5,578 research outputs found

    An Improved Variable Structure Adaptive Filter Design and Analysis for Acoustic Echo Cancellation

    Get PDF
    In this research an advance variable structure adaptive Multiple Sub-Filters (MSF) based algorithm for single channel Acoustic Echo Cancellation (AEC) is proposed and analyzed. This work suggests a new and improved direction to find the optimum tap-length of adaptive filter employed for AEC. The structure adaptation, supported by a tap-length based weight update approach helps the designed echo canceller to maintain a trade-off between the Mean Square Error (MSE) and time taken to attain the steady state MSE. The work done in this paper focuses on replacing the fixed length sub-filters in existing MSF based AEC algorithms which brings refinements in terms of convergence, steady state error and tracking over the single long filter, different error and common error algorithms. A dynamic structure selective coefficient update approach to reduce the structural and computational cost of adaptive design is discussed in context with the proposed algorithm. Simulated results reveal a comparative performance analysis over proposed variable structure multiple sub-filters designs and existing fixed tap-length sub-filters based acoustic echo cancellers

    Discrete-time variance tracking with application to speech processing

    Get PDF
    Two new discrete-time algorithms are presented for tracking variance and reciprocal variance. The closed loop nature of the solutions to these problems makes this approach highly accurate and can be used recursively in real time. Since the Least-Mean Squares (LMS) method of parameter estimation requires an estimate of variance to compute the step size, this technique is well suited to applications such as speech processing and adaptive filtering

    Linear MMSE-Optimal Turbo Equalization Using Context Trees

    Get PDF
    Formulations of the turbo equalization approach to iterative equalization and decoding vary greatly when channel knowledge is either partially or completely unknown. Maximum aposteriori probability (MAP) and minimum mean square error (MMSE) approaches leverage channel knowledge to make explicit use of soft information (priors over the transmitted data bits) in a manner that is distinctly nonlinear, appearing either in a trellis formulation (MAP) or inside an inverted matrix (MMSE). To date, nearly all adaptive turbo equalization methods either estimate the channel or use a direct adaptation equalizer in which estimates of the transmitted data are formed from an expressly linear function of the received data and soft information, with this latter formulation being most common. We study a class of direct adaptation turbo equalizers that are both adaptive and nonlinear functions of the soft information from the decoder. We introduce piecewise linear models based on context trees that can adaptively approximate the nonlinear dependence of the equalizer on the soft information such that it can choose both the partition regions as well as the locally linear equalizer coefficients in each region independently, with computational complexity that remains of the order of a traditional direct adaptive linear equalizer. This approach is guaranteed to asymptotically achieve the performance of the best piecewise linear equalizer and we quantify the MSE performance of the resulting algorithm and the convergence of its MSE to that of the linear minimum MSE estimator as the depth of the context tree and the data length increase.Comment: Submitted to the IEEE Transactions on Signal Processin

    A genetic algorithm-assisted semi-adaptive MMSE multi-user detection for MC-CDMA mobile communication systems

    Get PDF
    In this work, a novel Minimum-Mean Squared-Error (MMSE) multi-user detector is proposed for MC-CDMA transmission systems working over mobile radio channels characterized by time-varying multipath fading. The proposed MUD algorithm is based on a Genetic Algorithm (GA)-assisted per-carrier MMSE criterion. The GA block works in two successive steps: a training-aided step aimed at computing the optimal receiver weights using a very short training sequence, and a decision-directed step aimed at dynamically updating the weights vector during a channel coherence period. Numerical results evidenced BER performances almost coincident with ones yielded by ideal MMSE-MUD based on the perfect knowledge of channel impulse response. The proposed GA-assisted MMSE-MUD clearly outperforms state-of-the-art adaptive MMSE receivers based on deterministic gradient algorithms, especially for high number of transmitting users

    Time-varying signal processing using multi-wavelet basis functions and a modified block least mean square algorithm

    Get PDF
    This paper introduces a novel parametric modeling and identification method for linear time-varying systems using a modified block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be used to track rapidly or even sharply varying processes and is more suitable for recursive estimation of process parameters by combining wavelet approximation theory with a modified block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstatinoary processes

    Stochastic analysis of an error power ratio scheme applied to the affine combination of two LMS adaptive filters

    Get PDF
    The affine combination of two adaptive filters that simultaneously adapt on the same inputs has been actively investigated. In these structures, the filter outputs are linearly combined to yield a performance that is better than that of either filter. Various decision rules can be used to determine the time-varying parameter for combining the filter outputs. A recently proposed scheme based on the ratio of error powers of the two filters has been shown by simulation to achieve nearly optimum performance. The purpose of this paper is to present a first analysis of the statistical behavior of this error power scheme for white Gaussian inputs. Expressions are derived for the mean behavior of the combination parameter and for the adaptive weight mean-square deviation. Monte Carlo simulations show good to excellent agreement with the theoretical predictions

    Proximal Multitask Learning over Networks with Sparsity-inducing Coregularization

    Full text link
    In this work, we consider multitask learning problems where clusters of nodes are interested in estimating their own parameter vector. Cooperation among clusters is beneficial when the optimal models of adjacent clusters have a good number of similar entries. We propose a fully distributed algorithm for solving this problem. The approach relies on minimizing a global mean-square error criterion regularized by non-differentiable terms to promote cooperation among neighboring clusters. A general diffusion forward-backward splitting strategy is introduced. Then, it is specialized to the case of sparsity promoting regularizers. A closed-form expression for the proximal operator of a weighted sum of 1\ell_1-norms is derived to achieve higher efficiency. We also provide conditions on the step-sizes that ensure convergence of the algorithm in the mean and mean-square error sense. Simulations are conducted to illustrate the effectiveness of the strategy

    Dynamic Topology Adaptation Based on Adaptive Link Selection Algorithms for Distributed Estimation

    Full text link
    This paper presents adaptive link selection algorithms for distributed estimation and considers their application to wireless sensor networks and smart grids. In particular, exhaustive search--based least--mean--squares(LMS)/recursive least squares(RLS) link selection algorithms and sparsity--inspired LMS/RLS link selection algorithms that can exploit the topology of networks with poor--quality links are considered. The proposed link selection algorithms are then analyzed in terms of their stability, steady--state and tracking performance, and computational complexity. In comparison with existing centralized or distributed estimation strategies, key features of the proposed algorithms are: 1) more accurate estimates and faster convergence speed can be obtained; and 2) the network is equipped with the ability of link selection that can circumvent link failures and improve the estimation performance. The performance of the proposed algorithms for distributed estimation is illustrated via simulations in applications of wireless sensor networks and smart grids.Comment: 14 figure
    corecore