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Abstract 
Two new discrete-time algorithms are presented for tracking variance and reciprocal variance. The closed 
loop nature of the solutions to these problems makes this approach highly accurate and can be used 
recursively in real time. Since the Least-Mean Squares (LMS) method of parameter estimation requires an 
estimate of variance to compute the step size, this technique is well suited to applications such as speech 
processing and adaptive filtering.  
 
1.Introduction 
The algorithms in this paper can be applied to any problem where variance of a stochastic process is 
required to be accurately tracked with time. There are numerous such applications and this paper 
considers one such application related to speech and adaptive signal processing. At the heart of many 
adaptive algorithms is the least-mean squared (LMS) algorithm which is used for parameter (weight) 
estimation. The LMS algorithm can be applied to a number of specific problems but here (without losing 
generality) the identification of an unknown system driven by white noise is considered.  For convenience 
a system represented as a finite impulse response (FIR) filter of order n is chosen. Consider the block 
diagram shown in Figure 1 where the unknown system is to be identified by adapting the weight vector 
Wk to minimise the variance of the error ke . 

     
    Figure 1. Identification using LMS 
The input sequence {uk} is assumed to be zero-mean white Gaussian with variance 2

uσ . The ordinary 
LMS algorithm can be written as [1] 
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where the weight vector Wk = [wo w1 . . . wn]T and Uk is the vector of regressors (or tap vector) given by 
Uk = [uk uk - 1 uk - 2 . . . uk - n]T, n is the system order with n + 1 weights.  The sequence sk is the output of 
the system to be identified and can be written as *

k
T
kk WUs = ..  Here  *

kW represents the vector of (n + 
1) system parameters (or optimal weight vector at time k). In theory, the condition for convergence in the 
mean square of the LMS algorithm  [2] is that the step size 
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From which results in *
kk WW → . The well known condition which involves the reciprocal of the 

largest eigen-value of the correlation matrix (convergence in the mean of the weight vector) is also 
automatically satisfied by (3).  
 
2. Non Stationary signals 
When {uk} is no longer white or stationary, equation (3) must be computed for the largest variance of 

2
uσ and some factor of safety must be provided to avoid instability in the LMS algorithm. For example, if 

the step size µ  is overestimated then the LMS algorithm can become unstable but if it is underestimated 
then the convergence of the algorithm will be slow. Because of this, usually for non-stationary problems 
an attenuating factor for equation (3) has often been proposed. For example Feuer& Weinstein [3] show 
using statistical arguments that  µ  should be chosen to be one third of the commonly quoted maximum 
whilst  Horowitz  & Senne, [4] give the value as one sixth. To overcome this problem the variance is 
often computed and the step size varied with time. The variance can be computed at the Nth iteration 
either in a batch computation as in 
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or as the recursive equivalent of (4)  as given by Young [5]  
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For stationary signals the recursive variance estimator in (5) above converges asymtotically  as 
∞→N . However, if the signal is non-stationary then (5) is required to track the variance with time. 

When N becomes large, equation (5) pays little attention to new data and does not track well. It is usual in 
the literature to use some form of exponential weighting of past data to track the variance. This facilitates 
the use of an exponential  ‘forgetting factor’. It is often proposed to use simple autoregressive estimators 
[6 ]  
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where 0< λλλλ <1 is the forgetting factor which controls the bandwidth and hence the time constant of the 
first order recursive digital filter of (6) above. For a typical speech signal, using λλλλ =0.95 can be made to 
work although the estimate is not very smooth. Increasing λλλλ  gives smoother estimates at the expense of 
worse tracking. The implicit approach in [7] uses a  forgetting factor approach  similar to the above. 
Whilst methods like these can be made to work for certain applications, they are generally of an ad-hoc 
nature and are a compromise between smoothness of the estimate and tracking ability. The approach used 
here can be used for accurate tracking of variance or to accurately define the variance of a signal with a 
pre-defined  set-point. The philosophy is similar to that used in radio receivers where a low bandwidth 
non-linear AGC boosts the radio frequency signal to a useful power for later amplification and detection. 
Hence this approach is proposed as a front end to adaptive algorithms rather than an implicit change to 
the LMS algorithm itself, such as has been  proposed by [7] An automatic gain control strategy has been 
proposed in [8] which improves the performance of an LMS adaptive filter but it too uses forgetting 
factors and is highly non-linear. 
 
 
 
3. Automatic Variance Control and Estimation Loops 
The automatic variance control (AVC) described here is essentially a form of AGC calibrated to variance 
rather than amplitude. Whilst it would seem obvious that an AGC may well suffice, it should be recalled 
that AGCs are largely non-linear and would not result in accurate tracking. With a few exceptions, AGCs 
do not include a pure integrator, instead relying on a simple low pass filter and several stages of amplifier 
gain. AGCs use voltage-controlled amplifiers instead of the linear multiplier used here and use some form 
of absolute value (diode rectification) instead of a pure squarer.  The AVC is entirely linear with 
theoretically zero steady-state error to a step change in variance [9] and works down to white noise levels. 
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3.1 Automatic Variance Controller 
The block diagram of the continuous-time AVC is shown in Figure 2. It consists of a pure squarer, a 
linear multiplier, a summing junction (with set-point) and an integrator.  
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    Figure 2. Automatic Variance Control  
 
The operation of the circuit is essentially as follows. The measured input signal )(tf i is assumed to be dc 
free, but  this is not a general restriction. This signal is multiplied by the integrator output y(t) which for a 
stationary or periodic input signal will be constant (in steady-state) and for non-stationary inputs will be 
time-varying. The multiplier output is the output signal with the pre-defined variance defined by a set-
point v(t)>0. Should the input signal power change, the input to the squarer will also change momentarily 
and this is in turn fed into the squarer. When a signal is squared it produces a dc term plus higher 
harmonics. The higher harmonics are filtered by the integrator and any change in dc from the squarer 
output produces either a larger or smaller error from the summing junction which is in turn integrated. 
The integrator will either ramp up or down to scale the input signal to a pre-defined amount defined by 
v(t). To provide suitable operation for variance rather than amplitude, a pure squarer rather than a 
modulus detector (normally used in AGCs) is used. It has been shown in [9] that the differential equation 
of the loop is given by 

21 ))()(()()( tytftv
dt
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For high gain K>>1 and  it can be shown from (7) that if the  integrator output y(t) is squared by a squarer 
outside the loop, then 
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 Hence for any non-zero signal present at )(tf i , and for unity set-point, the integrator output squared 

will converge to the reciprocal of the variance of )(tf i . In fact (8) above also holds for )(tf i  signals 

with a dc component  except it is the reciprocal of the average power of )(tf i  rather than the reciprocal 
of variance. It can also be shown [9]  that the multiplier output satisfies 
 

)()]([ tvtfE o =2      (9) 
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That is, the variance (or average power for signal with dc component) of the first multiplier output is 
controlled by the set-point.  
If the bandwidth of the loop is chosen to be high enough it is possible to track the reciprocal of power (or 
variance) accurately with time. Clearly this information can be used in the LMS algorithm as part of the 
computation of step size (equation (3)). It is interesting that in (8) the reciprocal power is estimated rather 
than the power itself. This is convenient for LMS applications in that the step size should be chosen  
inversely proportional to power as stated by equation (3). Similarly, the estimation of Kurtosis for a zero-
mean signal requires the reciprocal squared of variance [6]. 
 
3.2 Variance Estimation Loop 
In order for variance to be estimated rather than its reciprocal, the output of the first loop needs to be 
squared and fed into a second feedback control system. This second loop is a multiplier with high gain 
around it which acts ( for high gain within the bandwidth of the loop) as a divider algorithm. Similar 
approaches have been used for decades in analogue electronics using operational amplifiers. The second 
loop is shown in Figure 3 below for the continuous-time case. 
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    Figure 3 Analogue Variance tracking loop. 
 
In Figure 3, y(t) is fed from the integrator output shown in Figure 2 For such a system if high gain is used 
K>>1 and the error 02 →)(te . If the error approaches zero then 

    02 =− )()()( tztytv      (10) 
giving 
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which, when applying equation (8) becomes 
     )]([)( tfEtz i

2=     (12) 
which is the estimate of variance.  
 
 
4. Digital Variance Loops 
Figure 2 is shown in analogue form but for this application it needs to be converted to discrete –time. 
First consider a discrete-time version of Figure 2. where kk yv ,  are respectively the discrete 
representations of the set-point and  integrator output signals at sample instant k. This results in the 
following algorithm 
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4.1 Algorithm: Discrete Automatic Variance Control 
 
Error Signal: 

kkk uve −=       (13) 
Integrator Output: 

11 −− += kkk Keyy      (14) 
Multiplier Output: 
           
   

k
i
k

o
k yff =       (15)

  
Squarer Output: 

2)( o
kk fu =       (16) 

 
 
The discrete signals o

kf  and i
kf  above represent the sampled versions at sample instant k of the 

continuous time signals )(tfo  and )(tf i  respectively.  
This algorithm behaves in the same way as the analogue version in steady-state.That is, after squaring 
(outside of the loop) the integrator output (14) we have 
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which indicates that provided the set-point is unity, the integrator output squared tracks the reciprocal 
variance of the measured (sampled) input signal i

kf . Also, it can be shown that the signal from the  

multiplier output (equation 15) will have an average variance pre-defined by the set-point kv . For most 
applications the variance itself is required and the next loop is also necessary [9]. 
 
4.2 Algorithm: Discrete Variance Estimation Loop 
The discrete version of the Variance Tracking Loop of Figure 2 becomes 
Error Signal: 

kkk mvl −=       (18) 
Integrator Output: 

121 −− += kkk lKzz      (19) 
Multiplier Output: 
      
    2

kkk yzm =       (20) 

Where kk zl ,  are respectively the error signal and the integrator output in the discrete-time case. The 

signal 2
ky  is taken from the squared (external) integrator output of the first loop. Provided both loops 

remain stable, the above algorithms will result in 
    ])[( 2i

kk fEz =      (21) 
 
4.3 Biasing the Input Signal  
Aside from stability, which is discussed in 5, algorithm 4.1 may encounter numerical problems if the 
input signal i

kf  becomes small. This is because the integrator output squared is proportional to reciprocal 
variance (equation 17)  and hence will become large and divergent  as the input signal becomes small. In 
many cases the low-level background white noise is enough to prevent this problem but nevertheless it 
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has been encountered several times with a real-time implementation.  If variance is to be estimated 
instead of reciprocal variance then an offset can be added to the input signal to provide a signal input 
which is always suitably scaled to be non-zero. The input signal now becomes i

kc ff + . The 

corresponding squared integrator output of algorithm 4.1 will be 
])[( 22

2
i
kc

k
k fEf

vy
+

→   and when 

this is in turn fed into algorithm 4.2 we arrive at an overall variance estimate of ])[( 22 i
kck fEfz += . 

This represents dc power plus ac power. If the original bias squared (or dc power) is subtracted from this 
then the true variance is found. This biasing technique worked well in practice. However, if reciprocal 
variance is required (as with the LMS algorithm) then a further subsequent division is required. Note here 
that it is still assumed that the input signal is still assumed zero-mean even though it is biased. 
 
5 Stability of AVC Loops 
In the case of the analogue AVC loop it consists of a continuous time integrator with feedback consisting 
of a time-varying gain. Theoretically the analogue loop can never be unstable since an integrator with 
negative feedback is always stable. Of course in a real implementation there are other considerations such 
as the limitations of operational amplifiers which define the integrator and so on. Parasitic oscillations can 
occur if care is not taken with the analogue design. However, in its raw form the AVC is always stable in 
continuous time. For discrete time the stability is limited and can be derived as follows. 
 
5.1 Stability of Discrete Automatic Variance Control Loop 
To find the stability of algorithm 4.1. Substitute the error of equation (13) into the expression for the 
integrator output (14) giving 
    ][ 111 −−− −+= kkkk uvKyy     (22) 
After further substitutions of (15) and (16) into (22) we arrive at 
    1

2
1

2
11 −−−− +−= kk
i
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And we are required to find the upper bound on the gain K for constant set-point 1=kv  We consider 
three cases  
 
Case I  
Constant Input signal c

i
k ff = . The condition for static equilibrium is at steady state 

    
cc

k ff
yy 11 −===      (24) 

Write (23) above in the form 
    )( 1−= kk ygy       (25) 
and following the procedure in [10 ] determine 
    11 21 −− −= kck yKfyg )('     (26) 
Substituting (24) gives 
    Kyg 21−=)('      (27) 
and 
    Kyg 21+=)('      (28) 
 
For asymptotic stability we require 

    1<)(' yg       (29) 

which results in  
    11 <<− cKf       (30) 
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Case II 
Constant input plus small complex frequency perturbation nj

c
i

k eff θε+=  
Look for solutions of the form 

    )( 21 εεεεηηηηεεεε θθθθ ++= nj
n
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and            
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Substituting (31) and (32), (ignoring higher order terms) into (23) results in two new difference equation 
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The above two equations can be written in the form 
     )( 1−= kk zgz      (35) 
 
For  asmyptotic stability [10] 
 

11 <− )('
kzg      (36) 

which gives the range 
     11 <<− cKf      (37) 
 
which is the same result as a constant input in Case I above. For a sine wave )sin(θ its squared 

expansion is )]2cos(1[
2
1 θ+ . The )2sin( θ term can be neglected since it is a ripple term which is 

filtered attenuated by  the integrator. Hence 
2
12 ≈cf  and  

2
1≈cf  with (from 37)  the resulting 

bounds on stability as 22 <<− K . 
 
 
5.2 Stability of Discrete Variance Estimation Loop 
In a similar manner to the above the integrator output in algorithm 4.2 is 
    ][ 1

2
1121 −−−− −+= kkkkk zyvKzz    (38) 

The above time-variant difference equation can be written as 
    1211 −−− += kkkk vKzz ββββ     (39) 
where 
    2

121 1 −− −= kk yKββββ      (40) 

is a real time-varying scalar.Clearly for this scalar case the modulus of 1−kββββ  must be less than unity for 
all k giving 
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Taking expectations of (39) and using (17) we obtain the statistical result 
 

    
1

2
1

2
2

−

−<
k

i
k

v
fEK ])[(

     (42) 

Hence for unity set-point the upper bound on 2K  is 
       
    2

2 2 iK σσσσ<       (43) 
  
6. Illustrative Example  
To illustrate the new method consider a 4 second speech signal passed through an FIR system with 10 
constant and assumed unknown  weights as in Figure 1. Figure 3 shows the speech signal and the output 
of the variance estimator. For convenience, the squared output y(t) of the variance controller has been 
reciprocated using algorithm 4.2 to show actual variance. The LMS algorithm does not of course require 
this step but for a robust estimate avoiding numerical problems it is best to estimate variance using the 
biasing technique of section 4.3 above.  Figure 4 shows respectively the mean square errors of the LMS 
algorithm for the new method and for conventional LMS. For the new method, the step size (3) of the 
LMS algorithm is computed at each iteration based on a measure of variance reciprocal from the new 
algorithm whilst for conventional LMS a step size is used based on the maximum possible variance. 

 
Figure 3. Speech Signal and Variance Estimate 
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Figure 4. Comparison of Mean Squared Errors (MSE) for fixed and variable step sizes. 

It can be seen from Figure 4 that by updating the LMS algorithm at each iteration the rate of convergence 
of the LMS algorithm is dramatically improved and this gives rise to a smaller mean-square weight error. 
Note also the smoothness of the variance estimate in Figure 3. 
 
6.Conclusion 
Two new discrete-time algorithms for accurately tracking both the reciprocal of variance versus time and 
variance versus time have been described. The first of these algorithms also has also the property that the 
variance of a time-varying input signal can be finely controlled by a set-point.  When used in tandem with 
the LMS algorithm the mean- square error of the LMS algorithm can be significantly reduced. Whilst it is 
not claimed that the method of updating the LMS step size at each iteration is in any way novel, the 
application of these new variance estimation techniques has not been pursued elsewhere. The variance 
estimators will track step changes in variance with zero steady-state error. For signals whose variance 
varies in the form of a ramp or higher-order polynomial form, these algorithms will give a finite, but 
small steady-state error. To overcome this difficulty a second integrator with appropriate phase-lead 
stabilisation could be added to algorithm 4.1 at the expense of greater stability problems. The algorithms 
can be applied to any application where the signal is directly measureable and are simple to implement A 
further development of the algorithms would be to change them so as to estimate higher moments such as 
Kurtosis [6]. 
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