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Abstract 
 

The lot sizing and scheduling problem in a Flexible Flow Line (FFL) has extensive 

real-world applications in many industries. An FFL consists of several production 

stages in series with parallel machines at each stage. The decisions to be taken are 

the determination of production quantities (lots), machine assignments and 

production sequences (schedules) on each machine at each stage in an FFL. Lot 

sizing and scheduling problems are closely interrelated. Solving them separately and 

then coordinating their interdependencies is often ineffective. However due to their 

complexity, there is a lack of mathematical modelling and solution procedures in the 

literature to combine and jointly solve them. 

Up to now most research has been focused on combining lotsizing and scheduling 

for the single machine configuration, and research on other configurations like FFL 

is sparse. This thesis presents several mathematical models with practical 

assumptions and appropriate algorithms, along with experimental test problems, for 

simultaneously lotsizing and scheduling in FFL. This problem, called the ‗General 

Lot sizing and Scheduling Problem in a Flexible Flow Line‘ (GLSP-FFL). The 

objective is to satisfy varying demand over a finite planning horizon with minimal 

inventory, backorder and production setup costs. The problem is complex as any 

product can be processed on any machine, but these have different processing rates 

and sequence-dependent setup times & costs. As a result, even finding a feasible 

solution of large problems in reasonable time is impossible. Therefore the heuristic 

solution procedure named Adaptive Simulated Annealing (ASA), with four well-

designed initial solutions, is designed to solve GLSP-FFL. 

A further original contribution of this study is to design linear mixed-integer 

programming (MILP) formulations for this problem, incorporating all necessary 

features of setup carryovers, setup overlapping, non-triangular setup while allowing 

multiple lot production per periods, lot splitting and sequencing through ATSP-

adaption based on a variety of subtour elimination.  
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Chapters: 

1. Introduction 

Chapter 1  

Introduction 

1.1 Motivation 

The increasing intensity of competition in global market leads manufacturing 

companies to become more efficient. A key success factor in achieving this is having 

an elaborate production planning system. Due to rapid growth in their size and 

complexity, the mathematical modelling and optimization of manufacturing systems 

is an important challenge for Operational Research (OR). This work focuses on two 

important challenges in managing a flexible flow line, namely the sizing and 

scheduling of production lots.   

The flexible flow line also commonly referred to as hybrid flow shop, is a very 

prevalent production system and can be found in a vast number of industries, such as 

automotive, chemical, electronics, steel making, pharmaceutical, food and textile. 

FFL is a flow line with several parallel machines on some or all production stages 

and all products follow the same linear path through the system (Quadt, 2004).  

Lotsizing and scheduling are closely interrelated and considerably combined in 

the literature for single machine production system. However, it can be more 

complicated and challenging to integrate both problems in complex production 

systems like FFLs. Quadt and Kuhn (2005) explicitly identified a lack of literature 

not only on combined lot sizing and scheduling but also on stand-alone lot sizing in 

FFLs. They presented an integrative solution approach for the combined lot-sizing 

and scheduling problem in FFLs which is limited to necessity of bottleneck stage 

identification.  

Fandel and Stammen-Hegene (2006) formulated the Multi Level General Lot 

sizing and Scheduling Problem with Multiple Machines (MLGLSP-MM). In the 

MLGLSP-MM, products are produced on different machines with general 

production structure in job shop production. However the paper contains only a 

mathematical model for the MLGLSP-MM without any numerical tests or solution 
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procedure, possibly because the authors themselves recognized that the model‘s 

complexity limits optimal solutions to just small instances. Recently, Mohammadi 

and Jafari (2010) developed an MIP (Mixed Integer Programming) model for 

flexible flow shop system based on Fandel and Stammen-Hegene (2006) 

formulations. They assumed the vertical interaction or ―inter-level synchronization‖ 

between production stages means a production on a production stage can only begin 

if there is sufficient amount of the product from the previous production stage. The 

shortage and lot-splitting are not allowed and sequence-dependent setup costs and 

times are triangles.  

For the first time, in this thesis I research new challenges such as lot splitting 

and shortages, the practiced assumptions in flexible flow shop manufacturing 

systems (Özdamar and Barbaroso lu, 1999). Moreover sequence-dependent setup 

times can be ―non-triangular‖ as is the case in many industries such as chemical, 

pharmaceutical, food and oil as some contamination occurs between certain 

products. For example, a product 𝑝 contaminates some other product 𝑟, but in order 

to decontaminate, either an additional cleaning operation must be done as part of a 

substantial setup time setup 𝑠𝑡𝑝𝑟  that consumes the scarce production time, or a third 

product 𝑞 that can absorb the contamination must be produced. Such intermediate 

―cleansing‖ or shortcut products can cause non-triangular setup times i.e. product 𝑞’s 

ability to absorb 𝑝’s contamination presents a shortcut opportunity and could result 

in shorter non-triangular setup times such that 𝑠𝑡𝑝𝑟 > 𝑠𝑡𝑝𝑞 + 𝑠𝑡𝑞𝑟  and product q 

cleans the machines whilst being processed.  

Furthermore the ―lead-time synchronization‖ between production stages is 

assumed, means a product which is produced at a stage is available for production at 

the next stage only in the next periods.  

Responding to the challenge, the thesis hypothesis is creating the new 

mathematical models for General Lot sizing and Scheduling in FFL (GLSP-FFL) 

while considering practical assumptions and solving them which come up with 

production plans that are more efficient than it would get by solving existing models.  

GLSP-FFL determines both lot sizes and sequences on parallel machines in multi-

stage production system. The problem is complex as any product can be processed 

on any machine but with different process rates and sequence-dependent setup times 

& costs. Firstly, we designed three mathematical models (FFL-FS, FFL-CC and 
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FFL-FM) for GLSP-FFL and presented in 7
th

 international industrial engineering 

conference 2010 (Mahdieh et al., 2010). Later, it was published in Journal of 

Industrial and Systems Engineering (Mahdieh et al., 2012). The first model (FFL-

FS) is ―dynamic‖ since a decision variable appears as an upper limit index in many 

constraints, so the model cannot be solved as a MIP, whereas the second and third 

can. The efficiency of two latter MIP models was assessed and evaluated using 

numerical tests. 

In this thesis, I present a new linear MIP model (FFL-ATSP) through adaption 

of Asymmetric Travelling Salesman Problem (ATSP) and show through the 

numerical tests that the new ATSP adaptation for GLSP-FFL has significant 

improvement of problem‘s solution in comparison with FFL-CC and FFL-FM.  

Fleischmann and Meyr (1997) have showed that the General Lot sizing and 

Scheduling Problem (GLSP) for single machine with non-zero minimum lot sizes is 

a very difficult combinatorial problem and even finding a feasible solution is NP-

complete. Thus, it can be concluded that the feasibility of our problem, the GLSP 

with non-zero sequence-dependent setup times/costs in a complex production 

system, flexible flow line, is also NP-complete. Hence it is necessary to develop an 

efficient solution procedure for GLSP-FFL. Here an Adaptive Simulated Annealing 

(ASA) with four well-organized initial solutions is designed to solve GLSP-FFL. 

The main restriction of conventional ATSP based models is allowing one lot per 

product per periods so multiple lots of shortcut products cannot be produced per 

period when non-triangular setup exits. In a very recent work, Clark and I modelled 

multiple lots per period via different subtour elimination constraints for single 

machine and presented in 43rd Annual Symposium of the Brazilian Operational 

Research Society (Clark and Mahdieh, 2011) and its revision has been submitted to 

the International Journal of Production Research (Clark et al., 2012). In chapter 4 its 

extension to parallel machine and FFL system while incorporating all features of 

setup carry-over and setup-overlapping is modelled. 

1.2 Characteristics of the Problem  

This thesis breaks new ground by modelling lot sizing and scheduling in a 

flexible flow line simultaneously instead of separately while incorporating a variety 

of practical assumptions such as lot-splitting, shortage and non-triangular setup. The 

objective is to satisfy varying demand over a finite planning horizon with minimal 



4 

 

inventory, backorder and production setup costs. The following system 

characteristics are explicitly noted: 

The production line consists of several processing stages in series, separated by 

finite intermediate buffers, where each stage has one or more parallel identical 

machines. Multiple products can be produced at stages and production at each stage 

involves unrelated parallel machines with different production rates. All machines 

can produce any product. The available capacity of each machine is limited and can 

vary between periods and stages.  

The finite planning horizon is divided into T macro-periods.  The independent 

demand for all products is felt at the final stage at the end of each macro-period. It is 

known with certainty, but varies dynamically over the planning horizon. Demand for 

items in other stages is dependent on the production of the next stage.  Backlog 

shortages are permitted for products at the final stage but are upper-bounded by a 

given percentage of demand in each macro-period. This is the practiced assumption 

in flow shop manufacturing systems (Özdamar et al., 1999). 

The products may be manufactured in lots of varying size on any one of the 

parallel machines in each stage. The production rate can vary between products and 

machines, but is constant over the planning horizon.  A changeover from one product 

to another requires a setup time during which the machine is unproductive. Setup 

times and costs are sequence dependent and can vary between machines. The setup 

state is conserved when no product is being processed (setup carryover). At the 

beginning of the planning horizon, each machine is setup for a specified product. 

A two-level time structure is assumed. Each macro-period consists of a variable 

number of micro-periods with variable length.  Each machine has its own micro-

period segmentation, i.e., the number of micro-period can differ between machines.  

Micro-periods do not have to be of equal durations on the same machine. At the start 

of a micro-period, a machine is setup and then produces just one product until the 

end of the micro-period. Lot-splitting is permitted at any stage, i.e., each product can 

be simultaneously produced on more than one machine at any given stage. In order 

to obtain viable schedules, it is assumed that there is the lead time of one period 

between different production stages (lead-time synchronization). In this case, a 

product which is produced at a stage is available for production at the next stage only 

in the next periods.  
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1.3 Outline of the chapters 

The work is divided into six chapters. The reminder of the thesis is as follows. 

Chapter 2 provides the review of the literature and recent developments of 

deterministic dynamic lotsizing problems. The focus of this review is on capacitated 

lotsizing with sequence-dependent setup which is closely interrelated to scheduling 

and considerably combined in the literature. However, it can be more complicated 

and challenging to integrate both problems in complex production systems like FFL. 

This review discusses a modelling perspective of this challenge on a variety of 

machine configurations and points out fertile opportunities for future research.  

Chapter 3 presents a novel linear MIP model (FFL-ATSP) for the problem of 

integrating lot sizing, loading, and scheduling in capacitated flexible flow lines with 

sequence-dependent setups through adaptation of ATSP. In comparison to our 

former models (FFL-CC and FFL-FM), fewer variables and constraints of FFL-

ATSP model makes it more efficient and faster to be solved. Computational tests 

demonstrate the superiority of FFL-ATSP and its fast speed of solution compared to 

FFL-CC and FFL-FM.  

Chapter 4 is devoted to heuristic solution procedure called an Adaptive 

Simulated Annealing (ASA) with an effective adaptive temperature control scheme 

for solving large instances in GLSP-FFL. The adaptive temperature control scheme 

changes temperature based on the number of consecutive improving moves and 

maintains it above the minimum level. Four initial solutions and neighbour operators 

are designed for ASA. The third and fourth novel initial solutions are obtained by 

solving well-organized model which extracts from the GLSP-FFL and ATSP model 

respectively. The numerical test compares the efficiency of different initial solutions.  

Chapter 5 is presented the new mix integer programming formulations for 

capacitated lot sizing and scheduling with non-triangular and sequence-dependent 

setup times and costs incorporating all necessary features of setup carryover and 

overlapping on different machine configurations. The innovation of the new 

formulation is the modelling of non-triangular sequence-dependent setups within lot 

sizing model based on ATSP problem that allows multiple lots per product per 

period with polynomial number of disconnected subtours prohibition constraints.  

To assess how effectively the multiple lot model with setup overlapping takes 

advantage of shortcut product and setup overlapping feature to reduce backlogs and 
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inventory, three models including one-Lot (1L), Multiple Lots (ML) and Multiple 

Lots with setup overlapping (MLOV) are compared for three production systems: 

Single Machine (SM), Parallel Machines (PM) and FFL.  

Finally, Chapter 6 summarizes the work and suggests directions for future 

research. 
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2. Literature review 

 

Chapter 2 

Literature review 

 

 

Generally, production planning in manufacturing determines what product is to 

be produced on which machine at what time. Production planning problems are 

typically classified according to hierarchical structure of long-term or strategic, 

medium-term or tactical and short-term or operational (Bitran and Tirupati, 1993). 

Long-term planning uses aggregated demand forecasts and makes strategic decisions 

such as aggregate resource planning to mainly achieve financial targets. Medium-

term planning is more detailed and uses partially disaggregated demand to often 

determine Material Requirement Plan (MRP) and production quantities over 

planning horizon to optimize both operational and financial criteria while satisfying 

capacity limitations.  Short-term planning uses totally disaggregated or actual 

demands to make day-to-day decisions on lot sizing, scheduling and loading 

problems (Heizer and Render, 2004, Karimi et al., 2003). Firstly, Gelders and Van 

Wassenhove (1981) gave an overview on medium- and short-term production 

planning and then in (Gelders and Van Wassenhove, 1982) they focused on the issue 

of integrating various decision level in hierarchical planning. So far considerable 

amount of research has been done on the various aspects of production planning and 

inventory management and large amount of models and techniques are already 

available (Graves et al., 1993, Pochet and Wolsey, 2006, Quadt and Kuhn, 2008, 

Silver et al., 1998, Thomas et al., 1993, Vollmann et al., 1997). 

Lot sizing models can be classified either as medium-term or short-term models 

according to their level of aggregation and decision horizon (Clark et al., 2011, Jans 

and Degraeve, 2007b).  This study focuses on lot sizing problems with sequence 

dependent setup times/costs which include more operational and scheduling issues.  
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2.1 Basic Lotsizing models 

Lot sizing aims to determine the optimal timing and level of production. 

Research on lot sizing started with the economic order quantity (EOQ) model 

(Harris, 1913). The main assumption for the EOQ models is constant demand for a 

product over an infinite planning horizon. Since there is no capacity constraint 

during a single level production process in the EOQ model, the economic lotsizing 

problem (ELSP) model is developed for multi-product or multi-item considering 

capacity constraint (Elmaghraby, 1978, Zipkin, 1991). However both EOQ and 

ELSP are based on a constant demand over an infinite time. The Wagner–Whitin 

(WW) model (Wagner and Whitin, 1958) is one of the first models for a dynamic 

demand where a finite planning horizon is subdivided into several discrete periods 

and demand is given per period and may very over time. The WW problem is single-

level, single-item without capacity constraints. The capacitated lotsizing problem 

(CLSP) can be considered as the extension of the WW problem to capacity 

constraints and multi-item problem (Bitran and Yanasse, 1982, Haase, 1996, Karimi 

et al., 2003).  

The CLSP is called large bucket problem since several item can be produced per 

period (Eppen and Martin, 1987). Subdividing the (macro-) periods of CLSP into 

several (micro-) periods leads to discrete lotsizing and scheduling problem (DLSP) 

which is called a small bucket problem (Salomon, 1991, Salomon et al., 1991, 

Salomon et al., 1997, Fleischmann, 1990). The main assumption of the DLSP is all-

or-nothing production that means only one item can be produced per period and uses 

the full capacity. A step towards more realistic situations is the continuous setup 

lotsizing problem (CSLP) (Bitran and Matsuo, 1986, Karmarkar et al., 1987) and the 

proportional lot sizing and scheduling problem (PLSP) (Drexl and Haase, 1995, 

Kimms and Drexl, 1998a, Kimms and Drexl, 1998b) which both do not include the 

strict all-or-nothing assumption of the DLSP. However, at most one item can be 

produced per period in the CSLP and two items in the PLSP. Comparing the small 

bucket lotsizing and scheduling models with the CLSP, the point reveals that through 

little changes the sequence decisions can be modelled in large bucket lotsizing 

problem. Thus in contrast to CLSP, lotsizing and scheduling is considered 

simultaneously (Haase, 1996, Haase and Kimms, 2000). The general lotsizing and 
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scheduling problem (GLSP) is a large bucket problem where due to simultaneously 

determine lot sizes and sequences, the planning periods divide into a predetermined 

number of (small bucket) micro-periods with at most one setup (Fleischmann and 

Meyr, 1997).  

Several features or assumptions can be taken into account within the basic lot 

sizing models such as backlogging, sequence-dependent setup cost or/and time, setup 

carry over, setup overlapping and different machine configurations like single or 

parallel machine and single or multi stage. Therefore the numerous extensions of 

basic models and solving algorithms can be found in the literature. Furthermore there 

are excellent review papers on these extensions which are worthwhile to discuss 

here.    

2.2 Previous reviews 

Firstly Bahl et al. (1987) classified lot sizing models into four categories based 

on demand type including single- and multi-level, and presence or absence of 

resource constraints. Wolsey (1995) and Brahimi et al. (2006) focused on single item 

lot-sizing problem and discussed different extensions of this problem for real-world 

applications. Potts and Van Wassenhove (1992) reviewed the literature on the 

integration of lot sizing and scheduling from a scheduling perspective and pointed 

out the lack of work on combining lot sizing and scheduling. Later Drexl and Kimms 

(1997) gave an overview on  lotsizing and scheduling models. They explained the 

differences of mathematical formulations for CLSP, DLSP, CSLD, PLSP and GLSP 

and also reviewed the extension of these models for multi-level structure. They 

underlined the importance of the extensions on sequence-dependent setup time, 

backlogging and parallel machines for future research. Karimi et al. (2003) discussed 

single-level lot sizing problem in both capacitated and uncapacitated cases and 

classified the literature based on different solution approaches applied for CLSP. 

They concluded similarly to Drexl and Kimms (1997) that there has been little 

literature regarding problems such as CLSP with backlogging or with setup time and 

setup carryover. 

Staggemeier and Clark  (2001) reviewed  meta-heuristics applied to the solution 

of lot-sizing and scheduling problems. Zhu and Wilhelm (2006) mainly reviewed the 

optimization and heuristic methods for scheduling problems with sequence-

dependent setup times (costs) based on a variety of machine configuration. They also 



10 

 

discussed the integration of these models with lot sizing problems and emphasized 

that most research has been done on single-machine configuration rather than other 

configurations. In an outstanding review Jans and Degraeve (2007b) gave an 

extensive overview of modelling deterministic single-level dynamic lotsizing 

problems and discussed the solution approach in Jans and Degraeve (2007a). They 

organized the extensions of these models in two directions. The first direction 

focuses on operational aspects including setups, production characters, inventory, 

demand side and rolling horizon. The second direction is towards more tactical and 

strategic aspects such as integrated production-distribution planning or supplier 

selection. They indicated that with introduction of sequence-dependent setups 

boundaries between lot sizing and scheduling are fading. They also noted that further 

integration of lot sizing, sequencing and loading (for example on parallel machine) is 

a challenging area for future research. 

Quadt and Kuhn (2008) present a literature review on CLSP problems that 

incorporate one of the following extensions in the: back-orders, setup carry-over, 

sequencing, and parallel machines. Buschkühl et al. (2010) reviewed different 

modelling and algorithmic solution approaches for the multi-level capacitated lot-

sizing problem (MLCLSP) while ignoring the sequencing and scheduling aspects.  

2.3 Capacitated Lot Sizing and scheduling with sequence-

dependent setups 

The classic CLSP does not sequence or schedule products within a period. In 

addition it does not allow a setup to be carried over from one period to the next, even 

when the last product in a period is the same as the first product in the next period. 

Gopalakrishnan et al. (1995) developed a modelling framework for formulating 

CLSP with setup carry over by introducing additional binary variables. Later 

Gopalakrishnan (2000) modified the modelling of Gopalakrishnan (2000) for 

incorporating sequence-independent and product-dependent setup times and costs. 

Different studies has demonstrated that considering the setup carry-over significantly 

saves costs by decreasing the number of setups and releasing production capacity 

(Gopalakrishnan et al., 2001, Gupta and Magnusson, 2005, Porkka et al., 2003, Sox 

and Gao, 1999). This problem also called the capacitated lot sizing problem with 

linked lot sizes (Suerie and Stadtler, 2003). 
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A further step for capacitated lot sizing is to determine a sequence for all 

products within a time period certainly if setup times or costs are sequence-

dependent. One of the first studies regarding sequence-dependent setup cost is 

DLSPSD (DLSP with sequence-dependent setup cost) by Fleischmann (1994). He 

reformulated DLSPSD as Travelling Salesman Problem With Time Windows 

(TSPWTW) formulation to propose a heuristic solution. Salomon (1997) 

incorporated sequence-dependent setup time into DLSPSD by applying the same 

TSPWTW approach. The main serious restriction of DLSP as a small bucket is not 

allowing setup time to be fraction of period capacity.  

Hence this study focuses on CLSP as a big bucket problem which is more 

flexible at integrating of lot sizing and sequencing decisions. The CLSP partitions 

the planning horizon into a number of lengthy time periods, allowing setup of 

several products within a same period (bucket). Gupta and Magnusson (2005) 

classified the CLSP literature according to extensions on sequence dependency of 

setup costs and times. They extended the framework proposed by Gopalakrishnan 

(2000) to include sequence-dependent setup times and costs. Hasse (1996) modelled 

Capacitated Lot sizing problem with Sequence-Dependent setup costs (CLSD) and 

included setup times (Haase and Kimms, 2000) by assuming of predetermined 

efficient production sequences and null inventory for a production of an item in a 

period. The GLSP (Fleischmann and Meyr, 1997) is very close to the CLSD but 

more flexible since eliminates the  restrictions of CLSD. Meyr (2000) included 

sequence-dependent Setup Times, resulting in the GLSPST and extended to the 

GLSPPL for parallel machines (Meyr, 2002). The GLSP has been known as the most 

flexible lotsizing and scheduling formulation in large bucket for representing 

different environment under slight modifications (Koçlar, 2005, Koçlar and Süral, 

2005). Moreover the restriction of holding setup triangular inequality is relaxed in 

GLSP which allows many time production of a product in a period as long as it does 

not exceed the number of position (macro-periods) in a period. The non-triangular 

setup times can happen in many industries such chemical, food, beverage and oil. 

For example, in the animal feed industry, some products can cause contamination of 

other families therefore equipment must be cleaned in order to avoid it. Cleaning 

results in substantial setups that consuming scarce production time. In this case the 

amount of cleaning can be minimised by producing the intermediate cleansing or 

shortcut products which can cause non-triangular setup times. In an alternative 
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approach to GLSP, Clark and Clark (2000) designed a mixed integer programming 

(MIP) model for simultaneous sequencing and lot sizing production lots on a set of 

parallel machines. They assumed non-triangular sequence-dependent setup times, no 

setup cost and backlogging possibility.  

The problem of sequencing a set of lots with sequence dependent setups is 

related to the travelling salesman problem (TSP) and the vehicle routing problem 

(VRP) (Laporte, 1992a, Laporte, 1992b). Almada-lobo et al. (2007) presented two 

models for CLSP with sequence-dependent setup times and costs using Miller-

Tucker-Zemlin subtour prohibition constraint (Desrochers and Laporte, 1991). They 

incorporated all necessary features of setup carryover which allows a product sets up 

at the end of one period and the actual production starts in the next period. To model 

this, triangular inequality for setup times and costs must be hold. Clark et al. (2010) 

formulated sequencing and lotsizing with non-triangular setup times based on 

Asymmetric Travelling Salesman Problem (ATSP) at animal feed plant. To solve the 

model optimal solution methods based on iterative subtour elimination and patching 

are developed. In the ATSP-based models (Almada-lobo et al., 2007, Clark et al., 

2010) at most one lot per product can be produced in periods (no subtour is 

permitted). Therefore in case of non-triangular setup, the multiple production of 

shortcut product is not allowed.  Menezes et al. (2011) relaxed this restriction and 

allowed production of multiple lot per period (included connected subtours) by using 

an iterative model and method based on a potentially exponentially number of 

subtour elimination constraints (to exclude disconnected subtours). They also 

modelled the setup cross-over or setup overlapping which is beneficial in tight 

capacity conditions or whenever setup times are significant. Therefore there is no 

need to interrupt a setup at the end of a period and resume it at the beginning of the 

next period due to physical separation between periods. Setup overlapping has been 

studied by Suerie (2006) for small bucket and by Sung and Maravelias (2008) for 

big-bucket but with sequence-independent setup times and cost. Clark and Mahdieh 

(2011) presented the stronger formulation in comparison with  Menezes et al. (2011) 

for modelling the production of multiple lots of a product per periods  using a 

polynomial number of multi-commodity-flow-type constraints (Claus, 1984) to 

exclude disconnected subtours while allowing ones connected to the main sequence.  
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2.4 Capacitated lot sizing and scheduling on different machine 

configurations 

Fading boundaries between lotsizing and scheduling poses special challenges for 

integrating lotsizing, sequencing and loading decisions on a variety of machine 

configurations. Machine configuration includes single machine, parallel machines, 

flow shop, flexible flow shop and job shop system. Most research has been focused 

on combing lotsizing and scheduling for the single machine configuration and 

research on other configurations is sparse.  

Table 2-1: Literature review of capacitated big bucket lot sizing models with respect to back-orders, setup 

carry-over, sequencing on different machine configuration excluding single-machine. X: covered in 

reference; (X) partly covered in the reference. 

References  Back-

orders 

Setup 

times 

Setup 

carry-

over 

Sequencing Machine 

configuration 

Over-

time 

Multi-

level 

Dillenberger et al. (1993) 

and (1994) 
 X X  Parallel machine   

Gopalakrishnan et al. 

(1995) 
 (X) X  Parallel machine   

Derstroff (1995)  X   Job shop  X 
Hindi (1995)     Parallel machine   
Özdamar and Birbil 

(1998) 
 X   Partly Parallel 

machine 

X  

Özdamar and 

Barbarosolu (1999) 
X X   Multi-stage with 

identical parallel 

machine 

X X 

Kang et al.(1999)   X X Parallel machine   

Clark and Clark (2000) X X X X Parallel machine   
Belvaux and Wolsey 

(2000) 
X X   Multiple machine  X 

Meyr (2002)  X X X Parallel machine   

Stadtler (2003)  X   Multiple machine  X X 

Quadt (2004) X X X  Flexible flow line   
Fandel and Stammen-

Hegene (2006) 
 X X X Job shop  X 

Quadt and Kuhn (2009) X X X  Parallel machine   

Mahdieh et al.(2010) X X X X Flexible flow shop   

Mohammadi et al (2010a), 

Mohammadi (2010b), 

(2010c) and Mohammadi 

and Ghomi (2011)  

 X X X Flow shop  X 

Mohammadi (2010) and 

Mohammadi and Jafari 

(2010) 

 X X X Flexible flow shop  X 

James and 

Almada-Lobo (2011) 
 X X X Parallel machine   

 

Quadt and Kuhn (2008) in a well-structured paper has given a literature review 

of capacitated big bucket lot sizing models and solution procedures that extend the 

standard CLSP formulation by with respect to back-orders, setup carry-over, 



14 

 

sequencing or parallel machines. They indicated that only Meyr (2002) and Kang et 

al. (1999) combined sequencing and lotsizing on parallel machines.  

This thesis updates the literature review of capacitated lot sizing not only on 

parallel machines but also on multi-stage production system given in table 1. Stand 

alone capacitated lotsizing on parallel machines has been studied by Dillenberger et 

al. (1993) and (1994), Gopalakrishnan et al. (1995), Hindi (1995), Özdamar and 

Birbil (1998), Belvaux and Wolsey (2000), Stadtler (2003) and Quadt and Kuhn 

(2009).  

Kang et al.(1999), Clark and Clark (2000), Meyr (2002) and James and 

Almada-Lobo (2011) integrated lotsizing and scheduling on parallel machines with  

different extensions as shown in table 2-1.  

Moreover some recent work inspired by a specific real-world problem addresses 

capacitated lotsizing and scheduling on different machine configurations (Almada-

Lobo et al., 2010, Almada-Lobo et al., 2008, Almeder and Almada-Lobo, 2011, 

Ferreira et al., 2012, Ghosh Dastidar and Nagi, 2005).   

Flexible Flow Lines (FFL) are flow lines with parallel machines on some or all 

production stages and occur in many different environments, including automobile 

manufacture and printed circuit board manufacture (Kurz and Askin, 2003). The 

survey by Linn and Zhang (1999) reviewed the state of FFL scheduling research and 

described a variety of different configurations.  They noted the lack of research on 

FFLs with more than two stages and the extensive using of dispatching rules in 

practice.  Their survey did not include any research or mention of lot sizing and 

scheduling within FFLs. Six years later, Quadt and Kuhn (2005) explicitly identified 

a lack of literature for lot sizing and scheduling in FFLs and went on to describe a 

hierarchical 3-phase approach consists of bottleneck planning, schedule roll out and 

product-to-slot assignment for integrative lot-sizing and scheduling. The second 

phase consisted of capacitated lot-sizing problem (CLSP) model (Bitran and Yanasse, 

1982) generalised to the sequencing of lots of product families lot, the possibility of 

back-orders and parallel machines. While more general than needed for FFLs, the 

approach of Quadt and Kuhn (2005) is limited partly due to its aggregation of 

products into families, but primarily because of the necessity of bottleneck stage 

identification and stability during the planning run.  

Subsequently, in Quadt and Kuhn (2007b), they gathered a wide range of 

literature on the FFL scheduling problem and built a taxonomy for FFL scheduling 
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procedures (excluding lot-sizing), classifying them by general solution approach. 

They concluded by noting again that very little research has been published 

combining both lot sizing and scheduling in FFL, although in the same year Quadt 

and Kuhn (2007a) did deal with batch scheduling.  

Even research on stand-alone lot sizing for FFL is very limited. Derstroff (1995) 

considered a multi-level job shop problem and extended to include alternative 

routing on parallel machines where FFL can be interpreted as a special case of such a 

system. Özdamar and Barbarosolu (1999) considered the lotsizing problem for FFLs 

called the multi-stage capacitated lot sizing and loading problem (MCLSLP).  

Relevant to the sequential stages of FFLs, Fandel and Stammen-Hegene (2006) 

formulated the Multi Level General Lot sizing and Scheduling Problem with 

Multiple Machines (MLGLSP-MM), based on the GLSP for single level production and 

parallel machines.  However, the paper contains only a mathematical model which is 

not a MIP since a variable is used as an index limit and also without any numerical 

tests or solution procedure, possibly because the authors themselves recognized that 

the model‘s complexity limits optimal solutions to just small instances. To recall, a 

Mixed Integer Programming (MIP) is the optimization of a linear objective function 

subject to linear constraints in which some or all of the variables are restricted to be 

integers. In many settings the term refers to Mixed Integer linear programming 

(MILP). 

Recently, Mohammadi et al (2010a) and Mohammadi (2010b) developed an 

exact MIP formulation for lotsizing and scheduling in pure flowshop based on 

Fandel and Stammen-Hegene (2006) model.  In fact they applied Clark and Clark‘s 

(2000) sequencing technique to the Fandel‘s Model to make it into a MIP. They 

designed novel heuristics, all based on solving a sequence of smaller Mixed Integer 

Programs (MIPs). To solve larger instances of the problem, they proposed an 

algorithmic approach (Mohammadi et al., 2010c) and  the genetic algorithm-based 

heuristic (Mohammadi and Ghomi, 2011). Furthermore Mohammadi extended the 

model for flexible flowshop system (Mohammadi, 2010) and developed it into a 

more efficient MIP model in Mohammadi and Jafari (2010). Similar to Fandel and 

Hegene (2006), they assumed the vertical interaction or ―inter-level synchronization‖ 

between production stages by defining of shadow product variables. In inter-level 

synchronization a product cannot be produced earlier in a period than the production 

of its required component is finished. In other words, a production on a production 
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stage can only begin if there is sufficient amount of the product from the previous 

production stage. The shortage is not permitted and sequence-dependent setup costs 

and times are triangles (i.e. it is never faster to change over from one product to 

another by means of a third product).  Furthermore at stages with more than one 

machine, each product is produced entirely on one machine (lot splitting is not 

allowed).   

Clark, Bijari and I extended MCLSLP to General Lot sizing and Scheduling in 

FFL (GLSP-FFL) which determines both lot sizes and sequences on parallel 

machines in multi-stage production system (Mahdieh et al., 2010, Mahdieh et al., 

2012). However in contrast of MCLSLP the lot-splitting was allowed due to give 

more flexibility in the system through lot sequencing. The shortage was permitted 

and sequence-dependent setup costs and times could be ―non-triangle‖. Three 

models were presented (FFL-FS, FFL-CC and FFL-FM) based on  Fandel and 

Stammen-Hegene (2006), Clark and Clark‘s (2000) and Fleischmann and Meyr 

(1997) sequencing formulation  technique. It was also assumed the ―lead-time 

synchronization‖ between production means a product which is produced at a stage 

is available for production at the next stage only in the next period. 

Fred Glover defined a meta-heuristic as a "master strategy that guides and 

modifies other heuristics to produce solutions beyond those that are normally 

generated in a quest for local optimality" (Glover and Laguna, 1997). Meta-heuristic 

algorithms can find a good solution to difficult optimization problems in a 

reasonable amount of time but do not guarantee that optimal solutions can be 

reached. So far meta-heuristics like tabu search (TS), simulated annealing (SA) and 

genetic algorithms (GA) have been widely applied to almost every complex 

combinatorial problem such as lot sizing problems. Jans and Degraeve (2007a) 

(2007a) provided a review of the variety of meta-heuristics that have been used to 

solve lot sizing problems. Tang (2004) discussed simulated annealing techniques and 

their application in lot sizing problems and presented a binary matrix to represent the 

decision configuration. He showed that the lot sizing model very well fits into the 

proposed simulated annealing framework and solution procedure is flexible. In this 

thesis SA algorithm has been developed for lot sizing and scheduling in flexible flow 

line in chapter 4.     
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2.5 Conclusion and final remarks 

This literature review focuses on modelling perspective of dynamic 

deterministic capacitated lot sizing problems (i.e. demands are known with certainty 

but may vary over time) with sequence dependent setup. The numerous extensions of 

the basic lotsizing models as Jans and Degraeve (2007b) cited nearly 250 references 

show that it can be applied to a variety of real-world industrial problems.  

According to time structure capacitated lot sizing problems mainly are classified 

into small bucket (small time window) and big bucket (big time window) (Eppen and 

Martin, 1987, Gupta and Magnusson, 2005). Introducing sequence dependent setup 

leads lot sizing models to necessarily incorporate more scheduling aspects. Hence, 

fading boundaries between lotsizing and scheduling poses special challenges for 

integrating lotsizing, sequencing and loading decisions on a variety of machine 

configurations. The big bucket capacitated lotsizing is more flexible at integrating of 

lot sizing and scheduling decisions. Therefore GLSP (Fleischmann and Meyr, 1997) 

has been known as the most flexible simultaneous lotsizing and scheduling model in 

large bucket for representing different environment.  

The adaptation of Asymmetric Travelling Salesman Problem (ATSP) is an 

alternative approach for lotsizing and scheduling with sequence dependent setup 

(Almada-lobo et al., 2007, Clark et al., 2010).  Clark et al. (2010) showed that ATSP 

approaches were competitive with GLSP ones. Computationally comparing GLSP 

approach with different ATSP approaches based on a variety of subtour elimination 

method is another research opportunities to explore.   

Several reviews have emphasized that there has been a little literature regarding 

capacitated lotsizing on a variety of machine configurations (Jans and Degraeve, 

2007b, Karimi et al., 2003, Quadt and Kuhn, 2008, Zhu and Wilhelm, 2006). To our 

knowledge, there are only four papers on parallel machines (Clark and Clark, 2000, 

James and Almada-Lobo, 2011, Kang et al., 1999, Meyr, 2002), one paper on job 

shop (Fandel and Stammen-Hegene, 2006), one group of work on flow shop 

(Mohammadi et al., 2010a, Mohammadi and Ghomi, 2011, Mohammadi et al., 

2010c) and including our work, two groups of work on flexible flow line (Mahdieh 

et al., 2010, Mohammadi, 2010, Mohammadi and Jafari, 2010) to model lotsizing 

and scheduling simultaneously. Therefore there is a fruitful research area on 

considering different variants such as lot-splitting, back-orders, non-triangular setup 



18 

 

and allowing multiple lot production per periods, sequencing  through ATSP-

adaption based on a variety of subtour elimination, all features of setup carry-over 

and setup-overlapping for different machine configurations. 
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3. Lot sizing and scheduling in FFL 

Chapter 3 

Lot sizing and scheduling in FFL 

Fading boundaries between lotsizing and scheduling poses special challenges for 

integrating lotsizing, sequencing and loading decisions on a variety of machine 

configurations. Most research has been focused on combing lotsizing and scheduling 

for the single machine configuration and research on other configurations is sparse. 

In 2010, Clark, Bijari and I presented three different mathematical models to 

consider General Lotsizing and Scheduling Problem in Flexible Flow Line (GLSP-

FFL) simultaneously (Mahdieh et al., 2010, Mahdieh et al., 2012). The first model, 

FFL-FS, cannot be solved as a MIP, whereas the second, FFL-CC, and third, FFL-

FM, can. However due to complexity of GLSP-FFL, none of the MIP models could 

find optimal solution even for small problems and terminated with large value of 

optimality gap. In this chapter the novel linear MIP model through adaption of 

Asymmetric Travelling Salesman Problem (ATSP) is presented which makes an 

enormous reduction in number of variables and constraints and becomes much faster 

in comparison with the previous ones. Computational experiments are reported. 

3.1 Problem definition  

Lot sizing and scheduling problems are closely interrelated. Solving them 

separately and then coordinating their interdependencies is often ineffective and has 

been broadly researched for single machine production systems (Almada-lobo et al., 

2007, Fleischmann and Meyr, 1997, Jans and Degraeve, 2007b). However, it can be 

difficult and complex to combine both models particularly in production systems 

with more than one machine in parallel or series.  As a result, for complex 

production systems such as flow shops and flexibles flow line, they are often 

modelled and solved independently in spite of their interdependencies (Mahdieh et 

al., 2012, Mohammadi, 2010, Quadt, 2004, Quadt and Kuhn, 2005).  Depending on 

the characteristic features of the problem, there are several interdependencies 

between lot sizing and scheduling models (Fandel and Stammen-Hegene, 2006).  
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One of the most important interdependencies which makes the integrating of these 

two models crucial is the relationship between lot sizing and scheduling when setups 

are sequence dependent. In a lotsizing model, the optimal lot sizes are determined in 

order to minimise setup, holding and in some cases backorder costs. In the case of 

sequence dependent setups, the minimum-cost lot sizes also depend on the schedule 

on the machine since it influences the machine capacity.  

This chapter presents three mathematical models with practical assumptions for 

simultaneous lotsizing and scheduling in one of the complex production systems 

called a flexible flow line.  

Flexible Flow Line (FFL) is a very prevalent production system which has 

extensive real-world applications in industry especially automotive, chemical, 

electronics, steel making, food, paper, pharmaceutical and textile (Linn and Zhang, 

1999). A flexible flow line or hybrid flow shop can be considered as an extension of 

two classical systems, namely the flow shop and the parallel shop. The production 

line consists of several processing stages in series, separated by finite intermediate 

buffers, where each stage has one or more parallel identical machines (Pinedo, 

1995). The layout of FFL is shown in Figure 3-1. 
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Figure 3-1: Flexible Flow Line 

The GLSP-FFL was developed from the single-level GLSP of Fleischmann and 

Meyr (1997) and the multi-stage capacitated lot sizing and loading problem 

(MCLSLP) of Özdamar and Barbarosoglu (1999). According to different 

formulations, three distinct MIP models are introduced for GLSP-FFL. The first and 

second models, FFL-CC and FFL-FM, are based on Clark and Clark‘s (2000) and 

Fleischmann and Meyr‘s (1997) sequencing formulation  technique respectively 

while the third model is formulated through adaptation of ATSP problem. All 

models are based on the following assumptions: Multiple products can be produced 

at stages in the flexible flow shop. Production at each stage involves unrelated 

parallel machines with different production rates. All machines can produce any 

product. The available capacity of each machine is limited and can vary between 
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periods and stages. The finite planning horizon is divided into T macro-periods. The 

independent demand for all products is felt at the final stage at the end of each 

macro-period. It is known with certainty, but varies dynamically over the planning 

horizon.  

The main assumptions of the problem were described in the following: 

-Demand for items in other stages is dependent on the production of the next 

stage.  

-Backlog shortages are permitted for products at the final stage and also are 

upper-bounded by a given proportion of demand (BP) in each macro-period for 

adding more flexibility to the production system. This is the practiced assumption in 

flow shop manufacturing system and is consistent with literature (Özdamar and 

Barbaroso lu, 1999). The backlog policy is appropriate in some situations and it can 

be other situations where we do not want to impose that. For example some products 

are more important than others so backlogs are allowed for them (by 

considering 𝐵𝑃 = 1) and not for the others (by considering 𝐵𝑃 = 0). 

-The products may be manufactured in lots of varying size on any one of the 

parallel machines in each stage.  

-The production rate can vary between products and machines, but is constant 

over the planning horizon. 

-A changeover from one product to another requires a setup time during which 

the machine is unproductive. Setup times and costs are sequence dependent and can 

vary between machines.  

-The setup state is conserved when no product is being processed.  

-At the beginning of the planning horizon, each machine is setup for a specified 

product. 

-A two-level time structure is assumed. Each macro-period consists of a variable 

number of micro-periods with variable length.  Each machine has its own micro-

period segmentation, i.e., the number of micro-period can differ between machines.  

Micro-periods do not have to be of equal durations on the same machine. 

-At the start of a micro-period, a machine is setup and then produces just one 

product until the end of the micro-period.  

-If setup costs and times are triangular, then it is not economical to produce a 

product in more than one lot on the same machine in the same micro-period. Thus 
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there will be at most one setup per product per macro-period on each machine and so 

the number of micro-periods on a machine will be at most the number of products. 

-Lot-splitting is permitted at any stage, i.e., each product can be simultaneously 

produced on more than one machine at any given stage.  

-In order to obtain viable schedules, ―lead-time synchronization‖ is assumed 

means that there is the lead time of one period between different production stages. 

In this case, a product which is produced at a stage is available for production at the 

next stage only in the next periods. However in some industries, assuming a lead 

time of period may be unrealistic and lead to inferior model solutions. 

The parameters and indices are:  

Number of total products i, j, k 𝐽 

Number of different stages e E 

Number of different machines 𝑚𝑒  available for production at stage e 

(so that the total number of machines over all stages is 𝑀 =  𝑀𝑒𝑒 ) 

𝑀𝑒  

Number of macro-periods t in the planning horizon 𝑇 

The number of micro-periods f in macro-period t on machine 𝑚𝑒   𝐹𝑚𝑡  

Note that in the definition of 𝐹𝑚𝑡  above, to avoid notational clutter such as 𝐹𝑚𝑒𝑡 , 

the simple index m is used when strictly speaking the subscripted index 𝑚𝑒  should 

have been used. Similarly, the simple index f will be used when strictly speaking the 

subscripted index 𝑓𝑚𝑒𝑡  should be used. From now on, this convention will be used so 

that the subscripts e and t are implied wherever the indices m and f are used. Figure 

3-2 illustrates the segmentation of macro-periods into micro-periods on a machine m 

at any stage e.  Note how the varying lengths of macro-periods differ between 

macro-periods.  

 
Macro-period t = 1 … Macro-period t = T 

𝑓 = 1 𝑓 = 2 … 𝑓 = 𝐹𝑚1  … 𝑓 = 1 𝑓 = 2 … 𝑓 =  𝐹𝑚𝑇  

Micro-periods f … Micro-periods f 
Figure 3-2:  Micro-period segmentation on a machine differs between macro-periods 

The data required are:  

Demand for product i realised at the end of macro-period t 𝑑𝑖𝑡  

Available capacity of machine m in macro-period t  𝐶𝑚𝑡  

Time needed to setup on machine m from product i to product j 𝑠𝑡𝑖𝑗𝑚  

Cost needed to setup on machine m from product i to product j 𝑠𝑐𝑖𝑗𝑚  
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Capacity (processing time) on the machine m required to produce a unit 

of product i 
𝑏𝑖𝑚  

Cost of holding a unit of product i from period t to t+1 at stage e 𝑖𝑡𝑒  

Cost of backordering a unit of end-item demand for product i from 

period t to t+1 

𝑔𝑖𝑡  

Maximum permitted proportion of total end-item demand that can be 

backordered. In case of having different backlog policies for products, it 

can be setup for each product distinctively (𝐵𝑃𝑖).   

BP 

The product setup on machine m at the end of period 0, i.e., the starting 

setup configuration 

𝑖0𝑚  

Cost of producing one unit of product i on machine m 𝑃𝑖𝑚  

Upper bound 𝐶𝑚𝑡 𝑏𝑖𝑚   on the quantity of product i produced in macro-

period t on machine m    
𝑈𝐵𝑖𝑚𝑡  

Lower bound on the quantity of product i produced in macro-period t on 

machine m 
𝐿𝐵𝑖𝑚𝑡  

The objective of all three models presented below is to minimise backorders, 

inventory and setup costs of producing the 𝐽 products over the 𝑇 macro-periods in 

the planning horizon.   

3.2 FFL-CC 

Clark and Clark (2000) developed a mixed integer programming model for the 

multi-product lot-sizing problem with sequence-dependent set-up times that allows 

multiple set-ups per planning period. In the first model, the setup constraints are 

based on Clark and Clark‘s (2000) formulation. The decision variables are: 

Inventory level of product i in stage e at the end of macro-period t. 𝐼𝑖𝑒𝑡  

Backordered amount of end-product i at the last stage E at the end of 

macro-period t. 
𝐵𝑖𝐸𝑡  

Production quantity of product i on machine m in micro-period f. 𝑥𝑖𝑚𝑓  

Binary variable, = 1 if there is a changeover from product i to product j on 

machine m at the start of micro-period f , = 0 otherwise. 
𝑦𝑖𝑗𝑚𝑓  

 

The objective function minimises backorders, inventory and setup costs:  

(3-1)  𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑓
𝑖𝑗𝑒𝑚𝑡𝑓

+  𝑖𝑡𝑒  𝐼𝑖𝑒𝑡
𝑖𝑡𝑒

+  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡
𝑖𝑡

 

Note how the implied summation limits and indices e and t avoid notational 

clutter in the first term in expression (3-1).  The full cluttered version would be:  

 

(cluttered 3-1)                 𝑠𝑐𝑖𝑗𝑚𝑒

𝐹𝑚𝑡

𝑓𝑚𝑒𝑡=1

𝑇

𝑡=1

𝑀𝑒

𝑚𝑒=1

𝐸

𝑒=1

𝐽

𝑗=1,𝑖≠𝑗

𝐽

𝑖=1

𝑦𝑖𝑗𝑚𝑒𝑓𝑚𝑒𝑡
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From now on, expressions will similarly be kept as concise as possible without 

sacrificing precision.  Just occasionally, some clutter will be unavoidable, for 

example in constraints (3-3) and (3-9) below. If need be, production costs can be 

included in the objective function by appending the term  𝑃𝑖𝑚  𝑥𝑖𝑚𝑓𝑖𝑒𝑚𝑡𝑓 . Figure 3-3 

shows the flow of production, inventory and backorders over different periods and 

stages. 

t-1

t-1

Di,t-1

t

t

Di,t

t+1

t+1

Di,t+1

Ii,E,t-1

Ii,E-1,t-1 Ii,E-1,t

Ii,E,t

Ii,E-1,t-2

Ii,E,t-2

Ii,E-1,t+1

Ii,E,t+1

Bi,E,t-2 Bi,E,t-1 Bi,E,t Bi,E,t+1

Stage E-1

Stage E


 tfm imf

E

x
,1
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E

x 
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E

x
 1,1 tfm imf

E

x


1, tfm imf

E

x 
tfm imf

E

x
, 

1, tfm imf
E

x 
2, tfm imf

E
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Figure 3-3: Flow diagram of GLSP-FFL 

Constraints (3-2) and (3-3) follow from Figure 3-3: 

∀ j, t (3-2) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝐸 ,𝑓𝑡

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡  

Constraint (3-2) expresses the material balance for end items, including 

backorders. Some clutter is required in order to be clear that the term  𝑥𝑗𝑚𝑓𝑚𝐸𝑓  

refers only to the final stage E.  However, note again how the implied use of the 

index 𝑓𝑚𝑒𝑡  in  𝑥𝑗𝑚𝑓𝑚𝐸𝑓  avoids further notational clutter. The context (∀ t) of (3-2) 

makes it reasonable to assume that the values of f apply respectively to just the 

micro-periods within the specific macro-period t.  The fully cluttered version would 

be:  

 

  𝑥𝑗𝑚𝐸𝑓𝑚𝐸𝑡

𝐹𝑚𝑡

𝑓𝑚𝐸𝑡
=1

𝑀𝐸

𝑚𝐸=1

 

Constraint (3-3) expresses the material balance for work in process. Again, some 

clutter is required in order to be clear that the right-hand side refers to the successor 

stage e + 1 of the left-hand side‘s stage e:  



25 

 

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (3-3) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝑒 ,𝑓𝑡

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑓
𝑚𝑒+1 ,𝑓𝑡+1

 

Constraint (3-4) bounds backorders of end items in any macro-period to be 

within a specified proportion of demand:  

∀ i, t  (3-4) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  

Constraint (3-5) represents the limited capacity: 

∀ 𝑒,𝑚, 𝑡(3-5)  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑓
𝑖𝑗𝑓

+  𝑏𝑖𝑚  𝑥𝑖𝑚𝑓
𝑖𝑓

 ≤  𝐶𝑚𝑡  

Constraints (3-6) and (3-7) specify the initial setup configuration in period one. 

𝐿𝑚𝑡  refers to the first Micro-periods of period t on machine m. 

∀ 𝑖 ≠ 𝑖𝑜𝑚 , 𝑗, 𝑒,𝑚 (3-6) 𝑦𝑖𝑗𝑚 𝐿𝑚1
= 0 

∀ , 𝑒,𝑚 (3-7)  𝑦𝑖𝑜𝑚 𝑗𝑚 𝐿𝑚1

𝑗

= 1  

Constraints (3-6) to (3-9) ensure that a setup on a machine in each micro-period 

may only occur between a single pair of different products.  

 ∀  𝑗, 𝑒,𝑚, 𝑡  𝑎𝑛𝑑 𝑓 = 1,… ,𝐹𝑚𝑡 − 1 (3-8)  𝑦𝑖𝑗𝑚𝑓
𝑖

=  𝑦𝑗𝑘𝑚 ,𝑓+1

𝑘

 

 ∀  𝑗, 𝑒,𝑚   𝑎𝑛𝑑 𝑡 = 2,… ,𝑇 (3-9)  𝑦𝑖𝑗𝑚 𝐹𝑚 ,𝑡−1

𝑖

=   𝑦𝑗𝑘𝑚 𝐿𝑚𝑡

𝑘

  

Constraint (3-10) enforces the appropriate setup before production: 

∀ 𝑗, 𝑒,𝑚, 𝑡,𝑓(3-10) 𝑥𝑗𝑚𝑓  ≤  𝑈𝐵𝑗𝑚𝑡  𝑦𝑖𝑗𝑚𝑓
𝑖

 

Constraint (3-11) enforces minimum lot sizes or specified lower bounds in order 

to avoid a setup change without subsequent production. If set-up costs or times do 

not satisfy the triangle inequality (𝑠𝑐𝑖𝑗𝑚 + 𝑠𝑐𝑗𝑘𝑚 ≥ 𝑠𝑐𝑖𝑘𝑚   ∀𝑖, 𝑗,𝑘, 𝑒,𝑚), then (3-11) 

prohibits that a setup from i to k passes through a third product j without minimal 

production of j.  

∀ 𝑒,𝑚, 𝑡,j, f (3-11)𝑥𝑗𝑚𝑓 ≥ 𝐿𝐵𝑗𝑚𝑡  𝑦𝑖𝑗𝑚𝑓
𝑖≠𝑗

  

However, when some setups are non-triangular, an optimal solution can feature 

multiple lots of a product on the same machine in the same period. Constraints (3-

12) to (3-14) simplify the model by ensuring that a product cannot be produced in 

more than one lot on a machine in a macro-period: 
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∀ 𝑗, 𝑒,𝑚, 𝑡(3-12)   𝑦𝑖𝑗𝑚𝑓
𝑖 ,𝑓 ,(𝑖≠𝑗 )

≤  1 

∀ 𝑖, 𝑒,𝑚, 𝑡(3-13)  𝑦𝑖𝑗𝑚𝑓
𝑗 ,𝑓 ,(𝑖≠𝑗 )

≤  1 

∀ 𝑖, 𝑒,𝑚, 𝑡(3-14)  𝑦𝑖𝑗𝑚𝑓
𝑗 ,𝑓 ,(𝑖≠𝑗 )

 +  𝑦𝑖𝑖𝑚1 +   𝑦𝑘𝑖𝑚𝐹
𝑘

≤  2 

Constraints (3-12) and (3-13) ensure that there is at most one changeover from 

each product to a different one (𝑖 ≠ 𝑗). As shows in figure 3-4 Constraint (3-14) 

prohibits reproduction of a product which was the last product of the previous period 

(t-1) at the first and end of a current period (t).  

A B C AA D

tt-1 t+1
 

Figure 3-4: Reproduction of the last product of the previous period t-1, at the first and end of a current 

period t. 

Note that 𝐹𝑚𝑡  is fixed by J, the number of products, therefore the number of 

setups may be less than J, but the remaining ones are treated as phantom setups from 

a product 𝑖 to itself (𝑦𝑖𝑖𝑚𝑓 = 1) with zero setup time  (𝑠𝑡𝑖𝑖𝑚 = 0) and no consequent 

production.  

 

3.3 FFL-FM 

Fleischmann and Meyr (1997)‘s adaptation of the General Lot sizing and 

Scheduling Problem (GLSP) to sequence-dependent setup times and parallel 

machines  (Meyr, 2002) can be extended to the FFL. The parameters and continuous 

decision variables for this new model, denoted FFL-FM, are the same as for the 

FFL-CC model.  However, to be consistent with Meyr‘s notation, the variable 𝑦𝑖𝑗𝑚𝑓  

is renamed 𝑧𝑖𝑗𝑚𝑓 , and y becomes a new setup-state variable as follows:  

= 1 if machine m is setup for product i in the micro-period f, otherwise = 

0. 

𝑦𝑖𝑚𝑓  

= 1 if there is a setup changeover from product i to product j on machine 

m at the start of micro-period f, otherwise = 0. 

𝑧𝑖𝑗𝑚𝑓  
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Note that there is no need to define 𝑧𝑖𝑗𝑚𝑓  a binary variable in the model since 

𝑧𝑖𝑗𝑚𝑓  as a positive variable will take on the value 0 or 1 in any optimal solution 

(Fleischmann and Meyr, 1997). As in model FFL-CC, the number 𝐹𝑚𝑡  of micro-

periods within a macro-period is fixed at the number J of products and the objective 

function also minimises backorders, inventory and setup costs: 

(3-15)  𝑠𝑐𝑖𝑗𝑚  𝑧𝑖𝑗𝑚𝑓
𝑖𝑗𝑒𝑚𝑡𝑓

+  𝑖𝑡𝑒  𝐼𝑖𝑒𝑡
𝑖𝑡𝑒

+  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡
𝑖𝑡

  

Constraints (3-16) - (3-18) are identical to (3-2) - (3-4) of model FFL-CC . 

∀ 𝑗, 𝑡 (3-16) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝐸 ,𝑓𝑡

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡  

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (3-17) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝑒 ,𝑓𝑡

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑓
𝑚𝑒+1 ,𝑓𝑡+1

 

∀ 𝑖, 𝑡  (3-18) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  

Constraints (3-19) and (3-20) are (3-5) and (3-7) adapted to the new variables 

𝑦𝑗𝑚𝑓  and 𝑧𝑖𝑗𝑚𝑓 : 

∀ 𝑒,𝑚, 𝑡  (3-19)  𝑠𝑡𝑖𝑗𝑚  𝑧𝑖𝑗𝑚𝑓
𝑖𝑗𝑓

+  𝑏𝑖𝑚  𝑥𝑖𝑚𝑓
𝑖𝑓

 ≤  𝐶𝑚𝑡  

∀ 𝑒,𝑚, 𝑡 = 1  (3-20)  𝑧𝑖𝑜𝑚 𝑗𝑚 1

𝑗

= 1 

Note that this formulation has no strict equivalent of constraint (3-6) which 

states that the first setup in a macro-period t cannot be from a product which is not 

𝑖𝑜𝑚 . However, constraint (3-21) prohibits the value of 𝑦𝑖𝑚𝑓  from indicating that the 

initial setup-state on a machine is any product which is not 𝑖𝑜𝑚 : 

∀  𝑖, 𝑒,𝑚 𝑎𝑛𝑑 𝑡 = 1(3-21) 𝑦𝑖𝑚1 ≤ 𝑧𝑖𝑜𝑚 𝑖𝑚1  

Constraint (3-22) imposes a minimum initial lot-size except for 𝑖𝑜𝑚 : 

 

 ∀  𝑗 ≠ 𝑖𝑜𝑚  , 𝑒,𝑚 𝑎𝑛𝑑 𝑡 = 1 (3-22) 𝑥𝑗𝑚 1 ≥ 𝐿𝐵𝑗𝑚𝑡 ∙ 𝑧𝑖𝑜𝑚 𝑗𝑚 1   

Constraint (3-23) is requires that a product can only be processed on a machine 

if it is setup for that product: 

∀ 𝑒,𝑚, 𝑗, 𝑡,𝑓(3-23) 𝑥𝑗𝑚𝑓 ≤ 𝑈𝐵𝑗𝑚𝑡 ∙ 𝑦𝑗𝑚𝑓   

Constraints (3-24) and (3-25) enforce minimum lot sizes, again avoiding 

intermediate non-zero production setups if set-up costs/times do not satisfy the 

triangle inequality: 
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 ∀ 𝑒,𝑚, 𝑗, 𝑡,𝑓 = 2,… ,𝐹𝑚𝑡  (3-24) 𝑥𝑗𝑚𝑓 ≥ 𝐿𝐵𝑗𝑚𝑡  𝑦𝑗𝑚𝑓 − 𝑦𝑗𝑚 ,𝑓−1   

∀ 𝑒,𝑚, 𝑗, 𝑡 = 2,… ,𝑇 (3-25) 𝑥𝑗𝑚 1 ≥ 𝐿𝐵𝑗𝑚𝑡  𝑦𝑗𝑚 1 − 𝑦𝑗𝑚 𝐹𝑚 ,𝑡−1
   

Constraint (3-26) ensures that only one setup state is defined in each micro 

period: 

 ∀  𝑒,𝑚, 𝑡,𝑓 (3-26)  𝑦𝑗𝑚𝑓
𝑗

= 1  

Constraint (3-27) ensures that only one setup changeover occurs in each micro 

period:  

 ∀  𝑒,𝑚, 𝑡,𝑓  (3-27)  𝑧𝑖𝑗𝑚𝑓
𝑖𝑗

= 1  

Constraints (3-28) - (3-30) are (3-12) - (3-15) adapted to the new variable 𝑧𝑖𝑗𝑚𝑓 : 

∀ 𝑗, 𝑒,𝑚, 𝑡(3-28)   𝑧𝑖𝑗𝑚𝑓
𝑖 ,𝑓 ,(𝑖≠𝑗 )

≤  1 

∀ 𝑖, 𝑒,𝑚, 𝑡(3-29)  𝑧𝑖𝑗𝑚𝑓
𝑗 ,𝑓 ,(𝑖≠𝑗 )

≤  1 

∀ 𝑖, 𝑒,𝑚, 𝑡(3-30)  𝑧𝑖𝑗𝑚𝑓
𝑗 ,𝑓 ,(𝑖≠𝑗 )

 +  𝑧𝑖𝑖𝑚1 +   𝑧𝑘𝑖𝑚𝐹
𝑘

≤  2 

Constraints (3-31) and (3-32) relate the setup state variables and changeover 

variables:  

∀  𝑒,𝑚, 𝑖, 𝑗, 𝑡,𝑓 = 2,… ,𝐹𝑚𝑎𝑥 (3-31) 𝑧𝑖𝑗𝑚𝑓 ≥ 𝑦𝑖𝑚 ,𝑓−1 + 𝑦𝑗𝑚𝑓 − 1 

∀  𝑒,𝑚, 𝑖, 𝑗, 𝑡 = 2,… ,𝑇(3-32) 𝑧𝑖𝑗𝑚 1 ≥ 𝑦𝑗𝑚 1 + 𝑦𝑖𝑚𝐹𝑚 ,𝑡−1
− 1  

 

3.4 FFL-ATSP  

The Asymmetric Travelling Salesman Problem has been very extensively 

researched and can be adapted to model the problem of sequencing a set of lots with 

sequence dependent setups between them (Gupta and Magnusson, 2005). For 

example the CLSP with sequence-dependent setup times is related to the Travelling 

Salesman Problem (TSP) and the Vehicle Routing Problem (VRP) (Laporte, 1992a, 

Laporte, 1992b). Here, a novel MIP model is presented for GLSP-FFL via adaptation 

of ATSP.    

The decision variables are: 

Inventory level of product i in stage e at the end of macro-period t. 𝐼𝑖𝑒𝑡  

Backordered amount of end-product i at the last stage E at the end of macro-𝐵𝑖𝐸𝑡  
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period t. 

Production quantity of product i on machine m in period t. 𝑥𝑖𝑚𝑡  

Binary variable, = 1 if there is a changeover from product i to product j on 

machine m at the period t, = 0 otherwise. 
𝑦𝑖𝑗𝑚𝑡  

 

Equals to 1 if product i is the setup state at the start of period t on machine m, 

otherwise = 0. 
𝛼𝑖𝑚𝑡  

Auxiliary variable to assign product i to machine m at period t. 𝑣𝑖𝑚𝑡  

 

To avoid notational clutter, the simple index m is used when strictly speaking 

the subscripted index 𝑚𝑒  except in some occasions, some clutter will be 

unavoidable. Note that the main novelty of ATSP adaptation is the elimination of the 

micro-period index 𝑓𝑚𝑒𝑡  from changeover variables that causes the significant 

reduction in the number of binary variables in comparison with FFL-CC and FFL-

FM. Thus, there is no need to pre-define a fix number of micro-periods in each 

period and assign products to them.  

The objective function minimises backorders, inventory and setup costs:  

 (3-33)  𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗𝑒𝑚𝑡

+  𝑖𝑡𝑒  𝐼𝑖𝑒𝑡
𝑖𝑡𝑒

+  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡
𝑖𝑡

   

Constraints (3-34) and (3-35) express the material balance including backorders 

for end items and work in process respectively. Some clutter for m is required in 

order to be clear that the right-hand side refers to stages in both constraints: 

∀  𝑗, 𝑡(3-34) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡  

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1(3-35) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚𝑒

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚 ,𝑡+1

𝑚𝑒+1

 

Constraint (3-36) bounds backorders of end items in any macro-period to be 

within a specified proportion of demand:  

∀ 𝑖, 𝑡 (3-36) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡    

Constraint (3-37) represents the limited capacity: 

∀ 𝑒,𝑚, 𝑡 (3-37)  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗

+  𝑏𝑖𝑚  𝑥𝑖𝑚𝑡
𝑖

 ≤  𝐶𝑚𝑡  

Constraint (3-38) indicates the first setup of each period which ensures that the 

machine is set up for exactly one product at the beginning of each period. The initial 

setup configuration at first period is expressed by constraint (3-39). Note that the 

𝛼𝑖𝑚𝑡  is not necessary to be integer. Since, in constraint (3-39) αimt  equals to one for 
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the first period and from constraint (3-40), it follows that 𝛼𝑖𝑚𝑡  is an integer for i in 

the other periods. Finally constraints (3-38)-(3-40) enforce αimt  to be a binary 

variable.   

∀  𝑒,𝑚, 𝑡(3-38) 

 𝛼𝑖𝑚𝑡

𝐽

𝑖=1

 = 1  

∀ 𝑒,𝑚, 𝑡 = 1(3-39) 𝛼𝑖𝑜𝑚 𝑚𝑡 = 1 

 

Constraints (3-38)–(3-41) entirely determine the sequence of products on a 

machine in each period and cause a setup carryover of the machine between periods.  

∀  𝑒,𝑚, 𝑖 𝑎𝑛𝑑 𝑡 = 1… ,𝑇 − 1(3-40) 𝛼𝑖𝑚𝑡 +  𝑦𝑗𝑖𝑚𝑡
𝑗

=    𝑦𝑖𝑗𝑚𝑡
𝑗

+ 𝛼𝑖𝑚 𝑡+1   

∀  𝑒,𝑚, 𝑖 (3-40a) 𝛼𝑖𝑚𝑇 +   𝑦𝑗𝑖𝑚𝑇
𝑗

≥    𝑦𝑖𝑗𝑚𝑇
𝑗

 

To simplify constraints (3-40) and (3-40a) into a single constraint, it is 

considered that set 𝑡 = {1, . . ,𝑇 + 1} for the variable 𝛼𝑖𝑚𝑡 . Thus the constraint (3-

40a) is cancelled and the domain of t in constraint (3-40) is changed to for all t (∀t).   

Constraint (3-40) keeps a balanced network flow of the machine set up state and 

carries to next period. It means that if there is an input setup for product i 

( 𝑦𝑗𝑖𝑚𝑡𝑗 = 1) and no output setup ( 𝑦𝑖𝑗𝑚𝑡𝑗 = 0) in period t then this setup is the 

last one in period t and the machine carries the setup configuration of product i into 

the next period (𝛼𝑖𝑚 ,𝑡+1 = 1). On the other hand, if there is an output setup and no 

input setup, then the machine is configured for product i at the beginning of period t 

(𝛼𝑖𝑚 ,𝑡 = 1). Moreover if no setup is performed in period t, then setup is carried to 

the next period.  

∀ 𝑒,𝑚, 𝑖, 𝑗, 𝑡 (3-41) 𝑣𝑖𝑚𝑡 − 𝑣𝑗𝑚𝑡 +  𝐽 × 𝑦𝑖𝑗𝑚𝑡  ≤ 𝐽 − 1 

Constraint (3-41) prohibits product subtours which is based on Miller, Tucker 

and Zemlin‘s  (MTZ) subtours elimination constraint and it was originally proposed 

for a Vehicle Routing Problem (VRP) (Miller et al., 1960). It uses the unrestricted 𝑣𝑖  

variables to define the order in which each city i is visited on a tour. Öncan et al 

(2009) presented a comparative analysis of several asymmetric travelling salesman 

problem formulations where discussed 24 classifications of ATSP. Desrochers and 

Laporte (1991) improved MTZ‘s subtours elimination constraint (3-41) to be 

constraint (3-41a) by using a lifting technique and extended it to various type of 
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vehicle routing problems. The MTZ‘s constraint is lifted by adding  ( 𝐽 − 2) × 𝑦𝑗𝑖𝑚𝑡  

to the left hand side of the constraint:   

∀ 𝑒,𝑚, 𝑖, 𝑗, 𝑡 (3-41a) 𝑣𝑖𝑚𝑡 − 𝑣𝑗𝑚𝑡 +  𝐽 × 𝑦𝑖𝑗𝑚𝑡 + ( 𝐽 − 2) × 𝑦𝑗𝑖𝑚𝑡  ≤ 𝐽 − 1 

Desrochers and Laporte (1991) compared the lifted MTZ formulation with the 

original formulation for different TSP and VRP problems, though the lifted MTZ 

formulation has shown low improvement in the case of Asymmetric TSP test 

problems. Similarly in this thesis, both constraints (MTZ constraint with and without 

lifting) will be tested for all the problems in the next section.   

Constraint (3-42) enforces the appropriate setup before production, either at the 

beginning or within a period: 

∀ 𝑒,𝑚, 𝑗, 𝑡 (3-42) 
𝑥𝑗𝑚𝑡 ≤ 𝑈𝐵𝑗𝑚𝑡   𝑦𝑖𝑗𝑚𝑡

𝑖

+ 𝛼𝑗𝑚𝑡   

Constraint (3-43) enforces minimum lot sizes to avoid a setup change without 

subsequent production in case of non-triangle setup. Furthermore it does not enforce 

a minimum lot size to the product which already setup at the start of a period. 

∀ 𝑒,𝑚, 𝑗, 𝑡 (3-43) 
𝑥𝑗𝑚𝑡 ≥ 𝐿𝐵𝑗𝑚𝑡   𝑦𝑖𝑗𝑚𝑡

𝑖

− 𝛼𝑗𝑚𝑡   

3.5 Comparison of variables and constraints in FFL-CC, FFL-FM 

and FFL-ATSP 

The main difference between models FFL-CC and FFL-FM is the setup 

variables. As  Clark and Clark (2000) did, the FFL-CC setups are modelled with just 

one set of binary variables, 𝑦𝑖𝑗𝑚𝑓 , whereas in the FFL-FM model setups are 

formulated with one set of binary variables 𝑦𝑖𝑚𝑓  and one set of positive variables 

𝑧𝑖𝑗𝑚𝑓 , similar to Fleischmann and Meyr (1997). However in FFL-ATSP, as a result 

of ATSP adaptation, there is no need to pre-define a fix number of setups for a 

machine in each period. Table 3-1 shows the number of variables and constraints in 

models FFL-CC, FFL-FM and FFL-ATSP. Note that FFL-ATSP has a much smaller 

number of continuous and total variables than FFL-CC and FFL-FM with one fewer 

order of magnitude. The order of magnitude refers to the number of powers of J (the 

number of products). Number of binary variable in FFL-ATSP and FFL-FM is equal 

whereas FFL-CC has more binary variables with one more order of magnitude. 
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Table 3-1: Number of variables and constraints in FFL-CC , FFL-FM and FFL-ATSP 

Number 

of: 
FFL-CC FFL-FM FFL-ATSP 

Continuou

s variables  

𝐽2𝑇𝑀 + 𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏𝟐) 

𝐽3𝑇𝑀 + 𝐽2𝑇𝑀 + 𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏𝟑) 

𝐽𝑇 3𝑀 + 𝐸 + 1 + 1 
𝑶(𝒏𝟏) 

Binary 

variables 

𝐽3𝑇𝑀 

𝑶(𝒏𝟑) 

𝐽2𝑇𝑀 

𝑶(𝒏𝟐) 

𝐽2𝑇𝑀 
𝑶(𝒏𝟐) 

Total 

variables  

𝐽3𝑇𝑀 + 𝐽2𝑇𝑀 + 𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏𝟑) 

𝐽3𝑇𝑀 + 2𝐽2𝑇𝑀 + 𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏𝟑) 

𝐽𝑇𝑀 𝐽 + 3 + 𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏2) 

Constraint 𝐽𝑇 3𝐽𝑀 + 𝐸 + 1 + 𝐽𝑀 𝐽 − 2  
+𝑀 𝑇 + 1 + 1 

𝑶(𝒏𝟐) 

𝐽2𝑇𝑀 2 + 𝐽 + 𝐽𝑀 1 − 𝐽  
+𝐽𝑇 𝐸 + 1 + 𝑇𝑀 1 + 2𝐽 + 1 

𝑶(𝒏𝟐) 

𝐽𝑇𝑀 𝐽 + 4 + 𝑀 2𝑇 + 1  
+𝐽𝑇 𝐸 + 1 + 1 

𝑶(𝒏𝟐) 

 

FFL-ATSP has fewest constraints while the order of magnitude of the number of 

constraints is the same in all the three models. The computational tests in the next 

section will provide more insights into the relative efficiencies of the three models. 

3.6 Experimental design 

The aim of this section is to compare the novel linear MIP model FFL-ATSP 

with FFL-CC and FFL-FM through computational tests on small and larger 

problems. Özdamar and Barbarasoglu (1999) designed test problems to solve the 

CLSP in FFLs. Later Quadt(2004) also used their testing method. This thesis will do 

the same by varying the attributes of the problem data to test the performance of the 

models under different conditions. These attributes are conspicuously used in various 

lotsizing problems in the literature (Buschkühl et al., 2010) and tend to have a 

significant effect on solution quality. 

The experimental design used the following factors: 

1. Model formulation 

2. Attribute and Dimensionality of Problem 

3. Variability of demand 

4. Inventory holding cost 

5. Tightness of capacity 

The problem parameters outside the statistical experimental design are randomly 

generated as follows: Processing times 𝑏𝑖𝑚  (in hours) are generated from uniform 

distribution U(1,5) for all products i and machines m. Setup costs 𝑠𝑐𝑖𝑗𝑚  are generated 

from U(300,500). Set-up times are related to the total processing time: 

(3-44) 
𝑠𝑡𝑖𝑗𝑚 =

𝑆  𝑏𝑗𝑚 ∙ 𝑑𝑗𝑡𝑗𝑡𝑚

𝑇 ∙ 𝑀𝑎𝑥𝑓𝑎𝑐
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where 𝑆 is generated from U(0.05,0.10) and 𝑀𝑎𝑥𝑓𝑎𝑐 = 𝑚𝑎𝑥𝑒{𝑀𝑒} is the 

maximum number of machines at any stage. In the other words setup times are 

proportional to the mean production time per machine-period.  

The factor levels within the experimental design are randomly generated as 

follows:  

1. Model Formulation: FFL-ATSP, FFL-CC and FFL-FM 

2. The attributes and dimensionality of Problem (discussed further below): 

a. Small: 𝐸 = 2,𝑀𝑒 = 2, 𝐽 = 4,𝑇 = 6  

b. Large: 𝐸 = 3,𝑀𝑒 = 3, 𝐽 = 8,𝑇 = 6 

3. Demand variability is either low, 𝑑𝑖𝑡  being generated from U(90,110), or high, 

from U(50,150).  

4. Holding and backordering costs assume that successive stages add value, so that 

work-in-process holding costs will increase as material progresses along the line. 

To reflect this, a value-added percentage factor 𝑉𝐴𝑃 is used, whose value is 1.1 

(low) or 1.3 (high). Inventory costs are then generated consecutively as follows: 

The first stage‘s unit holding cost 𝑖𝑡1 for product i is generated from U(1,20). 

For subsequent stages, 𝑖𝑡𝑒 = 𝑉𝐴𝑃 ∙ 𝑖𝑡 ,𝑒−1 for 𝑒 ≥ 2. The backordering cost for 

product i is 𝐵𝑖𝑡 = 1.25 ∙ 𝑖𝑡𝐸 .  

5. Capacity tightness is measured by a factor 𝐶𝐴𝑇 with value 1.2 (tight) or 1.6 

(loose).  The mean capacity requirement C per machine at each stage is 

calculated as: 

(3-45) 
𝐶 = 𝑚𝑎𝑥 

𝑒
 
 𝑏𝑗𝑚 ∙ 𝑑𝑗𝑡𝑗𝑡𝑚

𝑇 ∙ 𝑀𝑎𝑥𝑓𝑎𝑐
   

which is the maximum, over all stages, of the mean production time per machine-

period.  The capacity 𝐶𝑚𝑡  on machine m in macro-period t is then given by 𝐶𝑚𝑡 =

𝐶𝐴𝑇 ∙ 𝐶.  

Özdamar and Barbarosoglu (1999) did not specify the permitted percentage BP 

of end item demand that can be backordered, but this work considers the value of 1.0 

for BP which permits backlogging. Minimum lot size or lower bound on the quantity 

of product is considered 10 for all products. 

Considering the last three experimental attributes above, 23 = 8 combinations 

were generated for each of the three models and the two sets of test problems (small 

and large) of very different dimensionality. 
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3.7 Computational results  

To obtain some insight into the dimensionality of the models and problems, the 

number of continuous and binary variables of the Özdamar and Barbarosoglu (1999) 

model, and FFL-CC and FFL-FM models for the small and large problems attributes 

in the former‘s paper (OzBa 1999) was computed in (Mahdieh et al., 2012) and 

shown in Table 3-2. The conspicuous features are the huge number of binary 

variables in FFL-CC and continuous variables in FFL-FM, some 400 and 280 times 

more respectively than in OzBa (1999) for the big instance as a result of modelling 

of sequence-dependent setups. Initial computational test indicated that the FFL-CC 

model is faster and more effective than the FFL-FM (Mahdieh et al., 2012). 

Table 3-2: OzBa (1999) attributes and comparing with FFL-CC and FFL-FM 

 

 

Model 

Small problems 

𝑬 = 𝟑,𝑴𝒆 = 𝟑, 𝑱 = 𝟓,𝑻 = 𝟔 

Large problems 

𝑬 = 𝟒,𝑴𝒆 = 𝟓, 𝑱 = 𝟐𝟎,𝑻 = 𝟔 

Continuous 
Variables 

Binary 
Variables 

Total  
Variables 

Continuous 
Variables 

Binary 
Variables 

Total 
Variables 

OzBa 1999 534 270 804 3,600 2,400 6,000 

FFL-CC 1,471 6,750 8,221 48,601 960,000 1,008,601 

FFL-FM 8,221 1,350 9,571 1,008,601 48,000 1,056,601 

 

In this thesis, the new model for GLSP-FFL problem; FFL-ATSP, causes an 

enormous reduction in number of binary variables through the adaption of 

Asymmetric Travelling Salesman Problem constraints, being more efficient in 

comparison with the previous models.  

Table 3-3: Number of constraints and variables in models FFL-ATSP, FFL-CC and FFL-FM 

Large problem 

𝑬 = 𝟑,𝑴𝒆 = 𝟑, 𝑱 = 𝟖,𝑻 = 𝟔 

Small problem 

𝑬 = 𝟐,𝑴𝒆 = 𝟐, 𝑱 = 𝟒,𝑻 = 𝟔 

 

Number of: 

FFL-FM  FFL-CC  FFL-ATSP FFL-FM  FFL-CC  FFL-ATSP 

35,167 11,056 5,494 2,545 1,285 893 Constraints 

31,297 3,649 1,489 1,993 457 361 Continuous variables 

3,456 27,648 3,456 384 1,536 384 Binary variables 

34,753 31,297 4,945 2,377 1,993 745 Total variables 

 

Table 3-3 illustrates the number of constraints and variables of the three models, 

calculated from the problem attributes of GLSP-FFL. As shown in Table 3-3, FFL-

ATSP has considerably fewer binary variables than the FFL-CC and FFL-FM 

models for both small and large problems. The models are implemented in the 

optimisation modelling software GAMS build 23.6.5 (Brooke et al., 1988) and 

solved using the industrial-strength CPLEX 12.0 solver (CPLEX., 2010) on a 
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computer with a 2.1 GHZ CPU and 2 GB of RAM. A one-hour time limit is set for 

CPLEX to run the models. 

Twenty replications were generated for each combination of small problems, so 

in total 20*8=160 small problems were generated. Each replication was 

corresponded to different random seeds for generating demand, processing time, 

holding cost, setup time and cost.  

For all (160) small problems, the FFL-ATSP model either with lifting constraint 

(3-41a) or without lifting constraint (3-41a) found the optimal solution in a mean 

time of 10 seconds, while the FFL-CC and FFL-FM models not only could not find 

an optimal solution in one hour but also ended the search with a large optimality gap: 

47% for FFL-CC and 83% for FFL-FM on average. Table 3-4 shows an average 

percentage difference %(
𝐶𝑜𝑠𝑡−𝑂𝑝𝑡

𝑂𝑝𝑡
) between the objective function of FFL-CC and 

FFL-FM and the optimal cost obtained by FFL-ATSP for each combination.  

Observe that, similar to the result of previous study (Mahdieh et al., 2012), the FFL-

CC model has a much smaller optimality gap than FFL-FM with better best possible 

solution.  

Table 3-4: Average percentage difference between FFL-CC and FFL-FM and the optimal solution overall 

small problems for each combination 

problem attributes  

for each combination with 20 problems 

Average percentage of opt gap 

%(
𝑪𝒐𝒔𝒕 − 𝑶𝒑𝒕

𝑶𝒑𝒕
) 

Demand Holding cost 

VAP 

Capacity tightness 

CAT 

FFL-CC  

model 

 

FFL-FM 
model 

 

Low 1.1 1.2 4.44 14.39 

Low 1.1 1.6 5.37 15.54 

Low 1.3 1.2 4.50 14.03 

Low 1.3 1.6 5.72 16.99 

High 1.1 1.2 4.43 17.75 

High 1.1 1.6 4.84 14.15 

High 1.3 1.2 4.27 13.61 

High 1.3 1.6 5.95 16.11 

Overall all (160) small problems  4.94 15.32 

 

Due to the long solution computing times, just one replication of the big 

problems (8 problems) were generated. The one-hour time limit was removed so that 

CPLEX terminated when the 2 GB of available RAM was exhausted by the branch-

&-cut search. Table 3-5 shows the result of the three models for the big problems 

indicating the means of the CPU time, percentage of optimality gap and RAM usage. 
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Observe that both the FFL-CC and FFL-FM models left very large optimality gaps, 

81.9% and 99.1% respectively, at termination after about 6 to 7 hours of running 

time, while FFL-ATSP with original MTZ formulation (i.e. without lifting, FFL-

ATSPL−) terminated in less than an hour with 12.5% optimality gap and better 

solutions for all problems in comparison with FFL-CC and FFL-FM.  

Table 3-5: Mean CPLEX results for big problems 

Average of RAM 

usage (MB) 

Average of Percentage of 

optimality gap (OPTCR) 

Average of  

CPU time (secs) 
Models 

1886 12.5% 3,310 FFL-𝐀𝐓𝐒𝐏𝐋− 

1867  81.9% 21,628 FFL-CC 

1756 99.1% 23,919 FFL-FM 

 

The results of FFL-ATSP model with lifting (ATSPL+) and without lifting 

(ATSPL−) for big problems are also shown in Table 3-6 and indicate that the MTZ 

original formulation (ATSPL−) results in an overall lower optimality gap (12.5%) and 

less CPU time (3,440 seconds) rather than the lifted formulation with 15.4% 

optimality gap in the average of 4,746 seconds.  

Table 3-6: Results of CPLEX optimality gap, Best Possible (BP) solution and CPU time for FFL-ATSP 

with and without lifting  

problem attributes for each 

combination with one problem 

CPLEX opt gap 

% 
 𝑩𝑰 − 𝑩𝑷 

𝑩𝑷
  

Best Possible (BP) 

solution cost 

 

CPU time (secs) 

Demand Holding 

cost VAP 

Capacity 

tightness CAT 

ATSPL− ATSPL+ ATSPL− ATSPL+ ATSPL− ATSPL+− 

Low 1.1 1.2 12.5 18.8 27,998 29,732 3,216 2,982 

Low 1.1 1.6 12.6 16.1 31,651 32,656 3,762 3,822 

Low 1.3 1.2 12.7 16.2 31,355 32,655 3,210 3,752 

Low 1.3 1.6 12.7 8.2 30,524 29,153 3,200 3,191 

High 1.1 1.2 13.7 17.8 28,246 28,961 3,365 4,751 

High 1.1 1.6 11.0 20.9 25,761 27,834 3,491 3,609 

High 1.3 1.2 13.0 8.2 31,111 29,152 3,618 12,011 

High 1.3 1.6 12.2 16.8 28,011 29,732 3,661 3,851 

Overall all (8) big problems  12.5 15.4 --- --- 3,440 4,746 

 

Note that All GAMS solvers use LP based branch-and-bound algorithms for 

solving MIPs and keep ―best integer‖ (BI) and ―best estimate or best possible‖ (BP) 

while they run. The best integer is the best solution that satisfies all integer 

requirements found so far. The best estimate provides a bound for the optimal integer 

solution. As we don‘t have the optimal solution, the quality of a solution can be 
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measured as the distance between best integer and a bound for the optimal solution 

(best estimate). This value is called the absolute gap (GAMS notation OPTCA). The 

absolute gap depends on the magnitude of the best estimate and the best integer 

therefore GAMS defined the relative gap as the optimality gap (in GAMS notation 

OPTCR) which equals to absolute gap divided by best possible (
 𝐵𝐼−𝐵𝑃 

𝐵𝑃
).  

As the numerical test shows, the new ATSP adaptation for GLSP-FFL has 

significant improvement in both small and large problems solutions. Two statistical 

tests including a Balanced ANOVA and the non-parametric Friedman test were 

carried to test significant differences between the means and the medians of the 

solution values of the three models respectively. Note that both tests indicate highly 

significant differences (p=0.00) on all the combinations. A Two-Way, also known as 

a Two-Factor ANOVA Analysis with Replication was carried to test the existence of 

an interaction between the models and combinations for small problems with 20 

replications. Table 3-7 provides the details of the ANOVA results highly indicating 

no significant interaction between two factors: models and combinations (p=1.00) 

and also no significant difference between 8 combinations (p=0.788).  

Table 3-7: Results of Two-Factor ANOVA with Replication for small problems 

Source of Variation Sum of squares Degrees of freedom Mean square 𝑭𝟎 p-value 

Combinations 7 1784465 254924 0.56 0.788 

Models 2 115426399 57713199 126.88 0.000 

Interactions 14 843450 60246 0.13 1.000 

Error 456 207417627 454863   

Total 479 325471940    

3.8 Final remarks 

In this chapter, three mathematical models have been presented for the 

simultaneously lot sizing and scheduling of flexible flow lines considering practical 

assumptions in FFL manufacturing systems like lot splitting and shortage. The first 

model (FFL-CC) is based on Clark and Clark‘s (2000) sequencing formulation  

technique while the second model (FFL-FM) is based on Fleischmann and Meyr‘s 

(1997). The computational tests indicate that the FFL-CC is more effective and has a 

much smaller optimality gap than FFL-FM. The third novel MIP model (FFL-ATSP) 

is based on adaptation of ATSP that shows significant improvement of problems 

solutions for both problem sizes in very much shorter time than FFL-CC and FFL-

FM. For example, for small problems FFL-ATSP found the optimal solution in a 
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mean time of 10 seconds, while the FFL-CC and FFL-FM models not only could not 

find an optimal solution in one hour but also ended the search with a large optimality 

gap. Three different ANOVA tests including a Balanced ANOVA and the non-

parametric Friedman test and Two-Factor ANOVA Analysis with Replication have 

been carried to compare the models. The result indicated highly significant 

differences (p=0.00) between three models and no significant interactions between 

models and combinations (p=1.00), and different levels of combinations (p=0.788). 

GLSP-FFL is an NP-complete problem and even a well designed exact MIP 

model FFL-ATSP, cannot find any feasible solution in reasonable computing time 

for some large problems. Hence, it is necessary to develop an efficient solution 

procedure. The next chapter is devoted to a meta-heuristic algorithm, Adaptive 

Simulated Annealing, with three initial solutions for solving GLSP-FFL.  
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4. An Adaptive Simulated Annealing for GLSP-

FFL 
 

Chapter 4 

An Adaptive Simulated Annealing for 

GLSP-FFL  

 

The General Lotsizing and Scheduling Problem in Flexible Flow Line (GLSP-

FFL) optimizes the lot sizing and scheduling of multiple products at multiple stages, 

each stage having multiple machines in parallel. The problem is complex as any 

product can be processed on any machine but with different process rates and 

sequence-dependent setup times & costs. Therefore, it is impossible to find even a 

feasible solution for large problem within a reasonable time period by solving an 

exact MIP model and it is necessary to develop efficient algorithm for GLSP-FFL. 

Moreover working with population based algorithm like genetic algorithm is too 

complex as even finding small size initial population within a reasonable time is 

impossible. Previous research found that Simulated Annealing (SA) results in better 

solution for GLSP-FFL than Tabu Search. Moreover SA is relatively easy to code 

even for complex problems like GLSP-FFL and generally gives a good solution. 

Hence this chapter is devoted to design an efficient neighbourhood search algorithm, 

Adaptive Simulated Annealing with four initial solutions. The effectiveness of the 

proposed simulated annealing and the initial solutions is evaluated by numerical 

tests. 

4.1 Adaptive Simulated Annealing 

Simulated Annealing (SA) is a local search method that finds its inspiration in 

the physical annealing process studied in statistical mechanics (Metropolis et al., 
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1953) and was initially proposed by Kirkpatrick and Gelatt(1983) for combinatorial 

optimization problems. An SA algorithm repeats an iterative neighbour generation 

procedure and follows search directions that aim to improve the objective function 

value towards a global optimum.  

In a minimisation problem, if the cost value of the neighbour solution (𝑐𝑜𝑠𝑡𝑛) is 

lower than that of the current solution(𝑐𝑜𝑠𝑡𝑐), then a move to the neighbour solution 

is made. However, if the neighbour does not improve the current solution, then there 

is still a chance of transition by comparing a uniform random number with the 

transition probability function (4-1). If the probability value is greater than or equal 

to the random number, then the transition to the worse solution is accepted.  

𝑃 𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = exp  −
∆𝐶𝑖
𝑇𝑖
  

(4-1) 

where ∆𝐶𝑖  is the cost difference between the neighbour solution and the current 

solution in iteration 𝑖 and 𝑇𝑖  is the SA temperature. As the algorithm progresses, the 

temperature decreases according to a function called the cooling schedule. The initial 

and most frequently used cooling schedule is Geometric (𝑇𝑖+1 =∝.𝑇𝑖) where the 

temperature reduces by a constant factor, known as the cooling factor (0 <∝< 1), 

after predetermined number of iterations. The advantage of geometric cooling 

schedule is its simplicity and that it can provide some baseline for comparison with 

more sophisticated schedules. However regardless of whatever cooling factor is 

chosen, it seems that the search is less likely to move out  of  local minimal at a 

critical stage either as it is not cooling quickly enough or as it is cooling too quickly 

(Dowsland, 1993, Triki et al., 2005).  To overcome this, several theoretical and 

empirical cooling schedules have been proposed in the literature such as monotonic 

schedules, adaptive schedules and quadratic cooling schedules (Geng et al., 2011, 

Gong et al., 2001, Hajek, 1988, Huang et al., 1986, Laarhoven and Aarts, 1987, 

Otten and Van Ginneken, 1984, Schneider and Puchta, 2010, Thompson and 

Dowsland, 1996, Van Laarhoven et al., 1992). 

In contrast to monotonic schedules, adaptive cooling schedules calculate the 

next temperature value based on the past search history. Dowsland (1993) considered 

two functions, one for cooling down (𝑇/(1 + 𝛽.𝑇) that reduces the temperature 

when a move is accepted, and another for heating up (𝑇/(1−∝.𝑇) that increases the 

temperature gradually when a move is rejected. Özdamar and Barbarosolu(1999) 

used only Dowsland‘s cooling function for multi-stage capacitated lot sizing 
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problem, where 𝛽 is an adaptive parameter according to the search status. If the last 

predetermined number of consequent moves result in improving cost values, then 𝛽is 

decreased by subtracting a step size of less than 1.0 and is increased if they are non-

improving. Özdamar and Barbarosolu set the initial value of temperature and 𝛽 to 

1.0 and considered 0.01 as a step size for 𝛽.  

 In this thesis, the Geometric cooling scheme by Kirkpatrick and Gelatt(1983) 

and adaptive cooling schedule by Dowsland (1993) were originally applied for 

GLSP-FFL, but through an initial computational test it was observed that they are 

not effective temperature control schemes. Since there is an exponential term in the 

transition probability function, using the absolute cost difference (∆𝐶) drives the 

transition probability close to zero in problems with big values in the objective 

function. To alleviate this problem, the relative cost difference (𝛥𝐶/𝑐𝑜𝑠𝑡𝑐) has been 

used by some researchers rather than ∆𝐶(Özdamar and Barbaroso lu, 1999). 

However, the relative cost difference could get very small and drive the transition 

probability close to zero.  
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Figure 4-1: Transition probability of; graph (a) Geometric SA, graph (b): Dowsland’s SA and graph (c): 

Azizi and Zolfaghari’s SA 
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Both SAs were run with random seeds for GLSP-FFL problem and, as shown in 

Figure (4-1) graph (a) Geometric cooling schedule and Dowsland‘s cooling schedule 

graph(b), were driven to zero after 1000 and 2000 iterations respectively. 

Dowsland‘s adaptive cooling schedule works better but not for iterations more than 

about 2500, because when the temperature declines as the search continues, 𝛽  does 

not have a significant effect on changing a relatively low temperature towards the 

end of the search. Therefore this approach could not be very useful particularly if 

local optimal are not near the start point of the search. Azizi and Zolfaghari(2004) 

designed a new adaptive temperature control that maintains the temperature above 

minimum level and applied it on job shop scheduling problems. Their temperature is 

controlled by a single function:  𝑇𝑖 = 𝑇𝑚𝑖𝑛 + 𝜆 ln(1 + 𝑟𝑖) where 𝑇𝑚𝑖𝑛  is the 

minimum value that the temperature can take (𝑇0 = 𝑇𝑚𝑖𝑛 ), 𝜆 is a coefficient that 

controls the rate of temperature rise, and 𝑟𝑖  is the number of consecutive upward 

moves at iteration 𝑖 with initial value of zero. If a move results in a higher cost value 

(upward move) then the counter 𝑟𝑖  increases by 1.0 and but remains unchanged if the 

new solution has the same cost value and if a move results in improving cost then 𝑟𝑖   

is equal to zero.  Both parameters 𝑇𝑚𝑖𝑛  and 𝜆 were set to 1.0 in Azizi and 

Zolfaghari‘s paper. 

𝑟𝑖 =  

𝑟𝑖−1 + 1 𝑖𝑓 ∆𝐶𝑖 > 0
𝑟𝑖−1       𝑖𝑓 ∆𝐶𝑖 = 0
0           𝑖𝑓 ∆𝐶𝑖 < 0

  

(4-2) 

This dynamic temperature control scheme gives a higher chance of an uphill 

move once the search starts climbing up regardless of the iteration number 𝑖  and 

treats neighbouring solutions at the beginning of the search in the same way as the 

neighbouring solutions near the end of the search. Thus in this thesis Azizi and 

Zolfaghari‘s cooling schedule was applied for to the GLSP-FFL problem and the SA 

is a form of Adaptive Simulated Annealing (ASA) (Azizi and Zolfaghari, 2004). To 

obtain the best value for the ASA‘s parameters (𝑇𝑚𝑖𝑛 , 𝜆), several values have been 

tested and the consequent behaviour of transition probability function and 

temperature during the search has been analyzed. By increasing the value of 𝜆, the 

search spends less time looking for good solutions in its current neighbours and 

might go to unfavourable regions of solution space. On the other hand, a very small 

value of 𝜆 reduces the effect of the temperature dynamic adjustments and the chance 
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of escaping local optimal. Moreover another advantage of ASA is avoiding the 

transition probability to be driven to zero because of using either absolute or relative 

cost differences. As shown in Figure (4-1) graph (c), even after 6,000 iterations, 

there is still a chance of uphill moves with high probability. Regardless of how big 

or small the objective function, the transition probability is adjusted by choosing the 

appropriate value of Tmin . In this study, the value of {1,5,10,15,20,25} tested for 

𝜆 and 𝑇𝑚𝑖𝑛  and the value of 10 for both 𝜆 and 𝑇𝑚𝑖𝑛 , revealed the best results for  5 

samples of small size and 5samples of big sizes GLSP-FFL problem.  

Figure (4-2) dramatically shows the effect of ASA‘s parameters on the search. 

The green dots indicate the cost of solutions at the iterations and the best found 

solutions are shown with red dots. As demonstrated in graph (a), better solutions are 

always accepted (green dots = red dots) and there is no chance of uphill moves and 

escaping from local optimal while both 𝜆 and 𝑇𝑚𝑖𝑛  are set to 1. On the other hand, in 

graph (b), the big value of the parameters (𝜆 = 𝑇𝑚𝑖𝑛 = 100) makes causes too many 

upward moves thus going in undesirable directions of search from which it is hard to 

get back on track.  
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Figure 4-2: Progress of ASA, graph (a): (𝛌 = 𝐓𝐦𝐢𝐧 = 𝟏) and graph (b): (𝛌 = 𝐓𝐦𝐢𝐧 = 𝟏𝟎𝟎) 

(+ dot): solution in each iteration; (O dot): best found solution; 

4.2 Initial solution 

In this thesis, four initial solutions are designed for the ASA algorithm. All the 

initial solutions are inventory-feasible solutions and satisfy constraints (4-1) and (4-

2), while they can be capacity-infeasible solutions and do not satisfy constraint (4-3). 

The ASA tries to improve the objective function in a given number of moves while 

capacity infeasibilities are heavily penalized in the objection function. It is important 
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that inventory-feasibility is always preserved when generating neighbours by the 

neighbour operators. Inventory and capacity constraints are as following: 

Inventory constraints: 

∀  𝑗, 𝑡(4-1) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡  

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1(4-2 ) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚𝑒

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚 ,𝑡+1

𝑚𝑒+1

 

Capacity constraint: 

∀ 𝑒,𝑚, 𝑡 (4-3)  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗

+  𝑏𝑖𝑚  𝑥𝑖𝑚𝑡
𝑖

 ≤  𝐶𝑚𝑡  

In order to simplify ASA, the one-period-backward shifted demand is 

considered for intermediate stages (𝑒 < 𝐸), means that 𝑥𝑗𝑚 ,𝑡+1 in the right hand of 

equation (4-2) changes to 𝑥𝑗𝑚𝑡 . The new inventory diagram is shown in Figure (4-3).  

The final solution obtained by the ASA is equivalent to the origin GLSP-FFL and it 

can simply shift forward to be the same as the original one.  
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Figure 4-3: New inventory diagram  

4.2.1 First initial solution 

The first initial solution is generated by randomly assigning all the products to 

the machines of each stage. The same procedure is repeated for all the periods to 

generate a sequence. Then the sequence is given to the linear lot sizing model of 

GLSP-FFL in order to determine the optimal lot size of the given sequence and to 

test its feasibility. Thus, in the flexible flow line lot sizing model 𝑦𝑖𝑗 𝑚𝑒𝑓𝑡
𝑚𝑒  is a 

parameter and the decision variables are: 
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Inventory level of product i in stage e at the end of macro-period t. 𝐼𝑖𝑒𝑡  

Backordered amount of end-product i at the last stage E at the end of macro-

period t. 
𝐵𝑖𝐸𝑡  

Production quantity of product i on machine m in micro-period f. 𝑥𝑖𝑚𝑓  

The data is the same as previous models and constraints are as follows: 

(4-4)  𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑓
𝑖𝑗𝑒𝑚𝑡𝑓

+  𝑖𝑡𝑒  𝐼𝑖𝑒𝑡
𝑖𝑡𝑒

+  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡
𝑖𝑡

 

∀ 𝑗, 𝑡 (4-5) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝐸 ,𝑓𝑡

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡  

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (4-6) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑓
𝑚𝑒 ,𝑓𝑡

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑓
𝑚𝑒+1 ,𝑓𝑡

 

∀ 𝑖, 𝑡  (4-7) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  

∀ 𝑒,𝑚, 𝑡(4-8)  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑓
𝑖𝑗𝑓

+  𝑏𝑖𝑚  𝑥𝑖𝑚𝑓
𝑖𝑓

 ≤  𝐶𝑚𝑡  

∀ 𝑗, 𝑒,𝑚, 𝑡,𝑓(4-9) 𝑥𝑗𝑚𝑓  ≤  𝑈𝐵𝑗𝑚𝑡  𝑦𝑖𝑗𝑚𝑓
𝑖

 

∀ 𝑒,𝑚, 𝑡,j, f (4-10)𝑥𝑗𝑚𝑓 ≥ 𝐿𝐵𝑗𝑚𝑡  𝑦𝑖𝑗𝑚𝑓
𝑖≠𝑗

  

The objective function (4-4) minimises backorders and inventory costs. Note 

that setup cost ( 𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑓𝑖𝑗𝑒𝑚𝑡𝑓 ) is a constant value in the objective function. 

The material balance, bounding backorder and capacity limit are expressed in 

constraints (4-5) to (4-8). Constraint (4-9) determines the appropriate production lot 

sizes for a given sequence and the minimum lot sizes are enforced by constraint (4-

9). 

The CPU time for solving the GLSP-FFL lot sizing model by GAMS is less than 

one second even for big problems. If the model results in a feasible solution then the 

sequence with its optimal lot size is considered as a first ASA initial solution 

otherwise the process is repeated until the feasible solution is achieved. Most of the 

time, the first sequence has feasible lot sizes, because of considering the production 

of the all the items in each stage and each period.  

4.2.2 Second initial solution 

Firstly the quantity of products in each stage and period are given by the 

external demand of last stage (𝑋𝑒𝑗𝑡 = 𝑑𝑗𝑡 ). Then the product lot sizes (𝑋𝑒𝑗𝑡 ) are 

given to the Loading Heuristic (LHR) for assigning to the machines of each stage. 
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Because of the assumption of 𝑋𝑒𝑗𝑡 = 𝑑𝑗𝑡 , the LHR solution is inventory-feasible but 

may be capacity-infeasible. To check capacity-feasibility and find the optimal lot 

sizes of LHR solution, the sequence of LHR is given to the linear lot sizing model of 

GLSP-FFL. If the model results in a feasible solution, then the sequence with its 

optimal lot size is considered as a second ASA initial solution otherwise the solution 

of LHR is given to ASA and most often it becomes capacity-feasible in a few 

number of ASA moves as capacity infeasibilities are heavily penalized in the 

objection function of ASA. The LHR algorithm is as follow: 

In the LHR, the given lot sizes (𝑋𝑒𝑗𝑡 ) are scheduled on the parallel machines of 

each stage. Firstly, the products with positive lot size (𝑋𝑒𝑗𝑡 > 0) are assigned to a 

product list for each period and stage. Then a capacity factor of machines on that 

stage and period are computed by equation (4-11) for all the listed products. The 

capacity factor is the summation of production time, setup time by considering the 

previous product (𝑖′) and used capacity of the machine.  

𝑐𝑎𝑝𝑓𝑎𝑐𝑡𝑜𝑟 𝑗,𝑚𝑒 = 𝑢𝑠𝑒𝑐𝑎𝑝 𝑚𝑒 + 𝑠𝑡𝑖 ′ 𝑗𝑚𝑒
+ 𝑋𝑒𝑗𝑡 × 𝑏𝑗𝑚𝑒

 (4-11) 

After computing capacity factors, the machine and the product  𝑚𝑒
∗ , 𝑗∗  with 

minimum capacity factor is determined. The product 𝑗∗is assigned to the machine 𝑚𝑒
∗  

and then 𝑗∗ is eliminated from the list and machine used capacity (𝑢𝑠𝑒𝑐𝑎𝑝 𝑚𝑒
∗ ) is 

updated. This is repeated until the list becomes empty. The steps of LHR are as 

follows:  

Step 1: Select a pair  𝑒, 𝑡  and do the steps 1-1 to 1-5 for this pair. 

Step 1-1: Assign all the items with positive lot size (𝑋𝑒𝑗𝑡 > 0) into the product 

list.  

Step 1-2: Calculate the capacity factor for all the listed products by (4-11). 

Step 1-3: Select a pair of product and machine with minimum capacity factor 

from the list  𝑚𝑒
∗ , 𝑗∗  and assign product 𝑗∗ to the machine 𝑚𝑒

∗ .   

Step 1-4: Eliminate product 𝑗∗from the list and update the machine 𝑚𝑒
∗  used 

capacity. 

Step 1-5: If the list is empty then go to the next step else go to the step 1-2. 

Step 2: If all the pairs (𝑒, 𝑡) are selected then stop else go to the step 1 and select 

another one. 
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4.2.3 Third initial solution 

The third initial solution is generated by solving the compressed and well-

organized model which extracts from the GLSP-FFL. The model is Capacitated Lot 

Sizing Problem for Multi Stage systems (MS-CLSP) with single machine in each 

stage. The MS-CLSP is the CLSP problem for single flow line which is much 

smaller than the GLSP-FFL and is optimally solved less than a second even for the 

big size problem. For example the number of binary variables in the MS-CLSP 

model for big size problem with 𝐸 = 3,𝑀𝑒 = 3, 𝐽 = 8,𝑇 = 6 is 144 however this 

number is 3,456 in FFL-ATSP and FFL-FM and 27,648 in FFL-CC.  

The MS-CLSP is a MIP model and Variable 𝑥𝑒𝑗𝑡  indicates a production lot size 

of product j in stage e and period t. Binary variable for setup of product j in stage e 

and period t is shown by the 𝑦𝑒𝑗𝑡 . The model is as follows: 

𝑀𝑖𝑛   𝐼𝑗𝑡𝑒 ×

𝐸

𝑒=1

𝑇

𝑡=1

𝐽

𝑗=1

𝑗𝑡𝑒 +   𝑔𝑗𝑡 × 𝐵𝑗𝑡𝐸 +    𝑦𝑒𝑗𝑡 ×

𝐽

𝑗=1

𝐸

𝑒=1

𝑇

𝑡=1

𝑠𝑐𝑗𝑒

𝑇

𝑡=1

𝐽

𝑗=1

 

(4-12) 

𝐼𝑗  𝑡−1 𝐸 − 𝐵𝑗  𝑡−1 𝐸 + 𝑥𝐸𝑗𝑡 − 𝐼𝑗𝑡𝐸 + 𝐵𝑗𝑡𝐸 = 𝑑𝑗𝑡  ∀ 𝑗, 𝑡(4-13) 

𝐼𝑗  𝑡−1 𝑒 + 𝑥𝑒𝑗𝑡 − 𝐼𝑗𝑡𝑒 = 𝑥 𝑒+1 𝑗𝑡  ∀ 𝑗, 𝑡, 𝑒 = 1,… ,𝐸 − 1(4-14) 

𝐵𝑗𝑡𝐸 ≤ 𝐵𝑃 × 𝑑𝑗𝑡  ∀ 𝑗, 𝑡4-15) 

 𝑠𝑡𝑗𝑒 × 𝑦𝑒𝑗𝑡

𝐽

𝑗=1

+  𝑏𝑗𝑒 × 𝑥𝑒𝑗𝑡

𝐽

𝑗=1

≤ 𝐶𝑒𝑡  

 

∀ 𝑗, 𝑡(4-16) 

𝑥𝑒𝑗𝑡 ≤ 𝑦𝑒𝑗𝑡 ×  
𝐶𝑒𝑡
𝑏𝑗𝑒

  
∀ 𝑗, 𝑡, 𝑒(4-17) 

The model parameters are obtained from the GLSP-FFS parameters. Therefore 

the capacity parameter is computed by 𝐶𝑒𝑡 =  𝐶𝑚𝑒𝑡
𝑀𝑒
𝑚𝑒=1  for each stage and period 

and bje  is the required time to produce j in stage e which is given by 𝑏𝑗𝑒 =

𝑚𝑎𝑥𝑚𝑒
{𝑏𝑗𝑚 𝑒

}. The setup time and cost for producing j in stage e is calculated by 

𝑠𝑡𝑗𝑒 = 𝑚𝑎𝑥𝑖{𝑠𝑡𝑖𝑗 𝑚𝑒
′ } and 𝑠𝑐𝑗𝑒 = 𝑚𝑎𝑥𝑖{𝑠𝑐𝑖𝑗 𝑚𝑒

′ } respectively, where 𝑚𝑒
′  is a machine 

with maximum production time for producing j in stage e. The objective function (4-

12) minimises backorders, inventory and setup costs. The material balance, bounding 

backorder and capacity limit are presented in constraints (4-13) to (4-16). Constraint 

(4-17) enforces the appropriate setup before production. After solving model, lot 

sizes (𝑥𝑒𝑗𝑡 ) are given to the LHR  (𝑋𝑒𝑗𝑡 = 𝑥𝑒𝑗𝑡 ) to be scheduled on the parallel 
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machines of each stage. The result of LHR is considered as the third initial solution 

of ASA.  

The first initial solution is feasible but the second and third solutions may be 

capacity-infeasible solutions. However, because of the MS-CLSP model structure 

and assigning and scheduling lots by LHR, the third initial solution is most often a 

feasible solution. Nevertheless in the ASA procedure capacity infeasibilities are 

penalized by (4-18) in the objective function.    

𝑃𝑒𝑛𝑎𝑙𝑡𝑦𝐶𝑜𝑠𝑡 = 𝑒𝑥𝑡𝑟𝑎𝑐𝑎𝑝 𝑚𝑒𝑡  × 𝑃𝑒𝑛𝑎𝑙𝐹𝑎𝑐𝑡𝑜𝑟 (4-18) 

The amount of capacity violation of machine in each stage and period is shown 

by 𝑒𝑥𝑡𝑟𝑎𝑐𝑎𝑝 𝑚𝑒𝑡   and penalized by the big number PenalFactor.  

4.2.4 Fourth initial solution 

For fourth initial solution, firstly the sequence is generated by solving the 

sequencing model of the GLSP-FFL. Similar to ATSP, the sequencing model 

determines the product sequences on machines of each stage in order to minimise the 

sequence-dependent setup cost (4-19) without considering capacity and inventory 

constraints. Then the sequence is given to the linear lot sizing model of GLSP-FFL 

(explained in first initial solution) to determine its optimal lot size.  The sequencing 

model of GLSP-FFL is MIP and binary variable  𝑦𝑖𝑗𝑚𝑡  indicates the setup from 𝑖 to 𝑗 

on machine 𝑚, stage 𝑒 and period 𝑡. The model is as follow: 

(4-19)  𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗𝑒𝑚𝑡

 

∀  𝑒,𝑚, 𝑡(4-20) 

 𝛼𝑖𝑚𝑡

𝐽

𝑖=1

 = 1  

∀ 𝑒,𝑚, 𝑡 = 1(4-21) 𝛼𝑖𝑜𝑚 𝑚𝑡 = 1 

 

∀  𝑒,𝑚, 𝑖 𝑎𝑛𝑑 𝑡 = 1… ,𝑇 − 1(4-22) 𝛼𝑖𝑚𝑡 +  𝑦𝑗𝑖𝑚𝑡
𝑗

=    𝑦𝑖𝑗𝑚𝑡
𝑗

+ 𝛼𝑖𝑚 𝑡+1   

∀ 𝑒,𝑚, 𝑖, 𝑗, 𝑡 (4-23) 𝑣𝑖𝑚𝑡 − 𝑣𝑗𝑚𝑡 +  𝐽 × 𝑦𝑖𝑗𝑚𝑡  ≤ 𝐽 − 1 

∀ 𝑒, 𝑖, 𝑡 (4-24)  𝑦𝑗𝑖𝑚𝑡
𝑗 ,𝑚

+  𝛼𝑖𝑚𝑡

𝑚

 ≥ 1 

∀ 𝑒,𝑚, 𝑡 (4-25) 
 𝑦𝑗𝑖𝑚𝑡
𝑗 ,𝑖

+  𝛼𝑖𝑚𝑡
𝑖

≤  
𝐽

𝑀𝑒
+  1 
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Constraints (4-20)-(4-23) similar to constraints (3-38)-(3-41) of FFL-ATSP 

entirely determine the sequence of products on a machine in each period and cause a 

setup carryover of the machine between periods. Constraint (4-24) forces the 

production of all items in each stage and period. So items are distributed on 

machines in each stage with the minimal setup cost. However the optimal setup cost 

sequence may not be a feasible sequence particularly capacity feasible solution for 

the GLSP-FFL as for example one machine may have too many products and 

another one may not be assigned even one item. To alleviate this problem, for each 

period, constraint (4-25) balances the number of items on machines of each stage by 

not allowing production of more than ( 
𝐽

𝑀𝑒
+  1 ) on each machine.  Consider, for 

example if there are  𝐽 = 10 products and 𝑀𝑒 = 3 machines in each stage, the 

number of products on each machine should be less or equal to 4 ( 
10

3
+  1 ≅ 4 ) 

items which results in more likely capacity feasible sequence.   

4.3 Neighbour operators 

Neighbour generation is a crucial issue in ASA algorithm. In this thesis three 

neighbour operators are developed for GLSP-FFL in order to efficiently search the 

solution space by changing lot sizes and sequences while the solution inventory 

feasibility is preserved. These operators consist of shifting part or whole lot sizes 

forward to the next period or backward to the previous period or to the same or 

different machine of stage at the current period. They are called forward, backward 

and machine-to-machine shifting operators respectively.  

For generating a neighbour from the current solution, firstly the triplet  𝑒, 𝑗, 𝑡  is 

selected randomly while the lot size of the product 𝑗 in the period 𝑡 and the stage 𝑒 is 

positive. Then, it is randomly decided whether the selected lot size will be forward 

(𝑡∗ = 𝑡 + 1) or backward shifted (𝑡∗ = 𝑡 − 1), or transferred to the same or another 

machine in the same period (𝑡∗ = 𝑡). The maximum amount of the selected lot size 

that will be forward shifted  t∗ > 𝑡  with considering inventory feasibility 

preservation is given by (4-26). It is obvious that 𝐵𝑒 ,𝑗 ,𝑡  and 𝐵𝑃 are zeros for the 

intermediate stages (𝑒 < 𝐸). 

∆𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑥𝑒 ,𝑗 ,𝑡 , 𝐼𝑒 ,𝑗 ,𝑡 − 𝐵𝑒 ,𝑗 ,𝑡 + 𝐵𝑃 × 𝑑𝑒 ,𝑗 ,𝑡} (4-26) 
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In fact the maximum amount that can be shifted is limited both by the lot size, 

the backorder and inventory limit of period 𝑡. On the other hand the maximum 

amount of the lot size that will be backward shifted  𝑡∗ < 𝑡  is given by (4-27).  

∆𝑚𝑎𝑥 = 𝑚𝑖𝑛 {𝑥𝑒 ,𝑗 ,𝑡 , 𝐼𝑒−1,𝑗 ,𝑡∗} (4-27) 

If stage e is the first stage then ∆𝑚𝑎𝑥  equals to 𝑥𝑒 ,𝑗 ,𝑡 . Here, the maximum amount 

of shifting is limited by the lot size and the inventory of the previous stage of 

period 𝑡∗. Finally the amount that will be shifted forward or backward (∆) has a 50-

50 chance of being ∆ = ∆𝑚𝑎𝑥  or being a random number within the interval zero to 

∆𝑚𝑎𝑥   (∆ = 𝑅𝑎𝑛𝑑𝑜𝑚[0,∆𝑚𝑎𝑥 ]). For the machine-to-machine shifting  𝑡∗ = 𝑡 , a 

machine is selected among the machines which produce j. Then the quantity of lot j 

on the selected machine is assigned to ∆. The lot (∆)could be transferred to any 

sequence of the same or different machine in the stage e.  

After determining the ∆ by each neighbour operator the quantity of product j is 

updated by (𝑥𝑒 ,𝑗 ,𝑡 = 𝑥𝑒 ,𝑗 ,𝑡 − ∆) and (𝑥𝑒 ,𝑗 ,𝑡∗ = 𝑥𝑒 ,𝑗 ,𝑡∗ + ∆). The inventory level for 

forward shifting is updated by (𝐼𝑒 ,𝑗 ,𝑡 − 𝐵𝑒,𝑗 ,𝑡 = 𝐼𝑒 ,𝑗 ,𝑡 − 𝐵𝑒 ,𝑗 ,𝑡 − ∆) and (𝐼𝑒−1,𝑗 ,𝑡 =

𝐼𝑒−1,𝑗 ,𝑡 + ∆). Furthermore it is updated by (𝐼𝑒 ,𝑗 ,𝑡∗ = 𝐼𝑒 ,𝑗 ,𝑡∗ + ∆) and (𝐼𝑒−1,𝑗 ,𝑡∗ =

𝐼𝑒−1,𝑗 ,𝑡∗ − ∆) for backward shifting. However, the inventory level for machine-to-

machine shifting does not change. 

In forward and backward shifting for subtracting ∆ from the quantity of product 

j in stage e and period t i.e., (𝑥𝑒 ,𝑗 ,𝑡 = 𝑥𝑒 ,𝑗 ,𝑡 − ∆), a machine among the machines 

which produces product j is randomly selected. Then the ∆ subtracts from the 

quantity of product j on the selected machine. Moreover, If ∆ is greater than the lot 

size of product j on the selected machine then for the remained part of ∆ another 

machine is selected randomly for subtraction.  This process repeats until ∆ gets zero. 

In machine-to-machine shifting the ∆ is subtracted from the origin machine which 

the ∆ is picked from.  

Finally, for all the neighbour operators there is the same procedure in order to 

schedule the ∆ on the machines of stage e and period 𝑡∗ (𝑥𝑒 ,𝑗 ,𝑡∗ = 𝑥𝑒 ,𝑗 ,𝑡∗ + ∆). For 

this purpose a sequence is determined by searching over all sequences on the 

different machines and selecting the best sequence with minimum incremental cost. 

For example if there are two machines in stage e as shown in Figure (4-4), then there 

are totally 7 choices, 4 sequences on machine 1 and 3 sequences on machine 2 for 

loading the lot j. In another example, suppose that product j is produced in the first 
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sequence of machine 1 rather than product i in Figure (4-4). Then because of zero 

setup time and cost the best sequence on the machine 1 for loading the lot j is the 

first sequence and so there are 4 choices (1 sequence on machine 1 and 3 sequences 

on machine 2) to load the lot j on. 

S
ta

g
e

 (
e

)

Period t*

Machine

1

Machine

2

…….

i k u

u k

i

…….

 

Figure 4-4: An example of searching sequence 

The neighbour generating steps are as follows: 

Step 1: Select a random triplet  𝑒, 𝑗, 𝑡  with positive lot size (𝑋𝑒𝑗𝑡 > 0). 

Step 2: Select a random period 𝑡∗ among (𝑡 − 1, 𝑡, 𝑡 + 1). 

Step 3: If 𝑡∗ = 𝑡 then select a machine (in period 𝑡∗) among the machines which 

produces j and assign the quantity of lot j on the selected machine (𝑚∗) to ∆. 

Step 4: If 𝑡∗ ≠ 𝑡 then go to the next step else go to the step 5. 

Step 4-1: Calculate ∆𝑚𝑎𝑥  for t∗ > 𝑡  by (4-26) and for t∗ < 𝑡 by (4-27). 

Step 4-2: Generate a random number R within zero and one 

(𝑅 = 𝑅𝑎𝑛𝑑𝑜𝑚[0,1]).   

Step 4-3: If 𝑅 < 0.5 then  (∆𝑚𝑎𝑥→ ∆) else (𝑅𝑎𝑛𝑑𝑜𝑚[0,∆𝑚𝑎𝑥 ] → ∆). 

Step 5: If ∆= 0 then go the step 1. 

Step 6: Update 𝑋𝑒𝑗𝑡  and 𝑋𝑒𝑗 𝑡∗ by (𝑥𝑒 ,𝑗 ,𝑡 = 𝑥𝑒 ,𝑗 ,𝑡 − ∆) and (𝑥𝑒 ,𝑗 ,𝑡∗ = 𝑥𝑒 ,𝑗 ,𝑡∗ + ∆). 

Step 7: Update the inventory levels (in forward shifting: (𝐼𝑒 ,𝑗 ,𝑡 − 𝐵𝑒,𝑗 ,𝑡 = 𝐼𝑒 ,𝑗 ,𝑡 −

𝐵𝑒 ,𝑗 ,𝑡 − ∆) and (𝐼𝑒−1,𝑗 ,𝑡 = 𝐼𝑒−1,𝑗 ,𝑡 + ∆) and in backward shifting: (𝐼𝑒 ,𝑗 ,𝑡∗ = 𝐼𝑒 ,𝑗 ,𝑡∗ + ∆) 

and (𝐼𝑒−1,𝑗 ,𝑡∗ = 𝐼𝑒−1,𝑗 ,𝑡∗ − ∆). 

Step 8: If t∗ ≠ t then ∆′= ∆ go to the next step else go to the step 9. 

Step 8-1: Select a machine randomly which produces j in stage e and period t.  

Step 8-2: If lot size j on the selected machine is greater than the ∆′  then reduce it 

by ∆′  and ∆′= 0 else subtract lot size j from ∆′and then set the lot size j to zero on 

the selected machine. 

Step 8-3: If ∆′≠ 0 then go to the step 8-1. 

Step 9: If 𝑡∗ = 𝑡 then reduce the lot size j on machine 𝑚∗ by ∆.  
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Step 10: Set variable Incrcost to a very big number and select a machine in 

stage e and period t∗. 

Step 10-1: If item j is produced on the selected machine then assign its sequence 

to the lot ∆ and Incrcost′ = 0 else find the sequence with minimum incremental cost 

(Incrcost′) for the ∆. 

Step 10-2: If Incrcost′ ≤ Incrcost then save the sequence as the best sequence 

and update Incrcost . 

Step 10-3: If all the machines of stage e are considered then go the next step else 

select another machine and go to the step 10-1. 

Step 11:  Select the best sequence over all the machines with minimum Incrcost. 

4.4 ASA computational test 

GLSP-FFL is an NP-hard problem, hence, even a well designed exact MIP 

model FFL-ATSP, cannot find any feasible solution in reasonable computing time 

for some large problems. To provide more detailed insight into the complexity of 

GLSP-FFL, a variety of problem sizes are solved without any time limitation. Figure 

(4-5) indicates the CPLEX optimality gap for each sizes and details of each problem 

including number of product, stage, facility and period, percentage of optimality gap 

and CPU time are shown in Table 4-1.  

Table 4-1: Percentage of optimality gap of FFL-ATSP for different problem sizes 

Problem Size Percentage of 

optimality gap 

CPU 

time 
Product Stage Facility  period 

6 2 2 6 0% 176 

6 2 3 6 0% 194 

6 2 4 6 0% 593 

6 3 2 6 6.06% 3398 

6 3 3 6 14.09% 2516 

6 3 4 6 23.71% 2286 

6 4 4 6 34.46% 3430 

8 2 2 6 1.4% 8622 

8 2 3 6 2.15% 3481 

8 2 4 6 2.5% 5755 

8 3 2 6 13.3% 9222 

8 3 3 6 20.5% 3150 

8 3 4 6 29.5% 3887 

8 4 4 6 No Feasible Solution 

 
3913 

 

Note that for both product sizes (6 and 8), adding a stage or a machine, 

significantly increases the optimality gap and CPU time. Moreover CPLEX could 

not find a feasible solution for any problem with the attributes bigger than 𝐸 =
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4,𝑀𝑒 = 4, 𝐽 = 6,𝑇 = 6 and emphasizes the need of an efficient heuristic solution 

procedure for large problems more strongly.  
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Figure 4-5: Percentage of optimality gap for different problem sizes 

Following the results of CPLEX, two sets of test problems; medium size (which 

is also called small problems) and large problems are considered for testing the ASA 

algorithm. The attribute and dimensionality of small problems are 𝐸 = 2,𝑀𝑒 =

3, 𝐽 = 6,𝑇 = 6 and for large problems are 𝐸 = 4,𝑀𝑒 = 4, 𝐽 = 8,𝑇 = 6. Since the 

results of FFL-ATSP model for different combination of all small and big problems 

in chapter 3 show that there is no significant difference between combinations, I did 

some tests to analyse the effect of problem generator factors such as capacity 

tightness, setup cost and holding cost on solution quality. The initial test indicates 

that the capacity tightness and how big setup costs are in comparison to holding and 

backorder costs have a significant effect on solution quality. I also noticed that 

Özdamar and Barbarosolu‘s (1999) capacity formula (3-45) which was used in 

chapter 3 is quite loose regardless of the tightness factor (CAT) as it considers the 

production of all products on each machine (not all machines) in each stage. 

Therefore to provoke tighter capacity, the Özdamar and Barbarosolu‘s capacity 

formula is divided by the maximum number of machines to consider the production 

of all products on all machines per stage. The new capacity formula is as follows: 
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 (4-28) 
𝐶 = 𝑚𝑎𝑥 

𝑒
 
 𝑏𝑗𝑚 ∙ 𝑑𝑗𝑡𝑗𝑡𝑚

𝑇 ∙ 𝑀𝑎𝑥𝑓𝑎𝑐2
   

The capacity 𝐶𝑚𝑡  on machine m in period t is then given by 𝐶𝑚𝑡 = 𝐶𝐴𝑇 ∙ 𝐶 and 

the capacity tightness is measured by a factor CAT with value 1.0 (tight) or 2.0 

(loose).  

To test the effect of setup cost magnitude on solution quality, setup costs are 

generated from 𝑠𝑐𝑖𝑗𝑚 = 𝑆𝐶𝑀 × 𝑠𝑡𝑖𝑗𝑚  with value 1.0 or 5.0 for 𝑆𝐶𝑀. In the case of 

𝑆𝐶𝑀 = 5, setup costs are much bigger than holding and backorder costs which has a 

significant effect on solution quality. Therefore there are four scenarios to investigate 

here: tight and loose capacity, each with small and big values of setup cost.  The rest 

of the problem parameters are generated in the same way as explained in chapter 3 

with VAP = 1.2 (medium) and demand from U(90,110). Five replications were 

generated for each scenario, so that in total 4*5=20 small problems and 20 big 

problems were generated. ASA was programmed in MATLAB R7 and run ten times 

with four initial solutions (in total 40 times) for each problem and the number of 

moves in each run is limited by 5000 for both problems as there is no particular 

solution improvement after 2000 moves. 

Table 4-2: Computational results (solution’s cost) of ASA and FFL-ATSP for small problems.  

(* indicates best possible solution which is not optimal) 

Problem cost 

(Objective function) 

First 

initial 

solution 

Second 

initial 

solution 

Third 

initial 

solution 

Fourth 

initial 

solution 

GAMS result 

Cost 

(obj) 

Time 

(sec) scenarios Number 

Tight 

capacity,  

𝑺𝑪𝑴 = 𝟏 

No1 2241 2124 2208 1982 1940 3183 
No2  2751 2530 2563 2304 2293 21 
No3  2549 2531 2636 2301 2167 57 
No4 2225 2161 2106 1935 1916 2582 
No5 2467 2431 2385 2184 2100 481 

Loose  

capacity,  

𝑺𝑪𝑴 = 𝟏 

No1 2844 2904 2909 2468 2329 121 
No2  2717 2702 2667 2317 2291 111 
No3  2320 2345 2259 2151 2061 13650 
No4 2597 2495 2504 2220 2085 363 
No5 2404 2301 2315 2134 2006 102 

Tight 

capacity,  

𝑺𝑪𝑴 = 𝟓 

No1 11970 11920 10479 10081 9193 6631 
No2* 12108 12610 12746 10856 9374* 3458* 
No3  10650 10700 10112 9465 8439 392 
No4 12560 12385 10824 10786 9384 354 
No5 10185 10435 10677 9180 8103 49 

Loose 

capacity,  

𝑺𝑪𝑴 = 𝟓 

No1 11040 11090 11487 9885 8907 498 
No2  11707 11270 11442 10150 9133 1376 
No3  12965 12200 11711 11165 9842 427 
No4 14215 13500 12752 12401 10326 1036 
No5 12144 11406 11382 10529 9130 1870 
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Table 4-2 shows the results of GAMS (FFL-ATSP model) and ASA‘s best 

solution cost (objective function) of ten runs for each small problem. Note that the 

FFL-ATSP model found the optimal solution for all small problems except one 

problem shown with * as CPLEX exhausted the 2GB of available RAM and left a 

1.05% optimality gap. In Table 4-3 a percentage difference  %(
𝐶𝑜𝑠𝑡−𝑂𝑝𝑡

𝑂𝑝𝑡
) between 

the solution of ASA and the optimal cost obtained by FFL-ATSP is shown for small 

problems.  

Table 4-3: Optimality gap of ASA %(
𝐂𝐨𝐬𝐭−𝐎𝐩𝐭

𝐎𝐩𝐭
)  for small problems. 

Problem optimality gap 

%(
𝑪𝒐𝒔𝒕−𝑶𝒑𝒕

𝑶𝒑𝒕
)   

First 

initial 

solution 

Second 

initial 

solution 

Third 

initial 

solution 

Fourth 

initial 

solution 

scenarios Number 

scenario1: 

Tight 

capacity,  

𝑺𝑪𝑴 = 𝟏 

No1 15.52 9.48 13.81 2.17 
No2  19.97 10.34 11.77 0.48 
No3  17.63 16.80 21.64 6.18 
No4 16.13 12.79 9.92 0.99 
No5 17.48 15.76 13.57 4.00 
Average 17.3 13.0 14.1 2.8 

scenario2: 

Loose  

capacity,  

𝑺𝑪𝑴 = 𝟏 

No1 22.11 24.69 24.90 5.97 
No2  18.59 17.94 16.41 1.13 
No3  12.57 13.78 9.61 4.37 
No4 24.56 19.66 20.10 6.47 
No5 19.84 14.71 15.40 6.38 
Average 19.5 18.2 17.3 4.9 

scenario3: 

Tight 

capacity,  

𝑺𝑪𝑴 = 𝟓 

No1 30.21 29.66 13.99 9.66 
No2* 29.16 34.52 35.97 15.81 
No3  26.20 26.79 19.82 12.16 
No4 33.84 31.98 15.34 14.94 
No5 25.69 28.78 31.77 13.29 
Average 29.0 30.3 23.4 13.2 

scenario4: 

Loose 

capacity,  

𝑺𝑪𝑴 = 𝟓 

No1 23.95 24.51 28.97 10.98 
No2  28.18 23.40 25.29 11.14 
No3  31.73 23.96 18.99 13.44 
No4 37.66 30.74 23.49 20.09 
No5 33.01 24.93 24.67 15.32 
Average 30.9 25.5 24.3 14.2 

Overall small problems 24.2 21.8 19.8 8.7 
 

A Two-Factor ANOVA with Replication is designed to evaluate the effect of 

different initial solutions of ASA and scenarios on solution quality. As ANOVA 

Table 4-4 shows, there are highly significant differences (p=0.000) between four 
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initial solutions and scenarios with no significant interaction between them (p= 

0.23).  

Table 4-4: Results of Two-Factor ANOVA with 5 Replication for small problems. 

Source of Variation Sum of squares Degrees of freedom Mean square 𝑭𝟎 p-value 

Scenarios  1972.6 3 657.5 56.93 0.000 
Initial solutions 2760.2 2 1380.1 119.48 0.000 

Interactions 97.5 6 16.26 1.41 0.23 
Error 554.4 48 11.5   
Total 5384.7 59    

 

The fourth novel initial solution based on the sequencing model has better 

solutions than the other initial solutions for all small problems with a mean 

optimality gap of 8.3%. As shown in Table 4-3 when setup costs are not much bigger 

than holding and backorder cost (𝑆𝐶𝑀 = 1), the fourth initial solution found better 

solutions with 2.8% and 4.9% optimality gap for first and second scenario 

respectively in comparison to the big values of setup costs  𝑆𝐶𝑀 = 5  with 13.2% 

and 14.2% optimality gap for third and fourth scenario respectively. The reason for 

not getting better results when  𝑆𝐶𝑀 = 5 , is the main assumption of sequencing 

model which is the production of all items in each stage and period. When setup 

costs are high it may be more beneficial to produce some of the products in a period 

and backorder the others to the next period(s) in order to save setup costs.   

For big problems, FFL-ATSP could not find any feasible solution with no time-

limit, and also the sequencing model of the fourth initial solution could not find an 

optimal solution in an hour‘s time-limit whilst it found an optimal solution in less 

than a minute for small problems.  Thus, only ASA with first, second and third initial 

solution was run for big problems and the third initial solution based on MS-CLSP 

has obtained better solution than the first and second one. Furthermore the second 

initial solution based on Loading Heuristic algorithm (LHR), results in better 

solutions than the first random-based initial solution and an ANOVA test indicated 

highly significant differences (p=0.00) between the three initial solutions. The mean 

run times of ASA for small and big problems with 5000 iterations are 199.1 and 

456.6 seconds respectively. 
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4.5 Final remarks 

In this chapter, a simulated annealing algorithm with an effective adaptive 

temperature control scheme has been developed. The adaptive temperature control 

scheme changes temperature based on the number of consecutive improving moves 

and maintains it above the minimum level. The Adaptive Simulated Annealing 

(ASA) is based on Azizi and Zolfaghari‘s cooling schedule (Azizi and Zolfaghari, 

2004) and applied for GLSP-FFL. The main advantage of ASA is providing a higher 

chance of an uphill transition once the search traps in a local minimum regardless of 

the iteration number by dynamically adjustment of the temperature based on the 

profile of the search path.    

Afterward four initial solutions and three neighbour operators are designed for 

ASA. The first initial solution is based on generating a random sequence of products 

on machines of each stage and then running the linear model of GLSP-FFL to find 

the optimal lot size of the sequence. For the second initial solution, the external 

demand of each product is considered as the product lot size in each stage and period 

and the sequences of lots are determined by Loading Heuristic algorithm (LHR).  

The third novel initial solution is obtained by solving well-organized model which 

extracts from the GLSP-FFL. The model is Capacitated Lot Sizing Problem for 

Multi Stage systems (MS-CLSP) with single machine in each stage. MS-CLSP gives 

the inventory feasible lot sizes which need to be scheduled by loading heuristic 

algorithm on parallel machines of stages in FFL. The fourth initial solution is 

generated by solving the sequencing model of the GLSP-FFL to find the sequence 

and then it is given to the linear lot sizing model of GLSP-FFL to determine its 

optimal lot size.   

The first initial solution is feasible but the other initial solutions may be 

capacity-infeasible solutions. In the ASA procedure capacity infeasibilities are 

heavily penalized in the objective function and inventory-feasibility is always 

preserved when generating neighbours by the neighbour operators. The numerical 

test shows that for small problems, ASA with the fourth initial solution and for big 

problems ASA with the third initial solution is able to find much better solutions 

than other initial solutions.  
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5. Lot sizing and Scheduling with Non-Triangular, 

Period Overlapping and Carryover Setups 

Chapter 5 

Lot sizing and Scheduling with Non-

Triangular, Period Overlapping and 

Carryover Setups  

 

This chapter considers efficient mixed integer programming formulations for 

capacitated lot sizing and scheduling with non-triangular and sequence-dependent 

setup times and costs incorporating all necessary features of setup carryover and 

overlapping on different machine configurations. When setup times and/or costs are 

non-triangular, it can sometimes be optimal for a shortcut product to be produced in 

more than one lot in each period. To model this, the ATSP-based formulations are 

developed which allow multiple lot production within a period and are more efficient 

than other models as it used polynomial number of disconnected subtours prohibition 

constraints. Moreover all necessary features of setup carryover and overlapping are 

modelled including: conserving setup state when no product is being processed over 

period(s); starting setup in a period and ending in the next period; ending setup at a 

period and starting production in the next period(s); crossing an imposed minimum 

lot size over periods. This comprehensive mathematical formulation relaxes all 

limitation of physical separation between the periods which contrasts the nature of 

production system. In this chapter firstly the new model is explained for a single 

machine which then extends to other machine configurations including parallel 

machines and flexible flow line. Finally computational tests are reported. 
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5.1 Introduction  

As discussed in chapter three, Asymmetric Travelling Salesman Problem 

(ATSP) is an alternative approach for modelling lot sequencing problem with 

sequence dependent setups and results in better solutions in much shorter time for 

flexible flow line systems compared to the other lot sizing and scheduling models on 

every problem tested.  

However the main restriction of conventional ATSP based models is restricting 

the production of one lot per product per period that it may not be optimal when non-

triangular setup exists. Non-triangular setups occur in some industries like food, 

animal feed, beverage and oil where there are intermediate ―cleaning‖ or ―shortcut‖ 

products. For example in animal feed industry, some products can contaminate other 

product and lead to serious effects on animal‘s health. To avoid this, machines must 

be cleaned, resulting in substantial setups that consume scarce production times. 

Alternatively the production of enough amount of intermediate or cleaning product 

can clean the machines and reduce overall setup times (costs). In this situation the 

setup to and from cleaning or shortcut product (𝑘) is less costly and time consuming 

than direct setup between two products (𝑖, 𝑗) means that  𝑠𝑡𝑖 ,𝑗 ≥  𝑠𝑡𝑖 ,𝑘 +  𝑠𝑡𝑘 ,𝑗 . 

Therefore shortcut product may need to be produced more than once within a period.  

Menezes et al. (2011) modelled the production of multiple lot per period by 

using an iterative model and method based on a potentially exponentially number of 

ATSP subtour elimination constraints.  In a very recent work, Clark and I presented 

the more efficient formulation than Menezes et al. (2011) for modelling the 

production of multiple lots of a product per periods  using a polynomial number of 

constraints based on Claus‘s formulation (1984) to exclude disconnected subtours 

while allowing ones connected to the main sequence. The model was presented in 

43rd Annual Symposium of the Brazilian Operational Research Society (Clark and 

Mahdieh, 2011) and its revision has been submitted to the International Journal of 

Production Research (Clark et al., 2012). This chapter is devoted to the extension of 

multiple lots model to parallel machine and FFL system incorporating all features of 

setup carry-over and setup-overlapping.  

Setup overlapping has been studied by Suerie (2006) for small bucket and by 

Sung and Maravelias (2008) for big-bucket but with sequence-independent setup 

times and cost. Almada-lobo et al. (2007) incorporated setup carryover features for 
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capacitated lot sizing and scheduling problem which allows a product sets up at the 

end of one period and the actual production starts in the next period. They used 

Miller-Tucker-Zemlin subtour prohibition constraint (Desrochers and Laporte, 1991) 

to formulate sequence-dependent setup times and costs while holding triangular 

inequality. Menezes et al. (2011) modelled the setup cross-over that allows setup 

starts in a period and ends in the next period.  

Here, the first mixed integer linear programming is presented for lot sizing and 

scheduling with non-triangular sequence-dependent setup times and costs that allows 

multiple lot production with polynomial number of constraints and incorporates all 

necessary features of setup carryover and overlapping. The features model the 

production system more realistically by relaxing all the limitation of physical 

separation between the periods.  Thus a setup can start at the end of a period and end 

at the beginning of the next period or a setup can end at the end of a period and 

production starts in the next period. Furthermore an imposed minimum lot size can 

cross over the periods and setup state is conserved when no product is being 

processed over period(s). All these features increase the model flexibility and lead to 

finding better solutions particularly in tight capacity conditions or whenever setup 

times are significant. The extensions of the model to parallel machines and flexible 

flow line are presented and discussed via computational tests.  

5.2 Modelling multiple lots per product per period for single 

machine 

This section presents the modelling of multiple lots per product per period  using 

a polynomial number of multi-commodity-flow-type constraints (Claus, 1984) to 

exclude disconnected subtours while allowing ones connected to the main sequence. 

Figure 5-1 shows an example of main sequence (S) with different type of subtours 

(A, B, C, D). The Multiple Lot model for Single Machine, denoted ML-SM, allows 

connected subtours B and C and excludes disconnected A and D.  
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Figure 5-1: A main sequence (S) and different types of subtours (A, B, C, D) 

5.2.1 Data and decision variables 

The parameters and indices of the ML model are:  

Number of total products i,j,k 𝐽 

Number of periods t in the planning horizon 𝑇 

The input data required by the model are: 

Demand for product i realised at the end of period t 𝑑𝑖𝑡  

Available capacity time in each period t 𝐶𝑡  

Time needed to setup from product i to product j 𝑠𝑡𝑖𝑗  

Cost needed to setup from product i to product j 𝑠𝑐𝑖𝑗  

Time needed to produce a unit of product i 𝑏𝑖  

Cost of holding a unit of product i from period t to t+1 𝑖𝑡  

Backlog cost per period for product i from period t to t+1 𝑔𝑖𝑡  

Upper bound 𝐶𝑡 𝑏𝑖   on the quantity of product i produced in period t 𝑈𝐵𝑖𝑡  

The product setup at the end of period 0, i.e., the starting setup configuration 𝑖0 

Minimum lot size of product j. 𝑚𝑙𝑗  

The decisions variables by the model are represented by following variables: 

Inventory level of product i at the end of period t. 𝐼𝑖𝑡  

Backordered amount of product i at the end of period t. 𝐵𝑖𝑡  
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Production quantity of product i in period t. 𝑥𝑖𝑡  

Number of unites of slack capacity in period t. 𝑆𝑙𝑘𝑡  

The quantity produced in period t of the first (crossover) lot of product i in 

period t if it was setup in period t-1, otherwise 0.  

𝑥𝑖𝑡
𝐹  

The quantity produced in period t of the last (crossover) lot of product i in 

period t if its production continues into period t+1, otherwise 0. 

𝑥𝑖𝑡
𝐿  

Number of times that production is to be changed over from product i to 

product j in period t, Integer non-negative. For example in figure 5-1, 

𝑦12𝑡 = 1, and 𝑦23𝑡 = 2. 

𝑦𝑖𝑗𝑡  

 

Number of times that product i is in a setup state in period t, Integer non-

negative. For example in figure 5-1, 𝑧1𝑡 = 1, and 𝑧2𝑡 = 3. 

𝑧𝑖𝑡  

 

= 1 either because j-to-i is the last setup in previous periods to t or because 

j-to-i is the setup operation that overlaps from t-1 to t. 

𝛼𝑖𝑡  

 

The objective function minimises backorders, inventory and setup costs:  

(5-1) 𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒  𝑠𝑐𝑖𝑗  𝑦𝑖𝑗𝑡
𝑖𝑗𝑡

+  𝑖𝑡  𝐼𝑖𝑡
𝑖𝑡

+  𝑔𝑖𝑡  𝐵𝑖𝑡
𝑖𝑡

 

5.2.2 Main lot size and setup constraints 

Constraint (5-2) balances inventory, backlogs, production and demand over 

consecutive periods: 

∀ 𝑗, 𝑡 (5-2) 𝐼𝑗𝑡 −1 − 𝐵𝑗𝑡−1 + 𝑥𝑗𝑡 − 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡   

Constraint (5-3) represents the limited capacity and calculates any slack 

capacity: 

∀ 𝑡 (5-3)  𝑏𝑖  𝑥𝑖𝑡
𝑖

+  𝑠𝑡𝑖𝑗  𝑦𝑖𝑗𝑡
𝑖𝑗

+ 𝑠𝑙𝑘𝑡 =  𝐶𝑡    

Constraint (5-4) enforces the appropriate setup before production: 

∀ 𝑗, 𝑡 (5-4) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × 𝑧𝑗𝑡  

Constraint (5-5) prohibits setup between the same products: 

∀ 𝑗, 𝑡 (5-5) 𝑦𝑗𝑗𝑡 = 0 

Constraint (5-6) indicates the first setup of each period which ensures that the 

machine is set up for exactly one product at the beginning of each period. The initial 

setup configuration at first period is expressed by constraint (5-7). 
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∀  𝑡 = 1, . . ,𝑇 + 1(5-6)  𝛼𝑖𝑡  

𝑖

= 1 

∀ 𝑡 = 1(5-7) 𝛼𝑖𝑜 𝑡 = 1 

5.2.3 Imposing a minimum lot size 

Some cleansing products k require a minimum lot size  𝑚𝑙𝑘  in order to force the 

proper cleaning of a previous product i contaminants, that is, to avoid a setup from i 

to j via zero production of k rather than directly. Constraints (5-8) to (5-11) achieve 

this and also allow a minimum lot size to cross over the periods.  

Recall that 𝑥𝑗𝑡
𝐹  is the quantity produced in period t of the first (crossover) lot of 

product j in period t if it was setup in period t-1, but is otherwise 0, as imposed by 

Constraints (5-8): 

∀ 𝑗, 𝑡 (5-8) 𝑥𝑗𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑡  𝛼𝑗𝑡  

Similarly 𝑥𝑗𝑡
𝐿  is the quantity produced in period t of the last (crossover) lot of 

product j in period t if its production continues into period t+1, otherwise 0, as 

imposed by constraints (5-9).   

∀ 𝑗, 𝑡 (5-9) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡  𝛼𝑗 ,𝑡+1 

Then 𝑥𝑗𝑡
𝐿 +  𝑥𝑗 ,𝑡+1

𝐹 is the size of a crossover lot of a product j that has been started 

in period t and completed in period t+1. Constraints (5-10) oblige this crossover lot 

to be of size at least  𝑚𝑙𝑗 : 

∀ 𝑗, 𝑡 (5-10) 𝑥𝑗𝑡
𝐿 +  𝑥𝑗 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑗 ,𝑡+1   

At last constraint (5-11) imposes minimum lot sizes for both crossover and non-

crossover lots using auxiliary variables 𝑥𝑗𝑡
𝐿  , 𝑥𝑗𝑡

𝐹 . 

∀ 𝑗, 𝑡 (5-11) 𝑥𝑗𝑡 − 𝑥𝑗𝑡
𝐹 −   𝑥𝑗𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗 ,𝑡+1)   

These work as follows. When a setup state j is neither inherited from the 

previous period t-1 nor passed on to the next period t+1 then 𝛼𝑗𝑡 = 𝛼𝑗 ,𝑡+1 = 0 and so 

𝑥𝑗𝑡
𝐿 +  𝑥𝑗 ,𝑡+1

𝐹 = 0  by constraints (5-8) and (5-9). In this case, constraints (5-11) 

oblige the total 𝑥𝑗𝑡  of the lot sizes to be at least 𝑧𝑗𝑡𝑚𝑙𝑗  and so it can be split into 𝑧𝑗𝑡  

separate lots, each of which is at least 𝑚𝑙𝑗  units in size. However, if a setup state j is 

either inherited from the previous period t-1 or passed on to the next period t+1 (or 

both) then 𝛼𝑗𝑡 + 𝛼𝑗 ,𝑡+1 = 1 (or 2). In this case constraints (5-11) impose only that 

the (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗 ,𝑡+1) lots of j produced entirely within period t should be of total 
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size at least 𝑧𝑗𝑡𝑚𝑙𝑗 , again splittable into 𝑧𝑗𝑡  separate lots, each of which is at least 𝑚𝑙𝑗  

units in size. 

Example 1: Here is an example to show how the new imposing minimum lot 

constraints can span the lot over the periods with no demands and imposes the 

minimum lot size (𝑚𝑙𝑗 ) for the whole crossover lot. 

Consider that there is a demand for product A in period 1, for product B in 

period 3 and no demand in period 2. Here is investigation of imposing minimum lot 

size with the existence of shortcut product C. In this case there are two possibilities 

as below: 

In the first possibility setup A to C and C to B can both happen either in period 

two or, one can happen in period two and the other one in period 1 or 3.  So the 

minimum lot size will be enforced by constraint (5-11). Second possibility consists 

of happening setup A to C in period 1 and setup C to B in period 3 while there is no 

setup in period 2 as shown in Figure 5-2.   

Product A Product C Product B
Setup

A to C

Setup

C to B

Period 1 Period 2 Period 3

 

Figure 5-2: Example (1) lot crossover 

So according to constraint (5-10):  

𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹  ≥  𝑚𝑙𝐶                   (C1) 

𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹  ≥  𝑚𝑙𝐶                   (C2)  

and according to constraint (5-11): 

𝑥𝐶2 − 𝑥𝐶2
𝐹 −   𝑥𝐶2

𝐿 ≥  −𝑚𝑙𝐶      (C3)   

𝑥𝐶1 −   𝑥𝐶1
𝐿 ≥  0                       (C4) 

𝑥𝐶3 − 𝑥𝐶3
𝐹 ≥  0                         (C5) 

In order to impose minimum lot size for C it is needed to justify that the total 

production of product C (at the end of period 1, in period 2 and at the beginning of 

period3) is at least mlC . 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥   𝑚𝑙𝐶 

To justify, first constraints C1 and C2 are add: 

𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹  ≥  2𝑚𝑙𝐶            (C6)  
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Then constraints C3, C4 and C5 are sum up: 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥ 𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹  −𝑚𝑙𝐶             (C7) 

Finally combining constraints C6 and C7, concludes that the crossover lot of 

product C (𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3) is at least mlC  and constraint (5-10) imposes 𝑚𝑙𝐶  (not 

2𝑚𝑙𝐶) for the whole crossover lot. Moreover this conclusion can be extended for 

more than one period with having no demand. 

𝑥𝐶1 + 𝑥𝐶2 + 𝑥𝐶3 ≥ 𝑥𝐶1
𝐿 +  𝑥𝐶2

𝐹 + 𝑥𝐶2
𝐿 +  𝑥𝐶3

𝐹 −𝑚𝑙𝐶  ≥  2𝑚𝑙𝐶 −𝑚𝑙𝐶 ≥  𝑚𝑙𝐶  

 

Note that constraints (5-8) to (5-11) is more efficient than the conventional 

constraint: 𝑥𝑗𝑡 ≥  𝑚𝑙𝑗   𝑦𝑖𝑗𝑡𝑖 , ∀ 𝑗, 𝑡(5-27), used in the well known lot sizing and 

scheduling models (Clark and Clark, 2000, Fleischmann and Meyr, 1997) to impose 

minimum lot size. Because in conventional constraint, the whole setup and 

production of minimum lot size should be done in one period so minimum lot size 

neither can crossover to the next period(s) nor can be produced at a period when the 

setup ending at the end of previous period(s). All these restrictions are relaxed in 

new constraints (5-8) to (5-11). Examples 2 and 3 in the section 5.3 show explicitly 

the difference of two types of constraints for imposing minimum lot size. 

5.2.4 Lot sequencing constraints 

In this section, the ATSP-related constraints are demonstrated for sequencing 

product lots. Constraints (5-12) and (5-13) are flow conservation constraints that 

relate the  𝛼𝑖𝑡  and 𝑧𝑖𝑡  setup state variables to the 𝑦𝑖𝑗𝑡  changeover variables, to and 

from a product respectively as shown in Figure 5-3. 

∀ 𝑖, 𝑡  (5-12) 𝛼𝑖𝑡 +  𝑦𝑗 𝑖𝑡  

𝑗

=  𝑧𝑖𝑡   

∀ 𝑖, 𝑡  (5-13)  𝑦𝑖𝑗𝑡  

𝑗

+ 𝛼𝑖 ,𝑡+1 =  𝑧𝑖𝑡   

αit

i

αi,t+1
zit


j

ijty
j

jity

 

Figure 5-3: Node flow modelled by constraints (5-12) and (5-13) 
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For example, referring to Figure 5-1, if 𝑖 = 1, then the values in constraints (5-

12) and (5-13) are 1 + 0 = 1 and 1 + 0 = 1 respectively. If  𝑖 = 2, then the values 

are 0 + 3 = 3 and 3 + 0 = 3 respectively. 

The optimal solution to the model specified by expressions (5-1) to (5-13) will 

consist of single sequence starting with product 𝑖|{𝛼𝑖𝑡 = 1} and ending with 

𝑘|{𝛼𝑘 ,𝑡+1 = 1} (possibly with embedded connected subtours), and maybe one or 

more disconnected subtours, some examples of which are illustrated in Figure 5-1. 

Subtours connected to the main sequence S are permitted (e.g. subtours B and C), 

but disconnected subtours must be prohibited (e.g. subtours A and D). The main 

sequence S and 4 subtours are: 

S: 1 → 2 → 3 → 4 → 5 → 6 

A: 7→ 8 → 9 → 7 

B: 2→ 10 → 11 → 2 →  3 →  11 →  2 

C: 4 → 12 → 4 

D: 13→ 14 → 15 → 16 → 17 →  15 → 13 

Öncan (2009) reviews and analytically compares many ATSP formulations. It 

highlights the tightness of the multi-commodity-flow (MCF) formulation by Claus 

constraints (1984) which is the inspiration for the formulation that prohibits 

disconnected subtours a priori in the proposed model ML-SM. The main idea of this 

formulation is to ensure that, in any period t, there is always a walk from the 

crossover product (𝑖| 𝛼𝑖𝑡 = 1 ) to any other product k in period t‘s sequence. To 

allow a clear explanation, 𝑝𝑡
𝛼  will be used in text when referring to crossover product 

𝑖|{𝛼𝑖𝑡 = 1}. 

First define additional binary variables 𝑎𝑖𝑗𝑡
𝑘  which are adopted from Claus 

(1984) as follows: 

=1 if the arc 𝑖 → 𝑗 is on a walk from crossover product 𝑝𝑡
𝛼  to product k 

within period t‘s sequence of lots, otherwise 0. 

𝑎𝑖𝑗𝑡
𝑘  

For any product k produced in period t, the variables 𝑎𝑖𝑗𝑡
𝑘   encode a walk from 

𝑝𝑡
𝛼  to k. It can be called an k -walk. The existence of an k -walk ensures that product 

k is connected to the main production sequence, maybe within a connected subtour.  

Figure 5-4 shows part of k-walk from 𝑝𝑡
𝛼  crossover product to product k passing 

through the arc 𝑖 → 𝑗. In this case, 𝑎𝑖𝑗𝑡
𝑘 = 1. Constraints must be formulated to 
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enforce an k-walk for all products k produced in period t. To begin with, the arc 

𝑖 → 𝑗 must be part of a solution in order for 𝑎𝑖𝑗𝑡
𝑘  to have value 1. Thus values of 𝑎𝑖𝑗𝑡

𝑘  

must obey constraints (5-14): 

∀ 𝑖, 𝑗,𝑘, 𝑡 (5-14) 𝑎𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑡    

Period t

i j k
tp

 

Figure 5-4: An k-walk from 𝒑𝒕
𝜶 crossover product to product k 

Consider once again the infeasible sequence in Figure 5-1. Product 𝑘 = 10 in 

connected-subtour B is reachable from crossover product 𝑝𝑡
𝛼 = 1 by traversing arcs 

1 → 2 → 10. This reach-ability is indicated by following non-zero values of 𝑎𝑖𝑗𝑡
10  that 

constitute an k-walk: 𝑎1,2,𝑡
10 = 𝑎2,10,𝑡

10 = 1. In contrast, product 𝑘 = 9 in disconnected-

subtour A in Figure 5-1 is not reachable from crossover product 𝑝𝑡
𝛼 = 1. No k-walk 

exists for 𝑘 = 9. This is indicated by the impossibility of finding values of 𝑎𝑖𝑗𝑡
9  that 

also obey constraints (5-15) – (5-19) below. 

To prohibit disconnected subtours, further binary decision variables 𝑧𝑖𝑡
𝑏𝑖𝑛 are 

needed:  

=1 if product i is ever in setup state in period t, otherwise 0. 𝑧𝑖𝑡
𝑏𝑖𝑛  

Note that 𝑧𝑖𝑡
𝑏𝑖𝑛 = 1 ⇔  𝑧𝑖𝑡 ≥ 1 and that 𝑧𝑖𝑡

𝑏𝑖𝑛 = 0 ⇔  𝑧𝑖𝑡 = 0. This is enforced 

by following constraints:  

∀ 𝑖, 𝑡 (5-15) 𝑧𝑖𝑡 ≥ 𝑧𝑖𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑡 (5-16) 𝑧𝑖𝑡 ≤ 𝑍𝑈𝐵𝑖𝑧𝑖𝑡
𝑏𝑖𝑛    

where 𝑍𝑈𝐵𝑖  is a prespecified upper bound (UB) on the value of 𝑧𝑖𝑡  and must be 

greater than one. 𝑍𝑈𝐵𝑖  is automatically calculated in the computational tests below 

as the lesser of J (the number of products) and the size of the ordered set 

{(𝑖, 𝑗)|𝑠𝑡𝑖𝑗 ≥ 𝑠𝑡𝑖𝑘 + 𝑠𝑡𝑘𝑗 }, which can be very large, but is often 1 for non-shortcut 

products. More detailed analysis of setup times and available production capacities 

might bring down the value of 𝑍𝑈𝐵𝑖 . 

The three sets of constraints (5-17) to (5-19) explained below will now allow 

connected subtours, and prohibit disconnected ones a priori. 
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Firstly, constraints (5-17) ensure that the k-walk reaches product k (Figure 5-5) 

and is imposed only when the setup state is configured for k at least once during 

period t (that is, only when 𝑧𝑖𝑡
𝑏𝑖𝑛 = 1), but not when the setup state is never 

configured for k during period t, (that is, when 𝑧𝑖𝑡
𝑏𝑖𝑛 = 0): 

∀ 𝑘, 𝑡 (5-17) 𝛼𝑘𝑡 +  𝑎𝑖𝑘𝑡
𝑘  

𝑖

= 𝑧𝑘𝑡
𝑏𝑖𝑛    

For example, the k-walk 1 → 2 → 10 in Figure 5-1 is forced to reach product 

𝑘 = 10 by the following instance of constraint (5-17): 

𝑘 = 10 : 𝛼10,𝑡 +  𝑎𝑖 ,10,𝑡
10  𝑖 = 𝑧10,𝑡

𝑏𝑖𝑛  which becomes 0 + 1 = 1 and enforces that 

𝑎𝑖 ,10,𝑡
10 = 1 for a given i.  

If a product k is not produced in a period t, then 𝑧𝑘𝑡
𝑏𝑖𝑛 = 0, and so constraint (5-

17) forces 𝑎𝑖𝑘𝑡
𝑘 = 0 ∀𝑖 (constraint (5-14) also forces this via 𝑎𝑖𝑘𝑡

𝑘 ≤ 𝑦𝑖𝑘𝑡 = 0). 

Secondly, the k -walk in period t specified by the variables {𝑎𝑖𝑗𝑡
𝑘 |∀ 𝑖, 𝑗 },  must 

start at crossover product 𝑝𝑡
𝛼  and then traverse further products on its way to product 

k, as shown in Figure 5-6. If 𝛼𝑘𝑡 = 1 then no k-walk is needed. If 𝛼𝑘𝑡 = 0, then 

constraint (5-17) means that   𝑎𝑖𝑘𝑡
𝑘

𝑖 = 1, i.e., 𝑎𝑖𝑘𝑡
𝑘 = 1 for exactly one product i that 

is the 2nd last product on the k-walk. Constraint (5-18) then forces 𝑎𝑗𝑖𝑡
𝑘 = 1 for 

exactly one product j that is the 3
rd

 last product on the k-walk, and so on, going 

backwards along the k-walk, obliging the 𝑎𝑖𝑗𝑡
𝑘  along the k -walk to have value 1, until 

it reaches back to the initially-setup product 𝑖 = 𝑝𝑡
𝛼  (for which 𝛼𝑖𝑡 = 1). 

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑡 (5-18) 𝛼𝑖𝑡 +  𝑎𝑗𝑖𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑡
𝑘  

𝑗

 

For example, in Figure 5-1, consider the k-walk 1 → 2 → 10 to product 𝑘 = 10. 

The following two instances of constraint (5-18) obliges the 𝑎𝑖𝑗𝑡
𝑘  along this k-walk to 

have value 1, reaching back to an initially-setup product 𝑝𝑡
𝛼 = 1 (for which 𝛼1𝑡  is 

thus forced to have value 1): 

𝑖 = 2: 𝛼2𝑡 +  𝑎𝑗2𝑡
10  𝑗 ≥   𝑎2𝑗𝑡

10   𝑗 becomes 0 +  𝑎𝑗2𝑡
10  𝑗 ≥ 1, resulting in 

 𝑎𝑗2𝑡
10  𝑗 = 1. 

𝑖 = 1: 𝛼1𝑡 +  𝑎𝑗1𝑡
10  𝑗 ≥   𝑎1𝑗𝑡

10  𝑗 becomes 𝛼1𝑡 + 0 ≥ 1, resulting in 𝛼1𝑡 = 1. 

Thirdly and finally, constraint (5-19) requires that the k-walk from 𝑝𝑡
𝛼  stops at 

product k (Figure 5-7) and need go no further: 
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∀ 𝑘, 𝑗, 𝑡 (5-19) 𝑎𝑘𝑗𝑡
𝑘 = 0  

αkt
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Figure 5-5: The k-walk from 𝒑𝒕

𝜶 much reach product k (if and only if  𝒛𝒌𝒕
𝒃𝒊𝒏 = 𝟏) 
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Figure 5-6: The k-walk from 𝒑𝒕

𝜶 to k only traverse those product i for which 𝒛𝒊𝒕
𝒃𝒊𝒏 = 𝟏 (and if and only if 

𝒛𝒌𝒕
𝒃𝒊𝒏 = 𝟏) 
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Figure 5-7: The k-walk from 𝒑𝒕

𝜶 must stop at product k (if and only if  𝒛𝒌𝒕
𝒃𝒊𝒏 = 𝟏) 

For example, the k-walk 1 → 2 → 10 in Figure 5-1 stops at product 𝑘 = 10 as 

enforced by the following instance of constraint (5-19): 

𝑘 = 10: 𝑎10𝑗𝑡
10 = 0 ∀ 𝑗, 𝑡 

If k is not produced in period t, then constraint (5-19) simply forces  

𝑎𝑘𝑗𝑡
𝑘 = 0 which has no impact given that constraint (5-17) already obliges 𝑎𝑖𝑗𝑡

𝑘 = 0. 

Thus constraints (5-17, 5-18, 5-19) exclude disconnected subtours. For example, in 

Figure 5-1, there are no instances of constraints (5-17) - (5-19) that would show that 

product 𝑘 = 9  in disconnected-subtour A is reachable by an k-walk from crossover 

product 𝑝𝑡
𝛼  . This is also true for all the other disconnected products. Thus the setup 

sequence in Figure 5-1 is infeasible and will be correctly excluded by our 

formulation. 

5.2.5 Concluding ML-SM model formulation  

Note that constraints (5-4) are valid but loose: the value of 𝑧𝑗𝑡  need only be 1, 

and not ≥ 2. Constraints (5-4) can thus be tightened by replacing 𝑧𝑗𝑡  by 𝑧𝑗𝑡
𝑏𝑖𝑛 . 

∀ 𝑗, 𝑡 (5-20) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × 𝑧𝑗𝑡
𝑏𝑖𝑛  
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Thus model ML-SM is specified by expressions (5-1) to (5-3) and (5-5) to (5-

20), and restated completely in the Appendix A. In Expressed as function of the 

number of products J and periods T, model ML-SM has 𝐽2𝑇 + 7𝐽𝑇 + 𝑇 variables and 

𝐽3𝑇 + 2𝐽2𝑇 + 11𝐽𝑇 + 2𝑇 constraints. The ML-SM formulation is thus polynomial-

sized. This does not means that the model is solvable in polynomial time - it cannot 

be, given that the NP-hard ATSP is embedded within it. Rather, the innovation of 

this model has been (a) the modelling of non-triangular sequence dependent setup 

within a lot sizing model and (b) the derivation of a polynomial-sized MILP 

formulation for this problem. 

5.3 Modelling period overlapping setup operations for single 

machine 

Multiple Lots model can be generalized to allow setup operations to overlap 

periods, i.e., to permit a setup to begin in a period and end in the next period. The 

model is called MLOV-SM relaxes all limitation of physical separation between the 

periods which contrasts the nature of production system. The MLOV-SM is 

advantageous when capacity is tight and lot sizing and sequencing decisions need 

more flexibility to reduce backlogs. 

Consider the following additional decision variables:  

=1 if the overlapping setup operation i to j begins in period t and finishes 

in period t+1, otherwise 0. 

𝑂𝐿𝑆𝑖𝑗𝑡  

The amount of setup time that overlaps into period t+1, having begun at 

the end of period t. 

𝑆𝑡  

The value of 𝑆𝑡  must be zero if there is no overlapping last setup at the end of 

period t: 

∀ 𝑡 (5-21)  𝑆𝑡  ≤     𝑠𝑡𝑖𝑗  𝑂𝐿𝑆𝑖𝑗𝑡
𝑖𝑗

  

Last setup and at most one setup in period t can overlap from period t to t+1: 

∀ 𝑖, 𝑡 (5-22)  𝑂𝐿𝑆𝑗𝑖𝑡
𝑗

≤  𝛼𝑖 ,𝑡+1  

The value of 𝑂𝐿𝑆𝑖𝑗𝑡  must be zero if i to j is not a setup initiated in period t: 

∀ 𝑖, 𝑗, 𝑡 (5-23) 𝑂𝐿𝑆𝑖𝑗𝑡  ≤    𝑦𝑖𝑗𝑡  

The capacity constraint (5-3) now becomes: 
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∀ 𝑡 (5-24)  𝑏𝑖  𝑥𝑖𝑡
𝑖

+  𝑠𝑡𝑖𝑗  𝑦𝑖𝑗𝑡
𝑖𝑗

+ 𝑆𝑡−1 − 𝑆𝑡 + 𝑠𝑙𝑘𝑡 =  𝐶𝑡    

When the last setup is overlapped; 𝑂𝐿𝑆𝑖𝑗𝑡 = 1, then product j cannot be 

produced  as the last (crossover) lot in period t. Thus constraint (5-4) and (5-9) now 

become (5-25) and (5-26).  

∀ 𝑗, 𝑡 (5-25) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × (𝑧𝑗𝑡 − 𝑂𝐿𝑆𝑖𝑗𝑡
𝑖

)  

∀ 𝑗, 𝑡 (5-26) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡  (𝛼𝑗 ,𝑡+1 − 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

) 

Thus model MLOV-SM is specified by expressions (5-1) and (5-2), (5-5) to (5-

8), (5-10) to (5-19) and (5-21) to (5-26), and restated completely in the Appendix B. 

Example 2 and 3: Here are two examples to show the effectiveness of the new 

imposing minimum lot constraints (5-8) to (5-11), in comparison with the 

conventional constraint (5-27) and also the solution‘s improvement obtained by 

modelling setup overlapping features. Thus following examples are solved by three 

models consist of ML-SM, MLOV-SM and Conventional which has the same 

constraints as ML-SM but imposes minimum lot by constraint (5-27) rather than 

constraints (5-8) to (5-11).  

∀ 𝑗, 𝑡 (5-27) 𝑥𝑗𝑡 ≥  𝑚𝑙𝑗   𝑦𝑖𝑗𝑡
𝑖

  

The following data are used for both examples: 𝐶𝑡 = 100,  𝑚𝑙𝑗 = 10,𝑇 = 3, 𝐽 =

2,  𝑖0 = 1, 𝑠𝑡𝑖𝑗 = 20,  𝑏𝑗 = 1,  𝑗𝑡 = 15,  𝑠𝑐𝑖𝑗 = 600,  𝑔𝑖𝑡 = 1000; and the demands 

are shown in the table 5-1. The models are implemented in the optimisation 

modelling software GAMS build 23.6.5 (Brooke et al., 1988) and solved using the 

industrial-strength CPLEX 12.0 solver (CPLEX., 2010) on a computer with a 2.1 

GHZ CPU and 2 GB of RAM. All models were solved less than a second for both 

examples. 

Table 5-1: Demand data for example 2 and 3. 

Demand  
𝒅𝒊𝒕 

Example(2) Example(3) 

t=1 t=2 t=3 t=1 t=2 t=3 

i=1 75 0 90 75 0 90 

i=2 0 90 0 0 95 0 

The production diagram and the results of Example 2 are shown in Figure 5-8 

and Table 5-2 respectively. Note that how modelling of all necessary features of 

production improves the solution remarkably.  As shown in Figure 5-8 Conventional 



72 

 

model cannot use the machine‘s capacity efficiently and there are 5 units idle or 

slack time in period 1 as the setup and minimum lot production should be done 

totally in a single period (constraint (5-27)). This restriction is relaxed in the ML-SM 

model so setup ends in period 1 and minimum lot is produced in period 2 that 

significantly results in reduction of the number of inventory and backlogs as shown 

in Table 5-2. However there are still 10 units slack time in period 2 as in the ML-SM 

model setup cannot overlap i.e., setup begins in period 2 and ends in period 3. In the 

new lot sizing and scheduling model, MLOV-SM, all the limitations caused by 

previous models are relaxed and the production system is modelled realistically. 

Thus the scarce production capacity is used more efficiently.  
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Figure 5-8: Production diagram of Example 2 obtained by Conventional, ML-SM and MLOV-SM models 

 

Table 5-2: Results of Example 2 obtained by Conventional, ML-SM and MLOV-SM models 

Example 2  Conventional  ML-SM MLOV-SM 

Slack capacity 
5 10 0 

Total Inventory  40 10 0 
Backlogs 10 5 0 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 

11800 

(10000+600+1200) 

6350 

(5000+150+1200) 

1200 

(0+0+1200) 

 

In example 2 the optimal solution is obtained by the MLOV-SM model with no 

shortage or inventory. In order to stimulate the tight capacity even more, the demand 

of product 2 is increased to 95 in example 3. The production diagram and the results 

of Example 3 are shown in Figure 5-9 and Table 5-3 respectively. Note that the 

Conventional model found the solution with high total inventories (50) and backlogs 

(15) while the optimal solution found by MLOV-SM has no backlogs and only 5 

inventories. Furthermore as shown in MLOV-SM‘s production diagram Figure 5-9, 
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the minimum lot crossovers from period 1 to 2. Lot crossover is another feature 

which is modelled via the new imposing minimum lot size (ml) constraints (5-8) to 

(5-11) and improves the solutions and gives more flexibility to lot sizing model.  
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Figure 5-9: Production diagram of Example 3 obtained by Conventional, ML-SM and MLOV-SM models 

 

Table 5-3: Results of Example 3 obtained by Conventional, ML-SM and MLOV-SM models 

Example 3  Conventional  ML-SM MLOV-SM 

Slack capacity 
0 5 0 

Total Inventory  50 10 5 
Backlogs 15 5 0 

Total cost = Cost of 

(Backlogs + Inventory +Setup) 

16950 

(15000+750+1200) 

6350 

(5000+150+1200) 

1275 

(0+75+1200) 

 

Examples 2 and 3 showed that how the new comprehensive mathematical 

formulation, MLOV-SM, relaxes all limitation of physical separation between the 

periods which contrasts the nature of production system. The MLOV-SM modelled 

the new features consists of starting setup in a period and ending in the next period; 

ending setup at a period and starting production in the next period(s); crossing an 

imposed minimum lot size over periods.  

5.4 Extensions to Parallel Machines and Flexible Flow Lines   

In this section the multiple lot models are extended to Parallel Machines (PM) 

and Flexible Flow Lines (FFL). An index m is used to model Parallel Machine and 

M is the total number of machines. Data, variables and constraints of Multiple Lot 

models for single machine are adapted to parallel machines by considering index m. 

Multiple Lot model for Parallel Machines, denoted ML-PM, and Multiple Lot model 



74 

 

with Setup-Overlapping for Parallel Machines, denoted MLOV-PM, are the 

extensions of ML-SM and MLOV-SM respectively.  

5.4.1 Parallel Machines  

The input data required by the PM models are: 

Demand for product i realised at the end of period t 𝑑𝑖𝑡  

Available capacity time of machine m in each period t 𝐶𝑚𝑡  

Time needed to setup from product i to product j on machine m 𝑠𝑡𝑖𝑗𝑚  

Cost needed to setup from product i to product j on machine m 𝑠𝑐𝑖𝑗𝑚  

Time needed to produce a unit of product i on machine m 𝑏𝑖𝑚  

Cost of holding a unit of product i from period t to t+1 𝑖𝑡  

Backlog cost per period for product i from period t to t+1 𝑔𝑖𝑡  

Upper bound 𝐶𝑚𝑡 𝑏𝑖𝑚   on the quantity of product i produced in period t on 

machine m 

𝑈𝐵𝑖𝑚𝑡  

The product setup at the end of period 0 on machine m, i.e., the starting 

setup configuration  

𝑖0𝑚  

The decisions variables by the PM model are represented by following 

variables: 

Inventory level of product i at the end of period t. 𝐼𝑖𝑡  

Backordered amount of product i at the end of period t. 𝐵𝑖𝑡  

Production quantity of product i in period t on machine m. 𝑥𝑖𝑚𝑡  

Number of unites of slack capacity of machine m in period t. 𝑆𝑙𝑘𝑚𝑡  

The quantity produced in period t of the first (crossover) lot of product i on 

machine m in period t if it was setup in period t-1, otherwise 0.  

𝑥𝑖𝑚𝑡
𝐹  

The quantity produced in period t of the last (crossover) lot of product i on 

machine m in period t if its production continues into period t+1, otherwise 

0. 

𝑥𝑖𝑚𝑡
𝐿  
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Number of times that production is to be changed over from product i to 

product j on machine m in period t, Integer non-negative.  

𝑦𝑖𝑗𝑚𝑡  

 

Number of times that product i is in a setup state on machine m in period t, 

Integer non-negative.  

𝑧𝑖𝑚𝑡  

 

= 1 either because j-to-i is the last setup of machine m in previous periods 

to t or because j-to-i is the setup operation that overlaps from t-1 to t. 

𝛼𝑖𝑚𝑡  

 

=1 if the arc 𝑖 → 𝑗 is on a walk from crossover product 𝑝𝑡
𝛼  to product k 

within period t‘s sequence of lots on machine m, otherwise 0. 

𝑎𝑖𝑗𝑚𝑡
𝑘  

=1 if product i is ever in setup state on machine m in period t, otherwise 0. 𝑧𝑖𝑚𝑡
𝑏𝑖𝑛  

=1 if the overlapping setup operation j-to-i on machine m begins in period t 

and finishes in period t+1. 

𝑂𝐿𝑆𝑖𝑚𝑡  

 

The amount of setup time that overlaps into period t+1 on machine m, 

having begun at the end of period t.  

 𝑆𝑚𝑡  

All the ML-PM and MLOV-PM‘s constraints are similar to ML-SM and 

MLOV-SM respectively with the new adapted data and variables. The ML-PM and 

MLOV-PM models are presented completely in Appendix C and D.  

5.4.2 Flexible Flow Line 

To model different machines at each stage e of FFL, an index  𝑚𝑒  is used. E is 

the number of different stages e and 𝑀𝑒  is the number of different machines 𝑚𝑒  

available for production at stage e. Apart from inventory and backlogs variables, the 

FFL‘s data and variables are similar to PM‘s where index 𝑚  is replaced by index 

𝑚𝑒 .  The new inventory and backlogs variable of FFL are as follow: 

Inventory level of product i at stage e at the end of period t. 𝐼𝑖𝑒𝑡  

Backordered amount of product i at the last stage E at the end of period t. 𝐵𝑖𝐸𝑡  

 Thus the new inventory balance constraints are:  

∀ 𝑗, 𝑡 (5-28) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡   

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (5-29) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑒+1 ,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡 (5-30) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  
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Constraints (5-28) and (5-29) express the material balance including backorders 

for end items and work in process respectively. Constraint (5-30) bounds backorders 

of end items in any period to be within a specified proportion of demand. This is the 

practiced assumptions in flexible flow shop manufacturing systems (Özdamar and 

Barbaroso lu, 1999). Moreover the holding cost will be different at each stage so 𝑖𝑡    

now becomes 𝑖𝑒𝑡  which shows the cost of holding a unit of product i from period t 

to t+1 at stage e. Multiple Lot model for Flexible Flow Lines, denoted ML-FFL, and 

Multiple Lot model with Setup-Overlapping for Flexible Flow Lines, denoted 

MLOV-FFL, are presented completely in Appendix E and F respectively. Apart from 

inventory balance constraints, the FFL‘s constraints is similar to PM‘s where 

substituting index 𝑚  with index 𝑚𝑒 .   

5.5 At Most One Lot models  

Multiple Lot model for any machine configurations is valid irrespective of 

whether there are non-triangular setups or not. However, when setups are triangular 

then there exists an optimal solution with zero or one lots per product per period 

(Clark and Clark, 2000). In this case, the formulation (ML-SM) can then be 

simplified to a model that assumes At Most One Lot per product per period (denoted 

1L-SM) by merging 𝑧𝑗𝑡  and 𝑧𝑗𝑡
𝑏𝑖𝑛  to be a binary variable 𝑧𝑗𝑡  for single machine. Thus 

constraints (5-15) and (5-16) disappear. Similarly the ML-PM and ML-FFL models 

can be simplified to the 1L-PM and 1L-FFL models respectively by merging 𝑧𝑗𝑚𝑡  

and 𝑧𝑗𝑚𝑡
𝑏𝑖𝑛  to be a binary variable 𝑧𝑗𝑚𝑡  for PM and merging 𝑧𝑗𝑚𝑒𝑡  and 𝑧𝑗𝑚𝑒𝑡

𝑏𝑖𝑛  to be a 

binary variable 𝑧𝑗𝑚𝑒𝑡  for FFL. Thus constraints (15) and (16) of ML-PM (Appendix 

C) and constraints (17) and (18) of ML-FFL (Appendix E) disappear. 

One Lot model is also valid irrespective of whether the setups are triangular or 

not, but in the latter case, One Lot model‘s solution could be suboptimal given its 

limitation of zero or one lots per product per period. In the presence of triangular 

setups, multiple lots per product per period could occur but this is not required for 

optimality and so in general it is avoided in models for triangular setups. The 

computational tests in the next section explore the impact of this limitation. 
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5.6 Computational tests 

Many models in the literature assume that there will be at most one lot per 

product per period. What are the pros and cons of this assumption? On the one hand, 

the model will be smaller with fewer variables and constraints, so we might expect 

faster solution. On the other hand, the solutions with Multiple Lots (ML) per product 

per period will be excluded, so we will expect worse solutions in some cases. Clark, 

Rangel and I investigated this supposed trade-off via the computational tests for 

single machine and showed that often it may not exist (Clark et al., 2012). We 

demonstrated that the multiple lots features of models enables more efficient 

production than when the formulation is restricted to single lot per product per 

period.  

The aim of the tests in this thesis is to assess how effectively the ML model took 

advantage of shortcut products to reduce the total time spent on setups, compared to 

the equivalent One Lot (1L) model for different machine configurations including 

SM, PM and FFL. The tests also evaluated the consequences of modelling all 

necessary features of production in the multiple lot model with setup overlapping, 

denoted MLOV, on reducing demand backlogs, total inventory and cost in the case 

of tight production capacity for SM, PM and FFL production system. The models 

were implemented in the optimisation modelling software GAMS build 23.6.5 

(Brooke et al., 1988) and solved using the industrial-strength CPLEX 12.0 solver 

(CPLEX., 2010) on a computer with a 2.1 GHZ CPU and 2 GB of RAM. The 

CPLEX optimizer was allowed to run for a maximum of 1 hour of running time, at 

which point the incumbent solution (i.e., the best found up to then) was used. 

To obtain initial insight, the performance of the three models (1L-SM, ML-SM 

and MLOV-SM) was first compared with 20 problem instances on a single machine. 

Then via one test problem, the efficiency of the three models for PM and FFL 

production systems were showed in details.   

5.6.1 Results of Single Machine 

Consider a production system with a single machine and 𝐽 = 10 products whose 

lot sizes and sequences were to be scheduled over a horizon of 𝑇 = 4 demand 

periods. The following data were used: 𝐶𝑡 = 100,  𝑚𝑙𝑗 = 5,  𝑖0 = 1,  𝑏𝑗 = 0.5,  𝑗𝑡 =

10,  𝑔𝑗𝑡 = 10000,∀𝑗, 𝑡 for all instances. In our recent paper (Clark et al., 2012) the 
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setup times were initially set to be  𝑠𝑡𝑖𝑗 =  𝑗 − 𝑖 𝑖𝑓 𝑗 ≥ 𝑖 otherwise  10 + 𝑗 − 𝑖 , so 

the product 2 would normally be setup immediately after product 1. However, 

product 5 was then made an extreme shortcut with zero setup times:  𝑠𝑡5𝑗 =  𝑠𝑡𝑖5 =

0. In this thesis to make setup times more tangible particularly in case of setup 

overlapping, all setup times were increased by 3 so setup times were changed to 

 𝑠𝑡5𝑗 =  𝑠𝑡𝑖5 = 3 and 𝑠𝑡𝑖𝑗 =  3 + 𝑗 − 𝑖  𝑖𝑓 𝑗 ≥ 𝑖 otherwise  13 + 𝑗 − 𝑖 . Setup costs 

are proportional to setup times, i.e. 𝑠𝑐𝑖𝑗 = 50 ×  𝑗 − 𝑖  𝑖𝑓 𝑗 ≥ 𝑖, otherwise 50 ×

 10 + 𝑗 − 𝑖 , and for shortcut product are:  𝑠𝑐5𝑗 =  𝑠𝑐𝑖5 = 50.  

The periodic demand forecasts  𝑑𝑖𝑡  varied randomly over product i and period t 

to provoke non-uniform lot-sizes and avoid lot-for-lot production. To show the 

effectiveness of the setup overlapping model, the demands in two consecutive 

periods are set to be non-zero for different products. For example, if there are 10 

products then for period t, 5 random products have non-zero demand with the other 5 

having demand zero, while in period t+1 those products with zero-demand in period 

t now have non-zero demand with other 5 having zero demand. When capacity is 

loose, then there is much flexibility about when setups can occur in an optimal 

solution, so we expect that period-overlapping setups will not make a difference.  

However, in tight capacity, there will be little such flexibility, so it is important to 

use scarce production capacity efficiently via relaxing all restrictions of physical 

separation between the periods. To simulate tight capacity the overall demand was 

adjusted so that setup times could take up to 20-25% of capacity. Thus a total of 20 

problem instances were generated for single machine and each problem solved by 

the 1L-SM, ML-SM and MLOV-SM models. Table 5-4 compare the performance of 

three models on 6 criteria calculated over the planning horizon.   

1. Total time spent on setups =  𝑠𝑡𝑖𝑗  𝑦𝑖𝑗𝑡𝑖𝑗  

2. Amount of unused (slack) capacity =   𝑠𝑙𝑘𝑡𝑡  

3. Inventory =  𝐼𝑖𝑡  𝑖𝑡  

4. Backlogs =  𝐵𝑖𝑡  𝑖𝑡  

5. CPU time  

6. Total cost = Backlogs + Inventory + Setup =  𝑔𝑖𝑡  𝐵𝑖𝑡𝑖𝑡 +  𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 +

 𝑠𝑐𝑖𝑗  𝑦𝑖𝑗𝑡𝑖𝑗𝑡  
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Table 5-4: A mean results of 1L-FFL, ML-FFL and MLOV-FFL for 20 single machine problems 

Single Machine 1L-SM ML-SM MLOV-SM P-value 

Mean Setup time 77.75 78 77.95 0.902 
Mean Slack capacity 5.575 5.975 6.725 0.061 

Mean Inventory 14.45 10.5 6.1 0.000 
Mean Backlogs 7.55 5.8 4.1 0.000 

Mean CPU time (seconds) 5.4 3.95 4.55 0.136 
Mean Total cost = 

(Backlogs + Inventory +Setup) 
76842 

(75500+144.5+1197.5) 

59260 

(58000+105+1155) 

42208.5 

(4100+61+1147.5) 0.000 
 

For each criterion, the difference between the mean values for the three models 

was statistically tested using a balanced analysis of variance test. The test used the 

data instance (that is the run) as a random blocking factor. The null hypothesis is that 

the difference between the models means is zero. The results in Table 5-4 and also 

the paired T-test‘s P-values in Table 5-5 show the highly significant decrease in 

backlogs, inventory and total cost for the model MLOV-SM compared to those for 

the ML-SM and 1L-SM. The ML-SM is also more efficient than 1L-SM because of 

using the shortcut product 5 to economise on setups and reduce numbers of 

backlogs, inventory.  

Table 5-5: The paired T-test results between 1L-FFL, ML-FFL and MLOV-FFL for 20 single machine 

problems 

P-values of the paired  

T-test  

1L-SM & ML-SM ML-SM &  

MLOV-SM 

1L-SM & 

 MLOV-SM 

Setup time 0.296 0.467 0.384 
Slack capacity 0.175 0.076 0.016 

Inventory 0.005 0.049 0.003 
Backlogs 0.000 0.000 0.000 

CPU time (seconds) 0.020 0.096 0.189 
Total cost  0.000 0.000 0.000 

5.6.2 Results of Parallel Machines 

Consider the production system with 2 machines in parallel. The aim is to satisfy 

the demand shown in Table 5-6 for 10 products over the 4 planning periods with 

minimal backorders, inventory and setup costs. The capacity of each machine 

is 𝐶𝑚𝑡 = 50, thus a total capacity of   𝐶𝑚𝑡  𝑚 = 100 is available for each period. 

The remained PM data is the same as SM problem: 𝑚𝑙𝑗 = 5,  𝑖0𝑚 = 1,  𝑏𝑗𝑚 =

0.5,  𝑗𝑡 = 10,  𝑔𝑗𝑡 = 10000,∀𝑗, 𝑡, also setup times and costs of each machine 

replicate those for single machine.  
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Table 5-6: Demand data for PM and FFL. 

𝒅𝒊𝒕 t = 1 t = 2 t = 3 t = 4 

i = 1 33 0 34 0 

i = 2 33 0 0 0 

i = 3 31 0 33 0 

i = 4 33 0 0 0 

i = 5 30 0 34 0 

i = 6 0 33 30 33 

i = 7 0 33 0 33 

i = 8 0 24 32 33 

i = 9 0 33 0 31 

i = 10 0 31 0 33 
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Figure 5-10: The production diagrams of 1L-PM, ML-PM and MLOV-PM  
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The production diagrams and the results obtained by solving the 1L-PM, ML-

PM and MLOV-PM models are shown in Figure 5-10 and Table 5-7 respectively. 

Note that in Table 5-7, the 1L-PM and ML-PM model found the solution with the 

same number of inventory 7, and  6 and 2 backlogs respectively while the optimal 

solution found by MLOV-SM has no backlogs and inventory.  

In the production diagram Figure 5-10, each node or circle represents a product 

at the top and its lot size at the bottom, and each arrow demonstrates a setup and an 

overlapped setup in bold as below:   

product

Lot size

Setup Overlapped Setup

 

Table 5-7: Results of 1L-PM, ML-PM and MLOV-PM  

Parallel machine 1L-PM ML-PM MLOV-PM 

Setup time 76 80 80 
Slack capacity 4 0 0 

Inventory  7 7 0 
Backlogs 6 2 0 

CPU time (seconds) 774 315 451 
Total cost = Cost of 

(Backlogs + Inventory +Setup) 

61220 

(60000+70+1150) 

21270 

(20000+70+1200) 

1200 

(0+0+1200) 

 

Note that how effectively the MLOV-FFL model (Figure 5-10), took advantage 

of overlapping setup on machine 1 twice to use up machine capacity and reduce 

inventory, backlogs and slack time. Furthermore both multiple lot models, ML-FFL 

and MLOV-FFL took advantage of shortcut product 5 and reduce the backlogs, 

compare to the one lot model 1L-FFL.  

5.6.3 Results of Flexible Flow Lines 

If the parallel machines production system is duplicated in series then we have a 

Flexible Flow Lines (FFL) production system with two stages in series and two 

parallel machines for each stage.  In this case, the FFL data for each stage is exactly 

the same as PM. Holding costs assume that successive stages add value, so that 

work-in-process holding costs will increase as material progresses along the line. To 

reflect this, a value-added percentage factor 𝑉𝐴𝑃 is used, whose value is 1.2. The 

first stage‘s unit holding cost 𝑖𝑡1 for product i is 10 and for the subsequent stages, 
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𝑖𝑡𝑒 = 𝑉𝐴𝑃 ∙ 𝑖𝑡 ,𝑒−1,  𝑒 ≥ 2. Thus the second stage‘s unit holding cost 𝑖𝑡2 for 

product i is 𝑖𝑡2 = 1.2 × 10 = 12.  

To analyse the FFL in details, firstly it was solved by the three models 1L-FFL, 

ML- FFL and MLOV- FFL models considering the demand of first and second 

period in Table 5-6. The production diagrams and the results of FFL for two periods 

are shown in Figure 5-11 and Table 5-8 respectively. Then the FFL was solved by 

three models considering demands of 4 periods, Table 5-6, and the results are 

presented in Table 5-9. 

In order to simplify the FFL production diagram, the one-period-backward 

shifted demand is considered for intermediate stages (𝑒 < 𝐸), means that 𝑥𝑗𝑚𝑒+1 ,𝑡+1 

in the right hand of equation (5-29) changes to 𝑥𝑗𝑚𝑒+1𝑡 . Thus for first stage, the 

inventory balance equation would be 𝐼𝑗1,𝑡−1 +  𝑥𝑗𝑚1𝑡𝑚1
− 𝐼𝑗1𝑡  =  𝑥𝑗𝑚2𝑡𝑚2

,∀𝑗, 𝑡.  

Note that for two periods demand, the ML-FFL model took advantage of 

shortcut product in both stages and efficiently used the capacity of all four machines 

to reduce inventory, backlogs and slack capacity, compared to the ML-FFL. As 

shown in Table 5-8, the backlogs and inventory fell to 2 and 0 respectively for the 

ML-FFL model and they both fell to 0 for the MLOV-FFL. Thus the MLOV-FFL, 

used the total scarce production capacity of 4 machines more efficiently by taking 

advantage of overlapping setup three times (Figure 5-11) and left no inventory, 

shortage and slack capacity.  

Table 5-8: Results of 1L-FFL, ML-FFL and MLOV-FFL for FFL problem with two periods  

Flexible Flow Line 1L-FFL ML-FFL MLOV-FFL 

Setup time 78 86 86 
Slack capacity 9 2 0 

Inventory  3 0 0 
Backlogs 6 2 0 

CPU time (seconds)  623 662 656 
Total cost = Cost of 

(Backlogs + Inventory +Setup) 

61236 

(60000+36+1200) 

21300 

(20000+0+1300) 

1300 

(0+0+1300) 

 

All the three models were solved the FFL problem with two periods in about 10 

to 11 minutes. However for the FFL problem with four periods, only the 1L-FFL 

model could find the optimal solution within the maximum of one hour running time 

(took exactly one hour) while the MLOV-FFL and MLOV-FFL left large optimality 

gaps provided by the CPLEX as shown in Table 5-9.  
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Figure 5-11: The production diagrams of 1L-FFL, ML-FFL and MLOV-FFL with two periods  
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Table 5-9: Results of 1L-FFL, ML-FFL and MLOV-FFL for FFL problem with four periods 

Flexible Flow Line 1L-FFL ML-FFL MLOV-FFL 

RAM usage 102MB 140MB 1362MB 
Optimality Gap% 0% 96.71% 97.5% 

Backlogs 6 6 8 
Total cost  

62408 62384 82410 

 

Due to the importance of number of binary variables in large instances, the 

MLOV-FFL exhausted the 1362 MB of 2 GB available RAM before terminating the 

CPLEX branch-&-cut search, leaving large optimality gap because of the extra 

binary variable of setup overlapping 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡  compared with the other models.  

5.7 Final remarks 

This chapter presented the new mix integer programming formulations for 

capacitated lot sizing and scheduling with non-triangular and sequence-dependent 

setup times and costs incorporating all necessary features of setup carryover and 

overlapping on different machine configurations. These features relax all limitation 

of physical separation between the periods which contrast the nature of production 

system and give more flexibility to the lot sizing model. Moreover the innovation of 

the new formulation has been the modelling of non-triangular sequence-dependent 

setups within lot sizing model based on ATSP problem that allows multiple lots per 

product per period with polynomial number of disconnected subtours prohibition 

constraints.  

To assess how effectively the multiple lot model with setup overlapping took 

advantage of shortcut product and setup overlapping feature to reduce backlogs and 

inventory, three models 1L, ML and MLOV were compared for three production 

systems SM, PM and FFL. The one-Lot (1L) model is the ML simplified model that 

assumes at most one lot per period. The computational results showed that the 

multiple-lots and setup overlapping features of the model enable more efficient 

production than when the formulation excludes setup overlapping or is restricted to 

single lot per product per product. 

On single machine (SM) the results of 20 instances showed the highly 

significant decrease in backlogs, inventory and total cost for the model MLOV-SM 

compared to those for the ML-SM and 1L-SM. Furthermore the ML-SM is more 

efficient than 1L-SM because of using the shortcut product 5 to economise on setups 
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and reduce numbers of backlogs, inventory. The results of PM and FFL also 

confirmed the effectiveness of the new formulation however because of increasing of 

number of binary variables in large instances, the MLOV exhausted the 2 GB 

available RAM before terminating the CPLEX branch-&-cut search, leaving large 

optimality gap because of the extra binary variable of setup overlapping. To sum up, 

the test results above, although merely probing, and not conclusive, indicate that 

model MLOV for all machine configurations finally obtains a better solution in 

small problem sizes. However due to the importance of number of binary variables 

in large instances, the 1L model is solved in much shorter time compared with ML 

and MLOV. Thus there is the need for future research to develop efficient solution 

method for MLOV on different machine configurations particularly PM and FFL. 

Future work will also computationally compare the different demand data pattern 

with variables sizes on SM, PM and FFL.  
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6. Conclusion 

Chapter 6 

Conclusion  

 

By increasing pressure of competition towards a globalized economy, many 

companies focus on high product quality, low costs and quick response in order to 

satisfy turbulent market demands. To achieve this goal they need the high capability 

of production planning systems which are too elaborate to be considered in a 

monolithic way. Thus production planning systems are classified to long-term, 

medium-term and short-term. Among these three levels of planning, short-term has a 

crucial role and consists of scheduling and lot sizing problems. 

This thesis breaks new ground by modelling lot sizing and scheduling in a 

Flexible Flow Line (FFL) simultaneously instead of separately. The problem, called 

the ‗General Lot sizing and Scheduling Problem in a Flexible Flow Line‘ (GLSP-

FFL), optimizes the lot sizing and scheduling of multiple products at multiple stages, 

each stage having multiple machines in parallel. The main novelty of this thesis is to 

develop linear Mix Integer Programming (MIP) formulations for this problem 

incorporating a variety of practical assumptions. Here the contributions of the 

chapters are briefly summarized along with the presentation of future research 

directions. 

6.1 Summary  

Firstly, chapter 2 reviews the literature and recent developments of deterministic 

dynamic lot sizing problems. The focus of the review is on capacitated lotsizing with 

sequence-dependent setup which is closely interrelated to scheduling and 

considerably combined in the literature. However, it can be more complicated and 

challenging to integrate both problems in complex production systems. The review 

updates the literature regarding the modelling perspective of this challenge on a 

variety of machine configurations and points out the sparse research on production 

systems with more than one machine despite of its extensive real-world applications.  
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The Flexible Flow Line (FFL) is a very prevalent production system and can be 

found in vast number of industries such as automotive, chemical, electronics, steel 

making, food and textile. Multiple products can be produced at stages and production 

at each stage involves unrelated parallel machines with different production rates. 

All machines can produce any product. The available capacity of each machine is 

limited and can vary between periods and stages. A changeover from one product to 

another requires a setup time during which the machine is unproductive. Setup times 

and costs are sequence dependent and can vary between machines. The finite 

planning horizon is divided into T periods and the independent demand for all 

products is felt at the final stage at the end of each period. It is known with certainty, 

but varies dynamically over the planning horizon. The decisions to be taken are the 

determination of production quantities (lots), machine assignments and production 

sequences (schedules) on each machine at each stage in a FFL. The objective is to 

minimise setup, inventory holding and backorder costs. Moreover in this thesis, the 

new challenges have been researched such as lot splitting and shortage, the practiced 

assumptions in flexible flow shop manufacturing systems, and non-triangular setup 

times and costs. Non-triangular setups occur in certain industries like food, textile 

and oil where the production of intermediate or cleaning product can clean the 

machines and reduce overall setup times (costs). In order to obtain viable schedules, 

―lead-time synchronization‖ is assumed i.e., there is the lead time of one period 

between different production stages. In this case, a product which is produced at a 

stage is available for production at the next stage only in the next period.  

Fleischmann and Meyr (1997) integrated the lot sizing and scheduling of several 

products on a single capacitated machine, calling their model the General Lot sizing 

and Scheduling Problem (GLSP).  Afterwards, Meyr (2002) extended this problem 

for parallel machines and in an alternative approach Clark and Clark (2000) designed 

a mixed integer programming (MIP) model for simultaneous sequencing and lot 

sizing production lots on a set of parallel machines in the presence of sequence-

dependent setup times. According to different formulations, three distinct models are 

introduced for GLSP-FFL in chapter 3. The first model FFL-CC is based on Clark 

and Clark‘s (2000) sequencing formulation  technique when the second model FFL-

FM is based on Fleischmann and Meyr‘s (1997). The computational tests indicate 

that the FFL-CC is more effective and has a much smaller optimality gap than FFL-

FM. The third novel MIP model FFL-ATSP is based on adaptation of ATSP that 
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shows significant improvement of problems solutions for small and big problem 

sizes in very much shorter time than FFL-CC and FFL-FM. For example, for small 

problems FFL-ATSP found the optimal solution in a mean time of 10 seconds, while 

the FFL-CC and FFL-FM models not only could not find an optimal solution in one 

hour but also ended the search with a large optimality gap. Three different ANOVA 

tests including a Balanced ANOVA and the non-parametric Friedman test and Two-

Factor ANOVA Analysis with Replication have been carried to compare the models. 

The result indicates highly significant differences between three models and no 

significant interactions between models and combinations and different levels of 

combinations. 

GLSP-FFL is an NP-hard problem and even a well designed exact MIP model 

FFL-ATSP, cannot find any feasible solution in reasonable computing time for some 

large problems. Hence, it is needed to develop an efficient solution procedure. 

Chapter 4 is devoted to a meta-heuristic algorithm, Adaptive Simulated Annealing 

(ASA) with an effective adaptive temperature control scheme. The adaptive 

temperature control scheme changes temperature based on the number of 

consecutive improving moves and maintains it above the minimum level. The ASA 

algorithm is based on Azizi and Zolfaghari‘s cooling schedule (Azizi and Zolfaghari, 

2004) that applied for GLSP-FFL. The main advantage of ASA is providing a higher 

chance of an uphill transition once the search traps in a local minimum regardless of 

the iteration number by dynamically adjustment of the temperature based on the 

profile of the search path.    

Four initial solutions and three neighbour operators are designed for ASA. The 

first initial solution is based on generating a random sequence of products on 

machines of each stage and then running the linear model of GLSP-FFL to find the 

optimal lot size of the sequence. For the second initial solution, the external demand 

of each product is considered as the product lot size in each stage and period and the 

sequences of lots are determined by Loading Heuristic algorithm (LHR).  Finally, the 

third novel initial solution is obtained by solving well-organized model which 

extracts from the GLSP-FFL. The model is Capacitated Lot Sizing Problem for 

Multi Stage systems (MS-CLSP) with single machine in each stage. MS-CLSP gives 

the inventory feasible lot sizes which need to be scheduled by loading heuristic 

algorithm on parallel machines of stages in FFL. The fourth initial solution is 

generated by solving the sequencing model of the GLSP-FFL to find the sequence 
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and then it is given to the linear lot sizing model of GLSP-FFL to determine its 

optimal lot size.   

The first initial solution is feasible but the other initial solutions may be 

capacity-infeasible solutions. In the ASA procedure capacity infeasibilities are 

heavily penalized in the objective function and inventory-feasibility is always 

preserved when generating neighbours by the neighbour operators. The numerical 

test shows that for small problems, ASA with the fourth initial solution and for big 

problems ASA with the third initial solution is able to find much better solutions 

than other initial solutions.  

Finally, chapter 5 presents the novel mix integer programming formulations for 

lot sizing and scheduling with non-triangular and sequence-dependent setup times 

and costs incorporating all necessary features of setup carryover and overlapping on 

different machine configurations including: conserving setup state when no product 

is being processed over period(s); starting setup in a period and ending in the next 

period; ending setup at a period and starting production in the next period(s); 

crossing an imposed minimum lot size over periods.  These features relax all 

limitation of physical separation between the periods which contrast the nature of 

production system and give more flexibility to the lot sizing model. Furthermore 

when setup times and/or costs are non-triangular, it can sometimes be optimal for a 

shortcut product to be produced in more than one lot in each period. To models this, 

the ATSP-based formulation is developed that allows multiple lot production within 

a period and is more efficient than other models as used polynomial number of 

disconnected subtours prohibition constraints.  

Firstly the new model is explained for a Single Machine (SM) which then 

extends to other machine configurations including Parallel Machines (PM) and 

Flexible Flow Lines (FFL). To assess how effectively the model takes advantage of 

shortcut product and setup overlapping feature to reduce backlogs and inventory, 

three models one-Lot (1L), Multiple Lot (ML) and Multiple Lot with Overlapping 

setups (MLOV) are compared for three production systems SM, PM and FFL. The 

1L model is the ML simplified model that assumes at most one lot per period. The 

computational results showed that the multiple-lots and setup overlapping features of 

the model enable more efficient production than when the formulation excludes 

setup overlapping or is restricted to single lot per product per product. 
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The results of 20 instances on SM showed the highly significant decrease in 

backlogs, inventory and total cost for the model MLOV-SM compared to those for 

the ML-SM and 1L-SM. Furthermore the ML-SM is more efficient than 1L-SM 

because of using the shortcut product to economise on setups and reduce numbers of 

backlogs, inventory. The results of PM and FFL also confirmed the effectiveness of 

the new formulation however due to the importance of number of binary variables in 

large instances, the MLOV exhausted the 2 GB available RAM before terminating 

the CPLEX branch-&-cut search, leaving large optimality gap because of the extra 

binary variable of setup overlapping.  

6.2 Future research directions  

There are several interdependencies between lot sizing and scheduling models 

which make the integrating of these two models crucial particularly when setups are 

sequence dependent. However, it can be difficult and complicated to combine both 

models for complex production systems such as flow shops and flexible flow lines, 

thus they are often modelled and solved independently in spite of their 

interdependencies. The main novelty of this thesis is to model these two problems 

simultaneously while incorporating a variety of practical assumptions and develop 

MIP formulations for it. The major limitation of the mathematical modelling of this 

problem, is that even a well designed exact MIP model (FFL-ATSP) cannot find any 

feasible solution in reasonable computing time for some large problems. This 

highlights the importance role of developing efficient solution algorithm(s) for 

GLSP-FFL.  

One interesting area for future research is the integration of Simulated 

Annealing (SA) and Lagrangean Relaxation (LR) for lot sizing and scheduling in 

FFL. The hybrid heuristics like LR/SA have already show promise in multi-stage 

capacitated lot sizing problem (Özdamar and Barbaroso lu, 1999) as the performance 

of LR can be enhanced by using SA within the Lagrangean heuristics in each 

iteration.  

According to the result of chapter 5, there is the need for future research to 

develop efficient solution method for MLOV on different machine configurations, 

possibly via exact methods such as Lagrangian Relaxation coupled with 

decomposition into single periods where the sub-models can be solved very rapidly, 

or via heuristic methods such as Relax-&-Fix methods of various types or local 
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branching. Future work will also computationally compare the ML model against a 

functionally equivalent GLSP model and Menezes et al. (2011)‘s ATSP-based 

iterative method which allowed non-triangular setups. Moreover in case of triangular 

setups, computationally comparing GLSP approach with different ATSP approaches 

based on a variety of subtour elimination method such as Miller, Tucker and 

Zemlin‘s subtours elimination method (Miller et al., 1960) and  Claus‘s multi-

commodity-flow (MCF) formulation (1984) is another research opportunities to 

explore.  

Given that in case of existing non-triangular setups the enough production of 

intermediate or cleaning product can clean the machine less costly, the question 

arises as to whether the quantity of cleaning product called minimum lot size is 

sequence dependent. This poses another research challenge about how to model the 

sequence dependency of minim lot sizes in lot sizing and scheduling problems.  
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Appendices 

Appendices   

Appendix A: ML-SM model 

(1) Minimise   𝑠𝑐𝑖𝑗  𝑦𝑖𝑗𝑡𝑖𝑗𝑡 +  𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡 −1 − 𝐵𝑗𝑡−1 + 𝑥𝑗𝑡 − 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡   

∀ 𝑡 (3)  𝑏𝑖  𝑥𝑖𝑡
𝑖

+  𝑠𝑡𝑖𝑗  𝑦𝑖𝑗𝑡
𝑖𝑗

+ 𝑠𝑙𝑘𝑡 =  𝐶𝑡    

∀ 𝑗, 𝑡 (4) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × 𝑧𝑗𝑡
𝑏𝑖𝑛   

∀ 𝑗, 𝑡 (5) 𝑦𝑗𝑗𝑡 = 0 

∀  𝑡 = 1, . . ,𝑇 + 1(6)  𝛼𝑖𝑡  

𝑖

= 1 

∀ 𝑡 = 1(7) 𝛼𝑖𝑜 𝑡 = 1 

∀ 𝑗, 𝑡 (8) 𝑥𝑗𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑡  𝛼𝑗𝑡  

∀ 𝑗, 𝑡 (9) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡  𝛼𝑗 ,𝑡+1 

∀ 𝑗, 𝑡 (10) 𝑥𝑗𝑡
𝐿 +  𝑥𝑗 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑗 ,𝑡+1   

∀ 𝑗, 𝑡 (11) 𝑥𝑗𝑡 − 𝑥𝑗𝑡
𝐹 −   𝑥𝑗𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗 ,𝑡+1)   

∀ 𝑖, 𝑡  (12) 𝛼𝑖𝑡 +  𝑦𝑗𝑖𝑡  

𝑗

=  𝑧𝑖𝑡   

∀ 𝑖, 𝑡  (13)  𝑦𝑖𝑗𝑡  

𝑗

+ 𝛼𝑖 ,𝑡+1 =  𝑧𝑖𝑡   

∀ 𝑖, 𝑗,𝑘, 𝑡  (14) 𝑎𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑗 𝑡    

∀ 𝑖, 𝑡  (15) 𝑧𝑖𝑡 ≥ 𝑧𝑖𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑡  (16) 𝑧𝑖𝑡 ≤ 𝑍𝑈𝐵𝑖𝑧𝑖𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑡  (17) 𝛼𝑘𝑡 +  𝑎𝑖𝑘𝑡
𝑘  

𝑖

= 𝑧𝑘𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑡  (18) 𝛼𝑖𝑡 +  𝑎𝑗𝑖𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗, 𝑡 (19) 𝑎𝑘𝑗𝑡
𝑘 = 0  
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Appendix B: MLOV-SM model 

 

(1) Minimise   𝑠𝑐𝑖𝑗  𝑦𝑖𝑗𝑡𝑖𝑗𝑡 +  𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡 −1 − 𝐵𝑗𝑡−1 + 𝑥𝑗𝑡 − 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡   

∀ 𝑡 (3)  𝑏𝑖  𝑥𝑖𝑡
𝑖

+  𝑠𝑡𝑖𝑗  𝑦𝑖𝑗𝑡
𝑖𝑗

+ 𝑆𝑡−1 − 𝑆𝑡 + 𝑠𝑙𝑘𝑡 =  𝐶𝑡      

∀ 𝑗, 𝑡 (4) 𝑥𝑗𝑡  ≤  𝑈𝐵𝑗𝑡 × (𝑧𝑗𝑡 − 𝑂𝐿𝑆𝑖𝑗𝑡
𝑖

) 

∀ 𝑗, 𝑡 (5) 𝑦𝑗𝑗𝑡 = 0 

∀  𝑡 = 1, . . ,𝑇 + 1(6)  𝛼𝑖𝑡  

𝑖

= 1 

∀ 𝑡 = 1(7) 𝛼𝑖𝑜 𝑡 = 1 

∀ 𝑗, 𝑡 (8) 𝑥𝑗𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑡  𝛼𝑗𝑡  

∀ 𝑗, 𝑡 (9) 𝑥𝑗𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡  (𝛼𝑗 ,𝑡+1 − 𝑂𝐿𝑆𝑖𝑗𝑡

𝑖

) 

∀ 𝑗, 𝑡 (10) 𝑥𝑗𝑡
𝐿 +  𝑥𝑗 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑗 ,𝑡+1   

∀ 𝑗, 𝑡 (11) 𝑥𝑗𝑡 − 𝑥𝑗𝑡
𝐹 −   𝑥𝑗𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑡 − 𝛼𝑗𝑡 − 𝛼𝑗 ,𝑡+1)   

∀ 𝑖, 𝑡  (12) 𝛼𝑖𝑡 +  𝑦𝑗𝑖𝑡  

𝑗

=  𝑧𝑖𝑡   

∀ 𝑖, 𝑡  (13)  𝑦𝑖𝑗𝑡  

𝑗

+ 𝛼𝑖 ,𝑡+1 =  𝑧𝑖𝑡   

∀ 𝑖, 𝑗,𝑘, 𝑡  (14) 𝑎𝑖𝑗𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑡    

∀ 𝑖, 𝑡  (15) 𝑧𝑖𝑡 ≥ 𝑧𝑖𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑡  (16) 𝑧𝑖𝑡 ≤ 𝑍𝑈𝐵𝑖𝑧𝑖𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑡  (17) 𝛼𝑘𝑡 +  𝑎𝑖𝑘𝑡
𝑘  

𝑖

= 𝑧𝑘𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑡  (18) 𝛼𝑖𝑡 +  𝑎𝑗𝑖𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗, 𝑡 (19) 𝑎𝑘𝑗𝑡
𝑘 = 0  

∀ 𝑡 (20)  𝑆𝑡  ≤     𝑠𝑡𝑖𝑗  𝑂𝐿𝑆𝑖𝑗𝑡
𝑖𝑗

  

∀ 𝑖, 𝑡 (21)  𝑂𝐿𝑆𝑖𝑗𝑡
𝑗

≤  𝛼𝑖 ,𝑡+1  
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∀ 𝑖, 𝑗, 𝑡 (22) 𝑂𝐿𝑆𝑖𝑗𝑡  ≤    𝑦𝑖𝑗𝑡  

Appendix C: ML-PM model 

(1) Minimise   𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡𝑖𝑗𝑚𝑡 +  𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡 −1 − 𝐵𝑗𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚

− 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡   

∀ 𝑚, 𝑡 (3)  𝑏𝑖𝑚  𝑥𝑖𝑚𝑡
𝑖

+  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗

+ 𝑠𝑙𝑘𝑚𝑡 =  𝐶𝑚𝑡    

∀ 𝑗,𝑚, 𝑡 (4) 𝑥𝑗𝑚𝑡  ≤  𝑈𝐵𝑗𝑚𝑡 × 𝑧𝑗𝑚𝑡
𝑏𝑖𝑛   

∀ 𝑗,𝑚, 𝑡 (5) 𝑦𝑗𝑗𝑚𝑡 = 0 

∀  𝑚, 𝑡 = 1, . . ,𝑇 + 1(6)  𝛼𝑖𝑚𝑡  

𝑖

= 1 

∀ 𝑚, 𝑡 = 1(7) 𝛼𝑖𝑜𝑚 𝑚𝑡 = 1 

∀ 𝑗,𝑚, 𝑡 (8) 𝑥𝑗𝑚𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑡  𝛼𝑗𝑚𝑡  

∀ 𝑗,𝑚, 𝑡 (9) 𝑥𝑗𝑚𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑡  𝛼𝑗𝑚 ,𝑡+1 

∀ 𝑗,𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑡
𝐿 + 𝑥𝑗𝑚 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑚𝑗 ,𝑡+1   

∀ 𝑗,𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑡 − 𝑥𝑗𝑚𝑡
𝐹 −   𝑥𝑗𝑚𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑡 − 𝛼𝑗𝑚𝑡 − 𝛼𝑗𝑚 ,𝑡+1)   

∀ 𝑖,𝑚, 𝑡  (12) 𝛼𝑖𝑚𝑡 +  𝑦𝑗𝑖𝑚𝑡  

𝑗

=  𝑧𝑖𝑚𝑡   

∀ 𝑖,𝑚, 𝑡  (13)  𝑦𝑖𝑗𝑚𝑡  

𝑗

+ 𝛼𝑖𝑚 ,𝑡+1 =  𝑧𝑖𝑚𝑡   

∀ 𝑖, 𝑗,𝑘,𝑚, 𝑡  (14) 𝑎𝑖𝑗𝑚𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑡    

∀ 𝑖,𝑚, 𝑡  (15) 𝑧𝑖𝑚𝑡 ≥ 𝑧𝑖𝑚𝑡
𝑏𝑖𝑛  

∀ 𝑖,𝑚, 𝑡  (16) 𝑧𝑖𝑚𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑧𝑖𝑚𝑡
𝑏𝑖𝑛    

∀ 𝑘,𝑚, 𝑡  (17) 𝛼𝑘𝑚𝑡 +  𝑎𝑖𝑘𝑚𝑡
𝑘  

𝑖

= 𝑧𝑘𝑚𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑖 ≠ 𝑘,𝑚, 𝑡  (18) 𝛼𝑖𝑚𝑡 +  𝑎𝑗𝑖𝑚𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑚𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗,𝑚, 𝑡 (19) 𝑎𝑘𝑗𝑚𝑡
𝑘 = 0  
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Appendix D: MLOV-PM model 

(1) Minimise   𝑠𝑐𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡𝑖𝑗𝑚𝑡 +  𝑖𝑡  𝐼𝑖𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝑡 −1 − 𝐵𝑗𝑡−1 +  𝑥𝑗𝑚𝑡
𝑚

− 𝐼𝑗𝑡 + 𝐵𝑗𝑡 = 𝑑𝑗𝑡   

∀ 𝑚, 𝑡 (3)  𝑏𝑖𝑚  𝑥𝑖𝑚𝑡
𝑖

+  𝑠𝑡𝑖𝑗𝑚  𝑦𝑖𝑗𝑚𝑡
𝑖𝑗

+ 𝑆𝑚 ,𝑡−1 − 𝑆𝑚𝑡 + 𝑠𝑙𝑘𝑚𝑡 =  𝐶𝑚𝑡      

∀ 𝑗,𝑚, 𝑡 (4) 𝑥𝑗𝑚𝑡  ≤  𝑈𝐵𝑗𝑚𝑡 × (𝑧𝑗𝑚𝑡 − 𝑂𝐿𝑆𝑖𝑗𝑚𝑡
𝑖

) 

∀ 𝑗,𝑚, 𝑡 (5) 𝑦𝑗𝑗𝑚𝑡 = 0 

∀   𝑚, 𝑡 = 1, . . ,𝑇 + 1(6)  𝛼𝑖𝑚𝑡  

𝑖

= 1 

∀  𝑚, 𝑡 = 1(7) 𝛼𝑖𝑜𝑚 𝑚𝑡 = 1 

∀  𝑗,𝑚, 𝑡 (8) 𝑥𝑗𝑚𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑡  𝛼𝑗𝑚𝑡  

∀  𝑗,𝑚, 𝑡 (9) 𝑥𝑗𝑚𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑡  (𝛼𝑗𝑚 ,𝑡+1 − 𝑂𝐿𝑆𝑖𝑗𝑚𝑡

𝑖

) 

∀ 𝑗,𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑡
𝐿 + 𝑥𝑗𝑚 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑗𝑚 ,𝑡+1   

∀ 𝑗,𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑡 − 𝑥𝑗𝑚𝑡
𝐹 −   𝑥𝑗𝑚𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑡 − 𝛼𝑗𝑚𝑡 − 𝛼𝑗𝑚 ,𝑡+1)   

∀ 𝑖,𝑚, 𝑡  (12) 𝛼𝑖𝑚𝑡 +  𝑦𝑗𝑖𝑚𝑡  

𝑗

=  𝑧𝑖𝑚𝑡   

∀ 𝑖,𝑚, 𝑡  (13)  𝑦𝑖𝑗𝑚𝑡  

𝑗

+ 𝛼𝑖𝑚 ,𝑡+1 =  𝑧𝑖𝑚𝑡   

∀ 𝑖, 𝑗,𝑘,𝑚, 𝑡  (14) 𝑎𝑖𝑗𝑚𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑡    

∀ 𝑖,𝑚, 𝑡  (15) 𝑧𝑖𝑚𝑡 ≥ 𝑧𝑖𝑚𝑡
𝑏𝑖𝑛  

∀ 𝑖,𝑚, 𝑡  (16) 𝑧𝑖𝑚𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑧𝑖𝑚𝑡
𝑏𝑖𝑛    

∀ 𝑘,𝑚, 𝑡  (17) 𝛼𝑘𝑚𝑡 +  𝑎𝑖𝑘𝑚𝑡
𝑘  

𝑖

= 𝑧𝑘𝑚𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑖 ≠ 𝑘,𝑚, 𝑡  (18) 𝛼𝑖𝑚𝑡 +  𝑎𝑗𝑖𝑚𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑚𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗,𝑚, 𝑡 (19) 𝑎𝑘𝑗𝑚𝑡
𝑘 = 0  

∀  𝑚, 𝑡 (20)  𝑆𝑚𝑡  ≤     𝑠𝑡𝑖𝑗𝑚  𝑂𝐿𝑆𝑖𝑗𝑚𝑡
𝑖𝑗
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∀ 𝑖,𝑚, 𝑡 (21)  𝑂𝐿𝑆𝑗𝑖𝑚𝑡
𝑗

≤  𝛼𝑖𝑚 ,𝑡+1  

∀ 𝑖, 𝑗,𝑚, 𝑡 (22) 𝑂𝐿𝑆𝑖𝑗𝑚𝑡  ≤    𝑦𝑖𝑗𝑚𝑡  

Appendix E: ML-FFL model 

 

(1) Minimise   𝑠𝑐𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗𝑚𝑒𝑡𝑖𝑗𝑒𝑚𝑡 +  𝑖𝑒𝑡  𝐼𝑖𝑒𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡   

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (3) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑒+1 ,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡 (4) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  

∀ 𝑒,𝑚, 𝑡 (5)  𝑏𝑖𝑚𝑒
 𝑥𝑖𝑚𝑒𝑡

𝑖

+  𝑠𝑡𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗 𝑚𝑒𝑡

𝑖𝑗

+ 𝑠𝑙𝑘𝑚𝑒𝑡 =  𝐶𝑚𝑒𝑡    

∀ 𝑗, 𝑒,𝑚, 𝑡 (6) 𝑥𝑗𝑚𝑒𝑡  ≤  𝑈𝐵𝑗𝑚𝑒𝑡 × 𝑧𝑗𝑚𝑒𝑡
𝑏𝑖𝑛   

∀ 𝑗, 𝑒,𝑚, 𝑡 (7) 𝑦𝑗𝑗 𝑚𝑒𝑡 = 0 

∀  𝑒,𝑚, 𝑡 = 1, . . ,𝑇 + 1(8)  𝛼𝑖𝑚𝑒𝑡  

𝑖

= 1 

∀ 𝑒,𝑚, 𝑡 = 1(9) 𝛼𝑖𝑜𝑚𝑒𝑚𝑒𝑡 = 1 

∀ 𝑗, 𝑒,𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑒𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡  𝛼𝑗𝑚𝑒𝑡  

∀ 𝑗, 𝑒,𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑒𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡  𝛼𝑗𝑚𝑒 ,𝑡+1 

∀ 𝑗, 𝑒,𝑚, 𝑡 (12) 𝑥𝑗𝑚𝑒𝑡
𝐿 +  𝑥𝑗𝑚𝑒 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑚𝑒𝑗 ,𝑡+1   

∀ 𝑗, 𝑒,𝑚, 𝑡 (13) 𝑥𝑗𝑚𝑒𝑡 − 𝑥𝑗𝑚𝑒𝑡
𝐹 −   𝑥𝑗𝑚𝑒𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒 ,𝑡+1)   

∀ 𝑖, 𝑒,𝑚, 𝑡  (14) 𝛼𝑖𝑚𝑒𝑡 +  𝑦𝑗𝑖 𝑚𝑒𝑡  

𝑗

=  𝑧𝑖𝑚𝑒𝑡   

∀ 𝑖, 𝑒,𝑚, 𝑡  (15)  𝑦𝑖𝑗 𝑚𝑒𝑡  

𝑗

+ 𝛼𝑖𝑚𝑒 ,𝑡+1 =  𝑧𝑖𝑚𝑒𝑡   

∀ 𝑖, 𝑗,𝑘, 𝑒,𝑚, 𝑡  (16) 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑒𝑡    

∀ 𝑖, 𝑒,𝑚, 𝑡  (17) 𝑧𝑖𝑚𝑒𝑡 ≥ 𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑒,𝑚, 𝑡  (18) 𝑧𝑖𝑚𝑒𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑒
𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑒,𝑚, 𝑡  (19) 𝛼𝑘𝑚𝑒𝑡 +  𝑎𝑖𝑘𝑚𝑒𝑡
𝑘  

𝑖

= 𝑧𝑘𝑚𝑒𝑡
𝑏𝑖𝑛    
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∀ 𝑘, 𝑖 ≠ 𝑘, 𝑒,𝑚, 𝑡  (20) 𝛼𝑖𝑚𝑒𝑡 +  𝑎𝑗𝑖 𝑚𝑒𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑚𝑒𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗, 𝑒,𝑚, 𝑡 (21) 𝑎𝑘𝑗𝑚𝑒𝑡
𝑘 = 0  

 

Appendix F: MLOV-FFL model 

(1) Minimise   𝑠𝑐𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗𝑚𝑒𝑡𝑖𝑗𝑒𝑚𝑡 +  𝑖𝑒𝑡  𝐼𝑖𝑒𝑡𝑖𝑡 +  𝑔𝑖𝑡  𝐵𝑖𝐸𝑡𝑖𝑡  

∀ 𝑗, 𝑡 (2) 𝐼𝑗𝐸 ,𝑡−1 − 𝐵𝑗𝐸 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝐸

− 𝐼𝑗𝐸𝑡 + 𝐵𝑗𝐸𝑡 = 𝑑𝑗𝑡   

∀ 𝑗, 𝑡 𝑎𝑛𝑑 𝑒 = 1,… ,𝐸 − 1 (3) 𝐼𝑗𝑒 ,𝑡−1 +  𝑥𝑗𝑚𝑒𝑡

𝑚𝑒

− 𝐼𝑗𝑒𝑡  =  𝑥𝑗𝑚𝑒+1 ,𝑡+1

𝑚𝑒+1

 

∀ 𝑖, 𝑡 (4) 𝐵𝑖𝑡𝐸  ≤  𝐵𝑃 ∙ 𝑑𝑖𝑡  

∀ 𝑒,𝑚, 𝑡(5)  𝑏𝑖𝑚𝑒
 𝑥𝑖𝑚𝑒𝑡

𝑖

+  𝑠𝑡𝑖𝑗𝑚𝑒
 𝑦𝑖𝑗 𝑚𝑒𝑡

𝑖𝑗

+ 𝑆𝑚𝑒 ,𝑡−1 − 𝑆𝑚𝑒𝑡 + 𝑠𝑙𝑘𝑚𝑒𝑡 =  𝐶𝑚𝑒𝑡    

∀ 𝑗, 𝑒,𝑚, 𝑡 (6) 𝑥𝑗𝑚𝑒𝑡  ≤  𝑈𝐵𝑗𝑚𝑒𝑡 × (𝑧𝑗𝑚𝑒𝑡 − 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖

) 

∀ 𝑗, 𝑒,𝑚, 𝑡 (7) 𝑦𝑗𝑗 𝑚𝑒𝑡 = 0 

∀  𝑒,𝑚, 𝑡 = 1, . . ,𝑇 + 1(8)  𝛼𝑖𝑚𝑒𝑡  

𝑖

= 1 

∀ 𝑒,𝑚, 𝑡 = 1(9) 𝛼𝑖𝑜𝑚𝑒𝑚𝑒𝑡 = 1 

∀ 𝑗, 𝑒,𝑚, 𝑡 (10) 𝑥𝑗𝑚𝑒𝑡
𝐹 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡  𝛼𝑗𝑚𝑒𝑡  

∀ 𝑗, 𝑒,𝑚, 𝑡 (11) 𝑥𝑗𝑚𝑒𝑡
𝐿 ≤ 𝑈𝐵𝑗𝑚𝑒𝑡  (𝛼𝑗𝑚𝑒 ,𝑡+1 − 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖

) 

∀ 𝑗, 𝑒,𝑚, 𝑡 (12) 𝑥𝑗𝑚𝑒𝑡
𝐿 +  𝑥𝑗𝑚𝑒 ,𝑡+1

𝐹  ≥  𝑚𝑙𝑗  𝛼𝑚𝑒𝑗 ,𝑡+1   

∀ 𝑗, 𝑒,𝑚, 𝑡 (13) 𝑥𝑗𝑚𝑒𝑡 − 𝑥𝑗𝑚𝑒𝑡
𝐹 −   𝑥𝑗𝑚𝑒𝑡

𝐿 ≥  𝑚𝑙𝑗  (𝑧𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒𝑡 − 𝛼𝑗𝑚𝑒 ,𝑡+1)   

∀ 𝑖, 𝑒,𝑚, 𝑡  (14) 𝛼𝑖𝑚𝑒𝑡 +  𝑦𝑗𝑖 𝑚𝑒𝑡  

𝑗

=  𝑧𝑖𝑚𝑒𝑡   

∀ 𝑖, 𝑒,𝑚, 𝑡  (15)  𝑦𝑖𝑗 𝑚𝑒𝑡  

𝑗

+ 𝛼𝑖𝑚𝑒 ,𝑡+1 =  𝑧𝑖𝑚𝑒𝑡   

∀ 𝑖, 𝑗,𝑘, 𝑒,𝑚, 𝑡  (16) 𝑎𝑖𝑗𝑚𝑒𝑡
𝑘 ≤ 𝑦𝑖𝑗𝑚𝑒𝑡    

∀ 𝑖, 𝑒,𝑚, 𝑡  (17) 𝑧𝑖𝑚𝑒𝑡 ≥ 𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛  

∀ 𝑖, 𝑒,𝑚, 𝑡  (18) 𝑧𝑖𝑚𝑒𝑡 ≤ 𝑍𝑈𝐵𝑖𝑚𝑒
𝑧𝑖𝑚𝑒𝑡
𝑏𝑖𝑛    
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∀ 𝑘, 𝑒,𝑚, 𝑡  (19) 𝛼𝑘𝑚𝑒𝑡 +  𝑎𝑖𝑘𝑚𝑒𝑡
𝑘  

𝑖

= 𝑧𝑘𝑚𝑒𝑡
𝑏𝑖𝑛    

∀ 𝑘, 𝑖 ≠ 𝑘, 𝑒,𝑚, 𝑡  (20) 𝛼𝑖𝑚𝑒𝑡 +  𝑎𝑗𝑖𝑚𝑒𝑡
𝑘  

𝑗

≥   𝑎𝑖𝑗𝑚𝑒𝑡
𝑘  

𝑗

  

∀ 𝑘, 𝑗, 𝑒,𝑚, 𝑡 (21) 𝑎𝑘𝑗𝑚𝑒𝑡
𝑘 = 0  

∀  𝑒,𝑚, 𝑡 (22)  𝑆𝑚𝑒𝑡  ≤     𝑠𝑡𝑖𝑗 𝑚𝑒
 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡

𝑖𝑗

  

∀ 𝑖, 𝑒,𝑚, 𝑡 (23)  𝑂𝐿𝑆𝑗𝑖𝑚𝑒𝑡

𝑗

≤  𝛼𝑖𝑚𝑒 ,𝑡+1  

∀ 𝑖, 𝑗, 𝑒,𝑚, 𝑡 (24) 𝑂𝐿𝑆𝑖𝑗𝑚𝑒𝑡  ≤    𝑦𝑖𝑗 𝑚𝑒𝑡  

 


