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ABSTRACT OF DISSERTATION

NONLINEAR IDENTIFICATION AND CONTROL: A PRACTICAL SOLUTION
AND ITS APPLICATION

It is well known that typical welding processes such as laser welding are nonlinear
although mostly they are treated as linear system. For the purpose of automatic control,
Identification of nonlinear system, especially welding processes is a necessary and
fundamental problem. The purpose of this research is to develop a simple and practical
identification and control for welding processes.

Many investigations have shown the possibility to represent physical processes by
nonlinear models, such as Hammerstein structure, consisting of a nonlinearity and linear
dynamics in series with each other. Motivated by the fact that typical welding processes
do not have non-zeroes, a novel two-step nonlinear Hammerstein identification method is
proposed for laser welding processes. The method can be realized both in continuous and
discrete case.

To study the relation among parameters influencing laser processing, a standard
diode laser processing system is built as system prototype. Based on experimental study,
a SISO and 2ISO nonlinear Hammerstein model structure are developed to approximate
the diode laser welding process. Specific persistent excitation signals such as PRTS
(Pseudo-random-ternary-series) to Step signal are used for identification. The model
takes welding speed as input and the top surface molten weld pool width as output. A
vision based sensor implemented with a Pulse-controlled-CCD camera is proposed and
applied to acquire the images and the geometric data of the weld pool. The estimated
model is then verified by comparing the simulation and experimental measurement. The
verification shows that the model is reasonably correct and can be use to model the
nonlinear process for further study. The two-step nonlinear identification method is
proved valid and applicable to traditional welding processes and similar manufacturing
processes. Based on the identified model, nonlinear control algorithms are also studied.
Algorithms include simple linearization and backstepping based robust adaptive control
algorithm are proposed and simulated.
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CHAPTER 1

INTRODUCTION

1.1 Background

Laser Welding is a fusion process accomplished with various lasers applying to
materials. As a non-contact process, laser welding finishes the welding work through
laser beam. With laser beam, energy is concentrated and used directly on the small
welding area. As a result, the welding zone is very narrow and hardly distorted due to
little heat influence. Compared to traditional processes, Laser Welding is of potential. Its
non-contact, localized, and narrow heat zone can create high quality result. Common re-
working and after-work procedure are no more required, which saves cost and labor.
Right now, Laser processing has been widely applied in various fields including
automotive, microelectronics, aerospace, etc.

Common types of laser welding includes CO2 gas laser, Solid state laser (YAG
type), and Diode laser welding. CO2 laser uses a mixture of high purity carbon dioxide
with helium and nitrogen as the medium, infrared of 10.6 micro-meters. Argon or helium
is used to prevent oxidation. YAG laser uses a solid bar of yttrium aluminum garnet
doped with neodymium as the medium, whose infrared is only 1.06 micro-meters. Diode
laser is based on the conversion between high electrical to optical powers [1]-[5].

In many cases, the concern with health and safety forced engineers to design an
advanced automatic welding process. However, the difficulty to ensure quality and
lacking of knowing knowledge made automatic welding a challenging task. One of the
critical factors along with welding process is the measurement system that provides
information of welding pool. The importance of the measurement on the welding pool is
obvious. First of all, not an exact model has ever been developed to describe the welding
process. Even though it is possible to model the welding process, the model is too

complicate for control purposes. Secondly, too many unknown factors influence the



dynamic and changeable process. Third, successful intelligent welding system requires
appropriate and real time measurement working with specific developed control
algorithm so that the process is robust and adaptive. Fourth, known factors such as strong
welding light, reflective welding pool surface, dynamic and fast changing, noise, physical
deformation, and so on makes measurement hardly accomplish. Last, very limited useful
sensors are applicable for welding process measurement.

Various Researches has been done related to welding pool measurement based on
the vision sensing tool such as monochrome camera and optic sensors. Through the
sensors, welding related information is achieved online or offline so that control loop can
adjust the welding process parameters. Considering the role of penetration to welding
process, many study started with penetration measurement and control. With aid of pool
oscillation [6]-[7], infrared sensor [8]-[9], ultrasound [10]-[11], and related, reliable and
applicable measurement and control of welding pool was possible. The disadvantage of
these methods is its limit while differentiate from partial penetration and full penetration
[8] [12]-[13]. Besides, the system is very easily influenced by instable noise.
Accordingly, successful two-dimensional measurement can to some extent improve the
control progress [14]-[16]. The most potential method is 3D welding surface
measurement and control because it is able to provide enough geometric process
information. Very limited researches have been done about three-dimensional surface of
welding pool. In the past years, University of Kentucky, novel and pioneering research
has been done in this field. Special CCD cameras were added into the process, working
with various algorithms, extracting three-dimensional model information related the
welding pool [16]-[23]. Right now, the ongoing research has been extended from arc
welding to laser welding. The goal is to design a suitable sensor associated with regular
welding process.

Beyond the difficulty of measurement, model identification is another critical
procedure for successful automatic welding system. It is well known that most real life
dynamic processes are inherently nonlinear. Laser welding is of no exception. It is
dynamic, nonlinear, and of uncertainty although in many cases laser welding processes
have been treated as linear system. Unlike linear processes approximating the processes

around given operating points, nonlinear model is advantageous to describe the global



behavior of the processes on the entire range. However, due to the nonlinear nature and
limited knowledge of welding processes, it is challenging to improve control quality and
even automated processes. Moreover, the difficulty for welding process control is the
model architecture because most of the information and relationship are from the
experiments. There has hardly been an appropriate model applied to the welding process.
Accordingly, developing suitable identification procedure specifically for laser welding
process is very necessary. Because it is not realistic to develop identification techniques
for general nonlinear processes, our study is focused on potential application of laser
welding processes. We consider especially the processes that consist of two parts: a static
nonlinearity and a linear dynamic subsystem. These model structures are also called
Hammerstein model and have been successfully applied to nonlinear processes in many
areas such as heat exchangers, chemical processes, biological processes, tank reactor,
distillation columns, and so on. We believe Hammerstein model can also possibly
represent laser welding process. We will further consider not only discrete system model

but also continuous model for the sake of control performance.

u(k) Static x(k) Linear v(k
—) NoOnlinearity »| Dynamics
(NL) L)

Figure 1.1 Nonlinear Hammerstein Structure

1.2 Research Objective

This thesis is intended to develop a simple method to identification and control for
laser welding processes that can be described by a Hammerstein model with a static
nonlinearity and a linear dynamics subsystem in series with each other. The identification
is of both discrete-time and continuous-time case. In particular, the nonlinearity is very
slowly time-varying and determines the system static characteristic and the linear
dynamic determines the transient characteristics.

The objectives include:

1. Develop a laser welding system as an experimental platform



2. Characterizing the laser welding process in terms of inputs (speed, laser
intensity) and output (weld pool geometry) and investigate the relations

3. Develop a practical method to identify the laser welding processes under
working conditions

4. Use experimental data to test and validate the identification method

1.3  Basic Idea

A standard diode laser system is roughly implemented for research purposes in the
welding research lab, Center for Manufacturing, University of Kentucky. The sensor
system is implemented with hardware including a specially made digital camera, with
built in band pass filter, Frame Grabber (National Instrument made), and vision based
software (LabView/vision/IMAQ). The digital camera is synchronized with a high speed
pulse laser. The sensor system acquires the images and extracts the geometric
information of the molten weld pool. The working piece is Imm mild steel sheet whose
length is about 400mm and width is about 100mm. To study how the parameters such as
welding speed and laser intensity influence the weld pool, series open loop experiments
under different inputs are made. Through the experimental data, the identification is then
developed based on Hammerstein model structure in both continuous and discrete cases.
Based on the model, control algorithm is developed and simulation is created.

Experiments are then made to verify the correctness of the model identification.

1.4 Organization

This dissertation is organized as follows. In Chapter 2, existing sensing and control
for laser welding are introduced. In Chapter 3, a review of Hammerstein identification
and control algorithms are described. In Chapter 4, vision based sensor and related image
processing algorithms are presented. In Chapter 5, the proposed Hammerstein
Identification is briefly introduced and proved the applicability. In Chapter 6,
experimental setup of the vision based sensor and results of image processing are
demonstrated. In chapter 7, the proposed Hammerstein Identification procedure is
described in detail and in Chapter 8 the results of Identification including the

experimental set up are given. A SISO nonlinear model is also estimated and verified



with experimental data. The identification is also expanded to MIMO case. In Chapter 9,
possible nonlinear control algorithm is proposed and investigated by simulation.

Conclusion is summarized and future work is estimated in Chapter 10.

Copyright © Xiaodong Na, 2008



CHAPTER 2

REVIEW OF SENSING AND CONTROL FOR LASER WELDING

Laser welding has drawn a lot of attention in fields like shipyards, automobiles,
aircrafts, and so on. Compared to traditional techniques, laser welding is advantageous
for its high speed, high ratio of depth to width, small heat affected zone, low distortion,
and potentially deep penetration [1]. However the inefficient quality monitoring and
environment concerns [4] [5] to some extent hinder the development of the automated
laser welding applications for industries. Accordingly developing an automated laser
welding process has been a critical field in research and industrial study. Till now,
various studies have been done to monitor the laser welding process. Some focused on
the emission signals such as acoustic, infrared, ultraviolet, plasma, and so on [25]. Others
aimed to the weld pool images acquired with CCD cameras [17] [25] [29]. Some

concentrated on the heat distribution with numerical analysis [24].

2.1 Keyhole Sensing and Control

During the process of laser welding, high energy of laser beam is focused onto a
single location and a keyhole is created as shown in Figure 2.1. To ensure successful
welding and avoid effects like burnt-through, keyhole depth should be controlled not too
much beyond the height of the material. The advantage of Keyhole control is the possible
small heated zone, which results better after work quality. Around the keyhole depth
control, much work has been studied. In [8] a COMS camera is installed into the system,
corresponding to the optic mirror and monitoring online the welding process. Relation
between penetration depth and laser power was analyzed based on the experiments.
Although the system is only used for ND-YAG and CO2 Laser Beams, its possible
potential might be applicable to other systems. In [11], penetration is studied on CO2
laser welding of thin sheet steel under experimental conditions. Statistical based analysis

and various sensor systems are also studied. The difficulty of the keyhole control is how



to decide the penetration in real time, without sacrificing the advantage of laser welding

process. In [2]-[3] [13], a sensor system based on emission detects and moreover the

penetration was studied and developed.

Lazer Beam

“---III

Welding Pool

\ Eevhole

Figure 2.1 Keyhole in laser welding

2.2 Emission or Radiation

A challenge for laser welding is how to control the process online without
compromising the welding quality. Because it is hard to find the parameters and relation
related to the process, suitable measurement is always influential. Approximate analysis
on signals will be of great help on the process. Various signals such as optical, acoustical,

infrared, and so on [3] [6] [11] [12] [23] are studied based on spectrum and statistical

analysis as shown in Figure 2.2.
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Figure 2.2 Signal emission and sensors in laser welding

23 Focus Control

In [25] [26], the focus length of the laser is adjustable by the control system. With
specific system design, the laser power can play to its full potential. The disadvantage is
its instable noise, off-line monitoring, and difficulty to detect full penetration and partly

penetration. The design will have to take into consideration of sensing system integration.

2.4  Power and Speed Control
It is a logic sense to think of controlling power and speed during the laser welding
process and since laser welding is using the heat energy to melt the material and finish
the welding, critical parameters that influence the energy should be taken care of at first.
Power and travel speed are the influential factors related to laser welding. However, the
difficulty is how to implement a suitable relation to evaluate the process. With power and
travel speed as input, the welding quality parameter as output, laser welding process

could be achieved as a tracking control [27]-[28].



2.5 Vision Based Sensing and Control

Figure 2.3 Weld pool (1a) Laser Welding (1b)

As shown in Figure 2.3, the full knowledge of the weld pool geometry includes the
length, the width, and the depth. Weld pool images were acquired with CCD/CMOS
cameras and studied to investigate the relations among various parameters along with
laser welding process [10] [13] [29]. An on-going research to study laser welding process
based on Vision based image acquisition and processing is being done in the Welding

Research Lab, Center for Manufacturing, University of Kentucky.

Copyright © Xiaodong Na, 2008



CHAPTER 3

REVIEW OF IDENTIFICATION AND CONTROL

In this chapter, we briefly review the literature of nonlinear identification and control. As
introduced, we are intending to develop an algorithm to identify both the linear dynamics
and the nonlinearity in series with each other, which is similar to Hammerstein-type
systems. The consideration of Hammerstein representation is motivated by the potential

application to welding process, i.e. laser welding process.

3.1 System Identification [30]-[34]

One of the benefits from control application is the operational performance, without
which many systems would exhibit an unacceptable natural behavior. Examples of such
physical systems are chemical processes, vehicles, aircraft, consumer electronics, power
plants, space structures, industrial robots, and so on. While designing a system, engineers
always expect a balance with higher performance and lower throughput. However, the
enhancement of some performance often implies the reduction of uncertainties and
disturbances. Although with such improvements as feedback compensators, system
performances will be realized as expected, a mature model built on the enough
understanding of the system can never been overestimated.

There are generally two ways to build models. One is through differential equations
in accordance with natural laws, such as physics, chemistry, geometry, and so on. The
advantage lies at its simplification and detail. The disadvantage is the requirement of
understanding of the system. The other method is system identification, which is to
develop a model from observed or collected data based on time series analysis and
statistical methods. The advantage of system identification is its easiness without the
need of knowing too much detail of the system. The disadvantage is its too much

calculation and less detail model, which probably cause unstable system.
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3.1.1 ARMAM: Autoregressive Moving Average Model [30] —[31]

ARMAM is one of the most widely used statistical based analyses. It can be applied
to areas like economics, finance, aerospace, automobile, chemistry, and so on.
Fundamentally, the model represents the relation between input and output signals on the
basis of previous time series data.

A general ARMAM is:
4 q
=gty den +a+) 6ea, (3.1.1.a)
i=1 i=1

, which is also called as ARMA (p, q) model, with p, q as the order.
To identify the model, the order and the coefficients will have to be estimated with

methods such as least square estimation and optimization.

3.1.2 Hammerstein Nonlinear System Identification

It has been noted that many systems can be approximated by a static nonlinearity and a
linear dynamics in series with each other. These models are called Hammerstein block
cascade models and used to model several classes of nonlinear systems such as chemical
processes, heat exchangers, and distillation. Because it is difficult to identify nonlinear
parameters, Hammerstein is of no exception. The good about Hammerstein model
structure is sometimes we can choose the nonlinear element based on the available input

and linear transfer function.

u(k) ) : :
Static x(k) Linear Dynamics y(k
’ Nonlinearity ’ B(qy
/() alg™)

Figure 3.1 Hammerstein Nonlinear Model Structure

The Hammerstein Model can be described by a memoryless nonlinear element followed
by a linear dynamic system as shown in Figure 3.1, where x(k)= f(u(k)); u(k), y(k)are

the input and output of the system respectively and x(k)is the nonlinear function of the

11



input. x(k) can not be measured but can be eliminated by estimating the nonlinear

function.. The static nonlinearity nonlinearizes the input and then the virtual input is sent
into the linear system, which is also modeled by a linear transfer function, until the output
is sent out. One of the characteristics of Hammerstein model is that the effect of
nonlinearity is independent of the linear dynamics. In other words, the slope of the
nonlinearity at a certain operating point can be the instantaneous system gain,
determining the static response of the system.

If we introduce the shifting operator g that is defined by:

ylk=1)=q"'y(k), (3.1.2.2)
A(q‘1)= l+aq” +-+a,q" (3.1.2.b)
B(q_l): b +byg "+ tb,g " (3.1.2.c)

Then the system can be represented by the structure of:

y(k>=%;4§f«u(k>» (.124)

If the nonlinear function can be assumed as a polynomial of order/, then the system can

be modeled by:

(k)= %ngzyiui(k) (3.1.2.¢)

Hammerstein identification has been studied in many years. In 1966, iterative search
method based Hammerstein structure was proposed and applied [35]. The model was
composed of a memoryless polynomial gain and a linear discrete time system transfer
function. Mean least Square error criterion between measured output and predicted output
were applied to adjust the parameters of both linear dynamics and the nonlinearity gain.
Similar techniques were also used to identify nonlinear system with various format
transfer function. A non-iterative technique was used to identify the Hammerstein model
in a general case where the transfer function has zeroes [36]. Zhu [6] proposed a aA
relaxation iteration scheme was proposed with a model structure in which the error is
bilinear in the parameters [37]. The order of the linear dynamics and the nonlinearity are

determined by looking at an output error related criterion which is control relevant. A
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multivariable Hammerstein identification for state-space and linear-FIR models was
proposed. White noise persistent excitation series was taken into consideration [38].
Moreover, they have shown that the linear-FIR case with white noise input, the standard
iterative procedure is guaranteed to converge and thus provides an asymptotically optimal
estimator. In [39], a frequency weighted least squares based formulation method was
presented to identify the parameters of Hammerstein nonlinear continuous time system
based on input and noise contaminated output data observed over a finite time interval.
Cross-correlation was added into an identification algorithm for the system having the
structure of a Hammerstein model was studied and procedures to decouple the
identification of the linear dynamics from the characterization of the nonlinear element
were also proposed [40]. GA algorithm was used for identification to proximate the
piecewise linear dynamics and memoryless nonlinear characterization of the
Hammerstein models [41] [42]. To identify the Hammerstein structure, especially the
nonlinearity, Genetic programming was applied to the system [43]. A novel approach
based on a point-slope parameterization of the static nonlinearity and optimal computing
was proposed to simultaneously approximate the linear dynamic and static nonlinear
blocks of the nonlinear feedback model [44]. A practical method to identify heat
exchange process with Hammerstein model was presented [45]. The model was based on
experimental study. Eskinat and Johnson [3] used the identification methods for
simulated distillation columns and to an experimental heat exchanger process. To fully
investigate the potential of Hammerstein identification, a separable nonlinear least
squares methods for on-line estimation of neural nets Hammerstein models was proposed
[46]. An algorithm which transforms the nonlinear model into a model which is linear in
parameters and a pseudo-inverse technique leading to a consistent estimator or the initial
realization as well the model of the noise was studied [47]. A new iterative procedure to
identify Hammerstein models and minimizes the infinity norm of the deviation between
the true model and identified model [48]. To compare the performance between iterative
and non-iterative algorithm, a non-iterative algorithm was studied and the algorithm was
applied for simultaneous identification of the linear and nonlinear parts of the
multivariate Hammerstein structures. The proposed algorithm is based on LS and SVD

[49]. To conquer the over-sampling problem during the identification of Hammerstein
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model, a new least squares type of identification algorithm was proposed [50]. Dynamic
separation techniques were also studied for a class of Hammerstein models [51]-[53].
Optimal design and recursive techniques were greatly applied to the nonlinear processes
with the assumptions. A relaxation based technique and its consistency was proposed and
studied for nonlinear processes [54]. Neural network was proved to be another possible
method to identify the nonlinearity. A recursive identification algorithm has been derived

to update the weights and the parameters of the ARMA [55].

3.2 Nonlinear Control

Nonlinear control is one of the biggest challenges in modern control theory. It has
various applications such as Aerospace, Automobile, UAV, Welding, and so on. While
linear control system theory has been well developed, trying to control the system beyond
the limit of equation point is still a pursuit for control engineers.

There has been many ways related to nonlinear control. Given the fact that linear
control theory has been studied so many years, it is very reasonable to think of a way to
linearize the nonlinear system model at first, which is, introducing factors to counteract
the effect of nonlinear elements. Feedback linearization can be categorized into the field
[56]-[57]. Adaptive Control [58]-[59] certainly benefited the progress. However, due the
limit of system complexity, especially when the system order is higher and system has
unmodeled dynamics, Feedback linearization probably will not have the good result,
which forced new method like back-stepping [57], constructive methods [55], and Robust
Adaptive method [59]-[61].

3.2.1 Feedback Linearization [56]

The central idea of Feedback Linearization is to cancel the nonlinear part of the
system model through controller and convert the system to be linear. Depending on the
system model, feedback linearization falls into two categories. One is output feedback
linearization and the other state feedback linearization.

Let:

x=f(x)+g(x)u (3.2.1.2)
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u=a(x)+ p(x)(t) (3.2.1.b)

== A1)+ Bu(?) (3.2.1.¢)
y=C=(1)

The implementation is to find a feedback transformation as equation 3.2.1.b, so that,

equation 3.2.1.c under the conditions that (4, B)is controllable and (4, C)is observable

Something worth mentioning is when the system is full state available, the output
and control law will be the focus to decide the successful linearization; when system is
not full state available, further consideration should be taken such effect as zero
dynamics.

For full state feedback linearization, the task is to find a feedback transformation so

that

z = Az(t)+ Bo(t) (3.2.1.d)
Let the system be:

y" = f(x)+b(x)u (32.1.e)

,where b(x)=0and xthe state vector [y, ', y,..)" |

For a tracking system, let reference input r”(t) exists and bounded, design a stable
polynomial a(s)=(s—4 Ns—24,).(s=4,)=s"+a, s"+. .+a, . Then define the

tracking error as:

e=y-r

v
g=[e.e...e" ] (3.2.1.9)

Then choose the control law as

_r-d'q-f(x) (3.2.1.9)

b(x)

u
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3.2.2 H_Nonlinear Control [56] [62]

Started since late 1980s by McFarlane and Glover, H-infinity control has been one
of most popular methods in nonlinear control fields. Fundamentally H-infinity is similar
to optimal control as shown in Figure 3.2. It has been successfully developed for different

models and proven to be effective for robust systems for substantial uncertainty.

K

Figure 3.2 H-infinity control

Let the system be:

x= A(x)+ B, (x)w+ B, (x)u

z=C,(x)+D,(x)u (3.2.2.2),
y=_C, (x)+D2 (x)w

where x is the state, z is the performance objective, y is the measured output and u the

controller

If we rewrite the system as:

Z_PW_P” Py, |w
y| lul| |P, P,|u (3.2.2.b)

u=Ky
, then the performance objective z might be represented with

z= (El +RzK(1_P22K)_1P21)W (3.2.2.¢)
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Define F(P,K)=(B, + B,K(I- P,K)'P,) (3.2.2.d)

Then the task of H infinity is to find a controller K such that
F=(p, +RK(I-P,K)"P,) (3.2.2.¢)

Equation 3.2.2.d is minimized following the norm

||F ”m = Slj}p E(F (jo)), where o is the singular value of the matrix F

(3.2.2.f)

3.2.3 Backstepping [56]-[57]

Backstepping has been studied since late 1980s and 1990s due to its potential to
dealing with uncertainty. It basically is a recursive method, designed to derive an error
equation and construct a control law and parameter adjustment law so that the state of the
error equation settle down to zero.

As shown in Figure 3.3., let the system be

T==1

—| Sy:3 Sysd » oysl .

& & l

Figure 3.3 Backstepping system diagram

h
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E_fl(xl)-i_xz

d

§=f2(xl,x2)+x3

dx.

%_ﬁ(xl’xﬂ xl)—l—xm
d

%:f;t(xl’XZ’ ’xn)+u
y=x

(3.2.3)

(3.2.3.2)

The task is to design the transformation with canceling the nonlinear effects.

First, let:

Assume 4, >0
Define the Lyapunov function as
1
" (xl ) = By X}
Then:
y dx
Mi=x 7; =—Ax} +x1(x2 _al(xl))

Let z, = x, —al(xl)

Then
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(3.2.3.0)

(3.2.3.d)

(3.2.3.¢)

(3.2.3.9)



Define

fo= £l =22 () )

1

Then the Lynapunov candidate is
1 >
Vz(xnzz): Vl(xl)_'_EZZ
Then
L] 2 _
Vy==Ax +x2z,+ Zz[fz (xl’ Z )"’ x3j

So, forx;, let

az(xlazz): _fz(xlaxz)_xl - 4,2,

S 2 2
Vy==Ax" =4z, +z,z,

3 =X -0
So, we have
dx,
— =-AXx +z
dt 2’1 1 2
dz
72=—x1—1222+z3
t
dz oa, * Oa, *
= fi—| —Ex+—%z, |+x,
dt ox, 0Oz,

Similarly, let:

- oa, * Oa, °*
ﬂ:ﬂ_(glzxﬁ'gjzzj

Define the lyapunov function:

1
V3(xl:ZzaZ3):1/2(351922)"'5232

So the first derivative of equation 3.2.3.n will be as:
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(3.2.3.)

(3.2.3.h)

(3.2.3.i)

(3.2.3.))

(3.2.3k)

(3.2.3.1)

(3.2.3.m)

(3.2.3.n)



Vi(x,2,,2,)= =X, = Az, + 2,2, +z3(f_3+x4j (3.2.3.0)

oy =— fi—2, - Az, (3.2.3.p)
Similarly, let
dx
7; = —qul +22
&:—xl - Az, +z4
dt (3.2.3.9)
dz, _ /- oa, ’1+8an71 '2 iy
dt ox, 0z,
fomfio| 9254 9% (3.231)
ox, 0z,
1
Vn(xl,zz,...zn)=Vl(xl,xz,...,xn_l)Jrgzn2 (3.2.35)
So:

n—1 _
I/n(xl’z2az3):_/,1"1')(:12 _Z/Ikzlz +Zn—lzn +Zn(fn+uj
k=2

u=—f—-z,-z, ,—Az (3.2.3.1)

Moreover, the closed loop system will be

dx,

Z = —&xl +z,
dz
72 =—x,— 4,2, +z,
t
dz
= n—1 _/171271
dt

(3.2.3.u)

20



The Lyapunov function of equation 3.2.3.u will be:

V(xl,zz,z3 A% Z/I Zy

(3.2.3.v)

3.2.4 Model Based Predictive Control (MPC) [63]-[64]

MPC usually includes the process model which is often a linear discrete system model
obtained from experiment, a predication equation which runs forward for a fixed number
of time steps to predict the likely process behavior, a known future reference trajectory,
and a cost function which usually is quadratic and costs future process output errors. The
way how MPC works is basically to minimize the variance of the output from the system
at the k th step ahead in the future, where k is the estimated plant dead time.

Let the process model be:

(k)= ((‘{)) u(k 1)+ gﬁq ;A(k) where A(q) . B(g) . C(q) . D(q) are

polynomials in the backward shift operator ¢~', A is the Gaussian white noise sequence

with zero mean.

Denote t as current time and the design objective is to choose a control U (¢) :
U(t) = Min(E{y,., |’}) (3.2.4.1)
And the cost function can be defined as:
J, = E{[y., +Au’]} (3.2.4.2),

where A is a weighting factor.

If we write the cost function:

N
‘]t = Z[yterjH + //tjquz] (3243)

Jj=0

, then the predictive term can be extended over a range of future time.
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3.2.5 Fuzzy Control [65] [65]

Fuzzy logic controller

£ &
-% Fuzzy =

S Inference N, U(t) Output

Reference 2 Mechanism =h Process g Y(t)p
Input N 8
R(t)——> = g
=
Rule base

Figure 3.4 Fuzzy Control

A fuzzy controller as shown in Figure 3.4 is designed to roughly emulate the human
deductive process as shown in Figure 3.3 and the typical rule base is a set of “if-then”
rules that are quantified via fuzzy logic to represent the knowledge that human experts
may have about how to solve the problem in their domain of expertise. The fuzzy
inference mechanism successively decides what rules are most related to the current
situation and applies the action indicated by these rules. The fuzzification interface
converts numeric inputs into a form that the fuzzy inference mechanism can use to
determine which knowledge in the rule base is most relevant at the current time and
generate the fuzzy set of output. The defuzzification interface combines the conclusion
reached by the fuzzy inference mechanism and provides the numeric output. The fuzzy
logic control provides a formal methodology for representing, manipulating, and
implementing the human’s heuristic knowledge about how to control a system. Both
inputs and outputs are real variables and need to be fuzzified and defuzzified. The
important component of a fuzzy control system is the rule base and inference mechanism.
The rule base is often implemented based on the linguistic expression of expert

knowledge. The inference mechanism can be implemented mathematically.
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u, (U sty yentt,)) = ud! () *uds (u,) * .. *ud’ (u,)

(3.2.5.1)
where u,(u,,u,,...,u,) 1s the certainty that the antecedent of rule i match the input
information (u,,u,,...,u, ), uA’(u,) is the membership function associated with fuzzy set
A/ and input u, .

For i th rule, the computed fuzzy set with membership function is
ué;(yq) = u[(ul,uz,...,un)*uB; ,)

(3.25.2)
where uB; (y,) specifies the certainty level of output y, in fuzzy set B;. The overall
implied fuzzy set with membership function:
uB,(y,)=uBl(y,)®uB(y,)®..®uB} (v, (3.2.5.3)

, where ® defines x @ y = max{x, y}.

The control system needs to defuzzify the fuzzy set computed from the input to output
the numerical value to the plant. There are a few criteria including the Max, center of area
(COA), center average, center of gravity (COG), etc. A very common method is COG, in
which a crisp output is chosen using the center of the area and area of each implied fuzzy
set and is given as follows:
R
| Zc;quuﬁ’;(yq)dyq
o = =L (3.2.5.4)
) || uBy(v,)dy,

, Where c; is the center of area of the membership function of B associated with the

implied fuzzy set éé for the i th rule, the fuzzy system is defined such that

R
; Ltu;(yq)dyq #0 forall u,. (3.2.5.5)

3.2.6 Robust Adaptive Control [59]-[61]

Consider a SISO nonlinear system represented by:
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y(n) = f(y’ )‘;7. : .J y(nil)’uﬂl/‘lﬂ‘ . "u(’nil)) + euu(m) + A(y’ )';J. . .’ y(nil)’u’l/‘l’- : .’u("n71)3 a)) + d(l)

(3.2.6.1)

, where y is output, u is control, y' is ith derivative, d (t) 1s unknown bounded

disturbance; A( ) is uncertain nonlinearity and unmodelled dynamics, € is unknown

parameters with known sign.

Let:

_ _ ., _ 1)
Xy =V, X, =Y ,'--,xn—y”

— —,, M — 5, (m=1)
Zy=U,Zy =U oz, = U

X, =f(x,2)+0v+A(x,z,0)+d(t)

Xx. =x.,,where 1<i<n-1

i i+1°

z, =z, ,where 1<i<m-1

zZ =V

v=u"

The unmodelled dynamics is described by:

o = q(w,x,z2)

(3.2.6.2)

(3.2.6.3)

(3.2.6.4)

(3.2.6.5)
(3.2.6.6)

(3.2.6.7)

(3.2.6.8)

We assume that A,q are unknown nonlinear functions which are continuous and

Lipschitz and satisfy
A(0,z,0)=0

Az, < el + el + el

Then the control scheme is:

e =x-),
GH=X%")

_ (n-1)
en _xn _yr
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e=[e,e, e, (3.2.6.11)

>%n

e=Ade+b[f(e+7,,2)+0v—y." +Ale+7,,z,0)+d(1)]
i=Az+bv, (3.2.6.12)
w=q(w,e+Yy.,z),

é=A e+b[Ke+ fle+7.,2)—y, " +0v+Ale+¥,,z,0)+d(1)] (3.2.6.13)

We introduce a dynamic signal described by:

;:—Eor+r, where »(0) = »° > 0 and ¢, €(0,¢,) (3.2.6.14)

m 2

A
g d,=r,(e,y,.) that satisfies with Lyapunov condition

2 —
Vole+ ¥,

r, = ||e +y,
V (e(t)) <r(t)+ D(t), where D(¢) is a defined function
The robust adaptive controller is then designed by:

v=—f e'Pb{[f(e+7,,2)] +|e+7¥,
:v(e,z,r,f,,ﬂ)

] e PP + (Ke)? + 1

(3.2.6.15)

, where g is the adaptive parameter of the controller and ¢, ' is the inverse function and
is a function of classx .

P is Lyapunov matrix under the condition of:

PA, +AmT =—0, where 0=0" >0
ﬂ = ﬂm (e’Z’r’yr)_rO-lB
B, = l“(eTPb)2 {f(eJr yr,z)]2 + ||e+ v, ||2 + ||z||2 + [a_l (2r)]2 + (Ke)2 + 1}
= ﬂm (e’ 7", .)_}r )

(3.2.6.16)
For the design constants we assume they are known and satisfy the condition
of7>0,6>0.

In the case that not all the states are available, output feedback control is implemented

based on the high gain state observers.
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J1<i<n-1 (3.2.6.17)

, where ¢ >0 is a small constant, o, >0,i=12,...,n are chosenso that 4, =4-K _C isa
Hurwitz matrix, andK, =[o, , - , o,],C=[1 , - ., 0]
To eliminate peaking in the implementation of the observer, we define

& =1 where 1<i<n (3.2.6.18)
&

Thus, the observer can be designed by:

54i=Qi+1+ai(el_q1) .

- , where 1<i<n-1
Sqn = O-n (el _ql )
In order to prevent the peaking from entering the control system, we saturate the control
signal and adaptive controller outside of their domains of interests.

And for v(e,r,5,,).8,(e.r,7,), we can denote the following equations:

v (e,r, 7., B)= Mvsat[WJ (3.2.6.19)
B (er,y)=M ﬁsar[MJ (3.2.6.20)
Mﬂ

sat( ) represents the saturation function.

Thus the robust adaptive output controller can be obtained by replacing v(e,r, 7,,g) and

B.(e,r,5,) With v*(e,r,5,,8) and g *(e,r,7,, )

Copyright © Xiaodong Na, 2008
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CHAPTER 4

VISION BASED SENSOR: WELD POOL IMAGE PROCESSING

The geometry of the molten weld pool is critical to welding process. By equipping
a high speed pulse laser with CCD digital camera in our system, grayscale images of
weld pool can be acquired. However these images must be smoothed and segmented from
the background in order to extract the feature of interest due to the inevitable effects of
noises. Accuracy of the smoothing and segmentation has great influence on the
subsequent analysis

Image smoothing has been studied in many years. Fundamentally it is to remove
noises and enhance the interested regions. Various filters based on convolution masks
have been proposed for this purpose [67]-[70]. The side effect of image smoothing is
sometimes the resultant image is undesirably blurry, especially at sharp edges.

Segmentation is to distinguish regions that shares common properties in an image.
The properties vary with applications of interest and can be such as pixel grayscale, color,
etc. Several segmentation methods have been researched and applied in the past years,
among which thresholding and edge detection are the mostly mentioned [70]-[77].

The fundamental idea is, if we define {P(x,y)} as the local property and
{Si (x, y)| i :1,2,...,n} as the regions, then the segmentation of image X should satisfy at

least:

X = USI. , where §; # ® and @ is empty.

i=l1
S8, =@, Vi
{P(x,y)I(x.y)e S, =1

1P (v p)e(sUs, =0

In our research, only monochrome images are considered although all the methods and

principles related can be applied to color images as well.
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4.1 Image smoothing: Pre-conditioning

Image acquired with devices such as CCD or CMOS digital camera inevitably
generates noises and blurring. The blurring can be caused by the movement during the
capturing process, out-of-focus, short exposure time, or light distortion, etc. To get better
results in later processing, it is better to smooth these raw images. The fundamental
process can be either image deblur or noise removal or both [77]. The methods can be
implemented with various filters. Depending on the situation, it might need to repeat

debluring several times to get satisfactory results.

4.1.1 Deblur
Mathematically, a blurred image can be represented by a convolution between original
image and distortion operator, called PSF, point spread function [70] [71].
g=H=* f+n,where gis the blurred image, H is the distortion, and n is the noise
H*f[mn Zz}z i,n—j)
i=l j=1

The PSF convolution kernel can be Gaussian Shaped, with the form of

ex p( X ”] @.1.1)

PSF(x y) =

N

Several algorithms can be used to deblur the raw images. The algorithms can be either

linear or non-linear, either iterative or non-iterative.

4.1.1.1 Lucy-Richardson Algorithm [77 [78]
This algorithm requires no priori information about the original image. It performs

better when the noise is not too strong.

Zhu JS;» where h; is the PSF at position 7and f;is the pixel grayscale at location

Jj=1

n h..g.
t+1 t jid&j 1+l t g
o N ST o £ = T 4.1.2
fi =12 or f; =/ (lﬂ”j (4.1.2)
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The solution can be iteratively obtained.

4.1.1.2 Maximum Likelihood Estimator [78]-[79]
This algorithm computes the maximum likelihood estimate of the intensity of a Poison
process. Let f be the unblurred image, the expected value at the kth pixel in the blurred

image ithk/ S, - The actual kth pixel value g, is viewed as simply one realization of a
Jj=1

Poisson distribution with mean z hkj fJ }
j=l

Accordingly,
Sty (
e’ (Z hkjfngk
j=1
plgclf)= = (4.1.3)
8k
—i hk/f/ n
e’ (thjf_/Jgk
=1
plelf)=T] - (4.1.4)
k=1 8-
The maximum likelihood solution satisfies f; = f; thkli (4.1.5)

Dyt
Jj=1

, similar to that of Lucy Richardson algorithm

4.1.1.3 Wiener Filter [69] [70] [77]

Wiener filter is a linear filter. The filter assumes that the image is distorted by Gaussian
distribution noise. The filter tries to minimize the mean square error between the acquired
image and restored image. It operates in the frequency domain.

Glu,v)= H(u,v)F (u,v)+ N(u,v) (4.1.6)

Hence, in regular case,

ﬁ(u,v)z Gu,v)T(u,v), where T(u,v)=H '(u,v)
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A

F(u,v)= G(u,v)H " (u,v)+ N(u,v)H " (u,v) (4.1.7)

This way is very easily influenced by the noise because the inverse filter typically has
very high gain at high frequencies so that the noise term completely dominates the
restored image. In this case, future attempt should be taken to reduce the noise
amplification.

The Wiener filter minimizes the mean-square-error:

e = | () 750 | (“.18)
Fu,v)= G(u,v)ZEZ::;, where W (u,v)= P (u,P:)(JL:’;’}N)(u,v) (4.1.9)
T(u,v)= H () (4.1.10)

) + 51

, where S, (u,v), S, (u,v) are the power spectra of the noise and the original image.

4.1.2 Denoise

Digital images are prone to variety of types of noise, as the result of error in the process
of image acquisition. When image is acquired directly in a digital format, the mechanism
for gathering the data such as CCD detector can easily introduce noise. Several methods

are available for noise removal with suitable filters.

4.1.2.1 Linear Filter: Statistical Average [69] [70] [78]
The output image is based on a local averaging of input filter. The idea is to replace

each pixel value with the average of its neighbors including itself, defined by the filter

window.
1111 1]
1 1111
Wjkl=—{1 1 1 1 1] (4.1.11)
25
11111
1111 1]
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The filter is normalized so thach[ j,k]zl. This is to guarantee the signal energy

preserved before and after the convolution.

4.1.2.2 Gaussian Filter [69] [70]
Image is convolved with Gaussian mask whose parameters are determined by Gaussian
function:
1 x4+’
hlx,y)=——exp| — =h e/ 4.1.12
(y)zwp[ MJX} (4.1.12)
4.1.2.3 Median Filter [69] [70] [78]
Median filter replaces the pixel value with the median value of the neighboring pixel
and itself.
124 126 127 ..
120 150 125 .. (4.1.13)
115 119 123

, where the neighboring values are {115,119,120,123,124,125,126,127,150}and the man

value is 124

4.2 Thresholding

Thresholding is the simplest and most fundamental segmentation method. It has been
studied for many years and various algorithms have been proposed [69]-[721]. The idea
of thresholding is to select a level of grayscale and partition the image into two sub-
classes that include pixels with intensities below and above the threshold level.
Accordingly, thresholding can be classified into two categories: global algorithm and
local adaptive algorithm based on how the threshold level is selected. In the global

algorithm, one threshold is selected across the whole image. In the local adaptive
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algorithm, the image is partitioned into sub-images and threshold level is selected in
according with the local property.

Define { 1, g|(x, y)} as the grayscale function of the image before and after the
threshold and (x, y) is the location of the pixel and7 is the threshold level. Then after

thresholding, the image will be:

0 f(x,y)<T
g(x,y)={1 Hey)sT 4.2.1)

It is obvious that the threshold value is the key parameter in thresholding. There are
many existing methods to selecting threshold. Common methods include statistical mean
and histogram based [70] [80], iterative methods [81]-[82], optimal procedure [84],
entropy based [85], fuzzy [86] and neural network [87].

4.2.1 Global Threshold: Mean Value [70]

T = mean(f(x,y)). (4.2.2)

This method is very simple, but inevitably influenced by the noises. It performs well
when the regions distinct very sharply, especially when the histogram only has one or

two peaks.

4.2.2 Histogram [71]

The valley between the two peaks is one good point to start. For the
grayscale 0<z<L-1 the valley  threshold  value z" should
satisfy h(z*)< h(z* - l)and h(z*)< h(z* + 1), where /(z) is the histogram.

4.2.3 Iterative Threshold [72]

At first, select an initial estimate of threshold level at7], for example, the average

intensity of the all the pixels.
Then partition the image into two sub-classes {C,,C, }, such that{C, < T,,C, > T, }.
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Calculate the mean intensity values {z, 1, } of the two sub-classes.
Select a new threshold at7 = %(,u1 +11,).

Repeat procedures until 7 converges.
4.2.4 Optimal Threshold (Otsu’s method) [74]

Otsu’s method chooses the threshold to minimize the weighted between-class variance
of the pixels during the thresholding.

Assume the grayscale level of the image isi = {1,2,--~,m} , the weighted between-class

variance is represented by:

o’ (t) =q, (t)of(t)+ q, (Tk )azz(t), where the class probabilities are estimated as:

q, = [Z;:P(i) andg, = ZP(i).

i=t+1

The means of the classes are given by:

=S iP(i)
m(t)= le 0 4.2.3)
(1) = 1 5238 (4.2.4)

, where P(i) = Ui N is the total pixel number and #, is the number of pixels in level i

The individual variances of the classes are represented by:

o)=Yl 0 L ((’t) (4.2.5)

i=l1 q

i=t+1

)
SORWEAO 426)

The algorithm scans the full range of ¢ within [1,256] until it maximizes o, (¢).
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4.2.5 Adaptive Threshold [69]

This method is realized in two steps:

At first, the image is partitioned into sub-images{S,,S,.....,S, }. The size of the sub-

images can be determined by the histogram. In our case, we apply the size at50x50. For

every sub-image {Si,i = 1,2,...,m} , the threshold is selected in accordance with the
statistical mean7, = mean(S, ),i =1,2,...,m . The images are then thresholded according to

the local threshold values 7' = {Tl,Tz,....,Tm}.

4.2.6 Least Mean Error [80]
Assume the proportion of the particle pixel corresponding to the whole image is 6

and the background is1— @, then the probability of the particle can be represented by:
plz)=tp,(2)+(1-0)p.(2) 4.2.7)
At any level T', the probability to detect target as background is:

o0

E(T)= [ p(z)dz (4.2.8)

T

And the probably to detect the background as target:

T
E,(T)= [ p,(z)dz (4.2.9)
So, total probability is:
E(T)=6E(T)+(1-0)E,(T) (4.2.10)
Let:
aE—(T) =0 (4.2.11)
oT
Then:
—p(T)+(1-0)p,(T)=0. (4.2.12)
9% _ (T_‘z‘l)z = _(T_f‘z)z (4.2.12)
(1-6)o, 20 207
Suppose the proportion satisfies Gaussian distribution:
p(2)~ N(w,0,) (4.2.14)
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p.(2)~ N(w,,0,) (4.2.15)

Then, if
ol=0,=0" (4.2.16)
(4.2.17)

2
r=HtH, T 0 .
2 H—pu 1-0

4.2.7 Center of Mass [70]
The threshold level is determined in accordance with the location of the center of mass,

which is:

m

> xf(x,y)
(42.13)

Center _ X =

;f@J)

> f(xy)
Center Y =2 ——— (4.2.19)

;f@ﬂ

4.2.8 Fuzzy C-Mean [86]
Let C be an integer between [I,7] and {X,,%,,...,x, | denote a set of column vectors

inR”, where p represents the number of features in each vector. Given X', we say that
C fuzzy subsets {X — [0,1]}are a fuzzy C partition of X if the following conditions on

the membership value u, for the cluster i and the feature vector x, are satisfied:

u, =u,(x,)|(1<i<C1<k<n), where 0<u, <1,Vik

C
u, =1,Vk (4.2.20)
i=1
0< Zuik <n,Vi
k=1
their ~membership by regions

Grouping pixels blocks according to
yieldsU = [u, |1 <i< ¢ <k <n,where U denotes the fuzzy membership matrix of pixel

block k in region i and ¢ denotes the number of regions. The matrix thus becomes:
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" (4.2.21)

Each row of matrix U represents the membership grade of all blocks belonging to
region R,
The method minimizes the membership function:
JU)= 22 ) (=) (4.222)
i=1 k=1

, where V' = [vl,vz,...,vc]holds the vectors representing the center of each region

4.3 Edge Detection: the Goal

Edge detection is another common method for image segmentation [49]-[53]. It
relies on discontinuities in the image data to locate boundaries of the segments and is the
fundamental feature of the image. Because edge functions like high frequency signals, it
can be recognized by mask filters. Considering the tendency of the pixel grayscale, there
are three different edges. The first is Step-edge, in which grayscale jumps from one level
to a higher one. The second is Roof-edge, in which grayscale gradually increases to some
extent and then decreases. The third is Line-Edge, in which grayscale changes from one

level to the other and then back forth. Step edge is mostly used and studied.

Step Edge Roof Edge Line Edge

Figure 4.1 Edge Curve

Various edge detection methods have been studied. Common methods vary from

gradient and zero-cross of second order derivatives to statistics. The detection has been
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improved from open to close loop. Since edge can be described as the discontinuity of the
signals, and especially given the relationship between the maximum point or spot and the
signal first differential or second differential, it is reasonable to determine the edge with
finding the signal maximums. On the other hand, considering the fact that derivatives can
be approximated by numerical methods, if derivatives happen right at every pixel, then

the derivatives can be represented similarly like a discrete equation.

According Taylor series expansion, if expanding f (x + Ax) aboutx , then

Pt Ax)= f(x)+Axf’(x)+% £
4.3.1)
Then
rx)=L (“ixx)_f (x)+o((Ax)2) (43.2)
Or:
fx+Ax)- f(x—Ax)
[ (x)= e +o(Ax)
4.3.3)

Let f(x,y) be the image signal distribution related to attributes such as intensity,
lamination, and grayscale, with x, y the pixel location in the image.

Then the gradient of the signal can be calculated through the gradient:

Vi(x,y)= (g—i,%j (4.3.4)

Similarly, we can get

Io/]- J(aj (2] 435
%

= tan™’ (4.3.6)

For approximation, the gradient can be simplified with:
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V) =(f(xy)- fx=1y). f(x.y)- flx,y-1)) (4.3.7)

, given Ax as the pixel distance

Or,

;j;r(;iﬂy) f((’y) f(;( 17y)

Vf,(x. )= £ y)- f(xy-1)

The existent issue of above approximation is that the gradient approximation is
actually at the point(x—1/2,y—1/2), not at(x, y). As a result, the edge location would be

shifted by one half of a pixel. So, a better choice for the approximation might be:

Vi) =(f(x+Ly)- fx=Ly) f(x, y+1)- f(x,y-1)) (4.3.9)
Or,

fo(x,y)=f(x+1,y)—f(x—1,y)
ny(x,y):f(x,y+1)—f(x,y—1)

Whatever the operator is used to approximate the gradient, the resultant vector will

(4.3.10)

contain the information related to the edge. The magnitude of the vector represents the
strength of the edge. Its angular direction shows the path of the edge change.

Simple methods implemented horizontally or vertically such as Prewitt or Sobel [70]
gradient operator based on convolution masks are to calculate gradient magnitude and
direction to locate the edge. Canny [68] method aims to optimally find the edge points
with hysterisis tracking and two level thresholds. Laplacian [90] of Gaussian zero-
crossing measures the second spatial derivative of the image function to locate the peak
of intensity. Standard techniques also include wavelet analysis [91]-[93] and Hough

Transformation [48]

4.3.1 Multi-Scale Edge Detection via Local Normal Maxima [91]-[93]

Define two wavelet functions along xand y:
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¢ (x,y)= Oegx,y) ,and ¢’ (x,y)= 00(x. ) (4.3.11)
b oy

, where 6(x,y)is a smoothing function.

The signal has to satisfy the conditions:

T Tw(x, y)dxdy =0 (4.3.12)
T Tw(x, y)dxdy =0 (4.3.13)

If the smoothing function is Gaussian distribution:

2 2
0, y) =5 — exp(— a 2;2y ] (4.3.14)
Then we have:
. 1 x4y’
¢ (x,y)= g exp(— 202y ] (4.3.15)
1 x*+ P
¢ (x,y)= - exp(— zgzy ] (4.3.16)

Suppose the image function:

f (x, yel (R)) satisfies with the condition:

£ (e, )= £ (3,30 ) < Kﬂx —x,[ +]y - yol)% (4.3.17)

, where K, are constants and L means Lipschitz.

Choose multi-scale ( y i %j along xand y, then

d
)] e ||
2 ) 2 =9 =2'VIf =6, 4.3.18
Y

The norm of the gradient is represented by:

(4.3.19)

The edge point can be determined by searching the local maxima of the gradient.
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4.3.2 Roberts [69]-[71]

L. G. Robert started to study on edge detection since 1960s. He introduced the
method of Robert Operator.

Robert Operator is to calculate the maximum of all the gradient vectors and then

filter by threshold, which is,

Gli, )=/ )= 141 j+0F + (1) 141, )Y (4.3.20)
The implementation is to use two 2 x 2 filter masks to convolve the signal matrix

and the masks can be written as:

g [t © 4321
=l (4321)

o 43.22
Yl-1 0 (43.22)

Let f (x, y) be the grayscale function of the image. The edge can be located by

gradient:
9 o
Vf = =2 |- 432
r=(6..6,) @wa (43.23)
The norm of the gradient G is calculated by:
V7| =+lG.[ +[G.[ (4.3.24)
V1= A1) = £G4 1, 1)+ G+ )= £+ 1,5 (43.25)

4.3.3 Laplacian [69] —[71]

The idea is from the zero cross of second order derivatives, where the signal curve
has the maximum or minimum.
Define the function f(x,y), then the Laplacian transform will be

.. (0 0 _(xy)  of(xy)
\% f _(axz + ayz Jf(xay)_ 6X2 + ayz

(4.3.26)

The common mask is
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0O 1 O
L=|1 -4 1 (4.3.27)
0O 1 0
And
1 1 1
L :% 1 -8 1 (4.3.28)
1 1 1

4.3.4 Prewitt [69]-[71]

Prewitt studied the convolution effect of 3x3 mask in 1970s. The idea is similar to

Robert Operator
-1 -1 -1
P,={0 0 O (4.3.29)
1 1 1
-1 0 1
F=-1 01 (4.3.30)
-1 0 1

4.3.5 Sobel [69]-[71]

A 3x3 mask is used by convolution to approximate the partial derivatives and

determine the local maximum points.

12 1
S,=l0o 0 o0

-1 -2 -1

o (4.3.31)
S=-20 2

-1 0 1

A simple analysis on Prewitt and Sobel operators:

Assume the grayscale distribution satisfies the formula like
M, , =ox+ fy+y, with gradient as (a, )

Then the pixel will be like
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—a-fB+y —a+y —-a+pf+y
-B+y 4 B+y (4.3.32)
a-pF+y a+y a+pf+y

If we define the operators as

-a -b —-a —-a 0 a
0 0 O land|-bH 0 b (4.3.33)
a b a a 0 a

It is easy to see the result after the convolution

g. =2p(2a+b)

¢ =2a(2a+b) (4.3.34)

Then the gradient will be

G=4g +g =2Qa+bNa’+p’ (4.3.35)

So, 2(2a +b)=1

Different values of a and b will determine the Prewitt and Sobel Operators

In Prewitt, a=b=1/6. in Sobel, a=1/8 and b=1/4

How to determine the best case to apply Prewitt or Sobel operators depends on the

image signal noises, although there are actually no strict regulations on its applications.

4.3.6 Canny [89]

This is one of the most nominal methods till present. It was introduced by John
Canny in 1986. It follows Canny criteria including Good Detection, Localization, and
single response. Canny method has been studied and developed after its origin. To realize

good detection requires max SNR (signal noise ratio), which is
b, \ [ Gl-x) ()

H fﬁfz(x)dxl/z

n no
, where n,is the square mean root of the unit length noise amplitude.

SNR = (4.3.36)

Let f(x)be the impulse response of the filter, with x e [-w,w] and G(x)the edge
function, n(x) the noise,

Good localization requires the expectation
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E(xoz): EI-HHH(XO)Z] _ nozf;fvz(X)dx
(E, O U_””G'(—x)f'(x)dx}

U”” G'(— x) f (x)dx
[" 2 (x)dx

(4.3.37)

Loc(f)= (4.3.38)

ny

The object will be to find a function

f (x) , with the performance index:

J= U G- x)f (x)an)[ G'(~x)f ()
[ 72 nf

The criteria of the single response mean that the implementation should eliminate

(4.3.39)

ny

multiple possible responses to an edge and determine the max points of edge.

One of the advantages of Canny method is its dual thresholds technique. Threshold
level can be achieved by signal histogram. Matlab uses 07-0.8. The method greatest
avoids the effects of noise and error. When implementing, a higher threshold level at first
is calculated by the histogram and then the lower threshold level will be scaled down by
0.4.

The difficulty to the edge detection is the width of the filter mask. The wider it is,
the better the performance is. The process is multi-stage.

At first, a 2D Gaussian filter mask is convoluted to get rid of noise, for example

2 4 5 4 2]
4 9 12 9 4
—15 12 15 12 5 (4.3.40)
4 9 12 9 4
2 4 5 4 2]

Then Prewitt, or Sobel Operators are used to approximate the directional gradient

G|=4/G? + G} , with the angle 6 = arctan[ gx ]

y
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As a result, the edge direction will be determined. With aid of specific procedures
such as non-maximum suppression, streak elimination, and threshold filtering, the edge

will be achieved in the end.

Copyright © Xiaodong Na, 2008
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CHAPTER 5

HAMMERSTEIN NONLINEAR IDENTIFICATION: PROPOSED

5.1 Theoretical Background

e(t)
u(t) w(t) Linear Dynamics y(t)
— f(.) — G(qil): B q—l
A c[1

Figure 5.1 Nonlinear Hammerstein model structure

We consider a discrete time SISO (Single-input-single-output) Hammerstein system as

shown above, where u(k), y(k) are the system input and output respectively. The
intermediate signal v(k) is not measurable but can be eliminated by the nonlinear

function f (0); G(q) is the linear dynamic transfer function of the system represented by

Blq™! : : : : :
G(q’1 ): 7 q_l and q is the delay operator for the difference equation and satisfies with:

q
g y(k)= (k1) (5.1)
Without loss of generality, we assume the nonlinearity is a polynomial represented by:
p
Slo)=2 et (5.2)
=0
And the intermediate stat v can be written by:
v(t) = f(u(?)) (5.3)
Accordingly, the Hammerstein model can be written by a difference equation:
Alg™ (k)= Blg™)f (u(k))+ e(k), where (5.4)
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A(q_l)= daq” =aytaq’ ++a,q” (5.5

Blg")=3bg" =b,+b,q™ ++b,q" (5.6)
i=0

a, =1 (5.7)

f(u)zic,ul =c,teut+-+cu’ (5.8)

=0
Accordingly, the linear dynamic can be written by the transfer function:

1) B(Z_l)_ b +bz_1+...+bmz—m
G(Z 1)_ A(Z*I)— 1°+ allz,l raz”

, Where z is the operator of Z transform

With simple substitution, the Hammerstein model is rewritten by: (5.9)

Zay —i) Z v(k - j)+e(k) (5.10)

Jj=0

Or
y(k):—zn: k=) +§:bjzp:c,u" k- j)+e(k) (5.11)
i=1 =0 =0

If we convert it into matrix form, then we have:

y(k)=¢"6 (5.12)

5 =Fslem1) o =slemn) ull) < alkm) @ ®) -]
(5.13)

9T=[al eoa, by, - b,e, by, - bmcp] (5.14)

Let

w=bc (5.15)

And rewrite the parameter

m0

GT:[al e, We o W W, me] (5.16)

Accordingly the Hammerstein model identification becomes to find the parameter &. This
can be obtained using Least Square method based on the data pairs of input and output. It
is easy to see that, if the static gain of the linear dynamics is unity, the system has the

property of:
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_by+b +---+b,

= (5.17)
l+a,++a,

Glz"),.=Gl.,

This is true especially when the system static response is mostly determined by the
nonlinearity function.

Let,
D> wy =(by+b+-+b, )e,, where [=12,--,p (5.18)
j=0

Then,

m

Z Wi
j=0

c, = 5.19
! by+b +---+b, (.19
Or,
2%
¢ = /=0 , where [=1,2,---,p (5.20)
l+a,+a +--+a,
And
Wy .
b, =—=,where j=12,---.m (5.21)
1T

So, the parameters of the nonlinearity and linear dynamics can be also obtained.

5.2 Conditions for the Method

Just like it is very challenging to identify any nonlinear system, Hammerstein model is of
no exception. Obviously, the higher the order of the linear dynamics, which means the
more the zeros and the poles, the more complex the system model will be. Also,
sometimes, it is very difficult to find a suitable format for the nonlinearity function to
complete the Hammerstein structure. For the control purpose in the future study, we
certainly expect that the model of low enough model and simpler nonlinearity. To this
end, we further make following assumptions

Assumption 1: Zero of noise

For simplicity of identification procedure, we assume the noise if zero.

Assumption 2: Excitation signal input

47



The excitation signal u(k) of the system is a stationary normally distributed sequence

over the entire range of the input signal. The input signal is of persistent excitation and
randomly distributed multilevel amplitudes. As a result, the model can be estimated by
the data set of:

(k). (k)b =12,-.N

Assumption 3: no zero in the linear dynamic

Apparently the more the amount of the zeroes in the system, the more difficult the
identification procedure will be. And if the model is too difficult and complex, it will be
no use for further control design. It is known that the dynamic characteristics of a linear
system are dominated mainly by the poles. And the poles are actually the roots of the
characteristic equation, which is the denominator of the linear dynamics in the
Hammerstein model. Moreover, typical laser welding process contains no unstable zeros.

Accordingly, it is reasonable and feasible to simplify the linear dynamics as:

M) _ b (5.22)

x(z) ayz"+az"" +-+a,

And for the condition of unity static gain, b might satisfy with:
b

1= , (5.23)
l+a +-+a,

Or

b=1+a,+a,+-+a, (5.24)

One thing to note here is that sometimes this relation among coefficients might not be
necessarily satisfied because of calculation error.
Assumption 3 is also true under the assumption of 2 when the input signal is a random

series with bounded amplitudes during every time interval.

5.3 Simulation

To show the feasibility of approximating the linear dynamics with non zero model, we
give following simulation.

We assume the linear dynamic subsystem can be represented by:

y(k)=1.0669y(k —1)+0.2275 y(k —2) = 0.1u(k )+ 0.06u(k —1)+0.0006u(k - 2)

Or,
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-1 -2
G(z’l ): 0.1+0.06z _ + 0.0006272 (5.25)
1+1.0669z" —0.2275z
According to the analysis above, we simply the model as
(5.26)

y(k)=1.0669y(k —1)+0.2275y(k —2) = 0.1606u (k)

For simplicity, we let the input be the step signal

15 . |
---NonZero
---with Zero
1 r T i e e
.-"'
i
H
H
05- 5 =
H
H
H
H
H
0 ik .! | | |
0 50 100 150 200 250 300
Time

Figure 5.2 Simulation Comparison for step input

To further investigate the difference, we take a PRTS (Pseudo-random-ternary-series) as

input signal.
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Figure 5.3 Simulation Comparison for PRTS Input
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Figure 5.4 PRTS Input

5.4  Summary

We simply run the simulations to compare the responses of the two models under step
signal and PRTS signals. It is easy to see that the responses of the two models are strictly

identical. This basically shows two possibilities for later Hammerstein identification:
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1) Under the conditions, especially of specific test input signals; we can approximate
the linear dynamics with non zeros. In other words, we can assume the
denominator as a constant b

2) The dynamic characteristics can be obtained even if without the knowledge of all
the coefficients of the denominator B(q_1 ): Zbiq’i =b,+bq " +---+b,q". This
i=0

has been shown in the above simulation, although this case is only under the
assumption that the input is step based signals. We believe this condition is best
for our identification of laser welding processes. However, we also believe that if
necessary, the zeros can be added into the linear dynamics and identified
following our method with much less known parameters in the system.

Before we go into the detail about our proposed Hammerstein identification, let us take a

look what happens if we make another assumption

y(k
u(k)

Figure 5.5 Hammerstein Structure Restructure

If we further replace the nonlinearity in the Hammerstein structure by a scaling gain
factor K = f (u), then the system can be equivalently considered as a specific linear

system, represented by:

W)= K—2ult) (5.27)
Alg

Or

W(K) = a,pl—i)+ by £(u) (5.28)

i=1
Accordingly, the identification is to find the nonlinearity function and the parameters of

the linear dynamics.
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To see how the algorithm could work, we can rewrite the model as:

y(k)=¢"0
o' =[-ylk-1) - —y(k-n) 1] (5.29)
0" =[a, - a, Kb,] (5.30)

Accordingly, the identification can be accomplished by estimating the parameters with

methods such as Least Square, and so on

Copyright © Xiaodong Na, 2008
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CHAPTER 6

VISION BASED SENSOR: EXPERIMENTAL SET UP

In our experiment, a CCD digital camera as shown in Figure 6.1 equipped with a
pulsed lighting laser is installed in the system to capture the images of weld pool (as
shown in the following figure). Image processing is implemented with Matlab image

processing toolbox [94] and LabView IMAQ Vision builder [95].

— e e — —— —— — — —— — — — — — — — — — — — — — — —

I

| Diode Laser System

| —

I

I I
Control I

I . Power .

| Signals Laser Driver I

I Supply |

| vV I

I

: Laser Beam Laser Camera |

| Head I

L—— — — _\ ________________ |

Welding Pool

Workpiece

Motor Drivers
S20620

X,Y Table with Motors ﬁwﬁ_
sk

Figure 6.1 System set up
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Figure 6.2.a Raw Images after ROI cropped

Figure 6.2.a is the raw image acquired from the vision sensor. Apparently, it needs pre-
processing before further feature extraction. As introduced in Chapter 5, there are
different methods. To get better results, we try different methods and compare the

performance based on system running time and processed results.

6.1 Results from Deblur

Results of debluring using above methods are shown in Figure 6.2. The leftmost is the
raw images. Among them the Maximum likelihood performs the worst, which basically
means the Poisson distribution assumption might be controversial for our application.

Other two are both applicable to our system.
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Maximum Likelihood

—

Lucy-Richardson Deblur Wiener Deblur

Al

Figure 6.2.b Results of Deblur

F‘“‘"’”

6.2 Results from Denoise
Results of filtering are shown as follows. Among them, it seems Average filter

performs worse and the result is a little dark. Others work better.
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Linear filter:Average Linear filter: Gaussian

N

Median filter Wiener Filter

42

Figure 6.3 Results of Denoise
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Table 6.1 Pre-processing Performance Comparison

Method Running time (ms) | Results (pixels%)
Maximum Likelithood | 78 55
Lucy-Richardson 82 95
Wiener Deblur 18 94

Linear Average

denoise 8 »
Linear Gaussian 22 92
Median 18 90
Wiener 22 90

6.3 Deblur and Filter Together

To better show the performance of image deblurring and noise removal, we run filter
and deblur together. Results are as follows. Without loss of generality, we choose median
filter for noise removal and winer filter for deblur. For our application, image deblur
actually makes the image brighter and clearer. Filter sharpens the regions in the images,

through which edge detection is easier to implement.

57



Image Deblur Deblur and Filter

F = P

Filtered Image Deblur+Filter+Edge

Figure 6.4 Results of Deblur and Denoise

6.4 Results of Thresholding

The results of thresholding with the threshold selection methods introduced above are
shown in the following for comparison. In the raw image, the black section in the middle
is the molten weld pool whose feature is what we are interested in.

Among them, Global thresolding based on histogram performs worse and loses too
much information because of the threshold level selected. Adaptive threshold seems to
work better. But besides the weld pool, it gives too much extra information which might
be complicating later processing. The one with the statistical mean, Center of Mass, and

Least mean error performs relatively comparable to each other. That is because
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theoretically these three share common grounds. FCM also performs better except it is a
little bit complex to realize and not suitable for real time image processing. OTSU and

iterative also generates better results and easily to realize in the system.

Histogram |
15005 j _____________________ é ____________________ ; ___________________ ; ______
o IRUR SO SU— SO
ST THNE SOR U W W—
| .
60 160 255
Figure 6.5 Histogram of Original Image
Threshold=110 Threshold=60

global threshold
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Iterative Threshold T=125 OTSU threshold Adaptive Threshold

Least Error: thresh=143 Cener of Mass: Threshold=126 FCM:threshold=188

5

Figure 6.6 Results of Thresholding
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Table 6.2 Thresholding Performance Comparison

Threshold Method Running time (ms) | Results (pixels%)
Global T=110 22ms 85
Global T=60 22 75
Global Average 21 90
Iterative T=125 78 92
OTSU 24 93
Adaptive 107 82
Least Error 184 90
Center of Mass 56 89
FCM 210 86

6.5 Results of Edge Detection

Edge detection results are shown in the following with methods introduced above.
Apparently, Canny gives deeper results, which also has too many edge points for later
process, same as Laplacian operator. Prewitt and Robert perform a little bit better, but it
seems losing more edge information interested. Wavelet demonstrate the best and the
edge interested is very sharp and distinct. Sobel also performs reasonably better, except it

has a gap on the top corner which might need edge growing or linking.
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Wavelet Edge Sobel Edge

Figure 6.7 Results of Edge Detection
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Note: system is running Window XP Profession, 1.6Hz Intel Pentium CPU, and 512
RAM

Table 6.3 Image Processing Method Performance Comparison

Running time .

Method Results (pixels%)
(ms)

Wavelet 111ms 95

Sobel 33 88

Canny 45 89

Laplacian 35 74

Robert 36 88

Prewitt 32 89

6.6 Calibrated Width: Maximum Edge
The calibration is to seek a map function between the real world and the digital image
world as shown in Figure. 6.8. In the experiments, we rotate the image 30 degree

counterwise to offset the angle of the laser line and use the calibration settings:

dx =10mm = 150 pixels
dy =10mm = 124 pixels &y
6 =60’

Figure 6.8 Calibration
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6.7 Architecture of Vision Sensor

LabView Software
Environment

Width

Image Acquisition through
ControlVisionInc System

Maximum line

Calibration

scan
A
Edge Dhtection Media! Filter
to depoise
A

Figure 6.9.a Feature extraction process

64



(a.b) (c.d)

Figure 6. 9.b Weld pool width diagram
In the experiments, because of the unseen noise, we apply median filter at first. The mask

template is:

1
G(st’) = 5 6.1)

o ek
S N Y
S S
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\

To further enhance the image, Laplace operator is applied to the image:

Figure 6. 10.a Processed with Median Filter

sz(xay): P + ayz (6.2)
Or,

v ];)E’;’y):f(i+1,j)+f(i—1,j)—2f(i>j) (6.3)
%:f(i,j+1)+f(i,j—1)—2f(i,j) (64)

With substitution, the operator will be:

Vif=fli-Lj)+f+17)+ £ j+1)+ i, -1)-47G, )

(6.5)
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Also, depending on the need, sometimes, we multiply the image itself for enhancement:

)= L)1)

Figure 6. 10.b Processed with Enhancement

To get better thresholding, we set up two ways. One is the range of the threshold level,
i.e. [110 135]. The other way is similar to adaptive thresholding. The procedure is:
At first, calculate the probability and the expectation of pixels:

m
G(x’y ) - N (6.7)

255

E(_X) y) = Z kG(x7 y) (6.8)
k=0

Then set the threshold

I = 7/E(x9 J’) (6.9)

Or
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255

T = ]/Z kG(x, y)
k=0

(6.10)
>
7/ _ 1 (6.11)
Figure 6. 10.c Processed with adaptive thresholding
For edge detection, as introduced above, we simply choose Sobel operator:
1 2 1
S=[0 0 0
(6.12)
-1 -2 -1
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-1 0 1]
S =[-2 0 2
1 0 1_ (6.13)

The detected and highlighted edge is shown as following:

Figure 6. 10.d Edge Detection with Sobel Operator
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Figure 6.10.e Highlighted Edge

Copyright © Xiaodong Na, 2008
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CHAPTER 7

NONLINEAR HAMMERSTEIN IDENTIFICATION: DETAIL

7.1 Continuous Identification

As introduced previously, system identification can be classified into two categories,
i.e., continuous and discrete [96]-[104]. The advantage of discrete identification is its
easiness [104]-[105]. The disadvantage is that its performance may be compromised by
the signal frequency and data completeness. Because dynamic systems are naturally

continuous, building a continuous model is relatively beneficial for control purposes.

¢
Desired/ — J O Process _bl’rocess!
Measured Optimal iﬁ(ﬂ:ﬂx(t),l(t),t ,ﬁ) Model
Output Computing Output

Figure 7.1 Optimal System Identification

Consider a standard state-space representation system:

%= F(x(2)u(t),,0) (7.1.1)

, where {x, u, 0} are the vectors of state, input or control, and associated
parameters, X is the first-order derivative of the state vector and F is the system function.

Then the identification shown in Figure 7.1 optimally computes the unknown parameters

with minimizing the cost function:

J(0)=gle)dr (7.1.2)
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, where eis the predictive error between the estimation and the measurement. g is the

objective function which is, for simplicity, represented by[54] [106]:

5
ISE, integral of square error, J(@)= | e2dr

0
t
IAE, integral of absolute error J (9) = j|e|d T (7.1.3)
0
v . -1
Input —""f(u) > G(s)fus ths +th 35 |y Output
aDsP2 +alsm—1 +.+a, Afs)
u ¥

Figure 7.2 Hammerstein Structure

Figure 7.2 is the traditional Hammerstein structure in which the nonlinearity directly
feeds into the linear dynamics, where the linear transfer function G(s) is generally

represented by:

m m—1
G(s)= bys : +blsn_1 +ootb, _ Bls) (7.1.4):
a,s" +as" +---+a, A(s)
f (u(t)) is the nonlinear function of the system input and the input of the linear dynamics;
{al. },i =0,1,---nand {bl. },i =0,1,---m are parameters of the system model; u and y are the
input and the output.

Denote

v(t) = f(u(?)) (7.1.5)
Then in the frequency domain:

¥(s)=Gs)Lf ((0))

(7.1.6)
, where L is the operator of Laplace transform.
Without loss of generality, denote:
a, =1 (7.1.7)
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K(u(t)= L (B(s)L(f (u(0))) (7.1.8)

, where L' is the operator of inverse Laplace transform.

Then with substitution, equation 6.2.6 can be rewritten as:
ao 1)+ a7 e)+ - () = K(u(r)) (7.1.9)

Rewrite it into matrix form:

y(e)=¢"(1)0 (7.1.10)
o)==y - V) 1 (7.1.11)
0" =la, - a, K@) (7.1.12)

Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown

parameters in equation 7.1.10-12. Among these parameters only K(u(¢)) varies with
inputs.
Suppose f (u(t)) is a polynomial:
fu(t))=Cy + Coult)+--+Cu’(t) (7.1.13)
Now consider step input u(¢)=U . In this case, f(u(x))is also a step signal and its
Laplace transform is L( £ (u(¢))) = £(U)/s; Further if we suppose equation 7.1.4 takes the

following form:

b

Gls)=— o (7.1.14)
a,s” +a;s  +---+a,

Denote

K\()="L"(b,f(U)/s)=b,f(U) (7.1.15)

Then with similar substitution, equation 7.1.9 can be written as:

a0y () +a,y ")+ (1) = K, (u(0))
(7.1.16)
, where K, (u(t))= K (u(¢)) and B(s)=b, is a constant.
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As a result, the proposed identification for a specific Hammerstein structure with
equation 7.1.14 as the linear dynamics and equation 7.1.13 as the nonlinear static
function in general can be achieved in two steps:

Step 1: Identify A(s) under different step input {U ; }, j=1,---,M and because of the use
of a step inputU ,,
Kl(u)zKl(Uj)zbmf(Uj) (7117)

is now a constant and can be treated as a parameter to be identified such that equation

7.1.12 can be written as
QT(Uj):[ao oy K(Uj)] (7.1.18)
Hence, A(s) and the value of b f (U _/) can be identified.

Step 2: Determine the nonlinear function f (u) and b, from the steady-state
responses Y (U ; )under step input {U i }, j=1- M.

In this case:

K(U,)=¢", ) (7.1.19)
With

$',)=h v, vz - vy (7.1.20)
And

o' =|p,c, b,C b,C, - b,C,] (7.1.21)

Then the parameters in b, f (U j) can be determined using a linear least square algorithm:

o=@ o) o[, - YU, (7.1.22)

o ='W, - ¢ U,) (7.12.23)

7.2 Continuous Identification: Error based
Above the authors propose and apply a Hammerstein based identification on the diode
laser welding process. This method is fundamentally applicable to the nonlinear

processes whose dynamics can be approximated by A(S) only. However, to ensure
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accurate results, the method requires the dynamic step response experiments to be
conducted at as more different inputs signals as possible. Sometimes it is very time
consuming. For this reason, the authors develop an error based nonlinear identification to
reduce the need for the number of step responses experiments. The method consists of
two steps and step 1 is the same as that in the Hammerstein identification.

Now assume u(t):U is the step signal applied to generate the only dynamic step

response experiment and
aoy(")(t)+ aly("_l)(t)+ .+ y(t)=K(U) (7.2.1)

is identified by 8" =[a, a, a K(U)] (7.2.2)

n-1
In the identification of the laser system, take one of the estimated models during a

specific input signal as the welding speed and obtain:
aoy(")(t)Jr aly(”fl)(t)%r .+y(t)=K(U,) (7.2.3)

The linear dynamic parameters of equation 7.2.3 above are now used as the estimates
of those in the system despite variations in the inputs.

Now assume a number of steady-state responses {y ; (00)} have been obtained under
{Uj} such that {yj(oo) U, bj=12,---M are available.

The objective is to identify the structure and the parameters for the nonlinear function
K(U) through {K(Uj) Uj}.

To this end,
a, y(”)(t)+ a, y(”*l)(t)+ ..+ y(¢)=1 is simulated. and the simulated steady-state responses

V; (o) is used to compute
KW,)=y,0)/ 5, (7.2.4)
Theoretically y, (oo) =1 according to finalization thermo of Laplace transform:

1

=1
ays" +as" ++ 1

|s:0

y(s)|s:0:

Then easy to see that

K(Uj): Vi (OO)/J,}J' (OOXK(U):I =Y, ()
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As aresult, a set of {k(U;) U, | will be easily obtained through a single model of linear

system using
aoy(”)(t)+ aly(”_l)(t)+...+y(t)=l (7.2.5)
and the static response experimental results as given above.
Then for any proposed structure of K (U ), its parameters can be identified using as

linear least square algorithm.

7.3 Discrete Identification: Another Perspective

Input bs"+hz"'+.+b B |  Output
GZ - I mo_
g = ) = ( o' +az” +.ta, A

Figure 7.3 Discrete Hammerstein Structure

Figure 7.3 is the discrete Hammerstein structure in which the nonlinearity directly

feeds into the linear dynamics, where the linear transfer function G(z) is generally

represented by:

m m—1
G(Z): b,z n+blz i +--4b, _ B(Z) (7.3.1)
a,z" +az +---+a, A(z)
f (u(k)) is the nonlinear function of the system input and the input of the linear
dynamics; {ai},i =0,,---n and {b,. },izO,l,---m are parameters of the system model;

u(k)and y(k)are the input and the output.

Denote v(k)= 1 (u(k)) (7.3.2)
Then in the Z domain: y(z) = G(z)Z(f (u(k))) (7.3.3)
, Where Z is the operator of Laplace transform.

Without loss of generality, denote a, =1 (7.3.4)

S(u(k))= 2" (B(z)z(/ (k) (7.3.5)
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, where Z'is the operator of inverse Laplace transform.

Then with substitution, 7.3.1 can be rewritten as:
a,y(k)+ay(k=1)+-- y(k —n) = S(u(k)) (7.3.6)

Rewrite 6.3.6 into matrix form:

0" =[a, - a, S(u(k)) (7.3.7)

Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown

parameters in equation 7.3.7 and among these parameters only S(u(k))will vary with the
inputs.
Suppose f (u(k))is a polynomial:
flu(k))=Cy+Cult)+-+-+Cu’(¢) (7.3.8)
Now consider step input u(k)=U in Figure.7.3. In this case, f(u(k))is also a step
signal and its Z transform is Z(f(u(¢)))= f(U)z/(z—1); Further if we suppose 6.3.1

takes the following form:

G(Z) B a,z" + alzl’)zl +:-+a, (7.3.9)
Denote:

K ()=L"(b,fU)z/(z-1))=b,f(U) (7.3.10)
Thenthen with similar substitution, equation 7.3.1 <can be written as:
agy(k)+aylk —1)+--y(k—n)= S, (u(k)) (7.3.11)

, where S, (u(¢))= S(u(z)) and B(s)=b,,is a constant.
As a result, the proposed identification for a specific Hammerstein structure with
equation 7.3.9 as the linear dynamics and equation 7.3.10 as the nonlinear static function

in general can be achieved in two steps:

Step 1: Identify A(s) under different step input {U j }, j=1L-- M
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Because of the use of a step inputlU; § (u)=s5 (U j)= b,f (Uj) is now a constant and
can be treated as a parameter to be identified such that equation 7.3.7 can be written as
0" (Uj): [ao A S(Uj )]

Accordingly, the model structure 4(z) and the value of b, f (U j) can be identified.

Step 2: Determine the nonlinear function f (u) and b, from the steady-state

responses Y(Uj )under step input {Uj },j =L---,M.

In this case,

Sw,)=¢"(, (7.3.12)
$',)=h v, v - vy (7.3.13)
0" =p,C, b,C b,C - b,C7 (7.3.14)

Then the parameters in b, f (U j) can be determined using a linear least square algorithm

0= (CDTCD)J(DT(“O +q +"'+an)[Y(U1) Y(UM)]T

whereCDT=[¢T(U1) ¢T(UM)]T

7.4 Extend to 2ISO model

u, wl »

—_—>

—> f(ulﬁuz) » g(w)  EEE—— y
u, W,

Figure 7.4 Two-input-Single-output Hammerstein System structure

The two steps model identification can expand to 2ISO case, with specific modification.

As shown in Figure 7.4, u is the input, y is the output, g(w) is the linear dynamics, wis
the intermediate input and f(u,,u, ) is the nonlinearity. For now, as SISO identification
above, we assume the linear system is time-invariant and the inputs u,,u, are independent

signals.
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The linear dynamic, in Laplace domain can be represented by:

G(W): B(S): bo +bls+-..+bmsm
A(S) a,+as+--+as"

(7.4.1)

Denote

w(e)= £, (0)u, (1)) (74.2)
Then in the frequency domain:

y(s)=G(s)L(f (u,(¢),u,(¢))), where L is the operator of Laplace transform.

Without loss of generality, denote:

a, =1

K(u,(¢),u,(2))= L' (B(s)L(f ((¢)))) , where L™ is the operator of inverse Laplace
transform.

Then with substitution, the system structure can be rewritten as:

agy"(t)+ " (e) + - 7(0) = Ko (1), 1))

Rewrite into matrix form:

We)=¢"(c)o

# ()=l - =0 1]

0" =la, - a,, K(u(t)u,)) (7.4.3)
Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown
parameters and among these parameters only K (i, (¢ ),u, (¢)) will vary with the inputs.

For simplicity, if we assume the nonlinearity can be represented by a power series, thus

m

ul,u2 Zch /ul u2 (7.4.4)

Then the input to the linear dynamics is:

w= ul,u2 | t)= chl /ul )u2 (7.4.5)

i=0 j=0
Now consider step input u,(¢)= U, andu,(¢t)=U, In this case, w= f(u,(¢)u,(¢))is also a
step signal and its Laplace transform is L( f(w(¢)) = £(U,,U, )/s ; further if the linear

by

n—l1

a,s" +as" +--+a

dynamics takes the following form: G(s) =

n

79



And denote K, (u) = L' (b, 1 (U,,U, )/s) = b,f(U,,U, ) then with similar substitution, the
linear dynamics can be written as:

aoy(”)(t)-i- aly(”’l)(t)+ ()= K, (u(t)) , where K, (u,(t),u,(t))=K(u,(t)u,(t)) and
B(s)= b, is a constant, where K, (u(t))= K (u(¢)) and B(s)=b, is a constant.

As a result, the proposed identification for a specific Hammerstein structure as the
linear dynamics and as the nonlinear static function in general can be achieved in two
steps:

Step 1: Identify A(s) under different step input {Uli,Uzj },i =1 m;j=12,--,n

Because of the wuse of a step input {UU,U2 j} , the static
nonlinearity K, (u,,u, ) = K, (UU,UZ_/.): bof(UU,Uz_/) is now a constant and can be treated
as a parameter to be identified such that the parameters can be written as
0' (U, U,)=la, -~ a., K@U,U,) (7.4.6)
Hence, A(s) and the value of b, /' (U U j) can be identified.

Step 2: Determine the nonlinear function f(u,u,) and b, from the steady-state
responses Y(Uh.,Uzj)under step input {UU,UZJ },i =1 myj=12,---,n.

In this case,

K(Un ) Uz./ ) = ¢T (Uu ) Uz,/
with ¢’ (U, .U, )=1 v, U2 - UU;l
and 0" = [boc0 b,c,, byc; bocmn] (7.4.7)

Then the parameters in b, f (U _/) can be determined using a linear least square
algorithm as
o=(@"o) o [y(U,.U,) - Y(U,.U,)

Ilm>

where <DT=[¢T(U11,U21) (Y U2n)]T

Im>

The proposed identification method obtains the parameters by estimating the linear

dynamics and the static nonlinearity separately. And when the parameters of the linear
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dynamics are available, the static nonlinearity is obtained based on the static signals

acquired when the system is steady.

7.5 Extends to MIMO model

For simplification, we start with a 2120 model

N
u, >
— L RS 0, g(w) >
u, W, Y2

Figure 7.5 2120 model

Assume the model structure can be represented by:

. b b . 0
[yl} = [a” o }{yl } +{ o }{yl } + [p“ }{wl} , where y, and y, are the output.
V) )y Ay | M b, by | ¥, 0 pyu|w

w, = ful,u2|t ZZc,]ul )u2 (7.5.1)

i=l j

w, = ful,u2|t ZZQ /ul )142 (7.5.2)

i=l j

Assume the predicted Hammerstein model is:

Vs Cy Cp || W dy dy | ¥, 0 ey | w

The parameters for the linear dynamics will be similar to single output system structure

and for the nonlinearity, we can solve it by minimizing the following objective function:

L >
J(Ci,j)= I(yl _JAjl) dr (7.5.4)
0
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! 2
J(di,j): .[(yl _JA/l) dr
0

By differentiating the objective function above with respect to

¢ li=12,,m;j=12,.n

oJ 1 o\ Ow

a :2.r(y1_yl)el1a Ldt
i 0 Cij
ﬁ‘w i

Accordingly, we will have:

(7.5.5)

(7.5.6)

(7.5.7)

(7.5.8)

T
t
[{C(i,j)| i=12,.,m;j= 132,---an}]r = All{{j(yl —a,y, —a,y, —b,y,—b,y, )Cn”ll”zj }}
0

t

, where 4 = [{A(i,j)}], and A(z',j): elluliuzj'[e“uliuzjdr

0

Parameters for y, can be similarly obtained.

Copyright © Xiaodong Na, 2008
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CHAPTER 8

HAMMERSTEIN IDENTIFICATION: EXPERIMENTAL STUDY

8.1 Experimental Setup

Laser — Laser |
current | Machine Vision

Welding System/ | welding
> pool [ ] lmasgngl-l* Pool
Servo rocessi Surface
Speed ' potor Sensor | Width

Figure. 8.1 Speed Input Open Loop Laser Welding System

The experimental system was set up as shown in Figure 8.1, using a laser driver to
power the laser head which generates the laser to heat the work-piece. The laser energy is
proportional to the current of the laser driver. The computer controls the welding process
by adjusting the laser energy and the welding speed. A digital camera with a high speed
shutter is equipped to capture the weld pool pictures at the speed of 30 frames per second.
The welding material is Imm mild steel sheet. The laser power is 1 kW . Four parameters,
i.e., laser energy, laser focus distance, incident laser angle, and welding speed influence
the experimental process. When conducting the experiments, we optimally fix the focus
distance and the incident angle at 89mm and 42 degree respectively. For better
measurements, the laser energy is operated between 38mA and 58mA and the welding
speed is controlled between 9.5mm/s and 13.5mm/s. In each experiment, only one of the
parameters, i.e., either laser energy or speed is changed. The experiment data is observed

until steady state is reached.
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8.2 Experimental Data Analysis

An example of the raw images on the weld pool is shown in Figure 8.2.a. The
processed image is shown in Figure. 8.2.b. The black field in the middle of the image is
the liquid weld pool. Because all the acquired images are monochrome, i.e., black and
white, the authors study the pixel intensity distribution of the images. Given the fact that
the histogram counts the total number of pixels at each grayscale value and displays the
data in graph, it is possible to see and isolate the distinct regions of interest containing
certain grayscale intensities. The histogram result is shown in Fig8.2.c. According to the
experimental study, there might be some relations between the intensity distribution of
the pixels and the penetration of the welding process. In average, for the intensities of the
pixels, the more they fall in the range [0 50], the more possibly full penetration takes
place; the more they fall in the range [200 250], the more possibly there is no penetration;
the more they fall in range [S0 200], the more possibly part penetration happens.
Although grayscale analysis is relatively easier to perform, it is very sensible to noises
and can only make rough prediction on the weld penetration. For quality monitoring
purposes, the topside weld pool width needs to be analyzed and controlled.

The open loop static responses under different laser currents and speed inputs are
shown as in Figure 8.3.a and Figure 8.3.b. Based on the open loop responses shown in
Fig. 8.3 and the observation on the width of the backside weld bead, the we find that (1)
increasing the laser current increases the topside surface width of the weld pool and the
penetration which is measured by the width of the backside weld bead; (2) increasing the
traveling speed decreases the topside surface width of the weld pool and the penetration.
However, sometimes the resultant effects of various factors can be compromised. For
example, when laser current increases, the width of the welding pool increases, but for
the same increase of the laser current, the resultant increase of the surface width of the
welding pool will also depend on the welding speed, i.e., if the welding speed is
relatively low, the increase is bigger; and if the welding speed is relatively high, the

increase is smaller.
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Figure. 8.2.a Raw image; Figure. 8.2.b Processed image

Figure. 8.2.c the histogram of the weld pool image
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Figure 8.3.a Effects of the laser current on the penetration
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penetration percentage

effect of laser current at speed 9.5mm/s
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Figure 8.3.b Effects of the laser current on the penetration

effect of speed with constant laser current 48mA
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Figure 8.3.c Effects of the welding speed on penetration
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8 35
speed mm/s laser current mA

Figure 8.3.f Mesh graph for the correlation of parameters
Through experimental study, we noticed that the system step response shown in Figure.
8.4 with the welding speed as the input exhibits a standard second order system. This
discovery is very beneficial especially for developing a suitable system identification
procedure. Given the fact that Hammerstein structure consists of an input nonlinearity
directly feeding into a linear dynamics, it might be possible to start with identifying a

standard second order linear system and then the nonlinearity after conditional revision.
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Step Response
at Speed of 13.2mmv/s, Laser Current 48mA

Measured Welding Pool
Surface Width mm

0 10 20 30 40 50 60
Sample Time Ts=0.2s

Figure 8.4 Step Response at speed of 13.2mm/s (laser current 48mA)

8.3 Experimental Identification on the Diode Laser System

For now, the authors only identify a SISO model in which y() is the topside surface

width of the weld pool and u(¢)is the reciprocal of the welding speed. Because the step
response shown in Fig. 6 exhibits a second order linear model, hence the authors start

with the structure:
T2 5(2)+ 2&T9(e) + y(t) = K (u) (8.3.1)
K(u)=b,fU,) (8.3.2)

Because only the position signals are directly measured in the experiments, the authors

implement the optimal computing method shown in Figure 8.5a to search the parameters
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Figure 8.5.a Continuous Identification Process

For the optimization procedure, NEILDER-MEAD algorithm [107] shown in Fig. 8.5.b
is applied:

Step 1:

Let the initial three estimated solution points be a , b and ¢
fla)< f(b)< f(c)and f is the function.

Step 2:

, where

If the three points or their function values are sufficiently close to each other, then
declare a as the minimum point and terminate the procedure.

Step 3:
Otherwise, choose new point e with esmy 2(m R C);
m=(a+b)/2
And if f(e) < f(b), then take e as the new c;
Otherwise, definer = (m +e)/2 ;
And if £(r) < f(c), then take r as the new c; if f(r)> f(b), then define s, = (c +m)/2;
And if f(s,) < f(c), then choose s, as the new c;

Otherwise, define ¢, = (a +c)/2 and choose m and ¢, as the new points: b and c.
Step 4:
Go back to Step 1.
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m=(a+b)/2

e=m+2{m-c)

r=(m+e)/2

sl=(ctm)/2

cl=(c+a)/2
s2=(m+r)/2
c2=(r+a)/2

Figure. 8.5.b Optimal Search Process
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8.3.1 Experimental Based Identification for Diode Laser Processing
Table 8.1

Continuous Linear Identification

laser speed 7 Time
(mA) (nl:m/s) o ‘( J ‘ Damp | constant | TAF
48 9.81 5.4070 0.4367 0.32282 3.4108
48 10.05 5.2326 0.398 0.32282 4.2326
48 10.33 5.1163 0.4321 0.32282 3.60406
48 10.58 5.0581 0.3962 0.34253 3.8871
48 10.60 4.8457 0.4679 0.32727 2.1837
48 10.81 4.5930 0.4894 0.32282 3.9826
48 11.07 4.4767 0.4192 0.32282 4.0503
48 11.20 4.3995 0.39625 0.34253 2.1678
48 11.31 4.4186 0.4266 0.32282 4.1726
48 11.58 4.1279 0.3967 0.32282 3.7857
48 11.83 3.7791 0.3636 0.32282 3.309
48 12.10 3.3721 0.4266 0.32282 3.4977
48 12.35 3.1395 0.3925  0.32282 3.39381
48 12.60 3.0233 0.4186 0.32282 4.2736
48 12.87 2.9070 0.4284 0.32282 3.8998
48 13.20 2.7168 0.4667 0.32287 1.1111
48 13.39 2.5000 0.4544 0.32282 3.3380
48 13.64 2.2093 0.4478 0.32282 4.4505

As introduced, the SISO model to be identified is given by equation 8.3.1-2. For the identification, the
authors apply the identification on the step signal based experimental data under inputs {U j }, j=1---M.
These inputs correspond to those in Figure 8.3. The identification results are summarized in Table 8.1. It is
easy to see that the static function bm f (u) varies with the inputs conditions, which verifies the existence

of nonlinearity with the established diode laser welding process.

8.3.2 PRTS (Pseudo-Random Ternary signal) [108]

Besides of the step signals, the authors take PRTS shown in Figure 8.6 as the input and
perform the experiments to study on the nonlinearity. The output is still the topside
surface width of the weld pool. The sequence length of the PRTS signal is 26 and the
sample time is 2 units per cycle. Due to the system capacity, only 52 units are sampled

and used for the identification and model validation.
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sample time is 2 units per cycle. Due to the system capacity, only 52 units are sampled

and used for the identification and model validation.

PRTS Signal
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Figure 8.6 PRTS Signal

8.3.3 Nonlinearity Identification

Before identifying the nonlinearity, the authors study how it influences the linear
dynamics. At first the authors take one of the linear models and simulate it under various
inputs. Then the authors compare the simulations with the experiments. If the model
exhibits consistent data agreements, then the linear dynamics is certainly enough to
describe the system. Otherwise, further step is needed.

Without loss of generality, the authors chose the one under the input of 13.2mm/s (with
the lowest IAE in Table 8.1) and examined the step responses under the inputs of
13.2mm/s, 11.2mm/s, and 10.6mm/s (IAE relatively smaller) and PRTS signal. The
results are shown in Figure 8.7. It is easy to see that these results demonstrate different
data agreements, which further verifies nonlinearity does exists in the diode laser welding
process similarly as has been observed from another welding process [83]. As a result,

step 2 is demanded for a complete nonlinear identification of the laser welding process.
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2rd order linear model estimation
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Figure 8.7 Simulated and observed comparison

For simplicity, the authors assume the nonlinearity in equation 8.3.2 is a polynomial.
Based on the results from the linear dynamics identification, the authors develop two

structures below and the identification results are shown in Figure 8.8:

K(u)=—0.11856u" +2.9457u’ (8.3.3)
—23.0018u +59.3253
K(u)=0.0048078u* —0.28697u (8.3.4)

+5.1487u’ —35.7543u + 86.8896

nonlinearity identification result
-0.11856u+2.9457u*-23.0018u+59.3253
IAE= 0.4038; Mean=0

6 1
-3 N N N R g
= i
B s R a— S— -
k= - |==Expected
T _|==Estimated
& ‘ s
* :

% 75 8 85 9 95 10 105
Input: reciprocal of the welding speed

Figure 8.8.a Nonlinearity Identification 3" order
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nonlinearity identification result

0.0048078u*-0.28697u’+5.1487u>-35.7543u+86.8896
TAE=0.40373 Mean=0
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- : -
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&
= 27
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Input: reciprocal of the welding speed

Figure 8.8.b Nonlinearity Identification 4™ order

8.3.4 Order Determination and Model Validation
With equation 8.3.3 and 8.3.4, the complete models are:
0.12863(r)+0.3015(¢)+ y(r)
=—0.11856u° () (8.3.5)
+2.9457u*(¢)—23.0018u(¢)+59.3253

0.12863(r)+0.3015(¢)+ y(¢)
=0.0048078u*()—0.286971° (1) (8.3.6)
+5.1487u*(t)—35.7543u(t) + 86.8896

To choose suitable order and validate the model, the authors run simulations on both
equation under inputs of step signals including 13.2mm/s, 11.2mm/s and 10.6mm/s and
PRTS signals. Then the authors examine the data agreements between the simulations

and experiments. Based on the performance results in Table 8.2, the authors choose 8.3.6.
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Nonlinear Model Estimation
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Figure 8.9 Model Evaluation

The validation results of equation 8.3.5-6 are shown in Figure 8.9. Based on the results,
the authors conclude that the identification succeeds the validation and the identification
model given by the 4™ order nonlinearity equation 8.3.6 and the linear dynamics with

T =0.32282 and & =0.4667 reasonably approximate the laser welding system. The

authors nevertheless noticed that the IAE is higher under PRTS input. This deviation is
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expected due to the effects of from the measurements errors, servo motor sensitivity,

sampling completeness, signal noise, and so on.

Table 8.2

Continuous Identification Comparison of 3%° and 4™ Order Model

- - Mean of Predictiv
. [AE of nonlmear model eall 01 Hledictive
Laser (mA) Frror

3rd order = 4th order  3rd order = 4th order
48 13.2 20724 1.3414 0.1852 = 0.02785
48 11.2 41654 2.3235 0.44419  0.040032
48 10.6 58421 3.6413 0.53468  0.050431

48  PRTS 104538 104312 | 048708 @ 0.17106

8.4  Continuous identification: Error based
In the identification of the laser system, the authors take 13.2mm/s as the welding

speed and obtain:

T2 x 5(t)+2x ExT x j(t)+ y(t) = K(U) (8.4.1)
K(U)=2.7168

T =0.32282 (8.4.2)
&=0.4670

The linear dynamic parameters of equation above are now used as the estimates of
those in the system despite variations in the inputs.

Now assume a number of steady-state responses {y i (oo)} have been obtained under

{Uj} such that {yj(oo) U, bj=12,---M are available.
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The objective is to identify the structure and the parameters for the nonlinear function

K(U) through {K(Uj) Uj}.

To this end,
T2 x 3(t)+2x Ex T x y(t)+ y(t) =1 is simulated and the simulated steady-state responses

¥V, (:0) is used to compute

KU,)=,)/3,(0) (8.4.3)
As aresult, a set of {K(U;) U} will be easily obtained through a single simulation of

linear system using
T2 x 3(t)+2x ExTx y(t)+ y(r) =1 (8.4.4)
and the static response experimental results as given above.

Then for any proposed structure of K (U ), its parameters can be identified using as

linear least square algorithm.

8.4.1 Nonlinearity Result
The authors similarly identify two models to compare for selection. The results are
shown in Figure 8.9

S ==0.11711u*(¢)+2.9097u*(¢)

8.4.5
—22.7048u(t)+ 58.5147 (8.4.5)

£ =0.00593u" —0.32845u°(t)

(8.4.6)
+5.6269u°(t) - 38.4342u(t)+92.5132
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nonlinearity identification result
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Figure 8.10 Nonlinearity identification

8.4.2 Complete Nonlinear Model Structure
With equation 8.4.5-6, the authors establish the complete model:

0.12863(¢)+ 0.30153(z) + y(¢) = —0.11718u>(¢)

(8.4.7)
+2.9097u’ (f) — 22.7048u(t) + 58.5147
0.12863(t)+ 0.3015y(¢) + y(t) = 0.00593u* (¢)
—0.32845u° (t) + 5.6269u° (1) (8.4.8)

—38.4342u(r) + 92.5132
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The validation results of both models under inputs of step signals including 13.2mm/s,
11.2mm/s and 10.6mm/s and PRTS signals are summarized in Table 8.3. The authors
fundamentally examine the data agreements between the simulations results of the model
and the experimental data. Based on the results comparison, the authors simply choose
equation 8.4.8 because it performs relatively better in various inputs conditions. The
validations under various inputs are also shown in Figure 8.10. Generally speaking, this

identified nonlinear model succeeds the validation and is appropriates enough to describe

our system.
Table 8.3 Error based Continuous Nonlinear Identification
IAE of nonlinear Mean of Predictive
Laser (mA) model Error

3rd order  4th order  3rd order = 4th order

48 13.02 15999 13333 | 0.11098  0.019936
48 112 25224 23336 0118  0.050241
48 106 3.7654 3.658 0.1446  0.062992
48 PRTS 105548 105038 |« 0.23223 | 0.17355
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Figure 8.11 Error based Model Validation
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8.4.3 Validation Results: Review
TABLE 8.4
CONTINUOUS NONLINEAR IDENTIFICAITON

Error based nonlmear Hammerstemn nonlinear

IAE of model model
Laser Speed I
_. mear lean of lean of
(mA) | (mm/s) _ B-Iea.n f:)t Mea.n fat
model  TAR predictive IAE predictive
error error

48 13.02  1.11 1.3333  0.019936 1.3414  0.027865
48  11.2 11905 23336 0.050241 23225 0.040032
48 106 13952 3658  0.062992 3.641 0.050431
48 PRTS 18438 105038  0.17355 104312 0.17106

For comparison purposes, the authors summarize the validations results of using both
identification methods in Table 8.4. Based on the comparison, it is of no double that the
nonlinear model demonstrates much better than the linear dynamics when approximating
the diode laser welding system. From the perspective of nonlinear identification, both
nonlinear methods work well on the laser welding system. The Hammerstein based
identification performs slightly better than the Error Based Method because the Mean of
Predictive error and IAE are slightly smaller under most working conditions. In fact,
when the non-linearity is significant, its effect on the system behavior would be much
more significant than that of the linear dynamics. For such a system dominated by non-
linearity, it may be advantageous to use the much less time-consuming Error Based
Method which does not need dynamic responses under different step responses and is

thus may be more affordable.

8.5  Discrete Identification: Another Perspective
Similar as in Continuous identification, the authors only identify a SISO model in

which yl¢) is the topside surface width of the weld pool and ult)is the reciprocal of the

welding speed. Because the continuous identification already estimated a second order
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model and the experimental step response also exhibits a second order model, hence the

authors start with the structure:

T2 y(k)+2ETy(k—1)+ y(k—2) = S(u) (8.5.1)
S@w)=b,1(U,) (8.5.2)

Then linear Least Square method is used to obtain the unknown

parameters T>,2ET and K (U ; )from a step response under the step inputU,,

8.5.1 Linear Dynamics Identification

The SISO discrete model to be identified is given by equation 8.5.1-2. For
identification, the authors apply the step signal based experimental data under
inputs {Uj }, j=L---M . These inputs are still similar to those in the continuous
identification. The identification results are summarized in Table 8.5. It is easy to see that

the static function b, f(u) varies with the inputs conditions, which verifies the existence

of nonlinearity
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TABLE 8.5
DISCRETE LINEAR IDENTIFICAITON

laser  speed {bmx f [U j] al(eD) a20(k2)  IAE

(mA) (mm/s)
48 9.81 0.8684 1.0716  -0.227§  3.2721
48 10.05 0.8404 1.0081 -0.2275  4.7386
48 10.33 0.8217 1.2906  -0.227§  4.1594
48 10.58 0.8123 1.2968 -0.227§  4.0997
48 10.60 0.7782 1.0562  -0.2275  1.6401
48  10.81 0.7376 1.0716  -0.2275  3.2899
48 11.07 0.7190 1.1573  -0.2275  4.7061
48 11.20 0.7066 1.0286  -0.227§  2.3632
48 11.31 0.7096 0.9961 -0.2275 3.7019
48 11.58 0.6629 1.0124  -0.2275  4.0265
48 11.83 0.6069 1.2508  -0.227S  3.8036
48 12.10 0.5416 1.2178  -0.227§  3.1519
48 12.35 0.5042 1.1872  -0.227§  3.4798
48 12.60 0.4855 0.4186 -0.2275  3.2466
48 12.87 0.4669 0.4284 -0.227S  3.3678
48 13.20 0.4363 1.0669 -0.2275  1.0436
48 13.39 0.4015 1.2178  -0.227§  4.3215
48 13.64 0.3548 1.17158  -0.2275  3.7586

8.5.2 Influence of the Nonlinearity

Before identifying the nonlinearity, the authors study how it influences the linear
dynamics. At first the authors take one of the linear models and simulate it under various
inputs. Then the authors compare the simulations with the experiments. If the model
exhibits consistent data agreements, then the linear dynamics is certainly enough to
describe the system. Otherwise, further step is needed.

Without loss of generality, the authors chose the one under the input of 13.2mm/s (with
the lowest IAE in Table 8.5) and examined the step responses under the inputs of
13.2mm/s, 11.2mm/s, and 10.6mm/s (IAE relatively smaller) and PRTS signal. The
results are shown in Fig. 8.12. It is easy to see that these results demonstrate different

data agreements, which further verifies nonlinearity does exists in the diode laser welding
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process similarly as the continuous identification. As a result, step 2 is required for a

complete nonlinear identification of the laser welding process.
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Figure 8.12 Simulated and observed comparison
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8.5.3 Nonlinearity Identification
For simplicity, the authors assume the nonlinearity is a polynomial. Based on the
results from the linear dynamics identification, the authors develop two structures below

and the identification results are shown in Figure 8.13

K(u)=-0.019041" +0.47308u°

(8.5.3)
—~3.6941u +9.5276

K(u)=0.00077213u* —0.046088u"

(8.5.4)
+0.82688u> —5.7421u +13.9545

nonlinearity identification result
0.00077213u*-0.046088u’+0.82688u’-5.7421u+13.9545

1 T .
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0'9 I - --EStlmatEd
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S y 4 f
= 0'6 oo A S -
z v
= 27
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nonlinearity identification result
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Figure 8.13 Nonlinearity Identification

8.5.4 Order Determination and Model Validation
The complete models are:
y(k)=1.0669y(k —1)+0.2275y(k - 2)
=-0.019046u" (k) (8.5.5)
+0.47308u (k)—3.6941u(k)+9.5276

y(k)=1.0669 y(k —1)+0.2275y(k - 2)
=0.00077213u* (k)—0.046088u° (k) (8.5.6)
+0.82688u” (k)—5.7421u(k)+13.9545
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Table 8.6 Discrete Identification Results Comparison of 3%° and 4™ Order

. . Mean of Predictive
. IAE of nonlmear model
Lager (mA) Error

3rd order  4th order  3rd order  4th order

48 132 2.0724 1.3414 0.1852 | 0.02785
48 11.2 4.1654 23235 0.44419  0.040032
48 10.6 5.8421 3.6413 0.53468  0.050431
48  PRTS 104538 104312 048708 | 0.17106
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Figure 8.14 Model Validation

To choose suitable order and validate the model, the authors run simulations on both
modes under inputs of step signals including 13.2mm/s, 11.2mm/s and 10.6mm/s and
PRTS signals. Then the authors examine the data agreements between the simulations
and experiments as shown in Table 8.6. Simply the authors choose 8.5.6

The validation results are shown in Figure 8.14 under different inputs signals. Based on
the results, the authors conclude that the identification succeeds the validation and the
identification model given by the 4™ order nonlinearity and the linear dynamics with

T =0.32282 and & =0.4667 reasonably approximate the laser welding system. The
authors nevertheless noticed that the IAE is higher under PRTS input. This deviation is
expected due to the effects of from the measurements errors, servo motor sensitivity,

sampling completeness, signal noise, and so on
8.6  Summary

The step response of the established diode laser welding process demonstrates a second

order linear system. However, the gain of the linear dynamics varies with the input.
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Hence, the authors proposed a two steps Hammerstein identification procedure both in
continuous and discrete case: (1) detect the linear dynamics and the static non-linear
function of the input from step responses with different step levels; (2) identify the
parameters in the static nonlinear function. Besides of the Hammerstein identification, the
authors also propose an Error Based identification and specifically apply the method on
our system. The difference from the Hammerstein identification is the second step, which
is based on the error of the linear dynamics and the static states under various inputs. A
SISO nonlinear continuous and discrete model under using both procedures respectively
is then estimated based on the experimental study. Both models take the reciprocal of the
welding speed as the input and the topside surface width of the weld pool as the output.
How to determine the suitable order for the identification is also introduced. To validate
the identification, the authors examine the responses of the identified model under
different inputs signals ranging from step signal to PRTS series. Validation results
demonstrate better data agreements compared to the linear model structure. Both methods
work adequately on our system but Hammerstein is more generally applicable for other
similar process. It seems the discrete model approaches the experimental data somewhat
roughly better than the continuous model. It is nevertheless noticed that the PRTS
validation still generates bigger residuals. This is expected because of the influence from

servo motor, image processing, and sampling completeness.

8.7  2ISO Experimental Based Study

In our earlier study, we have developed a SISO Hammerstein model with welding speed
as input and the width on the top surface of the weld pool, in which the linear dynamics
was second order and the static nonlinearity was a standard power series. The model is as

follows:

0.12863(¢)+0.30153(¢)+ y(¢) = 0.0048078u* (£)— 0.28697u° ()

(8.7.1)
+5.1487u*(t)—35.7543u(t) + 86.8896
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Figure 8.15 Experimental results
The SISO above was founded under the step inputs of welding speed and laser power. So,

if we take the laser power as the input and the weld pool width as the output, the model

structure will be exactly same except the gain on the right side. Further research also
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showed that when the welding speed is zero, the step response with laser power as input
and the width as output exhibits a first order model linearly.
Based on the analysis above, we start with a third order linear dynamics

Suppose the third order Hammerstein nonlinear structure can be represented by:

a3 (e)+ 23(0)+ e 3(e) + ple) = (uy (0).u, ¢))

(8.7.2)
The system structure is obtained as:
0.00715(¢) +0.1421655(¢) + 0.343(¢) + p(¢) = £ (u,(¢), u, (¢))

(8.7.3)
£ o, (2),2, (£)) = —0.00861,* (£)+0.1310u,” (£ )— 0.2520u,” (¢ ) — 2.0846u, (¢ )
—0.2514u, (¢ ), (£)+0.01530, (¢ e, (¢)* +1.1719u, (£)— 2.4705

(8.7.4)

The model is validated with similar inputs as those used in SISO case above. The results

are shown in Figure 8.16
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Figure 8.16 2ISO model validation
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CHAPTER 9

NONLINEAR CONTROL DESIGN

9.1 Known Model system: Linearization Design

Consider a standard nonlinear Hammerstein model represented by state format:
Ms)=G(s)z(s)
2(r)= £ (u(r))

, where )}, U are the output and input respectively, and Z is the intermediate input

feeding into the linear dynamics G(S ) . Lis the Laplace transform operator

yr v 1

1/

> flu)y —%>| G (s)

[

1
Do [

Figure 9.1.a Hammerstein control design based on linearization

Because the goal is to cancel the effect of nonlinearity in the equation 9.1.1 so that the

system can be treated as linear system, therefore we take the first derivative of z at first.
Then we have:

. of (u) du

au dt 9.1.2)
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Define the virtual control state v, i.e.

V=2, (9.1.3)
Or in Laplace transform,

ofs) = 20)

s (9.1.4)

With simple substitution, equation (9.2) can be written by:

of(u) .
ou (9.1.5)

Or in Laplace transform,

os) = L(@"_@‘)j@

ou g (9.1.6)
Substituting equation (9.3) into (9.1), we have,

1
y(5)=;V(S)G(S). 9.1.7)

If we assume the structure of the nonlinearity is known, then the system can be treated as

linear system as shown in Figure 9.1

Figure 9.1 is the result of simulation tracking step signal following the linearization and

control design from equation 9.1-4.
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Time: t

Figure 9.1.b Hammerstein control design based on linearization

9.2  Known Model System: Constructive Design (X = f (x,u))
Assumption 1:For x(¢,)= x, € U c R"there exists £ >0andT/(e, x, )such that
||x(t]| <gfort =t +T

Assumption 2: a function ce(e) is class K if it is continuous and strictly increases
Assumption 3: system is input-to-state partially stable if there exists functions such that

o, (“x”) < V(x) <a, (“x

CLACY P P ) T | W

ox
x(t) < ﬁ(“x(OX ,t)+ 7/(““”00 )+ d

d>0

Before we design the control law for nonlinear Hammerstein model, consider a nonlinear

) VxeR"

system described by:

y"(t)= f(y,y',y”‘l)+ u
(9.2.1)

, we can recursively construct the control design with defining Lyapunov candidates.

For example, assume the model as
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$(t)=f(r,3)+u

0.3015 1
_ ' 9.2.2)
/= o0286” T 01286”

Let:
X =Y

— (9.2.3)
X=Y
Then we have:
X, =X,
X,=f+u (9.2.4)
f=234x,+7.77x,
Let
€ =X, —X;;, wherei=1,2
And €, =X, — X, (9.2.5)
At first, define the Lyapunov candidate function:

1

V= S (9.2.6)
Then the derivative of V is:
Vl = €€
=6 (xl ~ Xy ) 9.2.7)
=€ (xz ~ X )

Because the goal is to design the control in order that the tracking error converge to zero,

we can consider X, as the virtual control to the system and when X, = X, ;.

Accordingly, define
Xog = _k1€1 + xld , where k1 is a positive constant (9.2.8)

Then,

V, = —ke’ <0 9.2.9)
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Define

1
V,=VW +Ee22 (9.2.10)

Take the derivative of V- , we have

Vz = Vl +e,6,

:_k1912+€2(f+u—562d) (9.2.11)
Design the control u as,

u=—f+ Xy — k,e,  where k2 is a positive constant (9.2.12)
Then,

Vz = _klelz - k2€22 <0 (9.2.13)

Accordingly, for the system, the designed virtual control can guarantee that the first
derivative of defined Lyapunov candidate negative semidefinite as shown in equation (3).

Namely, the system is asymptotically stable and bounded.

9.3 Proof:

Consider the system:

yn(f)=f(yay»yn_l)+u 9.3.1)

, where y,u are the output and the control respectively; yi ,i=12,---n is the ith

derivative of y

Let
X, =Yy
X,= Y
(9.3.2)
-2
‘xn—l = yn
xn :yn—l
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Then we have:

X =X,

Xy= X3

X =X

xn—l :xn

xn:f(‘xl’x29 ’xn)+u

Or,

Xi = X

%, = fx)+u
1<i<n-1

, where X = [x1 X,

x, [

(9.3.3)

(9.3.4)

(9.3.5)

Assume the desired signal is X; and X, is nth derivable. Then the tracking error can be

written by:
e=x-—x,
Or,

133

(9.3.6)



oooooo

ez - xi - xld
(9.3.7)
€1 = Xua x(n—l)d
en = ‘xn - xnd
Or,
€ =X — Xy
€,= Xy =Xy,
€ =X, — Xy
(9.3.8)
€1 = Xn x(n—l)d
en = xn - xnd
With simple substitution, we have
€ =X, — Xy
€,= X3 = Xyy
€ =X — Xy
(9.3.9)

e =f+u—x,
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It is easy to see that the system is strict feedback system. The design procedure is to
define the control law with constructing Lyapunov candidate for the system. For every
subsystem, we can try to define a virtual control.

At first, define the Lyapunov candidate as:

1
LﬂZa%z (9.2.10)

Then X, can be considered as a virtual control for the first equation and the task is to

seek the control law so that X, = X, (x1 s X4 ) and the derivative of V" is semidefinite

or negative.

The derivative is represented by

V,=ee (9.3.11)
Or,
Vi=e(x, - x,) (9.3.12)
Or,
Vi=e (ez T Xy — xld) (9.3.13)

If we can define
X0 =—kie, + X, (9.3.14)
Then, we have,

: 2
Vi=—ke +epe,

5 Ammekﬂtzﬁﬂ (9.3.15)
<—ke + M,
Define

|

%=K+§% (9.3.16)
By taking the derivative, we have,
V,=V +ee, 9.3.17)
Or,
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. 5 .
V,=-ke +ee, +e, (xs - xzd)

= _klelz t+e, (el + (x3 — Xy, ))

(9.3.18)
=—ke’ +e)le +e, +x,,—x,,)
1€1 2\& 3 3d 2d
If we choose
X3g =—kye, + X, (9.3.19)
Then,
V,=-ke ' ke’ +ee +
2 = THKE 26, TE6 T E,65 M ‘ ‘ M
2 2 , where M, =|ee,|+ M,
<-ke —ke, +M,
(9.3.20)
If we continue similar procedure until
1
Vn = Vn—l + Een
(9.3.21)
V=V ,+ee
2 2 2 .
=—ke —kye,” —--—k, e, +e, (en—l +f+u— xnd)
(9.3.22)
Choose the control:
u=—-ke —f+x,, (9.3.23)
Then,
; 2 2 2 2
Vn = _klel - kZe2 R kn—len—l _knen + enen—l
n
2
< —Z ke +M,
i=1
(9.3.24)
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M =

n

e e |+M |

n

(9.3.25)

Accordingly, V(e ) is bounded under the conditions of equations (9.2.5-7) and decreases

monotonically, which means that the system is asymptotically stable.
To verify the control design, we simply run a simulation based on the identified

Hammerstein model represented by:

¥=r(r.3)+u
f = zy(t)+ y(t) (9.3.26)

The tracking signals are both sin(t) and step signal with amplitude of 1.

For simplicity, take k=1. The simulation tracking step and sin(2 r t) signals are as shown

0; ﬂ ________ ﬁ ﬂ ........ ﬂ ﬁ ________ n—Desﬁed |
oj U U ______ U \A _____ \4 \4 _______ \J *

0 01 0.2 03 04 05
Time: t

Figure 9.2.a Tracking sinusoidal signal
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1.4 | |

1.2 : ‘ — Measured

-==Desired

0.4

" ; ‘ ‘ ;

0 0.1 0.2 Tima: 1 0.3 0.4

Figure 9.2.b Tracking step signal
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For further study, consider a system represented by:

y'(O)=¢ .55 )+u
, Where @ is unknown (9.4.1)

Then the procedure will have to consider the unknown parameter.

For simplicity, assume the system is second order and y(t ) = @F (y) +u

(9.4.2)
=%
Z, =X, — q(x, (9)
q(xlae) =—CX — @r('xl)
(9.4.3)
Take the derivatives, then
2 =%
(9.4.4)
Or,
z,=—cz,+z,—0
: ~.0q Oq :
Z=u+6f ———L(z, —cz))+ O (©:4.5)
ox, Ox,
, Where @ is the estimation of the parameter
Define Lyapunov function:
1 2 2 N2
V==\z;/ +z,” +60
2
(9.4.6)

The first derivative of V can be written by:
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V=zz+z,z,+600

(9.4.7)
Or,
; ~ 0
V = _6212_9 fZ1_f—qzz
0x,
86] . ~ =
+z,| u+z, — —(z, —czl)-l— of |+00
ox,
~ 0 ~
=z -0 - 2Lz 10
ox,
0 .
+ 2z, u+ z ——q(22 —cz, )+ Of
ox,
(9.4.8)
If we choose:
u=-—kz,—z 4—6—61(22 —czl)—@r
ox,
~ 0
0=fa—f-Tz
Oox,
(9.4.9)
Then we have,
; 2 2
V=—cz;”—kz,” <0 (9.4.10)

Accordingly, the first derivative of Lyapunov function is negative semidefinite. Namely,

Z1yZy, 0 are bounded and accordingly, the system is asymptotically stable.

140



94 Hammerstein With ¢ Introduced

Consider the Hammerstein system model represented by

yn(f)zf(yayayn_l)+ glu) 9.4.11)

Apparently, there is no zero points in the linear dynamics. However, under conditions we

might be required to add U into the model. Then the system is represented by:

n . n—1 .
y (t)=f(y,y,y )+9M+g(u) (9.4.12)
As verified in the previous chapter, typical welding processes do not have nonstable zero

points in the system. In our current system, when we identify the Hammerstein model, we

apply step or random-level step signals as the persistent test signal. With step signals as

the input, it is impossible to estimate the extra parameter related to u. However, we can
still add it into the denominator functioning as a very small signal in the linear dynamics
because the characteristics of the linear dynamics are determined by the poles in the
denominator.

To test the feasibility, we change the parameter and compare the simulation results under
sinusoidal signals and step signals. Example comparison results are shown in Table 9.1

and Figure 9.2.a-b under the condition that #=0.001 and 8=0.0.1

Table 9.1 Model comparison between with U and without U

0 Error between outputs
20 = Vi)
Sin(t) Step signal
0.1 86.0453 0
0.01 8.6045 0
0.005 4.3023 0
0.002 1.7269 0
0.0015 1.7209 0
0.001 0.8605 0
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80~ g
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20k —without udot
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Time: t

Figure 9.3.a With U and 6=0.001 in the model

140

120+

100+

80~

40+ - s
—with udot

201 —without udot| |

00 5 10 15 20 25

Time: t

Figure 9.3.b With U and 6=0.01 in the model

Apparently, if we forcefully add U whose coefficient is under the condition of

6 <0.001, then the system response will not be influenced too much under the inputs
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of such as sinusoidal or step signal. We already verified in the previous chapter that the

existence of ¥ does not have any influence on the system performance.

In this case, we at first consider the nonlinear Hammerstein model represented by:

y'(t)= f(y,;'v,y”‘l)+ &+ glu)
(9.4.13)

, where V,u are the output and the control respectively; V',i =1,2,---n;1 is the ith

derivative of y,u

Let
X, =y
X,= Y

n-2
‘xn—l = y

_.n-l
X, =Yy
Z=U
zZ=v
(9.4.14)

, where V is the virtual control input for the system
Then we have:
X,= X,
Xi = Xin
X, =X, (9.4.15)
xn = f(xl"XZ’“ ’xn)+ 9‘}
Z=U
Z=vy
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Or,

X = Xy

x = f(x)+u

1<i<n-1

,wherex:[xl Xy oo xn]T

(9.4.16)

During the identification, & (U) is approximated by a polynomial. In fact, it can be other

complex formats. However, we assume that & (M) is continuous and bounded

We further assume all the states of the system are available for feedback and define:

e, =X —X,
€,= Xy, =Xy
i—1
e =X —X,
. n-2
en—l - xn - xd

_ n
en _xn_xd

Then we have,
€ =X, =Xy
€,= X3 — Xy

------

- n
en_‘xn_xd

With simple substitution, we can have:
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é:Ae+b(f(e+)_cd,Z)+(9v—xdn +g(e+)_cd))

) (9.4.19)
Z=v
(0 1 0 O] 0]
A=| b=
where 0
(9.4.20)
Define
A =A-bK (9.4.21)
, where K is chosen so that the matrix Am = A—-DbK is Hurwitz.
Then,
é= Ame+b<f(e+)?d,z)+ O —x," +gle+ )?d))
. (9.4.22)
Z=v
— -1
_where X; = [xd eox,” xd] (9.4.23)
Further, we define a dynamic signal described by:
F=—cyr+ rm(e, )?d)
70)>0
c, > 0 (9.4.25)

— 12 —
v, = He+ de 7/0H€ + de +d,
Then the robust adaptive controller can be designed by:
v=—fe Phfle+5,.2) + e+ 5, + + (e @r)] +(Ke) +1)
,B = ﬂm(e,z,r,fd)—l_‘aﬂ

B, =T Pof(Fle+5,2)+ e+ 5, + 2] +(a @) + (Ke) +1)
I'>0
o>0
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(9.4.26)

a‘l(O) is the inverse of function of a(O)

PA +4" =-
P is the solution of ™ " Q

0o 0’ 20 (9.4.27)

9.5  Related to the Diode Laser Processing System With «
For controller design, we chose Robust Adaptive Control as introduced in Chapter 3.

As shown in the identification, our laser welding system can be represented by:

y(t) =6 y+ ‘92J"(t)+ 0, + 494u<t)+ Hsuz(t)
+0.° () + 0,u’ (1) + thi (9.4.28)

Define the state function as:

(9.4.29)

Then the system can be represented by:

%, (£) = x,(¢)
%,(t)= 6x,(t)+ 0,x,(t)+ 6, + 0,2(t) + 0,2 (¢) + 0,2(¢t) + 0,2(¢)"* + O,y
(9.4.30)
For simplicity, we let the nonlinear function be:
F()=6x,(t)+6,x,(t)+ 0,2(¢)+ 0,2%(¢)+ 0,2(¢) +6,2(¢)*
(9.4.31)

Accordingly, the amplitude limit function can be written as:

FO)<16x,(6)+ 0,x, () + 0,2(1) + 0,2° () + O,2(¢ ) + 4972(;)4”

(9.4.32)
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f(')ge(\/?+\/?+«/z_2+zz+\/z_6)

, Where gcan be unknown

Thus:

f(-):\/?+\/g+\/?+z2 ++/z°

Equation 9.4.34 gives the boundary of the nonlinearity function.

(9.4.33)

(9.4.34)

Let the tracking signal y, = sin(t), the standard sinusoidal signal with amplitude 1

Then the error signal can be written by:

/(1) =x(t)-,()
e,(t)=x,()-y,()

Or,

é(z){‘) I}HMU(Hyr,Z)—ﬁr(f)+95V+6’3]

0 0 1

0 1 0
Let A= and b=
0 0 1

Then equation 9.3 can be rewritten by:

e'(t)z Ae+b[f(e+yr,z)—j}r(t)+ 6?5v+t93]

With simpler substitution, the error matrix is:

0=y ofe+ |1 te 5500w

0 0
To design the controller, we reformat the equation as:

ét)=A e+b[Ke+ fle+y,,z)- 3 (k=3)+ 0, +6,]

,where 4, = A—bK and K is chosen so that 4, is Hurwitz.
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(9.4.41)

1) = [_03 _116} t M{B 16]{2} t fle+y,2) =3, (0)+ 0+ 6,

(9.4.42)
For matrix:
A {0 1}{0}[1{1 k, | (9.4.43)
" 10 0 1
A { 0 : } (9.4.44)
" -k -k, a

The constant matrix K = [k1 kz] is chosen so that the roots of the characteristic equation

have negative real parts.

We then can design the robust adaptive controller

v=— Pb{f(e+ y.2)f +e+ y, [+ +]a @] +(Ke) +1]
(9.4.45)
, where f3 is the adaptive parameter of the controller and «, ' is the inverse function and
is a function of class K, . For now, we assume &, ()=}’
P is Lyapunov matrix under the condition of:

PA,+ A4, =—Q, where 0=0" >0 (9.4.46)
p=p.(ezry )-Top (9.4.47)

B, = F(eTPb)2 {[f(e+ y,,z)]2 + ||e + y,,”2 + ||Z||2 + [05_1 (2r)]2 + (Ke)2 + 1}
(9.4.48)
For the design constants we assume they are known and satisfy the condition of

T>0,6>0. (9.4.49)

Because in our experiments, only the position signal is detected, we further implement
high gain observer for the purpose of output feedback.

Let the error signal be:
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(9.4.50)
€ = (_zj(el - el)
, where & >0 is a small constant, o, > 0,7 =1,2 are chosensothat 4 =4-K_C isa
Hurwitz matrix, andK, =[o, o,], c= 1 o]

Accordingly for the matrix:

! _0 O ! 2 0 o
A —_ ! 1 9452
8 L ()2 O ( o )

The positive constants matrix K_ =[o, o, ] is chosen so that the characteristic equation

s> + 0,5 + 0, =0 has the roots with negative real parts.

(9.4.53)
To eliminate peaking in the implementation of the observer, we define
e =1
3 (9.4.54)
€ =49
Thus:
&, = q, +0,(e,—q)
(9.4.55)

&, = Uz(el - %)
In order to prevent the peaking from entering the control system, we saturate the control
signal and adaptive controller outside of their domains of interests. In our experiments,
M, =50
M, =30

(9.4.56)
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With these constants, which are larger than or equal to the upper bound of those signals

v(e, ry., B ), B, (e, r, )7,), we can denote the following equations:

Vi(e,r, 7., B)= Mvsa{w . (9.4.57)

B er,y.)=M ﬁsa{m (9.4.58)
B

sat( ) represents the saturation function. (9.4.59)

Thus the robust adaptive output controller can be obtained by replacing v(e, ry., B ) and

B.(e,r,7,) with v¥(e,r,¥,, ) and B,°(e,r,¥,, )
Simulation are made under both step and sin(t) as tracking signals. In both cases, 0.5sin(t)

signal is added as the disturbance.

2 .

—Measured
1.5¢ ---Expected

'1'50 5 10 15 20
Time: t

Figure 9.4.a Tracking sin(t) with #(¢) in the model
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0
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Time: t

Figure 9.4.b Tracking error of sin(t) with z(¢) in the model

—Measured
1.5r ---Expected

0 5 10 15 20
Time: t

Figure 9.5.a Observer based Tracking sin(t) with u(t) in the model
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Figure 9.5.b Observer based Tracking sin(t) with u(t) in the model

9.6 Proof:
We consider the system that can be represented by:
y"(y)=f(y,y',---,y"*l)+¢9u+g(u) (9.6.1)
, where y,u are the output and the control respectively; yi ,i=12,---n is the ith

derivative of ).

Assume

f(y,y',- : -,y”_l)ﬁ @7(%%- - -,y”‘l), where 8 >0 (9.6.2)
g(u) < cHg(u)‘ , where ¢ >0

Let
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X,=Y
n-2

xn—l = y
Y = yn_l , where V is the virtual control input for the system

=
zZ=U
zZ=V

(9.6.3)
Then we have:
X =X,
X,= X,
Xi = Xin
xn—l =X, (9.6.4)
X = f(xlaxza” 7xn)+ 2%
zZ=U
Zz =
Or,
Xi = Xi
%, = f(x)+u (9.6.5)
1<i<n-1
T

, where X = [xl Xy o xn]

During the identification, & (U) is approximated by a polynomial. In fact, it can be other

complex formats. However, we assume that & (U) is continuous and bounded

We further assume all the states of the system are available for feedback and define:
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€,= X, =Xy
_ i-1
€ =X, —X,;
— n_
en—l - ‘xn - ‘xd

. n
en _‘xn_‘xd

Then we have,

€ =X, =X,
€,= X3 — X,

e =X, —Xx"a

n n

- n
en_xn_xd

With simple substitution, we can have:

é:Ae+b(f(e+)_cd,Z)+9V—xdn +g(e+)?d))

(0 1 0 O]

zZ=vy
A=

, Where 0O O

Define

A =A-bK
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, where K is chosen so that the matrix Am = A—-DbK is Hurwitz.

Then,
é= Ame+b(f(e+)_cd,z)+<9v—xd" +g(e+)?d))
(9.6.11)
zZ=V
— -1
, where X, = [xd ey de (9.6.12)
Further, we define a dynamic signal described by:
F=—cyr+ rm(e, )?d)
70)>0
¢, >0 (9.6.13)

r=le+ T o+ 5|+,

From [60], signal 7 has the property of :
v <r(t)+ D(¢) (9.6.14)

Then the robust adaptive controller can be designed by:

v=—pe' Po\fle+,.2)+ e+ T+ + (e @r)f +(Ke) +1)

Y;; :ﬂm(e,z,r,)_cd)—l“oﬂ

B, =T(e"Pb) (f(e 52 )t et 5 42+l @) + (Ko +1)
'>0

co>0
(9.6.15)
' (»)is the inverse of function of a(e) (9.6.16)
P is the solution of PA, + A’"T =0 (9.6.17)
0=0">0
Define the Lyapunov candidate function:
V=ePe+ (8- p)f (9.6.18)

, where f is a positive constant and the desired value of S

Take the first order derivative
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14
=& Pe+ eTPé+26F‘1(,H BB

{A e+b(fe+x zl+&— X +g(e+ d)DTPe (9.6.19.a)
+e P(Ame+b(f(e+xd, z)+6—x," +g(€+xd))) "
, Where

1

200 (p— BN P F (74 5,02) 4 e+ 5, 2 + (o @) + (ef +1)-T op)
(9.6.19.b)

Apparently,

V
<

- eTQe
w2l prfliel e o le+ 2 Jrc e %, dlevx,))

~20ple' o (Tles 5 f e s+ + o @ + (k) +1)
— 0o +00p” — 0o (p - BY

+¢(2])+ de H+c3

If we introduce a constant:
c, = sup(”yr"H + c3||g(e +X, )” +a (D(t)))

(9.6.20)

Then, with substitution, equation (9.6.19) can be rewritten by:
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(9.6.21)
Accordingly,
VS—eTQe—GG(,B—ﬁ)z + M
(9.6.22)

1 _
M =%(cl2 +e, +e 4o, +6° +1)+ clp’

Therefore, according to [60] V will decrease monotonically, which means that (e, p ) are

bounded. The system states are also bounded and the closed loop system is bounded and

asymptotically stable.

9.7 Related to the Diode Laser Processing System Without u

As shown in the identification, our laser welding system can be represented by:

J’(t) =0 y+ sz(t)+ o, + 94”(t)+ quz(t)
+ 0. (t)+ 6,u’(t)

Define the state function as:
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ZZt)z u(t) 9.7.1)

Then the system can be represented by:

xl(t): xz(t)

()= 05,(0)+ 0,5, () + 0, + 0,2()+ 0.22()+ 0,2 +0,2() v 00 O
For simplicity, we let the nonlinear function be:

F()=6x,(2)+6,x,(t)+ 6,2(t)+ 6,2° (¢)+ 0,2(¢) +6,2(¢)* (9.7.3)
Accordingly, the amplitude limit function can be written as:

70 <0500+ 0,5,(0)+ 0,2()+ 0.2(0)+ 0,20) + 6.2(¢)' ©.7.4)

f()g 0(\/?4‘1/)(:22 +\/Z—2+22 +\/Z—6), where gcan be unknown

Thus:

FO =2 4w 422 2 442 (9.7.5)

Equation 9.2 gives the boundary of the nonlinearity function.
Let the tracking signal y, = sin(t), the standard sinusoidal signal with amplitude 1

Then the error signal can be written by:

,(t)=x(1)-,()

. 9.7.6
e (0)=%,(t)- 7,1 70
Or,
e/(t)=e,(1)
6,(t)=0,+0y+0,z+6.2* +0,2° +0,z* -5 (¢) 9.7.7)
z t) =v
Or,
. 0 1 0 .
)= {0 0}+ M[ Fletv,2)-5,(0)+ 6.+, ©.78)
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o o=l
Let A= and b= (9.7.9)
0 0 1

Then equation 9.3 can be rewritten by:

é(t)= de+b[fle+y,,2)-3,(t)+ 0 +6,] 9.7.10)

With simpler substitution, the error matrix is:
0 1
(1) = {

0 0
To design the controller, we reformat the equation as:

e'(t) =A e+ b[Ke + f(e +y, z)— v, (k - 3)+ O,v + (93] (9.7.12)

}e + M[f(e +3,,2)=3,(t)+ 6y + 6] (9.7.11)

,where 4, = A—bK and K is chosen so that 4, is Hurwitz.

é(z){ 0 1 }HM{@ 4{61} flety.o)-5.()rom+0.|  ©7.13

-2 -4 1 e,
For matrix:
4 = 0 1 0 [k k]
m = 0 0 | [ 2 (9.7.14)
4 = 0 1
m _k1 —k2 (9.7.15)

The constant matrix K = [k1 kz] is chosen so that the roots of the characteristic equation

have negative real parts.

We then can design the robust adaptive controller

V= —,BeTPb{[f(e+ yr,z)]2 +||e+ v,

, where S is the adaptive parameter of the controller and ¢, ' is the inverse function and

"o+ o' (2r) +(KeY +1} (9.7.16)

. . 2
is a function of class K, . For now, we assume «, () =|||
P is Lyapunov matrix under the condition of:

PA,+A," =-Q, where 0=0" >0 (9.7.17)

B=p,lezry )-Top (9.7.18)
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B, = F(eTPb)2 {[f(e+ y,,z)]2 + ||e + y,,”2 + ||Z||2 + [05_1 (2r)]2 + (Ke)2 + 1} (9.7.19)
For the design constants we assume they are known and satisfy the condition of
7>0,0>0. (9.7.20)
Because in our experiments, only the position signal is detected, we further implement
high gain observer for the purpose of output feedback.

Let the error signal be:

21 =e, + (ﬁj(el _él)

&

&~ % e -a)

&

(9.7.21)

, where ¢ >0 is a small constant, o, >0,i =1,2 are chosensothat 4 =4—-K_C isa
Hurwitz matrix, andK | = [0, o,], c=[1 0]. (9.7.22)

Accordingly for the matrix:

8 _O 0 ! 2 0 ( o )
14 — | ! 1 9 7 24
n i . O ( s he )

The positive constants matrix K, =[o, ,] is chosen so that the characteristic equation

s> + 0,5 + 0, =0 has the roots with negative real parts.

To eliminate peaking in the implementation of the observer, we define

e =1
& (9.7.25)
€ =4,
Thus:
&y =g, + O-l(el_ql)
&, =0, (el - Ch) :7:20

In order to prevent the peaking from entering the control system, we saturate the control

signal and adaptive controller outside of their domains of interests. In our experiments,

160



M, =50

_ (9.7.27)
M, =30

With these constants, which are larger than or equal to the upper bound of those signals

v(e, r, y,,ﬂ), B, (e, r, )7r), we can denote the following equations:

vS(e,r,)_/,,ﬁ)z Mvsa{w (9.7.28)
MV

B.5(e,r, 7 )=M ﬂsa{m (9.7.29)
Mﬂ

sat( ) represents the saturation function. (9.7.30)

Thus the robust adaptive output controller can be obtained by replacing v(e, ry.,pB ) and

B, (e,r,)_/,) with vs(e, r,y,,ﬂ) and ﬂms(e, r, )7,,,3)

9.8 Simulation

We choose the constants:

1375  0.25 10
o =0.00001,K =[2 4], P= , 0= .
0.25 0.1875 0 1

The simulation track two different input signal respectively: Both simulations are tested
with adding 0.5sin(t) as disturbance.

Sinusoidal signal input:
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Tracking a sinusoidal signal
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Figure 9.6.b Tracking error: input signal sin(t)
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Tracking a step signal
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Figure 9.7.b Tracking error: step signal

Output feedback: high-gain observer

163



Tracking sinusocidal signal
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Figure 9.8.a Tracking signal sin(t): Output feedback
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Figure 9.8.b Output feedback tracking error: signal sin(t)

Step Input:
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Tracking step signal
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Figure 9.9.b Output feedback tracking error: step signal
9.9 Summary
Apparently the state feedback tracks better with either Sinusoidal or Step signal although
he observer design somewhat caused a fluctuation with very small amplitude. This might

require further tuning on the constants

Copyright © Xiaodong Na, 2008
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CHAPTER 10

CONCLUSION AND FUTURE WORK

In this dissertation, we have proposed a simple and practical nonlinear
identification method for manufacturing processes, especially laser welding process. The
model is based on nonlinear Hammerstein structure consisting of static nonlinearity and
linear dynamics in series with each other. To better serve the study, we built a prototype
of diode laser welding system with aid of computer vision. We studied the identification
both in continuous and discrete case. For now, a SISO is mainly focused and the model
takes speed as the input and the top surface weld pool width as the output. However, the
algorithm can be expanded to MIMO with suitable persistent excitation signals.

Through experiments, we have validated the model and proved that the algorithm
is capable of identifying the nonlinearity and linear dynamics in certain degree of
accuracy. For simplicity, the nonlinearity is approximated by a standard polynomial with
selected order and can also be estimated with other format of nonlinearity. The linear
dynamic is represented by transfer function in either continuous or discrete case.
Although we have identified the model in offline, this algorithm can be capable of real
time application. Currently we acquire the experimental data based on vision sensor and
image processing. To greatly avoid the influence of measurement error, we choose offline
study for identification.

The proposed identification is under conditions, especially non-zero in the linear
dynamics because we simplify the denominator with a constant. Although we have
proved that under circumstances this configuration is reasonable for laser welding
processes, in the future it might still be necessary to identify the model with adding
zeroes. Persistent excitation test signal such as multi-level amplitude sinusoidal signal
might be of interest for related investigation. Extended MIMO identification is also

suggesting for future research.
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Current identification is based on open-loop experiments. In the future,
experiments applied to more manufacturing system related to close-loop identification

and control system will be studied.

Copyright © Xiaodong Na, 2008
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