Formulations of the turbo equalization approach to iterative equalization and
decoding vary greatly when channel knowledge is either partially or completely
unknown. Maximum aposteriori probability (MAP) and minimum mean square error
(MMSE) approaches leverage channel knowledge to make explicit use of soft
information (priors over the transmitted data bits) in a manner that is
distinctly nonlinear, appearing either in a trellis formulation (MAP) or inside
an inverted matrix (MMSE). To date, nearly all adaptive turbo equalization
methods either estimate the channel or use a direct adaptation equalizer in
which estimates of the transmitted data are formed from an expressly linear
function of the received data and soft information, with this latter
formulation being most common. We study a class of direct adaptation turbo
equalizers that are both adaptive and nonlinear functions of the soft
information from the decoder. We introduce piecewise linear models based on
context trees that can adaptively approximate the nonlinear dependence of the
equalizer on the soft information such that it can choose both the partition
regions as well as the locally linear equalizer coefficients in each region
independently, with computational complexity that remains of the order of a
traditional direct adaptive linear equalizer. This approach is guaranteed to
asymptotically achieve the performance of the best piecewise linear equalizer
and we quantify the MSE performance of the resulting algorithm and the
convergence of its MSE to that of the linear minimum MSE estimator as the depth
of the context tree and the data length increase.Comment: Submitted to the IEEE Transactions on Signal Processin