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Abstract: This paper introduces a novel parametric modeling and identification method for linear time-varying systems 

using a modified block least mean square (LMS) approach where the time-varying parameters are approximated using 

multi-wavelet basis functions. This approach can be used to track rapidly or even sharply varying processes and is more 

suitable for recursive estimation of process parameters by combining wavelet approximation theory with a modified block 

LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with 

severely nonstatinoary processes. 

 

Keywords: Time variation, Parameter estimation, System identification, B-spline basis function, 

normalized least mean square (NLMS), modified block least mean square (MBLMS). 

 

1. Introduction 

Many processes, for example, biomedical signals are inherently time-varying and can not effectively 

be modeled using time invariant models. Modelling and analysis of time-varying systems is often a 

challenging problem. Many physical systems exhibit some degree of nonstationary behavior. Over some 

sufficiently short time intervals most of the processes can be satisfactorily approximated by linear time 

invariant models, but over a longer time interval these processes need to be modeled and analyzed by 

time-dependent approaches.  

One feature of time-varying signals is that such signals contain nonstationary transient events. One 

approach to characteristic such nonstationary processes is to employ time-varying parametric models for 

example the time-varying autoregressive eXogenous (TVARX) model, or simply the time-varying AR 

(TVAR) model. There are two main classes of methods for solving the TVARX or TVAR modelling 

problems. The first is to use recursive estimation of the time-varying coefficients, and the second is to 

constrain the evolution of the coefficient to be linear or nonlinear combinations of some basis functions 

with appropriate properties. These approaches have been called stochastic and deterministic regression 

approaches, respectively (Kokangul, 2008). The stochastic approach is widely applied in biomedical signal
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analysis. The most popular algorithms are the least mean square algorithm, the recursive least squares 

algorithm, the Kalman filter and Random Walk Kalman Filter (RWKF) algorithm (Fahmida, 2000). The 

basis function expansion and regression method is a deterministic parametric modelling approach, where 

the associated time-varying coefficients are expanded as a finite sequence of pre-determined basis 

functions (Wei and Billings, 2002; Wei et al., 2008; Zou et al., 2003; Chon et al., 2005). Generally, these 

coefficients are expressed using a linear or nonlinear combination of a finite number of basis functions. 

The problem is then reduced to time variant or invariant coefficient estimates, and the unknown new 

adjustable model parameters are those involved in the expansion. Hence, the initial time-varying modelling 

problem is reduced to deterministic regression selection and parameter estimation. 

In this work a novel parametric modelling and identification approach for estimating the time-varying 

parameters in models is proposed, where the associated time dependent parameters can be approximated 

using a set of basis functions including typical wavelet basis functions. The associated time-varying 

coefficients are then estimated by using a modified block least mean square (MBLMS) algorithm. A 

time-varying autoregressive with eXogenous (TVARX) inputs model and a time-varying autoregressive 

(TVAR) model are employed, respectively. One advantage of the proposed approach which combines 

wavelet approximation theory with a modified block least mean square algorithm, compared with 

traditional normalized least mean square method, is that it can be used to track rapidly or even sharply 

varying processes and is more suitable for recursive estimation of process parameters and the inherent 

nonstationary dynamics of the associated processes. Two numerical examples illustrate the efficacy of the 

proposed method for the identification problem of time-varying systems. 

 

2. Method 

There are many forms of models which are available for time-varying systems. Consider an 

input-output relationship of a TVARX (time varying autoregressive with eXogenous inputs) process which 

is described by the following equation: 

           
1 1

QP

i j
i j

y t a t y t i b t u t j e t
 

                           (1) 

where  ia t  and  jb t  are the time-varying ARX ,P Q  (where u  is the measurable input signal) 

parameters to be determined, and are functions of time, respectively. Indices P  and Q  are the maximum 

model orders of the ARX models, respectively, and are chosen by the user. We assume that the maximum 

model orders are time invariant. The term  e t  is the prediction error. The proposed method is to expand 

the time varying parameters  ia t  and  jb t  onto multi-wavelet basis function  m t  for 

1,2, , .m L  such that the following expressions hold: 
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                                              (2b) 

where ,i m  and ,j m  represent the expansion parameters, L  is the maximum number of basis 

sequences,  ,m t 1,2, ,m L  represents a set of basis function. Substituting (2) into (1), yields (3), 

           , ,
1 1 1 1

QP L L

i m m j m m
i m j m

y t t y t i t u t j e t   
   

                     (3) 

Once proper basis functions have been chosen, new variables can be defined such that 

     ,m my t i t y t i  
                                        (4a)

 

     .m mu t i t u t i                                            (4b) 

Substituting (4) into (3) results in (5),  

       , ,
1 1 1 1

,
QP L L

i m m j m m
i m j m

y t y t i u t j e t 
   

                     (5) 

The model in (5) can be written down in the following form, 

       Ty t t t e t                                             (6) 

where  

       1 2, , , ,Lt t t t                                         (7a)
 

         1 , , , 1 , ,
T

m m m mt y t y t P u t u t Q                    (7b) 

Denotes the regression vector and 

  1, , 1, ,, , , , ,
T

m P m m Q mt                                       (8) 

is the vector of model coefficients, and the upper script ' 'T  indicates the transpose of a vector or a 

matrix. 

Equation (5) or (6) shows that the time varying or TV ARX ,P Q  model can now be considered as a 

time invariant (TIV) ARX model, since ,i m  and ,j m  are not functions of time. 

 

3. The Multi-Wavelet Basis Functions 

From wavelet theory (Mallat, 1989; Chui, 1992), a square integrable scalar function  2f L R  

can be arbitrarily approximated using the multiresolution wavelet decomposition below 
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0
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                        (9) 

where the wavelet family  

   / 2
, 2 2j j

j k x x k                                       (10) 

and  

   / 2
, 2 2 ,j j

j k x x k                                       (11) 

with ,j k Z  ( Z  is a set consisting of whole integers), are the dilated and shifted versions of the 

mother wavelet   and the associated scaling function ,  
0 ,j k  and ,j k  are the wavelet 

decomposition coefficients, and 0j  is an arbitrary integer representing the coarsest resolution or scale 

level. Also, from the properties of multi-resolution analysis theory, any square integrable function f  can 

be arbitrarily approximated using the basic scale functions     

   / 2
, 2 2j j

j k x x k                                       (12) 

by setting the resolution scale level to be sufficiently large, that is, there exists an integer ,J  such that  

   , ,J k J k
k

f x x                                         (13) 

Cardinal B-splines is an important class of basis functions that can form multiresolution wavelet 

decompositions (Chui, 1992). The first order cardinal B-spline is the well-known Haar function defined as 

   
 

1 0,1

1, 0,1 ,

0, .

x
B x

otherwise


   


                              (14) 

The second, third and fourth order cardinal B-splines  2 ,B x   3B x  and  4B x  are given in Table 1 

(Wei and Billings, 2006). For detailed discussions on cardinal B-splines and the associated wavelets, see 

Chui (1992). 

   One attractive feature of cardinal B-splines is that these functions are completely supported, and this 

property enables the operation of the multiresolution decomposition (9) to be much more convenient. For 

example, the m th  order B-spline is defined on  0, ,m  thus, the scale and shift indices j  and k  

for the family of the functions 

   / 2
, 2 2 , 0 2 .j j j

j k mx B x k x k m                          (15) 

Assume that the function  f x  that is to be approximated with decompositions (9) or (11) is defined 

within  0,1 , then for any given scale index (resolution level) ,j  the effective values for the shift index 

,k  are restricted to the collection  : 2 1 .jk m k     
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Table 1 Cardinal B-splines of order from 1 to 4. 

                                                                                  

 1B x          2B x           32B x                  46B x  

                                                                                                 

0 1x        1             x                
2x                      

3x  

1 2x        0           2 x        
22 6 3x x          

3 23 12 12 4x x x          

2 3x       0             0                2
3x           

3 23 24 60 44x x x    

3 4x        0            0                0               
3 212 48 64x x x     

elsewhere        0            0                0                          0 

                                                                                               

 

Note that while the first and second order B-splines  1B x  and  2B x  are non-smooth piecewise 

functions, which would perform well for signals with sharp transients and burst-like spikes, B-splines of 

higher order would work well on smoothly changing signals. Motivated by this consideration, this study 

proposes using multi-wavelet basis functions for time varying ARX and time varying AR model 

identification. Two examples of the new multi-wavelet based algorithm are given in the following. 

Take the B-splines of order from 1 to 4 as an example, and consider the decomposition (13). Let  

 : 2 1 , 1,2, ,4;j
m k m k m                              (16) 

and  

     / 22 2 , .m J J
k m mx B x k k                               (17) 

The time-varying coefficients  ia t  and  jb t  in model (1) can then be approximated using a 

combination of functions from the families   : 1, ,4; .m
k mm k    For example, one such 

combination can be chosen as,   

                   , , ,

q r r

q q r r s s
i i k k i k k i k k

k k k

t t ta t c c cN N N  
  

       

                   , , ,

q r r

q q r r s s
j j k k j k k j k k

k k k

t t tb t d d dN N N  
  

               (18) 

where 1 4,q r s     1,2, , ,t N  and N  is number of observations of the signal. Simulation 

results have shown that for most time-varying problems, the choice of 2,q   3r   and 4s  work 

well to recover the time-varying coefficients. If, however, there is strong evidence that the time-dependent 

coefficients have sharp changes, then the inclusion of the first and second order B-splines would work well. 
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The decomposition (18) can easily be converted into the form of (2), where the collection 

  : 1,2, ,jf t j L  is replaced by the union of the three families:     : ,q
k qt k   

    :r
k rt k   and     : .s

k st k   Further derivation can then lead to the standard linear 

regression equation (5). Eq. (18) and Eq. (5) reveal that the initial full regression equation (5) may involve 

a great number of free time-varying parameters, and least squares type algorithms may fail to produce 

reliable results for such ill-posed problems. These problems, however, can easily be overcome by 

performing an effective modified block least mean square algorithm, the resulting recursive coefficient 

estimates ,i kc  and ,j kd  in Eq. (18) will then be used to recover the time-varying coefficients  ia t  

and  jb t  in the TVARX and TVAR (without eXogenous inputs) in model (1). The simulation results for 

the latter case shows that the novel method proposed based on multi-wavelet basis functions in this paper 

was excellent adaptive and tracking abilities. 

 

4. A Modified Block Least Mean Square Approach 

The conventional block LMS algorithm and Normalized LMS (Shynk, 1992; Haykin, 2002) have been 

proven to be very effective to deal with dynamic regression problems. However, the performance of these 

algorithms is sensitive to the selection of step sizes and additional noise. In this study we introduce a 

modified block LMS algorithm, Table 2 presents a summary of the modified block LMS algorithm, where 

the step size   is divided by the maximum eigenvalue of the correlation matrixR . An important issue 

that needs to be considered in the design of a block adaptive filter is how to choose the block size .L  

From Table 2 we observe that the operation of the block LMS algorithm holds true for any interger value of 

L  equal to or greater than unity. Nevertheless, the option of choosing the block size L  equal to the filter 

length (that is, the number of time-varying parameter coefficients in model (1)) M  is preferred in most 

applications of block adaptive filtering. This choice has been justified by Clark et al., (1981) based on the 

following observations: 

   When ,L M  redundant operations are involved in the adaptive process, because then the estimation 

of the gradient vector (computed over L  points) uses more input information than the filter itself. 

   When ,L M  some of the tap weights in the filter are wasted, because the sequence of tap inputs is 

not long enough to feed the whole filter. 

It thus appears that the most practical choice is .L M  For 1,L   the block LMS algorithm 

reduces to the Normalized LMS (NLMS) algorithm, where R  is a scalar. For 1,L   Table 2 is 

summarized the modified block LMS algorithm, where R  is a square matrix. 

The modified block LMS approach leads to two significant advantages over the conventional least 

mean square (LMS) algorithm: i) for 1,L  potentially-faster convergence speeds for both correlated and 

whitened input data (Nagumo and Noda, 1967), and stable behavior for a known range of parameter values 
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( max0 2 /   , stability condition) independent of the input data correlation statistics (Goodwin and Sin, 

1984; Nagumo and Noda, 1967); ii) for 1,L   modified block processing of data samples, a block of 

samples of the filter input and desired output are collected and then processed together to obtain a block of 

output samples. A good measure of computational complexity in a block processing system is given by the 

number of operations required to process one block of data divided by the block length. An implementation 

of the modified block LMS (MBLMS) algorithm is more computationally efficient. 

 

Table 2 Summary of the modified block least mean square algorithm 

                                                                                

Definition 

    1 , 2 , ,u u       input signal samples 

    1 , 2 , ,d d      desired signal samples correlated with input signal samples 

L                    block size 

,M                   filter length (namely, the number of coefficient parameter in model (1)), 

,                    step-size, 

,a                     a small positive constant, 

  max max ,eig R    maximum eigenvalue of the correlation matrix     ,TR E X k X k  

     1 , , ,
T

MW k w k w k     a vector of weights. 

Initial Conditions: 

 ˆ 0 ,W  a null vector of dimension 1.M   

Computation: at the k th  iteration, for each new block of M  input samples, compute 

 
    

    

1 1

,

1 1

u kM u k M

X k

u k M u kM

  
 

  
    

 

      , , 1 1 ,
T

d k d kM d k M      

     ˆ ,y k X k W k  

     ,e k d k y k   

     ,Tk X k e k   
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max

ˆ ˆ1 .W k W k k
a

 


  


                                           

Dimensions: 

 Ŵ k  1M  ;      X k  M M ;      d k  1M  ;       y k  1M  ;   a  1 1 ; 

 e k  1M  ;       k   1M  ;         1 1 ;         R  M M ;   max  1 1 . 

                                                                                  

 

In the present study, the MBLMS algorithm above is used to solve the regression equation (5). This 

includes a model identification and time-varying parameter estimation. The resultant estimates will then be 

used to recover the time-varying coefficients  ia t  and  jb t  in the TVARX or TVAR (without 

eXogenous input) model (1). 

To determine the proper model size given by (5), the modified generalized cross-validation (GCV) 

criteria (Orr, 1995; Billings et al, 2007) can be used. The modified generalized cross-validation (GCV) for 

a set of basis functions for the AR process is given by 

   
2

2ˆlog p

N
GCV p

N p


 
   

                                  (19) 

where N  is the length of the data, 2ˆ p  is the variance of the model residuals, and p  is the model size.  

 

5. Simulation Examples 

To verify the performance of the multi-wavelet basis function expansion approach, the performance of 

the new method for tracking time-varying parameters is studied. Two simulated experiments with different 

SNR’s (Signal to Noise Ratio) are presented. 

5.1  Example 1 

  Consider the following time-varying ARX 1,1  model, 

           1 11 1y t a t y t b t u t e t                               (20) 

The process parameters  1a t  and  1b t  are varied in different ways and the output  y t  is observed 

for the system input  u t  which was a Pseudo-Random Binary Sequence (PRBS) (Leontaritis, Billings , 

1987). The system parameters are estimated using both the NLMS and the modified block LMS (MBLMS) 

approaches based on multi-wavelet basis functions, respectively. 

The time-varying parameter variations were designed to change in an abruptly varying manner as 
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 1

0.1 0 0.3

0.9 0.3 0.5

0.5 0.5 0.7

0.6 0.7 1.

t

t
a t

t

t

  
     
  

ˈ  1

0.1 0 0.2

0.5 0.2 0.4

0.8 0.4 0.7

0.3 0.7 1.

t

t
b t

t

t

 
     
  

            (21) 

                                         

Figure 1(a) shows the PRBS input signal  u t , which is a frequency rich signal. The input signal is of 1 

second duration and sampling frequency was 1000 Hz. The output is shown in Figure 1(b) for a noise with 

SNR=19.40dB. Figure 2(a) and Figure 2(b) show the true and estimated values of parameters  1a t  and 

 1b t  respectively for the noise of SNR=19.40dB using the NLMS algorithm with 1, 0.6L   . The 

estimated parameters follow the true parameter variations quite well. Figure 3(a) and Figure 3(b) show the 

true and estimated values of parameters  1a t  and  1b t  respectively for the noise of 19.40 dB using 

the modified block LMS algorithm based on multi-wavelet basis functions with 2, 1L   . The 

estimated parameters follow the true parameters variations extremely well picking up the abrupt changes 

very quickly. Estimates were calculated for the given time varying coefficients in (21) and the statistics of 

the obtained results are presented in Table 3. The standard deviations of the parameter estimates (with 

respect to the true parameters) are presented in Table 3. The mean absolute error (MAE) of the parameter 

estimates, with respect to the corresponding true values, are also estimated and shown in Table 3. 

Compared with the NLMS estimates, the variance for the multi-wavelet basis function method estimates is 

smaller. The mean absolute error is defined by 

   
1

1 ˆ ,
N

k

MAE a k a k
N 

                                             (22) 

where  â k represents the estimates of a k in model (1), andN  is the length of the data. 

Table 3  A comparison of the model performance for Example 1 (SNR = 19.40dB). 
                                                                                           

Approach         Estimated coefficient         MAE          Std          
                                                                                 

NLMS  1, 0.6L  
           1â t  

              
0.0616          0.1072        

                             1̂b t                0.0559         0.0968        
                                                                                 
MBLMS  2, 1L  

           1â t                  0.0443           0.0901          
with multi-wavelet basis method                                                                     
                                  1̂b t                  0.0557          0.0884        
                                                                                               

                             

5.2 Example 2 

To further challenge the new method based on multi-wavelet basis function, and to illustrate the 

advantage of using the multi-wavelet basis functions based on the MBLMS (2, 0.25L   ) over the 
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NLMS ( 1, 0.4L   ), consider a time varying AR 2  model that has the following form: 

           1 21 2y t a t y t a t y t e t                               (23) 

where  e t  is zero-mean Gaussian white noise with a variance 0.2. The time varying parameters were 

defined by the following expression: 

    1 2cos 2a t f t  

 2 1, 1, ,1000.a t t                                          (24) 

where  

 
0.29, 1,2, ,333

333
0.15 0.1sin 2 , 334, ,1000.

333

t

f t t
t

N



       

                   (25) 

A sharp transition at 333t   was purposely selected to test and verify the new approach when the 

time-vary parameter is sharply varied from a square-shaped to a sinusoidal shape. Gaussian white noise 

was added to the system output of (23) so that the signal-to-noise ratio was 13.34 dB. The determination 

of the model order of two based on multi-wavelet basis functions was calculated using (19). Figure 4 

shows the performance of the parameter estimation using the MBLMS (2, 0.25L   ) method coupled 

with the multi-wavelet basis function algorithm and the traditional NLMS (1, 0.4L   ) method for 

time varying parameter estimation with a noise of SNR=13.34dB. The method based on the new 

multi-wavelet basis function algorithm outperforms that of NLMS (1, 0.4L   ). The results with the 

new multi-wavelet basis functions are impressive because the algorithm tracks three distinct waveforms: 

a constant value, an abrupt change, and the sinusoidal waveform. 

As in previous example, both the standard deviations and the mean absolute error for the parameter 

estimates are calculated and these are presented in Table 4. Clearly, compared with the NLMS estimates, 

both the variance and the mean absolute error for the multi-wavelet basis function method estimates are 

much smaller.  

Tables 3 and 4 statistically confirm the better performance of the multi-wavelet basis function 

method. Compared with the traditional normalized least mean square (NLMS) approach, the two 

simulation results above really show that the new method based on multi-wavelet basis functions 

proposed in this paper is more adaptive and possesses much better tracking ability in that it still can track 

the time-varying trend of the parameters even with significant noise contamination (for example with a 

noise of SNR = 13.34dB in Example 2). 
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Table 4  A comparison of the model performance for Example 2 (SNR = 13.34 dB). 
                                                                                           

Approach           Estimated coefficient       MAE           Std 
                                                                                 

NLMS  1, 0.4L  
           1â t

              
0.1507           0.1909 

                            2â t                0.1433          0.1417  
                                                                                  
MBLMS  2, 0.25L  

        1â t
                 

0.0802
   

        0.1221 
with multi-wavelet basis method                                                                   
                                2â t                   0.0719           0.0988 
                                                                                               

 

6. Conclusions 

    Time-varying parameters in both ARX and AR models have been estimated using a new MBLMS 

algorithm introduced in this study. Parameter variations including both fast and abrupt changes have been 

considered. Performance measures of the estimated parameters have been calculated under different noise 

conditions. The experimental simulations indicate that, even up to noise level of 13.3433 dB, the new 

approach based on multi-wavelet basis functions and the MBLMS algorithm gives much better results for 

fast and abrupt changing parameters than the method which uses the traditional normalized least mean 

square (NLMS) algorithm directly. Furthermore, from the results above, it can be concluded that 

time-varying systems can be modelled using a time varying ARX or a time varying AR model and the 

identification problem of modelling fast and abrupt changing time-varying parameters is possible with 

good accuracy. The results are satisfactory for both fast and abrupt changing parameters even in the 

presence of noise.  

The wavelet method is especially powerful for nonstationary signal analysis. Further research in this 

direction will  focus on extracting features of biomedical signals using wavelet methods and time varying 

ARX or AR modelling methods. The results will  then be applied to modelling and tracking time-varying 

signals that consist of both slow and fast time-varying dynamics.  
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Figure 1  (a) PRBS input signal, (b) Output signal for Example 1. 
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Figure 2  Time-varying parameter estimation using a normalized LMS approach (NLMS) with 1, 0.6L    

and SNR of 19.4024 dB for Example 1. (a) Estimated and true parameter a1(t), and (b)   Estimated and true 

parameter b1(t). 
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Figure 3  Time-varying parameter estimation using a MBLMS approach based on multi-wavelet basis function 

with 2, 1L    and SNR of 19.4024 dB for Example 1. (a) Estimated and true parameter a1(t), and (b)   

Estimated and true parameter. b1(t). 
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Figure 4  Comparison of simulation example with MBLMS ( 2, 0.25L   ) based on multi-wavelet 

basis function with a NLMS ( 1, 0.4L   ) for time varying parameters estimation with SNR of 

13.3433 dB for Example 2, (a) actual (solid lines) and estimated (dotted lines) model parameters with a 

NLMS ( 1, 0.4L   ) method, (b) actual (solid lines) and estimated (dotted lines) model parameters 

with MBLMS ( 2, 0.25L   ) based on multi-wavelet basis functions approach

 

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (Sec)

P
ar

am
et

er
 V

al
ue

Estimated and true parameter a1(t) and a2(t)

 

 

a1(t)

a2(t)

estimation value

true value

0 100 200 300 400 500 600 700 800 900 1000
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Time (Sec)

P
ar

am
et

er
 V

al
ue

Estimated and true parameter a1(t) and a2(t)

 

 

a1(t)

a2(t)

estimation value

true value


