264 research outputs found

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Improvement to an existing multi-level capacitated lot sizing problem considering setup carryover, backlogging, and emission control

    Get PDF
    This paper presents a multi-level, multi-item, multi-period capacitated lot-sizing problem. The lot-sizing problem studies can obtain production quantities, setup decisions and inventory levels in each period fulfilling the demand requirements with limited capacity resources, considering the Bill of Material (BOM) structure while simultaneously minimizing the production, inventory, and machine setup costs. The paper proposes an exact solution to Chowdhury et al. (2018)\u27s[1] developed model, which considers the backlogging cost, setup carryover & greenhouse gas emission control to its model complexity. The problem contemplates the Dantzig-Wolfe (D.W.) decomposition to decompose the multi-level capacitated problem into a single-item uncapacitated lot-sizing sub-problem. To avoid the infeasibilities of the weighted problem (WP), an artificial variable is introduced, and the Big-M method is employed in the D.W. decomposition to produce an always feasible master problem. In addition, Wagner & Whitin\u27s[2] forward recursion algorithm is also incorporated in the solution approach for both end and component items to provide the minimum cost production plan. Introducing artificial variables in the D.W. decomposition method is a novel approach to solving the MLCLSP model. A better performance was achieved regarding reduced computational time (reduced by 50%) and optimality gap (reduced by 97.3%) in comparison to Chowdhury et al. (2018)\u27s[1] developed model

    Integrated capacitated lot sizing and scheduling problems in a flexible flow line

    Get PDF
    The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive real-world applications in many industries. An FFL consists of several production stages in series with parallel machines at each stage. The decisions to be taken are the determination of production quantities (lots), machine assignments and production sequences (schedules) on each machine at each stage in an FFL. Lot sizing and scheduling problems are closely interrelated. Solving them separately and then coordinating their interdependencies is often ineffective. However due to their complexity, there is a lack of mathematical modelling and solution procedures in the literature to combine and jointly solve them.Up to now most research has been focused on combining lotsizing and scheduling for the single machine configuration, and research on other configurations like FFL is sparse. This thesis presents several mathematical models with practical assumptions and appropriate algorithms, along with experimental test problems, for simultaneously lotsizing and scheduling in FFL. This problem, called the ‘General Lot sizing and Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL). The objective is to satisfy varying demand over a finite planning horizon with minimal inventory, backorder and production setup costs. The problem is complex as any product can be processed on any machine, but these have different processing rates and sequence-dependent setup times & costs. As a result, even finding a feasible solution of large problems in reasonable time is impossible. Therefore the heuristic solution procedure named Adaptive Simulated Annealing (ASA), with four well-designed initial solutions, is designed to solve GLSP-FFL.A further original contribution of this study is to design linear mixed-integer programming (MILP) formulations for this problem, incorporating all necessary features of setup carryovers, setup overlapping, non-triangular setup while allowing multiple lot production per periods, lot splitting and sequencing through ATSP-adaption based on a variety of subtour elimination

    Reinforcement learning approaches for the stochastic discrete lot-sizing problem on parallel machines

    Get PDF
    This paper addresses the stochastic discrete lot-sizing problem on parallel machines, which is a computationally challenging problem also for relatively small instances. We propose two heuristics to deal with it by leveraging reinforcement learning. In particular, we propose a technique based on approximate value iteration around post-decision state variables and one based on multi-agent reinforcement learning. We compare these two approaches with other reinforcement learning methods and more classical solution techniques, showing their effectiveness in addressing realistic size instances

    Lot-Sizing Problem for a Multi-Item Multi-level Capacitated Batch Production System with Setup Carryover, Emission Control and Backlogging using a Dynamic Program and Decomposition Heuristic

    Get PDF
    Wagner and Whitin (1958) develop an algorithm to solve the dynamic Economic Lot-Sizing Problem (ELSP), which is widely applied in inventory control, production planning, and capacity planning. The original algorithm runs in O(T^2) time, where T is the number of periods of the problem instance. Afterward few linear-time algorithms have been developed to solve the Wagner-Whitin (WW) lot-sizing problem; examples include the ELSP and equivalent Single Machine Batch-Sizing Problem (SMBSP). This dissertation revisits the algorithms for ELSPs and SMBSPs under WW cost structure, presents a new efficient linear-time algorithm, and compares the developed algorithm against comparable ones in the literature. The developed algorithm employs both lists and stacks data structure, which is completely a different approach than the rest of the algorithms for ELSPs and SMBSPs. Analysis of the developed algorithm shows that it executes fewer number of basic actions throughout the algorithm and hence it improves the CPU time by a maximum of 51.40% for ELSPs and 29.03% for SMBSPs. It can be concluded that the new algorithm is faster than existing algorithms for both ELSPs and SMBSPs. Lot-sizing decisions are crucial because these decisions help the manufacturer determine the quantity and time to produce an item with a minimum cost. The efficiency and productivity of a system is completely dependent upon the right choice of lot-sizes. Therefore, developing and improving solution procedures for lot-sizing problems is key. This dissertation addresses the classical Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) and an extension of the MLCLSP with a Setup Carryover, Backlogging and Emission control. An item Dantzig Wolfe (DW) decomposition technique with an embedded Column Generation (CG) procedure is used to solve the problem. The original problem is decomposed into a master problem and a number of subproblems, which are solved using dynamic programming approach. Since the subproblems are solved independently, the solution of the subproblems often becomes infeasible for the master problem. A multi-step iterative Capacity Allocation (CA) heuristic is used to tackle this infeasibility. A Linear Programming (LP) based improvement procedure is used to refine the solutions obtained from the heuristic method. A comparative study of the proposed heuristic for the first problem (MLCLSP) is conducted and the results demonstrate that the proposed heuristic provide less optimality gap in comparison with that obtained in the literature. The Setup Carryover Assignment Problem (SCAP), which consists of determining the setup carryover plan of multiple items for a given lot-size over a finite planning horizon is modelled as a problem of finding Maximum Weighted Independent Set (MWIS) in a chain of cliques. The SCAP is formulated using a clique constraint and it is proved that the incidence matrix of the SCAP has totally unimodular structure and the LP relaxation of the proposed SCAP formulation always provides integer optimum solution. Moreover, an alternative proof that the relaxed ILP guarantees integer solution is presented in this dissertation. Thus, the SCAP and the special case of the MWIS in a chain of cliques are solvable in polynomial time

    Industrial insights into lot sizing and schedulingmodeling

    Get PDF
    © 2015 Brazilian Operations Research Society. Lot sizing and scheduling by mixed integer programming has been a hot research topic inthe last 20 years. Researchers have been trying to develop stronger formulations, as well as to incorporatereal-world requirements from different applications. This paper illustrates some of these requirements anddemonstrates how small- and big-bucket models have been adapted and extended. Motivation comes fromdifferent industries, especially from process and fast-moving consumer goods industries

    Integrated capacitated lot sizing and scheduling problems in a flexible flow line

    Get PDF
    The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive real-world applications in many industries. An FFL consists of several production stages in series with parallel machines at each stage. The decisions to be taken are the determination of production quantities (lots), machine assignments and production sequences (schedules) on each machine at each stage in an FFL. Lot sizing and scheduling problems are closely interrelated. Solving them separately and then coordinating their interdependencies is often ineffective. However due to their complexity, there is a lack of mathematical modelling and solution procedures in the literature to combine and jointly solve them. Up to now most research has been focused on combining lotsizing and scheduling for the single machine configuration, and research on other configurations like FFL is sparse. This thesis presents several mathematical models with practical assumptions and appropriate algorithms, along with experimental test problems, for simultaneously lotsizing and scheduling in FFL. This problem, called the ‘General Lot sizing and Scheduling Problem in a Flexible Flow Line’ (GLSP-FFL). The objective is to satisfy varying demand over a finite planning horizon with minimal inventory, backorder and production setup costs. The problem is complex as any product can be processed on any machine, but these have different processing rates and sequence-dependent setup times & costs. As a result, even finding a feasible solution of large problems in reasonable time is impossible. Therefore the heuristic solution procedure named Adaptive Simulated Annealing (ASA), with four well-designed initial solutions, is designed to solve GLSP-FFL. A further original contribution of this study is to design linear mixed-integer programming (MILP) formulations for this problem, incorporating all necessary features of setup carryovers, setup overlapping, non-triangular setup while allowing multiple lot production per periods, lot splitting and sequencing through ATSP-adaption based on a variety of subtour elimination.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Lotsizing and scheduling in the glass container industry

    Get PDF
    Manufacturing organizations are keen to improve their competitive position in the global marketplace by increasing operational performance. Production planning is crucial to this end and represents one of the most challenging tasks managers are facing today. Among a large number of alternatives, production planning processes help decision-making by tradingoff conflicting objectives in the presence of technological, marketing and financial constraints.Two important classes of such problems are lotsizing and scheduling. Proofs from complexity theory supported by computational experiments clearly show the hardness of solving lotsizing and scheduling problems.Motivated by a real-world case, the glass container industry production planning and scheduling problem is studied in depth. Due to its inherent complexity and to the frequent interdependencies between decisions that are made at and affect different organizational echelons, the system is decomposed into a two-level hierarchically organized planning structure: long-term and short-term levels.This dissertation explores extensions of lotsizing and scheduling problems that appear in both levels. We address these variants in two research directions. On one hand, we develop and implement different approaches to obtain good quality solutions, as metaheuristics (namely variable neighborhood search) and Lagrangian-based heuristics, as well as other special-purpose heuristics. On the other hand, we try to combine new stronger models and valid inequalities based on the polyhedral structure of these problems to tighten linear relaxations and speed up the solution process.Manufacturing organizations are keen to improve their competitive position in the global marketplace by increasing operational performance. Production planning is crucial to this end and represents one of the most challenging tasks managers are facing today. Among a large number of alternatives, production planning processes help decision-making by tradingoff conflicting objectives in the presence of technological, marketing and financial constraints.Two important classes of such problems are lotsizing and scheduling. Proofs from complexity theory supported by computational experiments clearly show the hardness of solving lotsizing and scheduling problems.Motivated by a real-world case, the glass container industry production planning and scheduling problem is studied in depth. Due to its inherent complexity and to the frequent interdependencies between decisions that are made at and affect different organizational echelons, the system is decomposed into a two-level hierarchically organized planning structure: long-term and short-term levels.This dissertation explores extensions of lotsizing and scheduling problems that appear in both levels. We address these variants in two research directions. On one hand, we develop and implement different approaches to obtain good quality solutions, as metaheuristics (namely variable neighborhood search) and Lagrangian-based heuristics, as well as other special-purpose heuristics. On the other hand, we try to combine new stronger models and valid inequalities based on the polyhedral structure of these problems to tighten linear relaxations and speed up the solution process

    Lotsizing and scheduling problems

    Get PDF
    Diese Magisterarbeit gibt einen Überblick über Losgrößen- und Reihefolgeplanungsprobleme. Losgrößenplanung und Reihefolgeplanung sind integrale Bestandteile der Produktionsplanung. Sie geben an wie viele Produkte und in welcher Reihenfolge diese produziert werden sollen, um die Gesamtkosten zu minimieren. Der Hauptteil der Arbeit beschäftigt sich mit der Darstellung der unterschiedlichen Problemverfahren. Diese werden anhand von Definitionen, mathematischen Formulierungen und Beispielen dargestellt. Zu Beginn der Arbeit wird das Produktionsplanungssystem (PPS) erläutert (in Kapitel 1.1). Dann werden die Definitionen von Losgrößenplanung und Reihefolgeplanung und ihr Zusammenhang erklärt (in Kapitel 2). Darauf folgen eine allgemeine Problembeschreibung und die verschiedenen Kriterien für Losgrößen- und Reihefolgeplanungsprobleme (in Kapitel 3). Im Hauptteil werden die verschiedenen Problemtypen aufgelistet. Es werden einstufige unkapazitierte (in Kapitel 4) und einstufig kapazitierte Probleme (in Kapitel 5), genauso wie mehrstufige Probleme (in Kapitel 6) und Probleme auf mehreren Maschinen (in Kapitel 7) erklärt. Ebenfalls wird die hierarchische Integration von Losgrößen- und Reihefolgeplanungsproblemen beschrieben (in Kapitel 8). Zuletzt werden ein Vergleich der unterschiedlichen Verfahren dargestellt (in Kapitel 9) und die möglichen Lösungsverfahren (in Kapitel 10) behandelt
    corecore