Automatic Control and Systems Engineering, University of Sheffield
Abstract
This paper introduces a novel parametric modeling and identification method for linear time-varying systems using a modified block least mean square (LMS) approach where the time-varying parameters are approximated using multi-wavelet basis functions. This approach can be used to track rapidly or even sharply varying processes and is more suitable for recursive estimation of process parameters by combining wavelet approximation theory with a modified block LMS algorithm. Numerical examples are provided to show the effectiveness of the proposed method for dealing with severely nonstatinoary processes