
Efficient Abstractions for 
Visualization and Interaction 

Atze van der Ploeg 



Efficient Abstractions for 
Visualization and Interaction 

ACADEMISCH PROEFSCHRIFT 

ter verkrijging van de graad van doctor 

aan de Universiteit van Amsterdam 

op gezag van de Rector Magnificus 

prof. dr. D.C. van den Boom 

ten overstaan van een door het college voor promoties ingestelde 

commisie, in het openbaar te verdedigen in de Agnietenkapel 

op woensdag 8 april 2015, te 14:00 uur 

door 

Atze Johannes van der Ploeg 

geboren te Amsterdam 



Promotiecommis ie 

Promotor: Prof. dr. P. Klint 

Copromotor: Dr. T . van der Storm 

Overige leden: Prof. dr. J.A. Bergstra 

Centrum Wiskunde & Informatica, 
Universiteit van Amsterdam 

Centrum Wiskunde & Informatica, 
U niversiteit van Amsterdam 

Universiteit van Amsterdam 

Prof. dr. J. van Eijck Centrum Wiskunde & Informatica, 
Universiteit van Amsterdam 

Dr. C. Grelck Universiteit van Amsterdam 

Prof. dr. J. Jeuring Universiteit Utrecht, 
Open Universiteit 

Prof. dr. R. Lammel Universitat Koblenz-Landau 

Prof. dr. ir. J.J. van Wijk Technische Universiteit Eindhoven 

Faculteit der Natuurwetenschappen, Wiskunde en Informatica 

The work in this thesis has been carried out at Centrum Wiskunde & Informatica 

(CWI) in Amsterdam, under the auspices of the research school IPA (Institute for 

Programming research and Algoritmics). 



Acknowledgements 

I may not have gone where I intended to go, but I think I have ended up 
where I intended to be. 
- Dirk Gently in The Long Dark Tea-Time of the Soul by Douglas Adams 

It has been an eventful four years for me, filled with sorrow and euphoria, dead 
ends and achievements, moments of confusion and moments of clarity, struggles and 
acceptance, and yes, even a dash of romance, making it a proper adventure. I have 
grown considerably, both intellectually and as a person. In such a way even, that I 
now cannot imagine the naivety I had just four years ago. Of course, I'm still the loud , 
opinionated, blunt Dutchman I've always been, but I do believe my world views are 
now a bit more realistic, and that my strong opinions are now slightly more weakly 
held. Reaching the end of this journey, some thanks are in order. 

My promotor, Paul Klint, I've been told that I am but one in a long line of stubborn 
PhD students, but I dare to theorize that I am among the most stubborn. Your 
liberal style of supervision has made me an independent researcher and more critical 
thinker. I thank you for your constant support and our stimulating conversations, 
which were always enjoyable, whether we were discussing software engineering or 
sharing astonishment on the way the world works. Tijs van der Storm, I've learned a 
lot from you, on software engineering, doing research and the politics of science. I'll 
miss our daily stream of "peukie-tijd" moments and your never-ending quest to find 
the worst bar in town. 

Jan van Eijck, I have very much enjoyed your company and our discussions on 
functional programming, logic, philosophy and life. I regret that we never worked to­
gether, and hope we will do so in the future, which would be, I conjecture, a pleasant 
experience. Davy Landman, I enjoyed your company, and I'll miss your ability to, at 
times, be even more blunt than me. Ali Afroozeh, I enjoyed our shared venting of 
frustrations , through conversation as well as heavy metal music. Riemer van Rozen, 
never have I met such an easy-going friendly giant. Your stories about the workings of 
the HvA have made me less naive and reminded me how privileged my position actu­
ally was. My other colleagues, Floor Sietsma, Pablo Inostraza Valdera, Jouke Stoel, 
Bas Basten, Jurgen Vinju, Robert van Liere, Ashim Shahi, Anastasia Izmaylova, Bert 
Lisser and Vadim Zaytsev, you're company has been a joy to experience and I thank 
you for putting up with the loud conversation I periodically bellowed into your offices 
from rooms away. 

Jurriaan Rot , I really like your extremely critical, anti-pretentious views on math, 

3 



science and the world and our anti-pretentious discussions over beer on pretentious 

subjects have been very memorable for me. Tom Sterkenburg, I'll miss our meetings 

which consisted of a nice mix of nonsense, philosophy, math and other discussions 

and, perhaps most importantly, coffee. Pieter Hijma, I admire your persistence to 

keep pursuing your programming vision and am happy that this road has eventually 

been fruitful. We've been keeping in touch since our time at the VU, and I look 

forward to extending this relation into future years. Harry Buhrman, for being the 

friendly face from the the other side of the hall, and for giving me heartfelt advice 

when I was in superposition on going to Sweden. Koen Claessen, talking to you on 

functional programming was a breath of fresh air, and your enthusiasm has rekindled 

my interest in a scientific career. I very much look forward to working with you at 

Chalmers. 
My family, Menno, Jelmer, Aniek, Tieke and Tymen, thank you for your support 

and warmth. My friends Dineke, Patrick, Willem, Olivier, Mels, Maurice, Worf, 

Michal, Sander, Daniel, Mark, Irma, Les, Bas, Stef, Jurjen, Rieke, Thomas, Jadwiga, 

thanks for your company, conversation and parties which always gave me a way to 

escape from science. My cat, Frisbee, thank you for your cuddles and never-ceasing 

purring, and for always seeming to think that my ideas are out of this world . My love, 

Jonna, thank you for your love, warmth and support, even during my unreasonable 

rants. 

4 



Contents 

Acknowledgements 3 

1 Introduction 9 
1.1 Graphics Abstractions . . . . . . . 10 
1.2 Layout Algorithms . . . . . . . . . 14 
1.3 Programming Interactive Systems . 16 
1.4 Origins of the chapters . . . 21 
1.5 Other works by the author . . . . . 21 

2 A Library for Declarative Resolution-Independent 2D Graphics 23 
2.1 Introduction . . . . . . . . . 23 
2.2 Exploring the Design Space 25 

2.2.1 Shapes . . . . . . 25 
2.2.2 Textures ..... 
2.2.3 Transformations 
2.2.4 Comparison 

2.3 Design . . ... . 
2.3.1 Shapes .. . 
2.3.2 Textures . . 
2.3.3 Transformations 

2.4 Implementation and Optimization 
2.4.l Basic implementation 
2.4.2 Special cases .... . 
2.4.3 Clipping . . ..... . 
2.4.4 Potential optimization 

2.5 Case study: Focus+context Lenses 
2.5.l Implementation ..... 

5 

26 
27 
27 
28 
28 
30 
31 
33 
33 
33 
36 
36 
37 
37 



Contents 

2.5.2 Comparison 
2.6 Discussion 
2. 7 Conclusion 

3 Drawing Non-layered Tidy Trees in Linear Time 
3.1 Introduction ........ . ........... . 
3.2 Redefining the Tidy Tree Problem ....... . 
3.3 Overview of the extended Reingold-Tilford algorithm . 
3.4 Complexity Proof . . . . 

3.4. l Layered case . . 
3.4.2 Non-layered case 

3.5 Improving layouts 
3.6 Improving layouts in linear time 
3. 7 Empirical results 
3.8 Related work . . . . . . . . . . 

3.8.l History .. . . . .. .. . 
3.8.2 Algorithms for non-layered trees 
3.8.3 Related work on node-link drawings on trees 
3.8.4 Other ways of drawing trees . . . . . . 

3.A Techniques in the Reingold-Tilford algorithm 
3.B Moving intermediate siblings in 0(1) 
3.C The complete revised algorithm ....... . 

4 Monadic Functional Reactive Programming 

6 

4.1 Introduction ............ . 
4.2 Programming with Monadic FRP . 

4.2. 1 The drawing program 
4.2.2 Reactive computations . 
4.2.3 Signal computations 
4.2.4 Dynamic lists . .. .. . 
4.2.5 Time-branching . .. . . 

4.3 Comparison with other FRP programmer interfaces 
4.3.l Advantages of Monadic FRP 
4.3.2 Disadvantages of Monadic FRP 

4.4 Evaluating Monadic FRP expressions . 
4.4. 1 Event requests and occurrences 
4.4.2 Reactive computations . . ... 
4.4.3 Evaluating reactive computations . 
4.4.4 Time semantics . . . . . . . . 
4.4.5 Evaluating signal computations 
4.4.6 Sharing computation results . 

4.5 Implementing composition functions 
4.5. 1 Basic composition operators .. 
4.5 .2 Signal computation composition functions 
4.5.3 Dynamic lists .............. . 

38 
40 
41 

43 
43 
46 
47 
51 
52 
52 
53 
55 
58 
59 
59 
59 
60 
61 
63 
64 
65 

69 
69 
71 
71 
71 
75 
79 
79 
80 
80 
83 
84 
84 
85 
86 
88 
89 
90 
91 
91 
92 
95 



Contents 

4.6 Comparison with other evaluation schemes . 
4.6.l Busy waiting . . . 
4.6.2 Concurrency . ... . 
4.6.3 Callback networks .. 

4.7 Conclusion and Future work . 

5 Reflection without Remorse 
5.1 Introduction ........ . 
5.2 The problematic pattern and its cost ... 

5.2.l A first example: list concatenation 
5.2.2 Another example: Tree substitution 
5.2.3 A Monadic example: Generic trees 
5.2.4 Asymptotic running time overhead 

5.3 Continuation-passing style .... . ... . 
5.3.1 Difference lists ... ....... . 
5.3.2 General Continuation-passing style 

5.4 Solving the problem . . . . . . . .... . 
5.4.1 A first example: tree substitution . 
5.4.2 Solving the performance problems of generic trees using type 

aligned sequences . 
5.4.3 The general case . . .. 

5.5 Type aligned sequences 
5.5.l Definition and intuition 
5.5.2 Relation with regular sequences . 
5.5.3 An example of making sequences type aligned: efficient queues 

5.6 Fast Monadic Reflection ... . .. . 
5.6.l LogicT Monad Transformers 
5.6.2 Iteratees and related monads 
5.6.3 Free Monads . . 
5.6.4 Extensible effects 

5.7 Conclusion 

6 Conclusions 

References 

Summary 

Samenvatting 

96 
96 
97 
97 
99 

101 
101 
103 
103 
104 
104 
105 
106 
106 
108 
109 
109 

111 
114 
114 
115 
115 
117 
118 
118 
123 
127 
128 
129 

131 

134 

143 

145 

7 





1 

Introduction 

Abstractions, in the form of functions, methods and classes, are an essential tool for 
any programmer. Abstractions encapsulate the details of a computation, so that the 
programmer only needs be aware of what an abstraction achieves, and not how it 
achieves it. Programmers compose invocations of abstractions to obtain the behavior 
they want. However, sometimes compositions come at a cost, such as: 

• The resulting program is too slow. 

• The program takes up too much memory. 

• The behavior of the program is hard to understand. 

• The time/memory requirements of the program are hard to predict. 

• The behavior of the program becomes non-deterministic because the abstrac­
tions involve concurrency. 

• The (numerical) precision of the program is not high enough. 

As a result the programmers may be forced to not use some abstractions, instead 
creating specialized versions of them by hand. 

In this thesis we aim to make this situation less likely in the domain of interac­
tive visualizations. The abstractions for programming interactive visualizations fall 
broadly into three categories, namely: 

• Graphics abstractions (draw a line, rotate, fill, ... ) . 

• Layout abstractions (tree layout, force directed graph layout, ... ). 

• Event/time abstractions (register listener, wait for an event, ... ). 

This thesis presents novel efficient abstractions in each of these areas. More specifi­
cally, we contribute the following: 

9 



1. Introduction 

• Abstractions for graphics that allow us to discretize later, thereby preventing 
sampling artifacts and making non-affine transforms more efficient . 

• A tree layout algorithm that produces a layout in linear time, whereas previous 
methods for the same kind of layout either cost quadratic time or produce less 
compact layouts. 

• An efficient evaluation mechanism for Functional Reactive Programming, a pro­
gramming framework which provides abstractions for dealing with time and 
events. 

• A technique to increase the performance of series of associative operators from 
quadratic to linear for a class of associative operators, which is, among others, 
applicable to Functional Reactive Programming. 

The work in this thesis was motivated by our efforts on the Figure library [Klint 
et al., 2011] in the Rascal1 language for software analysis and transformation. This 

framework intends to offer composable abstractions for the interactive visualizations 
of software artifacts. This thesis presents novel results for the abstractions used when 
programming interactive visualizations, namely programming graphics, layout algo­
rithms and programming interactive systems. These results create a more versatile 
foundation for higher level frameworks such as the Rascal Figure library. In the fol­
lowing subsections we briefly explain the problems and introduce our results in each 
of these areas. 

1.1 Graphics Abstractions 

A fundamental ingredient for programming visualizations is graphics abstractions: 

abstractions such as drawing a line, filling a shape or rotating a shape. This is done 
through frameworks such as Processing2 , DirectX3 or OpenGL4

. These frameworks 
provide a set of shape primitives, textures and transformations to compose. However, 
if what we want to express is not directly expressible as a combination of such shape, 
texture and transformation primitives, then we have to approximate it using these 
primitives. When we then again want to compose that approximation with transfor­

mations such as scaling up, artifacts due to the approximation will become visible. 
To make this more concrete, let us introduce three examples of this. 

An example of a shape that is not directly supported by the typical shape primi­
tives in these frameworks is the spiral of Archimedes5 , shown in Figure 1.l(a). Tra­
ditional graphical frameworks, such as DirectX, Processing and OpenGL, only offer 
a limited set of shape primitives, most commonly Bezier curves6 up to cubic order 

10 

1http ://www.rascalmpl.org 
2https://www .processing.org/ 
3http://msdn .microsoft.com/library/directx 
4http://www .opengl .org/ 
5http://mathworld . wolfram.com/ArchimedesSpiral.html 
6http ://mathworld .wolfram .com/BezierCurve.html 



1.1. Graphics Abstractions 

(a) Archimedes' Spiral. (b) A scaled up approximation of 
Archimedes' Spiral. 

Figure 1.1: Versions of Archimedes' Spiral. 

(straight lines are also Bezier curves). However, the spiral of Archimedes is not a 
collection of Bezier curves. It can be approximated with Bezier curves, but a good 
approximation is far from obvious and requires quite some knowledge of mathematics 7 . 

An approximation using straight lines is easier than an approximation using quadratic 
or cubic Bezier curves, but is also less precise. Most importantly, an approximation 
is not resolution independent: the description of the spiral depends on the resolution 
at which it is drawn. Unless measures are taken, we will see the jaggedness of the 
approximation if the drawing is scaled up, as shown in Figure 1.1 (b). 

Traditional graphics frameworks offer a set of textures, namely color fillings, linear 
gradients, radial gradients and images. An example of a texture that is not in this 
set, is the cushion texture used to fill the rectangles in cushion treemaps [Van Wijk 
and Van de Wetering, 1999], as shown in Figure 1.2. Again, one can approximate this 
texture, by specifying the pixels of a discretization of the texture, but this approach 
is not resolution independent. We then cannot freely compose with transformations 
without losing quality: rendering artifact will be visible as show in Figure 1.3. 

As a third example, suppose we have programmed a visualization using a tradi­
tional graphics framework and we now want to add a focus+context lens [Carpendale 
and Montagnese, 2001], such as the one shown in Figure 1.4. Since only affine trans­
formations8 (transformations that preserve straight lines) are supported, we can only 
support such a transformation by an approximation. One technique that has been 
proposed [Pietriga et al., 2010] is to render whatever is under the lens twice: once 
without magnification and once with magnification. Afterwards, both renderings are 

7http://math.stackexchange.com/questions/179000 
8http://mathworld.wolfram.com/AffineTransformation.html 

11 



1. Introduction 

Figure 1.2: Cushion Treemaps [Van Wijk and Van de Wetering, 1999]. 

(a) Without artifacts. (b) With artifacts. 

Figure 1.3: Small cushion treemap without and with artifacts. 

12 



1.1. Graphics Abstractions 

Figure 1.4: Focus+context lens (image taken from [Pietriga et al., 2010]). 

combined to produce the lens area. The second, magnified rendering uses a buffer 
of width and height proportional to the zoom factor, making higher zoom factors 
quadratically more expensive. Moreover, combining two non-transformed drawings 
to produce a transformation can lead to rendering artifacts, as shown in Figure 1.5. 
Also, as with the previous approximations, if we afterwards want to scale up the lens 
area, we have to take measures to prevent artifacts. 

This brings us to our first research question: 

Research Question 1 Is it possible to program 2D graphics in a declarative way 
that is general, simple, expressive, composable and resolution-independent while still 
being efficient? 

In Chapter 2, we answer this question with a "yes" by presenting a library for 

(a) Without artifacts. (b) With artifacts. 

Figure 1.5: Detail of a focus+context lens with and without artifacts due to sampling 
(image taken from Chapter 2). 

13 



1. Introduction 

Figure 1.6: Example of a tree layout produced by the Reingold-Tilford algorithm. 

declarative resolution-independent 2D graphics. This library generalizes and simplifies 

the functionality of traditional frameworks, while preserving their efficiency. As an 

example, we show the implementation of a focus+context lenses that gives better 

image quality and better performance than a solution using a traditional graphics 

framework at a fraction of the code. 

1.2 Layout Algorithms 

Layout algorithms are algorithms which make the structure of the input data con­

crete by presenting it spatially. Research into such algorithms has yielded a host of 

algorithms, such as algorithms for visualizing graphs [Von Landesberger et al., 2011], 

trees [Reingold and Tilford, 1981; Walker, 1990; Johnson and Shneiderman, 1991; 

Van Wijk and Van de Wetering, 1999], and enforcing spatial constraints [Borning 

et al. , 1997]. 
An example of a layout algorithm is the Reingold-Tilford algorithm, which pro­

duces drawings of trees such as the one shown in Figure 1.6. Sometimes, we also 

want to show some information inside each node or in the dimensions of each node. 

Examples of this are Tableau style proof trees, parse trees of (formal) languages, class 

diagrams in software engineering and Polymetric views [Lanza and Ducasse, 2003a] . 

The latter are inheritance diagrams of software systems where the width and height 

of each node signifies a software metric of the corresponding class, such as the lines 

of code or number of methods. In these situations, the width and height of each node 

may vary. The Reingold-Tilford algorithm will then produce a layered drawing, as 

show in Figure l.7(a). In such a layered drawing, all nodes at the same depth in the 

trees are given the same top vertical position. 
However, such layered drawings may then use more vertical space than necessary. 

A non-layered drawing of a tree places children at a fixed distance from the parent, 

thereby giving a more vertically compact drawing. The difference between a layered 

and a non-layered drawing is shown in Figure 1.7. Non-layered drawings can also be 

used to draw trees where the vertical position of each node is given. An example of 

this is a family tree diagram where the vertical top coordinate of a node signifies the 

birth year of the corresponding person, as shown in Figure 1.8. An example in biology 

is a diagram which shows evolutionary relationships between biological species and 

the time in which each species came into existence. 

14 



1.2. Layout Algorithms 

(a) Layered. (b) Non-layered. 

Figure 1.7: Layered and non-layered drawings of the same tree. 

1900 

1924 

1948 

1972 

Figure 1.8: Descendants of John: layout with prescribed vertical positions ( corre­
sponding to birth year). 

15 



1. Introduction 

While a layered tree layout is produced in linear time using the Reingold-Tilford 

algorithm [Reingold and Tilford, 1981], the fastest known algorithm for non-layered 

trees runs in quadratic time [Bloesch, 1993]. This meant that programmers had 

to make a trade-off between speed and a compact layout, or create a specialized 

algorithm for her particular needs. This leads to the second question: 

Research Question 2 Is it possible to produce non-layered layouts of trees in linear 

time? 

We present a linear time algorithm for producing non-layered tree layouts in Chap­

ter 4. More precisely, our algorithm is a modification of the Reingold-Tilford algo­

rithm, but the original complexity proof of the Reingold-Tilford algorithm uses an 

invariant t hat does not hold for the non-layered case. We give an alternative proof 

of the algorithm and its extension to non-layered drawings. To improve drawings of 

trees of unbounded degree, extensions to the Reingold-Tilford algorithm have been 

proposed. These extensions also work in the non-layered case, but we show that they 

then cause a O(n2 ) run-time. We present a modification to these extensions that 

restores the O(n) run-time. 

1.3 Programming Interactive Systems 

Interactive visualizations are reactive: they engage in a dialogue with their environ­

ment, reacting to events as they arrive. For example, interactive visualizations need 

to respond to mouse movements, key presses, network messages or touch commands. 

Programming such interactivity is done using abstractions that allow us to react to 

events. Abstractions to react to events, allow us to do one of the following: 

• Wait for an event to happen. 

• Give instructions on what to do when an event happens. 

Waiting for an event to happen, also known as blocking I/ O, means that the pro­

gram invokes a method which has the effect that the entire program is suspended 

(blocked) until the desired event, such as a mouse click, occurs. This model has 

obvious drawbacks for composability: what if we want to compose two program com­

ponents in parallel which both can wait for an event? The standard composition 

tools of the programmer, like forming expressions and sequencing statements, do not 

support this. 

16 

There are two ways to deal with this: 

• Give up on composing reactive programs and instead organize the program as 

a monolithic event loop. In this approach, a main loop repeatedly gathers the 

events that should be waited for and performs the actions, such as drawing to 

the screen or sending network messages, that should be done. At the end of each 

iteration, the program invokes a method that waits until one of the requested 

events occurs, by use of, for example, the Unix select method9. This approach 

9http:/ /pubs .opengroup.org/onlinepubs/007908799/xsh/select.html 



1.3. Programming Interactive Systems 

is simple, but is not entirely satisfactory: the programmer must manually route 
which events to wait for and the results of such events to the desired components, 
leading to boilerplate code. 

• Use concurrency, running each component on a separate thread or process. The 
communication between components is then done via shared data with lock­
ing or via message passing. However , concurrency is non-deterministic: the 
actions of the program not only depend on which events occurred and when, 
but also on the interleaving of threads. This can make the behavior of the 
program hard to predict and understand. When message passing is used, it is 
however still possible to reason formally about such systems to and prove that 
the program is well-behaved using process calculi such as the Algebra of com­
municating processes [Bergstra and Klop, 1985] or Communicating sequential 
processes [Brookes et al., 1984]. 

The second way to deal with events, known as non-blocking I/O, is to give in­
structions on what to do when an event occurs. In this model, the program installs 
some handler code, known as the callback method, that should be run when a certain 
event occurs and then immediately continues, without waiting for the event to occur. 
An example of this is shown in Figure 1.9, which lists a Java program which calls a 
method doDoubleClick() when it detects a double click (two successive clicks within 
0.2 seconds). 

An unfortunate drawback however, it that this approach leads to the control 
in the program being switched between callbacks, effectively jumping around in an 
unstructured way: each interleaving of callback invocations is a possibility. This is 
known as inversion of control: the control in the program is not dictated by the 
sequencing specified by the programmer, but by the events that occur. 

When callback invocations need to communicate, they can do so via shared mu­
table state. In the example in Figure 1.9, invocations of handleTime and handleClick 
communicate whether the first click has already occurred via the afterFirstClick vari­
able. This has drawbacks: shared mutable state is combined with unstructured con­
trol, which can be hard to understand. Moreover, this technique also means we must 
manually register and unregister callbacks from events, as we can also see in the ex­
ample. This can make it hard to predict in which order the callbacks are processed 
and can lead to callback loops. We refer the reader to [Maier and Odersky, 2012] for 
detailed criticism on this pattern. 

An alternative that is composable, does not lead to inversion of control and 
does not introduce unnecessary non-determinism is Functional Reactive Program­
ming (FRP). FRP makes programming with events more deterministic than using 
concurrency, since the result of a FRP program only depends on which events hap­
pened when, not on the specific interleaving of threads [Elliott and Hudak, 1997]. 
An example of FRP is shown in Figure 1.10, which shows a Haskell program using 
Monadic FRP (Chapter 4) that has the same behavior as the Java program in Figure 
1.9: it calls a method doDoubleClick when a double click occurs. 

In this example, waiting for a double right click (doubler) is defined as three steps, 
which are listed after the do keyword. The first step is to wait for a single right click. 

17 



1. Introduction 

18 

class DoubleClick{ 

} 

static final int MaxDoubleClicklnterval = 200; 
boolean afterFirstClick ; 
Timer t ; 

DoubleClicklistener (Window w){ 
afterFirstClick = false ; 
w.addMouseClicklistener(this ); 

} 

void handleTime(){ 
afterFirstClick = false ; 

} 

void handleClick (){ 

} 

if ( afterFirstClick ) { 
afterFirstClick = false ; 
t .stop () ; 
doDoubleClick(); // double click happened 

} else { 

} 

afterFirstClick = true; 
t = new Timer(MaxDoubleClicklnterval) ; 
t. addTimelistener( this) ; 

void doDoubleClick() { ... } 

Figure 1.9: Registering a double click using callbacks in Java. 

doubler = do rightClick 
r <- (rightClick ' before ' sleep 0.2) 
if r then doDoubleClick else doubler 

Figure 1.10: Registering a double click using Monadic FRP in Haskell. 



1.3. Programming Interactive Systems 

data [a J = [) I a : [a) 

[) ++ r = r 
(h t) ++ r = h : t ++ r 

Figure 1.11: Definition of lists and list concatenation in Haskell. 

The second step is to wait either for a second right click or 0.2 seconds to pass. To 
this end we pass the description of these two events, namely rightClick and sleep 0.2 
to the infix function ' before ' . This function returns if the left argument ( rightClick ) 
occurred before the right argument (sleep 0. 2), as soon as at least one of these events 
occurred. Afterwards, a boolean stating whether a right click occurred before 0.2 
seconds passed, is returned and bound to r. Finally, in the third step we check this 
boolean. If it was true, then a double right click occurred and we call doDoubleClick. 
Otherwise, we start again from the top by recursively calling doubler. 

One way to think of FRP is as a variant of blocking I/ O, where we can compose 
two blocking elements in parallel without introducing non-determinism. For instance, 
the double click code in Figure 1.10 first blocks for a right click, but afterwards blocks 
until we know if another right click occurred within 0.2 seconds. This is done using 
the before function , which takes two blocking computations, and composes them in 
parallel without introducing non-determinism. 

Another way to think of FRP is as composable event loops which can communi­
cate through a data-flow network. Since communication in this data-flow network is 
synchronous, i.e., all communication in this network happens conceptually simulta­
neously in rounds, this model does not introduce non-determinism. 

A problem with FRP is efficiency: in Classical FRP [Elliott and Hudak, 1997] the 
space usage of the program increases linearly in time. Arrowized FRP [Courtney and 
Elliott, 2001] does not have this problem, but the entire program is re-evaluated after 
each time-step. Consequently, values are redundantly recomputed even when inputs 
don't change. Evaluation strategies that prevent such redundant re-computations 
are known as incremental evaluation strategies: they only update the parts of the 
program that are actually out of date. This leads to the following research question: 

Research Question 3 How can we support incremental evaluation in FRP? 

In Chapter 5, we present a novel FRP formulation called Monadic FRP that is 
implemented in a purely functional way while preventing redundant re-computations. 

However, unrelated to incremental evaluation, Monadic FRP's performance could 
still be improved. It has a performance problem that is common in functional pro­
gramming. The problem is as follows: in some situations the number of steps it takes 
to evaluate an expression depends on the placement of the brackets (the association 
pattern). 

19 



1. Introduction 

For example, suppose -tt- is an associative operator that appends two lists, as 

defined in Figure 1.11. In this situation, the evaluation of (a -tt- b) -tt- c is more 

expensive than the evaluation of the equivalent expression a -tt- (b -tt- c). This can be 

seen as follows: -tt- visits all elements of the left argument, but does not observe the 

right element. Hence, a -tt- b costs jaj steps, the length of a. In a -tt- (b -tt- c), the left 

arguments of -tt- always consist of a single variable and this hence runs in jaj + lbl 
steps. In (a -tt- b) -tt- c, the left argument of the outermost invocation of -tt- consists of 

another invocation of -tt-, and hence costs 2jaj + lbl steps, since jaj occurs twice in a 

left hand side of -tt-. 
If we iterate this pattern, a right-associated expression: 

is asymptotically more expensive than the equivalent left-associated expression: 

At first glance, the solution to this problem might seem easy: simply only write left­

associated expressions. However, this is not compositional: we must make sure that 

the first argument of -tt- can never be a result of -tt- itself. A well known cure for this 

dependence on the association pattern is Continuation Passing Style [Claessen, 2004; 

Voigtliinder, 2008], but this does not work for all usage patterns: it again imposes a 

penalty if we alternate between using the associative operator and pattern matching 

on the results of that operator. 
For lists and list concatenation the solution is to use better sequence data struc­

tures, such as the ones described in [Okasaki, 1998]. With such sequence data struc­

tures, sequence concatenation is efficient no matter what the usage pattern, even when 

alternating between using concatenation and pattern matching on the results of such 

concatenations. 
However, the problem does not only occur with list concatenation, but also with 

a host of other associative operators, such as the "do this after that" operator in 

Monadic FRP. The solution for lists, namely better data structures, does not transfer 

easily to these other instances of the problem. This brings up to the following research 

question: 

Research Question 4 Can series of associative operators be made efficient no mat­

ter what the association pattern for all usage patterns? 

We present our solution to this question in Chapter 5. More precisely, our solution 

makes series of associative operations efficient regardless of the association pattern 

- and also provides efficient access to intermediate results. The key is to represent 

such a conceptual sequence of associative operations as an efficient sequence data 

structure. However, for some operators, such as the monadic bind, the type of the 

right argument depends on the type of the left argument. Efficient sequence data 

structures from the literature only support sequences where all elements have the 

same type, and hence they cannot be applied in a type-safe way in such situations. 

We introduce type aligned sequences which solve this problem. We demonstrate 

20 



1.4. Origins of the chapters 

that our solution solves previously undocumented performance problems in Monadic 
FRP (Chapter 4), iteratees [Kiselyov, 2012], LogicT transformers [Kiselyov et al., 
2005], free monads [Swierstra, 2008] and extensible effects [Kiselyov et al., 2013]. 

1.4 Origins of the chapters 

• Chapter 2 was published earlier as: 

P. Klint and A. van der Ploeg (In alphabetical order). A Library for Declarative 
Resolution-independent 2d Graphics. In Proceedings of the '13 International 
Symposium on Practical Aspects of Declarative Languages, PADL '13, pages 1-
18, 2013. 

It was co-authored by Paul Klint, his role was to help with the presentation 
and text, the ideas and implementation of the library where contributed by the 
author of this dissertation. 

• Chapter 3 was published earlier as: 

A. van der Ploeg. Drawing Non-layered Trees in Linear Time. In Journal of 
Software Practice f3 Experience (SP&E), Volume 44, Issue 12, pages 1467-1484, 
2014. 

• Chapter 4 was published earlier as: 

A. van der Ploeg. Monadic Functional Reactive Programming. In Proceedings 
of the '13 Symposium on Haskell, pages 117-128, 2013. 

• Chapter 5 was published earlier as: 

A. van der Ploeg, 0. Kiselyov. Reflection without remorse: revealing a hidden 
sequence to speed up monadic reflection. In Proceedings of the '14 Symposium 
on Haskell, pages 133~144 , 2014. 

It was co-authored by Oleg Kiselyov, his role was to help with the presenta­
tion and text, and to research other occurrences of the problem. The solution, 
implementation and almost all text were contributed by the author dissertation. 

All the above papers were peer-reviewed. 

1.5 Other works by the author 

P. Klint , B. Lisser and A. van der Ploeg. Towards a One-Stop-Shop for Analysis, 
Transformation and Visualization of Software (Invited Paper). In Proceedings of the 
4th international conference on Software Language Engineering. SLE '13, pages 1-18. 
2013. 

B. Basten, J. van den Bos, M.A. Hills, P. Klint, A. Lankamp, B. Lisser, A. van der 

21 



1. Introduction 

Ploeg, T. van der Storm, J. Vinju. Modular Language Implementation in Rascal -
Experience Report-. In Science of Computer Programming, accepted for publication. 

M.A. Hills, A. Izamaylova, P. Klint , A. van der Ploeg, T . van der Storm, J .J. Vinju: 
The Rascal meta-programming language - a lab for software analysis, transformation, 
generation & visualization In: Proceedings of JCT.Open 2011 , pages 353- 358, 2011. 

22 



A Library for Declarative Resolution-Independent 
2D Graphics1 

Summary 

2 

The design of most 2D graphics frameworks has been guided by what the computer 
can draw efficiently, instead of by how graphics can best be expressed and composed. 
As a result, such frameworks restrict expressivity by providing a limited set of shape 
primitives, a limited set of textures and only affine transformations. For example, non­
affine transformations can only be added by invasive modification or complex tricks 
rather than by simple composition. More general frameworks exist , but they make 
it harder to describe and analyze shapes. We present a new declarative approach to 
resolution-independent 2D graphics that generalizes and simplifies the functionality 
of traditional frameworks, while preserving their efficiency. As a real-world example, 
we show the implementation of a form of focus+context lenses that gives better image 
quality and better performance than the state-of-the-art solution at a fraction of the 
code. Our approach can serve as a versatile foundation for the creation of advanced 
graphics and higher level frameworks. 

2.1 Introduction 

The design of traditional 2D graphics frameworks, such as Java2D2 and Processing3 , 

has been guided by what the computer can draw efficiently, instead of by how graphics 
can best be expressed and composed. This hinders the ease of programming 2D 
graphics, since it requires the programmer to express his ideas using the limited 

1This chapter was published earlier as: P. Klint and A. van der Ploeg (In alphabetical order). A 
Library for Declarative Resolution-independent 2d Graphics. In Proceedings of the '13 International 
Symposium on Practical Aspects of Declarative Languages, PADL '13, pages 1-18, 2013. 

2http://docs.oracle.com/javase/6/docs/technotes/guides/2d/ 
3http://processing.org 

23 



2. A Library for Declarative Resolution-Independent 2D Graphics 

Figure 2.1: An example focus+context lens (zoomfactor = 2.5). 

vocabulary that has emerged as a result of the focus on procedural optimization of 

such frameworks. 
Suppose we have programmed a visualization in such a traditional framework and 

we now want to add a focus+context lens, such as the one shown in Figure 2.1. Since 

only affine transformations (that take parallel lines to parallel lines) are supported, 

we cannot add this transformation in a compositional way: it requires trickery or 

invasive modification. 
Instead of worrying about such low-level details , it is desirable to program 2D 

graphics in a declarative way that is general, simple, expressive, composable and 

resolution-independent while still being efficient. Previous research on declarative 

graphics has yielded many elegant approaches to 2D graphics, but none of these ex­

hibit all these traits. This not only restricts direct graphics programming, but it 
also hinders the creation of higher-level frameworks. For example, during our efforts 

on the Rascal figure library[Klint et al., 2011], a high-level framework for software 

visualization, we noticed that our design was influenced by the limitations of the pro­

cedural framework used and hence could not grow further in terms of expressiveness 

and compositionality. 
We present a new declarative approach that generalizes and simplifies the func­

tionality of traditional 2D graphics frameworks, while preserving their efficiency. This 

is achieved by a very effective mapping of our approach to an existing 2D graphics 

framework (which we will call the graphics host). Our approach allows more expres­

sive freedom and can hence serve as a more versatile foundation for advanced 2D 

graphics and higher-level frameworks. It is available as a library called Deform4 for 

Scala. Our contributions are: 

24 

• The motivation (Section 2.2) and design (Section 2.3) of a small, simple and 
powerful framework for resolution-independent 2D graphics that enables com­
posability and expressiveness. 

4https://github.com/cwi-swat/deform 



2.2. Exploring the Design Space 

• A way to implement and optimize this framework (Section 2.4) by mapping it to 
a readily-available, highly optimized graphics host. This includes optimizations 
to speed up this mapping and a way to support clipping so that large scenes 
can be rendered in real-time. 

• An implementation of focus+context lenses that is faster and gives better image 
quality than the state-of-the-art approach (Section 2.5). This also acts as a 
validation of our work. 

We discuss open questions in Section 2.6 and conclude in Section 2. 7. 

2.2 Exploring the Design Space 

We now discuss design choices for declarative 2D graphics frameworks and to guide 
our choices, we use the following design goals: 

• Simplicity: The programmer should not be overwhelmed by concepts and func­
tions described in inch-thick manuals. 

• Expressivity: Arbitrary graphics can be expressed in a natural way, without the 
need to encode them in lower-level concepts. 

• Composability: Graphics can be composed and transformed in general ways. 

• Resolution-independence: Graphics can be expressed independent of resolution, 
so that they can be rendered at any level of detail. 

• Analyzability: The concrete geometry of a shape can be obtained, for example 
as a list of lines and Bezier curves, so that we can define functions that act on 
this information to create derived graphics. 

• Optimizability: Efficient algorithms for 2D graphics can be re-used. 

Our analysis now focuses on how to represent shapes, textures and transformations, 
in the way that has the best fit with our design goals. 

2.2.1 Shapes 

Most frameworks offer a fixed set of geometric constructs, such as lines, Bezier curves 
and circle segments, that can be used to describe the border of shapes. For example, 
a regular polygon with k vertices can be expressed as follows: 

regpolyg(k) = [line(onCircle(ixp), onCircle((i + 1) xp))I i +--- [O ... k - l]] 
where onCircle(x) = (sin(x), cos(x)), p = (1/ k) x 2 x n 

Here (x, y) denotes a point in IR2
. A downside of this approach is that shapes that 

are not compositions of such geometric constructs, such as sine waves, cannot be 

25 



2. A Library for Declarative Resolution-Independent 2D Graphics 

expressed. Instead, they have to be approximated when specifying the shape, which 

does not give a resolution-independent description of the shape. 

A second approach is to describe the border of a shape as a parametric curve: a 

function from IR to !R2 . For example, the border of the unit circle can be described 

by c(t) = (sin(t x 2 x 7r), cos(t x 2 x 7r)) on the interval [O, l]. This can be seen as a 

generalization of using a fixed set of geometric constructs: each geometric construct 

can be described by a parametric curve and hence a combination of geometric con­

structs gives rise to a piecewise defined function. For this reason the expression of 

a regular polygon with k vertices is exactly the same as when using a fixed set of 

geometric constructs. Although a parametric description does not immediately give 

an analyzable description of the shape, we can sample the (resolution-independent) 

function to obtain such a description. 
The third and final approach is to describe a shape implicitly: as a function that 

given a point in IR2 tells us whether the point is inside the shape or not. For example, 

the implicit representation of the unit circle is c(p) = IPI ~ 1, where IPI denotes the 

Euclidian norm. A downside of this approach is that it is often hard to encode a 

shape in this way. For example, as noted in [Karczmarczuk, 2002], it requires an 

arcane insight to understand that the following also represents a regular polygon with 

k vertices. 

regpolyg (k, (x, y)) = (x - j) x (sin(q + p) - i) - (cos(q + p) - j) x (y - i) ~ 0 

w herep = 2x7r/k, q = px latan2(y,x)/pj, i = sin(q), j = cos(q) 

It is also hard to analyze a shape that is described in this way, since we do not have 

a representation of the border of the shape. 
If we could automatically switch between the parametric and implicit representa­

tions we would not have to make a choice between them. However, transforming a 

parametric representation into an implicit one or vice-versa is non-trivial, especially 

when the functions are not limited to a certain class. In fact, these are well-known 

and thoroughly studied problems [Hoffmann, 1993]. In general, exact conversion is 

possible for certain classes of functions [Sederberg et al., 1984], while other classes 

of functions require approximate techniques [Dokken and Thomassen, 2003]. Since 

the implicit representation makes it hard to express and analyze shapes, and since it 

is hard and computationally expensive to automate the conversion between the two 

representations we have chosen to describe shapes parametrically. 

2.2.2 Textures 

Most frameworks offer a fixed set of textures, such as fill colors, images and gradients. 

Another approach is allow arbitrary textures by specifying the colors of its pixels, but 

this is not a resolution independent approach. A general, resolution independent way 

to describe a texture, and the one that we adopt, is by a function that given a point 

returns the color of the texture at that point [Elliott, 2001; Karczmarczuk, 2002]. 

Notice that this way of expressing textures bears resemblance to implicitly defined 

shapes: implicitly defined shapes are functions of type IR2 -t Boolean, whereas such 

textures are functions of type IR2 -t Colar. 

26 



2.2. Exploring the Design Space 

Traditional Fune. Vertigo Deform 
image 

synthesis 
Fixed • 

Shapes Parametric • • 
Implicit • 

Textures 
Fixed / pixels • 

Function • • 
Affine • 

Transforms Function • • 
Function- 1 • • 

Table 2.1: Design choices for graphics libraries. 

2.2.3 Transformations 

Typically, graphics frameworks offer only affine transformations, such as translation, 
rotation and scaling. Although these transformations cover many use cases, they 
preclude a whole range of interesting transformations, such as focus+context lenses. 
A more expressive model is to describe transformations simply as a function from R.2 

to R.2 . 

Parametrically described shapes then require the forward transformation, while 
textures and implicitly defined shapes require the inverse transformation. For ex­
ample, to translate a parametrically defined shape to the right, we define a function 
that given a parameter first gets the corresponding point on the border of the shape 
and then applies the forward transformation to that point, which moves the point to 
the right. To translate a texture to the right , we define a function that given a point 
first applies the inverse transformation, which moves the point to the left, and then 
queries the texture at that point. In the same fashion, the inverse transformation is 
also needed to transform implicitly defined shapes. 

If we limit ourselves to affine transformations, obtaining both directions of a trans­
formation is not a problem since such transformations are easily inverted. However, if 
we allow arbitrary transformations we need to either describe all shapes implicitly and 
use only the inverse transformation, making it harder to describe shapes, or describe 
shapes parametrically in which case we need both the forward transformation and the 
inverse transformation, making it harder to describe transformations. We conjecture 
that shapes are more likely to be application-specific than transformations, which 
can often be reused . Hence, we have chosen to represent shapes parametrically and 
require a definition of both directions for transformations. 

2.2.4 Comparison 

As a comparison, Table 2.1 lists the choices made by us and other frameworks. Tradi­
tional frameworks , like as Java2D, Processing and many others, limit the expressivity 

27 



2. A Library for Declarative Resolution-Independent 2D Graphics 

Constructor 
path 
shape 
analyze 

color 
texture 
fill 
transformation 

Type 
(JR --+ lR ) --+ Path 
[Path] --+ Shape 
Path x (Concrete Geom --+ A) --+ A 
where A E {Path, Shape, Texture, TexturedShape, Transform} 
lR x lR x lR x lR --+ Colar 
(JR2 --+ Colar) --+ Texture 
Shape x Texture --+ TexturedShape 
(JR2 --+ JR2) x (JR2 --+ JR2) --+ Transformation 

Table 2.2: Constructors and functions. [A] indicates a list of As. 

of the programmer by only providing support for the most common use cases. Many 

declarative graphics frameworks5 make the same choices [Finne and Jones, 1995; Mat­

lage and Gill, 2009] . Functional image synthesis frameworks, such as Pan [Elliott, 

2001) and Clastic [Karczmarczuk, 2002], are based on the notion that an image is 

simply a function from a point to a color. This allows the elegant definition of many 

interesting visual mathematical graphics but precludes real-life graphics, since the 

requirement of implicitly defined shapes makes hard to define complex shapes such as 

letters. Vertigo [Elliott, 2004] is an elegant declarative framework for the geometric 

modeling of 3D shapes, without texturing. In Deform we have chosen a combination 

of design decisions that has not yet been explored: parametric shapes, textures as 

functions and general transformations. In the rest of this chapter we show that this 

allows us to define a simple, general and resolution-independent framework which is 

applicable to real-life graphics. 

2.3 Design 

It is time to present our approach and illustrate its usage via examples. The basic 

unit of our framework is a TexturedShape, that describes a shape and the texture of 

its interior. An expression constituting a list of such textured shapes is first created 

using the constructors given in Table 2.2 and then displayed by a render function which 

interprets the constructors and produces an image. We will now show how to express 

shapes, textures and transformations in this way. Our examples were programmed 

in Scala and then hand-transformed into a custom notation which should be easy 

to understand . The examples use the constructors in Table 2.2 and some library 

functions of Deform, both of which will be explained when used. 

2.3.1 Shapes 

The basis for describing shapes is the path constructor, which takes a parametric 

description of the border of the shape, a function of type lR --+ JR2 . To allow omission 

5 Unfortunately, space limitations do not allow a more extensive discussion. 

28 



(b) Circle with triangle 
subtracted 

2.3. Design 

(a) A simple spiral 
(c) A filled triangle 

Figure 2.2: Basic examples 

of the domain of this function , it simply must be [O, l ]. The shape constructor can 
then be used to create a shape from a list of closed paths, paths of which the start 
and end points are the same. If one of the paths is not closed, then it does not define 
an area and a run-time error will be thrown. A point is then inside the shape if it is 
inside any of its closed paths. 

As a basic example, consider a circle: 

circ = shape( [path(>..t -t (sin(tx2x7r),cos(tx2x7r) ))]) 

The coordinate system of our framework is as follows: if the screen is square then 
the north west corner of the screen is (-1, - 1) and the south east corner is (1, 1). 
If the screen is non-square the range of the longest axis is adopted so that graphics 
maintain their aspect-ratio. An example of a more complex path is the spiral shown 
in Figure 2.2a: 

spiral = path(>..t -+ (Jxcos(s),fxsin(s)) 
wheref = 1/50x e8 110 , s = 6x7rx(l + t) 

Paths themselves cannot be drawn as they do not define an area. Hence, to produce 
a drawing of this spiral we use the stroke library function to convert this path to a 
shape given the width of the "pen" : 

stroke( spiral , 1/200) 

We do not have to explicitly define a parametric representation for each shape. 
Instead, we provide library functions that mimic the geometric constructs found in 
traditional libraries. For example, we can create a triangle as follows: 

triangle = shape([join([line(a, b) , line(b, c), line(c, a)])]) 
where a= (0, 0), b = (1, ~), c = (1, -~) 

To define functions which act on the geometry of a path, such as the stroke func­
tion, we offer the analyze constructor which takes a path and a function transforming 

29 



2. A Library for Declarative Resolution-Independent 2D Graphics 

the concrete geometry of the path, namely a list of lines and Bezier curves, into a path, 

shape, texture, textured shape or transformation. To ensure resolution-independence, 

analyze is a constructor rather than a function: in this way we delay the sampling of 

the path until we know the desired resolution, namely when the renderer runs. We 

also use this constructor to define resolution independent constructive solid geometry 

operations on shapes, set operations such as union and intersection operating on the 

set of points inside a shape. The implementation of these operations involves analyz­

ing the intersections between the concrete geometry of both shapes. As an example, 

the shape in Figure 2.2b can be obtained as follows: 

pacman = subtract ( circ , triangle) 

2.3.2 Textures 

To declare the interior of a shape, a texture can be created with the texture construc­

tor, which requires a function from a point to a color. A color is a value with four 

numbers, all in the range [O, 1], namely red, green, blue and alpha (transparency). 

For example, consider the following colors: 

red= color( l , 0, 0, 1) , black= color(O , 0, 0, 1) , yellow = color( l , 1, 0, 1) 

We can now create a radial gradient as follows: 

radgrad = texture(>..(x, y) -+ lerp( red, x2 + y2
, black)) 

Where lerp performs linear interpolation of two colors on each of the four numbers. 

A TexturedShape can then be created using the fill constructor. For example, Figure 

2.2b shows: 

fill(pacman , radgrad) 

As another example of defining textures in our framework, consider the interior of 

the triangle shown in Figure 2.2c. For this texture, we first declare a one-dimensional 

cyclic gradient that cycles between red and yellow: 

gradient(x) = if l :::::; ~then lerp( red, 2 x l, yellow) 
else lerp(yellow , 2x(l- ~) ,red) 

where l = x - l x J 

We can then define the filling of the triangle as follows: 

tritex = texture(>.. (x, y) -+ lerp(gradient(x x 10) , (2 x IYI/ x )2
, black) 

Where x x 10 repeats the gradient ten times on the horizontal [O, 1] interval and the 

linear interpolation argument6 (2xlyl/x)2 ensures that the color becomes darker closer 

to the vertical border of the triangle. A further survey of the power of this way of 

describing textures is beyond the scope of this chapter, for some fascinating examples 

see [Elliott , 2001] and [Karczmarczuk, 2002]. 

6 When x = 0, IYl /x will b e oo or not-a-number, which will cause lerp to return black. 

30 



2.3. Design 

2.3.3 Transformations 

The transformation constructor can be used to describe arbitrary transformations 
and requires the forward transformation function and its inverse. For example, we 
can define a scaling transformation as follows: 

scale(sx, sy) = transformation(>..(x, y)--+ (sx xx, Sy xy), 

>.. (x, y )--+ (x/sx, y / sy )) 

We can use this transformation to scale our previous examples. For example, to make 
our filled triangle half as big, we can do the following: 

transform(scale(l / 2, 1/ 2) , fill (triangle, tritex)) 

Where the transform function is expressed as follows: 

transform( transformation(!, f - 1 ), path(p)) = path(! o p) 

transform(! , shape(l)) = shape([transform(f , p) IP~ l]) 

transform( transformation(!, r 1
) , texture(t)) = texture(t 0 r 1

) 

transform(f, fill(s, t)) =fill ( transform(!, s), transform(! , t)) 

The only constraint on a transformation is t hat it must be continuous, otherwise 
it would be possible to transform a closed path (defining an area) into an open path 
(not defining an area). As an example of a non-affine transformation consider the 
"wave" transformation shown in Figure 2.3a: 

wave= transform(>..(x, y) --+ (x + sin(y), y) ), >.. (x, y) --+ (x - sin(y), y)) 

These transformations can be composed using the following compose function, 
which uses t he well-known rule (! o g)- 1 = g- 1 o f - 1 . 

compose(transform(f, r 1
), transform(g, g- 1 

)) =transform(! 0 g, g- 1 or 1
) 

A benefit of having both directions of a t ransformation is that we can also transform 
transformations. For example, if we have a rotation transformation and we want to 
change the center of rotation, we can achieve this by transforming the rotation by a 
translation. This is done by first applying the inverse translation, then the rotation 
and then the forward translation. In general, we can transform any transformation 
by another transformation as follows: 

transform(t, r) = compose(t, compose(r, inverse(t) )) 

where inverse(transform(f, f - 1
)) = transform(r 1 , f) 

As an example, we can transform our wave transformation to produce smaller waves: 

scaledWave = transform(scale(l/30, 1/ 30) , wave) 

31 



2. A Library for Declarative Resolution-Independent 2D Graphics 

( c) The filled triangle swept 

(a) Wave transformed trian- (b) Triangle swept along spi- by a spiral transformed by a 

gle. ral. wave. 

Figure 2.3: Non-affine transformation examples 

Applying this transformation to our filled triangle produces Figure 2.3a. 

Another example of a non-affine transformation is a "sweep": mapping the [0,1] 

interval on the x-axis to a given path. For example, by first scaling our filled triangle 

to make it thinner we can obtain Figure 2.3b as follows: 

fspir = transform( compose( sweep( spiral) , scale(l , 1/ 40)) , jtriangle) 

Other papers [Karczmarczuk, 1999; Elliott, 2004] have shown how to implement the 

sweep transformation when only the forward transformation is required, we now show 

how to handle both directions of this transformation. To define this transformation 

in a resolution-independent way, we define it as a function which takes the concrete 

geometry of the path and returns a transformation. Using the analyze constructor, 

we make this function into a transformation. 
To prevent changes in speed along the path, we want the norm of the derivative 

to be constant along the path. To this end, we reparameterize the concrete geometry 

of the path to a new geometrical description, q, with the same shape and a constant 

norm of the derivative, using an algorithm such as [Casciola and Morigi, 1996]. The 

forward transformation can then be expressed as follows: 

->.. (x,y ) -+ q(x) +yxq'(x) 

Here x denotes a normalized vector and q' is the derivative of q. 

The inverse transformation works by finding the closest point on the path to the 

point that is to be transformed. The horizontal coordinate is then the parameter at 

that point on the path, and the vertical coordinate is the distance of the point to be 

transformed from the path. More precisely: 

>..v-+ (t, sgn(q'(t)) x lq(t) - vl ) where t = f(v) 

Here sgn is the sign function and f computes the parameter of the closest point on q to 

a given point, using an algorithm such as [Ma and Hewitt, 2003]. As a final example 

32 



2.4. Implementation and Optimization 

of the compositionality this framework gives us, we transform the swept triangle using 
our wave transformation to obtain Figure 2.3c: 

transf arm (scaled Wave, fspir) 

2.4 Implementation and Optimization 

Our approach can be efficiently implemented by mapping it to a graphics host. We 
first describe a basic implementation and then introduce some extensions to allow 
more optimizations. Finally, we show how we can support clipping and discuss po­
tential further optimization. The implementation of Deform as sketched in this section 
is surprisingly concise and simple and consists of just 983 lines of Scala code. 

2.4.1 Basic implementation 

The main function to implement is the render function, which acts as an interpreter 
for the constructors that may occur in a TexturedShape. The pipeline of the render 
function is shown in Figure 2.4 and is organized as follows; A TexturedShape is pro­
duced by the user program and its shape is then translated into geometry, i.e., lines 
and Bezier curves, which are in turn translated to their equivalent representations in 
the graphics host. The graphics host then fills the shape, producing a raster telling 
us which pixels are inside the shape. We then simply iterate over these pixels and 
call the corresponding texture function for each pixel, producing a color raster which 
is then sent to the display. 

The toBezier function in this pipeline is also used to interpret analyze constructors, 
namely to generate the concrete geometry which is fed to the function argument of the 
constructor. We currently use a simple implementation of this function: we sample 
the function until the samples are so close to each other that the error is smaller that 
the size of a pixel. Afterwards, the samples are joined by lines. 

2.4.2 Special cases 

We optimize the basic implementation by intercepting special cases and mapping them 
to the corresponding functionality of the graphics host. We add a new constructor 
for each special case, which are shown in Table 2.3. Several of these new constructors 
were presented earlier as functions and by transforming them into constructors the 
render function can recognize them and act accordingly. We now discuss the special 
cases for shapes, textures and transformations. 

Shapes 

The first special case for shapes concerns paths that consist of lines and Bezier curves. 
It is of course wasteful to use a combination of lines and Bezier curves, only to later 
approximate it with other lines and Bezier curves. Hence, we extend our Path type 

33 



2. A Library for Declarative Resolution-Independent 2D Graphics 

User program 

TexturedShape 

render 

Shape 

color raster 

Display 

Figure 2.4: Rendering pipeline. Gray indicates functionality from the graphics host. 

34 



2.4. Implementation and Optimization 

with extra constructors for these types of paths and a constructor for join, so that 
the toBezier function can immediately use these descriptions without sampling. 

The second special case for shapes deals with constructive solid geometry opera­
tions. The default implementation of these operations is to obtain a concrete geometry 
of the shapes using toBezier and then analyze intersections to produce the new shape. 
In the case of union or symmetric difference we can skip this analysis. The union of 
a set of shapes can be implemented by supplying the set of shapes to the fill function 
of the graphics host and using the non-zero fill rule. This tells the renderer to fill any 
pixel that is inside at least one of the shapes, effectively rendering the union of the 
shapes. Analogously, we can render the symmetric difference of a list of shapes by 
using the even-odd fill rule, which states that a pixel should be filled if it is inside an 
odd number of shapes. 

Textures 

If the graphics host has support for a texture, we would like to make use of these 
optimized capabilities, because then we can completely skip the Texturer step in the 
pipeline. Hence, we include the constructor native Texture for these cases, which takes 
a function that given an affine transformation gives the specific representation for the 
graphics host of the transformed texture and a regular texture function for use when 
the transformation of the texture is not affine. 

Transformations 

If a transformation is affine and the path consists of lines and Bezier curves, we 
transform the geometry directly, instead of by sampling a function . The constructor 
affineTransformation represents such an affine transformation by two matrices (the 
specification of this type is left open) , one for the forward transformation and one for 
the inverse transformation. We also change the transform function into a constructor 
so that the toBezier function can intercept this special case. The compose function is 
also adapted to intercept the special case of composing an affine transformation with 
another affine transformation, which can be done using matrix multiplication instead 
of function composition, saving computations when points are transformed. 

Performance 

Note that in traditional frameworks such as Java2D or Processing, the special cases 
presented above are the only things that are expressible. Thus, the interception of 
these special cases guarantees that drawings that could also be produced using such 
a library are approximately as fast. We verified this by generating equivalent Java2D 
and Deform code in which 100,000 shapes (letters) were rendered, each with their own 
native texture and affine transformation. The Deform code performed 0.83 slower 
than the direct Java2D calls. This minor difference in speed is due to the fact that 
the Deform code first builds an intermediate representation of the textured shapes. 

35 



2. A Library far Declarative Resolution-Independent 2D Graphics 

Constructor 
line 
quadBezier 
cubicBezier 
Join 
union 
symdiff 
native Texture 

transformation 
transform 

affine Transformation 
pathbb 
transf ormationbb 

Type 
IR x IR ---+ Path 
IR2 x IR2 x IR2 ---+ Path 
JR2 x JR2 x JR2 x IR2 ---+ Path 
[Path] ---+ Path 
[Shape] ---+ Shape 
[Shape] ---+ Shape 
(Matrix---+ NativeTextureDesc) x (IR2 ---+ Color) 
---+ Texture 
(IR2 ---+ JR2) x (IR2 ---+ JR2) ---+ Transformation 
Transformation x A ---+ A 
where A E {Path, Shape, TexturedShape, Transform} 
Matrix x Matrix ---+ Transformation 
(IR ---+ IR2) x BBox ---+ Path 
(IR2 ---+ JR2) x (JR2 ---+ JR2) x (BE ox ---+ BE ox) 
---+ Transformation 

Table 2.3: Additional constructors for special cases. 

2.4.3 Clipping 

For large scenes, involving many shapes, a valuable optimization is clipping: deter­
mining the bounding boxes of shapes and then ignoring the shapes that are not in 
view. However, since in our framework shapes and transformations can be arbitrary 
functions, it is impossible to discover the bounding box of a shape without sampling 
it. 

For this reason we add two new constructors: one to declare a path and its bound­
ing box (the specification of this type is left open) and one to declare a transformation 
and also a function to forwardly transform a bounding box. In this way the user can 
optionally give the bounding boxes of transformed shapes. If the bounding boxes 
are not supplied, the shapes will simply not profit from clipping. In Deform, all li­
brary functions to construct paths and transformations also deal with bounding boxes. 
For example, lines and Bezier curves get the bounding box induced by their (control) 
points and join produces the smallest bounding box that contains the bounding boxes 
of its arguments. Affine transformations transform a bounding box by transforming 
each of its vertices. We currently use axis-aligned bounding boxes, but it is also pos­
sible to use non-axis-aligned bounding boxes that fit the shapes more tightly, at the 
cost of more computations. 

2.4.4 Potential optimization 

A potential optimization might be to speed the toBezier function by using techniques 
from the field of curve fitting. We could do the sampling and fitting in parallel, by 
modifying a curve fitting algorithm such as [Schneider, 1990]. We can then stop the 

36 



2.5. Case study: Focus+context Lenses 

sampling earlier if the samples we take lie close enough to the current approximation. 
We can also use the parameter of each point to improve the speed of our approximation 
since this is often useful information for curve fitting algorithms [Schneider, 1990]. 
Finally, curve fitting algorithms often estimate a derivative of the shape, so if we 
numerically compute the derivative, or supply it using an automated differentiation 
system [Elliott, 2009a], we can also use this information to more quickly find an 
approximation of the curve. 

2.5 Case study: Focus+context Lenses 

As a real world example of how this framework enables advanced, resolution-independent 
computer graphics techniques in a compositional way, we show how to implement the 
form of focus+context lenses that are presented in [Carpendale and Montagnese, 
2001], which have been shown to be useful in human computer interaction [Pietriga 
et al. , 2010]. A focus+context lens, such as the one in Figure 2.1 , is a transformation 
that magnifies a part of the space (the focus area) and shows how this magnified 
part fits into the rest of the space (the context) through a deformation. We compare 
our implementation to the previous implementation of this form of focus+context 
lenses [Pietriga et al. , 2010]. Our implementation is slightly harder, since we require 
both directions of the transformation. As we will show, this effort is well spent since 
it yields a faster implementation that gives better image quality at a fraction of the 
code. 

2.5.1 Implem entation 

We first consider the inverse transformation as presented in [Carpendale and Mon­
tagnese, 2001; Pietriga et al. , 2010]. Figure 2.5 shows the elements of a lens: r1 
is the radius of the focus area, r1 is the radius of the lens and we define m as the 
magnification factor. The inverse transformation is then defined as follows: 

{

v/m lvl < TJ 

1- 1 (v) = 1 ~ 1 xn- 1 (lvl) TJ < lvl < r1 

v otherwise 

Where n - 1 is the function that describes the deformation, by giving the new norm, 
i.e., distance from the center of the lens, for the point to be transformed and is a 
continuous, monotonically increasing function from [r f, rt] to [r f / m, rt]: 

Here z describes how far into the deformation area the point is , with zero if the point 
is on the border of the magnification area and one if it is on the border of the context 
area. The profile function, p, describes the shape of the deformation and can be 

37 



2. A Library for Declarative Resolution-Independent 2D Graphics 

context 

defor~ation 
I 

Figure 2.5: Lens elements. 

chosen freely as long as it is a continuous, monotonically increasing function from 

[O, 1] to [O, 1], such as the identity function. Another variation point is which norm 

to use to compute lvl, which decides the shape of the lens. In general it is possible 

to use any LP norm, which are of the form f/xP + yP. The lens is circular with L2 

and with L00 the norm resolves to max(x, y) and the lens is square. The example in 

Figure 2.1 uses the Euclidian norm and a Gaussian profile function and Figure 2.6 

shows two more Deform screenshots of other lenses in action. 

We now need to derive the forward transformation from this inverse transforma­

tion. If we have the inverse of the function n - l, then the forward transformation can 

be expressed as follows: 

{

vxm 

l(v) = ~ xn(lvl) 

lvl < ri/m 

rJ/m < lvl < r1 

otherwise 

However , for many profile functions , there is no analytic solution for the inverse 

of n- 1 . Luckily, n- 1 is a continuous monotonically increasing function , so we can 

implement n(t) by numerically searching for the x such that n- 1 (x) = t. We use 

Newton's method for this, since it is very efficient at finding the roots of monotonic 

functions . This method requires the derivative of n- 1 , which can be constructed using 

the derivative of the profile. In this way only the profile function and its derivative 

are needed when creating a lens with a different profile. 

2.5 .2 Comparison 

The previous implementation [Pietriga et al., 2010] of this form of focus+context 

lenses is in the Zoomable Visual Transformation Machine (ZVTM) [Pietriga, 2005] 

framework for zoomable user interfaces. The advantage of their approach to imple­

menting these lenses is that it is very loosely coupled with the graphics host, and is 

thus applicable in many graphical frameworks. In our approach these lenses can be 

added easily and this yields a better implementation in terms of length of code, speed 

and image quality. 

38 



2.5. Case study: Focus+context Lenses 

(a) L3 norm, linear profile (b) L 4 norm, quadratic profile 

Figure 2.6: Different types of lenses in action 

Code size 

In the ZVTM implementation, defining the lenses requires about 700 lines of code, 
and each new lens (with a different norm or profile) requires about 100 lines of 
code [Pietriga et al. , 2010]. In our declarative framework, the implementation of 
these lenses requires 43 lines of code, including the definition of the (reusable) nu­
meric approximation code, while defining a new lens can be done in a single line of 
code. For example, a rounded square lens with a quadratic profile (with derivative 
2 xx), as shown in Figure 2.6b, is declared as follows: 

lens ( >.. ( x, y ) -+ -\! x4 + y4, >..x -+ x 2, >..x -+ 2 x x) 

Performance 

As a performance comparison, we implemented the setup shown in Figure 2.1 in 
both Deform and ZVTM and measured the time it took to render a single image at 
different magnification factors. This was chosen because it is a simple example of a 
combination of shapes (text) and a texture (bitmap image). The entire picture was 
1600x1000 pixels big and the lens had a focus radius of 100 pixels and a lens radius of 
200 pixels. Note that both ZVTM and Deform run on the JVM and are built on top 
of Java2D. Figure 2. 7a shows the results of our measurements on an Intel i7 2.8GHz 
CPU running OpenJDK 1.11.3. All measurements are the average of 100 runs. 

We can see that in ZVTM the magnification factor has a huge impact on perfor­
mance, whereas in Deform it has no effect at all. This is because ZVTM does not 
feature non-affine transformations in general and uses a trick to achieve focus+context 
lenses; It renders the lens area twice: once without magnification and once with mag­
nification. Afterwards , both renderings are sampled to produce the lens area. The 
second, magnified rendering uses a buffer of width and height 2 x m x r1. Hence the 

39 



2. A Library for Declarative Resolution-Independent 2D Graphics 

..... 
Cl) 

0.. 

800 ---+--- Deform 
---- ZVTM 

600 -

400 

s 200 
E'.:; 

0 =-----~----~-~ 
0 10 20 

Magnification factor 

(a) Difference in speed 

ZVTM: 

Deform: 

(b) Difference in rendering quality 

Figure 2.7: Performance and image quality comparison. 

amount of pixels in this buffer is (2xmxr1)2 , which explains the quadratic growth of 
the ZVTM rendering time. 

Image quality 

As a final comparison, we consider the image quality of both approaches as shown 
in Figure 2.7(b). This notable difference in image quality is caused by the fact that 
Deform performs the discretization of shapes and textures later. ZVTM performs the 
discretization before applying the lens, while Deform performs the discretization after 
applying the lens. Hence Deform does not suffer from aliasing artifacts. 

2.6 Discussion 

While our framework is very expressive, it currently does not support post-processing 
image filters such as blurs. These filters are computationally very expensive and re­
quire low-level optimizations for real-time performance. Halide [Ragan-Kelley et al., 
2012] is an example of a language that is specifically designed for such filters; the 
programmer gives a concise declarative description of the filter along with a sched­
ule that states how the filter must be implemented. This yields very good results, 
outperforming hand tuned assembly code in some cases. It would be interesting to 

explore how the Halide way of describing filters can be fitted into our framework. 

Another open question is how we can exploit the massive power that is available 
via GPUs: which paths, transformations and textures can be executed on the GPU 
and how? How can these parts work together with functionality that cannot be 
executed on the GPU? Answering these questions will lead to a truly high-performance 

implementation of Deform. 

40 



2. 7. Conclusion 

2. 7 Conclusion 

We have presented a novel declarative framework for resolution-independent 2D graph­
ics that is simple, expressive and composable while still being applicable to real-life 
graphics. We have shown how to implement this framework such that it easily maps to 
readily available, highly-optimized procedural graphics libraries and have also shown 
how this framework can support clipping, so that it is possible to render very large 
scenes. We have shown a simple benchmark that shows that our framework is as fast 
as directly using the graphics host, thanks to the interception of special cases. As a 
real-world example, we have implemented focus+context lenses. The result is faster 
and smaller than the state-of-the-art implementation and has better image quality. 
Our framework liberates the programmer from the limitations of traditional frame­
works and we expect that it forms an excellent foundation for creating resolution­
independent graphics and higher-level visualization tools in a wide range of domains. 

Acknowledgements 

We thank Robert van Liere and Tijs van der Storm for their helpful comments. 

41 





3 

Drawing Non-layered Tidy Trees in Linear Time 1 

Summary 

The well-known Reingold-Tilford algorithm produces tidy layered drawings of trees: 
drawings where all nodes at the same depth are vertically aligned. However, when 
nodes have varying heights, layered drawing may use more vertical space than nec­
essary. A non-layered drawing of a tree places children at a fixed distance from the 
parent , thereby giving a more vertically compact drawing. Moreover, non-layered 
drawings can also be used to draw trees where the vertical position of each node is 
given, by adding dummy nodes. In this chapter we present the first linear time al­
gorithm for producing non-layered drawings. Our algorithm is a modification of the 
Reingold-Tilford algorithm, but the original complexity proof of the Reingold-Tilford 
algorithm uses an invariant that does not hold for t he non-layered case. We give 
an alternative proof of t he algorithm and its extension to non-layered drawings. To 
improve drawings of trees of unbounded degree, extensions to the Reingold-Tilford 
algorithm have been proposed . These extensions also work in the non-layered case, 
but we show t hat they then cause a O(n 2

) run-time. We then propose a modification 
to t hese extensions that restores the O(n) run-time. 

3.1 Introduction 

In many fields, trees are a much used abstraction. The understanding of trees is 
greatly improved by visualizing them and hence many types of tree drawings have 
been proposed [Tollis et al. , 1998; Johnson and Shneiderman, 1991; Kleiberg et al. , 
2001]. In this chapter, we focus on classical node-link diagrams, an example of which 

1T his chapter is was published earlier as: A. van der Ploeg. Drawing Non-layered Trees in Linear 
Time. In Journal of Software Practice €:!Experience {SP&E), Volume 44, Issue 12, pages 1467- 1484, 
2014. 

43 



3. Drawing Non-layered Tidy Trees in Linear Time 

Figure 3.1: Example node-link diagram of a tree. 

is shown in Figure 3.1. Usually, we are mainly interested in showing the structure 

of the tree and hence all the nodes can have the same width and height as shown in 

Figure 3.1. Sometimes, we also want to show some information inside each node or 

in the dimensions of each node. Examples of this are Tableau style proof trees, parse 

trees of (formal) languages, class diagrams in software engineering and Polymetric 

views [Lanza and Ducasse, 2003b]. The latter are inheritance diagrams of software 

systems where the width and height of each node signifies a software metric of the cor­

responding class, such as the lines of code or number of methods. In these situations, 

the width and height of each node may vary. 

Trees with nodes of varying dimensions can be drawn such that all nodes at the 

same depth are vertically aligned, which we call layered drawings, or nodes can be 

placed vertically at at fixed distance from each other, which we call non-layered draw­

ings. The difference between a layered and a non-layered drawing can be seen in Figure 

3.2. Both types of drawings have their own merits: layered drawings make it easy 

to compare the depth of nodes, whereas non-layered drawings are vertically more 

compact. 
Using a simple trick which we introduce later , non-layered drawings can also be 

used to show an attribute of each node in its vertical coordinate. An example of this is 

a family tree diagram where the vertical coordinate top coordinate of a node signifies 

the birth year of the corresponding person, as shown in Figure 3.3. An example in 

biology is a diagram which shows evolutionary relationships between biological species 

and the time in which each species came into existence. Another example is a cell 

division diagram where the vertical coordinate of each cell indicates t he time when 

its parent cell divided . 

A layered drawing of a tree can be found in O(n), where n is the number of 

nodes in the tree, using the well-known Reingold-Tilford [Reingold and Tilford , 1981 J 

algorithm. Various algorithms [Bloesch, 1993; Hasan et al. , 2003; Miyadera et al. , 

1998; Stein and Benteler , 2007; Xiaohong and Jingwei, 2010] have been proposed for 

the non-layered case, but all of these either make simplifying assumptions or have not 

been proven to run in linear time. 

In this chapter, we extend the Reingold-Tiford algorithm such that it also works 

for non-layered drawings. The original complexity proof of the algorithm for layered 

trees makes use of an invariant that does not hold for t he non-layered case. We give 

an alternative proof t hat does not use this invariant , and show how it is adopted to 

44 



3.1. Introduction 

(a) Layered. (b) Non-layered. 

Figure 3.2: Layered and non-layered tidy drawings of the same tree. 

prove that the extended Reingold-Tilford algorithm for the non-layered case also runs 
in O(n). 

To improve drawings of trees of unbounded degree, an extension to the Reingold­
Tilford algorithm has been proposed [Walker, 1990; Buchheim et al., 2006]. This 
extension also applies to non-layered trees, but we show that they then cause a O(n2 ) 

run-time. We then present a modification to these techniques and prove that this 
modification restores the O(n) run-time. 

Our contributions can be summarized as follows: 

• An extension of the Reingold-Tilford algorithm such that it can also produce 
non-layered drawings. 

• A proof of the linear run-time of the Reingold-Tilford algorithm with this ex­
tension. 

• A proof that the extension for trees of unbounded degree causes a O(n2 ) run­
time in the non-layered case. 

• A modification to this extension and proof that it restores O(n) run-time. 

The rest of this chapter is organized as follows; We first reformulate the tidy tree 
drawing problem to include non-layered drawings in Section 3.2. We then give an 
overview of the Reingold-Tilford algorithm and introduce its extension for non-layered 
drawings in Section 3.3. In Section 3.4, we prove that the extended Reingold-Tilford 
algorithm runs in linear time. We discuss the known extension (for layered trees) 
which improves the drawings of trees of unbounded degree in Section 3.5. Afterwards, 
we show that these techniques lead to a O(n2 ) run-time in the non-layered case 
and propose a modification to restore the O(n) run-time in Section 3.6. We show 
measurements of the speed of this algorithm in Section 3.7. Finally, in Section 3.8 
we discuss the history of this algorithm and related work. For sake of completeness, 
we discuss the techniques in the Reingold-Tilford algorithm which are also applicable 

45 



3. Drawing Non-layered Tidy Trees in Linear Time 

1900 

1924 

1948 

1972 

Figure 3.3: Descendants of John: layout with prescribed vertical positions (corre­
sponding to birth year). 

in the non-layered case in Appendix 3.A. In Appendix 3.B, we discuss the details of 

the parts of the techniques to improve drawings of unbounded degree which are also 

applicable in the non-layered case. In the Appendix 3.C we list the complete source 
code of the algorithm with the extensions discussed and proposed here. 

3.2 Redefining the Tidy Tree Problem 

In this section we reformulate the tidy tree drawing problem to include non-layered 
drawings. In order to reformulate cleanly, we abstract away from spacing between 

nodes and drawing connecting lines. The spacing between nodes is added by adding 
a gap to the widths and heights of the nodes. For example, the solid boxes in Figure 
3.5(f) show the original widths and heights and the dashed boxes show the widths 
and heights after adding the gap. 

Since we abstract away from spacing, in the layered setting, all nodes at the same 
depth can be considered to be of the same height. The input tree is then a rooted, 

ordered tree with a width for each node and a height for each depth in the tree. The 
vertical coordinate of each node is simply the vertical coordinate of its depth. In our 
more general non-layered setting, an input tree is also a rooted , ordered tree, but with 

a width and height for each node. Since we abstract away from spacing, the vertical 
top position of a node is then the bottom coordinate of its parent, which in turn is its 
top coordinate plus its height. In the rest of this chapter, we assume that the vertical 
positions of the input nodes have already been calculated in this way. Notice that if 
all the nodes at the same depth are of the same height , then a non-layered drawing 
is the same as a layered drawing. 

Sometimes we have an input tree where the top coordinate of each child is not 
equal to the bottom coordinate of its parent, as is the case in the trees and in Figure 
3.2(a) and Figure 3.3. We can transform such invalid trees to valid trees by adding 
thin "dummy" nodes between parent and child, as shown in Figure 3.4. 

The tidy tree drawing problem is then reformulated as follows: given an input 

46 



3.3. Overview of the extended Reingold-Tilford algorithm 

,~, I - - r - _! 

~--:·'---, 
1 ______ 1 

Figure 3.4: Dummy node 

tree, produce a horizontal coordinate for each node such that drawing is compact2 

and the following aesthetic criteria are met [Reingold and Tilford, 1981; Buchheim 
et al. , 2006]: 

1. Nodes do not overlap. 

2. Children are positioned horizontally in the order given in the tree. 

3. Parents are centered above t heir children . 

4. The drawing of a subtree does not depend on its position in the tree, i.e., 
ident ical subtrees are drawn identically. 

5. The drawing of the reflection of a tree, i.e. the order of the children of each 
parent is reversed, is the mirror image of the drawing of the original tree. 

The rationale for these aesthetic criteria can be found in [Reingold and Tilford, 1981]. 

3.3 Overview of the extended R e ingold-Tilford al­
gorithm 

We now give a high-level description of t he Reingold-Tilford algorithm and introduce 
our extension for the non-layered case. A pseudo-algorithm for this high-level de­
scription is given in Algorithm 1. The Reingold-Tilford algorithm first recursively 
processes all t he children of the tree, which produces a layout of each child as if 
it were the root , and hence the children overlap. Afterwards, each child subt ree is 
moved to the right such that it does not overlap with its left siblings. After moving 
the children, t he horizontal position of the root node is set such that it is centered 
above its children. 

Moving the children works as follows: the algorithm iterates over the children from 
left to right, and moves each child subtree so that it does not overlap with any of 
its left siblings. Consider an example of such an iteration, shown in Figure 3.5. The 
start of t he iteration is shown in Figure 3.5( a) . Since the algorithm does not deal with 
spacing and connecting lines, we only show these at the start and at the end, i.e., in 

2 Compact meaning here that if we draw a vertical line from the top of the drawing to t he bottom 
of the drawing at any horizontal coordinate inside the drawing, we will cross at least one node of the 
tree. 

47 



'll 

.§ 
h 

m .s 
~ 

.s 
ff! 
~ 
§ 
h 
"O 

~ 
~ ....... 

I 
;;::: 

~ 
-~ 

~ 
cv:i 

left siblings 

:-~-:-~1 f;l : 
! 1 j_~JQ 
I I I 

I 11 4 

I 

I 
i---~---1 

I I : I 1 
l _____ _J 

current subtree 1- ----
18 1 I I 

: 7 : 
I I 
I I l_@ I 

: 8 I ~ 
I I - -

1 

- - - - J 

(a) Already layed out children. 

1 

8 

(b) Overlap. 

jHTj =right contour ~ = left contour 

7 

8 

(d) First move. 

3 

6 

··· ······· · ........... . . . . . . . . . . . ........... 
: : : : :7: :::: 
........... 
··········· 

( e) Merged contours. 

Figure 3.5: Moving a child subtree. 

I 

I 11 
I 

2 

::::::5:::::: .............. 

( c) Contour pairs. 

.---------1 

7 11 LJ : 
1151 1@1 1_ 
~ 1-- I 

I I I 41 1---l 8 1--
1 I 
I I ____ , 

L------' 

(f) Result. 

00 
"tj< 



3.3. Overview of the extended Reingold-Tilford algorithm 

1 Layout (root) begin 
2 foreach Each child of root do 
3 I Layout ( child ) ; 
4 Separate ( (left siblings, child) ) 
5 Set position of root; 
6 Separate (left siblings, current subtree ) begin 

I* The contour pair is the pair of these two variables. */ 
1 Current right contour node +-- root of rightmost sibling; 
s Current left contour node +-- root of current subtree; 
9 while right contour node =I- null /\ left contour node =I- null do 

10 x1 +-- horizontal position of the left side of the current left contour node; 
11 Xr +-- horizontal position of the right side of the current right contour 

node; 
12 if Xt < Xr then 
13 I Move current subtree by Xr - x1 to the right; 
14 Yl +-- vertical position of the bottom of the current left contour node; 
15 Yr +-- vertical position of the bottom of the current right contour node; 

/* Coordinate system increases upwards. */ 
16 if Yl ~ Yr then 
1 7 I Current left contour node +-- next node of the left contour; 
18 if Yl ~ Yr then 
19 I Current right contour node +-- next node of the right contour; 
20 Merge contours; 
Algorithm 1: High-level description of the extended Reingold-Tilford algorithm. 

49 



3. Drawing Non-layered Tidy Trees in Linear Time 

Figure 3.5(a) and Figure 3.5(f). In the left part of the Figure 3.5(a) we see that three 
left sibling subtrees were already layed out and moved, namely the subtree consisting 
of the node 1, the subtree consisting of the node 2 and the subtree consisting of the 
nodes 3, 4, 5, 6. The subtree that should now be moved, from now on referred to as 
the current subtree, is shown in the right part of Figure 3.5(a) and consists of the 
nodes 7, 8, 9. The layout of the current subtree and the left siblings is already correct, 
due to recursion. Notice that the left siblings and the current subtree are actually in 
the same space, and thus overlap as shown in Figure 3.5(b). 

To see how much the current subtree must be moved, we use the contours of 
the current subtree and its left siblings. The left contour is the list of the nodes, 
from top to bottom, that can be "seen" from the left . The right contour is defined 
symmetrically. The contours in the example are shown in Figure 3.5(c). In our 
example, the left siblings have a left contour , consisting of the nodes [l, 4, 5], and a 
right contour, consisting of the nodes [3, 6, 4, 5]. The current subtree has of a left 
contour, [7, 8], and a right contour, [7, 9, 8]. 

To move the current subtree, only the right contour of the left siblings and the left 
contour of the current subtree are needed. The algorithm then processes all contour 
pairs: vertically overlapping nodes from both contours. The contour pairs in our 
example are also shown in Figure 3.5(c). 

In the layered case, finding the contour pairs works as follows: The first contour 
pair consists of the first node of the right contour and the first node of the left contour. 
The next contour pair is found by advancing both nodes from the current pair to the 
next element of their contour. We iterate this process until one of the contours has no 
more elements. In the non-layered case, the bottom coordinates of the contour nodes 
do not have to be equal. Hence, in each iteration only the highest one will be advanced 
to the next node of its contour, or both if they have the same bottom coordinates. 
This is the only modification needed to make the Reingold-Tilford algorithm work for 
non-layered trees. This modification consists of the two tests in lines 17 and 19 in our 
high-level description of the algorithm in Algorithm 1. In our non-layered example in 
Figure 3.5(c), this process yields contour pairs (3, 7), (6, 7), (6,8) and (4,8). 

For each contour pair we then check if the left side of the left contour node is 
to the left of the right side of the right contour node. If this is the case, then the 
current subtree overlaps with its left siblings, and we move the current subtree such 
that the horizontal position of the left side of the left contour node is the same as the 
horizontal position of the right side of the node in the right contour. In our example 
the first contour pair is (3, 7), and the left side of 7 is indeed to the left of the right 
side of 3, as can be seen in 3.5(b). We then move the current subtree to the right such 
that the left side of 7 is the right side of 3, as shown in Figure 3.5(d). The current 
subtree is then moved again for contour pairs (6, 7) and (6, 8), after which the current 
subtree is positioned as shown in Figure 3.5(e). Notice that this is not the same as 
simply moving the current subtree by the distance between the left of its leftmost 
node and the right of t he rightmost node of its left sibling. 

Afterwards the contours of the left siblings and the current subtree are merged 
into a new left and right contour, so that these are available later. In our example, 
the left siblings were taller than the current subtree. The left merged contour is then 

50 



3.4. Complexity Proof 

just the left contour of the left siblings, as shown in Figure 3.5(e). The merged right 
contour is the right contour of the current subtree, followed by the remainder of the 
right contour of the left siblings. More precisely, the merged left contour consists of 
the nodes [1, 4, 5], and the merged right contour consists of the nodes [7, 9, 8, 4, 5]. 
After merging the contours the iteration ends and the algorithm starts moving the 
next child subtree. In our example, the subtree rooted at 7 was the last child, so the 
algorithm positions the root node using the positions of its children. The result can 
be seen in Figure 3.5(f). 

A naive implementation of the above algorithm will not run in linear time. In 
order to get a linear run-time the Reingold-Tilford algorithm uses techniques to do 
both of the following in 0(1): 

• Getting the next element of a contour. 

• Moving a subtree horizontally. 

For the former, the algorithm maintains two fields called the left and right threads 
for each node, which contain a reference to the next node in the left or right contour 
respectively. Getting the next element of a contour is then simply using this reference. 
For the latter, the algorithm makes use of relative coordinates. The details of these 
techniques are given in Appendix 3.A. In the rest of this chapter, it suffices to know 
that these operations can be done in 0(1). It does not matter how this is achieved. 

It should be clear that this algorithm satisfies aesthetic criteria 1-3, as listed on 
page 47. See [Gibbons, 1996] for a more in depth discussion of this. Aesthetic criteria 
4 also holds, since the algorithm is a simple recursive algorithm that lays out each 
subtree in the same fashion, without taking into account where in the tree the subtree 
is located. Aesthetic criteria 5 does not hold, and we will see later how this can be 
fixed. 

3.4 Complexity Proof 

The original complexity proof of the Reingold-Tilford algorithm uses an invariant 
which does not hold in the non-layered case: the number of nodes in the left or right 
contour is equal to the depth of the tree, i.e. the length of the longest path from root 
to leaf. We will now give an alternative complexity proof, which does not use this 
invariant and then generalize this proof to the non-layered case. 

The running time of the Reingold-Tilford algorithm depends on the total amount 
of contour pairs considered to move all subtrees. The total number of contour pairs 
is the same as the total number of times that the program executes the body of the 
while loop in Algorithm 1. The centering of a root above its children costs constant 
time per node, as we only need the positions of the leftmost and rightmost child. The 
moving of a subtree and the obtaining of the next node of a contour costs constant 
time per contour pair, by using the techniques explained in Appendix 3.A. Hence, 
if the total number of contour pairs processed during the layout of the entire tree is 
linear in the size of the tree, then the Reingold-Tilford algorithm runs in linear time. 

51 



3. Drawing Non-layered Tidy Trees in Linear Time 

3.4.1 Layered case 

Let us first assume that the input tree is layered. The key insight for this complexity 
proof is the following: if a node in the left contour of a subtree was processed to 
move that subtree, then it cannot be part of the left contour of another subtree. As 
an example, consider Figure 3.1. Here the left contour of the right child consisted 
of 4, 5 and 6. The left contour nodes considered when moving the right child are 4 
and 5, which thus cannot reoccur in another left contour. The reason for this is that 
after moving the current subtree, the left contour nodes that were processed will all 
have a node in the left siblings to the left of them. In our example, the processed left 
contour nodes 4 and 5 have the nodes 1 and 3 to the left of the them respectively. In 
other words, since the left contour is all the nodes that can be "seen" from the left, 
the processed left contour nodes of the current subtree cannot be part of the merged 

contour, because they are occluded by nodes in the left siblings. An analogous insight 
holds for the right contour nodes. 

More formally, the input tree consists of n nodes, v1 ... Vn· Let fi(vi) be the set 
of left contour nodes processed to move the subtree with root Vi· Due to the above 
insight, we know that if a node Vi is in a set !1 ( Vj), it cannot be a part of any other 
set J1(vz), with z -1- j. Because of this, we know that the total number of left contour 
nodes processed to layout the entire tree is less than or equal to n, i.e.: 

n 

L lfi(vi)I ~ n 
i= l 

Where lxl denotes the number of elements in the set x. The equivalent holds for 
fr(vi), the set of right contour nodes that where processed to move the subtree with 

root Vi· 

Let f (Vi) be the set of contour pairs processed to move the su btree with root Vi. 

In the layered case, nodes are aligned vertically, and hence we know that lf1(vi)I = 

lfr(vi)I = lf(vi)I , where lxl denotes the size of the set x. Hence, the amount of 
contour pairs processed during the entire algorithm is less than or equal to n, which 
means that the Reingold-Tilford algorithm runs in linear time. 

3.4.2 Non-layered case 

In the non-layered case, nodes are not necessarily vertically aligned . Hence, the 
amount of contour pairs processed to move a child is no longer the same as the 
number of left contour elements processed. In the worst case the nodes from the right 

and left contours are never aligned, i.e., their bottom coordinates are never the same. 
After processing a contour pair, we will advance either along the left or the right 
contour or along both. This gives us an upper bound on the number of contour pairs: 

Another difference to the layered case is that a node in a left contour now can 

be processed to move the subtree as well as being included in another left contour. 

52 



3.5. Improving layouts 

Again, t he same holds for right contours. As an example of a right contour node that 
is also included in another right contour, consider the tree in Figure 3.5(c). In this 
example, right contour node 4 is processed when moving the subtree rooted at 7 and 
it is also in the right contour of the entire tree, rooted a t 0, as shown in Figure 3.5(d). 

However, this can only happen if the node is the last right contour node that 
was processed to move a subtree. The reason for this is that the top part of the 
last node that was considered is occluded by nodes to t he right while ot her nodes 
that were considered must be totally occluded by nodes to t he right . Again, as an 
example, consider Figure 3.5(c) . The last considered right contour node of the left 
siblings, node 4, is partially occluded by t he nodes 7 and 8 to the right in t he merged 
contour in Figure 3.5(d). However t he ot her right contour nodes that were considered 
, namely 3 and 6, are totally occluded by nodes to t he right, namely 7 and 8. The 
same reasoning holds for the last left contour node that was processed to move a 
subtree. 

Let Jf (vi) be the set of left contour nodes that where processed to move the 
subtree with root Vi, except the last left contour node that was processed. More 
formally Jf(vi) = fi (vi) - {li (vi )} , where l1 (vi) is the last node of the left contour 
that is processed to move the subtree with root Vi· Since only last elements of a 
contour can reappear , we know that: 

n 

L lf j(vi)I ~ n 
i= l 

When moving each subtree, there will be only one last left contour element considered , 
and since there are n subtrees, we know that: 

n n n 

i= l i= l i=l 

The same argument can be made for t he right contour, and hence we know t hat: 

n n n 

i=l i= l i= l 

Which proves that the extension of the Reingold-Tilford algorithm for non-layered 
trees also runs in linear time. 

3.5 Improving layouts 

The above Reingold-Tilford algorithm for non-layered t rees satisfies aesthetics 1-4, 
but not aesthetic 5 [Walker, 1990]: the drawing of t he reflection of a tree is not the 
mirror image of t he d rawing of the original t ree. An example of t his is shown in 
Figure 3.6(a) . When subt rees are enclosed by larger siblings they will be piled to the 
left . If we draw the reflected tree and t hen mirror the layout , the subt rees are piled 
to t he right as shown in Figure 3.6(b) . A simple trick t o satisfy aesthetic 5 is to take 

53 



3. Drawing Non-layered Tidy D ees in Linear Time 

(a) 

Q 

~8 :09. no 0 
.._ __ _,I ._I ---~-' ._C::: ___ ___ 

(c) 

(b) 

Q 

(d) 

Figure 3.6: Layouts not satisfying aesthetic 5 (a,b) and satisfying aesthetic 5(c,d). 

Inspired by a figure in [Buchheim et al., 2006]. 

the average of the horizontal position of the each node in the original and mirrored, 

reflected drawing, which results in a layout as shown in Figure 3.6( c). However, this 

tends to cluster smaller subtrees, which is less aesthetically pleasing. Walker [Walker, 

1990] noticed this problem and proposed extensions to the Reingold-Tilford algorithm 

to produce aesthetically more pleasing layouts, such as the one shown in Figure 3.6( d). 

Buchheim, Jiinger and Leipert [Buchheim et al., 2006] then showed that the Walker 

algorithm runs in O(n2 ) and provided techniques to restore the linear running time. 

To see how such layouts are achieved, consider the example shown in Figure 3.7(a). 

Here we see that we have already layed out and moved children 1-4 and we are 

currently moving child 5 to the right. We already processed the first node of the right 

contour of the left siblings, namely 4, and hence the left side of node 5 is no longer 

to the left of the right side of node 4. We now move on to the next node of the right 

contour, 6. As shown in Figure 3.7(b) , we need to move node 5 by a distanced to 

the right. In the Reingold-Tilford algorithm as described before this would have been 

the only thing we would have done. To satisfy aesthetic 5, we notice that the current 

node in the right contour, 6, which caused the move by d, is in the sibling subtree 

with root 1. 

If we move 5 by d, then there is d space between 5 and its left sibling, 4, as shown 

in Figure 3.7(b). We can then distribute this extra space over the gaps between 

the intermediate siblings, the siblings between the sibling that caused the move and 

the current subtree, namely 1 through 4. Since there are 4 gaps, we move the first 

intermediate sibling node by a distance ~d, the second by ~d, and the third by ~d, 

as shown in Figure 3.7(c). 

In general, suppose a node in the current subtree is a distance d to the left of a 

node v in the right contour of its left siblings. After moving the current subtree by 

d, we then see which left sibling is the ancestor of v. Let i be the index of this left 

sibling and j be the index of the current subtree. We then move each intermediate 

sibling, with an index z the range [i + 1 ... j - 1], by a distance j=~ d. 

To do the above modification to the Reingold-Tilford algorithm while retaining 

the running time of O(n) , Buchheim et al. introduce techniques to do both of the 

54 



3.6. Improving layouts in linear time 

cp rn rn m d .~5 
~6~~~~~~~~1 

~~~~~~~~~~~ 

(a) Before moving 5. (b) After moving 5. 

( c) Distributing the space over intermediate siblings. 

Figure 3. 7: Shifting intermediate children 

following in 0(1): 

• Move the intermediate siblings as described above. 

• Given a node in the right contour, get the index of the sibling subtree which 
contains that node. 

For the first point, Buchheim et al. propose a technique which is also applicable in 
the non-layered case. Its details are not important in this chapter, but it is explained 
in Appendix 3.B for sake of completeness. 

For the second point , the Buchheim et al. propose a technique which requires 
updating all the nodes in the right contour of a subtree after moving that subtree, 
but only if the subtree is less tall than its left siblings. If a subtree is less tall than 
its left siblings, then all its left contour nodes are considered to move that subtree. 
In the layered case, the left and right contours must have exactly as many elements. 
Therefore, the number of right contour nodes of a subtree that is less tall than its left 
siblings is the same as the number of contour pairs considered to move that subtree. 
Hence, updating the right contour of subtrees that are less tall than its left siblings 
does not modify the O(n) run-time in the layered case. In the non-layered case this 
technique causes a run-time of O(n2 ), which we will show and remedy in the next 
section. 

3.6 Improving layouts in linear time 

In the non-layered case, the left and right contours do not have to have the same 
number of elements. Because of this, updating the right contour nodes of subtrees 
that are less tall then their left siblings leads to an O(n2 ) run-time. As an example of 
this, consider the tree construct shown in Figure 3.8. Formally, we construct a tree 
given a parameter k: the root node has width and height 2k, and has three children: 

55 



3. Drawing Non-layered Tidy Trees in Linear Time 

Figure 3.8: A tree construct where the sibling index lookup technique of Buchheim 

et al. gives O(n2) run-time. 

• A child consisting of a single node of width i 2k and height ~ 2k. 

• A child subtree constructed in the same way, with k = k - 1. 

• A child consisting of a single node of width t2k and height t2k. 

When k = 1, the tree is constructed in the same way, but the middle child is instead 

a single node with width and height 1. 

For every k , the middle child subtree is less tall then its left sibling. Hence, 

when using Buchheim et al. 's technique we must always update the nodes in the right 

contour of the middle child after moving it to the right. For each k, a tree constructed 

in this way has 3k + 1 nodes. The right contour of the middle child consists of all 

nodes in its subtree, i.e. 3( k - l) + 1 nodes. Updating the right contour for all middle 

children in in such a tree then takes: 

k-1 k-1 

L[3i + 1] = 3 Li+ k - l = O(k2
) 

i=l i=l 

Due to the well-know equality I:7=1 i = k(k + 1) / 2. Since there is a linear relation 

between n and k, this means that the algorithm runs in O(n2). 

Hence, we need a different technique to find the index of the sibling subtree that 

contains a given node in the right contour. As noted by Buchheim et al., it is also possi­

ble to adopt the lowest common ancestor algorithm of Schrieber and Vishkin [Schieber 

and Vishkin, 1988] to find the index of the sibling subtree in 0(1) , after an O(n) pre­

processing step. This is indeed possible, but not trivial, and Buchheim et al. do not 

describe the details. 
We propose a different, much simpler technique: during the moving of the children 

we maintain a linked list of the siblings that currently have a node in the right contour. 

Each node in this linked list is a pair of the index of the corresponding sibling and 

its lowest vertical bottom coordinate. This list is always sorted in descending order 

56 



~rldb 
U_ --------_ --~: 

-----------------Yo 

(a) Left siblings and their lowest vertical co­
ordinates. 

3.6. Improving layouts in linear time 

J_ 

(b) Left sibling lookup list. 

Figure 3. 9: A tree layout with the corresponding linked list . 

of the siblings indices. An example of a tree with t he corresponding list is shown 
in Figure 3.9. When moving a child subtree we advance this list if the current right 
contour node has a lower vertical coordinate than the pair at the head of t he list, 
adding only 0(1) operations per contour pair. The index of the sibling subtree that 
contains t he current right contour node is then always given in the pair at the head 
of the list. 

After moving a current subtree to t he right, we need the pair for the current sub­
tree, i.e. the subtree that was just moved. This pair consists of the sibling index 
of the current subtree, which we already know, and the lowest vertical bottom coor­
dinate of the current subtree. The latter is easily found when using the techniques 
in the Reingold-Tilford algorithm as described in Appendix 3.A. More precisely, the 
Reingold-Tilford algorithm keeps track of the extreme nodes of each subtree, i.e. the 
lowest nodes that can be "seen" from the left or right . The lowest vertical bottom 
coordinate of a subtree is then the bottom coordinate of either of its extreme nodes, 
and can hence be found in 0(1 ). 

To update the list, we then remove elements at t he head of the list that have a 
higher lowest vertical coordinate than the new pair. This removes siblings from the 
list that had nodes in the right contour , but these nodes are now occluded by the 
current subtree. Afterwards, we prepend the new pair to the list. In this way, the list 
always corresponds to the siblings that currently have a node in the right contour. 

The total number of operations needed for updating the list when moving all the 
children of a node is at most 2m( vi), where m( Vi) is the number of child ren of a node 
Vi· This can be seen as follows: we update the list m(v;) times during the moving of 
t he children, namely after moving each child. Each time we remove some number of 
elements from the head of the list and an element is prepended to the list. Since we 
add m(vi) elements to the list , and an element can only be removed once, the total 
number of elements dropped is at most m(v;) . Hence, together the prepending and 
dropping of elements cost at most 2m(vi) operations per node. 

For the entire tree this will add at most 2::~1 2m( vi) operations. Every node is a 
child of exactly one other node, except for the root who is a child of no one. Hence, 

57 



3. Drawing Non-layered Tidy Trees in Linear Time 

--Maximum 
Median 

Nr. of nodes 

Figure 3.10: Measurements on random trees. The minimum is not shown, as it 

coincides with the x-axis. 

the sum of the number of children of all nodes, I:~= l m( vi ), is equal to n - 1. Because 

of this we know that the updating of the lists cost 

n n 

L 2m(vi) = 2 L m(vi) = 2(n - 1) = O(n) 
i= l i = l 

extra operations for the entire tree. Since the updating of the place in the list during 

the moving of a subtree cost 0(1) per contour pair, this will also add O(n) extra 

operation to the algorithm. Hence, the running time of the algorithm with this 

extension is linear in the size of the tree. 

3. 7 Empirical results 

In practice the algorithm presented in this chapter is very fast, and should hence 

be applicable in any computing environment. In Figure 3.10 we show the results 

of measuring the time the algorithm took to lay out randomly generated trees. We 

used the following procedure to generate a tree with n nodes: Start with a tree with 

a single node. Then, for each other node, add it as a leaf in the current tree in a 

random position. This random position is determined by descending the current tree 

as follows: Starting with the root node as the current node, we generate a random 

integer between zero and the number of children of the current node. If the ran­

dom number is zero, then new node is added as a new child of the current node. 

Otherwise, we descend into the child with as index the random number and repeat 

the procedure. Each node has a random width and height uniformly distributed be­

tween 1.0 and 10.0. As there are more possible trees as the number of nodes goes 

up, we generated 200 x n tests, where n is the number of nodes, for each multi­

ple of 100 in the range [0,4400]. These results were obtained using OpenJDK java 

58 



3.8. Related work 

runtime version 2.3.9.8 on an Intel i7 2.8 GHz CPU running Fedora Linux 3.9.4-
200.fc18.x86_64. This experiment can be repeated by downloading the source code 
from http: I I gi thub. com/ cwi-swat/non-layered-tidy-trees. 

3.8 Related work 

3.8.1 History 

The history of the Reingold-Tilford algorithm is quite long: In 1979, Wetherell and 
Shannon [Wetherell and Shannon, 1979] presented the first O(n) algorithm that pro­
duces drawing satisfying aesthetics 1-3, that was inspired by a tree drawing algo­
rithm presented by Knuth in 1971 [Knuth, 1971]. Two years later, Reingold and 
Tilford [Reingold and Tilford, 1981] gave an algorithm, inspired by the Wetherell and 
Shannon algorithm, that also satisfied aesthetic 4. Then in 1990, Walker [Walker, 
1990] presented an improvement such that aesthetic 5 is also satisfied for trees of 
unbounded degree. In 2002 Buchheim, Jiinger and Leipert showed that Walker's 
algorithm ran in O(n2), in contrast to what the author claimed. They presented im­
provements to the Reingold and Tilford algorithm inspired by Walker's work that did 
run in 0( n). All these versions of the Reingold-Tilford algorithm, and their proofs 
assume layered trees. 

3.8.2 Algorithms for non-layered trees 

There have been several previous efforts to produce non-layered drawings of trees. All 
of these either make simplifying assumptions and/or have not been proven to linear 
time. 

Miyadera et al. present an O(n2
) algorithm [Miyadera et al., 1998] for non-layered 

trees that horizontally positions a parent at a fixed offset from its first child, instead 
of centered above the children. This greatly simplifies things, as only the first child 
needs to be layed out before positioning the root node, allowing a simple depth-first 
solution. A proof that such a 0( n) depth-first solution exists was given by Hasan and 
Radwan [Hasan et al., 2003]. This type of layout can also be easily handled by the 
extended Reingold-Tilford algorithm, by simply modifying the computation of the 
position of the root node. This will break aesthetic 5, as the Hasan and Miyadera 
algorithms also do. 

Bloesch gives two algorithms [Bloesch, 1993] for non-layered trees that are in­
tended to satisfy aesthetics 1-5. Both algorithms follow the same idea: discretize the 
drawing vertically. The first is then a variant of an algorithm for layered trees by 
Vaucher [Vaucher, 1980] and the second is a variant of the original Reingold-Tilford 
algorithm. This variant does not use threads (described in Appendix 3.A) like the 
original Reingold-Tilford algorithm, as the author states that this is impossible in 
a non-layered setting, which is obviously false. It is unclear to us how the drawing 
generated by these algorithms satisfy aesthetics 4 and 5. Bloesch reports that these 
algorithms run in O(nh) , where h is the number of elements in the discretization of 
the height. It is unclear to us whether this is true, as no proof is given. 

59 



3. Drawing Non-layered Tidy Trees in Linear Time 

Stein and Benteler [Stein and Benteler, 2007] propose a similar technique: A non­

layered tree is converted into a layered tree by discretizing horizontally and vertically. 

Afterwards, an algorithm for layered trees can be applied and the results can be 

translated back. This approach runs in O(f(n)wh), where w and h are the number 

of elements in the horizontal and vertical discretization respectively and f(n) is the 

running time of the algorithm for layered trees. 

Xiaohong and Jingwei [Xiaohong and Jingwei, 2010] present an algorithm for 

non-layered trees satisfying aesthetic criteria 1-4. The algorithm is presented as a 

complete novelty, but it is the Reingold-Tilford algorithm with the small extension 

that we introduced in Section 3.3, which amounts to three extra lines in the algorithm 

as shown in Appendix 3.C. In contrast to our work, no proof is given of the time 

complexity nor do the layouts by algorithm satisfy aesthetic criteria 5. 

Marriot, Sbarski, Van Gelder, Prager and Bulka [Marriott et al. , 2011] presented, 

among other things, a technique to produce a more vertically compact drawing of 

a tree where the nodes have different heights. This technique works by first pre­

processing the tree and then using the Reingold-Tilford algorithm extended with the 

techniques of Walker and Buchheim. In the pre-processing step, the tree is "re­

layered": if the distance between a parent and a child is too large, the layer is split 

in two. In this way, a more vertically compact layout can be obtained in O(nlogn). 

With the algorithm presented in this chapter we can achieve a drawing with minimal 

height in O(n). A non-layered drawing has minimal height , since the top-coordinate 

of a node in the bottom coordinate of its parent (abstracting away from spacing). 

3.8.3 Related work on node-link drawings on trees 

Apart from algorithms for drawing node-link diagrams of trees, various results have 

been published on other aspects of node-link diagrams of trees: Gibbons [Gibbons, 

1996] derives the Reingold-Tilford algorithm for binary trees from the aesthetic cri­

teria. His derivation of the algorithm shows that the Reingold-Tilford is the only 

reasonable algorithm that satisfies the aesthetic criteria. 

Kennedy [Kennedy, 1996] shows how to implement a variant of the Reingold­

Tilford algorithm in a purely functional setting, with time complexity O(n2 ) . We 

note that it should be possible to implement the Reingold-Tilford algorithm with its 

extensions in a purely functional setting while retaining the O(n) run-time. This 

could work by separating the contours from the tree itself, i.e. maintaining a separate 

list representing the contour instead of reusing the tree structure for this. This would 

get rid of the need for mutability. If we then also choose a purely functional data 

structure for such a contour list with 0(1) first and last element access and 0(1) list 

concatenation, such as the data structure given by Kaplan and Tarjan [Kaplan and 

Tarjan, 1999a], we can implement a purely functional version running in O(n) . 

Suppowit and Reingold [Supowit and Reingold, 1983] investigated the complexity 

of drawing trees nicely. They found that a drawing with global minimum width may 

have subtrees that are much wider than necessary. For this reason the Reingold­

Tilford algorithm does not promise minimal width. They also found that the tidy 

tree problem can be reduced to a linear programming problem and that it is NP-hard 

60 



3.8. Related work 

if the horizontal coordinates are restricted to integers. 
Moen [Moen, 1990] shows a variant of t he Reingold-Tilford algorithm that works 

in approximately the same way, the main difference being that he uses a separate 
data structure for the contour instead of reusing the tree itself. He then shows how 
to keep the layout of the tree up-to-date when there are insertions and deletions in 
the tree. 

Marriot and Sbarski [Marriott and Sbarski, 2007] relax the requirement that a 
parent must be placed exactly between the children, making it a preference that may 
be violated if it yields a tree with a smaller width. Their approach is to first find a 
initial layout using the (extended) Reingold-Tilford algorithm and then solve a kind 
of quadratic programming problem to see where the preference should be violated to 
produce a more narrow drawing. This technique requires that the drawing is divided 
into layers. However, in another publication [Marriott et al. , 2011] , Marriot and 
Sbarski showed how to this t echnique can be applied in a setting where a node can 
span multiple layers. Hence, if we introduce a layer for each unique vertical position 
and then assign nodes to layers, then this technique can also be used together with 
the algorithm presented in this chapter. 

3.8.4 Other ways of drawing trees 

We will now give a short and by no means complete overview of other tree visualization 
methods, for a more complete overview see [Katifori et al. , 2007; Nguyen and Huang, 
2002]. 

There are many variations on the basic node-link diagram. One way to adapt 
node-link diagrams is to change the coordinate system in which they are drawn. 
Radial trees draw node-link diagrams in a polar coordinate system, where the root is 
displayed at the origin. Balloon trees are similar, but the children of each node are 
in a circle around the node instead. The hyperbolic browser[Lamping et al. , 1995] 
also changes the coordinate system in which a node-link diagram is draw, namely to 
a hyperbolic plane. 

Another way to adapt node-link diagrams is to move from 2D to 3D. Cone 
trees [Robertson et al. , 1991] are a 3D generalization of balloon trees: viewed from 
the top the diagram is a balloon tree, while viewed from the side we see a cone from 
each root node to its children. Anot her 3D generalization of node-link diagrams is 
visualize a hierarchy as as a botanical tree [Klei berg et al. , 2001 J. 

Instead of node-link diagram, the parent-child relationship can also be visualized 
by containment: the children are drawn inside the parent . Treemaps [Johnson and 
Shneiderman, 1991] draw nodes as rectangles, and each rectangle is subdivided into 
the rectangles of the children. The area of each rectangle signifies the size of t he node, 
for example the size of a file or the total size of a directory when visualizing a file 
system. 

Hi-trees [Marriott et al. , 2011] combine containment and node-link diagrams: t he 
parent-child relationship is visualized by either a link or containment, depending on 
the type of the relationship between parent and child. For example, arguments in 
a discussion can have sub-arguments (containment) and supporting and opposing 

61 



3. Drawing Non-layered Tidy Trees in Linear Time 

arguments (links). 

Acknowledgements 

We thank Leen Torenvliet, Menno van der Ploeg, Anastasia Izmaylova, Paul Klint 

and the anonymous reviewers for their constructive comments on this chapter. 

62 



3.A. Techniques in the Reingold-Tilford algorithm 

Appendices to Chapter 3 

3.A Techniques in the Reingold-Tilford algorithm 

In order to get a linear run-time the Reingold-Tilford algorit hm [Reingold and Tilford, 
1981] uses techniques to do both of the following in 0(1): 

• Getting the next element of a contour. 

• Moving a subtree horizontally. 

The operation for the first item, getting the next node of a contour, depends 
on whether the current node is a leaf or not. If the node is not a leaf, then the 
next element of the left contour is its leftmost child, and the next element of the 
right contour is its rightmost child. For leafs, the next element of the left and right 
contours are stored in two fields of each leaf, called the left and right threads. To 
keep the threads up-to-date, the algorithm has two additional fields per node: the 
left and right extreme nodes. The left and right extreme nodes of a set of siblings is 
the lowest node in the subtree the can be "seen" from the left and right respectively. 
For an example of threads and extreme nodes, see Figure 3.ll(a). Before moving the 
current subtree, its left and right extreme nodes point to the extreme nodes in the 
current subtree. After moving the current subtree, its right extreme node points to 
the extreme node of the current subtree and its left siblings. The left extreme node of 
the first sibling always points to the left extreme node of the siblings that are already 
moved. Thus, the left extreme of a set of siblings that is already moved is a field of 
the leftmost sibling, and the right extreme is a field of the rightmost sibling. 

After moving a current subtree, the threads and extreme nodes may be updated. If 
the current su btree was less tall than its left siblings, as is the case in Figure 3.11 , the 
right thread of the extreme right node of the current subtree is set. Afterwards, the 
extreme right node of the root of the current subtree is set to the extreme right node 
of its left siblings. The resulting situation in our example is shown in Figure 3.ll(b). 
If the current subtree was taller than its left siblings, the operation is symmetrical. 
If the current subtree is as tall as its left siblings no threads are set and no extreme 
nodes are updated. 

To achieve moving a subtree horizontally in 0(1) , the Reingold-Tilford algorithm 
uses a field named mod, for modifier, to store for each node how much its entire 
subtree should be moved horizontally. Moving a subtree is then done by simply 
updating this modifier . Another field, prelim is used to remember the preliminary 
horizontal coordinate of the node. This is set when we position the root after moving 
its children and represents t he distance that the left side of t he root is positioned 
relative to the left side of its first child. After laying out the entire tree, a single extra 
pass over the tree to computes the actual horizontal coordinate of each node. This 
use of relative coordinates requires some changes to the rest of the algorithm: during 
the moving of a subtree, we must maintain and take into account the sum of modifiers 

63 



3. Drawing Non-layered Tidy Trees in Linear Time 

left siblings 

left 
extreme 

current subtree 

~;ghl 
left / right thread 
extreme 

(a) Before (b) After 

Figure 3.11: Before and after settings threads and updating extreme nodes. 

along the left and right contours to compute the horizontal positions of the contour 

nodes. 
When setting a thread, we must ensure that if we follow the thread to a node, the 

sum of the modifiers along the contour is the same as the sum of the modifiers along 

the route without threads from the root to that node. We will only set threads of 

extreme nodes , which must be leafs. Hence if we adjust the modifier of an extreme 

node and adjust its preliminary horizontal position by an opposite amount, we will 

not actually change the position of any node. In this way we can adjust the modifier 

of the extreme node such that the sum of modifiers after following the thread is equal 

to the sum of modifiers when following the route without threads. 

3.B Moving intermediate siblings in 0(1) 

To move an arbitrary number of intermediate siblings in 0(1) , Buchheim et al. [Buch­

heim et al., 2006] propose to add two fields to each node, namely shift and change. 

Suppose, like in Section 3.5, that i is the index of the sibling which is an ancestor of 

the current node in the right contour, j is the index of the current subtree, and we 

move the current child by a distance d. We then add -,1....,d to the shift of the i + lth 
1-i 

child, subtract j~id from shift of jth child and subtract 1 j~~ 1 d from the change of 

the jth child, as shown in the method di stribut eExtra in Appendix 3.C. Together, 

these operations cost only constant time. 
After laying out the entire tree, we do a constant number of extra operations 

per node to compute the actual offset of each child, using these shift and change 

fields. This can be done during the post-processing phase that produces the absolute 

horizontal coordinates. Before descending into the children, the shift and change 

fields are used to calculate the change to mod, .6.mod, to each child, as shown in 

method addChildSpac i ng in Appendix 3.C. An example is shown in Figure 3.12. 

The example shows the tree from Figure 3.6, and adding .6.mod to the mod of each 

child will transform 3.6(a) to 3.6(d). 

64 



3.C. The complete revised algorithm 

0 1 2 3 4 5 
shijt(Ti ) 0 3d + 5e 0 ~]~ 0 =i: change(Ti ) 0 0 0 0 
d 0 -d + - e -d + - e - e - e 0 
.6.mod 0 id + Ze 1d + ~ e ~e i e 0 3 5 3 5 5 5 

Figure 3.12: Example of the post-processing of the spacing of intermediate children. 

3.C The complete revised algorithm 

Below is the full J ava code for the Reingold-Tilford algorithm with its extension. This 
implementation has undergone rigorous testing, including checking for overlapping 
nodes on random input trees. The extensions are indicated by a symbol in the right 
margin. 

(nothing) 

* 

The original Reingold-Tilford algorithm 
(Section 3.3 and Appendix 3.A) . 

Our extension for non-layered t rees (Section 3.3). 

Extensions for satifying aesthetic 5 (Section 3.5) 

0 

• 

Buchheim et al. 's extension to move intermediate 
siblings (Appendix 3.B). 

Our extension to look up the sibling index 
of a right contour node (Section 3.6). 

class Tree { 
double w, h; 11 Width a nd height. 
double x, y , prelim, 
Tree tl, tr ; 
Tree el, er; 
double msel, mser; 
Tree[] c; int cs; 

mod , shift , change; 
11 Left a nd right t hread . 
11 Extreme left and r ight nodes. 
II Sum of modifiers a t the extreme nodes. 
11 Array of children and number of children. 

Tree(double w, double h, double y,Tree ... c) { 
'" this . w = w; this . h = h ; this . y = y ; this . c = c · 
11 this. Cs= c.length; 
1" } 

1 < } 

11 void layout(Tree t){ firstWalk(t); secondWalk(t,0) ; } 

65 



3. Drawing Non-layered Tidy Trees in Linear Time 

'" void firstWalk(Tree t){ 
11 if (t . cs == O){ setExtremes (t); return; } 
'" firstWalk(t . c[O]) ; 
1" // Create siblings in con tour minima l ver t ical coordinate a nd ind ex list. 
·2n IYL ih = updateIYL(bottom(t.c[O] . el),0,null) ; • 

21 for(int i = 1; i < t . cs; i++){ 
··• firstWalk(t.c[i)); 
,., //Store lowest vert ical coordinate w hile extreme 
01 //nodes still point in current subtree . 
,-. double minY = bottom(t.c[i] .er); • 
01; separate ( t, i, ih) ; 
"' ih = updateIYL(minY, i, ih); • 
2X } 

"" positionRoot (t); 
w setExtremes(t) ; 
.,, } 

·u void setExtremes(Tree t) { 
11 if(t .cs == O){ 

'" t . el = t; t.er = t; 
·"' t .msel = t .mser =O; 
,- } else { 

t . el t . c[O] . el; t .msel = t.c[O] .msel; 
~· t.er = t.c[t . cs-1) . er; t.mser = t . c[t.cs-1) .mser; 
,,, } 

II } 

u void separate (Tree t, int i, IYL ih ){ 
11 // Right contour nod e o f left siblings a nd its sum of modfiers. 
1· Tree sr = t.c[i-1); double mssr = sr.mod; 

"' 11 Left contour nod e of current subt ree and its sum of modfie rs. 
11 Tree cl = t.c[i] ; double mscl = cl .mod; 
1x while(sr != null && cl != null){ 
,,, if(bottom(sr) > ih . lowY) ih = ih . nxt; • 

'" 11 How far to t he left of t he right side of sr is t he left s ide of cl? 
"' double dist = (mssr + sr . prelim + sr .w) - (mscl + cl.prelim) ; 

" if (dist > O){ 

"' 

"' 
•·2 

L(i 

.;; } 

} 

mscl+=dist; 
moveSubtree(t,i,ih . index,dist); 

double sy = bottom(sr), cy = bottom(cl); 
II Advance highest node(s) a nd s um(s) of modifiers 
II (Coordinate system increases downward s) 
if (sy <= cy){ 

} 

sr = nextRightContour(sr); 
if(sr!=null) mssr+=sr.mod; 

if(sy >= cy){ 

} 

cl= nextLeftContour(cl) ; 
if(cl!=null) mscl+=cl.mod; 

1.x // Set t hreads a nd update extrem e nodes. 

* 

* 
* 

* 

'"' / I In t he first case, t he curre nt s ubt ree m ust be taller t ha n t he left siblings. 
'" if(sr ==null && cl !=null) setLeftThread(t,i,cl, mscl); 

- 1 // In t his case, the left s ib lings must be taller t ha n the current subtree. 

66 



3. C. The complete revised algorithm 

7'.2 else if(sr !=null && cl null) setRightThread(t,i,sr,mssr); 

"I 

7•, void moveSubtree (Tree t, int i, int si, double dist) { 
1" 11 Move subtree by cha ng ing m od . 
7" t.c[i] .mod+=dist ; t . c[i] .msel+=dist; t . c[i] .mser+=dist; 
7' distributeExtra(t, i, si , dist); o 

'" } 

,1 Tree nextLeftContour(Tree t) {return t . cs==O ? t . tl 
,, Tree nextRightContour(Tree t){return t . cs==O ? t . tr 

double bottom(Tree t) { return t.y + t .h; } 

t . c[O] ;} 
t.c[t . cs-1] ;} 

void setLeftThread(Tree t, int i, Tree cl, double modsumcl) { 
Tre e li = t . c[O] . el; 

'" li . tl = c l; 
~' 11 C ha nge mod so t ha t t he s um of modifier a fter fo llowing t hread is correct . 
,., double diff = (modsumcl - cl .mod) - t. c [0] .msel ; 

li.mod += diff ; 
11 C hange p relim ina ry x coordinate so t h at t he nod e d oes not move. 
li .prelim-=diff; 

'l.J 

•_11 

I I Update extreme nod e a nd its s um of modifiers . 
t . c[O] . el = t.c[i] . el ; t.c[O] .msel = t . c[i] .msel; 

} 

!Jlj 

"1 II Symmetrical to setLeftThread . 
"' void setRightThread(Tree t, int i, Tree sr, double modsumsr) { 
'"' Tree ri = t . c[i] . er; 

11uJ ri . tr = s r ; 
1<>1 double diff = (modsumsr - sr . mod) - t . c[i] .mser 
1112 ri.mod += diff; 
Ju:: ri .prelim-=diff; 
tt11 t. c [i] .er = t . c[i-1] . er; t.c[i] .mser t . c[i-1] .mser ; 

'"'· } 
Jl_l!i 

1111 void positionRoot(Tree t) { 
111 , 11 Position root b etween children , taking into account t heir mod . 
""' t . prelim = (t . c[O] .prelim + t.c[O] . mod + t . c[t . cs-1) .mod + 
"" t.c[t . cs - 1] .prelim + t.c[t. cs-1] .w)/2 - t.w/2; 
111 } 

JI:.! 

111 void secondWalk(Tree t, double modsum) { 
11 1 modsum+=t . mod; 
1 I"> 11 Set absolute (non-relat ive) horizontal coordinate. 
11., 

I 1 7 

11.-.; 

11'• } 

J._!r) 

t . x = t.prelim + modsum; 
addChildSpacing(t) ; 
for(int i = 0 ; i < t.cs i++) secondWalk(t.c[i],modsum); 

12.1 void distributeExtra(Tree t, int i, int si, double dist) { 
12" II Are t h ere intermed iat e child ren? 
.12; if(si != i-1){ 
I 2-1 double nr = i - s i; 

t .c [si +1] .shift+=dist/nr; 
t . c[i] . shift-=dist/nr; 
t .c [i] .change-=dist - dist/nr; 

0 

0 

0 

0 

0 

0 

0 

67 



3. Drawing Non-layered Tidy Trees in Linear Time 

12·' } 

12·1 } 

1 ·" 11 Process change and shift to add intermediate spacing to mod. 
1::2 void addChildSpacing(Tree t){ 
1 ·u double d = 0, modsu.mdel ta = 0; 

1:11 for(int i = 0 ; i < t.cs ; i++){ 
1.1•, d+=t . c [i] . shift; 

1 "' modsumdel ta+=d + t . c [i] . change ; 
1" t. c [i] . mod+=modsumdelta; 

'" } 
''" } 
l·lll 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1 11 11 A linked list of the indexes of left siblings and their lowest vertical coordinate. 
1 u class IYL{ • 

ll 

l 11 

I I~. 

I 11, 

1 l7' } 

IP< 

double lowY; int index; IYL nxt; 
public IYL(double lowY, int index, IYL nxt) { 

this.lowY = lowY; this.index= index; this . nxt 
} 

'"' IYL updateIYL(double minY, int i, IYL ih) { 
'"' II Remove siblings that are hidden by the new subtree. 
1 ·.1 while (ih ! = null kk minY >= ih. lowY) ih = ih. nxt ; 

1·.2 II Prepend the new subtree. 
, •.. , return new IYL(minY, i, ih); 
,.,, } 

68 

nxt; 

• 
• 
• 
• 
• 

• 
• 

• 
• 



4 

Monadic Functional R eactive Programming1 

Summary 

Functional Reactive Programming (FRP) is a way to program reactive systems in 
functional style, eliminating many of the problems that arise from imperative tech­
niques. In this chapter, we present an alternative FRP formulation that is based on 
the notion of a reactive computation: a monadic computation which may require the 
occurrence of external events to continue. A signal computation is a reactive compu­
tation that may also emit values. In contrast to signals in other FRP formulations, 
signal computations can end, leading to a monadic interface for sequencing signal 
phases. This interface has several advantages: routing is implicit, sequencing signal 
phases is easier and more intuitive than when using the switching combinators found in 
other FRP approaches, and dynamic lists require much less boilerplate code. In other 
FRP approaches, either the entire FRP expression is re-evaluated on each external 
stimulus, or impure techniques are used to prevent redundant re-computations. We 
show how Monadic FRP can be implemented straightforwardly in a purely functional 
way while preventing redundant re-computations. 

4.1 lntrod uction 

Many computer programs are reactive: they engage in a dialogue with their environ­
ment , responding to events as they arrive. Examples of such programs are computer 
games, control systems, servers, and GUI applications. Imperative techniques to 
create reactive systems, such as the observer pattern, lead to plethora of problems: 
inversion of control , non-modularity and side effects [Maier and Odersky, 2012]. 

1This chapter was published earlier as: A. van der Ploeg. Monadic Functional Reactive Program­
ming. In Proceedings of the '13 Symposium on Haskell, pages 117-128, 2013. 

69 



4. Monadic Functional Reactive Programming 

Functional Reactive Programming (FRP) [Elliott and Hudak, 1997] is a pro­

gramming paradigm to define reactive systems in functional style, eliminating many 

of the problems of imperative techniques. FRP has been successfully applied in 

many domains, such as robotics [Hudak et al. , 2003; Peterson et al. , 1999b,a], com­

puter vision [Peterson et al. , 2001], gaming [Courtney et al., 2003], web program­

ming [Meyerovich et al. , 2009] and graphical user interfaces [Courtney and Elliott , 

2001] . 
The primary abstraction in FRP is a signal [Nilsson et al., 2002]: a value that 

changes over time. Traditionally, signals are modeled as mappings from points in 

t ime to values. For example, the position of the mouse can be modeled by a function 

that takes a number of seconds since the program started and returns the coordinates 

of the pointer at that time. Such signals can then be composed directly [Elliott and 

Hudak, 1997] or by composing signal functions [Courtney and Elliott, 2001], functions 

from signal to signal. 
In this chapter, we present a novel approach to FRP called Monadic Functional 

Reactive Programming that does not model signals as mappings from points in time 

to values. Instead , Monadic FRP is based on the notion of a reactive computation: a 

monadic computation which may require the occurrence of external events to continue. 

The Monadic FRP variant of a signal is a signal computation: a reactive computation 

that may also emit values during the computation. 

70 

This novel formulation has two main differences with other FRP approaches: 

• In contrast to signals in other FRP formulations, signal computations can end. 

This leads to a simple, monadic interface for sequencing signal phases. 

• In other FRP approaches, either the entire FRP expression is re-evaluated on 

each external stimulus, or impure techniques are used to prevent redundant 

re-computations: re-computing the current value of signal while the input it de­

pends on has not changed. Monadic FRP can be implemented straightforwardly 

in a purely functional way while preventing such redundant re-computations. 

Our contributions are summarized as follows: 

• A novel monadic FRP programmer interface. We demonstrate this program­

ming model by composing a drawing program from simple components (Sec­

tion 4.2). 

• A comparison of the Monadic FRP programmer interface with the programmer 

interface of other FRP formulations (Section 4.3). 

• The first purely functional FRP evaluation model which prevents redundant 

re-computations (Section 4.4). 

• The implementation of the composition functions from the programmer interface 

on top of this evaluation model (Section 4.5). 

• A comparison of the Monadic FRP evaluation model with other FRP evaluation 

models (Section 4.6). 



4.2. Programming with Monadic FRP 

In Section 4. 7 we conclude and discuss future work. A library based on the ideas in 
this chapter is available as hackage package DrClickOn. 

4.2 Programming with Monadic FRP 

4.2.1 The drawing program 

In this section, we demonstrate the Monadic FRP programming interface by compos­
ing a simple drawing program from small parts. The drawing program allows the user 
to draw boxes, change their color and delete boxes. The lifetime of each box consists 
of three phases: 

1. Define: The user can define a box by holding down the left mouse button. The 
left-upper point of the rectangle is the mouse position when the user presses 
the left mouse button, the right-lower point is the mouse position when the 
user releases the left mouse button. While the user holds down the left mouse 
button, the preliminary rectangle is shown like in Figure 4.l(a). 

2. Choose color: The user can cycle through possible colors for the box by press­
ing the middle mouse button, which changes the color of the box as shown in 
Figure 4.1 (b). During this phase the box is animated so that is slowly wiggles 
from left to right to indicate that the color is not fixed yet. This phase ends 
when the user presses the right mouse button. 

3. Wait for delete: The color and size of the box are now fixed. The user can 
delete the box by right double-clicking on it. 

As soon as Phase 1 of a box ends, a new box can be defined. In this way there may be 
multiple boxes on screen, as shown in Figure 4.l(c). We develop an expression for each 
phase of the box, the lifetime of a box is then described by sequentially composing 
these phases. Finally, a combination of sequential and parallel composition is used to 
allow multiple boxes to be active at the same time. The entire code for this example 
can be obtained at http://github.com/cwi-swat/monadic-frp. 

4.2.2 Reactive computations 

The basic concept in Monadic FRP is a reactive computation: a monadic computation 
of a single value, which may require the occurrence of external events to continue. 
The type of a reactive computation is React9 a, where a is the type of the result of the 
reactive computation. The drawing program is created by composing the following 
basic reactive computations2 : 

mouseDown : : React9 { M ouseBtn} 
mouseUp :: React9 {MouseBtn} 
mouseMove :: React9 Point 

2 In this chapter we use {a} to denote Set a. 

71 



4. Monadic Functional Reactive Programming 

Figure 4.1: Screenshots of the simple drawing program. 

delta Time : : React9 Time 
sleep : : Time -+ React9 () 

type Point =(Double, Double) -- in pixels 
data MouseBtn = MLejt I MMiddle I MRight 
type Time = Double -- in seconds 

Here, mouseDown is a reactive computation that completes on the next mouse press 

by the user, and then returns the mouse buttons that are pressed. Typically this 

will be a single mouse button, but it may be that the user presses multiple buttons 

simultaneously, and hence the result is a set of buttons. Similarly, mouse Up returns 

the mouse buttons that are released next. The reactive computation mouseMove 

completes on the next move of the mouse, and gives the new mouse position on 

screen. The reactive computation deltaTime reports a change in time: the elapsed 

time in seconds since the last update. How fast deltaTime completes depends on 

the processing power available, as we will see later. Finally, sleep is the reactive 

computation that completes after waiting the given number of seconds. The subscript 

9 in the type of reactive computation React9 indicates the set of events that the 

reactive computation may deal with, and will be explained in Section 4.4. 

Our drawing program is an expression where the above basic reactive computations 

are the leaves of the expression. The functions that are used to form this expression 

by converting, transforming and composing other expressions are shown in Figure 4.2 . 

In the rest of this section, we discuss these functions and show how they are used to 

compose the drawing program from small components. 
Reactive computations can be composed sequentially, yielding a new reactive com­

putation that acts as the first reactive computation until it completes, then passes its 

result to a function which returns a second reactive computation, and finally acts as 

this second reactive computation until it completes. The function to compose reactive 

computations sequentially is the bind (»=) function from the Monad type class. As 

an example, the following defines a reactive computation that decides if the user has 

pressed the same mouse button(s) in succession, using do notation: 

sameClick :: React9 Bool 

72 



-..:i w 

(»=) 
(»= ) 

map 
scanl 
find 

.. .. 

.. .. 

.. .. 

first 
at 
until 
<I\> 

indexBy 

Reactg a 
Sigg a y 
Sigg al 
Sigg (a -t b) l 
Sigg al 

Sequential composition 

Parallel composition 
-+ Reactg b -+ Reactg ( Reactg a, Reactg b) 
-+ Reactg b -+ Reactg (Maybe a) 
-+ Reactg b -+Sigg a (Sigg al, Reactg b) 
-+Sigg a r -+Sigg b (Sigg (a-+ b) l, Sigg a r) 
-+ Sigg b r -+ Sigg a () 

Repetition 
Reactg b -+ ( b -+ Reactg a) 
Sigg x b -t (b -t Sigg x a) 

-+ Reactg a repeat .. Reactg a -+Sigg a() .. 
-t Sigg x a 

Transformation 
(a -+ b) -+ Sigg a r -+ Sigg b r 
(a -+ b -+ a) -+ a -+ Sigg b r -+ Sigg a r 
(a-+ Bool)-+ Sigg a r-+ Reactg (Either a r) 

Parallel element composition 

spawn .. 

return 
return 
done 
cur 
emit 

Sigg a x -t Sigg (!Sigg a x) () 

Conversion 
.. a -+ Reactg a .. 
.. a -t Sigg x a .. 
. . Reactg a -+Maybe a .. 
. . Sigg a x -+Maybe a .. 
.. a -+Sigg a() 

dynList : : Sigg (!Sigg a x) () -+ Sigg [a] () always .. a -t Sigg a() 
waitFor .. Reactg a -t Sigg x a 

Figure 4.2: The types of composition, transformation and conversion functions for reactive and signal computations in 
Monadic FRP. 

~ 
~ 

~ 
~ 

~ 
f3 
~-

§. 
g: 

~ 
::i 
l,l> 
Cl... 
(:;• 

~ 



4. Monadic Functional Reactive Programming 

sameClick = do pressed +- mouseDown 
pressed2 +- mouseDown 
return (pressed = pressed2) 

Here the function return, also from the Monad type class, converts a value into a 

reactive computation which immediately completes and returns the given value. 

Another example of sequential composition is the following reactive computation, 

which completes when a given mouse button is pressed: 

clickOn :: MouseBtn -t React9 () 

clickOn b = 
do bs +- mouseDown 

if b ' member' bs then return () else click On b 

leftClick = clickOn MLeft 
middleClick = clickOn MMiddle 
rightClick = clickOn MRight 

The basic function to compose reactive computations in parallel is first , whose 

type is listed in Figure 4.2. This function gives the reactive computation that runs 

both argument reactive computations in parallel, and completes as soon as either one 

of the arguments completes. The result is then the pair of the new states of both 

reactive computations, one of which has completed (or both when they complete 

simultaneously) . We can use this function, for example, to create a reactive compu­

tation that given two reactive computations decides if the first completes before the 

second: 

before:: React9 a -t React9 b -t React9 Boal 
before a b = do (a', b') +- first a b 

case (done a', done b') of 
(Just _, Nothing) -t return True 

-t return False 

Where done is a function that given the state of a reactive computation, returns the 

result of this reactive computation wrapped in Just if the reactive computation is 

done, and Nothing otherwise. 
Sequential and parallel composition can be combined to form more complex ex­

pressions. For example, the following reactive computation completes when the user 

has double-clicked the right mouse button, where a double-click is defined as two 

clicks within 200 milliseconds: 

74 

doubler:: React9 () 

doubler = do rightClick 
r +- rightClick 'before' sleep 0.2 
if r then return () else doubler 



4.2. Programming with Monadic FRP 

4.2.3 Signal computations 

The second concept in Monadic FRP is a signal computation, a reactive computation 
that may also emit values. A signal computation has type Sigg a b, with two type 
arguments: the type of the values that it emits, a, and the type of the value that it 
returns, b. As the name suggests, the analogue to a signal computation in other FRP 
formulations is a signal. In contrast to a signal in other FRP formulations, a signal 
computation can end, yielding its result. Another way of looking at it is that a signal 
computation is a fragment of a signal. 

To understand the usage of signal computations, consider a modal dialog in a 
GUI application: a pop-up window where the user must type his name before the 
program continues. We can model this pop-up window as a signal computation in 
the following way: The values that the signal computation emits are the descriptions 
of the appearance of the pop-up window. This description can be, for example, the 
current size of the pop-window and the text in the text field. When signal computation 
emits new descriptions, for example because the user enters letters, these descriptions 
should be processed and the resulting image should be drawn on screen. This signal 
computation completes when the user has finished entering his name, after which the 
pop-up disappears and the signal computation returns the name of the user. 

A signal computation describes the lifetime of some object, such as a pop-up 
window. We call the values that a signal computation emits, such as the descriptions 
of the appearance of the pop-up window, the form of the signal computation, i.e. 
what can be observed from the outside. Each emission is an update to the form of 
the object. The current form is the last emitted value, and if a signal computation 
did not emit a value yet we say that it is uninitialized. When a signal computation 
ends, the object that it describes ends, and the result is the information to the rest 
of the program on how to continue, for example the name of the user. In contrast, a 
reactive computation cannot emit values, it just computes a value for use in the rest 
of the program. 

The two basic functions to create a signal computation are waitFor and emit . The 
first, waitFor converts a reactive computation into a signal computation, where the 
resulting signal computation never emits a value (i .e. it has no form) and returns 
the result of the reactive computation. The second, emit takes a value and gives a 
signal computation that emits that value and then immediately returns. Like reactive 
computations, signal computations can be composed sequentially using »=, in much 
the same way. 

As an example, consider the signal computation that models the color of the box 
during the Phase 2. It emits a color at the start and after each middle mouse click, 
until the user presses the right mouse button, after which it returns the number of 
colors it emitted. This signal computation is defined as as follows: 

cycleColor :: Sigg Color Int 
cycleColor = cc colors 1 where 

cc ( h : t) i = do 
emit h 

75 



4. Monadic Functional Reactive Programming 

r +- waitFor (middle Click ' before' rightClick) 
if r then cc t ( i + 1) else return i 

Where colors is an infinite list of colors (not shown) . 
Another way to create a signal computation is to repeat a reactive computation. 

The function to do this is unsurprisingly named repeat, and gives the signal compu­
tation that indefinitely repeats the given reactive computation, each time emitting 
the resulting value. This signal computation never ends, and hence its result, (), will 
never be reached. An example is the signal computation that emits the current mouse 
positions: 

mousePos :: Sigg Point () 
mousePos = repeat mouseMove 

Signal computations can be transformed by functions such as map, scanl and 
find that are familiar from list programming. As an example, the following signal 
computation emits the preliminary rectangles in Phase 1 of a box, given the left­
upper point of the rectangle. 

curRect :: Point -+ Sigg Rect () 
curRect pl = map (Rect pl) mousePos 

data Rect = Rect { leftup :: Point, rightdown :: Point} 

The list function scanl is similar to foldl , but it returns a list of successive reduced 
values instead of a single value. The signal transformation function scanl works 
analogously, it emits a new reduced value each time the given signal emits. Using 
scanl, we define a signal that on each update, emits the number of seconds since it 
started: 

elapsed : : Sigg Time () 
elapsed = scanl ( +) 0 (repeat delta Time) 

Using elapsed, we implement animation by transforming each point in time to the 
frame of the animation at that time. As an example, the following signal emits the 
rectangle animation in Phase 2: 

wiggleRect : : Rect -+ Sigg Rect () 
wiggleRect (Rect lu rd) = map rectAtTime elapsed 

where rectAtTime t = Rect (lu +. dx) (rd +. dx) 
where dx =(sin (t * 5) * 15, 0) 

Where +. (not shown) is the vector addition operator for points. 
The last list-like function that we use in our example, find, gives a reactive com­

putation that completes as soon as the given signal computation emits a value on 
which the given predicate holds. As an example, the following function gives a reac­
tive computation which completes as soon as the argument signal computation emits 
a point inside a given rectangle: 

76 



4.2. Programming with Monadic FRP 

poslnside :: Rect ~ Sigg Point y 
~ Reactg (Either Pointy) 

poslnside r =find ('inside'r) 

inside:: Point ~ Rect ~ Bool 

Signal computations and reactive computations can be composed in parallel by 
two functions: at and until. The first , at, takes a signal computation and a reactive 
computation, and returns the current form of the signal computation at the time the 
reactive computation completes. For example, the mouse position at the next left 
mouse click is defined as follows: 

firstPoint :: Reactg (Maybe Point) 
firstPoint = mousePos ' at' leftClick 

The second, until , takes a signal computation and a reactive computation, and runs 
the signal computation until the reactive computation completes. Like first , the result 
of l ' until' a is the pair of the new state of l and the new state of a. For example, the 
following gives the preliminary rectangles in Phase 1 until the user releases the left 
mouse button. 

completeRect :: Point ~ Sigg Rect (Maybe Rect) 
completeRect pl =do (r,_) +-- curRect pl 'until' leftUp 

return (cur r) 

Where leftUp (not shown) is defined analogously to leftDown. The function cur gives 
the current form of a signal computation, i.e. the last value it emitted. 

By composing firstPoint and completeRect sequentially, we define the signal com­
putation that emits the rectangles in Phase 1: 

defineRect :: Sigg Rect Rect 
defineRect = do Just pl +-- waitFor firstPoint 

Just r +-- completeRect pl 
return r 

The function to compose two signal computations in parallel is <II>, which takes a 
signal computation emitting functions and a signal computation emitting values, and 
gives the signal computation that emits the results obtained by feeding the values to 
the functions over time. More precisely, the signal computation f <II> x operates as 
follows: 

• Wait until both input signals have started emitting values. 

• On each emission from either the function signal computation or the value sig­
nal computation we apply the latest value to the latest function and emit the 
resulting value. 

• Repeat the previous step until either of the signals end. 

77 



4. Monadic Functional Reactive Programming 

The result of the signal computation f <A> x is the new state of both input signal 
computations, one of which has ended. 

We can use this operator to compose the signal computation of the rectangle and 
the signal computation of the color in parallel, to obtain a signal computation which 
describes Phase 2 of a box: 

chooseBoxColor :: Rect -t Sigg Box() 

chooseBoxColor r = 
do always Box <II> wiggleRect r <II> cycleColor 

return() 
data Box = Box R ect Colar 

The operator <II> binds less strongly than function application. The function always 
takes a value and gives a signal computation that emits that value and then never 
emits again and never ends. In this way, the current form of always x is always x. 

The signal computation chooseBoxColor rends when the user presses the right mouse 
button, as this causes cycleColor to end, which in turns ends the compositions using 
<II>. 

The functions < /\ > and always are inspired by the Applicative functor type 
class [Mcbride and Paterson, 2008]: the function </'\:> corresponds to <%> and always 
corresponds to pure. The difference is that the Applicative type class operates on the 
last argument of a type constructor, but here we want </'\:> to operate on the emitted 
arguments, i.e. the first type argument of the type constructor Sigg. In this way 
Monads are used for sequential composition, and an Applicative functor-like interface 
is used for parallel composition. 

Another interesting way to compose signal computations in parallel it to use one 
as a time index for the other. This means that we sample the form of the first 
signal computation each time the second signal computation emits. For instance, 
mousePos 'indexBy' repeat doubler is the signal that emits the mouse positions at 
the times when the user right-double clicks. We can use this operator to define a 
reactive computation that completes as soon as the user double right clicks on a given 
rectangle: 

drClickOn :: Rect -t React9 (Maybe Point) 
drClickOn r = 

poslnside r ( mousePos 'indexBy' repeat doubler) 

We now have all the ingredients to define the behavior of a single box, as we have 
defined each phase of the box, so we only have to compose them sequentially: 

78 

box :: Sigg Box () 
box = do r +- map setColor defineRect 

chooseBoxColor r 
waitFor ( drClickOn r) 
return() 

where setColor r = Box r (head colors) 



4.2. Programming with Monadic FRP 

This signal computation describes the entire lifetime of a box, its form is appearance 
of the box and the signal computation ends when the user deletes the box. 

4.2.4 Dynamic lists 

We now have the signal computation for a single box, but we would like our drawing 
program to allow the user to draw multiple boxes. Luckily, signal computations are 
just values, and hence like reactive computations, they can be repeated. For this we 
introduce the function spawn which takes a signal computation and returns a signal 
computation that emits initialized signals: signal computations which are initialized, 
i.e. the first form of the object it describes is known. In this way, we can define a 
signal that emits initialized signals of the boxes that the user creates as follows: 

newBoxes :: Sigg (!Sigg Box()) () 
newBoxes =spawn box 

This signal computation starts a box computation, and as soon as it emits its first 
value, newBoxes emits the initialized signal corresponding to that box. Afterwards, 
a new box computation is started and the process repeats. 

These initialized signals can then be composed parallel, so that there are multiple 
boxes on the screen, and the user can interact with all of them. For this we introduce 
the function dynList, which takes a signal computation emitting initialized signals, 
and composes these initialized signals in parallel. The result is a dynamic list: a 
list that changes over time. The signal computation that describes this dynamic list 
emits the lists of boxes, namely the current forms of all boxes that are active at that 
time. When a new box is defined it is added to the list and when a box is deleted, 
i.e. its initialized signal ends, it is removed from the list. In this way, we can define 
the top-level expression of our drawing program simply as: 

boxes : : Sigg [Box] () 
boxes= dynList newBoxes 

4.2.5 Time-branching 

Monadic FR.P has time-branching semantics: we can observe the values a signal com­
putation emits when given some event occurrences, and afterwards we can still observe 
what values the orignal signal computation emits when given other event occurrences. 
These time-branching semantics are also known as shallow causality [Jeffrey, 2013]. 
They are also supported by Arrowized FR.P [Courtney and Elliott, 2001], by "freez­
ing" signal transformers. 

We can use these time-branching semantics, for example, to easily implement 
multiple tabs in our drawing program. The user can then duplicate its current drawing 
into two tabs, modify the drawing and switch back to the tab holding the original 
drawing, which can then again be modified. Each of these tabs is described by a 
signal computation, but only one observes the current event occurrences. Duplication 

79 



4. Monadic Functional Reactive Programming 

of a tab is then simply duplicating the signal computation in the list of tabs, and 
switching between tabs controls which tab observes the current event occurrences and 
is rendered to the screen. The code for this tabbed drawing program is not included in 
this chapter for space reasons, but can be seen online. As we show in Section 4.6, time­
branching semantics are only supported by purely functional evaluation mechanisms. 

4.3 Comparison with other FRP programmer inter­
faces 

In this section, we compare the Monadic FRP programmer interface to other FRP 
programmer interfaces. We compare mainly with Arrowized FRP [Courtney and 

Elliott, 2001], more precisely the Yampa [Nilsson et al. , 2002] framework, and discuss 
other FRP formulations in passing. 

In Arrowized FRP, signals are not first class entities: they cannot be created 
or manipulated directly. Instead, the basic concept in Arrowized FRP is a signal 

function: a mapping from input signal to output signal. A signal function has type 
SF a b , where a is the type of the input signal and b is the type of the output signal. 
Signal functions can then be composed using the Arrow type-class [Hughes, 2000]. 
We assume basic familiarity with this type-class and its notation [Paterson, 2001] 
in the rest of this section. It should be noted that the examples in this section are 
cherry-picked to show the advantages of Monadic FRP and hence may give a skewed 
impression. 

In contrast to signal computations in Monadic FRP, signals in Arrowized FRP 

cannot end. Another difference is that signals in Arrowized FRP must emit a value 
for each input value. For this reason, among others, Arrowized FRP has the concept of 
an event source: a signal that emits values of the option type Event a. An event source 

emits NoEvent when there is no event , and an Event a, where a is the information 
associated with the event, when there is an event. 

Figure 4.3 shows the implementation of the cycleColor signal (function) in both 
Monadic and Arrowized FRP. In the Arrowized version, cycleColor is a signal function 
which takes a signal producing mouse press events, and transforms it into a signal 
producing a color and an event of type Int. This event occurs when the user is done 
choosing colors, and then contains the number of different colors the user considered. 
Notice that when such an event occurs, the signal does not stop as in the Monadic 
FRP formulation of cycleColor, because signals cannot end. 

4.3.1 Advantages of Monadic FRP 

Implicit routing 

The most obvious difference when considering the code in Figure 4.3 is the differ­
ence between do notation and arrow notation. To compose signal functions in arrow 
notation, the programmer needs to route the output of component arrows and the 
input signal into the input of component arrows and the output signal. In other FRP 

80 



4.3. Comparison with other FRP programmer interfaces 

cycleColor :: Sig
9 

Colar Int 
cycleColor = cc colors 1 where 

cc (h: t) i =do 
emit h 
r t- waitFor (middle Click 'before' right Click) 
if r then cc t (i + 1) else return i 

(a) Monadic FRP 

cycle Colar:: SF MouseDown (Colar , Event Int) 
cycleColor = cc colors 1 where 

cc (h: t) i =switch (proc md -t do 
met- notYet ~ middleClick---< md 
re t- rightClick ---< md 
returnA---< ((h , tag re i), me) 
)(>._-+cc t (i + 1)) 

(b) Arrowized FRP. 

Figure 4.3: Side-by-side comparison of cycleColor in Monadic and Arrowized FRP. 

formulations , such as Classic FRP [Elliott and Hudak, 1997], such wiring is also nec­
essary, but by composing functions instead of arrows. In Monadic FRP, this routing 
is implicit, reducing boilerplate code and visual clutter. 

Easier sequential composition 

Because signals in Arrowized FRP cannot end, a different approach is taken to de­
scribe signals which consist of multiple phases. For this a variety of switching combi­
nators is used, which allow us to switch from one signal function to another, when a 
certain event occurs. The most basic switching combinator in Yampa is switch, which 
has the following type: 

switch:: SF a (b, Event c)-+ (c-+ SF a b)-+ SF a b 

The first argument to this combinator is a signal function transforming a signal 
of type a into a signal giving a combination of something of type b and an event of 
type c. The second argument is a continuation function: given a value of type c it 
will produce a new signal function. The result of the switch combinator is a signal 
function from a to b, which first behaves as the first argument signal function , except 
that the Event c is not visible from the outside. When this first argument signal 
function generates an event of type c, the continuation function is called. Afterwards, 
the resulting signal function is switched to: the result of the switch combinator will 
behave as this signal function. 

81 



4. Monadic Functional Reactive Programming 

In our example in Figure 4.3(b ), the signal function cycleColor is intended to be 
switched out when a right mouse event occurs. However, a right mouse click event 
does not contain the color count. For this reason, we have to set the associated data of 
the mouse press event to the color count, by means of the tag::Event a-+ b-+ Event b 
combinator. In Monadic FRP, such explicit transformation of the associated data of 
events is not necessary. 

All Yampa switching combinators come in two flavors: 

• immediate, in which case the output at the time of switching is determined by 
the signal function being switched to. 

• decoupled, in which case the output at the time of switching is determined by 
the original signal function. 

In Monadic FRP, signals can either end or emit a value, but not both at the same time. 
Hence, the distinction between immediate and decoupled switching is not present in 

Monadic FRP, and the associated subtleties disappear. 
In our example, the not Yet combinator is used to delay the switching event by 

one time-step. Without an invocation of not Yet , the program will go into an infinite 
loop when the middle mouse button is pressed. The reason for this is t hat the new 
signal function is again an application of cc, which will then immediately switch again, 
since the input signal currently indicates that the middle mouse button is down. In 
Monadic FRP, such event suppression is not necessary, because an event can only be 
consumed once by a reactive computation. For example, rightClick ~ rightClick will 
complete after two right clicks, not one. 

Another benefit of Monadic FRP is that signal computations decide themselves 
that they end, whereas with switching combinators this is decided by the context. 
Hence, in Arrowized FRP, if a programmer intends a signal function to be switched 
out after a certain event occurs, the programmer must still provide the signal function 
after this event. In Monadic FRP this is not necessary: the programmer can force 
the context to "switch". 

A simpler way of creating dynamic lists 

In Yampa, creating dynamic lists requires the following parallel switching combina­
tor3: 

pSwitchList :: [SF a b]-+ SF (a, [b]) (Event c) 
-+([SF a b]-+ c-+ SF a [b])-+ SF a [b] 

This switching combinator requires three arguments: 

• The initial list of signal functions. 

• A signal function that transforms t he input and the current list of values to a 
switching event. 

3This switching combinator is the list version of pSwitch. We have chosen to use this specialized 
combinator in the comparison, since dynList also deals with lists. 

82 



4.3. Comparison with other FRP programmer interfaces 

boxes:: Sig
9 

[Box]() 
boxes = dynList (spawn box) 

(a) Monadic FRP. 

type BoxSF = SF GUIIn (Box, Event()) 

boxes:: SF GU!In [Box] 
boxes = boxes'[] ~arr (map fst) where 

boxes' i = pSwitchList i 
(newBox ***arr toEv ~ arr choose~ not Yet) 
(.A e l -+ boxes' ( mutateList e l)) 

choose (a, b) = merge (!map Left a) (!map Right b) 
toEv l = let l' = map ( isNoEvent o snd) l 

in if and l' then NoEvent else Event l' 
mutate:: [BoxSF ]-+ Either (BoxSF ) [Boal ]-+ [BoxSF ] 
mutate l (Left b) = b: l 
mutate l (Right l') = map fst (filter snd (zip l l' )) 

box :: BoxSF 
newBox :: SF GUIIn (Event BoxSF) 

(b) Arrowized FRP. 

Figure 4.4: Dynamic list in the drawing program. 

• A continuation function that when given the current list of signal functions and 
the value associated with a switching event, returns the new signal function. 

The code for the dynamic list of boxes in Monadic and Arrowized FRP is shown in 
Figure 4.4. In the Arrowized FRP code, we assume that the signal function for a 
single box produces the current form of t he box and an event indicating that t he box 
has ended. The difficulty in creating the dynamic list then lies in wiring the switching 
events of all boxes and the switching event for creating a new box together, and then 
picking the resulting switching event information apart again in the continuation 
function. In Monadic FRP, such wiring is not necessary. 

4.3 .2 Disadvantages of Monadic FRP 

While Monadic FRP has several advantages over other FRP formulations, it also 
has some disadvantages. In particular , to share the computation of a signal which 
occurs more than once in an expression, we have to resort to a manual invocation 
of a memoization function. This is not necessary in several other FRP formulations, 
including Arrowized FRP. 

83 



4. Monadic Functional Reactive Programming 

A related disadvantage is that it is unclear how to declare mutually dependent 

signals in Monadic FRP, such as two sliders in a temperature conversion application 

that influence each other. In Arrowized FRP, such mutually dependent signals can 

simply be declared by recursive arrow notation. 

4.4 Evaluating Monadic FRP expressions 

In this section, we show how reactive and signal computations are evaluated in a 

simple, straightforward manner. 

4.4.1 Event requests and occurrences 

Central to Monadic FRP evaluation is the notion of an event: a stimulus from the 

environment. Reactive computations request the observation of such events, an in­

terpreter then observes such events and passes the event occurrence back. We model 

event requests and occurrences with the following data type: 

data Event a = Request I Occurred a 

Where the argument to the constructor Occurred is the associated data of the occurred 

event. For simplicity, event requests and occurrences are defined using the same data 

type in our approach. 
To make things more concrete, the following events are used in the program draw­

ing example: 

data G UIEv = M ouseDown (Event { M ouseBtn}) 
MouseUp (Event {MouseBtn}) 
MouseMove (Event Point) 
DeltaTime (Event Time) 
Try Wait Time (Event Time) 
deriving (Eq, Show, Ord) 

When a reactive computation, for example, wants to know the next mouse button 

that is pressed, it passes the event request MouseDown Request to the interpreter of 

the reactive expression. This interpreter, from now on called the reactive interpreter, 

then waits for the next mouse press and returns the event occurrence, for example 

MouseDown (Occurred { MLeft, MMiddle} ), which indicates that the user pressed the 

left and middle mouse buttons simultaneously. 

The reactive interpreter can wait for multiple events in parallel, and hence we pass 

a set of event requests to it. As soon as at least one of these events occurred, the 

reactive interpreter responds by returning the occurred event(s). This response is a 

set of event occurrences, since multiple events may occur simultaneously. Since event 

requests and occurrences are modeled by the same datatype, we use the following 

type aliases to make the distinction clear: 

84 



4.4. Evaluating Monadic FRP expressions 

type EvReqs e = { e} -- event requests 
type EvOccs e = { e} -- event occurrences 

4.4.2 Reactive computations 

Using this basic terminology introduced above, a state of a reactive computation is 
defined as follows: 

data React e a 
= Done a 
I Await ( EvReqs e) ( EvOccs e -7 React e a) 

If a reactive computation is done, it is in state Done and carries the resulting value of 
the computation of type a. Otherwise, it awaits at least one event occurrence from its 
set of event requests. As soon as one of these events occur, or multiple events occur 
simultaneously, the event occurrences can be passed to the continuation function. This 
continuation function then processes the event occurrences and returns the new state 
of the reactive computation. The type e is the type of the events that the reactive 
computation may request and process. In our drawing program in Section 4.2, the 
type of events is GU!Ev, hence the type React9 that is used throughout Section 4.2 
is defined as follows: 

type React9 = React GU!Ev 

The basic reactive computations mouseDown, mouseUp, mouseMove, deltaTime and 
try Wait are then defined as follows: 

mouseDown = req (MouseDown Request)»= get 
where get (MouseDown (Occurred s)) =returns 

try Wait t = req ( Try Wait t Request) »= get 
where get (Try Wait _ (Occurred t)) = return t 

req :: e -7 React e e 
req a = Await (singleton a) (Done o head o elems) 

Here, req is a function that given an event request gives the reactive computation 
that returns the next event occurrence that satisfies this request. The function elems 
converts a set to a list. Notice that the continuation function of a reactive computation 
is called with the set of event occurrences which it awaits. If there are no event 
occurrences which the reactive computation awaits, then the continuation function 
will not be called. Since mouseDown awaits only MouseDown events, we can be sure 
that the pattern match MouseDown ( Occured s) cannot fail. The same reasoning 
holds for the patterns in the other basic reactive computations. 

85 



4. Monadic Functional Reactive Programming 

4.4.3 Evaluating reactive computations 

In essence, our evaluation model is a purely functional way to use blocking-JO mul­
tiplexing: the program is organized as a main loop that first decides which events 
should be listened for, then waits for at least one of these events to occur, and finally 
processes the event(s) that occurred. Waiting for several events in parallel can be 
done by means of for example the Unix select or Linux epoll method4 , which take 
a set of file-descriptors and waits for one of them to become ready for reading or writ­
ing. Another example is the wai tEvent method of the Simple Directmedia Layer5 , 

which waits for a user input event, such as a mouse-click or keystroke. The main loop 
in our approach is the reactive interpreter which interprets the top-level reactive or 
signal computation. 

The interpreter for reactive computations is defined as follows: 

interpret : : Monad m => ( EvReqs e -t m ( EvOccs e)) 
-t React e a -t m a 

interpret p (Done a) = return a 
interpret p (Await r c) = p r »= interpret p o c 

Here p is a function that takes a set of event requests and waits for any of these events 
to occur in the monad m, which is for example the JO monad. The drawing program 
described in Section 4.2 can be run in an interpreter which uses the wai tEvent method 
of the Simple Directmedia Layer to define the function p. After an interesting event 
occurred, p returns the set of event occurrences, which is then fed back into the re­
active computation. This process continues until the reactive computation completes 
and returns a value. 

The reactive computation that is interpreted consists solely of the sequential and 
parallel composition of basic reactive computations, other composition operators are 

defined in terms of these two composition operators. As an example, consider the 
following reactive expression: 

first (first mouseMove mouseUp) 
( mouseDown » delta Time) 

Figure 4.5( a) shows the tree of this expression and which event requests are propagated 

upwards to the reactive interpreter. When composing reactive computations sequen­
tially, using »=, the event requests of the composed expression are just the event 
requests of the first argument. Hence, the event requests of mouseDown »delta Time 
are just { MouseDown }. When composing reactive computations in parallel, using 
first, the event requests of the composed expression are the union of the event re­
quests of both arguments. In this way the reactive interpreter knows exactly which 
events to wait for. 

The reactive interpreter then waits for events from such a set of event requests. 
When one event occurred, or multiple events occurred simultaneously, the set of 

86 

4For more information see man select or man epoll. 
5http://libsdl.org 



4.4. Evaluating Monadic FRP expressions 

Reactive Interpreter 

{MouseMove, Mouse Up, MouseDown} 

~ 
{MouseMove, MouseUp} {MouseDown} 

~ 
{MouseMove} {MouseUp} {MouseDown 

I ~ I I mouseM ave I ~ I mouseDown I delta Time 

(a) How event requests are propagated upwards. 

Reactive Interpreter 

{ M ouseDown (Observed { MLeft})} 

I \ 

I \ 

I mouseMove I J mouseUp J mouseDown I delt~ Time I 
(b) How an event occurance is propagated downwards. 

Figure 4.5: The tree of the expression 
first (first mouseMove mouseUp) (mouseDown ~ deltaTime). 

87 



4. Monadic Functional Reactive Programming 

event occurrences is passed to the continuation function of the reactive computation. 

If the reactive computation is a sequential composition, then the event occurrences 
are simply passed to the first argument. When the reactive computation is a parallel 
composition, the set of event occurrences is passed to the argument(s) that await any 
of these events. 

Figure 4.5(b) shows how an event occurrence, stating that the left mouse button 
was pressed, is propagated downwards. Notice that the entire left leg of the tree is not 
updated in this process, since it did not await this particular event. In this way, the 
evaluation avoids unnecessary re-computations , by updating only those components 
that await the occurred events. 

After processing this event occurrence, the reactive computation proceeds as the 
reactive computation: 

first (first mouseM ove mouse Up) delta Time 

Hence, the reactive expression is dynamic: each sub-expression may change after each 

update. This new expression leads to different event requests than the original ex­
pression, namely the set { M ouseM ove, Mouse Up , Delta Time}. In this way the events 
in which the reactive computation is interested in can also change over time. 

4 .4.4 Time semantics 

In our set of GUI events, there are two events that deal with time: DeltaTime and 
Try Wait. The first, Delta Time, asks to observe any change in time and returns the 
change in time since the previous update of the reactive interpreter. The second, 

Try Wait, works similarly, but takes an argument that indicates the time it wants to 
wait. The result of such a Try Wait request is also the change in time since the last 
update of the reactive interpreter. The difference between the two lies in how they are 
handled: DeltaTime tells the reactive interpreter to respond as quickly as possible, 
whereas Try Wait tells the reactive interpreter to try and wait the given time before 
responding. Hence, when only Try Wait requests are given to the reactive interpreter, 
then the reactive interpreter just waits for time to pass, without wasting CPU cycles 
needlessly updating the reactive expression. 

An event request Try Wait asks the reactive interpreter to wait for the given time, 
but there may be another event request that can be answered earlier. In that case, 
the interpreter cannot wait the given time and must respond. Hence, the time it takes 
for the event Try Wait to occur might be less than the requested amount of time. 

As an example usage of Try Wait, consider the sleep reactive computation, which 
completes after the given number of seconds: 

sleep t = do t' +-- try Wait t 
if t' = t t hen return () e lse sleep ( t - t') 

Notice that testing for equality here is safe, because the result of Try Wait request may 

be less than the requested time, but not more. Hence, we can be sure that sleep 1.1 

88 



4.4. Evaluating Monadic FRP expressions 

never completes earlier or simultaneously to sleep l. In other purely functional im­
plementations of FRP, such exact timing is not available: testing for equality on time 
is unsafe, since the precision of timing depends on how often the signal is sampled. 

Such exact timing is achieved by handling the event requests in the reactive inter­
preter as follows: 

• Compute the maximum time to wait, which is the minimum of the times given 
to Try Wait event requests. It is infinity if there are no Try Wait requests. 

• See if the maximum time to wait, t , is smaller than the time since the last 
update, t'. If so, we construct only Try Wait and Delta Time occurrences with t 
as their associated data and return them, the other steps will not be executed 
on this iteration. The next update will have time difference t' - t plus the new 
time difference. In this way, the result of a Try Wait request will never be more 
than the requested time. 

• Otherwise, wait for an event from the set of event requests, using the maximum 
time to wait as a timeout duration. Blocking I/O multiplexing functions such 
as select and SDL's wai tEvent usually allow such a timeout duration. If there 
is a DeltaTime request, then 0 is passed as the time duration, and the events 
that are currently available will be returned, i.e. the blocking I/O multiplexing 
function will not block. 

• Construct and return the set of event occurrences, including the occurrences 
of TryWait and DeltaTime, which get the time since the last update of the 
reactive interpreter. 

Thanks to these semantics, the drawing program will simply wait for the next 
mouse click or mouse move when there are no animated boxes currently on screen. If 
one of the boxes is animated (in Phase 2), then the reactive interpreter updates the 
animation as quickly as possible so that the animation is as smooth as possible. In 
this way, the animation is conceptually continuous: we describe it as if the animation 
is continuous, abstracting from how often the animation is actually sampled. 

4.4.5 Evaluating signal computations 

Evaluation of a signal computation is very much the same as evaluation of a reactive 
computation, since signal computations are defined in terms of reactive computations 
as follows: 

newtype Sig e a b = Sig (React e (ISig ea b)) 
data ISig e a b = a :I Sig e a b 

I End b 

Here the type Sig is the type of a signal computation and ISig is the type of an 
initialized signal, i.e. a signal computation of which the first form is known or which 
has already ended. Signal computations and initialized signals are defined mutually 

89 



4. Monadic Functional Reactive Programming 

recursively, a signal computation is a reactive computation of the initialized signal, 
and the tail of an initialized signal is again a signal computation. The argument e is 
the type of events that can be handled inside the signal computation, a is the type of 
the values that it emits and b is the type of its result. The signal computation and 
initialized signals in Section 4.2 are specialized to GU!Ev, i.e.: 

type Sigg = Sig G U!Ev 

type !Sigg = !Sig G U!Ev 

The interpreter for signal computations uses the interpreter for reactive compu­
tations to evaluate a signal computation to its corresponding initialized signal. Ad­
ditionally, the values that are emitted by the signal computation are processed. For 
example, the interpreter of our example in Section 4.2 draws each emitted list of boxes 

on screen. The signal computation interpreter is defined as follows: 

interpretSig :: Monad m =? (EvReqs e-+ m (EvOccs e)) 
-+ (a -+ m ()) -+ Sig e a b -+ m b 

interpretSig p d = interpretSig' where 
interpretSig' ( Sig s) = interpret p s »= interpret/Big 
interpret/Big (h :I t) = d h » interpretSig' t 
interpret/Big (End a) = return a 

Here the new argument d is the function which processes each new emission of the 
signal computation. 

4 .4.6 Sha ring com putation results 

If a reactive or signal computation occurs multiple times in an expression, then stan­
dard evaluation techniques may lead to a source of inefficiency. The simplest example 
of this is: 

first x x 

When an event occurs that x is interested in, then the evaluation of x to its new state 
will be performed twice. To solve this problem we introduce a memoization function, 
as is also done in other FRP approaches [Elliott, 1998]: 

memo : : Ord e =? React e a -+ React e a 

In this way, we can rewrite our example to eliminate the potential problem: 

let x' = memo x in first x' x' 

We also introduce a memoization function for signal computations, that applies 
memoization on the reactive computation of the initialized signal and on the signal 
computation that is the tail of that initialized list (if any). 

memoSig :: Ord e =? Sig e a b-+ Sig e a b 

The need for invocations of memoization functions is not necessary in some other 
FRP approaches, such as Arrowized FRP. Hence, this is a disadvantage of Monadic 
FRP. 

90 



4.5. Implementing composition functions 

4.5 Implementing composition functions 

In this section, we show how a selection of the composition functions from Figure 4.2 
are implemented. In this way, this section shows the semantics of the programming 
model explained in Section 4.2 by building on the basic evaluation mechanism ex­
plained in Section 4.4. The definition of the composition operators is mostly straight­
forward: the entire Monadic FRP library consists of just 137 lines of code, excluding 
blank lines (not including the drawing program which consists of 108 lines of code and 
the interface to SDL which consists of 109 lines of code). The structure of this section 
reflects the structure of Section 4.2. We first show the implementation of sequential 
and parallel composition of reactive computations. Afterwards, we show how these 
can be used to implement composition functions for signal computations, and finally 
we show how dynamic lists are implemented. 

4.5.1 Basic composition operators 

The basic composition operators in Monadic FRP are the sequential and parallel com­
position of reactive computations, all other composition and transformation operators 
are defined using these two basic composition operators. 

Sequential composition of reactive computations 

Sequential composition of reactive computations is defined as an instance of the 
Monad type class: 

instance Monad (React e) where 
return = Done 
(Await e c) »= f =Await e (>.x-+ c x »= J) 
(Done v) »=! =f v 

If the first reactive computation awaits some event, then its next state is again se­
quentially composed with f. This process repeats until the first reactive computation 
completes, after which the function f will be called with the result of the reactive 
computation, and the new reactive computation will be executed. 

Parallel composition of reactive computations 

Recall that parallel composition of reactive computations is achieved using first, which 
runs two reactive computations in parallel until either completes, and then gives the 
new state of both reactive computations. Its definition is as follows: 

first l r = case ( l, r) of 
(Await el _ ,Await er_) -+ 

let e = el 'union' er 
c b = first (update l b) (update r b) 

in Await e c 
_-+Done (l, r) 

91 



4. Monadic Functional Reactive Programming 

If both reactive computations await some event, then first waits for the union of their 
event requests, as shown in Figure 4.5(a). Then, on an event occurrence, first updates 
both reactive computations to their next state and calls first again, which then checks 
again if both reactive computations await some event . If this is not the case, then at 
least one of the reactive computations must have completed, and the state of both 
reactive computations is returned. 

As shown in Figure 4.5(b), only those reactive computations that await an event 
that occurred should be updated. This is done by the function update that is used 
in the above definition of first. This function returns the new state of a reactive 
computation given a set of event occurrences. If the reactive computation awaits 
some of the events that occurred, then update obtains the new state of a reactive 
computation by calling its continuation function. Otherwise, the new state is simply 
the old state. The definition of update is as follows: 

update :: Ord e =? React e a ----+ EvOccs e ----+ React e a 
update (Await r c) oc I oc' "¥:-empty= c oc' 

where oc' = oc 'filterOccs' r 
updater_= r 

Here, filterOccs(not shown) filters the event occurrences that the reactive computation 
awaits from the set of event occurrences. If the resulting set of event occurrences is 
empty, then the reactive computation did not await in any of the events that occurred. 

4.5.2 Signal computation composition functions 

Since signal computations are defined in terms of reactive computations, the compo­
sition functions dealing with signal computations are implemented by combining the 
sequential and parallel composition of reactive computations in various ways. Figures 
4.6 and 4. 7 shows the definition of a selection of these signal computation composition 
functions and Figure 4.8 shows the definition of the conversion functions. 

Signal computations and initialized signals are mutually recursively defined data 
types, so functions dealing with signal computations often alternate between process­
ing a signal computation and processing an initialized signal. In the code this can 
be seen, for example, in the function map, which obtains the initialized signal and 
then calls imap, which is like map, but on initialized signals. The function imap 
processes the initialized signal, and calls map again to process the tail, which is a 
signal computation. The same pattern arises in the sequential composition of signal 
computations, and in the functions scanl, until and res. 

The signal computation l 'until' a, splits the signal computation l in two: l 'until' a 
is the part of the signal computation before a completes, and the result of l ' until' a is 
the signal computation after a completed. If the signal computation l was initialized 
before a occurred, i.e. it had already emitted its first value, then the signal compu­
tation after a should not be an uninitialized signal computation. For instance, the 
result of mousePos 'until' leftClick , the mouse position after the left click, should not 
be uninitialized, but should start with the emission of the last mouse position before 
the left click. Hence, the result of until differs depending on if the signal computation 

92 



4.5. Implementing composition functions 

Sequential composition 

instance Monad (Sig e a) where 
return = emitAll o End 
(Sig l) »= J = Sig (l »= ib) 

where ib (h :It) =return (h :I (t »= J)) 
ib (End a) = let Sig x = f a in x 

instance Monad (ISig e a) where 
return= End 
(End a) »= J = f a 
(h :It) »= ! = h :I (t »= emitAll o f) 

Repetition 

repeat : : React e a --+ Sig e a () 
repeat x = xs where xs = Sig (liftM (:I xs) x) 
spawn:: Sig e a r--+ Sig e (ISig e a r) () 
spawn (Sig l) = repeat l 

Transformation 

map : : (a --+ b) --+ Sig e a r --+ Sig e b r 
map J ( Sig l) = Sig ( liftM ( imap !) l) 
imap f (h :I t) = J h :I map f t 
imap f (End a)= End a 

scanl : : (a --+ b --+ a) --+ a --+ Sig e b r --+ Sig e a r 
scanl f i l = emitAll ( iscanl f i l) 
iscanl J i ( Sig l) = i :I ( waitFor l »= lsl) 

where lsl (h :It) = scanl f (Ji h) t 
lsl (End a) = return a 

Figure 4.6: Implementation of sequential composition, repetition, transformation 
functions. 

93 



4. Monadic Functional Reactive Programming 

94 

Parallel composition 

until:: Ord e =? Sig e a r-+ React e b -+ 
Sig ea (Sig ear, React e b) 

until (Sig l) a = waitFor (first l a) »= un where 
un (Donel, a)= do (l , a)+- emitAll (l 'iuntil' a) 

return ( emitAll l, a) 
un (l , Done a)= return (Sig l, Done a) 

iuntil : : Ord e =? !Sig e a r -+ React e b -+ 
!Sig ea (!Sig ear, React e b) 

iuntil (End l) a =End (End l, a) 
iuntil ( h : I Sig t) a = h : I Sig (liftM cont (first t a)) 

where cont (Done l, a) = l 'iuntil' a 
cont (t, Done a)= End (h :I Sig t, Done a) 

( <J\>) :: Ord e =? Sig e (a -+ b) l -+ Sig e a r -+ 
Sig e b ( Sig e (a -+ b) l, Sig e a r) 

l <J\> r = do (l, r) +- waitFor ( bothStart l r) 
emitAll ( imap ( uncurry ($)) (pairs l r)) 

bothStart :: Ord e =? Sig e a l-+ Sig e b r-+ 
React e ( !Sig e al, !Sig e b r) 

bothStart l (Sig r) = do (Sig l, r) +- res ( l 'until' r) 
(Sig r , l) +- res (Sig r 'until' l) 
return (done' l, done' r) 

pairs:: Ord e =? !Sig e a l -+ !Sig e b r-+ 
!Sig e (a, b) (!Sig ea l , !Sig e b r) 

pairs (End a) b =End (End a, b) 
pairs a (End b) =End (a, End b) 
pairs (hl :I Sig tl) (hr :I Sig tr) = (hl, hr) :I tail 

where tail = Sig ( liftM cont (first tl tr)) 
cont ( tl, tr) = pairs ( lup hl tl) ( lup hr tr) 
lup _(Done l) = l; lup h t = h :I Sig t 

Figure 4. 7: Implementation of and parallel composition functions . 



4.5. Implementing composition functions 

emitAll = Sig o Done; emit a = emitAll (a :J return ()) 
always a= emit a~ hold; waitFor a= Sig (liftM End a) 
hold = waitFor never where never= Await empty l_ 

res ( Sig l) = l »= ires 
ires (- :J t) = res t; ires (End a) =Done a 

done (Done a) = Just a; done_ = Nothing 
cur (Sig (Done (h :J _))) = Just h; cur_ =Nothing 
done' = fromJust o done 

Figure 4.8: Implementation of conversion functions. 

was initialized before the reactive completes. If this is this case, then iuntil ensures 
that the signal computation after the reactive computation completes starts with the 
last emission before the reactive computing completed. 

To implement the parallel composition operator, <!\>, we introduce another func­
tion, pairs, which takes two initialized signals as arguments and gives the initialized 
signal that emits the pairs of both arguments. The head of pairs l r is the pair of 
the head of l and the head of r. On each new emission of l or r, pair l r emits the 
pair of the current form of l and the current form of r. To achieve this, we first wait 
for the reactive computation of the tail of one of the initialized signals to complete 
and then update both initialized signals. This is done using the function lup: if the 
tail has not emitted a value yet, the initialized signal is the head of the old initialized 
signal followed by the new state of the computation of the tail. If the tail already 
emitted a value, the initialized signal is simply that tail. The function <A> is t hen 
implemented by first waiting for both signal computation to start emitting values, 
and then applying the second element to the first element of each pair. 

4.5.3 Dynamic lists 

The signal functions from the previous section can be used to define dynList, which 
takes a signal computation emitting initialized signals, and composes them in parallel. 
For this, we first define a dynamic variant of cons (:) , that takes an initialized signal 
that has as form type something of type a (the head) , and an initialized signal that 
emits something of type [a] (the tail) and returns the result of "consing" the head to 
the lists from the tail over time: 

cons:: Ord e =? !Sig e a l --+ !Sig e [a] r 
--+ ISig e [a] () 

cons h t = do (h, t) +- imap (uncurry (:))(pairs h t) 
imap (:[]) h 
t 
return() 

95 



4. Monadic Functional Reactive Programming 

The initialized signal pairs h t gives the pairs of the head and tail over time. Hence, 
if we transform these pairs so that the head is prepended to the tail, we get the list 
over time. After step pairs h t, either the head or the tail has ended . We then emit 
the residual values of the head and the tail, one of which is empty. In this way, if we 
are given two an initialized signals a and b of the same type and an initialized signal 
emitting lists of that type, c, then a 'cons' ( b 'cons' c) will emit lists of the current 
states of a,b and c. If an an initialized signal ends, it has no current form and it 
will not be included in the list . For example, if b ends before a and c, then we will 
continue as a 'cons' c. 

To define dynList, we start with the empty dynamic list, i.e. the initialized signal 
list that always has as current form the empty list. We then run this initialized signal 
until the argument of dynList emits a new initialized signal. Then, we prepend this 
new initialized signal to the current dynamic list to obtain the new dynamic list. 
Afterwards, we run this dynamic list until the argument emits another initialized 
signal and the process repeats. 

dynList x = emitAll ( idynList x) 
idynList :: Ord e ==:> Sig e (ISig e a l) r --+ ISig e [a] () 
idynList l = rl ([] :I hold) l ~return() w here 

rl t (Sig es) =do (t, es) +-- t 'iuntil' es 
case es of 

Done (e :I es)--+ rl (cons et) es 
--+ t 

4.6 Comparison with other evaluation schem es 

To implement reactive systems, one needs a basic mechanism to deal with events that 
occur over time. We identify four such mechanisms: 

• Busy waiting 

• Blocking I/ O multiplexing 

• Concurrency 

• Callback networks 

For each of these basic mechanisms there exists one or multiple corresponding FRP 
evaluation mechanisms. Our approach is the only one which uses blocking I/O multi­
plexing. In the following subsections we will discuss FRP evaluation schemes for each 
of these other basic mechanisms. 

4 .6.1 Busy wait ing 

The original FRP formulation [Elliott and Hudak, 1997] and Arrowized FRP [Court­
ney and Elliott, 2001] use an implementation which models signals as functions , which 

96 



4.6. Comparison with other evaluation schemes 

given an amount of time and input values return the pair of their current emission 
and their continuation function. Since in this approach signals do not communicate 
which events they are interested in, the entire signal expression must be evaluated 
on each update, including the parts for which the input did not change. The reactive 
interpreter does not know which events to wait for and is hence in a busy waiting 
loop, constantly calling the signal continuation function with the new time and pos­
sibly interesting event occurrences. Since this continuation-based implementation of 
signals is purely functional , it allow time-branching signals. 

4.6.2 Concurrency 

A second basic mechanism is to use concurrency in the form of multiple parallel 
threads or processes. Elliot [Elliott, 2009b] gives a FRP evaluation scheme which 
avoids unnecessary re-computations based on the following observation: if we know 
the order in which the events arrive in advance, then we could just use blocking I/O 
to implement FRP. He then introduces the concept of unambiguous choice: given two 
ways to compute the same value using blocking I/O, we can start both computations 
in parallel, see which one completes first , kill the other and use the result. This 
approach does not allow time-branching semantics, because the intermediate states 
of signals are simply not accessible as values. 

4.6.3 Callback networks 

The typical way to implement FRP using callbacks networks is to organize the system 
in a directed acyclic graph, where the nodes are signals and there is an edge between 
two signals if one depends on the other. Signals can then notify other signals if they 
update their value (i.e. emit). Variants of this basic model are used in many FRP 
systems, such as Scala.React [Maier and Odersky, 2012] , FrTime for Racket [Cooper 
and Krishnamurthi, 2006] , Frappe for Java [Courtney, 2001], and Microsoft's Reactive 
Extensions (Rx)6 . 

As an example of such a network consider the following simple (Monadic) FRP 
expression: 

let nrClicks = memo ( scanl ( +) 0 clicks) 
in always ( +) <!\> nrClicks <!\> filter isEven nrClicks 

The dependency network of this expression is shown in Figure 4.9. As an exam­
ple reduction, suppose that the current value of nrClicks is 3 and the value of 
filter isEven nrClicks is 2. Suppose then that the user presses a button, which will 
cause the signal clicks to update. This signal then calls nrClicks, which depends on it. 
The signal nrClicks then updates its value to 4 and calls the signals that depend on 
it. If it calls filter isEven first, then that also updates its value to 4 and calls+, which 
will then update its value to 8. However, if nrClicks calls + before filter isEven, then 
+ will use a stale value of filter isEven, namely 2, and incorrectly update its value to 
6. 

6 https://rx.codeplex.com/ 

97 



4. Monadic Functional Reactive Programming 

r 
+ 

/ """ nrClicks .___ filter isEven 

r 
clicks 

Figure 4.9: A simple signal dependency network. 

An incorrect update due to the order of calls in the signal network, such as the 
update of + to 6, is called a glitch. Most FRP systems based on callback networks 
use a glitch prevention system. The exception is Rx, which does not prevent glitches 
(according to [Maier and Odersky, 2012]). The most common way to prevent glitches, 
is not to let signals call each other directly but instead place their calls in a priority 
queue [Cooper and Krishnamurthi, 2006; Maier and Odersky, 2012]. This priority 
queue schedules updates of nodes according to the topological ordering of the directed 
acyclic graph, which ensures that no glitches will occur. 

A complication is then that the topology of the signal network may change dynam­
ically and hence the system needs to maintain a topological ordering of t he evolving 
directed acyclic graph. Another complication is that to prevent needless computa­
tions, we would like to prevent scheduling updates to signals that no other signal 
depends on. A non-solution is to use weak references for dependence links and then 
rely on the garbage collector to collect the dead signals. It may be a while before 
dead signals are collected , and during this time needless computations are possible. 
Hence t here needs to be some form of instant garbage collection, for example reference 
counting. For more information on possible solutions for these complications see for 
example [Maier and Odersky, 2012; Cooper and Krishnamurthi, 2006] or [Courtney, 
2001]. 

The difference between Monadic FRP and a glitch-free callback network based 
FRP system is that in Monadic FRP the events come in at the root of the expression 
and evaluation proceeds top-down, whereas in glitch-free callback network based FRP 
events arrive at the leaves and evaluation proceeds bottom-up. In Monadic FRP there 
is no way to create a glitch, as t he expression itself is t he ordering on signals. Since 
Monadic FRP traverses the signal network in top-down fashion , signals that no other 
signal depends on will never be computed, and are collected by ordinary garbage 
collection. 

Another difference is that callback-based FRP systems use the signal network as 
mutable data, whereas in Monadic FRP the signal network is immutable, i.e. the next 
network is a new signal network, not a modification of the old network. This is the 

98 



4. 7. Conclusion and Future work 

reason that time-branching operations are possible in purely functional evaluation 
models such as that of Monadic FRP and Arrowized FRP, and are impossible in 
callback-based systems. 

4 . 7 Conclusion and Future work 

In this chapter we introduced Monadic Functional Reactive Programming, an alter­
native programming model and evaluation mechanism for FRP. The basic notion in 
Monadic FRP is a reactive computation, a monadic computation which may require 
the occurrence of external events to continue. A signal computation is a reactive com­
putation that may also emit values. In contrast to signals in other FRP formulations, 
signal computations can end. This leads to a monadic interface for sequencing signal 
phases, which is arguably more intuitive and flexible than the switching combinators 
found in other FRP approaches. This also allows us to define dynamic lists, lists that 
change over time, more easily than in other FRP approaches. In contrast to other 
FRP approaches , Monadic FRP can be implemented straightforwardly in a purely 
functional way while preventing redundant re-computations. 

This gives rise to several directions for further research: 

• How can mutually depended signals be expressed in Monadic FRP? 

• Arrowized FRP does not require manual invocations of memoization functions 
like Monadic FRP and makes it possible to define mutually dependent signals. 
We are currently investigating whether it is possible to combine Monadic FRP 
and Arrowized FRP into a single framework that has the best of both worlds. 

• How can Monadic FRP be formulated in a dependently typed setting, allowing 
us to statically rule out more meaningless and incorrect programs in the style 
of Sculthorpe and Nilsson [Sculthorpe and Nilsson, 2009]? 

• How can Monadic FRP be integrated with a declarative graphics library, such 
as our previous work (Chapter 2)? 

99 





5 

Reflection without Remorse 
Revealing a hidden sequence to speed up monadic refiection1 

Summary 

A series of list appends or monadic binds for many monads performs algorithmically 
worse when left-associated. Continuation-passing style (CPS) is well-known to cure 
this severe dependence of performance on the association pattern. The advantage of 
CPS dwindles or disappears if we have to examine or modify the intermediate result 
of a series of appends or binds, before continuing the series. Such examination is 
frequently needed , for example, to control search in non-determinism monads. 

We present an alternative approach that is just as general as CPS but more ro­
bust: it makes series of binds and other such operations efficient regardless of the 
association pattern - and also provides efficient access to intermediate results. The 
key is to represent such a conceptual sequence as an efficient sequence data structure. 
Efficient sequence data structures from the literature are homogeneous and cannot 
be applied as they are in a type-safe way to series of monadic binds. We generalize 
them to type aligned sequences and show how to construct their (assuredly order­
preserving) implementations. We demonstrate that our solution solves previously 
undocumented, severe performance problems in iteratees, LogicT transformers, free 
monads and extensible effects. 

5.1 Introduction 

It is well-known that list-concatenation ( *) is not efficient when its left argument 
is itself the result of a concatenation. A popular solution to this problem is to use 
continuation-passing style in the form of difference lists. We recall the problems 

1This chapter was published earlier as: A . van der Ploeg, 0. Kiselyov. Reflection without remorse: 
revealing a hidden sequence to speed up monadic reflection. In Proceedings of the '14 Symposium 
on Haskell, pages 133- 144, 2014. 

101 



5. Reflection without Remorse 

of list-concatenation and how continuation-passing style remedies it in Sections 2 
and 3 respectively. However, continuation-passing style only solves the performance 
problem for certain usage patterns: if we need to observe intermediate results of 
concatenations, or build concatenations with sub-lists of other concatenations, then 
performance quickly degenerates. In other words: continuation-passing style again 
leads to performance problems if we alternate between building and observing. 

In this chapter, we show that t his pattern also occurs in many other situations, 
which at first blush have nothing to do with lists. In many implementations of mon­
ads (e.g., iteratees and non-determinism monads), a series of binds(»=) or choices 
(mplus), is quite like a series of list appends: they perform badly when left-associated . 
Like with lists, continuation-passing style makes such series perform algorithmically 
well regardless of the association pattern [Voigtlander, 2008]. However, several mon­
ads also support monadic reflection [Filinski, 1994], a way to observe and modify 
(a representation of) the current state of the computation. For example, the current 

state of a non-deterministic computation may be observed as a stream of results. 
We may remove the top result and cont inue with the rest - which is exactly what 

is needed to implement committed choice [Kiselyov et al. , 2005]. Such monadic re­
flection destroys the performance advantage of the continuation-passing style. This 
chapter shows that one does not have to regret reflection. 

For lists, the solution to the append-and-observe problem is to use a more suited 
sequence data structure, i.e. one that supports both head/tail and append operations 
efficiently. Such data structures can give an asymptotic improvement over both reg­
ular lists and difference lists. The surprise of this chapter is that such efficient data 
structures can also give an asymptotic improvement for other problematic occurrences 
of the build-and-observe pattern, in particular , monads and monadic reflection. The 
key insight is that we can reveal the hidden , abstract sequence of monadic binds: we 

can represent it as a concrete sequence. By then choosing the most suited sequence 
data structure for the problem at hand , performance can be greatly improved. 

However, the literature on efficient sequences deals with homogeneous collections. 
In a 'sequence' of binds, the types of the 'elements ' may vary. To solve this problem, we 

introduce a generalization of sequences called type aligned sequences: heterogeneous 
sequences where the types enforce the element order. In this way, we can solve 
the performance problem in any situation exhibiting the problematic pattern , in a 
completely type-safe way. 

We were confronted with the performance problems of monadic reflection in projects 
using monadic functional reactive programming [van der Ploeg, 2013] and the parallel 
composition of iteratees [Kiselyov, 2012]. These practical problems have motivated 
t he present research. We have distilled the issue into a performance problem with 
simple tree substitutions, which helped us see how changing the data representation 
to use efficient sequences can improve performance. This not only solves the original 
problem, but also gives a drop-in replacement for free monads [Swierstra, 2008] with 

better performance characteristics than previous approaches: examining a free monad 
value and binding it are both efficient, letting us alternate between these operations 
without performance penalty. This improved free monad leads, among other things, 
to an implementation of extensible effects [Kiselyov et al. , 2013] in which a wider 

102 



5.2. The problematic pattern and its cost 

range of effects can be modeled efficiently. 
We begin with some background: Section 2 recalls the problematic build-and­

observe pattern in several guises, and we discuss continuation passing style and its 
performance problems in Section 3. Then we present our contributions: 

• We present a solution to the build-and-observe problem for any monoid where 
left-associated expressions are more costly than right-associated expressions, 
giving an asymptotic running time improvement over both direct and continuation­
passing style. (Section 4) 

• We generalize our solution for monoids to monads, making left-associated bind 
expressions as well as monadic reflection efficient. (Section 4) 

• We introduce type aligned sequences. As an example, we show an implementa­
tion of efficient type aligned queues. (Section 5) 

• We show how our method solves previously undocumented, severe performance 
problems with monadic reflection in iteratees, LogicT transformers, free monads 
and extensible effects. (Section 6) 

And in Section 7 we conclude. 
The code accompanying this chapter is available at: 

https://github.com/atzeus/reflectionYithoutremorse 
The code in this chapter is in Haskell , but our approach can be used in any language 
with GADTs (indexed data types). 

5.2 The problematic pattern and its cost 

In this background section we recall the performance problems of associative operators 
that traverse their left argument but not their right argument. In particular, we 
discuss list concatenation, tree substitution and generic tree substitution. We recall 
that the running time cost of equivalent expressions involving such operators can 
differ asymptotically. 

5.2.1 A first example: list concatenation 

To analyze the performance problems of list concatenation, we recall the relevant 
standard definitions: 

data [a] = [] I a : [a] 

[] 
(h : t) 

To append two lists, we must traverse all elements of the first list to arrive at t he 
empty constructor at the end. Hence, reducing x * y to normal form requires lxl + 1 
case distinctions, from now on called steps, where jxj is the length of x. 

103 



5. Reflection without Remorse 

One might argue that this is not a problem: thanks to laziness, observing the head 

of x-++- y is just observing the head of x, plus one extra step. To observe the n-th 

element of a list we must traverse the list anyway: concatenation just adds one extra 

step per element. 
The real problem arises if the left argument is itself the result of a concatenation. 

For example, in the expression (x-++-y)-++-z, the list x must be traversed twice: it occurs 

twice in a left hand side argument to-++-. Hence, this expression runs in in 2lxl + IYI + 2 

steps, whereas the equivalent expression x-++- (y-++- z) runs in just lxl + IYI + 2 steps. 

In this way, a wrong grouping of expressions involving -++- can easily lead to severe 

performance problems, as we shall see in full generality in §5.2.4. 

5.2.2 Another example: Tree substitution 

A different guise of the same problem occurs with trees and an operation which 

substitutes the leaves of a tree with another tree: 

data Tree = Node Tree Tree 
Leaf 

( +---') :: Tree --+ Tree --+ Tree 
Leaf +---' y = y 
(Node I r) +---' y = Node (I +---' y) (r +---' y) 

The performance situation is similar: evaluating (x +---' y) +---' z traverses x twice, 

whereas the equivalent x +---' (y +---' z) only traverses x once. Hence evaluating the 

former expression costs lxl steps more than evaluating the latter, where lxl is now the 

number of inner nodes in x. 
For lists, this problem can be solved by simply using a catenable (meaning with 

fast concatenation) sequence data structure instead of a regular head-tail list. For 

trees, the solution is not so obvious. Should we investigate a new specialized data 

structure for trees or browse the literature to see if someone else has already invented 

it? (Hint: No.) 

5.2.3 A Monadic example: Generic trees 

The performance degradation from a bad association occurs not only with monoids, 

such as lists and trees. If we generalize our tree to a generic tree, with data at the 

leaves, then substitution becomes the monadic bind (»= )2 : 

data Tree a Node (Tree a) (Tree a) 
Leaf a 

( +---') :: Tree a --+ (a --+ Tree b) --+ Tree b 
(Leaf x) +---' f f x 
(Node I r) +---' f = Node (I +---' f) (r +---' f) 

2This example is taken from [Voigtlander, 2008]. 

104 



5.2. Tile problematic pattern and its cost 

EB EB 

I \ I \ 
EB an+l ai EB 

\ I \ 
a2 EB 

EB an I I \ 
EB a3 a3 EB 

I \ /\ 
ai a2 an an+l 

(a) A left-associated expression (b) A right-associated expression 

Figure 5.1: Equivalent left- and right-associated expressions. 

instance Monad Tree where 
return Leaf 
(»=) = ( +---' ) 

The performance situation is obviously t he same: the only thing that changed is 
that +---' now takes a function as its right argument. Although +---' and »= are not 
associative operators in the strict sense, t hey satisfy the similar associativity monad 
law: 

(m »= f) »= g = m » = (>.x-t f x » = g) 

We now see that the situation is t he same: (m »= f ) »= g runs in lml steps more 
than the equivalent m »= ( >. x -t f x »= g). 

Note that while bind is not strictly an associative operator, the following operator, 
known as Kleisli composition, is strictly an associative operator: 

(»>) :: Monad m =?- (a -t m b) -t (b -t m c) -t (a -t m c) 
f »> g = AX -t f x »= g 

The similarity with the situation with lists and non-generic trees can then be made 
even stronger: (p »> q) »> r is more costly than the equivalent p »> (q »> r). 

5.2.4 Asymptotic running time overhead 

In general, the problem occurs with any associative (or satisfying the associativity 
monad law) operator that traverses its left argument but not its right argument that 
operates on some recursive3 data type. In this situat ion, (x EB y) EB z costs lxl more 

3If t he data type is not recursive, e.g., the Maybe monad, one can easily see t hat both left and 
right associations have t he same asymptot ic cost. 

105 



5. Reflection without Remorse 

steps to evaluate than x EB (y EB z), where lxl is now the number of values of type X 

inside x that are non-terminal (i.e. t hey are not for example the empty list or a leaf). 
Repeated application of such an operator can lead to asymptotic running time 

overhead if la EB bi ?;: lal + lbl. For lists, t his obviously holds since la * bi = lal + lbl. 
For trees, the size of a +-' bis la l + adb l, where a1 is the number of leaves in the tree 
a. Since there is at least one leaf in a tree, the inequality la +-' bi ?;: la l + lbl holds. 

That this leads to asympotic running time overhead can be seen as follows: a 
left-associated expression, as visualized in Figure 5.l(a): 

(((a1 EB a2) EB a3) · · · EB an) EB an+l 

then costs at least 2..::~:1
1 

( n - i) lai I more steps than t he equivalent right-associated 
expression, visualized in Figure 5. l (b): 

If we assume that all elements have size one, i.e. lai I = 1, then we more easily see that 
a left-associated expression costs O(n2 ) more steps than a right-associated expression: 

nL-1( .) nL- 1. n(n - 1) 
n-i = i= ---

2 
i=l i=l 

Of course, these are the most extreme cases: most expressions will not be com­
pletely right- or left-associated. However, any expression that is not completely right­
associated will yield an overhead. We cannot expect t he programmer to only form 
right-associated expressions, especially when using laziness: the programmer must 

then make sure that every time the operator is used , the left hand side cannot be 
itself a result of this operator. 

5.3 Continuation-passing style 

In this second background section, we discuss a popular way to alleviate such per­

formance problems for certain usage patterns, namely continuation-passing style. We 
illustrate this technique with difference lists, which use continuation-passing style to 
speed up list concatenation. We then show that difference lists only avoid perfor­

mance problems if we do not alternate between building and observing and that the 
same holds for continuation-passing style in general. 

5.3.1 Difference lists 

The trick of difference lists [Hughes, 1986] is to only build right-associated expressions. 
More precisely, difference lists are functions for building right-associated expressions, 
i.e. functions of the form: 

And hence we define difference lists as functions from lists to lists: 

106 



5.3. Continuation-passing style 

0 

I\ 
o (an*) 

.... \ 
o (an-1 *) 

I\ 
o (a3*) 

I \ 
(a1 *) (a2*) 

Figure 5.2: Difference list with worst case conversion characteristics. 

type Difflist a = [a] --+ [a] 

We can convert a difference list to a regular list by simply feeding it the empty list: 

abs :: Difflist a --+ [a] 
abs a = a 0 

To convert a list to a difference list, we partially apply *: 
rep :: [a] --+ Difflist a 
rep = ( *) 

Concatenation is then simply function composition, since (a *) o (b *) 
a* (b * t)4

: 

(--it-) · · Difflist a --+ Difflist a --+ Difflist a 
(--it-) = (o) 

,\ t --+ 

The trick is then to concatenate using difference lists , and then convert the result to 
a list when needed. Since this will always produce a right-associated expression, the 
overhead associated with expressions that are not right-associated is avoided. 

However, the problem with this technique is that converting a list to a difference 
list is expensive in the long run. Conversion of a list I to a difference list is simply 
(I*) , which, when the final result is observed, contributes the costs of Ill steps, adding 
one operation to each node in the list . Hence, if we convert back and forth n times, 
this will cost nlll steps. Of course, converting the same list back and forth a number 
of times is a bit of a contrived situation. However, the problem also occurs if we 
convert a difference list to a list and convert part of the list back to a difference list. 

Another, more subtle problem is that conversion in the other direction, from a 
difference list to a list, is not a constant time operation. We cannot observe anything 
directly on a difference list , for example we cannot see whether it is empty, and hence 
conversion to a regular list is often required. This conversion is not cheap: in the 

4 We use the notation (x *) as a shorthand for (.Ay-; x * y). 

107 



5. Reflection without Remorse 

worst case the difference list consists of a left-associated expression of the following 

form, which is visualized in Figure 5.2: 

Converting such a difference list to list , by applying 0 to it , then requires n invocations 

of o to reduce to the following list expression: 

Only after these operations we can reduce further and inspect the resulting list to see 

whether it is empty or not . Hence, observing (parts of) intermediate lists can also 

lead to performance problems. 
To summarize: difference lists only solve performance problems if our usage of lists 

is strictly separated into a build (i.e. concatenation) phase and an observation phase. 

If we alternate between building and observing, as is often needed, then performance 

problems will resurface. 

5.3.2 General Continuation-passing style 

The trick of difference lists, i.e. continuation-passing style, can be applied in many 

situations. For example, it can be applied to any monoid5 : 

type DiffMonoid a = a -+ a 
abs :: Monoid a =} DiffMonoid a -+ a 

abs a = a mzero 
rep :: Monoid a =} a -+ DiffMonoid a 

rep = mappend 
instance Monoid a =} Monoid (DiffMonoid a) where 

mempty = id 
mappend = ( o) 

If we apply the trick to monads, we get the codensity monad transformer [Jaskelioff, 

2009], which is highly related to the continuation monad [Liang et al., 1995]: 

type CodensityT ma = V' b. (a -+ m b) -+ m b 

abs :: Monad m =} CodensityT ma -+ ma 

abs a = a return 
rep :: Monad m =} m a -+ CodensityT m a 

rep = (»=) 
instance Monad m =} Monad (CodensityT m) where 

return a = rep (return a) 
-- or equivalently : >. k -+ k a 

m »= f = m o flip f 
-- or equivalently : >. k -+ m (>.a -+ f a k) 

5 To reduce clutter, we ignore the fact that DiffMonoid and CodensityT should actually be a newtype 

in Haskell. 

108 



5.4. Solving the problem 

The codensity monad transformer is often used for solving the performance problems 
of left-associated expressions [Claessen, 2004; Voigtlander, 2008]. As with difference 
lists, this works fine if our usage is separated in a build and an observations phase. 
However, if we have another usage pattern, alternating between building and ob­
serving, the same problems as with difference lists occurs: continuation-passing style 
reintroduces performance problems. 

5.4 Solving the problem 

The main insight for our solution is that expressions of the form: 

are sequences and that such abstract sequences should be represented explicitly. With 
the previous approaches such sequences are only represented implicitly. More pre­
cisely, when directly using EB , these sequences are implicitly represented at runtime as 
trees where the leaves are the elements and nodes are (delayed) function applications. 
When using continuation-passing style, such sequences are also represented as trees, 
but now the leaves are functions representing the elements and the nodes are function 
composition. By making representation of these sequences explicit, we can choose a 
more suited sequence data structure and performance problems can be solved for any 
usage pattern. 

We first illustrate our solution by applying it to tree substitution. We then show 
that applying our solution to generic trees requires type aligned sequences and how 
such type aligned sequences can be used to solve the problem. Afterwards, we discuss 
the general solution. 

5.4.1 A first example: tree substitution 

We want to replace the implementation of the Tree data type and the substitution op­
erator such that they have the same semantics, but better performance characteristics. 
Hence we will redefine the following operations: 

• Observing a tree, i.e. viewing if it is a leaf or node. 

• Constructing a leaf or node. 

• The leaf substitution operator. 

We are not concerned with other operations on trees here, they are defined in terms 
of the above operations. 

Before we define our new data type Tree ', let us start with defining what the result 
of observing a tree should be. Analogous to viewing a sequence data structure from 
the left or right, we can view a tree by observing if its root node is a leaf or a node: 

data TreeView = Node Tree ' Tree' 
I Leaf 

109 



5. Reflection without Remorse 

Notice that the children of a Node are not of type TreeView, they are of the new (yet 
to be defined) Tree' type. To pattern match on a value of type Tree', we first need to 
call a function that gives the view of the Tree', i.e. a function of type: 

toView :: Tree' -t TreeView 

This pattern is common in data abstraction [Wadler, 1987]: it allows us to hide the 
implementation of the Tree' type, while still being able to pattern match on it. It 
is, for example, also used in efficient sequence data structures, such as the one in 
Data.Sequence: the pattern is used to hide the implementation of the sequence such 
that the user cannot differentiate between things which have multiple representation, 
but have the same meaning. 

The Glasgow Haskell Compiler has a syntactic extension called view patterns which 
eases the usage of such data types. More precisely, it allows us to apply such a view 
function inside a pattern match. As an example of this, with our previous tree data 
type we could write a function: 

isLeaf Leaf True 
isLeaf _ = False 

With view patterns, this function on the new Tree' type becomes: 

isLeaf (toView -t Leaf) = True 
isLeaf _ = False 

In this way, the syntactic inconvenience of our technique is minimized. 
The implementation of the Tree' data type is an explicit expression: a sequence of 

trees a0, a 1, ... , an, such that that the result of observing such a Tree' is ao P a 1 P 

... Pan. 

newtype Tree' = Tree' (CQueue TreeView) 

Where CQueue is an efficient sequence data structure, which we assume to be an 
instance of the type class for sequences defined in Figure 5.3(a). Very efficient purely 
functional sequence data structures exist: data structures where both concatenation 
and head/tail access run in amortized constant time [Okasaki, 1995], and even data 
structures where both run in worst case constant time [Kaplan and Tarjan, 1999b; 
Okasaki, 1995]. 

The elements of the sequence are of type TreeView, which is mutually recursive 
with Tree': the children of the elements in the expression are again explicit expressions. 
The Tree' type is a newtype instead of a type alias, such that we can omit the Tree' 
constructor from the interface, making Tree ' an abstract type. 

Constructing a leaf or node of type Tree' is then done by converting a TreeView 
value to a Tree' by using the following function: 

fromView :: TreeView -t Tree' 
fromView x = Tree' $ singleton x 

The resulting tree is not (yet) an argument to the substitution operator and hence 
it is represented as a sequence of length one. Notice that fromView is the inverse of 
to View. 

110 



5.4. Solving the problem 

The implementation of the substitution operator +----> is then simply to concatenate 
the two explicit expressions: 

( +-') :: Tree ' -+ Tree' -+ Tree' 
(Tree' I) +----> (Tree' r) = Tree' (I cX:i r) 

Since we are using an efficient sequence data structure, this concatenation only takes 
(amortized) constant time. 

The implementation of +----> no longer defines how to actually replace the leaves of 
a tree with another tree. Instead this logic is moved to the toView function, which 
converts an explicit expression to its view (i.e. its head normal form). 

toView :: Tree' -+ TreeView 
toView (Tree' s) = case viewl s of 

EmptyL -+ Leaf 
h <i t -+ case h of 

Leaf -+ toView (Tree' t) 
Node I r -+ Node (I ?.o t) (r ?.o t) 

where ( ?.o) :: Tree ' -+ (Queue Tree View -+ Tree ' 
(Tree' I) ?.o r = Tree' (I cX:i r) 

Where viewl is a function that allows us to view the sequence from the left: see if 
it is empty or obtain the head and tail. In contrast to continuation-passing style, 
converting an explicitly represented expression to an observable value does not mean 
converting the entire explicitly represented expression: we partially convert, keeping 
the children of a node as explicit expressions. 

In this way, all operations we want to support , namely construction, observation 
and substitution have become efficient operations. Moreover, the expressions , (x +-' 
y) +----> z and x +----> (y +----> z) lead to the same sequence, and hence performance does 
not depend on the association pattern. It should hence come as no surprise that 
this approach also solves performance problems if we alternate between building trees 
using substitution and observing the result of such substitutions. 

5.4.2 Solving the performance problems of generic trees using 
type aligned sequences 

But what if we want to apply our solution to generic trees? We must then explicitly 
represent expressions of the form: 

m »= f1 »= f2 » = f3 ... » = fn 

The problem is that each fi has type a -+ Tree b, for some a and b, and these types 
can differ between elements. This means we cannot use a regular sequence: to use it 
all elements must be of the same type. 

To be able to apply our solution to such situations, we generalize sequences to 
type aligned sequences: sequences parametrized by a type constructor c, such that 
each element is of type c a b, for some a and b. If the last type argument to c of an 
element is a, then first type argument to c in the next element (if any) must be a. If 

111 



5. Reflection without Remorse 

class Sequence s where 
empty ·· s a 
singleton 
( rXi ) 
view I 

.. a -+ sa 
·· sa -+ sa -+ sa 
· · s a -+ Viewl s a 

data Viewl s a where 
Emptyl ·· Viewl s a 
( <i ) · · a -+ s a -+ Viewl s a 

(a) A type class for regular sequences. 

class TSequence s where 
tempty .. s c x x 
tsingleton ·· c x y -+ s c x y 
( txl ) 
tviewl 

.. sc x y -+ scyz -+ scxz 
· · s c x y -+ TViewl s c x y 

data TViewl s c x y where 
TEmptyL :: TViewl s c x x 
( <l ) . . c x y -+ s c y z -+ TViewl s c x z 

(b) A type class for type aligned sequences. 

Figure 5.3: Type classes for type aligned and regular sequences. 

112 



5.4. Solving the problem 

we set the type constructor c to (---* ), we get type aligned sequences of functions: the 
output type of a function is then always the input type to the next function. 

In the next section we discuss such type aligned sequences in depth and show they 
can be defined. For now, let us assume that we have an efficient type aligned sequence 
data structure called TC Queue, which is an instance of the type aligned sequence type 
class defined in Figure 5.3(b). 

The elements in the sequence described above are of type a ---* Tree' b, for some 
a and b, except the first element m. We need a type constructor to describe this 
pattern: 

type TreeCont a b = a ---* Tree ' b 

A type aligned sequence where each element is a TreeCont is then of the following 
type6 : 

type TreeCExp a b = TCQueue TreeCont a b 

The situation is now a bit different than with our non-generic trees: an expression 
involving a series of binds must always start with an element of type Tree' a, whereas 
the rest of the elements are of type TreeCont a b, for some a and b. Hence, we 
implement the tree data type as explicit expression containing a first element and a 
sequence of right-hand-side arguments to bind. 

data Tree ' a where 
Tree ' :: TreeView x 4 TreeCExp x a 4 Tree' a 

data TreeView a = Leaf a I Node (Tree' a) (Tree' a) 

This definition uses an existential type x: the first element in the expression may be 
a tree of any type, as long as the result of the expression is a tree containing elements 
of type a. 

The from View and +--> functions are adapted accordingly: 

fromView :: TreeView a ---* Tree' a 
fromView x = Tree' x tempty 

( +-->) :: Tree' a---* (a---* Tree' b) ---* Tree' b 
(Tree' x s) +--> f = Tree' x (s [XJ tsingleton f) 

As before, the actual logic of substitution is moved to the view function: 

toView :: Tree' a ---* TreeView a 
toView (Tree' b t) = case b of 

Leaf a ---* case tviewl t of 
TEmptyL 4 Leaf a 
h <J t ---* to View ( ( h a) 0 t) 

Node I r ---* Node (I 0 t) (r 0 t) 
where ( 0) :: Tree a ---* TreeCExp a b 4 Tree b 

(Tree' b I) 0 r = Tree ' b (I [XJ r) 

6 To reduce clutter, we ignore that TreeCont must be a newtype for this to work in current Haskell. 

113 



5. Reflection without Remorse 

In this way, the performance problems for any usage pattern of generic trees have also 
disappeared by using type aligned sequences. 

5.4.3 The general case 

Suppose we have some recursive data type X and an associative operator traversing 
its left argument but not its right argument. The solution is then to replace the 
data type X by an abstract data type X' and rewrite the problematic operator by 
performing the following steps: 

1. Replace X with two mutually recursive data types: one for the abstract type 
containing the explicit expression (X' ) and one view type, which is the same as 
the original X, but the self-references have been replaced by X'. 

2. Define the original operator on X' by concatenating the explicit expressions. 

3. Define a fromView function that converts a view value to an X' expression by 
constructing an explicit expression with one element. 

4. Define a toView view function that evaluates an explicit expression to its view, 
using the workings of the original operator. 

A type aligned sequence must be used if the type of the right argument of the operator 
depends on the type of the left argument of the operator. 

Notice that explicitly representing expressions in this way means that applying 
the operator with the identity element does not necessarily immediately yield the 
original value. For example, m >>= return and m are different expressions. However, 
we cannot observe this difference by viewing m »= return and m. Hence, the identity 
element is an identity element up to observation. Associativity laws directly -hold, 
since sequence concatenation is associative. To ensure that we do not accidentally 
differentiate between m »= return and m, it is important to define the result of the 
above steps in an separate module and to not export the constructor of X'. 

This process gives an abstract type X', with operations to construct, observe 
(view) and apply the operator. We argue that this resulting data type X' has the 
same semantics as the original data type, provided that X' is abstract. We feel that 
a formalization of these steps and a proof of the isomorphism of X and X' should be 
possible, but it is beyond the scope of this chapter. 

5.5 Type aligned sequences 

In the previous section, we saw that type aligned sequences are required to explicitly 
represent expressions involving operators where the type of the left argument depends 
on the type of the right argument. We now introduce type aligned sequences, discuss 
their relation with regular sequences, and show an example of how a sequence data 
type can be converted into a type aligned sequence data type. 

114 



5.5. Type aligned sequences 

5.5.1 Definition and intuition 

Type aligned sequences are best explained by an example: a type aligned sequence 
of functions is a sequence f1, f2, f3 ... fn such that the composition of these functions 
f1 o f2 o f3 o . .. o fn is well typed. In other words: the result type of each function in 
the sequence must be the same as the argument type of the next function (if any). In 
general, the elements of a type aligned sequence do not have to be functions, i.e. values 
of type a -+ b, but can be values of type ( c a b ), for some binary type constructor 
c. Hence, we define a type aligned sequence to be a sequence of elements of the type 
(c ai bi) with the side-condition bi-l = ai. Ifs is the type of a type aligned sequence 
data structure, then ( s c a b) is the type of a type aligned sequence where the first 
element has type ( c a x), for some x, and the last element has type ( c y b) , for some 
y. 

It may be instructive to think of a type aligned sequence as a path through a 
directed graph. In this directed graph each node is a type and there is an edge from 
type a to type b for each value of type ( c a b ). Hence, we call a value of type ( c a b) 
a c-edge. A type aligned sequence of type ( s c a b) is then a sequence of c-edges such 
that they form a path from a to b trough this graph: the target of each edge is the 
source of the next edge. 

Type aligned sequences can be defined using Generalized Algebraic Data Types 
(GADTs) [Nilsson, 2005]. As a simple example of this, consider a type aligned list: 

data Tlist c x y where 
Nil ·· Tlist c x x 
( : ) :: c x y -+ Tlist c y z -+ Tlist c x z 

In the graph interpretation, the empty type aligned sequence corresponds to an empty 
path, and hence the empty list is a path from x to x, for any x. The Cons constructor 
adds one c-edge to the front of a path, the types ensure that the target of this c-edge 
is the source of the rest the path. 

5.5.2 Relation with regular sequences 

The only difference between regular sequences and type aligned sequences are the 
types: Tlist differs from the ordinary list only in the more precise types of its con­
structors. In fact, type aligned sequences are a generalization of regular sequences: 
any type aligned sequence can be used as a regular sequence, but not the other way 
around . We can use a type aligned sequence as a regular sequence by effectively 
"partially erasing" the extra types with the following construction: 

data AsUnitloop a b c where UL :: a -+ AsUnitloop a () () 

By using this construction, there exists an edge from () to () for each value of type a in 
the graph interpretation. Since there are no other edges, the graph effectively has just 
one node: the other types are unreachable. Hence, a regular list a1 : a2 : a3 ... an : [] 
of type [a] corresponds to a type aligned list: 

115 



5. Reflection without R emorse 

of type TList (AsUnitLoop a) () () . This type aligned list corresponds to a path of 

length n through the graph consisting solely of self-loops on () , where each edge 
corresponds to a value of type a. 

We can use this construction to provide an instance for the regular sequence class 
(Figure 5.3(a)) for any instance of the type aligned sequence class (Figure 5.3(b)) : 

type AsSequence s a = s (AsUnitLoop a) () () 

instance TSequence s =? Sequence (AsSequence s) where 
empty tempty 
singleton tsingleton o UL 
(w ) (txl ) 
view! s case tviewl s of 

EmptyL ~ TEmptyL 

UL h <1 t ~ h <i t 

A benefit of using type aligned sequences in this way, instead of directly using 

regular sequences, is t hat type aligned sequences rule out a class of implementation 
bugs: the types in a type aligned sequence enforce the ordering of the elements. 
Hence, accidentally switching two elements will result in a type error, as the resulting 
sequence may not be a path. In contrast, in regular sequences the types do not enforce 
the ordering of the elements and an accidental change of order in , for instance, the 
definition of concatenation would have gone unnoticed by the type checker. 

In general, sequences, i.e. words over some alphabet, are free monoids, whereas 
paths through a directed graph are free categories [Awodey, 2006]. Sequences in 
programming languages typically are homogeneous: they require that each element 

has the same type. The alphabet is then the set of values of the given type. Similarly, 
type aligned sequences are paths through the directed graph where t he edges are 
formed by the values of type ( c a b) , for all types a and b. 

Indeed, any sequence data type can be made an instance of Monoid , without 
assuming anything about the elements of the sequence. Similarly, any type aligned 
sequence data type can be made an instance of Category, without assuming anything 
about the elements of the type aligned sequence: 

instance Sequences =? Monoid (s a) where 

mempty = empty 
mappend = (w) 

instance TSequence s =? Category (s c) where 
id = tempty 
(o) = flip (txl ) 

The fact that we can use any type aligned sequence as a regular sequence also has 
a theoretical motivation: a monoid corresponds to a category with just one object , 
the elements in the monoid are now arrows (morphisms) from this one object to 
itself and the monoid operation is arrow composition [Awodey, 2006] . Hence, a free 
monoid corresponds to the free category over a graph with just one node, where the 

116 



data Pair c a b where 
( x ) :: c a w --+ c w b --+ Pair c a b 

data Buffer c a b where 
B 1 ·· c a b --+ Buffer c a b 
B2 :: Pair c a b --+ Buffer c a b 

data Queue c a b where 
QO :: Queue c a a 
Ql :: c a b --+ Queue c a b 
QN :: Buffer c a x --+ Queue (Pair c) x y 

--+ Buffer c y b --+ Queue c a b 

( It> ) :: Queue c a w --+ c w b --+ Queue c a b 
q It> b = ... 
viewl :: Queue c a b --+ TViewl Queue c a b 
viewl q = ... 

5.5. Type aligned sequences 

Figure 5.4: A type aligned queue data structure. 

self-edges correspond to the elements of the alphabet. This is exactly what we did 
with AsUnitloop above: it makes every value of type a into a self-edge on the node 
() . 

5.5.3 An example of making sequences type aligned: efficient 
queues 

Generalizing the types of a sequence data type so that it becomes a type aligned 
sequence data type, means generalizing the constructor types, and assuring (that 
is, "proving" to the type checker) that all operations on the data type preserve the 
element order. This generalization requires some creativity but in our experience, 
it is a straightforward operation. In the code accompanying this chapter we show 
type aligned versions of finger trees [Hinze and Paterson, 2006] and of a worst case 
constant time catenable queue [Okasaki, 1995, 1998]. 

As an not entirely trivial example of turning a sequence data structure into a 
type aligned sequence data structure, consider the (non-catenable) queue shown in 
Figure 5.4. This data structure is essentially the same as the queue presented in 
Okasaki 's Purely functional Data Structures [Okasaki, 1998, §8.4] but the types have 
been generalized. 

To generalize this queue to a type aligned sequence data structure, we needed to 
generalize not only the types of the constructors of the queue, but also the types of 
the constructors of the pairs and buffers of which it consists. Before generalizing the 
types, both elements of a pair had the same type, but now the elements are c-edges 

117 



5. Reflection without Remorse 

such that they form a path of length two. A buffer can hold either a single element 

or a pair and the types of these constructors have been generalized straightforwardly. 
Slightly less obvious is generalizing the types of the constructors of a queue. A queue 

may consist of nested queues: if a queue has more than one element (constructor QN) , 

it is represented as two buffers and a queue of pairs. With generalized types, the type 

of this queue of pairs is a type aligned queue holding (Pair c)-edges, i.e. paths of 
length two. 

The only difference in the operations, namely en-queuing and viewing the head­

/ tail, is their type signatures, the operations themselves are left unchanged and are 
hence not shown. The full code for these type aligned queues is included in the code 

accompanying this chapter. 

5.6 Fast Monadic Reflection 

In this section we show how our solution can be used in various real-life monads. In 

particular, several monads offer monadic reflection: a way to observe, or reify, the in­

ternal state of the computation, represented in a suitable data structure. For example, 
the internal state of a non-determinism monad can be observed as a stream of choices. 

This terminology is due to Filinski [Filinski, 1994] who modeled it after the terminol­

ogy of Wand and Friedman [Friedman, 1988]. Monadic reflection leads to alternating 
between building and observing, and hence leads to previously undocumented, severe 

performance problems. We demonstrate several examples of how we can factor out 

sequences in monads such that monadic reflection can be efficiently supported. In 
particular, we discuss LogicT transformers, iteratees (and related constructs), free 

monads and extensible effects. 

5.6.1 LogicT Monad Transformers 

As a first example of how we can apply our solution to a practical example, consider 
non-determinism monads. The Monad Plus type class extends the Monad interface with 

support for non-deterministic choice with backtracking. The most obvious instance 

of this interface is the list monad: bind is then concatMap (with the order of the 

arguments reversed) and mplus is concatenation. The usage of list concatenation can 

lead to performance problems, which can be solved by simply using a catenable queue 

instead. 
Kiselyov, Shan, Friedman and Sabry [Kiselyov et al. , 2005] showed that a large 

class of logical effects, namely cut, soft cut, interleaving and fair conjunction, can all 

be expressed when a single function is added to the interface. This function, called 
msplit, essentially splits the logical computation into a computation of the first result 

and computation of the rest of the results. More precisely, this function has type: 

class MonadPlus m => Monadlogic m where 
msplit :: ma -t m (Maybe (a, ma)) 

It takes a logical computation and turns it into another logical computation, namely 

one which returns Nothing if the original logical computation had no results, and 

118 



5.6. Fast Monadic Reflection 

otherwise returns a Just value carrying a t uple of the first result and the logical 
computation of the rest of t he results . This is an instance of monadic reflection: 
msplit allows us to observe the internal state of the monad as a stream of results. The 
implementation of t his msplit function for lists and other sequence data structures is 
straightforward: it converts the empty sequence to Nothing and a non-empty sequence 
to a Just value of the head and tail. 

However, an efficient monad transformer that adds non-determinism to an ar­
bitrary monad is not defined so easily. In a functional pearl [Hinze, 2000], Hinze 
systematically derives such a non-determinism monad transformer implementation. 
He then notes that a left- associated mplus expression has quadratic performance, and 
solves this by using continuation-passing style. Note that there is no problem with 
bind for a non-determinism monad : like concatMap for lists, it traverses both the 
left argument and (the result of) the right argument. Kiselyov et al. show how the 
monad transformer implementation of Hinze can be adapted such that it is also an 
instance of MonadLogic. Although it can be really tricky to see this directly from 
t he code, this inst ance of MonadLogic has severe performance problems. Effectively, 
their implementation of msplit corresponds to converting a difference list to a list and 
convert ing to tail of the list to a difference list again. Hence, each invocation of msplit 
will add one extra operation per result in the remainder of the logical computation. 

Their implementation uses continuation-passing style wit h two cont inuations, but 
the point of this chapter is t hat it is better to make the sequence explicit instead 
of representing it as a tree of functions (i.e. CP S). Hence, we do not apply our 
method to this implementation, but to a standard stream implementation of back­
tracking [Wand and Vaillancourt , 2004] as shown in Figure 5.5(a). In this implemen­
tation, the ML type is essentially a list where each node of the list is the result of a 
computation in the underlying monad. The list can be empty (Nothing) or a head 
and tail (Just (a,ML m a)). The definitions are t hen analogous to the definitions for 
the lists: mplus is concatenation and »= is like concatMap. 

Notice that ML is not t he same as t he ListT construction: 

newtype ListT m a = ListT { runListT :: m (a] } 
instance Monad m =? Monad (ListT m) where ... 

This construction only yields a monad if the argument monad, m, is commuta­
tive [Jones and Duponcheel, 1993]. The difference is that in ML each node in the 
"list" is the result of a computation in the underlying monad , whereas with the ListT 
construction the entire list is the result of a single computation in the underlying 
monad. 

An example of the asymptotic performance problem is the following function which 
obtains at most n solutions of a logical computation. 

seqN :: MonadLogic m =? lnt -+ m a -+ m [a] 
seqN n m 

I n = o return O 
I otherwise msplit m »= >.x -+ case x of 

Nothing -+ return [] 
Just (a ,m) -+ liftM (a :) (seqN (n - 1) m) 

119 



5. R eflection without R emorse 

newtype ML m a = ML { toView :: m (Maybe (a, ML m a)) } 
fromView = ML 
single a = return (Just (a ,mzero)) 

instance Monad m =;. Monad (ML m) where 
return = fromView o single 
(toView -+ m) »= f = fromView $ m »= Ax -+ case x of 

Nothing -+ return Nothing 
Just (h,t) -+ toView (f h 'mplus' (t »= f)) 

fail _ = mzero 

instance Monad m =;. MonadPlus (ML m) where 

mzero = fromView (return Nothing) 
mplus (toView -+ a) b = fromView $ a »= Ax -+ case x of 

Nothing -+ toView b 
Just (h ,t) -+ return (Just (h ,t 'mplus' b)) 

instance MonadTrans ML where 
lift m = fromView (m »= single) 

instance Monad m =;. MonadLogic (ML m) where 

msplit (toView -+ m) = lift m 

(a) Original implementation. 

newtype ML ma = ML ((Queue (m (Maybe (a, ML m a)))) 
fromView = ML o singleton 

instance Monad m =;. MonadPlus (ML m) where 
mzero = ML empty 
mplus (ML a) (ML b) = ML (a !XJ b) 

toView :: Monad m =;. ML m a -+ m (Maybe (a, ML m a)) 
toView (ML s) = case view! s of 

EmptyL -+ return Nothing 
h <i t -+ h »= Ax -+ case x of 

Nothing -+ toView (ML t) 
Just (hi , MLti) -+ return (Just (hi,ML$ ti !X! t)) 

-- the other code is unchanged 

(b) Changes to the original implementation. 

Figure 5.5: A stream implementation of MonadLogic 

120 



5.6. Fast Monadic Reflection 

0.5 

-+--- Stream (changed) 

-- Stream (unchanged) 
0 - __..,_ 2 continuations 

0 5,000 10,000 15,000 20,000 

n 

(a) Running time splitting a logical computation of natural numbers n times. 

1.5 ~--~~--~-----~ 

1 

0.5 

-+--- Stream (changed) 

-- Stream (unchanged) 
0 __..,_ 2 continuations 

0 5,000 10,000 15,000 20,000 

n 

(b) Running time of observing all results in a left-associated mplus expression with n ele­
ments. 

Figure 5.6: Running time of msplit and mplus micro benchmarks for LogicT. 

121 



5. Reflection without Remorse 

Figure 5.6( a) 7 shows, for different implementations, the running time of obtaining n 
natural numbers using seqN , where the natural numbers are defined as follows8 : 

nats = natsFrom 1 where 
natsFrom n = return n 'mplus' natsFrom (n + 1) 

Obtaining a number of solutions requires us to recursively split the logical com­
putation, and hence the two continuation implementation as implemented in Hackage 
package Logic T has quadratic running time. Of course, this is just a micro-benchmark 
constructed to illustrate the problem. However, this problem does not only occur on 
the natural numbers: it occurs any time we request only some, instead of all, solu­
tions to a logical computation. This is highly counter-intuitive: it is much faster to 
obtain all results than some results. Moreover, since we are talking about monad 
transformers, requesting all results is not always an option: it may invoke undesired 
and/or irrevocable effects in the underlying monad. 

The same problem occurs with the interleave operator as described by Kiselyov et 
al., which ensures fair consideration between two branches of a logical computation. 
An example usage of this operator is the following the logical computation: 

unfair = do x +- nats 'mplus' return 0 
if x = 0 then return x else mzero 

The behavior of mplus in these implementations is that it first considers all solutions 
from its left argument, and only afterwards considers the solutions of its right argu­
ment. Since nats has an infinite number of results, this computation will never yield 
a solution. If interleave is used instead of mplus, then solutions from nats and return 0 
are considered alternately and the computation will yield a solution. This interleave 
operator is defined in terms of mplus and msplit as follows: 

interleave :: m a -t m a -t m a 
interleave I r = msplit I »= >.x -t case x of 

Nothing -t r 
Just (h, t) -t return h 'mplus' interleave r t 

Since interleave recursively splits the remaining computation of both arguments, any 
usage of it while using a two continuation implementation of backtracking will lead 
to performance problems. For instance, the following logical computation: 

test = choose [l. .. n] ' interleave ' choose [ n ... 1] 
where choose I = foldr mplus mzero (map return I) 

also runs in O(n2). The same problem occurs when using using the fair conjunction 
operator, which is defined in terms of interleave. The cut and soft cut operators are 
also problematic, but much less severely: they only split the logical computation once. 

Obtaining only a limited number of solut ions and using the interleaving or fair con­
junction operators is not problematic when using the ML implementation of Monad Logic: 

7These measurements are the median of 5 runs and were performed on an AMD Phenom II X4 
905e Processor CPU running Linux 3.2.0 on binaries produced with the GHC 7.6.3 (optimization 
level 2). The fixed stream implementation uses a worst case constant time catenable queue. 

8 (a 'f' b) is an alternative notation for ( f a b). 

122 



data It i a = Get ( i --+ It i a) I Done a 

instance Monad (It i) where 
return = Done 
(Ret x) »= g = g x 
(Getf) »= g = Get(f »> g) 

get ·· It i i 
get Get return 

5.6. Fast Monadic Reflection 

Figure 5. 7: Iteratees before applying our solution. 

we can observe results directly by running a computation in the underlying monad: 
there is no conversion involved. Instead, the problem is now mplus: it traverses the 
left hand argument but not the right hand argument. Figure 5.6(b) shows the running 
time of obtaining all solutions of a left-associated mplus expression: 

test :: MonadPlus m =} lnt --+ m lnt 
test n = foldl mplus mzero (map return [l. .. n]) 

Now the running time of the ML implementation is quadratic. The dual continuation 
implementation does not suffer the same problem, as it was originally derived by 
Hinze to solve this problem. Hence, that the performance characteristics of the ML 
implementation are opposite to those the two continuation implementation: the ML 
implementation has quadratic performance on a left-associated mplus expression, but 
no performance problem with msplit. 

Applying our solution to the ML implementation yields the changes that are shown 
in Figure 5.5(b). The changes are very similar to the changes to the (non-generic) 
Tree data type: we change the ML data type to an explicit expression involving mplus, 
and the actual logic of non-deterministic choice is moved to the toView function. As 
can be seen from the graphs, after applying our method the problem with mplus 
disappears: the running time is now linear. Moreover, this stream implementation 
with our method applied to it is the only implementation which efficiently supports 
both msplit and mplus. 

5.6.2 Iteratees and related monads 

As a second example of how we can apply our solution to a practical example, consider 
iteratees [Kiselyov, 2012]: a style of incremental input processing that overcomes 
the problems of lazy I/O and handle-based I/O. We consider a simplified version 
of iteratees where an iteratee is a monadic computation that can request an input 
element, as shown in Figure 5.7. 

An iteratee is in one of two possible states: the constructors of the It data type. 
If an iteratee is Done it simply carries the value it produces. If an iteratee needs 
an input element, it is a Get value, carrying a function that when given the input 

123 



5. Reflection without Remorse 

element returns the next iteratee state. A Monad instance for such iteratees is then 
defined straightforwardly. In this definition, the (»>) operator is Kleisli composition 
(f »> g = >.x ---* f x »= g) as introduced in section 5.2.3 . 

Although it can be easy to miss, the definition of the monadic bind, like its def­
inition in the original paper, exhibits the problematic pattern: it traverses its left 
argument but not its right argument. It does not matter that (»=) invokes itself by 
using function composition instead of application, this just obfuscates the problem. 

As example of the performance problem is the following iteratee computation, that 
gets n elements from the input and then returns their sum: 

sumlnput :: lnt ---* It lnt lnt 
sumlnput n = Get ( fold I (»>) return ( replicate ( n - 1) f)) 

where f x = get » = return o ( + x) 

Where replicate n e is a function that creates a list of the length n, where each element 
is e. The sum Input function yields an expression of the form: 

Get ((((return >» f) »> f) »> f) ... »> f) 

Figure 5.8 shows that when the argument to Get is called with a new input element 
x, it costs O(n) steps to obtain the next iteratee state: 

Get (((((return o ( + x)) »> f) »> f) »> f) ... »> f) 

This very similar to the original expression, exhibiting the same problem. Hence, 
the running time of feeding this iteratee computation n elements and obtaining their 
sum is quadratic. The sumlnput function can easily be made to run in linear time 
by simply switching from foldl to foldr. However, in general solving such performance 
problems by avoiding the problematic pattern is not as simple: we must then make 

sure that that each left argument to bind cannot be the result of a bind. 
We can solve the problem with repeated binds by using the codensity monad 

transformer, as defined in Section 5.3.2, as proposed by Voigtlander [Voigtli:inder, 
2008]. When using this method, we only use codensity transformed iteratees to build 
monadic expressions: 

type ltCo i a = Codensity T (It i) a 

We then redefine get so that it gives a codensity transformed iteratee: 

getCo :: ltCo i i 
getCo = rep get 

A monadic expression built in this way will then always result in a right-associated ex­
pression when converted to a regular iteratee computation, thus avoiding the problem 
of repeated binds. 

We now find ourselves in a familiar situation: this method makes alternating 
between building and observing problematic. An example of this is the following, 
often useful, parallel iteratee composition function, defined as a regular (non-codensity 

transformed) iteratee function: 

124 



....... 
N 
CJl 

$ 

I \ 
>» x 

\ 
»> fn 
I \ 

»> f3 
I \ 

»> f2 

/ \ 

---» 

»= 

\ 
»= fn 
I \ 

»= f3 
I \ 

»= f2 

/ \ 
return f1 Done x f1 

---+ ---+ 

»= >>= 
.... \ /\ 

---» ---+ 

>>= Get 
I 

»> »= fn >>= fn 

I \ 
Get fn 

\ I \ 
»= f3 
I \ 

Get f2 
I 

return o ( +x) 

I \ 
Get f3 
I 

»> 
/ \ 

return o ( +x) h 

»> »> fn 
I \ / \ 

»> f3 »> f3 
/ \ / \ 

return o ( +x) f2 return o ( +x) f2 

Figure 5.8: Example of an inefficient iteratee computation. The subscript i in fi indicates the index of the occurrence of f. 
~ 
?> 

~ 
C/J 
M-

~ 
tl g_ 
(=)• 

~ 
('!) 
C") 
<">-g· 



5. Reflection without Remorse 

par :: It i a -+ It i b -+ It 
par I r 
I Done_ +- I = Done (I , r) 
I Done_ +- r = Done (I, r) 

(It a, It b) 

I Get f +- I , Get g +- r = get »= Ax -+ par ( f x) (g x) 

This operator runs both iteratees in parallel, feeding each input element to both, 
until at one of the iteratees is done. Afterwards, the remaining iteratee computation 
of both arguments is returned, which can then be composed again with other iteratees 
using par and »=. The par function is an instance of monadic reflection: we observe 
the internal state of both iteratees. 

If we want to use par on codensity transformed iteratees, we need to redefine it as 
follows: 

parCo :: ltCo i a -+ ltCo i b 
-+ ltCo i (ltCo i a, ltCo i b) 

parCo I r = rep (par (abs I) (abs r)) »= 
(A(l,r)-+ return (rep I , rep r)) 

We need to eliminate the codensity transformer using abs to observe the states of both 
iteratees. After applying the original par function, we want to be able to compose the 
resulting iteratees again with »= and parCo. However, they are no longer codensity 
transformed iteratees, while other iteratees are in this form to avoid the problems 
with bind. We need to convert the rest of the resulting iteratees back to codensity 
transformed form. Hence, each invocation of parCo adds an extra operator per Get in 
the remaining iteratee, which can easily lead to performance problems when iteratees 
are long lived and used in many invocations of parCo. 

A related construction is monadic coroutines, which are like iteratees except that 
they also output an element each time they request an input element. Blazevic [Blazevic, 
2011] presents an extensive library for such coroutines, but his coroutine definition 
suffers from the same problem as the original iteratee definition. 

Another guise of the same situation occurs in monadic FRP (Chapter 4): a frame­

work which essentially applies coroutines in a functional reactive programming (FRP) 
setting. In monadic FRP, a combinator very similar to par is at the heart of compos­
ing reactive computations and the bind in that chapter has the same problem as the 
original iteratees. In fact, the motivation for this work is that we noticed that our 
monadic FRP program became progressively slower, due to repeated application of 
bind on the results of par, and eventually came to a grinding halt. Since par is used 
often in monadic FRP, and coroutines can live for a long time, being used in many in­
vocations of par, the use of the codensity monad would also lead to a severe slowdown. 
With our solution applied, monadic FRP programs no longer become progressively 

slower, running efficiently no matter what the usage pattern. 
Our solution can be applied to iteratees, coroutines and monadic FRP. By using 

an efficient type aligned sequence data structure, the performance of improves dra­
matically, without constraining ourselves by disallowing functions involving monadic 
reflection like par. We do not show the code for this due to space considerations, 
but instead note that iteratees, coroutines and monadic FRP are all instances of a 

126 



5.6. Fast Monadic Reflection 

construction known as a free monad, which we discuss and show the improved code 
of in the next section. 

5.6.3 Free Monads 

Swierstra [Swierstra, 2008] shows how a monad instance can be defined for any functor, 
resulting in a monad that is called the free monad [Awodey, 2006] on that functor . 
This construction is defined as follows: 

data FreeMonad f a Pure a 
I Impure (f (FreeMonad fa)) 

instance Functor f =? Monad (FreeMonad f) where 
return = Pure 
(Purex) »= f = f x 
(Impure t) »= f = Impure (fmap (»= f) t) 

Swierstra t hen notes that several well known monads are free monads. For example, 
t he Maybe monad is the free monad on the following functor: 

data One a = One deriving Functor 

Now (Pure a) corresponds to (Just a) and (Impure One) corresponds to Nothing. 
However, for many functors this construction leads to asymptotic problems. Con­

sider for example t he following Functor: 

newtype Get i a = Get ( i --+ a) deriving Functor 

A free monad on this functor corresponds to the iteratees we saw in the previous 
section. Free monads over the following functors: 

data Node a = Node a a deriving Functor 
data Yield out inn a = Yield out (inn --+ a) deriving Functor 

correspond to the generic trees with substit ution and coroutines, respectively. It 
should come as no surprise that the performance problem of iteratees, generic trees 
and coroutines did not go away by formulating them as free monads. Again, we could 
use continuation-passing style, but t his would make functions like par expensive. 

We solve these problem for all free monads by simply applying our solution. The 
definition of free monads t hen becomes: 

type FC f a b = a --+ FreeMonad f b 
type FMExp fa b = TCQueue (FC f) a b 

data FreeMonad f a where 
FM :: FreeMonadView f x --+ FM Exp f x a --+ FreeMonad fa 

data FreeMonadView fa = Pure a 
I Impure (f (FreeMonad fa)) 

fromView x = FM x tempty 

127 



5. Reflection without Remorse 

toView :: Functor f => FreeMonad fa ~ FreeMonadView fa 
toView (FM h t) = case h of 

Purex ~ 

case tviewl t of 
TEmptyL ~ Purex 
he <J tc ~ toView (he x >>= tc) 

Impure f ~ Impure (fmap (»= t) f) where 
(»=) :: FreeMonad fa ~ FM Exp fa b ~ FreeMonad f b 
(FM h t) »= r = FM h (t [Xl r) 

instance Monad (FreeMonad f) where 
return = fromView o Pure 
(FM m r) »= f = FM m (r [Xl singleton f) 

Notice that this code is very similar to the code we got from applying our solution 
to our generic tree example in Section 4.2. This should come as no surprise: generic 
trees are free monads. 

As usual, the code for these adapted free monads is included in the code accompa­

nying this chapter, as well as a benchmark demonstrating the performance problem 
and that our method solves it. 

5.6.4 Extensible effects 

Recently Kiselyov, Sabry, Swords and Foppa introduced extensible effects [Kiselyov 
et al., 2013]: a framework for composing and implementing computational effects that 
overcomes the problems of monad transformers in terms of efficiency, expressiveness 
and ease of notation. In this framework an effect is an interaction between a client 
and a handler: the client sends a value describing the desired effect to the handler, 
which in turn executes the desired effect and passes the result to the client. 

The approach of Kiselyov et al. uses functors to describe both which effect to 
request and how to continue afterwards. For example, both the request to modify a 
state and how to proceed afterwards, are represented by the following functor: 

data ModifyState s w = 
ModState (s ~ s) (s ~ w) deriving Functor 

The first argument tells the handler how to modify the state, whereas the second 
argument tells the handler how to continue afterwards, it takes the new state and 
then produces some w. The free monad over this functor is then the value that 
is interpreted by the handler: if the value is Impure (ModState f c) , it applies the 
function f to the state and calls the function c with the new state. This may again 
yield an Impure value and the process continues until the handler sees a Pure value. 

The extensible in extensible effects comes from the fact that handlers do not 
interpret a free monad over a single functor, but a free monad over an open union of 
functors. An open union is a value that can be of any type in a set of types. This 
distinguishes it from a closed union, for example Either a b, which has a list of types. 
Kiselyov et al. then show an implementation of an open unions of functors, which in 

128 



5. 7. Conclusion 

itself is again a functor. In this way handlers for different effects can be stacked: if a 
handler does not handle the desired effect, the value describing the effect is passed to 
the next handler in the stack. 

However, as we saw in the previous section, many functors give rise to performance 
problems when using a (non-adapted) free monad. For functors describing effects, this 
is the case if the effect produces some result which is then passed to a continuation 
function. This is always the case, except for exceptions. 

Kiselyov et al. avoid this problem by using a variant of free monads using 
continuation-passing style. This has the advantage that it avoids the performance 
problems of wrong groupings of expressions involving bind, but it has the disadvan­
tage that handlers must be written in continuation-passing style. In a related paper, 
Kammar et al. [Kammar et al. , 2013] avoid the performance problem by (implicitly) 
applying the codensity monad. 

Both approaches lead to performance problems when effects requiring reflection 
such as iteratees, LogicT transformers or delimited continuations are modeled. With 
our solution, extensible effects can directly be expressed as (adapted) free monads over 
open unions, without the need for manual continuation-passing style or the codensity 
monad. Moreover , effects that require reflection can then be efficiently supported . 
An example implementation of extensible effects as efficient free monads is included 
in the code accompanying this chapter, as well as a benchmark involving reflection in 
the form of a logical cut effect, that is quadratic in the original implementation, but 
linear in our adapted implementation. 

5. 7 Conclusion 

Associative operators that traverse their left argument, but not their right argument, 
can lead to asymptotic overhead. A popular cure is to use continuation-passing style, 
but this cure is only effective if our usage is strictly separated into a build and an 
observation phase, otherwise the cure is as bad as the disease. 

We presented a solution t hat solves such performance problems for any usage 
pattern, even when alternating between building and observing. Our solution reveals 
a hidden sequence, namely repeated applications of such a problematic operator, and 
makes it concrete using an efficient sequence data structure. 

To support operators where the type of the right argument depends on the type 
of the left argument, such as the monadic bind , we introduced a generalization of 
sequences called type aligned sequences. Type aligned sequences enforce the ordering 
of their elements, and hence rule out ordering bugs. 

Monadic reflection, i.e. a way to observe, or reify, the internal state of a monadic 
computation requires us to alternate between building and observing. We showed 
that reflection does not have to lead to remorse: our solution efficiently supports 
reflection. We have demonstrated that our solution can yield an asymptotic running 
time improvement in iteratees (and related constructs), LogicT transformers, free 
monads and extensible effects. 

Our solution is not limited to the examples we discussed in this chapter. In 

129 



5. Reflection without Remorse 

the accompanying code, we show how sequences can be factored out in delimited 

continuations [Dyvbig et al. , 2007] and term monads [Lin, 2006]. Given the simplicity 
of the problematic pattern and the widespread usage of continuation-passing style, 
we suspect that there are many more applications of our solution hiding in corners 
where we have not looked yet. 

Acknowledgment 

We thank Jan Rutten, Koen Claessen and the anonymous reviewers for helpful dis­
cussions and comments on this chapter. 

130 



6 

Conclusions 

Ideally, programs are described by composing generic, reusable parts. However, some­
times such a composition comes at a cost: the resulting program is too slow, uses to 
much memory or does not give high enough precision. In this thesis, we made this 
situation less likely in the domain of interactive visualizations and in the introduction 
we posed a series of research questions that aim at achieving this goal. In this chapter 
we discuss the answers to each of these questions, how our results make abstractions 
more efficient and their limitations. 

Graphics abstractions 

R esearch Question 1 Is it possible to program 2D graphics in a declarative way 
that is general, simple, expressive, composable and resolution-independent while still 
being efficient? 

In Chapter 2, we have presented a library for declarative resolution-independent 
2D graphics called Deform in Chapter 2. Our library generalizes and simplifies the 
functionality of traditional frameworks, while preserving their efficiency. Our ap­
proach is more general than traditional approaches, since we allow the description of 
arbitrary shapes, arbitrary textures and arbitrary transformations, while traditionally 
only Bezier curves, a limited set of textures and affine transformations are supported. 
We have shown that an implementation of a focus+context lenses in our framework 
gives better image quality and better performance than a solution using a traditional 
framework, at a fraction of the code. 

When using a traditional graphics framework discretizations can be scaled up and 
sampled to produce other discretizations. In these frameworks it is not possible to 
analyze a representation of a drawing and hence the only way to produce non-affine 
transformations is to sample discretizations of a drawing. Apart from producing 
results with low image quality, this is also very inefficient. In Deform, we delay 

131 



6. Conclusions 

discretization till the very last moment, costing less time and leading to higher image 
quality for shapes that are not Bezier curves, textures that are not gradients or images 
and non-affine transformations. 

A shortcoming of our approach is that we currently do not support post-processing 
image filters such as blurs. Such post-processing filters are typically described by how 
they combine samples from the original image. Further research is needed to see if 
such filters can also be described in a resolution independent way while still being 
efficient. It might be possible to describe such filters using integrals, and then distill 
an efficient sampling implementation from the description and its usage. 

Our approach enables combining advanced effects in interactive visualizations. For 
example, it becomes much easier to add a focus+context lens to a Google maps-like 
application. It also enables the description and combination of procedurally generated 
textures [Ebert, 2003], while maintaining high image quality. An interesting applica­

tion is computer-generated art. The cover shows an example of computer generated 
art using Deform. Such art can also be generated using the Context Free tool1 , and 
their website has many fascinating examples. Support for non-affine transformations 

has already been discussed on the Context Free forums as a desirable feature, and 
they could be supported using the insights from Chapter 3. Non-affine transforma­

tions open up many new possibilities for computer generated art. 

Layout abstractions 

R esearch Q uestion 2 Is there a linear time algorithm for producing non-layered 
layouts of trees? 

In Chapter 3, we have shown that there is a linear time algorithm for producing 
non-layered layouts of trees. This is the fastest one could hope for, since all the 
nodes in a tree need to be visited at least once to assign them a position. The 
algorithm we presented is a modification of the Reingold-Tilford algorithm. Since 
the the original complexity proof of that algorithm uses an invariant that does not 
hold for the non-layered case, we have presented an alternative complexity proof of 
the algorithm and its extension to non-layered drawings. Existing extensions to the 
Reingold-Tilford algorithm which make the layout more visually appealing also work 
in our algorithm, but they then cause a quadratic running time complexity. We have 
presented a modification to this extension and proved that this restores the linear 
running time. This adds an efficient layout algorithm to the toolbox of interactive 

visualization programmers2 . 

Event abstractions 

R esearch Q uestion 3 How can we efficiently support incremental evaluation in 
FRP? 

1http://contextfreeart.org 
2See http: //wvw. treevis. net for an overview of tree visualizations, including our work. 

132 



In Chapter 4, we have presented Monadic FRP, a novel formulation of Functional 
Reactive Programming. We have shown how incremental evaluation in Monadic FRP 
can be supported simply and in a purely functional way without introducing glitches: 
inconsistencies due to an incorrect order of updates . This purely functional, incre­
mental update model makes time-branching efficient: we can efficiently roll back and 
replay reactive computations. We also showed how we can efficiently support time in 
this system, such that the reactive program is only updated when needed, whereas 
other FRP-systems require polling. 

Our FRP framework current ly has the disadvantage that the results of computa­
tions over time cannot be shared using the standard let construct and that it is not 
clear how to define mutually recursive reactive computations, such as two sliders in a 
temperature conversion application that influence each other. 

A remaining problem with FRP in purely functional languages is that the outside 
world must be hooked up to the FRP program with non-FRP code. This is non­
modular: each new input/ output must be manually routed trough the FRP program 
and hooked up. The input/output code and the FRP code are highly coupled, and 
hence it is not desirable to separate these two. We are currently working on an 
efficient FRP framework, inspired by Monadic FRP, that solves this problem and 
does not have the disadvantages of Monadic FRP. 

Creating interactive programs is tough. An engineer from Abobe stated that 1/ 3 
of the code of Abobe's desktop products (such as Photoshop, Reader and Flash) is 
event handling code, but that 1 / 2 of the bugs are in this code [Parent , 2006]. Monadic 
FRP is a step towards making programming interactive systems much easier and more 
composable, while still being efficient . Since FRP is a deterministic model, it may 
also be easier to prove the absence of bugs than in traditional event handling systems. 

Research Question 4 Can series of associative operators be made efficient no mat­
ter what the association pattern for all usage patterns? 

In Chapter 5, we have presented a technique that makes the performance of any se­
ries of associative operator independent of the association pattern (i.e., the placement 
of brackets) and t he usage pattern, i.e. even when we alternate between constructing 
the series and pattern matching on its result. Our technique uses efficient catenable 
sequence datastructures, which solve the dependence on the association pattern for 
sequence concatenation for any usage pattern. For some (nearly) associative opera­
tors, such as the monadic bind , the type of the right argument depends on the type 
of the left argument. To be able to apply our solution in a type-safe way in such 
situations, we introduced type-aligned sequences. These type aligned sequences are 
a generalization of ordinary sequences and allow us to store, for example, sequences 
of functions, where the output type of each function is t he input type of the next 
function. We demonstrated that our solution solves previously undocumented , severe 
performance problems in Monadic FRP (Chapter 4), iteratees [Kiselyov, 2012], Log­
icT transformers [Kiselyov et al., 2005], free monads [Swierstra, 2008] and extensible 
effects [Kiselyov et al., 2013]. 

While this work was motivated from a specific problem in Monadic FRP, the 
problem we solve is far more general. Our results make efficient sequence datastruc-

133 



6. Conclusions 

tures applicable to a wider class of problems. Not only does it make them appli­

cable to associative operators, but type-aligned sequences allow us to describe any 

sequence-like structure efficiently, such as categories, monads and co-monads. An 

earlier paper [Greif, 2011) lists several use-cases for type-aligned lists, namely parser 

combinators and type-safe descriptions of syntax and staged interpreters. We expect 

that efficient type aligned sequences may be used to improve performance in these 

areas as well. 

To conclude, we have shown that abstractions do not have to come at high costs: 

it is possible to create interactive visualizations by composing them from simple 

abstractions, without paying in terms of performance. 

134 



Bibliography 

Awodey, S. (2006) . Category theory. Oxford University Press. 

Bergstra, J. A. and Klop, J. W. (1985). Algebra of communicating processes with 
abstraction. Theoretical computer science, 37:77- 121. 

Blazevic, M. (2011). Coroutine pipelines. The Monad Reader, 19:29- 50. 

Bloesch, A. (1993). Aesthetic layout of generalized trees. Software: Practice and 
Experience, 23:817- 827. 

Borning, A., Marriott, K., Stuckey, P., and Xiao, Y. (1997). Solving linear arithmetic 
constraints for user interface applications. In Proceedings of the 10th annual ACM 
symposium on User interface software and technology, pages 87- 96. ACM. 

Brookes, S. D., Hoare, C. A. R., and Roscoe, A. W. (1984). A theory of communicating 
sequential processes. Journal of the ACM, 31(3):560- 599. 

Buchheim, C., Jiinger, M., and Leipert, S. (2006). Drawing rooted trees in linear 
time. Software: Practice and Experience, 36(6):651- 665. 

Carpendale, M. S. T. and Montagnese, C. (2001). A framework for unifying presen­
tation space. In Proceedings of the 14th annual ACM Symposium on User interface 
software and technology, UIST '01 , pages 61- 70, New York, NY, USA. ACM. 

Casciola, G. and Morigi, S. (1996). Reparametrization of NURBS curves. Interna­
tional Journal of Shape Modeling, 2:103- 116. 

Claessen, K. (2004) . Functional pearl: Parallel parsing processes. Journal of Func­
tional Programming, 14:741- 757. 

135 



Bibliography 

Cooper, G. H. and Krishnamurthi, S. (2006) . Embedding dynamic dataflow in a call­
by-value language. In Proceedings of the '06 European Symposium on Programming, 
pages 294- 308. 

Courtney, A. (2001) . Frappe: Functional reactive programming in Java. In Proceed­
ings of the '01 International Symposium of Pratical Aspects of Declarative Lan­

guages. 

Courtney, A. and Elliott, C. (2001). Genuinely functional user interfaces. In Proceed­
ings of the '01 Haskell Workshop. 

Courtney, A., Nilsson, H. , and Peterson, J. (2003). The Yampa arcade. In Proceedings 
of the '03 Haskell Workshop, pages 7- 18. 

Dokken, T. and Thomassen, J. (2003). Overview of approximate implicitization. Top­
ics in Algebraic Geometry and Geometric modelling, AMS series on Contemporary 

Mathematics CONM 334, 28(1):169- 184. 

Dyvbig, R. K. , Peyton Jones, S., and Sabry, A. (2007). A monadic framework for 
delimited continuations. Journal of Functional Programming, 17(6):687- 730. 

Ebert, D.S. (2003). Texturing f3 modeling: a procedural approach. Morgan Kaufmann. 

Elliott, C. (1998). Functional implementations of continuous modeled animation. 
In Proceedings of the 10th International Symposium on Principles of Declarative 
Programming, pages 284- 299. 

Elliott, C. (2001). Functional image synthesis. In Proceedings of Bridges. 

Elliott, C. (2004). Programming graphics processors functionally. In Proceedings of 

the 2004 ACM SIGPLAN workshop on Haskell, Haskell '04, pages 45- 56, New York, 
NY, USA. ACM. 

Elliott, C. (2009a). Beautiful differentiation. In International Conference on Func­
tional Programming (ICFP ). 

Elliott, C. (2009b ). Push-pull functional reactive programming. In Proceedings of the 
'09 Haskell Symposium. 

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In Proceedings of 

the 1997 International Conference on Functional Programming, ICFP '1997, pages 
163- 173. 

Filinski, A. (1994). Representing monads. In Proceedings of the 21th Symposium on 

Principles of Programming Languages, pages 446- 457. 

Finne, S. and Jones, S. P. (1995). Pictures: A simple structured graphics model. In 
In Glasgow Functional Programming Workshop, Ullapool. 

Friedman, D. P. (1988). The mystery of the tower revealed: A nonreflective description 
of the reflective tower. LISP and Symbolic Computation, 1(1):298- 307. 

136 



Bibliography 

Gibbons, J. (1996). Deriving t idy drawings of trees. Journal of Functional Program­
ming, 6(3):535- 562. 

Greif, G. (2011). Thrists: Dominoes of data. Internet draft . http : //omega . 
googlecode . com/files/Thrist-draft-2011-11-20 .pdf . 

Hasan, M., Rahman, M. S., and Nishizeki, T. (2003). A linear algorithm for compact 
box-drawings of trees. Networks, 42(3):160-164. 

Hinze, R. (2000). Deriving backtracking monad transformers. In Proceedings of the 
Sth International Conference on Functional Programming, pages 186- 197. 

Hinze, R. and Paterson, R. (2006). Finger trees: A simple general-purpose data 
structure. Journal of Functional Programming, 16(2):197- 217. 

Hoffmann, C. M. (1993). Implicit curves and surfaces in CAGD. IEEE Computer 
Graphics and Applications, 13:79- 88. 

Hudak, P., Courtney, A., Nilsson, H., and Peterson, J. (2003). Arrows, robots, and 
functional reactive programming. In '02 Summer School on Advanced Functional 
Programming, pages 159- 187. 

Hughes, J. (1986). A novel representation of lists and its application to the function 
"reverse". Information Processing Letters, 22(3) :141 - 144. 

Hughes, J . (2000). Generalising monads to arrows. Science of Computer Programming, 
37(1-3):67- 111. 

Jaskelioff, M. (2009). Modular monad transformers. In Transactions on Programming 
Languages and Systems, pages 64-79. 

Jeffrey, A. S. A. (2013). Causality for free!: Parametricity implies causality for func­
tional reactive programs. In Programming Languages meets Program Verification , 
PLPV '13. 

Johnson, B. and Shneiderman, B. (1991). Tree-maps: a space-filling approach to the 
visualization of hierarchical information structures. In Proceedings of the '91 IEEE 
Conference on Visualization, pages 284 - 291. 

Jones, M. P. and Duponcheel, L. (1993). Composing monads. Research Report 
YALEU / DCS/ RR-1004, Yale University. 

Kammar, 0 ., Lindley, S., and Oury, N. (2013). Handlers in action. In Proceedings of 
the '13 International Conference on Functional Programming. 

Kaplan, H. and Tarjan, R. E. (1999a). Purely functional, real-time deques with 
catenation. Journal of the ACM, 46(5) :577- 603. 

Kaplan, H. and Tarjan, R. E. (1999b ). Purely functional , real-time deques with 
catenation. Journal of the ACM, 46(5):577- 603. 

137 



Bibliography 

Karczmarczuk, J. (1999). Geometric modelling in functional style. In Proceedings of 
the III Latino-American Workshop on Functional Programming, CLAPF'99, pages 
8- 9. 

Karczmarczuk, J. (2002). Functional approach to texture generation. In Proceedings 
of the 4th International Symposium on Practical Aspects of Declarative Languages, 
PADL '02, pages 225- 242, London, UK, UK. Springer-Verlag. 

Katifori, A., Halatsis, C. , Lepouras, G., Vassilakis, C., and Giannopoulou, E. (2007). 
Ontology visualization methods- a survey. ACM Computing Surveys (CSUR), 
39(4):10. 

Kennedy, A. (1996). Drawing trees. Journal of Functional Programming, 6(3):527-
534. 

Kiselyov, 0. (2012). Iteratees. In Proceedings of the llth International Symposium 
on Functional and Logic Programming, pages 166- 181. 

Kiselyov, 0., Sabry, A., and Swords, C. (2013). Extensible effects: An alternative to 
monad transformers. In Proceedings of the '13 Symposium on Haskell, pages 59- 70. 

Kiselyov, 0., Shan, C., Friedman, D. P., and Sabry, A. (2005) . Backtracking, inter­
leaving, and terminating monad transformers (functional pearl). In Proceedings of 
the 10th International Conference on Functional Programming, pages 192- 203. 

Kleiberg, E., van de Wetering, H., and Van Wijk, J. J. (2001). Botanical visualiza­
tion of huge hierarchies. In Proceedings of the IEEE Symposium on Information 
Visualization 2001, pages 87- 94. 

Klint, P., Lisser, B., and van der Ploeg, A. (2011). Towards a one-stop-shop for 
analysis, transformation and visualization of software. In Proceedings of the Fourth 
International Conference on Software Language Engineering (SLE 2011), pages 
1- 18. Springer. 

Knuth, D. E. (1971). Optimum binary search trees. Acta Informatica, 1:14- 25. 

Lamping, J., Rao, R., and Pirolli, P. (1995). A focus+context technique based on 
hyperbolic geometry for visualizing large hierarchies. In Proceedings of the SIGCHI 
conference on Human factors in computing systems, pages 401- 408. ACM. 

Lanza, M. and Ducasse, S. (2003a). Polymetric views - a lightweight visual approach 
to reverse engineering. Software Engineering, IEEE Transactions on, 29(9). 

Lanza, M. and Ducasse, S. (2003b). Polymetric views - a lightweight visual approach 
to reverse engineering. Transactions on Software Engineering, 29:782- 795. 

Liang, S., Hudak, P., and Jones, M. (1995). Monad transformers and modular in­
terpreters. In Proceedings of the 22nd Symposium on Principles of Programming 
Languages, pages 333- 343. 

138 



Bibliography 

Lin, C. (2006). Programming monads operationally with unimo. In Proceedings of 
the 1 lth International Conference on Functional Programming, pages 27 4- 285. 

Ma, Y. L. and Hewitt, W. T. (2003). Point inversion and projection for NURBS curves 
and surfaces: control polygon approach. Comput. Aided Geom. Des. , 20(2):79- 99. 

Maier , I. and Odersky, M. (2012). Deprecating the Observer Pattern with Scala.react. 
Technical report, LAMP. 

Marriott , K. and Sbarski, P. (2007). Compact layout of layered trees. In Proceedings 
of the 13th Australasian conference on Computer science - Volume 62, ACSC '07, 
pages 7- 14. Australian Computer Society, Inc. 

Marriott, K., Sbarski, P., van Gelder, T., Prager, D. , and Bulka, A. (2011). Hi-trees 
and their layout. IEEE Transactions on Visualization and Computer Graphics, 
17(3) :290- 304. 

Matlage, K. and Gill, A. (2009). ChalkBoard: Mapping functions to polygons. In 
Proceedings of the Symposium on Implementation and Application of Functional 
Languages. 

Mcbride, C. and Paterson, R. (2008). Applicative programming with effects. Journal 
of Functional Programming, 18(1):1- 13. 

Meyerovich, L. A., Guha, A., Baskin, J., Cooper, G. H. , Greenberg, M. , Bromfield, 
A., and Krishnamurthi, S. (2009). Flapjax: a programming language for Ajax 
applications. In Proceedings of the '09 Conference on Object oriented programming 
systems languages and applications, pages 1- 20. 

Miyadera, Y., Anzai, K. , Unno, H., and Yaku, T. (1998). Depth-first layout algorithm 
for trees. Information Processing Letters, 66:187- 194. 

Moen, S. (1990). Drawing dynamic trees. IEEE Software, 7:21- 28. 

Nguyen, Q. V. and Huang, M. L. (2002). A space-optimized tree visualization. In 
Information Visualization, 2002. INFOVIS 2002. IEEE Symposium on, pages 85-
92. IEEE. 

Nilsson, H. (2005). Dynamic optimization for functional reactive programming us­
ing generalized algebraic data types. In Proceedings of the tenth ACM SIGPLAN 
international conference on Functional programming, ICFP '05, pages 54- 65, New 
York, NY, USA. ACM. 

Nilsson, H., Courtney, A., and Peterson, J. (2002). Functional reactive programming, 
continued. In Proceedings of the '02 Haskell Workshop, pages 51- 64. 

Okasaki, C. (1995). Simple and efficient purely functional queues and deques. Journal 
of Functional Programming, 5:583- 592. 

Okasaki, C. (1998). Purely Functional Data Structures. Cambridge University Press. 

139 



Bibliography 

Parent, S. (2006). A possible future of software development. Presentation. http: 
//stlab . adobe . com/wiki/images/0/0c/Possible\_future.pdf. 

Paterson, R. (2001) . A new notation for arrows. In Proceedings of the '01 international 
conference on Functional programming, pages 229- 240. 

Peterson, J ., Hager, G., and Hudak, P. (1999a). A language for declarative robotic 
programming. In Proceedings of the 1999 International Conference on Robotics and 
Automation. 

Peterson, J., Hudak, P., and Elliott, C. (1999b). Lambda in Motion: Controlling 
robots with Haskell . In Proceedings of the lth International Workshop on Practical 
Aspects of' Declarative Languages, PADL 1999. 

Peterson, J., Hudak, P., Reid, A., and Hager , G. (2001). FVision: A declarative 
language for visual tracking. In Proceedings of the '01 International Workshop on 
Practical Aspects of Declarative Languages, PADL '01, pages 304- 321. 

Pietriga, E. (2005). A Toolkit for Addressing HCI Issues in Visual Language Envi­
ronments. IEEE Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC), pages 145- 152. 

Pietriga, E. , Bau, 0., and Appert, C. (2010). Representation-independent in-place 
magnification with Sigma lenses. IEEE Transactions on Visualization and Com­
puter Graphics, 16:455- 467. 

Ragan-Kelley, J. , Adams, A., Paris, S., Levoy, M., Amarasinghe, S., and Durand, 
F. (2012). Decoupling algorithms from schedules for easy optimization of image 
processing pipelines. ACM Transactions on Graphics, 31(4):32. 

Reingold, E. M. and Tilford, J. S. (1981). Tidier drawings of trees. IEEE Transactions 
on Software Engineering, 7(2):223- 228. 

Robertson, G. G., Mackinlay, J. D., and Card, S. K. (1991). Cone trees: animated 3d 
visualizations of hierarchical information. In Proceedings of the SIGCHI conference 
on Human factors in computing systems, pages 189- 194. ACM. 

Schieber, B. and Vishkin, U. (1988). On finding lowest common ancestors: Simplifi­
cation and parallelization. SIAM Journal on Computing, 17(6):1253- 1262. 

Schneider, P. J. (1990). An algorithm for automatically fitting digitized curves. In 
Glassner, A. S., editor, Graphics gems, pages 612- 626. Academic Press Professional, 
Inc., San Diego, CA, USA. 

Sculthorpe, N. and Nilsson, H. (2009). Safe functional reactive programming through 
dependent types. In Proceedings of the '09 International conference on Functional 

programming, ICFP '09, pages 23- 34. 

140 



Bibliography 

Sederberg, T. W., Anderson, D. C. , and Goldman, R. N. (1984). Implicit represen­
tation of parametric curves and surfaces. Computer Vision, Graphics, and Image 
Processing, 28(1):72- 84. 

Stein, B. and Benteler, F. (2007). On the generalized box-drawing of trees: Survey 
and new technology. In Proceeding of I-KNOW '07. 

Supowit, K. and Reingold , E. (1983). The complexity of drawing trees nicely. Acta 
Informatica, 18:377- 392. 

Swierstra, W. (2008). Data types a la carte. Journal of Functional Programming, 
18( 4) :423- 436. 

Tollis , I. G. , Di Battista, G., Eades, P., and Tamassia, R. (1998). Graph Drawing: 
Algorithms for the Visualization of Graphs. Prentice Hall. 

van der Ploeg, A. (2013). Monadic functional reactive programming. In Proceedings 
of the 2013 Symposium on Haskell, pages 117- 128. 

Van Wijk, J . J. and Van de Wetering, H. (1999). Cushion treemaps: Visualization of 
hierarchical information. In Proceedings of the IEEE Symposium on Information 
Visualization, pages 73- 78. IEEE. 

Vaucher, J. G. (1980). Pretty-printing of trees. Software: Practice and Experience, 
10(7) :553- 561. 

Voigtlander, J. (2008). Asymptotic improvement of computations over free monads. 
In Proceedings of the 9th International Conference on Mathematics of Program 
Construction, pages 388- 403. 

Von Landesberger, T. , Kuijper, A., Schreck, T ., Kohlhammer, J., van Wijk, J . J. , 
Fekete, J .-D., and Fellner, D. W. (2011). Visual analysis of large graphs: State-of­
the-art and future research challenges. Computer graphics forum, 30(6):1719- 1749. 

Wadler, P. (1987) . Views: A way for pattern matching to cohabit with data abstrac­
tion. In Proceedings of the 14th ACM SIGACT-SIGPLAN Symposium on Principles 
of Programming Languages, POPL '87, pages 307- 313, New York, NY, USA. ACM. 

Walker, II , J. Q. (1990). A node-positioning algorithm for general trees . Software: 
Practice and Experience, 20:685- 705. 

Wand , M. and Vaillancourt, D. (2004). Relating models of backtracking. In Pro­
ceedings of the 9th International Conference on Functional Programming, pages 
54- 65. 

Wetherell, C. and Shannon, A. (1979). Tidy drawings of trees. IEEE Transactions 
on Software Engineering, 5(5):514- 520. 

Xiaohong, L. and Jingwei, H. (2010). An improved generalized tree layout algorithm. 
In Proceedings of the 2nd international Asia conference on Informatics in control, 
automation and robotics - Volume 2, CAR'lO, pages 163- 166. IEEE Press. 

141 





Summary 

Abstractions, such as functions and methods, are an essent ial tool for any programmer. 
Abstractions encapsulate t he details of a computation : the programmer only needs 
to know what t he abstraction achieves, not how it achieves it. However, using ab­
st ractions can come at a cost: the resulting program may be inefficient. This can lead 
to programmers not using some abst ractions, instead writing t he entire functionality 
from t he ground up. 

In this t hesis, we present several results t hat make t his sit uation less likely when 
programming interactive visualizations. We present results t hat make abstractions 
more efficient in t he areas of graphics, layout and events. 

Graphics abstractions Graphics abstractions, which for example allow us to draw 
a line, fill a shape or rotate a drawing, are an essent ial part of programming interactive 
visualizations. We present a new declarative approach to resolut ion-independent 2D 
graphics t hat generalizes and simplifies t he functionality of t radit ional frameworks, 
while preserving t heir efficiency. Our framework makes it easier to produce high image 
quality and makes non-affine transformations more efficient . As a real-world example, 
we show that the implementation of foc us+context lenses gives higher image quality 
and better performance than a previous solut ion, at a fraction of t he code. 

Layout abstractions Interactive visualizations often use abstractions that produce 
some kind of layout, such as a force directed graph layout or a t reemap . When laying 
out trees in a node-link diagram, a classical algorit hm exists that produces t he layout 
in linear t ime, but the result ing layout takes more space t han necessary. We present 
a novel algorithm that also runs in linear t ime, but produces more compact drawings. 

Event abstractions Interactive visualizat ions need to deal with events such as 
mouse clicks and touch commands. Dealing with such events is tradit ionally done 
wit h eit her blocking I/ O or callbacks. However, the former requires concurrency to 
compose reactive parts, which leads to non-determinism. The later leads to inversion 
of control: t he cont rol-flow of t he program is dictated by the events t hat occur , not 
by t he programmer. 

An alternative t hat does not have t hese problems is Functional Reactive P rogram­
ming (FRP). However , FRP often comes at t he cost of efficiency: parts of t he program 
are re-computed even t hough nothing changes. We present a novel FRP framework, 

143 



Bibliography 

called Monadic FRP, that has an efficient, incremental evaluation mechanism, hence 

preventing such redundant re-computations. 
A general problem, which also manifests itself in Monadic FRP, is that for certain 

associative operators the number of steps it takes to evaluate an expression depends 
on how the brackets are placed. A solution is to use continuation passing style, but 
this again imposes a penalty if we alternate between using the associative operator 
and observing the results of that operator. We present a general solution that makes 
the performance of such operators efficient regardless of the placement of the brackets, 
while also providing efficient support for observing the result of that operator. 

To conclude, we have shown that abstractions do not have to come at high costs: 
it is possible to create interactive visualizations by composing them from simple 
abstractions, without paying in terms of performance. 

144 



Samenvatting 

Een belangrijk instrument voor elke programmeur is het gebruik van abstracties, zoals 
functies en methoden. Abstracties verbergen de details van een berekening, zodat de 
programmeur alleen maar hoeft te weten wat een abstractie berekent, niet hoe de 
berekening er in detail uitziet. Het gebruik van abstracties kan echter het ongewenste 
effect hebben dat het resulterende programma niet efficient genoeg is. Orn voldoende 
efficientie te bereiken gaan programmeurs sommige abstracties vermijden en in plaats 
daarvan de gewenste functionaliteit van de grond af aan opbouwen. 

Het doel van dit proefschrift is om abstracties voor interactieve visualisaties ef­
ficienter te maken. Ik zal me daarbij richten op efficientere abstracties voor het maken 
van twee-dimensionale beelden, layouts van bomen en interactiviteit. 

Abstracties voor het maken van twee-dimensionale beelden Abstracties 
voor het maken van twee-dimensionale beelden, zoals het tekenen van een lijn, het 
inkleuren van een vorm of het roteren van een tekening, zijn belangrijke gereedschap­
pen bij het programmeren van interactieve visualisaties. Ik presenteer een verza­
meling nieuwe declaratieve abstracties voor het maken van resolutie-onafhankelijke, 
twee-dimensionale beelden, die het makkelijker maken om een hoge beeldkwaliteit 
te bereiken en ervoor zorgen dat niet-affiene transformaties direct uitdrukbaar en 
efficient zijn. Als voorbeeld laat ik zien dat het programmeren van een lokale ver­
groting, de zogenaamde focus+context lens, met deze nieuwe abstracties een betere 
beeldkwaliteit geeft, efficienter is , en minder code vergt dan een implementatie van 
dezelfde vergroting met bestaande abstracties. 

Abstracties voor layouts van bomen Interactieve visualisaties zijn vaak gebaseerd 
op een layout van een boomstructuur. Voor het berekenen van de layout van bomen 
bestaat er een klassiek algoritme waarbij het benodigde aantal stappen lineair is in 
de grootte van de boom. In sommige gevallen produceert <lit algoritme echter een 
layout die meer oppervlakte inneemt dan noodzakelijk. Ik presenteer een aanpassing 
van <lit algoritme die voor een compactere layout zorgt, en bewijs dat het algoritme 
met deze aanpassing dezelfde tijdscomplexiteit heeft. 

Abstracties voor interactiviteit Interactieve visualisaties moeten reageren op 
gebeurtenissen, zoals het drukken op een muisknop of het ontvangen van een netwerk­
bericht. De gebeurtenissen worden afgehandeld door Of een methode aan te roepen 

145 



Bibliography 

die wacht totdat de gevraagde gebeurtenis voorbij is (blocking I/ 0) Of een methode 
te installeren die wordt aangeroepen als de gebeurtenis optreedt (een callback). De 
eerste methode heeft als nadeel dat het alleen mogelijk is om interactieve programma­
onderdelen samen te stellen door middel van parallellisme, wat de complexiteit van 
het programma aanzienlijk verhoogt. De tweede methode heeft als nadeel dat het 
leidt tot omkering van de besturing (inversion of control ): de besturingsstroom (con­

trol flo w) van het programma wordt bepaald door de gebeurtenissen die optreden, 
in plaats van door de volgorde van de methode-aanroepen die de programmeur heeft 
aangegeven. Dit maakt het moeilijk om het overzicht te houden. 

Een alternatieve aanpak voor het afhandelen van gebeurtenissen die niet leidt tot 
non-determinisme of omkering van de besturing is Functioneel Reactief Programmeren 
(FRP). Het gebruik van FRP gaat echter vaak ten koste van de efficientie doordat 

berekeningen onnodig herhaald worden. Ik presenteer een nieuw FRP raamwerk, 
genaamd Monadic FRP, dat incrementeel te werk gaat, en dus het onnodig herhalen 
van berekeningen voorkomt . 

Een algemeen probleem , dat ook voorkomt in Monadic FRP, is dat voor sommige 
associatieve operatoren het aantal stappen dat nodig is om de uitkomst van een ex­
pressie te berekenen afhangt van van de plaatsing van de haakjes, ook al maakt dit 

voor de uit komst niet uit. Een oplossing hiervoor is het gebruik van continuation 
passing style, maar dit is alleen efficient als de berekening niet afwisselt tussen het 
gebruik van de associatieve operator en het observeren van zijn resultaten. Ik presen­
teer een oplossing die ook in dit geval een snelheidswinst oplevert, zodat het voor alle 
associatieve operatoren qua efficientie niet uitmaakt hoe de haakjes geplaatst zijn. 

Het is kortom mogelijk om interactieve visualisaties te maken door ze samen te stellen 
uit simpele abstracties, zonder dat dit resulteert in een t e traag programma. 

146 



Titles in the IP A Dissertation Series since 2009 

M.H.G. Verhoef. Modeling and Vali­
dating Distributed Embedded Real- Time 
Control Systems. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2009-01 

M . de Mol. Reasoning about Func­
tional Programs: Sparkle, a proof as­
sistant for Clean. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2009-02 

M. Lormans. Managing Requirements 
Evolution. Faculty of Electrical En­
gineering, Mathematics, and Computer 
Science, TUD. 2009-03 

M .P.W.J. van Osch . Automated 
Model-based Testing of Hybrid Systems. 
Faculty of Mathematics and Computer 
Science, TU/ e. 2009-04 

H. Sozer. Architecting Fault-Tolerant 
Software Systems. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2009-05 

M.J . van Weerdenburg. Effi-
cient Rewriting Techniques. Faculty 
of Mathematics and Computer Science, 
TU/ e. 2009-06 

H.H. Hansen. Coalgebraic Modelling: 
Applications in Automata Theory and 
Modal Logic. Faculty of Sciences, Divi­
sion of Mathematics and Computer Sci­
ence, VUA. 2009-07 

A. Mesbah. Analysis and Testing 
of Ajax-based Single-page Web Applica­
tions. Faculty of E lectrical Engineer­
ing, Mathematics, and Computer Sci­
ence, TUD. 2009-08 

A .L. Rodriguez Yakushev. Towards 
Getting Generic Programming Ready 

for Prime Time. Faculty of Science, 
UU. 2009-9 

K.R. Olmos Joffre. Strategies for 
Context Sensitive Program Transforma­
tion. Faculty of Science, UU. 2009-10 

J .A .G.M. van de n Berg. Reason­
ing about Java programs in PVS using 
JML. Faculty of Science, Mathematics 
and Computer Science, RU. 2009-11 

M.G. Khatib. MEMS-Based Star-
age Devices. Integration in Energy­
Constrained Mobile Systems. Faculty of 
Electrical Engineering, Mathematics & 
Computer Science, UT. 2009-12 

S.G.M. Cornelissen. Evaluating Dy­
namic Analysis Techniques for Program 
Comprehension. Faculty of Electrical 
Engineering, Mathematics, and Com­
puter Science, TUD. 2009-13 

D. Bolzoni. Revisiting Anomaly­
based Network Intrusion Detection Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2009-14 

H.L. Jonker. Security Matters: Pri­
vacy in Voting and Fairness in Digital 
Exchange. Faculty of Mathematics and 
Computer Science, TU /e. 2009-15 

M .R . Czenko. TuLiP - Reshaping 
Trust Management. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2009-16 

T. Chen . Clocks, Dice and Pro­
cesses. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2009-17 

C. Kaliszyk. Correctness and Avail­
ability: Building Computer Algebra on 



top of Proof Assistants and making Proof 
Assistants available over the Web. Fac­
ulty of Science, Mathematics and Com­
puter Science, RU. 2009-18 

R .S.S. O 'Connor. Incompleteness f3 
Completeness: Formalizing Logic and 
Analysis in Type Theory. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2009-19 

B . Ploeger . Improved Verification 
Methods for Concurrent Systems. Fac­
ulty of Mathematics and Computer Sci­
ence, TU /e. 2009-20 

T. H a n . Diagnosis, Synthesis and 
Analysis of Probabilistic Models. Faculty 
of Electrical Engineering, Mathematics 
& Computer Science, UT. 2009-21 

R. Li. Mixed-Integer Evolution Strate­
gies for Parameter Optimization and 
Their Applications to Medical Image 
Analysis. Faculty of Mathematics and 
Natural Sciences, UL. 2009-22 

J .H.P. K wisthout. The Computa­
tional Complexity of Probabilistic Net­
works. Faculty of Science, UU. 2009-23 

T .K. Cocx. Algorithmic Tools for 
Data-Oriented Law Enforcement. Fac­
ulty of Mathematics and Natural Sci­
ences, UL. 2009-24 

A .I. Baars. Embedded Compilers. Fac­
ulty of Science, UU. 2009-25 

M.A.C. D ekker . Flexible Access Con­
trol for Dynamic Collaborative Environ­
ments. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2009-26 

J.F.J. Laros. Metrics and Visualisa­
tion for Crime Analysis and Genomics. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2009-27 

C.J. Boogerd. Focusing Automatic 
Code Inspections. Faculty of Electrical 
Engineering, Mathematics, and Com­
puter Science, TUD. 2010-01 

M.R. N euhau6er. Model Checking 
Nondeterministic and Randomly Timed 
Systems. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2010-02 

J. Endr ullis. Termination and Pro­
ductivity. Faculty of Sciences, Division 
of Mathematics and Computer Science, 
VUA. 2010-03 

T. Staije n . Graph-Based Specification 
and Verification for Aspect- Oriented 
Languages. Faculty of Electrical Engi­
neering, Mathematics & Computer Sci­
ence, UT. 2010-04 

Y. Wa ng. Epistemic Modelling and 
Protocol Dynamics. Faculty of Science, 
Uv A. 2010-05 

J .K. B ere ndsen . Abstraction, Prices 
and Probability in Model Checking 
Timed Automata. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2010-06 

A. N ugroho. The Effects of UML Mod­
eling on the Quality of Software. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-07 

A. Silva. Kleene Coalgebra. Faculty 
of Science, Mathematics and Computer 
Science, RU. 2010-08 

J .S. de Br uin. Service-Oriented Dis­
covery of Knowledge - Foundations, Im­
plementations and Applications. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-09 

D. Costa. Formal Models for Compo­
nent Connectors. Faculty of Sciences, 
Division of Mathematics and Computer 
Science, VUA. 2010-10 



M.M. Jaghoori. Time at Your Ser­
vice: Schedulability Analysis of Real­
Time and Distributed Services. Faculty 
of Mathematics and Natural Sciences, 
UL. 2010-11 

R. Bakhshi. Gossiping Models: Formal 
Analysis of Epidemic Protocols. Faculty 
of Sciences, Department of Computer 
Science, VUA. 2011-01 

B.J. Arnold us. An Illumination of 
the Template Enigma: Software Code 
Generation with Templates. Faculty 
of Mathematics and Computer Science, 
TU /e. 2011-02 

E. Zambon. Towards Optimal IT 
Availability Planning: Methods and 
Tools. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2011-03 

L. Astefanoaei. An Executable The­
ory of Multi-Agent Systems Refinement. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2011-04 

J. Proenc;a. Synchronous coordina­
tion of distributed components. Faculty 
of Mathematics and Natural Sciences, 
UL. 2011-05 

A. Morah. IT Architecture-Based Con­
fidentiality Risk Assessment in Networks 
of Organizations. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2011-06 

M. van der Bijl. On changing mod­
els in Model-Based Testing. Faculty of 
Electrical Engineering, Mathematics & 
Computer Science, UT. 2011-07 

C. Krause. Reconfigurable Component 
Connectors. Faculty of Mathematics 
and Natural Sciences, UL. 2011-08 

M.E. Andres. Quantitative Analysis 
of Information Leakage in Probabilistic 

and Nondeterministic Systems. Faculty 
of Science, Mathematics and Computer 
Science, RU. 2011-09 

M. Atif. Formal Modeling and Verifi­
cation of Distributed Failure Detectors. 
Faculty of Mathematics and Computer 
Science, TU /e. 2011-10 

P.J .A. van Tilburg. From Com­
putability to Executability - A process­
theoretic view on automata theory. Fac­
ulty of Mathematics and Computer Sci­
ence, TU /e. 2011-11 

Z. Protic. Configuration manage­
ment for models: Generic methods 
for model comparison and model co­
evolution. Faculty of Mathematics and 
Computer Science, TU /e. 2011-12 

S. Georgievska. Probability and Hid­
ing in Concurrent Processes. Faculty 
of Mathematics and Computer Science, 
TU/e. 2011-13 

S. Malakuti. Event Composition 
Model: Achieving Naturalness in Run­
time Enforcement. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2011-14 

M. Raffelsieper. Cell Libraries and 
Verification. Faculty of Mathematics 
and Computer Science, TU /e. 2011-15 

C.P. Tsirogiannis. Analysis of Flow 
and Visibility on Triangulated Terrains. 
Faculty of Mathematics and Computer 
Science, TU /e. 2011-16 

Y.-J. Moon. Stochastic Models for 
Quality of Service of Component Con­
nectors. Faculty of Mathematics and 

atural Sciences, UL. 2011-17 

R. Middelkoop. Capturing and Ex­
ploiting Abstract Views of States in 00 
Verification. Faculty of Mathematics 
and Computer Science, TU /e. 2011-18 



M.F. van Amste l. Assessing and Im­
proving the Quality of Model Transfor­
mations. Faculty of Mathematics and 
Computer Science, TU /e. 2011-19 

A.N. Tamalet. Towards Correct Pro­
grams in Practice. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2011-20 

H .J .S. B asten . Ambiguity Detection 
for Programming Language Grammars. 
Faculty of Science, UvA. 2011-21 

M. Izadi. Model Checking of Compo­
nent Connectors. Faculty of Mathemat­
ics and Natural Sciences, UL. 2011-22 

L.C.L. K ats. Building Blocks for Lan­
guage Workbenches. Faculty of Elec­
trical Engineering, Mathematics, and 
Computer Science, TUD. 2011-23 

S. Kemper. Modelling and Analysis of 
Real-Time Coordination Patterns. Fac­
ulty of Mathematics and Natural Sci­
ences, UL. 2011-24 

J . Wang. Spiking Neural P Systems. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2011-25 

A . Khosravi. Optimal Geometric Data 
Structures. Faculty of Mathematics and 
Computer Science, TU /e. 2012-01 

A. Middelkoop. Inference of Pro­
gram Properties with Attribute Gram­
mars, Revisited. Faculty of Science, 
uu. 2012-02 

Z. Hemel. Methods and Techniques 
for the Design and Implementation of 
Domain-Specific Languages. Faculty 
of Electrical Engineering, Mathematics, 
and Computer Science, TUD. 2012-03 

T. Dimkov. Alignment of Organi­
zational Security Policies: Theory and 

Practice. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2012-04 

S. Sedghi. Towards Provably Secure Ef­
ficiently Searchable Encryption. Faculty 
of Electrical Engineering, Mathematics 
& Computer Science, UT. 2012-05 

F. Heidarian D ehkordi. Studies on 
Verification of Wireless Sensor Networks 
and Abstraction Learning for System In­
ference. Faculty of Science, Mathemat­
ics and Computer Science, RU. 2012-06 

K. Verbeek. Algorithms for Car­
tographic Visualization. Faculty of 
Mathematics and Computer Science, 
TU /e. 2012-07 

D.E. Nadales Agut. A Compositional 
Interchange Format for Hybrid Systems: 
Design and Implementation. Faculty of 
Mechanical Engineering, TU /e. 2012-08 

H. R ahmani. Analysis of Protein­
Protein Interaction Networks by Means 
of Annotated Graph Mining Algorithms. 
Faculty of Mathematics and Natural Sci­
ences, UL. 2012-09 

S.D. Vermolen . Software Language 
Evolution. Faculty of Electrical En­
gineering, Mathematics, and Computer 
Science, TUD. 2012-10 

L.J.P. Engelen . Prom Napkin Sketches 
to Reliable Software. Faculty of 
Mathematics and Computer Science, 
TU /e. 2012-11 

F .P.M. Stappers. Bridging Formal 
Models - An Engineering Perspective. 
Faculty of Mathematics and Computer 
Science, TU /e. 2012-12 

W. Heijstek. Software Architec­
ture Design in Global and Model­
Centric Software Development. Faculty 
of Mathematics and Natural Sciences, 
UL. 2012-13 



C. Kop. Higher Order Termination. 
Faculty of Sciences, Department of Com­
puter Science, VUA. 2012-14 

A. Osaiweran. Formal Development of 
Control Software in the Medical Systems 
Domain. Faculty of Mathematics and 
Computer Science, TU /e. 2012-15 

W. Kuijper. Compositional Synthesis 
of Safety Controllers. Faculty of Electri­
cal Engineering, Mathematics & Com­
puter Science, UT. 2012-16 

H. Beohar. Refinement of Communi­
cation and States in Models of Embedded 
Systems. Faculty of Mathematics and 
Computer Science, TU /e. 2013-01 

G. lgna. Performance Analysis of Real­
Time Task Systems using Timed Au­
tomata. Faculty of Science, Mathemat­
ics and Computer Science, RU. 2013-02 

E. Zambon. Abstract Graph Transfor­
mation - Theory and Practice. Faculty 
of Electrical Engineering, Mathematics 
& Computer Science, UT. 2013-03 

B. Lijnse. TOP to the Rescue - Task­
Oriented Programming for Incident Re­
sponse Applications. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2013-04 

G.T. de Koning Gans. Outsmart­
ing Smart Cards. Faculty of Science, 
Mathematics and Computer Science, 
RU. 2013-05 

M.S. Greiler. Test Suite Compre­
hension for Modular and Dynamic Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics , and Computer Sci­
ence, TUD. 2013-06 

L.E. Mamane. Interactive mathemat­
ical documents: creation and presenta­
tion. Faculty of Science, Mathematics 
and Computer Science, RU. 2013-07 

M.M.H.P. van den Heuvel. Compo­
sition and synchronization of real-time 
components upon one processor. Faculty 
of Mathematics and Computer Science, 
TU /e. 2013-08 

J. Businge. Co-evolution of the Eclipse 
Framework and its Third-party Plug-ins. 
Faculty of Mathematics and Computer 
Science, TU / e. 2013-09 

S. van der Burg. A Reference Archi­
tecture for Distributed Software Deploy­
ment. Faculty of Electrical Engineer­
ing, Mathematics, and Computer Sci­
ence, TUD. 2013-10 

J .J .A. Keiren. Advanced Reduction 
Techniques for Model Checking. Faculty 
of Mathematics and Computer Science, 
TU/e. 2013-11 

D.H.P. Gerrits. Pushing and Pulling: 
Computing push plans for disk-shaped 
robots, and dynamic labelings for mov­
ing points. Faculty of Mathematics and 
Computer Science, TU /e. 2013-12 

M. Timmer. Efficient Modelling, Gen­
eration and Analysis of Markov Au­
tomata. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2013-13 

M.J .M. Roeloffzen. Kinetic Data 
Structures in the Black-Box Model. Fac­
ulty of Mathematics and Computer Sci­
ence, TU /e. 2013-14 

L. Lensink. Applying Formal Methods 
in Software Development. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2013-15 

C. Tankink. Documentation and For­
mal Mathematics - Web Technology 
meets Proof Assistants. Faculty of Sci­
ence, Mathematics and Computer Sci­
ence, RU. 2013-16 



C. de Gouw. Combining Monitoring 
with Run-time Assertion Checking. Fac­
ulty of Mathematics and Natural Sci­
ences, UL. 2013-17 

J. van den Bos. Gathering Evidence: 
Model-Driven Software Engineering in 
Automated Digital Forensics. Faculty of 
Science, UvA. 2014-01 

D. Hadziosmanovic. The Process 
Matters: Cyber Security in Industrial 
Control Systems. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2014-02 

A.J .P. Jeckmans. Cryptographically­
Enhanced Privacy for Recommender 
Systems. Faculty of Electrical Engineer­
ing, Mathematics & Computer Science, 
UT. 2014-03 

C.-P. Bezemer. Performance Opti­
mization of Multi-Tenant Software Sys­
tems. Faculty of Electrical Engineer­
ing, Mathematics , and Computer Sci­
ence, TUD. 2014-04 

T .M. Ngo. Qualitative and Quan­
titative Information Flow Analysis for 
Multi-threaded Programs. Faculty of 
Electrical Engineering, Mathematics & 
Computer Science, UT. 2014-05 

A.W. Laarman. Scalable Multi-Core 
Model Checking. Faculty of Electrical 
Engineering, Mathematics & Computer 
Science, UT. 2014-06 

J. Winter. Coalgebraic Characteri­
zations of Automata-Theoretic Classes. 
Faculty of Science, Mathematics and 
Computer Science, RU. 2014-07 

W. Meulemans. Similarity M ea­
sures and Algorithms for Cartographic 
Schematization. Faculty of Mathematics 
and Computer Science, TU /e. 2014-08 

A.F .E. Belinfante. JTor X: Exploring 
Model-Based Testing. Faculty of Electri-

cal Engineering, Mathematics & Com­
puter Science, UT. 2014-09 

A.P. van der Meer. Domain Specific 
Languages and their Type Systems. Fac­
ulty of Mathematics and Computer Sci­
ence, TU /e. 2014-10 

B.N. Vasilescu. Social Aspects of Col­
laboration in Online Software Communi­
ties. Faculty of Mathematics and Com­
puter Science, TU /e. 2014-11 

F.D. Aarts. Tomte: Bridging the Gap 
between Active Learning and Real- World 
Systems. Faculty of Science, Mathemat­
ics and Computer Science, RU. 2014-12 

N. Noroozi. Improving Input-Output 
Conformance Testing Theories. Faculty 
of Mathematics and Computer Science, 
TU /e. 2014-13 

M. Helvensteijn. Abstract Delta Mod­
eling: Software Product Lines and Be­
yond. Faculty of Mathematics and Nat­
ural Sciences, UL. 2014-14 

P. Vullers. Efficient Implementations 
of Attribute-based Credentials on Smart 
Cards. Faculty of Science, Mathematics 
and Computer Science, RU. 2014-15 

F.W. Takes. Algorithms for Analyzing 
and Mining Real-World Graphs. Faculty 
of Mathematics and Natural Sciences, 
UL. 2014-16 

M.P. Schraagen. Aspects of Record 
Linkage. Faculty of Mathematics and 
Natural Sciences, UL. 2014-17 

G. Alpar . Attribute-Based Iden­
tity Management: Bridging the Crypto­
graphic Design of ABCs with the Real 
World. Faculty of Science, Mathematics 
and Computer Science, RU. 2015-01 

A.J. van der Ploeg. Efficient Abstrac­
tions for Visualization and Interaction. 
Faculty of Science, UvA. 2015-02 


