399 research outputs found

    Benefits and Challenges of Model-based Software Engineering: Lessons Learned based on Qualitative and Quantitative Findings

    Get PDF
    Even though Model-based Software Engineering (MBSwE) techniques and Autogenerated Code (AGC) have been increasingly used to produce complex software systems, there is only anecdotal knowledge about the state-of-thepractice. Furthermore, there is a lack of empirical studies that explore the potential quality improvements due to the use of these techniques. This paper presents in-depth qualitative findings about development and Software Assurance (SWA) practices and detailed quantitative analysis of software bug reports of a NASA mission that used MBSwE and AGC. The missions flight software is a combination of handwritten code and AGC developed by two different approaches: one based on state chart models (AGC-M) and another on specification dictionaries (AGC-D). The empirical analysis of fault proneness is based on 380 closed bug reports created by software developers. Our main findings include: (1) MBSwE and AGC provide some benefits, but also impose challenges. (2) SWA done only at a model level is not sufficient. AGC code should also be tested and the models and AGC should always be kept in-sync. AGC must not be changed manually. (3) Fixes made to address an individual bug report were spread both across multiple modules and across multiple files. On average, for each bug report 1.4 modules, that is, 3.4 files were fixed. (4) Most bug reports led to changes in more than one type of file. The majority of changes to auto-generated source code files were made in conjunction to changes in either file with state chart models or XML files derived from dictionaries. (5) For newly developed files, AGC-M and handwritten code were of similar quality, while AGC-D files were the least fault prone

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development – namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) – raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development – namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) – raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Designing Improved Sediment Transport Visualizations

    Get PDF
    Monitoring, or more commonly, modeling of sediment transport in the coastal environment is a critical task with relevance to coastline stability, beach erosion, tracking environmental contaminants, and safety of navigation. Increased intensity and regularity of storms such as Superstorm Sandy heighten the importance of our understanding of sediment transport processes. A weakness of current modeling capabilities is the ability to easily visualize the result in an intuitive manner. Many of the available visualization software packages display only a single variable at once, usually as a two-dimensional, plan-view cross-section. With such limited display capabilities, sophisticated 3D models are undermined in both the interpretation of results and dissemination of information to the public. Here we explore a subset of existing modeling capabilities (specifically, modeling scour around man-made structures) and visualization solutions, examine their shortcomings and present a design for a 4D visualization for sediment transport studies that is based on perceptually-focused data visualization research and recent and ongoing developments in multivariate displays. Vector and scalar fields are co-displayed, yet kept independently identifiable utilizing human perception\u27s separation of color, texture, and motion. Bathymetry, sediment grain-size distribution, and forcing hydrodynamics are a subset of the variables investigated for simultaneous representation. Direct interaction with field data is tested to support rapid validation of sediment transport model results. Our goal is a tight integration of both simulated data and real world observations to support analysis and simulation of the impact of major sediment transport events such as hurricanes. We unite modeled results and field observations within a geodatabase designed as an application schema of the Arc Marine Data Model. Our real-world focus is on the Redbird Artificial Reef Site, roughly 18 nautical miles offshor- Delaware Bay, Delaware, where repeated surveys have identified active scour and bedform migration in 27 m water depth amongst the more than 900 deliberately sunken subway cars and vessels. Coincidently collected high-resolution multibeam bathymetry, backscatter, and side-scan sonar data from surface and autonomous underwater vehicle (AUV) systems along with complementary sub-bottom, grab sample, bottom imagery, and wave and current (via ADCP) datasets provide the basis for analysis. This site is particularly attractive due to overlap with the Delaware Bay Operational Forecast System (DBOFS), a model that provides historical and forecast oceanographic data that can be tested in hindcast against significant changes observed at the site during Superstorm Sandy and in predicting future changes through small-scale modeling around the individual reef objects

    Water and environmental issues

    Get PDF
    Water is a precious and finite part of the environment which is vital for socioeconomic development, sustainability of the environment and survival. Malaysia is fortunate that it is located in a humid tropical area rich in rainfall and water resources. The rapid economic growth of Malaysia in the past decades is also mainly attributed to its ability to exploit abundant natural resources including water. The exploitation of water resources is an important catalyst of economic growth but continuous exploitation without proper management and conservation may cause the depletion of water supplies, rendering water resources unsustainable. In recent years, water problems have escalated in Malaysia due to climate change, urbanization and population explosion. Therefore, effective water conservation, efficient waste water and sewage management integrated with recent technologies are important for fostering the tandem development of economic growth and the sustainability of environmental resources

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Certifications of Critical Systems – The CECRIS Experience

    Get PDF
    In recent years, a considerable amount of effort has been devoted, both in industry and academia, to the development, validation and verification of critical systems, i.e. those systems whose malfunctions or failures reach a critical level both in terms of risks to human life as well as having a large economic impact.Certifications of Critical Systems – The CECRIS Experience documents the main insights on Cost Effective Verification and Validation processes that were gained during work in the European Research Project CECRIS (acronym for Certification of Critical Systems). The objective of the research was to tackle the challenges of certification by focusing on those aspects that turn out to be more difficult/important for current and future critical systems industry: the effective use of methodologies, processes and tools.The CECRIS project took a step forward in the growing field of development, verification and validation and certification of critical systems. It focused on the more difficult/important aspects of critical system development, verification and validation and certification process. Starting from both the scientific and industrial state of the art methodologies for system development and the impact of their usage on the verification and validation and certification of critical systems, the project aimed at developing strategies and techniques supported by automatic or semi-automatic tools and methods for these activities, setting guidelines to support engineers during the planning of the verification and validation phases

    Digitalni prikaz oštećenih armiranobetonskih mostova

    Get PDF
    Inspekcija je već decenijama standardni postupak u ocenjivanju stanja mosta...Inspection of bridges has been a standard assessment procedure for decades..

    Digital representation of as-damaged reinforced concrete bridges

    Get PDF
    Inspection of bridges has been a standard assessment procedure for decades. Its purpose is to identify and record all defects of the bridge structure. Normally used inspection techniques are rather simple, mainly relying on visual assessment. This dissertation proposes an improvement of concrete bridge inspection in terms of visual data acquisition, damage identification and digital representation of the bridge with identified damages. Instead of depending strictly on the human eye, photogrammetrically obtained 3D point clouds are used to identify and extract concrete damage features. As the most comprehensive substitute for the old-fashioned inspection report, Bridge Information Model (BrIM) is used as an inventory and inspection data repository. An Industry Foundation Classes (IFC) semantic enrichment framework is proposed to inject the extracted and reconstructed damage features into the as-is IFC model. After the general data model for damage description and its IFC representation are established, the method for generating the as-is IFC model of the bridge is proposed. Damage is identified as a deviation of the as-is geometry, represented by the 3D point cloud, from the as-built geometry, represented by BrIM. Geometric and semantic enrichment of the IFC model is achieved by injecting the reconstructed 3D meshes representing damaged regions and corresponding BMS catalogbased damage information. The proposed method uses Constructive Solid Geometry (CSG) Boolean operations to geometrically enrich the IFC geometry elements, which align with corresponding damage regions from the as-is point cloud. Damage information (e.g., type, extent, and severity) is structured so that it complies to the BMS data structure. Finally, the proposed data model, damage identification, feature extraction, and semantic enrichment method are validated in the presented case study

    Proceedings of VVSS2007 - verification and validation of software systems, 23rd March 2007, Eindhoven, The Netherlands

    Get PDF
    corecore