482 research outputs found

    Method and System for Object Recognition Search

    Get PDF
    A method for object recognition using shape and color features of the object to be recognized. An adaptive architecture is used to recognize and adapt the shape and color features for moving objects to enable object recognition

    Deterministic versus Probabilistic Methods for Searching for an Evasive Target

    Get PDF
    Several advanced applications of autonomous aerial vehicles in civilian and military contexts involve a searching agent with imperfect sensors that seeks to locate a mobile target in a given region. Effectively managing uncertainty is key to solving the related search problem, which is why all methods devised so far hinge on a probabilistic formulation of the problem and solve it through branch-and-bound algorithms, Bayesian filtering or POMDP solvers. In this paper, we consider a class of hard search tasks involving a target that exhibits an intentional evasive behaviour and moves over a large geographical area, i.e., a target that is particularly difficult to track down and uncertain to locate. We show that, even for such a complex problem, it is advantageous to compile its probabilistic structure into a deterministic model and use standard deterministic solvers to find solutions. In particular, we formulate the search problem for our uncooperative target both as a deterministic automated planning task and as a constraint programming task and show that in both cases our solution outperforms POMDPs methods

    NONLINEAR IDENTIFICATION AND CONTROL: A PRACTICAL SOLUTION AND ITS APPLICATION

    Get PDF
    It is well known that typical welding processes such as laser welding are nonlinear although mostly they are treated as linear system. For the purpose of automatic control, Identification of nonlinear system, especially welding processes is a necessary and fundamental problem. The purpose of this research is to develop a simple and practical identification and control for welding processes. Many investigations have shown the possibility to represent physical processes by nonlinear models, such as Hammerstein structure, consisting of a nonlinearity and linear dynamics in series with each other. Motivated by the fact that typical welding processes do not have non-zeroes, a novel two-step nonlinear Hammerstein identification method is proposed for laser welding processes. The method can be realized both in continuous and discrete case. To study the relation among parameters influencing laser processing, a standard diode laser processing system is built as system prototype. Based on experimental study, a SISO and 2ISO nonlinear Hammerstein model structure are developed to approximate the diode laser welding process. Specific persistent excitation signals such as PRTS (Pseudo-random-ternary-series) to Step signal are used for identification. The model takes welding speed as input and the top surface molten weld pool width as output. A vision based sensor implemented with a Pulse-controlled-CCD camera is proposed and applied to acquire the images and the geometric data of the weld pool. The estimated model is then verified by comparing the simulation and experimental measurement. The verification shows that the model is reasonably correct and can be use to model the nonlinear process for further study. The two-step nonlinear identification method is proved valid and applicable to traditional welding processes and similar manufacturing processes. Based on the identified model, nonlinear control algorithms are also studied. Algorithms include simple linearization and backstepping based robust adaptive control algorithm are proposed and simulated

    Object and feature based modelling of attention in meeting and surveillance videos

    Get PDF
    MPhilThe aim of the thesis is to create and validate models of visual attention. To this extent, a novel unsupervised object detection and tracking framework has been developed by the author. It is demonstrated on people, faces and moving objects and the output is integrated in modelling of visual attention. The proposed approach integrates several types of modules in initialisation, target estimation and validation. Tracking is rst used to introduce high-level features, by extending a popular model based on low-level features[1]. Two automatic models of visual attention are further implemented. One based on winner take it all and inhibition of return as the mech- anisms of selection on a saliency model with high- and low-level features combined. Another which is based only on high-level object tracking results and statistic proper- ties from the collected eye-traces, with the possibility of activating inhibition of return as an additional mechanism. The parameters of the tracking framework thoroughly investigated and its success demonstrated. Eye-tracking experiments show that high- level features are much better at explaining the allocation of attention by the subjects in the study. Low-level features alone do correlate signi cantly with real allocation of attention. However, in fact it lowers the correlation score when combined with high-level features in comparison to using high-level features alone. Further, ndings in collected eye-traces are studied with qualitative method, mainly to discover direc- tions in future research in the area. Similarities and dissimilarities between automatic models of attention and collected eye-traces are discusse

    Nonlinear normal modes, modal interactions and isolated resonance curves

    Get PDF
    The objective of the present study is to explore the connection between the nonlinear normal modes of an undamped and unforced nonlinear system and the isolated resonance curves that may appear in the damped response of the forced system. To this end, an energy balancing technique is used to predict the amplitude of the harmonic forcing that is necessary to excite a specific nonlinear normal mode. A cantilever beam with a nonlinear spring at its tip serves to illustrate the developments. The practical implications of isolated resonance curves are also discussed by computing the beam response to sine sweep excitations of increasing amplitudes.Comment: Journal pape

    Processing and inferential methods to improve shaft-voltage-based condition monitoring of synchronous generators

    Get PDF
    This thesis focuses on improving shaft-voltage-based condition monitoring of synchronous generators. The work presents theory for describing and modelling shaft voltages using fundamental electromagnetic principles. A modern framework is adopted in developing an online, automated and intelligent fault-diagnosis system. Novel processing and inferential methods are used by the system to provide accurate and reliable incipient-fault detection and diagnosis. The literature shows that shaft-voltage analysis is recognised as a technique with potential for use in condition monitoring. However, deficiencies in the fundamental theory and the inadequacy of methods for extracting useful information has limited its widespread application. This work extends the knowledge of shaft voltages, validates the merits of its use for fault diagnosis, and provides methods for practical application. Validation of the model is completed using an experimental synchronous generator, and results indicate that simulated shaft voltages compare well with the measurements - i.e. total average error of the model combined with experimental uncertainty is below 16%. The fault detection and diagnosis components are tested separately and together as a complete shaft-voltage-based conditionmonitoring system in an experimental setting. Results indicate that the system can accurately diagnose faults and it represents a unique and valuable contribution to shaft-voltage-based condition monitoring. Additionally, techniques such as optimal measurement selection, multivariate model monitoring, and fault inference developed for the investigations and system presented in this thesis, will assist engineers and researchers working in the field of condition monitoring of electrical rotating machines

    A Probabilistic-Based Approach to Monitoring Tool Wear State and Assessing Its Effect on Workpiece Quality in Nickel-Based Alloys

    Get PDF
    The objective of this research is first to investigate the applicability and advantage of statistical state estimation methods for predicting tool wear in machining nickel-based superalloys over deterministic methods, and second to study the effects of cutting tool wear on the quality of the part. Nickel-based superalloys are among those classes of materials that are known as hard-to-machine alloys. These materials exhibit a unique combination of maintaining their strength at high temperature and have high resistance to corrosion and creep. These unique characteristics make them an ideal candidate for harsh environments like combustion chambers of gas turbines. However, the same characteristics that make nickel-based alloys suitable for aggressive conditions introduce difficulties when machining them. High strength and low thermal conductivity accelerate the cutting tool wear and increase the possibility of the in-process tool breakage. A blunt tool nominally deteriorates the surface integrity and damages quality of the machined part by inducing high tensile residual stresses, generating micro-cracks, altering the microstructure or leaving a poor roughness profile behind. As a consequence in this case, the expensive superalloy would have to be scrapped. The current dominant solution for industry is to sacrifice the productivity rate by replacing the tool in the early stages of its life or to choose conservative cutting conditions in order to lower the wear rate and preserve workpiece quality. Thus, monitoring the state of the cutting tool and estimating its effects on part quality is a critical task for increasing productivity and profitability in machining superalloys. This work aims to first introduce a probabilistic-based framework for estimating tool wear in milling and turning of superalloys and second to study the detrimental effects of functional state of the cutting tool in terms of wear and wear rate on part quality. In the milling operation, the mechanisms of tool failure were first identified and, based on the rapid catastrophic failure of the tool, a Bayesian inference method (i.e., Markov Chain Monte Carlo, MCMC) was used for parameter calibration of tool wear using a power mechanistic model. The calibrated model was then used in the state space probabilistic framework of a Kalman filter to estimate the tool flank wear. Furthermore, an on-machine laser measuring system was utilized and fused into the Kalman filter to improve the estimation accuracy. In the turning operation the behavior of progressive wear was investigated as well. Due to the nonlinear nature of wear in turning, an extended Kalman filter was designed for tracking progressive wear, and the results of the probabilistic-based method were compared with a deterministic technique, where significant improvement (more than 60% increase in estimation accuracy) was achieved. To fulfill the second objective of this research in understanding the underlying effects of wear on part quality in cutting nickel-based superalloys, a comprehensive study on surface roughness, dimensional integrity and residual stress was conducted. The estimated results derived from a probabilistic filter were used for finding the proper correlations between wear, surface roughness and dimensional integrity, along with a finite element simulation for predicting the residual stress profile for sharp and worn cutting tool conditions. The output of this research provides the essential information on condition monitoring of the tool and its effects on product quality. The low-cost Hall effect sensor used in this work to capture spindle power in the context of the stochastic filter can effectively estimate tool wear in both milling and turning operations, while the estimated wear can be used to generate knowledge of the state of workpiece surface integrity. Therefore the true functionality and efficiency of the tool in superalloy machining can be evaluated without additional high-cost sensing

    Real-time 3D reconstruction of non-rigid shapes with a single moving camera

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper describes a real-time sequential method to simultaneously recover the camera motion and the 3D shape of deformable objects from a calibrated monocular video. For this purpose, we consider the Navier-Cauchy equations used in 3D linear elasticity and solved by finite elements, to model the time-varying shape per frame. These equations are embedded in an extended Kalman filter, resulting in sequential Bayesian estimation approach. We represent the shape, with unknown material properties, as a combination of elastic elements whose nodal points correspond to salient points in the image. The global rigidity of the shape is encoded by a stiffness matrix, computed after assembling each of these elements. With this piecewise model, we can linearly relate the 3D displacements with the 3D acting forces that cause the object deformation, assumed to be normally distributed. While standard finite-element-method techniques require imposing boundary conditions to solve the resulting linear system, in this work we eliminate this requirement by modeling the compliance matrix with a generalized pseudoinverse that enforces a pre-fixed rank. Our framework also ensures surface continuity without the need for a post-processing step to stitch all the piecewise reconstructions into a global smooth shape. We present experimental results using both synthetic and real videos for different scenarios ranging from isometric to elastic deformations. We also show the consistency of the estimation with respect to 3D ground truth data, include several experiments assessing robustness against artifacts and finally, provide an experimental validation of our performance in real time at frame rate for small mapsPeer ReviewedPostprint (author's final draft
    • …
    corecore