer. Backtracking games and infla-
tionary fixed points. Theor. Comput. Sci., 350(2-3):174–187, 2006.

[6] S. Dziembowski, M. Jurdziński, and D. Niwiński. On the expres-
sion complexity of the modal µ-calculus model checking. Unpublished
manuscript, 1996.

[7] E. A. Emerson. Uniform inevitability is tree automaton ineffable. Inf.

Process. Lett., 24(2):77–79, 1987.

[8] O. H. Ibarra, T. Jiang, and H. Wang. A characterization of exponential-
time languages by alternating context-free grammars. Theor. Comput.

Sci., 99(2):301–313, 1992.

[9] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic.
In U. Montanari and V. Sassone, editors, CONCUR, volume 1119 of
Lecture Notes in Computer Science, pages 263–277. Springer, 1996.

[10] M. Lange. Alternating context-free languages and linear time mu-
calculus with sequential composition. Electr. Notes Theor. Comput.

Sci., 68(2), 2002.

[11] M. Lange. The alternation hierarchy in fixpoint logic with chop is strict
too. Inf. Comput., 204(9):1346–1367, 2006.

[12] M. Lange. Three notes on the complexity of model checking fixpoint
logic with chop. Theoret. Informatics Appl., 41:177–190, 2007.

[13] M. Lange and R. Somla. Propositional dynamic logic of context-free
programs and fixpoint logic with chop. Inf. Process. Lett., 100(2):72–
75, 2006.

[14] M. Lange and C. Stirling. Model checking fixed point logic with chop. In
M. Nielsen and U. Engberg, editors, FoSSaCS, volume 2303 of Lecture

Notes in Computer Science, pages 250–263. Springer, 2002.

456 S. Kreutzer, M. Lange

[15] C. Löding, P. Madhusudan, and O. Serre. Visibly pushdown games. In
K. Lodaya and M. Mahajan, editors, FSTTCS, volume 3328 of Lecture

Notes in Computer Science, pages 408–420. Springer, 2004.

[16] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel and
S. Tison, editors, STACS, volume 1563 of Lecture Notes in Computer

Science, pages 510–520. Springer, 1999.

[17] A. Okhotin. Boolean grammars. Inf. Comput., 194(1):19–48, 2004.

[18] C. Stirling. Lokal model checking games. In I. Lee and S. A. Smolka,
editors, CONCUR, volume 962 of Lecture Notes in Computer Science,
pages 1–11. Springer, 1995.

[19] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.
Pacific J. Math., 5:285–309, 1955.

[20] M. Viswanathan and R. Viswanathan. A higher order modal fixed
point logic. In P. Gardner and N. Yoshida, editors, CONCUR, volume
3170 of Lecture Notes in Computer Science, pages 512–528. Springer,
2004.

[21] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf.

Comput., 164(2):234–263, 2001.

The universal automaton

Sylvain Lombardy1

Jacques Sakarovitch2

1 Institut Gaspard Monge
Université de Paris-Est
5, boulevard Descartes
77454 Champs-sur-Marne, France
Sylvain.Lombardy@univ-mlv.fr

2 École Nationale Supérieure des Télécommunications / C.N.R.S.
46, rue Barrault
75634 Paris Cedex 13, France
Jacques.Sakarovitch@enst.fr

Abstract

This paper is a survey on the universal automaton, which is an au-
tomaton canonically associated with every language. In the last forty
years, many objects have been defined or studied, that are indeed
closely related to the universal automaton.

We first show that every automaton that accepts a given lan-
guage has a morphic image which is a subautomaton of the universal
automaton of this language. This property justifies the name “univer-
sal” that we have coined for this automaton. The universal automaton
of a regular language is finite and can be effectively computed in the
syntactic monoid or, more efficiently, from the minimal automaton of
the language. We describe the construction that leads to tight bounds
on the size of the universal automaton. Another outcome of the effec-
tive construction of the universal automaton is the computation of a
minimal NFA accepting a given language, or approximations of such
a minimal NFA. From another point of view, the universal automaton
of a language is based on the factorisations of this language, and is
thus involved in the problems of factorisations and approximations of
languages. Last, but not least, we show how the universal automaton
gives an elegant solution to the star height problem for some classes
of languages (pure-group or reversible languages).

With every language is canonically associated an automaton, called the

universal automaton of the language, which is finite whenever the language
is regular. It is large, it is complex, it is complicated to compute, but it con-
tains, hopefully, many interesting informations on the language. In the last
forty years, it has been described a number of times, more or less explicitly,

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 457–504.

458 S. Lombardy, J. Sakarovitch

more or less approximately, in relation with one or another property of the
language. This is what we review here systematically.

1 A brief history of the universal automaton

The origin of the universal automaton is not completely clear. A well-
publicized note [1] credits Christian Carrez of what seems to be the first
definition of the universal automaton in a report that remained unpublished
[2]. The problem at stake was the computation of the, or of a, NFA with
minimal number of states that recognizes a given regular language L. And
Carrez’s report states the existence of an automaton UL, very much in the
way we do in Section 2, with the property that it contains a morphic image
of any automaton which recognizes L, and thus a copy of any minimal NFA
which recognizes L.

At about the same time, Kameda and Weiner tackled the same problem
and, without stating the existence of UL, described a construction for a NFA
recognizing L with minimal number of states [14], a construction which
we recognize now as being similar to the construction of UL we propose in
Section 4.

Soon afterwards, in another context, and with no connexion of any kind
with the previous problem (cf. Section 6) Conway proposed the definition
of what can be seen also as an automaton attached to L and which is again
equal to UL [5] (cf. Section 3.1).

Among other work related to UL, but without reference to the previous
one, let us quote [6] and [22]. Eventually, we got interested in the universal
automaton as we discovered it contains other informations on the languages
that those studied before (see Section 7.1) and we made the connexion
between the different instances [21, 20].

2 Creation of the universal automaton

No wonder, we first fix some notations. IfX is a set, P (X) denote the power

set of X , i.e. the set of subsets of X . We denote by A∗ the free monoid
generated by a set A. Elements of A∗ are words, the identity of A∗ is the
empty word, written 1A∗ . The product in A∗ is denoted by concatenation
and is extended by additivity to P (A∗): XY = {uv | u ∈ X, v ∈ Y }.

An automaton A is a 5-tuple A = 〈Q,A,E, I, T 〉, where Q is a finite set
of states, A is a finite set of letters, E, the set of transitions, is a subset
of Q × A× Q, and I (resp. T), the set of initial (resp. terminal) states, is
a subset of Q. Such an automaton A defines an action1 ⊲ of A∗ on P (Q),

1 Normally, we would have denoted the action by a simple ·; but later, in Section 5,
we shall need to consider an action on the right and an action on the left, hence a
lateralized symbol which makes the reading easier. Moreover, when necessary, i.e.

when several automata are considered at the same time, we shall even specify as a

The universal automaton 459

by setting first for all p ∈ Q and all a ∈ A

p ⊲ a = {q ∈ Q | (p, a, q) ∈ E},

and then by additivity and the definition of an action for all X ∈ P (Q)

X ⊲ 1A∗ = X , X ⊲ a =
⋃

p∈X

p ⊲ a , X ⊲ wa = (X ⊲ w) ⊲ a.

The behaviour |A| (or the accepted language) of an automaton A =
〈Q,A,E, I, T 〉 is the set of words that label a path from an initial state to
a terminal state, i.e.

|A| = {w ∈ A∗ | ∃i ∈ I, t ∈ T i
w
−−→
A

t} = {w ∈ A∗ | I ⊲ w ∩ T 6= ∅}.

A subset of A∗ is called a language and a language is regular if it is the
behaviour of some finite automaton.

Let A = 〈Q,A,E, I, T 〉 be an automaton over A∗. For each state p of A,
the past of p is the set of labels of computations which go from an initial
state of A to p, and we write it PastA(p); i.e.

PastA(p) = {w ∈ A∗ | ∃i ∈ I i
w
−−→
A

p} = {w ∈ A∗ | p ∈ I ⊲ w}.

Dually, the future of p is the set of labels of computations that go from p
to a final state of A and we write it FutA(p), i.e.:

FutA(p) = {w ∈ A∗ | ∃t ∈ T p
w
−−→
A

t} = {w ∈ A∗ | p ⊲ w ∩ T 6= ∅}.

Likewise, for each pair of states (p, q) of A, the transitional language of
(p, q) is the set of labels of computations that go from p to q and we write
it TransA(p, q), i.e.:

TransA(p, q) = {w ∈ A∗ | p
w
−−→
A

q} = {w ∈ A∗ | q ∈ p ⊲ w}.

For each q in Q, we clearly have

[PastA(q)] [FutA(q)] ⊆ |A|. (∗)

Thus, in every automaton, each state induces a set of ‘factorisations’ —
which is the name we give to equations of the type (∗) — of the language it
recognizes. The starting point of the construction is to prove the converse of
this observation, namely that we can construct from the set of factorisations
of a language L of A∗ an automaton which accepts L.

subscript the automaton that defines the action in action: p ⊲
A

a.

460 S. Lombardy, J. Sakarovitch

q

Figure 1. Representation of the past and future of q in A

2.1 Factorisations of a language

In the rest of this paper, L is a language of A∗. We call subfactorisation

of L a pair (X,Y) of languages of A∗ such that XY ⊆ L and factorisation

a subfactorisation (X,Y) which is maximal for the inclusion, that is, if X ⊆
X ′, Y ⊆ Y ′ and X ′Y ′ ⊆ L then X = X ′ and Y = Y ′. We write FL

for the set of factorisations of L. If (X,Y) is in FL then X is called a left

factor and Y a right factor of L. The maximality condition on factorisations
already implies that the left and right factors are in a 1-1 correspondence.
The notion of quotient allows to be even more precise.

The left quotient (resp. the right quotient) of L by a word v is the
language2 v−1L = {w ∈ A∗ | vw ∈ L} (resp. the language Lv−1 = {u ∈
A∗ | uv ∈ L}).

If WZ ⊆ L then Z is contained in Y =
⋂

w∈W w−1L and thus Y is
maximum such that WY ⊆ L. From which a series of properties are easily
derived, that are worth stating for further usage, with, or without, explicit
reference.

Proposition 2.1.

(i) For every (X,Y) in FL,

Y =
⋂

x∈X

x−1L and X =
⋂

y∈Y

Ly−1.

(ii) Conversely, any intersection of left quotients is a right factor, and any
intersection of right quotients is a left factor.

(iii) If W and Z are such that WZ ⊆ L, then there exists (at least) one
factorisation (X,Y) of L such that W ⊆ X and Z ⊆ Y

(iv) The property ‘(X,Y) is a factorisation of L’ induces a bijection be-
tween the left and right factors of L.

2 Sometimes called residual of L.

The universal automaton 461

Corollary 2.2. A language is regular if, and only if, it has a finite number
of factorisations.

Remark 2.3. We write Lt for the transpose of L, that is, the set of mir-
ror image of words in L. If (X,Y) is a factorisation of L, (Y t, X t) is a
factorisation of Lt. By duality, we unterstand the change from L to Lt.

2.2 Universal automaton of a language

The definition of factorisations of a language allows in turn to set up the
definition we are aiming at.

Definition 2.4. The universal automaton UL of L is defined as UL =
〈FL, A,E

L, IL, T L〉, where:

IL = {(X,Y) ∈ FL | 1A∗ ∈ X} , T L = {(X,Y) ∈ FL | 1A∗ ∈ Y },

EL = {
(
(X,Y), a, (X ′, Y ′)

)
∈ FL×A×FL | XaY

′ ⊆ L}.

From the maximality of the factorisations follows:

(X,Y) ∈ IL ⇐⇒ Y ⊆ L , (X,Y) ∈ T L ⇐⇒ X ⊆ L, (1.1)
(
(X,Y), a, (X ′, Y ′)

)
∈ EL ⇐⇒ Xa ⊆ X ′ ⇐⇒ aY ′ ⊆ Y . (1.2)

The description of computations in the universal automaton is then a gen-
eralisation of the above equation.

Lemma 2.5. For all (X,Y) and (X ′, Y ′) in FL and for every w in A+, it
holds:

(X,Y)
w
−−→
UL

(X ′, Y ′) ⇐⇒ XwY ′ ⊆ L⇐⇒ Xw ⊆ X ′ ⇐⇒ wY ′ ⊆ Y .

Proof. By induction on |w|. The property holds true for |w| = 1, by defini-
tion of EL and by (1.2).

Suppose that (X,Y)
aw
−−−→
UL

(X ′, Y ′); there exists then (X ′′, Y ′′) in FL

such that (X,Y)
a
−−→
UL

(X ′′, Y ′′) and (X ′′, Y ′′)
w
−−→
UL

(X ′, Y ′). We thus have

Xa ⊆ X ′′ and X ′′w ⊆ X ′, hence XawY ′ ⊆ L.
Conversely, XawY ′ = [Xa] [wY ′] ⊆ L implies that there exists (X ′′, Y ′′)

in FL such that Xa ⊆ X ′′ and wY ′ ⊆ Y ′′, thusXaY ′′ ⊆ L andX ′′wY ′ ⊆ L,
which, by induction hypothesis, gives (X,Y)

aw
−−−→
UL

(X ′, Y ′). q.e.d.

A fundamental property of the universal automaton is given by the fol-
lowing.

Proposition 2.6. If (X,Y) is a factorisation of L, it then holds:

PastUL
((X,Y)) = X and FutUL

((X,Y)) = Y .

462 S. Lombardy, J. Sakarovitch

Proof. The definition of T L itself states that FutUL
((X,Y)) contains 1A∗ if,

and only if, Y contains 1A∗ . Let w be a non empty word in FutUL
((X,Y)),

that is, (X,Y)
w
−−→
UL

(X ′, Y ′) with 1A∗ in Y ′. By Lemma 2.5, XwY ′ ⊆ L;

as 1A∗ is in Y ′, Xw ⊆ L and w is in Y by maximality of Y . Therefore
FutUL

((X,Y)) ⊆ Y .
Conversely, if (X,Y) is in FL, XY = [XY] [1A∗] ⊆ L and there exists

a right factor Y ′, containing 1A∗ , such that XY Y ′ ⊆ L. By Lemma 2.5
again, Y ⊆ FutUL

((X,Y)).

The other equality is obtained by duality. q.e.d.

As 1A∗L = L1A∗ = L, L is both a right and a left factor, to which
correspond the left factor Xs and the right factor Ye. We call (Xs, L) the
starting factorisation, and (L, Ye) the ending factorisation.3

Corollary 2.7. UL recognises L.

Proof. For any factorisation (X,Y) in IL, Y ⊆ L since 1A∗ ∈ X . Then
|UL| =

⋃

(X,Y)∈IL FutUL
((X,Y)) =

⋃

(X,Y)∈IL Y is contained in L. Since

(Xs, L) ∈ IL then |UL| = L. q.e.d.

The universal automaton is canonically associated with L, like the min-

imal deterministic automaton or the minimal co-deterministic automaton;
unlike them, it is not lateralised, that is, not oriented from left to right nor
from right to left. It is a restatement of Corollary 2.2 that L is regular
if, and only if, UL is finite. And the universal automaton ULt of Lt is the
transpose automaton of UL.

Example 2.8.

(i) Let L1 = A∗abA∗. The set FL1 = {u, v, w} is easily computed: u =
(A∗, A∗abA∗), v = (A∗aA∗, A∗bA∗) and w = (A∗abA∗, A∗). Figure 2
shows UL1 .

(ii) Figure 2 also shows the universal automaton of L2 = aA∗. This
example allows us to see that a universal automaton is not necessarily
trim: a factorisation (∅, A∗) (resp. (A∗,∅)), if it exists, corresponds
to a non-accessible (resp. a non-co-accessible) state.

2.3 Universality of the universal automaton

We begin with the definition of morphism of automata and some related
notions that will be central to our purpose.

3 Conway, who did not define the universal automaton as such, called them initial and
final factorisation respectively, an option that is not open to us.

The universal automaton 463

u v w
a

a+ b

b

a+ b

a+ b a+ b a+ b

a+ b

(1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

a

a+ b
a+ b a+ b

a a+ b

a+ b

Figure 2. The universal automaton of L1 (left) and of L2 (right)

2.3.1 Morphisms, quotients and minimal automata

In the sequel, A = 〈Q,A,E, I, T 〉 and B = 〈R,A, F, J, U〉 are two automata
over A∗.

Definition 2.9. A map ϕ from Q into R is a morphism of automata, and
we write ϕ : A → B if, and only if,

ϕ(I) ⊆ J, ϕ(T) ⊆ U, and ϕ(E) = {
(
ϕ(p), a, ϕ(q)

)
| (p, a, q) ∈ E} ⊆ F .

The morphism ϕ is surjective if B = 〈ϕ(Q), A, ϕ(E), ϕ(I), ϕ(T)〉 (we also
say that B is a morphic image of A).

If ϕ : A → B is a morphism, the image of a computation in A is a
computation in B, with the same label, which directly implies the following.

Proposition 2.10. Let ϕ be a morphism from A into B. Then, for every
state p of A,

PastA(p) ⊆ PastB(ϕ(p)) , FutA(p) ⊆ FutB(ϕ(p)), (1.3)

and then
|A| ⊆ |B|. (1.4)

The notion of morphism is not lateralised and if ϕ : A → B is a morphism
then so is ϕ : At → Bt. If ϕ : A → B is a surjective morphism and if moreover
|A| = |B|, then any two states p and q of A such that ϕ(p) = ϕ(q) are said
to be mergible (in A).

Proposition 2.11. The universal automaton UL has no mergible states.

Proof. Suppose, by way of contradiction, that ϕ : UL → C is a surjective
morphism and that |C| = L.

If ϕ((X,Y)) = ϕ((X ′, Y ′)) = s the combination of Proposition 2.6 and
Proposition 2.10 yields X ∪ X ′ ⊆ PastC(s) and Y ∪ Y ′ ⊆ FutC(s) from
which follows (X ∪X ′)(Y ∪ Y ′) ⊆ PastC(s)FutC(s) ⊆ L, impossible by the
maximality of factorisations. q.e.d.

464 S. Lombardy, J. Sakarovitch

Definition 2.12. A morphism ϕ : A → B is Out-surjective if

(i) for every (r, a, s) in F and every p such that ϕ(p) = r there exists q
such that ϕ(q) = s and (p, a, q) in E;

(ii) for every p in Q, if ϕ(p) is in U then p is in T .

The notion of Out-surjectivity is lateralised and ϕ : A → B is said to
be In-surjective if ϕ : At → Bt is Out-surjective. If ϕ : A → B is both
surjective and Out-surjective (resp. and In-surjective) B — and ϕ — is
called a quotient (resp. a co-quotient) of A. An easy proof by induction on
the length of the computations establishes the following.

Proposition 2.13. If the automaton B is a quotient (resp. a co-quotient)
of the automaton A then |A| = |B|.

We thus have three distinct notions of maps for automata: morphism,
quotient, and co-quotient, that lead to three distinct notions of minimality.
The minimal quotient of a (non deterministic) automaton A exists and is
unique, canonically associated with A — not with |A| unless A is determin-
istic —, defined by a generalisation of the so-called Nerode equivalence, and
computed, if necessary, by a kind of Moore algorithm. The same is true of
co-quotient, up to a transposition. The notion of minimality with respect
to morphism is slightly more tricky and unicity is lost.

Definition 2.14. Let A be an automaton over A∗ that accepts a lan-
guage L. We say that A is m-minimal if the following two properties hold:

(i) every proper subautomaton of the trim part of A accepts a language
that is strictly contained in L;

(ii) every proper morphic image of A accepts a language that contains
strictly L.

In other words, an automaton is m-minimal if every state is necessary
–unless it is a sink or a co-sink– and no two states are mergible.

We have decided to coin that new term ‘m-minimal’ for there are too
many ‘minimal’ around. A minimal quotient is not necessarily m-minimal
and the sentence ‘A minimal quotient is not necessarily minimal ’ sounds
definitively too awkward. Of course, neither a minimal quotient, nor a m-
minimal automaton have a minimal number of states for accepting the same
language. Some consistency is given by the following.

Proposition 2.15. The minimal automaton of a language L (which is the
minimal quotient of any deterministic automaton that recognises L) is m-
minimal.

The universal automaton 465

Proof. Every state p of the minimal automaton of L is characterised by its
future which is equal to u−1L, for any u in its past. If p and q are two
distinct states there is one, say p, whose future contains a word w which is
not in the future of q. For any v in the past of q, w does not belong to v−1L,
that is, vw does not belong to L and still would be accepted in any morphic
image where p and q were merged. q.e.d.

2.3.2 Morphisms into the universal automaton

The following property of the universal automaton is the one that has been
appealing to most people. We call it ‘universality property’ and the univer-
sal automaton gets its name from it.

Theorem 2.16. If A is an automaton that recognises any subset K of L,
then there exists a morphism from A into UL.

This result is established via the definition of a map from A into UL,
canonically associated with A, and which is then shown to be a morphism.

Definition 2.17. Let A = 〈Q,A,E, I, T 〉 be an automaton that recognises
a subset K of L. The (left) canonical map ϕ : Q→ FL is defined by ϕ(p) =
(Xp, Yp) with

Yp = {v ∈ A∗ | PastA(p)v ⊆ L} =
⋂

u∈PastA(p)

u−1L. (1.5)

In other words, ϕ is defined by associating with every state p of A the
factorisation of L with the largest possible right factor that is compatible
with the past of p in A.

Proof of Theorem 2.16. Let p in Q and ϕ(p) = (Xp, Yp). It follows directly
from the definition that PastA(p) ⊆ Xp and FutA(p) ⊆ Yp from which we
deduce that ϕ(I) ⊆ IL and ϕ(T) ⊆ T L.

Moreover, (p, a, q) in E implies PastA(p)a ⊆ PastA(q) from which one
deduces PastA(p)aYq ⊆ PastA(q)Yq ⊆ L hence aYq ⊆ Yp and by (1.2),
ϕ is a morphism, that will be called (left) canonical morphism (from A
to UL). q.e.d.

If we apply Theorem 2.16 to a m-minimal automaton A accepting L
we get a morphism from A into UL that has to be injective since A is
m-minimal. We have thus proved (see an example at Figure 3):

Corollary 2.18. Every m-minimal automaton accepting L is a subautoma-
ton of UL.

On the other hand, an automaton A accepting L and that has stricly
more states than UL is sent into UL by a morphism which is necessarily non
injective. We have thus proved:

466 S. Lombardy, J. Sakarovitch

u v w
a b

b a a+ b

u v w
a b

a+ b b a

u v w
a b

a+ b a+ b

Figure 3. Three m-minimal subautomata of UL1

Corollary 2.19. The universal automaton UL is the largest automaton
recognizing L without merging states.

Proposition 2.20. The universal automaton UL is minimal for the univer-
sality property.

Proof. Suppose C has the universality property (with respect to L). As UL

accepts L, there should be a morphism from UL into C; as UL has no merging
states, this morphism should be injective: C has at least as many states
as UL. q.e.d.

3 Exploration of the universal automaton

The universal automaton we have just defined may be seen in different
ways, from different perspective, bringing to light other characteristics and
properties of this unique and canonical object. We consider here three of
them. The first one is Conway’s method, that yields the ‘fatest’ version
of the universal automaton. The second one follows a universal algebra
track that eventually makes easy and natural a geometric description of
factorisations that was presented by Courcelle, Niwinski and Podelski ([6]).
The third one, due to Lombardy [17] produces the most ‘emaciated’ version,
an automaton where only the minimal information is kept and where an
interesting and hidden structure is thus discovered, especially in the case of
pure group languages.

3.1 The factor matrix

We keep the previous notation: UL = 〈FL, A,E
L, IL, T L〉 is the universal

automaton of the language L of A∗. Automata are matrices (and vectors);
this is the way we look at them in this section. As we are interested in
matrices (and vectors) of dimension FL, we use throughout the section the
following notation: if M is a square matrix of dimension FL and for brevity,
we write MX,Y ′ instead of M(X,Y),(X′,Y ′) for the entry at row (X,Y) and
column (X ′, Y ′), for all (X,Y) and (X ′, Y ′) in FL. For a row-vector (resp.
a column-vector) V we write VY (resp. VX) instead of V(X,Y). Proposi-
tion 2.1 (iv) legitimates this shorthand.

A first example is EL itself, viewed as a matrix with entries in P (A∗)
(indeed in P (A)):

EL

X,Y ′ = {a ∈ A | XaY ′ ⊆ L}

The universal automaton 467

for all factorisations (X,Y) and (X ′, Y ′) in FL. On the other hand, the left
factors are naturally ordered by inclusion, an order that carries over on FL:

(X,Y) 6 (X ′, Y ′) ⇐⇒ X ⊆ X ′ ⇐⇒ Y ′ ⊆ Y .

As any relation on FL, this order is described by a Boolean matrix CL:

∀(X,Y), (X ′, Y ′) ∈ FL CL

X,Y ′ = 1 ⇐⇒ X ⊆ X ′ ⇐⇒ XY ′ ⊆ L;

and since CL is the matrix of a reflexive and transitive relation, it holds:

(CL)∗ = CL. (1.6)

The characterisation of EL by Equation (1.2) yields that CL

X,Y ′ = 1 implies,
for all (X ′′, Y ′′) in FL, EL

X′,Y ′′ ⊆ EL

X,Y ′′ and EL

X′′,Y ⊆ EL

X′′,Y ′ , which
means:

CL · EL = EL · CL = EL. (1.7)

Definition 3.1. The factor matrix of a language L is the matrix FL of
dimension FL with entries in P (A∗) defined by:

FL

X,Y ′ = {w ∈ A∗ | XwY ′ ⊆ L}

for all factorisations (X,Y) and (X ′, Y ′) in FL. Every entry of FL is called
a factor of L.

By definition, FL

X,Y ′ is the maximal Z such that XZY ′ ⊆ L. By defini-

tion4 also, FL∩{1A∗} = CL and FL∩{A} = EL. Lemma 2.5 states exactly
that

FL ∩ {A+} = (EL)+ and thus FL = CL + (EL)+ = CL + (EL)∗.

Classical formulas for the star of a sum, together with (1.6) and (1.7) yields:

Proposition 3.2. FL = (CL + EL)∗.

From which one deduces:

Corollary 3.3. FL = (FL)∗.

A direct consequence of which is:

∀(X,Y), (X ′, Y ′), (X ′′, Y ′′) ∈ FL FL

X,Y ′FL

X′,Y ′′ ⊆ FL

X,Y ′′ . (1.8)

Conversely, we have:

4 It should be obvious that F L ∩ K is the matrix of dimension FL obtained by taking
the intersection of every entry of F L with K.

468 S. Lombardy, J. Sakarovitch

Lemma 3.4. If W,Z ⊆ A∗ and (X,Y), (X ′, Y ′) in FL are such that WZ ⊆
FL

X,Y ′ then there exists (X ′′, Y ′′) in FL such that W ⊆ FL

X,Y ′′ and Z ⊆
FL

X′′,Y ′ .

Proof. If WZ ⊆ FL

X,Y ′ then XWZY ′ ⊆ L and there exists a factorisa-
tion (X ′′, Y ′′) that dominates the subfactorisation (XW,ZY ′) of L. The
inclusions XW ⊆ X ′′ and ZY ′ ⊆ Y ′′ yield the conclusion. q.e.d.

A matrix, together with initial and final vectors, is an automaton and one
can see 〈FL, A, F

L, IL, T L〉 as a generalised automaton where the transitions
are labelled by the factors of L, instead of by letters. Figure 4 shows the
factor matrix of the languages L1 and L2 of Example 2.8 in this way.

u v w
A∗aA∗

A∗

A∗bA∗

A∗

A∗ A∗ A∗

A∗abA∗

A∗

(1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

aA∗

A∗

A∗ A∗

aA∗ A∗

A∗

Figure 4. The factor matrix of L1 (left) and of L2 (right)

The starting and ending factorisations play a special role in the factor
matrix. Since XsL = LYe = L, we have XsLYe = L where L is obviously
maximal: FL

Xs,Ye
= L.

For every (X,Y) in FL, FL

Xs,Y is maximal in XsF
L

Xs,Y Y ⊆ L thus in the
factorisation (FL

Xs,Y , Y) of Ys = L, hence FL

Xs,Y = X and dually FL

X,Ye
= Y .

3.2 The syntactic nature of the universal automaton

All that has been done so far for languages, that is, subsets of a free monoid,
could have easily been done as well for subsets in any monoid: the freeness
of the base monoid A∗ was not involved, at the very most the generators
of A∗ were considered but this also could have been bypassed, especially
with the help of the factor matrix. If M is a monoid and K a subset of M ,
a subfactorisation of K is a pair (X,Y) of subsets of M such that XY ⊆ K
and a factorisation is a subfactorisation (X,Y) that is maximal for the
inclusion, that is, if X ⊆ X ′, Y ⊆ Y ′ and X ′Y ′ ⊆ K then X = X ′ and
Y = Y ′. We write FK for the set of factorisations of K. If (X,Y) is in FK

then X is called a left factor and Y a right factor of K. And so on.
On the other hand, the study of regular languages relies heavily on

the notion of morphisms (of monoids) and that of syntactic monoid (of a
language). A language L of A∗ is said to be recognised by a morphism α,

The universal automaton 469

α : A∗ → N , if α−1(α(L)) = L or, which is the same, if L is a union of
classes for the map equivalence of α, that is a congruence of A∗. The same
could be said of a subset K, replacing L, of a monoid M , replacing A∗. The
quotient of A∗ by the coarsest congruence that saturates L is the syntactic

monoid of L, denoted Synt(L). A language of A∗, a subset of a monoid M ,
is said to be recognisable if it is recognised by a morphism into a finite

monoid, or, which is the same, if its syntactic monoid is finite.
We like to say that a property is ‘syntactic’ if true for a language L,

or a subset K, recognised by a surjective morphism α, it is true for α(L)
or α(K). The factorisations, the universal automaton, are ‘syntactic ob-
jects’, as shown by the following.

Proposition 3.5. Let L be a language of A∗, recognised by a surjective

morphism α.

(i) Any factor of L is recognised by α.

(ii) If (X,Y) is a factorisation of L, (α(X), α(Y)) is a factorisation of α(L).

(iii) α establishes a bijection between the factorisations of L and those
of α(L).

Proof. Let (X,Y) be a factorisation of L: XY ⊆ L. Then α(X)α(Y) ⊆
α(L) and (α(X), α(Y)) is a subfactorisation of α(L) which we suppose
dominated by a factorisation (U, V). From α(X) ⊆ U and α(Y) ⊆ V
we deduce X ⊆ α−1(α(X)) ⊆ α−1(U) and Y ⊆ α−1(α(Y)) ⊆ α−1(V)
and α−1(U)α−1(V) ⊆ α−1(α(L)) = L. Since (X,Y) is a factorisation,
X = α−1(U) and Y = α−1(V).

This demonstrates at the same time that, (i) X = α−1(α(X)) and Y =
α−1(α(Y)), and (ii) α(X) = U and α(Y) = V : (α(X), α(Y)) is a factori-
sation of α(L).

For the same reason, α−1(α(FL

X,Y)) = FL

X,Y for all factorisations (X,Y)
and (X ′, Y ′) of L.

Conversely, let (U, V) be a factorisation of α(L); then (α−1(U), α−1(V))
is a subfactorisation of α−1(α(L)) = L which we suppose dominated by
a factorisation (X,Y). Since (U, V) is a factorisation, neither U ⊆ α(X)
or V ⊆ α(Y) may be strict inclusion and (α−1(U), α−1(V)) is a factori-
sation. q.e.d.

Example 3.6. The syntactic monoid of L1 is M1 = {1M1 , x, y, t, z} defined
by the relations xx = x, yy = y, yx = t, and xy = xt = ty = z. The
syntactic morphism α : A∗ → M1 sends a onto x and b onto y. Then
α(L1) = z and the factorisations of z in M1 are ({z},M1), (M1, {z}),
and ({x, t, z}, {y, t, z}).

470 S. Lombardy, J. Sakarovitch

Let M be any monoid and let ψM : M×M →M be the map defined by
ψM ((u, v)) = uv. (This map is not a morphism unless M is commutative.)
It can be seen as the multiplication table of M : in a matrix T of size M×M ,
each element m appears as the entry (u, v) of T , for all (u, v) in ψ−1

M (m).
A factorisation of a subset K of M appears as a maximal rectangle in

the subset ψ−1
M (K) and this point of view, possible in the general case, is

without doubt the simplest when M is finite.

Example 3.7. The table of the monoid M1, cleverly laid out (we have
inverted the order of the elements x and y by row and column) is shown in
Figure 5. The factorisations of the subset {z} are made clearly visible with
rectangles. The figure also shows the factor matrix of {z}, under the form
of an automaton labelled with subsets.

1M1 x y t z

y t y t z

x x z z z

t t z z z

z z z z z

u v w

{x, t, z}

M1

{y, t, z}

M1

M1 M1 M1

z

M1

Figure 5. Factorisations and factor matrix of {z} in M1

Example 3.8. We consider the (additive) monoid Z/3Z. Figure 6 shows
the factorisations of the subset {1, 2} and its universal automaton. The
states are labelled by the left factor of the corresponding factorisation, and
the label of the transitions is always the generator 1. This automaton is
thus (up the addition of the transitions having the label b) the universal
automaton of the language L3 = {w ∈ {a, b}∗ | |w|a 6≡ |w|b mod 3} since
Synt(L3) = Z/3Z and the image of L3 there is {1, 2}.

0 1 2

1 2 0

2 0 1

0 1 2

1,2 2,0 0,1

Figure 6. Factorisations and universal automaton of {1, 2} in Z/3Z

The universal automaton 471

Proposition 3.5 holds for a recognisable subset K of any monoid M .
This implies that such a subset is accepted by an automaton with a finite
number of states, whose transition matrix is the factor matrix FL. To
make this automaton really finite, the monoid is required to be generated
by a finite set G, and the transitions of the universal automaton of K are
then given by FL ∩ G. This automaton accepts K, and more precisely,
for every element x of K, for every factorisation x = x1 . . . xn of x over
G, the sequence (x1, . . . , xn) is the label of (at least) one computation of
the universal automaton. This is the reason why the universal automaton
relates to recognisable subsets and not to rational subsets.

Actually, a subset K of a monoid is rational if and only if there exists
a finite automaton such that for every element of K, there is at least a
factorisation of this element that labels a computation, whereas a subset K
of a finitely generated monoid is recognisable if and only if there exists a
finite automaton such that for every element of K, every factorisation of
this element (w.r.t. the generators) is accepted. 5

3.3 The écorché of the universal automaton

The order on the factorisations of L considered above (and induced by
the inclusion order on the left factors) can be used to give a simplified

description of UL. Indeed, if (X,Y)
a
−−→
UL

(X ′, Y ′) then,

∀(X1, Y1) ∈ FL (X1, Y1) 6 (X,Y) =⇒ (X1, Y1)
a
−−→
UL

(X ′, Y ′),

∀(X2, Y2) ∈ FL (X ′, Y ′) 6 (X2, Y2) =⇒ (X,Y)
a
−−→
UL

(X2, Y2).

Moreover, if (X,Y) is initial, any larger factorisation is initial and, dually,
if it is final, any smaller factorisation is final. The order on factorisations is
described by the matrix CL and what we have just observed is a rewording
of (1.7): CL · EL = EL · CL = EL and of IL = CL · IL and T L = T L · CL.

A solution of XaY ′ ⊆ L is maximal if

X1aY2 ⊆ L and X ⊆ X1 , Y ′ ⊆ Y2 =⇒ X = X1 and Y ′ = Y2

for all factorisations (X1, Y1) and (X2, Y2) in FL. That is, (X,Y) is as large

as possible, and (X ′, Y ′) as small as possible such that (X,Y)
a
−−→
UL

(X ′, Y ′).

We then define the matrix HL of dimension FL and with entries in P (A)
by

a ∈ HL

X,Y ′ =⇒ XaY ′ ⊆ L is maximal.

5 By virtue of Kleene Theorem, in the free monoid, recognisable subsets and rational
subsets are the same: they are regular languages.

472 S. Lombardy, J. Sakarovitch

On the other hand, we note that the starting factorisation (Xs, L) is the
smallest factorisation that is initial in UL and, dually, the ending factorisa-

tion (L, Ye) is the largest factorisation that is final. All these observations
amount to the following.

Proposition 3.9.

(i) HL is the minimal matrix such that EL = CL ·HL · CL;

(ii) IL is the Xsth row of CL;

(iii) T L is the Yeth column of CL.

Further economy in the description consists in considering the “maxi-
mal” solutions of XY ′ ⊆ L that are not in FL and in defining the Boolean
matrix DL by:

DL

X,Y ′ = 1 ⇐⇒ (X,Y) ∈ max{(X ′′, Y ′′) ∈ FL | X ⊂ X ′}.

That is, DL

X,Y ′ is the matrix of the Hasse diagram of the order on factori-
sations.

This definition directly yields

Proposition 3.10. DL is the minimal matrix such that CL = (DL)∗.

Definition 3.11. We call écorché of UL the automaton:
EL = 〈FL, A,D

L ∪HL, {(Xs, L)}, {(L, Ye)}〉.

The automaton UL is then obtained from EL by backward and for-
ward closure of the spontaneous transitions. In the sequel, we rather draw
écorchés instead of universal automata, because they have less transitions
and it is often easier to understand the structure of the universal automaton
on the écorché.

Example 3.12. The factorisations of L1 = A∗abA∗ are totally ordered

u = (A∗, L1) > v = (A∗aA∗, A∗bA∗) > w = (L1, A
∗),

and so are the factorisations of L2 = aA∗:

(aA∗, A∗) 6 (1 + aA∗, aA∗) 6 (A∗,∅).

Figure 7 shows the écorché of the universal automata of these two languages.

In the case of pure-group languages, that is, languages whose syntac-
tic monoid is a group, the écorché of the universal automaton has a very
special form. The states of the strongly connected components are the pair-
wise uncomparable factorisations. The non spontaneous transitions, that is,

The universal automaton 473

u v w
a b

1A∗ 1A∗

b a (1 + aA∗, aA∗) (aA∗, A∗)

(A∗,∅)

a

1A∗

1A∗

b

a+ b

Figure 7. The écorché of UL1 (left) and UL2 (right)

the transitions described by the matrix HL, are all the transitions in these
strongly connected components whereas the spontaneous transitions put an
order on the strongly connected components and the écorché is thus decom-
posed into levels. Figure 8 shows the écorché of UL3 . A more complicated
écorché for a pure group language is shown at Figure 15, where the levels
appear even more clearly. We shall characterise them at Subsection 7.2.

0 1 2

2,0 0,1 1,2

Figure 8. Ecorché of the universal automaton of {1, 2} in Z/3Z

4 Construction of the universal automaton

The universal automaton has been defined, and then described. From what
we have already seen, it follows immediately that the universal automaton of
a regular language is effectively computable. We present now an algorithm
[18], somehow optimal, which performs the task. From this construction
of UL we then derive an effective description of the (left) canonical morphism

from any automaton B which accepts L into UL. An example of a method
for finding a small NFA accepting a given language is described in the last
subsection.

4.1 Computation of the factorisations

As above, let L be a language of A∗. The key for the construction of UL

is the computation of the factorisations of L. From Proposition 2.1, every
right factor of a language is an intersection of left quotients of this lan-
guage. As the quotients of the languages are the futures of the states of any

474 S. Lombardy, J. Sakarovitch

deterministic automaton A that accepts the language, for every factoriza-
tion (Xi, Yi) of the language L, there exists a subset P of states of A such
that Yi =

⋂

p∈P FutA(p). But this subset may be not unique. The set of
subsets P such that the intersection of the futures of states in P is equal to
Yi is closed under union, thus there exists a unique maximal Pi such that
Yi =

⋂

p∈Pi
FutA(p). To get an efficient representation of factorisations, we

have to compute these maximal subsets corresponding to factorisations.
Let A = 〈Q,A, δ, i, T〉 be a complete accessible deterministic automaton

that accepts L. Let QA be the set of states of Acod, the co-determinisation
of A; QA is a subset of P (Q), i.e. an element of P (P (Q)). We denote
by IA the closure under intersection of QA. Notice that IA always contains
Q itself (as the intersection of an empty set of elements of QA).

Theorem 4.1. The mapping ψA from IA into FL defined by:

ψA : IA −→ FL

P 7−→ (X,Y), with Y =
⋂

p∈P

FutA(p)

is a bijection.

Proof. As every intersection of left quotient is a right factor of the language,
this mapping is well defined. In order to prove that this is a bijection, we
prove that

FL −→ P (Q)

(X,Y) 7−→ {p | Y ⊆ FutA(p)}

is a mapping from FL onto IA. Let (X,Y) be a factorisation and P = {p |
Y ⊆ FutA(p)}. Let Acod = 〈QA, A,H, J, t〉 be the co-determinisation of A
and let R be the set of states of Acod that contain P .

By construction of the co-determinisation, for every state s in Acod and
for every word u in FutAcod

(s), it holds: s = {p | u ∈ FutA(p)}. Hence R is
the set of states of Acod whose future has a non empty intersection with Y .
Moreover, Y =

⋃

s∈R FutAcod
(s). Hence, a state p of A belongs to every state

of R if and only if its future contains Y . Thus, P =
⋂

s∈R s ∈ IA. q.e.d.

Remark 4.2. This construction can take any deterministic automaton as
input and gives the same result. Indeed, when a deterministic automaton
is co-determinised, states that are Nerode-equivalent (i.e. that would be
merged by a minimisation algorithm) appear exactly in the same states of
the co-determinisation. They become indissociable and the set IA actually
does not depend on the input, but only on the language L.

The universal automaton 475

Remark 4.3. The order on factorisations is realised on IA by the inclusion
order.

Proposition 4.4. Let A = 〈Q,A, δ, i, T〉 be a complete deterministic au-
tomaton. Let P in IA and (X,Y) = ψA(P). Then

X =
⋃

p∈P

PastA(p) and P = i ⊲ X .

Proof. Let (X,Y) be a factorisation; X = {u | uY ⊆ L} = {u | Y ⊆ u−1L}.
For every word u in X , let p = i ⊲ u; as A is deterministic, u−1L = FutA(p).

Hence, p is in P ; therefore, X ⊆
⋃

p∈P PastA(p). Conversely, let v be a word
in the past of some state p in P . It holds vFutA(p) ⊆ L and Y ⊆ FutA(p),
hence v is in X . q.e.d.

We have thus characterized the factorisations of the language, that is
the states of the universal automaton. We can now give a construction for
the universal automaton.

Proposition 4.5. Let A = 〈Q,A, δ, i, T〉 be a complete deterministic au-
tomaton that accepts L. The automaton 〈IA, A,D, J, U〉 defined by:

D = {(P, a, S) ∈ IA ×A× IA | P ⊲ a ⊆ S} , (1.9)

J = {P ∈ IA | i ∈ P} , U = {P ∈ IA | P ⊆ T }, (1.10)

is isomorphic to the universal automaton of L: UL = 〈FL, A,E
L, IL, T L〉.

Proof. Theorem 4.1 defines a bijection from IA onto FL. We have to check
that the definitions of D, J and U correspond to EL, IL and T L of Defini-
tion 2.4. Let (XP , YP) and (XS , YS) the factorisations corresponding to P
and S:

YP =
⋂

p∈P

FutA(p), YS =
⋂

p∈S

FutA(p).

We have

P ⊲ a ⊆ S ⇐⇒ YS ⊆
⋂

p∈P⊲a

FutA(p)

⇐⇒ aYS ⊆
⋂

p∈P

FutA(p) = YP ⇐⇒ XPaYS ⊆ L.

ψA(J) ={(X,Y) ∈ FL | Y ⊆ L}

={(X,Y) ∈ FL | 1A∗ ∈ X}.

476 S. Lombardy, J. Sakarovitch

ψA(U) = {(X,Y) ∈ FL | 1A∗ ∈ Y }.

q.e.d.

Remark 4.6. Once IA is computed, the construction of UL goes as follow:
IA is the set of states; for every P in IA, if i is in P , make P initial, if P is
a subset of T , make P final; for every letter a, compute P ⊲a, and for every

R in IA that contains P ⊲ a, add a transition (P, a,R).

4.2 Computation of the canonical morphism

If the universal automaton is computed from a complete deterministic ac-
cessible automaton A, the left canonical morphism from any equivalent
automaton B into the universal automaton can be computed in polynomial
time.

Let P be the accessible part of the product of A by B. Every state of P
is a pair (p, q) of a state of A and a state of B. Let Rq be the set of states p
of A such that (p, q) is a state of P . We define an application ϕB from the
states of B into IA: ϕB(q) is the smallest element of IA which contains Rq.

Proposition 4.7. The morphism from B into UL induced by ϕB is the left
canonical morphism.

Proof. Let r be a state of B. It holds Rq = i ⊲
A

PastB(q). Let Y =
⋂

p∈Rq
FutA(p). As A is deterministic, the futures of its states are quo-

tients and thus Y is a right factor. We show that this is the largest right
factor such that [PastB(q)] [Y] ⊆ L.

PastB(q) =
⋃

p∈Rq

PastP((p, q)) ⊆
⋃

p∈Rq

PastA(p)

As
[
⋃

p∈Rq
PastA(p)

] [
⋂

p∈Rq
FutA(p)

]

⊆ L, [PastB(q)] [Y] ⊆ L. Let v be a

word which is not in Y . There exists a state p in Rq such that v is not in
FutA(p) and there exists a word u in PastB(q) such that p = i ⊲

A
u. We have

v 6∈ u−1L and uv 6∈ L. This proves that Y is maximal.
We show now that Y is the right factor of ψA(ϕB(q)). As ϕB(q) is the

smallest element of IA which contains Rq, they correspond to the same
right factor, i.e. Y =

⋂

p∈ϕB(q) FutA(p). q.e.d.

4.3 Searching for NFA of minimal size

It is known that the computation of a NFA with minimal size from the mini-
mal automaton of a language is a PSPACE-complete problem [13]. However,
the universal automaton is a good framework to explain exact algorithms
or to describe heuristics that give approximate solutions.

The universal automaton 477

First, the universal automaton of a language contains any equivalent
NFA with minimal size, since the canonical morphism from this NFA into
the universal automaton is injective.

Then an exact algorithm would consist in enumerating all subautomata
of the universal automaton (starting with the smallest) and testing if they
accept every word of the language.

This fact is the base of many heuristics. There exist several conditions on
subautomata of the universal automaton built as in Proposition 4.5. Each
of these conditions is either necessary or sufficient for the subautomaton
accepts the language. In [25], Polák has made a comparison between a large
set of these conditions. They all give tractable algorithms that compute
NFA accepting the language, hopefully small, but not necessarily of minimal
size.

The first authors that give such a condition are Kameda and Weiner
in [14]. They build a table, whose rows are indexed by the states of the
minimal automaton and the columns by the states of its co-determinisation,
and read factorisations in this table. They define a property of cover, that
guarantees that a set of factorisations corresponds to an automaton (actu-
ally a subautomaton of the universal automaton, even if they do not define
it), that accepts the language.

Along the same line of work, Matz and Potthoff [22] have defined another
automaton, which they call fundamental automaton and which contains,
strictly in some cases, the universal automaton. They then give a condition
that guarantees that a subautomaton of the fundamental automaton accepts
the language. We present here a condition that is inspired by this one and
which is an example of a heuristic that search for small NFA.

Proposition 4.8. Let A = 〈Q,A, δ, i, T〉 be a deterministic complete au-
tomaton and let UL be the universal automaton built from A. Let R be a
subset of IA such that:

(i)
⋃

P∈R,P⊆T P = T ;

(ii) for every P in R, for every letter a, for every q in Q such that q⊲a = p,

there exists S in R, such that q is in S and S ⊲ a ⊆ P .

Then the subautomaton of UL with set of states R accepts the language.

Proof. Let u be a word of L. Let p0 = i, p1, . . . , pk the states of the compu-
tation in A labeled by u. The state pk is final, hence there exists Pk final
in R that contains pk. If there exists Pi that contains pi, as pi = pi−1 ⊲ ui,

there exists Pi−1 in R that contains pi−1 such that there is a transition from
Pi−1 to Pi labeled by a. Hence, by induction, the word u is accepted by the
subautomaton. q.e.d.

478 S. Lombardy, J. Sakarovitch

5 Size of the universal automaton

It follows from the construction of the universal automaton that UL has at
most 2n states if the size of the minimal deterministic automaton is n. The
computation for the language {w | |w| 6= 0 mod n} shows that this bound
is tight (cf. Section 7.2 below and also [9]).

As the determinisation of a non deterministic n-state automaton may
give at most a 2n-state automaton, we immediately get a 22n

upper bound
for the size of the universal automaton with respect to the minimal non
deterministic automaton that accepts the language.

This bound is not tight, for the worst cases in determinisation and in
the construction of the universal automaton cannot occur in a row. We give
here the proof that the tight bound is given by the Dedekind numbers and
also that, in the case of a unary alphabet, the conjunction of worst cases
may occur, but the determinisation does not yield a 2n blow-up then.

5.1 Bounds for the universal automaton

The nth Dedekind number D(n) is defined as the number of monotonous
Boolean functions with n variables. Since such a function is characterised by
a Boolean expression in disjunctive normal form whose clauses are pairwise
uncomparable, it is also the number of antichains of P ([1;n]) (ordered by
inclusion).

Theorem 5.1 (Lombardy, [19]). Let A be an NFA with n states that
accepts a language L. Then:

(i) UL has at most D(n) states;

(ii) the trim part of UL has at most D(n)− 2 states.

For every integer n, there exist automata with n states for which these
bounds are reached.

Remark 5.2. There is no closed form expression for D(n), and its exact
value is only known for n smaller than 9 (cf. [28]). However, Korshunov [16]
has given an approximate expression of D(n). For instance, if n is even,

D(n) ∼ 2(n

n/2) exp

((
n

n/2− 1

)
(
2−n/2 + n22−n−5 − n2−n−4

)

)

.

Figure 9 gives a visual comparison betweenD(n) and the double exponential
function n 7→ 22n

.

Definition 5.3. Let O be an ordered set. An upset V of O is an upperly
closed subset of O:

∀x ∈ V , ∀y ∈ O, x 6 y =⇒ y ∈ V . (1.11)

The universal automaton 479

1

2520

0.2

151050

0.8

0.6

0.4

0

Figure 9. The graph of log2 D(n)
2n

Notice that an upset may be empty and may also be equal to O itself. If
Q is a set, P (Q) or every subset of P (Q) is naturally ordered by inclusion.
Upsets of P (Q) are naturally in bijection with antichains by taking their
minimal elements.

We now use the construction given in the previous section. As we start
with a non deterministic automaton, we first determinize it to obtain an
automaton D that is used to build the universal automaton.

Proposition 5.4. Let A = 〈Q,A,E, I, T 〉 be a non deterministic automa-
ton. Let D = 〈R,A, F, {I}, U〉 be the determinisation of A and C =
〈S,A,G,K, {U}〉 the co-determinisation of D. Every element of S is an
upset of R.

Proof. Let X and Y be two states of D such that X ⊆ Y . It holds
FutD(X) =

⋃

p∈X FutA(p) ⊆
⋃

p∈Y FutA(p) = FutD(Y). Let P be a state of
C which contains X . For every v in FutC(P), P = v ⊳

D
U . As X is in P , v is

in FutD(X), thus in FutD(Y). Hence, Y is in P . q.e.d.

Proposition 5.5. Let A = 〈Q,A,E, I, T 〉 be a non deterministic automa-
ton that recognizes a language L. The universal automaton of L has at
most D(card(Q)) states, where D(n) it the nth Dedekind number.

Proof. Let n = card(Q) and let D be the determinisation of A. As the
intersection of two upsets is an upset, the elements of ID are upsets of
P (Q), and D(n) is equal to the number of upsets of P (Q). q.e.d.

Proposition 5.6. Let A = 〈Q,A,E, I, T 〉 be an NFA that recognizes a
language L. The number of states of the trim universal automaton of L is
bounded by D(card(Q))− 2.

480 S. Lombardy, J. Sakarovitch

Proof. Actually, if a state corresponds to the empty upset, it has an empty
past and it is therefore not accessible. Likewise, if a state corresponds to
the upset {∅}, it has an empty future and it is therefore not co-accessible.

q.e.d.

The first part of Theorem 5.1 is thus established.

(a)

0 1

b
a

a

(b)

01 1 0 ∅

a

b

b
a

a

b

a, b

(c)

0, 1, 01 1, 01 0, 01 ∅

a b a, b

b
a

a

b

(d)

0 1

01

0, 1

∅

{∅}

a

b

a

a a, b
a, b

a

a

a

a, ba, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

a, b

Figure 10. The construction of the universal automaton from Z2

Example 5.7. We give here an example for the construction of the uni-
versal automaton. Let Z2 be the automaton of Figure 10(a). Let D2 be the
determinized automaton of Z2, drawn on Figure 10(b). Each of its states
is a subset of the set of states of Z2. We denote this set by a word whose
letters are the elements of the state: the word 01 stands for the set {0, 1}.
The states of the universal automaton (Figure 10(c)) are upsets of the power
set of states of Z2. We denote an upset by the setr of its minimal elements.
For instance 0, 1 means {{1}, {2}, {0, 1}}. Notice that ∅ is the empty upset,
whereas {∅} is the upset with ∅ as minimal element, i.e. the power set
itself. The non accessible part of the universal automaton is drawn in gray.
The automaton Z2 is an example of the worst case in the construction of
the universal automaton. Indeed, D(2) = 6.

Likewise, D(3) = 20 and we give a three-state automaton which rec-
ognizes a language whose universal automaton has twenty states: the au-
tomaton Z3 shown on Figure 11(a). As the number of transitions of the
universal automaton is to high to allow to draw them all, the more compact
representation given by the écorché is drawn on Figure 11(c).

The universal automaton 481

a)

0

1

2

b

b

a

a

a

b)

012

12

02 01

0

2 1

∅

a

bb

a

a

a

b b

a

a

a

b

b

ba, b

c)

0, 1 1, 2

0, 2

0

1 2

01

1202

0, 12

1, 02 2, 01

01, 02, 12

012

02, 12

01, 02

01, 12

0, 1, 2

∅

{∅}

a

a

a

a

a

a

a

a

a

a

b

a

a

a

a

aa

b

b b

b

a

a

a, b

a, b

Figure 11. The construction of the universal automaton from Z3

In the following section, we generalise this example to show that, for
every n, there exists a n-state NFA that accepts a language whose universal
automaton has D(n) states.

5.2 Reaching the bounds of the universal automata

As announced, we introduce first a notation for the dual action induced by
an automaton.

Definition 5.8. Let A = 〈Q,A,E, I, T 〉 be an automaton. The set of

predecessors of a state p of A by a letter a is a ⊳
A
p = {q ∈ Q | (q, a, p) ∈ E},

denoted a ⊳ p if there is no ambiguity. This defines a left action of A∗

on P (Q): for every letter a, every word w, and every subset X of Q, we

482 S. Lombardy, J. Sakarovitch

have:

a ⊳
A
X =

⋃

p∈X

a ⊳
A
p , 1A∗ ⊳

A
X = X , aw ⊳

A
X = a ⊳

A
(w ⊳

A
X).

Obviously, q is in p ⊲
A
w if and only if p is in w ⊳

A
q. In the sequel, for every

positive integer n, Zn = 〈Q,A,E, I, T 〉 is the automaton defined by:

Q = Z/nZ; A ={a, b}; I = T = Q;

E = {(p, a, p+ 1) | p ∈Q} ∪ {(p, b, p) | p ∈ Qr{0}}.
(1.12)

In the sequel, if X is a subset of Q, i.e. a subset of Z/nZ, for every
integer k, we denote X + k = {x+ k | x ∈ X}.

Lemma 5.9. Let n be a positive integer. The determinisation of Zn is
Dn = 〈P (Q) , A, F, {Q},P (Q)r{∅}〉, with:

F = {(X, a,X + 1), (X, b,Xr{0}) | X ⊆ Q}. (1.13)

Proof. As every state of A is initial, the initial state of D is Q. As every
state of A is terminal, every state of D different from ∅ is terminal.
If X is a subset of Q, X ⊲

A
a =

⋃

p∈X p ⊲
A
a =

⋃

p∈X p+ 1 = X + 1; likewise,

X ⊲
A
b =

⋃

p∈X,p6=0 p = Xr{0}. This gives the set of transitions F of D.

We show that every element of P (Q) is an accessible state by induction
on the number of elements. The set Q itself is the initial state of D. Let
assume that X is an accessible state. Let x be an element of X , we show
that Xr{x} is accessible. Actually, X ⊲ an−xbax = (X − x) ⊲ bax = ((X −

x)r{0}) ⊲ ax = ((X − x)r{0}) + x = Xr{x}. Therefore, every element of

P (Q) is accessible. q.e.d.

For every subset X of Q, we denote X = {Y | Y ⊆ X}, and (X)
c

=
P (Q)rX; we can notice that (X)c is an upset of P (Q).

Lemma 5.10. Let n be a positive integer. The co-determinisation of Dn

is Cn = 〈S,A,G,K, V 〉, with:

S = {(X)
c
| X ∈ P (Q)}; K =Sr{∅}; V = {(∅)

c
}

G = {(X)
c
, a, (Y)

c
| (X, a, Y) ∈ F}∪{

(

X ∪ {0}
)c

, b, (X)
c
| X ⊆ Q}.

(1.14)

Proof. As any state X of Dn different from ∅ is final, the state t = (∅)
c

is the final state of Dn. First, we show by induction on the word w that

The universal automaton 483

any state P = w ⊳ t is in S. This is obviously true if w is the empty word:

P = t. If P = (X)c is in S, so its predecessors are:

a ⊳
C

(X)
c

={a ⊳
D
Y | Y 6⊆ X} = {Y | Y 6⊆ a ⊳

D
X} =

(

a ⊳
D
X

)c

= (X − 1)
c
;

(1.15)

b ⊳
C

(X)
c

={b ⊳
D
Y | Y 6⊆ X}

={Y | Y 6⊆ X, 0 6∈ Y } ∪ {Y ∪ {0} | Y 6⊆ X, 0 6∈ Y }

={Y | Y 6⊆ X ∪ {0}, 0 6∈ Y } ∪ {Y ′ | Y ′ 6⊆ X ∪ {0}, 0 ∈ Y ′}

={Y | Y 6⊆ X ∪ {0}} =
(

X ∪ {0}
)c

.

(1.16)

We show that every element P = (X)
c

of S is co-accessible from t.If X = ∅,

then P = t. If P = (X)c is co-accessible, for any x in Q, P ′ =
(

X ∪ {x}
)c

is co-accessible too:

an−xbax ⊳
C
P = an−xb ⊳

C
(X − x)c = an−x ⊳

C

(

(X − x) ∪ {0}
)c

=
(

X ∪ {x}
)c

.

(1.17)
Therefore the set of states of Cn is exactly S. q.e.d.

Lemma 5.11. Let Q be a finite set. The intersection closure of {(X)
c
|

X ∈ P (Q)} is exactly the set of upsets of P (Q).

Proof. Let U be an upset of P (Q). For every Y in U , for every X not in
U , Y 6⊆ X . Hence, Y is in (X)

c
and U is a subset of (X)

c
. Thus, as X is

not in (X)c, it comes U =
⋂

X 6∈U
(X)c. q.e.d.

With this last lemma, the proof of Theorem 5.1 is now complete.
In the case of a one-letter alphabet, the determinisation algorithm is

known not to be exponential. Indeed, if A is a one-letter NFA with n
states, the determinisation ofA (and the minimal automaton of the accepted
language) has at most G(n) states (cf. [3]), where G(n) is the Landau
function of n, that is, the maximal least common multiple of a set of integers
with sum equal to n. We show that in this case, the obvious upper bound
2G(n) for the size of the universal automaton is tight.

Proposition 5.12. For every integer n, there exist automata with n states
over a one-letter alphabet such that, if L is the accepted language:

(i) UL has 2G(n) states;

(ii) the trim part of UL has 2G(n) − 2 states.

484 S. Lombardy, J. Sakarovitch

Proof. There exist an integer r and r numbers k1, .., kr such that k1+..+kr =
n and lcm(k1, k2, ..., kr) = G(n). Let Q be the disjoint union of all the
(Qi = Z/kiZ) for i in [1; r] and let Yn = 〈Q, {a}, E, I, T〉 be the automaton
defined by:

I = {0 ∈ Qi | i ∈ [1; r]}, T = QrI, E = {(p, a, p+ 1) | ∃i, p ∈ Qi}.

The determinisation of Yn is the automaton Dn = 〈R, {a}, F, J, U〉, with
R = Z/G(n)Z, J = {0}, U = RrJ and F = {(p, a, p+ 1) | p ∈ R}.

The states of the co-determinisation of Dn are all the subset of R with
card(R)−1 elements. The intersection closure of this set of states is equal to
P (R). Hence, the universal automaton of the language recognized by Yn has
2G(n) states and the trim universal automaton has 2G(n) − 2 states. q.e.d.

a)

0

1

2

3

a a

aa

b)

0

1

2

3

a a

aa

01

12

23

03

a a

aa

012

123

023

013

a a

aa

02 1302 13
a

a

∅

a

0123

a

Figure 12. The automaton Y4 and its universal automaton

Remark 5.13. Starting from a one-letter DFA with n states (n > 1), it is
not possible to obtain a trim universal automaton with 2n − 1 states. The
state corresponding to the empty set in the construction of Theorem 4.1
cannot be accessible. If the full set corresponds to a co-accessible state,
it means that every state of the DFA is final, thus every word is accepted
and the universal automaton has one state, or, if the DFA is not complete,

The universal automaton 485

the language is a finite prefix language and the universal automaton has n
states. Therefore, the trim universal automaton has at most 2n − 2 states.

Example 5.14. Let Y4 be the automaton of Figure 12 a). It is equal to
D4 (actually, G(4) = 4). The universal automaton, drawn on Figure 12 b),
has 24 = 16 states, including a non accessible state and a non co-accessible
state.

6 Equations in the universal automaton

John H. Conway who gave, in his own language and terminology [5], an-
other definition of the universal automaton, was not at all interested in the
computation of small NFA’s for a regular language. He used the factor

matrix of a language to solve two dual classes of problems. First, in the
approximation problem, are given on one hand a language L in A∗ and on
the other hand a family K = {K1, . . . ,Kn}, all in A∗. The latter determines
a substitution σ from X∗ into A∗, with X = {x1, . . . , xn} and σ(xi) = Ki.
The construction of the universal automaton of L allows us to show that
the set W of words w in X∗ such that σ(w) is contained in L is regular
when L is regular (and without any hypohesis on the Ki’s).

The dual problem is the one of (in)equations. The regular languages L
in A∗ and K in X∗ being given, the universal automaton of L allows the
effective computation of all maximal n-tuples of languages {H1, . . . , Hn}
such that σ(K) is contained in L.

6.1 The approximation problem

The construction of the automaton UL can be seen as a special case of an
approximation problem: the reasoning that proves that UL accepts L can
be generalised to other families of subsets than the generating set of A∗,
with remarkable results.

Let L be a language of A∗ and K = {K1, . . . ,Kn} a family of n languages
of A∗. We set X = {x1, x2, . . . , xn} an n-letter alphabet and σ : B∗ → A∗

the substitution defined by

∀i ∈ [1;n] σ(xi) = Ki.

The sole consideration of the syntactic morphism allows us to show that the
language W over B∗,

W = {f ∈ B∗ | σ(f) ⊆ L} ,

is recognisable if L is recognisable and without any assumption on the Ki’s
— a corollary of a result in [26], see [27]. But here we prove the result and
give it a more precise interpretation using the universal automaton.

486 S. Lombardy, J. Sakarovitch

To simplify the statements, with Ki and hence σ being fixed, we write
σ̆ for the map from P (A∗) to P (B∗) defined by

∀L ∈ P (A∗) σ̆(L) = {f ∈ B∗ | σ(f) ⊆ L} , (1.18)

that is, σ̆(L) is equal to the language W defined above. The map σ̆ acts
as the inverse of the substitution σ but retains only those words whose
image under σ is contained in L. In other words, σ(σ̆(L)) is the best possi-

ble approximation (by default) to L as a sum of products of languages Ki

and σ̆(L) describes how this approximation is constructed.
Let L be a language of A∗, UL its universal automaton and FL its factor

matrix. We write SKL for the automaton over X∗ obtained from UL by
replacing each label EL

X,Y ′ by the set of letters in X whose image under σ
is contained in FL

X,Y ′ :

∀(X,Y), (X ′, Y ′) ∈ FL (X,Y)
x
−−→
SK

L

(X ′, Y ′) ⇐⇒ σ(x) ⊆ FL

X,Y ′ .

Theorem 6.1 (Conway [5]). σ̆(L) = |SKL |.

Proof. The proof goes by induction on the length of f and amounts to
establish that, for all (X,Y), (X ′, Y ′) in FL, and all f in B∗, it holds:

(X,Y)
f
−−→
SK

L

(X ′, Y ′) ⇐⇒ σ(f) ⊆ FL

X,Y ′ .

For |f | = 1, this is exactly the definition of SKL .

Suppose then that we have (X,Y)
xf
−−−→
SK

L

(X ′, Y ′); then there exists

(X ′′, Y ′′) in FL such that (X,Y)
x
−−→
SK

L

(X ′′, Y ′′) and (X ′′, Y ′′)
f
−−→
SK

L

(X ′, Y ′).

We thus have σ(x) ⊆ FL

X,Y ′′ by definition of SKL and σ(f) ⊆ FL

X′′,Y ′ by
induction hypothesis. Then, by Equation (1.8),

σ(xf) ⊆ FL

X,Y ′′FL

X′′,Y ′ ⊆ FL

X,Y ′ .

Conversely, suppose that σ(xf) = σ(x)σ(f) ⊆ FL

X,Y ′ . By Lemma 3.4,
there exists (X ′′, Y ′′) in FL such that σ(x) ⊆ FL

X,Y ′′ and σ(f) ⊆ FL

X′′,Y ′ .
This, in turn, by definition of SKL and by induction hypothesis, implies

(X,Y)
xf
−−−→
SK

L

(X ′, Y ′). q.e.d.

As announced, a mere consequence of Theorem 6.1 is that if L is regular,
UL has a finite number of states and σ̆(L) is regular. The definition of SKL is
itself a procedure for computing the ‘best approximation’ to L, on condition
that we know how to compute effectively the factors of L and the inclusion
of Ki in these factors. These conditions are fulfilled in particular when
considering the rational sets of a free monoid. We then deduce:

The universal automaton 487

Corollary 6.2. Given a regular language L and a finite family K of regular
languages over A∗, we can decide whether L belongs to RatK, the rational
closure of K.

Proof. We compute the best approximation to L by the n languages of the
family K and then decide whether this approximation is equal to L. q.e.d.

The elegance of this proof, and the efficiency of the computations it
entails is to be compared with those of the proofs given subsequently for
the same result (e.g. [10]).

6.2 Solutions of pure language equations

The problem of approximation is susceptible to a ‘dual’ approach.6 The
(recognisable) subset L of A∗ having been fixed, instead of choosing the
subsets Ki, that is the substitution σ : B∗ → A∗, and trying to compute the
language σ̆(L) over B∗, we can choose a language W (not even necessarily
regular) over a free monoid B∗ and seek a substitution σ : B∗ → A∗ such
that σ(W) ⊆ L, which will be called a sub-solution of the problem (L,W).
The sub-solutions are naturally (and partially) ordered by inclusion of the
images of the letters of B, and the interesting sub-solutions are the maximal
ones.

Theorem 6.3 (Conway, [5]). Let L be a subset of A∗, W a language of B∗

and σ : B∗ → A∗ a maximal sub-solution of the problem (L,W). Then for
each x in B, σ(x) is an intersection of factors of L.

Proof. Let f = x1x2 . . . xn be a word of W . If σ is a solution of (L,W),
σ(x1)σ(x2) . . . σ(xn) ⊆ L. By Lemma 3.4, and an induction argument, there
exist (X0, Y0), (X1, Y1), . . . , (Xn, Yn) in FL such that

σ(xi) ⊆ FL

Xi−1,Yi

for each i in [1;n]. As these inclusions are verified for each f inW , each σ(xi)
is contained in an intersection of factors and such an intersection is a max-
imal component in a sub-solution of the problem. q.e.d.

Corollary 6.4 (Conway, [5]). If L is regular, then the maximal sub-solu-
tions of the problem (L,W) are k-tuples (k = Card(B)) of regular subsets
ofA∗. If in additionW is regular, we can effectively compute all the maximal
sub-solutions of the problem (L,W).

Proof. If L is regular, there is only a finite number of factors that are all
regular and their intersections are finite in number and regular. There is
only a finite number of k-tuples of intersections among which all the maximal

6 This is not the left-right duality of automata, but rather a vector–linear form duality.

488 S. Lombardy, J. Sakarovitch

sub-solutions are found. If W is regular we can effectively find all the k-
tuples which are sub-solutions and keep only the maximal ones. q.e.d.

Example 6.5. A regular language L of A∗ being chosen, let us find all the
subsets U such that U2 ⊆ L and U is maximal for this property (i.e. find
the maximal sub-solutions of the problem (L, x2)). If U2 ⊆ L, (U,U) is a
subfactorisation of L, it is dominated by (at least) one factorisation (X,Y),
and U ⊆ X ∩ Y . The maximal sub-solutions are thus among the X ∩ Y
when (X,Y) varies over FL.

7 Stars in the universal automaton

Last but not least, the universal automaton contains informations on the
star height of the language if it is a regular one, may be not always but
certainly for some subfamilies of regular languages — and this was what
motivated first the interest of the authors in this construction.

The computation of the star height problem is a hard question that
was stated by Eggan [8] in 1963. It was positively solved in 1988 by
Hashiguchi [11] and Kirsten gave more recently a particulary elegant proof
for its decidability [15]. The results we present here do not give the solution
of the star height problem for any regular language, but in the cases where
they can be applied, they give more precise informations on the form of the
result than the other works.

7.1 Star height and loop complexity

The star height of a regular expression E, denoted by h(E), is defined recur-
sively by:

if E = 0, E = 1 or E = a ∈ A, h(E) = 0 ,

if E = E′ + E′′ or E = E′ · E′′, h(E) = max(h(E′), h(E′′)) ,

if E = F∗, h(E) = 1 + h(F) .

Example 7.1. The expressions (a+ 1)(a2 + b)∗a+ 1 and (b∗a+ 1)(ab∗a)∗

have star height 1 and 2 respectively. As they both denote the same lan-
guage accepted by the automaton A2 shown at Figure 13, two equivalent
expressions may have different star heights.

Definition 7.2. The star height of a regular language L of A∗, which we
note as h(L), is the minimum of the star height of the expressions that
denote the language L:

h(L) = min{h(E) | E ∈ RatEA∗ |E| = L} .

The universal automaton 489

21
a

ab

Figure 13. The automaton A2

The star height induces a hierarchy on regular languages. We shall give
examples for the fact (see Corollary 7.12):

Fact 7.3. There exist regular languages of arbitrary large star height.

The star height of an expression reflects also a structural property of
an automaton which corresponds to that expression (more precisely, of the
underlying graph of an automaton). In order to state it, we first define
the notion of a ball of a graph: a ball in a graph is a strongly connected
component that contains at least one arc.

Definition 7.4. The loop complexity7 of a graph G is the integer lc(G)
recursively defined by:

lc(G) = 0 if G contains no ball (in particular, if G is empty);

lc(G) = max{lc(P) | P ball of G} if G is not a ball itself;

lc(G) = 1 + min{lc(Gr{s}) | s vertex of G} if G is a ball.

As Eggan showed, star height and loop complexity are the two faces of
the same notion:

Theorem 7.5 (Eggan [8]). The star height of a language L is equal to the
minimal loop complexity of an automaton that accepts L.

More precisely, from every automaton with loop complexity n, an ex-
pression with star height n can be computed, and vice-versa. Theorem 7.5
allows to deal with automata instead of expressions, and to look for au-
tomata of minimal loop complexity instead of expressions of minimal star
height. A reason why star height, or loop complexity is not an easy param-
eter to compute is given by the following fact, for which we give an example
below (see Example 7.13).

Fact 7.6. The minimal automaton is not always of minimal loop complexity
(for the language it recognises).

7 Eggan [8] as well as Cohen [4] and Hashiguchi [12] call it ‘cycle rank’, Büchi calls
it ‘feedback complexity’. McNaughton [23] calls loop complexity of a language the
minimum cycle rank of an automaton that accepts the language. We have taken this
terminology and made it parallel to star height, for ‘rank’ is a word of already many
different meanings.

490 S. Lombardy, J. Sakarovitch

The following structural result gives a criterium to bound the loop com-
plexity of an automaton.

Definition 7.7. Let A and B be two automata and let ϕ be a surjective
morphism from A onto B. The morphism ϕ is conformal if every path in B
is the image of a path in A.

Theorem 7.8 (McNaughton, [23]). If ϕ : B → A is a conformal morphism,
the loop complexity of B is larger than or equal to that of A: that is,
lc(B) > lc(A).

We first show a lemma:

Lemma 7.9. Let ϕ : B → A be a conformal morphism. For every ball P
in A, there exists a ball Q in B such that the restriction of ϕ to Q is a
conformal morphism from Q to P .

Proof. This lemma (like the theorem) is in fact a proposition about graphs,
but we shall use automata-theoretic notions to simplify the proof. We as-
sume, possibly by changing them all, that each transition of A bears a
distinct label, and that each state of A is both initial and final; this may
change the language accepted by A but has no effect on its loop complexity.
The words of the language recognised by A (resp. by a subautomaton P
of A) describe paths in the graph A (resp. in the sub-graph P). The tran-
sitions of B are labeled in such a way that ϕ is an automata morphism and
each state of B is both initial and final.

Let P be a ball in A and R = Pϕ−1. Set n = ‖R‖ and m = ‖P‖ to be
the number of states of R and P respectively and consider a circuit (hence
a word) w which visits all the paths in P of length less than 2n+m. The
circuit wn is a path in P which can be lifted to a path in R (since ϕ is
conformal). By the proof of the block star lemma, a factor wk is the label
of a circuit in R; let Q be the ball in R, and hence in B, that contains this
circuit. By construction, Q recognises all words of length less than 2n+m

of the language recognised by P , hence Q is equivalent to P , hence all the
paths in P become paths in Q: thus, ϕ is conformal from Q to P . q.e.d.

Proof of Theorem 7.8. Suppose that the property is false, and proceed by
reductio ad absurdum. Among the automata which are sent by a conformal
morphism to an automaton of strictly greater complexity, let B be an au-
tomaton of minimal loop complexity d, and let A, of complexity c, be the
image of B under a conformal morphism: thus, c > d.

If d = 0, the length of the paths in B is bounded and it is impossible
for ϕ to be conformal, hence d > 0.

By definition, there is a ball P in A of complexity c and, by Lemma 7.9,
a ball Q in B whose image under ϕ is P . This ball is of complexity at most d

The universal automaton 491

but also, by the minimality of d, at least d. There exists a state q in Q such
that

lc(Qr{q}) = d− 1. (1.19)

Let p = qϕ, P ′ = Pr{p} andQ′ = Qr{pϕ−1}; we have lc(Q′) 6 lc(Qr{q}) =
d− 1 and lc(P ′) > c− 1 > d− 1.

Every path in P ′ is a path in P which does not visit p, hence the image
of a path in Q which does not go through any of the vertices of pϕ−1; that
is, the image of a path in Q′: thus, ϕ is a conformal morphism from Q′

to P ′, which contradicts the assumed minimality of d. q.e.d.

7.2 Star height of group languages

The star height of a group language can be computed within the universal
automaton. The simplest instance of this fact is the following statement
which provides a new, easier, and clearer presentation of McNaughton’s
proof of computability of the star height of pure group languages.

Theorem 7.10 (Lombardy-Sakarovitch, [21]). The universal automaton
of a regular group language L contains a subautomaton of minimal loop
complexity that recognises L.

Since the universal automaton of a regular language is finite, we can
enumerate its subautomata, keeping those that recognise the language, and
from among them find those of minimal loop complexity. We therefore have:

Corollary 7.11 (McNaughton, [23]). The star height of a regular group
language is computable.

Furthermore, the same theorem allows us to establish directly, a result
whose original proof relied on a highly subtle combinatorial method. Let Wq

be the language defined by:

Wq = {w ∈ {a, b}∗ | |w|a ≡ |w|b mod 2q}.

Corollary 7.12 (Dejean-Schützenberger, [7]). lc(Wq) = q.

In this case indeed the universal automaton is isomorphic to the minimal
automaton, which has thus the minimal loop complexity (see below).

Example 7.13. Let H2 and H3 be the languages over A∗ = {a, b}∗ consist-
ing of words whose number of a’s is congruent to the number of b’s plus 1
modulo 2 and 3 respectively and H6 their union:

H2 = {f | |f |a − |f |b ≡ 1 mod 2} , H3 = {f | |f |a − |f |b ≡ 1 mod 3}

and H6 = {f | |f |a − |f |b ≡ 1, 3, 4 or 5 mod 6}.

492 S. Lombardy, J. Sakarovitch

a

a

a

b
b b

a+ b

a+ b

a

a

a

a

a

a

b

b
b

b

b
b

Figure 14. An automaton of minimal loop complexity (left) which is not
the minimal automaton (right) for H6

The minimal automaton of H6 is the ‘double ring’ of length 6 whose loop
complexity is 3. The minimal automata of H2 and H3 have complexity 1
and 2, hence the star height of H6 is at most 2 (cf. Figure 14).

Figure 15 shows the écorché of the universal automaton of H6. We see,
all the better for its grey background, a subautomaton of this universal
automaton which recognises H6, with a minimal complexity. This subau-
tomaton is equal to the union of the minimal automata of H2 and H3 seen
above, and this is not a coincidence.

Let B be an automaton of minimal loop complexity which recognises L
and ϕ : B → UL a morphism from B to the universal automaton of L. If ϕ is
a conformal morphism from B to its image ϕ(B) in UL, this subautomaton
of UL is of lesser or equal complexity to that of B by Theorem 7.8 and
the property is proved. However, in the general case ϕ is not conformal.
The proof comes down to showing that nonetheless ϕ is conformal on some
subautomata of B (on some balls) which are crucial for the complexity. We
start by proving some properties of the structure of the universal automaton
of a group language.

7.2.1 The universal automaton of a group language

In what follows, L ⊆ A∗ is a group language, α : A∗ → G is the syntactic
morphism, P = α(L) and AL = 〈G,A, δ, 1G, P 〉 is a complete accessible
deterministic automaton that recognises L. For w in A∗ and g in G we
therefore write g ⊲ w for gα(w), multiplication in G.

As we have seen (Subsection 3.2), the universal automaton UL of L, is
obtained by considering the factorisations (X,Y) of P in G and that if

(X1, Y1)
a
−−→
UL

(X2, Y2)

is a transition of UL, then X1(aα)Y2 ⊆ P and hence

X1 ⊲ a ⊆ X2 and α(a)−1Y2 ⊆ Y1.

The universal automaton 493

0

1
2 3

4

5

0,1

1,2

2,3 3,4

4,5

0,5

0,3

1,4

2,5

0,2,4 1,3,5

0,1,2,4

1,2,3,5

0,2,3,4 1,3,4,5

0,2,4,5

0,1,3,5

Figure 15. The écorché of the universal automaton of H6 (without the sink

and co-sink states). The bold arrows represent a double transition, one labeled a

in the direction of the arrow and one labeled b in the opposite direction; the dotted

arrows represent the spontaneous transitions.

Lemma 7.14. The balls of UL are deterministic and complete.

Proof. Let (X1, Y1) and (X2, Y2) be two states of UL belonging to the same
ball. There exists u and v in A∗ such thatX1⊲u ⊆ X2 andX2⊲v ⊆ X1. As G

is a group, the action of every element is injective and ‖X1‖ 6 ‖X2‖ 6 ‖X1‖
hence ‖X1‖ = ‖X2‖ and X1 ⊲ u = X2. That is, X2 is uniquely determined

by X1 and u: the ball is deterministic.
Furthermore, if (X,Y) is a factorisation of P , then (X(uα), (uα)−1Y)

is also a factorisation of P , for all u in A∗, and there exists a transition
labeled u from the first to the second. For all u, there exists v such that
(uv)α = 1G, and hence a transition labeled v from (X(uα), (uα)−1Y) to
(X,Y). Thus, (X(uα), (uα)−1Y) belongs to the same ball as (X,Y) and
the ball is complete. q.e.d.

A direct consequence of Lemma 7.14 is the following.

Corollary 7.15. Let L be a group language whose image in its syntactic
monoid is reduced to one element. Then UL is isomorphic with the minimal

494 S. Lombardy, J. Sakarovitch

automaton of L whose loop complexity is thus minimal.

7.2.2 Proof of Theorem 7.10

Lemma 7.16. For every integer k, there exists a word wk in A∗ whose
image in G is 1G and such that every computation of length k of every
ball C in UL is contained in every computation of C labeled wk.

Proof. Every word whose image in G is 1G labels a circuit in every ball
of UL and for every source vertex. For each ball, and each vertex of this
ball, we construct a circuit which visits every computation of length k of
this ball. The product of the labels of all these circuits is a word wk that
answers the question. q.e.d.

We now turn to the proof of the theorem itself.

Proof of Theorem 7.10. The automaton B, an automaton of minimal loop
complexity which recognises L, has n states. Let g be in P , a final state
of AL, and ug be a word in A∗ that is sent to g by α. For every integer k, the
word (wk)nug is in L and is hence accepted by B. The Block Star Lemma,
applied to the factors wk, ensures that there exists a state pk of B such that
there exists a circuit with source pk labeled by a certain power (wl

k). Let Dk

be the ball in B which contains pk, and hence this circuit. We thus obtain
an infinite sequence of balls Dk in which at least one ball D in B appears
infinitely often.

Let C be the ball in UL which contains the image of D under the mor-
phism ϕ : B → UL. For every path c in C, there exists a k greater than
the length of c, an integer l and a state p of D such that there exists a
loop in D with source p labeled (wk)l. This same word (wk)l labels a loop
in C which contains all the computations of length less than or equal to k;
it thus contains c in particular. That is, c is the image of a computation
of D, hence on one hand, C is the image of D under ϕ and on the other, the
restriction of ϕ to D is conformal. By Theorem 7.8, lc(D) > lc(C).

Let (X,Y) be the factorisation, which is the image of p under ϕ (the
state p that was defined just above). Since (wk)l′ is in PastB(p), 1G is
in PastUL

((X,Y)) and hence 1G is in X ; that is, (X,Y) is an initial state
of UL. Likewise, (wk)l′′ug is in FutB(p) and g is in Y . Every word u
of A∗ such that uα = g labels a computation of C with source (X,Y) and
destination (Xg, g−1Y), a final state of UL, since 1G ∈ g−1Y . Hence u is
accepted by C.

We can repeat this construction for each g in P and finally obtain a set
of balls of UL that recognise all of L and each of which has complexity less
than or equal to at least one ball in B. The complexity of the set is at most
equal to that of B, which was assumed to be minimal. q.e.d.

The universal automaton 495

7.3 Star height of reversible languages

The method of the proof of Theorem 7.10 can be both deepened and gen-
eralised in order to settle the question of star height for a larger class of
languages.

Definition 7.17. An automaton A is reversible if the letters induce partial
bijections on the set of states, that is, if for every state p and every letter a,
card(p ⊲ a) 6 1 and card(a ⊳ p) 6 1.

A language is reversible if it is recognised by a reversible automaton.

Remark 7.18. A reversible automaton may be not deterministic, nor co-
deterministic, for the definition puts no restriction on the number of initial
or final sates.

The minimal automaton of a reversible language may be not reversible.
Nevertheless, given an automaton, it can be decided (in polynomial time)
whether the language it accepts is reversible or not (see [24]). It is to be
stressed that this decision procedure does not yield a reversible automaton
for a regular language that is determined to be reversible but only the
information that such a reversible automaton exists.

Theorem 7.19 (Lombardy-Sakarovitch, [20]). The universal automaton of
a reversible language contains an equivalent subautomaton of minimal loop
complexity.

The subautomaton quoted in this result is not necessarily reversible, but
it is ‘not far’ of being so. We then introduce a weaker notion for automata,
that will not change the class of accepted languages and that will be useful
for both the statement and the proof of the result.

Definition 7.20. An automaton A is quasi-reversible if for every state p
and every letter a the following holds:

(i) if card(p ⊲ a) > 1, none of the states in p ⊲ a is in the same ball as p;

(ii) if card(a ⊳ p) > 1, none of the states is a ⊳ p is in the same ball as p.

Quasi-reversible automata will be analysed by means of the following
decomposition.

Definition 7.21. Let A be an automaton. A subautomaton B of A is a

A-constituent if the following holds:

(i) any ball of A is either contained in, or disjoint from, B;

(ii) there is at most one incoming transition to, and one outgoing transi-
tion from, every ball of B;

496 S. Lombardy, J. Sakarovitch

(iii) B has one initial state and one final state.

It follows from the definition that every finite automaton A has a finite
(but exponential) number of A-constituents and that any A-constituent of
a quasi-reversible automaton A is a reversible automaton. It then holds:

Proposition 7.22. The language accepted by a quasi-reversible automaton
is reversible.

We can now give the main result of this section its true form.

Theorem 7.23 (Lombardy, [17]). The universal automaton of a reversible
language contains an equivalent quasi-reversible subautomaton of minimal
loop complexity.

The overall scheme of the proof is illustrated by the figure below.

A

reversible

B

lc-minimal

AL

minimal automaton

ϕ

decomposition

UL

universal automaton
of L

construction

A-constituants

reversible(Dk)Unknown

Known

Figure 16. The construction underlying the proof of Theorem 7.23

Let L be a reversible language. We know that there exists an unknown
automaton A that recognizes this language and there exists an unknown
automaton B that recognizes this language with a minimal loop complexity.
On the other side, we can build the minimal automaton AL of the language
and the universal automaton UL. We know that there exists a morphism ϕ
from B into UL. Notice that the image of B by ϕ may have a loop complexity
greater than the loop complexity of B.

Thanks to the reversible automaton A, we decompose L into a union
of sub-languages, and we prove that the images of the computations in B
labeled by these sub-languages give a subautomaton of UL which is both
quasi-reversible and with minimal loop complexity.

The universal automaton 497

To prove the theorem, we must give first a more precise description of
the structure of the universal automaton.

7.3.1 The universal automaton of a reversible language

To handle the particular structure of the universal automaton of a reversible
language, we consider the construction of the universal automaton from a
reversible automaton A with set of states Q. From Proposition 5.4, every
state of the universal automaton is an upset of P (Q).

Every upset is characterized by the anti-chain of its minimal elements.
The shape of an upset R of P (Q) is a |Q| + 1-uplet s(R) of integers such
that, for every k ∈ [0; |Q|], s(R)k is the number of subsets of Q with cardinal
k among minimal elements of R. We define a lexicographic order on shapes:

s(R) < s(R′) ⇐⇒

∃k ∈ [0; |Q|] , ∀l ∈ [0; k − 1] s(R)l = s(R′)l and s(R)k < s(R′)k.

Proposition 7.24. If there is a path in the universal automaton from a
state with index R to a state with index R′, then s(R) 6 s(R′)

Proof. Let w be the label of the path. The state R′ contains {X ⊲ w | X ∈

R}. For every minimal element X in R, either X ⊲w has the same cardinal

as X , or it has a smaller cardinal.
If there is some X such that |X ⊲ w| < |X |, thanks to the reversibility

of A there is no X ′ such that X ′ ⊲ w = X ⊲ w and |X ′| = |X ′ ⊲ w|, hence,

s(R) 6 s(R′). Otherwise, let M be the set of minimal elements of R; the
set {X ⊲ w | X ∈ M} is a subset of the set of minimal elements of R′ and

s(R) 6 s(R′). q.e.d.

Proposition 7.25. The balls of the universal automaton of a reversible
language are reversible.

Proof. Let R and R′ be two such states. Let u be a word that labels a
path from R to R′ and let v be a word that labels a path from R′ to R.
By Proposition 7.24, two states that belong to the same ball have the same
shape. In this case, if M the set of minimal elements of R, for every X
in M , Y = X ⊲ u is a minimal element of R′ and |Y | = |X |. Thanks to

the reversibility, the mapping from M into the minimal elements M ′ of
R′ is injective. Likewise, there is an injective mapping from M ′ into M .
Therefore, the word u induces a bijection between M and M ′; as these
minimal elements characterize states, the balls are reversible. q.e.d.

498 S. Lombardy, J. Sakarovitch

Corollary 7.26 (Cohen, [4]). If L is a reversible language recognised by a
reversible minimal automaton with only one final state, then the minimal
automaton has a minimal loop complexity.

Actually, in this case, the universal automaton is the minimal automaton
itself and the only subautomaton that accepts the langugae is the complete
universal automaton.

7.3.2 Proof of Theorem 7.23

We begin with a series of definitions and notation that allow us to describe
a decomposition of a language according to an automaton that accepts it
and to state a property of the constituents of that decomposition. This is
indeed an adaptation of a method devised by Hashiguchi in [12].

Definition 7.27. Let A be a reversible automaton that accepts L.

(i) We say that a word w is an idempotent for A if, for every state p,
p ⊲ w = p or p ⊲ w = ∅.

(ii) Let C be a trim A-constituent with m balls. The marker sequence of
C is the 2m-uple (p1, q1, . . . , pm, qm) such that pi (resp. qi) is the first
(resp. last) state of the ith ball crossed by any computation.

(iii) A A-constituent with marker sequence (p1, q1, . . . , pm, qm) accepts the
language v0H1v1H2 . . . vm−1Hmvm, where Hi is the language of labels
of paths from pi to qi.

(iv) We denote by Wi the set of idempotents for A that label a circuit
around pi.

i p1 q1 p2 q2 qm−1 pm qm t
v0 u1 v1 u2 vm−1 um vm

Figure 17. A marker sequence

Lemma 7.28. Let A be a reversible automaton and C a trim A-constituent
with m balls. Let B be any automaton equivalent to A.

Then, there exist m states r1, r2,. . . ,rm in B such that, with the above
notation, the following holds:

v0Wp1 ∩ PastB(r1) 6= ∅, Hm vm ∩ FutB(rm) 6= ∅,
and, ∀i ∈ [1;m− 1] (Hi vi Wpi

) ∩ TransB(ri, ri + 1) 6= ∅.

The universal automaton 499

For every i in [1;m], for every circuit around pi labeled by a word v, there
exists a circuit around ri, labeled by a word u v w, where u is in Wpi

and w
in A∗.

Proof. There exists an integer k such that, for every word v ∈ A∗, the image
of vk is an idempotent for A. Let n be the number of states of B. Let l
be an integer that will silently index the sets we define now. For every
i ∈ [1;m], let Ci be the set of words of length smaller than l that label a
circuit around pi in A. Let wi be the product of all kth power of words
in Ci:

wi =
∏

v∈Ci

vk .

For every v0u1v1 · · · vm in the A-constituent,

w = v0(w1)
nu1v1(w2)

nu2...(wm)numvm

is in the A-constituent as well. Hence, there is a successful computation
labeled by w in B. As B has only n states, this path contains, for every i,
a loop labeled by a power of wi around a state ri of B. The m-tuple
r(l) = (r1, r2, . . . , rm) verifies i) and ii) for y shorter than l. If we consider the
infinite sequence r(1), r(2), . . ., we can find an m-tuple that occurs infinitly
often and that verifies the lemma. q.e.d.

r1 r2 rm
wi1

1 wj1
1 u1v1w

i2
2 wjm

m um

wn−i1−j1
1 wn−i2−j2

2 wn−ik−jk
m

Figure 18. A witness word for a A-constituent.

We can now proceed to the proof of Theorem 7.23. We consider a set
C of A-constituents such that every element of C accepts at least one word
that is not accepted by the other elements of C and such that the union of
elements of C is equivalent to A.

Let D be an element of C and let p1, q1, p2, . . . , qm be the marker se-
quence of D and let u = v0u1v1 . . . vk be a word accepted only by D in
C, with vi labelling a path from qi−1 to pi and ui a path from pi to qi.
Let r1, r2, . . . , rm be the states of B defined in Lemma 7.28 w.r.t the A-
constituent D and w1, . . . , wm be the idempotents defined in the proof of
the lemma. Let ϕ be a morphism from B into the universal automaton.

500 S. Lombardy, J. Sakarovitch

We deal with the strongly connected component of ri, for i ∈ [1;m].
Let si = ϕ(ri) and Pi be the ball of UL containing si. There exist integers
h1, . . . , hm (resp. l1, . . . , lm) such that the word x = v0w

h1+l1
1 u1v1 . . . w

hi

i

(resp. y = wli
i uivi . . . w

hk+lk
k vkuk) is in the past (resp. the future) of ri and

thus of si.

(i) The morphism ϕ is conformal on Pi. Let C be a path of Pi. We
can assume, up to make it longer, that this is a circuit around si and, up
to take it several times, that it is labeled by an idempotent for A : z. The
word xzy is in L; every A-constituent that accepts this word accepts also
xy, therefore xzy is accepted only by D in C. As D is reversible, x labels
a path from the initial state to pi, y a path from pi to the final state and
z a circuit around pi. Therefore, from Lemma 7.28, there exist a word w
idempotent for A and a word v such that wzv labels a circuit around ri.
The image of this circuit is a circuit around si. As w is an idempotent for A,
it is an idempotent in the syntactic monoid; hence for every k, wkzv labels
a circuit, if k is large enough, this circuit contains a sub-circuit labeled by
a power of w, as the ball is reversible, this power labels a circuit around si,
and as w is an idempotent, it labels itself a circuit around si. As balls are
deterministic, the circuit C around si is the image of the part of the circuit
around ri labeled by z. Thus the morphism ϕ is conformal onto Pi which
have a loop complexity not greater than the loop complexity of B.

(ii) The images of the words linking balls in B contain no cir-

cuit. The word wli
i uiviw

hi+1

i+1 is in TransB(ri, ri+1) thus in TransUL
(si, si+1).

Let si = (Xi, Yi) and let ti = (X ′
i, Y

′
i) be the state in Pi such that ui is in

TransUL
(si, ti). By definition of the universal automaton:

Xiw
li
i uiviw

hi+1

i+1 Yi+1 ⊆ L.

The words wi and wi+1 are idempotents and L is reversible, therefore it
holds XiuiviYi+1 ⊆ L, and X ′

i is the smallest left factor that contains Xiui,
hence X ′

iviYi+1 ⊆ L Thus there exists a path labeld by vi from ti to si+1.
This holds for every i in [1; k−1]. We prove the same way, that there exists
a path from an initial state to s1 labeled by v0 and a path from sm to a
final state labeled by vm.

If one of the intern states of one of these paths labeled by vi belongs to a
ball, the word vi can be factorised into xiyi and there exists an idempotent w
for A such that

v0u1v1 . . . uixiwyiui+1vi+1 . . . ukvk ∈ L.

It can only be accepted by D, which would imply the existence of a circuit
between qi and pi+1.

The universal automaton 501

(iii) The subautomaton obtained in UL accepts every word ac-

cepted by D. Such a word can be factorised into v0u
′
1v1su

′
kvk, with pi ⊲

u′i = qi. There exists a word wi such that u′iwi is an idempotent and both
uiwi and u′iwi label circuits around pi. As above, these words label circuits
around si and, as the ball is co-deterministic, the path from si labeled by
u′i ends in the same state as the one labeled by ui, i.e. ti.

(iv) This subautomaton is reversible. The balls of the universal au-
tomaton are reversible. Between every ball, there is only one path in the
automaton, by construction. If there exists a letter a that labels two in-
coming transitions of si, this letter is the last one in vi and there exists a
circuit around pi with a as last letter, which is a constradiction with the
reversibility of D. Hence, this subautomaton is co-deterministic; likewise,
it is deterministic.

(v) Conclusion of the proof. For every constituent of A, we prove that
there exists a subautomaton of the universal automaton, with a loop com-
plexity not greater than the star height of the language, and that accepts
every word accepted by the constituent. The superposition of all these sub-
automata of the universal automaton gives a subautomaton of the universal
automaton that recoginzes the language. More, every ball intersected by
one of these subautomata is entirely included in the subautomaton, hence,
the loop complexity of the superposition is not greater than the maximal
loop complexity of the superposed automata. Therefore the superposition
is a subautomaton of the universal automaton that have a minimal loop
complexity for the language.

Moreover, as every superposed automaton is reversible, the superposi-
tion is a quasi-reversible automaton. That proves that, for every reversible
language, there exists a quasi-reversible automaton, with minimal loop com-
plexity, and that is a subautomaton of the universal automaton.

8 Conclusion

The aim of this paper is to show the soundness of the notion of universal au-
tomaton and its various applications. Its large size leads to algorithms with
poor complexity, but it is a good theoretical framework to state different
kinds of problems on regular languages.

We end this survey with an open question about star height. We have
said that, roughly speaking, the universal automaton of a language contains
every automaton that accepts this language. This is true up to morphic
image, but morphisms do not preserve loop complexity. This is the reason
why in the general case, we do not know how to prove the following extension
of Theorems 7.10 and 7.19: The universal automaton of a regular language

contains a subautomaton with a minimal loop complexity for this language.
The universal automaton has not revealed all its secrets.

502 S. Lombardy, J. Sakarovitch

References

[1] A. Arnold, A. Dicky, and M. Nivat. A note about minimal non-
deterministic automata. Bulletin of the EATCS, 47:166–169, 1992.

[2] C. Carrez. On the minimalization of non-deterministic automaton.
Technical report, Computing Laboratory of the Science Faculty of Lille
University, 1970.

[3] M. Chrobak. Finite automata and unary languages. Theor. Comput.

Sci., 47(3):149–158, 1986.

[4] R. S. Cohen. Star height of certain families of regular events. J. Com-

put. Syst. Sci., 4(3):281–297, 1970.

[5] J. H. Conway. Regular Algebra and Finite Machines. Chapman and
Hall, London, 1971.

[6] B. Courcelle, D. Niwiński, and A. Podelski. A geometrical view of the
determinization and minimization of finite-state automata. Mathemat-

ical Systems Theory, 24(2):117–146, 1991.

[7] F. Dejean and M. P. Schützenberger. On a question of eggan. Infor-

mation and Control, 9(1):23–25, 1966.

[8] L. C. Eggan. Transition graphs and the star-height of regular events.
Michigan Math. J., 10:385–397, 1963.

[9] I. Grunsky, O. Kurganskyy, and I. Potapov. On a maximal NFA with-
out mergible states. In D. Grigoriev, J. Harrison, and E. A. Hirsch,
editors, CSR, volume 3967 of Lecture Notes in Computer Science, pages
202–210. Springer, 2006.

[10] K. Hashiguchi. Representation theorems on regular languages. J. Com-

put. Syst. Sci., 27(1):101–115, 1983.

[11] K. Hashiguchi. Algorithms for determining relative star height and star
height. Inf. Comput., 78(2):124–169, 1988.

[12] K. Hashiguchi and N. Honda. The star height of reset-free events and
strictly locally testable events. Information and Control, 40(3):267–
284, 1979.

[13] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM

J. Comput., 22(6):1117–1141, 1993.

[14] T. Kameda and P. Weiner. On the state minimization of nondeter-
ministic finite automata. IEEE Trans. Computers, C-19(7):617–627,
1970.

The universal automaton 503

[15] D. Kirsten. Distance desert automata and the star height problem.
Theor. Inform. Appl., 39(3):455–509, 2005.

[16] A. D. Korshunov. The number of monotone Boolean functions. Prob-

lemy Kibernet., 38:5–108, 272, 1981.

[17] S. Lombardy. Approche structurelle de quelques problèmes de la théorie

des automates. PhD thesis, ENST, Paris, 2001.

[18] S. Lombardy. On the construction of reversible automata for reversible
languages. In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy,
S. Eidenbenz, and R. Conejo, editors, ICALP, volume 2380 of Lecture

Notes in Computer Science, pages 170–182. Springer, 2002.

[19] S. Lombardy. On the size of the universal automaton of a regular
language. In W. Thomas and P. Weil, editors, STACS, volume 4393 of
Lecture Notes in Computer Science, pages 85–96. Springer, 2007.

[20] S. Lombardy and J. Sakarovitch. Star height of reversible languages and
universal automata. In LATIN 2002: Theoretical informatics (Can-

cun), volume 2286 of Lecture Notes in Comput. Sci., pages 76–90,
Berlin, 2002. Springer.

[21] S. Lombardy and J. Sakarovitch. On the star height of rational lan-
guages: a new presentation for two old results. In Words, languages

& combinatorics, III (Kyoto, 2000), pages 266–285. World Sci. Publ.,
River Edge, NJ, 2003.

[22] O. Matz and A. Potthoff. Computing small finite nondeterministic
automata. In Proc. of the Workshop on Tools and Algorithms for Con-

struction and Analysis of Systems, BRICS Note Series, pages 74–88,
Aarhus, 1995. BRICS.

[23] R. McNaughton. The loop complexity of pure-group events. Informa-

tion and Control, 11:167–176, 1967.

[24] J.-E. Pin. On reversible automata. In I. Simon, editor, LATIN, volume
583 of Lecture Notes in Computer Science, pages 401–416. Springer,
1992.

[25] L. Polák. Minimalizations of NFA using the universal automaton. Int.

J. Found. Comput. Sci., 16(5):999–1010, 2005.

[26] C. Reutenauer. Sur les variétés de langages et de monóıdes. In
K. Weihrauch, editor, Theoretical Computer Science, volume 67 of Lec-

ture Notes in Computer Science, pages 260–265. Springer, 1979.

504 S. Lombardy, J. Sakarovitch

[27] J. Sakarovitch. Eléments de théorie des automates. Vuibert, Paris,
2003. In French, English translation: Elements of Automata Theory,
Cambridge University Press, to appear.

[28] D. Wiedemann. A computation of the eighth Dedekind number. Order,
8(1):5–6, 1991.

Deterministic top-down tree automata:

past, present, and future

Wim Martens1

Frank Neven2

Thomas Schwentick1

1 Lehrstuhl Informatik I
Universität Dortmund
44221 Dortmund, Germany
{Wim.Martens,Thomas.Schwentick}@udo.edu

2 Departement Wiskunde, Natuurkunde en Informatica
Universiteit Hasselt
Agoralaan
3590 Diepenbeek, Belgium
frank.neven@uhasselt.be

Abstract

In strong contrast to their non-deterministic counterparts, deter-
ministic top-down tree automata received little attention in the sci-
entific literature. The aim of this article is to survey recent and less
recent results and stipulate new research directions for top-down de-
terministic tree automata motivated by the advent of the XML data
exchange format. In particular, we survey different ranked and un-
ranked top-down tree automata models and discuss expressiveness,
closure properties and the complexity of static analysis problems.

1 Introduction

The goal of this article is to survey some results concerning deterministic
top-down tree automata motivated by purely formal language theoretic rea-
sons (past) and by the advent of the data exchange format XML (present).
Finally, we outline some new research directions (future).

The Past. Regular tree languages have been studied in depth ever since
their introduction in the late sixties [10]. Just as for regular string languages,
regular tree languages form a robust class admitting many closure properties
and many equivalent formulations, the most prominent one in the form of
tree automata. A striking difference with the string case where left-to-right
equals right-to-left processing, is that top-down is no longer equivalent to
bottom-up. In particular, top-down deterministic tree automata are strictly
less expressive than their bottom-up counterparts and consequently form a

506 W. Martens, F. Neven, and T. Schwentick

strict subclass of the regular tree languages. Furthermore, deterministic top-
down tree automata do not enjoy many of the important closure properties.
For instance, they are neither closed under union nor under complement.

Several variants of deterministic top-down tree automata models have
been introduced of which the one defined in [10, 7] is considered to be the
standard one: the states assigned to the children of a node depend solely
on the label and the state at the current node. We refer to these automata
as ‘blind’ because they cannot see the label of the children when assigning
states to them. A natural extension would therefore be to make automata
‘sensing’ by allowing them to see those labels. The latter model is more
expressive than the former and both can be characterized by closure under
a subtree exchange property. Using the latter property it becomes very
easy to show that the models are neither closed under union nor under
complement. The l-r-determinism for top-dowm tree automata introduced
by Nivat and Podelski [17] and defining the homogeneous tree languages
is strictly more expressive than blind automata and incomparable to sens-
ing ones. Both blind and sensing tree automata allow for tractable static
analysis: emptiness, containment and minimization are in PTIME.

The Present. XML, which stands for the eXtensible Markup Language,
is a standard defined by W3C [4] for data exchange over the internet. From
an abstract viewpoint, XML data or XML documents can be represented by
finite labeled unranked trees where unranked means that there is no a priori
bound on the number of child nodes a node can have. In a data exchange
scenario not every XML document is allowed and the structure of XML doc-
uments is usually restricted to adhere to a specified schema. Many schema
languages for XML exist of which the most prominent ones are DTD [4],
XML Schema [20], and Relax NG [6]. In formal language theoretic terms,
every schema defines an unranked tree language. This XML setting mo-
tivated Brüggemann-Klein, Murata, and Wood to develop a theory of un-
ranked tree automata, an endeavor already initiated in the late sixties by
Thatcher [21]. For deterministic top-down unranked tree automata there
is again the difference between the blind and the sensing variant. Further-
more, as nodes can have arbitrarily many children it is natural to consider
two variants of sensing automata. The first variant is an online one: given
the state and the label of its parent, the state of a child only depends on its
label and the labels of its left-siblings. The variant is called online as child
states are assigned when processing the child string in one pass from left to
right. In contrast, the offline variant first reads the complete child string
and only then assigns states to all children. All three models can again be
characterized in terms of closure under specific forms of subtree exchange.
These properties can be used to show that blind, online, and offline sensing
are increasingly more expressive and that neither of the models is closed

Deterministic top-down tree automata: past, present, and future 507

under union and complement. Interestingly, online sensing top-down tree
automata suffice to express all DTDs and XML Schema Definitions. Fur-
thermore, they correspond precisely to the unranked regular tree languages
admitting one-pass preorder typing [14]. In this context, typing means the
assignment of the correct state to each node. So, online sensing determin-
istic top-down tree automata capture precisely the schemas which can be
validated and typed in a one-pass fashion. A difference with the binary case
is that minimization is NP-complete for offline sensing top-down automata,
while it is in PTIME for online sensing top-down automata. Minimization
for blind automata is in NP but the precise complexity is unknown.

The Future. From a theoretical point of view, there is a schema language
superior to XML Schema: Relax NG is more expressiveness than XML
Schema and it is closed under the Boolean operations. Nevertheless, XML
Schema is the language endorsed by W3C and therefore supported by the
major database vendors. It constitutes deterministic top-down processing
as its basic validation mechanism. As mentioned before, XML Schema lacks
the most basic closure properties. From the viewpoint of model manage-
ment [1] or schema integration, especially the inability to express the union
of two schemas is a serious defect. From a formal language theory perspec-
tive, Jurvanen, Potthof, and Thomas proposed regular frontier checks as a
general extension of deterministic top-down automata [12]. In particular,
the acceptance condition is determined by a regular string language F over
states added to the model. A tree is then accepted when the string formed
by the states assigned to the frontier of the tree is in F . Although this
formalism is expressive enough to define union and complement it is less
convenient as an addition for a schema language. It would therefore be in-
teresting to come up with a convenient top-down deterministic model closed
under the Boolean operations. We discuss this and other future directions
like optimization and automatic inference problems in the Conclusions.

Outline. The article is further organized as follows. In Section 2, we in-
troduce the necessary notation. In Section 3 and 4, we discuss ranked and
unranked deterministic top-down models, respectively. Finally, in Section
5, we consider regular frontier checks.

2 Preliminaries

2.1 An abstract notation for automata

We first explain the generic automata notation that we shall use throughout
the paper. For a finite set S, we denote by |S| its number of elements. By
Σ we always denote a finite alphabet. We consider different types of data
structures built from Σ like strings, binary trees, or unranked trees. We
write DΣ for the set of all data structures of the given type that can be
built from Σ. For every d ∈ DΣ, we shall define a set Nodes(d), a designated

508 W. Martens, F. Neven, and T. Schwentick

element root(d) ∈ Nodes(d), and a designated set Frontier(d) ⊆ Nodes(d).
Here, root(d) will be the root of a tree or the first symbol of a string;
Frontier(d) will be the set of leaves in a tree or the last symbol of a string.

To address automata in a uniform way for the different data structures,
we first define them in abstract terms to instantiate them later operating
on strings, trees, and unranked trees.

Definition 2.1. A finite automaton over Σ is a tuple

A = (States(A), Alphabet(A), Rules(A), Init(A), Final(A)),

where States(A) is a finite set of states, Alphabet(A) = Σ is the finite
alphabet, Rules(A) is a finite set of transition rules, Init(A) ⊆ States(A) is
the set of initial states, and Final(A) ⊆ States(A) is the set of final states.

The size of A, denoted by |A|, is a natural number, which by default
will be the number of states of A unless explicitly stated otherwise. A
run of an automaton A on a data structure d ∈ DAlphabet(A) will always
be defined as some function of type r : Nodes(d) → States(A). For each
kind of automaton, we shall define when a run is accepting. Then, the
language L(A) of an automaton is the set of data structures d that permit
an accepting run.We call a finite automaton unambiguous if, for every d,
there exists at most one accepting run of A on d.

We consider the following static analysis problems:

• Emptiness: Given a finite automaton A, is L(A) = ∅?

• Containment: Given two finite automata A and B, is L(A) ⊆ L(B)?

• Minimization: Given a finite automaton A and integer k, does there
exist an automaton B (of the same class as A) such that L(A) = L(B)
and |B| ≤ k?

In the remainder of the paper, we shall use the letters a, b, c, . . . to range
over alphabet symbols and we shall use p, q, . . . to range over states.

2.2 Strings and trees

By N0 we denote the set of nonnegative integers and by N the set of positive
integers. We call a ∈ Σ a Σ-symbol. A Σ-string (or simply string) w ∈ Σ∗

is a finite sequence a1 · · ·an of Σ-symbols. We denote the empty string by
ε.

The set of positions, or nodes, of a Σ-string w is Nodes(w) = {1, . . . , n}.
The root of w is root(w) = 1 and the frontier of w is Frontier(w) = {n}.
The length of w, denoted by |w|, is n. The label ai of node i in w is denoted
by labw(i).

Deterministic top-down tree automata: past, present, and future 509

A tree domain N is a non-empty, prefix-closed subset of N
∗ satisfying

the following condition: if ui ∈ N for u ∈ N
∗ and i ∈ N, then uj ∈ N

for all j with 1 ≤ j ≤ i. An unranked Σ-tree t (which we simply call
tree in the following) is a mapping t : Nodes(t) → Σ where Nodes(t) is
a finite tree domain. The elements of Nodes(t) are called the nodes of t.
For u ∈ Nodes(t), we call nodes of the form ui ∈ Nodes(t) with i ∈ N the
children of u (where ui is the ith child). The root of a tree is root(t) =
ε and the frontier of a tree is its set of nodes with no children, that is,
Frontier(t) = {u | u1 6∈ Nodes(t)}. For a tree t and a node u ∈ Nodes(t),
we denote the label t(u) by labt(u). If the root of t is labeled by a, that is,
labt(ε) = a, and if the root has k children at which the subtrees t1, . . . , tk
are rooted from left to right, then we denote this by t = a(t1 · · · tk). In
the sequel, we adopt the following convention: when we write a tree as
a(t1 · · · tn), we tacitly assume that all ti’s are trees. The depth of a node
i1 · · · in ∈ N

∗ in a tree is n + 1. The depth of a tree is the maximum of
the depths of its nodes. We denote the set of unranked Σ-trees by TΣ. By
subtreet(u) we denote the subtree of t rooted at u. For two Σ-trees t1 and
t2, and a node u ∈ Nodes(t1), we denote by t1[u ← t2] the tree obtained
from t1 by replacing its subtree rooted at u by t2. A tree language is a set
of trees.

A binary alphabet or binary signature is a pair (Σ, rankΣ), where rankΣ

is a function from Σ to {0, 2}. The set of binary Σ-trees is the set of Σ-
trees inductively defined as follows. When rankΣ(a) = 0, then a is a binary
Σ-tree. When rankΣ(a) = 2 and t1, t2 are binary Σ-trees, then a(t1t2) is a
binary Σ-tree.

2.3 Finite string automata

We instantiate our abstract notion of finite automata over strings:

Definition 2.2. A finite string automaton (FSA) over Σ is a finite automa-

ton over Σ where Rules(A) is a finite set of rules of the form q1
a
→ q2 with

q1, q2 ∈ States(A) and a ∈ Alphabet(A).

A run of A on a string w ∈ Alphabet(A)∗ is a mapping r : Nodes(w)→
States(A) such that

(i) there exists q0 ∈ Init(A) with q0
a
→ r(1) in Rules(A) for labw(1) = a;

and,

(ii) for every i = 1, . . . , |w| − 1, it holds that r(i)
a
→ r(i + 1) in Rules(A)

where labw(i + 1) = a.

A run r is accepting if r(|w|) ∈ Final(A). An FSA A is deterministic if it
satisfies the following two conditions, implying that no string permits more
than one run by A:

510 W. Martens, F. Neven, and T. Schwentick

(i) Init(A) is a singleton; and,

(ii) for every q1 ∈ States(A) and a ∈ Alphabet(A), there exists at most

one rule q2 ∈ States(A) such that q1
a
→ q2 is in Rules(A).

We denote by DFSA be the class of deterministic finite string automata.

2.4 Exchange properties for tree languages

We define several of the exchange properties for tree languages that we
use in the following sections to characterize the expressive power of tree
automata.

2.4.1 Path-closed languages

A well-known characterization of tree languages recognizable by a class of
top-down deterministic tree automata is the one of path closed languages
by Virágh [23]. The path language of a tree t, denoted Path(t), is the set of
strings

lab(ε)i1lab(i1) · · · inlab(i1 · · · in),

for nodes i1, i1i2, . . . i1 · · · in in Nodes(t).1 The path langauge of a tree lan-

guage L, denoted Path(L), then is the union of the path languages of its
trees, that is, Path(L) =

⋃

t∈L Path(t). The path closure of a tree language
L is defined as P-Closure(L) = {t | Path(t) ⊆ Path(L)}. Finally, a tree
language L is path-closed when P-Closure(L) ⊆ Path(L).

Nivat and Podelski argued that path-closed languages can also be char-
acterized using the following subtree exchange property [17].2 A regular
tree language L is path-closed if and only if, for every t ∈ L and every node
u ∈ Nodes(t),

if t[u← a(t1, . . . , tn)] ∈ L and t[u← a(s1, . . . , sn)] ∈ L, then

t[u← a(t1, . . . , si, . . . , tn)] ∈ L for each i = 1, . . . , n.

This subtree exchange closure for path-closed languages is illustrated in
Figure 1. In the remainder of the article, when we say that a language is
path-closed, we shall always refer to this closure under the just mentioned
exchange property.

2.4.2 Guarded subtree exchange

For a node v = uk in a tree t with k ∈ N, we denote by l-sib-strt(v) the
string formed by the label of the v and the labels of its left siblings, that
is, labt(u1) · · · labt(uk). By r-sib-strt(v) we denote the string formed by
v and its right siblings, that is, labt(uk) · · · labt(un), if u has n children.

1 We tacitly assume here that Σ ∩ N = ∅.
2 Actually, Nivat and Podelski only considered path-closedness on ranked trees, but it

is easy to see that the properties are also equivalent on unranked trees.

Deterministic top-down tree automata: past, present, and future 511

∈ L

t

∈ L

a

t

∈ L ⇒
t

s1 t1tn
sn si tn

· · · · · · · · ·

t1

· · ·

a a

(a) Path-closed.

t
′
1

∈ L ∈ L ⇒t1 t2 ∈ L

t
′
1 t

′
2

t2

(b) Ancestor-left-sibling-closed.

t
′
1

∈ L ∈ L ⇒t1 t2 ∈ L

t
′
1 t

′
2

t2

(c) Spine-closed.

Figure 1. Various kinds of subtree exchange properties for tree languages.

We define l-sib-strt(ε) = r-sib-strt(ε) = labt(ε). Let v = i1i2 · · · iℓ with
i1, i2, . . . , iℓ ∈ N. Let # and ▽ be two symbols not in Σ. By anc-l-sib-strt(v)
we denote the ancestor-left-sibling-string

l-sib-strt(ε)#l-sib-strt(i1)# · · ·#l-sib-strt(i1i2 · · · iℓ),

formed by concatenating the left-sibling-strings of all ancestors of v, starting
from the root. By spinet(v) we denote the ancestor-sibling-string

l-sib-strt(ε)▽r-sib-strt(ε)#l-sib-strt(i1)▽r-sib-strt(i1)# · · ·

· · ·#l-sib-strt(i1i2 · · · iℓ)▽r-sib-strt(i1i2 · · · iℓ)

formed by concatenating the left-sibling-strings and right-sibling strings of
all ancestors of v, starting from the root.

We say that a tree language L is ancestor-left-sibling-closed3 if whenever

3 This property was called “closure under ancestor-sibling-guarded subtree exchange”
in [14].

512 W. Martens, F. Neven, and T. Schwentick

for two trees t1, t2 ∈ L with nodes u1 ∈ Nodes(t1) and u2 ∈ Nodes(t2),
anc-l-sib-strt1(u1) = anc-l-sib-strt2(u2) implies t1[u1 ← subtreet2(u2)] ∈ L.
We say that L is spine-closed if spinet1(u1) = spinet2(u2) implies t1[u1 ←
subtreet2(u2)] ∈ L. The latter notions are illustrated in Figure 1.

3 Top-down automata on binary trees

As we consider in this section automata over binary trees, we take Σ as
a binary alphabet. We define two flavors of top-down determinism. The
first is the traditional one, such as defined, for example, by Gecseg and
Steinby [9] and in the on-line textbook TATA [7]. In brief, the label of the
current symbol and the current state uniquely determine the states assigned
to the children of the current symbol (Definition 3.1). The second notion of
top-down determinism is slightly more expressive. Here, the states assigned
to the children of the current node are determined by the current node’s
label, the state assigned to the current node, and the labels of the children

(Definition 3.2). The latter notion of top-down determinism is reminiscent
to the notion of “l-r-determinism” studied by Nivat and Podelski [17], and
similar notions of top-down determinism on unranked trees have been stud-
ied by Cristau, Löding, and Thomas [8] and by Martens [13]. We refer to
the first kind of automata as blind and to the second as sensing.

Definition 3.1. A blind top-down finite tree automaton (BTA) is a finite
automaton A such that Rules(A) is a set of rules

(q, a)→ (q1, q2) or (q, a)→ ε.

A run of A on a binary Σ-tree t is a mapping r : Nodes(t)→ States(A) such
that

(i) r(ε) ∈ Init(A);

(ii) for each leaf node u with label a, (r(u), a)→ ε is in Rules(A); and

(iii) for each non-leaf node u with label a, (r(u), a) → (r(u1), r(u2)) is in
Rules(A).

If a run exists, it is accepting. We say that a BTA is (top-down) deterministic

if Init(A) is a singleton and no two of its rules have the same left-hand sides.

Definition 3.2. A sensing top-down finite tree automaton (STA) is a finite
automaton A such that Rules(A) is a set rules of the form

a→ q or q(a1, a2)→ (q1, q2).

For an STA A, we have that Init(A) = {q | a→ q ∈ Rules(A)}. A run of A
on a binary Σ-tree t is a mapping r : Nodes(t)→ States(A) such that

Deterministic top-down tree automata: past, present, and future 513

⇒
t

a

∈ L

s2s1

t

∈ L

a

t1 t2

t

∈ L

a

t

∈ L

a

s2t1 s1 t2

Figure 2. Closure property for homogeneous tree languages.

(i) if r(ε) = q and lab(ε) = a then there is a rule a→ q ∈ Rules(A), and

(ii) for each non-frontier node u, if r(u) = q, lab(u1) = a1, and lab(u2) =
a2, then there is a rule q(a1, a2)→ (r(u1), r(u2)) in Rules(A).

The run is accepting if, for each leaf node u, r(u) ∈ Final(A). We say that
an STA is deterministic if no two of its rules have the same left-hand sides.

3.1 Relative expressive power

It is well-known that top-down automata cannot recognize all regular tree
languages. In this section, we compare several forms of top-down determin-
ism that have been investigated with respect to their expressive power.

3.1.1 Homogeneous languages

Nivat and Podelski defined a notion of top-down determinism that they
called l-r-determinism. This form of determinism will not be treated very
deeply in this article, as it does not correspond to the order in which one
would like to process trees in an XML context. We use their characterization
in terms of closure under subtree exchange to formally argue this. Nivat and
Podelski define a BTA A to be l-r-deterministic if whenever (q, a)→ (q1, q2)
and (q, a)→ (q′1, q

′
2) is in Rules(A) then

• q1 6= q′1 implies that L(A[q2]) ∪ L(A[q′2]) = ∅ and

• q2 6= q′2 implies that L(A[q1]) ∪ L(A[q′1]) = ∅.

Here, for q = q1, q2, q
′
1, q

′
2, A[q] denotes automaton A in which Init(A) = {q}.

We shall, however, focus on a characterization of the languages accepted by
l-r-deterministic tree automata which is, for our purpose, more workable.

A regular tree language L is homogeneous if, whenever t[u← a(t1, t2)] ∈
L, t[u← a(s1, t2)] ∈ L, and t[u← a(t1, s2)] ∈ L, then also t[u← a(s1, s2)] ∈
L. This closure under subtree exchange is illustrated in Figure 2.

3.1.2 The characterization

We characterize the expressiveness of the tree automata models by the clo-
sure properties introduced in Section 2.4.

514 W. Martens, F. Neven, and T. Schwentick

a

a

b b

a

c c

a

a

c c

a

b b

Figure 3. A homogeneous language that is not spine-closed.

Theorem 3.3 (Characterization Theorem). A regular tree language L
is recognizable by

(1) a deterministic BTA if and only if L is path-closed.

(2) an l-r-deterministic tree automaton if and only if L is homogeneous.

(3) a deterministic STA if and only if L is spine-closed.

Theorem 3.3(1) is known from, e.g., Virágh [23] and from Gecseg and
Steinby [10]. Theorem 3.3(2) is Theorem 2 in the work by Nivat and
Podelski [17]. Finally, Theorem 3.3(3) is proved by Cristau, Löding, and
Thomas [8] and by Martens [13] for more general unranked tree automata
with this form of top-down determinism. It should be noted that Cristau et
al. did not explicitly use a subtree exchange property for spine-closedness
but an equivalent closure property that considers the spine language of a
tree (as in the original definition of path-closedness).

Corollary 3.4.

(1) l-r-deterministic tree automata are strictly more expressive than deter-
ministic BTAs.

(2) Deterministic STAs are strictly more expressive than deterministic
BTAs.

(3) Deterministic STAs and l-r-deterministic tree automata are incompara-
ble w.r.t. expressive power.

Proof. (1) It is easy to see that every path-closed language is homogeneous.
Furthermore, the language {a(b, b), a(c, c)} is homogeneous but not path-
closed.
(2) It is easy to see that every path-closed language is also spine-closed.
Furthermore, the language {a(b, b), a(c, c)} is spine-closed but is not path-
closed.
(3) The language {a

(
a(b, b), a(c, c)

)
, a

(
a(c, c), a(b, b)

)
} is homogeneous but

not spine-closed (see also Figure 3). The language {a(b, b), a(b, c), a(c, b)} is
spine-closed but not homogeneous. q.e.d.

Deterministic top-down tree automata: past, present, and future 515

3.1.3 L-R-determinism versus top-down state assignment

Figure 3 depicts a finite language L which is homogeneous but not spine-
closed. So, L can be recognized by an l-r-deterministic tree automaton but
not by a deterministic STA.

One easily obtains infinite languages with this property. Indeed, let Lb

and Lc be the set of trees in which every internal node is labeled a and
every leaf is labeled b and c, respectively. The language Lbc now consists of
all trees a(tb, tc) and a(tc, tb) for which tb ∈ Lb and tc ∈ Lc. Clearly, Lbc is
homogeneous.

We now want to argue informally that, for any tree automaton A rec-
ognizing Lbc, the state that A assigns to each of the two children of the
root in an accepting run cannot be determined without looking arbitrarily

deep into at least one subtree of the root. In other words, this means that
there is at least one child u of the root such that A needs to investigate the
subtree rooted at u before assigning a state to u. This is something what
is not commonly associated with “top-down determinism”.

Let A be a tree automaton that recognizes the language Lbc. Let n be
an arbitrarily large natural number and let a(tb, tc) be a tree in Lbc such
that every path from root to leaf in tb and tc has length at least n + 1.
This way, tb and tc are identical up to depth n. Towards a contradiction,
suppose that A does not investigate tb or tc arbitrarily deep, i.e., not up to
depth n, before assigning a state to the root of tb (the argument for tc is
the same). More formally, assume that the state A assigns to the root of
tb is functionally determined by the structure of tb and tc up to depth at
most n − 1. Let r1 be an accepting run of A on a(tb, tc) and let r2 be an
accepting run of A on a(tc, tb). As A does not investigate tb or tc arbitrarily
deep, r1 assigns the sames state to the root of tb in a(tb, tc) as r2 assigns to
the root of tc in a(tc, tb). As A is a tree automaton, it is now easy to see
that a(tc, tc) is also in L(A), with the accepting run that behaves as r2 on
the left copy of tc and as r1 on the right copy of tc. This contradicts that
A accepts Lbc.

Therefore, our focus in the remainder of the article will be on deter-
ministic BTAs and deterministic STAs, rather than l-r-deterministic tree
automata.

3.2 Closure properties

The characterization theorem can easily be used to show that deterministic
top-down tree automata are not closed under complement and union.

Theorem 3.5.

(1) Deterministic BTAs and deterministic STAs are closed under intersec-
tion.

516 W. Martens, F. Neven, and T. Schwentick

(2) Deterministic BTAs and deterministic STAs are not closed under com-
plement or union.

Proof. (1) This follows immediately from the standard product construc-
tion for tree automata. One merely has to observe that the intersection
construction preserves the determinism constraint for BTAs and STAs.
(2) These results can be proved quite directly from the characterizations in
Theorem 3.3. Indeed, let Lb (resp., Lc) be the tree language over alphabet
{a, b, c} in which every internal node (i.e., with two children) is labeled a
and every leaf is labeled b (resp., c). The languages Lb and Lc are easily
seen to be recognizable by deterministic BTAs.

On the other hand, the union Lb ∪Lc, the set of all trees in which every
internal node is labeled a and either all leaves are labeled b or all leaves
are labeled c is not spine-closed. Hence, Lb ∪ Lc is not recognizable by a
deterministic STA, which means that deterministic BTAs and deterministic
STAs are not closed under union. From closure under intersection and non-
closure under union we can readily conclude non-closure under complement.

q.e.d.

3.3 Static analysis

In this section, we shall prove the following theorem:

Theorem 3.6.

(1) Emptiness is in PTIME for BTAs and STAs.

(2) Containment is in PTIME for deterministic BTAs and deterministic
STAs.

(3) Minimization is in PTIME for deterministic BTAs and deterministic
STAs.

Proof. (1) It is well-known that emptiness is in PTIME for (non-determin-
istic bottom-up) tree automata in general [7]. Therefore, emptiness is also
in PTIME for deterministic BTAs and deterministic STAs.
(2) It is easy to see that deterministic BTAs and deterministic STAs and
intersections thereof are in fact unambiguous tree automata. The result now
follows from the work by Seidl, who proved that equivalence of unambiguous
tree automata is in PTIME [18].
(3) For deterministic BTAs, this follows from the work by Gecseg and
Steinby [9]. Although their work does not explicitly concern complexity,
they prove that minimization for deterministic BTAs can be polynomially
reduced to equivalence/containment for deterministic BTAs. As contain-
ment for deterministic BTAs is in PTIME by part (2), we also have that
minimization is in PTIME.

Deterministic top-down tree automata: past, present, and future 517

(1) Reduce A, that is,

(a) remove all states q from A for which L(A[q]) = ∅; and then

(b) remove all states q from A which are not reachable from Init(A).

(2) Test, for each p 6= q in States(A), whether L(A[p]) = L(A[q]).
If L(A[p]) = L(A[q]), then

(a) replace all occurrences of p in the definition of A by q and

(b) remove p from A.

Figure 4. The Minimization Algorithm.

To explain their algorithm, we start by discussing a minor optimization
matter for tree automata. For an automaton A and q ∈ States(A) we denote
by A[q] the language accepted by A when Init(A) = {q}.4 We say that q is
reachable in A if one of the following holds:

• q ∈ Init(A) or

• p is reachable and there is a rule of the form (p, a) → (q1, q2) or
p(a1, a2)→ (q1, q2) in Rules(A), where q = q1 or q = q2.

We now say that A is reduced if, every state q is useful, that is, q is reachable
and L(A[q]) 6= ∅. Algorithmically, one would convert a tree automaton
into a reduced tree automaton by first removing all the states q for which
L(A[q]) = ∅ and then removing all the states that are not reachable. The
order in which these two steps are performed is important, as the other
order does not necessarily produce a reduced automaton.

The following observation states that a state is useful if and only if it
can be used in some accepting run of the automaton.

Observation 3.7. Let A be a tree automaton and q ∈ States(A). Then, q
is useful if and only if there exists a tree t ∈ L(A), an accepting run r of A
on t, and a node u ∈ Nodes(t) such that r(u) = q.

The algorithm of Gecseg and Steinby is now informally presented in Fig-
ure 4.

Interestingly, for deterministic STAs, it seems that one can likewise use
the algorithm of Figure 4 for minimization. It only has to be shown that,

4 If A is an STA, we require in addition that every rule a → p is replaced by a → q.

518 W. Martens, F. Neven, and T. Schwentick

given a deterministic STA, the algorithm returns a minimal deterministic
STA. Thereto, let Amin be the automaton obtained by applying the above
minimization algorithm on a deterministic STA A. Formally, we need to
prove that

(a) Amin is a deterministic STA;

(b) L(Amin) = L(A); and that

(c) the number of states of Amin is indeed minimal.

To show (a), observe that, in step (1) of the algorithm, we only remove
states. Hence, no non-determinism is introduced in step (1). In step (2),
non-determinism can be introduced by overwriting occurrences of p with q.
However, the following observation, which is easy to show by contraposition,
proves that this non-determinism is removed further on in the algorithm.

Observation 3.8. Let p and q be two states such that L(A[p]) = L(A[q])
and let p(a1, a2)→ (p1, p2) and q(a1, a2) → (q1, q2) be two transition rules
of A. Then L(A[p1]) = L(A[q1]) and L(A[p2]) = L(A[q2]).

To show (b), observe that, in step (1), we only remove states that cannot
be used in a successful run of A (Observation 3.7). Hence, this does not
alter the language accepted by A. In step (2), we replace states p in A with
states q that define the same language. The following observation is easy
to prove:

Observation 3.9. Let p and q be two states such that L(A[p]) = L(A[q]).
Let A′ be obtained from A by replacing all occurrences of p in the definition
of A by q, and by removing q. Then L(A) = L(A′).

It remains to show (c), which is a bit more involved. First, we introduce
the following concept. We say that a finite tree automaton A over Σ has

spine-based runs if there is a (partial) function

f : (Σ ∪ {#, ▽})∗ → States(A)

such that, for each tree t ∈ L(A), for each node v ∈ Nodes(t), and for each
accepting run r of A on t, we have that

r(v) = f(spinet(v)).

Observation 3.10. Every deterministic STA has spine-based runs.

Proof. Let A be a deterministic STA. We assume w.l.o.g. that A is reduced.
We define the function f : (Σ∪{#, ▽})∗ → States(A) inductively as follows:
for each a ∈ Σ, f(a▽a) = q, for the unique q such that a→ q is a rule in A.

Deterministic top-down tree automata: past, present, and future 519

Further, for every string w0#w1a▽aw2 with w0 ∈ (Σ ∪ {#, ▽})∗, w1, w2 ∈
Σ ∪ {ε}, and a ∈ Σ, we define f(w0#w1a▽aw2) = q where f(w0) = p
and q is the unique state such that the following holds. If w1 = ε, q is
the unique state such that p(a, w2) → (q, q′) ∈ Rules(A), and if w2 = ε,
then q is the unique state such that p(w1, a) → (q′, q) ∈ Rules(A). As A
is a reduced deterministic STA, f is well-defined and induces a spine-based
run. q.e.d. (Observation 3.10)

Observation 3.11. Let A1 and A2 be equivalent deterministic STAs and
let t ∈ L(A1) = L(A2). Let r1 and r2 be the unique runs of A1 and A2 on
t, respectively, and let u be a node in t. Then L(A1[r1(u)]) = L(A2[r2(u)]).

Proof. Let p and q be r1(u) and r2(u), respectively. If |L(A1[p])| = |L(A2[q])|
= 1, the proof is trivial. We show that L(A1[p]) ⊆ L(A2[q]). The other in-
clusion follows by symmetry.

Towards a contradiction, assume that there exists a tree t0 ∈ L(A1[p])−
L(A2[q]). As A1 is reduced, there exists a tree T0 in L(A1), such that

• t0 is a subtree of T0 at some node v; and,

• r′1(v) = p, where r′1 is the unique run of A1 on T0.

As r1(u) = p = r′1(v), the tree t3 = t[u ← t0] is also in L(A1). As A1 and
A2 are equivalent, t3 is also in L(A2). Notice that u has the same spine in t
and in t3 = t[u← t0]. By Observation 3.10, A2 has spine-based runs, which
implies that r′2(u) = q for the unique run r′2 of A2 on t3. Therefore, t0 ∈
L(A2[q]), which leads to the desired contradiction. q.e.d. (Observation 3.11)

The next observation states that every equivalent minimal deterministic
STA is equally large as Amin.

Observation 3.12. If A0 is a minimal deterministic STA for L(Amin), then
|A0| = |Amin|.

Proof. As A0 is minimal, we know that A0 is reduced and that |A0| ≤ |Amin|.
As Amin is the output of the minimization algorithm, Amin is reduced as
well.

We only have to prove that |Amin| ≤ |A0|. Towards a contradiction, as-
sume that |States(Amin))| > |States(A0)|. For every state q ∈ States(Amin),
let tqmin ∈ L(Amin) be a tree and uq

min ∈ Nodes(tqmin) such that rq
min(uq

min) =
q for the unique accepting run rq

min of Amin on tqmin. Moreover, let, for every
such tqmin, rq

0 be the unique accepting run rq
0 of A0 on tqmin.

According to the Pigeon Hole Principle, there exist two states p 6= q ∈
States(Amin) such that rp

0(up
min) = rq

0(u
q
min) = p0, for some p0 ∈ States(A0).

From Observation 3.11, it now follows that L(Amin[p]) = L(A0[p0]) =

520 W. Martens, F. Neven, and T. Schwentick

L(Amin[q]). This contradicts that Amin is the output of the minimization
algorithm, as there still exist two states for which step (2) must be per-
formed. q.e.d. (Observation 3.12)

This concludes the proof of the theorem. q.e.d. (Theorem 3.6)

4 Top-down automata on unranked trees

The definition of unranked tree automata dates back to the work of Thatcher
[21]. Unranked tree automata use TΣ (that is, unranked Σ-trees) as their
data structure. For convenience, we sometimes abbreviate “unranked tree
automaton” by UTA in this section. We start by defining blind top-down
deterministic unranked tree automata, which generalize the determinism in
BTAs to unranked trees. Blind top-down deterministic unranked automata
are, e.g., defined in [5] under the name of top-down deterministic automata.

Definition 4.1. A blind top-down deterministic unranked tree automaton

(BUTA) over Σ is a finite automaton A over Σ in which Rules(A) is a set
of rules of the form

a→ p or (q, a)→ B

such that Init(A) = {p | a → p ∈ Rules(A)} is a singleton and B is a
deterministic FSA over States(A) with the property that, for each i ∈ N,
L(B) contains at most one string of length i. Furthermore, for each q ∈
States(A) and a ∈ Alphabet(A), Rules(A) contains at most one rule of the
form (q, a)→ B.

A run of A on a tree t is a labeling r : Nodes(t)→ States(A) such that

• if lab(ε) = a and r(ε) = q then a→ q ∈ Rules(A) and,

• for every node u ∈ Nodes(t) such that lab(u) = a, r(u) = q, and
u has n children, there is a rule (q, a) → B such that B accepts
r(u1) · · · r(un).

Notice that, in the second bullet, the criterion that u is a leaf reduces
to ε ∈ L(B). Therefore, each run that satisfies the above conditions is
accepting.

Notice that the regular languages defined by the above Bs are very
restricted. Indeed, as pointed out in [16], Shallit [19] has shown that such
regular languages are finite unions of regular expressions of the form xy∗z
where x, y, z ∈ Σ∗.

Just as in the ranked case, blind top-down determinism is the most
widely accepted form of top-down determinism. However, in a context such
as XML, blind top-down determinism is not very useful as its expressiveness

Deterministic top-down tree automata: past, present, and future 521

is very limited. We therefore also investigate ‘sensing’ extensions that can
read labels of child nodes before assigning them states.

The following definition is the generalization of determinism for STAs.
In a similar effort to generalize determinism for STAs to unranked trees,
Cristau et al. [8] and Martens [13] define models with the same expressive
power as this one.

Definition 4.2. An offline sensing top-down deterministic unranked tree

automaton (offline SUTA) is a finite automaton A in which Rules(A) is a
set of rules of the form

a→ p or q → Bq,

where the automata Bq are FSAs over Σ and use the states of A as their state
set. That is, States(Bq) = States(A). Furthermore, all the Bq have same the
final states and the same transition rules, that is, for all q1, q2 ∈ States(A),
Final(Bq1) = Final((Bq2) and Rules(Bq1) = Rules(Bq2). In short, the only
difference between the automata Bq is their choice in initial states.5 Fur-
thermore,

• for each a ∈ Alphabet(A) there is at most one rule of the form a→ p,

• for each q ∈ States(A), there is at most one rule q → Bq, and

• for each rule q → Bq, Bq is an unambiguous FSA.

We define Init(A) to be {p | a → p ∈ Rules(A)} and we require that
Init(A) ⊆ Final(Bq), for each state q.

A run r of A on a tree t is a labeling r : Nodes(t)→ States(A) such that

• if lab(ε) = a and r(ε) = q then a→ q ∈ Rules(A) and,

• for every node u ∈ Nodes(t) such that lab(u) = a, r(u) = q, and u
has n children, there is a rule q → Bq such that r(u1) · · · r(un) is an
accepting run of Bq on lab(u1) · · · lab(un).

As with BUTAs, the criterion that u is a leaf reduces to ε ∈ L(B) in the
second bullet. Therefore, each run that satisfies the above conditions is
accepting.

The restriction to unambiguous FSAs actually ensures that the complete
child string can be read prior to the assignment of states. We note that the
above mentioned work [8, 13], where “sensing top-down determinism” is

5 A similar sharing of states is used in stepwise tree automata, which were used for
defining a clean notion of bottom-up determinism for unranked tree automata [15].

522 W. Martens, F. Neven, and T. Schwentick

simply called “top-down determinism”, employs slightly more involved but
equivalent definitions in terms of expressive power.

In Section 4.2, we shall see that, in contrast to the ranked case, offline
sensing top-down determinism is in fact too powerful for efficient static
analysis. In particular, minimization will turn out to be NP-hard for offline
sensing deterministic automata. We therefore discuss online sensing, an
intermediate form of top-down determinism which is also known under the
name of restrained competition for extended DTDs.6 This restriction will
turn out to be more expressive than blind top-down determinism, while
retaining the desirable complexities for static analysis.

Definition 4.3. An online sensing top-down deterministic unranked tree

automaton (online SUTA) is an offline SUTA with the difference that, for
each rule q → Bq, Bq is a deterministic FSA.

The restriction to deterministic FSAs ensures that states have to be
assigned to child nodes when processing them from left to right.

4.1 Relative expressive power

Again, we characterize the expressiveness of the formalisms in terms of
subtree exchange properties.

Theorem 4.4. An (unranked) regular tree language L is recognizable by

1. a BUTA if and only if L is path-closed.

2. an online SUTA if and only if L is ancestor-sibling-closed.

3. an offline SUTA if and only if L is spine-closed.

The proof of Theorem 4.4(1) is analogous to the ranked case. Theo-
rem 4.4(2) and Theorem 4.4(3) are proved by Martens et al. [13, 14].

The next corollary then immediately follows:

Corollary 4.5.

1. BUTAs are strictly less expressive than online SUTAs.

2. Online SUTAs are strictly less expressive than offline SUTAs.

6 Extended DTDs or EDTDs are a grammar-based alternative to tree automata which
have been investigated in the context of XML schema languages [13, 14].

Deterministic top-down tree automata: past, present, and future 523

4.2 Static analysis

Theorem 4.6.

1. Emptiness is in PTIME for BUTAs, online SUTAs and offline SUTAs.

2. Containment is in PTIME for BUTAs, online SUTAs and offline SU-
TAs.

3. Minimization is in PTIME for online SUTAs.

4. Minimization is NP-complete for offline SUTAs.

Proof. (1) This follows from the result that emptiness is in PTIME for
non-deterministic unranked tree automata. (See, e.g., [13].)
(2) This follows from PTIME containment for unambiguous (ranked) tree
automata [18]. For example, when translating an offline SUTA to a ranked
tree automaton through the well-known first-child next-sibling encoding, one
obtains an unambiguous ranked tree automaton. Containment of the un-
ranked tree automata can then be decided by testing containment for the
unambiguous ranked automata.
(3) We can reduce to Theorem 3.6(3) by means of the unranked-versus-
ranked encoding enc and decoding dec illustrated in Figure 5. We explain
intuitively how a run of an online SUTA A for L translates to a run of a
deterministic STA enc(A) for enc(L). We assume w.l.o.g. that A is reduced.
Assignment of initial states to the root of the trees is the same for both
automata. Furthermore, the transition rules translate as follows. For each
q ∈ States(A) and a ∈ Alphabet(A), Rules(enc(A)) contains

• a→ q if a→ q in Rules(A);

• q(▽, #)→ (p▽, qleaf) if Init(Bq) = {p} and q ∈ Final(Bq);

• q(▽, a)→ (p▽, q′) if Init(Bq) = {p} and q
a
→ q′ ∈ Rules(Bq);

• q(#, a)→ (qleaf, q
′) if Bq accepts ε and q

a
→ q′ ∈ Rules(Bq);

• q▽(#, a)→ (qleaf, q
′) if q

a
→ q′ ∈ Rules(Bq); and

• q(#, #)→ (qleaf, qleaf) if Bq accepts ε and q is a final state in Bq.

Here, qleaf is a new state not occurring in States(A). The states q▽ are
copies of states q in A that can only be assigned to the ▽-labeled nodes in
the encoding. The encoded automaton always assigns qleaf to leaf symbols.
Hence, Final(enc(A)) = qleaf. Figure 5 illustrates an automaton A, an
accepting run of A on a tree t, and an accepting run of enc(A) on enc(t).

It is easy to see that this encoding preserves determinism. The de-
coding, however, would not preserve determinism in general, as the initial

524 W. Martens, F. Neven, and T. Schwentick

Init(A) = {q0}

a→ q0

q1 q2 q3 q4 q5

q9

q6 q7 q8

q10

q0 b c d e

q8 h

q3 f g

q2, q4, q5, q7

(a) Automaton A accepting the tree in Figure 5(b).

a

b c

f g

h

d e

q0

q1 q2 q3 q4 q5

q6 q7 q8

q9 q5

⇒
⇐

a

▽

b

c

▽

f

g

▽

h

#

#

d

e

#

#

q0

q▽
1

q10

q2q10

q10 q3

q▽
6

q4

q10 q5

q10 q10

q7q10

q10 q8

q▽
9

q10

q5q10

q10 q10

(b) An unranked tree and its ranked encoding.

Figure 5. Encoding of unranked to binary trees (and back) that links
deterministic STAs to online SUTAs. Letters a, . . . , h represent alphabet
symbols and {q0, . . . , q10} represent states of an accepting run.

Deterministic top-down tree automata: past, present, and future 525

states Init(Bq) might not be unique. It can be shown, however, that if L
is ancestor-sibling closed, the decoding of a minimal deterministic STA for
enc(L) is always deterministic.

In order to give the relation between the minimal sizes of A and enc(A),
we need a few parameters. We call a state q of A a sink state, when no rules
of the form q → B occur in A and no B has a rule q

a
→ q′ for some a. For

example, the state q10 in Figure 5 is such a sink state. We define sink(A) = 0
if A has such a sink state and sink(A) = 1 otherwise. Furthermore, let
trans-init(A) be the number of states p such that {p} = Init(Bq) for some
q and p has an incoming transition.

Observation 4.7. There exists an online SUTA of size k for L(A) if and
only if there exists a deterministic STA of size k + sink(A) + trans-init(A)
for L(enc(A)).

The reasons for the difference in sizes concerning the sink state and the
trans-init states are as follows. If A contains a sink state q, then enc(A)
could use this sink state instead of qleaf to label all the #-leaves in the
encoding. Furthermore, in the encoding, each ▽ node is labeled by a copy
q▽ of a state q, which introduces extra states for enc(A). However, if q
contains an incoming transition in A (and A is reduced), then both q and
q▽ appear in the minimal automaton for L(enc(A)).
(4) We first argue that minimization for offline SUTAs is in NP. To this end,
observe that, given an offline SUTA A and an integer k, an NP algorithm
can guess an offline SUTA B of size at most k and test in PTIME (according
to Theorem 4.6(2)) whether A and B define the same language.

For the NP lower bound, we reduce from the minimization problem
for unambiguous FSAs, which is shown to be NP-complete by Jiang and
Ravikumar [11]. Observe that, in the proof of Jiang and Ravikumar [11,
Theorem 3.1], it is shown that minimization is already NP-hard for unam-
biguous FSAs that only accept strings of length two. As FSAs that only
accept strings of length two have a sink state, i.e., a state with no outgoing
transitions, this simplifies our reduction.

Thereto, let U be an unambiguous FSA that only accepts strings of
length two and let k be an integer. We construct an offline SUTA A and an
integer ℓ such that there exists an equivalent unambiguous FSA for L(U)
of size at most k if and only if there exists an offline SUTA for L(A) of size
at most ℓ.

Let r be a symbol not occurring in Alphabet(U). Intuitively, A will ac-
cept the trees r(w) such that w ∈ L(U). We define States(A) = States(U)⊎
{q0}, Alphabet(A) = Alphabet(U) ⊎ {r}, and the rules of A are defined as

• r → q0,

• (q0, r)→ U , and

526 W. Martens, F. Neven, and T. Schwentick

• (q, a)→ E, for every q ∈ States(U) and a ∈ Alphabet(U),

where E is the UFA with States(E) = {qf} and L(E) = {ε}. Here, qf is a
state in Final(U) which is reachable in U from an initial state of U . Finally,
ℓ = k + 1.

We need to argue that the reduction is correct. It is easy to see that A
accepts {r(w) | w ∈ L(U)}.

We need to prove that there is an unambiguous FSA for L(U) of size at
most k if and only if there is an offline SUTA for L(A) of size at most ℓ.
From left to right, let U ′ be an unambiguous FSA of size at most k for L(U).
Then, A′, constructed from U ′ in the same way as A is constructed from U
is an offline SUTA for L(A) of size at most ℓ. From right to left, let A′ be
an offline SUTA for L(A) of size at most ℓ. W.l.o.g., we can assume that A′

is reduced. As A′ is an offline SUTA, A′ has a unique state q0 which is used
in the rule r → q0. Now consider the transition rule of q0, i.e., q0 → U ′′ in
Rules(A). Clearly, U ′′ accepts L(U). As A′ only accepts trees of depth two,
we have that q0 has no incoming or outgoing transitions in the definition of
U ′′. (Otherwise, as A′ is reduced, trees can be constructed that are also in
L(A′) and have depth larger than two, contradicting that L(A′) = L(A).)
Therefore, the unambiguous FSA U ′, obtained from U ′′ by removing state
q0 also recognizes L(U) and has size at most k. q.e.d.

A similar result as Theorem 4.6(3) was also proved in the context of
extended DTDs in [15]. To the best of our knowledge, the precise com-
plexity of minimization for BUTAs is still unknown. It is in NP, as testing
equivalence between BUTAs is in PTIME.

4.3 Closure properties

The same closure properties hold for the deterministic unranked tree au-
tomata as for the ranked tree automata we defined. The witness languages
for non-closure are analogous to the ones in Section 3.2.

5 Regular frontier checks

In this section, we revisit the notion of regular frontier checks as a theoretical
tool to close top-down deterministic languages under Boolean operations.
We apply regular frontier checks to unranked automata.

To this end, we assume that the frontier of a tree is no longer an un-
ordered set, but ordered from left to right. That is, we assume the lexico-
graphical ordering < on Frontier(t).

Definition 5.1. A top-down deterministic unranked tree automaton with

regular frontier check (FC-UTA) over alphabet Σ is a (blind, online sensing,
or offline sensing) top-down deterministic unranked tree automaton A over
alphabet Σ, together with a regular language F over alphabet Σ×States(A).

Deterministic top-down tree automata: past, present, and future 527

A run of A on a tree t is defined precisely the same for blind, online
sensing, or offline sensing unranked automata, respectively. A run r is
accepting if (lab(u1), r(u1)) · · · (lab(un), r(un)) ∈ F , where Frontier(t) =
{u1, . . . , un} with u1 < · · · < un.

On ranked trees, top-down tree automata with frontier checks are known
to be closed under union, intersection, and complement [12]. On unranked
trees, these results can be obtained analogously. Moreover, in order to
obtain this closure, one does not even need arbitrary regular languages.
Indeed, it is sufficient to consider locally threshold testable languages [22]
with diameter k = 1.

Hence, FC-UTAs could be one candidate for closing schema languages
for XML under the Boolean operations, thereby resolving the issues in model
management or schema integration.

6 Conclusions and discussion

We presented an overview of top-down determinism in ranked and unranked
tree automata, and explored several connections between them. As many
connections were to be expected, we start the conclusions with a discrep-
ancy. This discrepancy is observed between the (ranked) deterministic sens-
ing tree automata (STAs) and the (unranked) deterministic offline sensing
tree automata (offline SUTAs). Although they are closely related — they
have, e.g., the same expressive power on binary trees and their way of assign-
ing states to nodes in a top-down fashion is quite similar — we have shown
that optimization, i.e., state minimization, is easy for one class but hard
for the other.7 Indeed, whereas state minimization is in PTIME for STAs,
it is NP-complete for offline SUTAs. When inspecting the NP-hardness
proof, the difference becomes even more striking: it already holds for offline
SUTAs recognizing binary trees.

It thus follows that the determinism in offline SUTAs is actually not a
very suitable notion for “top-down determinism” on unranked trees. Simi-
larly as has been argued for the “standard” notion of bottom-up determin-

ism on unranked trees [15], determinism in offline SUTAs corresponds more
closely to unambiguousness rather than true determinism.8

On the positive side, the determinism in online SUTAs seems to be
more suitable. Online SUTAs have been investigated in the context of XML
schema languages under the name of restrained competition EDTDs and are
already attributed to have desirable static analysis properties, while being
more expressive than the core of XML Schema [14]. It is even decidable

7 If PTIME 6= NP.
8 Of course, this is because our definition of determinism in offline SUTAs use unambigu-

ous automata. However, we feel that similar problems will arise when investigating
minimization for the equally expressive models presented in [8, 13].

528 W. Martens, F. Neven, and T. Schwentick

(EXPTIME-complete) for a bottom-up (non)-deterministic unranked tree
automaton, whether there exists an equivalent deterministic online SUTA.
The latter is referred to as the simplification problem.

In conclusion, only the determinism notion in online SUTAs is known to
be truly top-down deterministic on unranked trees. Determinism in BUTAs,
as defined by Brüggemann-Klein et al. [5] as the straightforward extension of
the “standard” top-down determinism for ranked trees [7], is a bit different.
In spite of the close connection to the well-behaved top-down determinism
on ranked trees, minimizing deterministic BUTAs is not completely trivial
and the precise complexity is still unknown. From an XML point of view,
however, this notion of determinism might be less interesting. It assigns
states to nodes, only based on the number of their siblings, which makes
them rather poor in expressive power. When one would, for instance, want
to allow an automaton to read the label of a node before assigning it a state,
which seems to be the case in XML schema languages for example, the
determinism in online SUTAs would be the obvious candidate.

With respect to future research several natural directions emerge:

1. Top-down determinism and closure properties. As previously men-
tioned, the lack of closure under union is quite unnatural for an XML
schema language. This leads to the following natural questions: (1)
What are the possible additions to the deterministic top-down au-
tomaton model that closes them under the Boolean operations?; (2)
What is the best way to approximate a Boolean combination of deter-
ministic top-down tree automata?; and, (3) What are the properties of
the class consisting of the Boolean closure of deterministic top-down
tree automata (BC-TA)?

2. Optimization problems. Minimization is of course a very important
problem. Can FC-UTAs or BC-TAs be efficiently minimized? Fur-
thermore, what is the complexity of the simplification problem (as
defined above) for the various models?

3. In practice not many XML schemas are available and some of those are
syntactically incorrect, which leads to the problem of automatically
inferring them from a set of XML documents. As the latter reduces to
learning in the limit from positive data of deterministic top-down tree
automata, it would be interesting to pinpoint classes which can be
learned in this manner. Bex et al. addressed the problem of inferring
subclasses of DTDs and XSDs [2, 3].

Deterministic top-down tree automata: past, present, and future 529

References

[1] P. A. Bernstein and S. Melnik. Model management 2.0: manipulating
richer mappings. In C. Y. Chan, B. C. Ooi, and A. Zhou, editors,
SIGMOD Conference, pages 1–12. ACM, 2007.

[2] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference of con-
cise dtds from XML data. In U. Dayal, K.-Y. Whang, D. B. Lomet,
G. Alonso, G. M. Lohman, M. L. Kersten, S. K. Cha, and Y.-K. Kim,
editors, VLDB, pages 115–126. ACM, 2006.

[3] G. J. Bex, F. Neven, and S. Vansummeren. Inferring XML schema
definitions from XML data. In C. Koch, J. Gehrke, M. N. Garofalakis,
D. Srivastava, K. Aberer, A. Deshpande, D. Florescu, C. Y. Chan,
V. Ganti, C.-C. Kanne, W. Klas, and E. J. Neuhold, editors, VLDB,
pages 998–1009. ACM, 2007.

[4] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Extensible markup
language (XML). World Wide Web Journal, 2(4):27–66, 1997.

[5] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular tree and
regular hedge languages over unranked alphabets: Version 1, April 3,
2001. Technical Report HKUST-TCSC-2001-0, The Hongkong Univer-
sity of Science and Technology, 2001.

[6] J. Clark and M. Murata. Relax NG specification. Technical report,
OASIS, 2001. http://relaxng.org/spec-20011203.html.

[7] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications,
2001. http://www.grappa.univ-lille3.fr/tata.

[8] J. Cristau, C. Löding, and W. Thomas. Deterministic automata on
unranked trees. In M. Liskiewicz and R. Reischuk, editors, FCT, vol-
ume 3623 of Lecture Notes in Computer Science, pages 68–79. Springer,
2005.

[9] F. Gécseg and M. Steinby. Minimal ascending tree automata. Acta

Cybern., 4:37–44, 1980.

[10] F. Gécseg and M. Steinby. Tree automata. Akadémiai Kiadó (Publish-
ing House of the Hungarian Academy of Sciences), Budapest, 1984.

[11] T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM

J. Comput., 22(6):1117–1141, 1993.

530 W. Martens, F. Neven, and T. Schwentick

[12] E. Jurvanen, A. Potthoff, and W. Thomas. Tree languages recognizable
by regular frontier check. In Developments in Language Theory, pages
3–17, 1993.

[13] W. Martens. Static Analysis of XML Transformation- and Schema

Languages. PhD thesis, Hasselt University, 2006.

[14] W. Martens, F. Neven, T. Schwentick, and G. J. Bex. Expressive-
ness and complexity of XML schema. ACM Trans. Database Syst.,
31(3):770–813, 2006.

[15] W. Martens and J. Niehren. On the minimization of XML schemas and
tree automata for unranked trees. J. Comput. Syst. Sci., 73(4):550–583,
2007.

[16] F. Neven and T. Schwentick. Query automata over finite trees. Theor.

Comput. Sci., 275(1-2):633–674, 2002.

[17] M. Nivat and A. Podelski. Minimal ascending and descending tree
automata. SIAM J. Comput., 26(1):39–58, 1997.

[18] H. Seidl. Deciding equivalence of finite tree automata. SIAM J. Com-

put., 19(3):424–437, 1990.

[19] J. Shallit. Numeration systems, linear recurrences, and regular sets (ex-
tended abstract). In W. Kuich, editor, ICALP, volume 623 of Lecture

Notes in Computer Science, pages 89–100. Springer, 1992.

[20] C. Sperberg-McQueen and H. Thompson. XML Schema.
Technical report, World Wide Web Consortium, 2007.
http://www.w3.org/XML/Schema.

[21] J. W. Thatcher. Characterizing derivation trees of context-free gram-
mars through a generalization of finite automata theory. J. Comput.

Syst. Sci., 1(4):317–322, 1967.

[22] W. Thomas. Classifying regular events in symbolic logic. J. Comput.

Syst. Sci., 25(3):360–376, 1982.

[23] J. Virágh. Deterministic ascending tree automata I. Acta Cybern.,
5:33–42, 1981.

Expressive power of monadic logics
on words, trees, pictures, and graphs∗

Oliver Matz1

Nicole Schweikardt2

1 Institut für Informatik
Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4
24118 Kiel, Germany
matz@ti.informatik.uni-kiel.de

2 Institut für Informatik
Humboldt-Universität zu Berlin
Unter den Linden 6
10099 Berlin, Germany
schweika@informatik.hu-berlin.de

Abstract

We give a survey of the expressive power of various monadic logics
on specific classes of finite labeled graphs, including words, trees, and
pictures. Among the logics we consider, there are monadic second-
order logic and its existential fragment, the modal mu-calculus, and
monadic least fixed-point logic. We focus on nesting-depth and quan-
tifier alternation as a complexity measure of these logics.

1 Introduction

There is a close relationship between (generalized) automata theory and the
expressive power of certain monadic logics. Already in 1960, Büchi and El-
got proved that a word-language is recognizable by a finite automaton if, and
only if, it can be characterized by a monadic second-order formula. Since
then, various analogous results, e.g., for labeled trees rather than words,
and also for more general classes of labeled graphs, have been obtained.
Alluding to the notion of “descriptive complexity theory”, in his survey ar-
ticle [39] for the Handbook of Formal Languages, Wolfgang Thomas called
the branch of research that investigates the relationship between generalized
finite automata and monadic logics a “descriptive theory of recognizability”.
∗ Both authors wish Wolfgang Thomas all the best for this jubilee. Matz would like to

express his gratitude for Wolfgang Thomas’ careful supervision during the preparation
of Matz’ Ph.D. thesis. Furthermore, we should like to thank the anonymous referee
for the detailed remarks.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 531–552.

532 O. Matz, N. Schweikardt

The present paper’s aim is to give a survey of the expressive power of
various monadic logics (including monadic second-order logic and its ex-
istential fragment, the modal mu-calculus, and monadic least fixed-point
logic), on specific classes of finite labeled graphs. In particular, we give
details on the following topics:

It is known that on finite words and labeled trees, all the above men-
tioned monadic logics have the same expressive power and can characterize
exactly the languages that are recognizable by a suitable notion of finite
automata. Moreover, already one single existential set quantifier suffices
to obtain the expressive power of existential monadic second-order logic on
words, trees, and pictures (i.e., two-dimensional words or, equivalently, la-
beled grid-graphs). This goes back to a paper by Wolfgang Thomas [38], in
which he showed that a single existential set quantifier suffices for words.
From the proof, one can also infer an elegant proof which shows that finite
automata can be simulated by monadic least fixed-point logic. Wolfgang
Thomas’ Ph.D. students Potthoff [32] and Matz [25] obtained according re-
sults for trees and pictures, respectively. On the other hand, when going
slightly beyond the class of pictures, it is known from work by Otto [31] that
within existential monadic second-order logic, more set quantifiers lead to
strictly more expressive power.

While on words and labeled trees, existential monadic second-order logic
has the same expressive power as full monadic second-order logic, the sit-
uation is different for the class of pictures. From work by Giammarresi,
Restivo, Seibert, and Thomas [17] it is known that existential monadic
second-order logic can define exactly the recognizable picture languages,
which are characterized by a suitably adapted automaton model, the tiling-
systems. But full monadic second-order logic on pictures has considerably
more expressive power and, in fact, precisely corresponds to the linear time
hierarchy (i.e., the linear time analogue of Stockmeyer’s polynomial time
hierarchy). Similarly, building on results by Schweikardt [36], one obtains
that the picture languages definable in monadic least fixed point logic can
encode at least all problems that belong to Grandjean’s deterministic linear
time complexity class DLIN [18]. Furthermore, unless P = NP, the expres-
siveness of monadic least fixed point logic on pictures is strictly weaker than
that of monadic second-order logic.

Also some aspects concerning the fine structure of monadic second-order
logic over pictures and graphs are understood quite well by now: Matz,
Schweikardt, and Thomas [28, 35, 27] showed that the monadic second-
order quantifier alternation hierarchy is strict, i.e., that formulas in prenex
normal form having a prefix of k+1 alternations of set quantifiers can de-
scribe strictly more picture languages (or, in general, graph properties) than
formulas with only k quantifier alternations. Note, however, that this re-

Expressive power of monadic logics on words, trees, and pictures 533

sult does not have implications concerning the strictness of the linear time
hierarchy (or the polynomial time hierarchy) as the levels of the monadic
second-order quantifier alternation hierarchy do not correspond to the levels
of the linear time hierarchy.

When considering the modal mu-calculus instead of monadic second-
order logic on finite labeled graphs, an according hierarchy based on the
alternation of least and greatest fixed point operators was proved indepen-
dently by Bradfield [4] and Lenzi [22], see also Arnold [2] for an elegant
proof. (The hierarchies proved in [4, 22, 2] are about general structures
that are not necessarily finite; via the mu-calculus’ finite model property
(cf., e.g., [3]), however, they can be directly transferred to the class of fi-
nite labeled graphs.) Up to date, it still is an open question whether an
analogous hierarchy can be proved for monadic least fixed point logic.

The rest of this paper is structured as follows: In Section 2 we fix the nec-
essary notation concerning the logics and the structures that are considered
in this paper. Section 3 concentrates on the relations between (finite-state)
recognizability of word languages, tree languages, and picture languages
and their definability in various monadic logics. In Section 4, we go be-
yond recognizability and study nesting-depth and quantifier alternation as
a complexity measure of logics.

2 Logics and structures considered in this paper

This section fixes some basic notations and conventions used throughout
the remainder of the paper.

2.1 Structures
All structures considered in this paper are finite and can be viewed as par-
ticular kinds of labeled graphs. Namely, we consider labeled trees, words,
and pictures (i.e., two-dimensional words).

Let us fix a finite alphabet Σ, whose elements serve as letters at positions
in a word or a picture or as labels for nodes in a graph or a tree. For this
exposition it is convenient (and no essential loss of generality) to assume
that Σ is of the form {0, 1}t for some t > 0 (for t = 0, the alphabet Σ is a
singleton).

A word (over Σ) is a finite sequence of elements in Σ. A word language
is a set of words. In order to use logic formulas to define word languages
we consider the signature {Succ, B1, . . , Bt}, where Succ is a binary relation
symbol and B1, . . , Bt are unary relation symbols. We identify a word w =
w1 · · ·wn over Σ with the structure of signature {Succ, B1, . . , Bt} whose
universe is the set [n] := {1, . . , n} of positions in the word, and where
Succ is interpreted by the natural successor relation on [n] and, for every
i ∈ {1, . . , t}, the relation symbol Bi is interpreted by the set of all positions

534 O. Matz, N. Schweikardt

at which the word carries a letter (σ1, . . , σt) ∈ Σ = {0, 1}t with σi = 1.
Pictures are two-dimensional analogues of words, i.e., a picture (over Σ)

is a two-dimensional (rectangular) array over Σ. A picture language is a
set of pictures. Like for words, it is straightforward to associate, with every
picture, a model over a specific signature, this time with two binary rela-
tions Succh and Succv for the horizontal and the vertical successor relation,
respectively.

For convenience, all trees considered in this paper will be ordered and
binary, i.e., every node is either a leaf or has two children. Each node
of a labeled tree (over Σ) is labeled by an element in Σ. A tree language
is a set of labeled trees. Similarly as words and pictures, also trees can
be identified in a straightforward way by structures over the signature
{Succ1,Succ2, B1, . . , Bt}, where the binary relations Succ1 and Succ2 are
used for the edges from a node to its first child and to its second child,
respectively.

2.2 Logics
We assume that the reader is familiar with first-order logic (FO), monadic
second-order logic (MSO), least fixed-point logic (LFP), and the modal
mu-calculus. We write MLFP for monadic least fixed-point logic, i.e., the
fragment of LFP where only monadic second-order variables are allowed. It
is straightforward to see that monadic least fixed-points can be defined in
MSO, and thus the expressive power of MLFP lies between the expressive
power of FO and the expressive power of MSO. Some focus of the present
paper will also be on existential monadic second-order logic (EMSO), which
consists of all MSO-formulas of the form

∃X1 · · · ∃X` ϕ,

where ϕ is first-order, ` > 0, and X1, . . , X` are set variables (i.e., monadic
second-order variables). Further, we shall write 1-EMSO for the fragment
of EMSO where just a single set variable is available.

If ϕ is a sentence (over a suitable signature and a certain logic), the
(word, picture, or tree) language defined by ϕ is the set of all words (or
pictures or trees) whose associated word (or picture or tree) models make
ϕ true.

3 Monadic logics and recognizability

This section concentrates on the relations between recognizability of word
languages, tree languages, and picture languages and their definability in
various monadic logics. Here, “recognizability” refers to non-deterministic
finite automata or suitable adaptations thereof.

We shall first quickly review the well-known results on words and trees
which, basically, state that all the monadic logics mentioned in Section 2

Expressive power of monadic logics on words, trees, and pictures 535

have the same expressive power, namely of defining exactly the regular word
languages and tree languages.

Afterwards, we shall move over to the case of pictures, where things
turn out to be much more subtle, since the various monadic logics differ
with respect to their power of defining picture languages.

3.1 Monadic logics and recognizability of words and trees
The class of regular (or, recognizable) word languages plays a central role in
the theory of formal languages. One reason for this is the large variety of its
conceptually different characterizations, for example by means of monoids,
grammars, automata, closure properties, and logics. Concerning the subject
of this paper, let us focus on the following two: non-deterministic finite
automata (NFA) and monadic second-order logic.

Theorem 3.1 (Büchi-Elgot, [6, 12]). A word language is regular if, and
only if, it can be defined by an MSO-sentence.

Since we shall come back to this later (in the context of pictures instead of
words), let us briefly point out the essential steps in the well-known proof
of the above theorem.

Proof (sketch). One direction is simple to prove: Given a non-deterministic
finite automaton A, we have to construct a monadic second-order sentence
that asserts for a given word (model) that there exists an accepting run.
The existence of such a run can be expressed by a formula of the form

∃X1 · · · ∃X` ϕ(X1, . . , X`),

where an assignment to the set variables encodes an assignment of A’s states
to positions in the word, and ϕ asserts that for any two consecutive posi-
tions, this assignment is compatible with the automaton’s transition rela-
tion, the initial state and the final states. We observe that the resulting
formula is in the existential fragment EMSO of monadic second-order logic.

The other direction is more intricate. Typically, it is done as follows:
Given an MSO-sentence ϕ, we may pass to a similar sentence ϕ′ in prenex
normal form, where all first-order quantifiers are eliminated and special,
new predicates singleton(X) are used instead, which assert for a set X that
it has just one element. An NFA can be constructed by induction on the
construction of such formulas. In this induction, one exploits that the class
of regular word languages is closed under union, complementation, and pro-
jection, to handle disjunction, negation, and existential MSO quantification,
respectively. q.e.d.

The above proof, in particular, leads to:

536 O. Matz, N. Schweikardt

Corollary 3.2. Over the class of words, every MSO-sentence is equivalent
to an EMSO-sentence.

Even more, it is known that already a single existentially quantified set
variable suffices:

Theorem 3.3 (Thomas, [38]). Over the class of words, every MSO-sentence
is equivalent to a 1-EMSO-sentence.

Proof (sketch). The proof relies on the following simple and elegant idea:
Given a deterministic finite automaton A with r states and, w.l.o.g., state
space {1, . . . , r}, each state i can be represented by the bit-string 01i0r−i

of length r′ := r + 1. If w is an input word, we can subdivide w into sub-
words such that each of these sub-words has length r′, except for the last
one, whose length is between r′ and 2r′ − 1. Each of these sub-words can
be decorated by the bit-string that represents A’s state when entering the
first position of the sub-word. Such bit-strings, in turn, can of course be
represented by an assignment to a single set variable, e.g., by assuming that
the set consists of exactly those positions where the bit-string carries the
letter 1.

Now, it is easy to construct a 1-EMSO-sentence of the form ∃X ϕ(X),
where ϕ is first-order and expresses that the bit-string represented by X
encodes the list of states assumed by A at the beginnings of the sub-words.
For constructing ϕ, note that (1) each sub-word has constant length < 2r′,
(2) the leftmost positions of the sub-words can be identified from the fact
that they do not belong to X but their successors do, and (3) the steps that
A performs while reading the sub-word can be simulated by a first-order
formula. This way, ϕ can check that the list of states represented by X
is consistent with A’s transition relation and represents an accepting run
of A. q.e.d.

A closer look at this proof sketch shows that a similar set X can also be
defined as a monadic least fixed-point of a suitable first-order formula: This
time, sub-words of length r′ := 1 + 2r are considered, and each state i ∈
{1, . . , r} is represented by the bit-string 10i−1102r−i. Note that r′ is chosen
in such a way that the distance between two consecutive positions carrying
the letter 1 tells us, which of the two positions marks the beginning of a
sub-block and which of the two positions marks a state of the automaton.
Using this, one obtains that every regular word language can be described
by an MLFP-sentence which uses just a single monadic least fixed point
operator (see Potthoff [32] for details). In a similar way, one can also prove
that the modal mu-calculus can describe exactly the regular word languages.
In summary, we thus have the following situation:

Expressive power of monadic logics on words, trees, and pictures 537

Theorem 3.4. On the class of words, MSO, EMSO, 1-EMSO, MLFP, and
the modal mu-calculus have the same expressive power and can describe
exactly the regular word languages.

The same result holds true for the class of labeled trees (cf. [37, 10, 32, 20]).
If we leave the classes of words and labeled trees and pass over to pic-

tures, this is not the case any more. We shall give details on this in the
next subsection.

3.2 EMSO-definability and recognizability of pictures
In [16], Giammarresi and Restivo suggested a natural adaptation of NFA to
picture languages: the so-called tiling-systems.

Definition 3.5. A tiling-system is a quadruple (Σ,Γ,∆, π), where Σ and
Γ are finite alphabets, π : Γ → Σ is an alphabet projection, and ∆ is a set of
2×2-pictures over alphabet Γ ∪ {#}, where # is a fresh boundary symbol.
The mapping π is lifted to pictures in the obvious way.

A picture p over Σ is accepted by such a tiling-system iff there is a picture
r over Γ such that π(r) = p and ∆ contains all 2×2-sub-blocks of the picture
that results by surrounding r with the boundary symbol #. The picture
language recognized by some tiling-system T is the set of pictures accepted
by T .

Example 3.6. Consider the tiling-system T = ({a}, {0, 1},∆, π), where
π(0) = π(1) = a, and where ∆ is the set of 2× 2-subblocks of

#
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1
#

Then T recognizes the set of all pictures p over {a} for which there exists
m > 1 such that p has size m× 2m. Intuitively, T establishes a mechanism
of binary counting the columns.

More examples of recognizable picture languages can be found in Gi-
ammarresi and Restivo’s article in the present book.

Unlike the regular word languages, which are pretty simple to under-
stand, the recognizable picture languages can be very complex, both from an
intuitive and from a computational point of view. For example, in [33, 34],
Reinhard has found examples of picture languages whose proofs of recog-
nizability are very difficult and which disproved previous conjectures by
Matz, e.g. [24]. Still, examples near the borderline between recognizable
and non-recognizable picture languages are subject of current research, see
[7].

538 O. Matz, N. Schweikardt

It is known that the class of recognizable picture languages is closed
under union, intersection, row- and column-concatenation, and row- and
column-Kleene-star [16], but we have:

Theorem 3.7 (Giammarresi-Restivo-Seibert-Thomas [17]). If the alphabet
has at least two symbols, the class of recognizable picture languages is not
closed under complement.

A witness for the above theorem is given by:

Example 3.8 (Giammarresi-Restivo-Seibert-Thomas, [17]). Let L be the
set of pictures over {0, 1} that result from the concatenation of two identical
pictures of quadratic shape. Then L is not recognizable, but its complement
is.

The statement of Theorem 3.7 is true also for singleton alphabets, see The-
orem 4.12 below.

MSO logic, of course, is closed under negation, so Theorem 3.7 immedi-
ately implies that the statement of Theorem 3.1 is not true when replacing
the terms “word language” and “regular” with “picture language” and “rec-
ognizable”. However, it is known that the existential fragment of monadic
second-order logic, EMSO, has exactly the right power for expressing rec-
ognizable picture languages:

Theorem 3.9 (Giammarresi-Restivo-Seibert-Thomas, [17]). A picture lan-
guage is recognizable if, and only if, it can be defined by an EMSO-sentence.

The “easy” direction in the proof is to show that recognizability by a
tiling-system can be described by an EMSO-formula. This case can be
handled in a similar way as in the proof of Theorem 3.1.

The other direction, however, cannot be handled in a similar way as in
that proof because the initial replacement of first-order quantifiers by set
quantifiers would force us to deal with the negation during the induction, but
the class of recognizable picture languages is not closed under complement.
Thus, one essential step in the proof given in [17] is a specific treatment of
the first-order quantifiers with Ehrenfeucht-Fräıssé games. This yields, as
a side-product, also the characterization of the first-order definable picture
languages as the locally threshold testable ones, analogously to the one-
dimensional case.

The characterization of the EMSO-definable picture languages given in
Theorem 3.9 opened the door to several combinatorial arguments that al-
low to show that certain picture languages are not EMSO-definable, see for
example [15, 24]. This was the basis for the original proof of the strict-
ness of the monadic second-order quantifier alternation hierarchy [28], see
Section 4.3 below.

Expressive power of monadic logics on words, trees, and pictures 539

Similarly as for words it is known that for defining recognizable picture
languages, already a single existentially quantified set variable suffices:

Theorem 3.10 (Matz, [25]). Over the class of pictures, every EMSO-sen-
tence is equivalent to a 1-EMSO-sentence.

The proof is by an adaptation of the proof of Theorem 3.3 to the two-
dimensional case: A tiling-system plays the role of the finite automaton A,
with the minor technical inconvenience that tiling-systems are inherently
non-deterministic. However, the determinism of the automaton A in the
proof of Theorem 3.3 is not essential.

Let us mention that by results of Otto [31] it is known that when going
slightly beyond the class of pictures, EMSO does not collapse to 1-EMSO
but, quite to the contrary, there is a strict hierarchy within EMSO with
respect to the number of existentially quantified set variables. To precisely
state Otto’s result, let us write k-EMSO for the fragment of EMSO where
k set variables are available. Instead of pictures, Otto considers particular
structures over a signature which consists of two binary relation symbols R
and C. These Otto-grids are structures whose universe forms a rectangular
array and where R and C are interpreted by the relations stating that two
vertices belong to the same row, respectively, the same column of the array.

Theorem 3.11 (Otto, [31]). For every k > 0 there is a (k+1)-EMSO-
sentence that is not equivalent (over the class of Otto-grids) to any k-EMSO-
sentence.

The proof is by showing that the set Lk of all Otto-grids with the prop-
erty that the number of columns is 6 2(k+1)·number of rows is definable in
(k+1)-EMSO but not in k-EMSO (for the latter, an Ehrenfeucht-Fräıssé
game argument is used).

To close the subsection on recognizable picture languages, let us have a
quick look at the computational complexity of standard decision problems
concerning recognizable picture languages.

Proposition 3.12 (Giammarresi-Restivo, [16]). The emptiness problem
for tiling-systems is undecidable.

Proof (sketch). We sketch a reduction of the emptiness problem for Turing
machines. Let A be a Turing machine. It is straightforward to encode a
configuration of A by a finite word over a fixed alphabet Σ. Each step in a
computation of A corresponds to a local modification of that code. Every
finite—and hence every accepting—run R of A can be encoded by a picture
p over Σ, where p contains, in each row i, the code of the i-th configuration
of R (possibly padded with blank symbols).

540 O. Matz, N. Schweikardt

Now it is easy to effectively construct a tiling-system T that accepts all
pictures that encode an accepting run. Then the language recognized by T
is non-empty iff A has an accepting run. q.e.d.

Furthermore, the membership problem for tiling-systems is NP-complete:

Proposition 3.13 (Schweikardt, [35]). (a) The following problem belongs
to NP: Given a tiling-system T and a picture p, does T accept p?

(b) There exists a tiling-system T such that the following problem is NP-
complete: Given a picture p, does T accept p?

Proof (sketch). The proof of (a) is straightforward. (b) is obtained by cod-
ing the (NP-complete) problem of satisfiability of propositional formulas
in conjunctive normal form into an EMSO-definable picture language. To
this end, each propositional formula α is represented by a picture which
has a row for each variable and a column for each clause of α, such that
the entry in row i and column j of the picture is labeled by the letter P
(resp. N , resp.) if the i-th propositional variable occurs unnegated (resp.
negated, resp. not at all) in the j-th clause of α. A truth assignment to the
variables of α is represented by a set X of positions in the picture which,
for each row, contains either none or all positions of that row. I.e., if the
i-th propositional variable is assigned the value true (resp., false), then X
contains all (resp. none) of the positions in the i-th row. It is not difficult
to find an EMSO-formula ψ which expresses that there exists such a set
X which encodes a satisfying assignment for α. Altogether, this gives us
a reduction from the NP-complete satisfiability problem to the problem of
deciding whether an input picture belongs to the picture language defined
by ψ. q.e.d.

It is current research interest to determine computationally feasible sub-
classes of recognizable picture languages, see e.g. the article of Giammarresi
and Restivo in the present book.

3.3 Picture languages definable in MSO and MLFP
From the previous subsection we know that the EMSO-definable picture
languages coincide with the 1-EMSO-definable and the recognizable picture
languages. Furthermore, recall that Example 3.8 exposes a picture language
that is not definable in EMSO. It is not difficult to see that this language
is definable in MSO as well as in MLFP. The present subsection aims
at a deeper understanding of the MSO-definable and the MLFP-definable
picture languages.

Let us first concentrate on the MSO-definable picture languages. It is
easy to see that the membership problem for each MSO-definable picture

Expressive power of monadic logics on words, trees, and pictures 541

language belongs to LINH, i.e., the linear time hierarchy (cf., e.g. [11]),
which is the linear time analogue to Stockmeyer’s polynomial time hierarchy.
On the other hand, it is not difficult to see that, in fact, the MSO-definable
picture languages precisely correspond to the linear time hierarchy, since
every decision problem that belongs to LINH can be encoded by an MSO-
definable picture language. This can be obtained as follows: From [29] we
know that LINH is the class of all word languages that can be defined in
MSO(Bit), i.e., in monadic second-order logic on words where in addition
to the successor relation, also the Bit predicate on the set of positions in the
word is available (the Bit predicate is the set of all tuples (i, j) such that
the i-th bit in the binary representation of the natural number j is 1). The
basic idea now is to represent a word of length n by a picture as follows:
Let ` be the largest integer such that n > ` · 2`, cut the word into sub-
words of length 2`, and arrange the consecutive sub-words into consecutive
rows of the resulting picture (if necessary, pad the last row with dummy
entries to obtain a rectangular picture). Of course, the successor relation
Succ of the original word can easily be simulated by an MSO-formula over
the corresponding picture. Furthermore, it is a not too difficult exercise
to also construct an MSO-formula over the picture which simulates the
Bit predicate of the original word (hint: use an existentially quantified
unary relation to encode a “column-numbering” which writes the binary
representations of the numbers 0, 1, 2, . . . 2`−1 into the consecutive columns
of the picture). It then is not difficult to see that every MSO(Bit)-definable
set of strings is represented by an MSO-definable set of pictures. In this
sense, the MSO-definable picture languages can encode all problems that
belong to the linear time hierarchy.

Let us now concentrate on the MLFP-definable picture languages. Of
course, for each picture language defined by a fixed MLFP-sentence, the
membership problem belongs to P. Together with Proposition 3.13 and the
fact that the expressive power of MLFP lies between FO and MSO, this
implies the following:

Fact 3.14. Unless P = NP, MLFP is strictly less expressive on the class of
pictures than MSO.

On the other hand, MLFP is still quite expressive as it can define picture
languages corresponding to every problem in the deterministic linear time
complexity class DLIN introduced by Grandjean in [18]. The class DLIN is
based on linear time random access machines. In a series of papers, Grand-
jean made a convincing point that DLIN might be viewed as “the” adequate
mathematical formalization of linear time complexity. For example, DLIN
contains all problems in DTIME(n), i.e., all problems solvable by deter-
ministic linear time multi-tape Turing machines; but DLIN also contains

542 O. Matz, N. Schweikardt

problems such as the sorting problem, which are conjectured not to belong
to DTIME(n).

In a similar way as described above for MSO and LINH, one obtains
that every problem in DLIN can be encoded by an MLFP-definable picture
language—instead of using the characterization of LINH as the MSO(Bit)-
definable word languages, one now just has to use a result from [36] stating
that every word language which belongs to DLIN can be defined by an
MLFP(Bit)-sentence.

4 Alternation hierarchies

In descriptive complexity theory it is a general task to classify properties by
the complexity a formula must have to describe this property. But what is
the suitable measure for the complexity of a formula? A typical approach
is to measure the complexity by the nesting depth of the “most powerful
ingredient” of the logic under consideration.

For example, a measurement for the complexity of a first-order formula
is the nesting depth of first-order quantifiers, neglecting the complexity
introduced by boolean combinations. Another example is the modal mu-
calculus, where it is the nesting depth of fixpoint iterations that is the
natural means to measure the complexity of a formula. MSO is a third
example, where the nesting depth of the most powerful quantifications (in
this case, the monadic ones) establishes a measure of formula complexity.

In Section 3 we have already considered the nesting depth of set quanti-
fiers as a complexity measure of MSO-formulas and have seen (Theorem 3.3)
that the corresponding hierarchy collapses for the classes of words and of
trees whereas it is infinite for Otto-grids (Theorem 3.11).

However, for many logics and classes of structures, the complexity mea-
surement obtained by simply counting syntactic nesting of single quantifiers
is (1) not sufficiently robust, and (2) does not result in the natural param-
eters for the computational complexity, e.g. of the model checking or the
satisfiability problem of formulas.

To illustrate the first reason, consider two 1-EMSO-sentences on the class
of finite structures. Their conjunction is in 2-EMSO but, unlike their dis-
junction, in general not in 1-EMSO, so that the class of 1-EMSO-definable
properties is not necessarily closed under intersection.

To illustrate the second reason, let us consider MSO over words. A
good approach for solving the model checking problem relies on the well-
known construction of an NFA for a given MSO-formula (see Theorem 3.1
and its proof sketch). The constructions for conjunction, disjunction, and
existential quantification can be done directly on NFA and result in no
essential increase of the number of states. However, the construction for the
negation of a formula requires a deterministic automaton and therefore the

Expressive power of monadic logics on words, trees, and pictures 543

famous powerset construction, which results in an exponential state blow-
up. Thus it is the alternation of existential quantifications and negation (or,
equivalently: the alternation of existential and universal quantifications)
that is significant for the increase of the state set size and therefore for the
computational complexity of the model checking problem.

4.1 First-order alternation
As motivated above, one passes to a coarser view of “nesting” by consider-
ing a block of only existential (or only universal) quantifiers as one single,
“vectorial” quantifier. This vectorial approach is the basis for the first-order
quantifier alternation hierarchy. For example, a property of finite labeled
graphs is in the third level of that hierarchy iff it can be defined by a first-
order formula that has a prenex normal form with a quantifier prefix of
type

∃∗∀∗∃∗,

i.e., a quantifier prefix with three blocks of first-order quantifications, start-
ing with an existential one, and the following kernel formula is quantifier-
free. Level k of the first-order quantifier alternation hierarchy is usually
denoted Σ0

k, its “complement” Π0
k (i.e., Π0

k is the set of all graph properties
that can be defined by a first-order formula in prenex normal form that has
a quantifier prefix with k blocks of first-order quantifications, starting with
a universal one).

Theorem 4.1 (Chandra-Harel-Thomas, [8, 38]). The first-order quantifier
alternation hierarchy is strict over the class of finite labeled graphs, i.e., for
every k > 0, Σ0

k Σ0
k+1. Furthermore, for every k > 1, Σ0

k 6= Π0
k.

Chandra and Harel’s proof in [8] explicitly provides, for each k > 0, a
property of finite labeled directed graphs that belongs to Σ0

k+1 but not to
Σ0

k. They consider graphs that are equipped with a distinguished “start
node” and a subset of nodes called “winning positions”. With each such
graph, they associate a 2-player game in which a token is moved along the
edges of the graph. At the beginning, the token is placed on the “start
node”. The players take turns, starting with player 1, and in each move
one of the players moves the token along an edge of the graph. After k+1
such moves, player 1 has won the game, if the token lies on a “winning
position”. It is now easy to find a Σ0

k+1-sentence which expresses that
player 1 has a winning strategy for k+1 moves; and by an Ehrenfeucht-
Fräıssé game argument it can be shown that this cannot be expressed by
any Σ0

k-sentence.
A different proof of the strictness of the first-order quantifier alterna-

tion hierarchy is given in [38], where Wolfgang Thomas considers first-order
formulas over word models with a different signature than in the present

544 O. Matz, N. Schweikardt

paper, namely with the ordering < instead of the successor relation on the
word positions. He shows that the first-order quantifier alternation hierar-
chy over that signature corresponds to the dot-depth alternation hierarchy,
which is shown to be strict in [9].

However, for words, trees, and pictures (over the signatures introduced
in Section 2.1, i.e., without ordering but with successor relation(s)), the
first-order quantifier alternation hierarchy collapses to boolean combinations
of its first level. This is a consequence of the characterization of first-
order definable properties of words, trees, and pictures by local threshold
testability, cf., e.g., the survey [39] and the article [17].

4.2 Fixpoint alternation in the mu-calculus
Niwiński [30] introduced vectorial fixpoints to result in a sufficiently coarse
and robust definition for the modal mu-calculus fixpoint alternation hierar-
chy which relies on the number of alternations of least and greatest fixed
point quantifiers—see [4] for a detailed discussion of that subject.

Theorem 4.2 (Bradfield, [4]). The modal mu-calculus alternation hierar-
chy is strict over the class of finite labeled graphs, i.e., for every k > 0, there
is a property of finite labeled graphs that is definable in level k+1 of the
Niwiński alternation hierarchy of the modal mu-calculus, but not in level k.

In [22], Lenzi proved a corresponding but slightly weaker result referring
to a different variant of fixpoint alternation, the Emerson-Lei hierarchy. An
elegant proof of Bradfield’s and Lenzi’s hierarchy was given by Arnold in [2].
Let us mention that the hierarchies proved in [4, 22, 2] are about general
structures that are not necessarily finite; via the mu-calculus’ finite model
property (cf., e.g., [3]), however, they can be directly transferred to the class
of finite labeled graphs.

On the other hand, when considering the class of finite words (instead of
the class of finite labeled graphs), the modal mu-calculus alternation hier-
archy is known to collapse (this can be proved in a similar way as discussed
in the paragraph before Theorem 3.4). More details on the collapse of the
modal mu-calculus hierarchy on particular classes of structures can be found
in [23, 40, 21].

It is a challenging future task to settle the following question:

Question 4.3. Does a similar result as Theorem 4.2 hold for monadic least
fixed point logic MLFP instead of the modal mu-calculus? I.e., is there a
strict hierarchy within MLFP that is based on the number of alternations
of least and greatest fixed point quantifiers?

4.3 Monadic second-order logic
Let us now consider monadic second-order logic MSO. In that logic, the
most powerful ingredient is the set quantification. The quantifier structure

Expressive power of monadic logics on words, trees, and pictures 545

of an MSO-formula in prenex normal form can be represented by a word over
the four-element alphabet {∃,∀, ∃, ∀}, where ∃,∀ represent set quantifiers,
and ∃, ∀ represent first-order quantifiers. In the following, we use regular
expressions over that alphabet to describe quantifier prefixes of formulas in
prenex normal form.

Every MSO-formula is equivalent (over the class of all structures) to an
MSO-formula whose quantifier prefix is of type

{∃,∀}∗{∃, ∀}∗.

A transformation of a given MSO-formula ψ into the above form can be
done in three steps: Firstly, replace every sub-formula of the form ∃xϕ(x)
with an equivalent formula of the form ∃X (singleton(X) ∧ ϕ′(X)), where
singleton(X) is an auxiliary first-order formula asserting that X is a sin-
gleton, and where ϕ′ results from ϕ by replacing every atomic formula
α(x1, . . , xn) with a suitable auxiliary first-order formula α′(X1, . . , Xn).
Note that the resulting formula ψ′ contains first-order quantifiers only within
the new auxiliary formulas singleton(X) and α′(X1, . . , Xn). Secondly, trans-
form ψ′ into prenex normal form, treating the auxiliary formulas like atoms.
Now, viewing the auxiliary formulas again as first-order formulas, the re-
sulting MSO-formula ψ′′ obviously consists of a quantifier prefix of set
quantifiers that is followed by a first-order formula. By transforming the
first-order part of this formula into prenex normal form, one then obtains
an MSO-formula in prenex normal form whose quantifier prefix is of type
{∃,∀}∗{∃, ∀}∗.
4.3.1 The MSO Quantifier Alternation Hierarchy
The definition of the monadic second-order quantifier alternation hierarchy
(or “MSO alternation hierarchy” for short) is based on the above represen-
tation. For each k > 0, level k of this hierarchy consists of those properties
(of, say, finite labeled graphs) that can be defined by an MSO-formula in
prenex normal form where the set quantifiers are grouped into k blocks,
existential and universal in alternation, starting with an existential one.
While most parts of Section 3 are devoted to EMSO, the first level of this
hierarchy, we consider the higher levels now. For example, a property is
in level three of that hierarchy iff it can be defined by a formula in prenex
normal form of type

∃∗∀∗∃∗{∃, ∀}∗.

i.e., one that starts with three blocks of set quantifiers, the first one being
existential, and continues with a first-order kernel formula.

Let us denote level k of the MSO quantifier alternation hierarchy by
mon-Σ1

k, its “complement” by mon-Π1
k (i.e., mon-Π1

k consists of all graph
properties whose complement belongs to mon-Σ1

k), and their intersection

546 O. Matz, N. Schweikardt

by mon-∆1
k. Furthermore, we write BC(mon-Σ1

k) to denote the class of all
properties that can be defined by a boolean combination of sentences suit-
able for mon-Σ1

k. (Thus BC(mon-Σ1
k) is the smallest superclass of mon-Σ1

k

that is closed under union and complement.)
By slightly abusing notation, we shall sometimes also speak of mon-Σ1

k

formulas to address the particular kind of formulas suitable for defining
properties that belong to mon-Σ1

k.
Fagin has shown that connectivity of finite graphs is (analogously to Ex-

ample 3.8) definable by a sentence in prenex normal form of type ∀∗{∃, ∀}∗,
but not by one of type ∃∗{∃, ∀}∗. This leads to the following result:

Theorem 4.4 (Fagin, [13]). mon-Σ1
1 6= mon-Π1

1 and thus, in particular,
mon-Σ1

1 mon-Σ1
2.

Fagin raised the question whether the MSO quantifier alternation hi-
erarchy collapses on some higher level. The question has been answered
negatively in [28]. Refining that proof, [35, 27] shows that a witness for the
separation of level k+1 from level k is the set of all pictures of size m×f(m)
for a specific (k+1)-fold exponential function: this picture language is defin-
able by a sentence with k+1 alternations of set quantifiers, but not by one
with just k alternations of set quantifiers. The same witness even separates
mon-∆1

k+1 from BC(mon-Σ1
k). Using standard techniques, the results can

be transported to the class of graphs. We thus obtain

Theorem 4.5 (Matz-Schweikardt-Thomas, [27]). For every k > 0,
mon-Σ1

k mon-Σ1
k+1. Moreover, there even exists a picture language over

a singleton alphabet that belongs to mon-∆1
k+1 but not to BC(mon-Σ1

k).

However, the proof of this theorem has also exhibited the following:
it is not the alternation of set quantifiers that gives the expressive power
needed to leave a fixed level of that hierarchy—it is the nesting of first-order
quantifiers, followed by one single block of set quantifiers. For example,
there is an MSO-sentence with quantifier prefix of type

∀∗∃∗∀∗{∃, ∀}∗,

that is not equivalent to any sentence with quantifier prefix of type

∃∗∀∗∃∗{∃, ∀}∗

(and likewise for values larger than three).
How is this possible? The definition of the MSO quantifier alternation

hierarchy allows to neglect first-order quantifications inside the kernel for-
mula, but it does not allow to neglect first-order quantifications completely.
This is so because first-order quantifications do not factor through monadic

Expressive power of monadic logics on words, trees, and pictures 547

second-order quantifications, unlike for the full second-order logic, in which
quantification is available over relations of arbitrary arity. We shall take a
closer look at this phenomenon in the following paragraph.

4.3.2 The Closed MSO Hierarchy
As motivated above, the value of the strictness of the MSO quantifier al-
ternation hierarchy would be much higher if first-order quantification was,
by definition, neglectable. This point was made by Ajtai, Fagin, and Stock-
meyer in [1]. In that paper, the authors suggest the closed MSO alternation
hierarchy, which is coarser and more robust than the ordinary MSO alter-
nation hierarchy because it allows to intersperse first-order quantifiers “for
free” between set quantifiers. For example, a property is in level three of
that hierarchy iff can be defined by an MSO-formula which has a prenex
normal form of type{∃, ∃, ∀}∗ {∀, ∃, ∀}∗ {∃, ∃, ∀}∗ {∃, ∀}∗ .

As noted in [1], the strictness of the closed MSO alternation hierar-
chy would be implied by the conjectured strictness of the polynomial time
hierarchy, because each level of the latter is closed under first-order quantifi-
cation and each level of the MSO alternation hierarchy contains a complete
problem for the polynomial time hierarchy. The following is a challenging
future task:

Task 4.6. Show, without relying on complexity theoretic assumptions, that
the closed MSO alternation hierarchy is strict.

4.3.3 The First-Order Closure
As pointed out above, it is desirable to understand more about the role of
first-order quantifications in the context of monadic second-order quantifier
alternation. Let us mention two approaches that have been made to achieve
progress in this area. Both deal with the first-order closure of some subclass
L of MSO, meaning the smallest superset of L that is closed under first-order
quantification and boolean combinations.

In [19], the authors develop a technique to infer new separation results
dealing with the first-order closure. Specifically, they show the following:

Theorem 4.7 (Janin-Marcinkowski, [19]). Let V,W ⊆
{∃,∀, ∃, ∀}∗. Let

S be a graph property definable by a prenex normal form of type V but
not by one of type W , then there is another property definable by a prenex
normal form of type ∃ ∀∀V but not by one of type {∃, ∀}∗W .

This technique works for the class of graphs, but it does not work for
the classes of words, trees, or pictures. The authors of [19] apply it to show
the following corollary (previously shown directly in [1]).

548 O. Matz, N. Schweikardt

Corollary 4.8. There exists a graph property definable by a prenex normal
form of type ∃∗{∃, ∀}∗∃∗{∃, ∀}∗ but not with one of type {∃, ∀}∗∃∗{∃, ∀}∗.

Apart from this, not many separation results are known by now. In fact,
to our best knowledge, even the following remains open:

Question 4.9. Is every MSO-formula equivalent to one of the form

∃∗{∃, ∀}∗∃∗{∃, ∀}∗ ?

For the class of pictures, [26] contains another preliminary step towards
understanding the expressive power of the first-order closure of logics. In
that paper, the MSO alternation hierarchy with first-order closure is con-
sidered. A property belongs to level k of that hierarchy iff it is definable in
the first-order closure of the set of mon-Σ1

k formulas.

Theorem 4.10 (Matz, [26]). The MSO alternation hierarchy with first-
order closure is strict.

The proof shows, for example, that there is a prenex normal form of type
∀∗∃∗

∀∗∃∗∀∗{∃, ∀}∗ that is not equivalent to a prenex normal form of type
{∃, ∀}∗∃∗∀∗∃∗{∃, ∀}∗. That means, to exceed some level of the MSO alter-
nation hierarchy with first-order closure, only two blocks of set quantifiers
are needed.

4.4 Labels and complement
Let us review the mentioned results and see what they imply concerning
the question whether the levels of the MSO quantifier alternation hierarchy
are closed under complement. Theorem 4.5 considers the class of picture
languages over a singleton alphabet and shows that, for every k, there is a
picture language that belongs to level k+1, but not to level k of the MSO
alternation hierarchy. This implies

Corollary 4.11. For every k > 1 there exists a t > 0 such that there is a
picture language over alphabet Σ := {0, 1}t which belongs to mon-Σ1

k but
not to mon-Π1

k.

By standard encoding techniques it can be deduced that t = 1 suffices.
In other words, if the alphabet Σ is fixed and of size > 2, then all separation
results of Figure 4.4 hold. Even more, the above is true also for a singleton
alphabet, so Theorem 3.7 can be generalized to:

Theorem 4.12 (Matz, [26]). For every k > 1 there is a picture language
over a singleton alphabet which belongs to mon-Σ1

k but not to mon-Π1
k.

Expressive power of monadic logics on words, trees, and pictures 549

mon-Σ1
k 6= mon-Π1

k

BC(mon-Σ1
k)

mon-∆1
k+1

mon-Σ1
k+1 6= mon-Π1

k+1

�� @@

��@@

Figure 1. The MSO quantifier alternation hierarchy

A picture language which witnesses the difference between mon-Σ1
k and

mon-Π1
k is the set of all pictures of size m× n for which n is not a multiple

of f(m), where f is a specific (k+1)-fold exponential function.
Again, the witness sentence actually makes little use of set quantifiers.

For example, if k = 5, it is of the form

∃∗
∀∗∃∗∀∗∃∗{∃, ∀}∗.

References

[1] M. Ajtai, R. Fagin, and L. J. Stockmeyer. The closure of monadic np.
J. Comput. Syst. Sci., 60(3):660–716, 2000.

[2] A. Arnold. The µ-calculus alternation-depth hierarchy is strict on bi-
nary trees. ITA, 33(4/5):329–340, 1999.

[3] J. Bradfield and C. Stirling. Modal logics and mu-calculi: an introduc-
tion. In Handbook of process algebra, pages 293–330. North-Holland,
Amsterdam, 2001.

[4] J. C. Bradfield. The modal µ-calculus alternation hierarchy is strict.
Theor. Comput. Sci., 195(2):133–153, 1998.

[5] L. Brim, J. Gruska, and J. Zlatuska, editors. Mathematical Foundations
of Computer Science 1998, 23rd International Symposium, MFCS’98,
Brno, Czech Republic, August 24-28, 1998, Proceedings, volume 1450
of Lecture Notes in Computer Science. Springer, 1998.

[6] J. R. Büchi. Weak second-order arithmetic and finite automata. Z.
Math. Logik Grundlagen Math., 6:66–92, 1960.

550 O. Matz, N. Schweikardt

[7] G. Castiglione and R. Vaglica. Recognizable picture languages and
polyominoes. In Proceedings of the 2nd International Conference on
Algebraic Informatics, Thessaloniki, May 21–25, 2007, Thessaloniki,
Greece, 2007. Aristotle University of Thessaloniki Department of Math-
ematics. To appear.

[8] A. K. Chandra and D. Harel. Structure and complexity of relational
queries. J. Comput. Syst. Sci., 25(1):99–128, 1982.

[9] R. S. Cohen and J. A. Brzozowski. Dot-depth of star-free events. J.
Comput. Syst. Sci., 5(1):1–16, 1971.

[10] J. Doner. Tree acceptors and some of their applications. J. Comput.
Syst. Sci., 4(5):406–451, 1970.

[11] A. Durand and M. More. Nonerasing, counting, and majority over the
linear time hierarchy. Inf. Comput., 174(2):132–142, 2002.

[12] C. C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, 1961.

[13] R. Fagin. Generalized first-order spectra and polynomial-time recog-
nizable sets. In Complexity of computation (Proc. SIAM-AMS Sympos.
Appl. Math., New York, 1973), pages 43–73. SIAM–AMS Proc., Vol.
VII, Providence, R.I., 1974. Amer. Math. Soc.

[14] A. Ferreira and H. Reichel, editors. STACS 2001, 18th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Dresden, Germany,
February 15-17, 2001, Proceedings, volume 2010 of Lecture Notes in
Computer Science. Springer, 2001.

[15] D. Giammarresi. Two-dimensional languages and recognizable func-
tions. In Developments in Language Theory, pages 290–301, 1993.

[16] D. Giammarresi and A. Restivo. Recognizable picture languages.
IJPRAI, 6(2&3):241–256, 1992.

[17] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic
second-order logic over rectangular pictures and recognizability by
tiling systems. Inf. Comput., 125(1):32–45, 1996.

[18] E. Grandjean. Sorting, linear time and the satisfiability problem. Ann.
Math. Artif. Intell., 16:183–236, 1996.

[19] D. Janin and J. Marcinkowski. A toolkit for first order extensions of
monadic games. In Ferreira and Reichel [14], pages 353–364.

Expressive power of monadic logics on words, trees, and pictures 551

[20] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic.
In U. Montanari and V. Sassone, editors, CONCUR, volume 1119 of
Lecture Notes in Computer Science, pages 263–277. Springer, 1996.

[21] O. Kupferman and M. Y. Vardi. Weak alternating automata and tree
automata emptiness. In STOC, pages 224–233, 1998.

[22] G. Lenzi. A hierarchy theorem for the µ-calculus. In F. M. auf der
Heide and B. Monien, editors, ICALP, volume 1099 of Lecture Notes
in Computer Science, pages 87–97. Springer, 1996.

[23] R. Mateescu. Local model-checking of modal mu-calculus on acyclic
labeled transition systems. In J.-P. Katoen and P. Stevens, editors,
TACAS, volume 2280 of Lecture Notes in Computer Science, pages
281–295. Springer, 2002.

[24] O. Matz. On piecewise testable, starfree, and recognizable picture lan-
guages. In Foundations of software science and computation structures
(Lisbon, 1998), volume 1378 of Lecture Notes in Comput. Sci., pages
203–210. Springer, Berlin, 1998.

[25] O. Matz. One quantifier will do in existential monadic second-order
logic over pictures. In Brim et al. [5], pages 751–759.

[26] O. Matz. Dot-depth, monadic quantifier alternation, and first-order
closure over grids and pictures. Theor. Comput. Sci., 270(1-2):1–70,
2002.

[27] O. Matz, N. Schweikardt, and W. Thomas. The monadic quantifier
alternation hierarchy over grids and graphs. Inf. Comput., 179(2):356–
383, 2002.

[28] O. Matz and W. Thomas. The monadic quantifier alternation hierarchy
over graphs is infinite. In LICS, pages 236–244, 1997.

[29] M. More and F. Olive. Rudimentary languages and second order logic.
Math. Log. Q., 43:419–426, 1997.

[30] D. Niwinski. On fixed-point clones (extended abstract). In L. Kott, ed-
itor, ICALP, volume 226 of Lecture Notes in Computer Science, pages
464–473. Springer, 1986.

[31] M. Otto. An note on the number of monadic quantifiers in monadic
Σ1

1. Inf. Process. Lett., 53(6):337–339, 1995.

552 O. Matz, N. Schweikardt

[32] A. Potthoff. Logische Klassifizierung regulärer Baumsprachen. PhD
thesis, Christian-Albrechts-Universität zu Kiel, Germany, 1994.

[33] K. Reinhardt. On some recognizable picture-languages. In Brim et al.
[5], pages 760–770.

[34] K. Reinhardt. The #a = #b pictures are recognizable. In Ferreira and
Reichel [14], pages 527–538.

[35] N. Schweikardt. The monadic quantifier alternation hierarchy over grids
and pictures. In M. Nielsen and W. Thomas, editors, CSL, volume 1414
of Lecture Notes in Computer Science, pages 441–460. Springer, 1997.

[36] N. Schweikardt. On the expressive power of monadic least fixed point
logic. Theor. Comput. Sci., 350(2-3):325–344, 2006.

[37] J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.

[38] W. Thomas. Classifying regular events in symbolic logic. J. Comput.
Syst. Sci., 25(3):360–376, 1982.

[39] W. Thomas. Languages, automata and logic. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, volume III,
Beyond Words, pages 389–455. Springer, Berlin, 1997.

[40] I. Walukiewicz. Notes on the propositional µ-calculus: Completeness
and related results. Technical Report NS-95-1, BRICS, Department of
Computer Science, University of Aarhus, Denmark, 1995.

Structured strategies in games on graphs

R. Ramanujam
Sunil Simon

The Institute of Mathematical Sciences
Central Institutes of Technology (C. I. T.) Campus, Taramani
Chennai 600 113, India
{jam,sunils}@imsc.res.in

Abstract

We study two-player non-zero sum games of perfect information
in infinite games on graphs. We suggest that in such games, it is
useful to study structurally specified strategies, so that we can reason
about how a player’s strategy may depend on assumptions about the
opponent’s strategy. In such a setting, we show that best response
computation can be carried out in games with Muller objectives. We
discuss a simple modal logic in which we can reason about how a
player can ensure an outcome by following a specific strategy.

1 Summary

We discuss strategies in non-zero sum games of perfect information on
graphs. The study of non-zero sum games on graphs is motivated by the
advent of computational tasks on the world-wide web and related security
requirements which have thrown up many interesting areas of interaction
between game theory and computer science. For example, signing contracts
on the web requires interaction between principals who do not know each
other and typically distrust each other. Protocols of this kind which involve
selfish agents can be easily viewed as strategic games of imperfect infor-
mation. These are complex interactive processes which critically involve
players reasoning about each others’ strategies to decide on how to act. In
the case of interacting web services, these games involve infinite plays as
well. Developing a game theoretic computational study of such interactions
is an interesting challenge. Admittedly, these are games of partial infor-
mation, but a theoretical analysis is interesting even in the more restricted
case of perfect information.

On one hand, zero sum games on graphs have been extensively studied
in logic and automata theory [5], and on the other, a rich theory of non-
zero sum matrix form games has been developed by game theorists [8]. We
call graph games large, to indicate that plays consist of (long) sequences of

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 553–573.

554 R. Ramanujam, S. Simon

moves, whereas matrix form games are termed small, in the sense that a play
is typically one simultaneous move. We can have matrix form presentations
for sequential plays as well, but not very usefully for analysis.

While one talks of winning strategies in win / loss games, when players
have overlapping objectives, we consider the best response each player can
offer to moves of other players. In a small game which consists of both
players deciding on a move simultaneously, it is best analyzed by considering
pairs of moves. When we have a pair (a, b) such that a is player 1’s best
response to player 2 deciding on b, as well as the other way about, they
constitute a Nash equilibrium: there is no incentive for rational players to
unilaterally deviate from such a decision. Thus equilibrium concepts predict
rational play, and games are so designed that equilibrium behaviour achieves
desired outcomes. Nash’s theorem asserts the existence of equilibria in the
space of randomized strategies and game theory offers similar theorems for
related notions of equilibria.

Equating equilibria with rational play rests on the following analysis:
at a game position a rational player would choose the best response to the
opponent’s strategy which (by assumption of rationality of the opponent)
must be his best possible choice of move. Thus, the reasoning critically
involves players reasoning about other players’ strategies. When strategies
consist of picking one move out of a set of possible moves, such as in small
games, this is clear. When strategies use the current history of play to
make a local move when the eventual outcome is not as yet determined, the
situation is much less clear.

A strategy is a function from the set of partial plays to moves: it advises
a player at a game position on the choice she can make. In a large game,
this amounts to a complete specification of behaviour in all possible game
situations. But then in such a game, one player’s knowledge of the strategies
employed by the other is necessarily partial. Rational play requires much
finer analysis since strategies have structure that depends on the player’s
observations of game positions, history of play and the opponent’s apparent
strategies.

Such study of structure in strategies is relevant even in finite, deter-
mined, but large, zero-sum games. A classic example of such a game is the
game of chess. Zermello showed in [14] that chess is determined, i.e. from
every game position, either there exists a (pure) strategy for one of the two
players (white or black) guaranteeing that she will win or each one of the
two players has a strategy guaranteeing at least a draw. However, given
any game position, we do not know which of the three alternatives is the
correct one. For games like Hex, it is known that the first player can force
a win [3] but nonetheless a winning strategy is not known. Again, in such
situations, rather than be content with reasoning about games using the

Structured strategies in games on graphs 555

functional notion of strategies, one needs to reason about strategies them-
selves. For instance, most of the chess playing programs use heuristics which
are basically partially specified strategies. A library of such specifications
is developed and during the course of play, the actual strategy is built up
by composing various partial strategies.

Thus we are led to the idea of strategies specified in a syntax, and com-
posed structurally, with a player’s strategies built up using assumptions
about another. The notion of strategy composition is inspired by an analo-
gous notion of game composition proposed by Rohit Parikh [9] who initiated
the study of game structure using algebraic properties.

In this paper, we suggest that standard automata theoretic techniques
can be employed to usefully specify and analyze partial strategies in non-
zero games on graphs. We propose a syntactic framework for strategies in
which best response can be algorithmically determined, and a simple modal
logic in which we can reason about such strategies. This proposal is intended
more as an illustration of such analysis; ideally, we need a “programming
language” for strategies, whose structure should be determined empirically
by how well they describe interesting heuristics employed in many classes
of games that arise in applications mentioned above.

Related work
Automata theoretic analyses of two-player zero-sum infinite games of perfect
information [5] have led to interesting applications in the design and veri-
fication of reactive systems and in control synthesis. We use this technical
machinery, but in the non-zero sum context.

As remarked earlier, the logical structure we study is inspired by propo-
sitional game logic [9]. Pauly [10] has built on this to provide interesting
relationships between programs and games, and to describe coalitions to
achieve desired goals. Bonanno [2] suggested obtaining game theoretic so-
lution concepts as characteristic formulas in modal logic. van Benthem [12]
uses dynamic logic to describe games as well as (atomic) strategies.

On the other hand, the work on Alternating Temporal Logic [1] considers
selective quantification over paths that are possible outcomes of games in
which players and an environment alternate moves. Here, we talk of the
existence of a strategy for a coalition of players to force an outcome. [4]
draws parallels between these two lines of work, that of Pauly’s coalition
logics and alternating temporal logic. In the work of [6] and [13], van der
Hoek and co-authors develop logics for strategic reasoning and equilibrium
concepts.

The underlying reasoning, whether explicitly described (as in game log-
ics) or implicit (as in automata theoretic studies) is carried out in a logic of
games and the reasoning is about existence of strategies, rather than about
strategies themselves. For instance, the existence of an appropriate strategy

556 R. Ramanujam, S. Simon

in sub-games is used to argue the existence of one in the given game. More-
over, most of the techniques involve win / lose games. Thus our departure
consists in considering non-zero sum games and (hence) structured partial
strategies.

In [11], we presented an axiomatization of the logic we discuss here.
In this paper, the emphasis is more on showing how standard automata
theoretic techniques can be employed to solve the associated algorithmic
questions.

2 Games and strategies

We begin with a description of the game arena. We use the graphical model
for extensive form turn-based games, where at most one player gets to move
at each game position.

Game arena
Let N = {1, 2} be the set of players and Σ = {a1, a2, . . . , am} be a finite
set of action symbols, which represent moves of players.

A game arena is a finite graph G = (W 1,W 2,−→, w0) where W i is the
set of game positions of player i for i ∈ {1, 2}. Let W = W 1 ∪W 2. The
transition function −→: (W × Σ) → W is a partial function also called the
move function and w0 is the initial node of the game. Let ı = 2 when i = 1
and ı = 1 when i = 2.

Let the set of successors of w ∈W be defined as
→
w= {w′ ∈W | w a−→ w′

for some a ∈ Σ}. We assume that for all game positions w,
→
w 6= ∅.

In an arena, the play of a game can be viewed as placing a token on
w0. If player i owns the game position w0 (i.e w0 ∈W i), then she picks an
action ’a’ which is enabled for her at w0 and moves the token to w′ where
w0

a−→ w′. The game then continues from w′. Formally, a play in G is an
infinite path ρ : w0a0w1a1 · · · where ∀j : wj

aj−→ wj+1. Let Plays denote
the set of all plays in the arena.

Games and winning conditions
Let G be an arena as defined above. The arena merely defines the rules
about how the game progresses and terminates. More interesting are the
winning conditions of the players, which specify the game outcomes. Since we
consider non-zero sum games, players’ objectives need not be strictly con-
flicting, and each player has a preference relation inducing an ordering over
the set of valid plays. The game is specified by presenting the game arena
along with the preference relation for each player. Let �i⊆ (Plays×Plays)
be a complete, reflexive, transitive binary relation denoting the prefer-
ence relation of player i for i ∈ {1, 2}. Then the game G is given as,
G = (G, {�i}i∈{1,2}).

Structured strategies in games on graphs 557

In general, the preference relation need not have a finite presentation,
and we restrict our attention to finite state preferences. (This is because
in the applications we have in mind, as in network games, desired or pre-
ferred plays are easily expressed as formulas of temporal logics.) Thus, the
preferences of players are presented as finite state evaluation automata, with
Muller acceptance conditions.

LetM = (R,∆, r0) be a deterministic automaton with finite set of states
R, initial state r0 ∈ R and transition function ∆ : R ×W × Σ → R. The
evaluation automaton is given by: E = (M, {�i}i∈{1,2}) where �i ⊆ (F×F)
is a total order over F = 2R \∅ for i ∈ {1, 2}.

A run of E on a play ρ : s0a0 · · · ∈ Plays is a sequence of states ϕ : r0r1 · · ·
such that ∀i : 0 ≤ i < n, we have ri+1 = ∆(ri, si, ai). Let inf(ϕ) denote
the set of states occurring infinitely often in ϕ. The evaluation automaton
E induces a preference ordering on Plays in the following manner. Let
ρ : s0a0s1 · · · and ρ′ : s0a′0s

′
1 · · · be two plays. Let the run of E on ρ and

ρ′ be ϕ : r0r1 · · · rn and ϕ′ : r0r′1 · · · r′n respectively. For i ∈ {1, 2}, we have
ρ �i ρ′ iff inf(ϕ) �i inf(ϕ′). A game is presented as G = (G, E).

We shall also be interested in binary evaluation automata which specify
least outcomes for player i. Such a automaton is given by E iF , where F ∈ 2R:
for every F ′ ∈ 2R, if F �i F ′, it is taken to be “winning” for player i, and
every F ′′ 6= F such that F ′′�iF is taken to be “losing”. Such an automaton
checks if i can ensure an outcome which is at least as preferred as F . Note
that the terminology of win / loss is only to indicate a binary preference for
player i, and applies even in the context of non-zero sum games.

Thus we have game arenas, with players’ preference on plays. We now
discuss strategies of players.

Strategies
Let GT denote the tree unfolding of the arena G. We use s, s′ to denote
the nodes in GT . A strategy for player 1, µ = (Wµ,−→µ, s0) is a maximal
connected subtree of GT where for each player 1 node, there is a unique
outgoing edge and for the other player every move is included. That is, for
s ∈Wµ the edge relation satisfies the following property:

• if s ∈W 1
µ then there exists a unique a ∈ Σ such that s a−→µ s

′, where
we have s a−→T s

′.

• if s ∈W 2
µ , then for each s′ such that s a−→T s

′, we have s a−→µ s
′.

Let Ωi denote the set of all strategies of Player i in G, for i = 1, 2. We
shall use µ to denote a strategy of player 1 and τ a strategy of player 2. A
strategy profile 〈µ, τ〉 defines a unique path ρτµ in the arena G.

In games with overlapping objectives, the common solution concept em-
ployed is that of an equilibrium strategy profile [7]. A profile of strategies,

558 R. Ramanujam, S. Simon

one for each player, is said to be in equilibrium if no player gains by unilater-
ally deviating from his strategy. The notion of equilibrium can be formally
defined as follows. Let µ denote a strategy of player 1 and τ denote a
strategy of player 2.

• µ is the best response for τ iff ∀µ′ ∈ Ω1, ρτµ′ �1 ρτµ.

• τ is the best response for µ iff ∀τ ′ ∈ Ω2, ρτ
′

µ �2 ρτµ.

• 〈µ, τ〉 is a Nash equilibrium iff µ is the best response for τ and τ is
the best response for µ.

The natural questions that are of interest include:

• Given a strategy τ of player 2, what is the best response for player 1?

• Given a strategy profile 〈µ, τ〉, is it a Nash equilibrium?

• Does the game possess a Nash equilibrium?

Clearly, if we can answer the first question, we can answer the second
as well. In any case, to study these questions algorithmically, we need
to be able to present the preferences of players and their strategies in a
finite fashion. We have evaluation automata presenting preferences; we now
proceed to a syntax for strategies.

3 Strategy specification

We conceive of strategies as being built up from atomic ones using some
grammar. The atomic case specifies, for a player, what conditions she tests
for before making a move. We can associate with the game graph a set
of observables for each player. One elegant method then, is to state the
conditions to be checked as a past time formula of a simple tense logic over
the observables. The structured strategy specifications are then built from
atomic ones using connectives. We crucially use an implication of the form:
“if the opponent is apparently playing a strategy π then play σ”.

Below, for any countable set X, let Past(X) be sets of formulas given
by the following syntax:

ψ ∈ Past(X) := x ∈ X | ¬ψ | ψ1 ∨ ψ2 | 3-ψ.

Syntax
Let P i = {pi0, pi1, . . .} be a countable set of observables for i ∈ {1, 2} and let
P = P 1 ∪ P 2. The syntax of strategy specifications is then given by:

Strati(P i) := null | [ψ 7→ a]i | σ1 + σ2 | σ1 · σ2 | π ⇒ σ1

where π ∈ Stratı(P 1 ∩ P 2) and ψ ∈ Past(P i).

Structured strategies in games on graphs 559

Semantics
Given any sequence ξ = t0t1 · · · tm, V : {t0, · · · , tm} → 2X , and k such that
0 ≤ k ≤ m, the truth of a past formula ψ ∈ Past(X) at k, denoted ξ, k |= ψ
can be defined as follows:

• ξ, k |= p iff p ∈ V (sk).

• ξ, k |= ¬ψ iff ξ, k 6|= ψ.

• ξ, k |= ψ1 ∨ ψ2 iff ξ, k |= ψ1 or ξ, k |= ψ2.

• ξ, k |= 3-ψ iff there exists a j : 0 ≤ j ≤ k such that ξ, j |= ψ.

We consider the game arena G along with a valuation function for the
observables V : W → 2P . We assume the presence of two special proposi-
tions τi for each i ∈ {1, 2} which specify at a game position, which player’s
turn it is to move, i.e. τi ∈ V (w) iff w is a player i game position. Given
a strategy µ of player i and a node s ∈ µ, let ρs : s0a0s1 · · · sm = s be
the unique path in µ from the root node to s. For a strategy specification
σ ∈ Strati(P i), we define when µ conforms to σ (denoted µ |=i σ) as follows:

• µ |=i σ iff for all player i nodes s ∈ µ, we have ρs, s |=i σ.

where we define ρs, sj |=i σ for any player i node sj in ρs as,

• ρs, sj |=i null for all ρs, sj .

• ρs, sj |=i [ψ 7→ a]i iff ρs, sj |= ψ implies outρs
(sj) = a.

• ρs, sj |=i σ1 + σ2 iff ρs, sj |=i σ1 or ρs, sj |=i σ2.

• ρs, sj |=i σ1 · σ2 iff ρs, sj |=i σ1 and ρs, sj |=i σ2.

• ρs, sj |=i π ⇒ σ1 iff for all player ı nodes sk ∈ ρs such that k ≤ j, if
ρs, sk |=ı π then ρs, sj |=i σ1.

Above, π ∈ Stratı(P 1 ∩ P 2), ψ ∈ Past(P i), and for all i : 0 ≤ i < m,
outρs(si) = ai and outρs(s) is the unique outgoing edge in µ at s.

Remarks
Note that we do not have negation in specifications. One reason is that
they are partial, and hence the semantics is not immediate. If we were
to consider a specification of the form π ⇒ σ, we could interpret this as:
if player has seen that opponent has violated π in the past, then play σ.
This seems rather unnatural, and hence, for the present, we are content
to leave negation aside. Note that we do have negation in tests in atomic

560 R. Ramanujam, S. Simon

specifications, and later we shall embed these specifications into a modal
logic (with negation on formulas).

When we consider repeated or multi-stage games, we have strategy
switching, whereby players receive payoffs at specified points, and depend-
ing on the outcomes, decide on what new strategies to adopt later. Then it
makes sense to include specifications whereby a player conforms to a strat-
egy until some observable change, and then switches to another strategy.
In this context, we have (a form of) sequential composition as well as iter-
ation. However, operators are best added after a systematic study of their
algebraic properties. We stick to a simple presentation here since our main
aim is only to describe the framework. As we shall see below, any set of
specifications that allows effective automaton construction will do.

Clearly, each strategy specification defines a set of strategies. We now
show that it is a regular set, recognizable by a finite state device. In the
spirit of prescriptive game theory, we call them advice automata.

Advice Automata
For a game graph G, a nondeterministic advice automaton for player i is a
tuple A = (Q, δ, o, I) where Q is the set of states, I ⊆ Q is the set of initial
states, δ : Q×W ×Σ → 2Q is the transition relation, and o : Q×W i → Σ,
is the output or advice function.

The language accepted by the automaton is a set of strategies of player
i. Given a strategy µ = (Wµ,−→µ, s0) of player i, a run of A on µ is a Q
labelled tree T = (Wµ,−→µ, λ), where λ maps each tree node to a state
in Q as follows: λ(s0) ∈ I, and for any sk where sk

a−→µ s′k, we have
λ(s′k) ∈ δ(λ(sk), sk, ak).

A Q-labelled tree T is accepted by A if for every tree node s ∈ W i
µ, if

s
a−→T s

′ then o(λ(s)) = a. A strategy µ is accepted by A if there exists an
accepting run of A on µ.

It is easy to see that any bounded memory strategy can be represented
using a deterministic advice automaton. In such a framework we can ask,
given a bounded memory strategy for player 2 represented by a deterministic
strategy automaton B, can we compute the best response for player 1?

Proposition 3.1. Given a game G = (G, E) and a deterministic advice
automaton B for player 2, the best response for player 1 can be effectively
computed.

The proposition is proved easily. For each F ∈ 2R, we can construct a
nondeterministic automaton AF which explores paths of G as follows. It
consults B to pick player 2’s moves and simply guesses 1’s moves. It runs
the binary evaluation automaton E1

F for player 1 in parallel and checks if
the run is winning for player 1. Now, we can enumerate the F ∈ 2R in such

Structured strategies in games on graphs 561

a way that those higher in �1 appear earlier in the enumeration. We try
automata AF in this order.

Therefore, given an strategy profile presented as advice automaton for
each of the players, we can also check if a strategy profile constitutes a
Nash equilibrium. However, we are interested in strategy specifications
which are partial and hence constitute nondeterministic advice automata.
The following lemma relates structured strategy specifications to advice
automata.

Lemma 3.2. Given a player i ∈ {1, 2} and a strategy specification σ, we
can construct an advice automaton Aσ such that µ ∈ Lang(Aσ) iff µ |=i σ.

Proof. The construction of automata is inductive, on the structure of spec-
ifications. Note that the strategy is implemented principally by the output
function of the advice automaton.

For a strategy specification σ, let SF (σ) denote the subformula closure
of σ and SFψ(σ) denote the Past subformulas in σ. Call R ⊆ SFψ(σ)
an atom if it is propositionally consistent and complete: that is, for every
¬γ ∈ SFψ(σ), ¬γ ∈ R iff γ 6∈ R, and for every γ1∨γ2 ∈ SFψ(σ), γ1∨γ2 ∈ R
iff γ1 ∈ R or γ2 ∈ R.

Let AT σ denote the set of atoms. Let C0 = {C ∈ AT σ| there does
not exist any 3-ψ ∈ C}. For C,D ∈ AT σ,define C −→ D iff for all 3-ψ ∈
SFψ(σ), the following conditions hold.

• ψ ∈ C ⇒ 3-ψ ∈ D

• 3-ψ ∈ D ⇒ ψ ∈ C or 3-ψ ∈ C.

We proceed by induction on the structure of σ. We construct automata
for atomic strategies and compose them for complex strategies.
(σ ≡ [ψ 7→ a]): The automaton works as follows. Its states keep track of
past formulas satisfied along a play as game positions are traversed and
that the valuation respects the constraints generated for satisfying ψ. The
automaton also guesses a move at every step and checks that this is indeed a
when ψ holds; in such a case this is the output of the automaton. Formally:

Aσ = (Qσ, δσ, oσ, Iσ), where

• Qσ = AT σ × Σ.

• Iσ = {(C, x)|C ∈ C0, V (s0) = C ∩ Pσ, x ∈ Σ}.

• For a transition s a−→ s′ in G, we have:
δσ((C, x), s, a) = {(C ′, y)|C −→ C ′, V (s′) = C ′ ∩ Pσ, y ∈ Σ}.

• o((C, x), s) =
{
a if ψ ∈ C
x otherwise

562 R. Ramanujam, S. Simon

We now prove the assertion in the lemma that µ ∈ Lang(Aσ) iff µ |=i σ.

(⇒). Suppose µ ∈ Lang(Aσ). Let T = (W 1
µ ,W

2
µ ,−→T , λ) be the Q-labelled

tree accepted byAσ. We need to show that for all s ∈Wµ, we have ρs, s |= ψ
implies out(s) = a.

The following claim, easily proved by structural induction on the struc-
ture of ψ, using the definition of −→ on atoms, asserts that the states of
the automaton check the past requirements correctly. Below we use the
notation ψ ∈ (C, x) to mean ψ ∈ C.

Claim 3.3. For all s ∈Wµ, for all ψ′ ∈ SFψ(σ), ψ′ ∈ λ(s) iff ρs, s |= ψ′.

Assume the claim and consider any s ∈ Wµ. From claim 3.3, we have
ρs, s |= ψ implies ψ ∈ λ(s). By the definition of o, we have o(λ(s), s) = a.

(⇐). Suppose µ |=1 [ψ 7→ a]. From the semantics, we have ∀s ∈W 1
µ , ρs, s |=

ψ implies out(s) = a. We need to show that there exists a Q-labelled tree
accepted by Aσ. For any s let the Q-labelling be defined as follows. Fix
x0 ∈ Σ.

• For s ∈W 1
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, out(s)).

• For s ∈W 2
µ , let λ(s) = ({ψ′ ∈ SFψ(σ)|ρs, s |= ψ′}, x0).

It is easy to check that λ(s) constitutes an atom and the transition
relation is respected. By the definition of o, we get that it is accepting.
(σ ≡ σ1 ·σ2): By induction hypothesis there exist Aσ1 = (Qσ1 , δσ1 , oσ1 , Iσ1)
and Aσ2 = (Qσ2 , δσ2 , oσ2 , Iσ2) which accept all strategies satisfying σ1 and
σ2 respectively. To obtain an automaton which accepts all strategies which
satisfy σ1 · σ2 we just need to take the product of Aσ1 and Aσ2 .
(σ ≡ σ1 + σ2): We take Aσ to be the disjoint union of Aσ1 and Aσ2 . Since
the automaton is nondeterministic with multiple initial states, we retain the
initial states of both Aσ1 and Aσ2 . If a run starts in an initial state of Aσ1

then it will never cross over into the state space of Aσ2 and vice versa.
(σ ≡ π ⇒ σ′): By induction hypothesis we have Aπ = (Qπ, δπ, oπ, Iπ) which
accepts all player 2 strategies satisfying π and Aσ′ = (Qσ′ , δσ′ , oσ′ , Iσ′)
which accepts all player 1 strategies satisfying σ′.

The automaton Aσ has the product states of Aπ and Aσ′ as its states
along with a special state qfree. The automaton keeps simulating both Aπ,
Aσ′ and keeps checking if the path violates the advice given by Aπ, if so it
moves into state qfree from which point onwards it is “free” to produce any
advice. Till π is violated, it is forced to follow the transitions of Aσ′ .

DefineAσ = (Q, δ, o, I) whereQ = (Qπ×Qσ′)∪(qfree×Σ). The transition
function is given as follows:

Structured strategies in games on graphs 563

• For s ∈ W 1
µ , we have δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈ δπ(qπ, s, a) and

q2 ∈ δσ′(qσ′ , s, a)}.

• For s ∈W 2
µ , we have:

– If oπ(qπ, s) 6= a, then δ((qπ, qσ′), s, a) = {(qfree, a)|a ∈ Σ}.
– If oπ(qπ, s) = a, then δ((qπ, qσ′), s, a) = {(q1, q2)|q1 ∈ δπ(qπ, s, a)

and q2 ∈ δσ′(qσ′ , s, a)}.

• δ((qfree, x), s, a) = {(qfree, a)|a ∈ Σ}

The output function is defined as follows: For s ∈ W 1
µ , o((qπ, qσ′), s) =

oσ′(qσ′ , s) and o((qfree, x), s) = x.
The automaton keeps simulating both Aπ, Aσ′ and keeps checking if the

path violates π. If so it moves into state qfree from which point onwards it
is not constrained to follow σ′. q.e.d.

4 Best response

Since a strategy specification denotes a set of strategies satisfying certain
propeties, notions like strategy comparison and best response with respect
to strategy specifications need to be redefined.

Given a game arena G = (G, E) and a strategy specification π for player
ı, we can have different notions as to when a specification for player i is
“better” than another.

• Better1(σ, σ′): if there is an F ∈ 2R, then there is a µ′ with µ′ |=i σ
′

such that for all τ with τ |=ı π, ρτµ′ is winning with respect to E iF then
there is µ with µ |=i σ such that for all τ with τ |=ı π, ρτµ is winning
with respect to E iF .
The predicate Better1(σ, σ′) says that, for some (binary) outcome F ,
if there is a strategy conforming to the specification σ′ which ensures
winning E iF then there also exists a strategy conforming to σ which
ensures winning E iF as well.

• Better2(σ, σ′): if there is F ∈ 2R such that for all µ′ with µ′ |=i σ
′,

for all τ with τ |=ı π, ρτµ′ is winning with respect to E iF then for all µ
with µ |=i σ, for all τ with τ |=ı π, ρτµ is winning with respect to E iF .
This notion is best understood contrapositively: for some (binary)
outcome F , whenever there is a strategy conforming to σ which is not
winning for E iF , there also exists a strategy conforming to σ′ which is
not winning for E iF . This can be thought of as a soundness condition.
A risk averse player might prefer this way of comparison.

564 R. Ramanujam, S. Simon

To algorithmically compare strategies, we first need to be able to decide
the following questions. Let σ and π be strategy specifications for player i
and player ı and E iF a binary evaluation automaton for player i.

• Does player i have a strategy conforming to σ which ensures a valid
play which is winning for i with respect to E iF , as long as player ı is
playing a strategy conforming to π (abbreviated as ∃σ,∀π : E iF)?

• Is it the case that for all strategies of player i conforming to σ, as long
as player ı is playing a strategy conforming to π, the result will be a
valid play which is winning for i with respect to E iF (abbreviated as
∀σ,∀π : E iF)?

We call this the verification question. The synthesis question is given π and
E iF to construct a specification σ such that ∃σ,∀π : E iF holds.

Once we can show that the verification question is decidable and syn-
thesis possible, the game theoretic questions of interest include: For a game
G = (G, E),

• Given strategy specifications σ and π, check if σ is a best response to
π.

• Given a strategy specification profile 〈σ, π〉, check if it is a Nash equi-
librium.

• Given a strategy specification π for player ı and F ∈ F , synthesize (if
possible) a specification σ for i such that ∃σ,∀π : E iF holds.

• Given a strategy specification π for ı, synthesize a specification σ such
that σ is the best response to π.

The main theorem of the paper is the following assertion.

Theorem 4.1. Given a game G = (G, E) and a strategy specification π for
player ı,

1. The verification problem of checking whether for a player i strategy
specification σ and a binary evaluation automaton E iF , if ∃σ,∀π : E iF
and ∀σ,∀π : E iF holds in G is decidable.

2. For a binary evaluation automaton E iF , it is possible to synthesize
(when one exists), a deterministic advice automaton Ai such that
Ai,∀π : E iF holds.

3. For a specification σ, checking if σ is the best response to π is decid-
able.

Structured strategies in games on graphs 565

4. It is possible to synthesize a deterministic advice automaton Ai such
that Ai is the best response to π.

Proof. Without loss of generality we assume i = 1, ı = 2 and σ, π to be the
strategy specification for player 1 and 2 respectively.

For an advice automaton Ai = (Qi, δi, Ii, oi), we define the restriction
of G with respect to Ai to be G |\Ai = (U,−→i, Si) where U = W ×Qi and
Si = {s0} × Ii. In U , the nodes are partitioned in the obvious way. i.e.
u = (s, q) ∈ U i iff s ∈ W i. The transition relation −→i: U × Σ → U is
defined as,

• (s, q) a−→i (s′, q′) iff s
a−→ s′, q′ ∈ δi(q, s, a) and (s ∈ W i implies

oi(q, s) = a).

For a node u = (s, q) ∈ U , let enabled(u) = {a|∃(s′, q′) ∈ U with
(s, q) a−→ (s′, q′)}. Note that for all u ∈ U i, |enabled(u)| = 1

G |\ Aπ is the arena restricted with π. i.e. all strategies of player 2 in
G |\ Aπ conform to π. The game arena G |\ Aπ is no longer deterministic.
However, for any player 2 node in G |\Aπ there is exactly one action enabled
(i.e.

∣∣∣{a ∈ Σ | ∃u′ with u a−→ u′}
∣∣∣ = 1).

(1): To check if ∃σ,∀π : E iF holds, we build a non-deterministic tree automa-
ton T which runs on G |\Aπ. For a 1 node, it guesses an action “a” which
conforms to σ and branches out on all a edges. For a 2 node, there is only
one action enabled in G |\Aπ, call the action b. The automaton branches out
on all b labelled edges. T runs E1

F in parallel to verify that all plays thus
constructed are winning for 1 with respect to E1

F . If T has an accepting
run, then ∃σ,∀π : E iF holds in G. The details are as follows.

Consider ∃σ,∀π : E iF in G. According to the proof of Lemma 3.2, con-
struct the advice automatonAσ = (Qσ, δσ, Iσ, oσ) andAπ = (Qπ, δπ, Iπ, oπ).
Let E iF = (M, {�i}i∈{1,2}) with M = (R,∆, r0).

Let G′ = G |\ Aπ = (U,−→π, Sπ). Its easy to see that all player 2
strategies in G′ is accepted by Aπ. Therefore we have ∃σ,∀π : E iF holds in
G iff there is a strategy µ accepted by Aσ such that for each strategy τ of 2
in G |\Aπ, the resulting path is winning for 1 with respect to E iF . We give a
nondeterministic top down tree automaton T , which checks this property.
Since Sπ in general has more than one element, we add a new position called
root and for all u ∈ Sπ add edges labelled with ε between root and u.

Formally, the tree automaton T = (Q, δ, I) where Q = (Qσ × R) ∪
{qroot} and I = qroot. For T in a state q, reading node u, δ(q, u) =
〈(q1, a, 1), (q2, a, 2)〉 means the automaton will branch out into two copies,
on the first a successor it goes into state q1 and the second it goes into state
q2. For a node u = (s, qπ), let

→
u da have k elements and let the successors

be ordered in some way. The transition relation is defined as follows:

566 R. Ramanujam, S. Simon

• If u ∈ U1, then

δ((q, r), u) = {〈((q′, r′), a, 1), . . . , ((q′, r′), a, k)〉 |
oσ(q, s) = a, q′ ∈ δσ(q, s, a) and r′ = ∆(r, s, a)}

• If u ∈ U2, then

δ((q, r′), u) = {〈((q′, r′), a, 1), . . . , ((q′, r′), a, k)〉 |
q′ ∈ δσ(q, s, a) and r′ = ∆(r, s, a)}.

• If u = root, then

δ(qroot, u) = {〈((q0, r0), ε, 1), . . . , ((q0, r0), ε, k)〉 | q0 ∈ Iσ}.

To check if ∀σ,∀π : E iF holds, it suffices to check if all plays in (G|\Aπ)|\Aσ
is winning for 1 with respect to E1

F . This can be done easily.
(2): We want a deterministic advice automaton A1 which ensures that
for all strategies of 2 conforming to π the play is “winning” for player 1.
We construct a tree automaton T which mimics the subset construction
to synthesize A1. The states of T are the subsets of states of Aπ. At
game positions of player 1, it guesses a move and for every player 2 game
position, it branches out on all the action choices of Aπ where for each move
the resulting new state is the subset of states given by the nondeterministic
transition relation of Aπ. T runs E1

F in parallel and checks if all paths
constitutes a valid play and that the play is winning for 1 with respect to
E1
F . If there is an accepting run for T , then constructing A1 is easy. The

state space of A1 is the set of all subsets of the states of Aπ. The transition
relation is derived from the usual subset construction performed by T . The
output function basically follows the accepting run of T .

Let Aπ = (Qπ, δπ, Iπ, oπ) be the advice automaton corresponding to the
strategy specification π. Let B = (Qb, δb, Ib, G). We extend the transition
relation δπ as follows. For a set X ⊆ Qπ, δπ(X, s, a) = ∪q∈Xδπ(q, s, a). Let
T = (Q, δ, q0) be the tree automaton where Q = 2Qπ × R and the initial
state q0 = Iπ×{r0} is the set of all initial states of Aπ. For a tree automaton
in state q reading node s of the tree, δ(q, s) = 〈(q1, a), (q2, b)〉 means that
the automaton will branch out into two copies , on the a labelled outgoing
edge of s it goes into state q1 and on the b labelled outgoing edge, it goes
into state q2.

For game position s, and an automaton state q = ({q1π, . . . , qkπ}, r), the
transition relation is defined as follows:

• if s ∈W 1: δ(q, s) =

{〈((p, r′), a)〉|∃s a−→ s′ in G, p = δπ(q, s, a) and r′ = ∆(r, s, a)}.

Structured strategies in games on graphs 567

• if s ∈W 2: Let {a1, . . . , ak} = {oπ(q1π), . . . , oπ(qkπ)}.

δ(q, s) = {〈((p1, r1), a1), . . . , ((pk, rk), ak)〉 |
pi = δπ(q, s, ai) and ri = ∆(r, s, ai)}.

If T has a successful run on G, then let Tπ be the run tree with λ
being the labelling function from game positions to Q. We build the advice
automaton for 1 from this tree. The advice automaton A1 = (q1, δ1, q01 , o1)
where Q1 = 2Qπ , q01 = Iπ, δ1(q1, s, a) = q′ if in Tπ we have s a−→ s′ where
λ(s) = (q, r) and λ(s′) = (q′, r′). By definition of the transition function of
T , δ1 is deterministic. The output function o1, for each of the 1 nodes is
dictated by the guess made by T on the successful run Tπ.
(3): Given σ and π to check if σ is the best response to π, we use the tree
automaton construction in (1) with a slight modification.

We enumerate the elements of 2R in such a way that those higher in
�1 appear earlier in the enumeration. For each F , we construct a tree
automaton as in (1), the only difference being that the guesses made by T
at player 1 game positions are not restricted by σ. T runs E1

F in parallel to
check if player 1 can ensure F for all choices of 2 which conform to π. Since
the evaluation automaton is “complete”, the play eventually settles down
in one of F ′ ∈ 2R. Therefore, as we try elements of 2R in order, the tree
automaton succeeds for some E1

F ′ . This gives us the “best” outcome which
player 1 can guarantee. We then check if ∃σ,∀π : E1

F ′ holds in G. If it does
then Aσ is a best response to Aπ.

This also implies that we can check whether a strategy profile (presented
as advice automata) constitutes a Nash equilibrium.
(4) is similar to (3). We enumerate 2R and find the “best” outcome that
can be achieved and using the synthesis procedure, synthesize an advice
automaton for this outcome. q.e.d.

5 A strategy logic

We now discuss how we may reason about structured strategies in a formal
logic. Formulas of the logic (also referred to as game formulas) are built
up using structured strategy specifications (as defined in section 3). Game
formulas describe the game arena in a standard modal logic, and in addi-
tion specify the result of a player following a particular strategy at a game
position, to choose a specific move a. Using these formulas one can specify
how a strategy helps to eventually win (ensure) an outcome β.

Syntax
Let P i = {pi0, pi1, . . .} be a countable set of proposition symbols where τi ∈
Pi, for i ∈ {1, 2}. Let P = P 1 ∪ P 2. τ1 and τ2 are intended to specify,

568 R. Ramanujam, S. Simon

at a game position, which player’s turn it is to move. Further, the logic
is parametrized by the finite alphabet set Σ = {a1, a2, . . . , am} of players’
moves and we only consider game arenas over Σ.

The syntax of the logic is given by:

Π := p ∈ P | ¬α | α1 ∨ α2 | 〈a〉α | 3-α | (σ)i : c | σ ;i β

where c ∈ Σ, σ ∈ Strati(P i), β ∈ Past(P i). The derived connectives ∧,
⊃ and [a]α are defined as usual. Let 2-α = ¬3-¬α, 〈X〉α =

∨
a∈Σ 〈a〉α and

[N]α = ¬〈X〉¬α.
The formula (σ)i : c asserts, at any game position, that the strategy

specification σ for player i suggests that the move c can be played at that
position. The formula σ ;i β says that from this position, following the
strategy σ for player i ensures the outcome β. These two modalities consti-
tute the main constructs of our logic.

Semantics
The models for the logic are extensive form game trees along with a valua-
tion function. A model M = (T, V) where T = (S,−→, s0) is a game tree
obtained by the unfolding of the arena G, and V : S → 2P is the valuation
function.

Given a game tree T and a node s in it, let ρss0 : s0
a1=⇒ s1 · · ·

am=⇒ sm = s
denote the unique path from s0 to s. For the purpose of defining the logic it
is convenient to define the notion of the set of moves enabled by a strategy
specification at a node s (denote σ(s)). For a strategy specification σ ∈
Strati(P i) and a node s we define σ(s) as follows:

• null(s) = Σ.

• [ψ 7→ a]i(s) =
{
{a} if s ∈W i and ρss0 ,m |= ψ
Σ otherwise.

• (σ1 + σ2)(s) = σ1(s) ∪ σ2(s).

• (σ1 · σ2)(s) = σ1(s) ∩ σ2(s).

• (π ⇒ σ)(s) =
{
σ(s) if ∀j : 0 ≤ j < m, aj ∈ π(sj)
Σ otherwise.

We say that a path ρs
′

s : s = s1
a1=⇒ s2 · · ·

am−1=⇒ sm = s′ in T conforms to
σ if ∀j : 1 ≤ j < m, aj ∈ σ(sj). When the path constitutes a proper play,
i.e. when s = s0, we say that the play conforms to σ.
The following proposition is easy to see.

Structured strategies in games on graphs 569

Proposition 5.1. Given a strategy µ for player i along with a specification
σ, µ |=i σ (as defined in section 3) iff for all player i nodes s ∈ µ we have
out(s) ∈ σ(s).

For a game tree T, a node s let Ts denote the tree which consists of the
unique path ρss0 and the subtree rooted at s. For a strategy specification
σ ∈ Strati(P i), we define Ts |\ σ = (Sσ,=⇒σ, s0) to be the least subtree of
Ts which contains the unique path from s0 to s and satisfies the following
property.

• For every s′ in Sσ such that s =⇒∗
σ s

′,

– s′ is an i node: s′ a=⇒ s′′ and a ∈ σ(s′) ⇔ s′
a=⇒σ s

′′.

– s′ is an ı node: s′ a=⇒ s′′ ⇔ s′
a=⇒σ s

′′.

The truth of a formula α ∈ Π in a model M and position s (denoted
M, s |= α) is defined by induction on the structure of α, as usual. Let ρss0
be s0

a0=⇒ s1 · · ·
am−1=⇒ sm = s.

• M, s |= p iff p ∈ V (s).

• M, s |= ¬α iff M, s 6|= α.

• M, s |= α1 ∨ α2 iff M, s |= α1 or M, s |= α2.

• M, s |= 〈a〉α iff there exists s′ ∈W such that s a→s′ and M, s′ |= α.

• M, s |= 3-α iff there exists j : 0 ≤ j ≤ m such that M, sj |= α.

• M, s |= (σ)i : c iff c ∈ σ(s).

• M, s |= σ ;i β iff for all s′ such that s =⇒∗
σ s

′ in Ts |\ σ, we have
M, s′ |= β ∧ (τi ⊃ enabledσ).

where enabledσ ≡
∨
a∈Σ(〈a〉True ∧ (σ)i : a).

Figure 1 illustrates the semantics of σ ;1 β. It says, for an 1 node β is
ensured by playing according to σ; for a 2 node, all actions should ensure
β.

The notions of satisfiability and validity can be defined in the standard
way. A formula α is satisfiable iff there exists a model M such that M, s0 |=
α. A formula α is said to be valid iff for all models M , we have M, s0 |= α.

570 R. Ramanujam, S. Simon

1
σ(s)3a

~~~~
~~

~~
~~
x

��

y

  A
AA

AA
AA

As

2
x

����
��

��
��
y

��

z

��@
@@

@@
@@

@β ¬β β

β β β

Figure 1.

Truth checking
The truth checking problem is given a model M = (T, V ) and a formula
α0, determine whether M, s0 |= α0. The following theorem shows the de-
cidability of the truth checking problem.

Theorem 5.2. Given a model M = (T, V ) and a formula α0, we can
construct a nondeterministic Büchi tree automaton Tα0 such that M, s0 |=
α0 iff Tα0 has an accepting run on M .

Proof. Let {σ1, . . . , σm} be the strategy specification formulas appearing in
α0 and Aσ1 , . . .Aσm be the advice automata corresponding to the specifica-
tions. The tree automaton keeps track of the atoms (locally consistent sets
of subformulas) of α0 and the states of each of the advice automata. At
any game position, it guesses a new atom which is consistent with the game
position and a state for each of the advice automaton from its transition
relation. For the subformula (σ)i : a in the atom, it only needs to check if a
is the action dictated by the output function of the advice automaton for σ.
However, ¬(σ ;i β) is a requirement which says that there exists a game
position where enabledσ does not hold or β is false. We keep track of such
formulas in a “requirement set” U . When the tree automaton branches,
it guesses, for each branch, which requirements will be satisfied on that
branch. The Büchi acceptance condition is simply all the states where the
“requirement set” U is empty.

We shall find some abbreviations useful:

• invσi (a, β) = (τi ∧ (σ)i : a) ⊃ [a](σ ;i β) denotes the fact that after
an “a” move by player i which conforms to σ, σ ;i β continues to
hold.

• invσı (β) = τı ⊃ [N ](σ ;i β) says that after any move of ı, σ ;i β
continues to hold.



Structured strategies in games on graphs 571

• enabledσ =
∨
a∈Σ(〈a〉True ∧ (σ)i : a).

For a formula α, let SF(α) denote the subformula closure of α. In
addition to the usual downward closure we also require that σ ;i β ∈ SF(α)
implies enabledi, invσi (a, β), invσı (β), β ∈ SF(α). Call C ⊆ SF(α) an atom
if it is propositionally consistent and complete, in addition we require the
following to hold.

• σ ;i β ∈ C ⇒ enabledσ, invσi (a, β), invσı (β) ∈ C.

• ¬(σ ;i β) ∈ C ⇒ (¬enabledσ or ¬β) ∈ C or (〈X〉¬(σ ;i β)) ∈ C.

Let AT α denote the set of atoms. Let C0 = {C ∈ AT α| there does not
exist any 3- γ ∈ C}. For C,D ∈ AT α, define C a−→ D iff for all 3- γ ∈ SF(α),
the following conditions hold.

• γ ∈ C ⇒ 3- γ ∈ D.

• 3- γ ∈ C ⇒ γ ∈ C or 3- γ ∈ C.

• [a]γ ∈ C ⇒ γ ∈ D.

Let {σ1, . . . , σm} be the strategy specification formulas appearing in α0

and let Aσ1 , . . .Aσm be the advice automata corresponding to the specifica-
tions. The tree automata T = (Q, δ, I, F ) where Q ⊆ (AT α0 ∪ reject) ×
(2SF(α0))3 × Qσ1 × . . . × Qσm such that (C,U,Z, Y, q1, . . . , qm) ∈ Q iff
(σ)i : a, τi ∈ C ⇒ oσ(qσ) = a. The sets Z and Y are used to keep track
of the 〈a〉α formulas and ensure that the edge relation is consistent with
these formulas. The set of initial states I = {(C,U,Z, Y, q01 , . . . , q0m)|C ∈
C0, V (s0) = C ∩ Pα0 , U = ∅, Z = ∅ and q0i ∈ Iσi}, Y = {〈a〉α|a ∈ Σ and
〈a〉α ∈ C}.

For a node s, let s1, . . . , sk be its successors in G with s
aj−→ sj for

1 ≤ j ≤ k. For a state q = (C,U,Z, Y, q1, . . . , qm) at s, the automaton
guesses a partition of U = U1 ∪ . . . ∪ Uk and a partition Y = Z1 ∪ . . . ∪ Zk.
The transition relation is then defined as:

〈((C1, U
′
1, Z1, Y1, q

1
1 , . . . q

1
m), a1), . . . , ((Ck, U ′

k, Z1, Y1, q
k
1 , . . . , q

k
m), ak)〉

∈ δ((C,U, q1, . . . , qm), s)

iff

• Cj = reject if there exists 〈a〉α ∈ Zj such that α /∈ Cj or aj 6= a

• For 1 ≤ j ≤ k, C
aj−→ Cj and V (sj) = Cj ∩ Pα0 .

• For 1 ≤ j ≤ k, 1 ≤ r ≤ m, qjr ∈ δr(qr, s, aj).



572 R. Ramanujam, S. Simon

• U ′
j =

{
{σ ;i β ∈ Uj | β, enabledσ ∈ Cj} if U 6= ∅
{σ ;i β ∈ Cj | β, enabledσ ∈ Cj} if U = ∅

• Yj = {〈a〉α | 〈a〉α ∈ Cj}

Once the automaton reaches the reject state then it remains in that
state for all transitions. The Büchi acceptance condition is, F = {q =
(C,U,Z, Y, q1, . . . , qm) ∈ Q | U = ∅ and C ∈ AT α0}. q.e.d.

Complexity of truth checking
For the given formula α0, let |α0| = n. The states of the tree automaton are
the atoms of α0 and the states of each of the advice automaton. Since the
number of strategy specifications occurring in α0 is bounded by the size of
α0, the size of the tree automaton |T | = O(n · 2n). Let TG denote the tree
automaton accepting G. We want to check for emptiness of T ∩ TG . Since
T is a Büchi tree automaton this gives us a total time complexity of O(2n).

References

[1] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time tem-
poral logic. In W. P. de Roever, H. Langmaack, and A. Pnueli, editors,
Compositionality: The Significant Difference: International Sympo-
sium, COMPOS’97, Bad Malente, Germany, September 1997. Revised
Lectures, volume 1536 of Lecture Notes in Computer Science, pages
23–60. Springer, 1997.

[2] G. Bonanno. The logic of rational play in games of perfect information.
Econom. and Philos., 7:37–65, 1991.

[3] D. Gale. The game of Hex and the Brouwer fixed-point theorem. Amer.
Math. Monthly, 86(10):818–827, 1979.

[4] V. Goranko. Coalition games and alternating temporal logics. Pro-
ceedings of 8th conference on Theoretical Aspects of Rationality and
Knowledge (TARK VIII), pages 259–272, 2001.

[5] E. Grädel, W. Thomas, and Th. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

[6] P. Harrenstein, W. van der Hoek, J.-J. C. Meyer, and C. Witteveen.
A modal characterization of nash equilibrium. Fundam. Inform., 57(2-
4):281–321, 2003.



Structured strategies in games on graphs 573

[7] J. F. Nash, Jr. Equilibrium points in n-person games. Proc. Nat. Acad.
Sci. U. S. A., 36:48–49, 1950.

[8] M. J. Osborne and A. Rubinstein. A course in game theory. MIT Press,
Cambridge, MA, 1994.

[9] R. Parikh. The logic of games and its applications. In Topics in the
theory of computation (Borgholm, 1983), volume 102 of North-Holland
Math. Stud., pages 111–139, Amsterdam, 1985. North-Holland.

[10] M. Pauly. Logic for Social Software. PhD thesis, University of Ams-
terdam, October 2001.

[11] R. Ramanujam and S. Simon. Axioms for composite strategies. Pro-
ceedings of Logic and Foundations of Games and Decision Theory,
pages 189–198, 2006.

[12] J. van Benthem. Games in dynamic epistemic logic. Bull. Econom.
Res., 53(4):219–248, 2001.

[13] W. van der Hoek, W. Jamroga, and M. Wooldridge. A logic for strategic
reasoning. In F. Dignum, V. Dignum, S. Koenig, S. Kraus, M. P. Singh,
and M. Wooldridge, editors, AAMAS, pages 157–164. ACM, 2005.

[14] E. Zermelo. Über eine Anwendung der Mengenlehre auf die Theorie
des Schachspiels,. In Proceedings of the Fifth Congress of Mathemati-
cians, volume 2, pages 501–504, Cambridge, 1913. Cambridge Univer-
sity Press.





Counting in trees

Helmut Seidl1

Thomas Schwentick2

Anca Muscholl3 ∗

1 Institut für Informatik, I2
Technische Universität München
Boltzmannstraße 3
85748 Garching, Germany
seidl@in.tum.de

2 Lehrstuhl Informatik I
Universität Dortmund
44221 Dortmund, Germany
Thomas.Schwentick@udo.edu

3 Laboratoire Bordelais de Recherche en Informatique
Université Bordeaux 1
351, cours de la Libération
33405 Talence cedex, France
anca@labri.fr

Abstract

We consider automata and logics that allow to reason about nu-
merical properties of unranked trees, expressed as Presburger con-
straints. We characterize non-deterministic automata by Presburger
Monadic Second-Order logic, and deterministic automata by Pres-
burger Fixpoint logic. We show how our results can be used in order
to obtain efficient querying algorithms on XML trees.

1 Introduction

Tree automata and logics for finite trees have been considered since the
seminal work of Thatcher and Wright [38] in the late sixties, with emphasis
on ranked trees. More recently, research on semi-structured data and XML
in particular, raised new questions about unranked trees, i.e., trees where
the number of children of a node is not fixed a priori, [8, 22]. Trees in XML
are unranked, labeled, and may occur in two versions, ordered or unordered,
depending on whether the sequence of children of a node is ordered or not.

In XML schema description languages like DTDs and XML Schema, the
possible sequences of types of children elements of a node are described
∗ We thank the referee for his/her careful reading and the various remarks and sugges-

tions that helped improving the paper.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 575–612.



576 H. Seidl, Th. Schwentick, A. Muscholl

by regular expressions. Thus, most of the existing theoretical work on
XML query languages has concentrated on regular tree languages. These
languages can be described by tree automata on unranked ordered trees
(also known as hedge automata) [25, 27] and a variety of other formalisms
[15, 24, 26]. In these formalisms the interaction between the children of a
node and the node itself are usually expressed in terms of a regular language.
Other work extended these formalisms to let them formulate (at least unary)
queries. The resulting query facilities usually have the expressive power of
Monadic Second-Order logic (MSO).

The regular framework is sufficient in many cases. But often one is inter-
ested in expressing conditions on the frequency of occurrences of elements in
the children sequence. Consider as an example a document which contains
music files shared by some peer-to-peer system as Napster, Gnutella etc. as
described in Figure 1.1

For instance, we would like to query for users who prefer jazz over pop.
Such a query can be expressed by asking for nodes labeled with “music”
that have more children labeled “jazz” than “pop”. Querying for users who
are extreme jazz fans can be expressed by requiring that the majority of the
children of a node labeled by “music” is labeled by “jazz”.

One way of formulating such queries, is to extend the MSO logic by for-
mulas of Presburger arithmetics constraining the children of a node (Pres-
burger constraints for short). In this new Presburger MSO logic (PMSO)
the first query can be expressed as:

x ∈ Labmusic ∧ x/ϕ1 ,

where ϕ1 is the formula

ϕ1 ≡ #Labjazz ≥ #Labpop .

Here, #Labjazz and #Labpop denote the numbers of children labeled with
jazz and pop, respectively. For the second query we replace ϕ1 by ϕ2,
where ϕ2 is the formula:

ϕ2 ≡ #Labjazz ≥ #Labpop + #Labfrench + #Labclassic .

As an operational counterpart of the extended logic we study bottom-up tree
automata that are enhanced by Presburger constraints. Transitions from
the children of a node to the node itself may depend on the frequencies of
states at the children via a Presburger arithmetic condition, i.e., a formula
involving addition.
1 It should be noted that in a realistic setting the type of music would likely be repre-

sented by an attribute and not by a separate tag for each type. But, of course, for the
purpose of query processing we can interpret a tag with attribute jazz as a tag jazz.



Counting in trees 577

<doc>

<user>

<name> ... </name>

...

<music>

<jazz>

<album> Always let me go </album>

<artist> Keith Jarrett </artist>

<year> 2002 </year>

<time> 3310 </time>

<price> 42 </price>

</jazz>

<french>

<tit> Aux enfants de la chance </tit>

<artist> Serge Gainsbourg </artist>

<album> Serge Gainsbourg, vol. 3 </album>

<time> 247 </time>

<price> 16 </price>

</french>

<classic>

<tit> The Seven Gates of Jerusalem </tit>

<comp> Krzystof Penderecki </comp>

<recorded> 1999 </recorded>

<time> 3510 </time>

<price> 43 </price>

</classic>

<jazz>

<album> Kind of Blue </album>

<artist> Miles Davis </artist>

<year> 1997 </year>

<time> 3325 </time>

<price> 29 </price>

</jazz>

</music>

<video>

...

</video>

<images>

...

</images>

</user>

</doc>

Figure 1. An example document containing information about music files
downloaded by users.



578 H. Seidl, Th. Schwentick, A. Muscholl

We start our investigation by considering automata that only use Pres-
burger constraints, i.e., automata that disregard the order of the children of
a node and only use cardinalities of states. Technically speaking, we study
in this part automata on unordered trees. It turns out that these automata
are very well-behaved. They define a class of tree languages with very reg-
ular properties like various closure properties and equivalence with PMSO
logic. Further, these automata allow for effective static analysis. Emptiness
and universality are decidable, and from any non-deterministic automaton
an equivalent deterministic automaton can be constructed. Last but not
least, they allow to define a class of (unary) queries the evaluation of which
has linear time data complexity.

Next, we study automata that are allowed to combine Presburger con-
straints with the common regular language constraints (Presburger tree au-
tomata, PTA). It turns out that they have less desirable properties. Al-
though emptiness of PTA can still be decided, universality (whether an
automaton accepts all trees) becomes undecidable. As we show that the
non-deterministic PTA can be characterized by existential PMSO logic, we
can conclude that PMSO logic is undecidable. Nevertheless, the combined
complexity of these automata is NP-complete, whereas the data complexity
is polynomial time.

Often however, and in particular in our example, some parts of a doc-
ument can be considered as textual representations of information records.
This means that inside certain elements, the ordering is not significant.
We therefore investigate automata on mixed document trees, i.e., in which
element tags either identify their content as ordered or as unordered. We
further assume that, as in our example, numerical constraints are only appli-
cable to such unordered element contents. Under these assumptions, we get
the same kind of nice behavior as in the totally unordered case, mentioned
above.

An alternative for the querying formalism enhanced by Presburger con-
straints is to replace the MSO logic by fixpoint logic. This Presburger
fixpoint logic turns out to be decidable (EXPTIME-complete), and its
combined complexity is polynomial time. Moreover, this logic has the same
expressive power as deterministic PTA.

This paper is an extended version of [35, 36].

Overview. In Section 2 we define some basic Presburger logic notions. Sec-
tion 3 studies unordered Presburger tree automata and logic. Section 4
studies basic algorithmic properties of Boolean combinations of regular ex-
pressions and Presburger conditions. In Section 5, ordered Presburger tree
automata and logic are considered. Section 6 takes a quick look at the case
where some unordered parts of a tree allow for Presburger constraints and
the others for regular expressions. Section 7 studies Presburger fixpoint



Counting in trees 579

logic and its relation with Presburger tree automata. Finally, Section 8
shows how our framework can be used to express unary queries.

Related work. Unordered document trees are closely related to the gener-
alization of feature trees considered by Niehren and Podelski in [28] where
they study the (classical) notion of recognizability and give a characteriza-
tion of this notion by means of feature automata. No counting constraints
are considered. A detailed study of automata over unranked trees has been
initiated by Brüggeman-Klein, Murata and Wood [3].

Query languages for unordered trees have been proposed by Cardelli and
Ghelli [5, 4, 6, 7] (and their co-workers). Their approach is based on first-
order logic and fixpoint operators. An extension to numerical constraints
has been proposed by Dal Zilio et al. [10]. Kupferman, Sattler and Vardi
study a µ-calculus with graded modalities where one can express, e.g., that
a node has at least n successors satisfying a given property [19]. The num-
bers n there, however, are hard-coded into the formula. Orderings on the
successors is not considered. Klaedtke and Ruess consider automata on the
unlabeled infinite binary tree, which have an accepting condition depending
on a global Presburger constraint [18].

Our notion of tree automata with combined Presburger and regular con-
straints has been introduced independently by Dal Zilio and Lugiez in [9].
In the latter paper, the authors also propose a modal logic for XML doc-
uments, called Sheaves logic. This logic allows to reason about numerical
properties of the contents of elements but still lacks recursion, i.e., fixpoint
operators. On the automata side they obtain comparable results concern-
ing closure properties, membership tests and decidability of emptiness. Al-
though no precise characterization is given, the Sheaves logic is strictly less
powerful than the automata model. Recently, Demri and Lugiez proposed
the extended modal logic EXML, which uses regular and Presburger con-
straints on the sequence of children (still without recursion) [11]. The logic
EXML is shown to contain the Sheaves logic and to have an EXPSPACE
satisfiability problem.

2 Preliminaries on Presburger Logic

Presburger logic is first-order logic with addition and the ordering relation
over N. It can express various decision questions such as solvability of sys-
tems of linear equations, integer programming, or verification questions.
The decidability of Presburger logic was established by Presburger [33] by
quantifier elimination. A doubly exponential non-deterministic lower bound
was shown in [13]. Later, the precise complexity was shown to be LinA-

TIME 22O(n)
, namely doubly exponential alternating time with a linear

number of alternations, [1]. A long line of research was devoted to the



580 H. Seidl, Th. Schwentick, A. Muscholl

analysis of various decision procedures for this logic, based on quantifier
elimination and automata. For instance, from a formula in prenex normal
form one can construct automata of triply exponential size [17].

For complexity reasons it is quite common to consider either quantifier-
free or existential Presburger formulas, since their satisfiability is in NP.
Both use linear terms with integer coefficients, i.e., built according to the
syntax (with x a variable which is interpreted over N):

t ::= 0 | 1 | ±x | t1 + t2 .

Quantifier-free Presburger formulas are defined as the closure of atomic
formulas of kind t = 0 and t ≡ 0 (mod d) (with t a term and d ∈ N a
constant) under the Boolean connectives. Existential Presburger formulas
are defined as the closure of atomic formulas of kind t = 0 under the positive
connectives ∨,∧ and existential quantification.

It is well known that each Presburger formula can be transformed into
an equivalent quantifier-free formula [33]. In one more step, such a formula
can be transformed into an existential formula in normal form, that is,
into a formula of the form ∃x1, . . . , xk

∨m
i=1 ϕi, where each disjunct ϕi is a

conjunction of equations t = 0 with t a linear term (with integer coefficients):

Proposition 2.1. Every quantifier-free Presburger formula ϕ has an equiv-
alent formula in existential normal form. This formula has at most expo-
nentially many disjuncts, each of at most linear size (in |ϕ|).

Proof. Let ϕ be a quantifier-free Presburger formula. First we bring it
into disjunctive normal form (DNF). Then we replace atomic and negated
atomic formulas by equations, if necessary by introducing new existentially
quantified variables. More precisely,

• t < c can be replaced by ∃y1(t+ 1 + y1 = c),

• t 6= c by ∃y2(t+ y2 + 1 = c ∨ t− y2 − 1 = c),

• t ≡ c (mod d) by ∃y3(t− dy3 = c ∨ t+ dy3 = c), and

• t 6≡ c (mod d) by

∃y4, y5(t−dy4−y5 = 0 ∨ t+dy4−y5 = 0)∧(0 ≤ y5 < c ∨ c < y5 < d) .

The resulting formula needs not to be in DNF yet, but it is free of negations
and can be easily transformed into existential normal form. Note first that
the DNF is of exponential size, but each disjunct contains at most |ϕ| atoms.
After replacing the atoms by equations, each conjunction is transformed
into DNF. The size of each resulting disjunct is still linear, and the overall
number of disjuncts remains exponential. q.e.d.



Counting in trees 581

Remark 2.2. Satisfiability of existential Presburger formulas is easily seen
to be NP-complete. The upper bound is obtained by assuming w.l.o.g. that
such a formula is in prenex form ∃x1, . . . , xk ψ, with ψ a positive Boolean
combination of equations t = 0, with t a linear term. It suffices to guess
then a disjunct of the DNF of ψ, and test in NP whether a conjunction of
such equations is satisfiable.

Given a formula ϕ and an assignment σ mapping the variables of ϕ to
numbers, we write σ |= ϕ if ϕ holds for σ (in the obvious sense) and call
σ a solution of ϕ. It is well known that the set of solutions of any given
Presburger formula is a semi-linear set [14]. A semi-linear set is a finite
union of linear sets, i.e., sets of the form {c̄+

∑m
i=1 xip̄i | xi ∈ N}, where c̄

and the p̄i are vectors from Nk for a given k.
The Parikh image of a word w ∈ Σ∗ is the assignment σ ∈ NΣ with

σ(a) being the number of occurrences of the letter a in w, for each a ∈ Σ.
Accordingly, the Parikh image of a set L ⊆ Σ∗ is the set of Parikh images
of w ∈ L.

Given the alphabet Σ, T (Σ) stands for the set of ordered, unranked trees
over Σ. A tree t ∈ T (Σ) with root label a and subtrees t1, . . . , tn will be
denoted as t = a〈t1, . . . , tn〉.

3 Unordered Presburger Tree Automata

In this section we start with tree automata and logics that are unordered,
i.e., they consider only the vertical parent-child order, but not the order
between siblings. Technically speaking, we work on unordered trees, as
considered for instance in [2, 10, 4, 5].

Given a finite set Q, we shall consider a canonical set YQ of variables
which are associated with the elements in Q. So, we define:

YQ = {#q | q ∈ Q} .

An unordered Presburger tree automaton (u-PTA for short) is given by a
tuple A = (Q,Σ, δ, F ) where:

• Q is a finite set of states,

• F ⊆ Q is the subset of accepting states,

• Σ is the finite alphabet of tree labels, and

• δ maps pairs (q, a) of states and labels to quantifier-free Presburger
formulas with variables only from the set YQ.

Informally, u-PTA are bottom-up tree automata, with transitions controlled
by quantifier-free Presburger formulas. A formula ϕ = δ(q, a) represents the



582 H. Seidl, Th. Schwentick, A. Muscholl

pre-condition on the children of a node labeled by a for the transition into
state q, where the value of the variable #p represents the number of children
that are in state p. Formally, we introduce a satisfaction relation t |=A q
between trees t ∈ T (Σ) and states q which is defined as follows. Assume
that t = a〈t1, . . . , tn〉, where a is the the label of the root, and t1, . . . , tn are
the subtrees of the root, and let δ(q, a) = ϕ. Then t |=A q if {1, . . . , n} can
be partitioned into |Q| subsets Ip of cardinalities np (p ∈ Q), such that:

• ti |=A p for all i ∈ Ip,

• {#p 7→ np | p ∈ Q} |= ϕ.

The language L(A) of trees which are accepted by A is

L(A) = {t ∈ T (Σ) | ∃ f ∈ F : t |=A f} .

As an example, consider the language of trees with labels in {a, b}, such
that the internal nodes are all labeled by a and have at most as many
subtrees with a b-leaf as ones without. A u-PTA for this language has
two states, say q0 and q1, where state q0 means that there is no b-leaf in
the subtree, and state q1 the converse. The transition relation is defined
by δ(q0, a) = (#q1 = 0), δ(q0, b) = false, δ(q1, a) = (#q0 ≥ #q1 > 0) and
δ(q1, b) = leaf. Here, we use the Presburger constraint leaf = (

∑
i=0,1 #qi =

0), which is satisfied precisely at leaf nodes.
Note that u-PTA are defined as non-deterministic automata. A u-PTA

A = (Q,Σ, δ, F ) is called deterministic if for every a ∈ Σ and every tuple
(np)p∈Q ∈ NQ, there is at most one state q ∈ Q such that

{#p 7→ np | p ∈ Q} |= δ(q, a) .

Remark 3.1. It is not too hard to verify whether a given u-PTA is deter-
ministic. The precise complexity is NP-complete, since it amounts to check
the satisfiability of quantifier-free Presburger formulas. The lower bound
can be obtained by an obvious reduction from Integer Linear Programming
(ILP).

3.1 Closure and decidability results
The results of this section show that u-PTA enjoy several desirable proper-
ties, such as determinization and reasonable complexity.

Theorem 3.2. The non-emptiness problem for u-PTA is NP-complete.

Proof. Consider a u-PTA A = (Q,Σ, δ, F ). Let us call a state q ∈ Q
reachable iff there is a tree t with t |=A q. The algorithm guesses some final
state q ∈ F , and checks that q is reachable. To this end, the algorithm



Counting in trees 583

guesses some k ≤ |Q| and a sequence q1, . . . , qk of states with qk = q, and
checks that, for each 1 ≤ j ≤ k, the following formula is satisfiable:( ∧

p∈Q\{qi|i<j}

#p = 0
)
∧

( ∨
a∈Σ

δ(qj , a)
)
.

Since each check can be done non-deterministically in polynomial time, the
overall complexity is NP. Moreover, NP-hardness is again an immediate
consequence of ILP, thus we conclude that non-emptiness of u-PTA is NP-
complete. q.e.d.

We show next that u-PTA are effectively closed under the Boolean op-
erations (union, intersection and complement). In particular, we give a
determinization construction for u-PTA.

Theorem 3.3. u-PTA are effectively closed under the Boolean operations
and under renaming2.

Proof. Closure under union and renaming is immediate. For intersection,
assume that we are given automata Ai = (Qi,Σ, δi, Fi), i = 1, 2. W.l.o.g. we
assume that Q1 ∩ Q2 = ∅. We proceed analogously to the standard con-
struction of the product automaton for ordinary automata. Thus, we define
the automatonA = (Q,Σ, δ, F ) as follows. We setQ = Q1×Q2, F = F1×F2

and define δ(〈q1, q2〉, a) by the formula below, where δ̃1 and δ̃2, resp., are
obtained from δ1, δ2, resp., by replacing all variables #p by xp (p ∈ Q1∪Q2):

E

p1∈Q1

xp1 .

E

p2∈Q2

xp2 . δ̃1(q1, a) ∧ δ̃2(q2, a) ∧( ∧
p1∈Q1

∑
p2∈Q2

#〈p1, p2〉 = xp1

)
∧

( ∧
p2∈Q2

∑
p1∈Q1

#〈p1, p2〉 = xp2

)
.

In addition, we use above the notation

E

i∈I xi, for some index set I, to
denote the existential quantification over all variables xi (i ∈ I). This is
done for convenience only, since the above formula can be rewritten directly
as a quantifier-free Presburger formula. It is easy to see that t |=A 〈q1, q2〉
iff t |=A1 q1 and t |=A2 q2. Thus, L(A) = L(A1) ∩ L(A2), which completes
the proof.

For closure under complement it suffices to know that u-PTA can be
determinized, which is shown in the proposition below. q.e.d.

Proposition 3.4. For every u-PTA A, a deterministic u-PTA A′ can be
constructed such that L(A) = L(A′).

2 A renaming is a letter-to-letter morphism.



584 H. Seidl, Th. Schwentick, A. Muscholl

Proof. The proof idea is similar to the power set construction for ordinary
finite automata. Let A = (Q,Σ, δ, F ) and A′ = (Q′,Σ, δ′, F ′), where Q′ =
2Q and F ′ = {B ⊆ Q | F ∩B 6= ∅}. For each B ⊆ Q, δ′(B, a) is a formula
with free variables from YQ′ . It is given by:( ∧

q∈B
ψq,a

)
∧

( ∧
q∈Q\B

¬ψq,a
)
.

Here, the formula ψq,a should be true iff q is a potential successor state. In
order to specify ψq,a, we refer to the auxiliary variables xp (p ∈ Q), and also
to auxiliary variables x〈B,p〉 (B ⊆ Q, p ∈ B). The variable x〈B,p〉 is meant
to count all those children resulting in the state set B in A′, for which we
choose state p ∈ B w.r.t. the A-run. Using these auxiliary variables, ψq,a is
defined below, with δ̃(q, a) as the formula δ(q, a) where each variable #p is
replaced by xp:

E

p∈Q
xp .

E

p∈B⊆Q
x〈B,p〉 . δ̃(q, a) ∧( ∧
B⊆Q

∑
p∈B

x〈B,p〉 = #B
)
∧

( ∧
p∈Q

∑
p∈B⊆Q

x〈B,p〉 = xp

)
.

The transitions of the subset automaton can be transformed into quantifier-
free formulas by quantifier elimination. q.e.d.

As a corollary of Proposition 3.4, we also obtain:

Corollary 3.5. The universality problem for u-PTA is decidable.

The complexity upper bound for the universality problem that follows from
Proposition 3.4 is 2-NEXPTIME. Note first that the transition formulas
δ′(B, a) can be written as ∃x̄∀ȳ ψ(x̄, ȳ), with ψ quantifier-free. Using quan-
tifier elimination we can first make ∀ȳ ψ(x̄, ȳ) quantifier-free, then rewrite
δ′(B, a) as an existential Presburger formula. The first step is exponential
in the size of the universal quantifier block (see, e.g., [17]), hence we obtain
an existential formula of doubly exponential size, for which satisfiability can
be checked in 2-NEXPTIME.

Proposition 3.6. The combined complexity of u-PTA Model Checking is
NP-complete. If the u-PTA is deterministic, the complexity is polynomial
time. The data complexity is linear in the size of the input tree.

Proof. Assume we are given a u-PTA A and a tree t. We guess for each
node of t a state of A, and then check that the run is accepting: For each
node we compute the Parikh image of the children states (note the entries



Counting in trees 585

have values ≤ |t|). Then we need to check that the Presburger formulas are
locally satisfied, for each node. Thus, the evaluation of all formulas at a
node requires time O(|A| · |t|) (using numbers in unary representation).

NP-hardness follows by a reduction from 0-1 ILP, where we ask whether
a system S of linear equations Ax̄ = b̄ has a 0-1 solution, that is, one
with x̄ ∈ {0, 1}m. Given A and b̄, we define a u-PTA with state space
{p1, . . . , pm, p, f}, final state f and transition relation δ(p, a) = δ(pi, a) =
leaf for all i, and δ(f, c) = (ϕ ∧ #f = 0), where ϕ is the conjunction of
all equations in S (with xi replaced by #pi) and of 0 ≤ #pi ≤ 1 for all i.
Clearly, the tree t of depth 1 with root labeled c and m leaves labeled a
satisfies t |=A f iff S has a 0-1 solution.

If A is deterministic, then the tree can be evaluated in a bottom-up
traversal in time O(|t| · |A|). The data complexity follows immediately,
using Proposition 3.4. q.e.d.

3.2 Unordered Presburger logic
Unordered Presburger MSO logic (u-PMSO for short) is defined by extend-
ing monadic second-order logic (MSO) with Presburger predicates over the
children of a node. As for u-PTA, the logic does not provide an order-
ing relation on siblings. A u-PMSO formula ϕ is given by the following
grammar:

ϕ :: = y ∈ Laba | y ∈ Y | Child(y, y′) | y/ψ |
ϕ1 ∧ ϕ2 | ¬ϕ | ∃ y. ϕ | ∃Y. ϕ

ψ :: = t1 = t2 | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃x. ψ1

t :: = 0 | 1 | ±x | t1 + t2 | #Y

where a ∈ Σ, y, y′ are first-order variables, Y is a second-order variable, and
x is from a designated set of Presburger variables. The predicates y ∈ Laba
and Child(y, y′) are interpreted as usual, i.e. y is labeled by a, resp. y′ is
a child of y. The formula ψ in y/ψ is a quantifier-free Presburger formula.
The interpretation of y/ψ is that the children of y satisfy the Presburger
constraint ψ. A term #Y inside ψ is interpreted as the number of those
children which are contained in Y . As usual, we write t |= ϕ, if t satisfies
the (closed) u-PMSO formula ϕ.

Remark 3.7. We also allow derived predicates such as equality between
variables such as y1 = y2, or Y1 = Y2, or equations Y = {y1}. Note that
the child predicate Child(y, y′) is redundant, since it can be expressed as:

∃Y. (Y = {y′} ∧ y/(#Y = 1)) .

A tree language L ⊆ T (Σ) is u-PMSO-definable if there is a closed formula
ϕ such that L = {t | t |= ϕ}.



586 H. Seidl, Th. Schwentick, A. Muscholl

Theorem 3.8 below states that u-PMSO-definable languages are precisely
characterized by unordered Presburger tree automata. The proof is anal-
ogous to the corresponding result for ordinary tree automata (over ranked
trees) [38], and uses in particular Theorem 3.3.

Theorem 3.8. A set of unranked trees is accepted by some u-PTA if and
only if it is definable in u-PMSO.

4 Regular expressions and Presburger formulas

The automata considered in the next section, as well as the associated logics,
use pre-conditions on the children of a node in form of Boolean combina-
tions of regular expressions and Presburger formulas. A basic question is
then the satisfiability of such conditions. Since the Parikh image of a reg-
ular language (and even context-free language, [32]) is semilinear, deciding
emptiness can be reduced to computing the Parikh image of the regular
expressions involved.

In [36] we showed that even for an NFA, an existential Presburger for-
mula which describes the Parikh image of the corresponding language can
be computed in linear time. Later, this result was extended to context-free
grammars in [39] (see also [12] for a related approach).

Theorem 4.1 (Verma-Seidl-Schwentick, [39]). Given a context-free gram-
mar G, an existential Presburger formula for the Parikh image of L(G) can
be computed in linear time.

A Presburger regular expression over Σ is a Boolean combination of regu-
lar expressions over Σ and quantifier-free Presburger formulas with variables
only from the canonical set YΣ = {#a | a ∈ Σ}.

Given a string w ∈ Σ∗ and a Presburger regular expression ϕ we define
in the obvious way whether w matches ϕ (denoted as w |= ϕ). For example,
if ϕ = a(a + b)∗ ∧ (#a = #b), then w |= ϕ iff w contains only a’s and b’s,
begins with an a and contains as many a’s as b’s. A Presburger regular
expression ϕ is satisfiable if there exists some w with w |= ϕ. Before we
show how to decide satisfiability for such expressions, we need the following
property:

Proposition 4.2. Let A be a (non-deterministic) finite word automaton
with n states and input alphabet of size k. Then the Parikh image of L(A)
is a union of linear sets {c̄ +

∑m
i=1 xi · p̄i | xi ∈ N} where each component

of each vector c̄, p̄j ∈ Nk is at most n.
In particular, if the size of the alphabet is k, then the number m of

occurring vectors is at most (n+ 1)k.

Proof. The proof is based on the following simple observation: any (accept-
ing) path of A can be decomposed successively into loops of length at most



Counting in trees 587

n, and one (accepting) path of length at most n. Thus, we define each set
of vectors c̄, p̄j ∈ Nk by associating c̄ with an accepting path λ0 of length at
most n and each p̄i with a loop λi of length at most n, in such a way that
the λj , 0 ≤ j ≤ m, can be combined to a (accepting) path in A. Specifically,
it suffices to fix for each j the set of states that occur in λj in such a way
that ∪mj=0λj is connected. q.e.d.

Proposition 4.3. The satisfiability problem for Presburger regular expres-
sions is PSPACE-complete.

Proof. The lower bound is immediate, since it is already PSPACE-hard to
decide whether a given set of regular expressions has a non-empty intersec-
tion or whether the complement of a single regular expression is non-empty
[37].

For the upper bound let ϕ be a Presburger regular expression of size n.
First of all, we can assume w.l.o.g. that negations are used only as linear or
modular inequations, or in form of negated regular expressions. The given
expression ϕ is satisfiable iff some of the disjuncts in the DNF of ϕ is so. We
can guess such a disjunct ψ in linear time. The formula ψ is a conjunction of
regular expressions, negated regular expressions, linear (in)equations t = 0,
t 6= 0 and modular (in)equations t ≡ 0 (mod d), t 6≡ 0 (mod d).

We first show that ψ is satisfiable iff there exists some word w of ex-
ponential length with w |= ψ. Since the regular expressions in ψ all occur
in ϕ, the sum of their sizes is at most n. The minimal automaton of each
such (possibly negated) regular expression e (resp., ¬e) is of size 2|e|, hence
the minimal automaton Aψ of the intersection of all positive and negated
regular expressions is of size 2n .

By Proposition 4.2, the Parikh image of L(Aψ) is a union of linear sets
{c̄ +

∑h
i=1 xip̄i | xi ∈ N}, where h = O(2n·|Σ|) = O(2n

2
) (as |Σ| ≤ n) and

the entries of the vectors c̄, p̄i are at most O(2n).
Now, a word w ∈ Σ∗ satisfies ψ iff its Parikh image is in one of these

linear sets and additionally fulfills the remaining (Presburger) constraints.
This can be expressed by adding, for each a ∈ Σ, the following equation:

#a = c̄(a) +
h∑
i=1

xi · p̄i(a) .

Let m be the number of Presburger constraints in ψ. By Proposition 2.1,
the conjunction of these constraints is equivalent to a formula in existential
normal form, with disjuncts of size O(m). Thus, one has to check whether
the Parikh image of w satisfies a system of M = O(m) + |Σ| ≤ O(n)
equations with at most N = |Σ|+O(m+ 2n

2
) = O(n+ 2n

2
) variables, and



588 H. Seidl, Th. Schwentick, A. Muscholl

coefficients of values bounded by k = 2n. By a result of Papadimitriou [31]
such a system has a solution with numbers bounded by

N · (M · k + 1)2M+4 = (O(n+ 2n
2
)) · (O(n) · 2n + 1)O(n) = 2O(n2) .

This shows that if some w |= ψ exists, then there is some with length 2O(n2).
It remains to describe how to check the existence of w as above. We

simply guess w symbol by symbol. For each regular expression e or ¬e in ψ,
we compute the set of states that can be reached in the non-deterministic
automaton Ae for e when reading w. Further, for each a ∈ Σ we count how
often a occurs in w. All this can be done in polynomial space without storing
w. A counter keeps track of the length of w. In the end, it can be checked
whether the Parikh image of w satisfies all Presburger constraints. q.e.d.

As Presburger regular expressions are closed under negation we immediately
conclude that also universality is PSPACE-complete.

5 Presburger tree automata

In many applications, e.g., where documents are automatically generated
from databases as textual representations of querying results, the element
ordering on the children does not matter. In other applications, though,
which are more related to classical document processing, this ordering is
crucial. In this section, we extend our framework to automata and logics
that take the sibling order into account. Naturally, we use then Presburger
regular expressions as pre-conditions on children sequences.

We define a Presburger tree automaton for unranked trees (PTA for
short) as a tuple A = (Q,Σ, δ, F ) where:

• Q is a finite set of states;

• F ⊆ Q is the subset of accepting states;

• δ maps pairs (q, a) of states and labels from Σ to Presburger regular
expressions over Q.

Accordingly, we introduce an extended satisfaction relation between trees t
and states q by defining for t = a〈t1 . . . tl〉 and δ(q, a) = ϕ, t |=A q iff there
are states p1, . . . , pl ∈ Q such that tj |=A pj for all j and p1 · · · pl |= ϕ. The
language L(A) ⊆ T (Σ) which is accepted by the automaton A is given by:

L(A) = {t ∈ T (Σ) | ∃ f ∈ F : t |=A f} .

A PTA A is called deterministic if for all a ∈ Σ and all w ∈ Q∗, we have
w |= δ(q, a) for at most one q ∈ Q.
Using Proposition 4.3, we obtain with a similar proof as for Theorem 3.2:



Counting in trees 589

Theorem 5.1. The emptiness problem for PTA is PSPACE-complete.

Next we turn to the complexity of such automata.

Theorem 5.2. 1. The combined complexity of PTA Model Checking is
NP-complete. If the PTA A is deterministic, it is O(n · |A|), where n
is the size of the input tree.

2. The data complexity of PTA is polynomial, O(nk+1). The degree k
of the polynomial is the number of states of the PTA.

Proof. Let A be a PTA with state set Q and t a tree. A non-deterministic
algorithm guesses a run of A on t and checks the consistency at each node.
Each consistency check amounts (1) to testing membership of a string w ∈
Q∗ of size |t| for at most |A| many regular languages, represented by regular
expressions (possibly negated), and (2) to evaluating at most |A| (quantifier-
free) Presburger formulas on its Parikh image. All these checks can be done
deterministically, in time O(|t| · |A|). If A is deterministic, we perform the
computation bottom-up deterministically. The NP lower bound for non-
deterministic PTA follows already from the u-PTA case.

Towards (2.), suppose now that the PTA A is fixed and let Q be its set
of states. We perform a bottom-up traversal of the input tree t, computing
for each subtree t′ the set of states R = {p | t′ |=A p} ⊆ Q. Assume that
t′ = a〈t1, . . . , tm〉 and Ri = {p | ti |= p} have been already computed.
Moreover, we can suppose that the Presburger regular expressions used in
A are disjunctions of conjuncts ei ∧ πi where for each ei a deterministic
automaton Bi is given, and each πi is a Presburger formula. Then we may
check for each ei ∧ πi separately whether it is verified by t1, . . . , tm.

To this end, let us now consider one conjunct e∧ π, where the language
of e is described by the finite automaton B with set of states P . Let the
sets V (i, s), 0 ≤ i ≤ m, s ∈ P , contain all assignments v : YQ → {0, . . . , i}
verifying the following condition: there exists a sequence of states α =
r1 · · · ri with rj ∈ Rj for j = 1, . . . , i and with Parikh image v, such that
state s can be reached from an initial state of B by reading α. Finally, let
V be the union of all sets V (m, f) where f is a final state of B. Once V is
computed, it simply remains to check whether v |= π for some v ∈ V . Thus,
assuming that the automaton A is of constant size, we spend O((m+1)|Q|)
time on the computation of the set of all successor states at the root of
t′. Hence we can conclude that the overall runtime on a tree of size n is
O(n|Q|+1). q.e.d.

PTA do not share the pleasant properties with u-PTA. In particular, it is a
direct consequence of the following result that there is no determinization
algorithm for PTA.



590 H. Seidl, Th. Schwentick, A. Muscholl

Theorem 5.3. The universality problem for PTA is undecidable.

Proof. The proof is a reduction from the accepting problem for 2-counter
Minsky machines [23]. Given such an automaton A with state set Q we
construct a PTA B such that A does not accept the empty input if and only
if B accepts all trees over the alphabetQ∪{#, $, a, b}. In the construction we
shall concentrate on trees of depth 1 with frontier (i.e., leaf labels read from
left to right) from Qa∗b∗(#Qa∗b∗)∗. The root is labeled by $. It is easy to
construct a tree automaton (without Presburger constraints) which accepts
all trees that are not of this special form. The union of this automaton with
the automaton B′ to be constructed in the remainder of the proof will be
the automaton B we are looking for.

The PTA B′ checks whether the frontier does not encode an accepting
computation of the counter automaton A. Here, a configuration of A with
state q and counter contents n1 and n2, respectively, is encoded by the
string qan1bn2 and configurations are separated by #. The automaton B′
checks whether one of the following cases arises:

• the frontier does not start with q0#, where q0 is the initial state of A,
or

• the frontier does not end with a string of the form #qa∗b∗, where q is
an accepting state of A, or

• there are two successive configurations that are not consistent with
the transition function of A.

We only describe how the latter case can be checked, as the first two
cases are straightforward. The idea is that B′ simply marks two consecutive
configurations. A regular constraint can check that two such configurations
are correctly marked, whereas a Presburger constraint ensures that the two
configurations are indeed inconsistent with the transition function of A.

Formally, the state set of B′ equals Q ∪ {#, a, a′, b, b′, ?}. On each leaf
the automaton can enter state ?. Further, it can enter state # on all leaves
labeled #, and state q on all leaves with label q ∈ Q. For leaves with label
a (b, resp.) it can also enter state a or a′ (b or b′, resp.) The automaton B′
enters an accepting state at the root if both conditions below hold:

• the states on the frontier form the sequence ?∗#qa∗b∗#q′a′∗b′∗#?∗

with q, q′ ∈ Q, and

• the numbers of occurrences of a, b, a′, b′ are not consistent with respect
to q, q′ and the transition function of A.

The first condition above is simply a regular constraint. The second
one can be expressed by a conjunction of Presburger constraints, over all



Counting in trees 591

possible transitions of A leading from state q to state q′. For instance,
for a transition that increases the first counter and leaves the second one
unchanged, the Presburger constraint requires that either the number of a′

is not equal to the number of a plus 1, or the numbers of b and b′ are not
equal. q.e.d.

5.1 Presburger MSO logic
Unordered Presburger MSO logic as defined in Section 3.2 is readily ex-
tended to take into account the sibling order, by adding the atomic predicate
Next(y, y′), with the meaning that y′ is a right sibling of y. We denote this
logic as PMSO. We now characterize Presburger tree automata by means
of existential PMSO logic.

Theorem 5.4. A set of unranked trees is accepted by a PTA if and only
if it can be described by a PMSO formula of the form ∃X1 . . .∃Xk. ϕ where
ϕ contains no second-order quantifier.

Proof. Let A be a PTA with state set Q and transition relation δ. Without
loss of generality we can assume that all Presburger regular expressions used
in δ are disjunctions of expressions ei ∧ πi, where ei is a regular expression
over Q, and πi is a quantifier-free Presburger formula. Furthermore, let, for
each i, a finite automaton Bi for L(ei) be given. From Büchi’s Theorem it
follows that each automaton Bi is equivalent to an existential MSO formula
ψi = ∃Y1 . . .∃Yl. ϕi. Hence, we can construct a formula ψ = ∃X1 · · · ∃Xk. ϕ
in which some of the variables Xi are used to encode the states that A
assumes and the remaining variables are those of the formulas ψi. The
first-order part ϕ of ψ describes the consistency of the states between nodes
of the input tree and their children, and uses the formulas ϕi.

For the converse we show first that every PMSO formula ψ containing
no second-order quantifier can be evaluated by a deterministic PTA. The
result is then immediate as a non-deterministic automaton can guess, for
each node, those sets of X1, . . . , Xk in which the node is contained. The
proof proceeds by induction on the structure of ψ. The only case which is
not entirely straightforward is the case of a formula ψ = ∃x. ϕ(x). Let, by
induction, A be an automaton over the alphabet Σ ∪ (Σ × {x}) for ϕ(x).
I.e., A accepts all trees t which have exactly one node v with a symbol (a, x)
from Σ × {x} such that ϕ holds on t, if x is bound to v and the label of v
is replaced by a.

Let Q be the set of states of A. We construct a deterministic PTA A′

for ψ as follows. The state set of A′ is Q × 2Q. The intuitive meaning
of a state 〈q,X〉 at a node v is the following. First, if x does not occur
in the subtree rooted at v, then A assumes state q at v. Second, X is
the set of states A can take if for one node of the subtree at v its label



592 H. Seidl, Th. Schwentick, A. Muscholl

a is replaced by (a, x). We explain how the transitions of A′ are defined.
The mapping δ′(〈q,X〉, a) is described by a Presburger regular expression
eq,a ∧ eX,a, where eq,a is obtained from δ(q, a) by replacing each occurrence
of a state r ∈ Q in a regular expression by

⋃
S⊆Q〈r, S〉 and each occurrence

of #r in a Presburger formula by
∑
S⊆Q #〈r, S〉. The Presburger regular

expression eX,a is of the form
∧
p∈X(e1p,a∨e2p,a)∧

∧
p6∈X ¬(e1p,a∨e2p,a). Here,

e1p,a expresses that A takes state p at v if the label of v is (a, x). Likewise,
e2p,a expresses that A takes state p at v (labeled by a) if the label b of some
node below v is replaced by (b, x). The expression e1p,a is obtained from
δ(p, (a, x)) in an analogous fashion as eq,a was obtained from δ(q, a).

It remains to describe the construction of e2p,a. The expression e2p,a is
obtained as a disjunction

∨
r∈Q

∨
r′∈S⊆Q δ(p, a)r,r′,S . Here, for each choice

of S ⊆ Q, r ∈ Q and r′ ∈ S, the Presburger regular expression δ(p, a)r,r′,S is
satisfied by a sequence 〈q1, S1〉 · · · 〈qm, Sm〉, qi ∈ Q, Si ⊆ Q, iff there is some
i ≤ m with qi = r, Si = S and δ(p, a) is satisfied by q1 · · · qi−1r

′qi+1 · · · qm.
The expression δ(p, a)r,r′,S is defined by replacing in δ(p, a) each regular

expression e by er,r′,S , and each Presburger formula π by πr,r′,S . We get
πr,r′,S as the conjunction of #〈r, S〉 > 0 and the formula which is obtained
from π by replacing #q, for each q ∈ Q with

•
∑
S′⊆Q

#〈q, S′〉, if q 6∈ {r, r′} or q = r = r′,

• (
∑
S′⊆Q

#〈q, S′〉)− 1, if q = r and r 6= r′, and

• (
∑
S′⊆Q

#〈q, S′〉) + 1, if q = r′ and r 6= r′.

The language L of a regular expression er,r′,S is given as:

L = {〈q1, S1〉 · · · 〈qm, Sm〉 | ∃ i : 〈qi, Si〉 = 〈r, S〉 ∧
q1 · · · qi−1r

′qi+1 · · · qn ∈ L(e)} .

q.e.d.

Theorem 5.4 shows that existential PMSO logic is decidable. On the other
hand we immediately obtain from Theorem 5.3:

Corollary 5.5. Satisfiability of PMSO formulas is undecidable.

6 Mixed automata

In the previous section we have seen that in general we cannot expect de-
cidability for all PMSO. Instead, we can restrict ourselves to automata and



Counting in trees 593

logics that work in a mixed mode, either pure regular or pure Presburger,
depending on the tag. Formally, we work on mixed trees, where the label
of a node tells whether the ordering of its children matters or not. Recall
from the introduction that this restriction naturally reflects a division of
documents into parts which are made up from data records whose orderings
are irrelevant and formatting parts where the ordering is significant. This
classification is formalized by partitioning the finite alphabet Σ into subsets
Σ = Σ0 + Σ1 where Σ0 and Σ1 consist of all labels of nodes with unordered
and ordered children, respectively. Mixed trees in our sense correspond to
terms with one associative symbol (for accumulating the ordered contents)
and one associative and commutative symbol (for accumulating multi-sets).
Languages of such trees, e.g., have been studied by Lugiez [20, 21] and
Ohsaki [29, 30]. Note, however, that our formalism is slightly more specific
as we rule out sequences of trees where unordered sections occur dispersed
between ordered ones. Instead, the significance of order is already deter-
mined by the label of the parent node.

Mixed Presburger tree automata now subsume the ability of unordered
Presburger automata to check Presburger formulas, as well as the ability
of hedge automata to check containment in a regular set. Formally, δ(q, a)
is a quantifier-free Presburger formula if a ∈ Σ0, respectively a regular
expression if a ∈ Σ1. We call such an automaton a mixed PTA. Similarly to
Theorem 3.2, we obtain:

Corollary 6.1. The emptiness problem for mixed PTA is NP-complete.

It turns out that the family of languages accepted by mixed PTA enjoys the
same good closure properties as u-PTA. The proof of the theorem below
follows the lines of Proposition 3.4 and is omitted:

Theorem 6.2. Mixed PTA are effectively closed under the Boolean opera-
tions. In particular, for every mixed PTA an equivalent deterministic mixed
PTA can be constructed.

As for unordered and general PTA, respectively, we succeed to give a logical
characterization of our automata model also in the mixed case. For that we
use mixed PMSO logic, in which Presburger (regular, resp.) constraints can
be applied only to the children of a node labeled with some element from Σ0

(Σ1, resp.). We therefore speak here of mixed PMSO-definable languages
and queries. More formally, in a mixed PMSO-formula an atom Next(y, y′)
is allowed in a subformula ϕ occurring in a context Child(x, y)∧y ∈ Laba∧ϕ,
where a ∈ Σ1. Likewise a formula y/ψ is allowed in a subformula ϕ occurring
in a context y ∈ Laba ∧ ϕ, where a ∈ Σ0. Mixed PMSO-definable queries
are what we have considered in the introduction, by considering, e.g., that
the label music belongs to Σ0. We obtain:



594 H. Seidl, Th. Schwentick, A. Muscholl

Theorem 6.3. A set of unranked trees is accepted by some mixed PTA iff
it is mixed PMSO-definable.

We conclude that satisfiability of mixed PMSO-logic is decidable.

7 Presburger fixpoint logic

As an alternative to monadic second-order logic, we consider in this section
the extension of fixpoint logics with regular and Presburger constraints on
children of nodes. Our fixpoint formulas ϕ are thus constructed according
to the following grammar:

ϕ :: = > | x | µx. ϕ
| ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2

| a〈F 〉 | ∗〈F 〉
F :: = e | π .

Here, “∗” denotes an arbitrary node label, and F denotes a generic pre-
condition on the children of a node. Such a pre-condition is either a regular
expression e over letters ϕ, possibly negated, or a quantifier-free Presburger
formula π with free variables #ϕ, denoting the number of children satisfying
ϕ (with ϕ a fixpoint formula).

In the following, we assume throughout that ϕ is a formula where all
bound variables are distinct. Let Φ denote the set of all subformulas of ϕ.
We consider assertions t : ψ, with t ∈ T (Σ), ψ ∈ Φ. We write ` t : ψ either
if ψ ≡ > (every tree satisfies >) or if the assertion t : ψ can be derived from
valid assertions by means of the following rules:

t : ψ µx.ψ ∈ Φ
t : x

t : ψ µx.ψ ∈ Φ
t : µx.ψ

t : ψ1 t : ψ2

t : ψ1 ∧ ψ2

t : ψi
t : ψ1 ∨ ψ2

u : F
a〈u〉 : a〈F 〉

u : F
a〈u〉 : ∗〈F 〉

Thus, besides assertions t : ψ, t ∈ T (Σ), we additionally need auxiliary
assertions u : F where u is a sequence of trees and F is either a regular
expression or a Presburger formula. A sequence u = t1, . . . , tk satisfies a
regular pre-condition e iff there are formulas ψ1, . . . , ψk such that ti : ψi
and the sequence of formulas ψ1 · · ·ψk is contained in the regular language
L(e) described by e. In case of a Presburger formula π, we first collect for
every formula ψ occurring in π the number nψ of children ti satisfying ψ.
Then u satisfies π iff the resulting assignment σ = {#ψ 7→ nψ | ψ ∈ Φ}



Counting in trees 595

satisfies σ |= π. Thus we have the rules:

ti : ψi (i = 1, . . . , k) ψ1 · · ·ψk ∈ L(e)
t1, . . . , tk : e

σ |= π where σ(#ψ) = |{i | ti : ψ}|
t1, . . . , tk : π

Note that according to this rule for Presburger formulas, the same tree ti
may be counted several times, once for every ψ such that ti : ψ.

A proof of an assertion t : ψ consists of all rule applications to derive
this assertion. In particular this means for t = a〈t1, . . . , tk〉 and ψ = a〈π〉,
π a Presburger formula, that a proof of t : ψ contains for every i = 1, . . . , k,
and every ψ′ occurring in π a subproof of ` ti : ψ′—whenever it exists.
Moreover, we silently assume that a proof always has tree-like structure.
Thus, we may have several copies of a subproof for distinct occurrences of
the same subtree within t.

Finally, the language denoted by the formula ϕ is given by:

L(ϕ) = {t ∈ T (Σ) | ` t : ϕ} .

In particular, L(>) = T (Σ) and L(µx. x) = ∅. Using the convenient
abbreviation “ ” for >∗, i.e., an arbitrary sequence of trees, we may write
µx. (a〈 〉∨∗〈 x 〉) for the set of all trees with at least one inner node labeled
a. Note that our fixpoint expressions do not provide an explicit notion
of negation. However, we always can construct an equivalent expression
with guarded fixpoints (see, e.g., [34]). The free variable x occurs only
guarded inside the formula ϕ if x occurs as a free variable only within
the scope of elements a or ∗. The variable x, for example, occurs only
guarded inside the formula a〈 x 〉 ∨ y while y does not. It turns out that
guarded fixpoints are unique. More precisely, if x occurs only guarded in
ϕ, then µx. ϕ is semantically equivalent to νx.ϕ. Once greatest fixpoints
are available, complementation is easy since then we can push negations
inward. For example, we have: t : ¬(µx. ϕ(x)) iff t : νx.¬ϕ(¬x).

In the subsequent proofs we shall use the following notion. For a subset
B ⊆ Φ of subformulas of ϕ, define the closure cl(B) as the least superset
B′ of B such that:

• > ∈ B′;

• If ϕ1 ∈ B′ and ϕ2 ∈ B′ then also ϕ1∧ϕ2 ∈ B′, whenever ϕ1∧ϕ2 ∈ Φ;

• If ϕ1 ∈ B′ or ϕ2 ∈ B′ then also ϕ1 ∨ ϕ2 ∈ B′, whenever ϕ1 ∨ ϕ2 ∈ Φ;

• If ϕ′ ∈ B′ then µx.ϕ′ ∈ B′ and x ∈ B′, whenever µx.ϕ′ ∈ Φ.



596 H. Seidl, Th. Schwentick, A. Muscholl

Intuitively, the closure of a set B of subformulas contains precisely the
subformulas which are implied by the formulas in B through the proof rules
for fixpoint formulas. In particular, consider a given fixpoint formula, a tree
t and let B be the set of all subformulas ψ of type a〈F 〉 and ∗〈F 〉 with t : ψ.
Then, cl(B) is the set of all subformulas ψ with t : ψ.

Theorem 7.1. A set of trees is accepted by some deterministic PTA if and
only if it satisfies some Presburger fixpoint formula.

Proof. Let ϕ be a Presburger fixpoint formula. We assume for simplicity
that all regular expressions in ϕ are unnegated. We construct a PTA A as
follows. Let Ψ denote the set of all subformulas of ϕ of the form a〈F 〉 or
∗〈F 〉. The set Q of states of A is given as the set of all subsets B ⊆ Ψ. The
set T of accepting states consists of all subsets B such that ϕ ∈ cl(B), i.e.,
whose closure contains the initial formula ϕ.

Given a state B ∈ Q and a ∈ Σ, we determine the pre-condition δ(B, a)
as

δ(B, a) =
∧
ψ∈B ∆(ψ, a) ∧

∧
ψ∈Ψ\B ¬∆(ψ, a)

where:
∆(a〈F 〉, a) = F̄
∆(∗〈F 〉, a) = F̄
∆(b〈F 〉, a) = false if a 6= b

where F̄ is constructed as follows. For a regular expression e, we obtain ē
from e by substituting B1 + · · · + Bm for every occurrence of a formula ψ
if {B1, . . . , Bm} is the set of all states B such that ψ ∈ cl(B). For a Pres-
burger formula π, let π̄ be obtained from π by substituting

∑
ψ′∈cl(B) #B

for every occurrence of the free variable #ψ′. By construction, the resulting
automaton is deterministic. We show for trees t, t1, . . . , tk:

(1) t |=A B iff cl(B) = {ψ ∈ Φ | ` t : ψ};

(2) ` t1, . . . , tk : e iff ti |=A Bi, 1 ≤ i ≤ k, such that B1 · · ·Bk ∈ L(ē);

(3) ` t1, . . . , tk : π iff ti |=A Bi, 1 ≤ i ≤ k, such that the Parikh image of
B1 · · ·Bk satisfies π̄.

In particular, item (1) above implies that L(ϕ) = L(A).
The three claims above are shown inductively. Items (2) and (3) above

are immediate for k = 0. For k > 0 they follow from the definition of ē and
π̄, together with item (1). Suppose now that t = a〈t1, . . . , tk〉, k ≥ 0. Then
t |=A B iff ti |=A Bi for some Bi, 1 ≤ i ≤ k, such that:

• B1 · · ·Bk ∈ L(ē) iff a〈e〉 or ∗〈e〉 is in B,



Counting in trees 597

• the Parikh image of B1 · · ·Bk satisfies π̄ iff a〈π〉 or ∗〈π〉 is in B.

By induction, cl(Bi) = {ψ | ` ti : ψ} for all i. Using items (2) and (3) we
infer that a〈F 〉 or ∗〈F 〉 is in B iff ` t1, . . . , tk : F , for all pre-conditions F .
By the definition of cl(B) this is equivalent to cl(B) = {ψ | ` t : ψ}.

For the converse, consider a deterministic PTAA = (Q,Σ, δ, F ). W.l.o.g.
we may assume that every pre-condition is a disjunction of conjunctions of
regular expressions and Presburger formulas. We introduce one variable xq
for every state q ∈ Q. For these variables, we construct an equation system
SA:

xq = ϕq , q ∈ Q

where the right-hand sides are defined as fixpoint expressions, but without
allowing the µ operator. The semantics of such equation systems is an
extension of the semantics for fixpoint expressions. The only addition is the
rule:

t : ϕ
t : x

for every equation x = ϕ. Thus, whenever a tree satisfies the right-hand
side of an equation, then it also satisfies the variable to the left. The right-
hand side ϕq for xq in the equation system SA is constructed from δ(q, a),
a ∈ Σ, by:

ϕq =
∨
a∈Σ

[δ(q, a)]a

where the transformation [.]a takes a pre-condition and returns a fixpoint
expression (without fixpoints) as follows:

[e]a = a〈e{q 7→ xq | q ∈ Q}〉 ,
[π]a = a〈π{#q 7→ #xq | q ∈ Q}〉 ,
[ϕ1 ∨ ϕ2]a = [ϕ1]a ∨ [ϕ2]a ,
[ϕ1 ∧ ϕ2]a = [ϕ1]a ∧ [ϕ2]a .

Thus, a regular expression over states q is transformed by first substituting
the states by the corresponding variables and then putting a node a on
top. A Presburger formula is transformed by first replacing the variables
#q with #xq, and again putting a node a on top, whereas conjunctions
and disjunctions are transformed recursively. By induction on the depth of
terms t, t1, . . . , tk we prove for every q ∈ Q, a ∈ Σ and right-hand side ϕ:

(1) t |=A q iff ` t : xq;

(2) ti |=A qi for 1 ≤ i ≤ k, with q1 · · · qk |= ϕ iff ` a〈t1, . . . , tk〉 : [ϕ]a.



598 H. Seidl, Th. Schwentick, A. Muscholl

The first claim then proves the correctness of the construction.
For the proof of the claims let us first assume that ti |=A qi for all i,

and q1 · · · qk |= ϕ. We verify that for every a ∈ Σ, a〈t1, . . . , tk〉 : [ϕ]a where,
by inductive hypothesis, we may assume that ` ti : xqi for all i. If ϕ = e
is a regular expression, then by assumption, q1 · · · qk ∈ L(e). By definition,
[ϕ]a = a〈e{q 7→ xq | q ∈ Q}〉. Therefore, xq1 · · ·xqk

∈ L(e{q 7→ xq | q ∈ Q})
and hence a〈t1, . . . , tk〉 : [e]a. If ϕ = π equals a Presburger formula, then
the Parikh image of xq1 · · ·xqk

satisfies π{#q 7→ #xq | q ∈ Q}. Let ρ denote
the mapping defined by ρ(#xq) = |{i | ` ti : xq}|. Since the automaton
A is deterministic, ti : xq is provable for exactly one state q. Therefore,
the number of occurrences of q in the sequence q1, . . . , qk precisely equals
ρ(#xq). We conclude that t1, . . . , tk : π{#q 7→ #xq | q ∈ Q} and therefore
also a〈t1, . . . , tk〉 : [π]a. The cases ϕ = ϕ1 ∧ ϕ2 and ϕ = ϕ1 ∨ ϕ2 are
completely standard.

For the converse direction assume a〈t1, . . . , tk〉 : [ϕ]a for some a ∈ Σ.
By inductive hypothesis for ti, we already know that there are (unique)
states qi such that ti |=A qi and therefore also ` ti : xqi , for all i. It
remains to verify that q1 · · · qk |= ϕ. If ϕ = e is a regular expression, then
xq1 · · ·xqk

∈ L(e{q 7→ xq | q ∈ Q}), thus q1 · · · qk |= ϕ. If ϕ = π equals
a Presburger formula, then [ϕ]a = a〈π{#q 7→ #xq | q ∈ Q}〉. Since by
assumption, a〈t1, . . . , tk〉 : [ϕ]a, we obtain ρ |= π{#q 7→ #xq | q ∈ Q} for
the assignment ρ(#xq) = |{i | ` ti : xq}|, q ∈ Q. Since A is deterministic,
ρ(#xq) equals the number of occurrences of q in the sequence q1, . . . , qk.
Therefore, q1 · · · qk |= π. The case where ϕ = ϕ1 ∨ ϕ2 or ϕ = ϕ1 ∧ ϕ2 are
dealt with recursively.

To the equation system SA we then apply Gaussian elimination. Thus,
we take any equation xq = ϕq where ϕq possibly contains free occurrences
of xq, and replace it by xq = µxq. ϕq. Then we replace all free occurrences
of xq in all other right-hand sides ϕq′ , q′ 6= q, with the new fixpoint formula
µxq.ϕq. The resulting system still is equivalent to the original one but does
no longer contain free occurrences of xq in right-hand sides. We iteratively
perform this step for every state q. Eventually, we arrive for each q ∈ Q at
an equation xq = ϕ̄q where ϕ̄q is a closed fixpoint expression which denotes
the set {t ∈ T (Σ) | t |=A q}. Thus, the desired fixpoint formula ϕA can be
chosen as:

ϕA =
∨
q∈F

ϕ̄q .

q.e.d.

In the remainder of this section we turn to the complexity of Presburger fix-
point logic. Concerning satisfiability, Theorem 7.1 provides an EXPSPACE
upper bound. The theorem below shows that this can be improved to EX-
PTIME, which is as good as we can hope for, since satisfiability of fixpoint



Counting in trees 599

formulas (without Presburger conditions) over binary trees is EXPTIME-
complete (a similar result holds for model-checking µ-calculus against push-
down graphs, [40]).

Theorem 7.2. The satisfiability problem for Presburger fixpoint formulas
is EXPTIME-complete.

Proof. The lower bound is obtained, e.g., by encoding the accepting runs of
an alternating polynomial space Turing machine through a binary tree.

It remains to prove the exponential upper bound. Let ϕ be a Presburger
fixpoint formula. We denote by Ψ the set of its subformulas of type a〈F 〉
or ∗〈F 〉, and by Φ the set of all subformulas.

We call a subset B ⊆ Ψ obtainable if there is a tree t such that, for each
ψ ∈ Ψ, ` t : ψ if and only if ψ ∈ B. In this case, we call t a witness for B
and denote t by t(B).

We compute in an inductive fashion the set of all obtainable sets B ⊆ Ψ.
First, we compute the set X0 of sets that are obtainable by some one-node
tree t. Given Xi, we let Xi+1 be the set of sets that are in Xi or are
obtainable by a tree consisting of a root the subtrees of which are witnesses
for the sets in Xi. As this process is monotonic it ends after at most 2|Ψ|

iterations, i.e., an exponential number of steps.
It therefore suffices to prove that each step takes no more than expo-

nential time as well, actually we shall need here only polynomial space.
Let X denote a set of obtainable subsets of Ψ. We show that, given the

fixpoint formula ϕ of size n and a set B ⊆ Ψ it can be checked in space
polynomial in n whether B is obtainable by a tree with subtrees which are
witnesses for sets in X. Of course, X is not part of the input, since it might
be of exponential size. We can imagine X as stored on a separate tape, and
our PSPACE algorithm will access non-deterministically this tape.

A set B is only obtainable if there is some symbol a such that all formulas
in B are either of the form a〈F 〉 or ∗〈F 〉. Accordingly, we must check
whether there exists a sequence of sets w = B1 . . . Bh with Bi ∈ X for all
i, such that the tree t = a〈t(B1), · · · , t(Bh)〉 makes all formulas in B true
and all others false.

Consider first a formula of type a〈e〉 (∗〈e〉, resp.), with e regular ex-
pression. By the definition of the closure of sets of formulas from Ψ, it is
immediate that t satisfies a〈e〉 (∗〈e〉, resp.) iff w ∈ L(ē), where ē is obtained
from e by replacing every formula ψ with the disjunction of all B′ ∈ X with
ψ ∈ cl(B′). Likewise for a〈¬e〉 (∗〈¬e〉, resp.).

For formulas a〈π〉, ∗〈π〉, with π Presburger formula, we first need the
following definition. Let H denote the mapping which takes an assignment



600 H. Seidl, Th. Schwentick, A. Muscholl

σ : X → N and computes an assignment τ : Φ → N by

τ(ψ) =
∑

B′∈X with ψ∈cl(B′)

σ(B′) .

The tree t = a〈t(B1), · · · , t(Bh)〉 (with w = B1 . . . Bh) satisfies the formula
a〈π〉 (∗〈π〉, resp.) iffH(Par(w)) satisfies π, where Par(w) denotes the Parikh
vector of w ∈ X∗. The reader should recall here that with the fixpoint
semantics a subtree can be counted several times, once for each formula it
satisfies.

As in the proof of Proposition 4.3, we shall show the following:

Claim 7.3. If there exists a string which simultaneously verifies all formulas
of type a〈F 〉 or ∗〈F 〉 in B, and falsifies all such formulas outside B, then
there exists one whose length is bounded by 2p(n) for some polynomial p.

We first show how the statement of the theorem follows from this claim. We
successively guess subsets B′ ⊆ X (in polynomial space). For each such B′,
we simulate the evaluations of the non-deterministic automata correspond-
ing to all regular expressions e occurring in a〈F 〉 ∈ Ψ or ∗〈F 〉 ∈ Ψ. Of
course, in order to do so, we need to check each time whether a subformula
ϕ′ ∈ Φ is in cl(B′). All these simulations are done in PSPACE. During
this process, we maintain an occurrence vector τ indexed by subformulas
ϕ′ ∈ Φ. Whenever a set B′ is processed, we increment in τ the values of
all ϕ′ contained in cl(B′). Since each letter B′ may have incremented each
entry of τ at most by 1, the assignment τ can always be represented in
polynomial space. Once we have guessed a sequence of length at most 2p(n)

verifying the formulas a〈e〉 ∈ B and ∗〈e〉 ∈ B and invalidating those outside
B, we verify that τ satisfies the formula( ∧

a〈π〉∈B∨∗〈π〉∈B

π
)
∧

( ∧
a〈π〉6∈B∧∗〈π〉6∈B

¬π
)
.

The latter can be done in polynomial time (recall that each Presburger
formula π is quantifier-free). This algorithm uses only space polynomial in
n, therefore it can be executed in deterministic exponential time—which we
wanted to prove.

It remains to show the claim above. Recall first that we defined the
regular expressions ē over the alphabet X by replacing each subformula
ϕ′ of ϕ by the disjunction of all B′ ∈ X with ϕ′ ∈ cl(B′). Now, we first
construct an automaton B for the intersection of the regular expressions ē
(resp. ¬ē) occurring in formulas from B. This automaton has at most 2n

states, and its alphabet is of size 2n. By Proposition 4.2, the Parikh image
of the accepted language is a finite union Par(L(B)) = L1∪· · ·∪Lm of linear



Counting in trees 601

sets Lr of the form {c̄ +
∑h
i=1 xi · p̄i | xi ≥ 0}, where the entries of each

vector c̄, p̄j are bounded by 2n—whereas their number h ≤ (2n+1)2
n

might
be doubly exponentially large. Recall however, that for the satisfiability
of the Presburger formulas π occurring in formulas a〈π〉, ∗〈π〉 contained
in B, we are not interested in the Parikh image Par(L(B)) of the words
accepted by B itself, but in the image of Par(L(B)) under H. By definition,
H(Par(L(B))) = H(L1) ∪ · · · ∪ H(Lm). Moreover, for every linear set of
the form L = {c̄ +

∑h
i=1 xi · p̄i | xi ≥ 0}, the image H(L) is given by

H(L) = {τ0 +
∑h
i=1 xi · τi | xi ≥ 0} where τ0 = H(c̄), τj = H(p̄j), j =

1, . . . , h. This implies that each component in a vector τj is obtained by
the sum of at most 2n entries of the vectors c̄, p̄j . Therefore, all entries of
the τj are bounded by 2n · 2n = 22n. The crucial point is that the vectors
τj now only have at most n entries (instead of 2n for c̄, p̄j). Accordingly,
only (22n)n = 22n2

of the τj can be distinct and therefore necessary to
describe H(L). Thus, now we may proceed along the same lines as in the
proof of Proposition 4.3. A linear set L contained in the Parikh image
Par(L(B)) of B gives rise to a linear set H(L) contained in H(Par(L(B))),
which in turn gives rise to at most n extra equations in 22n2

variables with
coefficients bounded by 22n. These are to be added to O(n) many equations
obtained from the Presburger formulas from B. That is, as in Proposition
4.3 we consider a disjunct of the DNF of each formula π occurring in some
Presburger formula form B (resp., with ¬π occurring outside B), and we
eliminate inequations and modulo equations using Proposition 2.1. Once
again applying Papadimitriou’s estimation [31], we obtain that the entries
of a minimal solution τ ∈ H(Par(L(B))) ∩ S, with

S =
( ∧
a〈π〉∈B∨∗〈π〉∈B

π
)
∧

( ∧
a〈π〉6∈B∧∗〈π〉6∈B

¬π
)

are bounded by 2O(n2). Clearly, we have τ ∈ H(Par(L(B))) ∩ S iff there
is some string w ∈ L(B) such that H(Par(w)) satisfies S. Recall that by
construction, > is contained in cl(B′) for every subset B′ ⊆ Ψ. Therefore,
H(Par(w))(>) precisely equals the length of w. Thus, the upper bound on
the entries of τ proves the desired upper bound on the length of a shortest
witness w and thus the claim. q.e.d.

We finish this section with the following

Proposition 7.4. Given a tree t and a Presburger fixpoint formula ϕ, it
can be checked in time O(|t| · |ϕ|2) whether t |= ϕ.

Proof. We compute bottom-up the set of subformulas of ϕ that are satisfied
by each subtree. For each subtree t′ = a〈t1, . . . , tk〉 we simulate first the



602 H. Seidl, Th. Schwentick, A. Muscholl

NFA corresponding to regular expressions e (¬e, resp.) occurring in pre-
conditions a〈. . .〉 and ∗〈. . .〉, by keeping the set of reachable states of the
NFA. Since each NFA is of size at most |ϕ|, each such simulation costs
at most O(k · |ϕ|2). For Presburger constraints a〈π〉, ∗〈π〉 we just need to
count how many children satisfy a given subformula occurring in π, which
can be done in O(k · |ϕ|), and to evaluate linear (in)equations and modular
(in)equations. The last check is done in O(|ϕ|2). Finally, we compute cl(B)
in O(|ϕ|), with B ⊆ Ψ the set of all a〈F 〉 or ∗〈F 〉 satisfied by a〈t1, . . . , tk〉.

q.e.d.

8 Querying unranked trees

Presburger automata or logics can be used as a facility to express unary
queries, i.e., to select a set of nodes in a document tree. We start this
section with automata-based queries, and consider in Subsection 8.1 queries
based on fixpoint logics, which exhibit a much better complexity than PTA-
based queries.

With automata-based querying, a tree node is selected via an automa-
ton A and a set T of states of A. The node v is in the output, if there
is an accepting computation of A that obtains a state from T at v. By
the equivalence between Presburger automata and Presburger MSO logic
(Thms. 3.8, 5.4, 7.1), this simple mechanism allows to express all (unary)
queries definable in Presburger MSO logic.

Let • denote a fresh symbol (not in Σ). A context is defined as usual, as
a tree c ∈ T (Σ ∪ {•}) which contains exactly one occurrence of • at a leaf
(the hole). Let c[t′] denote the tree which is obtained from c by substituting
• with t′ (i.e., filling the hole). Note that for a given tree t, the set C(t)
of contexts c such that t = c[t′] for suitable subtrees t′ is in one-to-one
correspondence with the set of nodes of t. Therefore, in the following we
shall no longer distinguish between contexts c ∈ C(t) and nodes of t.

A (unary) query is a mapping R from trees to subsets of nodes. The
nodes in R(t) are also called matches. In the following, we present a class
of queries which is definable by means of (unordered, mixed) PTA. For
this, we extend the definition of |=A to contexts by defining c, p |=A q,
(p, q ∈ Q) iff c |=Ap,• q where Ap,• = (Q,Σ ∪ {•}, δp,•, F ) is obtained from
A by extending Σ with • and defining:

δp,•(q′, a) =

 δ(q′, a) if a ∈ Σ
leaf if a = • ∧ q′ = p
false if a = • ∧ q′ 6= p

.

Thus, the automaton Ap,• behaves like A but additionally labels the hole
by p. We have:



Counting in trees 603

Proposition 8.1. Let A = (Q,Σ, δ, F ) be a PTA and t = c[t′] for a context
c and t, t′ ∈ T (Σ). Then t |=A q iff t′ |=A p and c, p |=A q for some p ∈ Q.

A (unary) Presburger pattern is a property of nodes of trees from T (Σ).
We define this property by means of a pair 〈A, T 〉 where A = (Q,Σ, δ, F )
is a PTA (resp., a u-PTA or mixed PTA) and T ⊆ Q is a set of states.
Let t ∈ T (Σ). A context c ∈ C(t) is a match of the pattern 〈A, T 〉 in t iff
t = c[t′] where t′ |=A q and c, q |=A f for some q ∈ T and f ∈ F .

We consider first mixed queries, with unordered ones as a special case.
Whenever we speak about the complexity of the querying problem below,
we mean the complexity of the following decision problem: given a query
R, a tree t and a node v of t, is v ∈ R(t)?

Theorem 8.2. Let A be mixed PTA. The set of matches of a fixed Pres-
burger pattern 〈A, T 〉, in a tree t ∈ T (Σ) of size n is computable in time
O(n). If the pattern is part of the input, the joint query complexity is
NP-complete.

Proof. Let A = (Q,Σ, δ, F ). We proceed in two passes over the input tree
t. In the first pass, we determine for every subtree t′ of t the set of states:

B(t′) = {p ∈ Q | t′ |=A p} .

LetA′ denote the deterministic automaton constructed from the mixed PTA
A as in the proof of Theorem 6.2. Then we know that for every t′ ∈ T (Σ),
t′ |=A′ B iff B = {p ∈ Q | t′ |=A p}. Therefore, the sets B(t′) (over all
subtrees t′) can be determined by one bottom-up run of A′ on t. According
to Proposition 3.6, this first pass can be performed in linear time.

In the second pass, we determine for each context c ∈ C(t) with t = c[t′],
the set of states:

D(c) = {p ∈ B(t′) | ∃f ∈ F : c, p |=A f} .

Given the sets D(c), the matches of the pattern are determined as the set
of all contexts c where T ∩D(c) 6= ∅.

In order to determine the sets D(c), we proceed top-down over t. For
the root context c we set D(c) = B(t) ∩ F . Assume that we are given a
context c in t where t = c[a〈t1, . . . , tk〉] for some a ∈ Σ and subtrees ti.
Then we may proceed from the father node c to the son ci which is defined
as the context ci = c[a〈t1, . . . , ti−1, •, . . . , tk〉]. Remark that now t = ci[ti].
Let Bi = B(ti). Assume that we have already determined the value D(c)
and now want to determine the corresponding set for ci.

Suppose first that the tag a is unordered, a ∈ Σ0. For B ⊆ Q, let nB
denote the number of trees tj , 1 ≤ j ≤ k, such that tj |=A′ B. Let ρ denote
the variable environment defined by:

{xB 7→ nB | B ⊆ Q} .



604 H. Seidl, Th. Schwentick, A. Muscholl

We claim:
D(ci) =

{
q′ ∈ B(ti) | ρ |=

∨
q∈D(c)

ψq,q′
}

where the formula ψq,q′ is given by:

E

p∈Q
#p .

E

p∈B⊆Q
x〈B,p〉 . δ(q, a) ∧ x〈Bi,q′〉 > 0 ∧( ∧

B⊆Q

∑
p∈B

x〈B,p〉 = xB

)
∧

( ∧
p∈Q

∑
B,p∈B

x〈B,p〉 = #p
)
.

Intuitively, formula ψq,q′ expresses that there is an assignment mapping the
children tj to states q ∈ B(tj) such that ti receives q′ and the Presburger
pre-condition δ(q, a) is satisfied. Since satisfiability of Presburger formulas
is decidable, we conclude that the sets D(ci) are computable.

The total complexity of our algorithm in this part consists, for each
node v labeled in Σ0, in a test of an assertion ρ |= ϕ. Here, the formula ϕ
only depends on the fixed automaton A, and the variable environment ρ is
such that ρ(x〈B,p〉) ≤ k for all x〈B,p〉 in the domain of ρ, with k denoting
the number of children of v. Each formula ϕ can be transformed into a
quantifier-free formula, which is evaluated in time O(k) on numbers in unary
representation. Since the sum of all k is bounded by n, the total complexity
is in O(n).

In the case where a ∈ Σ1 we have:

D(ci) =
⋃
{Dq(i) | q ∈ D(c)} where

Dq(i) = {pi ∈ Bi | ∀j 6= i ∃pj ∈ Bj : p1 . . . pk ∈ δ(q, a)} .

Given a (non-deterministic) finite automaton B for δ(q, a), all sets Dq(i),
i = 1, . . . , k, can be computed in time O(k) as follows: by one left-to-right
pass we compute at each position the set of reachable states of B; in a
second, right-to-left pass we compute at each position the set of states from
which we can reach a final state of B. With this information we compute
all sets Dq(i) in a final pass in O(k).

Therefore, the overall complexity of the second pass is linear as well.
This completes the proof in the case where the pattern is fixed.

For the joint complexity, consider first the upper bound. The first pass
can be done deterministically in polynomial time, by computing bottom-up
the reachable states at each node. For the top-down pass, we solve at each
node an existential Presburger formula, which is done in NP. The lower
bound follows from Proposition 3.6. q.e.d.

As a special case of the querying algorithm in the proof of Theorem 8.2,
we obtain a linear time querying algorithm for (fixed) queries on classical
ordered trees (i.e., trees with Σ0 = ∅).



Counting in trees 605

We now consider ordered queries, i.e., queries stated as Presburger pat-
terns 〈A, T 〉 where A is a PTA.

Theorem 8.3. The set of matches of a fixed Presburger pattern 〈A, T 〉,
with A PTA, in a tree from T (Σ) is computable in polynomial time. If the
pattern is part of the input, the joint query complexity is NP-complete.

Proof. Assume we have marked the root node of one subtree t′ of t. Assume
further that we have modified A in such a way that the marked node always
receives a state in T . Then the modified tree is accepted iff t′ is a match.
Since there are only n different nodes to be marked, the theorem follows
from Theorem 5.2.

For the joint query complexity we can implement easily the 2-pass ap-
proach of Theorem 8.2 in NP. The lower bound follows from the combined
complexity of PTA. q.e.d.

Let us turn to queries specified through Presburger MSO. A mixed PMSO-
pattern is a mixed PMSO formula ϕ with at most one free variable y. A
match of ϕ in t at a node v means that t together with the assignment of
v to the free variable y satisfies ϕ. A query R is mixed PMSO-definable iff
there is a mixed PMSO-pattern ϕ such that for every t, R(t) is the set of
all matches of ϕ in t. Replacing mixed PMSO by existential PMSO, we get
existential PMSO-definable queries.

Theorem 8.4. For a query R the following statements hold:

1. R is mixed PMSO-definable iff R is definable by a Presburger pattern
〈A, T 〉 for some mixed PTA A.

2. R is existential PMSO-definable iff R is definable by a Presburger
pattern 〈A, T 〉 for some PTA A.

In comparison with PTA-based queries, it is worth noting that the joint
query complexity of mixed PMSO-definable and existential PMSO-definable
queries is PSPACE-complete. Both arguments for the upper and the lower
bound use that alternating polynomial time is equivalent to PSPACE.

8.1 Presburger fixpoint queries
In this section we focus on unary queries expressed in Presburger fixpoint
logic. Compared to PTA, fixpoint logic allows for very efficient algorithms—
linear time for fixed queries and polynomial time for the joint query com-
plexity.

In order to get an intuition about the expressive power of Presburger
fixpoint logic, consider the example document shown in Figure 2. There we
might first ask for all elements (tree nodes) containing “Bartoli”. A sec-
ond query could ask for elements containing “Bartoli” and having at least



606 H. Seidl, Th. Schwentick, A. Muscholl

<music> ...
<classical> ...

<opera>
<title> The Salieri Album </title>
<composer> Bartoli </composer>
<review> ... </review>
<review> ... </review>
<review> ... </review>

</opera>
<opera>

<title> The No. 1 Opera Album </title>
<composer> Puccini ; Verdi </composer>
<performer> Bartoli ; Pavarotti </name> </performer>
<review> ... </review>

</opera> ...
</classical> ...

</music>
<dvd> ...

<music dvd>
<opera>

<title> Rossini - La Cenerentola </title>
<performer> Bartoli </performer>
<review> ... </review>
<review> ... </review>

</opera> ...
</music dvd>

</dvd>

Figure 2. Part of a document with music items.

three reviews. In the fixpoint Presburger logic we can express that a tree
contains a node satisfying a given property, without knowing at which depth
this node occurs. For instance, the formula ϕ1 = ∗〈 Bartoli 〉 describes
all nodes containing “Bartoli”. Note that in order to take properties of
text contents into account, it (conceptually) suffices to consider each text as
a tag. We are not interested in the class of all these documents t, however,
but for each such t in the subdocuments which satisfy the specific formula
ϕ1. Documents containing elements with the property ϕ1 are described by
the expression: µ x.(∗〈 x 〉 ∨ ϕ1). In order to indicate the subformula cor-
responding to the requested subdocuments, we introduce the extra marker
“•”. Thus, we specify the query as ψ1 = µx.(∗〈 x 〉 ∨ (• ∧ ϕ1)). Accord-
ingly for the second query, we describe the set of all elements containing at



Counting in trees 607

least three reviews by: ϕ2 = ∗〈#review ≥ 3〉. The query formula then can
be formulated as:

ψ2 = µx.(∗〈 x 〉 ∨ (• ∧ ϕ1 ∧ ϕ2)) .

In order to obtain a query language, we formally extend the language of
Presburger fixpoint expressions by one extra case:

ϕ ::= . . . | • | . . . .

Accordingly, we add new axioms ` t : • for all trees t. A match t′ of a
formula ϕ containing a subformula • is a proof for t : ϕ containing the fact
t′ : •. We want to construct an algorithm to determine for a fixed query
formula ϕ, all matches inside a document tree t. We first observe that we can
determine in time O(|t|) for every subtree t′ of t the set of all subformulas ψ
of ϕ such that ` t′ : ψ. For that, we can do as in Proposition 7.4 a bottom-
up pass on t. In order to deal with the special symbol • occurring in ϕ, we
extend the notion of closure of states by adding the formula •. The rest of
the construction is unchanged. Let then S(t′) denote the set of subformulas
ψ of type a〈F 〉, ∗〈F 〉 such that t′ : ψ. By construction, ψ ∈ cl(S(t′)) iff
` t′ : ψ, for every subformula ψ of ϕ.

It remains to determine for every subtree t′ of t the subset R(t′) ⊆
cl(S(t′)) containing all those ψ which may occur in some proof of t : ϕ. Then
t′ is a match iff • ∈ R(t′). The subsets R(t′) are determined in a second
pass over the tree t, in a top-down manner. For a closed set of subformulas
B, we introduce the auxiliary function coreB which takes a subformula ψ of
ϕ and returns the set of all subformulas in B which potentially contribute
to any proof of ψ (including ψ). Let core′B(ψ) = coreB(ψ) \ {ψ}. So,
core′B(•) = core′B(>) = ∅, and

core′B(µx.ψ) = coreB(ψ) if ψ ∈ B
core′B(x) = coreB(ψ) if ψ ∈ B
core′B(ψ1 ∧ ψ2) = coreB(ψ1) ∪ coreB(ψ2)

core′B(ψ1 ∨ ψ2) =
{

coreB(ψi) if ψ3−i 6∈ B
coreB(ψ1) ∪ core(ψ2) otherwise

core′B(a〈F 〉) = ∅
core′B(∗〈F 〉) = ∅ .

Moreover, we set: coreB(R) =
⋃
ψ∈R coreB(ψ) for every R ⊆ B.

The second pass over t starts at the root of t. There, we have: R(t) =
coreB(ϕ) for B = cl(S(t)). Now assume we have already computed the
set R(t′) for the subtree t′ = a〈t1 . . . tk〉. Let R′ = R(t′) ∩ S(t′) denote
the set of subformulas in R(t′) of the form a〈F 〉 or ∗〈F 〉. Then R(ti) =⋃
ψ∈R′ Rψ(ti), where Rψ(ti) equals the set of formulas from cl(S(ti)) which



608 H. Seidl, Th. Schwentick, A. Muscholl

may have occurred in a proof of t′ : ψ. Let Bi = cl(S(ti)) be the set of all
subformulas that are valid at ti. If ψ = a〈π〉 or ψ = ∗〈π〉 for a Presburger
formula π, then we must compute the assignment to the variables of π. In
fact, all subformulas from Bi contribute to this assignment. Therefore, we
simply have Rψ(ti) = Bi in this case. On the other hand, if ψ = a〈e〉 or
ψ = ∗〈e〉 for a regular expression e, then Rψ(ti) = coreBi(Ri) where

Ri = {ψi | ∃ψ1 . . . ψk ∈ L(e) : ∀ j : ψj ∈ Bj} .

The set Ri denotes all subformulas provable for ti which may contribute to
the validation of e. According to this definition, the sets Rψ(ti), i = 1, . . . , k
can jointly be computed by a left-to-right followed by a right-to-left pass of
a finite (string) automaton for e over the children of t′. The case of negated
regular expressions is treated analogously. Summarizing we conclude:

Theorem 8.5. Let ϕ be a fixed query in Presburger fixpoint logic. Then
the set of matches of ϕ in an input tree t can be computed in time linear in
|t|. If ϕ is part of the input, the joint query complexity is O(|ϕ|2 · |t|).

9 Conclusion

We have considered extensions of logics and automata over unranked trees
by arithmetical Presburger constraints. Our motivation comes from XML,
where one is interested in expressing properties of such trees that go be-
yond regular languages, such as numerical constraints. We showed that
fixpoint logic extended by Presburger constraints has particularly pleasant
properties, namely good expressiveness, complexity which does not increase
with the additional Presburger part, and joint querying complexity which
is polynomial.

Some of our results raise open problems. The universality problem for
u-PTA is one of them: we have a 2-NEXPTIME upper bound, and as lower
bound only EXPTIME. Another issue is the data complexity for general
PTA: can we improve the bound or is it inherently difficult (w.r.t. fixed
parameter complexity, with the size of the PTA as parameter)? Finally,
it would be interesting to see whether the automata and logics can be en-
hanced by more general arithmetical constraints, like for instance the semi-
polynomial or semi-quadratic sets considered in [16].

References

[1] L. Berman. The complexity of logical theories. Theoret. Comput. Sci.,
11(1):71–77, 1980. With an introduction “On space, time and alterna-
tion”.



Counting in trees 609

[2] I. Boneva and J.-M. Talbot. Automata and logics for unranked and
unordered trees. In J. Giesl, editor, RTA, volume 3467 of Lecture Notes
in Computer Science, pages 500–515. Springer, 2005.

[3] A. Brüggeman-Klein, M. Murata, and D. Wood. Regular tree languages
over non-ranked alphabets, 1998. Unpublished manuscript.

[4] L. Cardelli and G. Ghelli. A query language based on the ambient logic.
In D. Sands, editor, ESOP, volume 2028 of Lecture Notes in Computer
Science, pages 1–22. Springer, 2001.

[5] L. Cardelli and A. D. Gordon. Anytime, anywhere: Modal logics for
mobile ambients. In POPL, pages 365–377, 2000.

[6] G. Conforti, O. Ferrara, and G. Ghelli. TQL algebra and its implemen-
tation. In R. A. Baeza-Yates, U. Montanari, and N. Santoro, editors,
IFIP TCS, volume 223 of IFIP Conference Proceedings, pages 422–434.
Kluwer, 2002.

[7] G. Conforti, G. Ghelli, A. Albano, D. Colazzo, P. Manghi, and C. Sar-
tiani. The query language TQL - demo presentation. In SEBD, pages
427–431, 2002.

[8] J. Cristau, C. Löding, and W. Thomas. Deterministic automata on
unranked trees. In M. Liskiewicz and R. Reischuk, editors, FCT, vol-
ume 3623 of Lecture Notes in Computer Science, pages 68–79. Springer,
2005.

[9] S. Dal-Zilio and D. Lugiez. XML schema, tree logic and sheaves au-
tomata. In R. Nieuwenhuis, editor, RTA, volume 2706 of Lecture Notes
in Computer Science, pages 246–263. Springer, 2003.

[10] S. Dal-Zilio, D. Lugiez, and C. Meyssonnier. A logic you can count
on. In N. D. Jones and X. Leroy, editors, POPL, pages 135–146. ACM,
2004.

[11] S. Demri and D. Lugiez. Complexity of modal logics with Presburger
constraints. Technical Report LSV-06-15, LSV, ENS Cachan, 2006.

[12] J. Esparza. Petri nets, commutative context-free grammars, and basic
parallel processes. Fundam. Inform., 31(1):13–25, 1997.

[13] M. J. Fischer and M. O. Rabin. Super-exponential complexity of Pres-
burger arithmetic. In Complexity of computation (Proc. SIAM-AMS
Sympos., New York, 1973), pages 27–41. SIAM–AMS Proc., Vol. VII,
Providence, R.I., 1974. Amer. Math. Soc.



610 H. Seidl, Th. Schwentick, A. Muscholl

[14] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas, and
languages. Pacific J. Math., 16:285–296, 1966.

[15] G. Gottlob and C. Koch. Monadic Datalog and the expressive power of
languages for web information extraction. In L. Popa, editor, PODS,
pages 17–28. ACM, 2002.

[16] W. Karianto, A. Krieg, and W. Thomas. On intersection problems for
polynomially generated sets. In M. Bugliesi, B. Preneel, V. Sassone,
and I. Wegener, editors, ICALP (2), volume 4052 of Lecture Notes in
Computer Science, pages 516–527. Springer, 2006.

[17] F. Klaedtke. On the automata size for Presburger Arithmetic. In LICS,
pages 110–119. IEEE Computer Society, 2004.

[18] F. Klaedtke and H. Ruess. Parikh automata and monadic second-
order logics with linear cardinality constraints. Technical Report 177,
Institute of CS at Freiburg University, 2002.

[19] O. Kupferman, U. Sattler, and M. Y. Vardi. The complexity of the
graded µ-calculus. In A. Voronkov, editor, CADE, volume 2392 of
Lecture Notes in Computer Science, pages 423–437. Springer, 2002.

[20] D. Lugiez. A good class of tree automata and application to inductive
theorem proving. In K. G. Larsen, S. Skyum, and G. Winskel, editors,
ICALP, volume 1443 of Lecture Notes in Computer Science, pages 409–
420. Springer, 1998.

[21] D. Lugiez and S. Dal Zilio. Multitrees automata, Presburger’s
constraints and tree logics. Technical Report 08-2002, Laboratoire
d’Informatique Fondamentale de Marseille, 2002.

[22] W. Martens and J. Niehren. Minimizing tree automata for unranked
trees. In G. M. Bierman and C. Koch, editors, DBPL, volume 3774 of
Lecture Notes in Computer Science, pages 232–246. Springer, 2005.

[23] M. L. Minsky. Recursive unsolvability of Post’s problem of “tag” and
other topics in theory of Turing machines. Ann. of Math. (2), 74:437–
455, 1961.

[24] A. Neumann and H. Seidl. Locating matches of tree patterns in forests.
In V. Arvind and R. Ramanujam, editors, FSTTCS, volume 1530 of
Lecture Notes in Computer Science, pages 134–145. Springer, 1998.

[25] F. Neven. Automata, logic, and XML. In J. C. Bradfield, editor,
CSL, volume 2471 of Lecture Notes in Computer Science, pages 2–26.
Springer, 2002.



Counting in trees 611

[26] F. Neven and J. V. den Bussche. Expressiveness of structured document
query languages based on attribute grammars. J. ACM, 49(1):56–100,
2002.

[27] F. Neven and T. Schwentick. Query automata over finite trees. Theor.
Comput. Sci., 275(1-2):633–674, 2002.

[28] J. Niehren and A. Podelski. Feature automata and recognizable sets
of feature trees. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAP-
SOFT, volume 668 of Lecture Notes in Computer Science, pages 356–
375. Springer, 1993.

[29] H. Ohsaki. Beyond regularity: Equational tree automata for associative
and commutative theories. In L. Fribourg, editor, CSL, volume 2142
of Lecture Notes in Computer Science, pages 539–553. Springer, 2001.

[30] H. Ohsaki and T. Takai. Decidability and closure properties of equa-
tional tree languages. In S. Tison, editor, RTA, volume 2378 of Lecture
Notes in Computer Science, pages 114–128. Springer, 2002.

[31] C. H. Papadimitriou. On the complexity of integer programming. J.
ACM, 28(4):765–768, 1981.

[32] R. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.

[33] M. Presburger. On the completeness of a certain system of arithmetic
of whole numbers in which addition occurs as the only operation. Hist.
Philos. Logic, 12(2):225–233, 1991. Translated from the German and
with commentaries by Dale Jacquette.

[34] H. Seidl and A. Neumann. On guarding nested fixpoints. In J. Flum
and M. Rodŕıguez-Artalejo, editors, CSL, volume 1683 of Lecture Notes
in Computer Science, pages 484–498. Springer, 1999.

[35] H. Seidl, T. Schwentick, and A. Muscholl. Numerical document queries.
In PODS, pages 155–166. ACM, 2003.

[36] H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. Counting in
trees for free. In J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sannella,
editors, ICALP, volume 3142 of Lecture Notes in Computer Science,
pages 1136–1149. Springer, 2004.

[37] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponen-
tial time: Preliminary report. In STOC, pages 1–9. ACM, 1973.

[38] J. W. Thatcher and J. B. Wright. Generalized finite automata the-
ory with an application to a decision problem of second-order logic.
Mathematical Systems Theory, 2(1):57–81, 1968.



612 H. Seidl, Th. Schwentick, A. Muscholl

[39] K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equa-
tional Horn clauses. In R. Nieuwenhuis, editor, CADE, volume 3632 of
Lecture Notes in Computer Science, pages 337–352. Springer, 2005.

[40] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf.
Comput., 164(2):234–263, 2001.



Modular quantifiers∗

Howard Straubing1

Denis Thérien2

1 Computer Science Department
Boston College
Fulton Hall
Chestnut Hill MA, 02476, U.S.A.
straubin@cs.bc.edu

2 School of Computer Science
McGill University
3480 University Street
Montréal QC, Canada
denis@cs.mcgill.ca

Abstract

In the 1980’s, Wolfgang Thomas, together with the authors, in-
troduced the study of formulas with quantifiers that are interpreted
“there exist r mod q elements x such that....” and used algebraic tech-
niques to characterize the regular languages defined with such quanti-
fiers. The present paper surveys this work and the many other results
it spawned, especially the applications to formulas with a bounded
number of variables, and the rather surprising connections with cir-
cuit complexity.

In the late nineteen-eighties much of our research concerned the applica-
tion of semigroup-theoretic methods to automata and regular languages, and
the connection between computational complexity and this algebraic theory
of automata. It was during this period that we became aware of the work
of Wolfgang Thomas. Thomas had undertaken the study of concatenation
hierarchies of star-free regular languages—a subject close to our hearts—
by model-theoretic methods. He showed that the levels of the dot-depth
hierarchy corresponded precisely to levels of the quantifier alternation hi-
erarchy within first-order logic [26], and applied Ehrenfeucht-Fräıssé games
to prove that the dot-depth hierarchy was strict [27], a result previously
obtained by semigroup-theoretic means [4, 18].

Finite model theory, a subject with which we’d had little prior acquain-
tance, suddenly appeared as a novel way to think about problems that we
had been studying for many years. We were privileged to have been intro-
duced to this field by so distinguished a practitioner as Wolfgang Thomas,
∗ The second author was supported by grants from NSERC and FQRNT

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 613–628.



614 H. Straubing, D. Thérien

and to have then had the opportunity to work together with him. The study
of languages defined with modular quantifiers, the subject of the present
survey, began with this collaboration.

1 Generalized first-order formulas over <

1.1 First-order logic and star-free sets
A little background first, about the ordinary kind of quantifier: Properties
of words over a finite alphabet Σ can be expressed in predicate logic by
interpreting variables as positions {0, 1, . . . , n − 1} in a string of length n,
and including for each σ ∈ Σ a unary relation symbol Qσ, where Qσx is in-
terpreted to mean that the letter in position x is σ. The signature typically
includes other predicate symbols—“numerical predicates”—that are inde-
pendent of the letters that appear in the positions concerned, but instead
allow us to talk about relations between positions. It is quite interesting to
see what happens when we modify this part of the signature, but for now
we shall suppose that there is just one such predicate symbol: <, denoting
the usual order on the positions.

A sentence of first-order logic thus defines a language in Σ∗, namely the
set of all strings that satisfy the sentence. For example, if Σ = {σ, τ}, then
the sentence

∃x(Qσx ∧ ¬∃y(y < x))

says that there is a position containing the letter σ preceded by no other
position, and thus defines the language σΣ∗ of words whose first letter is σ.

Likewise the sentence

∃x(Qσx ∧ ¬∃y(y < x)) ∧ ∃x(Qτx ∧ ¬∃y(y > x))

∧ ∀x
(
Qτx ↔ ∃y

(
Qσy ∧ (y < x)

∧ ∀z(z > y → ¬(z < x))
))

says that the first letter is σ, the last letter is τ, and that the positions
containing τ are those immediately following positions containing σ. This
defines the language (στ)∗.

Now (στ)∗ is a star-free subset of {σ, τ}∗. This means that it can be
defined by an extended regular expression in which arbitrary boolean oper-
ations are permitted along with concatenation, but in which the star oper-
ation is not used. This may not be obvious at first, since we have certainly
used the star to write it! But in fact this language is identical to(

τ∅c ∪∅cσ ∪∅c(σσ ∪ ττ)∅c
)c

,



Modular quantifiers 615

where the superscript c denotes complementation in {σ, τ}∗.
McNaughton and Papert [13] showed that the star-free languages are

exactly those definable by first-order sentences over < . It is not hard to
see how to express the concatenation operation in first-order logic, so let
us concentrate instead on why the converse is true. Our account here is
inspired by the treatment in Thomas [26]. If w1, w2 ∈ Σ∗, and k ≥ 0, then
we write w1 ≡k w2 to mean that w1 and w2 satisfy all the same sentences
of quantifier depth k. We write [w]k to denote the equivalence class of the
word w under this relation. One can now show that for any word v,

[v]k+1 =
⋂
∗

[v1]kσ[v2]k −
⋃
∗∗

[u1]kσ[u2]k.

Here, the index set ∗ in the intersection is the set of all triples (v1, σ, v2) such
that σ ∈ Σ and v = v1σv2, and the union over the set of all triples (u1, σ, u2)
such that v does not have a factorization v1σv2 with vi ≡k ui for i = 1, 2.
This can be established with a by-now routine argument using games. Since
≡k has finite index, the intersection is in fact a finite intersection. So the
above equation shows that for all k, each ≡k-class is a star-free language.
Since a language defined by a sentence of depth k is a finite union of such
classes, we get the desired result.

Observe that the argument outlined above makes no use of the other
characterization of star-free languages, namely Schützenberger’s Theorem
that these are exactly the languages whose syntactic monoids are aperiodic
(i.e., contain no nontrivial groups) [16]. But algebra and semigroups are not
completely absent, for the equivalences ≡k are congruences of finite index
on Σ∗, and the content of Schützenberger’s Theorem shows in essence that
the quotient monoids of these congruences generate all the finite aperiodic
monoids.

1.2 Counting factorizations
Earlier (in our Ph.D. dissertations!) we had both studied a variant of the
concatenation operation that counted factorizations modulo some period:
Let L1, L2 ⊆ Σ∗, σ ∈ Σ, and 0 ≤ r < q. Then we define (L1, σ, L2, r, q) to
be the set of words w for which the number of factorizations w = w1σw2 if
congruent to r modulo q.

In our discussions with Thomas we realized that the precise power of
this operation could be captured if one introduced modular quantifiers into
our logical languages:

∃r mod qxϕ(x)

is interpreted to mean ‘the number of positions x for which ϕ(x) holds’ is
congruent to r modulo q.



616 H. Straubing, D. Thérien

As an example, consider the sentence

∃0 mod 3x(Qτx ∧ ∃0 mod 2y(Qσy ∧ y < x)).

This defines the set of all strings in which the number of occurrences of τ
preceded by an even number of σ is divisible by 3. Observe that this par-
ticular sentence uses modular quantifers exclusively, and that it is possible
to rewrite it so that it only uses modular quantifiers of modulus 6.

We were able to adapt the argument given above for star-free languages
to this new quantifer: Let us fix a modulus q, and let us redefine v1 ≡k v2

to mean that v1 and v2 satisfy the same sentences of quantifier depth k,
where we now allow modular quantifiers of modulus q as well as ordinary
quantifiers. Let L be defined by the sentence

∃r mod qxϕ(x),

where ϕ has depth k. We showed that L is a boolean combination of lan-
guages of the form (K, σ, K ′, s, q), where K and K ′ are≡k-classes. The same
conclusion holds if we define ≡k in terms of modular quantifiers exclusively.

It readily follows that languages constructed using boolean operations
and ordinary concatenation together with the operations (L1, σ, L2, r, q) are
exactly those defined by sentences using both ordinary and modular quanti-
fiers, and that languages defined using the operations (L1, σ, L2, r, q) alone
are exactly those definable using only modular quantifiers.

Our real interest, however, stemmed from the fact that these language
classes could all be characterized effectively in semigroup-theoretic terms.
The example language defined above with quantifiers of modulus 2 and 3 was
derived from a descripiton of the set of words in the permutations σ = (1, 2)
and τ = (1, 2, 3) that evaluate to the identity in the symmetric group S3.
This works in general for finite solvable groups, for we can derive such
descriptions of word problems from the composition series for the groups.
It turns out that the languages definable using only modular quantifiers
are exactly the languages whose syntactic monoids are solvable groups, and
those definable using both modular and ordinary quantifiers are exactly
those whose syntactic monoids contain only solvable groups.

Let us denote by FO[<] the family of languages definable by first-order
sentences over <, by (FO + MODq)[<] those definable with both ordi-
nary first-order quantifiers and modular quantifiers of modulus q, and by
MODq[<] those definable using only modular quantifiers of modulus q. (We
assume all of this is with respect to a fixed finite alphabet Σ.)

Theorem 1.1. (Straubing, Thérien and Thomas [22]) MODq[<] is the fam-
ily of regular languages whose syntactic monoids are solvable groups of car-
dinality dividing a power of q. (FO + MODq)[<] is the family of regular



Modular quantifiers 617

languages L such that every group in M(L) is a solvable group of cardinal-
ity dividing a power of q.

This second of these facts is far deeper than the first: While a solv-
able group by definition decomposes into a sequence of extensions by cyclic
groups, which generates the expression in terms of modular quantifiers, the
existence of a comparable decomposition for monoids that contain solvable
groups requires the use of the Krohn-Rhodes Theorem [12].

The result of this is that we are able to effectively decide if a regular
language, given, let us say, by a regular expression or an automaton, can be
defined by a sentence involving modular quantifiers, and if so actually pro-
duce the sentence. For instance, suppose L is recognized by a deterministic
automaton with four states. We can explicitly write down a Krohn-Rhodes
decomposition of the monoid of all transformations on a four-element set
into factors that are either small aperiodic monoids or cyclic groups of or-
der two or three. This can be used to produce a sentence for L containing
ordinary quantifiers along with modular quantifiers of modulus 2 and 3.
In contrast, if the minimal DFA for L has five states, and if the transi-
tion monoid contains all the even permutations of the states, then no such
sentence for L is possible, irrespective of the moduli used.

1.3 Quantifiers and the block product
The two-sided decomposition theory for finite monoids developed by Rhodes
and Tilson [14] permits a deep understanding of the connection between
logic and algebra that underlies Theorem 1.1. Suppose that M and N are
two finite monoids. We write the operation in M additively, and its identity
as 0. This is not meant to imply that M is commuative, although in fact,
in the critical examples we consider below, M will be commutative. We
consider both a left action and a right action of N on M that are compatible
in the sense that

(nm)n′ = n(mn′)

for all m ∈ M ; n, n′ ∈ N. We further suppose that these actions respect the
identities in both monoids, so that

n0 = 0n = 0

for all n ∈ N, and
1m = m1 = m

for all m ∈ M. The bilateral semidirect product M ∗∗N with respect to these
actions is the monoid whose underlying set is M ×N and whose operation
is given by

(m1, n1)(m2, n2) = (m1n2 + n1m2, n1n2).



618 H. Straubing, D. Thérien

Rhodes and Tilson also define a block product M�N, a bilateral semidirect
product of MN×N and N that contains all the bilateral semidirect products
M ∗∗N.

The connection with quantification comes in when we consider languages
recognized by bilateral semidirect products M ∗∗N (or, what is the same
thing, block products M�N) in which M is either idempotent and com-
mutative, or an abelian group. This becomes clear if we try to compute
the image of a word w = σ1 · · ·σr under a homomorphism into the bilateral
semidirect product. If we suppose that this morphism maps σi to (mi, ni),
then w is mapped to:

r∏
i=1

(mi, ni) =
( r∑

i=1

(i−1∏
j=1

nj

)
mi

( r∏
k=i+1

nk

)
,

r∏
i=1

ni

)
.

In other words, computation in M ∗∗N keeps track in M of the factoriza-
tions w = uσv, where the images of u and v are computed in N. It follows
that if M is idempotent and commutative, then a language recognized by
M ∗∗N is a boolean combination of languages of the form LσL′, where L,L′

are recognized by N ; and that if M is an abelian group of exponent q, then
any language recognized by M ∗∗N is a boolean combination of languages
of the form (L, σ, L′, r, q), where again L and L′ are recognized by L. As
mentioned above, these language operations can be captured by application
of ordinary and modular quantifiers.

Conversely, consider a language L defined by a sentence of the form

∃xϕ,

or
∃r mod qxϕ,

where ϕ is itself a formula with ordinary and modular quantifiers over the
signature {<}. We can view the formula ϕ, which has a single free variable x,
as defining a language Lϕ over the extended alphabet Σ×2{x}. Elements of
this language are words in which one of the positions is marked, and which
satisfy ϕ when the free variable is instantiated by the marked position. Like-
wise, we can view a formula with k free variables as definining a language
of marked words with k distinct marks, some of which may coincide. Let
µL : Σ∗ → M(L) be the syntactic morphism of L, and νL : A∗ → M(L′).

This is where the decomposition theory of Rhodes and Tilson comes
in. The relation νLµ−1

L : M(L) → M(L′) is a relational morphism, and
its kernel category is idempotent and commutative (in the case of ordinary
quantifiers) or covered by an abelian group of exponent q (in the case of
modular quantifiers). This implies that M(L) is recognized by a block



Modular quantifiers 619

product K�M(L′), where K is idempotent and commutative or an abelian
group of exponent q, depending on the quantifiers.

Theorem 1.1 follows from these observations and the Krohn-Rhodes The-
orem for block products: The solvable groups of order dividing a power of
q for the smallest variety of finite monoids closed under block product and
containing all the abelian groups of exponent q, and all the idempotent and
commutative monoids. This is the approach taken in the journal version of
our paper with Wolfgang Thomas [23], and in Straubing [19], which con-
siders a large assortment of regular language classes defined with modular
quantifiers.

2 Circuits

2.1 Constant-depth circuits and the ACC0 problem
Why study modular quantifiers in the first place? To be frank, when we
began our work we did not have a particularly compelling answer to this
question! Modular counting of factorizations was an instance of an oper-
ation that happened to be easy to describe, but not particularly easy to
understand, which we were able to analyze completely with our new alge-
braic methods.

But, as sometimes happens when you are lucky, we subsequently found
a very good reason to be interested in these matters. This came from
computational complexity.

A circuit with n inputs is a directed acyclic graph, and in our circuits we
shall require that there be a single sink node. Each source node is labeled
by a variable xi or its negation ¬xi, where 1 ≤ i ≤ n, and each non-source
node of in-degree r by a function f : {0, 1}r → {0, 1}. Initially we shall just
use the r-ary and and or functions, corresponding to standard logic gates,
but later we shall play around with the gate type.

The circuit computes as follows: Given a bit string a1 · · · an, place ai

at each source node labeled xi, ¬ai at each source node labeled ¬xi, and
recursively compute a bit value for each non-source node: If the entering
edges of a node labeled f connect to nodes with bit values b1, . . . , br, then
the node will get the value f(b1, . . . , br). (In all of our examples the gate
functions f are symmetric, so we needn’t worry about ordering the incoming
edges to a node.) The input is accepted if the bit value assigned to the sink
node is 1, and rejected otherwise.

A circuit family with one circuit for each positive input length n thus
recognizes a language L ⊆ {0, 1}∗. If the circuits in the family contain only
and and or gates, the depth of the circuits in the family (the length of the
longest path from an input to the sink) is bounded by a constant, and the
size (the number of nodes) of the nth circuit in the family is bounded by nk

for some constant k, then the language is said to belong to the class AC0.



620 H. Straubing, D. Thérien

AC0 contains the set of all strings of the form uv, where |u| = |v| and
the integer with binary representation u is greater than the integer with
binary representation v. Indeed, we can write this circuit explicitly as

n∨
j=1

(∧
i<j

(
(xi ∧ xi+n) ∨ (¬xi ∧ ¬xi+n) ∧ xj ∧ ¬xj+n

))
.

If we were to allow multiple outputs, then we could use the same strategy
to perform binary addition of two n-bit numbers in depth 3 and size nO(1).
AC0 contains every star-free regular language in {0, 1}∗, and in fact every
star-free regular language over any finite alphabet Σ, provided we adopt a
fixed-length encoding of letters of Σ by bit strings.

Let us contrast AC0 with another circuit complexity class, this one
called NC1. NC1 also consists of polynomial-size families of circuits with
and and or gates, but we allow the depth of the circuits to grow logarith-
mically (i.e., the depth of the nth circuit is O(log n)) and we require every
node to have in-degree 2. NC1 contains every regular language. If we were
to allow multiple outputs, then we could multiply two n-bit numbers or add
n n-bit numbers [5] and even multiply n n-bit numbers and perform integer
division [3].

The natural question in computational complexity is whether one model
is really computationally more powerful than another. It is easy to see that
AC0 is contained in NC1. Can we really do more with logarithmic-depth
circuits?

Furst, Saxe and Sipser [6] showed that, indeed, the parity language,
consisting of all bit strings with an even number of 1’s, requires superpoly-
nomial-size circuit families of constant depth, and thus is not in AC0. The
same argument shows that for any q > 1, the set of bit strings in which
the number of 1’s is divisible by q is not in AC0, and a reduction argument
shows that we cannot do such things as multiply two integers in multiple-
output AC0.

We can try to boost the power of the constant-depth model by adding
things like parity as a kind of oracle gate. More formally, we let q > 1
and consider the functions fr : {0, 1}r → {0, 1} where fr(a1, . . . , ar) = 1 if
and only if a1 + · · ·+ ar is divisible by q. We call such a function a MODq

gate. ACC0(q) is the family of languages recognized by constant-depth
polynomial-size families of circuits that include and, or and MODq gates.
ACC0 is the union of the classes ACC0(q) over all q > 0.

The definitive result on ACC0 is the following theorem of Smolen-
sky [17], which contains the result of Furst-Saxe and Sipser as a special
case.

Theorem 2.1. Let p and q be distinct primes, and k > 0. The the set Lp

of bit strings in which the number of 1’s is divisible by p is not in ACC0(q).



Modular quantifiers 621

But that’s not really definitive enough! It tells us that we cannot
count, say, modulo 7 in ACC0(8), or ACC0(25), but tells us nothing about
whether we can do this in ACC0(6), because 6 has two distinct prime fac-
tors. We expect that it cannot be done in ACC0(6), and more generally:

Conjecture 2.2.
(a) Let q > 1. If p is a prime that does not divide q, then ACC0(q) does
not contain Lp.
(b) ACC0 is properly contained in NC1.

We know very little about what occurs when the modulus of the modular
gates is not a prime power. Not only has this problem remained unsolved
for twenty years, but it stands, in a sense, at the very frontier of current
knowledge about computational complexity. We do not know how to sep-
arate NC1 from ACC0, but we also do not know if there is a language
in LOGSPACE that is not in NC1, nor a language in P that is not in
LOGSPACE, nor, of course, a language in NP that is not in P. It is
entirely consistent with the current state of our knowledge that ACC0 con-
tains an NP-complete problem.

2.2 Circuits and predicate logic
There is a close connection between the constant-depth circuit families we
described above, and formulas of first-order logic used to define languages,
first observed by Gurevich and Lewis [7], and independently by Immer-
man [8].

We illustrate this with an example. Let us return to the language

Lcomp = {uv : |u| = |v|, (u)2 > (v)2},

where (w)2 denotes the integer whose binary representation is u. In the
last section we gave a description of a circuit family recognizing a similar
language.

If we are allowed to read u and v in parallel then we could consider the
pair (u, v) as a string of length n = |u| = |v| over the four-letter alphabet
{0, 1}×{0, 1}. With this interpretation, Lcomp is a star-free regular language,
defined by the first-order sentence

∃z1(Q(1,0)z1 ∧ ∀z2((z2 < z1) → Q(1,1)z2 ∨Q(0,0)z2)).

Of course, positions in this string encode pairs of positions in uv, and we
can translate this into a sentence that talks directly about uv:

∃x1∃y1(Q1x1 ∧ Q0y1 ∧ (y1 = x1 + n)
∧ ∀x2∀y2(x2 < x1 ∧ y2 = x2 + n →

(Q1x2 ∧Q1y2) ∨ (Q0x2 ∧Q1y2)))



622 H. Straubing, D. Thérien

The result is a first-order sentence that defines the original language Lcomp.
Observe that we have had to introduce a new numerical predicate y = x+n
which says that x and y occupy corresponding positions in the two halves
of uv.

Conversely, we can ‘unroll’ this first-order formula and obtain expres-
sions for a circuit family recognizing Lcomp. These will be much like the
ones that we saw in the last section.

This sort of argument works in general: if we denote by N the family of
all numerical predicates, then AC0 is exactly the same as the class FO[N ] of
languages defined by first-order sentences with no restriction on numerical
predicates. The identical argument works if we permit modular quantifiers
of modulus q in our formulas and MODq gates in our circuits. The details
are given in Barrington et. al. [2].

As a result, we have:

Theorem 2.3. ACC0(q) = (FO + MODq)[N ].

2.3 The connection with regular languages
A consequence of the theorem of Furst, Saxe and Sipser cited above, noted
in [2], is that the regular languages in AC0 are precisely those definable
by first-order sentences in which, in addition to the order relation, there are
predicates ≡t for equivalence of positions modulo t, for all positive integers
t. In [19], the numerical predicates that are definable by first-order formulas
in < and ≡t are called regular numerical predicates, since this is in fact the
largest class of numerical predicates that one can introduce into sentences
and still guarantee that every definable language is regular.We denote by R
this class of numerical predicates.

The languages definable in this way are not quite star-free, since they
include, in particular, the languages ({0, 1}t)∗ of strings of length divisible
by t. But they are almost star-free in the sense that they are the smallest
class containing the star-free languages and the languages ({0, 1}t)∗ that
is closed under boolean operations and concatenation. If we combine this
with the logical characterization of AC0, we obtain:

Theorem 2.4. The family of regular languages in FO[N ] is FO[R].

It is therefore reasonable to conjecture

Conjecture 2.5. Let q > 0. The family of regular languages in (FO +
MODq)[N ] is (FO + MODq)[R].

In fact, this is equivalent to our previous Conjecture 2.2. The principal
reason for this equivalence is the fact, discovered by Barrington [1], that lan-
guages whose syntactic monoids contain a nonsolvable group are complete



Modular quantifiers 623

for NC1 under a particularly restrictive kind of reduction: a consequence
is that as soon as (FO + MODq)[N ] contains such a regular language, it
contains all of NC1.

We have thus reduced our conjectured solution to one of the outstanding
open problems in computational complexity to a purely model-theoretic
question about the definability of regular languages in an extension of first-
order logic. It makes sense to look for a model-theoretic explanation of the
phenomenon. Unfortunately, the only proof we that we possess for the pure
first-order case, Theorem 2.4 requires the lower bounds results from circuit
complexity. And, as we have already remarked, none of the methods for
proving these bounds generalizes to treat ACC0.

There has been some small progress on the question. Roy and Straub-
ing [15] use model-theoretic collapse results to prove Conjecture 2.5 when
the only numerical predicate allowed is the addition of positions. They also
show the conjecture holds for sentences that contain only the order rela-
tion and arbitrary monadic numerical predicates. However, as they discuss,
there are fundamental obstacles to generalizing these methods.

3 Sentences with a bounded number of variables

3.1 Two- and three-variable first-order sentences
An occurrence of a variable x in a sentence can lie within the scope of
several different quantifiers that use this variable. It is only the innermost
such quantifer that binds this occurrence of x. Thus it is possible to re-use
variables within a sentence. For instance, the sentence

∃x(Qσx ∧ ∃y(y < x ∧Qτy ∧ ∃x(x < y ∧Qτx ∧ ∃y(y < x ∧Qσy))))

defines the set of all strings that have a subsequence σττσ.
It is known that every first-order sentence over < is equivalent to one in

which only three variables are used. (Kamp [10], Immerman and Kozen [9]).
Thérien and Wilke showed that the languages definable by two-variable sen-
tences could be characterized in terms of the syntactic monoid [25]: These
are the languages whose syntactic monoids belong the the variety DA. There
are many equivalent definitions of this class of monoids, but here is one we
shall find most useful: Two elements m and n of a monoid M are said to
be J -equivalent if MmM = MnM. A monoid is in DA if it is aperiodic,
and if every element J -equivalent to an idempotent is itself idempotent.

The language (στ)∗ that we discussed earlier serves as a good example
that separates two-variable definability from first-order definability. It is
quite plausible that we cannot define this language without referring to one
position being between two others, and that this will require three variables
to do. The proof is that the words σ and στσ represent the same elements



624 H. Straubing, D. Thérien

of the syntactic monoid of this language, and so σ and στ are J -equivalent,
but the second of these is idempotent, while the first is not.

3.2 Modular quantifiers with a bounded number of variables
In [21] we investigated what happens when we bound the number of variables
in sentences that contain modular quantifiers. If modular quantifiers are
used exclusively, then every sentence is equivalent to one in which only
two variables are used. When both modular and ordinary quantifiers are
allowed, then three variables are again sufficient to define all the languages
in (FO + MOD)[<]. An interesting phenomenon occurs in the two-variable
case. Consider again the language (στ)∗ in the example above. It is defined
by a sentence that says the length of the string is even, and that a position
contains τ if and only if it is an odd-numbered position:

∃0 mod 2x(x = x) ∧ ∀x(Qτx ↔ ∃0 mod 2y(y < x)).

What is remarkable here is that modular quantifiers are not required at all
to define this language, but allowing them leads to a more economical (in
terms of the number of variables) specification. Furthermore, appearances
to the contrary, the modulus used is irrelevant. It is possible to define the
same language with two variables using modular quantifiers of modulus 3,
a puzzle we leave for the reader.

Let us denote by (FO + MOD)2[<] the family of languages in
(FO + MOD)[<] definable by a two-variable sentence. We further denote
by Σ2[MOD] the family of languages defined by sentences over < in which
there is a block of existential quantifiers, followed by a block of universal
quantifiers, followed by a formula in which only modular quantifiers appear.
The family Π2[MOD] is defined similarly. We showed:

Theorem 3.1. Let L ⊆ Σ∗. The following are equivalent

(a) L ∈ (FO + MOD)2[<].

(b) L ∈ Σ2[MOD] ∩Π2[MOD].

(c) The syntactic monoid M(L) divides a wreath product M ◦ G, where
M ∈ DA and G is a solvable group. (That is, M(L) belongs to the
pseudovariety DA ∗Gsol.)

Interestingly, we do not know how to determine effectively if a given
finite monoid belongs to DA ∗Gsol. The problem is equivalent to deter-
mining whether a set of partial one-to-one functions on a finite set X can
be extended to a solvable permutation group on a larger set Y. We refer
the reader to [21] for a discussion of this problem, as well as an apparent
connection to computational complexity; and also to [20], where we give a



Modular quantifiers 625

different proof of the equivalence of (a) and (c) above, based on the block
product.

On the other hand, we do possess an effective test for whether a given
finite monoid M divides a wreath product of a monoid in DA and a finite
group (which may not be solvable): If e and f are J -equivalent idempotents
of M, and ef lies in the same J -class, then ef is itself idempotent. To
see how this criterion works in an example, consider the language L =
(σ+τ)∗σσ(σ+τ)∗ of all strings over {σ, τ} in which there are two consecutive
occurrences of σ. Since τ and τστ are equivalent in M(L), as are σ and
στσ, we conclude that σ, τ, στ and τσ are in the same J -class. Of these,
all but σ are idempotent. The condition is then violated by choosing e =
στ and f = τσ, since the product ef is equal to the non-idempotent σ.
We conclude that this language requires three variables to define, even if
modular quantifiers are permitted. Observe how this purely model-theoretic
conclusion, which might be difficult to obtain otherwise, follows from a
relatively simple calculation in the minimal automaton of L.

3.3 The placement of the modular quantifiers, and more circuit
complexity

An important element in the proof of Theorem 3.1 above is a kind of normal
form for two-variable sentences over < containing modular quantifiers: Ev-
ery sentence of (FO + MOD)2[<] is equivalent to one in which an ordinary
quantifier never appears within the scope of a modular quantifier.

We therefore should expect the expressive power of two-variable logic to
decrease if we require instead that modular quantifiers not appear inside the
scope of other quantifiers. Tesson and Thérien [24] showed that in this case,
the syntactic monoids of the languages defined are in the pseudovariety DO
of monoids in which every regular J -class (i.e., every J -class that contains
an idempotent) is an orthodox semigroup–that is, a semigroup in which the
product of two idempotents is idempotent. More precisely, they show:

Theorem 3.2. A language L is definable by a two-variable sentence over
< in which no modular quantifier appears within the scope of an ordinary
quantifier if and only if M(L) ∈ DO and every group in M(L) is solvable.

Furthermore, L is definable by such a sentence in which no modular
quantifier appears within the scope of another quantifier if and only if
M(L) ∈ DO and every group in M(L) is abelian.

Let us illustrate this theorem with two examples. As already noted,
our canonical example (στ)∗ has a syntactic monoid in which the J -class
containing the idempotents στ and τσ is not a subsemigroup. Thus this
language cannot be defined by a two-variable sentence in which the modular
quantifiers appear outside the ordinary quantifiers.



626 H. Straubing, D. Thérien

Second, consider the language consisting of words over {σ, τ}, of the
form wτσk, where k ≥ 0, and w contains an even number of occurrences
of σ. This is defined by the sentence

∃0 mod 2x(Qσx ∧ ∃y(x < y ∧Qτy),

in which the modular quantifier appears outside the ordinary quantifier.
The underlying set of the syntactic monoid M is

Z2 ∪ (Z2 × Z2).

Words of the form σi are map to the element i mod 2. Words of the form
wτσk, where w contains j occurrences of σ are mapped to (j mod 2, k mod
2). The multiplication in M is given by

i · j = (i + j) mod 2,

i · (j, k) = ((i + j) mod 2, k),
(j, k) · i = (j, (k + i) mod 2),

(j, k)(j′, k′) = ((j + k + j′) mod 2, k′).

The two J -classes have underlying sets Z2 itself, and (Z2 × Z2) and the
idempotents are 0,(0,0) and (1,1). Observe that this monoid is itself an
orthodox semigroup.

Once again, there is a connection to computational complexity: Koucky
et.al. [11] show that the languages whose syntactic monoids are in DO and
contain only abelian groups are precisely the regular languages recognized
by ACC0 circuits with only a linear number of wires.

4 Conclusion

Problems about the expressive power of modular quantifiers with unre-
stricted numerical predicates lie at the very edge of current knowledge about
computational complexity. In all likeliehood, we are a long way from solving
them. We have, however, been able to apply algebraic methods to obtain
a thorough understanding of what happens when we use regular numer-
ical predicates. This has led to large array of results that are deep and
interesting in their own right, and provides valuable intuition about what
is probably going on in the elusive general case.

References

[1] D. A. M. Barrington. Bounded-width polynomial-size branching pro-
grams recognize exactly those languages in NC1. J. Comput. Syst. Sci.,
38(1):150–164, 1989.



Modular quantifiers 627

[2] D. A. M. Barrington, K. J. Compton, H. Straubing, and D. Thérien.
Regular languages in NC1. J. Comput. Syst. Sci., 44(3):478–499, 1992.

[3] P. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, 1986.

[4] J. A. Brzozowski and R. Knast. The dot-depth hierarchy of star-free
languages is infinite. J. Comput. Syst. Sci., 16(1):37–55, 1978.

[5] A. K. Chandra, L. J. Stockmeyer, and U. Vishkin. Constant depth
reducibility. SIAM J. Comput., 13(2):423–439, 1984.

[6] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the
polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–
27, 1984.

[7] Y. Gurevich and H. R. Lewis. A logic for constant-depth circuits.
Information and Control, 61(1):65–74, 1984.

[8] N. Immerman. Languages that capture complexity classes. SIAM J.
Comput., 16(4):760–778, 1987.

[9] N. Immerman and D. Kozen. Definability with bounded number of
bound variables. Inf. Comput., 83(2):121–139, 1989.

[10] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Berkeley, 1968.

[11] M. Koucký, P. Pudlák, and D. Thérien. Bounded-depth circuits: sepa-
rating wires from gates. In H. N. Gabow and R. Fagin, editors, STOC,
pages 257–265. ACM, 2005.

[12] K. Krohn and J. Rhodes. Algebraic theory of machines. I. Prime de-
composition theorem for finite semigroups and machines. Trans. Amer.
Math. Soc., 116:450–464, 1965.

[13] R. McNaughton and S. Papert. Counter-free automata. The M.I.T.
Press, Cambridge, Mass.-London, 1971.

[14] J. Rhodes and B. Tilson. The kernel of monoid morphisms. J. Pure
Appl. Algebra, 62(3):227–268, 1989.

[15] A. Roy and H. Straubing. Definability of languages by generalized first-
order formulas over (N,+). SIAM J. Comput., 37(2):502–521, 2007.

[16] M. P. Schützenberger. On finite monoids having only trivial subgroups.
Information and Control, 8(2):190–194, 1965.



628 H. Straubing, D. Thérien

[17] R. Smolensky. Algebraic methods in the theory of lower bounds for
boolean circuit complexity. In STOC, pages 77–82. ACM, 1987.

[18] H. Straubing. A generalization of the Schützenberger product of finite
monoids. Theor. Comput. Sci., 13:137–150, 1981.

[19] H. Straubing. Finite automata, formal logic, and circuit complexity.
Progress in Theoretical Computer Science. Birkhäuser Boston Inc.,
Boston, MA, 1994.

[20] H. Straubing and D. Thérien. Weakly iterated block products of finite
monoids. In S. Rajsbaum, editor, LATIN, volume 2286 of Lecture Notes
in Computer Science, pages 91–104. Springer, 2002.

[21] H. Straubing and D. Thérien. Regular languages defined by generalized
first-order formulas with a bounded number of bound variables. Theory
Comput. Syst., 36(1):29–69, 2003.

[22] H. Straubing, D. Thérien, and W. Thomas. regular languages defined
with generalized quantifiers. In T. Lepistö and A. Salomaa, editors,
ICALP, volume 317 of Lecture Notes in Computer Science, pages 561–
575. Springer, 1988.

[23] H. Straubing, D. Thérien, and W. Thomas. Regular languages defined
with generalized quanifiers. Inf. Comput., 118(2):289–301, 1995.

[24] P. Tesson and D. Thérien. Restricted two-variable sentences, circuits
and communication complexity. In L. Caires, G. F. Italiano, L. Mon-
teiro, C. Palamidessi, and M. Yung, editors, ICALP, volume 3580 of
Lecture Notes in Computer Science, pages 526–538. Springer, 2005.

[25] D. Thérien and Th. Wilke. Over words, two variables are as powerful
as one quantifier alternation. In STOC, pages 234–240, 1998.

[26] W. Thomas. Classifying regular events in symbolic logic. J. Comput.
Syst. Sci., 25(3):360–376, 1982.

[27] W. Thomas. An application of the Ehrenfeucht-Fräıssé game in formal
language theory. Mém. Soc. Math. France (N.S.), 16:11–21, 1984. Logic
(Paris, 1983).



Automata: from logics to algorithms∗

Moshe Y. Vardi1

Thomas Wilke2

1 Department of Computer Science
Rice University
6199 S. Main Street
Houston, TX 77005-1892, U.S.A.
vardi@cs.rice.edu

2 Institut für Informatik
Christian-Albrechts-Universität zu Kiel
Christian-Albrechts-Platz 4
24118 Kiel, Germany
wilke@ti.informatik.uni-kiel.de

Abstract

We review, in a unified framework, translations from five dif-
ferent logics—monadic second-order logic of one and two successors
(S1S and S2S), linear-time temporal logic (LTL), computation tree
logic (CTL), and modal µ-calculus (MC)—into appropriate models of
finite-state automata on infinite words or infinite trees. Together with
emptiness-testing algorithms for these models of automata, this yields
decision procedures for these logics. The translations are presented in
a modular fashion and in a way such that optimal complexity bounds
for satisfiability, conformance (model checking), and realizability are
obtained for all logics.

1 Introduction

In his seminal 1962 paper [17], Büchi states: “Our results [. . . ] may there-
fore be viewed as an application of the theory of finite automata to logic.”
He was referring to the fact that he had proved the decidability of the
monadic-second order theory of the natural numbers with successor func-
tion by translating formulas into finite automata, following earlier work by
himself [16], Elgot [35], and Trakthenbrot [122]. Ever since, the approach
these pioneers were following has been applied successfully in many differ-
ent contexts and emerged as a major paradigm. It has not only brought
about a number of decision procedures for mathematical theories, for in-
stance, for the monadic second-order theory of the full binary tree [100],

∗ We are grateful to Detlef Kähler, Christof Löding, Oliver Matz, Damian Niwiński, and
Igor Walukiewicz for comments on drafts of this paper.

Jörg Flum, Erich Grädel, Thomas Wilke (eds.). Logic and Automata: History and Perspec-
tives. Texts in Logic and Games 2, Amsterdam University Press 2007, pp. 629–736.



630 M. Y. Vardi, Th. Wilke

but also efficient algorithms for problems in verification, such as a highly
useful algorithm for LTL model checking [124].

The “automata-theoretic paradigm” has been extended and refined in
various aspects over a period of more than 40 years. On the one hand, the
paradigm has led to a wide spectrum of different models of automata, specif-
ically tailored to match the distinctive features of the logics in question, on
the other hand, it has become apparent that there are certain automata-
theoretic constructions and notions, such as determinization of automata on
infinite words [85], alternation [90], and games of infinite duration [12, 54],
which form the core of the paradigm.

The automata-theoretic paradigm is a common thread that goes through
many of Wolfgang Thomas’s scientific works. In particular, he has written
two influential survey papers on this topic [118, 120].

In this paper, we review translations from five fundamental logics, mon-
adic second-order logic of one successor function (S1S), monadic second-
order logic of two successor functions (S2S), linear-time temporal logic
(LTL), computation tree logic (CTL), and the modal µ-calculus (MC) into
appropriate models of automata. At the same time, we use these trans-
lations to present some of the core constructions and notions in a unified
framework. While adhering, more or less, to the chronological order as far as
the logics are concerned, we provide modern translations from the logics into
appropriate automata. We attach importance to present the translations in
a modular fashion, making the individual steps as simple as possible. We
also show how the classical results on S1S and S2S can be used to derive
first decidability results for the three other logics, LTL, CTL, and MC, but
the focus is on how more refined techniques can be used to obtain good
complexity results.

While this paper focuses on the translations from logics into automata,
we refer the reader to the excellent surveys [118, 120] and the books [52, 96]
for the larger picture of automata and logics on infinite objects and the
connection with games of infinite duration.

Basic notation and terminology
Numbers. In this paper, the set of natural numbers is denoted ω, and
each natural number stands for the set of its predecessors, that is, n =
{0, . . . , n− 1}.
Words. An alphabet is a nonempty finite set, a word over an alphabet A
is a function n→ A where n ∈ ω for a finite word and n = ω for an infinite
word. When u : n → A is a word, then n is called its length and denoted
|u|, and, for every i < n, the value u(i) is the letter of u in position i. The
set of all finite words over a given alphabet A is denoted A∗, the set of all
infinite words over A is denoted Aω, the empty word is denoted ε, and A+



Automata: from logics to algorithms 631

stands for A∗ \ {ε}.
When u is a word of length n and i, j ∈ ω are such that 0 ≤ i, j < n,

then u[i, j] = u(i) . . . u(j), more precisely, u[i, j] is the word u′ of length
max{j − i + 1, 0} defined by u′(k) = u(i + k) for all k < |u′|. In the same
fashion, we use the notation u[i, j). When u denotes a finite, nonempty
word, then we write u(∗) for the last letter of u, that is, when |u| = n, then
u(∗) = u(n − 1). Similarly, when u is finite or infinite and i < |u|, then
u[i, ∗) denotes the suffix of u starting at position i.
Trees. In this paper, we deal with trees in various contexts, and depending
on these contexts we use different types of trees and model them in one way
or another. All trees we use are directed trees, but we distinguish between
trees with unordered successors and n-ary trees with named successors.

A tree with unordered siblings is, as usual, a tuple T = (V,E) where V
is a nonempty set of vertices and E ⊆ V × V is the set of edges satisfying
the usual properties. The root is denoted root(T ), the set of successors of
a vertex v is denoted sucsT (v), and the set of leaves is denoted lvs(T ).

Let n be a positive natural number. An n-ary tree is a tuple T =
(V, suc0, . . . , sucn−1) where V is the set of vertices and, for every i < n, suci
is the ith successor relation satisfying the condition that for every vertex
there is at most one ith successor (and the other obvious conditions). Every
n-ary tree is isomorphic to a tree where V is a prefix-closed nonempty subset
of n∗ and suci(v, v′) holds for v, v′ ∈ V iff v′ = vi. When a tree is given
in this way, simply by its set of vertices, we say that the tree is given in
implicit form. The full binary tree, denoted Tbin, is 2∗ and the full ω-tree is
ω∗. In some cases, we replace n in the above by an arbitrary set and speak
of D-branching trees. Again, D-branching trees can be in implicit form,
which means they are simply a prefix-closed subset of D∗.

A branch of a tree is a maximal path, that is, a path which starts at
the root and ends in a leaf or is infinite. If an n-ary tree is given in implicit
form, a branch is often denoted by its last vertex if it is finite or by the
corresponding infinite word over n if it is infinite.

Given a tree T and a vertex v of it, the subtree rooted at v is de-
noted T ↓v.

In our context, trees often have vertex labels and in some rare cases edge
labels too. When L is a set of labels, then an L-labeled tree is a tree with a
function l added which assigns to each vertex its label. More precisely, for
trees with unordered successors, an L-labeled tree is of the form (V,E, l)
where l : V → E; an L-labeled n-ary tree is a tuple (V, suc0, . . . , sucn−1, l)
where l : V → E; an L-labeled n-ary tree in implicit form is a function
t : V → L where V ⊆ n∗ is the set of vertices of the tree; an L-labeled
D-branching tree in implicit form is a function t : V → L where V ⊆ D∗

is the set of vertices of the tree. Occasionally, we also have more than one



632 M. Y. Vardi, Th. Wilke

vertex labeling or edge labelings, which are added as other components to
the tuple.

When T is an L-labeled tree and u is a path or branch of T , then the
labeling of u in T , denoted lT (u), is the word w over L of the length of u
and defined by w(i) = l(u(i)) for all i < |u|.
Tuple Notation. Trees, graphs, automata and the like are typically de-
scribed as tuples and denoted by calligraphic letters such as T , G , and
so on, possibly furnished with indices or primed. The individual compo-
nents are referred to by V T , EG , ET ′

, . . . . The ith component of a tuple
t = (c0, . . . , cr−1) is denoted pri(t).

2 Monadic second-order logic of one successor

Early results on the close connection between logic and automata, such as
the Büchi–Elgot–Trakhtenbrot Theorem [16, 35, 122] and Büchi’s Theorem
[17], center around monadic second-order logic with one successor relation
(S1S) and its weak variant (WS1S). The formulas of these logics are built
from atomic formulas of the form suc(x, y) for first-order variables x and y
and x ∈ X for a first-order variable x and a set variable (monadic second-
order variable) X using boolean connectives, first-order quantification (∃x),
and second-order quantification for sets (∃X). The two logics differ in the
semantics of the set quantifiers: In WS1S quantifiers only range over finite
sets rather than arbitrary sets.

S1S and WS1S can be used in different ways. First, one can think of them
as logics to specify properties of the natural numbers. The formulas are
interpreted in the structure with the natural numbers as universe and where
suc is interpreted as the natural successor relation. The most important
question raised in this context is:
Validity. Is the (weak) monadic second-order theory of the natural numbers
with successor relation decidable? (Is a given sentence valid in the natural
numbers with successor relation?)
A slightly more general question is:
Satisfiability. Is it decidable whether a given (W)S1S formula is satisfiable
in the natural numbers?

This is more general in the sense that a positive answer for closed formu-
las only already implies a positive answer to the first question. Therefore,
we only consider satisfiability in the following.

Second, one can think of S1S and WS1S as logics to specify the behavior
of devices which get, at any moment in time, a fixed number of bits as input
and produce a fixed number of bits as output (such as sequential circuits),
see Figure 1. Then the formulas are interpreted in the same structure as
above, but for every input bit and for every output bit there will be exactly



Automata: from logics to algorithms 633

sequential device

· · ·

2640
0
1
0

375
2641

0
1
0

375
2640

1
1
0

375 . . .

240
0
1

35 241
1
0

35 240
1
0

35

Figure 1. Sequential device

one free set variable representing the moments in time where the respective
bit is true. (The domain of time is assumed discrete; it is identified with
the natural numbers.) A formula will then be true for certain input-output
pairs—coded as variable assignments—and false for the others.

For instance, when we want to specify that for a given device with one
input bit, represented by the set variable X, and one output bit, represented
by Y , it is the case that for every other moment in time where the input
bit is true the output bit is true in the subsequent moment in time, we can
use the following formula:

∃Z(“Z contains every other position where X is true” ∧
∀x(x ∈ Z → “the successor of x belongs to Y ”)).

That the successor of x belongs to Y is expressed by ∀y(suc(x, y) → y ∈ Y ).
That Z contains every other position where X is true is expressed by the
conjunction of the three following conditions, where we assume, for the
moment, that the “less than” relation on the natural numbers is available:

• Z is a subset of X, which can be stated as ∀x(x ∈ Z → x ∈ X),

• IfX is nonempty, then the smallest element ofX does not belong to Z,
which can be stated as ∀x(x ∈ X ∧ ∀y(y < x→ ¬y ∈ X) → ¬x ∈ Z).

• For all x, y ∈ X such that x < y and such that there is no element of
X in between, either x or y belongs to Z, which can be stated as

∀x∀y(x ∈ X ∧ y ∈ X ∧ x < y ∧
∀z(x < z ∧ z < y → ¬z ∈ X) → (x ∈ Z ↔ ¬y ∈ Z)).

To conclude the example, we need a formula that specifies that x is less than
y. To this end, we express that y belongs to a set which does not contain x
but with each element its successor:

∃X(¬x ∈ X ∧ ∀z∀z′(z ∈ X ∧ suc(z, z′) → z′ ∈ X) ∧ y ∈ X).



634 M. Y. Vardi, Th. Wilke

The most important questions that are raised with regard to this usage of
(W)S1S are:
Conformance. Is it decidable whether the input-output relation of a given
device satisfies a given formula?
Realizability. Is it decidable whether for a given formula there exists a
device with an input-output relation satisfying the formula (and if so, can
a description of such a device be produced effectively)?

Obviously, it is important what is understood by “device”. For instance,
Church, when he defined realizability in 1957 [23], was interested in boolean
circuits. We interpret device as “finite-state device”, which, on a certain
level of abstraction, is the same as a boolean circuit.

In this section, we first describe Büchi’s Theorem (Section 2.1), from
which we can conclude that the first two questions, satisfiability and con-
formance, have a positive answer. The proof of Büchi’s Theorem is not very
difficult except for a result about complementing a certain type of automa-
ton model for infinite words, which we then establish (Section 2.2). After
that we prove a result about determinization of the same type of automaton
model (Section 2.3), which serves as the basis for showing that realizabil-
ity is decidable, too. The other ingredient of this proof, certain games of
infinite duration, are then presented, and finally the proof itself is given
(Section 2.4).

2.1 Büchi’s Theorem
The connection of S1S and WS1S to automata theory, more precisely, to
the theory of formal languages, is established via a simple observation. As-
sume that ϕ is a formula such that all free variables are set variables among
V0, . . . , Vm−1, which we henceforth denote by ϕ = ϕ(V0, . . . , Vm−1). Then
the infinite words over [2]m, the set of all column vectors of height m with
entries from {0, 1}, correspond in a one-to-one fashion to the variable assign-
ments α : {V0, . . . , Vm−1} → 2ω, where 2M stands for the power set of any
set M . More precisely, for every infinite word u ∈ [2]ωm let αu be the vari-
able assignment defined by αu(Vj) = {i < ω : u(i)[j] = 1}, where, for every
a ∈ [2]m, the expression a[j] denotes entry j of a. Then αu ranges over all
variable assignments as u ranges over all words in [2]ωm. As a consequence,
we use u |= ϕ, or, when “weak quantification” (only finite sets are consid-
ered) is used, u |=w ϕ rather than traditional notation such as N, α |= ϕ
(where N stands for the structure of the natural numbers). Further, when
ϕ is a formula as above, we define two formal languages of infinite words
depending on the type of quantification used:

L (ϕ) = {u ∈ [2]ωm : u |= ϕ}, L w(ϕ) = {u ∈ [2]ωm : u |=w ϕ}.



Automata: from logics to algorithms 635

qI q1 q2

»
0
0

–
,

»
0
1

–
»
1
0

–
,

»
1
1

–

»
0
1

–

»
0
0

–
,

»
1
0

–
,

»
1
1

–

»
1
1

–

»
1
1

–

The initial state has an incoming edge without origin; final states are shown as
double circles.

Figure 2. Example for a Büchi automaton

We say that ϕ defines the language L (ϕ) and weakly defines the language
L w(ϕ). Note that, for simplicity, the parameter m is not referred to in our
notation.

Büchi’s Theorem states that the above languages can be recognized by an
appropriate generalization of finite-state automata to infinite words, which
we introduce next. A Büchi automaton is a tuple

A = (A,Q,QI ,∆, F )

where A is an alphabet, Q is a finite set of states, QI ⊆ Q is a set of initial
states, ∆ ⊆ Q×A×Q is a set of transitions of A , also called its transition
relation, and F ⊆ Q is a set of final states of A . An infinite word u ∈ Aω is
accepted by A if there exists an infinite word r ∈ Qω such that r(0) ∈ QI ,
(r(i), u(i), r(i+1)) ∈ ∆ for every i, and r(i) ∈ F for infinitely many i. Such
a word r is called an accepting run of A on u. The language recognized by
A , denoted L (A ), is the set of all words accepted by A .

For instance, the automaton in Figure 2 recognizes the language corre-
sponding to the formula

∀x(x ∈ V0 → ∃y(x < y ∧ y ∈ V1)),

which says that every element from V0 is eventually followed by an element
from V1. In Figure 2, qI is the state where the automaton is not waiting
for anything; q1 is the state where the automaton is waiting for an element
from V1 to show up; q2 is used when from some point onwards all positions
belong to V0 and V1. Nondeterminism is used to guess that this is the case.



636 M. Y. Vardi, Th. Wilke

Büchi’s Theorem can formally be stated as follows.

Theorem 2.1 (Büchi, [17]).

1. There exists an effective procedure that given a formula ϕ =
ϕ(V0, . . . , Vm−1) outputs a Büchi automaton A such that L (A ) =
L (ϕ)

2. There exists an effective procedure that given a Büchi automaton A
over an alphabet [2]m outputs a formula ϕ = ϕ(V0, . . . , Vm−1) such
that L (ϕ) = L (A ).

The proof of part 2 is straightforward. The formula which needs to
be constructed simply states that there exists an accepting run of A on
the word determined by the assignment to the variables Vi. One way to
construct ϕ is to write it as ∃X0 . . .∃Xn−1ψ where each set variable Xi

corresponds exactly to one state of A and where ψ is a first-order formula
(using < in addition to suc) which states that the Xi’s encode an accepting
run of the automaton (the Xi’s must form a partition of ω and the above
requirements for an accepting run must be satisfied): 0 must belong to one
of the sets Xi representing the initial states; there must be infinitely many
positions belonging to sets representing final states; the states assumed at
adjacent positions must be consistent with the transition relation.

The proof of part 1 is more involved, although the proof strategy is
simple. The desired automaton A is constructed inductively, following the
structure of the given formula. First-order variables, which need to be dealt
with in between, are viewed as singletons. The induction base is straightfor-
ward and two of the three cases to distinguish in the inductive step are so,
too: disjunction on the formula side corresponds to union on the automaton
side and existential quantification corresponds to projection. For negation,
however, one needs to show that the class of languages recognized by Büchi
automata is closed under complementation. This is not as simple as with
finite state automata, especially since deterministic Büchi automata are
strictly weaker than nondeterministic ones, which means complementation
cannot be done along the lines known from finite words.

In the next subsection, we describe a concrete complementation con-
struction.

Büchi’s Theorem has several implications, which all draw on the follow-
ing almost obvious fact. Emptiness for Büchi automata is decidable. This
is easy to see because a Büchi automaton accepts a word if and only if
in its transition graph there is a path from an initial state to a strongly
connected component which contains a final state. (This shows that empti-
ness can even be checked in linear time and in nondeterministic logarithmic
space.)



Automata: from logics to algorithms 637

Given that emptiness is decidable for Büchi automata, we can state that
the first question has a positive answer:

Corollary 2.2 (Büchi, [17]). Satisfiability is decidable for S1S.

Proof. To check whether a given S1S formula ϕ = ϕ(V0, . . . , Vm−1) is satisfi-
able one simply constructs the Büchi automaton which is guaranteed to exist
by Büchi’s Theorem and checks this automaton for non-emptiness. q.e.d.

Observe that in the above corollary we use the term “satisfiability” to
denote the decision problem (Given a formula, is it satisfiable?) rather than
the question from the beginning of this section (Is it decidable whether . . . ).
For convenience, we do so in the future too: When we use one of the terms
satisfiability, conformance, or realizability, we refer to the corresponding
decision problem.

For conformance, we first need to specify formally what is meant by a
finite-state device, or, how we want to specify the input-output relation of
a finite-state device. Remember that we think of a device as getting inputs
from [2]m and producing outputs from [2]n for given natural numbers m
and n. So it is possible to view an input-output relation as a set of infinite
words over [2]m+n. To describe an entire input-output relation of a finite-
state device we simply use a nondeterministic finite-state automaton. Such
an automaton is a tuple

D = (A,S, SI ,∆)

where A is an alphabet, S is a finite set of states, SI ⊆ S is a set of initial
states, and ∆ ⊆ S × A × S is a transition relation, just as with Büchi
automata. A word u ∈ Aω is accepted by D if there exists r ∈ Sω with
r(0) ∈ SI and (r(i), u(i), r(i + 1)) ∈ ∆ for every i < ω. The set of words
accepted by D , denoted L (D), is the language recognized by D . Observe
that L (D) is exactly the same as the language recognized by the Büchi
automaton which is obtained from D by adding the set S as the set of final
states.

Conformance can now be defined as follows: Given an S1S formula
ϕ = ϕ(X0, . . . , Xm−1, Y0, . . . , Yn−1) and a finite-state automaton D with
alphabet [2]m+n, determine whether u |= ϕ for all u ∈ L (D).

There is a simple approach to decide conformance. We construct a
Büchi automaton that accepts all words u ∈ L (D) which do not satisfy the
given specification ϕ, which means we construct a Büchi automaton which
recognizes L (D) ∩L (¬ϕ), and check this automaton for emptiness. Since
Büchi’s Theorem tells us how to construct an automaton A that recognizes
L (¬ϕ), we only need a construction which, given a finite-state automaton
D and a Büchi automaton A , recognizes L (A )∩L (D). The construction



638 M. Y. Vardi, Th. Wilke

The product of a Büchi automaton A and a finite-state au-
tomaton D , both over the same alphabet A, is the Büchi
automaton denoted A ×D and defined by

A ×D = (A,Q× S,QI × SI ,∆, F × S)

where

∆ = {((q, s), a, (q′, s′)) : (q, a, q′) ∈ ∆A and (s, a, s′) ∈ ∆D}.

Figure 3. Product of a Büchi automaton with a finite-state automaton

depicted in Figure 3, which achieves this, is a simple automata-theoretic
product. Its correctness can be seen easily.

Since we already know that emptiness is decidable for Büchi automata,
we obtain:

Corollary 2.3 (Büchi, [17]). Conformance is decidable for S1S.

From results by Stockmeyer and Meyer [112, 111], it follows that the
complexity of the two problems from Corollaries 2.2 and 2.3 is nonelemen-
tary, see also [102].

Another immediate consequence of Büchi’s Theorem and the proof of
part 2 as sketched above is a normal form theorem for S1S formulas. Given
an arbitrary S1S formula, one uses part 1 of Büchi’s Theorem to turn it
into an equivalent Büchi automaton and then part 2 to reconvert it to a
formula. The proof of part 2 of Büchi’s Theorem is designed in such a way
that a formula will emerge which is of the form ∃V0 . . .∃Vn−1ψ where ψ is
without second-order quantification but uses <. Such formulas are called
existential S1S formulas.

Corollary 2.4 (Büchi-Thomas, [17, 117]). Every S1S formula is equivalent
to an existential S1S formula, moreover, one existential set quantifier is
sufficient.

To conclude this subsection we note that using the theory of finite au-
tomata on finite words only, one can prove a result weaker than Büchi’s
Theorem. In the statement of this theorem, automata on finite words are
used instead of Büchi automata and the weak logic is used instead of the
full logic. Moreover, one considers only variable assignments for the free set
variables that assign finite sets only. The latter is necessary to be able to



Automata: from logics to algorithms 639

describe satisfying assignments by finite words. Such a result was obtained
independently by Büchi [16], Elgot [35], and Trakhtenbrot [122], preceding
Büchi’s work on S1S.

2.2 Complementation of Büchi automata
Büchi’s original complementation construction, more precisely, his proof of
the fact that the complement of a language recognized by a Büchi automaton
can also be recognized by a Büchi automaton, as given in [17], follows an
algebraic approach. Given a Büchi automaton A , he defines an equivalence
relation on finite words which has

1. only a finite number of equivalence classes and

2. the crucial property that UV ω ⊆ L (A ) or UV ω ∩L (A ) = ∅ for all
its equivalence classes U and V .

Here, UV ω stands for the set of all infinite words which can be written as
uv0v1v2 . . . where u ∈ U and vi ∈ V for every i < ω. To complete his proof
Büchi only needs to show that

(a) each set UV ω is recognized by a Büchi automaton,

(b) every infinite word over the given alphabet belongs to such a set, and

(c) the class of languages recognized by Büchi automata is closed under
union.

To prove (b), Büchi uses a weak variant of Ramsey’s Theorem; (a) and (c)
are easy to see. The equivalence relation Büchi defines is similar to Nerode’s
congruence relation. For a given word u, he considers

(i) all pairs (q, q′) of states for which there exists a path from q to q′

labeled u and

(ii) all pairs (q, q′) where, in addition, such a path visits a final state,

and he defines two nonempty finite words to be equivalent if they agree on
these pairs. If one turns Büchi’s “complementation lemma” into an actual
complementation construction, one arrives at a Büchi automaton of size
2θ(n

2) where n denotes the number of states of the given Büchi automaton.
Klarlund [65] and Kupferman and Vardi [74] describe complementation

constructions along the following lines. Given a Büchi automaton A and
a word u over the same alphabet, they consider the run DAG of A on u,
which is a narrow DAG which contains exactly the runs of A on u. Vertices
in this run DAG are of the form (q, i) with q ∈ Q and i ∈ ω and all runs
where the ith state is q visit this vertex. They show that u is not accepted



640 M. Y. Vardi, Th. Wilke

by A if and only if the run DAG can be split into at most 2n alternating
layers of two types where within the layers of the first type every vertex
has proper descendants which are labeled with nonfinal states and where
within the layers of the second type every vertex has only a finite number
of descendants (which may be final or nonfinal). This can easily be used
to construct a Büchi automaton for the complement: It produces the run
DAG step by step, guesses for each vertex to which layer it belongs, and
checks that its guesses are correct. To check the requirement for the layers
of the second type, it uses the Büchi acceptance condition. The size of
the resulting automaton is 2θ(n logn). Optimizations lead to a construction
with (0.97n)n states [46], while the best known lower bound is (0.76n)n,
established by Yan [131]. For practical implementations of the construction
by Kupferman and Vardi, see [55].

In Section 2.2.2, we describe a complementation construction which is
a byproduct of the determinization construction we explain in Section 2.3.
Both constructions are based on the notion of reduced acceptance tree,
introduced by Muller and Schupp [91] and described in what follows.

2.2.1 Reduced acceptance trees
Recall the notation and terminology with regard to binary trees introduced
in Section 1.

Let A be a Büchi automaton as above, u an infinite word over the alpha-
bet A. We consider a binary tree, denoted Tu, which arranges all runs of A
on u in a clever fashion, essentially carrying out a subset construction that
distinguishes between final and nonfinal states, see Figure 4 for a graphical
illustration.

The tree Tu is given as lu : Vu → 2Q in implicit form and defined induc-
tively as follows.

(i) ε ∈ Vu and lu(ε) = QI .

(ii) Let v ∈ Vu, Q′ = lu(v), a = u(|v|), and Q′′ =
⋃
{∆(q, a) : q ∈ Q′}.

Here and later, we use ∆(q, a) to denote {q′ ∈ Q : (q, a, q′) ∈ ∆}.

• If Q′′ ∩ F 6= ∅, then v0 ∈ Vu and lu(v0) = Q′′ ∩ F .

• If Q′′ \ F 6= ∅, then v1 ∈ Vu and lu(v1) = Q′′ \ F .

The resulting tree is called the run tree of u with respect to A .
A partial run of A on u is a word r ∈ Q+∪Qω satisfying r(0) ∈ QI and

(r(i), u(i), r(i + 1)) ∈ ∆ for all i such that i + 1 < |r|. A run is an infinite
partial run.

Every partial run r of A on u determines a path b in the run tree: The
length of b is |r| − 1 and b(i) = 0 if r(i + 1) ∈ F and b(i) = 1 otherwise,
for i < |r| − 1. We write r� for this path and call it the 2-projection of r.



Automata: from logics to algorithms 641

b

b

a

a

a

b

.

.

.

q0

q0

q0

q1

q1

q1

q0

q1

q1

q0

q1 q0

q0

q0

q0

q0

q1

q1

q1

q0

q0

q0

q0

Depicted are the run tree and the reduced run
tree of the automaton to the right for the given
word. Note that in the trees the labels of the
vertices should be sets of states, but for nota-
tional convenience we only list their elements.

q0 q1

a,b

a

a

Figure 4. Run tree and reduced run tree

Clearly, if r is an accepting run of A on u, then r� has infinitely many left
turns, where a left turn is a vertex which is a left successor. Conversely, if
b is an infinite branch of Tu, then there exists a run r of A on u such that
r� = b, and if b has infinitely many left turns, then r is accepting. This
follows from Kőnig’s lemma.

From this, we can conclude:

Remark 2.5. An infinite word u is accepted by a Büchi automaton A if
and only if its run tree has a branch with an infinite number of left turns.
We call such a branch an acceptance witness.

The tree Tu has two other interesting properties, which we discuss next.
The first one is that Tu has a “left-most” acceptance witness, provided there
is one at all. This acceptance witness, denoted bu, can be constructed as
follows. Inductively, assume bu(i) has already been defined for all i < n in a
way such that there is an acceptance witness with prefix b′ = bu(0) . . . bu(n−



642 M. Y. Vardi, Th. Wilke

1). If there is an acceptance witness with prefix b′0, we set bu(n) = 0.
Otherwise, there must be an acceptance witness with prefix b′1, and we
set bu(n) = 1. Clearly, this construction results in an acceptance witness.
One can easily prove that bu is the left-most acceptance witness in the
sense that it is minimal among all acceptance witnesses with respect to the
lexicographical ordering (but we do not need this here).

The second interesting property says something about the states occur-
ring to the left of bu. We say a state q is persistent in a vertex v of a branch
b of Tu if there is a run r of A on u such that r� = b and q ∈ r(|v|),
in other words, q is part of a run whose 2-projection contains v. A word
v ∈ {0, 1}∗ is said to be left of a word w ∈ {0, 1}∗, denoted v <lft w, if
|v| = |w| and v <lex w, where <lex denotes the lexicographical ordering.
The crucial property of bu is:

Lemma 2.6. Let u be an infinite word accepted by a Büchi automaton A ,
w a vertex on the left-most acceptance witness bu, and q a state which is
persistent in w on bu. Then q /∈ lu(v) for every v ∈ Vu such that v <lft w.

Proof. Assume that w is a vertex on bu and that v ∈ Vu is left of w, let
n = |v| (= |w|). For contradiction, assume q is persistent in w on bu and
q ∈ lu(v)∩ lu(w). Since q ∈ lu(v), we know there is a partial run r of A on
u with r� = v and r(n) = q.

Since q is persistent in w on bu there exists a run r′ of A on u such
that r′� = bu and r′(n) = q. Then r′[n,∞) is an uninitialized run of
A on u[n,∞) starting with q, where an uninitialized run is one where
it is not required that the first state is the initial state. This implies that
r′′ = rr′(n,∞) is a run of A on u. Moreover, r(i) = r′′(i) for all i ≥ n, which
implies r′′� is an acceptance witness, too. Let c be the longest common
prefix of r′′� and bu. We know that c0 ≤prf r

′′� and c1 ≤prf bu, which
is a contradiction to the definition of bu—recall that r′′� is an acceptance
witness. q.e.d.

The above fact can be used to prune Tu in such a way that it has finite
width, but still contains an acceptance witness if and only if u is accepted
by A . We denote the pruned tree by T ′

u , write it as l′u : V ′
u → 2Q), and

call it the reduced acceptance tree. Informally, T ′
u is obtained from Tu by

keeping on each level only the first occurrence of a state, reading the level
from left to right, see Figure 4. Formally, the reduced acceptance tree is
inductively defined as follows.

(i) ε ∈ V ′
u and l′u(ε) = QI .

(ii) Let v ∈ V ′
u, Q

′ = l′u(v), a = u(|v|), and Q′′ =
⋃
{∆(q, a) : q ∈ Q′},

just as above. Assume l′u(w) has already been defined for w <lft v0
and let Q̄ =

⋃
{l′u(w) : w ∈ V ′

u and w <lft v0}.



Automata: from logics to algorithms 643

• If Q′′ ∩ F \ Q̄ 6= ∅, then v0 ∈ V ′
u and l′u(v0) = Q′′ ∩ F \ Q̄.

• If Q′′ \ (F ∪ Q̄) 6= ∅, then v1 ∈ V ′
u and l′u(v1) = Q′′ \ (F ∪ Q̄).

As a consequence of Lemma 2.6, we have:

Corollary 2.7. Let A be a Büchi automaton and u an infinite word over
the same alphabet. Then u ∈ L (A ) iff T ′

u contains an acceptance witness.

Since T ′
u is a tree of width at most |Q|, it has at most |Q| infinite

branches. So u is not accepted by A if and only if there is some number n
such that b(i) is not a left turn for all infinite branches b of T ′

u . This fact
can be used to construct a Büchi automaton for the complement language,
as is shown in what follows.

2.2.2 The complementation construction
Let n be an arbitrary natural number and v0 <lft v1 <lft . . . <lft vr−1 be
such that {v0, . . . , vr−1} = {v ∈ V ′

u : |v| = n}, that is, v0, . . . , vr−1 is the
sequence of all vertices on level n of T ′

u , from left to right. We say that
l′u(v0) . . . l

′
u(vr−1), which is a word over the alphabet 2Q, is slice n of T ′

u .
It is straightforward to construct slice n + 1 from slice n, simply by

applying the transition relation to each element of slice n and removing
multiple occurrences of states just as with the construction of T ′

u . Suppose
Q0 . . . Qr−1 is slice n and a = u(n). Let Q′0, . . . , Q

′
2r−1 be defined by

Q′2i = ∆(Qi, a) ∩ F \ Q̄i, Q′2i+1 = ∆(Qi, a) \ (F ∪ Q̄i),

where Q̄i =
⋃
j<2iQ

′
j . Further, let j0 < j1 < · · · < js−1 be such that

{j0, . . . , js−1} = {j < 2r : Q′j 6= ∅}. Then Q′j0 . . . Q
′
js−1

is slice n+ 1 of T ′
u .

This is easily seen from the definition of the reduced run tree.
We say that a tuple U = Q0 . . . Qr−1 is a slice over Q if ∅ 6= Qi ⊆ Q

holds for i < r and if Qi ∩Qj = ∅ for all i, j < r with i 6= j. The sequence
Q′j0 . . . Q

′
js−1

from above is said to be the successor slice for U and a and is
denoted by δslc(Q0 . . . Qr−1, a).

The automaton for the complement of L (A ), denoted A C, works as
follows. First, it constructs slice after slice as it reads the given input word.
We call this the initial phase. At some point, it guesses

(i) that it has reached slice n or some later slice, with n as described right
after Corollary 2.7, and

(ii) which components of the slice belong to infinite branches.

The rest of its computation is called the repetition phase. During this phase
it carries out the following process, called verification process, over and
over again. It continues to construct slice after slice, checking that (i) the



644 M. Y. Vardi, Th. Wilke

components corresponding to vertices on infinite branches all continue to
the right (no left turn anymore) and (ii) the components corresponding to
the other branches die out (do not continue forever). The newly emerging
components corresponding to branches which branch off to the left from
the vertices on the infinite branches are marked. As soon as all branches
supposed to die out have died out, the process starts all over again, now
with the marked components as the ones that are supposed to die out.

To be able to distinguish between components corresponding to infi-
nite branches, branches that are supposed to die out, and newly emerging
branches, the components of the slice tuples are decorated by inf, die, or
new. Formally, a decorated slice is of the form (Q0 . . . Qr−1, f0 . . . fr−1)
where Q0 . . . Qr−1 is a slice and fi ∈ {inf,die,new} for i < r. A decorated
slice where fi 6= die for all i < r is called final.

The definition of the successor of a decorated slice is slightly more in-
volved than for ordinary slices, and such a successor may not even exist.
Assume a decorated slice as above is given, let V stand for the entire slice
and U for its first component (which is an ordinary slice). Let the Q′j ’s and
ji’s be defined as above. The successor slice of V with respect to a, denoted
δd(V, a), does not exist if there is some i < r such that Q′2i+1 = ∅ and
fi = inf, because this means that a branch guessed to be infinite and with-
out left turn dies out. In all other cases, δd(V, a) = (δslc(U, a), f ′j0 . . . f

′
js−1

)
where the f ′j ’s are defined as follows, depending on whether the automaton
is within the verification process (V is not final) or at its end (V is final):

Slice V is not final. Then f ′2i = f ′2i+1 = fi for every i < r, except when
fi = inf. In this case, f ′2i = new and f2i+1 = fi.

Slice V is final. Then f ′2i = f ′2i+1 = die for every i < r, except when
fi = inf. In this case, f ′2i+1 = inf and f ′2i = die.

These choices reflect the behavior of the automaton as described above.
To describe the transition from the first to the second phase formally,

assume U is a slice and a ∈ A. Let ∆s(U, a) contain all decorated slices
(δslc(U, a), f0 . . . fs−1) where fi ∈ {inf,die} for i < s. This reflects that the
automaton guesses that certain branches are infinite and that the others are
supposed to die out. The full construction of A C as outlined in this section
is described in Figure 5. A simple upper bound on its number of states is
(3n)n.

Using LC to denote the complement of a language, we can finally state:

Theorem 2.8. Let A be a Büchi automaton with n states. Then A C is a
Büchi automaton with (3n)n states such that L (A C) = L (A )C.



Automata: from logics to algorithms 645

Let A be a Büchi automaton. The Büchi automaton A C is
defined by

A C = (A,Qs ∪Qd, QI ,∆′, F ′)

where the individual components are defined as follows:

Qs = set of slices over Q,

Qd = set of decorated slices over Q,
F ′ = set of final decorated slices over Q,

and where for a given a ∈ A the following transitions belong
to ∆′:

• (U, a, δslc(U, a)) for every U ∈ Qs,

• (U, a, V ) for every U ∈ Qs and V ∈ ∆s(U, a),

• (V, a, δd(V, a)) for every V ∈ Qd, provided δd(V, a) is
defined.

Figure 5. Complementing a Büchi automaton

2.3 Determinization of Büchi automata
As noted above, determinstic Büchi automata are strictly weaker than non-
deterministic ones in the sense that there are ω-languages that can be recog-
nized by a nondeterministic Büchi automaton but by no deterministic Büchi
automaton. (Following classical terminology, a Büchi automaton is called
deterministic if |QI | = 1 and there is a function δ : Q × A → Q such that
∆ = {(q, a, δ(q, a)) : a ∈ A ∧ q ∈ Q}.) It turns out that this is due to the
weakness of the Büchi acceptance condition. When a stronger acceptance
condition—such as the parity condition—is used, every nondeterministic
automaton can be converted into an equivalent deterministic automaton.

The determinization of Büchi automata has a long history. After a
flawed construction had been published in 1963 [89], McNaughton, in 1966
[85], was the first to prove that every Büchi automaton is equivalent to a de-
terministic Muller automaton, a model of automata on infinite words with
an acceptance condition introduced in Muller’s work. In [43, 42], Emer-
son and Sistla described a determinization construction that worked only



646 M. Y. Vardi, Th. Wilke

for a subclass of all Büchi automata. Safra [105] was the first to describe
a construction which turns nondeterministic Büchi automata into equiva-
lent deterministic Rabin automata—a model of automata on infinite words
with yet another acceptance condition—which has optimal complexity in
the sense that the size of the resulting automaton is 2θ(n logn) and one can
prove that this is also a lower bound [86]. In 1995, Muller and Schupp [91]
presented a proof of Rabin’s Theorem via an automata-theoretic construc-
tion which has an alternative determinization construction with a similar
complexity built-in; Kähler [76] was the first to isolate this construction, see
also [1]. Kähler [76] also showed that based on Emerson and Sistla’s con-
struction one can design another determinization construction for all Büchi
automata which yields automata of size 2θ(n logn), too. In 2006, Piterman
[97] showed how Safra’s construction can be adapted so as to produce a
parity automaton of the same complexity.

The determinization construction described below is obtained by apply-
ing Piterman’s improvement of Safra’s construction to Muller and Schupp’s
determinization construction. We first introduce parity automata, then
continue our study of the reduced acceptance tree, and finally describe the
determinization construction.

2.3.1 Parity automata
A parity automaton is very similar to a Büchi automaton. The only differ-
ence is that a parity automaton has a more complex acceptance condition,
where every state is assigned a natural number, called priority, and a run
is accepting if the minimum priority occurring infinitely often (the limes
inferior) is even. States are not just accepting or rejecting; there is a whole
spectrum. For instance, when the smallest priority is even, then all states
with this priority are very similar to accepting states in Büchi automata: If
a run goes through these states infinitely often, then it is accepting. When,
on the other hand, the smallest priority is odd, then states with this prior-
ity should be viewed as being the opposite of an accepting state in a Büchi
automaton: If a run goes through these states infinitely often, the run is
not accepting. So parity automata allow for a finer classification of runs
with regard to acceptance and rejection.

Formally, a parity automaton is a tuple

A = (A,Q,QI ,∆, π)

where A, Q, QI , and ∆ are as with Büchi automata, but π is a function
Q→ ω, which assigns to each state its priority. Given an infinite sequence
r of states of this automaton, we write valπ(r) for the limes inferior of the
sequence π(r(0)), π(r(1)), . . . and call it the value of the run with respect
to π. Since Q is finite, the value of each run is a natural number. A run



Automata: from logics to algorithms 647

qI : 0

q0 : 1

q1 : 0

»
0
1

–
,

»
0
0

– »
1
1

–
,

»
1
0

–

»
0
1

–

»
0
0

–
,

»
1
0

–

»
0
0

–
,

»
1
0

– »
1
1

–

»
0
1

–

»
1
1

–

Figure 6. Deterministic parity automaton. The values in the circles next
to the names of the states are the priorities.

r of A is accepting if its value is even. In other words, a run r of A is
accepting if there exists an even number v and a number k such that

(i) π(r(j)) ≥ v for all j ≥ k and

(ii) π(r(j)) = v for infinitely many j ≥ k.

Consider, for example, the parity automaton depicted in Figure 6. It
recognizes the same language as the Büchi automaton in Figure 2.

As far as nondeterministic automata are concerned, Büchi automata
and parity automata recognize the same languages. On the one hand, every
Büchi automaton can be viewed as a parity automaton where priority 1 is
assigned to every non-final state and priority 0 is assigned to every final
state. (That is, the parity automaton in Figure 6 can be regarded as a
deterministic Büchi automaton.) On the other hand, it is also easy to
see that every language recognized by a parity automaton is recognized by
some Büchi automaton: The Büchi automaton guesses a run of the parity
automaton and an even value for this run and checks that it is indeed the
value of the run. To this end, the Büchi automaton runs in two phases. In
the first phase, it simply simulates the parity automaton. At some point, it



648 M. Y. Vardi, Th. Wilke

Let A be a parity automaton. The Büchi automaton Apar

is defined by

Apar = (A,Q ∪Q× E,QI ,∆ ∪∆′, {(q, k) : π(q) = k})

where E = {π(q) : q ∈ Q ∧ π(q) mod 2 = 0} and ∆′ contains

• (q, a, (q′, k)) for every (q, a, q′) ∈ ∆, provided k ∈ E,
and

• ((q, k), a, (q′, k)) for every (q, a, q′) ∈ ∆, provided
π(q′) ≥ k and k ∈ E.

Figure 7. From parity to Büchi automata

concludes the first phase, guesses an even value, and enters the second phase
during which it continues to simulate the parity automaton but also verifies
(i) and (ii) from above. To check (i), the transition relation is restricted
appropriately. To check (ii), the Büchi acceptance condition is used. This
leads to the construction displayed in Figure 7. The state space has two
different types of states: the states from the given Büchi automaton for the
first phase and states of the form (q, k) where q ∈ Q and k is a priority for
the second phase. The priority in the second component never changes; it
is the even value that the automaton guesses.

Remark 2.9. Let A be a parity automaton with n states and k different
even priorities. Then the automaton Apar is an equivalent Büchi automaton
with (k + 1)n states.

2.3.2 Approximating reduced run trees
Let A be a Büchi automaton as above and u ∈ Aω an infinite word. The
main idea of Muller and Schupp’s determinization construction is that the
reduced acceptance tree, T ′

u , introduced in Section 2.2.1, can be approx-
imated by a sequence of trees which can be computed by a deterministic
finite-state automaton. When these approximations are adorned with addi-
tional information, then from the sequence of the adorned approximations
one can read off whether there is an acceptance witness in the reduced
acceptance tree, which, by Remark 2.5, is enough to decide whether u is
accepted.

For a given number n, the nth approximation of T ′
u , denoted T n

u , is the
subgraph of T ′

u which consists of all vertices of distance at most n from the



Automata: from logics to algorithms 649

root and which are on a branch of length at least n. Only these vertices can
potentially be on an infinite branch of T ′

u . Formally, T n
u is the subtree of

T ′
u consisting of all vertices v ∈ V ′

u such that there exists w ∈ V ′
u satisfying

v ≤prf w and |w| = n, where ≤prf denotes the prefix order on words.
Note that from Lemma 2.6 we can conclude:

Remark 2.10. When u is accepted by A , then for every n the prefix of
length n of bu is a branch of T n

u .

The deterministic automaton to be constructed will observe how ap-
proximations evolve over time. There is, however, the problem that, in
general, approximations grow as n grows. But since every approximation
has at most |Q| leaves, it has at most |Q| − 1 internal vertices with two
successors—all other internal vertices have a single successor. This means
that their structure can be described by small trees of bounded size, and
only their structure is important, except for some additional information of
bounded size. This motivates the following definitions.

A segment of a finite tree is a maximal path where every vertex except
for the last one has exactly one successor, that is, it is a sequence v0 . . . vr
such that

(i) the predecessor of v0 has two successors or v0 is the root,

(ii) vi has exactly one successor for i < r, and

(iii) vr has exactly two successors or is a leaf.

Then every vertex of a given finite tree belongs to exactly one segment.
A contraction of a tree is obtained by merging all vertices of a segment

into one vertex. Formally, a contraction of a finite tree T in implicit form
is a tree C together with a function c : V T → V C , the contraction map,
such that the following two conditions are satisfied:

(i) For all v, w ∈ V T , c(v) = c(w) iff v and w belong to the same segment.

When p is a segment of T and v one of its vertices, we write c(p) for
c(v) and we say that c(v) represents p.

(ii) For all v ∈ V T and i < 2, if vi ∈ V T and c(v) 6= c(vi), then
sucC

1 (c(v), c(vi)).

Note that this definition can easily be adapted to the case where the given
tree is not in implicit form.

We want to study how approximations evolve over time. Clearly, from
the nth to the (n+ 1)st approximation of T ′

u segments can disappear, sev-
eral segments can be merged into one, new segments of length one can



650 M. Y. Vardi, Th. Wilke

emerge, and segments can be extended by one vertex. We reflect this in
the corresponding contractions by imposing requirements on the domains
of consecutive contractions.

A sequence C0,C1, . . . of contractions with contraction maps c0, c1, . . .
is a contraction sequence for u if the following holds for every n:

(i) Cn is a contraction of the nth approximation of T ′
u .

(ii) Let p and p′ be segments of T n
u and T n+1

u , respectively. If p is a
prefix of p′ (including p = p′), then cn+1(p′) = cn(p) and p′ is called
an extension of p in n+ 1.

(iii) If p′ is a segment of T n+1
u which consists of vertices not belonging

to T , then cn+1(p′) /∈ V Cn , where V Cn denotes the set of vertices of
Cn.

Since we are interested in left turns, we introduce one further notion. As-
sume that p and p′ are segments of T n

u and T n+1
u , respectively, and p is a

prefix of p′, just as in (ii) above. Let p′′ be such that p′ = pp′′. We say that
cn+1(p′) (which is equal to cn(p)) is left extending in n+ 1 if there is a left
turn in p′′.

For a graphical illustration, see Figure 8.

We can now give a characterization of acceptance in terms of contraction
sequences.

Lemma 2.11. Let C0,C1, . . . be a contraction sequence for an infinite word
u with respect to a Büchi automaton A . Then the following are equivalent:

(A) A accepts u.

(B) There is a vertex v such that

(a) v ∈ V Cn for almost all n and

(b) v is left extending in infinitely many n.

Proof. For the implication from (A) to (B), we start with a definition. We
say that a segment p of the nth approximation is part of bu, the left-most
acceptance witness, if there are paths p0 and p1 such that bu = p0pp1. We
say a vertex v represents a part of bu if there exists i such that for all j ≥ i
the vertex v belongs to V Cj and the segment represented by v is part of bu.
Observe that from Remark 2.10 we can conclude that the root of C0 is such
a vertex (where we can choose i = 0). Let V be the set of all vertices that
represent a part of bu and assume i is chosen such that v ∈ V Cj for all j ≥ i
and all v ∈ V . Then all elements from V form the same path in every Cj
for j ≥ i, say v0 . . . vr is this path.



Automata: from logics to algorithms 651

T 0
u

q0 v0
q0

T 1
u

q0

v0
q0

T 2
u

q0

v0
q0

T 3
u

q1 q0

v0

v1
q0

v2
q1

T 4
u

v0

v1
q0

v2
q1

T 5
u

q1 q0

v0

v1
q0

v2
q1

T 6
u

q0

v0
q0

Depicted is the beginning of the contraction sequence for u = bbaaab . . . with
respect to the automaton from Figure 4. Note that, just as in Figure 4, we simply
write qi for {qi}.

Figure 8. Contraction sequence



652 M. Y. Vardi, Th. Wilke

If the segment representing vr is infinitely often extended, it will also be
extended by a left turn infinitely often (because bu is an acceptance witness),
so vr will be left extending in infinitely many i.

So assume that vr is not extended infinitely often and let i′ ≥ i be
such that the segment represented by vr is not extended any more for j ≥
i′. Consider Ci′+1. Let v′ be the successor of vr such that the segment
represented by v′ is part of bu, which must exist because of Remark 2.10.
Clearly, for the same reason, v′ will be part of V Cj for j ≥ i′ + 1, hence
v′ ∈ V—a contradiction.

For the implication from (B) to (A), let v be a vertex as described in (B),
in particular, let i be such that v ∈ V Cj for all j ≥ i. For every j ≥ i, let pj

be the segment represented by v in Cj . Since pi ≤prf p
i+1 ≤prf p

i+2 ≤prf . . .
we know there is a vertex w such that every pj , for j ≥ i, starts with w.
Since the number of left turns on the pj ’s is growing we know there is an
infinite path d starting with w such that pj ≤prf d for every j ≥ i and
such that d is a path in T ′

u with infinitely many left turns. The desired
acceptance witness is then given by the concatenation of the path from the
root to w, the vertex w itself excluded, and d. q.e.d.

2.3.3 Muller–Schupp trees
The only thing which is left to do is to show that a deterministic finite-state
automaton can construct a contraction sequence for a given word u and
that a parity condition is strong enough to express (2.11) from Lemma 2.11.
It turns out that when contractions are augmented with additional infor-
mation, they can actually be used as the states of such a deterministic
automaton. This leads us to the definition of Muller–Schupp trees.

Before we get to the definition of these trees, we observe that every
contraction has at most |Q| leaves, which means it has at most 2|Q| − 1
vertices. From one contraction to the next in a sequence of contractions, at
most |Q| new leaves—and thus at most |Q| new vertices—can be introduced.
In other words:

Remark 2.12. For every infinite word u, there is a contraction sequence
C0,C1, . . . such that V Ci ⊆ V for every i for the same set V with 3|Q|
vertices, in particular, V = {0, . . . , 3|Q| − 1} works.

A Muller-Schupp tree for A is a tuple

M = (C , lq, ll, R, h)

where

• C is a contraction with V C ⊆ {0, . . . , 3 |Q| − 1},

• lq : lvs(C ) → 2Q is a leaf labeling,



Automata: from logics to algorithms 653

• ll : V C → {0, 1, 2} is a left labeling,

• R ∈ {0, . . . , 3|Q| − 1}∗ is a latest appearance record, a word without
multiple occurrences of letters, and

• h ≤ |R| is the hit number.

To understand the individual components, assume C0,C1, . . . is a contrac-
tion sequence for u with V Cn ⊆ {0, . . . , 3|Q| − 1} for every n. (Recall that
Remark 2.12 guarantees that such a sequence exists.) The run of the deter-
ministic automaton on u to be constructed will be a sequence M0,M1, . . .
of Muller-Schupp trees Mn = (Cn, lnq , l

n
l , R

n, hn), such that the following
conditions are satisfied, where cn denotes the contraction map for Cn:
Leaf labeling. For every n and every leaf v ∈ lvs(T n

u ), the labeling of v will
be the same as the labeling of the vertex of the segment representing the
segment of this leaf, that is, lnq (cn(v)) = l′u(v).

Left labeling. For every n and every v ∈ V Cn :

(i) if v represents a segment without left turn, then ln(v) = 0,

(ii) if v is left extending in n, then lnl (v) = 2, and

(iii) lnl (v) = 1 otherwise.

Clearly, this will help us to verify (b) from Lemma 2.11(2.11).
Latest appearance record. The latest appearance record Rn gives us the
order in which the vertices of Cn have been introduced. To make this more
precise, for every n and v ∈ V Cn , let

dn(v) = min{i : v ∈ V Cj for all j such that i ≤ j ≤ n}

be the date of introduction of v. Then Rn is the unique word v0 . . . vr−1

over V Cn without multiple occurrences such that

• {v0, . . . , vr−1} = V Cn ,

• either dn(vj) = dn(vk) and vj < vk or dn(vj) < dn(vk), for all j and
k such that j < k < r.

We say that v ∈ V Cn has index j if Rn(j) = v.
Hit number. The hit number hn gives us the number of vertices whose
index has not changed. Let Rn = v0 . . . vr−1 as above. The value hn is the
maximum number ≤ r such that dn(vj) < n for j < h. In other words, the
hit number gives us the length of the longest prefix of Rn which is a prefix
of Rn−1.



654 M. Y. Vardi, Th. Wilke

We need one more definition before we can state the crucial property
of Muller–Schupp trees. Let M be any Muller–Schupp tree as above and
m the minimum index of a vertex with left labeling 2 (it is left extending).
If such a vertex does not exist, then, by convention, m = n. We define
π(M ), the priority of M , as follows. If m < h, then π(M ) = 2m, and else
π(M ) = 2h+ 1.

Lemma 2.13. Let A be a Büchi automaton, u a word over the same
alphabet, and M0,M1, . . . a sequence of Muller–Schupp trees satisfying the
above requirements (leaf labeling, left labeling, latest appearance record, hit
number). Let p∞ = valπ(M0M1 . . . ), that is, the smallest value occurring
infinitely often in π(M0)π(M1) . . . . Then the following are equivalent:

(A) A accepts u.

(B) p∞ is even.

Proof. For the implication from (A) to (B), let v be a vertex as guaranteed
by (B) in Lemma 2.11. There must be some n and some number i such that
v = Rn(i) = Rn+1(i) = . . . and Rn[0, i] = Rn+1[0, i] = . . . . This implies
hj > i for all j ≥ n, which means that if pj is odd for some j ≥ n, then
pj > 2i. In addition, since v is left extending for infinitely many j, we have
pj ≤ 2i and even for infinitely many j. Thus, p∞ is an even value (less than
or equal to 2i).

For the implication from (B) to (A), assume that p∞ is even and n is
such that pj ≥ p∞ for all j ≥ n. Let n′ ≥ n be such that pn

′
= p∞

and let v be the vertex of Cn′ which gives rise to pn
′

(left extending with
minimum index). Then v ∈ V Cj for all j ≥ n′ and v has the same index in
all these Cj . That is, whenever pj = p∞ for j ≥ n′, then v is left extending.
So (B) from Lemma 2.11 is satisfied and we can conclude that u is accepted
by A . q.e.d.

2.3.4 The determinization construction
In order to arrive at a parity automaton, we only need to convince our-
selves that a deterministic automaton can produce a sequence M0,M1, . . .
as above. We simply describe an appropriate transition function, that is,
we assume a Muller–Schupp tree M and a letter a are given, and we de-
scribe how M ′ is obtained from M such that if M = Mn and a = u(n),
then M ′ = Mn+1. This is, in principle, straightforward, but it is somewhat
technical. One of the issues is that during the construction of M ′ we have
trees with more than 3 |Q| vertices. This is why we assume that we are also
given a set W of 2 |Q| vertices disjoint from {0, . . . , 3 |Q| − 1}.

A Muller-Schupp tree M ′ is called an a-successor of M if it is obtained
from M by applying the following procedure.



Automata: from logics to algorithms 655

(i) Let Vnew = {0, . . . , 3 |Q| − 1} \ V C .

(ii) To each leaf v, add a left and right successor from W .

Let w0, . . . , w2r−1 be the sequence of these successors in the order
from left to right.

(iii) For i = 0 to r − 1, do:

(a) Let v be the predecessor of w2i and Q′ = l(w0) ∪ · · · ∪ l(w2i−1).

(b) Set lq(w2i) = ∆(lq(v), a) ∩ F \ Q′ and lq(w2i+1) = ∆(lq(v), a) \
(F ∪Q′).

(c) Set lq(w2i) = 2 and lq(w2i+1) = 0.

(iv) Remove the leaf labels from the old leaves, that is, make lq unde-
fined for the predecessors of the new leaves. Mark every leaf which
has label ∅. Recursively mark every vertex whose two successors are
marked. Remove all marked vertices.

(v) Replace every nontrivial segment by its first vertex, and set its left
labeling to

(a) 2 if one of the other vertices of the segment is labeled 1 or 2,

(b) 0 if each vertex of the segment is labeled 0, and

(c) 1 otherwise.

(vi) Replace the vertices from W by vertices from Vnew.

(vii) Let R0 be obtained from R by removing all vertices from V C \ V C ′

from R and let R1 be the sequence of all elements from V C ′ \ V C

according to the order < on V . Then R′ = R0R1.

(viii) Let h′ ≤ |R| be the maximal number such that R(i) = R′(i) for all
i < h′.

The full determinization construction is given in Figure 9. Summing up, we
can state:

Theorem 2.14. (McNaughton-Safra-Piterman, [17, 105, 97]) Let A be a
Büchi automaton with n states. Then A det is an equivalent deterministic
parity automaton with 2θ(n logn) states and 2n+ 1 different priorities.

Proof. The proof of the correctness of the construction described in Figure 9
is obvious from the previous analysis. The claim about the size of the re-
sulting automaton can be established by simple counting arguments. q.e.d.



656 M. Y. Vardi, Th. Wilke

Let A be a Büchi automaton. The deterministic parity au-
tomaton A det is defined by

A det = (A,M,MI , δ, π)

where

• M is the set of all Muller–Schupp trees over Q,

• MI is the Muller–Schupp tree with just one vertex and
leaf label QI ,

• δ is such that δ(M , a) is an a-successor of M (as de-
fined above), and

• π is the priority function as defined for Muller–Schupp
trees.

Figure 9. Determinization of a Büchi automaton

The previous theorem enables us to determine the expressive power of
WS1S:

Corollary 2.15. There exists an effective procedure that given an S1S
formula ϕ = ϕ(V0, . . . , Vm−1) produces a formula ψ such that L (ϕ) =
L w(ψ). In other words, every S1S formula is equivalent to a WS1S formula.

Sketch of proof. Given such a formula ϕ, one first uses Büchi’s Theorem to
construct a Büchi automaton A such that L (ϕ) = L (A ). In a second
step, one converts A into an equivalent deterministic parity automaton B,
using the McNaughton–Safra–Piterman Theorem. The subsequent step is
the crucial one. Assume Q′ = {q0, . . . , qn−1} and, for every u ∈ [2]ωm, let ru
be the (unique!) run of B on u. For every i < n, one constructs a formula
ψi = ψi(x) such that u, j |= ψi(x) if and only if ru(j) = qi for u ∈ [2]ωm
and j ∈ ω. These formulas can be built as in the proof of part 2 of Büchi’s
Theorem, except that one can restrict the sets Xi to elements ≤ j, so weak
quantification is enough. Finally, the formulas ψi(x) are used to express
acceptance. q.e.d.

2.4 The Büchi–Landweber Theorem
The last problem remaining from the problems listed at the beginning of
this section is realizability, also known as Church’s problem [23, 24]. In our



Automata: from logics to algorithms 657

context, it can be formalized more precisely as follows.
For letters a ∈ [2]m and b ∈ [2]n, we define aab ∈ [2]m+n by (aab)[i] =

a[i] for i < m and aab[i] = b[i−m] for i with m ≤ i < m+n. Similarly, when
u and v are words of the same length over [2]∞n and [2]∞n , respectively, then
uav is the word over [2]m+n with the same length defined by (uav)(i) =
u(i)a

v(i) for all i < |u|. Realizability can now be defined as follows: Given
a formula

ϕ = ϕ(X0, . . . , Xm−1, Y0, . . . , Yn−1),

determine whether there is a function f : [2]+m → [2]n such that uav |= ϕ
holds for every u ∈ [2]ωm and v ∈ [2]ωn defined by v(i) = f(u[0, i]).

Using the traditional terminology for decision problems, we say that ϕ is
an instance of the realizability problem, f is a solution if it has the desired
property, and ϕ is a positive instance if it has a solution.

Observe that the function f represents the device that produces the
output in Figure 1: After the device has read the sequence a0 . . . ar of bit
vectors (with m entries each), it outputs the bit vector f(a0 . . . ar) (with n
entries).

In the above definition of realizability, we do not impose any bound on
the complexity of f . In principle, we allow f to be a function which is not
computable. From a practical point of view, this is not very satisfying. A
more realistic question is to ask for a function f which can be realized by a
finite-state machine, which is a tuple

M = (A,B, S, sI , δ, λ)

where A is an input alphabet, B is an output alphabet, S is a finite set of
states, sI ∈ S the initial state, δ : S × A → S the transition function, and
λ : S → B the output function. To describe the function realized by M we
first define δ∗ : A∗ → S by setting δ(ε) = sI and δ∗(ua) = δ(δ∗(u), a) for all
u ∈ A∗ and a ∈ A. The function realized by M , denoted fM , is defined by
fM (u) = λ(δ∗(sI , u)) for every u ∈ A+.

A solution f of an instance of the realizability problem is called a finite-
state solution if it is realized by a finite-state machine.

Finite-state realizability is the variant of realizability where one is in-
terested in determining whether a finite-state solution exists. We later see
that there is no difference between realizability and finite-state realizability.

Several approaches have been developed to solving realizability; we fol-
low a game-based approach. It consists of the following steps: We first
show that realizability can be viewed as a game and that solving realiz-
ability means deciding who wins this game. We then show how the games
associated with instances of the realizability problem can be reduced to fi-
nite games with a standard winning objective, namely the parity winning



658 M. Y. Vardi, Th. Wilke

condition. Finally, we use known results on finite games with parity winning
conditions to prove the desired result.

2.4.1 Game-theoretic formulation
There is a natural way to view the realizability problem as a round-based
game between two players, the environment and the (device) builder. In
each round, the environment first provides the builder with an input, a
vector a ∈ [2]m, and then the builder replies with a vector b ∈ [2]n, resulting
in a combined vector aab. In this way, an infinite sequence of vectors is
constructed, and the builder wins the play if this sequence satisfies the
given S1S formula. Now, the builder has a winning strategy in this game if
and only if the instance of the realizability problem we are interested in is
solvable.

We make this more formal in what follows. A game is a tuple

G = (P0, P1, pI ,M,Ω)

where P0 is the set of positions owned by Player 0, P1 is the set of positions
owned by Player 1 (and disjoint from P0), pI ∈ P0∪P1 is the initial position,
M ⊆ (P0 ∪ P1) × (P0 ∪ P1) is the set of moves, and Ω ⊆ (P0 ∪ P1)ω is the
winning objective for Player 0. The union of P0 and P1 is the set of positions
of the game and is denoted by P .

A play is simply a maximal sequence of positions which can be obtained
by carrying out moves starting from the initial position, that is, it is a word
u ∈ P+ ∪ Pω such that u(0) = pI , (u(i), u(i + 1)) ∈ M for every i < |u|,
and if |u| < ω, then there is no p such that (u(∗), p) ∈M . This can also be
thought of as follows. Consider the directed graph (P,M), which is called
the game graph. A play is simply a maximal path through the game graph
(P,M) starting in pI .

A play u is a win for Player 0 if u ∈ Ω∪P ∗P1, else it is a win for Player 1.
In other words, if a player cannot move he or she loses early.

A strategy for Player α are instructions for Player α how to move in every
possible situation. Formally, a strategy for Player α is a partial function
σ : P ∗Pα → P which

(i) satisfies (u(∗), σ(u)) ∈M for all u ∈ dom(σ) and

(ii) is defined for every u ∈ P ∗Pα ∩ pIP ∗ satisfying u(i + 1) = σ(u[0, i])
for all i < |u| − 1 where u(i) ∈ Pα.

Observe that these conditions make sure that a strategy is defined when
Player α moves according to it. A play u is consistent with a strategy σ if
u(i + 1) = σ(u[0, i]) for all i such that u(i) ∈ Pα. A strategy σ is called a
winning strategy for Player α if every play consistent with σ is a win for
Player α. We then say that Player α wins the game.



Automata: from logics to algorithms 659

Let ϕ = ϕ(X0, . . . , Xm−1, Y0, . . . , Yn−1) be an S1S formula.
The game G [ϕ] is defined by

G [ϕ] = ([2]m, {pI} ∪ [2]n, pI ,M,Ω)

where pI is some initial position not contained in [2]m ∪ [2]n
and

M = ([2]m × [2]n) ∪ (({pI} ∪ [2]n)× [2]m),

Ω = {pIu0v0 . . . : (u0
av0)(u1

av1) . . . |= ϕ}.

Figure 10. Game for a realizability instance

The analogue of a finite-state solution is defined as follows. A strategy
σ for Player α is finite-memory if there exists a finite set C, called memory,
an element mI ∈ C, the initial memory content, a function µ : C × P → C,
called update function, and a function ξ : C × Pα → P such that σ(u) =
ξ(µ∗(u), u(∗)) for every u ∈ dom(σ), where µ∗ is defined as δ∗ above. That
is, the moves of Player α depend on the current memory contents and the
current position.

An even stronger condition than being finite-state is being memoryless.
A strategy σ is memoryless if it is finite-state for a memory C which is a
singleton set. As a consequence, if σ is memoryless, then σ(up) = σ(u′p)
for all u, u′ ∈ P ∗ with up, u′p ∈ dom(σ). So in this case, we can view a
strategy as a partial function Pα → P . In fact, we use such functions to
describe memoryless strategies.

We can now give the game-theoretic statement of the realizability prob-
lem. For an instance ϕ, consider the game G [ϕ] described in Figure 10.

Lemma 2.16. Let ϕ = ϕ(X0, . . . , Xm−1, Y0, . . . , Yn−1) be an S1S formula.
Then the following are equivalent:

(A) The instance ϕ of the realizability problem is solvable.

(B) Player 0 wins the game G [ϕ].

Moreover, ϕ is a positive instance of finite-state realizability if and only if
Player 0 has a finite-memory winning strategy in G [ϕ].

Proof. For the implication from (A) to (B), let f : [2]+m → [2]n be the
solution of an instance ϕ of the realizability problem. We define a par-



660 M. Y. Vardi, Th. Wilke

tial function σ : pI([2]m[2]n)∗[2]m → [2]n by setting σ(pIa0b1 . . . br−1ar) =
f(a0 . . . ar) where ai ∈ [2]m for i ≤ r and bj ∈ [2]n for j < r. It is easy to
see that σ is a winning strategy for Player 0 in G [ϕ]. Conversely, a win-
ning strategy σ for Player 0 can easily be transformed into a solution of the
instance ϕ of the realizability problem.

To prove the additional claim, one simply needs to observe that the
transformations used in the first part of the proof convert a finite-state
solution into a finite-memory strategy, and vice versa. The state set of the
finite-state machine used to show that a solution to the realizability problem
is finite-state can be used as memory in a proof that the winning strategy
constructed above is finite-memory, and vice versa. q.e.d.

In our definition of game, there is no restriction on the winning objective
Ω, but since we are interested in winning objectives specified in S1S, we
focus on parity winning conditions—remember that every S1S formula can
be turned into a deterministic parity automaton. It will turn out that
parity conditions are particularly apt to an algorithmic treatment while
being reasonably powerful.

2.4.2 Reduction to finite parity games
A winning objective Ω of a game G is a parity condition if there is a natural
number n and a function π : P → n such that u ∈ Ω iff valπ(u) mod 2 = 0
for all u ∈ Pω. If this is the case, we replace Ω by π and speak of a parity
game.

We next show that if Ω is a winning objective and A a deterministic
parity automaton such that L (A ) = Ω, then we can “expand” a game
G with winning objective Ω into a parity game, simply by running A in
parallel with the moves of the players. The respective product construction
is given in Figure 11.

Lemma 2.17. Let G be a finite game and A a deterministic parity au-
tomaton such that L (A ) = Ω. Then the following are equivalent:

(A) Player 0 wins G .

(B) Player 0 wins G ×A .

Moreover, there exists a finite-memory winning strategy for Player 0 in G
iff there exists such a strategy in G ×A .

Proof. The proof is straightforward. We transform a winning strategy for
Player 0 in G into a winning strategy for Player 0 in G ×A and vice versa.

First, we define uδ for every u ∈ P ∗ to be a word of the same length
where the letters are determined by uδ(i) = (u(i), δ∗(qI , u[0, i])) for every
i < |u|.



Automata: from logics to algorithms 661

Let G be a game and A a deterministic parity automaton
with alphabet P such that L (A ) = Ω. The expansion of G
by A is the game

G ×A = (P0 ×Q,P1 ×Q, (pI , qI),M ′, π′)

where

M ′ = {((p, q), (p′, δ(q, p′))) : q ∈ Q ∧ (p, p′) ∈ ∆}

and π′((p, q)) = π(q) for all p ∈ P and q ∈ Q.

Figure 11. Product of a game with a deterministic parity automaton

Let σ : P ∗P0 → P be a winning strategy for Player 0 in G . We transform
this into σ′ : (P ×Q)∗(P0 ×Q) → P ×Q by letting σ′(uδ) = σ(u) for every
u ∈ dom(σ). It is easy to check that this defines a strategy and that this
strategy is indeed winning.

Given a winning strategy σ′ : (P × Q)∗(P0 × Q) → P × Q, we define a
winning strategy σ : P ∗P0 → P for Player 0 simply by forgetting the second
component of the positions. That is, for every u such that uδ ∈ dom(σ′) we
set σ(u) = σ′(uδ). Observe that this does not lead to any ambiguities, that
is, σ is well-defined, because A is a deterministic automaton. It is easy to
check that this defines a strategy and that this strategy is indeed winning.

If we have a finite-memory strategy σ for G , say with memory C, we
can use the same memory C and a modified update function to show that
σ′ as defined above is finite-state. Conversely, if we have a finite-memory
strategy σ′, say with memory C, we can use memory Q×C to show that σ
as constructed above is finite-memory, too. q.e.d.

Corollary 2.18. Let ϕ = ϕ(X0, . . . , Xm−1, Y0, . . . , Yn−1) be an instance of
the realizability problem for S1S and A a deterministic parity automaton
recognizing L (ϕ). Then the following are equivalent:

(A) The instance ϕ of the realizability problem is solvable.

(B) Player 0 wins the game G ×A .

Moreover, if Player 0 has a finite-memory winning strategy in G ×A , then
ϕ has a finite-state solution.

Using the fact that it can be determined effectively whether Player 0
wins a finite parity game (see Theorem 2.20 below), we obtain:



662 M. Y. Vardi, Th. Wilke

Theorem 2.19 (Büchi-Landweber, [19]). The realizability problem is de-
cidable for S1S.

2.4.3 Background on games
In this section, we provide background on games, which we already used to
solve Church’s problem and which we need in various places.

Since plays of games may be infinite, it is not at all clear whether in a
given game one of the two players has a winning strategy, that is, whether
the game has a winner. When this is the case one says that the game
is determined. It is said to be memoryless determined if there exists a
memoryless winning strategy.

Theorem 2.20 (Emerson-Jutla-Mostowski, [40, 88]). Every parity game is
memoryless determined.

That every parity game is determined follows immediately from a result
by Martin [82].

For S1S realizability it is enough to know that the winner in a parity
game can be effectively determined. In a later section, we need to know
more about the computational complexity of this problem, in particular,
we need to know how it depends on the number of priorities occurring in a
game:

Theorem 2.21 (Jurdziński, [62]). Every parity game with n positions, m
edges, and at most d different priorities in every strongly connected com-
ponent of its game graph can be decided in time O(n + mnbd/2c) and an
appropriate memoryless winning strategy can be computed within the same
time bound.

2.5 Notes
Büchi’s Theorem has been the blueprint for many theorems characterizing
monadic second-order logic by automata. The most important theorem to
mention is Rabin’s Theorem [100], which extends Büchi’s Theorem to the
monadic theory of two successor functions and is the subject of the next
section. Other early results, besides the Büchi–Elgot–Trakthenbrot theo-
rem and Büchi’s Theorem, are a result by Büchi [18] on ordinals and a
result by Doner [31] (see also Thatcher and Wright [115]), which character-
izes monadic second-order logic over finite trees in terms of automata and
allows to prove that the weak monadic theory of two successor relations
is decidable. Later results deal, for instance, with finite and infinite traces
(certain partial orders) [119, 33], see also [30], pictures (matrices with letters
as entries) [51], see also [50, 83], and weighted automata [32]. In some of
these cases, the proofs are much harder than for S1S and Büchi automata.

When establishing a characterization of automata in terms of monadic
second-order logic, proving part 2—the description of the behavior of an



Automata: from logics to algorithms 663

automaton by a monadic second-order formula—is straightforward very of-
ten and leads to existential monadic second-order formulas, just as for S1S.
The other direction—from full monadic second-order logic to automata—
fails, however, for various automaton models because closure under com-
plementation (negation) cannot be shown. In such cases, a partial result
can sometimes nevertheless be obtained by showing that every existential
monadic second-order formula can be translated into an automaton. This
is, for instance, the case for pictures [51], see also [83].

Büchi’s Theorem characterizes monadic second-order logic in terms of
finite-state automata on infinite words. It is only natural to ask whether
there are fragments of monadic second-order logics or other logics similar in
expressive power to monadic second-order logic that can be characterized in
a comparable fashion. We have already seen that the existential fragment
of S1S has the same expressive power as S1S, but one can prove that first-
order logic with ordering (and successor) or with successor only is strictly
less expressive than S1S. The first of the two logics can be characterized
just as in the case of finite words as defining exactly

(i) the star-free languages of infinite words,

(ii) the languages expressible in linear-time temporal logic, and

(iii) the languages of infinite words which are recognized by counter-free
automata

(see [64, 116, 95, 132]), the second can be characterized as the weak version
of locally threshold testability [117].

Ever since Büchi’s seminal work automata on infinite words and formal
languages of infinite words have been a major topic in research, motivated
both from a mathematical and a computer science perspective. There have
been many (successful) attempts to adapt the facts known from classical
automata theory and the classical theory of formal languages to the set-
ting with infinite words, for instance, regular expressions were extended to
ω-regular expressions and the algebraic theory of regular languages was ex-
tended to an algebraic theory of ω-regular languages. But there are also
new issues that arise for infinite words, which are essentially irrelevant for
finite words. For example, the set of infinite words over a given alphabet
can easily be turned into a topological space and it is interesting to study
how complex languages are that can be recognized by finite-state automata.

One particularly interesting issue are the different types of acceptance
conditions that are available for automata on infinite words. In our ex-
position, we work with Büchi and parity acceptance, but there are many
more acceptance conditions which are suggested and widely used through-
out the literature. The most prominent are: Streett [113], Rabin [100], and



664 M. Y. Vardi, Th. Wilke

Muller conditions [89]. An important question regarding all these different
acceptance conditions is which expressive power they have, depending on
whether they are used with deterministic or nondeterministic automata. It
turns out that when used with nondeterministic automata all the afore-
mentioned conditions are not more powerful than nondeterministic Büchi
automata and when used with deterministic automata they are all as pow-
erful as deterministic parity automata. In other words, each of the three
conditions is just as good as the parity condition. Given McNaughton’s
Theorem, this is not very difficult to show. In almost all cases, asymptot-
ically optimal conversions between the various conditions are known [105].
Recent improvements are due to Yan [131].

It is not only the type of acceptance condition that can be varied, but
also the type of “mode”. In this section, we have dealt with deterministic
and nondeterministic automata. One can either look for

(i) modes in between or

(ii) modes beyond nondeterminism.

As examples for (i) we mention unambiguous automata [4], which are Büchi
automata which admit at most one accepting run for each word, and pro-
phetic automata [21], which are Büchi automata with the property that
there is exactly one run on each word (besides partial runs that cannot be
continued), be it accepting or not.

Examples for (ii) are alternating automata on infinite words, which are
explained in detail in Section 4. Since they are, in principle, stronger than
nondeterministic automata, they often allow for more succinct representa-
tions, which is why they have been studied extensively from a practical and
complexity-theoretic point of view. Moreover, they can often be used to
make automata-theoretic constructions more modular and transparent and
help to classify classes of languages. For instance, the Kupferman–Vardi
complementation construction for Büchi automata uses what are called weak
alternating automata as an intermediate model of automaton, see also [121].

As can be seen from the Büchi–Landweber theorem, games of infinite
duration are intimately connected with the theory of automata on infinite
words. This becomes even more obvious as soon as alternating automata
come into the picture, because they can be viewed as defining families of
games in a uniform fashion. These games play a similar role in the theory
of automata on infinite trees, as will be explained in the next section. Re-
gardless of this, these games are interesting in their own right and there is
an extensive literature on them. One of the major open problems is the
computational complexity of finite parity games. The best upper bounds
are that the problem is in UP ∩ co-UP, which is a result by Jurdziński [61],
that it can be solved by subexponential algorithms, see, for instance, [63],



Automata: from logics to algorithms 665

and polynomial time algorithms when the underlying game graphs belong
to certain restricted classes of graphs, see, for instance, [8].

3 Monadic-second order logic of two successors

Büchi’s Theorem is a blueprint for Rabin’s result on monadic second-order
logic of two successors (S2S). The formulas of that logic are built just as
S1S formulas are built, except that there are two successor relations and not
only one. More precisely, while in S1S the atomic formulas are of the form
x ∈ X and suc(x, y) only, in S2S the atomic formulas are of the form x ∈ X,
suc0(x, y), and suc1(x, y), where suc0(x, y) and suc1(x, y) are read as “y is
the left successor of x” and “y is the right successor of x”, respectively. S2S
formulas are interpreted in the full binary tree Tbin.

As a first simple example, we design a formula with one free set variable
X which holds true if and only if the set assigned to X is finite. This can
be expressed by saying that on every branch there is a vertex such that the
subtree rooted at this vertex does not contain any element from X. This
leads to:

∀Y (“Y is a branch of the binary tree” →
∃y(y ∈ Y ∧ ∀z(y ≤ z → ¬z ∈ X))),

where ≤ is meant to denote the prefix order on the vertices of Tbin. That
Y is a branch of Tbin can easily be expressed as a conjunction of several
simple conditions:

• Y is not empty, which can be stated as ∃x(x ∈ Y ),

• with each element of Y its predecessor (provided it exists) belongs
to Y , which can be stated as ∀x∀y(y ∈ Y ∧ (suc0(x, y)∨ suc1(x, y)) →
x ∈ Y ), and

• each element of Y has exactly one successor in Y , which can be stated
as ∀x∀y∀z(x ∈ Y ∧ suc0(x, y) ∧ suc1(x, z) → (y ∈ Y ↔ z /∈ Y )).

To conclude the example, we define x ≤ y by stating that every successor-
closed set containing x contains y as well:

∀X(x ∈ X ∧ ∀z∀z′(z ∈ X ∧ (suc0(z, z′) ∨
suc1(z, z′)) → z′ ∈ X) → y ∈ X).

Observe that we have a universally quantified set variable in this formula,
whereas in Section 2 we use an existentially quantified set variable to define
ordering for the natural numbers. In both situations, one can use either
type of quantifier.



666 M. Y. Vardi, Th. Wilke

As a second example, we consider the property that on every branch
there are only finitely many elements from X. This can be specified by:

∀Y (“Y is a branch of the binary tree” →
∃y(y ∈ Y ∧ ∀z(x ≤ z ∧ z ∈ Y → ¬z ∈ X))),

using the same auxiliary formulas from above.
The most important question about S2S is whether satisfiability is decid-

able. A positive answer to this question implies decidability of the monadic
second-order theory of the binary tree and a number of related theories as
Rabin showed in his 1969 paper [100].

That satisfiability of an S2S formula is decidable can, in principle, be
shown in the same way as the analogous statement for S1S: One first proves
that every S2S formula can be translated into an equivalent automaton—
this time a tree automaton—and then shows that emptiness for the au-
tomata involved is decidable. This is the approach that Rabin took in
[100], and which we follow here, too.

3.1 Rabin’s Theorem
In his original paper [100] Rabin used what we nowadays call Rabin tree
automata to characterize S2S. We use the same model of tree automaton
but with a simpler acceptance condition, the parity acceptance condition,
which we also use in the context of S1S.

It is not clear right away how a tree automaton model should look like,
but it turns out that it is reasonable to envision a tree automaton as follows.
Starting in an initial state at the root of the tree the automaton splits up
into two copies, one which proceeds at the left successor of the root and
one which proceeds at the right successor of the root. The states which are
assumed at these vertices are determined by the initial state and the label of
the root. Then, following the same rules, the copy of the automaton residing
in the left successor of the root splits up into two copies which proceed at
the left successor of the left successor of the root and the right successor of
the left successor of the root, and so on. In this way, every vertex of the
tree gets assigned a state, and a tree is accepted if the state labeling of each
branch satisfies the acceptance condition.

Formally, a parity tree automaton is a tuple

A = (A,Q, qI ,∆, π),

where A, Q, and π are as with parity (word) automata (see Section 2.3.1),
qI is an initial state instead of a set of initial states, and ∆ is a transition
relation satisfying ∆ ⊆ Q×A×Q×Q. Such an automaton runs on full A-
labeled binary trees which are given implicitly. A run of A on a binary tree



Automata: from logics to algorithms 667

t : 2∗ → A is a binary tree r : 2∗ → Q such that (r(u), t(u), r(u0), r(u1)) ∈ ∆
for all u ∈ 2∗. It is accepting if for every infinite branch u ∈ 2ω its labeling
satisfies the parity condition, that is, if valπ(r(u(0))r(u(1)) . . . ) mod 2 = 0.

As an example, consider the set L of all binary trees over {0, 1} with
only finitely many vertices labeled 1 on each branch, which is very similar
to the second property discussed above. It is straightforward to construct
a parity tree automaton that recognizes L. The main idea is to use two
states, q0 and q1, to indicate which label has just been read and to use the
parity condition to check that on every path there are only finitely many
vertices labeled q1. In other words, we have A = {0, 1}, Q = {qI , q0, q1},
∆ = {(q, a, qa, qa) : a ∈ A, q ∈ Q}, π(qI) = 0, and π(qa) = a+ 1 for a ∈ A.

Rabin, in [100], proved a complete analogue of Büchi’s theorem. We state
Rabin’s Theorem using the same notation as in the statement of Büchi’s
Theorem, which means, for instance, that we write L (A ) for the set of all
trees accepted by a parity tree automaton A .

Theorem 3.1 (Rabin, [100]).

(i) There exists an effective procedure that given an S2S formula ϕ =
ϕ(V0, . . . , Vm−1) outputs a parity tree automaton A such that
L (A ) = L (ϕ).

(ii) There exists an effective procedure that given a parity tree automaton
A over an alphabet [2]m outputs a formula ϕ = ϕ(V0, . . . , Vm−1) such
that L (ϕ) = L (A ).

To prove part 2 one can follow the same strategy as with S1S: One sim-
ply constructs a formula that describes an accepting run of a given parity
tree automaton. Proofs of part 2 of Theorem 3.1 can also be carried out
as with S1S: One uses a simple induction on the structure of the formula.
The induction base and all but one case to be considered in the induc-
tive step are almost straightforward. The difficult step is—just as with
Büchi automata—negation. One has to show that the complement of a
tree language recognized by a parity tree automaton can be recognized by
a parity tree automaton. This result, also known as Rabin’s complementa-
tion lemma, can be proved in different ways. We present a proof which, in
spirit, is very similar to what can be found in Büchi’s [12] and Gurevich and
Harrington’s [54] work. At its heart, there is a game-theoretic description
of acceptance (Section 3.2). The complementation construction itself has
the determinization from Theorem 2.14 built in (Section 3.3).

3.2 The automaton-pathfinder game
Let A be a parity tree automaton as above and t : 2∗ → A a binary tree.
We consider a parity game where one can think of Player 0 as proving to



668 M. Y. Vardi, Th. Wilke

Let A be a parity tree automaton and t : 2∗ → A a tree over
the same alphabet. The automaton-pathfinder game for A
and t is the parity game G [A , t] defined by

G [A , t] = (2∗ ×Q, 2∗ ×∆, (ε, qI),M0 ∪M1, π
′)

where

• for every word u ∈ 2∗, state q ∈ Q, and (q, t(u), q0, q1) ∈
∆, the move ((u, q), (u, (q, t(u), q0, q1))) belongs to M0,

• for every word u ∈ 2∗, transition (q, t(u), q0, q1) ∈ ∆,
and i < 2, the move ((u, (q, t(u), q0, q1)), (ui, qi)) be-
longs to M1, and

• π′((u, q)) = π(q) for all u ∈ 2∗ and q ∈ Q.

Figure 12. Automaton-pathfinder game

Player 1 that t is accepted by A , as follows. The game starts at the root
of the tree and Player 0 suggests a transition which works at the root of
the tree, which means it must start with the initial state and it must show
the symbol the root is labeled with. Then Player 1 chooses the left or right
successor of the root, say she chooses the left successor. Now it’s Player 0’s
turn again. He must choose a transition which works for the left successor,
which means it must start with the state chosen for the left successor in the
transition chosen in the previous round and it must show the symbol the left
successor is labeled with. Then Player 1 chooses one of the two successors,
and so on. As the play proceeds, a sequence of transitions is constructed.
Player 0 wins this play when the respective sequence of the source states of
the transitions satisfies the parity condition.

The precise definition of the parity game is given in Figure 12. Observe
that for convenience the priority function is only partially defined. This
does not cause any problems since there is an infinite number of vertices
with priorities assigned to them on every infinite path through the game
graph.

Lemma 3.2 (Gurevich-Harrington, [54]). Let A be a parity tree automa-
ton and t : 2∗ → A a tree over the same alphabet. Then the following are
equivalent:



Automata: from logics to algorithms 669

(A) A accepts t.

(B) Player 0 wins G [A , t].

Proof. For the implication from (A) to (B), we show how to convert an
accepting run r : 2∗ → Q of A on t into a winning strategy for Player 0 in
G [A , t]. A strategy σ for Player 0 is defined on words of the form

u = (ε, q0)(ε, τ0)(a0, q1)(a0, τ1)(a0a1, q2) . . . (a0 . . . an−1, qn)

with q0 = qI , qi ∈ Q for i ≤ n, τi ∈ ∆, and ai ∈ {0, 1} for i < n.
For such a word u, we set vu = a0 . . . an−1. After the explanations given
above on how one should think of the game, it should be clear that we set
σ(u) = (u, (qn, a, q0, q1)) with qi = r(vui) for i < 2. It is easy to check
that this defines a winning strategy, because every play conform with σ
corresponds to a branch of the run r.

Conversely, assume σ is a winning strategy for Player 0 in the above
game. Then an accepting run r can be defined as follows. For every partial
play u as above which is conform with σ, we set r(vu) = qn. It is straight-
forward to check that this defines an accepting run, because every path in
r corresponds to a play of G [A , t] conform with σ. q.e.d.

There is a similar parity game—the emptiness game—which describes
whether a given parity tree automaton accepts some tree. In this game,
when Player 0 chooses a transition, he does not need to take into account any
labeling; he simply needs to make sure that the transition is consistent with
the previously chosen transition. The full game is described in Figure 13.

With a proof similar to the one of Lemma 3.2, one can show:

Lemma 3.3. Let A be a parity tree automaton. Then L (A ) 6= ∅ if and
only if Player 0 wins G∅[A ].

Taking Theorem 2.21 into account, we obtain:

Corollary 3.4 (Rabin, [100]). The emptiness problem for parity tree au-
tomata is decidable.

Rabin proved, in some sense, a stronger result, because he used tree
automata with Rabin acceptance condition. As a further consequence of
Lemma 3.3, taking Rabin’s Theorem into account, we note:

Corollary 3.5 (Rabin, [100]). Satisfiability is decidable for S2S.



670 M. Y. Vardi, Th. Wilke

Let A be a parity tree automaton. The emptiness game
G∅[A ] is defined by

G∅[A ] = (Q,∆, qI ,M0 ∪M1, π)

where

• for q ∈ Q and (q, a, q0, q1) ∈ ∆, the move (q, (q, a, q0, q1))
belongs to M0,

• for every (q, a, q0, q1) ∈ ∆ and i < 2, the move
((q, a, q0, q1), qi) belongs to M1.

Figure 13. Emptiness game for a parity tree automaton

3.3 Complementation of parity tree automata
We can finally turn to the question of how to arrive at a parity tree au-
tomaton for the complement of a set of trees accepted by a given parity
tree automaton. We are given a parity tree automaton A and we want to
construct a parity tree automaton which recognizes L (A )C , where for each
tree language L over some alphabet A we write LC for the set of all trees
over A which do not belong to L.

We describe the entire construction as a composition of several simpler
constructions. More precisely, we first show that for every tree in the com-
plement there exists a tree over an enhanced alphabet which witnesses its
membership to the complement. The second step is to prove that the set
of these witnesses can be recognized by a universal parity tree automaton.
The third step consists in showing that universal parity tree automaton can
be converted into (ordinary nondeterministic) parity tree automata, and the
final step shows how to reduce the enhanced alphabet to the real one.

The first key step is to combine the automaton-pathfinder game with
memoryless determinacy. To this end, we encode memoryless (winning)
strategies for the pathfinder in trees. Observe that a memoryless strategy
for the pathfinder in G [A , t] for some automaton A and some tree t is
simply a (partial) function σ : 2∗ × ∆ → 2∗ × Q. Since, by construction
of G [A , t], we always have σ(u, (q, a, q0, q1)) = (ui, qi) for some i < 2, we
can view such a function as a function 2∗ ×∆ → 2, which, in turn, can be
viewed as a function 2∗ → 2∆. The latter is simply a 2∆-labeled tree. When
we further encode the given tree t in that tree, we arrive at the following



Automata: from logics to algorithms 671

notion of complement witness.
Let A be a parity tree automaton and t′ : 2∗ → A × 2∆ a tree. For

simplicity, we write t′(u) as (au, fu) for every u ∈ 2∗. The tree t′ is a
complement witness if for every branch u ∈ 2ω the following holds. If
τ0τ1 · · · ∈ ∆ω with τi = (qi, au[0,i), q

0
i , q

1
i ) is such that q0 = qI and qi+1 = qbi

where b = fu[0,i)(τi) for every i, then valπ(q0q1 . . . ) mod 2 = 1, that is,
q0q1 . . . is not accepting with respect to π.

After the explanation given above, Theorem 2.20 now yields the lemma
below, where we use the following notation. Given a tree t′ : 2∗ → A × B
for alphabet A and B, we write pr0(t′) for the tree defined by pr0(t′)(u) =
pr0(t′(u)) for every u ∈ 2∗, that is, we simply forget the second component
of every label.

Lemma 3.6. Let A be a parity tree automaton and t : 2∗ → A a tree over
the same alphabet. Then the following are equivalent:

(A) t ∈ L (A )C .

(B) There is a complement witness t′ for A such that pr0(t′) = t. q.e.d.

Using more notation, we can state the above lemma very concisely. First,
we extend projection to tree languages, that is, given a tree language L over
some alphabet A × B, we write pr0(L) for {pr0(t) : t ∈ L}. Second, given
a parity tree automaton A , we write C (A ) for the set of all complement
witnesses for A . Then Lemma 3.6 simply states:

Remark 3.7. For every parity tree automaton A ,

L (A )C = pr0(C (A )).

So, clearly, once we have a parity tree automaton for C (A ), we also
have a parity tree automaton for L (A )C, because we only need to omit the
second component from the letters in the transition function to obtain the
desired automaton.

It is not straightforward to find a parity tree automaton that recognizes
C (A ); it is much easier to show that C (A ) is recognized by a universal
parity tree automaton. Such an automaton is a tuple

A = (A,Q, qI ,∆, π)

where A, Q, qI , and π are as with parity tree automata and ∆ ⊆ Q× A×
2 × Q. Let t : 2∗ → A be a tree over A. A word r ∈ Qω is said to be a
run for branch u ∈ 2ω if (r(i), t(u[0, i)), u(i), r(i + 1)) ∈ ∆ for every i and
r(0) = qI . A tree is accepted if every r ∈ Qω which is a run for some branch
satisfies the parity acceptance condition.



672 M. Y. Vardi, Th. Wilke

Let A be a parity tree automaton. The universal parity tree
automaton A cw is defined by

A cw = (A× 2∆, Q, qI ,∆′, π + 1)

where (q, (a, f), d, q′) ∈ ∆′ if there exists τ = (q, a, q0, q1) ∈
∆ such that f(τ) = d and qd = q′, and where π + 1 stands
for the priority function π′ defined by π′(q) = π(q) + 1.

Figure 14. Universal parity tree automaton for complement witnesses

We can now rephrase Lemma 3.6 in terms of the new automaton model.
We can express the complement of a tree language recognized by a parity
tree automaton as the projection of a tree language recognized by a universal
parity tree automaton. The latter is defined in Figure 14. Observe that the
runs for the branches in this automaton correspond to the words τ0τ1 . . . in
the definition of complement witness.
We immediately obtain:

Remark 3.8. For every parity tree automaton A ,

C (A ) = L (A cw).

To complete the description of the complementation procedure, we need
to explain how a universal parity tree automaton can be converted into a
parity tree automaton. One option for such a construction is to use Mc-
Naughton’s Theorem, namely that every nondeterministic Büchi automaton
can be turned into a deterministic parity automaton. The idea is that the
tree automaton follows all runs of a given branch at the same time by run-
ning a deterministic word automaton in parallel.

Let Q be a finite set of states and π : Q→ ω a priority function. Let Q
be the alphabet consisting of all binary relations over Q. Then every word
u ∈ Qω generates a set of infinite words v ∈ Qω, denoted 〈u〉, defined by

〈u〉 = {v ∈ Qω : ∀i((v(i), v(i+ 1)) ∈ u(i))},

and called the set of paths through u, because one can think of 〈u〉 as the
set of all infinite paths through the graph which is obtained by “collat-
ing” u(0), u(1), . . . . We are interested in a deterministic parity automaton
A [Q, π] which checks that all paths through a given u satisfy the given par-
ity condition, that is, which has the following property. For every u ∈ Qω,

u ∈ L (A [Q, π]) iff ∀v(v ∈ 〈u〉 → valπ(v) mod 2 = 0). (1.1)



Automata: from logics to algorithms 673

Let Q be a finite set of states and π : Q → ω a priority
function. Consider the parity word automaton

B = (Q, Q,QI ,∆, π + 1)

where ∆ = {(q,R, q′) : (q, q′) ∈ R}. Let C be an equivalent
Büchi automaton (Figure 7) and D a deterministic parity au-
tomaton equivalent to C (Figure 9). The automaton A [Q, π]
is defined by

A [Q, π] = (Q, QD , qD
I , δ

D , π + 1).

Figure 15. Generic automaton for state set and priority function

Using Theorem 2.14, such an automaton, which we call a generic automaton
for Q and π, can easily be constructed, as can be seen from Figure 15.
Observe that, by construction,

u ∈ L (C ) iff ∃v(v ∈ 〈u〉 ∧ valπ(v) mod 2 = 1),

for every u ∈ Qω. We conclude:

Remark 3.9. Let Q be a finite state set and π : Q→ ω a priority function.
Then 1.1 holds for every u ∈ Qω.

Given the generic automaton, it is now easy to convert universal tree
automata into nondeterministic ones: One only needs to run the generic
automaton on all paths. This is explained in detail in Figure 16.

Lemma 3.10. Let A be a universal parity tree automaton. Then L (A ) =
L (A nd).

Proof. For convenience, we write B for A [QA , πA ].
First observe that for every t : 2∗ → A there is exactly one run of A nd

on t. This is because ∆ is such that for every s ∈ S and a ∈ A, there is
exactly one transition in ∆ of the form (s, a, s0, s1). For a given t, let rt
denote this run. So in order to determine whether a tree is accepted by
A nd, we only need to determine whether rt is accepting. To this end, we
consider a branch w ∈ 2ω of this tree.

By construction of A nd, the labeling of w in rt is the run of B on
u = Ru0R

u
1 . . . where Rui = Rt(w[0,i)),w(i). So 〈u〉 is the set of runs of A



674 M. Y. Vardi, Th. Wilke

Let A be a universal parity tree automaton and assume
that the generic automaton for QA and πA is given as
A [QA , πA ] = (QA , S, sI , δ, π). The parity tree automaton
A nd is defined by

A nd = (A,S, sI ,∆, π)

where for every a ∈ A and s ∈ S,

τs,a = (s, a, δ(s,Ra,0), δ(s,Ra,1))

with Ra,d = {(q, q′) : (q, a, d, q′) ∈ ∆A } for d < 2 and

∆ = {τs,a : a ∈ A ∧ s ∈ S}.

Figure 16. From universal to nondeterministic parity tree automata

on branch w. In view of Remark 3.9, this implies that w is accepting as a
branch of rt if and only if all runs of A on w are accepting. From this, the
claim of the lemma follows immediately. q.e.d.

This was also the last missing piece in the construction from a given
parity tree automaton to a parity tree automaton for its complement:

Lemma 3.11 (Rabin, [100]). There is an effective procedure that turns
a given parity tree automaton A into a parity tree automaton A C that
recognizes the complement of the language recognized by A . q.e.d.

3.4 Notes
Rabin’s Theorem is important from a mathematical (logical) point of view
because it is a very strong decidability result and can as such be used to
show the decidability of many theories, see, for instance, Rabin’s original
paper [100] and the book [15]. A very specific question to ask is how one
can prove that the monadic second-order (or first-order) theory of a certain
structure is decidable using the fact that it is decidable for the binary tree.
There is a wide spectrum of techniques that have been developed to this
end and are explained in detail in [9], see also [22].

It may seem that the results proved for S1S and automata on infinite
words extend to S2S and automata on infinite trees in a straightforward
fashion. This is true in many respects, but there are important differences.



Automata: from logics to algorithms 675

Most importantly, it is neither true that every tree language recognized by
a parity tree automaton can be recognized by a Büchi tree automaton nor
is it true that WS2S and S2S are equally expressive. There is, however,
an interesting connection between Büchi tree automata and WS2S: a set of
trees is definable in WS2S if and only if it is recognized by a Büchi tree
automaton and its complement is so, too, which was proved by Rabin [101].
Moreover, being definable in WS2S is equivalent to being recognized by a
weak alternating tree automaton [73]. It is true though that every S2S for-
mula is equivalent to an existential S2S formula. Also note that the second
formula given as example at the beginning of this section is one which can-
not be recognized by a Büchi tree automaton, let alone specified in WS2S.
Another noticeable difference between automata on infinite words and au-
tomata on infinite trees is that unambiguous tree automata are weaker than
nondeterministic ones, which is a result due to Niwiński and Walukiewicz
[94]. Its proof was recently simplified considerably by Carayol and Löding
[20].

The most complicated automata-theoretic building block of our proof
of Rabin’s theorem is McNaughton’s Theorem, the determinization of word
automata. It is not clear to which extent McNaughton’s Theorem is neces-
sary for the proof of Rabin’s Theorem. The proof presented here is based
on a translation in the sense that for every S2S formula ϕ we construct
an automaton A such that L (A ) = L (ϕ) and it makes full use of a
determinization construction. There are other proofs, such as the one by
Kupferman and Vardi [75], which do not rely on the entire construction
but only on the fact that there are determinization constructions with a
certain bound on the number of states. These constructions, however, yield
a slightly weaker result in the sense that they only reduce S2S satisfiability
to tree automaton emptiness. In the proof presented here, determinization
is used to turn a universal automaton into a nondeterministic one, which
could be called a de-universalization construction. It would be interesting
to see if one can also go in the reverse direction, that is, whether there is
a determinization construction which can be built on a de-universalization
construction.

At the end of the previous section, we mentioned that topological ques-
tions are interesting in the context of infinite words and automata on infinite
words. This is even more true for infinite trees, see [5].

4 Linear-time temporal logic

Although originally introduced in this context, S1S and WS1S have only
very rarely been used to specify properties of (finite-state) devices (see [56]
for a noticeable exception). For S2S, this is even more true; it has almost
always been used to obtain decidability for logical theories as pointed out



676 M. Y. Vardi, Th. Wilke

in Section 3. But the ever-increasing number of real computational devices
and large-scale production lines of such devices has called for appropriate
specification logics. In this section, we consider a logic that was introduced
in this regard and show how it can be dealt with using automata theory, in
particular, we show how specifically tailored automata can be used to obtain
optimal upper bounds for problems such as satisfiability, conformance—in
this context called model checking—, and realizability.

4.1 LTL and S1S
Linear-time temporal logic (LTL) is a modal logic designed to specify tem-
poral relations between events occurring over time, designed by Kamp [64]
to formally describe temporal relationships expressible in natural language
and introduced into computer science by Pnueli [98] (see also the work
by Burstall [13] and Kröger [69]) as an appropriate specification language
for systems with nonterminating computations. Nowadays, LTL is widely
spread and used in practice.

From a syntactic point of view LTL is propositional logic augmented by
temporal operators. LTL formulas are built from tt and propositional vari-
ables using negation (¬), disjunction (∨), and the binary temporal operator
XU called “strict until” and used in infix notation. For instance, when p is
a propositional variable, then ¬p∧ tt XU p is an LTL formula. When P is a
finite set of propositional variables and ϕ an LTL formula with propositional
variables from P , then ϕ is called a formula over P .

LTL formulas are typically interpreted in infinite words, more precisely,
given a finite set P of propositional variables, an LTL formula ϕ over P , a
word u ∈ (2P )ω, and i ≥ 0, it is defined what it means that ϕ holds in u at
position i, denoted u, i |= ϕ:

• u, i |= tt,

• u, i |= p if p ∈ u(i), for every p ∈ P ,

• u, i |= ¬ϕ if u, i 6|= ϕ, for every LTL formula ϕ over P ,

• u, i |= ϕ∨ψ if u, i |= ϕ or u, i |= ψ, for LTL formulas ϕ and ψ over P ,
and

• u, i |= ϕXUψ if there exists j > i such that u, j |= ψ and u, i′ |= ϕ for
all i′ such that i < i′ < j.

So ϕXUψ means that the formula ϕ holds true in the future until a point is
reached where ψ holds true. For a word u as above and an LTL formula ϕ
we say that ϕ holds in u, denoted u |= ϕ, if u, 0 |= ϕ. The language defined
by ϕ is L (ϕ) = {u ∈ (2P )ω : u |= ϕ}, where, for convenience, we do not
refer to P in the notation.



Automata: from logics to algorithms 677

Clearly, there are many more basic temporal relations than just “until”.
So, often, other temporal operators are used:

• “next” is denoted X and defined by Xϕ = ¬tt XU ϕ,

• “sometime in the future” is denoted XF and defined by XFϕ = ttXUϕ,
and

• “always in the future” is denoted XG and defined by XGϕ = ¬XF¬ϕ.

In many situations, it is convenient to include the current point in time,
which leads to defining F by Fϕ = ϕ∨XFϕ and, similarly, G by Gϕ = ¬F¬ϕ
as well as U by ϕ U ψ = ψ ∨ (ϕ ∧ ϕ XU ψ).

It is remarkable that Kamp in his 1968 thesis [64] proved that every
temporal relation expressible in natural (English) language can be expressed
in linear-time temporal logic as defined above. As a yardstick for what is
expressible in natural language he used first-order logic, considering formula
with one free variable. To be precise, to obtain his result Kamp also had
to add a past version of until, called since. That until by itself is enough to
express everything expressible in first-order logic when only sentences are
considered was proved by Gabbay, Pnueli, Shelah, and Stavi [47].

A typical LTL formula is

G(pr → XFpa)

which expresses that for every occurrence of pr there is a later occurrence
of pa, or, simply, every “request” is followed by an “acknowledge”.

Another, more complicated, example is a formula expressing that com-
peting requests are served in order. We assume that r0 and r1 are propo-
sitional variables indicating the occurrence of requests and a0 and a1 are
matching propositional variables indicating the occurrence of acknowledg-
ments. We want to specify that whenever an r0 request occurs while no r1
request is pending, then a1 does not occur before the next occurrence of a0.

We first specify that starting from an r0 request there is an a1 acknowl-
edgment before an a0 acknowledgment:

α = r0 ∧ (¬a0 XU (a1 ∧ ¬a0)).

Next, we observe that there are two different types of situations where
an r0 request can occur while no r1 request is pending. The first type
of situation is when there has been no r1 request before the r0 request in
question. The second type is when a1 occurred before the r0 request in
question and in between there has been no r1 request. For each type of
situation, we have a separate disjunct in our formula:

¬(¬r1 U (¬r1 ∧ α)) ∨ ¬F(a1 ∧ ¬r1 U (¬r1 ∧ α)).



678 M. Y. Vardi, Th. Wilke

Clearly, in the context of LTL all the algorithmic problems discussed for
S1S—satisfiability, conformance (model checking), and realizability—can be
discussed. For instance, we can ask whether a given formula ϕ over P is
satisfiable in the sense that there exists a word u ∈ (2P )ω such that u |= ϕ
or, given ϕ and a finite-state automaton D over 2P , we can ask whether
u |= ϕ for all u ∈ L (D).

We can show in just one step that all these problems are decidable,
namely by showing that every LTL formula is equivalent to an S1S formula;
the results from Section 2 then apply. Unfortunately, the decision proce-
dures that one obtains in this way have a nonelementary complexity. We
can do better by using specifically tailored automata-theoretic construc-
tions. We first present, however, the translation into S1S and then only
turn to better decision procedures.

We start by defining the notion of equivalence we use to express the cor-
rectness of our translation. Let P = {p0, . . . , pr−1} be a set of propositional
variables. Rather than interpreting LTL formulas over P in words over 2P ,
we interpret them in words over [2]r, where we think of every letter a ∈ 2P

as the letter b ∈ [2]r with b[j] = 1 iff pj ∈ a for every j < r. We say that an
S1S formula ψ = ψ(V0, . . . , Vr−1) is equivalent to an LTL formula ϕ over P
if for every u ∈ [2]ωr the following holds: u |= ϕ iff u |= ψ.

In the proposition below, we make a stronger statement, and this involves
the notion of global equivalence, which is explained next. Given a word
u ∈ [2]ωr , a position i, and an S1S formula ψ = ψ(V0, . . . , Vr−1, x) where
x is a first-order variable, we write u, i |= ψ if ψ holds true when the set
variables are assigned values according to u and x is assigned i. We say
that ψ is globally equivalent to an LTL formula ϕ over P if the following
holds: u, i |= ϕ iff u, i |= ψ for every u ∈ [2]ωr and every i.

Proposition 4.1. Let P = {p0, . . . , pr−1} be a finite set of propositional
variables and x a first-order variable. For every LTL formula ϕ over P a
globally equivalent S1S formula ϕ̃ = ϕ(V0, . . . , Vr−1, x) can be constructed.

Observe that ∃x(∀y¬suc(y, x) ∧ ϕ̃) is equivalent to ϕ.

Proof. A proof can be carried out by a straightforward induction on the
structure of ϕ. When ϕ = tt, we choose ϕ̃ = (x = x), and when ϕ = pj , we
take ϕ̃ = x ∈ Vj .

In the inductive step, we distinguish various cases. When ϕ = ¬ψ, we
can choose ϕ̃ = ¬ψ̃. Similarly, when ϕ = ψ ∨ χ, we can choose ϕ̃ = ψ̃ ∨ χ̃.
Finally, assume ϕ = ψ XU χ. Then we choose

ϕ̃ = ∃z(x < z ∧ χ̃(V0, . . . , Vr−1, z) ∧ ∀y(x < y < z → ψ̃(V0, . . . , Vr−1, y))),

which simply reflects the semantics of XU. q.e.d.



Automata: from logics to algorithms 679

Observe that the above proof even shows that every formula is equivalent
to a first-order formula (without set quantification but with ordering), and
a slightly more careful proof would show that three first-order variables
are sufficient [58]. Kamp’s seminal result [64] is the converse of the above
proposition when first-order logic with ordering is considered instead of S1S.
As a consequence of Proposition 4.1, we can state:

Corollary 4.2. LTL satisfiability, model-checking, and realizability are de-
cidable.

This result is not very satisfying, because in view of [112, 111] the deci-
sion procedures obtained in this way have nonelementary complexity. As it
turns out, it is much better to translate LTL directly into Büchi automata
and carry out the same constructions we have seen for S1S all over again.
The key is a good translation from LTL into Büchi automata.

4.2 From LTL to Büchi automata
Vardi and Wolper [124, 126] were the first to describe and advocate a sep-
arate translation from LTL into Büchi automata, resulting in essentially
optimal bounds for the problems dealt with in Section 2. These bounds
were originally achieved by Sistla and Clarke [108, 109], for satisfiability
and model checking, and by Pnueli and Rosner [99], for realizability.

There are several ways of translating LTL into Büchi automata. We
present two translations, a classical and a modern translation: the first one
goes from an LTL formula via a generalized Büchi automaton to an ordi-
nary Büchi automaton, while the second one goes via very weak alternating
automata.

Both of the constructions we are going to present are based on formulas
in positive normal form, which we define next. The operator “release”,
denoted XR, is defined by ϕXRψ = ¬(¬ϕXU¬ψ). In a certain sense, ϕXRψ
expresses that the requirement of ψ to hold is released by the occurrence of
ϕ. LTL formulas in positive normal form are built starting from tt, ff, p,
and ¬p using ∨, ∧, XU, and XR, that is, negations are only allowed to occur
right in front of propositional variables.

The following identities show that every LTL formula can be transformed
into an equivalent LTL formula in positive normal form which is not longer
than the given one (not counting negation symbols).

Lemma 4.3. For LTL formulas ϕ and ψ over a finite set P of propositional



680 M. Y. Vardi, Th. Wilke

variables, u ∈ (2P )ω, and i ≥ 0, the following holds:

u, i |= ¬tt iff u, i |= ff,

u, i |= ¬¬ϕ iff u, i |= ϕ,

u, i |= ¬(ϕ ∨ ψ) iff u, i |= ¬ϕ ∧ ¬ψ,
u, i |= ¬(ϕ XU ψ) iff u, i |= ¬ϕ XR ¬ψ.

Proof. A proof can be carried out in a straightforward fashion, using the
definition of the semantics of LTL. q.e.d.

As mentioned above, the other ingredient for our translation are gener-
alized Büchi automata, introduced in [49]. Such an automaton is a tuple

A = (A,Q,QI ,∆,F )

where the first four components are as with ordinary Büchi automata, the
only difference is in the last component: F is a set of subsets of Q, each
called an acceptance set of A . A run r is accepting if for every acceptance set
F ∈ F there exist infinitely many i such that r(i) ∈ F . So generalized Büchi
automata can express conjunctions of acceptance conditions in a simple way.

The essential idea for constructing a generalized Büchi automaton equiv-
alent to a given LTL formula is as follows. As the automaton reads a given
word it guesses which subformulas are true. At the same time it verifies
its guesses. This is straightforward for almost all types of subformulas, for
instance, when the automaton guesses that ¬p is true, it simply needs to
check that p /∈ a if a is the current symbol read. The only subformulas that
are difficult to handle are XU-subformulas, that is, subformulas of the form
ψ XU χ. Checking that such a subformula is true cannot be done directly
or in the next position in general because the “satisfaction point” for an
XU-formula—the position where χ becomes true—can be in the far future.
Of course, by keeping ψ XU χ in the state the automaton can remember
the obligation to eventually reach a satisfaction point, but the acceptance
condition is the only feature of the automaton which can be used to really
check that reaching the satisfaction point is not deferred forever.

The complete construction is described in Figure 17; it uses sub(ϕ) to
denote the set of all subformulas of a formula ϕ including ϕ itself. Note that
for every XU-subformula ψ XU χ there is a separate acceptance set, which
contains all states which do not have an obligation for eventually satisfying
this subformula or satisfy it in the sense that χ is an obligation too.

Theorem 4.4 (Gerth-Peled-Vardi-Wolper, [49]). Let P be a finite set of
propositional variables and ϕ an LTL formula over P with n subformulas
and k XU-subformulas. Then A [ϕ] is a generalized Büchi automaton with
2n states and k acceptance sets such that L (A [ϕ]) = L (ϕ).



Automata: from logics to algorithms 681

Let P be a finite set of propositional variables and ϕ an LTL
formula over P in positive normal form. The generalized
Büchi automaton for ϕ with respect to P , denoted A [ϕ], is
defined by

A [ϕ] = (2P , 2sub(ϕ), QI ,∆,F )

where a triple (Ψ, a,Ψ′) with Ψ,Ψ′ ⊆ sub(ϕ) and a ∈ 2P

belongs to ∆ if the following conditions are satisfied:

(i) ff /∈ Ψ,

(ii) p ∈ Ψ iff p ∈ a, for every p ∈ P ,

(iii) if ψ ∨ χ ∈ Ψ, then ψ ∈ Ψ or χ ∈ Ψ,

(iv) if ψ ∧ χ ∈ Ψ, then ψ ∈ Ψ and χ ∈ Ψ,

(v) if ψ XU χ ∈ Ψ, then χ ∈ Ψ′ or {ψ,ψ XU χ} ⊆ Ψ′,

(vi) if ψ XR χ, then {ψ, χ} ⊆ Ψ′ or {χ, ψ XR χ} ⊆ Ψ′,

and where

QI = {Ψ ⊆ sub(ϕ) : ϕ ∈ Ψ},
F = {FψXUχ : ψ XU χ ∈ sub(ϕ)},

with FψXUχ defined by

FψXUχ = {Ψ ⊆ sub(ϕ) : χ ∈ sub(ϕ) or ψ XU χ /∈ Ψ}.

Figure 17. From LTL to generalized Büchi automata

Proof. We first show L (A [ϕ]) ⊆ L (ϕ). Let u ∈ L (A [ϕ]) and let r be an
accepting run of A [ϕ] on u. We claim that for every i, if ψ ∈ r(i), then
u, i |= ψ. The proof is by induction on the structure of ψ. If ψ = tt, ψ = ff,
ψ = p, or ψ = ¬p, then this follows directly from (i) or (ii). If ψ = χ∨ζ, the
claim follows from the induction hypothesis and (iii). Similarly, the claim
holds for a conjunction.

Assume ψ = χ XR ζ. Then (vi) tells us that

(a) χ XR ζi ⊆ r(j) for every j > i or



682 M. Y. Vardi, Th. Wilke

(b) there exists j ≥ i such that χ XR ζ ⊆ r(i′) for i′ with i < i′ < j and
χ, ζ ∈ r(j).

From the induction hypothesis and (a), we can conclude that we have
u, i′ |= ζ for all i′ > i, which means u, i |= ψ. Similarly, from the in-
duction hypothesis and (b), we can conclude that we have u, i′ |= ζ for all
i′ such that i < i′ ≤ j and u, j |= χ, which implies u, i |= ψ, too.

Finally, assume ψ = χ XU ζ. From (v), we obtain that

(a) χ XU ζ ∈ r(j) for all j > i or

(b) there exists j such that χ XU ζ ∈ r(i′) for all i′ with i < i′ < j and
ζ ∈ r(j).

Just as with XR, we obtain u, i |= ψ from the induction hypothesis and (b).
So we only need to show that if (a) occurs, we also have (b). Since r
is accepting, there is some Ψ ∈ FχXUζ such that r(j) = Ψ for infinitely
many j. Assuming (a), we can can conclude ζ ∈ Ψ, which, by induction
hypothesis, means we also have (b).

For the other inclusion, L (ϕ) ⊆ L (A [ϕ]), we simply show that for a
given u such that u |= ϕ the word r defined by r(i) = {ψ ∈ sub(ϕ) : u, i |= ψ}
is an accepting run of A [ϕ] on u. To this end, we need to show that

(a) r starts with an initial state,

(b) (r(i), u(i), r(i+ 1)) ∈ ∆ for all i, and

(c) r(i) ∈ FψXUχ for infinitely many i, for every formula ψ XU χ ∈ sub(ϕ).

That (a) is true follows from the assumption u |= ϕ. Condition (b) is
true simply because of the semantics of LTL. To see that (c) is true, let
ψ XU χ ∈ sub(ϕ). We distinguish two cases. First, assume there exists i
such that u, j 6|= χ for all j > i. Then u, j 6|= ψ XU χ for all j ≥ i, hence
r(j) ∈ FψXUχ for all j ≥ i, which is enough. Second, assume there are
infinitely many i such that u, i |= χ. Then χ ∈ r(i) for the same values of i,
which is enough, too. q.e.d.

Generalized Büchi automata can be converted into equivalent Büchi au-
tomata in a straightforward fashion. The idea is to check that every ac-
ceptance set is visited infinitely often by visiting these sets one after the
other, in a fixed order, and repeating this process over and over again. In
Figure 18, a respective construction is described. The second component
of the state space is a counter which is used to keep track of the accep-
tance set to be visited next. When this counter reaches its maximum, every
acceptance set has been visited once, and it can be reset.



Automata: from logics to algorithms 683

Let A be a generalized Büchi automaton with F =
{F0, . . . , Fk−1}. The Büchi automaton A BA is defined by

A BA = (A,Q× {0, . . . , k}, QI ,∆′, Q× {k})

where ∆′ contains for every (q, a, q′) ∈ ∆ the following tran-
sitions:

• ((q, k), a, (q′, 0)),

• ((q, i), a, (q′, i)) for every i < k,

• ((q, i), a, (q′, i+ 1)) for every i < k such that q′ ∈ Fi.

Figure 18. From generalized Büchi to ordinary Büchi automata

Remark 4.5. Let A be a generalized Büchi automaton with n states and
k acceptance sets. Then A BA is an equivalent Büchi automaton with at
most (k + 1)n states.

Corollary 4.6 (Vardi-Wolper, [124, 126]). There exists an effective pro-
cedure that given an LTL formula ϕ with n states and k XU-subformulas
outputs a Büchi automaton A with at most (k + 1)2n states such that
L (A ) = L (ϕ).

4.3 From LTL to alternating automata
The above translation from LTL into Büchi automata serves our purposes
perfectly. We can use it to derive all the desired results about the complexity
of the problems we are interested in, satisfiability, model checking, and
realizability, as will be shown in the next subsection. There is, however, a
translation using alternating automata, which is interesting in its own right.
The motivation behind considering such a translation is to pass from the
logical framework to the automata-theoretic framework in an as simple as
possible fashion (to be able to apply powerful automata-theoretic tools as
early as possible).

Alternating automata are provided with a feature to spawn several copies
of themselves while running over a word. Formally, an alternating Büchi
automaton is a tuple

A = (P,Q, qI , δ, F )



684 M. Y. Vardi, Th. Wilke

where P , Q, and qI are as usual, F is a Büchi acceptance condition, and δ is
a function which assigns to each state q a transition condition, where every
transition condition δ(q) is a positive boolean combination of formulas of
the form p and ¬p, for p ∈ P , and #q, for q ∈ Q. More precisely, the set of
transition conditions over P and Q, denoted TC(P,Q), is the smallest set
such that

(i) tt,ff ∈ TC(P,Q),

(ii) p,¬p ∈ TC(P,Q) for every p ∈ P ,

(iii) #q ∈ TC(P,Q) for every q ∈ Q,

(iv) γ ∧ γ′, γ ∨ γ′ ∈ TC(P,Q) for γ, γ′ ∈ TC(P,Q).

A run of such an automaton on a word u ∈ (2P )ω is a tree R labeled with
elements from (Q ∪TC(P,Q))× ω such that lR(root(R)) = (qI , 0) and the
following conditions are satisfied for every v ∈ V R, assuming lR(v) = (γ, i):

(i) γ 6= ff,

(ii) if γ = p for some p ∈ P , then p ∈ u(i),

(iii) if γ = ¬p for some p ∈ P , then p /∈ u(i).

(iv) if γ = q, then v has a successor v′ such that lR(v′) = (δ(q), i),

(v) if γ = #q′, then v has a successor v′ such that lR(v′) = (q′, i+ 1),

(vi) if γ = γ0∧γ1, then v has successors v0 and v1 such that lR(vj) = (γj , i)
for j < 2,

(vii) if γ = γ0 ∨ γ1, then there exists j < 2 such that v has a successor v′

with lR(v′) = (γj , i).

An infinite branch b of R is accepting if there are infinitely many i such that
lR(b(i)) ∈ F × ω, in other words, there are infinitely many vertices with a
final state in the first component of their labeling. The run is accepting if
every infinite branch of it is accepting.

As a simple example, consider the language L10 over 2P where P = {p}
which contains all words u satisfying the following condition: There exists
some number i such that p ∈ u(j + 10) for all j ≥ i with p ∈ u(j). If
we wanted to construct a nondeterministic automaton for this language, we
could not do with less than 1000 states, but there is a small alternating au-
tomaton that recognizes this language. It simply guesses the right position
i and for each position j it spawns off a copy of itself checking that after 10
further steps p holds true again. The details are given in Figure 19.



Automata: from logics to algorithms 685

The automaton has states qI , q0, q1, . . . , q10 where q0 is the
only final state and the transition function δ is defined by

• δ(qI) = #qI ∨#q0,

• δ(q0) = #q0 ∧ ((p ∧#q1) ∨ ¬p),

• δ(qi) = #qi+1 for all i such that 0 < i < 10,

• δ(q10) = p.

Figure 19. Example for an alternating automaton

It is (vi) from above which forces the tree to become a real tree, that is,
it requires that a vertex has two successors (unless γ0 = γ1). So this is the
condition that makes the automaton alternating: For a run to be accepting,
both alternatives have to be pursued.

The translation from LTL to alternating Büchi automata, given in Fig-
ure 20, is straightforward as it simply models the semantics of LTL. It ex-
ploits the fact that ψXUχ and ψXRχ are equivalent to Xχ∨(Xψ∧X(ψXUχ))
and Xχ ∧ (Xψ ∨ X(ψ XR χ)), respectively. Note that we use the notation
[ψ] to distinguish subformulas of ϕ from transition conditions (p0 ∧ p1 is
different from [p0 ∧ p1]).

The transition function of A alt[ϕ] has an interesting property, which we
want to discuss in detail. Let ≤ be any linear ordering which extends the
partial order on Q defined by [ψ] ≤ [χ] if ψ ∈ sub(χ). For every ψ ∈ sub(ϕ)
and every [χ] occurring in δ([ψ]), we have [χ] ≤ [ψ]. Following Gastin and
Oddoux [48], we call an automaton satisfying this property a very weak
alternating automaton.

The transition function of A alt[ϕ] has an even stronger structural prop-
erty, which we explain next. For a given symbol a ∈ 2P , a transition
condition γ, a state q ∈ Q, and a set Q′ ⊆ Q, we define what it means
that Q′ is an a-successor of q with respect to γ, denoted q →a,γ Q′. This is
defined inductively:

• q →a,tt ∅,

• q →a,p ∅ if p ∈ a, and, similarly, q →a,¬p ∅ if p /∈ a,

• q →a,#q′ {q′},

• q →a,γ0∨γ1 Q′ if q →a,γ0 Q′ or q →a,γ1 Q′,



686 M. Y. Vardi, Th. Wilke

Let ϕ be an LTL formula in positive normal form over P and
Q the set which contains for each ψ ∈ sub(ϕ) an element
denoted [ψ]. The automaton A alt[A] is defined by

A alt[ϕ] = (P,Q, [ϕ], δ, F )

where

δ([tt]) = tt, δ([ff]) = ff,

δ([p]) = p, δ([¬p]) = ¬p,
δ([ψ ∨ χ]) = δ([ϕ]) ∨ δ([ψ]), δ([ψ ∧ χ]) = δ([ϕ]) ∧ δ([ψ]),

δ([ψ XU χ]) = #[χ] ∨ (#[ψ] ∧#[ψ XU χ]),
δ([ψ XR χ]) = #[ψ] ∧ (#[ψ] ∨#[ψ XR χ]),

and F contains all the elements [ψ] ∈ Q where ψ is not a
XU-formula.

Figure 20. From an LTL formula to an alternating automaton

• q →a,γ0∧γ1 Q′ if there exists Q0, Q1 ⊆ Q such that Q′ = Q0 ∪ Q1,
q →a,γ0 Q0, and q →a,γ1 Q1.

Note that q →a,γ Q′ has a natural interpretation in terms of runs. If a
vertex v of a run is labeled (q, i) and Q′ is the set of all states q′ such that
(q′, i+1) is a label of a descendant of v, then q →a,γ Q′, provided, of course,
that the run is minimal, which we can and will henceforth assume without
loss of generality.

We use q →a Q′ as an abbreviation for q →a,δ(q) Q′. We say a state q is
persistent if there exists Q′ such that q ∈ Q′ and q →a Q′ for some letter a.

Using the new notation, we can give an equivalent definition of being a
very weak alternating automaton. It simply means that there exists a linear
ordering ≤ on the states of the automaton such that if q →a Q′, then q′ ≤ q
for all q′ ∈ Q′.

The automaton A alt[ϕ] has the following property. For every persistent
state q ∈ F there exists a state q′ such that

(i) q →a {q′} for every letter a and

(ii) whenever q →a Q′, then either q ∈ Q′ or Q′ = {q′}.



Automata: from logics to algorithms 687

(Every q /∈ F is of the form [ψ XU χ], which means that we can choose
q′ = [χ].) We call very weak alternating automata that have this property
ultra weak alternating automata and a state as q′ above a discharging state
for q and denote it by qd.

Lemma 4.7. Let ϕ be an LTL formula with n subformulas. Then A alt[ϕ] is
an ultra weak alternating automaton with n states such that L (A alt[ϕ]) =
L (ϕ).

Proof. We only need to prove its correctness, which we do by an induction
on the structure of ϕ. We start with a simple observation. Let R be
an accepting run of A alt[ϕ] on u and v ∈ V R labeled ([ψ], i) for some
ψ ∈ sub(ϕ). Then R↓v can be turned into an accepting run of A alt[ψ]
on u[i, ∗) by changing each second component j of a vertex label to j − i.
Clearly, for this to be true R needs to be minimal (see above).

For the induction base, first assume ϕ = tt or ϕ = ff. There is nothing
to show. Second, assume ϕ = p and suppose u |= ϕ. Then p ∈ u(0), that is,
the two-vertex tree where the root is labeled ([p], 0) and its only successor
is labeled (p, 0) is an accepting run of A alt[ϕ] on u. Conversely, if R is a
(minimal) run of A alt[ϕ] on u, then R has two vertices labeled ([p], 0) and
(p, 0), respectively. This implies p ∈ u(0), which, in turn, implies u |= ϕ.
An analogous argument applies to ¬p.

In the inductive step, first assume ϕ = ψ0 ∧ ψ1. If there exists an
accepting run R of A alt[ϕ] on u, then, because of δ([ϕ]) = δ([ψ0])∧ δ([ψ1]),
the root has successors v0 and v1 such that lR(vi) = (δ([ψi]), 0). For every
i, we can turn R↓vi into an accepting run Ri of A alt[ψi] on u by adding a
new root labeled ([ψi], 0). By induction hypothesis, we obtain u |= ψi for
every i, hence u |= ϕ. Conversely, assume u |= ϕ. Then u |= ψi for i < 2,
and, by induction hypothesis, there exist accepting runs Ri of A alt[ψi] on
u for i < 2. These runs can be turned into an accepting run of A alt[ϕ]
on u by simply making their vertex sets disjoint, removing their roots, and
adding a new common root labeled ([ϕ], 0).

A similar argument applies to formulas of the form ψ0 ∨ ψ1.
Next, assume ϕ = ψXUχ. Suppose R is an accepting run of A alt[ϕ] on u

and let v0 be the root of this run. Also, let ui = u[i, ∗) for every i. Then, by
definition of accepting run, lR(v0) = ([ψXUχ], 0). From the definition of the
transition function we can conclude that v0 has a successor, say v1, which
is labeled by (#[χ]∨ (#[ψ]∧#[ψ XUχ]), 0), which, in turn, has a successor,
say v2, which is labeled by either (#[χ], 0) or (#[ψ] ∧ #[ψ XU χ], 0). In
the first case, there is a further successor labeled ([χ], 1) and we obtain
u1 |= χ from the induction hypothesis, hence, u |= ϕ. In the second case,
we know there exist successors v3 and v′3 of v2 labeled (#[ψ XU χ], 0) and
(#[ψ], 0), respectively, which themselves have successors v4 and v′4 labeled



688 M. Y. Vardi, Th. Wilke

([ψ XU χ], 1) and ([ψ], 1), respectively. By induction hypothesis, we obtain
u1 |= ψ. Applying the same arguments as before, we find that either there
is a vertex labeled ([χ], 2) or there are vertices v8 and v′8 labeled [(ψ XU
χ, 2)] and ([ψ], 2), respectively. In the first case, we get u |= ϕ because
we also know u1 |= ψ, whereas in the second case we can again apply the
same arguments as before. Continuing in this fashion, we find that the
only case which remains is the one where we have an infinite sequence of
vertices v4, v8, v12, . . . on the same branch and every vertex with label in
Q× ω is labeled ([ϕ], i), which means that this branch is not accepting—a
contradiction.

For the other direction, assume u |= ϕ and use the same notation as
before. Then there is some j > 0 such that uj |= χ and ui |= ψ for all i
with 0 < i < j. By induction hypothesis, there are accepting runs Ri for i
with 0 < i < j of A alt[ψ] on ui and an accepting run Rj of A alt[χ] on uj .
Assume that v1, . . . , vj are the roots of these trees and assume that their sets
of vertices are pairwise disjoint. Then we can construct an accepting run R
for A alt[ϕ] on u as follows. The vertices of R are the vertices of the Rk’s
and, in addition, the vertices w0, w

′
0, w

′′
0 , w

′′′
0 , ŵ0, w1, . . . , wj−1, w

′
j−1, w

′′
j−1.

The labeling is as follows:

• wi is labeled ([ϕ], i) for i < j,

• w′i is labeled (#[χ] ∨ (#[ψ] ∧#[ϕ]), i) for i < j,

• w′′i is labeled (#[ψ] ∧#[ϕ], i) for i < j − 1,

• w′′′i is labeled (#[ϕ], i) for i < j − 1,

• ŵi is labeled (#[ψ], i) for i < j − 1, and

• w′′j is labeled (#[χ], j − 1).

The tree R has all edges from the Rk’s and, in addition,

• edges such that w0w
′
0w

′′
0w

′′′
0 . . . wj−1w

′
j−1w

′′
j−1vj is a path and

• edges (w′i, ŵi) and (ŵi, vi) for every i < j.

This yields an accepting run of A alt[ϕ] on u.

Finally, XR can be dealt with in a similar fashion. q.e.d.

It is not very difficult to translate alternating Büchi automata into non-
deterministic Büchi automata, as was shown by Miyano and Hayashi [87],
but it yields a worse upper bound compared to a translation from ultra
weak alternating automata to Büchi automata. This is why we present the



Automata: from logics to algorithms 689

Let A be an ultra weak alternating automaton over a fi-
nite set P of propositional variables. The generalized Büchi
automaton for A , denoted A gBA, is defined by

A gBA = (2P , 2Q, {qI},∆,F )

where

• the transition relation ∆ contains a transition
(Q′, a,Q′′) if for every q ∈ Q′ there exists a set Qq
such that q →a,δ(q) Qq and

⋃
q∈Q′ Qq ⊆ Q′′ and

• the set F of acceptance sets contains for every q /∈ F
the set Fq defined by {Q′ ⊆ Q : qd ∈ Q′ or q /∈ Q′}.

Figure 21. From ultra weak to generalized Büchi automata

latter. Another advantage of this translation is that it can be simplified by
going through alternating generalized Büchi automata.

The main idea of the translation from ultra weak alternating automata to
(generalized) Büchi automata is to use a powerset construction to keep track
of the individual branches of an accepting run of the alternating automaton.
There are two technical problems that we face in the translation. First, we
need to take care of the vertices in the runs which are not labeled with a
state (but with a transition condition), and, second, we need to take care
of the acceptance condition. The first problem is similar to removing ε-
transitions and the second problem can be solved by using the fact that the
automata are ultra weak. The entire construction is described in Figure 21.

Lemma 4.8. Let A be an ultra weak alternating automaton with n states
and k final states. Then A gBA is an equivalent generalized Büchi automaton
with 2n states and k acceptance sets.

Proof. The claim about the number of states and the number of acceptance
sets is obvious. We only need to show that the translation is correct.

First, assume u ∈ L (A ). Then there is an accepting run R of A on
u (which we assume to be minimal again). We say a vertex v ∈ V R is a
state vertex if the first component of its label is a state. Let R′ be the
tree which is obtained from R by “removing” the non-state vertices while
keeping their edges. Formally, R′ is constructed inductively as follows. We
start with the root of R, which is a state vertex by definition. Then, once



690 M. Y. Vardi, Th. Wilke

we have a vertex v of R′, we add all state vertices v′ of R as successors of
v to R′ which can be reached from v in R via a path without state vertices
(not counting the first and last vertex).

The tree R′ has the following property. When v is a vertex labeled (q, i)
and {v0, . . . , vm−1} is the set of its successors where vj is labeled (qj , ij),
then q →u(i) {q0, . . . , qm−1} and ij = i+1 for every j < m. This is because
the definition of →a,γ simply models the requirements of a run.

Using the above property of R′ we can easily construct a run r of A gBA

on u as follows. We simply let r(i) be the set of all q such that there exists
a vertex v in R′ labeled (q, i). By definition of A gBA, this is a run. What
remains to be shown is that r is an accepting run.

Assume q /∈ F and i is an arbitrary number. We have to show that
there exists j ≥ i such that r(j) ∈ Fq. If there is some j ≥ i such that
q /∈ r(j), this is true. So assume that q ∈ r(j) for all j ≥ i. By construction
of R′ there exists a vertex v0 in R′ which is labeled (q, i). If one of the
successors of v0 is labeled qd in the first component, then r(i + 1) ∈ Fq,
which is enough. If, on the other hand, all successors are labeled distinct
from qd in their first component, then, since A is assumed to be ultra weak,
one of the successors, say v1, is labeled q in the first component. We can
apply the same argument as before to v1 now. We find that r(i + 2) ∈ Fq
or we find a successor v2 of v1 with q in the first component of its label,
too. If we continue like this and we do not find r(j) such that r(j) ∈ Fq,
we obtain an infinite path v0v1 . . . in R′ where every vi is labeled q in the
first component. This path can be prefixed such that it becomes a branch
of R, and this branch is not accepting—a contradiction to the assumption
that R is accepting.

For the other direction, assume u ∈ (2P )ω is accepted by A gBA and let r
be an accepting run of A gBA on u. For every i and every q ∈ r(i), let Qiq be
a set such that q →u(i),δ(q) Qiq for all q ∈ r(i) and

⋃
{Qiq : q ∈ r(i)} ⊆ r(i).

By definition of A gBA, such sets exist. For some combinations of q and i
there might be several choices for Qiq. By convention, if qd ∈ r(i + 1), we
let Qiq = {qd}, which is a possible choice since A is assumed to be ultra
weak. Using these sets, we construct a tree R′ from r inductively as follows.
We start with the root and label it (qI , 0). If we have a vertex v labeled
(q, i), we add a successor to v for every q′ ∈ Qiq and label it (q′, i+ 1). By
expanding R′ according to the semantics of the transition conditions, we
obtain a tree R which is a run of A on u. It remains to be shown that this
run is accepting. Assume this is not the case. Then, because A is ultra
weak, there is a non-final state q, a branch v0v1 . . . of R′, and a number
i such that the label of vj is (q, j) for all j ≥ i. This implies q ∈ Qiq for
all j ≥ i. Since r is accepting, we know that there exists j > i such that
q /∈ r(j) or qd ∈ r(j). The first condition is an immediate contradiction. So



Automata: from logics to algorithms 691

assume qd ∈ r(j) for some j > i. Since we have q ∈ r(j − 1), we also have
Qjq = {qd} by construction—a contradiction. q.e.d.

Combining the previous lemma and Remark 4.5 yields an alternative
proof of Corollary 4.6. Very weak alternating automata are interesting for
another reason, too:

Theorem 4.9 (Rohde, [103]). For every very weak alternating automaton
A there exists an LTL formula ϕ such that L (ϕ) = L (A ).

This was also proved by Löding and Thomas [81] and a proof of it can be
found in [30].

4.4 LTL satisfiability, model checking, and realizability
We can now return to the problems we are interested in, satisfiability, va-
lidity, model checking, and realizability.

Theorem 4.10 (Clarke-Emerson-Sistla, [27]). LTL satisfiability is
PSPACE-complete.

Proof. Given an LTL formula ϕ over a set P of propositional variables,
we construct a Büchi automaton equivalent to ϕ and check this automa-
ton for nonemptiness. Clearly, this procedure is correct. To determine its
complexity, we use the following simple fact from complexity theory.

(†) Let f : A∗ → B∗ be a function computable in PSPACE and L ⊆ B∗ a
problem solvable in nondeterministic logarithmic space. Then f−1(P ) ∈
PSPACE.

When we apply (†) to the situation where f computes the above Büchi
automaton equivalent to ϕ and L is the problem whether a Büchi automaton
accepts some word, then we obtain that our problem is in PSPACE.
For the lower bound, we refer the reader to [27] or [106]. q.e.d.

For model checking, the situation is essentially the same as with S1S.
When we are given a finite-state automaton D over the alphabet 2P for
some finite set P of propositional variables and ϕ is an LTL formula over
P , we write D |= ϕ if u |= ϕ for all u ∈ L (D). LTL model checking is the
problem, given D and ϕ, to determine whether D |= ϕ, that is, whether
L (D) ⊆ L (ϕ).

Theorem 4.11. (Sistla-Clarke-Lichtenstein-Pnueli, [109, 80])

(1) LTL model checking is PSPACE-complete.

(2) Given a formula ϕ with n subformulas and a finite-state automaton
D of size m, whether D |= ϕ holds can be checked in time 2O(n)m.



692 M. Y. Vardi, Th. Wilke

Proof. The same approach as in Section 2.1 yields the desired upper bounds.
Given a finite set of propositional variables P , a finite-state automaton D
over 2P , and an LTL formula over P , we first construct the product A ×D
where A is a Büchi automaton equivalent to ¬ϕ. We have L (A ×D) = ∅
if and only if D |= ϕ. So, to conclude, we apply an emptiness test.

The number of states of the product is at most (k + 1)2n ·m where n
is the size of ϕ, the number k is the number of XU-formulas in ϕ (after
transformation to positive normal form), and m is the number of states
of D . Using the same complexity-theoretic argument as in the proof of
Theorem 4.10, we obtain part 1.

Part 2 follows from the fact that an emptiness test for a Büchi automaton
can be carried out in time linear in the size of the automaton.
For the lower bound, we refer the reader to [27]. q.e.d.

Finally, we turn to realizability, which is defined as with S1S (see Sec-
tion 2.4). An LTL realizability instance is an LTL formula over a set
P = {p0, . . . , pm−1, q0, . . . , qn−1} of propositional variables. Just as ear-
lier in this section, we interpret such formulas in words over [2]m+n, which
means that a solution of such an instance is a function f : [2]+m → [2]n satis-
fying the requirement known from the S1S setting, that is, uav |= ϕ holds
for every u ∈ [2]ωm and v ∈ [2]ωn defined by v(i) = f(u[0, i]) for every i.
We can use the same technique as in Section 3 to obtain the following result:

Theorem 4.12 (Pnueli-Rosner, [99]). LTL realizability is complete for dou-
bly exponential time. Moreover, for every positive instance a finite-state
machine realizing a finite-state solution can be computed within the same
time bound.

Proof. Consider the following algorithm for solving a given instance ϕ over
{p0, . . . , pm−1, q0, . . . , qn−1}. First, consider the game G [ϕ] which is ob-
tained using the construction from Figure 10 with the S1S formula replaced
by the LTL formula. Second, compute a Büchi automaton A equivalent
to ϕ according to Corollary 4.6. Third, turn A into a deterministic par-
ity automaton B according to 2.14. Fourth, let G = G [ϕ] × B be the
game obtained from expanding G [ϕ] by B. Fifth, solve the game G using
Theorem 2.21. Player 0 wins G if and only if ϕ is a positive instance of
realizability.

To prove the desired complexity bound let n be the number of subformu-
las of ϕ and observe the following. The size of A is at most (n+1)2n. There-
fore, the worst-case size of B is 2O(2nn logn) and B has at most 3(n+ 1)2n

priorities. Theorem 2.21 now gives the desired upper bound.
The additional claim about the finite-state solution follows from Lem-

mas 2.16 and 2.17. For the lower bound, see [104]. q.e.d.



Automata: from logics to algorithms 693

In the remainder of this section, we present an alternative approach to
solving the realizability problem, which is interesting in its own right.

Let ϕ be an instance of the realizability problem as above. Formally,
a solution of ϕ is a function f : [2]+m → [2]n. Such a function is the same
as a [2]m-branching [2]n-labeled tree (where the root label is ignored). In
other words, the set of all solutions of a given instance of the realizability
problem is a tree language. This observation transforms the realizability
problem into the framework of tree languages and tree automata, and we
can apply tree-automata techniques to solve it.

Let t : [2]∗m → [2]n be any [2]m-branching [2]n-labeled tree. The tree
can be turned into a potential solution to the instance ϕ if the label of
the root is forgotten. The resulting function is denoted by t−ε. We set
Lsol(ϕ) = {t : [2]∗m → [2]n : t−ε solves ϕ}.

We next show that Lsol(ϕ) is a tree language which can be recognized
by a universal tree automaton. We need, however, a more general notion of
universal tree automaton as in Section 3.3. Also, we need to massage the
formula ϕ a little to arrive at a simple automata-theoretic construction.
A universal co-Büchi tree automaton with set of directions D is a tuple

(A,D,Q, qI ,∆, F )

where A, Q, qI , and F are as usual, and where D is a finite set of directions
and ∆ ⊆ Q × A ×D × Q is a transition relation. Following the definition
from Section 3.3, a word r ∈ Qω is said to be a run for branch u ∈ Dω

if (r(i), t(u[0, i)), u(i), r(i + 1)) ∈ ∆ for every i and r(0) = qI . A tree is
accepted if every r ∈ Qω which is a run for some branch satisfies the co-
Büchi acceptance condition. The latter means that r(i) ∈ F only for finitely
many i.

The technical problem one faces when constructing an automaton for
Lsol(ϕ) is that a tree automaton has transitions of the form (q, a, d, q′),
so, when applied to the above setting, in one transition the automaton
consumes an output of the device we are looking for and the next input.
For our construction it would be much better to have automata that in
one transition consume an input and a corresponding output. Rather than
modifying our standard automaton model, we resolve the issue on the logical
side. For a given formula ϕ = ϕ(p0, . . . , pm−1, q0, . . . , qn−1) we consider the
formula ϕX defined by

ϕX = ϕ(p0, . . . , pm−1,Xq0, . . . ,Xqn−1).

(Recall that X stands for the temporal operator “next”.) This formula
moves the output one position to the right, more precisely,

L (ϕ) = {d0a
a1d1a

a2 . . . : d0 a a0d1a
a1 · · · ∈ L (ϕX)}. (1.2)



694 M. Y. Vardi, Th. Wilke

Let ϕ = ϕ(p0, . . . , pm−1, q0, . . . , qn−1) be an instance of the
LTL realizability problem and A a Büchi automaton such
that L (A ) = L (¬ϕX). The universal co-Büchi tree au-
tomaton for ϕ, denoted A real[ϕ], is defined by

A real[ϕ] = ([2]n, [2]m, Q, qI ,∆′, F )

where

∆′ = {(q, a, d, q′) : (q, daa, q′) ∈ ∆}.

Figure 22. From an LTL realizability instance to a universal tree automa-
ton

A universal co-Büchi tree automaton for a given LTL formula ϕ as above
is now easily constructed, as can be seen in Figure 22.

Lemma 4.13. Let ϕ = ϕ(p0, . . . , pm−1, q0, . . . , qn−1) be an instance of the
LTL realizability problem. Then L (A real[ϕ]) = Lsol(ϕ). q.e.d.

Universal co-Büchi tree automata for D-branching trees as defined above
are a special case of universal parity tree automata for D-branching trees,
which can be turned into nondeterministic parity tree automata for D-
branching trees in the same fashion as this was explained for automata on
binary trees in Figure 16. The same is true for the emptiness test for parity
tree automata on D-branching trees, which can be solved by constructing
a parity game along the lines of the construction depicted in Figure 13 and
solving this game.

4.5 Notes
The automata-theoretic decision procedure for LTL model checking de-
scribed in this section has had a great practical impact, because it has
been implemented in an industrial setting, see, for instance, [57], and used
to verify real-world computing systems (mostly hardware). Much research
has gone into improving the algorithm in several respects, but also into
extending its applicability, for instance, more expressive logics and larger
classes of devices have been looked at, see, for instance, [14, 25, 44, 70]. It is
also noteworthy that LTL is the basis for industrial specification languages
such as ForSpec [2] and PSL [34] and that the automata-theoretic approach
underlies industrial implementations of specification languages [3].



Automata: from logics to algorithms 695

An important aspect of this section is the use of alternating automata,
which were introduced into the theory of automata on infinite objects by
Muller and Schupp [90]. The only gain from this presented in the current
section is Theorem 4.9, but this is probably the least important aspect in
this context. What is more important is that weak alternating automata
are as powerful as nondeterministic Büchi automata, which was proved by
Kupferman and Vardi [72, 73]. This result motivated new research, which,
for instance, brought about new complementation constructions [72, 73,
121]. As we see in the remaining two sections, alternation is even more
important in the context of tree languages.

We refer to [123] for a collection of open algorithmic issues with regard
to automata-theoretic LTL model checking.

5 Computation tree logic

Certain temporal properties of a system cannot be specified when runs of
the system are considered separately, as we do this with LTL. For instance,
when one wants to specify that no matter which state a system is in there
is some way to get back to a default state, then this cannot be stated in
LTL. The reason is that the property says something about how a run can
evolve into different runs.

This observation motivates the introduction of specification logics that
compensate for the lack of expressive power in this regard. The first logic of
this type, called UB, was introduced by Ben-Ari, Manna, and Pnueli [7] in
1981. Another logic of this type is computation tree logic (CTL), designed
by Clarke and Emerson [36], which is interpreted in the “computation tree”
of a given transition system. This is the logic we study in this section, in
particular, we study satisfiability and model checking for this logic.

Many of the proofs in this section are very similar to proofs in the
previous section. In these cases, we only give sketches, but describe the
differences in detail.

5.1 CTL and monadic second-order logic
CTL mixes path quantifiers and temporal operators in a way such that a
logic arises for which model checking can be carried out in polynomial time.
The syntax of CTL is as follows:

• tt and ff are CTL formulas,

• every propositional variable is a CTL formula,

• if ϕ is a CTL formula, then so is ¬ϕ,

• if ϕ and ψ are formulas, then so are ϕ∨ψ, E(ϕXUψ), and A(ϕXUψ).



696 M. Y. Vardi, Th. Wilke

CTL formulas are interpreted in transition systems, which we introduce
next. Such a system is a simple, state-based abstraction of a computing
device. Formally, it is a tuple

S = (P, S,→, l)

where P is a finite set of propositional variables, S is a set of states, → ⊆
S × S is a transition relation in infix notation, and l : S → 2P is a labeling
function assigning to each state which propositional variables are true in it.
A computation of such a transition system starting in a state s is a word
u ∈ S+ ∪ S∞ such that

(i) u(0) = s,

(ii) u(i) → u(i+ 1) for all i with i+ 1 < |u|, and

(iii) u is maximal in the sense that if u is finite, then u(∗) must not have
any successor.

Given a CTL formula ϕ, a transition system S over the same set P of
propositional variables, and a state s of S , it is defined whether ϕ holds
true in S at s, denoted S , s |= ϕ:

• S , s |= tt and S , s 6|= ff,

• S , s |= p if p ∈ l(s),

• S , s |= ¬ϕ if S , s 6|= ϕ,

• S , s |= ψ ∨ χ if S , s |= ψ or S , s |= χ, for ψ and χ CTL formulas,

• S , s |= E(ψ XU χ) if there exists a computation u of S starting at
s and j > 0 such that S , u(j) |= χ and S , u(i) |= ψ for all i with
0 < i < j.

• S , s |= A(ψ XU χ) if for all computations u of S starting at s there
exists j > 0 such that S , u(j) |= χ and S , u(i) |= ψ for all i with
0 < i < j.

Just as with LTL, other operators can be defined:

• “in all computations always” is defined by AGϕ = ϕ ∧ ¬E(tt XU ¬ϕ),

• “in some computation eventually” is defined by EFϕ = ϕ∨E(ttXUϕ).



Automata: from logics to algorithms 697

An interesting property one can express in CTL is the one discussed above,
namely that from every state reachable from a given state a distinguished
state, indicated by the propositional variable pd, can be reached:

AGEFpd. (1.3)

Another property that can be expressed is that every request, indicated by
the propositional variable pr, is eventually acknowledged, indicated by the
propositional variable pa:

AG(pr → AXAFpa). (1.4)

It is interesting to compare the expressive power of CTL with that of
LTL. To this end, it is reasonable to restrict the considerations to infinite
computations only and to say that a CTL formula ϕ and an LTL formula
ψ are equivalent if for every transition system S and every state s ∈ S
the following holds: S , s |= ϕ iff l(u(0))l(u(1)) . . . |= ψ for all infinite
computations u of S starting in s.

The second property from above can be expressed easily in LTL, namely
by the formula G(pr → XFpa), that is, this formula and (1.4) are equivalent.
Clarke and Draghicescu showed that a CTL property is equivalent to some
LTL formula if and only if it is equivalent to the LTL formula obtained
by removing the path quantifiers [26]. But it is not true that every LTL
formula which can be expressed in CTL is expressible by a CTL formula
which uses universal path quantifiers only. This was shown by Bojanczyk
[10].

An LTL formula which is not expressible in CTL is

GFp, (1.5)

which was already pointed out by Lamport [77].
In order to be able to recast satisfiability and model checking in a (tree)

automata setting, it is crucial to observe that CTL formulas cannot dis-
tinguish between a transition system and the transition system obtained
by “unraveling” it. Formally, the unraveling of the transition system S at
state s ∈ S, denoted Ts(S ), is the tree inductively defined by:

• s is the root of Ts(S ),

• if v ∈ S+ is an element of V Ts(S ) and v(∗) → s′, then vs′ ∈ V Ts(S )

and (v, vs′) ∈ ETs(S ),

• lTs(S )(v) = lS (v(∗)) for every v ∈ V Ts(S ).

Henceforth, a tree with labels from 2P , such as the unraveling of a transition
system, is viewed as a transition system in the canonical way. When we



698 M. Y. Vardi, Th. Wilke

interpret a CTL formula in a tree and do not indicate a vertex, then the
formula is interpreted at the root of the tree.

The formal statement of the above observation can now be phrased as
follows.

Lemma 5.1. For every CTL formula ϕ, transition system S , and state
s ∈ S,

S , s |= ϕ iff Ts(S ) |= ϕ.

Proof. This can be proved by a straightforward induction on the structure
of ϕ, using a slightly more general claim:

S , s′ |= ϕ iff Ts(S ), v |= ϕ

for every state s′ ∈ S and every vertex v of Ts(S ) where v(∗) = s′. q.e.d.

The previous lemma says that we can restrict attention to trees, in
particular, a CTL formula is satisfiable if and only if there is a tree which is
a model of it. So when we translate CTL formulas into logics on trees which
satisfiability is decidable for, then we also know that CTL satisfiability is
decidable.

We present a simple translation of CTL into monadic second-order logic.
There is, however, an issue to be dealt with: S2S formulas specify properties
of binary trees, but CTL is interpreted in transition systems where each
state can have more than just two successors. A simple solution is to use
a variant of S2S which allows any number of successors but has only a
single successor predicate, suc. Let us denote the resulting logic by SUS.
As with LTL, we identify the elements of 2P for P = {p0, . . . , pn−1} with
the elements of [2]n.

Proposition 5.2. Let P = {p0, . . . , pn−1} be an arbitrary finite set of
propositional variables. For every CTL formula ϕ over P an SUS formula
ϕ̃ = ϕ̃(X0, . . . , Xn−1) can be constructed such that T |= ϕ if and only if
T |= ϕ̃ for all trees T over 2P (or [2]n).

Proof. What we actually prove is somewhat stronger, analogous to the proof
for LTL. We construct a formula ϕ̂ = ϕ̂(X0, . . . , Xn−1, x) such that T , v |=
ϕ if and only if T , v |= ϕ̂ for all trees T and v ∈ V T . We can then set
ϕ̃ = ∃x(ϕroot(x)∧ ϕ̂) where ϕroot(x) = ∀y(¬suc(y, x)) specifies that x is the
root.

For the induction base, assume ϕ = pi. We can set ϕ̂ to x ∈ Xi.
Similarly, for ϕ = ¬pi we can set ϕ̂ to ¬x ∈ Xi.

In the inductive step, we consider only one of the interesting cases,
namely where ϕ = A(ψ XU χ). We start with a formula ϕclosed = ϕclosed(X)



Automata: from logics to algorithms 699

which is true if every element of X has a successor in X provided it has a
successor at all:

ϕclosed = ∀x(x ∈ X ∧ ∃y(suc(x, y)) → ∃y(suc(x, y) ∧ y ∈ X)).

We next write a formula ϕpath(x,X) which is true if X is a maximum path
starting in x:

ϕpath = x ∈ X ∧ ϕclosed(X) ∧
∀Y (x ∈ Y ∧ ϕclosed(Y ) ∧ Y ⊆ X → X = Y ).

We can then set

ϕ̂ = ∀X(ϕpath(x,X) →

∃z(z ∈ X ∧ ¬z = x ∧ χ̂(z) ∧ ∀y(x < y < z → ψ̂(y))).

The other CTL operators can be dealt with in a similar fashion. q.e.d.

The desired decidability result now follows from the following result on
SUS.

Theorem 5.3 (Walukiewicz, [128]). SUS satisfiability is decidable.

This result can be proved just as we proved the decidability of satisfia-
bility for S2S, that is, using an analogue of Rabin’s Theorem. This analogue
will use a different kind of tree automaton model which takes into account
that the branching degree of the trees considered is unbounded and that
there is one predicate for all successors. More precisely, a transition in
such an automaton is of the form (q, a,QE, QA) where QE, QA ⊆ Q. Such
a transition is to be read as follows: If the automaton is in state q at a
vertex labeled a, then for every q′ ∈ QE there exists exactly one successor
that gets assigned q′ and all the successors that do not get assigned any
state in this fashion get assigned exactly one state from QA. In particu-
lar, if QE = QA = ∅, then the vertex must not have a successor. In [128],
Walukiewicz actually presents a theorem like Büchi’s and Rabin’s: He shows
that there is a translation in both directions, from SUS formulas to such
automata and back.

Corollary 5.4. CTL satisfiability and model checking are decidable.

That model checking is decidable follows from the simple observation
that in SUS one can define the unraveling of every finite transition system.

We conclude this introduction to CTL with further remarks on SUS and
its relationship to CTL. There is a logic related to SUS which was already
studied by Rabin and which he denoted SωS. This is the logic interpreted



700 M. Y. Vardi, Th. Wilke

in the countably branching tree ω∗ where, for each i, there is a separate
successor relation suci(·, ·). Observe that—as noted in [60]—in this logic
one cannot even express that all successors of the root belong to a certain
set, which can easily be expressed in CTL and SUS.

Observe, too, that in SUS one can express that every vertex of a tree
has at least two successors, namely by

∀x(∃y0∃y1(suc(x, y0) ∧ suc(x, y1) ∧ ¬y0 = y1).

This is, however, impossible in CTL. More precisely, CTL cannot distinguish
between bisimilar transition systems whereas SUS can do this easily.

5.2 From CTL to nondeterministic tree automata
We next show how to arrive at good complexity bounds for satisfiability and
model checking by following a refined automata-theoretic approach. For
satisfiability, we can use nondeterministic automata and vary the approach
we used for handling LTL in Section 4, while for model checking, we have
to use alternating tree automata.

As pointed out above, the nondeterministic tree automaton model we
defined in Section 3 was suited for binary trees only, which is not enough
in the context of CTL. Here, we need an automaton model that can handle
trees with arbitrary branching degree. We could use the tree automaton
model explained in Section 5.1, but there is another model which is more
appropriate. Following Janin and Walukiewicz [59], we use a tree automaton
model which takes into account that properties like the one mentioned at
the end of Section 5.1 cannot be expressed in CTL.
A generalized Büchi tree automaton in this context is a tuple

A = (A,Q,QI ,∆,F )

where A, Q, QI , and F are as with generalized Büchi (word) automata and
∆ ⊆ Q×A× 2Q × 2Q is a transition relation.

A transition of the form (q, a,QE, QA) is to be read as follows: If the
automaton is in state q at vertex v and reads the label a, then it sends each
state from QE to at least one of the successors of v and every successor of v
is at least sent one of the states from QE ∪QA; the same successor can get
sent several states.

Formally, a run of A on a tree T is a (Q×V T )-labeled tree R satisfying
the following conditions.

(i) The root of R is labeled (q, root(T )) for some q ∈ QI .

(ii) For every vertex w ∈ V R, if (q, v) is the label of w, then there exists
a transition (q, lR(v), QE, QA) ∈ ∆ such that:



Automata: from logics to algorithms 701

(a) For every v′ ∈ sucsT (v) there exists w′ ∈ sucsR(w) labeled
(q′, v′) for some q′ ∈ QE∪QA, that is, every successor of v occurs
in a label of a successor of w.

(b) For every q′ ∈ QE there exist v′ ∈ sucsT (v) and w′ ∈ sucsR(w)
such that w′ is labeled (q′, v). That is, every state from QE occurs
at least once among all successors of w.

Such a run is accepting if every branch is accepting with respect to the given
generalized Büchi condition just as this was defined for generalized Büchi
word automata.

Observe that in this model the unlabeled tree underlying a run may not
be the same as the unlabeled tree underlying a given input tree. Copies of
subtrees may occur repeatedly.

As an example, let P = {p} and A = 2P and consider the tree language L
which contains all trees over A that satisfy the property that every branch is
either finite or labeled {p} infinitely often. An appropriate Büchi automaton
has two states, q∅ and q{p}, where q∅ is initial and q{p} is final, and the
transitions are (q, a, {qa}) and (q, a,∅,∅) for any state q and letter a.

The idea for translating a given CTL formula into a nondeterministic
tree automaton follows the translation of LTL into nondeterministic word
automata: In each vertex, the automaton guesses which subformulas of the
given formula are true and verifies this. The only difference is that the path
quantifiers E and A are taken into account, which is technically somewhat
involved. The details are given in Figure 23, where the following notation
and terminology is used. Given a set Ψ of CTL formulas over a finite set
P of propositional variables and a letter a ∈ 2P we say that Ψ is consistent
with a if

• ff /∈ Ψ,

• p ∈ Ψ iff p ∈ a, for all p ∈ P , and

• for ψ ∈ Ψ, if ψ = ψ0 ∨ ψ1, then ψi ∈ Ψ for some i < 2, and if
ψ = ψ0 ∧ ψ1, then {ψ0, ψ1} ⊆ Ψ.

Further, a set Ψ′ is a witness for E(ψXUχ) if χ ∈ Ψ′ or {ψ,E(ψXUχ)} ⊆ Ψ′.
Similarly, Ψ′ is a witness for E(ψXRχ) if {ψ, χ} ⊆ Ψ′ or {χ,E(ψXRχ)} ⊆ Ψ′.
The analogue terminology is used for A-formulas. When Ψ is a set of CTL
formulas, then ΨE denotes the formulas of the form E(ψXUχ) and E(ψXRχ),
that is, the set of all E-formulas in Ψ, and, similarly, ΨA denotes the set of
all A-formulas in Ψ.

The only interesting aspect of the construction is (iv) of the definition
of a transition. It would be more natural to omit (iv), and, indeed, the
construction would then also be correct, but the resulting automaton would



702 M. Y. Vardi, Th. Wilke

Let P be a finite set of propositional variables and ϕ a CTL
formula over P in positive normal form. The generalized
Büchi tree automaton for ϕ with respect to P , denoted A [ϕ],
is defined by

A [ϕ] = (2P , 2sub(ϕ), QI ,∆,F )

where QI = {Ψ ⊆ 2sub(ϕ) : ϕ ∈ Ψ} and

F = {FQ[ψXUχ] : Q[ψ XU χ] ∈ sub(ϕ) and Q ∈ {E,A}}

with

FQ[ψXUχ] = {Ψ ⊆ sub(ϕ) : χ ∈ Ψ or Q[ψ XU χ] /∈ Ψ},

and where ∆ contains a transition (Ψ, a,QE, QA) if the fol-
lowing conditions are satisfied:

(i) Ψ is consistent with a,

(ii) for every ψ ∈ ΨE there exists Ψ′ ∈ QE which witnesses
it and QA contains all Ψ ⊆ sub(ϕ) that contain a wit-
ness for every ψ ∈ ΨA,

(iii) every Ψ′ ∈ QE witnesses every ψ ∈ ΨA,

(iv)
∣∣QE

∣∣ ≤ |sub(ϕ)E|.

Figure 23. From CTL to generalized Büchi tree automata

be too large. On the other hand, (iv) is not a real restriction, because
the semantics of CTL requires only one “witness” for every existential path
formula.

Before formally stating the correctness of the construction, we introduce
a notion referring to the number of different states which can be assigned
in a transition. We say that a nondeterministic tree automaton A is m-
bounded if

∣∣QE
∣∣ ≤ m holds for every (q, a,QE, QA) ∈ ∆.

Lemma 5.5. Let ϕ be an arbitrary CTL formula with n subformulas, m
E-subformulas, and k U-subformulas. Then A [ϕ] is an (m + 1)-bounded
generalized Büchi tree automaton with 2n states, k acceptance sets, and



Automata: from logics to algorithms 703

Let A be a nondeterministic Büchi tree automaton. The
emptiness game for A , denoted G∅[A ], is defined by

G∅[A ] = (Q,∆, qI ,M0 ∪M1, F )

where

M0 = {(q,QE, QA) : ∃a∃QA((q, a,QE, QA) ∈ ∆)}, and
M1 = {(Q′, q) : q ∈ Q′}.

Figure 24. Emptiness game for nondeterministic Büchi tree automaton

such that L (A [ϕ]) = L (ϕ).

Proof sketch. The claim about the size of the automaton is trivial. The
proof of its correctness can be carried out similar to the proof of Theo-
rem 4.4, that is, one proves L (A [ϕ]) ⊆ L (ϕ) by induction on the struc-
ture of ϕ and L (ϕ) ⊆ L (A [ϕ]) by constructing an accepting run di-
rectly. q.e.d.

It is very easy to see that the construction from Figure 18 can also be
used in this context to convert a generalized Büchi tree automaton into a
Büchi automaton. To be more precise, an m-bounded generalized Büchi
tree automaton with n states and k acceptance sets can be converted into
an equivalent m-bounded Büchi tree automaton with (k + 1)n states.

So in order to solve the satisfiability problem for CTL we only need
to solve the emptiness problem for Büchi tree automata in this context.
There is a simple way to perform an emptiness test for nondeterministic tree
automata, namely by using the same approach as for nondeterministic tree
automata working on binary trees: The nonemptiness problem is phrased
as a game. Given a nondeterministic Büchi tree automaton A , we define
a game which Player 0 wins if and only if some tree is accepted by A . To
this end, Player 0 tries to suggest suitable transitions while Player 1 tries to
argue that Player 0’s choices are not correct. The details of the construction
are given in Figure 24.

Lemma 5.6. Let A be a nondeterministic Büchi tree automaton. Then
the following are equivalent:

(A) L (A ) 6= ∅.



704 M. Y. Vardi, Th. Wilke

(B) Player 0 wins G∅[A ].

Proof. The proof of the lemma can be carried out along the lines of the
proof of Lemma 3.3. The only difference is due to the arbitrary branching
degree, which can easily be taken care of. One only needs to observe that
if there exists a tree which is accepted by A , then there is a tree with
branching degree at most |Q| which is accepted. q.e.d.

We have the following theorem:

Theorem 5.7 (Emerson-Halpern-Fischer-Ladner, [37, 45]). CTL satisfia-
bility is complete for deterministic exponential time.

Proof. The decision procedure is as follows. A given CTL formula ϕ is first
converted into an equivalent generalized Büchi tree automaton A using the
construction from Figure 23. Then A is converted into an equivalent Büchi
tree automaton B using the natural adaptation of the construction pre-
sented in Figure 18 to trees. In the third step, B is converted into the Büchi
game G∅[B], and, finally, the winner of this game is determined. (Recall
that a Büchi condition is a parity condition with two different priorities.)

From Theorem 2.21 on the complexity of parity games it follows imme-
diately that Büchi games (parity games with two different priorities) can
be solved in polynomial time, which means we only need to show that the
size of G∅[B] is exponential in the size of the given formula ϕ and can be
constructed in exponential time. The latter essentially amounts to showing
that B is of exponential size.

Let n be the number of subformulas of ϕ. Then A is n-bounded with
2n states and at most n acceptance sets. This means that the number
of sets Q′ occurring in the transitions of A is at most 2n

2
, so there are

at most 2n
2+2n transitions (recall that there are at most 2n letters in the

alphabet). Similarly, B is n-bounded, has at most (n + 1)2n states, and
2O(n2) transitions.
The lower bound is given in [45]. q.e.d.

5.3 From CTL to alternating tree automata
One of the crucial results of Emerson and Clarke on CTL is that model
checking of CTL can be carried out in polynomial time. The decision pro-
cedure they suggested in [28] is a simple labeling algorithms. For every
subformula ψ of a given formula ϕ they determine in which states of a given
transition system S the formula ψ holds and in which it does not hold.
This is trivial for atomic formulas. It is straightforward for conjunction
and disjunction, provided it is known which of the conjuncts and disjuncts,
respectively, hold. For XR- and XU-formulas, it amounts to simple graph
searches.



Automata: from logics to algorithms 705

Emerson and Clarke’s procedure cannot easily be seen as a technique
which could also be derived following an automata-theoretic approach. Con-
sider the nondeterministic tree automaton we constructed in Figure 23. Its
size is exponential in the size of the given formula (and this cannot be
avoided), so it is unclear how using this automaton one can arrive at a
polynomial-time procedure.

The key for developing an automata-theoretic approach, which is due
to Kupferman, Vardi, and Wolper [71], is to use alternating tree automata
similar to how we used alternating automata for LTL in Section 4 and to
carefully analyze their structure.
An alternating Büchi tree automaton is a tuple

A = (P,Q, qI , δ, F )

where P , Q, qI , and F are as usual and δ is the transition function which
assigns to each state a transition condition. The set of transition conditions
over P and Q, denoted TC(P,Q), is the smallest set such that

(i) tt,ff ∈ TC(P,Q),

(ii) p,¬p ∈ TC(P,Q) for every p ∈ P ,

(iii) every positive boolean combination of states is in TC(P,Q),

(iv) 3γ,2γ ∈ TC(P,Q) where γ is a positive boolean combination of
states.

This definition is very similar to the definition for alternating automata on
words. The main difference reflects that in a tree a “position” can have
several successors: 3 expresses that a copy of the automaton should be sent
to one successor, while 2 expresses that a copy of the automaton should be
sent to all successors. So 3 and 2 are the two variants of #.

There is another, minor difference: For tree automata, we allow positive
boolean combinations of states in the scope of 3 and 2. We could have
allowed this for word automata, too, but it would not have helped us. Here,
it makes our constructions simpler, but the proofs will be slightly more
involved.

Let T be a 2P -labeled tree. A tree R with labels from TC(P,Q) ×
V T is a run of A on T if lR(root(R)) = (qI , root(T )) and the following
conditions are satisfied for every vertex w ∈ V R with label (γ, v):

• γ 6= ff,

• if γ = p, then p ∈ lT (w), and if γ = ¬p, then p /∈ lT (w),



706 M. Y. Vardi, Th. Wilke

• if γ = 3γ′, then there exists v′ ∈ sucsT (v) and w′ ∈ sucsR(w) such
that lR(w′) = (γ′, v′),

• if γ = 2γ′, then for every v′ ∈ sucsT (v) there exists w′ ∈ sucsR(w)
such that lR(w′) = (γ′, v′),

• if γ = γ0 ∨ γ1, then there exists i < 2 and w′ ∈ sucsR(w) such that
lR(w′) = (γi, v),

• if γ = γ0 ∧ γ1, then for every i < 2 there exists w′ ∈ sucsR(w) such
that lR(w′) = (γi, v).

Such a run is accepting if on every infinite branch there exist infinitely many
vertices w labeled with an element of F in the first component.

The example language from above can be recognized by an alternating
Büchi automaton which is slightly more complicated than the nondetermin-
istic automaton, because of the restrictive syntax for transition conditions.
We use the same states as above and four further states, q, q′{p}, q⊥, and
q′⊥. The transition function is determined by

δ(qI) = q⊥ ∨ q,
δ(q{p}) = q′{p} ∧ (q⊥ ∨ q), δ(q′{p}) = p,

δ(q⊥) = 2q′⊥, δ(q′⊥) = ff,

δ(q) = 2(qI ∨ q{p}).

The state q⊥ is used to check that the automaton is at a vertex without
successor.

In analogy to the construction for LTL, we can now construct an al-
ternating tree automaton for a given CTL formula. This construction is
depicted in Figure 25.

Compared to the construction for LTL, there are the following minor
differences. First, the definition of the transition function is no longer in-
ductive, because we allow positive boolean combinations in the transition
function. Second, we have positive boolean combinations of states in the
scope of 3 and 2. This was not necessary with LTL, but it is necessary here.
For instance, if we instead had δ([E(ψXUχ)]) = 3[χ]∨(3[ψ]∧3[E(ψXUχ)]),
then this would clearly result in a false automaton because of the second
disjunct.

We can make a similar observation as with the alternating automata
that we constructed for LTL formulas. The automata are very weak in the
sense that when we turn the subformula ordering into a linear ordering ≤
on the states, then for each state q, the transition conditions δ(q) contains
only states q′ such that q ≥ q′.



Automata: from logics to algorithms 707

Let ϕ be a CTL formula in positive normal form over P and
Q the set which contains for each ψ ∈ sub(ϕ) an element
denoted [ψ]. The automaton A alt[ϕ] is defined by

A alt[ϕ] = (P,Q, [ϕ], δ, F )

where

δ([tt]) = tt, δ([ff]) = ff,

δ([p]) = p, δ([¬p]) = ¬p,
δ([ψ ∨ χ]) = [ϕ] ∨ [ψ], δ([ψ ∧ χ]) = [ϕ] ∧ [ψ],

δ([E(ψ XU χ)]) = 3([χ] ∨ ([ψ] ∧ [E(ψ XU χ)])),
δ([E(ψ XR χ)]) = 3([χ] ∧ ([χ] ∨ [E(ψ XR χ)])),
δ([A(ψ XU χ)]) = 2([χ] ∨ ([ψ] ∧ [A(ψ XU χ)])),
δ([A(ψ XR χ)]) = 2([χ] ∧ ([χ] ∨ [A(ψ XR χ)])),

and F contains all the elements [ψ] where ψ is not an XU-
formula.

Figure 25. From CTL to alternating tree automata

Lemma 5.8 (Kupferman-Vardi-Wolper, [71]). Let ϕ be a CTL formula
with n subformulas. The automaton A alt[ϕ] is a very weak alternating tree
automaton with n states and such that L (A alt[A]) = L (ϕ).

Proof. The proof can follow the lines of the proof of Lemma 4.7. Since the
automaton is very weak, a simple induction on the structure of the formula
can be carried out, just as in the proof of Lemma 4.7. Branching makes the
proof only technically more involved, no new ideas are necessary to carry it
out. q.e.d.

As pointed out above, it is not our goal to turn A alt[ϕ] into a nondeter-
ministic automaton (although this is possible), because such a translation
cannot be useful for solving the model checking problem. What we rather
do is to define a product of an alternating automaton with a transition sys-
tem, resulting in a game, in such a way that the winner of the product of
A alt[ϕ] with some transition system S reflects whether ϕ holds true in a
certain state sI of S .



708 M. Y. Vardi, Th. Wilke

The idea is that a position in this game is of the form (γ, s) where γ is
a transition condition and s is a state of the transition system. The goal is
to design the game in such a way that Player 0 wins the game starting from
(qI , sI) if and only if there exists an accepting run of the automaton on the
unraveling of the transition system starting at sI . This means, for instance,
that if γ is a disjunction, then we make the position (γ, s) a position for
Player 0, because by moving to one of the two successor positions he should
show which of the disjuncts holds. If, on the other hand, γ = 2γ′, then
we make the position a position for Player 1, because she should be able to
challenge Player 0 with any successor of s. The details are spelled out in
Figure 26, where the following notation and terminology is used. Given an
alternating automaton A , we write sub(A ) for the set of subformulas of
the values of the transition function of A . In addition, we write sub+(A )
for the set of all γ ∈ sub(A ) where the maximum state occurring belongs
to the set of final states.

Assume A is a very weak alternating Büchi automaton. Then A ×sI
S

is not very weak in general in the sense that the game graph can be extended
to a linear ordering. Observe, however, that the following is true for every
position (q, s): All states in the strongly connected component of (q, s) are of
the form (γ, s′) where q is the largest state occurring in γ. So, by definition
of A ×sI

S , all positions in a strongly connected component of A ×sI
S

are either final or nonfinal. We turn this into a definition. We say that a
Büchi game is weak if for every strongly connected component of the game
graph it is true that either all its positions are final or none of them is.

Lemma 5.9. Let A be an alternating Büchi tree automaton, S a transi-
tion system over the same finite set of propositional variables, and sI ∈ S.
Then TsI

(S ) ∈ L (A ) iff Player 0 wins A ×sI
S . Moreover, if A is a very

weak alternating automaton, then A ×sI
S is a weak game.

Proof. The additional claim is obvious. For the other claim, first assume R
is an accepting run of A on TsI

(S ). We convert R into a winning strategy
σ for Player 0 in A ×S . To this end, let w be a vertex of R with label (γ, v)
such that (γ, v) is a position for Player 0. Since R is an accepting run, w
has a successor, say w′. Assume lR(w′) = (γ′, v′). We set σ(u) = (γ, v′(∗))
where u is defined as follows. First, let n = |v|. Assume lR(u(i)) = (γi, vi)
for every i < n. We set u = (γ0, v0(∗))(γ1, v1(∗)) . . . (γn−1, vn−1(∗)). It can
be shown that this defines a strategy. Moreover, since R is accepting, σ is
winning.

For the other direction, a winning strategy is turned into an accepting
run in a similar manner. q.e.d.

The proof shows that essentially there is no difference between a run
and a strategy—one can think of a run as a strategy. From this point of



Automata: from logics to algorithms 709

Let A be an alternating Büchi tree automaton, S a transi-
tion system over the same set of propositional variables, and
sI ∈ S. The product of A and S at sI , denoted A ×sI

S ,
is the Büchi game defined by

A ×sI
S = (P0, P1, (qI , sI),M, sub+(A )× S)

where

• P0 is the set of pairs (γ, s) ∈ sub(A )× S where γ is

(i) a disjunction,

(ii) a 3-formula,

(iii) p for p /∈ l(s),
(iv) ¬p for p ∈ l(s), or

(v) ff,

and

• P1 is the set of pairs (γ, s) ∈ sub(A )× S where γ is

(i) a conjunction,

(ii) a 2-formula,

(iii) p for some p ∈ l(s),
(iv) ¬p for some p /∈ l(s), or

(v) tt.

Further, M contains for every γ ∈ sub(A ) and every s ∈ S
moves according to the following rules:

• if γ = q for some state q, then ((γ, s), (δ(q), s)) ∈M ,

• if γ = γ0 ∨ γ1 or γ = γ0 ∧ γ1, then ((γ, s), (γi, s)) ∈M
for i < 2,

• if γ = 3γ′ or γ = 2γ′, then ((γ, s), (γ′, s′)) ∈M for all
s′ ∈ sucsS (s).

Figure 26. Product of a transition system and an alternating automaton



710 M. Y. Vardi, Th. Wilke

view, an alternating automaton defines a family of games, for each tree a
separate game, and the tree language recognized by the tree automaton is
the set of all trees which Player 0 wins the game for.

The additional claim in the above lemma allows us to prove the desired
complexity bound for the CTL model checking problem:

Theorem 5.10 (Clarke-Emerson-Sistla, [28]). The CTL model checking
problem can be solved in time O(mn) where m is the size of the transition
system and n the number of subformulas of the CTL formula.

Proof. Consider the following algorithm, given a CTL formula ϕ, a transi-
tion system S , and a state sI ∈ S. First, construct the very weak alter-
nating Büchi automaton A alt[ϕ]. Second, build the product A alt[ϕ]×sI

S .
Third, solve A alt[ϕ] ×sI

S . Then Player 0 is the winner if and only if
S , sI |= ϕ.

The claim about the complexity follows from the fact that the size of
A alt[ϕ]×sI

S is mn and from Theorem 2.21. Note that weak games are par-
ity games with one priority in each strongly connected component. q.e.d.

Obviously, given a CTL formula ϕ, a transition system S , and a state
sI one can directly construct a game that reflects whether S , sI |= ϕ. This
game would be called the model checking game for S , sI , and ϕ. The
construction via the alternating automaton has the advantage that starting
from this automaton one can solve both, model checking and satisfiability,
the latter by using a translation from alternating Büchi tree automata into
nondeterministic tree automata. We present such a translation in Section 6.

The translation from CTL into very weak alternating automata has an-
other interesting feature. Just as the translation from LTL to weak alter-
nating automata, it has a converse. More precisely, following the lines of
the proof of Theorem 4.9, one can prove:

Theorem 5.11. Every very weak alternating tree automaton is equivalent
to a CTL formula. q.e.d.

5.4 Notes
The two specification logics that we have dealt with, LTL and CTL, can
easily be combined into a single specification logic. This led Emerson and
Halpern to introduce CTL∗ in 1986 [38].

An automata-theoretic proof of Corollary 5.7 was given first by Vardi
and Wolper in 1986 [125]. Kupferman, Vardi, and Wolper, when proposing
an automata-theoretic approach to CTL model checking in [71], also showed
how other model checking problems can be solved following the automata-
theoretic paradigm. One of their results is that CTL model checking can
be solved in space polylogarithmic in the size of the transition system.



Automata: from logics to algorithms 711

6 Modal µ-calculus

The logics that have been discussed thus far—S1S, S2S, LTL, and CTL—
could be termed declarative in the sense that they are used to describe
properties of sequences, trees, or transition systems rather than to specify
how it can be determined whether such properties hold. This is different for
the logic we discuss in this section, the modal µ-calculus (MC), introduced
by Kozen in 1983 [66]. This calculus has a rich and deep mathematical
and algorithmic theory, which has been developed over more than 20 years.
Fundamental work on it has been carried out by Emerson, Streett, and Jutla
[114, 40], Walukiewicz [129], Bradfield and Lenzi [79, 11], and others, and it
has been treated extensively in books, for instance, by Arnold and Niwiński
[6] and Stirling [110]. In this section, we study satisfiability (and model
checking) for MC from an automata-theoretic perspective. Given that MC
is much more complex than LTL or CTL, our exposition is less detailed,
but gives a good impression of how the automata-theoretic paradigm works
for MC.

6.1 MC and monadic second-order logic
MC is a formal language consisting of expressions which are evaluated in
transition systems; every closed expression (without free variables) is evalu-
ated to a set of states. The operations available for composing sets of states
are boolean operations, local operations, and fixed point operations.

Formally, the set of MC expressions is the smallest set containing

• p and ¬p for any propositional variable p,

• any fixed-point variable X,

• ϕ ∧ ψ and ϕ ∨ ψ if ϕ and ψ are MC expressions,

• 〈 〉ϕ and [ ]ϕ if ϕ is an MC expression, and

• µXϕ and νXϕ if X is a fixed-point variable and ϕ an MC expression.

The operators µ and ν are viewed as quantifiers in the sense that one says
they bind the following variable. As usual, an expression without free oc-
currences of variables is called closed. The set of all variables occurring
free in an MC expression ϕ is denoted by free(ϕ). An expression is called a
fixed-point expression if it starts with µ or ν.

To define the semantics of MC expressions, let ϕ be an MC expression
over some finite set P of propositional variables, S a transition system,
and α a variable assignment which assigns to every fixed-point variable a
set of states of S . The value of ϕ with respect to S and α, denoted ||ϕ||αS ,



712 M. Y. Vardi, Th. Wilke

is defined as follows. The fixed-point variables and the propositional vari-
ables are interpreted according to the variable assignment and the transition
system:

||p||αS = {s ∈ SS : p ∈ lS (s)}, ||¬p||αS = {s ∈ SS : p /∈ lS (s)},

and

||X||αS = α(X).

Conjunction and disjunction are translated into union and intersection:

||ϕ ∧ ψ||αS = ||ϕ||αS ∩ ||ψ||αS , ||ϕ ∨ ψ||αS = ||ϕ||αS ∪ ||ψ||αS .

The two local operators, 〈 〉 and [ ], are translated into graph-theoretic op-
erations:

||〈 〉ϕ||αS = {s ∈ S : sucsS (s) ∩ ||ϕ||αS 6= ∅},
||[ ]ϕ||αS = {s ∈ S : sucsS (s) ⊆ ||ϕ||αS }.

The semantics of the fixed-point operators is based on the observation that
for every expression ϕ, the function S′ 7→ ||ϕ||α[X 7→S′]

S is a monotone func-
tion on 2S with set inclusion as ordering, where α[X 7→ S′] denotes the
variable assignment which coincides with α, except for the value of the vari-
able X, which is S′. The Knaster–Tarski Theorem then guarantees that
this function has a least and a greatest fixed point:

||µXϕ||αS =
⋂ {

S′ ⊆ S : ||ϕ||α[X 7→S′]
S = S′

}
,

||νXϕ||αS =
⋃ {

S′ ⊆ S : ||ϕ||α[X 7→S′]
S = S′

}
.

In the first equation the last equality sign can be replaced by ⊆, while in the
second equation it can be replaced by ⊇. The above equations are—contrary
to what was said at the beginning of this section—declarative rather than
operational, but this can easily be changed because of the Knaster–Tarski
Theorem. For a given system S , a variable assignment α, an MC expres-
sion ϕ, and a fixed-point variable X, consider the ordinal sequence (Sλ)λ,
called approximation sequence for ||µXϕ||αS , defined by

S0 = ∅, Sλ+1 = ||ϕ||α[X 7→Sλ]
S , Sλ′ =

⋃
λ<λ′

Sλ,

where λ′ stands for a limit ordinal. Because of monotonicity, we have S0 ⊆
S1 ⊆ . . . . The definition of the sequence implies that if Sλ = Sλ+1 for any λ,



Automata: from logics to algorithms 713

then Sλ′ = Sλ = ||µXϕ||αS for all λ′ ≥ λ. Clearly, we have λ ≤ card(S)
for the smallest such λ, which, for finite transition systems, means there is
a simple (recursive) way to evaluate µXϕ. The same holds true for νXϕ,
where the approximation is from above, that is, S0 = S and the inclusion
order is reversed.

For notational convenience, we also use S , α, s |= ϕ to denote s ∈ ||ϕ||αS
for any state s ∈ S. When ϕ is a closed MC expression, then the variable
assignment α is irrelevant for its interpretation, so we omit it and simply
write ||ϕ||S or S , s |= ϕ.

For examples of useful expressions, recall the CTL formula (1.3) from
Section 5.1. We can express its subformula EFpd by

ϕinner = µX(pd ∨ 〈 〉X),

so that the full formula can be written as

νY (ϕinner ∧ [ ]Y ).

In a similar fashion, (1.4) can be expressed:

νY ((¬pr ∨ µX(pa ∨ [ ]X)) ∧ [ ]Y ).

It is more complicated to express the LTL formula (1.5); it needs a nested
fixed-point expression with mutually dependent fixed-point variables. We
first build an expression which denotes all states from which on all paths a
state is reachable where p is true and which belongs to a set Y :

ϕ′inner = µX((p ∧ Y ) ∨ [ ]X).

Observe that Y occurs free in ϕ′inner. The desired expression can then be
phrased as a greatest fixed point:

νY ϕ′inner.

It is no coincidence that we are able to express the two CTL formulas in
MC:

Proposition 6.1. For every CTL formula ϕ there exists a closed MC ex-
pression ϕ̃ such that for every transition system S and s ∈ S,

S , s |= ϕ iff S , s |= ϕ̃.

Proof. The proof is a straightforward induction. We describe one case of
the inductive step. Assume ψ and χ are CTL formulas and ψ̃ and χ̃ are
MC expressions such that the claim holds. We consider ϕ = E(ψ XUχ) and



714 M. Y. Vardi, Th. Wilke

want to construct ϕ̃ as desired. We simply express the semantics of ϕ by a
fixed-point computation:

ϕ̃ = 〈 〉µX(χ̃ ∨ (ψ̃ ∧ 〈 〉X̃)).

The other cases can be dealt with in the same fashion. q.e.d.

The next observation is that as far as satisfiability is concerned, we can
restrict our considerations to trees, just as with CTL (recall Lemma 5.1).

Lemma 6.2. For every MC expression ϕ, transition system S , variable
assignment α, and state s ∈ S,

S , α, s |= ϕ iff Ts(S ), α |= ϕ.

(Recall that when we view a tree as a transition system, then we interpret
formulas in the root of the tree unless stated otherwise.)

Proof. This can be proved by a straightforward induction on the structure
of ϕ, using the following inductive claim:

{v ∈ V Ts(S ) : S , α, v(∗) |= ϕ} = ||ϕ||αTs(S ).

This simply says that with regard to MC, there is no difference between a
state s′ in a given transition system S and every vertex v with v(∗) = s′

in the unraveling of S . q.e.d.

Just as with CTL, the lemma allows us to work henceforth in the tree
framework. For a closed MC expression ϕ with propositional variables from
a set P = {p0, . . . , pn−1}, the tree language defined by ϕ, denoted L (ϕ), is
the set of all trees T over 2P such that T |= ϕ.

The next observation is that every MC expression can be translated into
a monadic second-order formula, similar to Proposition 5.2. Before we can
state the result, we define an appropriate equivalence relation between SUS
formulas and MC expressions. Recall that an SUS formula is true or not
for a given tree, while an MC expression evaluates to a set of vertices.

Let P = {p0, . . . , pn−1} be a set of propositional variables and ϕ an
MC expression over P with free fixed-point variables among X0, . . . , Xm−1.
We view the variables X0, . . . , Xm−1 as further propositional variables and
identify each Xi with a set variable Vi and each pj with a set variable Vm+j .
So we can interpret ϕ and every SUS formula ψ = ψ(V0, . . . , Vm+n−1) in
trees over [2]m+n. We say ϕ is equivalent to such a formula ψ if L (ϕ) =
L (ψ).

Proposition 6.3. For every MC expression ϕ, an equivalent SUS formula
ϕ̃ can be constructed.



Automata: from logics to algorithms 715

Proof. This can be proved by induction on the structure of ϕ, using a more
general claim. For every MC expression ϕ as above, we construct an SUS
formula ϕ̂ = ϕ̂(V0, . . . , Vm+n−1, z) such that for every tree T over [2]m+n

and v ∈ V T , we have:

T ↓v |= ϕ iff T , v |= ϕ̂(V0, . . . , Vm+n−1, z),

where T , v |= ϕ̂(V0, . . . , Vm+n−1, z) is defined in the obvious way, see Sec-
tion 4.1 for a similar definition in the context of LTL. We can then set
ϕ̃ = ∃x(∀y(¬suc(y, x) ∧ ϕ̂(V0, . . . , Vm+n−1, x))).

The interesting cases in the inductive step are the fixed-point operators.
So let ϕ = µXiψ and assume ψ̂ is already given. The formula ϕ̂ simply says
that z belongs to a fixed point and that every other fixed point is a superset
of it:

ϕ̂ = ∃Z(z ∈ Z ∧ ∀z′(ψ̂(. . . , Vi−1, Z, Vi+1, . . . , z
′) ↔ z′ ∈ Z) ∧

∀Z ′(∀z′(ψ(. . . , Vi−1, Z
′, Vi+1, . . . , z

′) ↔ z′ ∈ Z ′) → Z ⊆ Z ′)).

For the greatest fixed-point operator, the construction is analogous. q.e.d.

As a consequence, we can state:

Corollary 6.4 (Kozen-Parikh, [67]). MC satisfiability is decidable.

But, just as with LTL and CTL, by a translation into monadic second-
order logic we get only a nonelementary upper bound for the complexity.

6.2 From MC to alternating tree automata
Our overall objective is to derive a good upper bound for the complexity of
MC satisfiability. The key is a translation of MC expressions into nondeter-
ministic tree automata via alternating parity tree automata. We start with
the translation of MC expressions into alternating parity tree automata.

Alternating parity tree automata are defined exactly as nondeterminis-
tic Büchi tree automata are defined in Section 5.3 except that the Büchi
acceptance condition is replaced by a parity condition π.

Just as with LTL and CTL, the translation into alternating automata
reflects the semantics of the expressions in a direct fashion. The fixed-point
operators lead to loops, which means that the resulting tree automata will
no longer be very weak (not even weak). For least fixed points these loops
may not be traversed infinitely often, while this is necessary for greatest
fixed points. To control this, priorities are used: Even priorities are used for
greatest fixed-points, odd priorities for least fixed points. Different priorities
are used to take into account the nesting of fixed points, the general rule
being that outer fixed points have smaller priorities, because they are more
important.



716 M. Y. Vardi, Th. Wilke

For model checking, it will be important to make sure as few different
priorities as possible are used. That is why a careful definition of alternation
depth is needed. In the approach by Emerson and Lei [41], one counts the
number of alternations of least and greatest fixed points on the paths of the
parse tree of a given expression. Niwiński’s approach [92] yields a coarser
hierarchy, which gives better upper bounds for model checking. It requires
that relevant nested subexpressions are “mutually recursive”.

Let ≤ denote the relation “is subexpression of”, that is, ψ ≤ ϕ if ψ ∈
sub(ϕ). Let ϕ be an MC expression. An alternating µ-chain in ϕ of length
l is a sequence

ϕ ≥ µX0ψ0 > νX1ψ1 > µX2ψ2 > · · · > µ/νXl−1ψl−1 (1.6)

where, for every i < l − 1, the variable Xi occurs free in every formula ψ
with ψi ≥ ψ ≥ ψi+1. The maximum length of an alternating µ-chain in ϕ
is denoted by mµ(ϕ). Symmetrically, ν-chains and mν(ϕ) are defined. The
alternation depth of a µ-calculus expression ϕ is the maximum of mµ(ϕ)
and mν(ϕ) and is denoted by d(ϕ).

We say an MC expression is in normal form if for every fixed-point
variable X occurring the following holds:

• every occurrence of X in ϕ is free or

• all occurrences of X in ϕ are bound in the same subexpression µXψ
or νXψ, which is then denoted by ϕX .

Clearly, every MC expression is equivalent to an MC expression in normal
form.

The full translation from MC into alternating parity tree automata can
be found in Figure 27, where the following notation is used. When ϕ is an
MC expression and µXψ ∈ sub(ϕ), then

dϕ(µXψ) =

{
d(ϕ) + 1− 2dd(µXψ)/2e, if d(ϕ) mod 2 = 0,
d(ϕ)− 2bd(µXψ)/2c, otherwise.

Similarly, when νXψ ∈ sub(ϕ), then

dϕ(νXψ) =

{
d(ϕ)− 2bd(νXψ)/2c, if d(ϕ) mod 2 = 0,
d(ϕ) + 1− 2dd(νXψ)/2e, otherwise.

This definition reverses alternation depth so it can be used for defining the
priorities in the alternating parity automaton for an MC expression. Recall
that we want to assign priorities such that the higher the alternation depth
the lower the priority and, at the same time, even priorities go to ν-formulas



Automata: from logics to algorithms 717

Let ϕ be a closed MC expression in normal form and Q a
set which contains for every ψ ∈ sub(ϕ) a state [ψ]. The
alternating parity tree automaton for ϕ, denoted A [ϕ], is
defined by

A [ϕ] = (P,Q, ϕ, δ, π)

where the transition function is given by

δ([p]) = p, δ([¬p]) = ¬p,
δ([ψ ∨ χ]) = [ψ] ∨ [χ], δ([ψ ∧ χ]) = [ψ] ∧ [χ],
δ([〈 〉ψ]) = 3[ψ], δ([[ ]ψ]) = 2[ψ],
δ([µXψ]) = [ψ], δ([νXψ]) = [ψ],
δ([X]) = [ϕX ],

and where

π([ψ]) = dϕ(ψ)

for every fixed-point expression ψ ∈ sub(ϕ).

Figure 27. From µ-calculus to alternating tree automata

and odd priorities to µ-formulas. This is exactly what the above definition
achieves.

It is obvious that A [ϕ] will have d(ϕ) + 1 different priorities in general,
but from a complexity point of view, these cases are not harmful. To explain
this, we introduce the notion of index of an alternating tree automaton.
The transition graph of an alternating tree automaton A is the graph with
vertex set Q and where (q, q′) is an edge if q′ occurs in δ(q). The index of
A is the maximum number of different priorities in the strongly connected
components of the transition graph of A . Clearly, A [ϕ] has index d(ϕ).

Theorem 6.5 (Emerson-Jutla, [40]). Let ϕ be an MC expression in normal
form with n subformulas. Then A [ϕ] is an alternating parity tree automa-
ton with n states and index d(ϕ) such that L (A [ϕ]) = L (ϕ).

To be more precise, A [ϕ] may have d(ϕ) + 1 different priorities, but in
every strongly connected component of the transition graph of A [ϕ] there
are at most d(ϕ) different priorities, see also Theorem 2.21.



718 M. Y. Vardi, Th. Wilke

Proof. The claims about the number of states and the index are obviously
true. The proof of correctness is more involved than the corresponding
proofs for LTL and CTL, because the automata which result from the trans-
lation are, in general, not weak.

The proof of the claim is by induction on the structure of ϕ. The base
case is trivial and so are the cases in the inductive step except for the
cases where fixed-point operators are involved. We consider the case where
ϕ = µXψ.

So assume ϕ = µXψ and T |= ϕ. Let f : 2V → 2V be defined by
f(V ′) = ||ψ||X 7→V ′

T . Let (Vλ)λ be the sequence defined by V0 = ∅, Vλ+1 =
f(Vλ), and Vλ′ =

⋃
λ<λ′ Vλ for limit ordinals λ′. We know that f has a

least fixed point, which is the value of ϕ in T , and that there exists κ such
that Vκ is the least fixed-point of f . We show by induction on λ that there
exists an accepting run of A [ϕ] on T ↓v for every v ∈ Vλ. This is trivial
when λ = 0 or when λ is a limit ordinal. When λ is a successor ordinal, say
λ = λ0 + 1, then Vλ = f(Vλ0). Consider the automaton A [ψ] where X is
viewed as a propositional variable. By the outer induction hypothesis, there
exists an accepting run R of A [ψ] on T [X 7→ Vλ0 ]↓v, where T [X 7→ Vλ0 ]
is the obvious tree over 2P∪{X}. We can turn R into a prefix R′ of a run of
A [ϕ] on T ↓v by adding a new root labeled ([ϕ], v) to it. Observe that some
of the leaves w of R′ may be labeled (X, v′) with v′ ∈ Vλ0 . For each such
v′ there exists, by the inner induction hypothesis, an accepting run Rv′ of
A [ϕ] on T ↓v. Replacing w by Rv′ for every such leaf w yields a run R̂
of A [ϕ] on T ↓v. We claim this run is accepting. To see this, observe that
each infinite branch of R̂ is an infinite branch of R′ or has an infinite path
of Rv′ for some v′ as a suffix. In the latter case, the branch is accepting
for a trivial reason, in the former case, the branch is accepting because the
priorities in A [ψ] differ from the priorities in A [ϕ] by a fixed even number.
This completes the inductive proof. Since, by assumption, the root of T
belongs to Vκ, we obtain the desired result.

For the other direction, assume T is accepted by A [ϕ], say by a run R.
Let W be the set of all w ∈ V R such that ϕ is the first component of lR(w).
Observe that because of the definition of the priority function π there can
only be a finite number of elements from W on each branch of R. This is
because the priority function π is defined in a way such that if ψ ∈ sub(ϕ)
is a fixed-point formula with [ψ] in the strongly connected component of [ϕ]
in the transition graph of A [ϕ], then π([ϕ]) ≤ π([ψ]).

Consider the sequence (Vλ)λ of subsets of V R defined as follows:

• V0 = ∅,

• w ∈ Vλ+1 if all proper descendants of w in R belong to Vλ ∪ V R \W ,
and



Automata: from logics to algorithms 719

• Vλ′ =
⋃
λ<λ′ Vλ for every limit ordinal λ′.

Using the induction hypothesis, one can prove by induction on λ that for
every w ∈ Vλ the second component of its label belongs to ||ϕ||T .

Since there are only a finite number of elements from W on each branch
of Vλ, one can also show that root(R) ∈W , which proves the claim. q.e.d.

Before we turn to the conversion of alternating into nondeterministic
parity tree automata, we discuss model checking MC expressions briefly.
Model checking an MC expression, that is, evaluating it in a finite transition
system is “trivial” in the sense that one can simply evaluate the expression
according to its semantics, using approximation for evaluating fixed-point
operators as explained in Section 6.1. Using the fact that fixed-points of the
same type can be evaluated in parallel one arrives at an algorithm which is
linear in the product of the size of the expression and the size of the system,
but exponential in the depth of the alternation between least and greatest
fixed points.

An alternative approach to model checking MC expressions is to proceed
as with CTL. Given a finite transition system S , an initial state sI ∈ S,
and an expression ϕ, one first constructs the alternating automaton A [ϕ],
then the product game A [ϕ] ×sI

S (with a parity condition rather than
a Büchi condition), and finally solves this game. (Of course, on can also
directly construct the game.) As a consequence of the previous theorem
and Theorem 2.21, one obtains:

Theorem 6.6 (Seidl-Jurdziński, [107, 62]). An MC expression of size l and
alternation depth d can be evaluated in a finite transition system with m
states and n transitions in time O((lm+ ln(lm)bd/2c)). q.e.d.

In fact, there is a close connection between MC model checking and
solving parity games: The two problems are interreducible, which means
all the remarks on the complexity of solving parity games at the end of
Section 2.5 are equally valid for MC model checking.

The above theorem tells us something about AMC, the set of all MC
expressions with alternation depth ≤ 1. These expressions can be evalu-
ated in time linear in the product of the size of the transition system and
the length of the formula, which was first proved by Cleaveland, Klein,
and Steffen [29] in general and by Kupferman, Vardi, and Wolper using
automata-theoretic techniques [71]. This yields a different proof of Theo-
rem 5.10: The straightforward translation from CTL into the µ-calculus,
see Proposition 6.1, yields alternation-free expressions of linear size. From
a practical point, it is interesting to note that model checking tools indeed
use the translation of CTL into AMC, see [84].



720 M. Y. Vardi, Th. Wilke

6.3 From alternating to nondeterministic tree automata
In view of Theorem 6.5, what we need to solve MC satisfiability is a transla-
tion of alternating tree automata into nondeterministic tree automata, be-
cause we already know how to decide emptiness for these automata. To be
precise, we proved this only for Büchi acceptance conditions, see Figure 24,
but this extends to parity tree automata in a straightforward manner.

One way of achieving a translation from alternating into nondeterminis-
tic automata is to proceed in two steps, where the intermediate result is an
alternating automaton with very restrictive transition conditions. We say
a transition condition is in normal form if it is a disjunction of transition
conditions of the form ∧

q∈QA

2q ∧
∧
q∈QE

3q.

The conversion of an ordinary alternating tree automaton into an alter-
nating tree automaton with transition conditions in normal form is similar to
removing ε-transitions. We describe it here for the case where the transition
conditions are simpler as in the general case, namely where each subformula
2γ or 3γ is such that γ is a state. Observe that all the transition conditions
in the construction described in Figure 27 are of this form. At the same
time, we change the format of the transition function slightly. We say an
alternating automaton is in normal form if its transition function δ is of
the form δ : Q × 2P → TC(P,Q) where δ(q, a) is a transition condition in
normal form for q ∈ Q and a ∈ 2P . The notion of a run of an alternating
automaton is adapted appropriately.

To convert alternating automata into normal form, we start with a cru-
cial definition. Let A be an alternating parity tree automaton, a ∈ 2P , and
q ∈ Q. We say a tree R labeled with transition conditions is a transition
tree for q and a if its root is labeled q and every vertex w with label γ
satisfies the following conditions:

• if γ = p, then p ∈ a, and if γ = ¬p, then p /∈ a,

• if γ = q′, then there exists w′ ∈ sucsR(w) such that lR(w′) = δ(q′),

• if γ = 3q′ or γ = 2q′, then w has no successor,

• if γ = γ0 ∨ γ1, then there exists i < 2 and w′ ∈ sucsR(w) such that
lR(w′) = γi,

• if γ = γ0 ∧ γ1, then for every i < 2 there exists w′ ∈ sucsR(w) such
that lR(w′) = γi.



Automata: from logics to algorithms 721

Let A be an alternating parity tree automaton. The normal-
ization of A is the alternating parity tree automaton A norm

defined by

A norm = (P,Q× π(Q), (qI , j), δ′, π′)

where

• j is any element of π(Q),

• π′((q, i)) = i for all q ∈ Q and i ∈ π(Q), and

• δ′((q, i), a) =
∨
γR for q ∈ Q, i ∈ π(Q), and a ∈ 2P ,

with R ranging over all transition trees for q and a.

Figure 28. Normalizing transition conditions of alternating tree automata

Further, every infinite branch of R is accepting with respect to π.
A transition tree as above can easily be turned into a transition condition

in normal form over an extended set of states, namely Q̄ = Q× π(Q). The
second component is used to remember the minimum priority seen on a path
of a transition tree, as explained below. Let QA be the set of pairs (q′, i)
such that 2q′ is a label of a leaf of R, say w, and i is the minimum priority
on the path from the root of R to w. Similarly, let QE be the set of pairs
(q′, i) such that 3q′ is a label of a leaf of R, say w, and i is the minimum
priority on the path from the root of R to w. The transition condition for
the transition tree R, denoted γR, is defined by

γR =
∧

(q′,i)∈QA

2(q′, i) ∧
∧

(q′,i)∈QE

3(q′, i).

The entire normalization construction is depicted in Figure 28.

Lemma 6.7. Let A be an alternating parity tree automaton with n states
and k different priorities. Then A norm is an alternating parity tree automa-
ton in normal form with kn states and k different priorities. q.e.d.

The second step in our construction is a conversion of an alternating
automaton in normal form into a nondeterministic tree automaton, similar
to the conversion of universal parity tree automata into nondeterministic
tree automata explained in Section 3.3. Again, we heavily draw on the



722 M. Y. Vardi, Th. Wilke

generic automaton introduced in that section. Recall that given a finite state
set Q and a priority function π, the generic automaton is a deterministic
automaton over Q, the alphabet consisting of all binary relations over Q,
which accepts a word u ∈ Qω if all v ∈ 〈u〉 satisfy the parity condition π.

Given an alternating automaton in normal form, a set Q′ ⊆ Q, and a
letter a ∈ 2P , a pair (Q′, R) with Q′ ⊆ Q and R ∈ Q is a choice for Q′ and
a if for every q ∈ Q′ there exists a disjunct in δ(q) of the form∧

q′∈QA
q

2q′ ∧
∧

q′∈QE
q

3q′

such that the following conditions are satisfied:

(i) R = {(q, q′) : q ∈ Q′ ∧ q′ ∈ QA
q },

(ii) R ⊆ R′ for every R′ ∈ Q′,

(iii) for every q ∈ Q′ and every q′ ∈ QE
q there exists R′ ∈ Q′ such that

(q, q′) ∈ R′, and

(iv) |Q′| ≤ |Q| × |Q|+ 1.

For a set Q′ ⊆ Q and a relation R ⊆ Q × Q, we write Q′R for the set
{q′ ∈ Q : ∃q(q ∈ Q′ ∧ (q, q′) ∈ R}.

The details of the conversion from alternating parity tree automata in
normal form into nondeterministic tree automata can be found in Figure 29.
It is analogous to the construction depicted in Figure 16, which describes
how a universal parity tree automaton over binary trees can be turned into
a nondeterministic parity tree automaton. The situation for alternating
automata is different in the sense that the transition conditions of the form
3q′ have to be taken care of, too, but this is captured by (iii) in the above
definition.

Lemma 6.8. Let A be an alternating parity automaton in normal form
with n states and k different priorities. Then And is an equivalent nondeter-
ministic automaton with a number of states exponential in n and a number
of priorities polynomial in n.

Proof. The claims about the number of states and number of priorities are
obvious. The correctness proof can be carried out almost in the same fashion
as the proof of Lemma 3.10, except for one issue. In order to see that it
is admissible to merge all branches of a run on a certain branch of a given
tree into one element of Qω, one has to use Theorem 2.20, the memoryless
determinacy of parity games. q.e.d.



Automata: from logics to algorithms 723

Let A be an alternating parity tree automaton in normal
form and B = A [QA , πA ] the generic automaton for QA

and πA .

The nondeterministic automaton A nd is defined by

A nd = (2P , 2Q
A

×QB, ({qA
I }, qB

I ),∆, π)

where π((Q′, q)) = πB(q) and
((Q′, q), q, Q̄, {(Q′R′, δB(q,R′))}) ∈ ∆ if there exists a
choice (Q′, R) for Q′ and a such that

Q̄ = {(Q′R, δB(q,R)) : R ∈ Q′}.

Figure 29. From alternating to nondeterministic tree automata

As a consequence of Theorem 6.5 and Lemmas 6.7 and 6.8, we obtain:

Corollary 6.9. (Emerson-Streett-Jutla, [40]) Every MC expression can be
translated into an equivalent nondeterministic parity tree automaton with
an exponential number of states and a polynomial number of different pri-
orities.

In view of Lemma 5.6 and Theorem 2.21, we can also conclude:

Corollary 6.10 (Emerson-Jutla, [39]). MC satisfiability is complete for
exponential time.

For the lower bound, we refer to [39]. We finally note that a converse of
Corollary 6.9 also holds:

Theorem 6.11 (Niwiński-Emerson-Jutla-Janin-Walukiewicz, [93, 40, 59]).
Let P be a finite set of propositional variables. For every alternating parity
tree automaton and every nondeterministic tree automaton over 2P , there
exists an equivalent closed MC expression.

6.4 Notes
Satisfiability for MC is not only complexity-wise simpler than satisfiabil-
ity for S2S. The proofs for showing decidability of satisfiability for S2S all
make use of a determinization construction for automata on infinite words.
The “safraless decision procedures” advocated by Kupferman and Vardi



724 M. Y. Vardi, Th. Wilke

[75] avoid this, but they still use the fact that equivalent deterministic word
automata of a bounded size exist.

The nondeterministic tree automaton models for SUS and MC are not
only similar on the surface: A fundamental result by Janin and Walukiewicz
[60] states that the bisimulation-invariant tree languages definable in SUS
are exactly the tree languages definable in MC, where the notion of bisimu-
lation exactly captures the phenomenon that MC expressions (just as CTL
formulas) are resistant against duplicating subtrees.

MC has been extended in various ways with many different objectives.
With regard to adding to its expressive power while retaining decidability,
one of the most interesting results is by Grädel and Walukiewicz [53], which
says that satisfiability is decidable for guarded fixed-point logic. This logic
can be seen as an extension of the modal µ-calculus insofar as guarded logic
is considered a natural extension of modal logic, and guarded fixed-point
logic is an extension of guarded logic just as modal µ-calculus is an extension
of model logic by fixed-point operators. For further extensions, see [78, 127]
and [68]. Other important work with regard to algorithmic handling of MC
was carried out by Walukiewicz in [130], where he studies the evaluation of
MC expressions on pushdown graphs.

References

[1] C. S. Althoff, W. Thomas, and N. Wallmeier. Observations on deter-
minization of büchi automata. Theor. Comput. Sci., 363(2):224–233,
2006.

[2] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M. Vardi,
and Y. Zbar. The ForSpec temporal logic: A new temporal property-
specification logic. In J.-P. Katoen and P. Stevens, editors, Tools
and Algorithms for the Construction and Analysis of Systems, 8th
International Conference, TACAS 2002, Held as Part of the Joint
European Conference on Theory and Practice of Software, ETAPS
2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2280
of Lecture Notes in Computer Science, pages 296–211. Springer, 2002.

[3] R. Armoni, D. Korchemny, A. Tiemeyer, and M. Y. V. Y. Zbar. Deter-
ministic dynamic monitors for linear-time assertions. In Proc. Work-
shop on Formal Approaches to Testing and Runtime Verification, vol-
ume 4262 of Lecture Notes in Computer Science. Springer, 2006.

[4] A. Arnold. Rational omega-languages are non-ambiguous. Theor.
Comput. Sci., 26:221–223, 1983.



Automata: from logics to algorithms 725

[5] A. Arnold, J. Duparc, D. Niwiński, and F. Murlak. On the topological
complexity of tree languages. This volume.

[6] A. Arnold and D. Niwiński. Rudiments of µ-Calculus. Elsevier, Am-
sterdam, The Netherlands, 2001.

[7] M. Ben-Ari, Z. Manna, and A. Pnueli. The logic of nexttime. In Proc.
8th ACM Symp. on Principles of Programming Languages (POPL),
pages 164–176, 1981.

[8] D. Berwanger, A. Dawar, P. Hunter, and S. Kreutzer. Dag-width and
parity games. In B. Durand and W. Thomas, editors, STACS 2006,
23rd Annual Symposium on Theoretical Aspects of Computer Science,
Marseille, France, February 23–25, 2006, Proceedings, volume 3884
of Lecture Notes in Computer Science, pages 524–536, 2006.

[9] A. Blumensath, T. Colcombet, and C. Löding. Logical theories and
compatible operations. This volume.

[10] M. Bojanczyk. The common fragment of ctl and ltl needs existen-
tial modalities. Available as http://www.mimuw.edu.pl/∼bojan/
papers/paradox.pdf, 2007.

[11] J. C. Bradfield. The modal µ-calculus alternation hierarchy is strict.
Theor. Comput. Sci., 195(2):133–153, 1998.

[12] J. R. Büchi. Using determinancy of games to eliminate quantifiers. In
FCT, pages 367–378, 1977.

[13] R. M. Burstall. Program proving as hand simulation with a little
induction. In Information Processing 74, pages 308–312, Stockholm,
Sweden, Aug. 1974. International Federation for Information Process-
ing, North-Holland Pub. Co.

[14] D. Bustan, A. Flaisher, O. Grumberg, O. Kupferman, and M. Y.
Vardi. Regular vacuity. In Proc. 13th Conf. on Correct Hardware
Design and Verification Methods, volume 3725 of Lecture Notes in
Computer Science, pages 191–206. Springer, 2005.

[15] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Prob-
lems. Springer, 1997.

[16] J. R. Büchi. Weak second-order arithmetic and finite automata.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik,
6:66–92, 1960.



726 M. Y. Vardi, Th. Wilke

[17] J. R. Büchi. On a decision method in restricted second-order arith-
metic. In E. Nagel, P. Suppes, and A. Tarski, editors, Logic, Method-
ology, and Philosophy of Science: Proc. of the 1960 International
Congress, pages 1–11, Stanford, Calif., 1962. Stanford University
Press.

[18] J. R. Büchi. Decision methods in the theory of ordinals. Bull. Am.
Math. Soc, 71:767–770, 1965.

[19] J. R. Büchi and L. H. Landweber. Solving sequential conditions by
finite-state strategies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[20] A. Carayol and C. Löding. MSO on the infinite binary tree: Choice
and order. In CSL’07, volume 4646 of LNCS, pages 161–176. Springer,
2007.

[21] O. Carton, D. Perrin, and J.-É. Pin. Automata and semigroups rec-
ognizing infinite words. This volume.

[22] D. Caucal. Deterministic graph grammars. This volume.

[23] A. Church. Application of recursive arithmetics to the problem of
circuit analysis. In I. f. D. A. Communications Research Division,
editor, Summaries of Talks Presented at the Summer Institute for
Symbolic Logic, Ithaca, Cornell University, July 1957, pages 3–50,
1960.

[24] A. Church. Logic, arithmetics, and automata. In I. Mittag-Leffler,
editor, Proc. Int. Congress of Mathematicians, 1962, pages 23–35,
1963.

[25] A. Cimatti, M. Roveri, S. Semprini, and S. Tonetta. From psl to nba:
A modular symbolic encoding. In Proc. 6th Int’l Conf. on Formal
Methods in Computer-Aided design, 2006.

[26] E. M. Clarke and I. A. Draghicescu. Expressibility results for
linear-time and branching-time logics. In Linear Time, Branch-
ing Time and Partial Order in Logics and Models for Concurrency,
School/Workshop, Noordwijkerhout, The Netherlands, May 30–June
3, 1988, Proceedings, volume 354 of Lecture Notes in Computer Sci-
ence, pages 428–437. Springer, 1988.

[27] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic specifications:
a practical approach. In ACM, editor, Conference Record of the Tenth
Annual ACM Symposium on Principles of Programming Languages,
pages 117–126, Austin, Texas, 1983. ACM Press.



Automata: from logics to algorithms 727

[28] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification
of finite-state concurrent systems using temporal logic. ACM Trans-
actions on Programming Languages and Systems, 8(2):244–263, Apr.
1986.

[29] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for
the modal µ-calculus. In G. von Bochmann and D. K. Probst, editors,
Computer Aided Verification, Fourth International Workshop, CAV
’92, Montreal, Canada, June 29 – July 1, 1992, Proceedings, volume
663 of Lecture Notes in Computer Science, pages 410–422. Springer,
1992.

[30] V. Diekert and P. Gastin. First-order definable languages. This vol-
ume.

[31] J. Doner. Tree acceptors and some of their applications. J. Comput.
Syst. Sci., 4(5):406–451, Oct. 1970.

[32] M. Droste and P. Gastin. Weighted automata and weighted logics. In
L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung,
editors, Automata, Languages and Programming, 32nd International
Colloquium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Pro-
ceedings, volume 3580 of Lecture Notes in Computer Science, pages
513–525. Springer, 2005.

[33] W. Ebinger and A. Muscholl. Logical definability on infinite traces.
In A. Lingas, R. Karlsson, and S. Carlsson, editors, Automata, Lan-
guages and Programming: 20th International Colloquium, volume 700
of Lecture Notes in Computer Science, pages 335–346, Lund, Sweden,
1993. EATCS, Springer.

[34] C. Eisner and D. Fisman. A Practical Introduction to PSL. Springer,
2006.

[35] C. C. Elgot. Decision problems of finite automata design and related
arithmetics. Trans. Amer. Math. Soc., 98:21–51, Jan. 1961.

[36] E. A. Emerson and E. M. Clarke. Using branching time temporal
logic to synthesize synchronization skeletons. Sci. Comput. Program.,
2(3):241–266, 1982.

[37] E. A. Emerson and J. Y. Halpern. Decision procedures and expres-
siveness in the temporal logic of branching time. J. Comput. System
Sci., 30:1–24, 1985.



728 M. Y. Vardi, Th. Wilke

[38] E. A. Emerson and J. Y. Halpern. Sometimes and not never revisited:
On branching versus linear time. J. Assoc. Comput. Mach., 33(1):151–
178, 1986.

[39] E. A. Emerson and C. S. Jutla. The complexity of tree automata and
logics of programs (extended abstract). In 32nd Annual Symposium on
Foundations of Computer Science, pages 328–337, San Juan, Puerto
Rico, 1991. IEEE.

[40] E. A. Emerson and C. S. Jutla. Tree automata, mu-calculus and de-
terminacy. In 32nd Annual Symposium on Foundations of Computer
Science, pages 368–377, San Juan, Puerto Rico, October 1991. IEEE.

[41] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments
of the propositional mu-calculus (extended abstract). In 1st IEEE
Symposium on Symposium on Logic in Computer Science, pages 267–
278, Cambridge, Massachusetts, 16–18 June 1986. IEEE Computer
Society.

[42] E. A. Emerson and A. P. Sistla. Deciding branching time logic. In
Proceedings of the Sixteenth Annual ACM Symposium on Theory of
Computing, 1984, Washington, D.C., USA, pages 14–24. ACM, 1984.

[43] E. A. Emerson and A. P. Sistla. Deciding full branching time logic.
Information and Control, 61(3):175–201, 1984.

[44] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to
model checking pushdown automata. In F. Moller, editor, Proc. 2nd
Int. Workshop on Verification of Infinite States Systems, 1997.

[45] M. Fischer and R. Ladner. Propositional dynamic logic of regular
programs. J. Comput. System Sci., 18:194–211, 1979.

[46] E. Friedgut, O. Kupferman, and M. Y. Vardi. Büchi complementation
made tighter. Int. J. Found. Comput. Sci., 17(4):851–868, 2006.

[47] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal
analysis of fairness. In Conference Record of the 12th ACM Symposium
on Principles of Programming Languages, pages 163–173, Las Vegas,
Nev., 1980.

[48] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In
G. Berry, H. Comon, and A. Finkel, editors, Computer Aided Verifi-
cation, 13th International Conference, CAV 2001, Paris, France, July
18-22, 2001, Proceedings, volume 2102 of Lecture Notes in Computer
Science, pages 53–65. Springer, 2001.



Automata: from logics to algorithms 729

[49] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly
automatic verification of linear temporal logic. In P. Dembiski and
M. Sredniawa, editors, Protocol Specification, Testing, and Verifica-
tion, pages 3–18. Chapman & Hall, 1995.

[50] D. Giammarresi and A. Restivo. Matrix based complexity functions
and recognizable picture languages. This volume.

[51] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic
second-order logic over rectangular pictures and recognizability by
tiling systems. Information and Computation, 125(1):32–45, Feb.
1996.

[52] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research [outcome of a Dagstuhl
seminar, February 2001], volume 2500 of Lecture Notes in Computer
Science. Springer, 2002.

[53] E. Grädel and I. Walukiewicz. Guarded fixed point logic. In LICS,
pages 45–54, 1999.

[54] Y. Gurevich and L. Harrington. Trees, automata, and games. In
14th ACM Symposium on the Theory of Computing, pages 60–65, San
Francisco, 1982. ACM Press.

[55] S. Gurumurthy, O. Kupferman, F. Somenzi, and M. Vardi. On com-
plementing nondeterministic Büchi automata. In Proc. 12th Conf. on
Correct Hardware Design and Verification Methods, volume 2860 of
Lecture Notes in Computer Science, pages 96–110. Springer, 2003.

[56] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic in
practice. In E. Brinksma, R. Cleaveland, K. G. Larsen, T. Margaria,
and B. Steffen, editors, TACAS: Tools and Algorithms for Construc-
tion and Analysis of Systems, First International Workshop, TACAS
’95, Aarhus, Denmark, May 19–20, 1995, Proceedings, volume 1019
of Lecture Notes in Computer Science, pages 89–110, 1995.

[57] G. J. Holzmann. The model checker SPIN. IEEE Trans. Software
Engrg., 23(5):279–295, 1997.

[58] N. Immerman and D. Kozen. Definability with bounded number of
bound variables. Information and Computation, 83(2):121–139, Nov.
1989.



730 M. Y. Vardi, Th. Wilke

[59] D. Janin and I. Walukiewicz. Automata for the modal mu-calculus
and related results. In J. Wiedermann and P. Hájek, editors, Math-
ematical Foundations of Computer Science 1995, 20th International
Symposium, MFCS’95, Prague, Czech Republic, August 28 – Septem-
ber 1, 1995, Proceedings (MFCS), pages 552–562, 1995.

[60] D. Janin and I. Walukiewicz. On the expressive completeness of the
propositional mu-calculus with respect to monadic second order logic.
In U. Montanari and V. Sassone, editors, CONCUR ’96, Concur-
rency Theory, 7th International Conference, Pisa, Italy, August 26-
29, 1996, Proceedings, volume 1119 of Lecture Notes in Computer
Science, pages 263–277, 1996.

[61] M. Jurdziński. Deciding the winner in parity games is in UP ∩ co-UP.
Information Processing Letters, 68(3):119–124, November 1998.

[62] M. Jurdziński. Small progress measures for solving parity games. In
H. Reichel and S. Tison, editors, STACS 2000, 17th Annual Sym-
posium on Theoretical Aspects of Computer Science, Lille, France,
February 2000, Proceedings, volume 1770 of Lecture Notes in Com-
puter Science, pages 290–301. Springer, 2000.

[63] M. Jurdziński, M. Paterson, and U. Zwick. A deterministic subexpo-
nential algorithm for solving parity games. In Proceedings of ACM-
SIAM Symposium on Discrete Algorithms, SODA 2006, pages 117–
123. ACM/SIAM, 2006.

[64] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD
thesis, University of California, Los Angeles, Calif., 1968.

[65] N. Klarlund. Progress measures for complementation of ω-automata
with applications to temporal logic. In 32nd Annual Symposium
on Foundations of Computer Science, 1–4 October 1991, San Juan,
Puerto Rico, pages 358–367, 1991.

[66] D. Kozen. Results on the propositional µ-calculus. Theor. Comput.
Sci., 27:333–354, 1983.

[67] D. Kozen and R. Parikh. A decision procedure for the propositional
µ-calculus. In Logics of Programs, volume 164 of Lecture Notes in
Computer Science, pages 313–325. Springer, 1984.

[68] S. Kreutzer and M. Lange. Non-regular fixed-point logics and games.
This volume.

[69] F. Kröger. LAR: A logic of algorithmic reasoning. Acta Informatica,
8(3), August 1977.



Automata: from logics to algorithms 731

[70] O. Kupferman, N. Piterman, and M. Y. Vardi. Model checking linear
properties of prefix-recognizable systems. In Proc 14th Int. Conf. on
Computer Aided Verification, volume 2404 of Lecture Notes in Com-
puter Science, pages 371–385. Springer, 2002.

[71] O. Kupferman, M. Vardi, and P. Wolper. An automata-theoretic ap-
proach to branching-time model checking. J. Assoc. Comput. Mach.,
47(2):312–360, 2000.

[72] O. Kupferman and M. Y. Vardi. Weak alternating automata are not
that weak. In ISTCS, pages 147–158, 1997.

[73] O. Kupferman and M. Y. Vardi. The weakness of self-
complementation. In STACS, pages 455–466, 1999.

[74] O. Kupferman and M. Y. Vardi. Weak alternating automata are not
that weak. ACM Trans. Comput. Logic, 2(3):408–429, 2001.

[75] O. Kupferman and M. Y. Vardi. Safraless decision procedures. In
46th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA, Proceedings
(FOCS), pages 531–542. IEEE Computer Society, 2005.

[76] D. Kähler. Determinisierung von É-Automaten. Diploma thesis, In-
stitut für Informatik, Christian-Albrechts-Universität zu Kiel, 2001.

[77] L. Lamport. “Sometimes” is sometimes “not never” - on the tem-
poral logic of programs. In Proc. 7th ACM Symp. on Principles of
Programming Languages (POPL), pages 174–185, 1980.

[78] M. Lange and C. Stirling. Model checking fixed point logic with chop.
In M. Nielsen and U. Engberg, editors, FoSSaCS, volume 2303 of
Lecture Notes in Computer Science, pages 250–263. Springer, 2002.

[79] G. Lenzi. A hierarchy theorem for the µ-calculus. In F. M. auf der
Heide and B. Monien, editors, Automata, Languages and Program-
ming, 23rd International Colloquium, ICALP96, Paderborn, Ger-
many, 8-12 July 1996, Proceedings, volume 1099 of Lecture Notes in
Computer Science, pages 87–97. Springer, 1996.

[80] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent
programs satisfy their linear specification. In Proc. 12th ACM Symp.
on Principles of Programming Languages”, pages 97–107, 1985.

[81] C. Löding and W. Thomas. Alternating automata and logics over
infinite words. In Proceedings of the IFIP International Conference



732 M. Y. Vardi, Th. Wilke

on Theoretical Computer Science, IFIP TCS2000, volume 1872 of
Lecture Notes in Computer Science, pages 521–535. Springer, 2000.

[82] D. A. Martin. Borel determinacy. Ann. Math., 102:363–371, 1975.

[83] O. Matz and N. Schweikardt. Expressive power of monadic logics on
words, trees, pictures, and graphs. This volume.

[84] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, 1993.

[85] R. McNaughton. Testing and generating infinite sequences by a finite
automaton. Information and Control, 9:521–530, 1966.

[86] M. Michel. Complementation is more difficult with automata on infi-
nite words, 1988.

[87] S. Miyano and T. Hayashi. Alternating finite automata on omega-
words. In CAAP, pages 195–210, 1984.

[88] A. W. Mostowski. Games with forbidden positions. Preprint 78,
Uniwersytet Gdańsk, Instytyt Matematyki, 1991.

[89] D. E. Muller. Infinite sequences and finite machines. In Proceedings
of the 4th Annual IEEE Symposium on Switching Circuit Theory and
Logical Design, pages 3–16, 1963.

[90] D. E. Muller and P. E. Schupp. Alternating automata on infinite ob-
jects, determinacy and rabin’s theorem. In M. Nivat and D. Perrin, ed-
itors, Automata on Infinite Words, Ecole de Printemps d’Informatique
Théorique, Le MontDore, May 14–18, 1984, volume 192 of Lecture
Notes in Computer Science, pages 100–107. Springer, 1985.

[91] D. E. Muller and P. E. Schupp. Simulating alternating tree au-
tomata by nondeterministic automata: New results and new proofs of
the theorems of rabin, mcnaughton and safra. Theor. Comput. Sci.,
141(1&2):69–107, 1995.

[92] D. Niwiński. On fixed point clones. In L. Kott, editor, Automata,
Languages and Programming: 13th International Colloquium, volume
226 of Lecture Notes in Computer Science, pages 464–473, Rennes,
France, 1986. Springer-Verlag, Berlin.

[93] D. Niwinski. Fixed points vs. infinite generation. In Proceedings,
Third Annual Symposium on Logic in Computer Science, 5–8 July
1988, Edinburgh, Scotland, UK (LICS), pages 402–409. IEEE Com-
puter Society, 1988.



Automata: from logics to algorithms 733

[94] D. Niwiński and I. Walukiewicz. Ambiguity problem for automata on
infinite trees. Unpublished note.

[95] D. Perrin. Recent results on automata on infinite words. In L. Kott,
editor, 13th Intern. Coll. on Automata, Languages and Programming,
volume 226 of Lecture Notes in Computer Science, pages 134–148,
Rennes, France, 1986. Springer-Verlag, Berlin.

[96] D. Perrin and J.-É. Pin. Infinite Words: Automata, Semigroups, Logic
and Games. Pure and Applied Mathematics. Elsevier, 2003.

[97] N. Piterman. From nondeterministic büchi and streett automata to
deterministic parity automata. In 21th IEEE Symposium on Logic
in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA,
USA, Proceedings, pages 255–264. IEEE Computer Society, 2006.

[98] A. Pnueli. The temporal logic of programs. In 18th Annual Sym-
posium on Foundations of Computer Science, pages 46–57, Rhode
Island, Providence, 1977. IEEE.

[99] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL, pages 179–190, 1989.

[100] M. O. Rabin. Decidability of second-order theories and finite au-
tomata on infinite trees. Trans. Amer. Math. Soc., 141:1–35, 1969.

[101] M. O. Rabin. Weakly definable relations and special automata. In
Proc. Symp. Mathematical Logic and Foundation of Set Theory, pages
1–23. North Holland, 1970.

[102] K. Reinhardt. The complexity of translating logic to finite automata.
In Automata, Logics, and Infinite Games, pages 231–238, 2001.

[103] G. S. Rohde. Alternating automata and the temporal logic of ordinals.
PhD thesis, University of Illinois at Urbana-Champaign, 1997.

[104] R. Rosner. Modular Synthesis of Reactive Systems. PhD thesis, Weiz-
mann Institute of Science, 1992.

[105] S. Safra. On the complexity of ω-automata. In 29th Annual Sym-
posium on Foundations of Computer Science, pages 319–327, White
Plains, New York, 1988. IEEE.

[106] P. Schnoebelen. The complexity of temporal logic model checking. In
Advances in Modal Logic, pages 393–436. King’s College Publications,
2002.



734 M. Y. Vardi, Th. Wilke

[107] H. Seidl. Fast and simple nested fixpoints. Information Processing
Letters, 59(6):303–308, 1996.

[108] A. P. Sistla and E. M. Clarke. The complexity of propositional lin-
ear temporal logics. In Proceedings of the Fourteenth Annual ACM
Symposium on Theory of Computing, 5–7 May 1982, San Francisco,
California, USA (STOC), pages 159–168. ACM, 1982.

[109] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. Assoc. Comput. Mach., 32(3):733–749, 1985.

[110] C. Stirling. Modal and temporal properties of processes. Springer-
Verlag New York, Inc., New York, NY, USA, 2001.

[111] L. J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. PhD thesis, Dept. of Electrical Engineering, MIT,
Boston, Mass., 1974.

[112] L. J. Stockmeyer and A. R. Meyer. Word problems requiring expo-
nential time. In Fifth Annual ACM Symposium on Theory of Com-
putation, pages 1–9, Austin, Texas, 1973. ACM Press.

[113] R. S. Streett. Propositional dynamic logic of looping and converse.
Inform. Contr., 54:121–141, 1982.

[114] R. S. Streett and E. A. Emerson. The propositional mu-calculus is ele-
mentary. In J. Paredaens, editor, Automata, Languages and Program-
ming, 11th Colloquium, Antwerp, Belgium, July 16-20, 1984, Pro-
ceedings (ICALP), volume 172 of Lecture Notes in Computer Science,
pages 465–472. Springer, 1984.

[115] J. W. Thatcher and J. B. Wright. Generalized finite automata theory
with an application to a decision problem of second-order arithmetic.
Mathematical System Theory, 2(1):57–81, 1968.

[116] W. Thomas. Star-free regular sets of ω-sequences. Inform. and Con-
trol, 42:148–156, 1979.

[117] W. Thomas. Classifying regular events in symbolic logic. J. Comput.
Syst. Sci., 25:360–376, 1982.

[118] W. Thomas. Automata on infinite objects. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, volume B: Formal
Methods and Semantics, pages 134–191. Elsevier, Amsterdam, 1990.



Automata: from logics to algorithms 735

[119] W. Thomas. On logical definability of regular trace languages. In
V. Diekert, editor, Proceedings of a Workshop of the ESPRIT Basic
Research Action No. 3166: Algebraic and Syntactic Methods in Com-
puter Science (ASMICS), pages 172–182, Kochel am See, BRD, 1990.
Bericht TUM-I901902, Technische Universität München.

[120] W. Thomas. Languages, automata and logic. In A. Salomaa and
G. Rozenberg, editors, Handbook of Formal Languages, Volume 3:
Beyond Words, pages 389–455. Springer, Berlin, 1997.

[121] W. Thomas. Complementation of büchi automata revised. In
J. Karhumäki, H. A. Maurer, G. Paun, and G. Rozenberg, editors,
Jewels are Forever, Contributions on Theoretical Computer Science
in Honor of Arto Salomaa, pages 109–120. Springer, 1999.

[122] B. A. Trakhtenbrot. Finite automata and the logic of one-place pred-
icates. Siberian Math. J., 3:103–131, 1962. (English translation in:
AMS Transl. 59 (1966) 23–55.).

[123] M. Y. Vardi. Automata-theoretic model checking revisited. In Proc.
7th Int’l Conf. on Verification, Model Checking, and Abstract Inter-
pretation, volume 4349 of Lecture Notes in Computer Science, pages
137–150. Springer, 2007.

[124] M. Y. Vardi and P. Wolper. An automata-theoretic approach to auto-
matic program verification. In D. Kozen, editor, First Annual IEEE
Symposium on Logic in Computer Science, pages 322–331, Cambridge,
Mass., 16–18 June 1986. IEEE.

[125] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal
logics of programs. J. Comput. Syst. Sci., 32(2):182–221, 1986.

[126] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.
Information and Computation, 115(1):1–37, 15 Nov. 1994.

[127] M. Viswanathan and R. Viswanathan. A higher order modal fixed
point logic. In P. Gardner and N. Yoshida, editors, CONCUR, volume
3170 of Lecture Notes in Computer Science, pages 512–528. Springer,
2004.

[128] I. Walukiewicz. Monadic second order logic on tree-like structures. In
C. Puech and R. Reischuk, editors, STACS 96, 13th Annual Sympo-
sium on Theoretical Aspects of Computer Science, Grenoble, France,
February 22–24, 1996, Proceedings, volume 1046 of Lecture Notes in
Computer Science, pages 401–413, 1996.



736 M. Y. Vardi, Th. Wilke

[129] I. Walukiewicz. Completeness of kozen’s axiomatisation of the propo-
sitional µ-calculus. Inf. Comput., 157(1-2):142–182, 2000.

[130] I. Walukiewicz. Pushdown processes: Games and model-checking. Inf.
Comput., 164(2):234–263, 2001.

[131] Q. Yan. Lower bounds for complementation of mega-automata via the
full automata technique. In M. Bugliesi, B. Preneel, V. Sassone, and
I. Wegener, editors, Automata, Languages and Programming, 33rd
International Colloquium, ICALP 2006, Venice, Italy, July 10–14,
2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer
Science, pages 589–600, 2006.

[132] L. D. Zuck. Past Temporal Logic. PhD thesis, The Weizmann Institute
of Science, Rehovot, Israel, Aug. 1986.


	Table of Contents

	Preface

	1. On the topological complexity of tree languages

	2. Nonederministic controllers of nondeterministic preocesses 
	3. Reachability in continuous-time Markov reward decision processes
  
	4. Logical theories and compatible operations

	5. 
Forest algebras 
	6. Automata and semigroups recognizing infinite words 
	7. Deterministic graph grammars 
	8. Quantifier-free definable graph opreations preserving recognizability
 
	9.
First-order definable languages 
	10. Matrix-based complexity functions and recognizable picture languages
 
	11. Apllying Blackwell optimality: priority mean-payoff games as limits of multi-discounted games 
	12. Logic, graphs and algorithms 
	13. Non-regular fixed-points logics and games 
	14.  The universal automaton 
	15. Deterministic top-down tree automata: past, present, and future 
	16. Expressive power of monadic logics on words, trees, pictures and graphs 
	17. Structured strategies in games on graphs 
	18. Counting in  trees 
	19.
Modular quantifiers 
	20.
Automata: from logics to algorithms 



