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Nonlinearity is important in many structural dynamic applications that are of interest
to engineers, for example in structures with bolted interfaces [1], machinery with rubber
isolation mounts, microsystems subjected to thermal, magnetic or friction forces [2], and
In other cases the baseline structure is linear, but its per-
formance can be enhanced by adding or engineering certain types of nonlinearities [4, 5].
However, nonlinear dynamics is a rich and complicated field and so engineers tend in-
stead to ignore nonlinearity or to seek a linear model that approximates the system at
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Abstract

The objective of the present study is to explore the connection between the
nonlinear normal modes of an undamped and unforced nonlinear system and the
isolated resonance curves that may appear in the damped response of the forced
system. To this end, an energy balance technique is used to predict the amplitude
of the harmonic forcing that is necessary to excite a specific nonlinear normal mode.
A cantilever beam with a nonlinear spring at its tip serves to illustrate the develop-
ments. The practical implications of isolated resonance curves are also discussed by
computing the beam response to sine sweep excitations of increasing amplitudes.
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Introduction

the forcing level of interest [6].



Vibration modes form the foundation of our understanding of linear dynamic systems,
and influence efforts related to testing, modeling, validating and controller design. Rosen-
berg [7] extended modal analysis to nonlinear systems in the 1960’s, coining the phrase
nonlinear normal mode (NNM). The area received new attention in the 1990’s [8-10] and
now it is clear that NNMs can be used to obtain a wealth of insight into the response of
a nonlinear system [9,11]. For example, NNMs have been used to explain internally reso-
nant and non-resonant motions of structures [12], to design a nonlinear vibration absorber
(also called a nonlinear energy sink) [4], to create or validate a reduced order model for
a system [13], and to explain changes in the oscillation frequency and the deformation
shape of the free and forced response of a structure [11].

In recent years important progress has been made in the numerical calculation of un-
damped [14-17] and damped NNMs [18,19]. These new algorithms have been used to
compute the nonlinear modes of a geometrically nonlinear finite element model of a com-
ponent from a diesel exhaust system, a full-scale aircraft, a bladed disk from a turbine
and a strongly nonlinear satellite in [15,20-22], respectively. A framework for experimen-
tal identification of NNMs was recently presented in [23] and validated on an academic
structure [24]. More recent works have begun to use this framework on more complicated
structures [25,26].

One fundamental property of undamped NNMs is the fact that they can be realized when
a harmonic forcing function cancels the damping force in the damped system [23]. As a
result, they form the backbone of the nonlinear forced response (NLFR) curves [10,11,27]
and hence they approximate the oscillation frequency and deformation shape that are
exhibited at resonance, when a structure is at the greatest risk of failure. The relationship
between the NLFR and the NNM backbone is simple for mild nonlinearities, but most
realistic systems exhibit complicated NNMs with many interactions between the various
modes leading to internally resonant branches. Many works have explored interactions
between nonlinear modes with commensurate linear frequencies, e.g., when a pair of
the linearized natural frequencies of the system have an integer ratio [28-30]. Some
of them have even exploited these modal interactions for optimal design [31]. In contrast,
only a few have considered the case that is of interest in this work where the modal
interactions occur between pairs of modes whose linear frequencies are not integer related.
The investigation of such interactions requires one to resort to computational methods,
which is another specific aspect of this study.

This work explores the relationships between these interacting NNMs and the forced
response of the nonlinear system, especially for the case in which the forced response shows
an isolated resonance curve (IRC). Specifically, we show that the interactions between
NNMs are responsible for the IRCs in the forced response. We note that the paper
[32] discusses the relationships between bifurcations of backbone curves and IRCs; it is
therefore the ideal companion of the present study. These detached families of solutions
are frequently not detected because they do not emerge naturally from the fundamental
response when numerical continuation is used. They can lie outside or inside the main
resonance curve [33,34], with the former case typically being more important because one
is likely to underestimate the response of the nonlinear system [35,36]. Isolated resonances
may also go undetected during laboratory experiments when stepped/swept sine testing



is employed.

The paper is organized as follows. Section 2 briefly reviews the methodology used to com-
pute the periodic motions of the undamped and damped form of the nonlinear equations
of motion, along with a phase resonance condition extended to nonlinear systems. An
adaptation of the energy balance procedure presented by Neild et al. [37,38], which can
be used to estimate the forcing amplitude required to isolate the NNM, is also presented
in Section 2. Section 3 applies the energy balance technique to a nonlinear cantilever
beam with the aim to predict the resonances from the knowledge of the NNMs and of
the damping matrix. The predictions of Section 3 are validated using the computation
of NLFRs and bifurcation tracking in Section 4. Section 5 discusses the practical impli-
cations of IRCs by computing the beam response to sine sweep excitations of increasing
amplitudes. The conclusions of the present study are presented in Section 6.

2 Periodic Solutions of a Nonlinear System

2.1 Computation of Nonlinear Normal Modes and Nonlinear
Forced Responses

The N-degree-of-freedom (DOF') equations of motion for a nonlinear system generally can

be written as

The N x N matrices M, C, and K represent the mass, damping and stiffness matrices,
respectively. The displacement, velocity and acceleration are represented with the N x 1
vectors X, X, and X, and the external loads are applied through the N x 1 force vector
f(t). The N x 1 nonlinear restoring force vector, fy(x), accounts for the nonlinearities
in the physical system. We only consider the case where the nonlinear restoring force
depends on displacement.

The NNMs calculated in this study are defined as not necessarily synchronous periodic
motions of the undamped and unforced nonlinear system [11,39]. A variety of methods
exist to find these periodic solutions, e.g., perturbation techniques [4] and harmonic bal-
ance [40]. In this paper, NNMs are computed using the shooting technique combined
with numerical continuation [15,17]. The outcome of the calculations is a frequency-
energy plane which depicts the evolution of the fundamental frequency of the NNM as
the energy changes.

Nonlinear forced responses (NLFRs), i.e., the periodic responses of the damped system
to a monoharmonic excitation force

f(t) = Asin (wt) (2)

are also calculated herein using shooting and numerical continuation [41]. NLFRs can
reveal new phenomena that cannot be observed with linear theory, such as frequency-



energy dependence, subharmonic and superharmonic resonances, coexisting solutions, and
stable/unstable periodic motions.

2.2 Connection between Nonlinear Normal Modes and Nonlin-
ear Forced Responses

2.2.1 Nonlinear Phase Lag Quadrature Criterion

The first theoretical connection between NLFRs and NNMs can be derived thanks to
the nonlinear phase lag quadrature criterion [23]. Specifically, the damped system can
be made to respond in a single NNM motion if the excitation exactly cancels out the
damping force. To this end, a multi-point, multi-harmonic excitation is to be applied to
the system so that the harmonics of the response are all in quadrature with the harmonics
of the excitation.

In practice, it is unlikely that the forcing of interest will exactly cancel damping as de-
scribed in Ref. [23], because this requires that the force be distributed in space and that it
be comprised of many harmonics. A few studies [23-26,42] have shown that an accurate
approximation to the NNM can be obtained by a much simpler force that excites reso-
nance. For example, Peeters et al. [23,24] explored whether a single-point, monoharmonic
excitation could approximately isolate an NNM, and found good results in simulations
and experiment with a lightly damped beam. In their efforts it was helpful to define a
multi-harmonic mode indicator function (MIF) which indicates when the 90 degrees phase
lag condition has been obtained. When a single-point sinusoidal force is applied to the
nonlinear structure, which is the case considered in this paper, a monoharmonic MIF can
be defined as follows

Re(Z1)*Re(Z) 3)

YAVA

where the operator (-)* represents the complex conjugate transpose and Z; is the complex
Fourier coefficient of the fundamental harmonic of the computed NLFR. The MIF in Eq.
(3) indicates that resonance occurs when A; is equal to one.

Ay =

2.2.2 An Energy Balance Technique

The relationship between NLFRs and NNMs was also studied using an energy balance
technique in Refs. [37,38|. Based on the second-order normal form theory, the analytical
developments hold for weakly nonlinear regimes of motion. This technique is slightly
revisited herein by employing a numerical viewpoint, which allows one to consider more
strongly nonlinear regimes.

Let us first consider a linear system. As shown in Ref. [43], if the system is oscillating in
a linear normal mode denoted as x(t), then the damping forces instantaneously exert a
distributed force Cx(t) and the power dissipated at any instant is

Puiss = %(1) T Cx(t) (4)
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and the total energy dissipated over one cycle is

T
Ediss/cyc = /0 Piiss dt (5>

Similarly, an arbitrary forcing function f(¢) inputs energy into the system as

Fujege = [ %0 ¥ (6)

At resonance, the energy dissipated by the damping forces must match the total energy
input to the system over the period 7. The balance is enforced by setting Egiss/cye =
Einjeye [43]. For a single-point, monoharmonic force with amplitude A, the scaling on A
can be computed by satisfying

T T
A /0 ()T (e, sinwt) dt = /0 %0 TCx(t) dt (7)
where e, is a vector of zeros with a value of one at the location n, which is the point
at which the force is applied. This energy balance criterion is a useful result, because
it enables the practitioner to establish formally the direct link from the computed lin-
ear normal modes, i.e., the periodic motions of the undamped, unforced system, to the
resonant response of the damped forced system.

The energy balance, Egiss/cyc = Einjeye, also holds for nonlinear systems. So, if both
the NNMs x(¢) and the damping C in the system are known, Eq. (7) can be readily
used to estimate the forcing amplitude A that would excite the system at resonance
with associated motion x(¢). While it is common practice to excite a system using a
monoharmonic force, one should note that higher harmonics might be necessary to achieve
a reasonable approximation to the NNM motion, especially near internal resonances, so
any calculations based on Eq. (7) should be regarded as approximate.

3 Prediction of the Forced Response of a Cantilever
Beam using Nonlinear Normal Modes

In the present and next sections, a model of a cantilevered beam with a cubic nonlinear

spring attached at the beam tip is used to investigate the connection between NNMs and
NLFRs.

The beam was 0.7 m in length, with a width and thickness of 0.014 m, and was constructed
of structural steel with a Young’s modulus of 205 GPa and a density of 7800 kg/m?. A
schematic of the FEA model is shown in Fig. 1. A linear finite element model of the planar
beam was created in Abaqus® using 20 B31 Euler-Bernoulli beam elements, giving it a
total of 60 DOF. A mass and stiffness proportional damping model was used, defining the
damping matrix as C = aK+bM with a = —0.0391 and b = 1.47x10~*. These parameters
were chosen such that the damping ratios of the first and second linear modes were 1%
and 5%, respectively. The cubic nonlinear spring had a coefficient of Kyz = 6 x 10°N/m?3,
and was attached at the beam tip affecting only the transverse direction.
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0.21m

Figure 1: Schematic of a cantilever beam with a cubic nonlinear spring attached to the
beam tip and a modifying lumped mass of 0.5 kg. The addition of the mass shifted the
location of the 3:1 modal interaction with NNM 2 on the first NNM branch (as seen later
in Fig. 2(a)).

The frequency-energy plots (FEPs) of the first four NNMs are shown in Fig. 2. These
FEPs have two distinct features, namely a backbone, and tongues that emanate from
the backbone. The backbone of NNM 1 in Fig. 2(a) shows an increase in fundamental
frequency as the energy in the periodic solutions increased revealing that the nonlinear
spring has a stiffening effect on this mode. Each of the first four NNMs showed this
stiffening behavior, but the energy level at which the nonlinearity began to affect the
frequency and deformation varied for each. The tongues that emerged from the backbones
along each NNM are referred as modal interactions, or internal resonances, and occur when
two or more NNMs interact. The response of the NNM at locations on these tongues
showed a strong, multi-harmonic response at an integer frequency ratio of the interacting
nonlinear mode.

Figure 2(a) displays a detailed view of the FEP of NNM 1, where the dashed, colored
lines represent the frequency-energy behavior of the higher order NNMs after dividing
the frequency by various integers. By shifting these NNMs down the frequency axis, it
was possible to observe the location where the backbones of higher modes intersect with
the NNM 1 backbone and cause a modal interaction to occur. Considering the modal
interaction at approximately 37 Hz, which has the appearance of the Greek letter o and
will hereafter be referred to as an a-tongue, the 1/3rd frequency branch of the NNM 2
branch intersects the backbone of NNM 1. This causes NNM 1 to bifurcate and create a
3:1 internal resonance tongue that has solutions where NNM 1 and 2 interact. The other
three modal interactions along NNM 1 were a 9:1 interaction with NNM 3 near 44 Hz,
a 15:1 interaction with NNM 4 near 47 Hz, and a 13:1 interaction with NNM 4 near 54
Hz. It is important to note that NNM 1 in Fig. 2(a) was almost certainly incomplete,
because in reality many more tongues could emanate from the backbone as the frequency
is equal to many other integer fractions of higher NNMs. These additional tongues must
have been missed by the continuation algorithm. In principle they could be found using
a smaller stepsize but this becomes time consuming and was not pursued.

Focusing our attention on the first beam mode, our objective is to exploit the energy
balance technique of Section 2.2.2 to predict the system’s nonlinear resonances based on
the knowledge of the NNMs of Figure 2(a) and of the damping matrix. Specifically, Eq. (7)
was used to estimate the monoharmonic driving force required to excite the NNM motion.
The computed force amplitude and the corresponding frequency are displayed for the first
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Figure 2: The nonlinear normal modes of the nonlinear beam: (a) NNM 1, (b) NNM 2,
(¢) NNM 3, and (d) NNM 4. Solid black represents a stable solution, and dotted red
represents an unstable solution. The detailed view of NNM 1 shows the crossing of higher
order NNMs in dashed lines at fractions of their fundamental frequency.



NNM in Fig. 3(b); the NNM is repeated in Fig. 3(a). For forcing amplitudes smaller
than 22.3 N, there is a unique solution meaning that, at a specific forcing amplitude,
there exists a single resonance. (This prediction will subsequently be shown to be quite
accurate.) For greater forcing amplitudes, this is no longer the case. For example, a force
of 22.6 N could achieve multiple resonances at 37.5 Hz, 45.8 Hz and 47.4 Hz (black circles
in Fig. 3(b)). One important remark is that the nonuniqueness of the resonances is due to
the nonmonotonic increase in the forcing amplitude in Fig. 3(b), which is itself produced
by the modal interactions (tongues) in the FEP in Fig. 3(a).
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Figure 3: First NNM: (a) FEP, (b) estimate of force amplitude required to obtain the
motion given at each point on NNM 1. Circular markers indicate achievable resonance
frequencies for a force of 22.6 N.

4 Calculation of the Forced Response of a Cantilever
Beam using Numerical Continuation
4.1 Forced Response Curves

To validate the predictions made from Figure 3(b), the FEPs of the forced response were
computed at different forcing amplitudes. Forcing amplitudes lower than the critical value
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of 22.3 N were first considered in Fig. 4. A classical behavior is observed in this figure
where the forced response wraps around the NNM, acting as the backbone to the NLFR.
The MIF from Eq. (3) in the right plot in Fig. 4 is approximately equal to 1 at resonance
where a fold bifurcation changes the stability of the NLFR.
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Figure 4: (Left) NLFRs at frequencies near the first NNM where (solid) are stable periodic
motions and (dash dot) are unstable periodic motions. The energy on the horizontal
axis represents the maximum energy of each steady-state solution in the NLFR, and the
vertical axis represents the forcing frequency. (Right) MIF of the forced response. The
force amplitudes for each curve are (red) 0.445 N, (green) 0.890 N, (blue) 2.22 N, and
(magenta) 4.45 N. The NNM is in black.

Higher forcing amplitudes were considered in Fig. 5. For A = 11.3 N in Fig. 5(a), the
NLFR again wrapped around the backbone of the first NNM, as previously observed in
Fig. 4. When the force amplitude doubled (A = 22.6 N in Fig. 5(b)), three resonances
were revealed by the MIF indicator at about 38.0 Hz (classical resonance), 44.2 Hz and
48.1 Hz. As clearly displayed in the NLFR, the two new resonances (associated with fold
bifurcations) are responsible for the creation of an IRC. The response on this IRC is much
larger than on the main branch so one would significantly underestimate the response if it
was not detected. These results were found to be entirely consistent with the predictions
of the energy balance technique, which predicted multiple resonances from 22.3 N, and
resonances at 37.5 Hz, 45.8 Hz and 47.4 Hz for 22.6 N. The fact that the IRC still wrapped
around the backbone of NNM 1 underlines the essential role played by the NNM in the
forced response. Fig. 5(b) also shows that the IRC was created when the NLFR branch
approached the 3:1 interaction between NNM 1 and NNM 2: this observation suggests
that interactions between NNMs are one possible driving mechanism for IRC onset.
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The forcing amplitude was slightly increased in Fig. 5(c) (A = 26.7 N), and the resonant
frequency on the main branch did not shift very much (from 38.1 Hz to 38.5 Hz). The IRC
persisted and became larger, increasing its frequency range from 41 Hz to 51 Hz. A stable
portion of the IRC has however become unstable through the emergence of Neimark-
Sacker bifurcations (not represented). The latter will persist at higher forcing levels and
are responsible for the quasiperiodic oscillations discussed in Section 5. Further evidence
of the connection between IRCs and modal interactions is given in Fig. 6 which compares
the time histories of the three resonant solutions (represented by circle markers) along
the NLFR curve together with the time histories of the NNM near them. The periodic
responses were projected onto the linear modal coordinates to better highlight the modal
interaction. Indeed, the first two linear modal coordinates dominated all three of the
resonant responses, and the comparison between the NLFR and the corresponding NNM
all were in good agreement. There was slight phase shift however for solution (a), which
can be explained by the use of a monoharmonic force input, whereas a multi-harmonic
force would be needed to exactly isolate the NNM.

Increasing the amplitude even more (A = 35.6 N in Fig. 5(d)) caused the main branch
and the IRC to merge together, forming one continuous NLFR branch up to 55 Hz. The
merging of these two branches therefore leads to a sudden and substantial change in the
resonant frequency. For the highest forcing amplitude (A = 45.2 N in Fig. 5(e)), the
resonant frequency shifted to 56.6 Hz. This smooth increase in the resonant frequency
continued at higher forces as well. Moving from Fig. 5(d) to Fig. 5(e) also caused one
resonance to be eliminated, as indicated by the MIF.

The IRCs presented in Fig. 5 were computed using shooting and continuation algorithms,
considering the solutions predicted by the energy balance criterion (7) as first guess.
Figure 7 shows that the cross markers, which represent the actual forced resonant response
of Figs. 4 and 5 where the MIF is equal to 1, are in close, though not exact, agreement
with the predictions of the energy balance criterion.

4.2 Fold Bifurcations

Because IRCs possess fold bifurcations, bifurcation tracking in the codimension-2 space
(frequency-forcing amplitude-energy) is another tool that can reveal their existence. The
procedure used in this section is based on the harmonic balance method described in [44].

The 3D bifurcation locus is presented as an orange line in Fig. 8(a), which also shows the
NLFR in black for forcing amplitudes of 25 N, 33.1 N and 40 N. Figure 8(b) gives a con-
venient projection of the bifurcation branch onto the frequency versus forcing amplitude
plane. The turning point indicated with a diamond marker shows the frequency/forcing
amplitude at which the fold bifurcations at the tips of the IRC were created. The corre-
sponding values (20.7 N and 45.7 Hz) reflect the good predictive capability of the energy
balance criterion (22.3 N and 46.5 Hz in Section 3). The square marker indicates when
the IRC merges with the main resonance peak (33.1 N).

The fold bifurcation tracking analysis was also used to study the effect of structural damp-
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ing on the observed IRCs. The damping matrix introduced in Section 3 was perturbed
by adding a scaling term, x, such that C = x (—0.0391K + 1.47 x 10~*M). Several bi-
furcation branches are given in Fig. 9 for different values of x, namely 1, 1.5, 1.8 and 1.9.
The IRC was robust against damping since it was still visible for higher levels of damping
(k > 1), however, increasing x caused the IRC to appear later in forcing amplitude, and
shorten the range where it existed. For the largest damping case studied, for k = 1.9, the
IRC was no longer present. This analysis shows that a sufficiently large value of structural

damping can destroy the IRCs. It may also explain why the other modal interactions in
Fig. 3(a) did not produce IRCs.
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5 Beam Response to Sine Sweep Excitation

To better understand the practical implications of IRCs, the beam was subjected to sine
sweep excitations of increasing amplitudes with a sweep rate of 0.5 Hz/s. The outcome of
the numerical simulations is plotted in Figure 10. For reference, the response of the linear
model at a force amplitude of A = 4.45 N (black) was computed, and resulted in the
largest tip displacement (even though the force amplitude was lowest), with a resonance
at the linear natural frequency.

For the nonlinear sweep for A = 11.3 N, resonance occurred near 37 Hz, resulting in
a sudden jump, the so-called jump phenomenon, to a lower response amplitude as the
frequency continued to sweep upwards. When the force amplitude doubled, the resonant
frequency occurred near 39 Hz. However, doubling the force amplitude once more (A
= 45.2 N) caused a dramatic shift in resonant frequency. Now the response dropped off
around 57 Hz, indicating that the increased force amplitude shifted the resonance nearly
18 Hz. Considering the amplitudes A = 32.5 N and 35.6 N shows that the shift in resonant
frequency occurred in this range of forcing amplitudes. In other words, the sine sweeps
at A =22.6 N, A =26.7TNand A = 32.5 N fell off around 38 Hz, because the IRC was
disconnected from the main branch, and there was no path for the response to follow to
the higher frequency resonance. However, once the two NLFR branches merged together
(A = 35.6 N), the sine sweeps were able to stay along the high amplitude path up to
resonance around 55 Hz.

Another dynamical phenomenon, which only appeared for A = 35.6 N and 45.2 N, is
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Figure 10: Numerical sine sweeps at a rate of 0.5 Hz/s where the displacement of the
beam tip is plotted for force amplitudes of (red) 11.3 N, (green) 22.6 N, (blue) 26.7 N,
(yellow) 32.5 N, (magenta) 35.6 N and (cyan) 45.2 N.

the modulation of the signal’s envelope in the range of 40-45 Hz. It was further exam-
ined by monitoring fold and Neimark-Sacker bifurcations [45] along the NLFR. Figure 11
superposes the sine sweep and NLFR responses for A = 45.2 N. Around 40 Hz, a Neimark-
Sacker bifurcation originally located on the IRC changes the stability of the NLFR and
generates a new branch of quasiperiodic oscillations (not shown in the figure). As a result,
a stable torus attracts the dynamics and is responsible for the observed envelope modu-
lation. Around 45 Hz, a second Neimark-Sacker bifurcation transforms the quasiperiodic
motion back into stable periodic motion. There is a small delay between the first (sec-
ond) bifurcation and the onset (disappearance) of quasiperiodic motion; this delay can be
attributed to the transient character of the swept-sine excitation.

6 Conclusion

This paper studied the intimate connection that exists between nonlinear normal modes,
i.e., the periodic motions of the undamped, unforced system, and the forced response of the
damped system. To bridge the gap between these two types of response, an energy balance
technique was adapted to estimate the resonant response to harmonic forcing from the
nonlinear modes and the damping matrix. This combination of nonlinear normal modes
and energy balance unveiled the presence of an isolated resonance curve, and therefore
represents a very useful approach for global analysis of nonlinear systems. Furthermore,
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Figure 11: Beam displacement at tip. Response to a swept- and a stepped-sine (numerical
continuation) excitation of 45.2 N depicted in cyan and black, respectively. Solid- and
dashed-black lines denote stable and unstable periodic solutions, respectively. Fold and
Neimark-Sacker bifurcations are pictured with orange bullets (o) and magenta squares
(m), respectively.

a possible mechanism driving the emergence of isolated resonance curves was identified as
the presence of modal interactions between nonlinear normal modes, a phenomenon only
possible for multi-degree-of-freedom systems.

Isolated resonance curves, which might easily be missed during numerical continuation
or experimental testing, have important practical consequences for the design and testing
of engineering structures. The associated response can be much larger than on the main
branch, and, when they connect to the main resonance branch, they may lead to a dra-
matic and sudden change in resonance frequency, something which is rarely discussed in
the mechanical engineering literature.
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