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Abstract—Even though Model-based Software Engineering
(MBSwE) techniques and Autogenerated Code (AGC) have
been increasingly used to produce complex software systems,
there is only anecdotal knowledge about the state-of-the-
practice. Furthermore, there is a lack of empirical studies
that explore the potential quality improvements due to the use
of these techniques. This paper presents in-depth qualitative
findings about development and Software Assurance (SWA)
practices and detailed quantitative analysis of software bug
reports of a NASA mission that used MBSwE and AGC. The
mission’s flight software is a combination of handwritten code
and AGC developed by two different approaches: one based
on state chart models (AGC-M) and another on specification
dictionaries (AGC-D). The empirical analysis of fault proneness
is based on 380 closed bug reports created by software
developers. Our main findings include: (1) MBSwE and AGC
provide some benefits, but also impose challenges. (2) SWA
done only at a model level is not sufficient. AGC code should
also be tested and the models and AGC should always be kept
in-sync. AGC must not be changed manually. (3) Fixes made
to address an individual bug report were spread both across
multiple modules and across multiple files. On average, for
each bug report 1.4 modules, that is, 3.4 files were fixed. (4)
Most bug reports led to changes in more than one type of file.
The majority of changes to auto-generated source code files
were made in conjunction to changes in either file with state
chart models or XML files derived from dictionaries. (5) For
newly developed files, AGC-M and handwritten code were of
similar quality, while AGC-D files were the least fault prone.

I. INTRODUCTION

Model-based Software Engineering (MBSwE) techniques
and auto-generated code (AGC) are increasingly used to
produce complex software, including software for safety-
and mission-critical systems. MBSwE and AGC promise
many benefits, including higher productivity and improved
quality. Despite these widely assumed benefits, the actual
situation is not simple and clear cut. Rather, MBSwE and
AGC offer opportunities, but also impose challenges.

Although model-based development and AGC have been
used for some time, there is only anecdotal knowledge about
different forms of AGC and the spectrum of used SWA
techniques. Furthermore, there is a lack of empirical studies
that explore the potential quality improvements due to the
use of MBSwE and AGC and, therefore, our understanding
of the impact of these technologies is limited.

The work presented in this paper is based on using as a
case study a NASA mission that used MBSwE and AGC

approaches. The mission’s flight software is a combination
of handwritten code and AGC developed by two different
MBSwE approaches, one using state charts and another
using specification dictionaries that contain command and
telemetry data. Approximately 18% of the mission code was
auto-generated using these two methods. 56% of the total
source code was newly developed and the rest was either
re-engineered or reused. The empirical analysis of software
fault proneness is based on 380 closed bug reports created
by software developers. Specifically, our work is focused on
the following research questions:

RQ1: What approaches to MBSwE and AGC were used by
the NASA mission?

RQ2: What development and SWA practices were used for
models and auto-generated code?

RQ3: Did MBSwE and AGC approaches help improving
software quality?

Unlike the extensive research on software faults and
failures in general (e.g., [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14]), the empirical analysis of
software developed using MBSwE is still very scarce, lim-
ited to only several works [15], [16], [17]. This paper aims
to fill that gap by providing in-depth qualitative findings
related to the use of two MBSwE approaches and the SWA
practices, as well as detailed quantitative analysis of the
software faults and fixes, at both module and file level,
broken down by development approach (i.e., AGC-M, AGC-
D, and handwritten) and heritage (i.e., newly developed, re-
engineered, and reused).

The rest of the paper is organized as follows. The related
works are described in section II. Section III describes the
MBSwE approaches and SWA practice used by the NASA
mission, i.e., addresses RQ1 and RQ2. Detailed analyses
of the developers’ bug reports is presented in section IV,
thus addressing RQ3. Section V presents the summary of
the main findings. The threats to validity are described in
section VI and the paper is concluded in section VII.

II. RELATED WORK

Significant prior research work exists on characteristics
of software faults and failures for systems that did not
use MBSwE. We briefly discuss these works to allow for
comparison of our findings with the general trends (e.g.,
distribution of faults across software modules).
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Fenton and Ohlsson used a large telecommunication appli-
cation to study a range of software engineering hypotheses,
including the Pareto principle of distribution of faults and
failures [1]. Several research works by Hamill and Goseva-
Popstojanova were based on data extracted from a large
NASA mission and were focused on characterizing and
quantifying the relationships among faults, failures, and fixes
[2], [3], [4]. Another study based on space mission data [5],
conducted by Grottke et al., analyzed the anomalies from the
flight software of 18 JPL space missions and classified them
as Bohrbugs and Mandelbugs. Alonso et al., in a follow up
work, analyzed the mitigation associated with the Bohrbugs
and Mandelbugs [6]. In a closely related work, based on the
analysis of bug reports of four open-source software systems,
Cotroneo et al. [7] classified the software bugs as Bohrbugs,
non-aging-related Mandelbugs, and aging-related bugs.

The information extracted from bug tracking systems
of open source applications was used for research with
different goals. Bug reports of 12 open source programs
were explored by Duraes and Madeira [8] with a goal
to establish the fault representativeness for software fault
injection experiments. Xia et al. classified the faults of four
open source applications into several categories [9].

Other papers explored software faults for different ap-
plication domains. The study by Gashi et al. explored the
bug reports of four off-the-shelf SQL servers [10]. Maji et
al. explored the manifestation of failures in Android and
Symbian [11]. Ocariza et al. studied the error messages
printed by JavaScript as it executes in popular websites [12]
and explored JavaScript faults based on bug reports extracted
from 12 bug repositories [13]. Frattini et al. analyzed the bug
reports from the open source cloud platform Apache Virtual
Computing Lab [14].

MBSwE is believed to provide advantages over traditional
methods, for example in the embedded systems domain [18].
NASA studied how MBSwE can be used for mission-critical
software development [19]. Other studies were focused
on particular aspects of MBSwE, such as for example
verification of models [20], [21]. Several studies explored
the benefits and limitations of MBSwE and AGC using
survey and interviews based approaches [18], [22], [23],
[24]. Surveys and interviews are opinion-based studies that
provide valuable information, but also have some limitations.

However, even though MBSwE and AGC have been
around for a while, not many research works were focused
on collecting empirical data and quantifying the impact of
these technologies to productivity and quality. A study by
Mohagheghi and Dehlen [25], which was based on review
of 25 papers that dealt with model-based development and
auto-generated code, reported both productivity gains and
losses, and some quality improvements, but these results
were mainly based on small scale studies and typically did
not include quantitative data. Only one paper (out of 25)
provided quantitative data related to software quality and

reported that the two auto-coded features of a Motorola’s
network element had lower fault densities than the three
handwritten features [15]. However, that study did not ac-
count for the fact that auto-generated code is typically larger
in size, which may have caused a misleading reduction in
fault density (i.e., faults per KLOC).

Another quantitative study by Nugroho and Chaudron
compared the quality (measured as fault density) of Java
classes developed using UML modeling (MC) with the
classes that were not modeled (NMC), based on data
extracted from an industrial application [16]. The results
showed that the fault densities of MC and NMC were
similar. Then, the authors performed a pairwise sampling
and ran statistical test on a random sample of 96 classes,
which showed smaller fault density of MC classes. A follow
up study [17], based on the same industrial application,
extended the work presented in [16] by considering, in
addition to fault density, the effect of the UML modeling
on the fault resolution time (i.e., fix time).

Zhang and Patel described the use of agile model-based
software development for a real-time telecommunication
system [26] and stated that “the quality of automatically
generated code in terms of defects density is significantly
higher than manual code”. However, no actual data or any
baseline were presented [26]. The work by Lucredio et al.
provided quantitative analysis of the MBSwE impact on
software reuse based on analysis of three exploratory studies
[27]. The results showed that complex technical domains
have more to gain from MBSwE. However, the effect of
MBSwE on software quality was not considered in [27].

The work presented in this paper is based on using
a NASA mission as a case study, which is an observa-
tional, evidence-based approach that is complementary to
surveys and interviews. The only other works that attempted
to quantify software quality were based on a Motorola’s
telecommunication application [15] and a healthcare system
from Netherlands [16], [17]. None of these works included
reused software modules. In comparison with these related
works, our study provides in-depth qualitative findings re-
lated to the use of two MBSwE approaches and the SWA
practices, as well as detailed quantitative analysis of the
software faults and fixes, at both module and file level,
broken down by development approach (i.e., AGC-M, AGC-
D, and handwritten) and heritage (i.e., newly developed, re-
engineered, and reused).

III. MBSWE AND SWA PRACTICE

In this paper we use as a case study a NASA flight
mission, which was broken into 67 modules. The mission’s
flight software was developed using three approaches:

1) Handwritten code resulting from traditional develop-
ment process,

2) MBSwE approach 1: auto-generated code from state-
chart models created in MagicDraw, and



3) MBSwE approach 2: auto-generated code based on
input from specification dictionaries.

The process of auto-generating code from statechart mod-
els is presented in Figure 1. MagicDraw files (.mdxml)
contained statechart models and were used as input to
an in-house developed autocoder running in the Quantum
Framework to generate C code, referred to as AGC-M in this
paper. The parts that were auto-generated using statechart
models were typically the logic portions of that module.

The process used to auto-generate code from specification
dictionaries is shown in Figure 2. The dictionaries, which
contain command and telemetry data, were exported to
an XML format (.xml files), and then passed to two in-
house developed autocoders, which produced C source code
files, referred to as AGC-D in this paper. Code developed
using MBSwE approach 2 was mainly structural, with no
behavioral details. The upper part of Figure 2 (from right to
left) shows a Verification and Validation (V&V) approach
used by the mission. Using an automated event extractor,
XML files (AG-XML) with the command and telemetry
data were auto-generated from the handwritten code and
compared with the dictionary .xml files. If there was a
problem, changes were made and the process was repeated.

Out of 67 modules, only two were fully auto-generated:
one was 100% AGC-M and the other was 100% AGC-D.
The remaining modules with AGC contained handwritten
code. Additionally, some modules contained both AGC-M
and AGC-D. At module level these modules were classified
as AGC-M because, in most cases, they had more AGC-
M than AGC-D code. Each individual file was either 100%
handwritten, 100% AGC-M, or 100% AGC-D. The mission
used a consistent file naming convention, which allowed
us to accurately classify the files based on the specific
development method used.

Note that the three autocoders were developed in-house
with the same rigorousness as the flight software. We are
not aware of any faults found in AGC-M or AGC-D flight
software files that were due to faults in the autocoders.

The developers were allowed to choose whether to hand-
write the code or use the MBSwE approach 1. A total
of seven modules included AGC-M. In general, developers
felt that some specifics of the flight software could not be
accounted for by the used MBSwE tools. Several challenges
were related to the development and use of models. First,
extra effort was needed to develop the models, which
may be overlooked or underestimated. Further, it was an
open question when to stop including details in the model.
Developers also noted that models tend to obscure the lower
level details present in the AGC-M.

As expected, there were challenges related to the readabil-
ity of AGC-M because it is not intuitive and lacks comments.
Developers experience showed that the readability of AGC-
M improved once they acquired knowledge and understood
the patterns used by MagicDraw.
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Figure 1: MBSwE approach 1: Auto-code generation using
statechart models (AGC-M)
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Figure 2: MBSwE approach 2: Auto-code generation using
dictionaries (AGC-D)

The software assurance practices of MBSwE based on
statechart models are described next. The developers con-
ducted design reviews using less detailed state charts, but did
not find testing statechart models to be very useful. The fact
that off-nominal cases were not available in the modeling
phase was a drawback. (They were incorporated into the
models later in the lifecycle.) Based on the experience
with previous missions, both models and AGC-M were
committed in the version control system; once committed,
AGC-M was not changed manually. Furthermore, the models
and AGC-M were always kept in-sync and AGC-M was
tested using the same process as handwritten code.

Mission developers experienced several challenges related
to the maintenance of the AGC-M. One challenge was due
to the fact that the mission’s flight software is a combination
of handwritten and auto-generated code. In addition, AGC-
M may be hard to maintain onboard because the modeling
suite, and thus the models, are not available on the onboard
computer console.

For the MBSwE approach 2, which resulted in AGC-D,
the dictionaries were used as requirements documents and
the code auto-generation ensured that the requirements were
in-sync with the code. In general, the development team
found the approach based on dictionaries much more useful
than MBSwE approach 1.

Development of the mission’s flight software took ad-
vantage of modules developed for previous missions, as
well as modules developed as part of a NASA generalized
framework. Specifically, a module was considered reused



Table I: Distribution of module sizes in LLOC, by development approach and heritage

AGC-M AGC-D Handwritten

LLOC New ReE ReU New ReE ReU New ReE ReU

<1000 0 1 0 11 7 1 4 1 9
1000-1999 1 0 0 3 5 3 0 0 1
2000-2999 0 0 0 4 1 0 0 0 1
3000-3999 1 1 0 1 3 0 0 0 1
4000-4999 0 0 0 0 2 0 1 0 0
>=5000 3 0 0 1 0 0 0 0 0

Subtotal 5 2 0 20 18 4 5 1 12

Total 7 42 18
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Figure 3: Boxplots of module sizes

(ReU) if less then 10% of its code was changed, re-
engineered (ReE) if from 10% to 50% of the code was
changed, or new (New) if more that 50% of the code was
changed. We refer to ‘reused’, ‘re-engineered’, and ‘newly
developed’ designations collectively as module heritage.

The distributions of module sizes in Logical (i.e., non-
comment) Lines of Code (LLOC), broken down by devel-
opment approach and heritage, are given in Table I and the
boxplots are shown in Figure 3. (Note that two AGC-D
modules, one with <1000 LLOC and another with 1000-
1999 LLOC, are not shown in Table I and Figure 3 as their
heritage was unknown.) As can be seen from Figure 3, the
five newly developed modules that have AGC-M are the
largest in size, from around 1,000 to over 7,000 thousands
LLOC. The smallest AGC-M module was re-engineered and
is the only module that has 100% AGC-M. The other six
modules (five new and one re-engineered) have from 27%
to 42% auto-generated code. The twenty newly generated
AGC-D modules have sizes from 15 to 14,371 LLOC. The
smallest module was 100% AGC-D. The other modules
have from around 2% to 48% of AGC-D. The modules
consisting only of handwritten code are the smallest across
all heritages. Specifically, the five newly developed, fully
handwritten modules have sizes from 156 to 4,319 LLOC.

IV. ANALYSIS OF BUG REPORTS AND ASSOCIATED FIXES

To avoid potential confusion we start with defining the
terms failure, fault (i.e., bug), and fix [3]. A failure is a

departure of the system or system component behavior from
its required behavior. A fault is an accidental condition,
which if encountered, may cause the system or system
component to fail to perform as required. In this paper, the
terms fault and bug are used interchangeably. A fix refers
to changes made to correct the fault(s) associated with bug
reports. Fixes associated with an individual bug report may
be located in one or more files, one or more modules, and
made to one or more software artifacts. The most similar to
the term fix appears to be the term repair, which is defined as
correction of faults that have resulted from errors in external
design, internal design, or code [28]. Note that repair is part
of fault removal [29].

A. Dataset description

The dataset of developers’ issues contained a total of 544
issues, stored in the JIRA issue tracking system. 474 issues
were marked “Defect” (i.e., bug), and of these 439 issues
were marked “Closed”. The closed bug reports spanned
a period of more than three years, from early 2012 to
mid 2015. The bug reports included fields on how bugs
were found, descriptions, lists of modules affected, and files
changed to resolve each bug report. The analysis presented
in this section is based on 380 closed bug reports (out of 439)
which contained information about files that were fixed to
address the bug report. Because the mission used a consistent
file naming convention we were able to associate files with
modules and determine if they were auto-generated, and if
so, how they were generated. We wrote scripts to extract
file names from the developers’ issue tracking system and
classified them by the development approach and heritage
(i.e., reuse) using a combination of automated and manual
classification.

B. Analysis of bug reports

First, we studied the development and SWA activities that
led to detection of software bugs. As can be seen from
Table II, the majority of bugs were found during Flight Soft-
ware Integration Testing (FIT), which is focused on testing
different modules together. System Integration and Testing



Table II: Number of bug reports created during different
development and V&V activities

Activity # of bug reports

FSW Integration Testing (FIT) 225
System Integration and Testing (SIT) 81
Unit Testing 23
BIT 18
Assembly, Test, and Launch Operations 15
Development 11
Other 3
Problem Investigation 3
Operations 1

Total 380

Table III: Distribution of the number of modules fixed
together to address individual bug report. ‘N/A’ refers to
bug reports that listed fixes to project-wide files.

# of modules # of bug
fixed together reports

1 286
2 66
3 11
4 7
5 3
9 2
11 1
N/A 4

Total 380

(SIT) was the second most successful activity; it involved
performing software testing with simulated hardware.

In the following two subsections we study the fixes, i.e.,
changes made to fix fault(s) associated with the 380 closed
bug reports, first at module level and then at file level.

C. Analysis of fixes at module level

In general, more that one module may be fixed as a result
of each bug report. As shown in Table III, 25% of bug
reports, which is a considerable percentage, led to changes
in two or more modules. The average number of modules
fixed together for addressing an individual bug report was
1.4. However, as can be seen in Table III the distribution is
skewed, with some bug reports leading to fixes across large
number of modules (up to 11). These results are consistent
with our results from previous analysis of bug reports of
another NASA mission, that have shown that 18% of bug
reports led to fixes in more than one module [3].

For the analysis at a module level, if a bug report led
to changes in only one module, even if several files in that
module were changed, we counted it as one fix. If a bug
report led to changes in multiple modules, we counted one
fix for each module.

Our analysis showed that the distribution of number of
fixes across modules followed the Pareto principle, with
relatively few modules containing the majority of fixes.
Specifically, 55% of all fixes were associated with only 20%
of modules. This finding agrees with other works [1], [2],
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Figure 4: Boxplots of number of fixes per module

[30], [31] that have consistently found that majority of faults
(and fixes) reside in around 20% of the lines of code, files,
or packages, depending on the unit.

Next, we studied the fault proneness at module level,
broken down by development approach and heritage. As can
be seen from Figure 4 and Table IV, among newly developed
modules, AGC-M modules had significantly higher mean
and median fixes per module than AGC-D and handwritten
modules. On the other side, re-engineered AGC-M modules
had smaller mean and median number of fixes per module
than AGC-D and handwritten modules. Reused handwritten
modules had smaller mean and median number of fixes per
module than the AGC-D modules. Within each develop-
ment approach, as one may expect, new modules had the
highest mean and median fixes per module, followed by re-
engineered and reused modules. Note that the only exception
is the result for handwritten, re-engineered code, which was
based on only one handwritten, re-engineered module.

When the number of fixes was normalized by size (mea-
sured in KLLOC), the mean and median number of fixes per
KLLOC had similar values for newly developed modules
across all development approaches, with AGC-M modules
having slightly lower values (see Table IV). Note that this
result, to some extent may be due to the fact that the
module sizes of the AGC-M modules were typically much
larger than the sizes of AGC-D and handwritten modules,
thus leading to smaller fix densities. With respect to the
effect of the heritage (i.e., reuse) within each development
approach, we observed the same trend as in case of the mean
and median fixes per module – newly developed modules
had the highest fix density, followed by re-engineered and
reused modules (again with an exception of the single re-
engineered, handwritten module).

D. Analysis of fixes at file level

For the analysis at file level, all changes made to a given
file due to a single bug report were counted as a single fix. If
a bug report led to changes in multiple files, it was counted
once for each file being fixed. Note that for the file level
analysis, the development approach was unique and known
for each individual file (based on the naming convention).



Table IV: Basic statistics of number of fixes at module level, by development approach and heritage

Dev Heritage # of Total Mean LLOC Total Median fixes Mean fixes Median Fixes Mean Fixes
approach Modules LLOC per module fixes per module per module / KLLOC / KLLOC

New 5 25,119 5,024 97 19.00 19.40 4.99 4.22
AGC-M ReE 2 3,029 1,514 6 3.00 3.00 0.99 0.99

ReU 0 0 0 0 0.00 0.00 0.00 0.00
New 20 37,669 1,883 164 6.50 8.20 6.60 6.23

AGC-D ReE 18 32,940 1,830 136 5.50 7.56 3.75 5.12
ReU 4 4,969 1,242 21 4.00 5.25 2.70 4.01
New 5 5,118 1,024 9 2.00 1.80 6.33 6.86

Handwritten ReE 1 126 126 6 6.00 6.00 47.62 47.62
ReU 12 11,427 952 46 3.00 3.83 4.07 7.45

Table V: Number of times different file types were fixed

File type # of times files
were fixed

Test files 1,936
Handwritten code 1,226
AGC-M 110
Other 87
.xml 60
AGC-D 47
.mdxml 23

Total 3,592

For the 380 bug reports, a total of 1,273 files were fixed
3,592 times. In other words, on average, 3.4 files were fixed
to address an individual bug report. The breakdown of the
number of fixes for each file type is given in Table V.

As described in subsection IV-A, for our case study, each
bug report was linked to the files that have been fixed, which
allowed us to associate the faults to the changes made to fix
these faults and carry on in-depth analysis. Based on the
combinations of file types changed together for addressing
a single bug report, we identified the following five classes:

1) Handwritten files, i.e., fixes made to source files that
were not auto-generated.

2) MagicDraw (.mdxml) files, fixed with or without AGC-
M files and/or handwritten files.

3) Dictionary XML files (.xml) fixed with or without AGC-
D file and/or handwritten files.

4) Combinations of classes 2 and 3.
5) Test files and/or other miscellaneous file types, such

as compilation configuration scripts.

For each of the five classes, Table VI presents the different
combination of file types that were fixed together. Based on
Table VI, we made the following observations:

• Most bug reports led to changes in more than one type
of files. This result may partially be due to the fact that
most bug reports in our dataset were reported during
integration testing (i.e., FIT and SIT).

• Most fixes required changes to handwritten source files
(class 1). This was expected as handwritten code was
the largest portion of the code base (see Table VII).

• Less bug reports led to changes in AGC files (classes 2,

3, and 4). The majority of changes to AGC files were
made in conjunction to changes in either MagicDraw
models (.mdxml) or XML files derived from dictionar-
ies (.xml). This finding confirmed that the AGC and the
models were kept in-sync.

• Changes to .xml files, in combination with other file
types (classes 3 and 4) were the second most common
class of changes. .xml and AG-XML files were most
often changed in combination with handwritten files.
This suggests that changes were made to the dictionar-
ies and handwritten code as part of the same fixes.

Next, we analyze the basic statistics of fixes at file level
for source code files (AGC-M, AGC-D, and Handwritten).
As can be seen in Table VII, file sizes (in LLOC) across the
three development approaches are much more balanced than
module sizes. In case of newly developed files, the median
number of fixes per file of AGC-M is slightly higher than
for handwritten code (i.e., 3 vs. 2 fixes per file). The mean
number of fixes per file of AGC-M and handwritten code
have comparable values (i.e., 3.21 and 3.24, respectively).
The AGC-D files are the least fault prone, with zero median
fixes per file and an order of magnitude smaller mean
number of fixes per file. Reused AGC-D files had higher
mean number of fixes per file than new and re-engineered
AGC-D files, likely because the system and context were
not exactly the same.

Since file sizes are comparable, the fix density (i.e.,
number of fixes per KLLOC) at file level makes more
sense than at module level. Based on the results shown in
Table VII, it appears that newly developed AGC-M files
have significantly higher median and mean number of fixes
per KLLOC than newly developed handwritten files (i.e.,
30.77 and 139.72 vs. 19.80 and 73.01 fixes per KLLOC).
The AGC-D files again had zero median number of fixes per
KLLOC, and the lowest mean number of fixes per KLLOC
(3.97). We again observed that reused AGC-D files had
higher mean number of fixes per KLLOC than both new
and reused AGC-D files.

Figures 5a, 5b, and 5c present the boxplots of file sizes
for all files, .c files, and .h files, respectively. As can be
seen from Figures 5b and 5c .h files are significantly smaller



Table VI: Combinations of file types fixed together for addressing individual bug reports

Class ID Filetypes fixed # of bug reports Total
1 1 Handwritten code, Test files 146 248

2 Handwritten code 90
3 Handwritten code, Other, Test files 10
4 Handwritten code, Other 2

2 5 .mdxml, AGC-M, Handwritten, Other, Test files 6 15
6 .mdxml, AGC-M, Handwritten, Test files 3
7 .mdxml, AGC-M 2
8 .mdxml, AGC-M, Handwritten 2
9 .mdxml, Handwritten 1

10 .mdxml, AGC-M, Test files 1
3 11 AG-XML, Handwritten, Test files 35 100

12 AG-XML, Handwritten 18
13 .xml, AG-XML, Handwritten, Test files 14
14 .xml, AG-XML, Handwritten 9
15 AG-XML, Handwritten, Other, Test files 4
16 .xml, AG-XML, AGC-D, Handwritten, Other, Test files 2
17 .xml, AGC-D, Handwritten 2
18 .xml, AGC-D, Handwritten, Test files 2
19 .xml, AG-XML, AGC-D, Handwritten, Test files 2
20 .xml, AGC-D, Handwritten, Other, Test files 2
21 .xml, AG-XML, Handwritten, Other, Test files 2
22 .xml, AGC-D, Handwritten, Other 1
23 .xml, AG-XML, AGC-D, Handwritten 1
24 AG-XML 1
25 AG-XML, AGC-D, Handwritten, Other, Test files 1
26 .xml, AGC-D 1
27 .xml, Handwritten, Test files 1
28 .xml 1
29 AGC-D 1

4 30 .mdxml, AG-XML, AGC-M, Handwritten, Test files 3 13
31 .mdxml, AG-XML, AGC-M, Handwritten, Other, Test files 3
32 .xml, AGC-M, Handwritten, Test files 2
33 .mdxml, AG-XML, AGC-M, Handwritten, Other 1
34 .xml, AG-XML, AGC-M, Handwritten 1
35 .xml, AGC-M, Handwritten 1
36 .xml, AGC-M, Test files 1
37 .xml, AGC-M 1

5 38 Test files 2 4
39 Other, Test files 1
40 Other 1

Total Bug Reports 380

than .c files, for all development approaches and heritages.
Therefore, we decided to conduct the analysis separately for
.c and .h files. Figures 5a-5c also show that handwritten code
had wider distribution of file sizes than AGC.

Tables VIII and IX show the basic statistics for .c and .h
files broken down by development approach and heritage.
Figures 6a, 6b, and 6c present the boxplots of fixes per
file for all files (i.e., .c and .h together), .c, and .h files,
respectively. Figures 7a, 7b, and 7c present the boxplots of
fixes per KLLOC for all files, .c, and .h files, respectively.

As can be seen from Table VIII and Figures 6a, 6b, and
6c, both median and mean number of fixes per file are
slightly higher for .c files than for .h files. Furthermore,
newly developed AGC-M .c and .h files have higher median
number of fixes per file and similar mean number of fixes
per file with newly developed handwritten files. Similarly as
for all files together, AGC-D .c and .h files were the least
fault prone, with zero median and an order of magnitude
lower mean fixes per file. (Due to the skewness of the data,

in these cases medians are better representation of central
tendency than means.)

When it comes to the fix density (i.e., the number of fixes
per KLLOC), as can be seen from Table IX and Figures 7a,
7b, and 7c, we observed that .h files have significantly higher
fix density than .c files, for all statistics. This is mostly due to
the fact that .h files have an order of magnitude smaller file
sizes that .c files (see Table VIII and Figures 5b and 5c). For
newly developed files, AGC-M .c files have slightly lower
median fix density than newly developed handwritten files,
while AGC-M .h files have significantly higher median fix
density than handwritten files. The same is true for the mean
fix density. The mean values, however, are higher than the
median values as they are more sensitive to outliers.

V. SUMMARY OF THE RESULTS AND LESSONS LEARNED

Table X summarizes the qualitative and quantitative find-
ings, organized by the research questions RQ1 - RQ3.



Table VII: Basic statistics of the number of fixes at file level, by development approach and heritage

Development Heritage # of Total Mean LLOC Total Median fixes Mean fixes Median fixes Mean fixes
approach files LLOC per file fixes per file per file / KLLOC KLLOC

New 38 5,855 154 122 3.00 3.21 30.77 139.72
AGC-M ReE 6 297 50 0 0.00 0.00 0.00 0.00

ReU 0 0 0 0 0.00 0.00 0.00 0.00
New 88 9,866 112 21 0.00 0.24 0.00 3.97

AGC-D ReE 68 5,055 74 8 0.00 0.12 0.00 2.07
ReU 14 459 33 5 0.00 0.36 0.00 12.00
New 207 52,185 252 671 2.00 3.24 19.80 73.01

Handwritten ReE 132 30,743 233 400 2.00 3.03 18.93 74.88
ReU 74 15,937 215 136 1.00 1.84 14.65 44.65

Table VIII: Basic statistics of the number of fixes at file level, by development approach and heritage, split by .c and .h files

Dev approach Heritage # of files Total LLOC Mean LLOC per file Total fixes Median fixes per file Mean fixes per file
(.c) (.h) (.c) (.h) (.c) (.h) (.c) (.h) (.c) (.h) (.c) (.h)

New 15 23 5,135 720 342 31 56 66 4.00 3.00 3.73 2.87
AGC-M ReE 2 4 231 66 116 16 0 0 0.00 0.00 0.00 0.00

ReU 0 0 0 0 0 0 0 0 0.00 0.00 0.00 0.00
New 44 44 6,551 3,315 149 75 11 10 0.00 0.00 0.25 0.23

AGC-D ReE 34 34 3,286 1,769 97 52 5 3 0.00 0.00 0.15 0.09
ReU 7 7 285 174 41 25 3 2 0.00 0.00 0.43 0.29
New 128 79 45,317 6,868 354 87 455 216 2.00 2.00 3.55 2.73

Handwritten ReE 87 45 26,573 4,170 305 93 265 135 2.00 2.00 3.05 3.00
ReU 48 26 14,320 1,617 298 62 94 42 1.00 1.00 1.96 1.62

Table IX: Basic statistics of the number of fixes per KLLOC
at file level, split by .c and .h files

Dev approach Heritage Median fixes / KLLOC Mean fixes / KLLOC
(.c) (.h) (.c) (.h)

New 11.83 100.00 14.79 221.19
AGC-M ReE 0.00 0.00 0.00 0.00

ReU 0.00 0.00 0.00 0.00
New 0.00 0.00 2.97 4.97

AGC-D ReE 0.00 0.00 1.98 2.17
ReU 0.00 0.00 10.21 13.79
New 14.87 52.63 22.44 154.93

Handwritten ReE 12.39 37.66 28.63 164.28
ReU 8.89 38.69 20.68 88.91

VI. THREATS TO VALIDITY

Construct validity is concerned with whether we are
measuring what we intend to measure. One threat to con-
struct validity is the use of imprecise terminology, which
makes comparisons across studies difficult. To address this
threat, we provided the definitions of the terms faults, fail-
ures, and fixes. Other threats to construct validity may be due
to data values and their interpretation. We worked closely
with the NASA personnel to ensure that we thoroughly
understood the data and did not misinterpret any values.
To further address construct validity, we analyzed the fault
proneness at both module and file level, and found that the
analysis at file level was more relevant because (1) file sizes
were more balanced than module sizes and (2) only two (out
of 67) modules were fully auto-generated.

Internal validity threats are concerned with unknown
influences that may affect independent variables and their
interaction with dependent variables. Data quality is one of

the major concerns to the internal validity. To ensure the
data quality, we had multiple interactions with the NASA
personnel, manually investigated the dataset used in this
paper, and conducted sanity checks.

Conclusion validity threats impact the ability to draw
correct conclusions. One threat to conclusion validity is
related to data sample sizes. The work presented in this paper
is based on a fairly large dataset consisting of 380 closed
bug reports. Other threats to conclusion validity are related to
the way the results are reported. We reported both the mean
and median values, noting that for skewed datasets median
values are more representative. Finally, it is important to
mention that our work was done in close collaboration with
NASA personnel. Developers’ feedback on the initial results
was obtained at in-person meetings. Subsequently, they
provided feedback on the progress through regular e-mail
communication. This close collaboration contributed to the
quality of the research and ensured accurate interpretation
of the results.

External validity is concerned with the ability to general-
ize the results. This work is based on one case study and we
cannot claim that the results would be valid across other soft-
ware systems. Generalizations are usually based on multiple
empirical studies that have replicated the same phenomenon
under different conditions [30], [32]. Whenever possible, we
compared our results with prior works focused on software
fault proneness. However, there is a lack of empirical works
focused on specifics of software fault proneness for systems
that were developed using MBSwE. Therefore, the external
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Figure 5: Boxplots of file sizes
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Figure 6: Boxplots of fixes per file
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Figure 7: Boxplots of fixes per KLLOC

validity remains to be established by future studies that will
use other software products as case studies.

VII. CONCLUSION

In this paper we presented a study of the approaches
to MBSwE and AGC used by a NASA mission, the SWA
practices used by the mission, and the empirical analysis of
the software fault proneness. The mission’s flight software
is a combination of handwritten code and AGC developed
by two different approaches, one using state charts and the
other using specification dictionaries. The qualitative and
quantitative analysis presented in this paper led to obser-
vation of some expected patterns, as well as to discovery of
new findings. Several interesting findings and their potential
implications are as follows.

Significant number of bug reports led to fixes that
were spread not only across multiple files, but also across
multiple modules. On average, individual bug reports were

associated with 1.4 modules, that is, 3.4 files. These results
show the generalizability of previous findings [3] and have
several implications. Thus, they indicate the danger of in-
jecting (i.e., seeding) only simple semantic faults, localized
to a single module, which affects areas such as fault-based
testing and mutation testing. Furthermore, the assumption
that each failure is caused by a single component, which is a
widely used in component-based software reliability models,
appears to be an oversimplification of the real phenomenon.

MBSwE and AGC provide some benefits, but also
impose challenges, such as inability of the tools to account
for some specifics of flight software, extra effort needed to
develop the models, low readability of the AGC, lack of
off-nominal cases in the modeling phase, and difficulty of
maintaining the AGC-M onboard due to limited hardware
resources to run the whole suite of MBSwE tools. These
challenges may be easily overlooked and/or underestimated
when planning the software development based on MBSwE.



Table X: Summary of main findings

Topic Findings Section
RQ1 Approaches to MBSwE

& AGC
Two MBSwE approaches: AGC-M from state chart models created in MagicDraw and AGC-D using
specification dictionaries as input.

III

Challenges: tools Some specifics of the flight software could not be accounted for by the used MBSwE tools. III
Challenges: models Extra effort was needed to develop the models; it was an open question when to stop including details

in the model; models tended to obscure the lower level details in the AGC-M.
Challenges: AGC-M
readability

Not readable because the code is not intuitive and lacks comments. Readability improved once the patterns
used by MagicDraw were known and understood.

Perceived value The development team found the AGC approach based on dictionaries (AGC-D) much more useful that
the approach based on state charts (AGC-M).

RQ2 SWA Developers conducted design reviews using less detailed state charts, but did not find testing statechart
models to be very useful. Both models and AGC-M were committed in the version control system; once
committed, AGC-M was not changed manually. The models and AGC-M were always kept in-sync and
AGC-M was tested using the same process as handwritten code.

III

Challenges The off-nominal cases were not available in the modeling phase. The mission’s flight software is a
combination of handwritten and AGC. AGC-M may be hard to maintain onboard while using a console
on which the whole modeling suite, and thus the models, are not available.

RQ3 Bug reports Majority of bugs were found during FIT and SIT (i.e., 59% and 21%, respectively). IV-B
Fixes at module level 25% of bug reports led to changes in two or more modules. On average, 1.4 modules were fixed to

address an individual bug report, but the distribution was skewed with some bug reports leading to as
many as 9 or 11 modules being fixed.

IV-C

55% of all fixes were associated with only 20% of modules
Among newly developed modules, AGC-M modules had significantly higher median number of fixes per
module (i.e., 19.00) than AGC-D and handwritten modules (with 6.50 and 2.00, respectively). The same
is true for the mean number of fixes per module. Re-engineered AGC-M modules had smaller mean and
median number of fixes per module than AGC-D and handwritten modules. Reused handwritten modules
had smaller mean and median number of fixes per module than the AGC-D modules.
Within each development approach the new modules had the highest mean and median fixes per module,
followed by re-engineered and reused modules.

Fixes at file level On average, 3.4 files were fixed to address an individual bug report. Most bug reports led to changes in
more than one type of files. Most fixes required changes to handwritten source files, which was expected
because they dominated the code base. The majority of changes to auto-generated source code files
were made in conjunction to changes in either MagicDraw models (.mdxml) or XML files derived from
dictionaries (.xml), which confirms that auto-generated code and models were kept in-sync.

IV-D.

For newly developed files, the median number of fixes per file of AGC-M is slightly higher than for
handwritten code (i.e., 3 vs. 2 fixes per file). The mean number of fixes per file of AGC-M and handwritten
code were comparable (i.e., 3.21 vs. 3.24). The AGC-D files are the least fault prone, with zero median
fixes per file and an order of magnitude smaller mean number of fixes per file. Reused AGC-D files had
higher mean number of fixes per file than new and re-engineered files.
Both median and mean number of fixes per file are slightly higher for .c files than for .h files. Newly
developed AGC-M .c and .h files have higher median number of fixes per file and similar mean number
of fixes per file with newly developed handwritten files. AGC-D .c and .h files are the least fault prone,
with zero median and an order of magnitude lower mean fixes per file.

MBSwE does not mean that SWA should be done only
on models. In case of this NASA mission, the AGC-M was
tested using the same process as handwritten code and the
models and AGC-M were always kept in-sync. Based on
the lessons learned from model-based development of flight
software in previous missions, this mission committed both
the models and AGC-M in the version control system. Once
committed, AGC-M was not changed manually.

MBSwE and AGC do not always lead to better
software quality. Basically, not all AGC is equal. In our case
study, for newly developed files, AGC-M and handwritten
code were of similar quality (i.e., had comparable mean
values of the number of fixes per file, while AGC-M files
had slightly higher median values). These results may be
partially due to the fact that some bugs, such as those related
to requirements, are likely to affect the software development
regardless of the development approach. Additional chal-
lenges, such as the use of new hardware and unavailability

of the off-nominal cases during the modeling phase, could
also explain these results. Unlike AGC-M files, AGC-D files
were the least fault prone, which is likely due to the fact
that AGC-D was mainly structural code, with no behavioral
details.

It appears that learning more about the state-of-the-
practice of MBSwE and AGC and the fault proneness trends
of the software systems developed using these technologies
is necessary to help understanding the benefits and chal-
lenges and further improve the state-of-the-art and practice
of model-based software development.
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