EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Proceedings of VVSS2007 - verification and validation of
software systems, 23rd March 2007, Eindhoven, The
Netherlands

Citation for published version (APA):

Groot, P., Serebrenik, A., & van Eekelen, M. (Eds.) (2007). Proceedings of VVSS2007 - verification and
validation of software systems, 23rd March 2007, Eindhoven, The Netherlands. (Computer science reports; Vol.
0704). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2007

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/96319ce6-16ed-440e-8286-c19e75757921

Technische Universiteit Eindhoven
Department of Mathematics and Computer Science

Proceedings of
VVSS2007 — Verification and Validation of Software Systems

237 March 2007, Eindhoven, the Netherlands

Editors:
Perry Groot
Alexander Serebrenik
Marko van Eekelen

Organised by LaQuSo — Laboratory for Quality Software

TUE Computer Science Reports 07-04
ISSN 0926-4515

All rights reserved
Series editors: prof.dr. P.M.E. De Bra
prof.dr.ir. J.J. van Wijk

Table of Content

Preface

Keynote and Speaker Presentations

ProM 4.0: Comprehensive Support for real process analysiscoiviinn... 1
W.M.P. van der Aalst, B.F. van Dongen, C.W. Giinther, R.S. Mans, A.K. Alves de Medeiros,
A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters

Track 1 - Requirements 1 - Track chair: Hans van Vliet

Risk assessed user requirements managementiiiiii i 11
Gijs Kuiper

Requirements engineering within a GxP regulated industry 19
Bjorn Aalbers

Track 2 - Performance - Track chair: Johan Lukkien

Implementation of conceptual model for performance test measurements 25
Jan Rodenburg and Laurence Cabenda
Managing .NET performance across the application life cycle 33

Marcel Jankie and Frans Leugering

Track 3 - Embedded 1 - Track chair: Ed Brinksma

Fault diagnosis of embedded software using program spectrac.oo.... 47
Peter Zoetewij, Rui Abreu, Rob Golsteijn, and Arjan J.C. van Gemund

How to produce reliable software using model based design and abstract interpretation

BECNIIIGUES .« oottt e 54
Marc Lalo

Track 4 - New Trends in Testing 1 - Track chair: Pieter Koopman

Automated software testing and release with nix build farms 65
FEelco Dolstra and FEelco Visser

Software conversions need to be tested 78

Maurice Siteur

Track 5 - Models 1 - Track chair: Jos Baeten

An object-oriented framework for explicit-state model checking 84
Mark Kattenbelt, Theo C. Ruys, and Arend Rensink

Lessons from developing the OpenComRTOS distributed real time operating system

using formal modeling techniques i 93
Eric Verhulst and Gjalt de Jong

Track 6 - Requirements 2 - Track chair: Jan Dietz

Requirements definition center - Design(ed) for business performance 95
Hans Baaten

Requirements and qualitieso i 111
Renze Zijlstra

Track 7 - New Trends in Testing 2 - Track chair: Jan Tretmans

Risk based testing in practiceoouiii i 115
Rob Hendriks
A new statistical software reliability tool 125

Marko Boon, Ed Brandt, Isaac Corro Ramos, Alessandro Di Bucchianico, and Rob Henzen

Track 8 - Embedded 2 - Track chair: Arend Rensink

Optimal integration and test strategies for software releases of lithographic systems ... 140
Roel Boumen, Ivo de Jong, Asia van de Mortel-Fronczak, and Koos Rooda

Static memory and timing analysis of embedded systems code 153

Christian Ferdinand, Reinhold Heckmann, and Bdrbel Franzen

Track 9 - Quality Checking - Track chair: Jos Trienekens

Experiences in quality checking medical guidelines using formal methods 164
Perry Groot, Arjen Hommersom, Peter Lucas, Michael Balser, and Jonathan Schmitt

Perl scripts and monkeys: Open source code quality checking 179
Adriaan de Groot

Track 10 - Models 2 - Track chair: Jan Friso Groote

Model-driven consistency checking of behavioural specifications 189
Bas Graaf and Arie van Deursen

Testing of inter-process communication and synchronization of ITP LoadBalancer

software via model-checkingo i 201

Yaroslav S. Usenko, Marko van Eekelen, Stefan ten Hoedt, and René Schreurs

Track 11 - Open Source - Track chair: Yaroslav Usenko

Test automation in Telecoms - pros and cons of open source tools 209
Piotr Kaluski
HETS: The heterogeneous tool Set i e 217

Till Mossakowski and Christian Maeder

Track 12 - New Trends in Testing 3 - Track chair: Judi Romijn

First time right? Lessons learned while exploratory testing 227
Derk-Jan de Grood
Justifying software testing in the 215 centurycccoiiiiiiiiiiiiiiaii... 241

Ian Gilchrist

Track 13 - Embedded 3 - Track chair: Roelof Hamberg

A compositional semantics for dynamic fault trees in terms of interactive markov chains 251
Hichem Baudali, Pepijn Crouzen, and Mariélle Stoelinga

Discovering faults in idiom-based exception handling 253

Magiel Bruntink, Arie van Deursen, and Tom Tourwé

Track 14 - Measuring Quality - Track chair: Marko van Eekelen

Measuring the benefits of verification 263
Jan Jaap Cannegieter

Correlation between coding standards compliance and software quality 273
Wojciech Basalaj

Track 15 - Security - Track chair: Bart Jacobs

Verifying an implementation of SSH 282
Erik Poll and Aleksy Schubert
Selecting Secure PASSWOTASttt 295

FEric Verheul

Preface

VVSS 2007 (Verification and Validation of Software Systems) is the third symposium annex
tool exhibition that is launched by LaQuSo (Laboratory for Quality Software) to exchange
experiences about methods and techniques among decision makers and experts in the
domains of software testing, quality assurance and formal methods. This year VVSS took
place in Eindhoven, the Netherlands, on March 23, 2007.

This volume contains slides, paper, or abstract of the presentations given at Eindhoven on
March 23, 2007. The program this year includes two keynote speakers: Prof. Dr. W.M.P.
van der Aalst (Eindhoven University of Technology, the Netherlands) and Prof. Dr. D.L.
Parnas (University of Limerick, Ireland). The technical part of the program was provided by
thirty industrial and academic speakers from Belgium, Germany, the Netherlands, Poland,
and the United Kingdom. Following the tradition of the previous VVSS meetings we were
happy to welcome tool exhibitioners and poster presenters.

Organizing the symposium would have been impossible without the support of Willeke
Quaedflieg, Mark van den Brand, Perry Groot, Geert Kemps, and Henk Schimmel. We also
would like to thank the track chairs, LaQuSo members and LaQuSo program board for their
contribution.

VVSS 2007 Programme Chairs:

Alexander Serebrenik and Marko van Eekelen
Eindhoven University of Technology Radboud University Nijmegen
LaQuSo Eindhoven LaQuSo Nijmegen

Posters

e Ed Brandt (Refis, the Netherlands), Alessandro Di Bucchianico (Eindhoven Univer-
sity of Technology, the Netherlands). “A new statistical tool for supporting software
testing”.

e Ed Brandt (Refis, the Netherlands), Alessandro Di Bucchianico (Eindhoven University
of Technology, the Netherlands). “Working group test metrics”.

e Pieter Claassen, Eric Verheul (Radboud University Nijmegen and Pricewaterhouse-
Coopers, the Netherlands). “Browse Risk frOm unWarranted Security Exceptions
(BROWSE)”.

e Francois Degrave (University of Namur, Belgium), Nathalie Mweze (University of Na-
mur), Badouin Lecharlier (Universit Catholique de Louvain, Belgium), Wim Vanhoof
(University of Namur, Belgium). “Automatic generation of test inputs for Mercury
programs”.

e Perry Groot, Marko van Eekelen, Arjen Hommersom, Peter Lucas, Alexander Sere-
brenik, Yaroslav Usenko, Hajo Reijers (LaQuSo, the Netherlands). “Medical Guidelines
- Past, Present, and Future”.

e Matthijs Mekking (Radboud University Nijmegen, the Netherlands). “A Proposed In-
ternet Standard in UPPAAL”.

e Gregor Panovski (Eindhoven University of Technology, the Netherlands). “Quality As-
sessment of Product Software”.

e Wilco Schumacher (Collis, the Netherlands). “Added value of a conceptual model for
performance testing”.

e David Van Bedaf, Anne Kerckx, Lien Keulemans, Alex Van Cauwenbergh (Quasus,
Belgium). “Validation in a Paperless World: a real life example”.

e Martijn Visscher (Logica CMG, the Netherlands). “Successful Testmanagement : a
360° Solution”.

e Chris George (United Nations University / International Institute for Software, Macao).
“RAISE tools from UNU/IIST”.

Tool exhibitors

AbsInt Angewandte Informatik GmbH (Germany)
Atos Origin Nederland B.V. (The Netherlands)
Borland B.V. (The Netherlands)

Collis B.V. (The Netherlands)

Compuware B.V. (The Netherlands)

Coverity, Inc. (USA)

IFSQ, Institute for Software Quality (The Netherlands)
Imtech ICT Technical Systems (The Netherlands)
LDRA Ltd./INDES - Integrated Development Solutions B.V. (The Netherlands)
Mithun Training & Consulting B.V. (The Netherlands)
Parasoft Netherlands B.V. (The Netherlands)
Programming Research B.V. (The Netherlands)
ps_testware B.V. (The Netherlands)

QSM-Europe B.V. (The Netherlands)

Rescop (The Netherlands)

SOMS Software Tools (The Netherlands)

Telelogic Netherlands B.V. (The Netherlands)
Verifysoft Technology GmbH (Germany)

Keynote and Speaker Presentations

VVSS 2007 - Verification and Validation of Software Systems Symposium

ProM 4.0: Comprehensive Support for Real
Process Analysis

W.M.P. van der Aalst!, B.F. van Dongen!, C.W. Giinther!, R.S. Mans', A.K.
Alves de Medeiros', A. Rozinat!, V. Rubin?!, M. Song', H.M.W. Verbeek!,
and A.J.M.M. Weijters'

! Eindhoven University of Technology, Eindhoven, The Netherlands
{w.m.p.v.d.aalst}@tue.nl
2 University of Paderborn, Paderborn, Germany

Abstract. This tool paper describes the functionality of ProM. Version
4.0 of ProM has been released at the end of 2006 and this version reflects
recent achievements in process mining. Process mining techniques at-
tempt to extract non-trivial and useful information from so-called “event
logs”. One element of process mining is control-flow discovery, i.e., auto-
matically constructing a process model (e.g., a Petri net) describing the
causal dependencies between activities. Control-flow discovery is an in-
teresting and practically relevant challenge for Petri-net researchers and
ProM provides an excellent platform for this. For example, the theory
of regions, genetic algorithms, free-choice-net properties, etc. can be ex-
ploited to derive Petri nets based on example behavior. However, as we
will show in this paper, the functionality of ProM 4.0 is not limited to
control-flow discovery. ProM 4.0 also allows for the discovery of other
perspectives (e.g., data and resources) and supports related techniques
such as conformance checking, model extension, model transformation,
verification, etc. This makes ProM a versatile tool for process analy-
sis which is not restricted to model analysis but also includes log-based
analysis.

1 Introduction

The first version of ProM was released in 2004. The initial goal of ProM was to
unify process mining efforts at Eindhoven University of Technology and other
cooperating groups [4]. Traditionally, most analysis tools focusing on processes
are restricted to model-based analysis, i.e., a model is used as the starting point
of analysis. For example, the alternating-bit protocol can be modeled as a Petri
net and verification techniques can then be used to check the correctness of the
protocol while simulation can be used to estimate performance aspects. Such
analysis is only useful if the model refiects reality. Process mining techniques use
event logs as input, i.e., information recorded by systems ranging from infor-
mation systems to embedded systems. Hence the starting point is not a model
but the observed reality. Therefore, we use the phrase real process analysis to
position process mining with respect to classical model-based analysis. Note that

VVSS 2007

1

2

VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

ProM also uses models (e.g., Petri nets). However, these models (1) are discov-
ered from event logs, (2) are used to reflect on the observed reality (conformance
checking), or (3) are extended based on information extracted from logs.

Process mining is relevant since more and more information about processes
is collected in the form of event logs. The widespread use of information systems,
e.g., systems constructed using ERP, WFM, CRM, SCM, and PDM software,
resulted in the omnipresence of vast amounts of event data. Events may be
recorded in the form of audit trails, transactions logs, or databases and may
refer to patient treatments, order processing, claims handling, trading, travel
booking, etc. Moreover, recently, more and more devices started to collect data
using TCP/IP, GSM, Bluetooth, and RFID technology (cf. high-end copiers,
wireless sensor networks, medical systems, etc.).

Table 1. Comparing ProM 1.1 presented in [7] with ProM 4.0.

Version ProM 1.1 ProM 4.0
Mining plug-ins 6 27
Analysis plug-ins 7 35
Import plug-ins 4 16
Export plug-ins 9 28
Conversion plug-ins 3 22
Log filter plug-ins 0 14
Total number of plug-ins 29 142

At the Petri net conference in 2005, Version 1.1 of ProM was presented [7].
In the last two years ProM has been extended dramatically and currently dozens
of researchers are developing plug-ins for ProM. ProM is open source and uses
a plug-able architecture, e.g., people can add new process mining techniques
by adding plug-ins without spending any efforts on the loading and filtering of
event logs and the visualization of the resulting models. An example is the plug-in
implementing the a-algorithm [5], i.e., a technique to automatically derive Petri
nets from event logs. The version of ProM presented at the Petri net conference
in 2005 (Version 1.1) contained only 29 plug-ins. Version 4.0 provides 142 plug-
ins, i.e., there are almost five times as many plug-ins. Moreover, there have been
spectacular improvements in the quality of mining algorithms and the scope
of ProM has been extended considerably. This is illustrated by Table 1 which
compares the version presented in [7] with the current version. To facilitate the
understanding of Table 1, we briefly describe the six types of plug-ins:

— Mining plug-ins implement some mining algorithm, e.g., the a-miner to dis-
cover a Petri net [5] or the social network miner to discover a social network
[1].

— FEzport plug-ins implement some “save as” functionality for specific objects
in ProM. For example, there are plug-ins to save Petri nets, EPCs, social
networks, YAWL, spreadsheets, etc. often also in different formats (PNML,
CPN Tools, EPML, AML, etc.).

— Import plug-ins implement an “open” functionality for specific objects, e.g.,
load instance-EPCs from ARIS PPM or BPEL models from WebSphere.

VVSS 2007 - Verification and Validation of Software Systems Symposium

— Analysis plug-ins which typically implement some property analysis on some
mining result. For example, for Petri nets there is a plug-in which constructs
place invariants, transition invariants, and a coverability graph. However,
there are also analysis plug-ins to compare a log and a model (i.e., confor-
mance checking) or a log and an LTL formula. Moreover, there are analysis
plug-ins related to performance measurement (e.g., projecting waiting times
onto a Petri net).

— Conversion plug-ins implement conversions between different data formats,
e.g., from EPCs to Petri nets or from Petri nets to BPEL.

— Log filter plug-ins implement different ways of “massaging” the log before
applying process mining techniques. For example, there are plug-ins to select
different parts of the log, to abstract from infrequent behavior, clean the log
by removing incomplete cases, etc.

In this paper we do not elaborate on the architecture and implementation frame-
work for plug-ins (for this we refer to [7]). Instead we focus on the functionality
provided by the many new plug-ins in ProM 4.0.

The remainder of this paper is organized as follows. Section 2 provides an
overview of process mining and briefly introduces the basic concepts. Section 3
describes the “teleclaims” process of an Australian insurance company. A log of
this process is used as a running example and is used to explain the different
types of process mining: Discovery (Section 4), Conformance (Section 5), and
Extension (Section 6). Section 7 briefly mentions additional functionality such
as verification and model transformation. Section 8 concludes the paper.

2 Overview

The idea of process mining is to discover, monitor and improve real processes
(i.e., not assumed processes) by extracting knowledge from event logs. Today
many of the activities occurring in processes are either supported or monitored
by information systems. Consider for example ERP, WFM, CRM, SCM, and
PDM systems to support a wide variety of business processes while recording
well-structured and detailed event logs. However, process mining is not limited to
information systems and can also be used to monitor other operational processes
or systems. For example, we have applied process mining to complex X-ray
machines, high-end copiers, web services, wafer steppers, careflows in hospitals,
etc. All of these applications have in common that there is a notion of a process
and that the occurrence of activities are recorded in so-called event logs.
Assuming that we are able to log events, a wide range of process mining
techniques comes into reach. The basic idea of process mining is to learn from
observed executions of a process and can be used to (1) discover new models
(e.g., constructing a Petri net that is able to reproduce the observed behavior),
(2) check the conformance of a model by checking whether the modeled behavior
matches the observed behavior, and (3) extend an existing model by projecting
information extracted from the logs onto some initial model (e.g., show bottle-
necks in a process model by analyzing the event log). All three types of analysis

VVSS 2007

3

4 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

information
system

records

supports/
controls

“world”
business processes
people machines
components
organizations

events, e.g.,
specifies tr;e:;agss,
moldels configures ran et(;l ns.
analyzes implements '
—
discovery
(process) | «——— event
model conformance Iogs
a— R
extension

Fig. 1. Overview showing three types of process mining supported by ProM: (1) Dis-
covery, (2) Conformance, and (3) Extension.

have in common that they assume the existence of some event log. Figure 1 shows
the three types of process mining. Each of these is supported by ProM through
various plug-ins as will be shown in the remainder using a running example.

3 Running Example

As a working example, we consider the “teleclaims” process of an Australian
insurance company described in [2]. This process deals with the handling of
inbound phone calls, whereby different types of insurance claims (household, car,
etc.) are lodged over the phone. The process is supported by two separate call
centres operating for two different organizational entities (Brisbane and Sydney).
Both centres are similar in terms of incoming call volume (approx. 9,000 per
week) and average total call handling time (550 seconds), but different in the
way call centre agents are deployed, underlying IT systems, etc. The teleclaims
process model is shown in Figure 2. The two highlighted boxes at the top show
the subprocesses in both call centres. The lower part describes the process in the
back-office.

This process model is expressed in terms of an Event-Driven Process Chain
(EPC) (see [8] for a discussion on the semantics of EPCs). For the purpose of
the paper it is not necessary to understand the process and EPC notation in
any detail. However, for a basic understanding, consider the subprocess corre-
sponding to the call centre in Brisbane. The process starts with event “Phone
call received”. This event triggers function “Check if sufficient information is
available”. This function is executed by a “Call Center Agent”. Then a choice is
made. The circle represents a so-called connector. The “x” inside the connector
and the two outgoing arcs indicate that it is an exclusive OR-split (XOR). The
XOR connector results in event “Sufficient information is available” or event
“Sufficient information is not available”. In the latter case the process ends. If
the information is available, the claim is registered (cf. function “Register claim”

VVSS 2007 - Verification and Validation of Software Systems Symposium

also executed by a “Call Center Agent”) resulting in event “Claim is registered”.
The call centre in Sydney has a similar subprocess and the back-office process
should be self-explaining after this short introduction to EPCs. Note that there
are three types of split and join connectors: AND, XOR, and OR, e.g., in the
back-office process there is one AND-split (A) indicating that the last part is
executed in parallel.

[T——— .
Froaamoy sty 5000 <ProcessInstance id="3055" description="Claim being handled">
<AuditTrailEntry>
<Data><Attribute name = "call centre">Sydney </Attribute>
</Data><WorkflowModelElement>incoming claim
</WorkflowModelElement>
<EventType >complete</EventType>
<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>
<Originator>customer</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
<Data><Attribute name = "location">Sydney </Attribute>
</Data><WorkflowModelElement>check if sufficient
information is available</WorkflowModelElement>
<EventType >start</EventType>
<Timestamp>2006-12-01T07:51:05.000+01:00</Timestamp>
<Originator>Call Centre Agent Sydney</Originator>
</AuditTrailEntry>
<AuditTrailEntry>
<Data><Attribute name = "location">Sydney </Attribute>
</Data><WorkflowModelElement>check if sufficient
information is available</WorkflowModelElement>

<EventType >complete</EventType>
<Timestamp>2006-12-01T07:51:25.000+01:00</Timestamp>
<Originator>Call Centre Agent Sydney</Originator>

</AuditTrailEntry>
. <AuditTrailEntry>
<Data><Attribute name = "outcome">processed </Attribute>
<Attribute name = "duration">1732 </Attribute>
</Data><WorkflowModelElement>end</WorkflowModelElement>
» <EventType >complete</EventType>
<Timestamp>2006-12-01T08:19:57.000+01:00</Timestamp>
12000 Secondls) ‘@ @ <Originator>Claims handler</Originator>
. </AuditTrailEntry>
</ProcessInstance>

7

ont has
[Siipte)

Fig. 3. Fragment of the MXML log con-
“taining 3512 cases (process instances)

Fig. 2. Tnsurance claim handling EPC [2]. and 46138 events (audit trail entries).

Figure 3 shows a fragment of the log in MXML format, the format used
by ProM. In this case, the event log was obtained from a simulation using
CPN Tools. Using ProMimport one can extract logs from a wide variety of sys-
tems, e.g., workflow management systems like Staffware, case handling systems
like FLOWer, ERP components like PeopleSoft Financials, simulation tools like
ARIS and CPN Tools, middleware systems like WebSphere, BI tools like ARIS
PPM, etc., and it has also been used to develop many organization/system-
specific conversions (e.g., hospitals, banks, governments, etc.). Figure 3 illus-
trates the typical data present in most event logs, i.e., a log is composed of
process instances (i.e., cases) and within each instance there are audit trail en-
tries (i.e., events) with various attributes. Note that it is not required that sys-
tems log all of this information, e.g., some systems do not record transactional
information (e.g., just the completion of activities is recorded), related data, or
timestamps. In the MXML format only the ProcessInstance (i.e., case) field and
the WorkflowModelElement (i.e., activity) field are obligatory, i.e., any event

VVSS 2007

6 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

e —— e ———
a M

[petond . imboctsrrs o vty ke

1 lerperten - ekl m - Pty [l

| 5 check if sufficient information is available

D=

| B check if sufficient information is available

determine like

B register claim

Fig. 4. A Petri net discovered using ProM based on an analysis of the 3512 cases.

needs to be linked to a case (process instance) and an activity. All other fields
(data, timestamps, resources, etc.) are optional.

For control-flow discovery, e.g., deriving a Petri net model from an MXML
file, we often focus on the ordering of activities within individual cases. In this
context, a single case o can be described by a sequence of activities, i.e., a trace
o € A* where A is the set of activities. Consequently, such an abstraction of the
log can be described by a multiset of traces.

4 Discovery

Process mining techniques supporting discovery do not assume an a-priori model,
i.e., based on an event log, some model is constructed (cf. Figure 1). ProM 4.0
offers 27 mining plug-ins able to construct a wide variety of models. One of the
first plug-ins was the a-miner [5] which constructs a Petri net model from an
MXML log, i.e., based on an analysis of the log which does not contain any
explicit process information (e.g., AND/XOR-splits/joins), a process model is
derived. However, the a-miner is unable to discover complex process models.
For example, it is unable to correctly discover the teleclaims process illustrated
in Figure 2. However, ProM 4.0 has several new mining plug-ins that are able
to correctly discover this process using various approaches (regions, heuristics,
genetic algorithms, etc.) and representations (Petri nets, EPCs, transitions sys-
tems, heuristic nets).

Figure 4 shows a Petri net discovered by ProM. The top window shows
the overall process while the second window zooms in on the first part of the
discovered model. This model is behaviorally equivalent to the EPC model in

VVSS 2007 - Verification and Validation of Software Systems Symposium

Figure 2 and has been obtained using an approach which first builds a transition
system (see Figure 5) and then uses extensions of the classical theory of regions
[6] to construct a Petri net. ProM provides various ways to extract transition
systems from logs, a plug-in to construct regions on-the-fly, and an import and
export plug-in for Petrify [6] (see [3] for details).

Process mining is not limited to process models (i.e., control flow). ProM
also allows for the discovery of models related to data, time, transactions, and
resources. As an example, Figure 6 shows the plug-in to extract social networks
from event logs using the technique presented in [1]. The social network shown in
Figure 6 is constructed based on frequencies of work being transferred from one
resource class to another. The diagram adequately shows that work is generated
by customers and then flows via the call centre agents to the claims handlers in
the back office.

It is impossible to provide an overview of all the discovery algorithms sup-
ported. However, of the 27 mining plug-ins we would like to mention the heuris-
tics miner (Figure 7) able to discover processes in the presence of noise and
the multi-phase miner using an EPC representation. Both approaches are more
robust than the region-based approach and the classical a-algorithm. It is also
possible to convert models of one type to another. For example, Figure 8 shows
the EPC representation of the Petri net in Figure 4.

5 Conformance

Conformance checking requires, in addition to an event log, some a-priori model.
This model may be handcrafted or obtained through process discovery. What-
ever its source, ProM provides various ways of checking whether reality conforms
to such a model. For example, there may be a process model indicating that pur-
chase orders of more than one million Euro require two checks. Another example
is the checking of the so-called “four-eyes principle”. Conformance checking may
be used to detect deviations, to locate and explain these deviations, and to
measure the severity of these deviations. ProM 4.0 also supports conformance
checking, i.e., comparing an a-priori model with the observed reality stored in
some MXML log. For example, we could take the discovered model shown in
Figure 4 and compare it with the log shown in Figure 3 using the conformance
checking plug-in in ProM. Figure 9 shows the result. This analysis shows that the
fitness of the model is 1.0, i.e., the model is able to “parse” all cases. The confor-
mance checker also calculates metrics such as behavioral appropriateness (i.e.,
precision) and structural appropriateness [9] all indicating that the discovered
model is indeed a good reflection of reality. Note that, typically, conformance
checking is done not with respect to a discovered model, but with respect to
some normative/descriptive hand-crafted model. For example, given an event
log obtained from the real teleclaims process it would be interesting to detect
potential deviations from the process model in Figure 2. In case that there is not
a complete a-priori process model but just a set of requirements (e.g., business
rules), ProM’s LTL checker can be used.

VVSS 2007

7

8 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Fig. 6. Social network obtained using the

Fig. 5. Transition system system used to “handover of work” metric.

construct the Petri net in Figure 4.

Fily Mg Analysis Exports Window Help
T
a M @&
allx -
e warg hetps Commruen Eeperiy Wisdom Hely .
a e
insamng cam
(]
w2
1m0 17

Fig. 7. Heuristics net obtained by applying
the heuristics miner to the log of Figure 3. L - !

Fig. 8. EPC discovered from the log in
Figure 3.

VVSS 2007 - Verification and Validation of Software Systems Symposium

Fig. 10. Performance analyzer.
Fig. 9. Conformance checker.

6 Extension

For model extension it is also assumed that there is an initial model (cf. Figure 1).
This model is extended with a new aspect or perspective, i.e., the goal is not
to check conformance but to enrich the model with performance/time aspects,
organizational /resource aspects, and data/information aspects. Consider for ex-
ample a Petri net (either discovered, hand-crafted, or resulting from some model
transformation) describing a process which is also logged. It is possible to enrich
the Petri net using information in the log. Most logs also contain information
about resources, data, and time. ProM 4.0 supports for example decision mining,
i.e., by analyzing the data attached to events and using classical decision tree
analysis, it is possible to add decision rules to the Petri net (represented as con-
ditions on arcs). Information about resources (Originator field in the MXML log)
can be analyzed and used to add allocation rules to a Petri net. Figure 10 shows
a performance analysis plug-in which projects timing information on places and
transitions. It graphically shows the bottlenecks and all kinds of performance in-
dicators, e.g., average/variance of the total flow time or the time spent between
two activities. The information coming from all kinds of sources can be stitched
together and exported to CPN Tools, i.e., ProM is able to turn MXML logs into
colored Petri nets describing all perspectives (control-flow, data, time, resources,
etc.). CPN Tools can then be used to simulate the process without adding any
additional information to the generated model.

7 Additional Functionality

It is not possible to give a complete overview of all 142 plug-ins. The figures
shown in previous sections reflect only the functionality of 7 plug-ins. However,
it is important to note that the functionality of ProM is not limited to process
mining. ProM also allows for model conversion. For example, a model discovered
in terms of a heuristic net can be mapped onto an EPC which can be converted
into a Petri net which is saved as a YAWL file that can be uploaded in the
workflow system YAWL thereby directly enacting the discovered model. For
some of the models, ProM also provides analysis plug-ins. For example, the basic
Petri net analysis techniques (invariants, reachability graphs, reduction rules, S-
components, soundness checks, etc.) are supported. There are also interfaces

VVSS 2007

9

10

VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

to different analysis (e.g., Petrify, Fiona, and Woflan) and visualization (e.g.,
FSMView and DiaGraphica) tools.

8 Conclusion

ProM 4.0 consolidates the state-of-the-art of process mining. It provides a plug-
able environment for process mining offering a wide variety of plug-ins for process
discovery, conformance checking, model extension, model transformation, etc.
ProM is open source and can be downloaded from www.processmining.org. Many
of its plug-ins work on Petri nets, e.g., there are several plug-ins to discover Petri
nets using techniques ranging from genetic algorithms and heuristics to regions
and partial orders. Moreover, Petri nets can be analyzed in various ways using
the various analysis plug-ins.

Acknowledgements

The development of ProM is supported by EIT, NWO-EW, the Technology
Foundation STW, and the IOP program of the Dutch Ministry of Economic
Affairs.

References

1. W.M.P. van der Aalst, H.A. Reijers, and M. Song. Discovering Social Networks
from Event Logs. Computer Supported Cooperative work, 14(6):549-593, 2005.

2. W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation in
Process-Aware Information Systems. Decision Support Systems, 2007 (to appear).

3. W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Giinther.
Process Mining: A Two-Step Approach using Transition Systems and Regions. BPM
Center Report BPM-06-30, BPMcenter.org, 2006.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237-267, 2003.

5. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128-1142, 2004.

6. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev. Deriving Petri Nets
from Finite Transition Systems. IEEE Transactions on Computers, 47(8):859-882,
August 1998.

7. B.F. van Dongen, A. K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The ProM framework: A New Era in Process Mining
Tool Support. In G. Ciardo and P. Darondeau, editors, Application and Theory of
Petri Nets 2005, volume 3536 of Lecture Notes in Computer Science, pages 444-454.
Springer-Verlag, Berlin, 2005.

8. E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious
Circle. Data and Knowledge Engineering, 56(1):23-40, 2006.

9. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume 3812 of
Lecture Notes in Computer Science, pages 163—-176. Springer-Verlag, Berlin, 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

Ps_test are

Copyright© 2007 ps_testware - Gijs Kuiper— Risk assessedUserreglirementiManagement q
Py 22 g) q‘l’ 2 Your devil's advocate

Agenda

® Why RUM
B Theory

B Requirements

B Risk management

B Acceptance criteria
Model RUM
Step-by-step plan of RUM
Conclusion
Questions / Discussion

Ps_test\)gre

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 2 R
Your devil’s advocate

VVSS 2007 11

VVSS 2007 - Verification and Validation of Software Systems Symposium

Why “RUM”

€

Start > End
Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 3 S-tCSt%e
- Yuur devil's advocate
Why “RUM”

B Manage the requirements
B To discover the critical parts of the application
B To gain clear communication

s test\)/

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 4
vuur devil's advocate

12 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Theory — Requirements

B Business requirements
B High level objective
B Why does the company need the application
| Why ...

m User requirements

B What must the user be able to perform using the new
product

® What ...

B System requirements
B How does the new product work
® How ...

s_test\/re

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 5
e ’ ¢ Your devil's advocate

Theory — Risk management

B Risk management
B Risk management is “identify and report”, “classify and
evaluate", "assign and select" and "monitor and
managing" of dangers. It reduces the possibility that in
the future undesirable events will cause damage such
as loss of market share, claims, increased personal
cost and damage to image and reputation.

B Two types of risks
B Project risks: related to the project result. Has been
produced what was originally agreed in the project?
And within budget and time.
B Product risks: related to the product that is
delivered. It can be the application or system that is

newly developed.
ps- test\)/

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 6
vuur devil's advocate

VVSS 2007 13

VVSS 2007 - Verification and Validation of Software Systems Symposium

Theory — Acceptance criteria

B Acceptance criteria
B With acceptance criteria the standard is indicated for a
requirement: the borders between which the end
product must be to get accepted by the owner of the
requirement (stakeholder).

s_test\/re

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 7
e e a ¢ Your devil's advocate

Model “RUM”

« Identify User Requirements

« Product risk identification

« Compare and match user
requirements with product

risk.
« Identify gaps and complete
them if possible - Appoint acceptation criteria
Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 8 %)UF?S]E{R[E

14 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Step-by-step plan of “RUM”

B Phase 1
B |dentify User requirements
B Make use of URH (User Requirement Hierarchy)

m Optional prioritize with Moscow

B Example
B The user must be able to modify a delivery address

s_test\/re

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 9
e ! ¢ Your devil's advocate

Step-by-step plan of “RUM”

B Phase 2
B Identify product risk
B Add Quality attributes and check

B Specify
® Complexity
B Usage frequency
m Likelihood
B Impact

B Example
B The products are not delivered to the customer

s test\)/

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 10
vuur devil's advocate

VVSS 2007 15

VVSS 2007 - Verification and Validation of Software Systems Symposium

Step-by-step plan of “RUM”

B Phase 3

B Compare user requirements with product risk and
match them

B Identify gaps and complete them if possible

®m Example
B The user must be able to add a new customer (req1)
B The user must be able to modify a delivery address
(req2)
B The products are not delivered to the customer (risk1)

s_test\/re

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 11
e ! ¢ Your devil's advocate

Step-by-step plan of “RUM”

B Phase 4
B Appoint acceptance criteria

B Example
B Delivery address of customer can be modified

s test\)/

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 12
vuur devil's advocate

16 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Technical
User Requirement
N:M N:M
N:M A\
« » I\
Acceptance Criteria Product Risk

s_test\/re

Your devil's advocate

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 13

Conclusion

B RUM model
B Requirements management
B Process measurement

m Effort estimation for development and execution
phases,

B Project follow-up
B Risk analysis
m Clear communication

s test\)/

vuur devil's advocate

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 14

VVSS 2007

17

VVSS 2007 - Verification and Validation of Software Systems Symposium

Questions / Discussion

?

Gijs Kuiper
gijs.kuiper@pstestware.com

ps_testware

G. Stephensonweg 14
4207 HB Gorinchem
The Netherlands

www.pstestware.com

Copyright © 2007 ps_testware - Gijs Kuiper — Risk assessed User requirement Management 15

Ps_test%re

Your devil's advocate

18 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Rescop

Requirements engineering
within a GxP regulated industry

ir. B. Aalbers, Partner of Rescop

GxP regulations

GxP regulations

»GxP is an abbreviation for:
=Good Laboratory Practice
=*Good Manufacturing Practice
=Good Clinical Practice
=Good Distribution Practice

»Refers to regulatory quality guidelines applicable to
pharmaceutical, veterinary, medical device and healthcare
industries

»The purpose of the GxP quality guidelines is to ensure a quality
product, guiding product research, development, manufacturing
and distribution.

VVSS 2007

19

VVSS 2007 - Verification and Validation of Software Systems Symposium

Rescop

GxP regulations

GxP regulations

»Core aspects of GxP are:
*Traceability: the ability to reconstruct the history of the
research, development, manufacturing and distribution of a
product.
*Accountability: the ability to resolve who has contributed
what, when and how.

» Documentation is the key
»GxP regulations include requirements for computerized systems

that are used in the research, development, manufacturing and
distribution of products

Rescop

Computerized system

Comp. system » Definition:

Operating
Software procedures &
people
Hardware Equipment

Computer system Confrolled function
(controlling system) of process

Computerized system

Operating environment
(incl. other networked, or standalone computerized systems
, other systems, media, people, equipment and procedures)

»Examples: Lab Equipment, Process Control Systems, Information
Systems, Medical Devices, IT infrastructure

20 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Validation

Rescop

Validation

»GxP regulations require computerized systems used in the
research, development, manufacturing and distribution of products
to be validated

> Definition of validation:

"Establishing documented evidence

that provides a high degree of assurance

that a specific process will consistently produce a product

meeting its pre-determined specifications and quality attributes”
(FDA Guidelines on General Principles of Process Validation, 1987)

»Requirements determine the effectiveness of validation

V-model

Rescop

V-model

L_Jser Performance
Requirements

Specification Qualification

1 1

Functional | > Operational
Specification Qualification

i

3

Technical
Specification

Installation
Qualification

i

3

System build

VVSS 2007 21

22

VVSS 2007 - Verification and Validation of Software Systems Symposium

Rescop

§ w"'\é

User Requirements Specification (URS)

»Describes what the user wants the system to do

»Written by key-user and validation engineer
URS
»Approved by:
=quality representatives (process + IT)
=process expert / -owner

»Authorized by system owner

»Input: Process Description
=Activities supported by the system
=GxP record definition
=Information flow

Rescop

User Requirements Specification (URS)

»Requirement categories:
=Operational requirements, including:
*Requirements per activity of the process description
sInterfaces
=Constraints, including:
*Regulatory requirements, e.g:
v'Security measures
v’ Audit trail
*Environment
*Capacity
*Performance
sLife cycle requirements, including
*Supplier
v'Quality system
v'Input for validation process

URS

VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Rescop

§ w"'\é

User Requirements Specification (URS)

»Requirement characteristics:
=Unique identification
=Measurable / testable

URS =Necessity
=Optional: source

»Depth of user requirements specification depends on the type of
system:
=Standard / off-the-shelf system -> standard components
=Configurable system -> one or more configurable components
=Custom system -> one or more custom components
=Complex system -> mix of component types

Rescop

User Requirements Specification (URS)

»Input for Risk Assessment, to determine:
=Functional / technical requirements
=Procedural measures

URS =Performance Qualification Tests

»Input for Supplier and Product Selection

»Traceability Matrix

VVSS 2007 23

VVSS 2007 - Verification and Validation of Software Systems Symposium

4 Rescop

e [ulatory Sistern Complinnee Parners

i

Case

GxP regulations
Comp. system
Validation
V-model

URS

»Laboratory Information Management System (LIMS)

24 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Performance testing
measurements

Subject: Implementation of conceptual model
for performance test measurements

Presentation: VVSS 2007

By: Jan Rodenburg and Laurence Cabenda
Date: 23 maart 2007
Location: TU Eindhoven

< Collis

——
mm <Collis

Introduction

0,

% Domain of performance testing
* Problem statement

% Tools

% Quality attributes

% Conceptual model for measurement data

X/

*

X/

X/

X/

o

X/

|

» Results
+» Conclusion

>

X/
*

mplementation of conceptual model in Conclusion

VVSS 2007 25

VVSS 2007 - Verification and Validation of Software Systems Symposium

The domain of performance testing
s Why

% “Research turns out that four seconds is the maximum
length of time an average online shopper will wait for a
Web page to load before potentially abandoning a retail
site “— Akamai and Jupiter research team, 2006

< What

+ Requirements
s When

+ Functional testing phase
s How

+ Load testing

+» Stress testing

+ Reliability testing

++ Concurrency testing

——
mm <Collis

Problem statement for research

+ It is hard to get some specific figures out of the
performance test tools

+ Performance measurements are the basis of
representing the results
«* Measurement data has not been generalized so far

¢+ The tool manufacturers provide their own measurement
data

+» Need for a standard set of data on the basis of
analyzing the results for the performance tester

« Comparison of test results

26 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Performance test tools

+«» Commercial tools like
¢ Mercury Loadrunner
+ IBM Rational
+«¢ Borland Silkperformer
«» Freeware tools like:
+¢ The Grinder
+ OpenSTA
+¢ Tools perform their own measurement data
+»» Most of the tools provide their own specific figures and
their own graphs

+ Finding: differences in handling stress situations
between the tools

[|

Quality attributes

X/
*

w ISO/IEC 9126 for software quality

% Leading attributes efficiency and reliability
+» Time behaviour
+» Resource behaviour
«+ Fault tolerance

+ Indicators

++ Transactions per second

% Selection of indicators according to the performance
requirements

VVSS 2007 27

VVSS 2007 - Verification and Validation of Software Systems Symposium

Conceptual model for measurement data

¢ Tool independent model derived from quality
attributes

% Take dependencies of performance testing into
account that influence the response times

% Monitoring of resource attributes are left out for the
present

[|

Presentation of results

+«+ Conceptual model for presenting the results
+¢ Principle is that results can be valuated
+* Presentation by graphics on the basis of

requirements using open source tool
i

iReport
Conceptual i‘>; M
LN

model
|

Measurement
data
generated by
tol

Conversion of
measurement
data

%+ Gap between conceptual model and
measurement data from tools

28 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Conclusion Test Platform

¢+ Used for interface and protocol testing
% Able to send messages to a SUT (System Under Test)
in order to simulate components
+¢ Able to verify the response in order to perform
automated tests
¢ In Conclusion the test scripts, within a test suite can be
programmed in a comprehensible way by
¢ Making use of the scripting language ETDL (Executable
Test Description Language)
+¢ This language is based on the ISO 9646 standard for
protocol/conformance testing.
¢ Used for host testing (Client / Terminal simulation),
database testing, component testing.

——
mm <Collis

Performance testing with Conclusion Test
Platform

+* Ad hoc performance solutions have been created in

the past
+« There is need for a reusable framework!
+» Requirements
+ A reusable performance framework to create load

Use ETDL to create the scripts that generate load

Be able to monitor results wile executing the
performance test

¢ Generate rich reports from the statistics that were
gathered during the performance test

7 7
LA X4

VVSS 2007 29

VVSS 2007 - Verification and Validation of Software Systems Symposium

Types of performance testing

+ Load test
« Stress test

Load test /
Reliability test

Load

+ Stepwise
+» Peak

+» Reliability test

Stress testen (Step)

¢ Concurrency test

Stress test (Peak)

—_T
|

CLP (Conclusion’s Load & Performance)
Model

+ This model is used to organize/create a

performance test in Conclusion’s load &
performance framework

30 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Distributed performance testing with
Conclusion

ETDL
Interpreter

CLP Framework

ETDL
Interpreter

ETDL ETDL
Interpreter Interpreter

CLP Framework LP Framework

[|

Presenting measurement results and GUI

DS

» Conclusion Test Platform GUI
«» Examples of test results by using iReport

*0

Response time Throughput

s
rossesaes guaresiaee £ :‘fl-* | piomed ll,f,-
0 .|||I o |\"l i._. /“1 gm‘:\{ . ?:.\'}d’l]
751 |I|I [Ty L.hv“j 'IV En i o 4 L]
::-.1' ;' J.‘!% EN‘ i o AR A

raspanse tima(s)

101
R R EE T T EEEEEEE
Elapsed time (s) response tima(s)

[IAWOM*WUMII

Avoruge -+ Max + Reguirement

VVSS 2007 31

VVSS 2007 - Verification and Validation of Software Systems Symposium

Conclusions

% Conceptual model can be implemented in the
performance test tool

% Comparison and interoperability of results
¢ A generic and uniform report using different tools

¢ Acceptance of the conceptual model depends on the
use in practice and implementation in existing
(freeware) tools

+ Next step to a complete the model is to support also
the resource related attributes

32 VVSS 2007

WHITE PAPER

VVSS 2007 - Verification and Validation of Software Systems Symposium

Managing .NET performance
across the application life cycle

oftware applications run the enterprise. In order to take
Sadvantage of new technology-enabled business models and
processes, enterprise applications are becoming increasingly
complex and distributed, and more frequently built on Microsoft’s
.NET architecture. Such applications have many moving parts, as
they make use of numerous interconnected technologies spanning
multiple computer systems.

Managing the performance of enterprise .NET applications in

a live production environment has become a difficult problem

that challenges IT organizations’ traditional tools and processes.
This paper will discuss the benefits of managing enterprise .NET
application performance as a process that spans the application life
cycle. It will also illustrate the use of Compuware software products
that address domain-specific performance issues to facilitate this
process.

The enterprise application performance imperative

Enterprise software applications are strategic assets that have
become essential to the competitive operation of any organization.
With the ongoing automation of most customer-facing and internal
operations, a company’s business competence is increasingly judged
by the service provided by its applications. When those applications
perform poorly or become unavailable, it has a negative and
immediate impact on business operations and a longer-term effect on
company image and reputation.

How does this happen? Poor application performance degrades the
user experience. Lack of application availability eliminates the user
experience altogether. If these users are external, such as customers

“Organizations deploying web services environments do so
with the expectation that integrated systems will result in
distributed execution platforms that will collectively support
a given business service.”1

—Enterprise Management Associates (EMA)

or business partners, this should be a cause for great concern

since customers are only a click away from the competition. The
business suffers lost transactions and revenue, customer frustration
and a poor reputation for availability and online presence. Poorly
performing enterprise applications can have a similar effect on
internal users, reducing employee productivity as the business slows
to an uncompetitive pace. If internal users are customer-facing, these
problems can further result in a diminished customer experience.

Needless to say, business reliance on live applications makes it
imperative that software performance and availability problems are
resolved more quickly than ever before. But why do performance
problems happen in the first place? Why do applications that are
tuned satisfactorily in development develop performance problems
later in the application life cycle? Why is it so difficult for IT
operations to solve .NET application performance problems in
production? These are all valid questions that will be explored in the
next several pages.

1 “Reducing the Risks of Managing Web Services Environments,”
a Compuware-commissioned EMA white paper, August 2006.

VVSS 2007 33

VVSS 2007 - Verification and Validation of Software Systems Symposium

Organizational challenges of sustaining application
performance

Enterprise applications have grown up over the years. Mainframe
and monolithic applications gave way to client-server architecture,
which later evolved into three-tier distributed architecture. With
the more recent integration of Internet-based technologies into
mainstream three-tier business applications, we now have highly
distributed, multi-tiered, Internet-enabled enterprise applications.
The number of enabling technologies used in enterprise applications
has increased exponentially over the past 10 years.

During this time developers, QA testers and IT operations analysts
have adapted their practices to accommodate newer technologies,
albeit within the context of their traditional IT silos. From the .NET
perspective, development now creates distributed applications with
.NET technology; QA tests these applications with .NET testing
tools; yet IT operations monitor these applications with traditional
device-centric monitoring tools. This puts IT operations at a
disadvantage when dealing with .NET applications, mainly due to
the lack of visibility into the Common Language Runtime (CLR).
Unlike native applications written in C/C++, Visual Basic, COBOL
or Fortran, .NET applications are hosted in a CLR, a runtime
container that is at the heart of all .NET application servers. The
CLR appears as a “black box” to traditional IT monitoring tools,
which makes diagnosing .NET applications issues problematic for IT
staff.

The resultant communication barrier between IT silos becomes
painfully obvious when a .NET application performance problem
arises in production. IT operations may be alerted to a performance
problem through the help desk or an alert from a monitoring agent.
Those responsible diligently check network and server status,

CPU and memory utilization as well as other components of the
infrastructure to ensure everything is normal. If the IT infrastructure
is operating within acceptable service levels, the application itself
or its runtime environment are blamed. This is mainly due to the
average IT analyst’s lack of understanding of the .NET application
or how to diagnose a performance problem that has no infrastructure
symptoms. In the absence of any expedient options to remedy the
problem, the IT analyst might choose to restart the application,
reboot the application server environment or reboot the entire
server in an effort to “clear” the problem. Unfortunately, this is

only a temporary fix as the problem will recur periodically with no
apparent cause.

34 VVSS 2007

Eventually a triage meeting convenes in which stakeholders attempt
to isolate the problem to a particular device or infrastructure
component. Since no single IT staff member has the tools or ability
to troubleshoot a multi-tiered .NET application performance
problem, the natural tendency is for each member to demonstrate
that his or her part of the infrastructure is performing properly.

The servers are healthy, the network is fine, the database is okay,
and therefore the problem must be with the application. Yet,
developers and testers counter with evidence the application has
passed functional and load testing, and has performed just fine in
production until now.

Triage sessions like this occur in corporate IT departments around
the globe on a regular basis. They are unproductive because
every stakeholder views the problem through the lens of their
own domain-specific tools and knowledge. The problem is not a
deficiency in any one area, but the lack of collaboration between
stakeholders combined with a lack of planning for a .NET
application triage scenario in production. Creating and sustaining
application performance and availability in today’s complex
distributed computing environments calls for a life-cycle process
to manage application performance, and the proper tools to solve
problems quickly through collaboration across IT disciplines.

93 percent of surveyed developers and operations
staff said it was either challenging or very
challenging to quickly identify and resolve .NET
performance problems.2

2 “Go Speed Racer, Go: Make Your .NET Applications Run Mach 5!”
Compuware webcast, August 2006.

VVSS 2007 - Verification and Validation of Software Systems Symposium

The application performance life cycle

To develop, deploy and maintain high-performing applications,
organizations must integrate performance into the application life

Performance-related, life-cycle activities should include:

cycle. This requires enhancing software engineering and IT practices

to include specific performance-related activities at each appropriate
stage of the life cycle, and using the right tools to facilitate those

activities.

Requirements Definition

Architecture and Design

Development

Quality Assurance

Pre-production Deployment

Production

» performance objectives and requirements definition
» architecture and design reviews for performance
» performance testing, tuning and optimization in development

» test case and test suite timing analysis in QA

» pre-production load testing and performance base-lining

» application service-level specification and monitoring

» production-level application performance management.

In practice, the activities are more numerous and detailed, but the
following list should provide a reasonable high-level understanding
of the performance life-cycle discussion that follows.

Business requirements
Technical performance requirements

Architecture definition
Design prototypes
Prototype performance analysis

Code performance analysis
Memory utilization analysis
Code optimization
Performance design review(s)

Functional testing

Test-suite performance metrics
Performance requirements validation
QA performance baselining

Load and stress testing
Application optimization
Performance baselining
Predictive analysis

SLA monitoring

End-user experience monitoring
Network and server monitoring
Production-level performance analysis
SLA compliance reporting

Optimal Trace

DevPartner® Studio

DevPartner® Studio

QACenter Enterprise Edition
DevPartner® Studio

QACenter Performance Edition
Vantage

Vantage

VVSS 2007 35

VVSS 2007 - Verification and Validation of Software Systems Symposium

Planning

During the planning phase, line-of-business stakeholders normally
define application needs and objectives in terms of business processes
and functions using non-technical terminology. While performance
is rarely a consideration at this stage, it is important that business
planners and analysts state their expectations with high-level
performance and capacity objectives.

Such objectives may sound something like this: “maximum response
time of two seconds for a customer lookup transaction”; “must be
able to support 1,200 internal users and up to 30,000 external users
simultaneously”; or “must be able to process 85,000 point-of-sale
transactions per minute from 2,100 retail locations.” Though coarse
and non-technical in nature, these objectives will serve as a starting
point for the requirements and analysis phase of the application life
cycle. They will also be used to determine parameters for application
load testing and production service-level agreements.

Requirements definition

Well-defined requirements are critical because they drive all
subsequent phases of a project. Whether you are building a house,
aroad or a .NET application, requirements dictate the desired

end result. With a house you might specify the number of floors,
rooms and windows while with a software application, well-defined
performance requirements should specify throughput, response times,
scalability and so on.

At this stage, the business unit’s coarse performance objectives
must be translated into more granular technical requirements.
Since the objectives are almost always unclear and incomplete,
software product managers must clarify their intended meaning by
collaborating with line-of-business planners. While this can be a
tedious exercise in patience and communication, it is a critical step
that must be executed correctly to ensure technical requirements
will deliver the results needed to satisfy the intent of the business
objectives.

Recovery
costs

Cost of data
recovery
+
Cost of
external support

7 Extra costs
Productivity

costs

Duration of
outage
X
Number of
people affected

Lost
revenue

Problem Problem
identification identification
+ +
Analysis and Analysis and
resolution resolution
+ +
Validation Validation
testing testing

X

Average % of
lost productivity
X

Average cost
of employee
X
Average
employee
overtime costs

Duration of
outage
X
Percentage of

unrecoverable
business
X
Average
revenue per
hour

Costs before
deployment

Cost of downtime
in production

The cost of problem resolution is far higher when projects are in production.
Performance Management And The Application Life Cycle, Forrester Research, Inc., February 2005.

36 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

When defining performance-related application requirements,

it is important that no implementation assumptions are made.

Good requirements specify the desired result in accurate high-level
technical terms without limiting the implementation options needed
by architecture and design. Legitimate exceptions to this rule would
include limitations passed along from the business unit, such as
compatibility with existing hardware or software.

Clear, formal and measurable performance requirements ensure the
business unit’s performance objectives are considered throughout
the rest of the life cycle. If the software product requirements
process is informal, performance issues are often overlooked until
the last possible moment, which is far too late. Solving application
performance problems in production is very expensive as application
outages and brownouts translate into lost revenue and productivity
costs (see illustration on page 4).

Architecture and design

During the architecture and design phase, technical performance
requirements are further decomposed into elements of a design
proposal. For example, if a three-tier architecture is proposed, the
requirement for a two-second customer lookup transaction must be
broken down into design criteria for the presentation layer, business
logic and database access. As distributed application environments
become more complex, the performance overhead imposed by
network latency, proxy servers and multiple layers of security must
also be considered. In aggregate, the per-tier technical performance
of the proposed design, plus infrastructure latency, should be
comfortably within the stated technical performance requirements
and business objectives.

To meet these requirements, it may be necessary to create more
than one design prototype and measure the performance of each.
Compuware DevPartner Studio is well-suited for this task, with the
ability to collect detailed timing information across multiple tiers of
a .NET application. The results are correlated in a multi-tier view
that quickly identifies and categorizes the most CPU and memory-
intensive classes, methods and lines of code. By comparing the
performance metrics of two prototype implementations, architects
and designers can make design decisions based on accurate timing
data.

Architecture and design staff must remain engaged in
implementation decisions that could affect performance as

the application progresses through development. At least one
performance design review should be conducted prior to feature
completion on smaller applications, while more complex
applications will require several reviews. With developers also

using DevPartner Studio during development and unit testing,
the performance design review is accelerated by the availability of
performance metrics generated automatically during development.

Development

While good architecture and design create a foundation for good
application code, developers actually implement the application
features and functionality as specified in the product requirements
and design specifications. The knowledge and expertise of the
software development team is arguably one of the most critical
determinants of an effective implementation. At this stage in the life
cycle, bad things can happen to good applications.

Poor coding techniques can easily and transparently introduce
performance-robbing side effects into the application code base. A
poorly coded application can easily deliver 100 percent of required
features along with hidden performance bottlenecks, memory
utilization problems and potentially fatal thread synchronization
issues. Such problems may even slip through QA testing unnoticed,
until they are exposed in load testing or live production. By that
time, the cost and business impact of finding and fixing problems
in the application code is significantly higher than if they were
corrected in development.

In the absence of any specific performance requirements, testing
will focus almost exclusively on functionality needed to meet
requirements and pass QA standards. However, with clearly defined
performance requirements, developers must be cognizant of code
performance issues to deliver an implementation that meets those
requirements. If they fail to do so, QA test results should expose
the problems using performance metrics collected during automated
functional testing.

Performance tuning an application is a good development practice
for ensuring code executes quickly with no significant bottlenecks.
Similarly, memory profiling an application in development is
effective for ensuring correct and efficient use of memory resources.
Thread synchronization analysis is a third development-specific task
that can help optimize runtime performance and avoid potentially
fatal thread deadlocks, starvation and race conditions.

In general, developers should consider each and every optimization
has a cumulative effect on improving overall application
performance. In daily practice, developers must remember that any
piece of functionality can be coded in two or more different ways.
By following the architecture and design practice of considering

at least two prototypes on a regular basis, developers can profile
multiple prototypes to identify the best-performing option at the
earliest possible stage. Many performance problems are suitable

VVSS 2007 37

VVSS 2007 - Verification and Validation of Software Systems Symposium

for correction in development, some in QA functional testing
and others in pre-production load testing. When development
optimization is neglected, problems that could have been resolved
early on become more difficult and more expensive to correct.
These problems can further complicate the resolution of load-
related performance issues that may be discovered later in the pre-
production environment.

Performance analysis and optimization tools, such as those found

in Compuware DevPartner Studio, are effective because they
provide developers with metrics to base good optimization decisions
earlier in the application life cycle. That’s not to say development
code optimizations are adequate for ensuring acceptable and
sustained performance throughout the life cycle. On the contrary,
development optimization is only one phase in the performance life
cycle, albeit a very important one that saves time, effort, expense
and unnecessary delays later.

Platform and configuration differences between development, QA,
pre-production and deployment environments dictate the type of
tuning effort that is appropriate at each stage. Without a reasonable
set of guidelines, you’ll spend too much time tuning and optimizing
during the development cycle. In a three-tier .NET application, all
of the presentation-layer components can and should be tuned with
precision by the time the code is feature-complete. At this stage,

it is appropriate to optimize any rich-client .NET code, Active
Server Pages (ASPXs), web services and browser-hosted scripting.
Applications that are exposed as web services need additional
optimization during development, particularly in the marshalling,
un-marshalling and transformation of XML.

In general, applications will perform differently in a production
environment than in a development/test environment, due to
platform architecture and configuration differences. As a result,
performing only coarse-level tuning of these components during
development is more efficient. Further optimization of middle-tier
and back-end components is more precise when code performance
and resource utilization data is collected in a pre-production
environment that closely resembles the target production
environment.

aspnet_wpSnap.dpprf* | 4k x
=-E2] Al Modules: 92 Methods: 7,101 Method List Source [papment.aspe. vb] | S ession Summary |
. % ,E-RW44925N02 2 260 asprict i) Count % of Method % with Children | Time | Methods | Source (]
=128 anuree (1,112) o o o - cro. CommrandText = "RunBilling™
2 :I BNTNET webiipp(:03%.) o, CommandType = 4 'adCmdStore
- AP ordersummary_aspe_731d173c { 0,09%) =
- 77 ASP shippingmethod_aspx_7d12fble { 0.04%) Call Graph Ll .
[T ASP deFaulk_aspx_addasb4s (0.04%) = _A_{ :t:
+] BNTHETCalcShippingths { 0L.03%) 4| B BNTNETWebApp.pa.. . 97.51%, = BNTNETWebApp.pa.. _ 38.15%, SystemString.Concat e
-5 ASP cart_aspx_ba4asf73 { 0.02%) B L% B e
[+ ASP login_aspx_b4924133 { 0,02%)
+ ™ asP shippingaddress_aspx_9e4609F6 { 0.02%) i i Micm“&?;;r;“:lhic'c"' T
- asP products_aspx_c3F4bfaf { 0.01%) 0.00 % &
- AsP itemlist_aspx_98dad915 { 0.01% 3 x o
[#-7™ ASP cartdetails_aspx_aaca4809 (0.01%) Sysm.gﬁbsgsmnsn.. +
4 ™ asPiterlink_aspx_S0dSF3d { 0.01%)
+ 1 AsP.checklogin_aspx_Sb73leds (0.01%) System.Web.ULPage.q...
#-= AsP cartfunctions_aspx_2Z35049F3 { 0,00%) i 39.62 % = s
- ASP.onsale_aspx_63c4796¢ { 0.00%) bedl || &
+ ™ BsP receipt_aspx_ab00eSes | 0.00%) 1 ﬂ j A‘J | Lr_[
4 77 ASP payment_aspx_87307137 { 0,00%)
+- 5] System (95.59%) SR B
Top 20 Source Methods
TerelMsthads i (i) i od i od] Brivate Sub Deviempond il
Top 20 Called Source Methods T
Top, 20 CEllad Methods Dim result str Ls String
WebiHethods 1 0.00 0.00 0.00 ul result_str = "¢
1 a.oo uln) 0.0z 3 For i = 1 To Session("ghevTempChis
50,000 BIE 128 1ebBedh i1 kel stk &= el
50,000 0.52 .07 §.20 [u] Next
1 0.o0 0.o0 0.o0 [u] End Zub
End Class
_V.
[l 3|

Figure 1: By utilizing the performance analysis feature of DevPartner Studio, developers can see which tiers, methods and lines of code that have the most impact on

response time.

38 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

pdanetwinapp...bjects.dpmem

| DrevFartner Memony Analpsis - Temporan object analysiz

frmPDANETWinAppMain...

0 200,000,000

frmPDANETWinAppMain...

frmOrder.cmdSubmitOr...

frmOrder. runTempObjs
frmPDANETWinAppMain... 445,704
frmOrder.frmQrder_Load 334,569

0 200,000,000

4 F X
Entry points that allocate the most memory

626,516,008

400,000,000 600,000,000 800,000,00

Tamporary memory allocaled per execution of enlry point (bytes)
Show Complete Details
Methods that use the most memaory

626,516,008
625,553,578
625,525,000

400,000,000 600,000,000 800,000,00|

Temporary memory allocated per execution of method (byles)

Show Complete Details

Figure 2: DevPartner Studio highlights the methods that use the most short/medium/long-lived temporary objects and provides guidance for resource

optimization when profiling memory allocations and de-allocations.

Quality assurance

QA testers focus primarily on functional testing to ensure
application features and functions meet requirements. Whether
manual or automated testing is performed, the outcome of each
functional test is a pass/fail result indicating whether the code
responded as the tester or test script expected. While an opportunity
exists to measure performance during functional testing, particularly
in automated testing environments, it is usually overlooked and
deferred until after the QA cycle. Seizing the opportunity to identify
latent performance issues during functional testing can avoid the
higher costs associated with finding problems later in pre-production
or live production environments.

With clearly defined performance requirements, QA testers

can develop a performance test plan and associated test suite to
ensure the application meets those requirements. In theory, code
performance can be measured on all tests and test suites beginning
early in the QA cycle. In practice, however, this would produce such
a high volume of detailed timing data that its value would diminish
due to the difficulty of identifying meaningful data. The data could
easily be ignored altogether.

One way to avoid this problem is to map each performance
requirement to the functional tests that exercise code for the
specified feature, operation or transaction. These tests should be

VVSS 2007 39

VVSS 2007 - Verification and Validation of Software Systems Symposium

considered on the performance-critical path. Whenever these
performance-relevant tests are run, performance data should be
automatically collected and compared to the previous run(s) and
to timing thresholds derived from performance requirements. The
comparison should yield a performance pass/fail result based on
requirement thresholds, a faster/slower performance result when
compared to previous test runs and a separate pass/fail result for the
functional test.

In an automated test environment such as Compuware QACenter,
each automated functional test is timed from start to finish. This
wall-clock timing approach is adequate for QA test assessment and
for functional tests that are not on the performance critical path.
Unfortunately it is far too coarse and unreliable for measuring code
performance on the critical path. The same test could be run several
times producing different wall-clock results for each run due to
system loading, network traffic and other environmental factors.
Wall-clock timing can easily generate false or misleading results if
system loading or other environmental factors cause a performance-
related test to execute slowly.

Further complicating this issue is the fact that a small 100-line
.NET program can execute thousands, or even tens of thousands,

of lines of library and system code during a test. When a functional
test executes slowly based on wall-clock timing, there is no effective
means of identifying which class or method of application code is
responsible for the problem. Coarse-level wall-clock timing is simply
inadequate for communicating meaningful information back to
developers. It makes troubleshooting and correcting problems more
difficult and time-consuming in development, that is, without any
specific information on which class, method or line of code was
responsible for the problem.

A proper solution for accurate timing of code under test is
Compuware DevPartner Studio. Its performance analysis feature
can be used in conjunction with automated testing solutions like
QACenter to produce highly accurate and repeatable timing data.
DevPartner Studio performance analysis measures CPU cycles and
execution time with precise granularity, attributing relevant timing
data to each appropriate line of .NET code, method or class in the
application. It also measures separately the time a .NET application
spends executing library code, common language runtime code and
underlying system code. By gathering detailed metrics and excluding
CPU cycles used by code that is not on the performance critical
path, DevPartner Studio is an ideal product to use in conjunction
with QACenter automated testing. When QA performance metrics
indicate that a test has executed slower than a previous run, or

40 VVSS 2007

below threshold requirements, the DevPartner Studio session

file containing detailed timing metrics will quickly reveal the
precise location of the problem to QA testers and developers, thus
reducing the time to resolution. Once an application has passed QA
functional testing, the final set of performance session files should be
archived as the performance baseline for the application in the QA
functional test environment. A separate performance baseline will
be captured during load testing in a pre-production environment.

Pre-production performance assurance

Once an application has reached an acceptable level of quality, it is
typically moved to a pre-production environment that more closely
resembles the production environment. At this stage, IT analysts
normally determine system, network and other resource demands
the application will make when it is moved to the live production
environment. While IT analysts are very concerned with the impact
this new application will have on the production environment and
its inclusive resources, they are not particularly concerned about
the performance of the application code itself. This is precisely
where the interests of development, QA and IT operations begin to
diverge.

The pre-production stage is likely the first time in the application
life cycle that the code will execute in an environment similar

to the target production environment. Load testing a feature-
complete application in a pre-production environment is one of
the best predictors of real-world application performance, and has
become a common practice for delivering enterprise-class business
applications. This environment is suited to test and measure an
enterprise application’s ability to scale to peak user loads while
maintaining required service levels.

Before full-scale load testing can be performed, a trial load test with
a small number of users exercising key transactions will normally
reveal an obvious scalability problem somewhere in the application.
Since a .NET application is distributed over multiple nodes and
network segments, technicians must somehow isolate which part

of the application or infrastructure is responsible for the problem.
The diagnostic work and resources required to isolate such problems
can become very complex and often unwieldy. Compuware Vantage
offers a solution to this problem.

Vantage is an effective solution for isolating and troubleshooting
application transaction performance problems in pre-production and
production environments. It identifies the causes of poor end-user
response times wherever they reside—on client workstations, the

VVSS 2007 - Verification and Validation of Software Systems Symposium

Configuration: 512 kbps, 20 2%, 15 me _vj Fesponze Time: B.635 secs Mew Configuration
u W R
Measured

+ - I 2,179 seconds
4000 kbps, 10 %, 15 ms

+
154 kbps, 20 %, 15 ms

+
-

b E12 kbps, 20 %, 15 ms

- 3277 seconds

. 3.935 seconds

+ Response Time Breakdown
+ Total Resource Time
+ Settings
- Top S Threads
HTTR:[POST DA JavaiehLogindction.do HTTPH 0]

+ '] 1.740 seconds

HTTR:[GET PDAJavaebimagesimagemapares. gif HTTPHM 1]

+

|

1.232 zeconds
HTTR:[GET PDAJavaebimagestophanner jog HTTRM]

+ 0.517 seconds

HTTR:[GET PDAJavavebimagestophanner jog HTTRM 1]
0.504 seconds

1

+

1

HTTR:[GET PDAJavaebimages/Sthhex gif HTTRM 1]

+ _. 0.492 seconcs
M Client [Server [Bandwidth Time [Latency Bl Congestion Bl TCP Effect
Conversation: {AII :J e e
Bandwidth: |512 | Keps Link Type: | Full Duplex
Load:]20 _r_]]z _:j Overhead: iD
Round Trip Latency: 115 [typical Campus) _v_] mSec

¢ Metwork 1 Application] Nodes] Thread Detal j Ad\ranced]

Figure 3: With Vantage, you can see the response time of a transaction in various networked environment configurations and adjust numerous characteristics (such
as bandwidth, latency and load) to predict what will happen in a production environment.

network, servers or even in the application itself—thus eliminating
time-consuming guesswork. Vantage also provides a predictive
troubleshooting component that allows network administrators to
see the impact of various performance adjustments on transaction
response time, such as:

» modifying bandwidth, latency and load
» increasing/decreasing the power of a server (see below)

» changing application turns for individual “thread” components,
varying TCP window size.

Once the coarse-level scalability problems are resolved, the
application is ready for load testing with a much larger number of
users. Like functional testing, load testing can involve a manual or
automated testing methodology. As one might readily conclude,

manual load testing calls for a vast number of client computers
along with the appropriate number of human testers needed to
exercise the application by following a manual test script. To the
vast numbers of enterprise application users, manual load testing is
normally prohibitive in terms of time, resources and potential for
error. Surprisingly, some applications are still tested this way.

On the other hand, automated load testing software products

are able to simulate hundreds or thousands of virtual users on a
single computer. Each virtual user exercises the application using
automated test scripts. Automated load testing tools not only
require far fewer humans than manual testing, but also provide the
opportunity to stress-test an application by scaling the number of
virtual users to a level beyond anticipated use. The result is a very
powerful testing solution that no enterprise software organization
should be without.

VVSS 2007 41

VVSS 2007 - Verification and Validation of Software Systems Symposium

Compuware QACenter Performance Edition provides accurate

and scalable load testing by emulating hundreds or thousands of
simultaneous virtual users. It can run large, accurate and repeatable
load tests using only minimal hardware resources. With its powerful
data management tool, QACenter Performance Edition creates
valid and accurate test data that is representative of real-world use,
further ensuring load test results will accurately predict application
performance and availability in production.

When an application performance problem is uncovered this late
in the application life cycle, it is important to execute an expedient
resolution to keep the project on schedule. The challenge, then,

is to enable pre-production IT staff to collect data that is suitable
for developers to analyze and fix the problem quickly. Although

performance analysis tools like DevPartner Studio can collect
this detailed data, their use in a production or pre-production
environment is not appropriate for IT analysts. IT analysts

need the capability to collect detailed performance data for the
developers, but with a feature set and user interface geared to the
IT operations professional.

Compuware Vantage is the appropriate solution. Vantage makes it
easy for IT operations staff to zero in on .NET problems without
requiring a high level of .NET expertise. It provides actionable
insight into enterprise .NET application performance problems,
facilitates better communication between IT silos and helps
identify the responsible stakeholders quickly.

=1zl x|
Fle Edit Yiew Tools Window Help
A E=E R A
OE] Yiiserver analysis for:D:\Program Fi = Ellzl i [] 3]
Bolts_LoadTest_003 tim
Applicstion Server: Context SwitchesiSec
Reports =
140000
£ 120000 ‘
2
< 100000
o
£ BO000
2
5 &O0000
=
ﬁ 40000 -
L 200.00-:
ooo
0.00 400.00 800.00 120000 160000 200000 0.00 400.00 800.00 120000 160000 2000.00
Elap=ed Time (Seconds) Elapsed Time (Seconds)
— Bolts_LoadTest_003:172.22 461 8:System: Context Switches/sec — Bots_LosdTest_003:172 .22 46.18: TCP: Connections Reseat
Erars
!’ii[heckpoint data for:D:\Program FiIes"w.,Eompuware"-.‘QALoad"m,TimingFiIes"w.,BoIts-_Lnai‘.ITﬁs’l__ [= | EI|_X|
4
ﬁpl User Response Time, Total Running Yidual Users, Web Server % Processar Time
™
Client Throughput 360.00 I 48000
330.00 1 44000
300.00 ~400.00 5
—~ 27000 -3e000 §
4 3
= 240.00 -32000 &
2 21000 ~ze000
2 15000 24000 3
L s
B £ 15000 F20000 3
=] A
£ 12000 ~180.00 Q
Checkpaints & 9000 F12000 §
F b
e, 60.00 &0.00
— 3000 - 4000
Server Monitoring 0.00 I | ! 1 1] 1 0ao
T 0.00 200,00 400.00 500,00 60000 100000 120000 140000 160000 180000 2000.00
El o Til =t ich
Top Processes spsed Time (Seaaneds]
RIF Files - Bolt=_| oadTest_003:Web_Test: Transaction Duration = Boltz_L oadTest_003WWeb_Test: TotalvUs
= — Bolt=_l oadTest_003:172.22 46 15 Processor: % Processar Time: _Total
[i! Botts_LoadTest_003 tim I
Ready

Figure 4: QACenter Performance Edition has the flexibility to modify a test while it runs, allowing testers to add and remove users to speed up

problem resolution.

42 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Custom Dashboards, NETBoltsMThings MET

0000000000000 0000000

ASP NET Overview -

83% S\,
All Web Methods

ASPY Weh Pages

b

System Information

.

CLR Heap

Shippil ASPX MyOrders ASPX Products ASPX ItemDetail ASPX
MET Weh Services
getCheap Shipper getShipper Court get Shipperinfo Bylndes: get Shipper Info ByGhipper No getTatShipping
i
.4 ¥
Hidle gauge data - Show gauge chart - VA Metrics/.Het/All ASP Methods
Ietric definition
Thu, 12:55:08 A
Show dashboardigauge data i
Low Limit ™ Value ™ High Limit ™
Instance ™~ 5 T
JEMTMET payment sk 63037 o B903 67 1000
SBRTHET . shippingmethod aspix 17T 6 1] 1776 1000 w

Figure 5: The Vantage Web Services Dashboard provides a user-customizable interface to monitor the overall health of an application. It can be
made up of one or more gauges based on user-selected metrics, such as WMI and/or method-level data.

Vantage provides analysis capabilities that go right to the source of
specific problems such as CPU/Wait Time-intensive program code
and transactions, as well as long-running SQL statements, thus
exposing the root cause of .NET application performance, availability
and scalability problems. When used in conjunction with QACenter
Performance Edition during pre-production load testing, VVantage
captures performance data on .NET components that can lead
developers quickly and easily to the source of the problem.

Once an application has been optimized to pass load testing
requirements, the final set of load test and performance session files
should be archived as the performance baseline for the application as
measured in the pre-production environment.

Production deployment

Once the application is deployed in a production environment, it

is subjected to environmental forces that cannot be controlled or
anticipated during development, QA or pre-production. The effects
of system-level and infrastructure changes, application server updates

and other environment changes made by peer applications all add up
to a dynamically changing runtime environment that becomes less
representative of the pre-production environment over time.

Deploying an enterprise application today also requires meeting
service level agreements (SLAs). While a newly deployed application
may indeed meet SLAs comfortably, there is no guarantee that it

will continue to do so over time. Myriad factors in the ever-changing
production environment can contribute to changes in application
performance.

Performance problems that arise in production can negatively
impact the business immediately, and need to be resolved quickly
and effectively. Unfortunately, once an application goes live, it is
in the domain of IT operations, out of the reach of developers and
their application-centric tools. Network analysts, systems analysts
and other support staff monitor the infrastructure in which the
application runs, and possibly even the application server container
in which it runs, but have little knowledge about the health of the
.NET application itself.

VVSS 2007 43

VVSS 2007 - Verification and Validation of Software Systems Symposium

When a production application falls below required service levels,
an alert may be triggered or calls may begin to flood the help desk.
In either case, IT analysts take notice. They look at server, database
and network utilization, but rarely come up with a root cause in
short order. Once they figure out everything seems to be “performing
normally” in the infrastructure, the development organization is
consulted. While operations can confirm an application has slowed
to a crawl, there is usually very little useful information they can
offer developers.

-~
1

Vantage is ideally suited to bridging the gap between IT operations
and development in application triage scenarios like the one we've
just described. Vantage provides continuous monitoring of .NET
application performance and resource utilization without impacting
production-level performance. It monitors and reports on SLA
compliance, and captures detailed and actionable data at the
moment an SLA threshold is exceeded. When IT operation staff
members respond to an alert from Vantage, they can quickly review
the nature of the SLA violation and navigate to the root cause

of the problem in a .NET application. If the problem requires the
involvement of development, Vantage session data will provide the
information developers need in .NET terminology they understand,
and in the context of their application and source code.

|Ei|e Edit Rucleus Administration MReports Window Help

[£ Reset] [Wl Freeze [
| SLA Maonitaring
#| SLAName SLA& Monitoring | SLA Limit [Current Wa_.| Last (NS) SLA |Last (NS)
Field [value(s..| (see) | Violation Time | Violation

;Ac:c:ogthQF_‘ .i(.i)ne Time Exceed

PaymentASPX
_;g_c_countASP)(
My ASPR

1406406 11:58 |7 875

[11.m610 11:55 |1 438

ERINRCECYE 5 rert | Domsin Informstion

Mirimize(-)

.| Lo File [Email .| DB Log [Externa.. | | Clip]

.| Endlled |Enab..| Enabled | Enabled ||

|-Aaent Summary

et e |
& || & [& &
g | & &

¥ @ &

Y vl ¢

il .A_q_ent cPU éé_i Agent Heap |

] va ntage Analyzer Agent CPU Chart

Agent CPU %

100 4
75
a0
25

Tirme

[BorshThings |

Save Graph as Image ” Cloze ‘

ot &
23:61:30 235200 23:52:30 23:53:.00 235330 235400 23:54:30 23:5500 23:55:30 23:56:00

[Global Method Statistics | Glokbal SL Statistios
Method Statistics
Class Naihe: | BNTHETWebipp payment
Method Name: | Page | oad(obiect Evertargs)
I W ooothe: Bl 0%soL

Tatal CPU Time Statistics

0% EsternalfSocket

1 Total Transaction Time Statistics

CPU Time Mat In Childd Calls: 04105 || Transaction Time Mot In Child Calls: 1584 =
CPU Mot In Child Calls % 0437 % | | Tranzaction Time Mot In Child Calls % 0419 %
[T []

| Stalled Threads | Transaction Expiorer | Transaction Scope | Method HotSpots | SOL HotSpats | SLa Monitoring | /1=

] ™ Memory Utilization
151 {
z |
=
T
| = |
| g 814
o
2 |
a 1
238 2353 2354 2385 235
Time
W BN |
Minimize(-)
Throughput D Method Response Time
= BNTHNE TWobApp payTRant Fage_Load
~| ®Responze Time = |
é 14
2 |
Total Invocation Statistics 2 8
Total Invocations: 37 limes § J‘ LAURRE| A N RN NN RN
Throughput! 270 Sec): 0115 txizec 2253 2354 2355 2355
Avyg Responze Time: 7589 = Last 270 seconds
Total Methodd Time: 280779 2

[8 Bt Trengs Ressorrmse Time Sec |

heceived Data Packet 104 - DataInterval 3 seconcs. |

onnected @ hion, 11:56:06 FM

Figure 6: The Vantage SLA view can be configured to trigger alarms, such as sending a page/e-mail or run a command, to alert administrators of
degraded performance, resource starvation, hung transactions, system response-time issues or the approach of system transaction capacity.

44 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

In addition to improving communication between IT operations and
development on .NET issues, Vantage can also help IT operations
communicate valuable transaction data back to QA. QA functional
and load tests normally exercise a wide range of application

features, functions and transactions with equal distribution. With
production-level data on transaction counts and .NET component
utilization from Vantage, QA groups can improve test effectiveness
by modifying test parameters to more closely resemble real-world
scenarios.

Often, the 80/20 rule applies to software utilization: 20 percent

of the code executes 80 percent of the time. Armed with specific
information on which .NET components make up the “hot” 20
percent, .NET developers can make incremental optimizations

on that code while QA can improve test suites to identify how
these optimizations will improve performance under real-world
utilization scenarios. While a 0.0001 second optimization may seem
insignificant by itself, when multiplied by the frequency of real-
world execution, which can easily be millions of times per day, the
cumulative performance is both significant and measurable.

Once an application or portfolio of applications has been deployed
with acceptable performance results, ongoing monitoring and
management of applications and infrastructure is an important factor
for documenting SLA compliance and ensuring sustained application
performance.

In the earlier section “Organizational challenges of sustaining
application performance,” we explored the gaps in traditional IT
monitoring tools in the context of diagnosing .NET application
performance problems. Many organizations measure service only

at the device level, leaving performance issues undetected until
users begin to complain. When service delivery is approached as an
integrated whole, IT organizations must manage both infrastructure
performance, as well as application service-levels, to meet business
demands and priorities. To accomplish this, IT organizations need
proper tools to:

» measure end-user experience of application availability and
response times

» prioritize performance issues based on their business impact

» systematically resolve problems via accurate analysis of
performance issues

» monitor and analyze application performance automatically and
continuously across the client, network, server and database tiers

» capture performance analysis information at the time of service-
level exceptions

» integrate all monitoring and measurements into useful,
management-level reports that expedite service and support, and
reduce confusion and delay.

Vantage integrates deep performance analysis with robust end-user
experience monitoring, providing the ability to follow a transaction
over the network and into the data center. When the end-user
performance of an application degrades, the Vantage CNS (Client,
Network, Server) Exception report provides a top-down, end-to-end
view of the poorly performing transaction. With a glance, it's easy to
determine whether a performance problem resides with the client,
network or server environment. When the CNS Exception report
indicates a server problem, technical staff can drill down quickly
into a Vantage View to determine whether a slow ASPX page is
application-intensive, or if it is waiting on back-end processing such
as SQL or third-party calls. Having this unique visibility provides

a method by which IT staff can agree where performance problems
reside and makes assigning and resolving the problem a cinch.

“Businesses struggling to stabilize support costs and protect
themselves against the inherent risks of managing web
services environments should definitely evaluate this solution
(Vantage).”3

—Enterprise Management Associates (EMA)

Compuware Vantage delivers on the promise of comprehensive,
integrated application service management. Vantage helps IT
organizations manage application performance from the perspective
that matters most: the end user. With response time metrics
integrated with end-to-end performance analysis, Vantage enables
IT managers to proactively identify and rapidly resolve tough
performance problems. By managing applications at the business,
transaction and infrastructure level, Vantage provides the critical
insight needed to improve application service and maximize the
value of application and infrastructure investments.

3 “Reducing the Risks of Managing Web Services Environments,”
a Compuware-commissioned EMA white paper, August 2006.

VVSS 2007 45

VVSS 2007 - Verification and Validation of Software Systems Symposium

Conclusion Compuware offers a wide range of products and services that help IT
organizations worldwide meet application performance requirements
throughout the application life cycle. Compuware DevPartner
Studio helps developers and QA testers improve .NET application
performance during the early stages of the application life cycle.
Compuware Vantage helps pre-production QA testers and IT
operations ensure .NET application performance during the latter
stages of the application life cycle.

Creating and sustaining application performance and availability
in today’s complex distributed computing environments calls for

a life-cycle process to ensure application performance, and the
proper tools to solve problems quickly through collaboration across
IT disciplines. Enterprise application performance planning must
begin at the earliest possible stage, preferably at the business-

unit level, even prior to technical requirements and analysis.

Clearly defined performance requirements offer the best assurance Vantage is an essential tool for IT organizations responsible
application performance will be considered from architecture and for maintaining service level agreements on enterprise .NET

design, through development and QA, and on into the production applications. Vantage moves beyond the capability of traditional IT
environment. monitoring tools, giving IT organizations visibility into the Common

Language Runtime “black box,” and reports actionable data that
expedites problem resolution while improving communication
between development, QA and IT operations.

Software defects, both functional and performance-related, are
extremely expensive to fix once an application has reached
production. By adhering to best practices at each stage of the
application life cycle, application performance can be optimized
properly at each stage, avoiding costly downtime and application To learn more about Vantage, visit
brownouts.

www.compuware.com/vantage

Compuware products and professional services—delivering IT value

Compuware Corporation (NASDAQ: CPWR) maximizes the value IT brings to the business by helping ClOs more effectively manage the
business of IT. Compuware solutions accelerate the development, improve the quality and enhance the performance of critical business
systems while enabling CIOs to align and govern the entire IT portfolio, increasing efficiency, cost control and employee productivity
throughout the IT organization. Founded in 1973, Compuware serves the world's leading IT organizations, including 95 percent of the

Fortune 100 companies. Learn more about Compuware at www.compuware.com.

OMEVWAR,
SRRV o,

Compuware Corporation Corporate Headquarters f;;v W
One Campus Martius COMPUWARE@%{ %;
M‘k‘q 000

Detroit, MI 48226 % S
www.compuware.com igEss

For regional and international office contacts, please visit our web site at www.compuware.com

46 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Fault Diagnosis of Embedded Software using Program Spectra*

Peter Zoeteweij' Rui Abreu!

Rob Golsteijn?

Arjan J.C. van Gemund!

'Embedded Software Lab,
Software Engineering Research Group, TU Delft
.zoeteweij,r.f.abreu,a.j.c.vangemund{Q@tudelft.nl
P J J g

INXP

rob.golsteijn@nxp.com

Abstract

Automated diagnosis of errors detected during soft-
ware testing can improve the efficiency of the de-
bugging process, and can thus help to make soft-
ware more reliable. In this paper we discuss the
application of a specific automated debugging tech-
nique, namely software fault localization through
the analysis of program spectra, in the area of em-
bedded software in high-volume consumer electron-
ics products. We discuss why the technique is par-
ticularly well suited for this application domain,
and through experiments on an industrial test case
we demonstrate that it can lead to highly accurate
diagnoses of realistic errors.

Keywords: diagnosis, program spectra, auto-
mated debugging, embedded systems, consumer
electronics.

1 Introduction

Software reliability can generally be improved
through extensive testing and debugging, but this
is often in conflict with market conditions: software
cannot be tested exhaustively, and of the bugs that
are found, only those with the highest impact on
the user-perceived reliability can be solved before
the release. In this typical scenario, testing reveals
more bugs than can be solved, and debugging is
a bottleneck for improving reliability. Automated
debugging techniques can help to reduce this bot-
tleneck.

The subject of this paper is a particular auto-
mated debugging technique, namely software fault

*This work has been carried out as part of the TRADER
project under the responsibility of the Embedded Systems
Institute, and is partially supported by the Netherlands Min-
istry of Economic Affairs under the BSIK03021 program.

localization through the analysis of program spec-
tra [11]. These can be seen as projections of execu-
tion traces that indicate which parts of a program
were active during various runs of that program.
The diagnosis consist in analyzing the extent to
which the activity of specific parts correlates with
errors detected in the different runs.

Locating a fault is an important step in actually
solving it, and program spectra have successfully
been applied for this purpose in several tools focus-
ing on various application domains, such as Pin-
point [4], which focuses on large, dynamic on-line
transaction processing systems, AMPLE [5], which
focuses on object-oriented software, and Tarantula
[9], which focuses on C programs.

In this paper, we discuss the applicability of
the technique to embedded software, and specif-
ically to embedded software in high-volume con-
sumer electronics products. Software has become
an important factor in the development, marketing,
and user-perception of these products, and the typ-
ical combination of limited computing resources,
complex systems, and tight development deadlines
make the technique a particularly attractive means
for improving product reliability.

To support our argument, we report the outcome
of two experiments, where we diagnosed two differ-
ent errors occurring in the control software of a par-
ticular product line of television sets from a well-
known international consumer electronics manufac-
turer. In both experiments, the technique is able
to locate the (known) faults that cause these errors
quite well, and in one case, this implies an accuracy
of a single statement in approximately 450K lines
of code.

The remainder of this paper is organized as fol-
lows. In Section 2 we explain the diagnosis tech-
nique in more detail, and in Section 3 we discuss
its applicability to embedded software in consumer
electronics products. In Section 4 we describe our

VVSS 2007 47

VVSS 2007 - Verification and Validation of Software Systems Symposium

experiments, and in Section 5 we discuss how our
current implementation can be improved. In Sec-
tion 6 we discuss related work. We conclude in
Section 7.

2 Preliminaries

In this section we introduce program spectra, and
describe how they are used for diagnosing software
faults. First we introduce the necessary terminol-

ogy.

2.1 Failures, Errors, and Faults

As defined in [3], we use the following terminology.

e A failure is an event that occurs when deliv-
ered service deviates from correct service.

e An error is the part of the total state of the
system that may cause a failure.

e A fault is the cause of an error in the system.

To illustrate these concepts, consider the C func-
tion in Figure 1. It is meant to sort, using the
bubble sort algorithm, a sequence of n rational
numbers whose numerators and denominators are
passed via parameters num and den, respectively.
There is a fault (bug) in the swapping code of block
4: only the numerators of the rational numbers are
swapped. The denominators are left in their origi-
nal order.

A failure occurs when applying RationalSort
yields anything other than a sorted version of its
input. An error occurs after the code inside the
conditional statement is executed, while den[j] #
den[j+1]. Such errors can be temporary: if we
apply RationalSort to the sequence (%, %, %), an
error occurs after the first two numerators are
swapped. However, this error is “canceled” by later
swapping actions, and the sequence ends up being
sorted correctly. Faults do not automatically lead
to errors either: no error will occur if the input is
already sorted, or if all denominators are equal.

The purpose of diagnosis is to locate the faults
that are the root cause of detected errors. As such,
error detection is a prerequisite for diagnosis. As
a rudimentary form of error detection, failure de-
tection can be used, but in software more powerful
mechanisms are available, such as pointer checking,
array bounds checking, deadlock detection, etc.

In a software context, faults are often called bugs,
and diagnosis is part of debugging. Computer-aided
techniques as the one we consider here are known
as automated debugging.

48 VVSS 2007

void RationalSort(int n, int *den
)
{ /* block 1 */

int i,j,temp;

int *num,

i--) {

for (i=n-1; i>=0;
/* block 2 */
for (j=0; j<i; j++) {
/* block 3 */
if (RationalGT (numl[jl, den[j],
num[j+1], den[j+1])
) {
/* block 4 */
temp = num[j];
num[j] = num[j+1];
num[j+1] = temp; } } }

Figure 1: A faulty C function for sorting rational
numbers

2.2 Program Spectra

A program spectrum [11] is a collection of data that
provides a specific view on the dynamic behavior
of software. This data is collected at run-time, and
typically consist of a number of counters or flags for
the different parts of a program. As such, record-
ing a program spectrum is a light-weight analysis
compared to other run-time methods, such as, e.g.,
dynamic slicing [10].

As an example, a block count spectrum tells how
often each block of code is executed during a run
of a program. In this paper, a block of code is a
C language statement, where we do not distinguish
between the individual statements of a compound
statement, but where we do distinguish between
the cases of a switch statement!. Suppose that the
function RationalSort of Figure 1 is used to sort
the sequence <%, %, %, %}, which it happens to do
correctly. This would result in the following block
count spectrum, where block 5 refers to the body
of the RationalGT function, which has not been
shown in Figure 1.

block |
count |

1 2 3 4 5
1 4 6 3 6
Block 1, the body of the function RationalSort,
is executed once. Blocks 2 and 3, the bodies of the
two loops, are executed four and six times, respec-
tively. To sort our example array, three exchanges
must be made, and block 4, the body of the con-
ditional statement, is executed three times. Block
5, the RationalGT function body, is executed six
times: once for every iteration of the inner loop.
If we are only interested in whether a block is
executed or not, we can use binary flags instead

1This is a slightly different notion than a basic block,
which is a block of code that has no branch.

VVSS 2007 - Verification and Validation of Software Systems Symposium

N parts errors
Tl Ti2 TIN el
T21 T22 TaN e2
M spectra
TM1 TM2 TMN eMm
S1 52 SN

Figure 2: The ingredients of fault diagnosis

of counters. In this case, the block count spectra
revert to block hit spectra. Beside block count /hit
spectra, many other forms of program spectra exist.
See [7] for an overview. In this paper we will work
with block hit spectra, and hit spectra for logical
threads used in the software of our test case (see
Section 4.1).

2.3 Fault Diagnosis

The hit spectra of M runs constitute a binary ma-
trix, whose columns correspond to N different parts
of the program (see Figure 2). In our case, these
parts are blocks of C code. In some of the runs an
error is detected. This information constitutes an-
other column vector, the error vector. This vector
can be thought of as to represent a hypothetical
part of the program that is responsible for all ob-
served errors. Fault localization essentially consists
in identifying the part whose column vector resem-
bles the error vector most.

In the field of data clustering, resemblances be-
tween vectors of binary, nominally scaled data, such
as the columns in our matrix of program spectra,
are quantified by means of similarity coefficients
(see, e.g., [8]). As an example, the Jaccard similar-
ity coefficient (see also [8]) expresses the similarity
s; of column j and the error vector as the number
of positions in which these vectors share an entry
1 (i.e., block was exercised and the run has failed),
divided by this same number plus the number of
positions in which the vectors have different entries:

o a11(4)
—ann(j) + ao(§) + a1o(j) M)

where apq(7) = |{i | zi; =pAei =q}|, and p,q €
{0,1}.

Under the assumption that a high similarity to
the error vector indicates a high probability that
the corresponding parts of the software cause the
detected errors, the calculated similarity coefhi-
cients rank the parts of the program with respect
to their likelihood of containing the faults.

To illustrate the approach, suppose that we apply
the RationalSort function to the input sequences
Li=()I=(3)Is=(}1) and Is = (1,3.9),
I=(135 1) and Io = (3.5, 5: 1

201/

I, I, and Ig are already sorted, and lead to
passed runs. I3 is not sorted, but the denomina-
tors in this sequence happen to be equal, in which
case no error occurs. I, is the example from Sec-
tion 2.1: it is not sorted, and an error occurs during
its execution, but this error goes undetected. Only
for I5 the program fails. The calculated result is
<%, %, %, %) instead of (%, %, %, %>, which is a clear
indication that an error has occurred.

The block hit spectra for these runs are as follows
('’ denotes a hit), where block 5 corresponds to
the body of the RationalGT function, which has
not been shown in Figure 1.

block

input 3 error
1y
I
I3
Iy
I5

Ig

e e e
— = === Ol N
—_ === OO
O~ = = O Ok
[e =] Ky
ORr O OO

For this data, the calculated Jaccard coeflicients are
81 = %, 89 = %, $3 = i, sS4 = %, S5 = i, which (cor-
rectly) identifies block 4 as the most likely location
of the fault.

3 Relevance to Embedded

Software

The effectiveness of the diagnosis technique de-
scribed in the previous section has already been
demonstrated in several articles (see, e.g., [1], [4],
[9]). In this paper we present the benefits and dis-
cuss the issues specifically related to debugging em-
bedded software in consumer electronics products.
Especially because of constraints imposed by the
market, the conditions under which this software
is developed are somewhat different from those for
other software products:

e To reduce unit costs, and often to ensure
portability of the devices, the software runs
on non-commodity hardware, and computing
resources are limited.

e As a consequence, many facilities that devel-
opers of non-embedded software have come to
rely on are absent, or are available only in rudi-
mentary forms. Examples are profiling tools
that give insight in the dynamic behavior of
systems.

e At the same time, the systems are highly con-
current, and operate at a low level of abstrac-
tion from the hardware. Therefore, their de-
sign and implementation are complicated by

VVSS 2007 49

VVSS 2007 - Verification and Validation of Software Systems Symposium

factors that can largely be abstracted away
from in other software systems, such as dead-
lock prevention, and timing constraints in-
volved in, e.g., writing to the graphics display
only in those fractions of a second that the
screen is not being refreshed.

e On top of challenges that the entire software
industry has to deal with, such as geograph-
ically distributed development organizations,
the strong competition between manufactur-
ers of consumer electronics makes it absolutely
vital that release deadlines are met.

e Although important safety mechanisms, such
as short-circuit detection, are sometimes im-
plemented in software, for a large part of the
functionality there are no personal risks in-
volved in transient failures.

Consequently, it is not uncommon that con-
sumer electronics products are shipped with sev-
eral known software faults outstanding. To a cer-
tain extent, this also holds for other software prod-
ucts, but the combination of the complexity of the
systems, the tight constraints imposed by the mar-
ket, and the relatively low impact of the majority
of possible system failures creates a unique situa-
tion. Instead of aiming for correctness, the goal is
to create a product that is of value to customers,
despite its imperfections, and to bring the reliabil-
ity to a commercially acceptable level (also com-
pared to the competition) before a product must
be released.

The technique of Section 2 can help to reach
this goal faster, and may thus reduce the time-to-
market, and lead to more reliable products. Spe-
cific benefits are the following.

e As a black-box diagnosis technique, it can be
applied without any additional modeling ef-
fort. This effort would be hard to justify under
the market conditions described above. More-
over, concurrent systems are difficult to model.

e The technique improves insight in the run-time
behavior. For embedded software in consumer
electronics, this is often lacking, because of the
concurrency, but also because of the decentral-
ized development.

e We expect that the technique can easily be in-
tegrated with existing testing procedures, such
as overnight playback of recorded usage sce-
narios. In addition to the information that er-
rors have occurred in some scenarios, this gives
a first indication of the parts of the software
that are likely to be involved in these errors. In

50 VVSS 2007

the large, geographically distributed develop-
ment organizations that we are dealing with,
it may also help to identify which teams of de-
velopers to contact.

e Last but not least, the technique is light-
weight, which is relevant because of the non-
commodity hardware and limited computing
resources. All that is needed is some memory
for storing program spectra, or for calculating
the similarity coefficients on the fly (which re-
duces the space complexity from O(M x N)
to O(N), see Section 5). Profiling tools such
as gcov are convenient for obtaining program
spectra, but they are typically not available in
a development environment for embedded soft-
ware. However, the same data can be obtained
through source code instrumentation.

While none of these benefits are unique, their com-
bination makes program spectrum analysis an at-
tractive technique for diagnosing embedded soft-
ware in consumer electronics.

4 Experiments

In this section we describe our experience with ap-
plying the techniques of Section 2 to an industrial
test case.

4.1 Platform

The subject of our experiments is the control soft-
ware in a particular product line of analog televi-
sion sets. All audio and video processing is imple-
mented in hardware, but the software is responsible
for tasks such as decoding remote control input,
displaying the on-screen menu, and coordinating
the hardware (e.g., optimizing parameters for au-
dio and video processing based on an analysis of
the signals). Most teletext? functionality is also
implemented in software.

The software itself consists of approximately
450K lines of C code, which is configured from a
much larger (several MLOC) code base of Koala
software components [12].

The control processor is a MIPS running a small
multi-tasking operating system. KEssentially, the
run-time environment consists of several threads
with increasing priorities, and for synchronization
purposes, the work on these threads is organized
in 315 logical threads inside the various compo-
nents. Threads are preempted when work arrives
for a higher-priority thread.

2A standard for broadcasting information (e.g., news,
weather, TV guide) in text pages, very popular in Europe.

VVSS 2007 - Verification and Validation of Software Systems Symposium

100

80

60

Load %

e wiew
DL LT RN R o L L e]

40 M g] e

.

-

20

0 20 40 60 80 100 120 140 160
sample

Figure 3: CPU load measured per second

The total available RAM memory in consumer
sets is two megabyte, but in the special developer
version that we used for our experiments, another
two megabyte was available. In addition, the devel-
oper sets have a serial connection, and a debugger
interface for manual debugging on a PC.

4.2 Faults

We diagnosed two faults, one existing, and one that
was seeded to reproduce an error from a different
product line.

Load Problem. A known problem with the spe-
cific version of the control software that we had
access to, is that after teletext viewing, the CPU
load when watching television (TV mode) is ap-
proximately 10% higher than before teletext view-
ing. This is illustrated in Figure 3, which shows the
CPU load for the following scenario: one minute
TV mode, 30 s teletext viewing, and one minute of
TV mode. The CPU load clearly increases around
the 60th sample, when the teletext viewing starts,
but never returns to its initial level after sample 90,
when we switch back to TV mode.

Teletext Lock-up Problem. Another product line of
television sets provides a function for searching in
teletext pages. An existing fault in this function-
ality entails that searching in a page without visi-
ble content locks up the teletext system. A likely
cause for the lock-up is an inconsistency in the val-
ues of two state variables in different components,
for which only specific combinations are allowed.
We hard-coded a remote control key-sequence that
injects this error on our test platform.

4.3 Implementation

We wrote a small Koala component for recording
and storing program spectra, and for transmitting
them off the television set via the serial connec-
tion. The transmission is done on a low-priority

thread while the CPU is otherwise idle, in order
to minimize the impact on the timing behavior.
Pending their transmission via the serial connec-
tion, our component caches program spectra in the
extra memory available in our developer version of
the hardware.

For diagnosing the load problem we obtained hit
spectra for the logical threads mentioned in Sec-
tion 4.1, resulting in spectra of 315 binary flags.
We approached the lock-up problem at a much finer
granularity, and obtained block hit spectra for prac-
tically all blocks of code in the control software,
resulting in spectra of over 60,000 flags.

The hit spectra for the logical threads are ob-
tained by manually instrumenting a centralized
scheduling mechanism. For the block hit spectra we
automatically instrumented the entire source code
using the Front [2] parser generator.

In Section 2.3 we use program spectra for differ-
ent runs of the software, but for embedded software
in consumer electronics, and indeed for most inter-
active systems, the concept of a run is not very
useful. Therefore we record the spectra per trans-
action, instead of per run, and we use two different
notions of a transaction for the two different faults
that we diagnosed:

e for the load problem, we use a periodic notion
of a transaction, and record the spectra per
second.

e for the lock-up problem, we define a transac-
tion as the computation in between two key-
presses on the remote control.

4.4 Diagnosis

For the load problem we used the scenario of Fig-
ure 3. We marked the last 60 spectra, for the second
period of TV mode as ‘failed,” and those of earlier
transactions as ‘passed.’ In the ranking that follows
from the analysis of Section 2.3, the logical thread
that had been identified by the developers as the
actual cause of the load problem was in the sec-
ond position out of 315. In the first position was a
logical thread related to teletext, whose activation
is part of the problem, so in this case we can con-
clude that although the diagnosis is not perfect, the
implied suggestion for investigating the problem is
quite useful.

For the lock-up problem, we used a proper er-
ror detection mechanism. On each key-press, when
caching the current spectrum, a separate routine
verifies the values of the two state variables, and
marks the current spectrum as failed if they assume
an invalid combination. Although this is a special-
purpose mechanism, including and regularly check-
ing high-level assert-like statements about correct

VVSS 2007 51

VVSS 2007 - Verification and Validation of Software Systems Symposium

behavior is a valid means to increase the error-
awareness of systems.

Using a very simple scenario of 23 key-presses
that essentially (1) verifies that the TV and teletext
subsystems function correctly, (2) triggers the error
injection, and (3) checks that the teletext subsys-
tem is no longer responding, we immediately got
a good diagnosis of the detected error: the first
two positions in the total ranking of over 60,000
blocks pointed directly to our error injection code.
Adding another three key-presses to exonerate an
uncovered branch in this code made the diagno-
sis perfect: the exact statement that introduced
the state inconsistency was located out of approxi-
mately 450K lines of source code.

5 Discussion

Especially the results for the lock-up problem have
convinced us that program spectra, and their ap-
plication to fault diagnosis are a viable technique
and useful tool in the area of embedded software in
consumer electronics. However, there are a number
of issues with our implementation.

First, we cannot claim that we have not altered
the timing behavior of the system. Because of its
rigorous design, the TV is still functioning properly,
but everything runs much slower with the block-
level instrumentation (e.g., changing channels now
takes seconds). Ome reason is that currently, we
collect block count spectra at byte resolution, and
convert to block hit spectra off-line. Updating the
counters in a multi-threaded environment requires
a critical section for every executed block, which
is hugely expensive. Fortunately, this information
is not needed, and we believe we can implement a
binary flag update without a critical section.

Second, we cache the spectra of passed trans-
actions, and transmit them off the system during
CPU idle time. Because of the low throughput of
the serial connection, this may become a bottle-
neck for large spectra and larger scenarios. In our
case we could store 25 spectra of 65,536 counters,
which was already slowing down the scenarios with
more than that number of transactions, but even
with a more memory-efficient implementation, this
inevitably becomes a problem with, for example,
overnight testing.

For many purposes, however, we will not have
to store the actual spectra. In particular for fault
diagnosis, ultimately we are only interested in the
calculated similarity coeflicients, and all similarity
coefficients that we are aware of are expressed in
terms of the four counters agg, ap1, @10, and aiy in-
troduced in Section 2.3. If an error detection mech-
anism is available, like in our experiments with the

52 VVSS 2007

lock-up problem, then these four counters can be
calculated on the fly, and the memory requirements
become linear in the number columns in the matrix
of Figure 2.

6 Related Work

Program spectra themselves were introduced in
[11], where hit spectra of intra-procedural paths are
analyzed to diagnose year 2000 problems. The dis-
tinction between count spectra and hit spectra is
introduced in [7], where several kinds of program
spectra are evaluated in the context of regression
testing. In the introduction we already mentioned
three practical diagnosis/debugging tools [4, 5, 9]
that are essentially based on the same diagnosis
method as ours. A recent study, reported in [1], in-
dicates that the choice of the similarity coefficient,
as introduced in Section 2.3 can be of significant
influence on the quality of the diagnosis.

As we mentioned in Section 3, we are dealing
with a black box diagnosis technique that can be
applied without additional knowledge about a sys-
tem. An example of a white box technique is
model-based diagnosis (see, e.g., [6]), where a diag-
nosis is obtained by logical inference from a formal
model of the system, combined with a set of run-
time observations. White box approaches to soft-
ware diagnosis exist (see, e.g., [13]), but software
modeling is extremely complex, so most software
diagnosis techniques are black box.

7 Conclusion

In this paper we have demonstrated software fault
diagnosis through the analysis of program spectra,
on a large-scale industrial test case in the area of
embedded software in consumer electronics devices.
In addition to confirming established effectiveness
results, our experiments indicate that the technique
lends itself well for application in the resource-
constrained environments that are typical for the
development of embedded software.

While our current experiments focus on
development-time debugging, they open corridors
to further applications, such as run-time recovery
by rebooting only those parts of a system whose
activities correlate with detected errors.

8 Acknowledgments

We would like to thank Pierre van de Laar for valu-
able comments on an earlier version of this paper.

VVSS 2007 - Verification and Validation of Software Systems Symposium

References

[1] R. Abreu, P. Zoeteweij, and A. J. C. van
Gemund. An evaluation of similarity coef-
ficients for software fault localization. In
Proceedings of PRDC’06, pages 39-46. IEEE
Computer Society, 2006.

[2] L. Augusteijn. Front: a front-end generator
for Lex, Yacc and C, release 1.0, 2002. See
http://front.sourceforge.net/.

[3] A. Avizienis, J.-C. Laprie, B. Randell, and
C. E. Landwehr. Basic concepts and taxonomy
of dependable and secure computing. IEEE
Trans. Dependable Sec. Comput., 1(1):11-33,
2004.

[4] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox,
and E. Brewer. Pinpoint: Problem determi-
nation in large, dynamic internet services. In
Proc. of the 2002 Int. Conf. on Dependable
Systems and Networks (DSN), pages 595-604.
IEEE Computer Society, 2002.

[5] V. Dallmeier, C. Lindig, and A. Zeller.
Lightweight defect localization for Java. In
A. P. Black, editor, Proceedings of ECOOP
2005, volume 3586 of LNCS, pages 528-550.
Springer-Verlag, 2005.

[6] J. de Kleer and B. C. Williams. Diagnosing
multiple faults. Artif. Intell., 32(1):97-130,
1987.

[7] M. J. Harrold, G. Rothermel, R. Wu, and
L. Yi. An empirical investigation of program
spectra. ACM SIGPLAN Notices, 33(7):83—
90, 1998.

[8] A. K. Jain and R. C. Dubes. Algorithms for
clustering data. Prentice-Hall, Inc., 1988.

[9] J. A. Jones, M. J. Harrold, and J. Stasko. Vi-
sualization of test information to assist fault
localization. In Proceedings of ICSE 2002,
pages 467-477. ACM Press, 2002.

B. Korel and J. Laski. Dynamic program slic-
ing. Information Processing Letters, 29:155—
163, 1988.

T. Reps, T. Ball, M. Das, and J. Larus. The
use of program profiling for software mainte-
nance with applications to the year 2000 prob-
lem. In M. Jazayeri and H. Schauer, editors,
Proceedings of ESEC/FSE 97, volume 1301 of
LNCS, pages 432-449. Springer—Verlag, 1997.

[12] R. van Ommering, F. van der Linden,
J. Kramer, and J. Magee. The Koala compo-
nent model for consumer electronics software.
IEEE Computer, March 2000.

[13] F. Wotawa, M. Strumptner, and W. Mayer.
Model-based debugging or how to diagnose
programs automatically. In T. Hendtlass
and M. Ali, editors, Proceedings of IAE/AIE
2002, volume 2358 of LNCS, pages 746-757.

Springer-Verlag, 2002.

About the Authors

Peter Zoeteweij works in the Software Engineer-
ing Research Group at Delft University of Tech-
nology. He holds an MSc. from Delft University
of Technology, and a PhD. from the University of
Amsterdam, both in computer science. Before his
PhD., Peter worked for several years as a software
engineer for Logica (now LogicaCMG), mainly on
software for the oil industry.

Rui Abreu is a PhD. student at the Embedded
Software Lab within the Software Engineering Re-
search Group at Delft University of Technology.
He holds an MSc. in Computer Science and Sys-
tems Engineering from Minho University, Portugal.
Through his thesis work at Siemens R&D Porto,
and professional internship at Philips Research, he
acquired industrial experience in the area of em-
bedded systems.

Rob Golsteijn holds an MSc. in Computing Sci-
ence from Eindhoven University of Technology and
completed the two years’ post-graduate Software
Technology program from the Stan Ackermans In-
stitute. Rob now works for NXP, formerly known
as Philips Semiconductors, and has experience in
embedded software development of television plat-
forms and products. Rob is currently working as
a member of an industrial research project focus-
ing on reliability of resource-constrained consumer
devices.

Arjan J.C. van Gemund holds a BSc. in physics,
and an MSc. (cum laude) and PhD. (cum laude)
in computer science, all from Delft University of
Technology. He has held positions at DSM and
TNO, and currently serves as a full professor at
the Electrical Engineering, Mathematics, and Com-
puter Science Faculty of Delft University of Tech-
nology, heading the Embedded Software Lab within
the Software Engineering Research Group.

VVSS 2007 53

VVSS 2007 - Verification and Validation of Software Systems Symposium

Polysgégﬁ

marc.lalo@polyspace.com

R
Ar

Polysgégﬁ

How design flaws are introduced
using Design Automation Tools

And how Model-Based Design tools
partially solve these issues

How Abstract Semantic can solve
these issues

And how is this linked to Software
reliability?

© PolySpace Technologies 1999-2006: All Rights reserved 2

54 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

PonSpé?é

TECHMOLOGIES

pING

far

And how Model-Based Design
tools partially solve these issues

R
At i g

2
PolySpace
Consider a simple example Z_’ :

The user performs a “z=a + b”
operation

“a” and “b” may be entries of the model
“a” and “b” ranges may be known and specified at
the model level
Automatic code generator generates
z=a+b;
The code generator could saturate the output

Leads to an inefficient code (size, speed) given all
i operations potentially need saturation

© PolySpace Technologies 1999-2006: All Rights reserved 4

VVSS 2007

55

VVSS 2007 - Verification and Validation of Software Systems Symposium

D
PolySpace
del 2 -
Three factors at least — for overflows bt | °

Data type & scaling choices made for “a” and “b”
Some done via auto-scaling tools
Some done by hand by the user

© PolySpace Technologies 1999-2006: All Rights reserved 5

D
PolySpace
(& =
Three factors at least — for overflows bt | 2

Data type & scaling choices made for “a” and “b”

The data flow & values carried by “a” and “b”
This depends on
The design itself

Calibration used
Sometimes arbitrary chosen

© PolySpace Technologies 1999-2006: All Rights reserved 6

56 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

PolySpace
gel . —
—Z
Three factors at least — for overflows b +
| g WP N R © | QP LI - PRGN R 1 Pt R [11 Mg
Ldld Lype (o3 Uaung Crioices lll'dde 10 d dlld D

S
The data flow & values carried by “a” and “b”

The way the model has been tested
Tests cases chosen in the test plan
Stimuli used during simulation

How the model is debugged
Which parts of the model are monitored during simulation

10
I
i{ . - N
Ll) Jér:w'; = ';:\‘L‘{fv—"iiﬁ - © PolySpace Technologies 1999-2006: All Rights reserved 7
y RHHOM)GIEE
' f\
,'I. i
i{- [%
b g —égr: ‘J_ 5, ';‘\‘_'-z";:_) © PolySpace Technologies 1999-2006: All Rights reserved 8

VVSS 2007

57

VVSS 2007 - Verification and Validation of Software Systems Symposium

Design weaknesses can just flow
into generated C code!

Examples :

= Division by zero (an internal computation may lead to a
null denominator for very specific values)

= Overflow in not limited accumulator (increment within a
closed-loop)

* Interface between generated code and hand-written
code (e.g.: code in state flows).

y RHHOI.DGIEE
5] petyspace medelECAINil bues Mathe... [= B8] 51 polyspace_modelFC/Unit bugs Overflows. .
L M&’"m Forit Tocks e i Fle Edt View Smuaton Format Tools Help
D&l = b « fioo
e D& i} » o= fl0 He
(mw
... -]
= wa
x] —
[e=n g i)
CH Pz
=
] mad En)
- i
T —
o, A
e e
> Lan]
C D)
e s
(=)
] e
i
It 1 F 0% odeds Fl100% ode45
| _— —
W
-Nrﬁ_x_.\'}_,";_::_:,} © PolySpace Technologies 1999-2006: All Rights reserved 10

58 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

PolySpace

How can these design flaws be
found other than by testing?

A semantic for the language has to
be defined

This is possible with the C language
The data flow must be analyzed
For all possible stimuli, test case,
For all possible data
We'll see how abstract semantic can
find these flaws

fa
.
c{- bz, 2 - NG — _ ’
__J:m:«__,: {;fi':;;?_-ﬁ '\"\x.‘}:";;-::") - = RS © PolySpace Technologies 1999-2006: All Rights rese!

rved 11

PolySpace

%%& ®

And how is this linked to Software
reliability?

—————
At E g

VVSS 2007

59

VVSS 2007 - Verification and Validation of Software Systems Symposium

PolvS = What do conventional techniques
OoREE bring?

Techniques
Techniques q

Dynamic Testing, Unit Testing
Manual review

Simulation
Compleadly Metrics White Box Testing (Code
Programming Rules Coverage)

ﬁ/ % %ﬁh % © PolySpace Technologies 1999-2006: All Rights reserved 13

PolvS ’égé Unique & Powerful Solution
y=RaCE on semantically strong languages

How to check: x =x/ (x-y); ?

Y

/

T
x
X
ki % %@ ‘% © PolySpace Technologies 1999-2006: Al Rights reserved 14

60 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

PonSpace
Input1
s Entries
- sy Overflow?
-500 to 500 e n
) | - (03| Math operations
DEEe eI el (- Divide, add,
min/max,
product,
o »: -~ substract,
S ol sum...
b3
Tates ASAP2 data export ASAW
Kiand | Lookup tables
4 Maps, surfaces,
+ Consiants | [JiyiSioN Y 16708 sigorinms,
2 Can befro polatlons
tuned from - a Ad'usted tuned
I '297}3 ?’03 e == : .
PonSpace
Model Based design tools allows to
extract ranges coming from the model
And link them to the C code level
nrtwdemn asapZ' |Z”E‘E‘
D ﬁ-ﬂé EQ_ b= o0 [Noma || Abstract
] Semantic can
use all the
e available
Gan2 | Lockinz ranges in the
<demunstrates ASAPZ data export. ASAPZ |Sadata|deﬂmtmn standa)n_' model for
- - data, signals,
entries,
maps...
:\r -é—,-,__:a-__:,) © PolySpace Technologies 1999-2006: All Rights reserved 16

VVSS 2007 61

VVSS 2007 - Verification and Validation of Software Systems Symposium

PonSpace

TECHNOLOGIES

Abstract Semantic can work on auto-
generated code — C or C++ language — to
prove reliability and detect design flaws

B Polyspace Viewer - C:WolySpace resul
Fin Fdt Took “_“lhnn Halp

CI R R Y

Sy MO A

=) riwdemo _asap? *

File Edit Wiew Simulation Format Tools Help

b & B »on [00 [Nome]| B

1] x

o

17 #* Sumi 'sRoot/Sws' ind

* * L] * UnitDelay: 'sEogtay,
A o

LookUOp1) | ~0okUp3 i1 D 40 rth_Switch = {uintd_T) [

Ouf 41
42 /% RelationalOperator:
- 4“4
Gain2 LookUp2 4% Cutpore: *sRootsfOut
LEY.Out = ct tE
demonstrates ASAP2 data export. ASAP2 is a data definition standan v 47
< | b 48 FY Bwitekr *
— — 49 1f{cth_Reloy

D

PonSpace

TECHNOLOGIES

How does it impact reliabiltiy?

Monitoring Software Reliability Leveﬁ
= What is the distribution of defects over components
of varying size ?

=Use a relative measure —proportion.

Y axis = Defects (red and orange)

Total (red, orange, & green)

Infastructurs Component Quality

e X axis =Components

62 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

PonSpnéiée

ECHNOLOGIES

&

What are the conclusions?

Integration between Mathworks and PolySpace
enables efficient code inspection of automated
code generation.

To control software quality over time, PolySpace
provides measurements of the software process.

PolySpace frees designers time who can spend
more time developing instead of debugging.

VVSS 2007 63

VVSS 2007 - Verification and Validation of Software Systems Symposium

PonSpace

TECHNOLOGIES

Decreases debugging effort and functional test
disruption
Find design errors such as poor scaling choices,
dictionary inconsistencies, and other design issues in
the model
Prior to functional test/in-the-loop simulations

Facilitates design edits, debugging, and roundtrip
engineering
Easy navigation from the flaw back to the relevant
section of the Simulink model

Streamlined workflow from software design to
code production.
Automate both code production and code verification
In DO 178B and IEC 61508 contexts

© PolySpace Technologies 1999-2006: All Rights reserved 21

PonSpace

TECHNOLOGIES

G

Thanks for your attention!!!
www.polyspace.com

==
At

64 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Automated Software Testing and Release with
Nix Build Farms

Eelco Dolstra Eelco Visser
Utrecht University Delft University of Technology
eelco@cs.uu.nl visser@acm.org

1 Introduction

Continuous integration [7] is a good software engineering practice. The idea
is that each software development project should have a fully automated build
system. We can then run the build system automatically to continuously pro-
duce the most recent version of the software. Every time a developer commits a
change to the project’s version management system, the continuous integration
system checks out the source of the project, runs its automated build process,
and creates a report describing the result of the build. The latter might be
presented on a web page and/or sent to the developers through e-mail.

Of course, developers are supposed to test their changes before they commit.
The added advantage of a continuous integration system (apart from catching
developers who do not test their changes) is that it allows much more in-depth
testing of the component(s) being developed:

o The soltware may need to be built and tested on many different platforms
(i.e., portability testing). It is infeasible for each developer to do this before
every cominit.

e Likewise, many projects have very large test sets (e.g., regression tests in
a compiler, or stress tests in a DBMS) that can take hours or days to run
to completion.

e Many kinds of static and dynamic analyses can be performed as part of
the tests, such as code coverage runs and static analyses.

e [t may also be necessary to build many different varianis of the software.
For instance, it may be necessary to verify that the component builds with
various versions of a compiler.

¢ Developers typically use incremental building to test their changes (since
a full build may take too long), but this is unreliable with many build
management tools (such as Make), i.e., the result of the incremental build
might differ from a full build.

VVSS 2007

65

66 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

e It ensures that the software can be built from the sources under revision
control. Users of version management systems such as CVS and Subver-
sion often forget to place source files under revision control.

e The machines on which the continuous integration system runs ideally
provides a clean, well-defined build environment. [f this environment is
administered through proper SCM techniques, then builds produced by
the system can be reproduced. In contrast, developer work environments
are typically not under any kind of SCM control.

e In large projects, developers often work on a particular component of the
project, and do not build and test the composition of those components
(again since this is likely to take too long). To prevent the phenomenon of
“big bang integration”, where components are only tested together near
the end of the development process, it is important to test components
together as soon as possible (hence continuous integration).

A continuous integration system can also produce releases automatically.
That is, when an automatic build succeeds (and possibly when it fails!), the
build result can be packaged and made available in some way to developers and
users. For instance, it can produce a web page containing links to the packaged
source code for the release, as well as binary distributions. The production of
releases fits naturally in the actions described above: the build process of the
component should produce the desired release artifacts, and the presentation of
the build result will be the release web page.

2 Build farms

The machines on which the continuous integration system runs are sometimes
referred to as a build farm [8], since to support multi-platform projects or large
sets of projects, a possibly large number of machines is required. In its simplest
form, a build farm sits in a loop building and releasing software components from
a version management system. These are its jobs. For each job, it performs the
following tasks:

1. It obtains the latest version of the component’s source code from the
version management system.

2. It runs the component’s build process (which presumably includes the
execution of the component’s test set).

3. It presents the results of the build (such as error logs) to the developers,
e.g., by producing a web page.

Examples of build farms include CruiseControl [10], Tinderbox [6], Sisy-
phus [12] and Anthill [11]. However, these tools have various limitations:

VVSS 2007 - Verification and Validation of Software Systems Symposium

e They do not manage the build environment. The build environment con-
sists of the dependencies necessary to perform a build action, e.g., compil-
ers, libraries, ete. Setting up the environment is typically done manually,
and without proper SCM control (so it may be hard to reproduce a build
at a later time). Manual management of the environment scales poorly in
the number of configurations that must be supported.

Suppose that we want to build a component that requires a certain com-
piler X. We then have to go to each machine and install X. If we later
need a newer version of X, the process must be repeated all over again.
An ever worse problem occurs if there are conflicting, mutnally execlusive
versions of the dependencies. Thus, simply installing the latest version
is not an option. Of course, we can install these components in different
directories and manually pass the appropriate paths to the build processes
of the various components. But this is a rather tiresome and error-prone
process.

e They do not easily support variability in software systems. A system may
have a great deal of build-time variability: optional functionality, whether
to build a debug or production version, different versions of dependencies,
and so on. (For instance, the Linux kernel now has over 2,600 build-time
configuration switches.) It is therefore important that a build farm can
easily select and test different instances from the configuration space of
the system to reveal problem, such as erroneous interactions between fea-
tures. In a continuous integration setting, it is also useful to test different
combinations of versions of subsystems, e.g., the head revision of a com-
ponent against stable releases of its dependencies, and vice versa, as this
can reveal various integration problems.

e A special case of variability is building many different compositions of ver-
sions of components, as this can reveal information useful from the per-
spective of continuous integration. Consider the real-life example shown
in Figure 1 of two compilers: Stratego [13], a language based on strategic
term rewriting; and Tiger, an implementation of the Tiger language [1] in
Stratego. Suppose that both compilers have stable releases (e.g., Stratego
0.16 and Tiger 1.2) but are also under active development. Then there
are various kinds of information that the Stratego and Tiger developers
might want to obtain from the continuous integration system:

The Tiger developers want to know whether the most recent devel-
opment version of Tiger (its HEAD revision) still builds. Here it is
appropriate to build Tiger against a stable release of Stratego (i.e.,
0.16), since when a build failure occurs the developers can then be
reasonably certain that the cause is in Tiger, not Stratego.
However, the Tiger developers may also want to know whether their
current source base is synchronised with possible changes in the Strat-
ego compiler; i.e., whether the HEAD revision of Tiger builds against
the HEAD revision of Stratego.

VVSS 2007 67

VVSS 2007 - Verification and Validation of Software Systems Symposium

Stratego HEAD

Figure 1: Multiple ways of combining component revisions

— Likewise, the Stratego developer may want to build the stable release
of Tiger against the HEAD revision of Stratego, so that Tiger can
act as a large regression test for Stratego.

This pattern is quite common in large projects where development is split
among several development groups who every so often make releases avail-
able to other groups.

3 The Nix build farm

We have previously developed the Niz deployment system [5, 4, 3], which has
precisely the properties needed to address the problems of managing the build
environment and supporting variability. As a source-based deployment system,
Nix has a functional language (the Niz expression language) to describe how to
build components and how to compose them. This allows the build environ-
ment to be expressed in a self-contained and reproducible way, and it enables
variability to be expressed by turning components into functions of the desired
variabilities. The functional language also abstracts over multi-platform builds
— Nix automatically dispatches the building of subexpressions to machines of
the appropriate type.

Nix also stores components in such a way that variants of components do
not interfere with each other (e.g., overwrite each other) and that prevents
undeclared dependencies. The build result of each component instance is stored
in the file system under a cryptographic hash of all inputs involved in building
the component, such as its sources, build scripts, and dependencies such as
compilers. For instance, a build of a particular job (Stratego/XT) might be
stored under

/nix/store/09058krddyr8vwqk97yq. . . ~strategoxt

If any input differs between two component build actions, then the resulting
components will be stored in different locations in the file system and will not
overwrite each other. Thus, conflicting dependencies such as different versions
of a compiler no longer cause a problem; they are stored in isolation from each
other. At the same time, if any two components between different build farm
jobs have the same inputs, they will be built only once. This prevents unneces-
sary rebuilds.

68 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

<job id=’patchelf-head’>
<input id=’job’ type=’svn’
url="https://.../repos/trace/release/trunk’ />
<input id=’patchelfHead’ type=’svn’
url="https://.../repos/trace/patchelf/trunk />
<job-script>generic-dist/build+upload.sh</job-script> [2]
<arg>./jobs/nix/patchelf.nix</arg>
<arg>patchelfHeadRelease</arg> [4]
<arg>http://nix.cs.uu.nl/dist/stratego</arg>
<notify-address>somebody@example.org</notify-address>

</job>

Figure 2: A build job (simplified)

Contrary to most build farms (except [12]), the Nix build farm integrates
testing and release management. That is, if a build succeeds, the result is a
web page containing packages that can be installed directly by interested users
through a variety of mechanisms, such as Linux RPM packages, Nix “channels”,
or Mac OS X installable packages.

The Nix build farm eurrently running at Utrecht University is used for a
wide variety of open source packages, ranging from compiler suites such as
the Stratego/XT program transformation system and the firmware of Philips
televisions (in collaboration with Philips Research) to entire operating system
distributions (the experimental NixOS). It runs on a variety of Unix platforms,
Mac OS X, and Windows.

4 Implementation

This section gives a sketch of the build farm that we implemented using Nix.
The build farm at present is not much more than a set of fairly simple scripts
to run jobs, to build the desired release products such as various kinds of binary
distributions, and to produce release pages. The “heavy lifting” of managing the
environment is provided by Nix. Thus, the process of adding a job to the build
farm consists essentially of writing Nix expressions that describe components
and their dependencies.

The current Nix build farm consists of a number of components. At the
highest level, there is a supervisor script (supervisor.pl) that reads build jobs
from a file (jobs.conf) and executes them in circular order. The jobs file is in
XML format. Figure 2 shows an example of the declaration of a build job for
the HEAD revision of PatchELF, a small open source component developed by
the first author. It specifies the locations of the inputs to the build (as URLs
of Subversion repositories) [T, the name of the script that performs the job [2],
and its command-line arguments [3]. Each input is fetched from its Subversion
repository. The path of the job script is relative to the input that has ID job.

The supervisor sends e-mail notification if a job fails (or if it succeeds again

VVSS 2007

69

VVSS 2007 - Verification and Validation of Software Systems Symposium

inputs: distBaseURL:
with (import ../..) inputs.nixpkgs.path; [8]
rec {

patchelfTarball = input: svnToSourceTarball "patchelf" input { [9]
inherit (pkgs) stdenv fetchsvn;
buildInputs = [pkgs.autoconf pkgs.automake];

}s

patchelfNixBuild = input: pkgs: nixBuild (patchelfTarball input) {
inherit (pkgs) stdenv;
¥

patchelfRelease = input: makeReleasePage {
fullName = "PatchELF";
contactEmail = "eelco@cs.uu.nl";
sourceTarball = patchelfTarball input;
nixBuilds = [

(patchelflNixBuild input pkgsLinux}

1;
inherit distBaseURL;

}s

patchelfHeadRelease = patchelfRelease (inputs.patchelfHead);

Figure 3: Build farm Nix expression for PatchELF

after it has failed previously) to the address specified in the job [6]. To prevent
a flood of repeated e-mail messages for a failing build, after a job fails, the
supervisor will not schedule it again until a certain time interval has passed. This
interval increases on every failure using a binary exponential back-off method.

Note that the supervisor is completely Nix-agnostic: it does not care how
jobs are performed. It is up to the job seript to perform the build in some
arbitrary way.

The job seript build+upload.sh, on the other hand, uses Nix to perform a
build. It instantiates and builds a Nix expression specified as a command-line
argument (e.g., ./jobs/nix/patchelf.nix at [3]). This Nix expression is a function
that takes as arguments the paths of the inputs declared in the XML job decla-
ration (i.e., at [I]), and the target URL of the release page (specified at [5]). This
function must return a derivation, which is Nix terminology for a component
build action. This derivation is expected to produce a release page, which is an
HTML page describing the release, plus an arbitrary set of files associated with
the release (such as source or binary distributions, manuals to be placed online,
and so on).

70 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Eile EoR \ew Go Bookmarks Tools Help Qo

PatchELF release patchelf-0.1pre3663

This is a bad release: one or more of its build steps failed. See below for details. This release should not be used for
production purposes.

This page provides rel2ase patchel-0.1pre3663 of PatchELF. It was generated automatically on 2005-08-23 08:34:55 UTC from revision 3653 of the
path 'patchelftrunk of its Subversion repository (the XML recard of the build job is availabla)

Distribution

source distibution

@ patchelf-0.lpreihbd. car. g (85020 bytes; MDS hash: 566613051 #e90fDccBS155a2bal 9e330)

Channel
This release can be installed through Nix, a system for software deployment. It has been built for the following platforms:
* (686-linux

You can install this package and keep it up to date by subscribing to the channe! patchalf-unstabie by once executing

§ nix-channel --add http://nix.ce.uu.nl/dist/nix/channels-v3i/patchelf-unstable
§ nix-channel update [
§ nix-env -i patchelf-0.1prol66d

and then running

§ nix-channel --update
$ nix-anv -u patehslf

avery time you want to upgrade 10 the latest release,

Alternatively, if you have Nix 0.8 installed, and have associated the application/nix-package MIME type with the nix- install -package
script in your wab browser, you can install the package simply by dlicking on the links below.

The channel tains the foll g prebuilt

_ Name | System |
tchell-0.1p1e3663 | i586-fresbsd
patchall-0 1pre3853 | i686-linux

Figure 4: Release page for PatchELF

Figure 3 shows the Nix expression ./jobs/nix/patchelf.nix that builds a re-
lease for PatchELF. (For details on the Nix expression language, the reader
is referred to [3, 4].) Release pages are produced by the function patchelfRe-
lease that accepts a single argument input that points to the component’s
source code as obtained by the seript build4+upload.sh by performing a checkout
from PatchELEF’s Subversion repository. A release page produced by patchel-
fRelease is shown in Figure 4.

The actual production of the release page is done by the generic release page
builder function makeReleasePage (brought into scope in the with-expression
at [8]). It accepts many arguments, only some of which are shown in the
PatchELF example:

e The name of the component (e.g., "PatchELF").
e A contact e-mail address placed on the generated release pages.

e The target URL (e.g., distBaseURL) of the release page. The release page
builder does not perform uploads itself (since that is impure) but it needs
the target URL for self-references in the release page.

VVSS 2007

71

VVSS 2007 - Verification and Validation of Software Systems Symposium

Fie Edit Wiew Go Bookmarks Tools Help o

pkg release rev all | source Nixi686 :eodr:r; :’::::r: SuSE 9.0 Re:: at nodist
patchelf 0.1pre3se3 3663 | ¥ s v
nixpkgs < v |
nixpkgs v v
nixpkgs 0 " s
nix b g v ' b4 v v
nix 0.9pred577 3577 | X g v I x s v
nixpkgs 0.9preds7d 3574 v v
nix 0.8pre3500 3500 | X v v v X v v
nix 0.9pre3492 3402 | R v v v X v v
nixpkgs 0.9preddzd 3424 « 4
nix 0.9pre3417 3417 | X s s x x x X
nixpkgs 0.9pre3415 3415 | o v | start 2005-07-25 08:58:00 UTC
nix 0.9pre3404 3404 | X < b 4 b 4 b 4 X X
nix 0.9pre3401 3401 | X s b 4 x b 4 b 4 X
nix 3401 3401 | X X X X b 4 x 4 s

72 VVSS 2007

Figure 5: Release overview

e A derivation that builds a source distribution (sourceTarball), e.g., the file
patchelf-0.1pre3663.tar.gz that can be downloaded, compiled, and installed
by users. The source distribution is produced from the Subversion sources
(i.e, input) by the function patchelfTarball [9]. (A tarball is a Unix collo-
quialism for a source distribution.) Here too the actual work is done by
an external generic function svnToSourceTarball.

o A list of derivations that perform normal builds of the component from the
source distribution (nixBuilds). These are used to automatically populate
a channel to which users can subscribe, and to generate packages that
can be installed directly from the web page by clicking on them (“one-
click installations”). In this case the builds are produced by the function
patchelfNixBuild [T0], which in turn uses the (poorly named) generic func-
tion nixBuild.

e Similarly, makeReleasePage accepts attributes for the component’s manual,
coverage analysis builds, and RPM packages.

The top-level derivation is produced by evaluation of the value patchelfHead-
Release [12]. The name of this attribute was specified in the XML job description
at [4. Building of this derivation will produce the release page and all the dis-
tributions inecluded on the release page (in the example, a source distribution
and a Nix channel distribution).

The build+upload.sh script, as its name implies, not only builds the derivation
but also uploads the release page to the server. Each release is stored under its

VVSS 2007 - Verification and Validation of Software Systems Symposium

own URL, e.g., http://nix.cs.uu.nl/dist/nix/patchelf-0.1pre3663/. It
also performs a nix-push to build and upload the Nix expressions in the channels
provided by the release. The uploading of the release is assisted by a server-
side CGI script that stores the uploaded files and, when the upload is done,
updates various index pages listing the release. Figure 5 shows the automatically
generated index of the most recent releases, concisely showing the extent to
which each release succeeded.

Reproducing releases An important configuration management property is
the ability to reproduce releases in the future. E.g., when we need to fix a bug
in some old release of a component, we need to be able to reproduce the entire
build environment, including compilers, libraries, and so on. So it is important
that we have a record that describes exactly what inputs went into a release.

Therefore the build farm stores a file job.xml as part of every release, e.g., un-
der http://nix.cs.uu.nl/dist/nix/patchelf-0.1pre3663/job.xml. This
file is the same as the XML job description that went into the supervisor (e.g.,
the one in Figure 2), except that each input element that referred to a non-
constant input such as a HEAD revision has been “absolutised”. For instance,
the patchelfHead input element has been changed into:

<input id=’patchelfHead’ type=’svn’
url="https://.../repos/trace/patchelf/trunk
rev="3663" hash=’b252b5740a0d...’ />

That is, it no longer refers to the HEAD revision of the Subversion repository
of PatchELF, but to a specific revision. Since this job.xml is a perfectly valid
build job, we can feed it into the supervisor to reproduce the build.

Release process As can be seen in Figure 5, each release has a symbolic
name, such as patchelf-0.1pre3663. The current build farm implements the pol-
icy that names including the string pre in the version string are “unstable” re-
leases (i.e., only intended for developers or bleeding edge users), and are “stable”
otherwise. Stable releases are intended to be kept indefinitely, while unstable
releases can be deleted eventually. More importantly, stable and unstable re-
leases appear in separate channels. For instance, the URL of the channel for
stable PatchELF releases is

http://nix.cs.uu.nl/dist/nix/channels/patchelf-stable
while the channel for unstable releases is
http://nix.cs.uu.nl/dist/nix/channels/patchelf-unstable

The release name is computed by the build jobs themselves. The component
name (e.g., patchelf) is generally hard-coded into the build job (e.g., at [8]). The
version name is usually computed by taking the version number hard-coded into
the source (e.g., 0.1) and appending pre N, where IV is the revision number of

VVSS 2007

73

74 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

the Subversion repository (e.g., 3663), if the release is unstable. Whether the
release is stable or unstable is also hard-coded in the sources.

For instance, for Autoconf-based components, the release name is usually
computed by the configure seript, which contains a line

STABLE=0

in the sources in the main development branch of the project (trunk in Sub-
version terminology [9]). Thus all releases built from the main branch will be
unstable releases. To build a stable release, it suffices to change the line to

STABLE=1

and rebuild.

In practice, a more controlled process is used to build stable releases. To
build a stable release, e.g., patchelf-0.1, the development branch is copied to
a special release branch, e.g., branches/patchelf-0.1-release. In this branch, the
stable flag is set. A one-time job for this branch is then added to jobs.conf.
After the release succeeds, the release branch is tagged and removed. That
is, branches/ X-release is moved to tags/X; e.g., branches/patchelf-0.1-release is
moved to tags/patchelf-0.1.

5 Discussion and related work

This section describes some of the advantages and disadvantages of the Nix
build farm relative to other continuous integration tools.

The main advantage is the use of Nix expressions to describe and build jobs.
[t makes the management of the build environment (i.e., dependencies) quite
easy and scalable. This aspect is completely ignored by tools such as CruiseCon-
trol [10] and Tinderbox [6], which expect the environment to be managed by the
machine’s administrator. Anthill [11] has the notion of “dependency groups”
that allows an ordering between build jobs.

Most of these systems are targeted at testing, not producing releases. Sisy-
phus [12] on the other hand is a continuous integration system that is explicitly
intended to support deployment of upgrades to clients. It uses a destructive
update model, which makes it easy to use with existing deployment tools, but
bars side-by-side versioning and rollbacks.

The centralised view of the build job for a release is also a big plus. Systems
such as Tinderbox have a more “anarchistic” approach: build farm machines
perform jobs essentially independently, and send the results to a central machine
that presents them on a web page. This is fine for continuous integration per se,
but is not a good model if we want integration with release management. Since
each build independently selects which revision to build, there is no guarantee
that any particular revision will always be built by all machines. Thus there is
no guarantee that a complete release page will ever be made.

A fundamental downside to the Nix build farm is that by building in Nix,
by definition we are building in a way that differs from the “native” method

VVSS 2007 - Verification and Validation of Software Systems Symposium

for the platform. If a component builds and passes the tests on powerpc-darwin,
we can conclude that the component can work on that platform; but we cannot
conclude that it will work if a user were to download the source and build using
the platform’s native tools (e.g., the C compiler provided in /usr/bin). That is,
while the build farm builds the component in a Nix environment, most users
will use it in a non-Nix environment. This limits the level of portability testing
attained by the Nix build farm.

On the other hand, this situation can be improved by simulating the native
environment as closely as possible, e.g., by providing the same tool versions.
Nevertheless, there is no getting around the fact that the paths of those tools
differ; they are in the store, not in their native locations in the file system.

However, we can still build “native” binary distributions in some cases. For
example, we use User-Mode Linux (UML) [2] to build RPM packages for var-
ious platforms. User-Mode Linux is a normal user space program that runs a
complete Linux operating system inside a virtual machine. Thus, the builder of
the derivation that builds RPMs is entirely pure: it simply runs UML to build
the RPM.

Of course, we can also do “native” builds directly in Nix builders if we are
willing to accept a level of impurity (e.g., by adding /usr/bin to PATH). We can
even test whether the component installs properly to an impure location (such
as /usr/local /my-package) if the builder has sufficient permissions. In fact, the
latter need not even be impure as long as the following conditions hold:

e Subsequent derivations do not depend on output in impure locations.
Thus, the builder should remowve the impure output at the end of the
build seript.

e Locking should be used to prevent multiple derivations from installing
into the same impure location. E.g., derivations that want to install into
/Jusr/local /my-package can acquire an exclusive lock on a lock /usr/local /my-
package.lock.

A more transient limitation of the prototype build farm is its poor schedul-
ing. (A better supervisor is currently being implemented.) It simply runs jobs
after each other in a continuous loop. It supports none of the more advanced
scheduling methods discussed earlier. It also does not run jobs in parallel, which
leads to poor utilisation of the build farm. For instance, builds on Macs gen-
erally take (much) longer than on other machines. A multi-platform job can
therefore cause many machines to be idle, as the job waits for the Mac build to
finish. It is then useful to start a new job to put the idle machines to good use.

6 Future work

The main focus of future research is automatic testing in large configuration
spaces. When testing a component with a large amount of variabilities, the
build farm should automatically select interesting configurations in order to

VVSS 2007 75

76 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

maximize the amount of useful knowledge that it produces for the developers.
For instance, if a certain configuration succeeds and another does not, the build
farm should explore the configuration space, building different configurations, to
discover which parameter causes the failure. Similarly, if a certain configuration
fails while it did not previously, the build farm should try to isolate the specific
commit that introduced the fault.

Another interesting direction is to discover possibly troublesome configura-
tions using source code analysis. For instance, nested #ifdefs in C programs
conditional on options in the configuration space may indicate a potential fea-
ture interaction that must be tested specifically.

7 Conclusion

A build farm is an indispensable tool in any software development project, but
existing implementations have serious limitations: they are hard to maintain
because the build environment is not managed, have poor reproducibility, and
have no explicit support for building variants of systems. The Nix-based build
farm, by virtue of its purely functional component description language, solves
these issues. However, much research remains to be done regarding the auto-
matic exploration of large configuration spaces.

The releases of the Nix build farm at Utrecht University are online at http:
//nix.cs.uu.nl/dist/.

Acknowledgements This research was supported by CIBIT and NWO/-
JACQUARD project 638.001.201, TraCE: Transparent Configuration Fnviron-
ments. We wish to thank Martin Bravenboer, Armijn Hemel and Merijn de
Jonge for their work on implementing the build farm.

References

[1] Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge
University Press, 1998.

[2] Jeff Dike. A user-mode port of the Linux kernel. In Jth Annual Linux
Showecase & Conference (ALS 2000), October 2000,

[3] Eeleo Dolstra. The Purely Functional Software Deployment Model. PhD
thesis, Faculty of Science, Utrecht University, The Netherlands, January
2006. http://www.cs.uu.nl/~eelco/pubs/phd-thesis.pdf.

[4] Eeleo Dolstra, Merijn de Jonge, and Eelco Visser. Nix: A safe and policy-
free system for software deplovment. In Lee Damon, editor, 18th Large
Installation System Administration Conference (LISA °04), pages 79-92,
Atlanta, Georgia, USA, November 2004. USENIX.

[5] Eeleo Dolstra, Eelco Visser, and Merijn de Jonge. Imposing a memory
management discipline on software deployment. In Proceedings of the 26th

[6

[7

[8

[9

[10]

[11]

[12]

13

VVSS 2007 - Verification and Validation of Software Systems Symposium

International Conference on Software Engineering (ICSE 2004), pages 583—
592. IEEE Computer Society, May 2004.

Mozilla Foundation. Tinderbox. http://www.mozilla.org/tinderbox.
html, 2005.

Martin Fowler and Matthew Foemmel. Continuous integration. http://
www.martinfowler.com/articles/continuousIntegration.html. Ac-
cessed 11 August 2005,

Armijn Hemel. Using buildfarms to improve code. In UKUUG Linuzx 2003
Conference, August 2003.

C. Michael Pilato, Ben Collins-Sussman, and Brian W. Fitzpatrick. Version
Control with Subuversion. O'Reilly, June 2004,

ThoughtWorks. Cruise Control. http://cruisecontrol.sourceforge.
net/, 2005.

Urbancode. Anthill. http://www.urbancode.com/projects/anthill/
default.jsp, 2005. Accessed 21 August 2005,

Tijs van der Storm. Continuous release and upgrade of component-based
software. In 12th International Workshop on Software Configuration Man-
agement (SCM-12), September 2005,

Eelco Visser. Program transformation with Stratego/XT: Strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editor, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216-238. Spinger-Verlag, June 2004,

VVSS 2007

77

VVSS 2007 - Verification and Validation of Software Systems Symposium

@ Capgemini

CONSULTING TECHNGLOGY.OUTSOURCING

Software conversions need to be tested

VVSS, 23 march 2007

Maurice Siteur

.........

Introduction

Maurice Siteur
= Over 20 years of experience (15 in testing)
- Test manager/coach/consultant
= Author book: ‘Automate your testing?’

ilomale
\yaup lesling!

Capgemini
« Technology, Consulting, Outsourcing
+ 250 testers
* And many more, who test
+ Own test trainings

.......................

78 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Two conversion projects - similar

Technical projects with limited business impact
System is crucial for business

External party for the technical conversion, both very
experienced

End users should do the major part of testing
Acceptance criteria were used
Test types were equal

®» Capgemini

Two conversion projects - similar

System testing is done by the development organisation
and/or application management.

Parts of the system are testing just to make sure that the
end-users can do an acceptance test.

Acceptance testing covers the complete system.
The tendency is to test everything.

® Capgemini

VVSS 2007 79

VVSS 2007 - Verification and Validation of Software Systems Symposium

Two conversion projects - difference

Insurance Local taxes

Platform changes Same platform

Cobol vendor change Oracle forms upgrade
Divers code More homogeneous code
Database in stead of flat files Database upgrade

Data conversion

Batch testing important Running batches is enough
Evacuation test needed Evacuation test not needed
»_)Capgmnini

Acceptance criteria

Test format Criteria

General Findings of category 1 and 2 are not present.

Functionality — | The input for the interfaces is unchanged.
interface test

Functionality — | The screen lay-outs are unchanged.
screen test

Functionality - | The outcomes of transaction (screens and batches) are
transaction test | equal on old and new system.

Functionality — | After converting the data, the data is unchanged.
conversion test

Security — New infrastructure must fit in current security policies.
infrastructure

Security — Users can still log in and have the same rights as before

authoris. Test

Maintainability | The code’s maintainability should not decrease.

Performance The responses of the system should be within limits. Both
» Capgemini screens and batches

80 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Test types

Authorisation test

Screen testing (does every screen still work)
Batch testing (less important?, but needed)
Scenario testing (do procedures still work)

Interface testing (do other systems still work with your
system)

Test types were the result of the acceptance criteria

2 Capgemini

List of differences

1 on 1 is impossible
Difference always exists

Start a list right from the start!

» Capgemini

VVSS 2007

81

82

VVSS 2007 - Verification and Validation of Software Systems Symposium

Compare tool

Batches were run

Output files were compared with previous run on old system
Large files and a lot of them

Tooling was a necessity

Some knowledge of what you are doing is needed
A tool is not perfect
Adjustments to files are needed

®» Capgemini

Learning points

Test approach is basically the same, but
When things go wrong the criteria change
When things go wrong, down scaling is needed

Tools are needed, but the processes must perform
reasonably well

Don’t forget the finance department
IC department can have a big impact

®» Capgemini

VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

%

“Z

|

Sleep well!

Think of mell_M

2 Capgemini

VVSS 2007

83

VVSS 2007 - Verification and Validation of Software Systems Symposium

An Object-Oriented Framework for
Explicit-State Model Checking

Mark Kattenbelt! and Theo C. Ruys? and Arend Rensink?

Abstract. This paper presents a conceptual architecture for an
object-oriented framework to support the development of formal ver-
ification tools (i.e. model checkers). The objective of the architecture
is to support the reuse of algorithms and to encourage a modular de-
sign of tools. The conceptual framework is accompanied by a C++
implementation which provides reusable algorithms for the simula-
tion and verification of explicit-state models as well as a model rep-
resentation for simple models based on guard-based process descrip-
tions. The framework has been successfully used to develop a model
checker for a subset of PROMELA.

1 INTRODUCTION

Model checking is the application of an automated process to for-
mally verify whether a model conforms to a specification [7, 3].
There are numerous ways in which one could express a model, but
typically the model can be interpreted as some sort of automaton.
The level of abstraction that is used to describe models in tools varies
significantly depending on the model checker, and ranges from low-
level automata-based representations (such as the timed automata in
UPPAAL [1]) to high-level specification languages that resemble
programming languages (such as BIR in Bogor [12]). The specifica-
tion can also be expressed in various ways, but is usually formulated
in terms of properties in some type of temporal logic. The nature of
the verification process used in model checkers is heavily dependent
on the types of models and specifications it can verify.

Most model checkers are very specialised, and support only a sin-
gle type of model. Additionally, it is not uncommon for model check-
ers to introduce their own specification language. Although this spe-
cialisation enables tools to optimise their verification algorithms, it
does not encourage a reusable design. In order to reuse the function-
ality contained within model checkers one often has to resort to using
the model specification language prescribed by this model checker.
As a result, many transformations between input languages of tools
currently exist and interaction between tools can only be achieved
with considerable effort.

To emphasise the need for reuse, consider the great advancements
of model checking in recent years [6]. The aspiration to apply model
checking to systems of an industrial scale has led to the introduction
of many new complex techniques and algorithms (i.e. partial-order
reduction, symmetry reduction, predicate abstraction, slicing algo-
rithms). Implementing a state-of-the-art model checker is not a triv-

L School of Computer Science, University of Birmingham, United King-
dom. http://www.cs.bham.ac.uk/~mxk/. (Supported by EP-
SRC grant EP/D07956X/1 during the authoring of this extended abstract.)

2 Formal Methods and Tools group, Faculty of EEMCS, University of
Twente, The Netherlands. http://fmt.cs.utwente.nl/.

84 VVSS 2007

| Intermediate Representation |

T T T

Algorithm

Algorithm Algorithm

Figure 1 — Model checking frameworks usually have a single intermediate
representation. In order to use the framework the model under consideration will
have to be expressed in this intermediate representation.

ial task, and therefore any opportunity to reuse functionality should
be considered beneficial.

The need for reuse and interoperability has been acknowledged
by several others. For example, the model-checking framework Bo-
GOR [12], the IF TOOLSET [4], the MODEL-CHECKING KIT [20]
and the NCSU CONCURRENCY WORKBENCH [8] all offer a frame-
work to enable reuse in verfication tools, and often employ a lay-
ered architecture. Similar to modern compiler suites, most of these
frameworks use an intermediate representation to which high-level
models are translated (see Figure 1). This representation can be a
textual description in a modelling specification language, or a pro-
grammatic representation. For the frameworks mentioned previously,
these intermediate representations are BIR, IF specification, 1-Safe
Petri Nets and Labelled Transition Systems, respectively.

The verification functionality of these frameworks is realised by
algorithms that use this intermediate representation directly. Having
a single intermediate representation is advantageous for the optimisa-
tion of verification algorithms. However, a drawback of this approach
is that the applicability of the framework is limited by the expres-
siveness of the intermediate representation. Furthermore, a transfor-
mation of models to this intermediate representation is not always
optimal. The verification algorithms cannot be reused for anything
other than the intermediate representation used in the framework.

We have developed a framework that is not limited by a single
intermediate representation. We provide a means of describing algo-
rithms such that they can be used by many different intermediate rep-
resentations. Related to our approach is the MOBIUS MODELLING
ENVIRONMENT [9, 11], which uses the same principle for perfor-
mance analysis of stochastic models.

The goal of our framework is to enable the development of generic
functionality that can be used in several verification tools directly, not
necessarily limited to model checkers, and to improve the interoper-
ability of tools. In the remainder of this article we will describe the
core essentials of this framework. Details can be found in [16]. The
meaning of ‘framework’ is two-fold in this article:

e Conceptual architecture. A conceptual architecture for a model
checking framework which enables reuse of code. This architec-
ture enables us to define algorithms that can be reused for different

VVSS 2007 - Verification and Validation of Software Systems Symposium

Abstract

Intermediate
. Layer

Intermediate Intermediate

P P P

| Model Interface | ' .
Generic

T T I e

Algorithm

Algorithm Algorithm

Figure 2 — The conceptual architecture of the framework, divided into a generic
layer and an abstract layer.

intermediate representations. In Section 2 we will introduce this
architecture.

e Concrete architecture. A proof-of-concept implementation of the
conceptual architecture. On a low level, it consists of reusable al-
gorithms for explicit-state verification techniques. On a high level,
it provides a graph-based intermediate representation which repre-
sents models with guard-based process descriptions. This library
is introduced in Section 3.

A proof-of-concept tool is built on top of our concrete architec-
ture and is capable of verifying PROM™ (a subset of PROMELA, see
Section 3.4). It combines our intermediate representation with our
reusable verification algorithms to realise its functionality.

2 CONCEPTUAL ARCHITECTURE

The conceptual architecture should enable reusable algorithms to be
defined over multiple intermediate representations. Our architecture
is based on a layered design as depicted in Figure 2, similar to other
frameworks. In contrast to other frameworks, algorithms do not refer
to the intermediate representation directly (Figure 1), but refer to a
model interface instead. We distinguish two layers, a generic layer
and an abstract layer.

Note that we use a slightly informal notation in our architec-
tural diagrams. In general, white blocks are interfaces, whereas grey
blocks actually contain some sort of implementation. Associations
and specialisation relationships between blocks are shown using the
notation commonly used in UML class diagrams.

2.1 Generic layer

The generic layer contains reusable algorithms, as well as a model
interface. This model interface defines a number of operations to fa-
cilitate the algorithms. Additionally, we abstract from the types that
are used in the model interface by means of type parametrisation (e.g.
generics in JAVA, templates in C++).

The idea is that the model interface abstracts over the most ele-
mentary types used in the algorithms, which are likely to be different
for different intermediate representations. In this way the algorithms
need not to be concerned with the implementation of these types,
and intermediate representations can provide their own custom im-
plementation of these types. The model interface defines operations
over these types such that the algorithms can efficiently realise their
functionality using these operations, but it is the intermediate repre-
sentations that actually implement these operations.

The most obvious choice of a generic layer would be one to fa-
cilitate explicit-state model checking. In this type of model check-
ing each state is explicitly represented, and the verification process
can usually be reduced to some type of exhaustive search over the
state space. Candidate types for type parameters are elementary types
such as states and transitions, whereas operations are likely to facil-
itate the on-the-fly construction of the state space (i.e. an operation
to retrieve successors of a state). A generic layer for explicit-state
model checking is discussed in Section 3. Other possible generic lay-
ers could facilitate symbolic or bounded model checking, where can-
didates for type parameters would include sets of states or clauses,
respectively [16].

Generally speaking, anything contained within the generic layer
is meant for use with any intermediate representation, and therefore
uses type parameters. Items in the abstract layer are specific to an in-
termediate representation and therefore do not apply type parameters.
Any specialisation relationship between the generic and the abstract
layer therefore also implies a specialisation of types.

2.2 Abstract layer

The abstract layer contains intermediate representations of a pro-
grammatic form. The basic idea is that such an intermediate repre-
sentation specialises the model interface in a generic layer. In other
words, an intermediate representation implements the operations of
the model interface for a particular set of types. In the context of
explicit-state model checking, intermediate representations in the ab-
stract layer can be very diverse, ranging from ‘low-level’ representa-
tions such as Labelled Transition Systems (LTS), and Graph Transi-
tion Systems (GTS) [18] to ‘high-level’ representations such as Pro-
cess Algebras (PA) or those used in SPIN [13] and BOGOR [19].

The benefit of using type parameters is that an intermediate rep-
resentation can implement its own elementary types. For instance,
an intermediate representation that implements a model interface of
a generic layer for explicit-state model checking can define its own
state type. This is useful because the information contained within
a state is significantly different for different intermediate representa-
tions. For instance, the information contained within a state of a PA
model is very different from the state of a PROMELA model. In terms
of an intermediate representation of an abstract layer for symbolic
model checking, this type specialisation could be used to implement
different ways of representing a set of states, such as BDDs [17, 5]
or MDDs [15]. Arguably, the same effect can be accomplished with
subtyping, but this introduces more flexibility (and overhead) than
is necessary. The MOBIUS tool uses a similar approach, and applies
subtyping [10] as well as type parametrisation [11].

An alternative conceptual architecture is employed in the NCSU
CONCURRENCY WORKBENCH [8]. In this framework intermediate
representations can be translated into a LTS automatically by using
the Structured Operational Semantics (SOS) of these intermediate
representations.

3 CONCRETE ARCHITECTURE

In Figure 3 an overview of our library is shown. The generic layer
consists of an explicit-state model interface and algorithms for sim-
ulation and verification. The motivation for this library originated
from the desire to offer a modular alternative to state-of-the-art tool
SPIN [13], which is reflected in the abstract layer. The ‘software
model” intermediate interpretation is meant for targeting a subset

VVSS 2007 85

VVSS 2007 - Verification and Validation of Software Systems Symposium

[—

. .
Labelled ! ! 1 ! Graph

' Process : Abstract
+ iTransition i + i Transition | ‘Software Model’ !
ol i\ i Algebra i ' H Layer
v.System oL T L. L.System | '
! ' ! ;

[v v v ;

Generic
/I\ /\ /[\ H Layer

Simulation : Testing
Algorithms Algorithms

Verification
Algorithms

Figure 3 — The concrete architecture of the framework as implemented in our
library. Elements that were not implemented, but are shown in the figure to provide a
context, have dashed borders.

of PROMELA called PROM™, and is the intermediate representa-
tion used in our proof-of-concept model checker. This representation
could be extended to support other model specification languages
such as BIR, and is therefore not dedicated to a single tool.

The components of the library are written in C++, and feature a
modular object-oriented design. Functionality in the generic layer in-
cludes simulation and reachability algorithms. The ‘software model’
intermediate representation comprises the largest part of the library,
as it is aimed to be as general as possible.

3.1 Explicit-state model interface

The definition of a model interface has two important features, a set
of type parameters and a set of operations. These types and opera-
tions should be chosen carefully because all intermediate representa-
tion that use this generic layer will have to conform to this interface.
Additionally, the operations are to enable all prospective algorithms
of this generic layer to realise their functionality efficiently.

The model interface of our prototype can be found in Listing 1.
This listing shows that our implementation language is C++. Al-
though it is not necessary to understand C++ in order to understand
the principles of our design, we use code samples to illustrate our
design. These principles could also be implemented in another lan-
guage, such as JAVA. We will provide a brief explanation with each
code sample, but we refer to [21] for a more concise reference on
C++.

Note that we do not define the model interface for any specific type
of model representation (e.g. LTS or Kripke structures) but attempt
to provide an interface for a large class of automata-based models. In
our implementation we chose to abstract from the type of states (S),
type of labels (L), and type of transitions (T) used in the intermedi-
ate representations. The set of operations is defined such that model
information can be retrieved on-the-fly. These functions are abstract
(e.g. pure and virtual in C++), and will need to be implemented by
any intermediate representation. The initial state object of a model
can be retrieved using the getInitialState function. Given a
state of the model, we can retrieve all outgoing transitions objects
of this state in a total order using the get FirstTransition and
getNextTransition functions.

Note that our choice of operations has already limited the type
of intermediate representations that can use this generic layer (i.e.
precisely one initial state is required and all outgoing transitions of a
state are required to be in some total order). This is a compromise be-
tween generalising the model interface to be compatible with a large

86 VVSS 2007

template <typename S, typename L, typename T>
class ExplicitStateModelInterface

public:

virtual Sx getInitialState() =0;
virtual T* getFirstTransition(Sx s) =0;
virtual Tx getNextTransition(T+ tr) =0;

virtual Sx getSource(T* tr) =0;
virtual Lx getLabel (Tx tr) =0;
virtual Sx getTarget (T tr) =0;

}i

Listing 1 — The model interface of our library consists of a single C++ class called
ExplicitStateModelInterface.

number of intermediate representations and providing a set of oper-
ations through which explicit-state model checking can be achieved
efficiently.

To complete the interface we add methods that map transition ob-
jects to the source state object (getSource), to the target state ob-
ject (getTarget) and to a label object (getLabel). All opera-
tions are conveniently gathered in the model interface such that there
are no restrictions on the implementation of the state, label and tran-
sition objects.

Note that all operations work with pointers to elementary types,
to facilitate the need for sharing instances. For example, labels are
likely to label multiple transitions of the model, and it might be useful
for these to be represented by the same label instance.

The prototype implementation of this generic layer actually uses
reference counting pointers to keep track of all instances that were
provided through the model interface. This arises from the fact that it
is written in unmanaged C++, and any created instance will need to
be deleted somewhere. As instances might be shared, it is not obvi-
ous where this deletion should happen. Reference counting pointers
provide additional flexibility to avoid this problem. We use regular
pointers in our code listings to make them easier to understand.

3.2 Generic Algorithms

To illustrate how one can define reusable algorithms over the model
interface we use the example of a basic depth-first search, as pro-
vided in [14]. Although this algorithm is not a very realistic example
of an algorithm used in explicit-state model checkers, it is useful to
illustrate how this algorithm can be implemented generically (i.e. for
all intermediate representations). A more realistic example can be
found in [16].

In an idealistic scenario the model interface itself would provide
sufficient functionality for any algorithm that we wish to implement
in the generic layer. In practice this is not feasible. For example, in
the case of our basic depth-first search algorithm, we are looking
for erroneous states. As we cannot assume anything about the state
type, and this information is not present in the model interface, we
will need to get this information elsewhere. Furthermore, instead of
simply looking for erroneous states, we would like to generalise the
depth-first algorithm to look for any type of ‘goal state’. This results
in the introduction an additional interface called GoalCondition,
which contains a single abstract function isGoalState that can
be used to determine whether a state is a goal state or not (see List-
ing 2). Note that this interface also uses type parameters, and that
if an intermediate representation wishes to use the depth-first al-
gorithm then it will also have to provide an implementation of the

VVSS 2007 - Verification and Validation of Software Systems Symposium

template <typename S, typename L, typename T>
class GoalCondition

public:
virtual bool isGoalState(Sx s) =0;

}i

Listing 2 — The GoalCondition interface has a single function isGoalState
which identifies states of interest. This function is typically implemented in the
abstract layer.

GoalCondition interface, specialised with the same types (note
that type parameters T and L are not essential for this particular in-
terface, but throughout our implementation we have included all type
parameters in all interfaces for consistency).

The definition of the GoalCondition enables a search for an
arbitrary set of states. This set will typically be specific to an in-
termediate representation, and therefore will be implemented in the
abstract layer. Examples are accepting states for automata, erro-
neous states for programs, or the solved state for Rubiks cubes.
Alternatively, the set of states could be identifiable in a generic way
(i.e. for all intermediate representations). As we cannot assume any-
thing about the types of states, transitions and labels, this is not very
common. Examples are the initial state and deadlock states. Dead-
locks states can be found generically by checking whether a state has
any outgoing transitions.

Now that the issue of detecting erroneous states has been ad-
dressed we can implement the basic depth-first algorithm gener-
ically. An implementation of this algorithm inside an encap-
sulating class is shown in Listing 3. This encapsulating class,
BasicDepthFirstSearch, also abstracts over the type of state,
label and transitions used in the algorithm. It has two fields, m is an
implementation of an ExplicitStateModelInterfaceandg
is an implementation of GoalCondition, both specialised with
the paramethised types of the encapsulating class. The dfs function
is a direct translation the algorithm in [14] to C++ code, but imple-
mented generically.

If we were to include BasicDepthFirstSearch in our archi-
tectural diagram, this would result in a generic layer as depicted in
Figure 4. The BasicDepthFirstSearch block has an associa-
tion with the ExplicitStateModelInterface and with the
new interface GoalCondition, because these are fields used in
the algorithm. The GoalCondition has two generic implementa-
tions, and is potentially implemented for some intermediate repre-
sentations in the abstract layer.

The introduction of another interface (GoalCondition) does
not add significant requirements to the abstract layer. Firstly, imple-
menting an interface other than the model interface should be fairly

N H H H H H
: v A4 A4 A4 \v4
Explicit-State Model Interface | Goal Condition | H

—1

Deadlock
Condition

Generic

T Layer

Initial State
Condition

Basic Depth-
First Search

Figure 4 — The generic layer of the framework as it would look if we encorporated
BasicDepthFirstSearchand GoalCondition

straight-forward. For example, if there exists an intermediate rep-
resentation for automata, then checking whether a state is accepting
(e.g. implementing a GoalCondition for accepting states) should
be a trivial task. Additionally, these interfaces do not have to be im-
plemented unless the algorithm that uses these interfaces is used. Fi-
nally, it is not impossible that there already exists a generic imple-
mentation with the desired functionality.

Although we used a very simple example to illustrate the im-
plementation of generic functions in our framework, we argue that
this technique is scalable and can be applied to realistic algorithms
that are used in model checking today. The actual algorithms imple-
mented in our framework provide both simulation and reachability
algorithms. Rather than providing a number of distinctly separate al-
gorithms, we chose to apply a more modular approach. We would
like to emphasise that our implementation of simulation and ver-
ification functionality is just one of many possible approaches. A
simplified overview of the implemented generic layer is presented
in Figure 5. As is evident from the figure, algorithms are no longer
represented by a single block, but are divided into several blocks to
provide a greater degree of flexibility.

The Simulation class is associated with both a
SimulationStrategy and a SimulationObserver.
These are both interfaces, and can be implemented generically or
can be specialised to suit a specific intermediate representation.

template <typename S, typename L, typename T>
class BasicDepthFirstSearch
{
private:
/+ model under consideration x/
ExplicitStateModelInterface<S, L, T>x m;
/* the goal of this search x/
GoalCondition<S, L, T>* g;

public:
void dfs(std::set<Sx>& Statespace, Sx s)
{
/+x if s is a goal state */
if (g->isGoalState(s)) {
/% report goal «*/

else {
/x add s to state space %/
Statespace.insert (s) ;

/+ iterate over transitions of s */
T+ tr = m->getFirstTransition(s);
while (tr != 0)

/% get target state of tr «/
S* t = m->getTarget (tr) ;

/x if t is not in Statespace, then dfs «/
if (Statespace.find(t) == Statespace.end())
dfs (Statespace, t);

/% get next transition of s/
tr = m->getNextTransition(tr) ;

1
}
}i

Listing 3 — A generic implementation of the basic depth-first search algorithm in
[14]. Requires an implementation of an ExplicitStateModelInterface and
aGoalCondition

VVSS 2007 87

VVSS 2007 - Verification and Validation of Software Systems Symposium

vV v V VvV Vv

DR L L L L LT TEEEE e dm e S A emmmmmmmmem———————

R F—— [[.

' | Simulation | | Simulation | Explicit-State | |
'

Search

Action | :

Search Condition
H Strategy Observer Model Interface Strategy Feedback H Generic
' ? T/I\ /T\ 4\ | 4 * 4\ Zr * /T\ T H Layer
E Rand I i i i Depth First Search Deadlock Store E
H Strategy Strategy Strategy Adapter Condition Action H

Figure 5 — The architecture of the generic layer, as implemented in our framework. The left-hand side facilitates a simulation algorithm, whereas the right-hand side shows a
modular implementation of a reachability algorithm.

The SimulationStrategy is responsible for choosing a path
through the model, and has generic implementations for random,
interactive and guided strategies. Specialised implementations
could include random strategies that take into account the proba-
bilities associated with transitions, if it is a specialisation for an
intermediate representation that has such a notion of probabilities.
The SimulationObserver provides a way for tools to ob-
serve the simulation, and would most likely consist of specialised
implementations to update user interfaces.

The search functionality offered by our framework is slightly more
complex. The SearchStrategy is an interface for search strate-
gies, whose implementations will have full control over the order of
traversal of the states in the model. Currently the only implementa-
tion available is a depth-first strategy. Any strategy relies on feedback
from SearchFeedback such as ‘this state was previously visited’,
‘this is a new state’ or ‘this is a goal state’. SearchAdapter im-
plements this feedback procedure by maintaining pairs of conditions
and actions. Condition identifies certain states or transitions, and
is in fact very similar to GoalCondition. When such a condition
holds then an Action is executed. Examples of such actions could
include storing a state in a store, starting a nested search or report-
ing a goal state. The feedback given by the SearchAdapter is
dependent on the actions that were executed. Simple searches can be
constructed by combining conditions and actions in a simple fash-
ion, e.g. ‘always store a state’ and ‘if this state is in the store, report
that this state was previously visited’ and ‘if this is a goal state, re-
port this goal state’. The simulation and search functionality of our
framework is explained in more detail in [16].

The usage of type parameters in algorithms does not necessar-
ily have an impact on performance. The abstraction is resolved at
compile-time, and does not add significant run-time cost in modern
compilers. For instance, the standard library of c++ (std) is also
based on type parametrisation and is generally considered to be very
efficient.

3.3 Graph-based intermediate representation

We have explained how generic functionality can be defined in the
generic layer, but have not yet addressed any implementation of the
abstract layer. In this section we will discuss the intermediate repre-
sentation that was implemented in our prototype tool. We would like
to emphasise that this implementation is only one of many possible
intermediate representations that could be defined.

The type of models we will be trying to target are simple
software-based models with guard-based process descriptions, global
and local variables with primitive and pointer types, as well as
dynamic process and data creation. We will use this intermedi-
ate representation to verify a subset of PROMELA in Section 3.4.

88 VVSS 2007

Listing 4 shows that we have a SoftwareModel which imple-
ments the ExplicitStateModelInterface and specialises
the type parameters with SoftwareStates, Statements and
SoftwareTransitions. The remainder of this section will elab-
orate on the implementation of Sof twareModels.

Due to the dynamic nature of our target models, we will use a
graph-based representation of states in our intermediate representa-
tion. Our graph-based state representation is based on the represen-
tation used in BOGOR [19]. Data values and process instances are
nodes, whereas variables induce edges in our state graphs. 1f a vari-
able has a value then it is represented as an edge originating from
the scope in which it is defined (typically a process instance) to the
data value this variable evaluates to in the current state of the model.
Additionally, we have a global node which acts as the start node for
global variables.

We chose to model pointer variables as special kinds of vari-
ables, rather than introducing an additional level of indirection. State-
graphs annotate edges that are induced by these pointer variables.
Typically, pointer variables model heap data, whereas normal vari-
ables model stack data. We require heap and stack data values to be
strictly separate (i.e. a pointer variable can never point to the value
of a normal variable).

By using the state graph representation our intermediate repre-
sentation is a simplification of real-life software, because we do not
model concepts such as memory location, functions and classes. We

class SoftwareModel
: public ExplicitStateModelInterface
<
SoftwareState,
Statement,
SoftwareTransition
>

virtual SoftwareStatex
getInitialState() ;

virtual SoftwareTransitionsx
getFirstTransition(SoftwareState* s);

virtual SoftwareTransitions
getNextTransition(SoftwareTransition* tr);

virtual SoftwareStatex

getSource (SoftwareTransitions tr);
virtual Statementx

getLabel (SoftwareTransition* tr);
virtual SoftwareStatex

getTarget (SoftwareTransitionx tr);

Listing 4 — An implementation of the ExplicitStateModelInterface by an
intermediate representation of Sof twareModels.

VVSS 2007 - Verification and Validation of Software Systems Symposium

other ~_flag other flag
Global |~ ----- turn

startGuard turn_value turn_value

=T BT T

Figure 6 — A graphical representation of a state in our intermediate representation.

consider abstraction over memory locations to be a good thing, as
this means detecting heap symmetry reduces to checking whether
two state graphs are isomorphic. The other simplifications have been
made due to time limitations, and would be welcome additions to our
intermediate representation. We informally address the inclusion of
features such as functions and classes in [16].

Figure 6 shows a state graph of a model, which is actually a reach-
able state of the PROM™ model shown in Listing 5. The formal def-
inition of state graphs has been explained in [16], we shall just ex-
plain them informally. Circles are process instances, whereas rectan-
gles are data instances. Edges induced by variable values are labelled
with the variable name and are dashed only if the variable is a pointer
variable.

The implementation of state graphs is relatively straight-forward
(see the top left portion of Figure 8). A SoftwareState
has an association with a GlobalInstance and some
ProcessInstances. We presume that every other node in
the state graph is reachable from either the global instance or a
process instance.

It is clear from the example that the models we try to target are
very dynamic in nature. For instance, we cannot determine how many
process instances are going to be created during runtime by means
of static analysis, nor can we predict what state graphs we will en-
counter. This implies that it is sensible to construct the state space
on-the-fly (alternatively one could construct the whole state space at
once, but just feed the model interface this information on-the-fly).

To facilitate the on-the-fly creation of our models, we will need
to implement the semantics of our model through our transition and
label type. We mentioned previously that a statement is a suitable
candidate for a label type. As is evident from Listing 5, statements
are part of the control-flow of process types. Multiple process in-
stances can share the same process type, and this process type can
be shared by multiple SoftwareStates. To facilitate the notion
of type, we introduce a type graph to our intermediate representation
(which is a type graph for every state graph of the model). This type
graph includes nodes for process types, data types, and shows pos-
sible variable relations between these types. It is here that we store
model-wide information such as the control-flow, the types of vari-
ables, statements, etc. This type graph can be extracted by means of
static analysis. Figure 7 shows the type graph extracted from List-
ing 5.

The implementation of the type graph is shown on the top right
portion of Figure 8. Similarly to the state graphs, all nodes in the type
graph are reachable from the GlobalType or a ProcessType.
As this information is model-wide, a Sof twareModel has associ-
ations with the GlobalType and all ProcessTypes. As can be
seen in Figure 8, ProcessTypes implement the model interface
too, because their control-flow is considered to be a type of explicit-
state model too. This makes it possible to query the control-flow of
process types in an on-the-fly manner.

A SoftwareModel normally only has an initial state graph
and a type graph at its disposal to realise the operations
in the model interface, which are extracted using static anal-
ysis. We will informally explain how a SoftwareModel
implements the model interface using only this information.
The getInitialState is simply a trivial operation to
retrieve the initial state. The getFirstTransition and
getNextTransition operations are responsible for construct-
ing all enabled SoftwareTransitions originating from a
SoftwareState. Although this information is retrieved in sev-
eral steps, here we will suffice with explaining how one can extract
all enabled transitions from a SoftwareState (which is given as
an argument) using Figure 8.

The idea 1is that each SoftwareState contains a
certain number of ProcessInstances. Each of these
ProcessInstances has a ControlFlowState which
represents the program counter of this process. For each of
these ProcessInstances, we look up the corresponding

byte mutex;
bit x flag 1, * flag_ 2,
bool startGuard;

* turn_1, x turn 2, % turn;

active [0] proctype P(
bit « my flag;
bit » other_flag;
bit * turn value)

/% Wait for initialisation x/
startGuard;

do
c:xmy flag = 1;

turn = turn value;
(xother flag == || turn != turn_value);
/% Begin critical section %/

mutex = mutex + 1;

mutex = mutex - 1;

/+ End critical section x/

smy_ flag = 0;
od;

1
active [1] proctype Init ()

mutex = 0;
startGuard = false;

flag 1 = new bit; xflag 1 = 0;
flag 2 = new bit; xflag 2 = 0;
turn 1 = new bit; turn = turn 1;
turn_2 = new bit;

run P(flag 1, flag 2, turn 1);
run P(flag 2, flag 1, turn 2);

/* Do not break symmetry x/
reset flag 1;
reset flag 2;
reset turn 1;
reset turn 2;

/+ Now start! =/
startGuard = true;

Listing 5 — An implementation of Petersons mutual exclusion algorithm [2] in
PROM™

VVSS 2007 89

VVSS 2007 - Verification and Validation of Software Systems Symposium

my_flag
ot_flag
turn_value

flag 1
flag 2
, turn

turn 1

turn_ 2

startGuard

Global

Figure 7 — The type graph of all state graphs in the model described by Listing 5.

ProcessType. Using the getFirstTransition and
getNextTransition of the ProcessType we can retrieve
all possible ControlFlowTransitions from the current
ControlFlowState. An expression in the Statement associ-
ated with this transition (i.e. the guard) enables us to see whether
this transition is available for the current state. If it is, then we
can construct a SoftwareTransition using the information
that we have just found. A SoftwareTransition is basically
a tuple of the SoftwareState, a reference to the executing
ProcessInstance and the ControlFlowTransition that
is associated with this step. The getSource and getLabel
functions of the model interface are therefore trivial to implement,
and if at some point the getTarget function is called, then the
ControlFlowTransition along with the Statement are
responsible for copying and modifying the SoftwareState into
a new state. Statements are therefore basically programmatic
implementations of graph morphisms, and contain implementations
such as assignments, expressions, assertions etc. Due to the dynamic
nature of our states implementing these statements is not entirely
straight-forward. For instance, in order to assign to a variable, its
edge must first be located in the graph.

In addition to the functionality shown in Figure 8 we have also im-
plemented a means of linearising SoftwareStates to bit vectors.
Representing states as a sequence of bits is much more efficient than
representing them as a number of object instances and is the typical
approach undertaken by model checkers. Our linearisation uses the
fact that SoftwareStates are actually programmatic representa-
tions of state graphs. By means of a simple algorithm we encode our
graphs, using the fact that there exists a type graph, that every node
is reachable from the global instance or a process instance, and that
the state graphs are deterministic. Details of our encoding algorithm
can be found in [16] and is different to the method used in [19].
Heap symmetry is achieved automatically, as isomophic graphs are
encoded to the same bit vector with our algorithm. Additionally, pro-
cess symmetry can be achieved by ignoring the process identifier of
process instances during the encoding procedure, and by letting the
encoding algorithm look only at the type of the processes and their
program counters. This creates representatives that are not necessar-
ily canonical (i.e. some thread-symmetrical states have different rep-
resentatives), but offers a reasonable reduction with a low run-time
overhead.

3.4 PrROM™T model checker

As a proof of concept, the framework has been used to build a
model checker for PROM™, which is a subset of PROMELA [13] aug-

90 VVSS 2007

prom ::= (mult_decl * ;)" (proctype ;)"
decl ::= type (‘+°)" ident
mult_decl ::= type (*+°)" ident (*,” (*+)" ident)*
proctype ::= ‘active’ ‘ [* number ‘]’ ‘proctype’ ident * (* (params)?)’
0 (multdecl ;)" (stmnt ;)T <}
params ::=decl (*;’ decl)™
type ::= ‘bit’ | ‘bool’ | ‘byte’ | ‘short’ | ‘int’
stmnt ::= do_stmnt | if_stmnt | assgn_stmnt | new_stmnt | reset_stmnt | run_stmnt |
expr | assert_stmnt | ‘skip’

do_stmnt ::= ‘do’ (branch) ™ ‘od’

ifstmnt = ‘1€’ (branch) T ‘£1’
branch ::= ‘: :’(‘else’ ‘;’)? (stmnt ;°)" (‘break’ ‘;’)?
assgn_stmnt ::= (‘*’)? ident ‘=" expr
new_stmnt ::= ident ‘=" ‘new’ type
reset_stmnt ::= ‘reset’ ident
run_stmnt ::= ‘run’ ident * (* (args)? 4
args :i=expr (*,” expr)”
expr=expr (< |‘<=" | ST =" == =T a&T] T T x|
L Yexpr| (V|7)expr| CCexpr€)’ | ‘true’ | ‘false’ |
number | (*)? ident
assert_stmnt ::= ‘assert’ ‘(" expr*)’
ident := (*a’| ... |z’ | B ... |z |<)T
number ::= (0°| ... |9

Figure 9 — The grammar of PROM ™ in EBNF style. The syntax and semantics of
PrROM T are based on PROMELA [13].

mented with features for dynamic memory allocation. The grammar
of PROM™ is depicted in Figure 9.

The syntax of PROM™ is almost all interpretable as PROMELA, and
the although PROM™ syntax is much more restricted, the syntax that
is permitted has the same semantics as in PROMELA. The semantics
of PROMELA are described in detail in [13]. In contrast to PROMELA,
PROM™ only allows the declaration of variables of primitive types,
and requires these to be either prior to all process declarations or
prior to any statement in a process declaration. There is no means of
explicitly giving these variables an initialisation value, and all vari-
ables are initialised with 0. Although PROM™ lacks many features
of PROMELA (i.e. channels, arrays, typedefs, mtypes), it does have
facilities for dynamic object creation that PROMELA does not have.
We will briefly explain the semantics of the newly introduced syntax.

Pointer variables can be declared like normal variables by using
an additional ‘x’, similar to C (pointer variables are initialised as
null-pointers). These pointer variables are only allowed to refer to
heap data (data created by a new statement), and cannot point to
the same data instances as normal variables. The reset statement
resets a pointer variable to a null-pointer. The assignment and com-
parison operators work similar to how they do in C (i.e. whether an
assignment is an assignment by reference or by value can depend on
the variable declarations). Note that if a data instance allocated by a
new statement is no longer reachable in the state graph, then it is de-
structed. Therefore one could say we employ some form of garbage
collection, although this is implicit as non-reachable instances in the
state graph are simply not encoded.

It turned out to be relatively easy to combine the two layers of
the concrete architecture to construct a model checker for PROM™.
In the previous section we mentioned that all that is needed for
SoftwareModels was an initial state and all the typing infor-

VVSS 2007 - Verification and Validation of Software Systems Symposium

Nodes of the
type graph.

I

H Nodes of the
1| variable edges of state graph.
| the state graph.

Variable

Scope of :
variables. H
H
H

labels.

Abstract

H Layer
H 1 E

! Type Variable '

E Data Global Process | Global | Process | | Data 51 E

' Instance Instance Instance Type Type Type '

' 1 * 4\ 1 « '

H Software 1 | 1 ControlFlow * 1 H

' State State '

H 2 H

E Software Software ControlFlow Assign Run E

H Transition Model Transition 4 H

{ i

<SoftwareState, <ControlFlowState,
Statement, Statement,
SoftwareTransition> ControlFlowTransition>

i i

H Simulation Simulation Explicit-State Search Search e . H

' Condition Action '

' Strategy Observer Model Interface Strategy Feedback ' Generic
: ? ?4\ A [\ | ?4\ & *'T\lr *’[\lf L Layer
E Inter-Acti Depth First Search Deadlock Store E

' Strategy Strategy Strategy Adapter Condition Action H

Figure 8 — The conceptual architecture of the framework, divided into a abstract layer and an abstract layer.

mation. By means of a parser we can generate this information
in a straight-forward manner. Once the SoftwareModel is con-
structed, one only has to instantiate the desired algorithms in the
generic layer with the appropriate types in order to use them.

An example of a PROM™ model can be found in Listing 5. This
is a model specification of the mutual exclusion algorithm by Peter-
son (as described in [2]). This particular model enables the exploita-
tion of thread-symmetry as the parametrisation of the processes with
pointer variables creates state graphs that are thread-symmetrical. In
[16] we have developed several models in both PROM™ and equiv-
alent models in a subset of both PROM™' and PROMELA such that
we could analyse the effectiveness of our thread-symmetry reduction
and to compare the performance of our prototype tool to SPIN.

3.5 RESULTS

The primary new concept of this work is the use of a layered archi-
tecture in combination with #ype parametrisation to provide reusable
algorithms for explicit-state verification. We argue that most of the
functionality of our prototype implementation is indeed reusable, and
therefore the conceptual architecture does enable reuse in the way
we have intended. Not only can reuse be achieved by using the same
algorithms for different intermediate representations, different tools
could also use the same intermediate representation. For instance, if
we have a testing tool and a verification tool for PAs then it makes
sense to use the same intermediate representation. Sharing an inter-
mediate representation would improve the interoperability of tools.
The preliminary experiments with the prototype (see [16]) have
shown that, with respect to memory consumption (the average size
of the bit sequences that represent states), the prototype is compara-

ble or at times even more efficient than SPIN. With respect to time,
however, SPIN is still three orders of magnitude faster. Obviously,
the design philosophies behind SPIN are directly opposite to those
of ours, and it is therefore not surprising that the performance of
our tool is worse. SPIN has been continuously optimised to verify
PROMELA models as efficiently as possible, thereby making it very
difficult to reuse SPIN. In contrast, we sacrifice performance in order
to enable reuse. Despite this difference, it is our expectation that we
can improve the prototype implementation to achieve performance
nearer one order of magnitute slower than SPIN, without sacrificing
the principles of our conceptual architecture.

There are a few design choices that have seriously impacted the
performance of our tool. Firstly, the choice to use reference counting
pointers has placed a significant overhead on everything in the frame-
work. Secondly, the choice to implement reachability algorithms in a
modular fashion comes at the cost of a lot of overhead in the form of
function calls, which could be avoided by means of more specialised
algorithms. Finally, the choice to use graphs to represent states in
the intermediate representation comes at the cost of expensive graph
operations (such as linearisation). These issues could be improved
without changing the principles of our conceptual architecture.

4 FUTURE WORK

The proof-of-concept framework already shows significant potential,
but to meet our objectives the framework should be extended in sev-
eral directions. New generic layers (e.g. for symbolic or bounded
model checking) are anticipated. Different intermediate representa-
tions (other than the current graph implementation) should be de-
veloped for the current explicit-state model interface. Additionally,

VVSS 2007 91

VVSS 2007 - Verification and Validation of Software Systems Symposium

the functionality in the generic layer should be extended by adding
new reusable algorithms. This could include new search strategies or
verification of liveness properties (informally addressed in [16]).

A more basic continuation of the framework would be to inves-
tigate methods to improve the performance of the framework. This
could include reconsidering some design decisions that were made
during the creation of the current framework, such as the use of ref-
erence counting pointers as well as redesigning the verification func-
tionality in the generic layer.

We expect that the architecture and library will develop into a use-
ful and reusable generic library for formal verification.

REFERENCES

[1] Gerd Behrmann, Alexandre David, and Kim G. Larsen, ‘A tutorial on
UPPAAL’, in Formal Methods for the Design of Real-Time Systems: 4th
International School on Formal Methods for the Design of Computer,
Communication, and Software Systems (SFM-RT 2004), eds., Marco
Bernardo and Flavio Corradini, volume 3185 of LNCS, pp. 200-236.
Springer—Verlag, (2004).

[2] M. Ben-Ari, Principles of Concurrent and Distributed Programming,
Prentice-Hall International Series in Computer Science, Prentice-Hall,
1990.

[3] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petruccie,
Ph. Schnoebelen, and P. McKenzie, Systems and Sofiware Verification:
Model-checking techniques and tools, Springer-Verlag, 2001.

[4] Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph
Sifakis, ‘The IF TOOLSET’, in International School on Formal Meth-
ods for the Design of Real-Time Systems (SFM-RT 2004), eds., Marco
Bernardo and Flavio Corradini, volume 3185 of LNCS, pp. 237-267.
Springer-Verlag, (2004).

[5]1 J. Burch, E. Clarke, K. McMillan, D. Dill, and J. Hwang, ‘Symbolic
model checking: 1020 states and beyond’, in Proceedings of the Sth
Annual IEEE Symposium on Logic in Computer Science (LICS 1990),
ed., John Mitchell, pp. 428-439. IEEE Computer Society Press, (1990).

[6] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut
Veith, ‘Progress on the state explosion problem in model checking’, in
Informatics - 10 Years Back. 10 Years Ahead, ed., Reinhard Wilhelm,
volume 2000 of LNCS, pp. 176—194. Springer-Verlag, (2001).

[71 Edmund M. Jr. Clarke, Orna Grumberg, and Doron A. Peled, Model
Checking, MIT Press, 1999.

[8] Rance Cleaveland and Steve Sims, ‘The NCSU Concurrency Work-
bench’, in 8th International Conference on Computer Aided Verifica-
tion (CAV 1996), eds., Rajeev Alur and Thomas A. Henzinger, volume
1102 of LNCS, pp. 394-397. Springer-Verlag, (1996).

[9] T. Courtney, D. Daly, S. Derisavi, V. Lam, and W. H. Sanders, ‘The

MOBIUS modeling environment’, in Tools of the 2003 Illinois Interna-

tional Multiconference on Measurement, Modelling, and Evaluation of

Computer-Communication Systems, Research report no. 781/2003, pp.

34-37. Universitdt Dortmund Fachbereich Informatik, (2003).

Daniel D. Deavours, Graham Clark, Tod Courtney, David Daly, Salem

Derisavi, Jay M. Doyle, William H. Sanders, and Patrick G. Webster,

‘The MOBIUS framework and its implementation’, JEEE Trans. Sofiw.

Eng., 28(10), 956-969, (2002).

Salem Derisavi, Peter Kemper, William H. Sanders, and Tod Courtney,

‘The MOBIUS state-level abstract functional interface’, Perform. Eval.,

54(2), 105-128, (2003).

Matthew B. Dwyer, John Hatcliff, Matthew Hoosier, and Robby,

‘Building your own software model checker using the BOGOR exten-

sible model checking framework’, in 17th International Conference on

Computer Aided Verification (CAV 2005), eds., Kousha Etessami and

Sriram K. Rajamani, volume 3576 of LNCS, pp. 148-152. Springer-

Verlag, (2005).

Gerard J. Holzmann, The SPIN Model Checker — Primer and Reference

Manual, Addison-Wesley, 2004.

Gerard J. Holzmann, Doron Peled, and Mihalis Yannakakis, ‘On nested

depth-first search’, in The Spin Verification System, eds., Jean-Charles

Grégoire, Gerard J. Holzmann, and Doron A. Peled, volume 32 of DI-

MACS Series in Discrete Mathematics and Theoretical Computer Sci-

ence. American Mathematical Society, (1996).

Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto L.

Sangiovanni-Vincentelli, ‘Multi-valued decision diagrams: theory and

[10]

[11]

[12]

[13]

[14]

[15]

92 VVSS 2007

[16]

[17]

[18]

[19]

[20]

(21]

applications’, International Journal on Multiple-Valued Logic, 4(1-2),
9-62, (1998).

Mark Kattenbelt, Towards an explicit-state model checking framework,
Master’s thesis, University of Twente, Enschede, The Netherlands,
2006. (available from http://www.cs.bham.ac.uk/~mxk).

K. McMillan, Symbolic Model Checking, Kluwer Academic Publishers,
1993.

Arend Rensink, ‘Towards model checking graph grammars’, in Work-
shop on Automated Verification of Critical Systems (AVoCS 2003), eds.,
Michael Leuschel, Stefan Gruner, and Stphane Lo Presti, Technical
Report DSSE-TR-2003-2, pp. 150-160. University of Southampton,
(2003).

Robby, Matthew B. Dwyer, John Hatcliff, and Radu losif, ‘Space-
reduction strategies for model checking dynamic software’, Electronic
Notes in Theoretical Computer Science, 89(3), (2003).

Claus Schréter, Stefan Schwoon, and Javier Esparza, ‘The Model-
Checking Kit’, in 24th International Conference on Applications and
Theory of Petri Nets (ICATPN 2003), eds., Wil M. P. van der Aalst
and Eike Best, volume 2679 of LNCS, pp. 463-472. Springer-Verlag,
(2003).

Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,
third edn., 2000.

VVSS 2007 - Verification and Validation of Software Systems Symposium

Eric Verhulst, Gjalt de Jong (Open License Society, Leuven, Belgium)
E-mail: eric.verhulst@OpenLicenseSociety.org, gjalt.dejong@OpenLicenseSociety.org,

Lessons from developing the OpenComRTOS
distributed Real Time Operating System
using formal modeling techniques

Abstract

OpenComRTOS is one of the first Real-Time Operating Systems (RTOS) developed using formal
modeling techniques. The goal of this project was to obtain a proven trustworthy component as well as a
clean and high performance architecture. These goals were achieved. The result is a scalable network-
centric operating system with real-time capabilities. In the coarse of the project several lessons were
obtained on the use of formal techniques. While the formal modeling resulted in important algorithmic
innovations in the RTOS domain for better safety and real-time properties, it was also found that formal
modeling has limitations and that the process of peer review is very important in achieving good results.
Areas of research in formal model checkers were found as well. In the project we used the TLA/TLC
formal modeling toolset of Leslie Lamport.

Systems Engineering approach

The Systems Engineering approach adopted by Open License Society is a classical one as defined
in [3] but adapted to the needs of embedded software development. It is first of all an evolutionary
process, basically a V-method process, but using constant iteration reviews. In such a process much
attention is paid to an incremental development requiring often review meetings by several of the
stakeholders. In the case of OpenComRTOS, this started by elaborating a first set of requirements and
specifications. Next an initial architecture was defined. Starting from this point two groups started to
work in parallel. The first group worked out an architectural model while a second group (led by Prof.
Boute of the University in Gent) developed an initial formal model using TLA+/TLC [2]. This model was
incrementally refined. At each review meeting between the software engineers developing the
architecture and the formal modeling engineer, more details were added to the model, the model was
checked for correctness and a new iteration started. This process was stopped when the formal model was
deemed close enough to the implementation architecture. Next, a simulation model was developed on a
PC (using Windows NT as virtual target). This code was then ported to a real 16bit microcontroller of
Melexis [5] and optimized. The software was written in ANSI C and verified with a MISRA rule checker.

Lessons from using formal modeling

The initial goal of using formal techniques was to proof that the developed software was correct.
This is an often heard statement from the formal techniques community. A first surprise was that each
model gave no errors when verified by the TLC model checker. This is actually due to the iterative nature
of the model development process and partly its strength. From an initial rather abstract model successive
models are developed by checking them using the model checker and hence each model is correct when
the model checker finds no illegal states. As such model checkers can’t proof that the software is correct.
They can only proof that the formal model is correct.

Other issues were discovered in relation to the use of formal modeling. A first issue is that the
TLC model checker declares every action as a critical section, whereas e.g. in the case of a RTOS, many
components operate concurrently and real-time performance dictates that on a real target the critical
sections are kept as short as possible. While this dictates the avoidance of shared datastructures, it would
be helpful to have formal modelers that indicate the real critical sections.

The final issue is the well known problem of state space explosion. Just modeling a small
OpenComRTOS application the TLC model checkers has to examine a few million states, exponentially
taking more time for every task added to the model. This also requires increasing amounts of memory.

VVSS 2007 93

94

VVSS 2007 - Verification and Validation of Software Systems Symposium

As was outlined above, the use of formal modeling was found to result in a much better
architecture. This benefit is the result of the process of successive iteration and review, but also because
formal models checkers provide a level of abstraction away from the implementation. In the project e.g.
we found that the semantics associated with specific terms used when programming involuntarily
influence choices made by the architecting engineer. E.g. a waiting list is associated just with waiting but
one overlooks that it also provides buffering behavior. Similarly, even if there was a short learning curve
to master the mathematical notation in TLA, with hindsight this was an advantage vs. e.g. using SPIN [7]
that uses a C-like syntax.

Results obtained on the MLX16 microcontroller

We shortly summarize the results obtained. OpenComRTOS was defined in layers and uses
prioritized packet switching. On each processor an instance of the kernel task provides preemptive,
priority based scheduling between “Tasks”, each having their own context and to provide inter-task
synchronization and communication services using intermediate “Port” objects in the tradition of Hoare’s
CSP channels but allowing multiple waiters and asynchronous communication. The use of packets
simplifies the implementation of inter-task and processor communication, memory management and of
kernel services. Although fully written in ANSI-C (except e.g. the context switch), the kernel could be
reduced to less than 1 Kbytes single processor and 2 Kbytes with multi-processor support. This so-called
LO0-kernel also features buffer management that is free from the risk of overflows. The second level is the
so-called L1 layer. This layer implements the more tradition services like events, semaphores, FIFOs,
mailboxes, memory pools and resource management. The formal modeling was instrumental in
discovering that all such services can be seen as special cases derived from a more general “Hub” object.
Formal modeling also allowed to discover a better way of handling priority based scheduling in the
context of resource sharing. This was remarkable as the engineers in the team had 15 years experience
developing a commercial RTOS. Most likely, the same improvement could be applied to all RTOS on the
market.

All code is written in ANSI-C, checked for satisfying the MISRA-C rules. Nevertheless, the code
is very portable and very easy to maintain.

Conclusion

The OpenComRTOS project has shown that even for software domains often associated with
‘black art’ programming, formal modeling works very well. The resulting software is not only very robust
and maintainable but also very performing in size and timings and inherently safer than a standard
implementation architecture. It’s use however must be integrated with a global systems engineering
approach as the process of incremental development and modeling is as important as using the formal
model checker itself.

Acknowledgements

The OpenComRTOS project is partly funded under an IWT project for the Flemish Government
in Belgium. The formal modeling activities are provided by the University of Gent. Melexis is co-
sponsoring the effort by providing the Melexis microcontroller as a resource constrained target for use in
embedded automotive electronics.

REFERENCES

OpenComRTOS architectural design document on www.OpenLicenseSociety.org
TLA+/TLC home page on http://research.microsoft.com/users/lamport/tla/tla.html
INCOSE www.incose.org

Open License Society www.OpenLicenseSociety.org

www.Melexis.com

WWW.Spin.org
WWW.misra.org

NowUnhk W=

VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

R Atos
NC’EEME &6"_‘ & .

> ENpance o i/ O

>> SHQUEN TIME = rlgln

CONSULTING » SOLUTIONS > OUTSOURCING

Requirements Definition Center 3.0

Professional Requirements Engineering

Hans Baaten, principal consultant

V3.1.p1 EN
12006 o g Pt o h Gk Tiepen o o 5t 1 . e b e e quoe winGl B st 2P o o Org or h . ADVANCE YOUR BUSINESS »
Topics Atos ".

Origin
» Introduction into Atos Origin
» Requirements Engineering @ Atos Origin
» Common use in projects ?
» Requirements Definition Center
» LaQuSo Software Product Certification
» Atos Origin Global Sourcing & Demand-Supply Organisation
2-RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

VVSS 2007 95

VVSS 2007 - Verification and Validation of Software Systems Symposium

An International Player

A leading IT services company providing
business consulting, systems integration
and managed operations that improve
the effectiveness of its clients’
Businesses

» Annual revenues of € 5.5 bn
» QOver 47,000 employees

> In 40 countries

3 - RDC VVSS 2007 V1.0

Atos v
Origin

ADVANCE YOUR BUSINESS »

Group Profile

Business Mix Geography

AP 3%

Americas 4%
Other EMEA 2%

Spai

Italy 6%

Systems Managed
Integration Operations
41% 19
o 51% UK
. Benelux 21%
(*) Of which 14% 21%

is recurring
business

(*) Application Management

Atos
Origin

Industries

Others 6% (*)

Retail 10%
Public Sector

& Utilities
26%

Discrete
Manufacturing
12%

Finance
Telecom 19%
& Media

19%

(*) Including Transport
(**) Process Industry & Life Sciences

FY 2005 Revenue: € 5.5 Bn

|

4 -RDC VVSS 2007 V1.0

ADVANCE YOUR BUSINESS »

96 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos Y&

Worldwide Presence OV
Origin

>

Africa
500

? | Total Employees 47,700 |

5- RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

The Olympic Games Atos
Origin
"We are extremely pleased to have expanded our partnership with Atos Origin as the Worldwide IT Partner for two
more Games. Today the role and use of Information Technology is vital for the staging of the Games. Atos Origin
was a crucial player in the success of the delivery of the Athens 2004 and Torino 2006 Olympic Games. We are
confident that, in the future, Atos Origin will deliver an outstanding job for the Beijing 2008, Vancouver 2010 and
London 2012 Olympic Games."
Jacques Rogge, President of the International Olympic Committee (IOC)

Our Business Challenges

» To be ready on time...no second chances

» A massive infrastructure and 15 technology partners
» A complex mix of process, people, and technology

» Risk management

Our Solutions

» Massive knowledge and technology re-use
» Extensive planning

» Integrated security plan

» Testing, testing, testing

Our Results

» Highly successful ATHENS 2004 and Torino 2006 Games — contract extended until 2012,
preparations well underway for Beijing 2008

» Nobody noticed the technology...exactly the way it should be!

6 - RDC VSS 2007 V1.0 ADVANCE YOUR BUSINESS »

VVSS 2007 97

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos

Business Model IV
Origin

Management Board

Key Accounts

Global Market Leaders

Industry Solution Experts

Global Service Lines

Systems Managed

Atos Consulting Integration Operations

7 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

Atos Yl

Systems Integration Origin

Delivering Clarity from Complexity

Mastering a wide range of domains and markets: Enterprise Resource Management

» Specialized solutions by industry and technology Application Management
» Legacy systems and industry leading packages
Business Fusion/EIA

A!

Embracing innovative technologies:

» RFID, ECM, Mobility, Open Source Enterprise Content Management/
Product Lifecycle Management

v

Expertise in large projects and worldwide roll-outs: .
Supply Chain Management
» Strong technical experts and outstanding project

management Customer Relationship

Management
» Top ERP integrator in Europe with strong alliances:

» SAP, Oracle, PeopleSoft, QAD, Baan Business Intelligence

Robust global sourcing capabilities In-Product Software

v

8- RDC V/VSS 2007 V1.0 ADVANCE Y BUSINESS »

98 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Requirements Engineering @ Atos Origin SI

» Business Application Solutions

» Design, Development, Maintenance, Testing of enterprise applications

» Technologies eg Java, Microsoft, Oracle

» Services eg Consulting, Project Management, Requirements Engineering,

Testing

» Requirements Engineering: 200 professionals
» From LAD to RUP, DSDM and Agiles

» Requirements Definition Center (RDC) main service
> Based on industry standards (RUP, DSDM, Prince2) and best practices, Atos
Origin RDC enables their customers to improve the quality of their software
requirements specifications both initially and during maintenance phase. RDC
Reference Models address Process, People, Organisation and

Tools&Technology.

» High quality software specifications enable cost efficient and predictable software

development and maintenance projects.

9 - RDC VVSS 2007 V1.0

Atos v
Origin

ADVANCE YOUR BUSINESS »

Common use in projects?
Heard on projects, evaluations and grapevines...

Atos
Origin

10 - RDC VVSS 2007 V1.0

» “The quality of the specifications is lacking. We can interpret
them in more than one way and we discovered open issues.”

» “We still need a few weeks to study and improve the
specifications before we can give any estimation”

» “Itis very hard to manage the third party suppliers. They say
everything is possible, but they develop another application
than business needs...”

» “All those changes! Will they ever stop !? And how can we
manage them?”

» “Why didn’t we know in an earlier stage the technical
possibilities? And why do we know just now the architectural
limitations? ”

» “Would this ever be testable?”

VVSS 2007

ADVANCE YOUR BUSINESS »

99

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos \‘D

Expensive errors Al
P Origin

1 error

not found in software specificaties means

10x - 100x higher cost

to repair the error during next stages in the application life cycle

cost
100 [
80 |-
60 |—
40 |—
20 |-
1.5 1
o]
during before during during acceptance during
specification CONSIUCHon System tes test production
Central question Atos_\f‘
Origin

How can the Requirements Engineering Discipline
support the enterprise
to meet the Quality, Efficiency and Predictability
objectives?

12 - RDC VWSS 2007 V1.0 ADVANCE YOUR BUSINESS »

100 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos

Requirements are root cause... IV
Origin

High quality input determines efficient and predictable engineering
Architecture

Develop
SDMC
Cost Efficient Predictable
Test & Verificatie

Atos Origin Requirements Definition Center (RDC) Ag)flgf

The Requirements Definition Center bridges the business units and ICT
departments

By developing and managing requirements specifications of high quality (build-able
and test-able) the software engineering proces will be more productive and
predictable

To make this possible, the Requirements Definition Center uses a balanced
combination of industry standards completed with best practices in the areas,
processess,tools, organisation and people)

14 - RDC VWSS 2007 V1.0 ADVANCE YOUR BUSINESS »

VVSS 2007 101

VVSS 2007 - Verification and Validation of Software Systems Symposium

Three views on RDC Atos_\i:‘
Origin

Organisational entity at client side to
develop and manage high quality software
specifications based on a proven blue print

Document Library to support
requirements engineers and
information analysts

Methodological strategy for
continuous improvements

Holistic vision on quality of specification Ag)s_vp
RDC Conceptual Model rigin

> Quality is directy improved by > 4 areas are devided into 10

smaller balanced aspects
improvements in all four areas
16 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

102 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Processess (1)

Primairy proces Requirements Engineering

» Our best practices with RUP

* |terative development

» Use Case driven (specification and testing)
* Requirements management

+ Continuous quality verification
» Change Control Management

» Contemporary elicitation techniques
» white board & brown paper sessions
* use case sessions
» workshops

17 - RDC VVSS 2007 V1.0

Tato [f@o o fiac] e

ADVANCE YOUR BUSINESS »

Atos Yl

RDC Intern s :
-l e @& Orign
Stakeholder il Ry o
Vision Roqumsts oBuUdnes) Use-Case Model UseCaso Userintafoos 30T romen
1 A 1
Ve T T T

Develo Elicit Develop Capture Find Structure Manage
Visionp Stakeholder Domain Common Actors & Use Case Depen-

Requests Model * Vocabulary Use Cases, Model dencies

= Detail
Spocs Use Case

Prototype
User-
Interface *

Detail
Software
Regs.

Prioritize
Use Cases

Architectural
Analysis. *

Elicit
Suppl.
Specs. *

Define
Test Details

Monitor
Project
Status
T

[Q Q

Initiate Assess g

Projectf | Itereation Iteration Al
L Mng hing

Review
Change
Requests

Create
Baselines

18 - RDC VVSS 2007 V1.0

ADVANCE YOUR BUSINESS >

=
)

VVSS 2007

103

VVSS 2007 - Verification and Validation of Software Systems Symposium

Processess (2) Agjflgﬁ

» Secundairy process
» Projectmanagement according to Prince2

» Continuous Improvement Cycle
» RDC as ‘learning organisation’

» Quality control
» Templates
» Reviewing, testing
» Transfer criteria (from specification to implementation and test)

» Re-use
» Documents from other projects
» Blue Prints and Design Patterns

Organisation Ag)_s_ \»Q
Internal orientation I lgl n

Primairy roles in RDC
> Systems Analyst
» Requirements Specifier
> Software Architect
» Test Analyst

Secundairy roles in RDC
» Reviewer
» Projectmanager
» Change & Control Manager

20 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSIHES »

104 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Organisation A(t)os_ “..
External orientation: demand-supply model rigin
» Split of responsabilities between specification and implementation
» Which document types hold the requirements specifications?
» How are they transferred to the parnter organisations?
» Who meets who, when and what about?
» Escalation handling
A— A———
—— —
A— —
Business Analyst Systems Analyst Software Architect
User representative Requirements specifier Designer
Super-user Software Engineer

Test engineer

ADVANCE YOUR BUSINESS »

Demand-Supply model
Front-Office and Back-Office

Origin

User organisation

Q
L
&
Q
€
<
[T 9
analysis & design system (integration) test
Q
E::'J Project & Process
° Contract alignment &
S management communication
©
(i}

ADVANCE YOUR BUSINESS >

VVSS 2007 105

VVSS 2007 - Verification and Validation of Software Systems Symposium

i Atos
Tooling Origin

» Infrastructure on (under) your desk
» Toolset

» Working guidelines

» Document Library

software

Boriand” Caliber”

_—
@ ENTERPRISE 1) Spfimal Trace

23 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

Document Library Origin

Requirements Definition Cefiter 3.0

Requirements Definition Center

Design(ed) for business performance

Professioneel specificoren met ROC 3.0

- . Met het Atos Origin Requirements Defintion Center worde de dscoline Requirements Enginsenng
m geprafessionaliseard, Op bagis van bawezen industry standards en Best practices is hat ROC in stast
i — o softeace spacificaties van hoge kwaliteit oo te laveran, Atos Onigin voert dit varsndertraject us en

5. Kwaldaltshewhing Bevart arvaran reduirements snginsers.

E. Change & Confguratinn Conceptueel model

e kwaldmit van spacilicaties mordt door vier slementen bedhvland:

B Verbetencychis ® Procassen - hoe werksn we
® Middelen - waarmas warken e

* Organisatia - mat wie werken we samen
& Mansen - wie dosn het werk

Het RDC geeft voor lk van deze slsmenten - en de onderiggends
sspecten - invulling in ¢ verm van onder meer
Brocesbesthrivingen, werkinstrustes, temelstes en trainingen. Aan
het RO ligt ook sen gracimodel ten grondsteg. In sen aantal
stappen wordt het sptimale nivesu bereikt, Implementatio start shijd
met et i i i ket Higrin iz

24 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

106 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

People Ag)fi‘g’g

» Training and educations
» Each role has a profile with ao
* RUP Fundamentals
* Requirements Management with Use Cases
+ UML
+ Tooltraining

» Coaching
» Essential part
» Master-fellow

» Teamwork
» Within RDC
» With business an ICT

25 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

Implementation strategy Agfgig

IMPRESS

» Infrastructure

» Primairy processes

» Working guidelines

» Secundairy processess

» Quality Control

» Continuous Improvement Cycle
» Training

» Demand-Supply model

» Culture and organisation

» Acquisition

26 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

VVSS 2007 107

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos

Implementation strategy Origin

plan improve ensure

Continuous Improvement |

» Assess
» Assess Present Mode of Operation, Future Mode of Operation
» Requirements Engineering Capability Assessment

» Plan
» Define and commit a plan to professionalise in close co-operation with the client organisation
» Plan-2-professionalise

» Improve
» Implement of identified improvements, using clients’ best practices and Atos Origins’ RDC assets
» Improve with IMPRESS

» Ensure
» Learn how to work according to the RDC principles: joint resourcing
» Ensure Professionality

» Continuous Improvement
» Evaluate objectives and identify next levels of professionality
» Continuous Improvement Program

27 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

Implementation strategy Ag’figf

Requirements Management Maturity Model

L. Growing into complete maturity;
5. Optl mizi ng significant better business solutions

Predictability in specification; quality
4 . managed specifications of business solutions

One way of working focussing on quality

3. structured

. People are aware of basic principles and
2. skilled have an initial level of quality awareness

Unstructured process, unpredictable
solutions

28 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

108 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

LaQuSo Software Product Certification ASJS.“‘
Added value of independent certification rigin

» RDC assesses 4 areas determining the quality of requirements
» Proces

Organisation

Tools & Technology

People

vV VvV

» LaQuSo focusses on the quality of the requirements products
» Initial
> After Atos Origin RDC implementation

- ensure

Continuous Improvement

29 - RDC VVSS 2007 V1.0 nmmncs YOUR BUSINESS))
Atos Origin Global Sourcing & Atos_\{’
Origin

Demand-Supply Organisation

30 - RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

VVSS 2007 109

VVSS 2007 - Verification and Validation of Software Systems Symposium

Atos i

Atos Origin Global Sourcing & Origin

Demand-Supply Organisation

Business Units Implementation Partner

Country A

Back Office

E.g. Atos Origin India

31-RDC VVSS 2007 V1.0 ADVANCE YOUR BUSINESS »

% Repy NCE ‘9’
B e o AtOS

E AG|
> ENJ.HN Uty s *
5 Siagnct cen Origin
Maggel TIME 1,
2 Prive INNoyﬁr CONSULTING > SOLUTIONS > OUTSOURCING
> IMPgoy, o,

ore information please contact:

EFFJqENCy Fo

Hans Baaten, principal consultant
t +31 (0) 030 — 299 5584

m +31 (0)6 55 122 475
Hans.Baaten@atosorigin.com

www.atosorlgln.com
| —
Ao, Atosand s symbo, Al Orginand ishsymbol, , and e ish ymbol dermars of Aos Origin SA
07006 Aos Orgn. P hent. Ths repertor any bt of Iy not b coplee,crculated,quotad il o witen spproval o Alos Orgh or th cen. ADVANCE YOUR BUSINESS »

110 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

N LA

THE OPTIMIZERS IN ICT

Requirements and qualities

Introduction

There is not one good and clear definition of the term requirement. Every author has virtually his
or her own definition. There is however a commonality to be discovered. Requirements are
needs that are to be met and which involve client and supplier stakeholders. These needs can be
described as functions, qualities and constraints. The requirement type functions describe what
the result must do or be able to do, the type qualities describe how well the result must function
and the type constraints are solutions that have to be met (or actual constraints that define the
border parameters of the requirement itself). From idea to described need, several parts of the
organization such as business, IT, are required to be involved before the realisation of the
desired solution can begin. Every part of the organization (i.e. all the stakeholders) describes the
terms the need in terms of the three types of requirement.

The purposes of requirements are usually more easily agreed upon:
e To match a common picture for the development of products and/or the implementation of
processes of organizations;
e To deliver a result which complies with the requirements that have been agreed upon and
to enable requirements based testing (RBT);
e Everything that is done within the scope of the project is described in requirements and is
laid down in requirements documentation.

Requirements Management

Management of requirements keeps track of the requirements during the development process
by means of documentation of requirements. A requirement-tracking table is kept for this purpose
often supported by tooling. From this management reports will show the required details for the
organization at hand. When changes during the project appear requirements management
assures a structured handling conform the requirementsdevelopment process (i.e.
Changemanagement).

Requirements Development

Development of requirements is a structured process that generally takes place in five steps:

Requirements
Development

Identify Identify Specify Inspect Authorize
Stakeholders Requirement Requirements Requirements Requirements

Every step can be followed as easily by the next step as resulting in going back one or more
steps. This process applies to requirement developers, who have at least a general
understanding of the described result required. This understanding is necessary to determine
whether stakeholders and requirements are identified and selected for the right reasons and
understanding the stakeholders during the interviews when specifying the requirements.

VVSS 2007 111

VVSS 2007 - Verification and Validation of Software Systems Symposium

N LA

THE ORPTIMIZERS IN ICT

Goal

Goals of requirements descibe the needs and expectations of the stakeholder. The needs are the
rationale for the products and the desciption of the products in terms of functions. For instance:
the time to market has to be shortened. This stakeholder function serves as a rationale for all
products in relation for the developtment process. The adequate desciption of products is more
easily achieved when put into perspective of this particular goal. It needs no further
argumentation that the more adequately (or detailed) products are described, the more succesful
the development process shall be.

Goals however can still be difficult to reach. Goals are also difficult to describe; even more
difficult to define precisely. When goals are not clear, it is questionable whether products used to
reach unclear goals will attribute to the realisation of the goal itself. Why spent resources on the
realisation?

Requirements engineering is excellent in determining acurate goals because it emphasizes on
describing functions, qualities and constraints.

Value of requirements

Functions are actions or effects that a product or result must do or have. The testing of functions
is quite simple. It is enough to determine the existence of the function: is it working or is it not
working. With the function alone the goal cannot be achieved, because it constitues no value yet.
The value of the function is in its qualities. The quality of a particular function is invariable always
measurable. There is always a scale, measure and level involved with qualities. If the function
alone exists and it performs below expectations, the value is very low. In this example
performance is the scale, the measure could be described in terms of time of money and the
level is below expectation. When the level is sufficient, the value rises. When the level is good,
the value rises even more. Etc. When there is no qualitylevel at all, the function does not do it’s
function; is does not exist. A function therefore only exists with its qualities.

Other literature descibe qualities in terms of non functionals or acception criteria. Non functionals
constitute usually of qualities as well as requirements of certain departments such as the legal
department. Acception criteria usually become into play during testing. The use of the word
“Qualities” is therefore a more appropriate phrase because it indicates what they are: qualities of
functions as apposed to non-something or other.

Goal and gqualities

As qualities constitue value for functions, they also constitute value for the goals to be reached.
In terms of goals, qualities are related to what must be achieved (functions). Goals and related
qualities are described in terms of stakeholder language. Defining stakeholder functions and
qualities that are unambiguous means they have to be confined within the stakeholder language.
This is by no means similar to the more commonly used technical language with product
functions and product qualities. Therefore it is imperative that de requirements engineer
understands the stakeholder language perfectly well to be able to translate it into technical
language.

The following table discribes the most succesful route to develop adequate requirements.

112 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

N LA

THE OPTIMIZERS IN ICT

Requirements

Function Quality
Goal What must be Value

achieved

| <
Product hat the product Attributes
does
—

To explain the significance of this table and the flow indicated by the arrows, the opposite route

of the arrows should be explored:

From product function to goal
function

Great risk of describing too many product functions that do
not contribute to the goal(s). When these functions are
developed, one has probably solved someone elses goal at
probably the wrong time and incomplete as well.

From goal quality to goal
function

Only goal qualities is not enough to succesfully describe
requirements. A quality not attached to a function constitutes
no value . Qualities are as attached to functions as functions
are to qualities.

From goal quality to product
quality

This step is to big a step to take because it is not clear to
what function(s) they are attached. This results in general
qualities that can not be used to define the value of the
products and the measure in which they contribute tot the
realisation of goals.

From product quality to product
function

Risk of describing qualities that are not related to a function
and therefore difficult to measure.

VVSS 2007 113

VVSS 2007 - Verification and Validation of Software Systems Symposium

N LA

THE ORPTIMIZERS IN ICT

Maintenance

Requirements are developed within a project to reach certain goals. After the project stops
requirements are archived with all other project documents. When the project delivers software
systems, these software systems are subsequently maintained by hierarchical departments.
Maintaining mostly means to assure the functionality and qualities of the software. This
sometimes involves expansions or changes to the software. In case of changes new projects are
started. Should these projects develop the requirements all over again? If requirements are
managed sufficiently after the delivery of projects, change projects and other projects can make
good use of the already developed requirements. Goals are still known and rationales for certain
solutions may still be valid and should provide valuable information for subsequent change
projects.

All this is even more complicated with todays growing complexity of softwareprograms.

Why do organisations not invest in requirements in general and qualities in particular?

With only the development of stakeholder and product functions, half of what may be the
intention, is achievable. When the required attention is given to qualities, much more value is
added tot development projects. Even more when this information is managed after the projects
have finished and the results have been made available for maintance indicated projects. The
main question to be asked is; “why do organisations not invest in these aspects of requirements
management?”. With little cost up front it is likely to prevent having to spend additional resources
in maintenance and rework at later dates.

| would like to explore the possible answers tot this question.

In the presentation examples will be presented to illustrate the above

Renze Zijlstra
Principle Consultant
KZA

www.kza.nl

06 2952 7225

114 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

/MPRO%

Quality Services

Rob Hendriks

(rthe@improveqs.nl)

What is Risk?

“A factor that could result in a furure

negative consequence; usually expressed as
impact and likelthood” (ISTQB Glossary)

Testers ‘only’ have the responsibility to
identify the risks and provide information on
their status :

“to dare to undertake”

— management attitude and style

VVSS 2007

115

VVSS 2007 - Verification and Validation of Software Systems Symposium

Testing = Risk Management

o Objective: most feasible coverage
— effective usage of limited resources
e Resources
» staffing
» infrastructure
» time !

» ..

> the right level and type of coverage on the
right parts at the right time

The challenge....

Testin 9 Ted Gilchrist & Downing

MDUSTRY peTrics Skowl | GREAT/ wecan |SIMILE. WE prLy TeST

TRAT uniT TesTNG Finbs $ 0 ™
SERIOVS PROBLEMS N AVE LETS oF mMongY E pMODULES wiTH

ONE IN FIVE MuDULES THeN THE BUGS W/

116 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Risk Based Testing

o Risk identification looks at ways of
establishing what the risks are and where
they are

» Risk analysis determines the critical,
complex and potential error prone areas

» Then we determine the approach and build
tests to mitigate the risk

o Subsequently we track, monitor and report
regarding the risks

Risk Identification

e Split up in functional and/or technical items
o Higher level test according to requirements
o Lower level test according to architecture

e May also be based on a brainstorm session

o Maximum number of approx. 35 risk items

Item 1 Register customer
[tem 2 Purchase product

Item 3 Payment handling

VVSS 2007 117

VVSS 2007 - Verification and Validation of Software Systems Symposium

Risk Analysis

o Risk = impact x likelihood
— What is the impact for the business ?
— What 1s the likelihood that there are defects ?

o Determine factors based on previous

projects, e.g. defect patterns 4 | %
-y

 ay

Likelihood
technical risk

[)
Impact — business risk

Factors From Practice

defect patterns / history

o [ikelihood o Impact
= SOOI =USCT [NPOIHANTE
™ 1 cwadevelopment (“selling item™)

(1e¥€ of re-uses) — financial (or=efheY)

- — interrelationship damagex(egasatety)

W= (# intcrfaces)pm " o =099 lntonstiy

.
AV S

perience (of

-development team) Customization f Weighings
needed can be applied
n []

118 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Stakeholders Involvement

o Identify Stakeholders

— Internal (likelthood) and external (impact)

— Assign factors for them to score individually

User Usage | Safety
importance | intensity
;hey shall
choices -
Item 3

Item 5

“Consensus’” Meeting

e Discuss issue list - first defects found !!

Example:

9:
5 : High
3:
1
0

Critical

Moderate

: Low

: None

VVSS 2007

119

VVSS 2007 - Verification and Validation of Software Systems Symposium

MoSCoW priorities

The Product Risk Matrix

bt

Risk Mitigation

Differentiated test approach: A

Reviews & inspection

Reviews of test design

Exit criteria

Level of independence

Most experienced person

Priority setting

Re-testing without this risk management
Regression testing doesn’t make much sense !!

120 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Example System [Level Testing

Likelihood &4

Recognize this ?

o After months of testing the system finally
goes live and

o Test manager says: ‘we already knew this
would happen’

o Who is at fault?

» Risk based testing = Risk based reporting

The major §Managemen
Test deliverable §| Information !! B¥

VVSS 2007 121

VVSS 2007 - Verification and Validation of Software Systems Symposium

Communication Levels ...

Gilc hrist & Downing

SOME METRICS ABevT | HALSTEAD_PURITY RATTo ¢
MooSE_ CouPLNG . | PPES-IT-WoRK 7!

BETwWeeN 0BTecTs 7

Risk Monitoring & Reporting

122 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Can we release the product?

Management view

Risk item 3

Risk item 4

Risk item 5

Benetits

» Stakeholders are actually imnvolved in the
test approach

o The Product Risk Matrix is a simple means
of communication

s Support is given in making the right
decisions when the project is under pressure

» Can be a driver for software process
improvement

VVSS 2007 123

124 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

.:«,‘

B,

Key learning points

»,

o A structured and practical technique for
risk based testing is available

o Re-discuss the risk assessment on a regular
basis

» Define a risk based differentiated test
approach

o Provide risk based management reporting
s ... it doesn’t stop at the planning stage

Thank you!!!

VVSS 2007 - Verification and Validation of Software Systems Symposium

A New Statistical Software Reliability Tool

M.A.A. Boon!, E. Brandt?, |. Corro Ramos', A. Di Bucchianico'! and R. Henzen?

! Department of Mathematics, Eindhoven University of Technology, Eindhoven, The Netherlands

2 Refis System Reliability Engineering, Bilthoven, The Netherlands

Abstract

We describe a new statistical tool for software reliability analyses that we are developing.
Existing packages for statistical analysis of software reliability data do not make full use of
state-of-the-art statistical methodology or do not conform to best practices in statistics.
Our tool has a Java based interface and uses the statistical programming language R
(see www.r-project.org) for the statistical computations. R is open-source free software
maintained by a group of top-level statisticians and is rapidly becoming the standard
programming language within the statistical community. The tool has a user-friendly
interface which includes features like auto detection of data type and a model selection
wizard.

Keywords: software reliability, software testing, statistical models, R.

1 Introduction

Successtul testing processes require excellence in both software testing and management. In
order to support well-founded decisions on issues like resource allocation and software release
moments, quantitative procedures are indispensable. Since few testing processes have a de-
terministic course, statistics is very often an appropriate part of such quantitative procedures.
Existing tools for software reliability analysis like Casre and Smerfs® do not make full use
of state-of-the-art statistical methodology or do not conform to best practices in statistics.
Thus, these tools cannot fully support sound software reliability analyses. We decided to
build a new tool that

o uses well-documented state-of-the-art algorithms
e is platform independent

e cncourages to apply best practices from statistics
e can easily be extended to incorporate new models.

In order to meet these requirements we decided to use Java for the interface and the statistical
programming language R (see www.r-project.org) for the statistical computations. R is open-
source free software maintained by a group of top-level statisticians and is rapidly becoming
the standard programming language within the statistical community. In this paper we
report on the status of our tool. Our tool is a joint project of the Laboratory for Quality
Software (LaQuSo) of the Eindhoven University of Technology (www.laquso.com) and Refis

VVSS 2007 125

VVSS 2007 - Verification and Validation of Software Systems Symposium

(www.refis.nl). The tool development is financially supported by a grant of the Dutch
Innovation Platform.

The rest of the paper is organized as follows. In Section 2 general guidelines of software
reliability analysis are given. In Section 3 we present general and statistical features of the
tool. We focus on describing the tool’s GUI thoroughly. A study to show how the tool works
in practice is presented in Section 4. Finally, in Section 5 we summarize the work carried out
and we point out to several important short-term objectives.

2 A note on reliability analysis

For general information on software reliability analysis we refer to Lyu (1996), Musa (2006)
and Pham (2006). Like there exist coding standards for writing software, there also exist
standards for performing statistical analyses. Basic steps in a statistical analysis of software
reliability data should include (cf. Goel (1985))

1. data collection (which data is relevant for the analysis)

2. trend tests (does the data indicate growth, otherwise analysis is useless)

3. model selection (pre-selection of models)

4. model estimation (calculate optimal parameters from data)

5. model validation (do models fit to data)

6. model interpretation (calculate quantities of interest from model parameters).

We talk of ungrouped or exact data when the failures are reported individually and the
data represents time between failures. However, it is possible to report faults in periods of
time, in which case the data consists of the time intervals where the failures are reported and
the number or faults found in each interval. In this case we talk of grouped or interval data.
Unfortunately, ungrouped data has received much more attention in the literature.

Before trying to fit any reliability growth model we should verify whether the data indi-
cates reliability growth. This can be done using adequate plots or more formally with trend
tests. Figure 1 clearly depicts the idea that software becomes more reliable as long as it is
tested and errors have been repaired, so that more effort is required to find future errors.

There are over 200 software reliability models based on different assumptions, assumptions
which are often unclear or too unrealistic. Systematic approaches to use model assumptions
and data requirements for initial model selection have not received much attention in the
literature, Kharchenko et al. (2002) being an exception. Therefore, we have been developing
a matrix-based procedure to support the choice of the models to work with. A simple version
of this matrix can be found in Figure 2. Since we wish to select rather than rule out applicable
models, we state all assumptions as negations of restrictions. To select models, one first has
to select relevant assumptions and weights to incorporate the available information on the
testing project at hand. If all requirements and selected assumptions of a model are satisfied,
then the score for this model is 100%. In all other cases the score of the model is defined
using the relative importance (weight) of the applicable characteristics of the model.

Estimation of model parameters requires optimization. Since the parameters typically are
of different order of magnitude, numerical problems like non-convergence or large flat areas

126 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Graphical Output . EjI

Reliability growth data

bl

100

80
L
L]

Mumbzr of failures

40
L
o

o 50 100 150 200
Tima

Figure 1: Reliability growth data.

around the maximum cause practical problems (see Yin and Trivedi (1999)). In our tool we
pay attention to convergence issues and apply algorithms that avoid the standard numerical
problems.

After parameter estimation has been completed, model verification must be determined.
Graphical methods like the u-plot or TTT (Total Time on Test) plots (see Rigdon and Basu
(2000) for details) or goodness-of-fit tests can be applied. Unluckily we find also problems here
(derived to the fact that the assumptions of independent and identically distributed observa-
tions are normally broken by software reliability models). Therefore, standard goodness-of-fit
tests, like the Kolmogorov test, cannot be used although this is often done. For diverse sub-
classes of models new goodness-of-fit tests are becoming available (see Bhattacharjee et al.
(2004), Zhao and Wang (2005)).

Finally, model interpretation makes possible to determine quantities like number of re-
maining errors and reliability of the system.

3 Software reliability tool

In this section we give a general overview of the GUI of our tool. Our tool is written in Java
and we have made use of readily available components from Java Resource Bundles. The
statistical computations are performed by calling R (high-quality free open-source statistical
software). The communication of Java with R uses JRI and JavaGD libraries developed by
RoSuDa, the Computational Statistics group of the University of Augsburg. Initially, the
GUI of our tool consists of four menu items as we can see in Figure 3. The multiple options

VVSS 2007 127

VVSS 2007 - Verification and Validation of Software Systems Symposium

Data Requirements and Assumptions

Duane

Data may be exact failure times (ungrouped data)

Data may be grouped failure times (interval count data)

= |x |Schneidewind

Testing intervals may be of different length

= |= |= |Jelinski-Moranda
* |> |> |Shick-Wolverton

x |x |x |x |Geometric
* |> |> |Musa basic

Failures need not occur equally likely

Detection of faults may be dependent of each other

Failures need not be of the same severity

Detection rate depends on time (testing effort)

> [x [x [x [x > |x |Littlewood-Verrall
x |x % [x |x |x |> |Musa-Okumoto

x| |x % |x % |x|Goel-Okumoto
> % [x [x |x [x |x |Yamada S-shaped

b
o
KX X X |X | [x

Detection rate depends on number of remaining defects

Failures need not be repaired instantaneously

Imperfect repair of defects allowed

Infinite number of errors allowed

NN W|w | =N M |w || Relative Importance

Figure 2: Assumption

matrix.

of all the menus are explained during this section. In the beginning only the Data and Help
menus are enabled. To have access to the working environment we have to select the option
Import from the Data menu. We can distinguish two new windows that will remain visible
all the time, one devoted to data and the other one to graphics. Figure 4 shows the data
window. Three different tabs can be identified. The first one contains the imported data, the
second one is allocated to the filtered data (in case we use this option) and the third one will
show the data from the model analysis. Figure 1 shows the Graphical Output window where
all the plots produced will be displayed. In the rest of this section we explain the tool menu
options in detail, paying special attention to the Models and Analysis menus.

3.1

1,

Data menu

Import

Imports data files in .txt and .xls formats.

environment is displayed.

Export

Exports data files in .txt and .xIs formats.

. Filter Data

After loading the data set the working

This dialog (see Figure 5) allows to refine the data set and keep a subset of observations.
The filtered data set can also be exported and imported.

128 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Data Graphics Analysis Help

© 2008 Secmivehe Unsveraiied Cindhaven, LaGuSa and Sefly

Figure 3: Software reliability tool GUI.

T ol
/4]
10]
e
i
C "
5|
z 4]
31|
49|
o 1 1]
11 1] =
12 12 1
13 13 4|
) il 30
LS. 15 2|
16 16 El
17 17! 49|
jass 26)
15 19 x|
20 20 3
[21 21 78|
2 2| 1
23 23 0
El 24 E|
|= = 5=
(ks | Fikerd Do | iodel Analysis Rosuts |

Figure 4: Data window.

4. Transform Variable
With this option we can create new variables applying basic operations to the variables
of the data set. The available operations can be observed in Figure 6.

5. Preferences

User preferences can be set using this option. Font type and size can be chosen for
both program GUI and output (see Figure 7). The number of significant digits for the
calculations can be selected from one up to eight (by default set to three). We can also

VVSS 2007 129

VVSS 2007 - Verification and Validation of Software Systems Symposium

Figure 5: Filter Data dialog.

i
D) Veriate: Transformation: ame of the transformed variable:
Observation Number 0a(#) |
times 10log(#}
expl#)
2
#-3
sqrt(#)
1%
sbs(#)
cumsumi#)
oFf(#)
G |

Figure 6: Transform Variable dialog.

decide the colours to be used in the plots. These options can be saved (or load) to
(from) a .txt file.
6. Exit

Closes the GUI and terminates the program execution.

3.2 Graphics menu

1. Create Scatter Plot

With this option we can generate plots that will be loaded in the Graphical Output
window. After clicking on this item, a window named Select Plot Variables pops-up
(see Figure 8). We can select the variables we want to plot and assign them to the
X or Y axes. Moreover, we can choose the type of plot we wish to generate. The
existing options are scatter plot, normal probability plot and TTT plot. Finally, the
Draw Graph button will create the graph. On the lower part of the window we can set

130 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Figure 7: Preferences window.

Figure 8: Select Plot Variables window.

display options of the plot like the main title, the labels of the axes or the format of the
curves.

. Copy Current Plot to Clipboard

Copy the plot that is displayed on the Graphical Output window to the clipboard. Thus,
the plot is cached and can be transferred between documents or applications, via copy
and paste operations.

. Export Current Plot

Selecting this option a save dialog appears to export the current plot to a graphic file.
The formats supported are .eps, .jpg and .png.

VVSS 2007 131

VVSS 2007 - Verification and Validation of Software Systems Symposium

4. Print Current Plot

With this option a print dialog is displayed to print the current plot.

3.3 Analysis menu
1. Model Select Wizard

Figure 9 shows the Model Select Wizard. In this dialog a list of common software reli-
ability assumptions are enumerated. These assumptions are known from the literature
and they are used in different software reliability models. The most relevant models
are listed on the right-hand side of the dialog follow by a column called Score. Every
assumption has a score associated to every model. After selecting the assumptions, the
models receive points and they are sorted by relevance. The higher score a model has,
the better the model will fit the assumptions.

Model Select Wizard N x|
\:u.’) Assumptions: Preferred models: Score!

[~ Geometric 0%
I™ Data may be exact Falure times (ungrouped data) [Jelnski-toranda 0%
I™ Datamay be grouped fallure times (interval count data) [~ |idewood-Verrall 0%
[Testing intervals may be of different langth ™ Musa basic 0%
[Failures need not occur equally lkely [Musa-Okumato 0%
I Detection of Faults may be dependent of each other [Goel-Okumato 0%
I Failures need not be of the same severity ™ Shick-Wolverton 0%
I™ Detection rate depends on time (testing effort) [Schneidewind 0%
I Detection rate depends on number of remaining defects [~ yamads S-shaped 0%
I~ Failures need not be repaired instantaneously ™ Duane 0%

[Imperfect repair of defacts alowed
[Infinite number of errors allowed

[|

Figure 9: Model Select Wizard dialog.

2. Data Type

With the Select Data Type window (see Figure 10) we have the option to set the type
of data of our data set. Time between failures or cumulative times, exact or interval
data are the available options. In case of interval data we have to distinguish between
counts per interval or cumulative counts. Options like different kind of errors (severity)
or whether the last element of the data set is an observer error are also offered. In case
we do not know which kind of data we have, the option Try to Autodetect Data Type
results of special interest. With this button the program estimates the type of data of
our data file. Checking the number of columns (grouped or ungrouped) or the growth
of the data (time between failures or cumulative times) we may find out what kind of
data we are using.

3. Trend Tests

The tool has the Laplace and the MIL-HDBK 189 trend tests already implemented and
new tests will be added soon. The Trend Tests window is shown in Figure 11. Select

132 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

~ EtWEEn BTOTS
\-.'EJ Times: |umes = i 2
Counts [t avallaoie [e
Severty: |Not Availadle =i

" Grouped {Interval data)
 Ungrouped {exact data)

£ Cumllatve Cotnts

™ The last element of the data set s an observed emor

Try to Autodetect Data Type
) |

Figure 10: Select Data Type dialog.

x|
W TastR
-J:::::ncn Humber biicl Iw -
e Results Laplace Trend Test =
o times [
 Malitary Mandpook 160
Drata set: Joe Lxls
Alphi Number of observations 207
I' Variable: Cunmulative Times
[Fatom Te= | u: 1%
Test statistic: 6.67231
Lower Critical Value: -2.57583
Upper Critical Valwe: 2.57583
P-Value: 0.00000
Conclusion
The test statistic ie small, which indicates that there is a significant
growth in reliability,
Results Military Handbook 189 Trend Test
Drata set Joe_Lxls
Number of ohservations 207
Variable: Cumulative Tumes
S 1%
Test statistic: 61194130 e
Lower Critical Value: 34181800
Upper Critical Value: A89.69129
Copy Test et | P-Value: 0.00000 =|
0S|

Figure 11: Trend Tests window.

the variable whose growth we want to investigate as well as the tests we would like to
use. The significance at which the test will be performed can also be selected here. On
the right-hand side of the window we can observe the result of the tests we decided to
perform. Graphical interpretation of the test is also displayed on the Graphical Output
window.

. Analyse Model

The analysis window is shown in Figure 12. Before performing the analysis four steps
must be follow. First, select the model(s) to fit the data. Then set the confidence
level used to calculate confidence intervals (by default set to 95%) and the significance
level to perform hypothesis testing (by default set to 1%). Last, choose between the
maximum-likelihood or least squares methods for parameter estimation. To perform

VVSS 2007 133

VVSS 2007 - Verification and Validation of Software Systems Symposium

Figure 12: Analysis output.

the analysis click the Analyse Model button. Subsequently, the analysis output shows
the type of data, the model choices, the parameter estimates and the result of the
Kolmogorov goodness-of-fit test. The data window (see Figure 13) presents the fitted
values for the selected models. Finally, the graphical output (see Figure 14) shows the

Figure 13: Fitted values data.

observed values and the estimated models (by default represented by circles and a solid

134 VVSS 2007

5.

3.4

VVSS 2007 - Verification and Validation of Software Systems Symposium

curve, respectively).

alf

Fitted models

Cumulatre Number of Fallures
100 150 i}
Y

50

— Obserad Values

— Goel-Okumoto

T T T T
o 5000 10000 15000
Cumulative Fallure Times

Figure 14: Fitted model plot.

Plot Fitted Models

This option is enabled only after the analysis has been done and allows us to plot the
observed values and the estimated models that we selected for the analysis.

. Export Output to Excel

This option is also enabled only after the analysis has been performed and give us the
possibility to export the output of the analysis to .xls format.

Help menu

. Tool Help

Help files of the tool.

. SRE Help

Glossary of terms and background on chosen algorithms.

. About...

Information about the developers, version of the tool, etc. ..

VVSS 2007 135

VVSS 2007 - Verification and Validation of Software Systems Symposium

4 Case study

In this section we show a demonstration of the tool using a data set by Joe (1989). The
data set, reproduced in Table 1, consists of 207 observations corresponding to times between
failures (ungrouped data). To load the data set in our tool click the Data menu and then on

Joe_ I data set
39 | 10 4 36 4 5] 4 91 | 49 1 25 1 4 30
42 9 49 | 44 | 32 3 78 1 30 1205 5 | 129|103 | 224
186 | 53 | 14 9 2 10 1 34 [170|129 | 4 4 35 5}
5 22 | 36 | 35 | 121 | 23 | 33 | 48 | 32 | 21 4 23 9 13
165 | 14 | 22 | 41 12 [138 | 95 | 49 | 62 2 35 | 89 | 99 | 69
22 | 15 | 19 | 42 | 14 | 11 | 41 (210 16 | 30 | 37 | 66 9 16
14 | 24 | 12 | 159 | 89 | 118 | 29 | 21 | 18 2 (114 | 37 | 46 | 17
1 150 | 382 | 160 | 66 | 206 | 9 26 | 62 | 239 13 4 85 | 85
240 | 178 | 34 | 102 | 9 | 146 | 59 | 48 | 25 | 25 [111 | 5 31 | 51
6 |193| 27 | 25 | 96 | 26 [30 [30 | 17 | 320 | 78 | 39 | 13 | 13
19 | 128 | 34 | 84 | 40 | 177 | 349 | 274 | 82 | 58 | 31 | 114 | 39 | &8
84 | 232|108 | 38 | 86 7 22 | 80 [239 | 3 39 | 63 | 152 | 63
80 | 245 | 196 | 46 | 152 | 102 | 9 | 228 | 220 | 208 | 78 3 83 6
212 | 91 3 10 | 172 | 21 | 173 [371 40 | 48 | 126 | 90 | 149 | 30
317 | 500 | 673 | 432 | 66 | 168 | 66 | 66 | 128 | 49 | 332

Table 1: Time between failures.

Import. An open dialog pops up (see Figure 15). We look for the data file that contains our
data set (Joe_ I.xls) and then we click the Open button. We can distinguish three different
windows in the GUI as we mentioned in the beginning of Section 3. On the left-hand side we
can observe the data file while the graphical output window appears on the right-hand side.
The middle of the screen is occupied by the Select Data Type dialog, already presented in
Section 3.3 as part of the Data Type menu (see Figure 10). With this dialog we decide the
kind of data we have. Therefore, select Time between errors and Ungrouped options. Note
that in case of doubt we can try the option Try to Autodetect Data Type. The next step is to
check whether the data presents any trend. Select the option Trend Tests from the Analysis
menu and the Trend Tests window will be displayed (see Section 3.3, Trend Tests). Select the
variable Cumulative Times follow by the trend tests we want to perform. in this case both
Laplace and MIL-HDBK 189. Set the statistical significance level (Alpha) for the analysis and
then click on Perform Test. The result of the tests is shown in Figure 11. On the Test Results
area we can observe that both tests support the fact that there exists significant growth
in reliability. In addition, the graphical output displays a graphical interpretation of the
(statistical) test (in this case MIL-HDBK 189 test) as we can appreciate in Figure 16. Since
the result of the trend test is positive, i.e., the data shows reliability growth, the next step is to
perform analysis of the data applying software reliability models. An initial model inspection
can be done with the option Model Select Wizard from the Analysis menu, as we described in
Section 3.3 (see Figure 9). Choose the most appropriate assumptions to our case and select
the model (or models) with the highest score. In this case, Goel-Okumoto seems to be a
suitable model for our assumptions, as we can appreciate in Figure 17. Select Analyse Model

136 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Figure 15: Browsing the data file.

G e e 412 8

| -

- = e B “e]

Figure 16: MIL-HDBK 189 trend test graphical interpretation.

from the Analysis menu and the analysis output window (see Figure 12) will be displayed.
Select the Goel-Okumoto model and set the confidence level that will be used to calculate
confidence intervals and the significance level to perform hypothesis testing. Choose between
maximum likelihood or least squares parameter estimation methods and click on Analyse
Model. The result of the analysis is shown in Figure 18. The data window presents the fitted
values for the Goel-Okumoto model. The graphical output shows the observed values (circles)

VVSS 2007 137

VVSS 2007 - Verification and Validation of Software Systems Symposium

odelselectwarard
| ?} Assumptions: = - peds
I Goel-Okumoto 83%
[Data may be exact failure times (ungrouped data) [~ Yamada S-shaped 83%
[V Data may be grouped Failure times (inkerval count data) I Musa basic 81%
[¥ Testing intervals may be of different length [~ Scheidewind 80%
[7 Fallures need not occur equally likely [~ Littlewood-Verrall 80%
[Detection of faults may be dependent of each other I lelinski-Moranda 7%
[V Failures need not be of the same severity ™ Shick-Wolverton 77%
I Detection rate depends on time (testing effort) ™ Geometric 75%
I Detection rate depends on number of remaining defects ™ Duane T5%
¥ Failures need nat be repaired instantaneoushy I Musa-Okumoto 71%
I~ Imperfect repair of defects allowed
I™ Infinite number of errors allowed:
_Goneel |

Figure 17: After selecting our assumptions, the Goel-Okumoto model gets the highest score.

100

| tav biseres ot of Pk

Mode! g GW’“‘C .
i Analysis Output
I Julinsid-Moranda
I ki = Dbssreed Valosy
™ Mysabasic Data Set: Joe_Lxls et
I Musa-Olamots Nr. of Observations: 207 |
i u v 1 o 14000
7 GoelL Okumolo Variable: Cunulative Times L
I Shigk Welverton ['H 1%
T~ Schasdawind Madel: Goed-Okumota
I~ Yamads S-
Hhapd (Model estimates:
T Duane
Confidance leval (0- 100} o a=2156.62534
mmmmmwm]‘ b =0.00010
Extimation Method ¥ pdmon Likaihood Kolgomorov-Smimov Goodness of Fit Test:
" Least Squares
—["“’W"w Copy Analysis Oulput

Figure 18: Model analysis.

and the estimated model (curve). A first inspection of this plot suggests that Goel-Okumoto
is a reasonable model for our data. Formal result of the analysis (parameter estimates and
goodness-of-fit test) is displayed on the analysis output window. As a consequence of our
analysis we can conclude that there is no evidence to reject the fact that our data can be
described using the Goel-Okumoto model.

138 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

5 Conclusions and future work

We have developed a new tool for statistical software reliability analyses. The interface is
programmed in Java and therefore, it is platform independent. Our tool uses well-documented
state-of-the-art statistical algorithms programmed in R and encourages to apply best practices
from statistics. Furthermore, it has a user-friendly interface which includes features like model
selection wizard and auto detection of data type. The extension of the tool incorporating new
models and features is an ongoing challenge that stimulates us to continue working on this
direction.

References

M. Bhattacharjee, J. V. Deshpande, and U. V. Naik-Nimbalkar. Unconditional tests of good-
ness of fit for the intensity of time-truncated nonhomogeneous Poisson processes. Techno-

metrics, 46(3):330-338, 2004.

A.L. Goel. Software reliability models: Assumptions, limitations, and applicability. IEEE
Trans. Soft. Eng., 11(12):1411-1423, 1985.

H. Joe. Statistical inference for General-Order-Statistics and Nonhomogeneous-Poisson-
Process software reliability models. IEEE Trans. Software Eng., 15(11):1485-1490, 1989.

V.S. Kharchenko, O.M. Tarasyuk, V.V. Sklyar, and V.Yu. Dubnitsky. The method of software
reliability growth models choice using assumptions matrix. In COMPSAC '02: Proceedings
of the 26th International Computer Software and Applications Conference on Prolonging
Software Life: Development and Redevelopment, pages 541-546, Washington, DC, USA,
2002. IEEE Computer Society.

M.R. Lyu, editor. Handbook of Software Reliability Engineering. McGraw-Hill and IEEE
Computer Society, New York, 1996.

J.D. Musa. Software Reliability Engineering: More Reliable Software Faster and Cheaper.
Author House, Bloomington, USA, 2nd edition, 2006.

M. Ohba. Software reliability analysis models. IBM J. Res. Develop., 28(4):428-443, 1984.

H. Pham. System Software Reliability. Springer Series in Reliability Engineering. Springer,
London, 2006.

S.E. Rigdon and A.P. Basu. Statistical Methods for the Reliability of Repairable Systems.
Wiley, 2000.

M. Xie, Y.-S. Dai, and K.-L. Poh. Computing Systems Reliability. Models and Analysis.
Kluwer, New York, 2004.

L. Yin and K.S. Trivedi. Confidence interval estimation of NHPP-based software reliability
models. In Proc. 10th Int. Symp. Software Reliability Engineering (ISSRE 1999), pages
6-11, 1999.

J. Zhao and J. Wang. A new goodness-of-fit test based on the Laplace statistic for a large
class of NHPP models. Comm. Statist. Simulation Comput., 34(3):725-736, 2005.

VVSS 2007 139

VVSS 2007 - Verification and Validation of Software Systems Symposium

INSTITUTE

@\% ASML Embedded Systems T

Optimal integration and test strategies for
software releases
of lithographic systems

Roel Boumen

Ivo de Jong
Asia van de Mortel-Fronczak
Koos Rooda

Contents %

* Introduction
— Tangram research project
— ASML
« Software releasing
— ASML software integration and testing
— Problem
— Time to market and total test time
« Method
— Integration and test planning
— Test positioning strategies
— Example
- Case study

» (Conclusions

Slide 2

140 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Tangram research project T

» Research project on test and integration performed at
ASML.: lithographic systems provide cases

* Duration: 4 years (2003-2007) total of 60 FTE (5 PhD
students)

* Partners: ASML, ESI, TNO, RU, TUD and TU/e

* Goal: Reduce ASML time-to-market by integrating and
testing earlier/smarter/faster using models while
maintaining or improving system quality

Slide 3

ASML lithographic machines)

Lithographic machine

Properties:

+ >12M LoC

+ 13.7 M € average
selling price

Performance (XT:1900i)

* <40 nm line width

« >131 WPH
throughput

Source: www.asml.com

Slide 4

VVSS 2007 141

VVSS 2007 - Verification and Validation of Software Systems Symposium

ASML integration and test T

ASML integration and test problem:
* Tight specification

— Many components (1000+)

— Multi disciplinary components

— Incomplete designs
« Time-to-market

— Concurrent engineering

— Incomplete test phases

Test and integration domains:
« First-of-a-kind machine (prototype)

+ Software
* Manufacturing
« Operation
Slide 5
g
Contents]

* Introduction
— Tangram research project
— ASML
« Software releasing
— ASML software integration and testing
— Problem
— Time to market and total test time
* Method
— Integration and test planning
— Test positioning strategies
— Example

« Case study
» (Conclusions

Slide 6

142 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

ASML software integration and testing l || l
1 week
1 day Variable
x.0 ntegration ntegration stem x.1
I I I ltgetz.tt I tet!;ssttl 1 Sy;e:: T
Upgrade A
Upgrade B
Upgrade C
Slide 7
g
Problem]
Problem:

Is the current way of working optimal with respect to time-to-
market (TTM) and total-test-time (TTT)?

Method:

* Model the software release problem as an integration and

test planning problem

+ Choose suitable test positioning strategies

+ Determine the optimal integration and test plan given a
test positioning strategy with respect to time-to-market

» Choose the test positioning strategy that gives the best
integration and test plan with respectto TTM and TTT

Slide 8

VVSS 2007

143

VVSS 2007 - Verification and Validation of Software Systems Symposium

TTMand TTT

Time-to-market (TTM)

N

F 3

Minimal time-to-market

|, test time

System

"
4

Introduction

— Tangram research project

— ASML

Software releasing

— ASML software integration and testing
— Problem

— Time to market and total test time
Method

— Integration and test planning

— Test positioning strategies

— Example

Case study
Conclusions

Slide 10

Total-test-time(TTT) = | Test time + | Test time, | Testtime |
x.0 Integration Integration | _ System x.1
I I test test test

Upgrade A
Upgrade B
Upgrade C
Slide 9
Contents Z

144 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Integration and test planning 7

g

Test sequencing:

A test model describes the test problem and consists of tests and
requirements (fault states) and their properties and the coverage of
each test on each requirement.

An algorithm calculates the optimal test sequence for a test phase
based on this model.

Integration sequencing:

An integration model describes the integration problem and consists
of upgrades and their development durations and the probability that
these upgrades introduce faults such that the requirements are not
reached.

An algorithm calculates the optimal integration sequence based on

this model.

Test positioning strategies:
» Determine the start and stop moment of test phases within the

integration sequence.

Slide 11
Test model Hi-‘
Test | Test | Test | Test | Test | Test | Test | Test
Test coverage 1 2 3 4 5 6 7 8 | Impact
Requirement 1 1 0 0 0 1 0 1 0 10
Requirement2 | 1 0 0 0 0.5 0 0 0.3 10
Requirement3 | 0 0.8 0 0 0.6 0 1 0 10
Requirement4 | 0 0.3 0 0 1 0 0 0.2 10
Requirement5 | 0 0 1 0 0 02 | 09 0 10
Requirement6 | 0 0 0.8 0 0 1 0 1 10
Requirement7 | 0 0 0 0.5 0 0.8 1 0 10
Requirement8 | 0 0 0 1 0 i 0 1 10
Duration 3 3 3 3 5 5 5 5
Slide 12

VVSS 2007

145

VVSS 2007 - Verification and Validation of Software Systems Symposium

Integration model T
Fault
probability x.0 Upgrade A | Upgrade B | Upgrade C
Requirement 1 20% 10%
Requirement 2 10% 30% 10%
Requirement 3 20%
Requirement 4 20% 10% 30% 30%
Requirement 5 20% 30% 30%
Requirement 6 10% 20%
Requirement 7 30% 10% 20%
Requirement 8 20% 10% 20%
Duration 0 2 10 8
Slide 13
Risk 'P

The quality of the release is measured by risk that can be
determined by:

Risk = Z Probability(—r) - Impact(r)
reRequirements

Where Probability(—r) denotes the probability that the
requirement is not reached.

* During development and integration the risk increases
because the fault probability of requirements increases

+ During testing the risk decreases because tests pass and
faults are found and repaired (both decrease probability)

Slide 14

146 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Test positioning strategies I |l l
« Start moment: periodic
+ Stop moment: fixed duration

X i : i | i

8 : | | 1

T * : , . :

% i Dhration E ;
Period Time
Slide 15

Test positioning strategies I |' '

« Start moment: risk threshold
» Stop moment: risk threshold

4o Start risk threshold

X S
2 TS
1 S
Stop risk threshold T\
Time
Slide 16

VVSS 2007 147

VVSS 2007 - Verification and Validation of Software Systems Symposium

N
Example é
Optimal integration and test plan for a risk threshold
strategy:
s e CECEORO =G W
T Cog=ae g SR OR O RO MO N
20
g T B e T e s s
14
50
Slide 17
g
Contents ¢

* Introduction
— Tangram research project
— ASML
« Software releasing
— ASML software integration and testing
— Problem
— Time to market and total test time
« Method
— Integration and test planning
— Test positioning strategies
— Example

« Case study
» (Conclusions

Slide 18

148 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Case study)

ASML software release consists of:

260 upgrades
169 tests
55 requirements

Assumptions:

There are no relations between the upgrades
We only look at test time, not at fix and diagnosis time

We are only interested in the end quality (risk) of the release, not in
the quality during development

Different test positioning strategies:

Periodic: different periods (1d/w , 2d/w, 1w/4w, efc)
Risk based: different max/min risk, test durations

Slide 19

g

Case study data collection %

Upgrades and their development times are planned
Possible test cases and their durations are known

The requirements are documented in the system design
and the impact is estimated by experts

The relations between tests and requirements are
estimated by experts and by test documentation

The probability that an upgrade introduces a requirement
fault is estimated by looking at the number of changed
components and only using 1%, 10%, 30%, 50% or 90%

Slide 20

VVSS 2007

149

VVSS 2007 - Verification and Validation of Software Systems Symposium

Case study results T

Test positioning strategy Time-to- | System test | Total-test-time
market duration

Start: Periodic (1 week) 2617 hr 97 hr
Stop: Duration (1 day) - -

Slide 21

Case study results Fi.‘

14 4
— Periodic
— Risk based constant

12

10

Risk

3000

Slide 22

150 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Case study results)

14

— Periodic

12 + — Risk based linear

10 -

L4
W
[ia
5 1
4
2
0 .
0 500 1000 1500 2000 2500 3000
Time
Slide 23
Conclusions 7
Method:

* Can be used to determine optimal software integration and
test plans

« Existing ASML data can be used to create model

Case study:

* Test positioning strategy with a linear risk threshold is the
best test strategy (-47% system test).

« Current ASML strategy is theoretically not optimal.

— But we assumed that the quality of the software during
development was not important.

— Therefore, we recommend a (more) constant risk threshold
that keeps the software quality at a certain level.

Slide 24

VVSS 2007 151

VVSS 2007 - Verification and Validation of Software Systems Symposium

@\% ASML Embedded Systems T

Optimal integration and test strategies for
software releases
of lithographic systems

R.Boumen@tue.nl
www.esi.nl/tangram

152 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Static Memory and Timing Analysis of Embedded Systems Code

Christian Ferdinand Reinhold Heckmann Barbel Franzen

AbsInt Angewandte Informatik GmbH
Science Park 1, D-66123 Saarbriicken, Germany

Phone: +49-681-38360-0 e-mail: info@absint.com
Fax: +49-681-38360-20 Web page: http://www.absint.com
Abstract

Failure of a safety-critical application on an embedded processor can lead to severe damage or even
loss of life. Here we are concerned with two kinds of failure: stack overflow, which usually leads to run-
time errors that are difficult to diagnose, and failure to meet deadlines, which is catastrophic for systems
with hard real-time characteristics. Classical validation methods like code review and testing with repeated
measurements require a lot of effort, are expensive, and do not really help in proving the absence of such
errors. AbsInt’s tools StackAnalyzer and aiT (timing analyzer) provide a solution to this problem. They
use abstract interpretation as a formal method that allows to obtain statements valid for all program runs
with all inputs.

1 Introduction

The use of safety-critical embedded software in the automotive and avionics industries is increasing rapidly.
Failure of such a safety-critical embedded system may result in the loss of life or in large damages. Also
for non-safety-critical applications, software failure may necessitate expensive updates. Therefore, utmost
carefulness and state-of-the-art machinery have to be applied to make sure that an application meets all re-
quirements. To do so lies in the responsibility of the system designer(s).

Traditional certification standards evaluate the quality of a software system by assessing the quality of the
development process that produced it. Yet the benefit of such a process-based assurance is limited. Therefore,
switching to a product-based assurance process is advised, which judges the quality of a software product by
examining its properties.

Classical software validation methods like code review and testing with debugging are very expensive and
cannot really guarantee the absence of errors. Formal verification methods provide an alternative, in partic-
ular for safety-critical applications. One such method is abstract interpretation [2], which allows to obtain
statements that are valid for all program runs with all inputs. Such statements may be absence of violations
of timing or space constraints, or absence of runtime errors. For example, stack overflow can be detected by
AbsInt’s StackAnalyzer, and violations of timing constraints are found by AbsInt’s aiT tool [5] that deter-
mines upper bounds for the worst-case execution times of the tasks of an application. Among other things,
these tools perform a value analysis as the principal source of information about the values manipulated by
the analyzed program.

2 Value Analysis
Value analysis tries to determine the values stored in the processor’s memory for every program point and

execution context. Often, it is sufficient to restrict value analysis to the processor registers, but sometimes, it
is useful to get information about main memory as well.

VVSS 2007 153

VVSS 2007 - Verification and Validation of Software Systems Symposium

Value analysis is a static analysis method producing results valid for every program run and all inputs to the
program. Therefore, it cannot always predict an exact value for a memory location, but determines abstract
values instead that stand for sets of concrete values. More precisely, it computes for each program point and
execution context an abstract state that maps memory locations to abstract values. Each machine instruction
is modeled by a transfer function mapping input states to output states in a way that is compatible with the
semantics of the instruction. At control-flow joins, the incoming abstract states are combined into a single
outgoing state using a combination function. Because of the presence of loops, transfer and combination
functions must be applied repeatedly until the system of abstract states stabilizes. Termination of this fixed-
point iteration is ensured on a theoretical level by the monotonicity of transfer and combination functions
and the fact that a memory location can only hold finitely many different values. Practically, value analysis
becomes only efficient by applying suitable widening and narrowing operators as proposed in [2].

There are several variants of value analysis depending on what kinds of abstract values are used. The simplest
form of value analysis is constant propagation: an abstract value is either a single concrete value or the
statement that no information about the value is known. A more elaborate form of value analysis computes safe
lower and upper bounds for the possible concrete values, i.e. abstract values are intervals that are guaranteed
to contain the exact values.

All the value analysis variants described above determine sets of possible values for individual memory loca-
tions without any relationship between these sets. Yet if an unknown value is moved from register r1 to r2,
then both registers contain unknown values afterward, but these values are known to be equal. So a possible
extension of value analysis may record known equalities between values, or more generally, upper and lower
bounds for their differences, or even more generally, arbitrary linear constraints between values.

Value analysis, even in its simple form as interval analysis. has various applications as an auxiliary method
providing input for other analysis tasks. Some of these applications are listed in the sequel.

3 Stack Usage Analysis

A possible cause of catastrophic failure is stack overflow that usually leads to run-time errors that are difficult
to diagnose. The problem is that the memory area for the stack usually must be reserved by the programmer.
Underestimation of the maximum stack usage leads to stack overflow, while overestimation means wasting
memory resources. Measuring the maximum stack usage with a debugger is no solution since one only obtains
a result for a single program run with fixed input. Even repeated measurements with various inputs cannot
guarantee that the maximum stack usage is ever observed. Some, but not all compilers provide information
about stack usage, but this requires the availability of the source code, and the information becomes invalid
when the generated code is optimized by hand or by some automatic tool.

AbsInt’s tool StackAnalyzer provides a solution to this problem: By concentrating on the value of the stack
pointer during value analysis, the tool can figure out how the stack increases and decreases along the various
control-flow paths. This information can be used to derive the maximum stack usage of the entire task.

The results of StackAnalyzer are presented as annotations in a combined call graph and control-flow graph.
Figure 1 shows the call graph of a small application, with stack analysis results at routines and for the entire
application (at the top). On this level, the results of stack analysis are displayed in boxes located to the right
of the boxes representing the routines of the application. Each result box carries two results: a global result,
coming first, and a local result, following in angular brackets. Each result is an interval of possible stack
levels. Intervals of the form [n, n] are abbreviated to n.

The local result at a routine R indicates the stack usage in R considered on its own: It is an interval showing
the possible range of stack levels within the routine, assuming value 0 at routine entry. The local result for
a routine is derived from the results at individual instructions, which are shown in Figure 2 for one of the
routines of this example.

The global result for routine R indicates the stack usage of R in the context of the entire application. It is
an interval providing bounds for the stack level while the processor is executing instructions of R, for all call

154 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

routine: _main [0, 24] <[0, 241>

[16, 407 <[-4, 200> [20, 32] <[-4, 81>

[28, 32] <[-4, 01> routine: _even [32, 52] <[-4, 161>

routine: MPY_I30
+ +
|rout'ine: _d'iV'idesl [36, BO] <[-4, 81>

Figure 1: Call graph with stack analysis results

routine: _even
push ar3
1, 15D
push ril
push r
[32, 521 <[-4, 161>
w
<4y <[-4, 41>
subi +2, sp

Figure 2: Individual instructions with stack analysis results

paths from the entry point to R. Thus, the global result at routine R does not include the stack usage of the
routines called by R.

StackAnalyzer provides automatic tool support to calculate precise information on the stack usage. This
not only reduces development effort, but also helps to prevent runtime errors due to stack overflow. Critical
program sections are easily recognized thanks to color coding. The analysis results thus provide valuable
feedback in optimizing the stack usage of an application. The predicted worst-case stack usages of individual
tasks in a system can be used in an automated overall stack usage analysis for all tasks running on one
Electronic Control Unit, as described in [7] for systems managed by an OSEK/VDX real-time operating
system.

VVSS 2007 155

VVSS 2007 - Verification and Validation of Software Systems Symposium

4 WCET Analysis: Worst-Case Execution Time Prediction

Many tasks in safety-critical embedded systems have hard real-time characteristics. Failure to meet deadlines
may be as harmful as producing wrong output or failure to work at all. Yet the determination of the Worst-Case
Execution Time (WCET) of a task is a difficult problem because of the characteristics of modern software and
hardware [17].

Embedded control software (e.g., in the automotive industries) tends to be large and complex. The software in
a single electronic control unit typically has to provide different kinds of functionality. It is usually developed
by several people, several groups or even several different providers. Code generator tools are widely used.
They usually hide implementation details to the developers and make an understanding of the timing behavior
of the code more difficult. The code is typically combined with third party software such as real-time operating
systems and/or communication libraries.

Concerning hardware, there is typically a large gap between the cycle times of modern microprocessors and the
access times of main memory. Caches and branch target buffers are used to overcome this gap in virtually all
performance-oriented processors (including high-performance micro-controllers and DSPs). Pipelines enable
acceleration by overlapping the executions of different instructions. Consequently the execution behavior of
the instructions cannot be analyzed separately since it depends on the execution history.

Cache memories usually work very well, but under some circumstances minimal changes in the program
code or program input may lead to dramatic changes in cache behavior. For (hard) real-time systems, this
is undesirable and possibly even hazardous. Making the safe yet—for the most part—unrealistic assumption
that all memory references lead to cache misses results in the execution time being overestimated by several
hundred percent.

The widely used classical methods of predicting execution times are not generally applicable. Software moni-
toring or the dual-loop benchmark change the code, which in turn has impact on the cache behavior. Hardware
simulation, emulation, or direct measurement with logic analyzers can only determine the execution time for
one input. They cannot be used to infer the execution times for all possible inputs in general.

Furthermore, the execution time depends on the processor state in which the execution is started. Modern
processor architectures often violate implicit assumptions on the worst start state. The reason is that they
exhibit timing anomalies as defined in [9], which consist of a locally advantageous situation, e.g., a cache hit,
resulting in a globally larger execution time. As also demonstrated in [9], processor pipelines may exhibit
so-called domino effects where—for some special pieces of code—the difference between two start states of
the pipeline does not disappear over time, but leads to a difference in execution time that cannot be bounded
by a constant.

4.1 Structure of WCET Computation

Abstract interpretation can be used to efficiently compute a safe approximation for all possible cache and
pipeline states that can occur at a program point. These results can be combined with ILP (Integer Linear
Programming) techniques to safely predict the worst-case execution time and a corresponding worst-case
execution path. This approach can help to overcome the challenges listed above.

AbsInt’s WCET tool aiT determines the WCET of a program task in several phases [5] (see Figure 3):
e CFG Building decodes, i.e. identifies instructions, and reconstructs the control-flow graph (CFG) from
a binary program;
e Value Analysis computes value ranges for registers and memory cells, and address ranges for instructions
accessing memory;

e Loop Bound Analysis determines upper bounds for the number of iterations of simple loops;
e Cache Analysis classifies memory references as cache misses or hits [4];
o Pipeline Analysis predicts the behavior of the program on the processor pipeline [8];

e Path Analysis determines a worst-case execution path of the program [16].

156 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Executable
program
| CFGBuider |- I A '

I Loop Trafo

ILP-Generator
LP-Solver

Value Analyzer
Loop Analyzer

Cache/Pipeline
Analyzer

' L |

WCET
Visualization

Figure 3: Phases of WCET computation

Separating WCET determination into several phases makes it possible to use different methods tailored to the
subtasks [16]. Value analysis, cache analysis, and pipeline analysis are based on abstract interpretation [2].
Integer linear programming is used for path analysis.

aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. The analysis results are
determined without the need to change the code and hold for all executions (for the intrinsic cache and pipeline
behavior). aiT takes into account the combination of all the different hardware characteristics while still
obtaining tight upper bounds for the WCET of a given program in reasonable time.

4.2 Reconstruction of the Control Flow from Binary Programs

The starting point of our analysis framework (see Figure 3) is a binary program and a so-called AIS file con-
taining additional user-provided information about numbers of loop iterations, upper bounds for recursion,
etc. In the first step a decoder reads the executable and reconstructs the control flow [13, 14]. This requires
some knowledge about the underlying hardware, e.g., which instructions represent branches or calls. The
reconstructed control flow is annotated with the information needed by subsequent analyses and then trans-
lated into CRL (Control-Flow Representation Language)—a human-readable intermediate format designed to
simplify analysis and optimization at the executable/assembly level. This annotated control-flow graph serves
as the input for micro-architecture analysis.

The decoder can find the target addresses of absolute and pc-relative calls and branches, but may have dif-
ficulties with target addresses computed from register contents. Thus, aiT uses specialized decoders that are
adapted to certain code generators and/or compilers. They usually can recognize branches to a previously
stored return address, and know the typical compiler-generated patterns of branches via switch tables. Yet
non-trivial applications may still contain some computed calls and branches (in hand-written assembly code)
that cannot be resolved by the decoder; these unresolved computed calls and branches are documented by ap-
propriate messages and require user annotations. Such annotations may list the possible targets of computed

VVSS 2007 157

VVSS 2007 - Verification and Validation of Software Systems Symposium

calls and branches, or tell the decoder about the address and format of an array of function pointers or a switch
table used in the computed call or branch.

4.3 Value Analysis

Value analysis as described in Section 2 tries to determine the values in the processor memory for every
program point and execution context. Its results are used to determine possible addresses of indirect memory
accesses—important for cache analysis—and in loop bound analysis. They are usually so good that only a
few indirect accesses cannot be determined exactly. Address ranges for these accesses may be provided by
user annotations.

4.4 Loop Bound Analysis

WCET analysis requires that upper bounds for the iteration numbers of all loops be known. aiT tries to
determine the number of loop iterations by loop bound analysis, but succeeds in doing so for simple loops
only. Bounds for the iteration numbers of the remaining loops must be provided as user annotations.

aiT employs two different methods for loop bound analysis. The older method relies on a combination of
value analysis and pattern matching, which looks for typical loop patterns. In general, these loop patterns
depend on the code generator and/or compiler used and sometimes even on the optimization level.

The newer method described in [3] uses an interprocedural data-flow analysis to derive loop invariants from the
semantics of the instructions. This new analysis does not depend on the compiler used or optimization level,
but only on the semantics of the instruction set for the target machine. It is able to handle loops with multiple
exits and multiple modifications of the loop counter per iteration including modifications in procedures called
from the loop.

4.5 Cache Analysis

Cache analysis classifies the accesses to main memory. The analysis in our tool is based upon [4], which han-
dles analysis of caches with LRU (Least Recently Used) replacement strategy. However, it had to be modified
to reflect the non-LRU replacement strategies of common microprocessors: the pseudo-round-robin replace-
ment policy of the ColdFire MCF 5307, and the PLRU (Pseudo-LRU) strategy of the PowerPC MPC 750 and
755. The modified algorithms distinguish between sure cache hits and unclassified accesses. The deviation
from perfect LRU is the reason for the reduced predictability of the cache contents in case of ColdFire 5307
and PowerPC 750/755 compared to processors with perfect LRU caches [6].

4.6 Pipeline Analysis

Pipeline analysis models the pipeline behavior to determine execution times for sequential flows (basic blocks)
of instructions, as done in [11]. It takes into account the current pipeline state(s), in particular resource
occupancies, contents of prefetch queues, grouping of instructions, and classification of memory references
by cache analysis. The result is an execution time for each basic block in each distinguished execution context.

Like value and cache analysis, pipeline analysis is based on the framework of abstract interpretation. Pipeline
analysis of a basic block starts with a set of pipeline states determined by the predecessors of the block and
lets this set evolve from instruction to instruction by a kind of cycle-wise simulation of machine instructions.
In contrast to a real simulation, the abstract execution on the instruction level is in general non-deterministic
since information determining the evolution of the execution state is missing, e.g., due to non-predictable
cache contents. Therefore, the abstract execution of an instruction may cause a state to split into several
successor states. All the states computed in such tree-like structures form the set of entry states for the
successor instruction. At the end of the basic block, the final set of states is propagated to the successor

158 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

blocks. The described evolution of state sets is repeated for all basic blocks until it stabilizes, i.e. the state sets
do not change any more.

The output of pipeline analysis is the number of cycles a basic block takes to execute, for each context,
obtained by taking the upper bound of the number of simulation cycles for the sequence of instructions for
this basic block. These results are then fed into path analysis to obtain the WCET for the entire task.

4.7 Path Analysis

Using the results of the micro-architecture analyses, path analysis determines a safe estimate of the WCET.
The program’s control flow is modeled by an integer linear program [16, 15] so that the solution to the objec-
tive function is the predicted worst-case execution time for the input program. A special mapping of variable
names to basic blocks in the integer linear program enables execution and traversal counts for every basic
block and edge to be computed.

4.8 Analysis of Loops and Recursive Procedures

Loops and recursive procedures are of special interest since programs spend most of their runtime there.
Treating them naively when analyzing programs for their cache and pipeline behavior results in a high loss of
precision.

Frequently the first execution of the loop body loads the cache, and subsequent executions find most of their
referenced memory blocks in the cache. Because of speculative prefetching, cache contents may still change
considerably during the second iteration. Therefore, the first few iterations of the loop often encounter cache
contents quite different from those of later iterations. Hence it is useful to distinguish the first few iterations
of loops from the others. This is done in the VIVU approach (virtual inlining, virtual unrolling) [10].

Using upper bounds on the number of loop iterations, the analyses can virtually unroll not only the first few
iterations, but all iterations. The analyses can then distinguish more contexts and the precision of the results
is increased—at the expense of higher analysis times.

4.9 Usage of aiT

The techniques described above have been incorporated into AbsInt’s aiT WCET analyzer tools. They get as
input an executable, user annotations, a description of the (external) memories and buses (i.e. a list of memory
areas with minimal and maximal access times), and a task (identified by a start address). A task denotes a
sequentially executed piece of code (no threads, no parallelism, and no waiting for external events). This
should not be confused with a task in an operating system that might include code for synchronization or
communication.

The WCET analyzers compute an upper bound of the runtime of the task (assuming no interference from the
outside). Effects of interrupts, IO and timer (co-)processors are not reflected in the predicted runtime and have
to be considered separately (e.g., by a quantitative analysis).

The task WCETs predicted by aiT can be used to determine an appropriate scheduling scheme for the tasks
and to perform an overall schedulability analysis in order to guarantee that the application meets all timing
constraints (also called timing validation) [12]. Some real-time operating systems offer tools for schedulability
analysis, but all these tools require the WCETs of tasks as input.

4.10 Visualization of aiT’s Results

aiT’s results are written into a report file. In addition, aiT produces a picture description that can be visualized
by the aiSee tool [1] to view detailed information delivered by the analysis.

VVSS 2007 159

VVSS 2007 - Verification and Validation of Software Systems Symposium

_prime.L1 (Toop)

+
max #: 20
max t: 18

00 :0x333c

max #: 0 max #: 20
max t: 16 max t: 10

| 0x=0 :D><3344|

max #: 1 max #: 20
max t: 8 max t: 10

Worst Case Execution Time: 2389 cycles = 53.088 us

routine: main

0:0:0x334e
| : max #: 20
loop call rec _|:|“'|me.L1|4—maH 1.3

|I"DLI‘L'iHE: minl |r0ut1'ne: maxl

routine: swap

Figure 4: Call graph and control-flow graph with WCET results
(= =

=] |=Cd] =] |=C]
I

= 1| |l=CJ||=C1||=C]]
I I I i
=] |=Cd]|[=C] [=C]
L 1
|
[| 1 [1 [| 1
l=C | |=C]|=Cd] l=Cd]|=Cd| |=C| =] =] =]

Figure 5: Possible pipeline states in a basic block

Figure 4, left, shows the graphical representation of the call graph for some small example. The calls (edges)
that contribute to the worst-case runtime are marked by the color red. The computed WCET is given in CPU
cycles and in microseconds provided that the cycle time of the processor has been specified.

Figure 4, right, shows the basic block graph of a loop. The number max # describes the maximal number of
traversals of an edge in the worst case, while max t describes the maximal execution time of the basic block
from which the edge originates (taking into account that the basic block is left via the edge). The worst-case
path, the iteration numbers and timings are determined automatically by aiT.

Figure 5 shows the possible pipeline states for a basic block in this example. Such pictures are shown by aiT
upon special demand. The large dark grey boxes correspond to the instructions of the basic block, and the
smaller rectangles in them stand for individual pipeline states. Their cyclewise evolution is indicated by the
strokes connecting them. Each layer in the trees corresponds to one CPU cycle. Branches in the trees are
caused by conditions that could not be statically evaluated, e.g., a memory access with unknown address in
presence of memory areas with different access times. On the other hand, two pipeline states fall together
when details they differ in leave the pipeline. This happened for instance at the end of the second instruction,
reducing the number of states from four to three.

Figure 6 shows the top left pipeline state from Fig. 5 in greater magnification. It displays a diagram of the
architecture of the CPU (in this case a PowerPC 555) showing the occupancy of the various pipeline stages
with the instructions currently being executed.

160 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

State 3
CPL
CORE LC3F_A
_ Fe1-[8,
Q‘@ F‘BZ—1[' =
DECRe | [[a] ouazo((PB1°T
[T AT 0=11c addl rd, zero, +0 | PRZ-T
[[0T BP0 0=118 bc O=c, cri.eq, 0=174.F <0-124>| |
' | |
) | instruction 0=00000110
FBPU S[0] PL1] I[0 cp_id: 0-54000000
[NIAT EH}ZD[R IMDZ = Lsuz cycles = 0
[B] pred. not taken ML - =

(zu
L

© ©

[[LT AU =114 (00 <2 [1] cmpi crl, 0, ra, +0 |
[[0T A0 0=110 (1) <2 [17 rlwinm rd, rd, 0, G168, O0=IF|

Figure 6: Individual pipeline state

5 Dependence on Target Architectures

There are aiT versions for PowerPC MPC 555, 565, and 755, ColdFire 5307, ARM7 TDMI, HCS12/STAR12,
TMS320C33, C166/ST10, Renesas M32C/85, and Tricore 1.3.

Decoders are automatically generated from processor specifications defining instruction formats and operand
meaning. The CRL format used for describing control-flow graphs is machine-independent. Value Analysis
must interpret the operations of the target processor. Hence, there is a separate value analyzer for each target,
but features shared by many processors (e.g., branches based on condition bits) allowed for considerable code
sharing among the various value analyzers.

There is only one cache analyzer with a fixed interface to pipeline analysis. It is parameterized on cache size,
line size, associativity, and replacement strategy. Each replacement strategy supported by aiT is implemented
by a table for line age updates that is interpreted by the cache analyzer.

The pipeline analyzers are the most diverse part of aiT. The supported target architectures are grouped accord-
ing to the complexity of the processor pipeline. For each group a common conceptual and coding framework
for pipeline analysis has been established, in which the actual target-dependent analysis must be filled in by
manual coding.

6 Precision of aiT

Since the real WCET is not known for typical real-life applications, statements about the precision of aiT are
hard to obtain. For an automotive application running on MPC 555, one of AbsInt’s customers has observed
an overestimation of 5-10% when comparing aiT’s results and the highest execution times observed in a
series of measurements (which may have missed the real WCET). For an avionics application running on
MPC 755, Airbus has noted that aiT’s WCET for a task typically is about 25% higher than some measured
execution times for the same task, the real but non-calculable WCET being in between. Measurements at
AbsInt have indicated overestimations ranging from 0% (cycle-exact prediction) till 10% for a set of small
programs running on M32C, TMS320C33, and C16x/ST10. Table 1 shows the results for C166. The analysis
times were moderate—a few seconds till about 3 minutes for edn.

VVSS 2007 161

VVSS 2007 - Verification and Validation of Software Systems Symposium

Table 1: Precision of aiT for some C166 programs

Example from external RAM from flash
measured | predicted| over- measured | predicted| over-
Program | Size || cycles cycles |estimation| cycles cycles |estimation
fac 2.9k 949 960 | 1.16% 810 832 | 2.72%
fibo 3.4k 2368 2498 | 5.49% 2142 2228 | 4.01%
covercl | 16k 5670 5672 | 0.04% 3866 4104 | 6.16%
coverc [4.3k 7279 7281 | 0.03% 5820 6202 | 6.56%
morswi |5.9k|| 17327 17332 | 0.03% 8338 8350 | 0.14%
coverc2 | 24k| 18031 18178 | 0.82% 12948 14054 | 8.54%
swi 24k | 18142 18272 | 0.72% 13330 14640 | 9.83%
edn 13k|| 262999 | 267643 | 1.77% 239662 | 241864 | 0.92%

7 Conclusion

Tools based on abstract interpretation can perform static program analysis of embedded applications. Their
results hold for all program runs with arbitrary inputs. Employing static analyzers is thus orthogonal to
classical testing, which yields very precise results, but only for selected program runs with specific inputs.

aiT allows to inspect the timing behavior of (time-critical parts of) program tasks. It takes into account
the combination of all the different hardware characteristics while still obtaining tight upper bounds for the
WCET of a given program in reasonable time. StackAnalyzer and aiT are used among others by Airbus in
the development of various safety-critical applications for the A380. They will be used as verification tools
in the sense of DO178b. The qualification requirements for such verification tools are lighter than for code
generation tools. In contrast to code generation tools, verification tools cannot introduce any errors into the
safety-critical system. Failure of a verification tool may only lead to an overlooked error.

In a less regulated application area, StackAnalyzer and aiT can be used for optimizing the system. For
instance, the results of StackAnalyzer are useful when optimizing the assignment of priorities to tasks in
order to minimize the memory consumption in an OSEK-like operating system. The results of aiT can be
used to find an optimal schedule in a time-triggered operating system.

The usage of static analyzers enables one to develop complex systems on state-of-the-art hardware, increases
safety, and saves development time. Precise stack usage and timing predictions enable the most cost-efficient
hardware to be chosen.

References

[1] AbsInt Angewandte Informatik GmbH. aiSee Home Page. http://www.aisee.com, 2006.

[2] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM Symposium
on Principles of Programming Languages, Los Angeles, California, 1977.

[3] Christoph Cullmann. Statische Berechnung sicherer Schleifengrenzen auf Maschinencode. Master’s
thesis, Universitit des Saarlandes, 2006.

[4] Christian Ferdinand. Cache Behavior Prediction for Real-Time Systems. PhD thesis, Saarland University,
1997.

[5] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin, Michael Schmidt, Henrik
Theiling, Stephan Thesing, and Reinhard Wilhelm. Reliable and precise WCET determination for a
real-life processor. In Proceedings of EMSOFT 2001, First Workshop on Embedded Software, volume
2211 of Lecture Notes in Computer Science, pages 469—485. Springer-Verlag, 2001.

162 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

[6] Reinhold Heckmann, Marc Langenbach, Stephan Thesing, and Reinhard Wilhelm. The influence of pro-
cessor architecture on the design and the results of WCET tools. Proceedings of the IEEE, 91(7):1038—
1054, July 2003. Special Issue on Real-Time Systems.

[7] Winfried Janz. Das OSEK Echtzeitbetriebssystem, Stackverwaltung und statische Stackbedarfsanalyse.
In Embedded World, Nuremberg, Germany, February 2003.

[8] Marc Langenbach, Stephan Thesing, and Reinhold Heckmann. Pipeline modeling for timing analysis.
In Proceedings of the 9th International Static Analysis Symposium SAS 2002, volume 2477 of Lecture
Notes in Computer Science, pages 294-309. Springer-Verlag, 2002.

[9] Thomas Lundquist and Per Stenstrom. Timing anomalies in dynamically scheduled microprocessors. In
Proceedings of the 20th IEEE Real-Time Systems Symposium, December 1999.

[10] Florian Martin, Martin Alt, Reinhard Wilhelm, and Christian Ferdinand. Analysis of Loops. In Kai
Koskimies, editor, Proceedings of the International Conference on Compiler Construction (CC’98),
volume 1383 of Lecture Notes in Computer Science, pages 80-94. Springer-Verlag, March /April 1998.

[11] Jorn Schneider and Christian Ferdinand. Pipeline Behavior Prediction for Superscalar Processors by
Abstract Interpretation. In Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers and
Tools for Embedded Systems, volume 34, pages 35-44, May 1999.

[12] John A. Stankovic. Real-Time and Embedded Systems. ACM 50th Anniversary Report on Real-Time
Computing Research, 1996. http://www-ccs.cs.umass.edu/sder/rt.ps.

[13] Henrik Theiling. Extracting Safe and Precise Control Flow from Binaries. In Proceedings of the 7th
Conference on Real-Time Computing Systems and Applications, Cheju Island, South Korea, 2000.

[14] Henrik Theiling. Generating Decision Trees for Decoding Binaries. In Proceedings of the ACM SIG-
PLAN Workshop on Languages, Compilers and Tools for Embedded Systems, pages 112—120, Snowbird,
Utah, USA, June 2001.

[15] Henrik Theiling. ILP-based interprocedural path analysis. In Alberto L. Sangiovanni-Vincentelli and
Joseph Sifakis, editors, Proceedings of EMSOFT 2002, Second International Conference on Embedded
Software, volume 2491 of Lecture Notes in Computer Science, pages 349-363. Springer-Verlag, 2002.

[16] Henrik Theiling and Christian Ferdinand. Combining abstract interpretation and ILP for microarchitec-
ture modelling and program path analysis. In Proceedings of the 19th IEEE Real-Time Systems Sympo-
sium, pages 144—153, Madrid, Spain, December 1998.

[17] Reinhard Wilhelm. Determining bounds on execution times. In R. Zurawski, editor, Handbook on
Embedded Systems, pages 14—1 — 14-23. CRC Press, 2005.

VVSS 2007 163

VVSS 2007 - Verification and Validation of Software Systems Symposium

Experiences in Quality Checking Medical Guidelines
using Formal Methods

Perry Groot and Arjen Hommersom and Peter Lucas'
Michael Balser and Jonathan Schmitt?

Abstract. In health care, the trend of evidence-based medicine,
has led medical specialists to develop medical guidelines, which are
large nontrivial documents suggesting the detailed steps that should
be taken by health-care professionals in managing the disease in a
patient. In the Protocure project the objective has been to assess the
improvement of medical guidelines using formal methods. This pa-
per reports on some of our findings and experiences in quality check-
ing medical guidelines. In particular the formalisation of meta-level
quality criteria for good practice medicine, which is used in con-
junction with medical background knowledge to verify the quality of
a guideline dealing with the management of diabetes mellitus type 2
using the interactive theorem prover KIV. For comparison, analogous
investigations have been performed with other techniques including
automatic theorem proving and model checking.

1 Introduction

Computer-based decision support in health-care is a field with a long
standing tradition, dealing with complex problems in medicine such
as diagnosing disease and assisting in the prescription of appropriate
treatment. The trend of the last decades has been to base clinical de-
cision making more and more on sound scientific evidence, i.¢; this
has been called evidence-based medicine [41, 45]. In practice this has
led organisations of medical specialists in particular areas to develop
medical guidelines, i.e., structured documents suggesting the detailed
steps that should be taken by health-care professionals in managing
the disease of a patient, to promote standards of medical care. Eth-
ical concerns about evidence-based medicine have been raised [11]
and there is a potential risk that medical guidelines do harm when
improperly developed [44]. However, guidelines have also shown to
improve health-care outcomes [44] and may even reduce the costs of
care up to 25% [8].

Researchers in Artificial Intelligence have picked up on the in-
creasing use of medical guidelines and are working towards offer-
ing computer-based support in the development and deployment of
guidelines using computer-oriented languages and tools [10, 30].
This has given rise to the emergence of a new paradigm for the
modelling of complex clinical processes as a ‘network of tasks’,
where a task consists of a number of steps, each step having a spe-
cific function or goal [15, 28]. Examples of languages that support
task models, and which have been evolving since the 1990s, include
PROforma [16, 17], Asbru [37, 40], EON [42, 43], and GLIF3 [28].

! Institute for Computing and Information Sciences, Radboud University Nij-
megen, e-mail:{perry,arjenh,peter] } @cs.ru.nl

2 Institut fiir Informatik, Universitit Augsburg, D-86135 Augsburg, e-mail:
{balser,jonathan.schmitt} @informatik.uni-augsburg.de

164 VVSS 2007

In this work, medical guidelines are considered as real-world exam-
ples of structured documents, which can benefit from formalisation,
although experience has shown that looking upon medical guidelines
as formal objects is a nontrivial task [29].

One of the reasons for this is that medical guidelines should not
be considered static objects as they are changed on a regular basis
as new scientific evidence becomes available. Rapidly changing and
evolving evidence makes it difficult to adjust guidelines in such a
way as to keep them up to date. As a consequence, computer-based
support of guideline development should also be concerned with the
updating of guidelines, i.c., indicate where guidelines should be up-
dated in light of new evidence.

In this article, we approach this problem by applying formal meth-
ods to checking the quality of medical guidelines. Here, we are
mainly concerned with checking of general quality criteria of good
practice medicine a guideline should comply to. This has been called
the meta-level approach to quality checking of medical guidelines
[24]. For example, a guideline should preclude the prescription of
redundant drugs, or advise against a prescription of a treatment that
is less effective than some alternative. Newly obtained evidence may
invalidate properties of a guideline, because, for example, new pa-
tient management options have arisen or financial costs have de-
creased through new developments in drug therapy.

A solid foundation for the application of formal methods to the
quality checking of medical guidelines can already be found in liter-
ature. In [15, 25] logical methods have been used to analyse proper-
ties of guidelines. We have shown in [24] that the theory of abductive
diagnosis can be taken as a foundation for the formalisation of qual-
ity requirements of a medical guideline in temporal logic. This re-
sult has been used in verifying quality requirements of good practice
medicine of alternative treatments [21].

The contribution of this paper, is that we formalise quality require-
ments of medical guidelines which include, besides separate treat-
ments, also the temporal relations between separate treatments, by
which we mean the order in which they are prescribed. Second, us-
ing our quality requirements and medical background knowledge,
we interactively verify a guideline dealing with the management of
diabetes mellitus type 2. More specifically, we model the guideline
as a ‘network of tasks’ using the language Asbru and, additionally,
verify meta-level properties for this model using KIV, an interac-
tive theorem prover [6]. To the best of our knowledge, verification
of a fully formalised guideline, as a network of tasks, using medi-
cal background knowledge has not been done before. The presented
framework provides a sound formal foundation for further research
in quality checking of medical guidelines and the temporal relations
among different treatments involved.

VVSS 2007 - Verification and Validation of Software Systems Symposium

The remainder of this paper is structured as follows. Section 2
gives an introduction to the Protocure project and the methodology
employed within the project.® Section 3 gives an introduction to med-
ical guidelines. Section 4 gives an overview of Asbru, the guideline
representation language used throughout our work. Section 5 dis-
cusses in more detail the approach to formal verification of medi-
cal guideline. It discusses the main elements of a guideline a formal
language should address and discusses the three types of knowledge
involved: background knowledge, the treatment order in the guide-
line, and the quality requirements. Section 6 discusses in more de-
tail how to formalise these three knowledge types in the context of
diabetes mellitus type 2. Section 7 discusses in more detail how to
translate everything into the KIV system. Section 8 gives the results
with interactive verification with the theorem prover KIV.

2 Protocure: Improving medical guidelines by
formal methods

The aim of the Protocure project has been to take the formalisation
of guidelines one step further, by using guideline representation lan-
guages for modelling medical guidelines as formal objects and in-
tegrating them with formal methods for quality checking. The main
objective of the Protocure project was the assessment of guideline
improvement using formal methods, which has been done using the
methodology shown in Figure 1 [2]. Initially, a medical guideline is
selected, which is then gradually transformed into a formal represen-
tation. This transformation basically consists of two phases. Firstly,
the guideline is modelled in the Asbru language, which is a language
specifically designed for the modelling of medical guidelines. Asbru
is described in detail in Section 4. Secondly, the Asbru model of the
guideline is transformed in a formal language that can be used for
verification. Formal languages, tools, and techniques that have been
used within the Protocure project are (1) KIV, an interactive theorem
prover that uses a variant of temporal logic, (2) Otter, an automatic
theorem prover, and (3) SMV, a model checker that uses computa-
tion tree logic and linear temporal logic. These are described in more
detail in forthcoming sections.

Asbru formalisation Formal
of protocol

Formal
Semantics

selection Informal

modeling
*—————>

Protocol Plans Representation

4

identification identification
verification

of properties of properties

Informal

modeling Asbru formalisation Formal
Protocol) T)
Properties of properties Properties

Properies

Figure 1. The process of guideline formalisation and verification as done in
the Protocure project.

Closely related to the modelling of the guideline is the modelling
of the properties one wants to check for the guideline under study.
Several sources can be used to obtain such properties, which then
also need to be translated into a formal language that will be used for
verification. The simplest properties, so-called structural properties
[12], are those properties that ensure that the Asbru model created is
correct, e.g., reachability of all states. More complex properties deal
with the medical intentions one wants to obtain when using a guide-
line. These can be derived from the guideline text or for example

3 http://www.protocure.org

from quality indicators independently developed from the guideline
[18]. Such properties need interpretation and were found to be harder
to formalise. In this paper, we look, among others, at a specific type
of such complex properties, namely meta-level quality requirements,
which state requirements for general good medical practice.

3 Medical guidelines

Guidelines, medical guidelines, or practice guidelines are all com-
monly used abbreviations for the full term ‘clinical practice guide-
line’. An often cited definition of guidelines is the one by Field and
Lohr [14]:

Clinical practice guidelines are systematically developed state-
ments to assist practitioner and patient decisions about appro-
priate health care for specific clinical circumstances.

Though ‘protocol’ is often synonymously used for ‘guideline’, a
protocol gives detailed statements about sow one should act in
daily practice, whereas a guideline gives more general scientifically
founded statements about what should be done. Protocols are often
seen as more detailed, practice-oriented versions of a guideline [27].
In this work the focus is on medical guidelines.

An example of a fragment of a guideline is shown in Figure 2. It
is part of the guideline for general practitioners about the treatment
of diabetes mellitus type 2 [34]. General practitioners’ guidelines are
normally quite compact. Guidelines for medical specialists are often
large — they can be as large as 100 pages — but even then they consists
of sections similar to our example. Translating a guideline into a clear
and structured fragment such as in Figure 2 can take a lot of effort;
however, the formalisation of a guideline is not the main focus of the
work presented, which is about verification of a formalised guideline.

— Step 1: diet.
— Step 2: if Quetelet index (QI) < 27, prescribe a sulfonylurea drug;
otherwise, prescribe a biguanide drug.
— Step 3: combine a sulfonylurea drug and biguanide (replace one
of these by a a-glucosidase inhibitor if side-effects occur).
— Step 4: one of the following:
e oral antidiabetic and insulin
e only insulin

Figure 2. Tiny fragment of a clinical guideline on the management of dia-
betes mellitus type 2. If one of the steps £ = 1,2, 3 is ineffective, the man-
agement moves to step k£ + 1

The diabetes mellitus type 2 guideline provides practitioners with
a clear structure of recommended actions to be taken for the control
of the glucose level. This kind of information is typically found in
medical guidelines in the sense that medical knowledge is combined
with information about order and time of treatment (e.g., sulfony-
lurea in step 2), about patients and their environment (e.g., Quetelet
index lower than or equal to 27), and finally which drugs are to be ad-
ministered to the patient (e.g., a sulfonylurea drug). When verifying
the quality of a guideline, the formal language used should at least
address these elements. We come back to these elements in more de-
tail in Section 5.1.

4 Medical guidelines in Asbru

Much research has already been devoted to the development of rep-
resentation languages for medical guidelines. Most of them look at

VVSS 2007 165

VVSS 2007 - Verification and Validation of Software Systems Symposium

/ Plan_Control I

Execution
4 N\
Selection
. N
Considered Activated
Su
.._Control
)
(
s <Plan Body> Re
Possible >
— - /
N J J
FR
4 R . N
Terminated N c
(
. A
Rejected_Setup
[Aborted J[Completed]
){ Rejected Filter J

- Y,

S: [Satisfied(setup_cond)]
F: [Satisfied(filter_cond)]

SR: [—Satisfiable(setup-cond)]
FR: [—Satisfied(filter_cond)]

A: [Satisfied(abort_cond)]
C: [Satisfied(complete_cond)]

Su: [Satisfied(suspend_cond)] Re: [Satisfied(reactivate_cond)]

Figure 3.

The plan state model, where Satisfied(cond) denotes that the environment satisfied the condition cond whereas Satisfiable(cond) denotes that,

theoretically, the environment could still satisfy the condition cond, i.e., that no deadline has passed in case of time constraints.

guidelines consisting of a composition of actions, whose execution
is controlled by conditions [27]. However, most of them are not for-
mal enough for the purpose of our research as they often incorporate
free-text elements which do not have a clear semantics. Exceptions
to this are PROforma [16, 17] and Asbru [37, 40]. The latter has been
chosen in our research as a basis to formalise a medical guideline.

4.1 Introduction to Asbru

A medical guideline is considered in Asbru as a hierarchical plan.
The main components of an Asbru plan are intentions, conditions,
plan-body, and time annotations. Furthermore, a plan can have argu-
ments and can alter the value of variables.

The intentions are the high-level goals of a plan. Intentions can be
expressed in terms of achieving, maintaining, or avoiding a certain
state or action. The states or actions to which intentions refer can be
intermediate or final (overall). In total there are twelve possible forms
of intentions built up by combining elements from the sets {achieve,
maintain, avoid}, {intermediate, overall}, and {state, action}.

Conditions can be associated to a plan to define different aspects
of its execution. The most important types of condition are: (1) filter
and setup conditions,* which must be true before a plan can start,
(2) abort conditions, which define when a plan must abort, and (3)
complete conditions, which define when a started plan finishes suc-
cessfully. Conditions can be ‘over-ridable’ (i.e., health personnel can

4 filter conditions are conditions about values that cannot change value, e.g.,
sex = male, whereas setup conditions are conditions about values that may
change, e.g., glucose level.

166 VVSS 2007

manually satisfy the condition) or ‘require confirmation’ (i.e., condi-
tions must be explicitly confirmed before they are satisfied).

The plan-body contains the actions, sub-plans, or both to be exe-
cuted as part of the plan. The main types of plan-body are: (1) user-
performed: an action has to be performed by a user, which requires
interaction, which is not further modelled, (2) single-step: an action
which can be either an activation of a sub-plan, an assignment of a
variable, a request for an input value, or an if-then-else statement,
(3) sub-plans: a set of plans to be performed in a given order, either
sequentially, in parallel, in any-order, or unordered, and (4) cyclical
plans: a repetition of actions over a time period. In case of sub-plans,
it is also required to specify a waiting strategy to describe which of
the sub-plans must be completed for the super plan to complete, e.g.,
all sub-plans should be executed (wait-for all).

Time annotations can be associated to various Asbru elements,
e.g., intentions, conditions, plan activations. A time annotation speci-
fies (1) in which interval things must start, (2) in which interval things
must end, (3) their minimal and maximal duration, and (4) a refer-
ence time point.

4.2 The semantics of Asbru

To help in the understanding of Asbru we review here the semantics
of Asbru in a semi-formal statechart notation [5]. In Asbru, plans
are organised in a hierarchy, where a plan may include a number of
sub-plans. The semantics of Asbru is defined in [3] by flattening the
hierarchy of plans and using one top level control to execute all plans
synchronously. Within each top level step, a step of every plan is ex-
ecuted. Whether a plan is able to progress depends on its conditions.

VVSS 2007 - Verification and Validation of Software Systems Symposium

The plan state model shown in Figure 3 defines the semantics of the
main plan hierarchy. The ‘Plan_Control’ is divided into a selection
phase, an execution phase, and a termination phase. Each plan goes
into the ‘Considered’ state when it receives a consider signal. In this
state its filter condition is checked. If it evaluates to true, control ad-
vances to the state ‘Possible’. Then the setup condition is checked
and if it is passed, control advances to the execution phase. If the fil-
ter condition is not satisfied or the setup condition is not satisfiable
anymore (i.e., it is not possible to satisfy the condition in the future,
because a deadline has passed), the plan is rejected. The same hap-
pens, if the super-plan terminates. In the execution phase the plan
waits for an external signal activate, to be sent by its super-plan.

In state ‘Activated’, the sub-plans are executed, which can be se-
quentially, in parallel, unordered, or in any order, and each order
determines a different controlling statechart [3]. A plan can syn-
chronise its sub-plans using the signals consider and activate. Ad-
ditional control to propagate execution states of a sub-plan to its
parent and vice versa is also present, e.g., the abortion of a manda-
tory sub-plan enforces the parent-plan also to abort. Sub-plans can
either be completed successfully or aborted, e.g., in the case of
emergency patient readings.

The complete technical definitions, in addition to the semantics of
the other constructs that are not shown here, can be found in [5].

5 Verification of medical guidelines
5.1 Requirements for the verification of guidelines

To be able to verify quality criteria of medical guidelines using for-
mal methods, we need to have a language that can be used to express
quality criteria that can be related to the key elements in a guideline.
In Section 3, we stated that the key elements in medical guidelines
are (at least) order in time, patients, and interventions. Here, we
discuss our choices for a language for the formal representation of
those key elements, used in the remainder of the paper.

Time: As medical management is a time-oriented process, diagnos-
tic and treatment actions described in guidelines are performed in
a temporal setting. It has been shown previously that the step-wise,
possibly iterative, execution of a guideline can be described by means
of temporal logic [25]. This is a modal logic [13], where relationships
between worlds in the usual possible-world semantics of modal logic
is understood as time order. In this paper, we will use a variant of
this logic, based on future-time linear temporal logic. The language
of this logic is first-order logic augmented with the temporal opera-
tors listed in Table 1. The semantics of this language is given by a set
D, representing the universe of discourse, a set of interpretations ¢
for interpreting statements from the first-order logic, and a function
suce, where succ(t) is the set of zero or one successors of time points
of t. First-order expressions at time ¢ are interpreted using I+ in the
domain D; for example, ¢ F ¢ means that ¢ is satisfied at time ¢
w.r.t. It and D [13].

Note that the last modality can only hold in models where at some
point following the successor function, no successor exists. In all
other models, last will never hold. Also note that some operators can
be defined in terms of other operators, e.g., Oy = - < ¢ and
last = o L. A more expressive logic can be gained by including, for
example, the until operator, where (until ¢ denotes that eventu-
ally ¢ holds and before that ¢ holds. However, as such operators are
not used in this paper, they have been omitted.

This logic allows one to look at guidelines formally at a particular
abstraction level. In Section 8, we show this logic to be suitable for

quality checking of medical guidelines; however, it is possible to
add more fine-grained temporal operators if they are needed.

Patient groups: Although in practice a guideline is used for the
management of a particular patient, recommendations in guidelines
are always written with a certain patient group in mind — not
just a single patient. Patient groups are groups of patients that
share common characteristics about their current state or previous
states. One can abstract from the actual situation of a patient by
providing a logical language that refers to one or more situations,
including the necessary common characteristics, without fixing all
the details. Typical elements for describing the state of patients
are symptoms, signs, and test outcomes. Here we have chosen to
use predicate logic with equality and unique names assumption
[32]. For example, the literal ‘Condition(hyperglycaemia)’ is used
to represent the patient group of all patients that currently have
the condition of hyperglycaemia. Subgroups of patient groups
can be specified by using a conjunction with additional literals,
e.g., ‘Condition(hyperglycaemia) N QI < 27 specifies the pa-
tient group of patients who have hyperglycaemia and also have a
Quetelet index less than or equal to 27. We sometimes represent the
conjunction also in set form, e.g., the latter conjunction becomes
‘{Condition(hyperglycaemia), Ql < 27}".

Interventions and treatments: An intervention is the act of inter-
vening, interfering, or interceding with the intent of modifying the
outcome. In medicine, interventions include all medical actions that
influence the state of a patient or his environment. A treatment is
usually restricted to methods that provide a cure for an illness or
disability, however, the terms intervention and treatment are often
used synonymously. We have chosen to represent the domain of in-
terventions by a countable set. Subsets of this set are interpreted as
treatments in which each intervention of the set is applied. Interven-
tions which are not an element of the treatment are assumed not to
be applied. We abstract from medical management details such as
changing drug dosages.

5.2 Verification approach

Medical guidelines give recommendations based on the best avail-
able evidence. Although diabetes mellitus type 2 is a complicated
disease, the guideline fragment shown in Figure 2 is not. This in-
dicates that much knowledge concerning diabetes mellitus type 2
is missing from the guideline. Verifying whether a guideline fulfils
some property therefore additionally needs the specification of back-
ground knowledge.

The ideas that we use here to verify quality requirements for medi-
cal guidelines are inspired by previous work, where a distinction was
made between the different types of knowledge that are involved in
defining quality requirements [21]. We assume that there are at least
three types of knowledge involved in detecting the violation of good
medical practice:

1. Knowledge concerning the (patho)physiological mechanisms un-
derlying the disease, and the way treatment influences these mech-
anisms. The knowledge involved could be for example causal or
empirical in nature, and is an example of object-knowledge.

2. Knowledge concerning the recommended treatment in every step

of the guideline and how the choice for each treatment is affected
by the state of the patient, i.e., the order information from the med-
ical guideline. This is also an example of object-knowledge.

VVSS 2007 167

VVSS 2007 - Verification and Validation of Software Systems Symposium

Table 1. Used temporal operators; ¢ stands for a time instance
Notation | Interpretation Formal semantics
Oy o will always be true tEOpe vVt >t:t'Fo
O p will eventually be true tECpe W >ttt Ep
o execution does not terminate and the next state satisfies ¢ | t F o < It' € succ(t) : t' F ¢
L 3] either execution terminates or the next state satisfies ¢ tEepe Vit €succ(t): t'Fep
last the current state is the last t F last < succ(t) = @

3. Knowledge concerning good practice in treatment selection; this
is meta-knowledge.

The first type of object-knowledge will be called background
knowledge. The second type of object-knowledge is the order in-
formation from the medical guideline, which can be considered a
network of tasks or a hierarchical plan. The plan prescribes treat-
ment which influences the (patho)physiological mechanisms, which
results in information about patient groups that can be used by the
plan to make the best possible decision in subsequent step of the pro-
tocol. Incompleteness of background knowledge may lead to insuffi-
cient knowledge about a patient, which may result in a plan making
a non-deterministic choice. Of course, the guideline should recom-
mend the collection of data when possible if this data is crucial for
decision making.

The third type of knowledge, the meta-knowledge, includes gen-
eral knowledge about good practice medicine, for example, prefer-
ring a treatment over another if it uses a smaller number of drugs and
has an equal effect on the patient. This knowledge will be formalised
by quality requirements, i.e., (reasoning) patterns that specify the be-
haviour of treatment selection given certain patient data. These qual-
ity requirements can be used as proof obligations in the verification
of medical guidelines.

In the following section, the three types of knowledge involved
(background knowledge, medical guideline, and quality require-
ments) are described in more detail in the context of diabetes mellitus
type 2 and a formalisation in terms of temporal logic as discussed in
Section 5.1 is given. In Section 8 the quality requirements are verified
with the interactive theorem prover KIV.

6 Formalisation diabetes mellitus type 2 guideline
6.1 Background knowledge

In diabetes mellitus type 2 various metabolic control mechanisms are
deranged and many different organ systems may be affected. Glucose
level control, however, is the most important mechanism. At some
stage in the natural history of diabetes mellitus type 2, the level of
glucose in the blood is too high (hyperglycaemia) due to decreased
production of insulin by the B cells. Oral anti-diabetics either stimu-
late the B cells in producing more insulin (sulfonylurea) or inhibit the
release of glucose from the liver (biguanide). Effectiveness of these
oral diabetics is dependent on the condition of the B cells. Finally, as
a causal treatment, insulin can be prescribed. The mechanisms have
been formalised in terms of temporal logic in previous work [21],
and is shown in Figure 4.

For example, axiom (1) denotes the physiological effects of insulin
treatment, i.e., administering insulin results in an increased uptake of
glucose by the liver and peripheral tissues. Axiom (8) phrases under
what conditions you may expect the patient to get cured, i.e., when
the patient suffers from hyperglycaemia and insulin production of his

168 VVSS 2007

(1) Drug(insulin) — o (uptake(liver, glucose) = up N
uptake(peripheral-tissues, glucose) = up)

(2) uptake(liver, glucose) = up — release(liver, glucose) = down

(3) (Drug(SU) A —capacity(b-cells, insulin) = exhausted)

— o secretion(b-cells, insulin) = up

(4) Drug(BG) — o release(liver, glucose) = down

(5) (o secretion(b-cells, insulin) = up N
Condition(hyperglycaemia) N
capacity(b-cells, insulin) = subnormal \ QI < 27)

— o Condition(rnormoglycaemia)

(6) (o release(liver, glucose) = down A QL > 27 A
capacity(b-cells, insulin) = subnormal N
Condition(hyperglycaemia))

— o Condition(normoglycaemia)

(7) ((o release(liver, glucose) = down V
o uptake(peripheral-tissues, glucose) = up) A
capacity(b-cells, insulin) = nearly-exhausted N
o secretion(b-cells, insulin) = up N
Condition (hyperglycaemia))

— o Condition(normoglycaemia)

(8) (o uptake(liver, glucose) = up N
o uptake(peripheral-tissues, glucose) = up N
capacity(b-cells, insulin) = exhausted N
Condition(hyperglycaemia))

— o (Condition(rnormoglycaemia)\ Condition (hypoglycaemia))

(9) (Condition(normoglycaemia) ® Condition(hypoglycaemia) @
Condition(hyperglycaemia)) A —(Condition(normoglycaemia) N
Condition(hypoglycaemia) N\ Condition(hyperglycaemia))

Figure 4. Background knowledge Bpy, of diabetes mellitus type 2.
Drug(z) holds iff drug = is being administered at that moment in time. The
@ operator denotes the exclusive OR operator.

B cells are exhausted, an increased uptake of glucose by the liver and
peripheral tissues results in the patient condition changing to normo-
glycaemia.

6.2 Asbru model

In Asbru, plans are hierarchically organised in which a plan refers to
a number of sub-plans. The overall structure of the Asbru model of
our running example (Figure 2), is shown in Figure 5. The top level
plan ‘Treatments_and_Control’ sequentially executes the four sub-
plans ‘Diet’, ‘SU_or_ BG’, ‘SU_and_BG’, and ‘Insulin_Treatments’,
which correspond to the four steps of the guideline fragment in Fig-
ure 2. The sub-plan ‘Insulin_Treatments’ is further refined by two
sub-plans ‘Insulin_and_Antidiabetics’ and ‘Insulin’, which can be ex-
ecuted in any order.

The Asbru specifications of two plans in the hierarchy, namely
‘SU_or_BG’ and ‘Insulin_Treatments’ are defined as in Figure 6.

In the case of ‘SU_or_BG’ there is a relationship between the

VVSS 2007 - Verification and Validation of Software Systems Symposium

’ Treatments_and Control ‘

’ Diet ‘ ’ SU _or BG ‘ ’SU_and_BG‘ ’ Insulin_Treatments ‘
’ Insulin_and_Antidiabetics ‘ ’ Insulin ‘
Figure 5. Asbru plan hierarchy of the diabetes mellitus type 2 guideline.

plan ‘SU_or_BG’
effects
(QI £ 27 — SU € Drugs) A
(QI > 27 — BG € Drugs)
abort condition
‘condition = hyperglycaemia confirmation required’
complete condition
condition = hypoglycaemia V
condition = normoglycaemia

plan ‘Insulin_Treatments’
body anyorder wait for one
‘Insulin_and_Antidiabetics’
‘Insulin’

Figure 6. Asbru specifications of two treatments recommended in the dia-
betes mellitus type 2 guideline.

Quetelet index (QI) and the drug administered. If the Quetelet index
is less or equal than 27 then SU is administered, else BG is admin-
istered. The plan ‘SU_or_-BG’ corresponds to step 2 in the guideline
fragment of Figure 2, which completes if the patient condition im-
proves, i.c., the patient no longer has hyperglycaemia. This is rep-
resented by the complete condition. The plan ‘SU_or_-BG’ aborts
when the condition of the patient does not improve, which is repre-
sented by the abort condition. It requires a manual confirmation to
ensure that some time passes for the drugs to have an impact on the
patient condition.

The plan ‘Insulin_Treatments’ consists of two sub-plans, which
correspond to the two options of step 4 in the guideline fragment of
Figure 2, i.e., either insulin is administered or insulin and antidiabet-
ics are administered.

6.3 Quality requirements

Here, we give a formalisation of good practice medicine of medi-
cal guidelines. This extends previous work [21], which formalised
good practice medicine on the basis of a theory of abductive reason-
ing of single treatments. The context of the formalisation given here
is a fully formalised guideline, which consists, besides a number of
treatments, of a control structure that uses patient information to de-
cide on a particular treatment. This contrast with [21], which used a
context of a singly chosen treatment.

Firstly, we formalise the notion of a proper guideline according
to the theory of abductive reasoning. Let 3 be medical background
knowledge, P be a patient group, N be a collection of intentions,
which the physician has to achieve, and M be a medical guideline.

Then M is called a proper guideline for a patient group P, denoted
as M € Prp, if:

(M1) BUM U P [~ L (the guideline does not have contradictory
effects), and

(M2) BUM U P = < N (the guideline eventually handles all the
patient problems intended to be managed)

Secondly, we formalise good practice medicine of guidelines. Let
=< be areflexive and transitive order denoting a preference relation
with M <., M’ meaning that M’ is at least as preferred to M given
criterion ¢. With <, we denote the order such that M <, M’ if
and only if M <, M' and M’ A, M. When both M <, M’ and
M’ <, M hold or when M and M’ are incomparable w.r.t. <, we
say that M and M’ are indifferent, which is denoted as M ~ M. If
in addition to (M1) and (M2) condition (M3) holds, with

(M3) O, (M) holds, where O,, is a meta-predicate standing for an
optimality criterion or combination of optimality criteria ¢ de-
fined as: Oy,(M) =VM' € Prp : =(M <, M"),

then the guideline is said to be in accordance with good practice
medicine w.r.t. criterion ¢ and patient group P, which is denoted as
Good,, (M, P).

A typical example for O, is consistency of the recommended
treatment order w.r.t. a preference relation <, over treatments, i.e.,
O, (M) holds if the guideline M recommends treatment 7" before
treatment 7" when 17" <y, T holds. For example, in diabetes mel-
litus type 2, a preference relation over treatments would be to min-
imise (1) the number of insulin injections, and (2) the number of
drugs involved. This results, among others, in the following prefer-
ences: sulfonylurea drug ~ biguanide drug, and insulin <y, insulin
and antidiabetic <y, sulfonylurea and biguanide drug <y, sulfony-
lurea or biguanide drug =<, diet. A guideline M would then be in
accordance with good practice medicine if it is consistent with this
preference order <y, e.g., if M first recommends diet before a sul-
fonylurea or biguanide drug.

7 Specification in KIV

Previous sections have given the temporal logic formalisation of the
background knowledge of diabetes mellitus type 2, the quality re-
quirements, and the Asbru model of the medical guideline for di-
abetes mellitus type 2. In this section we discuss how these ele-
ments can be translated into KIV representations, so that they be-
come amendable to verification.

7.1 Introduction to KIV

KIV is an integrated development environment to develop systems
using formal methods [6]. The specification language of KIV is based
on higher-order algebraic specifications. Reactive systems can be de-
scribed in KIV by means of state-charts or parallel programs; here
we use parallel programs. Parallel programs are modelled as follows.
Let e denote an arbitrary (first-order) expression and v4 a dynamic
variable (see below), then constructs for parallel programs include:
vq = e (assignments), if 1) then ¢ else ¢2 (conditionals), while
1 do ¢ (loops), var vqg = e in ¢ (local variables), patom ¢ end
(atomic execution), ¢1 || @2 (interleaved execution), and [p#(e; va)]
(call to procedure p with value parameters e and reference parame-
ters vq). The semantics of this extended language is defined in [1].
The correctness of systems is ensured by constructing proofs in
an interactive theorem prover which is based on higher order logic

VVSS 2007 169

VVSS 2007 - Verification and Validation of Software Systems Symposium

with special support for temporal logic, i.e., future-time linear tem-
poral logic [4]. The logic of Table 1 is extended with static variables
vs, which are variables that are mapped to the same element in the
universe of discourse at each time point. Dynamic variables vq, such
as program variables, may have different interpretations at different
time points. In the upcoming sections, the use of static variables will
be explicitly mentioned. A speciality of KIV is the use of primed and
double-primed variables: a primed variable v/, represents the value
of this variable after a system transition, the double-primed variable
v) is interpreted as the value after an environment transition. System
and environment transitions alternate, with v/} being equal to v4 in
the successive state (cf. Figure 7 and Section 8.1).

system environment

transition //—\\ transition
v > v’ > v
O/ \

Asbru model

X X Background
of guideline

Knowledge
+ Effects

Figure 7. The relation between unprimed and primed variables as two dis-
tinct transitions: the system transition (including the Asbru model and its ef-
fects) and the environment transition (including the background knowledge).

7.2 Specification methodology in KIV

The guideline and patient can be looked upon as a system (guideline)
that interacts with the environment (patient). KIV allows a clear dis-
tinction between system and environment transitions by using primed
and double-primed variables. Therefore, the Asbru model is only al-
lowed to map variables into primed variables, whereas the environ-
ment is only allowed to map primed variables into double primed
variables. System and environment transitions alternate (Figure 7).

However, system transitions in Asbru may involve a large number
of steps (e.g., signals, plan state changes) before the model reaches
a stable state from which no further step can be made unless time
progresses or the environment changes. Asbru is mainly a control
oriented language and many control steps are not considered to take
any real time at all. In an interactive theorem prover like KIV, this be-
haviour can be modelled by the introduction of two transition types,
micro-steps and macro-steps [36]. Micro-steps are technical Asbru
steps where time and environment are not allowed to change. Macro-
steps are temporal steps in which interaction can occur with the envi-
ronment (e.g., plan activations) and are only executed when there are
no micro-steps possible. The variable ‘Tick’, controlled by the sym-
bolic execution of the Asbru semantics, holds when a macro-step
occurs.

In KIV, system descriptions are represented by means of a set of al-
gebraic specifications. These algebraic specifications can be enriched
with additional algebraic structures, which form a dependency struc-
ture between the different specifications. To maximise re-usability,
several layers are used for representing our framework in KIV. The
lowest layer in this dependency structure consists of standard data
structures like Booleans and sets, which are typically obtained from
libraries in KIV. On top of that, all data structures are represented
necessary for representing the semantics of Asbru. The remaining
layers consist of the structures dependent on the specific guideline
under study. On top of the standard data structures, additional data
structures are represented. For the diabetes case study, the data types

170 VVSS 2007

Guideline specific control stucture

I

Background knowledge

e ~

Asbru Semantics

Guideline specific data types

T~ e

Standard data structures

Figure 8. Dependency structure of Asbru specifications with A — B de-
noting that A depends on B

are modelled as enumeration types. On top of the asbru semantics
and data structures the background knowledge is represented. The
top layer consists of the control structure of the guideline, which is
the structure of Figure 5 in the diabetes case study (cf. Figure 8).

7.3 Specification of background knowledge in KIV

The background knowledge is translated into algebraic specifications
in KIV. All background knowledge axioms have been reformulated in
terms of preconditions and postconditions. Every element that refers
to the current point in time is interpreted as a precondition and each
element that refers to the next point in time is interpreted as a post-
condition. The values of these elements are stored in a data structure,
denoted by ‘Patient’. The patient is modelled by a sequence of pairs
[v,], where v is the name of a variable and ¢ a constant denoting
the value of that variable, depending on the point in time. Updates to
the patient record are done by appending a pair to the end of the se-
quence. Moreover, the most recent value of a variable v in a sequence
s is given by the term s[v]. An example of the final translation can be
found in Figure 9.

predicates

Knowledge : patient X patient,

axioms
BDM2-1:

Knowledge(pre, post) — (insulin € pre[treatment] —
postluptake(liver,glucose)] = up N\
postluptake(peripheral-tissues, glucose)] = up)

BDM2-8:

Knowledge(pre, post) — (post[uptake(liver,glucose)| = up
A postluptake(peripheral-tissues,glucose)] = up)
A pre[capacity(b-cells,insulin)] = exhausted
A pre[condition]| = hyperglycaemia —
post[condition] = normoglycaemia)

Figure 9. Background knowledge in KIV as a first order predicate using
pre- and postconditions, i.e., pre and post are shorthand notations for patient
data structures with pre[v]=c and post[v] =c referring to the condition v =
c of the patient in the current and next state respectively. The use of pre
and post variables is necessary to parameterise the background knowledge
for arbitrary patient data structures. In addition, two translated rules from
the background formalisation in [21] are shown with BDM2-i representing
Axiom (%) (cf. Figure 4).

7.4 Specification of Asbru in KIV

As each Asbru plan has a strict format, an algebraic function ‘mk-
asbru-def” has been defined for the translation of Asbru plans into

VVSS 2007 - Verification and Validation of Software Systems Symposium

KIV specifications. By calling ‘mk-asbru-def” with the parameters
that constitute a plan, translation of any guideline in Asbru becomes
straightforward. The parameters consist of the various conditions that
control plan state changes, the control type of sub-plans, a list of
sub-plans, a retry value (for aborted plans), a wait-for condition (for
mandatory sub-plans), and an optional wait-for flag (whether to wait
for sub-plans). As there are quite a number of parameters, default
values are provided to ease specification.

The Asbru semantics is implemented as a parallel program,
parametrised with a given Asbru model. Temporal properties of this
program are proven using symbolic execution and induction [1].

7.5 Specification of quality requirements in KIV

With the help of KIV, we have verified that the diabetes guideline is
proper, i.e., that the guideline satisfies conditions (M1) and (M2) as
defined in Section 6.3, which is discussed in detail in Subsections 8.1
and 8.2. Meta-level quality requirements are verified in KIV using a
sequent I' = 3 where the succedent X is some instantiation of (M3)
and the antecedent I is a fixed structure that consists of the initial
state of the patient and the Asbru model, the Asbru model, the ef-
fects of treatments, the background knowledge, and the environment
assumptions. The sequent in Figure 10 is an example specification in
KIV of the quality requirement that each patient is eventually cured
from hyperglycaemia.

/* Initial state of patient */

Patient[condition| = hyperglycaemia,

/* Initial state of guideline */

AS|[Treatments_and_Control] = inactive, . . .,

/* Asbru model */

[asbru+#(Treatments_and_Control; AS, P)],

/* Effects */

O (AS[SU_or_BG| = activated —
BG € Patient’ [treatment] A . ..),

/* Background knowledge */

O Knowledge (Patient’, Patient”)

/* Environment assumption */

O (AS”[Treatments_and_Control] =
AS'|[Treatments_and_Control] A ...)

l_

/* Property */

<& (Patient[condition] = hypoglycaemia \/
Patient[condition] = normoglycaemia)

Figure 10. Specification in KIV of the quality requirement that each patient
is eventually cured from hyperglycaemia.

The initial state of the patient and the Asbru model are represented
using additional data structures [35]. The patient data is represented
in a data structure ‘patient-data-history’, which in Figure 10 is set to
the patient group {Condition(/iyperglycaemia)}. The initial state of
the Asbru model is represented using a data structure ‘AS’ of type
‘asbru-state’, which keeps track of all plan states over time, and in
which initially each plan is set to inactive. The Asbru model of the
guideline describes the control structure, and its specification in KIV
has already been discussed in Section 7.4. The effects of treatments
specify in KIV the behaviour of plans in the Asbru model. This is
a direct translation of the effects attribute used in the Asbru model,
which specifies the expected behaviour of plans (cf. Section 6.2). In
our diabetes case study the effects of plans are the administration of

a certain drug as soon as the plan becomes activated, which may de-
pend on the value of other variables like the Quetelet index (cf. Sec-
tion 6.2). The background knowledge is represented in the sequent
using the first-order predicate ‘Knowledge’ and has already been dis-
cussed in Section 7.3. The environment is in principle allowed to
change every variable arbitrarily. The environment assumptions re-
strict the behaviour of the environment. These restrictions (1) forbid
the environment to change some variable, (2) force the environment
to deterministically change a variable (e.g., advancing a clock), and
(3) guarantee certain variable assignments in a nondeterministic way
(e.g., the existence of a value when a signal is sent).

8 Verification using KIV
8.1 Consistency of background knowledge

Property (M1) ensures that the formal model including the Asbru
guideline and the background knowledge is consistent. The initial
state is — in our case — described as a set of equations and it has
been trivial to see that they are consistent. The guideline is given as
an Asbru plan. The semantics of any Asbru plan is defined in a pro-
gramming language where every program construct ensures that the
resulting reactive system is consistent: in every step, the program ei-
ther terminates or calculates a consistent output for arbitrary input
values. The Asbru plan, thus, defines a total function between un-
primed and primed variables in every step (Figure 7). The formula
defining the effects maps the output variables of the guideline to in-
put variables of the patient model. Again, it has been trivial to see
that this mapping is consistent.

The background knowledge defines our patient model. We con-
sider the patient to be part of the environment which is the relation
between the primed and the double primed variables in every step. If
the patient model ensures that for an arbitrary primed state there ex-
ists a double primed state, the overall system of alternating guideline
and environment transitions is consistent: given an initial (unprimed)
state, the guideline calculates an output (primed) state; the effects
define a link between the variables of the guideline and the variables
of the patient model; the patient model reacts to the (primed) output
state and gives a (double primed) state which is again input to the As-
bru guideline in the next step. In other words, the relation between
the unprimed and the double primed state is the complete state transi-
tion. The additional environment assumptions referring to the Asbru
environment do not destroy consistency as the set of restricted vari-
ables of the environment assumption is disjunct to the set of variables
of the patient model.

It remains to ensure consistency of the background knowledge
which we defined as a predicate ‘knowledge’. Consistency can be
shown by proving the property

Vpre. Ipost. ‘knowledge’ (pre, post)

which ensures that the relation is total. In order to prove that this
property holds an example patient has been constructed. Verifying
that the example patient is a model of the background knowledge has
been fully automatic.

8.2 Successful treatment

In order to verify property (M2), i.e., the guideline eventually man-
ages to control the glucose level in the patient’s blood, a proof has
been constructed. The verification strategy in KIV is symbolic ex-
ecution with induction [1]. The plan state model introduced in [3]

VVSS 2007 171

VVSS 2007 - Verification and Validation of Software Systems Symposium

defines the semantics of the different conditions of a plan and is im-
plemented in KIV by a procedure called ‘asbru’, which is symbol-
ically executed. Each plan can be in a certain state, modelled with
a variable ‘AS’ (i.e., ‘inactive’, ‘considered’, ‘ready’, ‘activated’,
and ‘aborted’ (or ‘completed’)) and a transition to another state de-
pends on its conditions. In the initial state, the top level plan ‘Treat-
ments_and_Control’ (abbreviated ‘tc’) is in ‘inactive’ state. After ex-
ecuting the first step, the plan is ‘considered’, after which execution
continues as described in [3]. The execution is visualised in a proof
tree (cf. Figure 11), where the bottom node is the start of the execu-
tion and splits if there is a case distinction.

Patients whose capacity of the B cells is ‘normal’ are cured with
diet, while for other patients diet will not be sufficient. In this case,
we assume that the doctor eventually aborts the diet treatment. We
use induction to reason about the unspecified time period in which
diet is applied. As an invariant,

Patient] ‘capacity(B-cells,insulin) '] # normal

is used. In the next step, the doctor has either aborted ‘diet’ or ‘diet’
is still active. In the second case, induction can be applied. When
‘diet’ is aborted, ‘tc’ sequentially executes the next plan, which is
‘SU_or_BG’ (cf. Figure 5).

The second treatment ‘SU_or_.BG’ goes, as each Asbru plan,
through a sequence of states, i.e., ‘inactive’, ‘considered’, ‘ready’,
‘activated’, and ‘aborted’, and thus becomes first ‘considered’ and
after some steps becomes ‘activated’ (cf. Figure 11). In this case, ei-
ther SU or BG is prescribed, depending on the Quetelet index QI.
For a patient whose B cell capacity is ‘subnormal’, the background
knowledge ensures that the condition of the patient improves. Thus,
for the rest of the proof we can additionally assume that

Patient| ‘capacity(B-cells, insulin)’| # subnormal

After ‘SU_or_BG’ aborts, the third treatment (‘SU_and_BG”) is exe-
cuted in similar fashion, where patients with nearly exhausted B cell
capacity are cured. Thus, after aborting the first three treatments the
precondition concerning the B cell capacity can be strengthened to

Patient| ‘capacity(B-cells,insulin)’] # ‘normal’
A Patient| ‘capacity(B-cells,insulin)’| # ‘subnormal’
A Patient] ‘capacity(B-cells,insulin)’| # ‘nearly-exhausted’

which, under the assumption that the only possible values of the
capacity are normal, subnormal, nearly-exhausted, and exhausted,
yields:

Patient| ‘capacity(B-cells,insulin) '] = exhausted

This statement together with the background knowledge ensures that
the prescription of insulin, which is prescribed in both final treat-
ments ‘Insulin’ and ‘Insulin_and_Antidiabetics’, finally cures the pa-
tient.

8.3 Optimality of treatment

With respect to property (M3), an optimality criterion of the guide-
line is that no treatments are prescribed that are not in accordance
with good practice medicine (Section 6.3), i.e., some preference re-
lation < between treatments exists and the guideline never prescribes
a treatment 7" such that 7' < 7" and T" cures the patient group under
consideration.

In our case study the preference for treatments is based on the min-
imisation of (1) the number of insulin injections, and (2) the number

172 VVSS 2007

insulin_and_anti ~—insulin is activated

is activated

——insulin_and_anti and
insulin are ready

-—insulin_and_anti and
insulin are considered

~—insulin_treatments
is activated

~—insulin_treatments
is considered

su_and bg is aborted — 3

patient with
nearly—exhausted

capacity is cured -—su_and_bg is activated

-—su_and_bg is considered

su_or_bg is aborted —
patient with subnormal

capacity is cured
-—su_or_bg is activated

-—su_or_bg is considered

diet is still activated

diet is aborted —~ '+~ and induction is applied

patient with normal»% -— invariant is introduced
capacity is cured

diet is activated .

'~ case distinction about
B—cell capacity

-— diet is considered

-— tc is activated

-— tc is considered
-— tc 1s 1nactive

Figure 11. Overview of the proof that the guideline eventually manages all
patient problems, which is explained in Section 8.2.

VVSS 2007 - Verification and Validation of Software Systems Symposium

of drugs involved (cf. Section 6.3). We have defined this using a re-
flexive, transitive order < such that for all treatments 7', it holds that
insulin < T and T < diet. Furthermore, the treatments prescribing
the oral anti-diabetics sulfonylurea and biguanide are incomparable.
The proof obligation is then as follows:

O(Vr: Good< (T, Patient) — T < Patient| ‘treatment’])

where Good< (T, Patient) denotes that 1" is a treatment according
to good practice medicine for Patient, as defined in [24]. To prove
this, the following axiom was added to the system:

OPatient['Ql’) = Patient”[‘QI’]

i.e., the Quetelet index does not change during the run of the protocol.
This axiom is needed, because the decision of prescribing a treatment
is not exactly at the same time as the application of the treatment and
therefore the decision of prescribing this treatment could be based on
a patient with a different Quetelet index than the patient that actually
takes the drugs.

Proving this property in KIV was done in approximately 1 day us-
ing several heuristics for the straightforward parts. The theorem was
proven using two lemmas for two specific patient groups. In total, it
took approximately 500 steps, of which nearly 90% were done auto-
matically, to verify this property.

8.4 Order of treatments

Finally, another instance of (M3) was proven. This property phrases
that the order of any two treatments in the protocol is consistent with
the order relation as we have defined in Subsection 6.3. In other
words, in case a patient may receive multiple treatments, the less
radical treatments are tried first. The formalisation of the property in
KIV was done as follows:

OV (Tick N'T = Patient| ‘treatment’]
— O(last V (Tick — —(T < Patient| ‘treatment’)))))

At each time, the current treatment is bound to a static variable (i.e.,
unchanged by symbolic execution) 7', which can be used to compare
against subsequent steps in the protocol. For any future steps, we re-
quire that either the protocol completes (last holds) or that activated
treatments are not more preferred than 7'. The additional ‘Tick’ vari-
able is needed in the formalisation to abstract from technical system
steps.

This property also had a high degree of automation with roughly
800 steps in total. The reason for this slightly higher number of steps
is due to nested temporal operators.

9 Discussion

As the interest in medical guidelines continues to grow, there is a
need for criteria to asses the quality of medical guidelines. An impor-
tant method for the appraisal of medical guidelines was introduced
by the AGREE collaboration [9]. A solid foundation for the applica-
tion of formal methods to the quality checking of medical guidelines,
using simulation of the guideline [15, 31] and theorem proving tech-
niques [25], can also be found in literature.

In [25], logical methods have been used to analyse properties of
guidelines, formalised as task networks. In [24], it was shown that
the theory of abductive diagnosis can be taken as a foundation for
the formalisation of quality requirements of a medical guideline in

temporal logic. This result has been used to verify quality require-
ments of good practice medicine of treatments [21]. However, in the
latter work, the order between treatment depending on the condition
of the patient and previous treatments was ignored. In this paper, we
consider elements from both approaches by including medical back-
ground knowledge in the verification of complete networks of tasks.
This required a major change to the previous work with respect to the
formulation of quality criteria, because quality is now defined with
respect to a complete network of tasks instead of individual treat-
ments as presented in [24].

Compared to previous work concerning the verification of net-
works of tasks, the meta-level approach we have presented here
has a number of advantages. In the meta-level approach, quality is
defined independently of domain specific knowledge, and, conse-
quently, proof obligations do not have to be extracted from exter-
nal sources. One successful attempt of the latter was reported in
[18], where quality criteria are formalised on the basis of instru-
ments to monitor the quality of care in practice, i.e., medical in-
dicators. Firstly, the question is whether these indicators, based on
compliance with medical guidelines, coincide with the quality of
the guideline itself. Secondly, it has been our experience that it is
far from easy to find suitable properties in external sources, because
these sources may not be completely applicable, e.g., typically, other
guidelines may address different problem in the management of the
same disease. Thirdly, many useful quality criteria of guidelines are
implicit, making this approach fundamentally limiting. In this sense,
the meta-level approach provides a more systematic method for the
formulation of proof obligations and, thus, verification of medical
guidelines.

In summary, in this study we have setup a general framework for
the verification of medical guidelines, consisting of a medical guide-
line, medical background knowledge, and quality requirements. A
model for the background knowledge of glucose level control in dia-
betes mellitus type 2 patients was developed based on a general tem-
poral logic formalisation of (patho)physiological mechanisms and
treatment information. Furthermore, we developed a theory for qual-
ity requirements of good practice medicine based on the theory of
abductive diagnosis. This model of background knowledge and the-
ory of quality requirements were then used in a case study in which
we verified several quality criteria of the diabetes mellitus type 2
guideline used by the Dutch general practitioners. In the case study
we use Asbru to model the guideline as a network of tasks and KIV
for the formal verification.

In the course of our study we have shown that the general frame-
work that we have setup for the formal verification of medical guide-
lines with medical background knowledge is feasible and that the
actual verification of the proposed quality criteria can be done with a
high degree of automation. We believe both the inclusion of medical
background knowledge and task networks to be necessary elements
for adequately supporting the development and management of med-
ical guidelines.

10 Comparison with other formal verification
techniques

Formal methods: Verification using symbolic calculation can
be mechanised using the methods of several types of reasoning,
such as model checking, constraint solving, theorem proving, etc.
Figure 12 shows a range of formal methods ranging from cheap
to incomplete to very expensive and complete (loosely based on
a picture by Rushby). The work that is presented in this paper is

VVSS 2007 173

VVSS 2007 - Verification and Validation of Software Systems Symposium

of the latter kind, which has certain advantages, e.g., it provides
insight in the proof structure. For each case, it is relatively easy
to inspect the proof tree and to find out the reason why a certain
quality criterion holds. On the other hand, KIV is a tool with a very
expressive logic, which may result in an additional overhead when
verifying quality criteria of medical guidelines. Thus, it makes sense
to look at cheaper methods for verification of medical guidelines.
This is particularly important when guidelines are rapidly updated,
where fully automated formal methods are most realistic. Below,
work on model checking and automated theorem proving of medical
guidelines is briefly discussed.

ASSURANCE
//
interactive
automated theorem proving
theorem proving
model
checking

invisible

formal

methods

EFFORT

Figure 12. A spectrum of formal methods for formal verification allowing
a tradeoff in the properties one can verify (assurance dimension) against the
effort one needs to invest to obtain results (effort dimension).

Model checking: Model checking is an effective technique for veri-
fying properties of a formal system. In model checking, a specifica-
tion about a model, which is usually some form of transition system,
is expressed as (temporal) logic formulas, and efficient algorithms
traverse the states of the system to verify whether the specification
holds or not. Extremely large state-spaces can be traversed in a short
amount of time. The first model checkers verified the correctness of
discrete state systems, but have been extended to also deal with real-
time and probabilistic reasoning.

In the Protocure project, a mapping has been developed for auto-
matically transforming guidelines in the Asbru language into SMV
for model checking purposes [7]. As the mapping is made into SMV,
this transformation abstracts from the notion of time. Hence, not ev-
ery property can be verified using SMV [26]. Model checking has
been found to be very useful when constructing the Asbru model.
[12] defines a number of structural properties which should be ful-
filled by a good quality Asbru model. By model checking these struc-
tural properties of the Asbru model, one can quickly check the model
during development. Hence, model checking provides a good trade-
off between effort and assurance for these kind of properties, how-
ever, the framework as specified in [7] is unable to deal with more
complex properties that deal for example with time.

In another study [19], model checking has been used to check the
conformance of medical guidelines with medical protocols, which
are local adaptations by hospitals of medical guidelines. A different
view towards medical guidelines was followed in [19] compared to
the program-like view presented in the current paper. As medical
guidelines often omit many details, e.g., common sense reasoning
about first informing a patient before treatment, guidelines are often

174 VVSS 2007

under-constrained. In [19] a constraint-based approach is used for
model checking the conformance of medical protocols. Additional
background knowledge can be incorporated in the model checking
approach by using modular model checking [22]. This allows one
to verify a property with respect to a restricted part of the model.
For example, one can restrict the model to those states that adhere
to common sense medical practice, such as the fact that diagnosis
usually occurs before treatment of the patient.

Automated theorem proving: Previously, it was shown that for rea-
soning about models of medical knowledge, for example in the con-
text of medical expert systems [23], classical automated reasoning
techniques (e.g., [33, 46]) are a practical option. In [20], we studied
the use of automatic theorem proving techniques for quality checking
medical guidelines. In this context, reasoning about Asbru plans is
not feasible, however, simple treatment plans can be encoded directly
in temporal logic. Translation of temporal logic yields a restricted
first-order theory, e.g., the temporal formula Gp can be interpreted
as by V1 (t <t — p). Such a formalisation is suitable for use in
standard resolution-based theorem provers. Note that in practice, this
is not a fully automated process, as the theorem prover needs to be
guided in the use of (resolution-)strategies and sometimes it is help-
ful to define lemmas. Nonetheless, automated theorem provers re-
quire less interaction than interactive theorem provers. Furthermore,
it is possible to add background knowledge to the system, whereas,
adding background knowledge to a transition system will generally
result in a state explosion making model checking infeasible.

ACKNOWLEDGEMENTS

We would like to thank all members of the Protocure project for pro-
viding a stimulating research environment.

REFERENCES

[11 M. Balser, Verifying Concurrent Systems with Symbolic Execution —
Temporal Reasoning is Symbolic Execution with a Little Induction,
Ph.D. dissertation, University of Augsburg, Augsburg, Germany, 2005.

[2] M. Balser, O. Coltell, J. van Croonenborg, C. Duelli, F. van Harme-
len, A. Jovell, P. Lucas, M. Marcos, Misch. S., W. Reif, K. Rosen-
brand, A. Seyfang, and A. ten Teije, ‘Protocure: Supporting the devel-
opment of medical protocols through formal methods’, in Computer-
Based Support for Clinical Guidelines and Protocols, eds., K. Kaiser,
S. Miksch, and S. Tu, pp. 103—107. IOS Press, (2004).

[3] M. Balser, C. Duelli, and W. Reif, ‘Formal semantics of Asbru - an
overview’, in Proceedings of the International Conference on Inte-
grated Design and Process Technology, Passadena, (2002). Society for
Design and Process Science.

[4] M. Balser, C. Duelli, W. Reif, and G. Schellhorn, ‘Verifying concurrent
systems with symbolic execution’, Journal of Logic and Computation,
12(4), 549-560, (2002).

[5] M. Balser, C. Duelli, W. Reif, and J. Schmitt, ‘Formal se-
mantics of asbru — v2.12°, Technical report, University of
Augsburg, (June 2006). Url: http://www.informatik.uni-
augsburg.de/lehrstuehle/swt/se/publications/.

[6] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums, ‘Formal
system development with KIV’, in Fundamental Approaches to Soft-
ware Engineering, ed., T. Maibaum, number 1783 in LNCS. Springer-
Verlag, (2000).

[7]1 S.Bédumler, M. Balser, A. Dunets, W. Reif, and J. Schmitt, ‘Verification
of medical guidelines by model checking — a case study’, in Proceed-
ings of 13th International SPIN Workshop on Model Checking of Soft-
ware, ed., A. Valmari, volume 3925 of LNCS, pp. 219-233. Springer-
Verlag, (2006).

[8] P. Clayton and G. Hripsak, ‘Decision support in healthcare’, Interna-
tional Journal of Biomedical Computing, 39, 59-66, (1995).

(]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

VVSS 2007 - Verification and Validation of Software Systems Symposium

AGREE Collaboration, ‘Development and validation of an international
appraisal instrument for assessing the quality of clinical practice guide-
lines: the agree project’, Qual Saf Health Car, 12, 18-23, (2003).

P.A. de Clercq, J.A. Blom, H.H.M. Korsten, and A. Hasman, ‘Ap-
proaches for creating computer-interpretable guidelines that facilitate
decision support’, Artificial Intelligence in Medicine, 31(1), 1-27,
(2004).

D. Dickenson and P. Vineis, ‘Evidence-based medicine and quality of
care’, Health Care Analysis, 10, 243-259, (2002).

G. Duftschmid and S. Miksch, ‘Knowledge-based verification of clin-
ical guidelines by detection of anomalies’, OEGAI Journal, 37-39,
(1999).

E. Allen Emerson, ‘Temporal and modal logic.’, in Handbook of The-
oretical Computer Science, Volume B: Formal Models and Semantics
(B), 995-1072, (1990).

Clinical Practice Guidelines: Directions for a New Program, eds.,
M. Field and K. Lohr, National Academy Press, Institute of Medicine,
Washington D.C., 1990.

J. Fox and S. Das, Safe and Sound: Artificial Intelligence in Hazardous
Applications, AAAI Press, 2000.

J. Fox, N. Johns, A. Rahmanzadeh, and R. Thomson, ‘PROforma: A
method and language for specifying clinical guidelines and protocols’,
in Medical Informatics Europe, eds., J. Brender, J.P. Christensen, Scher-
rer. J.R., and P. McNair, pp. 516-520, (1996).

J. Fox, N. Johns, A. Rahmanzadeh, and R. Thomson, ‘PROforma: a
general technology for clinical decision support systems’, Computer
Methods and Programs in Biomedicine, 54, 59—67, (1997).

M. van Gendt, A. van Teije, R. Serban, and F. van Harmelen, ‘Formalis-
ing medical quality indicators to improve guidelines’, in A/ME, number
3581 in LNAI, pp. 201-220. Springer Verlag, (2005).

A. Hommersom, P. Groot, and P. Lucas, ‘Checking guideline confor-
mance of medical protocols using modular model checking’, in The
18th Belgium-Netherlands Conference on Artificial Intelligence, pp.
173-180, (2006).

A. J. Hommersom, P. J. F. Lucas, and P. van Bommel, ‘Automated the-
orem proving for quality-checking medical guidelines’, in Proceedings
of CADE-20 Workshop on Empirically Successful Classical Automated
Reasoning (ESCAR), (2005).

A.J. Hommersom, P.J.F. Lucas, and M. Balser, ‘Meta-level Verification
of the Quality of Medical Guidelines Using Interactive Theorem Prov-
ing’, in Logics in Artificial Intelligence: 9th European Conference, vol-
ume 3229 of Lecture Notes in Computer Science, pp. 654—666, Lisbon,
Portugal, (September 2004). Springer-Verlag.

O. Kupferman and M.Y. Vardi, ‘Modular model checking’, Lecture
Notes in Computer Science, 1536, 381-401, (1998).

P. J. F. Lucas, ‘The Representation of Medical Reasoning Models in
Resolution-based Theorem Provers’, Artificial Intelligence in Medicine,
5,395-419, (1993).

P.J.F. Lucas, ‘Quality checking of medical guidelines through logical
abduction’, in Proceedings of AI-2003, the 23rd SGAI International
Conference on Innovative Techniques and Applications of Artificial
Intelligence, eds., F. Coenen, A. Preece, and A.L. Mackintosh, vol-
ume XX, pp. 309-321, London, (2003). Springer.

M. Marcos, M. Balser, A. ten Teije, and F. van Harmelen, ‘From in-
formal knowledge to formal logic: A realistic case study in medical
protocols’, in Proceedings of EKAW, pp. 49—64. Springer, (2002).

K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publish-
ers, 1993.

S. Miksch, ‘Plan management in the medical domain’, 41 Communica-
tions, 12(4), 209-235, (1999).

M. Peleg, A. Boxwala, O. Ogunyemi, P. Zeng, S. Tu, R. Lacson, E. Beg-
nstam, and N. Ash, ‘GLIF3: The evolution of a guideline representation
format’, in Proc. AMIA Annual Symposium, pp. 645-649, (2000).

M. Peleg, L.A. Gutnik, V. Snow, and V.L. Patel, ‘Interpreting proce-
dures from descriptive guidelines’, Journal of Biomedical Informatics,
39(2), 184-95, (2006).

M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R.A. Greenes, R. Hall,
P.D. Johnson, N. Jones, A. Kumar, S. Miksch, S. Quaglini, A. Seyfang,
E.H. Shortliffe, and M. Stefanelli, ‘Comparing computer-interpretable
guideline models: a case-study approach’, Journal of the American
Medical Informatics Association, 10(1), 52-68, (2003).

S. Quaglini, M. Stefanelli, A. Cavallini, G Micieli, C. Fassino, and
C. Mossa, ‘Guideline-based careflow system’, Artificial Intelligence in
Medicine, 20(1), 5-22, (2000).

[32] R. Reiter, ‘Equality and domain closure in first order databases’, Jour-
nal of ACM, 27, 235-249, (1980).

J. A. Robinson, ‘Automated Deduction with Hyperresolution’, /nterna-
tional Journal of Computatational Mathematics, 1,23-41, (1965).
G.E.H.M. Rutten, S. Verhoeven, R.J. Heine, W.J.C. de Grauw, P.V.M.
Cromme, and K. Reenders, ‘NHG-standaard diabetes mellitus type 2
(eerste herziening)’, Huisarts Wet, 42, 67-84, (1999).

J. Schmitt, M. Balser, and W. Reif, ‘Complementary material to Deliv-
erable D4.2b: Improved Verification System’, in Protocure II - Integrat-
ing formal methods in the development process of medical guidelines
and protocols, (2005).

J. Schmitt, M. Balser, and W. Reif, ‘Support for Interactive Verification
of Asbru in KIV’, Technical Report 2006-16, Universitit Augsburg,
Institut fiir Informatik, (June 2006).

A. Seyfang, R. Kosara, and S. Misch, ‘Asbru’s reference manual, asbru
version 7.3°, Technical Report Asgaard-TR-20002-1, Vienna Univer-
sity of Technology, Institute of Software Technology, (2002).

A. Seyfang, S. Miksch, P. Votruba, K. Rosenbrand, J. Wittenberg, J. von
Croonenborg, W. Reif, M. Balser, J. Schmitt, T. van der Weide, P. Lu-
cas, and A. Hommersom, ‘D2.2a Specification of Formats of Interme-
diate, Asbru and KIV Representations’, in Protocure Il - Integrating
formal methods in the development process of medical guidelines and
protocols, (2004).

A. Seyfang and J. Schmitt, ‘D2.3b Asbru-to-KIV translator’, in Pro-
tocure II - Integrating formal methods in the development process of
medical guidelines and protocols, (2004).

Y. Shahar, S. Miksch, and P. Johnson, ‘The asgaard project: A task-
specific framework for the application and critiquing of time-orientied
clinical guidelines’, Artificial Intelligence in Medicine, 14, 29-51,
(1998).

S.E. Strauss, W.S. Richardson, P. Glasziou, and R.B. Haynes, Evidence-
based Medicine - How to Practice and Teach EBM, Churchill Living-
stone, 2005.

S. Tu and M. Musen, ‘A flexible approach to guideline modeling’, in
Proceedings of American Medical Informatics Association Symposium
(AMIA 1999), pp. 420-424, (1999).

S. Tu and M. Musen, ‘From guideline modeling to guideline execution:
Defining guideline based decision-support services’, in Proceedings of
American Medical Informatics Association Symposium, pp. 863-867,
Los Angeles, CA, (1999).

S. Woolf, R. Grol, A. Hutchinson, M. Eccles, and J. Grimshaw, ‘Po-
tential benefits, limitations, and harms of clinical guidelines’, British
Medical Journal, 318, 527-530, (1999).

S.H. Woolf, ‘Evidence-based medicine and practice guidelines: an
overview’, Cancer Control, 7, 362-367, (2000).

L. Wos, R. Overbeek, E. Lusk, and J. Boyle, Automated Reasoning:
Introduction and Applications, Prentice-Hall, Englewood Cliffs, NJ,
1984.

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

Appendix A - Specification of Asbru in KIV

This appendix gives a bit more details about the specification of and
reasoning about Asbru plans in KIV. More details about the represen-
tation is described in Protocure deliverables [38, 39] and the technical
report [36].

The syntax of Asbru is defined with several algebraic specifica-
tions in KIV. Figure 13 gives an overview of the specifications and
their dependency structure. The specifications with a box ‘CUT’ at-
tached belong to the library specifications included in KIV and are
not shown in detail. We discuss only some of the more important
design choices in more detail below.

The ‘asbru-clock-basic’ specification defines the data type ‘asbru-
clock’, which is a two-component counter, with the first component
being either an integer or infinity, and the second component being a
natural number. The first counter of the clock counts the time steps
the system has gone through, i.e., the macro-steps (cf. Section 7.2).
An integer is used as the absolute number is unimportant. This allows
lemmas to be inserted at different time points without the difficulty
with natural numbers that there exists some zero time point such that

VVSS 2007 175

VVSS 2007 - Verification and Validation of Software Systems Symposium

asbru-abstracted

asbru-def-basic

‘ abstract-asbru-condition

v

‘ abstract-asbru-condition-basic ‘

¥

‘ abstract-condition ‘

e ~.

v —

plan-type-basic

plan-type

[||

plan-com

environment-aggregation

environment-aggregation-basic

N

: ‘ environment-aggregation-part-basic

bool-tuple

plan-com-basic

‘ cyclical-time-annotation

plan-com-entry

variables

¥

‘ cyclical-time-annotation-basic ‘

‘\\\\\\ﬁi o

‘ abstract-time-annotation

™~

abstract-time-annotation-basic

abstract-asbru-clock

gdata-value ‘ ‘ time-annotation ‘

v

v v

abstract-asbru-clock-basic

‘ ‘ asbru-state-history ‘

interval-basic ‘ ‘ asbru-clock

‘ asbru-clock-basic

cuT

prepair

asbru-state-history-basic ‘ P

sring-list

ostore-sync
4
cur

list-set

CuT

odynfun

Figure 13. Definition of syntax of Asbru plans.

176 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

one cannot go back infinitely back in time. The second counter is a
micro-step counter.

The “asbru-clock’ enriches the asbru clock, which adds function-
ality for moving back and forward in time. As micro-steps are tech-
nical steps that do not represent real time steps they are not related to
concepts such as ‘earlier’ or ‘later’. It is therefore not possible to ad-
dress individual micro-steps, but only to a list of states that has been
reached in between two macro-steps.

The ‘interval-basic’ creates a rudimentary time-interval using a
pair of asbru-clocks.

The ‘ostore-sync” specification adds the specification of the pred-
icate ‘sync’. This is needed to come around difficulties with concur-
rent access to data types within synchronous parallel execution. In
general synchronous write access from more than one process to one
variable is seen as a clash and the result of such a clash can be de-
fined in a number of ways. For example, the result can be (1) chosen
from the result of one of the processes, (2) arbitrary, (3) the results of
both processes (e.g., when they access different fields in an array), or
(4) an inconsistency leading to an abort of the program. The ‘sync’
predicate postpones the decision how to react to clashes and allows
it to be specified on the case study level.

The ‘history’ specification is a generic specification with the type
of the included dynamic function left undefined. This allows one to
define generic simplification rules and reuse them for multiple spec-
ifications. In the Asbru specification the history construct is used for
the variable history, the Asbru state history, and the patient data his-
tory. The selectors in the history are basically time points, but inter-
vals have also been added to increase modularisation.

The most important data structures within the specification of As-
bru are the ‘asbru state’, ‘patient data’, and ‘patient’. The ‘asbru
state’ stores all configurations of Asbru plans, i.e., their current state
according to the semantics of the state-chart (cf. Figure 3). The ‘pa-
tient data’ stores all the known values about the patient. Note, that
there is a difference between the ‘patient’ data structure and ‘patient
data’ data structure, as the former contains information about the ac-
tual condition of the patient, while the latter represents the know/-
edge the medical staff has about the patient. The knowledge may be
outdated as the values in the patient may have changed.

The plan states known by Asbru are defined in the specification
‘plan-state-basic’, which is enriched by ‘plan-state’ to included ad-
ditional concepts to summarise some of the plan states, e.g., ‘termi-
nated’ summarises the states ‘completed’, ‘rejected’, and ‘aborted’.
The synchronisation between plans is specified in ‘plan-com’, which
gathers the signals that may be sent from a super-plan to its respec-

asbru-def = mk-asbru-def
(. filter : asbru-condition;
. .setup : asbru-condition;
. .suspend : asbru-condition;
. .reactivate : asbru-condition;
. .complete : asbru-condition;
. .abort : asbru-condition;
. .type : plan-type;
. .retry : bool;
. .subplans : string-list;
. .wait-for : wait-for;
..opt-wf : bool;

Figure 14. Syntax of Asbru plans using ‘mk-asbru-def”.

tive sub-plans. The signals are represented in internal variables to
shield them from the environment which simplifies the sequents and
their proofs as environmental non-interference does not have to be
specified separately.

The interface to the Asbru specification is an algebraic type ‘asbru-
def” in KIV, which simply defines a structure of the form in Fig-
ure 14. Each Asbru plan is transformed into KIV using the algebraic
function ‘mk-asbru-def” by filling in the values used by the Asbru
plan for its parameters.

Appendix B - Symbolic execution of Asbru

This appendix gives a bit more details about reasoning about Asbru
plans in KIV. More details about the symbolic execution is described
in the Protocure deliverable [35] and technical report [36].

The proof method in KIV is based on a sequent calculus with rules
of the form:

'+ A I'nkEA
'-A

Rules are applied bottom-up. Rule name refines a given conclusion
' A with n premisses I'; = A;. Furthermore, KIV uses rewrite
rules to rewrite sub-formulas, which are of the form

¢ =,

to replace a formula ¢ by an equivalent formula ¢ anywhere within
a given sequent.

The idea of symbolic execution of arbitrary temporal formulas
(e.g., Asbru plans) is to normalise the temporal formulas to the form
T A o ¢, which separates the possible first transitions from the tem-
poral formulas describing the system in the next state. The general
pattern of the normal form is given by

n
name.

name :

To A last Vv \/ T.L_I(HX'L-T'L Ao i),

with X; static variables occurring both in transition 7; and system ¢;
to capture the link between these formulas. The operator last is in-
cluded as the system may also terminate. The rules in KIV to rewrite
arbitrary temporal formulas to normal form are described in [1].

After normalisation, the sequent can be rewritten using the rules
dis [and ex / to eliminate disjunction and quantification.

o TFA ¢, TFA é[*0/x], TFA
oV, THA 3X.¢,TH A

where X is a fresh static variable with respect to the variables in
free(¢)\{ X }Ufree(T", A). For the remaining premises

disl exl

To ANlast T, Ao -

the two rules /st and s#p can be applied

T[N) 4 ar an] T[X0X2A)y s an), st
T, last - T,00F p

where X, X1, X2 are fresh with respect to free(r, ¢). Note that rule
Ist deals with the situation when execution terminates and all free
dynamic variables A - no matter if they are unprimed, primed, or
double primed - are replaced by fresh static variable X. The result is
a formula in pure predicate logic with static variables only, which can
be proven with standard first-order reasoning. The rule s#p advances
the trace one step. The values of the dynamic variables A and A’ in
the old state are stored in fresh static variables 1 and X». Double
primed variables are unprimed variables in the next state. Finally, the
leading next operators are discarded and the proof method continues
with the execution of ¢;.

Ist

VVSS 2007 177

VVSS 2007 - Verification and Validation of Software Systems Symposium

Table 2. Notation

Temporal Logic Operators and Statements (Sections 5 and 6)

O, O @, 00,0 @, last

OzzuN®
&

()
SU
BG

QI
T=,T

See Table 1

Background knowledge

Treatment

Patient group

Medical intentions

Medical guideline

Holds if and only if drug x is administered at that point in time
Sulfonylurea drug

Biguanide drug

Quetelet index

Treatment 7" is at least as preferred as treatment 7'

Good, (T, P), Goody, (M, P) | Treatment T, respectively, medical guideline M, is in accordance with good practice medicine for

patient P and criteria ¢

Asbru (Sections 4 and 6.2)

consider, activate

considered, possible, activated, suspended, aborted, completed | Plan states
filter, setup, complete, abort Conditions controlling execution

Synchronizing signals

Specification in KIV (Sections 7 and 8)

Vs, Vd
o
Vg, Vq

Knowledge(pre, post)

Tick

A static, respectively, dynamic variable, which has a constant, respectively changing, interpretation on each time
point

v}, is the value of v after a system transition, v is the value of v/; after the environment transition, i.e., the value
of vg in the next state

For patient data structures pre and post, with pre denoting the current state and post the next state of the patient,
the predicate Knowledge defines the relation that must hold between pre and post

The value of variable v in algebraic sequence s

Algebraic sequence s, where v is updated with value ¢

The internal state of the Asbru program

A macro-step in the asbru execution

Appendix C - Notation

Table 2 provides a summary of the notation used in this paper.

178 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Perl Scripts and Monkeys: Open Source
Code Quality Checking

Adriaan de Groot*

Abstract

The tools available for checking code quality — in the broadest sense
of the word, including aspects of all of the artifacts that come out of
an Open Source development project — are fragmented and are often
applied in an uncoordinated fashion. This paper shows one collection
of tools that is applied in a consistent and coordinated fashion to the
artifacts of the KDE software project. These tools do not reach the level
of sophistication of static analysis which is available in an academic set-
ting. On the other hand, they are applied to millions of lines of source
code daily and produce information that is one factor in guiding the
development work for this Open Source project. Future expansions of
the quality checking tools will include more sophisticated checking such
as static analysis, when such tools are available under Open Source li-
censes and are wrapped up for use within the framework.

1 Research Context

The collection of metrics on Open Source software is increasingly popu-
lar as a research topic. Metrics related to defect density, overall quality,
project quality, contributor behavior and communication are now research
topics for a variety of European research projects [16, 9, 8]. Not only is the
development process easy to study in Open Source projects due to the trans-
parency of that process — most of what happens in an Open Source project
happens in plain sight — but the artifacts of the process, like source code
repositories, mailing list archives and bug databases are also available.

The author is involved in two research projects which examine the qual-
ity of Open Source projects, although the purpose of such examination dif-
fers wildly:

e The E*QS3 project[6] aims to create a quality of service standard for
Open Source software service provider. While there is a lot of litera-
ture about the topic “development processes” in general, there is very

*LaQuSo, University of Nijmegen. Partially supported by IST project SQO-0SS, project num-
ber 033331.

VVSS 2007

179

VVSS 2007 - Verification and Validation of Software Systems Symposium

little about Open Source development processes and their impact on
software quality.

The E*OS? standard is supposed to become a metric to measure the
quality and reliability of Open Source solution providers in the SMB
market, and thereby strengthening their positions with regards to big-
ger service partners in the market.

The E*OS? project looks at different aspects of the quality of a deliv-
ered service, with en emphasis on processes rather than projects. Af-
ter all, most projects involving Open Source products really are about
integrating Open Source components into existing software stacks.

* The SQO-0OSS [16] project aims at finding and implementing quality
metrics that can be used (for instance within EOS?) in quality evalua-
tion: using the public data available on projects to find out about the
quality of an Open Source codebase.

Data that can be used for that are for example mailinglist archives to
extract sociological data, the sourcecode itself to extract data such as
number of lines of code, programming languages used — generally all
kinds of data that can be gathered by analysing the data available.

Data- and text mining will be used to extract all kinds of quality-related
information. This information will be analysed and used to improve the
quality of the product to close the feedback loop. The long-term goal
of the SQO-0OSS project is creating tools that feed the data gathered
back into the development cycle. One can think of a plugin for a de-
velopment environment that provides near-realtime information about
the impact on quality a commit has.

The broad range of existing research projects shows that the quality of
Open Source projects is a popular topic today. The projects financed by the
European Union intend to produce Open Source tools and platforms to do
the evaluation; measuring quality using Open Source tools will be all the
easier when these projects have run their course.

2 Development Context

Quality checking is an essential part of software development. No software
engineering text would be complete without a chapter on testing, unit test-
ing, norms, procedures, source control and quality assurance. The CMM
[2] and OSMM [11] software development maturity models include explicit
examinations of the quality checking part of a given development project.
Oddly enough, quality assurance and coding guidelines are not always
part of Open Source projects. Establishing such procedures and norms is

180 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

easily forgotten in the early stages of such projects, and imposing them
afterwards is quite difficult. Naturally there are projects such as Mozilla
and Apache which have stringent norms; these are the exception rather
than the norm.

In a large project (some millions of lines of source code) the imposition
of coding styles a posteriori is further confounded by the sheer size of the
task. Just finding all of the problems is a vast task. For this reason, tools
are needed. Such tools should spot problems in the source code and other
artifacts of the project that indicate quality problems. Those problems may
be real bugs, maintainence hazards, or sub-optimal code.

The research metrics on software (project) quality described in the previ-
ous section are of a fairly high level of abstraction. The aggregate numbers
do not report specific defects to the developers of a project. If the quality of
a given project is negatively affected by some particular construction (bad
code, for instance) then the most valuable thing that a metric-calculating
tool can do for the project is report which construction it is. The more
specific the report is, the more easily developer effort can be focused on re-
pairing the defects. This suggests that the metrics tools should — in order
to improve overall quality — report results in an expansive manner to the
developers. The SQO-0OSS project intends to do so.

In the KDE praoject [10], which has existed since 1996 without any strict
coding style or explicit quality assurance, the introduction of automated
quality checking tools with little sophistication (hence the “monkeys” in the
title of this paper) has improved the quality assurance situation somewhat.
The improvement comes from various sources:

e The use of buildbots (systems that continuously build the software),
dashboards (display systems for any errors from the buildbot) and
build farms (large coordinated collections of servers for compilation)
mean that the source code is exercised far more in different configu-
rations and the results fed back to the developers

* Increasing interest in unit tests. Unfortunately many of the unit tests
must be created manually, which is a daunting task. Additionally, many
parts of KDE are not the kind of programs that are easily unit-testable:
interactive graphical applications do not support much testing theory
(as opposed to, say, ADTs).

¢ The use of code checking tools to spot poor code or poor code con-
structions. The next section of this paper describes the system that
the KDE project uses for checking for bad code.

The use of any set of tools within a large distributed project depends on
the availability of the tools to everyone or the availability of the results of
those tools to everyone. For CPU intensive checks it is most convenient to
present the results on a website somewhere.

VVSS 2007

181

VVSS 2007 - Verification and Validation of Software Systems Symposium

< >

M~
M~ Website
Source
Code

\/

Plugins

Figure 1: A high-level view of the architecture of the EBN system. A source
checkout of the source code to be examined is examined by the top-level
scripts which then apply small scripts to the source code.

3 English Breakfast Network

The English Breakfast Network [18] is the popular name given to the KDE
[10] source code quality checking framework. This system is the prototype
implementation of a code quality checking framework. The system does the
following several times a day (as far as CPU use on the system it runs on
permits):

¢ Check the user documentation
¢ Check the API documentation
¢ Check the source code

Each of these parts of the English Breakfast Network system (EBN)
checks one part of the development artifacts against a collection of guide-
lines specific to that part. The checks are described in the following sec-
tions.

The system as a whole consists of Perl scripts which coordinate the ac-
tions of “monkeys,” the small plugin scripts which actually check a particu-
lar aspect. The top-level Perl scripts deal with collecting the output from the
tools and making a presentation on a website out of that output. Figure 1
shows a very high-level view of the architecture of the system.

3.1 User Documentation

Within the KDE project the documentation for end users — the manuals,
the reference guides — is written in XML docbook [19]. This format is one

182 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

that is easily machine parsable using XML processors and there are vari-
ous tool chains for converting the input docbook into pleasing output. The
KDE project produces both HTML and PDF output from the XML Docbook
sources. In order to do so automatically, the XML “source” must be valid at
all times; this validity is checked by both the EBN tools and the conversion
tools which are run regularly for production.

Besides the syntactical correctness of the text, the quality of the writ-
ing is important as well. Since this is end user documentation, it must be
readable by a large audience. This places some restrictions on the language
used. The XML Docbook is also used as a source for the (manual) transla-
tion of the user documentation, so the language must be clear and concise.
While doing full natural language processing is out of scope of the EBN,
there are some basic checks that can be done.

* Spell-checking. The actual language text can be extracted from the
XML Docbook source by removing XML tags and entities. The result-
ing stream of words can be given to a spell-checker. This yields a list
of misspellings.

* Grammar-checking. The guidelines for grammar are straightforward:
contractions in English such as “isn’t” and “don’t” are not allowed.
Looking for such errors is a straightforward pattern matching prob-
lem.

¢ Phrase-checking. There are a number of stock phrases used in the
KDE documentation which must be adhered to. There are also fixed
phrases for describing certain parts of the computer system that may
be incorrect in the variety of English (British, Canadian, American,
Australian) spoken by the person writing the documentation. Again,
this is a pattern matching problem.

¢ Entity-checking. While stock phrases must be written out in the text
for grammatical correctness (e.g. the phrase “double-click” may be
translated with a different noun declension in different places in the
document) there are also stock phrases which do not need special
treatment in any language. These include the names of the author,
names of applications,and some stock phrases that always appear as
complete sentences or paragraphs (e.g. the translation of the GNU
Free Documentation License). For such phrases, XML Docbook enti-
ties are defined and they should be used in the documentation itself,
since that saves the translators effort.

¢ Translation-checking. As the documentation is intended to be trans-
lated into sixty or more languages, there are some requirements im-
posed by the translation framework as well. There must be a marker in

VVSS 2007

183

VVSS 2007 - Verification and Validation of Software Systems Symposium

the XML Docbook source for the translators; this is replaced by credits
to the translators when they translate the document.

The tools used for the checking of user documentation are written in
Python and C; the tool for checking preferred forms, for instance, is a 68-line
glorified grep. The user documentation checks have caused some fixes to be
committed to the KDE source repository, but there has been no concerted
effort to reduce the number of defects reported.

3.2 API Documentation

The API documentation of a large library is of great importance to new de-
velopers who need to learn how to use the library. The basic libraries in the
KDE software project are nearly one million lines of C++ code, and repre-
sent several thousand classes of public interface. The number of classes is
a serious barrier to participation, which is why it is important that the API
be documented in a clear and consisten manner.

In the API documentation, we stress syntactical correctness over the
more language-oriented checks performed on the user documentation. This
has a practical reason: where the user documentation is written in a highly-
structured format (XML Docbook) the API documentation is free-form text
that is processed by the Doxygen[4] tool. This difference in formats means
that the most effective manner for processing the API documentation look-
ing for defects is to run the Doxygen tool on the sources, producing API
documentation and a log file of errors from Doxygen. These log files can
then be analyzed and warning and error messages from Doxygen may be
tallied.

This approach is very similar to that of a traditional “buildbot” or “dash-
board” for software development. In such setups, the source code is com-
piled on a continual basis and errors are reported to the development team.
Here, we simply use a different compiler — an API documentation compiler
— instead.

Parsing and beautifying the log files from Doxygen is left to a fairly large
perl script.

3.3 Code Checking

The source code of the KDE project — the actual C++ that is turned into
object code and run on users’ computers — is naturally that part of the code
that deserves the largest part of the attention to quality. Unfortunately,
actually examining the source code for defects is something that takes con-
siderable resources and research. Clasically, static analysis can point out a
large number of problems with bugs in the code; this requires syntactic and
semantic analysis of the code.

184 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

While tools such as the Stanford Checker [1] do static analysisl, most
of the static analysis tools are closed, proprietary (and often only usable on
non-Free platforms as well). There do not seem to be many Open Source
static checking tools that are widely deployed. As the tools are often the
product of a research project, they languish when the research project ends.
An illustration of this is Splint (IEEE Software, [7]) which seems to have
been last updated in 2004, despite showing considerable promise as an ex-
tensible analysis tool for C.

For KDE, the biggest hurdle in analysis is the language that the project
uses. C++ is not amenable to analysis; the syntax is difficult when all of the
corners of the language are used, including template metaprogramming;
the semantics are somewhat impenetrable, and even the available Open
Source C++ compilers have only recently begun to correctly support all of
the full language?. There do not seem to be readily available analysis tools
for C++ at all. Some frameworks or supporting libraries are available, such
as ELSA [5] and PUMA [12], but these do not yield a complete analysis tool.

In this light and considering the effort required to build such a tool, the
EBN instead implements tools which do no semantic analysis but which do
point to common inefficiencies and breaches of coding guidelines. The tool
implemented in KDE is called Krazy [17]. This searches — a glorified grep
again — for particular patterns that indicate coding problems. Examples of
the kinds of defects that Krazy checks for are:

e Use of C-isms in C++ code. This includes the C macro symbols TRUE
and FALSE where C++ has Boolean constants true and false.

¢ Inefficient use of datatypes. Passing large structures — typically ob-
jects of some class — by value is inefficient, and the KDE codebase has
a guideline to pass by const reference. Various common operations
such as adding a single character to a string can be done in multiple
ways, where some of those ways are much faster than others.

These coding checks are relatively simple and are done with perl scripts
that scan for defects. Other checks such as flagging the use of deprecated
C-library calls® might easily be implemented through grep.

The coding checks are inspired primarily by the way that core KDE de-
velopers would like the code to look; this consensus style is slowly enforced
on the codebase, and the Krazy tool flags deviations from the style. This
means that some of the Krazy checks are done on the uncompiled and un-
pre-processed source code so that they operate on the way the code looks
as it is edited. These more cosmetic checks include:

IThe Stanford Checker itself seems to have vanished into Coverity [3]. Open Source tools
for such analysis include Smatch [13] and Splint [15], but these are not widely used.

2The support for templates was expanded considerably between gcc 2 and gcc 4, for in-
stance.

3The function st rcpy for instance, as explained in [14].

VVSS 2007

185

VVSS 2007 - Verification and Validation of Software Systems Symposium

Tool Size Tool Size
147 contractions 178 copyright
167 doublequote chars 103 emptystrcompare
88 endswithnewline 219 explicit
178 license 130 nullstrassign

Table 1: Plugins for the Krazy code checker, with sizes (in lines of perl code).
The size of the plugin includes the copyright and documentation parts, so
the effective size is smaller by a constant.

¢ Correct copyright and license headers in every file.

¢ Correct spelling in comments.

+ Class methods may not have names starting with slot?.
¢ Camel-casing of names.

These cosmetic checks add to the consistency of the codebase, making it
easier for new developers to recognize the idioms of the code in any part of
the KDE source code.

The Krazy checks are all written as Perl scripts which are driven from
a central Perl script. The Krazy tools share with the user documentation
sanitizer that there is a defined interface which the tools must follow; this
part of the framework is therefore more extensible and flexible than the API
documentation checker. Table 1 shows a selection of the Krazy tools with
their program sizes.

4 Conclusion

The English Breakfast Network brings together tools which individually
have little sophistication. The tools are generally Perl scripts, cobbled to-
gether by monkeys. However, the cumulative effect of these tools — their
way of flagging errors and reporting them in a pleasant fashion — makes
the monkeys (the coders doing the work) fix the errors more quickly. Sev-
eral hundred commits in the KDE source code repository directly reference
the EBN as the reason for the commit.

By providing a framework which is purely plugin based and which ac-
cepts individual UNIX executables (i.e. it uses the traditional pipeline ap-
proach of processing and re-processing text output) the EBN is easily ex-
tensible and may in future be expanded by adding “real” static analysis
through the use of other Open Source tools.

4This is a name that reflects some implementation details of the code while adding no extra
information. The methods can be renamed without the slot prefix.

186 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

References

[1]

[2]

(9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

Stanford Checker. Extensible static analysis tools. http://metacomp.
stanford.edu/.

CMM. Capability maturity model for software. http://www.sei.cmu.
edu/cmm/.

Coverity. Static analysis of ¢ and c++ code. http://www.coverity.
com/.

Doxygen. Api documentation processor for c++. http://www.
doxygen.org/.

Elsa. Elkhound (glr parser generator) based c++ parser. http://www.
cs.berkeley.edu/~smcpeak/elkhound/.

EOS3. European open source service standard. http://www.eos3.
org/.

David Evans and David Larochelle. Improving security using extensible
lightweight static analysis. IEEE Software, 19(1):42-51, /2002.

FLOSSMetrics. Floss projects development metrics. http://
flossmetrics.org/.

FLOSSmole. collaborative collection and analysis of open source
project data. http://ossmole.sourceforge.net/.

KDE. Project home page. http://www.kde.org/.

OSMM. Open source maturity model. http://www.navicasoft.com/
pages/osmm.htm.

PUMA. Pure manipulator (a c++ parser). http://ivs.cs.
uni-magdeburg.de/~puma/home-eng.html .
Smatch!!! Linux kernel c¢ source checker. http://smatch.

sourceforge.net/.

Diomidis Spinellis. Code Quality: The Open Source Perspective.
Addison-Wesley, Boston, MA, 2006.

Splint. Annotation-assisted ;oghtweight static checking”. http://www.
splint.org/.

SQO-0SS. Software quality observatory for open source software.
http://www.sqo-o0ss.eu/.

VVSS 2007

187

VVSS 2007 - Verification and Validation of Software Systems Symposium

[17] KDE Quality Measurement System. C++ code issues. http://www.
englishbreakfastnetwork.org/krazy/.

[18] KDE Quality Measurement System. Overview of statistics. http://
www.englishbreakfastnetwork.org/.

[19] Norman Walsh and Leonard Muellner. Xml docbook website. http:
//www.docbook.org/.

188 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Model-Driven Consistency Checking of Behavioural Specifications

Bas Graaf
Delft University of Technology
The Netherlands
b.s.graaf@tudelft.nl

Abstract

For the development of software intensive systems dif-
ferent types of behavioural specifications are used. Al-
though such specifications should be consistent with re-
spect to each other, this is not always the case in prac-
tice. Maintainability problems are the result. In this
paper we propose a technique for assessing the consis-
tency of two types behavioural specifications: scenar-
ios and state machines. The technique is based on the
generation of state machines from scenarios. We specify
the required mapping using model transformations. The
use of technologies related to the Model Driven Architec-
ture enables easy integration with widely adopted (UML)
tools. We applied our technique to assess the consistency
of the behavioural specifications for the embedded soft-
ware of copiers developed by Océ. Finally, we evaluate
the approach and discuss its generalisability and wider
applicability.

1. Introduction

System understanding is a prerequisite for modify-
ing a software intensive system [1]. As such the (typ-
ical) absence of up-to-date design documentation ham-
pers successful software maintenance and evolution. In
this paper we address this problem for the documenta-
tion of a system’s behaviour. We focus on ensuring the
consistency of two types of behavioural specifications:
interaction-based and state-based behavioural models.
The use of such specifications is illustrated by the de-
velopment process depicted in Figure 1. It is based on
the well-known V-model [2] and the starting point of our
research.

On the left branch of the “V’ analysis activities take
place. Based on Requirements, the high-level Architecture
is defined. This architecture identifies the main compo-
nents of the system and assigns responsibilities. In par-
allel requirements are made more concrete by Use cases

Arie van Deursen
Delft University of Technology and CWI
The Netherlands
arie.vandeursen @tudelft.nl

Inegrator

Inconsistencies

Figure 1. Typical development process

that specify typical interactions a user may have with the
system. One distinctive property of use cases is that the
system is considered to be a black box [3]. These use
cases are the first interaction-based behavioural models.

Based on the use cases a set of Scenarios is defined
that specifies the interactions of the system’s compo-
nents in terms of exchanged messages. Typically, ev-
ery use case results in one (normal behaviour) or more
(including exceptional behaviour) scenarios. These sce-
narios are also interaction-based behavioural models, but
now the system is considered to be a white-box; they
show the interactions between the components defined
by the architecture.

Eventually, the architecture’s components need to
be implemented. This requires a complete behavioural
specification. Scenarios are, however, not intended to
provide such a specification for an individual compo-
nent. Not only is the specification of a component’s be-
haviour scattered across multiple scenarios, they also are
usually only defined for the components’ most typical
and important behaviours. Therefore, a complete state-
based behavioural model, a State machine, is created for
each component based on the set of scenarios. This state

VVSS 2007 189

VVSS 2007 - Verification and Validation of Software Systems Symposium

machine is used to implement or generate the compo-
nent. Finally, on the right-hand side of the ‘V’, the dif-
ferent components are integrated into a complete prod-
uct.

Such a software development process, where state-
based component design is based on the specification of
a set of use cases, is advocated by many component-
based, object-oriented, and real-time software develop-
ment methods [4-7]. As such, many software devel-
opment organisations deploy similar development pro-
cesses.

As software evolves it is often the case that changes
are made to ‘downstream’ software development arte-
facts without propagating the changes to the correspond-
ing ‘upstream’ software development artefacts. This can
be the result of change requests, but also of design flaws
that are only discovered on a more detailed level. Even
more inconsistencies are simply introduced by misinter-
pretations of ‘upstream’ development artefacts.

In this paper we focus on inconsistencies be-
tween interaction-based behavioural models and state-
based behavioural models. Inconsistencies between
these models can be particularly important because
they decompose behaviour along different dimensions.
Interaction-based models are decomposed according to
the different use cases, that is, they are requirements-
driven. State-based models, on the other hand, are de-
composed according to the different components that
were identified during architecture design, that is, they
are architecture-driven. This makes it hard to discover
inconsistencies [8, 9]. Furthermore, when different de-
velopment groups are responsible for the development of
the different architectural components, and these groups
individually resolve inconsistencies in different ways,
this may obviously lead to problems during integration
and maintenance.

In industrial practice behavioural models are often
specified as UML models. Moreover, tools are available
that, based on UML, are capable of generating source
code from such models. Considering such a model-
based infrastructure, we believe it makes sense to view
consistency checking of behavioural specifications as a
model transformation problem. In this paper we inves-
tigate what the advantages and disadvantages are of us-
ing model transformation technology to discover incon-
sistencies between interaction-based and state-based be-
havioural models. Furthermore, we aim to minimise the
impact of our approach on existing development pro-
cesses, for instance, in terms of the languages and tools
used.

In Section 2 we introduce the industrial case that
motivated this paper: an embedded software control
component developed by Océ, a large copier manufac-

190 VVSS 2007

turer. At Océ an important copier subsystem is devel-
oped using a process corresponding to Figure 1. More-
over, the components for this subsystem are generated
from state machine models. As such, debugging, for in-
stance, is performed on the level of state machines. As
a result inconsistencies between scenarios and state ma-
chines become even more likely, making it a concern for
Océ. Other work on the relation between scenarios and
state machines is discussed in Section 3. The enabling
technologies for our approach, as well as, the relevant
part of the underlying UML specification, and our pro-
cess for consistency checking are discussed in Section 4.
In Section 5 we customise an existing mapping between
scenarios and state machines based on Whittle and Schu-
mann [10] for specification as model transformations and
consistency checking.

Using our approach we identified several inconsis-
tencies in the behavioural specifications of an industrial
system that could lead to integration and maintenance
problems. These are discussed in Section 7. Finally, we
reflect on our approach in Section 8 and conclude with
an overview of the contributions of this paper and oppor-
tunities for future work in Section 9.

2. Running Example

Our original motivation for investigating the consis-
tency between interaction- and state-based behavioural
models comes from a product-line architecture for em-
bedded software in copiers developed by Océ. We use
this architecture as our running example and case study,
and for that reason briefly explain it first.

At Océ a reference architecture for copier engines
is developed. In a copier both the scanning and printing
subsystems are referred to as an engine. The reference
architecture describes an abstract engine that can be in-
stantiated for (potentially) any Océ copier.

As a running example we use one of the reference
architecture’s components: the Engine Status Manager
(EsMm). This component is responsible for handling sta-
tus requests and status updates in the engine. ESM and
the other main components of the reference architecture
are depicted in Figure 2.

In a copier engine EsM communicates with two
types of components: status control Clients, and Functions.
Clients request engine state transitions. Requests by the
external status control client (Controller) are translated by
the EAl (Engine Adapter Interface) component. To per-
form status requests of Clients, Esm controls the status of
individual Function components. Functions, in turn, recur-
sively control the status of their composing Functions.

For the development of ESM and other engine com-
ponents a process is used similar to the process outlined

VVSS 2007 - Verification and Validation of Software Systems Symposium

Copier Engine
)
I T
[Taecm [em

EAI - | ESM] F— Ewm

*

Conlroller}—

=

Figure 2. Architecture for copier engines

in Section 1. For this Océ relies on a model-driven ap-
proach based on UML [11]. Architects specify use case
realisations using UML sequence diagrams. Based on
these sequence diagrams, for every component a UML
statechart diagram is created. Using special tooling’,
the source code for the engine components (e.g., ESM)
is largely generated based on those statechart diagrams.
For Océ’s developers these statechart diagrams actually
are the implementation.

One of the reasons for introducing a (automated)
model-driven development approach was to overcome
consistency problems with respect to state machine mod-
els and source code [11]. By automatically generating
source code from state machines this problem is effec-
tively moved ‘upwards’ to the consistency between sce-
narios and state machines.

For EsM, each use case addresses a specific engine
state transition. A use case is accompanied by a UML
sequence diagram. As an example, consider the dia-
gram in Figure 6(a). It depicts the interaction that oc-
curs when a copier engine is requested to go to standby,
while it is running. At Océ these sequence diagrams
are purely used for communication purposes, rather than
input for automatic processing (e.g., model transforma-
tions, or code generation). Because of this, they are not
always complete and precise. Furthermore, proprietary
(non-UML) constructs are used. As an example, in these
sequence diagrams the lifeline of the ESM component is
decorated with the name of its (high-level) state at that
point of the interaction.

To ensure successful evolution and maintenance of
the reference architecture and the components it defines,
a means to assess the consistency of the involved be-
havioural specifications is essential. It is this challenge
we address in this paper.

'IBM Rational Rose RealTime - http://www.ibm.com/
software/awdtools/developer/technical/

3. Related Work

Several formal approaches have been proposed that
address problems similar to ours. Lam and Padget [12]
translate UML statecharts into 7w-calculus to determine
behavioural equivalence using bisimulation. Schifer
et al. [13] presents a tool that uses model checking to ver-
ify state machines against collaboration diagrams. The
use of such tools and approaches requires complete,
precise and integrated interaction- and state-based be-
havioural models. This implies, for instance, that send-
ing and reception of messages in scenarios are explic-
itly linked to events and effects in state machines. In
our case, for the sequence diagrams, this is problematic.
They are created early in the development process and
not intended to be complete or precise.

To take this into account, we generate a state ma-
chine from a set of input scenarios, that, subsequently,
is compared to the state machine that was created by the
developers.

Many approaches have been defined for synthesis of
state-based models from scenario-based models. Amyot
and Eberlein [8], and Liang et al. [14] both evaluate over
twenty of them. Evaluation criteria include languages,
means to define scenario relationships and state model
type. Our industrial case gives us the requirements with
respect to these criteria for a synthesis approach.

Instead of using a more powerful scenario language
such as live sequence charts [15], we limit ourselves to
UML sequence diagrams augmented with decorations,
as dictated by our industrial case study. The decora-
tions with state information can be interpreted as condi-
tions from which inter-scenario relationships can be de-
rived. Finally, with respect to state model type, we con-
sider approaches that result in state models for individual
components (instead of global state models). Consider-
ing Liang et al. [14] one approach best meets these re-
quirements [10].

Whittle and Schumann [10] present an algorithm to
map UML sequence diagrams to UML statecharts. In this
mapping the messages in a scenario are first annotated
with pre- and postconditions on state variables, referred
to as a domain theory. The mapping is based on the as-
sumption that a message only affects a state variable if
its pre- or postcondition explicitly specifies it does; the
domain theory does not need to be complete. Thus, this
so-called frame axiom , together with the pre- and post-
conditions, results in a pair of state vectors for each mes-
sage (before and after). For every scenario it is checked
whether it (the message ordering) is consistent with the
domain theory. If not, either one can be reconsidered.
Then, for each scenario a ‘flat’ state machine is gener-
ated for every component. Messages towards a compo-

VVSS 2007 191

VVSS 2007 - Verification and Validation of Software Systems Symposium

nent result in an event that triggers a transition; messages
directed away from a component result in an action that
is executed upon a transition. Loops are identified by de-
tecting states that have unifiable state vectors. Two states
vectors are unifiable if they do not specify different val-
ues for the same state variable. Subsequently, the ‘flat’
state machines generated for a component from differ-
ent scenarios are merged by merging similar states. Two
state are similar if their state vector is identical and they
have at least one incoming transition with the same label.
Hierarchy is added to the resulting statecharts by a user
provided partitioning and (partial) ordering of the state
variables.

Most work in this area focusses on the synthesis al-
gorithm, whereas the integration in industrial practice re-
mains implicit. In fact, many of the approaches are not
supported by a tool or validated in industrial practice.
Their application in practice only becomes realistic when
they integrate with existing tools and standards used in
industry. Therefore, we focus in this paper on UML se-
quence diagrams as a notation for scenarios, and UML
state machines.

4. Model-Driven Consistency Checking

In this section we outline our approach for consis-
tency checking of behavioural specifications, but, first,
we introduce the technologies that enable our model-
driven approach and the underlying structure of the in-
volved behavioural models.

4.1. Enabling Technologies

Our approach takes advantage of the standards that
are widely used in industry, such as UML and XMI (XML
Metadata Interchange), enabling easy integration with
the tools used in industrial practice. XMI provides a
means to serialise UML models to be manipulated, for
instance, using XSLT (Extensible Stylesheet Language
Transformations). However, the XMI format is very ver-
bose, making it a tedious and error prone task to develop
such transformations [16].

OMG’s Model Driven Architecture (MDA) offers,
among others, a solution to this problem. MDA is OMG’s
incarnation of model-driven engineering (MDE). With
MDE, software development largely consists of a series
of model transformations mapping a source to a target
model. Essential to MDE are models, their associated
metamodels, and model transformations. In the case of
MDA, metamodels are defined using the MetaObject Fa-
cility (MOF). The UML metamodel is only one example
of such metamodels. Finally, model transformation lan-
guages are used to define transformations.

192 VVSS 2007

We used the Atlas Transformation Language
(ATL) [17] to specify and implement the mapping be-
tween scenarios and state machines. ATL is used to de-
velop model transformations that are executed by a trans-
formation engine. In ATL, transformations are defined
in transformation modules that consist of transformation
rules and helper operations. The transformation rules
match model elements in a source model and create ele-
ments in a target model. To this end the rules define con-
straints on metamodel elements in a syntax similar to that
of the Object Constraint Language (OCL). A helper is
defined in the context of a metamodel element, to which
it effectively adds a feature. Helpers can be used in rules,
and optionally take parameters.

The ATL transformation engine can be used with
XMI serialisations of models and metamodels defined
using the MOF. For the sequence diagrams and state ma-
chines in this paper we used the MOF-UML metamodel
available from the OMG [18]. To create the associated
models, we use a UML modelling tool supporting XMI
export.

Once the source model and metamodel, target meta-
model, and transformation module are defined and lo-
cated, the ATL transformation engine generates the tar-
get model in its serialised form, which, in turn, can be
imported in a UML modelling tool for visualisation, or
serve as source model for another model transformation.

4.2. Behavioural Modelling

For the creation of interaction-based and state-based
behavioural models we use UML sequence and statechart
diagrams. The underlying structure of these diagrams
is described by the Collaborations and State Machines
subpackages of the UML metamodel. Because our trans-
formation rules are defined on the metamodel level, we
introduce them briefly. Although we discuss only sim-
plified versions of these packages, the implementation of
our technique and our case study are based on the com-
plete UML metamodel (version 1.4 [18]).

In general the UML specification [18] allows every
model element to be associated with a set of constraints.
We use this to add pre- and postcondition to Messages
and state invariants to states. To distinguish between
preconditions, postconditions, and other constraints that
might be used in the model we use stereotypes.

Source: Collaborations The Collaboration package
and some other UML elements are depicted in Figure 3.
In the context of a Collaboration the communication pat-
terns performed by Objects are represented by a set of
Messages that is partially ordered by the predecessor re-
lation. For each message sender and receiver Objects are

VVSS 2007 - Verification and Validation of Software Systems Symposium

+ operation

CallAction Operation

+ operations

—actualArgument:int

dispatchAction
+ sender_+ classifier

Message I:l Object

Class

. +isActive:Boolean
+ receiver

* type
+ ownedElement . I+ attributes

Figure 3. Collaborations (simplified)

predecessor

Collaboration

StateMachine | 0..1

-context:Class

StateVertex _’—0..% Incoming

+ tgrget

+ transitions

Transition

0..1 trigger
CallEvent

.1V effect
CallAction

+ outgoing
+ spurce B

A t top

+[subvertex

o

Pseudostate

+kind:PseudostateKind

+script:ActionExpression

+ container

Figure 4. State machines

specified. As such, a Collaboration can be seen as the spec-
ification of one or more scenarios. The cause of a Mes-
sage is a CallAction (dispatchAction) that is associated with
an Operation. In turn, this Operation is part of the Class
that is the classifier of the Object that receives the Message.
Finally, a Class optionally contains Attributes that have a

type.

Target: State Machines Using the (target) metamodel
in Figure 4, UML state machines can be constructed that
model behaviour as a traversal of a graph of state nodes
interconnected by transition arcs.

A state node, or StateVertex, is the target or source of
any number of Transitions and can be of different types.
A State represents a situation in which some invariants
(over state variables) hold. The metamodel defines the
following types of States. A CompositeState contains
(owns) a number of sub-states (subvertex). A SimpleState
is a State without any sub-states.

Next to state nodes that describe a distinct situation,
the metamodel also offers a type of StateVertex to models
transient nodes: Pseudostate. Only one Pseudostate type
(PseudostateKind) is relevant for the state models in this
paper: initial Pseudostate. An initial Pseudostates is the
default node of a CompositeState. It only has one outgoing
Transition leading to the default State of a CompositeState.

Nodes in a state machine are connected by Transi-
tions that model the transition from one State (source) to
another (target). A Transition is fired by a CallEvent (trigger).

The effect of a Transition specifies an CallAction to be exe-
cuted upon its firing. Finally, a StateMachine is defined
in the context of a Class and consists of a set of Transitions
and one top State that is a CompositeState.

4.3. Consistency Checking Approach

As said, the set of scenarios is not expected to be
complete or precise. For instance, when comparing, the
set of scenarios and the state machines created by the de-
velopers it is unclear whether a scenario specifies univer-
sal or existential behaviour [15]. However, if we are to
generate a state machine for a set of scenarios we have
to take a position with respect to the meaning of those
scenarios. The generation of scenarios is based on the
approach in Whittle and Schumann [10]. For this, we
interpret Océ’s scenarios in principle as universal. This
means that if the start condition of a scenario is satis-
fied the system behaves exactly as specified by that sce-
nario. We consider the start condition of a scenario to
be the first condition specified as decoration and occur-
rence of the first message. As such, the scenario in Fig-
ure 6(a) specifies exactly what happens when Esm re-
ceives the message m_SetUnit(standby) while it is in state
running. However, when during execution of a scenario
the start condition of another scenario is satisfied, execu-
tion continues according to that scenario. For instance,
in the case of Figure 6(a), while Esm is stopping, exe-
cution could continue according to the scenario that per-
forms the request of ESM going back to running while it
was stopping.

In our approach we use model transformations for
the generation of a state machine from a set of scenarios.
The specification of those transformations is discussed
in Section 5. To include all required information, the
source model has to comply to a set of modelling con-
ventions. When considering an arbitrary industrial case
(e.g., Océ’s reference architecture), the models used typ-
ically do not comply to those conventions. Therefore, we
first require models to be normalised. This is discussed
in Section 6.

Finally, the generated state machine is compared to
the state machine that was already developed based on
the same set of scenarios, the implementation state ma-
chine. Because the sequence diagrams are created early
on in the development process, it is not expected that
they are exactly covered by the state machines. There-
fore, mismatches are expected between the generated
and implementation state machine with respect to tran-
sition labels and order. This makes automating the com-
parison step particularly difficult. For now we manu-
ally compare the generated and implementation state ma-
chine and mainly focus on inconsistencies with respect

VVSS 2007 193

VVSS 2007 - Verification and Validation of Software Systems Symposium

to top-level states and transitions.

As such, we use three steps to check to consistency
of behavioural specifications: normalise, transform, and
compare. In the current approach only the transforma-
tion is automatic. Furthermore, the normalisation step is
context-specific as it depends on the type of input mod-
els.

5. Generating State Machines

Given the source and target metamodels discussed
in the previous section, we now describe how to instan-
tiate source models, as well as the mapping between
source and target models, expressed as ATL model trans-
formations. We published all (executable) ATL transfor-
mations that we implemented, as well as (normalised)
source and target (meta)models for the ATM example of
Whittle and Schumann [10] in the ATL Transformations
Zoo [19].

5.1. Instantiating a Source Model

Our approach based on model transformations and
UML requires that all necessary information is encoded
in a UML model. Whittle and Schumann [10] requires
the following information for its mapping: scenarios, a
domain theory, a set of state variables, and an ordered
partition of that set.

The set of scenarios is specified as sequence dia-
grams. The types of the interacting Objects (compo-
nents) are specified in a class model. The Class that cor-
responds to the component of interest is marked active.
All Operations involved in the relevant scenarios are also
specified. The pre- and postconditions of a domain the-
ory are applied to these Operations as stereotyped Con-
straints. These Constraints have the form state variable

= value. We currently do not allow pre- and postcon-
ditions in the domain theory that refer to formal param-
eters, as this would require interpretation of these con-
ditions. If necessary, such constraints can be added di-
rectly to the Messages that specify an actual parameter
in the sequence diagrams.

The active Class contains an Attribute for each state
variable. The partition of state variables used for intro-
ducing hierarchy is encoded by setting the visibility of
all state variables included in the partition to public and
the others to private. Finally, the order of the state vari-
able Attributes on the Class represents the prioritisation
of state variables (the top one having the highest prior-

ity).

194 VVSS 2007

5.2. Model Transformations

Our transformations generate a state machine for the
component that is represented by the active Class in the
source model. A scenario specifies one particular path
through the state machine for that component, on which
it proceeds to the next state upon each communication.
We refer to the state machine that only describes that
path as a ‘flat’ state machine.

We tailored the approach in Whittle and Schumann
[10] (see Sec. 3) to account for the type of input in the
Océ case, our model-driven strategy, and for our goal:
consistency checking. For this reason we introduce less
abstractions. This makes detecting and resolving incon-
sistencies more convenient. Our mapping consists of
four separate steps: 1) apply domain theory, 2) gener-
ate flat state machines, 3) merge flat state machines, and
4) introduce hierarchy to merged state machine.

We formalised our mapping from scenarios to state
machines as four ATL model transformations that corre-
spond to the four steps of our mapping. Every consecu-
tive transformation uses the target model of the previous
transformation as its source model.

Together, these transformations are specified in less
than 700 lines of ATL code. Before these transforma-
tions can be applied to the Océ case, a normalisation step
is required, which is discussed in Section 6.

Apply Domain Theory This step is specific to our ap-
proach. Unlike Whittle and Schumann [10], but in ac-
cordance with the UML, we distinguish between pre-
and postconditions on the Operations of a Class and on
the CallActions associated with Messages in a sequence
diagram. This has two advantages. First, it allows for
simple pre- and postconditions to be specified only once
(i.e., on the Operations of a Class). Second, it circum-
vents the need to evaluate conditions that refer to formal
parameters of an Operation.

When we apply the domain theory to a set of sce-
narios, we simply attach the pre- and postconditions on
the Operations of a Class to corresponding Messages to
or from instances of that Class.

The ATL specification of this mapping is straight-
forward. The Constraints on an Operation are copied
to Messages, via their associated CallAction. Listing 1
specifies a rule that matches all CallActions. For each
it generates a CallAction, ca_out, in the target model
and initialises its constraint feature with the constraints
applied to the Operation associated with the matching
CallAction. Note that the constraints are added to the
constraints already applied to the matched CallAction
(using the union operation).

The result is a set of sequence diagrams in which

VVSS 2007 - Verification and Validation of Software Systems Symposium

rule ConstrainedCallAction {
from ca_in:UML!CallAction
to ca_out:UML!CallAction (
operation <- ca_in.operation,
constraint <- ca_in.operation.constraint->union (
ca_in.constraint))

}

Listing 1. Applying constraints to CallActions

Constraints are applied to Messages based on the pre-
and postconditions of a domain theory on Operations.
See Figure 6(b) for an example.

Sequence Diagrams — Flat State Machines The
next step of our approach is to generate a flat state ma-
chine for every scenario in which the component of in-
terest plays a role. In this step we map every commu-
nication to a Transition and a target State. The source
State of this transition is the target State corresponding
to the previous communication of the component in the
scenario. As in the approach in Whittle and Schumann
[10]; if the involved communication was the receipt of
a Message, we say the Transition was triggered by that
Message. If the involved communication was the send-
ing of a Message, we say the effect of the Transition was
sending that Message.

Based on the pre- and postconditions applied to the
Messages in the scenarios by the previous step, we cal-
culate the state vector for each State. For this we ‘prop-
agate’ pre- and postconditions through the sequence di-
agram by application of the frame axiom. The result is a
set of flat StateMachines, in which state vectors are ap-
plied to States as a set of Constraints over state variables.

As an example, the effectTransition rule in List-
ing 2 matches all Messages in the source model sent by
the component of interest. The target pattern specifies
that for each such Message (m) among others, a Transi-
tion (t_efrect) and a SimpleState (trgt) are created in
the target model. The effect and target features of the
Transition element are simply initialised to the CallAc-
tion (ca) and SimpleState created in the same rule. The
source of the Transition is initialised to the target of the
Transition that correspond to the previous Message (not
shown).

The constraint feature of the generated SimpleState
element is initialised to the set of constraints (state in-
variants) that hold after the Message that matched the
rule. This is determined by the statevector helper. For
this it applies the frame axiom (specified in the frame
helper) subsequently to the postconditions of the current
Message (' posts’), the preconditions of the current Mes-
sage (pres), and the state vector after the previous Mes-
sage (statevectorprev). As such conditions propagate in

rule EffectTransition {
from m:UML!Message (m.sender.isActive)
to t_effect: UML!Transition/(
effect <- ca,
target <- trgt,
source <— ...),
ae:UML!ActionExpression (...),
ca:UML!CallAction (...),
trgt:UML!SimpleState (
name <- ae.body+t’_sent’,
constraint <- m.stateVector)

}

helper context UML!Message def: stateVector : Set (UML
!Constraint) =
let stateVectorPrev:Set (UML!Constraint) = ... in
let pres:Set (UML!Constraint) = ... in
let posts:Set (UML!Constraint) = ... in

let sv:Set (UML!Constraint) =
thisModule. frame (stateVectorPrev,thisModule. frame (
pres,posts)) in
if thisModule.unifiable (stateVectorPrev,pres) then
sv
else
sv.debug (' INCONSISTENCY DETECTED!’)
endif
i
helper def: frame (frame:Set (UML!Constraint), framed:
Set (UML!Constraint)): Set (UML!Constraint) =
frame->iterate (c; cs:Set (UML!Constraint)=framed |
if cs->exists(e|e.stateVariable=c.stateVariable)
then
cs
else
cs—->including(c)
endif)

Listing 2. Message —effect Transition

“forward’ direction (i.e., downwards in a sequence dia-
gram).

Additionally the statevector helper notifies the user
if an inconsistency is detected between the state vec-
tor after the previous Message and the preconditions for
the current Message (these sets of Constraints should be
unifiable).

The trame helper simply iterates over the Constraints
in the frame argument and adds every constraint involv-
ing a state variable that is not referred to in framed to that
set.

Unlike Whittle and Schumann [10] we do not apply
unification of state vectors at this stage. The declarative
style of our ATL specifications results in an infinite recur-
sion: to complete a state vector we need to know whether
it can be unified with other state vectors. To determine
this we have to consider state vectors in ‘forward’ as well
as in ‘backward’ direction. However, the state vectors
in ‘forward’ direction, in turn, consider state vectors in
‘backward’ direction because of the frame axiom strat-
egy.

Application of this step yields a set of flat state ma-
chines for a component. As an example, consider Fig-
ure 5. It depicts the flat state machine corresponding to
the sequence diagram in Figure 6(b). Note that the ex-

VVSS 2007 195

VVSS 2007 - Verification and Validation of Software Systems Symposium

.m rm_SetUnil{standbv}_recewecﬁ fesm. state=stopping]
T —{ - . Pping
:m_SctUnit{srandby] \L!m_UnilStalus(stDpplng
. (m_UnnSratus(smppmg)_scnﬂ N
1 .) 77 {esm.state=stopping}
b /m_Stop
[,
{esm.state=running} N
- - 4 {esm.state=stopping}

m_StopDone
~{ {esm.state=standby}
fm_UnitStatus(standby)
m_UnitStatus(standby)_sent {esm.state=standby}
C >~

Figure 5. Flat state machine

ample only involves a single state variable and that the
names of the States are derived from the particular Mes-
sage that was sent or received by the component.

Merging Flat State Machines In this step we merge
the flat state machines. We merge every set of states with
unifiable state vectors and identical incoming transition
(in terms of effect or trigger) into a single state.

Merging of states is done by the rule and helpers
in Listing 3. The rule matches all states selected by
the mergedstates helper that iteratively selects one Sim-
pleState from every group of equal SimpleStates in the
source model. A call to the mergeabie helper results in
true when 1) the receiving StateVertex and the param-
eter StateVertex (s) are unifiable, and 2) have the same
name (i.e., the incoming transitions had the same trigger
or effect). The unifianie helper evaluates to true for two
sets of Constraints that do not specify different values for
the same state variable, meaning that the constraint that
refers to a particular state variable that is also referred to
in the other set, is actually included in that set.

Transitions are matched by another rule (not
shown). To discard redundant Transitions, it only
matches one Transition of the Transitions between any
two sets of SimpleStates that are merged.

Introducing Hierarchy As suggested by Whittle and
Schumann [10] we use an ordered partition of the set
of state variables to add hierarchy by means of Com-
positeStates. The problem here, is that there is not
always a matching source model element to create a
CompositeState for. Therefore, we use a called rule
(compositestate). A called rule is an imperative rule that
is not matched by a source model element, but is explic-
itly called and can have parameters. This rule creates
a CompositeState for a given set of Constraints (cseq).
These Constraints (i.e., state invariants) are determined
by the compositeStateConstraintSetsAt helper that takes a

196 VVSS 2007

rule MergedSimpleState {
from s_in:UML!SimpleState (
thisModule.mergedStates->includes (s_in)
to s_out:UML!SimpleState (
name<-s_in.name,
constraint <- s_in.constraint)
}
helper def: mergedStates: Set (UML!StateVertex) =
thisModule.allSimpleStates—>union (thisModule.
allPseudostates)
—>iterate(s; mss:Set (UML!StateVertex)=Set{} |
if mss->exists(e| (e.mergeable(s)) then
mss
else
mss—>including (s)
endif)
;
helper context UML!StateVertex def: mergeable (s:UML!
StateVertex): Boolean =
thisModule.unifiable (self.constraint,s.constraint)
and self.name=s.name

helper def: unifiable (cseql:Sequence (UML!Constraint),
cseq?:Sequence (UML!Constraint)): Boolean =
csegl->includesAll (cseqg2->select (c|csegl->collect (e
e.stateVariable)->includes (c.stateVariable)))

Listing 3. Merging SimpleStates

set of Constraints that represents the current Composite-
State and determines the sets of Constraints that corre-
spond to the CompositeStates at that level. For each of
those sets a CompositeState is created. This called rule
is used to initialise the subvertex feature in the rule that
matches the top CompositeState of the merged StateMa-
chine, as well as (recursively) in the compositestate rule
itself. The do clause in the compositestate rule returns
the created CompositeState.

rule TopCompositeState {
from cs_in:UML!CompositeState
using {
sm:UML!StateMachine=thisModule.allStateMachines—>
select (sm|sm.top=cs_in);
}
to cs_out:UML!CompositeState (
name <- cs_in.name,
subvertex <- sm.simpleStateStatesAt (Set{})
—>union (sm.compositeStateConstraintSetsAt (Set{})
—>collect (cs|thisModule.CompositeState (sm,cs))))
}
rule CompositeState (sm:UML!StateMachine, cseq:Set (
UML!Constraint)) {
to cs:UML!CompositeState (
subvertex <- sm.simpleStateStatesAt (cseq)->union (
sm.compositeStateConstraintSegsAt (cseq)->collect (
cs|thisModule.CompositeState (sm,cs))))
do{cs;}

}

Listing 4. Adding hierarchy to state machine

VVSS 2007 - Verification and Validation of Software Systems Symposium

I
‘ esm. state = standhy
m_WarminglpDone_received

JSm_UnitStatusistanding

m_UnitStatusistandiyh_sent

Jrm_Unitstatus(standiong

m_SetUnit{idle)

esim.state =s10pping

""" ' N
Bone L J

@z, state=running metUn"(nning;

mi_UnitStatusfrunningy _semnt

Jm_UnitStatus(rimning)

m_StartDone_received

S Jm_UnitStatusistopging)
i _SetUnit(stanclby)_receied

pncd

Figure 7. Merged state model of Esm (fragment)

6. Normalising the Source Model

In the case of Océ, neither a domain theory, nor a set
of state variables were available. To overcome this, we
normalise Océ’s sequence diagrams. In particular, we
interpret the decorations on object lifelines as pre- and
postconditions on a single state variable: state. The mes-
sage preceding a state decoration apparently resulted in
the component moving to the indicated state. Hence, we
(manually) attach a corresponding postcondition (e.g.,
esm.state=starting). A message succeeding a state dec-
oration apparently requires the component to be in the
indicated state. Hence, we attach a corresponding pre-
condition. As an example, consider Figure 6. Finally,
we added a (public) attribute, state, to the class corre-
sponding to the ESM component.

7. Results

A fragment of the result of application of the trans-
formation step to Océ’s ESM component, is depicted in
Figure 7. The dashed line indicates the path through the
state machine that is traversed when ESM is requested to
go to standby while it is running. This path corresponds
to the scenario depicted in Figure 6.

We compared this derived state machine with the
implementation state machine, from which Océ gener-
ates code. There are many inconsistencies with respect
to low-level states and transitions. In the implementation
state machine low-level states are not only decomposed
further, the sequence of states and transitions is also dif-
ferent in many cases. This is not surprising considering
the fact that the sequence diagrams of the source model
from which we derived a state machine, constitute the
first behavioural model that is created for the ESM com-
ponent, while, in the implementation state machine, low-
level transitions and states often correspond to a single
method call in the generated code. If we restrict the com-

parison step to the top-level states, however, the imple-
mentation state machine largely conforms to the derived
state machine. Although we cannot show the implemen-
tation state machine, we were able to make several other
interesting observations:

e Several transitions between top-level composite states
are missing in the derived state machine. This indi-
cates not all scenarios have been specified in a se-
quence diagram.

e Some top-level composite states in the derived state
machine were modelled as low-level (sub) compos-
ite states in the implementation state machine. This
merely indicates changes to the decomposition of
states, and does not necessarily result in different be-
haviour.

e In the derived state machine, sometimes extra paths
exists between two composite states. This indicates
specific sequences of events and actions that occur in
different scenarios are not specified consistently. This
was the case, for instance, when two versions of a sce-
nario existed: one for normal behaviour, and one for
exceptional behaviour. For two such versions the first
interactions should typically be identical (until some
exception occurs), but in practice this was not the case.

e The derived state machine contains a number of un-
conditional transitions that form a loop, resulting in
non-deterministic behaviour. This had the same cause
as the previous observation.

As a response to these observations Océ could decide to
add missing use cases and scenarios, and to refactor al-
ternative sequence diagrams to remove inconsistencies
in event and action sequences. Here, care must be taken,
as such modifications affect the state machines of other
components that play a role in the involved scenarios as
well. On the other hand, if such steps are not taken and
behavioural inconsistencies are only removed in the im-
plementation state machine, other development groups,
responsible for other components, might do so differ-
ently, resulting in integration and maintainability prob-
lems.

Although, the normalised source model in the Océ
case only contains a single state variable, we also applied
our transformation step to the ATM example in Whittle
and Schumann [10]!. This example involves three state
variables. By application of our approach (in both cases)
we detected several inconsistencies.

Images of the (normalised) source model, as well as all (interme-
diate) target models for the ATM example can be downloaded from
the ATL Transformations Zoo [19]

VVSS 2007 197

VVSS 2007 - Verification and Validation of Software Systems Symposium

aFunction:Function | | esm:ESM |

1
: meetUnit(stanqby)

ﬂ

I

1

, I

n 1
StOl”Q :m_UnitStatus(st!IJpping) [
|

]

1

:m_Stop()

[aFunction:Function " esm:ESM l
1 1

m_Stop() !
1

<< postcondition> >{esm.state=stopping}
m_UnitStatus(stopping)
- ﬁ <<precondition>>{esm.state sropping}b}
i

1
! :m_SetUnll{standby}Jl— <<precondition>>{esm.state=running} T

im StopDoneO]' ------------ <] <<postcondition>>{esm.state srandby}lj
| .

:m_StopDoneg()
[[
: :m_UnitStatus(sandby)

(a) Sequence diagram with decorated lifeline

m_UnitStatus(standby) i <<precundi1i0n>>ie5m.slale=stal1db\riﬁ

(b) Normalised sequence diagram

Figure 6. Example scenario: request a copier engine to go to standby while it is running

8. Discussion

Generalisability of the approach 7o a large extent
our approach is generic.

We applied our approach successfully to both Whit-
tle and Schumann [10]’s ATM example and Océ’s refer-
ence architecture. Our approach is generic with respect
to input models that comply to the model conventions
as outlined in Section 5.1. As such, we require a (man-
ual) normalisation step that is context specific; it depends
on the modelling conventions in use at a particular com-
pany.

Our modelling conventions are most restrictive with
respect to the type of pre- and postconditions used in the
domain theory. As we do not evaluate these conditions,
we require them to be of the form statevariable=value.
In the case the conditions for an Operation refer to a
formal parameter. Our approach can still be applied if
the Messages associated with that Operation in the se-
quence diagrams specify a corresponding actual param-
eter. Then, we (manually) apply the condition directly to
the Message in the sequence diagram and substitute the
formal parameter for the actual parameter. More com-
plicated conditions requires real interpretation of OCL
expressions.

Of course, pre- and postconditions have to be avail-
able for our approach to produce more than only flat state
machines. In the case of Océ’s, we derived pre- and post-
conditions from decorations in the sequence diagrams.
In general, pre- and postconditions are not always obvi-
ous from design documentation. In such situations these
might have to be derived indirectly from documentation
or reverse engineered from source code.

The introduction of pre- and postconditions effec-
tively is a normalisation to the UML standard used by
Océ and our tools (version 1.4 [18]). For the latest UML
(version 2.0) this is not necessary, as such lifeline deco-
rations became part of the specification (the correspond-

198 VVSS 2007

ing metamodel element is called StateInvariant). To sup-
port this, only minor modifications to our ATL transfor-
mations are required.

Scalability of the approach Our approach constitutes
a first step towards fully automated consistency check-
ing.

In the Océ case, the source model for the transfor-
mation step includes 10 sequence diagrams that specify
62 messages. The resulting integrated, hierarchical state
machine, of which a fragment was depicted in Figure 7
contains 23 transitions between 14 composite states con-
taining in total 47 simple states.

Our approach is a first step to fully automated con-
sistency checking of behavioural specifications. For
now, we rely on manual inspection of the resulting state
machine for actual evaluation of the consistency. As
such, the scalability is currently not limited by the trans-
formation steps (in the Océ case they each take less than
seconds), but by the comparison step. For cases were the
number of states is limited and developers have knowl-
edge on the system, this is a feasible approach. For EsM,
which is a medium-sized component (approximately 10
KLOC), this turned out not to be a problem.

Automatic consistency checking could be done by
relying on naming. An example of such an approach
is discussed in Van Dijk et al. [16]. It checks the con-
sistency of the underlying XMI representations of UML
models. In general this problem is equivalent to graph
matching. Also for automatic approaches, however, the
generation of a state machine from a set of scenarios, as
discussed in this paper, is likely to be a first step.

Applicability of the approach Our approach can be
applied to iteratively develop behavioural specifications.

We generated a state machine with the purpose of
checking the consistency of different behavioural speci-
fications. However, our approach might have other types

VVSS 2007 - Verification and Validation of Software Systems Symposium

of applications as well. A generated state machine could
also be used for other types of analyses, such as model
checking or performance analysis.

Next to analysis purposes, our approach is particu-
larly also interesting for forward engineering, especially
in the context of model-driven development approaches
as in the case of Océ. Using our transformations based
on UML, developers can easily generate different views
on the behaviour of a software system or component.
Furthermore, the generation not only provides insight in
the consistency of the sequence diagrams with respect to
each other, it also provides developers with a first candi-
date state machine that can be refined. As such, our tech-
nique can be applied iteratively to develop complete be-
havioural specifications of components: (1) specify the
interactions of an initial set of use cases as scenarios,
(2) generate a state machine, (3) refactor scenarios to re-
move inconsistencies in event and action sequences, and
add missing scenarios, (4) goto step 2.

The main reason to choose for a model-driven ap-
proach based on UML for our consistency check, was the
integration with Océ’s development process. It circum-
vents the need to extract information from the MDA do-
main to another domain, e.g, the grammarware, or XML
domain. Unfortunately, despite the availability of stan-
dards, currently available tools for (meta)modelling and
transformations do not integrate well, hampering actual
integration of our approach in practice. For a large part
this is due to the abundance of possible combinations of
XMI, UML, and MOF versions, as well as vendor spe-
cific implementation of those standards. Other problems
occur due to different capabilities of modelling tools. As
an example, we used Poseidon for UML to create source
models because its metamodel is available from the de-
veloper’s website. However, the UML models we gen-
erate do not contain layout information. Unfortunately,
Poseidon is not capable of displaying UML models that
do not contain layout information. As a consequence we
had to use another tool for visualisation. From a large
set of tools we tried, only Borland’s Together is capa-
ble of generating a layout for a UML model. However,
the XMI representations used by this tool are not com-
patible with those generated by the ATL engine. As a
workaround we developed a minimal XSLT transforma-
tion that maps the XMI ‘flavour’ generated by the ATL
engine to that of Together. An alternative is to gener-
ate the layout information required by Posedion using a
model transformation.

UML vs. MOF The use of UML in a limited domain

makes transformation definitions unnecessary complex
The genericity and resulting complexity of the UML

metamodel result in, sometimes, inconvenient naviga-

tion through source and target models to select a certain
element. Also, often relations are defined as » : n while in
a specific case 1 : 1 would suffice. The result is that sets
have to be converted to sequences of which the first ele-
ment has to be selected. This is required very frequently,
resulting in unnecessary complex ATL-code.

In cases, where only limited parts of the UML meta-
model are used, an alternative could be considered. In-
stead of using the UML metamodel, custom MOF-based
metamodels could be used, for instance, for scenarios
and state machines. These metamodels could be much
simpler, resulting in simpler transformation definitions.

9. Conclusions

In this paper we demonstrated the use of model
transformations to check the consistency of behavioural
specifications. For this we presented an approach that
consist of normalisation, transformation, and compari-
son steps. We consider the following to be the main con-
tributions of this paper:

e A specification of the mapping between scenarios and
state machines using model transformations that is
made available via the ATL Transformations Zoo [19].
An advantage of such a specification is that it can be
executed by the ATL transformation engine. Further-
more, it is completely based on UML, allowing easy
integration in industrial practice.

e Modelling conventions for encoding the information
required for the transformation step in a single UML
model. Additionally, as an example, we discussed the
required normalisation step for Océ’s reference archi-
tecture.

e Validation of the proposed approach by application to
an industrial system, resulting in the identification of
a number of inconsistencies in its behavioural specifi-
cations.

Finally, the proposed approach could be applied for other
purposes than consistency checking as well, such as for-
ward engineering and early behavioural analysis based
on the generated state machine.

Currently we are extending our work with additional
case studies. Furthermore, we investigate the possibili-
ties to do consistency checking automatically. Again, by
the use of MDA model transformation technologies.

Acknowledgement Part of the research described in
this paper was sponsored by NWO via the Jacquard Re-
constructor project. Furthermore we would like to thank
Océ, and in particular Lou Somers for providing the case
study.

VVSS 2007 199

VVSS 2007 - Verification and Validation of Software Systems Symposium

References

(1]

(2]

3

—

[4

—

[5

—

[6

—_

[7

—

(8

—_—

(9]

(10]

(1]

M. M. Lehman and L. A. Belady, eds. Program evo-
lution: processes of software change. Academic Press,
1985.

A.P. Brohl and W. Droschel. Das V-Modell. Der Stan-
dard fiir die Softwareentwicklung mit Praxisleitfaden.
Oldenbourg-Verlag, Miinchen, ond edition, 1995.

Ivar Jacobson. Object-Oriented Software Engineering: A
Use Case Driven Approach. Addison-Wesley, 1992.
Desmond Francis D’Souza and Alan Cameron Wills. Ob-
Jjects, Components, and Frameworks with UML : The
Catalysis Approach. Addison-Wesley, 1998.

Phillipe Kruchten. The Rational Unified Process.
Addison-Wesley, 1998.

Ivar Jacobson, Grady Booch, and James Rumbaugh. The
Unified Software Development Process. Addison-Wesley,
1999.

Bran Selic, Garth Gullekson, and Paul T. Ward. Real-
Time Object-Oriented Modeling. Wiley, 1994.

Daniel Amyot and Armin Eberlein. An evaluation of sce-
nario notations and construction approaches for telecom-
munication systems development. Telecommunication
Systems, 24(1), September 2003.

Yves Bontemps, Patrick Heymans, and Pierre-Yves
Schobbens. From live sequence charts to state machines
and back: A guided tour. IEEE Trans. Software Engi-
neering, 31(12):999-1014, December 2005.

Jon Whittle and Johann Schumann. Generating statechart
designs from scenarios. In Proc. 22" Int’l Conf. Soft-
ware Engineering (ICSE 2000), pages 314-323. IEEE
CS, 2000.

L. A. J. Dohmen and L. J Somers. Experiences and
lessons learned using UML-RT to develop embedded

200 VVSS 2007

[12]

[13]

[14]

(15]

(16]

(17]

(18]

[19]

printer software. In Proc. PROFES 2002, volume
255972003 of LNCS, pages 475-484. Springer-Verlag,
2003.

Vitus S.W. Lam and Julian Padget. Analyzing equiva-
lences of uml statechart diagrams by structural congru-
ence and open bisimulations. In Proc. 2003 IEEE Sym-
posia on Human Centric Computing Languages and En-
vironments (HCC 2003), pages 137-144. IEEE CS, Oc-
tober 2003.

Timm Schéfer, Alexander Knapp, and Stephan Merz.
Model checking uml state machines and collaborations.
In Proc. Workshop on Software Model Checking, vol-
ume 55 of Electronic Notes in Theoretical Computer Sci-
ence, pages 357-369. Elsevier, 2001.

Hongzhi Liang, Juergen Dingel, and Zinovy Diskin.
A comparative survey of scenario-based to state-based
model synthesis approaches. In Proc. 5 Int’l Workshop
on Scenarios and State Machines: Models, Algorithms
and Tools (SCESM 2006), pages 5-11. ACM, 2006.
Werner Damm and David Harel. LSCs: Breathing life
into message sequence charts. Formal Methods in System
Design, 19:45-80, 2001.

Hylke W. van Dijk, Bas Graaf, and Rob Boerman. On the

systematic conformance check of software artefacts. In
Proc. 2" European Workshop on Software Architecture

(EWSA 2005). Springer-Verlag, June 2005.

Frédéric Jouault and Ivan Kurtev. Transforming models
with ATL. In Proc. Model Transformations in Practice
Workshop at MoDELS2005, 2005.

OMG. OMG Unified Modeling Language Specification,
Version 1.4. http://www.uml.org, 2001.

ATL Transformations Zoo. http://www.eclipse.
org/gmt/atl/atlTransformations/
#UMLSD2STMD.

VVSS 2007 - Verification and Validation of Software Systems Symposium

ia

Software|

Testing ITP LoadBalancer
L

VVSS 2007

W

P

Testing of inter-process

communication and synchronization
of

ITP LoadBalancer software
via model-checking

Yaroslav S. Usenko, Marko van Eekelen (LaQuSo)
Stefan ten Hoedt, René Schreurs (Aia Software)

Aa_

28-1-2007

VVSS 2007 201

VVSS 2007 - Verification and Validation of Software Systems Symposium

Outline m

Aia Software and the Case Study

Case Analysis and Reverse-Engineering
Modeling and Analysis with the mCRL2 Toolset
Conclusions and Open Questions

Aia

28-1-2007

The ITP Document Platform m

Document
. Definition

-

Model

ana EI'I"I (] nt--.-

_ Distribution

Document

-

1a

Software
28-1-2007

202 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Applications of ITP m
Insurance © DELTA DENTAL 9
- Policies
ADMIRAL (55500
- Endorsementsv ABN-AMRO _
- Renewals J Ea
Financial Services veew? ne % Mot
- Statements HEEL AT e
. y de fage andén ©
- Correspondence
ULLEN:1iDYKMAN
- Contracts ING S L hfl\:i:lx}r:)'}’l.»wu'rluJr-
Government 1.
_ Taxation Hefferson AR(‘JUb
County,
- Permits Colorado
- Correspondence r
P Getl/';)mcs
Independent Snﬂ-wie Vendors PinkRoccade
ia -4 imesoft
Software Xchanging — L@kelly systems
2512007 e e e

Basic Architecture m

Server 1

Load
Balancer

Client 2

Client 3

»
1a
Software

28-1-2007

VVSS 2007

203

VVSS 2007 - Verification and Validation of Software Systems Symposium

Issues]TF

» LoadBalancer does not respond at all (deadlocks)
» Free workers are not used (partial deadlocks)
» Client does not get a response (many reasons)

Aa_

28-1-2007

Artifacts L)

» source code in C for windows (7681 lines)
» Application layer protocol documentation

« Verbal information during meetings, phone and e-
mail communication

e Threads

* MutExes

o WSA

« WaitForMultipleObjects
» CallBack functions

Aa_

28-1-2007

204 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

28-1

Process data
—/ —/
3 —
Aja —/
Sof

A Typical Use Case Scenario m

Load Balancer

Request job Work?

Get data
data

Yes! (partners)

Client

Wake-up: get data

Client Object

i}

Wake-up: data ready

tware

-2007

Aia

28-1

Properties to Check m

o Deadlock freedom
 Critical logs

« If the partner of A is B > 0, then the partner of B is A
or0

« A server may not sleep w/o a partner (except when a
request is pending to it)

 Limits on locking

« Limits on a number of requests

-2007

VVSS 2007

205

VVSS 2007 - Verification and Validation of Software Systems Symposium

mCRL2 Language m

« mCRL2 is based on process algebra (ACP) and
algebraic (equational) data types. Specification
structure:

- data types definitions (sort, func, map, rew)
- actions and communication functions definitions (act, comm)
- process definitions (proc): equations involving:
pu=a(t) [oY) [p+plpplplplespople—
pl Lapp | ulp) | dulp) | pr(p) | Ve(p) | Tc(p)
- initial state (init).
» Extensions to process algebra:
- action parameterized by data (a(d) |b(e) = (d =¢) = c(d)),
- Yappandc—xoy
i a - systems of parameterized recursion equations.
12007

Experiments m

« Experiments on a 3Ghz 32 bit machine with 4Gb RAM

#clients | #servers |time | #levels | #states | #transitions
1 1 241

7m 38s 657k 1.38M
1 2 3h01m 367 18M 38.5M
2 1 9h 55m 444 54M 141M
1 3 13h* 481 213M 465.5M
2 2 >113h* >215 >511M >1121M

*On a cluster of 32 64-bit machines, 1Gb each.

-

1a

Software
28-1-2007

206 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Detected Issues m

« partner links inconsistent
- set partner to 0 was forgotten for one of the parties
- found by model-code comparison
- confirmed to be a problem by model-checking
« server sleeping w/o a partner
1. set client’s partner link to 0 before waking up the server
2. forgotten to wake up the server
- 1st found by model-code comparison, 2nd by model-checking
o critical logs could occur
1. sending request for disconnect to itself happened in a wrong state (forgot
to change the state)
2. request to wake up can lead to an inappropriate state change when server
disconnects (not critical)
« number of requests exceeds the limit
- server sends request for disconnect to the client and does not break the
partnership afterwards
ia
Software

28-1-2007

Conclusions m

» Session layer of Load Balancer is modeled
* A number of properties are verified

* Number of issues discovered, communicated and
corrected

« Cases up to 1 client and 3 servers and 2 clients and 1
server were fully analyzed

« Case with 2 clients and 2 servers was partially analyzed

» Modification of the model and further analysis are
possible

» Reverse engineering of the model took most of the time

»
1a
Software

28-1-2007

VVSS 2007

207

VVSS 2007 - Verification and Validation of Software Systems Symposium

Open questions m

» How to check configuration with larger number of
clients and servers
- Optimization of process helps, but doesn’t solve the
problem
« Is there a sensible limit to the number of
clients/servers to check?

Aa_

28-1-2007

ia

Software|

WWW_AIA-ITP.COM

]
Ll

INTELLIGENT TEXT PROCESSING

s’.

208 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Test automation in Telecoms —
pros and cons of Open Source tools

Date:23.03.2007

+ The context
+ The problem
+ The solution

(=]
2 I‘cc.l

VVSS 2007 209

VVSS 2007 - Verification and Validation of Software Systems Symposium

The context

+ What does IT backbone in Telecoms look like:
GSM transceiver/receiver hardware

MSCs

Provisioning Systems

Intelligent Networks

Rating

Billing

Customer Care

*

*

*

*

*

*

*

(2]
° I‘c<;|

The context

GSM Infrastructure IT Systems
e —
Switching CDRs i m
E Center) (call data records) Mediation -
S B
o LI 3
g » IN ﬁ/> .
23 (Intelligent ey
£e Network) - =k
s g‘ Customers °
@< STP Data Base]
o . | (used by =
€ (Signa all systems)
< Transferring Billing
Point)
— |
HLR
(Home
Location Customer Care
Register) grr%\éifssionirg Bills
4 E
CGl

210 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

The context

(Testers can generate and \

compare those files with

IT Systems expectations
=
Mediation .
Testers can generate and '.g
compare those files with 9
expectations <
Ss
Testers compare data with §
expectations 9
=
Customers
Data Base .
(used by BI"Ing

all systems)

Customer Care Testers can use customer
care GUI to create test

scenarios

Testers compare those
files and printed bills with | Bjlls
expectations

EC(.'-I

The context

+ Important points to note:

« Systems communicate via text and binary files (with well defined
format) and via database

« GUI is important in running test scenarios but of very limited use
in checking test results (especially in test automation)
+ Conclusion

« Testing is about creating and checking data in databases and
text and binary files

ECGI

VVSS 2007

211

VVSS 2007 - Verification and Validation of Software Systems Symposium

The problem

+ How to test new and existing features quickly, cost

effectively and reliably
+ How to approach test automation

EC(.'-I

The solution

+ What is expected from tools

+ Easiness of manipulation of textual data

+ Easiness of manipulation of data stored in a database

+ Easy integration with other tools

EC‘."-I

212 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

The solution

+ Tools used

+ General use tools (Perl libraries)

+ LRpt — Comparing csv files and selects’ results

+ Win32::GuiTest — Win32 GUI automation Perl library

+ Win32::LGT — framework for reusable GUI test scenarios
+ Context specific tools

+ Set of Perl scripts for generating call data records

«+ Scripts for preparing data for test scenarios

(2]
? I‘ccil

The solution

+ Billing test automation
« Find data for test scenarios — done by sqls and Perl

+ Run GUI scenarios — Win32::LGT (using results from previous
steps)

« For scenarios from previous steps generate call data records —
custom Perl scripts

« Rate the usage
« Run the billing
+ Verify results — LRpt

10 Eicc.l

VVSS 2007 213

VVSS 2007 - Verification and Validation of Software Systems Symposium

The solution

+ Win32::GuiTest (http://sourceforge.net/projects/winguitest)
+ API for GUI automation wrapped in Perl
+ No capture/replay tool
+ Allows running test scenarios from command line

+ Win32::LGT (http://sourceforge.net/projects/Iguitest)

+ Framework for creating tests for which changes in windows’
layout are transparent (to a reasonable extend)

+ Stores information about controls in well defined xml files
+ Allows running test scenarios from command line

EC(.'-I

12

The solution

+ LRpt (http://Ireport.sourceforge.net)

« Tool for comparing csv files and selects’ results of arbitrary size

« Pretty printing of selects results
+ Comparison’s configuration details written in plain text files

+ Support for command line interface

EC‘."-I

214 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

The solution

+ Why open source
+ lItis cheaper
+ Provide the same value as commercial tools

+ Are commercial tools able to deliver the value we expect? Is it
possible from the logical point of view?

» Ease of integration with other tools
+ Open standards — one of the main points of open source
philosophy
+ Support for command line interface

3 I=c<;|

The solution

Petzold on the easiness of tools

Obviously, there's hardly any one right way to write applications for
Windows. More than anything else, the nature of the application itself
should probably dictate the tools. But learning the Windows API gives
you vital insights into the workings of Windows that are essential
regardless of what you end up using to actually do the coding.
Windows is a complex system; putting a programming layer on top of
the API doesn't eliminate the complexity—it merely hides it. Sooner or
later that complexity is going to jump out and bite you in the leg.
Knowing the API gives you a better chance at recovery.

Charles Petzold, "Programming Windows"

" Eicc.l

VVSS 2007 215

VVSS 2007 - Verification and Validation of Software Systems Symposium

Questions

216 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

HETS: The Heterogeneous Tool Set

Till Mossakowski Christian Maeder

DFKI Lab Bremen (and University of Bremen)

Verification and Validation of Software Systems, 2007

HETS: The Heterogeneous Tool Set

Outline

@ Motivation
@ Formal Methods (not UML)
@ CASL: The Common Algebraic Specification Language

@ Heterogeneous Specifications
@ Multiple Logics and Logic Translations
@ Development Graphs and Theorem Proving

HETS: The Heterc

VVSS 2007

217

VVSS 2007 - Verification and Validation of Software Systems Symposium

Formal Methods (not UML)

Basic Algebraic Specifications

e Signature: sorts, operations/predicates
@ Sentences: i.e. first-order formulas

@ Model Semantics: classes of possible implementations

Example (Region Connection Calculus — first-order)

spec RCC_FO =
sort Reg
pred __C__: Reg x Reg
VX y: Reg
o x Cx % (C_reflex)%
exCy=yCx %(C_sym)%
e(Vz:RgezCxszCy)=>x=y %(C.id)%

lrl
=

Till Mes sski, Christian Maeder HETS: The Heterogeneous Tool Set

Formal Methods (not UML)

Structured Specifications (on top of basic ones)

Union, Extension, Renaming, Hiding, Views, Parameterization

Example (A definitional Extension)

spec EXTRCC_FO = RCC_FO then %def
pred _P__: Reg x Reg

YV x, y: Reg
e(Vz:RegezCx=zCy)exPy % (P_def)%
exPy=xCy %(P_impl_C)% %implied

Example (A trivial View)
view TRIVIAL : RCC_FO to EXTRCC_FO

@ signature of first specification is subsignature

-
@ second spec. must implement first one ' . LI

sski, Christian Maeder HETS: The Heterogeneous Tool Set

218 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Language

CASL: The Common Algebraic Specification Language

designed and developed by CoFl, the Common Framework
Initiative for algebraic specification and development of software
(since 1995)

@ many-sorted first-order logic, partial functions, subsorting,
predicates, sort-generation axioms, (freely) generated
datatypes

@ balance: simplicity and expressiveness

@ general purpose

HETS: The Heterc

Motivation

Desirable for complex systems:
@ multiple viewpoints using different formalisms
@ change of formalism during development

@ multiple, special purpose provers

HETS: The Heterc

VVSS 2007

219

VVSS 2007 - Verification and Validation of Software Systems Symposium

ranslations

A Heterogenous Union

Structure). | Data Process

union of specifications is
intersection of underlying
models

i, Christian Maeder HETS: The Heterogeneous Tool Set

Multiple ranslations
D PR

Sound Integration of Heterogeneity

o different logics/institutions for basic specifications
@ logic translations on top of structuring concepts
[Mossakowski, 2005]

institution comorphisms (i.e. logic translations) embed or
encode logical structure in a way that truth is preserved

i, Christian Maeder HETS: The Heterogeneous Tool Set

220 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

Multiple L c Translations
Davela Thearem Pro

Supported Logics

CASL many-sorted first-order logic, subsorting, partiality,
free datatypes

HasCASL Haskell-like, higher-order CASL
Modal CASL extension with modalities
CoCASL co-algebraic CASL extension

Haskell higher-order, purely functional programming language
with static typing, polymorphism, type classes

SoftFOL for several automated first-order provers

Isabelle interactive higher-order theorem prover

Till Mes i, Christian Maeder HETS: The Heterogeneous Tool Set

ics and Logic Translations
Grapt | Theorem Pr

Hete

A Logic Graph

@ more logics
and
translations

can be added

@ support for
sublogics

Till Mes i, Christian Maeder HETS: The Heterogeneous Tool Set

VVSS 2007 221

VVSS 2007 - Verification and Validation of Software Systems Symposium

Logics and Logic Trar 5
ment Graphs and Theorem Proving

Development Graphs

@ reflect structure of a heterogeneous specifications

@ support change mangagement

nodes: are (parts of) whole specifications

definition links: (heterogeneous) imports
theorem links: (global or local) proof obligations

i, Christian Maeder HETS: The Heterogeneous Tool Set

ment Graphs and Theorem Proving

A Development Graph

@ easy first-order
implication in
ExtRCC_FO

@ higher-order
specification of closed
balls viewed as
regions

i, Christian Maeder HETS: The Heterogeneous Tool Set

222 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

I : nd Logic Tr Man
Hete e pment Graphs and Theore WINg

Proof Calculus

[Mossakowski, 2005]

The proof calculus for heterogeneous development graphs is sound
and complete relative to an oracle checking conservative
extensions.

@ decompose global theorem links automatically
@ choose specific provers for local proof goals

@ use model checkers to construct models

Christian | = HETS: The Hete:

Prover Selection

Goals: Selected Goal(s):

(1P mpc AN

Display | Prove | Show proof details

Status:

Mo Prover Running

Pick Theorem Prover:

[isabelle X
MathServ Broker J
7 S

Vampire

Select all | Deselect all |

Select open goals More fine grained selection... |

Fine grained composition of theory:
Axioms to include: Theorems to include if proven:

AP mpic

Christian | = HETS: The Hete:

VVSS 2007

223

VVSS 2007 - Verification and Validation of Software Systems Symposium

Summary

Conclusion

formal and sound
true integration of heterogeneous formalisms

flexible and extensible wrt. provers and logic translations

sample heterogeneous correctness proof

HETS: The Heterageneo

Summary

[4 CoFl (The Common Framework Initiative).
CASL Reference Manual.
LNCS 2960 (IFIP Series). Springer, 2004.

M Till Mossakowski.
Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis, University of Bremen, 2005.

[Till Mossakowski and Christian Maeder and Klaus Liittich.
The Heterogeneous Tool Set.
Editors: Orna Grumberg and Michael Huth, TACAS 2007.
Tool available at www.tzi.de/cofi/hets

Christian Maeder HETS: The Heterogeneous

224 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

from HASCASL /REAL get REAL
logic HASCASL

spec METRICSPACE =
REAL

then type Space
op d: Space x Space — Real
V x, v, z: Space

ed(x,y)=0&x=y %(MS_id)%

e d(x, y) = d(y, x) %(MS_sym)%

e d(x, z) < d(x, y) + d(y, z) % (MS_triangle)%
)=

Till Mossakowski, Christian Maeder HETS: The Heterogeneous Tool Set

spec CLOSEDBALL =
METRICSPACE
then %def
type ClosedBall
op closedBall : Space x Real —7? ClosedBall
pred rep : ClosedBall x Space
Y x, y : Space; r : Real; a, b : ClosedBall
e r >0 = (rep(closedBall(x, r), y) < d(x, y) < r)
% (CB_rep_pos)%
e r > 0 & def closedBall(x, r) %(CB_def)%
o (V z : Space o rep(a, z) < rep(b, z)) = a = b %(CB.id)%
e Jz: Space; t : Real e a = closedBall(z, t)

Till Mossakowski, Christian Maeder HETS: The Heterogeneous Tool Set

VVSS 2007

225

VVSS 2007 - Verification and Validation of Software Systems Symposium

view RCC_FO_IN_CLOSEDBALL :
RCC_FO to
{CLOSEDBALL
then %def
pred __C__: ClosedBall x ClosedBall
Y x, y : ClosedBall
e x Cy < ds: Space e rep(x, s) A rep(y, s)

}
= Reg +— ClosedBall

i, Christian Maeder HETS: The Heterogeneous Tool Set

226 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

% Collis

Exploratory Testing
First time right !

By: Derk-Jan de Grood
Date: April 2007
Location: VVSS 2007 Eindhoven

INSTITUTE=

Objectives for this presentation

% Provide insight in added value and pit-falls

% Give practical tips
% Reduce the hesitation on applying ET

+*Collis

www.collis.nl

VVSS 2007

227

VVSS 2007 - Verification and Validation of Software Systems Symposium

< Introduction.

% What is ET?

% Application of ET within KPN-Beta.
< Pitfalls and lessons learned.

< Evaluation of ET.

< Conclusion.

% Further reading.

+* Collis

www.collis.nl 3

Introduction- In the canteen

Do you know
Exploratory testing ?

+*Collis

www.collis.nl 4

228 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

What is Exploratory Testing

The no 1. excu
our test design
We do explorat

An approach for unscripted testing based
upon skills and experience of the tester. ET
is a risk based technique using a formal
procedure, test charters and heuristics.

& M _11° _ “Exploratory testing is simultaneous
’Q’ CO],],IS learning, test design, and test execution.”
www.collis.nl JameS Bach 5

Traditional techniques

Q@ Error in the s/w
[C] Coverage of the testdesign

+*Collis

www.collis.nl 6

VVSS 2007 229

VVSS 2007 - Verification and Validation of Software Systems Symposium

Philosophy of ET

) \ .

® | A !

[5) \Nes S I
A @ o
90 -9@, !/
/ ol O@
@ - e
| ! /i

@) Error in the s/w
[C] Coverage of the testdesign

+* Collis

www.collis.nl

1. Points of Interest (POI)

2. First tests executed
3. Plan next step based

upon test results

4. Define new POI
. Cont. with next POI

6. Finished?

Building our testdesign

Exploratory

+*Collis

www.collis.nl

“the puzzle changes the puzzling.”
James Bach

230 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

% Define test team

% Organize kick-off

% Define the POI (test charters)
% Assign charters

% Execute tests

% Debriefing

% Plan re- & regression tests

+* Collis

www.collis.nl 9

Define team & Kick-off

Team consisted of
% 2 junior tester

% 2 system experts
< Moderator

Using junior testers worked well. They have
proven to be eager, flexible and creative.

+*Collis

www.collis.nl 10

VVSS 2007 231

VVSS 2007 - Verification and Validation of Software Systems Symposium

Define Charter

s Charter ID 8 kpn

o . .
% Priority S
N e
22 Issugs oy,
erfac
T € Bouwey,

% Estimated time s

T e Dt

o 1ang.r,

< Aimed result ;
u:'m'”"""'*'u-q

< Why should we test this? —

% Expected problems 5
 Not included in this Charterl : "Jw_m ’L
[=35 ESne /

-
T 0 B gy
Pty e 2 fain a gy
w..,_m;-m‘.:,mm-maam o

% Conclusion

+* Collis

www.collis.nl

Charter- the conclusion

ET Testcharter: 21 PROD_Verzenden Prio: K
Conclusie
Conclusie
Deze charter 1 helemaal afgerond
Er zijn geen nithreidngen van deze charter nodig t by, een volgende seszie 1
Het beoogde resultaat van deze charter is behaald. het nisico is voldoende N
afgedekt

Ten aanzien van deze charter kunnen we in productie ?

Tndien Concluste negarief:
Geef aan welke vervolgactie nodig 12 om het beoogde resultaat van deze charter alsnog te halen. Geef aan

welke nsico’s onvoldoende afgedekt zm en geel mdien wenselijk een voorstel voor vervolgcharters

| Aclivileiten ol

Bevinding
beoogd resultaat voorgestelde
| charter
Gamma: 720M: Het opslaan De klanten knjgen geen Zie izme 1452
VAl een Ienwe v ling 1= geg t 1

et mogelyk

% Collis

www.collis.nl

232 VVSS 2007

VVSS 2007 - Verification and Validation of Software Systems Symposium

The iterative part of the process

Define Charters ———————»|

Test Charters

A 4

Assign Charters 4——— Debriefing

Preparation Test i Sessie evaluation

+* Collis

www.collis.nl 13

The content of the test charters

% How do you divide all functionality and risks
that need to be tested over the test charters.

Our experience with scenario and function
based testing?

rrrrrrrrr

! | Berekening bevat fouten
Funetegmen | |

+*Collis

www.collis.nl 14

VVSS 2007 233

234

VVSS 2007 - Verification and Validation of Software Sys