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ABSTRACT OF DISSERTATION 

 

 

NONLINEAR IDENTIFICATION AND CONTROL: A PRACTICAL SOLUTION 

AND ITS APPLICATION  
 

 

It is well known that typical welding processes such as laser welding are nonlinear 
although mostly they are treated as linear system. For the purpose of automatic control, 
Identification of nonlinear system, especially welding processes is a necessary and 
fundamental problem. The purpose of this research is to develop a simple and practical 
identification and control for welding processes. 

Many investigations have shown the possibility to represent physical processes by 
nonlinear models, such as Hammerstein structure, consisting of a nonlinearity and linear 
dynamics in series with each other. Motivated by the fact that typical welding processes 
do not have non-zeroes, a novel two-step nonlinear Hammerstein identification method is 
proposed for laser welding processes. The method can be realized both in continuous and 
discrete case. 

To study the relation among parameters influencing laser processing, a standard 
diode laser processing system is built as system prototype. Based on experimental study, 
a SISO and 2ISO nonlinear Hammerstein model structure are developed to approximate 
the diode laser welding process. Specific persistent excitation signals such as PRTS 
(Pseudo-random-ternary-series) to Step signal are used for identification. The model 
takes welding speed as input and the top surface molten weld pool width as output. A 
vision based sensor implemented with a Pulse-controlled-CCD camera is proposed and 
applied to acquire the images and the geometric data of the weld pool. The estimated 
model is then verified by comparing the simulation and experimental measurement. The 
verification shows that the model is reasonably correct and can be use to model the 
nonlinear process for further study. The two-step nonlinear identification method is 
proved valid and applicable to traditional welding processes and similar manufacturing 
processes. Based on the identified model, nonlinear control algorithms are also studied. 
Algorithms include simple linearization and backstepping  based robust adaptive control 
algorithm are proposed and simulated.  
 
 



KEYWORDS: Hammerstein, Laser processing, Nonlinear identification, adaptive 
control, manufacturing 
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CHAPTER  1 

 

 

INTRODUCTION 
 

 

1.1 Background 

 

Laser Welding is a fusion process accomplished with various lasers applying to 

materials. As a non-contact process, laser welding finishes the welding work through 

laser beam. With laser beam, energy is concentrated and used directly on the small 

welding area. As a result, the welding zone is very narrow and hardly distorted due to 

little heat influence. Compared to traditional processes, Laser Welding is of potential. Its 

non-contact, localized, and narrow heat zone can create high quality result. Common re-

working and after-work procedure are no more required, which saves cost and labor. 

Right now, Laser processing has been widely applied in various fields including 

automotive, microelectronics, aerospace, etc. 

Common types of laser welding includes CO2 gas laser, Solid state laser (YAG 

type), and Diode laser welding. CO2 laser uses a mixture of high purity carbon dioxide 

with helium and nitrogen as the medium, infrared of 10.6 micro-meters. Argon or helium 

is used to prevent oxidation. YAG laser uses a solid bar of yttrium aluminum garnet 

doped with neodymium as the medium, whose infrared is only 1.06 micro-meters. Diode 

laser is based on the conversion between high electrical to optical powers [1]-[5].  

In many cases, the concern with health and safety forced engineers to design an 

advanced automatic welding process. However, the difficulty to ensure quality and 

lacking of knowing knowledge made automatic welding a challenging task. One of the 

critical factors along with welding process is the measurement system that provides 

information of welding pool. The importance of the measurement on the welding pool is 

obvious. First of all, not an exact model has ever been developed to describe the welding 

process. Even though it is possible to model the welding process, the model is too 

complicate for control purposes. Secondly, too many unknown factors influence the 
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dynamic and changeable process. Third, successful intelligent welding system requires 

appropriate and real time measurement working with specific developed control 

algorithm so that the process is robust and adaptive. Fourth, known factors such as strong 

welding light, reflective welding pool surface, dynamic and fast changing, noise, physical 

deformation, and so on makes measurement hardly accomplish. Last, very limited useful 

sensors are applicable for welding process measurement. 

Various Researches has been done related to welding pool measurement based on 

the vision sensing tool such as monochrome camera and optic sensors. Through the 

sensors, welding related information is achieved online or offline so that control loop can 

adjust the welding process parameters. Considering the role of penetration to welding 

process, many study started with penetration measurement and control. With aid of pool 

oscillation [6]-[7], infrared sensor [8]-[9], ultrasound [10]-[11], and related, reliable and 

applicable measurement and control of welding pool was possible. The disadvantage of 

these methods is its limit while differentiate from partial penetration and full penetration 

[8] [12]-[13]. Besides, the system is very easily influenced by instable noise. 

Accordingly, successful two-dimensional measurement can to some extent improve the 

control progress [14]-[16]. The most potential method is 3D welding surface 

measurement and control because it is able to provide enough geometric process 

information. Very limited researches have been done about three-dimensional surface of 

welding pool. In the past years, University of Kentucky, novel and pioneering research 

has been done in this field. Special CCD cameras were added into the process, working 

with various algorithms, extracting three-dimensional model information related the 

welding pool [16]-[23]. Right now, the ongoing research has been extended from arc 

welding to laser welding. The goal is to design a suitable sensor associated with regular 

welding process.  

Beyond the difficulty of measurement, model identification is another critical 

procedure for successful automatic welding system. It is well known that most real life 

dynamic processes are inherently nonlinear. Laser welding is of no exception. It is 

dynamic, nonlinear, and of uncertainty although in many cases laser welding processes 

have been treated as linear system. Unlike linear processes approximating the processes 

around given operating points, nonlinear model is advantageous to describe the global 
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behavior of the processes on the entire range. However, due to the nonlinear nature and 

limited knowledge of welding processes, it is challenging to improve control quality and 

even automated processes. Moreover, the difficulty for welding process control is the 

model architecture because most of the information and relationship are from the 

experiments. There has hardly been an appropriate model applied to the welding process. 

Accordingly, developing suitable identification procedure specifically for laser welding 

process is very necessary. Because it is not realistic to develop identification techniques 

for general nonlinear processes, our study is focused on potential application of laser 

welding processes. We consider especially the processes that consist of two parts: a static 

nonlinearity and a linear dynamic subsystem. These model structures are also called 

Hammerstein model and have been successfully applied to nonlinear processes in many 

areas such as heat exchangers, chemical processes, biological processes, tank reactor, 

distillation columns, and so on. We believe Hammerstein model can also possibly 

represent laser welding process. We will further consider not only discrete system model 

but also continuous model for the sake of control performance. 

 

 

 

 

 

Figure 1.1  Nonlinear Hammerstein Structure 

 

1.2 Research Objective 

This thesis is intended to develop a simple method to identification and control for 

laser welding processes that can be described by a Hammerstein model with a static 

nonlinearity and a linear dynamics subsystem in series with each other. The identification 

is of both discrete-time and continuous-time case. In particular, the nonlinearity is very 

slowly time-varying and determines the system static characteristic and the linear 

dynamic determines the transient characteristics.  

The objectives include:  

1. Develop a laser welding system as an experimental platform 

Static 
Nonlinearity 
(NL) 

Linear 
Dynamics 
(L) 

)(ku  )(kx  )(ky  
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2. Characterizing the laser welding process in terms of inputs (speed, laser 

intensity) and output (weld pool geometry) and investigate the relations 

3. Develop a practical method to identify the laser welding processes under 

working conditions 

4. Use experimental data to test and validate the identification method 

  

1.3 Basic Idea 

A standard diode laser system is roughly implemented for research purposes in the 

welding research lab, Center for Manufacturing, University of Kentucky. The sensor 

system is implemented with hardware including a specially made digital camera, with 

built in band pass filter, Frame Grabber (National Instrument made), and vision based 

software (LabView/vision/IMAQ). The digital camera is synchronized with a high speed 

pulse laser. The sensor system acquires the images and extracts the geometric 

information of the molten weld pool. The working piece is 1mm mild steel sheet whose 

length is about 400mm and width is about 100mm. To study how the parameters such as 

welding speed and laser intensity influence the weld pool, series open loop experiments 

under different inputs are made. Through the experimental data, the identification is then 

developed based on Hammerstein model structure in both continuous and discrete cases. 

Based on the model, control algorithm is developed and simulation is created. 

Experiments are then made to verify the correctness of the model identification. 

 

1.4 Organization 

This dissertation is organized as follows.  In Chapter 2, existing sensing and control 

for laser welding are introduced. In Chapter 3, a review of Hammerstein identification 

and control algorithms are described. In Chapter 4, vision based sensor and related image 

processing algorithms are presented. In Chapter 5, the proposed Hammerstein 

Identification is briefly introduced and proved the applicability. In Chapter 6, 

experimental setup of the vision based sensor and results of image processing are 

demonstrated. In chapter 7, the proposed Hammerstein Identification procedure is 

described in detail and in Chapter 8 the results of Identification including the 

experimental set up are given. A SISO nonlinear model is also estimated and verified 
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with experimental data. The identification is also expanded to MIMO case. In Chapter 9, 

possible nonlinear control algorithm is proposed and investigated by simulation. 

Conclusion is summarized and future work is estimated in Chapter 10. 
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CHAPTER  2  

 

 

 

REVIEW OF SENSING AND CONTROL FOR LASER WELDING 

 

Laser welding has drawn a lot of attention in fields like shipyards, automobiles, 

aircrafts, and so on. Compared to traditional techniques, laser welding is advantageous 

for its high speed, high ratio of depth to width, small heat affected zone, low distortion, 

and potentially deep penetration [1]. However the inefficient quality monitoring and 

environment concerns [4] [5] to some extent hinder the development of the automated 

laser welding applications for industries. Accordingly developing an automated laser 

welding process has been a critical field in research and industrial study. Till now, 

various studies have been done to monitor the laser welding process. Some focused on 

the emission signals such as acoustic, infrared, ultraviolet, plasma, and so on [25]. Others 

aimed to the weld pool images acquired with CCD cameras [17] [25] [29]. Some 

concentrated on the heat distribution with numerical analysis [24]. 

 

2.1 Keyhole Sensing and Control 

During the process of laser welding, high energy of laser beam is focused onto a 

single location and a keyhole is created as shown in Figure 2.1. To ensure successful 

welding and avoid effects like burnt-through, keyhole depth should be controlled not too 

much beyond the height of the material. The advantage of Keyhole control is the possible 

small heated zone, which results better after work quality. Around the keyhole depth 

control, much work has been studied. In [8] a COMS camera is installed into the system, 

corresponding to the optic mirror and monitoring online the welding process. Relation 

between penetration depth and laser power was analyzed based on the experiments. 

Although the system is only used for ND-YAG and CO2 Laser Beams, its possible 

potential might be applicable to other systems. In [11], penetration is studied on CO2 

laser welding of thin sheet steel under experimental conditions. Statistical based analysis 

and various sensor systems are also studied. The difficulty of the keyhole control is how 
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to decide the penetration in real time, without sacrificing the advantage of laser welding 

process. In [2]-[3] [13], a sensor system based on emission detects and moreover the 

penetration was studied and developed. 

 

 
Figure 2.1 Keyhole in laser welding 

 

2.2 Emission or Radiation 

A challenge for laser welding is how to control the process online without 

compromising the welding quality. Because it is hard to find the parameters and relation 

related to the process, suitable measurement is always influential. Approximate analysis 

on signals will be of great help on the process. Various signals such as optical, acoustical, 

infrared, and so on [3] [6] [11] [12] [23] are studied based on spectrum and statistical 

analysis as shown in Figure 2.2.  
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Figure 2.2 Signal emission and sensors in laser welding 

 

2.3 Focus Control 

In [25] [26], the focus length of the laser is adjustable by the control system. With 

specific system design, the laser power can play to its full potential. The disadvantage is 

its instable noise, off-line monitoring, and difficulty to detect full penetration and partly 

penetration. The design will have to take into consideration of sensing system integration. 

 

2.4 Power and Speed Control 

It is a logic sense to think of controlling power and speed during the laser welding 

process and since laser welding is using the heat energy to melt the material and finish 

the welding, critical parameters that influence the energy should be taken care of at first. 

Power and travel speed are the influential factors related to laser welding. However, the 

difficulty is how to implement a suitable relation to evaluate the process. With power and 

travel speed as input, the welding quality parameter as output, laser welding process 

could be achieved as a tracking control [27]-[28].  
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2.5 Vision Based Sensing and Control 

 
Figure 2.3 Weld pool (1a) Laser Welding (1b) 

 

As shown in Figure 2.3, the full knowledge of the weld pool geometry includes the 

length, the width, and the depth. Weld pool images were acquired with CCD/CMOS 

cameras and studied to investigate the relations among various parameters along with 

laser welding process [10] [13] [29]. An on-going research to study laser welding process 

based on Vision based image acquisition and processing is being done in the Welding 

Research Lab, Center for Manufacturing, University of Kentucky. 
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CHAPTER 3 

 

 

 

REVIEW OF IDENTIFICATION AND CONTROL 

 

In this chapter, we briefly review the literature of nonlinear identification and control. As 

introduced, we are intending to develop an algorithm to identify both the linear dynamics 

and the nonlinearity in series with each other, which is similar to Hammerstein-type 

systems. The consideration of Hammerstein representation is motivated by the potential 

application to welding process, i.e. laser welding process. 

 

3.1 System Identification [30]-[34] 

One of the benefits from control application is the operational performance, without 

which many systems would exhibit an unacceptable natural behavior. Examples of such 

physical systems are chemical processes, vehicles, aircraft, consumer electronics, power 

plants, space structures, industrial robots, and so on. While designing a system, engineers 

always expect a balance with higher performance and lower throughput. However, the 

enhancement of some performance often implies the reduction of uncertainties and 

disturbances. Although with such improvements as feedback compensators, system 

performances will be realized as expected, a mature model built on the enough 

understanding of the system can never been overestimated. 

There are generally two ways to build models. One is through differential equations 

in accordance with natural laws, such as physics, chemistry, geometry, and so on. The 

advantage lies at its simplification and detail. The disadvantage is the requirement of 

understanding of the system. The other method is system identification, which is to 

develop a model from observed or collected data based on time series analysis and 

statistical methods. The advantage of system identification is its easiness without the 

need of knowing too much detail of the system. The disadvantage is its too much 

calculation and less detail model, which probably cause unstable system. 
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3.1.1 ARMAM: Autoregressive Moving Average Model [30] –[31] 

ARMAM is one of the most widely used statistical based analyses. It can be applied 

to areas like economics, finance, aerospace, automobile, chemistry, and so on. 

Fundamentally, the model represents the relation between input and output signals on the 

basis of previous time series data. 

A general ARMAM is: 

∑∑
=

−
=

− •++•+=
q

i
itit

p

i
itit aarr

11
0 θφφ                                                            (3.1.1.a) 

, which is also called as ARMA (p, q) model, with p, q as the order. 

To identify the model, the order and the coefficients will have to be estimated with 

methods such as least square estimation and optimization. 

 

3.1.2 Hammerstein Nonlinear System Identification  

It has been noted that many systems can be approximated by a static nonlinearity and a 

linear dynamics in series with each other. These models are called Hammerstein block 

cascade models and used to model several classes of nonlinear systems such as chemical 

processes, heat exchangers, and distillation. Because it is difficult to identify nonlinear 

parameters, Hammerstein is of no exception. The good about Hammerstein model 

structure is sometimes we can choose the nonlinear element based on the available input 

and linear transfer function. 

 

 

 

 

 

Figure 3.1 Hammerstein Nonlinear Model Structure 

 

The Hammerstein Model can be described by a memoryless nonlinear element followed 

by a linear dynamic system as shown in Figure 3.1, where ( ) ( )( )kufkx = ; ( ) ( )kyku , are 

the input and output of the system respectively and ( )kx is the nonlinear function of the 

Static 
Nonlinearity 
( )•f  

Linear Dynamics 
( )

( )1

1

−

−

qA
qB  

)(ku  
)(kx  )(ky  
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input. ( )kx can not be measured but can be eliminated by estimating the nonlinear 

function.. The static nonlinearity nonlinearizes the input and then the virtual input is sent 

into the linear system, which is also modeled by a linear transfer function, until the output 

is sent out. One of the characteristics of Hammerstein model is that the effect of 

nonlinearity is independent of the linear dynamics. In other words, the slope of the 

nonlinearity at a certain operating point can be the instantaneous system gain, 

determining the static response of the system.  

If we introduce the shifting operator q that is defined by: 

( ) ( )kyqky 11 −=− ,                                                                                                 (3.1.2.a) 

( ) n
nqaqaqA −−− +++= L1

1
1 1                                                                                 (3.1.2.b) 

( ) m
mqbqbbqB −−− +++= L1

21
1                                                                               (3.1.2.c) 

 

Then the system can be represented by the structure of: 

( ) ( )
( ) ( )( )( )kuf
qA
qBky 1

1

−

−

=                                                                                            (3.1.2.d) 

If the nonlinear function can be assumed as a polynomial of order l , then the system can 

be modeled by: 

( ) ( )
( ) ( )∑

=
−

−

=
l

i

i
i ku

qA
qBky

1
1

1

γ                                                                                            (3.1.2.e) 

Hammerstein identification has been studied in many years. In 1966, iterative search 

method based Hammerstein structure was proposed and applied [35]. The model was 

composed of a memoryless polynomial gain and a linear discrete time system transfer 

function. Mean least Square error criterion between measured output and predicted output 

were applied to adjust the parameters of both linear dynamics and the nonlinearity gain. 

Similar techniques were also used to identify nonlinear system with various format 

transfer function. A non-iterative technique was used to identify the Hammerstein model 

in a general case where the transfer function has zeroes [36]. Zhu [6] proposed a aA 

relaxation iteration scheme was proposed with a model structure in which the error is 

bilinear in the parameters [37]. The order of the linear dynamics and the nonlinearity are 

determined by looking at an output error related criterion which is control relevant. A 
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multivariable Hammerstein identification for state-space and linear-FIR models was 

proposed. White noise persistent excitation series was taken into consideration [38]. 

Moreover, they have shown that the linear-FIR case with white noise input, the standard 

iterative procedure is guaranteed to converge and thus provides an asymptotically optimal 

estimator. In [39], a frequency weighted least squares based formulation method was 

presented to identify the parameters of Hammerstein nonlinear continuous time system 

based on input and noise contaminated output data observed over a finite time interval. 

Cross-correlation was added into an identification algorithm for the system having the 

structure of a Hammerstein model was studied and procedures to decouple the 

identification of the linear dynamics from the characterization of the nonlinear element 

were also proposed [40]. GA algorithm was used for identification to proximate the 

piecewise linear dynamics and memoryless nonlinear characterization of the 

Hammerstein models [41] [42]. To identify the Hammerstein structure, especially the 

nonlinearity, Genetic programming was applied to the system [43]. A novel approach 

based on a point-slope parameterization of the static nonlinearity and optimal computing 

was proposed to simultaneously approximate the linear dynamic and static nonlinear 

blocks of the nonlinear feedback model [44]. A practical method to identify heat 

exchange process with Hammerstein model was presented [45]. The model was based on 

experimental study. Eskinat and Johnson [3] used the identification methods for 

simulated distillation columns and to an experimental heat exchanger process. To fully 

investigate the potential of Hammerstein identification, a separable nonlinear least 

squares methods for on-line estimation of neural nets Hammerstein models was proposed 

[46]. An algorithm which transforms the nonlinear model into a model which is linear in 

parameters and a pseudo-inverse technique leading to a consistent estimator or the initial 

realization as well the model of the noise was studied [47]. A new iterative procedure to 

identify Hammerstein models and minimizes the infinity norm of the deviation between 

the true model and identified model [48]. To compare the performance between iterative 

and non-iterative algorithm, a non-iterative algorithm was studied and the algorithm was 

applied for simultaneous identification of the linear and nonlinear parts of the 

multivariate Hammerstein structures. The proposed algorithm is based on LS and SVD 

[49]. To conquer the over-sampling problem during the identification of Hammerstein 
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model, a new least squares type of identification algorithm was proposed [50]. Dynamic 

separation techniques were also studied for a class of Hammerstein models [51]-[53]. 

Optimal design and recursive techniques were greatly applied to the nonlinear processes 

with the assumptions. A relaxation based technique and its consistency was proposed and 

studied for nonlinear processes [54]. Neural network was proved to be another possible 

method to identify the nonlinearity. A recursive identification algorithm has been derived 

to update the weights and the parameters of the ARMA [55]. 

 

3.2 Nonlinear Control 

Nonlinear control is one of the biggest challenges in modern control theory. It has 

various applications such as Aerospace, Automobile, UAV, Welding, and so on. While 

linear control system theory has been well developed, trying to control the system beyond 

the limit of equation point is still a pursuit for control engineers.  

There has been many ways related to nonlinear control. Given the fact that linear 

control theory has been studied so many years, it is very reasonable to think of a way to 

linearize the nonlinear system model at first, which is, introducing factors to counteract 

the effect of nonlinear elements. Feedback linearization can be categorized into the field 

[56]-[57]. Adaptive Control [58]-[59] certainly benefited the progress. However, due the 

limit of system complexity, especially when the system order is higher and system has 

unmodeled dynamics, Feedback linearization probably will not have the good result, 

which forced new method like back-stepping [57], constructive methods [55], and Robust 

Adaptive method [59]-[61].  

 

3.2.1 Feedback Linearization [56] 

The central idea of Feedback Linearization is to cancel the nonlinear part of the 

system model through controller and convert the system to be linear. Depending on the 

system model, feedback linearization falls into two categories. One is output feedback 

linearization and the other state feedback linearization. 

Let: 

( ) ( )
( )xhy

uxgxfx
=

+=
•

                                                                       (3.2.1.a) 



 
15 

 

( ) ( ) ( )txxu υβα +=                                                                    (3.2.1.b) 

 

( ) ( )
( )tCzy

tBtAzz
=

+=
•

υ                                                                         (3.2.1.c) 

The implementation is to find a feedback transformation as equation 3.2.1.b, so that, 

equation 3.2.1.c under the conditions that ( )BA, is controllable and ( )CA, is observable 

Something worth mentioning is when the system is full state available, the output 

and control law will be the focus to decide the successful linearization; when system is 

not full state available, further consideration should be taken such effect as zero 

dynamics. 

For full state feedback linearization, the task is to find a feedback transformation so 

that  

( ) ( )tBtAzz υ+=
•

                                                                              (3.2.1.d) 

 

Let the system be: 

 

( ) ( )uxbxfyn +=                                                                               (3.2.1.e) 

, where ( ) 0≠xb and x the state vector [ ]Tnyyyy ,...,, 21  

For a tracking system, let reference input ( )tr n exists and bounded, design a stable 

polynomial ( ) ( )( ) ( ) ( ) ( )
0

1
121 ...... asasssssa n

n
n

n +++=−−−= −
−λλλ . Then define the 

tracking error as: 

 

( ) ( )[ ]11 ,..., −=

−=
neeeq

rye
                                                                              (3.2.1.f) 

 

Then choose the control law as  
( ) ( )

( )xb
xfqaru

Tn −−
=                                                                           (3.2.1.g) 
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3.2.2 ∞H Nonlinear Control [56] [62] 

Started since late 1980s by McFarlane and Glover, H-infinity control has been one 

of most popular methods in nonlinear control fields. Fundamentally H-infinity is similar 

to optimal control as shown in Figure 3.2. It has been successfully developed for different 

models and proven to be effective for robust systems for substantial uncertainty.  

 

 

 
Figure 3.2 H-infinity control 

 

Let the system be: 

 

( ) ( ) ( )
( ) ( )
( ) ( )wxDxCy

uxDxCz
uxBwxBxAx

22

11

21

+=
+=

++=
•

                                                                    (3.2.2.a), 

where x  is the state, z is the performance objective, y  is the measured output and u the 

controller 

If we rewrite the system as: 

 

Kyu
u
w

PP
PP

u
w

P
y
z

=

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

2221

1211

                                                             (3.2.2.b) 

, then the performance objective z might be represented with 

( )( )wPKPIKPPz 21
1

221211
−−+=                                                                  (3.2.2.c) 
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Define ( ) ( )( )21
1

221211, PKPIKPPKPF −−+=                                       (3.2.2.d) 

 

Then the task of H infinity is to find a controller K such that 

( )( )21
1

221211 PKPIKPPF −−+=                                                                     (3.2.2.e) 

Equation 3.2.2.d is minimized following the norm 

 

( )( )ωσ
ω

jFF sup=
∞

, where σ is the singular value of the matrix F 

                                                                                                              (3.2.2.f) 

 

3.2.3 Backstepping [56]-[57]  

Backstepping has been studied since late 1980s and 1990s due to its potential to 

dealing with uncertainty. It basically is a recursive method, designed to derive an error 

equation and construct a control law and parameter adjustment law so that the state of the 

error equation settle down to zero. 

As shown in Figure 3.3., let the system be 

 

 
Figure 3.3 Backstepping system diagram 
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( )

( )
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1

21

121

3212
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211
1

,...,,
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,

xy

uxxxf
dt
dx

xxxxf
dt
dx

xxxf
dt
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xxf
dt
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nn
n

iii
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=

+=

+=

+=

+=

+

M

M

                                                                    (3.2.3) 

                                                                                                              (3.2.3.a) 

The task is to design the transformation with canceling the nonlinear effects. 

First, let: 

 

( ) ( )
11

111112

xz
xxfxx

=
−−== λα

                                                                     (3.2.3.b) 

 

Assume 01 >λ  

Define the Lyapunov function as  

( ) 2
111 2

1 xxV =                                                                                         (3.2.3.c) 

Then: 

( )( )1121
2
11

1
11 xxxx
dt
dxxV αλ −+−==

•

                                                   (3.2.3.d) 

Let ( )1122 xxz α−=                                                                             (3.2.3.e) 

Then 

 

( ) ( )( ) 3211
1

1
212

2

211
1

, xxxf
x

xxf
dt
dz

zx
dt
dx

++
∂
∂

−=

+−=

α

λ
                                               (3.2.3.f) 
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Define 

( ) ( )( )211
1

1
212

_

2 , xxf
x

xxff +
∂
∂

−=
α                                                          (3.2.3.g) 

Then the Lynapunov candidate is 

( ) ( ) 2
211212 2

1, zxVzxV +=                                                                      (3.2.3.h) 

Then   

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +++−=

•

321

_

2221
2

112 , xzxfzzxxV λ                                                 (3.2.3.i) 

So, for 3x , let 

( ) ( ) 22121

_

2212 ,, zxxxfzx λα −−−=                                                         (3.2.3.j) 

 

233

32
2

22
2

112

α
λλ

−=
+−−=

•

xz
zzzxV                                                                         (3.2.3.k) 

 

So, we have  

42
1

2
1

1

2
3

3

3221
2

211
1
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z

x
x

f
dt
dz

zzx
dt
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⎝

⎛
∂
∂

+
∂
∂
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+−=

•• αα

λ

λ

                                                            (3.2.3.l) 

 

Similarly, let: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−=
••

2
1

2
1

1

2
3

_

3 z
z

x
x

ff αα                                                                     (3.2.3.m) 

Define the lyapunov function: 

( ) ( ) 2
32123213 2

1,,, zzxVzzxV +=  

                                                                                                                 (3.2.3.n) 

So the first derivative of equation 3.2.3.n will be as: 
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( ) ⎟
⎠
⎞

⎜
⎝
⎛ +++−−=

•

4

_

33322
2

113213 2,, xfzzzzxzzxV λλ                                       (3.2.3.o) 

33

_

33 2 zzf λα −−−=                                                                                   (3.2.3.p) 

Similarly, let 
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1
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x

ff nn
αα                                                           (3.2.3.r) 

( ) ( ) 2
121121 2

1,...,,,..., nnnn zxxxVzzxV += −                                               (3.2.3.s) 

 

So: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ +++−−= −

−

=

•

∑ ufzzzzxzzxV nnnn

n

k
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_

1

1

2

22
11321 ,, λλ  

nnnn zzzfu n λ−−−−= −− 1

_

1                                                                     (3.2.3.t) 

 

Moreover, the closed loop system will be  

 

nnn
n zz
dt
dz

zzx
dt
dz

zx
dt
dx
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3221
2

211
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                                                                                                              (3.2.3.u) 
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The Lyapunov function of equation 3.2.3.u will be: 

( ) ∑
=

•

−−=
n

k
kkn zxzzxV

2

22
11321 ,, λλ  

                                                                                                              (3.2.3.v) 

 

3.2.4 Model Based Predictive Control (MPC) [63]-[64] 

MPC usually includes the process model which is often a linear discrete system model 

obtained from experiment, a predication equation which runs forward for a fixed number 

of time steps to predict the likely process behavior, a known future reference trajectory, 

and a cost function which usually is quadratic and costs future process output errors. The 

way how MPC works is basically to minimize the variance of the output from the system 

at the k th step ahead in the future, where k is the estimated plant dead time.  

Let the process model be: 

)(
)(
)()1(

)(
)()( 1

1

1

1

k
qD
qCku

qA
qBqky

d

Δ+−= −

−

−

−−

, where )(qA , )(qB , )(qC , )(qD  are 

polynomials in the backward shift operator 1−q , Δ  is the Gaussian white noise sequence 

with zero mean.  

Denote t as current time and the design objective is to choose a control )(tU : 

})|{()( 2
tktyEMintU +=                                                                                        (3.2.4.1) 

And the cost function can be defined as: 

]}{[ 22
tktt uyEJ λ+= +                                                                                           (3.2.4.2), 

where λ  is a weighting factor.  

If we write the cost function:  

∑
=

+++ +=
N

j
jtjjtt uyJ

0

22
1 ][ λ                                                                               (3.2.4.3) 

, then the predictive term can be extended over a range of future time.  
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3.2.5 Fuzzy Control [65] [65] 
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Figure 3.4   Fuzzy Control  

 

A fuzzy controller as shown in Figure 3.4 is designed to roughly emulate the human 

deductive process as shown in Figure 3.3 and the typical rule base is a set of “if-then” 

rules that are quantified via fuzzy logic to represent the knowledge that human experts 

may have about how to solve the problem in their domain of expertise. The fuzzy 

inference mechanism successively decides what rules are most related to the current 

situation and applies the action indicated by these rules. The fuzzification interface 

converts numeric inputs into a form that the fuzzy inference mechanism can use to 

determine which knowledge in the rule base is most relevant at the current time and 

generate the fuzzy set of output.  The defuzzification interface combines the conclusion 

reached by the fuzzy inference mechanism and provides the numeric output. The fuzzy 

logic control provides a formal methodology for representing, manipulating, and 

implementing the human’s heuristic knowledge about how to control a system.  Both 

inputs and outputs are real variables and need to be fuzzified and defuzzified. The 

important component of a fuzzy control system is the rule base and inference mechanism. 

The rule base is often implemented based on the linguistic expression of expert 

knowledge. The inference mechanism can be implemented mathematically.  
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)(*...*)(*)(),...,,( 221121 n
l
n

kj
ni uuAuuAuuAuuuu =  

                                                                                                       (3.2.5.1) 

where ),...,,( 21 ni uuuu  is the certainty that the antecedent of rule i  match the input 

information ),...,,( 21 nuuu , )( 11 uuA j  is the membership function associated with fuzzy set 

jA1  and input 1u . 

For i th rule, the computed fuzzy set with membership function is  

)(*),...,,()(ˆ
21 qBniq

i
q yuuuuuyBu i

q
=  

                                                                                            (3.2.5.2) 

where )( q
p
q yuB  specifies the certainty  level of output qy  in fuzzy  set p

qB . The overall 

implied fuzzy set with membership function: 

)(ˆ...)(ˆ)(ˆ)(ˆ 21
q

R
qqqqqqq yBuyBuyBuyBu ⊕⊕⊕=                                                      (3.2.5.3) 

, where ⊕  defines },max{ yxyx =⊕ . 

The control system needs to defuzzify the fuzzy set computed from the input to output 

the numerical value to the plant. There are a few criteria including the Max, center of area 

(COA), center average, center of gravity (COG), etc. A very common method is COG, in 

which a crisp output is chosen using the center of the area and area of each implied fuzzy 

set and is given as follows: 

∑∫

∑ ∫
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== R

i
qyq q

i
q

R

i
qyq q
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q

i
q

crisp
q

ydyBu
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y
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1

)(ˆ

)(ˆ
                                                                                (3.2.5.4) 

, where i
qc  is the center of area of the membership function of p

qB  associated with the 

implied fuzzy set i
qB̂  for the i th rule, the fuzzy system is defined such that 

∑∫
=

≠
R

i
qyq q

i
q ydyBu

1

0)(ˆ  for all iu .                                                                         (3.2.5.5) 

 

3.2.6 Robust Adaptive Control [59]-[61] 

Consider a SISO nonlinear system represented by: 
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)(),,,,,,,,(),,,,,,,( )1()1()()1()1()( tduuuyyyuuuuyyyfy mnm
u

mnn +⋅⋅⋅⋅⋅⋅Δ++⋅⋅⋅⋅⋅⋅= −−−− ωθ &&&&  

                                                                                                                             (3.2.6.1)  

, where y  is output, u  is control, iy  is ith derivative, ( )td  is unknown bounded 

disturbance; ( )Δ  is uncertain nonlinearity and unmodelled dynamics, θ  is unknown 

parameters with known sign. 

 

Let:  
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n

uzuzuz

yxyxyx
                                                                             (3.2.6.2) 

 

)(),,(),( tdzxvzxfx un +Δ++= ωθ&                                                                      (3.2.6.3) 

 

1+= ii xx& , where 11 −≤≤ ni                                                                                  (3.2.6.4) 

 

1+= ii zz& , where 11 −≤≤ mi                                                                               (3.2.6.5) 

vzm =&                                                                                                                 (3.2.6.6) 

)(muv =                                                                                                               (3.2.6.7) 

The unmodelled dynamics is described by: 

( )zxq ,,ωω =&                                                                                                      (3.2.6.8) 

We assume that q,Δ  are unknown nonlinear functions which are continuous and 

Lipschitz and satisfy 

0)0,,0( =Δ z  

ωω 321),,( czcxczx ++≤Δ                                                                         (3.2.6.9) 

Then the control scheme is:  
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Τ⋅⋅⋅= ],,,[ 21 neeee                                                                                                (3.2.6.11) 
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)](),,(),([ )( tdzyevyzyefKebeAe ru
n

rrm ++Δ++−+++= ωθ&                     (3.2.6.13) 

We introduce a dynamic signal described by: 

mrrcr +−=
•

0 , where 0)0( 0 >= rr and ),0( 00 cc ∈                                        (3.2.6.14) 

),(0
2

0
2

rmrrm yerdyeyer
Δ

=+++= γ  that satisfies with Lyapunov condition  

)()())(( tDtrtV +≤ωω , where )(tD  is a defined function 

The robust adaptive controller is then designed by: 
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                                                                                                                           (3.2.6.15) 

, where β  is the adaptive parameter of the controller and 1
1
−α  is the inverse function and 

is a function of class ∞K . 

P is Lyapunov matrix under the condition of: 

 

QAPA T
mm −=+ , where 0>= TQQ  

( ) σβββ Γ−= rm yrze ,,,&  

( ) ( )[ ] ( )[ ] ( ){ }
( )rm

rr
T

m
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,,
12, 2212222

β
αβ

=

+++++++Γ= −

 

                                                                                                                          (3.2.6.16) 

For the design constants we assume they are known and satisfy the condition 

of 0,0 >> σT . 

In the case that not all the states are available, output feedback control is implemented 

based on the high gain state observers.   
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, where 0>ε  is a small constant, nii ,...,2,1,0 =>σ  are chosen so that CKAAn σ−=  is a 

Hurwitz matrix, and [ ]nK σσσ ,,1 L= , [ ]0,,1 L=C . 

To eliminate peaking in the implementation of the observer, we define  

1−= i
i

i
qe
ε

)  ,where ni ≤≤1                                                                                     (3.2.6.18) 

Thus, the observer can be designed by: 
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, where 11 −≤≤ ni  

In order to prevent the peaking from entering the control system, we saturate the control 

signal and adaptive controller outside of their domains of interests.  

And for ( ) ( )rmr yreyrev ,,,,,, ββ , we can denote the following equations: 
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( )sat  represents the saturation function. 

Thus the robust adaptive output controller can be obtained by replacing ( )β,,, ryrev  and 

( )rm yre ,,β  with ( )β,,, r
S yrev  and ( )ββ ,,, r

S
m yre  
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CHAPTER 4 

 

 

 

VISION BASED SENSOR: WELD POOL IMAGE PROCESSING 

 

The geometry of the molten weld pool is critical to welding process. By equipping 

a high speed pulse laser with CCD digital camera in our system, grayscale images of 

weld pool can be acquired. However these images must be smoothed and segmented from 

the background in order to extract the feature of interest due to the inevitable effects of 

noises. Accuracy of the smoothing and segmentation has great influence on the 

subsequent analysis  

Image smoothing has been studied in many years. Fundamentally it is to remove 

noises and enhance the interested regions. Various filters based on convolution masks 

have been proposed for this purpose [67]-[70]. The side effect of image smoothing is 

sometimes the resultant image is undesirably blurry, especially at sharp edges. 

Segmentation is to distinguish regions that shares common properties in an image. 

The properties vary with applications of interest and can be such as pixel grayscale, color, 

etc. Several segmentation methods have been researched and applied in the past years, 

among which thresholding and edge detection are the mostly mentioned [70]-[77].  

The fundamental idea is, if we define ( ){ }yxP ,  as the local property and 

( ){ }niyxSi ,...,2,1|, =  as the regions, then the segmentation of image X should satisfy at 

least: 

U
n

i
iSX

1=

= , where Φ≠iS andΦ is empty. 

jiSS ji ≠∀Φ= ,I   

( ) ( ){ } 1,|, =∈ iSyxyxP  

( ) ( ) ( ){ } 0,|, =∈ U ji SSyxyxP  

In our research, only monochrome images are considered although all the methods and 

principles related can be applied to color images as well. 
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4.1 Image smoothing: Pre-conditioning 

Image acquired with devices such as CCD or CMOS digital camera inevitably 

generates noises and blurring. The blurring can be caused by the movement during the 

capturing process, out-of-focus, short exposure time, or light distortion, etc. To get better 

results in later processing, it is better to smooth these raw images. The fundamental 

process can be either image deblur or noise removal or both [77]. The methods can be 

implemented with various filters. Depending on the situation, it might need to repeat 

debluring several times to get satisfactory results. 

 

4.1.1 Deblur 

Mathematically, a blurred image can be represented by a convolution between original 

image and distortion operator, called PSF, point spread function [70] [71].  

nfHg +∗= , where g is the blurred image, H is the distortion, andn is the noise 

( )[ ] ( ) ( )∑∑
= =

−−=∗
m

i

n

j
jnimfjihnmfH

1 1
,,,  

The PSF convolution kernel can be Gaussian Shaped, with the form of 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−= 2

22

2
exp

2
1,

σσπ
yxyxPSF                                                                 (4.1.1) 

Several algorithms can be used to deblur the raw images. The algorithms can be either 

linear or non-linear, either iterative or non-iterative. 

 

4.1.1.1 Lucy-Richardson Algorithm [77 [78] 

This algorithm requires no priori information about the original image. It performs 

better when the noise is not too strong. 

∑
=

=
n

j
jiji fhg

1
, where ijh is the PSF at position i and jf is the pixel grayscale at location 

j  

∑
∑=

=

+ =
n

j
m

i
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jjit
i

t
i

fh

gh
ff

1

1

1 , or ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∗=+

t
t
i

t
i Hf

gHff 1                                                  (4.1.2) 
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The solution can be iteratively obtained. 

 

4.1.1.2 Maximum Likelihood Estimator [78]-[79] 

This algorithm computes the maximum likelihood estimate of the intensity of a Poison 

process. Let f be the unblurred image, the expected value at the kth  pixel in the blurred 

image is∑
=

n

j
jkj fh

1
. The actual kth  pixel value kg is viewed as simply one realization of a 

Poisson distribution with mean∑
=

n

j
jkj fh

1
.  

Accordingly,  
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| 1
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k
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j
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k g
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j
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∑
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=

                                                                        (4.1.3) 
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                                                                     (4.1.4) 

 

The maximum likelihood solution satisfies ∑
∑=

=

=
n

k
m

j
jkj

kki
ii

fh

ghff
1

1

                          (4.1.5) 

, similar to that of Lucy Richardson algorithm 

 

4.1.1.3 Wiener Filter [69] [70] [77] 

Wiener filter is a linear filter. The filter assumes that the image is distorted by Gaussian 

distribution noise. The filter tries to minimize the mean square error between the acquired 

image and restored image. It operates in the frequency domain. 

( ) ( ) ( ) ( )vuNvuFvuHvuG ,,,, +=                                                                         (4.1.6) 

Hence, in regular case, 

 

( ) ( ) ( )vuTvuGvuF ,,,ˆ = , where ( ) ( )vuHvuT ,, 1−=  
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( ) ( ) ( ) ( ) ( )vuHvuNvuHvuGvuF ,,,,,ˆ 11 −− +=                                                      (4.1.7) 

 

This way is very easily influenced by the noise because the inverse filter typically has 

very high gain at high frequencies so that the noise term completely dominates the 

restored image. In this case, future attempt should be taken to reduce the noise 

amplification. 

The Wiener filter minimizes the mean-square-error: 

 

( ) ( )( ) ⎥⎦⎤⎢⎣
⎡ −=

22 ,ˆ, yxfyxfEe                                                                                  (4.1.8) 

( ) ( ) ( )
( )vuH
vuWvuGvuF

,
,,,ˆ = , where ( ) ( )

( ) ( )vuPvuP
vuPvuW
NH

H

,,
,,

+
=                             (4.1.9) 

 ( ) ( )
( ) ( )

( )vuS
vuSvuH

vuHvuT

f ,
,,

,,
2 η+

=
∗

                                                                  (4.1.10) 

, where ( ) ( )vuSvuS f ,,,η are the power spectra of the noise and the original image. 

 

4.1.2 Denoise 

Digital images are prone to variety of types of noise, as the result of error in the process 

of image acquisition. When image is acquired directly in a digital format, the mechanism 

for gathering the data such as CCD detector can easily introduce noise. Several methods 

are available for noise removal with suitable filters. 

 

4.1.2.1 Linear Filter: Statistical Average [69] [70] [78] 

The output image is based on a local averaging of input filter. The idea is to replace 

each pixel value with the average of its neighbors including itself, defined by the filter 

window. 

[ ]
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⎤

⎢
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⎢
⎢
⎢
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11111
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11111

25
1,kjh .                                                                             (4.1.11) 



 
31 

 

The filter is normalized so that [ ] 1, =∑ kjh . This is to guarantee the signal energy 

preserved before and after the convolution. 

 

4.1.2.2 Gaussian Filter [69] [70]  

Image is convolved with Gaussian mask whose parameters are determined by Gaussian 

function: 

 

( ) yx hhyxyxh •=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−= 2

22

2
exp

2
1,

σπσ
                                                            (4.1.12) 

 

4.1.2.3 Median Filter [69] [70] [78] 

Median filter replaces the pixel value with the median value of the neighboring pixel 

and itself. 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

...............
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                                                                                 (4.1.13) 

, where the neighboring values are { }150,127,126,125,124,123,120,119,115 and the man 

value is 124 

 

4.2 Thresholding 

Thresholding is the simplest and most fundamental segmentation method. It has been 

studied for many years and various algorithms have been proposed [69]-[721]. The idea 

of thresholding is to select a level of grayscale and partition the image into two sub-

classes that include pixels with intensities below and above the threshold level. 

Accordingly, thresholding can be classified into two categories: global algorithm and 

local adaptive algorithm based on how the threshold level is selected. In the global 

algorithm, one threshold is selected across the whole image. In the local adaptive 
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algorithm, the image is partitioned into sub-images and threshold level is selected in 

according with the local property.  

Define ( ){ }yxgf ,|,  as the grayscale function of the image before and after the 

threshold and ( )yx,  is the location of the pixel andT is the threshold level. Then after 

thresholding, the image will be: 

 

( ) ( )
( )⎩

⎨
⎧

≥
<

=
Tyxf
Tyxf

yxg
,1
,0

,                                                                                     (4.2.1) 

 

It is obvious that the threshold value is the key parameter in thresholding. There are 

many existing methods to selecting threshold. Common methods include statistical mean 

and histogram based [70] [80], iterative methods [81]-[82], optimal procedure [84], 

entropy based [85], fuzzy [86] and neural network [87]. 

 

4.2.1 Global Threshold: Mean Value [70] 

 

( )( )yxfmeanT ,= .                                                                                              (4.2.2) 

This method is very simple, but inevitably influenced by the noises. It performs well 

when the regions distinct very sharply, especially when the histogram only has one or 

two peaks. 

 

4.2.2 Histogram [71] 

The valley between the two peaks is one good point to start. For the 

grayscale 10 −≤≤ Lz , the valley threshold value ∗z  should 

satisfy ( ) ( )1−< ∗∗ zhzh and ( ) ( )1+< ∗∗ zhzh , where ( )zh  is the histogram. 

 

4.2.3 Iterative Threshold [72] 

At first, select an initial estimate of threshold level at 0T , for example, the average 

intensity of the all the pixels. 

Then partition the image into two sub-classes{ }21,CC , such that{ }0201 , TCTC >< . 
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Calculate the mean intensity values { }21,μμ  of the two sub-classes. 

Select a new threshold at ( )212
1 μμ +=T . 

Repeat procedures until T  converges.  

 

4.2.4 Optimal Threshold (Otsu’s method) [74] 

 

Otsu’s method chooses the threshold to minimize the weighted between-class variance 

of the pixels during the thresholding. 

Assume the grayscale level of the image is { }mi ,,2,1 L=  , the weighted between-class 

variance is represented by: 

 

( ) ( ) ( ) ( ) ( )tTqttqt kw
2

22
2

11
2 σσσ += , where the class probabilities are estimated as: 

( )∑
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iPq
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2 .  

 

The means of the classes are given by: 
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( ) ( )
( )∑

+=

=
m

ti tq
iiPt
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, where ( )
N
niP i= , N  is the total pixel number and in  is the number of pixels in level i  

The individual variances of the classes are represented by: 
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1 μσ                                                                               (4.2.5) 
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2
2 μσ .                                                                            (4.2.6) 

The algorithm scans the full range of t  within [ ]256,1  until it maximizes ( )twσ . 
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4.2.5 Adaptive Threshold [69] 

This method is realized in two steps: 

At first, the image is partitioned into sub-images{ }mSSS ,....,, 21 . The size of the sub-

images can be determined by the histogram. In our case, we apply the size at 5050× . For 

every sub-image { }miSi ,...,2,1, = , the threshold is selected in accordance with the 

statistical mean ( ) miSmeanT ii ,...,2,1, == . The images are then thresholded according to 

the local threshold values { }mTTTT ,....,, 21= . 

 

4.2.6 Least Mean Error [80] 

Assume the proportion of the particle pixel corresponding to the whole image is θ  

and the background is θ−1 , then the probability of the particle can be represented by: 

( ) ( ) ( ) ( )zpzpzp iθθ −+= 11                                                                             (4.2.7) 

At any levelT , the probability to detect target as background is: 

( ) ( )∫
∞

=
T

dzzpTE 11                                                                                           (4.2.8) 

And the probably to detect the background as target: 

( ) ( )∫
∞−

=
T

dzzpTE 22                                                                                         (4.2.9) 

So, total probability is: 

( ) ( ) ( ) ( )TETETE 21 1 θθ −+=                                                                         (4.2.10) 

Let: 

( ) 0=
∂

∂
T
TE                                                                                                       (4.2.11) 

Then: 

( ) ( ) ( ) 01 21 =−+− TpTp θθ .                                                                            (4.2.12) 
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TT                                                             (4.2.12) 

Suppose the proportion satisfies Gaussian distribution: 

( ) ( )111 ,~ σμNzp                                                                                            (4.2.14) 
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( ) ( )222 ,~ σμNzp                                                                                          (4.2.15) 

Then, if  
22

2
2
1 σσσ ==                                                                                                (4.2.16) 

θ
θ

μμ
σμμ

−−
+

+
=

1
ln

2 2

2
2T .                                                                       (4.2.17) 

 

4.2.7 Center of Mass [70] 

The threshold level is determined in accordance with the location of the center of mass, 

which is: 
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4.2.8 Fuzzy C-Mean [86] 

Let C be an integer between [ ]n,1  and { }nxxx ,...,, 21 denote a set of column vectors 

in pR , where p represents the number of features in each vector. Given X , we say that 

C fuzzy subsets [ ]{ }1,0→X are a fuzzy C partition of X if the following conditions on 

the membership value iku for the cluster i and the feature vector kx are satisfied: 

( ) ( )nkCixuu kiik ≤≤≤≤= 1,1| , where kiuik ,,10 ∀≤≤  

ku
C

i
ik ∀=∑

=

,1
1

                                                                                                    (4.2.20) 

inu
n

k
ik ∀<<∑

=

,0
1

 

Grouping pixels blocks according to their membership by regions 

yields [ ] nkciuU ik ≤≤≤≤= 1,1, , where U denotes the fuzzy membership matrix of pixel 

block k in region i and c  denotes the number of regions. The matrix thus becomes: 
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Each row of matrix U represents the membership grade of all blocks belonging to 

region iR  

The method minimizes the membership function: 

( ) ( ) ( )∑∑
= =

−=
c

i

n

k
ik

m
ik vxuVUJ

1 1
,                                                                           (4.2.22) 

, where [ ]cvvvV ,...,, 21= holds the vectors representing the center of each region 

 

4.3 Edge Detection: the Goal 

Edge detection is another common method for image segmentation [49]-[53]. It 

relies on discontinuities in the image data to locate boundaries of the segments and is the 

fundamental feature of the image. Because edge functions like high frequency signals, it 

can be recognized by mask filters. Considering the tendency of the pixel grayscale, there 

are three different edges. The first is Step-edge, in which grayscale jumps from one level 

to a higher one. The second is Roof-edge, in which grayscale gradually increases to some 

extent and then decreases. The third is Line-Edge, in which grayscale changes from one 

level to the other and then back forth. Step edge is mostly used and studied. 

 

 

 

 

 

 

 

Figure 4.1 Edge Curve 

 

Various edge detection methods have been studied. Common methods vary from 

gradient and zero-cross of second order derivatives to statistics. The detection has been 

Step Edge Roof Edge Line Edge 
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improved from open to close loop. Since edge can be described as the discontinuity of the 

signals, and especially given the relationship between the maximum point or spot and the 

signal first differential or second differential, it is reasonable to determine the edge with 

finding the signal maximums. On the other hand, considering the fact that derivatives can 

be approximated by numerical methods, if derivatives happen right at every pixel, then 

the derivatives can be represented similarly like a discrete equation.  

According Taylor series expansion, if expanding ( )xxf Δ+ about x , then 

( ) ( ) ( ) ( ) ( ) ...
!2

''
2

' +
Δ

+Δ+=Δ+ xfxxxfxfxxf   

                                                                                                                           (4.3.1) 

Then: 
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= ο                                                                   (4.3.2) 

Or:  

( ) ( ) ( ) ( )x
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xxfxxfxf Δ+
Δ

Δ−−Δ+
= ο

2
'  

                                                                                                                         (4.3.3) 

Let ),( yxf  be the image signal distribution related to attributes such as intensity, 

lamination, and grayscale, with yx, the pixel location in the image. 

Then the gradient of the signal can be calculated through the gradient: 
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Similarly, we can get  
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For approximation, the gradient can be simplified with: 
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( ) ( ) ( ) ( )( )1,,,,1,),( −−−−=∇ yxfyxfyxfyxfyxf                                       (4.3.7) 

, given xΔ as the pixel distance 

Or, 

 

( ) ( )
( ) ( ) ( )1,,,

,1,),(
−−=∇

−−=∇
yxfyxfyxf
yxfyxfyxf

y

x                                                                          (4.3.8) 

 

The existent issue of above approximation is that the gradient approximation is 

actually at the point ( )2/1,2/1 −− yx , not at ( )yx, . As a result, the edge location would be 

shifted by one half of a pixel. So, a better choice for the approximation might be: 

 

( ) ( ) ( ) ( )( )1,1,,,1,1),( −−+−−+=∇ yxfyxfyxfyxfyxf                                (4.3.9) 

Or,  
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x                                                                   (4.3.10) 

Whatever the operator is used to approximate the gradient, the resultant vector will 

contain the information related to the edge. The magnitude of the vector represents the 

strength of the edge. Its angular direction shows the path of the edge change. 

Simple methods implemented horizontally or vertically such as Prewitt or Sobel [70] 

gradient operator based on convolution masks are to calculate gradient magnitude and 

direction to locate the edge. Canny [68] method aims to optimally find the edge points 

with hysterisis tracking and two level thresholds. Laplacian [90] of Gaussian zero-

crossing measures the second spatial derivative of the image function to locate the peak 

of intensity. Standard techniques also include wavelet analysis [91]-[93] and Hough 

Transformation [48] 

 

4.3.1 Multi-Scale Edge Detection via Local Normal Maxima [91]-[93] 

Define two wavelet functions along x and y : 
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=
,, θφ , and ( ) ( )

y
yxyxy

∂
∂

=
,, θφ                                                         (4.3.11) 

, where ( )yx,θ is a smoothing function.  

The signal has to satisfy the conditions: 
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If the smoothing function is Gaussian distribution: 
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Then we have: 
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Suppose the image function: 

( )( )RLyxf 2, ∈  satisfies with the condition: 

( ) ( ) ( ) 2
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2
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α
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, where α,K are constants and Lmeans Lipschitz. 
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The norm of the gradient is represented by: 

( ) 2

2

2

22
, yx

iii WWyxfM +=                                                                             (4.3.19) 

The edge point can be determined by searching the local maxima of the gradient. 
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4.3.2 Roberts [69]-[71] 

L. G.  Robert started to study on edge detection since 1960s. He introduced the 

method of Robert Operator.  

Robert Operator is to calculate the maximum of all the gradient vectors and then 

filter by threshold, which is, 

( ) ( ) ( )( ) ( ) ( )( )22 ,11,1,1,, jifjifjifjifjiG +−++++−=                       (4.3.20) 

The implementation is to use two 22× filter masks to convolve the signal matrix 

and the masks can be written as: 
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Let ( )yxf , be the grayscale function of the image. The edge can be located by 

gradient: 
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The norm of the gradient G is calculated by: 

22
yx GGf +=∇                                                                                   (4.3.24) 

( ) ( ) ( ) ( )22 ,11,1,1, jifjifjifjiff +−++++−=∇                        (4.3.25) 

 

4.3.3 Laplacian [69] –[71] 

The idea is from the zero cross of second order derivatives, where the signal curve 

has the maximum or minimum. 

Define the function ( )y,xf , then the Laplacian transform will be 
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The common mask is 
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4.3.4 Prewitt [69]-[71] 

Prewitt studied the convolution effect of 33× mask in 1970s. The idea is similar to 

Robert Operator 
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4.3.5 Sobel [69]-[71] 

A 33× mask is used by convolution to approximate the partial derivatives and 

determine the local maximum points. 
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A simple analysis on Prewitt and Sobel operators: 

Assume the grayscale distribution satisfies the formula like 

γβα ++= yxM yx, , with gradient as  ( )βα ,  

Then the pixel will be like 
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If we define the operators as  
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It is easy to see the result after the convolution 
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Then the gradient will be  

( ) 2222 22 βα ++=+= baggG yx                                                            (4.3.35) 

So, ( ) 122 =+ ba  

Different values of a and b will determine the Prewitt and Sobel Operators 

In Prewitt, a=b=1/6. in Sobel, a=1/8 and b=1/4 

How to determine the best case to apply Prewitt or Sobel operators depends on the 

image signal noises, although there are actually no strict regulations on its applications. 

 

4.3.6 Canny [89] 

This is one of the most nominal methods till present. It was introduced by John 

Canny in 1986. It follows Canny criteria including Good Detection, Localization, and 

single response. Canny method has been studied and developed after its origin. To realize 

good detection requires max SNR (signal noise ratio), which is 
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, where 0n is the square mean root of the unit length noise amplitude. 

Let ( )xf be the impulse response of the filter, with [ ]WWx ,−∈  and ( )xG the edge 

function, ( )xn  the noise, 

Good localization requires the expectation 
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The object will be to find a function  

( )xf , with the performance index: 
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The criteria of the single response mean that the implementation should eliminate 

multiple possible responses to an edge and determine the max points of edge. 

One of the advantages of Canny method is its dual thresholds technique. Threshold 

level can be achieved by signal histogram. Matlab uses 07-0.8. The method greatest 

avoids the effects of noise and error. When implementing, a higher threshold level at first 

is calculated by the histogram and then the lower threshold level will be scaled down by 

0.4. 

The difficulty to the edge detection is the width of the filter mask. The wider it is, 

the better the performance is. The process is multi-stage.  

At first, a 2D Gaussian filter mask is convoluted to get rid of noise, for example 
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Then Prewitt, or Sobel Operators are used to approximate the directional gradient 
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As a result, the edge direction will be determined. With aid of specific procedures 

such as non-maximum suppression, streak elimination, and threshold filtering, the edge 

will be achieved in the end. 
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CHAPTER  5  

 

 

 

HAMMERSTEIN NONLINEAR IDENTIFICATION: PROPOSED  

 

5.1 Theoretical Background 

 

 

 

 

 

 

Figure 5.1 Nonlinear Hammerstein model structure 

 

We consider a discrete time SISO (Single-input-single-output) Hammerstein system as 

shown above, where ( ) ( )kyku ,  are the system input and output respectively. The 

intermediate signal ( )kv  is not measurable but can be eliminated by the nonlinear 

function ( )•f ; ( )qG  is the linear dynamic transfer function of the system represented by 

( ) ( )
( )1

1
1

−

−
− =

qA
qBqG and q is the delay operator for the difference equation and satisfies with: 

( ) ( )11 −=− kykyq                                                                                                  (5.1) 

Without loss of generality, we assume the nonlinearity is a polynomial represented by: 
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=

=•
p

l

l
lucf

0
                                                                                                      (5.2) 

And the intermediate stat v can be written by: 

( ) ( )( )tuftv =                                                                                                        (5.3) 

Accordingly, the Hammerstein model can be written by a difference equation: 

( ) ( ) ( ) ( )( ) ( )kekufqBkyqA += −− 11 , where                                                           (5.4) 

( )•f  
Linear Dynamics 
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Accordingly, the linear dynamic can be written by the transfer function: 
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, where z is the operator of Z transform 

With simple substitution, the Hammerstein model is rewritten by:                    (5.9) 
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Or  
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i
i +−+−−= ∑ ∑∑

= == 0 01
                                              (5.11) 

If we convert it into matrix form, then we have: 

( ) θφ Tky =                                                                                                            (5.12) 

( ) ( ) ( ) ( ) ( ) ( )[ ]mkukumkukunkyky ppT −−−−−−= LLL1φ  

                                                                                                                             (5.13) 

[ ]pmpmn
T cbcbcbcbaa LLL 00001=θ                                     (5.14) 

Let 

bcw =                                                                                                                  (5.15) 

And rewrite the parameter  

[ ]mppmn
T wwwwaa LLL 00001=θ                                          (5.16) 

Accordingly the Hammerstein model identification becomes to find the parameterθ . This 

can be obtained using Least Square method based on the data pairs of input and output. It 

is easy to see that, if the static gain of the linear dynamics is unity, the system has the 

property of: 
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This is true especially when the system static response is mostly determined by the 

nonlinearity function. 

Let, 
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, where pl ,,2,1 L=                                                      (5.20) 

And  

l

jl
j c
w

b = , where mj ,,2,1 L=                                                                             (5.21) 

So, the parameters of the nonlinearity and linear dynamics can be also obtained.  

 

5.2 Conditions for the Method 

Just like it is very challenging to identify any nonlinear system, Hammerstein model is of 

no exception. Obviously, the higher the order of the linear dynamics, which means the 

more the zeros and the poles, the more complex the system model will be. Also, 

sometimes, it is very difficult to find a suitable format for the nonlinearity function to 

complete the Hammerstein structure. For the control purpose in the future study, we 

certainly expect that the model of low enough model and simpler nonlinearity. To this 

end, we further make following assumptions 

Assumption 1: Zero of noise 

For simplicity of identification procedure, we assume the noise if zero. 

Assumption 2: Excitation signal input 
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The excitation signal ( )ku  of the system is a stationary normally distributed sequence 

over the entire range of the input signal. The input signal is of persistent excitation and 

randomly distributed multilevel amplitudes. As a result, the model can be estimated by 

the data set of: 

( ) ( ){ } Nkkyku ,,2,1,, L=  

Assumption 3: no zero in the linear dynamic 

Apparently the more the amount of the zeroes in the system, the more difficult the 

identification procedure will be. And if the model is too difficult and complex, it will be 

no use for further control design. It is known that the dynamic characteristics of a linear 

system are dominated mainly by the poles. And the poles are actually the roots of the 

characteristic equation, which is the denominator of the linear dynamics in the 

Hammerstein model. Moreover, typical laser welding process contains no unstable zeros. 

Accordingly, it is reasonable and feasible to simplify the linear dynamics as: 

( )
( ) n

nn azaza
b
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+++
= − L1

10

                                                                               (5.22) 

And for the condition of unity static gain, b might satisfy with: 

naa
b

+++
=

L11
1 ,                                                                                                (5.23) 

Or  

naaab ++++= L211                                                                                           (5.24) 

One thing to note here is that sometimes this relation among coefficients might not be 

necessarily satisfied because of calculation error. 

Assumption 3 is also true under the assumption of 2 when the input signal is a random 

series with bounded amplitudes during every time interval.  

 

5.3 Simulation 

To show the feasibility of approximating the linear dynamics with non zero model, we 

give following simulation. 

We assume the linear dynamic subsystem can be represented by: 

( ) ( ) ( ) ( ) ( ) ( )20006.0106.01.022275.010669.1 −+−+=−+−− kukukukykyky  

Or,  
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zz
zzzG                                                                          (5.25) 

According to the analysis above, we simply the model as: 

( ) ( ) ( ) ( )kukykyky 1606.022275.010669.1 =−+−−                                                (5.26) 

For simplicity, we let the input be the step signal 

 

 
Figure 5.2 Simulation Comparison for step input 

 

To further investigate the difference, we take a PRTS (Pseudo-random-ternary-series) as 

input signal. 
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Figure 5.3 Simulation Comparison for PRTS Input 

 

 
Figure 5.4 PRTS Input 

 

5.4 Summary 

We simply run the simulations to compare the responses of the two models under step 

signal and PRTS signals. It is easy to see that the responses of the two models are strictly 

identical. This basically shows two possibilities for later Hammerstein identification: 
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1) Under the conditions, especially of specific test input signals; we can approximate 

the linear dynamics with non zeros. In other words, we can assume the 

denominator as a constant b 

2) The dynamic characteristics can be obtained even if without the knowledge of all 

the coefficients of the denominator ( ) m
m

m

i

i
i qbqbbqbqB −−

=

−− +++==∑ L1
10

0

1 . This 

has been shown in the above simulation, although this case is only under the 

assumption that the input is step based signals. We believe this condition is best 

for our identification of laser welding processes. However, we also believe that if 

necessary, the zeros can be added into the linear dynamics and identified 

following our method with much less known parameters in the system. 

Before we go into the detail about our proposed Hammerstein identification, let us take a 

look what happens if we make another assumption 

 

 

 

 

 

 

Figure 5.5 Hammerstein Structure Restructure 

 

If we further replace the nonlinearity in the Hammerstein structure by a scaling gain 

factor ( )ufK = , then the system can be equivalently considered as a specific linear 

system, represented by: 

( ) ( ) ( )tu
qA
bKty 1−=                                                                                                 (5.27) 

Or  

( ) ( ) ( )ufbikyaky
n

i
i 0

1
+−= ∑

=

                                                                                  (5.28) 

Accordingly, the identification is to find the nonlinearity function and the parameters of 

the linear dynamics. 
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To see how the algorithm could work, we can rewrite the model as: 

( ) θφ Tky =  

( ) ( )[ ]11 nkykyT −−−−= Lφ                                                                     (5.29) 

[ ]01 Kbaa n
T L=θ                                                                                         (5.30) 

Accordingly, the identification can be accomplished by estimating the parameters with 

methods such as Least Square, and so on 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright © Xiaodong Na, 2008 

 



 
53 

CHAPTER  6 

 

 

 

VISION BASED SENSOR: EXPERIMENTAL SET UP 

 

In our experiment, a CCD digital camera as shown in Figure 6.1 equipped with a 

pulsed lighting laser is installed in the system to capture the images of weld pool (as 

shown in the following figure). Image processing is implemented with Matlab image 

processing toolbox [94] and LabView IMAQ Vision builder [95].  

 

Laser
 Head

Power
 Supply

Control 
Signals

 Diode Laser System 

Laser Driver

X,Y Table with Motors  

Motor Drivers
S20620

MicrocomputerLighting Laser

Workpiece 

Welding Pool

Laser Beam Camera

 
Figure 6.1 System set up 
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Figure 6.2.a Raw Images after ROI cropped 

 

Figure 6.2.a is the raw image acquired from the vision sensor. Apparently, it needs pre-

processing before further feature extraction. As introduced in Chapter 5, there are 

different methods. To get better results, we try different methods and compare the 

performance based on system running time and processed results. 

 

6.1 Results from Deblur 

Results of debluring using above methods are shown in Figure 6.2. The leftmost is the 

raw images. Among them the Maximum likelihood performs the worst, which basically 

means the Poisson distribution assumption might be controversial for our application. 

Other two are both applicable to our system. 
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Figure 6.2.b Results of Deblur 

 

6.2 Results from Denoise 

Results of filtering are shown as follows. Among them, it seems Average filter 

performs worse and the result is a little dark. Others work better. 
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Figure 6.3 Results of Denoise 
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Table 6.1 Pre-processing Performance Comparison 

Method Running time (ms) Results (pixels%) 

Maximum Likelihood  78 55 

Lucy-Richardson  82 95 

Wiener Deblur 18 94 

Linear Average 

denoise 
18 93 

Linear Gaussian 22 92 

Median 18 90 

Wiener 22 90 

 

 

6.3 Deblur and Filter Together 

To better show the performance of image deblurring and noise removal, we run filter 

and deblur together. Results are as follows. Without loss of generality, we choose median 

filter for noise removal and winer filter for deblur. For our application, image deblur 

actually makes the image brighter and clearer. Filter sharpens the regions in the images, 

through which edge detection is easier to implement. 

 



 
58 

             
 

             
Figure 6.4 Results of Deblur and Denoise 

 

6.4 Results of Thresholding 

The results of thresholding with the threshold selection methods introduced above are 

shown in the following for comparison. In the raw image, the black section in the middle 

is the molten weld pool whose feature is what we are interested in.  

Among them, Global thresolding based on histogram performs worse and loses too 

much information because of the threshold level selected. Adaptive threshold seems to 

work better. But besides the weld pool, it gives too much extra information which might 

be complicating later processing. The one with the statistical mean, Center of Mass, and 

Least mean error performs relatively comparable to each other. That is because 
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theoretically these three share common grounds. FCM also performs better except it is a 

little bit complex to realize and not suitable for real time image processing. OTSU and 

iterative also generates better results and easily to realize in the system. 

 

 
Figure 6.5 Histogram of Original Image 
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Figure 6.6 Results of Thresholding 
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Table 6.2 Thresholding Performance Comparison 

Threshold Method Running time (ms) Results (pixels%) 

Global T=110 22ms 85 

Global T=60 22 75 

Global Average 21 90 

Iterative T=125 78 92 

OTSU 24 93 

Adaptive 107 82 

Least Error 184 90 

Center of Mass 56 89 

FCM 210 86 

 

6.5 Results of Edge Detection 

Edge detection results are shown in the following with methods introduced above. 

Apparently, Canny gives deeper results, which also has too many edge points for later 

process, same as Laplacian operator. Prewitt and Robert perform a little bit better, but it 

seems losing more edge information interested. Wavelet demonstrate the best and the 

edge interested is very sharp and distinct. Sobel also performs reasonably better, except it 

has a gap on the top corner which might need edge growing or linking. 
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Figure 6.7 Results of Edge Detection 
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Note: system is running Window XP Profession, 1.6Hz Intel Pentium CPU, and 512 

RAM 

 

Table 6.3 Image Processing Method Performance Comparison 

Method 
Running time 

(ms) 
Results (pixels%) 

Wavelet 111ms 95 

Sobel 33 88 

Canny 45 89 

Laplacian 35 74 

Robert 36 88 

Prewitt 32 89 

 

6.6 Calibrated Width: Maximum Edge 

The calibration is to seek a map function between the real world and the digital image 

world as shown in Figure. 6.8. In the experiments, we rotate the image 30 degree 

counterwise to offset the angle of the laser line and use the calibration settings: 

 

 

                       

 

 

 

 

Figure 6.8 Calibration 
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6.7 Architecture of Vision Sensor  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9.a Feature extraction process 
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Figure 6. 9.b Weld pool width diagram 

In the experiments, because of the unseen noise, we apply median filter at first. The mask 

template is: 
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                                                                                  (6.1) 
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Figure 6. 10.a Processed with Median Filter 

 

To further enhance the image, Laplace operator is applied to the image: 

( ) 2

2

2

2
2 ,

y
f

x
fyxf

∂
∂

+
∂
∂

=∇                                                                     (6.2) 

Or, 

( ) ( ) ( ) ( )jifjifjif
x
yxf ,2,1,1,

2

2

−−++=
∂

∇
                         (6.3) 

( ) ( ) ( ) ( )jifjifjif
y
yxf ,21,1,,

2

2

−−++=
∂

∇
                         (6.4) 

With substitution, the operator will be: 

( ) ( ) ( ) ( ) ( )jifjifjifjifjiff ,41,1,,1,12 −−+++++−=∇
                                                                                                                                    (6.5) 
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Also, depending on the need, sometimes, we multiply the image itself for enhancement: 

( ) ( ) ( )
255

,,, yxfyxfyxG =                                                                           (6.6) 

 
Figure 6. 10.b Processed with Enhancement 

 

To get better thresholding, we set up two ways. One is the range of the threshold level, 

i.e. [110 135]. The other way is similar to adaptive thresholding. The procedure is: 

At first, calculate the probability and the expectation of pixels:  

( )
N
myxG =,

                                                                                                 (6.7) 

( ) ( )∑
=

=
255

0
,,

k
yxkGyxE

                                                                               (6.8) 

Then set the threshold  

( )yxET ,γ=                                                                                                       (6.9) 

Or  
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( )∑
=

=
255

0
,

k
yxkGT γ

                                                                                        (6.10) 

1≥γ                                                                                                                   (6.11) 

 

 
Figure 6. 10.c Processed with adaptive thresholding 

 

For edge detection, as introduced above, we simply choose Sobel operator: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
=

121
000
121

xS
                                                                            (6.12) 
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
101
202
101

xS
                                                                                      (6.13) 

The detected and highlighted edge is shown as following: 

 
Figure 6. 10.d Edge Detection with Sobel Operator 

 



 
70 

 
Figure 6.10.e Highlighted Edge 
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CHAPTER  7  

 

 

 

NONLINEAR HAMMERSTEIN IDENTIFICATION: DETAIL 

 

 

7.1 Continuous Identification 

As introduced previously, system identification can be classified into two categories, 

i.e., continuous and discrete [96]-[104]. The advantage of discrete identification is its 

easiness [104]-[105]. The disadvantage is that its performance may be compromised by 

the signal frequency and data completeness. Because dynamic systems are naturally 

continuous, building a continuous model is relatively beneficial for control purposes. 

 

 
Figure 7.1 Optimal System Identification 

 

Consider a standard state-space representation system: 

( ) ( )( )θ,,, ttutxFx =&                                                                                          (7.1.1) 

, where { }θ,, ux  are the vectors of state, input or control, and associated 

parameters, x&  is the first-order derivative of the state vector and F is the system function. 

Then the identification shown in Figure 7.1 optimally computes the unknown parameters 

with minimizing the cost function: 

( ) ( )∫=
t

degJ
0

τθ                                                                                                    (7.1.2) 
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, where e is the predictive error between the estimation and the measurement. g  is the 

objective function which is, for simplicity, represented by[54] [106]: 

ISE, integral of square error, ( ) ∫=
t
deJ

0

2 τθ  

IAE, integral of absolute error ( ) ∫=
t
deJ

0
τθ                                                        (7.1.3) 

 

 
Figure 7.2 Hammerstein Structure 

 

Figure 7.2 is the traditional Hammerstein structure in which the nonlinearity directly 

feeds into the linear dynamics, where the linear transfer function ( )sG  is generally 

represented by: 

( ) ( )
( )sA
sB

asasa
bsbsbsG
n

nn
m

mm

=
+++
+++

= −

−

L

L
1

10

1
10                                                                   (7.1.4); 

( )( )tuf  is the nonlinear function of the system input and the input of the linear dynamics; 

{ } niai L,1,0, = and { } mibi L,1,0, =  are parameters of the system model; u and y are the 

input and the output. 

Denote  

( ) ( )( )tuftv =                                                                                                       (7.1.5) 

Then in the frequency domain: 

( ) ( ) ( )( )( )tufLsGsy =                                                                                         (7.1.6) 

, where L is the operator of Laplace transform. 

Without loss of generality, denote: 

   1=na                                                                                                               (7.1.7) 
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( )( ) ( ) ( )( )( )( )tufLsBLtuK 1−=                                                                              (7.1.8) 

, where 1−L is the operator of inverse Laplace transform. 

Then with substitution, equation 6.2.6 can be rewritten as: 
( ) ( ) ( ) ( ) ( ) ( )( )tuKtytyatya nn =++ − L1

10                                                            (7.1.9) 

Rewrite it into matrix form: 
 

( ) ( )θφ tty T=                                                                                                        (7.1.10) 

( ) ( ) ( ) ( ) ( )[ ]11 tytyt nT −−= Lφ                                                                      (7.1.11) 

( )( )[ ]tuKaa n
T

10 −= Lθ                                                                             (7.1.12) 

 

Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown 

parameters in equation 7.1.10-12. Among these parameters only ( )( )tuK  varies with 

inputs. 

Suppose ( )( )tuf is a polynomial: 

( )( ) ( ) ( )tuCtuCCtuf p
p+++= L10                                                                        (7.1.13) 

Now consider step input ( ) Utu = . In this case, ( )( )uuf is also a step signal and its 

Laplace transform is ( )( )( ) ( ) sUftufL = ; Further if we suppose equation 7.1.4 takes the 

following form: 

( )
n

nn
m

asasa
b

sG
+++

= − L1
10

                                                                            (7.1.14) 

Denote 

( ) ( )( ) ( )UfbsUfbLuK mm == −1
1                                                                            (7.1.15) 

Then with similar substitution, equation 7.1.9 can be written as: 
( ) ( ) ( ) ( ) ( ) ( )( )tuKtytyatya nn

1
1

10 =++ − L   
                                                                                                                              (7.1.16) 

, where ( )( ) ( )( )tuKtuK =1  and ( ) mbsB = is a constant. 
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As a result, the proposed identification for a specific Hammerstein structure with 

equation 7.1.14 as the linear dynamics and equation 7.1.13 as the nonlinear static 

function in general can be achieved in two steps: 

Step 1: Identify A(s) under different step input{ } MjU j ,,1, L=  and because of the use 

of a step input jU , 

   ( ) ( ) ( )jmj UfbUKuK == 11                                                                             (7.1.17) 

is now a constant and can be treated as a parameter to be identified such that equation 

7.1.12 can be written as  

( ) ( )[ ]jnj
T UKaaU 10 −= Lθ                                                                     (7.1.18) 

Hence, A(s) and the value of ( )jm Ufb  can be identified.  

Step 2: Determine the nonlinear function ( )uf and mb from the steady-state 

responses ( )jUY under step input{ } MjU j ,,1, L= . 

In this case: 

( ) ( )θφ j
T

j UUK =                                                                                          (7.1.19) 

With 

( ) [ ]pjjjj
T UUUU L21=φ                                                                     (7.1.20) 

And 

[ ]pmmmm
T CbCbCbCb L210=θ                                                          (7.1.21) 

Then the parameters in ( )jm Ufb  can be determined using a linear least square algorithm: 

( ) ( ) ( )[ ]TM
TT UYUY L1

1
ΦΦΦ=

−
θ                                                            (7.1.22) 

 

( ) ( )[ ]TM
TTT UU φφ L1=Φ                                                                        (7.12.23) 

 

7.2 Continuous Identification: Error based 

Above the authors propose and apply a Hammerstein based identification on the diode 

laser welding process. This method is fundamentally applicable to the nonlinear 

processes whose dynamics can be approximated by ( )sA  only. However, to ensure 
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accurate results, the method requires the dynamic step response experiments to be 

conducted at as more different inputs signals as possible. Sometimes it is very time 

consuming. For this reason, the authors develop an error based nonlinear identification to 

reduce the need for the number of step responses experiments. The method consists of 

two steps and step 1 is the same as that in the Hammerstein identification. 

Now assume ( ) Utu = is the step signal applied to generate the only dynamic step 

response experiment and  
( ) ( ) ( ) ( ) ( ) ( )UKtytyatya nn =+++ − ...1

10                                                              (7.2.1) 

 is identified by ( )[ ]UKaaa n
T L110 −=θ                                              (7.2.2) 

In the identification of the laser system, take one of the estimated models during a 

specific input signal as the welding speed and obtain:  
( ) ( ) ( ) ( ) ( ) ( )inn UKtytyatya =+++ − ...1

10                                                               (7.2.3) 

The linear dynamic parameters of equation 7.2.3 above are now used as the estimates 

of those in the system despite variations in the inputs.  

Now assume a number of steady-state responses ( ){ }∞jy  have been obtained under 

{ }jU  such that ( ){ } MjUy jj L,2,1, =∞  are available. 

The objective is to identify the structure and the parameters for the nonlinear function 

( )UK  through ( ){ }jj UUK .  

To this end,  
( ) ( ) ( ) ( ) ( ) 1...1

10 =+++ − tytyatya nn  is simulated. and the simulated steady-state responses 

( )∞jŷ  is used to compute 

( ) ( ) ( )
( ) 1

ˆ
=

∞∞=
UKjjj yyUK                                                                               (7.2.4) 

Theoretically ( ) 1=∞jy
)  according to finalization thermo of Laplace transform: 

 ( ) 1|
1

1| 01
10

0 =
+++

= =−= snns sasa
sy

L
 

Then easy to see that 

( ) ( ) ( )
( )

( )∞=∞∞=
= jUKjjj yyyUK
1

ˆ  
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As a result, a set of ( ){ }jj UUK ,  will be easily obtained through a single model of linear 

system using 
( ) ( ) ( ) ( ) ( ) 1...1

10 =+++ − tytyatya nn                                                                      (7.2.5) 

and the static response experimental results as given above. 

Then for any proposed structure of ( )UK , its parameters can be identified using as 

linear least square algorithm. 

7.3 Discrete Identification: Another Perspective 

 

 
Figure 7.3 Discrete Hammerstein Structure 

 

Figure 7.3 is the discrete Hammerstein structure in which the nonlinearity directly 

feeds into the linear dynamics, where the linear transfer function ( )zG  is generally 

represented by: 

( ) ( )
( )zA
zB

azaza
bzbzbzG
n

n
m

mm

=
+++
+++

= −

−

L

L
1

10

1
10                                                                    (7.3.1) 

( )( )kuf  is the nonlinear function of the system input and the input of the linear 

dynamics; { } niai L,1,0, = and { } mibi L,1,0, =  are parameters of the system model; 

( )ku and ( )ky are the input and the output. 

Denote ( ) ( )( )kufkv =                                                                                        (7.3.2) 

Then in the Z domain: ( ) ( ) ( )( )( )kufZzGzy =                                                        (7.3.3) 

, whereZ is the operator of Laplace transform. 

Without loss of generality, denote 10 =a                                                            (7.3.4) 

   ( )( ) ( ) ( )( )( )( )kufZzBZkuS 1−=                                                                            (7.3.5) 
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, where 1−Z is the operator of inverse Laplace transform. 

Then with substitution, 7.3.1 can be rewritten as: 

        ( ) ( ) ( ) ( )( )kuSnkykyakya =−+−+ L110                                                       (7.3.6) 

Rewrite 6.3.6 into matrix form: 

 

( ) ( )θφ kky T=  

( ) ( ) ( )[ ]11 nkykykT −−−−= Lφ  

( )( )[ ]kuSaa n
T L1=θ                                                                                   (7.3.7) 

 

Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown 

parameters in equation 7.3.7 and among these parameters only ( )( )kuS will vary with the 

inputs. 

Suppose ( )( )kuf is a polynomial: 

( )( ) ( ) ( )tuCtuCCkuf p
p+++= L10                                                                       (7.3.8) 

Now consider step input ( ) Uku = in Figure.7.3. In this case, ( )( )kuf is also a step 

signal and its Z  transform is ( )( )( ) ( ) ( )1−= zzUftufZ ; Further if we suppose 6.3.1 

takes the following form: 

( )
n

nn
m

azaza
bzG

+++
= − L1

10

                                                                              (7.3.9) 

 Denote: 

( ) ( ) ( )( ) ( )UfbzzUfbLuK mm =−= − 11
1                                                                (7.3.10) 

Thenthen with similar substitution, equation 7.3.1 can be written as: 

( ) ( ) ( ) ( )( )kuSnkykyakya 110 1 =−+−+ L                                                            (7.3. 11) 

, where ( )( ) ( )( )tuStuS =1  and ( ) mbsB = is a constant. 

As a result, the proposed identification for a specific Hammerstein structure with 

equation 7.3.9 as the linear dynamics and equation 7.3.10 as the nonlinear static function 

in general can be achieved in two steps: 

Step 1: Identify A(s) under different step input{ } MjU j ,,1, L=  
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2w  

Because of the use of a step input jU  ( ) ( ) ( )jmj UfbUSuS ==  is now a constant and 

can be treated as a parameter to be identified such that equation 7.3.7 can be written as 

( ) ( )[ ]jnj
T USaaU 10 −= Lθ  

Accordingly, the model structure ( )zA  and the value of ( )jm Ufb  can be identified. 

Step 2: Determine the nonlinear function ( )uf and mb from the steady-state 

responses ( )jUY under step input{ } MjU j ,,1, L= . 

In this case, 

( ) ( )θφ j
T

j UUS =                                                                                                   (7.3.12) 

( ) [ ]pjjjj
T UUUU L21=φ                                                                         (7.3.13) 

[ ]pmmmm
T CbCbCbCb L210=θ                                                                 (7.3.14) 

Then the parameters in ( )jm Ufb  can be determined using a linear least square algorithm 

as: 

( ) ( ) ( ) ( )[ ]TMn
TT UYUYaaa LL 110

1
+++ΦΦΦ=

−
θ , 

where ( ) ( )[ ]TM
TTT UU φφ L1=Φ  

 

7.4 Extend to 2ISO model 

 

 

 

 

 

Figure 7.4 Two-input-Single-output Hammerstein System structure 

 

The two steps model identification can expand to 2ISO case, with specific modification. 

As shown in Figure 7.4, u is the input, y is the output, ( )wg is the linear dynamics, w is 

the intermediate input and ( )21,uuf  is the nonlinearity. For now, as SISO identification 

above, we assume the linear system is time-invariant and the inputs 21,uu are independent 

signals.  

1w  
( )wg  

1u  

2u  
( )21,uuf  y  
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The linear dynamic, in Laplace domain can be represented by:  

( ) ( )
( ) n

n

m
m

sasaa
sbsbb

sA
sBwG

+++
+++

==
L

L

10

10                                                                    (7.4.1) 

Denote  

( ) ( ) ( )( )tutuftw 21 ,=                                                                                             (7.4.2) 

Then in the frequency domain: 

( ) ( ) ( ) ( )( )( )tutufLsGsy 21 ,= , where L is the operator of Laplace transform. 

Without loss of generality, denote: 

10 =a  

( ) ( )( ) ( ) ( )( )( )( )tufLsBLtutuK 1
21 , −= , where 1−L is the operator of inverse Laplace 

transform. 

Then with substitution, the system structure can be rewritten as: 
( )( ) ( )( ) ( ) ( ) ( )( )tutuKtytyatya nn

11
1

10 ,=++ − L  

Rewrite into matrix form: 

( ) ( )θφ tty T=  

( ) ( ) ( ) ( ) ( )[ ]11 tytyt nT −−= Lφ  

( ) ( )( )[ ]tutuKaa n
T

2110 ,−= Lθ                                                                      (7. 4.3) 

Accordingly this Nonlinear Hammerstein identification becomes to estimate unknown 

parameters and among these parameters only ( ) ( )( )tutuK 21 , will vary with the inputs. 

For simplicity, if we assume the nonlinearity can be represented by a power series, thus  

( ) ∑∑
=

=
m

i

n
ji

ji uucuuf
0 0

21,21,                                                                                     (7.4.4) 

Then the input to the linear dynamics is: 

( ) ( ) ( )∑∑
= =

==
m

i

n

j

ji
ji tutuctuufw

0 0
21,21 |,                                                                   (7.4.5) 

Now consider step input ( ) 11 Utu =  and ( ) 22 Utu = In this case, ( ) ( )( )tutufw 21 ,= is also a 

step signal and its Laplace transform is ( )( )( ) ( ) sUUftwfL 21,= ; further if the linear 

dynamics takes the following form: ( )
n

nn asasa
bsG

+++
= − L1

10

0  
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And denote ( ) ( )( ) ( )210210
1

1 ,, UUfbsUUfbLuK == −  then with similar substitution, the 

linear dynamics can be written as: 
( ) ( ) ( ) ( ) ( ) ( )( )tuKtytyatya nn

1
1

10 =++ − L , where ( ) ( )( ) ( ) ( )( )tutuKtutuK 21211 ,, =  and 

( ) 0bsB = is a constant, where ( )( ) ( )( )tuKtuK =1  and ( ) mbsB = is a constant. 

As a result, the proposed identification for a specific Hammerstein structure as the 

linear dynamics and as the nonlinear static function in general can be achieved in two 

steps: 

Step 1: Identify A(s) under different step input{ } njmiUU ji ,,2,1;,,1,, 21 LL ==  

Because of the use of a step input { }ji UU 21 , , the static 

nonlinearity ( ) ( ) ( )jiji UUfbUUKuuK 210211211 ,,, ==  is now a constant and can be treated 

as a parameter to be identified such that the parameters can be written as  

( ) ( )[ ]jinji
T UUKaaUU 211021 ,, −= Lθ                                                          (7.4.6) 

Hence, A(s) and the value of ( )jj UUfb 210 ,  can be identified.  

Step 2: Determine the nonlinear function ( )21,uuf and 0b from the steady-state 

responses ( )ji UUY 21 , under step input{ } njmiUU ji ,,2,1;,,1,, 21 LL == . 

In this case, 

( ) ( )θφ ji
T

ji UUUUK 2121 ,, =  

with ( ) [ ]nm
jj

T UUUUUU 21
2
0

1
221 21, L=φ  

and [ ]mn
T cbcbcbcb 013012000 L=θ                                                       (7.4.7) 

Then the parameters in ( )jm Ufb  can be determined using a linear least square 

algorithm as  

( ) ( ) ( )[ ]Tnm
TT UUYUUY 212111

1 ,, LΦΦΦ=
−

θ  

where ( ) ( )[ ]Tnm
TTT UUUU 212111 ,, φφ L=Φ  

 

The proposed identification method obtains the parameters by estimating the linear 

dynamics and the static nonlinearity separately. And when the parameters of the linear 
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2w  

dynamics are available, the static nonlinearity is obtained based on the static signals 

acquired when the system is steady. 

 

7.5 Extends to MIMO model 

For simplification, we start with a 2I2O model 

 

 

 

 

 

Figure 7.5 2I2O model 

 

Assume the model structure can be represented by: 
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, where 1y and 2y  are the output.  

 

( ) ( ) ( )∑∑
=

==
m

i

n

j

ji
ji tutuctuufw

1
21,211 |,                                                                    (7.5.1) 

( ) ( ) ( )∑∑
=

′==
m

i

n

j

ji
ji tutuctuufw

1
21,212 |,                                                                   (7.5.2) 

Assume the predicted Hammerstein model is: 

 

⎥
⎦
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⎢
⎣
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⎡
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⎦

⎤
⎢
⎣

⎡
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1

22

11

2

1

2221

1211

2

1

2221

1211

2

1

0
0

ˆ
ˆ

w
w

e
e

y
y

dd
dd

y
y

cc
cc

y
y

&&

&&

&

&
                              (7.5.3) 

 

The parameters for the linear dynamics will be similar to single output system structure 

and for the nonlinearity, we can solve it by minimizing the following objective function: 

( ) ( )∫ −=
t

dyycJ ji

0
ˆ 2

11, τ                                                                                        (7.5.4) 

1w  ( )wg  
1u  

2u  
( )21,uuf  

1y  

2y  
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( ) ( )∫ −=
t

dyydJ ji

0
ˆ 2

11, τ                                                                                       (7.5.5) 

By differentiating the objective function above with respect to  

 

njmic ji ,...,2,1;,...,2,1|, ==                                                                                 (7.5.6) 

( )∫
∂
∂

−=
∂
∂ t

d
c
weyy

c
J

ijij 0
ˆ2 1

1111 τ                                                                                   (7.5.7) 

ji

ij

uu
c
w

21
1 =

∂
∂                                                                                                             (7.5.8) 

 

Accordingly, we will have: 

( ){ }[ ] ( )
Tt

jiT uucybybyayayAnjmijic
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

−−−−=== ∫−

0
21112121112121111

1
1,...,2,1;,...,2,1|, &&&&&&  

                                                                                                                                  (7.5.8) 

, where ( ){ }[ ]jiAA ,= , and ( ) ∫=
t

jiji duueuuejiA
0

21112111, τ                                         (7.5.9) 

Parameters for 2y can be similarly obtained. 
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CHAPTER  8 

 

 

 

HAMMERSTEIN IDENTIFICATION: EXPERIMENTAL STUDY 

 

 

8.1 Experimental Setup 

 

 
Figure. 8.1 Speed Input Open Loop Laser Welding System 

 

The experimental system was set up as shown in Figure 8.1, using a laser driver to 

power the laser head which generates the laser to heat the work-piece. The laser energy is 

proportional to the current of the laser driver. The computer controls the welding process 

by adjusting the laser energy and the welding speed. A digital camera with a high speed 

shutter is equipped to capture the weld pool pictures at the speed of 30 frames per second. 

The welding material is 1mm mild steel sheet. The laser power is 1 Wk . Four parameters, 

i.e., laser energy, laser focus distance, incident laser angle, and welding speed influence 

the experimental process. When conducting the experiments, we optimally fix the focus 

distance and the incident angle at 89mm and 42 degree respectively. For better 

measurements, the laser energy is operated between 38mA and 58mA and the welding 

speed is controlled between 9.5mm/s and 13.5mm/s. In each experiment, only one of the 

parameters, i.e., either laser energy or speed is changed. The experiment data is observed 

until steady state is reached. 
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8.2 Experimental Data Analysis  

An example of the raw images on the weld pool is shown in Figure 8.2.a. The 

processed image is shown in Figure. 8.2.b. The black field in the middle of the image is 

the liquid weld pool. Because all the acquired images are monochrome, i.e., black and 

white, the authors study the pixel intensity distribution of the images. Given the fact that 

the histogram counts the total number of pixels at each grayscale value and displays the 

data in graph, it is possible to see and isolate the distinct regions of interest containing 

certain grayscale intensities. The histogram result is shown in Fig8.2.c. According to the 

experimental study, there might be some relations between the intensity distribution of 

the pixels and the penetration of the welding process. In average, for the intensities of the 

pixels, the more they fall in the range [0 50], the more possibly full penetration takes 

place; the more they fall in the range [200 250], the more possibly there is no penetration; 

the more they fall in range [50 200], the more possibly part penetration happens. 

Although grayscale analysis is relatively easier to perform, it is very sensible to noises 

and can only make rough prediction on the weld penetration. For quality monitoring 

purposes, the topside weld pool width needs to be analyzed and controlled.  

The open loop static responses under different laser currents and speed inputs are 

shown as in Figure 8.3.a and Figure 8.3.b. Based on the open loop responses shown in 

Fig. 8.3 and the observation on the width of the backside weld bead, the we find that (1) 

increasing the laser current increases the topside surface width of the weld pool and the 

penetration which is measured by the width of the backside weld bead; (2) increasing the 

traveling speed decreases the topside surface width of the weld pool and the penetration. 

However, sometimes the resultant effects of various factors can be compromised. For 

example, when laser current increases, the width of the welding pool increases, but for 

the same increase of the laser current, the resultant increase of the surface width of the 

welding pool will also depend on the welding speed, i.e., if the welding speed is 

relatively low, the increase is bigger; and if the welding speed is relatively high, the 

increase is smaller.  
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Figure. 8.2.a Raw image; Figure. 8.2.b Processed image 

Figure. 8.2.c the histogram of the weld pool image 

 

 
Figure 8.3.a Effects of the laser current on the penetration 
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Figure 8.3.b Effects of the laser current on the penetration 

 
Figure 8.3.c Effects of the welding speed on penetration 
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Figure 8.3.d Effects of the welding speed on surface width 

 
Figure 8.3.e Effects of the Laser energy on the surface width 
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Figure 8.3.f Mesh graph for the correlation of parameters 

Through experimental study, we noticed that the system step response shown in Figure. 

8.4 with the welding speed as the input exhibits a standard second order system. This 

discovery is very beneficial especially for developing a suitable system identification 

procedure. Given the fact that Hammerstein structure consists of an input nonlinearity 

directly feeding into a linear dynamics, it might be possible to start with identifying a 

standard second order linear system and then the nonlinearity after conditional revision. 
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Figure 8.4 Step Response at speed of 13.2mm/s (laser current 48mA) 

 

8.3 Experimental Identification on the Diode Laser System 

For now, the authors only identify a SISO model in which ( )ty  is the topside surface 

width of the weld pool and ( )tu is the reciprocal of the welding speed. Because the step 

response shown in Fig. 6 exhibits a second order linear model, hence the authors start 

with the structure: 

      ( ) ( ) ( ) ( )uKtytyTtyT =++ &&& ξ22                                                                      (8.3.1) 

      ( ) ( )jm UfbuK =                                                                                           (8.3.2) 

 

Because only the position signals are directly measured in the experiments, the authors 

implement the optimal computing method shown in Figure 8.5a to search the parameters  
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Figure 8.5.a Continuous Identification Process 

 

For the optimization procedure, NEILDER-MEAD algorithm [107] shown in Fig. 8.5.b 

is applied: 

Step 1:  

Let the initial three estimated solution points be a , b  and c , where 

( ) ( ) ( )cfbfaf << and f is the function. 

Step 2: 

If the three points or their function values are sufficiently close to each other, then 

declare a as the minimum point and terminate the procedure. 

Step 3: 

Otherwise, choose new point e with 
( )

( ) 2
2
bam

cmme
+=

−+=
; 

And if ( ) ( )bfef < , then take e  as the new c ;  

Otherwise, define ( ) 2emr += ; 

And if ( ) ( )cfrf < , then take r as the new c; if ( ) ( )bfrf ≥ , then define ( ) 21 mcs += ; 

And if ( ) ( )cfsf <1 , then choose 1s as the new c ; 

Otherwise, define ( ) 21 cac += and choose m and 1c  as the new points: b and c. 

Step 4: 

Go back to Step 1. 
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Figure. 8.5.b Optimal Search Process 
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8.3.1 Experimental Based Identification for Diode Laser Processing 

Table 8.1 

Continuous Linear Identification 

 
 

As introduced, the SISO model to be identified is given by equation 8.3.1-2. For the identification, the 

authors apply the identification on the step signal based experimental data under inputs{ } MjU j L,1, = . 

These inputs correspond to those in Figure 8.3. The identification results are summarized in Table 8.1. It is 

easy to see that the static function ( )ufbm  varies with the inputs conditions, which verifies the existence 

of nonlinearity with the established diode laser welding process. 

 
8.3.2 PRTS (Pseudo-Random Ternary signal) [108] 

Besides of the step signals, the authors take PRTS shown in Figure 8.6 as the input and 

perform the experiments to study on the nonlinearity. The output is still the topside 

surface width of the weld pool. The sequence length of the PRTS signal is 26 and the 

sample time is 2 units per cycle. Due to the system capacity, only 52 units are sampled 

and used for the identification and model validation. 
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sample time is 2 units per cycle. Due to the system capacity, only 52 units are sampled 

and used for the identification and model validation. 

 

 
Figure 8.6 PRTS Signal 

 
8.3.3 Nonlinearity Identification 

Before identifying the nonlinearity, the authors study how it influences the linear 

dynamics. At first the authors take one of the linear models and simulate it under various 

inputs. Then the authors compare the simulations with the experiments. If the model 

exhibits consistent data agreements, then the linear dynamics is certainly enough to 

describe the system. Otherwise, further step is needed.  

Without loss of generality, the authors chose the one under the input of 13.2mm/s (with 

the lowest IAE in Table 8.1) and examined the step responses under the inputs of 

13.2mm/s, 11.2mm/s, and 10.6mm/s (IAE relatively smaller) and PRTS signal. The 

results are shown in Figure 8.7. It is easy to see that these results demonstrate different 

data agreements, which further verifies nonlinearity does exists in the diode laser welding 

process similarly as has been observed from another welding process [83]. As a result, 

step 2 is demanded for a complete nonlinear identification of the laser welding process. 
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Figure 8.7  Simulated and observed comparison  

 

For simplicity, the authors assume the nonlinearity in equation 8.3.2 is a polynomial. 

Based on the results from the linear dynamics identification, the authors develop two 

structures below and the identification results are shown in Figure 8.8: 

( )
3253.590018.23

9457.211856.0 23

+−
+−=

u
uuuK                                                                              (8.3.3) 

( )
8896.867543.351487.5

28697.00048078.0
2

34

+−+

−=

uu
uuuK

                                                                                     (8.3.4) 

 

 
Figure 8.8.a Nonlinearity Identification 3rd order  
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Figure 8.8.b Nonlinearity Identification 4th order 

 

8.3.4 Order Determination and Model Validation 

With equation 8.3.3 and 8.3.4, the complete models are: 

( ) ( ) ( )

( ) ( ) 3253.590018.239457.2
)(11856.0

3015.01286.0

2

3

+−+

−=

++

tutu
tu

tytyty &&&

                                                                  (8.3.5) 

 

( ) ( ) ( )
( )

( ) ( ) 8896.867543.351487.5
)(28697.00048078.0

3015.01286.0

2

34

+−+

−=

++

tutu
tutu

tytyty &&&

                                                                 (8.3.6) 

 

To choose suitable order and validate the model, the authors run simulations on both 

equation under inputs of step signals including 13.2mm/s, 11.2mm/s and 10.6mm/s and 

PRTS signals. Then the authors examine the data agreements between the simulations 

and experiments. Based on the performance results in Table 8.2, the authors choose 8.3.6. 
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Figure 8.9 Model Evaluation 

 

The validation results of equation 8.3.5-6 are shown in Figure 8.9. Based on the results, 

the authors conclude that the identification succeeds the validation and the identification 

model given by the 4th order nonlinearity equation 8.3.6 and the linear dynamics with 

32282.0=T  and 4667.0=ξ  reasonably approximate the laser welding system. The 

authors nevertheless noticed that the IAE is higher under PRTS input. This deviation is 
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expected due to the effects of from the measurements errors, servo motor sensitivity, 

sampling completeness, signal noise, and so on. 

 

 

 

Table 8.2 

Continuous Identification Comparison of 3RD and 4TH Order Model 

 
 

 

8.4 Continuous identification: Error based 

In the identification of the laser system, the authors take 13.2mm/s as the welding 

speed and obtain:  
 

( ) ( ) ( ) ( )UKtytyTtyT =+×××+× &&& ξ22                                                              (8.4.1) 

 

( )

4670.0
32282.0

7168.2

=
=

=

ξ
T
UK

                                                                                                    (8.4.2) 

 

The linear dynamic parameters of equation above are now used as the estimates of 

those in the system despite variations in the inputs.  

Now assume a number of steady-state responses ( ){ }∞jy  have been obtained under 

{ }jU  such that ( ){ } MjUy jj L,2,1, =∞  are available. 
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The objective is to identify the structure and the parameters for the nonlinear function 

( )UK  through ( ){ }jj UUK .  

 

To this end,  

( ) ( ) ( ) 122 =+×××+× tytyTtyT &&& ξ  is simulated and the simulated steady-state responses 

( )∞jŷ  is used to compute 

( ) ( ) ( )
( ) 1

ˆ
=

∞∞=
UKjjj yyUK                                                                                    (8.4.3) 

As a result, a set of ( ){ }jj UUK ,  will be easily obtained through a single simulation of 

linear system using 

( ) ( ) ( ) 122 =+×××+× tytyTtyT &&& ξ                                                                         (8.4.4) 

and the static response experimental results as given above. 

Then for any proposed structure of ( )UK , its parameters can be identified using as 

linear least square algorithm. 

 

8.4.1 Nonlinearity Result 

The authors similarly identify two models to compare for selection. The results are 

shown in Figure 8.9 

( ) ( )
( ) 5147.587048.22

9097.211711.0 23

+−
+−=

tu
tutuf

                                                                                           (8.4.5) 

 

( )
( ) ( ) 5132.924342.386269.5

32845.000593.0
2

34

+−+

−=

tutu
tuuf

                                                                                (8.4.6) 
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Figure 8.10 Nonlinearity identification 

 

8.4.2 Complete Nonlinear Model Structure 

With equation 8.4.5-6, the authors establish the complete model: 

 

( ) ( ) ( ) ( )
( ) 5147.587048.22)(9097.2

11718.03015.01286.0
2

3

+−+

−=++

tutu
tutytyty &&&

                                                             (8.4.7) 

 

( ) ( ) ( ) ( )
( )
( ) 5132.924342.38

)(6269.532845.0
00593.03015.01286.0

23

4

+−
+−

=++

tu
tutu

tutytyty &&&

                                                       (8.4.8) 
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The validation results of both models under inputs of step signals including 13.2mm/s, 

11.2mm/s and 10.6mm/s and PRTS signals are summarized in Table 8.3. The authors 

fundamentally examine the data agreements between the simulations results of the model 

and the experimental data. Based on the results comparison, the authors simply choose 

equation 8.4.8 because it performs relatively better in various inputs conditions. The 

validations under various inputs are also shown in Figure 8.10. Generally speaking, this 

identified nonlinear model succeeds the validation and is appropriates enough to describe 

our system. 

 

 

 

 

Table 8.3  Error based Continuous Nonlinear Identification 
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Figure 8.11 Error based Model Validation 
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8.4.3 Validation Results: Review 

TABLE 8.4 

CONTINUOUS NONLINEAR IDENTIFICAITON 

 
 

For comparison purposes, the authors summarize the validations results of using both 

identification methods in Table 8.4. Based on the comparison, it is of no double that the 

nonlinear model demonstrates much better than the linear dynamics when approximating 

the diode laser welding system. From the perspective of nonlinear identification, both 

nonlinear methods work well on the laser welding system. The Hammerstein based 

identification performs slightly better than the Error Based Method because the Mean of 

Predictive error and IAE are slightly smaller under most working conditions. In fact, 

when the non-linearity is significant, its effect on the system behavior would be much 

more significant than that of the linear dynamics. For such a system dominated by non-

linearity, it may be advantageous to use the much less time-consuming Error Based 

Method which does not need dynamic responses under different step responses and is 

thus may be more affordable. 

 

8.5 Discrete Identification: Another Perspective 

Similar as in Continuous identification, the authors only identify a SISO model in 

which ( )ty  is the topside surface width of the weld pool and ( )tu is the reciprocal of the 

welding speed. Because the continuous identification already estimated a second order 
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model and the experimental step response also exhibits a second order model, hence the 

authors start with the structure: 

      ( ) ( ) ( ) ( )uSkykTykyT =−+−+ 2122 ξ                                                      (8.5.1) 

 

      ( ) ( )jm UfbuS =                                                                                       (8.5.2) 

 

Then linear Least Square method is used to obtain the unknown 

parameters TT ξ2,2 and ( )jUK from a step response under the step input jU  

 

8.5.1 Linear Dynamics Identification 

The SISO discrete model to be identified is given by equation 8.5.1-2. For 

identification, the authors apply the step signal based experimental data under 

inputs { } MjU j L,1, = . These inputs are still similar to those in the continuous 

identification. The identification results are summarized in Table 8.5. It is easy to see that 

the static function ( )ufbm  varies with the inputs conditions, which verifies the existence 

of nonlinearity 
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TABLE 8.5 

DISCRETE LINEAR IDENTIFICAITON 

 
 

8.5.2 Influence of the Nonlinearity 

Before identifying the nonlinearity, the authors study how it influences the linear 

dynamics. At first the authors take one of the linear models and simulate it under various 

inputs. Then the authors compare the simulations with the experiments. If the model 

exhibits consistent data agreements, then the linear dynamics is certainly enough to 

describe the system. Otherwise, further step is needed.  

Without loss of generality, the authors chose the one under the input of 13.2mm/s (with 

the lowest IAE in Table 8.5) and examined the step responses under the inputs of 

13.2mm/s, 11.2mm/s, and 10.6mm/s (IAE relatively smaller) and PRTS signal. The 

results are shown in Fig. 8.12. It is easy to see that these results demonstrate different 

data agreements, which further verifies nonlinearity does exists in the diode laser welding 
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process similarly as the continuous identification. As a result, step 2 is required for a 

complete nonlinear identification of the laser welding process. 

 

 

 
 



 
109

 

 
Figure 8.12 Simulated and observed comparison  

 



 
110

8.5.3 Nonlinearity Identification 

For simplicity, the authors assume the nonlinearity is a polynomial. Based on the 

results from the linear dynamics identification, the authors develop two structures below 

and the identification results are shown in Figure 8.13 

 

( )
5276.96941.3

47308.001904.0 23

+−
+−=

u
uuuK                                                                        (8.5.3) 

 

( )
9545.137421.582688.0

046088.000077213.0
2

34

+−+

−=

uu
uuuK

                                                                               (8.5.4) 
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Figure 8.13 Nonlinearity Identification 

 

8.5.4 Order Determination and Model Validation 

The complete models are: 

( ) ( ) ( )

( ) ( ) 5276.96941.347308.0
)(019046.0

22275.010669.1

2

3

+−+

−=

−+−−

kuku
ku

kykyky
                                                                     (8.5.5) 

 

( ) ( ) ( )
( )

( ) ( ) 9545.137421.582688.0
)(046088.000077213.0
22275.010669.1

2

34

+−+

−=

−+−−

kuku
kuku

kykyky
                                                                  (8.5.6) 
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Table 8.6  Discrete Identification Results Comparison of 3RD and 4TH Order 
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Figure 8.14 Model Validation 

 

To choose suitable order and validate the model, the authors run simulations on both 

modes under inputs of step signals including 13.2mm/s, 11.2mm/s and 10.6mm/s and 

PRTS signals. Then the authors examine the data agreements between the simulations 

and experiments as shown in Table 8.6. Simply the authors choose 8.5.6 

The validation results are shown in Figure 8.14 under different inputs signals. Based on 

the results, the authors conclude that the identification succeeds the validation and the 

identification model given by the 4th order nonlinearity and the linear dynamics with 

32282.0=T  and 4667.0=ξ  reasonably approximate the laser welding system. The 

authors nevertheless noticed that the IAE is higher under PRTS input. This deviation is 

expected due to the effects of from the measurements errors, servo motor sensitivity, 

sampling completeness, signal noise, and so on 

 

8.6 Summary 

The step response of the established diode laser welding process demonstrates a second 

order linear system. However, the gain of the linear dynamics varies with the input. 
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Hence, the authors proposed a two steps Hammerstein identification procedure both in 

continuous and discrete case: (1) detect the linear dynamics and the static non-linear 

function of the input from step responses with different step levels; (2) identify the 

parameters in the static nonlinear function. Besides of the Hammerstein identification, the 

authors also propose an Error Based identification and specifically apply the method on 

our system. The difference from the Hammerstein identification is the second step, which 

is based on the error of the linear dynamics and the static states under various inputs. A 

SISO nonlinear continuous and discrete model under using both procedures respectively 

is then estimated based on the experimental study. Both models take the reciprocal of the 

welding speed as the input and the topside surface width of the weld pool as the output. 

How to determine the suitable order for the identification is also introduced. To validate 

the identification, the authors examine the responses of the identified model under 

different inputs signals ranging from step signal to PRTS series. Validation results 

demonstrate better data agreements compared to the linear model structure. Both methods 

work adequately on our system but Hammerstein is more generally applicable for other 

similar process. It seems the discrete model approaches the experimental data somewhat 

roughly better than the continuous model. It is nevertheless noticed that the PRTS 

validation still generates bigger residuals. This is expected because of the influence from 

servo motor, image processing, and sampling completeness. 

 

8.7 2ISO Experimental Based Study 

In our earlier study, we have developed a SISO Hammerstein model with welding speed 

as input and the width on the top surface of the weld pool, in which the linear dynamics 

was second order and the static nonlinearity was a standard power series. The model is as 

follows: 

 

( ) ( ) ( ) ( )
( ) ( ) 8896.867543.351487.5

)(28697.00048078.03015.01286.0
2

34

+−+

−=++

tutu
tututytyty &&&

                                  (8.7.1) 
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Figure 8.15 Experimental results 

 

The SISO above was founded under the step inputs of welding speed and laser power. So, 

if we take the laser power as the input and the weld pool width as the output, the model 

structure will be exactly same except the gain on the right side. Further research also 
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showed that when the welding speed is zero, the step response with laser power as input 

and the width as output exhibits a first order model linearly.  

Based on the analysis above, we start with a third order linear dynamics  

Suppose the third order Hammerstein nonlinear structure can be represented by: 

 

( ) ( ) ( ) ( ) ( ) ( )( )tutuftytyctyctyc 21321 ,=+++ &&&&&&  

                                                                                                                              (8.7.2) 

The system structure is obtained as: 

( ) ( ) ( ) ( ) ( ) ( )( )tutuftytytyty 21 ,34.0142165.00071.0 =+++ &&&&&&  

                                                                                                                               (8.7.3) 

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) 4705.21719.10153.02514.0

0846.22520.01310.00086.0,

2
2

1212

1
2

1
3

1
4

121

−++−

−−+−=

tututututu

tutututututuf
 

                                                                                                                                (8.7.4) 

The model is validated with similar inputs as those used in SISO case above. The results 

are shown in Figure  8.16 
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Figure 8.16 2ISO model validation 
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CHAPTER  9 

 

 

 

NONLINEAR CONTROL DESIGN 

 

 

9.1 Known Model system: Linearization Design 

Consider a standard nonlinear Hammerstein model represented by state format: 

( ) ( ) ( )
( ) ( )( )( )
( ) ( )( )tuftz

tufLsz
szsGsy

=
=
=

                                                                             (9.1.1) 

, where uy, are the output and input respectively, and z is the intermediate input 

feeding into the linear dynamics ( )sG ; L is the Laplace transform operator 

 

 

 

 

 

 

 

 

Figure 9.1.a Hammerstein control design based on linearization 

 

Because the goal is to cancel the effect of nonlinearity in the equation 9.1.1 so that the 

system can be treated as linear system, therefore we take the first derivative of z at first. 

Then we have: 

( )
dt
du

u
ufz

∂
∂

=&                                                                                         (9.1.2) 

s
1  

u
f
∂

∂
1  

f(u) ( )sG  
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Define the virtual control state v, i.e. 

zv &= .                                                                                                                      (9.1.3) 

Or in Laplace transform, 

( ) ( )
s
szsv =                                                                                                             (9.1.4) 

With simple substitution, equation (9.2) can be written by: 

( )u
u
ufv &

∂
∂

=                                                                                                            (9.1.5) 

Or in Laplace transform, 

( ) ( ) ( )
s
su

u
ufLsv ⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=                                                                                         (9.1.6) 

Substituting equation (9.3) into (9.1), we have, 

( ) ( ) ( )sGsv
s

sy 1
= .                                                                                             (9.1.7) 

 

If we assume the structure of the nonlinearity is known, then the system can be treated as 

linear system as shown in Figure 9.1 

Figure 9.1 is the result of simulation tracking step signal following the linearization and 

control design from equation 9.1-4. 
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Figure 9.1.b Hammerstein control design based on linearization 

 

9.2 Known Model System: Constructive Design ( ( )uxfx ,=& ) 

Assumption 1:For ( ) nRUxtx ⊂∈= 00 there exists 0>ε and ( )0, xT ε such that 

( ) ε<tx for Ttt +≥ 0  

Assumption 2: a function ( )•α  is class K  if it is continuous and strictly increases 

Assumption 3: system is input-to-state partially stable if there exists functions such that 

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )( ) ( )
0

,0

,

,

43

21

>

++≤

++−≤
∂

∂

∈∀≤≤

∞

d

dutxtx

duxuxf
x
xV

RxxxVx n

γβ

αα

αα

 

Before we design the control law for nonlinear Hammerstein model, consider a nonlinear 

system described by: 

( ) ( ) uyyyfty nn += −1,, &  

                                                                                                                                 (9.2.1) 

, we can recursively construct the control design with defining Lyapunov candidates.  

For example, assume the model as 
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( ) ( )

yyf

uyyfty

1286.0
1

1286.0
3015.0

,

+=

+=

&

&&&

                                                                          (9.2.2) 

Let: 

yx
yx
&=

=

2

1
                                                                                                                   (9.2.3) 

Then we have: 

12

2

21

77.734.2 xxf
ufx

xx

+=
+=

=
&

&

                                                                                        (9.2.4) 

Let  

idii xxe −= , where i=1,2 

And idii xxe &&& −=                                                                                                  (9.2.5) 

At first, define the Lyapunov candidate function: 

2
11 2

1 eV = .                                                                                                           (9.2.6) 

Then the derivative of V is: 

( )
( )d

d

xxe
xxe

eeV

121

111

111

&

&&

&&

−=
−=

=

                                                                                                    (9.2.7) 

Because the goal is to design the control in order that the tracking error converge to zero, 

we can consider  2x  as the virtual control to the system and when dxx 22 ⇒ . 

Accordingly, define  

dd xekx 1112 &+−= , where 1k is a positive constant                            (9.2.8) 

Then,  

02
111 ≤−⇒ ekV&                                                                                   (9.2.9) 
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Define  

2
212 2

1 eVV +=                                                                                      (9.2.10) 

Take the derivative of 2V , we have 

( )dxufeek

eeVV

22
2

11

2212

&

&&&

−++−=

+=
                                                                (9.2.11) 

Design the control u as, 

22ekxfu nd −+−= & , where 2k is a positive constant                         (9.2.12) 

Then,  

02
22

2
112 ≤−−= ekekV&                                                                        (9.2.13) 

Accordingly, for the system, the designed virtual control can guarantee that the first 

derivative of defined Lyapunov candidate negative semidefinite as shown in equation (3). 

Namely, the system is asymptotically stable and bounded. 

 

9.3 Proof: 

Consider the system: 

( ) ( ) uyyyfty nn += −1,,                                                                          (9.3.1) 

, where uy, are the output and the control respectively; niyi L,2,1, =  is the ith 

derivative of y  

Let  

 

1

2
1

2

1

−

−
−

=

=

=
=

n
n

n
n

yx

yx

yx
yx

LL

&

                                                                                                     (9.3.2) 
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Then we have: 

 

( ) uxxxfx
xx

xx

xx
xx

nn

nn

ii

+=
=

=

=
=

−

+

,,, 21

1

1

32

21

L&

&

L

&

LL

&

&

                                                                             (9.3.3) 

 

Or, 

  

( )
11

1

−≤≤
+=

= +

ni
uxfx

xx

n

ii

&

&

                                                                                                  (9.3.4) 

, where [ ]Tnxxxx L21=                                                                   (9.3.5) 

 

Assume the desired signal is dx  and dx  is nth derivable. Then the tracking error can be 

written by:  

dxxe −=                                                                                                           (9.3.6) 

Or,  



 
134

( )

ndnn

dnnn

idii

d

d

xxe
xxe

xxe

xxe
xxe

−=

−=

−=

−=
−=

−−− 111

222

111

L

LL

                                                                                            (9.3.7) 

 

Or, 
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With simple substitution, we have: 
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It is easy to see that the system is strict feedback system. The design procedure is to 

define the control law with constructing Lyapunov candidate for the system. For every 

subsystem, we can try to define a virtual control. 

At first, define the Lyapunov candidate as: 

2
11 2

1 eV =                                                                                                      (9.2.10) 

Then 2x can be considered as a virtual control for the first equation and the task is to 

seek the control law so that ( )dd xxxx 1122 ,= and the derivative of V is semidefinite 

or negative. 

The derivative is represented by 

111 eeV && =                                                                                                            (9.3.11) 

Or, 

( )dxxeV 1211 && −=                                                                                            (9.3.12) 

Or, 

( )dd xxeeV 12211 && −+=                                                                                (9.3.13) 

If we can define  

dd xekx 1112 &+−=                                                                                           (9.3.14) 

Then, we have, 

1
2

1

21
2

111

Mke

eeekV

+−≤

+−=&
, where 121 Mee =                                                       (9.3.15) 

Define  

2
212 2

1 eVV +=                                                                                                (9.3.16) 

By taking the derivative, we have, 

2212 eeVV &&& +=                                                                                                  (9.3.17) 

Or, 
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                                                           (9.3.18) 

 

If we choose 

dd xekx 2223 &+−=                                                                                          (9.3.19) 

Then, 

2
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++−−=&
, where 1212 MeeM +=  

                                                                                                                              (9.3.20) 

If we continue similar procedure until  

2
1 2

1
nnn eVV += −  

                                                                                                                               (9.3.21) 
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                                                                                                                               (9.3.22) 

Choose the control: 

ndnn xfeku &+−−=                                                                                         (9.3.23) 

Then,  
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                                                                                                                             (9.3.24) 
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11 −− += nnnn MeeM  

                                                                                                                              (9.3.25) 

Accordingly, ( )eV  is bounded under the conditions of equations (9.2.5-7) and decreases 

monotonically, which means that the system is asymptotically stable. 

To verify the control design, we simply run a simulation based on the identified 

Hammerstein model represented by: 

 

( )
( ) ( )tytyf

uyyfy
+=
+=

&

&&&

2
,

                                                                                    (9.3.26) 

 

The tracking signals are both sin(t) and step signal with amplitude of 1. 

For simplicity, take k=1. The simulation tracking step and sin(2π t) signals are as shown 

in Figure 9.2. 

  

 
Figure 9.2.a Tracking sinusoidal signal 
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Figure 9.2.b Tracking step signal 
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For further study, consider a system represented by: 

( ) ( ) uyyyfty nn += −1,, &θ  

, where θ is unknown                                                                                           (9.4.1) 

Then the procedure will have to consider the unknown parameter. 

For simplicity, assume the system is second order and ( ) ( ) uyfty +=θ&&  

                                                                                                                               (9.4.2) 
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                                                                                                                               (9.4.3) 

Take the derivatives, then 
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                                                                                                                                (9.4.4) 

Or, 
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                                                    (9.4.5) 

, where θ is the estimation of the parameter 

 

Define Lyapunov function: 

( )22
2

2
12

1 θ
)

++= zzV  

                                                                                                                               (9.4.6) 

The first derivative of V can be written by: 
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θθ &))&&& ++= 2211 zzzzV  

                                                                                                                               (9.4.7) 

Or,  
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                                                                                                                                 (9.4.8) 

If we choose: 

 

( )

2
1

1

12
1

12

z
x
qffz

fczz
x
qzkzu

∂
∂

−=

−−
∂
∂

+−−=

θ

θ

&)

&

 

                                                                                                                              (9.4.9) 

Then we have, 

 

02
2

2
1 ≤−−= kzczV&                                                                                 (9.4.10) 

Accordingly, the first derivative of Lyapunov function is negative semidefinite. Namely, 

θ,, 21 zz are bounded and accordingly, the system is asymptotically stable. 
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9.4 Hammerstein With u& Introduced 

Consider the Hammerstein system model represented by 

( ) ( ) ( )ugyyyfty nn += −1,, &                                                                         (9.4.11) 

Apparently, there is no zero points in the linear dynamics. However, under conditions we 

might be required to add u& into the model. Then the system is represented by: 

( ) ( ) ( )uguyyyfty nn ++= − && θ1,,                                                               (9.4.12) 

As verified in the previous chapter, typical welding processes do not have nonstable zero 

points in the system. In our current system, when we identify the Hammerstein model, we 

apply step or random-level step signals as the persistent test signal. With step signals as 

the input, it is impossible to estimate the extra parameter related to u& . However, we can 

still add it into the denominator functioning as a very small signal in the linear dynamics 

because the characteristics of the linear dynamics are determined by the poles in the 

denominator.  

To test the feasibility, we change the parameter and compare the simulation results under 

sinusoidal signals and step signals. Example comparison results are shown in Table 9.1 

and Figure 9.2.a-b under the condition that 001.0=θ  and 1.0.0=θ  

 

Table 9.1 Model comparison between with u& and without u&  

Error between outputs 

( )∑ − udotu yy  
θ  

Sin(t) Step signal 

0.1 86.0453 0 

0.01 8.6045 0 

0.005 4.3023 0 

0.002 1.7269 0 

0.0015 1.7209 0 

0.001 0.8605 0 
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Figure 9.3.a With u& and θ =0.001 in the model 

 

 

Figure 9.3.b With u& and θ =0.01 in the model 

 

 Apparently, if we forcefully add u& whose coefficient is under the condition of 

001.0≤θ , then the system response will not be influenced too much under the inputs 
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of such as sinusoidal or step signal. We already verified in the previous chapter that the 

existence ofu& does not have any influence on the system performance. 

In this case, we at first consider the nonlinear Hammerstein model represented by: 

( ) ( ) ( )uguyyyfty nn ++= − && θ1,,  

                                                                                                                            (9.4.13) 

, where uy, are the output and the control respectively; uniyi &L ;,2,1, =  is the ith 

derivative of uy,  
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                                                                                                                               (9.4.14) 

, where v is the virtual control input for the system 

Then we have: 
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Or, 
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                                                                                               (9.4.16) 

, where [ ]Tnxxxx L21=  

During the identification, ( )ug is approximated by a polynomial. In fact, it can be other 

complex formats. However, we assume that ( )ug is continuous and bounded 

We further assume all the states of the system are available for feedback and define: 
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                                                                                             (9.4.17) 

 

Then we have, 

n
dnn

d
n

nn

d

d

xxe

xxe

xxe
xxe

−=

−=

−=
−=

−

&&

&

LL

&&&

&

1

32

21

 

                                                                                                                               (9.4.18) 

With simple substitution, we can have: 
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n
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                                                                                                                              (9.4.20) 

Define  

bKAAm −=                                                                                                   (9.4.21) 

, where K is chosen so that the matrix bKAAm −=  is Hurwitz. 

Then, 

( ) ( )( )
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n
ddm

=
++−+++=
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& θ,
                                (9.4.22) 

, where [ ]dn
ddd xxxx 1−= L                                                             (9.4.23) 

Further, we define a dynamic signal described by: 
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                                                                    (9.4.25) 

Then the robust adaptive controller can be designed by: 
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                                                                                                                              (9.4.26) 

( )•−1α is the inverse of function of ( )•α  

P  is the solution of 
0>=

−=+
T

T
mm

QQ

QAPA
                                                                  (9.4.27) 

 

9.5 Related to the Diode Laser Processing System With u&  

For controller design, we chose Robust Adaptive Control as introduced in Chapter 3. 

As shown in the identification, our laser welding system can be represented by: 
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                                                       (9.4.28) 

Define the state function as: 
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                                                                                                                              (9.4.29) 

Then the system can be represented by: 
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                                                                                                                             (9.4.30) 

For simplicity, we let the nonlinear function be: 

( ) ( ) ( ) ( ) ( ) ( ) ( )47
3

6
2

542211 tztztztztxtxf θθθθθθ +++++=⋅  

                                                                                                                             (9.4.31) 

Accordingly, the amplitude limit function can be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( )47
3

6
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542211 tztztztztxtxf θθθθθθ +++++≤⋅  

                                                                                                                             (9.4.32) 
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1 zzzxxf θ                                                         (9.4.33) 

, where θ can be unknown 

Thus: 

( ) 6222
2

2
1 zzzxxf ++++=⋅                                                            (9.4.34) 

Equation 9.4.34 gives the boundary of the nonlinearity function. 

Let the tracking signal ( )tyr sin= , the standard sinusoidal signal with amplitude 1 

Then the error signal can be written by: 
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                                                                                                                            (9.4.35) 

Or, 
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                                                                                                                            (9.4.36) 

Or, 

( ) ( ) ( )[ ]35,
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Let A= ⎥
⎦

⎤
⎢
⎣

⎡
00
10

 and ⎥
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⎡
=
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b                                                                                  (9.4.38) 

Then equation 9.3 can be rewritten by: 

( ) ( ) ( )[ ]35, θθ ++−++= vtyzyefbAete rr &&&                                       (9.4.39) 

With simpler substitution, the error matrix is: 

( ) ( ) ( )[ ]35,
1
0

00
10

θθ ++−+⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
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⎡
= vtyzyefete rr &&&                                     (9.4.40) 

To design the controller, we reformat the equation as: 

( ) ( ) ( )[ ]353, θθ ++−−+++= vkyzyefKebeAte rrm &&&  

, where bKAAm −=  and K  is chosen so that mA  is Hurwitz. 
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                                                                                                                             (9.4.41) 
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                                                                                                                              (9.4.42) 

For matrix: 
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The constant matrix [ ]21 kkK =  is chosen so that the roots of the characteristic equation 

have negative real parts.  

We then can design the robust adaptive controller  

 

( )[ ] ( )[ ] ( ){ }12, 221222 +++++++−= − KerzyezyefPbev rr
T αβ  

                                                                                                                              (9.4.45) 

, where β  is the adaptive parameter of the controller and 1
1
−α  is the inverse function and 

is a function of class ∞K . For now, we assume ( ) 2
1 ⋅=⋅α  

P is Lyapunov matrix under the condition of: 

QAPA T
mm −=+ , where 0>= TQQ                                                                  (9.4.46) 

( ) σβββ Γ−= rm yrze ,,,&                                                                                    (9.4.47) 

( ) ( )[ ] ( )[ ] ( ){ }12, 2212222
+++++++Γ= − KerzyezyefPbe rr

T
m αβ  

                                                                                                                              (9.4.48) 

For the design constants we assume they are known and satisfy the condition of 

0,0 >> σT .                                                                                                         (9.4.49) 

Because in our experiments, only the position signal is detected, we further implement 

high gain observer for the purpose of output feedback.  

Let the error signal be: 
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                                                                                       (9.4.50) 

, where 0>ε  is a small constant, 2,1,0 => iiσ  are chosen so that CKAAn σ−=  is a 

Hurwitz matrix, and [ ]21 σσσ =K , [ ]01=C . 

Accordingly for the matrix: 
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The positive constants matrix [ ]21 σσσ =K  is chosen so that the characteristic equation  

021
2 =++ σσ ss  has the roots with negative real parts.  

                                                                                                                               (9.4.53) 

To eliminate peaking in the implementation of the observer, we define  
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Thus: 
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                                                                                        (9.4.55) 

In order to prevent the peaking from entering the control system, we saturate the control 

signal and adaptive controller outside of their domains of interests. In our experiments,  
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                                                                                                                               (9.4.56) 
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With these constants, which are larger than or equal to the upper bound of those signals 

( ) ( )rmr yreyrev ,,,,,, ββ , we can denote the following equations: 
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r

S
m

,,,,                                                                  (9.4.58) 

( )sat  represents the saturation function.                                                              (9.4.59) 

Thus the robust adaptive output controller can be obtained by replacing ( )β,,, ryrev  and 

( )rm yre ,,β  with ( )β,,, r
S yrev  and ( )ββ ,,, r

S
m yre  

Simulation are made under both step and sin(t) as tracking signals. In both cases, 0.5sin(t) 

signal is added as the disturbance. 

 
Figure 9.4.a Tracking sin(t) with ( )tu&  in the model 

 



 
151

 
Figure 9.4.b Tracking error of sin(t) with ( )tu&  in the model 

 
Figure 9.5.a Observer based Tracking sin(t) with ( )tu&  in the model 
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Figure 9.5.b Observer based Tracking sin(t) with ( )tu&  in the model 

 

 

 

9.6 Proof: 

We consider the system that can be represented by: 

( ) ( ) ( )uguyyyfyy nn ++= − θ1,,, L&                                                         (9.6.1) 

, where uy, are the output and the control respectively; niyi L,2,1, =  is the ith 

derivative of y . 

Assume 

( ) ( )11 ,,,,,, −− ≤ nn yyyfyyyf L&L& θ , where 0>θ                                     (9.6.2) 

( ) ( )ugcug ≤ , where 0>c  

Let  
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, where v is the virtual control input for the system 

                                                                                                                         (9.6.3) 

Then we have: 
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Or, 
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, where [ ]Tnxxxx L21=  

During the identification, ( )ug is approximated by a polynomial. In fact, it can be other 

complex formats. However, we assume that ( )ug is continuous and bounded 

We further assume all the states of the system are available for feedback and define: 
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Then we have, 

n
dnn

d
n

nn

d

d

xxe

xxe

xxe
xxe

−=

−=

−=
−=

−

&&

&

LL

&&&

&

1

32

21

                                                                                                (9.6.7) 

 

With simple substitution, we can have: 
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Define  

bKAAm −=                                                                                                    (9.6.10) 
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, where K is chosen so that the matrix bKAAm −=  is Hurwitz. 

Then, 

( ) ( )( )
vz

xegxvzxefbeAe d
n
ddm

=
++−+++= θ,&

                                (9.6.11) 

, where [ ]dn
ddd xxxx 1−= L                                                            (9.6.12) 

Further, we define a dynamic signal described by: 
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From [60], signal r  has the property of : 

( ) ( )tDtrV +≤                                                                                                (9.6.14) 

Then the robust adaptive controller can be designed by: 
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                                                                                                                              (9.6.15) 

( )•−1α is the inverse of function of ( )•α                                                               (9.6.16) 

P  is the solution of 
0>=

−=+
T

T
mm

QQ

QAPA
                                                                  (9.6.17) 

Define the Lyapunov candidate function: 

( )21 ββθ
)

−Γ+= −PeeV T                                                                                         (9.6.18) 

, where β
)

 is a positive constant and the desired value of β  

Take the first order derivative 
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, where 
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Apparently, 
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If we introduce a constant: 
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n
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1
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                                                                                                                                (9.6.20) 

 

Then, with substitution, equation (9.6.19) can be rewritten by: 
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Accordingly, 
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Therefore, according to [60] V will decrease monotonically, which means that ( )β,e  are 

bounded. The system states are also bounded and the closed loop system is bounded and 

asymptotically stable. 

 

9.7 Related to the Diode Laser Processing System Without u&  

As shown in the identification, our laser welding system can be represented by: 
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Define the state function as: 



 
158
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                                                                                                          (9.7.1) 

Then the system can be represented by: 
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For simplicity, we let the nonlinear function be: 

( ) ( ) ( ) ( ) ( ) ( ) ( )47
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6
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542211 tztztztztxtxf θθθθθθ +++++=⋅                                (9.7.3) 

Accordingly, the amplitude limit function can be written as: 
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Thus: 
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Equation 9.2 gives the boundary of the nonlinearity function. 

Let the tracking signal ( )tyr sin= , the standard sinusoidal signal with amplitude 1 

Then the error signal can be written by: 
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Or, 
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Then equation 9.3 can be rewritten by: 

( ) ( ) ( )[ ]35, θθ ++−++= vtyzyefbAete rr &&&                                          (9.7.10) 

With simpler substitution, the error matrix is: 
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To design the controller, we reformat the equation as: 

( ) ( ) ( )[ ]353, θθ ++−−+++= vkyzyefKebeAte rrm &&&                                 (9.7.12) 

, where bKAAm −=  and K  is chosen so that mA  is Hurwitz. 
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For matrix: 
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The constant matrix [ ]21 kkK =  is chosen so that the roots of the characteristic equation 

have negative real parts.  

We then can design the robust adaptive controller  

( )[ ] ( )[ ] ( ){ }12, 221222 +++++++−= − KerzyezyefPbev rr
T αβ              (9.7.16) 

, where β  is the adaptive parameter of the controller and 1
1
−α  is the inverse function and 

is a function of class ∞K . For now, we assume ( ) 2
1 ⋅=⋅α  

P is Lyapunov matrix under the condition of: 

QAPA T
mm −=+ , where 0>= TQQ                                                               (9.7.17) 

( ) σβββ Γ−= rm yrze ,,,&                                                                                 (9.7.18) 
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( ) ( )[ ] ( )[ ] ( ){ }12, 2212222
+++++++Γ= − KerzyezyefPbe rr

T
m αβ            (9.7.19) 

For the design constants we assume they are known and satisfy the condition of 

0,0 >> σT .                                                                                                         (9.7.20) 

Because in our experiments, only the position signal is detected, we further implement 

high gain observer for the purpose of output feedback.  

Let the error signal be: 
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, where 0>ε  is a small constant, 2,1,0 => iiσ  are chosen so that CKAAn σ−=  is a 

Hurwitz matrix, and [ ]21 σσσ =K , [ ]01=C .                                                     (9.7.22) 

Accordingly for the matrix: 
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The positive constants matrix [ ]21 σσσ =K  is chosen so that the characteristic equation  

021
2 =++ σσ ss  has the roots with negative real parts.  

To eliminate peaking in the implementation of the observer, we define  
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In order to prevent the peaking from entering the control system, we saturate the control 

signal and adaptive controller outside of their domains of interests. In our experiments,  
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With these constants, which are larger than or equal to the upper bound of those signals 

( ) ( )rmr yreyrev ,,,,,, ββ , we can denote the following equations: 
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( )sat  represents the saturation function.                                                           (9.7.30) 

Thus the robust adaptive output controller can be obtained by replacing ( )β,,, ryrev  and 

( )rm yre ,,β  with ( )β,,, r
S yrev  and ( )ββ ,,, r

S
m yre  

 

9.8 Simulation 

We choose the constants: 

00001.0=σ , [ ]42=K , ⎥
⎦

⎤
⎢
⎣

⎡
=

1875.025.0
25.0375.1

P , ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

Q . 

The simulation track two different input signal respectively: Both simulations are tested 

with adding 0.5sin(t) as disturbance. 

Sinusoidal signal input: 
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Figure 9.6.a Tracking signal sin(t) 

 

 
Figure 9.6.b Tracking error: input signal sin(t) 

 

Step signal input 
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Figure 9.7.a Tracking step signal  

 

 
Figure 9.7.b Tracking error: step signal 

 

Output feedback: high-gain observer 
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Figure 9.8.a Tracking signal sin(t): Output feedback 

 

 
Figure 9.8.b Output feedback tracking error: signal sin(t) 

 

Step Input: 
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Figure 9.9.a Tracking step signal: Output feedback 

 
Figure 9.9.b Output feedback tracking error: step signal 

9.9 Summary  

Apparently the state feedback tracks better with either Sinusoidal or Step signal although 

he observer design somewhat caused a fluctuation with very small amplitude. This might 

require further tuning on the constants  

Copyright © Xiaodong Na, 2008 
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CHAPTER  10 

 

 

 

CONCLUSION AND FUTURE WORK 

 

In this dissertation, we have proposed a simple and practical nonlinear 

identification method for manufacturing processes, especially laser welding process. The 

model is based on nonlinear Hammerstein structure consisting of static nonlinearity and 

linear dynamics in series with each other. To better serve the study, we built a prototype 

of diode laser welding system with aid of computer vision. We studied the identification 

both in continuous and discrete case. For now, a SISO is mainly focused and the model 

takes speed as the input and the top surface weld pool width as the output. However, the 

algorithm can be expanded to MIMO with suitable persistent excitation signals.  

Through experiments, we have validated the model and proved that the algorithm 

is capable of identifying the nonlinearity and linear dynamics in certain degree of 

accuracy. For simplicity, the nonlinearity is approximated by a standard polynomial with 

selected order and can also be estimated with other format of nonlinearity. The linear 

dynamic is represented by transfer function in either continuous or discrete case. 

Although we have identified the model in offline, this algorithm can be capable of real 

time application. Currently we acquire the experimental data based on vision sensor and 

image processing. To greatly avoid the influence of measurement error, we choose offline 

study for identification.  

The proposed identification is under conditions, especially non-zero in the linear 

dynamics because we simplify the denominator with a constant. Although we have 

proved that under circumstances this configuration is reasonable for laser welding 

processes, in the future it might still be necessary to identify the model with adding 

zeroes. Persistent excitation test signal such as multi-level amplitude sinusoidal signal 

might be of interest for related investigation. Extended MIMO identification is also 

suggesting for future research. 
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Current identification is based on open-loop experiments. In the future, 

experiments applied to more manufacturing system related to close-loop identification 

and control system will be studied. 
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