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ABSTRACT

A DIGITAL TWIN FRAMEWORK FOR PRODUCTION PLANNING
OPTIMIZATION: APPLICATIONS FOR MAKE-TO-ORDER

MANUFACTURERS

MAY 2023

RON MALLACH

B.S., UNIVERSITY OF MASSACHUSETTS AMHERST

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Ana Murial

In this dissertation, we develop a Digital Twin framework for manufacturing systems and apply

it to various production planning and scheduling problems faced by Make-To-Order (MTO) firms.

While this framework can be used to digitally represent a particular manufacturing environment

with high fidelity, our focus is in using it to generate realistic settings to test production planning

and scheduling algorithms in practice. These algorithms have traditionally been tested by either

translating a practical situation into the necessary modeling constructs, without discussion of the

assumptions and inaccuracies underlying this translation, or by generating random instances of

the modeling constructs, without assessing the limitations in accurately representing production

environments. The consequence has been a serious gap between theory advancement and industry

practice. The major goal of this dissertation is to develop a framework that allows for practi-

cal testing, evaluation, and implementation of new approaches for seamless industry adoption.

Throughout this dissertation, we emphasize the importance of the underlying scheduling problems

which provide the basis for additional operational decision making. We focus on the computational
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evaluation and comparisons of various modeling choices within the developed frameworks, with the

objective of identifying models which are both effective and computationally efficient.

In Part 1 of this dissertation, we consider a class of Production Planning and Execution problems

faced by job shop manufacturing systems. We are motivated by a collaboration with our industrial

partner, a consultant firm supporting manufacturers in the aerospace supply chain. Manufacturers

in this sector must generate production plans that span months in order to account for the long

lead times experienced in the sector.

In the second chapter, we establish and validate a Digital Twin framework that acts as the test-

bed for the application and evaluation of all the planning and scheduling formulations considered

throughout this dissertation. We develop this framework as a modular software package and em-

phasize the practicality and configurability of the framework, such that minimal modelling effort

is required to apply the framework to a multitude of optimization problems and manufacturing

systems. Specifically, we develop: 1) algorithms capable of generating realistic problem scenar-

ios faced by large-scale, production facilities, 2) heuristics capable of translating production plans

into executable schedules, and 3) advanced analytics and visualizations for evaluating the resulting

scenarios and schedules. In particular, we consider the practical nuances found in the aerospace

manufacturing industry.

In the third chapter, we consider the Multi-Level Capacitated Lot Sizing Problem (MLCLSP),

and develop an integrated solution procedure that: generates a production plan for an extended

planning horizon, associates production decisions with specific customer sales orders, and creates an

executable schedule which can be followed on the shop floor. The formulations we develop leverage

novel modeling techniques, and include important practical considerations, which to our knowledge,

have not been addressed in the literature of MLCLSP. We evaluate the proposed formulations and

integrated solution procedure against several benchmark cases. We show our proposed approach to

result in significant savings relative to an MRP-based implementation. Counter to intuition, a linear

programming relaxation of the MLCLSP performs very well when tested in practice, indicating that

it may be sufficient to guide large-scale practical operations avoiding the computational burden and

limitations of MIP.

In Part 2 of this dissertation, we consider a class of scheduling problems faced by manufacturers

whose production system is dominated by a single operation. We are motivated by a collabora-

vii



tion with our industrial partner, a boutique manufacturer specializing in the production of mass

customizable mosaic murals.

In the fourth chapter, we develop and compare several representations of the scheduling prob-

lem for the unrelated parallel machine problem and the flexible flow shop problem. The classes

of scheduling formulations we consider are referred to as direct-positional and relative-positional

scheduling models because sequence-dependent setup times are important in our industrial context.

We extend the research of Ekin Koker [93] by building on the formulations and initial testing. Our

contribution includes the generalization of the formulations presented by Koker [93], the devel-

opment of an efficient implementation of the developed models using a Python/Gurobi interface,

and an enhancement to the computational evaluation across a variety of practical manufacturing

settings.

In the fifth chapter, we extend the scheduling problem from the fourth chapter to consider the

implications of a class of uncertainties which stem from the demand generation process inherent

to many MTO firms. This demand generation process is characterized by the back-and-forth

negotiations between the firm and customer prior to the realization of demands. The existence of

known demands which have not yet been confirmed, referred to as contingent demands, acts as

a critical source of uncertainty for the firm. Despite being common place in practice, contingent

demand is largely ignored in the literature. To address this, we develop several variations of direct-

positional and time-indexed formulations for the unrelated parallel machine problem, subject to

contingent demand, and evaluate their effectiveness and efficiency. In particular, we find that a

novel hybrid time-indexed formulation in two timescales provides a good balance between solution

accuracy and computational complexity. We formulate extensions to these scheduling problems to

consider a suite of Revenue Management problems including the Order Acceptance & Scheduling

Problem.

The sixth chapter summarizes our findings and concludes the dissertation highlighting our

contributions and pointing to general future research directions.
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CHAPTER 1

INTRODUCTION

Today’s supply chain and production facilities are becoming increasingly complex and man-

ufacturers need to adapt to ever-increasing customer expectations, rising resource costs and an

unprecedented level of uncertainty [94]. Recent advances in enabling technologies such as cloud

computing and the Internet of Things as well as the maturation of information systems such as

Transport Management Systems (TMS), Customer Relationship Management Systems (CRM), and

Enterprise Resource Planning Systems (ERP) have provided companies the tools to manage these

evolving supply chains [33]. The rapid development of these technologies have inspired a number

of national advanced manufacturing strategies, including: “Industry 4.0” in Germany, “Made in

China 2025” in China, and “Intelligent Manufacturing” in America [13]. The objective of these

synonymous initiatives is to achieve autonomous, self-optimizing, and self-diagnostic capabilities to

alleviate problems in complex manufacturing systems [196].

At this same time, enabling technologies have given customers the ability to personalize products

through user-friendly interactive design interfaces and producers the ability to transfer those online

customer designs into their production system [120]. The turn of the 21st century has seen these

customer-driven environments become commonplace, leading to what is referred to as the era of

Mass Customization (MC) in the manufacturing sector. The combination of these trends have

led to an increasing number of manufacturers converting from a Make-to-Stock (MTS) production

system to a Make-to-Order (MTO) operation scheme (also Assemble-to-Order and Engineer-to-

Order) [114, 115, 186]. For simplicity of exposition and to capture the setting of our industrial

partners, we will talk about the MTO manufacturing sector in this proposal, but all of our models

and approaches can be applied to the service sector where worker capacity rather than equipment

capacity will typically be the constraining resource.

The concept of Digital Twin for manufacturing systems (DTMS) provides an integrated solution

for companies to overcome these challenges and achieve next-gen manufacturing strategies. Acting
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as a centralized platform, a DTMS creates living digital models of their physical counterparts by

ingesting real-time data from existing information systems [124]. These digital models can be

applied to develop decision support systems, using real-time data, to provide users transparent,

integrated and holistic solutions for the system they represent [47, 94].

However, the collection, storage and design of the data structures required to implement a

DTMS represents a significant challenge in the field. In practice, manufacturers typically store

various datasets in unique, disparate data environments and databases, with little to no capabilities

of accessing these data points in a single interface. Further, researchers whom aim to develop

applications for the optimization of processes and decision making for these manufacturers have

even less access to relevant datasets. For the case of researchers, this challenge has led to the

requirement of relying on abstracted data points, which are randomly generated, in order to develop

optimization models. The solutions from these abstracted models are rarely able to be applied

directly as a solution in the real-world context which they represent. For this reason, a major gap

between the literature and practice exists, as manufacturers are not able to apply the models found

in literature due to the abstractions which they rely on.

Our research objective is to address these trends and challenges faced by MTOs through the

development of a novel end-to-end Digital Twin framework for Make-to-Order production facilities.

This framework should be data-driven, and capable of enabling MTO firms the ability to make

optimized decisions for a wide-array of use cases. We focus on problems related to production

planning and scheduling. Throughout the development of the proposed Digital Twin framework and

integrated solution procedures in this dissertation, we evaluate various representations of scheduling

problems to identify the most promising implementations of these frameworks.

Specific to manufacturing and service operations, machine scheduling is defined as the allocation

of tasks to available resources over some time horizon to best satisfy some set of criteria, subject

to a series of constraints that capture the complexities of the environment at hand. The challenge

in machine scheduling arises because each resource is limited in the number of jobs which it can

process at any time and each job is limited in the number of resources it can be processed by at any

time. To ensure the success of the firm, schedulers must allocate limited resources to the completion

of tasks, typically with the goal of optimizing one or more objectives, such as minimizing the cost

of penalties associated with tasks completed before or after their acceptable delivery windows.
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We emphasize the importance of scheduling as the underlying problem which many other revenue

management decision making problems rely on.

1.1 Production Planning and Execution Algorithms for Make-To-Order Firms

In Part 1 of this dissertation, we consider a class of Production Planning and Execution problems

faced by job shop manufacturing systems. We are motivated by a collaboration with our industrial

partner, a consultant firm supporting manufacturers in the aerospace supply chain. Manufacturers

in this sector must generate production plans that span months in order to account for the long

lead times experienced in the sector.

The supply chain of the aerospace industry is defined by corporations and companies which

can be classified in one of four tiers, namely Original Equipment Manufacturers (OEMs), Tier I

suppliers, Tier II suppliers, and Tier III suppliers. OEMs, such as Boeing and Airbus, carry out the

design and assembly of the final products delivered to the end customers, i.e. commercial/combat

aircrafts. Tier I suppliers, such as Pratt & Whitney, GE, United Technologies, etc., are the direct

suppliers to OEMs and are responsible for manufacturing major sections of the aircraft, e.g. engines,

wings, landing gear. Tier II suppliers supply Tier I firms and are responsible for producing the

key sub-assemblies and sub-systems which compose the Tier I products. Tier III suppliers are the

manufacturers of electronic components and raw materials in the aerospace supply chain.

In our study, we focus on the problems typically faced by Tier II suppliers. These companies,

are generally smaller and less technically equipped than Tier I companies. However, most are fairly

sophisticated in their capabilities and operations. These firms are subject to a High-Mix, Low-

Volume (HMLV) demand backlog, requiring flexible manufacturing capabilities and agile decision

making to ensure the delivery of finished goods that meet the terms agreed to with their customers.

The products which Tier II manufacturers produce are complex assemblies composed of high-tech

materials which require extensive lead times. As a result, the typical lead times associated with

Tier II orders spans weeks and sometimes months, requiring a production plan which spans a

correspondingly extensive period.

In practice, many Tier II MTO suppliers implement out-dated planning systems to schedule

their operations. Advanced Planning Systems have been developed, but are expensive and require

extensive resources and efforts to integrate into existing systems. Planning systems, such as Ma-
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terials Resource Planning (MRP), prepare production plans in two steps: first, determining the

materials requirements using customer orders and level-by-level Bill of Material (BOM) explosions,

then calculating the amount of capacity required. Capacity is taken into account too late in the

planning process, potentially resulting in infeasible and unexecutable schedules. In cases which

feasible schedules were generated, optimization is not considered. MRP has since been replaced by

MRPII which incorporates the consideration of capacity prior to materials requirements, but does

so sequentially, leading to long process lead times [111].

To overcome these issues, the integration of materials and resource planning and scheduling is

required. Our research objective is to develop a data-driven, generalized framework for the Multi-

Level Capacitated Lot Sizing Problem (MLCLSP) that is capable of being plugged into existing

Enterprise Resource Planning systems. This framework would act as a substitute to the expensive

and difficult-to-integrate ERP-provided solutions which many firms are unable to afford/justify.

Major challenges in this problem include: the extensive planning horizon which must be considered

in the planning cycle, the different timescales in which different processes operate, the requirement

that scheduling solutions must be at a detailed level which can be executed on the shop floor, and

the practical considerations which need to be incorporated in order to develop a tool which would

be usable by these Tier II manufacturers in practice.

1.2 Scheduling for Make-To-Order Firms Specializing in Mass Customization

In Part 2 of this dissertation, we are motivated by our industrial collaborator, Artaic – Innovative

Mosaic. Artaic is a custom mosaic design studio and manufacturer in Boston, MA. They use

robotic fabrication, which allows for fast, flexible and accurate assembly of unique tile work for

their customers.

Artaic is an example of an MTO firm subject to the Mass Customization paradigm. The

demands the firm faces is customer-driven, where each product design is established through many

interactions with the customer. The challenges we consider stem from the demand generation

process required for many MTO firms which offer this type of mass customization. Firms are often

unaware of future demands until customers initiate communications with them through a product

inquiry, which can lead to volatile and difficult-to-predict demand [50, 100]. Firms must submit

quotations to customers, based on customer desired product specifications as well as a quoted price
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and lead time. The timespan between when a firm submits a quotation and the customer informs

their award decision may take weeks. During this time, the prospective job is a contingent demand,

which may or may not be realized, but whose characteristics are fully known and whose terms (lead

time, price) the firm is liable for. In order to maximize profits, the firm must be able to account

for this uncertainty when submitting new proposals by balancing the increase in incoming revenue

associated with shorter lead time offers with the potential delay penalties.

In recent decades, researchers and practitioners have implemented Revenue Management (RM)

approaches to support these decisions. Revenue Management has been defined as the science

that focuses on the implementation of sophisticated information technology systems, leveraging

historical data and current congestion information, to enable firms, especially those facing fixed

and perishable capacity constraints, the ability to identify optimal policies and/or make decisions

with the objective of maximizing profits over some time horizon [38, 42]. However, there exists

a gap in the literature when it comes to the science and understanding required by MTOs facing

the uncertainties which derive from contingent demands. We plan to address this gap in our study

through the development of an integrated framework that considers the underlying scheduling

problem faced by Artaic. This framework will be capable of the incorporation of common RM

decisions, such as the Order Acceptance (OA), Dynamic Pricing (DP), Due Date Setting (DDS)

problems, and the Simultaneous Pricing, Due Date Setting and Scheduling Problem (SPDSP).

1.3 Dissertation Overview

This chapter introduces the reader to the industrial trends leading to the wide-spread adoption

of Make-To-Order manufacturing paradigm and provides motivation for our research with the

objective of developing a Digital Twin framework for manufacturing systems of small-medium

sized firms.

In Chapter 2, we introduce the reader to the Digital Twin concept and develop the frame-

work which is leveraged as the test-bed for the application and evaluation of all the planning and

scheduling formulations considered throughout this dissertation. In Chapter 3, we address the

Multi-Level Capacitated Lot-Sizing Problem (MLCLSP) from the perspective of a Tier-II manu-

facturer in the aerospace supply chain. We present an integrated solution procedure that: generates

a production plan for an extended planning horizon, associates production decisions with specific
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customer sales orders, and creates an executable schedule which can be followed on the shop floor.

The formulations we develop leverage novel modeling techniques, and include important practical

considerations, which to our knowledge, have not been addressed in the literature of MLCLSP.

In Chapter 4, we compare several direct-positional and relative-positional exact-method repre-

sentations of the scheduling problems which MTO manufacturers, such as Artaic, are subject to.

We provide a comprehensive computational analysis to evaluate the quality and computational ef-

ficiency of the presented formulations under various problem settings. In Chapter 5, we extend the

scheduling problem introduced in Chapter 4 to include the considerations of uncertainties derived

from contingent demands and provide a computational analysis of the proposed models. Chapter

6 concludes this dissertation and discusses opportunities for future research.
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CHAPTER 2

A DIGITAL TWIN FRAMEWORK FOR MAKE-TO-ORDER
PRODUCTION FACILITIES

2.1 Introduction

Today’s supply chain and production facilities are becoming increasingly complex and man-

ufacturers need to adapt to ever-increasing customer expectations, rising resource costs and an

unprecedented level of uncertainty [94]. Recent advances in enabling technologies such as cloud

computing and the Internet of Things as well as the maturation of information systems such as

Transport Management Systems (TMS), Customer Relationship Management Systems (CRM), and

Enterprise Resource Planning Systems (ERP) have provided companies the tools to manage these

evolving supply chains [33]. The rapid development of these technologies has inspired a number

of national advanced manufacturing strategies, including: “Industry 4.0” in Germany, “Made in

China 2025” in China, and “Intelligent Manufacturing” in America [13]. The objective of these

synonymous initiatives is to achieve autonomous, self-optimizing, and self-diagnostic capabilities to

alleviate problems in complex manufacturing systems [196].

The concept of Digital Twin for manufacturing systems (DTMS) provides an integrated solution

for companies to achieve these next-gen strategies. Acting as a centralized platform, a DTMS

creates living digital models of their physical counterparts by ingesting real-time data from existing

information systems [124]. These digital models can be applied to develop optimization decision-

making models, using real-time data, to provide transparent, integrated and holistic views of the

system they represent [47, 94]. Furthermore, these models can be applied off-line without disturbing

the actual system to evaluate the impacts of unlikely scenarios, such as the disruptive events

experienced during the SARS-CoV-2 pandemic in 2020 [32].

In a practical DT, the status of physical systems and their digital counterparts must be fre-

quently synchronized, requiring data transparency between various information systems [184]. How-

ever, given the current state of data architectures implemented in industry today, cross-functional

7



coordination and data-sharing across these systems is difficult, and in many cases, only partially

implementable [33]. This shortcoming brings about a significant challenge concerning the availabil-

ity and accessibility of the data required to develop the core functionalities and capabilities which

the DT concept will enable. For example, in their state-of-the-art review of DTMS technologies,

Tao et. al. [171] cite that the literature on production planning and scheduling based on digital

twins is rare, primarily due to the challenges in acquiring the data, real or artificially generated,

necessary to develop the optimization models that would be applied to the manufacturing systems.

This challenge leads to a significant gap between optimization applications related to produc-

tion planning and scheduling in literature and the methods used in practice. Due to the lack of

availability of realistic data researchers must apply abstractions and aggregations to data points in

order to formulate and study applications. However, once these abstractions are applied to enable

the development of optimization models, it is rare for researchers to consider the performance of

resulting models when these abstractions, assumptions and aggregations are removed.

In this dissertation, we aim to address this gap by developing a Digital Twin framework

which extends the typical problem definition of operation research applications to consider the

pre-processing and post-processing steps required to consider the realistic data points which would

be encountered in practice. The optimization applications developed within this framework trans-

late relevant data points such that tractable models can be solved in reasonable computational

time. Additionally, in this framework, the solutions from these models, i.e. production plans, are

stripped of any abstractions and assumptions such that a user of the framework would be able to

evaluate the performance of the optimization models under the context of the real-world system in

which these solutions would be performed.

The objectives of this chapter is four-fold: 1) introduce the Digital Twin concept for manu-

facturing systems and develop a modular framework which will act as the test-bed to enable the

application of the production planning and scheduling optimization models, 2) develop algorithms

capable of generating problem instances of hyper-generalized production facilities, leveraging data

models representative of those used in modern-day ERP-based information systems, 3) develop a

novel scheduling and simulation algorithm capable of translating discrete-time production plans into

continuous-time, executable schedules, and 4) provide an in-depth illustrative example to validate

and showcase the capabilities and comprehensiveness of the proposed DT framework.
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The rest of this chapter is organized as follows. A brief review of the history and application

of Digital Twins in practice and academia is presented in Section 2.2. In Section 2.3, the proposed

Digital Twin framework developed for this dissertation is introduced. In Sections 2.4-2.7, the

various modules which make up the proposed Digital Twin framework are discussed. In Section

2.8, an illustrative example of the Digital Twin framework is presented, and Section 2.9 concludes

the chapter.

2.2 Literature Review

First introduced by Professor Grieves [65] in 2003, the DT concept was defined as: “a set

of virtual information constructs that fully describes a potential or actual physical manufactured

product from the micro atomic level to the macro geometrical level. At its optimum, any information

that could be obtained from inspecting a physical manufactured product can be obtained from its

Digital Twin”. The concept was developed as a means to enable “Intelligent Manufacturing”,

through the improvement of the Product Life Cycle Management (PLM) software. At the time,

data collection of physical products depended on manual user-input and the amount of available

data was lacking, so the mention of “Digital Twin” was rare in research between 2003 and 2010

[13, 99].

However, following advancements in enabling technologies, the DT concept has since been

developed, defined and applied under various contexts and settings. NASA, the first to publish

the term “Digital Twin”, defined DT as: “an ultra-realistic, high scaling simulation, which uses

the best available physical models, sensor data and historical data for mirroring one or more real

systems” [176]. Busse et. al. [33] define the DT of a supply chain as: “a digital simulation model

of a real logistics system, which features a long-term, bidirectional and timely data-link to that

system.” Kunath and Winkler [94] define the DT of a manufacturing system as: “a data-oriented

representation of all elements of the manufacturing equipment system, the material flow system,

the value stream system, the operating materials system and the human resource system in the

information world, which are linked to their physical elements by the information system.”

In recent years, three areas of literature have been widely discussed for the application of Digital

Twins: smart cities, healthcare, and smart manufacturing/supply chain [99]. For the purposes of

this research we consider and adopt the definition of the DT concept as applied to manufacturing
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systems. It should be noted that no single approach has been agreed on for the best practices in

the development of a Digital Twin, and as a result, the proposed capabilities and frameworks for

DTs developed in the literature varies from use-case to use-case. However, most experts agree that

a combination of simulation modeling, optimization and data analytics make up the full range of

technologies required to create a DT [15].

Busse et. al. [33] develop a DT of a multi-modal supply chain for planning and control ap-

plications providing the following capabilities: supply chain visibility, data analytics (including

predictions of future states of the system), and extensive decision support through the application

of process optimization for planning and disruption handling. Shi et. al. [155] consider a DTMS

of a batch production, mixed line assembly of aerospace products. In their framework, the authors

describe a system architecture composed of three platforms: a hardware layer, a software layer,

and an application level. The hardware layer is composed of the equipment and communication

technologies responsible for collecting real-time data. The software layer includes the databases

which store the data and the programs which make up the module functionalities. The application

layer acts as the DT’s user-interface and includes the visualizations representing the virtual repre-

sentation of the manufacturing system. Wang et. al. [185] consider a DT model of a planning and

scheduling system composed of five parts: the physical workshop, the virtual workshop (a digital

mirroring of the physical workshop), the digital twin platform, the data prediction platform and the

production planning system. All of the proposed frameworks rely on the bi-directional real-time

sharing of data among the modules of the DT. Gerlach and Zarnitz [60] study the use of DTs for

Logistics and Supply Chain Management and identify four levels of use: macro-level DTs consider-

ing multiple stakeholders in an inter-connected supply chain, DTs considering multiple stakeholders

in an intra-connected supply chain, site level DTs (i.e. a warehouse, production facility, etc.), and

asset-level DTs (i.e. trucks, forklifts, machines, etc.).

For the purposes of this dissertation, we consider a site-level DT framework. Baruffaldi et.

al. [14] consider a site-level DT of a warehouse facility and exploit optimization and simulation

techniques to quantify the impacts of information availability in decision-making processes. Schluse

and Rossmann [153] consider a site-level DT of a production facility and develop a virtual test-bed

for the application of various experimental simulations and databases. The authors consider their

Digital Twin as the sum of all different simulation models and systems. Zhang et al. [199] also
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consider a production facility DT and apply a proactive job-shop scheduling strategy in small (6

jobs, 6 machines) and large (20 jobs, 40 machines) environments to validate the effectiveness and

scalability of the proposed framework. Zhou et. al. [201] also develop a test-bed for the validation

of a Digital Twin of manufacturing cells. The authors provide applications of the DT in problems

for intelligent process planning, production scheduling, process analysis and dynamic regulation of

the production schedule to demonstrate the feasibility of their DT.

A notable trend in the literature of Digital Twins has been a shift in the focus of the appli-

cation of DTs from being “tech-oriented” into being “decision-oriented” [184]. However, due the

immaturity of the field (with most papers being written since 2018) it is difficult to describe the

evolution of the application of DT solutions in managing supply chains [15]. A common theme

found throughout the proposed DTs considers the modularity of the sub-systems which make up

each framework. Guo et al. [67] consider a site-level DT of a factory. The authors highlight the

benefits of implementing a modular construct to the DT architecture. The idea of a modular ap-

proach is to build reusable and parameterized software packages to reduce modeling times. Each

module operates independently, allowing for drag-and-drop modeling, which also reduces the time

required for modeling systems. This is achieved through parameterization, in which the strategic

definition of each module allows a user to represent unique physical assets by inputting different

user-defined parameters. The encapsulation of these modules into self-contained sub-systems also

ensures that they are reusable, easy to modify, and seamlessly included or excluded in the DT

framework as needed.

The development and application of a DT framework depends on the availability of datasets

which represent the physical assets which are being modelled. In the absence of real-world data,

which is common for researchers who develop models for production planning and scheduling prob-

lems, one of the most valuable sources of test data is that from a random generator [126]. However,

the availability of public datasets and generators are limited in literature. For this reason, the

applications found in literature are restricted to the problem contexts described by these available

datasets or are reliant on the random generation algorithms developed for each specific use case. A

major gap in the literature exists due to these challenges, as the developed algorithms for generating

application specific datasets is often overlooked and not considered
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While “standard reference” datasets are publicly available, see OR-Library [20], and widely

used for certain problems in the literature of production planning and scheduling, i.e. the test

instances developed by Tempelmeier and Derstroff [172] and Stadtler and Surie [165] for the Multi-

Level Capacitated Lot-Sizing Problem (MLCLSP) and Brandimarte [29] for the Flexible Job Shop

Scheduling Problem (FJSSP), datasets and data generators for more general use-cases, like the ones

we consider in this dissertation, are not. For this reason, we must develop algorithms to generate

the datasets which represent the problems our industrial partners face.

Considering the need for developing generators, Hall and Posner [71] discuss several principles

for data generation and some desirable properties of generation schemes when related to machine

scheduling applications. These principles include: 1) to generate data to satisfy the purposes of

the experiment/use-case, 2) to make computational tests comparable, 3) to avoid biases, and 4) to

make the generation scheme reproducible. Desirable properties of data generators include being:

able to generating outputs which create a wide range of problem instances, practically relevance,

describable, easy of use, and reproducible, i.e. through the implementation of pseudo-random

generators.

Our contributions to the literature are as follows. We develop a novel, site-level, Digital Twin

framework for manufacturing systems which will act as the test-bed for the optimization models

developed throughout this dissertation. The Digital Twin framework is developed as a modular

software package, leveraging methodologies inspired by Object-Oriented Programming such that all

of the implementations can be extended, modified and/or replaced with minimal modeling efforts.

This framework is also designed with practicality and configurability in mind, with efforts made

to design the framework to be able to ingest datasets which represent the ones used in traditional

Enterprise Resource Planning (ERP) systems. We also develop a novel algorithm for generating

datasets representative of the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). In this, we

emphasize the importance of defining simple and measurable user-defined parameters that, when

passed as input to the generator, allow for the generation of a wide-range of instances for a variety

of problems, not just the MLCLSP. Further, we develop algorithms for translating production

plan solutions (for those generated test instances) from a discretized/aggregated solution into an

executable schedule which can then be evaluated in the contexts which it would be in the real-world.

This is a consideration which is rarely addressed in the literature of production planning.
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2.3 General Concepts

Our proposed Digital Twin framework can be thought of as a collection of programming mod-

ules. One benefit of a modular design is that it allows the user to plug-in additional modules that

enhance the capabilities of the DT without modifying any other existing modules. Throughout this

dissertation we leverage these modularity characteristics to apply multiple production planning op-

timization and revenue management decision-making models to various manufacturing environment

settings. The proposed DT framework is composed of 5 modules: an Object Definition Module

(ODM), a Scenario Generation Module (SGM), a Production Planning Module (PPM), a Schedul-

ing Simulation Module (SSM), and an Application Programming Interface Module (API). A process

map showing the relationship of each module is shown in Figure 2.1.

User
Defined

Parameters

Object
Definition
Module

Scenario
Generation

Module

Production
Planning
Module

Scheduling
Simulation

Module

Application
Interface
Module

Figure 2.1. Proposed Digital Twin framework: modules and data flow

The Object Definition Module contains the constructs of the entities which are represented

within the DT. Throughout this chapter, we use a typescript font to refer to instances of

the following objects models: Factory, PartClass, ResourceGroupClass, Part, ResourceGroup,

Resource, Process, LineItem, Node, ScheduledReceipt, Shipment, WorkOrder, Task. Each ob-

ject model can be classified as either: 1) a parametric object model, 2) a static object model, or 3)

a dynamic object model.

Parametric object models (Factory, PartClass, ResourceGroupClass) define the structure

of the User-Defined Parameter (UDP) inputs which are required to generate a scenario in the

Scenario Generation Module. The Factory parameter model includes general arguments which

summarize the production environment that will be considered, such as the number of unique

parts and the number of resources in the facility. The PartClass parameter model allows a user

to associate specific traits that are inherent to part classes. Each generated Part will belong to
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exactly one PartClass and will be assigned attributes based on the user-defined parameters within

that PartClass. For example, the attributes associated with a Raw Material are likely to be very

different from an Assembled Part. Similarly, the ResourceGroupClass parameter model allows a

user to distinguish different classes of ResourceGroup objects. These parametric models, and the

arguments which are required for each, are discussed in further detail in Section 2.4.

The collection of all UDP, once binded to the parametric object models, are input to the Scenario

Generation Module. Each generated scenario is represented as a collection of instances of static ob-

ject models (Part, ResourceGroup, Resource, Process, LineItem, Node, ScheduledReceipt). A

Part is a physical entity which can either be produced as the output of one or more processes, pro-

cured from an external source, or delivered to an external customer to satisfy a demand. A Process

describes the characteristics associated with a specific step in the production routing required to

produce a part, including the ResourceGroup required to complete it. Each ResourceGroup is

defined as a group of similar Resource objects capable of performing similar tasks at similar pro-

cessing rates. Each ScheduledReceipt represents the arrival of a quantity of a specific part at a

specific time. This includes initial inventory levels at the beginning of the planning horizon and

items which are procured from external sources. Each LineItem represents an external customer

demand for a quantity of a part at a specific time. In order to be completed, a LineItem requires

the completion of a collection of production requirements. Production requirements, are repre-

sented by Node objects and are characterized as an internal demand for a quantity of a specific

component/part/sub-assembly required to complete the end item which is demanded in a specific

LineItem.

The output of the SGM is input to the Production Planning Module, where a production plan

is generated using optimization and/or heuristic techniques. A production plan is represented as

a collection of instances of dynamically generated object models (Shipment, WorkOrder, Task).

Each Shipment represents an instruction to deliver a quantity of an end item at a specific time

to a customer, satisfying a demand described by a LineItem. Each WorkOrder represents an

instruction to produce a quantity of a specific part at a specific time. Existing work orders which

must be followed in the production plan can also be passed as user-input. Each Task represents

an instruction to execute a process required to complete an associated work order, as defined in

the routing of the part which is being completed in that work order. The output of the PPM is
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input to the Scheduling Simulation Module, where the production plan is scheduled and simulated

using a continuous-time planning horizon, considering additional complexities and nuances, such as

subtle differences in resource capacities, which may not be feasible or practical to consider in the

PPM. The output of the SSM can be used as input to the API Module for analytic functionalities

that evaluate and visualize the performance of the production plan for the generated test instance.

Figure 2.2 depicts the Object Relational Mapping of each of the object models we have defined

in the Object Definition Module.

Node

Line Item

Part

Resource
Group

Resource

Process

Shipment Task
Work
Order

Figure 2.2. Proposed Digital Twin Framework: Object Relational Mapping diagram. Models are
color-coded based on their classification: static (blue), dynamic (green). A directional-connection
between models represents an inherent relationship between an instance of the source and desti-
nation object models, i.e. each Resource corresponds with a ResourceGroup, each Task with a
Process, each Part with one or more Process, etc.

2.4 User Defined Parameters

User-defined parameters allow the user to specify the scope and characteristics of the scenario

to be generated in the SGM. As mentioned, the user provides relevant parameters through the

Factory, PartClass, and ResourceGroupClass parametric object models. Our objective in defin-

ing these models is to consider input fields for which data is typically available in practice or can

be easily estimated. In the following, we discuss these parameter models in detail.

The Factory parameter model contains arguments which summarize the production environ-

ment to be generated. These arguments includes the specification of product structures, manu-

facturing process flows, the complexity of the routings associated with each item and the target
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utilization rate of resource groups. These criteria and respective configurations are shown in Table

2.1.

Criteria Attribute

Product structure General
Assembly

Process Flow Non-cyclical
Cyclical

Route complexity Single-process
Multi-process

90/90/90
70/70/70

Utilization Profile 50/50/50
90/70/50
50/70/90

Table 2.1. User-defined parameters to describe general production facility environment settings

The specification of a product structure restricts the parent-child relationships between parts

in the Bill of Materials. A general product structure allows items to have multiple parent parts,

while an assembly structure restricts the number of parents of any item to 1. See Figure 2.3 for

an illustration of the differences associated with general vs assembly product structures. Note that

these two representations of the example Bill of Materials show the component structures of the

same top-level assemblies. A new naming convention for identifying each part must be adapted

when translating the general product structure (left) into the assembly product structure (right).

In the figure, the letters represent distinct node IDs in the assembly, while the corresponding part

number is given in parenthesis.

Also note the annotation referencing the “BOM Level” of each offset level in the BOM of the

networks. We define the BOM Level of each part in the general product structure BOM as the

maximum distance that part can be from a top-level part (BOM Level = 0). This attribute is

used in the Scenario Generation Module for dictating the parent-child relationships between parts

and for determining which resources are allowed to process each part. This is discussed further in

Section 2.5.

The process flow criteria defines constraints, or lack thereof, in the sequence in which parts

are allowed to visit resource groups in the facility. In a non-cyclical process flow, no part can
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D(6) E(4) F(4)

I(6) J(7) K(6) L(7)

BOM Level = 0

BOM Level = 1

BOM Level = 2

Figure 2.3. Example: General product structure (left) and Assembly product structure (right)
representations of two end items. Numerical values represent part numbers. Alphabetic values
represent node ID. Note that network nodes are duplicated for each part that is found in multiple
assemblies, i.e. Part 6 is represented with Node D, Node I and Node K.

visit the same resource group more than once throughout its transformation from raw material

to finished good. In a cyclical flow, no such restriction is enforced. Route complexity allows

the user to represent items as the output of a series of processes or as the output of a single

process. Utilization profiles define the approximate utilization rate to be realized by resources in

the generated scenario. This allows the user the ability define bottlenecks in specific phases of the

value chain, i.e. upstream/midstream/downstream processes. For example, a utilization profile of

50/90/70, would represent a factory with a bottleneck associated with the mid-stream processes as

well as a higher expected utilization for downstream processes than upstream processes.

A summary of the remaining Factory parameters which dictate the scale and context of any

test instance is given in Table 2.2.

Parameter Notation Description

numI |I| Number of unique items
numJ |J | Number of unique resource groups
numLI |O| Number of external line items
numSR |A| Number of scheduled receipts

maxT T Length of the planning horizon (in weeks)

maxRperRG E Max number of resources per resource group

maxLIQty Q Max quantity demanded in any line item

maxLev λ Max depth of any part’s BOM, i.e. number of offset levels
maxUPP n Max units-per-parent of any parent-child relationship

Table 2.2. User-defined parameters, notation, and definitions - Factory parameter model
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Each PartClass is defined by a unique part class name and a series of user-defined inputs

which set the bounds for the distributions of the attributes which each generated part of that

class can inherit. For the purpose of this dissertation, we consider 4 unique part classes: raw

materials, machined parts, assembled parts, and finished goods. It should be noted that the values

associated with these parameters are also constrained by the user-specified Factory parameters.

For example, the maximum BOM level of a part class cannot be greater than maxLev, as specified

in the Factory parameter model. As another example, when the Factory parameter for routeComp

is set to Single-process, the value for maxRS cannot be greater than 1. The arguments associated

with each PartClass are summarized in Table 2.3.

Parameter Notation Description

className c Name of this part class
classDensity dc Probability that any part belongs to this class

(minChild, maxChild] (Kc+, Kc−] Min/Max number of children for items in class c

(minParent, maxParent] (Kc−, Kc−] Min/Max number of parents for parts in class c
(minRS, maxRS] (sc,sc] Min/Max number of route-steps for parts in class c

(minLevel, maxLevel] (λc, λc] Min/Max BOM level for parts in class c

Table 2.3. User-defined parameters, notation, and definitions - PartClass parameter model

The ResourceGroupClass parametric model (see Table 2.4) sets the distributions of the at-

tributes which each generated resource group, of that class, can inherit. Note that the rela-

tionship between an instance of a ResourceGroupClass parametric model and an instance of a

ResourceGroup static model is that a ResourceGroup is a randomly generated instance that has

its attributes generated based on the user-defined parameters described in a ResourceGroupClass.

Further, each ResourceGroup is described by exactly one ResourceGroupClass, but multiple re-

source groups can belong to each ResourceGroupClass. Some examples of resource group classes

include: a CNC-based class, a drilling class, an inspection class etc. Continuing with this example,

a production facility could have multiple resource groups that carry out drilling operations, but

at different stages of the value chain with unique processing characteristics. In this case, each

randomly generated instance of a drilling resource group would have its attributes sampled from

distributions that are bounded by the parameters described in the drilling ResourceGroupClass.
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Each ResourceGroupClass parametric model includes the specification of minLevel and maxLevel,

restricting which parts that resource group class can process (on the basis of each part’s BOM level).

Consider a downstream, packaging resource group; these resources would likely be associated with

the processes of a finished good prior to shipping out to satisfy an external demand. The parameter,

timeline, specifies the magnitude of the typical cycle time allowed to complete any production

cycle (considering setup time and processing time) on a resource within the resource group of that

class. This parameter allows the user to specify the typical cycle time of the operations which are

processed by a class of resources (its use-case is discussed in detail in Section 3.3.1). probSetup

is the probability that any process on a resource group of that class will require a setup activity.

minS and maxS are the minimum/maximum proportion of time spent for a setup activity of any

process on a resource in that class, relative to the value of the timeline input.

Parameter Notation Description
className c Name of resource group class

classDensity dc Probability that any part belongs to this class

[minLevel, maxLevel] [λc, λc] Min/Max process-able BOM level for resource group in class
timeline T c Timeline associated with this resource group
probSetup P (Sc > 0) Prob. that a process will require a setup

(minS, maxS ] (Sc, Sc] Min/Max setup time of any process (proportion of timeline)

Table 2.4. User-defined parameters, notation, and definitions - ResourceGroupClass object model

2.5 Scenario Generation Module

In this section, we describe the algorithms and logic developed for the Scenario Generation

Module (SGM) of the proposed Digital Twin framework. The objective of this module is to create

realistic problem scenarios based on the user-defined inputs for the parameter models described in

Section 2.4.

We first provide a high-level overview of the SGM developed for this dissertation. In the

following subsections, we describe in detail the attributes of each static object model and the

algorithms developed to generate them. For the purpose of exposition, we provide the overview

so that the following subsections can act as supplemental content which is not critical to the

understanding of this dissertation.
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2.5.1 Overview

The SGM takes the user-defined parameters presented in Tables 2.2-2.4 as input. As discussed

in Section 2.3, the primary output of the SGM is a collection of Part, ResourceGroup, Resource,

Process, LineItem, Node, and ScheduledReceipt objects which accurately represent the processes

and current situation of a realistic factory setting.

The procedure of generating a problem instance begins with the initialization of all Part objects.

Each part is assigned to belong to exactly one part class and inherits attributes based on the user-

defined parameters of that class. Following this, parent-child relationships are randomly created

between parts. This results in a comprehensive Bill of Materials (BOM), for each of items the

production facility is capable of producing. This BOM is represented in the general product

structure (see Figure 2.3).

External demands are then generated, in the form of LineItem objects. The external demands,

also referred to as sales orders, are analyzed to derive all internal part demands required to satisfy

them. At this point, all Part objects are updated with relevant attributes, given their overall

production requirements. Finally, an assembly product structure representation of the Bill of

Materials is created, through the generation of Node objects. The representation of the BOM in an

assembly product structure is relevant for the Order-Lot Matching Problem (OLMP), presented in

Chapter 3, in which production lots are associated with the sales order they satisfy.

The next phase in the SGM concerns the generation of factory resources and the Bill of Op-

erations (BOO). First, all ResourceGroup objects are initialized. Each resource group is assigned

to belong to exactly on resource group class and inherits attributes based on the user-defined pa-

rameters of that class. Resource objects are then generated, each belonging to a specific resource

group.

Following the creation of all resource groups and resources, a production routing is generated

for each part, defining the sequence of resource groups it must visit. A Process object is initialized

for each step in the routing of each part. Once all Process objects have been initialized, they are

assigned relevant attributes considering the internal demands of the parts and resource groups as-

sociated with each process. A description of the notation used for the sets, subsets, and parameters

associated with the outputs of the SGM can be found in Table 2.5.
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In the following, we discuss this procedure in detail and provide the algorithms and equations

implemented to generate factory scenarios that are consistent with practice and possess the desired

characteristics, as specified in the user-defined parameters. Note, for instance, that ensuring the

factory with complex BOMs and BOOs is loaded with a demand backlog (line items) that will lead

to the desired resource utilization is very challenging.

2.5.2 Generating Parts and the Bill of Materials

The first stage in the Scenario Generation Model initializes all Part objects. We have a user-

defined number of part objects, |I|, which must be generated. In an iterative process, parts are

initialized, until |I| part objects have been created. Each part is generated with a unique identifier,

i, and will be randomly assigned to belong to one of the user-defined part classes, c, with probability

dc. Several attributes are then generated for the part on the basis of the part class which it belongs

to. These attributes include: the number of children, |Ki+|, the number of parents |Ki−|, the BOM

level, λi, and the number of processes required to produce the part, si.

Once all parts have been initialized, the Bill of Materials is created, represented as a collection

of parent-child relationships between parts. The objective during the generation of the BOM is to

create parent-child relationships for each part such that the resulting “network” adheres closely to

the generated attributes of each part, specifically in the number of parents and children each part

has.

This BOM network, G, is represented as a directed acyclic graph, where each part is represented

as a node in the network and each parent-child relationship as a directed edge from the child node

to parent node. The BOM network is generated in two steps. First, the network is initialized, then

it is corrected through the implementation of several patches.

During the initialization step, in an iterative process, each part, i, is randomly assigned |Ki+|

children parts. To ensure an acyclic BOM structure, a part, k, is only allowed to be a child to

part i if the BOM level of part k is greater than part i: λk > λi, i.e. a raw material, i, with BOM

level λi = 4 can not be a parent of an assembly part, k, with BOM level λk = 1. For each selected

child, a Units-Per-Parent (UPP) attribute, nik, is generated to describe the quantity of child part

required to produce one unit of parent part.
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Sets Description
i ∈ I Set of all Part objects
j ∈ J Set of ResourceGroup objects
o ∈ O Set of all LineItem objects
γ ∈ Γ Set of all Process objects
e ∈ E Set of all Resource objects
f ∈ F Set of all Node objects

Subsets Description
k ∈ K Set of Part with children
k ∈ Ki+ Set of children parts for Part i
k ∈ Ki− Set of parent parts for Part i
i ∈ Ij Set of Part processed by ResourceGroup j
j ∈ J i Set of ResourceGroup visited in the route of Part i
o ∈ Oi Set of LineItem that demand Part i
γ ∈ Γj Set of Process processed by ResourceGroup j
γ ∈ Γi Set of Process in routing of Part i
e ∈ Ej Set of Resource that belong to ResourceGroup j
f ∈ F i Set of Node that represent Part i
f ∈ F o Set of Node required to be fulfilled to fulfill LineItem o

Mapping Description
i← Io Part demanded in LineItem o

i← If Part that is represented by Node f
i← Iγ Part that is processed in Process γ
j ← Jγ ResourceGroup responsible for Process γ

o← Of LineItem which Node f is a production requirement for
Parameters Description

hi Per-unit per-period holding cost of Part i
Hi Per-unit cost of under-production of Part i (relative to Ni)
Li Lead-time of Part i
Ni Total production requirement of Part i
Vi Approximated value of Part i
nik Units-per-parent of Part i in Part k
Qo Quantity demanded in LineItem o
Do Due date of LineItem o
Po Per-unit per-period penalty for tardiness of LineItem o
Po Per-unit penalty for under-fulfillment LineItem o
εo Per-unit per-period reward fro earliness of LineItem o
T j Maximum batch cycle time for any Process on ResourceGroup j
Rγ Per-unit process rate of Process γ
Sγ Per-batch setup time of Process γ
Mγ Maximum quantity batch size of Process γ
sγ Step in the routing of Process γ
lγ Lead time offset between start of production of part until it reaches Process γ

(i is trivial in γ)

Table 2.5. Sets, subsets, index-mappings and parameters generated as outputs of the Scenario
Generation Module

Note that during the BOM initialization, there is no consideration for the objective of creating

a BOM with the correct number of parents for each part, |Ki−|. For example, there is no control to
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ensure that each part has a parent, potentially resulting in isolated sub-networks within the compre-

hensive BOM, G. Further, no restriction is enforced that limits the number of parents any part can

have, which may result in a BOM network that is over-reliant on a single part or assembly. These

concerns are addressed by iterating through all parts in the BOM network and adding/removing

parent-child relationships accordingly. An overview of the Part object initialization and BOM

generation process is shown in Algorithm 1.
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Algorithm 1: Procedure for generating parts and the Bill of Materials

Input: |I| - The number of Part objects to be generated
Input: UDP - User-Defined Parameters

# Initialize all Part objects

1 Initialize set of all parts, I = ∅
2 for i ∈ |I| do
3 Initialize a part object, i← Part

4 Randomly assign part i to a part class, c, with probability dc
5 Set target number of children parts, |Ki+| ← U

[
Kc+,Kc+

]
6 Set target number of parent parts, |Ki−| ← U

[
Kc−,Kc−

]
7 Set BOM level of part, λi ← U

[
λc, λc

]
8 Set number of route steps required for part, si ← U

[
sc, sc

]
9 Add new part to set of all parts, I ] i

# Initialize all parent-child relationships

10 Initialize parameter nik = 0 for all i ∈ I, k ∈ I : i 6= k
11 for i ∈ I do
12 Let K be the set of eligible children parts for i, K ⊂ I : λi < λk
13 Let Ki+ be a random selection of |Ki+| eligible children parts from K

14 for k ∈ Ki+ do
15 Set UPP relationship, nik ← U

[
1, n
]

16 Let G be a directed acyclic graph describing all parent-child relationships

# Implement BOM patches

17 for i ∈ I do

18 if this part doesn’t have enough parents, deg−(i) < |Ki−| then
# priority to eligible parts with least children, asc

(
deg+(i)

)
19 Add |Ki−| − deg−(i) parents

20 if this part has too many parents, deg−(i) > |Ki−| then
# priority to this parts parents with most children, desc

(
deg+(i)

)
21 Remove deg−(i)− |Ki−| parents

Output: I - Set of all parts
Output: K - Set of all parts that have children, K ⊂ I
Output: Ki+ - Set of all children parts for each part i
Output: Ki− - Set of all parent parts for each part i
Output: λi - BOM level of each part i
Output: si - Number of route-steps to produce each part i
Output: nik - Units-Per-Parents of part i required to produce part k

We assume that the relative value of each part is based on the costs of materials, labor and

processing required to produce it. We propose the following equations for estimating the value of
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each part. The resulting parameters, Vi, are later used as the basis for the calculation of additional

part attributes, i.e. per-period holding cost, sales price, etc. The approximated value of any part,

k is found as:

Vk =
∑
i∈Gk

∑
p∈P (Gki )

∏
(a,b)∈p

nab

where:

Gk is a subgraph of G (with root node, k)

i ∈ Gk is the set of all nodes in the subgraph Gk

p ∈ P (Gki ) is the set of all simple paths from a source node, i, to the root node, k
(a, b) ∈ p is the set of all child-parent relationships found in path p
nab is the Units-Per-Parent of part a required to produce part b

Note that the Units-per-Assembly (UPA) relating any upstream component, i, and downstream

assembly, k, can be found using a similar equation:

nik =
∑

p∈P (Gki )

∏
a,b∈p

nab

This parameter, nik, can be used to derive the total production requirements of each part, i,

throughout the duration of the planning horizon to satisfy all external demands.

2.5.3 Generating External and Internal Demands

Following the creation of the Bill of Materials, external demands are generated, in the form

of LineItem objects. We have a user-defined number of customer demands, |O|, which need to

be generated. Each line item, o, specifies an external demand for a quantity, Qo, of specific part,

i ← Io, with due date, Do. In an iterative process, these |O| line items are created with values

generated for the quantity, Qo = U[1, Q], of the end item demanded and a requested due date,

Do = U[1, T ], where Q and T are user-defined parameters from the Factory parameter model. The

internal demand, Ni, for each item, i ∈ I, throughout the duration of the planning horizon can

then be calculated as:

Ni =
∑
o∈O

Qo ni,Io

where O is the set of all external demands and Io is the part requested in order o.
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Algorithm 2: Procedure for generating external demands and populating part attributes

Input: G : Bill of Materials network, composition of all finished good BOMs
Input: |O| : The number of line items to generate
Input: nik : Units-Per-Parent relationship of child part i and parent part k
Input: h,H,P ,P , ε : User-defined parameters for determining objective function coefficients

# Calculate approximate value of each part

1 for each part, i, in the BOM network, i ∈ G do

2 Let Gi be a subgraph of G, with root node, i, and all ancestors of k, Ki−

3 Let Vi = 0

4 for each part, k, in the BOM of i, k ∈ Gi do

5 Let nik ←
∑

p∈P (Gi
k)

∏
a,b∈p

nab

6 Vi ← Vi + nik

# Populate attributes of i using Vi
7 Let hi ← Vi h be the per-unit per-period holding cost of i
8 Let Hi ← Vi H be the per-unit cost for underproduction of i

# Generate LineItem objects

9 for o ∈ |O| do
10 Initialize a LineItem object, o
11 Let Io ← i be a randomly selected Part of class finishedGood

12 Let Qo be the quantity demanded, Qo ← U
[
1, Q

]
13 Let Do be the due date, Do ← U

[
0, T

]
14 Let Po be the per-unit per-period penalty for tardiness, Po ← Vi P : i← Io

15 Let εo be the per-unit per-period reward for earliness, εo ← Vi ε : i← Io

16 Let P o be the per-unit penalty for under-delivery, P o ← Vi P : i← Io

# Calculate total demand profile of each part during planning horizon

17 for i ∈ I do

18 Let Ni =
∑
o∈O

Qo ni Io be total demand of part i across all orders

Output: Hi : Per-unit penalty for under production (relative to requirements) of each part i
Output: Ni : Production requirements of each part i to satisfy all internal and external demands
Output: Vi : Value coefficient for each part i
Output: hi : Per-unit per-period holding cost for each part i
Output: O : The set of all external demand line items
Output: Io : Mapping of the part i requested in line item o
Output: Do : Requested due date of each line item o
Output: Qo : Quantity of end item requested for each line item o
Output: Po : Per-period penalty for tardiness of shipped units satisfying line item o
Output: εo : Per-period reward for earliness of shipped units satisfying line item o
Output: P o : Per-unit penalty for unfulfillment of requrested units satisfying line item o
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As mentioned, any general product structure network can be represented as an assembly product

structure network. We leverage this translation to derive mechanisms which provide visibility and

transparency to the resulting production plan and execution schedule. As a reminder, an assembly

representation of a product structure restricts the number of parents that any node in the BOM

network can have to be no more than 1. In cases where a part in the general product structure

BOM network, G, has more than 1 parent, the node must be duplicated for as many parents

it has. During this translation, each duplicated node must be renamed such that it has with a

unique identifier. We refer the reader to Appendix C for a description of the algorithm and naming

conventions implemented for this procedure.

Following the generation of all external demands, o ∈ O, an assembly product structure network

(ASPN) is created for each LineItem. This sub-network, Go ⊆ G is defined as the subset of parts

from G which are required to produce the end item associated with order o. The sub-network,

Go, is transformed from a general structure into an ASPN, Y o, and new node identifiers, f , are

systematically generated for each of the nodes of the new network. Note that node identifiers

associated with unique line items must be unique, even if the end item demanded in the line item is

the same. The collection of all node identifiers across all orders, is f ∈ F . Similarly, the composition

of all ASPN sub-networks is Y .

A Node object is created for each node in the network Y and is populated with attributes that

provide mappings back its representative part in the general product network, G. These attributes

include: 1) the part, i, which node f represents, i ← If , 2) the line item, o, which node f is

a production requirement for, o ← Of . Each Node also inherits all relevant attributes from its

representative part i and order o, i.e. holding cost, hf , units-per-parent between nodes f and k,

nfk, etc. Additional subsets mappings are created to related each node to its original part and

order. For example, f ∈ F i represents the set of all nodes which represent part i, and f ∈ F o is

the set of all nodes that are required to produce order o. The benefits of the transparency gained

in this transformation will be explored throughout this dissertation.

2.5.4 Generating Resources and Production Routings

The Bill of Operations (BOO) describes all of the data associated with the processes and

resources required to produce all of the parts described in the Bill of Materials. This includes the
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description of all Resource, ResourceGroup and Process objects. In the following, we present the

procedure for generating these objects.

The first phase in generating the Bill of Operations is initializing a user-defined number of

resource groups, |J |. Each ResourceGroup object has a unique identifier, j, and belongs to exactly

one ResourceGroupClass. The set of all resource groups is J . Each resource group is comprised of

one or more resources. The number of resources which make up each resource group is generated

as |Ej | = U[ 1, E ]. A total of |Ej | Resource objects are initialized for each resource group, j. Each

resource, e, belongs to exactly one resource group. The set of all resources belonging to resource

group j is e ∈ Ej , and the set of all resources is e ∈ E.

The user-defined parameters within a ResourceGroupClass dictate the parts which each re-

source/resource group is capable of processing. Specifically, this is controlled by the parameters, λj

and λj , representing the minimum and maximum BOM levels of any part that can be processed by

the resources in the resource group, j. This allows the user to define cases such as: 1) a packaging

resource group restricted to processing only finished goods, i.e. parts that have a BOM level λi < 1,

2) a receiving & inspection resource group restricted to processing only raw materials, i.e. parts

that have a BOM level λi = λ.

The specification of [λj , λj ] also dictates the processing phase which a resource group belongs

to. This classification establishes a mapping of each resource group, to a specific target utilization

rate as specified in the user-defined utilization profile, U . Specifically, the processing phase, uj

associated with a resource group, j, is found as:

uj = |U | −

⌈
|U |
λ

(
λj + λj

)
2

⌉

where λ is a user-specified parameter describing the maximum BOM level of any part, and |U | is

the number of processing phases described in the user-defined parameter for the utilization profile,

U . Consider an example where λj = 0, λj = 2, λ = 5, and U = [50, 70, 90] such that |U | = 3. Then:

uj = 3−
⌈3

5

0 + 2

2

⌉
= 3−

⌈3

5

⌉
= 3− 1 = 2

The target utilization, Uj , of resource group j is the uj-th element in U (0-indexed), in this case

Uj = 90. If instead, λj = 3, λj = 5; uj = 3−
⌈3

5

3 + 5

2

⌉
= 3−

⌈12

5

⌉
= 3− 3 = 0→ Uj = 50.
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Each resource group also inherits additional attributes, on the basis of the resource group class

it belongs to, which dictate the generation of attributes associated with the processes it will be

assigned to be responsible for. The full procedure for generating ResourceGroup and Resource

objects is shown in Algorithm 3.

Algorithm 3: Procedure for the generation of resource groups and resources

Input: |J | : User-defined number of resource groups to be generated
Input: U : User-defined utilization profile
Input: λ : User-defined maximum BOM network depth (offset levels)
Input: E : User-defined maximum number of resources for any resource group

1 Initialize set of all resource groups, J = ∅ and resources E = ∅
2 for j ∈ |J | do
3 Initialize a resource group object, j ← ResourceGroup

4 Assign j to a resource group class, c← randomChoice(ResourceGroupClass)

# Inherit attributes from ResourceGroupClass

5 Let P (S)j ← P (S)c be the probability that any process on this resource group will
require a setup

6 Let T j ← T c be the maximum cycle time of any process on resource group j

7 Let Sj ← Sc and Sj ← Sc be the min/max proportion of T j spent for setup activities

of any process on resource group j

8 Let λj ← λc and λj ← λc be the min/max BOM levels of parts j can process

# Associate j with a processing phase and target utilization

9 Let uj = |U | −

⌈
|U |
λ

(
λj + λj

)
2

⌉
be the processing phase of j

10 Let Uj be the uthj element in U , and be the target utilization rate of j

# Initialize Resource objects

11 Let |Ej | ← U
[
1, E

]
be the number of resources belonging to resource group j

12 for e ∈ |Ej | do
13 Initialize a Resource object that belongs to j
14 Add new Resource to set of all resource groups, E ] e
15 Add new ResourceGroup to set of all resource groups, J ] j

Output: E : The set of all resources
Output: J : The set of all resource groups
Output: T j : The timeline associated with each resource group, j
Output: Uj : Target utilization rate of each resource group, j
Output: λc, λc : Min/Max process-able BOM level for each resource group, j
Output: P (S)j : Prob. of setup being required for any process on each resource group, j
Output: Sj , Sj : Min/Max possible setup time of any process for each resource group, j
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Following the generation of resources and resource groups, production routings are created for

each part. A part’s production routing is defined as the series of processes required to transform

that part’s children, Ki+, into the part, i. Each route is composed of one or more route-steps

and each route-step is described by a Process object. Each process can only be completed by one

resource group. In the following, we propose our methodology for generating routes and initializing

Process objects.

The production routing of a part is defined as an ordered-list of the resource groups which will

process it. The first step in defining the route is to identify which resource groups are capable

of processing it. The subset of resource groups capable of processing a part, i, is dependent on

the BOM level of the part, λi, and minimum/maximum process-able BOM levels of each resource

group: [λj , λj ]. The subset of resource groups, J i+, capable of processing the part i, is defined as:

J i+ ⊆ J : λj ≤ λi ≤ λj

Following the identification of the capable resources, j ∈ J i+, a routing is defined by randomly

selecting si resources from J i+. If cyclical routings are allowed, the selection of resources from J i+

is made with replacement. As a reminder, si is the number of route-steps required to produce

part i. Let J i be the set of randomly chosen resource groups from the eligible resource groups,

where J i ⊆ J i+. Once the collection, J i, has been selected as the routing of part, i, a Process

object, with identifier γ, is initialized for each route-step. The set of all processes is γ ∈ Γ, and

the set of all processes in the routing of part i is γ ∈ Γi. Additionally, the part associated with

any process, γ, is i ← Iγ , and the resource group responsible for processing it is, j ← Jγ . The

procedure for generating part routings and initializing process objects is summarized in Algorithm

4.

2.5.5 Generating Processes and the Bill of Operations

Once all Process objects are initialized for all parts, their attributes (i.e. processing rates

and maximum batch sizes) are populated simultaneously. The objective in populating Process

attributes is to balance the expected workload of each resource group (required to complete all of
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Algorithm 4: Procedure for generating production routings and initializing process ob-
jects

Input: I : The set of all parts
Input: J : The set of all resource groups

1 Initialize set of all processes, Γ = ∅
2 Initialize set of processes belonging to j, Γj = ∅

# Create the routing for each part

3 for i ∈ I do
4 Let λi be the BOM level of this part, i
5 Let si be the number of steps needed to produce this part

6 Let J i+ ⊆ J : λj ≤ λi ≤ λj be the subset of resource groups capable of processing i

7 Let J i be a random subset of si resources from J i+ (WITH replacement)

# For each step in the routing, initialize a Process object

8 for j ∈ J i do
9 Initialize a Process object, γ

10 Let sγ be the step in the routing of this Part that this process is
11 Let Iγ ← i be the Part being processed by γ
12 Let Jγ ← j be the ResourceGroup responsible for processing γ
13 Add new process to set of all processes, Γ ] γ
14 Add new process to set of all processes, Γj ] γ

Output: Γ : The set of all processes, γ ∈ Γ
Output: Iγ : Mapping of the part i associated with process γ
Output: Jγ : Mapping of the resource group j associated with process γ
Output: J i : The subset of resource groups which are required to produce part i
Output: Γj : The set of processes which resource group j is capable of
Output: sγ : The step number in the routing of the part Iγ , which each process, γ is

the production requirements of each part it is responsible for processing) with the target utilization

rates of each resource group, Uj .

Our logic in generating these attributes assumes three characteristics relating a process, a,

which has a larger production requirement (i.e. Ni = 1000 units over the course of the planning

horizon), to another process, b, which has a lower production requirement (i,e. Ni = 100 units over

the course of the planning horizon). The following assumptions are considered:

• Process a is likely to have a per-unit processing rate lower than process b

• Process a is likely to consume more resource capacity than process b
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• Process a is likely to have a maximum allowable batch size larger than process b

We acknowledge that this relationship between the total demand requirements of a process are

not likely linearly correlated with total demand of a process‘ output and that many exceptions exist

to the assumptions stated above. We also acknowledge that these attributes are highly dependent

on the types of processes, resource groups and parts which are produced. However, for the purpose

of this research, we must define an approximate transformation which will provide a relatively

accurate reflection on the relationship between processing rates, maximum batch sizes and total

production requirements. We propose the procedure, shown in Algorithm 5, to populate attributes

for setup times, processing rates, maximum batch sizes, etc.:

32



Algorithm 5: Procedure for generating processing rates, setup times and maximum batch
sizes with objective of balancing workload with target utilization

Input: I : The set of all parts
Input: J : The set of all resource groups
Input: Γ : The set of all processes
Input: T : The length of the planning horizon, in hours

# For each resource group

1 for j ∈ J do

# Get target usage and subset of processes j is responsible for

2 Let Cj = |Ej | ∗ Uj ∗ T be the target capacity of j

3 Let Γj ⊆ Γ be the subset of all processes which are processed by j

# Get weightings for each process on this resource group

4 for γ ∈ Γj do
5 Let Nγ = Ni be the total output requirement of process γ

6 Let f(Nγ) be a transformation function of Nγ , i.e. log(Nγ) or
√
Nγ

7 Let WΓj =
∑
γ∈Γj

f(Nγ) be the sum of the transformed requirements of γ ∈ Γj

# Get the proportion of time dedicated for each process on this resource

group, then set Process attributes accordingly

8 for γ ∈ Γj do

9 Let Pγ = f(Nγ)/WΓj be proportion of transformed requirements of γ over Γj

10 Let Cγ = CjPγ be the dedicated capacity of resource group, j for process, γ

11 Let S∗γ = Bernoulli(P (S)j)× U[Sj , Sj ] be the proportion of per-unit setup rate vs

processing rate (assuming a max batch run)
12 Let R∗γ = 1− S∗γ be the proportion of per-unit processing vs setup rate

13 Let Rγ = Cγ R
∗
γ be the dedicated processing time for this process γ

14 Let Rγ = Rγ/Nγ be the per-unit processing rate of process γ

15 Let Sγ = T j S∗γ be the setup time associated with each batch of process γ

16 Let Mγ = (T j − Sγ)/Rγ be the maximum batch size of process γ

Output: Sγ : The setup time of each process, γ
Output: Rγ : The per-unit processing rate of each process, γ
Output: Mγ : The maximum allowable lot size per-period of each process, γ
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Following the generation and population of all Process attributes, the attributes of each Part

object can be populated with relevant lead time data. The lead time of part i is Li, and is

estimated to be the sum of the maximum cycle times associated with each process in its routing.

This calculation is found as:

Li =
∑
γ∈Γi

(MγRγ) + Sγ

Further, we define the expected lead time offset of when a part will reach process γ once it has

begun processing at its first route-step as lγ . This value is calculated as:

lγ =
∑
a∈Γi:
sa<sγ

(MaRa) + Sa

where sγ is the step number in the routing of i. Note that the lead-time offset of the first route-step

is lγ = 0. Further, the lead-time offset of the last route-step will be Li minus the cycle time of the

last route-step. Note that both of these lead time parameters (Li, lγ) assume that the batch of size

of a process is always Mγ . This results in an over-estimation of the lead times and acts as a buffer

within the Production Planning Module and Scheduling Simulation Module.

To summarize, in this section we have described the algorithms and procedures developed to

generate a test instance of a generalized production facility with general product structures, and

multi-step, cyclical routings. The outputs of the SGM are shown in Table 2.5.

2.6 Production Planning Module

The purpose of the Production Planning Module (PPM) is to facilitate the application of

traditional production planning, scheduling, revenue management models and/or heuristics to the

test instances generated in the SGM. Due to the plug-and-play capability of the proposed Digital

Twin framework, the method/model used in the PPM is extremely flexible. Within the Digital

Twin framework, a PPM application can be an optimization model, meta-heuristic (i.e. simulated

annealing, genetic algorithm, ant colony optimization, etc) or a priority- or dispatching-heuristic.

Throughout this dissertation, we develop and evaluate optimization models which plug-into the

PPM for various decision-making problems.
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Due to the complexity of real-world problems, researchers and practitioners are limited in the

amount of detail which can be considered in optimization models. For example, it is not realistic to

consider a continuous-time planning horizon in a long-term production planning problem. Instead,

a discrete-time horizon with time increments at a daily/weekly/etc. aggregation would need to

be applied. The solutions derived in an aggregated context such as this are rarely evaluated in

the unaggregated context which they consider. However, in practice, the true effectiveness of an

application must be considered in that unaggregated context. This disparity represents a major

gap in the literature.

The input of the PPM includes all of the generated objects and associated attributes from

the Scenario Generation Module (see Table 2.5). The output of the PPM, which acts as input to

the SSM, includes a collection of dynamically generated Shipment objects and WorkOrder objects,

w ∈ W , and Task objects, x ∈ X, which satisfy production requirements from the generated

factory instance. Note that both shipments and work orders belong to the set of orders, W ; they

are considered similarly in the Scheduling Simulation Module.

Each shipment, w, calls for the delivery of a quantity of a part, i, which satisfies a requirement

of a customer line item, o, during time period t. Each work order, w, calls for the production of

a quantity of a specific part, i, to begin production during a specific time period, t. The time, t,

associated with each generated shipment and work order in the PPM is referred to as the planned

start time. The generation of a WorkOrder object, w, will also trigger the generation a collection

of Task objects, x ∈ Xw, which must be completed in order to produce the part specified in that

work order. These tasks are generated based on the Process objects defined in the routing of the

part associated with the work order. Each Task object represents an instruction for executing an

operation as described in the appropriate Process object.

2.6.1 A MRP-based Production Planning Heuristic

In the following, we present an MRP-based heuristic to illustrate an implementation the pro-

posed Digital Twin framework (See Section 2.8). The proposed MRP-based heuristic (Algorithm

6) is capable of generating a production plan for a multi-level, multi-product, lot-sizing production

environment. The heuristic does not consider capacity constraints, similar to traditional Material

Requirement Planning (MRP) methods. The objective of the heuristic is to generate one produc-
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tion WorkOrder for each production requirement, f ∈ F , and one Shipment for each customer

order, o ∈ O.

In this heuristic, the planned start time of each production WorkOrder is found as the minimum

of: 1) the cumulative lead time of the associated production requirement, CLTf , and 2) the latest

possible starting time of the production requirement without resulting in the late delivery of the

order, o. The planned start time of each Shipment is the minimum of: 1) the due date of the order,

Do, and 2) the cumulative lead time of the finished good deliverable, CLTk : k ← F o. The heuristic

is presented in Algorithm 6.

2.7 Scheduling Simulation Module

The purpose of the Scheduling Simulation Module (SSM) is to transform the aggregated,

discrete-time, lot-size based production plan from the PPM into a continuous-time, assignment-

based schedule with enough detail to be executed on a shop floor. To accomplish this, we develop

the algorithm: Continuous-Time Scheduling Heuristic (CTSH). The proposed CTSH is a myopic,

forward-constructed scheduling heuristic that iteratively schedules all of the Shipment, WorkOrder

and Task objects generated in the PPM.

Throughout the progression of the CTSH, each WorkOrder and Task object is assigned to be

completed by a specific resource and/or sent out for delivery to fulfill a specific external demand.

The start and end time of each production task and the inventory levels of each part is tracked in

continuous-time. The results of the simulated events are then able to be analyzed and visualized

(see Section 2.8).

The primary challenge in translating a discrete-time production plan into a continuous-time

schedule concerns the relaxation of assumptions made to formulate a tractable production planning

model. Several examples of these assumptions include: the discretization of time, the aggregation of

resources into resource groups, simplified representations of complex setups, etc. In an executable

schedule, resource capacity can no longer be aggregated across a resource group. Instead, each task

must be assigned to begin processing at a specific time on a specific resource within the required

resource group. Relaxing this assumption introduces additional assignment constraints, i.e. each

resource is only capable of processing one task at a time. When considering resource assignment,

maximum batch sizes must also be considered. The production plan solution generates work orders
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Algorithm 6: MRP Benchmark Algorithm

Input: I : The set of all parts
Input: O : The set of all line items
Input: F : The set of all nodes (production requirements)
Input: CLTf : The cumulative lead time of each node, f
Input: Do : The requested due date of each line item, o
Input: Li : The lead time of each part, i

1 for each node in the production requirements, f ∈ F do

2 Let o← Of be the line item associated with node f
3 Let k ← F o be the end item node associated with line item o

4 Let TTCf = CLTk − CLTf be the ”time to completion” of the finished good, k, once
node f has been produced

5 Let MSBf = Do − TTCf − Li be the ”must start by” time of production of node f in
order NOT to delay the delivery of order o past its due date

6 if MSBf ≥ CLTf then
7 Let t1 ←MSBf be the start time of production of node f
8 else
9 Let t1 ← CLTf be the start time of production of node f

10 Generate a WorkOrder, w, for a quantity of Nf of part i to begin at time t1
11 Generate a Task, x, for each route-step in the WorkOrder, w

12 if f = k (this node IS the deliverable) then
13 Let t2 = t1 + Li be the expected completion time of node f
14 Generate a Shipment, w, for qty Nf of part i to satisfy order o at time t2

Output: W : The set of all dynamically generated Shipment and WorkOrder objects
Output: X : The set of all dynamically generated Task objects
Output: TTCf : The time to completion of the associated end item for each node, f
Output: MSBf : The must start by time of each node, f , to avoid a tardy delivery of the

associated line item o

at the production lot level. However, these lots may be for a quantity that is larger than the

maximum batch size of a resource required in the part’s routing. In this case, the production lot

must be split into batches which comply with the maximum batch constraints of each resource.

Batches may be processed in parallel by different resources belonging to the same resource group.

In cases which a production plan calls for multiple tasks to be processed by the same resource

group during the same time period, we must establish a prioritization scheme that ranks each

competing task such that the most “critical” tasks are given priority in the resource assignment
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procedure. We are able to leverage information from each work order (and the production require-

ments that it satisfies) to formulate these prioritization schemes. Several examples of prioritization

schemes include sorting by: 1) the current lateness of each work order (relative to its planned start

time), 2) the expected delay penalty associated with all of the LineItem objects the work order

satisfies, etc.

We now introduce several dynamic subsets of all shipments and work orders, w ∈ W , that

represent the state of each Shipment and WorkOrder object at any given time in the simulation.

For simplicity of exposition, we refer to the collection of all shipments and work orders as the set

of all “orders”. We denote the following:

• W 0: is the set of orders which are unreleased to the shop floor. A work order will remain in

this state until a user-defined time prior to its planned start time as specified in the production

plan

• W 1: is the set of orders which are released but not yet scheduled. These are the orders which

will be attempted to be scheduled during the current epoch of the CTSH

• W 2: is the set of all scheduled but not yet completed orders. These orders are considered

Work-In-Progress

• W 3: is the set of all completed orders.

Orders progress through these states in the following order: W 0 →W 1 →W 2 →W 3.

The CTSH algorithm is initialized by updating the inventory levels for each part’s initial inven-

tory. Then all orders, w ∈W , are added to the set W 0. The current time in the simulation is kept

with the variable, t, and is initialized at t = 0. The simulator will run until the maximum time

period in the planning horizon, T .

During each epoch, t, the following steps will occur. First, all orders belonging to the unreleased

order set, W 0, having a planned start time less than t, are moved to the released, unscheduled order

set, W 1. Then, any scheduled orders, w ∈ W 2, having a scheduled completion time less than the

current time, t, are moved to the set W 3. The inventory levels of each part associated with the

now completed orders are updated accordingly. Following this, each of the unscheduled, released

orders, w ∈ W 1, are prioritized using a user-defined prioritization scheme. In an iterative fashion,
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each work order in the sorted set W 1 is attempted to be scheduled. A released order, w, is eligible

to be scheduled if all required part inventory is available.

If the order is a Shipment, the inventory level of the associated part must be greater than the

quantity specified to be delivered in the order. If this condition is satisfied, the delivery is simulated

to be sent to the customer. The order, w, is moved from W 1 →W 2 →W 3.

If the order is WorkOrder, the inventory level of each child of the part specified in the work

order is evaluated. If all required components have enough inventory, then all Task objects specified

in the WorkOrder will be scheduled. If the work order production lot quantity is larger than the

maximum batch size associated with ANY of the tasks in the part’s routing, then the lot is split

into an appropriate number of batches. Each batch is then scheduled for each task in the work

order. Batches are assigned to be processed by a specific resource in the resource group associated

with the process specified by each task. Specifically, each batch is assigned to be completed by

the resource which is able to complete it the earliest. Restrictions specify that a batch can not

be started before the current time, t, or prior to the completion time of any earlier route-steps.

Further, the existing schedule of a resource can not be modified when scheduling a batch.

Each batch is allowed to move on to the subsequent route-step following its completion at the

current route-step. However, each batch will remain in a Work-in-Progress state until all batches in

the production lot have completed all route-steps. Restricting completed batches within a produc-

tion lot to remain in WIP represents the practice of “paper routing” which allows manufacturers to

trace parts throughout the factory as they progress along the value chain. This concept is discussed

further in Chapter 3.

Note that this particular representation of paper routing represents a loose enforcement of the

practice. A stricter enforcement could restrict batches to remain in WIP at each route-step until

all batches in the production lot are completed prior to moving to the next route-step. Further,

we acknowledge that this batch-resource assignment method may result in sub-optimal schedules

due to the restriction that the existing schedule of each resource can not be modified, even if a

modification may result in a superior schedule. A potential enhancement to the proposed CTSH is

to allow for a schedule to be modified in cases which a modification would improve the schedule’s

overall performance.

39



Following assignment, all related object attributes are updated accordingly. If the task is the

first step in the work order, the inventory levels of all required component parts are updated

accordingly. Once all tasks in the work order, x ∈ Xw, are scheduled, the work order, w, is moved

from W 1 →W 2. The scheduled completion time of the work order is set to be the completion time

of the last batch at the last task in that part’s routing.

If a work order can not be scheduled due to lack of available inventory, it will remain in a

released, unscheduled state, W 1, until it can be scheduled. Once all released, unscheduled orders,

w ∈ W 1, have attempted to be scheduled, the current time, t, is incremented by a user-defined

tstep, and the next epoch begins. An overview of the logic flow of the CTSH is shown in Algorithm

7.

Algorithm 7: Continuous Time Scheduling Heuristic: Overview

1 Set t = 0 , tstep = 1, Initialize inventory
2 while t ≤ α do
3 Move all released, unscheduled orders, W 0 →W 1

4 Move all completed orders, W 2 →W 3, release inventory from WIP

5 Calculate and sort orders, w ∈W 1, by prioritization metric

6 for each released order in sorted set, w ∈W 1 do
7 if All required component inventory is available then
8 if the order is a Shipment then
9 Simulate a delivery

10 Move Shipment, w, from released W 1 →W 2 →W 3 completed

11 else
12 Split work order into batches
13 for batch in work order do
14 for task in WorkOrder, x ∈ Xw do
15 Add batch to the schedule of a Resource

16 if Task is first step in WorkOrder then
17 Update inventory of children parts accordingly

18 Move WorkOrder, w, from released W 1 →W 2 scheduled

19 t← t+ tstep
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2.8 Illustrative Example

In the following, we present a series of outputs from the developed Digital Twin framework which

describe and showcase the power of integrating object-oriented programming with mathematical

programming. The objective of this section is to explore a generated test instance and analyze

the solutions obtained by the proposed production planning models (presented in Chapter 3) and

the CTSH (presented in Section 2.7). Specifically, we provide an illustrative example of a scenario

faced by job shop facility representative of an aerospace manufacturing facility capable of producing

complex, multi-level products.

In this illustrative example, we consider a factory which is comprised of 50 unique parts, 6

resource groups and 25 customer orders. Products are represented in a general product structure.

Cyclical and multi-step routings are allowed. The production facility is structured into 3 production

phases, to differentiate the characteristics of early, middle and final stage processes. Each with a

target utilization of 0.80. Each part belongs to one of four part classes and each resource group

belongs to one of six resource group classes (see Table 3.6 and 3.7). The Bill of Materials of any

part can have a maximum of 4 offset levels, and each part can have up to 5 children. The numer of

units per parent are in the range [1, 5] and the routing of each part can have up to 5 route steps.

Each resource group is made up of up to 3 resources. Each customer order represents a demand

for a single part (belonging to part class FinishedGood) for a quantity in the range [1,20]. The

planning horizon spans 26 weeks, with 40 hours in a week. Three timelines are considered in the

planning horizon with time steps of 10 hours, 20 hours and 40 hours, respectively.
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Parameter Notation Default Value Description

prodStr General Specification of Product Structure scheme
resAssign Cyclical Specification of Resource Assignment scheme
routeComp Multi-Step Specification of Routing Complexity scheme
utilProf [80, 80, 80] Specification of Utilization Profile scheme
numI |I| 50 Number of unique items
numJ |J | 6 Number of unique resource groups
maxT |T | 26 Length of the planning horizon (weeks)
numLI |O| 25 number of external demand orders
numSR |A| 0 number of scheduled receipts

maxRperRG |E| 3 max number of resources per resource group

maxLiQty Q 20 Max qty. associated with any line item

maxLev λ 4 Max level in a BOM
maxUPP n 5 Max units-per-parent of any parent-child relationship

Table 2.6. Illustrative example: User-defined parameters, notation, and values - Factory param-
eter model

className Raw Material MachinedPart AssembledPart FinishedGood

density 0.1 0.4 0.3 0.2
[ minChild, maxChild ] [0, 0] [1, 3] [1, 5] [1, 5]

[ minParent, maxParent ] [1, 10] [1, 3] [1, 3] [0, 0]
[ minLevel, maxLevel ] [4, 4] [1, 3] [1, 2] [0, 0]

[ minRS, maxRS ] [0, 0] [1, 4] [1, 3] [1, 2]

Table 2.7. PartClass parameters used throughout numerical implementation

className RG1 RG2 RG3 RG4 RG5 RG6

[ minLevel, maxLevel ] [2, 3] [2, 3] [0, 3] [0, 3] [0, 1] [0, 1]
[ minS, maxS ] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5]

probS 0.25 0.75 0.50 0.50 0.25 0.75
timeline 20 20 10 40 20 20

Table 2.8. ResourceGroupClass parameters used throughout the numerical implementation

Throughout this illustrative example, we focus our analysis on a single customer order, LineItem

1. Table 2.9 summarizes the Bill of Materials for the end item that is requested in this customer

order. Figure 2.4 provides a visual representation of the finished good in both a general product

structure (top) and as an assembly product structure (bottom). Each node in the BOM network

is annotated with the Part ID which it represents. Note that each part that exists in multiple
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assemblies within the end item is represented by several nodes in the assembly product structure

network (bottom). The offset (row which the node is drawn in the network) in the general product

representation is dictated by each part’s BOM level, λi. In the assembly network representation

(bottom), the offset of each node is dictated by it’s distance from the finished good.

Table 2.9. Illustrative example: Indented Bill of Materials report of the FinishedGood item
associated with LineItem 1

Offset Level BOM Attributes
0 1 2 3 4 UPP Part Class # Children # Parent

PartID

31 31 Finished Good 4 0
24 24 2 Machined Part 2 1
7 7 3 Raw Material 0 6
43 43 1 Raw Material 0 14
27 27 3 Assembled Part 1 1
43 43 3 Raw Material 0 14
33 33 4 Machined Part 3 1
14 14 4 Assembled Part 1 1
4 4 1 Machined Part 2 2
7 7 4 Raw Material 0 6
43 43 1 Raw Material 0 14
35 35 4 Assembled Part 2 2
6 6 3 Raw Material 0 8
43 43 4 Raw Material 0 14
42 42 1 Assembled Part 1 3
43 43 2 Raw Material 0 14
39 39 1 Machined Part 1 2
3 3 2 Raw Material 0 4
... ... ... ... ... ... ... ... ... ...
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Figure 2.4. Illustrative Example: Generated Bill of Materials of the end item associated with
customer order, LineItem 1, represented as a general product structure (top) and as an assembly
product (bottom).

Table 2.10 describes a subset of the Bill of Operations detailing the processes which are required

to produce the finished good of LineItem 1. Each ProcessID is composed of the Part number of

the part being produced and the step number of the part’s routing. The resource group responsible

for each process is shown in column Resource, as well as information regarding the setup time,

processing rate and maximum batch size of each process. A visual representation of the combination
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of the Bill of Materials and Bill of Operations for this end item is shown in Figure 2.5. In this

representation, each node in the graph represents either a physical part (square nodes) or a resource

group responsible for the process required to produce a part (circle nodes). Each part and resource

group node is color coded based on the part class and resource group class associated with each

node. Note that a square node is presented twice for each part which has a routing in the Bill of

Operations; one for the start of the routing (suffix “-s”) and one for the finish of the routing (suffix

“-f”).

Table 2.10. Illustrative example: Subset of Bill of Operations for parts required for the Finished-
Good item associated with lineItem 1. Rows are sorted in order of part-step.

Part Step Resource
Setup
Time

Process
Rate

Max Batch
Quantity

Max Lot
Time

ProcessID

4 1 4 1 B - 2.4 8.5 20
14 1 14 1 D 1.6 0.4 101.0 40
14 2 14 2 D - 0.4 101.0 40
24 1 24 1 E - 2.6 3.8 10
27 1 27 1 D - 1.9 21.4 40
27 2 27 2 F - 2.7 7.5 20
31 1 31 1 E 0.9 3.9 2.3 10
31 2 31 2 D - 4.2 9.5 40
33 1 33 1 F - 1.8 11.4 20
33 2 33 2 A 1.8 1.6 11.4 20
35 1 35 1 E 0.8 0.4 25.4 10
35 2 35 2 A 0.2 0.5 36.5 20
35 3 35 3 D - 0.4 104.3 40
39 1 39 1 A - 6.0 3.3 20
39 2 39 2 F 7.4 3.8 3.3 20
39 3 39 3 D 14.4 2.7 9.5 40
42 1 42 1 D 10.8 0.4 78.3 40
42 2 42 2 F - 0.7 27.5 20
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Figure 2.5. Illustrative Example: Generated Bill of Operations of the end item associated with
customer order, LineItem 1. In this diagram, parts are represented as squares and resource groups
which are visited in the production routing of parts as circles. Nodes in this diagram are color
coded based on the class of each part/resource group.
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Table 2.11. Illustrative example: Subset of dynamically generated WorkOrder objects which
satisfy the production requirements of parts required for the end item associated with LineItem 1.

Work Order Details Completion Time
Part Lot Qty. # Tasks Planned Actual Delay

Work Order

20 4 25.4 1 40 20.0 -20.0
23 4 11.8 1 100 80.0 -20.0
24 4 12.5 1 120 100.0 -20.0
27 4 11.8 1 180 160.0 -20.0
88 14 30.3 2 200 125.1 -74.9
89 14 38.3 2 280 244.6 -35.4
162 24 5.4 1 200 252.9 52.9
163 24 3.6 1 240 275.3 35.3
164 24 4.9 1 340 395.3 55.3
172 27 0.3 2 100 1.3 -98.7
173 27 12.9 2 140 114.4 -25.6
174 27 0.3 2 180 120.8 -59.2
175 27 1.5 2 260 220.5 -39.5
202 31 2.7 2 260 430.4 170.4
203 31 1.8 2 290 445.6 155.6
204 31 2.5 2 400 464.8 64.8
252 33 10.8 2 200 338.9 138.9
253 33 7.3 2 240 373.6 133.6
254 33 9.8 2 340 391.1 51.1
268 35 59.5 3 160 205.6 45.6
269 35 66.0 3 200 263.2 63.2
309 39 7.8 3 120 135.3 15.3
320 42 51.0 2 100 60.8 -39.2
321 42 19.9 2 180 151.5 -28.5
323 42 19.2 2 300 268.4 -31.6
... ... ... ... ... ... ...

Table 2.11 shows a subset of the WorkOrder objects generated to satisfy LineItem 1, as an

output of the Production Planning Module and Scheduling Simulation Module. A total of 25 work

orders are shown, including a description of the work order and the completion time of the work

order in the production plan (Planned) and in the simulated schedule (Actual). Note that the

Delay experienced in the simulated schedule can be negative, representing a work order which is

completed earlier than in the plan. One cause for this includes an over-estimation in the lead

time of the routing of work orders, especially when the lot size of the work order is less than the

maximum production lot size for the produced part.
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A visual representation of a subset of the realized schedule is shown in Figure 2.6. Specifically,

this subset represents the work orders which were dynamically generated to satisfy the production

requirements of LineItem 1 (see Table 2.9). Each faceted row in this figure represents the realized

production schedule of a specific part required to produce this end item. Each row within each

facet represents a unique work order dedicated to producing that respective part. Each block in

the Gantt chart is color coded by the resource group which is responsible for performing each task

in the work order.

Figure 2.6. Illustrative Example: Gantt chart of dynamically generated work orders which pro-
duce parts (right axis) which satisfy the production requirements for the end item associated with
external demand, LineItem 1. Blocks are color-coded based on the resource group which is visited
for each operation. Each row within each facet is representative of a unique work order.

Note that some of these work orders have spaces between the completion time of one task and

the start time of the next. This occurs when the Work-In-Progress inventory is waiting in the

queue of a resource within the resource group that must process it. As a reminder, queuing is not

considered in the Production Planning Module (only the aggregated capacity of the resources in

each resource group), and is a cause for delays between the production plan and the simulated

schedule.
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Figure 2.7 shows another Gantt chart with respect to the schedule of the resources within a

one of the resource groups in the generated facility. Each facet row in this figure represents the

schedule for a resource within the resource group, each row within the facet represent the part

being produced, and blocks are color-coded by the process which is performed.

Figure 2.7. Illustrative Example: Gantt chart of dynamically generated work orders which are
processed by the resources in a resource group. Each facet row represents a resource in the resource
group. Each row within the facet row represents a specific part, and blocks are color coded based
on the process which is performed in each work order.

The realized production schedule of these resources can be aggregated to analyze the utilization

rates of each resource. An example showing the utilization of all resource groups is shown in Figure

2.8. Each block represents a week within the schedule of a specific resource group in a specific

week. Figure 2.9 provides another view, where each block represents a month in the schedule of a

specific resource.
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Figure 2.8. Illustrative Example: Utilization rates of each resource group (row) and week (column)

Figure 2.9. Illustrative Example: Utilization rates of each resource (row) and month (column)
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Table 2.12 details the shipments generated in the production plan. Note that several shipments

may be generated to satisfy each order. The Lateness and Tardiness of each shipment is shown,

where a negative value for Lateness represents a shipment that was delivered prior to the associated

order’s due date. A shipment that is shipped early will have a Tardiness of 0. Each shipment is

also evaluated for the quantity of units of the end item which were shipped, the monetary value

of those units, as well as whether the shipment “completed” the line item, i.e. shipped the last

remaining units requested by the customer.

Table 2.12. Illustrative example: Subset of dynamically generated Shipment objects which satisfy
external demands.

Due Date
Time

Delivered
Lateness Tardiness Units Dollars

Order
Completed

orderID ShipID

0
0 480 360 -120 0 7.4 230.3 0
1 480 560 80 80 1.6 48.4 1

1 2 850 920 70 70 8.0 512.0 1

2
3 510 520 10 10 3.9 446.2 0
4 510 460 -50 0 5.9 680.8 0

4
6 270 220 -50 0 2.7 758.6 0
7 270 250 -20 0 1.8 513.2 0
8 270 360 90 90 0.5 132.5 1

5
9 190 100 -90 0 3.0 38.7 0
10 190 520 330 330 2.5 32.8 0

6

11 200 220 20 20 3.3 316.4 0
12 200 260 60 60 5.3 506.4 0
13 200 340 140 140 0.5 45.6 0
14 200 380 180 180 0.3 26.6 0
15 200 500 300 300 1.3 120.7 1
16 200 300 100 100 4.3 406.6 0

7
17 440 320 -120 0 9.2 768.6 0
18 440 390 -50 0 2.6 219.2 0

8
19 920 920 0 0 2.2 33.8 0
20 920 800 -120 0 0.5 7.8 0
21 920 880 -40 0 2.6 39.6 0

9
22 390 340 -50 0 3.4 218.9 0
23 390 360 -30 0 5.9 375.7 0
24 390 440 50 50 9.7 620.2 1

10 25 250 880 630 630 10.0 50.0 1
... ... ... ... ... ... ... ... ...

These KPI’s can be aggregated to evaluate the performance of the production plan from the

PPM. Figure 2.10 provides a view of the distribution of the Lateness of the shipments of Completed
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Orders/Units/Dollars throughout the planning horizon. The X-axis in the histogram represents the

lateness of each shipment relative to the due date of the order which each shipment satisfies.

Figure 2.10. Illustrative Example: Histogram of the Lateness of all dynamically generated
Shipment objects in the planning horizon. Each facet row represents a different aggregation of
the product (right axis).

Figure 2.11 presents another view in delivery shipment performance. This visualization is a

stacked area chart and shows the size of the existing overdue backlog relative to the total ship-

ments, with respect to completed orders/units/dollars, throughout the planning horizon. Figure

2.12 provides yet another view of delivery shipment performance. This visualization depicts the

cumulative requested and shipped orders/units/dollars compared to the existing backlog during

the planning horizon.
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Figure 2.11. Illustrative Example: Stacked area graph displaying the magnitude of the existing
overdue backlog of demands vs cumulative shipments delivered during the planning horizon. Each
facet row represents a different aggregation of the product (right axis).

2.9 Conclusion

This chapter introduces the Digital Twin framework for Make-to-Order production facilities

developed for the purposes of this dissertation. This framework is capable of generating realistic

problem instances on the basis of adjustable parameters, creating production plans for those sce-

narios using optimization models, then simulating and evaluating the execution of those production

plans. Our objective in developing this Digital Twin framework was to build the test-bed platform

that will enable the development, testing, evaluation and comparison of production planning and

scheduling optimization models throughout the remainder of this dissertation.

This proposed DT framework is comprised of 5 unique modules: the Object Definition Module,

the Scenario Generation Module, the Planning Module, the Scheduling Module and the Application
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Figure 2.12. Illustrative Example: Line graph displaying the magnitude of the existing overdue
backlog of demands vs cumulative requests and shipments delivered during the planning horizon.
Each facet row represents a different aggregation of the product (right axis).

Programming Interface Module. We emphasize the plug-and-play capabilities of the framework in

which modules can be swapped or modified to enable the framework to become applicable to a

variety of highly unique problem contexts.

For the purposes of this dissertation, we develop novel algorithms capable of generating large-

scale, realistic problem instances for the Multi-Level Capacitated Lot-Sizing Problem (discussed in

detail in Chapter 3). We also develop an MRP-based production planning heuristic which will be

used as a benchmark for evaluating the optimization models developed in Chapter 3. Further, we

develop a discrete-to-continuous-time scheduling heuristic capable of translating a production plan

into an executable schedule. This heuristic enables the enhanced evaluation of planning techniques

considering the complexities and nuances of manufacturing settings which are too challenging to
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incorporate into production planning optimization models. The evaluation of a production plans

following it’s simulation represents a more realistic evaluation of the plan, i.e. closer to what can

be expected in practice when implementing the plan.

To validate the complexity and comprehensiveness of the proposed DT framework, we provide an

illustrative example of a randomly generated production facility. We show that the algorithms de-

veloped in the Scenario Generation Module are capable of randomly generating realistic and unique

Bill of Materials and Bill of Operations while adhering closely to the user-defined parameters which

provide context to the desired characteristics of the problem instance. Future research directions for

the proposed DT framework include: 1) enhancing the algorithms developed for scenario generation

to include more specific considerations per use-case, 2) improving the Continuous-Time Schedul-

ing Heuristic (presented in Section 2.7), and 3) expanding the analytic and visualization packages

exhibited in the illustrative example, i.e. to enable the visual comparison of implementation of

competing production planning or scheduling practices.
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CHAPTER 3

HIERARCHICAL PRODUCTION PLANNING FOR JOB SHOP SCHEDULE
OPTIMIZATION

3.1 Introduction

While large corporations have invested heavily in Enterprise Resource Planning (ERP) and

Manufacturing Execution Systems (MES) softwares to plan and schedule their production, Small-

Medium Enterprises (SMEs) have lagged behind because of its cost, complexity and rigidity once

implemented [43]. Our research is motivated by a medium-sized aerospace parts manufacturer

struggling to manage its capacity effectively and meet customer due dates. Hierarchical job shop

schedule planning and execution is a particularly challenging problem for shops such as this one,

facing high product variety, long production lead times and scarce capacity.

At the tactical level, given a set of customer orders and the current status of the shop, gross

production of all necessary parts must be planned for, considering the availability of limited re-

sources. Planning must account for a sufficiently large horizon that allows for the completion of

these long lead time orders. In cases with severe capacity limitations, some orders may remain

unfinished by the end of the planning horizon; the plan must get them as far along as possible. At

the operational level, a finer level of detail is required to put the plan, or at least the initial part of

the plan, into execution, with a comprehensive schedule that can be directly followed by workers

on the shop floor. The resulting plans will be periodically updated to incorporate new orders and

to account for changes in status of the shop, which may have deviated as variability, equipment

breakdown or malfunction, absenteeism, quality issues, etc., impact production. We refer to the

problems at the tactical and operational levels as the Planning Problem and Execution Problem,

respectively.

Production plans are presented in the form of work orders which call for the production of a

specific quantity (production lot) of a specific item on the shop floor. The item specified as the

output of a work order may require multiple operations to transform its input components into
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the finished part/assembly. The series of steps (tasks) required to complete the production of the

lot is the part’s routing. Routings specify: the operations required to produce an item, the work

centers/operators/tools required to complete those operations, the costs/times associated with each

setup activity required, the processing rates for each unit, and potentially the maximum allowable

batch size associated with each step in the routing (route-step).

In most factories, materials within a production lot travel together from operation to operation,

typically attached to a document, referred to as a “paper routing”. This document includes the

details about: the flow of required work that needs to be achieved, where these tasks will be

completed, and what materials/components will be required. If a production lot must be split

and processed in multiple batches (as a result of limited resource capacity), the first batches to be

completed will be held as Work-In-Progress inventory at the work center. Once all batches have

been completed, the production lot will move together to the next operation/work center.

A practically desirable property of a production plan is the direct association of internal demands

(work orders) to external demands (sales orders) so as to provide transparency and traceability to

the production plan and shop floor. The linking of production plans to the sales orders is referred

to as order pegging. A contribution of this research is dedicated towards the development of an

integrated solution procedure which sequentially creates a production plan, then solves the Order-

Lot Matching Problem (OLMP), which allocates inventory from a production plan to the specific

bill of materials (BOM) requirements of each sales orders. We define a BOM requirement as the

satisfaction of a node in the assembly-styled network representation of the BOM associated with

a sales order. In this study, we refer to the mapping of a production plan to specific order-centric

requirements as the Node Pegging Problem.

An important complicating factor in solving the Planning and Execution Problems is the pres-

ence of setup times at work centers to account for the necessary tooling changes and preparations

required when shifting production from one product to the next. Setups consume precious capacity

and need to be avoided by aggregating the production of parts that satisfy multiple orders into

production lots. In our application context, setups range from a few minutes to a few days, and so

do production times.

The general job shop scheduling problem described above has a common name: the Multi-Level

Capacitated Lot-Sizing Problem (MLCLSP). Multi-Level refers to the product structure described
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by the bill of materials (BOM), where the final assembly (level 0) is composed of several sub-

assemblies (level 1) and each of these in turn is composed of components (level 2), which may be

further broken down into other components. Capacitated refers to the limited resources, and lot-

sizing is required in the presence of setups. The complexity of the MLCLSP has led researchers to

develop many heuristics to provide high-quality solutions for industrial sized problems (see Robin-

son and Lawrence [143] and Tempelmeier and Buschkühl [32] for actual industrial applications).

Exact methods, however, have not yet been explored to their full potential. The development of

more powerful computers and the availability of improved commercial optimization software in

recent years, together with the use of tight formulations, have led us to consider an exact solution

methodology.

In this study, we propose mathematical models and heuristics for the challenging Planning and

Execution Problem. We develop computational methods to decrease the size of the problem to

allow commercial solvers to find high-quality solutions (within a desired MIP gap) in reasonable

computational time. Our objective is to develop a highly generalized production planning and

execution decision support system framework that will enable capacity-constrained aerospace man-

ufacturers to generate clear and concise (traceable) schedules. This framework is developed with

practicality and configurability in mind, i.e. we develop many extensions that can plug-into the

MLCLSP formulation, as needed. These practical considerations are inspired by our collaboration

with our industrial partner, and leverage ERP-based datasets as input.

The proposed solution procedure solves two optimization problems sequentially: first the Plan-

ning Model (PM) generates a production plan, then the Node Pegging Model (NM) matches the

inventories from the production plan to the customer sales orders they satisfy. The PM solves the

MLCLSP for multiple items considering a general product structure, multiple classes of resources,

and setups. The NM translates the general product structure into an assembly structure to promote

solution transparency and traceability when executed on the shop floor. Following the generation

of a production plan with the PM and NM optimization models, we apply the Continuous-Time

Scheduling Heuristic (see Section 2.7) to convert the big-bucket lot-sizing solution for the MLCLSP

into an assignment-based, executable schedule.

In the PM, we define production at the route level, where the capacity consumption of all the

required resources required to produce each item are linked to a single decision variable. The timing
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of capacity consumption of each resource within the routing is staggered to account for the planned

lead times of each route step. These considerations allow for the ability to incorporate existing

work orders into the production plan seamlessly, while also ensuring the materials in a production

lot travel together throughout the routing, resembling the practice of paper routing. We consider a

finite planning horizon, positive lead times similar to Helber and Sahling [74], backlogging similar

to Wu et al. [190], but we also consider the case of incomplete orders within the time horizon.

The remainder of this paper is organized as follows. In Section 3.2, we briefly review the relevant

literature. In Section 3.3 we present a formal statement of the optimization problem. In Section

3.4, we present our mathematical formulations for the Planning and Pegging Models. In Section

3.5, we provide numerical results. In Section 3.6, we present several practical extensions to the

formulations developed in this chapter, and in Section 3.7 we conclude on our findings.

3.2 Literature Review

The importance of effective production lot sizes in the presence of fixed costs was first recognized

at the turn of the 20th century, with the introduction of the classic Economic Ordering Quantity

(EOQ) problem by Harris [73]. A rich literature ensued to tackle the many related problems that

arise as assumptions of this basic problem are relaxed. In particular, for the case of dynamic

demand over T periods, which is known as the Lot Sizing Problem (LSP), Wagner and Whitin

[181] present an exact dynamic programming algorithm that runs in time O(T 2). Linear run time

algorithms are now available for this problem; e.g. Wagelmans, van Hoesel and Kolen [180]. The

capacitated version of LSP (CLSP) was introduced by Manne [112], to account for the existence

of resources with limited capacities. The multi-level version of CLSP (MLCLSP) was introduced

by Billington and McClain [25]. This problem considers a BOM structure where components are

assembled into sub-assemblies and final products.

Lot sizing problems have been studied extensively and it is well known that a vast majority of

the problems are NP-Hard. The complexity of the mathematical models develops for these LSPs

increases as more simplifying assumptions are relaxed, resulting in the need for the integration of

efficient algorithms and tighter models. We refer the reader to Buschkul et al. [32] for a review of

solution approaches found in literature for dynamic capacitated LSPs. In this review, the authors

classify solution approaches into five groups: mathematical programming heuristics, Lagrangean
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heuristics, decomposition and aggregation heuristics, meta-heuristics and problem specific greedy

heuristics. We provide a brief review of these solution approaches in Appendix A.

Kamiri, Ghomi and Wilson [82] provide a relatively recent review on the CLSP and classify

models using eight defining characteristics. Some of these modelling dimensions include: definition

of product structure (i.e. single-level, serial, parallel, assembly, general), definition of the planning

horizon (finite vs infinite) and time periods (small- vs big-bucket), the number of final products

in the production system (single vs multiple), resource constraints (uncapacitated vs capacitated),

the representation of demand (deterministic vs stochastic), and whether backlogging is allowed or

if shortages results in lost sales. The authors also cite the consideration of product lead times and

deteriorating items (i.e. food products that will spoil) as additional defining characteristic of lot

sizing problems. The production system we consider faces known, deterministic demands, offers

multiple non-deteriorating products, is subject to capacitated resources, considers product lead

times, allows backlogging and is represented using a finite, big-bucket planning horizon.

In the following, we briefly introduce concepts considering the representation of production

changeovers and production lead times as they relate to the literature of the MLCLSP.

Production changeovers between different operations on a resource can incur a setup time/cost.

In mathematical models, this is typically represented using a binary variable, taking a value of 1 if

a setup activity is performed. The representation of setup activities in mathematical models can

be categorized as either simple or complex. A simple setup structure has a time and cost which

is independent of the sequence and decisions from previous periods. Many forms of complex setup

structures exist, including sequence-dependent, carry-over, and family-based setup structures.

Sequence-dependent setup activities incur a time/cost dependent on the production activity

which occurred prior to it, see Mohammadi et al. [116], Ramezanian, Saidi-Mehrabad and Fat-

tahi [140]. Family-based (also referred to as major/minor) setup structures are applicable when

similarities in manufacturing processes allow for a minor setup activity for successive production

runs of items in the same family. Alternatively, a major setup activity would be required when

there is a changeover of items in different families, see Robinson and Lawrence [143]. Carry-over

setup structures describe the case in which a production run from the previous period can continue

into the current period. A setup activity would not need to be performed in the current period.

Carry-over setups are relevant when considering small-bucket time periods, where the timespan
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of a production run spans multiple periods, see Caserta, Ramirez and Voss (2010) [37], Sahling

et al. [150], and Stadtler [164]. The application of carry-over setups also applies to big-bucket

time periods in the case which the variability of setup times is great enough that some activities’

duration exceeds the duration of a big-bucket period, as is the case we consider.

While researchers have tried to consider more realistic classes of MLCLSP, a majority of models

still assume no product lead times, allowing predecessors and successors to be produced in the same

period [5]. We consider planned lead times, which span multiple periods, where the lead time of each

product is fixed and does not depend on the production quantity associated with the production

lot (also referred to as timed-route [21]). We assume these lead times with 100% reliability, which

is common practice in the literature (see Bertrand et al. [24], Hopp and Spearman [79]). Unlike

Billington et al. [25], who assume that production orders which are released during the start of

a period will also be completed during that period (and thus only consume capacity during the

period it is assigned to begin), we consider multi-period lead times. In this, the period which

capacity is required for each route-step depends on the intra-route lead time of each work order

and the period which it will each required resource. This technique is more in line with Spitter

et. al. [162], who argue that the benefit of multi-period capacity consumption is in its ability

to decouple material release from resource capacity consumption, providing aspects of scheduling

problems into the production planning problem. One disadvantage of considering planned lead

times is that production flows are not flexible within the production routing [21]. We address this

disadvantage in Section 3.6.

The integrated production planning and scheduling framework we consider also addresses the

Order-Lot Matching Problem (also referred to as order pegging). Most commonly addressed in

the context of semiconductor manufacturing, where production routings can contain hundreds of

route-steps, the Order-Lot Matching Problem (OLMP) has rarely been addressed in the context

of aerospace manufacturing [89]. The solution to OLMP associates production lots with customer

orders such that the due dates of each order can be met effectively. This association also provides

transparency to the existing schedule and provides planners visibility into the current state of the

system with respect to the expected performance of the shop. The main difference between the

OLMP and the MLCLSP is that production lot sizes in the OLMP are fixed and do not need to

be considered, resulting in an easier problem. Much of the literature considering the OLMP aim
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to develop dominance conditions and heuristics for solving the problem (see Kim and Lim [90],

Mönch, Shen, and Fowler [117], and Sun et. al. [169]).

Our main contributions to the literature is in the novel modeling techniques developed for solving

the Planning and Execution problem. This includes the development of: 1) an integrated solution

procedure which sequentially creates a production plan for the MLCLSP, provides order-lot node-

pegging associations for all production activities, then generates an assignment-based schedule for

the long-term production plan in a practical context, i.e. in a continuous-time, executable schedule,

2) a heterogeneous discretization of the planning horizon which associates each resource group with a

unique timeline on the basis of the processes they typically face. We implement this methodology as

a means to account for large variabilities in the experienced setup times and processing rates across

the production facility. This methodology allows us to avoid the requirement of complex setup

structures while also modelling the internal dynamics of the facility at the greatest level of detail,

3) the enforcement of paper routing practices while considering multi-step, cyclical, production

routings with intra-route lead-times.

We also formulate additional modeling complexities which, to our knowledge, have not been

addressed in the context of the MLCLSP, including: 1) the sequencing of existing work orders,

having a fixed production quantity, in the production plan alongside the dynamically generated

work orders, having optimized production quantities, 2) the consideration of resource sub-groups,

which exhibit unique qualities for other sub-groups in the resource group, 3) the introduction of

multiple variations of timed-routes for similar parts to introduce flexibility to the production plan

via delays in the planned lead times of parts, 4) the consideration of target safety stock levels.

These extensions are presented in Section 3.6.

3.3 Modeling Approach

Parts and the Bill of Materials

Aerospace part manufacturing involves highly complex Bill of Materials (BOM) structures,

where the end products are composed of many parts and intermediate sub-assemblies, each requiring

multiple operations and many hours of processing. Each unique part/item, i, that a factory may

hold or produce is represented in the set i ∈ I. The set K: K ⊆ I, is used to represent all parent

parts, i.e. parts with children. We define the subset mapping, Ki ⊆ K, as the subset of all parent
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parts which contain a child part i. Further, we define Ki ⊆ K as the set of all ancestors of part

i, i.e. all of the assemblies which part i is a component of. For each descendant-ancestor pair, we

define a Units Per Parent (UPP) parameter, nik, to represent the quantity of part i required to

produce a single unit of part k. Each part, i, is also characterized by a per-unit per-period holding

cost, hi, and a deterministic production lead time, Li. We define Ait as the quantity of part i

which is scheduled to arrive as inventory from existing or external sources at the beginning of time

period t. For the case of representing initial inventories, t = 0. Time periods, t, are represented as

big-bucket periods (of duration ∆) in the planning horizon, t ∈ T .

The decision variable uit describes the production lot size of part i which starts production in

time period t. The variable vit defines the inventory level of part i at the beginning of time period

t.

External and Internal Demands

External demands are represented in the form of customer line items, o ∈ O (also referred to

as sales orders). Each sales order, o, is a demand for a specific part, i. The quantity demanded is

Qo. We define Do as the due date of line item o, Po as the per-unit per-period penalty for under

delivery of overdue sales orders, Po as the per-unit penalty for demands which are unfulfilled orders

by the end of the planning horizon, and εo as the per-period per-unit reward for early deliveries.

We define the subset Oi ⊆ O as the set of all sales orders which call for the delivery of part i.

Due to the long lead times observed in industries such as aerospace, the complexity of the

MLCSLP and limitations in commercial solver’s abilities to handle large-scale problems, it may

not be possible to consider a planning horizon long enough to allow for the completion of all

existing line items. It is important to incentivize the production of incomplete orders. To accom-

plish this, we introduce parameters Ni, which represent the cumulative production/procurement

requirements of each part, i, to complete all line items, and Hi as the per-unit penalty for the under-

production/procurement of part i relative to Ni. We calculate the total production requirements,

Ni of each part i as:

Ni =
∑
o∈O

Qo ni,Io
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where Io is the part which is demanded as the end item in order o. Finally, we define the variable

ri to track the remaining units of part i, that is, the difference between the production require-

ments, Ni, and total cumulative production and procurement scheduled/planned to occur during

the planning horizon.

The decision variable, yot, represents the quantity of units delivered for line item o at the

beginning of time period t.

Resources and the Bill of Operations

Production within factories requires the use of value-adding resources that transform raw ma-

terials into finished goods. We consider the existence of resources and resource groups. A resource

group, j, is composed of a collection of similar resources which have similar capabilities. We refer to

the set of all resource groups as j ∈ J and the set of all resources as e ∈ E. The subset of resources

which belong to a resource group, j, is e ∈ Ej , and the number of resources in a resource group,

j, is |Ej |. The subset Ij ⊆ I refers to the set of parts which require capacity from resource group

j. The available capacity of each resource group, j, in each time period, t, is Cjt. The capacity of

each resource group is represented as the aggregation of the capacities of each resource within the

group.

The Bill of Operations describes the production routings of all parts that a firm can produce.

A part’s routing is decomposed into route-steps. Each route-step describes which resources are

required to process the operation and what type of setup activity (if any) is required prior to

processing. It is possible for the routing of a part to call for several visits to the same resource

group. We define the parameters Bij to denote the number of times the routing for part i requires

capacity from resource group j. This is required, as the operations which are performed at each visit

may be different, and thus requires an identifier, b, to specify which operation is actually occurring.

We denote the index, γ = (i, j, b), to represent each unique process the shop floor is capable of

and the set γ ∈ Γ as the collection of all processes. We define the collection of all processes which

a resource group, j, is capable of performing as γ ∈ Γj , and the collection of processes required

to produce a part, i, as γ ∈ Γi. The parameters Rγ and Sγ are the per-unit processing rate and

setup time required to run a batch of parts through process γ, respectively. Processes which do
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not require a setup will have Sγ = 0. Finally, we define lγ to be the intra-route lead-time from the

beginning of the production of the first route-step of part i to the time it reaches process γ.

3.3.1 Resource Dependent Timelines

A major contribution of this research is the methodology developed to represent the capacity

of each resource group throughout the duration of the planning horizon. Specifically, we discretize

the planning horizon of each resource group dynamically, using appropriately sized time buckets

that capture the requirements of the processes that particular resource group is responsible for.

That is, each resource may use a different time discretization. We consider this methodology as a

means to avoid the requirement of carryover setups for the resource groups with long setup and

processing times, while capturing the overall factory dynamics at an appropriate granularity. This

is a must in factories with wide-ranging processing times.

To accomplish this we define multiple timelines, each with bucket durations twice as large as

the prior. Each resource group is assigned to be represented by the timeline which has the shortest

bucket duration greater than the maximum amount of time required for any process it is capable

of (considering setup time, processing rates, and a maximum batch size).

We define τ as the number of timelines considered in the planning horizon. In this format,

each timeline is unique in the time-step increment for each successive period in the timeline. The

timeline with the shortest duration bucket is referred to as the base timeline (also referred to as

Timeline 1). We notate the base timeline as T . The duration of each period in the base timeline,

T , is ∆.

Timeline Time-step Set of period start times
Timeline 1 (Base) 10 {0, 10, 20, 30, 40, 50, ..., 350, 360, 375, 380, 390, 400}
Timeline 2 20 {0, 20, 40, 60, 80, 100, ..., 300, 320, 340, 360, 380, 400}
Timeline 3 40 {0, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400}

Table 3.1. Example - Resource Dependent Timelines: Set of period start times, considering 3
unique timelines, with the base timeline having time-step, ∆ = 10 hours. This example considers
a planning horizon of 400 hours (10 weeks).
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Timeline 1 (Base)

Timeline 2

Timeline 3

0 10 20 30 40 50 60 70 80 90 100 110

0 20 40 60 80 100

0 40 80

Figure 3.1. Example - Resource Dependent Timelines: Visual representation of 3 unique timelines,
with a base timeline having time-step, ∆ = 10 hours. Annotations represent the start time of each
period.

The representative timeline for resource group j is T j . T j is the timeline with the smallest

bucket duration which is larger than the maximum process cycle time on that resource, δj , where:

δj = max
γ∈Γj

(
Sγ +MγRγ

)

Mγ is the maximum production batch size of process γ on any resource, e, within the resource

group, j. The parameters ∆j represents the duration of a time bucket for resource group j. The

per-period capacity of resource j assigned to timeline T j is: Cjt = ∆j |Ej |, where |Ej | is the

number of resources which belong to resource group, j.

The integer decision variables, zγt, is the number of setups which occur at resource group j

during the bucket starting at time period t for process γ (considering the appropriate timeline,

T j). We assume that a maximum of 1 setup can be performed on each resource, e, per period,

t, for a specific process, γ. We define the parameters, Zγ , to represent the maximum value that

the variable zγt can take in any period. Considering an integer decision variable representation

of zγt, with this assumption, Zγ will be equal to the number of resources in the resource group

associated with that process, |Ej |. Note that an alternative modeling approach is to represent zγt

as a binary decision variable. We also develop this alternative approach and compare the simulated

performance of the planning models using an integer vs binary decision variable representation in

the numerical implementation presented in Section 3.5.

We define a mapping for each time bucket in each timeline such that we know which time

periods from the base timeline, T , occur in that bucket. This mapping enables the modeling of

capacity consumption for multi-step production lots. For example, for the period which begins at
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time, t = 80, for each of the timelines, the following sets represent the subset of time periods from

the base timeline, T , which are found in that bucket:

Timeline Period, t
Set of corresponding base timeline

period start times

Timeline 1 (Base) 80 {80}
Timeline 2 80 {80, 90}
Timeline 3 80 {80, 90, 100, 110}

Table 3.2. Illustrative Example: Mapping of base timeline buckets which exist within the buckets
are timelines with periods of larger duration

We define the variables, mγt as the production lot of process γ during period t. As a reminder,

γ, is a shorthand representation of the tuple, (i,j,b), which describes each process, such that a

reference to γ inherently refers to the part i and resource group j which the process occurs. We

have introduced the decision variable uit as the quantity of part i to begin production during period

t. However, the variable uit has no reference to the processes, γ ∈ Γi which are required to produce

the part. We use the intra-route lead-time parameters, lγ , and the timeline mappings, s ∈ T jt to

make the connections between uit and mγt.

Example: Capacity Consumption with Resource-Dependent Timelines

Consider an example from the point of view of a resource group, j, which is responsible for the

3rd process, γ, in the routing of a part i. Let a production plan have:

1) A base timeline, T , with periods of duration, ∆ = 10,

2) A work order for the production of this part i to begin during time period 100: ui,t=100 > 0

3) a lead-time offset from the start of the production routing until it reaches process γ be lγ = 50,

4) the resource group j be associated with Timeline 3 (with a time-step of 40 hours), such that:

{0, 40, 80, 120, 160, ...} ∈ T j .

We know that the production lot will reach process γ during the time period that begins at

t = 150. However, the resource group, j, does not have a period that begins at time, t = 150.

In order to account for the capacity requirements of this production lot from the resource group

during this period, we use the timeline mapping scheme (see Table 3.2) to define the production

plan for process γ at time t as:
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mγt =
∑
s∈T jt

ui,s−lγ ∀ t ∈ T j

where i = Iγ , j = Jγ . For each time period, t, this equation searches backwards in the planning

horizon, using the smallest base time steps, to identify any production lots which will visit the

resource group during period t.

Consider this equation with a value t = 120: the subset, s ∈ T jt will include the base timeline

periods, {120, 130, 140, 150}. For each value of s, we look at the value of the production decision

variable, uit from time s− lγ (in this case, lγ = 50). We see that the set s ∈ T jt contains s = 150,

such that s − lγ = 150 − 50 = 100. Therefore, we know that the production lot associated with

ui,t=100 will reach the resource group j that is associated with process γ during time period t = 120,

on the timeline, T j = Timeline 3. From this know that mγ,t=120 = ui,t=100.

In the formulation described in Section 3.4, we define constraints which leverage this equation

to identify all of the production lots which visit a resource group, j, in any period, t. The capacity

consumption of this production lot can then be accounted for on the resource group associated with

this process accordingly.

3.4 Mathematical Formulations

In the following, we present the integrated solution procedure developed to solve the production

Planning and Execution Problem. The objective of the 3-phase proposed procedure is to provide

a detailed, executable schedule for an extended planning horizon. The first optimization model

we implement, the Planning Model (PM), generates a high-level production plan, then the Node

Pegging Model (NM) associates production decisions to the external demands which they satisfy,

then the Continuous-Time Scheduling Heuristic (CTSH, described in Section 2.7), translates the

discrete-time production plan into a continuous-time executable schedule.

3.4.1 Planning Model

The PM addresses the following problem. A Make-To-Order firm must create a production

plan to satisfy the sales orders, o ∈ O, in their demand backlog. The scheduling objective is to

minimize the total penalty faced throughout the planning horizon. Note that the objective function
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does not represent an actual cost, but rather a score for the production plan given the scheduler’s

preferences.

We introduce several new user-defined parameters which restrict the solution space of the pro-

duction plan. To accommodate practical business requirements, we define the parameter, ε, as the

amount of time before its due date that an order can be delivered. We allow and even incentive

early delivery within this time window. We also define the parameter µ to restrict the minimum

production lot size of any work order. This parameter is represented as a proportion, i.e. 0.10,

of the maximum production lot size, Mγ . We introduce this parameter to ensure the work orders

generated by the Planning Model are of acceptable size in practice. We discuss, evaluate, and

justify the use of these parameters in Appendix B.

The required notations for the Planning Model is presented in Table 3.3.
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Sets Description
i ∈ I Set of all parts
o ∈ O Set of sales orders
j ∈ J Set of constrained resource groups
γ ∈ Γ Set of all processes
γ ∈ Γj Set of processes that are processed by resource group j
i ∈ Ij Set of all parts that require constrained resource j
k ∈ Ki Set of parts which are direct parents to part i

k ∈ Ki Set of all parts which are ancestors to part i
o ∈ Oi Set of orders that call for part i as final deliverable
T ∈ τ Set of all timelines used in the planning horizon
t ∈ T Set of periods in the base timeline
t ∈ T j Set of periods in timeline specific to resource j

s ∈ T jt Set of base time periods in time bucket, t, in the timeline associated with resource j
Parameters Description

T Number of periods in the planning horizon
∆ Duration of each period in the base timeline, T
ε Amount of time prior to a line item’s due date, Do, a shipment can be delivered
Qo Quantity demanded in order o
Do Due Date of order o
Po Per-period per-unit tardiness penalty for order o
Po Per-unit penalty for not fulfilling order o during the planning horizon
εo Per-period per-unit incentive for completing order o early
hi Per-unit per-period holding cost of part i
Hi Per-unit penalty for under-production of part i
Ni Units of part i needed to complete all orders
Li Lead time of part i
nik Units of part i needed to produce a unit of part k
Ait Scheduled receipt of part i in initial period t (includes initial inventory, i.e. t = 0)
Cjt Capacity of constrained resource group j in period t
lγ Lead time offset for part i to begin process γ
Rγ Per-unit processing rate of process γ
Sγ Setup time of process γ
Zγ Maximum number of setups allowed per period for process γ
Mγt Maximum production output, per setup, of process γ in period t

Variables Description
mγt Production lot size of process γ in period t
ri Units of part i required but not completed by the end of the horizon
uit Production lot size of part i starting production at time t ; completed at time t+ Li
vit Inventory level of part i at time t
yot Quantity of end item for order o shipped in period t
zγt Number of setup activities for process γ in period t

Table 3.3. Set, parameter and variable notation for the Planning Model
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Formulation (PM)

min
∑
o∈O:
Do≤ T

P̄o
(
Qo −

∑
t∈T

yot
)

+
∑
o∈O

∑
t∈T :
t>Do

Po
(
t−Do

)
yot

−
∑
o∈O

∑
t∈T :
t<Do

εo
(
Do − t

)
yot +

∑
i∈I

Hiri +
∑
i∈I

∑
t∈T

hivit

s.t. ∑
t∈T

yot ≤ Qo ∀ o ∈ O (P1)∑
t∈T :

t<Do−ε

yot = 0 ∀ o ∈ O (P2)

∑
t∈T

uit ≤ Ni ∀ i ∈ I (P3)

Ni −
∑
t∈T

(
uit +Ait +

∑
k∈Ki

nikAkt

)
≤ ri ∀ i ∈ I (P4)

∑
s∈T jt

ui,s−lγ = mγt ∀ j ∈ J, γ ∈ Γj , t ∈ T j : i = Iγ (C1)

Mγt zγt ≥ mγt ∀ j ∈ J, γ ∈ Γj , t ∈ T j (C2)

µ Mγt zγt ≤ mγt ∀ j ∈ J, γ ∈ Γj , t ∈ T j (C3)

zγt ≤ Zγt ∀ γ ∈ Γ, t ∈ T (C4)∑
γ∈Γj

(
Rγmγt + Sγzγt

)
≤ Cjt ∀ j ∈ J, t ∈ T j (C5)

vi,t−∆ +Ait + ui,t−Li −
∑
k∈Ki

nik ukt −
∑
o∈Oi

yot = vit ∀ i ∈ I, t ∈ T : t > Li (I1)

vi,t−∆ +Ait −
∑
k∈Ki

nik ukt −
∑
o∈Oi

yot = vit ∀ i ∈ I, t ∈ T : t ≤ Li (I2)

m, r, u, v, y ≥ 0 (NN)

z ∈ Z (INT )

The objective function minimizes the total penalty experienced throughout the planning hori-

zon. This penalty is comprised of 5 scheduling objectives. (Obj1) calculates the penalties for the

unsatisfied orders at the end of the planning period. (Obj2) calculates penalties for orders that

are delivered past their deadline. (Obj3) calculates a reward for delivering orders earlier than

their deadline within the delivery window. (Obj4) associates a penalty for incomplete production
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requirements, which incentivizes the partial production of orders which the plan is not able to

complete within the planning horizon. (Obj5) describes holding costs for inventory carried from

period to period.

Constraints (P1) prevent over-delivery. Constraints (P2) prevent deliveries for any order, o, ear-

lier than the user-defined delivery window. Constraints (P3) prevent over production. Constraints

(P4) calculate the unsatisfied requirements of each part, i. Note that these constraints consider 3

methods for satisfying the production requirements of any part, i. The first is from the cumulative

production of part i, in uit. The second is the cumulative allocation from scheduled receipts or

initial inventory of part i, in Ait. We refer to this as a direct allocation of the part, i. The third

method considers indirect allocations of the part, i. This accounts for cases in which an assembly

part, k, is received in the form of a scheduled receipt or existing inventory. Because of the existence

of these ancestor parts, the production requirements of part i need to be adjusted accordingly.

Constraints (C1) calculate the total production of process γ in time period t. Constraints (C2)

restrict the maximum output of each process γ. Constraints (C3) restrict the minimum output of

each process γ. Constraints (C4) restrict the number of setups for process γ are performed. Note

that Constraints (C2) and (C3) are only enforced when a setup activity is performed, i.e. zγt > 0.

Constraints (C5) ensure capacity consumption does not exceed available capacity.

Constraints (I1) and (I2) are inventory balance constraints. Constraints (I1) describe the in-

ventory level for time periods which are greater than the respective part i lead time, Li. In these

periods, the inventory vit is found as the inventory level from the previous period, plus any sched-

uled receipts of that part, plus the completed production of that part (i.e. from production started

Li periods ago), minus the units needed to start production of any parent assemblies in that period,

minus any units which are delivered to the end customer. For time periods which are less than the

lead time of the respective parts, the inventory balance Constraints (I2) remain the same with the

exception that no new production for the part can be completed, only scheduled receipts.

3.4.2 Node Pegging Model

The PM uses a general product structure to represent the Bill of Materials. A graphical rep-

resentation of a general product structure displays each unique item, regardless of the finished

good it is a component of, as a node in the graph and each unique parent-child relationship as an
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edge. In this network, each part (node) can have multiple parent nodes. While this representation

reduces the number of nodes required to represent the BOMs of the items a factory may produce,

it provides little transparency as to which component/part in the production plan will satisfy each

specific sales order. This information enables planners and schedulers to identify sales orders af-

fected by delays in production as well as provide up-to-date lead time information based on the

current state of production.

In Phase 2 of the solution procedure, the solution from the PM is used as input to the Node

Pegging Model (NM). The purpose of NM model is to take the production plan and associate each

unit of inventory to a specific production requirement of a sales order. This is accomplished by

translating the general product structure representation of the BOMs into their assembly product

structure representation. An assembly product structure representation captures each instance of

a part in the BOM associated with each unique sales order as a node in the network. For example,

if a part is a component of two different sub-assemblies in the finished good of a sales order, it will

be represented in the network as two separate nodes, whereas in the general representation it would

be displayed as just one. As a consequence, each node in the assembly network will have exactly

one parent node (except finished goods which have none). Considering this product structure, the

objective of the NM is to optimally allocate inventory to specific nodes such that each sales order

can be delivered exactly as described in the PM solution (by the delivery variables, yot).

We define the set of all nodes that exist in the demand backlog as f ∈ F . A node represents

a production requirement in the assembly structure of the finished good for a specific sales order.

For example, even if two sales orders call for the same finished good, i, the production requirements

for each sales order will be represented as multiple nodes in the NM. The set f ∈ F i : F i ⊆ F

defines all of the nodes which are representative of part i. An illustrative example of this property

is shown in Figure 3.2.

In the NM, we fix the optimized decision variables from the solution from the PM, treating

them as parameters. We introduce new notation for the parameterized decisions: Uit for production

decisions, and Vit for inventory levels. The objective of the NM is to allocate the units from each

of these parameterized decisions to the specific production requirement to the specific production

requirements associated with each node f ∈ F to satisfy each sales order. New variables, indexed

in f , are defined for allocating production, uft, scheduled receipts, aft, and inventory levels vft.
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A(1)

B(2)

C(4)

D(3)

E(4)

F(1)

G(2)

H(4)

I(4)

J(4)

Line Items

BOM Level = 0

BOM Level = 1

BOM Level = 2

Figure 3.2. Example: General product structure (left) and Assembly product structures (right)
representations of one end item (Part = 1) which satisfies two line items (Order 1 and Order 2).
Circles represent line items, squares represent parts and nodes. Numerical values represent part
numbers. Alphabetic values represent node ID. Note that network nodes are duplicated for each
part that is found in multiple line items AND multiple assemblies in each line item, i.e. Part 4 is
represented with Node C, Node E, Node H and Node J.

We define the one-to-one mapping o← Of to specify the sales order, o, that node f satisfies, and

the binary parameter Yf to take a value of 1 if node f is the end item deliverable for the sales order

Of . The parameter Nf specifies the cumulative production requirement allocated to node f to

complete the sales order it is associated with, and the variable rf tracks the difference between the

production requirements and total allocation dedicated to that node. The parameter Hf specifies

the per-unit penalty of under production/production for node, f .

We also define a new set of slack variables that track the parts (in the system as given by the

PM) that are not assigned to any sales orders. We denote this using a ∗ index over the planning

model solution parameters, i.e. u∗it. This inventory can be thought of as the safety stock on the

shop floor.
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Notation Description
Sets f ∈ F Set of all nodes

k ∈ Kf Single element set specifying the parent node to node f

k ∈ Kf Set of all nodes which are ancestors to node f
f ∈ F i Set of nodes which represent part i

o ∈ Of Single element set specifying the sales order that node f satisfies
Parameters Hf penalty per unit of node f required but not completed by end of horizon

Lf lead time of node f
Nf Units of node f needed to complete the sales order it is associated with
nfk Units of node f needed to build a unit of node k
Uit Parameterized lot production of part i from time period t (from PM)
Vit Parameterized inventory level of part i from time period t (from PM)
Yf 1 if node f is the end item for its associated sales order, otherwise 0

Variables rf units of node f required but not completed by the end of the horizon
aft Allocation of scheduled receipts from time period t to node f
uft Allocation of lot production from time period t to node f
vft Allocation of inventory from time period t to node f
a∗it Unallocated scheduled receipts of part i from time period t
u∗it Unallocated lot production of part i from time period t
v∗it Unallocated inventory of part i from time period t

Table 3.4. New and modified notation for the Node Pegging Model

Formulation (NM)

max
∑
f∈F

(∑
t∈T

vft −Hfrf

)
s.t. ∑

t∈T

(
uft + aft +

∑
k∈Kf

nfkakt

)
≤ Nf ∀ f ∈ F (1)

Nf −
∑
t∈T

(
uft + aft +

∑
k∈Kf

nfkakt

)
≤ rf ∀ f ∈ F (2)

a∗it +
∑
f∈F i

aft = Ait ∀ i ∈ I, t ∈ T (3)

u∗it +
∑
f∈F i

uft = Uit ∀ i ∈ I, t ∈ T (4)

v∗it +
∑
f∈F i

vft = Vit ∀ i ∈ I, t ∈ T (5)

vf,t−1 + aft + uf,t−Lf −
∑
k∈Kf

nfk ukt − Yfyot = vft ∀ f ∈ F, o ∈ Of , t ∈ T : t > Lf (6)

vf,t−1 + aft −
∑
k∈Kf

nfk ukt − Yfyot = vft ∀ f ∈ F, o ∈ Of , t ∈ T : t ≤ Lf (7)

a, r, u, v ≥ 0 (NN)
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The objective function of the NM is comprised of two components. The first component of

the objective maximizes the total allocated inventory during the planning horizon to incentivize

the allocation of inventory to sales orders as early as possible. The second objective component

minimizes the total weighted under production penalty. This ensures the allocation of produc-

tion requirements to the most important sales orders which are not delivered during the planning

horizon.

Constraints 1 limit the allocation of units to any node to be less than the total number of

units required to complete the production for the entire order. Constraints 2 calculate the under

allocation of inventory to each node, relative to the cumulative allocation requirements. These

constraints consider both direct and indirect allocations of scheduled receipts. Constraints 3-6

restrict the allocation of units across all nodes to be exactly equal to the available units of each

part i, defined from the solution of the Planning Model. Constraints 3 determine the slack (which is

unallocated inventory) remaining after the allocation of scheduled receipts. Constraints 4 determine

the slack remaining after the allocation of scheduled production. Constraints 5 allocate the existing

inventory to each node. Finally, Constraints 6-7 define the inventory dynamics, similar to how they

are defined in the PM. Note that the parameterized delivery decisions, yot, from the solution of

the Planning Model are the driving force that ensures the allocation of inventory across nodes

throughout the planning horizon matches the PM solution.

3.4.3 Continuous-Time Scheduling Heuristic

The solutions of the PM and NM are used as input for Phase 3 of the solution procedure, the

Continuous-Time Scheduling Heuristic (CTSH, see Section 2.7). The purpose of the CTSH is to

transform the big-bucket lot-sizing production plan from the PM/NM solution into a continuous-

time, assignment-based solution with enough detail to be executed on a shop floor and to evaluate

the true performance of the proposed plan in practice. The CTSH algorithm has been developed

as a myopic, forward-constructed scheduling heuristic that iteratively schedules all of the activities

in the planning horizon.
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3.5 Numerical Implementation

3.5.1 Design of Experiments

In this section, we evaluate the production planning framework developed in this chapter, when

integrated with the Digital Twin framework presented in Chapter 2. Unless otherwise specified, all

generated problem instances consider a factory which is comprised of 50 unique parts, 8 resource

groups and 25 customer orders. Products are represented in a general product structure. Cyclical

and multi-step routings are allowed. The production facility is structured into 3 production phases,

to differentiate the characteristics of early, middle and final stage processes. Each with a target

utilization of 0.80. Each part belongs to one of four part classes and each resource group belongs

to one of six resource group classes (see Table 3.6 and 3.7). The Bill of Materials of any part can

have a maximum of 4 offset levels, and each part can have up to 5 children. The numer of units

per parent are in the range [1, 5] and the routing of each part can have up to 5 route steps. Each

resource group is made up of up to 3 resources. Each customer order represents a demand for a

single part (belonging to part class FinishedGood) for a quantity in the range [1,20]. The planning

horizon spans 26 weeks, with 40 hours in a week. Three timelines are considered in the planning

horizon with time steps of 10 hours, 20 hours and 40 hours, respectively.

Parameter Notation Default Value Description

prodStr General Specification of Product Structure scheme
resAssign Cyclical Specification of Resource Assignment scheme
routeComp Multi-Step Specification of Routing Complexity scheme
utilProf [80, 80, 80] Specification of Utilization Profile scheme
numI |I| 50 Number of unique items
numJ |J | 8 Number of unique resource groups
maxT |T | 26 Length of the planning horizon (weeks)
numLI |O| 25 number of external demand orders
numSR |A| 0 number of scheduled receipts

maxRperRG |E| 3 max number of resources per resource group

maxLiQty Q 20 Max qty. associated with any line item

maxLev λ 4 Max level in a BOM
maxUPP n 5 Max units-per-parent of any parent-child relationship

Table 3.5. User-defined parameters, notation, and values - Factory parameter model

In order to evaluate the solution quality and provide an analysis of the proposed algorithms, we

used test instances generated using the algorithms introduced in Section 2.5. Each test instance,
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className Raw Material MachinedPart AssembledPart FinishedGood

classDensity 0.1 0.3 0.3 0.3
[ minChild, maxChild ] [0, 0] [1, 3] [1, 5] [1, 5]

[ minParent, maxParent ] [1, 10] [1, 5] [1, 3] [0, 0]
[ minLevel, maxLevel ] [3, 3] [1, 2] [1, 2] [0, 0]

[ minRS, maxRS ] [0, 0] [1, 3] [1, 3] [1, 3]

Table 3.6. User-defined parameters, notation, and values - PartClass parameter model

className RG1 RG2 RG3 RG4 RG5 RG6

classDensity 0.16 0.16 0.16 0.16 0.16 0.16
[ minLevel, maxLevel ] [0, 3] [0, 3] [0, 1] [0, 1] [2, 3] [2, 3]

timeline 10 10 20 20 40 40
probSetup 0.50 0.50 0.25 0.75 0.25 0.75

[ minS, maxS ] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5] [0, 0.5]

Table 3.7. User-defined parameters, notation, and values - ResourceGroupClass parameter model

referred to as base factory, is reproducible through the use of pseudo-random number generators.

Each instance can also be copied then updated such that several versions of a base factory can

be evaluated and compared. For example, a base factory can be updated for various coefficients

weightings which influence coefficients such as the per-period holding cost of parts or per-period

tardiness penalty of orders. The process of copying then updating a base factory enables com-

parable results between different variations of each test instance. Once a base factory has been

updated, now named factory, the solution procedure of preparing parameters, solving the produc-

tion Planning Model, the Node Pegging Model, the CTSH simulation and post-processing analysis’

is followed in sequence. This process is summarized in Algorithm 8.

A total of 10 base factory environments are generated and updated throughout the analysis’

provided in each section. We limit runtimes of each problem to 3600 seconds, track the runtime

required to reach significant MIP Gap milestones, and use an MIPGap termination condition of 1%

to terminate near-optimal solutions. All computational experiments are performed using Gurobi

v9.5.0 solver, on machines with 32 GB RAM and 8 cores.

In the following, we evaluate the proposed Planning and Pegging formulations and overall so-

lution procedure against several benchmark solution methodologies. In Section 3.5.2, we evaluate

the proposed solution procedure compared to the MRP-based heuristic presented in Section 2.6. In
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Algorithm 8: Procedure for parameter calibration Design of Experiments

Input: num env : Number of base factory environments to run
Input: grid : Parameter grid with all variations of each base factory to evaluate
Input: UDP : Collection of all required User-Defined Parameters

1 Initialize result

2 for env in range(num env) do
3 Let base factory be the output of generator ← UDP

4 for (trial name, trial) in grid do
5 Let key be the tuple (env, trial name)

6 Let factory be the output of update factory ← (base factory, trial)

7 Let p be the output of preprocess ← factory

8 Let pm be the output of the Planning Model ← (factory, p)

9 Let nm be the output of the Pegging Model ← (factory, p, pm)

10 Let sim be the output of the CTSH simulation ← (factory, pm, nm)

11 Let kpi be the output of KPI pipeline ← (sim, pm)

12 Save key:kpi → result

Output: result

Section 3.5.3, we evaluate the implementation of the novel Resource-Dependent-Timeline method-

ology (see Section 3.3.1) versus an implementation of the Planning Model which relies on a single

timeline. Finally, in Section 3.5.4, we evaluate the impact which the representation of the decision

variable for setup activities has on the solutions generated by the Planning Model. We consider

the use of integer, binary and continuous decision variables.

We refer the reader to Appendix B for an in-depth discussion and sensitivity analysis regarding

the calibration of the user-defined parameters associated with the proposed solution procedure.

These user-defined parameters are associated with: 1) the derivation of the cost coefficients in the

objective function of the PM and NM and 2) the constraints and rules used in the PM and CTSH

to reflect various common manufacturing practices.

3.5.2 MRP Heuristic Benchmarking

Table 3.8 provides an analysis on the performance of the proposed solution procedure and

Planning/Pegging Models against the MRP-based production planning heuristic. Values shown

in this table represent the average value of each metric across the 10 shared base factory test

instances. For example, values shown for the 25th pc. of Lateness are calculated as the mean of
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the 25th percentile of lateness of shipments from each test instance. The index, Measure, indicates

the whether the delivery KPIs consider the delivery of the delivered Units or Dollars. The index,

Method, indicates what solution method each row represents. PM shows the results from the

production plan generated by the Planning Model, and MRP shows the results from the MRP-

heuristic (see Section 2.6.1). The index Source indicates whether the delivery performance is given

directly by the production plan (Planned) or calculated as output from the CTSH heuristic (Actual).

All values shown evaluate the delivery performances based on the weighted value of each unit in

the demand backlog.

The multi-column, % of Demanded, represent the percentage of demands that were delivered

during the planning horizon (Delivered) and delivered on time (On Time). Multi-column Lateness

(Hours) describes the distribution of the lateness for shipments made during the planning horizon.

Shipments which were delivered earlier than the associated order’s due date will have a negative

value for lateness.

As a reminder, the MRP-benchmark does not consider capacity and as a result is capable

of completing and delivering all demands to the customer during the planning horizon in the

production plan, while the Planning Model is only able to deliver, on average, 87.6% of demands

(in Dollars) during the planning horizon. However, the Planning Model greatly outperforms the

MRP heuristic when considering the continuous-time execution of the production plans. While the

simulated execution of the production plan generated by the PM/NM is able to deliver on 84.2%

of demands (in Dollars), the MRP plan is only able to deliver 27.0%.

Note that the MRP heuristic has much better delivery performance when considering the %

of Delivered Units. This shows that while the simulated schedule of the MRP-based production

plan is able to deliver 62% of units, that the units that were able to be shipped were a low-value,

i.e. had less complex BOM structures, depending on the successful completion of less scheduling

tasks. Further, the Lateness of deliveries in the simulated plan of the PM/NM outperforms the

MRP heuristic.

80



Table 3.8. Comparison of proposed solution procedure vs MRP-based heuristic: Analysis of
planned delivery performance based on each model and its corresponding assumptions, and actual
delivery performance calculated via simulation using the CTSH

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure Source method

Dollars
Planned

MRP 100.0 % 88.0 % -29.8 -40.0 -40.0 -34.9
PM 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0

Actual
MRP 27.0 % 5.4 % 263.3 56.0 282.0 439.0
PM 84.2 % 21.8 % 124.6 11.0 94.0 223.0

Units
Planned

MRP 100.0 % 91.3 % -31.4 -40.0 -40.0 -33.1
PM 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0

Actual
MRP 62.9 % 21.3 % 163.8 0.0 130.5 298.0
PM 83.2 % 33.0 % 100.2 -36.0 57.0 188.0

Table 3.9 presents the realized penalties in the production plan solution (Plan), simulated sched-

ule (Actual), and the difference between the two (Difference). Values are shown as a percentage of

the Total Cost of Goods Sold, i.e. the cumulative value of all demands in the planning horizon.

The total cost of goods sold is calculated as:
∑
o∈O

QoVi←Io . As shown in Appendix B, the value of

each part, Vi, is also used to derive the objective function coefficients in the PM.

Holding Cost shows the cost experienced for holding non-WIP inventory, Under Production is

the cost for shortages in the production of items relative to the internal production requirements

necessary to satisfy all external demands, Tardiness Penalty is the total penalty for lateness of

all deliveries made during the planning horizon, and Unfulfillment Penalty is the total penalty

experienced for units that were demanded during the planning horizon but not delivered. As

shown, the MRP production plan greatly under-estimates the costs which are experienced in the

simulated schedule. The MRP generated schedule also resulted in a Total Penalty more than twice

as large as that of the schedule proposed by the PM/NM procedure.
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Table 3.9. Comparison of proposed solution procedure vs MRP-based heuristic: Analysis of costs
and penalties in the production plan and simulated schedule

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

Source method

Plan
MRP 0.00 % 0.00 % 0.64 % 0.00 % 0.64 %
PM 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %

Actual
MRP 2.61 % 8.55 % 5.51 % 28.15 % 44.82 %
PM 3.47 % 3.34 % 7.74 % 7.07 % 21.63 %

Difference
MRP 2.61 % 8.55 % 4.87 % 28.15 % 44.18 %
PM 2.76 % 1.34 % 1.73 % 1.56 % 7.40 %

Table 3.10 provides a comparison of the Planned and Actual utilization rates across the 10 test

scenarios for both the MRP-benchmark and proposed framework. The column, Process shows the

percentage of available resource hours which are spent in the processing phase of an operation, and

Setup shows the time spent in the setup phase of the planned tasks; Total is the sum of the two.

It should be noted that the Planned utilization of the Planning Model much better estimates the

Actual realized utilization, showing a 3.0% error, compared to a 10.4% error in the MRP plan.

While the utilization rates resulting from both the MRP and PM are comparable in the simulated

schedule, the proportion of time spent in processing in the simulated schedule is greater with the

PM plan than the MRP plan. This is due to a larger proportion of planned production lots from

the MRP plan being delayed beyond the limits of the planning horizon.

Table 3.10. Comparison of proposed solution procedure vs MRP-based heuristic: Analysis of
resource utilization in production plan and simulated schedule

Planned Actual
Process Setup Total Process Setup Total

method

MRP 68.23 % 14.21 % 82.44 % 57.99 % 14.05 % 72.04 %
PM 65.46 % 13.38 % 77.81 % 60.55 % 14.26 % 74.81 %

Table 3.11 provides a summary into the number and size (quantity) of each planned delivery

shipment and production work order. The column, Count is the number of unique shipments/work

orders in the production plan. Mean and Median describe the quantity of units which are deliv-

ered in each shipment or produced in each work order, and Total is the total quantity of units

shipped/produced in the production plan. All values shown are representative of the means across
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all 10 tested scenarios. The MRP production plan generates a single shipment for each line item.

The MRP plan also results in about 300 generated work orders compared to 423 from the PM plan.

Also note that the MRP production plan has a greater number of units shipped and produced (col-

umn Total) compared to the PM production plan. This is a result of the MRP-based production

plan incorrectly estimating what will be able to be produced during the planning horizon.

Table 3.11. Comparison of proposed solution procedure vs MRP-based heuristic: Analysis of
generated shipments and work orders in the production plan

Delivery Shipment Qty Work Order Qty
Count Mean Median Total Count Mean Median Total

method

MRP 25.00 9.96 9.70 249.10 298.10 32.71 17.77 9750.00
PM 72.10 3.21 2.30 231.35 422.90 22.53 9.72 9526.90

Table 3.12 provides context to the delays which are experienced for both delivery Shipments

and Work Orders in the simulated schedule, compared to the generated production plan. For both

Shipments and Work Orders, Count describes the number of planned work orders (measured as an

average across the 10 test scenarios) which are completed during the simulated planning horizon,

Mean and Median are the mean and median lateness of task start times in the simulation relative to

their planned start time. As shown, the proposed solution framework also greatly outperforms the

MRP heuristic in generating a production plan that can be achieved in the CTSH. Note that the

Mean and Median delays experienced for the Work Orders and Shipments throughout the planning

horizon are much greater for the MRP plan than the PM/NM plan.

Table 3.12. Comparison of proposed solution procedure vs MRP-based heuristic: Analysis of
delays in the simulated execution of work orders relative to the scheduled production plan

Shipments Work Orders
Count Mean Median Count Mean Median

method

MRP 17 190.4 143.9 279 159.3 98.2
PM 67 47.5 7.0 416 22.4 3.6

These results show that the simulated schedule of the MRP-based production plan, on average

across the 10 tested instances, was able to complete 17 out of 25 planned shipments. However, as

Table 3.8 showed, these deliveries consisted of low-value end items, requiring the completion of less
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tasks. It is the high-value, complex end items which were most affected by the compounded delays

experienced by the work orders associated with down-stream processes.

3.5.3 Single Timeline vs Resource Dependent Timeline

A notable contribution of the proposed Planning Model is the novel approach for the dis-

cretization of the planning horizon in different timescales. Specifically, several timelines are defined

representing the same planning horizon, then each resource group is assigned to one of those time-

lines on the basis of the characteristics of the processes which they are responsible for. There are a

user-defined number of timelines, τ . The timeline with the highest level of accuracy, i.e. with the

smallest duration buckets, is referred to as the base timeline. The duration of each time period in

the base timeline is ∆. Each timeline is related to each other in that the duration of the periods in

each successive timeline is twice the duration of the previous one. For example, a problem which

implements 3 unique timelines with a base-timeline period duration of 10 hours will result in a

timeline with 10-hour, 20-hour, and 40-hour period durations respectively.

The benefit of this approach is in the accuracy of the production facility dynamics which this

approach enables while not over-complicating the problem formulation. This benefit is exaggerated

in problem settings which exhibit a large variation in the typical process cycle times (setup +

processing time) across different resource groups.

In the following, we evaluate the performance of the proposed Resource-Dependent Timeline

approach (RDT) with 3 timelines and a base time-step of 10 hours versus a Single Timeline (ST)

approach with 1 timeline with periods of 40 hour duration. In order to enable an apples-to-

apples evaluation, several parameters must be recalculated when translating the problem to a ST

representation, specifically the maximum production lot size, Mγt, and the maximum number of

setups allowed per period, Zγt. These recalculations are for the resources that were associated with

timelines that have shorter periods in the resource-dependent approach we used.

Table 3.13 shows the delivery performance of the proposed framework (with Resource-Dependent

Timelines) compared to a Single-Timeline representation. As shown, the proposed RDT model out-

performs the ST model in both the plan and simulated schedule. The RDT model is able to Deliver

a higher proportion of demand in both the plan and simulation, as well as more demand On Time.

Further, the RDT has better Lateness performance in the plan and schedule. Another aspect in
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which RDT outperforms the ST model is in its estimation of performance in the production plan

compared to the schedule simulation. For example, the RDT model planned to deliver 87.6% of the

demand and was able to deliver 84.2% (a 3.4% difference) in the simulation, while the ST model

planned for 86.9% and was able to deliver 74.6% (an 11.3% difference). A similar conclusion can

be derived by comparing the difference in planned vs actual delivery KPIs for Lateness.

Table 3.13. Comparison of Resource-Dependent Timelines vs Single Timeline: Analysis of planned
delivery performance based on each model and its corresponding assumptions, and actual delivery
performance calculated via simulation using the CTSH

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Source Timeline

Actual
RDT 84.2 % 21.8 % 124.6 11.0 94.0 223.0
ST 74.6 % 6.2 % 234.5 92.0 222.0 355.0

Planned
RDT 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
ST 86.9 % 33.6 % 86.0 -31.0 43.0 161.0

Table 3.14 compares the accrued costs in the RDT model compared to the ST model for both

the production plan and simulated schedule. In this analysis, the RDT model achieved a lower Total

Penalty in both the production Plan and the schedule simulation (Actual). The RDT also provides

a better estimate of the Total Penalty in the production plan that is realized in the simulation. This

pattern is exhibited for all cost KPIs besides the Holding Costs. This is mainly due to the difference

in the frequency with holding costs are accrued. In the RDT model, inventory is evaluated every

10 hours, while in the ST model, it is evaluated once every 40 hours, i.e. at the granularity of the

base timeline, ∆.

Table 3.14. Comparison of Resource-Dependent Timelines vs Single Timeline: Analysis of costs
and penalties in the production plan and simulated schedule

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

Source Timeline

Plan
RDT 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
ST 0.58 % 3.67 % 7.71 % 6.24 % 18.20 %

Actual
RDT 3.47 % 3.34 % 7.74 % 7.07 % 21.63 %
ST 2.69 % 5.67 % 11.92 % 10.29 % 30.57 %

Difference
RDT 2.76 % 1.34 % 1.73 % 1.56 % 7.40 %
ST 2.11 % 2.00 % 4.21 % 4.05 % 12.37 %
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Table 3.15 compares the overall utilization rates when implementing the RDT model and the

ST model for both the production Plan and Actual schedule. While the Planned utilization rates

are comparable between the two models, the RDT outperforms the ST in the utilization observed

in the CTSH simulation. The RDT again provides a better representation (and estimation) of the

planned utilization compared to the realized utilization showing a difference in utilization of 3%

compared to 7.83% when using the ST model.

Table 3.15. Comparison of Resource-Dependent Timelines vs Single Timeline: Analysis of resource
utilization in production plan and simulated schedule

Planned Actual
Process Setup Total Process Setup Total

Timeline

RDT 65.46 % 13.38 % 77.81 % 60.55 % 14.26 % 74.81 %
ST 63.03 % 14.50 % 76.82 % 55.59 % 13.40 % 68.99 %

Table 3.16 shows an analysis of size and count of Shipments and Work Orders generated in the

production plans of the RDT and ST models. The RDT production plan generates a larger Count

of shipments and work orders, mainly as a result of the ability to begin production of work orders

and shipments at a finer time granularity (every 10 hours vs 40 hours). As a result, the Mean and

Median lot sizes of shipments and work orders are also smaller in the RDT model.

Table 3.16. Comparison of Resource-Dependent Timelines vs Single Timeline: Analysis of gener-
ated shipments and work orders in the production plan

Delivery Shipment Qty Work Order Qty
Count Mean Median Total Count Mean Median Total

Timeline

RDT 72.10 3.21 2.30 231.35 422.90 22.53 9.72 9526.90
ST 48.90 4.24 3.21 207.41 234.60 38.68 17.44 9073.47

Table 3.17 provides a view into the delays Shipments and Work Orders in the simulated sched-

ule compared to the production plan for both the RDT and ST models. As shown, the delays

experienced in the simulation of the RDT production plan are much less than those in the ST

production plan.
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Table 3.17. Comparison of Resource-Dependent Timelines vs Single Timeline: Analysis of delays
in the simulated execution of work orders relative to the scheduled production plan

Shipments Work Orders
Count Mean Median Count Mean Median

Timeline

RDT 67 47.5 7.0 416 22.4 3.6
ST 42 88.6 42.0 229 40.8 8.5

3.5.4 Representation of Setup Decision Variables

When considering the runtime required to identify high quality solutions, the definition of

variable types is critical. All models presented to this point have leveraged integer variables for the

setup activity of processes, zγt, as it seems to be the most accurate way to capture the reality of the

production schedule. However, as alluded to in Section 3.3.1, it is possible to model the production

planning problem using binary decision, where the decisions changes from “how many setups to

perform in period t?”, to “perform a setup activity during this period or not?”. Additional steps

must be taken to ensure that the calculation of the maximum production lot size, Mγt, is correct

so that resources aren’t over-utilized. The assumptions taken in these preprocessing steps result in

the possibility of several variations of a binary variable implementation.

For example, when implementing the binary variable representation of the setup activity, Mγt

can be calculated assuming that capacity consumed by the associated setup activity is occurring

on: 1) ONE resource within the resource group, 2) ALL resources within the resource group, or 3)

SOME of the resources within the resource group. An implementation which assumes that a setup

will take place on all resources represents the most conservative option. Specifically, this will result

in the smallest maximum production lot size allowed for each setup activity. To account for the

other options, we would adjust the setup time, Sγ , associated with any setup decision.

Regardless of the variation of implementation, we expect the resulting production plans lever-

aging binary setup decision variables to have a less accurate translation when converted into the

executable schedule, resulting in more delays compared to the production plan which leverages

integer decision variables for setup activities which better reflect the existence of multiple machines

in the resource group and small batch sizes. We expect that the binary variation assuming one
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resource setup will result in the worst solution performance and the assumption of a setup on all

resources to perform the best.

Further, considering that the assumptions taken to construct the production planning model,

i.e. lead time buffers, planning horizon discretization, etc., are already enough to muddy the results,

we also evaluate the performance of a continuous variable representation of the setup variable. We

expect that the runtimes to solve the model using continuous variables for setup decisions to be

reduced drastically, but the resulting production plan to be even less accurate when converted into

a continuous time schedule. We expect that the total setup time accounted for in the planning

model will be greatly under-represented. In the following, we evaluate the solutions associated with

each of the aforementioned representation methods.

Table 3.18 provides a view on the performance of delivery KPIs in both the production plan

and simulated schedule, with respect to the type of decision variable (varType) used to represent

production setup activities. Within the production Plan, as expected, the relaxed Continuous DV

model is able to deliver the largest proportion of demands within the planning horizon, as well as the

largest percentage of On Time deliveries. Both the Integer and Binary DV representations behave

similarly for both the production plan (Planned) and schedule simulation (Actual). However, the

Integer representation slightly outperforms the Binary when considering the Lateness of deliveries,

while the Binary DV model slightly outperforms in the % Delivered and delivered On Time.

Surprisingly, the Continuous DV production plan is capable of delivering the most demands

in the simulated schedule, while also delivering more demands On Time than the Integer DV

model. However, the Lateness of deliveries in the simulated schedule of the Continuous DV model

is significantly worse than in the Binary and Integer DV models.
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Table 3.18. Comparison of Integer vs Binary vs Continuous decision variables for setups: Analysis
of planned delivery performance based on each model and its corresponding assumptions, and actual
delivery performance calculated via simulation using the CTSH

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Source varType

Actual
Binary 80.4 % 25.2 % 89.4 -15.0 63.0 162.0

Continuous 93.8 % 21.9 % 118.8 14.0 101.0 199.0
Integer 79.8 % 19.7 % 83.1 -8.0 62.0 160.0

Planned
Binary 81.9 % 48.3 % 16.5 -62.0 -27.0 64.0

Continuous 98.6 % 60.8 % 23.2 -60.0 -19.0 81.0
Integer 81.4 % 47.0 % 8.3 -63.0 -32.0 36.0

Table 3.19 shows the costs associated with each DV model for both the production plan (Plan)

and simulated schedule (Actual), and the difference between the two. Surprisingly, again, the Con-

tinuous DV model results in the lowest Total Penalty for the simulated schedule, while the Binary

and Integer DV models perform similarly. Specifically, the Continuous DV model outperforms the

Binary and Integer DV models in the cost accrued as an Unfulfillment Penalty. It should be noted

that the Continuous DV estimation of costs in the production plan are the most inaccurate for all

measures (besides Holding Cost). The padding associated with lead times and time buckets is put

to use by the Continuous DV plan which allows more production to happen each period as it does

not fully capture the setup times.

Table 3.19. Comparison of Integer vs Binary vs Continuous decision variables for setups: Analysis
of costs and penalties in the production plan and simulated schedule

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

Source varType

Plan
Binary 0.61 % 3.84 % 4.26 % 8.12 % 16.82 %

Continuous 0.28 % 0.12 % 4.73 % 0.19 % 5.30 %
Integer 0.60 % 4.30 % 4.10 % 8.50 % 17.50 %

Actual
Binary 3.47 % 4.78 % 5.93 % 8.60 % 22.77 %

Continuous 3.07 % 4.28 % 7.71 % 1.99 % 17.04 %
Integer 3.38 % 4.90 % 6.19 % 9.05 % 23.51 %

Difference
Binary 2.86 % 0.94 % 1.67 % 0.48 % 5.95 %

Continuous 2.79 % 4.16 % 2.98 % 1.80 % 11.74 %
Integer 2.78 % 0.60 % 2.09 % 0.55 % 6.01 %
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Table 3.20 presents a comparison of the utilization rates achieved in the production plan and

schedule simulation by varType. Note that the Continuous DV model greatly under-estimates the

amount of time spent for Setup in the production Plan. However, when simulated, the resulting

Actual utilization rate does not suffer (compared to the Binary and Integer DV models). This is

due to the Continuous DV plan sequencing each work order such that it could be followed with

minimal contradiction in the simulated schedule, besides being delayed by the underestimated setup

time. Further, due to the conservative assumptions implemented, the setup time accounted for in

the Plan is greatest for the Binary DV model. The Integer DV model provides the best estimation

of Total utilization in the production Plan, with only a 0.77% difference against the Actual:Total

utilization.

Table 3.20. Comparison of Integer vs Binary vs Continuous decision variables for setups: Analysis
of resource utilization in production plan and simulated schedule

Planned Actual
Process Setup Total Process Setup Total

varType

Binary 66.41 % 10.01 % 75.93 % 62.46 % 12.76 % 75.22 %
Continuous 69.95 % 2.65 % 71.41 % 62.12 % 18.49 % 80.61 %

Integer 65.31 % 8.68 % 73.54 % 61.15 % 11.69 % 72.83 %

Table 3.21 provides an analysis on the Count and quantities associated with the generated

Shipments and Work Orders in the production plans for each respective DV type. As expected,

the Continuous DV model results in the largest number of generated shipments and work orders

with the lowest Mean and Median quantities associated with each task.

Table 3.21. Comparison of Integer vs Binary vs Continuous decision variables for setups: Analysis
of generated shipments and work orders in the production plan

Delivery Shipment Qty Work Order Qty
Count Mean Median Total Count Mean Median Total

varType

Binary 80.60 2.89 2.09 232.73 479.30 19.27 8.88 9235.14
Continuous 110.00 2.29 1.43 251.96 758.90 13.11 5.10 9951.45

Integer 74.70 3.09 2.20 230.84 445.60 20.78 9.47 9260.73

Table 3.22 shows the delays in the start times of delivery shipments and work orders during the

scheduling simulation compared to the respective production plans. The Continuous DV production
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plan results in the largest Mean and Median delays for both Shipments and Work Orders, while

no clear superior model can be identified between the Integer DV and Binary DV plans.

Table 3.22. Comparison of Integer vs Binary vs Continuous decision variables for setups: Analysis
of delays in the simulated execution of work orders relative to the scheduled production plan

Shipments Work Orders
Count Mean Median Count Mean Median

varType

Binary 76 39.4 3.5 474 20.7 3.1
Continuous 103 62.8 13.0 730 73.7 32.2

Integer 70 45.0 4.0 442 20.2 1.2

3.6 Practical Considerations and Model Extensions

To enable the proposed framework as a viable and effective scheduling tool, it is necessary to

incorporate the existing state of the shop floor at the time in which a schedule is generated. It is

also important to consider alternative scheduling objectives which incentivize good manufacturing

practices and allow the user to focus on different performance indicators that best represent the

shop priorities at a particular time. In the following, we present several extensions which address

some of these considerations.

3.6.1 Incorporating Current Shop-Floor Conditions

Existing Orders and Work-In-Progress

We define two classes of work orders which may exist in the production environment at any

given time of the factory. The first category of work orders are ones which have already been

scheduled or are Work-In-Progress at the time the PM is run. We incorporate these work orders

into the PM during the preprocessing phase of the procedure. We determine the time at which

the work order will be completed, assuming no delays, and define the output of the work order

a scheduled receipt. We account for the capacity requirements of these work orders by removing

available capacity for each resource they visit in the remaining steps of their routings.

The second type of existing work order, w ∈W , we consider calls for the production of a specific

part and has a specified output quantity, qw, but has NOT YET been scheduled. We account for

these work orders by creating a new binary production variable xwt which takes a value of 1 if work
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order w is scheduled to begin production at time t, 0 otherwise. These types of work orders will be

included in the optimization model similar to the standard production variable uit; however, the

quantity which is produced will be fixed at the value qw and the work order scheduling decision is

thus captured by a binary variable, xwt. The existing work orders which call for the production

of part i are denoted by w ∈ W i: W i ⊆ W . This subset mapping is used to link the production

variables uit with the work order production variables, xwt, and is introduced to the formulation

in each constraint which uit is found.

Target Safety Stock Levels and Production Yields

In practice, it is common for firms to hold excess inventory of parts to hedge against the

possibility of delayed production or quality conformance issues. We consider a decision-maker’s

preference for holding extra inventory of a part, i, by defining a target safety stock level, v∗i , and

a per-unit per-period cost, pi, associated with inventory being below the target safety level. We

define the non-negative variable, dit, as the difference between the inventory level and the target

safety stock level for each time period: dit ≥ v∗i − vit.

It should be noted that it would be possible to consider a time-dependent target safety stock

which considers materials requirements congestion by adding a time-index to v∗i , i.e. v∗it. This

consideration may be useful, as it provides an opportunity to incentivize the production of a part

in preparation for an influx of demand. Consider the example where it is known that a part which

consumes extensive resources will be required far into the planning horizon, but the resources it

requires are known to be under utilized in the immediate portion of the horizon. By specifying a

higher target safety stock level for this part in the near term, then reducing it once the parts have

been produced, it provides the scheduler a method for guiding the optimizer.

To hedge against the possibility of quality issues and scrap in production, it is critical to include

considerations of production yield in the optimization model. Consideration of production yield

could be handled in preprocessing by incorporating a safety factor to the Units per Parents dataset,

nik. For example, if it is known that production of a part is satisfactory 90% of the time, i.e. yield

is 0.90, and an assembly requires 10 units of a specific produced components, then we’d represent

the UPP (nik) as
10

0.9
= 11.11. This method of incorporating yield considers only the expected case
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of yield. Safety stock will be coupled with this method in order to accommodate the uncertainty

in the yield at any particular time.

3.6.2 Accounting for Further Shop-Floor Complexity

Alternative Routings and Part-Steps

The presented formulation is limited such that there is no flexibility in the schedule within the

routing of a production lot. The only decision is when a production lot is started. The schedule

of the subsequent processing steps to complete that work order are then fixed. However, the

production plan could be improved by allowing flexibility within the routing by inserting idle time

between route-steps. One method for introducing this flexibility into the planning model would

be to define alternative routes for the work orders. We introduce a new index, ω, to denote each

possible production routing, and the set, Ω, as the collection of all possible routes. Each route, ω,

will produce as output a part i. We define the subset of all routes which produce part i as ω ∈ Ωi.

This subset of routes defines the set of alternative routes which are capable of producing part i and

allows for the introduction of flexibility by allowing for unique definitions of lead time, now Lω,

and lead time offsets, now lωj , during the production of part i. Production decisions, formally uit

would be denoted as, uωt, defining the quantity of units which begin production in route ω during

period t. The production of part i in each period would be equal to: uit =
∑
ω∈Ωi

uωt. Further, all

instances of Li would be replaced by Lω, and the indices for processes, γ ∈ Γ would need to be

expanded from the tuple, ijb to ijbω. This alternative routing method could also allows for the

flexibility of specifying secondary resources which are capable of completing certain processes. For

example, if multiple resource groups can process a part, we would specify two alternative routes

for the part, unique in the resource group that each routing specifies.

Another approach to allow for flexibility in the production of parts, would be to split the parts

routing into part-steps. This would reduce the number of resources each part requires throughout its

routing. New part indices would be created for each of the part-steps. The benefit of this approach

would be that this allows for a route with potentially dozens of route-steps to be represented as

a series of decisions with less complex routings, while introducing the ability to introduce idle

time between part-steps. The drawback is that increased problem size and the departure from the

common shop-floor practice of keeping the lot constant throughout its routing. Note that as the
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production quantity at each step is decided separately in the part-step model, the optimal lot sizes

will most likely vary.

Resources Sub-Groups

Production within factories requires the use of value-adding resources that transform raw ma-

terials into finished goods. We consider three classes of resources: machines, operators and tools.

Machines are physical equipment which add value to parts, while remaining in a fixed location on

the shop floor. Tools are also physical equipment, but they are not fixed to a specific location.

Operators represent the human workforce who perform setup activities and run processes on ma-

chines. Completing a particular process may require a machine, a specific tool (e.g. a cast-iron die)

and an operator to be available for potentially different amounts of time.

Due to the large size of modern-day aerospace factories, it is infeasible to represent each machine,

operator, and tool as an independent entity in a medium-term planning model. The aggregation of

similar resources into groups relieves some of the computational burden. Machines are grouped into

work centers, operators into operator groups, and tools into tool groups. Capacity is aggregated

across all individual entities within a group. The parameter |Ej | defines the number of resources

within a resource group, j, i.e. number of machines in a work center.

In practice, it is unlikely that all resources within a group can be aggregated into a homogeneous

set. Consider the example in which several generations of a similar machine are grouped into a

resource group. It is possible that some of the older generations may not be able to process all of

the parts that the newer generation can. We introduce the concept of resource subgroups to account

for this circumstance. By defining subgroups of resources, we allow the possibility to define a parts

routing to require processing by a newer generation of machines within a resource subgroup, while

also allowing that subgroup to be assigned the production of parts that can also be processed by

the older generation. To add this consideration to the planning model we incorporate the following

variables and parameters. We define the set g ∈ Gj to describe the set of resource subgroups within

the resource group j. The resource subgroups will also be represented as a resource group, j ∈ J .

The variable cjt is the capacity of resource group (or subgroup) j consumed in time period t. We

replace the capacity constraint (C3) with the following:
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∑
i∈Ij

(
Rγmγt + Sγzγt

)
= cjt ∀ j ∈ J, t ∈ T j (G1)

cjt +
∑
g∈Gj

cgt ≤ Cjt ∀ j ∈ J, t ∈ T j (G2)

The new Constraints (G1) calculate the capacity allocated of each resource group (or subgroup),

j ∈ J , in time period t. Constraints (G2) ensure that the total capacity allocated for each resource

group is less than the available capacity in that time period. The allocated capacity in this con-

straint is calculated as the sum of the capacity allocated from its own group index, j, plus the total

allocated capacity of all of its subgroups, g ∈ Gj .

Delivery Requirements

We represent the delivery decision variable, yot, as a continuous variable in the PM. However,

it may not be appropriate to deliver partial units of a finished good. In this case the variable y can

be represented as an integer, rather than a continuous variable. The presented formulation also

allows for partial deliveries. However, it may be required to deliver all items within an order at the

same time, e.g. to reduce transportation costs. This can be included by defining yot as a binary

variable and modifying the inventory dynamic constraints using the multiplier Qo.

A further generalization in delivery requirements would consider the case of multi-product

orders. We define an order, o, as a demand for a single product, i. However, in practice it is likely

for customers to purchase multiple products. Sets would need to be defined for customer orders

and for line items. A mapping signifying which line items belong to any order o would also be

introduced, similar to the mapping Oi which defines the set of line items which call for the delivery

of part i.

3.7 Conclusion

In this chapter, we introduce the Hierarchical Job Shop Schedule Planning and Execution

Problem. The 3-phase solution procedure we develop includes: 1) the Planning Model (PM) to solve

the Multi-Level Capacitated Lot-Sizing Problem (MLCLSP), 2) the Node Pegging Model (NM) to

solve the Order-Lot Matching Problem (OLMP), 3) and the Continuous-Time Scheduling Heuristic

(CTSH, presented in Section 2.7) to solve the continuous-time scheduling assignment problem.
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Our main contributions to the literature consider the novel modelling techniques developed for

the MLCLSP, as well as the development of the integrated solution procedure in a comprehensive

framework. We focus on practical challenges that have not been addressed before in the modeling

of these systems. This gap in the literature may be one of the root causes as to why companies

continue to struggle in implementing optimization techniques for generating their production plans

in practice.

Specifically, we develop a representation of the planning horizon in the MLCSLP with a set

of Resource-Dependent Timelines, each with a unique discretization of the planning horizon, that

dynamically associates each resource group with the timeline which best suits it on the basis of

the typical processes it faces. We also consider multi-step, cyclical routings subject to positive lead

times, observed for each step of the production routing.

Another major contribution to the literature is the application of the proposed Node Pegging

Model (NM) following the generation of an optimized production plan. The purpose of the NM is

to match production lots with the external demand line items their outputs will satisfy. This associ-

ation provides planners visibility to the status of the shop with respect to the delivery performance

they can expect to achieve. Further, this association allows for visibility into the “criticality” of

each production lot, in that it is known which line items it is meant to satisfy are at risk of being

delivered late. This information, although outside of the scope of this dissertation, can be leveraged

to develop prioritization heuristics in the CTSH to minimize the costs which are realized in the

simulated schedule.

We evaluate the proposed integrated solution procedure against several benchmark cases. Prob-

lem instances were generated using the algorithms described in Section 2.5. We first compare the

Planning Model developed for the MLCLSP against an MRP-based heuristic (presented in Sec-

tion 2.6). Then we compare the performance of the Resource-Dependent Timeline methodology

against a Single Timeline representation of the same problem. We consider the performance of each

test methodology in both the aggregated context the planning problems were solved in, as well as

the executed plan in the unaggregated context the problem instances represent. We find that the

proposed Planning Model greatly outperforms the MRP-based heuristic and that the Resource-

Dependent Timeline methodology outperforms the Single Timeline methodology. The value of the

proposed methodology is assessed based on the performance of the executable schedule.
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We also evaluate several variations of the Planning Model, specifically considering alternative

decision variable representations for setup activities. Surprisingly, we find that using a continuous

variable for setup activities results in a production plan which is competitive with the production

plans made using binary and integer variables. However, the plans which were made using contin-

uous variables resulted in the most inaccurate estimation of realized penalties and the most delays

once translated into an executable schedule.

We refer the reader to Appendix B for a presentation of the methods and experiments conducted

to calibrate the user-defined parameters associated with Planning Model used throughout this

numerical implementation. Future work will further extend the models to consider further practical

aspects discussed in Appendix 3.6. These extensions include enhancing the Planning Model to

consider: 1) sequencing decisions for existing work orders, with fixed production lot quantities, 2)

alternative timed-routes for each part, 3) resource sub-groups within resource groups that exhibit

slight, yet practically significant, differences from other sub-groups in the group, 4) target safety

stocks, 5) production yield, 6) the introduction of part-steps as a means to break up long part

routings into more manageable size, 7) more restrictive delivery constraints, such as enforcing all

units in a line item to be shipped at the same time, etc.

Further, future experimentation is needed to evaluate the scalability of the proposed solution

procedure. We identify three dimensions for which the problem will increase in difficulty: 1) the

utilization of the facility, 2) the size of the problem, measured in the number of items, orders

and resource groups which are considered, and 3) the complexity of the problem, measured in the

depth of each Bill of Materials (the number of offset levels), the width of each BOM (the number

of children each part can have), and the number of route-steps which are associated with each

production routing. Given the results found in this chapter, these larger problems should also be

evaluated with the use of continuous-variables for setup decisions, considering this implementation

resulted in feasible, competitive production plans.
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CHAPTER 4

DIRECT VS RELATIVE POSITIONAL SCHEDULING

4.1 Introduction

Machine scheduling problems are one of the most widely studied problem families in operations

research. The roots of the problem go as far back as the late 19th and early 20th centuries when

the industrial revolution began. With the introduction of factories and automation into our lives,

the need for planning the shop floor arose. However, due to the difficulty of these problems, most of

the literature on machine scheduling has focused on developing heuristics, testing meta-heuristics

and exploring the effectiveness of dispatching rules. Even though the prominence of computers

allows us to solve problems of larger scale today, especially when leveraging commercially available

solvers such as Gurobi, the tradition of machine scheduling continued as it is, mostly avoiding

exact methods. Therefore, comparison of different modeling techniques in exact approaches such

as mixed integer programming (MIP) has received surprisingly little attention in machine scheduling

literature.

In this chapter, we compare and evaluate the computational performance of two families of MIP

models for solving different scheduling problems faced by Make-To-Order firms, such as Artaic -

Innovative Mosaic, whose needs motivated this research. Artaic is a custom mosaic design studio

and manufacturer in Boston, MA. They use robotic fabrication, which allows for fast, flexible and

accurate assembly of unique tile work for their customers. They have two production stages. The

first one is tile tubing, which groups different colored tiles into tubes that feed into the second stage:

automated tile assembly. In this stage, the unique design is loaded up into a computer, which is

translated into schematics for the robotic arm to build. A variety of robotic arms with different

capabilities are available to perform the tile assembly. The product is then packaged and shipped

to the customer. This process is summarized in Figure 4.1.

The second stage is the bottleneck of their production and can be modeled as an unrelated par-

allel machine scheduling problem. Explicitly including the first stage makes the problem a flexible
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Figure 4.1. Example production system of Artaic

flow shop problem. We consider the scenario where the manufacturer hosts multiple generations

of resources that are capable of processing the second stage operation. Specific to Artaic, newer

generations of machines do not require a first-stage tubing operation. In this case, orders can either

be processed in a single operation by a newer generation of machine, or as a two-stage process by

an older generation of machine. In all problems, the scheduling objective of interest is to minimize

a weighted combination of makespan (to increase shop utilization) and total weighted tardiness (to

ensure customer satisfaction) subject to sequence-dependent setups and machine eligibility restric-

tions in which some machines are not capable of producing some product types.

MIP formulations for scheduling problems can be classified based on the type of binary decision

variables used to define the production schedule. Three-classes of binary decision variables are found

in scheduling literature. This includes formulations using direct-positional assignment variables,

proposed by Wagner [181], relative-positional linear ordering variables, proposed by Manne [112],

and time-indexed variables, proposed by Sousa and Wolsey [161] (based on the work of Bowman

[28]).

Direct-positional decision variables control the assignment of jobs to specific positions in the

processing sequence of resources. Binary variables are represented in the form, xijk, and take a

value of 1 when job i is assigned to position k in the production sequence of resource j. Relative-

positional decision variables control the relative ordering of jobs within the processing sequence.

Binary variables takes the form xijk and take a value of 1 when job i precedes job k in the production

sequence of resource j. Time-indexed formulations define production by deciding the time period

in which jobs are completed (or started). Binary variables take the form xijk and take a value of 1 if

job i is completed (or started) in time-period k by resource j. Time-indexed formulations represent

time in discrete form, while direct- and relative-positional represent time in the continuous form.
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In this study we limit our analysis to the direct- and relative-positional assignment formulation

classes, given their capability to consider sequence-dependent setup activities such as those faced

by our industrial partner.

The contributions of this chapter will be four-fold: 1) novel scheduling formulations are devel-

oped using direct-positional and relative-positional decision variables, for both the unrelated parallel

machine and flexible flow shop problems, representing a generalization of the problem faced by our

industrial partner. Note that we do not consider formulations with time-indexed decision variables

in this chapter as this formulation is not suited for model sequence-dependent setup times, 2) a

framework and data generation algorithm is developed for testing instances that result in a realistic

machine scheduling problem with tight due dates, 3) the models will be used to solve randomly

generated solutions of varying size to compare their relative solution quality and speed, 4) these

families of models will be compared on the basis of problem size complexity (numbers of variables

and constraints required).

The remainder of the chapter is organized as follows. In Section 4.2, we briefly summarize the

literature. In Section 4.3, we present the mathematical models. In Section 4.4, we propose the

computational studies which will be conducted to evaluate these formulations. In Section 4.5, we

provide concluding remarks.

4.2 Literature Review

In our review, we focus on papers that develop and compare exact approaches for scheduling

problems similar to the one we consider.

We start our review with the single machine scheduling problem. In this problem, n jobs must

be sequenced for processing of a single operation on a single machine. Keha, Kowala and Fowler

[86] compare the computational efficiencies and behaviors of four different MIP formulations for

the single machine scheduling problem. Two relative-position formulations, one direct-position and

one time-indexed formulation are proposed and considered for problems which optimize weighted

completion time, maximum lateness, number of tardy jobs and weighted tardiness as their objective

functions. They also consider release dates as a factor in their computational study. For the

relative-position models, the authors compare formulations with binary decision variables which

define whether a job, i, is completed right before another job, k, (see [12, 137]) or any time
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before k, (see [48]). These models are referred to as having Completion Time Variables and Linear

Ordering Variables, respectively. The authors find that the time-indexed approach results in models

which are most difficult to solve, and that the direct positional formulation provides the best

formulation. The authors cite this formulation’s ability to solve the tested problem instances

optimally within the time limits and the scalability of the LP relaxation of the formulation as key

superiorities. The completion-time variable and direct-position formulations also provide the best

approach for identifying feasible solutions quickly when considering job release date constraints.

It is also noted that the time-indexed and linear ordering variables produce tighter bounds for

the problem. However, the authors observe that it is harder to solve the LP relaxations for these

formulations as the number of jobs increases. Note that the relative-positional formulation that we

consider most resembles the completion-time variables in this study.

Parallel machine scheduling problems extend the single machine scheduling problem such that

multiple resources are available to process jobs. The problem becomes one of scheduling n jobs to be

processed by on one of m machines. Parallel machine problems can be classified by the relationships

of each of the machines, including identical parallel machines, uniform parallel machines (also

referred to as non-identical) or unrelated parallel machines. Identical parallel machines process

each job at the same rate as each other, uniform machines at different yet consistent rates, and

unrelated machines with job-dependent processing rates.

Unlu and Mason [177] model the parallel machine scheduling problem using four different mixed

integer programs, two of which use relative positional variables (called Network model and Linear

Ordering Model in the paper). One of the remaining two is direct positional and the other one is

time-indexed. Even though they propose models for non-identical and unrelated parallel machine

scheduling problems for a variety of different objectives, they consider only makespan and weighted

completion time as the objective functions and only identical parallel machine in their computa-

tional study. They also consider ready-times (release dates) in the computational study. Extensive

analysis of each objective function/number of parallel machines/existence of release dates combina-

tion, leads them to conclude that: 1) the time-indexed formulation is superior when job processing

times are small, and 2) the feasible solutions found by the direct-positional formulation are very

close to optimal in most test cases but struggles in producing sufficient lower bounds due to the

disjunctive nature of the formulation. The authors suggest the incorporation of valid inequalities
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can help improve this limitation. Further, the linear-ordering formulation is cited as giving good

lower bounds for smaller problems, but its performance quickly degrades as the number of jobs

increases.

Yu and Hung [197] also model the parallel machine scheduling problem using three different

mixed integer programs, all of which use relative positional variables. The authors consider a

formulation using immediate-precedence variables (F1), an enhanced version of the immediate-

precedence formulation which also leverages binary machine-assignment variables (F2), and a linear-

ordering formulation. The enhancements proposed in F2 separate the decisions associated with the

decisions variables defined in F1 into 2 unique variables. Specifically, the decision variables in F1,

xijk, takes a value of 1 if job i is processed immediately before job j on machine k, 0 otherwise.

In F2, the variable xik takes a value of 1 if job i is assigned to machine k, and yij takes a value

of 1 if job i precedes job j on the same machine. The objective function they consider is to

minimize total tardiness, subject to job release date constraints. They find that hybrid direct-

relative assignment formulation, F2, is superior based on time to optimality and optimality gaps

on non-optimal solutions. Since they do not consider direct positional variables at all, their results

are not directly comparable to ours.

The flow shop problem extends the parallel machine problem by considering jobs which require

processing on multiple resources. In this problem, n jobs must go through o different processing

stages. The sequence which each job visits the production stages is identical. Flow shop prob-

lems can be distinguished as either permutation flowshops or flexible flowshops. In a permutation

flowshop scheduling problem (PFSP), each production stage is represented by a single machine,

and the production sequence in which each machine processes the jobs must be the same. In a

flexible flowshop (FFSP), the permutation flowshop problem is generalized so that at least one of

the production stages is represented as a parallel machine production environment. The hybrid

flexible flowshop (HFFSP) provides a further generalization in that jobs are allowed to skip stages.

For instance, in our specific manufacturing setting, this would represent the case in which a job

does not require the first stage (tubing operation).

Stafford, Tseng and Gupta [166] consider the PFSP. The authors distinguish between 2 classes

of MIPs, referred to as the Wagner and Manne families, consisting of 3 and 5 unique models,

respectively. In our terminology, the Wagner family of models correspond to direct-positional
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variables and Manne family of models correspond to relative-positional variables. They consider

the minimization of Makespan as their single objective function and do not consider setups in the

formulations they evaluate. The authors find that the relative-positional variables result in models

with more constraints and less binary variables than the direct position variable models. Both

models require similar number of real variables. Even though the permutation flowshop differs

from our tubing model, which is a flexible flowshop, their computational findings suggest that

formulations with direct-positional variables dominate those with relative-positional variables.

Naderi and Gohari [122] consider the HFFSP. The authors note there is a very limited avail-

able literature on the topic of MIP development for this class of scheduling problems, let alone

comparative studies. The authors develop four MIP models, including three novel formulations,

with the objective of minimizing Makespan. The first model, (Model 1) uses immediate-predecessor

variables, similar to the models proposed by Kis and Pisch [92] and Ruis et al. [146]. The authors

also develop a hybrid assignment-predecessor formulation (Model 2). The assignment binary vari-

able, Yjil, defines if a job j is processed on a specific machine, l, at stage i, and the predecessor

variable, Xjikl, defines if a job j is processed before a job k at stage i on machine l. Another

direct-position model (Model 3) uses two assignment variables: one responsible for assigning each

job to a specific machine at each stage, and one responsible for assigning each job a position in the

queue. The fourth model (Model 4) defines a decision variable, Xjik, which takes a value of 1 if a

job j is processed after job k at stage i and another, Yjil, if job j is processed at stage i on machine

l. The relative-position in this variable differs from the previous hybrid assignment-predecessor

formulation in that a machine index is not used in this formulation. The authors find that Model 4

requires the least binary variables, while Model 1 requires the most binary variables, yet the least

constraints. Models 2,3 and 4 are shown to solve small-sized problems (up to 12 jobs, 4 stages)

with similar performance, while outperforming Model 1. Literature on comparisons of MIP exact-

method solutions for the FFSP and HFFSP is scarce. For a detailed review on the literature of the

hybrid flow shop problem we refer the reader to Ruiz et al. [147].

Our research adds to the literature as one of the few studies which provides a computational

comparison of various representations of the HFFSP. Note that all of the studies above consider

only one production environment setting (i.e. single machine or flow shop or flexible job shop) while

our study encompasses multiple settings to understand the robustness of the formulation choice
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across problem families. Our study also considers sequence-dependent setups as a complicating

factor, which is not considered in most of the comparison literature.

4.3 Mathematical Models

In this section, we develop direct- and relative-positional scheduling formulations for a variety

of practical settings rooted in the needs of our industrial partner. We begin with the unrelated

parallel machine problem. We first formulate the direct-positional formulation, then the relative-

positional formulation. In Section 4.3.2, we extend each of the aforementioned formulations for a

special case of the two-stage flexible flow-shop problem. In all models, we assume deterministic

processing and setup times, and no machine breakdowns. We do not allow preemption, job-splitting

or outsourcing.

4.3.1 Unrelated Parallel Machines Setting

In the unrelated parallel machine problem, the decision-maker must schedule |I| jobs, i ∈ I, to

be completed by one of |J | unrelated parallel machines, j ∈ J . Aij defines whether machine j is

capable of processing job i, and Pij defines the time required for machine j to process job i. Each

job is also defined by a due date, di, a per-period penalty for tardiness, ci, and an earliest allowable

starting time, si. The objective of the scheduler is to minimize the sum of the Makespan of the

backlog, Cmax, and the total weighted tardiness of all jobs.

4.3.1.1 Direct-Positional Formulation

In the direct-positional assignment models, we define the set, k ∈ K, as the set of possible

positions a job can be assigned to on each machine, where K = {1..|I|}. The direct-position binary

decision variable, xijk, takes a value of 1 if job i is assigned to be completed in position k on machine

j. The variable tjk defines the completion time of position k on machine j. In the following we

present the notation and formulation of the Direct-positional Parallel machine problem (DP).
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Notation Description
Sets j ∈ J Set of machines, {1..|J |}

i ∈ I Set of all jobs, {1..|I|}
k ∈ K Set of positions on the machines, {1..|I|}

Parameters |I| Number of jobs
|J | Number of machines
M A very large number
ci Penalty for tardiness of job i
di Due date of job i
si Earliest allowable start time of job i
Aij 1 if job i can be processed by machine j, 0 otherwise
Pij Processing time of job i on machine j

Variables Cmax Shop Makespan
Di Tardiness of job i
tjk Completion time of position k on machine j
xijk 1 if job i is assigned to position k on machine j, 0 otherwise

Table 4.1. Notation for direct-positional unrelated parallel machine problem (DP)

Formulation (DP)

min Cmax +
∑
i∈I

ci Di

s.t.

tjk ≤ Cmax ∀ j ∈ J, k ∈ K (1)

tj,k−1 +
∑
i∈I

Pijxijk ≤ tjk ∀ j ∈ J, k ∈ K (2)

(si + Pij) xijk ≤ tjk ∀ i ∈ I, j ∈ J, k ∈ K (3)

di +M(1− xijk) +Di ≥ tjk ∀ i ∈ I, j ∈ J, k ∈ K (4)

tj0 = 0 ∀ j ∈ J (5)∑
i∈I

xijk ≤ 1 ∀ j ∈ J, k ∈ K (6)∑
j∈J

∑
k∈K

xijk = 1 ∀ i ∈ I (7)

∑
k∈K

xijk ≤ Aij ∀ i ∈ I, j ∈ J (8)∑
i∈I

xijk ≥
∑
i∈I

xi,j,k+1 ∀ j ∈ J, k ∈ K (9)

As mentioned, the scheduler’s objective is to minimize a weighted combination of makespan

and tardiness. Constraints 1 ensure that the makespan is a time after all jobs have been processed.

Constraints 2 require the completion time of the job processed in position k on machine j to be
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after the completion time of the job in the previous position, k−1, plus its own processing time. If

job i is assigned to position k on machine j, Constraints 3 ensures that its completion time is after

its earliest allowed start time, si, plus processing time. Constraints 4 calculate the tardiness of

each job i; notice that the big M term makes the Constraints relevant only when job i is assigned

to position k on machine j. Constraints 5 initialize the completion time at position k = 0 as 0.

Constraints 6 ensure at most one job is assigned to position k on machine j. Constraints 7 ensure

each job is assigned to exactly one position on a machine. Constraints 8 guarantee that job i is

not assigned to any machines that are not capable of processing it. Constraints 9 require earlier

positions to be filled first.

Direct-Positional, with Sequence-Dependent Setups

We consider the problem faced by MTO firms which offer Mass Customizable products for their

customers. Although each job is unique, we assume that each job i, can be characterized as one of

|U | specific product types, u ∈ U . In the case of Artaic, product types are defined by the type of

tile used for each mosaic. These tiles are unique in their surface area and material.

The binary parameter, qiu, takes a value of 1 if job i is a product of type u. fjuv is the sequence-

dependent setup time required on machine j to changeover from a product of type u to a product

of type v. The binary decision variable, yjkuv, takes a value of 1 if a setup from product type u to

product type v occurs on machine j at position k.

We also extend the definition of the job set, I, to include an artificial job, i = 0. We refer to

this extended job set as I0. This artificial job is represented as an artificial product type, u = 0.

We require that position k = 0 in each machine’s processing sequence be occupied by this artificial

job, i = 0, whose processing time is set to 0. The processing time associated with this artificial job

is 0. This method enables the representation of a sequence-dependent setup time associated for the

first job in each machine’s processing sequence.
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Notation Description
Sets i ∈ I0 Set of all jobs, including artificial job, i = 0, {0, 1, .., |I|}

u ∈ U Set of product types, {0, 1, .., |U |}
Parameters |U | Number of product types

fjuv Setup time to changeover from product type u→ v on machine j
qiu 1 if job i is product type u, 0 otherwise

Variables yjkuv 1 if position k in the sequence of machine j requires a changeover
from product type u to v.

Table 4.2. New notation for direct-positional unrelated parallel machine problem with setups
(DPwS)

Formulation (DPwS)

min Cmax +
∑
i∈I

ci Di

Constraints 1, 3-9 from DP

x0j0 = 1 ∀ j ∈ J (10)

x0jk = 0 ∀ j ∈ J, k ∈ K (11)

tj,k−1 +
∑
i∈I

(
Pijxijk

)
+
∑
u∈U

∑
v∈U

fjuvyjkuv ≤ tjk ∀ j ∈ J, k ∈ K (12)∑
i∈I0

(qiuxijk−1) +
∑
l∈I

(qlvxljk)− 1 ≤ yjkuv ∀ j ∈ J, k ∈ K,u ∈ U, v ∈ U (13)

Constraints 10 require that an artificial job, i = 0, occupies position, k = 0, on each machine j.

Constraints 11 ensure that artificial job, i = 0, is not assigned to any other positions. Constraints

12 replace Constraints 2 from the DP model. Constraints 12 require the completion time of the

job processed in position k on machine j to be after the completion time of the job in the previous

position, k−1, plus its own processing time and the setup time of changing over from product type

u to type v. Constraints 13 ensure that the setup variables, yjkuv, takes a value of 1 if job i, of type

u, is in position k − 1 on machine j, and job l, of type v, is in position k; note that the extended

job set I0 is used in this constraint.

4.3.1.2 Relative-Positional Formulation

In the Relative-positional unrelated Parallel machine problem (RP), we define the binary

decision variable, xijk, to take a value of 1 if job k immediately follows job i in the processing

sequence of machine j. We introduce the binary variable yij , which takes a value of 1 when job i
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is assigned to be completed by machine j. We redefine the completion time variable to represent

the completion time of each job on each machine, tij .

We also define several extensions to the sets of jobs, I, and machines, J . Specifically, the subset

Ij ⊆ I, is the set of jobs that can be processed by machine j. Similarly, we define J i ⊆ J as the

subset of machines that can process job i. Both of these methods are used to reduce the size of

the problem by avoiding defining constraints which are known to consider infeasible job-machine

assignments.

In the RP formulation we establish another artificial job, i = |I|+ 1. The subsets Ij0 and Ij1 are

defined as Ij∪{0} and Ij∪{|I|+1}, respectively. These artificial jobs are used to create sequencing

precedence relationships for the first and last jobs which are scheduled on each machine, j.

Notation Description

Sets j ∈ J i Set of machines that can process job i
i ∈ Ij Set of jobs that can be processed on machine j

i ∈ Ij0 Set of jobs that can be processed on machine j, with artificial job, j = 0

i ∈ Ij1 Set of jobs that can be processed on machine j, with artificial job, i = |I|+ 1
Variables tij Completion time of job i on machine j

xijk 1 if job k follows job i on machine j, 0 otherwise
yij 1 if job i is assigned to machine j, 0 otherwise

Table 4.3. New and modified notation for relative-positional unrelated parallel machine problem
(RP)
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Formulation (RP)

min Cmax +
∑
i∈I

ci Di

s.t.

tij ≤ Cmax ∀ i ∈ I, j ∈ J (1)

tij + Pkj −M(1− xijk) ≤ tkj ∀ j ∈ J, i ∈ Ij0 , k ∈ I
j : i 6= k (2)

(si + Pij)yij ≤ tij ∀ i ∈ I, j ∈ J i (3)

di +Di +M(1− yij) ≥ tij ∀ i ∈ I, j ∈ J i (4)∑
k∈Ij1 :
i 6=k

xijk = yij ∀ j ∈ J, i ∈ Ij0 (5)

∑
i∈Ij0 :
i 6=k

xijk = ykj ∀ j ∈ J, k ∈ Ij1 (6)

∑
j∈J

yij = 1 ∀ i ∈ I (7)

yij ≤ Aij ∀ i ∈ I, j ∈ J (8)

yij = 1 ∀ j ∈ J, i ∈ {0, |I|+ 1} (9)

xijk = 0 ∀ j ∈ J, i ∈ I, k = 0 (10)

xijk = 0 ∀ j ∈ J, i = |I|+ 1, k ∈ I (11)

tij = 0 ∀ j ∈ J, i = 0 (15)

Constraints 1 ensure that the makespan is a time after all jobs have been processed. Constraints

2 require the completion time of each job to be after the completion time of the job processed

before it, plus its own processing time. If job i is processed by machine j, Constraints 3 require the

completion time of each job to be after the earliest allowable start time, si, plus its own processing

time. Constraints 4 calculate the tardiness of each job i; notice that the big M term makes the

constraints relevant only when job i is processed on machine j. Constraints 5 require that each

job, k, has a predecessor, i in the processing sequence of machine j (the last job precedes artificial

job |I|+ 1). Constraints 6 require that each job, i, has a successor, k, in the processing sequence of

machine j (the first job in the sequence succeeds artificial job 0). Constraints 7 ensure that both

artificial jobs, i = 0 and i = |I| + 1, exist in the processing sequence of all machines. Constraints

8 ensure each real job, i ∈ I, is assigned exactly once. Constraints 9 ensure that jobs are only

assigned to machines which are able to process them. Constraints 10 ensure that artificial job, 0,
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is the first in the sequence of each machine by not allowing it to follow any other jobs Constraints

11 ensure that artificial job, |I| + 1, is the last in the sequence of each machine by not allowing

it to precedes any other jobs Constraints 12 initialize the completion time of artificial job, i = 0,

completion time, as 0, for each machine, j.

Relative-Positional, with Sequence-Dependent Setups

No new notation is required to extend the relative-positional formulation to the case with

sequence-dependent setups, as shown below:

Formulation (RPwS)

min Cmax +
∑
i∈I

ci Di

Constraints 1, 3-11 from RP

tij + Pkj +
∑
u∈U

∑
v∈U

qiu qkv fjuv −M(1− xijk) ≤ tkj ∀ j ∈ J, i ∈ Ij0 , k ∈ I
j : i 6= k (13)

sk + Pkj +
∑
u∈U

∑
v∈U

qiu qkv fjuv −M(1− xijk) ≤ tkj ∀ j ∈ J, i ∈ Ij0 , k ∈ I
j : i 6= k (14)

Constraints 13 replace Constraints 2 from the RP to consider relevant setup times. These

constraints require the completion time of each job to be after the completion time of the job

processed before it, plus its own processing time and changeover time. Notice that the i index in

these constraints include the artificial job, i ∈ Ij0 . Constraints 14 replace Constraints 3 from RP.

These constraints require the completion time of each job to be after its earliest allowable start

time, plus its own processing time and changeover setup time. Note that Constraints 14 are only

needed if we assume the setup can’t be started until sk. If the setup activity for job k is allowed

to start before sk, then Constraints 3 would hold.

4.3.2 Flexible Flow Shop Setting

The Flexible Flow Shop we consider is made up of two distinct stages. Both stages are repre-

sented as unrelated parallel machine settings. We refer to first-stage machines as J1 and second-

stage machines as J2. Only a subset of the machines in the second stage require an operation from

a first stage machine. We define this subset of machines as Jb2 ⊆ J2. The subset Ja2 ⊆ J2 is the
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subset of second-stage resources that do not require a first-stage operation. The subsets Ja2 and Jb2

are mutually exclusive and collectively exhaustive of the set J2, i.e. Ja2 ∩ Jb2 = ∅ and Ja2 ∪ Jb2 = J2.

Note that formulations presented below are capable of representing both the two-stage flow shop

problem (when Ja2 = ∅, Jb2 6= ∅ ) and the flexible flow shop problem (when Ja2 6= ∅, Jb2 6= ∅). Figure

4.2 shows an example the shop floor environment we consider:

Figure 4.2. Example production system for the novel Flexible Flow Shop problem

4.3.2.1 Direct-Positional Formulation

For the Direct-positional Flexible flow shop problem (DF), we introduce a new variable, ρij ,

to represent the earliest possible starting time of job i on any second-stage machine. This variable

is the maximum value of the release date of each job, si, and the time job i finishes processing on

a first-stage machine. In the table below, we present the new and modified notation for the sets,

parameters and variables required for the DF problem:

111



Notation Description

Sets j ∈ J Set of all resources, {1..|J1|+ |Ja2 |+ |Jb2 |}
j ∈ J1 Set of first-stage resources
j ∈ J2 Set of second-stage resources
j ∈ Ja2 Set of second-stage resources that don’t require a first-stage operation

j ∈ Jb2 Set of second-stage resources that require a first-stage operation
Parameters |J1| Number of first-stage resources

|Ja2 | Number of second-stage resources that don’t require a first-stage operation

|Jb2 | Number of second-stage resources that require a first-stage operation
Variables ρij Earliest possible start time of job i on second-stage machine j

tjk Completion time of position k on machine j
xijk 1 if job i is assigned to position k on machine j, 0 otherwise

Table 4.4. New and modified notation for direct-positional flexible flow shop problem (DF)

Formulation (DF)

min Cmax +
∑
i∈I

ci Di

s.t.

tjk ≤ Cmax ∀ j ∈ J, k ∈ K (1)

tjk−1 +
∑
i∈I

Pijxijk ≤ tjk ∀ j ∈ J, k ∈ K (2)

(ρij + Pij) xijk ≤ tjk ∀ i ∈ I, j ∈ J, k ∈ K (3)

si ≤ ρij ∀ i ∈ I, j ∈ J (4)

thk −M(1− xhjk) ≤ ρij ∀ h ∈ J1, j ∈ Jb2 , i ∈ I, k ∈ K (5)

di +M(1− xijk) +Di ≥ tjk ∀ j ∈ J2, i ∈ I, k ∈ K (6)∑
j∈J2

∑
k∈K

xijk = 1 ∀ i ∈ I (7)

∑
h∈J1

∑
k∈K

xihk =
∑
j∈Jb2

∑
k∈K

xijk ∀ i ∈ I (8)

∑
k∈K

xijk ≤ Aij ∀ i ∈ I, j ∈ J (9)

tjk = 0 ∀ j ∈ J, k = 0 (10)∑
i∈I

xijk ≤ 1 ∀ j ∈ J, k ∈ K (11)∑
i∈I

xijk+1 ≤
∑
i∈I

xijk ∀ j ∈ J, k ∈ K : k 6= |I| (12)
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Constraints 1 ensure that the makespan is a time after all jobs have been processed. Constraints

2 require the completion time of the job processed in position k on machine j to be after the

completion time of the job in the previous position, k − 1, plus its own processing time. If job i

is assigned to position k on machine j, Constraints 3 ensure that its completion time is after the

job-machine pair’s earliest allowed start time, ρij , plus processing time. Constraints 4 require the

earliest allowed start times of each job-machine pair, ρij , to be greater than the earliest allowed

start time of that job, si. If job i is assigned to a second-stage machine that requires a first-stage

operation, j ∈ Jb2 , Constraints 5 ensure that ρij is greater than the completion time of that first-

stage operation for that job. Constraints 6 calculate the tardiness of each job i; notice that only

second-stage machines are required for this constraint.

Constraints 7 ensure each job is assigned to exactly one position on a second-stage machine,

j ∈ J2. If job i is processed by a machine in Jb2 , Constraints 8 requires it to also be assigned to

exactly one position on a first-stage resource, h ∈ J1. Constraints 9 ensure that each job is only

assigned to a machine that is capable of processing it. Constraints 10 initialize the completion

time at position k = 0 as 0 for each resource. Constraints 11 ensure at most one job is assigned to

position k on machine j. Constraints 12 require earlier positions to be filled first.

The extension of the flexible flow shop, direct-positional assignment model to include sequence-

dependent setups does not require any new notation. The formulation of these additional constraints

is identical to the extension of the DP model to the DPwS model, see Section 4.3.1.1.

4.3.2.2 Relative-Positional Formulation

In the following, we extend the relative-positional scheduling model from the parallel machine

problem to the flexible flow shop problem. No new notation is required for the formulation of the

relative-positional flexible flow shop model.
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Formulation (RF)

min Cmax +
∑
i∈I

ci Di

s.t.

tij ≤ Cmax ∀ i ∈ I, j ∈ J (1)

tij + Pkj −M(1− xijk) ≤ tkj ∀ j ∈ J, i ∈ Ij0 , k ∈ I
j : i 6= k (2)

(ρij + Pij) yij ≤ tij ∀ i ∈ I, j ∈ J i (3)

si ≤ ρij ∀ i ∈ I, j ∈ J (4)

tih −M(1− yih) ≤ ρij ∀ i ∈ I, h ∈ J1, j ∈ Jb2 (5)

di +Di +M(1− yij) ≥ tij ∀ j ∈ J2, i ∈ Ij (6)∑
j∈J2

yij = 1 ∀ i ∈ I (7)

∑
j∈J1

yij =
∑
j∈Jb2

yij ∀ i ∈ I (8)

yij ≤ Aij ∀ i ∈ I, j ∈ J (9)∑
i∈Ij1 : i 6=k

xijk = yij ∀ j ∈ J, i ∈ Ij0 (10)

∑
i∈Ij0 : i 6=k

xijk = ykj ∀ j ∈ J, k ∈ Ij1 (11)

yij = 1 ∀ j ∈ J, i = {0, |I|+ 1} (12)

xijk = 0 ∀ j ∈ J, i ∈ I, k = 0 (13)

xijk = 0 ∀ j ∈ J, i = |I|+ 1, k ∈ I (14)

tij = 0 ∀ j ∈ J, i = 0 (15)

Constraints 1 ensure that the makespan is a time after all jobs have been processed. Constraints

2 require the completion time of each job to be after the completion time of the job processed before

it, plus its own processing time. Constraints 3 require the completion time of each job to be after

the earliest allowable start time, ρij , plus its own processing time. Constraints 4 ensure ρij , is

greater than the release time of each job, si. If job i is processed by a machine that requires a

first-stage operation (j ∈ Jb2), Constraints 5 ensure that ρij is greater than the completion time

of that jobs first-stage operation. Constraints 6 calculate the tardiness of each job i. Constraints

7 ensure each job is assigned exactly once for the second-stage operation. If job i is processed

by a machine that requires a first-stage operation (j ∈ Jb2), Constraints 8 ensures that job is also
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assigned for processing on a first-stage machine, J1. Constraints 9 ensure that jobs are only assigned

to machines which are capable of processing them. Constraints 10 require that each job, i, has

a successor, k, in the processing sequence of machine j. Constraints 11 require that each job, k,

has a predecessor, i, in the processing sequence of machine j. Constraint 12 require both artificial

jobs, (i = 0 and i = |I| + 1), to exist in the processing sequence of all machines. Constraints 13

ensure that artificial job, 0, is the first in the sequence of each machine. Constraints 14 ensure

that artificial job, |I|+ 1, is the last in the sequence of each machine. Constraints 15 initialize the

completion time of artificial job, i = 0, completion time, as 0, for each machine, j.

The extension of the flexible flow shop, relative-positional assignment model to include sequence-

dependent setups does not require any new notations. The formulation of these additional con-

straints is identical to the extension of the RP model to the RPwS model, see Section 4.3.1.2.

4.4 Numerical Implementation

4.4.1 Data Generation Procedure

The size and complexity of each randomly generated problem instance is dependent on the

user-defined parameters shown in Table 4.5.

Notation Description

|I| Number of jobs
|J1| Number of first-stage machines
|Ja2 | Number of second-stage machines that DO NOT require a first-stage operation

|Jb2 | Number of second-stage machines that require a first-stage operation machines
|U | Number of product types

Q/Q Minimum/Maximum size of each job

P/P Minimum/Maximum processing rate for each machine-product type pair

F/F Minimum/Maximum time for sequence-dependent setups between product types

C/C Minimum/Maximum per-unit tardiness penalty
RDD Due Date Range (must be between [0,1])
TF Tardiness Factor (must be between [0,1])

ELIG Minimum proportion of product types each machine is capable of processing, and vice versa

Table 4.5. User-defined parameters for data generation procedure of instances for evaluating
direct- vs relative-positional formulations

Each order, i, is defined by two physical attributes: job size, Qi (measured in sq. units, i.e.

ft2,m2, or quantity) and a product type, Ui. The size of each job, Qi, is drawn from an integer

uniform distribution U[Q,Q]. The product type of each job is randomly selected from the set,
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Ui = {1, 2, ..., |U |}. As a reminder, the parameter qiu takes a value of 1 if job i is a product of type

u, 0 otherwise. The processing rate of a unit of product type u on machine j, puj , is drawn from a

uniform distribution U[P , P ]. The processing time of each job, i, is Pij = puj Qi

The binary parameter auj describes the capability of machine j to process product type u. We

implement an eligibility condition, ELIG, which ensures that each material can be processed by at

least some proportion of the machines, and that each machine is capable of processing at least some

proportion of the materials. Smaller values of ELIG will result in settings with more eligibility

restrictions. The procedure of defining the processing rate and eligibility parameters is shown in

Algorithm 9.

The sequence-dependent setup time on machine j from a product type u to another product

type v, fjuv, is drawn from U [F , F ]. The due date, di, of each job is drawn from the integer uniform

distribution:

di = U

[
max

(
0, L

(
1− TF − RDD

2

))
, L
(

1− TF +
RDD

2

)]

where L is an estimate for the Makespan of the demand backlog, RDD is the due date range and

TF is the tardiness factor (representing a rough estimate of the proportion of jobs that might be

expected to be tardy in an arbitrary sequence [9, 163]). The value of L is calculated as:

L =
1

|J2|
∑
i∈I

min
j∈J2

(Pij + fij)

where fij is the mean of all possible sequence-dependent changeover times that could be applicable

prior to processing job i on machine j. This method of due date generation is common in the

literature [2, 9, 136, 154]. Note that we only consider second-stage machines in the calculation of

L (we assume that this is the bottleneck operation). The per period tardiness penalty, ci, is drawn

from an integer uniform distribution U [C,C]. We allow the earliest starting time of each job to be

0, si = 0.
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Algorithm 9: Data generation procedure for Direct-vs-Relative formulation comparison

Input: See Table 4.5

# Generate parameters relating machine-productType pairs

1 for j ∈ J, u ∈ U do
2 Let puj ← U[P , P ] be the processing rate of product type u on machine j
3 Let auj ← {0, 1} be 1 if machine j can process product type u
4 for v ∈ U do
5 Let fjuv ← U[F , F ] be the sequenced-dependent setup time from product type u← v on

machine j

# Ensure that ELIG conditions are valid for each resource AND product type

6 for j ∈ J do

7 while
∑
u∈U

auj <
⌈
|J | ∗ ELIG

⌉
do

8 Randomly switch an ineligible machine, j, to eligible for product type u

9 for u ∈ U do

10 while
∑
j∈J

auj <
⌈
|U | ∗ ELIG

⌉
do

11 Randomly switch an ineligible machine, j, to eligible for product type u

# Initialize Job Parameters

12 for i ∈ I do
13 Let Ui ∈R U be the the randomly selected product type of job i
14 Let qiu = 1 for product type u = Ui and qiu = 0 for all other product types, u 6= Ui
15 Let Qi ∈R U[Q,Q] be the size of job i, measured in units

16 Let ci ← U[C,C] be the penalty rate for job i

# Generate processing times and machine-job eligibility parameters

17 for i ∈ I, j ∈ J, u ∈ U do
18 if job i is product type u (qiu = 1) then
19 Set Aij = auj
20 if machine j can process product type u (auj = 1) then
21 Set processing time Pij = pujQi
22 else
23 Set processing time Pij >> P (such that this Pij will never be used)

# Generate due dates for each Job

24 Let L be the estimated MakeSpan of the shop for the generated problem
25 for i ∈ I do

26 Let di ← U

[
max

(
0, L

(
1− TF − RDD

2

))
, L
(

1− TF +
RDD

2

)]
be the due date of job i

117



4.4.2 Design of Experiments

We propose the following Design of Experiments to evaluate and compare the direct-positional

and relative-positional formulations presented in this chapter. We will consider several production

settings, specified by the number of resources found in each machine subset, |J1|, |Ja2 |, |Jb2 |. The

settings we will consider are shown in Table 4.6.

Manufacturing Environment

Description Notation
Single

Machine
Parallel
Machine

Two
Stage

Flex
Flow

First-Stage Resources |J1| 0 0 1 1

Second-Stage Resources |Jb2 | 0 0 3 2
Multi-Stage Resources |Ja2 | 1 3 0 1

Table 4.6. Design of Experiments - manufacturing environment settings

The production settings listed include the following scheduling problems: the single machine

scheduling problem (|J1| = 0, |Ja2 | = 1, |Jb2 | = 0), the unrelated parallel machine problem (|J1| =

0, |Ja2 | > 1, |Jb2 | = 0), the two-stage flexible flow shop problem (|J1| > 0, |Ja2 | = 0, |Jb2 | > 0), and

the novel hybrid flexible flow shop problem (|J1| > 0, |Ja2 | > 0, |Jb2 | > 0). For each production

setting, listed in Table 4.6, we generate 10 random instances for each problem setting for each

combination of the following parameter values shown in Table 4.7. All instances use shared values

for the parameters shown in Table 4.8.

Description Parameter Grid
Number of Jobs 10 20 30

With Setups True False -

Table 4.7. Design of Experiments - variable parameter settings

For each problem instance, we will solve the scheduling problem using both the direct- and

relative-positional models. A total of 24 unique problem settings will be considered (4 produc-

tion environments, 6 parameter combinations) for both the direct-positional and relative-positional

scheduling formulations. 10 generated scenarios will be tested for each production setting for a total

of 480 problem instances solved. It should be noted that for each generated instance of a problem

setting, that both the direct- and relative-positional formulations will solve the same problem,

enabling the direct comparison of the two formulations.
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Description Notation Value

Number of Product Types |U | 5

Min/Max size/qty of each job Q/Q 1/5

Min/Max processing rates P/P 1/5

Min/Max time for sequence-dependent setups F/F 1/10

Min/Max per-unit tardiness penalty C/C 1/5
Range of Due Date RDD 0.5

Tardiness Factor TF 0.25
Eligibility Factor ELIG 0.5

Table 4.8. Design of Experiments - common parameter settings

Each problem instance will be solved using the Gurobi commercial solver, v9.5, on an AWS cloud

machine with 32 GB RAM and 8 cores (x5.4xlarge machine). We limit the runtime of instances to

1 hour and evaluate the formulations based on the following criteria: number of problem instances

which solve to optimality, solution time to optimality (in the case that the models solve within

the time limit), optimality gap (for instances that do not solve to optimality within the time

limit), solution quality (measured in the objective function value, Makespan, and value of the best

lower bound) and model size/complexity (measured in the number of variables, binary variables,

constraints and non-zero parameters required in each formulation).

4.4.3 Results

Throughout this section, we use shorthand notation to describe each production setting and

environment in the DoE. Specifically we use a four-component acronym describing:

1. The manufacturing environment (Single Machine = S, Parallel Machine = P, Two-Stage =

T, Flex Flow = F)

2. The number of jobs scheduled (10, 20, or 30)

3. The formulation implemented (Direct positional assignment = D, Relative positional assign-

ment = R)

4. Whether or not the problem includes sequence-dependent setups (Without Setups = ”-”,

With Setups = ”+”)
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For example, when discussing a parallel machine manufacturing environment scheduling 20 jobs,

with consideration of setups, with the direct positional assignment, we refer to the problems as:

P20D+. Similarly, F30R- would describe a 30 job flex flow shop scheduling problem without setups

using the relative positional assignment model. We also use the value ”x” as a wildcard symbol.

For example, P20xx, refers to all of the following settings: the direct-position formulation parallel

machine problem with 20 jobs without setups, the direct-position formulation parallel machine

problem with 20 jobs with setups, the relative-position formulation parallel machine problem with

20 jobs without setups, and the relative-position formulation parallel machine problem with 20 jobs

with setups,

In the following, we first focus on the solutions related to the problem setting, P20xx, where we

analyze each particular instance in detail. We then discuss the aggregate KPIs of solutions across

all tested problem settings, followed by a discussion on model size/complexity. We conclude the

section with a brief discussion into the behaviors of the solutions when: 1) the 1 hour time limit is

increased to a 5 hour time limit, 2) a heuristic lower bound constraint is enforced.

Table 4.9 shows the outcome of each individual scenario tested for the P20xx production setting.

Note that the result for the Direct- vs Relative-positional model is shown in the columns of this

table. We re-emphasize that each Trial tested for the production setting is identical for the

direct and relative models, allowing for an apples-to-apples comparison of the results. The KPIs

in this table include the Runtime, in seconds, of each trial, considering a maximum time limit of

3600 seconds. A problem which is solved to 0% optimality gap prior to 3600 seconds will show

the computational runtime required to reach proven optimality. The Objective/Bound columns

show the value of the objective function and lower bound for each problem at the time of solver

termination (whether it be terminated due to ”completion” or due to the enforced time limit).

Finally, MIP Gap (%) described the MIPGap achieved at the time of solver termination.
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Table 4.9. Computational runtimes, Objective Function Values, Lower Bounds and MIPGaps for
each test instance - Parallel Machine setting with 20 jobs

KPI Runtime obj/bound MIP Gap (%)
Model Direct Relative Direct Relative Direct Relative

MFG
Env

Num.
Jobs

With
Setups

Trial

Parallel
Machine

20

No

0 3600 3600 363/166 364/64 54.3 % 82.2 %
1 1 3600 130/130 130/60 0.0 % 53.7 %
2 3600 3600 167/140 171/53 16.4 % 68.5 %
3 2255 3600 157/157 160/53 0.0 % 66.5 %
4 3600 3600 606/213 606/65 64.8 % 89.2 %
5 3600 3600 323/174 323/69 45.9 % 78.6 %
6 1 3600 84/84 84/35 0.0 % 58.3 %
7 3600 3600 427/218 427/92 48.8 % 78.4 %
8 3600 3600 152/146 152/48 4.3 % 68.3 %
9 3600 3600 237/166 248/53 29.9 % 78.5 %

Yes

0 783 3600 140/140 140/48 0.0 % 65.2 %
1 3600 3600 385/190 385/73 50.6 % 80.9 %
2 3600 3600 528/186 528/54 64.8 % 89.6 %
3 3600 3600 539/218 539/57 59.5 % 89.3 %
4 3600 3600 500/192 504/59 61.6 % 88.3 %
5 3600 3600 309/177 305/66 42.8 % 78.1 %
6 3600 3600 175/161 175/54 8.4 % 69.3 %
7 3600 3600 348/175 348/69 49.6 % 80.1 %
8 3600 3600 357/170 343/54 52.2 % 84.2 %
9 3600 3600 626/210 631/65 66.4 % 89.6 %

Table 4.10 provides an aggregated view of the results for each production setting across the 10

trials. Trials to Optimality shows the number of trials (out of 10) reached proven optimality within

the 1 hour time limit. Mean MIPGap (%) and Median MIPGap (%) provide the mean and median

MIPGap achieved across all 10 trials.

Table 4.10. Aggregation of MIPGaps achieved - Parallel Machine setting with 20 jobs

KPI
Trials to Optimality

(Out of 10)
Mean MIPGap (%) Median MIPGap (%)

Model Direct Relative Direct Relative Direct Relative
MFG
Env

Num.
Jobs

With
Setups

Parallel
Machine

20
No 3 0 26.4 % 72.2 % 23.2 % 73.5 %
Yes 1 0 45.6 % 81.4 % 51.4 % 82.5 %
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Figure 4.3 provides context to the MIPGap of each individual trial during the progression of

the solver throughout the maximum time limit. Each path drawn in the figure shows the MIPGap

of the trial over time as the solver identifies new solutions and makes cuts in the MIP Tree.

Each quadrant in the image is dedicated for a specific combination of the model formulation

(direct or relative) and with or without setups. Note, that progression paths of the shared Trial

(color coded) across each facet row are comparable. For example, when considering problems

without setups, P20x-, the instances which are the most difficult to solve for P20R- are also the

most difficult to solve for P20D- (i.e. trial 4). Similarly, the problems which are the least difficult

are common across the formulations. A common behavior shared by all trials which are not solved

to optimality is that the achieved MIPGap quickly reached an asymptote which is barely improved

as time goes on.
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Figure 4.3. MIP Progression during the solver search of each trial - Parallel Machine setting with
20 jobs

Table 4.11 summarizes the mean and median MIPGap’s achieved across all tested problem set-

tings, similar to Table 4.10. The direct-positional formulation solved all tested problems with 10

jobs, x10Dx, to optimality, while the relative-positional formulation was only capable of this for

the Single and Parallel Machine manufacturing environments. Further, while the direct-positional

formulation was capable of solving several problem instances with more than 10 jobs in manufac-

turing environments besides the Single Machine problem, the relative positional formulation was
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not. Note that the Flex Flow manufacturing environment shows achieved MIPGaps which are

lower than the Two Stage manufacturing environment. It should be noted that for instances in

which both the direct- and relative-positional formulations are capable of reaching optimality, the

direct-positional formulation was able to do so in less time. Further, for settings in which both

instances with- and without setups are solved to optimality, problems which do not consider setups

are able to do so requiring less computational runtime, as expected.

Table 4.11. Aggregation of MIPGaps achieved - All settings

KPI
Trials to Optimality

(Out of 10)
Mean MIPGap (%) Median MIPGap (%)

Model Direct Relative Direct Relative Direct Relative
MFG
Env

Num.
Jobs

With
Setups

Single
Machine

10
No 10 10 0.0 % 0.0 % 0.0 % 0.0 %
Yes 10 10 0.0 % 0.0 % 0.0 % 0.0 %

20
No 10 0 0.0 % 88.4 % 0.0 % 88.1 %
Yes 0 0 21.3 % 88.7 % 23.3 % 88.4 %

30
No 10 0 0.0 % 91.5 % 0.0 % 91.6 %
Yes 4 0 12.5 % 92.3 % 11.2 % 91.7 %

Parallel
Machine

10
No 10 10 0.0 % 0.0 % 0.0 % 0.0 %
Yes 10 10 0.0 % 0.0 % 0.0 % 0.0 %

20
No 3 0 26.4 % 72.2 % 23.2 % 73.5 %
Yes 1 0 45.6 % 81.4 % 51.4 % 82.5 %

30
No 3 0 30.3 % 81.4 % 30.7 % 82.5 %
Yes 0 0 41.2 % 85.8 % 45.4 % 86.9 %

Two
Stage

10
No 10 3 0.0 % 34.9 % 0.0 % 38.2 %
Yes 10 3 0.0 % 29.3 % 0.0 % 30.5 %

20
No 0 0 38.2 % 78.0 % 37.6 % 77.0 %
Yes 0 0 21.7 % 69.4 % 14.7 % 68.3 %

30
No 0 0 52.7 % 89.2 % 69.5 % 92.8 %
Yes 0 0 16.1 % 80.9 % 10.9 % 82.3 %

Flex
Flow

10
No 10 8 0.0 % 10.8 % 0.0 % 0.0 %
Yes 10 9 0.0 % 7.2 % 0.0 % 0.0 %

20
No 2 0 17.4 % 70.0 % 10.3 % 66.7 %
Yes 0 0 25.8 % 73.7 % 13.8 % 72.8 %

30
No 0 0 38.3 % 84.3 % 44.5 % 87.6 %
Yes 0 0 21.4 % 79.1 % 9.7 % 77.3 %

Figure 4.4 depicts the MIPGap achieved in each of the 10 individual problems aggregated in

Table 4.11. Each quadrant in the Figure represents a different manufacturing environment, and

each column within the quadrant separates problems by the number of jobs which are considered.
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The formulation and consideration of setups are encoded in the color of each point, where each point

represents the MIPGap achieved during the time limit. Problems which are solved to optimality

are shown where the value of MIP Gap (%) is 0.

Figure 4.4. Depiction of achieved MIP Gap within hour time limit for each individual solve. Each
facet represents a unique manufacturing environment, each facet column represents the number of
jobs considered in each problem, and the formulation of each trial is color-coded.

Figure 4.5 and Figure 4.6 depicts the difference across each individual problem which are com-

parable (i.e. xxDx and xxRx) for the achieved MIPGap and Objective Function Value, respectively.

The values shown in Figure 4.5 show the absolute difference of the MIP Gaps between comparable

solutions, while Figure 4.6 shows the percentage difference of the objective function value of the

relative-positional model compared to the direct-positional model, where values greater than 0%
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show the relative-positional model’s solution to be worse (larger objective function value) than the

direct-positional model.

These results show that the direct-positional formulation outperforms the relative-positional

formulation in the achieved MIPGap for all tested problem instances in all problem settings. This

disparity seems to increase as the number of the jobs in each problem increases. Figure 4.6 shows

that there are only several instances tested where the relative-positional formulation is able to

identify a superior solution compared to the direct-positional formulation. It should be noted that

the difference in the objective function values in these instances are not as extreme as the cases

in which the direct-positional model outperforms the relative-positional model. For example, in

the Two Stage manufacturing environment, the achieved objective function value for solutions of

the relative-positional model are > 80% larger than the solutions found using the direct-positional

formulation. From these two figures, while the objective function values from solutions achieved by

the relative-positional formulation are in many cases comparable to the direct-positional solutions,

the lower bounds in the problems are significantly inferior.

Figure 4.5. Depiction of the differences in MIP Gap within hour time limit for scenario for the
direct- and relative-positional formulations, respectively
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Figure 4.6. Depiction of the percentage difference in Objective Function Value within hour time
limit for scenario for the direct- and relative-positional formulations, respectively

Table 4.12 provides context to the performance of the schedules generated for each problem

setting, and how the quality of these solutions differ between the direct- and relative-positional

formulations. As shown, the relative-positional model is able to find solutions which are nearly as

good as the direct-positional model, however, the proven lower bound of these solutions is much

worse. The achieved Makespan of the two formulations are also similar in all problem contexts

with the direct-positional formulation strictly outperforming the relative-positional formulation,

with the exception of P20R+ and T10R+, in which the relative formulation slightly outperforms

the direct formulation.
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Table 4.12. Aggregation of achieved Objective Function Values, Lower Bounds and MakeSpans -
All settings

KPI Obj. Func. Bound Makespan
Model Direct Relative Direct Relative Direct Relative

MFG
Env

Num.
Jobs

With
Setups

Single
Machine

10
No 213 213 213 213 160 160
Yes 251 251 251 251 177 177

20
No 180 180 180 21 160 160
Yes 215 224 162 24 164 165

30
No 179 179 179 15 160 160
Yes 206 214 175 16 163 164

Parallel
Machine

10
No 360 360 360 360 181 181
Yes 438 438 438 438 194 194

20
No 265 267 160 60 161 162
Yes 391 390 182 60 192 191

30
No 282 293 167 46 171 173
Yes 332 347 159 40 172 177

Two
Stage

10
No 389 396 389 235 195 196
Yes 340 340 340 227 183 182

20
No 302 332 175 73 174 177
Yes 194 234 130 56 146 151

30
No 558 672 180 50 196 202
Yes 163 251 129 38 143 148

Flex
Flow

10
No 460 460 460 390 198 198
Yes 346 346 346 319 172 172

20
No 211 218 158 56 165 166
Yes 234 257 136 52 153 158

30
No 314 369 160 47 167 177
Yes 211 234 132 36 146 154

Table 4.13 shows how the size of each MIP model grows as the number of jobs grows in each

problem setting, specifically in the number of binary variables, constraints, and non-zero coefficients

required to construct the model. Figures 4.7 and 4.8 represent this data in a grouped-bar chart,

where each facet column represents a manufacturing environment, bars are grouped by the number

of jobs in the problem setting, and the formulation considered is color-coded.

Note that the number of binary variables does NOT increase for the relative-positional model

when including setups. These results also show that the number of binary variables required for

both the Two Stage and Flex Flow manufacturing settings are identical, while the Flex Flow envi-

ronment requires slightly less constraints and non-zeros. Clearly, the direct-positional formulation,
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considering sequence-dependent setups, is the most susceptible to computational memory scalability

limitations as the problem size grows.

Table 4.13. Evaluation of direct- and relative-positional assignment formulation model sizes - All
settings

KPI
Binary

Variables
Constraints Nonzeros

Model Direct Relative Direct Relative Direct Relative
MFG
Env

Num.
Jobs

With
Setups

Single
Machine

10
No 132 156 170 215 931 677
Yes 564 156 641 315 6822 977

20
No 462 506 540 625 3661 2347
Yes 1254 506 1681 1025 25642 3547

30
No 992 1056 1110 1235 8191 5017
Yes 2144 1056 3121 2135 56462 7717

Parallel
Machine

10
No 396 468 490 448 2793 1299
Yes 1692 468 1903 625 20466 1845

20
No 1386 1518 1580 1300 10983 4650
Yes 3762 1518 5003 1903 76926 6339

30
No 2976 3168 3270 2335 24573 8945
Yes 6432 3168 9303 3989 169386 14055

Two
Stage

10
No 528 624 860 724 4624 2278
Yes 2256 624 2744 992 28188 3054

20
No 1848 2024 2920 1987 18244 7320
Yes 5016 2024 7484 3185 106168 10958

30
No 3968 4224 6180 3580 40864 14054
Yes 8576 4224 14224 6654 233948 23966

Flex
Flow

10
No 528 624 760 700 4224 2170
Yes 2256 624 2644 1011 27788 3128

20
No 1848 2024 2520 2055 16644 7666
Yes 5016 2024 7084 3179 104568 10934

30
No 3968 4224 5280 3778 37264 15041
Yes 8576 4224 13324 6247 230348 22350
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Figure 4.7. Number of binary variables required for Direct- and Relative-positional formulations

Figure 4.8. Number of constraints required for Direct- and Relative-positional formulations

4.4.3.1 Extension: Implementation with Increased Time Limits

We acknowledge that for a majority of trials tested in the DoE, a 1 hour time limit was in-

sufficient for identifying the optimal solution for each respective problem. To explore the solver
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capabilities further, tested 10 additional trials for the P20xx problem setting, and allowed a maxi-

mum time limit of 5 hours. Table 4.14 shows details of each individual run from this experiment.

It is clear that the plateauing behavior of the MIP Gap persists well beyond the 1 hour time limit

for all problem settings within P20xx. This is re-emphasized in Figure 4.9 which shows the solver

progression for the MIPGap of each solve throughout the duration of the 5 hour time limit. Note

that only 2 of the 40 tested problems required more than 1 hour, yet less than 5 hours to reach a

proven optimal solution.

Table 4.14. Recorded instances of computational runtimes, achieved Objective Function Values,
Lower Bounds and MIPGaps within 5 hour time limit - Parallel Machine setting with 20 jobs

KPI Runtime obj/bound MIP Gap (%)
Model Direct Relative Direct Relative Direct Relative

MFG
Env

Num.
Jobs

With
Setups

Trial

Parallel
Machine

20

No

0 339 18000 174/174 174/59 0.0 % 65.8 %
1 18000 18000 649/215 649/78 66.8 % 87.9 %
2 29 18001 146/146 146/89 0.0 % 38.8 %
3 8393 18000 183/183 183/50 0.0 % 72.7 %
4 22 18001 116/116 116/44 0.0 % 61.5 %
5 27 18000 143/143 143/59 0.0 % 58.3 %
6 261 18000 145/145 145/69 0.0 % 52.4 %
7 9 18000 156/156 156/48 0.0 % 69.2 %
8 7340 18001 169/169 204/55 0.0 % 73.1 %
9 18001 18000 252/164 252/64 35.1 % 74.4 %

Yes

0 18001 18000 578/229 578/71 60.4 % 87.6 %
1 18001 18000 370/176 373/67 52.5 % 82.0 %
2 18001 18001 457/265 472/82 42.0 % 82.5 %
3 18001 18000 222/172 228/52 22.4 % 77.3 %
4 18001 18000 524/232 524/74 55.7 % 85.8 %
5 18001 18000 383/183 383/63 52.2 % 83.4 %
6 18001 18000 517/197 516/63 61.9 % 87.7 %
7 18001 18000 349/171 367/53 51.0 % 85.5 %
8 18001 18000 485/201 495/58 58.5 % 88.1 %
9 18002 18000 228/184 228/62 19.4 % 72.6 %
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Figure 4.9. MIP Gap progression - allowing for 5 hour maximum run time limit

4.4.3.2 Extension: Implementation of Lower Bounds

In the following we evaluate: 1) the performance of the formulations presented in this chapter

compared to heuristic benchmarks for finding upper and lower bounds to the tested problems, and

2) the impact of adding constraints restricting the search space in the MIP tree to solutions with

values greater than the heuristic lower bound. Specifically, we present these results considering the

P20xx problem setting.
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The heuristic developed for calculating the lower bounds in the Pxxx problem setting is:

LowerBound =
1

|J |
∑
i∈I

(
min
j∈J

(Pij + f∗ij) + max
(
0,min

j∈J
ci(Pij − di)

))

where f∗ij is the minimum sequence-dependent setup time possible for job i on machine j. This lower

bound is calculated by finding: the machine able to process each job the quickest (to account for

the Makespan component of the objective function) plus the minimum possible tardiness penalty

for each job, assuming that each job begins processing at time 0 on the machine which is able

to process it the quickest. This value is divided by the number of parallel machines which are

available. Note that f∗ij takes a value of 0 for all jobs and machines in problem settings which do

not consider setups.

The heuristic developed for calculating the upper bounds in the Pxxx problem setting is found

by successively assigning each job (in order of Earliest Due Date) to the machine which is able

to complete it the earliest, considering sequence-dependent setup times, if applicable. The upper

bound value is found as the sum of the MakeSpan plus resulting tardiness penalties from this

dispatching policy. We acknowledge that both the upper and lower bounds are not optimal, can

be improved, and will be a focus in future work.

Table 4.15 provides context to the quality of solutions found by the direct- and relative-positional

formulations compared to the heuristic upper and lower bounds for each tested problem instance.

Note that both the direct- and relative-positional formulations are capable of finding superior

solutions compared to the heuristic dispatching policy. However, in many of the instances shown,

the best lower bound found using relative-positional formulation is inferior to the heuristic lower

bound.
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Table 4.15. Evaluation of achieved Objective Function Values and Lower Bounds of MIP solver
and Heuristic Upper/Lower Bounds - Parallel Machine setting with 20 jobs

Model Heuristic Bounds Direct Relative
KPI Upper Lower Obj. Func. Lower Bound Obj. Func. Lower Bound

With
Setups

Trial

No

0 219 143 146 146 172 79
1 2186 126 1043 194 1061 73
2 144 106 137 137 137 70
3 211 94 126 126 126 44
4 277 134 144 144 144 72
5 1667 118 508 268 508 64
6 196 81 124 124 124 39
7 181 128 148 148 148 59
8 1560 131 569 191 573 61
9 231 105 144 144 147 60

Yes

0 320 69 160 160 171 53
1 530 81 169 169 169 58
2 2970 95 551 230 532 70
3 1800 83 642 199 670 68
4 1296 107 602 200 633 56
5 4030 77 1169 214 1190 66
6 506 66 164 145 164 45
7 778 92 284 151 284 53
8 2023 94 350 180 350 72
9 1241 119 398 184 392 58

Table 4.16 illustrates the impacts of implementing a constraint to the formulations which re-

stricts the search space to solutions which have an objective function value greater than the heuristic

lower bound. Specifically, the following modifications are made to the formulation:

Formulation Modifications

min Z

s.t. All Original Constraints

Cmax +
∑
i∈I

ci Di = Z ∀ j ∈ J (LB1)

Z ≥ LB ∀ j ∈ J (LB2)

The column, Uses LB, signifies whether or not the formulation modifications are implemented

to each respective formulation. We observe that incorporating the heuristic lower bound results

in an improvement to the MIPGap realized for the relative-positional formulation, especially when
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sequence-dependent setups are NOT considered. We also note that the instances solved to op-

timality by the direct-positional formulation, not considering sequence-dependent setups, tend to

take longer when the lower bound constraints are included. However, these runtimes are slightly

improved when setups are considered. Figure 4.10 depicts the progression of the MIPGap of each

problem instance during the course of the time limit.
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Table 4.16. Impact of implementing heuristic lower bound constraint: Recorded instances of
achieved Objective Function Values, Lower Bounds and MIPGaps within 1 hour time limit - Parallel
Machine setting with 20 jobs

KPI MIP Gap (%) Runtime obj/bound
Model Direct Relative Direct Relative Direct Relative

With
Setups

Trial Uses LB

No

0
N 0.0 % 54.3 % 4 3600 145/145 171/78
Y 0.0 % 1.8 % 7 3600 145/145 145/142

1
N 81.4 % 93.1 % 3600 3600 1043/194 1060/73
Y 81.2 % 89.3 % 3600 3600 1042/196 1176/125

2
N 0.0 % 48.5 % 7 3600 136/136 136/70
Y 0.0 % 22.2 % 9 3600 136/136 136/106

3
N 0.0 % 65.0 % 8 3600 125/125 125/44
Y 0.0 % 26.8 % 8 3600 125/125 129/94

4
N 0.0 % 50.0 % 18 3600 143/143 143/71
Y 0.0 % 6.7 % 79 3600 143/143 143/134

5
N 47.4 % 87.5 % 3600 3600 508/267 508/63
Y 48.3 % 76.9 % 3601 3600 508/263 508/117

6
N 0.0 % 68.4 % 2 3600 123/123 123/39
Y 0.0 % 34.2 % 5 3600 123/123 123/81

7
N 0.0 % 60.0 % 20 3600 147/147 147/59
Y 0.0 % 13.3 % 54 3600 147/147 147/128

8
N 66.5 % 89.3 % 3600 3600 569/190 573/61
Y 67.0 % 77.6 % 3600 3600 578/190 584/131

9
N 0.0 % 59.2 % 7 3600 144/144 146/60
Y 0.0 % 27.1 % 14 3600 144/144 143/105

Yes

0
N 0.0 % 68.7 % 2362 3600 160/160 170/53
Y 0.0 % 58.0 % 1853 3600 159/159 164/69

1
N 0.0 % 65.7 % 1496 3600 169/169 169/58
Y 0.0 % 52.3 % 331 3600 169/169 169/80

2
N 58.2 % 86.8 % 3600 3600 550/230 532/70
Y 56.4 % 83.2 % 3600 3600 550/240 565/95

3
N 69.0 % 89.8 % 3600 3600 642/198 670/68
Y 69.3 % 87.3 % 3601 3600 642/197 652/82

4
N 66.8 % 91.2 % 3600 3600 602/200 633/55
Y 66.9 % 82.2 % 3600 3600 604/199 602/107

5
N 81.7 % 94.5 % 3601 3600 1169/214 1190/66
Y 82.4 % 93.5 % 3600 3600 1195/209 1186/77

6
N 11.5 % 72.6 % 3600 3600 164/145 164/45
Y 2.2 % 59.7 % 3600 3600 164/160 164/66

7
N 46.8 % 81.4 % 3600 3600 283/151 283/52
Y 47.2 % 67.4 % 3600 3600 283/149 283/92

8
N 48.5 % 79.5 % 3600 3600 350/180 350/71
Y 49.3 % 74.5 % 3600 3600 350/177 368/93

9
N 53.7 % 85.2 % 3600 3600 398/184 392/57
Y 53.8 % 70.5 % 3600 3600 398/184 402/118
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Figure 4.10. MIP Gap progression - implementing lower bound constraint
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4.5 Conclusion

In this chapter, we present and compare several formulations for the unrelated parallel machine

and flexible flow shop scheduling problems. The scheduling problem we consider is motivated by the

production system of Artaic - Innovative Mosaic, a mosaic manufacturer located in Boston, MA.

This Make-To-Order firm employs several generations of automated tile-placing robots to fabricate

mass-customized murals. A subset of these robots require an additional preprocessing operation

which prepares the tiles which make up the murals for the robots.

The scheduling formulations we develop are capable of considering sequence-dependent setups

and vary in the manner in which scheduling decisions are represented. These representations include

a direct-positional assignment formulation and a relative-positional assignment formulation, with

an objective of minimizing shop Makespan and weighted tardiness. We also consider a novel

representation of the flexible flow Shop problem where only a subset of the resources in the second

production phase require an operation in the first phase of production.

Based on the results of our computational experiments, implemented using the Gurobi v9.5.0

solver with a Python interface, we conclude that the direct-positional formulation dominates the

relative-positional formulation in all tested problem settings. While the relative-positional formu-

lation seems to be a promising alternative for problems considering sequence-dependent setups,

considering that the number of variables and constraints does not increase compared to a problem

with no setups, the direct-positional formulation still provides superior solutions. However, limita-

tions exist in the formulations presented, as they are only capable of identifying optimal solutions

for smaller problems. Future work in this research stream will be dedicated to the enhancement of

the formulations by improving the performance of the models in identifying lower bounds, i.e. by

tightening the value of the big-M parameter, defining valid inequality constraints, and calibrating

the parameters of Gurobi’s solver.
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CHAPTER 5

SCHEDULING WITH CONTINGENT DEMAND

5.1 Introduction

To remain competitive, Make-To-Order firms must be able to provide short lead-times, low prices

and customizable products which suit the needs of their customers. Make-to-Order firms typically

operate in a Direct-to-Consumer/Business-to-Customer environment, where the demand generation

process is initiated when a potential customer submits an enquiry for a specific product. The firm

follows up by submitting a quotation to that customer detailing their capabilities, including the

price and lead-time they are able to offer. Assuming the potential customer goes out for quotation

to multiple competing MTO firms, the firm which offers the most attractive combination of price,

leadtime, quality and incentives (such as compensation for late deliveries), will be awarded the

demand.

A trade-off exists in the quotation decisions a firm makes in response to new customer requests.

If a firm quotes too aggressively (i.e. low prices and short lead times), they are likely to win a lot of

bids, but will be unlikely to satisfy the terms offered in the quote, resulting in tardiness penalties.

If they bid too conservatively, they are unlikely to win any bids, resulting in the loss of potential

revenues and the under utilization of their perishable resources. The firm must strike a balance

between competitiveness and attainability when submitting quotes to new customers.

The time between the delivery of a quotation and the agreement on order terms between the

firm and the customer is referred to as the tendering period, a consideration which has received

shockingly little attention in scheduling literature. Customer demand during this period is consid-

ered a contingent demand and acts as a critical source of uncertainty for MTO firms. During this

time it is unknown whether the firm will need to reserve resource capacities for the order, making

the estimation of product lead times difficult. When a new customer enquiry arrives, the firm may

have several contingent orders in their backlog. This presents a challenge for the firm, as they must

offer lead time quotations to these new customers without full information of their current backlog.
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Ideally, the duration of the tendering period should be reduced as much as possible. However, due

to the nature of MTO manufacturing, in which products tend to be expensive and require extensive

planning, the tendering period may be long.

The purpose of this chapter is to develop a generalized decision support system (DSS) framework

for the scheduling problem, subject to contingent demand, which underlies the application of various

Revenue Management problems, such as: the Order Acceptance (OA), the Dynamic Pricing (DP),

the Due Date Setting (DDS), and the Simultaneous Pricing and Due Date Setting problems. The

execution of these Revenue Management strategies depends on the underlying scheduling problem

comprising the production of the firm’s realized demand. Sub-optimal scheduling practices can

lead to inaccurate estimates of expected lead times and as a result, loss of revenue due to either

overly aggressive or conservative quotations. We consider the problem where a decision-maker is

tasked with scheduling a set of jobs, with the requirement that they must commit/freeze the most

immediate portion of the schedule, say the next two weeks, to allow other decision-makers in the

firm to act with certainty when making decisions such as human resource planning, preventative

maintenance planning, raw material procurement, delivery planning, etc.

Although the existing literature has addressed applications encompassing disruptive uncertain-

ties such as job cancellations or the introduction of new orders, the work dedicated to specifically

applying scheduling under the uncertainty of contingent demand is limited. Our objective is to

identify a framework which finds a balance in the trade-off of solution fidelity and computational

efficiency. As will be described, the scheduling problem subject to contingent demand quickly be-

comes intractable as the number of contingent jobs increases, so finding a framework which can

handle large-sized problems will provide a beneficial contribution to the existing literature.

The rest of the paper is organized as follows. In Section 5.2, we provide a review on scheduling

under uncertainty and the considerations of contingent demand. In Section 5.3, we provide the

problem statement and present a simple example to illustrate the impacts which contingent demands

may have on scheduling decisions. In Section 5.4, we develop several stochastic programs for solving

the scheduling problem with contingent demand, each with varying levels of solution fidelity. In

Section 5.5, we present a computational analysis of the aforementioned formulations and provide

our results. In Section 5.6, we propose further directions of research, and in Section 5.7 we conclude

the chapter.
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5.2 Literature Review

Much of the existing literature in machine scheduling addresses static scheduling, where all

resource and job characteristics are assumed to be deterministic and known prior to generating

a schedule [178]. Solutions obtained using these “classic” scheduling approaches quickly become

infeasible and cause production disturbances in the face of disruptions or deviations from their

deterministic expectations [64, 103]. Practitioners often view the ignorance of uncertainty and the

dynamic elements of the scheduling process as a major source of the gap between scheduling theory

and practice [148]. This shortcoming has begun to be addressed in recent decades and lately has

been of primary concern in the scheduling literature.

The purpose of this literature review is two-fold: First we provide a high-level overview of the

modeling dimensions associated with defining the framework of the scheduling problem we consider.

Second, we provide review on the limited existing literature which directly address the impacts of

contingent demand. Supplemental reviews are also presented as Appendices in this dissertation.

5.2.1 Overview of Scheduling Under Uncertainty

Many classification schemes have been developed to address the types of uncertainties faced

by manufacturing and service firms. Pistikopoulos [131] developed a classification scheme where

uncertainties are labeled as model-inherent, process-inherent, external, or disruptive uncertainties.

Uncertainties derived from contingent demands can be classified as a disruptive uncertainty.

Disruptive uncertainties can be broken into two subcategories: resource-related disruptions and job-

related disruptions. Examples of resource-related disruptions include random machine breakdowns,

the sudden unavailability of suppliers, or a sudden loss of personnel. Job-related disruptions include

dynamic release dates, order cancellations, due-date changes, arrival of urgent jobs, and changes in

job specifications which have a direct impact on the processing times.

The representation of these uncertainties within a decision-making framework acts as a defining

characteristic in scheduling models. Generally, uncertainties are represented using scenario-based

methods or probabilistic-based methods. In scenario-based representations, uncertainty is modeled

in a finite set of scenarios, which can be defined through the discretization of continuous proba-

bility distributions or using simulation-based methods. For example, Basset et al. [16] consider

uncertainties in processing rates, process yields, and resource availability using a discrete set of
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scenarios that were generated using a Monte Carlo simulation. They determine a schedule for each

instance and aggregate the solutions across all scenarios to identify optimal scheduling policies.

Scenario-based representations provide a straightforward way to incorporate uncertainty. However,

the problem inevitably grows in complexity as the size of the considered scenario set grows.

Approaches that address scheduling under uncertainty are classified as reactive, proactive or as

hybrid of the two. Reactive scheduling approaches (also referred to as dynamic or online schedul-

ing) revise an existing schedule in real-time throughout its execution as unexpected events occur.

Research objectives in this field concern the identification of optimal rescheduling policies and

methods given a scheduling environment. The fundamental research questions are: when should a

reschedule be triggered? and how should the reschedule be implemented?

It should be noted that strictly reactive scheduling approaches do not directly consider the

uncertainties while generating schedules, but rather identify the optimal policies which should be

implemented while reacting to the realization of those uncertainties [148]. While this does accommo-

date for considerable flexibility in the schedule to compensate for unforeseen system disturbances,

these strategies lack the global perspective provided by proactive scheduling approaches. For this

reason, these approaches are typically reserved for problem settings characterized by extremely

disruptive and/or frequently realized uncertainties.

Proactive scheduling considers future disruptions while generating schedules in an effort to hedge

against potential disruptions and parametric uncertainties. This approach is more synonymous with

robust or stochastic optimization and makes use of historical data and forecasting techniques to

derive scheduling decisions [102]. The implementation of proactive scheduling approaches typically

occurs during the generation of a preschedule. Although a preschedule is unlikely to be executed,

it serves as the basis for planning supporting activities, establishing commitments with employees,

suppliers and customers, and making other revenue management decisions such as order accep-

tance/rejection or new customer pricing and/or due date quotation [102]. Scheduling objectives

in proactive approaches incorporate the preferences of the firm and can be classified based on the

following distinctions: preference of schedule stability vs performance, objectives based on reward

vs regret, and attitude towards risk (i.e. risk-neutral vs risk-averse).

We refer the reader to Appendix D for a review of these solution approach methodologies and

representations of proactive scheduling objectives.
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5.2.2 Scheduling and Revenue Management with Contingent Demand

The impacts of contingent demands remain an under-researched topic in the field of scheduling.

We have found that all studies which directly address the uncertainty of contingent demand, con-

sider it in the context of Revenue Management problems in which models are developed to make

decisions such as order acceptance/rejection or determining price and/or lead time quotations.

Contingent demands exist between the time a firm submits a quotation to a potential customer

and the time which the customer makes a decision on whether to accept or reject the offer. There

also exists the potential for a negotiation period in which the customer returns to the firm with

requests for adjustments to the terms described in the quotation. Each contingent order has 2

potential outcomes: it is either accepted by the customer and becomes realized as actual demand,

or it is rejected, resulting in a total of 2N possible demand scenarios, where N is the number of

contingent jobs. Each demand scenario will also result in a different optimal production schedule.

It is possible to estimate the probability that a contingent demand will become realized as a

function of the quotation offered to the customer using historical data. For example, the probability

of acceptance of a job, i, can be estimated using statistical models, such as Berkson’s S-shaped

binary choice logit model [22]:

ai =

[
1 + β0 exp

(
−

A∑
j=1

βjxj

)]−1

where A is a vector of the distinguishing attributes of a bid, x are the quoted value of each attribute,

and β coefficients are estimated empirically from the firms historical bids. The probability of any

scenario, s ∈ S, occurring in a contingent demand backlog can then be calculated as the product

of the probabilities of each job’s outcome in that scenario:

qs =
∏
i∈IC

(
ai bis + ai (1− bis)

)

where qs is the probability of scenario s occurring, bis is a parameter taking a value of 1 if job i is

accepted by the customer in scenario s, IC is the set of contingent jobs, and the probability that a

job i will be rejected is: ai = 1− ai.
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Easton and Moodie [50] are cited as the first to consider the implications of contingent demand.

They consider a price and lead time quotation model, leveraging a form of Berkson’s logit model to

maximize the expected revenue of a new arriving customer. The authors consider a single machine

environment where all jobs are processed in the order in which they arrive as confirmed orders. The

expected contribution of each job enquiry is calculated as the expected revenue of the offered price

(considering the probability of acceptance) minus the expected tardiness of the order as a result of

offering an overly competitive leadtime. The authors follow up this research in Moodie [118] and

Moodie and Bobrowski [119] to evaluate various strategies for negotiating price and due dates.

Watanapa and Techanitisawad [187] extend this bidding model to account for multiple customer

classes, each with unique parameters for willingness to pay and sensitivity to lead time. They con-

sider a time-critical rush order class and a class for regular orders. In their model, they implement

an Earliest Due Date sequencing heuristic for rush orders and a FCFS sequencing rule for regular

orders. Watanapa and Techanitisawad [186] extend this work by proposing a genetic algorithm to

search for near-optimal sequences of the demand backlog. They conduct a simulation study on a

finite horizon and find a significant benefit in the average marginal revenue associated with the

order processing sequence. Liu and Liu [104] extend the models of Watanapa and Techanitisawad

by optimizing the scheduling sequence to minimize the weighted lateness of the backlog. The au-

thors develop and evaluate several meta-heuristics to solve the sequential bidding and scheduling

problems, including a proposed hybrid meta-heuristic method that combines simulated annealing

and tabu search. The authors consider a single machine scheduling problem with an objective of

minimizing the total weighted earliness and tardiness cost.

Zhou and Zhou [202] also extend the quoting of Easton and Moodie to include service level

constraints. The authors find that a consideration of service level constraints (defining the per-

centage of orders which will be delivered before the quoted lead time) has a beneficial impact on

the long-term expected marginal revenue. Cakravastia et al. [34, 35] extend the quoting model of

Easton of Moodie to consider multiple resources and multiple jobs per order, each potentially with

unique routings. The authors develop a manufacturing planning model which is responsible for de-

termining the shop schedule and lot sizes and conclude that the incorporation of the manufacturing

planning model can help the firm avoid overly optimistic bidding.
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Lu and Liu [109] consider the Dynamic Pricing and Scheduling problem. They explore the

benefits of price and scheduling coordination compared to partial coordination and blanket quoting

schemes and find that coordination benefits the manufacturer for a wide range of parameter settings.

The authors consider a single machine manufacturing environment and apply Smith’s [160] Shortest

Weighted Processing Time dispatching rule for scenario-based scheduling decisions. The authors

also investigate the validity of assuming that the firm only has several price points available for

quotation. They show that the expected profit loss of having limited discrete set of price points

decreases rapidly as the number of price points increases.

Ebadian et al. [51] consider an extension of the Simultaneous Pricing, Due-Date Setting and

Scheduling Problem (SDPSP) subject to contingent demand to consider a set of suppliers and

subcontractors that are able to provide raw materials and outsourcing capacities to complete the

accepted workload. Baykasoglu et al. [17] develop a model for the SPDSP that incorporates novel

price increment/reduction functions to represent back-and-forth negotiations between the firm and

customers. This model is applied to the real-life problem of a bridal gown company and is shown

to provide superior results compared to models without a negotiations mechanism.

Sujan et al. [168] also consider an extension of the SPDSP that enables a multi-round nego-

tiation phase to the quoting process. The authors compare two strategies, namely opportunistic

(aggressive) and liberalistic (conservative), to react to customer counteroffers. The authors de-

fine terms such as aspiration level and limit level to characterize the firm’s willingness to offer

competitive pricing and lead times (represented as a value curve depicting the trade-off between

offered price and lead time), as well as the term customer preferred line to represent customer

counter offers. The authors demonstrate through a numerical analysis the working mechanisms of

the proposed model. In Sujan et al. [167], the SPDSP is extended to provide multiple quotations

for each arriving quote at the same aspiration level. This logic is beneficial when customers have

a tendency towards price- or time-sensitivity which is unknown to the firm. Sujan [134], extends

the SPDSP further to generate quotes for multiple orders simultaneously, rather than sequentially.

The author shows that dealing with quotes simultaneously increases the expected contribution and

probability of acceptance of new orders. Throughout the development of these models, the authors

computational experiments are limited in scope, considering less than 5 work centers and less than

10 jobs (3 of which are contingent).
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This study contributes to the literature in the following ways: 1) we evaluate the impacts of

contingent demand strictly in the context of scheduling, which to our knowledge, has never been

addressed before in the literature, 2) we develop several novel unrelated-parallel machine scheduling

formulations which promote schedule stability by fixing the most immediate portions of the schedule

across all demand backlog scenarios, including a novel time-indexed formulation which considers

a heterogeneous discretization of the planning horizon to enable the implementation of large-scale

contingent demand scheduling and revenue management decisions, 3) we provide a computational

comparison of the various formulations to solve larger-scale scheduling problems under contingent

demand.

5.3 Problem Description

In this section, we present the contingent demand scheduling problem that is at the heart of

the generation of robust price and due date quotes under contingent demand. In this problem, |I|

jobs must be processed for a single operation by one of |J | unrelated parallel machines, j ∈ J .

Each job, i ∈ I, belongs to either the accepted job set, IA, or the contingent job set, IC . All

jobs in the accepted job set, i ∈ IA, have been already committed to and are known to be a part of

the eventual realized schedule. The contingent jobs, i ∈ IC , describe outstanding orders which have

unresolved quotations offered to customers. Uncertainty in this problem derives from the observed

realization of contingent demand from the job set, IC . The possible demand scenarios, s ∈ S, are

defined by the jobs which exist as actual demand. The integer parameter, |S|, defines the number

of scenarios which are considered. The binary parameter, bis, describes whether or not job i is

accepted by the customer in scenario s. Only jobs that are confirmed in scenario s, i.e. bis = 1,

are scheduled. Each contingent job is also characterized by its probability of acceptance ai. Each

scenario, s, has a probability of occurrence, qs, calculated as the joint probability of the contingent

jobs that are accepted/rejected in that scenario.

Each job which is accepted in a scenario must be scheduled to one of k positions in the schedule.

The set of all scheduling positions is k ∈ K. As mentioned, we consider a requirement in which

the most immediate portion of the schedule k ∈ KF ⊆ K, must be frozen, i.e. the same across all

scenarios s ∈ S. The integer parameter, f , defines the number of positions in the schedule which

must be fixed on each resource. Only accepted jobs, i ∈ IA, are allowed to be assigned to this
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portion of the schedule, as contingent jobs are not certain to be realized. We refer to the portion

of the schedule which is not fixed as KNF , where KF ∩KNF = ∅ and KF ∪KNF = K.

The scenario-independent binary decision variable xijk, defined for each k ∈ KF and i ∈ IA,

takes the value 1, if job i is scheduled on resource j in the frozen position k, 0 otherwise. The

scenario-dependent binary decision variable ysijk, defined for each k ∈ KNF and i ∈ I, takes a the

value 1, if job i is scheduled in position k on resource j in scenario s.

The binary parameters, Aij , take a value of 1 if job i can be processed by resource j (0 otherwise),

and Pij is the processing time of job i on resource j. Each job i is also characterized by the following

parameters: a due date, di, an earliest acceptable delivery date, ei, a per-period holding cost, hi,

for jobs completed prior to their earliest acceptable due date and a per-period tardiness cost, ci, for

jobs completed after their due date. This penalty structure is referred to as a due-window penalty

structure, and is representative of the problem faced by our industrial partner.

Figure 5.1. Example of due-window penalty structure

The objective of the scheduler is to minimize the expected costs (sum earliness and tardiness

penalties) associated with the backlog across a set of contingent demand scenarios. There is no

preemption, job splitting, or outsourcing, and processing rates are deterministic. There may be a

setup time associated with a job, independent of its size, but since jobs are assigned to a single

resource without preemption, this time can simply be included to its overall processing time. It

is assumed that setups are not sequence-dependent, which differs from the problem considered in

Chapter 4.

We refer the reader to Appendix E for a presentation and discussion of an example problem

for the setting we describe above. In this Appendix we show that: 1) scheduling decisions when
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optimizing expected costs are sensitive to the probabilities associated with each scenario, 2) job-

resource eligibility constraints can have major influence in this problem and 3) different attitudes

towards risk (neutral vs averse) can result in unique optimal scheduling decisions.

5.4 Formulations

In the following, we present five formulations for this problem, differentiating in the defini-

tion of the planning horizon and scheduling assignment decision variables. First, we adapt the

direct-positional scheduling formulation from Chapter 4 to incorporate the scenario-based problem

required for considering contingent demands. We then present formulations for four cases of a

time-indexed representation of the scheduling problem. Each time-indexed formulation differs in

the discretization method of time used when defining the scheduling horizon. First, we formulate

the case in which the discretization of time is limited such that each job requires at least one

time period to be completed by any resource (small-bucket). Then we formulate the case where

each time period is at least as large as the maximum processing time required by any resource

to complete any job (big-bucket). This formulation allows for multiple jobs to be assigned and

completed within the same time period. A special case in which all jobs are identical, allowing for

the discretization of time equal to the processing time on each resource, is also presented. Finally,

we formulate a hybrid-bucket model which combines aspects of both the small- and big-bucket

formulations. Specifically, this formulation considers small-buckets for the frozen portion of the

schedule and big-buckets for the scenario-dependent portion of the schedule.

5.4.1 Direct-Positional Assignment

In the direct-positional assignment formulation (D), decision variables, xijk and ysijk, take a value

of 1 if job i is assigned in the kth position in the processing sequence of machine j in scenario s (if

applicable). The frozen portion of the schedule, KF , is defined such that the first f jobs assigned

in the sequence of each resource must be the same across all considered scenarios. The variables,

tjk and T sjk are the completion time of position k on resource j (for fixed and non-fixed assignments

respectively). The realized earliness associated with these completion times are calculated as εi

and Esi . Similarly, δi and Ds
i , are calculated as the tardiness associated with completion times later

than the desired due date di. Realized holding costs and tardiness penalties are calculated as the
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product of these earliness/tardiness variables and the per-period holding cost rate, hi, and tardiness

rates, ci, respectively. Note that all variables associated with the frozen portion of the schedule

are scenario-independent. The formulation of the direct-positional contingent backlog scheduling

model is presented below:

Notation Description
Sets j ∈ J Set of machines, {1..|J |}

i ∈ I Set of all jobs, {1..|I|}
i ∈ IA Set of accepted jobs, IA ⊆ J
i ∈ IC Set of contingent jobs, IC ⊆ I
k ∈ K Set of all positions, {0..|I|}
k ∈ KF Set of fixed positions, {0..f − 1}
k ∈ KNF Set of non-fixed positions, {f..|I|}
s ∈ S Set of scenarios, {1..|S|}

Parameters f Number of fixed positions
|I| Number of jobs
|J | Number of machines
|S| Number of scenarios
M A really large number
di Desired delivery date of job i
ei Earliest acceptable delivery date of job i
hi Per-period holding cost of job i
ci Per-period tardiness penalty of job i
Aij 1 if resource j can process job i, 0 otherwise
Pij Processing time of job i on resource j
bis 1 if job i is a confirmed order in scenario s, 0 otherwise

Variables tjk, T
s
jk Completion time of position k on resource j, in scenario s (if applicable)

δi, D
s
i Tardiness associated with job i, in scenario s (if applicable)

εi, E
s
i Earliness associated with job i, in scenario s (if applicable)

xijk 1 if job i is assigned to position k on resource j, 0 otherwise
ysijk 1 if job i is assigned to position k on resource j in scenario s, 0 otherwise

Table 5.1. Notation for the direct-positional formulation
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Formulation (D)

min
∑
i∈IA

(
hi εi + ci δi

)
+
∑
s∈S

∑
i∈I

qs

(
hi E

s
i + ci D

s
i

)
s.t. ∑

j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (2)

∑
i∈IA

xijk +
∑
i∈I

ysijk ≤ 1 ∀ j ∈ J, k ∈ K, s ∈ S (3)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (4)

tjk = 0 ∀ j ∈ J, k = 0 (5)

tj,k−1 +
∑
i∈IA

Pij xijk ≤ tjk ∀ j ∈ J, k ∈ KF (6)

tjk +
∑
i∈I

Pij y
s
ijk ≤ T sj,k+1 ∀ j ∈ J, k = f, s ∈ S (7)

T sj,k−1 +
∑
i∈I

Pij y
s
ijk ≤ T sjk ∀ j ∈ J, k ∈ KNF , s ∈ S : k > f (8)

tjk − di −M
(
1− xijk

)
≤ δi ∀ i ∈ IA, j ∈ J, k ∈ KF (9)

T sjk − di −M
(
1− ysijk

)
≤ Ds

i ∀ i ∈ I, j ∈ J, k ∈ KNF , s ∈ S (10)

ei − tjk −M
(
1− xijk

)
≤ εi ∀ i ∈ IA, j ∈ J, k ∈ KF (11)

ei − T sjk −M
(
1− ysijk

)
≤ Esi ∀ i ∈ I, j ∈ J, k ∈ KNF , s ∈ S (12)∑

i∈IA
xijk+1 ≤

∑
i∈IA

xijk ∀ j ∈ J, k ∈ KF (13)

∑
i∈I

ysij,k+1 ≤
∑
i∈I

ysijk ∀ j ∈ J, k ∈ KNF , s ∈ S (14)

The objective function minimizes the expected penalty associated with the schedule across

the scenario set. This value is calculated as the sum of penalties associated with fixed-positions

assignments plus the penalties associated with non-fixed positional assignments. Note that the

scenario-dependent penalties are weighted by the probability that that scenario will occur, qs.

Constraints 1 require each accepted job to be scheduled exactly once for each scenario. Con-

straints 2 require each contingent job to be scheduled exactly once for only the scenarios in which

it exists in the backlog, i.e. when bis = 1. Constraints 3 ensure that at most one job can be
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assigned to each position. Constraints 4 ensure that jobs can only be assigned to machines which

are capable of processing them. Constraints 5 initialize the completion time at position k = 0 on

each resource as 0. Constraints 6-8 require the completion time of the job processed in position

k on resource j to be after the completion time of the job in the previous position, plus its own

processing time. Constraints 6 consider all fixed positions, k ∈ KF . Constraints 7 consider the

first non-fixed position, k = f , (which follows a fixed position) for each scenario. Constraints 8

consider all other non-fixed positions, k ∈ KNF : k 6= f . Constraints 9-10 calculate the tardiness

of jobs for fixed and non-fixed assignments; notice the big M term makes the constraints relevant

only when job i is assigned to position k on resource j in scenario s (if applicable). Constraints

11-12 calculate the earliness of fixed and non-fixed assignments. Constraints 13-14 require earlier

positions to be filled first.

The direct-positional formulation provides the most accurate representation of the schedule,

considering the representation of the planning horizon in continuous time. However, the completion

times and penalties associated with each assignment are dependent variables and must be calculated

on-the-fly. This leads to excessive computational expense which may not be justified considering

the use-case, i.e. as the underlying framework of a dynamic and/or due date quotation model.

In practice, including our motivational use-case, it is common to provide customers with lead

time quotes on the scale of weeks, not to the minute, as this continuous-time direct-positional

model would provide. For this reason, a time-indexed scheduling formulation may be beneficial,

as a trade-off in solution fidelity may be justified to achieve reasonable solution times for much

larger problem instances. Unlike the formulation above, the discretization of time allows for the

parameterization of the completion time and penalties associated with each scheduling decision,

beforehand in preprocessing. Further, while the direct-positional formulation requires constraints

including a big-M term (Constraints 9-12), the following time-indexed formulations do not.

5.4.2 Small-Bucket Time-Indexed Assignment

The small-bucket (S) time-indexed formulation redefines xijk and ysijk as the assignment of job

i to be started on resource j at the beginning of period k. The definition of the frozen period of

the planning horizon, KF , is redefined to freeze the first f periods in the planning horizon, in
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contrast to the direct-positional formulation, which freezes the first f positions in the sequence of

each resource.

The processing time required for machine j to complete job i is Pij periods. Processing times

are represented as an integer value, making it is possible to quickly calculate the completion time

associated with any scheduling assignment. For example, if a job is assigned to be started at

position k, the completion time of that job will be tijk = k + Pij . Notice that tijk is no longer

scenario-dependent, as it was in the direct-positional formulation. The associated penalty of a job

completed at time tijk can also be calculated as a parameter:

Rijk = hi max
(
0, ei − tijk

)
+ ci max

(
0, tijk − di

)

The parameterization of both the completion time, t, and observed penalty, R, of any assign-

ment decision allows for the removal of all dependent variables which are required to solve the

direct-positional scheduling problem, e.g. tardiness of a job, Ds
i . Another benefit of this param-

eterization is that this allows for the ability to capture complex cost structures associated with

any assignment. Although outside of the scope of this dissertation, the calculation of Rijk can be

enhanced to consider additional, sequence-independent setup costs (associated with resource j and

job i), overtime costs (associated with period k), and more complex penalty structures (i.e. tiered),

all without requiring any changes to the formulation.

To ensure that each resource processes at most 1 job at any time, we must define constraints

that restrict the assignment of any other jobs for each period between the starting time, k and

completion time k + Pij − 1, of a job, i, which is assigned to that resource, j. To enable this, we

define two new parameter sets, Uijk and Vijk. Uijk defines the number of fixed scheduling periods,

k ∈ KF , which are consumed by job i on machine j when started in period k, and Vijk defines the

number of non-fixed scheduling periods, k ∈ KNF , which are consumed by that assignment.

Uijk is calculated as the minimum of: 1) the processing time of job i on machine j, Pij , and

2) the number of frozen periods between the assignment period k and beginning of the non-frozen

portion of the schedule, f − k. Vijk is calculated as the maximum of: 1) 0, and 2) the sum of the

starting time, k, plus the processing time, Pij minus the time period in which the non-frozen period

begins, f . Consider an example in which a job, i, requires 10 processing periods on a machine, j,
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but is scheduled to begin processing 3 periods before the end of the frozen period of the schedule,

k = f − 3. We define Uijk and Vijk in order to ensure: 1) allocation constraints for the frozen

period are only created for periods which are within the fixed period, i.e. k ∈ KF , and 2) that no

other jobs are scheduled to begin in the first 7 periods of the non-frozen period on that machine.

In this example, Pij = 10, Uijk = 3, and Vijk = 7.

Notation Description

Sets k ∈ K Set of all time periods, {0..|K| − 1}
k ∈ KF Set of all fixed periods, {0..f − 1}
k ∈ KNF Set of all non-fixed periods, {f..|K|}

Parameters f Number of fixed time periods, |KF |
|K| Number of time periods
Pij Time periods required for resource j to process job i
tijk Completion time of job i on resource j when started in time period k
Rijk Penalty associated with scheduling job i to be started by resource j at time k
Uijk Number of fixed periods allocated to processing job i on resource j
Vijk Number of non-fixed periods allocated to processing job i on resource j

Variables xijk 1 if job i is assigned to begin processing on resource j in period k
ysijk 1 if job i is assigned to begin processing on resource j in period k in scenario s

Table 5.2. New and modified notation for small-bucket time-indexed formulation

Formulation (S)

min
∑
j∈J

( ∑
k∈KF

∑
i∈IA

Rijk xijk +
∑

k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk

)
s.t.∑
j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (2)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (3)

1−
∑

l∈IA:l 6=i

xlj,k+u ≥ xijk ∀ i ∈ IA, j ∈ J, k ∈ KF , u ∈ {0..Uijk − 1} (4)

1−
∑

l∈I:l 6=i
yslj,f+u ≥ xijk ∀ i ∈ IA, j ∈ J, k ∈ KF , s ∈ S, u ∈ {0..Vijk − 1} (5)

1−
∑

l∈I:l 6=i
yslj,k+u ≥ ysijk ∀ i ∈ I, j ∈ J, k ∈ KNF , s ∈ S, u ∈ {0..Pij − 1} (6)
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Constraints 1 ensure that each accepted job is only scheduled to one position. Constraints 2

ensure that each contingent job is scheduled once for each scenario, if it exists in that scenario,

i.e. when bis = 1. Constraints 3 ensure that jobs can only be assigned to machines which are

capable of processing them. Constraints 4-6 ensure that machines process no more than one job in

any period. Constraints 4 considers fixed periods. Constraints 5 consider non-fixed periods which

may be allocated to complete jobs started during the fixed portion of the schedule. Constraints 6

consider non-fixed periods.

5.4.3 Big-Bucket Time-Indexed Assignment

Although the time-indexed formulation allows for the parameterization of the dependent vari-

ables, in contrast with the direct-positional formulation, the number of binary decision variables

required to represent the problem increases drastically. We present the big-bucket time-index for-

mulation (B) to account for this issue. In the big-bucket formulation, periods are of long duration,

i.e. a day or week, such that multiple jobs can be completed within a single period. Let Cjk be

the processing time available on machine j in period k. This parameter also allows the flexibility

for the capacity of each period to be unequal, i.e. in the case that a planned maintenance reduces

the availability of a machine in period k. Capacity constraints are introduced such that the sum

of the processing times of all the jobs assigned to any machine are less than the capacity of that

machine in period k. The schedule here is less accurate as it does not specify the precise sequence

of jobs processed within this larger time period they are assigned to.

The decision variables xijk and ysijk are now defined as the assignment of job i to be entirely

processed by machine j during period k, in scenario s (if applicable). As a result, the completion

time of any assignment is no longer job-dependent, and is only indexed in j and k: tjk. It is

assumed that all jobs assigned to be completed during period k will be delivered at the end of the

period, i.e. the end of the day/week. This assumption is justified so long as the time granularity

of customer deadlines (ei, di) are measured in increments at least as large as the scheduling period

length. The penalty associated with a scheduling assignment is now calculated as:

Rijk = hi max(0, ei − tjk) + ci max(0, tjk − di)
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The big-bucket formulation is presented below:

Notation Description
Parameters Cjk Available processing time of resource j in time period k
Variables xijk 1 if job i is to be processed on resource j during time period k

ysijk 1 if job i is to be processed on resource j during time period k in scenario s

Table 5.3. New and modified notation for the big-bucket time-indexed formulation

Formulation (B)

min
∑
j∈J

( ∑
k∈KF

∑
i∈IA

Rijk xijk +
∑

k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk

)
s.t. ∑

j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (2)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (3)

∑
i∈IA

Pij xijk ≤ Cjk ∀ j ∈ J, k ∈ KF (4)

∑
i∈I

Pij y
s
ijk ≤ Cjk ∀ j ∈ J, k ∈ KNF , s ∈ S (5)

Constraints 1 ensure that each accepted job is only scheduled to one position. Constraints 2

ensure that each contingent job is scheduled once for each scenario, if it exists in that scenario,

i.e. bis = 1. Constraints 3 ensure that jobs can only be assigned to machines which are capable

of processing them. Constraints 4 and 5 limit the work that can be assigned to a machine on a

time slot so that capacity is not exceeded. Note that Constraints 4 only considers jobs from the

accepted job set, and is not dependant on the scenario s ∈ S.

The big-bucket model works at a higher level of aggregation, which is attractive because it

significantly reduces the number of variables. This leads to shorter solution times while providing

sufficient solution fidelity to allow for revenue management decision making. The appropriate size

of the time bin may be a shift, a day, or a week depending on the magnitude of processing times

and the accuracy requirements in the particular application.

In settings where job sizes vary wildly, large jobs may need to be broken into smaller units that

fit into the bin size. If a job i is broken into ni smaller jobs, i1, i2, . . . , ini , then the penalties in
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the objective function will only be associated with the completion time of the last job, in, and new

constraints must be added to ensure that the earlier jobs are completed before that last one.

5.4.4 Identical Job Time-Indexed Assignment

The identical-job formulation (I) is a special case of the time-indexed formulation when all jobs

have the same resource requirements (i.e., Pij = Pj ∀ i ∈ I). This results in a much simpler

formulation that only includes assignment constraints. In this simplified formulation, because each

machine will be able to process all jobs i ∈ I at the same rate, the length of time which constitutes

a period on each machine can be standardized to be equal to Pj . Therefore, in this special case

formulation of the time-indexed scheduling problem, xijk and ysijk are defined as the assignment of

job i to be fully processed during period k on machine j.

Formulation (I)

min
∑
j∈J

( ∑
k∈KF

∑
i∈IA

Rijk xijk +
∑

k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk

)
s.t. ∑

j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (2)

∑
i∈IA

xijk +
∑
i∈I

ysijk ≤ 1 ∀ j ∈ J, k ∈ K, s ∈ S (3)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (4)

As a reminder, Constraints 1 ensure that each accepted job is only scheduled to one position.

Constraints 2 ensure that each contingent job is scheduled once for each scenario, if it exists in that

scenario, i.e. bis = 1. Constraints 3 limit the number of jobs that can be assigned to each position.

Constraints 4 ensure that jobs can only be assigned to machines which are capable of processing

them.

Consider an application in which job splitting is allowed. Each job i ∈ I can be split into equally

sized units of work content such that the processing requirements of any unit of work content is

identical. Further, in the case in which partial deliveries is allowed, the completion time of any

assignment can be calculated as tjk = k Pj , similar to when all jobs are of the same size.
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5.4.5 Hybrid-Bucket Time-Indexed Assignment

As mentioned, a trade-off exists between the small- and big-bucket time-indexed formulations

presented above. The small-bucket formulation provides high fidelity scheduling solutions, but is

subject to extensive memory requirements, while the opposite stands for the big-bucket formulation.

However, to a scheduling manager, it may be ideal to incorporate the benefits of both formulations.

Consider the use case in which the decision maker must decide a schedule for only the upcoming

two weeks, but would like to make robust decisions by accounting for all of the potential contingent

jobs. We present a hybrid-bucket formulation which encodes the frozen portion of the schedule,

KF , using the small-bucket time-indexed formulation while representing the non-frozen schedule,

KNF , using the big-bucket formulation. The resulting solution will provide a detailed schedule

for the frozen period while providing a loose production plan for the remaining backlog. This

implementation will also reduce the number of binary decision variables required to represent the

solution.

Figure 5.2. Example of hybrid-bucket time-index scheduling timeline

The planning horizon, k ∈ K, is now composed of periods of heterogeneous duration. A

proportional factor, τ , relating the duration of small- and big-buckets is required, such that each

bucket in KNF can be divided into τ small-bucket periods. For example, if each k ∈ KF represents

one hour, each k ∈ KNF represents one week, and each week is 40 working hours, then a conversion

factor τ = 40
hours

week
is used to generate the planning horizon KF ⊆ K. As a reminder, the planning

horizon k ∈ K is zero-indexed, such that when there are f periods in the frozen period KF , the

final period in the frozen period is k = f − 1, and the first non-frozen time period is k = f . The
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completion time of each job assignment is calculated using the following:

tijk =


k + Pij if k ∈ KF

f + τ(1 + k − f) if k ∈ KNF

Because the binary variable xijk defines when a job in the frozen period is started, there exists

the chance that a job started during the frozen period will be completed during the non-frozen

portion of the schedule. In this case, capacity from the first non-fixed big-bucket bin must be

adjusted to account for this overflow. The hybrid-time formulation is presented below:

Formulation (H)

min
∑
j∈J

( ∑
k∈KF

∑
i∈IA

Rijk xijk +
∑

k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk

)
s.t. ∑

j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (2)

∑
i∈IA

xijk ≤ 1 ∀ j ∈ J, k ∈ K (3)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (4)

1−
∑

l∈IA:l 6=i

xlj,k+u ≥ xijk ∀ i ∈ IA, j ∈ J, k ∈ KF , u ∈ {0..Uijk − 1} (5)

∑
i∈I

Pij y
s
ijf +

∑
i∈IA

∑
k∈KF

Vijk xijk ≤ Cjf ∀ j ∈ J, s ∈ S (6)

∑
i∈I

Pij y
s
ijk ≤ Cjk ∀ j ∈ J, k ∈ KNF , s ∈ S (7)

Constraints 1 require each accepted job to be scheduled exactly once for each scenario. Con-

straints 2 require each contingent job to be scheduled exactly once for only the scenarios in which

it exists in the backlog, i.e. bis = 1. Constraints 3 ensure that at most one job can be assigned

to each position. Constraints 4 ensure that jobs can only be assigned to machines which are capa-

ble of processing them. Constraints 5 ensure that no two jobs in the frozen period are processed
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simultaneously. Constraints 6 require the total processing time allocated for the first non-fixed

big-bucket period to be less than the available capacity in this period. The allocated processing

time for this period is the sum of all non-fixed assignments in that period plus all of the carry-over

work content from jobs that were assigned (but not completed) during the fixed portion of the

schedule. Constraints 7 require the total processing time allocated for all other big-bucket periods

is to be less than the available capacity.

5.5 Numerical Implementation

In this section we first extend the data generation framework, presented in Chapter 4, for the

contingent demand scheduling problem described above. We then provide a computational analysis

of the formulations to highlight the benefits and disadvantages of each formulation.

5.5.1 Data Generation Procedure

The data generation procedure for the contingent demand scheduling problem extends that

found in Section 4.4.1. We refer the reader to this section for a description of the user-defined

parameters associated with generating each problem instance and the data generation procedures

which result in the generation of the following parameters and coefficients:

Notation Description

αi Size of job i
di Due date of job i
ci Per-period tardiness penalty of job i
Aij 1 if job i can be processed by resource j
Pij Processing time of job i by resource j

Table 5.4. Parameters with generation procedures described in Section 4.4.1

Several additional user-defined parameters must be established to guide the generation of the

parameters and coefficients associated with the contingent demand scheduling problem. These

user-defined parameters are shown in Table 5.5. The following procedure extends that presented

in Section 4.4.1.

Each job, i ∈ I, is randomly assigned to either the accepted job set, IA, or contingent job set,

IC , such that the number of jobs in each set matches the user-specified values. Each job in the
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Notation Description

|IA| Number of jobs in the accepted job set, IA

|IC | Number of jobs in the contingent job set, IC

|S| Number of scenarios to be considered
f Number of periods to include in the frozen portion of the schedule
e Length of due-window for each job i
H Proportion of job size, αi to per-period holding cost, hi
Ω Set of potential probability of acceptances, ai any contingent job can have
ω Probability of each value of Ω being selected for each contingent job

Table 5.5. Additional user-defined parameters, extending Table 4.5, required for the data gener-
ation procedure of the Contingent Demand Scheduling Problem

accepted job set, i ∈ IA, has a probability of acceptance ai = 1. The probability of acceptance, ai,

of each contingent job i ∈ IC is randomly selected from the set Ω with probability ω.

The due date characteristics for each job include an earliest acceptable delivery date and a

desired delivery date, notated ei and di, respectively. The generation procedure for the desired

delivery date, di, of each job, i, has been defined in Section 4.4.1. The earliest acceptable delivery

date, ei, is generated as ei = di − e. Any job which is completed between the due-window, defined

by [ei, di], experiences no penalty. If a job is completed earlier that ei, it experiences an earliness

penalty, hi. The per-period holding cost, hi, is proportional to its size: hi = Hαi.

5.5.2 Computational Results

In this section, we investigate the computational performance of the contingent scheduling

models presented in Section 5.4. All computational experiments are performed using Gurobi v9.5,

on an AWS cloud machine with 32 GB RAM and 8 cores (x5.4xlarge machine). The CPU time

limit for each run on each problem instance is 3600 seconds, and an MIPGap termination condition

of 0.1% was used to terminate near-optimal solutions.

The objective of this computational comparison is to identify which contingent demand schedul-

ing formulation is most capable of providing high fidelity solutions in reasonable time. We consider

various instances of the contingent scheduling problem with a requirement of fixing the first week

of production across all demand realization scenarios. Instances vary in the number of certain

jobs, |IA|, the number of contingent jobs |IC |, and the number of randomly generated scenarios

that are considered |S|. Each problem instance is defined by a set of 3 unrelated parallel machines
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with eligibility restrictions based on the product type of each job. Table 5.6 describes the defining

parameters which are shared across all problem instances. 10 instances of each problem setting are

generated and solved by each formulation.

Description Notation Value

Number of Product Types |U | 5
Number of Machines |J | 3

Length of frozen period (hours) f 40

Min/Max size/qty of each job Q/Q 1/5

Min/Max processing rates P/P 1/5

Min/Max time for sequence-dependent setups F/F 1/10

Min/Max per-unit tardiness penalty C/C 1/5
Range of Due Date RDD 0.5

Tardiness Factor TF 0.5
Eligibility Factor ELIG 0.5

Set of Probability of Acceptance Ω {0.1, 0.25, 0.5, 0.75, 0.9}
Set of Probability of POA selection ω {0.1, 0.2, 0.4, 0.2, 0.1}

Due Window Size e 20
Holding Cost Rate H 2

Table 5.6. Design of Experiments: common parameter settings for all problem instances

5.5.2.1 Small Problem Instances

In this subsection, we focus on smaller problem sizes and evaluate the performance of all the

presented formulations. We consider problems with 10 and 20 accepted jobs and up to 4 contingent

jobs (including a baseline case where no contingent jobs exist). For all instances, all possible demand

backlogs are considered, considering their probability of occurrence, i.e. |S| = 2|I
C |. In all results

presented, the following naming convention is implemented: D = direct-positional formulation,

S = small-bucket time-indexed formulation, B = big-bucket time-indexed formulation, and H =

hybrid time-indexed formulation.

Table 5.7 shows a computational comparison of the number of binary variables and constraints

required to construct the MIP model of each formulation, with respect to the number of accepted

and contingent jobs. The values in this table depict the mean of observed values across the 10

randomly generated instances of each problem setting. Clearly, the small-bucket formulation is

most susceptible to problem intractability, with respect to computational memory, as the problem

size grows. The size of the hybrid-bucket formulation grows quicker as the number of accepted jobs
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increases compared to the number of contingent jobs. This is due to the frozen period assignment

variables, represented with small-bucket time periods, only being associated with accepted jobs.

However, the number of constraints required to represent the problem for the Hybrid formulation

(as well as the big-bucket formulation) remain relatively inelastic as the number of contingent

jobs/scenarios increases. While the number of constraints and variables is much greater in the

hybrid formulation than the big-bucket formulation, it ensures solutions of higher fidelity, especially

for the frozen period of the planning horizon.

Table 5.7. Evaluation of formulation model sizes - small problem settings

KPI
Binary

Variables
Constraints

Model D S B H D S B H
Num.
Acc.

Num.
Cont.

Num.
Scen.

10

0 1 300 2808 300 1500 724 68307 70 21564
1 2 660 5135 693 2046 1567 124920 151 21040
2 4 1512 11707 1620 3168 3555 311390 327 21553
3 8 3510 24274 3783 5616 8183 626292 707 21491
4 16 8148 57053 8778 11088 18839 1450204 1523 21334

20

0 1 1200 11484 1200 3600 2654 252248 140 35740
1 2 2520 21483 2583 5166 5547 457991 291 34680
2 4 5412 44352 5610 8448 11875 954553 607 34917
3 8 11730 97594 12213 15456 25663 2125419 1267 35534
4 16 25488 206323 26568 30528 55599 4229176 2643 35979

The results of the solution run times is shown in Table 5.8. Count shows the number of

trials (out of 10) which reach the optimality termination condition within the maximum time limit

of 1 hour, and Mean Runtime and Median Runtime are the mean/median runtime required for

those trials to reach that condition. Only the direct-positional formulation and small-bucket time

indexed formulation are unable to reach the optimality condition in any of the problems which

were attempted. Table 5.9 reports the MIPGaps which were achieved for trials which were not

able to reach the optimality termination condition during the maximum time limit. Note that

for all problems that did not reach termination for the direct-positional formulation, the MIPGap

remained at 100%. This shows that the lower bound did not become positive (¿0) at any point.
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Table 5.8. Aggregation of runtimes for trials which reached termination condition - small problem
settings

KPI Count Mean Runtime Median Runtime
Model D S B H D S B H D S B H

Num.
Acc.

Num.
Cont.

Num.
Scen.

10

0 1 10 10 10 10 0.0 2.1 0.0 0.7 0.0 2.2 0.0 0.7
1 2 10 10 10 10 0.1 2.4 0.0 0.6 0.0 2.0 0.0 0.6
2 4 10 10 10 10 1.1 9.4 0.0 0.8 0.5 7.4 0.0 0.7
3 8 10 10 10 10 8.4 45.0 0.0 1.0 4.5 19.8 0.0 1.0
4 16 10 10 10 10 112.8 194.6 0.1 2.0 27.3 65.9 0.1 2.0

20

0 1 9 10 10 10 27.5 15.8 0.0 3.2 2.6 11.1 0.0 3.1
1 2 10 10 10 10 201.6 40.3 0.1 4.0 51.5 22.2 0.1 3.4
2 4 5 10 10 10 1023.6 54.1 0.2 3.8 112.0 50.5 0.2 3.6
3 8 3 10 10 10 682.0 165.9 0.6 6.6 313.4 128.1 0.4 6.7
4 16 1 6 10 10 2025.6 646.7 4.2 16.1 2025.6 653.8 3.5 15.6

Table 5.9. Aggregation of achieved MIPGaps - small problem settings

KPI Count Mean MIPGap (%) Median MIPGap (%)
Model D S B H D S B H D S B H

Num.
Acc.

Num.
Cont.

Num.
Scen.

10

0 1 0 0 0 0 - - - - - - - -
1 2 0 0 0 0 - - - - - - - -
2 4 0 0 0 0 - - - - - - - -
3 8 0 0 0 0 - - - - - - - -
4 16 0 0 0 0 - - - - - - - -

20

0 1 1 0 0 0 100.0 - - - 100.0 - - -
1 2 0 0 0 0 - - - - - - - -
2 4 5 0 0 0 100.0 - - - 100.0 - - -
3 8 7 0 0 0 100.0 - - - 100.0 - - -
4 16 9 4 0 0 100.0 67.5 - - 100.0 74.3 - -

5.5.2.2 Large Problem Instances

This section considers larger problem instance sizes for the Binned and Hybrid formulations,

which are shown to be capable of solving much larger problem instances. In addressing larger sets

of contingent jobs, which entail an exponential number of potential backlog realizations, we now

generate a limited, random set of scenarios to evaluate the formulations. Scenarios are randomly

generated using a Monte Carlo simulation in which each contingent job is included in a scenario,
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i.e. bis = 1, with a probability ai. Each scenario has a probability qs =
1

|S|
of occurring, where |S|

is the user-defined number of scenarios to generate.

It is shown in Table 5.10 reports the number of binary variables and constraints required to

represent the scheduling problem. It should be noted that problem sizes can be reduced by only

considering a subset of the accepted jobs to be permitted for assignment within the frozen portion

of the schedule. For example, if a group of accepted jobs have due dates far into the future, they

would not need to be considered for scheduling in the immediate portion of the schedule. This

additional restriction would reduce the size of the Hybrid Time formulations drastically, as the

greatest number of variables and constraints describe the frozen portion of the schedule (e.g. 40

hourly periods per week in the frozen period vs 1 in the non-frozen portion of the schedule).

Table 5.10. Evaluation of formulation model sizes - large problem settings

KPI
Binary

Variables
Constraints

Model B H B H
Num.
Acc.

Num.
Cont.

Num.
Scen.

20

10
25 65340 71100 5178 34975
50 130590 138600 10353 39587
100 261090 273600 20703 49992

20
25 117120 124800 6928 31573
50 234120 244800 13853 38533
100 468120 484800 27703 53416

30

10
25 117120 124800 6928 44375
50 234120 244800 13853 50849
100 468120 484800 27703 64728

20
25 183900 193500 8678 39493
50 367650 381000 17353 48572
100 735150 756000 34703 67253

Tables 5.11 and 5.12 report the performance of the big-bucket and Hybrid formulations for larger

problem instances. Both formulations are capable of solving a majority of the tested instances, and

for instances which do not reach the termination condition, the MIPGap reaches a near-optimal

solution.
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Table 5.11. Aggregation of runtimes for trials which reached termination condition - large problem
settings

KPI Count Mean Runtime Median Runtime
Model B H B H B H

Num.
Acc.

Num.
Cont.

Num.
Scen.

20

10
25 10 10 3.5 18.5 3.1 18.5
50 10 10 19.0 77.5 11.1 57.4
100 10 10 53.5 147.5 31.0 90.2

20
25 10 10 5.7 52.2 4.2 29.8
50 10 10 21.7 606.1 14.6 164.8
100 10 9 78.2 906.6 67.0 521.3

30

10
25 10 10 10.5 31.9 6.7 27.0
50 10 10 34.3 193.8 24.2 102.9
100 9 7 74.0 600.8 87.8 232.7

20
25 10 10 10.3 251.3 9.3 53.3
50 10 7 64.0 400.2 40.4 293.1
100 9 7 137.4 1078.2 128.9 1266.7

Table 5.12. Aggregation of achieved MIPGaps - large problem settings

KPI Count Mean MIPGap (%) Median MIPGap (%)
Model B H B H B H

Num.
Acc.

Num.
Cont.

Num.
Scen.

20

10
25 0 0 - - - -
50 0 0 - - - -
100 0 0 - - - -

20
25 0 0 - - - -
50 0 0 - - - -
100 0 1 - 1.5 - 1.5

30

10
25 0 0 - - - -
50 0 0 - - - -
100 1 3 1.8 1.4 1.8 1.3

20
25 0 0 - - - -
50 0 3 - 1.2 - 1.2
100 1 3 1.2 1.7 1.2 1.6

From these results, the Hybrid time-indexed formulation is superior relative the direct-positional,

small-bucket and big-bucket formulations. The Hybrid formulation provides a higher fidelity solu-

tion than the big-bucket formulation, a model which requires less computational burden than the

direct-positional formulation, and a problem structure which requires less computational memory
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than the small-bucket formulation. It is also shown that the Hybrid model is capable of solving

large problems in reasonable time for the unrelated parallel machine scheduling problem subject to

strict job-machine eligibility restrictions with weighted earliness and tardiness penalties.

5.6 Future Research Directions

Future work in this research stream can be dedicated to: 1) enhancing the computational results

associated with the contingent demand scheduling problem including testing under a wider variety

of problem settings, 2) evaluating the benefits of considering contingent demand in the scheduling of

the frozen period, and 3) extending the framework to consider the Order Acceptance & Scheduling

Problem, Dynamic Pricing Problem, Due Date Setting Problem, and the Simultaneous Pricing,

Due Date Setting and Scheduling Problem, all considering contingent demand. We provide an brief

overview of these extensions in Appendix F.

5.7 Conclusion

In this chapter, we develop and compare several scheduling formulations which act as the

underlying framework for revenue management applications for MTO firms which are subject to

contingent demands. Specifically, we consider the unrelated parallel machine scheduling problem,

subject to contingent demand, with a requirement for freezing the most immediate portion of the

schedule to promote shop stability. We develop novel, scenario-based formulations to consider the

uncertainties that derive from a contingent demand backlog. The formulations developed include

a direct-positional, a small-bucket time-indexed, a large-bucket time-indexed, and a hybrid-bucket

time-indexed scheduling model. We also present a special case of the formulation which can be

achieved when all jobs are represented as identical.

We show through a computational experiment that the hybrid-bucket formulation provides a

promising trade-off between solution fidelity and computational requirements. The continuous-time

direct-positional formulation provides the highest fidelity solution at the cost of extensive solution

runtimes. The small-bucket time-indexed formulation also provides high fidelity solution at the cost

of extensive computational memory requirements. The big-bucket formulation is shown to provide

solutions quickly but at the cost of low-fidelity solutions. We also discuss future research directions

and extensions to the formulations presented in Section F.0.3.
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CHAPTER 6

CONCLUSION

In this dissertation, we developed and applied a Digital Twin framework for manufacturing

systems as a decision support system to aid ii production planning and scheduling problems faced by

Make-To-Order (MTO) firms. Part 1 of this dissertation addressed a generalized class of Production

Planning and Execution problems faced by MTO firms exhibiting a job shop manufacturing system.

Part 2 focused on a class of scheduling problems faced by manufacturers whose production system

is dominated by a single operation.

In Chapter 2, we introduced the reader to the Digital Twin (DT) concept and developed the

framework which is used throughout the dissertation. We presented the DT framework as a col-

lection of modular software packages, developed using Python, and described the object-oriented

methodologies implemented to represent the generalized manufacturing systems we consider in our

applications. We also developed algorithms for generating large-scale, realistic production facili-

ties representative of Tier II manufacturers in the aerospace supply chain. Further, we presented

several heuristics capable of creating a production plan and executable schedule for the scenar-

ios generated by the DT. To validate the framework, we presented an illustrative example of a

randomly generated production facility, highlighting the importance of the advanced analytic and

visualization capabilities of the framework. Future research directions include: the enhancement

of the algorithms presented in this chapter to be applicable to other specific use-cases, the expan-

sion of the framework to enable the ingestion of real-world data from existing data architectures,

and the integration of the presented analytic functionalities and visualizations into a centralized,

interactive, web-based platform.

In Chapter 3, we addressed the Multi-Level Capacitated Lot Sizing Problem (MLCLSP). We

developed an integrated solution procedure that is capable of: 1) creating a long-term production

plan, 2) matching each production lot with the sales order they satisfy, and 3) translating the lot-

sizing production plan into an executable schedule which can be followed on the shop floor. In this
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implementation, we incorporated many practical considerations which have been overlooked in the

existing literature. Our main contributions include the formulation of novel modelling techniques

for: 1) discretizing the planning horizon for each resource, dynamically, on the basis of the processes

they typically face, and 2) considering intra-route lead times for cyclical production routings. We

evaluated the proposed solution procedure against several benchmark cases, and found that the

formulations developed in this chapter are superior in finding high-quality solutions in reasonable

computational time. We emphasize the importance of evaluating the performance of a production

plan in the unaggregated context which it will be executed in. We also presented a methodology for

calibrating the framework and evaluating various scheduling policies in Appendix B. Future research

directions include the evaluation of the scalability of the formulations presented in this chapter,

the development of more use-case specific generalizations which will enable the practical use of the

framework, and the enhancement of the framework through the introduction of tighter formulations.

Further, enhancements to the forward-constructed, myopic, Continuous-Time Scheduling Heuristic

can be developed to incorporate improvement heuristics to the scheduling procedure.

In Chapter 4, we developed direct-positional and relative-positional formulations for the unre-

lated parallel machine and flexible flow shop scheduling problems, subject to sequence-dependent

setups and machine eligibility restrictions. We provided a computational comparison of the two

exact-method optimization modeling techniques when applied to randomly generated problem in-

stances from the proposed Digital Twin framework. We observed that the direct-positional for-

mulation dominated the relative-positional formulation in all tested production settings. However,

future work is required to enhance the performance of the tested formulations to tighten the models,

specifically through the calibration of the big-M parameters presented in this chapter.

In Chapter 5, we extended the scheduling formulations of Chapter 4 to consider uncertainties

derived from the contingent demand paradigm faced by MTO firms which offer mass customized

products. In this context, we considered a practical scheduling objective of freezing the first-most

portion of the schedule to promote shop stability. We first extended the unrelated parallel machine

direct-positional formulation from Chapter 4 to a scenario-based formulation. We also developed

several variations of time-indexed formulations for the scheduling problem, differentiated by the

duration of each period in the discretized planning horizon. We showed, through a computa-

tional evaluation, that the direct-positional and small-bucket formulation faced challenges in the
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computational expense and memory, respectively, required to solve the generated problems, while

the big-bucket formulation provided a low-fidelity solution. We developed a Hybrid-Bucket time-

indexed formulation and showed that it provides a promising trade-off between solution fidelity and

computational efficiency. We also formulated an extension to the scheduling problem to address

the Order Acceptance & Scheduling problem (considering risk-neutral and risk-averse objectives),

and presented a methodology for quantifying the value of considering a scenario-based scheduling

model when subject to a contingent demand backlog.

In conclusion, we emphasize the generality and flexibility which applying a Digital Twin frame-

work to traditional production planning and scheduling problems provides researchers and practi-

tioners. The value of frameworks like this are exhibited in their ability to allow developers to apply

their algorithms and optimization formulations to a wide-range of use-cases with minimal modeling

efforts. Further, Digital Twin frameworks allow researchers to develop applications, considering

a stream of real-time data, without affecting the actual physical systems they represent. This

provides them the test-bed for the realistic evaluation of competing strategies, simultaneously, to

derive the insights and policies that will enable decision-makers to adapt in a global market with

increased competition and an increasingly fragile supply chain. While current data architectures

implemented in practice today are not yet capable of providing the cross-functional data trans-

parency required to deploy the Digital Twin concept in real-world manufacturing systems, we show

that, with the use of random data generators, these frameworks of the future can and should be

developed today.
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APPENDIX A

SOLUTION APPROACHES FOR LARGE JOB SHOP PROBLEMS

In this Appendix, we provide an overview of the solution approaches which have been imple-

mented to solve large instances of the Job Shop Problem. In Chapter 3, we implement exact-method

algorithms for the Planning and Pegging Models. We plan to investigate potential implementations

of the approaches below as we continue this study.

In this review, we consider the classification scheme developed by Buschkul et al. [32]. As a

reminder, they classify solution approaches for the Lot Sizing Problem into five groups: mathe-

matical programming heuristics, Lagrangean heuristics, decomposition and aggregation heuristics,

meta-heuristics and problem specific greedy heuristics. In the following we summarize several of

these approaches and identify examples in recent literature which apply them to problems similar

to the once we consider. We focus primarily on examples in literature that implement approaches

using meta-heuristics and greedy heuristics. Not presented in this review are approaches which

consider Lagrangian Heuristics.

A.1 Integer Programming Solution Approaches

A.1.1 Branch-and-Bound Heuristics

The branch-and-bound (B&B) algorithm, developed in the 1950s by Land and Doig [96], is an

enumerate search technique for solving combinatorial optimization problems to optimality. B&B

algorithms are characterized mainly by 1) a branching rule dictating how solutions are partitioned

into groups and 2) a bounding rule which computes the lower/upper bound of the cost/reward of

any solution within the partitioned subset. Whether the lower or upper bound is used depends

on if the optimization problem is a minimization problem or maximization problem, respectively.

Other characteristics in B&B algorithms include dominance rules which can eliminate subsets

of possible solutions from consideration and additional bounding rules that can be evaluated to

produce and upper bound for minimization problems or lower bound for maximization problems.

170



B&B algorithms first began to be used in scheduling in the mid 1960’s, see [107, 81], using a forward

sequencing branch rule. In a forward sequencing branch rule, the first branch in the search tree

considers all possible jobs that can be assigned to the first position, the second branching considers

all jobs that can take the second position, and so on. Bounding schemes usually involved solving

relaxed versions of the original problem [135]. Backward sequencing branching rules were also of

particular interest, specifically in single machine problems to minimize total tardiness and total

weighted tardiness, see [54]. The use of job-based bounding rules and machine-based bounding

rules along with various mathematical programs is found in the literature [135]. Examples of

programs used to define bounds include the polyhedral approach and the Lagrangian relaxation

approach. Both of these examples were developed to solve the Traveling Salesman Problem and

later implemented for the scheduling problem, see [75]. Because branch-and-bound algorithms

are enumerative, they quickly become an impractical solution method as the search space grows

exponentially as the scheduling problem grows.

A.1.2 Valid Inequalities

Valid inequalities attempt to supplement the overall solution process through the addition of

constraints which result in a tighter model. Using expert system knowledge, it is possible to reduce

the size of the problem by cutting off potentially large portions of the search space. If the inequalities

are generated dynamically to cut off the current non-integer solution, it is called the cutting plane

method. Valid inequalities can also be introduced to the B&B algorithm. A distinction is made as

to whether the inequalities are introduced during the B&B procedure (Branch-and-Cut), or prior

to the start of the procedure (Cut-and-Branch).

A.1.3 Fix-and-Relax Heuristics

The Fix-and-Relax attempts to solve the problem by partitioning the binary variables into

three groups. While one subset of variables is solved to optimality, another group is fixed (to the

values from the last iteration) and another is relaxed from its binary condition. Heuristics which

are developed differ in the definition of these subsets. Simplifications of this heuristic, such as

fix-and-optimize, only partition the binary variables into two groups.
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Helber and Sahling [74] use the fix-and-optimize heuristic introduced by Sahling et al. [150] to

solve MLCLSP with positive lead times. They compare their algorithm to previous algorithms by

Tempelmeier and Derstroff [172] and Stadtler [164] and conclude that it outperforms them. This

paper is also relevant for our purposes because HJSP deals with positive lead times as well.

A.2 Decomposition and Aggregation

Decomposition and aggregation solution approaches aim to reduce the complexity of LSP prob-

lems by either breaking the problem into separable partitions or by ignoring the detailed structure

of the problem, respectively. Decomposition approaches work by solving several sub-problems then

coordinating the solutions, while aggregation approaches solve a less granular problem then solving

a more detailed version of the problem. Characteristics of the LSP that can be decomposed or

aggregated can be time-based, item-based or resource-based.

Item-based decompositions are concerned with multi-product production systems. This ap-

proach aims to solve for the LSP for subgroups of items, then coordinate a solution. Item-based

aggregations solve a simplified versions of the LSP by representing sub-groups of items as a sin-

gle item. See example, Boctor and Poulin [27]. Resource-based decompositions and aggregations

consider a similar approach.

A.2.1 Time-Based Decomposition

Stadtler [164] proposes a time-oriented decomposition heuristic to solve the MLCLSP with

general product structures, multiple constrained resources and setup times. The heuristic depends

on an internally rolling lot-sizing window and the lot-sizing decisions are made sequentially. This

approach decomposes the problem into submodels, which are represented by the “Simple Plant

Location” model formulation. They show their approach to provide better solutions than another

heuristic by Tempelmeier and Derstroff [172], as well as the ability to solve larger problem sizes.

Wu et al. [190] extend the work in Sahling et al. [150] by allowing backlogging in addition

to setup carry-overs. They propose mathematical models and a new heuristic, which they call a

progressive time-oriented decomposition heuristic (PTH) to solve test instances from the literature.

They conclude that their heuristic is superior to previous applications and a commercial solver. This

paper is the most relevant one in the literature to our study since our execution model also considers
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partial sequencing of the items and backlogging. The differences between this paper and ours will

be discussed below, along with the rest of the literature.

A.3 Meta-heuristics approaches

Meta-heuristics describe high level procedures designed to find near-optimal solutions for large-

scale optimization problems efficiently. These approaches are problem-specific that utilize expert

knowledge of the system and implement heuristics such as dispatching rules for determining optimal

lot-sizes. In the following we present several commonly found meta-heuristics including Variable

Neighborhood Search, Simulated Annealing, Tabu Search, Genetic Algorithms and Ant Colony Op-

timization techniques. It should be noted that aspects of multiple meta-heuristics can be combined

to create hybrid meta-heuristics.

All meta-heuristics are initialized with a starting solution and work to improve them by itera-

tively searching the solution space. Searching principles that guide the movement from one solution

to the next include diversification and intensification. Diversification serves the purpose of altering

the solution as to avoid becoming trapped in a local optimum, while intensification acts to im-

prove the solution by following the optimal gradient planes. Solutions employed by meta heuristics

are either represented directly or indirectly. Direct representations retain the variables define in

the mathematical formulation of the problem, i.e. binary variables for setup decisions, continuous

variables for lot sizes, etc. Indirect representations encode scheduling solutions, i.e. representing

scheduling decisions by selecting a specific heuristic. In this case, the schedule must be inferred

from the indirect representation.

In the following, we briefly describe some popular meta-heuristics developed for the MLCLSP

and its extensions. We do not conduct a full review, as the development of meta-heuristics for the

proposed framework is a part of the proposed work of this dissertation.

A.3.1 Variable Neighborhood Search

Local search algorithms work by starting at an initial solution for the scheduling problem and

iteratively tries to move to a better solution by searching and evaluating a neighborhood solution or

solutions. In the following, several methods of generating neighborhood solutions will be presented

in a multiple machine system. Solution neighborhoods are generate by creating variations of the
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current schedule using one of three methods: shifting, insertion, and swapping. In a shift, a job is

randomly chosen from on of the machines schedule and “shifted” to a different position of the same

machine. In an insertion, a job is randomly chosen from one machine’s schedule and “inserted” into

a random position from another randomly selected machine’s schedule. In a swap, two random jobs

from two random machine’s schedules are swapped. These variations represent a single one-step

neighbor of an existing solution. A neighborhood can made up of any number of neighbors using

any or all of the methods mentioned above. Within each iteration of a local search algorithm, it is

possible to consider only a single neighbor of the current solution, a subset of the neighbors within

the neighborhood of the current solution, or the entire neighborhood simultaneously. Due to the

combinatorial complexity of the scheduling problem, generating and evaluating an entire solution

neighborhood may be infeasible. It is also possible to consider multi-step neighbors (neighbors of

a neighbor) of the current solution.

The VNS is a local search based meta-heuristic which systematically changes the neighbourhood

structure of local search and which uses a random shaking routine to create a new starting solution

for a local search every time when it reaches a local optimum.

Chen and Chu[41] model a supply chain planning problem as an MLCLSP. They develop a

heuristic approach to solve this problem based on Lagrangian Relaxation (LR) and local search.

Their approach only relaxes the binary setup constraints and forces them to take the value of 1 if

the corresponding continuous variable is non-zero. They solve the relaxed linear problem (LP) using

the simplex method and update the Lagrange multipliers using a surrogate subgradient method.

A feasible solution is obtained at each step and improved by a local search by changing two setup

variables at a time. They take advantage of a special structure of the LSP and improve upon the

local search, reducing computation time. They use numerical experiments to show the effectiveness

of their approach by comparing their solutions to those obtained by a commercial solver. They

solve small sized problems (10 items, 6 periods) to 1% optimality gap within a second and their

algorithm finds solutions to medium sized problems (60 items, 12 periods) within 360 seconds. The

objective function value obtained by the algorithm is 10.5% better than the solution found by the

commercial solver when it terminates after 10000 seconds.

Chen [40] develops a fix-and-optimize and VNS approach for the MLCLSP with and without

setup carryover. The author proposes a framework which first implements the fix-and-optimize
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algorithm approach, then feeds the solution to a VNS algorithm which improves the solution by

diversifying the search space. Given a starting solution, the VNS defines a series of neighborhood

solutions by “shaking” the solution. The author defines the solution in terms of the “setup plan”,

arguing that the solution to the MLCLSP can be inferred from the resulting values of the setup

variables. A swapping heuristic which switches setup activity binary variables (0 ← 1||1 ← 0)

is used to generate neighbors and the fix-and-optimize heuristic is implemented to find a local

optimum. A neighbor generated using this process is only considered if it produces a feasible starting

solution for the fix-and-optimize search. The process is completed until a maximum iteration

stopping condition is met. The author shows that the proposed meta-heuristic outperforms the fix-

and-optimize approach of Helber and Sahling [74] while arguing that their method is more general

and can be applied to other MIP problems.

Other recent examples which use the VNS meta-heuristic and variants include Hindi et al. [77],

Li et al. [98], and Xiao et al. [191].

A.3.2 Simulated Annealing

Simulated annealing (SA), first proposed by Kirpatrick et al. [91], accepts worse solutions with

some probability, e−δ/T defined by a temperature parameter, T , and δ as the amount which the

objective value of the neighborhood solution is worse than the current solution. Similar to it’s

inspiration, the value (temperature) of T is iteratively lowered, comparable to that of an annealing

metal. As the temperature lowers, worse solutions are chosen with a lower probability. This

iterative process is repeated until a maximum number of conditions is reached. This algorithm

is also defined by meta-parameters which control the starting temperature of T and the ”cooling

scheme” of T .

Torkaman, Ghomi and Karimi [175] consider the MLCLSP with sequence-dependent setups

and re-manufacturing activities. The authors develop a hybrid meta-heuristic with an SA to solve

the problem using a genetic algorithm to find an initial solution. Solutions are represented as

two strings of length 2NT where N is the number of products and T is the number of periods.

The first string represents the sequence of products and their relevant processes as integers, and

the second row details whether the processes of a product would be executed in each period.

Neighbors of the solution are created through 1) a sequence swapping procedure between two
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products in a randomly selected period t, or 2) a switch of a production decision variable of a

random product/process/period. The meta-heuristic was compared to four rolling horizon based

fix-and-optimize heuristics, and was found to solve perform significantly faster for smaller problem

sizes and perform significantly better for large instances.

Other recent examples which use the Simulated Annealing meta-heuristic and variants include

Ozdamar and Barbarosoglu [128], Ramezanian and Saidi [139], and Sifaleras, Konstantaras and

Mladenovic [156].

A.3.3 Tabu Search

Tabu search (TS), introduced by Glover [61] takes an approach in which the best solution in

the neighbourhood of the current solution is chosen, regardless of the objective value. A “tabu list”

keeps track of and forbids recently visited solutions to ensure that the search algorithm does not

fall into a cycle. The search is stopped once a predetermined number of tabu solutions is reached,

or a predetermined number of steps have been taken without finding a best performing solution.

At the end of the search, the solution with the best performance is chosen.

Hindi [76] applies a tabu search algorithm for the single-level capacitated lot sizing problem,

using a starting solution generated using a non-optimal exact method procedure. The tabu search

is used to improve the solution, represented as a setup schedule. The authors use generate new

solutions by randomly switching the value of setup decisions in random periods, and show that this

algorithm is capable of finding near optimal solutions. The authors note that it exploring complete

neighborhoods, although adequate for small problems, is not necessary for larger problems. Rather,

several neighbors should be evaluated before moving to the next neighborhood. The author refers

to this as search a restricted neighborhood and shows that the heuristic is capable of producing

high quality solutions in short computation times with modest memory requirements.

Other recent examples which use the Tabu Search meta-heuristic and variants include Berretta,

Franca and Armentano [23], Gopalakrishnan et al. [63], Raza, Akgunduz and Chen [142], and

Romero et al. [145].
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A.3.4 Genetic Algorithms

Genetic algorithms (GA) take a different approach to local search. Rather than iteratively

improving a single solution, GA aims to improve a “population” of solutions. In each iteration,

pairs of solutions are chosen from the current population and are used to create pairs of offspring.

These offspring solutions are created as either a “crossover”, of the parents where segments of

either parent solutions are swapped. Then each of the offspring undergo a “mutation” where

elements of the solution are randomly changed (similar to selecting a random neighbor from a

neighborhood like those evaluated in SA or TS). The offspring created in this iteration replace the

worst performing solutions from the population. The algorithm continues until a predetermined

number of “generations” (iterations) is reached, a predetermined number of iterations have gone

without a new optimum candidate solution, or a predetermined objective value is reached by one

of the solutions.

Recent examples which use the Genetic Algorithms meta-heuristic and variants include Badri

et al. [11], Pitakaso [132], Toledo, Oliveira and Franca [173], Toledo et al. [174], and Xie and Dong

[192],

A.3.5 Ant Colony Optimization

Many meta-heuristics which have been developed take inspiration from nature. An example of

this is the Ant Colony Optimization (ACO) algorithm, takes inspiration from the foraging behaviors

of ants. The ACO algorithm implements mechanisms to guide optimal solution search similar to

how ants releasing pheromones to mark favorable paths that should be followed by others. The ACO

algorithm is initialized by creating a pheromon value for each decision variable. For each iteration,

a population of ants traverses through a graphical representation of the solution space. In the case

of the MLCLSP, this could be represented as a forward-constructed sequence of operations. The

choice of the path which each ant traverses is determined using a stochastic mechanism, weighted

by the pheromone value of each reachable vertex. Once each of the ants has completed traversal, a

local search optimization can be performed on each initial solution to identify local optimum. The

pheromone values of each decision variable are then updated by decreasing the pheromone values

of decision variables associated with poor solutions and increasing the values associated with good

solutions. This process is repeated until some stopping condition are met.
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Hajipour et al. [69] develop a hybrid ACO algorithm for the capacitated lot sizing problem for a

multi-level multi-product capacitated production system with general product structures and time-

varying costs and capacity. The authors do not consider lead time, and do not allow backlogging.

A production network consisting of 7 products, each with 3 levels, considering 6 time periods and a

single resource is considered for the computational experiment. The authors develop an ACO with

a novel heuristic they call the shifting technique and compare the algorithm with others such as

the TS, SA and GA algorithms as well as an exact solution obtained using a Lagrangian relaxation

heuristic. Results show that the proposed ACO algorithm outperforms the TS and SA algorithms,

and provides comparable results to the GA. It is noted that the effectiveness of the algorithm

decreases as problem size increases.

Other recent examples which use Ant Colony Optimization and variants include Almeder [4],

Pitakaso et al. [133], Homberger and Gehring [78], and Buer, Homberger and Gehring [31].

A.4 Greedy Heuristics

Greedy heuristics are characterized by intuitive algorithms which iteratively construct or im-

prove an existing solution making decisions based on feasibility conditions and priority indices [32].

Constructive greedy heuristics work by iterating through the time periods (either forwards or back-

wards) in the planning horizon and adding to the schedule. These heuristics are myopic and do not

consider the implications that current decisions have in the future. Priority indices that influence

lot sizes and setup decisions often make use of metrics calculated based on the solution of the un-

capacitated solution for the lot-sizing problem, such as [46, 66, 159, 158]. We plan to conduct a full

literature review in the topic of greedy heuristics for the MLCLSP for this dissertation, focusing

on priority indices used for determining lot sequencing, as we look to enhance the greedy heuristic

proposed in this framework.
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APPENDIX B

CALIBRATION OF THE PRODUCTION PLANNING AND EXECUTION
FRAMEWORK

In this appendix, we evaluate the proposed mathematical formulations developed in Chapter 3

when integrated with the Digital Twin framework presented in Chapter 2. Our objective in these

evaluations is to provide context to the sensitivities of the proposed Planning and Execution solution

procedure subject to: 1) the parameters used to generate cost/reward coefficients in the Planning

Model, and 2) the implementation of manufacturing policies representing user preferences in the

solution provided by the framework. For a description of the experimental design implemented for

the analysis in this section, see Section 3.5.1.

The remainder of this appendix is structured as follows. In Section B.1, we present the method-

ology for defining and calibrating the user-defined parameters used to generate the cost coefficients

in the objective function of the proposed Planning Model (See Section 3.4). In Section B.2, we

evaluate the impacts of implementing various manufacturing scheduling policies in the proposed

Planning Model and CTSH algorithm. In Section B.3, we conclude on our findings.

B.1 Parametric Calibration

The objective of this analysis is to quantify the sensitivity of the proposed production Planning

Model in relation to the value of different parameters which are used to derive the cost coefficients.

We evaluate the following user-defined parameters: 1) the per-unit per-period tardiness penalty, P ,

2) the per-unit per-period reward for early deliveries, ε, 3) the per-unit penalty for the unfulfillment

of requested external demands during the planning horizon, P , 4) the per-unit per-period holding

cost, h, and 5) the per-unit penalty for under-production of parts relative to the total production

requirements required to satisfy all external demands, H.

These parameters have been strategically defined to be intuitive to a scheduler/planner who

would be an end-user of the proposed framework. It should be noted that several of these param-

179



eters are highly related, e.g. the per-period per-unit lateness penalty, P , and per-unit penalty for

unfulfilled orders, P . It is critical for the relationships between related parameters to be logical

such that the solutions derived from the Planning Model are viable. In the following, we introduce

each of these parameters and present their relationships with the objective function coefficients

they impact.

The tardiness penalty parameter, P , dictates the per-unit per-period cost for tardiness. This

parameter is specified as a percentage of the Value, Vi, of the end item, i ← Io, associated with

each line item, o. This percentage represents the cost accrued each week for delivering an end-item

late, relative to the due date of the associated line item, Do. This penalty is realized per-period,

∆, which may not be weekly. In such cases, the penalty will be prorated according to the number

of hours-per-week, HPW .

The demand unfulfillment parameter, P , is used for the per-unit penalty for demands which are

not satisfied by the end of the planning horizon. The coefficient, associated with a line item o, Po,

is defined in relation to the per-period tardiness penalty coefficient, Po. Specifically, it is defined

as a multiple of the realized tardiness penalty that would be assessed to that end item if it was

delivered at the end of the planning horizon, i.e. when t = |T |. For example, when P is 1.25, the

penalty realized for not delivering an end item will be 1.25 times the penalty of delivering the end

item at the end of the planning horizon, Po ∗ (|T | −Do). Intuitively, when the value of P is greater

than 1, the Planning Model experiences a greater penalty for not delivering an end-item than it

does for delivering it anytime during the planning horizon. Therefore, a larger value of P provides

a larger incentive for delivering as many end items as possible.

The parameter, ε, is associated with a per-unit per-period reward for early deliveries. The

coefficients derived from ε are also defined in relation to the tardiness penalty parameter, P . This

reward is defined as a proportion of the penalty for late deliveries. For example, when ε = 1%,

the Planning Model would receive a per-period reward which is 1/100th the penalty for delivering

one period late. Because the reward realized in the proposed Planning Model is weighted by the

value of each end item, it is important that this reward incentive is not so large that a reward

for delivering a high-value end items early would lead to the under-prioritization of the on-time

delivery of lower-value end items.
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The parameter, h, is associated with the per-unit per-period holding cost for each part, i. This

parameter is defined as a percentage of the part’s value, Vi, experienced as a cost, per year. For

example, when h = 20%, it is assumed that the cost of holding a part, i, for one year would be 20%

of the value of that part. Similar to the derivation of the coefficients for tardiness, holding cost

coefficients are accrued per period, such that the yearly cost, which the user-defined parameter is

defined, would need to be prorated based on the length of each period, ∆.

The parameter H dictates the per-unit penalty associated with the under-production of each

part, i, relative to the production requirements, Ni, necessary to be able to complete all end

items associated with all line items during the planning horizon. This provides incentive to begin

production of end items, even if they are not delivered during the planning horizon. This penalty

is defined relative to the holding cost of each part, hi, such that the penalty for NOT producing

a unit of the part, i, outweighs the penalty for producing the part and holding it in inventory.

Specifically, the parameter, H, is defined as a multiple of the cost of holding a part for the entire

duration of the planning horizon, i.e. hi ∗ |T |.

These user-defined parameters are summarized in Table B.1 where DoE Values are the values

for the parameters which are evaluated in the following sensitivity analysis. Obj. Coefficient is

the association between each user-defined Parameter and the part/order-specific coefficients in the

Planning Model. Bolded values represent the default values of each parameter. These values are

fixed in the sensitivity analysis when the focus is on another parameter.

Parameter Description DoE Values Obj. Coefficient

P Delay penalty (% per week) 1%, 2.5%, 5% Po = P ∗ Vi←Io ∗
∆

HPW
P Unfulfilled order penalty factor 1, 1.25, 1.5 Po = P ∗ Po ∗ (|T | −Do)
ε Earliness incentive (% of P) 0.1%, 1%, 10% εo = ε ∗ Po
h Holding cost rate (% per year) 10%, 20%, 30% hi = h ∗ Vi ∗

∆

HPY
H Underproduction penalty factor 0.5, 1, 2 Hi = H ∗ hi ∗ |T |

Table B.1. Subset of relevant parameters for parametric calibration (default values bolded)...
Assume 40 work hours per week, ∆ is time discretization factor, |T | is length of planning horizon,
Vi is value of part i, and Do is the due date of order o

In the following sensitivity analysis, we evaluate the impact of these parameters on Key Perfor-

mance Indicators (KPI) related to the shipments made during the planning horizon (evaluated in
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the basis of units and dollars in each shipment), the realized costs from the resulting production

plan, resource utilization, and the number and size of each dynamically generated shipment and

work order in the production plan.

B.1.1 Tardiness Penalty

Table B.2 provides an view of the performance of the Planning Model as the parameter for

per-unit per-period tardiness changes. Values shown in this table represent the average value of

each metric across the 10 shared base factory test instances. For example, values shown for the

25th pc. of Lateness is calculated as the mean of the 25th percentile of lateness of shipments from

each test instance. The index, Measure, indicates whether the evaluations consider the delivery

performance is aggregated against the shipment of dollars or units. P is the independent variable

which is used to update each base factory.

The multi-column, % of Demanded, represents the percentage of demands that were delivered

during the planning horizon (Delivered) and delivered on time (On Time). Multi-column Lateness

(Hours) describes the distribution of the lateness for shipments made during the planning horizon.

Shipments which were delivered earlier than the associated order’s due date will have a negative

value for lateness. Table B.2 shows that as P increases, so does the percentage of demands which

are shipped to the customer On Time. Further, as P increases, the lateness of shipments decreases.

Note that the total percentage of Delivered Dollars and Units initially increases then decreases as

P increases. This is due to the over-prioritization of delivering high-value demands on time rather

than shipping low-value demands at all.

Table B.2. Parametric Sensitivity Analysis: Analysis of planned delivery performance based on
each model and its corresponding assumptions with respect to changes in the tardiness penalty
parameter, P

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure P

Dollars
1% 87.4 % 41.5 % 50.2 -43.0 -6.0 98.0

2.5% 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
5% 87.4 % 45.3 % 45.4 -45.0 -11.0 95.0

Units
1% 86.6 % 47.1 % 60.9 -67.8 -5.0 130.0

2.5% 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0
5% 86.1 % 50.0 % 52.5 -62.0 -13.0 115.2
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Table B.3 provides an analysis of the realized penalties in the production plan solution with

respect to different inputs for P . Values are shown as a percentage of the Total Cost of Goods

Sold, i.e. the cumulative value of all demands in the planning horizon. The total cost of goods

sold is calculated as:
∑
o∈O

QoVi←Io . As a reminder, the value of each part, Vi, is also used to derive

the objective function coefficients in the production planning model.

Holding Cost shows the cost experienced for holding non-WIP inventory, Under Production is

the cost for shortages in the production of items relative to the internal production requirements

necessary to satisfy all external demands, Tardiness Penalty is the total penalty for lateness of

all deliveries made during the planning horizon, and Unfulfillment Penalty is the total penalty

experienced for units that were demanded during the planning horizon but not delivered. Note

that the experience penalty in ALL categories increase as the parameter P increases. It is trivial

that the Tardiness Penalty will increase. The Unfulfillment Penalty increases since the coefficients

generated for the unfulfilment penalty, Po, of each order is also derived from P .

Table B.3. Parametric Sensitivity Analysis: Analysis of costs and penalties in the production
plan with respect to changes in the tardiness penalty parameter, P

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

P

1% 0.67 % 1.96 % 2.47 % 2.19 % 7.29 %
2.5% 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
5% 0.73 % 2.05 % 11.00 % 10.81 % 24.59 %

Table B.4 shows the sensitivity of the planned utilization on the shop floor as P increases. The

column, Process shows the percentage of available resource hours which are spent in the processing

phase of an operation, and Setup shows the time spent in the setup phase of the planned tasks;

Total is the sum of the two. The values shown in this table aggregates the resource hours across

all resources groups, j ∈ J , throughout the duration of the planning horizon, t ∈ T . Specifically,

the values for Setup and Process (for a test instance, ω) are calculated as:

Setupω =
∑
j∈J

∑
γ∈Γj

∑
t∈T

Sγ zγt
Cjt
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Processω =
∑
j∈J

∑
γ∈Γj

∑
t∈T

Rγ mγt

Cjt

respectively, where: Γj is the set of all processes which can be processed on resource group j, Sγ

is the setup time for process γ, zγt is the number of setups that are planned to be executed during

time period t, Cjt is the capacity of resource group j in period t, Rγ is the processing rate per-unit

for process γ, and mγt is the production lot size (in units) for process γ in period t. The values

shown in Table B.4 represent the mean utilization in across the 10 tested scenarios, ω ∈ Ω. These

results show that the utilization rates in the production plan are relatively inelastic in response to

an increase in P , however, a slight decrease in utilization rates can be observed. Specifically, as P

increases, the time spent in processing decreases while the time spent in setup increases.

Table B.4. Parametric Sensitivity Analysis: Analysis of resource utilization in production plans
with respect to changes in the tardiness penalty parameter, P

Process Setup Total
P

1% 65.65 % 13.36 % 77.98 %
2.5% 65.46 % 13.38 % 77.81 %
5% 65.40 % 13.43 % 77.80 %

B.1.2 Unfulfillment Penalty

Table B.5shows the delivery KPIs as P increases. % of Demanded: Delivered shows that as P

increases, so does the total percentage of demands which are delivered during the planning horizon.

However, as P increases, the percentage of units shipped On Time decreases. This trend is less

clear when evaluating On Time dollars. For both dollars and units, the mean lateness of shipments

increases with P . This is due to the prioritization of shipping lower-value demands during the

planning horizon over shipping higher-value demands on time.
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Table B.5. Parametric Sensitivity Analysis: Analysis of planned delivery performance based on
each model and its corresponding assumptions with respect to changes in the unfulfillment penalty
parameter, P

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure P

Dollars
1.00 85.7 % 43.6 % 40.1 -45.0 -8.0 93.0
1.25 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
1.50 87.7 % 43.9 % 47.3 -47.0 -4.0 102.0

Units
1.00 85.0 % 49.2 % 46.1 -61.0 -9.5 109.5
1.25 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0
1.50 87.3 % 47.8 % 60.1 -58.5 -5.0 132.2

Table B.6 shows the breakout of the objective function implemented in the production plan.

Note that P has little influence on the experienced Holding Cost and Under Production penalty.

Similarly, the planned utilization of resources is not significantly influenced as P increases. The

Tardiness Penalty increases when P increases from 1.00 to 1.25, but only slightly from 1.25 to

1.50. This initial increase in the Tardiness Penalty is due to the introduction of an “additional”

penalty for non-delivered units when P > 1 resulting in the prioritization of the shipment of “late”

deliveries. As expected, the penalty for Unfulfillment increases as P increases.

Table B.6. Parametric Sensitivity Analysis: Analysis of costs and penalties in the production
plan with respect to changes in the unfulfillment penalty parameter, P

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

P

1.00 0.71 % 1.97 % 5.39 % 4.89 % 12.96 %
1.25 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
1.50 0.71 % 1.99 % 5.99 % 6.50 % 15.18 %

B.1.3 Earliness Incentive

Table B.7 shows the delivery KPIs as ε increases. As ε increases, the Lateness decreases, more-

so in the Measure of Dollars than in Units. This is due to the definition of the objective function in

the planning model being weighted in the value of the finished goods associated with each customer

order. The percentage of Dollars which are delivered On Time also decreases as ε increases. This

is a result of a prioritization in delivering high-value finished goods as early as possible in cases
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where the per-period incentive of an early high-value end item is greater than per-period penalty

of delivering a low-value end item late (relative to their respective requested due dates). It should

be noted that changes to the parameter ε has little to no influence on the expected costs associated

with the production plan or the expected utilization of resources in the test scenarios. This is due

to the intention of the parameter ε: to provide a small incentive for early deliveries, as to front-load

production activities in the production plan, when possible.

Table B.7. Parametric Sensitivity Analysis: Analysis of planned delivery performance based on
each model and its corresponding assumptions with respect to changes in the earliness reward
parameter, ε

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure ε

Dollars
0.1% 86.9 % 43.5 % 48.1 -45.0 -4.0 98.0
1% 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
10% 86.8 % 42.5 % 46.5 -50.0 -9.0 93.0

Units
0.1% 85.7 % 48.3 % 55.2 -63.0 -6.0 116.5
1% 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0
10% 86.6 % 48.5 % 56.4 -64.2 -12.0 133.5

B.1.4 Holding Cost

Table B.8 shows the delivery KPIs as the parameter h increases. As h increases, the delivery

KPIs worsen, due to a prioritization in the minimization of holding costs rather than timely de-

liveries. This behavior can be seen in the decrease in the percentage of Delivered and On Time

demands as h increases. Further, the Lateness of shipments also increases as h increases.

Table B.8. Parametric Sensitivity Analysis: Analysis of planned delivery performance based
on each model and its corresponding assumptions with respect to changes in the holding cost
parameter, h

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure h

Dollars
10% 87.7 % 44.9 % 45.7 -47.0 -12.0 93.0
20% 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
30% 87.1 % 42.1 % 48.5 -46.0 1.0 98.0

Units
10% 87.2 % 49.6 % 54.9 -60.0 -11.0 122.2
20% 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0
30% 86.2 % 45.8 % 66.0 -56.0 4.0 140.5
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The influence which the parameter h has on the observed objective function costs is shown in

Table B.9. Note that the cost of BOTH Holding Costs and Under Production increase linearly as

h increases. As a reminder, the coefficients associated with under production are also derived from

the parameter h. The expected cost of Unfulfillment Penalties also increases with h, validating the

trends seen in the percentage of delivered demands in Table B.8.

Table B.9. Parametric Sensitivity Analysis: Analysis of costs and penalties in the production
plan with respect to changes in the holding cost parameter, h

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

h

10% 0.37 % 1.01 % 5.85 % 5.46 % 12.70 %
20% 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
30% 1.04 % 2.97 % 5.96 % 5.56 % 15.53 %

Table B.10 provides a summary into the number and size (quantity) of each planned delivery

shipment and production work order. The column, Count is the number of unique shipments/work

orders in the production plan. Mean and Median describe the quantity of units which are deliv-

ered in each shipment or produced in each work order, and Total is the total quantity of units

shipped/produced in the production plan. All values shown are representative of the means across

all 10 tested scenarios. It is shown that as h increases, both the Count of unique shipments and

work orders increases, while the Mean quantity per shipment/work order decreases. This tendency

emphasizes a production plan strategy in which more inventory exists as Work-In-Progress inven-

tory, rather than in storage (where holding costs are accrued). Further, the column Work Order

Qty:Total shows a decrease in production output as h increases, validating the results shown in

Table B.9.

Table B.10. Parameteric Sensitivity Analysis: Analysis of generated shipments and work orders
in the production plan with respect to changes in the holding cost parameter, h

Delivery Shipment Qty Work Order Qty
Count Mean Median Total Count Mean Median Total

h

10% 69.40 3.29 2.28 228.61 417.00 22.90 10.24 9547.77
20% 72.10 3.21 2.30 231.35 422.90 22.53 9.72 9526.90
30% 73.30 3.11 2.33 228.10 435.40 21.78 9.32 9481.42
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Another impact observed as a result of an increase in the count of production work orders is

shown in Table B.11. Note that although the total production output decreases during the planning

horizon, utilization slightly increases. This is a result of the increase of time which resources are

spent in setup, due to an increase in the number processing cycles in the production plan.

Table B.11. Parametric Sensitivity Analysis: Analysis of resource utilization in production plan
with respect to changes in the holding cost parameter, h

Process Setup Total
h

10% 65.52 % 13.10 % 77.61 %
20% 65.46 % 13.38 % 77.81 %
30% 65.60 % 13.63 % 78.21 %

B.1.5 Under Production

Table B.12 shows the sensitivity of the production plan’s delivery performance as a function of

H. Similar to the influence of the holding cost parameter, h, an emphasis in non-delivery penalties

results in a degradation in delivery performance. As H increases, the percentage of Units which are

delivered On Time decreases. However, the total percentage of Units Delivered increases. These

trends are less clear when considering the delivery KPIs measured in Dollars. The Mean Lateness

of shipments also worsen as H increases.

Table B.12. Parametric Sensitivity Analysis: Analysis of planned delivery performance based on
each model and its corresponding assumptions with respect to changes in the under-production
penalty parameter, H

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure H

Dollars
0.5 87.5 % 45.2 % 43.7 -47.0 -12.0 94.0
1.0 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
2.0 87.3 % 43.1 % 48.4 -46.0 -5.0 96.0

Units
0.5 86.3 % 49.3 % 51.5 -62.0 -11.0 109.5
1.0 86.8 % 48.0 % 59.1 -57.0 -9.5 133.0
2.0 87.0 % 47.5 % 64.8 -58.2 -4.0 135.0

As expected, the expected penalties associated with Under Production in the objective function

increases with the parameter H, as shown in Table B.13. Similarly, the realized Holding Cost also
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increases. The penalties associated with Tardiness and Unfulfillment are not clearly affected by an

increase in H.

Table B.13. Parametric Sensitivity Analysis: Analysis of costs and penalties in the production
plan with respect to changes in the under-production penalty parameter, H

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

H

0.5 0.67 % 1.05 % 5.78 % 5.57 % 13.06 %
1.0 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
2.0 0.74 % 3.91 % 5.97 % 5.55 % 16.16 %

Overall, the planned utilization (Table B.14) also increases with H, primarily due to an increase

of time spent in Process. This is in contrast to the increase in utilization as a result of an increase

h, where the increase in utilization was due to the increase of time spent in Setup.

Table B.14. Parametric Sensitivity Analysis: Analysis of resource utilization in production plan
with respect to changes in the under-production penalty parameter, H

Process Setup Total
H

0.5 65.04 % 13.29 % 77.18 %
1.0 65.46 % 13.38 % 77.81 %
2.0 65.83 % 13.33 % 78.17 %

B.2 The Effects of Practical Manufacturing Policies

In this section, we evaluate the impacts of implementing several practical manufacturing poli-

cies which guide the production plan towards a schedule which meets the objectives of a sched-

uler/planner. These manufacturing policies are implemented through the introduction of new

parameters and constraints which restrict the solution space of the Planning Model. Specifically,

we evaluate two policies in the Planning Module and one policy in the Continuous-Time Scheduling

Heuristic (CTSH). In addition, we introduce two additional policies related to the CTSH which

can be evaluated as a part of future research efforts.

The policies evaluated in this section include a hard restriction for the earliest time for which

an shipment associated with a line item can be delivered (Section B.2.1), a hard restriction in the

minimum quantity associated with a work order for any part, (Section B.2.2), and a relaxation in
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the CTSH which allows for the assignment of a generated work order to occur prior to its planned

start time as defined in the production plan (Section B.2.3).

B.2.1 Earliest Allowable Shipments

We have referenced that the Planning Model is allowed to prioritize early deliveries for orders

due far in the future over orders which may already be overdue. This behavior will occur if the

reward for delivering a large-value order early outweighs the penalty for delivering a small-value

order late. In order to restrict this, we introduce a new parameter, ε, defined as the earliest allowable

delivery of any shipment, relative to the due date of that customer order, Do. A complimentary

set of constraints ensure that no orders can be delivered earlier than this point of time, Do − ε:

∑
t∈T 1:
t<Do−ε

yot = 0 ∀ o ∈ O

Table B.15 shows the delivery KPIs achieved in both the production plan (Source:Planned) and

simulated schedule execution (Source:Actual), as the restriction on the earliest allowable delivery

time, ε increases. In this sense, the Planning Model is most restricted when ε = 0. This view only

shows the delivery KPIs, weighted in Dollars. As ε increases, the percentage of demands Deliv-

ered and delivered On Time initially increases before decreasing, signifying that some additionally

flexibility is beneficial to the performance of the production plan, but too much results in poorer

performance. However, Lateness of shipments strictly decrease as ε increases.

Table B.15. Manufacturing Policy Sensitivity Analysis: Analysis of performance in deliveries
made in production plan and simulated schedule with respect to changes in the restriction of
earliest allowable delivery, ε

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Source ε

Actual
0 77.5 % 11.9 % 127.6 30.0 119.0 212.0
80 84.2 % 21.8 % 124.6 11.0 94.0 223.0
160 76.9 % 17.4 % 90.5 -15.0 74.0 188.0

Planned
0 80.9 % 36.7 % 48.9 -28.0 2.0 79.0
80 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
160 80.1 % 39.3 % 27.1 -67.0 -24.0 93.0
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Table B.16 shows a breakout of the objective function costs incurred in the production plan as

ε increases. Similar to the results shown in B.15, some flexibility allotment in the framework does

improve the performance of the plan, but excess flexibility results in a deterioration in performance.

Table B.16. Manufacturing Policy Sensitivity Analysis: Analysis of costs and penalties in the
simulated schedule with respect to changes in the restriction of earliest allowable delivery, ε

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

ε

0 0.73 % 4.40 % 5.32 % 8.74 % 19.19 %
80 0.71 % 2.00 % 6.01 % 5.51 % 14.23 %
160 0.71 % 4.52 % 5.60 % 9.05 % 19.87 %

Table B.17 provides an analysis on the quantities associated with each delivery shipment and

work order as ε increases. As ε increases, so does the Count of shipments, while the Mean quantity

of units shipped in each delivery decreases. Again, the results in this table show improved KPIs

when some flexibility is introduced for ε before worsening, i.e. Work Order Qty: Total.

Table B.17. Manufacturing Policy Sensitivity Analysis: Analysis of generated shipments and
work orders in the production plan with respect to changes in the restriction of earliest allowable
delivery, ε

Delivery Shipment Qty Work Order Qty
Count Mean Median Total Count Mean Median Total

ε

0 64.30 3.54 2.17 227.61 433.30 21.27 9.78 9216.79
80 72.10 3.21 2.30 231.35 422.90 22.53 9.72 9526.90
160 71.10 2.90 2.11 205.84 412.00 21.90 10.19 9023.76

B.2.2 Minimum Production Lot Quantities

Another potentially undesirable characteristic of a solution from the production Planning Model

is the recommendation of production lots with very small quantities. For example, a production

plan solution may call for 10 work orders for the same part, each for a quantity of 1, when in

practice a scheduler would likely prefer to release 1 work order for a quantity of 10 units. This

decision will result in a potentially larger holding cost, but represents a more practical production

plan. We present and evaluate a method which introduces a new set of constraints which, similar

to the constraints which limit the maximum quantity associated with a production lot, will restrict
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the minimum quantity associated with a production lot. A new coefficient, 0 < µ < 1, is introduced

to ensure that the minimum production lot quantity is larger than a proportion of the maximum

allowable quantity, Mγt. These constraints are shown below, along with the original constraints

which limits the maximum lot size constraint:

Mγt zγt ≥ mγt ∀ j ∈ J, (γ) ∈ Γj , t ∈ T j (MaxProd)

µ Mγt zγt ≤ mγt ∀ j ∈ J, (γ) ∈ Γj , t ∈ T j (MinProd)

where mγt is production lot size for a process γ during period t, and zγt is the number of setups

planned to occur during period t for process γ.

Table B.18 shows the delivery KPIs (in dollars) of the production plan as the parameter µ

increases. Note that the percentage of demands Delivered and delivered On Time worsen as µ

increases, as a result of the restrictions which this parameter represents. As µ increases, and

reaches a larger value of 25%, the performance of the production plan drops significantly.

This caused by production infeasilibilities which stem from the simplicity of the wide-sweeping

constraint, such as the one described above. Consider the example of a multi-step routing containing

2 route steps and two different resource groups where the process associated with the first route-

step has a maximum lot size of 100 units while the second route step has a maximum lot size of

10 units. Considering the constraints, and a value of µ = 25%, the production of this routing

would be considered infeasible. The first route-step would require a production variable, uit, to

be between [25, 100], while the second would require [2.5, 10]. To avoid this type of infeasibility,

these constraints would need to consider a minimum production lot size based on the constraining

route-step, with respect to the maximum production lot size.
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Table B.18. Manufacutring Policy Sensitivity Analysis: Analysis of performance in deliveries
made in production plan and simulated schedule with respect to changes in the restriction of
minimum production lot sizes, µ

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Source µ

Actual
0.00 88.9 % 20.1 % 168.6 31.0 144.0 279.0
0.10 84.2 % 21.8 % 124.6 11.0 94.0 223.0
0.25 43.1 % 15.1 % 57.4 -44.0 43.0 152.0

Planned
0.00 95.6 % 47.6 % 78.4 -31.0 18.0 143.0
0.10 87.6 % 42.8 % 47.2 -44.0 -5.0 104.0
0.25 48.8 % 28.4 % -7.8 -83.0 -54.0 37.0

B.2.3 The Early Release of Dynamically Generated Work Orders

The proposed algorithm for the Continuous-Time Scheduling Heuristic (CTSH), see Section 2.7,

contains several user-defined parameters which dictate the logic which translates the discretized

production plan into an executable schedule. It should be noted that the procedure for evaluating

policies in teh CTSH is slightly modified. Specifically, because the CTSH algorithm is implemented

following the generation of a production plan, the updating of a base factory into a factory

associated with a specific trial occurs later in the solution procedure, i.e. following the solve of

the Node Pegging Model. This provides a fair evaluation, as the production plan associated with

the test instance in each trial will be identical. The updated Design of Experiments procedure is

shown in Algorithm 10.

In the production plan, production decision variables, uit, describes the quantity of a part, i,

which should begin its production routing during period t. During the simulation of the schedule

execution these production lots, (Work Orders) are not released to the shop floor, i.e. allowed to

be scheduled, until their planned start times, t.

However, due to the lead time buffers inserted during the calculation of the parameters (all lead

times are calculated assuming that a full production lot is run each cycle), there will be cases in

which the processing times of work orders with a lot quantity less than the maximum lot size that

will be less than the planned lead time of that work order. This leads to cases in which resources may

be left idle, i.e. when they complete a production lot quicker than anticipated. Further, resource
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Algorithm 10: Procedure for CTSH policy calibration Design of Experiments

Input: num trials, grid, UDP

1 let result be an empty dictionary

2 for num trial in range(num trials) do
3 1. Let factory be the output of generator ← this UDP

4 2. Let p be the output of preprocess ← factory

5 3. Let pm be the output of planning model ← (factory, p)

6 4. Let nm be the output of pegging model ← (factory, p, pm)

7 for (trial name, trial) in grid do
8 Let key be (num trial, trial name)

9 Update factory attributes, factory.CTSH SETTINGS ← trial

10 5. Let sim be the output of CTSH ← (factory, pm, nm)

11 6. Let kpi be the output of KPI pipeline ← (sim, pm)

12 Save key:kpi → result

Output: result

idleness in the CTSH may arise due to inventory infeasibilities of down-stream work orders due to

delays at upstream resources.

For these reasons, it may be beneficial to schedule some work orders prior to their planned start

time such that the continuous-time schedule can take advantage of resource idleness. This will help

ensure a high utilization rate throughout the shop while potentially resulting in a reduction in the

delays experienced in down-stream processes.

A trade-off exists when allowing an early release of the planned work orders. When a work order

is released too early, uncontrolled deviations from the production plan can occur. For example,

work orders scheduled earlier than their planned start time may be allowed to consume component

inventory which was planned to be used to complete another work order which may not be ready

to be started (due to shortages of other component inventories). If a work order is scheduled out of

sequence and consumes inventory that another work order required, there can be unforeseen delays

as the latter work order would need to wait until more component inventory is available.

To evaluate this trade-off, we introduce a new parameter, REL ≥ 0, which defines the duration

of time (in working hours) prior to each work order’s planned start time that it can be released to

the shop floor, i.e. moved from W 0 →W 1. For example, a value of REL = 40 represents a policy
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in which a dynamically generated work order can be assigned to be started by a resource up to 40

working hours prior to its planned start time.

Table B.19 describes the delivery performance of a production plan after it has been simulated

in continuous time, using the CTSH algorithm. As REL increases, the delivery KPIs initially

improve before worsening. For example, the percentage of Dollars and Units which are Delivered

and delivered On Time initially increase, then start to decrease as REL increases. The Lateness of

delivered Units, show that an increase in REL is beneficial, while the Lateness of delivered Dollars

shows an initial improvement, then deteriorates, as REL increases.

Table B.19. Manufacturing Policy Sensitivity Analysis: Analysis of performance in deliveries
made in simulated schedule with respect to changes to the release date of generated work orders in
the CTSH

% of Demanded Lateness (Hours)
Delivered On Time Mean 25th pc. Median 75th pc.

Measure REL

Dollars

0 81.2 % 14.1 % 146.5 37.0 108.0 222.0
40 84.2 % 21.8 % 124.6 11.0 94.0 223.0
80 83.0 % 25.0 % 109.8 -3.0 93.0 198.0
160 83.0 % 20.0 % 139.6 -9.0 133.0 269.0

Units

0 82.0 % 22.8 % 126.5 -3.2 77.0 206.8
40 83.2 % 33.0 % 100.2 -36.0 57.0 188.0
80 83.7 % 36.0 % 80.3 -65.5 48.0 178.5
160 83.9 % 35.7 % 68.4 -114.0 37.0 191.8

Table B.20 shows a breakout of the realized costs following the simulation of the production plan.

Note the deterioration of the performance of the simulated continuous-time schedule compared to

the production plan. Overall, the Total Penalty of the simulated schedule initially decreases as REL

increases from 0 to 40 hours, but then begins to increase. Each component of the costs described in

the table experience an initial improvement as REL increases before reaching an inflection point;

however, these inflection points vary for each KPI.
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Table B.20. Manufacturing Policy Sensitivity Analysis: Analysis of costs and penalties in the
simulated schedule with respect to changes to the release date of generated work orders in the
CTSH

KPI
Holding

Cost
Under

Production
Tardiness
Penalty

Unfulfillment
Penalty

Total
Penalty

Source REL

Plan 0 0.72 % 2.00 % 6.00 % 5.51 % 14.21 %

Actual

0 3.39 % 3.43 % 8.06 % 8.11 % 22.98 %
40 3.47 % 3.34 % 7.74 % 7.07 % 21.63 %
80 3.55 % 3.58 % 7.20 % 7.34 % 21.66 %
160 3.26 % 3.70 % 9.60 % 7.75 % 24.30 %

Table B.21 shows the realized utilization following the continuous-time simulation of the pro-

duction plan. It is shown that as REL increases, so does utilization. This increase in utilization is

apparent for both Setup and Process activities. This trend contradicts the patterns shown before,

and signifies that the cause of the deteriorating performance is due to infeasibilities (specifically due

to lack of available component inventory) found in the simulation. These infeasibilities are a result

of the cannibalization of inventory by work orders which are released earlier and are scheduled prior

to other work orders which had originally been planned to be completed first.

Table B.21. Manufacturing Policy Sensitivity Analysis: Analysis of resource utilization in simu-
lated schedule with respect to changes to the release date of generated work orders in the CTSH

Process Setup Total
REL

0 59.70 % 13.98 % 73.68 %
40 60.55 % 14.26 % 74.81 %
80 60.84 % 14.43 % 75.27 %
160 61.00 % 14.43 % 75.44 %

Table B.22 provides context to the delays which are experienced for both delivery Shipments

and Work Orders in the simulated schedule, compared to the generated production plan. For each

respective task: Count describes the number of planned tasks (measured as an average across the

10 test scenarios) which are completed during the simulated horizon, Mean and Median are the

mean and median lateness of tasks in the simulation relative to their planned start time.

As REL increases, both the Mean and Median lateness of Work Orders decreases, while in-

creasing for Shipments. This is due to a bullwhip effect in the production system; while upstream
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work orders, which are not dependent on the completion of other work orders, are not affected by

the unexpected infeasibilities caused by releasing work orders early, downstream work orders and

end item shipments are subject to the compounded infeasibilities and delays of all the work orders

they depend on. As a result, these work orders and shipments experience much more frequent and

extreme delays.

Table B.22. Manufacturing Policy Sensitivity Analysis: Analysis of delays in the simulated ex-
ecution of work orders relative to the scheduled production plan with respect to changes to the
release date of generated work orders in the CTSH

Shipments Work Orders
Count Mean Median Count Mean Median

REL

0 66 41.2 6.5 416 47.3 29.5
40 67 47.5 7.0 416 22.4 3.6
80 68 66.0 25.5 416 3.9 -8.5
160 68 127.8 86.5 417 -23.2 -37.9

B.3 Discussion

In this appendix, we present several numerical analysis’ to justify the selection of the user-

defined parameters which dictate the calculation of cost coefficients and bounds for constraints in

the Planning Model (PM) for the Multi-Level Capacitated Lot-Sizing Problem.

Considering the parametric calibration of the PM objective function cost coefficients, we em-

phasize the definition of parameters to be intuitive to users. We evaluate parameters related

to the per-unit per-period tardiness penalties, per-unit penalty for demand unfulfillment, per-unit

per-period reward early deliveries, per-unit per-period holding costs and per-unit penalty for under-

production. We find that in defining related parameters in relation to each other, i.e. tardiness

and unfulfillment penalties, has beneficial qualities in the calculation of cost coefficients.

We then evaluate the impacts which several practical manufacturing policies have on the per-

formance of the Planning Model and CTSH. For the Planning Model, we define parameters which

restrict the earliest time a shipment can be made to satisfy an order (relative to the due date of that

order). We also define a parameter which restricts the minimum size of a production lot (relative to

the maximum allowable size of that production lot). We find that the inclusion of these restrictions

improve the production plan relative to not enforcing any restrictions. We also find that enforcing
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policies which are too restrictive are also detrimental to the performance of the production plan.

For the CTSH algorithm, we define a parameter which relaxes the rules of the heuristic to allow

work orders from the production plan to be scheduled earlier than their planned start time. Again,

we find that relaxing the restrictions in the CTSH, by allowing work orders to be scheduled earlier

than stated in the plan, is beneficial. However, these benefits are only observed to a certain point,

as large deviations from the production plan leads to unforeseen infeasibilities which cause delays

in the schedule and leads to poorer performance.

Parameter Description Value

P Delay penalty (% per week) 2.5%

P Unfulfilled order penalty factor 1.25
ε Earliness incentive (% of P) 1%
h Holding cost rate (% per year) 20%
H Underproduction penalty factor 1
ε Earliest allowable delivery (in hours) 80
µ Minimum production lot size (% of Mγt) 10%

REL Release time of generated work orders (in hours) 40

Table B.23. Calibrated parameters and their default values as implemented in Section 3.5

We identify several additional parameters which can be calibrated in future research efforts.

Specifically, related to the parameters associated with the implementation of the CTSH, the priori-

tization metric used for released work orders competing for resources is of interest. As implemented,

existing work orders are prioritized by their planned start time, however this can be improved by

leveraging information regarding the order-pegged demands which each work order is matched

with. Prioritizing work orders based on metrics based on the current expected tardiness of the

orders associated with each work order, the critical ratio associated with the remaining lead times

of the parts produced by the work order (relative to order-pegged due dates), or by the number of

dependent sales order could be promising prioritization metrics.

Further, an evaluation of the impacts of different enforcement methods of paper-routing prac-

tices should be explored. In the current CTSH, the only batches within the production lot are

allowed to travel from work center to work center (within the routing of the part) without waiting

for all batches to be completed. They are however, held as Work-In-Progress inventory at the end

of the production routing until all batch complete all route-steps. An alternate practice would
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restrict the batches from moving onto a next route-step until all batches had finished the current

route-step. Further, we could explore the resulting performance of the schedule if no paper routing

measures were enforced.
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APPENDIX C

GRAPHICAL REPRESENTATIONS OF ASSEMBLIES

Product structures can be either single-level or multi-level. A single-level product describes a

product which is produced in a single step. In practice, these products are simple, i.e. transforma-

tion of a raw material into a final product via forging or casting. We consider multi-level production

systems in this study. Multi-level products have been represented in several ways, namely: serial,

parallel, assembly, or generalized, and represent the parent-component relationships of the prod-

ucts defined in the applied models. A serial product is one with a single final product output with

multiple processing steps. The output from one step in production is the sole input to the next

step, resulting in a representation where each part has exactly one parent and one component.

An assembly product structure extends the parent-component relationship such that each part has

exactly one parent but can have multiple components. A general product structure relaxes this

assumption such that each part can have multiple parents and components. See Figure C.1 for a

visual representation of each of these product structures.

Figure C.1. Product Structures
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C.1 Representation as a Graph and Implementation using Networkx

A directed graph is an obvious choice for representing BOM (and supply chain) networks, as

edges are defined with a restricted direction. That means that each edge has a source and a target

(materials can only flow from the source to the target). This makes sense as in the BOM data, a

part with an offset level of 5 will always flow to a part with an offset level of 4. The opposite is never

true. Using directed graphs allow for much more detailed analysis of the networks. We leverage

the Python open-source library Networkx in the implementation of all network-based encodings of

the BOM data. “NetworkX is a Python package for the creation, manipulation, and study of the

structure, dynamics, and functions of complex networks.”

In the following, two types of networks that can be made using the BOM data will be introduced

and discussed. Each of them has its benefits and disadvantages, but both are generated from

the same data. These two type of networks will be referred to as partID networks and nodeID

networks. These networks are constructed using a node-link data structure and tree data structure,

respectively. In each network structure, each node is assigned a number of attributes such as costs,

lead times, network-based centrality values, etc. Each edge is also assigned time attributes such as

processing rate, move time, expected queue time, as well as relational attributes such as units per

parent. These attributes are leveraged to create parameters and subset mappings which otherwise

would not be possible.

A partID network is a representation of the BOM where each unique part number in the

BOM is associated with a single node in the graph. In this network, the unique part numbers

are used to name each of the nodes in the network. Each parent-child relation ship in the BOM

data is represented as an edge. This type of network structure is represented using a node-link

data structure. Note that each node can be the origin of multiple edges. This means that this

node (part number) is the child of each edge’s target node. In other words, each node can have

multiple parents. This representation of the BOM data is essentially a network displaying the flow

of materials throughout the BOM.

In graph theory, a tree is defined as a network in which no closed loops exist (acyclic). This can

be compared to a cyclic graph which contains a path from at least one node back to itself. Other

characteristics of trees include:
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• Any tree with N nodes will have exactly N – 1 edges

• Points of connection are known as forks and the segments as branches

• Final segments are called tree leaves

Trees can take either the form of a rooted tree or a free tree. The difference between the two is

the presence or not of a “root”, respectively. The tree’s root acts as the focal node in the graph,

while every other node has a unique parent on the path towards the root of the tree. In this

structure, parent-child relationships between any two parts/assemblies are connected by a directed

edge, with the direction of flow moving from the child part to the parent assembly. Using this

logic, for each finsihed good BOM, all of the raw materials and vendor supplied parts would be

represented as tree leaves, and the top-level finished good deliverable would act as the root of the

tree.

We use a nodeID network to represent BOM data for unique line item in the BOM, which

becomes the root node of the tree. In this network, a nodeID indexing system is used to name

each of the nodes in the network. This means that nodes with a shared part number will be

duplicated each time it is found in the BOM data. Each parent-child relationship in the BOM data

is represented as an edge. This type of network structure is represented using a tree data structure.

Notice how each node has exactly one edge originating from itself. This means that each node

(Node ID) is the child of exactly one parent node. In other words, each node is restricted to having

a single parent. This representation of the BOM data is essentially a network displaying the exact

structure of the BOM.

C.2 Algorithms and Notation of BOM networks

The creation of tree-based representations leverages the implementation of a novel “NodeID”

indexing system. This indexing system essentially creates a unique ID for each line item in each

BOM, which defines that line item’s exact location within the BOM. Having a NodeID for each

location in the bill of materials allows for the encoding of a lot of valuable information. The style of

the ID allows for the traversal within the BOM with only the use of the NodeID indexing system.

The Node ID works as follows. At the top level each finished good line item deliverable is

assigned a unique number. For each of these orders, all of the first offset level assemblies (the
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children of the top-level assembly) would be assigned a number respective to its location within its

own BOM. This new number would be appended to the first number. For example, for line item

“1”, the first assembly will be assigned the ID, “1.1”, the second, “1.2”, then “1.3”, and so on.

For line item “2”, this would be “2.1”, “2.2”, “2.3”, etc. This process would then be repeated for

each of these assemblies in each engine. For assembly “1.1”, the sub-assemblies within it would

be named “1.1.1”, then “1.1.2”, etc. For assembly “1.2”, this would be “1.2.1”, “1.2.2”, etc. For

assembly “4.4”, this would be “4.4.1”, “4.4.2”. This process would continue until each component

in the entire BOM network is associated with each of the ordered line items assigned an ID. An

example of a part number at a lower network level could look like: “3.10.2.17.4”, which calls the

4th child of the 17th child of the 2nd child of the 10th child of the finished good which is delivered

on line item 3.

It is important to consider that this Node ID is dependant on the order of the line items within

the BOM. However, because this ID is only used as an index, the exact values of each component

within the ID is arbitrary and contains no value other than being consistent within each BOM

and being unique across all of the factory’s end item deliverables. This NodeID indexing system

is valuable as it allows for quick traversal throughout a BOM and provides full visibility in the

system. In the example provided above, this Node ID (3.10.2.17.4) defines the index of a line item

(3) as well as the path which that part traverses on its path to the top level engine. Specifically

NodeID, 3.10.2.17 is known to be the parent of 3.10.2.17.4, and 3.10.2 is the parent of 3.10.2.17,

and so on. By manipulating the NodeID string, it is possible to identify all of the assemblies which

any component flows through on its path to the deliverable. A similar procedure can be used to

search for any assemblies components. For example, because the Node ID 3.10.2.17.4 starts with

3.10.2, then you are able to conclude that 3.10.2.17.4 is a component of 3.10.2, as well as being

exactly 2 offset levels below it, since 3.10.2.17.4 is two offset levels (5) greater than 3.10.2 (3). This

example also shows that each Node ID encodes the information of what offset level that line item

is. Further, it is possible to find all of the components of 3.10.2 by finding all of the Node ID’s in

the BOM which start with 3.10.2.
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C.3 Discussion on Benefits and Disadvantages

As mentioned earlier, each of these network structures has its benefits and disadvantages. The

type of network which should be used depends on the nature of the problem as there are cases in

which a partID network is usable while a nodeID network isn’t. The same could be said the other

way around. These advantages will be presented through use case examples.

When thinking about a partID network which accurately models the flow of materials through-

out the BOM, some obvious use cases come to mind. One of the benefits of this structure is that

it is great for any type of “bottom-up” analysis of BOM networks. For example, consider a case

where someone knows that a certain component-level part number needs to be recalled due to some

sort of uncovered manufacturing issues. Using this partID network, it is possible to specify a sub

network as that given part number and all the parts it flows through on its path to the top level

finished goods. In this case, all that needs to be done is identify the nodes that are “reachable”

from the originating node. Because the network is modeled as a Directed graph, there are only a

limited number of nodes it can reach. When this calculation is done for each node in the network,

you have essentially defined a centrality measure of the network which defines the vulnerability of

the network to any part in the BOM. Measures such as these can be leveraged when implementing

heuristics requiring the prioritization of the production of parts or activities which are competing

over shared resources.

One of the other advantages of a partID network is that because many of the parts which show

up many times in a BOM are merged together when creating the network, the size of the network

is much smaller. Having smaller networks is obviously beneficial as the smaller the network, the

faster any function is that is applied to it, including the proposed optimization model.

There are some disadvantages however to using a partID network. All of these issues arise as the

consequences of aggregating the multiple locations of parts (if they do show up multiple times) into

a single node. In order to use the partID network structure, these data points must be aggregated

somehow. In doing this, information is lost, while it is not while using the nodeID network as each

location is represented as a node.

In many ways the advantages of the nodeID network is the complement to the advantages of

the partID network structure. For example, this network type is great for “top-down” analysis

like analyzing the contents of a top level assembly. Because of the nested nature of the tree
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data structures, it is incredibly easy to partition the tree network just by specifying any node as

the “root” of a sub-tree. Also, as mentioned earlier, this nodeID network is the exact structural

representation of the BOM data file. No data needs to be aggregated in order to build the network,

and as a result there is no lost information. However, this results in the network being larger, in

some cases nearly twice as large as the partID network counterpart (for any finished good).

C.4 Extensions to Graph Implementations

Although only two types of networks have been described here, there is potential for many

others. Many of these can be used to further research the impacts of events and entities on supply

chain networks. For example, consider a network structure in which the vendors are described

as nodes in the network. Another potential extension would be one in which each of the nodes

of this supply chain network was positioned on a geospatial mapping to represent its location

on the actual globe. This could also be done with suppliers, along with encoding transportation

times/costs along edges across the map. From here, the supply chain could be optimized, simulated

as well as analyzed under what-if scenarios.
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APPENDIX D

APPROACHES FOR SCHEDULING UNDER UNCERTAINTY

In this Appendix, we provide a brief literature review pertaining to approaches to addressing

scheduling subject to uncertainty. Specifically, we extend the literature review of Chapter 5 by

providing a more in-depth discussion of the different approaches to scheduling under uncertainty.

Further, considering specifically proactive scheduling approaches, we provide a review of scheduling

objective functions which have been presented in the literature, with a focus on robust scheduling

objectives. This literature review was conducted in preparation of the development of Revenue

Management applications for the scheduling frameworks, subject to uncertainties derived from the

existence of contingent demands, as presented in Chapter 5.

Approaches that address scheduling under uncertainty are classified as reactive, proactive or as

hybrid of the two. Reactive scheduling (also referred to as dynamic or online scheduling) approaches

revise an existing schedule in real-time throughout its execution as unexpected events occur. Vieira

et al. [179] develop a framework to describe rescheduling in manufacturing systems and identify

rescheduling environments, rescheduling strategies, rescheduling policies and rescheduling methods

as the key modeling dimensions in literature. In their framework they define the following: the

rescheduling environment identifies the set of jobs that need to be scheduled, making a distinction

between static and dynamic environments. A static environment has a set of finite jobs where a

dynamic environment has an infinite set of jobs. The rescheduling strategy describes whether or not

production schedules are generated. Dynamic strategies result in the identification of an optimal

disputing rule to implement for a set of jobs, rather than generating a schedule. A predictive-

reactive strategy schedule generates and maintains a schedule. Under the umbrella of predictive-

reactive strategies, rescheduling policies defines when to update the existing schedule. Finally, the

rescheduling method specifies how to reschedule. The authors make note that there may be multiple

rescheduling policies and/or methods that can be used depending on the current conditions of the

manufacturing system.
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Research objectives in this field concerns the identification of optimal rescheduling policies and

methods given a scheduling environment. This is achieved by answering research questions: when

should a rescheduling activity be triggered and how should the reschedule be implemented.

Rescheduling triggers are classified as either periodic or event-driven (or a hybrid of the two). In

a periodic policy, the rescheduling problem is decomposed into a series of static problems, solvable

using classical scheduling procedures. A periodic policy is defined by a rescheduling frequency,

specifying how often the schedule should be revised. The rescheduling period acts as the inverse

to the scheduling frequency, and defines the amount of time between consecutive reschedules [179].

The rescheduling period is typically a fixed duration throughout the scheduling horizon, i.e. trigger

a reschedule at the beginning of each shift/day/week. Event-driven rescheduling is triggered in

response to a disruptive event or the realization of an uncertain parameter.

Muhlemann et al. [121] investigate how the frequency of rescheduling in a periodic rescheduling

policy affects the performance of the system where machine breakdowns may occur randomly and

processing times exhibit variability. At the beginning of each rescheduling period, a static schedule

for the existing jobs is generated using a dispatching rule. The authors observed a deterioration

in schedule performance as rescheduling frequency increases. Vieira et al. [178] extend the work

of Muhlemann et al. to a parallel machine system subject to sequence dependent set-ups and find

that reducing the rescheduling frequency reduces the number of observed set ups. Sabuncuoglu and

Karabuk [149] consider event-driven rescheduling policies in multi-resource flexible manufacturing

system with random machine breakdowns and processing times. They find that it is not always

beneficial to reschedule in response to every machine breakdown, citing that the benefits of more

frequent scheduling become marginal after a certain number of revisions. Ramen et al. [138] study

a similar problem, but implement a rescheduling methods after a certain number of random events.

Both come to the conclusion that event-driven rescheduling is better than periodic rescheduling.

Rescheduling methods are classified as either full- or partial-reschedules. In full-rescheduling,

any time a rescheduling trigger occurs, all of the jobs are rescheduled using the most up-to-date

information available to the scheduler. Partial rescheduling, unlike total rescheduling, aim to ensure

continuity in the existing schedule by emphasizing schedule stability.

Several partial rescheduling methods include right-shifting, match-up rescheduling or partial

repair rescheduling. Right shifting rescheduling is a simple dispatching method which right shifts
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jobs that are due to be scheduled after a disruptive event occurs. For example, in the case of

a machine breakdown, the right-shift method would recommend executing the existing schedule

sequences, offset by the machine repair time. Another method proposed by Bean et al. [19],

called match-up rescheduling, aims to adjust the upcoming portion of the schedule in reaction to

a disruptive event. The distinctive quality of match-up rescheduling is that the post-disruption

schedule at some point will ”match-up” with the pre-disruption schedule.

Sawik [152] implements a mixed-integer linear programming solution framework in a dynamic,

make-to-order manufacturing flexible flow shop environment, comparing the performance of full-

rescheduling method compared to a partial-repair to the existing schedule. The scheduling objective

is to dynamically assign/reassign customer orders with various due dates to planning periods with

limited capacities while minimizing the number of tardy orders and inventory costs. Disruptive

events include customer modifications that increase/decrease processing times, order cancellations

or changes to the requested due dates. Sawik compares a full reschedule policy to a restrictive

partial rescheduling policy which only reschedules a subset of jobs awaiting raw materials. The

author concludes that partial rescheduling reduces CPU-time in finding solutions while maintaining

near optimal performance compared to full rescheduling. Yan-hai et al. [194] consider the flow

shop rescheduling problem and implement a full-rescheduling policy after the arrival of randomly

generated rush orders. They develop a novel Ant Colony Optimization meta-heuristic and use

a weighted mean flow time as the objective function where the weights for newly arriving rush

orders are much greater than the original jobs. The authors suggest the proposed algorithm to be

implementable and effective while considering other types of disruptive uncertainties such as order

cancellations, material shortages and machine breakdowns.

A common theme in reactive scheduling emphasizes the problem-specificity of each environment.

To overcome this issue, it is recommended that multiple rescheduling policies and methods should be

tested to identify the best performing implementation. For literature reviews in reactive scheduling

approaches we refer the reader to Chaari et al. [39], Ouelhadj et al. [127], Sabuncuoglu et al. [148].

It should be noted that strictly reactive scheduling approaches do not directly consider the un-

certainties it faces while generating schedules, but rather define the optimal policies which should

be implemented while reacting to the realization of those uncertainties [148]. While this does

accommodate for considerable flexibility in the schedule to compensate for unforeseen system dis-
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turbances, these strategies lack the global perspective provided by proactive scheduling approaches.

For this reason, these approaches are typically reserved for problem settings which are subject to

highly perturbed environments characterized by extremely disruptive and/or frequent uncertainties.

Proactive scheduling considers future disruptions while generating schedules in an effort to hedge

against potential disruptions and parametric uncertainties. This approach is more synonymous with

robust or stochastic optimization and makes use of historical data and forecasting techniques to

derive scheduling decisions [102]. The implementation of proactive scheduling approaches typically

occurs during the generation of a preschedule. Although a preschedule is unlikely to be executed,

it serves as the basis for planning supporting activities, establishing commitments with employees,

suppliers and customers, and making other revenue management decisions such as order accep-

tance/rejection or new customer pricing and/or due date quotation [102]. Scheduling objectives

in proactive approaches incorporate the preferences of the firm and can be classified based on the

following distinctions: preference of schedule stability vs performance, objectives based on reward

vs regret, and attitude towards risk (i.e. risk-neutral vs risk-averse).

D.1 Solution vs Model Robustness

A schedule is considered solution robust if it’s performance remains close to optimal for all

scenarios. It is considered model robust if its schedule remains almost feasible for all scenarios.

Solution robustness objectives typically minimize the deviation of performance metrics across the

uncertainty set. Model robustness represents a stable schedule, requiring minimal adjustments

deviation from the original preschedule and the eventual executed schedule [97].

Schedule stability objectives can be achieved through the introduction of flexibility into the

solution and are classified as either temporal or sequential. Temporal flexiblities are incorporated

through the insertion of idle times to act as a buffer against adverse realizations of uncertain param-

eters or events. Sequential flexibility is achieved through the characterization of group assignments,

in which families of schedules are grouped into permutable sequences. In the face of disruptions,

the sequence of execution within the ordered group can be modified, without adjusting the original

solutions. By switching from one solution to another when disruptions occur, the scheduler can

control the performance degradation. The preschedule in this approach is optimized based on the

worst-case outcome for each job within its own group assignment.
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Mehta and Uzsoy [113] study a single-machine environment subject to random machine break-

downs with job release times. The scheduling model’s objective KPI is the minimization of max-

imum lateness, with the robust objective of minimizing the deviation of job completion times

between the planned schedule and the realized schedule. The authors develop a two-stage solution

to the problem where the first step determines an optimal sequence to Lmax problem, and the

second step inserts idle buffer times in the schedule to minimize worst-case completion time devia-

tions. It is shown that the insertion of idle times in the preschedule provides significant resilience to

disruptive events without significant deterioration of the primary performance measure. Gao and

Fox [58] consider the single machine scheduling problem subject to random machine breakdowns

and down times with the objective to minimize the sum of job tardiness cost, inventory costs and

idleness costs. The authors develop a temporal protection policy that adds a buffer to job pro-

cessing times and release times (to a sequence created using the Jackson Algorithm to minimize

maximum lateness) and show that this approach reduces the observed interruptions to the original

schedule, and reduces costs by up to 60-80% compared to a schedule with no temporal protections.

Lambrechts et al. [95] consider the use of time slack-based techniques in the resource-constrained

project scheduling problem, subject to random machine breakdowns and repair times. Given an

initial project schedule, explicit idle time is inserted in front of the starting times of activities to

improve robustness. This buffering method absorbs potential disruptions with an objective to min-

imize the expected instability costs without exceeding project deadlines. In cases which disruptions

cause infeasibilities, the authors propose a reactive rescheduling procedure to repair the schedule.

Artigues et al. [6] take a different approach in introducing flexibility to a robust scheduling

problem. The authors consider a single machine problem as a sub-problem of a job shop environ-

ment with job release dates and deadlines. An ordered group assignment technique is proposed

in which families of schedules are grouped into permutable sequences allowing for flexibility in the

face of disruptions. A polynomial time algorithm is developed to evaluate the worst case comple-

tion time for any operation within each assignment group. The authors maximize flexibility in the

schedule by minimizing the number of assignment groups and maximizing the number of charac-

terized sequences, subject to precedence constraints. Briand et al. [30] consider the single machine

scheduling problem with uncertain release dates, due dates and processing rates. It is assumed

that the relative order of these parameters are known, i.e. job j is known to be release before job
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k. The authors show through the use of the dominance theorem, proposed by Erschler et al. [55],

that a set of dominant sequences can be characterized and evaluated for a worst-case performance

while avoiding the complete enumeration of the sequences.

D.2 Reward vs Regret

Solutions which consider reward aim to optimize for the performance of the realized schedule.

Solutions which consider regret, or sub-optimiality, optimize for the difference between the realized

performance and the optimal solution of the realized scenario, given perfect information.

Goren and Sabuncuoglo [64] study a single machine manufacturing environment subject to

processing time variability and random machine breakdown using known probability distributions

to characterize uncertainty. The authors consider two robustness measures (expected total flow

time and expected total tardiness), and three stability measures (sum of the squared differences

and absolute differences of the job completion times and the sum of the variances of the realized

completion times). They identify special cases for which the measures can be easily optimized.

For example, if no machine breakdowns are present, the authors show that sequencing the jobs

according to a non-decreasing order of job processing time variance is optimal when considering

the sum of squared differences and absolute differences of job completion times. In non-special

cases, the problem is analytically intractable for all measures. To overcome this, the authors

develop a simulation-enabled beam search branch-and-bound heuristic and find that this method

requires reasonable computational times, and cite an extension to multi-machine environments as

a direction of further research.

D.3 Risk-neutral vs risk-averse

Risk neutral objectives optimize for the expected realized reward or regret, while risk averse

objectives hedge against the worst-cases of reward or regret. Risk-averse objectives rely on robust

optimization techniques. General robust optimization models were first developed as early as the

1970s. It was not until the mid-1990s following a series of breakthroughs in theory and methodology

was it that these models began to be applied to Operations Management areas such as inventory

management, production planning, revenue management, etc. [102, 110]. Risk-averse tendencies are
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most commonly represented through optimization of the worst-case performance of the preschedule,

i.e. minimizing the maximum penalty or maximizing the minimum revenue.

Dainels and Kouvelis [45] are cited as one of the first applications of robust optimization to the

scheduling problem. They implement a scenario-based approach in a single-machine environment

subject to uncertain processing times. The scheduling objective was to determine the schedule which

minimizes worst-case degradation (min-max regret) of total flow time of all jobs. The authors show

that only a finite number of scenarios are needed to determine the worst-case absolute deviation of

a sequence, even in the case that processing time distributions are unknown. Specifically, only the

extreme points (upper and lower bounds) of processing times of each job are required to calculate

the worst-case deviation, which can be accomplished in polynomial time. The authors develop a

branch and bound algorithm, and several relaxation heuristics that utilize the worst-case evaluation

procedure, and compare their solutions to the Shortest Expected Processing Time (SEPT) solution.

They show that the SEPT heuristic performs poorly when considering the min-max regret robust

objective compared to their proposed algorithms.

Lu et al. [108] study the robust single machine scheduling problem (RSMSP) subject to uncer-

tain processing times and uncertain sequence dependent setup times, where uncertain parameters

are represented by interval data. The authors reformulate the problem as a robust traveling sales-

man problem (RTSP) to obtain a robust sequence that minimizes the worst-case regret of makespan.

The authors leverage a property of the RTSP reformulation to identify worst-case scenarios, and

implement a simulated-annealing based local search algorithm to find optimal sequences for practi-

cally sized problems. An analysis of the comparison of implementing a worst-case robust schedule

compared to the optimal expected-value sequence shows that the larger the data uncertainty is,

the greater regret for adopting the optimal expected-value sequence in the worst-case scenario.

Yue et al. [198] study the RSMSP with uncertain job due dates where the decision maker

objective is to minimize the worst-case maximum tardiness over all jobs. Taking a scenario-based

representation of an interval uncertainty, the authors show that only n scenarios are required to

identify the worst-case scenario, where n is the number of jobs. For each sequence, x, the authors

define the finite set of worst case scenarios U = {di, i = 1, 2.., n}, where in scenario di, the due date

of job j = i is the lower bound in it’s interval, dj , and all other jobs j 6= i is the upper bound, d̄j .

Using this property, a solvable MILP is developed and a robust dominance heuristic rule is proposed
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to solve the problem. This heuristic method is shown to be feasible for large-scale problems (up to

500 jobs), and is applied to in the context of an MTO manufacturer of an iron-making process.

Wu et al. [189] consider a two-machine flow-shop environment with the objective to minimize

makespan, subject to scenario-dependent processing times. The robustness criterion of interest in

this study is absolute robustness, i.e. determining the permutation which minimizes the maximum

makespan associated with any scenario. Each operation stage is composed of a single machine, and

no idle time is allowed in the first stage. A branch-and-bound algorithm is developed and compared

to 12 heuristics and 12 variants of a cloud-based simulated annealing algorithm. However, the

proposed solution methods were only tested in a problem with 2 scenarios and only up to 12 jobs.

Silva et al. [157] investigate algorithms that solve the RSMSP with processing time uncertainties

that take any value in an interval set. The robustness criterion minimizes worst-case total tardiness

of any scenario. A controlling parameter, γ, which defines the size of the uncertainty interval allows

for a flexible definition of decision-maker risk-aversion. In cases where a decision-maker is more

risk-averse, a larger uncertainty set is chosen. The authors compare two solution methodologies:

a combination of an MILP formulation with row-and-column generation algorithms, and a robust

branch-and-bound algorithm which leverages dominance rules concerning precedence relations be-

tween jobs to define additional constraints in an effort to reduce the number of sequence-position

variables. The authors show through computational results that the additional dominance-rule

constraints were ”fundamental” for a good performance of both the branch-and-bound and MILP

formulation algorithms.

One of the downsides to risk-averse objectives which optimize on the worst-case is that over-

conservatism dominates decision making. Other objectives functions such as beta-robustness,

Pareto robustly optimal solutions, Conditional-Value-at-Risk, Value-at-Risk address this by re-

moving emphasis from the worst-case solution. Each of these alternative objective functions will

be described below.

Wang et al. [182, 183] discuss the job-shop scheduling problem with makespan as the perfor-

mance criterion subject to uncertain processing times. Uncertainty is represented as a set of discrete

scenario sets with no knowledge on the probability of each scenario. In [182] the authors establish

a new robust optimization model which considers a set of bad scenarios rather than only the worst-

case scenario. A reference standard, T , used to evaluate the solutions rather than considering the
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schedule performance. The threshold-based bad-scenario set is defined as the set of scenarios, λ ∈ Λ

in which a schedule performs worse than T . The authors define the penalty of bad scenarios as the

square of the degree of performance degradation past T , [C(s, λ) − T ]2, where C is the makespan

of schedule s in scenario λ. No penalty is associated with scenarios that observe a makespan less

than T . The robust objective is then to minimize the sum of penalties across all scenarios. The

authors develop a combined simulated-annealing and tabu-search local search algorithm leveraging

a problem-specific neighborhood construct uniting multiple single-scenario neighborhoods. In [183]

extend this problem to case in which there is no known reference standard, T , arguing the case

in which a specified standard performance level is too high, that no penalty will be encountered

leading to sub-optimal performance. To solve this problem, a two-stage framework is developed

which simultaneously minimizes the bad-scenario threshold, T , and the measured penalty of the

resulting penalty on the bad-scenario set. The proposed framework defines a reasonable value for T

as any value in the interval [EC∗,WC∗], where EC∗ is optimal expected-case performance among

all possible scenarios, and WC∗ as the optimal worst-case performance among all possible scenarios.

Daniels and Carrillo [44] study a single machine environment with a total flow time perfor-

mance measure and uncertain processing times. Uncertainty is represented within a set of discrete

processing time scenarios with a known probability of realizing each scenario. The authors define

a general β-robustness measure that describes the likelihood, β ∈ [0, 1), of achieving a system per-

formance level no worse than a specified target level, T . A β-Robust Scheduling Problem (β-RSP)

is formulated which identifies the scheduling sequence which maximizes the likelihood of achieving

a flow time performance no greater than T . Compared to robust scheduling models which optimize

considering only the worst-case scenario, the β-robust scheduling model can be tailored to reflect

the level of risk which an individual is willing to accept. The authors also formulate the β-Robust

Scheduling Problem with Variance Reduction (β-RSPVR), in which the uncertainty in processing

time can be reduced through the application of an additional limited resource.

Kasperski et al. [84] study the identical parallel machine scheduling problem to minimize

makespan with uncertain processing times, represented as a bounded set of discrete scenarios,

similar to [83]. This paper generalizes the robustness criterion from a worst case optimization by

using the ordered weighted averaging aggregation operator (OWA), proposed by Yager et al. [193].

This operator allows a decision maker to specify their attitude towards risk, specifically by assessing
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a weighting, α, defining the importance of the performance criteria in both the worst-case scenario

and best-case scenario:

OWAω = (1− α) Cmax + α C̄max = Hα

This representation is a special case of the OWA operator, known as the Hurwicz criterion,

and acts as a compromise between the best (optimistic) and worst (pessimistic) cases. Another

special case of the Hurwicz criterion exists when α = 1, in which case Hα is equivalent to absolute

robustness. The authors proposed an MIP-based approach that provides an optimal schedule to

this problem. It is also shown that the generalized OWA can be solved in pseudo-polynomial time,

however no algorithm is provided.

A critical limitation of the implementations OWA operator, including the Hurwicz criterion, is

that these do not take into account probabilistic information as to the likelihood of each scenario.

When a probability distribution of a discrete scenario set is known, or can be estimated, stochastic

scheduling models can be considered. Typically, the expected solution performance of a schedule

is optimized under this assumption, representing long-run performance optimization. However

other criterion exist which allow the incorporation of risk-averse behaviors, such as value at risk

(VaR) and conditional value at risk (CVaR). Both criterion allow the decision maker to specify

an attitude towards risk, α. For the VaR, this represents optimization of the outcome (scheduling

KPI) in the α-quantile scenario given a fixed scheduling solution. Compared to the minimization

of the maximum performance measure over all scenarios, as in the worst-case robust optimization,

VaR minimizes the maximum performance measure over the subset of scenarios with an aggregate

probability of at least α. In other words, the objective becomes identify the sequence with the

smallest possible upper bound on the random performance measure that will be exceeded with at

most a α probability [9].

A limitation of VaR is that it does not consider the outcome in the top (1 − α) percentile

outcomes, a.k.a. the tail of the distribution. In the case that performance degradation in those

unaccounted scenarios are extreme, the decision maker is vulnerable to highly sub-optimal realized

performance. The ideal user of the VaR criterion is a decision-maker whom is concerned with
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strictly concerned with the frequency of undesirable outcomes. CVaR, introduced by Rockafellar

and Uryasev [144], addresses these tail-region scenarios and aims to optimize the expected value

of the random performance measure of the scenarios which fall in the top (1 − α) upper bound.

This criterion is advantageous as it simultaneously optimizes both the variance and the expectation

of the performance measure. Another superior quality of the CVaR is that when the underlying

deterministic decision making problem is represented as an LP, then so can the CVaR. However,

because the VaR is non-convex and non-smooth, binary variables need to be introduced. This

however is not of critical importance in the scheduling problem, as a majority of the underlying

deterministic scheduling decision variables are binary.

Sarin et al. [151] and Atakan et al. [9] are among the first to propose the implementation of

VaR and CVaR in a scheduling problem, specifically with total weighted tardiness as the schedul-

ing objective. Sarin et al. formulate a scenario-based MIP to minimize CVaR for total weighted

tardiness in the single-machine scheduling problems with uncertain processing times. The authors

implement a local search algorithm capable of solving problems of moderate size (15 jobs, 400

scenarios) in 360 seconds and large problems (100 jobs, 800 scenarios) in 9000 seconds. Solu-

tions derived using the CVaR of total weighted tardiness are shown to greatly reduce performance

variance while marginally increasing the expected performance (compared to solutions optimizing

the expected total weighted tardiness). The formulation of an application in an identical parallel

machine environment is also provided. Atakan et al. develop a generic risk-averse stochastic pro-

gramming model using the VaR of total weighted tardiness with uncertain processing times. They

propose a Lagrangian relaxation-based scenario decomposition method to obtain lower bounds and

a stabilised cut generation algorithm to solve the Lagrangian dual problem. A computation anal-

ysis shows the effectiveness of the proposed algorithm in salving large-scale problems (30 jobs, 500

scenarios). Kasperski et al. [85] considers the specific class of RSMSPs discussed by Sarin et al.

and Atakan et al., and provide a number of positive and negative complexity results.

216



APPENDIX E

EXAMPLE OF CONTINGENT DEMAND SCHEDULING

In the following, we present a simplified instance of a scheduling problem, subject to contingent

demands, as described in Chapter 5. In this example, the backlog consists of 3 jobs: {i1, i2, i3} ∈ I,

referred to as Job 1, Job 2 and Job 3 respectively. Job 1 and 2 have already been accepted by the

customer {i1, i2} ∈ IA, and both have a probability of acceptance ai = 1. Job 3 is contingent, i.e.

{i3} ∈ IC , and has a probability of acceptance of a3 = 0.75. The desired delivery dates of jobs 1,2

and 3 are time periods 2,3 and 5, respectively. Job 1 and Job 2 are made up of material A and

Job 3 is made up of material B. For simplicity, all jobs have an identical tardiness penalty ci = 1,

size αj = 1, and earliest acceptable delivery date, ei = 1 (see Table E.1). There are two unrelated

parallel machines, {j1, j2} ∈ J , referred to as Resource 1 and Resource 2 respectively, available to

process the 3 jobs. The processing time required for each machine to complete one unit of materials

A and B are shown in the Table E.2.

Job Name Material Job Set di si ai ci ei αi
i1 A IA 2 0 1 1 1 1

i2 A IA 3 0 1 1 1 1

i3 B IC 5 1 0.75 1 1 1

Table E.1. Contingent scheduling example - job characteristics

Machine

Material M1 M2

A 2 3

B - 4

Table E.2. Contingent scheduling example - machine characteristics

The realized outcome of Job 3 will not be known until after the first time period has concluded.

Because there is only one contingent job in the backlog, there exists only two scenarios. Let Scenario
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1 be the scenario where Job 3 is accepted by the customer and Scenario 2 be the scenario where

Job 3 is declined by the customer. Regardless of the outcome of Job 3, the scheduler must decide

on the most immediate portion of the schedule now. If the scheduler waits to make their decision,

then they will experience resource under-utilization of a perishable capacity, leading to non-optimal

performance.

The scheduler is faced with the decision of whether or not to hedge against the possibility that

Job 3 is eventually accepted by the customer. It is trivial that Job 1 has priority and should be

scheduled to be completed first by Resource 1. This leaves the scheduler with the decision to either

schedule Job 2 to be completed after Job 1 on Resource 1 or to be started immediately on Resource

2. Lets call these decisions Plan A and Plan B, respectively. Job 3 can only be processed by

Resource 2, and will be started at time period 1 if the scheduler goes by Plan A, or will be started

in time period 3 (after Job 2 is completed) in Plan B. Table E.3 shows the associated completion

times and profits of each job in each realized outcome.

Metric Completion Time Penalty

Scenario 1 1 2 2 1 1 2 2
Plan A B A B A B A B
Job 1 2 2 2 2 0 0 0 0
Job 2 4 3 4 3 1 0 1 0
Job 3 5 7 - - 0 2 - -

Total 1 2 1 0

Table E.3. Contingent scheduling example - schedule realizations

We know that because the probability of acceptance of Job 3 is a3 = 0.75, therefore the proba-

bility that Scenario 1 occurs is q1 = 0.75, and Scenario 2 is q2 = 0.25. We can evaluate and solve

for the optimal decision by comparing the expected penalty (or profit) of each plan:

E[PA] = q1PA,1 + q2PA,2 = 0.75 ∗ 1 + 0.25 ∗ 1 = 1

E[PB] = q1PB,1 + q2PB,2 = 0.75 ∗ 2 + 0.25 ∗ 0 = 1.5

From this assessment, it appears that enacting Plan A is optimal for the decision maker. Taking

a risk and scheduling Job 2 in a locally sub-optimal position results in the globally optimal decision.
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However, this assessment changes if the probability of acceptance of Job 3 changes from a3 = 0.75

to a3 = 0.25. The evaluation now becomes:

E[PA] = q1PA,1 + q2PA,2 = 0.25 ∗ 1 + 0.75 ∗ 1 = 1

E[PB] = q1PB,1 + q2PB,2 = 0.25 ∗ 2 + 0.75 ∗ 0 = 0.5

In this case, Plan B is optimal. However, implementing this assessment requires an accurate

approximation of each contingent jobs’ probability of acceptance. In the case that this is not

available, it is possible to implement robust decision making assessments to determine the optimal

decision. For example, when considering a robust decision making objective of minimizing the

maximum realized penalty across all scenarios, the assessment becomes:

P ∗ = argmax(WC[PA], WC[PB])

WC[PA] = max(PA,1, PA,2) = max(1, 1) = 1

WC[PB] = max(PB,1, PB,2) = max(2, 0) = 2

Again, the optimal decision is Plan A. Notice in this assessment, estimating the probability of

acceptance of the contingent jobs is not required.

Through this example we have shown several things: 1) the presence of contingent demand

introduces complexities in decision making which require a scenario-based formulation, 2) the op-

timal decision in the optimization of the expected value is sensitive to the probabilities associated

with each scenario, 3) this particular problem is relevant in use-cases where eligibility constraints

of machines/jobs are a major factor and 4) different decision making objectives can result in unique

optimal decisions.
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APPENDIX F

FUTURE RESEARCH DIRECTIONS FOR THE CONTINGENT
SCHEDULING PROBLEM

F.0.1 Extension to the Order Acceptance & Scheduling Problem

In the following, we develop the formulation of the OA&S problem, subject to contingent

demand, and describe the computational experiments we would implement to evaluate the effec-

tiveness of the proposed Revenue Management framework. We develop the OA&S problem as the

first step in the sequential development of series of Revenue Management applications culminat-

ing in the Simultaneous Pricing, Due-Date Setting and Scheduling problem (SPDSP). The OA&S

problem (also referred to as Scheduling with Rejection problem) extends the contingent demand

scheduling problem presented in this chapter by allowing the decision maker the ability to chose

which jobs to allow into the demand backlog.

In the problem we consider, we define a new subset of jobs, IN , as the set of jobs from new

customers which have not been offered quotes for their requested product enquiries. We assume

that each new customer has a desired price point and due-window, and is unwilling to award their

demand to the firm if these requirements are not agreed to. We also assume, that if the firm offers

a quotation bid to the new customers which meet their requests, the customer will accept the bid

with a probability of 1, i.e. ai = 1. Given these assumptions, the decision-maker is able to decide if

this new job should be added to the demand backlog, considering the existing contingent demand.

We define the binary decision variable, zi, to take a value of 1 if the decision maker chooses to

offer a quotation to the incoming order, i.e. accept, and 0 otherwise. All new jobs, i ∈ IN , which

are accepted by the firm are treated similarly to the jobs from the accepted job set, i ∈ IA, since

it is known that the customer will also accept the terms of the quotation offered. We also define

the set, IAN = IA ∪ IN , as the union of the accepted jobs and new arriving jobs. Finally, the

parameters, Rijk, are modified to consider the realized profit of each job:
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Rijk = ri − hi max
(
0, ei − tijk

)
+ ci max

(
0, tijk − di

)
where ri is the revenue associated with each job, i. The objective of the Order Acceptance and

Scheduling problem becomes one to maximize the expected profit across considered scenarios.

In this problem, profit is calculated as the sum of revenues minus the penalties associated with

scheduling the jobs in the backlog. The formulation of the hybrid-bucket Order Acceptance and

Scheduling problem becomes:

Formulation (OA)

max
∑
j∈J

( ∑
k∈KF

∑
i∈IAN

Rijk xijk +
∑

k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk

)
s.t. ∑

j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= 1 ∀ i ∈ IA, s ∈ S (1)

∑
j∈J

( ∑
k∈KF

xijk +
∑

k∈KNF

ysijk

)
= zi ∀ i ∈ IN , s ∈ S (2)

∑
j∈J

∑
k∈KNF

ysijk = bis ∀ i ∈ IC , s ∈ S (3)

∑
i∈IAN

xijk ≤ 1 ∀ j ∈ J, k ∈ K (4)

∑
k∈KF

xijk +
∑

k∈KNF

ysijk ≤ Aij ∀ i ∈ I, j ∈ J, s ∈ S (5)

1−
∑
l∈JAN

xij,k+u ≥ xijk ∀ i ∈ IAN , j ∈ J, k ∈ KF , u ∈ {0..Uijk} (6)

∑
i∈I

Pij y
s
ijf +

∑
i∈IAN

∑
k∈KF

Vijk xijk ≤ Cjf ∀ j ∈ J, s ∈ S (7)

∑
i∈I

Pij y
s
ijk ≤ Cjk ∀ j ∈ J, k ∈ KNF , s ∈ S (8)

Constraints 1 require each accepted job to be scheduled exactly once for each scenario. Con-

straints 2 require that each new job, i ∈ IN , is scheduled exactly once if it is accepted by the firm,

i.e. zi = 1, and not at all if it is rejected. Constraints 3 require each contingent job to be scheduled

exactly once for only the scenarios which it exists in the backlog, i.e. bis = 1. Constraints 4 limit the

number of jobs i ∈ IAN that are assigned to any timeslot within the frozen portion of the schedule.

Constraints 5 ensure that jobs can only be assigned to resources which are capable of processing
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them. Constraints 6 ensure that no two jobs in the frozen period are processed simultaneously.

Constraints 7 require the total processing time allocated for the first non-fixed big-bucket period

to be less than the available capacity in this period. Constraints 8 require the total processing time

allocated for all other big-bucket periods is less than the available capacity.

The formulation for the OA&S problem can also be extended to consider robust scheduling ob-

jectives. The formulations presented to this point have aimed to optimize the expected cost/reward,

representing a risk-neutral approach. However, there has been growing interest in academia and

practice in making robust decisions which are risk-averse which hedge against the likelihood of

unfavorable scenarios. The objective for the robust optimization of revenue aims to maximize the

revenue associated with the worst-case scenario across the scenario set, S. We have shown in

the example from Appendix E, that the optimal scheduling solution can differ when considering a

robust optimization objective compared to an expected-case objective.

The objective function of the expected-case formulations can be decomposed into two segments:

the scenario-independent and scenario-dependent segments. Note that the scenario-dependent por-

tion of the objective function is a weighted (by the probability of each scenario, qs) sum of the

revenue associated with each scenario. This assumes that a probability of occurrence can be esti-

mated for each scenario, which in some cases may be too difficult to estimate accurately. The robust

adaptation replaces this portion of the objective function (and any consideration of the probability

of each scenario, qs), with a new variable Z.

Formulation (RH-OAS)

max

(∑
j∈J

∑
k∈KF

∑
i∈IAN

Rijk xijk

)
+ Z

s.t.

Constraints 1-8 from OA

Z ≤
∑
i∈I

∑
j∈J

∑
k∈KNF

Rijk y
s
ijk ∀ s ∈ S (9)

The calculation of the scenario-dependent revenue is added as a new constraint, Constraints

9, which restrict Z to be less than the minimum revenue associated with the non-fixed portion

any scenario, s. The objective function now represents the sum of the revenue associated with the
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frozen portion of the schedule plus the minimum revenue of the non-fixed portion of the schedule,

measured across the scenario set S. All other constraints in the problem remain unchanged.

One of the downsides to risk-averse objectives which optimize on the worst-case is that over-

conservatism dominates decision making. Other objectives functions such as beta-robustness,

Pareto robustly optimal solutions, Conditional-Value-at-Risk, Value-at-Risk address this by re-

moving emphasis from the worst-case solution. We propose the following objective function that

allows for the specification of the risk-averseness of the decision maker. In this formulation, the

parameter ε ∈ [0, 1), defines the decision makers attitude towards risk. When ε takes a value of

1, this objective becomes equivalent to the risk-neutral stochastic optimization problem, and when

ε = 0, the objective is equivalent to the worst-case optimization problem.

max
∑
j∈J

∑
k∈KF

∑
i∈IAN

Rijk xijk + ε
∑
j∈J

∑
k∈KNF

∑
s∈S

∑
i∈I

qs Rijk y
s
ijk + (1− ε)Z (eRH-OAS)

F.0.2 Evaluation of the Order Acceptance & Scheduling Problem

To strengthen our findings, we propose to provide an analysis which evaluates the Value of the

Stochastic Solution (VSS) and the Expected Value of Perfect Information (EVPI) for the Order

Acceptance & Scheduling formulations. The VSS defines the expected value which is gained by

using the scenario-based Hybrid formulation for the underlying scheduling problem compared to

using a deterministic counterpart to the problem. In this experiment, we evaluate the OA&S

formulation as a two-stage problem. In the first stage, the decision maker makes job acceptance

decisions and creates the schedule for the frozen portion of the schedule. In the second stage,

given the decisions made for the frozen period, the remaining jobs are scheduled to the non-fixed

portion of the schedule, for each possible scenario. Each scenario in the second-stage is solved

for individually, so they can be treated as a deterministic scheduling problem. The second-stage

revenues are used to generate a distribution which can be used to evaluate the effectiveness of the

scheduling formulation in the first-stage problem.

The stochastic model differs from the deterministic model in how it considers contingent jobs

while making the first-stage scheduling decisions. The non-deterministic implementations solve for

the first stage schedule while optimizing for the expected, worst-case or epsilon-robust revenue,

considering the individual demand scenarios subject to the contingent jobs. However, in the de-
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terministic problem, uncertainty is not considered. Given that only accepted jobs, i ∈ IA can

be scheduled in the frozen portion of the schedule, no contingent jobs are considered in the first

stage problem of the deterministic problem. Therefore, the formulation of the first stage problem

becomes:

Formulation (D1)

max
∑
j∈J

(∑
k∈K

∑
i∈IA

Rijk xijk

)
s.t. ∑

j∈J

∑
k∈K

xijk = 1 ∀ i ∈ IA (1)

∑
i∈IA

xijk ≤ 1 ∀ j ∈ J, k ∈ K (2)

∑
k∈K

xijk ≤ Aij ∀ i ∈ IA, j ∈ J (3)

1−
∑
l∈IA

xlj,k+u ≥ xijk ∀ i ∈ IA, j ∈ J, k ∈ K,u ∈ {0..Pij} (4)

Note that in this formulation, a schedule is created for the entire planning horizon, k ∈ K.

However, only the schedule for the fixed portion of the horizon, k ∈ KF , will be considered as

the first-stage solution. It is assumed that the decision maker gains knowledge of the realization

of each contingent job, i ∈ IC , as soon as the schedule for the frozen period is decided. Once the

contingent jobs are realized, the newly accepted subset of jobs can be added to IA and the declined

subset can be discarded. The deterministic problem can be resolved for the jobs which were not

scheduled in the first stage using the deterministic counterpart of the big-bucket formulation. The

revenue of the solution for that scenario can be found as the sum of the revenues from the first and

second stage problems. We will refer to the revenue associated with a single contingent demand

realization following a deterministic scheduling of the first stage problem as πsD. The second stage

problem will be solved for many scenarios to define a distribution of the expected revenue, given

the scheduling decisions made during the first-stage problem.

We find the VSS by finding the difference in the expected revenue of the two solution methods:

V SS = πS − E[πD] = πS −
1

|S|
∑
s∈S

πsD
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where πS is the objective function optimized by the stochastic formulation. E[πD] is the expected

revenue associated with the conditions defined in the deterministic counterpart to the problem.

This value is found as the mean of the optimal schedules for the second-stage problem of the

deterministic counterpart for each scenario, s, in the scenario set, S, plus the revenue from the first

stage.

The Expected Value of Perfect Information (EVPI) of the stochastic formulation can be calcu-

lated by finding the difference of the objective function found using the Hybrid formulation and

the weighted objective function of the deterministic model solved for each scenario with perfect

information. In this case, perfect information constitutes knowledge of which contingent jobs will

be accepted, prior to making any of the first stage decision. The value of EVPI is found as:

EV PI =
∑
s∈S

qsπ
s
D∗ − πS

where πsD∗, also referred to as the Wait-and-see value, is the value of the objective function of the

deterministic problem for the full schedule, given perfect information.

F.0.3 Extensions to Additional Revenue Management Problems

Future research directions outside the scope of this dissertation include the extension of the pro-

posed models to other various Revenue Management algorithms. This would include the Dynamic

Pricing and Scheduling Problem, Due-Date Setting and Scheduling Problem, and the Simultaneous

Pricing, Due-Date Setting and Scheduling Problem (SPDSP).

Several challenges must be addressed in the formulation of these problems. First, we must define

a method of specifying what quotation to offer to a new incoming customer. Lu and Liu [109] have

shown that the offering a quotation from a discrete, finite set of potential offers, i.e. a quotation

menu, will result in a minimal expected loss of profit, compared to considering a continuous offering.

The decision variable in the OA&S model, zi, which takes a value of 1 if the firm chooses to offer a

quotation for order i, can be extended. We propose the extension of the variable to be zoi , to take

a value of 1 if quotation offer, o, is offered to incoming order, i, and 0 otherwise. The offer o is

selected from quotation menu, o ∈ O.
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We must also characterize customer reactions to quotations through the use of a customer

value function. Easton and Moodie [49], use Berkson’s S-shaped binary choice logit model [22], and

recommend the estimation of parameters using historical records. Other customer value functions

have been used in the literature. We provide a short review and discussion the value functions

found in the literature in Appendix G. The estimation of the customer probability acceptance of a

quote can be used to create a profit function for a given incoming job, which can then be used in

the formulation framework we have presented in this chapter.
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APPENDIX G

CUSTOMER VALUE FUNCTIONS IN REVENUE MANAGEMENT

In recent decades, the development of the Internet and information technologies along with

intensified global competition and higher customer expectations have put manufacturers and service

providers under increasing external pressures. Customers expect lower prices, shorter lead times

and reliable delivery dates, while sellers prefer to quote a higher price and longer delivery times

[72]. Companies that operate as direct sellers to their customers typically receive enquiries from

their customers with limited information on their preferences regarding aspects such as the desired

product, order size, price and lead time. In order to gain these orders, the firm must respond

by preparing a quotation bid, including the terms they are willing to offer. Customers, likely to

have requested quotes from several firms, will commit to a purchase with the firm that offers the

most attractive combination of price, lead time and quality [50]. It is important that firms do

not promise overly optimistic prices or lead times as this will result in excess demand and lead

to production congestion which will increase the risk of facing tardiness penalties. On the other

hand, if the firm quotes to cautiously, with longer lead times and higher prices, the customer will

select a competitors offer. For that reason, proposal bids should be prepared in such a way as

to increase the likelihood of customer acceptance while remaining attainable and profitable [167].

The aim of this exercise is to review the literature pertaining to the methods in which these selling

firms generate optimal proposals, specifically when simultaneously quoting price and lead times.

Focus will be dedicated to understanding how customer preferences are modeled as well as how the

influences of uncertainty in the form of contingent demand plays a role in these decisions.

For years, product and service prices were rarely adjusted, mainly because of the high costs

and extensive manual efforts required to do so. However, the rise of information technologies and

data sciences have drastically transformed the capabilities of firms to make these adjustments [62].

Sellers are now able to implement automated pricing mechanisms that take into account customer

behaviors based on historical transactions. Prior to this, research in the field of joint pricing and
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lead time quoting was limited to static cases [26]. In these problems, an optimal price and lead time

was solved to satisfy steady-state queuing systems where the objective was to maximize average

expected profits, given some processing capability. This optimal price and lead time would be used

for every customer, regardless of their preferences and lead to sub-optimal utility for both customers

and suppliers [200]. Typically, in these problems customers were assumed to be homogeneous and

the demand faced by the firm was modeled either as a linear function price and lead time [141, 70],

or as a threshold function where a customer would place an order only if the price was less than

some value [3, 170]. Solution methods in these models typically could be described as a closed-form

solution [101]. In terms of application, these formulations tend to be limited to production settings

which invoke fixed sequencing rules such as EDD or FCFS [129, 188].

In recent years however, research has been dedicated to the formulation of dynamic quoting

algorithms where each customer would receive a unique quote. This follows literature and industry

trends of implementing revenue management principles in these type of direct seller environments.

Broadly speaking, revenue management has been described as the science involving sophisticated

information technology systems leveraging historical data and current congestion that enables firms

facing the constraints of fixed perishable capacity the ability to identify optimal policies and make

decisions with the objective of maximizing profits over some time horizon [38, 42]. In other words,

revenue management has been described as “selling the right product to the right customer at the

right time at the right place at the right price” [26]. During the quotation process, the objective

of the offering firm is to provide the arriving customer a combination of price, lead time, etc.

that maximizes its expected return. Generally, the expected return that a firm stands to gain

is composed of the sum of the revenue gained from successful bids minus the variable cost of

production and any penalties associated with the early or tardy completion of those orders. As the

performance of the firm is dependent on its existing commitments, the joint price and lead-time

quotation problem of new jobs is typically solved in conjunction with the scheduling or sequencing

problem of the existing jobs [50, 134, 106]. This problem, when considering scheduling decisions

is also referred to as the simultaneous pricing, due-date setting and scheduling problem (SPDSP).

Due to the NP-hardness of the scheduling problem alone, it is common for scheduling decision

in this problem to be determined through the selection of some sequencing rule such as EDD or

SWPT policies [105, 187].
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One of the major modeling dimensions which determines the solutions in each model is the

choice of modeling customer decisions. Specifically, in order to develop a reliable decision-making

model, there must be a method to describe the behavior of the customer. For example, these

customer behaviors could describe the likelihood that a customer will accept a proposal offered by

the firm, or could describe the negotiation tactics of the customer. Regarding the likelihood that a

customer will accept a proposal, behaviors can be modeled as either deterministic or probabilistic

functions. An example of a deterministic customer behavior could be where a customer will accept

a bid with a probability of 1 if the price (or lead time) is below some threshold value [170]. If

the offered price if above that threshold then the customer would reject the offer. This threshold

parameter could be a shared threshold among all customer agents in the model or could be unique

for each customer class [87] or unique value for each customer [10]. Probabilistic behaviors are

much more common in the literature, as this represents a more realistic representation of the firms

understanding of customer behaviors. The customer behavior, in these cases, can be modeled as

a utility function where the probability that a customer accepts an offer for the firm is a function

of the offered price/lead time. Several types of functions are used to describe different customer

preferences and their sensitivity to discrepancies between those preferences and the firms’ offer.

The most commonly used of these is to model demand as a linear combination of price and lead

time [3, 88, 105], such as shown below:

P (p, l) = 1 − α ∗ p − β ∗ l Where p,l represent the offered price and lead time, α, β represent

sensitivity parameters for price and lead-time, respectively, of the customer, and P(p,l) represents

the probability the customer will accept the offer. In the equation above, the probability of customer

acceptance is linearly decreasing in both price and lead time. Using this formulation, it is possible

to describe a customer as price-sensitive if: α > β And time-sensitive otherwise. The values of these

parameters can be established through historical data, or with knowledge regarding the customers

preferences. Further, it is possible to establish different customer classes in the system through

modification of these sensitivity parameters.

Aside from threshold and linear descriptions of customer behaviors, more complex, non-linear

functions have been implemented to reflect more realistic customer behaviors. For example, the use

of convex [56], concave [68, 195, 8], or convex-concave [50, 7, 125, 35] (also referred to as an S-logit

curve) probability functions can be used to describe the sensitivities of customers to price, lead-time
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or both. To explain the impact of these function curves, consider a time-sensitive customer, with

no preference on price. This assumption reduces the probability of acceptance calculation to be a

function of a single input, i.e. P(l). In this case, the following function shapes of this customer’s

behavior would have the following implications:

• Convex curve – the customer has a preferred delivery date at which if offered they will accept

with probability 1. As the quoted LT increases, the customer at first is relatively insensitive,

to incremental increase, aka will not affect their probability of acceptance much, but becomes

more sensitive as the LT continues to rise

• Concave curve – the customer has a preferred delivery date at which if offered will accept with

probability 1. As the quoted LT increases above that preferred delivery date, the customer

is highly sensitive to incremental increases in, but becomes less and less sensitive as the LT

continues to rise

• Convex-concave curve – the customer has a preferred LT at which if offered will accept with

probability 1. As the quoted LT increases above that preferred LT, the customer at first is

relatively insensitive to incremental increases in LT, but becomes more sensitive as the LT

continues to rise. As the LT continues to increase, the customer becomes less sensitive to

those incremental increases

This example was simplified to only consider the probability of acceptance as a function of

quoted lead time, but this is also applicable for lead time sensitive and price-and-lead time sensi-

tive customers. The example below shows what a function for the convex-concave probability of

acceptance curve of a price-and-time sensitive customer could look like, where each β parameter

describes the customers sensitivity to varying inputs [50]: P (p, l) = [1 + β0 exp (β1 ∗ p− β2 ∗ l)]−1

Similar to how the threshold and linear approximations of customer behaviors depend on param-

eterization, the curved representations of customer behaviors can be leveraged to describe unique

customer classes, as shown in [57]. Under these assumptions, customers which are considered risk-

averse could be modeled using a concave utility curve, risk-insensitive as linear utility curve and

risk-seeking as convex utility curve. Other non-linear customer utility functions include log-linear

[36], and exponential functions [18]. Further, discrete probabilities for any quote can be established
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using any customer utility function [106]. There are many examples of explicitly defining differences

between customer classes in literature. Some examples include: patient vs impatient customers [7],

price-sensitive vs lead time sensitive [53, 125, 187], guaranteed delivery-date vs best effort delivery

date [123] as well as distinctions between customer channels such as online customers vs in-store

customers [80], etc. Within each of these groupings individual customers can be modeled to have

unique or identical utility functions.

Aside from describing customer behaviors, the matter of how the quoting process is modeled

is critical. Some distinctions include offering the customer a single take-it-or-leave-it quote [52]

compared to offering a quote menu to the customer consisting of multiple price-lead time pairs

which the customer can choose from [7, 38]. Offering a quote menu has the advantage of pandering

to multiple customer classes when the customers utility function is unknown [123]. Several streams

of research also explore the benefits of delaying the quotation response compared to responding

immediately [87]. The reasoning being that during the delay between customer enquiry and quo-

tation delivery, better potential customers may enter the queue. Liu et. al. [105] compare the

performance of a firm who must quote several arriving customers. The firm can either quote all

of the customer enquiries simultaneously or sequentially. In the simultaneous case, the firm would

quote all new jobs at the same time. Comparatively, in the sequential case, the firm would quote

each job in the pool awaiting quotes one at a time, where the result of each quote would be known

before quoting the next. In this problem, the objective was to maximize the expected contribution

of all the new jobs. The case of sequential quoting led to less uncertainty and therefore an optimal

performance [105].

In practice, it is common for customers and suppliers to negotiate during the demand generation

process. Rather than just accepting or rejecting a firm quoted offer, the customer can provide a

counter-offer at which point the firm can reassess and requote the customer. This negotiation

process has been modeled and solved in several different methods including using game theory

models such as Nash equilibrium or Stackleberg games [195], through simulation-based optimization

[130, 18] or closed-form optimization [170]. The optimization problems tend to focus on identifying

an optimal quote as the point at which the distance between the customer’s utility function and

the firm’s utility function are at a minimum. Pan et. al. [130] explore a case of an intra-supply

chain interaction between an upstream supplier and downstream customer. In this scenario, it
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is of the best interest of both parties to identify an agreement that is mutually optimal. In a

typical customer-supplier relationship, successful negotiation is also beneficial for both parties, and

from the perspective of the firm could result in additional future demand in the form of a repeat

customer.

It is important to consider however, that in practice, this negotiation process can take weeks, and

often times can result in an unsuccessful bid. During this period of uncertainty, the potential project

is considered as a contingent demand [50], and is a source of uncertainty that must be accounted

for when quoting arriving customers. The literature on the joint price and lead time quotation

problem while considering contingent demand is relatively adolescent, as few papers explore this

problem setting. Easton and Moodie [50] are recognized as the first attempt to consider contingent

demand in the pricing and lead time quotation of new customers in a direct seller environment.

However, their model as well as many that follow it [187, 104] do not attempt to solve the problem

in a practical generalized form. Instead they either implement scheduling heuristics such as EDD or

FCFS to reduce the complexity of the problem, model simple single-machine processing environment

or simply acknowledge that the problem is too complex to solve in medium-large settings [167].

G.1 Discussion

In order to develop a practical SPDSP model which considers a more generalized production

setting while providing quality solutions in reasonable time, several challenges must be addressed.

Firstly, in the joint price and lead-time quotation problem which considers contingent demand,

the firm faces an exponentially growing number of possible scheduling scenarios, with respect to

the number of existing contingent jobs at the time of quoting. While it is feasible to consider

all of these scenarios when the number of contingent jobs is low, the problem quickly becomes

too complex to solve in reasonable time. Essentially in order to optimally develop a new joint

quotation for an arriving customer, all of these scheduling scenarios would need to be considered.

However, as it is infeasible to solve this problem in reasonable time, methods or heuristics need to

be implemented to reduce the number of scenarios that will be used to make quotation decisions,

while remaining robust. Easton and Moodie [50] have shown that if the probability of each of

the customer accepting their offered quotation can be estimated, then the likelihood that any one

of these scheduling scenarios to be realized can be calculated. Further, our research indicates

232



that a majority of these possible scenarios are highly unlikely, assuming that at least some of the

contingent jobs’ probability of acceptance skew towards either being accepted or rejected.

Another method to reduce the complexity of the joint quoting problem would be to simplify the

underlying scheduling problem which dictates the outcome of each scenario. This method had been

implemented by Easton and Moodie [50] by assuming a FCFS sequencing policy as well as others

who solve similar problems [187]. The current scheduling model used in my research has been a

discrete-time mixed-integer linear programming assignment problem, where many attributes of the

problem are parameterized before-hand. In this scheduling model, each job in each realization is

assigned to be completed by one of several unrelated parallel machines. However, the granularity

of the scheduling model may not be necessary considering the granularity of joint quotations in

practice are made on a weekly scope. For example, typical lead time quotations would be made as

an estimation of weeks, rather than an exact time. For this reason, it may be possible to evaluate

each tested scenario through a different problem. Albana et. al. [3] evaluated current backlogs

through a bin-packing problem where the size of the bins was dependent on the capacity available

and the jobs were assigned within weekly buckets. In this sense, a new job could be quoted a price

and lead time by finding which of these weekly buckets to add the new job to. It is unclear whether

this application would greatly reduce the processing time required when considering contingent

backlogs, but by reducing the granularity of decision-making it may result in a scheduling policy

that is less sensitive to changes in the backlog across realizations.

Aside from the challenge of complexity reduction, the other main challenge in developing the

SPDSP model will be in the form of clearly defining the problem at hand. This includes explicitly

defining customer classes as well as the behaviors of each of the customer, in the form of utility

functions. To be able to optimize quoting decisions, these customers behaviors and preferences must

be determined. This will include decisions such as what utility function structure to implement,

whether it be a linear, S-logit, discretized, etc. function. Continuing with the concept of reducing

the granularity of decision-making, it may be beneficial to implement a discretized probability of

acceptance function where each pair of price and lead-time would have an expected probability of

acceptance for each customer. This would allow for a reduction in the decision space, as the decision

would be among a single quote within a quote menu rather than optimizing across a continuous

space. While the solution will likely not be globally optimal, the solutions will be at the scope of
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practice. For example, when the firm quotes lead times on the scale of weeks, there is no practical

difference solving for an optimal customer reaction to a lead time in the scale of hours, say the

difference between quoting a lead time 6.2 weeks and 6.3 weeks. By reducing this decision space, the

complexity of determining the expected associated marginal costs of this potential job is reduced,

as less forward-looking scenarios need to be solved for.

In terms of defining customer classes, some possible options include time- vs price- vs price-

and-time-sensitive customers, as well as risk-averse vs -neutral vs -tolerant behaviors within those

aforementioned classes. Another aspect of customer definition which needs to be determined is

whether the firm will have perfect information on customer preferences, say their desired lead-

time and price or how sensitive they are to discrepancies from these preferences. Aside from

determining customer classes and customer behaviors, a quoting process must also be explicitly

defined. Aspects such as determining whether customers should be offered a single quote or a

quote menu and whether the firm should offer a quote to the customer immediately or to delay

their response will depend on the definition of the customers in the model. For example, if perfect

information on customer preferences is known, it would be beneficial to offer a single quote, however

if it is unclear, offering a quote menu may be beneficial. This will be an area of focus in this

research. Other considerations such as customer response times, i.e. the period of time which the

job remains contingent, and whether negotiations should be included will also need to be decided.

Sujan [167] defines a methodology for negotiating quotes with customers subject to contingent

demand. A major contribution of this work was Sujan’s S-logit model of customer’s behavior

during negotiations and the probability that a customer would accept a firm’s follow up quotation,

given the customers counter-offer. As a continuation, terms such as how many and how long each

negotiation period lasts are needed in order to be implemented.

G.2 Conclusion

In recent years, the problem of joint price and lead time quotation has been an increasing focus

following industry trends of the rise of make-to-order manufacturers, service providers and direct

selling firms. Prior to this, much of the literature in this stream had been focused considering a

homogeneous customer group and a seller determining an optimal uniform price and lead-time to

offer all of their customers. The demand the firm faces would be found as a function of that price
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and lead time. However, the typical problem setting now has adapted to determine a dynamic

optimal quote for each arriving customer considering the firms current backlog. Critical aspects in

developing these models include defining customer utility functions, the firm’s objective and asso-

ciated costs and constraints they are liable to. Customer behaviors are most commonly portrayed

by either a linear or convex-concave function which describes the probability that customer will

accept a firm offer, given that customers preferences and an input price and lead-time. Others

have expanded this utility function to include other considerations such as competitive firms [59],

product quality [187], rebate values for late deliveries [1], etc. The firm decides what price and

lead-time to offer the customer such that either: its expected revenue across its entire backlog

is maximized or the expected marginal contribution of the current arriving customer/s are maxi-

mized. This revenue is measures as a sum of the incoming revenue minus operating costs such as for

capacity installation [141, 8], expediting/outsourcing [38], or holding and tardiness penalties [100].

Due to the integrated nature of demand generation and production, these joint quotation problems

typically consider other decision-making problems such as scheduling [167], procurement [35] and

order acceptance/rejection decisions [18]. Other decision-making models have also incorporated

negotiation sub-models to depict realistic interactions between suppliers and customers [130, 195],

while others consider the trade-offs between offering a single price-lead time quote or multiple pairs

as a quote menu [123], as well as exploring whether it is optimal to respond to customer enquiries

immediately or to delay the response to wait for other potential customers [87]. Major limitations

in this stream of research include the inability to optimally solve for medium-large sized problem

sets due to the complexity of the problem as well as implementing an abundance of assumptions

which restrict the practical capabilities of their models. Future work in this field include expanding

the use-cases of these models to more practical settings.
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[1] Afèche, Philipp, Baron, Opher, and Kerner, Yoav. Pricing time-sensitive services based on

realized performance. Manufacturing & Service Operations Management 15, 3 (2013), 492–

506.

[2] Afzalirad, Mojtaba, and Rezaeian, Javad. A realistic variant of bi-objective unrelated parallel

machine scheduling problem: Nsga-ii and moaco approaches. Applied Soft Computing 50

(2017), 109–123.

[3] Albana, Abduh Sayid, Frein, Yannick, and Hammami, Ramzi. Effect of a lead time-dependent

cost on lead time quotation, pricing, and capacity decisions in a stochastic make-to-order

system with endogenous demand. International Journal of Production Economics 203 (2018),

83–95.

[4] Almeder, Christian. A hybrid optimization approach for multi-level capacitated lot-sizing

problems. European Journal of Operational Research 200, 2 (2010), 599–606.

[5] Almeder, Christian, Klabjan, Diego, Traxler, Renate, and Almada-Lobo, Bernardo. Lead

time considerations for the multi-level capacitated lot-sizing problem. European Journal of

Operational Research 241, 3 (2015), 727–738.

[6] Artigues, Christian, Billaut, Jean-Charles, and Esswein, Carl. Maximization of solution

flexibility for robust shop scheduling. European Journal of Operational Research 165, 2 (2005),

314–328.

[7] Ata, B, and Olsen, Tava Lennon. Congestion-based leadtime quotation and pricing for revenue

maximization with heterogeneous customers. Tech. rep., Citeseer, 2008.
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[84] Kasperski, Adam, Kurpisz, Adam, and Zieliński, Pawe l. Parallel machine scheduling under

uncertainty. In International Conference on Information Processing and Management of

Uncertainty in Knowledge-Based Systems (2012), Springer, pp. 74–83.
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[146] Ruiz, Ruben, Şerifoğlu, Funda Sivrikaya, and Urlings, Thijs. Modeling realistic hybrid flexible

flowshop scheduling problems. Computers & Operations Research 35, 4 (2008), 1151–1175.

[147] Ruiz, Rubén, and Vázquez-Rodŕıguez, José Antonio. The hybrid flow shop scheduling prob-

lem. European journal of operational research 205, 1 (2010), 1–18.

[148] Sabuncuoglu, Ihsan, and Goren, Selcuk. Hedging production schedules against uncertainty in

manufacturing environment with a review of robustness and stability research. International

Journal of Computer Integrated Manufacturing 22, 2 (2009), 138–157.

[149] Sabuncuoglu, Ihsan, and Karabuk, Suleyman. Rescheduling frequency in an fms with un-

certain processing times and unreliable machines. Journal of Manufacturing Systems 18, 4

(1999), 268–283.

250
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