
SPECIFICATION OF VERTICAL SEMANTIC CONSISTENCY RULES OF UML

CLASS DIAGRAM REFINEMENT USING LOGICAL APPROACH

NURAINI ABDULGANIYYI

A dissertation submitted in partial

fulfillment of the requirement for the award of the

Degree of Master of Computer Science (Software Engineering)

Faculty of Computer Science and Information Technology

Universiti Tun Hussein Onn Malaysia

DECEMBER 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTHM Institutional Repository

https://core.ac.uk/display/42955295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

v

ABSTRACT

Unified Modelling Language (UML) is the most popular modelling language use for

software design in software development industries with a class diagram being the

most frequently use diagram. Despite the popularity of UML, it is being affected by

inconsistency problems of its diagrams at the same or different abstraction levels.

Inconsistency in UML is mostly caused by existence of various views on the same

system and sometimes leads to potentially conflicting system specifications. In

general, syntactic consistency can be automatically checked and therefore is

supported by current UML Computer-aided Software Engineering (CASE) tools.

Semantic consistency problems, unlike syntactic consistency problems, there exists

no specific method for specifying semantic consistency rules and constraints.

Therefore, this research has specified twenty-four abstraction rules of class‟s relation

semantic among any three related classes of a refined class diagram to semantically

equivalent relations of two of the classes using a logical approach. This research has

also formalized three vertical semantic consistency rules of a class diagram

refinement identified by previous researchers using a logical approach and a set of

formalized abstraction rules. The results were successfully evaluated using hotel

management system and passenger list system case studies and were found to be

reliable and efficient.

vi

ABSTRAK

Unified Modelling Language (UML) merupakan bahasa permodelan yang paling

popular digunakan dalam industri pembangunan perisian. Rajah kelas dalam UML

merupakan rajah yang paling kerap diaplikasikan dalam merekabentuk perisian. Di

sebalik populariti UML, bahasa permodelan ini masih terkesan dengan masalah rajah

tidak konsisten pada tahap peniskalaan yang sama atau berbeza. Masalah ini

disebabkan oleh penghasilan rajah daripada pelbagai sudut pandangan yang berbeza

untuk sesebuah sistem. Masalah ini menghasilkan spesifikasi sistem yang

bercanggah. Secara umumnya, konsistensi sintaktik boleh diperiksa secara automatik

dengan menggunakan alat kejuruteraan perisian berbantukan komputer yang terkini.

Namun begitu, masih belum ada kaedah tertentu untuk menyatakan peraturan dan

kekangan dari segi konsistensi semantik. Oleh yang demikian, kajian ini telah

menyatakan dua puluh empat peraturan peniskalaan bagi menyatakan hubungan

semantik antara tiga kelas dalam rajah kelas kepada hubungan semantik yang setara

antara dua kelas tersebut menggunakan pendekatan logikal. Kajian ini juga telah

menghasilkan spesifikasi formal untuk tiga peraturan konsistensi vertikal yang telah

dinyatakan oleh penyelidik sebelum ini menggunakan pendekatan logikal dan

peraturan peniskalaan formal. Spesifikasi formal yang dihasilkan telah disahkan

dengan menggunakan dua kes ujian iaitu sistem pengurusan hotel dan sistem senarai

penumpang. Hasil ujian telah menunjukkan spesifikasi formal yang dihasilkan adalah

efisien dan boleh dipercayai.

vii

CONTENTS

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF SYMBOLS AND ABBREVIATIONS xii

CHAPTER 1 INTRODUCTION 1

1.1 Problem Statement 4

1.2 Aim and Objectives of the Research 4

1.3 Significance of the Study 5

1.4 Scope of the Study 5

1.5 Report Organization 6

CHAPTER 2 LITERATURE REVIEW 7

2.1 Object Oriented Systems Development Life

Cycle 7

2.1.1 Object Oriented Analysis 8

2.1.2 Object-Oriented Design 9

2.2 Unified Modelling Language 9

2.2.1 UML Model Consistency 10

2.2.2 Class Diagram 12

2.3 Refinement 15

2.4 Formalization 16

2.5 Review of Previous Works 17

2.4 Chapter Summary 20

CHAPTER 3 RESEARCH METHODOLOGY 21

viii

3.1 Vertical Semantic Consistency Rules of Class

Diagram Refinement 21

3.2 Logic and Set 27

3.2.1 Logics and Set Symbols 28

3.3 Research Framework 30

3.3.1 Step 1: Formalization of Class Diagram 30

3.3.2 Step 2: Formalization of Abstraction

Rules of Class‟s Relations and

Cardinality Semantic 30

3.3.3 Step 3: Formalization of Three Vertical

Semantic Consistency Rules of Class

Diagram Refinement 30

3.3.4 Step 4: Evaluation of Class Diagram

Refinement Rules with Two Case

Studies 31

3.4 Chapter Summary 33

CHAPTER 4 FORMALIZATION OF CONSISTENCY RULES 34

4.1 Formalization of Class Diagram 34

4.2 Formalization of Abstraction Rules of Class‟s

Relations Semantics 35

4.2.1 Abstracting Cardinality of class‟s

Relations 38

4.3 Formalization of Vertical Semantic

Consistency Rules of Class diagram

Refinement 39

4.3.1 Formulation of CDRR1 40

4.3.2 Formulation of CDRR2 41

4.3.3 Formulation of CDRR3 43

4.4 Chapter Summary 45

CHAPTER 5 EVALUATION WITH CASE STUDIES 46

5.1 Consistency Checking 46

5.1.1 Evaluation with a Case Study of Hotel

Management System 46

ix

5.1.2 Evaluation with a Case Study of

Passenger List System 53

5.2 Chapter Summary 57

CHAPTER 6 CONCLUSION AND FUTURE WORK 58

6.1 Objectives Achievement 58

6.2 Conclusion 59

6.3 Future Works 59

6.4 Summary 60

REFERENCES 61

VITA 65

x

LIST OF TABLES

2.1 Summary of Literature Review 19

3.1 Logical Terms and Set Symbols Definitions 28

xi

LIST OF FIGURES

1.1 Phases in SDLC 2

2.1 Example of a class 13

2.2 Elements of Class Diagram 14

2.3 Class diagram 15

3.1 Wrong class Diagram refinement violating CDRR1 23

3.2 Successive Class Diagram Refinement in line with CDRR1 23

3.3 Wrong Class Diagram Refinement Violating CDRR2 as class D

not included in the low-level class diagram 25

3.4 A well-refined class diagram in accordance with CDRR1 and

CDRR2 25

3.5 A Well-refine Class Diagram in accordance with CDRR3 26

3.6 Wrong class Diagram Refinement Violating CDRR3 27

3.5 Framework for Formalization of class diagram Refinement

Consistency Rules 32

4.1 Sample of Low-level Class Diagram Dissatisfying CDRR1 40

4.2 Sample of Low-level Class Diagram Dissatisfying CDRR2 42

4.3 Sample of Low-level Class Diagram Dissatisfying CDRR3 44

5.1 High-Level Class Diagram of Hotel Management System 47

5.2 Low-Level Class Diagram of Hotel Management System 47

5.3 High-level class diagram of passenger‟s list system 53

5.4 Low-level class diagram of passenger‟s list system 54

xii

LIST OF SYMBOLS AND ABBREVIATIONS

SDLC - Software Development Life Cycle

UML - Unified Modelling Language

IT - Information Technology

OMG - Object Management Group

CASE - Computer Aided Software Engineering

OOSDLC - Object Oriented Systems Development Life Cycle

SRD - Software Requirement Document

SRS - Software Requirement Specification

OOD - Object-Oriented Design

IS - Information System

OOA - Object-Oriented Analysis

IAC - Integrated Abstraction and Comparison

SAC - Separated Abstraction and Comparison

DL - Description Logic

UCD - Use Case Diagram

AD - Activity Diagram

SD - Sequence Diagram

CD - Class Diagram

LCD - Low-Level Class Diagram

HCD - High-Level Class Diagram

HCLD - Set of Paired classes of High-Level Class Diagram

LCLD - Set of Paired classes of Low-Level Class Diagram

LCL - Low-level Class

HCL - High-Level Class

CLs - Classes

R - Relations

xiii

D - Dependency

G - Generalization

A - Bidirectional Aggregation

A


 - Unidirectional Aggregation

S - Association

CL - Class

Attr - Attribute

Opr - Operation

CRule - Cardinality abstraction Rule

CDRR - Vertical Semantic Consistency Rule of Class Diagram

Refinement

1 CHAPTER 1

INTRODUCTION

The increasing dependency on computers and software applications for saving lives,

properties and time, in our contemporary world has escalated to all sectors of human

endeavours. Thereby, led to an increase in the demand of efficiency and reliability of

the computers and the software applications before usage, to avoid claims of what

they were provided to save (that is: lives, properties and time). To ensure efficiency

and reliability of software applications, software experts have agreed to define the

best practice for software development, namely software engineering. The discipline

of software engineering is coined to deal with poor quality of software, get projects

exceeding time and budget under control. It also ensures that software is built

systematically, rigorously, measurably, and within specification. In other words,

software engineering is the study and application of engineering to the design,

development, and maintenance of software from the start to the end of the

development (Laplante, 2007).

In the design phase of software engineering process, Unified Modelling

Language (UML) is one of the modelling languages use for designing software

project. In addition, UML has become an industrially accepted standard for object-

oriented modelling of large, complex systems as well as a basis for software

development methodologies (Lucas et al., 2009). This research is aimed at

addressing the inconsistencies of software at the design stage. Design plays a central

role in the activities that leads to the development or maintenance of good software

by giving an abstract representation of the system prior to development or

maintenance. The consistency of the developed or maintained system with the user

2

requirement specifications depends mostly on the consistency of the design.

According to Ralph & Wand (2009), software design (the second phase of software

development life cycle (SDLC) in Figure 1.1) is the process of

realizing software solution to one or more set of problems.

Figure 1.1: Phases in SDLC (Justin, 2013)

The largest segment of design phase of software development life cycle is

creating a consistent design based on a comprehensive model. These days, the

infrastructures for creating this design are usually based on object-oriented modelling

languages. Unified Modelling Language (UML) is the most popular object-oriented

modelling language use to model a system in a way that the status of the various

objects replicate the user‟s point of view or specification (Gogolla & Richters, 2002).

The modelling task focuses on definitions and descriptions of objects, features and

actions to be operated by the user during interaction, rather than on the programming

aspect (Winograd, 1995).

In the early nineties, there were many graphical notations invented for object-

oriented software modelling, not until 1995 when Grady Booch and Jim Rumbaugh‟s

concepts were combined and named as unified method. When Ivar Jacobson joined

Booch and Rumbaugh the unified method was later called Unified Modelling

Language (UML). The three are since then called the “Three Amigos” in the world

3

of software engineering and information technology (IT) (Weilkiens & Oestereich,

2010). There are seventeen types of diagrams in UML 2.5 (Ciancarini, 2013 &

Ambler, 2013).

As UML is used to model system from different viewpoints and abstraction

levels, consistency issues need to be taken into consideration as diagrams

representing various aspects of the system are produced. Inconsistency occurs when

the diagrams are not properly related to each other in order to form a reliable

description of the user requirement specifications (Lucas et al., 2009). The benefit of

checking consistency of a UML model at design stage shall never be over

emphasized as quality assurance technique. It often results in better design; earlier

detection of errors, flaws, product delivery within budget and time scheduled.

Moreover, consistent model makes system maintenance, and team works easier even

at different geographic location (Nugroho & Chaudron 2009, Usman et al., 2008).

There are two types of inconsistency problems: vertical and horizontal

consistency problems. Those related to models constructed at the same level of

modelling abstraction are called intra-consistency or horizontal consistency

problems. While those between models built at different levels of abstraction i.e.

between a model and its successive refinement are called inter-consistency or vertical

consistency problems (Huzar et al., 2005). Inconsistency problems occur in a UML

model due to multi-view nature of the UML diagrams and iterative process of

information system development. Other possible sources of inconsistency in UML

include; imprecise semantic nature of the UML diagrams and distributed

development of a system with several developers. The developers may on occasions,

be geographically distributed locally or globally, with various interpretations of both

the requirements and the UML notations (Huzar et al., 2005).

Furthermore, Lucas et al., (2009) classified previous works on consistency

management into syntactic and semantic consistency problems. They also suggested

the use of formal approach to solve inconsistency problems in a way that will

improve feedback of the consistency check with aim of easing modellers‟ task of

identifying and handling problem(s) detected in a model. Therefore, this dissertation

aims at formalizing class diagram elements and vertical semantic consistency rules of

class diagram refinement using a logical approach. This technique will benefit from

the properties of mathematical logic such as transitivity, associativity and

4

commutativity, thereby, making it precise, concise and more efficient than the

previous techniques in terms of accuracy, space and time complexity.

1.1 Problem Statement

Despite the popularity of UML for object-oriented software modeling in software

development industries, UML diagrams are being affected by inconsistency

problems at the same and different modeling abstractions. Inconsistency problems of

UML diagrams are the major setback recorded affecting modeling with UML.

Solving UML inconsistencies have gained the attention of many researchers on how

to handle inconsistency in UML, though there are limited works in UML vertical

semantic inconsistency management (Lucas et al. 2009, Torre & Genero 2014). In

general, syntactic consistency problems can be automatically checked and, therefore,

are supported by current UML CASE tools (Khalil & Dingel 2013). Unlike syntactic

consistency, there is no specific method for specifying semantic consistency rules

and constraints (Khalil et al. 2013). Shen, Wang, & Egyed (2009) identified three

vertical semantic consistency rules of a class diagram refinement and used informal

approaches to manage them. The approaches used were Integrated Abstraction and

Comparison (IAC), and Separated Abstraction and Comparison (SAC). These

techniques require a significant amount of time and memory space in order to handle

inconsistencies of a class diagram refinement. These are due to the large number of

rules check and iterations involved in the algorithms. On the contrary, this research

will formulate the same vertical semantic consistency rules of class diagram

refinement achieved with SAC and IAC in a more effective and efficient manner

using a logical approach.

1.2 Aim and Objectives of the Research

This research aims to formalize class diagram elements and vertical semantic

consistency rules of class diagram refinement using logical approach.

5

The objectives of the research are to:

(i) identify UML class diagram elements for vertical semantic consistency of class

diagram refinement.

(ii) produce a formal specification for the three rules identified by Shen et al.,

(2009).

(iii) validate (ii) using hotel management system and passenger list system case

studies.

1.3 Significance of the Study

Modelling a software system with UML helps to improve productivity and quality of

the software product by ensuring that all stakeholders understand the target system in

a single way. Consequently reduces the defect density in the code and the time

required to fix the defects (Nugroho & Chaudron 2013). However, these advantages

are often challenged by inconsistency of the UML diagrams. Therefore, there is a

need to check consistency of the UML models at design stage to obtain better design,

detect errors and flaws at the early stage of development. Moreover, consistent

design facilitates product delivery within budget, time scheduled, and make

teamwork comfortable even at different geographic locations (Nugroho & Chaudron

2009, Usman et al., 2008). Hence, formalizing class diagram elements and vertical

semantic consistency rules of class diagram refinement will reduce the ambiguity of

UML CASE tool support for vertical semantic inconsistency management of class

diagram refinement (Shen et al., 2009).

1.4 Scope of the Study

This study will be restricted to formalization of class diagram elements and three

vertical semantic consistency rules of class diagram refinement identified by Shen et

al., (2009) using a logical approach. The results will be validated using hotel

management system and passenger list system case studies.

6

1.5 Report Organization

This dissertation is organized as follows: Chapter 2 is the literature review of the

research. It presents a general discussion of the major aspects of the study. It begins

by explaining object-oriented software development life cycle, object-oriented

analysis, and object-oriented design. It further discusses UML for object-oriented

software design and inconsistencies in UML. The chapter then discusses the related

works to the study. Chapter 3 discusses the methodology of the research. It presents

an explanation of three vertical semantic consistency rules of class diagram

refinement, definition of logic and set, logic and set symbol and finally gives

explanation and sketch of the research framework. Chapter 4 will formalize the

vertical semantic consistency rules of class diagram refinement. It presents a

formalization of class diagram elements, class diagram abstraction rules and finally

presents formalization of the three vertical semantic consistency rules of class

diagram refinement. Chapter 5 will evaluate the formalized rules with a case study. It

presents a case study of hotel management system to evaluate the formalized rules.

Finally, Chapter 6 presents conclusion of the research and outlines some future

works.

2 CHAPTER 2

LITERATURE REVIEW

This chapter discusses literature related to this research in order to establish facts

about the problem this study addresses. Section 2.1 and its subsections explain one of

the methodologies of developing quality software in the present state of technology.

Section 2.2 gives a brief history and explanation of Unified Modelling Language

(UML), and Section 2.3 reviews previous works related to this study.

2.1 Object Oriented Systems Development Life Cycle

Object-Oriented Systems Development Life Cycle (OOSDLC) is a process of

developing high-quality software that meets both customer and actual world

requirements. OOSDLC consists of three primary processes: Object-oriented

analysis, Object-oriented design, and Object-oriented implementation. These

processes are seen as a sequence of alteration, where output of one transformation

becomes input for subsequent transformation. Fundamentally, product of object-

oriented analysis is input to object-oriented design; product of object-oriented design

is input to object-oriented implementation of the intended system using object-

oriented programming techniques (Booch, 2007).

8

2.1.1 Object Oriented Analysis

Object-Oriented Analysis (OOA) is a process of analysis that scrutinizes client‟s

requirements from a viewpoint of classes, objects and relationship among them, as

contained in the vocabulary of the problem domain (Booch, 2007). The result of this

analysis includes both functional and non-functional requirements that are document

in a Software Requirement Document (SRD). SRD contains Software Requirement

Specification (SRS) which presents the result of the functional requirement analysis

using Unified Modelling Language (UML) diagrams. SRS is used to set basis for

agreement between a developer and a client on what the software product is to do as

well as what it is not expected to do. Moreover, SRS allows a thorough evaluation of

requirements before design can commence and thus reducing the chances of

redesigning. SRS can also serve as a reasonable basis for estimating a product cost,

risks and schedules (McConnell, 2010).

 There are many proven methods for analysis of an object-oriented system to

get various classes and objects from elements of the problem domain. These methods

include classical, behaviour, domain, use case, CRC cards, informal English

description, and structured analysis method (Booch, 2007). For instance, to analyze a

system using the classical analysis method, Shlaer & Mellor (1988) proposed that

candidate classes and objects, should regularly come from one of the following

sources. First, tangible objects such as bicycle, washing machine, telemetry data,

pressure sensors among others. Second, role model such as farmer, engineer, and

doctor. Third, events like landing, packaging, malting, interrupting and requesting.

Fourth, interactions like loan, withdrawal, meeting, and intersection (Booch, 2007).

Moreover, Coad & Yourdon (1991) proposed other sources of potential

objects as follows. First, structures like "Is a" and "part of" relationships. Second,

other external systems with which an application interacts. Third, devices an

application interacts with. Fourth, events that must be recorded. Fifth, roles play by

users in interacting with an application. Sixth, any physical location which is critical

to an application such as classroom, university and hospital. Lastly, organizational

units to which an application users belong. The results obtained from any of the

chosen analysis approaches are modelled using UML and documented in the SRS,

which serves as input to the object-oriented design phase (Booch, 2007).

9

Consequently, this research will present formalization of vertical semantic

consistency rules of class diagram refinement. The formalized rules will be used to

check consistency of a class diagram at object-oriented design phase with a class

diagram obtained at object-oriented analysis phase of software development.

2.1.2 Object-Oriented Design

Object-oriented design (OOD) is a technique of design that deals with object-

oriented breakdown and a notation for representing both logical and physical as well

as static and dynamic aspect of the system under design (Booch, 2007). OOD uses

class and object concepts to structure a system logically while structural design uses

algorithmic concepts. The objective of OOD is to design classes (identified during

the analysis phase), graphical user interface classes and add other classes that will

breakdown or refine the classes obtained in the analysis phase. Furthermore, during

this phase, other objects and classes that will support implementation of the user‟s

requirements, may also be identified and defined, such as classes for connection to

the database (Booch, 2007). Consequently, produces a technical description of how

solution to client‟s requirements and expectations can be achieved using the various

diagrams of UML. The following section gives details information on UML,

definition, and notations of a class diagram.

2.2 Unified Modelling Language

The Unified Modelling Language (UML) is a language and notation system use to

specify, construct, visualize, and document models of software systems (OMG,

2005). It provides sets of diagrams to model structural, behavioural, and interaction

aspects of an object-oriented system. Each diagram depicts a particular design aspect

of the system. UML consists of many diagrams depending on the version. For

example, UML version 2.0 has 13 diagrams (OMG, 2005), both UML version 2.2

and 2.4 have 14 diagrams (Zhao, et al., 2011) and UML version 2.5 has 17 diagrams

(Ambler, 2013). These 17 diagrams are divided into three categories. The first

category contains ten diagrams use to represent static structures of an application and

10

are called structure diagrams. These include class, object, component, composite

structure, package, deployment, profile, model, manifestation, and network

architecture diagram. The second category comprises of three diagrams use to

represent general types of behaviours in a software application and are referred to as

behaviour diagrams. Behaviour diagrams include use case, activity and state machine

diagram. The last category contains four diagrams representing different aspects of

interactions of the system underdevelopment and is called interaction diagrams. The

diagrams in this category are all derived from the more general behaviour diagrams.

Interaction diagrams include sequence, communication, timing, and interaction

overview diagram. The presence of many UML diagrams, to model a system, brings

a variety of views that overlap with respect to information depicted in each that can

leave overall system design specification in an inconsistent state.

2.2.1 UML Model Consistency

Consistency in UML model is a state in which the structures, features and elements

that appear in a model are compatible and in alignment with contents of the model

and other related models with respect to requirement being modeled and UML meta-

model (Spanoudakis & Zisman, 2001). For example, the structures, functions and

relations in an initial class diagram obtained during an analysis phase of a software

development must be compatible with a detailed class diagram developed during the

design phase of the software development.

In addition, unambiguous and consistent UML models are necessary for

successful development of quality Information System (IS) (Bansiya & Davis, 2002).

However, UML model is hardly free of inconsistency problems within or with other

models at the same or different abstraction levels. Inconsistency in UML model(s)

usually arose due to analysts or designers viewing the same system from different

points of views. Other possible causes of UML inconsistency are iterative process of

an IS development, lack of UML knowledge or practice, imprecise semantic nature

of the UML diagrams, difference in geographical location of developers, and

multiple interpretations of user‟s requirements and UML notations (Huzar et al.,

2005).

11

Iterative process of an IS development involves UML diagrams abstraction.

Abstraction is the process of creating decomposition of a diagram into simpler and

better understood primitive diagrams. This procedure has many underlying

methodologies. An abstraction can also be used to refer to a model (Burback, 1998).

The process of transforming one abstraction into a more comprehensive abstraction

is called refinement. The abstracted diagram is referred to as a refinement of the

original one (Burback, 1998). Abstractions and its refinements naturally do not

coexist in the same system description. Accurately, what is meant by a more

comprehensive abstraction is not well defined. Therefore, there is a need to support

substitutability of concepts from one abstraction to another (Burback, 1998).

 Furthermore, consistency checking must be performed within and between

different UML models to reduce the cost, time, and effort of maintenance (Dam &

Winikoff, 2010). This is principally true in the context of design evolution. There are

two types of consistency problems in UML; vertical and horizontal. Vertical and

horizontal consistency problems are also classified into syntactic and semantic

consistency problems. The definitions of the types and classifications of

consistencies are described as follows.

(i) Vertical Consistency

Vertical consistency in UML is a state of semantic or syntactic compatibility of

models built at different levels of abstraction such as between a model and its

refinement. It is also called inter-consistency (Huzar et al., 2005). For example, an

abstract class diagram developed in the analysis phase of software development must

be semantically and syntactically consistent with a detailed class diagram developed

in the design phase of the software development.

(ii) Horizontal Consistency

Horizontal consistency is a state of semantic or syntactic compatibility of models

built at the same level of modelling abstractions. It is also called intra-consistency

(Huzar et al., 2005). For example, a class diagram describing the static aspects of an

abstract model must be semantically and syntactically consistent with a state machine

diagram describing the dynamic aspects of the classes in the model.

12

(iii) Semantic Consistency

Semantic consistency is a state that requires models‟ behaviours to be semantically

compatible with one another (Engels, et al., 2001). For example, a class diagram and

its refinement must be semantically compatible with each other. Unlike syntactic

consistency, there is no specific method for specifying semantic consistency rules

and constraints (Khalil & Dingel, 2013).

(iv) Syntactic Consistency

Syntactic consistency guarantees that a model conforms to abstract syntax of the

modelling language as specified by its meta-model (Engels et al., 2001). For

example, in a class diagram, the design of each class as well as the relationship

between them must be syntactically correct in accordance with the class diagram

meta-model. In general, syntactic consistency can be automatically checked and

therefore is supported by current UML CASE tools (Khalil & Dingel, 2013).

The inconsistency type depends on whether the inconsistency issue is due to

violation of rule(s) of UML meta-model or compatibility of UML diagrams used in

the modelled system (Engels, Küster, et al., 2001, Lucas et al., 2009). Despite all the

challenges of consistency uncertainty of UML models, UML is also the most widely

used modelling language in object-oriented software development industries. Class

diagram is the most used UML diagram (Dobing & Parsons, 2006). For this reason,

this research will propose a formal specification for three vertical semantic

consistency rules of class diagram refinement identified by Shen et al., (2009) using

a logical approach. The following section will dwell on a class diagram and its

properties.

2.2.2 Class Diagram

A class diagram is the most fundamental and broadly used UML diagram. It

illustrates the static view of a system, consisting of classes, their interrelationships,

operations and attributes of the classes (Szlenk, 2006). A Class is the building blocks

of an object-orientated system. It is used to depict the static view of a system or part

13

of the system, describing its attributes and methods (operations) without detailing

how to achieve the methods. A class in UML is represented by a rectangle showing

the name of the class and optionally names of methods and attributes. Partitions are

used to divide the class name, attributes and operations. The top partition of a class

contains the class name, the second partition contains attributes of the class, and the

third partition contains operations in the class and their parameters if any. The

notation that precedes the attribute‟s or method‟s name indicates the visibility of the

element. If “+” (plus) symbol is used, the attribute or method, has a public level of

visibility. If “–”(minus) symbol is used, the attribute or method, is private.

Furthermore, “#” symbol allows a method or attribute, to be defined as protected

while “~” symbol indicates package visibility (Weilkiens & Oestereich, 2010).

Figure 2.1 shows an example of class, named Rectangle.

Figure 2.1: Example of a class (Coates, 2012).

Furthermore, a class diagram illustrates relationships between classes and

interfaces. Generalizations, aggregations, and associations are all precious in

reflecting inheritance, composition or usage, and connections, respectively between

classes (Weilkiens & Oestereich, 2010). A generalization is an abstraction principle

use to organize semantics of a model hierarchically. It shows the relationship

between a general class and a particular class. The particular class posses all the

characteristics of the general class, and other special features and behaves in a way

well-suited to the general class. An association expresses a tuple of typed instances.

It is represented by a straight line, and at least two properties take part in the

association. Multiplicity of an association states how many objects of the associated

14

classes can participate in the association. If this number is a variable, a range is stated

that is, the minimum and maximum value. A minimum of “0” means that the

relationship is optional: the relationship exists, but the number of elements involved

in the association may be 0. Dependency is used to describe dependency between

two elements of a system. An aggregation is an association extended by a

semantically noncommittal comment that participating classes have no equal-ranking

relationship. Instead, they represent a whole-parts hierarchy. An aggregation is used

to illustrate how something whole is logically composed of its parts. A composition

is a strict form of aggregation, where the existence of its parts depends on the whole.

The whole is the owner of its parts. The composition also describes how something

whole is composed of individual parts (Szlenk, 2006). Figure 2.2 shows elements of

a class diagram and Figure 2.3 shows how a class relates with others to build a class

diagram using some of the class diagram elements of Figure 2.2. This research will

formulate vertical semantic consistency rules of a class diagram refinement with

respect to the class diagram elements of Figure 2.2 using logical approach. Class

diagram and class model are often interchangeably used to refer to the same thing.

The following subsection explains refinement.

Figure 2.2: Elements of Class Diagram

Composition

Aggregation

Association
Generalization

Dependency

15

Figure 2.3: Class diagram (Coates, 2012)

2.3 Refinement

Refinement is a procedure of transforming a model into a more comprehensive

model. The new model is referred to as a refinement of the original model (Burback,

1998). According to Hnatkowska et al., (2004), refinement is a relationship that

represents a more detailed specification of something that has previously been

specified at a certain level of detail. For example, a design phase class diagram is a

refinement of the analysis phase class diagram. Models and their refinements

naturally do not coexist in the same s ystem description. Precisely, what is meant by

a more comprehensive model is not well defined. Thus, there is a need to get support

for substitutability of concepts from one model to another (Burback, 1998).

Moreover, relationships between elements in different models have no

semantic impact on the contents of the models because of the self-containment of the

models. However, they are useful for tracing refinements and for keeping track of

requirements between models (Hnatkowska et al., 2004).

16

2.4 Formalization

This research will use a logical approach to formalize vertical semantic consistency

rules of class diagram refinement. In mathematics, the study of logic deals with

statements or propositions. A statement is a sentence that is either true or false, but

not both. For example, it rained yesterday. Logical investigation conveys clearly the

required relationships between facts about the real world and show where possibly

unwarranted assumptions enter into them. Mathematically, logic is referred to as a

tool for working with complex compound statements which involves using formal

language for expressing them, concise notation for writing them and a methodology

for objectively reasoning about their truth or falsity. Also, logic is the basis for

stating formal proofs in all branches of mathematics (Shoenfield, 1967).

Set theory is a natural extension of logic and provides further useful notation

as well as some interesting insights of its own. Set is a well-defined collection of

objects. Even though any object can be collected into a set, set theory is applied most

often to objects that are relevant to mathematics. The language of set theory can be

used in the definitions of nearly all mathematical objects (Stoll, 2012). This research

will identify elements of a class diagram and formalized it using set theory. The

formal definition of class diagram will then be used to logically formalize abstraction

rules and cardinality semantics of class‟s relations. Finally, the formalized definition

of class diagram, abstraction rules and cardinality semantics of class‟s relation will

be used to formally specify three vertical semantic consistency rules of class diagram

refinement.

 Besides, logical approach has been considered sufficient for checking and

managing inconsistency in UML diagrams. Lucas et al. (2009) found that 75% of the

techniques used in 44 proposals from 2001 to 2007 for detecting and handling

inconsistency problems were formal methods and 21% of the procedures were

logical approach. The authors concluded that this high percentage disclosed, that use

of formal methods, offer advantages in dealing with consistency problems, even

though none of the formal methods used standout above the others. The authors

thereby recommended using a formal technique to handle inconsistency problems of

UML diagrams in future works.

http://en.wikipedia.org/wiki/Mathematical_objects

17

2.5 Review of Previous Works

Although there are many proposals for enhancing modelling with UML, only a few

works on UML semantic consistency management (Lucas et al., 2009; Torre &

Genero, 2014). While some of the proposals used formal methods to enhance UML

modelling and software development process, others used informal methods. Lima et

al., (2009) proposed a formal verification and validation (V&V) technique to check

semantic consistency of a sequence diagram. The proposed technique generate

PROMELA-based model from interactions expressed in a given sequence diagram.

SPIN model checker is then used to simulate the execution and to confirm sequence

diagram properties are written in Linear Temporal Logic (LTL). The technique was

implemented as an Eclipse plug-in, with human understandable feedback to the

developer. The following semantic rules of a sequence diagram were addressed;

lifeline that performed the last action, the last completed action (sent or received),

message used in the final action, and lifeline to/from which a message was

sent/received. This technique is difficult to extend to static components of UML

diagrams. According to Holzmann & Gerard (2007), PROMELA is a process

modelling language which intended use is to verify the logic of parallel systems. In

other words, PROMELA can be highly suitable for modelling dynamic properties but

not static features.

 Shen, Wang, & Egyed (2009) presented two informal methods for checking

consistency between a class diagram and its refinement at different levels of

modelling abstractions. The presented techniques were Integrated Abstraction and

Comparison (IAC), and Separated Abstraction and Comparison (SAC). The authors

further demonstrated that SAC is highly favourable for consistency checking of

software models than IAC. The techniques addressed three semantic consistency

rules of class diagram refinement. The addressed rules are stated as follows; (1)

every low-level class refines at most one high-level class, (2) every high-level class

has at least one low-level class, which refines the high-level class, and (3) the group

of relationships between any two high-level classes must be identical with the group

of relationships between their corresponding low-level classes. The methods were

implemented and integrated with IBM Rational Rose design tool.

18

 He et al. (2013) proposed a method of ontology-based semantics confirmation

of UML behaviour diagrams. The authors divided semantics of behaviour diagrams

into static and dynamic semantics. The static semantics are defined as the notations

and constraints in UML behavioural diagrams while the dynamic semantics are

defined as the semantic relations among the instances of the notations while

interacting. The static semantics of behavioural diagrams are transformed into

ontology web language description logic (OWL DL) by converting UML behaviour

diagrams and their meta-models into a DL knowledge base. While the dynamic

semantics are specified in DL-Safe rules that are then expressed by SWRL (Semantic

Web Rule Language) and added to the OWL DL ontology. The OWL DL is then

used to check both vertical and horizontal semantic consistency of activity, sequence,

and state diagrams.

 Knapp, Mossakowski, & Roggenbach (2014) proposed a technique called

institution based heterogeneous approach for checking semantic consistency among

UML diagrams. The proposed framework can be used to verify consistency of

different UML diagrams both horizontally and vertically. The vertical semantic

consistency addressed in the proposal checks whether the state machine satisfies an

OCL invariant or an OCL pre-/post-condition.

However, there are still issues with UML consistency checking and

management, due to ambiguity of some of the proposed rules, unconformity to meta-

model of the UML diagram(s), in-extensibility of some of the techniques, sometimes

meaningless consistency rules proposals as well as impractical applicability of the

proposed rules (Lucas et al., 2009). Table 2.1 summarises the previous works on

semantic consistency in UML diagrams.

19

Table 2.1: Summary of Literature Review

Author

Year

UML Diagram

Support

Technique
CASE

tool

Extendi

bility

U
C

D

A
D

S
D

C
D

Lima et al. 2009  PROMELA Yes Yes

Shen, Wang, &

Egyed

2009
  IAC & SAC Yes Yes

He, et al. 2013   OWL DL No Yes

Knapp,

Mossakowski,

& Roggenbach

2014

 
INSTITUTI

ON-BASE
No Yes

Legend: UCD: Use Case Diagram, AD: Activity Diagram

SD: Sequence Diagram and CD: Class diagram

In addition, most of the previous studies were on horizontal consistency

management. Lucas et al., (2009), in their systematic literature review of 44 papers

from 2001 to 2007 on UML model consistency management found out that 53.13%

of the 44 proposals were on horizontal syntactic and semantic inconsistency

management. Whereas 18.75% of the 44 studies were on vertical syntactic, and

15.63% of the 44 studies were on vertical semantic inconsistency management. Torre

& Genero (2014), in their systematic mapping study of 94 papers from 2000 to 2012

also found that 98.07% of the 94 proposals were on horizontal consistency

management and 1.93% of the 94 publications were on UML vertical inconsistency

management.

The given reviews show that UML vertical inconsistency management has

received less attention by researchers in the past. Thereby, posing the existing CASE

tools for modelling UML with unsatisfactory support for its maintenance. This

dissertation will formalize class diagram elements and vertical semantic consistency

rules of class diagram refinement using a logical approach.

20

2.4 Chapter Summary

This chapter has reviewed object-oriented system development life cycle, object-

oriented analysis and object-oriented design and their relationship to this study. This

chapter further discussed Unified Modelling Language (UML), consistency in UML,

types of consistencies, classification of consistencies, class diagram and finally

reviewed previous works related to the study. The next chapter presents a

methodology of this research.

3 CHAPTER 3

RESEARCH METHODOLOGY

This chapter explains the systematic methodology of this research in order to check

inconsistency problems between two-class diagrams at different levels of

abstractions. Further, this study will use elementary set theory and logic to check the

inconsistency problems. Section 3.1 will state the rules to be addressed by the

research. Section 3.2 will define and give examples of set symbols and logical terms

that will be use to formalize a class diagram and check the rules stated in Section 3.1.

Section 3.3 presents a framework of how the formalization will be used to check

inconsistency between class diagrams at different levels of abstractions. The last

Section 3.4 will present summary of the chapter.

3.1 Vertical Semantic Consistency Rules of Class Diagram Refinement

This section discusses three (3) vertical semantic consistency rules of a class

diagram refinement identified by Shen et al., (2009). Refinement occurs when an

initial class diagram obtained during the analysis phase of a software development is

broken-down to a detailed class diagram during design phase of the software

development. This research shall refer to the initial class diagram obtained at analysis

phase as high-level class diagram and detailed class diagram obtained at design

phase as low-level class diagram.

22

 According to Shen et al., (2009), two-class diagrams at different levels of

abstractions are said to be consistent with each other if the following consistency

rules (CDRR) are satisfied:

(i) CDRR1: Every class of a low-level class diagram (LCD) refines at most one

class of the high-level class diagram (HCD): ensures that a low-level class refines at

most one high-level class. This means that a low-level class can be a subclass of at

most one high-level class: specialization.

Refinement is a procedure of transforming one class into simpler and more

understood primitive classes (Burback, 1998). Specialization means creating new

subclasses from an existing class. Generalization is a process of extracting shared

characteristics from two or more classes and combining them into a generalized

super class. Shared characteristics can be attributes, associations, or methods.

Figure 3.1 explains CDRR1 using a high-level class diagram and a low-level

class diagram. The high-level class diagram consists of three classes; A, B and C. The

low-level class diagram consists of all classes in the high-level class diagram

probably with additional properties or attributes (i.e. class A´, B´ and C´). The low-

level class diagram also contained class D and E. Applying CDRR1 to Figure 3.1

reveals that: the low-level class diagram is a wrong refinement of the high-class

diagram due to class E refining two classes that are part of the high-level class

diagram, thereby violating CDRR1.

Another example of CDRR1 is shown in Figure 3.2 which consists of a high-

level class diagram and a low-level class diagram. The high-level class diagram

consists of three classes A, B and C. The low-level class diagram consists of all

classes in the high-level class diagram with perhaps additional properties or attributes

(i.e. class A´, B´ and C´) and additional two classes, D and E. The low-level class

diagram is a successive refinement of the high-level class diagram with class D

specializing class A, and class E generalizing classes B and C.

23

Figure 3.1: Wrong class Diagram refinement violating CDRR1

Figure 3.2: Successive Class Diagram Refinement in line with CDRR1

High-Level Class Diagram

Low-Level Class Diagram

A B C

A´ B´

C´

D E

A B C

A´ B´ C´

D E

High-Level Class Diagram

Low-Level Class Diagram

24

(ii) CDRR2: Every high-level class has at least one low-level class, which refines

it: ensures that every high-level class is refined or present in the low-level class

diagram since a class is a refinement of itself. In another world, every high-level

class must be present in the low-level class diagram with either further refinement or

no refinement.

CDRR2 is illustrated in Figure 3.3 and 3.4. The low-level class diagram of

Figure 3.3 consists of class A, B, C and D and the high-level class diagram consists of

class A´, B´, C´, E, F, G, H, I, and J. Class D of the high-level class diagram is

missing in the low-level class diagram and that violate CDRR2 because class D does

not refine itself nor another class in the low-level class diagram. Moreover, class F

and J refined or specialized class A, class E refined or specialized class B, and lastly

class G, H and I refined class C.

 Figure 3.4 consists of high-level class diagram and low-level class diagram.

The high-level consists of class A, B, C and D while the low-level class diagram

consists of class A´, B´, C´, D´, E, F, G, H, I, and J. The low-level class diagram is

a successive refinement of the high-level class diagram. Class G, H and I refined or

specialized class D, class E generalized class C, class F and J refined or specialized

class B and finally the class A refined itself.

61

REFERENCES

Alexander, S., Gerhard, F., & Marina, P. (2015). Constructing Class Diagrams.

SourceMaking. Retrieved on January 25, 2015, from http://sourcemaking.com/

uml/modeling-it-systems/structural-view/constructing-class-diagrams.

Ambler, S. W. (2013). UML 2.5: Do You Even Care? Dr Dobb’s. Retrieved on

March 24, 2014, from http://www.drdobbs.com/architecture-and-design/uml-

25-do-you-even-care/240163702.

Bansiya, J., & Davis, C. G. (2002). A Hierarchical Model for Object-Oriented

Design Quality Assessment. IEEE Transactions on Software Engineering,

28(1), pp. 4–17.

Booch, G. (2007). Object-Oriented Analysis and Design with Applications. Quality

Assurance. Addison-Wesley.

Burback, R. (1998). Software Engineering Methodology: The Watersluice. Stanford

University.

Ciancarini, P. (2013). UML Basics. University of Bologna. Retrieved on May 02,

2014, from http://www.cs.unibo.it/cianca/wwwpages/ids/uml.pdf.

Coad, P., & Yourdon, E. (1990). Object-oriented analysis. Englewood Cliffs, New

Jersey: Yourdon Press Prentice Hall.

Coates, C. (2012). UML 2 Class Diagram Tutorial. Sparx Systems. Retrieved on May

02, 2014, from http://www.sparxsystems.com/resources/uml2_tutorial/

uml2_classdiagram.html.

Dam, H. K. D. H. K., & Winikoff, M. (2010). Supporting change propagation in

UML models. Software Maintenance (ICSM), 2010 IEEE International

Conference on.

Dobing, B., & Parsons, J. (2006). How UML is used. Communications of the ACM,

49(5), pp. 109–114.

Engels, G., Küster, J. M., Heckel, R., & Groenewegen, L. (2001). A Methodology

for Specifying and Analyzing Consistency of Object-Oriented Behavioral

Models. ACM SIGSOFT Software Engineering Notes, 26, pp. 186–195.

62

Gogolla, M., & Richters, M. (2002). Expressing UML Class Diagrams Properties

with OCL. In Object Modeling with the OCL (pp. 85–114). Springer-Verlag

Berlin Heidelberg.

He, H., Wang, Z., Dong, Q., Zhang, W., & Zhu, W. (2013). Ontology-Based

Semantic Verification for Uml Behavioral Models. International Journal of

Software Engineering and Knowledge Engineering, 23(02), pp. 117–145.

Hnatkowska, B., Huzar, Z., Kuźniarz, L., & Tuzinkiewicz., L. (2004). On

understanding of refinement relationship. Consistency Problems in UML-based

Software Development: Understanding and Usage of Dependency, 7. (pp. 7–

17).

Holzmann, G. J., & Gerard, J. (1990). Design and Validation of Computer Protocols.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA.

Huzar, Z., Kuzniarz, L., Reggio, G., & Sourrouille, J. L. (2005). Consistency

Problems in UML-Based Software Development. UML Modeling Languages

and Applications, pp. 1–12.

Justin. (2013). What is the Software Development Life Cycle. Retrieved on February

24, 2014, from https://airbrake.io/blog/insight/what-is-the-software-

development-life-cycle.

Khalil, A., & Dingel, J. (2013). Khalil, A., & Dingel, J. (2013). Supporting the

evolution of UML models in model driven software development: A Survey.

Technical Report, School of Computing, Queen’s University, Canada.

Knapp, A., Mossakowski, T., & Roggenbach, M. (2014). An Institutional Framework

for Heterogeneous Formal Development in UML. ArXiv, pp. 1–15.

Laplante, P. A. (2007). What Every Engineer Should Know about Software

Engineering. CRC Press.

Lima, V., Talhi, C., Mouheb, D., Debbabi, M., Wang, L., & Pourzandi, M. (2009).

Formal Verification and Validation of UML 2.0 Sequence Diagrams using

Source and Destination of Messages. Electronic Notes in Theoretical Computer

Science, 254, pp. 143–160.

Lucas, F. J., Molina, F., & Toval, A. (2009). A systematic review of UML model

consistency management. Information and Software Technology, 51(12), pp.

1631–1645.

McConnell, S. (2010). Rapid Development: Taming Wild Software Schedules.

Microsoft Press (Vol. 6, p. 680). O‟Reilly Media, Inc.

Nugroho, A., & Chaudron, M. R. V. (2009). Evaluating the Impact of UML

Modeling on Software Quality: An Industrial Case Study In Model driven

engineering languages and systems. Springer Berlin Heidelberg, pp. 181–195.

63

Nugroho, A., & Chaudron, M. R. V. (2013). The impact of UML modeling on defect

density and defect resolution time in a proprietary system. Empirical Software

Engineering, pp. 1–29.

OMG. (2005). Introduction To OMG‟s Unified Modeling Language (UML). OMG.

Retrieved on February 08, 2014, from http://www.omg.org/gettingstarted/

what_is_uml.htm

OMG. (2011). UML Infrastructure Specification, v2.4.1. OMG. Retrieved on

February 08, 2014, from http://www.omg.org/spec/UML/2.4.1/Infrastructure/

PDF/

Ralph, P., & Wand, Y. (2009). A proposal for a formal definition of the design

concept. In Design requirements engineering: A ten-year perspective (Vol. 14,

pp. 103–136). Springer Berlin Heidelberg.

Shen, W. S. W., Wang, K. W. K., & Egyed, A. (2009). An Efficient and Scalable

Approach to Correct Class Model Refinement. IEEE Transactions on Software

Engineering, 35(4), pp. 515–533.

Shlaer, S., & Mellor, S. J. (1988). Object-oriented systems analysis. Modeling the

world in data (c1988, 1st ed.). Yourdon Press computing series, Englewood

Cliffs, NJ: Yourdon Press.

Shoenfield, J. R. (1967). Mathematical logic. Natick, Massachusetts: Association for

Symbolic Logic A K Peters, Ltd.

Spanoudakis, G., & Zisman, A. (2001). Inconsistency management in software

engineering: Survey and open research issues. In Handbook of software

engineering and knowledge engineering (Vol. 1, pp. 329–380). World Science

Publisher.

Stoll, R. R. (2012). Set Theory and Logic. Courier Dover Publications.

Szlenk, M. (2006). Formal Semantics and Reasoning about UML Class Diagram. In

Dependability of Computer Systems, 2006. DepCos-RELCOMEX’06.

International Conference on IEEE (pp. 51–59). IEEE.

Torre, D., & Genero, M. (2014). UML Consistency Rules : A Systematic Mapping

Study (pp. 1–28).

Usman, M., Nadeem, A., Kim, T. H., & Cho, E. S. (2008). A survey of consistency

checking techniques for UML models. In Proceedings of the 2008 Advanced

Software Engineering and its Applications, ASEA 2008 (pp. 57–62). IEEE.

Weilkiens, T., & Oestereich, B. (2010). UML 2 Certification Guide: Fundamental &

Intermediate Exams. Morgan Kaufmann.

64

Winograd, T. (1995). From Programming Environments to Environments for

Designing. Communications of the ACM, 38(6), pp. 65–74.

Zhao, Y., Brown, R., Kramer, T. R., & Xu, X. (2011). Information Modeling for

Interoperable Dimensional Metrology. London: Springer London.

